ModelSIim

SE

User’s Manual

Version 5.5

Published: 22/Feb/01

The world’s most popular HDL simulator

ModelSim /VHDL, ModelSim /VLOG, ModelSim /LNL, and ModelSim /PLUS are
produced by Model Technology Incorporated. Unauthorized copying, duplication,
or other reproduction is prohibited without the written consent of Model
Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark of Model Technology Incorporated. PostScript
is a registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXIm is a trademark of
Globetrotter Software, Inc. IBM, AT, and PC are registered trademarks, AlX and
RISC System/6000 are trademarks of International Business Machines
Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Moatif is a trademark of the Open Software Foundation,
Inc. in the USA and other countries. SPARC is a registered trademark and
SPARCSstation is a trademark of SPARC International, Inc. Sun Microsystems is a
registered trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright (c) 1990 -2001, Model Technology Incorporated.
All rights reserved. Confidential. Online documentation may be printed by licensed
customers of Model Technology Incorporated for internal business purposes only.

Model Technology Incorporated
10450 SW Nimbus Avenue / Bldg. R-B
Portland OR 97223-4347 USA

phone: 503-641-1340

fax: 503-526-5410

e-mail: support@model.com, sales@model.com
home page: http://www.model.com

mailto:support@model.com
mailto:sales@model.com
http://www.model.com

Table of Contents

1 - Introduction (1-15)

Performancetoolsincluded with ModelSmSE 1-16
ModelSim’sgraphicinterface L ..o 1-16
Standardssupported L L L L L e e 1-17
ASSUMPLIONS L e e e e e e e e e e e e 1-17
Sectionsinthisdocument L L L L L Lo 1-18
Commandreference L Lo e e e e 1-19
Textconventions L .o e e e e e 1-20
Whatisan"HDL item" Lo 1-20
Whereto find our documentation oL Lo Lo 1-21

Download afree PDF reader withSearch 1-21
Online References - www.model.com 1-22
Comments L L L e e e e 1-23

2 - Projects and system initialization (2-25)

Introduction L L e e 2-26
How do projectsdifferinversion55? 2-27
Getting started withprojects L Lo 2-28
Step1l— Createanew project o 2-29
Step 2— Addfilestotheprojecto Lo 2-31
Step 3— Compilethefileso 2-32
Step4— Simulateadesign L L L L Lo 2-33
Other project operations 2-33
Customizing project settings o e e e 2-34
Changing compileorder Lo 2-34
Sefting compileroptions. L L. L Lo 2-35
Accessing projectsfromthecommandline L. 2-36
Systeminitialization L L L L Lo 2-37
Filesaccessed duringstartupo 2-37
Environment variablesaccessed during startup Lo oL L L 2-38
Initializationsequence L L L L Lo Lo 2-39

3 - Design libraries (3-41)

Designlibrarycontents o 3-42
Designlibrary types L L 3-42
Working with designlibrarieso 3-43
Managinglibrary contents L. . L. oo e e 3-44
Assigning alogical nameto adesignlibrary L. 3-47
Movingalibrary L e e 3-49
Specifying theresource librarieso L0 3-50
Predefined libraries. L oL L 3-50

ModelSim SE User’s Manual Tableof Contents- 3

Alternate IEEE librariessuppliedo 3-51

VITAL 2000 library o e 3-51
Rebuilding supplied librarieso 3-51
Regenerating your design libraries. 0L 0L 3-51
Verilogresourcelibraries Lo oL 3-52
Maintaining 32-bit and 64-bit versionsinthesamelibrary 3-52
Importing FPGA librarieso 3-53

4 - VHDL Simulation (4-55)

CompilingVHDL designso e 4-57
Invokingthe VHDL compiler oL 4-57
Dependency checking. Lo 4-57

SimulatingVHDL designs.o e e e e 4-58
Invoking the simulator fromthe Mainwindow 4-58
Invoking Code Coveragewithvsim 4-59

UsingtheTextlOpackage« . . o v v v v v i i e 4-60
Syntax for filedeclaration L0 4-60
Using STD_INPUT and STD_OUTPUT within ModelSim 4-61

TextlO implementationissueso 4-62
Reading and writing hexadecimal numberso 4-63
Danglingpointerso 4-63
TheENDLINEfunctiono 4-63
The ENDFILE function 4-63
Using dlternativeinput/output files Lo 4-64
Providingstimulus L Lo 4-64

Obtaining the VITAL specificationand sourcecode 4-65

VITALpackages v v o e e e e e e e e e e e e 4-65

ModelSim VITAL complianceo 4-66
VITAL compliancecheckingo 4-66
VITAL compliancewarnings« o o 4-66

Compiling and Simulating with accelerated VITAL packages 4-67

Utilpackage o e e e e e e 4-68
get resolution() L L e e e e e 4-68
init signal spy() e e e e e e 4-69
tored() e e e 4-70
totime)) e e e e e e 4-71

5 - Verilog Simulation (5-73)

Compilation L e e e e e e 5-75
Incremental compilation. L L L o 5-76
Libraryusage e e e e e 5-78
Verilog-XL compatible compileroptions L. 5-79
Verilog-XL ‘uselib compiler directive 5-81

Simulation L L L e e e e e e e 5-84

4 - Table of Contents ModelSim SE User’s Manual

Simulation resolution limit .
Event order issues . .
Verilog-XL compati blesmulator optlons

Compiling for faster performance . .
Compiling with -fast .
Compiling gate-level de;gnswnh fast
Referencing the optimized design .

Enabling design object visibility with the +acc optlon .

Using pre-compiled libraries .

Cdl Libraries . .
Delay modes

System Tasks
|EEE Std 13645ystem tasks . .
Verilog-XL compatible system tasks . .
$init_signal_spy . Ce e

Compiler Directives . .
|EEE Std 1364 compiler dlrect|ve£ -
Verilog-XL compatible compiler directives . .

Using the Verilog PLI/VPI
Registering PL1 applications .
Registering VPI applications .
Compiling and linking PLI/VPI aophcatlons
The PLI callback reason argument .
The sizetf callback function
PLI object handles . .
Third party PLI applications . .
Support for VHDL objects .
|EEE Std 1364 ACC routines . .
|EEE Std 1364 TF routines .
Verilog-XL compatible routines.
64-bit supportinthePLI . .
PLI/VPI tracing . .

6 - Mixed VHDL and Verilog Designs (6-127)

Separate compilers, common libraries .

Mapping data types
VHDL generics . .
Verilog parameters .
VHDL and Verilog ports
Verilog states .

VHDL instantiation of Verilog deSIgn units .
Component declaration
vgencomp component declaration .
VCD output

Verilog instantiation of VHDL desgn units .

. 5-84
. .585
. 5-86

. 5-90
. 5-90
. .50
. 5-92

. 5-96

. 5-97
. 5-97

. 5-99

. 5-99
5-102
5-104

5-106
5-106
5-106

5-108
5-108
5-110
5111
5-117
5-119
5-119
5-120
5121
5-122
5-123
5-125
5-125
5-125

6-128

6-128
6-128
6-129
6-129
6-130
6-132
6-132
6-134
6-135
6-136

ModelSim SE User’s Manual

Table of Contents- 5

7 - Datasets (saved simulations) and virtuals (7-137)

Datasets Y S
Savmgasmulanontoadataset Y G S 1
Openingdatasets. e 1139
Viewing dataset structure 7140
Managing datasets Y S)
UsmgdatasetswnhModel&mcommands Y S)
Restricting the dataset prefixdisplay 7143

Virtual Objects (User-defined buses,andmore) 7144
Virtual signals. L L e e e e T144
Virtual functions. L L T145
Virtual regions L. L . L o oo T-146
Virtual types L L oo T-146

Dataset, logfile, and virtual commands 7147

8 - ModelSim Graphic Interface (8-149)

Windowoverview o o815

Commonwindow features. 815
Quick accesstoolbars 8152
DragandDrop e, BIR2
Commandhistory 8152
Automatic window updating e e e e e e 8153
Finding names, searching for values, andlocanngcursors e e e e e e 8153
SortingHDLitems 8154
Multiplewindowcopies. 814
Contextmenus 81
Menu tear off R = o 5%
Custommngmenusandbuttons e o LY
Combining signalsinto auser-definedbus 8154
Treewindow hierarchicalview 815

Mainwindow 81y
Workspace 8158
Transcript & S A5 1¢
TheMamwmdowmenubar.........................8—160
TheMainwindowtoolbar 8166
The Main window statusbar e 8168
Mouse and keyboard shortcutsmtheTranscnpt and Sourcewmdows. 8168

Dataflow window o - o W4
LmktoactwecursormWavewmdow P = ot 4
Dataflow window menubar R = 0 Y %4
Tracing HDL |temSW|ththeDatafIOWW|ndow T - S S
Saving the Dataflow window as a Postscript file 8174

Listwindow T < S 5
HDthemsyoucanwew..........................8—175
The List window menu bar < (6]
SettmgLlstwmdowdlsplaypropertles.....................8—178

6 - Table of Contents ModelSim SE User’s Manual

Adding HDL itemsto the List window P < R 0

Editing and formatting HDL |tem3|ntheL|stW|ndow. P < o 21
Examining smulation resultswith theListwindow 8184
Findingitemsby nameintheListwindow 8185
Searching for item valuesintheListwindow 8185
Setting time markersinthe Listwindow 8187
List window keyboard shortcuts. 8188
Saving List window datato afile 8189
Processwindow T < M Ao 0]
TheProcesswmdowmenubar........................8-191
Signalswindow e < e
TheSgnalswmdowmenubar........................8—194
Selecting HDL itemtypestoview 819%
Forcing signal and netvalues T & s ke ¢}
Adding HDL |temstotheWaveandLlstwmdowsoralogflle. . = L4
Finding HDL itemsinthe Signaswindow 8198
Setting signa breakpoints 8198
Definingclocksignals 820
Sourcewindow T < 20k
TheSourcewmdowmenubar T - 210
The Sourcewindow toolbar 824
Setting file-line breskpoints P & 2405}
Ed|t|ngthesourcefllemtheSourcewmdow . & 2003
Checking HDL item valuesand descriptions 8208
Finding and replacing in the Sourcewindow 8208
Setting tab stopsin the Sourcewindow 8209
Structurewindow e e e e e s 8210
TheStructurewmdowmenubar . = S |
Finding itemsin the Structurewindow 8212
Varigbleswindow O 2 K
TheVanabIecwmdowmenubar O < a0}
Wavewindow 8216
Pathnamepane 8216
Vauespane L Lo e e e s 8217
Waveformpane L. Lo e 8217
Cursorpanes e e e e e e e e 8218
HDL itemsyou canview . . . P & 2l <}
Adding HDL |temS|ntheWaveW|ndow N < A ke
The Wavewindow menubar 820
TheWavewindowtoolbar 824
Using Dividers e e e e s 8227
Spl|tt|ngWaveW|ndowpanes P © 2% <}
Combining itemsin the Wavewindow T S |
Editing and formatting HDL |tem5|ntheWaveW|ndow T < 2 0]
Setting Wave window display properties 823%
Setting signal breakpoints T & 248 ¢}
Fmdlng|temsbynameorvaluemtheWavewmdow e e e e e . 8237
Searching for item valuesinthe Wavewindow 8237
Usingtime cursorsinthe Wavewindow 823

ModelSim SE User’s Manual Table of Contents- 7

Findingacursor e 8-240

Making cursor measurements.o e 8-240
Zooming - changing thewaveformdisplayrange 8-240
Saving zoom range and scroll position with bookmarks 8-241
Wave window mouse and keyboard shortcuts Lo 8-244
Printing and savingwaveforms L Lo 8-245
Compiling with the graphicinterface 8-250
Locating source errorsduring compilation. L oL 8-251
Setting default compileoptionso 8-252
Simulating with the graphicinterface 8-256
Designselectionpageo e e e 8-257
VHDL settingspage e e e e e e e e e e 8-259
Verilogsettingspage o0 8-261
Librariessettingspageo e 8-262
SDF settingspage o e e e e e e e e 8-263
SDFOpLioNs e e e e e e e 8-264
Setting default simulationoptions L. 8-265
ModelSimtools L Lo e e 8-269
TheButton Adder Lo 8-269
TheMacroHelper Lo 8-270
TheTcl Debugger oL 8-271
The GUI Expression Builder 8-275
Graphicinterfacecommands L0 L0 Lo 8-277
Customizingtheinterfaceo 8-279

9 - Performance Analyzer (9-281)

Introducing Performance Analysis L .00 9-282
A Statistical Sampling Profiler00 9-282
GettingStarted L L L L e e e e e 9-283
Interpretingthedata oL 9-283
Viewing Performance Analyzer Results 9-284
InterpretingtheName Fieldo 9-286
Interpreting theUnder(%) and In(%) Fields 9-286
Differencesin the Ranked and Hierarchical Views 9-287
Ranked/Hierarchical ProfileWindow Features 9-288
Thereportoption 9-289
Setting preferenceswith Tclvariables 9-290
Performance Analyzercommands L L oL oo 9-290

10 - Code Coverage (10-291)

Enabling Code Coverageo 10-292
Thecoverage summary window 10-292
Summary information. L L L L L 10-293
Missestab L. L L L e e 10-293

8 - Table of Contents ModelSim SE User’s Manual

Exclusionstab Lo 10-293

The coverage summary window menubar 10-294
Thecoverage sourcewindowo oo 10-296

Excludinglinesandfileso L0 Lo 10-296
Merging coveragereportfileso L0 10-298
Exclusionfilterfileso Lo 10-299
Code Coverage preferencevariables Lo oL 10-300
CodeCoveragecommandso e e e 10-300

11 - Waveform Comparison (11-301)

Introducing Waveform Comparisono 11-302
TwoModesof Comparisono e e e e e e 11-303
Comparing Hierarchical and Flattened Designs. 11-304

Graphical Interfaceto Waveform Comparison 11-305
Opening Dataset Comparison. v v v v e e 11-305
Adding Signals, Regionsand/or Clocks 11-307
Setting Compare Options e 11-314
Wavewindowdisplayo e 11-316
Printing comparedifferenceso L0 11-321
Lisswindowdisplay 11-322

Command-line interface to Waveform Comparison 11-323

12 - Standard Delay Format (SDF) Timing Annotation (12-325)

Specifying SDF filesfor simulationo 12-326
Instance specification L Lo 12-326
SDF specification withtheGUI 12-327
Errorsandwarnings L Lo e 12-327

VHDL VITAL SDF o o o o oo e e e e 12-328
SDFto VHDL genericmatchingo 12-328
Resolvingerrors oL e 12-329

VerilogSDF e e e 12-330
The $sdf _annotatesystemtasko 12-330
SDFtoVerilog construct matching 12-331
Optional edge specificationso 12-333
Optional conditions Lo 12-334
Roundedtimingvalues 12-335

SDF for Mixed VHDL and VerilogDesigns 12-336

Interconnect delays L L L Lo 12-336

Troubleshooting e e 12-337
Mistaking a component or module namefor aninstancelabel 12-338
Forgetting to specify theinstance 12-338

Obtaining the SDF specification 12-339

ModelSim SE User’s Manual Table of Contents- 9

13 - Value Change Dump (VCD) Files (13-341)

ModelSimVCD commandsandVCDtasks 13-342
Resimulating aVHDL designfromaVCDfile 13-344
Specifying afilenameand statemappings Lo L. 13-344
Creatingthe VCDfile. Lo 13-344
A VCD filefromsourcetooutput Lo 13-346
VCD simulator commands L. e e e e e 13-346
VCDoutput e e e e e e e e e 13-347
Capturingportdriverdata 13-349
Supported TSSI states.o 13-349
Strengthvalues L L L e 13-350
Portidentifiercode L 13-350
Example VCD output fromved dumpports 13-351

14 - Logic Modeling SmartModels (14-353)

VHDL SmartModel interface L oL Lo 14-354
Creating foreign architectureswithsm_ entity 14-355
Vectorports o e e e e e e e e e 14-357
Commandchannel L 0L 14-358
SmartModel Windows L L Lo 14-359
Memory arrays e e e e e e e e e e e e e 14-360

Verilog SmartModel interface o L L L0 14-361
LMTV usage documentation e 14-361
Linkingthe LMTV interfacetothesimulator 14-361
Compiling Verilogshellso 14-361

15 - Logic Modeling Hardware Models (15-363)

VHDL Hardware Model interface 15-364
Creating foreign architectureswithhm_ entity 15-365
Vectorports L L e e e e e e e s e e 15-367
Hardwaremodel commands 15-368

16 - Tcl and ModelSim (16-369)

Tcl featureswithin ModelSim Lo 16-370
TclReferences L 16-370
Tclcommands L L L e 16-371
Tclcommandsyntax L Lo o e e 16-372
if commandsyntax Lo 16-374
setcommandsyntax L L L Lo 16-375
Command substitution L L L oL L 16-375
Command separator e 16-376
Multiple-linecommands. oL 16-376
Evaluationorder L oL 16-376

10 - Table of Contents ModelSim SE User’s Manual

Tcl relational expression evaluation L Lo L oL 16-376

Variablesubstitution e 16-377
Systemcommands L L L L Lo e 16-377
Listprocessingo e e e 16-378
ModelSimTclcommands e 16-378
ModelSim Tcl timecommands e 16-379
CONVEISIONS v v e v e e e e e e e e e 16-379
Relations. e e 16-379
Arithmetic L e 16-380
Tolexamples L L e 16-381
Example2 oL L e e 16-382

A - Technical Support, Updates, and Licensing (A-385)

Technical support - electronic Lo A-386
Mentor Graphicscustomers e A-386
Technical support -telephoneo A-387
Mentor Graphics customersin North America A-387
Mentor Graphics customers outside North America A-387
Technical support - other channels A-387
Updates e e e A-388
OnlineReferences Lo e e e A-388
FLEXImLIceNses« o e e e e A-389
...................................... A-390

B - ModelSim Variables (B-391)

Variablesettingsreport L Lo B-392
Persona preferences L. L L oL L B-392
Returning to the original ModelSimdefaults B-392
Environment variables L oL 0oL B-393
Setting environment variablesin Windowso oL L. B-394
Referencing environment variableswithin ModelSm B-395
Removing temp files(VSOUT)o B-395
Preferencevariableslocated in INI files B-396
[Library] library pathvariableso B-396
[vcom] VHDL compiler control variables B-396
[vlog] Verilog compiler control variableso oL B-398
[vsim] simulator control variables Lo B-398
[Imc] Logic Modeling variableso B-402
Setting variablesin INI fileso 0oL B-402
Reading variablevaluesfromthe INI file B-402
Variablefunctions Lo Lo B-403
Preference variableslocated in TCL files ... B-406
User-definedvariableso B-406

ModelSim SE User’s Manual Table of Contents- 11

MorepreferencesB-406

Preferencevariableloadingorder B407
Simulator state variables e e e e e e eB-408
Referencmgsmulatorstatevanabl& e e e e e e eB-408

C - ModelSim Shortcuts (C-409)

Wave window mouse and keyboard shortcuts C410
List window keyboardshortcuts.C4
Commandshortcuts C412
Command history shortcuts N O X 4
Mouse and keyboard shortcutsmtheTranscnpt and Sourcewmdows C413
Right mousebutton.C415

D - Using the FLEXIm License Manager (D-417)

StartingthelicenseserverdaemonD-418
Controlling thelicensefilesearch D418
Manua start N B R X <
Automancstartatboottlme... A B £ K
Whattod0|fanotherapphcanonus&FLEXIm e e e e e o ooD419

Format of thelicensefileD420

Format of the daemon optionsfile.D42

License administrationtoolsD422
Imdown D422
ImremoveD423
Imreread . . . N D Y G
Adm|n|strat|0ntooIsfoerdows R B Y G

E - Tips and Techniques (E-425)

How to use checkpoint/restore N = WLd)
The difference between checkpomt/restoreand restartmg. T = vl
Using macros with restart and checkpoint/restore EA427

Running command-line and batch-mode smulations E428
Command-linemodeFE428
Bacchmode. E42

Using macros (DO files) . . . e ¥ 0)
UsngParameterswnhDOflI% e =0

Sourcecode security and-nodebug E433

Saving andviewingwaveforms. FE434

Setting up librariesforgroupuse FE434

Maintaining 32-bit and 64-bit modulesinthesamelibrary E434

Buscontentionchecking FE43

BusfloatcheckingFE43

12 - Table of Contents ModelSim SE User’s Manual

Design stability checkingo Lo E-436

Togglechecking. Lo E-436
Detectinginfinitezero-delay loops E-436
Referencing source fileswith locationmaps E-437
Using locationmappingo e E-437
Pathnamesyntax L Lo E-438
How location mappingworks.o E-438
Mapping with Tcl variables L E-438
Accelerate simulation by locking memory under HP-UX 102. E-439
Modelingmemory inVHDLo E-440
Setting up aList trigger with ExpressionBuildero E-444

F - What's new in ModelSim (F-447)

New features L e F-447
Command and variablechanges. F-448
Documentationchangeso e F-449
GUI changesinversion55 L0 F-450
Mainwindow changes F-451
Signaswindowchanges L. F-457
Sourcewindow changes Lo L F-458
Wavewindow changes e e e F-459
Coverage summary window changes F-461

License Agreement (463)

Index (469)

ModelSim SE User’s Manual Table of Contents- 13

14 - Table of Contents ModelSim SE User’s Manual

1 - Introduction

Chapter contents

Performance toolsincluded with ModelSmse 1-16
ModelSim’'sgraphicinterface 1-16
Standardssupported 117
Assumptions 117
Sectionsinthisdocument 118
Command reference 119
Text conventions 120
Whatisan"HDL item" 120
Whereto find our documentation 121
Online References - www.model.com. 122
Comments 123

This documentation was written for Model Sm SE version 5.5 for UNIX and Microsoft
Windows 95/98/ME/NT/2000 (see note below for exception). If the Model Sm software
you are using is a later release, check the README file that accompanied the software.
Any supplemental information will be there.

Although this document covers both VHDL and Verilog simulation, you will find it a
useful reference for single HDL design work.

ModelSim SE User’s Manual Introduction 1-15

Performance tools included with ModelSim SE

Performance tools included with ModelSim SE

All Model Sm SE versions include the following performance tools:

 Performance Analyzer (9-281)
Identifies areas in your simulation where performance can be improved.

P Note: Performance Analyzer will not operate on Windows 95.

» Code Coverage (10-291)
Gives you graphical and report file feedback on how the source code is being executed.

ModelSim’s graphic interface

While your operating system interface provides the window-management frame,
Model Sm controls all internal-window features including menus, buttons, and scroll bars.
The resulting simulator interface remains consistent within these operating systems:

» SPARCstation with OpenWindows, OSF/Matif, or CDE

* IBM RISC System/6000 with OSF/Motif

» Hewlett-Packard HP 9000 Series 700 with HP VUE, OSF/Matif, or CDE
 Linux (Red Hat v. 6.0 or later) with KDE or GNOME

 Microsoft Windows 95/98/M E/NT/2000

Because Model Sm's graphicinterfaceisbased on Tcl/TK, you also have the toolsto build
your own simulation environment. Preference variables and configuration commands,
"Preference variables located in INI files' (B-396), and " Graphic interface commands” (8-
277) give you control over the use and placement of windows, menus, menu options and
buttons. See "Tcl and Model Sim" (16-369) for more information on Tcl.

For an in-depth look at Model Sim’ s graphic interface see, Chapter 8 - ModelSm Graphic
Interface.

1-16 Introduction Model Sim SE User’s Manual

Standards supported

Standards supported

ModelSm VHDL supports both the IEEE 1076-1987 and 1076-1993 VHDL, the
1164-1993 Sandard Multivalue Logic Systemfor VHDL Interoperability, and the
1076.2-1996 Sandard VHDL Mathematical Packages standards. Any design developed
with ModelSmwill be compatible with any other VHDL system that is compliant with
either IEEE Standard 1076-1987 or 1076-1993.

ModelSm Verilog is based on the IEEE Std 1364 Standard Hardware Description
Language Based on the Verilog Hardware Description Language. The Open Verilog
International Verilog LRM version 2.0 is also applicable to alarge extent. Both PLI
(Programming Language Interface) and VCD (Vaue Change Dump) are supported for
ModelSm PE and SE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b, VITAL'95 - IEEE
1076.4-1995, and VITAL 2000.

Assumptions

We assumethat you are familiar with the use of your operating system. Y ou should also be
familiar with the window management functions of your graphic interface: either
OpenWindows, OSF/Moatif, CDE, HP VUE, KDE, GNOME, or

Microsoft Windows 95/98/ME/NT/2000.

We also assume that you have aworking knowledge of VHDL and Verilog. Although
ModelSmisan excellent tool to use while learning HDL concepts and practices, this
document is not written to support that goal. If you need more information about HDLS,
check out our Online References - www.model.com (1-22).

Finally, we make the assumption that you have worked the appropriate lessons in the
Model Sm Tutorial or the Quick Sart and are therefore familiar with the basic functionality
of ModelSm. The ModelSim Tutorial and Quick Sart are both available from the
ModelSm Help menu. The Model Sm Tutorial is also available from the Support page of
our web site: www.model.com.

For installation instructions please refer to the Start Here for Model Sm guide that was
shipped with the ModelSm CD. Sart Here may also be downloaded from our
website: www.model.com.

ModelSim SE User’s Manual Introduction 1-17

http://www.model.com/products/release.asp
http://www.model.com

Sections in this document

Sections in this document
In addition to thisintroduction, you will find the following major sectionsin this document:

2 - Projects and system initialization (2-25)
This chapter provides a definition of aModelSm "project” and discusses the use of a
new file extension for project files.

3 - Design libraries (3-41)
To simulate an HDL design using ModelSm, you need to know how to create,
compile, maintain, and delete design libraries as described in this chapter.

4 - VHDL Simulation (4-55)
This chapter is an overview of compilation and simulation for VHDL within the
Model Sm environment.

5- Verilog Simulation (5-73)
This chapter is an overview of compilation and simulation for Verilog within the
Model Sm environment.

6 - Mixed VHDL and Verilog Designs (6-127)
Model SnVPlus single-kernel simulation (SKS) allowsyou to simulate designsthat are
written in VHDL and/or Verilog. This chapter outlines data mapping and the criteria
established to instantiate design units between HDLSs.

7 - Datasets (saved simulations) and virtuals (7-137)
This chapter describes datasets and virtuals - both methodsfor viewing and organizing
simulation datain ModelSm.

8 - Model Sim Graphic Interface (8-149)
This chapter describes the graphic interface available while operating ModelSm.
ModelSm' s graphic interface is designed to provide consistency throughout all
operating system environments.

9 - Performance Analyzer (9-281)
This chapter describes how the Model Sm Performance Analyzer is used to easily
identify areas in your simulation where performance can be improved.

10 - Code Coverage (10-291)
This chapter describesthe Code Coverage feature. Code Coverage givesyou graphical
and report file feedback on how the source code is being executed.

11 - Waveform Comparison (11-301)
This chapter describes Waveform Comparison, a feature that lets you compare
simulations.

12 - Standard Delay Format (SDF) Timing Annotation (12-325)
This chapter discusses Model Sm's implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

1-18 Introduction Model Sim SE User’s Manual

Command reference

13 - Value Change Dump (VCD) Files (13-341)
This chapter explains Model Technology’s Verilog VCD implementation for
ModelSm. The VCD usage is extended to include VHDL designs.

14 - Logic Modeling SmartM odel s (14-353)
This chapter describes the use of the SmartModel Library and SmartModel Windows
with ModelSm.

15 - Logic Modeling Hardware Model s (15-363)
This chapter describesthe use the Logic Modeling Hardware Modeler with Model Sm.

16 - Tcl and ModelSim (16-369)
This chapter provides an overview of Tcl (tool command language) as used with
ModelSm. Additional Tcl and Tk (Tcl’ stoolkit) information can be found through
several Tcl online references (16-370).

A - Technical Support, Updates, and Licensing (A-385)
This appendix describes how and where to get technical support and updates and
licensing for ModelSim. It also contains links to the Model Technology web site and
references to books, organizations, and companies involved in EDA and simulation.

B - ModelSim Variables (B-391)
This appendix describes environment, system and preference variables used in
ModelSm.

C - ModelSim Shortcuts (C-409)
This appendix describes Model Sm keyboard and mouse shortcuts.

D - Using the FLEXIm License Manager (D-417)
This appendix covers Model Technology’s application of FLEXIm for ModelSm
licensing.

E - Tips and Techniques (E-425)
This appendix contains an extended collection of Model Sm usage examples taken
from our manuals, and tech support solutions.

F - What's new in ModelSim (F-447)
This appendix lists new features and changes in the various versions of Model Sm.
Command reference
The complete command reference for all Model Sm commandsislocated in the ModelSm

Command Reference. Command Reference cross reference page numbers are prefixed with
"CR" (e.g.,"ModelSim Commands" (CR-9)).

ModelSim SE User’s Manual Introduction 1-19

Text conventions

Text conventions

Text conventions used in this manual include:

italic text

provides emphasis and sets off filenames, path names, and
design unit names

bold text

indicates commands, command options, menu choices,
package and library logical names, aswell as variables and
dialog box selection

monospace type

monospace typeisused for program and command examples

Theright angle (>)

is used to connect menu choices when traversing menus as
in: File> Save

path separators

examples will show either UNIX or Windows path
separators - use separators appropriate for your operating
system when trying the examples

UPPER CASE

denotesfile types used by ModelSm (e.g., DO, WLF, INI,
MPF, PDF, etc.)

What is an "HDL item"

Because Model Smworks with both VHDL and Verilog, “HDL” refersto either VHDL or
Verilog when aspecific language referenceis not needed. Depending on the context, “HDL
item” can refer to any of the following:

VHDL block statement, component instantiation, constant, generate
statement, generic, package, signal, or variable

Verilog function, module instantiation, named fork, named begin, net,
task, or register variable

1-20 Introduction

Model Sim SE User’s Manual

Where to find our documentation

Where to find our documentation

Model Sm documentation is available from our website at
model .com/support/documentation.asp or in the following formats and locations:

Document Format How to get it

SartHerefor ModelSmSE | paper shipped with ModelSm

(installation & support . . .

reference) PDF select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSm SE Quick Guide | paper shipped with ModelSm

(command and feature — X X

quick-reference) PDF select Main window > Help > SE pocumentatlon, also available
from the Support page of our web site: www.model.com

ModelSm SE Tutorial PDF, HTML | select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE User’s PDF, HTML | select Main window > Help > SE Documentation

Manual

ModelSm SE Command PDF, HTML | select Main window > Help > SE Documentation

Reference

ModelSm Foreign PDF, HTML | select Main window > Help > SE Documentation

Language Interface

Reference

ModelSm Command Help | ASCII typehel p [conmand nane] at the prompt in the Main window

Tcl Man Pages (Tcl HTML select Main window > Help > Tcl Man Pages, or find

manual) contents.htm in \modeltech\tcl_help_html

technotes ASCII select Main window > Help > Technotes, or located in the

\modeltech\docs\technotes directory

Download a free PDF reader with Search

Model Technology’s PDF documentation requires an Adobe Acrobat Reader for viewing.
The Reader may beinstalled from the Model Sm CD. It is a so avail able without cost from
Adobe at http://www.adobe.com. Be sure to download the Acrobat Reader with Search to
take advantage of the index file supplied with our documentation; the index makes
searching for key words much faster.

ModelSim SE User’s Manual

Introduction 1-21

http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/support/documentation.asp
http://www.adobe.com

Online References - www.model.com

Online References - www.model.com

The Model Technology web siteincludes linksto support, software downloads, and many
EDA information sources. Check the links below for the most current information.

Latest version email

Place your name on our list for email notification of new releases and updates.

model .com/support/register news list.asp

News

Current news of Model Technology within the EDA industry.

model.com/news_events/default.asp

Partners

Model Technology’s value added partners, OEM partners, FPGA partners, ASIC

partners, and training partners.
model .com/partners/default.asp

Products

A complete collection of Model Technology product information.

model .com/products/default.asp

Technical Documents

Technical notes, application notes, FAQs.
model.com/resources/techdocs.asp

Sales

Locate Model Sm sales contacts anywhere in the world.
model.com/contact us.asp

Support

Model Technology email support and software downloads.

model .com/support/default.asp

1-22 Introduction

Model Sim SE User’s Manual

http://www.model.com
http://www.model.com/support/register_news_list.asp
http://www.model.com/news_events/default.asp
http://www.model.com/partners/default.asp
http://www.model.com/products/default.asp
http://www.model.com/resources/techdocs.asp
http://www.model.com/contact_us.asp
http://www.model.com/support/default.asp

Comments

Comments

Comments and questions about this manual and Model Sim software are welcome. Call,
write, fax or email:

Model Technology Incorporated
10450 SW Nimbus Avenue, Bldg. R-B
Portland, OR 97223-4347 USA

phone: 503-641-1340

fax: 503-526-5410

email: manuals@model.com

home page: http://www.model.com

ModelSim SE User’s Manual Introduction 1-23

mailto:manuals@model.com
http://www.model.com

1-24 Introduction Model Sim SE User’s Manual

2 - Projects and system initialization

Chapter contents

Introduction . . Ce . 2726
What are proj ects’> . e e 226
What are the benefits of proj ects’P e e 226
How do projects differ inverson55? 227

Getting started with projects 228
Step 1 — Createanew project 229
Step 2— Addfilestothe project. 231
Step 3— Compilethefiles 231
Step 4 — Simulateadesign 23
Other project operations 233

Customizing project settings 234
Changing compileorder 234
Setting compiler options 235

Accessing projects from thecommand line 236

Systeminitialization . . Ce e 2-3T
Files accessed during startup .o e 2237
Environment variables accessed during startup 238
Initialization sequence. 239

This chapter discusses Model Sm projects. Projects greatly simplify the process of
compiling and simulating a design and are a great tool for getting started with ModelSm.
This chapter aso includes a section on ModelSm initialization.

ModelSim SE User’'s Manual Projects and system initialization 2-25

Introduction

Introduction

What are projects?

Projects are collection entities for HDL designs under specification or test. At aminimum
projectshave aroot directory, awork library, and "metadata’ which are stored ina.mpf file
located inaproject’sroot directory. The metadatainclude compiler switch settings, compile
order, and file mappings. Projects may also consist of:

» HDL source files or references to source files

« other files such as READMEs or other project documentation
* local libraries

« referencesto global libraries

What are the benefits of projects?

Projects offer benefits to both new and advanced users. Projects

« simplify interaction with Model SSim; you don’t need to understand the intricacies of
compiler switches and library mappings

« eiminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project

« remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to HDL source files

« alow usersto share libraries without copying filesto alocal directory; you can establish
references to source files that are stored remotely or locally

« alow you to change individua parameters across multiplefiles; in previousversionsyou
could only set parameters one file at atime

* enable"what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

« reload .ini variable settings every timethe project is opened; in previousversions you had
to quit ModelSm and restart the program to read in anew .ini file

2-26 Projects and system initialization ModelSim SE User’s Manual

Introduction

How do projects differ in version 5.5?

Projects have improved a great deal from earlier versions. Some of the key differences
include:

* A new interface eliminates the need to write custom scripts.

* You don't haveto copy filesinto a specific directory; you can establish referencesto files
in any location.

Y ou don't have to specify compiler switches; the automatic defaults will work for many
designs. However, if you do want to customize the settings, you do it through a dialog
box rather than by writing a script.

All metadata (compiler settings, compile order, file mappings) are stored in the project
.mpf file.

A Important: Dueto the significant changes, projects created in versions prior to 5.5 cannot
be converted automatically. If you created a project in an earlier version, you will need to
recreateit in version 5.5. With the new interface even the most complex project should take
less than 15 minutes to recreate. Follow the instructions in the ensuing pages to recreate
your project.

ModelSim SE User’'s Manual Projects and system initialization 2-27

Getting started with projects

Getting started with projects

This section describes the four basic steps to working with a project. For a discussion of
more advanced project features, see "Customizing project settings" (2-34).
Step 1 — Create a new project (2-29)

This creates a.mpf file and aworking library.

Step 2 — Add files to the project (2-31)
Projects can reference or include HDL source files and any other files you want to
associate with the project. Y ou can copy filesinto the project directory or simply create
mappingsto filesin other locations.

Step 3 — Compile the files (2-32)
This checks syntax and semantics and creates the pseudo machine code Model Sm uses
for simulation.

Step 4 — Simulate a design (2-33)

This specifies the design unit you want to simulate and opens a structure page in the
workspace.

2-28 Projects and system initialization ModelSim SE User’s Manual

Getting started with projects

Step 1 — Create a new project

1 Select Create a Project from the Welcome to Model Sim screen that opens the first time

you start ModelSim. If this screen is not available, you can enable it by selecting Help >
Enable Welcome (Main window).

|54 "‘Welcome to ModelSim

Create a New Project

Specify a name for the new project
and it will be created and opened.

Create a Project

[T Do not zhow thiz dialog again

Y ou can also use the File > New > Project (Main window) command to create a new
project.

2 Clicking the Create a Project button opens the Create Project dialog box.

Create Project

Froject Mame

|test

— Project Location

E: /modelsimab projects Browsze... |

—Default Library Mame
|w::nrk

Ok | Cancel

ModelSim SE User’'s Manual Projects and system initialization 2-29

Getting started with projects

3 Specify aProject Nameand Project L ocation. Thelocation iswhere the project .mpf file
and any copied source fileswill be stored. Y ou can leave the Default Library Name set to
"work," or specify a different name if desired. The name that is specified will be used to
create aworking library subdirectory within the Project Location.

After selecting OK, you will see ablank Project page in the workspace area of the Main
window. Y ou can hide or show the workspace at any time using the View > Hide/Show

Workspace command.

|5, ModelSim

Eile Edit Design “iew Project Bun Macro Options Window Help

B BE G s b SRR

3] P Reading E:/modelzimbb_sedwind2s. =
Aelfvezimdpref el
Loading project
Modifving E: /modelzimB5_zedwindad
example. mpf
ModelSim: |
workspace
_\,l F'ru:uiectJ{ Library Jn'[3
|F'rujen:t © test |~::N|:| Design Loaded= <Mo Context> g

The name of the current project is shown at the bottom left corner of the Main window.

2-30 Projects and system initialization ModelSim SE User’s Manual

Getting started with projects

Step 2 — Add files to the project

Y our right mouse button (2nd button in Windows; 3rd button in UNIX) gives quick access
to project commands. When you right-click in the workspace, a context menu appears. The
menu that appears depends on where you click in the workspace.

|, ModelSim

Eile Edit Design “iew Project Bun Compare Macro Options Window Help

Sz BB [o4

........

ModelSim: |

Compile Order...
Compile &l

k.&.‘dd file to Project... I
Sort by Alphabetizal Order
Select Al

Cloze Project

Y Project J: Libram

|F'rujen:t test |~::N|:| Design Loaded:= <No Context>

N R |

1 Rightclick inablank area on the Project page and select Add fileto Project. This opens
the Add file to Project dialog. Y ou can also select Project > Add file to Project from the
menu bar.

Add file to Project
— File Marne

Browse. .. |

¥ FReference from current location

—Add file az ppe

|default j

" Copy to project directany

Ok | Cancel

2 Specify one or morefilesyou want to add to the project. (Thefiles used in thisexample are
available in the examples directory that isinstalled along with ModelSm.)

3 For thefiles you're adding, choose whether to reference them from their current location
or copy them into the project directory.

ModelSim SE User’'s Manual Projects and system initialization 2-31

Getting started with projects

Step 3 — Compile the files

1 Tocompilethefiles, right click in the Project page and select Compile All. You can also
select Project > Compile All from the menu bar.

|5, ModelSim
Eile Edit Design “iew Project Bun Compare Macro Option: Window Help
@ BRG] 0+ P
T ModelSim> r
teounber.
Compile Order.... |
Add file to Project. ..
Sort by Alphabetical Order
Select Al
| Cloze Project
Froject § Library 3
|F'rujen:t . test |~::N|:| Design Loaded> =<MNo Context= P

2 Oncecompilationisfinished, click the Library tab and you'll see the two compiled designs.

|-, ModelSim
File Edit Deszign “iew Project Bun Compare Macro Option: Window Help
B BRI : &
op level modules:
_ El [Top level modul =]
Library: Iwnrk ;I B test_counter
wlog -wark, work, E:/modelsimS5_011801 Aexam
|V] counter ples/counter.y
1] test_counter # Model Technology ModelSim SE/EE «wlog 5.

5 Beta 4 Compiler 2007.071 Jan 18 2001
-- Compiling module counter

Top level modules:

counter

wim work. counter

H wzim work. counter

Loading wark. counter

quit -gim
Litwary ModelSim: | -
|F'rnjen:t : test |~::N|:| Design Loaded= <Mao Context=

2-32 Projects and system initialization ModelSim SE User’s Manual

Getting started with projects

Step 4 — Simulate a design

1 Tosimulate one of the designs, either double-click the name or right click the name and
select Load. A new page appears showing the structure of the current active simulation.

|-, ModelSim

File Edit Deszign “iew Project Bun Compare Macro Option: Window Help

S BR [mYElEEE BT
x|

plezdcounter. v

Model Technology ModelSim SE/EE wlog b
5 Beta 4 Compiler 2001.01 Jan 18 2001
- Compiling module counter

Top level modules:

counter

waim wiork. counter

waim wark, counter

Loading wark. counter

quit -zim

wim work. counter

B wgimn work. counter

Loading wark. counter

]'\ Project ;{ Library];\ zim Jl'[WEIM 82 |

|F'r|:|ject - test |Nuw: Ons Delta: 0 sim:/counter y

EI—t counter: counter
0 Function increment

At this point you are ready to run the simulation and analyze your results. Y ou often do this
by adding signals to the Wave window and running the simulation for a given period of
time. See the ModelSm Tutorial for examples.

Other project operations

In addition to the four actionsjust discussed, the following are common project operations.

Open an existing project

When you leave a Model Sm session, Model Sm will remember the last opened project.

Y ou can reopen it for your next session by clicking Open Project in the Welcome to
Model Smdialog. Y ou can al so open an existing project by selecting File> Open > Project
(Main window).

Close a project

Select File > Close > Project (Main window). This closes the Project page but leaves the
Library and Structure (labeled "Sim" in the graphic above) pages open in the workspace.

Delete a project
Select File > Delete > Project (Main window).

ModelSim SE User’'s Manual Projects and system initialization 2-33

Customizing project settings

Customizing project settings

Though the default project settings will work for many designs, it is easy to customize the
settings if needed. Y ou can change the compile order and set compiler options.

Changing compile order

When you compileal filesin aproject, Model S m by default compilesthefilesin the order
inwhich they were added to the project. Y ou have two alternativesfor changing the default
compile order: 1) select and compile each fileindividually; 2) specify a custom compile
order using the Compile Order dialog.

P> Note: Filescan be displayed in the Project tab in alphabetical or compile order (using the
Sort by Alphabetical Order or Sort by Compile Order commands on the context menu).
Keep in mind that the order you see in the Project tab is not necessarily the order in which
the files will be compiled.

To open the Compile Order dialog, right click in an empty area of the Project tab and select
Compile Order. The dialog shown below opens.

Cormnpile Order

— Current Order

AT & move up in order
et
counter.vh —
gates.vhd - move down in order

adder.vhd

Z% | la——— group Verilog files

=2 | <e————— ungroup Verilog files

0k Cancel

The group and ungroup buttons are used on Verilog filesonly. They allow you to group two
or more Verilog files so they are sent to the compiler at the sametime. One case whereyou
might use thisiswhen you have one file with a bunch of define statements and a second

filethat isaVerilog module. Y ou would want to compile these two files at the same time.

2-34 Projects and system initialization ModelSim SE User’s Manual

Customizing project settings

Setting compiler options

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options
that affect how adesign is compiled and subsequently simulated. Outside of a project you
can set the defaultsfor all future simulations using the Options > Compile (Main window)
command. Inside of aproject you can set these options on individual files or a group of
files.

To set the compiler optionsin aproject, select the file(s) in the Project page, right click on
thefile names, and select Compile Properties. The pagesthat appear in the resulting dialog
depend on the type of filesyou have selected. If you select aVHDL file, you'll seeonly the
General and VHDL pages. If you select a Verilog file, you'll see only the General and
Verilog pages. If you select both aVHDL fileand aVerilogfile, you'll seeall three pages
(as shown in the dialog below).

When setting options on a group of files, keep in mind the following:
« If two or morefiles have different settingsfor the same option, the checkbox inthe dialog
will be"grayed out" like this: »

If you change the option, you cannot change it back to a"multi- state setting” without
cancelling out of the dialog. Once you click OK, ModelSmwill set the option the same
for all selected files.

« If you select acombination of VHDL and Verilog files, the options you set onthe VHDL
and Verilog tabs apply only to those file types.

Project Compiler Sethings

[T Exclude File from Build

Compile to librany: |wu:urk ;I

k. | Cahcel

» ExcludeFilefrom Build
Determines whether the file is excluded from the compile.

» Compiletolibrary
Specifies to which library you want to compile the file; defaults to the working library.

The definitions of the options on the VHDL and Verilog pages can be found in the section
" Setting default compile options” (8-252).

ModelSim SE User’'s Manual Projects and system initialization 2-35

Accessing projects from the command line

Accessing projects from the command line

Generally, projects are used only within the Model Sm graphical user interface. However,
standal one tools will use the project file if they are invoked in the project’s root directory.
If invoked outside the project directory, the M ODEL SIM environment variable can be set
with the path to the project file (<Project_Root_Dir>/<Project_ Name>.mpf).

Y ou can also use the project command (CR-159) from the command line to perform
common operations on new projects. The command is to be used outside of asimulation
session.

2-36 Projects and system initialization ModelSim SE User’s Manual

System initialization

System initialization

Model Sm goes through numerous steps as it initializes the system during startup. It
accesses variousfiles and environment variables to determine library mappings, configure
the GUI, check licensing, and so forth.

Files accessed during startup

The table bel ow describes thefiles that are read during startup. They are listed in the order

in which they are accessed.

File

Purpose

modelsim.ini

containsinitial tool settings; see"Preferencevariableslocated in
INI files" (B-396) for specific details on the modelsim.ini file

location map file

used by ModelSmtools to find source files based on easily
reallocated "soft" paths; default file nameismgc_location_map;
see "How location mapping works" (E-438) for more details

pref.tcl

contains defaults for fonts, colors, prompts, window positions,
and other smulator window characteristics; see "Preference
variableslocated in TCL files" (B-406) for specific details on the
pref.tcl file

modelsim.tcl

contains user-customi zed settings for fonts, colors, prompts,
window positions, and other simulator window characteristics;
see "Preference variables located in TCL files" (B-406) for
specific details on the modelsim.tcl file

ModelSim SE User’s Manual

Projects and system initialization 2-37

System initialization

Environment variables accessed during startup

The table bel ow describes the environment variables that are read during startup. They are
listed in the order in which they are accessed. For more information on environment
variables, see "Environment variables" (B-393).

Environment variable

Purpose

MODEL_TECH

set by Model Sim to the directory in which the binary executables reside
(e.g., ../modeltech/<platform>/)

MODEL_TECH_OVERRIDE

provides an alternative directory for the binary executables;
MODEL_TECH is set to this path

MODELSIM

identifies path to the modelsim.ini file

MGC_WD

identifiesthe Mentor Graphicsworking directory (set by Mentor Graphics
tools)

MGC_LOCATION_MAP

identifies the path to the location map file; set by Model Smif not defined

MODEL_TECH_TCL

identifies the path to all Tcl libraries installed with ModelSm

HOME identifies your login directory (UNIX only)

MGC_HOME identifies the path to the MGC tool suite

TCL_LIBRARY identifies the path to the Tcl library; set by Model Smto the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

TK_LIBRARY identifies the path to the Tk library; set by Model Sm to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

TIX_LIBRARY identifies the path to the Tix library; set by Model Sm to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITCL_LIBRARY identifies the path to the [incr] Tcl library; set by ModelSmto the same
path asMODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITK_LIBRARY identifies the path to the [incr] Tk library; set by Model Sm to the same

pathas MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

VSIM_LIBRARY

identifies the path to the Tcl files that are used by Model Sim; set by
ModelSm to the same path as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

MTI_LIB_DIR

identifies the path to all Tcl libraries installed with ModelSm

2-38 Projects and system initialization

Model Sim SE User’s Manual

System initialization

Environment variable Purpose

MODELSIM_TCL identifies the path to the modelsim.tcl file; this environment variable can
be alist of file pathnames, separated by semicolons (Windows) or colons
(UNIX)

Initialization sequence

The following list describesin detail Model Sm' s initialization sequence. The sequence
includes a number of conditional structures, the results of which are determined by the
existence of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except
MTI_LIB_DIRwhichisaTcl variable). Instances of $(NAME) denote paths that are
determined by an environment variable (except $(MTI_LIB_DIR) which is determined by
aTcl variable).

1 Determinesthe path to the executable directory (../modeltech/<platform>/). Sets
MODEL_TECH to this path, unless MODEL_TECH_OVERRIDE exists, in which case
MODEL_TECH is set to the same value as MODEL_TECH_OVERRIDE.

2 Findsthe modelsim.ini file by evaluating the following conditions:
* use MODELSIM if it exists; else
» use $(MGC_WD)/modelsim.ini; else
* use ./modelsim.ini; else
* use $(MODEL_TECH)/modelsim.ini; else
* use $(MODEL_TECH)/../modelsim.ini; else
* use $(MGC_HOME)/lib/modelsim.ini; else
set path to ./modelsim.ini even though the file doesn’t exist

3 Findsthelocation map file by evaluating the following conditions:

* use MGC_LOCATION_MAPIf it exists (if thisvariableis set to "no_map", ModelSm
skipsinitialization of the location map); else

» use mgc_location_map if it exists; else

* use $(HOME)/mgc/mgc_location_map; else

* use $(HOME)/mgc_location_map; else

* use 3(MGC_HOME)/etc/mgc_location_map; else

» use $(MGC_HOME)/shared/etc/mgc_location_map; else
* use $(MODEL_TECH)/mgc_location_map; else

 use $(MODEL_TECH)/../mgc_location_map; €lse

* use nNo map

4 Readsvarious variables from the [vsim] section of the modelsim.ini file. See "[vaim]
simulator control variables" (B-398) for more details.

ModelSim SE User’'s Manual Projects and system initialization 2-39

System initialization

5 Parses any command line arguments that were included when you started ModelSm and
reports any problems.

6 Defines the following environment variables:

e use MODEL_TECH_TCL if it exists, else
set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl
set TCL_LIBRARY =$(MODEL_TECH_TCL)/tcl8.0
* set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.0
set TIX_LIBRARY=$(MODEL_TECH_TCL)/tix4.1
set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itcl3.0
set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0
set VSIM_LIBRARY =$(MODEL_TECH_TCL)/vsim

7 Initializesthe smulator’s Tcl interpreter.

8 Checksfor avalid license (alicense is not checked out unless specified by a modelsim.ini
setting or command line option).

The next four stepsrelate to initializing the graphical user interface.
9 SetsTcl variable"MTI_LIB_DIR"=MODEL_TECH_TCL
10 Loads $(MTI_LIB_DIR)/pref.tcl.

11 Loadslast working directory, project init, project history, and printer defaults from the
registry (Windows) or $(HOME)/.modelsim (UNIX).

12 Findsthe modelsim.tcl file by evaluating the following conditions:

e use MODELSIM_TCL if it exists (if MODELSIM_TCL isalist of files, each fileis
loaded in the order that it appearsin the list); else

* use./modelsim.tcl; else

* use $(HOME)/modelsim.tcl if it exists

That completesthe initialization sequence. Also note the following about the modelsim.ini
file:

* When you change the working directory within Model Sm, the tool reads the [library],
[vcom], and [vlog] sections of thelocal modelsim.ini file. When you make changesin the
compiler options dialog or use the vmap command, the tool updates the appropriate
sections of thefile.

» The pref.tcl file references the default .ini file viathe [GetPrivateProfileString] Tcl
command. The .ini file that isread will be the default file defined at the time pref.tcl is
loaded.

2-40 Projects and system initialization ModelSim SE User’s Manual

3 - Design libraries

Chapter contents

Design library contents. 342
Design unitinformation 342
Designlibrary types 342
Working with design libraries. 343
Creatingalibrary 343
Managing library contents . . e e ... 344
Assigning alogical nameto adesign I|brary T v
Movingalibrary 349
Specifying the resource libraries 350
VHDL resourcelibraries 3580
Predefined libraries . . o 350
Alternate |IEEE libraries supplled < oY
VITAL 2000 library . . < oY
Rebuilding supplied I|brar|&s e S
Regenerating your design libraries 351
Verilog resourcelibraries. 352
Maintaining 32-bit and 64-bit versionsin the same Ilbrary ... 352
Importing FPGA libraries 353

VHDL contains libraries, which are objects that contain compiled design units; libraries
are given names so they may be referenced. Verilog designs simulated within Model Sm
are compiled into libraries as well.

ModelSim SE User’'s Manual Design libraries 3-41

Design library contents

Design library contents

A design library is adirectory that serves as arepository for compiled design units. The
designunitscontained inadesignlibrary consist of VHDL entities, packages, architectures,
and configurations; and Verilog modules and UDPs (user defined primitives). The design
units are classified as follows:

e Primary design units
Consist of entities, package declarations, configuration declarations, modules, and
UDPs. Primary design units within a given library must have unique names.

» Secondary design units
Consist of architecture bodies and package bodies. Secondary design units are associated
with a primary design unit. Architectures by the same name can exist if they are
associated with different entities.

Design unit information

Theinformation stored for each design unit in adesign library is:
* retargetable, executable code

« debugging information

* dependency information

Design library types

There aretwo kinds of design libraries: working libraries and resource libraries. A working
libraryisthelibrary into which adesign unit isplaced after compilation. A resourcelibrary
contains design units that can be referenced within the design unit being compiled. Only
one library can be the working library; in contrast, any number of libraries (including the
working library itself) can be resource libraries during a compilation.

The library named work has specia attributes within ModelSm; it is predefined in the

compiler and need not be declared explicitly (i.e. library work). It isalso thelibrary name
used by the compiler asthe default destination of compiled design units. In other wordsthe
work library isthe working library. In all other aspectsit isthe same as any other library.

3-42 Design libraries ModelSim SE User’'s Manual

Working with design libraries

Working with design libraries

The implementation of adesign library is not defined within standard VHDL or Verilog.
Within Model Sm, design libraries are implemented as directories and can have any legal

name allowed by the operating system, with one exception; extended identifiers are not
supported for library names.

Creating a library

When you create a project (see "Getting started with projects’ (2-28)), Model Sim
automatically creates aworking design library. If you don’t create a project, you need to
create aworking design library before you run the compiler. This can be done from either
the command line or from the Model Sm graphic interface.

From the Model Sm prompt or a UNIX/DOS prompt, use this vlib command (CR-249):

vlib <directory_pat hnane>

Tocreateanew library with the Model Smgraphicinterface, select Design > Createa New
Library (Main window). Thisbrings up adialog box that allows you to specify thelibrary
name and its logical mapping.

|1:-._.1'Ereate a Mew Library

Create

' anew library and a logizal mapping ta it

" amap to an evsting library

— Library Mame

[ivord

|w::nrk ;I Browze. . |

aFk. | Cancel

The Createa New Library dialog box includes these options:

« Createanew library and alogical mapping to it
Typethe new library nameinto the Library Namefield. This createsalibrary sub-
directory in your current working directory, initially mapped to itself. Once created, the
mapped library is easily remapped to a different library.

» Createamap to an existing library
Typethe new library nameinto the Library Name field, then typeinto the Library
Mapsto field or Browse to select alibrary name for the mapping.

e Library Name
Typethe new library nameinto this field.

ModelSim SE User’'s Manual Design libraries 3-43

Working with design libraries

e Library Mapsto
Type or Browse for amapping for the specified library. Thisfield can be changed only
when the Create a map to an existing library option is selected.

When you click OK, ModelSm creates the specified library directory and writes a
specially-formatted file named _info into that directory. The _info file must remain in the
directory to distinguish it asaModelSm library.

The new map entry is written to the modelsim.ini filein the [Library] section. See
"[Library] library path variables" (B-396) for more information.

P> Note: Remember that adesign library isaspecial kind of directory; the only way to create
alibrary isto usethe Model Sm GUI or the vlib command (CR-249). Do not create libraries
using UNIX or Windows commands.

Managing library contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the
graphic interface or command line.

The Library page in the Main window workspace provides access to design units
(configurations, modules, packages, entities, and architectures) in alibrary. Note the icons
identify whether a unit is an entity (E), amodule (M), and so forth.

|5, ModelSim

File Edit Dezign “iew Project Hun Macro Options Window Help

e BE

Reading E: /modelzim55_sefwind2s.. =
Aeldvsimdpref bl

Library: |W|:|rk

& |E] andg
E|E] counter

| 4] only
& |E]org
|C] test_adder_behavioral

|C] test_adder_structural
| 1] test_counter
E] testhenrh d

v Libram

|~::N|:| Design Loaded=

b adelSim:

L]

The Library page includes these options:

e Library
Select the library you wish to view from the drop-down list. Related command line
command isvdir (CR-223).

3-44 Design libraries ModelSim SE User’'s Manual

Working with design libraries

» DesignUnit/Description list

Select aplus (+) box to view the associated architecture, or select aminus (=) box to hide
the architecture.

The Library page al so hastwo context menus that you access with your right mouse button
(Windows—2nd button, UNIX—3rd button).One menu is accessed by right-clicking a
design unit name; the second i s accessed by right-clicking ablank areain the Designs page.
The graphic below shows the two menus.

HE] Delete
|/] test_counter

H E] =omg J
Library ModelSim: | -

|F'r|:|jec:t D test <Mao Design Loaded> |<:N|:| Context>

-- Compiling architecture behavioral of addern
-- Loading entity addern

FodelSim: wm title . "ModelSim"

[¥]ModelSim [_ O]
Eile Edit Design “iew Project Bun Compare Macro Option: window Help
B BRG] = B
. # -- Loading package gates j
Library: |wu:|rk # -- Compiling architecture structural of adder
_ # - Lnading entit_l,l adder
g [& T # - Lu:uad!ng enlity xorg
Edi E - Il:u:uaal!ng en:!:_l,l andg
’ -- Loading entity arg
HE] Refresh Sreate Gz i # - Compiling entity adderm
E = i L # -- Compiling architecture structural of addem
[El e I pdate # -- Loading entity adder
#
#

B,

The context menu at the left includes the following commands;

e Load
Simulates the selected design unit and opens a structure page in the workspace. Related
command line command isvsim (CR-258).

* Edit
Opens the selected design unit in the Source window.

* Refresh
Rebuilds the library image of the selected item(s) without using source code. Related
command line command isvcom (CR-217) with the -refresh argument.

* Recompile
Recompiles the selected design unit. Related command line command isvcom (CR-217).

» Delete
Deletes the selected design unit. Related command line command isvdel (CR-222).

Deleting apackage, configuration, or entity will remove the design unit fromthelibrary.
If you delete an entity that has one or more architectures, the entity and all its associated
architectures will be deleted.

Model Sim SE User’s Manual

Design libraries 3-45

Working with design libraries

Y ou can al'so delete an architecture without deleting its associated entity. Expand the
entity, right-click the desired architecture name, and select Delete. Y ou are prompted for
confirmation before any design unit is actually deleted.

The second context menu has the following options:

e Load
Opens the Load Design dialog box. See " Simulating with the graphic interface" (8-256)
for details. Related command line command isvsim (CR-258).

e CreatelLibrary
Opensthe Create aNew Library dialog box. See"Creating alibrary” (3-43) earlier in this
chapter for details. Related command line command is vlib (CR-249).

* View
Provides various options for displaying design units.

» Update
Reloads the library in case any of the design units were modified outside of the current
session (e.g., by ascript or another user).

3-46 Design libraries ModelSim SE User’'s Manual

Working with design libraries

Assigning a logical name to a design library

VHDL useslogical library names that can be mapped to ModelSm library directories. By
default, ModelSmcanfind librariesin your current directory (assuming they have theright
name), but for it to find libraries | ocated el sewhere, you need to map alogical library name
to the pathname of the library.

Y ou can use the GUI, acommand, or aproject to assign alogical nameto adesign library.

Library mappings with the GUI

To associate alogical name with alibrary, select Design > Browse Libraries (Main
window). This brings up a dialog box that allows you to view, add, edit, and delete
mappings, as shown below:

5| Library Browser

Show: I.-’-'-.II izible Libraries ﬂ
Library Type ";I
JIEFTITTELE g T RRTULTEL TS AR
ieEE maps to $MODEL_TECH/.. fieee
mgc_portable mapsz to $MODEL_TECH/.. /mgc_paortable
ztd mapz to $MODEL_TECH/. . /ztd
ztd_developerskit maps to $MODEL_TECH/. fstd_developerskit
FUNOPEYE maps to $MODEL_TECH/../synopays
verlog maps to $MODEL_TECH.. . Avenlog
wiark maps ta mixed
mixed [lozal directon) -

LT | Add | Edit | Delete

The Library Browser dialog box includes these options:

» Show
Choose the mapping and library scope to view from the drop-down list.

Cloze |

e Library/Typelist

To view the contents of a library
Select the library, then click the View button. This brings up the Library page (3-44) in
the Main window. From there you can also delete design units from the library.

To create a new library mapping

Click the Add button. Thisbringsup Create a New Library (3-43) dialog box that
allows you to enter anew logical library name and the pathname to which it isto be
mapped.

It is possible to enter the name of a non-existent directory, but the specified directory
must exist asaModelSmlibrary before you can compile design unitsinto it. Model Sim
will issue awarning message if you try to map to a non-existent directory.

ModelSim SE User’'s Manual Design libraries 3-47

Working with design libraries

To edit an existing library mapping

Select the desired mapping entry, then click the Edit button. Thisbrings up adialog box
that allows you to modify the logical library name and the pathname to which it is
mapped. Selecting Del ete removes an existing library mapping, but it does not delete the
library. Thelibrary can be deleted with this vdel command (CR-222):

vdel -lib <library_nane> -al

Library mapping from the command line

Y ou can issue acommand to set the mapping between alogical library name and a
directory; itsformis:

vmap <l ogi cal _nane> <directory_pat hname>
Thiscommand may beinvoked from either aUNIX/DOS prompt or from thecommand line
within ModelSim.

When you use vmap (CR-257) thisway you are modifying the modelsim.ini file. Y ou can
also modify modelsim.ini manually by adding a mapping line. To do this, edit the
modelsim.ini file using any text editor and add a line under the [Library] section heading
using the syntax:

<l ogi cal _nanme> = <di rectory_pat hname>
More than onelogical name can be mapped to asingle directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Li brary]
work = /usr/rick/design
ny_asic = /usr/rick/design

Thiswould allow you to use either the logical namework or my_asicinalibrary or use
clauseto refer to the same design library.

Unix symbolic links
Y ou can also create a UNIX symbolic link to thelibrary using the host platform command:

In -s <directory_pat hname> <l ogi cal _nane>
The vmap command (CR-257) can a so be used to display the mapping of alogical library
name to adirectory. To do this, enter the shortened form of the command:

vimap <l ogi cal _nane>

Library search rules
The system searches for the mapping of alogical name in the following order:
« First the system looks for amodelsim.ini file.

« |If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify alogical name that does not resolveto
an existing directory.

3-48 Design libraries ModelSim SE User’'s Manual

Working with design libraries

See also

See "Model Sim Commands' (CR-9) for more information about the library management
commands, "Model Sim Graphic Interface” (8-149) for moreinformation about the graphical
user interface, and "Projectsand system initialization" (2-25) for moreinformation about the
modelsim.ini file.

Moving a library

Individual design unitsin adesign library cannot be moved. An entire design library can
be moved, however, by using standard operating system commands for moving adirectory.

ModelSim SE User’'s Manual Design libraries 3-49

Specifying the resource libraries

Specifying the resource libraries

VHDL resource libraries

WithinaVHDL sourcefile, you can usethe VHDL library clauseto specify logical names
of one or more resource libraries to be referenced in the subsequent design unit. The scope
of alibrary clause includes the text region that startsimmediately after the library clause
and extends to the end of the declarative region of the associated design unit. It does not
extend to the next design unit in thefile.

Notethat thelibrary clauseisnot used to specify theworking library into which thedesign
unit is placed after compilation; the vcom command (CR-217) adds compiled design units
to the current working library. By default, thisisthe library named work. To change the
current working library, you can use vcom -wor k and specify the name of the desired target
library.

Predefined libraries

Certain resource libraries are predefined in standard VHDL. The library named std
contains the packages standar d and textio, which should not be modified. The contents of
these packages and other aspects of the predefined language environment are documented
in the IEEE Sandard VHDL Language Reference Manual, Sd 1076-1987 and ANSI/IEEE
Sd 1076-1993. See als0, "Using the TextlO package” (4-60).

A VHDL use clause can be used to select specific declarationsin alibrary or package that
are to be visible within a design unit during compilation. A use clause referencesthe
compiled version of the package—not the source.

By default, every design unit is assumed to contain the following declarations:

LI BRARY std, work;
USE std. st andard. al |

To specify that all declarationsin alibrary or package can be referenced, you can add the
suffix .all tothe library/package name. For example, the use clause above specifiesthat all
declarations in the package standard in the design library named std are to be visible to
the VHDL design filein which the use clauseis placed. Other libraries or packages are not
visible unless they are explicitly specified using alibrary or use clause.

Another predefined library iswork, the library where a design unit is stored after it is
compiled as described earlier. Thereis no limit to the number of libraries that can be
referenced, but only one library is modified during compilation.

3-50 Design libraries ModelSim SE User’'s Manual

Specifying the resource libraries

Alternate IEEE libraries supplied

Theinstallation directory may contain two or more versions of the |IEEE library:

* ieeepure
Contains only |EEE approved std_logic_1164 packages (accelerated for Model Sm).

* ieee
Contains precompiled Synopsys and | EEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std logic_1164, std logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std_logic_unsigned, vital_primitives, vital_timing, and vital_memory.

Y ou can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini filein the installation directory defaults to the ieeelibrary.

VITAL 2000 library

ModelSim versions 5.5 and later include a separate VITAL 2000 library that contains an
accelerated vital_memory package.

You'll need to add a use clause to your VHDL code to access the package. For example:

LI BRARY vi t al 2000
USE vital 2000. vital _nenory. al

Also, when you compile, use the -vital2000 switch to vcom (CR-217).

Rebuilding supplied libraries

>

Resource libraries are supplied precompiled in the modeltech installation directory. If you
need to rebuild these libraries, the sources are provided in the vhdl_src directory; amacro
fileisalso provided for Windows platforms (rebldlibs.do). To rebuild the libraries, invoke
the DO file from within Model Sm with this command:

do rebldlibs. do

(Make sureyour current directory isthe modeltech install directory beforeyourunthisfile.)

Shell scripts are provided for UNIX (rebuild_libs.csh and rebuild_libs.sh). To rebuild the
libraries, execute one of the rebuild_libs scripts while in the modeltech directory.

Note: Because accel erated subprograms require attributesthat are available only under the
1993 standard, many of the libraries are built using vcom (CR-217) with the -93 option.

Regenerating your design libraries

Depending on your current Model Sim version, you may need to regenerate your design
libraries before running a simulation. Check the installation README file to seeif your
libraries require an update. Y ou can regenerate your design libraries using the Refresh
command from the Library page context menu (see "Managing library contents' (3-44)), or
by using the -r efr esh argument to vcom (CRr-217) and vlog (CR-250).

From the command line, you would use vcom with the -r efr esh option to update VHDL
design unitsin alibrary, and vlog with the -r efr esh option to update Verilog design units.
By default, the work library is updated; use -work <library> to update adifferent library.
For example, if you have alibrary named mylib that contains both VHDL and Verilog
design units:

Model Sim SE User’s Manual

Design libraries 3-51

Specifying the resource libraries

vcom -work nylib -refresh
vliog -work nylib -refresh

An important feature of -refresh isthat it rebuilds the library image without using source
code. This means that models delivered as compiled libraries without source code can be
rebuilt for a specific release of Model Sm (4.6 and later only). In general, this works for
moving forwards or backwards on arelease. Moving backwards on arelease may not work
if the models used compiler switches or directives (Verilog only) that do not exist in the
older release.

P> Note: Youdon't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you
cannot use the -refr esh option to update libraries that were built before the 4.6 release.

Verilog resource libraries

M odel Sm supports and encourages separate compilation of distinct portions of aVerilog
design. The vlog (CR-250) compiler is used to compile one or more source filesinto a

specified library. Thelibrary thus contains pre-compiled modules and UDPs (and, perhaps,
VHDL design units) that are referenced by the simulator asit loadsthe design. See"Library

usage" (5-78).

Maintaining 32-bit and 64-bit versions in the same library

It is possible with Model Sm to maintain 32-bit and 64-bit versions of adesign in the same
library. To dothis, you must compile the design with one of the versions (32-bit or 64-bit),
and "refresh" the design with the other version. For example:

Using the 32-bit version of ModelSm:

vcom filel.vhd
vcom fil e2.vhd

Next, using the 64-bit version of ModelSm:

vcom -refresh

Do not compile the design with one version, and then recompileit with the other. If you do
this, Model Smwill remove the first module, because it could be "stale."

3-52 Design libraries ModelSim SE User’'s Manual

Importing FPGA libraries

Importing FPGA libraries

Model Simincludes animport wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct
mappings and target directories.

A Important: The FPGA libraries you import must be pre-compiled. Most FPGA vendors
supply pre-compiled libraries configured for use with Model Sim.

To import an FPGA library, select Design > Import Library (Main window).

|55 ‘Import Library Wizard

The Import Libram Yizard will step pou through the tazks neceszsary
to reference and use a libran.

& ibrary can be either an exizting Maodel Technology lbrary or an
FPGa, library that you received fraom an FRGA vendor. [F the librany
was received from an FRGA wendor, it must be a precompiled
libramy.

Fleaze enter the location of the libramy to be imported below.

Import Library Pathnarne

Browse. . |

Meut » | Cancel |

< Previous

Follow the instructions in the wizard to complete the import.

ModelSim SE User’'s Manual Design libraries 3-53

3-54 Design libraries ModelSim SE User’'s Manual

4 - VHDL Simulation

Chapter contents

Compiling VHDL designs. 457
Cregting adesignlibrary 457
Invoking the VHDL compiler. 457
Dependency checking. 457

Simulating VHDL designs. 458
Invoking the simulator from the M ain wi ndow 458
Invoking Code Coveragewithvsm 459

Usingthe TextiOpackage. 460
Syntax for file declaration. 460
Using STD_INPUT and STD OUTPUT W|th|n ModeIS|m .. . 461

TextlO implementationissues. 462
Writing stringsand aggregates 462
Reading and writing hexadecimal numbers 4-63
Dangling pointers. 463
The ENDLINE function 463
The ENDFILE function 463
Using alternative input/output fll& e
Providing stimulus 464

Obtaining the VITAL specification and sourcecode 4-65

VITALpackages 465

ModelSim VITAL compliance. 466
VITAL compliance checking. 466
VITAL compliancewarnings. 466

Compiling and Simulating with accelerated VITAL packages . . . 4-67

Utilpackage 468
get resolution) 468
init signal spy() 469
tored() 470
totme() 47

Thischapter providesan overview of compilation and simulation for VHDL designswithin
the Model Sm environment, using the Textl O package with ModelSm; ModelSm's
implementation of theVITAL (VHDL Initiative Towards ASIC Libraries) specification for
ASIC modeling; and documentation on Model Sm'’s specia built-in utilities package.

The TextlO package is defined within the VHDL Language Reference Manuals, |EEE Std
1076-1987 and IEEE Sd 1076-1993; it allows human-readable text input from a declared
source within aVHDL file during simulation.

ModelSim SE User’s Manual VHDL Simulation 4-55

Compiling and simulating with the GUI

Many of the examplesin this chapter are shown from the command line. For compiling and
simulating within a project or the ModelSm GUI, see:

* Getting started with projects (2-28)
» Compiling with the graphic interface (8-250)
 Simulating with the graphic interface (8-256)

ModelSim variables

Several variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the Model Sm GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation. See Appendix B - ModelSm
Variables for acomplete listing of ModelSim variables.

4-56 VHDL Simulation Model Sim SE User’s Manual

Compiling VHDL designs

Compiling VHDL designs

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use vlib (CR-249) to create a new library. For example:

vlib work

This creates alibrary named work. By default, compilation results are stored in the wor k
library.

P> Note: Thework library isactually asubdirectory named work. This subdirectory contains
aspecia file named _info. Do not create libraries using UNIX, MS Windows, or DOS
commands — always use the vlib command (CR-249).

See "Design libraries" (3-41) for additional information on working with libraries.

Invoking the VHDL compiler

Model Sm compiles one or more VHDL design unitswith asingle invocation of vcom (CR-
217), the VHDL compiler. The design units are compiled in the order that they appear on
the command line. For VHDL, the order of compilation isimportant — you must compile
any entities or configurations before an architecture that references them.

Y ou can simulate a design containing units written with both the 1076 -1987 and 1076
-1993 versionsof VHDL. To do so you will need to compileunitsfrom each VHDL version
separately. The vcom (CR-217) command compiles units written with version 1076 -1987
by default; use the -93 option with vcom (CR-217) to compile units written with version
1076 -1993. Y ou can also change the default by modifying the modelsim.ini file (see
"Preference variables located in INI files' (B-396) for more information).

Dependency checking

Dependent design units must be reanalyzed when the design units they depend on are
changed in the library. vcom (CR-217) determines whether or not the compilation results
have changed. For example, if you keep an entity and its architectures in the same source
file and you modify only an architecture and recompile the source file, the entity
compilation resultswill remain unchanged and you will not have to recompile design units
that depend on the entity.

ModelSim SE User’s Manual VHDL Simulation 4-57

Simulating VHDL designs

Simulating VHDL designs

After compiling the design units, you can simulate your designs with veim (CR-258). This
section discusses simulation from the UNIX or Windows/DOS command line. Y ou can
also use aproject to simulate (see " Getting started with projects’ (2-28)) or the Load Design
dialog box (see "Simulating with the graphic interface” (8-256)).

P> Note: Simulation normally stopsif afailure occurs; however, if abounds check on asignal
fails the simulator will continue running.

Invoking the simulator from the Main window
For VHDL, invoke vsim (CR-258) with the name of the configuration, or entity/architecture
pair. Note that if you specify a configuration you may not specify an architecture.
This example invokes vsim (CR-258) on the entity my_asic and the architecture structure:
vsimmy_asic structure
If adesign unit nameis not specified, vsim (CR-258) will present the L oad Design dialog

box from which you can choose a configuration or entity/architecture pair. See" Simulating
with the graphic interface" (8-256) for more information.

Selecting the time resolution

The simulation time resolution is 1 ns by default. Y ou can select a specific time resolution
with the vsim (CR-258) -t option or from the L oad Design dialog box. Availableresolutions
are: 1x, 10x or 100x of fs, ps, ns, us, ms, or sec.

For example, to run in picosecond resolution, or 10ps resolution respectively:
vsim-t ps topnod
vsim -t 10ps topnod

Note that there is no space between the value and the units (i.e.., 10ps, not 10 ps).

The default time resolution can also be changed by modifying the Resolution (B-400)
variable in the modelsim.ini file. Y ou can view the current resolution by invoking the
report command (CR-168) with the smulator state option.

See "Preference variables located in INI files' (B-396) for more information on modifying
the modelsim.ini file.

vsim (CR-258) is capable of annotating adesign using VITAL compliant modelswithtiming
data from an SDF file. Y ou can specify the min:typ:max delay by invoking vsim with the
-sdfmin, -sdftyp and -sdfmax options. Using the SDF file f1.sdf in the current work
directory, the following invocation of vsim annotates maximum timing values for the
design unit my_asic:

vsim -sdf max /ny_asic=f1l.sdf ny_asic

Timing check disabling

By default, thetiming checkswithin VITAL modelsare enabled. They can be disabled with
the +notimingchecks option.

For example:

vsi m +noti m ngchecks topnod

4-58 VHDL Simulation Model Sim SE User’s Manual

Simulating VHDL designs

Invoking Code Coverage with vsim

Model Sm's Code Coverage feature gives you graphical and report file feedback on how
the source code is being executed. It allows line number execution statistics to be kept by
the simulator. It can be used during any design phase and in all levels and types of designs.
For complete details, see Chapter 10 - Code Coverage.

To acquire code coverage statistics, the -cover age switch must be specified during the
command-line invocation of the simulator.

vsim -coverage ...

Thiswill allow you to use the various code coverage commands: cover age clear (CR-92),
cover age reload (CR-93), and cover age report (CR-94).

ModelSim SE User’s Manual VHDL Simulation 4-59

Using the TextlO package

Using the TextlO package

To access the routines in Textl O, include the following statement in your VHDL source
code:

USE std.textio.all;

A simple example using the package TextlO is:

USE std.textio.all;
ENTITY sinple_textio IS
END;

ARCHI TECTURE si npl e_behavi or OF sinple_textio IS

BEG N

PROCESS
VARI ABLE i: | NTEGER: = 42;
VARI ABLE LLL: LINE

BEG N
WRI TE (LLL, i);
WRI TELI NE (QUTPUT, LLL);
WAI T;

END PROCESS;

END si npl e_behavi or;

Syntax for file declaration
The VHDL' 87 syntax for afile declarationiis:

fileidentifier : subtype indicationi s [node] file_ logical _nane ;

where "file_logical_name" must be a string expression.
The VHDL' 93 syntax for afile declarationiis:

fileidentifier list : subtype indication [file open_information] ;

Y ou can specify afull or relative path as the file_logical_name; for example (VHDL' 87):
file filename : TEXT iS in "usr/rick/nyfile";

Normally if afileis declared within an architecture, process, or package, thefileis opened
when you start the simulator and is closed when you exit from it. If afileisdeclared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNSs from the subprogram. Alternatively, the opening of files can be delayed until
thefirst read or write by setting the DelayFileOpen variable in the modelsim.ini file. Also,
the number of concurrently open files can be controlled by the ConcurrentFileL imit
variable. These variables help you manage a large number of files during simulation. See
Appendix B - ModelSm Variables for more details.

4-60 VHDL Simulation Model Sim SE User’s Manual

Using the TextlO package

Using STD_INPUT and STD_OUTPUT within ModelSim

The standard VHDL' 87 TextlO package contains the following file declarations:
file input: TEXTiS in "STD INPUT";
file output: TEXT i S out *STD OUTPUT";
The standard VHDL’ 93 Textl O package contains these file declarations:
file input: TEXT open read_node i S "STD | NPUT";
file output: TEXT open wite_node i S "STD_OUTPUT";

STD_INPUT isafile logical_name that refersto characters that are entered interactively
from the keyboard, and STD_OUTPUT refersto text that is displayed on the screen.

In Model Sm, reading from the STD_INPUT file allows you to enter text into the current
buffer from a prompt in the Main window. The last line written to the STD_OUTPUT file
appears at the prompt.

ModelSim SE User’s Manual VHDL Simulation 4-61

TextlO implementation issues

TextlO implementation issues

Writing strings and aggregates

A common error in VHDL source code occurswhen acall to aWRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the
VHDL procedure:

VR TE (L, "hello");

will cause the following error:
ERROR: Subprogram "WRI TE" is ambi guous.

In the TextlO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRI TE(L: inout LINE, VALUE: in Bl T_VECTOR,
JUSTIFIED: in SIDE = RIGHT; FIELD: in WDTH := 0);

procedure WRI TE(L: inout LINE, VALUE: in STRI NG
JUSTIFIED: in SIDE = RIGHT; FIELD: in WDTH := 0);

The error occurs because the argument "hello" could be interpreted as a string or a bit
vector, but the compiler is not allowed to determine the argument type until it knowswhich
functionis being called.

The following procedure call also generates an error:

WRITE (L, "010101");
This call is even more ambiguous, because the compiler could not determine, even if
allowed to, whether the argument "010101" should beinterpreted as astring or abit vector.
There are two possible solutions to this problem:
» Useaqualified expression to specify thetype, asin:

WRI TE (L, string ("hello"));

« Call aprocedure that is not overloaded, asin:
WRI TE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedure in the
io_utils package, which islocated in the file /modeltech/examples/io_utils.vhd.

4-62 VHDL Simulation Model Sim SE User’s Manual

TextlO implementation issues

Reading and writing hexadecimal numbers

The reading and writing of hexadecimal numbersis not specified in standard VHDL. The
I ssues Screening and Analysis Committee of the VHDL Analysis and Standardization
Group (ISAC-VASG) has specified that the Textl O package reads and writes only decimal
numbers.

To expand this functionality, Model Sm supplies hexadecimal routines in the package
io_utils, which islocated in the file /modeltech/examples/io_utils.vhd. To use these
routines, compile the io_utils package and then include the following use clausesin your
VHDL source code;

use std.textio.all;
use work.io_utils.all;

Dangling pointers

Dangling pointers are easily created when using the TextlO package, because
WRITELINE de-alocates the access type (pointer) that is passed to it. Following are
examples of good and bad VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and al |l ocate buffer
L2 := L1; -- Copy pointers
WRI TELI NE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and al | ocate buffer
L2 := new string (L1.all); -- Copy contents
WRI TELI NE (outfile, L1); -- Deall ocate buffer

The ENDLINE function

The ENDLINE function described in the IEEE Sandard VHDL Language Reference
Manual, |EEE Sd 1076-1987 containsinvalid VHDL syntax and cannot be implemented
in VHDL. Thisis because access types must be passed as variables, but functions only
allow constant parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed
from the Textl O package. The following test may be substituted for this function:

(L = NULL) OR (L' LENGTH = 0)

The ENDFILE function

Inthe VHDL Language Reference Manuals, |EEE Std 1076-1987 and | EEE Std 1076-1993,
the ENDFILE function islisted as:

- function ENDFILE (L: in TEXT) return BOOLEAN,
Asyou can see, this function is commented out of the standard TextlO package. Thisis

because the ENDFILE function isimplicitly declared, so it can be used with files of any
type, not just files of type TEXT.

