
ModelSim
SE

User’s Manual
V e r s i o n 5 . 5

P u b l i s h e d : 2 2 / F e b / 0 1
T h e w o r l d ’ s m o s t p o p u l a r H D L s i m u l a t o r

ModelSim /VHDL, ModelSim /VLOG, ModelSim /LNL, and ModelSim /PLUS are
produced by Model Technology Incorporated. Unauthorized copying, duplication,
or other reproduction is prohibited without the written consent of Model
Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark of Model Technology Incorporated. PostScript
is a registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXlm is a trademark of
Globetrotter Software, Inc. IBM, AT, and PC are registered trademarks, AIX and
RISC System/6000 are trademarks of International Business Machines
Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Motif is a trademark of the Open Software Foundation,
Inc. in the USA and other countries. SPARC is a registered trademark and
SPARCstation is a trademark of SPARC International, Inc. Sun Microsystems is a
registered trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright (c) 1990 -2001, Model Technology Incorporated.
All rights reserved. Confidential. Online documentation may be printed by licensed
customers of Model Technology Incorporated for internal business purposes only.

Model Technology Incorporated
10450 SW Nimbus Avenue / Bldg. R-B
Portland OR 97223-4347 USA

phone: 503-641-1340
fax: 503-526-5410
e-mail: support@model.com, sales@model.com
home page: http://www.model.com
ii

mailto:support@model.com
mailto:sales@model.com
http://www.model.com

Table of Contents
1 - Introduction (1-15)

Performance tools included with ModelSim SE . 1-16

ModelSim’s graphic interface . 1-16

Standards supported . 1-17

Assumptions . 1-17

Sections in this document . 1-18

Command reference . 1-19

Text conventions . 1-20

What is an "HDL item" . 1-20

Where to find our documentation . 1-21
Download a free PDF reader with Search . 1-21

Online References - www.model.com . 1-22

Comments . 1-23

2 - Projects and system initialization (2-25)

Introduction . 2-26
How do projects differ in version 5.5? . 2-27

Getting started with projects . 2-28
Step 1 — Create a new project . 2-29
Step 2 — Add files to the project . 2-31
Step 3 — Compile the files . 2-32
Step 4 — Simulate a design . 2-33
Other project operations . . 2-33

Customizing project settings . . 2-34
Changing compile order . . 2-34
Setting compiler options . . 2-35

Accessing projects from the command line . 2-36

System initialization . 2-37
Files accessed during startup . 2-37
Environment variables accessed during startup 2-38
Initialization sequence . 2-39

3 - Design libraries (3-41)

Design library contents . 3-42

Design library types . 3-42

Working with design libraries . 3-43
Managing library contents . 3-44
Assigning a logical name to a design library . 3-47
Moving a library . . 3-49

Specifying the resource libraries . 3-50
Predefined libraries . . 3-50
ModelSim SE User’s Manual Table of Contents - 3

Alternate IEEE libraries supplied . 3-51
VITAL 2000 library . 3-51
Rebuilding supplied libraries . 3-51
Regenerating your design libraries . . 3-51
Verilog resource libraries . 3-52
Maintaining 32-bit and 64-bit versions in the same library 3-52

Importing FPGA libraries . 3-53

4 - VHDL Simulation (4-55)

Compiling VHDL designs . . 4-57
Invoking the VHDL compiler . 4-57
Dependency checking . . 4-57

Simulating VHDL designs . . 4-58
Invoking the simulator from the Main window 4-58
Invoking Code Coverage with vsim . 4-59

Using the TextIO package . . 4-60
Syntax for file declaration . 4-60
Using STD_INPUT and STD_OUTPUT within ModelSim 4-61

TextIO implementation issues . 4-62
Reading and writing hexadecimal numbers . 4-63
Dangling pointers . 4-63
The ENDLINE function . . 4-63
The ENDFILE function . 4-63
Using alternative input/output files . 4-64
Providing stimulus . 4-64

Obtaining the VITAL specification and source code 4-65

VITAL packages . 4-65

ModelSim VITAL compliance . 4-66
VITAL compliance checking . . 4-66
VITAL compliance warnings . . 4-66

Compiling and Simulating with accelerated VITAL packages 4-67

Util package . 4-68
get_resolution() . 4-68
init_signal_spy() . . 4-69
to_real() . 4-70
to_time() . . 4-71

5 - Verilog Simulation (5-73)

Compilation . 5-75
Incremental compilation . . 5-76
Library usage . 5-78
Verilog-XL compatible compiler options . 5-79
Verilog-XL ‘uselib compiler directive . 5-81

Simulation . 5-84
4 - Table of Contents ModelSim SE User’s Manual

Simulation resolution limit . . 5-84
Event order issues . 5-85
Verilog-XL compatible simulator options . 5-86

Compiling for faster performance . . 5-90
Compiling with -fast . 5-90
Compiling gate-level designs with -fast . . 5-91
Referencing the optimized design . 5-92
Enabling design object visibility with the +acc option 5-94
Using pre-compiled libraries . 5-96

Cell Libraries . . 5-97
Delay modes . 5-97

System Tasks . . 5-99
IEEE Std 1364 system tasks . 5-99
Verilog-XL compatible system tasks . 5-102
$init_signal_spy . 5-104

Compiler Directives . 5-106
IEEE Std 1364 compiler directives . 5-106
Verilog-XL compatible compiler directives 5-106

Using the Verilog PLI/VPI . 5-108
Registering PLI applications . 5-108
Registering VPI applications . 5-110
Compiling and linking PLI/VPI applications 5-111
The PLI callback reason argument . 5-117
The sizetf callback function . 5-119
PLI object handles . 5-119
Third party PLI applications . 5-120
Support for VHDL objects . 5-121
IEEE Std 1364 ACC routines . 5-122
IEEE Std 1364 TF routines . 5-123
Verilog-XL compatible routines . 5-125
64-bit support in the PLI . 5-125
PLI/VPI tracing . 5-125

6 - Mixed VHDL and Verilog Designs (6-127)

Separate compilers, common libraries . 6-128

Mapping data types . 6-128
VHDL generics . 6-128
Verilog parameters . 6-129
VHDL and Verilog ports . 6-129
Verilog states . 6-130

VHDL instantiation of Verilog design units . 6-132
Component declaration . 6-132
vgencomp component declaration . 6-134
VCD output . 6-135

Verilog instantiation of VHDL design units . 6-136
ModelSim SE User’s Manual Table of Contents - 5

7 - Datasets (saved simulations) and virtuals (7-137)

Datasets . 7-138
Saving a simulation to a dataset . 7-138
Opening datasets . 7-139
Viewing dataset structure . 7-140
Managing datasets . 7-142
Using datasets with ModelSim commands . 7-142
Restricting the dataset prefix display . 7-143

Virtual Objects (User-defined buses, and more) 7-144
Virtual signals . 7-144
Virtual functions . 7-145
Virtual regions . 7-146
Virtual types . 7-146

Dataset, logfile, and virtual commands . 7-147

8 - ModelSim Graphic Interface (8-149)

Window overview . 8-150

Common window features . 8-151
Quick access toolbars . 8-152
Drag and Drop . 8-152
Command history . 8-152
Automatic window updating . 8-153
Finding names, searching for values, and locating cursors 8-153
Sorting HDL items . 8-154
Multiple window copies . 8-154
Context menus . 8-154
Menu tear off . 8-154
Customizing menus and buttons . 8-154
Combining signals into a user-defined bus 8-154
Tree window hierarchical view . 8-155

Main window . 8-157
Workspace . 8-158
Transcript . 8-159
The Main window menu bar . 8-160
The Main window toolbar . 8-166
The Main window status bar . 8-168
Mouse and keyboard shortcuts in the Transcript and Source windows 8-168

Dataflow window . 8-171
Link to active cursor in Wave window . 8-171
Dataflow window menu bar . 8-172
Tracing HDL items with the Dataflow window 8-173
Saving the Dataflow window as a Postscript file 8-174

List window . 8-175
HDL items you can view . 8-175
The List window menu bar . 8-176
Setting List window display properties . 8-178
6 - Table of Contents ModelSim SE User’s Manual

Adding HDL items to the List window . 8-180
Editing and formatting HDL items in the List window 8-181
Examining simulation results with the List window 8-184
Finding items by name in the List window 8-185
Searching for item values in the List window 8-185
Setting time markers in the List window . 8-187
List window keyboard shortcuts . 8-188
Saving List window data to a file . 8-189

Process window . 8-190
The Process window menu bar . 8-191

Signals window . 8-193
The Signals window menu bar . 8-194
Selecting HDL item types to view . 8-195
Forcing signal and net values . 8-196
Adding HDL items to the Wave and List windows or a logfile 8-197
Finding HDL items in the Signals window 8-198
Setting signal breakpoints . 8-198
Defining clock signals . 8-200

Source window . 8-201
The Source window menu bar . 8-202
The Source window toolbar . 8-204
Setting file-line breakpoints . 8-205
Editing the source file in the Source window 8-208
Checking HDL item values and descriptions 8-208
Finding and replacing in the Source window 8-208
Setting tab stops in the Source window . 8-209

Structure window . 8-210
The Structure window menu bar . 8-211
Finding items in the Structure window . 8-212

Variables window . 8-213
The Variables window menu bar . 8-214

Wave window . 8-216
Pathname pane . 8-216
Values pane . 8-217
Waveform pane . 8-217
Cursor panes . 8-218
HDL items you can view . 8-218
Adding HDL items in the Wave window . 8-219
The Wave window menu bar . 8-220
The Wave window toolbar . 8-224
Using Dividers . 8-227
Splitting Wave window panes . 8-228
Combining items in the Wave window . 8-229
Editing and formatting HDL items in the Wave window 8-230
Setting Wave window display properties . 8-235
Setting signal breakpoints . 8-236
Finding items by name or value in the Wave window 8-237
Searching for item values in the Wave window 8-237
Using time cursors in the Wave window . 8-239
ModelSim SE User’s Manual Table of Contents - 7

Finding a cursor . 8-240
Making cursor measurements . 8-240
Zooming - changing the waveform display range 8-240
Saving zoom range and scroll position with bookmarks 8-241
Wave window mouse and keyboard shortcuts 8-244
Printing and saving waveforms . 8-245

Compiling with the graphic interface . 8-250
Locating source errors during compilation . 8-251
Setting default compile options . 8-252

Simulating with the graphic interface . 8-256
Design selection page . 8-257
VHDL settings page . 8-259
Verilog settings page . 8-261
Libraries settings page . 8-262
SDF settings page . 8-263
SDF options . 8-264
Setting default simulation options . 8-265

ModelSim tools . 8-269
The Button Adder . 8-269
The Macro Helper . 8-270
The Tcl Debugger . 8-271
The GUI Expression Builder . 8-275

Graphic interface commands . 8-277

Customizing the interface . 8-279

9 - Performance Analyzer (9-281)

Introducing Performance Analysis . 9-282
A Statistical Sampling Profiler . 9-282

Getting Started . 9-283

Interpreting the data . 9-283
Viewing Performance Analyzer Results . 9-284
Interpreting the Name Field . 9-286
Interpreting the Under(%) and In(%) Fields 9-286
Differences in the Ranked and Hierarchical Views 9-287

