		Specifi	cations				
No.	ltem	Temperature Compensating Type	High Dielectric Type	Test Method			
1	Operating Temperature Range	—55 to +125℃	B1, B3, F1, R6: -25 to +85°C R1, R7: -55 to +125°C C8: -55 to +105°C E4: +10 to +85°C F5: -30 to +85°C	Reference temperature: 25℃ (2Δ, 3Δ, 4Δ, B1, B3, F1, R1: 20℃)			
2	Rated Voltage	See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities		Visual inspection			
4	Dimensions	Within the specified dimensions	i	Using calipers (GRM02 size is based on Microscope)			
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when 300%* of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V			
6	Insulation Resistance	C≤0.047μF: More than 10,000M C>0.047μF: 500Ω ⋅ F	/Ω C: Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25°c and 75%RH max. and within 2 minutes of charging, provided the charge/ discharge current is less than 50mA.			
7	Capacitance	Within the specified tolerance					
8	Q/ Dissipation Factor (D.F.)	30pF and over: Q≥1000 30pF and below: Q≥400+20C	[R6, R7, C8] W.V.: 100V : 0.025 max. (C<0.068µF) : 0.05 max. (C≥0.068µF) W.V.: 50V: 0.025 max. W.V.: 25/16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3µF) : 0.1 max. (C≥3.3µF) [E4]	The capacitance/Q/D.F. should be measured at 20/25°C at the frequency and voltage shown in the table. Char. ΔC to 7U, 1X (1000pF and below) ΔC to 7U, 1X (more than 1000pF) R6, R7, C8, F5, B1, B3, F1 R6, R7, F5 (C>10µF) E4			
	(D.F.)	C: Nominal Capacitance (pF)	[⊑4] W.V.: 25Vmin: 0.025 max.	Frequency 1±0.1MHz 1±0.1kHz 120±24kHz 1±0.1kHz			
			[F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1µF) : 0.09 max. (C≥0.1µF)	Voltage 0.5 to 5Vrms 1±0.2Vrms 0.5± 0.1Vrms 0.5± 0.05Vrms			
			W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.				

Continued on the following page. \nearrow

		Specifi	cations					
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method				
	No bias	Within the specified tolerance (Table A-1)	B1, B3: Within ±10% (-25 to +85°C) R1, R7: Within ±15% (-55 to +125°C) R6: Within ±15% (-55 to +85°C) tolerance E4: Within +22/-56% (+10 to +85°C) F1: Within +30/-80% (-25 to +85°C) F5: Within +22/-82% (-30 to +85°C) C8: Within ±22%		fied temp. stage. ature Compensati rature coefficient e measured in ste- ing the temperature to $\pm 125^{\circ}C/\Delta C$: \pm $5^{\circ}C/\pm 20$ to $\pm 85^{\circ}C$) ed tolerance for th e change as Tabl- itance drift is calcu- ne maximum and r	ing Type is determined op 3 as a refe re sequentiall 20 to +125°C: the capacitat e temperature e A-1. ulated by divid minimum mea ralue in step 3	rence. y from step 1 through to ther temp. coeffs.: nce should be within e coefficient and ding the differences issured values in the s.	
		/	(33 10 1 103 0)		ep	Temperat		
	50% of		B1: Within +10/-30%		-55±		/U/1X/R6/R7/C8) 10±3 (for E4)	
	the Rated Voltage		R1: Within +15/-40% F1: Within +30/-95%	;	3 R	eference Ten	nperature ±2	
	Voltage				+	85±3 (for c	· · · · ·	
Capacitance 9 Temperature					5 R	eference Ten	nperature ±2	
Characteristi	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.) ⊁Do not apply to 1X/25V	*Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/–10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.	t at ur ur ur urs 3 Reference Temperature 4 85±3 (for R1, R7, R6 -25±3 (for B1, B3, F1 -30±3 (for F5)/10±3 (for 3 Reference Temperature 6 -55±3 (for R1, R7)/ -25±3 (for R1)/ -25±3 (for R1, R7)/ -25±3 (for R1)/ -25±3 (f		ranges shown es.* the capacitan with applying tage. e (°C) perature ± 2 1, R7, R6) 1, B3, F1) 0 ± 3 (for E4) perature ± 2 R1, R7)/ I, B3, R6 E4) perature ± 2 or R1)/ B1, F1) perature ± 2	in the table should ce change should be	
		No removal of the terminations	or other defect should occur	8 Solder the	85±3 (for E	B1, F1)	epoxy board) shown in	
101	ve Strength hination	No removal of the terminations or other defect should occur.		Fig. 1a usi parallel wit The solder reflow met soldering is	ng an eutectic sole h the test jig for 10 ing should be don hod and should be s uniform and free 102), 2N (GRM03) pe a 2 0.2 3 0.3 5 0.4 3 1.0 1 1.2 1 2.2 2 2.2 3 3.5	der. Then app 0±1 sec. he either with e conducted w e of defects su	by 10N* force in an iron or using the vith care so that the ich as heat shock. , GRM18) (in mm) c 6 0.23 0.5 0.5 1.2 0.1.65 0.2.0 2.9 0.3.7	