ModelSim SE User’s Manual VHDL Simulation 4-63

TextlO implementation issues

Using alternative input/output files

Y ou can use the Textl O package to read and writeto your own files. Todothis, just declare
an input or output file of type TEXT.

The VHDL' 87 declaration is:
file nyinput : TEXT i S in “pathnane. dat";

The VHDL’ 93 declaration is:
file nyinput : TEXT open read_node i S "pathnane. dat";

Then include theidentifier for thisfile ("myinput” in this example) in the READLINE or
WRITELINE procedure call.

Providing stimulus

Y ou can stimulate and test a design by reading vectors from afile, using them to drive
values onto signals, and testing theresults. A VHDL test bench has been included with the
ModelSminstall files as an example. Check for thisfile:

<install_dir>/modeltech/examples/stimulus.vhd

4-64 VHDL Simulation Model Sim SE User’s Manual

Obtaining the VITAL specification and source code

Obtaining the VITAL specification and source code

VITAL ASIC Modeling Specification

The |IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

|EEE Customer Service
445 Hoes Lane
Piscataway, NJ 08855-1331

Tel: (800)678-4333 ((908)562-5420 from outside the U.S.)
Fax: (908)981-9667
home page: http://www.ieee.org

VITAL source code

The source code for VITAL packagesis provided in the /<install_dir>/modeltech/
vhdl_src/vital2.2b, /vital 95, or /vital2000 directories.

VITAL packages

VITAL v3.0 accelerated packages are pre-compiled into the ieee library in the installation
directory.

P Note: By default, ModelSmis optimized for VITAL v3.0. Y ou can, however, revert to
VITAL v2.2b by invoking vsim (CR-258) with the-vital2.2b option, and by mapping library
vital to <install_dir>/modeltech/vital2.2b.

ModelSim SE User’s Manual VHDL Simulation 4-65

http://www.ieee.org

ModelSim VITAL compliance

ModelSim VITAL compliance

A simulator is VITAL compliant if it implements the SDF mapping and if it correctly
simulates designs using the VITAL packages, as outlined in the VITAL Model
Development Specification. ModelSimis compliant with the IEEE 1076.4 VITAL ASIC
Modeling Specification. In addition, Model Sm accelerates the VITAL_Timing and
VITAL_Primitives packages. The procedures in these packages are optimized and built
into the smulator kernel. By default, vsim (CR-258) uses the optimized procedures. The
optimized procedures are functionally equivalent to the IEEE 1076.4 VITAL ASIC
Modeling Specification (VITAL v3.0).

VITAL compliance checking

Compliance checking isimportant in enabling VITAL acceleration; to qualify for global
acceleration, an architecture must be VITAL-level-one compliant. vcom (CR-217)
automatically checks for VITAL 3.0 compliance on al entitieswith the VITAL _LevelO
attribute set, and all architectureswiththe VITAL LevelOor VITAL Levell attribute set.
It also checksfor VITAL 2000 compliance on al architectures using the vital 2000 library.

If you areusing VITAL 2.2b, you must turn off the compliance checking either by not
setting the attributes, or by invoking vcom (CR-217) with the option -novitalcheck. It is, of
course, possible to turn off compliance checking for VITAL 3.0 as well; we strongly
suggest that you leave checking on to ensure optimal simulation.

VITAL compliance warnings

The following LRM errors are printed as warnings (if they were considered errors they
would prevent VITAL level 1 acceleration); they do not affect how the architecture
behaves.

« Starting index constraint to Dataln and PreviousDatal n parametersto VITAL StateTable
do not match (1076.4 section 6.4.3.2.2)

« Size of PreviousDataln parameter is larger than the size of the Dataln parameter to
VITAL StateTable (1076.4 section 6.4.3.2.2)

* Signal g wisread by theVITAL processbutisNOT in the sensitivity list (1076.4 section
6.4.3)

The first two warnings are minor cases where the body of the VITAL 3.0 LRM isdlightly
stricter than the package portion of the LRM. Since either interpretation will provide the
same simulation results, we chose to make these two cases just warnings.

The last warning is arelaxation of the restriction on reading an internal signal that isnot in
the sensitivity list. Thisisrelaxed only for the CheckEnabled parameters of the timing
checks, and only if it is not read el sewhere.

Y ou can control thevisibility of VITAL compliance-check warningsin your vcom (CR-217)
transcript. They can be suppressed by using the vcom -nowar n switch asin

vcom -nowar n 6. The 6 comes from the warning level printed as part of the warning, i.e.,
WARNING][6]. You can also add the following line to your modelsim.ini filein the[vcom)]
VHDL compiler control variables (B-396) section.

[vcom
Show_Vi t al ChecksWarnings = 0

4-66 VHDL Simulation Model Sim SE User’s Manual

Compiling and Simulating with accelerated VITAL packages

Compiling and Simulating with accelerated VITAL packages

vcom (CR-217) automatically recognizesthat a VITAL function is being referenced from
the ieeelibrary and generates code to call the optimized built-in routines.

Optimization occurs on two levels:

* VITAL Level-0 optimization
Thisisafunction-by-function optimization. It appliesto al level-0 architectures, and any
level-1 architectures that failed level-1 optimization.

* VITAL Level-1 optimization
Performsglobal optimizationonaVITAL 3.0level-1 architecture that passesthe VITAL
compliance checker. Thisis the default behavior.

Compiler options for VITAL optimization
Severa vcom (CR-217) options control and provide feedback on VITAL optimization:

-0 | -0
Lower the optimization to a minimum with -OO0 (capital oh zero). Optional. Use thisto
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enabl e optimizations with -O4 (default).

- debugVA
Printsaconfirmationif aVITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration.

-vi tal 2000
Turns on acceleration for the VITAL 2000 vital_memory package.

ModelSmVITAL built-inswill be updated in step with new releases of the VITAL
packages.

ModelSim SE User’s Manual VHDL Simulation 4-67

Util package

Util package

The util package isincluded in ModelSim versions 5.5 and later and serves as a container
for various VHDL utilities. The packageis part of the modelsim_lib library whichis
located in the modelsim tree and mapped in the default modelsim.ini file.

To accessthe utilitiesin the package, you would add lineslike the following to your VHDL
code:

library model simlib;
use nodelsimlib.util.all;

get_resolution()

get_resolution() returns the current simulator resolution as areal number. For example, 1
femtosecond corresponds to 1e-15.

Syntax

resval := get_resolution();

Returns

Name Type Description

resva real The simulator resolution represented as a real

Arguments
None

Related functions
to_real() (4-70)
to_time() (4-71)

Example
If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution();

the value returned to resval would be 1e-11.

4-68 VHDL Simulation Model Sim SE User’s Manual

Util package

init_signal_spy()

Theinit_signal_spy() utility mirrorsthe value of a VHDL signal or Verilog register/wire
(called the spy_object) onto an existing VHDL signal or Verilog register (called the
dest_object). This allows you to reference signals, registers, or wires at any level of
hierarchy from within aVHDL architecture (e.g., atestbench).

This system task works only in Model Sim versions 5.5 and newer.

Syntax

init_signal _spy(spy_object, dest_object, verbose);

Returns
Nothing

Arguments

Name Type Description

spy_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/wire. Usethe
path separator to which your simulation is set
(i.e,"" or"."). A full hierarchical path must
beginwitha"/" or ".". The path must be
contained within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register. Use
the path separator to which your simulation is
set (i.e., /" or"."). A full hierarchical path
must begin with a"/* or ".". The path must be
contained within double quotes.

verbose integer Optional. Possiblevaluesare 0 or 1. Specifies
whether you want a message reported in the

Transcript stating that the spy_object’ s value
ismirrored onto the dest_object. Default is 0,

NO message.

Related functions
None

Limitations

* When mirroring the value of a Verilog register/wire onto a VHDL signal, the VHDL
signal must be of type bit, bit_vector, std _logic, or std_logic_vector.

» Mirroring dlices or single bits of avector is not supported. If you do reference adice or
bit of a vector, the function will assume that you are referencing the entire vector.

ModelSim SE User’s Manual VHDL Simulation 4-69

Util package

Example

l'ibrary nodelsimlib;
use nodelsimlib.util.all;
entity top is

end;

architecture ...

si gnal

begin

Spy_process :

begin

top_sigl :

process

init_signal _spy("/top/uut/instl/sigl","/top_sigl",1);

wait ;
end process spy_process;

end;

In this example, the value of "/t op/ uut /i nst 1/ si g1 will be mirrored onto

"/top_sigl".

to_real()

to_real() converts the physical type time valueinto areal value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fsto areal and the simulator
resolution was ps, then the real value would be 2.0 (i.e. 2 ps).

Syntax
realval := to_real (tinmeval);

Returns

Name Type Description

realval real Thetime value represented as areal with

respect to the simulator resolution

Arguments

Name Type Description

timeval time The value of the physical type time

Related functions
get_resolution() (4-68)
to_time() (4-71)

Example

4-70 VHDL Simulation

Model Sim SE User’s Manual

Util package

If the simulator resolution is set to ps, and you enter the following function:

realval := to_real (12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to be
in units of nanoseconds (ns) instead, you would use the get_resolution() (4-68) function to
recalculate the value:

realval := 1le+9 * (to_real (12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := le+l5 * (to_real (12.99 ns)) * get_resolution();

to_time()

to_time converts areal value into atime value with respect to the current simulator
resolution. The precision of the converted valueis determined by the simulator resol ution.
For example, if you were converting 5.9 to atime and the simulator resol ution was ps, then
the time value would be 6 ps.

Syntax
tinmeval := to_tine(realval);

Returns

Name Type Description

timeval time Thereal value represented as a physical type

time with respect to the simulator resolution

Arguments

Name Type Description

realval real The value of the typerea

Related functions
get_resolution() (4-68)
to_real() (4-70)

Example
If the simulator resolution is set to ps, and you enter the following function:

timeval = to_tine(72.49);

then the value returned to timeval would be 72 ps.

ModelSim SE User’s Manual VHDL Simulation 4-71

4-72 VHDL Simulation Model Sim SE User’s Manual

5 - Verilog Simulation

Chapter contents

Compilation . . N S)
Incremental compi Iatlon e 576
Library usage 578
Verilog-XL compat|ble compller optlons -)
Verilog-XL ‘uselib compiler directive 581

Simulation . . . I e
Invoking the simul ator I e
Simulation resolution limit 58
Event order issues. 585
Verilog-XL compatible smulator opt|ons 586

Compiling for faster performance. 59
Compilingwith -fast 59
Compiling gate-level designs W|th fast b9
Referencing the optimized design. 592
Enabling design object visibility with the +acc opt|on 594
Using pre-compiled libraries 596

Cell Libraries . . s o 1
SDF timing annotanon s o 1
Delaymodes boy

System Tasks . . T - e]
|EEE Std 1364 system tasks T e e]
Verilog-XL compatiblesystemtasks. 5102
$init signal_spy 5104

Compiler Directives bioe
IEEE Std 1364 compiler d| rectlves bioe
Verilog-XL compatible compiler directives 5106

Using the Verilog PLI/VPI. 5108
Registering PLI applications 5108
Registering VPI applications 5110
Compiling and linking PLI/VPI appllcatlons T i
The PLI callback reasonargument 5117
The sizetf callback function 5119
PLI objecthandles. 5119
Third party PLI applications 5120
Support for VHDL objects 5121
|IEEE Std 1364 ACCroutines. 5122
|IEEE Std 1364 TFroutines 5123
Verilog-XL compatibleroutines 5125
64-bit supportintheft.t 5125
PLI/VPI tracing bl125

This chapter describes how to compile and simulate Verilog designs with ModelSm
Verilog. Model Sm Verilog implements the Verilog language as defined by the |EEE Std
1364, and it is recommended that you obtain this specification as a reference manual.

ModelSim SE User’'s Manual Verilog Simulation 5-73

In addition to the functionality described in the [EEE Std 1364, Model Sm Verilog includes
the following features:

« Standard Delay Format (SDF) annotator compatiblewith many ASIC and FPGA vendor's
Verilog libraries

 Vaue Change Dump (VCD) file extensions for ASIC vendor test tools
» Dynamic loading of PLI/VPI applications

« Compilation into retargetable, executable code

* Incremental design compilation

* Extensive support for mixing VHDL and Verilog in the same design (including SDF
annotation)

 Graphic Interface that is common with ModelSm VHDL
 Extensionsto provide compatibility with Verilog-XL
Thefollowing |EEE Std 1364 functionality is partially implemented in ModelSm Verilog:

« Verilog Procedural Interface (VPI) (see/<install_dir>/modeltech/docs/technotes/
Verilog_VPI.note for details)

Many of the examplesin thischapter are shown from the command line. For compiling and
simulating within a project or ModelSm’'s GUI see:

* Getting started with projects (2-28)
» Compiling with the graphic interface (8-250)
« Simulating with the graphic interface (8-256)

ModelSim variables

Several variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the Model Sm GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation. See Appendix B - ModelSm
Variables for acomplete listing of ModelSm variables.

5-74 Verilog Simulation ModelSim SE User’s Manual

Compilation

Compilation

Before you can simulate a Verilog design, you must first create alibrary and compile the
Verilog source code into that library. This section provides detailed information on
compiling Verilog designs. For information on creating a design library, see Chapter 3 -
Design libraries.

The Model Sm Verilog compiler, viog, compiles Verilog source code into retargetable,
executable code, meaning that the library format is compatible across all supported
platforms and that you can simulate your design on any platform without having to
recompile your design specifically for that platform. As you compile your design, the
resulting object code for modules and UDPs is generated into alibrary. By default, the
compiler places results into the work library. Y ou can specify an alternate library with the
-work option. The following is a simple example of how to create awork library, compile
adesign, and simulate it:

Contents of top.v:

nodul e top;
initial $display("Hello world");
endnodul e

Create the work library:

% vlib work

Compile the design:

% vlog top.v
- Conpiling nodul e top

Top | evel nodul es:
top

View the contents of the work library (optional):

% vdir
MODULE t op

Simulate the design:

% vsim-c top

Loadi ng work.top
VSIM 1> run -all

Hello world
VSIM 2> quit

In this example, the simulator was run without the graphic interface by specifying the -c
option. After the design was|oaded, the simulator command run -all was entered, meaning
to simulate until there are no more simulator events. Finally, the quit command was entered
to exit the smulator. By default, alog of the simulation iswritten to the file “transcript” in
the current directory.

ModelSim SE User’'s Manual Verilog Simulation 5-75

Compilation

Incremental compilation

By default, Model Sm Verilog supports incremental compilation of designs, thus saving
compilation time when you modify your design. Unlike other Verilog simulators, thereis
no requirement that you compile the entire design in one invocation of the compiler
(although, you may wish to do so to optimize performance; see "Compiling for faster
performance” (5-90)).

Y ou are not required to compile your design in any particular order because all module and
UDP instantiations and external hierarchical references are resolved when the design is
loaded by the simulator. Incremental compilation is made possible by deferring these
bindings, and as aresult some errors cannot be detected during compilation. Commonly,
these errorsinclude: modules that were referenced but not compiled, incorrect port
connections, and incorrect hierarchical references.

The following example shows how a hierarchical design can be compiled in top-down
order:

Contents of top.v:

nodul e top;
or2(nl, a, b);
and2(n2, nl, c);
endnodul e

Contents of and2.v:

nodul e and2(y, a, b);
out put y;
i nput a, b;
and(y, a, b);
endnodul e

Contents of or2.v:

nodul e or2(y, a, b);
out put vy;
input a, b;
or(y, a, b);
endnodul e

Compile the design in top down order (assumes work library already exists):

% vlog top.v
- Conpiling nodul e top

Top | evel nodul es
top
% vl og and2.v
- Conpi l i ng nodul e and2

Top | evel nodul es
and2
% vlog or2.v
- Conpiling nodul e or2

Top | evel nodul es
or2

5-76 Verilog Simulation

Model Sim SE User’s Manual

Compilation

Note that the compiler lists each module as atop level module, although, ultimately, only
"top" isatop-level module. If amoduleis not referenced by another module compiled in
the same invocation of the compiler, then it islisted as atop level module. Thisisjust an
informative message and can be ignored during incremental compilation. The messageis
more useful when you compile an entire design in one invocation of the compiler and need
to know the top level module names for the simulator. For example,
% vlog top.v and2.v or2.v

- Conpiling nodule top

- Conpi ling nodul e and2

- Conpiling nodule or2

Top | evel nodul es
top

The most efficient method of incremental compilation isto manually compile only the
modules that have changed. Thisis not always convenient, especially if your source files
have compiler directive interdependencies (such as macros). In this case, you may prefer to
always compile your entire design in one invocation of the compiler. If you specify the
-incr option, the compiler will automatically determine which modules have changed and
generate code only for those modules. Thisis not as efficient as manual incremental
compilation because the compiler must scan all of the source code to determine which
modules must be compiled.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v

- Conpiling nmodul e top

- Conpi ling nodul e and2

- Conpiling nodul e or2

Top | evel nodul es
top

Now, suppose that you modify the functionality of the "or2" module;

% vlog -incr top.v and2.v or2.v
- Ski ppi ng nodul e top

- Ski ppi ng nodul e and2

- Conpiling nodul e or2

Top | evel nodul es
top

The compiler informs you that it skipped the modules "top" and "and2", and compiled
"or2".

Automatic incremental compilation is intelligent about when to compile a module. For
exampl e, changing acomment in your source code does not result in arecompile; however,
changing the compiler command line options resultsin arecompile of all modules.

P> Note: Changes to your source code that do not change functionality but that do affect
source code line numbers (such as adding acomment line) will cause all affected modules
to be recompiled. This happens because debug information must be kept current so that
Model Sm can trace back to the correct areas of the source code.

ModelSim SE User’'s Manual Verilog Simulation 5-77

Compilation

Library usage

All modules and UDPsin aVerilog design must be compiled into one or more libraries.
Onelibrary is usually sufficient for a simple design, but you may want to organize your
modulesinto various libraries for acomplex design. If your design uses different modules
having the same name, then you are required to put those modules in different libraries
because design unit names must be unique within alibrary.

Thefollowing isan example of how you may organize your ASIC cellsinto onelibrary and
therest of your design into another:

% vlib work

%vlib asiclib

% vliog -work asiclib and2.v or2.v

- Conpi ling nodul e and2

- Conpiling nmodul e or2

Top | evel nodul es
and2
or2
% vlog top.v
- Conpiling nmodul e top

Top | evel nodul es
top

Note that the first compilation uses the -work asiclib option to instruct the compiler to
place theresultsin the asiclib library rather than the default work library.

Since instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top level modules are
loaded from the library named wor k unless you specify an aternate library with the -lib
option. All other Verilog instantiations are resolved in the following order:

* Search libraries specified with -L f optionsin the order they appear on the command line.
 Search thelibrary specified in the "Verilog-XL “uselib compiler directive" (5-81).

« Search libraries specified with -L optionsin the order they appear on the command line.
 Search thework library.

 Search thelibrary explicitly named in the specia escaped identifier instance name.

It isimportant to recognize that the work library is not necessarily alibrary named work -
thework library refersto the library containing the modul e that instantiates the module or
UDP that is currently being searched for. This definition is useful if you have hierarchical
modules organized into separate libraries and if sub-module names overlap among the
libraries. In this situation you want the modulesto search for their sub-modulesin the work
library first. Thisisaccomplished by specifying -L work firstin thelist of search libraries.

For example, assume you have atop level module "top" that instantiates module "modA™
from library "libA" and module "modB" from library "libB". Furthermore, "modA" and
"modB" both instantiate modules named "cellA", but the definition of "cellA" compiled
into "libA" is different from that compiled into "libB". In this case, it isinsufficient to just
specify "-L libA - L libB" asthe search libraries because instantiations of "cellA" from
"modB" resolvetothe"libA" version of "cellA". The appropriate search library optionsare
"-L work -L libA -L libB".

5-78 Verilog Simulation ModelSim SE User’s Manual

Compilation

Verilog-XL compatible compiler options

See vlog (CR-250) for acomplete list of compiler options. The options described here are
equivalent to Verilog-X L options. Many of these are provided to ease the porting of a
design to ModelSm Verilog.

+def i ne+<nmacr o_nane>[=<nmcr o_t ext >]
This option allows you to define amacro from the command line that is equivalent to the
following compiler directive:

‘define <macro_nanme> <macro_text>

Multiple +define options are allowed on the command line. A command line macro
overrides amacro of the same name defined with the * define compiler directive.

+i ncdi r +<di rectory>
This option specifies which directories to search for filesincluded with ‘include
compiler directives. By default, the current directory is searched first and then the
directories specified by the +incdir optionsin the order they appear on the command
line. Y ou may specify multiple +incdir options aswell as multiple directories separated
by "+" in asingle +incdir option.

+del ay_node_di stri but ed
This option disables path delaysin favor of distributed delays. See Delay modes (5-97)
for details.

+del ay_node_pat h
This option sets distributed delays to zero in favor of path delays. See Delay modes (5-
97) for details.

+del ay_node_uni t
This option sets path delays to zero and non-zero distributed delays to one time unit. See
Delay modes (5-97) for details.

+del ay_node_zero
This option sets path delays and distributed delays to zero. See Delay modes (5-97) for
details.

-f <fil enane>
This option reads more command line arguments from the specified text file. Nesting of
-f optionsis allowed.

+m ndel ays
This option selects minimum delays from the "min:typ:max" expressions. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

+t ypdel ays
This option selectstypical delaysfrom the "min:typ:max" expressions. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

+maxdel ays
This option selects maximum delays from the "min:typ:max" expressions. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

ModelSim SE User’'s Manual Verilog Simulation 5-79

Compilation

+nowar n<rmenoni ¢>
This option disables the class of warning messages specified by <mnemonic>. This
option only disables warning messages accompanied by a mnemonic enclosed in square
brackets. For example,

WARNING. test.v(2): [TFMPC] - Too few port connections
This warning message can be disabled with the +nowarnTFM PC option.

-u
This option treats all identifiersin the source code as al uppercase.

Options supporting source libraries

Thefollowing options support sourcelibrariesin the samemanner asVerilog-XL. Notethat
these libraries are source libraries and are very different from the libraries that the
Model Sm compiler uses to store compilation results. Y ou may find it convenient to use
these optionsif you are porting adesign to ModelSm or if you are familiar with these
options and prefer to use them.

Source libraries are searched after the source files on the command line are compiled. I
there are any unresolved references to modules or UDPs, then the compiler searches the
source libraries to satisfy them. The modules compiled from source libraries may in turn
have additional unresolved references that cause the source libraries to be searched again.
This processis repeated until all references are resolved or until no new unresolved
referencesarefound. Sourcelibrariesare searched in the order they appear on the command
line.

-v <fil enane>
This option specifies a source library file containing module and UDP definitions.
Modulesand UDPswithinthefile are compiled only if they match previously unresolved
references. Multiple -v options are allowed.

-y <directory>
This option specifies a source library directory containing module and UDP definitions.
Files within this directory are compiled only if the file names match the names of
previously unresolved references. Multiple -y options are allowed.

+l i bext +<suf fi x>
This option works in conjunction with the -y option. It specifiesfile extensions for the
filesinasource library directory. By default the compiler searches for files without
extensions. If you specify the +libext option, then the compiler will search for afilewith
the suffix appended to an unresolved name. Y ou may specify only one +libext option,
but it may contain multiple suffixes separated by "+". The extensions aretried in the
order they appear in the +libext option.

+l i brescan
This option changes how unresolved references are handled that are added while
compiling amodule or UDP from a source library. By default, the compiler attemptsto
resolve these references as it continues searching the source libraries. If you specify the
+librescan option, then the new unresolved references are deferred until after the current
passthrough the sourcelibraries. They arethen resolved by searching the sourcelibraries
from the beginning in the order they are specified on the command line.

5-80 Verilog Simulation ModelSim SE User’s Manual

Compilation

+nol i bcel
By default, all modules compiled from asourcelibrary aretreated asthough they contain
a‘celldefine compiler directive. This option disables this default. The ‘ celldefine
directive only affectsthe PLI Accessroutines acc_next_cell and acc_next_cell_load.

-R <si margs>
Thisoptioninstructsthe compiler toinvokethe simulator after compiling the design. The
compiler automatically determines which top level modules are to be ssmulated. The
command line arguments following -R are passed to the simulator, not the compiler.
Place the -R option at the end of the command line or terminate the simulator command
line arguments with asingle"-" character to differentiate them from compiler command
line arguments.

The-R optionisnot aVerilog-XL option, but it isused by Model SmVerilog to combine
the compile and simul ate phases together as you may be used to doing with Verilog-XL.
It is not recommended that you regularly use this option because you will incur the
unnecessary overhead of compiling your design for each simulation run. Mainly, itis
provided to ease the transition to ModelSm Verilog.

Verilog-XL ‘uselib compiler directive

The *uselib compiler directive is an aternative source library management scheme to the
-v, -y, and +libext compiler options. It has the advantage that a design may reference
different modules having the same name. Y ou compile designs that contain ‘uselib
directive statements using the -compile_uselibs vliog switch (described below).

The syntax for the ‘uselib directiveis:

‘uselib <library_reference>..

where <library_reference> is:
dir=<library_directory> | file=<library_file> | |ibext=<file_extension>
l'i b=<li brary_name>

In Verilog-XL, thelibrary references are equivalent to command line options as follows:
dir=<library_directory> -y <library_directory>
file=<library_file> -v <library_file>
I i bext=<fil e_extension> +libext+<file_extension>

For example, the following directive

‘uselib dir=/h/vendorA libext=.v

is equivalent to the following command line options:

-y /h/vendor A +li bext+.v

Since the *uselib directives are embedded in the Verilog source code, thereis more
flexibility in defining the source libraries for the instantiations in the design. The
appearance of a‘uselib directive in the source code explicitly defines how instantiations
that follow it are resolved, completely overriding any previous ‘uselib directives.

For example, the following code fragment shows how two different modules that have the
same name can be instantiated within the same design:

‘uselib dir=/h/vendorA file=.v
NAND2 ul(nl, n2, n3)

ModelSim SE User’'s Manual Verilog Simulation 5-81

Compilation

‘uselib dir=/h/vendorB file=.v
NAND2 u2(n4, n5, n6);

This allows the NAND2 modul e to have different definitions in the vendorA and vendorB
libraries.

-compile_uselibs argument

InModelSmversions5.5 and later, avlog argument easesthe use of ‘ uselib directives. The
-compile_uselibs argument finds the source files referenced in the directive, compiles
them into automatically created object libraries, and updates the modelsim.ini file with the
logical mappingsto the libraries.

When using -compile_uselibs, Model Sm determines into what directory to compile the
object libraries by choosing, in order, from the following three values:

 The directory name specified by the -compile_uselibs argument. For example,
-conpi |l e_uselibs=./mnmydir

» The directory specified by the MTI_USELIB_DIR environment variable (see
"Environment variables' (B-393))

A directory named "mti_uselibs" that is created in the current working directory

pre-5.5 release implementation

In ModelSmversionsprior to 5.5, thelibrary filesreferenced by the ‘uselib directive were
not automatically compiled by ModelSm Verilog. To maintain backwards compatibility,
thisis still the default behavior when -compile_uselibs (see above) is not used. The
following describes the pre-5.5 rel ease implementation.

Becauseitisanimportant feature of ‘ uselib to alow adesign to reference multiple modules
having the same name, independent compilation of the source libraries referenced by the
‘uselib directivesis required. Each source library should be compiled into its own object
library. The compilation of the code containing the ‘uselib directives only records which
object libraries to search for each module instantiation when the design is |oaded by the
simulator.

Because the ‘uselib directive isintended to reference source libraries, Model Sm Verilog
must infer the object libraries from the library references. The rule is to assume an object
library named work in the directory defined in the library reference
dir=<library_directory> or the directory containing the filein the library reference
file=<library_file>. Thelibrary reference libext=<file_extension> isignored in the
pre-5.5 release implementation. For example, the following ‘uselib directivesinfer the
same object library:

‘uselib dir=/h/vendorA

‘uselib file=/h/vendorA/libcells.v
In both cases Model Sm Verilog assumes that the library source is compiled into the object
library /h/vendor A/work.

ModelSm Verilog a so extends the ‘ uselib directive to explicitly specify the object library
with the library reference lib=<library_name>. For example,

‘uselib I'ib=/h/vendor Al wor k

5-82 Verilog Simulation ModelSim SE User’s Manual

Compilation

The library name can be a complete path to alibrary, or it can be alogical library name
defined with the vmap command. Since this usage of ‘uselib is an extension, it may be
desirable to qualify it with an ‘ifdef to make it portable to other Verilog systems. For
example,

“ifdef MODEL_TECH

‘uselib |ib=vendorA

‘el se

‘uselib dir=/h/vendorA libext=.v
‘endif

The MODEL_TECH macro is automatically defined by the Model Sm compiler.

ModelSim SE User’'s Manual Verilog Simulation 5-83

Simulation

Simulation

The Model Smsimulator can load and simul ate both Verilog and VHDL designs, providing
auniform graphic interface and simulation control commandsfor debugging and analyzing
your designs. The graphic interface and simulator commands are described elsewhere in
this manual, while this section focuses specifically on Verilog simulation.

Invoking the simulator

A Verilog design is ready for simulation after it has been compiled into one or more
libraries. The simulator may then be invoked with the names of the top level modules
(many designs contain only one top level module). For example, if your top level modules
are "testbench" and "globals', then invoke the simulator as follows:

vsi m t est bench gl obal s

P> Note: When working with designs that contain optimized code, this syntax may vary.
Please see "Compiling for faster performance” (5-90) for details.

If atop-level module nameis not specified, Model Smwill present the L oad Design dialog
box from which you can choose one or more top-level modules. See " Simulating with the
graphic interface" (8-256) for more information.

After thesimulator loadsthetop level modules, it iteratively loadsthe instantiated modules
and UDPs in the design hierarchy, linking the design together by connecting the ports and
resolving hierarchical references. By default, all modules and UDPs are |oaded from the
library named work.

On successful loading of the design, the simulation time is set to zero, and you must enter
arun command to begin simulation. Commonly, you enter run -all to run until there are
no more simulation events or until $finish isexecuted in the Verilog code. Y ou can also
run for specific time periods (e.g., run 100 ns). Enter the quit command to exit the
simulator.

Simulation resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulation resolution limit. The
resolution limit defaults to the smallest time precision found among all of the ‘timescale
compiler directivesin the design. Thetime precision isthe second number in the ‘timescale
directive. For example, "10 ps' in the following directive:

‘timescale 1 ns / 10 ps

The time precision should not be unnecessarily small because it will limit the maximum
simulation time limit, and it will degrade performancein some cases. If the design contains
no ‘timescale directives, then the resolution limit defaults to the "resolution” value
specified in the modelsim.ini file (default is1 ns). In any case, you can override the default
resolution limit by specifying the -t option on the command line.

For example, to explicitly choose 100 ps resolution:
vsim -t 100ps top

5-84 Verilog Simulation ModelSim SE User’s Manual

Simulation

This forces 100 ps resolution even if the design has finer time precision. As aresult, time
values with finer precision are rounded to the nearest 100 ps.

Event order issues

The Verilog language is defined such that the ssmulator is not required to execute
simultaneous eventsin any particular order. Unfortunately, some models are inadvertently
written to rely on a particular event order, and these models may behave differently when
ported to another Verilog simulator. A model with event order dependenciesis ambiguous
and should be corrected. For example, the following code is ambiguous:

nodul e top;
reg r;

initial r
initial r

0,
1;

initial #10 $display(r);
endnodul e

The value displayed for "r" depends on the order that the simulator executes the initial
constructs that assign to "r". Conceptually, the initial constructs run concurrently and the
simulator is allowed to execute them in any order. Model Sm Verilog executes the initial
constructs in the order they appear in the module, and the value displayed for "r" is"1".
Verilog-XL produces the same result, but a simulator that displays"0" is not incorrect
because the code is ambiguous.

Since many models have been developed on Verilog-XL, ModelSm Verilog duplicates
Verilog-XL event ordering as much as possible to ease the porting of those models to
ModelSm Verilog. However, Model Sm Verilog does not match Verilog-XL event
ordering in al cases, and if amodel ported to ModelSm Verilog does not behave as
expected, then you should suspect that there are event order dependencies.

Tracking down event order dependencies is a tedious task, so Model Sm Verilog aids you
with a couple of compiler options:

- conpat

This option turns of f optimizationsthat result in different event ordering than Verilog-XL.
ModelSm Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it isinefficient to do so. Using this option does not help you find the event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance.

-hazards
This option detects event order hazards involving simultaneous reading and writing of the
same register in concurrently executing processes.

vsim (CR-258) detects the following kinds of hazards:

* WRITE/WRITE:
Two processes writing to the same variable at the same time.

 READ/WRITE:
One process reading avariable at the same timeiit is being written to by another process.
ModelSim callsthis a READ/WRITE hazard if it executed the read first.

ModelSim SE User’'s Manual Verilog Simulation 5-85

Simulation

* WRITE/READ:
Same as aREAD/WRITE hazard except that M odel Sm executed the write first.

vsim issues an error message when it detects a hazard. The message pinpointsthe variable
and the two processes involved. Y ou can have the simulator break on the statement where
the hazard is detected by setting the break on assertion level toerror.

To enable hazard detection you must invoke vlog (CR-250) with the -hazar ds option when
you compile your source code and you must also invoke vsim with the -hazar ds option
when you simulate.

Limitations of hazard detection:

» Reads and writes involving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selects istoo
high.

« A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

* A WRITE/READ or READ/WRITE hazard isflagged even if the write does not modify
the variable's value.

« Glitches on nets caused by non-guaranteed event ordering are not detected.

Verilog-XL compatible simulator options

See vsim (CR-258) for a complete list of simulator options. The options described here are
equivalent to Verilog-X L options. Many of these are provided to ease the porting of a
design to ModelSm Verilog.

+al t _pat h_del ays
Specify path delaysoperateininertial mode by default. Ininertial mode, apending output
transition is cancelled when a new output transition is scheduled. The result is that an
output may have no more than one pending transition at atime, and that pul ses narrower
than thedelay arefiltered. The delay isselected based on the transition from the cancelled
pending value of the net to the new pending value. The +alt_path_delays option
modifiestheinertial mode such that a delay is based on a transition from the current
output value rather than the cancelled pending value of the net. This option has no effect
in transport mode (see +pul se_e/ <per cent > and +pulse_r/<percent>).

-1 <fil ename>
By default, the simulation log is written to the file "transcript". The -l option alows you
to specify an alternatefile.

+maxdel ays
This option selects the maximum value in min:typ:max expressions. The default isthe
typical value. This option has no effect if the min:typ:max selection was determined at
compile time.

+m ndel ays
This option selects the minimum value in min:typ:max expressions. The default isthe
typical value. This option has no effect if the min:typ:max selection was determined at
compile time.

+mul ti source_i nt _del ays
This option enables multisource interconnect delays with transport delay behavior and
pulse handling. Model Sm uses a unique delay value for each driver-to-driven module

5-86 Verilog Simulation ModelSim SE User’s Manual

Simulation

interconnect path specified in the SDF file. Pulse handling is configured using the
+pulse_int_eand +pulse_int_r switches (described below).

+no_neg_t chk
This option disables negative timing check limits by setting them to zero. By default
negative timing check limits are enabled. Thisisjust the opposite of Verilog-XL, where
negative timing check limits are disabled by default, and they are enabled with the
+neg_tchk option.

+no_notifier
This option disables the toggling of the notifier register argument of the timing check
system tasks. By default, the notifier is toggled when there is atiming check violation,
and the notifier usually causes a UDP to propagate an X. Therefore, the +no_notifier
option suppresses X propagation on timing violations.

+no_pat h_edge
Thisoption causesModel Smtoignoretheinput edge specified in apath delay. Theresult
isthat all edges on the input are considered when sel ecting the output delay. Verilog-XL
always ignores the input edges on path delays.

+no_pul se_nsg
This option disablesthe warning message for specify path pulse errors. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection
limit and pulseerror limit set with the +pulse r and +pulse_e options. A path pulse error
results in awarning message, and the pulseis propagated as an X. The +no_pulse msg
option disables the warning message, but the X is still propagated.

+no_t chk_nsg
This option disables error messages issued by timing check system tasks when timing
check violations occur. However, notifier registers are still toggled and may result in the
propagation of X's for timing check violations.

+nosdf war n
This option disables warning messages during SDF annotation.

+not i m ngchecks

This option completely disables al timing check system tasks.

+nowar n<mrmenoni ¢>
This option disables the class of warning messages specified by <mnemonic>. This
option only disables warning messages accompanied by amnemonic enclosed in square
brackets. For example,

WARNING test.v(2): [TFMPC] - Too few port connections
This warning message can be disabled with the +nowarnTFM PC option.

+ntc_warn
This option enables warning messages from the negative timing constraint algorithm.
Thisagorithm attemptsto find aset of delaysfor thetiming check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of
the negative limits to zero and recal culates the delays. This processis repeated until a
solution isfound. A warning message is issued for each negative limit set to zero. By
default these warnings are disabled.

ModelSim SE User’'s Manual Verilog Simulation 5-87

Simulation

+pul se_e/ <per cent >
This option controls how pulses are propagated through specify path delays, where
<percent> isanumber between 0 and 100 that specifiesthe error limit as a percentage of
the path delay. A pulse greater than or equal to the error limit propagates to the output in
transport mode (transport mode allows multiple pending transitions on an output). A
pulselessthan the error limit and greater than or equal to therejection limit (see+pulse _r/
<percent>) propagates to the output as an X. If therejection limit is not specified, then it
defaults to the error limit. For example, consider a path delay of 10 along with a
+pulse_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. Thisresultsin the propagation of pulses greater than or equal to 8, while all other
pulses are filtered. Note that you can force specify path delays to operate in transport
mode by using the +pulse_e/0 option.

+pul se_i nt _e/ <percent >
This option is analogous to +pulse_e, except it applies to interconnect delays only.

+pul se_i nt _r/ <percent >
Thisoption is analogous to +pulse _r, except it applies to interconnect delays only.

+pul se_r/ <percent >
This option controls how pulses are propagated through specify path delays, where
<percent>isanumber between 0 and 100 that specifiestheregjection limit asapercentage
of the path delay. A pulse lessthan thergjection limit is suppressed from propagating to
the output. If the error limit is not specified (see +pulse_e (5-88)), then it defaultsto the
rejection limit.

+pul se_e_styl e_ondet ect
This option selects the "on detect” style of propagating pulse errors (see +pul se_e/
<per cent >). A pulse error propagates to the output as an X, and the "on detect" style
isto schedule the X immediately, as soon asit has been detected that a pulse error has
occurred. The "on event" style is the default for propagating pulse errors (see
+pul se_e_styl e onevent).

+pul se_e_styl e_onevent
This option selects the "on event" style of propagating pulse errors (see +pul se_e/
<per cent >). A pulse error propagates to the output asan X, and the "on event” styleis
to schedulethe X to occur at the sametime and for the same duration that the pulsewould
have occurred if it had propagated through normally. The "on event” style isthe default
for propagating pulse errors.

+sdf _nocheck_cel | type
By default, the SDF annotator checksthat the CELLTY PE namein the SDF file matches
the module or primitive name for the CELL instance. It is an error if the names do not
match. The +sdf_nocheck_celltype option disables this error check.

+sdf _ver bose
This option displays a summary of the design objects annotated for each SDF file.

+transport _i nt _del ays
By default, interconnect delaysoperateininertial mode (pulses smaller thanthedelay are
filtered). The +transport_int_delays option selects transport mode with pulse control
for single-source nets (one interconnect path). In transport mode, narrow pulses are
propagated through interconnect delays. This option works independent from
+multisource_int_delays.

5-88 Verilog Simulation ModelSim SE User’s Manual

Simulation

+transport _pat h_del ays
By default, path delays operate in inertial mode (pulses smaller than the delay are

filtered). The +transport_path_delays option selects transport mode for path delays. In
transport mode, narrow pulses are propagated through path delays. Note that this option
affects path delays only, and not primitives. Primitives always operate in inertial delay

mode.

+t ypdel ays
This option selectsthetypical valuein min:typ:max expressions. Thisisthedefault. This

option has no effect if the min:typ:max selection was determined at compile time.

ModelSim SE User’'s Manual Verilog Simulation 5-89

Compiling for faster performance

Compiling for faster performance

This section describes how to use the "-fast" compiler option to analyze and optimize an
entire design for improved simulation performance. This option improves performance for
RTL, behavioral, and gate-level designs (See below for important information specific to
gate-level designs.).

Model Sm's default mode of compilation defers modul e instantiations, parameter
propagation, and hierarchical reference resolution until the time that adesign isloaded by
the simulator (see "Incremental compilation” (5-76)). This has the advantage that a design
does not have to be compiled all at once, allowing independent compilation of modules
without requiring knowledge of the context in which they are used.

Compiling modules independently provides flexibility to the user, but resultsin less
efficient simulation performance in many cases. For example, the compiler must generate
code for a modul e containing parameters as though the parameters are variables that will
receive their final values when the design isloaded by the simulator. If the compiler is
allowed to analyze the entire design at once, then it can determine the final values of
parameters and treat them as constantsin expressions, thus generating more efficient code.
Thisis just one example of many other optimizations that require analysis of the entire
design.

Compiling with -fast

The"-fast" compiler option alows the compiler to propagate parameters and perform
global optimizations. A requirement of using the"-fast" option isthat you must compilethe
source code for your entire design in asingle invocation of the compiler. The followingis
an example invocation of the compiler and its resulting messages:

% vlog -fast cpu_rtl.v

- Conpiling nodule fp_unit

- Conpiling nodul e mult_56

- Conpi ling nmodul e testbench
- Conpi ling nodul e cpu

- Conpiling nmodule i _unit

- Conpi ling nodul e mem nux

- Conpi ling nodul e nenory32
- Conpi ling nodul e op_unit

Top | evel nodul es

t est bench

Anal yzi ng design. .

Optim zing 8 nodul es of which 6 are inlined
- Inlining nodul e i_unit(fast)

- I'nlining nodul e nem nmux(fast)

- Inlining nodul e op_unit(fast)

5-90 Verilog Simulation ModelSim SE User’s Manual

Compiling for faster performance

- I'nlining nodul e nenory32(fast)
- Inlining nodul e nult_56(fast)
- Inlining nodul e fp_unit(fast)
- Optimzing nodul e cpu(fast)

- Optimzing nodul e testbench(fast)

The"Analyzing design..." message indicates that the compiler is building the design
hierarchy, propagating parameters, and analyzing design object usage. Thisinformationis
then used in the final step of generating module code optimized for the specific design.
Note that some modules are inlined into their parent modules.

Once the design is compiled, it can be simulated in the usual way:

% vsim-c testbench

Loadi ng work.testbench(fast)
Loadi ng work. cpu(fast)

VSIM 1> run -all

VSIM 2> quit

Asthe simulator loadsthe design, it issues messages indicating that the optimized modules
arebeing loaded. There are no messages for loading the inlined modul es because their code
isinlined into their parent modules.

P> Note: If you want to optimize avery large netlist, you should only optimize the cell
libraries using the -fast option. (The -forcecode option should al so be specified.) The netlist
itself should be compiled with the default settings. Optimizing in this manner reduces
compilation time and compiler memory usage significantly.

Compiling gate-level designs with -fast

Gate-level designs often have large netlists that are slow to compile with -fast. In most
cases, we recommend the following flow for optimizing gate-level designs:

» Compilethe cell library using -fast and the -forcecode argument. The -forcecode
argument ensures that code is generated for in-lined modul es.

» Compilethe device under test and testbench without -fast.
« Create separate work directories for the cell library and the rest of the design.

One case where you wouldn’t follow this flow is when the testbench has hierarchical
references into the cell library. Optimizing the library alone would result in unresolved
references. In such acase, you'll have to compile the library, design, and testbench with
-fast in oneinvocation of the compiler. The hierarchical reference cells are then not
optimized.

Y ou can use the write report command (CR-281) command and the -debugCellOpt
argument to vlog command (CR-250) to obtain informati on about which cellshave and have
not been optimized. write report produces atext file that lists all modules. Modules with
"(cell)" following their names are optimized cells. For example,

Modul e: top
Architecture: fast

Modul e: bottom (cel |)

ModelSim SE User’'s Manual Verilog Simulation 5-91

Compiling for faster performance

Architecture: fast

In this case, both top and bottom were compiled with -fast, but top was not optimized and
bottom was.

The-debugCellOpt argument is used with -fast when compiling thecell library. Using this
argument results in Transcript window output that identifies why certain cells were not
optimized.

Referencing the optimized design

The compiler automatically assigns a secondary name to distinguish the design-specific
optimized code from the unoptimized code that may coexist inthe samelibrary. The default
secondary name for optimized code is "fast”, and the default secondary name for
unoptimized code is "verilog". Y ou may specify an alternate name (other than "fast") for
optimized code using the -fast=<option>. For example, to assign the secondary name
"opt1" to your optimized code, you would enter the following:

% vlog -fast=optl cpu_rtl.v

If you have multiple designsthat use common modules compiled into the samelibrary, then
you need to assign a different secondary name for each design so that the optimized code
for amodule used in one design context is not overwritten with the optimized code for the
same module used in another context. Thisistrue even if the designs are small variations
of each other, such as different testbenches. For example, suppose you have two
testbenches that instantiate and test the same design. Y ou might assign different secondary
names as follows:

% vlog -fast=t1 testbenchl.v design.v
- Conpi ling nodul e testbenchl
- Conpi l i ng nodul e design

Top | evel nodul es:

test benchl

Anal yzi ng design. ..

Optim zing 2 nodul es of which O are inlined:
- Optimzing nmodul e design(tl)

- Optimzing nodul e testbenchl(tl)

% vlog -fast=t2 testbed2.v design.v
- Conpi ling nodul e testbench2
- Conpi l i ng nodul e desi gn

Top | evel nodul es:

t est bench2

5-92 Verilog Simulation ModelSim SE User’s Manual

Compiling for faster performance

Anal yzi ng design. .

Optim zing 2 nodul es of which O are inlined
- Optimzing nmodul e design(t2)

- Optimzing nodul e testbench2(t?2)

All of the modules within design.v compiled for testbenchl are identified by t1 within the
library, whereas for testbench2 they are identified by t2. When the simulator loads
testbenchl, the instantiations from testbenchl reference the t1 versions of the code.
Likewise, the instantiations from testbench?2 reference the t2 versions. Therefore, you only
need to invoke the simulator on the desired top-level module and the correct versions of
code for the lower level instances are automatically loaded.

Theonly timethat you need to specify a secondary nameto the simulator iswhen you have
multiple secondary names associated with atop-level module. If you omit the secondary
name, then, by default, the simulator loads the most recently generated code (optimized or
unoptimized) for the top-level module. Y ou may explicitly specify a secondary nameto
load specific optimized code (specify "verilog" to load the unoptimized code). For
example, suppose you have atop-level testbench that works in conjunction with each of
several other top-level modules that only contain defparams that configure the design. In
this case, you need to compile the entire design for each combination, using a different
secondary name for each. For example,

% vlog -fast=cl testbench.v design.v configl.v
- Conpiling nmodul e testbench
- Conpi ling nodul e desi gn
- Conpi ling nmodul e configl

Top | evel nodul es
test bench

configl

Anal yzi ng design..

Optim zing 3 nodules of which O are inlined
- Optimzing nodul e design(cl)

- Optimzing nodul e testbench(cl)

- Optimzing nodul e configl(cl)

% vlog -fast=c2 testbench.v design.v config2.v
- Conpiling nodul e testbench

- Conpi ling nodul e desi gn

- Conpi ling nodul e config2

Top | evel nodul es
t est bench

config2

ModelSim SE User’'s Manual Verilog Simulation 5-93

Compiling for faster performance

Anal yzi ng design. ..

Optim zing 3 nodul es of which O are inlined:
- Optimzing nodul e design(c2)
- Optimzing nodul e testbench(c2)
- Optimzing nmodul e config2(c2)

Since the module "testbench” has two secondary names, you must specify which one you
want when you invoke the simulator. For example,

% vsi m’testbench(cl)' configl

Notethat it is not necessary to specify the secondary namefor configl, becauseit has only
one secondary name. If you omit the secondary name, the simulator defaultsto loading the
secondary name specified in the most recent compilation of the module.

If you prefer to use the "Load Design” dialog box to select top-level modules, then those
modules compiled with -fast can be expanded to view their secondary names. Click on the
one you wish to simulate.

To view the library contents, select Design > Browse Librariesto see the modules and
their associated secondary names. Also, you can execute the vdir command (CR-223) on a
specific module. For example,

VSIM 1> vdir design

MODULE desi gn

Optim zed Module t1
Optim zed Module t2

P> Note: In some cases, an optimized module will have"__<n>" appended to its secondary
name. This happens when multiple instantiations of amodule require different versions of
optimized code (for example, when the parameters of each instance are set to different
values).

Enabling design object visibility with the +acc option

Some of the optimizations performed by the -fast option impact design visibility to both the
user interface and the PLI routines. Many of the nets, ports, and registers are unavailable
by name in user interface commands and in the various graphic interface windows. In
addition, many of these objects do not have PLI Access handles, potentially affecting the
operation of PLI applications. However, a handleis guaranteed to exist for any object that
is an argument to a system task or function.

In the early stages of design, you may choose to compile without the -fast option so asto
retain full debug capabilities. Alternatively, you may use one or more +acc optionsin
conjunction with -fast to enable access to specific design objects. However, keep in mind
that enabling design object access may reduce simulation performance.

The syntax for the +acc option is as follows:

+acc[=<spec>] [+<nmodul e>[.]]

5-94 Verilog Simulation ModelSim SE User’s Manual

Compiling for faster performance

<gpec> is one or more of the following characters:

<spec> Meaning
r Enable access to registers (including memories, integer,
time, and real types).
n Enable access to nets.
b Enable accessto individual bits of vector nets. Thisisnecessary

for PLI applications that require handles to individual bits of
vector nets. Also, some user interface commands require this
access if you need to operate on net hits.

p Enable access to ports. This disables the module inlining
optimization, and should be used for PLI applications that
reguire access to port handles, or for debugging (see below).

c Enable accessto library cells. By default any Verilog module
bracketed with a* celldefine / * endcelldefine may be optimized,
and debug and PL I access may be limited. This option keeps
module cdll visibility.

If <spec> is omitted, then accessis enabled for all objects.

<module> is amodule name, optionally followed by "." to indicate all children of the
module. Multiple modules are allowed, each separated by a"+". If no modules are
specified, then all modules are affected.

If your design uses PLI applications that look for object handles in the design hierarchy,
thenitislikely that you will need to use the +acc option. For example, the built-in
$dumpvars system task isan internal PLI application that requires handles to nets and
registers so that it can call the PLI routine acc_vcl_add to monitor changes and dump the
valuesto aVCD file. Thisrequiresthat access is enabled for the nets and registers that it
operates on. Suppose you want to dump all nets and registersin the entire design, and that
you have the following $dumpvars call in your testbench (no arguments to $dumpvars
means to dump everything in the entire design):

initial $dunpvars;
Then you need to compile your design as follows to enable net and register access for all
modulesin the design:

% vlog -fast +acc=rn testbench.v design.v
As another example, suppose you only need to dump nets and registers of a particular

instance in the design (the first argument of 1 meansto dump just the variablesin the
instance specified by the second argument):

initial $dunpvars(1l, testbench.ul);
Then you need to compileyour design asfollows (assuming testbench.ul refersto amodule
named "design"):

% vl og -fast +acc=rn+design testbench.v design.v

ModelSim SE User’'s Manual Verilog Simulation 5-95

Compiling for faster performance

Finally, suppose you need to dump everything in the children instances of testbench.ul (the
first argument of O means to also include all children of the instance):

initial $dunpvars(0, testbench.ul);

Then you need to compile your design as follows:

% vl og -fast +acc=rn+design. testbench.v design.v

To gain maximum performance, it may be necessary to enable the minimum required
access within the design.

Using pre-compiled libraries

When using the -fast option, if the source code is unavailable for any of the modules
referenced in adesign, then you must instruct the compiler to search libraries for the
precompiled modules. The compiler optimizes pre-compiled modules the same as if the
source code is available. The optimized code for a pre-compiled module is written to the
same library in which the moduleis found.

The compiler automatically searches libraries specified in the ‘uselib directive (see
Verilog-XL ‘uselib compiler directive (5-81)). If your design exclusively uses ‘uselib
directives to reference modules in other libraries, then you don't need to specify library
search options to the compiler.

Thelibrary search options supported by the compiler areidentical to those supported by the
simulator (e.g., -L and -Lf; see Library usage (5-78)). The compiler also searches the
librariesin the same order asthe simulator (-Lf librariesfirst, followed by ‘uselib libraries,
and finally -L libraries). However, unlike the simulator, the compiler does not search the
work library by default.

P Note: Thelibrary search options you specify to the compiler must also be specified to the
simulator when you simulate the design.

5-96 Verilog Simulation ModelSim SE User’s Manual

Cell Libraries

Cell Libraries

Model Technology isthe first Verilog simulation vendor to pass the ASIC Council’s
Verilog test suite and achieve the "Library Tested and Approved" designation from Si2
Labs. Thistest suiteisdesigned to ensure Verilog timing accuracy and functionality andis
thefirst significant hurdle to complete on the way to achieving full ASIC vendor support.
As a consequence, many ASIC and FPGA vendors' Verilog cell libraries are compatible
with ModelSm Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays
and timing constraints for the cells. See section 13 in the |IEEE Std 1364-1995 for details
on specify blocks, and section 14.5 for details on timing constraints. ModelSm Verilog
fully implements specify blocks and timing constraints as defined in |EEE Std 1364 along
with some Verilog-XL compatible extensions.

SDF timing annotation

Delay modes

Model Sm Verilog supports timing annotation from Standard Delay Format (SDF) files.
See Chapter 12 - Standard Delay Format (SDF) Timing Annotation for details.

Verilog models may contain both distributed delays and path delays. The delays on
primitives, UDPs, and continuous assignments are the distributed delays, whereas the port-
to-port delays specified in specify blocks are the path delays. These delaysinteract to
determine the actual delay observed. Most Verilog cells use path delays exclusively, with
the distributed delays set to zero. For example,

modul e and2(y, a, b);
i nput a, b;
out put y;

and(y, a, b);

specify
(a =>y)
(b =>1y)
endspeci fy
endnodul e

In the above two-input "and" gate cell, the distributed delay for the "and" primitiveis zero,
and the actual delays observed on the module ports are taken from the path delays. Thisis
typical for most cells, but acomplex cell may require non-zero distributed delays to work
properly. Even so, these delays are usually small enough that the path delays take priority
over the distributed delays. The ruleis that if amodule contains both path delays and
distributed delays, then the larger of the two delays for each path shall be used (as defined
by the IEEE Std 1364). Thisisthe default behavior, but you can specify alternate delay
modes with compiler directives and options. These options and directives are compatible
with Verilog-XL. Compiler delay mode options take precedence over delay mode
directives in the source code.

ModelSim SE User’'s Manual Verilog Simulation 5-97

Cell Libraries

Distributed delay mode

In distributed delay mode the specify path delays are ignored in favor of the distributed
delays. Select this delay mode with the +delay_mode_distributed compiler option or the
‘delay_mode_distributed compiler directive.

Path delay mode

In path delay mode the distributed delays are set to zero. Select this delay mode with the
+delay_mode_path compiler option or the ‘delay_mode_path compiler directive.

Unit delay mode

In unit delay mode the distributed delays are set to one (the unit is the time_unit specified
inthe‘timescale directive), and the specify path delays and timing constraints areignored.
Select this delay mode with the +delay_mode_unit compiler option or the
‘delay_mode_unit compiler directive.

Zero delay mode

In zero delay mode the distributed delays are set to zero, and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode zero
compiler option or the ‘delay_mode_zero compiler directive.

5-98 Verilog Simulation ModelSim SE User’s Manual

System Tasks

System Tasks

The |EEE Std 1364 defines many system tasks as part of the Verilog language, and
ModelSm Verilog supports al of these along with several non-standard Verilog-XL
system tasks. The system tasks listed in this chapter are built into the simulator, although
some designs depend on user-defined system tasks implemented with the Programming
Language Interface (PLI) or Verilog Procedural Interface (VPI). If the simulator issues
warnings regarding undefined system tasks, then it islikely that these system tasks are
defined by aPLI/VPI application that must be loaded by the s mulator.

IEEE Std 1364 system tasks
The following system tasks are described in detail in the IEEE Std 1364.

Timescale tasks Simulator Simulation time Command line
control tasks functions input
$printtimescale $finish $realtime $test$plusargs
$timeformat $stop $stime $valuesplusargs
$time
Probabilistic Conversion Stochastic Timing check
distribution functions analysis tasks tasks
functions
$dist_chi_square $hitstoreal $q_add $hold
$dist_erlang Sitor $q_exam $nochange
$dist_exponential $realtobits $q_full $period
$dist_normal $rtoi $q_initidize $recovery
$dist_poisson $signed $g_remove $setup
$dist_t $unsigned $setuphold
$dist_uniform $skew
$random $width
$removal
$recrem

ModelSim SE User’'s Manual Verilog Simulation 5-99

System Tasks

Display tasks

$display
$displayb
$displayh
$displayo
$monitor
$monitorb
$monitorh
$monitoro
$monitoroff
$monitoron
$strobe
$strobeb
$strobeh
$strobeo
Swrite
Swriteb
Swriteh
$writeo

PLA modeling tasks

$async$andSarray

$async$nandSarray

$asyncorsarray
$asyncSnorSarray
$async$and$plane

$async$nand$plane

$async$or$plane
$async$nor$plane
$sync$and$array
$sync$nand$array
$sync$or$array
$sync$nor$array
$syncSand$plane
$syncsnand$plane
$syncsor$plane
$sync$nor$plane

Value change dump (VCD)

file tasks
$dumpall
$dumpfile
$dumpflush
$dumplimit
$dumpoff
$dumpon
$dumpvars
$dumpportson
$dumpportsoff
$dumpportsall
$dumpportsflush
$dumpports
$dumpportslimit

5-100 Verilog Simulation

Model Sim SE User’s Manual

System Tasks

File I/O tasks

$fclose $fopen $fwriteh
$fdisplay $fread $fwriteo
$fdisplayb $fscanf $readmemb
$fdisplayh $fseek $readmemh
$fdisplayo $fstrobe $rewind
$ferror $fstrobeb $sdf _annotate
$fflush $fstrobeh $sformat
$fgetc $fstrobeo $sscanf
$fgets $ftell $swrite
$fmonitor $fwrite $swriteb
$fmonitorb $fwriteb $swriteh
$fmonitorh $swriteo
$fmonitoro $ungetc

P Note: $readmemb and $readmemh match the behavior of Verilog-X L rather than | EEE Std
1364. Specifically, it loads datainto memory starting with thelowest address. For example,
whether you makethe declaration menor y[127: 0] or nenory[0: 127] , ModelSmwill load
data starting at address 0 and work upwards to address 127.

ModelSim SE User’'s Manual Verilog Simulation 5-101

System Tasks

Verilog-XL compatible system tasks

Thefollowing system tasks are provided for compatibility with Verilog-XL. Although they
are not part of the |[EEE standard, they are described in an annex of the |EEE Std 1364.

$countdrivers
$get pattern
$sreadnmenb
$sreadnmenmh

The following system tasks are also provided for compatibility with Verilog-XL, but they
are not described in the IEEE Std 1364.

$system("operating system shell comand")
This system task executes the specified operating system shell command and displaysthe
result. For example, to list the contents of the working directory on Unix:

$system("ls");
The following system tasks are extended to provide additional functionality for negative
timing constraints and an alternate method of conditioning, as does Verilog-XL.

$set uphol d(cl k_event, data_event, setup_limt, hold_limt, [notifier],
[tstanp_cond], [tcheck_cond], [delayed_clk], [delayed_data])

Thetstamp_cond argument conditionsthedata_event for the setup check and the clk_event
for the hold check. This alternate method of conditioning precludes specifying conditions
in the clk_event and data_event arguments.

The tcheck cond argument conditionsthe data_event for the hold check and the clk_event
for the setup check. This alternate method of conditioning precludes specifying conditions
in the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.

The delayed_data argument is a net that is continuously assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

Thedelayed clk and delayed dataargumentsare provided to ease the modeling of devices
that may have negative timing constraints. The model’s logic should reference the
delayed clk and delayed data netsin place of the normal clk and data nets. This ensures
that the correct dataislatched in the presence of negative constraints. The simulator
automatically calcul ates the delays for delayed clk and delayed data such that the correct
dataislatched as long as a timing constraint has not been violated.

$recovery(reference event, data_event, renoval _linmt, recovery_limt,
[notifier], [tstanmp_cond], [tcheck_cond], [del ayed_reference],
[del ayed_dat a])

The $recovery system task normally takes arecovery_limit asthethird argument and an
optional notifier as the fourth argument. By specifying alimit for both the third and
fourth arguments, the $recovery timing check istransformed into acombination removal
and recovery timing check similar to the $recrem timing check. The only differenceis
that the removal_limit and recovery_limit are swapped.

The following system tasks are Verilog-X L system tasks that are not implemented in
ModelSm Verilog, but have equivalent simulator commands.

5-102 Verilog Simulation ModelSim SE User’s Manual

System Tasks

$i nput ("fil enane")
This system task reads commands from the specified filename. The equivalent ssmulator
command isdo <filename>.

$l i st[(hierarchical _nane)]
This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the graphic interface Structure
window. The corresponding source code is displayed in the source window.

$reset
This system task resets the simulation back to its time 0 state. The equiva ent simulator
command isrestart.

$restart ("fil ename")
Thissystem task setsthe simulation to the state specified by filename, saved in aprevious
call to $save. The equivalent simulator command isrestore <filename>.

$save("fil ename")
This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hi erarchi cal _nane)
This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent smulator command is environment <pathname>.

$showscopes
This system task displays alist of scopes defined in the current interactive scope. The
equivalent simulator command is show.

$showar s
This system task displays alist of registers and nets defined in the current interactive
scope. The equivaent simulator command is show.

ModelSim SE User’'s Manual Verilog Simulation 5-103

System Tasks

$init_signal_spy

The $init_signal_spy() system task mirrors the value of aVHDL signal or Verilog register/
wire (called the spy_object) onto an existing Verilog register or VHDL signal (called the
dest_object). This system task allows you to reference VHDL signals at any level of
hierarchy from within aVerilog module; or, reference Verilog registers/wires at any level
of hierarchy from within a Verilog module when there is an interceding VHDL block.

This system task works only in Model Sim versions 5.5 and newer.

Syntax

$init_signal _spy(spy_object,

Returns
Nothing

Arguments

dest _obj ect, verbose)

Name

Type

Description

Spy_object

string

Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/wire. Usethe
path separator to which your simulation is set
(i.e.,"/" or"."). A full hierarchical path must
beginwith a"/" or ".". The path must be
contained within double quotes.

dest_object

string

Required. A full hierarchical path (or relative
path with reference to the calling block) to a

Verilog register or VHDL signal. Usethe path
separator to which your simulationis set (i.e.,
“I"or"."). A full hierarchical path must begin
witha"/" or ".". The path must be contained

within double quotes.

verbose

integer

Optional. Possiblevaluesare 0 or 1. Specifies
whether you want a message reported in the

Transcript stating that the spy_object’svalue
ismirrored onto the dest_object. Default is 0,

no message.

Limitations

« When mirroring the value of a VHDL signal onto a Verilog register, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

» Mirroring dlices or single bits of avector is not supported. If you do reference adlice or
bit of a vector, the function will assume that you are referencing the entire vector.

5-104 Verilog Simulation

Model Sim SE User’s Manual

System Tasks

Example
nodul e ...
reg top_sigl;
initial
begin

$init_signal _spy("/top/uut/instl/sigl","/top_sigl", 1);
end

endnodul e

In this example, the value of "/t op/ uut /i nst 1/ si g1 will be mirrored onto
"/top_sigl".

ModelSim SE User’'s Manual Verilog Simulation 5-105

Compiler Directives

Compiler Directives

Model SmVerilog supportsall of the compiler directives defined in the |[EEE Std 1364 and
some additional Verilog-XL compiler directives for compatibility.

Many of the compiler directives (such as ‘define and ‘timescale) take effect at the point
they are defined in the source code and stay in effect until the directiveisredefined or until
itisreset to its default by a‘resetall directive. The effect of compiler directives spans
source files, so the order of source files on the compilation command line could be
significant. For example, if you have afile that defines some common macrosfor the entire
design, then you might need to placeit first in the list of files to be compiled.

The ‘resetall directive affects only the following directives by resetting them back to their
default settings (thisinformation is not provided in the |EEE Std 1364):

‘cel | define
‘defaul t _decay_tine
“define_nettype

“del ay_node_di stri buted
“del ay_npde_pat h

“del ay_node_uni t

“del ay_node_zero
“tinmescal e
“unconnected_drive
“uselib

ModelSm Verilog implicitly defines the following macro:

“define MODEL_TECH

IEEE Std 1364 compiler directives

The following compiler directives are described in detail in the IEEE Std 1364.

“cel | define
“defaul t_nettype
“define

“el se
“endcel | defi ne
“endif

“ifdef

“ifndef

“include

‘line

“nounconnect ed_drive
“resetal
“tinmescal e
“unconnected_drive
“undef

Verilog-XL compatible compiler directives

The following compiler directives are provided for compatibility with Verilog-XL.

‘defaul t _decay_tine <tine>

5-106 Verilog Simulation

Model Sim SE User’s Manual

Compiler Directives

This directive specifies the default decay time to be used in trireg net declarations that do
not explicitly declare a decay time. The decay time can be expressed as areal or integer
number, or asinfinite to specify that the charge never decays.

‘ del ay_node_di stri but ed

This directive disables path delaysin favor of distributed delays. See Delay modes (5-97)
for details.

‘ del ay_node_pat h

This directive sets distributed delays to zero in favor of path delays. See Delay modes (5-
97) for details.

‘ del ay_node_uni t

This directive sets path delaysto zero and non-zero distributed delaysto onetime unit. See
Delay modes (5-97) for details.

‘ del ay_node_zero

This directive sets path delays and distributed delays to zero. See Delay modes (5-97) for
details.

‘uselib

This directiveis an aternative to the -v, -y, and +libext source library compiler options.
See Verilog-XL ‘uselib compiler directive (5-81) for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog.
Many of these directives areirrelevant to Model Sm Verilog, but may appear in code being
ported from Verilog-XL.

‘accelerate

‘aut oexpand_vectornets
‘disabl e_portfaults
‘enabl e_portfaults

‘ endpr ot ect

‘ expand_vectornets
‘noaccel erate

‘ noexpand_vectornets
‘ nor enobve_gat enanes
‘ nor enove_net nanmes
‘nosuppress_faults

‘ protect

‘ renpve_gat enames

‘ renove_net nanes
‘suppress_faults

The following Verilog-XL compiler directives produce warning messagesin ModelSm
Verilog. These are not implemented in Model Sm Verilog, and any code containing these
directives may behave differently in ModelSm Verilog than in Verilog-XL.

‘default_trireg_strength

‘ si gned

‘ unsi gned

ModelSim SE User’'s Manual Verilog Simulation 5-107

Using the Verilog PLI/VPI

Using the Verilog PLI/VPI

The Verilog PLI (Programming Language Interface) and VPI (Verilog Procedural
Interface) both provide a mechanism for defining system tasks and functions that
communicate with the simulator through a C procedural interface. There are many third
party applications available that interface to Verilog simulators through the PLI (see Third
party PLI applications (5-120)). In addition, you may write your own PLI/VPI applications.

Model SmVerilog implementsthe PLI asdefined in the | EEE Std 1364, with the exception
of the acc_handle_datapath routine. We did not implement the acc_handle_datapath
routine because the information it returns is more appropriate for a static timing analysis
tool. Inversion 5.5, the VPI is partially implemented as defined in the IEEE Std 1364. The
list of currently supported functionality can be found in the following directory:

<instal |l _dir>/nodel tech/ docs/technotes/Verilog_VPI.note.

The |EEE Std 1364 is the reference that defines the usage of the PLI/VPI routines. This
manual only describes details of using the PLI/VPI with ModelSim Verilog.

Registering PLI applications

Each PLI application must register its system tasks and functions with the simulator,
providing the name of each system task and function and the associated callback routines.
Since many PLI applications already interface to Verilog-XL, ModelSm Verilog PLI
applications make use of the same mechanism to register information about each system
task and function in an array of s tfcell structures. This structure is declared in the
veriuser.h includefile as follows:

typedef int (*p_tffn)();

typedef struct t_tfcell {
short type;/* USERTASK, USERFUNCTI ON, or USERREALFUNCTI ON */
short data;/* passed as data argument of call back function */
p_tffn checktf; /* argunent checking callback function */

p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn msctf; /* mscel | aneous reason cal |l back function */

char *tfnane;/* nane of systemtask or function */

/* The following fields are ignored by Mdel Sim Verilog */
int forwef;
char *tfveritool;
char *tferrnessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *nanecel | _p;
int warning_printed;
} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in
the |IEEE Std 1364. The simulator calls these functions for various reasons. All callback
functions are optional, but most applications contain at least the calltf function, whichis
called when the system task or function is executed in the Verilog code. Thefirst argument
to the callback functionsisthe value suppliedin the datafield (many PLI applicationsdon't
use thisfield). The type field defines the entry as either a system task (USERTASK) or a

5-108 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI

system function that returns either a register (USERFUNCTION) or areal
(USERREALFUNCTION). The tfname field is the system task or function name (it must
begin with $). The remaining fields are not used by ModelSm Verilog.

Onloading of aPLI application, the simulator first looks for an init_usertfs function, and
then averiusertfs array. If init_usertfsisfound, the simulator calls that function so that it
can call mti_RegisterUserTF() for each system task or function defined. The
mti_RegisterUserTF() function is declared in veriuser.h as follows:

void nti_RegisterUserTF(p_tfcell usertf);

The storage for each usertf entry passed to the simulator must persist throughout the
simulation because the simulator de-references the usertf pointer to call the callback
functions. It isrecommended that you define your entriesin an array, with the last entry set
to 0. If the array is named veriusertfs (asis the case for linking to Verilog-XL), then you
don't haveto provide aninit_usertfs function, and the simulator will automatically register
the entries directly from the array (the last entry must be 0). For example,
s_tfcell veriusertfs[] = {
{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},
{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},
{0} /* last entry nust be 0 */
b

Alternatively, you can add aninit_usertfsfunction to explicitly register each entry from the
array:

void init_usertfs()

{
p_tfcell usertf = veriusertfs
whil e (usertf->type)
nti_Regi sterUser TF(usertf ++);
}

Itisanerror if aPLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be adynamically loadable library, see
"Compiling and linking PLI/VPI applications” (5-111)). The PLI applications are specified
asfollows:

* Asalistinthe Veriuser entry in the modelsim.ini file:
Veriuser = pliappl.so pliapp2.so pliappn.so

» Asalistinthe PLIOBJS environment variable:
% setenv PLIOBJS "pliappl.so pliapp2.so pliappn.so"

« Asa-pli option to the simulator (multiple options are allowed):
-pli pliappl.so -pli pliapp2.so -pli pliappn.so
The various methods of specifying PLI applications can be used smultaneously. The

libraries are loaded in the order listed above. Environment variabl e references can be used
in the paths to the librariesin all cases.

ModelSim SE User’'s Manual Verilog Simulation 5-109

Using the Verilog PLI/VPI

Registering VPI applications

Each VPI application must register its system tasks and functions and its callbacks with the
simulator. To accomplish this, one or more user-created regi stration routines must be called
at simulation startup. Each registration routine should make one or more cals to
vpi_register_systf() to register user-defined system tasks and functions and
vpi_register_ch() to register callbacks. The registration routines must be placed in atable
named vlog_startup_routines so that the ssmulator can find them. The table must be
terminated with a O entry.

Example
PLI _I NT32 MyFuncCal I tf(PLI_BYTE8 *user_data)
{ ...}
PLI _I NT32 MyFuncConpil etf(PLI_BYTE8 *user_data)
{ ...}
PLI _I NT32 MyFuncSi zetf(PLI_BYTE8 *user_data)
{ ...}
PLI _I NT32 MyEndOf ConpCB(p_cb_data cb_data_p)
... 1
PLI _INT32 MyStartOf SinCB(p_ch_data cb_data_p)
... 1
voi d Regi ster MSystfs(void)

{

s_cb_data cal | back;
s_vpi _systf_data systf_data;

systf_data.type vpi SysFunc;
systf_dat a. sysfunctype vpi Si zedFunc;
systf_data.tfnanme "$myfunc";
systf_data.calltf MyFuncCal I tf;

systf_data. conpiletf
systf_data. sizetf MyFuncSi zetf;
systf_dat a. user_data 0;

vpi _register_systf(&systf_data);

MyFuncConpi | et f;

cal | back. reason
cal | back.cb_rtn MyEndOf CompCB;
cal | back. user _data 0;

(void) vpi_register_cbh(&callback);

cbEndOf Conpi | e;

cal | back. reason
cal | back.cb_rtn My St art O Si nCB;
cal | back. user _data 0;

(void) vpi_register_cbh(&callback);

cbStart O Si nul ati on;

}
void (*vlog_startup_routines[]) () ={
Regi st er MySyst fs,
0 /* last entry nmust be 0 */

b

Loading VPI applications into the ssimulator is the same as described in Registering PLI
applications (5-108).

5-110 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI

PLI and VPl applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

« If aninit_usertfs() function exists, then it is executed and only those system tasks and
functions registered by calls to mti_RegisterUserTF() will be defined.

« If aninit_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

« If aninit_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functionsin the viog_startup_routines table will be defined.

Asaresult, when PLI and VPl applications exist in the same application object file, they
must be registered in the same manner. VPl registration functions that would normally be
listed in avlog_startup_routines table can be called from an init_usertfs() function instead.

Compiling and linking PLI/VPI applications

Model Sm Verilog uses operating system calls to dynamically load PLI and VPI
applications when the simulator |oads a design. Therefore, the applications must be
compiled and linked for dynamic loading on a specific operating system. The PLI/VPI
routines are declared in the include fileslocated in the Model Sm<install_dir>/modeltech/
includedirectory. Theacc_user.hfiledeclaresthe ACC routines, theveriuser.hfile declares
the TF routines, and the vpi_user.h file declares the VPI routines.

Thefollowing instructions assume that the PL1 or VPI application isin asingle sourcefile.
For multiple source files, compile each file as specified in the instructions and link all of
the resulting object files together with the specified link instructions.

Windows NT/95/98/2000 platforms

Under Windows Model Sim loads a 32-bit dynamically linked library for each

PLI/VPI application. The following compile and link steps are used to create the

necessary.dll file (and other supporting files) using the Microsoft Visual C/C++ compiler.
cl -c -I<install_dir>\nodeltech\include app.c
link -dll -export:<init_function> app.obj \
<install_dir>\nodeltech\win32\ntipli.lib

For the Verilog PL1, the <init_function> should be "init_usertfs'. Alternatively, if thereis
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs'. For the Verilog VPI, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus Model Sm can
find the symbol when it dynamically loads the DLL.

ThePLI and VPl have been tested with DL L sbuilt using Microsoft Visual C/C++ compiler
version 4.1 or greater.

The gcc compiler cannot be used to compile PLI/VPI applications under Windows. Thisis
because gcc does not support the Microsoft .lib/.dll format.

ModelSim SE User’'s Manual Verilog Simulation 5-111

Using the Verilog PLI/VPI

Linux platform

Under Linux, Model Sim |oads shared objects. Use these gcc or cc compiler commands to
create a shared object:

gcc compiler:
gcc -c -l/<install_dir>/nodeltech/include app.c
Id -shared -E -0 app.so app.o

cc compiler:
cc -c -l/<install_dir>/nodeltech/include app.c
Id -shared -E -0 app.so app.o

Solaris platform

Under SUN Solaris, Model Sm | oads shared objects. Use these gcc or cc compiler
commands to create a shared object:

gcc compiler:
gcc -c¢ -l/<install _dir>/nodel tech/include app.c
Id -G -B synbolic -0 app.so app.o

cc compiler:
cc -c -l/<install _dir>/nodeltech/include app.c

Id -G -B synbolic -0 app.so app.o

P Note: When using -B symbolic with Id, all symbols are first resolved within the shared
library at link time. Thiswill result in alist of undefined symbols. Thisis only awarning
for shared libraries and can be ignored.

If app.so isinyour current directory you must force Solaristo search the directory. There
aretwo ways you can do this:

e Add*“./* before app.soin the PLI library specification, or

* Load the path asa UNIX shell environment variable:
LD_LIBRARY_PATH= <library path without filename>

64-bit Solaris platform

On a 64-bit Sun system, use the following cc compiler commandsto prepare PL1/VPI code
for dynamic linking with ModelSm:

cc -v -xarch=v9 -O -1 $MIl _HOVE/ i ncl ude -c app.c
Id -G app.o -0 app. so

5-112 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI

HP700 platform

Model Smloads shared libraries on the HP700 workstation. A shared library is created by
creating object files that contain position-independent code (use the +z or -fpic compiler
option) and by linking as a shared library (use the -b linker option). Use these gcc or cc
compiler commands:

gcc compiler:
gcc -c -fpic -l/<install_dir>/npdeltech/include app.c
Id -b -0 app.sl app.o -lc

cc compiler:
cc -c +z -l/<install_dir>/nodeltech/include app.c

Id -b -0 app.sl app.o -lc

Note that -fpic may not work with all versions of gcc.

for HP-UX 11.0 users

If you are building the PLI/VPI library under HP-UX 11.0, you should not specify the
"-Ic" option to theinvocation of 1d, sincethiswill cause an incorrect version of the standard
C library to be loaded.

In other words, build libraries like this:

cc -c +z -I<install _dir>/nodel tech/include app.c
Id -b -0 app.sl app.o

If you receive the error "Exec format error” when the simulator istrying to load a PLI/VPI
library, then you have most likely built under 11.0 and specified the
"-Ic" option. Just rebuild without "-Ic" (or rebuild on an HP-UX 10.0 machine).

64-bit HP platform

On a 64-bit HP system, use the following cc compiler commands to prepare PLI/VPI code
for dynamic linking with ModelSim:

cc -v +DA2. OW-O -I<install _di r>/nodel tech/include -c app.c
Id -G app.o -0 app. so

IBM RS/6000 platform

Model Smloads shared libraries on the IBM RS/6000 workstation. The shared library must
import ModelSm's PL1/VPI symbols, and it must export the PLI or VVPI application’s
initialization function or table. Model Sm's export fileis located in the Model Sm
installation directory in rs6000/miti_exports.

If your PL1/V Pl application uses anything from asystem library, you'll need to specify that
library when you link your PL1/V Pl application. For example, to use the standard C library,
specify ‘-Ic’ tothe ‘|d’” command. The resulting object must be marked as shared reentrant
using these gcc or cc compiler commands for AIX 4.x:

gcc compiler:

gcc -c¢ -l/<install _dir>/nodel tech/include app.c
Id -o app.sl app.o -bE:app.exp \
-bl:/<install_dir>/npdeltech/rs6000/nti_exports\
-bM SRE -bnoentry -1lc

ModelSim SE User’'s Manual Verilog Simulation 5-113

Using the Verilog PLI/VPI

cc compiler:

cc -c -l/<install _dir>/nodeltech/include app.c
Id -o app.sl app.o -bE:app.exp \
-bl:/<install_dir>/nodel tech/rs6000/nti_exports\
-bM SRE -bnoentry -1lc

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs'. Alternatively, if thereisnoinit_usertfsfunction,
then the exported symbol should be "veriusertfs". For the VPI, the exported symbol should
be "vlog_startup_routines'. These requirements ensure that the appropriate symbol is
exported, and thus Model Sm can find the symbol when it dynamically loads the shared
object.

64-bit RS/60000 platform

Only version 4.3 of AlX supportsthe 64-bit platform. A gcc 64-bit compiler isnot available
at thistime. The cc commands are as follows:

cCc -Cc -064 -l/<install_dir>/nodeltech/include app.c
cc -0 app.sl app.o -qg64 -bE:app.exp \
-bl:/<install_dir>/nodel tech/rs64/ nti_exports\
-W-G -bnoentry

P Note: When using AlX 4.3 in 32-bit mode, you must add the switch - d use_i nt t ypes to
the compile command lines. This switch prevents a name conflict that occurs between
inttypes.h and mti.h.

Using 64-bit ModelSim with 32-bit PLI/VPI Applications

If you have 32-bit PL1/VPI applications and wish to use 64-bit Model Sm, you will need to
port your code to 64 bits by moving from the ILP32 data model to the L P64 data model.
We strongly recommend that you consult the following 64-bit porting guides for the
appropriate platform:

Sun

Solaris 7 64-bit Developer’s Guide
http://docs.sun.com:80/ab2/coll.45.10/SOL64TRANS/
HP

HP-UX 64-bit Porting and Transition Guide
http://docs.hp.com:80/dynaweb/hpux11/hpuxenla/0462/@Generic__BookView
HP-UX 11.x Software Transition Kit
http://software.hp.com/STK/

IBM

AlX 64-bit Migration Guide

http://www.devel oper.ibm.com/library/aix4.3/Sun

5-114 Verilog Simulation ModelSim SE User’s Manual

http://docs.sun.com:80/ab2/coll.45.10/SOL64TRANS/
http://docs.hp.com:80/dynaweb/hpux11/hpuxen1a/0462/@Generic__BookView
http://software.hp.com/STK/
http://www.developer.ibm.com/library/aix4.3/Sun

Using the Verilog PLI/VPI

Specifying the PLI/VPI file to load
The PLI applications are specified as follows:
« Asalistinthe Veriuser entry in the modelsim.ini file:

Veriuser = pliappl.so pliapp2.so pliappn.so

» Asalistinthe PLIOBJS environment variable:
% setenv PLIOBJS "pliappl.so pliapp2.so pliappn.so"

» Asa-pli option to the simulator (multiple options are allowed):
-pli pliappl.so -pli pliapp2.so -pli pliappn.so

P Note: On Windows platforms, the file names shown above should end with ".dIl" rather
than ".so0".