Ranked/Hierarchical Profile Window Features . 9-288
The report option . 9-289

Setting preferences with Tcl variables . 9-290

Performance Analyzer commands . 9-290

10 - Code Coverage (10-291)

Enabling Code Coverage . 10-292

The coverage_summary window . 10-292
Summary information . . 10-293
Misses tab . 10-293
8 - Table of Contents ModelSim SE User’s Manual

Exclusions tab . 10-293
The coverage_summary window menu bar 10-294

The coverage_source window . 10-296
Excluding lines and files . 10-296

Merging coverage report files . 10-298

Exclusion filter files . 10-299

Code Coverage preference variables . . 10-300

Code Coverage commands . 10-300

11 - Waveform Comparison (11-301)

Introducing Waveform Comparison . 11-302
Two Modes of Comparison . 11-303
Comparing Hierarchical and Flattened Designs 11-304

Graphical Interface to Waveform Comparison . 11-305
Opening Dataset Comparison . . 11-305
Adding Signals, Regions and/or Clocks . . 11-307
Setting Compare Options . 11-314
Wave window display . 11-316
Printing compare differences . 11-321
List window display . 11-322

Command-line interface to Waveform Comparison 11-323

12 - Standard Delay Format (SDF) Timing Annotation (12-325)

Specifying SDF files for simulation . 12-326
Instance specification . . 12-326
SDF specification with the GUI . . 12-327
Errors and warnings . 12-327

VHDL VITAL SDF . 12-328
SDF to VHDL generic matching . 12-328
Resolving errors . 12-329

Verilog SDF . 12-330
The $sdf_annotate system task . 12-330
SDF to Verilog construct matching . 12-331
Optional edge specifications . 12-333
Optional conditions . 12-334
Rounded timing values . 12-335

SDF for Mixed VHDL and Verilog Designs . . 12-336

Interconnect delays . 12-336

Troubleshooting . . 12-337
Mistaking a component or module name for an instance label 12-338
Forgetting to specify the instance . 12-338

Obtaining the SDF specification . 12-339
ModelSim SE User’s Manual Table of Contents - 9

13 - Value Change Dump (VCD) Files (13-341)

ModelSim VCD commands and VCD tasks . . 13-342

Resimulating a VHDL design from a VCD file 13-344
Specifying a filename and state mappings 13-344
Creating the VCD file . . 13-344

A VCD file from source to output . . 13-346
VCD simulator commands . . 13-346
VCD output . 13-347

Capturing port driver data . 13-349
Supported TSSI states . . 13-349
Strength values . 13-350
Port identifier code . . 13-350
Example VCD output from vcd dumpports 13-351

14 - Logic Modeling SmartModels (14-353)

VHDL SmartModel interface . 14-354
Creating foreign architectures with sm_entity 14-355
Vector ports . 14-357
Command channel . 14-358
SmartModel Windows . 14-359
Memory arrays . 14-360

Verilog SmartModel interface . 14-361
LMTV usage documentation . 14-361
Linking the LMTV interface to the simulator 14-361
Compiling Verilog shells . 14-361

15 - Logic Modeling Hardware Models (15-363)

VHDL Hardware Model interface . . 15-364
Creating foreign architectures with hm_entity 15-365
Vector ports . 15-367
Hardware model commands . 15-368

16 - Tcl and ModelSim (16-369)

Tcl features within ModelSim . 16-370

Tcl References . 16-370

Tcl commands . 16-371
Tcl command syntax . 16-372
if command syntax . . 16-374
set command syntax . 16-375
Command substitution . 16-375
Command separator . 16-376
Multiple-line commands . . 16-376
Evaluation order . . 16-376
10 - Table of Contents ModelSim SE User’s Manual

Tcl relational expression evaluation . 16-376
Variable substitution . 16-377
System commands . 16-377

List processing . 16-378

ModelSim Tcl commands . 16-378

ModelSim Tcl time commands . 16-379
Conversions . 16-379
Relations . . 16-379
Arithmetic . 16-380

Tcl examples . 16-381
Example 2 . 16-382

A - Technical Support, Updates, and Licensing (A-385)

Technical support - electronic . A-386
Mentor Graphics customers . A-386

Technical support - telephone . A-387
Mentor Graphics customers in North America A-387
Mentor Graphics customers outside North America A-387

Technical support - other channels . A-387

Updates . A-388

Online References . A-388

FLEXlm Licenses . A-389

 . A-390

B - ModelSim Variables (B-391)

Variable settings report . B-392

Personal preferences . B-392

Returning to the original ModelSim defaults . B-392

Environment variables . B-393
Setting environment variables in Windows B-394
Referencing environment variables within ModelSim B-395
Removing temp files (VSOUT) . B-395

Preference variables located in INI files . B-396
[Library] library path variables . B-396
[vcom] VHDL compiler control variables . B-396
[vlog] Verilog compiler control variables . B-398
[vsim] simulator control variables . B-398
[lmc] Logic Modeling variables . B-402
Setting variables in INI files . B-402
Reading variable values from the INI file . B-402
Variable functions . B-403

Preference variables located in TCL files . B-406
User-defined variables . B-406
ModelSim SE User’s Manual Table of Contents - 11

More preferences . B-406

Preference variable loading order . B-407

Simulator state variables . B-408
Referencing simulator state variables . B-408

C - ModelSim Shortcuts (C-409)

Wave window mouse and keyboard shortcuts C-410
List window keyboard shortcuts . C-411
Command shortcuts . C-412
Command history shortcuts . C-412
Mouse and keyboard shortcuts in the Transcript and Source windows C-413
Right mouse button . C-415

D - Using the FLEXlm License Manager (D-417)

Starting the license server daemon . D-418
Controlling the license file search . D-418
Manual start . D-418
Automatic start at boot time . D-419
What to do if another application uses FLEXlm D-419

Format of the license file . D-420

Format of the daemon options file . D-420

License administration tools . D-422
lmdown . D-422
lmremove . D-423
lmreread . D-423
Administration tools for Windows . D-423

E - Tips and Techniques (E-425)

How to use checkpoint/restore . E-426
The difference between checkpoint/restore and restarting E-427
Using macros with restart and checkpoint/restore E-427

Running command-line and batch-mode simulations E-428
Command-line mode . E-428
Batch mode . E-429

Using macros (DO files) . E-430
Using Parameters with DO files . E-430

Source code security and -nodebug . E-433

Saving and viewing waveforms . E-434

Setting up libraries for group use . E-434

Maintaining 32-bit and 64-bit modules in the same library E-434

Bus contention checking . E-435

Bus float checking . E-435
12 - Table of Contents ModelSim SE User’s Manual

Design stability checking . E-436

Toggle checking . E-436

Detecting infinite zero-delay loops . E-436

Referencing source files with location maps . E-437
Using location mapping . E-437
Pathname syntax . E-438
How location mapping works . E-438
Mapping with Tcl variables . E-438

Accelerate simulation by locking memory under HP-UX 10.2 E-439

Modeling memory in VHDL . E-440

Setting up a List trigger with Expression Builder E-444

F - What’s new in ModelSim (F-447)

New features . F-447
Command and variable changes . F-448
Documentation changes . F-449

GUI changes in version 5.5 . F-450

Main window changes . F-451

Signals window changes . F-457

Source window changes . F-458

Wave window changes . F-459

Coverage_summary window changes . F-461

License Agreement (463)

Index (469)
ModelSim SE User’s Manual Table of Contents - 13

14 - Table of Contents ModelSim SE User’s Manual

1 - Introduction

Chapter contents
Performance tools included with ModelSim SE 1-16

ModelSim’s graphic interface 1-16

Standards supported 1-17

Assumptions 1-17

Sections in this document 1-18

Command reference 1-19

Text conventions 1-20

What is an "HDL item" 1-20

Where to find our documentation 1-21

Online References - www.model.com 1-22

Comments 1-23

This documentation was written for ModelSim SE version 5.5 for UNIX and Microsoft
Windows 95/98/ME/NT/2000 (see note below for exception). If the ModelSim software
you are using is a later release, check the README file that accompanied the software.
Any supplemental information will be there.

Although this document covers both VHDL and Verilog simulation, you will find it a
useful reference for single HDL design work.
ModelSim SE User’s Manual Introduction 1-15

Performance tools included with ModelSim SE
Performance tools included with ModelSim SE

All ModelSim SE versions include the following performance tools:

• Performance Analyzer (9-281)

Identifies areas in your simulation where performance can be improved.

Note: Performance Analyzer will not operate on Windows 95.

• Code Coverage (10-291)

Gives you graphical and report file feedback on how the source code is being executed.

ModelSim’s graphic interface

While your operating system interface provides the window-management frame,
ModelSim controls all internal-window features including menus, buttons, and scroll bars.
The resulting simulator interface remains consistent within these operating systems:

• SPARCstation with OpenWindows, OSF/Motif, or CDE

• IBM RISC System/6000 with OSF/Motif

• Hewlett-Packard HP 9000 Series 700 with HP VUE, OSF/Motif, or CDE

• Linux (Red Hat v. 6.0 or later) with KDE or GNOME

• Microsoft Windows 95/98/ME/NT/2000

Because ModelSim’s graphic interface is based on Tcl/TK, you also have the tools to build
your own simulation environment. Preference variables and configuration commands,
"Preference variables located in INI files" (B-396), and "Graphic interface commands" (8-

277) give you control over the use and placement of windows, menus, menu options and
buttons. See "Tcl and ModelSim" (16-369) for more information on Tcl.

For an in-depth look at ModelSim’s graphic interface see, Chapter 8 - ModelSim Graphic
Interface.
1-16 Introduction ModelSim SE User’s Manual

Standards supported
Standards supported

ModelSim VHDL supports both the IEEE 1076-1987 and 1076-1993 VHDL, the
1164-1993 Standard Multivalue Logic System for VHDL Interoperability, and the
1076.2-1996 Standard VHDL Mathematical Packages standards. Any design developed
with ModelSim will be compatible with any other VHDL system that is compliant with
either IEEE Standard 1076-1987 or 1076-1993.

ModelSim Verilog is based on the IEEE Std 1364 Standard Hardware Description
Language Based on the Verilog Hardware Description Language. The Open Verilog
International Verilog LRM version 2.0 is also applicable to a large extent. Both PLI
(Programming Language Interface) and VCD (Value Change Dump) are supported for
ModelSim PE and SE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b, VITAL’95 - IEEE
1076.4-1995, and VITAL 2000.

Assumptions

We assume that you are familiar with the use of your operating system. You should also be
familiar with the window management functions of your graphic interface: either
OpenWindows, OSF/Motif, CDE, HP VUE, KDE, GNOME, or
Microsoft Windows 95/98/ME/NT/2000.

We also assume that you have a working knowledge of VHDL and Verilog. Although
ModelSim is an excellent tool to use while learning HDL concepts and practices, this
document is not written to support that goal. If you need more information about HDLs,
check out our Online References - www.model.com (1-22).

Finally, we make the assumption that you have worked the appropriate lessons in the
ModelSim Tutorial or the Quick Start and are therefore familiar with the basic functionality
of ModelSim. The ModelSim Tutorial and Quick Start are both available from the
ModelSim Help menu. The ModelSim Tutorial is also available from the Support page of
our web site: www.model.com.