Continued on the following page.

			Specif	ications				
No.	Ite	em	Temperature Compensating Type	High Dielectric Type		Test Me	ethod	
		Appearance	No defects or abnormalities					
		Capacitance	Within the specified tolerance					
11	Vibration Resistance Q/D.F.		30pF and over: Q≧1000 30pF and below: Q≧400+20C C: Nominal Capacitance (pF)	$\label{eq:second} \begin{bmatrix} B1, B3, R6, R7, C8 \\ W.V.: 100V \\ : 0.025 max. (C<0.068 \mu F) \\ : 0.05 max. (C\geq0.068 \mu F) \\ W.V.: 50V: 0.025 max. \\ W.V.: 25/16/10V: 0.035 max. \\ W.V.: 25/16/10V: 0.035 max. \\ W.V.: 6.3/4V \\ : 0.05 max. (C<3.3 \mu F) \\ : 0.1 max. (C\geq3.3 \mu F) \\ [E4] \\ W.V.: 25Vmin: 0.025 max. \\ [F1, F5] \\ W.V.: 25Vmin. \\ : 0.05 max. (C<0.1 \mu F) \\ : 0.09 max. (C\geq0.1 \mu F) \\ W.V.: 16/10V: 0.125 max. \\ W.V.: 6.3V: 0.15 max. \\ W.V.: 6.3V: 0.15 max. \\ \end{bmatrix}$	Solder the capacitor on the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic mot having a total amplitude of 1.5mm, the frequency being varie uniformly between the approximate limits of 10 and 55Hz. Th frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).			s (10). narmonic motion cy being varied and 55Hz. The 10Hz, should otion should be
	Deflection		No crack or marked defect sho	uld occur.	Solder the capacit in Fig. 2a using ar direction shown in done by the reflow so that the solderi shock.	eutectic solde Fig. 3a for 5±1 method and sl	r. Then apply a l sec. The solo hould be cond	a force in the dering should be ucted with care
12			20 50 Pressurizing speed : 1.0mm/sec. Pressurize Flexure : ≤1		i i			
					GRM02	0.2	0.56	0.23
			Capacitance		GRM03	0.3	0.9	0.3
			45	45	GRM15	0.4	1.5 3.0	0.5
			Fi- 0-		GRM18 GRM21	1.0	4.0	1.65
			Fig. 3a		GRM21	2.2	5.0	2.0
					GRM32	2.2	5.0	2.9
					GRM43	3.5	7.0	3.7
					GRM55	4.5	8.0	5.6
								(in mm)
13	3 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.		Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion) . Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for 2 ± 0.5 seconds at 230 ± 5 °C or Sn-3.0Ag-0.5Cu solder solution for 2 ± 0.5 seconds at 245 ± 5 °C.			

Continued on the following page.