The various methods of specifying PLI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the librariesin all cases.

See also Appendix B - Model Sm Variables for more information on the modelsim.ini file.

ModelSim SE User’'s Manual Verilog Simulation 5-115

Using the Verilog PLI/VPI

PLI example

The following example isatrivial, but complete PLI application.

hell 0. c:

#i ncl ude "veriuser.h"
static hello()

{
io_printf("H there\n");

s_tfcell veriusertfs[] = {
{usertask, 0, 0, O, hello, 0, "$hello"},
{0} /* last entry nmust be 0 */

}s
hel | 0. v:

nodul e hel | o;
initial $hello;
endnodul e

Conpil e the PLI code for the Solaris operating system

%cc -c -l<install _dir>/nodeltech/include hello.c
%ld -G-0 hello.sl hello.o

Conpil e the Veril og code:

% vlib work
% vlog hello.v

Si mul ate the design:

%vsim-c -pli hello.sl hello
Loadi ng work. hell o

Loading ./hello.sl

VSIM 1> run -all

H there

VSIM 2> quit

VPI example

The following exampleis atrivial, but complete VPI application.

hell 0. c:

#i ncl ude "vpi _user.h"
static hello()

{
vpi _printf("Hello world!\n");
}
voi d RegisterMyTfs(void)
{

s_vpi _systf_data systf_data;

systf_data.type = vpi SysTask;
systf_data. sysfunctype = vpi SysTask;
systf_data.tfnane = "$hel | 0";
systf_data.calltf = hel |l 0;
systf_data. conpiletf = 0;
systf_dat a. si zetf = 0;

5-116 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI

systf_data. user_data = 0;
vpi _register_systf(&systf_data);
vpi _free_object(systf_handle);

}

void (*vlog_startup_routines[])() = {
Regi ster W Tf s,
0

b

hel | 0. v:

nodul e hel | o;
initial $hello;
endnodul e

Conpile the VPI code for the Solaris operating system

% gcc -c -I<install_dir>/include hello.c
%ld -G-0 hello.sl hello.o

Conpil e the Veril og code:

% vlib work
% vlog hello.v

Si mul ate the design:

%vsim-c -pli hello.sl hello
Loadi ng work. hell o

Loading ./hello.sl

VSIM 1> run -all

Hello world!

VSIM 2> quit

P> Note: A general VPI example can be found in <install_dir>/modeltech/examples/vpi.

The PLI callback reason argument

The second argument to a PLI callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See |EEE Std 1364 for a
description of the reason constants. The following details relate to Model Sm Verilog, and
may not be obviousin the IEEE Std 1364. Specifically, the simulator passes the reason
values to the misctf callback functions under the following circumstances:

reason_endof conpil e
For the completion of loading the design.

reason_fini sh
For the execution of the $finish system task or the quit command.

reason_startofsave
For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This alows the PLI application to prepare for the save, but it
shouldn't save its datawith callsto tf_write_save until it is called with reason_save.

reason_save
For the execution of the checkpoint command. Thisis when the PLI application must
saveits state with callsto tf_write_save.

ModelSim SE User’'s Manual Verilog Simulation 5-117

reason_startofrestart
For the start of execution of the restore command, but before any of the simulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn't restoreitsstate with callstotf_read restart until it iscalled with reason_restart.
Thereason_startofrestart valueis passed only for arestore command, and not in the case
that the simulator isinvoked with -restore.

reason_restart
For the execution of the restore command. Thisiswhen the PLI application must restore

its state with callsto tf_read restart.

reason_reset
For the execution of the restart command. This is when the PLI application should free
itsmemory and reset its state. Werecommend that all PLI applicationsreset their internal
state during arestart as the shared library containing the PLI code might not be rel oaded.
(Seethe- keepl oaded (CR-260) and - keepl oadedr est art (CR-260) vSim
arguments for related information.)

reason_endof r eset
For the completion of the restart command, after the simulation state has been reset but

before the design has been rel oaded.

reason_interactive
For the execution of the $stop system task or any other timethe simulationisinterrupted
and waiting for user input.

reason_scope
For the execution of the environment command or selecting a scope in the structure

window. Also for the call to acc_set_interactive _scope if the callback flag argument is
non-zero.

reason_paranvc
For the change of value on the system task or function argument.

reason_synch
For the end of time step event scheduled by tf_synchronize.

reason_rosynch
For the end of time step event scheduled by tf_rosynchronize.

reason_reactivate

For the simulation event scheduled by tf_setdelay.

reason_par andrc
Not supported in ModelSm Verilog.

reason_force
Not supported in ModelSm Verilog.

reason_rel ease
Not supported in ModelSm Verilog.

reason_di sabl e
Not supported in ModelSm Verilog.

5-118 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI

The sizetf callback function

A user-defined system function specifies the width of its return value with the sizetf
callback function, and the simulator calls this function while loading the design. The
following details on the sizetf callback function are not found in the IEEE Std 1364:

* If you omit the sizetf function, then areturn width of 32 is assumed.

 The sizetf function should return O if the system function return value is of Verilog type
"rea".

* Thesizetf function should return-32 if the system function return valueis of Verilog type
"integer".

PLI object handles

Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routine is called. However, some of
the objects are created on demand, and the handles to these objects become invalid after
acc_close() iscaled. The following object types are created on demand in ModelSim
Verilog:

accOperator (acc_handl e_condition)

accWrePath (acc_handl e_pat h)

accTerm nal (acc_handl e_term nal, acc_next_cell_l oad, acc_next_driver, and

acc_next _| oad)

accPat hTerm nal (acc_next_i nput and acc_next_out put)

accTchkTerm nal (acc_handl e_tchkargl and acc_handl e_t chkar g2)

accPart Sel ect (acc_handl e_conn, acc_handl e_pat hin, and acc_handl e_pat hout)

accRegBit (acc_handl e_by_nane, acc_handle_tfarg, and acc_handl e_itfarg)

If your PLI application uses these types of objects, then it isimportant to call acc_close()
to free the memory allocated for these objects when the application is done using them.

If your PLI application placesval ue change callbacks on accRegBIt or accTerminal objects,
do not call acc_close() while these callbacks arein effect.

ModelSim SE User’'s Manual Verilog Simulation 5-119

Using the Verilog PLI/VPI

Third party PLI applications

Many third party PLI applications come with instructions on using them with ModelSim
Verilog. Even without theinstructions, it is still likely that you can get it to work with
ModelSm Verilog as long as the application uses standard PLI routines. The following
guidelinesarefor preparing aVerilog-XL PLI application to work with ModelSim Verilog.

Generally, aVerilog-XL PLI application comes with a collection of object filesand a
veriuser.c file. The veriuser.c file contains the registration information as described above
in "Registering PLI applications". To prepare the application for ModelSm Verilog, you
must compile the veriuser.c file and link it to the object files to create a dynamically
loadable object (see "Compiling and linking PLI/VPI applications’ (5-111)). For example,
if you haveaveriuser.cfileand alibrary archive libapp.afile that containsthe application’s
object files, then the following commands should be used to create adynamically loadable
object for the Solaris operating system:

%cc -c -l<install _dir>/nodeltech/include veriuser.c
%ld -G -0 app.sl veriuser.o |ibapp.a

That'sall thereistoit. The PLI application isready to be run with ModelSm Verilog. All
that'sleft isto specify theresulting object fileto the simulator for loading using the V eriuser
modesim.ini file entry, the-pli simulator option, or the PLIOBJS environment variable (see
"Registering PLI applications' (5-108)).

P> Note: On the HP700 platform, the object files must be compiled as position-independent
code by using the +z compiler option. Since, the object files supplied for Verilog-XL may
be compiled for static linking, you may not be able to use the object filesto create a
dynamically loadable object for ModelSm Verilog. In this case, you must get the third
party application vendor to supply the object files compiled as position-independent code.

5-120 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI

Support for VHDL objects

The PL1 ACC routines also provide limited support for VHDL objectsin either an all
VHDL design or amixed VHDL/Verilog design. The following table lists the VHDL
objects for which handles may be obtained and their type and fulltype constants:

Type

Fulltype

Description

accArchitecture

accArchitecture

instantiation of an architecture

accArchitecture accEntityVitalLevelO instantiation of an architecture whose entity is marked
with the attribute VITAL LevelO
accArchitecture accArchVitalLevelO instantiation of an architecture which is marked with the

attribute VITAL LevelO

accArchitecture

accArchVitalLevell

instantiation of an architecture which is marked with the
attribute VITAL Levell

accArchitecture

accForeignArch

instantiation of an architecture which is marked with the
attribute FOREIGN and which does not contain any
VHDL statements or objects other than ports and generics

accArchitecture

accForeignArchMixed

instantiation of an architecture which is marked with the
attribute FOREIGN and which contains some VHDL
statements or objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()
accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSignal signal declaration

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include
file. All of these objects (except signals) are scope objectsthat definelevels of hierarchy in
the Structure window. Currently, the PL1 ACC interface has no provision for obtaining
handles to generics, types, constants, variables, attributes, subprograms, and processes.
However, some of these objects can be manipulated through the ModelSm VHDL foreign
interface (mti_* routines). See the FLI Reference Manual for more information.

ModelSim SE User’s Manual

Verilog Simulation 5-121

Using the Verilog PLI/VPI

IEEE Std 1364 ACC routines

Model SmV erilog supportsthe following ACC routines, described in detail inthe IEEE Std

1364.

acc_append_delays

acc_append_pulsere

acc_close

acc_collect

acc_compare_handles

acc_configure

acc_count

acc fetch argc

acc fetch_argv

acc_fetch attribute

acc_fetch attribute int

acc_fetch attribute str

acc _fetch _defname

acc fetch delay mode

acc fetch delays

acc fetch direction

acc _fetch edge

acc_fetch_fullname

acc fetch_fulltype

acc_fetch index

acc_fetch_location

acc _fetch_name

acc_fetch paramtype

acc fetch_paramval

acc _fetch polarity

acc _fetch precision

acc fetch pulsere

acc fetch range

acc fetch size

acc_fetch_tfarg

acc fetch itfarg

acc fetch tfarg int

acc fetch_itfarg_int

acc fetch tfarg str

acc fetch itfarg str

acc_fetch timescale info

acc fetch type

acc _fetch type str

acc_fetch _value

acc_free

acc_handle by name

acc_handle calling_mod m

acc_handle_condition

acc_handle_conn

acc_handle_hiconn

acc_handle interactive _scope

acc_handle_loconn

acc_handle_modpath

acc_handle notifier

acc_handle object

acc_handle parent

acc_handle_path

acc_handle_pathin

acc_handle_pathout

acc_handle port

acc_handle_scope

acc_handle simulated net

acc_handle_tchk

acc_handle _tchkargl

acc_handle _tchkarg2

acc_handle_terminal

acc_handle tfarg

acc_handle itfarg

acc_handle_tfinst

acc_initialize

acc_next

acc_next_hit

acc_next_cell

acc_next_cell load

acc_next_child

acc_next_driver

acc_next_hiconn

acc_next_input acc_next_load acc_next_loconn
acc_next_modpath acc_next_net acc_next_output
acc_next_parameter acc_next_port acc_next_portout

5-122 Verilog Simulation

Model Sim SE User’s Manual

Using the Verilog PLI/VPI

acc_next_primitive

acc_next_scope

acc_next_specparam

acc_next_tchk

acc_next_terminal

acc_next_topmod

acc_object_in typdlist

acc_object_of type

acc_product_type

acc_product_version

acc_release object

acc_replace delays

acc_replace pulsere

acc _reset_buffer

acc_set_interactive scope

acc_set pulsere

acc_set_scope

acc_set_value

acc vcl_add

acc_vcl_delete

acc_version

P Note: acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string val ue of
aparameter. Because of this, the function acc_fetch _paramval_str() has been added to the
PLI for thisuse. acc_fetch_paramval_str() isdeclared in acc_user.h. It functionsin a
manner similar to acc_fetch paramval() except that it returns a char *.

acc fetch paramval_str() can be used on all platforms.

IEEE Std 1364 TF routines

Model Sm Verilog supports the following TF routines, described in detail in the |IEEE Std

1364.
io_mcdprintf io_printf mc_scan_plusargs
tf_add_long tf_asynchoff tf_iasynchoff
tf_asynchon tf_iasynchon tf_clearalldelays
tf_iclearaldelays tf_compare long tf_copypvc flag
tf_icopypvc_flag tf_divide_long tf_dofinish
tf_dostop tf_error tf_evaluatep
tf_ievaluatep tf_exprinfo tf_iexprinfo
tf_getcstringp tf_igetcstringp tf_getinstance
tf_getlongp tf_igetlongp tf_getlongtime
tf_igetlongtime tf_getnextlongtime tf_getp
tf_igetp tf_getpchange tf_igetpchange
tf_getrealp tf_igetrealp tf_getrealtime
tf_igetrealtime tf_gettime tf_igettime
tf_gettimeprecision tf_igettimeprecision tf_gettimeunit
tf_igettimeunit tf_getworkarea tf_igetworkarea
tf_long_to_real tf_longtime_tostr tf_message

ModelSim SE User’s Manual

Verilog Simulation 5-123

Using the Verilog PLI/VPI

tf_mipname tf_imipname tf_movepvc_flag
tf_imovepvc flag tf_multiply_long tf_nodeinfo
tf_inodeinfo tf_nump tf_inump
tf_propagatep tf_ipropagatep tf_putlongp
tf_iputlongp tf_putp tf_iputp
tf_putrealp tf_iputrealp tf_read restart
tf_real_to_long tf_rosynchronize tf_irosynchronize
tf_scale longdelay tf_scale realdelay tf_setdelay
tf_isetdelay tf_setlongdelay tf_isetlongdelay
tf_setrealdelay tf_isetrealdelay tf_setworkarea
tf_isetworkarea tf_sizep tf_isizep
tf_spname tf_ispname tf_strdelputp
tf_istrdelputp tf_strgetp tf_istrgetp

tf_strgettime

tf_strlongdel putp

tf_istrlongdelputp

tf_strrealdelputp

tf_istrrealdelputp

tf_subtract_long

tf_synchronize tf_isynchronize tf_testpvc flag
tf_itestpvc flag tf_text tf_typep

tf_itypep tf_unscale longdelay tf_unscale realdelay
tf_warning tf_write_save

5-124 Verilog Simulation

Model Sim SE User’s Manual

Using the Verilog PLI/VPI

Verilog-XL compatible routines
The following PLI routines are not defined in |EEE Std 1364, but Model Sm Verilog
provides them for compatibility with Verilog-XL.

char *acc_deconpi | e_exp(handl e condi tion)

This routine provides similar functionality to the Verilog-XL acc_decompile_expr
routine. The condition argument must be a handle obtained fromthe acc_handle_condition
routine. The value returned by acc_decompile exp isthe string representation of the
condition expression.

char *tf_dunpfil ename(voi d)

This routine returns the name of the VCD file.
void tf_dunpflush(void)

A call tothisroutine flushesthe VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsintine(int *aof _hightine)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are
returned by the routine, while the high-order bits are stored in the aof _hightime argument.

64-bit support in the PLI

ThePLI function acc_fetch paramval () cannot be used on 64-bit platformsto fetch astring
value of a parameter. Because of this, the function acc_fetch_paramval_str() has been
added to the PLI for this use. acc_fetch _paramval_str() isdeclared in acc_user.h. It
functions in amanner similar to acc_fetch paramval() except that it returns achar *.

acc fetch paramval_str() can be used on all platforms.

PLI/VPI tracing

The foreign interface tracing feature is available for tracing PLI and VPI function calls.
Foreign interface tracing creates two kinds of traces: a human-readable log of what
functions were called, the value of the arguments, and the results returned; and a set of
C-language files that can be used to replay what the foreign interface code did.

The purpose of tracing files

The purpose of thelogfileisto aid youin debugging PLI or VPI code. The primary purpose
of the replay facility isto send the replay fileto MTI support for debugging co-simulation
problems, or debugging PL1/VPI problemsfor which it isimpractical to send the PLI/VPI
code. We still need you to send the VHDL/Verilog part of the design to actually execute a
replay, but many problems can be resolved with the trace only.

Invoking a trace

Toinvokethetrace, call vsim (CR-258) with the -trace foreign option:

Syntax

vsim
-trace_foreign <action> [-tag <nane>]

ModelSim SE User’'s Manual Verilog Simulation 5-125

Using the Verilog PLI/VPI

Arguments

<action>
Specifies one of the following actions:

Value Action Result

1 createlog only writesalocal file called
"mti_trace <tag>"

2 create replay only writeslocal files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and replay

-tag <name>
Used to give distinct file names for multiple traces. Optional.

Examples

vsim -trace_foreign 1 nydesign
Creates alogdfile.

vsim -trace_foreign 3 nydesign

Creates both alogfile and a set of replay files.

vsim-trace_foreign 1 -tag 2 nydesign
Creates alogfile with atag of "2".

The tracing operations will provide tracing during all user foreign code-calls, including
PLI/VPI user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog
VCL callbacks.

5-126 Verilog Simulation ModelSim SE User’s Manual

6 - Mixed VHDL and Verilog Designs

Chapter contents

Separate compilers, common libraries. 6128
Mapping datatypes 6-128
VHDL generics 6128
Verilog parameters 6129
VHDL and Verilogports 6129
Verilogstates 6130
VHDL instantiation of Verilog designunits 6132
Verilog instantiation criteria 6132
Component declaration 6132
vgencomp component declaration 6-134
VCDoutput 6135
Verilog instantiation of VHDL designunits 6-136
VHDL instantiation criteria 6136
SDF annotation 6136

ModelSm single-kernel simulation (SKS) allows you to simulate designs that are written
inVHDL and/or Verilog. This chapter outlines datamapping and the criteria established to
instantiate design units between HDLSs.

The boundaries between VHDL and Verilog are enforced at the level of adesign unit. This
meansthat although adesign unit must be either all VHDL or al Verilog, it may instantiate
design units from either language. Any instance in the design hierarchy may be adesign
unit from either HDL without restriction. SKS technology allows the top-level design unit
to be either VHDL or Verilog. Asyou traverse the design hierarchy, instantiations may
freely switch back and forth between VHDL and Verilog.

ModelSim SE User’'s Manual Mixed VHDL and Verilog Designs 6-127

Separate compilers, common libraries

Separate compilers, common libraries

VHDL source codeis compiled by vcom (CR-217) and the resulting compiled design units
(entities, architectures, configurations, and packages) are stored in alibrary. Likewise,
Verilog source code is compiled by vlog (CR-250) and the resulting design units (modules
and UDPs) are stored in alibrary.

Libraries can store any combination of VHDL and Verilog design units, provided the
design unit names do not overlap (VHDL design unit names are changed to lower case).

See"Design libraries" (3-41) for more information about library management and see the
vcom (CR-217) and the viog commands.

Mapping data types

VHDL generics

Cross-HDL instantiation does not require any extraeffort on your part. AsModel Sim loads
adesign it detects cross-HDL instantiations — made possible because a design unit's HDL
type can be determined asit isloaded from a library — and the necessary adaptations and
datatype conversions are performed automatically.

A VHDL instantiation of Verilog may associate VHDL signals and values with Verilog
ports and parameters. Likewise, aVerilog instantiation of VHDL may associate Verilog
netsand valueswith VHDL ports and generics. Model Sim automatically maps between the
HDL datatypes as shown below.

VHDL type Verilog type
integer integer or rea
rea integer or rea
time integer or real
physical integer or rea
enumeration integer or real
string string literal

When ascalar type receives areal value, thereal is converted to an integer by truncating
the decimal portion.

Typetimeistreated specialy: the Verilog number is converted to atime value according
to the ‘timescale directive of the module.

Physical and enumeration types receive avalue that corresponds to the position number
indicated by the Verilog number. In VHDL thisis eguivalent to TVAL(P), where T isthe
type, VAL isthe predefined function attribute that returns avalue given a position number,
and P is the position number.

6-128 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

Mapping data types

Verilog parameters

VHDL type Verilog type
integer integer

real real

string string

The type of aVerilog parameter is determined by itsinitial value.

VHDL and Verilog ports

The allowed VHDL types for ports connected to Verilog nets and for signals connected to

Verilog ports are;

Allowed VHDL types

bit

bit_vector

std_logic

std_logic_vector

vl_logic

vl_logic_vector

Thevl_logictypeisan enumeration that definesthefull state set for Verilog nets, including
ambiguous strengths. The bit and std_logic types are convenient for most applications, but
thevl_logic typeis provided in case you need accessto the full Verilog state set. For
example, you may wish to convert between vl_logic and your own user-defined type. The
vl_logic typeis defined in the vI_types package in the pre-compiled verilog library. This
library is provided in the installation directory along with the other pre-compiled libraries
(std and ieee). The source code for the vl_types package can be found in thefilesinstalled
with Model Sm. (See \modeltech\vhdl_src\verilog\vitypes.vhd.)

ModelSim SE User’s Manual

Mixed VHDL and Verilog Designs 6-129

Mapping data types

Verilog states
Verilog states are mapped to std _logic and bit as follows:;

Verilog std_logic bit
Hiz 'z ‘0
SmO0 L' ‘0
Sml 'H' 1
SmX "W ‘0
Me0 L' ‘0
Mel 'H' 1
MeX "W ‘0
We0 L' ‘0
Wel 'H' 1
WeX "W ‘0
La0 L' ‘0
Lal 'H' 'l
LaX "W ‘0
Pu0 L' ‘0
Pul 'H' T
PuX "W ‘0
Sto ‘0 ‘0
St T T
StX X' ‘0
Su0 ‘0 ‘0
Sul T T
SuX X' ‘0

For Verilog states with ambiguous strength:

* Dit receives'0’

* std_logic receives 'X' if either the 0 or 1 strength component is greater than or equal to
strong strength

« std_logic receives 'W' if both the 0 and 1 strength components are less than strong
strength

6-130 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

Mapping data types

VHDL type bit is mapped to Verilog states as follows:

bit Verilog
() Sto
v St

VHDL type std_logic is mapped to Verilog states as follows:

std_logic Verilog
U StX

X' StX

0 St0

T Sl

4 Hiz
W PuX

L Pu0

'H’ Pul

- StX

ModelSim SE User’s Manual

Mixed VHDL and Verilog Designs 6-131

VHDL instantiation of Verilog design units

VHDL instantiation of Verilog design units

Once you have generated a component declaration for a Verilog module, you can
instantiate the component just like any other VHDL component. In addition, you can
referenceaVerilog modulein the entity aspect of acomponent configuration—all you need
to do is specify amodule name instead of an entity name. Y ou can also specify an optional
architecture name, but it will be ignored because V erilog modules do not have
architectures.

Verilog instantiation criteria

A Verilog design unit may be instantiated from VHDL if it meets the following criteria
» The design unit isamodule (UDPs are not allowed).
 The ports are named ports (Verilog alows unnamed ports).

 Theportsare not connected to bidirectional passswitches(itisnot possibleto handle pass
switchesin VHDL).

Component declaration

A Verilog modulethat iscompiled into alibrary can be referenced from aVHDL design as
though the moduleisaVHDL entity. Theinterfaceto the module can be extracted from the
library in the form of a component declaration by running vgencomp (CR-224). Given a
library and modul e name, vgencomp (CR-224) writes a component declaration to standard
output.

The default component port types are:
* std_logic

* std_logic_vector

Optionally, you can choose:

* bit and bit_vector

vl _logicand vl_logic vector

VHDL and Verilog identifiers

Theidentifiersfor the component name, port names, and generic names are the same asthe
Verilog identifiers for the module name, port names and parameter names. If aVerilog
identifier isnot avalid VHDL 1076-1987 identifier, it is converted toaVHDL 1076-1993
extended identifier (in which case you must compile the VHDL with the -93 switch). Any
uppercase lettersin Verilog identifiers are converted to lowercase in the VHDL identifier,
except in the following cases:

» The Verilog module was compiled with the -93 switch. This means vgencomp (CR-224)
should use VHDL 1076-1993 extended identifiers in the component declaration to
preserve case in the Verilog identifiers that contain uppercase | etters.

» The Verilog module port and generic names are not unique unless caseis preserved. In
this event, vgencomp (CR-224) behaves asif the module was compiled with the -93
switch for those names only.

6-132 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

VHDL instantiation of Verilog design units

Examples
Verilog identifier VHDL identifier
topmod topmod
TOPMOD topmod
TopMod topmod
top_mod top_mod
_topmod _topmod\
\topmod topmod
\\topmod\ \topmod\

If the Verilog module is compiled with -93:

Verilog identifier VHDL identifier
topmod topmod
TOPMOD \TOPMOD\
TopMod \TopMod\
top_mod top_mod
_topmod _topmoal\
\topmod topmod
\\topmod\ \topmod\

ModelSim SE User’s Manual

Mixed VHDL and Verilog Designs 6-133

VHDL instantiation of Verilog design units

vgencomp component declaration

vgencomp (CR-224) generates a component declaration according to these rules:

Generic clause

A generic clause is generated if the module has parameters. A corresponding generic is
defined for each parameter that has an initial value that does not depend on any other
parameters.

The generic typeis determined by the parameter’sinitial value as follows:

Parameter value Generic type
integer integer

red red

string literal string

The default value of the generic is the same as the parameter’s initial value.

Examples
Verilog parameter VHDL generic
parameter p1=1- 3; pl: integer ;= -2;
parameter p2 = 3.0; p2 : real := 3.000000;
parameter p3 = "Hello"; p3: string := "Hello";
Port clause

A port clauseis generated if the module has ports. A corresponding VHDL port is defined
for each named Verilog port.

Y ou can set the VHDL port type to bit, std_logic, or vl_logic. If the Verilog port has a
range, then the VHDL port typeis bit_vector, std logic_vector, or vl_logic_vector. If the
range does not depend on parameters, then the vector typewill be constrained accordingly,
otherwise it will be unconstrained.

Examples
Verilog port VHDL port
input p1; pl:instd logic;
output [7:0] p2; p2 : out std_logic_vector(7 downto 0);
output [4:7] p3; p3: out std_logic_vector(4 to 7);
inout [width-1:0] p4; p4 : inout std_logic_vector;

6-134 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

VHDL instantiation of Verilog design units

Configuration declarations are allowed to reference Verilog modules in the entity aspects
of component configurations. However, the configuration declaration cannot extend into a
Verilog instance to configure the instantiations within the Verilog module.

VCD output

When creating aVCD file for designs that have bi-directional ports, you first have to use
the splitio command (see "Extracting the proper stimulusfor bidirectional ports' (13-344)).
Be aware that VVCD file output will vary between adesign coded in VHDL and the same
design coded in Verilog with timing wrapped in VHDL. The difference occurs because
splitio generates Extended V CD stimulusfiles, and the Extended VCD format is supported
only for pure VHDL designs.

ModelSim SE User’'s Manual Mixed VHDL and Verilog Designs 6-135

Verilog instantiation of VHDL design units

Verilog instantiation of VHDL design units

Y ou can reference a VHDL entity or configuration from Verilog as though the design unit
isamodule of the same name (in lower case).

VHDL instantiation criteria

A VHDL design unit may be instantiated from Verilog if it meets the following criteria
» Thedesign unit is an entity/architecture pair or a configuration declaration.

» The entity ports are of type bit, bit_vector, std_ulogic, std_ulogic_vector, vl_ulogic,
vl_ulogic_vector, or their subtypes. The port clause may have any mix of these types.

» The genericsare of typeinteger, real, time, physical, enumeration, or string. String isthe
only composite type allowed.

Port associations may be named or positional. Use the same port names and port positions
that appear in the entity.

Named port associations

Named port associations are not case sensitive—unlessaVVHDL port nameis an extended
identifier (1076-1993). If the VHDL port name is an extended identifier, the association is
case sensitive and the VHDL identifier' s leading and trailing backslashes are removed
before comparison.

Generic associations are provided via the module instance parameter value list. List the
values in the same order that the generics appear in the entity. The defparam statement is
not allowed for setting generic values.

Anentity nameisnot case sensitivein Verilog instantiations. Theentity default architecture
is selected from the work library unless specified otherwise.

Verilog does not have the concept of architectures or libraries, so the escaped identifier is
employed to provide an extended form of instantiation:

\nylib.entity(arch) ul (a, b, c);
\nylib.entity ul (a, b, c);
\entity(arch) ul (a, b, c);

If the escaped identifier takes the form of one of the above and is not the name of adesign
unit in the work library, then the instantiation is broken down as follows:;

* library = mylib

* design unit = entity

« architecture = arch

SDF annotation

A mixed VHDL/Verilog design can also be annotated with SDF. See " SDF for Mixed
VHDL and Verilog Designs" (12-336) for more information.

6-136 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

7 - Datasets (saved simulations) and virtuals

Chapter contents

Datasets 71138
Savingasmulationtoadataset 7-138
Openingdatasets 7139
Viewing dataset structure. 7140
Managing datasets 7142
Using datasets with ModelSim commands 7-142
Restricting the dataset prefix display 7-143

Virtual Objects (User-defined buses,andmore) 7-144
Virtual signdls 714
Virtud functions 7145
Virtual regions T146
Virtual types T146

Dataset, logfile, and virtual commands 7-147

A ModelSmsimulation can be saved to alogfile (usingthe-wi f <fi | ename> argument to
the vsim command (CR-258)) for future viewing or comparison to a current smulation. We
use the term "dataset” to refer to alogfile that has been reopened in the program.

With Model Smrelease 5.3 and later, you can open more than one dataset for simultaneous
viewing. You can also create virtual signals that are simple logical combinations of, or
logical functions of, signals from different datasets.

ModelSim SE User’'s Manual Datasets (saved simulations) and virtuals 7-137

Datasets

Datasets

The term "dataset" refers to a simulation waveform database that was saved and then
subsequently reloaded for viewing or comparing. Any number of datasets can be openedin
view mode. View mode allows you to view, but not run, a previous simulation.

A prefix identifies each dataset that is opened. The current active smulation is prefixed by
"sim," while any datasets|oaded for viewing are prefixed by the filename of thelogfile. For
exampl e, two datasets are displayed in the Wave window below—the current smulationis
shown in the top pane and isindicated by the "sim" prefix; a dataset from a previous
simulation is shown in the bottom pane and is indicated by the "test1" prefix.

=+t wave - default

File Edit Curgor Zoom Compare Bookmark Format wWindow

BEHES +BB KX T Q@ | EF | ELEIEH | julesin

______________ =

______________ QoQooo11

=]

testl: Mtopdolk
testl: ftopdpna
testl: ftopdpatrb

1| [v]4]
0 ns to 876 ns

> I~

P> Note: The simulator time resolution (see Resolution (B-400)) must be the same for all
datasets you' re comparing, including the current simulation.

Saving a simulation to a dataset

The results of each simulation run are automatically saved to a dataset file called vsim.wif
in the current directory. If you run anew simulation in the same directory, the vaim.wif file
is overwritten with the new results. Therefore, you should usethe-w f <fil ename>

argument to the vsim command (CR-258) to specify adifferent nameif you want to save the
dataset.

A Important: You must end asimulation session with aquit or quit -sim command in order
to produce avalid dataset. If you don’t end the simulation in this manner, the dataset will
not close properly, and Model Sim will issue an error when you try to open the dataset in
subsequent sessions.

7-138 Datasets (saved simulations) and virtuals ModelSim SE User’'s Manual

Datasets

Opening datasets

To open a dataset, select either File > Open > Dataset (Main window) or File > Open
Dataset (Wave window).

Open Datazet

— D atazet Pathname

| j Browse... |

— Logical Mame far Dataszet

Ok Cancel

The Open Dataset dialog box includes the following options.
» Dataset Pathname
I dentifies the path and filename of the logfile you want to open.

» Logical Namefor Dataset
Thisisthe name by which the dataset will be referred. By default thisis the filename of

the logfile.

A Important: You must end asimulation session with aquit or quit -sim command in order
to produce avalid dataset. If you don’t end the simulation in this manner, the dataset will
not close properly, and Model Sim will issue an error when you try to open the dataset in
subsequent sessions.

ModelSim SE User’'s Manual Datasets (saved simulations) and virtuals 7-139

Datasets

Viewing dataset structure
Inversions 5.5 and | ater, each dataset you open creates a Structure page in the Main
window workspace. This page contains the same data as the " Structure window" (8-210),
but you get one for each dataset.
The graphic below shows three Structure pages: one for the active simulation ("Sim") and
one each for two open datasets ("Test" and "Gold").

|5, ModelSim
File Edt Deszign “iew Proect Bun Compare Macro Options Window Help

Sz BRI EF] mRIEIELE BB
x|

WSIM 13 |

top: toplonly)

U o cache

) m: memory

B Package std_logic util
B FPackage +l_types

B Package std_logic 1164
B Package standard

T~
|

\ Project j{\ Librarj,lq 2 ,{ best h gold f_

|F"r|:|ject : test i gald:ftop

|

If you have too many tabs to display in the available space, you can scroll the tabs |eft or
right by clicking and dragging them.

Each Structure page has a context menu that you access by clicking the right mouse button
(Windows—2nd button, UNIX—3rd button) anywhere within the Structure page.

7-140 Datasets (saved simulations) and virtuals ModelSim SE User’'s Manual

Datasets

|, ModelSim

File Edit Design Yiew Proect Bun Compare Macro Option: Window Help

Sz BREEF[] EIEIELS P
x| -
top: toploniy)] WSIM 13 |
@ n pioc Save fz... .
- o cache ot
) m: memory . . Azcending
M Package std_logic_util Expand Selected Descending
M Fackage vI_types Collapze Selected Declaration Order
B Package std logic 1164 Expand &l
B Package standard Collapze All
Fird...
\ Project ,{ Libram }{ zim }i test }\ qgold [_ 3
|Project - test | gold:/ap 4

The Structure page context menu includes the following options.

* SaveAs
Writesthe HDL item names in the Structure page to atext file.

» Sort
Sorts the HDL itemsin the Structure page by alphabetic (ascending or descending) or
declaration order.

» Expand Selected
Shows the hierarchy of the selected HDL item.

 Collapse Selected
Hides the hierarchy of the selected HDL item.

» Expand All
Shows the hierarchy of all HDL itemsin the list.

» Collapse All
Hidesthe hierarchy of all HDL itemsin thelist.
* Find
Opensthe Find dialog. See "Finding items in the Structure window" (8-212) for details.

ModelSim SE User’'s Manual Datasets (saved simulations) and virtuals 7-141

Datasets

Managing datasets

4 'Dataset Browser

When you have one or more datasets open, you can manage them using the Dataset
Browser. To open the browser, select View > Datasets (Main window).

Datazet Corntext b ode Fileriarme I
qald fvachedsyzread Wi E:/modelzimBdb_selexal
zim Aoontral Sirnulation Mo zsignals logged

dontr_struct

| 1

Dpen D atazet Cloze D atazet Make Active Bename Dataszet

The Dataset Browser dialog box includes the following options.

Open Dataset
Opens the View Dataset dialog box (see "Opening datasets" (7-139)) SO you can open
additional datasets.

Close Dataset
Closesthe selected dataset. Thiswill also removethe dataset’ s Structure pageintheMain
window workspace.

Make Active

Makes the selected dataset "active." Y ou can also effect this change by double-clicking
the dataset name. Active dataset means that if you type aregion path as part of a
command and omit the dataset prefix, the active dataset will be assumed. It is equivalent
to typing: env <dataset>: at the VSIM prompt.

Rename Dataset
Allows you to assign anew logical name for the selected dataset.

Using datasets with ModelSim commands

Multiple datasets can be opened when the simulator isinvoked by specifying morethan one
vsim -view <filename> option. By default the dataset prefix will be the filename of the
WLFfile. A different dataset name can also be specified asan optional qualifier tothevsim
-view switch on the command line using the following syntax:

-vi ew <dat aset >=<fi | enane>

For example: vsim -view foo=vsim.wlf

7-142 Datasets (saved simulations) and virtuals ModelSim SE User’'s Manual

Datasets

Design regions and signal names can be fully specified over multiple logfiles by using the
dataset name as a prefix in the path. For example:

sim/top/al u/ out
vi ew. / t op/ al u/ out

gol den: . t op. al u. out

Dataset prefixesare not required unless more than one dataset isopen, and you want to refer
to something outside the default dataset. When more than one dataset is open, ModelSm
will automatically prefix namesin the Wave and List window with the dataset name. Y ou
can change this default by selecting Edit > Display Properties (Wave window) and
Prop > Display Props (List window).

Model Sm designates one of the datasets to be the "active" dataset, and refers all names
without dataset prefixesto that dataset. The active dataset is displayed in the context path
at the bottom of the Main window. When you select a design unit in a dataset’ s Structure
page, that dataset becomes active automatically. Alternatively, you can use the Dataset
Browser or the environment command (CR-114) to change the active dataset.

ModelSm remembers a " current context" within each open dataset. Y ou can toggle
between the current context of each dataset using the environment command (CR-114),
specifying the dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo.
The context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to asjust "current context") is
used for finding objects specified without a path.

The Signals window can be locked to a specific context of a dataset. Being locked to a
dataset means that the window will update only when the content of that dataset changes.
If locked to both a dataset and a context (e.g., test: /top/foo), the window will update only
when that specific context changes. Y ou specify the dataset to which the window islocked
by selecting File > Environment (Signals window).

Restricting the dataset prefix display

The default for dataset prefix viewing is set with avariable in pref.tcl,
PrefMain(DisplayDataset Pr efix). Setting the variable to 1 will display the prefix, setting
ittoOwill not. Itisset to 1 by default. Either edit the pref.tcl file directly or usethe Options
> Edit Preferences (Main window) command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment
command (CR-114) with the -dataset option (you won’'t need to specify this option if the
variable noted aboveis set to 1). The environment command line switches override the
pref.tcl variable.

ModelSim SE User’'s Manual Datasets (saved simulations) and virtuals 7-143

Virtual Objects (User-defined buses, and more)

Virtual Objects (User-defined buses, and more)

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in
the Model SSm simulation kernel. Beginning with release 5.3, Model S m supports the
following kinds of virtual objects:

* Virtua signals (7-144)

* Virtual functions (7-145)

* Virtual regions (7-146)

* Virtual types (7-146)

Virtual objects are indicated by an orange diamond as illustrated by BUSL below:

=+t wave - default

File Edit Curgor Zoom Compare Bookmark Format wWindow

EES | 4 BB MK 1 | QQAQA | F | EEEHH | lnjesin

DI TR O D A (T [F:?E:EDE:ED:

|_’I|‘-J—I |-

s E—|
1000 s : R0
441 ns 441 ns

&

a0 ns to 928 ns

Virtual signals

Virtual signals are aliases for combinations or subelements of signals written to the logfile
by the smulation kernel. They can be displayed in the Signals, List, and Wave windows,
accessed by the examine command, and set using the for ce command. Virtual signals can
be created viaamenu in the Wave and List windows (Edit > Combine), or with thevirtual
signal command (CR-245). Virtual signals can also be dragged and dropped from the
Signals window to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that
corresponds to the nearest common ancestor of all the elements of the virtual signal. The
virtual signal command hasan -install <r egion> option to specify wherethevirtual signal
should beinstalled. This can be used to install the virtual signal in auser-defined regionin

7-144 Datasets (saved simulations) and virtuals ModelSim SE User’'s Manual

Virtual Objects (User-defined buses, and more)

order to reconstruct the original RTL hierarchy when simulating and driving a
post-synthesis, gate-level implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. Thevirtual hidecommand (CR-236) can be used to hide the display of the
broken-down bitsif you don't want them cluttering up the Signals window.

If the virtual signal has elements from more than one logfile, it will be automatically
installed in the virtual region "virtuals./Signals.”

Virtual signals are not hierarchical —if two virtual signals are concatenated to become a
third virtual signal, theresulting virtual signal will be aconcatenation of all the subelements
of thefirst two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command
(CR-243). By default, when quitting, Model Smwill append any newly-created virtuals (that
have not been saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave
or List format, you will need to execute the virtuals.do file (or some other equivalent) to
restore the virtual signal definitions before you re-load the Wave or List format during a
later run. Thereisone exception: "implicit virtuals' are automatically saved with the Wave
or List format.

Implicit and explicit virtuals

Animplicit virtual isavirtual signal that was automatically created by Model Sm without
your knowledge and without you providing a name for it. An example would be if you
expand abusin the Wave window, then drag one bit out of the busto display it separately.
That action creates a one-bit virtual signal whose definition is stored in a special location,
and is not visible in the Signals window or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals'.

Virtual functions

Virtual functions behave in the GUI like signals but are not aliases of combinations or
elements of signals logged by the kernel. They consist of logical operations on logged
signals and can be dependent on simulation time. They can be displayed in the Signals,
Wave, and List windows and accessed by the examine command (CR-115), but cannot be
set by the for ce command (CR-121).

Examples of virtual functionsinclude the following:

« afunction defined as the inverse of agiven signal

« afunction defined as the exclusive-OR of two signals

« afunction defined as arepetitive clock

« afunction defined as "the rising edge of CLK delayed by 1.34 ns'

Virtual functions can also be used to convert signal types and map signal values.

Theresult type of avirtual signal can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std logic, std logic_vector, and arrays and records of these
types. Verilog types are converted to VHDL 9-state std_|logic equivalents and Verilog net
strengths are ignored.

ModelSim SE User’'s Manual Datasets (saved simulations) and virtuals 7-145

Virtual Objects (User-defined buses, and more)

Virtual functions can be created using the virtual function command (CR-233).

Virtual functions are also implicitly created by Model Sm when referencing bit-selects or
part-selects of Verilog registersin the GUI, or when expanding Verilog registersin the
Signals, Wave or List windows. Thisis necessary because referencing Verilog register
elements requires an intermediate step of shifting and masking of the Verilog "vreg" data
structure.

Virtual regions

User-defined design hierarchy regions can be defined and attached to any existing design
region or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in
agate-level designandtolocatevirtua signals. Thus, virtual signalsand virtual regionscan
be used in a gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command (CR-242).

Virtual types

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual typeisthen used in atype conversion
expression to convert asignal to values of the new type. When the converted signal is
displayed in any of the windows, the value will be displayed as the enumeration string
corresponding to the value of the original signal.

Virtual types are created using the virtual type command (CR-248).

7-146 Datasets (saved simulations) and virtuals ModelSim SE User’'s Manual

Dataset, lodfile, and virtual commands

Dataset, logfile, and virtual commands

The table below provides a brief description of the actions associated with datasets,
logfiles, and virtual commands. For complete details about syntax, arguments, and usage,
refer to the Model Sm Command Reference.

Command name

Action

dataset close (CR-95)

closes the specified dataset

dataset list (CR-96)

listsall open datasets

dataset open (CR-97)

opens a dataset

dataset rename (CR-98)

assigns anew logical name to the specified dataset

log (CR-131)

creates alogfile for the current simulation

nolog (CR-139)

suspends writing of data to the logfile for the specified signals

searchlog (CR-180)

searches one or more of the currently open logfiles for a specified condition

virtual function (CR-233)

createsanew signal that consists of logical operationson existing signalsand
simulation time

virtual region (CR-242)

creates a new user-defined design hierarchy region

virtual signal (CR-245)

creates anew signal that consists of concatenations of signals and
subelements

virtual type (CR-248)

creates a new enumerated type

vsim (CR-258) -wlf <filename>

creates alogfile for the simulation which can be reopened as a dataset

ModelSim SE User’s Manual

Datasets (saved simulations) and virtuals 7-147

7-148 Datasets (saved simulations) and virtuals ModelSim SE User’'s Manual

8 - ModelSim Graphic Interface

Chapter contents

Window overview 8180
Common window features. 8151
Manwindow 8157
Dataflow window 8111
Liswindow 81/
Processwindow 8190
Signalswindow 8193
Sourcewindow. 82m
Structurewindow 8210
Variableswindow 8213
Wavewindow 8216
Compiling with the graphicinterface 8250
Simulating with the graphicinterface 8256
ModelSimtools 8269
Graphic interfacecommands 8277
Customizing theinterfface 8279

The example graphicsin this chapter illustrate Model Sm' s graphic interface within a
Windows environment; however, Model S’ sinterface is designed to provide consistency
across all supported platforms. Y our operating system provides the basic window-
management frames, while Model Sm controls all internal window features such as menus,
buttons, and scroll bars.

Because Model Sm' s graphic interface is based on Tcl/Tk, you are able to customize your
simulation environment. Easily-accessible preference variables and configuration
commands give you control over the use and placement of windows, menus, menu options,
and buttons.

ModelSim SE User’'s Manual Model Sim Graphic Interface 8-149

Window overview

Window overview

The Model Sm simulation and debugging environment consists of nine window types.
Multiple windows of each type can be used during simulation (with the exception of the
Main window). To make an additional window select View > New (Mainwindow). A brief
description of each window follows:

¢ Main window (8-157)
Theinitia window that appears upon startup. All subsequent Model Sm windows are
opened from the Main window. This window contains the session transcript.

 Dataflow window (8-171)
Lets you trace signals and nets through your design by showing related processes.

e List window (8-175)
Shows the simulation values of selected VHDL signals and variables and V erilog nets
and register variables in tabular format.

* Process window (8-190)
Displaysalist of processesin the region currently selected in the Structure window.

* Signals window (8-193)
Shows the names and current values of VHDL signals, and Verilog nets and register
variablesin the region currently selected in the Structure window.

 Source window (8-201)
Displaysthe HDL source code for the design. (Y our source code can remain hidden if
you wish, see "Source code security and -nodebug” (E-433).)

« Structure window (8-210)
Displaysthe hierarchy of structural elements such as VHDL component instances,
packages, blocks, generate statements, and V erilog model instances, named blocks, tasks
and functions. In versions 5.5 and later, this same information is displayed in the Main
window workspace.

« Variables window (8-213)
Displays VHDL constants, generics, variables, and Verilog register variables in the
current process and their current values.

« Wave window (8-216)
Displayswaveforms, and current valuesfor the VHDL signasand variables and Verilog
nets and register variables you have selected. Current and past simulations can be
compared side-by-side in one Wave window.

8-150 ModelSim Graphic Interface ModelSim SE User’s Manual

Common window features

Common window features

Model Sm' s graphic interface provides many features that add to its usability; features
common to many of the windows are described below.

Feature

Feature applies to these windows

Quick access toolbars (8-152)

Main, Source, and Wave windows

Drag and Drop (8-152)

Dataflow, List, Signals, Source, Structure, Variables, and
Wave windows

Command history (8-152)

Main window command line

Automatic window updating (8-153)

Dataflow, Process, Signals, and Structure windows

Finding names, searching for values, and locating
CUrsors (8-153)

various windows

Sorting HDL items (8-154)

Process, Signals, Source, Structure, Variables and Wave
windows

Multiple window copies (8-154)

all windows except the Main window

Menu tear off (8-154)

all windows

Customizing menus and buttons (8-154)

all windows

Combining signals into a user-defined bus (8-154)

List and Wave windows

Tree window hierarchical view (8-155)

Structure, Signals, Variables, and Wave windows

 Cut/Copy/Paste/Del ete into any entry box by clicking the right
mouse button in the entry box.

« Standard cut/copy/paste shortcut keystrokes — *X/*C/"V —will

work in all entry boxes.

» When the focus changes to an entry box, the contents of that box
are selected (highlighted). This allows you to replace the current

Cuit
Copy
Pazte
Delete

Select Al

contents of the entry box with new contents with a simple paste
command, without having to delete the old value.

* Dialog boxeswill appear on top of their parent window (instead of the upper left corner

of the screen)

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-151

Common window features

» The Main window includes context menus that are accessed by

L . C

clicking the right mouse button. - ZE:'JE

» The middle mouse button will allow you to paste the following —
into the transcript window: Select Al

. . . Urzelect Al

—text currently selected in the transcript window, i
—acurrent primary X-Windows sel ection (can be from another Fird.. _
application), or Ereakpaint(z]...
—contents of the clipboard. Transcript window

Note: Selecting text in the transcript window makesit the current

primary X-Windows selection. Thisway you can copy transcript

window selections to other X-Windows windows (xterm, emacs, etc.).

» TheEdit > Paste operation in the transcript window will ONLY paste from the clipboard.

* All menus highlight their accelerator keys.

Quick access toolbars

=+t wave - default

File Edit Curgor Zoom Compare Bookmark Format wWindow

BEHES +BB KX T Q@ | EF | ELEIEH | julesin

Drag and Drop

>

Buttons on the Main, Source, and Wave windows provide access to commonly used
commands and functions. See, "The Main window toolbar" (8-166), " The Source window
toolbar" (8-204), and "The Wave window toolbar" (8-224).

Drag and drop of HDL itemsis possible between the following windows. Using the left
mouse button, click and release to select an item, then click and hold to drag it.

 Drag itemsfrom these windows:
Dataflow, List, Signals, Source, Structure, Variables, and Wave windows

« Drop itemsinto these windows:
Dataflow, List, and Wave windows

Note: Drag and drop worksto rearrange items within the List and Wave windows as well.

Command history

Avoid entering long commands twice; use the down and up keyboard arrows to move
through the command history for the current simulation.

8-152 ModelSim Graphic Interface ModelSim SE User’s Manual

Common window features

Automatic window updating

Selecting an item in the following windows automatically updates other related ModelSim
windows as indicated bel ow:

Select an item in this window To update these windows
Dataflow window (8-171) Process window (8-190)
(with aprocess selected in the center of | S/gnalswindow (8-193)
the window) Source window (8-201)
Structure window (8-210)
Variables window (8-213)
Process window (8-190) Dataflow window (8-171)
Signals window (8-193)
Structure window (8-210)
Variables window (8-213)
Signals window (8-193) Dataflow window (8-171)
Structure window (8-210) Process window (8-190)
Signals window (8-193)
Source window (8-201)

Finding names, searching for values, and locating cursors

» Find HDL item names with the Edit > Find menu selection in these windows:
List, Process, Signals, Source, Structure, Variables, and Wave windows.

» Search for HDL item values with the Edit > Sear ch menu selection in these windows:
List, and Wave windows.

Y ou can also:
» Locate time markersin the List window with the M ar ker s> Goto menu selection.
» Locate time cursorsin the Wave window with the Cur sor > Goto menu selection.

In addition to the menu selections above, the virtual event <<Find>> is defined for all
windows. The default binding isto <K ey-F19> in most windows (the Find key on a Sun
keyboard). Y ou can bind <<Find>> to other events with the Tcl/Tk command event add.
For example,

event add <<Fi nd>> <control - Key- F>

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-153

Common window features

Sorting HDL items

Usethe Edit > Sort menu selection in the windows below to sort HDL itemsin ascending,
descending or declaration order.

Process, Signals, Structure, Variables and Wave windows

Names such asnet_1, net 10, and net_2 will sort numericaly in the Signals and Wave
windows.

Multiple window copies

Use the View > New menu selection from the Main window (8-157) to create multiple
copies of the same window type. The new window will become the default window for that

type.

Context menus

Context menus refer to menus that "pop-up" in the middle of the interface by clicking the
right mouse button (Windows—2nd button, UNIX—3rd button). The commands on the
menu change depending on where in the interface you click. In other words, the menus
change based on the context of their use.

Menu tear off

All window menus can be "torn off " to create a separate menu window. To tear off, click
on the menu, then select the dotted-line button at the top of the menu.

Customizing menus and buttons

Menus can be added, deleted, and modified in all windows. Custom buttons can also be
added to window toolbars. See

« "Customizing the interface" (8-279),
* "Customizing menus and buttons” (8-154), and
» "The Button Adder" (8-269) for more information.

Combining signals into a user-defined bus

Y ou can collect selected itemsin the List window (8-175) and Wave window (8-216) displays
and combinethem into abus named by you. Inthe List window, the Edit > Combine menu
selection allowsyou to move the sel ected itemsto the new bus aslong asthey are all scalars
or arrays of the same base type (records are not yet supported).

Inthe Wavewindow (8-216), the Edit > Combine menu selection requiresall selected items
to be either all scalarsor al arrays of the same size. The benefit of this added restrictionis
that the bus can be expanded to show each element as a separate waveform. Using the
flatten option allows scalars and various array sizes to be mixed, but foregoes display of
child waveforms.

The keep option in both windows copies the signal s rather than moving them.

8-154 ModelSim Graphic Interface ModelSim SE User’s Manual

Common window features

Tree window hierarchical view

Model Sm provides a hierarchical, or "tree view" of some aspects of your design in the
Main window Structure pages and the Structure, Signals, Variables, and Wave windows.

HDL items you can view

, i , E® structure M= E3
Depending on which window you are Fle Edit ‘wind
viewing, one entry is created for each the Lot Leindow

of the following VHDL and Verilog Mﬂ

HDL items within the design: @ p proc

VHDL items @ m: memory
. , B Package std_logic_util
(indicated by a dark blue square icon)

signals, variables, component _
instantiations, generate statements, B Package std_logic 1164
block statements, and packages B Package standard
EH{0 cache: cache

— i Function hash
(indicated by alighter blue circleicon) — 0 Task update_mm
parameters, registers, nets, module
instantiations, named forks, named
begins, tasks, and functions

B Fackage v types

Verilog items

— i Function pick_zet
— i Task spzread
— 0 Task spswnte

Virtual items — ¢ Function get_hit

(indicated by an orange diamond icon) — Ml s0: cache_sat{only]

virtual signals, buses, and functions, — Il :1: cache_setfonly]

see "Virtual Objects (User-defined — Il 2 cache_setfonly)

puses, and more)" (7-144) for more LW 3 cache_setfonl] |

information -

Viewing the hierarchy 1] |
sim:ftap P

Whenever you seeatreeview, asinthe
Structure window displayed here, you can use the mouse to collapse or expand the
hierarchy. Select the symbols as shown below to change the view of the structure.

Symbol Description
[+] click aplus box to expand the item and view the structure
[-] click aminus box to hide a hierarchy that has been expanded

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-155

Common window features

Finding items within tree windows

Y ou can open the Find dialog box within al windows (except the Dataflow windows) by
selecting Edit > Find or by using <control-s> (Unix) or <control-f> (Windows).

Options within the Find dialog box allow you to search unique text-string fields within the
specific window. See also,

* "Finding items by namein the List window" (8-185),
 "Finding HDL itemsin the Signals window" (8-198), and
* "Finding items by name or value in the Wave window" (8-237).

8-156 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window

Main window

The Main window is pictured below as it appears when ModelSim is first invoked. Note
that your operating system graphic interface provides the window-management frameonly;
Model Sm handles all internal-window features including menus, buttons, and scroll bars.

|5, ModelSim
File Edit Design Yiew Proect Bun Compare Macro Option: Window Help
&3 B® | [o4

ﬂ .
Librany: |ieee ll b odelSim:

| v
"\ Librany fli

|~=:N|:| Design Loaded:>

AN

workspace

.
w L]

transcript

The menu bar at the top of the window provides access to awide variety of simulation
commands and M odel Sm preferences. Thetoolbar provides buttons for quick accessto the
many common commands. The status bar at the bottom of the window gives you
information about the data in the active Model Sm window. The menu bar, toolbar, and
status bar are described in detail below.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-157

Main window

Workspace

Theworkspaceisavailablein software versions 5.5 and | ater. It provides convenient access
to projects, compiled design units, and simulation/dataset structures. It can be hidden or
displayed by selecting the View > Hide/Show W or kspace command.

The workspace can display three types of pages, as shown in the graphic below.

|5, ModelSim

Eile Edit Design “iew Proect Bun Compare Macro Options Window Help

B BRI EF[o ELEIELS B
] # Mo test object found matching sim:/addertor]_out j
) « || §rvsim work, adder
B adder a.dder[strun::tural] J # vsim work adder
— Ml =or: xorglonly) # Loading E:/modelsim55_102500/win32/../std. standard
— Il =02 sorglonly) # Loading E: /modelzimB5_102500A4n32/4. . Aeee. std_logic_
— Il andl: andgloniy) 1164(body]
| " | # Loading wark. gates
M or: arglanly) # Loading wark. adder(structural]
— Il andZ: andglonly] # Loading wark. sorglonly]
Ml o arglonly) # Loading work. andglonly)
B Package gates — | I # Loading waork. arglonly]
d WEIM 55> v title . "ModelSim"
I\l F'ru:uiectJ{ Libramn }\ Sim ;{ Test ;’{ Compare Ju'[WSIM 56> | j

|F'rujen:t test | test:/adder y

 Project page
Shows all filesthat areincluded in the open project. See Chapter 2 - Projects and system
initialization for details.

 Library page
Shows compiled design units in the specified library. See "Managing library contents"
(3-44) for details.

e Structure pages
Shows a hierarchical view of the active simulation and any open datasets. Thisisthe
same data that is displayed in the " Structure window" (8-210). There is one page for the
current simulation and one page for each open dataset. See "Viewing dataset structure”
(7-140) for details.

« Compare page
Shows comparison objects that were created by doing a waveform comparison. See
Chapter 11 - Waveform Comparison for details.

8-158 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window

Transcript

The transcript portion of the Main window maintains a running history of commands that
are invoked and messages that occur as you work with ModelSm. When asimulation is
running, the transcript displays a VSIM prompt, allowing you to enter command-line
commands from within the graphic interface.

Y ou can scroll backward and forward through the current work history by using the vertical
scrollbar. Y ou can also use arrow keysto recall previous commands, or copy and paste
using the mouse within the window; see "Mouse and keyboard shortcutsin the Transcript
and Source windows" (8-168) for details.

Saving the Main window transcript file

Variable settings determine the filename used for saving the Main window transcript. If
either PrefMain(file) in modelsim.tcl, or TranscriptFile in modelsim.ini fileis set, then the
transcript output is logged to the specified file. By default the TranscriptFile variable in
modelsim.ini is set to transcript. If either variable is set, the transcript contents are always
saved and no explicit saving is necessary.

If you would like to save an additional copy of the transcript with a different filename, you
can usethe File> Save Transcript As, or File> Save Transcript menuitems. Theinitial
save must be made with the Save Transcript As selection, which storesthefilenameinthe
Tcl variable PrefMain(saveFil€). Subsequent saves can be made with the Save Transcript
selection. Since no automatic saves are performed for thisfile, it iswritten only when you
invoke a Save command. Thefile is written to the specified directory and records the
contents of the transcript at the time of the save.

Using the saved transcript as a macro (DO file)

Saved transcript files can be used as macros (DO files). See the do command (CR-104) for
more information.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-159

Main window

The Main window menu bar

The menu bar at the top of the Main window lets you access many Model Sm commands
and features. The menus are listed below with brief descriptions of each command’s use.

|, ModelSim
File Edit Design “iew Project Bun Compare Macro Option: Window Help
S BB [o0 SR
File menu
New provides three options:

Folder — create anew folder in the current directory
Source — create a VHDL, Verilog, or Other source file
Project — create a new project

Open provides three options:

File — open the selected hdl file

Project — open the selected .mpf project file

Dataset — open the specified logfile and assign it the specified dataset name

Close provides three options:
Project — close the currently open project file
Dataset — close the specified dataset

Delete provides one option:
Project — delete the selected .mpf project file
Change Directory change to a different working directory
Save Transcript savethe current contents of the transcript window to thefileindicated with a" Save

Transcript As" selection (this selection is not initially available because the
transcript iswritten to the transcript file by default), see " Saving the Main window
transcript file" (8-159)

Save Transcript As... save the current contents of the transcript window to afile

Clear Transcript clear the Main window transcript display

Options Transcript File: set atranscript file to save for this session only

(al options are set for the Command History: file for saving command history only, no comments
current session only) Save File: set filename for Save Transcript, and Save Transcript As

Saved Lines: limit the number of lines saved in the transcript (default is 5000)
Line Prefix: specify the comment prefix for the transcript

Update Rate; specify the update frequency for the Main status bar

Model Sm Prompt: change the title of the ModelSm prompt

VSIM Prompt: change the title of the VSIM prompt

Paused Prompt: change thetitle of the Paused prompt

<path list> alist of the most recent working directory changes

Quit quit ModelSm

8-160 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window

Edit menu

Copy copy the selected text

Paste paste the previously cut or copied text to the | eft of the currently
selected text

Select All select all text in the Main window transcript

Unselect All deselect all text in the Main window transcript

Find search the transcript forward or backward for the specified text
string

Breakpoints open the Breakpoints dialog box; see " Setting file-line
breakpoints" (8-205) for details

Design menu

Browse Libraries browse al libraries within the scope of the design; see also
"Managing library contents" (3-44)

Create a New createanew library or map alibrary to anew name; see"Creating

Library alibrary" (3-43)

Import Library import FPGA libraries; see "Importing FPGA libraries" (3-53) for
details

Compile compile HDL source filesinto the current project’s work library

Load Design initiate simulation by specifying the top level design unit in the
Design tab; specify HDL specific simulator settings with the
VHDL and Verilog tabs; specify thelibrary to search for design
units instantiated from Verilog with the Libraries tab; specify
settings relating to the annotation of design timing with the SDF
tab

End Simulation end the ssimulation (returns to the Model Sm command line)

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-161

Main window

View menu

All open al Model Sim windows

Hide/Show hide or show the workspace

Workspace

Layout Style? provides five options:
Default - restore the window layout to that used for versions 5.5
and later
Classic - restore the window layout to that used in versions prior
t0 5.5
Cascade - Cascade al open windows
Horizontal - Tile al open windows horizontally
Vertical - Tile al open windows vertically

Source open and/or view the Source window (8-201)

Structure open and/or view the Structure window (8-210)

Variables open and/or view the Variables window (8-213)

Signals open and/or view the Signals window (8-193)

List open and/or view the List window (8-175)

Process open and/or view the Process window (8-190)

Wave open and/or view the Wave window (8-216)

Dataflow open and/or view the Dataflow window (8-171)

Datasets open the Dataset Browser for selecting the current Dataset

New create a new window of the specified type

Other if the Performance Analyzer and/or Code Coverage isturned on,
this selection will allow viewing of: Hierarchical Profile, Ranked
Profile, and Source Coverage

a.Y ou can specify aLayout Style to become the default for Model Sim. After choosing
the Layout Style you want, select Options > Save Preferences and the layout style
will be saved to the PrefMain(layoutStyle) preference variable.

Project menu

Compile Order set the compile order of thefilesin the open Project; see
"Changing compile order" (2-34) for details
Compile All compile all filesin the open Project; see " Step 3 — Compile the

files' (2-32) for details

Add Fileto Project

add file(s) to the open Project; see "Step 2 — Add filesto the
project” (2-31) for details

8-162 ModelSim Graphic Interface

ModelSim SE User’s Manual

Main window

Run menu

Run <default> run simulation for one default run length; change the run length
with Options> Simulation, or usethe Run Length text box onthe
toolbar

Run -All run simulation until you stop it; see also therun command (CR-
176)

Continue continue the simulation; see also the run command (CRr-176) and
the -continue option

Run -Next run to the next event time

Step single-step the simulator; see aso the step command (CR-187)

Step -Over execute without single-stepping through a subprogram call

Restart reload the design elements and reset the simulation time to zero;

only design elementsthat have changed are rel oaded; you specify
whether to maintain the following after restart—Ilist and wave
window environment, breakpoints, logged signals, and virtual
definitions; see also the restart command (CR-170)

Compare menu

Start Comparison

start a new comparison

Comparison Wizard

receive step-by-step assistance while creating a waveform
comparison

Run Comparison

compute differences from time zero until the end of the
simulation

End Comparison

stop difference computation and close the currently open
comparison

Add

provides three options:

Compare by Signal - specify signals for comparison
Compare by Region - designate areference region for a
comparison

Clocks - define clocks to be used in a comparison

Options

set options for waveform comparisons

Differences

provides four options:

Clear - clear all differences from the Wave window

Show - display differencesin atext format in the Main window
Transcript

Save - save computation differencesto afile that can be
reloaded later

Write Report - save computation differences to atext file

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-163

Main window

Rules provides two options:
Show - display the rules used to set up the waveform
comparison
Save - save rules for waveform comparison to afile
Reload load saved differences and rulesfiles
Macro menu
Execute Macro browse for and execute a DO file (macro)
Execute Old PE call and execute an old PE 4.7 macro without changing the macro
Macro to SE 5.5; backdashes can be selected as pathname delimiters
Convert Old PE convert old PE 4.7 macro to SE 5.5 macro without changing the
Macro file; backslashes can be selected as pathname delimiters
Macro Helper UNI X only - invoke the Macro Helper tool; see adso "The Macro
Helper" (8-270)
Tcl Debugger invoke the Tcl debugger, TDebug; see also "The Tcl Debugger”
(8-271)
TclPro Debugger invoke the TclPro Debugger by Scriptics® if installed. TclPro

Debugger can be acquired from Scriptics at www.scriptics.com.

Options menu

Compile set both VHDL and Verilog compile options; see " Setting default
compile options' (8-252)
Simulation set various simulation options; see " Setting default simulation

options' (8-265)

Edit Preferences

set various preference variables; see
http://www.model .com/resources/pref _variables/frameset.htm

Save Preferences

save current Model Sm settingsto a Tcl preferencefile; see
http://www.model.com/resources/pref variables/frameset.htm

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile all open windows horizontally

Tile Verticaly

tile al open windows vertically

Icon Children

icon all but the Main window

8-164 ModelSim Graphic Interface

ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

Main window

Icon All icon all windows
Deicon All deicon all windows
Customize use the The Button Adder (8-269) to define and add a button to

either the tool or status bar of the specified window

<window_name>

list of the currently open windows; select awindow nameto
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) inthe Main
window, or use the view command (CR-226)

Help menu
About ModelSm display Model Smapplication information (e.g., software version)
Release Notes view current release notes with the Model Sm notepad (CR-141)
Enable Welcome enable the Welcome screen for starting a new project or opening
an existing project when ModelSmisinitiated
Welcome Menu open the Welcome screen

Information about
Help

view the readme file pertaining to Model Sm’s online
documentation

SE Documentation

open and read Model Sm documentation in PDF or HTML
format; PDF files can be read with afree Adode Acrobat reader
available on the Model Sm installation CD or from
www.adobe.com

Tcl Help open the Tcl command reference (man pages) in Windows help
format

Tcl Syntax open Tcl syntax detailsin HTML format

Tcl Man Pages open the Tcl /Tk 8.0 manual in HTML format

Technotes select atechnical note to view from the drop-down list

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-165

http://www.adobe.com

Main window

The Main window toolbar

Buttons on the Main window toolbar give you quick accessto these Model Sm commands

and functions.

|5, ModelSim

File Edt Deszign “ew Proect Bun Compare Macro Opton: Window Help

RNEEY N 03 =B RE
. SN N
\\Q; (o\q(\ QOQ\X 'b('\o\@ é\,b{\' (\0\;\(\ \\}(\ 0\\) 2 Q’,s,l' @‘@’Q A‘z}
S F T @ \Z F S ¢ N
P S & &R
\o’b' A\ OOQ 2

Main window toolbar buttons

Button

Menu equivalent

Command equivalents

Compile
@ open the Compile HDL Source
Filesdialog box to select filesfor

Design > Compile, also
Options > Compile
(opens the Compile

vcom <arguments>, or
vlog <arguments>

T

to initiate simulation

compilation Options dialog box) See: veom (CR-217) or vlog (CR-
250)

Load Design Design > Load Design vsim <arguments>

open the Load Design dial og box

See: vsim (CR-258)

| 03

specify therun length for the
current simulation

Copy Edit > Copy see: "Mouse and keyboard
copy the selected text within the shortcuts in the Transcript and
5 Main window transcript Source windows' (8-168)
Paste Edit > Paste see: "Mouse and keyboard
E paste the copied text to the cursor shortcuts in the Transcript and
location Source windows' (8-168)
Restart Run > Restart restart <arguments>
reload the design elements and
resets the simulation time to see: restart (CR-170)
zero, with the option of using
current formatting, breakpoints,
and lodfile
Run Length none run <specific run length>

SEe: run (CR-176)

8-166 ModelSim Graphic Interface

ModelSim SE User’s Manual

Main window

Main window toolbar buttons

Button

Menu equivalent

Command equivalents

Run
run the current simulation for the
3 specified run length

Run > Run
<default_run_length>

run (no arguments)

SEe: run (CR-176)

Continue Run

El‘ continue the current simulation
run until the end of specified run

length or until it hitsabreakpoint

Run > Continue

run -continue

SEee: run (CR-176)

or specified break event
Run -All Run > Run -All run -all

run the current simulation

; forever, or until it hitsa SEE: run (CR-176), see "Assertion

breakpoint or specified break Settings page” (8-266)
event
Break none none

@ stop the current simulation run
Step Run > Step step

F} step the current simulation to the
next HDL statement

see: step (CR-187)

Step Over

ﬁl HDL statementsare executed but
treated as simple statements
instead of entered and traced line
by line

Run > Step -Over

step -over

see: step (CR-187)

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-167

Main window

The Main window status bar

Maow: 1,100 ne Delta: 1

Erve: Atopdm

Fields at the bottom of the Main window provide the following information about the

current simulation:

Field

Description

Now

the current simulation time, using the default resolution units
(see"Simulating with the graphic interface" (s-256)), or alarger
time unit if one can be used without a fractional remainder

Delta

the current simulation iteration number

<dataset name>

window (8-210))

name of the current dataset (item selected in the Structure

Mouse and keyboard shortcuts in the Transcript and Source windows

The following mouse actions and special keystrokes can be used to edit commandsin the
entry region of the Main window. They can also be used in editing thefile displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSm
to open the Notepad editor).

Mouse - UNIX

Mouse - Windows

Result

< left-button - click >

move the insertion cursor

< left-button - press > + drag select

< shift - left-button - press > extend selection

< |eft-button - double-click > select word

< |eft-button - double-click > + drag select word + word

< control - left-button - click >

move insertion cursor without
changing the selection

< |eft-button - click > on previous Model Sim or VSIM prompt

copy and paste previous command
string to current prompt

< middle-button - click >

none

paste clipboard

< middle-button - press > + drag

none

scroll the window

8-168 ModelSim Graphic Interface

ModelSim SE User’s Manual

Main window

Keystrokes - UNIX

Keystrokes - Windows

Result

< left | right - arrow >

move cursor |eft | right one character

< control > < |eft | right - arrow >

move cursor left | right one word

< shift > < left | right | up | down - arrow >

extend selection of text

< control > < shift > < left | right - arrow >

extend selection of text by word

< up | down - arrow >

scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down >

MOVES cursor up | down one paragraph

< control > < home >

move cursor to the beginning of the text

< control > < end >

move cursor to the end of the text

< backspace >, < control-h> | < backspace > delete character to the left

< delete >, < control-d > < delete> delete character to the right

none esc cancel

<at> activate or inactivate menu bar mode

<dt><F4> close active window

< control - a>, < home > < home > move cursor to the beginning of the line

<control - b> move cursor left

< control - d > delete character to theright

<control - e>, <end > <end > move cursor to the end of theline

< control - f > move cursor right one character

<control - k > delete to the end of line

< control - n> move cursor one line down (Source window
only under Windows)

< control - 0> none insert anewline character in front of the cursor

< control - p >

move cursor one line up (Source window only
under Windows)

< control - s> < control - f > find
<F3> find next
< control -t > reverse the order of the two charactersto the

right of the cursor

< control - u>

deleteline

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-169

Main window

Keystrokes - UNIX

Keystrokes - Windows

Result

< control - v >

PageDn

move cursor down one screen

< control - w >

< control - x >

cut the selection

< control - X >, < control - s>

< control - s>

save

< control -y >, F18

< control - v >

paste the selection

none

< control - a>

select the entire contents of the widget

< control -\ >

clear any selection in the widget

<control - >, <control -/ >

< control - Z >

undoes previous edits in the Source window

<meta- "<" > none move cursor to the beginning of thefile
<meta- ">" > none move cursor to the end of thefile
<meta-v > PageUp MOVe Cursor up one screen

< Meta- w> <control -¢c> copy selection

<F8> search for the most recent command that

matches the characters typed (Main window
only)

The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

8-170 ModelSim Graphic Interface

ModelSim SE User’s Manual

Dataflow window

Dataflow window

The Dataflow window allows you to trace VHDL signals or Verilog nets and registers
through your design. Double-click an item with the left mouse button to move it to the
center of the Dataflow display.

VHDL signalsor processesin the Dataflow window:

« A signal isdisplayed in the center of the window with all the processes that drive the
signal on the left, and all the processes that read the signal on the right.

A processisdisplayed with all the signals read by the process shown asinputs on the | eft
of the window, and all the signals driven by the process on the right.

Verilog netg/registersor processesin the Dataflow window:

* A net or register is displayed in the center of the window with all the processesthat drive
the net or register on the left, and all the processes triggered by the net or register on the
right.

A processis displayed with all the nets or registers that trigger the process shown as
inputs on the left of the window, and all the nets or registers driven by the process on the
right.

&z dataflow M= E3 ||l <2 dataflow M= E3

File *Afindow File Window

ZUm
Qo000 11

coLt
]

signal, net, register process

Link to active cursor in Wave window

Inversions 5.5 and | ater, the value of asignal, net, or register in the Dataflow window is
linked to the active cursor in the Wave window. Asyou move the active cursor in the Wave
window, the value of the signal, net, or register in the Dataflow window will update.

ModelSim SE User's Manual ModelSim Graphic Interface 8-171

Dataflow window

Dataflow window menu bar

The following menu commands and button options are available from the Dataflow

window menu bar.

File menu

Save Postscript

savethe current dataflow view asaPostscript file; see” Saving the
Dataflow window as a Postscript file" (8-174)

Selection

Selection > Follow Selection updates the Dataflow window when
the Process window (8-190) or Signals window (8-193) changes,
Selection > Fix Selection freezes the view selected from within
the Dataflow window

Close

close this copy of the Dataflow window; you can create a new
window with View > New from the "The Main window menu
bar" (8-160)

Window menu

Initial Layout

restore all windows to the size and placement of theinitial full-
screen layout

Cascade

cascade all open windows

Tile Horizontally

tile all open windows horizontally

Tile Verticaly

tile al open windows vertically

Icon Children

icon all but the Main window

Icon All

icon all windows

Deicon All

deicon all windows

Customize

use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name>

list of the currently open windows; select awindow nameto
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) inthe Main
window, or use the view command (CR-226)

8-172 ModelSim Graphic Interface

ModelSim SE User’s Manual

Dataflow window

Tracing HDL items with the Dataflow window

The Dataflow window is linked with the Signals window (8-193) and the Process window

(8-190). To examine aparticular processin the Dataflow window, click on the process name
in the Process window. To examine a particular HDL item in the Dataflow window, click
on the item name in the Signals window.

With a signal in the center of the Dataflow window, you can:

» click once on a process name in the Dataflow window to make the Source, Process,
Signals, and Variable windows update to show that process,

* click twice on aprocess namein the Dataflow window to move the processto the center
of the Dataflow window

With a processin the center of the Dataflow window, you can:
« click twice on an item name to move that item to the center of the Dataflow window.

The backward and forward buttons on the toolbar are analogous to Back and Forward
buttonsin aweb browser. They move backward or forward through previous views of the
dataflow.

move backward through dataflow views

&

move forward through dataflow views

=2

The Dataflow window will display the current process when you single-step or when
Model S m hits a breakpoint.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-173

Dataflow window

Saving the Dataflow window as a Postscript file

Select File > Save Postscript (Dataflow window) to save the current Dataflow view as a
Postscript file. Configure the Postscript output with the following dialog box, or use the
Options > Edit Preferences (Main window) command.

The dialog box has the
following options:

Postscript File

specify the name of the
fileto save, default is
dataflow.ps

Orientation

specify Landscape
(horizontal) or Portrait
(vertical) orientation

Color Mode

specify Color (256
colors), Gray (gray-scale)
or Mono (monochrome)
color mode

Postscript

specify Normal Postscript
or EPS (Encapsulated
Postscript) file type

Color Map

|1:-.__1'Datafluw - Save Postscript

—write Postscript
Postzcnipt Filez| dataflow.ps Browsze... |
_ Color Mode:

Orientation: Postzcript:
-_————— Color _———
Landzcape Marmal

Gray
Portrait | EPS
bMono
Color Hap:lWhite {0.00.00.0 setrgbealart
OF. | Cancel

specify the color mapping from current Dataflow window colors to Postscript colors

8-174 ModelSim Graphic Interface

ModelSim SE User’s Manual

List window

List window

The List window displaystheresults of your simulation run in tabular format. The window
is divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and delta visible on the | eft.

P list M= E3
Eile Edit Markerz FProp ‘window
Nz topiclk. = ftopdpaddr — Mtopdpdata — Atopdsaddr — .-’tnd
delta = | Atop/prw — ftopdam —
fopfpstth — ftopdzstth —
Jopdprdy —- Moplardy —
00 +0 1017 1 00000070 0000000000000010 O 0 1 00000010 £257s
05 +0 101 1 00000070 0000000000000010 O 1 1 00000070 QO0000¢
520 +0 00711 00000070 Q000000000000010 O 1 1 00000070 Qo000¢
540 +0 101 1 00000010 0000000000000010 0 1 1 00000010 IIIEIEIEIEIu
R0 +0 0011 00000070 QO00000000000010 O 1 1 00000070 00000
530 +0 107 1 00000010 0000000000000010 O 1 1 00000070 Qo000
535 +0 107 1 00000010 0000000000000010 0 1 0 00000070 Qo000
530 +0 107 0 00000070 0000000000000010 0 1 0 00000070 Qo000
GO0 +0 0071 000000010 0000000000000010 0 1 0 00000070 Q0000¢
G20 +0 101 0 00000070 0000000000000010 0 1 0 00000070 Qo000
G256 +0 1001 00000011 [(F1 1 00000010 ZEEZj

| | il

Diefault datazet; =im

HDL items you can view

Oneentry is created for each of the following VHDL and Verilog HDL items within the
design:

VHDL items
signals and process variables

Verilog items
nets and register variables
Comparison items

comparison regions and comparison signals; see Chapter 11 - Waveform Comparison for
more information

Virtua items
Virtual signals and functions

P> Note: Constants, generics, and parameters are not viewable in the List or Wave windows.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-175

List window

The List window menu bar

The following menu commands are available from the List window menu bar.

File menu

Write List (format) save thelisting as atext filein one of three formats: tabular,
events, or TSS|

Load Format run aList window format DO file previously saved with Save
Format

Save Format save the current List window display and signal preferencesto a
DO (macro) file; running the DO file will reformat the List
window to match the display asit appeared whenthe DO filewas
created

Close closethis copy of the List window; you can create a new window
with View > New from the "The Main window menu bar" (8-160)

Edit menu

Cut cut the selected item field from the listing; see "Editing and
formatting HDL itemsin the List window" (8-181)

Copy copy the selected item field

Paste paste the previoudly cut or copied item to the left of the currently
selected item

Delete delete the selected item field

Combine combinethe selected fieldsinto auser-defined bus; keep copies of
the original items rather than moving them; see "Combining
signalsinto a user-defined bus' (8-154)

Select All select al signalsin the List window

Unselect All deselect all signalsin the List window

Find find the specified item label within the List window

Search searchthe List window for aspecified value, or the next transition
for the selected signal

Markers menu

Add Marker add atime marker at the currently selected line
Delete Marker delete the selected marker from the listing
Goto choose the time marker to go to from alist of current markers

8-176 ModelSim Graphic Interface

ModelSim SE User’s Manual

List window

Prop menu
Display Props set display properties for all itemsin the window: delta settings,
trigger on selection, strobe period, |abel size, and dataset prefix
Signal Props set label, radix, trigger on/off, and field width for the selected item

Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon al but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to

either the tool or status bar of the specified window

<window_name>

list of the currently open windows; select awindow nameto
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) inthe Main
window, or use the view command (CR-226)

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-177

List window

Setting List window display properties

Before you add items to the List window you can set the window’ s display properties. To
change when and how a signal isdisplayed in the List window, select Prop > Display
Props(List window). Theresulting Modify Display Propertiesdialog box contains options
for Trigger Settings and Window Properties.

Window Properties page

|1:-._.1'Hndif_1,l Dizplay Properties [list]

[“Window Properties]-

Signal Hames: IEI Path Elements [0 for Full Path]

Max Title Rows: IE

Datazet Prefix
™ Show Al Datazet Prefises

% Show Al Except "zsim"

" Show Mo D ataset Prefizes

K Cancel Apply

The Window Properties page includes these options:

 Signal Names
Sets the number of path elements to be shown in the List window. For example, "0"
shows the full path. "1" shows only the leaf element.

* Max Title Rows
Sets the maximum number of rows in the name pane.

» Dataset Prefix: Show All Dataset Prefixes
Displays the dataset prefix associated with each signal pathname. Useful for displaying
signals from multiple datasets.

» Dataset Prefix: Show All Except " sim"
Displays all dataset prefixes except the one associated with the current simulation —
"sim." Useful for displaying signals from multiple datasets.

8-178 ModelSim Graphic Interface ModelSim SE User’s Manual

List window

» Dataset Prefix: Show No Dataset Prefixes
Turns off display of dataset prefixes.

Trigger settings page

The Triggers page controls the triggering for the display of new linesin the List window.
Y ou can specify whether an HDL item trigger or astrobe trigger is used to determine when
the List window displays a new line. If you choose Trigger on: Signals, then you can
choose between collapsed or expanded delta displays. Y ou can aso choose a combination
of signal or strobe triggers. To use gating, Signals or Strobe or both must be selected.

|1:-._,1'Hndif_|,l Dizplay Properties (list)

—Deltas:
% Expand Deltas ' Collapse Deltas " MoDeltas

— Trigger On:
¥ Signals Strobe Penod: |0 ns
[T Strobe First Strobe at: |0 ns

— I'ngger Gating:

[T E=pression |lze Exprezsion Builder

Expresszion: |

On Duration: |EI nz

] Cancel Apply

The Triggers page includes the following options:

 Deltas:Expand Deltas
When selected with the Trigger on: Signalscheck box, displaysanew linefor eachtime
step on which items change, including deltas within a single unit of time resolution.