For installation instructions please refer to the Start Here for ModelSim guide that was
shipped with the ModelSim CD. Start Here may also be downloaded from our
website: www.model.com.
ModelSim SE User’s Manual Introduction 1-17

http://www.model.com/products/release.asp
http://www.model.com

Sections in this document
Sections in this document

In addition to this introduction, you will find the following major sections in this document:

2 - Projects and system initialization (2-25)

This chapter provides a definition of a ModelSim "project" and discusses the use of a
new file extension for project files.

3 - Design libraries (3-41)

To simulate an HDL design using ModelSim, you need to know how to create,
compile, maintain, and delete design libraries as described in this chapter.

4 - VHDL Simulation (4-55)

This chapter is an overview of compilation and simulation for VHDL within the
ModelSim environment.

5 - Verilog Simulation (5-73)

This chapter is an overview of compilation and simulation for Verilog within the
ModelSim environment.

6 - Mixed VHDL and Verilog Designs (6-127)

ModelSim/Plus single-kernel simulation (SKS) allows you to simulate designs that are
written in VHDL and/or Verilog. This chapter outlines data mapping and the criteria
established to instantiate design units between HDLs.

7 - Datasets (saved simulations) and virtuals (7-137)

This chapter describes datasets and virtuals - both methods for viewing and organizing
simulation data in ModelSim.

8 - ModelSim Graphic Interface (8-149)

This chapter describes the graphic interface available while operating ModelSim.
ModelSim’s graphic interface is designed to provide consistency throughout all
operating system environments.

9 - Performance Analyzer (9-281)

This chapter describes how the ModelSim Performance Analyzer is used to easily
identify areas in your simulation where performance can be improved.

10 - Code Coverage (10-291)

This chapter describes the Code Coverage feature. Code Coverage gives you graphical
and report file feedback on how the source code is being executed.

11 - Waveform Comparison (11-301)

This chapter describes Waveform Comparison, a feature that lets you compare
simulations.

12 - Standard Delay Format (SDF) Timing Annotation (12-325)

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.
1-18 Introduction ModelSim SE User’s Manual

Command reference
13 - Value Change Dump (VCD) Files (13-341)

This chapter explains Model Technology’s Verilog VCD implementation for
ModelSim. The VCD usage is extended to include VHDL designs.

14 - Logic Modeling SmartModels (14-353)

This chapter describes the use of the SmartModel Library and SmartModel Windows
with ModelSim.

15 - Logic Modeling Hardware Models (15-363)

This chapter describes the use the Logic Modeling Hardware Modeler with ModelSim.

16 - Tcl and ModelSim (16-369)

This chapter provides an overview of Tcl (tool command language) as used with
ModelSim. Additional Tcl and Tk (Tcl’s toolkit) information can be found through
several Tcl online references (16-370).

A - Technical Support, Updates, and Licensing (A-385)

This appendix describes how and where to get technical support and updates and
licensing for ModelSim. It also contains links to the Model Technology web site and
references to books, organizations, and companies involved in EDA and simulation.

B - ModelSim Variables (B-391)

This appendix describes environment, system and preference variables used in
ModelSim.

C - ModelSim Shortcuts (C-409)

This appendix describes ModelSim keyboard and mouse shortcuts.

D - Using the FLEXlm License Manager (D-417)

This appendix covers Model Technology’s application of FLEXlm for ModelSim
licensing.

E - Tips and Techniques (E-425)

This appendix contains an extended collection of ModelSim usage examples taken
from our manuals, and tech support solutions.

F - What’s new in ModelSim (F-447)

This appendix lists new features and changes in the various versions of ModelSim.

Command reference

The complete command reference for all ModelSim commands is located in the ModelSim
Command Reference. Command Reference cross reference page numbers are prefixed with
"CR" (e.g.,"ModelSim Commands" (CR-9)).
ModelSim SE User’s Manual Introduction 1-19

Text conventions
Text conventions

Text conventions used in this manual include:

What is an "HDL item"

Because ModelSim works with both VHDL and Verilog, “HDL” refers to either VHDL or
Verilog when a specific language reference is not needed. Depending on the context, “HDL
item” can refer to any of the following:

italic text provides emphasis and sets off filenames, path names, and
design unit names

bold text indicates commands, command options, menu choices,
package and library logical names, as well as variables and
dialog box selection

monospace type monospace type is used for program and command examples

The right angle (>) is used to connect menu choices when traversing menus as
in: File > Save

path separators examples will show either UNIX or Windows path
separators - use separators appropriate for your operating
system when trying the examples

UPPER CASE denotes file types used by ModelSim (e.g., DO, WLF, INI,
MPF, PDF, etc.)

VHDL block statement, component instantiation, constant, generate
statement, generic, package, signal, or variable

Verilog function, module instantiation, named fork, named begin, net,
task, or register variable
1-20 Introduction ModelSim SE User’s Manual

Where to find our documentation
Where to find our documentation

ModelSim documentation is available from our website at
model.com/support/documentation.asp or in the following formats and locations:

Download a free PDF reader with Search

Model Technology’s PDF documentation requires an Adobe Acrobat Reader for viewing.
The Reader may be installed from the ModelSim CD. It is also available without cost from
Adobe at http://www.adobe.com. Be sure to download the Acrobat Reader with Search to
take advantage of the index file supplied with our documentation; the index makes
searching for key words much faster.

Document Format How to get it

Start Here for ModelSim SE
(installation & support
reference)

paper shipped with ModelSim

PDF select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE Quick Guide
(command and feature
quick-reference)

paper shipped with ModelSim

PDF select Main window > Help > SE Documentation, also available
from the Support page of our web site: www.model.com

ModelSim SE Tutorial PDF, HTML select Main window > Help > SE Documentation; also available
from the Support page of our web site: www.model.com

ModelSim SE User’s
Manual

PDF, HTML select Main window > Help > SE Documentation

ModelSim SE Command
Reference

PDF, HTML select Main window > Help > SE Documentation

ModelSim Foreign
Language Interface
Reference

PDF, HTML select Main window > Help > SE Documentation

ModelSim Command Help ASCII type help [command name] at the prompt in the Main window

Tcl Man Pages (Tcl
manual)

HTML select Main window > Help > Tcl Man Pages, or find
contents.htm in \modeltech\tcl_help_html

technotes ASCII select Main window > Help > Technotes, or located in the
\modeltech\docs\technotes directory
ModelSim SE User’s Manual Introduction 1-21

http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/products/release.asp
http://www.model.com/support/documentation.asp
http://www.adobe.com

Online References - www.model.com
Online References - www.model.com

The Model Technology web site includes links to support, software downloads, and many
EDA information sources. Check the links below for the most current information.

Latest version email

Place your name on our list for email notification of new releases and updates.
model.com/support/register_news_list.asp

News

Current news of Model Technology within the EDA industry.
model.com/news_events/default.asp

Partners

Model Technology’s value added partners, OEM partners, FPGA partners, ASIC
partners, and training partners.
model.com/partners/default.asp

Products

A complete collection of Model Technology product information.
model.com/products/default.asp

Technical Documents

Technical notes, application notes, FAQs.
model.com/resources/techdocs.asp

Sales

Locate ModelSim sales contacts anywhere in the world.
model.com/contact_us.asp

Support

Model Technology email support and software downloads.
model.com/support/default.asp
1-22 Introduction ModelSim SE User’s Manual

http://www.model.com
http://www.model.com/support/register_news_list.asp
http://www.model.com/news_events/default.asp
http://www.model.com/partners/default.asp
http://www.model.com/products/default.asp
http://www.model.com/resources/techdocs.asp
http://www.model.com/contact_us.asp
http://www.model.com/support/default.asp

Comments
Comments

Comments and questions about this manual and ModelSim software are welcome. Call,
write, fax or email:

Model Technology Incorporated
10450 SW Nimbus Avenue, Bldg. R-B
Portland, OR 97223-4347 USA

phone: 503-641-1340
fax: 503-526-5410
email: manuals@model.com
home page: http://www.model.com
ModelSim SE User’s Manual Introduction 1-23

mailto:manuals@model.com
http://www.model.com

1-24 Introduction ModelSim SE User’s Manual

2 - Projects and system initialization

Chapter contents
Introduction 2-26

What are projects?. 2-26
What are the benefits of projects?. 2-26
How do projects differ in version 5.5? 2-27

Getting started with projects 2-28
Step 1 — Create a new project 2-29
Step 2 — Add files to the project 2-31
Step 3 — Compile the files 2-31
Step 4 — Simulate a design 2-31
Other project operations 2-33

Customizing project settings 2-34
Changing compile order 2-34
Setting compiler options 2-35

Accessing projects from the command line 2-36

System initialization 2-37
Files accessed during startup 2-37
Environment variables accessed during startup 2-38
Initialization sequence. 2-39

This chapter discusses ModelSim projects. Projects greatly simplify the process of
compiling and simulating a design and are a great tool for getting started with ModelSim.
This chapter also includes a section on ModelSim initialization.
ModelSim SE User’s Manual Projects and system initialization 2-25

Introduction
Introduction

What are projects?

Projects are collection entities for HDL designs under specification or test. At a minimum
projects have a root directory, a work library, and "metadata" which are stored in a .mpf file
located in a project’s root directory. The metadata include compiler switch settings, compile
order, and file mappings. Projects may also consist of:

• HDL source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

What are the benefits of projects?

Projects offer benefits to both new and advanced users. Projects

• simplify interaction with ModelSim; you don’t need to understand the intricacies of
compiler switches and library mappings

• eliminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project

• remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to HDL source files

• allow users to share libraries without copying files to a local directory; you can establish
references to source files that are stored remotely or locally

• allow you to change individual parameters across multiple files; in previous versions you
could only set parameters one file at a time

• enable "what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

• reload .ini variable settings every time the project is opened; in previous versions you had
to quit ModelSim and restart the program to read in a new .ini file
2-26 Projects and system initialization ModelSim SE User’s Manual

Introduction
How do projects differ in version 5.5?

Projects have improved a great deal from earlier versions. Some of the key differences
include:

• A new interface eliminates the need to write custom scripts.

• You don’t have to copy files into a specific directory; you can establish references to files
in any location.

• You don’t have to specify compiler switches; the automatic defaults will work for many
designs. However, if you do want to customize the settings, you do it through a dialog
box rather than by writing a script.

• All metadata (compiler settings, compile order, file mappings) are stored in the project
.mpf file.

Important: Due to the significant changes, projects created in versions prior to 5.5 cannot
be converted automatically. If you created a project in an earlier version, you will need to
recreate it in version 5.5. With the new interface even the most complex project should take
less than 15 minutes to recreate. Follow the instructions in the ensuing pages to recreate
your project.
ModelSim SE User’s Manual Projects and system initialization 2-27

Getting started with projects
Getting started with projects

This section describes the four basic steps to working with a project. For a discussion of
more advanced project features, see "Customizing project settings" (2-34).

Step 1 — Create a new project (2-29)

This creates a .mpf file and a working library.

Step 2 — Add files to the project (2-31)

Projects can reference or include HDL source files and any other files you want to
associate with the project. You can copy files into the project directory or simply create
mappings to files in other locations.

Step 3 — Compile the files (2-32)

This checks syntax and semantics and creates the pseudo machine code ModelSim uses
for simulation.