			Specif	ications	
lo.	Ite	m	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed ch specifications in the following ta		
		Appearance	No defects or abnormalities		
	Resistance to Soldering Heat	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%	
4		istance 30pF and over: Q≥1000 W.V.: 100V dering t 30pF and over: Q≥1000 W.V.: 50V: 0.025 max. (C W.V.: 50V: 0.025 max. (C W.V.: 50V: 0.025 max. (C W.V.: 50V: 0.025 max. (C W.V.: 50V: 0.025 max. (C U.V.: 50V: 0.025 max.		: 0.025 max. (C<0.068μF) : 0.05 max. (C≥0.068μF) W.V.: 50V: 0.025 max. W.V.: 25/16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [E4] W.V.: 25Vmin: 0.025 max. [F1, F5]	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5Ct solder solution at 270±5°C for 10±0.5 seconds. Set at room temperature for 24±2 hours, then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement. •Preheating for GRM32/43/55 Step Temperature 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.
		I.R.	More than 10,000M Ω or 500 Ω -		
		Dielectric Strength	No defects		
			The measured and observed ch specifications in the following ta	-	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments
				[R6, R7, C8]	shown in the following table.
				W.V.: 100V : 0.05 max. (C<0.068µF)	Set for 24±2 hours at room temperature, then measure. Step 1 2 3 4
				0.0075 max. (C≥0.068μF) W.V.: 50/25/16/10V : 0.05 max.	Step I 2 3 4 Temp. (°C) Min. Operating Temp. +0/-3 Room Temp. Max. Operating Temp. +3/-0 Room Temp.
5	Temperature Cycle		30pF and over: Q≧1000	W.V.: 6.3/4V : 0.075 max. (C<3.3µF)	Time (min.) 30±3 2 to 3 30±3 2 to 3
	5,000	Q/D.F.	30pF and below: Q≧400+20C C: Nominal Capacitance (pF)	 . 0.075 max. (C<3.3µF) : 0.125 max. (C≥3.3µF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1µF) : 0.09 max. (C≥0.1µF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max. 	 Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement.
		I.R.	More than 10,000M Ω or 500 Ω -	F (Whichever is smaller)	
	-	Dielectric	No defects		

Continued on the following page. \square

			Specif	ications			
۱o.	lte	m	Temperature Compensating Type	High Dielectric Type	Test Method		
			The measured and observed cl specifications in the following ta	naracteristics should satisfy the able.			
		Appearance	No defects or abnormalities	1			
16	Humidity (Steady State)	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30%			
		Q/D.F.	30pF and over: Q≥350 10pF and over 30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	$[R6, R7, C8] \\ W.V.: 100V \\ : 0.05 max. (C<0.068 \mu F) \\ : 0.075 max. (C \ge 0.068 \mu F) \\ W.V.: 50/25/16/10V \\ : 0.05 max. \\ W.V.: 6.3/4V \\ : 0.075 max. (C < 3.3 \mu F) \\ : 0.125 max. (C \ge 3.3 \mu F) \\ [E4] \\ W.V.: 25Vmin: 0.05 max. \\ [F1, F5] \\ W.V.: 25V min. \\ : 0.075 max. (C < 0.1 \mu F) \\ : 0.125 max. (C \ge 0.1 \mu F) \\ W.V.: 16/10V: 0.15 max. \\ W.V.: 6.3V: 0.2 max. \\ (Mthick event is a market) \\ \end{tabular}$	Set the capacitor at 40±2°c and in 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure.		
_		I.R.	More than 1,000M Ω or 50 Ω · F The measured and observed cl	naracteristics should satisfy the			
			specifications in the following table.				
		Appearance	No defects or abnormalities				
		0	Within ±7.5% or ±0.75pF	B1, B3, R1, R6, R7, C8 : Within ±12.5%			
		Capacitance Change	(Whichever is larger)	F1, F5, E4: Within ±30% [W.V.: 10V max.] F1, F5: Within +30/-40%			
7	Humidity Load			[W.V.: 10V max.]	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 24±2 hours at room temperature. Perform initial measurement.		