 Deltas:Collapse Deltas
Displays only the final value for each time unit.

 Deltas:No Deltas
Hides simulation cycle (delta) column.

e Trigger On: Signals
Triggerson signal changes. Defaultsto all signals. Individual signals can be excluded
from triggering by using the Prop > Signals Props dialog box or by originally adding
them with the -notrigger option to the add list command (CR-28).

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-179

List window

e Trigger On: Strobe
Triggers on the Strobe Period you specify; specify thefirst strobe with First Strobeat:.

» Trigger Gating: Expression
Enablestriggersto be gated on and off by an overriding expression, much likeahardware
signal analyzer might be set up to start recording data on a specified setup of address bits
and clock edges. Affects the display of data, not the acquisition of the data.

» Use Expression Builder (button)
Opens the Expression Builder to help you write a gating expression. See "The GUI
Expression Builder" (8-275)

» Expression
Enter the expression for trigger gating into thisfield, or usethe Expression Builder (select
the Use Expression Builder button). The expression is evaluated when the List window
would normally have displayed arow of data (given the trigger on signals and strobe
settings above).

e On Duration
The duration for gating to remain open after the last list row in which the expression
evaluates to true; expressed in x number of default timescale units. Gating islevel-
sensitive rather than edge-triggered.

List window gating information is saved as configuration statements when the list format
is saved. The gating portion of aconfiguration statement might look like this:

configure list config -usegating 1
configure list config -gateduration 100
configure list config -gateexpr {<expression>}

Adding HDL items to the List window

Before adding itemsto the List window you may want to set the window display properties
(see "Setting List window display properties” (8-178)). Y ou can add itemsto the List
window in severa ways.

Adding items with drag and drop

Y ou can drag and drop items into the List window from the Signal's, Source, Process,
Variables, Wave, Dataflow, or Structurewindow. Select theitemsin thefirst window, then
drop them into the List window. Depending on what you select, all items or any portion of
the design may be added.

Adding items from the Main window command line

Invoke the add list (CR-28) command to add one or more individual items; separate the
names with a space:

add list <itemname> <item nanme>

You can add all theitems in the current region with this command:
add list *

Or add dl theitemsin the design with:

add list -r / *

8-180 ModelSim Graphic Interface ModelSim SE User’s Manual

List window

Adding items with a List window format file

Tousealist window format file you must first save aformat file for the design you are
simulating. The saved format file can then be used asa DO file to recreate the List window
formatting. Follow these steps:

« Add HDL itemsto your List window.

« Edit and format theitemsto create the view you want (see "Editing and formatting HDL
itemsinthe List window" (8-181)).

» Savetheformat to afile by selecting File > Save Format (List window).

To use the format (do) file, start with ablank List window, and run the DO file in one of
two ways.

* Invoke the do (CR-104) command from the command line:
do <ny_list_format>

* Select File> Load Format from the List window menu bar.

Select Edit > Select All and Edit > Delete to remove the items from the current List
window or create a new, blank List window by selecting View > New > List (Main
window). You may find it useful to have two differently formatted windows open at the
same time, see "Examining simulation results with the List window" (8-184).

P Note: List window format files are design-specific; use them only with the design you
were simulating when they were created. If you try to use the wrong format file, ModelSm
will advise you of the HDL itemsit expectsto find.

Editing and formatting HDL items in the List window

Once you have the HDL items you want in the List window, you can edit and format the
list to create the view you find most useful. (See also, "Adding HDL itemsto the List
window" (8-180))

To edit an item:

Select the item’ s label at the top of the List window or one of its values from the listing.
Move, copy or remove the item by selecting commands from the List window Edit menu
(8-176) menu.

Y ou can aso click+drag to move items within the window:

* to select severa contiguous items:
click+drag to select additional itemsto the right or the left of the original selection

* to select severa items randomly:
Control+click to add or subtract from the selected group

* to move the selected items:
re-click on one of the selected items, hold and drag it to the new location

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-181

List window

To format an item:

Select the item’ s label at the top of the List window or one of its values from the listing,
then select Prop > Signal Props (List window). The resulting Modify Signal Properties
dialog box allows you to set the item’ s [abel, label width, triggering, and radix.

m Modify Signal Properties [list] [_ O]
Signal: fadderforl_out
Label:
—Radix:

= Symbali

sl Width: |1 Characters
" Binamy
 Octal
" Decimal
" Unsighed Trigger:
" Heradecimal & Triggers line
0 ASCI " Does not tigger line
¥ Default

ok Cancel Apply

The Modify Signal Properties dialog box includes these options:

* Signal
Shows the full pathname of the selected signal.

» Label
Specifies the label that appears at the top of the List window column.

* Radix
Specifies the radix (base) in which the item value is expressed. The default radix is
symbolic, which means that for an enumerated type, the List window lists the actual
values of the enumerated type of that item. Y ou can change the default radix for the
current simulation using either Options > Simulation (Main window) or the radix
command (CR-166). Y ou can change the default radix permanently by editing the
DefaultRadix (B-399) variable in the modelsim.ini file.

For the other radixes- binary, octal, decimal, unsigned, hexadecimal, or ASCII - theitem
valueis converted to an appropriate representation in that radix. In the system
initialization file, modelsim.tcl, you can specify the list translation rules for arrays of
enumerated types for binary, octal, decimal, unsigned decimal, or hexadecimal item
valuesin the design unit.

8-182 ModelSim Graphic Interface

ModelSim SE User’s Manual

List window

« Width
Allows you to specify the desired width of the column used to list the item value. The
default is an approximation of the width of the current value.

o Trigger: Triggersline
Specifiesthat achangein the value of the selected item causes anew lineto be displayed
in the List window.

e Trigger: Doesnot trigger line
Specifies that a change in the value of the selected item does not affect the List window.

Thetrigger specification affectsthetrigger property of the selected item. See also, " Setting
List window display properties’ (8-178).

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-183

List window

Examining simulation results with the List window

Because you can use the Main window View menu (8-162) to create a second List window,
you can reformat another List window after the simulation run if you decide a different
format would reveal the information you're after. Compare the two illustrations.

Eile Edit Markerz FProp ‘window
The divider bar

separates time and Nz topiclk. = ftopdpaddr — Mtopdpdata — Atopdsaddr —
delta from values: delta = | Atop/prw — ftopdam —
signal values are fopfpstth — ftopdzstth —
listed in symbolic Mopdprdy = foplady
fc(;]r;‘:%téf:i‘;gaerr‘s't:m 500 +0 101 1 00000010 0000000000000010 0 0 1 00000010 Z
new line 505 +0 101 1 00000070 0000000000000010 0 1 1 00000010 0
’ 520 +0 001 1 00000070 QO0000000000001T0 0 1 1 00000010 0f
540 +0 101 1 00000070 0000000000000010 0 1 1 00000010 0
BE0 +0 001 1 00000070 QO0000000000001T0 0 1 1 00000010 0f
530 +0 107 1 00000070 0200000000000070 0 1 1 00000000 0
535 +0 107 1 00000070 02000000000000710 0 1 0 00000000 0f
530 +0 107 0 00000010 0000000000000010 0 1 0 00000000 0f
GO0 +0 0071 0 00000010 0000000000000010 0 1 0 00000010 Of
B list [_|E
File Edit Markerz Frop window
nE—= Topdolk. — ftopfpdata — ftopdzdata —
ftopdpria — ftopdam —
Signal values are Mopdpstth — Mopdsstth —
listed in decimal Mopdprdy — fopdardy —
format; ftopdpaddr — Mopdzaddr —
500 +0 1011 2 2001 2 £
505 +0 1011 2 2011 2 2
520 +0 noi11 2 2011 2 2
540 +0 1011 2 2011 2 2
560 +0 onoi11 2 2011 2 2
530 +0 1011 2 2011 2 2
535 +0 1011 2 2010 2 2
RAn +n inin 2 2n1n 2 2

Inthefirst List window, the HDL items are formatted as symbolic and use an item change
totrigger aline; the field width was changed to accommodate the default label width. The
window divider maintains the time and deltain the left pane; signalsin the right pane can
be viewed by scrolling. For the second listing, the item radix for paddr, pdata, saddr, and
sdatais now decimal.

8-184 ModelSim Graphic Interface ModelSim SE User’s Manual

List window

Finding items by name in the List window

The Find dialog box allows you to search for text stringsin the List window. Select Edit >
Find (List window) to bring up the Find dialog box.

Enter atext string and
Find it by searching
Right or L eft through the
List window display. Find: | Find Mext
Specify Name to search

Find in list

thereal pathnames of the e D"E‘_’""“ Close
items or L abel to search " Name " Right

their assigned names (see -

"Setting List window ¢ Laba! £ Leh ¥ Autawirap

display properties’ (s-
178)). Checking Auto
Wrap makesthe search continue at the beginning of the window. Note that you can change
anitem’slabel.

Searching for item values in the List window

Select anitem inthe List window. Select Edit > Sear ch (List window) to bring up the List
Signal Search dialog box.

|1:-._,1'List Signal Search [window list]

—5Signal Hame[z]
Mo Signals Selected

—Search Type
= Ay Transition

" Rizing Edge

" Falling Edge

¥ Search for Signal Value ‘v’alue:l

" Search for Expression E:-:pressiu:un:l Builder
—5earch Options Search Forward

|1 Match Count ™ lgnore Glitches

Search Reverse

—Search Reszults
Status:

Time: Dame

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-185

List window

Signal Name(s) showsalist of theitems currently selected inthe List window. Theseitems
are the subject of the search. The search is based on these options:

» Search Type: Any Transition
Searches for any transition in the selected signal(s).

» Search Type: Rising Edge
Searches for rising edges in the selected signal(s).

» Search Type: Falling Edge
Searches for falling edges in the selected signal (s).

» Search Type: Search for Signal Value
Searches for the value specified in the Value field; the value should be formatted using
VHDL or Verilog numbering conventions; see "Numbering conventions' (CR-291).

P> Note: If your signal values are displayed in binary radix, see" Searching for binary signal
valuesin the GUI" (CR-300) for details on how signal values are mapped between a binary
radix and std_logic.

* Search Type: Search for Expression
Searches for the expression specified in the Expression field evaluating to a boolean
true. Activatesthe Builder button so you can use "The GUI Expression Builder" (8-275)
if desired.
The expression can involve more than one signal but is limited to signalslogged in the
List window. Expressionscan include constants, variables, and DO files. If no expression

is specified, the search will give an error. See "Expression syntax” (CR-302) for more
information.

 Search Options: Match Count
Indicates the number of transitions or matches to search.Y ou can search for the n-th
transition or the n-th match on value.

* Search Options: Ignore Glitches
Ignores zero width glitchesin VHDL signals and Verilog nets.

The Sear ch Results are indicated at the bottom of the dialog box.

8-186 ModelSim Graphic Interface ModelSim SE User’s Manual

List window

Setting time markers in the List window

Select Markers> Add Marker (List window) to tag the selected list line with amarker.
The marker isindicated by athin box surrounding the marked line. The selected line uses
the sameindicator, but its values are highlighted. Delete markers by first selecting the
marked line, then selecting Markers > Delete Marker .

Finding a marker

B list M= 3
Eile Edit | Markers Prop Window

i
his

Fl

Add b arker Jopdane —

Delete Marker Mopleshib —

“““““ ltu:-p.-"paddr — fMopdpdata = Atopdzaddr — .-"tu:ud
dopdazdy —

] N000a0000000001 0 0 1 00000001

0000000000007 0 0 1 000000070 <=

10] ooOaaa00000a00c1 0 0 1 00000001 222

305 +0 101 1 00000007 00000000000000071 0 1 1 Q0000007 000qaa;

320 +0 0071 1 00000001 0000000000000001 O 1 1 00000001 000000

340 +0 101 1 00000001 0000000000000001 O 1 1 00000001 000000

360 +0 0071 1 00000001 0000000000000001 O 1 1 00000001 000000

380 +0 101 1 000000071 0000000000000007 0 1 1 00000001 000000

385 +0 101 1 000000071 00000000000000071 0 1 0 00000001 0000001

330 +0 101 0 00000001 0000000000000001 O 1 0 00000001 000000
400 +0 001 0 00000001 0000000000000001 O 1 O 00000007 DDDDDDL:J

| | 2]

Default datazet: sim

Choose aspecific marked lineto view by selecting M ar ker s> Goto. The marker name (on
the Goto list) corresponds to the simulation time of the selected line.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-187

List window

List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key

Action

<arrow up>

scroll listing up (selects and highlights the line above the
currently selected line)

<arrow down>

scroll listing down (selects and highlights the line below the
currently selected line)

<arrow left>

scroll listing left

<arrow right>

scroll listing right

<page up> scroll listing up by page

<page down> scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signa

<shift-tab> searchesbackward (up) to the previoustransition on the sel ected

signal (does not function on HP workstations)

<control-f> Windows
<control-s> UNIX

opens the find dialog box; finds the specified item label within
thelist display

8-188 ModelSim Graphic Interface

ModelSim SE User’s Manual

List window

Saving List window data to a file

Select File> WriteList (format) (List window) to save the List window data in one of

these formats:
* tabular

writes atext file that looks like the window listing

s delta / /b

n
0
0 +1
2

* event

/cin /sum / cout
U X U
0 X U
0 X U

writes atext file containing transitions during simulation

@ +0
/a X
/b X
/cin U
/sum X
/cout U
@ +1
/a0
/b 1
/cin 0

* TSS|

writes afilein standard TSSI format; see also, the write tssi command (CR-283)

4 00000000000000010000000010
100 00000001000000010000000010

Y ou can also save List window output using the writelist command (CR-279).

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-189

Process window

Process window

The Process window displays alist of processes. If View > Activeis selected then all
processes schedul ed to run during the current simul ation cycle are displayed along with the
pathname of the instance in which each processislocated. If View > In Region is selected
then only the processes in the currently selected region are displayed.

Each HDL item in the scrollbox is
preceded by one of the following
indicators;

<Ready>

Indicates that the processis
scheduled to be executed within
the current deltatime.

<Wait>

Indicates that the processis
waiting for aVHDL signal or
Verilog net or variable to change

or for a specified time-out period.

<Done>
Indicates that the process has
executed a VHDL wait statement

E PIOCE:E !EI

Eile Edit “iew ‘“wWindow
El

=

4| Il-

zim: ftopic

without a time-out or a sensitivity list. The process will not restart during the current

simulation run.

If you select a"Ready" process, it will be executed next by the simulator.

When you click on a process in the Process window, the following windows are updated:

Window updated

Result

Structure window (8-210)

shows the region in which the process is located

Variables window (8-213)

shows the VHDL variables and Verilog register
variablesin the process

Source window (8-201)

shows the associated source code

Dataflow window (8-171)

shows the process, the signals, nets, and registers the
process reads, and the signals, nets, and registers
driven by the process

Source window (8-201)

shows the signals, nets, and registers declared in the
region in which the processislocated

8-190 ModelSim Graphic Interface

ModelSim SE User’s Manual

Process window

The Process window menu bar

The following menu commands are available from the Process window menu bar.

File menu

Save As

save the process tree to atext file viewable with the ModelSm
notepad (CR-141)

Environment

Follow Context Selection: update the window based on the
selection in the Structure window (8-210); Fix to Current
Context: maintain the current view, do not update

Close

close this copy of the Process window; you can create a new
window with View > New from the"The Main window menu bar"
(8-160)

Edit menu

Copy

copy the selected process' full name

Sort

sort the processlist in either ascending, descending, or declaration
order

Select All

select all processesin the Process window

Unselect All

deselect all processesin the Process window

Find

find the specified text string within the process list; choose the
Status (ready, wait or done), the Process label, or the path to
search, and the search direction: down or up

View menu

Active

display al the processes that are scheduled to run during the
current simulation cycle

In Region

display any processesthat exist intheregion that is selected inthe
Structure window

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-191

Process window

Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile all open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon al windows

Customize use the The Button Adder (8-269) to define and add a button to

either the tool or status bar of the specified window

<window_name>

list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)

8-192 ModelSim Graphic Interface

ModelSim SE User’s Manual

Signals window

Signals window

The Signals window is divided into two window panes. The left pane shows the names of
HDL itemsin the current region (which is selected in the Structure window). Theright pane
showsthevalues of the associated HDL items at the end of the current run. The dataiin this
paneis similar to that shown in the Wave window (8-216), except that the values do not
change dynamically with movement of the selected Wave window cursor.

Y ou can double-click asignal and it will highlight that signal in the Source window
(opening a Source window if one is not open already).

Horizontal scroll barsfor each window pane allow scrolling to theright or Ieft in each pane
individually. The vertical scroll bar will scroll both panes together.

The HDL items can be sorted in ascending, descending, or declaration order.

HDL items you can view

Oneentry is created for each of the
following VHDL and Verilog items
within the design:

VHDL items
signals

Verilog items

nets, register variables, named events,
and module parameters

Virtual items

(indicated by an orange diamond icon)
virtual signalsand virtual functions; see
"Virtual signals" (7-144) for more
information

The names of any VHDL composite

@ signals [sim] =l

File Edit “iew ‘wWindow

clk
pr
pstrb
pray
paddr
pdata

Ll

=== =

==

zim: ftop

types (arrays and record types) are shown in a hierarchical fashion.

Hierarchy also appliesto Verilog nets and vector memories. (Verilog vector registers do
not have hierarchy because they are not internally represented as arrays.)

Hierarchy isindicated in typical Model Sm fashion with plus (expandable), minus
(expanded), and blank (single level) boxes.

See "Tree window hierarchical view" (8-155) for more information.

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-193

Signals window

The Signals window menu bar

The following menu commands are available from the Signals window menu bar.

File menu

Save As

save the signalstree to atext file viewable with the ModelSm
notepad (CR-141)

Environment

alow the window contents to change based on the current
environment; or, fix to a specific context or dataset

Close

close this copy of the Signals window; you can create a new
window with View > New from the"The Main window menu bar"
(8-160)

Edit menu

Copy

copy the current selection in the Signals window

Sort

sort thesignalstreein either ascending, descending, or declaration
order

Select All

select all itemsin the Signals window

Unselect All

unselect all itemsin the Signals window

Expand Selected

expand the hierarchy of the selected items

Collapse Selected

collapse the hierarchy of the selected items

Expand All

expand the hierarchy of all items that can be expanded

Collapse All

collapse the hierarchy of all expanded items

Force

apply stimulusto the specified Signal Name; specify Value, Kind
(Freeze/Drive/Deposit), Delay, and Cancel; see also the force
command (CR-121)

Noforce

remove the effect of any active for ce command (CR-121) on the
selected HDL item; see also the nofor ce command (CR-138)

Clock

define clock signals by Signal Name, Period, Duty Cycle, Offset,
and whether the first edgeisrising or falling, see"Defining clock
signals’ (8-200)

Justify Values

justify values to the left or right margins of the window pane

Find

find the specified text string within the Signals window; choose
the Name or Value field to search and the search direction: down
or up; see also the sear ch command (CR-178)

8-194 ModelSim Graphic Interface

ModelSim SE User’s Manual

Signals window

View menu
Wave/List/Log placethe Selected Signals, Signalsin Region, or Signalsin Design
in the Wave window (8-216), List window (8-175), or logfile
Filter choose the port and signal types to view (Input Ports, Output
Ports, InOut Ports and Internal Signals) in the Signals window

Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon al but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to

either the tool or status bar of the specified window

<window_name>

list of the currently open windows; select awindow nameto
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) inthe Main
window, or use the view command (CR-226)

Selecting HDL item types to view

The View > Filter menu selection allows you to specify which
HDL items are shown in the Signals window. Multiple options
can be selected.

|nput Parts
Output Parts
[nOut Forts
Internal Signals

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-195

Signals window

Forcing signal and net values

The Edit > For ce command displays a dialog box that allows you to apply stimulus to the
selected signal or net. Multiple signals can be selected and forced; the force dialog box
remains open until al of the signals are either forced, skipped, or you close the dialog box.
To cancel aforce command, use the Edit > NoFor ce command. See also the force
command (CR-121).

Force Selected Signal

Signal Mame: [

"-F'aluezll:l

Kind
’7 % Freeze © Dive € Deposit

Delay Fm:IEI
Cancel Mter:l

ok | LCancel

The For ce dialog box includes these options:

 Signal Name
Specifies the signal or net for the applied stimulus.

» Value
Initially displays the current value, which can be changed by entering anew value into
the field. A value can be specified in radixes other than decimal by using the form (for
VHDL and Verilog, respectively):

base#val ue -or- b|o|d|h’value

16#EE or h’'EE, for example, specifies the hexadecimal value EE.

» Kind: Freeze
Freezesthesignal or net at the specified value until itisforced again or until it isunforced
with anofor ce command (CR-138).

Freezeisthe default for Verilog nets and unresolved VHDL signalsand Driveisthe
default for resolved signals.

If you prefer Freeze as the default for resolved and unresolved signals, you can change
the default force kind in the modelsim.ini file; see "Projects and system initialization” (2-
25).

» Kind: Drive
Attaches a driver to the signal and drives the specified value until the signal or net is

forced again or until it isunforced with anofor ce command (CR-138). Thisvalueisillega
for unresolved VHDL signals.

8-196 ModelSim Graphic Interface ModelSim SE User’s Manual

Signals window

» Kind: Deposit
Setsthesignal or net to the specified value. The value remains until there isasubsequent
driver transaction, or until the signal or net isforced again, or until it is unforced with a
nofor ce command (CR-138).

» Delay For
Allows you to specify how many time units from the current time the stimulusis to be
applied.

» Cancel After
Cancels the for ce command (CR-121) after the specified period of simulation time.

« OK
When you click the OK button, afor ce command (CR-121) isissued with the parameters
you have set, and is echoed in the Main window. If more than one signal is selected to
force, the next signal down appearsin the dialog box each timethe OK buttonis selected.
Unique force parameters can be set for each signal.

Adding HDL items to the Wave and List windows or a logfile

Before adding items to the List or Wave window you may want to set the window display
properties (see "Setting List window display properties' (8-178)). Once display properties
have been set, you can add items to the windows or logfile in several ways.

Adding items with the Signals window View menu

Use the View menu with either the
Wave, List, or Log selectiontoadd HDL
items to the Wave window (8-216), List
window (8-175), or alogdfile, respectively.

Thelogfileiswritten asan archivefilein Log b | Selected Signals
binary format and is used to drive the _ Signalz in Beqgion
List and Wave windows at a later time. Filter ¥ | signals in Design

Oncesignalsare added to thelogfile they
cannot be removed. If you begin a
simulation by invoking vsim (CR-258) with the -view <logfile_name> option, ModelSm
reads the logfile to drive the Wave and List windows.

Choose one of the following options (M odel Sm opens the target window for you):

» Selected Signal
Lists only the item(s) selected in the Signals window.

 Signalsin Region
Listsall itemsin theregion that is selected in the Structure window.

 Signalsin Design
Listsall itemsin the design.
Adding items from the Main window command line

Another way to add items to the Wave or List window or the logfile isto enter the one of
thefollowing commandsat the VSIM prompt (choose either the add list (CR-28), add wave
(CR-37), or log (CR-131) command):

add list | add wave | |og <itemname> <item name>

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-197

Signals window

Y ou can add all theitemsin the current region with this command:

add list | add wave | log *

Or add dl theitemsin the design with:

add list | add wave | log -r /*

If the target window (Wave or List) is closed, Model Sm opens it when you when you
invoke the command.
Finding HDL items in the Signals window

Tofind the specified text string within the Signalswindow, choosethe Nameor Valuefield
to search and the search direction: Down or Up.

Find in _signals =] |
Find: | Find Mext
Field Direction Tlaae
* Mame = Down
= Yalue " Up

Y ou can also do aquick find from the keyboard. When the Signals window is active, each
time you type aletter the signal selector (highlight) will move to the next signal whose
name begins with that letter.

Setting signal breakpoints

Y ou can set signal breakpoints (a.k.a., when breakpoints; see the when command (CR-273)
for more details) via a context menu in the Signal window. When statements instruct
Model Smto perform actions when the specified conditions are met. For example, you can
break on asignal value or at a specific simulator time (see "Time-based breakpoints' (CR-
275)) . When a breakpoint is hit, a message appears in the transcript window about which
signal caused the breakpoint.

To access the breakpoint commands, select asignal and then click your right mouse button
(2nd button in Windows; 3rd button in UNIX). To set a breakpoint on a selected signal,
select Add Breakpoint from the context menu. To remove a breakpoint from a selected
signal, select Remove Signal Breakpoint. Toremoveall breakpointsin the current region,
select Remove All Signal Breakpoints. To seealist of currently set breakpoints, select
Show Breakpoints.

8-198 ModelSim Graphic Interface ModelSim SE User’s Manual

Signals window

The Edit Breakpoint command opens the Edit When dialog box.

Edit ‘when...

Condition: | i E
Opt. Label:| /top/zdata

echo "Break on Atopdsdata [stop

Command(s]:

ok Cancel

The Edit When dialog includes the following options:

» Condition
The condition(s) to be met for the specified command(s) to be executed. Required. See
the when command (Cr-273) for more information on creating the condition statement.

* Opt. Label
An optional text label for the when statement.

e Command(s)
The command(s) to be executed when the specified condition is met. Any ModelSim or
Tcl command or series of commands are valid with one exception—the run command
(CR-176) cannot be used.

The Edit All Breakpoints command opens the Breakpoints dialog box. See "Setting file-
line breakpoints' (8-205) for details.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-199

Signals window

Defining clock signals
Select Edit > Clock to define clock signals by Name, Period, Duty Cycle, Offset, and
whether the first rising edgeisrising or falling. Y ou can also specify asimulation period
after which the clock definition should be cancelled.

Define Clock

Clock Hame: | Sitis|3
foset:lﬂ First Edge
Dut_v:IEEI ' Rising
Period:| 100
Erno " Faling
Eancel:l
Logic ¥alues
(High:|" Low:[0
ok | Cancel |

For clock signals starting on the rising edge, the definition for Period, Offset, and Duty
Cycleisasfollows:

Period

High Value
P

Low Value

Offset | High Time |

Duty Cycle = High Time/Period

If the signal typeisstd logic, std_ulogic, bit, verilog wire, verilog net, or any other logic
type where 1 and O are valid, then 1 is the default High Value and 0 is the default Low
Value. For other signal types, you will need to specify aHigh Value and aLow Value for

the clock.

8-200 ModelSim Graphic Interface ModelSim SE User’s Manual

Source window

Source window

The Source window allows you to view and edit your HDL source code. When you first
load a design, the source file will display automatically if the Source window is open.
Alternatively, you can select anitem in the Structure window (s8-210) or usethe File> Open
command (Source window) to add afile to the window. (Y our source code can remain
hidden if you wish; see " Source code security and -nodebug" (E-433)).

The window is divided into two panes—the left-hand pane contains line numbers, and the
right-hand pane contains the source file. The pathname of the source fileisindicated in the
header of the Source window.

As shown in the picture below, you may also see the following in the left-hand pane:
 Green line numbers— denote executable lines
* Blue arrow—denotes a process that you have selected in the Process window (8-190)

* Red circles—denote file-line breakpoints; hollow circles denote breakpoints that are
currently disabled

B source - counter.vhd

I [=] E3

File Edit Ohbject Options afindow
=EE tBREH 6D
Z4 end increment ; d
zE begin
Z5
z7 [nd =% s
zE processiclk, reset)
29 begin
—l if (reset = '1') then
if reset'event then
L 2 count <= f{others == '0') after tpd reset to_ count;
33 end if;
glsif clk'event and (clk = 'l') then
ik count <= increment (count) after tpd clk to count;
36 end if;
end process; j
«| |2

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-201

Source window

The Source window menu bar

The following menu commands are avail able from the Source window menu bar.

File menu
New edit anew (VHDL, Verilog or Other) sourcefile
Open select a source file to open
Use Source specify an aternative file to use for the current sourcefile; this

alternative source mapping exists for the current simulation only

Source Directory

addtoalist of directories(the SourceDir variablein modelsim.tcl)
to search for source files

Properties list avariety of information about the sourcefile; for example, file
type, file size, file modification date

Save save the current sourcefile

Save As save the current source file with a different name

Compile compile HDL source files

Close close this copy of the Source window; you can create a new
window with View > New from the"The Main window menu bar"
(8-160)

Edit menu

To edit a source file, make sure the Read Only option in the Source Options dialog box is
not selected (use the Edit > read only (Source menu) selection).

<editing option>

basic editing optionsinclude: Undo, Cut, Copy, Paste, Select All,
and Unselect All; see "Mouse and keyboard shortcutsin the
Transcript and Source windows' (8-168)

Find find the specified text string or regular expression within the
source file; thereis an option to match case or search backwards

Find Next find the next occurrence of a string specified with the Find
command

Replace find the specified text string or regular expression and replace it

with the specified text string or regular expression

Previous Coverage
Miss

when simulating with Code Coverage (10-291), finds the previous
line of code that was not used in the simulation

Next Coverage Miss

when simulating with Code Coverage (10-291), finds the next line
of code that was not used in the simulation

Breakpoints

add, edit, or delete file-line and signal breakpoints; see " Setting
file-line breakpoints" (8-205)

8-202 ModelSim Graphic Interface

ModelSim SE User’s Manual

Source window

read only

toggle the read-only status of the current source file

Object menu

Describe display information about the selected HDL item; same as the
describe command (CR-100); the item nameis shown in the title
bar

Examine display the current value of the selected HDL item; same as the

examine (CR-115) command; the item name is shown in the title
bar

Options menu

Colorize Source

colorize key words, variables, and comments

Highlight
Executable Lines

highlight the line numbers of executable lines

Middle Mouse enable/disable pasting by pressing the middle-mouse button
Button Paste

Verilog specify Verilog-style colorizing

Highlighting

VHDL Highlighting

specify VHDL-style colorizing

Freeze File maintain the same source file in the Source window (useful when
you have two Source windows open; one can be updated from the
Structure window (8-210), the other frozen)

Freeze View disable updating the source view from the

Process window (8-190)

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon al but the Main window

Icon All icon all windows

Deicon All deicon al windows

Customize use the The Button Adder (8-269) to define and add a button to

either the tool or status bar of the specified window

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-203

Source window

<window_name>

list of the currently open windows; select awindow nameto
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) inthe Main
window, or use the view command (CR-226)

The Source window toolbar

Buttons on the Source window toolbar give you quick accessto these M odel S m commands

and functions.

B source - proc.¥

Eile Edit Object Optionz afindow

2zl s BEEMA BT

N
@ N ¢ & 8
NS 2 SE
IOEIRN ©
) Q >
N2 2 5)0
L & \4
N R &

"\\(\

X
> Q
é\Q,Q R 04
(4
&

Source window toolbar buttons

Button

Menu equivalent

Other equivalents

Compile Source File
@ open the Compile HDL Source
File dialog

File> Compile

use vcom or vlog command at the
VSIM prompt

See; veom (CR-217) or
vlog (CR-250) command

copy the selected text within the
& Source window

Open SourceFile File> Open select an HDL itemin the
~ open the Open File dialog box Structure window, the associated
[=- (you can open any text file for source fileisloaded into the
editing in the Source window) Source window
Save Source File File> Save none
] gvethefilein the Source
0! window
Cut Edit > Cut see: "Mouse and keyboard
.;Ii{- cut the selected text within the shortcuts in the Transcript and
Source window Source windows' (8-168)
Copy Edit > Copy see: "Mouse and keyboard

shortcuts in the Transcript and
Source windows' (8-168)

8-204 ModelSim Graphic Interface

ModelSim SE User’s Manual

Source window

Source window toolbar buttons

Button Menu equivalent Other equivalents
Paste Edit > Paste see: "Mouse and keyboard
E pastethe copied text to the cursor shortcuts in the Transcript and
location Source windows' (8-168)
Find Edit > Find <control -f> (Windows)
find the specified text string <control -s> (UNIX)
ﬂ withinthe sourcefile; match case
option
Step Main window: use step command at the VSIM
F} steps the current simulation to Run > Step prompt
the next HDL statement
see: step (CR-187) command
Step Over Main window: usethestep -over command at the
ﬁl HDL statements areexecuted but Run > Step -Over VSIM prompt
treated as simple statements

instead of entered and traced line
by line

see: step (CR-187) command

Setting file-line breakpoints

Y ou can set breakpoints three different ways:

* Using the command line; see the bp (CR-48) (breakpoint) command for details

« Using your mouse in the Source window
 Using the Edit > Breakpoints menu selection

Setting breakpoints with your mouse

To set abreakpoint with your mouse, click on a green line number at the left side of the
window (breakpoints can be set only on executable lines). The breakpoints are toggles —
click once to create the colored dot; click again to disable or enable the breakpoint. To
delete the breakpoint completely, click the colored dot with your right mouse button, and

select Remove Breakpoint.

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-205

Source window

Setting breakpoints with the Edit > Breakpoints command
Selecting Edit > Breakpoints (Source window) opens the dialog box shown below.

Breakpoint(z]...
I E - /odelsimBE_sedesamples/mivedHDL proc. v 23 =
[bpE:/modelxim55_ze/examples/mivedHDLproc. v 43 Add BP
¥ when -labsl 11 -cond /topedata {echo "Break on Aopdedata’ ; stop) Audd when
¥ when -label 15 -cond Aopdenw fecho "Break on foplsna' ; stop} Edit S elected
[T when -label 26 -cond /top/pdread/a {echo "Break on Aop/piieadsa’
Delete Selected

| Delete All BP

1] | B
Close

The Breakpoints dialog box allows you to create and manage both file-line and signal
breakpoints (a.k.a., when breakpoints). For details on signal breakpoints, see " Setting
signal breakpoints" (8-198) and the when command (CR-273).

8-206 ModelSim Graphic Interface ModelSim SE User’s Manual

Source window

Y ou can enable and disable existing breakpoints by checking or unchecking the box next
to the breakpoint’s name. To add a new file-line breakpoint, select Add BP (or Edit
Selected for an existing file-line breakpoint).

Add/Edit Breakpaoint...

File Hame: |
Line #:

Condition:

Instance:

Command(z]:

(]S LCancel

The Add/Edit Breakpoint dialog box includes the following options:

» FileName
Thefile namein which you want to set the breakpoint. Required. The button next to this
field allows you to browse to select afile.

e Line#
The line number on which you want to set the breakpoint. Required.

+ Condition
The condition(s) that determine whether the breakpoint is hit. See the bp command (CRr-
48) for more information on creating the condition statement.

* Instance
Specify aregion in which the breakpoint should be set. If left blank, the breakpoint
affects every instance in the design.

e Command(s)
One or more commands that you want executed at the breakpoint.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-207

Source window

Editing the source file in the Source window

Several toolbar buttons (shown above), mouse actions, and special keystrokes can be used
to edit the source file in the Source window. See "Mouse and keyboard shortcutsin the
Transcript and Source windows" (8-168) for alist of mouse and keyboard editing options.

Checking HDL item values and descriptions

There are two quick methods to determine the value and description of an HDL item
displayed in the Source window:

* select an item, then chose Object > Examine or Object > Description from the Source
window menu

« select an item with the right mouse button to see an examine pop-up (select "now" to
examine the current simulation timein VHDL code)

Y ou can also invoke the examine (CR-115) and/or describe (CR-100) command on the
command line or in a macro.

Finding and replacing in the Source window

The Find dialog box allowsyou to find and replace text strings or regular expressionsin the
Source window. Select Edit > Find or Edit > Replace to bring up the Find dialog box. If
you select Edit > Find, the Replace field is absent from the dialog.

Enter the valueto
search for in the Find in: source -
Find field. If youare
doing a replace, Find: | Find Mext
enter the appropriate ——
valueintheReplace
field. Optionally
specify whether the
entries are case
sensitive and
whether to search
backwards from the current cursor location. Check the Regular expression checkbox if
you are using regular expressions.

[T Caze sensitive [Search backwards Cloze

[Regular expression

8-208 ModelSim Graphic Interface ModelSim SE User’s Manual

Source window

Setting tab stops in the Source window

Y ou can set tab stopsin the Source window by selecting the Main window Options > Edit
Pr efer ences command. Follow these steps:

1 Select the By Namestab.
2 Select Sourcein the first column, and then select the "tabs" item in the second column.
3 Pressthe Change Value button.

4 Inthedialog that appears, enter asingle number "n", which sets atab stop every n
characters (where a character width isthe width of the "8" character).

or

Enter alist of screen distances for the tab stops. For instance,
214977 105 133 161 189 217 245 273 301 329 357 385 413 441 469

The number 21 or 21p means 21 pixels, the number 3c meansthree centimeters; the number
1i means one inch.

A Important: Donot usequotesor bracesinthelist (i.e.,"21 49" or {21 49}). Thiswill cause
the GUI to hang.

Y ou can also set tab stops using the Pref Source(tabs) Tcl preference variable.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-209

Structure window

Structure window

P Note: In ModelSim versions 5.5 and later the information contained in the Structure
window is shown in the structure pages of the Main window Workspace (8-158). The
Structure window will not display by default. Y ou can display the Structure window at any
time by selecting View > Structure (Main window). The discussion below appliesto both
the Structure window and the structure pages in the Workspace.

The Structure window providesahierarchical view of the structure of your design. Anentry
is created by each HDL item within the design. (Y our design structure can remain hidden
if you wish, see " Source code security and -nodebug"” (E-433).)

HDL items you can view

§ struct
ThefollowingHDL itemsfor VHDL 2 "m ki , BI=I E3
and Verilog are represented by File Edit findow

hierarchy within Structure window. M |

[+] .
VHDL items - poproc
o ey

i(g(])c:]l)cated by adark blue square B Package std logic_ ot
component instantiation, generate B Package vl_types
statements, block statements, and B Package std_logic_1164
packages B Package standard

.] B cache: cache
Verilog items — i Function hash
(indicated by alighter blue circle — @ Task update_
icon)

— i Function pick_set
— 0 Task sysread
— 0 Tazk syswnte

modul e instantiations, named forks,
named begins, tasks, and functions

Virtual items — 0 Function get_hit

(indicated by an orange diamond — Il s0: cache_set{only)

icon) — :1: cache_set{only)]

virtual regions; see "Virtual Objects — Il =2 cache_set{orly]
(User-dehned'buses, apd more)" (7- LW 53 cache. setonly] |
144) for more information. -
Y ou can expand and contract the 1| | »

display to view the hierarchical
structure by clicking on the boxes
that contain "+" or "-". Clicking "+"
expands the hierarchy so the sub-elements of that item can be seen. Clicking "-" contracts
the hierarchy.

sim:ftap P

Thefirst line of the Structure window indicates the top-level design unit being simulated.
By default, thisisthe only level of the hierarchy that is expanded upon opening the
Structure window.

8-210 ModelSim Graphic Interface ModelSim SE User’s Manual

Structure window

Instance name components in the Structure window
An instance name displayed in the Structure window consists of the following parts:
* instantiation label

Indicates the label assigned to

[cach tonl
the component or module I_. s0: cache_set{onk)
instance in the instantiation / \
statement.

. et (architecture)
instantiation label entity or module
« entity or module

Indicates the name of the
entity or module that has been instantiated.

« architecture
Indicates the name of the architecture associated with the entity (not present for Verilog).

When you select aregion in the Structure window, it becomes the current region and is
highlighted; the Source window (8-201) and Signals window (8-193) change dynamically to
reflect theinformation for that region. Thisfeature provides auseful method for finding the
source code for asel ected region because the system keepstrack of the pathname wherethe
source is located and displays it automatically, without the need for you to provide the
pathname.

Also, when you select aregion in the Structure window, the Process window (8-190) is
updated if In Region isselected in that window; the Process window will in turn update the
Variables window (8-213).

The Structure window menu bar

The following menu commands are available from the Structure window menu bar.

File menu
Save As save the structure tree to atext file viewable with the ModelSm
notepad (CR-141)
Environment allow the window contents to change when the active dataset is
changed; or, fix to a specific dataset
Close close this copy of the Structure window; you can create a new
window with View > New from the"The Main window menu bar"
(8-160)
Edit menu
Copy copy the current selection in the Structure window
Sort sort the structure tree in either ascending, descending, or
declaration order
Expand Selected expand the hierarchy of the selected item
Collapse Selected collapse the hierarchy of the selected item

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-211

Structure window

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Find find the specified text string withinthe structuretree; see"Finding
itemsin the Structure window" (8-212)

Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon al but the Main window

Icon All icon al windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)

Finding items in the Structure window

The Find dialog box allows you to search for text strings in the Structure window. Select
Edit > Find (Structure window) to bring up the Find dialog box.

Enter the value to

search for in the Find Find in . structure
field. Specify whether
you are looking for an Find: | Find Mext
Instance, . L
Entity/M odule, or Field———— —Direction Cloze
Architecture. Also ' |nstance
specify which direction _ & Down
to search. Check Auto " Entity/Module U
Wrap to have the] s
search continue at the ® Cririzere W futa wiap

top of the window.

8-212 ModelSim Graphic Interface ModelSim SE User’s Manual

Variables window

Variables window

The Variables window is divided into two window panes. The left pane lists the names of
HDL items within the current process. The right pane lists the current value(s) associated
with each name. The pathname of the current process is displayed at the bottom of the
window. (Theinternal variables of your design can remain hidden if you wish, see " Source
code security and -nodebug"” (E-433).)

HDL items you can view

E variables M=

The following HDL itemsfor
VHDL and Verilog are viewable
within the Variables window.

File Edit “iew wWindow

VHDL items

constants, generics, and variables

Verilog items

register variables]
: proy_r
The names of any VHDL composite

types (arrays and record types) are
shown in a hierarchical fashion.
Hierarchy also appliesto Verilog
vector memories. (Verilog vector
registers do not have hierarchy
because they are not internally
represented as arrays.) Hierarchy is
indicated in typical ModelSm
fashion with plus (expandable) and I
minus (expanded). See "Tree #IMPLICIT ‘W RE [wen[3])
window hierarchical view" (8-155)

for more information.

¥ oen

3 e

5 mn_rne] £

To changethevalue of aVHDL variable, constant, or generic or aVerilog register variable,
move the pointer to the desired name and click to highlight the selection. Select Edit >
Change (Variables window) to bring up a dialog box that lets you specify a new value.
Note that "Variable Name" isaterm that is used loosely in this caseto signify VHDL
constants and generics aswell as VHDL and Verilog register variables. Y ou can enter any
value that isvalid for the variable. An array value must be specified as a string (without
surrounding quotation marks). To modify the valuesin arecord, you need to change each
field separately.

Click on aprocess in the Process window to change the Variables window.

ModelSim SE User's Manual ModelSim Graphic Interface 8-213

Variables window

The Variables window menu bar

The following menu commands are avail able from the Variables window menu bar.

File menu

Save As save the variables tree to a text file viewable with the ModelSm
notepad (CR-141)

Environment Follow Process Selection: update the window based on the
selection in the Process window (8-190); Fix to Current Process:
maintain the current view, do not update

Close close this copy of the Variables window; you can create a new
window with View > New from the"The Main window menu bar"
(8-160)

Edit menu

Copy copy the selected items in the Variables window

Sort sort the variables tree in either ascending, descending, or
declaration order

Select All select all itemsin the Variables window

Unselect All deselect all itemsin the Variables window

Expand Selected expand the hierarchy of the selected item

Collapse Selected collapse the hierarchy of the selected item

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Change change the value of the selected HDL item

Justify Values justify values to the left or right margins of the window pane

Find find the specified text string within the variables tree; choose the
Name or Value field to search and the search direction: Down or
Up

View menu

Wave/List/Log place the Selected Variables or Variablesin Region in the Wave

window (8-216), List window (8-175), or logfile

8-214 ModelSim Graphic Interface

ModelSim SE User’s Manual

Variables window

Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile all open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon al windows

Customize use the The Button Adder (8-269) to define and add a button to

either the tool or status bar of the specified window

<window_name>

list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-215

Wave window

Wave window
The Wavewindow, likethe List window, allowsyou to view theresults of your simulation.
Inthe Wave window, however, you can seetheresultsasHDL waveformsand their values.

The Wave window is divided into a number of window panes. All window panesin the
Wave window can be resized by clicking and dragging the bar between any two panes.

===t wave - default = K

File Edit Curgor Zoom Compare Bookmark Format wWindow

FHE | FBB ! QdR W QQQ@ | F | ELEIEIE | fefesfn]

0 nsto 873 ns A

Pathname pane

The pathname pane displays signal pathnames. Signals
can be displayed with full pathnames, as shown here, or
with only the leaf element displayed. Y ou can increase
the size of the pane by clicking and dragging on theright
border. The selected signal is highlighted.

Thewhite bar along the left margin indicates the sel ected
dataset (see Splitting Wave window panes (8-228)).

8-216 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

Values pane

A valuespanedisplaysthevalues of thedisplayed signals.

Theradix for each signal can be symbolic, binary, octal,
decimal, unsigned, hexadecimal, ASCII, or default. The
default radix can be set by selecting Options >
Simulation (Main window) (see " Setting default
simulation options" (8-265)).

The datain this paneis similar to that shown in the
Signals window (8-193), except that the values change
dynamically whenever a cursor in the waveform pane
(below) is moved.

values pane

Waveform pane

The waveform pane displays the waveforms that correspond to the displayed signal
pathnames. It also displays up to 20 cursors. Signal values can be displayed in analog step,
analog interpolated, analog backstep, literal, logic, and event formats. Each signal can be
formatted individually. The default format islogic.

The window pane below the pathnames window pane and to the left of the cursor panesis
unused at thistime.

|—|_I_|_|_|_|_I_|_I_|—I_I_I_I_I_I_I_I'
I I I S N I —
I = =
I = =

| T 0000000 [

i waveform pane

cursors

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-217

Wave window

Cursor panes

There are two cursor panes, as shown below. The left pane shows the time value for each
cursor. The selected cursor’s valueis highlighted. The right pane shows the absolute time
value for each cursor and relative time between cursors. Up to 20 cursors can be displayed.

two cursor panes

HDL items you can view

VHDL items

(indicated by a dark blue square)
signals and process variables

Verilog items

(indicated by alight blue circle)
nets, register variables, and named
events

Virtual items

(indicated by an orange diamond)
virtual signals, buses, and functions,
see; "Virtual Objects (User-defined
buses, and more)" (7-144) for more
information

Comparison items
(indicated by ayellow triangle)

comparison region and comparison signals; see Chapter 11 - Waveform Comparison for

more information

Note: Constants, generics, and parameters are not viewable in the List or Wave windows.

The datain the item values pane is very similar to the Signals window, except that the
values change dynamically whenever a cursor in the waveform pane is moved.

At the bottom of the waveform pane you can see atime line, tick marks, and a readout of
each cursor’ s position. Asyou click and drag to move acursor, the time value at the cursor

location is updated at the bottom of the cursor.

Y ou can resize the window panes by clicking on the bar between them and dragging the bar

to anew location.

8-218 ModelSim Graphic Interface

ModelSim SE User’s Manual

Wave window

Waveform and signal-name formatting are easily changed via the Format menu (8-223).
Y ou can reuse any formatting changes you make by saving aWave window format file, see
"Adding items with a Wave window format file" (8-219).

Adding HDL items in the Wave window

Before adding items to the Wave window you may want to set the window display
properties (see " Setting Wave window display properties’ (8-235)). Y ou can add itemsto
the Wave window in several ways.

Adding items from the Signals window with drag and drop

Y ou can drag and drop itemsinto the Wave window fromthe List, Process, Signals, Source,
Structure, or Variables window. Select the items in the first window, then drop them into
the Wave window. Depending on what you select, all itemsor any portion of the design can
be added.

Adding items from the Main window command line
To add specific HDL itemsto the window, enter (separate the item names with a space):

add wave <item nanme> <item nanme>

You can add all theitems in the current region with this command:
add wave *
Or add dl theitemsin the design with:

add wave -r /*

Adding items with a Wave window format file

To use aWave window format file you must first save aformat file for the design you are
simulating. Follow these steps:

1 Add theitemsyou want in the Wave window with any method shown above.

2 Edit and format the items, see "Editing and formatting HDL itemsin the Wave window" (s-
230) to create the view you want .

3 Savetheformat to afile by selecting File > Save For mat (Wave window).
To use the format file, start with a blank Wave window and run the DO file in one of two
ways:
* Invoke the do command (CR-104) from the command line:
do <ny_wave_f or mat >

» Select File> L oad Format (Wave window).

Use Edit > Select All and Edit > Delete to remove the items from the current Wave
window, use the delete command (CR-99) with the wave option, or create a new, blank
Wave window with View > New > Wave (Main window).

P Note: Wave window format files are design-specific; use them only with the design you
were simulating when they were created.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-219

Wave window

The Wave window menu bar

=+t wave - default

File Edit

Curzor Zoom Compare Bookmark Format Window

=1~}

4B

s 2%

o Q@ [FF o ELEIGE | feiesn

The following menu commands and button options are available from the Wave window
menu bar. If you see adotted line at the top of adrop-down menu, you can select it to create
a separate menu window. Many of these commands are also available via a context menu
by clicking your right mouse button within the wave window itself.

File menu

Open Dataset open a dataset

New Divider insert adivider at the current location

New Group setup anew group element — a container for other items that can be
moved, cut and pasted like other objects (NOT CURRENTLY
IMPLEMENTED)

Save Format savethe current Wave window display and signal preferencestoaDO
(macro) file; running the DO file will reformat the Wave window to
match the display asit appeared when the DO file was created

Load Format run a Wave window format (DO) file previously saved with Save
Format

Page Setup setup page for printing; optionsinclude: paper size, margins, label

width, cursors, color, scaling and orientation

Print (Windows
only)

send the contents of the Wave window to a selected printer; options
include:

All signals—print all signals

Current View — print signalsin current view for the time displayed
Selected — print all or current view signals for user-designated time

Print Postscript save or print the waveform display as a Postscript file; options
include;
All Signals—print all signals
Current View — print signalsin current view for the time displayed
Selected — print al or current view signals for user-designated time
New Window split the pathname, values and waveform window panes to provide
Pane room for a new waveset
Remove remove window split and active waveset
Window Pane

8-220 ModelSim Graphic Interface

ModelSim SE User’s Manual

Wave window

Refresh Display clear the Wave window, empty thefile cache, and rebuild the window
from scratch
Close close this copy of the Wave window; you can create a new window
with View > New from "The Main window menu bar" (8-160)
Edit menu
Cut cut the selected item and waveform from the Wave window; see
"Editing and formatting HDL items in the Wave window" (8-230)
Copy copy the selected item and waveform
Paste paste the previously cut or copied item above the currently
selected item
Delete delete the selected item and its waveform
Select All select, or unselect, all item names in the name pane
Unselect All
Combine combine the selected fieldsinto a user-defined bus

Signal Breakpoints

add, edit, and delete signal breakpoints; see " Setting signal
breakpoints" (8-198)

Sort sort the top-level itemsin the name pane; sort with full path name
or viewed name; use ascending or descending order

Find find the specified item label within the pathname pane or the
specified value within the value pane

Search search the waveform display for a specified value, or the next
transition for the selected signal; see: " Searching for item values
in the Wave window" (8-237)

Justify Values justify values to the left or right margins of the window pane

Display Properties

set display propertiesfor signa path length, cursor snap distance,
row margin, and dataset prefixes

Signal Properties

set label, height, color, radix, and format for the sel ected item (use
the Format menu selections below to quickly change individual
properties); also set properties related to waveform comparisons

Cursor menu

Add Cursor add a cursor to the center of the waveform window
Delete Cursor del ete the selected cursor from the window
Goto choose a cursor to go to from alist of current cursors

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-221

Wave window

Zoom menu

Zoom <selection>

selection: Full, In, Out, Last, Areawith mouse button 1, or Range
to change the waveform display range

Compare menu

Start Comparison

start a new comparison

Comparison Wizard

receive step-by-step assistance while creating a waveform
comparison

Run Comparison

compute differences from time zero until the end of the
simulation

End Comparison

stop difference computation and close the currently open
comparison

Add

provides three options:

Compare by Signal - specify signals for comparison
Compare by Region - designate areference region for a
comparison

Clocks - define clocks to be used in a comparison

Options

set options for waveform comparisons

Differences

provides four options:

Clear - clear all differences from the Wave window

Show - display differencesin atext format in the Main window
Transcript

Save - save computation differencesto afile that can be
reloaded later

Write Report - save computation differences to atext file

Rules

provides two options:

Show - display the rules used to set up the waveform
comparison

Save - save rules for waveform comparison to afile

Reload

load saved differences and rulesfiles

Bookmark menu

Add Bookmark

add a new bookmark that saves a specific zoom and scroll range

Edit Bookmarks

edit an existing bookmark

<bookmark_name>

list of currently defined bookmarks

8-222 ModelSim Graphic Interface

ModelSim SE User’s Manual

Wave window

Format menu

Radix set the selected item’ s radix

Format set the waveform format for the selected item — Literal, Logic,
Event, Analog

Color set the color for the selected item from a color palette

Height set the waveform height in pixels for the selected item

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile all open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon al but the Main window

Icon All icon all windows

Deicon All deicon al windows

Customize use the The Button Adder (8-269) to define and add a button to

either the tool or status bar of the specified window

<window_name>

list of the currently open windows; select awindow nameto
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) inthe Main
window, or use the view command (CR-226)

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-223

Wave window

The Wave window toolbar

The Wave window toolbar gives you quick access to these Model Sm commands and
functions.

=+t wave - default

File Edit Curgor Zoom Compare Bookmark Format wWindow

EEE {BR I K o Q@ EF ELEIEEH | jalesn
N X S S < X ~
FES 78 8 §F TITES F $§S¥F o8 98 98
S ¢ 5§55 F5 $ Yy & & TSI @ &8 &L
N] S S IS & 9 & O & S § 9o ¢ g O 9
g8 Fg £& $&8F § S g &g
L T ¥ o vE N & § 8§ § §
S e] g & ~ S RG>
& g NI
@ R § ¢
Q> Q
§

Wave window toolbar buttons

Button

Menu equivalent

Other options

L oad Wave Format
~u run a Wave window format (DO)
L= file previoudy saved with Save
Format

File > Load Format

dowave.do
see do command (CR-104)

Save Wave For mat

saves the current Wave window
display and signal preferencestoa
do (macro) file

AL

File > Save Format

none

Print Waveform

prints a user-selected range of the

% current Wavewindow display toa
printer or afile

File > Print
File > PrintPostscript

none

B copy the selected signal in the
signal-name pane

Cut Edit > Cut right mouse in pathname pane > Cut
.;Ii{- cut the selected signal from the

Wave window

Copy Edit > Copy right mouse in pathname pane >

Copy

8-224 ModelSim Graphic Interface

ModelSim SE User’s Manual

Wave window

Wave window toolbar buttons

Button Menu equivalent Other options

Paste Edit > Paste right mouse in pathname pane >

E paste the copied signal above Paste
another selected signal
Add Cursor Cursor > Add Cursor none

E? add a cursor to the center of the

waveform pane
Delete Cur sor Cursor > Delete Cursor none

delete the selected cursor fromthe
window

Find Previous Transition Edit > Search keyboard: Shift + Tab
—lt locate the previous signal value (Search Reverse)
change for the selected signal left <arguments>
see left command (CR-129)
Find Next Transition Edit > Search keyboard: Tab
locate the next signal value (Search Forward)

change for the selected signal right <arguments>
seeright command (CR-174)
Zoom in 2x Zoom > Zoom In keyboard: i | or +

zoom in by afactor of two from
the current view

right mouse in wave pane > Zoom
In

Zoom out 2x
zoom out by afactor of two from
current view

Zoom > Zoom Out

keyboard: 0 O or -

right mouse in wave pane > Zoom
Out

Zoom area with mouse button 1
use the cursor to outline a zoom
area

Zoom > Zoom Range

keyboard: r or R

right mouse in wave pane > Zoom
Area

Zoom Full

zoom out to view the full range of
the simulation from time 0 to the
current time

Zoom > Zoom Full

keyboard: f or F

right mouse in wave pane > Zoom
Full

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-225

Wave window

Wave window toolbar buttons

Button

Menu equivalent

Other options

default time length

<default_length>

Restart Main menu: restart <arguments>
reloads the design elements and Run > Restart
resets the simulation time to zero, see: restart (CR-170)
with the option of keeping the
current formatting, breakpoints,
and logfile
Run Main menu: use the run command at the VSIM
run the current simulation for the | Run > Run prompt

SEE: run (CR-176)

Continue Run
continue the current simulation
run

Main menu:
Run > Continue

use the run -continue command at
the VSIM prompt

SEe: run (CR-176)

find the last differencein a
waveform comparison

Run -All Main menu: userun -all command at the VSIM
runthe current simulation forever, | Run > Run -All prompt
or until it hits a breakpoint or
specified break event See: run (CR-176), al'so see
"Assertion settings page” (8-266)
Break none none
@ stop the current simulation run
Find First Difference none none
gﬁ find the first differencein a
waveform comparison
Find Previous Difference none none
gt find the previous differencein a
waveform comparison
Find Next Difference none none
i% find the next differencein a
waveform comparison
Find Last Difference none none

8-226 ModelSim Graphic Interface

ModelSim SE User’s Manual

Wave window

Using Dividers

Dividing lines can be placed in the pathname and val ues window panes by selecting File >
New Divider (Wavewindow). Dividersserveasavisual aid to signal debugging, allowing
you to separate signals and waveforms for easier viewing.

Dividing lines can be assigned any name, or no name at all. The default nameis"New
Divider." Intheillustration below, VHDL signalshave been separated from Verilog signals
with aDivider called "Verilog." Notice that the waveforms in the waveform window pane
have been separated by the divider as well.

=+t wave - default

File Edit Curgor Zoom Compare Bookmark Format wWindow

BEHES +BB KX T Q@ | EF | ELEIEH | julesin

‘< [+]« | »
0 ns to 938 ns

M0 ng 3 I
B
A

After you have added a divider, you can moveit, change its properties (hame and size), or
deleteit.

Tomoveadivider — Click and drag the divider to the location you want

To change a divider’s name and size — Click the divider with the right (Windows) or
third (UNIX) mouse button and select Divider Properties from the pop-up menu

Todeleteadivider — Select the divider and either press the <Delete> key on your
keyboard or select Delete from the pop-up menu

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-227

Wave window

Splitting Wave window panes

=+t wave - default

File Edit Curgor Zoom Compare Bookmark Format wWindow

The pathnames, values and waveforms window panes of the Wave window display can be
split to accommodate signals from one or more datasets. Selecting File > New Window
Pane (Wave window) creates a space below the selected waveset and makes the new
window pane the selected pane. (The selected wave window paneisindicated by awhite
bar along the left margin of the pane.)

In theillustration below, the Wave window is split, showing the current active simulation
with the prefix "sim," and a second view-mode dataset, with the prefix "test1.”

For more information on viewing multiple simulations, see Chapter 7 - Datasets (saved
simulations) and virtuals.

==

S sRB LE I §QO@ [F | ELEIEEH | «len

______________ =

_____________________ QoQooo11

=]

testl: Mtopdolk

testl: ftopdpna

1]

testl: ftopdpatrb

0 ns to

> I~

B76 ns

8-228 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

Combining items in the Wave window

Y ou can combine signalsin the Wave window into busses. A busisa collection of signals
concatenated in a specific order to create anew virtual signal with a specific value. To
create a bus, select one or more signals in the Wave window and then choose Edit >
Combine. .

4 'Combine Selected Signals

Name:|
Combine [t Order of Indexes
* Bus " Ascending
= Group {* Descending

[T Remove selected signals after combining

ok LCancel

The Combine Selected Signals dialog box includes these options:

» CombinelInto
Only the Bus option is valid at thistime. Groups are not currently implemented.

* Order of Indexes
Specifiesin which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the Wave window will be assigned an index of 0. If set to
Descending, the first signal selected will be assigned the highest index number.

* Remove selected signals after combining
Specifies whether you want to remove the selected signals from the Wave window once
the busis created

Intheillustration below, three signals have been combined to form anew bus called BUSL1.
Note that the component signals are listed in the order in which they were selected in the
Wave window. Also note that the bus value is made up of the values of its component
signals arranged in a specific order. Virtual objects are indicated by an orange diamond.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-229

Wave window

=t wave - default

File Edit Curzor Zoom Compare Bookmark Format wWindow

FEHES ! BB X o KQQ@ | Ef EEIEEH | julesfn]

Ipipi iy iyiy
I —
ftop/patrb !J—l_l—l_l_
Atop/prdy I—I_I—l_,—

Atopdpaddr (1|]

Mtop/pdata Pl [

IE R
S |

A A T [F:)E:EDE:D:[

1000 qz
441 ne

4
ol ns to 928 ns

Other virtual items in the Wave window

See "Virtual Objects (User-defined buses, and more)" (7-144) for information about other
virtual items viewable in the Wave window.

Editing and formatting HDL items in the Wave window

Once you have the HDL items you want in the Wave window, you can edit and format the
list in the pathname and val ues panes to create the view you find most useful. (See also,
" Setting Wave window display properties” (8-235).)

To edit an item:

Select theitem’ slabel in the pathname pane or its waveform in the waveform pane. Move,

copy, or remove the item by selecting commands from the Wave window Edit menu (8-
221).

Y ou can also click+drag to move items within the pathnames and values panes:

* to select severa items:
control+click to add or subtract from the selected group

* to move the selected items:
re-click and hold on one of the selected items, then drag to the new location

8-230 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

To format an item:

Select the item’ s label in the pathname pane or its waveform in the waveform pane, then
select Edit > Signal Properties (Wave window). The resulting Wave Signal Properties
dialog box has three tabs: View, Format, and Compare.

W ave Signal Properties

Signal: wsim: Atop/paddr
— Dizplay Mame

— Fadix —"wiave Color

€ Symbolic € Unzighed I Eu:ul-:urs...l

" Binary " Hexadecimal

" Octal ASCI ——Mame Calar————

i~ Decimal Default I Eu:ul-:urs...l

Ok | Cancel Apply |

The View tab includes these options:

 Display Name
Specifies anew name (in the pathname pane) for the selected signal.

* Radix
Specifies the Radix of the selected signal(s). Setting this to default causes the signal’s
radix to change whenever the default is modified using the radix command (CR-166).
Item values are not tranglated if you select Symbolic.

* Wave Color
Specifies the waveform color. Select anew color from the color palette, or enter an
X-Windows color name.

» Name Color
Specifies the signal name’s color. Select anew color from the color palette, or enter an
X-Windows color name.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-231

Wave window

W ave Signal Properties

Signal: wzim: top/paddr

— Format

" Literal Logic ' Ewent " Analog

——Analog Display

" Analog Step

Height Offset: JOL0
|1 7 © Analog Interpolated

" Analog Backstep el |1'D

k. | Cancel

Apply |

The For mat tab includes these options:

e Format: Literal
Displays the waveform as a box containing the item value (if the value fits the space
available). Thisisthe only format that can be used to list arecord.

» Format: Logic
Displaysvaluesas U, X, 0,1, Z, W, L, H, or -.

* Format: Event
Marks each transition during the simulation run.

8-232 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

» Format: Analog [Step | Inter polated | Backstep]
All signalsinthefollowingillustration are the same/top/clk signal. Starting with "analog
step”, the /top/clk signal has been relabeled to illustrate each different wave format.

=+t wave - default

File Edit Curgor Zoom Compare Bookmark Format Window

SHS | $ BB MK € [QQAQA[EURH

analog ba
IEE]

logic

event

100 200

| 12 0 I I | »
0 nz to 306 nz

Analog Sep
Displays awaveform in step style.

Analog Interpolated
Displays the waveform in interpolated style.

Analog Backstep
Displays the waveform in backstep style. Often used for power calculations.

Offset and Scale

Allowsyou to adjust the scale of theitem asit is seen on the display. Offset isthe number
of pixelsoffset from zero. The scale factor reduces (if lessthan 1) or increases (if greater
than 1) the number of pixels displayed.

Only the following types are supported in Analog format:

VHDL types:
All vectors - std logic vectors, bit vectors, and vectors derived from these types
Scalar integers
Scalar reds
Scalar time

Verilog types:
All vectors

Scalar red
Scalar integers

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-233

Wave window

* Height
Allows you to specify the height (in pixels) of the waveform.

Wave Signal Properties

Signal: compare: ftop/prm

" Clocked Comparizon

| ll Clocks... |

' Continuous Comparizon

Leading Tolerance————— Trailing Tolerance

o s o v 2l

Specify When Expression

| Builder... |

Ok | Cancel

Apply

The Compar e tab includes the same options as those in the Add Signal Options dialog
box (see Adding Signals, Regions and/or Clocks (11-307)).

8-234 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

Setting Wave window display properties

Y ou can define the display properties of the pathname and values window panes by

selecting Edit > Display Properties (Wave window).

m’w"a\re Window Properties M=l B4

— Dizplay Signal Path—

|EI [# elementsz)

I1ze 0 for full path

—Justify alue

f* Left " Right

— Snap Diztance

10 [pixelz]

— Faow Margin——

4 [pixelz]

— Child Bow Margin

2 [pixelz]

— Daatazet Prefix Dizplay

' Aways Show D ataset Prefives
% Show Dataszet Prefises if 2 or more

™ Mever Show D atazet Prefises

ok,

LCancel

The Wave Window Properties dialog box includes the following options:

 Display Signal Path

Sets the display to show anything from the full pathname of each signal (e.g., sim:/top/
clk) to only itsleaf element (e.g., sm:clk). A non-zero number indicates the number of
path elements to be displayed. The default is Full Path.

 Justify Value

Specifieswhether the signal valueswill be justified to theleft margin or the right margin

in the values window pane.
 Snap Distance

Specifies the distance the cursor needs to be placed from an item edge to jump to that

edge (a 0 specification turns
* Row Margin

off the snap).

Specifies the distance in pixels between top-level signals.

* Child Row Margin

Specifies the distance in pixels between child signals.

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-235

Wave window

» Dataset Prefix
Specifies how signals from different datasets are displayed.

Always Show Dataset Prefixes

All dataset prefixes will be displayed along with the dataset prefix of the current
simulation ("sim").

Show Dataset Prefixesif 2 or more

Displaysall dataset prefixesif 2 or moredatasetsaredisplayed. "sim" isthedefault prefix
for the current simulation.

Never Show No Dataset Prefixes
No dataset prefixes will be displayed. This selection is useful if you are running only a
single simulation.

Sorting a group of HDL items

Select Edit > Sort to sort the items in the pathname and val ues panes.

Setting signal breakpoints

Y ou can set signal breakpoints (a.k.a., when breakpoints; see the when command (CR-273)
or "Setting signal breakpoints" (8-198) for more details) using a pop-up menu. Start by
selecting asignal and then clicking your second (Windows) or third (UNIX) mouse button.
Select Signal Breakpoints from the pop-up menu and you'll see six items:

« Add
Creates asignal breakpoint on the selected signal

 Edit Breakpoints
Opens the Edit When dialog. See "Setting signal breakpoints" (8-198) for more
information.

« Edit All Breakpoints
Opens the Breakpoints dialog. See " Setting file-line breakpoints' (8-205) for more
information.

« Remove Signal
Removes the signal breakpoint from the selected signal

* Remove All Signals
Removes all signal breakpoints

» Show All
Shows alist of &l signal breakpoints

When abreskpoint is hit, a message appears in the transcript window about which signal
caused the breakpoint. Breakpoints created by the when command (CR-273) are not affected
by the Remove All Signals menu pick, nor are they reported via Show All.

8-236 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

Finding items by name or value in the Wave window

The Find dialog box allows you to search for text strings in the Wave window. Select
Edit > Find (Wave window) to bring up the Find dialog box.

Choose either the Name
or Vauefield to search Find in.wave

and enter the value to

search for in the Find Find: | Find Mext
field. Find theitem by

searching Down or Up Field
through the Wave + Mame & Down
window display. Auto
Wrap continues the T Walue © Up ¥ &utowiap
search at the top of the
window.

Direction Flac

The find operation works only within the active pane.

Searching for item values in the Wave window

Select an item in the Wave window and then select Edit > Sear ch to bring up the Wave
Signal Search dialog box.

|24 ‘Wave Signal Search [window wave]

—Signal Hame[z]
Mo Signals Selected

—Search Type
& Any Transition

" Pizsing Edge

" Falling Edge

" Search for Signal Value ‘Jalue:l

¢ Search for Expression E:-:pressiu:-n:l Builder

—%Search Options

|1 k atch Cavnt

—Search Hesults
Status:
Time: Donhe

Search Forward

Search Reverse

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-237

Wave window

The Wave Signal Search dialog box includes these options:

Y ou can locate values for the Signal Name(s) shown at the top of the dialog box. The
search is based on these options:

» Search Type: Any Transition
Searches for any transition in the selected signal(s).

» Search Type: Rising Edge
Searches for rising edges in the selected signal(s).

» Search Type: Falling Edge
Searches for falling edges in the selected signal (s).

» Search Type: Search for Signal Value
Searches for the value specified in the Value field; the value should be formatted using
VHDL or Verilog numbering conventions; see"Numbering conventions' (CR-291).

P Note: If your signal values are displayed in binary radix, see " Searching for binary
signal valuesin the GUI" (CR-300) for details on how signal values are mapped between
abinary radix and std_logic.

* Search Type: Search for Expression
Searches for the expression specified in the Expression field evaluating to a boolean
true. Activatesthe Builder button so you can use "The GUI Expression Builder" (8-275)
if desired.
The expression can involve more than one signal but is limited to signalslogged in the
Wave window. Expressions can include constants, variables, and DO files. If no
expression is specified, the search will give an error. See "Expression syntax" (CR-302)
for more information.

 Search Options: Match Count
Y ou can search for the n-th transition or the n-th match on value; M atch Count indicates
the number of transitions or matches to search for.

The Sear ch Results are indicated at the bottom of the dialog box.

8-238 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

Using time cursors in the Wave window

Q
S X9
S &
) A\
0\3& 0(\9 .\oo
SRS
: SN +
These Wave window & O +
. . 0\ Q} AN N v & Q! N
buttons give you quick R Q@ (\e‘\' & Q O
access to cursor placement 660 Q}e‘ ‘\\(\é QO ,‘/00 oo((\ S
and zooming. Ll N v voov

==t wave - default

File Edit Curzor Zoom Compare

ZEE LBE

Jpaddr Oonnooi o !jmm:

Mtopdpdata : L |

Ao

. | o]
0 ns to 950 ns /

interval measurement Click and drag with
the center mouse

button to zoom in
on an area of the
display.

selected cursor is bold

When the Wave window isfirst drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. Y ou can add
cursors to the waveform pane with the Cursor > Add Cursor menu selection (or the Add
Cursor button shown below). The selected cursor is drawn as abold solid line; all other
cursors are drawn with thin dashed lines. Remove cursors by sel ecting them and selecting
Cursor > Delete Cursor (or the Delete Cursor button shown below).

Add Cursor Delete Cursor
E? add a cursor to the center ,Pé delete the selected cursor
of the waveform window from the window

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-239

Wave window

Finding a cursor

The cursor value (on the Goto list) corresponds to the simulation time of that cursor.
Choose a specific cursor view by selecting Cur sor > Goto.

Making cursor measurements

Each cursor is displayed with atime box showing the precise simulation time at the bottom.
When you have more than one cursor, each time box appearsin a separate track at the
bottom of the display. Model Sm also adds a delta measurement showing the time
difference between two adjacent cursor positions.

If you click in the waveform display, the cursor closest to the mouse position is selected
and then moved to the mouse position. Another way to position multiple cursorsisto use
the mouse in the time box tracks at the bottom of the display. Clicking anywherein atrack
selects that cursor and brings it to the mouse position.

The cursors are designed to snap to the closest wave edge to the |eft on the waveform that
the mouse pointer is positioned over. Y ou can control the snap distance viathe
Edit > Display Properties menu selection.

Y ou can position a cursor without snapping by dragging in the area below the waveforms.
Y ou can also move cursorsto the next transition of a signal with these toolbar buttons;

Find Previous Find Next Transition
Transition locate the next signal

—lt locate the previous signal ﬂ— value change for the
value change for the selected signal
selected signal

Zooming - changing the waveform display range

Zooming lets you change the simulation range in the waveform pane. Y ou can zoom with
either the context menu, toolbar buttons, mouse, keyboard, or commands.

Using the Zoom menu

Y ou can use the Wave window menu bar, or call up the context menu by clicking the right
mouse button in the waveform pane.

The Zoom menu options include:

e Zoom Areawith Mouse Button 1
Use mouse button 1 to create a zoom area. Position the mouse cursor to the left side of
the desired zoom interval, press mouse button 1 and drag to the right. Release when the
box has expanded to the right side of the desired zoom interval.

e Zoom In
Zoomsin by afactor of two, increasing the resolution and decreasing the visible range
horizontally.

e Zoom Out
Zooms out by afactor of two, decreasing the resolution and increasing the visible range
horizontally.

8-240 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

e Zoom Full
Redraws the display to show the entire simulation from time O to the current simulation
time.

* Zoom Last
Restores the display to where it was before the last zoom operation.

e Zoom Range
Brings up adialog box that allowsyou to enter the beginning and ending timesfor arange
of time units to be displayed.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zoom in 2x Zoom area
(ﬂ zoomin by afactor of two q use the cursor to outlinea
from the current view zoom area
Zoom out 2x Zoom Full
El zoom out by afactor of zoom out to view the full
two from current view % range of the simulation
from time 0 to the current
time

Zooming with the mouse

To zoom with the mouse, position the mouse cursor to the left side of the desired zoom
interval, press the middle mouse button (three-button mouse), or <Ctrl>+left mouse button
(two-button mouse), and while continuing to press, drag to the right and then release at the
right side of the desired zoom interval.

Zooming keyboard shortcuts

See "Wave window mouse and keyboard shortcuts' (8-244) for a complete list of Wave
window keyboard shortcuts.

Saving zoom range and scroll position with bookmarks

Bookmarks allow you to save a particular zoom range and scroll position. Thisletsyou
return easily to aspecific view later. Y ou save the bookmark with a name, and then access
the named bookmark from the Bookmark menu.

Bookmarks are saved in the Wave format file (see "Adding items with a Wave window
format file" (8-219)) and are restored when the format fileisread. Thereisno limit to the
number of bookmarks you can save.

Bookmarks can also be created and managed from the command line. See bookmark add
wave command (CR-44) for details.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-241

Wave window

To add a bookmark, select Bookmark > Add Bookmark (Wave window).

|54 'Bookmark Properties [wave)

Bookmark Label: |e:-:an'||:|le

£ 00m: |EI nz o [625us

Top Index: |E

[¥ zave zoom range with boakmark.

¥ zave scroll location with bookmark.

1] Cancel

The Bookmark Properties dialog includes the following options.

Bookmark L abel
A text label to assign to the bookmark. The label will identify the bookmark on the
Bookmark menu.

Zoom
A starting value and ending value that define the zoom range.

Top Index
Theitem that will display at the top of the wave window. For instance, if you specify 15,
the Wave window will be scrolled down to show the 15th item in the window.

Save zoom range with bookmark
When checked the zoom range will be saved in the bookmark.

Save scroll location with bookmark
When checked the scroll location will be saved in the bookmark.

Once the bookmark is saved, select it by name from the Bookmark menu, and the Wave
window will be zoomed and scrolled accordingly.

8-242 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

To edit or delete a bookmark, select Bookmark > Edit Bookmarks (Wave window).

54 'Bookmark Selection [.wave] =]
Example Add
odify...
Delete
Delete Al
[Eal{a]
Bookmark Configuration
I arne; Example
Zoorm Fange: {0 net (625 us)
Top Index: 1]
ok Cancel Apply

The Bookmark Selection dialog includes the following options.

» Add (bookmark add wave)
Add anew bookmark

« Modify
Edit the selected bookmark

* Delete (bookmark delete wave)
Delete the selected bookmark

» Delete All (bookmark delete wave)

Delete al bookmarks
» Goto (bookmark goto wave)

Zoom and scroll the Wave window using the sel ected bookmark

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-243

Wave window

Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action

Result

< control - left-button - click on a scroll arrow > scrolls window to very top or

bottom(vertical scroll) or far left or
right (horizontal scroll)

<middlemouse-button - click in scroll bar trough> scrolls window to position of click

(UNIX) only

Keystroke Action

il or + zoomin

oOor- zoom out

forF zoom full; mouse pointer must be over the the cursor or
waveform panes

| or L zoom last

ro R zoom range

<arrow up> scroll waveform display up by selecting the item above the

currently selected item

<arrow down>

scroll waveform display down by selecting the item below the
currently selected item

<arrow left>

scroll waveform display left

<arrow right>

scroll waveform display right

<page up> scroll waveform display up by apage

<page down> scroll waveform display down by a page

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (l€ft) to the previous transition on the selected

signal - finds the previous edge

<control-f> Windows
<control-s> UNIX

open the find dialog box; searches within the specified field in
the pathname pane for text strings

8-244 ModelSim Graphic Interface

ModelSim SE User’s Manual

Wave window

Printing and saving waveforms

Saving a .eps file and printing under UNIX

Select File > Print Postscript (Wave window) to print all or part of the waveform in the
current Wave window in UNIX, or save the waveform as a .eps file on any platform (see
alsowritewave command (CR-285)). Printing and writing preferencesare controlled by the

dialog box shown below.
witePostscipt ______________________________________H
—Frinter

" Print command; |I|:| -d |pl ;I
Setup... |
& File hame: |I::MINNT;"F‘eriIes.-"c:harleys'[Browsze. .. |

—Signal Selection — Time Range
Al zsignals " Full Bange 0 ns 2820 ns
£ Cument view & Curent view 1869 ns 2869 ns

" Selected " Custom Fr-:um:l ﬁ To ﬁ

Ok | Cahcel |

The Write Postscript dialog box includes these options:

Printer

 Print command
Enter aUNIX print command to print the waveform in a UNIX environment.

» Filename
Enter afilename for the encapsulated Postscript (.eps) file to be created; or browseto a
previously created .epsfile and use that filename.

Signal Selection

 All signals
Print all signals.

» Current View
Print signals in the current view

» Selected
Print all selected signals

Time Range

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-245

Wave window

* Full Range
Print all specified signalsin the full simulation range.

» Current view
Print the specified signals for the viewable time range.

e Custom
Print the specified signals for a user-designated From and To time.

Setup button
See "Printer Page Setup” (8-248)

Printing on Windows platforms

Select File> Print (Wave window) to print al or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).
Printing and writing preferences are controlled by the dialog box shown below.

—Printer

Mame: |\WLINKAGENHP Laser)et 5L *| Propetties |
Statusz: Ready
Type: HF Lazerlet 5L Setup... |

Where: Local
Comrment; ™ Frint ta file
—Sighal Selection—————— — Time Range
Al signals " Full Bange 0 ns 2820 ns
= Curmrent view % Curent view 1869 ns 2869 ns

" Selected " Custam Frarm: i’ To i’

Ok | Cancel |

Printer

* Name
Choose the printer from the drop-down menu. Set printer properties with the Properties
button.

o Status
Indicates the availability of the selected printer.

* Type
Printer driver name for the selected printer. The driver determines what type of fileis
output if "Print to file" is selected.

8-246 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

* Where
The printer port for the selected printer.

» Comment
The printer comment from the printer properties dial og box.

e Print tofile
Make this selection to print the waveform to afile instead of aprinter. The printer driver
determines what type of fileis created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a .prn or printer control language file. To create an
encapsul ated Postscript file (.eps) use the File > Print Postscript menu selection.

Signal Selection

 All signals
Print all signals.

e Current View
Print signalsin current view.

» Selected
Print all selected signals.

Time Range

* Full Range
Print all specified signalsin the full simulation range.

» Current view
Print the specified signals for the viewable time range.

e Custom
Print the specified signals for a user-designated From and To time.

Setup button
See "Printer Page Setup” (8-248)

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-247

Wave window

Printer Page Setup

Clicking the Setup button in the Write Postscript or Print dialog box allows you to define
the following options (this is the same dial og that opens via File > Page setup).

—Paper —Marging

Paper size: Top: |05 ﬁ
Letter j Battam: | 0.5 i’
Wit |25 = Le: o5 =
Height [11.0 - Fight: [05

—Label width —Curgors— —Grid —Caolar
™ Color
% Auto Adjust i Off O
" Grayscale
C Fisedwidth: [15 = inches © On & On
{* B

—Scaling —Orientation

' Figed: |500ns i’per page " Parbrait
£ Fitte: |1 i’page[s] wide ¥ Landscape

Ok | Cancel

» Paper Size
Select your output page size from a number of options; also choose the paper width and
height.

e Margins
Specify the page margins; changing the M ar gin will change the Scale and Page
specifications.

 Label width
Specify Auto Adjust to accommodate any length label, or set afixed label width.

* Cursors
Turn printing of cursors on or off.
e Grid
Turn printing of grid lines on or off.

8-248 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window

» Color
Select full color printing, grayscale or black and white.

* Scaling
Specify aFixed output time width in nanoseconds per page —the number of pages output
isautomatically computed; or, select Fit to to define the number of pagesto be output
based on the paper size and time settings; if set, the time-width per pageis automatically
computed.

 Orientation
Select the output page orientation, Portrait or L andscape.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-249

Compiling with the graphic interface

Compiling with the graphic interface

Y ou can use a project or the Compile HDL Sour ce Files dialog box to compile VHDL or
Verilog designs. For information on compiling in a project, see "Getting started with
projects” (2-28). To open the Compile HDL Source Files dialog, select the Compile button
(Main window) or Design > Compile.

5 ModelSim
File Edit Design “iew Pmoect Bun Compare Macmo Options 'Window Help

G =@ oo kS
| Compile X[Feading E:/modelzimG5_selwind2/ AclMesindm
Librany. | ok * 1| todelSime v title . "ModelSim SE/EE"
I 2

The Compile HDL Source Files dialog box opens as shown below.