Step 4 — Simulate a design (2-33)

This specifies the design unit you want to simulate and opens a structure page in the
workspace.
2-28 Projects and system initialization ModelSim SE User’s Manual

Getting started with projects
Step 1 — Create a new project

1 Select Create a Project from the Welcome to ModelSim screen that opens the first time
you start ModelSim. If this screen is not available, you can enable it by selecting Help >
Enable Welcome (Main window).

You can also use the File > New > Project (Main window) command to create a new
project.

2 Clicking the Create a Project button opens the Create Project dialog box.
ModelSim SE User’s Manual Projects and system initialization 2-29

Getting started with projects
3 Specify a Project Name and Project Location. The location is where the project .mpf file
and any copied source files will be stored. You can leave the Default Library Name set to
"work," or specify a different name if desired. The name that is specified will be used to
create a working library subdirectory within the Project Location.

After selecting OK, you will see a blank Project page in the workspace area of the Main
window. You can hide or show the workspace at any time using the View > Hide/Show
Workspace command.

The name of the current project is shown at the bottom left corner of the Main window.

workspace
2-30 Projects and system initialization ModelSim SE User’s Manual

Getting started with projects
Step 2 — Add files to the project

Your right mouse button (2nd button in Windows; 3rd button in UNIX) gives quick access
to project commands. When you right-click in the workspace, a context menu appears. The
menu that appears depends on where you click in the workspace.

1 Right click in a blank area on the Project page and select Add file to Project. This opens
the Add file to Project dialog. You can also select Project > Add file to Project from the
menu bar.

2 Specify one or more files you want to add to the project. (The files used in this example are
available in the examples directory that is installed along with ModelSim.)

3 For the files you’re adding, choose whether to reference them from their current location
or copy them into the project directory.
ModelSim SE User’s Manual Projects and system initialization 2-31

Getting started with projects
Step 3 — Compile the files

1 To compile the files, right click in the Project page and select Compile All. You can also
select Project > Compile All from the menu bar.

2 Once compilation is finished, click the Library tab and you’ll see the two compiled designs.
2-32 Projects and system initialization ModelSim SE User’s Manual

Getting started with projects
Step 4 — Simulate a design

1 To simulate one of the designs, either double-click the name or right click the name and
select Load. A new page appears showing the structure of the current active simulation.

At this point you are ready to run the simulation and analyze your results. You often do this
by adding signals to the Wave window and running the simulation for a given period of
time. See the ModelSim Tutorial for examples.

Other project operations

In addition to the four actions just discussed, the following are common project operations.

Open an existing project

When you leave a ModelSim session, ModelSim will remember the last opened project.
You can reopen it for your next session by clicking Open Project in the Welcome to
ModelSim dialog. You can also open an existing project by selecting File > Open > Project
(Main window).

Close a project

Select File > Close > Project (Main window). This closes the Project page but leaves the
Library and Structure (labeled "Sim" in the graphic above) pages open in the workspace.

Delete a project

Select File > Delete > Project (Main window).
ModelSim SE User’s Manual Projects and system initialization 2-33

Customizing project settings
Customizing project settings

Though the default project settings will work for many designs, it is easy to customize the
settings if needed. You can change the compile order and set compiler options.

Changing compile order

When you compile all files in a project, ModelSim by default compiles the files in the order
in which they were added to the project. You have two alternatives for changing the default
compile order: 1) select and compile each file individually; 2) specify a custom compile
order using the Compile Order dialog.

Note: Files can be displayed in the Project tab in alphabetical or compile order (using the
Sort by Alphabetical Order or Sort by Compile Order commands on the context menu).
Keep in mind that the order you see in the Project tab is not necessarily the order in which
the files will be compiled.

To open the Compile Order dialog, right click in an empty area of the Project tab and select
Compile Order. The dialog shown below opens.

The group and ungroup buttons are used on Verilog files only. They allow you to group two
or more Verilog files so they are sent to the compiler at the same time. One case where you
might use this is when you have one file with a bunch of define statements and a second
file that is a Verilog module. You would want to compile these two files at the same time.

move up in order

move down in order

group Verilog files

ungroup Verilog files
2-34 Projects and system initialization ModelSim SE User’s Manual

Customizing project settings
Setting compiler options

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options
that affect how a design is compiled and subsequently simulated. Outside of a project you
can set the defaults for all future simulations using the Options > Compile (Main window)
command. Inside of a project you can set these options on individual files or a group of
files.

To set the compiler options in a project, select the file(s) in the Project page, right click on
the file names, and select Compile Properties. The pages that appear in the resulting dialog
depend on the type of files you have selected. If you select a VHDL file, you’ll see only the
General and VHDL pages. If you select a Verilog file, you’ll see only the General and
Verilog pages. If you select both a VHDL file and a Verilog file, you’ll see all three pages
(as shown in the dialog below).

When setting options on a group of files, keep in mind the following:

• If two or more files have different settings for the same option, the checkbox in the dialog
will be "grayed out" like this:

If you change the option, you cannot change it back to a "multi- state setting" without
cancelling out of the dialog. Once you click OK, ModelSim will set the option the same
for all selected files.

• If you select a combination of VHDL and Verilog files, the options you set on the VHDL
and Verilog tabs apply only to those file types.

• Exclude File from Build
Determines whether the file is excluded from the compile.

• Compile to library
Specifies to which library you want to compile the file; defaults to the working library.

The definitions of the options on the VHDL and Verilog pages can be found in the section
"Setting default compile options" (8-252).
ModelSim SE User’s Manual Projects and system initialization 2-35

Accessing projects from the command line
Accessing projects from the command line

Generally, projects are used only within the ModelSim graphical user interface. However,
standalone tools will use the project file if they are invoked in the project’s root directory.
If invoked outside the project directory, the MODELSIM environment variable can be set
with the path to the project file (<Project_Root_Dir>/<Project_Name>.mpf).

You can also use the project command (CR-159) from the command line to perform
common operations on new projects. The command is to be used outside of a simulation
session.
2-36 Projects and system initialization ModelSim SE User’s Manual

System initialization
System initialization

ModelSim goes through numerous steps as it initializes the system during startup. It
accesses various files and environment variables to determine library mappings, configure
the GUI, check licensing, and so forth.

Files accessed during startup

The table below describes the files that are read during startup. They are listed in the order
in which they are accessed.

File Purpose

modelsim.ini contains initial tool settings; see "Preference variables located in
INI files" (B-396) for specific details on the modelsim.ini file

location map file used by ModelSim tools to find source files based on easily
reallocated "soft" paths; default file name is mgc_location_map;
see "How location mapping works" (E-438) for more details

pref.tcl contains defaults for fonts, colors, prompts, window positions,
and other simulator window characteristics; see "Preference
variables located in TCL files" (B-406) for specific details on the
pref.tcl file

modelsim.tcl contains user-customized settings for fonts, colors, prompts,
window positions, and other simulator window characteristics;
see "Preference variables located in TCL files" (B-406) for
specific details on the modelsim.tcl file
ModelSim SE User’s Manual Projects and system initialization 2-37

System initialization
Environment variables accessed during startup

The table below describes the environment variables that are read during startup. They are
listed in the order in which they are accessed. For more information on environment
variables, see "Environment variables" (B-393).

Environment variable Purpose

MODEL_TECH set by ModelSim to the directory in which the binary executables reside
(e.g., ../modeltech/<platform>/)

MODEL_TECH_OVERRIDE provides an alternative directory for the binary executables;
MODEL_TECH is set to this path

MODELSIM identifies path to the modelsim.ini file

MGC_WD identifies the Mentor Graphics working directory (set by Mentor Graphics
tools)

MGC_LOCATION_MAP identifies the path to the location map file; set by ModelSim if not defined

MODEL_TECH_TCL identifies the path to all Tcl libraries installed with ModelSim

HOME identifies your login directory (UNIX only)

MGC_HOME identifies the path to the MGC tool suite

TCL_LIBRARY identifies the path to the Tcl library; set by ModelSim to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

TK_LIBRARY identifies the path to the Tk library; set by ModelSim to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

TIX_LIBRARY identifies the path to the Tix library; set by ModelSim to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITCL_LIBRARY identifies the path to the [incr]Tcl library; set by ModelSim to the same
path as MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITK_LIBRARY identifies the path to the [incr]Tk library; set by ModelSim to the same
path as MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

VSIM_LIBRARY identifies the path to the Tcl files that are used by ModelSim; set by
ModelSim to the same path as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

MTI_LIB_DIR identifies the path to all Tcl libraries installed with ModelSim
2-38 Projects and system initialization ModelSim SE User’s Manual

System initialization
Initialization sequence

The following list describes in detail ModelSim’s initialization sequence. The sequence
includes a number of conditional structures, the results of which are determined by the
existence of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except
MTI_LIB_DIR which is a Tcl variable). Instances of $(NAME) denote paths that are
determined by an environment variable (except $(MTI_LIB_DIR) which is determined by
a Tcl variable).

1 Determines the path to the executable directory (../modeltech/<platform>/). Sets
MODEL_TECH to this path, unless MODEL_TECH_OVERRIDE exists, in which case
MODEL_TECH is set to the same value as MODEL_TECH_OVERRIDE.

2 Finds the modelsim.ini file by evaluating the following conditions:

• use MODELSIM if it exists; else

• use $(MGC_WD)/modelsim.ini; else

• use ./modelsim.ini; else

• use $(MODEL_TECH)/modelsim.ini; else

• use $(MODEL_TECH)/../modelsim.ini; else

• use $(MGC_HOME)/lib/modelsim.ini; else

• set path to ./modelsim.ini even though the file doesn’t exist

3 Finds the location map file by evaluating the following conditions:

• use MGC_LOCATION_MAP if it exists (if this variable is set to "no_map", ModelSim
skips initialization of the location map); else

• use mgc_location_map if it exists; else

• use $(HOME)/mgc/mgc_location_map; else

• use $(HOME)/mgc_location_map; else

• use $(MGC_HOME)/etc/mgc_location_map; else

• use $(MGC_HOME)/shared/etc/mgc_location_map; else

• use $(MODEL_TECH)/mgc_location_map; else

• use $(MODEL_TECH)/../mgc_location_map; else

• use no map

4 Reads various variables from the [vsim] section of the modelsim.ini file. See "[vsim]
simulator control variables" (B-398) for more details.

MODELSIM_TCL identifies the path to the modelsim.tcl file; this environment variable can
be a list of file pathnames, separated by semicolons (Windows) or colons
(UNIX)

Environment variable Purpose
ModelSim SE User’s Manual Projects and system initialization 2-39

System initialization
5 Parses any command line arguments that were included when you started ModelSim and
reports any problems.

6 Defines the following environment variables:

• use MODEL_TECH_TCL if it exists; else

• set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl

• set TCL_LIBRARY=$(MODEL_TECH_TCL)/tcl8.0

• set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.0

• set TIX_LIBRARY=$(MODEL_TECH_TCL)/tix4.1

• set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itcl3.0

• set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0

• set VSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim

7 Initializes the simulator’s Tcl interpreter.

8 Checks for a valid license (a license is not checked out unless specified by a modelsim.ini
setting or command line option).

The next four steps relate to initializing the graphical user interface.

9 Sets Tcl variable "MTI_LIB_DIR"=MODEL_TECH_TCL

10 Loads $(MTI_LIB_DIR)/pref.tcl.

11 Loads last working directory, project init, project history, and printer defaults from the
registry (Windows) or $(HOME)/.modelsim (UNIX).