Continued on the following page.

			Specifi	ications					
No.	lte	em	Temperature High Dielectric Type		Test Method				
			The measured and observed characteristics should satisfy the specifications in the following table.						
		Appearance	No defects or abnormalities						
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≧1.0µF] F1, F5: Within +30/−40% [10V max. and C≧1.0µF]	Apply 200%* of the rated voltage at the maximum operating temperature ±3℃ for 1000±12 hours.				
18	High Temperature Load	Q/D.F.	30pF and over: Q≧350 10pF and over 30pF and below: Q≧275+2.5C 10pF and below: Q≧200+10C C: Nominal Capacitance (pF)	$\begin{array}{l} [B1, B3, R6, R7, C8] \\ W.V.: 100V \\ &: 0.05 \mbox{ max. } (C{0.068}\mu F) \\ &: 0.075 \mbox{ max. } (C{0.068}\mu F) \\ W.V.: 50/25/16/10V \\ &: 0.05 \mbox{ max. } \\ W.V.: 6.3/4V \\ &: 0.075 \mbox{ max. } (C{3.3}\mu F) \\ &: 0.125 \mbox{ max. } (C{3.3}\mu F) \\ [E4] \\ W.V.: 25V\mbox{min: } 0.05 \mbox{ max. } \\ [F1, F5] \\ W.V.: 25V\mbox{ min. } \\ &: 0.075 \mbox{ max. } (C{0.1}\mu F) \\ &: 0.125 \mbox{ max. } (C{0.1}\mu F) \\ W.V.: 16/10V: 0.15 \mbox{ max. } \\ W.V.: 6.3V: 0.2 \mbox{ max. } \end{array}$	Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3°C for one hour. Remove and set for 24±2 hours at room temperature. Perform initial measurement. *150% for 500V				
		I.R.	More than 1,000M Ω or 50 Ω \cdot F	(Whichever is smaller)					

Table A-1

	Nominal Values (ppm/°C)*1	Capacitance Change from 25°C (%)						
Char.		-55		-30		-10		
		Max.	Min.	Max.	Min.	Max.	Min.	
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	-150 ± 60	2.33	0.72	1.61	0.50	1.02	0.32	
6R	-220 ± 60	3.02	1.28	2.08	0.88	1.32	0.56	
6S	-330 ± 60	4.09	2.16	2.81	1.49	1.79	0.95	
6T	-470 ± 60	5.46	3.28	3.75	2.26	2.39	1.44	
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21	
1X	+350 to -1000	-	_	-	-	_	-	

*1: Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for ΔC)/85°C (for other TC).

(2)

		Capacitance Change from 20°C (%)						
Char.	Nominal Values (ppm/℃)*2	-55		-25		-10		
		Max.	Min.	Max.	Min.	Max.	Min.	
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75	
2P	-150 ± 60	-	-	1.32	0.41	0.88	0.27	
3P	-150±120	-	-	1.65	0.14	1.10	0.09	
4P	-150±250	-	-	2.36	-0.45	1.57	-0.30	
2R	-220 ± 60	-	-	1.70	0.72	1.13	0.48	
3R	-220±120	-	-	2.03	0.45	1.35	0.30	
4R	-220±250	-	-	2.74	-0.14	1.83	-0.09	
2S	-330 ± 60	-	-	2.30	1.22	1.54	0.81	
3S	-330±120	-	-	2.63	0.95	1.76	0.63	
4S	-330±250	-	-	3.35	0.36	2.23	0.24	
2T	-470± 60	-	-	3.07	1.85	2.05	1.23	
3T	-470±120	-	-	3.40	1.58	2.27	1.05	
4T	-470±250	-	-	4.12	0.99	2.74	0.66	
3U	-750±120	-	-	4.94	2.84	3.29	1.89	
4U	-750±250	-	-	5.65	2.25	3.77	1.50	

4U -750 ± 250 --5.652.2*2: Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for ΔC)/85°C (for other TC).