Compile HDL Source Files EE

Library: Iwu:urk

Look, i I £ mikedHDL
T work; ulil.vhd

a cache. v
MMEmnarny.
proc. v
set.vhd
top. vhd

File name: I Compile

Files of type: [HDL Files (*.vhdl" vhd:v) | Done

Default Options. .. Edit Source |

8-250 ModelSim Graphic Interface ModelSim SE User’s Manual

Compiling with the graphic interface

From the Compile HDL Source Files dialog box you can:

* select source filesto compilein any language combination

« specify the target library for the compiled design units

« select among the compiler options for either VHDL or Verilog

Select the Default Options button to change the compi

ler options, see " Setting default

compile options" (8-252) for details. The same Compiler Options dialog box can also be
accessed by selecting Options > Compile (Main window) or by selecting Compile

Properties from the context menu in Project tab.

Select the Edit Sour ce button to view or edit a source file viathe Compile dialog box. See

"Source window" (8-201) for additional source file editi

Locating source errors during compilation

ng information.

If acompiler error occurs during compilation, ared error message is printed in the Main
transcript. Double-click on the error message to open the source file in an editable Source

window with the error highlighted.

|5, ModelSim

File Edit Deszign “iew Project Bun Compare Macro Optione: Window Help
Sz BB [4 ENRE |
Zlfzval compile M ain {voorm -work test -87 -esplicit -novital -nowarn 1 - j

adder vhd nowart 2 -nowarn 3 -hiovearn 4 -nowarn 5 {E: /modelsimBS_sedexnam

ples/adder. vhd}}
Model Technology ModelSim SE/EE woom 5.5 Alpha Compiler 20
0007 Sep 13 2000

- Loading package standard

- Loading package std_logic_1164
- Compiling entity adder

counter, vhd

B source_edit - adder. vhd

-- Compiling architecture il of addsler File Edit Object Options Window
ERROR: Could nat find test gate ~ : B Py
. : B I *‘
HERROR: E:/modelzim55_ze/examplesac @ = E : 3’ 5 E g BER
d expandoghame: WDIk’-DatES’»f————w,,,,,,,,,w 23 -- description of adder using componen
ERRADA: E:/modelsim5h_se/sramples/ac [FSng— g | Doa s car i
Y ; i iame | figld: gates. : :
Project § Dezign: HEERTIEL - JremdaleirnBF. o foe e o Z5 archlff.ect.ure structural of adder is
- = - Z6 signal xorl_out,
|F'r|:|Ject :test |<:Nu Design Loaded= 2n andl out,
za andz_out,
£9 orl_out : std logic;
double-click on the error in the Main window 22 begin L . ,
and the error is highlighted and ready - xnil;ll' x::i pors nap
to edit in the Source window a3 in? == b'
24 outl =» xorl out);

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-251

Compiling with the graphic interface

Setting default compile options

Select Options > Compile (Main window) to bring up the Compiler Options dialog box
shown below. OK accepts the changes made and closes the dialog box. Apply makes the
changes with the dialog box open so you can test your settings. Cancel closes the dialog
box and makes no changes. The options found on each page of the dialog box are detailed
below. Changes made in the Compiler Options dialog box become the default for all
future smulations.

VHDL compiler options page

Compiler Dptionz

YHDL |-

[T Use 1933 Language Syntax [T Dizable loading meszages
[T Don't put debugging infa in librare [~ Show souce lines with emars

¥ Use explicit declarations anly

 Check for: —Flag *Warmings On:
™ Synthesis ¥ Unbound component
W Vital Complianice ¥ Process without a wal T staternent
— Optimize for; I Null Range
W Stdlogicl16d ¥ Mo space in time literal [2.0. Sns)
W ital v Multiple drivers on unregolved signals

k. Cancel Apply

» Use 1993 language syntax
Specifiesthe use of VHDL 93 during compilation. The 1987 standard isthe default. Same
as the -93 switch for the vcom command (CR-217). Edit the VHDL 93 (B-405) variable in
the modelsim.ini file to set a permanent default.

» Don’t put debugginginfoin library
Models compiled with this option do not use any of the ModelSm debugging features.
Consequently, your user will not be able to see into the model. This aso means that you
cannot set breakpoints or single step within this code. Don’t compile with this option
until you' re done debugging. Same as the -nodebug switch for the vcom command (CRr-
217). See" Source code security and -nodebug” (E-433) for more details. Edit theNoDebug
(B-397) variable in the modelsim.ini file to set a permanent default.

8-252 ModelSim Graphic Interface ModelSim SE User’s Manual

Compiling with the graphic interface

» Useexplicit declarations only
Used to ignore an error in packages supplied by some other EDA vendors; directs the
compiler to resolve ambiguous function overloading in favor of the explicit function
definition. Same asthe-explicit switch for thevcom command (CR-217). Edit the Explicit
(B-397) variable in the modelsim.ini file to set a permanent default.

Althoughit is not intuitively obvious, the = operator isoverloaded in thestd_logic_1164
package. All enumeration data typesin VHDL get an “implicit” definition for the =
operator. So while there is no explicit = operator, thereisan implicit one. Thisimplicit
declaration can be hidden by an explicit declaration of = in the same package (LRM
Section 10.3). However, if another version of the = operator is declared in a different
package than that containing the enumeration declaration, and both operators become
visible through use clauses, neither can be used without explicit naming, for example:

ARI THMETI C. " =" (l eft, right)
This option alows the explicit = operator to hide the implicit one.

 Disableloading messages
Disables|oading messages in the Main window. Same asthe -quiet switch for the vcom
command (CR-217). Edit the Quiet (B-397) variable in the modelsim.ini fileto set a
permanent default.

» Show sourcelineswith errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-sour ce switch for the vcom command (CR-217). Edit the Show_source (B-397) variable
in the modelsim.ini file to set a permanent default.

Flag Warnings on:

« Unbound Component
Flags any component instantiation in the VHDL source code that has no matching entity
inalibrary that isreferenced in the source code, either directly or indirectly. Edit the
Show_Warningl (B-397) variable in the modelsim.ini file to set a permanent default.

» Processwithout a WAIT statement
Flags any process that does not contain await statement or a sensitivity list. Edit the
Show_Warning2 (B-397) variable in the modelsim.ini file to set a permanent default.

* Null Range
Flags any null range, such as 0 down to 4. Edit the Show_Warning3 (B-397) variablein
the modelsim.ini file to set a permanent default.

* Nospacein timeliteral (e.g. 5ns)
Flags any time literal that is missing a space between the number and the time unit. Edit
the Show_Warning4 (B-397) variable in the modelsim.ini file to set a permanent default.

* Multipledriverson unresolved signals
Flags any unresolved signalsthat have multipledrivers. Edit the Show_Warning5 (8-397)
variable in the modelsim.ini file to set a permanent default.

Check for:

» Synthesis
Turns on limited synthesis-rule compliance checking. Edit the CheckSynthesis (B-396)
variable in the modelsim.ini file to set a permanent default.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-253

 Vital Compliance
Toggle Vital compliance checking. Edit the NoVital Check (B-397) variable in the
modelsim.ini file to set a permanent default.

Optimize for:

« StdLogicl164
Causes the compiler to perform special optimizations for speeding up simulation when
the multi-value logic package std_logic_1164 is used. Unless you have modified the
std_logic_1164 package, this option should always be checked. Edit the Optimize 1164
(B-397) variable in the modelsim.ini file to set a permanent default.

* Vital
Toggle acceleration of the Vital packages. Edit the NoVital (B-397) variable in the
modelsim.ini file to set a permanent default.

Verilog compiler options page

Compiler Dptionz
[Enable rurtime hazard checks [T Dizable loading messages
[T Dizable debugging data [T Show source lines with erors

[T Corvert identifiers to upper-casze

— Other Yerlog Options

Library Search...

Estension.. —

Library File...

Include Directany...

kacra...

ok Cancel Apply

« Enablerun-time hazard checks
Enables the run-time hazard checking code. Same as the -hazar ds switch for the viog
command (CR-250). Edit the Hazard (B-398) variable in the modelsim.ini fileto set a
permanent default.

8-254 ModelSim Graphic Interface ModelSim SE User’s Manual

Compiling with the graphic interface

 Disable debugging data
Models compiled with this option do not use any of the M odelSim debugging features.
Consequently, your user will not be able to see into the model. This aso means that you
cannot set breakpoints or single step within this code. Don’t compile with this option
until you' re done debugging. Same as the -nodebug switch for the viog command (CRr-
250). See" Source code security and -nodebug” (E-433) for more details. Edit theNoDebug
(B-397) variable in the modelsim.ini file to set a permanent default.

» Convert Verilog identifiersto upper-case
Convertsregular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Same as the -u switch for the viog command (CR-250). Edit the UpCase (B-398)
variable in the modelsim.ini file to set a permanent default.

« Disable loading messages
Disables loading messages in the Main window. Same as the -quiet switch for the viog
command (CR-250). Edit the Quiet (B-397) variable in the modelsim.ini fileto set a
permanent default.

» Show sourcelineswith errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-sour ce switch for the viog command (CR-250). Edit the Show_source (B-397) variablein
the modelsim.ini file to set a permanent default.

Other Verilog Options:

e Library Search
Specifies the Verilog source library directory to search for undefined modules. Same as
the -y <library_directory> switch for the viog command (CR-250).

» Extension
Specifies the suffix of filesin the library directory. Multiple suffixes can be used. Same
as the +libext+<suffix> switch for the viog command (CR-250).

e Library File
Specifiesthe Verilog source library file to search for undefined modules. Same as the -v
<library_file> switch for the viog command (CR-250).

* Include Directory
Specifies adirectory for filesincluded with the ‘include filename compiler directive.
Same as the +incdir +<dir ectory> switch for the vlog command (CR-250).

* Macro
Defines amacro to execute during compilation. Same as the compiler directive: ‘ define
macro_name macro_text. Also the same as the
+definet<macro_name> [=<macro_text>] switch for the vlog command (CR-250).

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-255

Simulating with the graphic interface

Simulating with the graphic interface

Y ou can use a project or the L oad Design dialog box to simulate a compiled design. For
information on simulating in a project, see "Getting started with projects’ (2-28). To open
the Load Design dialog, select the L oad Design button (Main window) or Design > L oad

Design.

|5, ModelSim

File Edt Dezign “ew Proect Bun Compare Macio Option: Window Help
SBR[oHun B #E

- "y Load Design/———— [#Ll:lading pr-:uiect

Librany: | vaare ll # Loading project

= | 18 Maodifving E:/modelzim55_se wind2 test mpf

& E] adder 4 TLIFY -Over

Five pages - Design, VHDL, Verilog, Libraries, and SDF - allow you to select various
simulation options.

Y ou can switch between pages to modify settings, then begin simulation by selecting the
L oad button. If you select Cancel, all selectionsremain unchanged and you are returned to
the Main window; the Exit button (only active before simulation) closes ModelSm. The
Save Settings button allows you to save the preferences on all pagesto aDO (macro) file.

Compile before you simulate
To begin simulation you must have compiled design units located in adesign library, see
"Creating adesign library" (4-57).

P> Note: Many of the dialog box options discussed in this section include parenthetical
elements that correspond to vsim (CR-258) command options. For example,
Simulator Resolution (-time [<multiplier>]<time_unit>).

8-256 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface

Design selection page

|:, Load Design

Library: | wiark ll

|1] counter

|1] test_counter

Simulate Simulatar B ezolution
|T &dd | |7 default — |

Load E wit | Save... | Cancel

P Note: The Exit button closes the Load Design dialog box and quits Model Sim.

The Design page includes these options:

e Library
Specifies alibrary to view. Make certain your selection isavalid ModelSm library —
the library must be created by Model Sim and it’s directory must include a_info file.

* Design Unit
This hierarchical list allows you to select one top-level entity or configuration to be
simulated. All entities, configurations, and modules that exist in the specified library are
displayed inthelist box. Architectures can be viewed by selecting the"+" box before any
name.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-257

Simulating with the graphic interface

 Simulate (<configuration> | <module> | <entity> [(<architecture>)])
Specifies the design unit(s) to simulate. Y ou can simulate several Verilog top-level
modules or aVHDL top-level design unit in one of three ways:

1 Type adesign unit name (configuration, module, or entity) into the field, separate
additional names with a space. Specify library/design units with the following
syntax:

[<library_nane>.]<design_unit>

2 Click on anamein the Design Unit list below and click the Add button.
3 Leavethisfield blank and click on anamein the Design Unit list (single unit only).

» Simulator Resolution
(-time [<multiplier>]<time_unit>)
The drop-down menu sets the simulator time units (original default is ns).

Simulator time units can be expressed as any of the following:

Simulation time units

1fs, 10fs, or 100fs femtoseconds
1ps, 10ps, or 100ps picoseconds
1ns, 10ns, or 100ns nanoseconds
1us, 10us, or 100us microseconds
1ms, 10ms, or 100ms milliseconds
1sec, 10sec, or 100sec seconds

See also, "Selecting the time resolution” (4-58).

8-258 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface

VHDL settings page

54 'Load Design

— Genernics
M ame | Walue | Overide [nstance?
Add... | Delete Edi... |
—WITaL — TE=TIO Files
—STO_INPUT
[Disable Timing Checks
| Browse...
r ze "-@'itql 2._2I:| SDF Mapping
[default is VWital 95) ——STD_OUTPUT
[T Dizable Glitch Generation | Browse...
Load | E uit | Save... Cancel

The VHDL page includes these options:

Generics

The Add button opens a dialog box (shown below) that allows you to specify the value
of generics within the current simulation; generics are then added to the Genericslist.
Y ou can al'so select ageneric on the listing to Delete or Edit.

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-259

From the Specify a
Genericdialogbox youcan %, Specify a Generic _ O]
set the following options.

) Generic Hame |t|:|h_h1
» Generic Name (-g

<Name>=<Vaue>) Value|1 ns
The name of the generic
parameter. Typeitinasit
appearsinthe VHDL
source (case is ignored).

* Value oK | Cancel
Specifiesavauefor al

genericsin the design
with the given name
(above) that have not
received explicit values in generic maps (such as top-level generics and generics that
would otherwise receive their default value). The value must be appropriate for the
declared data type of the generic parameter. No spaces are allowed in the specification
(except within quotes) when specifying a string value.

¥ {Overnide Instance-specific ' alues

e Override Instance - specific Values (-G <Name>=<Vaue>)
Select to override generics that received explicit valuesin generic maps. The name and
value are specified as above. The use of thisswitchisindicated inthe Overridelnstance
column of the Genericslist.

The OK button addsthe generic to the Genericslisting; Cancel dismissesthe dialog box
without changes.

VITAL

+ Disable Timing Checks (+notimingchecks)
Disables timing checks generated by VITAL models.

» UseVital 2.2b SDF M apping (-vital2.2b)
Selects SDF mapping for VITAL 2.2b (default is Vital95).

 Disable Glitch Generation (-noglitch)
Disables VITAL glitch generation.

TEXTIO files

o STD_INPUT (-std_input <filename>)
Specifiesthe file to use for the VHDL textio STD_INPUT file. Use the Browse button
to locate afile within your directories.

e STD_OUTPUT (-std_output <filename>)
Specifiesthefileto usefor the VHDL textio STD_OUTPUT file. Usethe Browse button
to locate afile within your directories.

8-260 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface

Verilog settings page

|:, Load Design

Delay Selection

Delay: min = |

— Pulze Optiohz — Other Optionz
Dizable pulze error and r Enable Hazard Checking
Warning mesgages [-hazards]

[+no_pulze_mzg]

. Dizable Timing Checks in
Rejection Linmit Z [+pulze_r) ™ Specify Blocks
Errar Limit % [+pulze_eg [+niotimingchecks]

— Uszer Defined Arguments [+<pluzargs]

Load E wit Save. .. Cancel

The Verilog page includes these options:

» Delay Selection (+mindelays | +typdelays | +maxdelays)
Use the drop-down menu to select timing for min:typ:max expressions.
Also see: "Timing check disabling” (4-58).

Pulse Options

 Disable pulseerror and warning messages (+no_pulse_msg)

Disables path pulse error warning messages.
» Rejection Limit (+pulse_r/<percent>)

Sets the modul e path pulse rejection limit as a percentage of the path delay.
e Error Limit (+pulse_e/<percent>)

Sets the module path pulse error limit as a percentage of the path delay.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-261

Other Options

» EnableHazard Checking (-hazards)
Enables hazard checking in Verilog modules.

 Disable Timing Checksin Specify Blocks (+noti mingchecks)
Disables the timing check system tasks ($setup, $hold,...) in specify blocks.

» User Defined Arguments (+<plusarg>)
Arguments are preceded with “+”, making them accessible through the Verilog PLI
routine mc_scan_plusar gs. The values specified in thisfield must have a"+" preceding
them or Model SSm may incorrectly parse them.

Libraries settings page

4 'Load Design

—Search Libranies [-L |

&dd | Edit | Deletel

— Search Libranies First [-LF |

&dd | E dit | Delete

Load | E xit Save... Cancel

The Libraries page includes these options:
e Search Libraries(-L)
Specifies the library to search for design units instantiated from Verilog.

e Search LibrariesFirst (-Lf)
Same as Search Libraries but these libraries are searched before ‘usdlib.

8-262 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface

SDF settings page

|:;.__.1'Lnad Design
Desn | VHDL | Veron | Libas} 50F |
— SDF Files
Region/File Delay

Add... | Delete Edit... |
— SDF Optionz — Multi-Source delay

o |atest

[T Dizable 5DF warnings
i

[T Reduce SDF emrors to warnings
 may

Load Exit Save... Cancel

The SDF (Standard Delay Format) page includes these options:

SDF Files

The Add button opens a dialog box that allows you to specify the SDF filesto load for
the current simulation; files are then added to the Region/Filelist. Y ou may also select
afile onthelisting to Delete or Edit (opens the dialog box below).

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-263

Simulating with the graphic interface

. Specify an SDF File

SDF Filelmy.sdf Browsze. .. |
Apply to regiunl.-’u:u:uunter Delay Selection bhp — |

0k | Cancel

From the Specify an SDF File dialog box you can set the following options.

» SDF file ([<region>] = <sdf_filename>)
Specifiesthe SDFfileto use for annotation. Use the Br owse button to locate afile within
your directories.

« Apply toregion ([<region>] = <sdf_filename>)
Specifies the design region to use with the selected SDF options.

» Delay Selection (-sdfmin | -sdftyp | -sdfmax)
The drop-down menu sel ects delay timing (min, typ or max) to be used from the specified
SDF file. See also, "Specifying SDF files for simulation” (12-326).

The OK button places the specified SDF file and delay on the Region/Filelist; Cancel
dismisses the dialog box without changes.

SDF options

« Disable SDF war nings (-sdfnowarn)
Select to disable warnings from the SDF reader.

» Reduce SDF errorsto war nings (-sdfnoerror)
Change SDF errorsto warnings so the simulation can continue.

« Multi-Source Delay (-multisource_delay <sdf _option>)
Select max, min or latest delay. Controls how multiple PORT or INTERCONNECT
constructs that terminate at the same port are handled. By default, the Module Input Port
Delay (MIPD) isset to the max value encountered in the SDFfile. Alternatively, you can
choose the min or latest of the values.

8-264 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface

Setting default simulation options

Select Options> Simulation... (Main window) to bring up the Simulation Optionsdialog
box shown below. Options you can set for the current simulation include: default radix,
default force type, default run length, iteration limit, warning suppression, break on
assertion specifications, and WLF file configuration. OK accepts the changes made and
closes the dialog box. Apply makes the changes with the dialog box open so you can test
your settings. Cancel closes the dialog box and makes no changes. The options found on
each page are detailed below.

P> Note: Changes madein the Simulation Options dialog box are the default for the current
simulation only. Options can be saved as the default for future simulations by editing the
simulator control variablesinthe modelsim.ini file; the variablesto edit are noted in the text
below. Y ou can use Notepad (see notepad command (CR-141)) to edit the variablesin
modelsim.ini if you wish. See also, "Projects and system initialization" (2-25) for more
information.

Default settings page

m Simulation Options =]
Defaults _
—Default Radis——— —Supprezs Warnings:
£ Symbuolic [From Synopsys Packages
' Binany [” From IEEE Wumeric 5td Packages
" Octal
 Decimal —Default Run ~Default Force Type——
" Unsigned . " " Freeze
€ Hesadecimd — Iteration Lirnit £ Dive
& asol 1000 Deposit
ok LCancel Apply

The Defaults page includes these options:

 Default Radix
Sets the default radix for the current simulation run. Y ou can also use theradix (CR-166)
command to set the same temporary default. A permanent default can be set by editing
the DefaultRadix (B-399) variable in the modelsim.ini file. The chosen radix is used for
all commands (for ce (CR-121), examine (CR-115), change (CR-52) are examples) and for
displayed valuesin the Signals, Variables, Dataflow, List, and Wave windows.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-265

Simulating with the graphic interface

* Suppress Warnings
Selecting From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. Edit the StdArithNoWarnings (B-400) variable
in the modelsim.ini file to set a permanent default.

Selecting From | EEE Numeric Std Packages suppresseswarnings generated within the
accelerated numeric_std and numeric_bit packages. Edit the NumericStdNoWarnings (-
400) variable in the modelsim.ini file to set a permanent default.

 Default Run
Setsthe default run length for the current simulation. Edit the RunL ength (B-400) variable
in the modelsim.ini file to set a permanent default.

* Iteration Limit
Sets alimit on the number of deltas within the same simulation time unit to prevent
infinite looping. Edit the IterationLimit (B-399) variable in the modelsim.ini fileto set a
permanent iteration limit default.

 Default Force Type
Selects the default force type for the current simulation. Edit the DefaultForceKind (8-
399) variable in the modelsim.ini file to set a permanent default.

Assertion settings page

m Simulation Options Hi=]

—Break on Aszertion ~lgnore &ssertions For—
{* Fatal [T Failure
" Failure ™ Enmar
€ Ermar [T Waming
' Waming [T Hote
" MNaote

ok LCancel Apply

The Assertions page includes these options:

» Break on Assertion
Selectsthe assertion severity that will stop simulation. Edit the BreakOnA ssertion (B-398)
variable in the modelsim.ini file to set a permanent default.

8-266 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface

* lgnore Assertions For
Selects the assertion type to ignore for the current simulation. Multiple selections are
possible. Edit the IgnoreFailure, IgnoreError, IgnoreéWarning, and IgnoreNote (B-399)
variablesin the modelsim.ini file to set permanent defaults.

When an assertion type isignored, no message will be printed, nor will the simulation
halt (even if break on assertion is set for that type).

P Note: Assertions that appear within an instantiation or configuration port map clause
conversion function will not stop the simulation regardless of the severity level of the
assertion.

WLF settings page

m Simulation Options =]
— WLF File Size Limit————— [WLF Filz Time Limit
% NoSize Limit % No Time Limit

" Size Limit [0 " Time Limit [0 [rs =]

— WwWILF Attributes———————— — Design Hierarchy
¥ Compress WLF data. ¥ Save regions containing logged signals.
[T Delete WLF file on exit. " Save all regions in design.
Ok LCancel Apply

The WLF Files page includes these options:

* WLF FileSizeLimit
Limitsthe WLFfileby size (asclosely aspossible€) to the specified number of megabytes.
If both sizeand time limits are specified, the most restrictiveisused. Setting it to O results
in no limit. Edit the WLFSizeLimit (B-401) variable in the modelsim.ini file to set a
permanent default.

* WLF File Time Limit
Limitsthe WLF file by size (as closely as possible) to the specified amount of time. If
both time and size limits are specified, the most restrictive is used. Setting it to O results
in no limit. Edit the WLFTimeLimit (B-401) variable in the modelsim.ini fileto set a
permanent default.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-267

Simulating with the graphic interface

e Compress WLF data
Compresses WLF files to reduce their size. Y ou would typically only disable
compression for troubleshooting purposes. Edit the WL FCompress (B-401) variableinthe
modelsim.ini file to set a permanent default.

» Delete WLF fileon exit
Specifies whether the WLF file should be deleted when the simulation ends. Edit the
WLFDel eteOnQuit (B-401) variable in the modelsim.ini file to set a permanent default.

« Design Hierarchy
Specifieswhether to save all design hierarchy in the WLF file or only regions containing
logged signals. Edit the WLFSaveAllRegions (B-401) variable in the modelsim.ini fileto
set a permanent default.

8-268 ModelSim Graphic Interface ModelSim SE User’s Manual

ModelSim tools

ModelSim tools

Several tools are available from Model Sm menus. The menu selections to locate the tools
are below the tool names. Follow the links for more information on each tool.

e "The Button Adder" (8-269)
Window > Customize (any window)
Allows you to add atemporary function button or toolbar to any window.

« "The Macro Helper" (8-270)
Macro > Macro Helper (Main window)
Creates macros by recording mouse movements and key strokes. UNIX only (excluding
Linux).

» "The Tcl Debugger” (8-271)
Macro > Tcl Debugger (Main window)
Helps you debug your Tcl procedures.

» "The GUI Expression Builder" (8-275)
Edit > Sear ch > Search for Expression > Builder (List or Wave window)
Helps you build logical expressions for use in Wave and List window searches and
several simulator commands. For expression format syntax see
"GUI_expression_format" (CR-297).

The Button Adder

The Model Sm Button Adder creates a single button, or a combined button and toolbar in
any currently opened Model Sm window. The button exists until you close the window.
(See "Buttons the easy way" (8-279).)

P Note: When abutton is created with the Button Adder, the commands that created the
button are echoed in the transcript. The transcript can then be saved and used asaDO file,
allowing you to reuse the commands to recreate the button from a startup DO file. See
"Using astartup file" (B-404) for additional information.

Invoke the Button Adder from any Model Sm window menu: Window > Customize.
Y ou have thefollowing options

for adding a button:

« Window Nameisthenameof & Taal Bar @ Right | Window Name
the window to which you |
wish to add the button. © Left | Button Name
» Button Nameisthe button’s " Footer " Top |
label. Function
. " Bott
+ Function can be any OK | Close atiom |}

command or macro you
might execute from the Model Sm command line. For example, you might want to add a
Run or Step button to the Wave window.

L ocate the button within the window with these selections:
» Toolbar places the button on a new toolbar.
» Footer adds the button to the Main window’ s status bar.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-269

ModelSim tools

Justify the button within the menu bar/toolbar with these selections:

* Right places the button on the right side of the menu/toolbar.

« Left adds the button on the left side of the menu/toolbar.

» Top places the button at the top/center of the menu bar or toolbar.
 Bottom places the button at the bottom/center of the menu bar or toolbar.

The Macro Helper

Thistool isavailablefor UNIX only (excluding Linux).

The purpose of the Macro Helper isto aid macro creation by recording a simple series of
mouse movements and key strokes. The resulting file can be called from a more complex
macro by using the play (CR-148) command. Actions recorded by the Macro Helper can
only take place within the ModelSm GUI (window sizing and repositioning are not
recorded because they are handled by your operating system’ s window manager). In
addition, therun (Cr-176) commands cannot be recorded with the Macro Hel per but can be
invoked as part of a complex macro.

Select Macro > Macro Helper (Main
window) to access the Macro Helper. .

macro s]

» Record amacro
by typing a new macro file nameinto
the field provided, then press Record.
Use the Pause and Stop buttons as
shown in the table below.

« Play amacro
by entering the file name of a Macro Helper fileinto the field and pressing Play.

e) e

Files created by the Macro Helper can be viewed with the notepad (CR-141).

Button Description

Record/Stop Record begins recording and toggles to Stop once arecording
begins

Insert Pause insertsa.5 second pauseinto the macrofile; pressthe button more

than once to add more pause time; the pause time can
subsequently be edited in the macro file

Pay plays the Macro Helper file specified in the file name field

Seethemacro_option command (CR-135) for playback speed, delay and debugging options
for completed macro files.

8-270 ModelSim Graphic Interface ModelSim SE User’s Manual

ModelSim tools

The Tcl Debugger

Wewould like to thank Gregor Schmid for making TDebug available for usein the public
domain.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY: ; without even the implied warranty of FITNESS FOR A PARTICULAR
PURPOSE.

Starting the debugger

Select Macro > Tcl Debugger (Main window) to run the debugger. Make sure you use the
Model Smand TDebug menu selectionsto invoke and close the debugger. If youwouldlike
more information on the configuration of TDebug see Help > Technotes > tdebug.

The following text is an edited summary of the README file distributed with TDebug.

How it works

TDebug works by parsing and redefining Tcl/Tk-procedures, inserting callsto ‘td_eval’ at
certain points, which takes care of the display, stepping, breakpoints, variables etc. The
advantages are that TDebug knows which statement in what procedure is currently being
executed and can give visual feedback by highlightingit. All currently accessible variables
and their values are displayed as well. Code can be evaluated in the context of the current
procedure. Breakpoints can be set and del eted with the mouse.

Unfortunately there are drawbacksto thisapproach. Preparation of large proceduresisslow
and due to Tcl’s dynamic nature there is no guarantee that a procedure can be prepared at
all. This problem has been all eviated somewhat with the introduction of partial preparation
of procedures. Thereis still no possibility to get at code running in the global context.

The Chooser

Select Macro > Tcl Debugger (Main window) to open the TDebug chooser.
The TDebug chooser hasthree parts. At

thetopthecurrent interpreter, vsim.op_, 5| TDebug-Choose M=

is shown. In the main section there are

two list boxes. All currently defined Interp: __ vsim |
procedures are shown in the left list Mormal Prepared

box. By clicking the left mouse button mair - -
on a procedure name, the procedure A boLty systen —

gets prepared for debugging and its A ddadditionalDus

name is moved to the right list box. AddCmdT olusue

Clicking anamein the right list box AddG enericEntry

returns a procedure to its normal state. ijﬁaﬁ%ﬁ sorMe

Press the right mouse button on a il sk dittd s

procedure in either list box to get its Add/ avef et en. |
program code displayed in the main Addv/aveProphler - -
debugger window. Rescan | Popup | E it

The three buttons at the bottom let you
force aRescan of the available
procedures, Popup the debugger window or Exit TDebug. Exiting from TDebug doesn't

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-271

ModelSim tools

terminate ModelSm, it merely detaches from vsim.op_, restoring all prepared procedures
to their unmodified state.

The Debugger
Select the Popup button in the Chooser to open the debugger window.

i.| TDebug for vzim

Debugger Dptionsz Selection Yanables Help
Proc : |.-“-‘-.pp|yWaveF'r-::p {hreename) Yanables:
SR A freename: wave.tiee |
global weimPris _ _ _ : _| waimPriv] zignals:): 1
Ftreename waveconfig -signalnamewidth FvsimPrivwaveprop_sigwn waimPriv], signals0]; 1

$treename waveconfig -shapdistance $wsimPriviwaveprop_shapdi waimPriv]. sighale:]: 1

wzimPriv signals:i) 1

waimPrv[D ataflowiadindoms]
waimPriv(Default nitame];
vaimPriv[DizableB utbonbist]:
vzimPriv[DragDop_DropHa
=l |~zimPriv[Draghop_DropHa

i [B | FomERresbee Drete

Result: | |] LI

Eval : | || Delay: 300 | +
™ Stop | = Mest ™ Slow " Fast | ™ Monstop | " Break

The debugger window is divided into the main region with the name of the current
procedure (Proc), alisting in which the expression just executed is highlighted, the Result
of this execution and the currently available Variables and their values, an entry to Eval
expressions in the context of the current procedure and some button controls for the state
of the debugger.

A procedure listing displayed in the main region will have adarker background on all lines
that have been prepared. Y ou can prepare or restore additional lines by selecting aregion
(<Button-1>, standard selection) and choosing Selection > Prepar e Proc or Selection >
Restor e Proc from the debugger menu (or by pressing P or *R).

When using ‘ Prepare’ and ‘ Restore’, try to be smart about what you intend to do. If you
select just asingle word (plus some optional white space) it will be interpreted as the name
of aprocedureto prepare or restore. Otherwise, if the selection is owned by the listing, the
corresponding lineswill be used.

Be careful with partial prepare or restore! If you prepare random linesinside a‘ switch’ or
‘bind’ expression, you may get surprising results on execution, because the parser doesn’t
know about the surrounding expression and can't try to prevent problems.

8-272 ModelSim Graphic Interface ModelSim SE User’s Manual

ModelSim tools

There are seven possible debugger states, onefor each button and an ‘idl€ or ‘ waiting’ state
when no button is active. The button-activated states are:

Button Description

Stop stop after next expression, used to get out of slow/fast/nonstop
mode

Next execute one expression, then revert to idle

Slow execute until end of procedure, stopping at breakpoints or when

the state changes to stop; after each execution, stop for ‘delay’
milliseconds; the delay can be changed with the‘ + and *-” buttons

Fast execute until end of procedure, stopping at breakpoints

Nonstop execute until end of procedure without stopping at breakpoints or
updating the display

Break terminate execution of current procedure

Closing the debugger doesn't quit it, it only does ‘wm withdraw’. The debugger window
will pop up the next time a prepared procedureis called. Make sure you close the debugger
with Debugger > Close.

Breakpoints

To set/unset a breakpoint, double-click inside the listing. The breakpoint will be set at the
innermost available expression that contains the position of the click. There's no support
for conditional or counted breakpoints.

.| TDebug for vsim

Debugger Optionz Selection Wariables

Proc : |.-’-'-.pp|yWaveF'ru::p {lreename}

.

global wsimPriy |
E| $treename waveconfig -zighalnarmewidth $vsimPrivwaveprop_sigwi
$treename waveconfig -shapdistance $waimPriv[waveprop_shapdi

breakpaint

The Eval entry supports a simple history mechanism available viathe <Up_arrow> and
<Down_arrow> keys. If you evaluate a command while stepping through a procedure, the
command will be evaluated in the context of the procedure; otherwise it will be evaluated
at the global level. Theresult will be displayed in theresult field. Thisentry isuseful for a
lot of things, but especially to get accessto variables outside the current scope.

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-273

ModelSim tools

Try entering the line *global td_priv’ and watch
the Variables box (with global and array
variables enabled of course).

Configuration

Y ou can customize TDebug by setting up afile
named .tdebugrc in your home directory. See the
TDebug README at Help > Technotes >
tdebug for moreinformation on the configuration
of TDebug.

TclPro Debugger

The Macro menu in the Main window contains a
selection for the TclPro Debugger from Scriptics
Corporation. Thisdebugger can be acquired from
Scriptics at their web site: www.scriptics.com.
Once acquired, do the following steps to use the
TclPro Debugger:

Execute Macra...

Execute Old PE Macro...
LCorvert Oid PE Macra...

Tcl Debugger
TP Debugger

1 Launch TclPro Debugger

2 Launch ModelSm

3 Sdect Macro > TclPro Debugger (Main window)

Yanables:

reename: . wave.tree
waimPrv] signals:): 1
waimPriv. signals:07; 1
waimPriv gignalzs]: 1
wzimPriv zignals:i): 1
wezimPrv[D ataflowiafindoms]
waimPriv[Defaultlnit ame];
wzimPriv(DizableB uttonbist]:
vzimPriv[DragDop_DropHa
vzimPriv[DragDrop_DropHa
vaimPrv[Draglop_DropHa
=

Ll

[T = TN P T

RIN i

Delay: 300

Thiswill connect Model Sm to the Scriptics TclPro Debugger.

8-274 ModelSim Graphic Interface

ModelSim SE User’s Manual

ModelSim tools

The GUI Expression Builder

The GUI Expression Builder is afeature of the Wave and List Signal Search dialog boxes,
and the List trigger properties dialog box. It aidsin building a search expression that
follows the "GUI_expression_format" (CR-297).

To locate the Builder:

* select Edit > Search (List or Wave window)

* select the Search for Expression option in the resulting dialog box
* select the Builder button

|5 'Expression Builder

FEHpressinn

— Ex=prezsion Builder
Inzert Selected Signal | [] ==
'Tiging 'falling el I I=
AMD) OR 1] 1 * b= <
#OR| SLL b z <= +
SEL| SR H L § 4 X
Clear Save Test | Ok | Cancel

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in asignal name, you can select the signal in
the associated Wave or List window and press Insert Reference Signal in the Expression
Builder. Theresult will bethefull signal name added to the expressionfield. All Expression
Builder buttons correspond to the "Expression syntax" (CR-302).

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-275

ModelSim tools

To search for when a signal reaches a particular value

Select the signal in the Wave window and click Insert Reference Signal and ==. Then,
click the value buttons or type a value.

To evaluate only on clock edges

Click the & & buttonto AND this condition with the rest of the expression. Then select the
clock in the Wave window and click I nsert Reference Signal and ‘rising. You can also
select the falling edge or both edges.

Operators

Other buttonswill add operators of variouskinds (see" Expression syntax" (CR-302)), or you
can typethemin.

To save the expression as a Tcl variable
The Save button allows you to save the expression to a Tcl variable.

See"Setting up aList trigger with Expression Builder" (E-444) for an additional Expression
builder example.

8-276 ModelSim Graphic Interface ModelSim SE User’s Manual

Graphic interface commands

Graphic interface commands

The following commands provide control and feedback during simulation as well as the
ability to edit, and add menus and buttons to the interface. Only brief descriptions are
provided here; for more information and command syntax see the Model Sm Command

Reference.

Window control and Description

feedback commands

batch_mode (CR-42) returnsa 1l if Model Smis operating in batch mode, otherwise returns a0;
itistypically used as a condition in an if statement

configure (CR-88) invokesthe List or Wave widget configure command for the current
default List or Wave window

down (CR-105) movesthe active marker in the List window down to the next transition on
the selected signal that matches the specifications

getactivecur sortime (CR-124) gets the time of the active cursor in the Wave window

getactivemar kertime (CR-125) gets the time of the active marker in the List window

left (CR-129) searches | eft through the specified Wave window for signal transitions or
values

notepad (CR-141) asimpletext editor; used to view and edit ASCII files or create new files

play (CR-148) UNI X only (excluding Linux) - replays a sequence of keyboard and

mouse actions that were previously saved to afile with therecord
command (CR-167)

property list (CR-161) changes properties of an HDL item in the List window display

property wave (CR-162) changes propertiesof an HDL item in thewaveform or signal name display
in the Wave window

record (CR-167) UNIX only (excluding Linux) - starts recording a replayable trace of all
keyboard and mouse actions

right (CR-174) searchesright through the specified Wave window for signal transitions or
values

search (CR-178) searches the specified window for one or more items matching the
specified pattern(s)

seetime (CR-182) scrollsthe List or Wave window to make the specified time visible

transcribe (CR-193) displays acommand in the Main window, then executes the command

up (CR-196) movesthe active marker inthe List window up to the next transition on the

selected signal that matches the specifications

write prefer ences (CR-280) saves the current GUI preference settingsto a Tcl preferencefile

ModelSim SE User’'s Manual ModelSim Graphic Interface 8-277

Graphic interface commands

Window menu and button
commands

Description

add button (CR-26)

adds a user-defined button to the Main window button bar

add_menu (CR-31)

adds a menu to the menu bar of the specified window

add_menucb (CR-33)

creates a checkbox within the specified menu of the specified window

add_menuitem (CR-34)

creates a menu item within the specified menu of the specified window

add_separator (CR-35)

adds a separator asthe next item in the specified menu path in the specified
window

add_submenu (CR-36)

creates a cascading submenu within the specified menu_path of the
specified window

change menu_cmd (CR-53)

changesthe command to be executed for aspecified menuitemlabel, inthe
specified menu, in the specified window

disable_menu (CR-102)

disables the specified menu within the specified window; useful if you
want to restrict access to a group of ModelSim features

disable_menuitem (CR-103)

disables a specified menu item within the specified menu_path of the
specified window; useful if you want to restrict access to a specific
ModelSim feature

enable_menu (CR-112)

enables a previoudy-disabled menu

enable_menuitem (CR-113)

enables a previously-disabled menu item

8-278 ModelSim Graphic Interface

ModelSim SE User’s Manual

Customizing the interface

Customizing the interface

Try customizing Model Sm' s interface yourself; use the command examples for add
button (Cr-26) and add_menu (CR-31) to add a button to the Main window, and a new
menu to the Signals window (8-193). Results of the button and menu commands are shown

below

Buttons the easy way

"The Button Adder" (8-269) tool makes adding buttons easy. Select Window > Customize
in any window to accessthe Button Adder. Buttonsyou create are not permanent; they exist
only during the current session. To reuse a button, save the Main transcript (File > Save
Transcript As) after the button is created. Edit the file to contain only button-creation
commands, then pass the filename as an argument to the do command (CR-104) to recreate

the button.

[XIModelSim [[O]]

Flle Edt Design “iew Project Bun Compare Macro Options Window Help

EE BB 04 EREE T |

ModelSim: add button prd {franscribe prd} MoDisable =
.controlz. button_11

pwd
E:/modelzimb5_020707 Awin32
tade/Sim: |

=

Project : test |< [ie

sign Lcnaded/F:No Conte g

EME Edt wiew wndow| RG]

¥ L [
i prdy 0 Yars
B paddr
EF pdata 000 \

im: Mtop

%1 Filter [HjJ=] E3

Input Parts
Qutput Parts
InOut Ports

Internal Signals

The pwd button was added to the Main
window with the add button command (CR-
26). Buttons can be added to the status bar as
well.

The Mine menu was added to the Signals
window with theadd _menu command (CR-
31).

» The Do My Own Thing menu item was added

with theadd_menuitem command (CR-34)

The menu separator was added with the
add_separator command (CR-35).

The ChangeCase and Vars submenus were
added with theadd_submenu command (CR-
36).

* Y ou can also add amenu checkbox (likethose

in this menu tearoff) with the add_menucb
command (CR-33).

ModelSim SE User’s Manual

ModelSim Graphic Interface 8-279

8-280 ModelSim Graphic Interface ModelSim SE User’s Manual

9 - Performance Analyzer

Chapter contents

Introducing Performance Analysis. 9282
A Statistical Sampling Profiler 9282
Getting Started. 9283
Interpreting thedata 9283
Viewing Performance AnaIyzer R&sults e e ... 9284
Interpreting the Name Field 9266
Interpreting the Under(%) and 1n(%) F|elds 9266
Differencesin the Ranked and Hierarchical Views 9-287
Ranked/Hierarchical Profile Window Features 9-288
Thereport option 928
Setting preferenceswith Tcl variables. 9290
Performance Analyzer commands. 929

Y ou can use the Performance Analyzer to easily identify areas in your simulation where
performance can be improved. The Performance Analyzer can be used at all levels of
design simulation — Functional, RTL, and Gate Level —and has the potential to save hours
of regression test time. In addition, ASIC and FPGA design flows benefit from the use of
thistool.

P Note: The Performance Analyzer does not work on Windows 95.

ModelSim SE User’'s Manual Performance Analyzer 9-281

Introducing Performance Analysis

Introducing Performance Analysis

The Performance Analyzer provides an interactive graphical representation of where
ModelSmis spending its time while running your design. This feature enables you to
quickly determine what is impacting the design environment’ s simulation performance.
Those familiar with the design and validation environment will be able to find first-level
improvements in a matter of minutes.

For example, the Performance Analyzer might show some or all of the following

« A non-accelerated VITAL library cell isimpacting simulation run time

* A processis consuming more time than necessary because of non-required itemsin its
sensitivity list

* A testbench processis active even though it is not needed

* A random number processis consuming simulation resources when in atest bench that
is running in non-random mode

With thisinformation, you can make changesto the VHDL or Verilog source code that will
speed up the smulation.

A Statistical Sampling Profiler

The Performance Analyzer feature in ModelSmis a statistical sampling profiler. It
periodically "wakes up" and samples the current simulation at a user-determined rate, and
records what is executing in the ssimulation during the sample period. The advantage of
statistical analysisisthat an entire simulation may not have to be run to get good
information from the Performance Analyzer. A few thousand samples, for example, can be
accumulated before pausing the simulation to see where simulation time is being spent.

9-282 Performance Analyzer ModelSim SE User’s Manual

Getting Started

During sampling, the Samplesfield in the footer of the Main window displays the number
of profiling samples collected, and each sample becomes one data point in the simulation
profile.

] ModelSim SE

Eile Edit Design “iew Project Bun Compare Macm Options window Help

B BBE@ T m GE B

[B == FEDA b ark == at 4306300 ne F'rimar_l,l Channel
z:t_rir'ugl:nuf: test_in B = F=DA Mark = at 4307300 nz Prinary Channel

S " B = F=DA Mark == at 4303200 nz Prirnary Channel
ring_irst: ringbuf | b = D A Mark = at 4908600 ne Primary Channel

B Fackage testio # = BeDd Mark, * at 4303600 nz Prirmary Channel
‘ f = BeDa Mark, * at 4310300 nz Prirmary Channel

B Package std logic_| k. Cor’ Mark = ot 4311400 e Primans Channel
M Package std_logic_ | §4t = Rapa park = at 4311800 ns Primary Channel
B Fackage std_logic_ | Jit = F=DaA kark = at 4913000 ns Primary Chatinel
B Package standard || |8 ™ A=DA Mark ™ at 4313800 nz Primary Channel
= BeDA Mark * at 4314400 nz Primary Channel
= RBeDA Mark, * at 4314800 nz Primary Channel
= R0 Mark * at 4315400 nz Primary Channel

I — [

Ve s/ | Y

[Mow: 6,058 600 ns Delta: 1 Profile Samples: 1247 ———sim:AestTingbufiring

Getting Started

Performance analysis occurs during the ModelSm run command and is displayed
graphically asaprofile of simulator performance. To enablethe Performance Analyzer, use
the profile on command at the VSIM prompt. After this command is executed, all
subseguent run commands will have profiling stetistics gathered for them. With the
Performance Analyzer enabled and arun command initiated, the simulator will provide a
message indicating that profiling has started.

The Performance Analyzer is turned off by issuing the profile off command at the VSIM
prompt. Any ModelSm run commands that follow will not be profiled.

Profiling results are cumulative. Therefore, each run command performed with profiling
ON will add new information to the databeing gathered. To clear thisdata, issuetheprofile
clear command at the VSIM prompt.

Interpreting the data

The Performance Analyzer is most helpful in those situations where a high percentage of
simulation time is being spent in a particular module. For example, say the Performance
Analyzer shows that the simulation is spending 60% of itstimein module X. This
information can be used to find where module X wasimplemented poorly and to implement
achange that runs several times faster.

More commonly, the Performance Analyzer will tell you that 30% of simulation time was
spent in model X, 25% in model Y, and 20% in model Z. In such situations, careful

ModelSim SE User’'s Manual Performance Analyzer 9-283

Interpreting the data

examination and improvement of each model may result in a significant overall speed

improvement.

Therearetimes, however, when the Performance Analyzer tellsyou nothing better than that
the simulation has executed in several hundred different models and has spent lessthan 1%
of itstimein any one of them. In such situations, the Performance Analyzer provideslittle

helpful information and simulation improvement must come from a higher level

examination of how the design

Viewing Performance Analyzer Result

can be changed or optimized.

S

The Performance Analyzer providestwo views of the collected data—ahierarchical and a
ranked view. The hierarchical view isaccessed by clicking View > Other > Hierarchical
Profile (Mainwindow). Theranked view isaccessed by selecting View > Other > Ranked

Prdfile.
|-, ModelSim
Eile Edt Design Project Bun Compare Macro Optiong: Window Help
S BB EYETE R T
;Iide W alksmees ark, ** at 27852400 niz Primary Channel j

ark. #* at 23478800 nz Primary Channel

config_rlwhd
control vhd Saource

retrieve. vhd i.tftfcltjtllre
i aniables
rifigrtl. whd =
Signals
stare. vhd List

testring.vhd Process

ark. #* at 23473600 nz Primary Channel
ark. = at 23430000 nz Primary Channel
ark. = at 23430800 nz Primary Channel
ark, * at 234371400 nz Primany Channel
ark, * at 23432200 nz Primany Channel
ark, * at 23433000 nz Primany Channel
ark, ** at 23434000 rniz Primary Channel
ark, ** at 23434600 rniz Primary Channel
ark. #* at 23485000 nz Primary Channel
ark. #* at 23486600 nz Primary Channel
ark. = at 23437000 niz Primary Channel

ark. = at 23437600 nz Primary Channel
ark, * at 23438400 nz Primany Channel

ark, = at 23433200 nz Primany Channel

~rl 5~} IIADONN e Biryary Channel

Hierarchical Prafile kimary Channel

Banked Profile b [34% in uger code)

Source Coverage

Wave

Dataflaw

Datazets. .

Mew '
Profiling £
B 9701727
54
g0

‘\ Project A Designs ;{ S f E?ital R

Time 1 Mintes R4 Sernnds

|F'rn:ujen:t . performance Imw: a0 ms

Delta: 4 sim:/test_nngbuf

-

o

9-284 Performance Analyzer

Model Sim SE User’s Manual

Interpreting the data

The Hierarchical view can also be invoked by entering view_profile at the VSIM prompt.
Inthe Hierarchical Profile window, you can expand and collapse variouslevelsto hide data
that is not useful and/or is cluttering the data display. Click on athe’-" box to collapse all
levels beneath the entry. Click on the '+ box to expand an entry. By default, al levels are
fully expanded. Inthe hierarchical view below, two lines(retrieve.vhd:35 and store.vhd:43)
are taking the majority of the simulation time.

] Hierarchical Profile [[O) x|
Samples; B180 i I il Under?élrﬂ 15

Name | Underizz)] 1niz)] ZParent
Bl retrieve.vhd: 35 44 10
Lieee_sru:a’mti_std_lngic_unsigned.vhd:#EEl 34 34 i
B stare vhd:43 43 q

Lieee_sn::a’mti_std_lngic:_unsigned.vhu:l:elEEl 33 33 8
B contral vhd: 87
L igee_grcdmi_std_logic_unzigned.vhd 276
retrigve. whd: 38
testring. whd: 939
B caontrolvhd: 93
L ieee_zicdmb_std_logic_unsigned. vhd: 424
store, whd 46
testring. whd: 37

]

7B

B T e e I L]

0
1
1
1
0
1
1
1

ModelSim SE User’'s Manual Performance Analyzer 9-285

Interpreting the data

The Ranked view can beinvoked by entering view_pr ofile_ranked. Themodulesand code
lines are ranked in order of the amount of simulation time used. The two linesthat are
taking up most of the simulation time—retrieve.vhd: 35 and store.vhd:43 — appear at thetop
of thelist under the VHDL module that contains them.

] Ranked Profile [_ (O] x|
Semralze G90 da | 1| In°/;|1_§ o

Narme [Undertzz)] 1niz2)
ieee_srodmtl_std_logic_unzigned.vhd: 423 &Y E7
retrieve, vhd 35 44 10
ghore,whid 43 43

ieee_srcdmtl_std_logic_unzigned. vhd 276

ieee_srcdmbl_std_logic_unzigned. vhd 424
retrieve, vhd, 38

testring.vhd: 39

store, vhd 46

testring. vhd: 37

—_ g g g g
— a4 g . g O

Interpreting the Name Field

The Name, Under (%) and In(%) fields appear in both the ranked and hierarchical views.
Thesefieldsareinterpretedidentically in both views. Typically aName consists of an HDL
file and line number pair. Most useful names consist of aline of VHDL or Verilog source
code. If you useaPLI/VPI or FLI routine, then the name of the C function that implements
that routine can also appear in the name field.

vsim is a stripped executable file, so that any functionsinside of it will be credited to the
line of code that uses the function.

The hierarchical view openswith all levels displayed. Y ou can collapse the hierarchical
view by clicking the boxes next to the high-level names. At thistime, the hierarchical view
will not remember which levels are opened or closed when data is reloaded. By defaullt,
hierarchical levels are opened every time datais rel oaded.

Interpreting the Under(%) and In(%) Fields

The In(%) and Under (%) columns describe the percentage of the total simulation time
spent in and under afunction listed in the Name field.

The distinction between In(%) and Under(%) is subtle but important. For the
retrieve.vhd: 35 entry inthe hierarchical and ranked views above, Under(%) is44 and In(%)
is10. "Under(%)" means that this particular line and all support routines it needed took
44% of total simulation time. "In(%)" means that 10% of the total simulation time was
actually spent executing this line of VHDL code.

9-286 Performance Analyzer ModelSim SE User’s Manual

Interpreting the data

Inthebody of the Hierarchical Profile or Ranked Profile windows, you can double-click on
any VHDL/Verilog file and line-number pair to bring up that file in the Source Window
with the selected line highlighted. | n the diagram below, retrieve.vhd: 35 was selected inthe
Hierarchical Profile and, consequently, is highlighted in the Source window.

@ -profile_source - retrieve. vhd M=l E
Eile Edit Object Optionz afindow

EE iER2ERsa Be

a0 - Produces the decade logic which pointers j
K1 - b each location of the zhift register.

32 retriever - PROCESS [buffers.ramadrz[counter_gsize-11 downta)]

33 BEGIM

for iin O to (buffer_size - 1] loop
S = ramacialiveeenar nee - ot ,?}"?"5'13

rdla <= buffers(i);
37 EMD IF;
end loop ;
EMD FROCESS;
40
42 rida <= rdla and outstrobe;

43 .

i END RTL; .
1 | I F

The actual line of VHDL code for retrievevhd: 35 is:

I'F (i=ramadrs((counter_size-1)downto 0)) THEN

Differences in the Ranked and Hierarchical Views

The hierarchical view differs from the ranked view in two important respects.

» Entriesin the Name column of the hierarchical view areindented in order to show which
functions or routines call which others.

» A %Parent columnin the hierarchical view allows you to see what percentage of a parent
routine's simulation time is used in which subroutines.

Indentation in the Name column of the Hierarchical Profile window indicateswhich lineis
caling afunction. For example, in the hierarchical view above, the line store.vhd: 43 calls
ieee src/mti_std_logic_unsigned.vhd: 429.

The hierarchical view presents datain acall-graph style format that provides more context
than doesthe ranked view about where simulation timeisspent . For example, your models
may contain several instances of a utility function that compute the maximum of 3-delay
values. A ranked view might reveal that the simulation spent 60% of itstime in this utility
function, but would not tell you which routine or routines were making the most use of it.
The hierarchical view will reveal which lineis calling the function most frequently. Using
this information, you might decide that instead of calling the function every time to
compute the maximum of the 3-delays, this spot in your VHDL code can be used to
computeit just once. Y ou can then store the maximum delay valuein alocal variable.

The %Parent column provides the percent of simulation time a given entry used of its
parent’ stotal simulation time. From this column, you can calcul ate the percentage of total
simulation time taken up by any function. For example, if a particular parent entry used

ModelSim SE User’'s Manual Performance Analyzer 9-287

Ranked/Hierarchical Profile Window Features

10% of thetotal simulation time, and it called aroutine that used 80% of itssimulationtime,
then the percentage of total simulation time spent in that routine would be 80% of 10%, or
8%.

In addition to these differences, the ranked view displays any particular function only once,
regardless of where it was used. In the hierarchical view, the function can appear multiple
times — each time in the context of where it was used.

Ranked/Hierarchical Profile Window Features

The Ranked and Hierarchical Profile windows have a number of features that can

mani pul ate the data displayed. Most of these features are contained in atoolbar in the
header of the window, which displays an icon for each feature. Placing the mouse over an
icon causes its function to be displayed.

54 'Hierarchical Profile

Samples: 5121 i I

ﬂ Llnder.?él'l_ﬂ o

The Under %

TheUpdate Data

The Find Entry The Saveto File
icon provides filter allowsyou icon causes the icon alowsthe
accessto asearch to specify acutoff datato be datato besavedto
function that can percentage for reloaded from the disk. You will be
be used to search displaying the simulator. If you prompted for the
for agiven string data. By default, change the cutoff output file name.
in the window. every entry in the percentage or do
Typetextinthe profiling datathat an additional The profile
entry box and then has spent at |east simulationrunthe report command
press Return or 1% of the Ranked and (CR-158) provides
click the simulation time Hierarchical another way to
binocular icon. under that entry Profile windows save profile data

will be displayed. are not

automatically

The hier Cutoff updated. You

and rankCutoff should click on

variables provide this button to

asimilar function. update the data

See " Setting beingdisplayedin

preferences with these windows.

Tcl variables' (9-

290).

9-288 Performance Analyzer

Model Sim SE User’s Manual

Ranked/Hierarchical Profile Window Features

The report option

Y ou can also use the profile report command (CR-158) to save the Performance Analyzer
results.

profile report [<option>]

The arguments to the command are [-hierarchical | -ranked] [-file<filename>] [-cutoff
<percentage>]. For example, the command

profile report -hierarchical -file hier.rpt -cutoff 4

will produce aprofile report in atext file called hier.rpt, as shown here.

Bl hier.ipt [_ O] x|

Eile Edit 5Search Help

Hierarchical profile generated Thu Dec 16 13:22:48 1999
Humber of samples: 563

Humber of samples in user code: 387 (69%)

Cutoff percentage: 4%

Hame Under{%) In{(%) =Parent
control.vhd:-87 15 15 -
store_array.vhd:39 18 18 -
control.vhd:-98 B 8 -
testring.vhd:99 6 6 -
testring.vhd:97 5 5 -

retrieve array.vhd:35 L =Y - —
testring.vhd:177 4 1

ModelSim SE User’'s Manual Performance Analyzer 9-289

Setting preferences with Tcl variables

Setting preferences with Tcl variables

Various Tcl variables control how the Hierarchical Profile and Ranked Profilewindowsare
displayed.Y ou can set these preference variables by selecting Options > Edit Preferences
> By Name > Profile (Main window). Use the Apply button to view temporary changes,
or Save the changes to alocal modelsim.tcl file. Once saved, the preferences will be the
default for subsequent simulations invoked from the same directory. See http:/
www.model.com/resources/pref_variables/frameset.htm for more information on the
individual variables.

Performance Analyzer commands

The table below provides a brief description of the profile commands; follow the links for
complete command syntax.

See the Model Sm Command Reference for complete command details.

Command Description

profileclear (CR-153) clears any data that has been gathered during previous run commands;
after this command is executed, al profiling datawill be reset

profileinterval (CR-154) selectsthefrequency with which the profiler collects samplesduring arun

command

profile off (CR-155)

disables runtime profiling

profile on (CR-156)

enables runtime analysis of where your simulation is spending itstime

profile option (CR-157) changes various profiling options

profilereport (CR-158) produces a textual output of the profiling statistics that have been

gathered up to this point

9-290 Performance Analyzer ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

10 - Code Coverage

Chapter contents

Enabling Code Coverage10-292
The coverage sourcewindow10-29%
Excludinglinesand files10-29
The coverage summary window10292
Summary information.10-293
Missestab.10293
Exclusonstab.10293
The coverage summary window menubar 10294
Merging coveragereport files.10-298
Exclusion filter files1029
Syntax.1029
Arguments.10299
Example1029
Default filter file10-299
Code Coverage preferencevariables 10-300
Code Coveragecommands.10-300

Code Coverage gives you graphical and report file feedback on how your source code is
being executed. Thisintegrated feature provides three important benefitsto the ModelSm
user:

1 Becauseit'sintegrated into the ModelSm engine, it istotally non-intrusive —it doesn’t
reguire instrumented HDL code as do third-party code coverage products.

2 It hasvery little impact on simulation performance (typically less than 5%).

3 Thereisno need to recompileto obtain code coverage statistics. Model Smversion 5.3 and
later libraries fully support this feature.

ModelSim SE User’'s Manual Code Coverage 10-291

Enabling Code Coverage

Enabling Code Coverage

To enablecode coverage, begin simulation with the -cover age option to thevsim command
(CR-258). With coverage enabled, Model Sim counts how many times each executable line
is executed during simulation (number of "hits"). Theinformation is then displayed in the
coverage_source and coverage_summary windows. Or, you can save theinformation in
several different text reports (see below for details).

P> Note: To view the maximum number of lines while doing code coverage, use the
-00 (capital O zero) argument when you compile your design files. This argument
minimizes compiler optimizations.

The coverage_summary window

The coverage summary window provides a graphical view of code coverage. To display
the coverage_summary window, select View > Other > Sour ce Cover age (Main window)
or enter view_cover age at the VSIM prompt.

)
|5y coverage_summary

File Cowverage Beport

Pathname Linez | Hits X Coverage =
E:/modelzimB5_ 011801 Awind2d Avhdl | 240
E:/modelzimB5_ 011801 Awind2/ Avhdl{ BO7
E:/modelzxim55_ 011801 Awind2d Avhdl{ 515
E:/modelzim55 011801 Awin32) . Avhd) a0
control. vhd 4a
summary — | retrieve. vhd 5
ringrtl whd 1
gtore vhd 3
teztring. vhd a3
| | »1 1458 | 112 fh
—_—— —
Lines with no coverage in file control.«whd
El IF csbh = '0' THEN =
misses and — - || [5 comtrol reg <= switch;
exclusions &z when "10" = buffer txd <= txdi(l);

63 when "0O1"
&4 when "00"
70 when "10"

W

buffer txd <= txd(Z]; b
buffer_txd <= txd(2);
rxd == '1l' & buffer rxd & "11";

vwd amtdrra o= 10 - 1|"I

=1
_\ Mizzes ;{ Excluded ,l'r

W

W

Thewindow issplit into two panes: the top pane displays Summary information (10-293) on
aper file basis; the bottom pane displays lines misses on the Misses tab (10-293) and file or
line exclusions on the Exclusions tab (10-293).

10-292 Code Coverage ModelSim SE User’s Manual

The coverage_summary window

The coverage_summary window islinked to The coverage source window (10-296). When
you select afilein thetop pane, that file displaysin the coverage _sourcewindow. Likewise,
if you select aline number in the bottom pane, that lineis scrolled to in the coverage_source
window. In addition, any exclusions you make in the coverage_summary window
automatically show up in the coverage source window and vice versa.

Summary information

Misses tab

Exclusions tab

The top pane of the coverage summary window shows all of the design files that have
executable lines of code. The columns of information include:

* The Pathname column shows the path and file name.
» The Lines column contains the number of executable linesin thefile.

» The Hits column indicates the number of executable lines that have been executed in the
current simulation.

* The Percentage column isthe current ratio of Hitsto Lines. Thereisalso abar chart that
graphically displays this percentage. If the coverage percentage is below 90%, the bar
chart isdisplayed in red (you can change the percentage by editing the
Pref Coverage(cutoff) preference variable).

By default, the summary information is sorted by Pathname. Y ou can sort by another
column by clicking on the column heading (i.e., Lines, Hits, %).

A totals row at the bottom of the summary information shows coverage statistics for all of
the files combined.

The Misses tab lists lines from the current file with no hits. Select afilein the top pane of
the coverage_summary window to see that file's missed lines.

Thistab also lets you select lines to exclude. Select the ling(s) you want to exclude, click
your right mouse button, and select Exclude Selected Lines. Thelinesyou exclude will be
shown in the Exclusions tab and also marked with a green " X" in The coverage_source
window (10-296).

The Exclusionstab lists al file and line exclusion filters for the current simulation. This
includes line or file exclusions made in the Misses tab or in the coverage _source window.

The Exclusions tab offers several commands via a context menu. Click anywhere within
the tab with your right mouse button to get the following context menu:

The menu has the following options:

. . |hclude Entire Selected Fil
 Include Entire Selected Files MIEIEE ENATE SElecied TIes

Adds selected lines or files back into the Revert Ta Initial Filter
coverage statistics. If you have multiple lines Clear out Current Filter
excluded in onefile, it will add back all of Laad a Mew Filker
them. To add back individual lines, use the Disable Filtering
coverage_source window. Cancel

ModelSim SE User’'s Manual Code Coverage 10-293

The coverage_summary window

* Revert ToInitial Filter

Returnsfiltering to the default exclusion filter file

e Clear Out Current Filter
Clears active exclusion filters

* Load a New Filter

Opens a different exclusion filter file

 Disable/EnableFiltering

Disables/enables filtering. Acts as atoggle. Allows you to temporarily turn off filtering
to see raw code coverage statistics.

» Cancel
Closes the context menu

The coverage_summary window menu bar

The coverage_summary window has three menus: File, Coverage, and Report. Brief
descriptions of each command are given below.

File menu

Open > Coverage >
Merge Coverage

Merges saved reportsinto the current analysis. See "Merging
coverage report files" (10-298) for more details

Open > Coverage >
Apply aPrevious
Coverage

Clears the current coverage statistics and loads a previously
saved coverage report

Open > Load a New
Filter

Loads an exclusion filter file. See "Exclusion filter files" (10-
299) for more details

Save > Line Coverage

Saves atextual report of the source file summary data and
details for each executablelinein thefile

Save > Current Filter

Savesthecurrent exclusion filter to afilethat can berel oaded
later. See "Exclusion filter files' (10-299) for more details

Close

Closes the view_coverage window

Coverage menu

Clear Current Coverage

Clears the current coverage statistics

Revert To Initia Filter

Returns filtering to the default exclusion filter file

Clear out Current Filter

Clears active exclusion filters

Disable/Enable Filtering

Disables/Enables filtering. Acts as atoggle.

10-294 Code Coverage

Model Sim SE User’s Manual

The coverage_summary window

Report menu

Save Summary Coverage

Saves atextual report of the summary lines, hits, and
percentages for each source file being analyzed

Save Line Coverage

Saves atextual report of the source file summary data and
details for each executablelinein thefile

Save Excluded Lines

Saves atextual report of the lines and files that are currently
being excluded from the coverage statistics

Save Zeroed Lines

Saves atextual report like the Line Coverage report but only
includes those lines that have zero coverage

Save Totals Saves aone line text report of the tota files, lines, hits and
overall percentage for the current analysis
Save As L ets you choose from the above reportsin one dialog

ModelSim SE User’s Manual

Code Coverage 10-295

The coverage_source window

Y ou can open the coverage source window by selecting afile in the pathname column of
"The coverage_summary window" (10-292). The coverage source window is an enhanced
version of the standard Source window (8-201). When code coverage is enabled, an
additional column appears on the left side of the window. Thiscolumnidentifies how many
times each executable line of code has been executed during simulation (lines that are not
executed are highlighted with ared zero); and it markswith agreen" X" linesthat have been
excluded from the code coverage statistics.

B -coverage_source - control. vhd M= E3
File Edit Object Optiohz Window
E2E tBRREA MNP
= when others =& buffer txd == 'X'; d
. =1 end case;
21 case control reg(> dowmto =) is
78 when "11" == rxd <= buffer rxd & "111";
73 rxd active <= buffer rxd;
u] when "10" == rxd <= '1l' & buffer rxd & "11";
rxd active <= 'l';
when "01" =& rxd == "11" & buffer_rxd & '1'; J
i) rxd active == 'l';
n] when "00" == pxd <= "111" & buffer rxd ;
u] rxd active <= '1';
Z when others =& rxd <= "}XZK"; rxd active == 'K';
. 77 end case;
21 ENL» PROCESE;
79

=
‘] |l 2

Excluding lines and files

Y ou can skip to "missed lines" using the Edit > Previous Coverage Miss and Edit > Next
Coverage Miss commands, or by pressing <Shift> - <Tab> (previous miss) or Tab (next

Mmiss).

There may be certain lines or files that you do not want to include in the code coverage
statistics. In the coverage source window, click your right mouse button in the far-left
column (the one with the hit counts) to display the following context menu:

The menu has the following options:

» Exclude CoveragelLine#
Excludes the specified line number from the
code coverage statistics.

* Exclude EntireFile
Excludes the entire file from the code

Erclude Coverage Line 73
Exclude Entire File

Do Mot Exclude Coverage Line 73
Do Mot Exclude Entire File

Cancel

coverage statistics.

10-296 Code Coverage

Model Sim SE User’s Manual

The coverage_source window

» Do Not Exclude Coverage Line#
Adds the specified line number back into the code coverage statistics .

* Do Not Exclude Entire File
Adds the file back into the code coverage statistics.

Any exclusionsyou makein the coverage sourcewindow will show up inthe Excluded tab
of The coverage_summary window (10-292).

ModelSim SE User’'s Manual Code Coverage 10-297

Merging coverage report files

Merging coverage report files

Y ou can merge the results from two or more analyses. Select File > Open > Coverage >
M er ge Cover age from the coverage_summary window.

Merge Coverage Reports

rEDverage File Mame To Read From

Browse... |

—Rules To Use During kMerge

[T Clear out accumulated coverage data

¥ Feep coverage data for files not in the current design

Ok Cancel

The Merge Coverage Reports dialog has the following options:

» Coverage File Nameto Read From
Specify one or more saved coverage reports that you want to merge into the current
analysis

« Clear out accumulated coverage data
When checked, clears coverage statistics from the current analysis before merging in
saved coverage reports

» Keep coverage datafor filesnot in the current design
When checked, includes coverage datafrom all filesyou are merging in, evenif they are
not part of the current design. If you then select one of those included filesin the
coverage source window, it will pop-up an Open Source dialog so you can point to the
location of thefile.

10-298 Code Coverage ModelSim SE User’s Manual

Exclusion filter files

Exclusion filter files

Syntax

Arguments

Example

Exclusion filter files specify files and line numbers that you wish to exclude from the
coverage statistics. Y ou can create thefilter filein any text editor or save the current filter
in the coverage source window by selecting File > Save > Current Filter. To load the
filter during a future analysis, select File> Open > Load a New Filter.

<filename> [[<range> ...] [<line#> ...]] | al

<fil ename>
The name of the file you want to exclude. Required. Thefilter file may include an
unlimited number of filename entries, each on its own line.

<range>, ...
A range of line numbersyou want to exclude. Optional. Enter therangein "#- #' format.
For example, 32 - 35. Y ou can specify multiple ranges separated by spaces.

<line#> ...
A line number that you want to exclude. Optional. Y ou can specify multipleline numbers
separated by spaces.

al
Specifiesthat all linesin the file should be excluded. Required if arange or line number

is not specified.

control.vhd 72 - 76 84 93
testring.vhd al

Default filter file

The Tcl preference variable PrefCover age(pr ef_I nitFilter From) specifiesadefault filter
file and path to read when a design is|oaded with the -coverage switch. By default this
variableis set to "Exclude.cov". See "Code Coverage preference variables' (10-300) for
details on changing this variable.

ModelSim SE User’'s Manual Code Coverage 10-299

Code Coverage preference variables

Code Coverage preference variables

Various Tcl variables control how the coverage datais displayed. Y ou can set these
preference variables by selecting Options > Edit Preferences > By Name > Coverage
(Main window). Use the Apply button to view temporary changes, or Save the changesto
alocal modelsim.tcl file. Once saved, the preferences will be the default for subsequent
simulations invoked from the same directory. See http://www.model.com/resources/
pref_variables/frameset.htm for more information on the individual variables.

Code Coverage commands

The commands below are available once Code Coverage is active. Enable code coverage
with the -cover age option to the vsim command (CR-258).

The table below provides a brief description of the coverage commands; follow the links
for complete command syntax.

See the Model Sim Command Reference for complete command details.

Command Description

coverage clear (CR-92) clears al coverage data obtained during previous run commands

coveragereload (CR-93) merges coverage statistics with the output of a previous cover age
report command

coverage report (CR-94) used to produce atextual output of the coverage statistics that have
been gathered up to this point

10-300 Code Coverage ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

11 - Waveform Comparison

Chapter contents

Introducing Waveform Comparison
Two Modes of Comparison

Comparing Hierarchical and Fl attened DESI gns .

Graphical Interface to Waveform Comparison
Opening Dataset Comparison . .
Adding Signals, Regions and/or Clocks .
Setting Compare Options .

Wave window display.
Printing compare differences .
List window display

Command-line interface to Waveform Comparison
Preference Variables .
Compare commands .

. 11-302
. 11-303
. 11-303

. 11-305
. 11-305
. 11-307
. 11-314
. 11-316
. 11-321
. 11-322

. 11-323
. 11-323
. 11-323

ModelSim SE User’s Manual

Waveform Comparison 11-301

Introducing Waveform Comparison

Introducing Waveform Comparison

The Model Sim Waveform Comparison feature allows you to compare the current live
simulation against areference wave logfile or dataset (.wif file), compare two saved
datasets, or compare different parts of the current live smulation. Y ou can view the results
of these comparisonsin the Wave and List windows and generate atext file of the results
in the Main window.

With the Waveform Comparison feature you can:
« specify the signals or regions to be compared,

« define tolerances for timing differences,

* et astart time and end time for the comparison,

limit the comparison to a specific number of timing differences, and
« step through a succession of timing differences via buttons in the Wave window.

By default, Waveform Comparison computes the timing differences between test signals
and reference signals from time zero to the end of the shortest dataset, or to the end of the
current live simulation. But you can al so specify an optional start time and end time, or you
can limit the comparison to a specific number of encountered timing differences. In
addition, you can exclude windows of time with -when conditions in either the clock
definitions or in the compar e add command (CR-63). The display will indicate intervals of
time during which no attempt was made to compute differences.

All waveform differences encountered in the waveform comparison are summarized and
listed in the transcript area of the Main window. Waveform differences are also displayed
intheWaveand List windows (see Wave window display (11-316) and List window display
(11-322)). Iconsin the toolbar of the Wave window allow you to step forward and backward
through successive differences. Or, you can use the Tab and Shift-Tab keys on your
keyboard to move to the next or previous difference of a selected signal.

You can also write alist of the differences to afile using the compar e info command (CR-
73).

11-302 Waveform Comparison ModelSim SE User’s Manual

Introducing Waveform Comparison

Two Modes of Comparison

The Waveform Comparison feature provides two modes of comparison: continuous and
clocked.

Continuous Compare

Inthe continuous mode, atest signal (or agroup of test signalswithin aregion) iscompared
to areference signa (or agroup of reference signals within aregion) at each transition of
the reference. Timing differences between the test and reference signals are highlighted
with rectangular red difference markersin the Wave window and yellow markersinthe List
window.

The continuous compare mode allows you to specify two edge tolerances for timing
differences. Theleading edge tol erance specifies how much earlier the test signal edge may
occur beforethereferencesignal edge. Thetrailing edge tol erance specifies how much later
the test signal edge may occur after the reference signal edge. The default value for both
tolerancesis zero. In addition, these tolerances may be specified differently for each signal
compared.

Clocked Compare

Inthe clocked mode, also called strobed comparison, one or more clocks are defined. A test
signal isthen compared to areference signal and both are sampled relative to the defined
clock. The clock can be defined as therising or falling edge (or either edge) of aparticular
signal plus a user-specified delay. The design need not have any events occurring at the
specified clock time.

Differences between the test signal(s) and clock are highlighted with red diamondsin the
Wave window.

ModelSim SE User’'s Manual Waveform Comparison 11-303

Introducing Waveform Comparison

Comparing Hierarchical and Flattened Designs

If you are comparing a hierarchical RTL design simulation against aflattened synthesized
design simulation, you may have different hierarchies, different signal names, and the
buses may be broken down into one-bit signalsin the gate-level design. All of these
differences can be handled by Model Sim’ s Waveform Comparison feature.

« If thetest design is hierarchical but the hierarchy is different from the hierarchy of the
reference design, you can use the compar e add command (CR-63) to specify which
region path in the test design corresponds to that in the reference design.

« If the test design is flattened and test signal names are different from reference signal
names, the compar e add command (CR-63) allows you to specify which signal in the test
design will be compared to which signal in the reference design.

« If, in addition, buses have been dismantled, or "bit-blasted", you can use the -rebuild
option of the compar e add command (CR-63) to automatically rebuild the busin the test
design. Thiswill allow you to look at the differences as one bus versus another.

If signalsin the RTL test design are different in type from the synthesized signalsin the
reference design — registers versus nets, for example — the Waveform Comparison feature
will automatically do the type conversion for you. If the type differences are too extreme
(say integer versus real), Waveform Comparison will let you know.

11-304 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison

Graphical Interface to Waveform Comparison

Waveform Comparison isinitiated from either the Main or Wave window by selecting
Compare > Start Comparison.

Opening Dataset Comparison

The Start
Comparison dialog
box allows you — Reference D ataset

define the
Reference and Test | x| Browse.. |

datasets.

Start Camparison

— T est Datazet
Reference

Dataset £ Use Cumrent Simulation

The Reference
Dataset isthe .wif
file that the test % Specify D ataszet

dataset will be

compared to. It can | ;I Erowse... |
be a saved dataset,
the current
simulation dataset, ak |
or any part of the
current ssmulation

dataset.

IT Update comparizon after each run

Cancel |

Test Dataset

The Test Dataset isthe .wif file that will be compared against the Reference Dataset. Like
the Reference Dataset, it can be a saved dataset, the current simulation dataset, or any part
of the current simulation dataset.

* UseCurrent Simulation
Selects the current simulation to be used as the Test Dataset. Provides for an optional
update on the comparison after each simulation run.

* Specify Dataset
Allows you to select any saved .wif file to be used as the Test Dataset.

Y ou can specify either dataset by typing in a dataset name, by selecting a dataset from a
drop-down history of past dataset selections, or by clicking either of the Browse buttons.

ModelSim SE User’'s Manual Waveform Comparison 11-305

Graphical Interface to Waveform Comparison

Both Browse buttons take you to the Select Dataset File dialog where you can browse for
the dataset you want.

SelectDotasetFle @]
Laok in: |@ewamples =l ﬁl

datazets 3 widpak.er
foreign 3 wpi
rnixedH DL rnas. wilf
profiler .
projects by wlf
kel_tutonal

File narme: Imin.wlf Open I
Files of type: IL::ug Files [*.wif) j Cancel |

Once the Reference and Test Datasets have been specified, clicking "OK" in the Compare
Dataset dialog box will place aComparetab in the project pane of the Main window. After
adding the signals, regions and/or clocks you want to use in the comparison (see "Adding
Signals, Regions and/or Clocks" (11-307)) you'll be able to drag compare objects from this
project tab into the Wave and List windows.

5 ModelSim
File Edit Deszign “ew Proect Hun Compare Macro Option: window Help

2o BRE o ELEEEREE | B
[j

wiew lizt

B list

WIEK WEYE
B wave

WSIM 3> add list *
D:ModelTech_5.5_ 110600/ examples/maw wif opened as datazet

mae
Compare tab VSIM 45 add wave *

W5IM B> add list *
COMpare opeEn min mas

"\ Library J{ Mit J{: ER },\ Compare | WSIM 7>

| |max:a’tst_pseud|:|

]

11-306 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison

Adding Signals, Regions and/or Clocks

To designate the signals, regions and/or clocks to be used in the comparison, click
Compare> Add inthe Main or Wave window, then make a selection (Compare by Signal
(11-307), Compare by Region (11-311), Clocks) from the popup menu.

==t wave - default

Eile Edit Cursor Zoom B =8l Eookmark Fomat wfindow

EE&E & B Q@ = ELEE

Start Comparigah. .
Comparnizon Yizard...
Bun Comparizon
End Comparizon

““““““

Compare by Signal..

Dptians... Compare by Begior...
Differences ¥ Clocks..
Fules »

Reload...

Compare by Signal

structure_browser [min)

Clicking Compare>Add >
Compare by Signal in the : 1
Wave window opens the — 0 Register clock

structure_browser window, — 0 Reqister reset
where you can specify — . Rengister expected
signals to be used in the — & Register storage
comparison. — & Met data

— 0 Met expected_w
You can also set signal B chip pseudo

options by clicking the
Options button, which
opens the Add Signa
Options dialog box.

Optionz | ok Cancel

ModelSim SE User's Manual Waveform Comparison 11-307

Graphical Interface to Waveform Comparison

« Add Signal Options
The Add Signal Optionsdialog allows you to select the Waveform Comparison method to be
used — Clocked (Strobed) or Continuous — and to specify awhen expression that must
evaluateto "true" or 1 at the signal edgefor the clock to become effective. A when expression
can be built using "The GUI Expression Builder" (8-275), which is accessed by clicking the
Builder button.

Add Signal Options

Comparnizon Method \

" Clocked Comparizon

||:|efault_ch:u:k LI Clocks...

' Continuous Comparizon

Leading Tolerance Tralling Tolerance

[EN) RS2 i R (3

S pecify When Exprezsion

| Builder... |

0k | Cancel

Clocked Comparison

Cornparison Clock s

If the Clocked Comparison —Clocks

method is chosen, you can select
a clock from the drop-down
history of past clock selections
or click the Clocks button to add

anew clock. ddd...

Clickingthe Clockshutton opens _

the Comparison Clocks dialog Modify...

box where you can add, modify

or delete signals. Delete
Ok Cancel

11-308 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison

The Add button
opensthe Add Clock Add Llock

dialog, where you — LClock Name——— Delay Signal Offzet
can define a clock | ’F [ps 7]
signal name, adelay
signal offset, the —Bazed on Signal
signal upon which

the clock will be I
based, and whether
the compare strobe —Specify When Expression
edge will be the
rising or falling edge
or both. You canaso
use "The GUI — Compare Strobe Edge
Expression Bqllder" & Rising " Falling " Bath
(8-275) to specify a
when expressionthat
must evaluate to ak Carcel
"true" or 1 at the
signal edge for the
clock to become
effective.

Clicking the Modify

Browse. ..

| Builder...

button in the |+ Modity Clock
Comparison Clocks — Clock Mame——— Dielay Signal Offzet
dialog opens the | clock ’F s 7]
Modify Clock
dialog. Thisdialog —Bazed on Signal
provides the same
functionality as the Ia"tst_pseudn:u"ctln:-c:k Browsze. ..
Add Clock dialog.

— Specify “When Exprezzsion

| Builder...

— Compare Strobe Edge
= Rising " Falling " Both

0k Cancel

ModelSim SE User’'s Manual Waveform Comparison 11-309

Graphical Interface to Waveform Comparison

Continuous Comparison

With the Continuous Comparison method you can set leading and trailing edge
tolerances. The leading edge tolerance specifies how much earlier the test signal edge
may occur before the reference signal edge. The trailing edge tolerance specifies how
much later the test signal edge may occur after the reference signal edge. The default
value for both tolerancesis zero. In addition, these tolerances may be specified
differently for each signal compared.