12 Finds the modelsim.tcl file by evaluating the following conditions:

• use MODELSIM_TCL if it exists (if MODELSIM_TCL is a list of files, each file is
loaded in the order that it appears in the list); else

• use ./modelsim.tcl; else

• use $(HOME)/modelsim.tcl if it exists

That completes the initialization sequence. Also note the following about the modelsim.ini
file:

• When you change the working directory within ModelSim, the tool reads the [library],
[vcom], and [vlog] sections of the local modelsim.ini file. When you make changes in the
compiler options dialog or use the vmap command, the tool updates the appropriate
sections of the file.

• The pref.tcl file references the default .ini file via the [GetPrivateProfileString] Tcl
command. The .ini file that is read will be the default file defined at the time pref.tcl is
loaded.
2-40 Projects and system initialization ModelSim SE User’s Manual

3 - Design libraries

Chapter contents
Design library contents. 3-42

Design unit information 3-42

Design library types 3-42

Working with design libraries 3-43
Creating a library 3-43
Managing library contents 3-44
Assigning a logical name to a design library 3-47
Moving a library 3-49

Specifying the resource libraries 3-50
VHDL resource libraries 3-50
Predefined libraries 3-50
Alternate IEEE libraries supplied 3-51
VITAL 2000 library 3-51
Rebuilding supplied libraries 3-51
Regenerating your design libraries 3-51
Verilog resource libraries 3-52
Maintaining 32-bit and 64-bit versions in the same library . . . 3-52

Importing FPGA libraries 3-53

VHDL contains libraries, which are objects that contain compiled design units; libraries
are given names so they may be referenced. Verilog designs simulated within ModelSim
are compiled into libraries as well.
ModelSim SE User’s Manual Design libraries 3-41

Design library contents
Design library contents

A design library is a directory that serves as a repository for compiled design units. The
design units contained in a design library consist of VHDL entities, packages, architectures,
and configurations; and Verilog modules and UDPs (user defined primitives). The design
units are classified as follows:

• Primary design units
Consist of entities, package declarations, configuration declarations, modules, and
UDPs. Primary design units within a given library must have unique names.

• Secondary design units
Consist of architecture bodies and package bodies. Secondary design units are associated
with a primary design unit. Architectures by the same name can exist if they are
associated with different entities.

Design unit information

The information stored for each design unit in a design library is:

• retargetable, executable code

• debugging information

• dependency information

Design library types

There are two kinds of design libraries: working libraries and resource libraries. A working
library is the library into which a design unit is placed after compilation. A resource library
contains design units that can be referenced within the design unit being compiled. Only
one library can be the working library; in contrast, any number of libraries (including the
working library itself) can be resource libraries during a compilation.

The library named work has special attributes within ModelSim; it is predefined in the
compiler and need not be declared explicitly (i.e. library work). It is also the library name
used by the compiler as the default destination of compiled design units. In other words the
work library is the working library. In all other aspects it is the same as any other library.
3-42 Design libraries ModelSim SE User’s Manual

Working with design libraries
Working with design libraries

The implementation of a design library is not defined within standard VHDL or Verilog.
Within ModelSim, design libraries are implemented as directories and can have any legal
name allowed by the operating system, with one exception; extended identifiers are not
supported for library names.

Creating a library

When you create a project (see "Getting started with projects" (2-28)), ModelSim
automatically creates a working design library. If you don’t create a project, you need to
create a working design library before you run the compiler. This can be done from either
the command line or from the ModelSim graphic interface.

From the ModelSim prompt or a UNIX/DOS prompt, use this vlib command (CR-249):

vlib <directory_pathname>

To create a new library with the ModelSim graphic interface, select Design > Create a New
Library (Main window). This brings up a dialog box that allows you to specify the library
name and its logical mapping.

The Create a New Library dialog box includes these options:

• Create a new library and a logical mapping to it
Type the new library name into the Library Name field. This creates a library sub-
directory in your current working directory, initially mapped to itself. Once created, the
mapped library is easily remapped to a different library.

• Create a map to an existing library
Type the new library name into the Library Name field, then type into the Library
Maps to field or Browse to select a library name for the mapping.

• Library Name
Type the new library name into this field.
ModelSim SE User’s Manual Design libraries 3-43

Working with design libraries
• Library Maps to
Type or Browse for a mapping for the specified library. This field can be changed only
when the Create a map to an existing library option is selected.

When you click OK, ModelSim creates the specified library directory and writes a
specially-formatted file named _info into that directory. The _info file must remain in the
directory to distinguish it as a ModelSim library.

The new map entry is written to the modelsim.ini file in the [Library] section. See
"[Library] library path variables" (B-396) for more information.

Note: Remember that a design library is a special kind of directory; the only way to create
a library is to use the ModelSim GUI or the vlib command (CR-249). Do not create libraries
using UNIX or Windows commands.

Managing library contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the
graphic interface or command line.

The Library page in the Main window workspace provides access to design units
(configurations, modules, packages, entities, and architectures) in a library. Note the icons
identify whether a unit is an entity (E), a module (M), and so forth.

The Library page includes these options:

• Library
Select the library you wish to view from the drop-down list. Related command line
command is vdir (CR-223).
3-44 Design libraries ModelSim SE User’s Manual

Working with design libraries
• DesignUnit/Description list

Select a plus (+) box to view the associated architecture, or select a minus (–) box to hide
the architecture.

The Library page also has two context menus that you access with your right mouse button
(Windows—2nd button, UNIX—3rd button).One menu is accessed by right-clicking a
design unit name; the second is accessed by right-clicking a blank area in the Designs page.
The graphic below shows the two menus.

The context menu at the left includes the following commands:

• Load
Simulates the selected design unit and opens a structure page in the workspace. Related
command line command is vsim (CR-258).

• Edit
Opens the selected design unit in the Source window.

• Refresh
Rebuilds the library image of the selected item(s) without using source code. Related
command line command is vcom (CR-217) with the -refresh argument.

• Recompile
Recompiles the selected design unit. Related command line command is vcom (CR-217).

• Delete
Deletes the selected design unit. Related command line command is vdel (CR-222).

Deleting a package, configuration, or entity will remove the design unit from the library.
If you delete an entity that has one or more architectures, the entity and all its associated
architectures will be deleted.
ModelSim SE User’s Manual Design libraries 3-45

Working with design libraries
You can also delete an architecture without deleting its associated entity. Expand the
entity, right-click the desired architecture name, and select Delete. You are prompted for
confirmation before any design unit is actually deleted.

The second context menu has the following options:

• Load
Opens the Load Design dialog box. See "Simulating with the graphic interface" (8-256)
for details. Related command line command is vsim (CR-258).

• Create Library
Opens the Create a New Library dialog box. See "Creating a library" (3-43) earlier in this
chapter for details. Related command line command is vlib (CR-249).

• View
Provides various options for displaying design units.

• Update
Reloads the library in case any of the design units were modified outside of the current
session (e.g., by a script or another user).
3-46 Design libraries ModelSim SE User’s Manual

Working with design libraries
Assigning a logical name to a design library

VHDL uses logical library names that can be mapped to ModelSim library directories. By
default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map a logical library name
to the pathname of the library.

You can use the GUI, a command, or a project to assign a logical name to a design library.

Library mappings with the GUI

To associate a logical name with a library, select Design > Browse Libraries (Main
window). This brings up a dialog box that allows you to view, add, edit, and delete
mappings, as shown below:

The Library Browser dialog box includes these options:

• Show
Choose the mapping and library scope to view from the drop-down list.

• Library/Type list

To view the contents of a library
Select the library, then click the View button. This brings up the Library page (3-44) in
the Main window. From there you can also delete design units from the library.

To create a new library mapping
Click the Add button. This brings up Create a New Library (3-43) dialog box that
allows you to enter a new logical library name and the pathname to which it is to be
mapped.

It is possible to enter the name of a non-existent directory, but the specified directory
must exist as a ModelSim library before you can compile design units into it. ModelSim
will issue a warning message if you try to map to a non-existent directory.
ModelSim SE User’s Manual Design libraries 3-47

Working with design libraries
To edit an existing library mapping
Select the desired mapping entry, then click the Edit button. This brings up a dialog box
that allows you to modify the logical library name and the pathname to which it is
mapped. Selecting Delete removes an existing library mapping, but it does not delete the
library. The library can be deleted with this vdel command (CR-222):

vdel -lib <library_name> -all

Library mapping from the command line

You can issue a command to set the mapping between a logical library name and a
directory; its form is:

vmap <logical_name> <directory_pathname>

This command may be invoked from either a UNIX/DOS prompt or from the command line
within ModelSim.

When you use vmap (CR-257) this way you are modifying the modelsim.ini file. You can
also modify modelsim.ini manually by adding a mapping line. To do this, edit the
modelsim.ini file using any text editor and add a line under the [Library] section heading
using the syntax:

<logical_name> = <directory_pathname>

More than one logical name can be mapped to a single directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Library]
work = /usr/rick/design
my_asic = /usr/rick/design

This would allow you to use either the logical name work or my_asic in a library or use
clause to refer to the same design library.

Unix symbolic links

You can also create a UNIX symbolic link to the library using the host platform command:

ln -s <directory_pathname> <logical_name>

The vmap command (CR-257) can also be used to display the mapping of a logical library
name to a directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Library search rules

The system searches for the mapping of a logical name in the following order:

• First the system looks for a modelsim.ini file.

• If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify a logical name that does not resolve to
an existing directory.
3-48 Design libraries ModelSim SE User’s Manual

Working with design libraries
See also

See "ModelSim Commands" (CR-9) for more information about the library management
commands, "ModelSim Graphic Interface" (8-149) for more information about the graphical
user interface, and "Projects and system initialization" (2-25) for more information about the
modelsim.ini file.

Moving a library

Individual design units in a design library cannot be moved. An entire design library can
be moved, however, by using standard operating system commands for moving a directory.
ModelSim SE User’s Manual Design libraries 3-49

Specifying the resource libraries
Specifying the resource libraries

VHDL resource libraries

Within a VHDL source file, you can use the VHDL library clause to specify logical names
of one or more resource libraries to be referenced in the subsequent design unit. The scope
of a library clause includes the text region that starts immediately after the library clause
and extends to the end of the declarative region of the associated design unit. It does not
extend to the next design unit in the file.

Note that the library clause is not used to specify the working library into which the design
unit is placed after compilation; the vcom command (CR-217) adds compiled design units
to the current working library. By default, this is the library named work. To change the
current working library, you can use vcom -work and specify the name of the desired target
library.

Predefined libraries

Certain resource libraries are predefined in standard VHDL. The library named std
contains the packages standard and textio, which should not be modified. The contents of
these packages and other aspects of the predefined language environment are documented
in the IEEE Standard VHDL Language Reference Manual, Std 1076-1987 and ANSI/IEEE
Std 1076-1993. See also, "Using the TextIO package" (4-60).

A VHDL use clause can be used to select specific declarations in a library or package that
are to be visible within a design unit during compilation. A use clause references the
compiled version of the package—not the source.

By default, every design unit is assumed to contain the following declarations:

LIBRARY std, work;
USE std.standard.all

To specify that all declarations in a library or package can be referenced, you can add the
suffix .all to the library/package name. For example, the use clause above specifies that all
declarations in the package standard in the design library named std are to be visible to
the VHDL design file in which the use clause is placed. Other libraries or packages are not
visible unless they are explicitly specified using a library or use clause.