' Continuous Comparizon

Leading Tolerance Trailling Tolerance

NN 5.1) N 3054

With Continuous Comparison, you can also use " The GUI Expression Builder" (8-275) to
specify awhen expression that must evaluateto "true" or 1 at the signal edgefor the clock
to become effective.

Specify When Expression
||7 Bvilder... |

11-310 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison

Compare by Region

Clicking Compare > Add > Compar e by Region in the Wave window opens the Add
Comparison by Region window, where you can specify signals to be used in the
comparison.

Add Cormparizon by Region

— Reference Regon

| Browsze... |

— Test Reagion

[Specily a different name for T est Region

| Browsze. . |

— Compare Signals of Type
¥ In Iv Out ¥ InOut

¥ Intemal | Part

¥ Becursive Search

ok LCancel

Region Data Tab

» Reference Region
Allows you to specify the reference region that will be used in the comparison.

e Test Region

Allows you to specify atest region that might have a different name from that of the
reference region.

e Compare Signals of Type
Allows you to specify that All Types of signals will be used in the comparison or only
Selected Types (In, Out, InOut, Internal, or Port).

» Recursive Search
Specifies whether to search for signalsin the hierarchy below the selected region.

ModelSim SE User’'s Manual Waveform Comparison 11-311

Graphical Interface to Waveform Comparison

Comparison Method Tab

Allows you to select clocked or continuous comparison, and provides the capability to
specify a"When" expression.

Add Comparizon by Fegion
_ Comparizon kethod \

" Clocked Comparizon

||:|efault_|:lu:u:k ;I Clocks. .. |

% Continuous Comparizon

Leading Tolerance Trailing T olerance
IEI Ins LI IEI Ins ;I

Specify ‘When Expression

| Builder... |

» Clocked Comparison
Allows you can select a clock
from the drop-down history of
past clock selections. Or, you can
click the Clocks button to add a
new clock.

Cornparison Clock s

— Clocks

Clicking the Clocks button opens Add.
the Comparison Clocks dialog
box.

To add asignal, click the Add
button to open the Add Clock Delete
dialog box, where you can define e
aclock signal name, adelay
signal offset, the signal upon
which the clock will be based,
and whether the compare strobe
edge will be therising or falling Ok Cancel
edge or both. Y ou can also use
the Expression Builder to Specify

M adify...

11-312 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison

aWhen Expression that must evaluate to "true” or 1 at the signal edge for the clock to
become effective.

Add Clock
— Clack Mame——— rDeIa_l,l Signal Offzet
o

— Bas=ed on Sighal

[

| Browse. ..

— Specify *When Expreszion

| Builder...

— Compare Strobe Edge
{* PRising " Faling " Both

Ok Cancel

» Continuous Comparison
With the Continuous Comparison method you can set leading and trailing edge
tolerances. The leading edge tol erance specifies how much earlier the test signal edge
may occur before the reference signal edge. The trailing edge tolerance specifies how
much later the test signal edge may occur after the reference signal edge. The default
value for both tolerancesis zero. In addition, these tolerances may be specified
differently for each signal compared.

' Continuous Comparizon

Leading Tolerance Trailling Tolerance

NN 5.1) N 3054

* Specify When Expression
Allowsyou to use "The GUI Expression Builder" (8-275) to specify awhen expression
that must evaluate to "true” or 1 at the signal edge for the clock to become effective.

Specify When Expression
||7 Bvilder... |

ModelSim SE User’'s Manual Waveform Comparison 11-313

Graphical Interface to Waveform Comparison

Setting Compare Options

Selecting Compar e > Optionsin either the Main or Wave windows provides access to the
Add Signal Optionsdialog box. Thisdialog isdivided into two tabs — the General Options
tab and the Comparison Method tab.

» General Options

|5 'Add Signal Options

— Comparzon Limit Count
T otal Lirnit: 1000 Fer Signal Limit: {100
— WHDL Matching —Werlog M atching
AT & IV Ignore Strength
Uz Cu = SRV —
o i o i o o
L CH N 1 1
[w VD [w VD rz X

¥ Automatically add comparnizons to the wave window?

Save az Default... Feset to Default ak. | Cancel

Comparison Limit Count — Allowsyou to limit the waveform comparison to aspecific
number of total differences and/or a specific number of differences per signal.

VHDL Matching— Allowsyou to designate which VHDL signal valueswill match the
VHDL X and Z values.

Verilog Matching — Allows you to designate which Verilog signal values will match
the Verilog X and Z values. It also allowsyou to ignore the strength of the Verilog signal
and consider only logic values.

Save as Default — Allows you to save all changes as the new default settings for
subsequent waveform comparisons.

Reset to Default — Resets all settings to original default values.

Automatically add comparisonstothewavewindow?— Specifieswhether new signal
comparison objects are added automatically to the Wave window.

11-314 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison

« Comparison Method

Add Signal Options

_ Comparizon Method \

' Clocked Comparizon

|default_u:|u:u:k ;I Clocks... |

¥ Continuous Comparizon

Leading Tolerance Trailing Tolerance
IEI Ins ;I IEI Ins LI

Specify “When Expression

| Builder... |

Save az Default... Rezet to Default

] 4 | Cancel

Clocked (Strobed) Comparison — Allowsyouto select adefault reference clock signal
viaa selection history or a browse button.

Continuous Comparison — Allows you to set leading and trailing edge tolerances for
thewaveform comparison. Theleading edge tol erance specifieshow much earlier thetest
signal edge may occur before the reference signal edge. The trailing edge tolerance
specifies how much later the test signal edge may occur after the reference signal edge.
The default value for both tolerancesis zero.

Specify When Expression — Allows you to specify awhen expression that must
evaluate to "true" or 1 at the signal edge for the clock to become effective. Clicking the
Builder button will give you accessto "The GUI Expression Builder" (8-275).

Save as Default — Allows you to save all changes as the new default settings for
subsequent waveform comparisons.

Reset to Default — Resets all settings to original default values.

ModelSim SE User’'s Manual Waveform Comparison 11-315

Graphical Interface to Waveform Comparison

Wave window display

wave - default M= E3

File Edit Cursor Zoom Compare Bookmark Format Window
SHSG | $ BRI MK € | QQQ® | F | GEDK | jeleAn |

— Minimum SDF Timing
i

,...f..

=

[+]

i T
=

3

10000 ps
100340 ps

{00071

o017

LA[-1

{00071 0

[

|
|
|
]
|
|
|
|
]
|
|
I
|
|
|
I
|
i
I

it At _pseudos/data = St
typ: Atat_pseudoddata = St

|

N [N D

(TR L TTTTT 1T TV A TR 0 0T T S T T L

compare: /tzt_preudosdata @ 991647 ps
Diff rber 47, From time 980939 ps delta 1 to time 334078 ps delta 1.

954670 ps to 1239284 ps

11-316 Waveform Comparison

Model Sim SE User’s Manual

Graphical Interface to Waveform Comparison

The Wave window provides a graphic
display of waveform comparison results.
Pathnames of all test signalsincluded in
the waveform comparison are denoted by
yellow triangles. Test signals that contain
timing differences when compared with
the reference signals are denoted by ared
X over the yellow triangle.

Compare D ata

Timing differences are also indicated by
red bars in the vertical and horizontal
scroll bars of the waveform display, and
by red difference markers on the
waveforms themselves. Rectangular
difference markers denote continuous
differences. Diamond difference markers denote clocked differences. Placing your mouse
cursor over any difference marker will initiate a popup display that providestiming details
for that difference.

difference markers

Pathnames Values /\ Waveform display

T

s

compare; /tat_pseudo/data @ 331647 ps

DHff mumber 47 Fram hime 980939 pz delta 1 to ime 934078 pz delta 1.
mir:/tst_pzeudosdata = 50
top:ftet_preudosdata = St

$NE

The "diff" designation in the Values column relates to the
position of the selected cursor.

difference details

The values column of the Wave window displaysthe words"match” or "diff" for every test
signal, depending on the location of the selected cursor. "Match" indicates that the val ue of
the test signal matches the value of the reference signal at the time of the selected cursor.
"Diff" indicates a difference between the test and reference signal values at the selected
Cursor.

ModelSim SE User's Manual Waveform Comparison 11-317

Graphical Interface to Waveform Comparison

Compare icons

The Wave window includes four

waveform comparison icons that | Find first difference | | Find last difference
enable you to quickly locate the first
and last waveform difference and gﬁ gt i§ ,_,g

movethe cursor in stepstothe previous
or next difference. The next and
previous icons move between
differences on dl signalsin the Wave
window. If you want to move between differences for the selected signal only, use <tab>
(next) or <shift>-<tab> (previous).

[Find previous difference | |Find next difference]

Compare menu

The Compare menu provides a number of options for controlling waveform comparisons.

==¢ wave - default

File Edit Curzor Zoom EMGWEEE Bookmark Format Window

-3 QQ@& | & | ELE

Start Comparizon. ..
Comparizon Mizard...
Bun Comparison
End Comparison

““““““

Compare by Signal...

Dptionz... Compare by Begion...
Differences Y Clocks...
Fules 4

Feload...

« Start Comparison

Opensthe Compare Dataset dialog box (page 11-305) where you can enter reference and
test dataset names.

e Comparison Wizard
Gives step-by-step assistance while you create a waveform comparison.

11-318 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison

* Run Comparison

Computesthe number of differencesfromtimezero to the end of the ssimulation run, from
time zero until the maximum total number of differences per signal limit is reached, or
from time zero until the maximum total number of differences for al signals compared
isreached. Thisinformation is posted to the Main window transcript and saved to the
compare_info.txt file. It is equivalent to the compar e run command (CR-80).

#

wirite results to compare_info. kit

compare start

Computing waveform differences from time 0 pz to 10 uz

Max total difference per zignal imit of 100 reached on signal compare
sAtst_pseudodtal_min_exp_data

®
Comparizon reached signal difference likdt at time 3080 ns
Found 438 differences.

s 3 j
|| typftst_pseudo P

End Comparison
Stops difference computation and closes the currently open comparison.

+ Add

Compar e by Signal — Opens the structure_browser dialog box (page 11-307) and
allows you to designate signals for comparison.

Compar e by Region — Opens the Add Comparison by Region dialog box (page 11-
311) and allows you to designate a reference region for comparison. Also allows you to
designate atest region of a different name.

Clocks — Opens the Comparison Clocks dialog box (page 11-308) and allows you to
define clocks to be used in the comparison.

Options
Opens the Add Signal Options dialog box (page 11-314), which allows you to define a
number of waveform comparison options.

ModelSim SE User’s Manual

Waveform Comparison 11-319

Graphical Interface to Waveform Comparison

» Differences

===t wave - default

Eile Edit Curzor Zoom

L= H % i CI'% =1 Start Comparizan...
@ g! % Comparnizon izard. ..

Bun Comparizan
End Comparizan

compar

ookmark. Format wfindow

compare: /e
compare: Add

Optionz..

Rulez
Reload...

Wwrite Repart...

23 ||

Clear — Clears all differences from the Wave window and resets the waveform
comparison function. It is equivaent to the compar e reset command (CR-79).

Show — Displaysthedifferencein text format in the transcript area of the Main window.

It is equivalent to the compare info command (CR-73).

Save — Opens the Specify Differences File dialog box where you can save the
differencesto afile that can be reloaded later in Model Sim. The default file nameis

"compare.dif".

Write Report— Saves areport of the differencesto atext file that you can view.

11-320 Waveform Comparison

Model Sim SE User’s Manual

Graphical Interface to Waveform Comparison

* Rules

==t wave - default

File Edit Curzor Zoom Bookmark Format wWindow

= Er?
= E % : 3’ g=l Start Comparizan...
@ gﬂ % Comparnizon MWizard. .

Bun Comparigor
compa End Comparizon
compare: ftest_

COMmpar &dd

Optiong...
Differences

Heleed

_jm -

Show — Displays the rules or instructions used to set up the waveform compare. It is
equivalent to the compar e list command (CR-74).

Save — Opens the Specify Rule File dialog box and allows you to assign a name to the
file that will contain all rules for making the comparison. The default file nameis
"compare.rul."

* Reload

Opens the Reload and Redisplay Compare Differences dialog box and allows you to
enter or browse for waveform rules and difference file names.

|1:-._.1'FIeIuad and Redizplay Compare Differences

—waveform Rules file name

|eempere.rul Browsze. .. |

—waveform Difference file name

|eem|:|ere.|:|if Browsze. ..

ok | LCancel |

Printing compare differences

Y ou can print the compare differences shown in the Wave window either to a printer or to
a Postscript file. See "Printing and saving waveforms" (8-245) for details.

ModelSim SE User's Manual Waveform Comparison 11-321

Graphical Interface to Waveform Comparison

List window display

Compare objects can be displayed in the List window too. Differences are highlighted with
ayellow background. Tabbing on selected columns moves the selection to the next
difference (actually difference edge). Shift-tabbing moves the selection backwards.

Eile Edit Markers

B list _ (O] x]
Prop Window
nz— ftst_pseudo/storage ‘:J
delta— Stst pseudo/data
ftst_pseudo/ol pck— ftst_pseudofsexpected w—, |
st _pseudpfreset—,
st _pseulofexpected—,
los0o_000 +0f 1 1 1 1 0 0 000lc 000l1c = *o*
log0_000 +0f 00 1 1 0 0 Q0022 00038 w5 W
llo0_000 400 1 1 1 1 0 0 00022 00038 w3 Bw
1100_5349 11110 0 020032 00038 o
1114078 +1)| 1 1 1 1 0 0O 00038 00033 = *o*
1120000 +4+0f 0O 0 1 1 1 1 Q0071 00071 = *o*
1120000 41 00 1 1 1 1 Q0071 00071 w3 BOw
l1l40_000 400 1 1 1 1 1 1 00071 00071 & oW
lle0. 000 400 00 1 1 1 1 000=2 000=32 = *o*
1180000 400 1 1 1 1 1 1 000e3 00023 = *o*
100000 +4+0f 00 1 1 1 1 001e=? 0017 w5 W
120000 400 1 1 1 1 1 1 001=? 0017 w3 BOw
1820.93% +11 1 1111 1 0017 0017 d o
134 0783 +101 1 1 1 1 1 1 00127 0017 *o*
1E40_000 +0) 00 1 1 0 0 00358e 0038e *o*
1E40_000 41| 00 1 1 0 0 0038e 0038e W _J
+ | +] 2

Right-clicking on a yellow-highlighted difference gives you three options: Diff info,
Annotate diff, and Ignore/Noignore diff. With these options you can elect to display
difference information, you can ignore selected differences or turn off ignore, and you can
annotate individual differences.

11-322 Waveform Comparison

Model Sim SE User’s Manual

Command-line interface to Waveform Comparison

Command-line interface to Waveform Comparison

Preference Variables

Various Tcl variables control the default options of the Waveform Comparison feature. See
http://www.model.com/resources/pref_variables/frameset.htm for details on how to set
these variables.

Compare commands

The table below provides a brief description of the compare commands. Follow the links
for complete command syntax.

See Model Sm Commands for complete command details.

Command

Description

compare add (CR-63)

defines a comparison between the signals in a specified reference design
and the signalsin a specified test design

compar e annotate (CR-66)

allows a difference to be flagged asignor e, or an additional text string to
be attached

compar e clock (CR-67)

defines a clock for clocked comparison; or, if -deleteis specified, deletes
apreviously-defined clock

compar e delete (CR-71)

deletes asignal or region from the current open comparison.

compare end (CR-72)

destroys the compare data structures and forgets clock definitions and
signals selected for comparison

compar e info (CR-73)

writes out results of the comparison; writes to the transcript unless the
-write option is specified

comparelist (CR-74)

shows all the compar e region and compar e signal commands currently
in effect

compar e options (CR-75)

sets values for various compare options on the Tcl parser side; when
subsequent commands are called, these val ues become the defaults

comparereset (CR-79)

clears the current compare differences, allowing another compare start
to be executed

comparereoad (CR-78)

reloads comparison differences to allow viewing without recomputation

compare run (CR-80)

registers required callbacks and runs the difference computation on the
signals selected for comparison; reports the total number of errors found

compar e savediffs (CR-81)

savesthe comparison result differencesin aformthat can bereloaded | ater

compar e saver ules (CR-82)

savesthe comparison setup information (or "rules") to afile that can bere-
executed later as a command file; saves compare options and all clock
definitions and region and signal selections

ModelSim SE User’s Manual

Waveform Comparison 11-323

http://www.model.com/resources/pref_variables/frameset.htm

Command-line interface to Waveform Comparison

Command

Description

compar e see command (CR-83)

causesthe specified compare differenceto be made visiblein the specified
wave window, using whatever horizontal and vertical scrollingis
necessary

compar e start command (CR-84)

initializes internal data structures for waveform compare

compar e stop command (CR-86)

used internally by the compar e stop button to suspend comparison
computations in progress

compar e update command (CR-87)

used internally to update the comparison differences when comparing a
live simulation against a .wif file

11-324 Waveform Comparison

Model Sim SE User’s Manual

12 - Standard Delay Format (SDF) Timing Annotation

Chapter contents

Specifying SDF filesfor simulation12-326
Instance specification.12-326
SDF specification withthecul12-327
Errorsand warnings 12327

VHDL VITAL SDF . . . Co 12328
SDF to VHDL generic matchmg Coe ..o 12328
Resolvingerrors12329

VerilogSDF 12330
The $sdf _annotate wstem task e 2 € 0
SDFto Verilog construct matching12-331
Optional edge specifications12-333
Optional conditions12334
Rounded timingvalues1233

SDF for Mixed VHDL and Verilog Designs12-336

Interconnect delays.12-33

Troubleshooting . . e oo 12-337
Specifying the wrong mstance . .. 12-337
Mistaking a component or module namefor an mstance Iabel .. 12-338
Forgetting to specify theinstance. 12-338

Obtaining the SDF specification12-339

This chapter discusses Model Sm's implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’ s built-in SDF annotator. ASIC and FPGA vendors usually provide tools that
create SDF filesfor use with their cell libraries. Refer to your vendor’ s documentation for
details on creating SDF files for your library. Many vendors a so provide instructions on
using their SDF files and libraries with ModelSm.

The SDF specification was originally created for Verilog designs, but it has also been
adopted for VHDL VITAL designs. In general, the designer does not need to be familiar
with the details of the SDF specification because the cell library provider has aready
supplied tools that create SDF files that match their libraries.

P> Note: Inorder to conserve disk space, ModelSmwill read sdf files that were compressed
using the standard unix/gnu file compression agorithm. The filename must end with the
suffix ".Z" for the decompress to work.

ModelSim SE User’'s Manual Standard Delay Format (SDF) Timing Annotation 12-325

Specifying SDF files for simulation

Specifying SDF files for simulation

Model Sm supports SDF versions 1.0 through 3.0. The simulator’ s built-in SDF annotator
automatically adjuststo the version of thefile. Use the following vsim (CR-258) command-
line options to specify the SDF files, the desired timing values, and their associated design
instances:

-sdf m n [<instance>=] <fil ename>

-sdftyp [<instance>=]<fil ename>
-sdf max [<i nstance>=] <fil ename>

Any number of SDF files can be applied to any instance in the design by specifying one of
the above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical,
and -sdfmax to select maximum timing values from the SDF file.

Instance specification

The instance paths in the SDF file are relative to the instance to which the SDF is applied.
Usually, thisinstanceis an ASIC or FPGA model instantiated under a testbench. For
exampl e, to annotate maximum timing values from the SDF file myasic.sdf to an instance
ul under atop-level named testbench, invoke the simulator as follows:

vsim -sdf max /testbench/ ul=nyasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. Thisisusually
incorrect because in most cases the model is instantiated under a testbench or within a
larger system level simulation. Infact, the design can have several models, each having its
own SDFfile. In this case, specify an SDF file for each instance. For example,

vsim -sdf max /systenful=asicl.sdf -sdfmax /system u2=asic2.sdf system
One exception to the rule of never omitting the instance name occurs when your SDF file

contains only one instance. In this case, you can omit the instance name. For example, if
myasic.sdf has only one instance of ul, the first command above would look as follows:

vsi m - sdf max nyasi c. sdf testbench

12-326 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Specifying SDF files for simulation

SDF specification with the GUI

As an dternative to the command-line options, you can specify SDF filesin the L oad
Design dialog box under the SDF tab.

|Z:-.__|'Luad Design
Desin | DL | Verba | Lbaies} 50F |
—5SDF Files
Reqion/File Delay
Add... | Delete Edit... |
—SDF Ophons bulti-Source delay
% |atest
[Disable SDF warnings
= min
[Reduce SDF emors o warnings
0 max
Load Exit Save... Cancel

Y ou can accessthisdialog by invoking the simulator without any argumentsor by selecting
Design > Load Design (Main window). For Verilog designs, you can also specify SDF
filesby using the $sdf annotate systemtask. See"The $sdf annotate system task™ (12-330)
for more details.

Errors and warnings

Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim (CR-258) to
change SDF errorsto warnings so that the simulation can continue. Warning messages can
be suppressed by using vsim with either the -sdfnowar n or +nosdfwar n options.

Another option is to use the SDF page from the L oad Design dialog box (shown above).
Select Disable SDF war nings (-sdfnowarn, or +nosdfwarn) to disable warnings, or select
Reduce SDF errorsto warnings (-sdfnoerror) to change errors to warnings.

See "Troubleshooting" (12-337) for more information on errors and warnings, and how to
avoid them.

ModelSim SE User’'s Manual Standard Delay Format (SDF) Timing Annotation 12-327

VHDL VITAL SDF

VHDL VITAL SDF

VHDL SDF annotation works on VITAL cellsonly. The IEEE 1076.4 VITAL ASIC
Modeling Specification describes how cells must be written to support SDF annotation.
Once again, the designer does not need to know the details of this specification because the
library provider has aready written the VITAL cells and tools that create compatible SDF
files. However, we provide the following summary to help you understand simulator error
messages. For additional VITAL specification information, see "Obtaining the VITAL
specification and source code” (4-65).

SDF to VHDL generic matching

An SDF file contains delay and timing constraint datafor cell instancesin the design. The
annotator must locate the cell instances and the placehol ders (VHDL generics) for the
timing data. Each type of SDF timing construct is mapped to the name of a generic as
specified by the VITAL modeling specification. The annotator locates the generic and
updatesit with the timing value from the SDFfile. It isan error if the annotator failsto find
the cell instance or the named generic. The following are examples of SDF constructs and
their associated generic names:

SDF construct Matching VHDL generic name
(IOPATH ay (3)) tpd ay

(IOPATH (posedge clk) q (1) (2) tpd clk_q posedge
(INTERCONNECT ully u2/a (5)) tipd_a

(SETUPd (posedge clk) (5)) tsetup_d_clk_noedge posedge

(HOLD (negedge d) (posedge clk) (5)) thold_d clk negedge posedge

(SETUPHOLD d clk (5) (5)) tsetup_d clk & thold d clk

(WIDTH (COND (reset==1'b0) clk) (5)) | tpw_clk reset eq 0

12-328 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

VHDL VITAL SDF

Resolving errors

If the simulator finds the cell instance but not the generic then an error message is issued.
For example,

ERROR: nyasi c. sdf (18):

I nstance ’'/testbench/dut/ul’ does not have a generic named 'tpd_a_y’
In this case, make sure that the design is using the appropriate VITAL library cells. If itis,
then thereis probably amismatch between the SDF and the VITAL cells. You need to find
the cell instance and compare its generic names to those expected by the annotator. L ook
in the VHDL source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the
VITAL library cells are not being used. If the generic names do look like VITAL timing
generic names but don’t match the names expected by the annotator, then there are several
possibilities:

» The vendor’stools are not conforming to the VITAL specification.

» The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

» The vendor’s library and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim (CR-258) with
the -vital2.2b option:

vsim -vital 2. 2b -sdf max /testbench/ ul=nyasic.sdf testbench

For moreinformation on resolving errors see "Troubleshooting” (12-337).

ModelSim SE User’'s Manual Standard Delay Format (SDF) Timing Annotation 12-329

Verilog SDF

Verilog SDF

Verilog designs can be annotated using either the simulator command-line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The
command-line options annotate the design immediately after it is loaded, but before any
simulation events take place. The $sdf_annotate task annotates the design at the timeit is
called in the Verilog source code. This provides more flexibility than the command-line
options.

The $sdf_annotate system task
The syntax for $sdf_annotateis:

Syntax

$sdf _annot ate
(["<sdffile>"], [<instance>], ["<config_ file>"], ["<log_file>"]
["<m mspec>"], ["<scale_factor>"], ["<scale_type>"]);

Arguments

"<sdffil e>"

String that specifies the SDF file. Required.

<i nst ance>
Hierarchical name of the instance to be annotated. Optional. Defaults to the instance
where the $sdf_annotate call is made.

"<config_file>"
String that specifies the configuration file. Optional. Currently not supported, this
argument isignored.

"<l og_file>"
String that specifies the logfile. Optional. Currently not supported, this argument is
ignored.

"<nt m spec>"
String that specifies the delay selection. Optional. The allowed strings are "minimum”,
"typical”, "maximum"”, and "tool_control". Case isignored and the default is
"tool_control”. The "tool_control" argument means to use the delay specified on the

command line by +mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

"<scal e_fact or>"
String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier isarea number that isused to
scale the corresponding delay in the SDF file.

"<scal e_type>"
String that overridesthe <mtm_spec> delay selection. Optional. The <mtm_spec> delay
selection is aways used to select the delay scaling factor, but if a<scale type> is
specified, then it will determine the min/typ/max selection from the SDF file. The

allowed strings are "from_min", "from_minimum", "from_typ", "from_typical",

"from_max", "from_maximum", and "from_mtm". Case isignored, and the default is
"from_mtm", which means to use the <mtm_spec> value.

12-330 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Verilog SDF

Examples

Optiona arguments can be omitted by using commas or by leaving them out if they are at
the end of the argument list. For example, to specify only the SDF file and the instance it
appliesto:

$sdf _annot ate("nyasi c. sdf ", testbench.ul);

To aso specify maximum delay values:

$sdf _annot at e("nyasi c. sdf", testbench.ul, , , "maxinunt');

SDF to Verilog construct matching

The annotator matches SDF constructs to corresponding Verilog constructsin the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each
SDF construct, the annotator locates the cell instance and updates each specify path delay
or timing check that matches. An SDF construct can have multiple matches, in which case
each matching specify statement is updated with the SDF timing value. SDF constructs are
matched to Verilog constructs as follows:

IOPATH is matched to specify path delays or primitives:

SDF Verilog
(IOPATH (posedge clk) q (3) (4)) (posedgeclk =>q) = 0;
(IOPATH ay (3) (4)) buf ul (y, a);

The IOPATH construct usually annotates path delays. If the module contains no path
delays, then al primitives that drive the specified output port are annotated.

INTERCONNECT and PORT are matched to input port:

SDF Verilog
(INTERCONNECT ul.y u2.a(5)) input &
(PORT u2.a(5)) inout &

Both of these constructsidentify amoduleinput or inout port and create an internal net that
isadelayed version of the port. Thisis called aModule Input Port Delay (MIPD). All
primitives, specify path delays, and specify timing checks connected to the original port are
reconnected to the new MIPD net.

PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

SDF Verilog

(PATHPULSE ay (5) (10)) (a=>y)=0;

(GLOBALPATHPULSE ay (30) (60)) (a=>y)=0;

If the input and output ports are omitted in the SDF, then all path delays are matched in the
cell.

ModelSim SE User’'s Manual Standard Delay Format (SDF) Timing Annotation 12-331

Verilog SDF

DEVICE is matched to primitives or specify path delays:

SDF Verilog
(DEVICEY (5)) and ul(y, a, b);
(DEVICEY (5)) (a=>y)=0; (b=>y)=0;

If the SDF cell instance is a primitive instance, then that primitive's delay is annotated. If
it isamodule instance, then all specify path delays are annotated that drive the output port
specified in the DEVICE construct (all path delays are annotated if the output port is
omitted). If the module contains no path delays, then all primitivesthat drive the specified
output port are annotated (or all primitives that drive any output port if the output port is
omitted).

SETUP is matched to $setup and $setuphold:

SDF Verilog
(SETUPd (posedge clk) (5)) $setup(d, posedge clk, 0);
(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

HOLD is matched to $hold and $setuphold:

SDF Verilog
(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);
(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SETUPHOLD is matched to $setup, $hold, and $setuphold:

SDF Verilog
(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);
(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

RECOVERY is matched to $recovery:

SDF Verilog

(RECOVERY (negedge reset) (posedge clk) (5)) $recovery(negedge reset, posedge clk, 0);

REMOVAL is matched to $removal:

SDF Verilog

(REMOVAL (negedge reset) (posedge clk) (5)) $removal (negedge reset, posedge clk, 0);

12-332 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Verilog SDF

RECREM is matched to $recovery, $removal, and $recrem:

SDF

Verilog

(RECREM (negedge reset) (posedge clk) (5) (5))

$recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5))

$removal (negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5))

$recrem(negedge reset, posedge clk, 0);

SKEW is matched to $skew:

SDF

Verilog

(SKEW (posedge clk1) (posedge clk2) (5))

$skew(posedge clkl, posedge clk2, 0);

WIDTH is matched to $width:

SDF

Verilog

(WIDTH (posedge clk) (5))

$width(posedge clk, 0);

PERIOD is matched to $period:

SDF

Verilog

(PERIOD (posedge clk) (5))

$period(posedge clk, 0);

NOCHANGE is matched to $nochange:

SDF

Verilog

(NOCHANGE (negedge write) addr (5) (5))

$nochange(negedge write, addr, 0, 0);

Optional edge specifications

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

« A match occursif the SDF port does not have an edge.

« A match occursif the specify port does not have an edge.

« A match occursif the SDF port edge isidentical to the specify port edge.

» A match occursif explicit edge transitionsin the specify port edge overlap with the SDF

port edge.

These rules alow SDF annotation to take place even if there is a difference between the
number of edge-specific constructs in the SDF file and the Verilog specify block. For
example, the Verilog specify block may contain separate setup timing checks for afalling

ModelSim SE User’s Manual

Standard Delay Format (SDF) Timing Annotation 12-333

Verilog SDF

and rising edge on data with respect to clock, while the SDF file may contain only asingle

setup check for both edges:
SDF Verilog
(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);
(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

Inthis case, the cell accommodates more accurate data than can be supplied by thetool that
created the SDF file, and both timing checks correctly receive the same value. Likewise,
the SDF file may contain more accurate data than the model can accommodate.

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);

(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

Inthis case, both SDF constructs are matched and the timing check receivesthe value from
the last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF fileis limited to posedge and negedge. The explicit edge
specifiersare 01, 0x, 10, 1x, x0, and x1. The set of [01, 0x, x1] is equivalent to posedge,
while the set of [10, 1x, x0Q] is equivalent to negedge. A match occursif any of the explicit
edges in the specify port match any of the explicit edgesimplied by the SDF port. For

example,
SDF Verilog
(SETUP data (posedge clock) (5)) $setup(data, edge]01, 0x] clk, 0);

Optional conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

» A match occurs if the SDF does not have a condition.

» A match occurs for atiming check if the SDF port condition is semantically equivalent
to the specify port condition.

» A match occurs for apath delay if the SDF condition islexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

SDF Verilog

(SETUP data (COND (reset!=1) (posedge clock)) (5)) | $setup(data, posedge clk & & & (reset==0), 0);

12-334 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Verilog SDF

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For

example,

SDF

Verilog

(COND (r1 || r2) (IOPATH clk q (5)))

if (r1|[r2) (clk =>q) =5; // matches

(COND (1| r2) (IOPATH clk q (5)))

if (r2]r1) (clk =>q) = 5; // does not match

The annotator does not match the second condition above because the order of r1 andr2 are

reversed.

Rounded timing values

The SDF TIMESCALE construct specifies time units of valuesin the SDF file. The
annotator rounds timing values from the SDF file to the time precision of the modul e that
isannotated. For example, if the SDF TIMESCALE is Insand avalue of .016 is annotated
to a path delay in amodul e having atime precision of 10ps (from the timescale directive),
then the path delay receives a value of 20ps. The SDF value of 16psis rounded to 20ps.
Interconnect delays are rounded to the time precision of the module that contains the

annotated MIPD.

ModelSim SE User’'s Manual Standard Delay Format (SDF) Timing Annotation 12-335

SDF for Mixed VHDL and Verilog Designs

SDF for Mixed VHDL and Verilog Designs

Annotation of amixed VHDL and Verilog designisvery flexible. VHDL VITAL cellsand
Verilog cells can be annotated from the same SDFfile. Thisflexibility isavailable only by
using the simulator’ s SDF command-line options. The Verilog $sdf _annotate system task
can annotate Verilog cells only. See the vaim command (CR-258) for more information on
SDF command-line options.

Interconnect delays

An interconnect delay represents the delay from the output of one device to the input of
another. With Verilog designs, Model Sm can model single interconnect delays or
multisource interconnect delays. See "Arguments, Verilog" (CR-265) under the vsim
command for more information on the relevant command-line switches.

Per VHDL VITAL '95, thereis no convenient way to handle interconnect delays from
multiple outputsto asingle input. Interconnect delay is modeled in the receiving device as
asingle delay from an input port to an internal node. (The nodeis explicitly declared.) The
default isto use the value of the maximum encountered delay inthe SDF file. Alternatively,
you can choose the minimum or latest value of the multiple delayswith the vsim command
(CR-258) -multisour ce_delay option.

-mul ti source_delay mn|nax|| atest

Timing checksare performed on the interconnect delayed versions of input ports. Thismay
result in misleading timing constraint violations, because the ports may satisfy the
constraint while the delayed versions may not. If the smulator seems to report incorrect
violations, be sure to account for the effect of interconnect delays.

12-336 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Troubleshooting

Troubleshooting

Specifying the wrong instance

By far, the most common mistakein SDF annotation isto specify thewrong instanceto the
simulator’ s SDF options. The most common case isto leave off the instance atogether,
which is the same as sel ecting the top-level design unit. Thisis generally wrong because
theinstance paths in the SDF are relative to the ASIC or FPGA model, which is usually
instantiated under atop-level testbench. (One exception iswhen you have asingleinstance
inthe SDF file.) See "Instance specification” (12-326) for an example.

A common example for both VHDL and Verilog test benches is provided below. For
simplicity, the test benches do nothing more than instantiate a model that has no ports.

VHDL testbench

entity testbench is end;

architecture only of testbench is
conmponent nyasic
end conponent;

begi n
dut : nyasic;

end;

Verilog testbench

nodul e testbench
nyasi c dut();
endnodul e

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate simulator invocation might be;

vsi m - sdf max /testbench/ dut =nyasi c. sdf testbench

Optionally, you can leave off the name of the top-level:

vsi m - sdf max /dut =nyasi c. sdf testbench

The important thing is to select the instance for which the SDF is intended. If the model is
deep within the design hierarchy, an easy way to find the instance name is to first invoke
the simulator without SDF options, open the structure window, navigate to the model
instance, select it, and enter the environment command (CR-114). This command displays
the instance name that should be used in the SDF command-line option.

ModelSim SE User’'s Manual Standard Delay Format (SDF) Timing Annotation 12-337

Troubleshooting

Mistaking a component or module name for an instance label

Another common error isto specify the component or module namerather than theinstance
label. For example, the following invocation iswrong for the above testbenches:

vsi m - sdf max /testbench/ nyasi c=nyasi c. sdf testbench

Thisresultsin the following error message:

ERROR: nyasi c. sdf:
The design does not have an instance named '/testbench/nyasic’.

Forgetting to specify the instance

If you leave off the instance altogether, then the simulator issues a message for each
instance path in the SDF that is not found in the design. For example,

vsi m - sdf max nyasi c. sdf testbench

Resultsin:
ERROR: nyasi c. sdf:
Failed to find I NSTANCE ' /testbench/ul’

ERROR: nyasi c. sdf:
Failed to find I NSTANCE ' /testbench/ u2’

ERROR: nyasi c. sdf:
Failed to find I NSTANCE '/t estbench/u3’

ERROR: nyasi c. sdf:
Failed to find I NSTANCE '/t estbench/ u4’

ERROR: nyasi c. sdf:
Failed to find I NSTANCE '/t est bench/ u5’

WARNI NG nyasi c. sdf :

This file is probably applied to the wong instance.

WARNI NG nyasi c. sdf :

I gnoring subsequent m ssing instances fromthis file.
After annotation is done, the simulator issues a summary of how many instances were not
found and possibly a suggestion for a qualifying instance:

WARNI NG nyasi c. sdf :

Failed to find any of the 358 instances fromthis file.

WARNI NG nyasi c. sdf :
Try instance '/testbench/dut’ - it contains all instance paths fromthis
file.
The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see "Resolving errors* (12-329) for specific VHDL VITAL SDF troubleshooting.

12-338 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Obtaining the SDF specification

Obtaining the SDF specification

The SDF specification is available from Open Verilog International:

Lynn Horobin

phone: (408)358-9510

fax: (408)358-3910

email: info@ovi.org

home page: http://www.ovi.org

ModelSim SE User’'s Manual Standard Delay Format (SDF) Timing Annotation 12-339

mailto:info@ovi.org
http://www.ovi.org

12-340 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

13 - Value Change Dump (VCD) Files

Chapter contents

ModelSimVCD commandsandVCD tasks 13342
Resimulating aVHDL designfromaVCDfile 13344
Extracting the proper stimulus for bidirectional ports 13-344
Specifying afilename and state mappings 13-344
CreatingtheVCD file.1334
A VCD filefromsourcetooutput. 13346
VHDL sourcecode13346
VCD simulator commands13-346
VCDoutput 13347
Capturing port driverdata13349
Supported TSSI states.13349
Strengthvalues13350
Port identifiercode13350
Example VCD output from ved dumpports 13-351

This chapter explains Model Technology’s Verilog VCD implementation for ModelSm.

TheVCD fileformat is specified in the |[EEE 1364 standard. It isan ASCI| file containing
header information, variable definitions, and variable value changes. VCD isin common
use for Verilog designs, and is controlled by VCD system task callsin the Verilog source
code. Model Sm provides simulator command equivalents for these system tasks and
extends VCD support to VHDL designs; the Model Sm commands can be used on either
VHDL or Verilog designs.

VHDL VCD files can be used for resimulation with the vsim -vedread command. See
"Resimulating a VHDL design from aVCD file" (13-344).

P> Note: If you need vendor-specific ASIC design-flow documentation that incorporates
VCD, please contact your ASIC vendor.

ModelSim SE User’'s Manual Value Change Dump (VCD) Files 13-341

ModelSim VCD commands and VCD tasks

ModelSim VCD commands and VCD tasks

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the
VCD file along with the results of those commands. The table below maps the VCD
commands to their associated tasks.

VCD commands VCD system tasks
ved add (CR-198) $dumpvars

vcd checkpoint (CR-199) $dumpall

ved file (CR-208) $dumpfile

ved flush (CR-212) $dumpflush

ved limit (CR-213) $dumplimit

ved off (CR-214) $dumpoff

ved on (CR-215) $dumpon

ModelSmversions 5.5 and | ater support multiple VCD files. This functionality isan
extension of the IEEE Std 1364 specification. The tasks behave the same as the IEEE
equivalent tasks such as $dumpfile, $dumpvar, etc. The difference is that $fdumpfile can
be called multiple times to create more than one V CD file, and the remaining tasks require
afilename argument to associate their actions with a specific file.

VCD commands VCD system tasks

vcd add (CR-198) -file <fil ename> $fdumpvars

ved checkpoint (CR-199) <fi | enane> $fdumpall

ved files (CR-210) <f i | enane> $fdumpfile
ved flush (CR-212) <fi | enane> $fdumpflush
ved limit (CR-213) <fi | enane> $fdumplimit
ved off (CR-214) <fi | ename> $fdumpoff
vcd on (CR-215) <f i | ename> $fdumpon

13-342 Value Change Dump (VCD) Files ModelSim SE User’s Manual

ModelSim VCD commands and VCD tasks

ModelSmversions 5.5 and later also support dumpports system tasks. The table below
maps the VCD dumpports commands to their associated tasks.

VCD dumpports commands VCD system tasks
ved dumpports (CR-201) $dumpports

vcd dumpportsall (CR-203) $dumpportsall

ved dumpportsflush (CR-204) $dumpportsflush
ved dumpportslimit (CR-205) $dumpportslimit

vcd dumppor tsoff (CR-206) $dumpportsoff

vcd dumppor tson (CR-207) $dumpportson

ModelSim SE User’'s Manual Value Change Dump (VCD) Files 13-343

Resimulating a VHDL design from a VCD file

Resimulating a VHDL design from a VCD file

A VCD fileintended for resimulation is created by capturing the ports of aVHDL design
unit instance within atestbench or design. The following discussion shows you how to
prepare aVCD file for resimulation. Note that the preparation varies depending on your
design. Also note that you cannot resimulate with VCD stimulusin aVerilog or
mixed-language design.

Extracting the proper stimulus for bidirectional ports

To extract the proper stimulus for bidirectional ports, the splitio command (CR-185) must
be used before creating the VCD file. This splits bidirectional portsinto separate signals
that mirror the output driving contributions of their related ports. By recording in the VCD
file both the resolved value of abidirectional port and its output driving contribution, an
appropriate stimulus can be derived by vsim -vcdread. The splitio command (CR-185)
operates on a bidirectional port and creates a new signa having the same name as the port
suffixedwith"__0". Thisnew signal must be captured inthe VCD filealong withitsrelated
bidirectional port. See the description of the splitio command (CR-185) for more details.

P Note: When using the splitio command in conjunction with VCD files, be aware that VCD
fileoutput will vary between amodel coded in VHDL and the same model codedin Verilog
with timing wrapped in VHDL. The difference occurs because splitio generates Extended
VCD stimulus files, and the Extended VCD format is supported only for pure VHDL
designs.

Specifying a filename and state mappings

After using splitio, the VCD filename and state mapping are specified using the vcd files
command (CR-210) with the -nomap -dir ection options.

Note that the -nomap option is not necessary if the port types on the top-level design are
bit or bit_vector. It isrequired, however, for std_logic ports because it records the entire
std_logic state set. Thisallowsthe-vedr ead option to duplicatethe original stimulusonthe
ports.

The default VCD file is dump.ved, but you can specify adifferent filename with ved files.

Creating the VCD file

After invoking ved filesyou can create the new VCD file by executing ved add (CR-198)
at the time you wish to begin capturing value changes. To dump everything in adesign to
adump file you might use acommand like this:

ved add -r /*

At aminimum, the VCD file must contain the in and inout ports of the design unit. Value
changes on all other signals are ignored by -vedread. This also means that the simulation
results are not checked against the VCD file.

After the VCD fileis created, it can beinput to vsim (CR-258) with the -vcdr ead option to
resimulate the design unit stand-alone.

13-344 Value Change Dump (VCD) Files ModelSim SE User’s Manual

Resimulating a VHDL design from a VCD file

Example

Thefollowing exampleillustrates atypical sequence of commandsto create aVCD filefor
input to -vedr ead. Assume that a VHDL testbench named testbench instantiates dut with
an instance name of ul, and that you would like to simulate testbench and later be able to
resimulate dut stand-alone:

vsim-c
VSI M 1>
VSI M 2>
VSI M 3>
VSI M 4>
VSI M 5>

-t ps testbench
splitio /ull*

vced files -nomap -direction
vced add -ports /ull*

run 1000

qui t

Now, to ressimulate using the VCD file:

vsim-c
VSI M 1>
VSI M 2>

-t ps -vcdread dunp.vcd dut
run 1000
qui t

} Note: Y ou must manually invoke the run command (CR-176) even when using -vedr ead.

ModelSim SE User’s Manual

Value Change Dump (VCD) Files 13-345

A VCD file from source to output

A VCD file from source to output

The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD output.
VHDL source code

The design isa simple shifter device represented by the following VHDL source code:

l'ibrary | EEE;
use | EEE. STD_LOGQ C_1164. al | ;

entity SH FTER_MOD is
port (CLK, RESET, data_in : IN STD_LCA C
Q : INOUT STD LOG C VECTOR(8 downto 0))
END SHI FTER_MOD

architecture RTL of SHI FTER_ MDD is

begin
process (CLK, RESET)
begi n
if (RESET ='1') then
Q <= (others =>"'0") ;
elsif (CLK event and CLK = "1') then
Q<= QQleft - 1 dowmto 0) & data_in ;
end if ;
end process ;
end ;

VCD simulator commands

At simulator time zero, the designer executes the following commands and quits the
simulator at time 1200:

vced files output.ved
vcd add -r *

force reset 1 0
force data_in 0 O
force clk 0 0

run 100

force clk 1 0, 0 50 -repeat 100
run 100

vced of f

force reset 0 0
force data_in 1 0
run 100

vcd on

run 850

force reset 1 0

run 50

vcd checkpoi nt

13-346 Value Change Dump (VCD) Files ModelSim SE User’s Manual

A VCD file from source to output

VCD output

TheVCD file created as aresult of the preceding scenario would be called output.ved. The
following pages show how it would look.

VCD output
$conment 0
File created using the follow ng 0(
conmmand: 0)
ved files output.ved 0*
$dat e 0+
Fri Jan 12 09:07:17 2000 0,
$end $end
$version #100
Mbdel Si m EE/ PLUS 5. 4 1!
$end #150
$timescal e 0!
Ins #200
$end 1!
$scope nodul e shifter_nod $end $dunpof f
$var wire 1 ! clk $end x!
$var wire 1 " reset $end X"
$var wire 1 # data_in $end X#
$var wire 1 $ g [8] $end x$
$var wire 1 %q [7] $end X%
$var wire 1 & q [6] $end X&
$var wire 1 ' g [5] $end X’
$var wire 1 (g [4] $end X(
$var wire 1) g [3] $end X)
$var wire 1 * g [2] $end X*
$var wire 1 + g [1] $end X+
$var wire 1, g [0] $end X,
$upscope $end $end
$enddefinitions $end #300
#0 $dunpon
$dunpvars 1!
o! o"
1" 1#
o# 0%
0% 0%
0%
0&

ModelSim SE User’s Manual

Value Change Dump (VCD) Files 13-347

A VCD file from source to output

0&
o’
0(
0)
0*
0+

$end
#350
0
#400
1!
1+
#450
0
#500
1!

1*
#550
0
#600
1!

1)
#650
0
#700
1!

1
#750
0
#800
1!

#850
0
#900
1!
1&
#950
0

#1000
1

1%
#1050
0
#1100
1

1%
#1150
0

1

0%
0%
0&
0
0(

0)

0*

0+

0

#1200

1
$dunpal
1

1

1#

0%

0%

0&
0
0(

0)

0*
0+

0
$end

13-348 Value Change Dump (VCD) Files

ModelSim SE User’s Manual

Capturing port driver data

Capturing port driver data

Some ASIC vendor’ stoolkitsread aV CD file format that provides details on port drivers.
This information can be used, for example, to drive atester. See the ASIC vendor’'s
documentation for toolkit specific information.

In Model Smuse the ved dumpports command (CR-201) to create aV CD file that captures
port driver data.

Port driver direction information is captured as TSSI statesin the VCD file. Each time an
external or internal port driver changesvalues, anew value changeisrecorded inthe VCD
file with the following format:

p<TSSI state> <0 strength> <1 strength> <identifier_code>

Supported TSSI states
The supported <TSS| states> are:

Input (testfixture) Output (dut)
D low L low

U high H high

N unknown X unknown
Z tri-state T tri-state

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving unknown)

f tri-state

A unknown (input driving low and output driving high)

a unknown (input driving low and output driving unknown)

C unknown (input driving unknown and output driving low)

b unknown (input driving high and output driving unknown)

B unknown (input driving high and output driving low)

¢ unknown (input driving unknown and output driving high)

ModelSim SE User’'s Manual Value Change Dump (VCD) Files 13-349

Capturing port driver data

Strength values

The <strength> values are based on Verilog strengths:

Strength

VHDL std_logic mappings

0

highz

17

1

small

2

medium

weak

large

pull

WUH L

3
4
5
6

strong

uxo)

7 supply

Port identifier code

The <identifier_code> isan integer preceded by < that startsat zero and isincremented for
each port in the order the ports are specified. Also, the variable type recorded in the VCD

header is "port".

13-350 Value Change Dump (VCD) Files

ModelSim SE User’s Manual

Capturing port driver data

Example VCD output from vcd dumpports

The following is an example VCD file created with the ved dumppor ts command.

$comrent

File created using the foll owi ng command:
vcd dunpports resul ts/dunpl
$end

$dat e

Tue Aug 20 13:33:02 2000
$end

$version
Model Sim Version 5. 4c
$end

$timescal e

1ns

$end

$scope nodul e topl $end
$scope nodul e ul $end
$var port 1 <0 a $end
$var port 1 <1 b $end
$var port 1 <2 c $end
$upscope $end

$upscope $end
$enddefini ti ons $end

#0

$dunpports

pN 6 6 <0

pX 6 6 <1

p? 6 6 <2

$end

#10

pX 6 6 <1

pN 6 6 <0

p? 6 6 <2

#20

pL 6 0 <1
pD 6 0 <0
pa 6 6 <2
#30

pH O 6 <1
puU 0 6 <0
pb 6 6 <2
#40

pT 0 0 <1
pZ 0 0 <0
pX 6 6 <2
#50

pX 5 5 <1
pN 5 5 <0
p? 6 6 <2
#60

pL 5 0 <1
pD 5 0 <0
pa 6 6 <2
#70

pH O 5 <1
pu 0 5 <0
pb 6 6 <2
#80

pX 6 6 <1
pN 6 6 <0
p? 6 6 <2

ModelSim SE User’'s Manual Value Change Dump (VCD) Files 13-351

13-352 Vaue Change Dump (VCD) Files ModelSim SE User’s Manual

14 - Logic Modeling SmartModels

Chapter contents

VHDL SmartModel interface14354
Creating foreign architectures with sm ent|ty1435
Vectorports1435
Command channel.14-358
SmartModel Windows14-359
Memory arrays14360

Verilog SmartModedl interface.14-361
LMTV usage documentation 14361
Linking the LMTV interface to the si mulator 14361
Compiling Verilogshells.14-361

TheLogic Modeling SWIFT-based SmartModel library can be used with ModelSmVHDL
and Verilog. The SmartModel library is a collection of behavioral models supplied in
binary form with a procedural interface that is accessed by the simulator. This chapter
describes how to use the SmartModel library with ModelSm.

P> Note: The SmartMode! library must be obtained from Logic Modeling along with the
SmartModel library documentation that describeshow to useit. Thischapter only describes
the specifics of using the library with ModelSm SE.

ModelSim SE User’'s Manual Logic Modeling SmartModels 14-353

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface

VHDL SmartModel interface

ModelSm VHDL interfaces to a SmartModel through a foreign architecture. The foreign
architecture contains a foreign attribute string that associates a specific SmartModel with
the architecture. On elaboration of the foreign architecture, the simulator automatically
loads the SmartModel library software and establishes communication with the specific
SmartModel.

The Model Sm software |ocates the SmartModel interface software based on entriesin the
modelsim.ini initialization file. The simulator and the sm_entity tool (for creating foreign
architectures) both depend on these entries being set correctly. These entries are found
under the[Imc] section of the default modelsim.ini filelocated in the Model Sminstallation
directory. The default settings are as follows:;

(1]

; Model Simis interface to Logic Mddeling' s Smart Model SWFT software
i bsm= $MODEL_TECH | i bsm sl
; Model Simis interface to Logi c Mbdeling’ s Snart Model SWFT sof tware (W ndows
NT)
; libsm= $MODEL_TECH |i bsmdl |
Logi c Mbdeling' s SmartMdel SWFT software (HP 9000 Series 700)
; libswift = $LMC_HOME/ i b/ hp700. I'i b/ 1'i bswift. sl
Logi c Mbdeling's Snart Model SWFT software (1 BM RI SC Syst enm 6000)
; libswift = $LMC_HOME/ lib/ibnrs.lib/swift.o
Logi c Mbdeling' s SmartMddel SWFT software (Sun4 Sol aris)
; libswift = $LMC HOVE/ i b/ sun4Sol aris.lib/libswft.so
Logi ¢ Modeling' s SmartModel SWFT software (W ndows NT)
; libswift = $LMC HOMVE/ i b/ pent.lib/libswft.dll
Logi c Mbdeling' s SmartMdel SWFT sof tware (Linux)
; libswift = $LMC HOVE/ i b/ x86_Ii nux.lib/libsw ft.so

The libsm entry points to the Model Sm dynamic link library that interfaces the foreign
architecture to the SmartModel software. The libswift entry points to the Logic Modeling
dynamic link library software that accesses the SmartM odels. The ssimulator automatically
loads both the libsm and libswift libraries when it elaborates a SmartModel foreign
architecture.

By default, the libsm entry points to the libsm.sl supplied in the ModelSm installation
directory indicated by the MODEL _TECH environment variable. ModelSim
automatically setsthe MODEL _TECH environment variabl e to the appropriate directory
containing the executabl es and binariesfor the current operating system. If you arerunning
the Windows operating system, then you must comment out the default libsm entry
(precede the line with the ;" character) and uncomment the libsm entry for the Windows
operating system.

Uncomment the appropriate libswift entry for your operating system. The LMC_HOME
environment variable must be set to the root of the SmartModel library installation
directory. Consult Logic Modeling's SmartModel library documentation for details.

14-354 Logic Modeling SmartModels ModelSim SE User’s Manual

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface

Creating foreign architectures with sm_entity

The Model Sm sm_entity tool automatically creates entities and foreign architectures for
SmartModels. Its usage is as follows:

Syntax

smentity
[-] [-xe] [-xa] [-c] [-all] [-v] [-93] [<SmartMbdel Nanme>...]

Arguments

Read SmartModel names from standard input.

- Xe
Do not generate entity declarations.

-Xa
Do not generate architecture bodies.

-C
Generate component declarations.

-all

Select all modelsinstalled in the SmartModel library.

-V
Display progress messages.

-93
Use extended identifiers where needed.

<Smar t Model Name>
Name of a SmartModel (see the SmartModel library documentation for details on
SmartModel names).

By default, the sm_entity tool writes an entity and foreign architecture to stdout for each
SmartModel name listed on the command line. Optionally, you can include the component
declaration (-c), exclude the entity (-xe), and exclude the architecture (-xa).

The simplest way to prepare SmartModels for usewith ModelSmVHDL isto generate the

entities and foreign architectures for al installed SmartModels, and compile them into a

library named Imc. This is easily accomplished with the following commands:
%smentity -all > sm.vhd

%vlib I nc
% vcom -work I nc snl.vhd

To instantiate the SmartModels in your VHDL design, you also need to generate
component declarations for the SmartModels. Add these component declarationsto a
package named sml (for example), and compile the package into the Imc library:

%smentity -all -c -xe -xa > snl conp. vhd
Edit the resulting smlcomp.vhd file to turn it into a package of SmartModel component
declarations as follows:

library ieee;
use ieee.std_l ogic_1164.all;

ModelSim SE User’'s Manual Logic Modedling SmartModels 14-355

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface

package sm is
<conponent decl arations go here>
end sl ;

Compile the package into the Imc library:
% vcom -work | nmc sm conp. vhd

The SmartModels can now be referenced in your design by adding the following library
and use clauses to your code:

library Inc;
use Inc.snl.all;

Thefollowing is an example of an entity and foreign architecture created by sm_entity for
the cy7c285 SmartModel.

library ieee;
use ieee.std_l ogic_1164.all;

entity cy7c285 is
generic (TimngVersion : STRING : = "CY7C285-65";
Del ayRange : STRING : = "Max";
MermoryFile : STRING : = "nmenory");
port (A0 : in std_|ogic;

Al in std_logic;
A2 in std_|ogic;
A3 : in std_logic;
A4 : in std_logic;
A5 : in std_l ogic;
A6 : in std_logic;
A7 : in std_logic;
A8 : in std_l ogic;
A9 in std_| ogic;

A10 : in std_|ogi
All : in std_l ogi
Al12 : in std_| ogi
Al13 : in std_|logi
Al4 : in std_| ogi
Al5 : in std_| ogi
: in std_|logic;
out std_l| ogi
out std_| ogi
out std_| ogi
out std_l| ogi
out std_| ogi
out std_| ogi
out std_l ogic;
: out std_|l ogic;
WAI T_PORT : inout std_logic);

O 0O 000o0

QA8FRYRR8Y

end;

architecture Smart Mbdel of cy7c285 is
attribute FOREIGN : STRING
attribute FOREIGN of SmartModel : architecture is
"sminit $MODEL_TECH | i bsm sl ; cy7c285";
begi n
end Snmart Model ;

14-356 Logic Modeling SmartModels ModelSim SE User’s Manual

VHDL SmartModel interface

Entity details

* The entity name is the SmartModel name (you can manually change this name if you
like).

 The port names are the same as the SmartModel port names (these names must not be
changed). If the SmartModel port nameis not avalid VHDL identifier, then sm_entity
automatically convertsit to avalid name. If sm_entity isinvoked with the -93 option,
thentheidentifier isconverted to an extended identifier, and the resulting entity must also
be compiled with the -93 option. If the -93 option had been specified in the example
above, then WAIT would have been converted to \WAIT\. Note that in this example the
port WAIT was converted to WAIT_PORT because wait isaVHDL reserved word.

» The port types are std_logic. This data type supports the full range of SmartModel logic
states.

« The DelayRange, TimingVersion, and MemoryFile generics represent the SmartM odel
attributes of the same name. Consult your SmartModel library documentation for a
description of these attributes (and others). Sm_entity createsagenericfor each attribute
of the particular SmartModel. The default generic valueisthe default attribute value that
the SmartModel has supplied to sm_entity.

Architecture details

» Thefirst part of the foreign attribute string (sm_init) is the same for al SmartModels.

 The second part ($MODEL_TECH/libsm.gl) is taken from the libsm entry in the
initialization file, modelsim.ini.

 Thethird part (cy7c285) isthe SmartModel name. This name correl ates the architecture
with the SmartModel at elaboration.

Vector ports

The entities generated by sm_entity only contain single-bit ports, never vectored ports.
Thisis necessary because Model Sm correl ates entity ports with the SmartModel SWIFT
interface by name. However, for ease of use in component instantiations, you may want to
create a custom component declaration and component specification that groups portsinto
vectors. Y ou can also rename and reorder the portsin the component declaration. Y ou can
also reorder the ports in the entity declaration, but you can't rename them!

The following is an example component declaration and specification that groups the
address and data ports of the CY 7C285 SmartModel:

conponent cy7c285

generic (Tim ngVersion : STRING : = "CY7C285-65";
Del ayRange : STRING : = "Mx";
MermoryFile : STRING : = "nmenory");

port (A: in std_logic_vector (15 downto 0);
CS : in std_logic;
O : out std_logic_vector (7 downto 0);
WAI T_PORT : inout std_logic);
end conponent;

for all: cy7c¢285
use entity work.cy7c285
port map (A0 => A(0),
Al => A(1),

ModelSim SE User’'s Manual Logic Moddling SmartModels 14-357

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface

A2 => A(2),
A3 => A(3),
A => A(4),
A5 => A(5),
A6 => A(6),
A7 => A7),
A8 => A(8),
A9 => A(9),
A0 => A(10),
ALl => A(11),
A2 => A(12),
A13 => A(13),
Al4 => A(14),
Al5 => A(15),
=> CS,
x0),
a1,
a2),
= (3),
= q4),
= q(5),
= q(6),
= q7),

| T_PORT => WAI T_PORT);

nnn
vV V V

$A88RBBR8Y

Command channel

The command channel is a SmartModel feature that |ets you invoke SmartModel specific
commands. These commands are documented in the SmartModel library documentation.
Model Sm provides access to the Command Channel from the command line. The form of
aSmartModel command is:

| nrc <instance_nanme>|-all "<SmartMdel conmand>"

Theinstance_name argument is either afull hierarchical name or arelative name of a
SmartModel instance. A relative nameis relative to the current environment setting (see
environment command (CR-114)). For example, to turn timing checks off for SmartM odel
/top/ul:

Intc /top/ul "SetConstraints O f"
Use -all to apply the command to al SmartModel instances. For example, to turn timing
checks off for all SmartModel instances:

Inc -all "SetConstraints OFf"
There are also some SmartModel commands that apply globally to the current simulation
session rather than to models. The form of a SmartModel session command is;

| ncsessi on "<Snart Mbdel session command>"

Once again, consult your SmartModel library documentation for details on these
commands.

14-358 Logic Modeling SmartModels ModelSim SE User’s Manual

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html
http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface

SmartModel Windows

Some models in the SmartModel library provide accessto internal registers with afeature
called SmartModel Windows. Refer to Logic Modeling's SmartModel library
documentation for detailson thisfeature. The ssimulator interfaceto thisfeatureisdescribed
below.

Window name syntax isimportant. Beginning in version 5.3c of Model Sm, window names
that arenot valid VHDL or Verilog identifiersare converted to VHDL extended identifiers.
For example, with awindow named z1110.GSR.OR, Modelsim will treat the name as
\z1110.GSR.OR\ (for all commandsincluding Imcwin, add wave, and examine). Y ou must
then use that name in al commands. For example,

add wave /top/sw ft_nodel/\z1l 10. GSR. OR

Aswith all extended identifiers, case isimportant.

ReportStatus

The ReportStatus command displays model information, including the names of window
registers. For example,

I mc /top/ul ReportStatus

SmartModel Windows description:
WA "Read-Only (Read Only)"
WB "1-bit"
WC "64-bit"

Thismodel contains window registers named wa, wh, and wc. These names can be used in
subsequent window (Imcwin) commands.

SmartModel Imcwin commands

The following window commands are supported:
 Imcwin read <window_instance> [-<radix>]

* Imcwin write <window_instance> <value>

* Imcwin enable <window_instance>

* Imcwin disable <window _instance>
 Imcwin release <window_instance>

Each command requires a window instance argument that identifies a specific model
instance and window name. For example, /top/ul/wa refers to window wa in model
instance /top/ul.

Imcwin read

The Imcwin read command displays the current value of awindow. The optional radix
argument is-binary, -decimal, or -hexadecimal (these names can be abbreviated). The
default isto display the value using the std_logic characters. For example, the following
command displays the 64-hit window wc in hexadecimal:

Imcwin read /top/ul/we -h

ModelSim SE User’'s Manual Logic Moddling SmartModels 14-359

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html
http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface

Imcwin write

The Imcwin write command writes avalue into awindow. The format of the value
argument is the same as used in other simulator commands that take value arguments. For
example, to write 1 to window wh, and all 1'sto window wc:

Intcwin wite /top/ul/wb 1
Intcwin wite /top/ul/we X'FFFFFFFFFFFFFFFF

Imcwin enable

The Imcwin enable command enables continuous monitoring of awindow. The specified
window is added to the model instance asasignal (with the same name as the window) of
type std_logic or std_logic_vector. Thissignal can then be referenced in other simulator
commands just like any other signal (the add list command (CR-28) is shown below). The
window signal is continuously updated to reflect the value in the model. For example, to
list window wa:

I ntwi n enabl e /top/ul/wa
add list /top/ul/wa

Imcwin disable

The Imcwin disable command disables continuous monitoring of awindow. The window
signal isnot deleted, but it no longer is updated when the model’ swindow register changes
value. For example, to disable continuous monitoring of window wa:

I ntwi n di sabl e /top/ul/wa

Imcwin release

Some windows are actually nets, and the Imcwin write command behaves more like a
continuousforce on the net. Thelmcwin release command disablesthe effect of aprevious
Imcwin write command on awindow net.

Memory arrays

A memory model usually makesthe entireregister array availableasawindow. Inthiscase,
the window commands operate only on asingle element at atime. The element is selected
as an array reference in the window instance specification. For example, to read element 5
from the window memory mem:

I ntwi n read /top/u2/ men(5)
Omitting the element specification defaults to element 0. Also, continuous monitoring is

limited to asingle array element. The associated window signal is updated with the most
recently enabled element for continuous monitoring.

14-360 Logic Modeling SmartModels ModelSim SE User’s Manual

Verilog SmartModel interface

Verilog SmartModel interface

The SWIFT SmartModel library, beginning with rel ease r40b, provides an optional library
of Verilog modulesand aPL I application that communi cates between asimulator'sPLI and
the SWIFT simulator interface. The Logic Modeling documentation refers to this asthe
Logic Modelsto Verilog (LMTV) interface. To install this option, you must select the
simulator type "Verilog" when you run Logic Modeling’s SmartInstall program.

LMTV usage documentation

The SmartModel Library Smulator Interface Manual isinstalled with Logic Modeling's
software. Look for the file: <LMC _install_dir>/doc/smartmodel/manuals/slim.pdf. This
document is written with Cadence Verilog in mind, but mostly appliesto ModelSim
Verilog. Make sureyou follow theinstructionsbelow for linkingthe LM TV interface
to the simulator.

Linking the LMTV interface to the simulator

Model Technology shipsadynamically loadable library that links ModelSmtothe LM TV
interface. To link to the LMTV all you need to do is add libswiftpli.sl to the Veriuser line
in modelsim.ini asin the example below:

Veriuser = $MODEL_TECH |i bswiftpli. sl

P Note: On Windows platforms, the above file should be named libswiftpli.dll.

Compiling Verilog shells

Once libswiftpli.g isin the modelsim.ini file you can compile the Verilog shells provided
by Logic Modeling. Y ou compile them just like any other Verilog modulesin ModelSim

Verilog. Details on the Verilog shellsare in the SmartModel Library Smulator Interface

Manual aswell. The command line plus optionsand LM TV system tasks described in that
document also apply to ModelSm.

ModelSim SE User’'s Manual Logic Moddling SmartModels 14-361

14-362 Logic Modeling SmartModels ModelSim SE User’s Manual

15 - Logic Modeling Hardware Models

Chapter contents

VHDL Hardware Model interface.15364
Creating foreign architectureswithhm_entity 15365
Vectorports15367
Hardware model commands 15368

Logic Modeling hardware models can be used with ModelSm VHDL and Verilog. A
hardware model allows simulation of a device using the actua silicon installed as a
hardware model in one of Logic Modeling’s hardware modeling systems. The hardware
modeling system is a network resource with a procedura interface that is accessed by the
simulator. This chapter describes how to use Logic Modeling hardware models with
ModelSm.

P Note: Pleaserefer to the Logic Modeling documentation for details on using the hardware
modeler. This chapter only describes the specifics of using hardware models with
ModelSm SE.

ModelSim SE User’'s Manual Logic Modeling Hardware Models 15-363

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

VHDL Hardware Model interface

VHDL Hardware Model interface

ModelSm VHDL interfaces to a hardware model through aforeign architecture. The
foreign architecture contains aforeign attribute string that associates a specific hardware
model with the architecture. On elaboration of the foreign architecture, the smulator
automatically loads the hardware modeler software and establishes communication with
the specific hardware model.

The Model Sm software locates the hardware model er interface software based on entries
in the modelsim.ini initialization file. The simulator and the hm_entity tool (for creating
foreign architectures) both depend on these entries being set correctly. These entries are
found under the [Imc] section of the default modelsim.ini file located in the ModelSm
installation directory. The default settings are as follows:
[Inc]
; Model Simis interface to Logic Mddeling s hardware nodel er SFlI software
|'i bhm = $MODEL_TECH/ | i bhm sl
; Model Simis interface to Logic Mbdeling' s hardware nodel er SFl software
(W ndows NT)
;i bhm = $MODEL_TECH | i bhm dI |
Logi ¢ Mbdel ing’'s hardware nodel er SFI software (HP 9000 Series 700)
; libsfi = <sfi_dir>/1ib/hp700/Iibsfi.sl
Logi c Mbdeling's hardware nodel er SFI software (1BM RI SC Syst em 6000)
; libsfi = <sfi_dir>/1ib/rs6000/1ibsfi.a
Logi ¢ Mbdel ing’ s hardware nodel er SFI software (Sun4 Sol ari s)
; libsfi = <sfi_dir>/1ib/sun4.solaris/libsfi.so
Logi ¢ Mbdel ing’ s hardware nodel er SFI software (W ndow NT)
; libsfi = <sfi_dir>/lib/pcnt/Imsfi.dll

The libhm entry points to the Model Sm dynamic link library that interfaces the foreign
architecture to the hardware model er software. The libsfi entry pointsto the Logic
Modeling dynamic link library software that accesses the hardware modeler. The simulator
automatically loads both the libhm and libsfi librarieswhen it elaborates a hardware model
foreign architecture.

By default, the libhm entry points to the libhm.sl supplied in the ModelSminstallation
directory indicated by the MODEL_TECH environment variable. Model Sm automatically
sets the MODEL_TECH environment variable to the appropriate directory containing the
executables and binaries for the current operating system. If you are running the Windows
operating system, then you must comment out the default libhm entry (precede the line
withthe";" character) and uncomment thelibhm entry for the Windows operating system.

Uncomment the appropriate libsfi entry for your operating system, and replace <sfi_dir>
with the path to the hardware model er softwareinstallation directory. In addition, you must
settheLM_L 1B and LM _DIR environment variables as described in the Logic Modeling
documentation.

15-364 Logic Modeling Hardware Models ModelSim SE User’'s Manual

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html
http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

VHDL Hardware Model interface

Creating foreign architectures with hm_entity

The Model Sm hm_entity tool automatically creates entities and foreign architectures for
hardware models. Its usage is as follows:;

Syntax

hmentity
[-xe] [-xa] [-c] [-93] <shell software fil enane>

Arguments

- Xe
Do not generate entity declarations.

-Xa
Do not generate architecture bodies.

-c
Generate component declarations.

-93
Use extended identifiers where needed.

<shel | software filename>
Hardware model shell softwarefilename (see Logic Modeling documentation for details
on shell software files)

By default, the hm_entity tool writes an entity and foreign architecture to stdout for the
hardware model. Optionally, you can include the component declaration (-c), exclude the
entity (-xe), and exclude the architecture (-xa).

Once you have created the entity and foreign architecture, you must compileit into a
library. For example, the following commands compile the entity and foreign architecture
for a hardware model named LM TEST:

% hmentity LMIEST. MDL > | ntest.vhd
%vlib I nc
% vcom -work I nt |Intest.vhd

To instantiate the hardware model in your VHDL design, you will also need to generate a
component declaration. If you have multiple hardware models, you may want to add all of
their component declarations to a package so that you can easily reference them in your
design. The following command writes the component declaration to stdout for the
LMTEST hardware model.

% hmentity -c -xe -xa LMIEST. MDL

Paste the resulting component declaration into the appropriate place in your design or into
a package.

Thefollowing isan example of the entity and foreign architecture created by hm_entity for
the CY 7C285 hardware model:

library ieee;
use ieee.std_logic_1164.all;

entity cy7c285 is
generic (DelayRange : STRING := "Max");
port (A0 : in std_logic;

ModelSim SE User’'s Manual Logic Modeling Hardware Models 15-365

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

VHDL Hardware Model interface

Al : in std_l ogic;
A2 : in std_l ogic;
A3 : in std_l ogic;
A4 : in std_l ogic;
A5 : in std_l ogic;
A6 : in std_logic;
A7 : in std_l ogic;
A8 : in std_l ogic;
A9 : in std_l ogic;
A10 : in std_l ogic;
All : in std_logic;
Al2 : in std_l ogic;
Al3 : in std_l ogic;
Al4 : in std_|logic;
Al5 : in std_logic;
in std_|ogic;
out std_| ogic;
out std_| ogic;
out std_| ogic;
out std_| ogic;
out std_| ogic;
out std_l ogic;
out std_| ogic;
: out std_| ogic;
inout std_logic);

TQA8RRBLBR8Y

end;

architecture Hardware of cy7c¢285 is
attribute FOREIGN : STRI NG
attribute FOREIGN of Hardware : architecture is
"hm.init $MODEL_TECH | i bhm sl ; CY7C285. MDL";
begi n
end Har dwar e;

Entity details

 The entity nameisthe hardware model name (you can manually change this name if you
like).

 The port names are the same as the hardware model port names (these names must not be
changed). If the hardware model port nameisnot avalid VHDL identifier, then
hm_entity issuesan error message. If hm_entity isinvoked with the-93 option, then the
identifier is converted to an extended identifier, and the resulting entity must also be
compiled with the -93 option. Another option isto create a pin-name mapping file.
Consult the Logic Modeling documentation for details.

» The port types are std_logic. This data type supports the full range of hardware model
logic states.

» The DelayRange generic selects minimum, typical, or maximum delay values. Valid
valuesare "min", "typ", or "max" (the strings are not case-sensitive). The default is

max".

15-366 Logic Modeling Hardware Models ModelSim SE User’'s Manual

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

VHDL Hardware Model interface

Architecture details
» Thefirst part of the foreign attribute string (hm_init) isthe samefor all hardware models.

* The second part (SMODEL_TECH/libhm.gl) is taken from the libhm entry in the
initialization file, modelsim.ini.

 Thethird part (CY7C285.MDL) isthe shell software filename. This name correlates the
architecture with the hardware model at elaboration.

Vector ports

The entities generated by hm_entity only contain single-bit ports, never vectored ports.
However, for ease of use in component instantiations, you may want to create a custom
component declaration and component specification that groups portsinto vectors. Y ou can
also rename and reorder the ports in the component declaration. Y ou can a so reorder the
portsin the entity declaration, but you can't rename them!

The following is an example component declaration and specification that groups the
address and data ports of the CY 7C285 hardware model:

conponent cy7c285
generic (DelayRange : STRING : = "Max");
port (A: in std_logic_vector (15 downto 0);
CS : in std_logic;
O : out std_logic_vector (7 downto 0);
WAI T_PORT : inout std_logic);
end conponent;

for all: cy7c285
use entity work.cy7c285
port map (A0 => A(0),
Al => A(1),
A2 => A(2),
A3 => A(3),
Ad => A(4),
A5 => A(5),
A6 => A(6),
A7 => A7),
A8 => A(8),
A9 => A(9),
A10 => A(10),
All => A(11),
Al2 => A(12),
Al3 => A(13),
Ald => A(14),
Al5 => A(15),
=> CS,
a0,
),
a2,
a3,
= q4),
= q(5),
=> Qq6),
= A7),
WAl T_PORT => W);

Q8K8RKYLBR8Y

ModelSim SE User’'s Manual Logic Modeling Hardware Models 15-367

VHDL Hardware Model interface

Hardware model commands

The following simulator commands are available for hardware models. Refer to the Logic
Modeling documentation for details on these operations.

Im_vectors on|off <instance_name> [<filename>]
Enable/disable test vector logging for the specified hardware model.

Im_measure_timing on|off <instance_name> [<filename>]

Enable/disable timing measurement for the specified hardware model.

Im_timing_checks on|off <instance_name>
Enable/disable timing checks for the specified hardware model.

Im_loop_patterns on|off <instance_name>
Enable/disable pattern looping for the specified hardware model.

Im_unknowns on|off <instance_name>

Enabl e/disable unknown propagation for the specified hardware model.

15-368 Logic Modeling Hardware Models ModelSim SE User’'s Manual

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html
http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

16 - Tcl and ModelSim

Chapter contents

Tcl featureswithin ModelSim.16-370
Tcl References.16370
Tclcommands.16371
Tcl commandsyntax16372
if commandsyntax16-374
setcommandsyntax16375
Command substitution16-376
Command separator16-376
Multiple-linecommands16-376
Evaluationorder16376
Tcl relational expression evaluation 16-376
Variable substitution16377
Systemcommands.16377
Listprocessng.16-378
ModelSim Tcl commands16-378
ModelSim Tcl timecommands16-379
Tclexamples1l6381

Thischapter providesan overview of Tcl (tool command language) asused with Model Sm.
Additional Tcl and Tk (Tcl’stoolkit) can be found through several Tcl online references
(16-370).

Tcl isascripting language for controlling and extending Model Sm. Within Model Smyou
can devel op implementations from Tcl scripts without the use of C code. Because Tcl is
interpreted, devel opment is rapid; you can generate and execute Tcl scripts on the fly
without stopping to recompile or restart ModelSm. In addition, if Model Sm does not
provide the command you need, you can use Tcl to create your own commands.

ModelSim SE User’s Manual Tcl and ModelSim 16-369

Tcl features within ModelSim

Tcl features within ModelSim

>

Using Tcl with ModelSim gives you these features:

» command history (like that in C shells)

« full expression evaluation and support for all C-language operators
« afull range of math and trig functions

* support of lists and arrays

* regular expression pattern matching

* procedures

« the ability to define your own commands

» command substitution (that is, commands may be nested)

Note: ModelSm PE does not support Tk. Y ou must be using Model Sm SE to customize
theinterface.

Tcl References

Tcl printed references

Two sources of information about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout,
published by Addison-Wesley Publishing Company, Inc., and Practical Programming in
Tcl and Tk by Brent Welch published by Prentice Hall.

Tcl online references

Tcl tutorial

The following are afew of the many Tcl references available:
» Select Help > Tcl Man Pages (Main window).
 Tcl man pages are also available at: http://dev.scriptics.com/man/tcl8.1

 Tcl/Tk general information is available from the Tcl/Tk Consortium:
www.tclconsortium.org

« The Scriptics Corporation, John Ousterhout’s company (the original Tcl developer):
WWW.SCriptics.com.

For some hands-on experience using Tcl with Model Sm, see the "Tcl/Tk and Model Sm"
lesson in the Model Sm SE Tutorial.

16-370 Tcl and ModelSim Model Sim SE User’s Manual

http://dev.scriptics.com/man/tcl8.1
http://www.tclconsortium.org
http://www.scriptics.com

Tcl commands

Tcl commands

The Tcl commands are listed below. For complete information on Tcl commands, select
Help > Tcl Man Pages (Main window) or refer to one of the Tcl/Tk resources noted above.
Also see "Preference variables located in TCL files" (B-406) for information on Tcl

variables.
append array break case catch
cd close concat continue eof
error eval exec expr file
flush for foreach format gets
glob global history if incr
info insert join lappend list
Ilength lindex I[range Ireplace Isearch
Isort open pid proc puts
pwd read regexp regsub rename
return scan seek set split
string switch tell time trace
source unset uplevel upvar while

P Note: ModelSm command names that conflict with Tcl commands have been renamed or
have been replaced by Tcl commands. See the list below:

Previous ModelSim
command

Command changed to (or replaced by)

continue

run (Cr-176) with the -continue option

format list | wave

write format (CR-277) with either list or wave specified

if

replaced by the Tcl if command, see"if command syntax" (16-
374) for more information

list

add list (CR-28)

nolist | nowave

delete (CR-99) with either list or wave specified

set replaced by the Tcl set command, see "set command syntax"
(16-375) for more information

source Vsour ce (CR-270)

wave add wave (CR-37)

ModelSim SE User’s Manual

Tcl and ModelSim 16-371

Tcl commands

Tcl command syntax

The former Model Sm commands, if and set are now Tcl commands. Y ou should
understand Tcl command syntax before using these commands. The syntax, especially for
the if command, may be unfamiliar.

The following rules define the syntax and semantics of the Tcl language. Details on if
command syntax (16-374) and set command syntax (16-375) follow the general discussion of
Tcl command syntax.

1 A Tcl script isastring containing one or more commands. Semi-colons and newlines are
command separators unless quoted as described below. Close brackets ("]") are command
terminators during command substitution (see below) unless quoted.

2 A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described bel ow. These substitutions are performed in
the same way for all commands. The first word is used to locate a command procedure to
carry out the command, then all of the words of the command are passed to the command
procedure. The command procedureisfreeto interpret each of itswordsin any way it likes,
such as an integer, variable name, list, or Tcl script. Different commands interpret their
words differently.

3 Words of acommand are separated by white space (except for newlines, which are
command separators).
4 If thefirst character of aword isdouble-quote (""") then the word is terminated by the next
double-quote character. If semi-colons, close brackets, or white space characters (including
newlines) appear between the quotes then they are treated as ordinary characters and
included in the word. Command substitution, variable substitution, and backslash
substitution are performed on the characters between the quotes as described below. The
double-quotes are not retained as part of the word.

5 If thefirst character of aword isan open brace ("{") then the word is terminated by the
matching close brace ("}"). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within the
word is quoted with abackslash then it isnot counted in locating the matching close brace).
No substitutions are performed on the characters between the braces except for backslash-
newline substitutions described below, nor do semi-colons, newlines, close brackets, or
white space receive any special interpretation. The word will consist of exactly the
characters between the outer braces, not including the braces themselves.

6 If aword contains an open bracket ("[") then Tcl performs command substitution. To do
thisit invokesthe Tcl interpreter recursively to process the characters following the open
bracket asaTcl script. The script may contain any number of commands and must be
terminated by a close bracket ("]"). The result of the script (i.e. the result of itslast
command) is substituted into the word in place of the brackets and al of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.

16-372 Tcl and ModelSim Model Sim SE User’s Manual

Tcl commands

If aword contains adollar-sign ("$") then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of avariable.
Variable substitution may take any of the following forms:

$nanme

Name isthe name of a scalar variable; the name isterminated by any character that isn't a
letter, digit, or underscore.

$nane(i ndex)

Name gives the name of an array variable and index gives the name of an element within
that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on the
characters of index.

${ nane}

Nameisthe name of a scalar variable. It may contain any characters whatsoever except for
close braces.

There may be any number of variable substitutions in asingle word. Variable substitution
is not performed on words enclosed in braces.

If abackslash ("\") appears within aword then backslash substitution occurs. In all cases
but those described below the backslash is dropped and the following character is treated
as an ordinary character and included in the word. This allows characters such as double
quotes, close brackets, and dollar signsto be included in words without triggering specia
processing. The following table lists the backslash sequences that are handled specially,
along with the value that replaces each sequence.

\a Audible aert (bell) (0x7).
\b Backspace (0x8).

\f Form feed (Oxc).

\n Newline (Oxa).

\r Carriage-return (Oxd).

\t Tab (0x9).

\v Vertical tab (0xb).