Another predefined library is work, the library where a design unit is stored after it is
compiled as described earlier. There is no limit to the number of libraries that can be
referenced, but only one library is modified during compilation.
3-50 Design libraries ModelSim SE User’s Manual

Specifying the resource libraries
Alternate IEEE libraries supplied

The installation directory may contain two or more versions of the IEEE library:

• ieeepure
Contains only IEEE approved std_logic_1164 packages (accelerated for ModelSim).

• ieee
Contains precompiled Synopsys and IEEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std_logic_1164, std_logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std_logic_unsigned, vital_primitives, vital_timing, and vital_memory.

You can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini file in the installation directory defaults to the ieee library.

VITAL 2000 library

ModelSim versions 5.5 and later include a separate VITAL 2000 library that contains an
accelerated vital_memory package.

You’ll need to add a use clause to your VHDL code to access the package. For example:

LIBRARY vital2000;
USE vital2000.vital_memory.all

Also, when you compile, use the -vital2000 switch to vcom (CR-217).

Rebuilding supplied libraries

Resource libraries are supplied precompiled in the modeltech installation directory. If you
need to rebuild these libraries, the sources are provided in the vhdl_src directory; a macro
file is also provided for Windows platforms (rebldlibs.do). To rebuild the libraries, invoke
the DO file from within ModelSim with this command:

do rebldlibs.do

(Make sure your current directory is the modeltech install directory before you run this file.)

Shell scripts are provided for UNIX (rebuild_libs.csh and rebuild_libs.sh). To rebuild the
libraries, execute one of the rebuild_libs scripts while in the modeltech directory.

Note: Because accelerated subprograms require attributes that are available only under the
1993 standard, many of the libraries are built using vcom (CR-217) with the -93 option.

Regenerating your design libraries

Depending on your current ModelSim version, you may need to regenerate your design
libraries before running a simulation. Check the installation README file to see if your
libraries require an update. You can regenerate your design libraries using the Refresh
command from the Library page context menu (see "Managing library contents" (3-44)), or
by using the -refresh argument to vcom (CR-217) and vlog (CR-250).

From the command line, you would use vcom with the -refresh option to update VHDL
design units in a library, and vlog with the -refresh option to update Verilog design units.
By default, the work library is updated; use -work <library> to update a different library.
For example, if you have a library named mylib that contains both VHDL and Verilog
design units:
ModelSim SE User’s Manual Design libraries 3-51

Specifying the resource libraries
vcom -work mylib -refresh
vlog -work mylib -refresh

An important feature of -refresh is that it rebuilds the library image without using source
code. This means that models delivered as compiled libraries without source code can be
rebuilt for a specific release of ModelSim (4.6 and later only). In general, this works for
moving forwards or backwards on a release. Moving backwards on a release may not work
if the models used compiler switches or directives (Verilog only) that do not exist in the
older release.

Note: You don’t need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you
cannot use the -refresh option to update libraries that were built before the 4.6 release.

Verilog resource libraries

ModelSim supports and encourages separate compilation of distinct portions of a Verilog
design. The vlog (CR-250) compiler is used to compile one or more source files into a
specified library. The library thus contains pre-compiled modules and UDPs (and, perhaps,
VHDL design units) that are referenced by the simulator as it loads the design. See "Library
usage" (5-78).

Maintaining 32-bit and 64-bit versions in the same library

It is possible with ModelSim to maintain 32-bit and 64-bit versions of a design in the same
library. To do this, you must compile the design with one of the versions (32-bit or 64-bit),
and "refresh" the design with the other version. For example:

Using the 32-bit version of ModelSim:

vcom file1.vhd
vcom file2.vhd

Next, using the 64-bit version of ModelSim:

vcom -refresh

Do not compile the design with one version, and then recompile it with the other. If you do
this, ModelSim will remove the first module, because it could be "stale."
3-52 Design libraries ModelSim SE User’s Manual

Importing FPGA libraries
Importing FPGA libraries

ModelSim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct
mappings and target directories.

Important: The FPGA libraries you import must be pre-compiled. Most FPGA vendors
supply pre-compiled libraries configured for use with ModelSim.

To import an FPGA library, select Design > Import Library (Main window).

Follow the instructions in the wizard to complete the import.
ModelSim SE User’s Manual Design libraries 3-53

3-54 Design libraries ModelSim SE User’s Manual

4 - VHDL Simulation

Chapter contents
Compiling VHDL designs 4-57

Creating a design library 4-57
Invoking the VHDL compiler 4-57
Dependency checking 4-57

Simulating VHDL designs 4-58
Invoking the simulator from the Main window 4-58
Invoking Code Coverage with vsim 4-59

Using the TextIO package 4-60
Syntax for file declaration. 4-60
Using STD_INPUT and STD_OUTPUT within ModelSim . . . 4-61

TextIO implementation issues 4-62
Writing strings and aggregates 4-62
Reading and writing hexadecimal numbers 4-63
Dangling pointers 4-63
The ENDLINE function 4-63
The ENDFILE function 4-63
Using alternative input/output files 4-64
Providing stimulus 4-64

Obtaining the VITAL specification and source code 4-65

VITAL packages 4-65

ModelSim VITAL compliance. 4-66
VITAL compliance checking 4-66
VITAL compliance warnings 4-66

Compiling and Simulating with accelerated VITAL packages . . . 4-67

Util package 4-68
get_resolution() 4-68
init_signal_spy() 4-69
to_real() 4-70
to_time() 4-71

This chapter provides an overview of compilation and simulation for VHDL designs within
the ModelSim environment, using the TextIO package with ModelSim; ModelSim’s
implementation of the VITAL (VHDL Initiative Towards ASIC Libraries) specification for
ASIC modeling; and documentation on ModelSim’s special built-in utilities package.

The TextIO package is defined within the VHDL Language Reference Manuals, IEEE Std
1076-1987 and IEEE Std 1076-1993; it allows human-readable text input from a declared
source within a VHDL file during simulation.
ModelSim SE User’s Manual VHDL Simulation 4-55

Compiling and simulating with the GUI

Many of the examples in this chapter are shown from the command line. For compiling and
simulating within a project or the ModelSim GUI, see:

• Getting started with projects (2-28)

• Compiling with the graphic interface (8-250)

• Simulating with the graphic interface (8-256)

ModelSim variables

Several variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the ModelSim GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation. See Appendix B - ModelSim
Variables for a complete listing of ModelSim variables.
4-56 VHDL Simulation ModelSim SE User’s Manual

Compiling VHDL designs
Compiling VHDL designs

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use vlib (CR-249) to create a new library. For example:

vlib work

This creates a library named work. By default, compilation results are stored in the work
library.

Note: The work library is actually a subdirectory named work. This subdirectory contains
a special file named _info. Do not create libraries using UNIX, MS Windows, or DOS
commands – always use the vlib command (CR-249).

See "Design libraries" (3-41) for additional information on working with libraries.

Invoking the VHDL compiler

ModelSim compiles one or more VHDL design units with a single invocation of vcom (CR-

217), the VHDL compiler. The design units are compiled in the order that they appear on
the command line. For VHDL, the order of compilation is important – you must compile
any entities or configurations before an architecture that references them.

You can simulate a design containing units written with both the 1076 -1987 and 1076
-1993 versions of VHDL. To do so you will need to compile units from each VHDL version
separately. The vcom (CR-217) command compiles units written with version 1076 -1987
by default; use the -93 option with vcom (CR-217) to compile units written with version
1076 -1993. You can also change the default by modifying the modelsim.ini file (see
"Preference variables located in INI files" (B-396) for more information).

Dependency checking

Dependent design units must be reanalyzed when the design units they depend on are
changed in the library. vcom (CR-217) determines whether or not the compilation results
have changed. For example, if you keep an entity and its architectures in the same source
file and you modify only an architecture and recompile the source file, the entity
compilation results will remain unchanged and you will not have to recompile design units
that depend on the entity.
ModelSim SE User’s Manual VHDL Simulation 4-57

Simulating VHDL designs
Simulating VHDL designs

After compiling the design units, you can simulate your designs with vsim (CR-258). This
section discusses simulation from the UNIX or Windows/DOS command line. You can
also use a project to simulate (see "Getting started with projects" (2-28)) or the Load Design
dialog box (see "Simulating with the graphic interface" (8-256)).

Note: Simulation normally stops if a failure occurs; however, if a bounds check on a signal
fails the simulator will continue running.

Invoking the simulator from the Main window

For VHDL, invoke vsim (CR-258) with the name of the configuration, or entity/architecture
pair. Note that if you specify a configuration you may not specify an architecture.

This example invokes vsim (CR-258) on the entity my_asic and the architecture structure:

vsim my_asic structure

If a design unit name is not specified, vsim (CR-258) will present the Load Design dialog
box from which you can choose a configuration or entity/architecture pair. See "Simulating
with the graphic interface" (8-256) for more information.

Selecting the time resolution

The simulation time resolution is 1 ns by default. You can select a specific time resolution
with the vsim (CR-258) -t option or from the Load Design dialog box. Available resolutions
are: 1x, 10x or 100x of fs, ps, ns, us, ms, or sec.

For example, to run in picosecond resolution, or 10ps resolution respectively:

vsim -t ps topmod
vsim -t 10ps topmod

Note that there is no space between the value and the units (i.e.., 10ps, not 10 ps).

The default time resolution can also be changed by modifying the Resolution (B-400)
variable in the modelsim.ini file. You can view the current resolution by invoking the
report command (CR-168) with the simulator state option.

See "Preference variables located in INI files" (B-396) for more information on modifying
the modelsim.ini file.

vsim (CR-258) is capable of annotating a design using VITAL compliant models with timing
data from an SDF file. You can specify the min:typ:max delay by invoking vsim with the
-sdfmin, -sdftyp and -sdfmax options. Using the SDF file f1.sdf in the current work
directory, the following invocation of vsim annotates maximum timing values for the
design unit my_asic:

vsim -sdfmax /my_asic=f1.sdf my_asic

Timing check disabling

By default, the timing checks within VITAL models are enabled. They can be disabled with
the +notimingchecks option.

For example:

vsim +notimingchecks topmod
4-58 VHDL Simulation ModelSim SE User’s Manual

Simulating VHDL designs
Invoking Code Coverage with vsim

ModelSim’s Code Coverage feature gives you graphical and report file feedback on how
the source code is being executed. It allows line number execution statistics to be kept by
the simulator. It can be used during any design phase and in all levels and types of designs.
For complete details, see Chapter 10 - Code Coverage.

To acquire code coverage statistics, the -coverage switch must be specified during the
command-line invocation of the simulator.

vsim -coverage ...

This will allow you to use the various code coverage commands: coverage clear (CR-92),
coverage reload (CR-93), and coverage report (CR-94).
ModelSim SE User’s Manual VHDL Simulation 4-59

Using the TextIO package
Using the TextIO package

To access the routines in TextIO, include the following statement in your VHDL source
code:

USE std.textio.all;

A simple example using the package TextIO is:

USE std.textio.all;
ENTITY simple_textio IS
END;

ARCHITECTURE simple_behavior OF simple_textio IS
BEGIN

PROCESS
VARIABLE i: INTEGER:= 42;
VARIABLE LLL: LINE;

BEGIN
WRITE (LLL, i);
WRITELINE (OUTPUT, LLL);
WAIT;

END PROCESS;
END simple_behavior;

Syntax for file declaration

The VHDL’87 syntax for a file declaration is:

file identifier : subtype_indication is [mode] file_logical_name ;

where "file_logical_name" must be a string expression.

The VHDL’93 syntax for a file declaration is:

file identifier_list : subtype_indication [file_open_information] ;

You can specify a full or relative path as the file_logical_name; for example (VHDL’87):

file filename : TEXT is in "usr/rick/myfile";

Normally if a file is declared within an architecture, process, or package, the file is opened
when you start the simulator and is closed when you exit from it. If a file is declared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNs from the subprogram. Alternatively, the opening of files can be delayed until
the first read or write by setting the DelayFileOpen variable in the modelsim.ini file. Also,
the number of concurrently open files can be controlled by the ConcurrentFileLimit
variable. These variables help you manage a large number of files during simulation. See
Appendix B - ModelSim Variables for more details.
4-60 VHDL Simulation ModelSim SE User’s Manual

Using the TextIO package
Using STD_INPUT and STD_OUTPUT within ModelSim

The standard VHDL’87 TextIO package contains the following file declarations:

file input: TEXT is in "STD_INPUT";
file output: TEXT is out "STD_OUTPUT";

The standard VHDL’93 TextIO package contains these file declarations:

file input: TEXT open read_mode is "STD_INPUT";
file output: TEXT open write_mode is "STD_OUTPUT";

STD_INPUT is a file_logical_name that refers to characters that are entered interactively
from the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current
buffer from a prompt in the Main window. The last line written to the STD_OUTPUT file
appears at the prompt.
ModelSim SE User’s Manual VHDL Simulation 4-61

TextIO implementation issues
TextIO implementation issues

Writing strings and aggregates

A common error in VHDL source code occurs when a call to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the
VHDL procedure:

WRITE (L, "hello");

will cause the following error:

ERROR: Subprogram "WRITE" is ambiguous.

In the TextIO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRITE(L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE(L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

The error occurs because the argument "hello" could be interpreted as a string or a bit
vector, but the compiler is not allowed to determine the argument type until it knows which
function is being called.

The following procedure call also generates an error:

WRITE (L, "010101");

This call is even more ambiguous, because the compiler could not determine, even if
allowed to, whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

• Use a qualified expression to specify the type, as in:

WRITE (L, string’("hello"));

• Call a procedure that is not overloaded, as in:

WRITE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedure in the
io_utils package, which is located in the file /modeltech/examples/io_utils.vhd.
4-62 VHDL Simulation ModelSim SE User’s Manual

TextIO implementation issues
Reading and writing hexadecimal numbers

The reading and writing of hexadecimal numbers is not specified in standard VHDL. The
Issues Screening and Analysis Committee of the VHDL Analysis and Standardization
Group (ISAC-VASG) has specified that the TextIO package reads and writes only decimal
numbers.

To expand this functionality, ModelSim supplies hexadecimal routines in the package
io_utils, which is located in the file /modeltech/examples/io_utils.vhd. To use these
routines, compile the io_utils package and then include the following use clauses in your
VHDL source code:

use std.textio.all;
use work.io_utils.all;

Dangling pointers

Dangling pointers are easily created when using the TextIO package, because
WRITELINE de-allocates the access type (pointer) that is passed to it. Following are
examples of good and bad VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and allocate buffer
L2 := L1; -- Copy pointers
WRITELINE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and allocate buffer
L2 := new string’(L1.all); -- Copy contents
WRITELINE (outfile, L1); -- Deallocate buffer

The ENDLINE function

The ENDLINE function described in the IEEE Standard VHDL Language Reference
Manual, IEEE Std 1076-1987 contains invalid VHDL syntax and cannot be implemented
in VHDL. This is because access types must be passed as variables, but functions only
allow constant parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed
from the TextIO package. The following test may be substituted for this function:

(L = NULL) OR (L’LENGTH = 0)

The ENDFILE function

In the VHDL Language Reference Manuals, IEEE Std 1076-1987 and IEEE Std 1076-1993,
the ENDFILE function is listed as:

-- function ENDFILE (L: in TEXT) return BOOLEAN;

As you can see, this function is commented out of the standard TextIO package. This is
because the ENDFILE function is implicitly declared, so it can be used with files of any
type, not just files of type TEXT.
ModelSim SE User’s Manual VHDL Simulation 4-63

TextIO implementation issues
Using alternative input/output files

You can use the TextIO package to read and write to your own files. To do this, just declare
an input or output file of type TEXT.

The VHDL’87 declaration is:

file myinput : TEXT is in "pathname.dat";

The VHDL’93 declaration is:

file myinput : TEXT open read_mode is "pathname.dat";

Then include the identifier for this file ("myinput" in this example) in the READLINE or
WRITELINE procedure call.

Providing stimulus

You can stimulate and test a design by reading vectors from a file, using them to drive
values onto signals, and testing the results. A VHDL test bench has been included with the
ModelSim install files as an example. Check for this file:

<install_dir>/modeltech/examples/stimulus.vhd
4-64 VHDL Simulation ModelSim SE User’s Manual

Obtaining the VITAL specification and source code
Obtaining the VITAL specification and source code

VITAL ASIC Modeling Specification

The IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

IEEE Customer Service
445 Hoes Lane
Piscataway, NJ 08855-1331

Tel: (800)678-4333 ((908)562-5420 from outside the U.S.)
Fax: (908)981-9667
home page: http://www.ieee.org

VITAL source code

The source code for VITAL packages is provided in the /<install_dir>/modeltech/
vhdl_src/vital2.2b, /vital95, or /vital2000 directories.

VITAL packages

VITAL v3.0 accelerated packages are pre-compiled into the ieee library in the installation
directory.

Note: By default, ModelSim is optimized for VITAL v3.0. You can, however, revert to
VITAL v2.2b by invoking vsim (CR-258) with the -vital2.2b option, and by mapping library
vital to <install_dir>/modeltech/vital2.2b.
ModelSim SE User’s Manual VHDL Simulation 4-65

http://www.ieee.org

ModelSim VITAL compliance
ModelSim VITAL compliance

A simulator is VITAL compliant if it implements the SDF mapping and if it correctly
simulates designs using the VITAL packages, as outlined in the VITAL Model
Development Specification. ModelSim is compliant with the IEEE 1076.4 VITAL ASIC
Modeling Specification. In addition, ModelSim accelerates the VITAL_Timing and
VITAL_Primitives packages. The procedures in these packages are optimized and built
into the simulator kernel. By default, vsim (CR-258) uses the optimized procedures. The
optimized procedures are functionally equivalent to the IEEE 1076.4 VITAL ASIC
Modeling Specification (VITAL v3.0).

VITAL compliance checking

Compliance checking is important in enabling VITAL acceleration; to qualify for global
acceleration, an architecture must be VITAL-level-one compliant. vcom (CR-217)
automatically checks for VITAL 3.0 compliance on all entities with the VITAL_Level0
attribute set, and all architectures with the VITAL_Level0 or VITAL_Level1 attribute set.
It also checks for VITAL 2000 compliance on all architectures using the vital2000 library.

If you are using VITAL 2.2b, you must turn off the compliance checking either by not
setting the attributes, or by invoking vcom (CR-217) with the option -novitalcheck. It is, of
course, possible to turn off compliance checking for VITAL 3.0 as well; we strongly
suggest that you leave checking on to ensure optimal simulation.

VITAL compliance warnings

The following LRM errors are printed as warnings (if they were considered errors they
would prevent VITAL level 1 acceleration); they do not affect how the architecture
behaves.

• Starting index constraint to DataIn and PreviousDataIn parameters to VITALStateTable
do not match (1076.4 section 6.4.3.2.2)

• Size of PreviousDataIn parameter is larger than the size of the DataIn parameter to
VITALStateTable (1076.4 section 6.4.3.2.2)

• Signal q_w is read by the VITAL process but is NOT in the sensitivity list (1076.4 section
6.4.3)

The first two warnings are minor cases where the body of the VITAL 3.0 LRM is slightly
stricter than the package portion of the LRM. Since either interpretation will provide the
same simulation results, we chose to make these two cases just warnings.

The last warning is a relaxation of the restriction on reading an internal signal that is not in
the sensitivity list. This is relaxed only for the CheckEnabled parameters of the timing
checks, and only if it is not read elsewhere.

You can control the visibility of VITAL compliance-check warnings in your vcom (CR-217)
transcript. They can be suppressed by using the vcom -nowarn switch as in
vcom -nowarn 6. The 6 comes from the warning level printed as part of the warning, i.e.,
WARNING[6]. You can also add the following line to your modelsim.ini file in the [vcom]
VHDL compiler control variables (B-396) section.

[vcom]
Show_VitalChecksWarnings = 0
4-66 VHDL Simulation ModelSim SE User’s Manual

Compiling and Simulating with accelerated VITAL packages
Compiling and Simulating with accelerated VITAL packages

vcom (CR-217) automatically recognizes that a VITAL function is being referenced from
the ieee library and generates code to call the optimized built-in routines.

Optimization occurs on two levels:

• VITAL Level-0 optimization
This is a function-by-function optimization. It applies to all level-0 architectures, and any
level-1 architectures that failed level-1 optimization.

• VITAL Level-1 optimization
Performs global optimization on a VITAL 3.0 level-1 architecture that passes the VITAL
compliance checker. This is the default behavior.

Compiler options for VITAL optimization

Several vcom (CR-217) options control and provide feedback on VITAL optimization:

-O0 | -O4

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable optimizations with -O4 (default).

-debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration.

-vital2000

Turns on acceleration for the VITAL 2000 vital_memory package.

ModelSim VITAL built-ins will be updated in step with new releases of the VITAL
packages.
ModelSim SE User’s Manual VHDL Simulation 4-67

Util package
Util package

The util package is included in ModelSim versions 5.5 and later and serves as a container
for various VHDL utilities. The package is part of the modelsim_lib library which is
located in the modelsim tree and mapped in the default modelsim.ini file.

To access the utilities in the package, you would add lines like the following to your VHDL
code:

library modelsim_lib;
use modelsim_lib.util.all;

get_resolution()

get_resolution() returns the current simulator resolution as a real number. For example, 1
femtosecond corresponds to 1e-15.

Syntax

resval := get_resolution();

Returns

Arguments

None

Related functions

to_real() (4-70)

to_time() (4-71)

Example

If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution();

the value returned to resval would be 1e-11.

Name Type Description

resval real The simulator resolution represented as a real
4-68 VHDL Simulation ModelSim SE User’s Manual

Util package
init_signal_spy()

The init_signal_spy() utility mirrors the value of a VHDL signal or Verilog register/wire
(called the spy_object) onto an existing VHDL signal or Verilog register (called the
dest_object). This allows you to reference signals, registers, or wires at any level of
hierarchy from within a VHDL architecture (e.g., a testbench).

This system task works only in ModelSim versions 5.5 and newer.