\ <newl i ne>whi t eSpace A single space character replaces the backslash, newline, and all
spaces and tabs after the newline. This backslash sequenceis
uniquein that it isreplaced in a separate pre-pass before the

command isactually parsed. Thismeansthat it will be replaced
even whenit occurs between braces, and the resulting space will
be treated as aword separator if it isn't in braces or quotes.

\ Backslash ("\").

ModelSim SE User’s Manual

Tcl and ModelSim 16-373

Tcl commands

\ ooo The digits 0oo (one, two, or three of them) give the octal value
of the character.

\ xhh The hexadecimal digits hh give the hexadecimal value of the
character. Any number of digits may be present.

Backsl ash substitution is not performed on words enclosed in braces, except for backslash-
newline as described above.

9 If ahash character ("#") appears at a point where Tcl is expecting thefirst character of the
first word of a command, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

10 Each character isprocessed exactly once by the Tcl interpreter as part of creating thewords
of acommand. For example, if variabl e substitution occurs then no further substitutionsare
performed on the value of the variable; the value isinserted into the word verbatim. If
command substitution occurs then the nested command is processed entirely by the
recursive call to the Tcl interpreter; no substitutions are performed before making the
recursive call and no additional substitutions are performed on the result of the nested
script.

11 Substitutions do not affect the word boundaries of acommand. For example, during
variable substitution the entire value of the variable becomes part of asingle word, even if
the variable's value contains spaces.

iIf command syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the "7
indicates an optional argument.

Syntax

if exprl ?then? bodyl elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

Theif command evaluates exprl as an expression. The value of the expression must be a
boolean (a numeric value, where 0 is false and anything else istrue, or a string value such
astrue or yesfor true and false or no for false); if it istrue then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is
true then body?2 is executed, and so on. If none of the expressions evaluates to true then
bodyN is executed. The then and else arguments are optional "noise words" to make the
command easier to read. There may be any number of elseif clauses, including zero. BodyN
may also be omitted aslong as else is omitted too. The return value from the command is
theresult of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was no bodyN.

16-374 Tcl and ModelSim Model Sim SE User’s Manual

Tcl commands

set command syntax

The Tcl set command reads and writes variables. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

set varNanme ?val ue?

Description

Returnsthe value of variable varName. If valueis specified, then setsthe value of varName
to value, creating anew variable if one doesn't already exist, and returnsits value. If

var Name contains an open parenthesis and ends with a close parenthesis, then it refersto
an array element: the characters before the first open parenthesis are the name of the array,
and the characters between the parentheses are the index within the array. Otherwise
varName refersto a scalar variable. Normally, varName is unqualified (does not include
the names of any containing namespaces), and the variable of that name in the current
namespace is read or written. If varName includes namespace qualifiers (in the array name
if it refersto an array element), the variable in the specified namespace is read or written.

If no procedure is active, then varName refers to a namespace variable (global variableif
the current namespace is the global namespace). If a procedure is active, then varName
refersto a parameter or local variable of the procedure unless the global command was
invoked to declare varName to be global, or unlessa Tcl variable command was invoked
to declare varName to be a namespace variable.

More Tcl commands

All Tcl commands are documented from within ModelSm. Select Help > Tcl Man Page
(Main window).

Command substitution
Placing acommand in square brackets|[] will cause that command to be evaluated first and
its results returned in place of the command. An exampleis:

set a 25
set b 11
set ¢ 3
echo "the result is [expr ($a + $b)/$c]"

will output:
"the result is 12"
Thisfeature allows VHDL variables and signals, and Verilog nets and registers to be
accessed using:
[exam ne -<radi x> nane]
The %name substitution is no longer supported. Everywhere %name could be used, you

now can use [examine -value -<radix> name] which allows the flexibility of specifying
command options. The radix specification isoptional.

ModelSim SE User’s Manual Tcl and ModelSim 16-375

Tcl commands

Command separator

A semicolon character (;) works as a separator for multiple commands on the sameline. It
isnot required at the end of alinein acommand sequence.

Multiple-line commands

With Tcl, multiple-line commands can be used within macros and on the command line.
The command line prompt will change (asin a C shell) until the multiple-line command is
complete.

In the example bel ow, note the way the opening brace { isat the end of theif and elselines.
Thisisimportant because otherwise the Tcl scanner won't know that there is more coming
in the command and will try to execute what it has up to that point, which won't be what
you intend.

if { [exa sig_a] == "0011zz"} {
echo "Signal value matches"
do macro_1.do

} else {
echo "Signal value fails"
do nacro_2.do }

Evaluation order

Animportant thing to remember when using Tcl isthat anything put in curly brackets{} is
not evaluated immediately. Thisisimportant for if-then-else, procedures, loops, and so
forth.

Tcl relational expression evaluation

When you are comparing values, the following hints may be useful:

* Tdl storesall values as strings, and will convert certain strings to numeric values when
appropriate. If you want aliteral to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...
The following will also work:
if {[exa var_1] == "345"}...

« However, if aliteral cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Zz}...
will give an error.
if {[exa var_2] == "001z"}...
will work okay.
 Don't quote single charactersin single quotes:
if {[exa var_3] == "X 1}...
will give an error
if {[exa var_3] == "X"}...
will work okay.

16-376 Tcl and ModelSim Model Sim SE User’s Manual

Tcl commands

« For the equal operator, you must use the C operator "=="". For not-equal, you must use
the C operator "!=".

Variable substitution

When a$<var_name> is encountered, the Tcl parser will look for variablesthat have been
defined either by Model Sm or by you, and substitute the value of the variable.

P> Note: Tdl is case sensitive for variable names.

To access environment variables, use the construct:

$env(<var _nane>)
echo My user nane is $env(USER)

Environment variables can aso be set using the env array:

set env(SHELL) /bin/csh
See "Simulator state variables" (B-408) for more information about Model Sm-defined
variables.

System commands

To pass commands to the UNIX shell or DOS window, use the Tcl exec command:

echo The date is [exec date]

ModelSim SE User’s Manual Tcl and ModelSim 16-377

List processing

List processing

InTcl a"list" isaset of stringsin curly braces separated by spaces. Several Tcl commands
are available for creating lists, indexing into lists, appending to lists, getting the length of
lists and shifting lists. These commands are:

Command syntax

Description

lappend var_namevallval2 ...

appendsvall, val2, etc. to list var_name

lindex list_name index

returns the index-th element of list_name; the first element is0

linsert list_nameindex vallval?2 ...

insertsvall, val2, etc. just before the index-th element of list_name

list vall, val2...

returnsa Tcl list consisting of vall, val2, etc.

Ilength list_name

returns the number of elementsin list_name

Irangelist_namefirst last

returns asublist of list_name, from index first to index last; first or
last may be "end", which refersto the last element in the list

Ireplacelist_namefirst last val 1, val2, ...

replaces elements first through last with vall, val 2, etc.

Two other commands, Isear ch and Isort, are also available for list manipulation. See the
Tcl man pages (Help > Tcl Man Pages) for more information on these commands.

See also the ModelSm Tcl command: lecho (CR-128)

ModelSim Tcl commands

These additional commands enhance the interface between Tcl and ModelSm. Only brief
descriptions are provided here; for more information and command syntax see the

"Model Sim Commands' (CR-9).
Command Description
alias (CR-41) creates anew Tcl procedure that eval uates the specified commands;

used to create a user-defined alias

find (CR-119)

locatesincrTcl classes and objects

lecho (CR-128)

takesoneor more Tcl listsasarguments and pretty-printsthem to the
Main window

Ishift (CR-133)

takesaTcl list asargument and shiftsit in-place one placeto theleft,
eliminating the Oth element

Isublist (CR-134)

returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

printenv (CR-152)

echoes to the Main window the current names and values of al
environment variables

16-378 Tcl and ModelSim

Model Sim SE User’s Manual

ModelSim Tcl time commands

ModelSim Tcl time commands

ModelSm Tcl time commands make simulator-time-based values available for use within
other Tcl procedures.

Time values may optionally contain a units specifier where the intervening spaceis also
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to be in the UserTimeScale. Return values are alwaysin the current
Time Scale Units. All timevaluesare converted to a64-bit integer valueinthe current Time
Scale. This means that values smaller than the current Time Scale will be truncated to 0.

Conversions

Command Description

intToTime <intHi32> <intLo32> | convertstwo 32-bit pieces (high and low
order) into a 64-bit quantity (Timein
ModelSmis a 64-hit integer)

Rea ToTime <real> converts a<real> number to a 64-bit integer
in the current Time Scale

scaleTime <time> <scaleFactor> | returnsthevalue of <time>multiplied by the
<scal eFactor> integer

Relations

Command Description

eqTime <time> <time> evaluates for equal

negTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than
gteTime <time> <time> evaluates for greater than or equal
[tTime <time> <time> evaluates for less than

IteTime <time> <time> evaluates for less than or equal

All relation operations return 1 or O for true or false respectively and are suitable return
valuesfor TCL conditional expressions. For example,

if {[eqTime $Now 1750ns]} {

}

ModelSim SE User’s Manual Tcl and ModelSim 16-379

ModelSim Tcl time commands

Arithmetic

Command Description
addTime <time> <time> add time

divTime <time> <time> 64-hit integer divide
mulTime <time> <time> 64-bit integer multiply
subTime <time> <time> subtract time

16-380 Tcl and ModelSim Model Sim SE User’s Manual

Tcl examples

Tcl examples

Example 1

The following Tcl/Model Sm example for UNIX shows how you can access system
information and transfer it into VHDL variables or signals and Verilog nets or registers.
When aparticular HDL source breakpoint occurs, a Tcl function is called that getsthe date
and time and depositsitinto aVHDL signal of type STRING. If a particular environment
variable (DO_ECHO) is set, the function al so echoes the new date and timeto the transcript
file by examining the VHDL variable.

P Note: In aWindows environment, the Tcl exec command shown below will execute
compiled files only, not system commands.

(in VHDL source):

signal datine : string(lto 28) :=" ":# 28 spaces

(on VSIM command line or in macro):

proc set_date {} {
gl obal env
set do_the_echo [set env(DO_ECHO)]
set s [exec date]
force -deposit datinme $s
if {do_the_echo} {
echo "New tinme is [exam ne -value datine]"
}
}

bp src/waveadd. vhd 133 {set_date; continue}
--sets the breakpoint to call set_date

Thisis an example of using the Tcl while loop to copy alist from variable ato variable b,
reversing the order of the elements along the way:

set b ""
set i [expr[llength $a]-1]
while {$i >= 0} {
| append b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy alist from variable ato variable b,
reversing the order of the elements along the way:

set b ""

for {set i [expr [Ilength $a] -1]} {$i >= 0} {incr i -1} {
| append b [lindex $a $i]

}

This example uses the Tcl foreach command to copy alist from variable ato variable b,
reversing the order of the elements along the way (the foreach command iterates over al
of the elements of alist):

set b ""
foreach i $a {

set b [linsert $b 0 $i]
}

ModelSim SE User’s Manual Tcl and ModelSim 16-381

Tcl examples

Thisexample showsalist reversal asabove, thistime aborting on aparticular element using
the Tcl break command:

set b ""
foreach i $a {
if {$i = "ZZZ"} break
set b [linsert $b 0 $i]
}
Thisexampleisalist reversal that skips a particular element by using the Tcl continue
command:
set b ""

foreach i $a {

}

if {$i = "ZZZ"} continue
set b [linsert $b 0 $i]

The last example is of the Tcl switch command:

switch $x {

Example 2

a {incr t1}
b {incr t2}
¢ {incr t3}

This next example shows a complete Tcl script that restores multiple Wave windows to
their state in aprevious simulation, including signal s listed, geometry, and screen position.
It al so adds buttons to the Main window toolbar to ease management of thewavefiles. This
example worksin ModelSm SE only.

##
##
##

##
##

##
##

##
##

##
##

##
##
##
##

##
##
##
##

This file contains procedures to manage multiple wave files.
Source this file fromthe command line or as a startup script.
source <pat h>/wave_ngr.tcl

add_wave_buttons
Add wave management buttons to the main tool bar (new, save and | oad)

new_wave
Di al og box creates a new wave wi ndow wi th the user provi ded name

nanmed_wave <name>
Creates a new wave window with the specified title

save_wave <file-root>
Saves nanme, wi ndow | ocation and contents for all open

wave w ndows
Creates <file-root><n>.do file for each wi ndow where <n> is 1
to the nunber of windows. Default file-root is "wave". Also
creates wi ndowSet.do file that contains title and geonetry info.

| oad_wave <file-root>
Opens and | oads wave wi ndows for all files matching <file-root><n>.do
where <n> are the nunbers from1-9. Default <file-root> is "wave".
Al'so runs wi ndowSet.do file if it exists.

16-382 Tcl and ModelSim

Model Sim SE User’s Manual

Tcl examples

Add wave nanagenment buttons to the main tool bar

proc add_wave_buttons {} {

_add_nenu main controls right SystemVenu SystenW ndowrrane {Load Waves}
| oad_wave

_add_nenu main controls right System\Venu SystenmW ndowrFranme {Save Waves}
save_wave

_add_nenu main controls right System\Venu SystenmW ndowFranme {New \Wave}
new_wave

}

Sinple Dialog requests nane of new wave wi ndow. Defaults to Wave<n>

proc new wave {} {
gl obal dial og_pronpt vsinPriv
set defaul t Name "Wave[llength $vsinPriv(WaveW ndows)]"
set dial og_pronpt(result) $defaul t Name
set wi ndowNarme [GetValue . "Create Named Wave W ndow "]

Debug
puts "W ndow nane: $w ndowNane\ n";
if {$wi ndowName == "{}"} {
set wi ndowNanme ""
if {$wi ndowNane != ""} {
named_wave $w ndowNane
} else {

named_wave $def aul t Nane

}
}

Creates a new wave Wi ndow with the provided nanme (defaults to "Wave")

proc nanmed_wave {{nanme "Wave"}} {
gl obal vsinPriv
Vi ew - new wave
set newave [|index $vsinPriv(WaveW ndows) [expr [llength \
$vsi nPriv(WaveW ndows)] - 1]]
wmtitle $newwave $nane

}

Wites out format of all wave wi ndows, stores geonetry and title info in
wi ndowSet.do file. Renpves any extra files with the sane fileroot.
Default file name is wave<n> starting from 1.

proc save_wave {{fileroot "wave"}} {

gl obal vsinPriv

set n1

set fileld [open wi ndowSet _$fil eroot.do w 755]

foreach w $vsi nPri v(WaveW ndows) {
echo "Saving: [wntitle $w"
set filename $fil eroot$n. do
wite format wave -w ndow $w $fil enane
puts $fileld "wntitle $w\"[wntitle $nj\""
puts $fileld "wmgeonetry $w [wm geonetry $w "
puts $fileld "ntiGid_colconfig $w.grid name -width \
[miGid_colcget $w.grid nane -width]"
puts $fileld "miGid_colconfig $w grid value -width \
[miGid_colcget $w.grid value -width]"
flush $fileld
incr n

ModelSim SE User’s Manual Tcl and ModelSim 16-383

Tcl examples

if {![catch {glob $fileroot\[$n-9\].do}]} {
foreach f [Isort [glob $fileroot\[$n-9\].do]] {
echo "Renoving: $f"
exec rm $f

}

Provide file root argunent and | oad_wave restores all saved w dows.
Default file root is "wave".

proc | oad_wave {{fileroot "wave"}} ({

gl obal vsinPriv

foreach f [Isort [glob $fileroot\[1-9\].do]] {
echo "Loading: $f"
Vi ew - new wave
do $f

}

if {[file exists windowSet_$fileroot.do]} {
do wi ndowSet _$fil eroot.do

}

16-384 Tcl and ModelSim Model Sim SE User’s Manual

A - Technical Support, Updates, and Licensing

Appendix contents

Technical support - electronic. A-386
Technical support - telephore A-387
Technical support - other channels. A-387
Updates. A-388
Online References A388
FLEXImLicenses A38

ModelSim SE User’'s Manual Technical Support, Updates, and Licensing A-385

Technical support - electronic

Technical support - electronic

Model Technology customers

>

Support questions may be submitted through the Model Technology online support form
at: www.model.com. Model Technology customers may also email test cases to
support@model.com; please provide the following information, in thisformat, in the body
of your email message:

* Your name:
Company:
Email address (if different from message address):
Telephone:
FAX (optional):

» ModelSm product (SE, EE or PE, and VHDL, VLOG, or PLUS):

* ModelSm Version:
(Use the Help About dialog box with Windows; type vcom for UNIX workstations.)

» Host operating system version:

» PC hardware security key authorization number:

« Ethernet card address if used for authorization:

» Host ID of license server for workstations:

« Description of the problem (please include the exact wording of any error messages):

Note: Model Technology customersin Europe should contact their distributor for support.
See www.model.com/contact us.asp for distributor contact information.

Mentor Graphics customers

Mentor Graphics Customer Support offers a SupportNet-Email server for North American
and European companies that lets customers find product information or submit service
reguests (call logs) to the SupportCenter 24 hours a day, 365 days ayear. The server will
return a call log number within about 15 minutes. CAEs follow up on the call logs
submitted through SupportNet-Email using the same process as if a customer had phoned
the SupportCenter. For more information about using the SupportNet-Email server, send a
blank e-mail message to the following address: support_net@mentor.com.

Additionally, customers can open call logs or search TechNotesand AppNotestotry tofind
the answers to their questions by logging onto Mentor Graphics' Customer Support web
home page at www.mentor.com/supportnet.

If you are not yet registered for SupportNet and have an active support contract with
Mentor Graphics, you may do so by clicking Request L og-1n and filling out the
information at: www.mentor.com/supportnet register/

While all contract customers worldwide are invited to obtain a SupportNet Log-In,
SupportNet services are currently limited to customers who receive support from Mentor
support offices in North Americaor Europe. If you receive support from Mentor offices
outside of North America or Europe, please contact your local field office to obtain
assistance for atechnical-support issue.

A-386 Technical Support, Updates, and Licensing ModelSim SE User’'s Manual

http://www.model.com/support/email_support.asp
mailto:support@model.com
http://www.model.com/contact_us.asp
mailto:support_net@mentor.com
http://www.mentor.com/supportnet/
http://www.mentor.com/supportnet_register/

Technical support - telephone

Technical support - telephone

Model Technology customers worldwide

For customers who purchased from Model Technology, please contact Model Technology
viathe support line at 1-503-641-1340 from 8:00 AM to 5:00 PM Pacific Time, Monday
through Friday, excluding holidays. Be sure to have your server hostID, ethernet card
address, or hardware security key authorization number handy.

P Note: Model Technology customersin Europe should contact their distributor for support.
See www.model.com/contact_us.asp for distributor contact information.

Mentor Graphics customers in North America

For customers who purchased products from Mentor Graphics in North America, and are
under a current support contract, technical telephone support is avail able from the central
SupportCenter by calling toll-free 1-800-547-4303. The coverage window isfrom 5:30am
to 5:30pm Pacific Time, Monday through Friday, excluding Mentor Graphics holidays.

The more details you can supply about a problem or issue, the sooner a Corporate
Application Engineer can supply you with a solution or workaround. Be prepared to
provide the following important information:

» Thepriority of the call (critical, high, medium, low)

» The product about which you are calling

* Your operating system and software version numbers (accuracy is very important here)
» The steps that led to the problem or crash

« If itisacrash, thefirst few lines of atraceback

« Any non-Mentor Graphics tools or customized software that may be involved

Mentor Graphics customers outside North America

Customers who purchased products from Mentor Graphics outside of North America,
should contact their local support organization. A list of local Mentor Graphics support and
sales offices can be found at www.mentor.com/supportnet/support_offices.html.

Technical support - other channels

For customers who purchased Model Sm as part of a bundled product from an OEM, or
VAR, please refer to the www.model.com/partners/default.asp on the Model Technology
website for contact information.

ModelSim SE User’'s Manual Technical Support, Updates, and Licensing A-387

http://www.model.com/contact_us.asp
http://www.mentor.com/supportnet/support_offices.html
http://www.model.com/partners/default.asp

Updates

Updates

Model Technology customers

Y ou can ftp the latest version of the software from the web site at
ftp://ftp.model.com. Instructions are there as well.

Mentor Graphics customers

Y ou can ftp the latest SE or PE version of the software from the SupportNet site at
ftp://supportnet.mentor.com/pub/mentortech/modeltech/. Instructions are there as well. A
valid license file from Mentor Graphics is needed to uncompress the ModelSm files.

Online References

The Model Technology web site (www.model.com) includes links to support, software
downloads, and many EDA information sources. Check the links below for the most
current information.

Latest version email

Place your name on our list for email notification of new releases and updates.
model.com/support/register news list.asp

News

Current news of Model Technology within the EDA industry.
model.com/news_events/default.asp

Partners

Model Technology’s value added partners, OEM partners, FPGA partners, ASIC
partners, and training partners.
model .com/partners/default.asp

Products

A complete collection of Model Technology product information.
model .com/products/default.asp

Technical Documents

Technical notes, application notes, FAQs.
model .com/resources/techdocs.asp

Sales

L ocate Model Sm sal es contacts anywhere in the world.
model.com/contact _us.asp

Support

Model Technology email support and software downloads.
model .com/support/default.asp

A-388 Technical Support, Updates, and Licensing ModelSim SE User’'s Manual

ftp://ftp.model.com/pub
ftp://supportnet.mentor.com/pub/mentortech/modeltech/
http://www.model.com
http://www.model.com/support/register_news_list.asp
http://www.model.com/news_events/default.asp
http://www.model.com/partners/default.asp
http://www.model.com/products/default.asp
http://www.model.com/resources/techdocs.asp
http://www.model.com/contact_us.asp
http://www.model.com/support/default.asp

FLEXIm Licenses

FLEXIm Licenses

Model Sm uses Globetrotter’ s FLEXIm license manager and files. Globetrotter FLEXIm

license files contain lines that can be referred to by the word that appears first on the line.
Each kind of line has a specific purpose and there are many more kinds of lines that M TI
does not use.

Mentor Graphics customers

Mentor Graphics provideslicensing information in the Mentor Graphics Licensing chapter
in the Managing Mentor Graphics Software document. In addition, Model Technology
provides some basic Mentor Graphics licensing files. See the readmefilein the MGL S
related directory at ftp.model.com/pub/SE for more information.

Where to obtain your license

Mentor Graphics customers must contact their Mentor Graphics salesperson for Model Sm
licensing. All other customers may obtain Model Sm licenses from Model Technology.
Please contact Model Technology at license@model.com.

If you have trouble with licensing
Contact your normal technical support channel:
Technical support - €l ectronic (A-386)
Technical support - telephone (A-387)
Technical support - other channels (a-387)

Maintenance renewals and licenses

When maintenance is renewed, a new license file that incorporates the new maintenance
expiration date will be automatically sent to you. If maintenanceisnot renewed, the current
licensefile will still permit the use of software versions built before maintenance expired
until the stop date is reached.

License transfers and server changes

Model Technology and Mentor Graphics both charge afee for server changes or license
transfers. Contact sales@model.com for more information from Model Technology, or
contact your local Mentor Graphics sales office for Mentor Graphics purchases.

Additional licensing details

A complete discussion of licensing islocated in the Start Here for Model Sm guide. For an
online version of Start Here, check the Model Sm Main window Help menu for SE
Documentation.

ModelSim SE User’'s Manual Technical Support, Updates, and Licensing A-389

ftp://ftp.model.com/pub/SE/
mailto:license@model.com
mailto:sales@model.com

A-390 Technical Support, Updates, and Licensing ModelSim SE User’s Manual

B - ModelSim Variables

Appendix contents

Variable settingsreport B-392
Personad preferences B-392
Returning to the original ModelSim defaults B-392
Environment variables. B-393
Preferencevariableslocated in INI files B-39
[Library] library path variables B-39
[vcom] VHDL compiler control variables B-396
[vlog] Verilog compiler control varigbles. B-398
[vsim] simulator control variables B-398
[Imc] Logic Modeling variables B-402
Setting variablesin INI files B-402
Reading variable values from the INI file. B-402
Variablefunctions. B-403
Preference variableslocated in TCL files. B-406
Preferencevariableloadingorder B-407
Simulator statevariables B-408

This appendix documents the following types of Model Sm variables:

e environment variables
Variables referenced and set according to operating system conventions. Environment
variables prepare the Model Sm environment prior to simulation.

* ModelSim preference variables
Variables used to control compiler or simulator functions (usually in .tcl files) and
modify the appearance of the ModelSim GUI (usually in INI files).

e smulator statevariables
Variables that provide feedback on the state of the current simulation.

ModelSim SE User’s Manual ModelSim Variables B-391

Variable settings report

Variable settings report

Thereport command (CR-168) returnsalist of current settingsfor either the simul ator state,
or ssimulator control variables. Use the following commands at either the Model Sm or
VSIM prompt:

report simulator state
report sinulator control

Personal preferences

There are several preferences stored by Model Sm on a personal basis, independent of
modelsim.ini or modelsim.tcl files. These preferencesare stored in §(HOME)/.modelsim on
UNIX and in the Windows Registry under HKEY_ _CURRENT _USER\Software\M odel
Technology Incorporated\ModelSim.

e cwd
History of the last five working directories (pwd). This history appearsin the Main
window File menu.

e phst
Project History

* pinit
Project Initialization state (one of: Welcome | OpenL ast | NoWelcome). This determines
whether the Welcome To Model Sm dialog box appears when you invoke the tool.

* printersetup
All setup parameters related to Printing (i.e., current printer, etc.)

The HKEY_CURRENT_USER key is unique for each user Login on Windows NT.

Returning to the original ModelSim defaults

If you would like to return Model Sm' sinterface to its original state, simply rename or
del ete the existing model sim.tcl and modelsim.ini files. Model Smwill use pref.tcl for GUI
preferences and make acopy of <install_dir>/modeltech/modelsim.ini to use the next time
ModelSmisinvoked without an existing project (if you start anew project the new MPF
file will use the settings in the new modelsim.ini file).

B-392 ModelSim Variables Model Sim SE User’s Manual

Environment variables

Environment variables

Before compiling or simulating, several environment variables may be set to provide the
functions described in the table below. The variables are in the autoexec.bat file on
Windows 95/98 machines, and set through the System control panel on NT machines. For
UNIX, the variables are typically found in the .login script. The LM_LICENSE FILE
variable is required, al others are optional.

ModelSim Environment Variables

Variable Description

DOPATH used by Model Smto search for simulator command files (do files); consists of a
colon-separated (semi-colon for Windows) list of paths to directories; optional;
this variable can be overridden by the DOPATH .tcl file variable

EDITOR specifies the editor to invoke with the edit command (CR-110)

HOME used by ModelSmto look for an optional graphical preference file and optional

location map file; see: "Preference variables located in INI files' (B-396) and
"Using location mapping" (E-437)

LM_LICENSE_FILE

used by the Model Sm license file manager to find the location of the licensefile;
may be a colon-separated (semi-colon for Windows) set of paths, including paths
to other vendor license files; REQUIRED; see: "Using the FLEXIm License
Manager" (D-417)

MODEL_TECH

set by al Model Smtools to the directory in which the binary executables reside;
YOU SHOULD NOT SET THISVARIABLE

MODEL_TECH_TCL

used by ModelSimto find Tcl librariesfor: Tcl/Tk 8.0, Tix, and vaim; defaultsto
/modeltech/../tcl; may be set to an aternate path

MGC_LOCATION_MAP

used by ModelSmtools to find source files based on easily reallocated "soft"
paths; optional; see: "Using location mapping" (E-437); also seethe Tcl variables:
SourceDir and SourceMap

MODELSIM

used by all ModelSm tools to find the modelsim.ini file; consists of a path

including the file name; optional. An alternative use of thisvariableisto set it to
the path of aproject file (<Project_Root_Dir>/<Project Name>.mpf). Thisallows
you to use project settings with command line tools. However, if you do this, the
.mpf filewill replace modelsim.ini astheinitialization filefor all ModelSmtools.

MODELSIM_TCL

used by ModelSmto look for an optional graphical preferencefile; can be a
colon-separated (UNIX) or semi-colon (Windows) separated list of file paths

MTI_TF_LIMIT

limits the size of the VSOUT temp file (generated by the Model Sm kernel); the
value of the variableisthe size of k-bytes; TMPDIR (below) controlsthe location
of thisfile, STDOUT controls the name; default = 10, 0 = no limit

MTI_USELIB_DIR

specifies the directory into which object libraries are compiled when using the
-compile_uselibs argument to the viog command (CR-250)

ModelSim SE User’s Manual

ModelSim Variables B-393

Environment variables

Variable

Description

PLIOBJS

used by ModelSmto search for PLI object files for loading; consists of a
space-separated list of file or path names; optional

STDOUT

the VSOUT temp file (generated by the simulator kernel) is deleted when the
simulator exits; the file is not deleted if you specify afilename for VSOUT with
STDOUT,; specifying aname and location (use TMPDIR) for the VSOUT filewill
also help you locate and delete the file in event of a crash (an unnamed VSOUT
fileis not deleted after a crash either)

TMPDIR

specifies the path to atempnam() generated file (VSOUT) containing all stdout
from the simulation kernel; optional

Setting environment variables in Windows

In addition to the predefined variabl es shown above, you can define your own environment
variables. This example shows a user-defined library path variable that can be referenced
by the vmap command to add library mapping to the modelsim.ini file.

Using Windows 95/98

Open and edit the autoexec.bat file by adding this line:
set MY_PATH=\t enp\ wor k

Restart Windows to initialize the new variable.

Using Windows NT

Right-click the My Computer icon and select Properties, then select the Environment tab
of the System Properties control panel. Add the new variable to these fields:
VariableMY_PATH and Vaue\temp\work.

Click Set and Apply to initialize the variable (you don’t need to restart NT).

Library mapping with environment variables

Oncethe MY_PATH variableis set, you can use it with the vmap command (CR-257) to
add library mappings to the current modelsim.ini file.

If you' re using the vmap command from DOS prompt type:
vmRp MY_VI TAL 9%W_PATH%

If you're using vmap from ModelSm/VSIM prompt type:
vmap MY_VI TAL \ $MY_PATH

If you used DOS vmap, this line will be added to the modelsim.ini:
MY_VI TAL = c:\tenp\work

If vmap is used from the Model SmyV SIM prompt, the modelsim.ini file will be modified
with thisline:

MY_VI TAL = $MY_PATH
You can easily add additional hierarchy to the path. For example,
vmap MORE_VI TAL %wW_PATH% nor e_pat h\ and_nor e_pat h

B-394 ModelSim Variables Model Sim SE User’s Manual

Environment variables

vmap MORE_VI TAL \ $MY_PATH nor e_pat h\ and_nore_path

P> Note: The"$" character in the examples above is Tcl syntax that precedes avariable. The
"\" character is an escape character that keepsthe variable from being eval uated during the
execution of vmap.

Referencing environment variables within ModelSim

There are two ways to reference environment variables within Model Sm. Environment
variables are allowed in a FILE variable being opened in VHDL. For example,

entity test is end
use std.textio.all

architecture only of test is

begi n
process
FILE in_file : text is in "$ENV_VAR NAME"
begi n
wait;
end process;
end;

Environment variables may also be referenced from the Model Sm command line or in
macros using the Tcl env array mechanism:

echo "$env(ENV_VAR_NAME) "

Removing temp files (VSOUT)

The VSOUT temp file is the communication mechanism between the simulator kernel and
theModelSm GUI. In normal circumstancesthe file is deleted when the simulator exits. If
Model Sm crashes, however, the temp file must be deleted manually. Specifying the

location of the temp file with TMPDIR (above) will help you locate and remove thefile.

P Note: Thereisoneenvironment variable, MODEL _TECH, that you cannot — and should
not — set. MODEL _TECH isaspecial variable set by Model Technology software. Its
value is the name of the directory from which the vcom compiler or vsim simulator was
invoked. MODEL _TECH isused by the other Model Technology toolsto find the
libraries.

ModelSim SE User’s Manual ModelSim Variables B-395

Preference variables located in INI files

Preference variables located in INI files

INI file sections

[Library] library path variables (B-396)

[vcom] VHDL compiler control variables (B-396)

[vlog] Verilog compiler control variables (B-398)

[vsim] simulator control variables (B-398)

[Imc] Logic Modeling variables (B-402)

[Library] library path variables

ModelSminitialization (INI) files contain control variables that specify reference library
paths and compiler and simulator settings.

The following tables list the variables by section, and in order of their appearance within
the INI file:

Variable name Value range Purpose
ieee any valid path; may include sets the path to the library containing | EEE and
environment variables Synopsys arithmetic packages; the default is/
modeltech/../ieee
std any valid path; may include setsthepathtothe VHDL STD library; the default
environment variables is/modeltechy/../std
std_developerskit any valid path; may include sets the path to the libraries for MGC standard
environment variables developer’ s kit; the default is
/modeltech/../std_developerskit
synopsys any valid path; may include sets the path to the accelerated arithmetic
environment variables packages; the default is/modeltech/../synopsys
verilog any valid path; may include sets the path to the library containing VHDL/
environment variables Verilog type mappings; the default is/modeltech/
.Iverilog

[vcom] VHDL compiler control variables

Variable name Value Purpose Default
range
CheckSynthesis 0,1 if 1, turns on limited synthesis rule compliance off (0)

process

checking; checks only signals used (read) by a

B-396 ModelSim Variables

Model Sim SE User’s Manual

Preference variables located in INI files

Variable name Value Purpose Default
range
Explicit 0,1 if 1, turns on resolving of ambiguous function on (1)
overloading in favor of the "explicit" function
declaration (not the one automatically created by
the compiler for each type declaration)
IgnoreVitalErrors 0,1 if 1, ignores VITAL compliance checking errors off (0)
NoCaseStaticError 0,1 if 1, changes case statement static errorstowarnings | off (0)
NoDebug 0,1 if 1, turns off inclusion of debugging info within off (0)
design units
NoOthersStaticError 0,1 if 1, disables errors caused by aggregates that are off (0)
not locally static
NoVital 0,1 if 1, turns off acceleration of the VITAL packages off (0)
NoVitalCheck 0,1 if 1, turns off VITAL compliance checking off (0)
Optimize 1164 0,1 if O, turns off optimization for IEEE std_logic 1164 on (1)
package
Quiet 01 if 1, turns off "loading..." messages off (0)
RequireConfigForAllDefault 0,1 if 1, instructs the compiler not to generate a default off (0)
Binding binding during compilation
ScalarOpts 0,1 if 1, activates optimizations on expressions that off (0)
don't involve signals, waits or function/procedure/
task invocations
Show_source 0,1 if 1, shows source line containing error off (0)
Show_VitalCheckswWarnings 0,1 if 0, turns off VITAL compliance-check warnings on (1)
Show_Warningl 0,1 if 0, turns off unbound-component warnings on (1)
Show_Warning2 0,1 if 0, turns off process-without-a-wait-statement on (1)
warnings
Show_Warning3 0,1 if 0, turns off null-range warnings on (1)
Show_Warning4 0,1 if 0, turns off no-space-in-time-literal warnings on (1)
Show_Warning5 0,1 if 0, turnsoff multiple-drivers-on-unresolved-signal on (1)
warnings
VHDL93 0,1 if 1, turnson VHDL-1993 off (0)

ModelSim SE User’s Manual

ModelSim Variables B-397

Preference variables located in INI files

[vlog] Verilog compiler control variables

Variable name Value Purpose Default
range
Hazard 0,1 if 1, turnson Verilog hazard checking (order- off (0)
dependent accessing of global vars)

Incremental 0,1 if 1, turns on incremental compilation of modules off (0)
NoDebug 0,1 if 1, turns off inclusion of debugging info within off (0)
design units
Quiet 0,1 if 1, turns off "loading..." messages off (0)
Show_Lint 0,1 if 1, turnson lint-style checking off (0)
ScalarOpts 0,1 if 1, activates optimizationson expressionsthat don't | off (0)

involve signals, waits or function/procedure/task
invocations
Show_source 0,1 if 1, shows source line containing error off (0)
UpCase 0,1 if 1, turnson converting regular Verilog identifiersto | off (0)
uppercase. Allows case insensitivity for module
names; see also "Verilog-XL compatible compiler
options" (5-79)
[vsim] simulator control variables
Variable name Value range Purpose Default
AssertFile any valid alternative file for storing assertion transcript
filename messages
AssertionFormat See purpose setsthe messageto display after abreak on | "** %S:;
assertion; message formats include: %R\n Time:
%S - severity level %T
%R - report message Iteration:
%T - time of assertion %D%I\n"
%D - delta
%I - instance or region pathname (if
available)
%% - print '%’ character
BreakOnAssertion 0-4 defines severity of assertion that causes a 3
simulation break (0= note, 1 =warning, 2 =
error, 3 =failure, 4 = fatal)
CheckpointCompressMode 0,1 if 1, checkpoint files are writtenin on (1)
compressed format
CommandHistory any valid sets the name of afilein which to storethe | commented
filename Main window command history out (;)

B-398 ModelSim Variables

Model Sim SE User’s Manual

Preference variables located in INI files

Variable name Value range Purpose Default
ConcurrentFileLimit any positive controls the number of VHDL files open 40
integer concurrently; this number should be less
than the current limit setting for max file
descriptors; 0 = unlimited
DatasetSeparator any single the dataset separator for fully-rooted
character contexts, for example sim:/top; must not be
the same character as PathSeparator
DefaultForceKind freeze, drive, or defines the kind of force used when not drive for
deposit otherwise specified resolved
signals;
freeze for
unresolved
signals
DefaultRadix symboalic, binary, | any radix may be specified asanumber or | symbolic
octal, decimal, name (i.e., binary can be specified ashinary
unsigned, or 2)
hexadecimal,
ascii
DefaultRestartOptions one or more of: sets default behavior for the restart commented
-force, command out (;)
-nobreakpoint,
-nolist, -nolog,
-nowave
DelayFileOpen 0,1 if 1, open VHDL8T7 fileson first read or off (0)
write, else open files when elaborated
GenerateFormat Any non-quoted | control the format of a generate statement %s__ %d
string containing | label (don't quote it)
at aminimum a
%sfollowed by a
%d
IgnoreError 01 if 1, ignore assertion errors off (0)
IgnoreFailure 01 if 1, ignore assertion failures off (0)
IgnoreNote 0,1 if 1, ignore assertion notes off (0)
IgnoreWarning 01 if 1, ignore assertion warnings off (0)
IterationLimit positive integer limit on simulation kernel iterationsduring | 5000

onetime delta

ModelSim SE User’s Manual

ModelSim Variables B-399

Preference variables located in INI files

Variable name Value range Purpose Default
License any single if set, controls ModelSim license file search all
<license_option> | search; license optionsinclude: licenses
nomgc - excludes MGC licenses
nomti - excludes MTI licenses
noqueue - do not wait in license queueif no
licenses are available
plus - only use PLUS license
vlog - only use VLOG license
vhdl - only use VHDL license
viewsim - accepts a simulation license
rather than being queued for aviewer
license
see also the vsim command (CR-258)
<license_option>
LockedMemory positiveinteger; | for HP-UX 10.2 use only; enablesmemory | disabled
mb of memory to | locking to speed up large designs (> 500mb
lock memory footprint); see "Accelerate
simulation by locking memory under HP-
UX 10.2" (E-439)
NumericStdNoWarnings 0,1 if 1, warnings generated within the off (0)
accelerated numeric_std and numeric_bit
packages are suppressed
PathSeparator any single used for hierarchical path names; must not | /
character be the same character as DatasetSeparator
Resolution fs, ps, ns, us, ms, | simulator resolution; thisvaluemust beless | ns
or sec with than or equal to the UserTimeUnit specified
optional prefix of | below; NOTE - if your delaysaretruncated,
1, 10, or 100 set the resol ution smaller; no space between
value and units (i.e., 10ps, not 10 ps)
RunLength positive integer default simulation length in units specified | 100
by the UserTimeUnit variable
Startup =do<DO specifies the Model Sm startup macro; see | commented
filename>; any the do command (CR-104) out (;)
valid macro (do)
file
StdArithNoWarnings 01 if 1, warnings generated within the off (0)
accelerated Synopsys std_arith packages
are suppressed
TranscriptFile any valid file for saving command transcript; transcript
filename environment variables may beincluded in

the path name

B-400 ModelSim Variables

Model Sim SE User’s Manual

Preference variables located in INI files

Variable name

Value range

Purpose

Default

UnbufferedOutput

01

controls VHDL and Verilog files open for
write; 0 = Buffered, 1 = Unbuffered

0

UserTimeUnit

fs, ps, ns, us, ms,
sec, or default

specifies the default units to use for the
"<timesteps> [<time_units>]" argument to
the run command (CRr-176); NOTE - the
value of this variable must be set equal to,
or larger than, the current simulator
resolution specified by the Resolution
variable shown above

ns

Veriuser

oneor morevalid
shared objects

list of dynamically loadable objects for
Verilog PLI/VPI applications; see"Using
the Verilog PLI/VPI" (5-108)

commented
out (;)

WaveSignalNameWidth

0, positive
integer

controls the number of visible hierarchical
regionsof asignal name shownintheWave
window (8-216); the default value of zero
displays the full name, a setting of one or
above displays the corresponding level(s)
of hierarchy

WLFCompress

0,1

turns WL Ffile compressionon (1) or off (0)

WL FDeleteOnQuit

01

specifies whether a WLF file should be
deleted when the simulation ends; if set to
0, thefileis not deleted; if set to 1, thefile
isdeleted

WLFSaveAllRegions

01

specifies whether to save al design
hierarchy in the WLF file (1) or only
regions containing logged signals (0)

WLFSizeLimit

0-nMB

WLFfilesizelimit; limitsWLFfileby size
(asclosely as possible) to the specified
number of megabytes; if both size and time
limits are specified the most restrictiveis
used; setting to O resultsin no limit

WLFTimeLimit

WLF filetime limit; limits WLF file by
time (asclosely as possibl€) to the specified
amount of time. If both timeand sizelimits
are specified the most restrictive is used;
setting to O results in no limit

ModelSim SE User’s Manual

ModelSim Variables B-401

Preference variables located in INI files

[Imc] Logic Modeling variables

Logic Modeling SmartModels and hardware modeler interface

ModelSm' sinterface with Logic Modeling’s SmartM odels and hardware modeler are
specified in the [Imc] section of the INI/MPF file; for more information see "VHDL
SmartModel interface” (14-354) and "VHDL Hardware Model interface” (15-364)
respectively.

Spaces in path names

For the Src_Filesand Work_L ibsvariables, each element inthelistisenclosed within curly
braces ({}). This allows spaces inside elements (since Windows allows spaces inside path
names). For example a source filelist might look like:

Src_Files = { $SMODELSI M_PRQJECT/ count er. v} { $MODELSI M_PROJECT/tb counter. v}

Where the file th counter.v contains a space character between the "b" and "c".

Setting variables in INI files

>

Edit the initialization file directly with any text editor to change or add avariable. The
syntax for variablesin thefileis:

<vari abl e> = <val ue>

Comments within the file are preceded with a semicolon (;).

Note: The vmap command (CR-257) automatically modifies library mappingsin the
current INI file.

Reading variable values from the INI file

These Tcl functions allow you to read values from the modelsim.ini file.

Cetlnilnt <var_nanme> <default_val ue>

Reads the integer value for the specified variable.

Cet | ni Real <var _nane> <defaul t _val ue>

Reads the real value for the specified variable.

GetProfil eString <section> <var_name> [<defaul t >]
Reads the string value for the specified variable in the specified section. Optionally
provides a default value if no valueis present.

Setting Tcl variables with values from the modelsim.ini fileis one use of these Tcl
functions. For example,

set MyCheckpoi nt ConpressiWbde [CGetlnilnt "Checkpoi nt Conpresshbde" 1]

set PrefMain(file) [GetProfileString vsimTranscriptFile ""]

B-402 ModelSim Variables Model Sim SE User’s Manual

Preference variables located in INI files

Variable functions

Several of the more commonly used modelsim.ini variables are further explained below.

Environment variables

Y ou can use environment variables in your initialization files. Use adollar sign ($) before
the environment variable name.

Examples

[Li brary]
work = $HOVE/ work_lib
test_lib = ./$TESTNUM wor k

[vsinm

I gnoreNot e = $| GNORE_ASSERTS

I gnor eWar ni ng = $I GNORE_ASSERTS
I gnoreError = 0

I gnoreFailure = 0

Tip:
Thereis one environment variable, MODEL_TECH, that you cannot — and should not
— set. MODEL_TECH isaspecial variable set by Model Technology software. Itsvalue
is the name of the directory from which the VCOM compiler or VSIM simulator was
invoked. MODEL_TECH isused by the other Model Technology toolsto find the
libraries.

Hierarchical library mapping

By adding an "others" clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSmtools don’t find a mapping in the modelsim.ini file, then they
will search the library section of the initialization file specified by the "others' clause.

Examples
[Li brary]
asic_lib = /caelasic_lib
work = nmy_work
others = /install _dir/npdeltech/ nodel simini

Tip:
Since thefile referred to by the others clause may itself contain an others clause, you can
use this feature to chain a set of hierarchical INI files.

Creating a transcript file

A feature in the system initialization file allows you to keep arecord of everything that
occursin the transcript: error messages, assertions, commands, command outputs, etc. To
do this, set the value for the TranscriptFile line in the modelsim.ini file to the name of the
filein which you would like to record the Model Sm history. The size of thisfile can be
controlled withthe MTI_TF_LIMIT (B-393) variable.

; Save the command wi ndow contents to this file
TranscriptFile = trnscrpt

ModelSim SE User’s Manual ModelSim Variables B-403

Preference variables located in INI files

Using a startup file

The system initialization file allows you to specify a command or ado filethat isto be
executed after the design isloaded. For example:

; VSIM Startup comrand
Startup = do nystartup.do

The line shown above instructs Model S m to execute the commands in the macro file
named mystartup.do.

; VSIM Startup comrand
Startup = run -all

The line shown above instructs VSIM to run until there are no events scheduled.
See the do command (CR-104) for additional information on creating do files.

Turning off assertion messages

Y ou can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge
number of warnings.

[vsim

I gnoreNote = 1

lgnoreWarning = 1

I gnoreError =1

lgnoreFailure = 1

Messages may also be turned off with Tcl variables; see "Preference variables located in
TCL files" (B-406).

Turning off warnings from arithmetic packages

Y ou can disable warnings from the synopsys and numeric standard packages by adding the
following linesto the [vsim] section of the modelsim.ini file.

[vsin

Nurmeri cSt dNoWarnings = 1

St dAri t hNoWarnings = 1

Warnings may also be turned off with Tcl variables; see "Preference variables located in
TCL files" (B-406).

Force command defaults

The for ce command has -freeze, -drive, and -deposit options. When none of theseis
specified, then -fr eezeisassumed for unresolved signalsand -driveisassumed for resolved
signals. Thisis designed to provide compatibility with version 4.1 and earlier forcefiles.
But if you prefer -fr eeze as the default for both resolved and unresolved signals, you can
change the defaults in the modelsim.ini file.

[vsim

; Default Force Kind

; The choices are freeze, drive, or deposit
Def aul t ForceKind = freeze

B-404 ModelSim Variables Model Sim SE User’s Manual

Preference variables located in INI files

Restart command defaults

The restart command has -for ce, -nobreakpoint, -nolist, -nolog, and -nowave options.
Y ou can set any of these as defaults by entering the following line in the modelsim.ini file:

Def aul t Restart Opti ons = <opti ons>

where <opt i ons> can be one or more of -force, -nobreakpoint, -nolist, -nolog, and -nowave.
Example: Def aul t Restart Options = -nolog -force

Note: You can also set these defaults in the modelsim.tcl file. The Tcl file settings will
override the .ini file settings.

VHDL93
Y ou can make the VHDL 93 standard the default by including the following linein the INI
file

[vcom

; Turn on VHDL-1993 as the default. Default is off (VHDL-1987).

VHDL93 = 1

Opening VHDL files

Y ou can delay the opening of VHDL fileswith anentry inthe NI fileif youwish. Normally
VHDL filesare opened when thefile declaration iselaborated. If the DelayFileOpen option
is enabled, then the file is not opened until the first read or write to that file.

[vsim
Del ayFil eQpen = 1

ModelSim SE User’s Manual ModelSim Variables B-405

Preference variables located in TCL files

Preference variables located in TCL files

Model Sm TCL preference variables give you control over fonts, colors, prompts, window
positions and other simulator window characteristics. Preference files, which contain Tcl
commandsthat set preference variables, are |loaded before any windows are created, and so
will affect all windows. For complete documentation on Tcl preference variables, see the
following URL :

http://www.model.com/resources/pref variables/frameset.htm

When ModelSmisinvoked for the first time, default preferences are loaded from the
pref.tcl file. Customized variable settings may be set from within the ModelSm GUI, on
the ModelSSm command line, or by directly editing the preferencefile.

The default file for customized preferencesis modelsim.tcl. If your preference file is not
named modelsim.tcl, you must refer to it with the MODELSIM_TCL (B-393) environment
variable.

User-defined variables

Temporary, user-defined variables can be created with the Tcl set command. Like
simulator variables, user-defined variables are preceded by adollar sign when referenced.
To create a variable with the set command:

set userl 7

Y ou can use the variable in acommand like:

echo "userl = S$userl"

More preferences

Additional compiler and simulator preferences may be set in the modelsim.ini and MPF
files, see "Preference variables located in INI files" (B-396).

B-406 ModelSim Variables Model Sim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm

Preference variable loading order

Preference variable loading order

ModelSm .tcl, .ini, and .mpf files all contain variables that are loaded when you start
ModelSm. The files are evaluated for variable settings in the order below.

.tcl file variables are evaluated before the design is loaded

Model Sm evaluates .tcl files prior to loading a design for simulation. Any window
user_hook_variables are evaluated after the associated window type is created.

1 The<install_dir>/modeltech/tcl/vsim/pref.tcl file is always loaded.
2 Thefile specified by the MODELSIM_TCL (B-393) environment variable is loaded next.
3 |f MODELSIM_TCL does not exist, the modelsim.tcl in the current directory is evaluated.

4 |f MODELSIM_TCL and ./modelsim.tcl do not exist, the file specified by the
HOME (B-393) environment variableis used.

.ini and .mpf file variables are evaluated after the design is loaded
After the designisloaded, .ini or .mpf file variables are found in these locations:

1 First thelocation specified by the MODELSIM (B-393) environment variable,
If no MODEL SIM variable exists, Model Sm looks for .mpf and .ini files in the locations
shown below. Project files (.mpf) are evaluated first, if no project fileisfound, ModelSm
looks for an .ini file in the same location.

2 Nextinthe current directory if no MODELSIM variable exists.

3 Theninthe directory where the executable exists (/<install_dir>/modeltech/< platform>).

N

Finally in the parent of the directory where the executable is (/<install_dir>/modeltech).

P Note: The MODELSIM variable is generally set to an .ini file. Setting the variable to an
MPF fileis not recommended since the file would contain project-specific information.
Setting the MODEL SIM variable to an .mpf fileis only recommended for batch-mode

usage.

ModelSim SE User’s Manual ModelSim Variables B-407

Simulator state variables

Simulator state variables

Unlike other variables that must be explicitly set, simulator state variables return avalue
relative to the current simulation. Simulator state variables can be useful in commands,
especialy when used within Model Sm DO files (macros).

Variable Result
argc returns the total number of parameters passed to the current macro
architecture returns the name of the top-level architecture currently being

simulated; for a configuration or Verilog module, this variable
returns an empty string

configuration

returns the name of the top-level configuration currently being
simulated; returns an empty string if no configuration

delta returns the number of the current simulator iteration

entity returns the name of the top-level VHDL entity or Verilog module
currently being simulated

library returns the library name for the current region

MacroNestingL evel

returns the current depth of macro call nesting

n representsamacro parameter, wheren can be an integer intherange
1-9

Now returns the current simulation time expressed in the current time
resolution (e.g., 1000 ns)

now returns the current simulation time as an absolute number of time
steps (e.g., 1000)

resolution returns the current simulation time resolution

Referencing simulator state variables

Variablevalues may be referenced in simulator commands by preceding the variable name
with a$ sign. For example, to use the now and resolution variablesin an echo command

type:

echo "The time is $now $resol ution."

Depending on the current simulator state, this command could result in;

The time is 12390 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a"\". For
example, \$now will not be interpreted as the current simulator time.

B-408 ModelSim Variables

Model Sim SE User’s Manual

C - ModelSim Shortcuts

Appendix contents

Wave window mouse and keyboard shortcuts. C-410
List window keyboard shortcuts C4l
Command shortcuts C412
Command history shortcuts C412

Mouse and keyboard shortcutsin the Transcript and Sourcewindows . C-413

Right mousebutton C4l5

This appendix is a collection of the keyboard and command shortcuts available in the
ModelSm GUI.

ModelSim SE User’s Manual Model Sim Shortcuts C-409

Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action

Result

< control - left-button - click on a scroll arrow > scrolls window to very top or

bottom(vertical scroll) or far left or
right (horizontal scroll)

<middlemouse-button - click in scroll bar trough> scrolls window to position of click

(UNIX) only

Keystroke Action

il or + zoomin

oOor- zoom out

forF zoom full; mouse pointer must be over the the cursor or
waveform panes

| or L zoom last

ro R zoom range

<arrow up> scroll waveform display up by selecting the item above the

currently selected item

<arrow down>

scroll waveform display down by selecting the item below the
currently selected item

<arrow left>

scroll waveform display left

<arrow right>

scroll waveform display right

<page up> scroll waveform display up by apage

<page down> scroll waveform display down by a page

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (l€ft) to the previous transition on the selected

signal - finds the previous edge

<control-f> Windows
<control-s> UNIX

open the find dialog box; searches within the specified field in
the pathname pane for text strings

C-410 Mode Sim Shortcuts

Model Sim SE User’s Manual

List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key

Action

<arrow up>

scroll listing up (selects and highlights the line above the
currently selected line)

<arrow down>

scroll listing down (selects and highlights the line below the
currently selected line)

<arrow left>

scroll listing left

<arrow right>

scroll listing right

<page up> scroll listing up by page

<page down> scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signa

<shift-tab> searchesbackward (up) to the previoustransition on the sel ected

signal (does not function on HP workstations)

<control-f> Windows
<control-s> UNIX

opens the find dialog box; finds the specified item label within
thelist display

ModelSim SE User’s Manual

Model Sim Shortcuts C-411

Command shortcuts

Y ou may abbreviate command syntax, but there's a catch. The minimum characters
required to execute a command are those that make it unique. Remember, as we add new
commands some of the old shortcuts may not work. For this reason Model Sm does not
allow command name abbreviations in macro files. This minimizes your need to maintain
macro files as new commands are added.

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the Model SV SIM prompt:

Shortcut Description

1 repesats the last command

'n repeats command number n; nisthe VSIM prompt number (e.g.,
for this prompt: VSIM 12>, n =12)

l'abc repeats the most recent command starting with "abc"

~xyz~ab” replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt |eft-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

his or history shows the last few commands (up to 50 are kept)

C-412 Mode Sim Shortcuts Model Sim SE User’s Manual

Mouse and keyboard shortcuts in the Transcript and Source windows

The following mouse actions and special keystrokes can be used to edit commands in the
entry region of the Main window. They can also be used in editing thefile displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSm
to open the Notepad editor).

Mouse - UNIX Mouse - Windows Result

< left-button - click > move the insertion cursor

< |eft-button - press > + drag select
< shift - left-button - press > extend selection
< left-button - double-click > select word

< |eft-button - double-click > + drag select word + word

move insertion cursor without
changing the selection

< control - left-button - click >

< |eft-button - click > on previous Model Sim or VSIM prompt copy and paste previous command

string to current prompt

< middle-button - click > none paste clipboard

< middle-button - press > + drag none scroll the window

Keystrokes - UNIX Keystrokes - Windows Result

< left | right - arrow > move cursor left | right one character

< control > < |eft | right - arrow >

move cursor left | right one word

< shift > < left | right | up | down - arrow >

extend selection of text

< control > < shift > < left | right - arrow >

extend selection of text by word

scroll through command history (in Source
window, moves cursor one line up | down)

< up | down - arrow >

< control > < up | down > MOVeS cursor up | down one paragraph

< control > < home > move cursor to the beginning of the text

< control > < end > move cursor to the end of the text

< backspace >, < control-h> | < backspace > delete character to the left
< delete >, < control-d > < delete > delete character to theright
none esc cancel

<adt> activate or inactivate menu bar mode

ModelSim SE User’s Manual Model Sim Shortcuts C-413

Keystrokes - UNIX

Keystrokes - Windows

Result

<dt><F4> close active window

< control - a>, < home > < home > move cursor to the beginning of the line

<control - b> move cursor left

< control - d > delete character to the right

<control - e>, <end > <end > move cursor to the end of theline

<control - f > move cursor right one character

< control - k > delete to the end of line

< control - n > move cursor one line down (Source window
only under Windows)

<control - 0> none insert anewline character in front of the cursor

< control - p> move cursor one line up (Source window only
under Windows)

< control - s> < control - f > find

<F3> find next

< control -t > reverse the order of the two charactersto the

right of the cursor

< control - u>

deleteline

< control - v >

PageDn

move cursor down one screen

< control - w >

< control - x >

cut the selection

< control - X >, < control - s>

< control - s>

save

<control -y >, F18

< control - v >

paste the selection

none

< control - a>

select the entire contents of the widget

< control -\ >

clear any selection in the widget

<control - >, < control -/ >

< control - Z >

undoes previous edits in the Source window

<meta- "<" > none move cursor to the beginning of thefile
<meta- ">" > none move cursor to the end of thefile
<meta-v > PageUp Move Cursor up one screen

< Meta- w> <control -¢c> copy selection

<F8> search for the most recent command that

matches the characters typed (Main window
only)

C-414 Modd Sim Shortcuts

Model Sim SE User’s Manual

The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

Right mouse button

The right mouse button provides shortcut menus in the Main and Wave windows. In the
Source window, the button gives you feedback on any HDL item under the cursor. See
Chapter 8 - Model Sm Graphic Interface for menu descriptions.

ModelSim SE User’s Manual Model Sim Shortcuts C-415

C-416 Modd Sim Shortcuts Model Sim SE User’s Manual

D - Using the FLEXIm License Manager

Appendix contents

Starting the license server deemon. D-418
Locating thelicensefile D-418
Controlling thelicensefilesearch. D-418
Manua start D418
Automatic start at boot time D-419
What to do if another applicationusesFLEXIm D-419

Format of thelicensefile D-420

Format of the daemon optionsfile. D-420

License administrationtools D-422
Imgtat D42
Imdown D42
Imremove. D423
Imretfead D423
Administration toolsfor Windows D-423

Thisappendix coversModel Technology’ sapplication of FLEXIm for Model Smlicensing.

Globetrotter Software’s Flexible License Manager (FLEXIm) is a network floating
licensing package that allows the application to be licensed on a concurrent usage basis, as
well as on a per-computer basis.

FLEXIm user’s manual

The content of this appendix is limited to the use of FLEXIm with Model Technology’s
software. For more information, see the FLEXIm user’s manual that is available from
Globetrotter Software’ sweb site:

http://www.gl obetrotter.com/manual .htm

ModelSim SE User’'s Manual Using the FLEXIm License Manager D-417

http://www.globetrotter.com/manual.htm

Starting the license server daemon

Starting the license server daemon

Locating the license file

When the license manager daemon is started, it must be able to find the license file. The
default [ocation is/usr/local/flexim/licenses/license.dat for Unix or ¢:\flexim\license.dat for
Windows. Y ou can change where the daemon looks for the license file using one of two
methods:

« By starting the license manager using the -c <pathname> option.
» By setting the LM_LICENSE_FILE (B-393) environment variable to the path of thefile.

More information about installing Model Sm and using alicense fileis available in Model
Technology’s Sart Here for Model Sm guide, see "Where to find our documentation™ (1-
21), or email us at license@model.com.

Controlling the license file search

By default, Model Sm checks for the existence of both Model Technology and Mentor
Graphics generated licenses. When vsimisinvoked it will first locate and use any available
MTI licenses, then search for MGC licenses as needed. The following vsim command (CR-
258) switches narrow the search to exclude or include specific licenses:

license option Description

-lic_nomgc excludes any MGC licenses from the search

-lic_nomti excludes any MTI licenses from the search

-lic_noqueue do not wait in license queue if no licenses are available

-lic_plus searches only for PLUS licenses

-lic_vlog searches only for VLOG licenses

-lic_vhdl searches only for VHDL licenses

-lic_viewsim accepts a simulator license rather than being queued for a
viewer license

The options may al so be specified with the License (B-400) variablein the modelsim.ini file;
see the [vsim] simulator control variables (B-398). Note that settings made from the
command line are additive to options set in the License variable. For example, if you set
the License variable to nomgc and use the -lic_plus option from the command line, vam
will search only for MTI SE/PLUS licenses.

Manual start

Unix
To start the license manager daemon, place the license filein the
/ <i nstal | _di r>/ nodel t ech/ <pl at f or > directory and enter the following commands:

cd /<install_dir>/nodeltech/<platform
Imgrd -c license.dat >& report.log

D-418 Using the FLEXIm License Manager ModelSim SE User’s Manual

mailto:license@model.com

Starting the license server daemon

where <platform> can be sunos5, sunossv9, hp700, hppab4, rs6000, rsb4, or linux.
This can be done by an ordinary user; you should not be logged in as root.

Windows

To start the license manager daemon in Windows, place the license file in the modeltech
installation directory and enter the following commands:

cd \<install_dir>\npdeltech\w n32
Imgrd -app -c |license. dat

Automatic start at boot time

Unix

Y ou can cause the license manager daemon to start automatically at boot time by adding
the following line to the file /etc/rc.boot or to /etc/re.local:

/<install_dir>/nmodeltech/<platforne/lnmgrd -c /<install_dir>/license.dat &

Windows

Y ou can use the FLEXIm Control Panel to enact an automatic start. See the FLEXIm End
User’s Manual for more information.

What to do if another application uses FLEXIm

If you have other applications that use FLEXIm, you can handle any conflict in one of the
following ways:

Case 1: All the license files use the same license server nodes

Y ou can combine the license files by taking the set of SERVER linesfrom onelicensefile,
and adding the DAEMON, FEATURE, and FEATURESET lines from all of the license
files. This combined file can be copied to /<install_dir>/license/license.dat and to any
location required by the other applications.

Case 2: The applications use different license server nodes

Y ou cannot combine the license files if the applications use different servers. Instead, set
theLM_LICENSE FILE (B-393) environment variable to be alist of files, as follows:

setenv LM LI CENSE_FI LE \
lic_filel:lic_file2:/<install_dir>/license.dat

In Windows use semi-colons (;) to separate the file names.
Do not use the -c option when you start the license manager daemon. For example:
I mgrd > report.|og

ModelSim SE User’'s Manual Using the FLEXIm License Manager D-419

Format of the license file

Format of the license file

Model Sm license files contain three types of lines: SERVER lines, DAEMON lines, and
FEATURE lines. For example:

SERVER host nanme hosti d [TCP_port nunber]

DAEMON daenon- nane pat h-t o-daenon [path-to-options-file]

FEATURE name daenon-namne versi on exp_date #users_code \
“description” [hostid]

Only the following items may be modified:

« the hostname on SERVER lines

« the TCP_portnumber on SERVER lines
the path-to-daemon on DAEMON lines
the path-to-options-file on DAEMON lines

* anything in the daemon options file (described in the following section)

Format of the daemon options file

Y ou can customi ze your Model S mlicensing with the daemon optionsfile. Thisoptionsfile
allows you to reserve licenses for specified users or groups of users, to determine which
users have access to M odel Sm software, to set software time-outs, and to log activity to an
optional report writer.

RESERVE
Ensuresthat Model Smwill always be available to one or more users on one or more host
computers.

INCLUDE
Allows you to specify alist of userswho are allowed access to the Model Sm software.

EXCLUDE
Allows you to disallow access to ModelSmfor certain users.

GROUP
Allows you to define a group of usersfor use in the other commands.

NOLOG
Causes messages of the specified type to be filtered out of the daemon’slog output.

To use the daemon options capability, you must create a daemon options file and list its
pathname as the fourth field on the line that begins with DAEMON modeltech.

A daemon options file consists of linesin the following format:

RESERVE number feature {USER | HOST | DI SPLAY | GROUP} nane
I NCLUDE feature {USER | HOST | DI SPLAY | GROUP} nane
EXCLUDE feature {USER | HOST | DI SPLAY | GROUP} nane

GROUP nane <l ist_of _users>

NOLOG {IN | OUT | DEN ED | QUEUED}

REPORTLOG file

D-420 Using the FLEXIm License Manager ModelSim SE User’s Manual

Format of the daemon options file

Lines beginning with the number character (#) are treated as comments. If the filenamein
the REPORTLOG line startswith aplus (+) character, the old report logfile will be opened
for appending.

For example, the following options file would reserve one copy of the feature vsim for the
user walter, three copies for the user john, one copy for anyone on a computer with the
hostname of bob, and would cause QUEUED messages to be omitted from the logfile. The
user ritawould not be allowed to use the vsim feature.

RESERVE 1 vsi m USER wal t er

RESERVE 3 vsi m USER j ohn

RESERVE 1 vsi m HOST bob

EXCLUDE vsim USER rita

NOLOG QUEUED

If this data were in the file named:

/usr/local /options

modify the license file DAEMON line as follows:

DAEMON nodel t ech /<install _dir>/<platfornp/ nodel tech \
/usr/local /options

ModelSim SE User’'s Manual Using the FLEXIm License Manager D-421

License administration tools

License administration tools

Imstat
License administration is simplified by the Imstat utility. Imstat allowsauser of FLEXIm
to instantly monitor the status of all network licensing activities. Imstat allows a system
administrator at a user site to monitor license management operations, including:
« which daemons are running;
 which users are using individual features; and
« which users are using features served by a specific DAEMON.
The case-sensitive syntax is shown below:
Syntax
| mst at
-a -A
-S <daenon>
-c <license_file>
-f <feature_nanme>
-S <server_nane>
-t <val ue>
Arguments
-a
Displays everything.
-A
Listsall active licenses.
-S <daenon>
Lists all users of the specified daemon’s features.
-c <license_file>
Specifies that the specified licensefile is to be used.
-f <feature_nanme>
Lists users of the specified feature(s).
-S <server_nane>
Displays the status of the specified server node(s).
-t <val ue>
Sets the Imstat time-out to the specified value.
Imdown

The Imdown utility allows for the graceful shutdown of all license daemons (both Imgrd
and all vendor daemons) on all nodes.

Syntax

| ndown
-c [<license_file_path>]

D-422 Using the FLEXIm License Manager ModelSim SE User’s Manual

License administration tools

If not supplied here, the license file used is in either /user/local /fleximvlicenses/
license.dat, or the license file pathname in the environment variable
LM_LICENSE_FILE (8-393).

The system administrator should protect the execution of Imdown, since shutting down
the servers will cause loss of licenses.

Imremove

Thelmremove utility allowsthe system administrator to remove asingle user’ slicensefor
a specified feature. This could be required in the case where the licensed user was running
the software on a node that subsequently crashed. This situation will sometimes cause the
license to remain unusable. Imremovewill alow the license to return to the pool of
available licenses.

Syntax

| nT enove
-c <file> <feature> <user> <host> <di spl ay>
Imremove removes all instances of user on the node host (on the display, if specified)
from usage of feature. If the optional -c <file> switch is specified, the indicated file will
be used as the license file. The system administrator should protect the execution of
Imremove, since removing auser’s license can be disruptive.

Imreread

Thelmreread utility causesthe license daemon to reread the license file and start any new
vendor daemonsthat have been added. In addition, all preexisting daemonswill besignaled
to reread the license file for changes in feature licensing information.

Syntax

| nreread [daenon]
[-c <license_file>]

P> Note: If the-c option is used, the license file specified will be read by the daemon, not by
Imgrd. Imgrd rereadsthefileit read originally. Also, Imreread cannot be used to change
server node names or port numbers. Vendor daemons will not reread their option filesasa
result of Imreread.

Administration tools for Windows

All of the Unix administration tools listed above may be used on Windows platforms as
well. However, in Windows, all of the tools are launched via the program "Imutil." For
example, if you want to run Imstat, you would type the following at a command prompt:

Imutil Inmstat [-args]

The arguments for Windows are the same as those listed above for Unix.

ModelSim SE User’'s Manual Using the FLEXIm License Manager D-423

D-424 Using the FLEXIm License Manager ModelSim SE User’s Manual

E - Tips and Techniques

Appendix contents

How to use checkpoint/restore. E-426
Running command-line and batch-mode simulations. E-428
Using macros (DOfiles) E430

Command-linemode E430
Source code security and -nodebug E433
Saving and viewing waveforms E434
Setting up librariesforgroupuse E434
Maintaining 32-bit and 64-bit modulesin thesamelibrary E-434
Bus contention checking E43
Busfloat checking. E435
Design stability checking E-436
Togglechecking E436
Detecting infinite zero-delay loops E-436
Referencing source fileswith locationmaps E-437
Accelerate simulation by locking memory under HP-UX 102 . . . E-439
Modeling memory invVHDL E-440
Setting up aList trigger with Expression Builder E-444

This appendix contains various tips and techniques collected from severa parts of the
manual and from answersto questionsreceived by tech support. Y our suggestions, tips, and
techniques for this section would be appreciated.

ModelSim SE User's Manual Tips and Techniques E-425

How to use checkpoint/restore

How to use checkpoint/restore

The checkpoint (CR-62) and restor e (CR-172) commandswill save and restore the simulator
state within the same invocation of vsim or between vsim sessions.

If you want to restor e while running vsim, use the r estor e command (CR-172); we call this

a"warm restore". If you want to start up vsim and restore a previously-saved checkpoint,
use the -restor e switch with the veim command (CR-258); we call thisa "cold restore".

P> Note: Checkpoint/restore allows a cold restore, followed by simulation activity, followed
by awarm restore back to the original cold-restore checkpoint file. Warm restores to
checkpoint files that were not created in the current run are not allowed except for this
special case of an original cold restorefile.

The things that are saved with checkpoint and restored with the restor e command are:
» simulation kernel state

o vsimwif file

signalslisted in thelist and wave windows

file pointer positions for files opened under VHDL

file pointer positions for files opened by the Verilog $fopen system task
« state of foreign architectures
Thingsthat are NOT restored are;
* state of macros
« changes made with the command-line interface (such as user-defined Tcl commands)
« state of graphical user interface windows
* toggle statistics
In order to save the smulator state, use the command
checkpoi nt <fil enane>
To restore the simulator state during the same session as when the state was saved, use the
command:

restore <fil enane>

To restore the state after quitting Model Sm, invoke vsim as follows:

vsim -restore <fil enane> [-noconpress]
The checkpoint fileis normally compressed. If thereis a need to turn off the compression,
you can do so by setting a specia Tcl variable. Use:

set Checkpoi nt Conpressivbde 0

to turn compression off, and turn compression back on with:

set Checkpoi nt Conpr esshbde 1

E-426 Tipsand Techniques ModelSim SE User’s Manual

How to use checkpoint/restore

Y ou can also control checkpoint compression using the modelsim.ini file in the [vsim]
section (use the same O or 1 switch):

[vsim
Checkpoi nt Conpr essWbde = <sw tch>

If you use the foreign interface, you will need to add additional function callsin order to
use checkpoint/restore. See the FLI Reference Manual for more information.

The difference between checkpoint/restore and restarting

Therestart (CR-170) command resets the ssmulator to time zero, clears out any logged
waveforms, and closes any files opened under VHDL and the Verilog $fopen system task.
Y ou can get the same effect by first doing a checkpoint at time zero and later doing a
restore. But with restart you don't have to save the checkpoint and therestart islikely to
be faster. But when you need to set the state to anything other than time zero, you will need
to use checkpoint/restore.

Using macros with restart and checkpoint/restore

Therestart (CR-170) command resets and restarts the simulation kernel, and zeros out any
user-defined commands, but it does not touch the state of the macro interpreter. Thislets
you do restart commands within macros.

The pause mode indicates that a macro has been interrupted. That condition will not be
affected by arestart, and if therestart is done with an interrupted macro, the macro will still
be interrupted after the restart.

The situation is similar for using checkpoint/restor e without quitting ModelSm, that is,
doing a checkpoint (CR-62) and later in the same session doing arestor e (CR-172) of the
earlier checkpoint. Therestor e does not touch the state of the macro interpreter so you may
also do checkpoint and restor e commands within macros.

ModelSim SE User’'s Manual Tipsand Techniques E-427

Running command-line and batch-mode simulations

Running command-line and batch-mode simulations

Thetypical method of running Model Smisinteractive: you push buttons and/or pull down
menusin aseries of windows inthe GUI (graphic user interface). But there arereally three
specific modes of Model Sm operation: GUI, command line, and batch. Here are their
characteristics:

e GUI mode
Thisisthe usual interactive mode; it has graphica windows, push-buttons, menus, and a
command line in the text window. Thisis the default mode.

« Command-line mode
This an operational mode that has only an interactive command line; no interactive
windows are opened. To run vsim in this manner, invoke it with the -c option asthe first
argument from either the UNIX prompt or the DOS prompt in Windows 95/98/2000/NT.

« Batch mode

Batch modeis an operational mode that provides neither an interactive command line,
nor interactive windows.

InaUNIX environment, vsim can be invoked in batch mode by redirecting standard
input using the “here-document” technique. Batch mode does not require the -c option.
In a Windows environment, vsim is run from a Windows 95/98/2000/NT DOS prompt
and standard input and output are re-directed to and from files. An exampleis:
vsiment arch <<!

log -r *

run 100

do test.do

quit -f
!

Here is another example of batch mode, thistime using afile asinput:

vsim counter < yourfile

From a user's point of view, command-line mode can look like batch mode if you use the
vsim command (CR-258) with the -do option to execute amacro that doesaquit -f (CR-165)
before returning, or if the startup.do macro does a quit -f before returning. But technically,
that mode of operation is still command-line mode because stdin is still operating from the
terminal.

The following paragraphs describe the behavior defined for the batch and command-line
modes.

Command-line mode

In command-line mode M odel Sim executes any startup command specified by the Startup
(B-400) variable in the modelsim.ini file. If veim (CR-258) isinvoked with the -do
<"command_string" > option aDO file (macro) iscalled. A DO file executed in this
manner will override any startup command in the modelsim.ini file.

E-428 Tipsand Techniques ModelSim SE User’s Manual

Running command-line and batch-mode simulations

During simulation atranscript fileiscreated containing any messagesto stdout. A transcript
file created in command-line mode may be used as a DO file if you invoke the transcript
on command (CR-194) after the design loads (see the example below). The transcript on
command will write all of the commands you invoketo the transcript file. For example, the
following series of commands will result in atranscript file that can be used for command
input if top isresimulated (remove the quit -f command from the transcript file if you want
to remain in the simulator).

vsim-c top
library and design loading messages... then execute:

transcript on

force clk 1 50, 0 100 -repeat 100

run 500

run @000

quit -f

P Note: Rename transcript files that you intend to use as DO files. They will be overwritten

the next time you run vsim if you don’t rename them. Also, simulator messages are already
commented out, but any messages generated from your design (and subsequently written
to the transcript file) will cause the simulator to pause. A transcript file that contains only
valid simulator commands will work fine; comment out anything else with a"#".

P Note: Stand-alone tools will pick-up project settings in command-line mode if they are
invoked in the project'sroot directory. If invoked outside the project directory, stand-alone
toolswill pick up project settings only if you set the M ODEL SIM environment variableto
the path to the project file (<Project_Root_Dir>/<Project_Name>.mpf).

Batch mode

In batch mode M odel S m behaves much asin command-line mode except that there are no
prompts, and commands from re-directed stdin are not echoed to stdout. Do not use the -c
argument with vaim for batch mode simulations because -c invokes the command-line
maode, which supplies the prompts and echoes the commands.

Tcl user_hook_variables may also be used for Tcl customization during batch-mode
simulation; see http://www.model.com/resources/pref _variables/frameset.htm.

ModelSim SE User’'s Manual Tipsand Techniques E-429

http://www.model.com/resources/pref_variables/frameset.htm

Using macros (DO files)

Using macros (DO files)

Model Smmacros (also called DO files) are scripts that contain Model Smand, optionally,
Tcl commands. Y ou invoke DO files with the M acr o > Execute M acr o (Main window)
menu selection or the do command (CR-104).

Creating DO files

Y ou can create DO files by typing the required commandsin any editor and saving thefile.
Alternatively, you can save the Main window transcript to aDO file (see" Saving the Main
window transcript file" (8-159)).

The following isasimple DO file that was saved from the Main window transcript. It is
used in the dataset exercisein the ModelSm Tutoria. This DO file adds several signalsto
the Wave window, provides stimulus to those signal s, and then advances the simulation.

add wave |d
add wave rst
add wave clk
add wave d

add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force Id 0O
force d 1010
run 1700

force Id 1

run 100

force Id 0

run 400

force rst 1
run 200

force rst 0 10
run 1500

Y ou can write more complex macros using the Tcl scripting language. See Chapter 16 - Tcl
and Model Sm for more information.

Using Parameters with DO files

Y ou can increase the flexibility of DO files using parameters. Parameters specify values
that are passed to the corresponding parameters $1 through $9 in the macro file. For
example,

do testfile design.vhd 127

If the macro filetestfile contains the line bp $1 $2, this command would place a breakpoint
in the source file named design.vhd at line 127.

Thereisno limit on the number of parameters that can be passed to macros, but only nine
values are visible at one time. Y ou can use the shift command (CR-183) to see the other
parameters.

E-430 Tipsand Techniques ModelSim SE User’s Manual

Using macros (DO files)

Useful commands for handling breakpoints and errors

If you are executing a macro when your simulation hits a breakpoint or causes arun-time
error, Model Sminterrupts the macro and returns control to the command line. The
following commands may be useful for handling such events. (Any other legal command
may be executed as well.)

command result

run (CRr-176) -continue | continue asif the breakpoint had not been executed, completesthe run (CR-176) that
was interrupted

resume (CR-173) continue running the macro

onbreak (CR-144) specify acommand to run when you hit a breakpoint within a macro

onElabError (CR-145) specify acommand to run when an error is encountered during elaboration

onerror (CR-146) specify acommand to run when an error is encountered within a macro

status (CR-186) get atraceback of nested macro calls when amacro is interrupted

abort (CR-25) terminate a macro once the macro has been interrupted or paused

pause (CR-147) cause the macro to be interrupted, the macro can be resumed by entering aresume

command (CR-173) viathe command line

transcript (CR-194) control echoing of macro commands to the Main window transcript

P> Note: You can also set the OnErrorDefaultAction Tcl variable in the pref.tcl fileto dictate
what action Model Sm takes when an error occurs.

Error action in DO files

If acommand in a macro returns an error, Model Sm does the following:

1 If anonerror (CR-146) command has been set in the macro script, Model Sm executes that
command.

2 If no onerror command has been specified in the script, Model Sm checks the
OnErrorDefaultAction Tcl variable. If the variable is defined, it will be invoked.

3 If neither 1 or 2 istrue, the macro aborts.

ModelSim SE User’'s Manual Tipsand Techniques E-431

Using macros (DO files)

Using the Tcl source command with DO files

Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the sour ce command, the DO file is executed exactly asif the commandsin it were
typed in by hand at the prompt. Each time a breakpoint is hit the Source window is updated
to show the breakpoint. This behavior could be inconvenient with alarge DO file
containing many breakpoints.

When ado command is interrupted by an error or breakpoint, it does not update any
windows, and keeps the DO file "locked". This keeps the Source window from flashing,
scrolling, and moving the arrow when a complex DO file is executed. Typically an
onbreak resume command is used to keep the macro running asit hits breakpoints. Add
an onbreak abort command to the DO fileif you want to exit the macro and update the
Source window.

See also

See the do command (CR-104). Also seethe DOPATH (B-393) variable for addingaDOfile
path to your environment.

E-432 Tipsand Techniques ModelSim SE User’s Manual

Source code security and -nodebug

Source code security and -nodebug

The -nodebug option on both vcom (CR-217) and vlog (CR-250) hides internal model data.
This allows amodel supplier to provide pre-compiled libraries without providing source
code and without revealing internal model variables and structure.

P Note: ModelSim's -nodebug compiler option provides protection for proprietary model
information. The Verilog protect compiler directive provides similar protection, but uses
a Cadence encryption algorithm that is unavailable to Model Technology.

If adesign unit is compiled with -nodebug the Source window will not display the design
unit's source code, the Structure window will not display the internal structure, the Signals
window will not display internal signals (it still displays ports), the Process window will
not display internal processes, and the Variableswindow will not display internal variables.
In addition, none of the hidden objects may be accessed through the Dataflow window or
with Model Sim commands.

Even with the data hiding of -nodebug, there remains some visibility into models compiled
with -nodebug. The names of all design units comprising your model are visible in the
library, and you may invoke vsim (CR-258) directly on any of these design unitsand see the
ports. Design units or modules compiled with -nodebug can only instantiate design units
or modules that are also compiled -nodebug.

To restrict visibility into the lower levels of your design you can use the following
-nodebug switches when you compile.

Command and switch Result

vcom -nodebug=ports makes the ports of aVHDL design unit invisible

vlog -nodebug=ports makes the ports of aVerilog design unit invisible

vlog -nodebug=pli prevents the use of PLI functions to interrogate the module for
information

vlog -nodebug=ports+pli combines the functions of -nodebug=ports and -nodebug=pli

(or =pli+ports)

P> Note: Don't use the =ports switch on adesign without hierarchy, or on the top level of a
hierarchical design; if you do, no portswill be visible for simulation. To properly use the
switch, compileall lower portions of the design with -nodebug=portsfirst, then compilethe
top level with -nodebug alone.

Also notethe =pli switch will not work with vcom (theVVHDL compiler). PLI functionsare
valid only for Verilog design units.

ModelSim SE User’'s Manual Tipsand Techniques E-433

Saving and viewing waveforms

Saving and viewing waveforms
You can run vsim as a batch job, but view the resulting waveforms later.

1 Whenyouinvoke vsim thefirst time, usethe -wlif option to renamethelogfile, and redirect
stdin to invoke the batch mode. The command should look like this:

vsim-wlf wavesavl. W f counter < command. do

Within your command.do file, use the log command (CR-131) to save the waveforms you
want to look at later, run the simulation, and quit.

When vsim runs in batch mode, it does not write to the screen, and can be runin the
background.

2 When you return to work the next day after running several batch jobs, you can start up
vsim in its viewing mode with this command and the appropriate .wif files:

vsim -view wavesavl. W f

Now you will be able to use the Waveform and List windows normally.

Setting up libraries for group use

By adding an “others’ clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSmtools don’t find a mapping in the modelsim.ini file, then they
will search the library section of the initialization file specified by the “ others’ clause. For
example:

[library]

asic_lib = /caelasic_lib

work = nmy_work

others = /usr/nodel tech/ nodel simi ni

Maintaining 32-bit and 64-bit modules in the same library

It is possible with Model Sm to maintain 64-bit and 32-bit versions of adesign in the same
library. To dothis, you must compile the design with one of the versions (64-bit or 32-bit),
and "refresh" the design with the other version. For example:

Using the 32-bit version of ModelSm:

vcom filel.vhd
vcom fil e2.vhd

Next, using the 64-bit version of Model Sm:

vcom -refresh

Do not compile the design with one version, and then recompileit with the other. If you do
this, Model Smwill remove the first module, because it could be "stale."

E-434 Tipsand Techniques ModelSim SE User’s Manual

Bus contention checking

Bus contention checking

Bus contention checking detects bus fights on nodes that have multiple drivers. A busfight
occurs when two or more drivers drive a node with the same strength and that strength is
the strongest of al drivers currently driving the node. The following table provides some
examples for two driversdriving astd logic signal:

driver 1 driver 2 fight

no

yes

no

yes

no

z
0
1
0
L
L

T| | | N| O| N

yes

Detection of abus fight resultsin an error message specifying the node and its drivers
current driving values. If anode's drivers later change value and the node is still in
contention, a message is issued giving the new values of the drivers. A message is also
issued when the contention ends. The bus contention checking commands can be used on
VHDL and Verilog designs.

These bus checking commands are in "Model Sim Commands" (CR-9):
« check contention add (CR-54)

 check contention config (CR-55)

« check contention off (CR-56)

Bus float checking

Busfloat checking detects nodes that are in the high impedance state for atime equal to or
exceeding a user-defined limit. Thisis an error in some technologies. Detection of afloat
violation resultsin an error message identifying the node. A message is also issued when
the float violation ends. The bus float checking commands can be used on VHDL and
Verilog designs.

These bus float checking commands are in "Model Sim Commands' (CR-9):
 check float add (CR-57)
« check float config (CR-58)

 check float off (CR-59)

ModelSim SE User’'s Manual Tipsand Techniques E-435

Design stability checking

Design stability checking

Design stability checking detects when circuit activity has not settled within a period you
define for synchronous designs. Y ou specify the clock period for the design and the strobe
time within the period during which the circuit must be stable. A violation is detected and
an error messageisissued if there are pending driver eventsat the strobe time. The message
identifies the driver that has a pending event, the node that it drives, and the cycle number.
The design stability checking commands can be used on VHDL and Verilog designs.

These design stability checking commands are in "Model Sim Commands' (CR-9):
 check stable on (CR-61)
 check stable off (CR-60)

Toggle checking

Toggle checking counts the number of transitionsto 0 and 1 on specified nodes. Once the
nodes have been selected, atoggle report may be requested at any time during the
simulation. The toggle commands can be used on VHDL and Verilog designs.

These toggle checking commands are in "Model Sim Commands' (CR-9):
* toggle add (CR-190)

* togglereset (CR-192)

* togglereport (CR-191)

Detecting infinite zero-delay loops

Simulations use steps that advance simulated time, and stepsthat do not advance simulated
time. Stepsthat do not advance simulated time are called "delta cycles'. Deltacycles are
used when signal assignments are made with zero time delay.

If alarge number of delta cycles occur without advancing time, it is usually a symptom of
aninfinite zero-delay loop in the design. In order to detect the presence of these loops,
Model Sm defines alimit, the “iteration_limit", on the number of successive delta cycles
that can occur. When theiteration_limit is exceeded, vsim stops the simulation and givesa
warning message.

Y ou can set the iteration_limit from the Options > Simulation menu, by modifying the
modelsim.ini file, or by setting a Tcl variable called IterationLimit (B-399).

Theiteration_limit default value is 5000.

When you get an iteration_limit warning, first increase the iteration limit and try to
continue simulation. If the problem persists, ook for zero-delay loops.

One approach to finding zero-delay loopsis to increase theiteration limit again and start
single stepping. Y ou should be able to see the assignment statements or processes that are
looping. Looking at the Process window will also help you to see the active looping
processes.

When the loop is found, you will need to change the design to eiminate the unstable loop.

See "Projects and system initialization" (2-25) for more information on modifying the
modelsim.ini file. And see "Preference variables located in TCL files' (B-406) for more
information on Tcl variables. Also see the Main window Help menu for Tcl Help and man
pages.

E-436 Tipsand Techniques ModelSim SE User’s Manual

Referencing source files with location maps

Referencing source files with location maps

Pathnames to source files are recorded in libraries by storing the working directory from
which the compile isinvoked and the pathname to the file as specified in the invocation of
the compiler. The pathname may be either a complete pathname or arelative pathname.

Model Smtools that reference source files from the library locate a source file as follows:

« |If the pathname stored in the library is complete, then thisis the path used to reference
thefile.

* If the pathname is relative, then the tool looks for the file relative to the current working
directory. If thisfile does not exist, then the path relative to the working directory stored
inthelibrary is used.

Thismethod of referencing sourcefiles generally worksfineif thelibraries are created and
used on asingle system. However, when multiple systems accessalibrary across anetwork
the physical pathnames are not always the same and the source file reference rules do not
alwayswork.

Using location mapping

Location maps are used to replace prefixes of physical pathnamesin the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

Model Smtools open the location map file on invocation if the MGC_LOCATION_MAP
(B-393) environment variableis set. If MGC_LOCATION_MAP is not set, Model Sm will
look for afile named "mgc_location_map" in the following locations, in order:

« the current directory

* your home directory

* the directory containing the ModelSm binaries
» the ModelSminstalation directory

Use these two steps to map your files:

1 Setthe environment variable MGC_LOCATION_MAP to the path to your location map
file.

2 Specify the mappings from physical pathnames to logical pathnames:

$SRC
/ hone/ vhdl / src
/usr/vhdl/src

$1 EEE
/usr/ nodel t ech/ i eee

ModelSim SE User’'s Manual Tips and Techniques E-437

Referencing source files with location maps

Pathname syntax

The logical pathnames must begin with $ and the physical pathnames must begin with /.
Thelogical pathnameis followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have
different pathnames on different systems).

How location mapping works

When a pathname is stored, an attempt is made to map the physical pathname to a path
relativeto alogical pathname. Thisis done by searching the location map file for the first
physical pathnamethat isaprefix to the pathnamein question. Thelogical pathnameisthen
substituted for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/
test.vhd". If amapping can be madeto alogical pathname, then thisisthe pathnamethat is
saved. The path to a sourcefile entry for adesign unit in alibrary is a good example of a
typical mapping.

For mapping from alogical pathname back to the physical pathname, M odel Smexpectsan
environment variable to be set for each logical pathname (with the same name). ModelSm
reads the location map file when atool isinvoked. If the environment variables
corresponding to logical pathnames have not been set in your shell, ModelSm sets the
variablesto thefirst physical pathname following thelogical pathnamein thelocation map.
For example, if you don't set the SRC environment variable, Model Smwill automatically
set it to "/home/vhdl/src".

Mapping with Tcl variables

Two Tcl variables may also be used to specify alternative source-file paths; SourceDir and
SourceMap. See http://www.model .com/resources/pref variables/frameset.htm.

E-438 Tipsand Techniques ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm

Accelerate simulation by locking memory under HP-UX 10.2

Accelerate simulation by locking memory under HP-UX 10.2

ModelSm 5.3 and later versions contain afeature to allow HP-UX 10.2 to use locked
memory. Thisfeature provides significant accel eration of simulation timefor large designs
—i.e. with amemory footprint > 500Mb. (Test cases showed 2x acceleration of large
simulations.) The following steps show how to set up the HP-UX 10.2 so memory can be
locked.

1 Allow the average-user to lock memory. By default, this privilegeis not allowed, so it has
to be enabled. To allow everyone MLOCK privileges, the administrator needs to execute
this command on the machine that will be running ModelSm:

[usr/sbin/setprivgrp -g M.OCK

To only allow a particular group MLOCK privileges, use the command:
[usr/sbin/setprivgrp <group-name> M.OCK
This allows you to lock memory. No other privileges are enabled.

2 Oncethe MLOCK privilegeis enabled, you merely have to modify the modelsim.ini file,
and add the following entry to the [vsim] section:

LockedMenory = <some-val ue>

Where <some-value> isan integer representing the number of megabytes of memory to be
locked. Once thisis done, the memory will be locked when vsim invokes (using this .ini
file).

ModelSmwill not lock more memory than is available in the system. The maximum
memory that can belocked is: system physical memory (RAM) - 100 Mb = locked memory

When Model Sm locks memory, other processes will not have accessto it. Therefore, you
should consider how much memory islocked on a per-design basis to avoid locking more
than is needed.

System parameters used for shared/|ocked memory may not be set (by default) high enough
to take full advantage of thisfeaturein later generations of HP-UX. Using the "sam"
program, go to the "Configurable Parameters’ window (under "Kernel Configuration").
There are several values that may need to be increased.

First, enable shared memory. Thevaue for "shmem" should be equal to 1. Set the valuefor
"shmmax" aslarge as possible. The defaults for the values of "shmmin" and "shmseg"
should be ok. To change these parameters, you have to rebuild the kernel and reboot.

ModelSim SE User’'s Manual Tipsand Techniques E-439

Modeling memory in VHDL

Modeling memory in VHDL

AsaVHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

 You may get a"memory allocation error" message, which typically means the simulator
ran out of memory and failed to allocate more storage.

« Or, you may get very long load, elaboration or run times.

These problems are usually explained by the fact that signals consume a substantial amount
of memory (many dozens of bytes per bit), al of which needs to be loaded or initialized
before your simulation starts.

A simple alternative implementation provides some excellent performance benefits:

* storage required to model the memory can be reduced by 1-2 orders of magnitude
« startup and run times are reduced

« associated memory allocation errors are eliminated

Thetrick isto model memory using variablesinstead of signals.

In the example below, we illustrate three aternative architectures for entity "memory".
Architecture "style 87_bad" uses avhdl signal to store the ram data. Architecture
"style 87" usesvariablesin the "memory" process, and architecture "style 93" uses
variables in the architecture.

For large memories, architecture "style_87_bad" runs many times longer than the other
two, and uses much more memory. This style should be avoided.

Both architectures"style 87" and "style 93" work with equal efficiently. You'll find some
additional flexibility with the VHDL 1993 style, however, because the ram storage can be
shared between multiple processes. For example, a second processis shown that initializes
the memory; you could add other processes to create a multi-ported memory.

To implement this model, you will need functions that convert vectors to integers. To use
it you will probably need to convert integers to vectors.

Example functions are provided below in package "conversions”.

use std.standard. all;
library ieee;

use ieee.std_l ogic_1164.all;
use work.conversions. all;

entity menory is

generic(add_bits : integer := 12;
data_bits : integer := 32);
port(add_in : in std_ul ogic_vector(add_bits-1 downto 0);
data_in : in std_ulogic_vector(data_bits-1 downto 0);
data_out : out std_ul ogic_vector(data_bits-1 downto 0);
cs, mwite : in std_ulogic;
do_init : in std_ulogic);
subtype word is std_ul ogic_vector(data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;

type ramtype is array(0 to nwords-1) of word;
end;

architecture style_93 of menory is

E-440 Tipsand Techniques ModelSim SE User’s Manual

Modeling memory in VHDL

shared variable ram: ramtype;
begi n
nenory:
process (cs)
vari abl e address : natural;
begi n
if rising_edge(cs) then
address := sulv_to_natural (add_in);
if (mrite ='1") then
ran{address) := data_in;
dat a_out <= ram(address);
el se
data_out <= ram(address);
end if;
end if;
end process nenory;
-- illustrates a second process using the shared variable
initialize:
process (do_init)
vari abl e address : natural;
begi n
if rising_edge(do_init) then
for address in O to nwords-1 | oop
ran{address) := data_in;
end | oop;
end if;
end process initialize;
end architecture style_93;

architecture style_87 of nenory is
begi n

nmenory:

process (cs)

variable ram: ramtype;
vari abl e address : natural;
begi n
if rising_edge(cs) then
address := sulv_to_natural (add_in);
if (mrite ='1") then
ran{address) := data_in;
dat a_out <= ranm(address);
el se
dat a_out <= ran(address);
end if;
end if;
end process;
end style_87;

architecture bad_style_87 of menory is

nenory:

process (cs)
vari abl e address : natural := 0;
begi n

ModelSim SE User's Manual Tipsand Techniques E-441

Modeling memory in VHDL

if

ri sing_edge(cs) then

address := sulv_to_natural (add_in);
if (mrite ='1") then
ram(address) <= data_in

data_out <= data_in;

el se

dat a_out <= ram(address);

end if;
end if;
end process;
end bad_styl e 87

use std.standard. al |
library ieee;
use ieee.std_|logic_1164.all

package conversions is
function sulv_to_natural (x
nat ur al
function natural _to_sulv(n

st d_ul ogi c_vector;

end conversi ons;
package body conversions is

function sulv_to_natural (x
natural is
variable n : natural :=
variable failure
begin

bool ean

std_ul ogi c_vector) return

natural) return

std_ul ogi c_vector) return

.= fal se

assert (x'high - x'low + 1) <= 31
report "Range of sulv_to_natural argunment exceeds

natural range"
severity error

=> failure

= n + 1

1= true;

for i in x'range |oop
n:=n?=*32
case x(i) is
when '1" | "H =>n
when '0" | 'L => null
when ot hers
end case
end | oop

assert not failure

report "sulv_to_natura
std_ul ogic_vector"”

severity error

if failure then
return O
el se
return n
end if;
end sulv_to_natural

function natural _to_sulv(n

std_ul ogi c_vector
std_ul ogi c_vector(bits-1 downto 0) :=

variable x :
(others =>'0");
variabl e tenmpn : natural

cannot convert indefinite

natural) return

n

E-442 Tipsand Techniques

ModelSim SE User’s Manual

Modeling memory in VHDL

begin

for i in x'reverse_range | oop

if (tenpn nod 2) = 1 then
x(i) :="1";

end if;
tempn : = tenmpn / 2;

end | oop;

return x;

end natural _to_sulv;

end conversi ons;

ModelSim SE User's Manual Tipsand Techniques E-443

Setting up a List trigger with Expression Builder

Setting up a List trigger with Expression Builder

This example shows you how to set a List window trigger based on a gating expression
created with the Model Sm Expression Builder.

If you want to look at a set of signal values ONLY during the ssmulation cycles during
which an enable signal rises, you would need to use the List window Trigger Gating
feature. The gating feature suppresses all display lines except those for which a specified
gating function evaluatesto true.

Select Prop > Display Props (List window) to access the Triggers page.

|1:-.__1'Hm:lify Dizplay Properties [list]

—Deltas:
% EwpandDeltaz Collapze Deltaz © Mo Deltas

— I'rigger On:
¥ Signals Strobe Peniod: |On=
m e First Strobe at: |0 ns

— Trigger G ating:
Ilze Expreszsion Builder

[T Expression

E xpreszion: I

On Duration: IEI ns

Ok, Cancel Apply

Check the Trigger Gating: Expression check box. Then click on Use Expression
Builder. Select the signal in the List window that you want to be the enable signal by

E-444 Tips and Techniques ModelSim SE User’s Manual

Setting up a List trigger with Expression Builder

clicking on its name in the header area of the List window. Then click I nsert Selected
Signal and 'rising in the Expression Builder.

B 'Expression Builder

’7 E xprezzion

— Ex=preszsion Builder
[nzert Selected Signal | [| ==
'Tiging 'falling el I I=
0 1 b F= <
#*0OR| SLL b z = +
SHEL| SR H L * ¢ %
Clear Save Test | '3 | Cancel

Click OK to close the Expression Builder. Y ou should see the name of the signal plus
"'rising" added to the Expression entry box of the Modify Display Properties dialog box.
(Leave the On Duration field zero for now.) Click the OK button.

If you already have simulation datain the List window, the display should immediately
switch to showing only those cycles for which the gating signal isrising. If that isn't quite
what you want, you can go back to the expression builder and play with it until you get it
the way you want it.

If you want the enable signal to work like a"One-Shot" that would display all values for
the next, say 10 ns, after the rising edge of enable, then set the On Duration value to 10
ns. Otherwise, leaveit at zero, and select Apply again. When everything is correct, click
OK to close the Modify Display Properties dialog box.

When you save the List window configuration, the list gating parameters will be saved as
well, and can be set up again by reading in that macro. Y ou can take alook at the macro to
see how the gating can be set up using macro commands.

ModelSim SE User’'s Manual Tipsand Techniques E-445

E-446 Tipsand Techniques ModelSim SE User’s Manual

F - What’s new in ModelSim

Appendix contents

New features

Command and variable changes

Documentation changes

GUI changesin version 5.5

F-447
F-448
F-449
F-450

Model Sm 5.5 includes many new features and enhancements that are described in the
tables below. Links within the groups will connect you to more detail. GUI changes are

described toward the end of the appendix.

New features

What Description Where (select a link) ModelSim
release

waveform comparison compare simulations and Chapter 11 - Waveform 55
datasets Comparison

Model Sm projects projects have been completely Projects and system 5.5
revamped to ease getting started | initialization (2-25)
with ModelSm

gate-level optimizations gate-level Verilog designs can Compiling for faster 55
now be optimized using -fast performance (5-90)

VCD file enhancements support multiple VCD filesand | ModelSim VCD commands 55
dumpports tasks and VCD tasks (13-342)

enhanced Code Coverage | new interface and ability to Chapter 10 - Code Coverage 55

feature exclude files and lines

ved2wlf new utility convertsVCD filesto | vcd2wlf (CR-216) 55
WLF files

bookmarks save zoom and scroll settingsin | Saving zoom range and scroll 55
Wave window position with bookmarks (8-

241)

Workspace new Mainwindow easesworking | Workspace (8-158) 5.5
with design units and datasets

find and replace in Source | Source window now supports Finding and replacing in the 55

window search and replace for text and Source window (8-208)
regular expressions

breakpoints dialog manage breakpoints via dialog Setting signal breakpoints (8- 55
boxes 236)

import library wizard imports FPGA libraries Importing FPGA libraries(3-53) | 5.5

ModelSim SE User’s Manual

What'snew in ModelSim F-447

Command and variable changes

What Description Where (select a link) ModelSim
release
-compile_uselibsargument | easesuse of ‘uselib directives -compile_uselibsargument (5-82) | 5.5
for viog
-lint argument for viog enables lint-style checks -lint (CR-252) 55
middle mouse button enables/disables middle mouse Middle Mouse Button Paste (8- 55
pasting control button pasting 203)
init_signal_spy utility reference signals, registers, or init_signal_spy() (4-69) and 55
wires at any level of hierarchy $init_signal_spy (5-104)
get_resolution function returns the current simulator get_resolution() (4-68) 55
resolution as areal
to_real function convertsthephysical typetimeto | to_real() (4-70) 55
the type real
to_time function converts the type real to the to_time() (4-71) 55
physical typetime
compare commands several commands for doing Compare commands (11-323) 55
waveform comparisons
bookmark commands several commands for saving/ bookmark add wave (CR-44) 55
editing bookmarks
PrefCompare Tcl variables | Tcl preference variables for Preference variable database 55
waveform comparisons
-delay argument for virtual | assign delay to signalswithina | virtual function (CR-233) & 55
signal and virtual function | virtual command virtual signal (CR-245)
-keeploaded and leaves FLI/PLI/VPI shared - keepl oaded (Cr-260) and 55
-keeploadedrestart libraries |oaded during arestart - keepl oadedr est art (Cr-
arguments for vsim or design load 260)
vsim argumentsrelated to | four arguments control WLFfile | -wl f <fi |l enane> (CR-263), | 5.5
WLFfiles creation -wW fslim<size> (CR-263),
-w ftli m<duration>(CR-263),
and - Wl f noconpr ess (CR-
264)
delay in assign delay to signalsina Signal attributes (CR-303) 55
GUI_expression_format GUI_expression
acc_fetch paramval_str() allows fetching of a string on 64-bit support inthe PLI (5-125) | 5.5
functionin PLI 64-bit platforms
WLFfile control variables | new vsim control variables Setting default simulation 55

configure WLF file creation

options (8-265)

F-448 What'snew in ModelSim

Model Sim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm

Documentation changes

What Description Where (select a link) ModelSim
release

New Foreign Language new manual provides detailed FL| Reference Manual 55

Interface Reference documentation of FLI including

manual code examples

FLI chapter has been replaced by FLI reference 55

eliminated manual

new chapter on waveform | describes new waveform Chapter 11 - Waveform 55

comparison comparison feature Comparison

new tutorial on waveform | practice using thenew waveform | ModelSm Tutorial 55

comparison

comparison feature

Model Sim SE User’s Manual

What's new in ModelSim F-449

GUI changes in version 5.5

GUI changes in version 5.5

This section identifies differences between the version 5.3/5.4 GUI and the 5.5 GUI.

Mainwindow changes. F451
Menu bar andtoolbar F451
Filemenu F452
Editmenu. F453
Designmenu k444
Viewmenu F455
Projectmenu F455
Comparemenu F456
Optionsmenu F45

Signalswindow changes F457

Sourcewindow changes F-458
Editmenu F-458
Optionsmenu. F458

Wavewindow changes. F459
Menu bar andtoolbar F459
Editmenu. F45
Comparemenu F460
Bookmark menu F460

Coverage summary window changes. F461

F-450 What'snew in ModelSim Model Sim SE User’s Manual

Main window changes

Main window changes

The most obvious changein the version 5.5 Main window is the addition of the workspace.
See "Workspace" (8-158) for full details.

5, ModelSim

File Edit Design “iew FProect Bun Compare Macro Option: WwWindow Help

S5 (B8 HF[wsEHERHE B
=4

lez/counter.y -
cauntar caunte odel Technology ModelSim SE/EE wlog &
B e E\ggta 4 Campiler 200101 Jan 18 2001
& Funchan increment # - \Compiling module counter 55
Top level modules:
B |counter

wzim wark, counter

wgim work, counter

Lovading work, counter
quit |-zim

i wark, counter

vgim wark, counter Workspace
%ading wiork. counter
WEIM 8 | L
|F'ru:ujeu:t - test Mow: O ns Delta: 0 sim:fcounter p
5, ModelSim
File Edit Dezign “iew Hun kacro Option: window Help
S B@E [4 I |
Reading E: /modeltechAwindz2 4. Aoldvsimdpref bl =
MadelSim: |
5.3/5.4

L« |

[<Ma Desian Loaded:

Menu bar and toolbar

The Main window toolbar in version 5.5 has not changed from version 5.3/ 5.4. TheMain
window menu bar has new Project and Compare menus. See the following pages for
additional menu changes.

Model Sim SE User’s Manual What's new in ModelSim F-451

Main window changes

new menus

55

F|Ie Edit Design View Project EMacrn Option: “Window Help
S i BR W i B

| [ModelSim SN

File Edit Deszign “ew Bun Macro Options Window Help

File E
L BE F[O wIHEHEES BR

File menu

Asshown below, theversion 5.5 Main window File menu contains two additions. See"The
Main window menu bar" (8-160) for complete menu option details.

Mew 3
Dpen b |5y Cloge _ (O] x|

b : new
_EIDSE ErD|E.'|:t sub-menu
Lielete r Dratazet 3

Change Directony...

Save Transcrpt

Save Tranzorpt As...

Clear Tranzcript

O ptions k

1 E:/modelzim54d_zedwind2

2 E:/modelzim55_sewing2

3 #/RAea/E fnightly/patchs/modeltech wind2
4 E:modelzimb5_selexamples

5 E:/modelzim55_seslexsamples/misedHDL

it

F-452 What'snew in ModelSim Model Sim SE User’s Manual

Main window changes

The graphic below shows the new menu command for importing (adding) a source fileto
aproject. See "Step 2 — Add files to the project” (2-31) for details.

53/5.4 55
|5, New [Hi[=] E3 _
Compile Order... new 5.5 context
MNew Folder Compile Al menuaccessed
Mew Saurce P via right mouse
" . . butt th
Irmport Source Add file to Project PLrjonr;tO;?ag:in
Mew Project Sart by &lphabetical Order the Workspace
or
-, Project =] E3
Compile Order...
|:|:||T||:li|E E” new Project
menu
Add File to Project...

Edit menu

See "The Main window menu bar" (8-160) for complete menu option details.

5.5

Lopy
Pazte

Select Al
Unzelect Al

Find...
C Breakpoint(z)...) new selection

Model Sim SE User’s Manual What's new in ModelSim F-453

Main window changes

Design menu

See "The Main window menu bar" (8-160) for complete menu option details.

5.3/54

Browse Libranies. ..
Create a Hew Libram...
Miew Libram Contents. .
FPGA Librany Manager. ..

LCompile...

replaced in 5.5 Compile Project

by the Designs

page in the ;

Workspace Load Desigr...
End Sirulation. ..

5.5

Browsze Libranies. .
Create a Mew Library...

h Impart Library...

LCompile...

Load Dezign...
End Simulation...

55
Compile Order...
C il Al new 5.5 context
SIS menuaccessed
q 0 via right mouse
Add file to F'r|:||eurtt button on the
Sort by Alphabetizal Order Project page

F-454 What'snew in ModelSim

Model Sim SE User’s Manual

Main window changes

View menu

See "The Main window menu bar" (8-160) for complete menu option details.

5.5

¥ view M=l E3

All
Hide ‘Warkspace
Layout Stple— »/—

Source
Structure
Mariables
Signals

D efault
Clazzic
Cazcade
Harizantal
Yertical

List
Process
Ml ave
Drataflow

Dataszets...

Hew 3
Other 3

Project menu

new selections and sub-menu

The Project menu isnew in version 5.5. See "What are projects?’ (2-26) for detalils.

5.5

[%4 ' Project [j[=]

Compile Order...
Compile 2l

&dd File to Project. ..

new menu

Model Sim SE User’s Manual

What's new in ModelSim F-455

Main window changes

Compare menu

The Compare menu is new in version 5.5. See Chapter 11 - Waveform Comparison for
details on waveform comparisons. See also "The Main window menu bar" (s-160) for
complete menu option details..

5.5

|3 Compare =] E3

Start Cormparisan. ..
Comparizon Wwizard. ..
Bun Comparizon
End Comparizon

new menu

Add 2
DOptiats...

Differences

Rulez 3
Reload. ..

Options menu

See"TheMainwindow menu bar" (8-160) for complete menu option details. Seea so "What
are projects?’ (2-26) for details on Project operations.

5.3/5.4
[%4 ' Options [W[=] E3

LCompile...

Simulation, .. elentin .5
- no equivalent in 5.5;
Edit Preferences... all Project editing is
Edit Project... done from the
Project page in the
Workspace

Save Preferences...

F-456 What'snew in ModelSim Model Sim SE User’s Manual

Signals window changes

Signals window changes

The menus accessed from the Signals menu bar are the samein version 5.5 asthey werein
version 5.3/ 5.4. However, the context menu (accessed with aright mouse click in the
Signalswindow) has changed. See " Setting signal breakpoints” (8-198) for complete details
on this context menu.

5.3/5.4 55

Add Wiew Declaration

Rernoyve (.) ~

Bemave Al — .-'-‘«dr:l Ereakpl:u.mt

Shaw Al <Ed|t Breakpoint... > '
Edit &l Breakpaints]..,) — new selections
Femowve Breakpoint
Femowve All Breakpoints
Show Breakpoints...

Model Sim SE User’s Manual What's new in ModelSim F-457

Source window changes

Source window changes

Edit menu

See "The Source window menu bar" (8-202) for complete menu option details.

5.5
|-, Edit [Hj[=] E3

U hda

Cut
Lopy
Paste

Select Al
Unzelect All

Find b
C Breakpoint(z]... new selection

read only

Options menu

See "The Structure window menu bar" (8-211) for complete menu option details.

5.5
[%4 ‘0 ptions [[O) x|

Colorize Source
Highlight E xecutable Lines
(Middle P ouze Buthon F'aste) new selection

Yerilog Highlighting
wHOL Highlighting

Freeze Filz
Freeze WView

F-458 What'snew in ModelSim Model Sim SE User’s Manual

Wave window changes

Wave window changes

Menu bar and toolbar

Theversion 5.5 Wave window menu bar has two new menus, and the toolbar has four new
icons. See "The Wave window menu bar" (8-220) for complete menu and toolbar option
details.

new menus

(W]

=+ wave - default =R

File Edit Curgor Zoom(Compare Bookmark) Format window
FES | 3B@ | MK e | RAQ® | 5 | ELEEHE | lvle A

new icons

Edit menu

See "The Wave window menu bar" (8-220) for complete menu option details.

Cut Crtl-=
LCopy Crtl-C
Pazte Crtl
Delete

Select Al
Unzelect Al

Combine...
C Signal Breakpoints b | new selection

Sort 3

Find...

Search...

Justify Walues 3

Dizplay Properties. ..
Signal Properties. ..

Model Sim SE User’s Manual What's new in ModelSim F-459

Compare menu

The Compare menu is new in version 5.5. See Chapter 11 - Waveform Comparison for
details on waveform comparisons. See also "The Wave window menu bar" (8-220) for
complete menu option details.

5.5

|4 Compare =] E3

Start Comparizar...
Cormparizon Wizard. .. new menu
Run Comparizan
End Comparizon

Add »
Dptians...
Differences 2
Rulez 2
Reload...

Bookmark menu

The Bookmark menu is new in version 5.5. See " Saving zoom range and scroll position
with bookmarks' (8-241) for details on bookmarks. See also " The Wave window menu bar"
(8-220) for complete menu option details.

5.5

-, Bookmark [j[=] E3

Add Boakrnark:.

Edit Bookmarks...

new menu

bk mark 1

F-460 What's new in ModelSim ModelSim SE User’s Manual

Coverage_summary window changes

Coverage_summary window changes

The coverage_summary window has been enhanced to show line misses and exclusions
below the summary information.

)
|5y coverage_summany

File Cowverage Beport

Pathiname Lines | Hits 4 Coverage [~
E:/modelzim55_ 011801 Awind2d Avhdl | 240
E:/modelzim55_ 011801 Awind2d Avhdl{ BOY
E:/modelzim55_011201 Awind2d Avhdl| B15
E:/modelzim55 011801 Awin32) . Avbd) a0
control vhd 48
retrieve. vhd 4]
ringrtl whd 1
gtore_ vhd 3
testring. vhd a3
M
« | | _r| 1458 (112 | 7.6 o
Lines with no coverage in file control.«vhd
El IF csh = '0' THEN |
new half of EZ2 control reg <= switch;
window 62 when "l0" =& buffer txd == txd(l);
shows line — 62 when "0l =& buffer txd <= txd(Z); b
misses and €4 when "00" => buffer_txd <= txd(3);
exclusions 70 when "10" == rxzd <= 'l' & buffer rxd & "11";

vrd amtdrra o= 10 - ""'I

=1
_\ Mizzes ;'{ Excluded Jllr

Model Sim SE User’s Manual What's new in ModelSim F-461

F-462 What's new in ModelSim ModelSim SE User’s Manual

License Agreement

IMPORTANT — USE OF THIS SOFTWARE IS SUBJECT TO LICENSE
RESTRICTIONS

CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE
SOFTWARE

This license is a legal “Agreement” concerning the use of Software between you,
the end user, either individually or as an authorized representative of the company
purchasing the license, and Mentor Graphics Corporation, Mentor Graphics
(Ireland) Limited, Mentor Graphics (Singapore) Private Limited, and their majority-
owned subsidiaries (“Mentor Graphics”). USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to these
terms and conditions, promptly return or, if received electronically, certify
destruction of Software and all accompanying items within 10 days after receipt of
Software and receive a full refund of any license fee paid.

END USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading,
or have acquired with this Agreement, including any updates, modifications,
revisions, copies, and documentation (“Software”) are copyrighted, trade secret
and confidential information of Mentor Graphics or its licensors who maintain
exclusive title to all Software and retain all rights not expressly granted by this
Agreement. Mentor Graphics or its authorized distributor grants to you, subject to
payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your
internal business purposes; and (c) on the computer hardware or at the site for
which an applicable license fee is paid, or as authorized by Mentor Graphics. A site
is restricted to a one-half mile (800 meter) radius. Mentor Graphics’ then-current
standard policies, which vary depending on Software, license fees paid or service
plan purchased, apply to the following and are subject to change: (a) relocation of
Software; (b) use of Software, which may be limited, for example, to execution of
a single session by a single user on the authorized hardware or for a restricted
period of time (such limitations may be communicated and technically
implemented through the use of authorization codes or similar devices);

(c) eligibility to receive updates, modifications, and revisions; and (d) support
services provided. Current standard policies are available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software
development (“ESD”) Software, Mentor Graphics or its authorized distributor
grants to you a nontransferable, nonexclusive license to reproduce and distribute
executable files created using ESD compilers, including the ESD run-time libraries
distributed with ESD C and C++ compiler Software that are linked into a composite
program as an integral part of your compiled computer program, provided that you
distribute these files only in conjunction with your compiled computer program.
Mentor Graphics does NOT grant you any right to duplicate or incorporate copies
of Mentor Graphics' real-time operating systems or other ESD Software, except
those explicitly granted in this section, into your products without first signing a
separate agreement with Mentor Graphics for such purpose.

3. BETA CODE.

ModelSim SE User’'s Manual License Agreement - 463

3.1 Portions or all of certain Software may contain code for experimental testing
and evaluation (“Beta Code”), which may not be used without Mentor Graphics’
explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics
grants to you a temporary, nontransferable, nonexclusive license for experimental
use to test and evaluate the Beta Code without charge for a limited period of time
specified by Mentor Graphics. This grant and your use of the Beta Code shall not
be construed as marketing or offering to sell a license to the Beta Code, which
Mentor Graphics may choose not to release commercially in any form.

3.2 If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate
and test the Beta Code under normal conditions as directed by Mentor Graphics.
You will contact Mentor Graphics periodically during your use of the Beta Code to
discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the
Beta Code, including its strengths, weaknesses and recommended improvements.

3.3 You agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceives or
makes during or subsequent to this Agreement, including those based partly or
wholly on your feedback, will be the exclusive property of Mentor Graphics. Mentor
Graphics will have exclusive rights, title and interest in all such property. The
provisions of this subsection shall survive termination or expiration of this
Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably
necessary to support the authorized use. Each copy must include all notices and
legends embedded in Software and affixed to its medium and container as
received from Mentor Graphics. All copies shall remain the property of Mentor
Graphics or its licensors. You shall maintain a record of the number and primary
location of all copies of Software, including copies merged with other software, and
shall make those records available to Mentor Graphics upon request. You shall not
make Software available in any form to any person other than your employer's
employees and contractors, excluding Mentor Graphics' competitors, whose job
performance requires access. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to
Software does not disclose it or use it except as permitted by this Agreement.
Except as otherwise permitted for purposes of interoperability as specified by the
European Union Software Directive or local law, you shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive from Software any source
code. You may not sublicense, assign or otherwise transfer Software, this
Agreement or the rights under it without Mentor Graphics’ prior written consent.
The provisions of this section shall survive the termination or expiration of this
Agreement.

5. LIMITED WARRANTY.

5.1 Mentor Graphics warrants that during the warranty period Software, when

properly installed, will substantially conform to the functional specifications set forth
in the applicable user manual. Mentor Graphics does not warrant that Software will
meet your requirements or that operation of Software will be uninterrupted or error
free. The warranty period is 90 days starting on the 15th day after delivery or upon

464 - License Agreement ModelSim SE User’s Manual

installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if
Software has been subject to misuse, unauthorized modification or installation.
MENTOR GRAPHICS’ ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE
PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B)
MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET
THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED
WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH IS LOANED TO
YOU FOR A LIMITED TERM OR AT NO COST; OR (C) EXPERIMENTAL BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

5.2 THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE.
NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO SOFTWARE OR
OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER
APPLICABLE STATUTE OR REGULATION, IN NO EVENT SHALL MENTOR
GRAPHICS OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS
OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT
SHALL MENTOR GRAPHICS' OR ITS LICENSORS' LIABILITY UNDER THIS
AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT
WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO
LIABILITY FOR ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NORITS
LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR
IN CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION
WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT
RESULT IN DEATH OR PERSONAL INJURY. YOU AGREE TO INDEMNIFY AND
HOLD HARMLESS MENTOR GRAPHICS AND ITS LICENSORS FROM ANY
CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH SUCH USE.

8. INFRINGEMENT.

8.1 Mentor Graphics will defend or settle, at its option and expense, any action
brought against you alleging that Software infringes a patent or copyright in the
United States, Canada, Japan, Switzerland, Norway, Israel, Egypt, or the
European Union. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the claim, provided that you: (a) notify Mentor

ModelSim SE User’'s Manual License Agreement - 465

Graphics promptly in writing of the action; (b) provide Mentor Graphics all
reasonable information and assistance to settle or defend the claim; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the
claim.

8.2 If an infringement claim is made, Mentor Graphics may, at its option and
expense, either (a) replace or modify Software so that it becomes noninfringing, or
(b) procure for you the right to continue using Software. If Mentor Graphics
determines that neither of those alternatives is financially practical or otherwise
reasonably available, Mentor Graphics may require the return of Software and
refund to you any license fee paid, less a reasonable allowance for use.

8.3 Mentor Graphics has no liability to you if the alleged infringement is based
upon: (a) the combination of Software with any product not furnished by Mentor
Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software
as part of an infringing process; (e) a product that you design or market; (f) any
Beta Code contained in Software; or (g) any Software provided by Mentor
Graphics’ licensors which do not provide such indemnification to Mentor Graphics’
customers.

8.4 THIS SECTION 8 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS
AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT BY
ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

9. TERM. This Agreement remains effective until expiration or termination. This
Agreement will automatically terminate if you fail to comply with any term or
condition of this Agreement or if you fail to pay for the license when due and such
failure to pay continues for a period of 30 days after written notice from Mentor
Graphics. If Software was provided for limited term use, this Agreement will
automatically expire at the end of the authorized term. Upon any termination or
expiration, you agree to cease all use of Software and return it to Mentor Graphics
or certify deletion and destruction of Software, including all copies, to Mentor
Graphics’ reasonable satisfaction.

10. EXPORT. Software is subject to regulation by local laws and United States
government agencies, which prohibit export or diversion of certain products,
information about the products, and direct products of the products to certain
countries and certain persons. You agree that you will not export in any manner
any Software or direct product of Software, without first obtaining all necessary
approval from appropriate local and United States government agencies.

11. RESTRICTED RIGHTS NOTICE. Software has been developed entirely at
private expense and is commercial computer software provided with
RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or
a U.S. Government subcontractor is subject to the restrictions set forth in the
license agreement under which Software was obtained pursuant to DFARS
227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR 52.227-19, as applicable.
Contractor/manufacturer is Mentor Graphics Corporation, 8005 Boeckman Road,

466 - License Agreement ModelSim SE User’s Manual

Wilsonville, Oregon 97070-7777 USA.

12. THIRD PARTY BENEFICIARY. For any Software under this Agreement
licensed by Mentor Graphics from Microsoft or other licensors, Microsoft or the
applicable licensor is a third party beneficiary of this Agreement with the right to
enforce the obligations set forth in this Agreement.

13. CONTROLLING LAW. This Agreement shall be governed by and construed
under the laws of Ireland if the Software is licensed for use in Israel, Egypt,
Switzerland, Norway, South Africa, or the European Union, the laws of Japan if the
Software is licensed for use in Japan, the laws of Singapore if the Software is
licensed for use in Singapore, People’s Republic of China, Republic of China,
India, or Korea, and the laws of the state of Oregon if the Software is licensed for
use in the United States of America, Canada, Mexico, South America or anywhere
else worldwide not provided for in this section.

14. SEVERABILITY. If any provision of this Agreement is held by a court of
competent jurisdiction to be void, invalid, unenforceable or illegal, such provision
shall be severed from this Agreement and the remaining provisions will remain in
full force and effect.

15. MISCELLANEOUS. This Agreement contains the entire understanding
between the parties relating to its subject matter and supersedes all prior or
contemporaneous agreements, including but not limited to any purchase order
terms and conditions, except valid license agreements related to the subject matter
of this Agreement which are physically signed by you and an authorized agent of
Mentor Graphics. This Agreement may only be modified by a physically signed
writing between you and an authorized agent of Mentor Graphics. Waiver of terms
or excuse of breach must be in writing and shall not constitute subsequent consent,
waiver or excuse. The prevailing party in any legal action regarding the subject
matter of this Agreement shall be entitled to recover, in addition to other relief,
reasonable attorneys' fees and expenses.

Rev. 03/00

ModelSim SE User’'s Manual License Agreement - 467

468 - License Agreement ModelSim SE User’s Manual

Index

Numerics

64-bit ModelSim
using with 32-bit FLI apps 5-114

A

Accelerated packages 3-51
architecture simulator state variable B-408
argc simulator state variable B-408
AssertFile .ini file variable B-398
AssertionFormat .ini file variable B-398
Assertions

selecting severity that stops simulation 8-266

B

Base (radix)
specifying in List window 8-182
Batch-mode simulations E-428, E-429
bookmarks 8-241
Break on assertion 8-266
BreakOnAssertion .ini file variable B-398
breakpoints
deleting with the mouse 8-205
enabling and disabling 8-207
setting file-line beakpoints 8-205
setting signal breakpoints 8-198
setting with the mouse 8-205
viewing in the Source window 8-201
Busses, user-defined 8-154
Button Adder (add buttons to windows) 8-269

C
Cdll libraries 5-97
Checkpoint/restore E-426

CheckpointCompressMode .ini file variable B-398

CheckSynthesis .ini file variable B-396

clear differences 11-320

clocked comparison 11-303, 11-308, 11-312

Code Coverage
coverage report command 10-300
coverage_summary window 10-292
enabling code coverage 10-292, 10-300
excluding lines and files 10-293, 10-296
invoking code coverage with vsim 4-59
miss and exclusion details 10-293
saving coverage reports 10-294

Tcl preference variables 10-300
Command reference 1-19
CommandHistory .ini file variable B-398
Command-line mode E-428
Commands

graphic interface commands 8-277

VSIM Tcl commands 16-378
commands

compare

commands 11-323
compare

add clock 11-309

add region 11-311

add signals 11-307

by signal 11-307

clear differences 11-320

clocked 11-303, 11-308, 11-312

command line interface 11-323

continuous 11-303, 11-310, 11-313

difference markers 11-317

differences 11-321

end 11-319

graphical interface 11-305

icons 11-318

limit count 11-314

list window display 11-322

menu 11-318

modify clock 11-309

options 11-314

pathnames 11-317

preference variables 11-323

reference dataset 11-305

reference region 11-311

reload 11-321

rules 11-321

run 11-319

save differences 11-320

show differences 11-320

signal options 11-308

specify dataset 11-305

specify when expression 11-310

start 11-318

startup wizard 11-318

tab 11-306

test dataset 11-305

test region 11-311

timing differences 11-317

tolerance 11-310, 11-313

tolerances 11-303

values 11-317

verilog matching 11-314

ModelSim SE User’s Manual

Index - 469

VHDL matching 11-314
wave window display 11-316
waveforms 11-301
write report 11-320
compare by region 11-311
compare commands 11-323
compare simulations 7-137
compare waveforms 7-137, 8-228
comparison modes 11-303
comparison wizard 11-318
Compilation and Simulation
Verilog 5-73—5-126
VHDL 4-55—4-67
Compiler directives 5-106
| EEE Std 1364-2000 5-106
XL compatible compiler directives 5-106
Compiling
invoking the VHDL compiler 4-57
locating source errors 8-251
setting default options 8-252
setting options in projects 2-35
setting order in projects 2-34
Verilog
incremental compilation 5-76
optimizing performance 5-90
XL "uselib compiler directive 5-81
XL compatible options 5-79
Verilog compile options 8-254
VHDL 4-57
VHDL compile options 8-252
with the graphic interface 8-250
with VITAL packages 4-67
Component declaration
generating VHDL from Verilog 6-134
with vgencomp 6-134
Concatenation of signals 7-147
ConcurrentFileLimit .ini file variable B-399
configuration simulator state variable B-408
context menus
coverage source window 10-296
described 8-154
Library page 3-45
Signal window 8-198
Structure pages 7-140
continuous comparison 11-303, 11-310
convert real to time 4-71
convert timeto real 4-70
coverage report command 10-300
coverage_summary window 10-292
Cursors
link to Dataflow window 8-171

Wave window 8-239

D

Dataflow window (see also, Windows) 8-171
Dataset Browser 7-142
datasets 7-137, 11-302
managing 7-142
reference 11-305
restrict dataset prefix display 7-143
simulator time resolution 7-138
specifying for compare 11-305
test 11-305
DatasetSeparator .ini file variable B-399
Default compile options 8-252
DefaultForceKind .ini file variable B-399
DefaultRadix .ini file variable B-399

DefaultRestartOptions .ini file variable B-399, B-405

Defaults

restoring B-392
Delay

detecting infinite zero-delay loops E-436

interconnect 5-86

modes for Verilog models 5-97

SDF files 12-325

specifying stimulus delay 8-197
DelayFileOpen .ini file variable B-399
deleting library contents 3-44
Delta

collapse deltasin the List window 8-179

referencing simulator iteration

as asimulator state variable B-408

Delta cycles E-436
delta simulator state variable B-408
Dependent design units 4-57
Descriptions of HDL items 8-208
Design hierarchy

viewing in Structure window 8-210
Design library

assigning alogical name 3-47

creating 3-43

for VHDL design units 4-57

mapping search rules 3-48

resource type 3-42

working type 3-42
Design units 3-42

viewing hierarchy 8-155
Directories

moving libraries 3-49

See also, Libraries

ModelSim SE User’s Manual

Index - 470

DO files (macros)

error handling E-431

passing parameters to E-430

Tcl source command E-432
documentation 1-21
DOPATH environment variable B-393
dumpports tasks

VCD files 13-343

E

Editing
in notepad windows 8-168, C-413
in the Main window 8-168, C-413
in the Source window 8-168, C-413
EDITOR environment variable B-393
Email
Model Technology’s email address 1-23
end comparison 11-319
ENDFILE function 4-63
ENDLINE function 4-63
entity simulator state variable B-408
Environment variables B-393
accessed during startup 2-38
for locating license file D-418
location of modelsim.ini file B-407

F

F8 function key 8-170, C-414
file-line breakpoints 8-205
Finding
acursor in the Wave window 8-240
amarker in the List window 8-187
Finding names, and searching for values 8-153
FLEXIm license manager D-417—D-423
administration tools for Windows D-423
license server utilities D-422
force command defaults B-404
Foreign language interface
tracing 5-125
format file
Wave window 8-219

G

GenerateFormat .ini file variable B-399
Generics, VHDL 6-128
get_resolution() VHDL function 4-68
Graphic interface 8-149—8-279

UNIX support 1-16
graphical interface

waveform comparison 11-305

referencing from Model Sim command line B-395 GUI_expression_format
referencing with VHDL FILE variable B-395 GUI expression builder 8-275
setting before compiling or simulating B-393

setting in Windows B-394

specify transcript file location with TranscriptFile H
B-400

specifying library locations in modelsim.ini file Hazard .ini file variable (VLOG) B-398
B-396 HDL item 1-20

used in Solarislinking for FLI and PLI/VPI 5-112 ~ Hierarchical profile 9-285

using with location mapping E-437 History shortcuts C-412

variable substitution using Tcl 16-377 hm_entity 15-365 .
Errors during compilation, locating 8-251 HOME environment variable B-393
Event order issues 5-85
excluding lines and files from Code Coverage 10-293, I

10-296

exclusion filter 10-293
Explicit .ini file variable B-397
Expression Builder 11-312

specify when expression 11-310, 11-312, 11-313
Expression Builder, see GUI expression builder
Extended identifier 6-132

ieee .ini file variable B-396

|EEE libraries 3-51

|EEE std 1076 1-17, 4-55

|EEE std 1364 1-17, 5-73

IgnoreError .ini file variable B-399
IgnoreFailure .ini file variable B-399
IgnoreNote .ini file variable B-399
IgnoreVitalErrors .ini file variable B-397
IgnoreWarning .ini file variable B-399

ModelSim SE User’s Manual Index - 471

Incremental compilation

automatic 5-77

manual 5-77

with Verilog 5-76
init_signal_spy 4-69
initial dialog box

turning on/off B-392
Initialization sequence 2-39
Installation

locating the license file D-418
I nstantiation in mixed-language design

Verilog from VHDL 6-132

VHDL from Verilog 6-136
Instantiation label 8-211
Interconnect delays 5-86, 12-336
Iteration_limit

detecting infinite zero-delay loops E-436

IterationLimit .ini file variable B-399

K

Keyboard shortcuts
List window 8-188, C-411
Wave window 8-244, C-410

L

Libraries

64-bit and 32-bit in same library 3-52

aternate |IEEE libraries 3-51
creating design libraries 3-43
design library types 3-42
design units 3-42

ieee_ numeric 3-51
ieee_synopsis 3-51

mapping from the command line 3-48

mapping hierarchy B-403
mapping search rules 3-48
mapping with the GUI 3-47
moving 3-49

naming 3-47

predefined 3-50

rebuilding ieee_numeric 3-51
rebuilding ieee_synopsis 3-51
refreshing library images 3-51
resource libraries 3-42

setting up for groups E-434
std 3-50

verilog 5-78, 6-129

VHDL library clause 3-50

working libraries 3-42
working with contents 3-44
libraries
modelsim_lib 4-68
library simulator state variable B-408
Licensing
Licensevariablein .ini file B-400
locating the license file D-418
using the FLEXIm license manager D-417
List window
waveform comparison 11-322
List window (see also, Windows) 8-175
List window, see Windows
LM_LICENSE_FILE environment variable B-393
Imdown license server utility D-422
Imgrd license server utility D-422
Imremove license server utility D-423
Imreread license server utility D-423
Imstat license server utility D-422
Imutil license server utility D-423
L ocating source errors during compilation 8-251
L ocation maps
referencing source files E-437
LockedMemory .ini file variable B-400
logfile 11-302
logfiles 7-137, E-434
Logic Modeling
SmartModel
command channel 14-358
compiling Verilog shells 14-361
SmartModel Windows
Imcwin commands 14-359
memory arrays 14-360

M

MacroNestingLevel simulator state variable B-408
Macros (DO files)
creating from a saved transcript 8-159
depth of nesting, simulator state variable B-408
DO files (macros) E-430
error handling E-431
parameter as a simulator state variable (n) B-408

parameter total as a simulator state variable B-408

passing parametersto E-430

startup macros B-404
Main window (see also, Windows) 8-157
Mapping Verilog states in mixed designs 6-130
math_complex package 3-51
math_real package 3-51

ModelSim SE User’s Manual

Index - 472

Memory
locked memory under HP-UX 10.2 E-439
modeling in VHDL E-440
Menus
customizing menus and buttons 8-154
Dataflow window 8-172
List window 8-176
Main window 8-160
Process window 8-191
see also context menus
Signals window 8-194
Source window 8-202
Structure window 8-211
tearing off or pinning menus 8-154
Variables window 8-214
Wave window 8-220
Messages
turning off assertion messages B-404
turning off warnings from arithmetic packages
B-404

MGC_LOCATION_MAP environment variable B-393

Miss and Exclusion details 10-293
Mixed-language simulation 6-127
MODEL_TECH environment variable B-393
MODEL_TECH_TCL environment variable B-393
Modeling memory in VHDL E-440
ModelSim

custom setup with daemon options D-420

licensefile D-418
MODELSIM environment variable B-393
modelsim.ini

default to VHDL93 B-405

hierarchia library mapping B-403

opening VHDL files B-405

to specify astartup file B-404

turning off arithmetic warnings B-404

turning off assertion messages B-404

using environment variablesin B-403

using to create a transcript file B-403

using to define force command default B-404

using to define restart command defaults B-405

using to delay file opening B-405
MODELSIM_TCL environment variable B-393
MPFfile

loading from the command line 2-36
MTI_TF_LIMIT environment variable B-393
Multiple drivers on unresolved signal 8-253
multiple simulations 7-137

N

n simulator state variable B-408
negative timing checks 5-102
Nets
adding to the Wave and List windows 8-197
displaying in Dataflow window 8-171
displaying valuesin Signals window 8-193
forcing signal and net values 8-196
saving values as binary log file 8-197
viewing waveforms 8-216
New features F-447
Next and previous edges, finding 8-244, C-410
No spacein time literal 8-253
NoCaseStaticError .ini file variable B-397
NoDebug .ini file variable (VCOM) B-397
NoDebug .ini file variable (VLOG) B-398
NoOthersStaticError .ini file variable B-397
Notepad windows, text editing 8-168, C-413
NoVita .ini file variable B-397
NoVitalCheck .ini file variable B-397
Now simulator state variable B-408
now simulator state variable B-408
numeric_bit package 3-51
numeric_std package 3-51
NumericStdNoWarnings .ini file variable B-400

O

Online references 1-22

Operating systems supported 1-16
Optimize for std_logic_1164 8-254
Optimize_1164 .ini file variable B-397

P

Packages
standard 3-50
textio 3-50
vital_memory 3-51
packages
util 4-68
Parameters, using with macros E-430
pathnames 11-317
PathSeparator .ini file variable B-400
Performance Analyzer 9-281
%parent field 9-287
commands 9-290
getting started 9-283

ModelSim SE User’s Manual

Index - 473

hierarchical profile 9-285

in(%) field 9-286

interpreting data 9-283

name field 9-286

profile report command 9-289

ranked profile 9-287

report option 9-289

setting preferences 9-290

statistical sampling 9-282

under(%) field 9-286

view_profile command 9-285

view_profile_ranked command 9-286

viewing results 9-284
PLI/VPI see Verilog PLI
PLIOBJS environment variable B-394
port driver data

capturing 13-349
Ports

VHDL and Verilog 6-129
Postscript

saving awaveform in 8-245
preference variables

waveform compare 11-323
Preferences

performance analyzer preferences 9-290
printing

comparison differences 11-321
Process window (see also, Windows) 8-190
Process without a wait statement 8-253
Processes

displayed in Dataflow window 8-171

values and pathnames in Variables window 8-213
profile report command 9-289
Project files

modelsim.ini

MODELSIM environment variable B-393
modelsim.mpf
project definition 2-26

projects

accessing from the command line 2-36

adding filesto 2-31

changing compile order 2-34

compiling the files 2-32

creating 2-29

customizing settings 2-34

differencesin 5.5 2-27

loading adesign 2-33

setting compiler optionsin 2-35
"protect compiler directive E-433

Q

Quiet .ini file variable (VCOM) B-397
Quiet .ini file variable (VLOG) B-398

R

Radix
specifying in List window 8-182
specifying in Signals window 8-196
Ranked profile 9-287
real type
converting to time 4-71
Rebuilding supplied libraries 3-51
Reconstruct RTL-level design busses 7-145
Records
changing values of 8-213
reference region 11-311
reference signals 11-302
Refreshing library images 3-51
Register variables
adding to the Wave and List windows 8-197
displaying valuesin Signals window 8-193
saving values as binary log file 8-197
viewing waveforms 8-216
RequireConfigForAllDefaultBinding variable B-397
Resolution 4-58
resolution 4-68
Resolution .ini file variable B-400
resolution simulator state variable B-408
Resource library 3-42
Restart 8-163, 8-166, 8-226
restart command defaults B-405
Restoring defaults B-392
RunLength .ini file variable B-400

S

save differences 11-320
Saving and viewing waveforms 7-137, 8-220
ScalarOpts..ini file variable B-397, B-398
SDF
errors and warnings 12-327
instance specification 12-326
interconnect delays 12-336
mixed VHDL and Verilog designs 12-336
obtaining the specification 12-339
specification with the GUI 12-327
troubleshooting 12-337

ModelSim SE User’s Manual

Index - 474

Verilog
$sdf _annotate system task 12-330
optional conditions 12-334
optional edge specifications 12-333
rounded timing values 12-335
SDF to Verilog construct matching 12-331
Verilog SDF annotation 12-330
VHDL
Resolving errors 12-329
SDF to VHDL generic matching 12-328
Searching
for values and finding names in windows 8-153
List window
signal values, transitions, and names 8-185
Verilog libraries 5-78
waveform
signal values, edges and names 8-208, 8-212,
8-237
searchLog simulator command 7-147
Shortcuts
command history C-412
command line caveat C-412
List window 8-188, C-411
text editing 8-168, C-413
Wave window 8-244, C-410
show differences 11-320
Show source lines with errors 8-253
Show_source .ini file variable (VCOM) B-397
Show_source .ini file variable (VLOG) B-398
Show_VitalChecksWarning .ini file variable B-397
Show_Warningl .ini file variable B-397
Show_Warning2 .ini file variable B-397
Show_Warning3 .ini file variable B-397
Show_Warning4 .ini file variable B-397
Show_Warning5 .ini file variable B-397
signal breakpoints 8-198
Signal spy 4-69
Signal transitions
searching for 8-240
Signals
adding to alog file 8-197
adding to the Wave and List windows 8-197
applying stimulusto 8-196
combining into a user-defined bus 8-154
displaying in Dataflow window 8-171
displaying valuesin Signals window 8-193
referencing in the hierarchy 4-69
saving values as binary log file 8-197
selecting signal typesto view 8-195
viewing waveforms 8-216
Signals window (see also, Windows) 8-193

Simulating
applying stimulus to signals and nets 8-196
batch mode E-428
command-line mode E-428
comparing simulations 7-137, 11-301
mixed Verilog and VHDL Designs
compilers 6-128
libraries 6-128
Verilog parameters 6-129
Verilog state mapping 6-130
VHDL and Verilog ports 6-129
VHDL generics 6-128
saving simulations 7-137, E-434
saving waveform as a Postscript file 8-245
setting default run length 8-266
setting iteration limit 8-266
setting time resol ution 8-258
speeding-up with Performance Analyzer 9-281
Verilog
delay modes 5-97
event order issues 5-85
hazard detection 5-86
optimizing performance 5-90
resolution limit 5-84
XL compatible simulator options 5-86
VHDL 4-58
invoking code coverage 4-59
viewing resultsin List window 8-175
with the graphic interface 8-256
with VITAL packages 4-67
Simulation and Compilation
Verilog 5-73-5-126
VHDL 4-55—4-67
simulator resolution
returning asarea 4-68
sizetf callback function 5-119
sm_entity 14-355
SmartModels
creating foreign architectures with sm_entity
14-355
invoking SmartModel specific commands 14-358
Imcwin commands 14-359
memory arrays 14-360
Verilog interface 14-361
VHDL interface 14-354
Software updates A-385
software version 8-165
Sorting
sorting HDL itemsin VSIM windows 8-154
Source code
source code security E-433

ModelSim SE User’s Manual

Index - 475

Source directory, setting from source window 8-202
Sourcefiles
referencing with location maps E-437
Source window (see also, Windows) 8-201
specify when expression 11-312
Speeding-up the simulation 9-281
Standards supported 1-17
Startup
environment variables access during 2-38
files accessed during 2-37
macro in the modelsim.ini file B-400
startup macro in command-line mode E-428
using a startup file B-404
Startup .ini file variable B-400
Startup macros B-404
Status bar
Main window 8-168
std .ini file variable B-396
std_developerskit .ini file variable B-396
std_logic_arith package 3-51
std_logic_signed package 3-51
std_logic_unsigned package 3-51
StdArithNoWarnings .ini file variable B-400
STDOUT environment variable B-394
Stimulus
applying to signals and nets 8-196
Structure window (see also, Windows) 8-210
Support A-385
Symbolic link to design libraries (UNIX) 3-48
synopsys .ini file variable B-396
system calls
VCD 13-342
Verilog 5-99
System initialization 2-37
system tasks
VCD 13-342
Verilog 5-99

T

tab stops
in the Source window 8-209
Tcl 16-369—16-380
command separator 16-376
command substitution 16-375
command syntax 16-372
evaluation order 16-376
history shortcuts C-412
Man Pages in Help menu 8-165
relational expression evaluation 16-376

variable substitution 16-377
VSIM Tcl commands 16-378
Technical support A-385
test region 11-311
test signals 11-302
Text and command syntax 1-20
Text editing, see Editing
TextlO package 4-55
aternative I/O files 4-64
containing hexadecimal numbers 4-63
dangling pointers 4-63
ENDFILE function 4-63
ENDLINE function 4-63
file declaration 4-60
implementation issues 4-62
providing stimulus 4-64
standard input 4-61
standard output 4-61
WRITE procedure 4-62
WRITE_STRING procedure 4-62
Time
handling negative timing constraints 5-102
setting the resolution 4-58, 5-84, 8-258
time resolution as a simulator state variable B-408
time type
converting to real 4-70
timing differences 11-302, 11-317
TMPDIR environment variable B-394
to_real VHDL function 4-70
to_time VHDL function 4-71
tolerance
leading edge 11-310, 11-313
trailing edge 11-310, 11-313
tolerances 11-303
Toolbar
Main window 8-166
Wave window 8-224
Tracing HDL items with the Dataflow window 8-173
Transcript file
saving 8-159
TranscriptFile variable in .ini file B-400
Tree windows
VHDL and Verilog itemsin 8-155
viewing the design hierarchy 8-155
Triggers, setting in the List window 8-179, E-444
TSS
in VCD files 13-349
type
converting real to time 4-71
converting timeto real 4-70

ModelSim SE User’s Manual

Index - 476

U

Unbound Component 8-253
UnbufferedOutput .ini file variable B-401
UpCase .ini file variable B-398
Updates A-385
Use 1076-1993 language standard 8-252
Use clause

specifying alibrary 3-50
Use explicit declarations only 8-253
User-defined bus 7-144, 8-154
UserTimeUnit .ini file variable B-401
util package 4-68

Vv

Values of HDL items 8-208
Variables
environment variables B-393
LM_LICENSE_FILE B-393
loading order at Model Sim startup B-407
personal preferences B-392
reading from the .ini file B-402
setting environment variables B-393
simulator state variables
current settings report B-392
iteration number B-408
name of entity or module as a variable B-408
resolution B-408
simulation time B-408
Variables window (see also, Windows) 8-213
Variables, HDL
changing value of with the GUI 8-213
VCD files
capturing port driver data 13-349
creating 13-344
dumpports tasks 13-343
extracting the proper stimulus 13-344
from VHDL source to VCD output 13-346
supported TSS| states 13-349
VCD system tasks 13-342
Verilog
capturing port driver data with -dumpports 13-349
cell libraries 5-97
compile options 8-254
compiler directives 5-106
compiling design units 5-75
compiling with XL "uselib compiler directive 5-81
component declaration 6-134
creating adesign library 5-75

instantiation criteriain mixed-language design
6-132
instantiation of VHDL design units 6-136
library usage 5-78
mapping states in mixed designs 6-130
mixed designs with VHDL 6-127
parameters 6-129
SDF annotation 12-330
sdf _annotate system task 12-330
simulating 5-84
delay modes 5-97
event order issues 5-85
XL compatible options 5-86
simulation hazard detection 5-86
simulation resolution limit 5-84
SmartModel interface 14-361
source code viewing 8-201
standards 1-17
system tasks 5-99
XL compatible compiler options 5-79
XL compatible routines 5-125
XL compatible system tasks 5-102
verilog .ini file variable B-396
Verilog PLI
64-bit support 5-125
callback reason argument 5-117
registering applications 5-108
support for VHDL objects 5-121
Verilog PLI/VPI 5-108-5-126
compiling and linking PL1/VPI applications 5-111
debugging PL1/VPI code 5-125
specifying the PLI/VPI fileto load 5-115
Verilog Procedural Interface 5-108
Veriuser .ini file variable B-401
version
obtaining 8-165
VHDL
compile options 8-252
compiling design units 4-57
creating adesign library 4-57
delay file opening B-405
dependency checking 4-57
file opening delay B-405
Hardware Model interface 15-364
instantiation from Verilog 6-136
instantiation of Verilog 6-128
library clause 3-50
mixed designs with Verilog 6-127
object support in PLI 5-121
simulating 4-58
SmartModel interface 14-354

ModelSim SE User’s Manual

Index - 477

source code viewing 8-201
standards 1-17
timing check disabling 4-58
VITAL package 3-51
VHDL utilities 4-68, 4-69
get_resolution() 4-68
to_real() 4-70
to_time() 4-71
VHDL93.ini file variable B-397
view_profile command 9-285
view_profile_ranked command 9-286
Viewing and saving waveforms 7-137, 8-220
Viewing design hierarchy 8-155
viewing library contents 3-44
virtual hide command 7-145
Virtual objects 7-144
virtual functions 7-145
virtual regions 7-146
virtual signals 7-144
virtual types 7-146
virtual region command 7-146
Virtual regions
reconstruct the RTL Hierarchy in gate level design
7-146
virtual save command 7-145
virtual signal command 7-144
Virtual signals
reconstruct RTL-level design busses 7-145
reconstruct the original RTL hierarchy 7-145
virtual hide command 7-145
VITAL
compiling and simulating with accelerated VITAL
packages 4-67
compliance warnings 4-66
obtaining the specification and source code 4-65
VITAL 2000 library 3-51
VITAL packages 4-66
VPl 5-108
VSIM commands
searchLog 7-147

wW

Warnings
turning off warnings from arithmetic packages
B-404
Wave format file 8-219
Wave window
compare waveforms 11-316
values column 11-317

Wave window (see also, Windows) 8-216

Waveform Comparison 11-301
add clock 11-309
add region 11-311
adding signals 11-307
clear differences 11-320
clocked comparison 11-303, 11-308, 11-312
command line interface 11-323
compare by region 11-311
compare by signal 11-307
compare commands 11-323
compare menu 11-318
compare options 11-314
compare tab 11-306
comparison method 11-315
comparison method tab 11-312
comparison modes 11-303
comparison wizard 11-318
continuous comparison 11-303, 11-310, 11-313
dataset 11-302
difference markers 11-317
end 11-319
features 11-302
flattened designs 11-304
graphical interface 11-305
hierarchical designs 11-304
icons 11-318
introduction 11-302
leading edge tolerance 11-310, 11-313
limit count 11-314
List window display 11-322
logfile 11-302
modify clock 11-309
pathnames 11-317
preference variables 11-323
printing differences 11-321
reference dataset 11-305
reference region 11-311
reference signals 11-302
reload 11-321
rules 11-321
run

run comparison 11-319

save differences 11-320
show differences 11-320
signal options 11-308
specify when expression 11-310, 11-312, 11-313
specifying a dataset 11-305
start 11-318
test dataset 11-305
test region 11-311

ModelSim SE User’s Manual

Index - 478

test signals 11-302
timing differences 11-302, 11-317
tolerances 11-303
trailing edge tolerance 11-310, 11-313
values column 11-317
Verilog matching 11-314
VHDL matching 11-314
Wave window display 11-316
write report 11-320
waveform comparison 7-137, 8-228
Waveforms 7-137
saving 8-220
saving and viewing E-434
saving as a .epsfile 8-220
viewing 8-216
WaveSignalNameWidth .ini file variable B-401
Web site
Model Technology’s home-page URL 1-23
Welcome dialog
turning on/off B-392
Windows
finding HDL item names 8-153
opening multiple copies 8-154
opening with the GUI 8-162
searching for HDL item values 8-153
adding buttons 8-269
coverage source 10-296
coverage summary 10-292
Dataflow window 8-171
tracing signals and nets 8-173
List window 8-175
adding HDL items 8-180
adding signals with alog file 8-197
examining simulation results 8-184
formatting HDL items 8-181
locating time markers 8-153
savingto afile 8-189
setting display properties 8-178
setting triggers 8-179, E-444
Main window 8-157
status bar 8-168
text editing 8-168, C-413
time and delta display 8-168
toolbar 8-166
Process window 8-190
displaying active processes 8-190

specifying next process to be executed 8-190

viewing processing in the region 8-190
Signals window 8-193
VHDL and Verilog items viewed in 8-193
Source window 8-201
setting tab stops 8-209
text editing 8-168, C-413
viewing HDL source code 8-201
Structure window 8-210
HDL itemsviewed in 8-210
instance names 8-211
selecting itemsto view in Signals window
8-193
VHDL and Verilog items viewed in 8-210
viewing design hierarchy 8-210
Variables window 8-213
displaying values 8-213
VHDL and Verilog items viewed in 8-213
Wave window 8-216
adding HDL items 8-219
adding signals with alog file 8-197
changing display range (zoom) 8-240
changing path elements B-401
cursor measurements 8-240
locating time cursors 8-153
saving format file 8-219
searching for HDL item values 8-237
setting display properties 8-235
using time cursors 8-239
zoom options 8-240
zooming 8-240
Work library 3-42
workspace 8-158
write
waveform comparison report 11-320

Z

Zero-delay loop, detecting infinite E-436
Zoom
from Wave toolbar buttons 8-241
from Zoom menu 8-240
options 8-240
saving range with bookmarks 8-241
with the mouse 8-241

ModelSim SE User’s Manual

Index - 479

ModelSim SE User’s Manual Index - 480

	ModelSim User’s Manual
	Table of Contents
	1 - Introduction
	Performance tools included with ModelSim SE
	ModelSim’s graphic interface
	Standards supported
	Assumptions
	Sections in this document
	Command reference
	Text conventions
	What is an "HDL item"
	Where to find our documentation
	Download a free PDF reader with Search

	Online References - www.model.com
	Comments

	2 - Projects and system initialization
	Introduction
	How do projects differ in version 5.5?

	Getting started with projects
	Step 1 — Create a new project
	Step 2 — Add files to the project
	Step 3 — Compile the files
	Step 4 — Simulate a design
	Other project operations

	Customizing project settings
	Changing compile order
	Setting compiler options

	Accessing projects from the command line
	System initialization
	Files accessed during startup
	Environment variables accessed during startup
	Initialization sequence

	3 - Design libraries
	Design library contents
	Design library types
	Working with design libraries
	Managing library contents
	Assigning a logical name to a design library
	Moving a library

	Specifying the resource libraries
	Predefined libraries
	Alternate IEEE libraries supplied
	VITAL 2000 library
	Rebuilding supplied libraries
	Regenerating your design libraries
	Verilog resource libraries
	Maintaining 32-bit and 64-bit versions in the same library

	Importing FPGA libraries

	4 - VHDL Simulation
	Compiling VHDL designs
	Invoking the VHDL compiler
	Dependency checking

	Simulating VHDL designs
	Invoking the simulator from the Main window
	Invoking Code Coverage with vsim

	Using the TextIO package
	Syntax for file declaration
	Using STD_INPUT and STD_OUTPUT within ModelSim

	TextIO implementation issues
	Reading and writing hexadecimal numbers
	Dangling pointers
	The ENDLINE function
	The ENDFILE function
	Using alternative input/output files
	Providing stimulus

	Obtaining the VITAL specification and source code
	VITAL packages
	ModelSim VITAL compliance
	VITAL compliance checking
	VITAL compliance warnings

	Compiling and Simulating with accelerated VITAL packages
	Util package
	get_resolution()
	init_signal_spy()
	to_real()
	to_time()

	5 - Verilog Simulation
	Compilation
	Incremental compilation
	Library usage
	Verilog-XL compatible compiler options
	Verilog-XL `uselib compiler directive

	Simulation
	Simulation resolution limit
	Event order issues
	Verilog-XL compatible simulator options

	Compiling for faster performance
	Compiling with -fast
	Compiling gate-level designs with -fast
	Referencing the optimized design
	Enabling design object visibility with the +acc option
	Using pre-compiled libraries

	Cell Libraries
	Delay modes

	System Tasks
	IEEE Std 1364 system tasks
	Verilog-XL compatible system tasks
	$init_signal_spy

	Compiler Directives
	IEEE Std 1364 compiler directives
	Verilog-XL compatible compiler directives

	Using the Verilog PLI/VPI
	Registering PLI applications
	Registering VPI applications
	Compiling and linking PLI/VPI applications
	The PLI callback reason argument
	The sizetf callback function
	PLI object handles
	Third party PLI applications
	Support for VHDL objects
	IEEE Std 1364 ACC routines
	IEEE Std 1364 TF routines
	Verilog-XL compatible routines
	64-bit support in the PLI
	PLI/VPI tracing

	6 - Mixed VHDL and Verilog Designs
	Separate compilers, common libraries
	Mapping data types
	VHDL generics
	Verilog parameters
	VHDL and Verilog ports
	Verilog states

	VHDL instantiation of Verilog design units
	Component declaration
	vgencomp component declaration
	VCD output

	Verilog instantiation of VHDL design units

	7 - Datasets (saved simulations) and virtuals
	Datasets
	Saving a simulation to a dataset
	Opening datasets
	Viewing dataset structure
	Managing datasets
	Using datasets with ModelSim commands
	Restricting the dataset prefix display

	Virtual Objects (User-defined buses, and more)
	Virtual signals
	Virtual functions
	Virtual regions
	Virtual types

	Dataset, logfile, and virtual commands

	8 - ModelSim Graphic Interface
	Window overview
	Common window features
	Quick access toolbars
	Drag and Drop
	Command history
	Automatic window updating
	Finding names, searching for values, and locating cursors
	Sorting HDL items
	Multiple window copies
	Context menus
	Menu tear off
	Customizing menus and buttons
	Combining signals into a user-defined bus
	Tree window hierarchical view

	Main window
	Workspace
	Transcript
	The Main window menu bar
	The Main window toolbar
	The Main window status bar
	Mouse and keyboard shortcuts in the Transcript and Source windows

	Dataflow window
	Link to active cursor in Wave window
	Dataflow window menu bar
	Tracing HDL items with the Dataflow window
	Saving the Dataflow window as a Postscript file

	List window
	HDL items you can view
	The List window menu bar
	Setting List window display properties
	Adding HDL items to the List window
	Editing and formatting HDL items in the List window
	Examining simulation results with the List window
	Finding items by name in the List window
	Searching for item values in the List window
	Setting time markers in the List window
	List window keyboard shortcuts
	Saving List window data to a file

	Process window
	The Process window menu bar

	Signals window
	The Signals window menu bar
	Selecting HDL item types to view
	Forcing signal and net values
	Adding HDL items to the Wave and List windows or a logfile
	Finding HDL items in the Signals window
	Setting signal breakpoints
	Defining clock signals

	Source window
	The Source window menu bar
	The Source window toolbar
	Setting file-line breakpoints
	Editing the source file in the Source window
	Checking HDL item values and descriptions
	Finding and replacing in the Source window
	Setting tab stops in the Source window

	Structure window
	The Structure window menu bar
	Finding items in the Structure window

	Variables window
	The Variables window menu bar

	Wave window
	Pathname pane
	Values pane
	Waveform pane
	Cursor panes
	HDL items you can view
	Adding HDL items in the Wave window
	The Wave window menu bar
	The Wave window toolbar
	Using Dividers
	Splitting Wave window panes
	Combining items in the Wave window
	Editing and formatting HDL items in the Wave window
	Setting Wave window display properties
	Setting signal breakpoints
	Finding items by name or value in the Wave window
	Searching for item values in the Wave window
	Using time cursors in the Wave window
	Finding a cursor
	Making cursor measurements
	Zooming - changing the waveform display range
	Saving zoom range and scroll position with bookmarks
	Wave window mouse and keyboard shortcuts
	Printing and saving waveforms

	Compiling with the graphic interface
	Locating source errors during compilation
	Setting default compile options

	Simulating with the graphic interface
	Design selection page
	VHDL settings page
	Verilog settings page
	Libraries settings page
	SDF settings page
	SDF options
	Setting default simulation options

	ModelSim tools
	The Button Adder
	The Macro Helper
	The Tcl Debugger
	The GUI Expression Builder

	Graphic interface commands
	Customizing the interface

	9 - Performance Analyzer
	Introducing Performance Analysis
	A Statistical Sampling Profiler

	Getting Started
	Interpreting the data
	Viewing Performance Analyzer Results
	Interpreting the Name Field
	Interpreting the Under(%) and In(%) Fields
	Differences in the Ranked and Hierarchical Views

	Ranked/Hierarchical Profile Window Features
	The report option

	Setting preferences with Tcl variables
	Performance Analyzer commands

	10 - Code Coverage
	Enabling Code Coverage
	The coverage_summary window
	Summary information
	Misses tab
	Exclusions tab
	The coverage_summary window menu bar

	The coverage_source window
	Excluding lines and files

	Merging coverage report files
	Exclusion filter files
	Code Coverage preference variables
	Code Coverage commands

	11 - Waveform Comparison
	Introducing Waveform Comparison
	Two Modes of Comparison
	Comparing Hierarchical and Flattened Designs

	Graphical Interface to Waveform Comparison
	Opening Dataset Comparison
	Adding Signals, Regions and/or Clocks
	Setting Compare Options
	Wave window display
	Printing compare differences
	List window display

	Command-line interface to Waveform Comparison

	12 - Standard Delay Format (SDF) Timing Annotation
	Specifying SDF files for simulation
	Instance specification
	SDF specification with the GUI
	Errors and warnings

	VHDL VITAL SDF
	SDF to VHDL generic matching
	Resolving errors

	Verilog SDF
	The $sdf_annotate system task
	SDF to Verilog construct matching
	Optional edge specifications
	Optional conditions
	Rounded timing values

	SDF for Mixed VHDL and Verilog Designs
	Interconnect delays
	Troubleshooting
	Mistaking a component or module name for an instance label
	Forgetting to specify the instance

	Obtaining the SDF specification

	13 - Value Change Dump (VCD) Files
	ModelSim VCD commands and VCD tasks
	Resimulating a VHDL design from a VCD file
	Specifying a filename and state mappings
	Creating the VCD file

	A VCD file from source to output
	VCD simulator commands
	VCD output

	Capturing port driver data
	Supported TSSI states
	Strength values
	Port identifier code
	Example VCD output from vcd dumpports

	14 - Logic Modeling SmartModels
	VHDL SmartModel interface
	Creating foreign architectures with sm_entity
	Vector ports
	Command channel
	SmartModel Windows
	Memory arrays

	Verilog SmartModel interface
	LMTV usage documentation
	Linking the LMTV interface to the simulator
	Compiling Verilog shells

	15 - Logic Modeling Hardware Models
	VHDL Hardware Model interface
	Creating foreign architectures with hm_entity
	Vector ports
	Hardware model commands

	16 - Tcl and ModelSim
	Tcl features within ModelSim
	Tcl References
	Tcl commands
	Tcl command syntax
	if command syntax
	set command syntax
	Command substitution
	Command separator
	Multiple-line commands
	Evaluation order
	Tcl relational expression evaluation
	Variable substitution
	System commands

	List processing
	ModelSim Tcl commands
	ModelSim Tcl time commands
	Conversions
	Relations
	Arithmetic

	Tcl examples
	Example 2

	A - Technical Support, Updates, and Licensing
	Technical support - electronic
	Mentor Graphics customers

	Technical support - telephone
	Mentor Graphics customers in North America
	Mentor Graphics customers outside North America

	Technical support - other channels
	Updates
	Online References
	FLEXlm Licenses

	B - ModelSim Variables
	Variable settings report
	Personal preferences
	Returning to the original ModelSim defaults
	Environment variables
	Setting environment variables in Windows
	Referencing environment variables within ModelSim
	Removing temp files (VSOUT)

	Preference variables located in INI files
	[Library] library path variables
	[vcom] VHDL compiler control variables
	[vlog] Verilog compiler control variables
	[vsim] simulator control variables
	[lmc] Logic Modeling variables
	Setting variables in INI files
	Reading variable values from the INI file
	Variable functions

	Preference variables located in TCL files
	User-defined variables
	More preferences

	Preference variable loading order
	Simulator state variables
	Referencing simulator state variables

	C - ModelSim Shortcuts
	Wave window mouse and keyboard shortcuts
	List window keyboard shortcuts
	Command shortcuts
	Command history shortcuts
	Mouse and keyboard shortcuts in the Transcript and Source windows
	Right mouse button

	D - Using the FLEXlm License Manager
	Starting the license server daemon
	Controlling the license file search
	Manual start
	Automatic start at boot time
	What to do if another application uses FLEXlm

	Format of the license file
	Format of the daemon options file
	License administration tools
	lmdown
	lmremove
	lmreread
	Administration tools for Windows

	E - Tips and Techniques
	How to use checkpoint/restore
	The difference between checkpoint/restore and restarting
	Using macros with restart and checkpoint/restore

	Running command-line and batch-mode simulations
	Command-line mode
	Batch mode

	Using macros (DO files)
	Using Parameters with DO files

	Source code security and -nodebug
	Saving and viewing waveforms
	Setting up libraries for group use
	Maintaining 32-bit and 64-bit modules in the same library
	Bus contention checking
	Bus float checking
	Design stability checking
	Toggle checking
	Detecting infinite zero-delay loops
	Referencing source files with location maps
	Using location mapping
	Pathname syntax
	How location mapping works
	Mapping with Tcl variables

	Accelerate simulation by locking memory under HP-UX 10.2
	Modeling memory in VHDL
	Setting up a List trigger with Expression Builder

	F - What’s new in ModelSim
	New features
	Command and variable changes
	Documentation changes
	GUI changes in version 5.5
	Main window changes
	Signals window changes
	Source window changes
	Wave window changes
	Coverage_summary window changes

	License Agreement
	Index