Syntax

init_signal_spy(spy_object, dest_object, verbose);

Returns

Nothing

Arguments

Related functions

None

Limitations

• When mirroring the value of a Verilog register/wire onto a VHDL signal, the VHDL
signal must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Mirroring slices or single bits of a vector is not supported. If you do reference a slice or
bit of a vector, the function will assume that you are referencing the entire vector.

Name Type Description

spy_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/wire. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register. Use
the path separator to which your simulation is
set (i.e., "/" or "."). A full hierarchical path
must begin with a "/" or ".". The path must be
contained within double quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the spy_object’s value
is mirrored onto the dest_object. Default is 0,
no message.
ModelSim SE User’s Manual VHDL Simulation 4-69

Util package
Example

library modelsim_lib;
use modelsim_lib.util.all;
entity top is
end;

architecture ...
signal top_sig1 : std_logic;

begin
...
spy_process : process
begin

init_signal_spy("/top/uut/inst1/sig1","/top_sig1",1);
wait;

end process spy_process;
...

end;

In this example, the value of "/top/uut/inst1/sig1" will be mirrored onto
"/top_sig1".

to_real()

to_real() converts the physical type time value into a real value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fs to a real and the simulator
resolution was ps, then the real value would be 2.0 (i.e. 2 ps).

Syntax

realval := to_real(timeval);

Returns

Arguments

Related functions

get_resolution() (4-68)

to_time() (4-71)

Example

Name Type Description

realval real The time value represented as a real with
respect to the simulator resolution

Name Type Description

timeval time The value of the physical type time
4-70 VHDL Simulation ModelSim SE User’s Manual

Util package
If the simulator resolution is set to ps, and you enter the following function:

realval := to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to be
in units of nanoseconds (ns) instead, you would use the get_resolution() (4-68) function to
recalculate the value:

realval := 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := 1e+15 * (to_real(12.99 ns)) * get_resolution();

to_time()

to_time converts a real value into a time value with respect to the current simulator
resolution. The precision of the converted value is determined by the simulator resolution.
For example, if you were converting 5.9 to a time and the simulator resolution was ps, then
the time value would be 6 ps.

Syntax

timeval := to_time(realval);

Returns

Arguments

Related functions

get_resolution() (4-68)

to_real() (4-70)

Example

If the simulator resolution is set to ps, and you enter the following function:

timeval := to_time(72.49);

then the value returned to timeval would be 72 ps.

Name Type Description

timeval time The real value represented as a physical type
time with respect to the simulator resolution

Name Type Description

realval real The value of the type real
ModelSim SE User’s Manual VHDL Simulation 4-71

4-72 VHDL Simulation ModelSim SE User’s Manual

5 - Verilog Simulation

Chapter contents
Compilation 5-75

Incremental compilation 5-76
Library usage 5-78
Verilog-XL compatible compiler options 5-79
Verilog-XL ‘uselib compiler directive 5-81

Simulation 5-84
Invoking the simulator 5-84
Simulation resolution limit 5-84
Event order issues 5-85
Verilog-XL compatible simulator options 5-86

Compiling for faster performance 5-90
Compiling with -fast 5-90
Compiling gate-level designs with -fast 5-91
Referencing the optimized design. 5-92
Enabling design object visibility with the +acc option 5-94
Using pre-compiled libraries 5-96

Cell Libraries 5-97
SDF timing annotation 5-97
Delay modes 5-97

System Tasks 5-99
IEEE Std 1364 system tasks 5-99
Verilog-XL compatible system tasks 5-102
$init_signal_spy 5-104

Compiler Directives 5-106
IEEE Std 1364 compiler directives 5-106
Verilog-XL compatible compiler directives 5-106

Using the Verilog PLI/VPI. 5-108
Registering PLI applications 5-108
Registering VPI applications 5-110
Compiling and linking PLI/VPI applications 5-111
The PLI callback reason argument 5-117
The sizetf callback function 5-119
PLI object handles. 5-119
Third party PLI applications 5-120
Support for VHDL objects 5-121
IEEE Std 1364 ACC routines 5-122
IEEE Std 1364 TF routines 5-123
Verilog-XL compatible routines 5-125
64-bit support in the PLI 5-125
PLI/VPI tracing 5-125

This chapter describes how to compile and simulate Verilog designs with ModelSim
Verilog. ModelSim Verilog implements the Verilog language as defined by the IEEE Std
1364, and it is recommended that you obtain this specification as a reference manual.
ModelSim SE User’s Manual Verilog Simulation 5-73

In addition to the functionality described in the IEEE Std 1364, ModelSim Verilog includes
the following features:

• Standard Delay Format (SDF) annotator compatible with many ASIC and FPGA vendor's
Verilog libraries

• Value Change Dump (VCD) file extensions for ASIC vendor test tools

• Dynamic loading of PLI/VPI applications

• Compilation into retargetable, executable code

• Incremental design compilation

• Extensive support for mixing VHDL and Verilog in the same design (including SDF
annotation)

• Graphic Interface that is common with ModelSim VHDL

• Extensions to provide compatibility with Verilog-XL

The following IEEE Std 1364 functionality is partially implemented in ModelSim Verilog:

• Verilog Procedural Interface (VPI) (see /<install_dir>/modeltech/docs/technotes/
Verilog_VPI.note for details)

Many of the examples in this chapter are shown from the command line. For compiling and
simulating within a project or ModelSim’s GUI see:

• Getting started with projects (2-28)

• Compiling with the graphic interface (8-250)

• Simulating with the graphic interface (8-256)

ModelSim variables

Several variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the ModelSim GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation. See Appendix B - ModelSim
Variables for a complete listing of ModelSim variables.
5-74 Verilog Simulation ModelSim SE User’s Manual

Compilation
Compilation

Before you can simulate a Verilog design, you must first create a library and compile the
Verilog source code into that library. This section provides detailed information on
compiling Verilog designs. For information on creating a design library, see Chapter 3 -
Design libraries.

The ModelSim Verilog compiler, vlog, compiles Verilog source code into retargetable,
executable code, meaning that the library format is compatible across all supported
platforms and that you can simulate your design on any platform without having to
recompile your design specifically for that platform. As you compile your design, the
resulting object code for modules and UDPs is generated into a library. By default, the
compiler places results into the work library. You can specify an alternate library with the
-work option. The following is a simple example of how to create a work library, compile
a design, and simulate it:

Contents of top.v:

module top;
initial $display("Hello world");

endmodule

Create the work library:

% vlib work

Compile the design:

% vlog top.v
-- Compiling module top

Top level modules:
top

View the contents of the work library (optional):

% vdir
MODULE top

Simulate the design:

% vsim -c top
Loading work.top
VSIM 1> run -all
Hello world
VSIM 2> quit

In this example, the simulator was run without the graphic interface by specifying the -c
option. After the design was loaded, the simulator command run -all was entered, meaning
to simulate until there are no more simulator events. Finally, the quit command was entered
to exit the simulator. By default, a log of the simulation is written to the file "transcript" in
the current directory.
ModelSim SE User’s Manual Verilog Simulation 5-75

Compilation
Incremental compilation

By default, ModelSim Verilog supports incremental compilation of designs, thus saving
compilation time when you modify your design. Unlike other Verilog simulators, there is
no requirement that you compile the entire design in one invocation of the compiler
(although, you may wish to do so to optimize performance; see "Compiling for faster
performance" (5-90)).

You are not required to compile your design in any particular order because all module and
UDP instantiations and external hierarchical references are resolved when the design is
loaded by the simulator. Incremental compilation is made possible by deferring these
bindings, and as a result some errors cannot be detected during compilation. Commonly,
these errors include: modules that were referenced but not compiled, incorrect port
connections, and incorrect hierarchical references.

The following example shows how a hierarchical design can be compiled in top-down
order:

Contents of top.v:

module top;
or2(n1, a, b);
and2(n2, n1, c);

endmodule

Contents of and2.v:

module and2(y, a, b);
output y;
input a, b;
and(y, a, b);

endmodule

Contents of or2.v:

module or2(y, a, b);
output y;
input a, b;
or(y, a, b);

endmodule

Compile the design in top down order (assumes work library already exists):

% vlog top.v
-- Compiling module top

Top level modules:
top

% vlog and2.v
-- Compiling module and2

Top level modules:
and2

% vlog or2.v
-- Compiling module or2

Top level modules:
or2
5-76 Verilog Simulation ModelSim SE User’s Manual

Compilation
Note that the compiler lists each module as a top level module, although, ultimately, only
"top" is a top-level module. If a module is not referenced by another module compiled in
the same invocation of the compiler, then it is listed as a top level module. This is just an
informative message and can be ignored during incremental compilation. The message is
more useful when you compile an entire design in one invocation of the compiler and need
to know the top level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

The most efficient method of incremental compilation is to manually compile only the
modules that have changed. This is not always convenient, especially if your source files
have compiler directive interdependencies (such as macros). In this case, you may prefer to
always compile your entire design in one invocation of the compiler. If you specify the
-incr option, the compiler will automatically determine which modules have changed and
generate code only for those modules. This is not as efficient as manual incremental
compilation because the compiler must scan all of the source code to determine which
modules must be compiled.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

Now, suppose that you modify the functionality of the "or2" module:

% vlog -incr top.v and2.v or2.v
-- Skipping module top
-- Skipping module and2
-- Compiling module or2

Top level modules:
top

The compiler informs you that it skipped the modules "top" and "and2", and compiled
"or2".

Automatic incremental compilation is intelligent about when to compile a module. For
example, changing a comment in your source code does not result in a recompile; however,
changing the compiler command line options results in a recompile of all modules.

Note: Changes to your source code that do not change functionality but that do affect
source code line numbers (such as adding a comment line) will cause all affected modules
to be recompiled. This happens because debug information must be kept current so that
ModelSim can trace back to the correct areas of the source code.
ModelSim SE User’s Manual Verilog Simulation 5-77

Compilation
Library usage

All modules and UDPs in a Verilog design must be compiled into one or more libraries.
One library is usually sufficient for a simple design, but you may want to organize your
modules into various libraries for a complex design. If your design uses different modules
having the same name, then you are required to put those modules in different libraries
because design unit names must be unique within a library.

The following is an example of how you may organize your ASIC cells into one library and
the rest of your design into another:

% vlib work
% vlib asiclib
% vlog -work asiclib and2.v or2.v
-- Compiling module and2
-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v
-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib option to instruct the compiler to
place the results in the asiclib library rather than the default work library.

Since instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top level modules are
loaded from the library named work unless you specify an alternate library with the -lib
option. All other Verilog instantiations are resolved in the following order:

• Search libraries specified with -Lf options in the order they appear on the command line.

• Search the library specified in the "Verilog-XL `uselib compiler directive" (5-81).

• Search libraries specified with -L options in the order they appear on the command line.

• Search the work library.

• Search the library explicitly named in the special escaped identifier instance name.

It is important to recognize that the work library is not necessarily a library named work -
the work library refers to the library containing the module that instantiates the module or
UDP that is currently being searched for. This definition is useful if you have hierarchical
modules organized into separate libraries and if sub-module names overlap among the
libraries. In this situation you want the modules to search for their sub-modules in the work
library first. This is accomplished by specifying -L work first in the list of search libraries.

For example, assume you have a top level module "top" that instantiates module "modA"
from library "libA" and module "modB" from library "libB". Furthermore, "modA" and
"modB" both instantiate modules named "cellA", but the definition of "cellA" compiled
into "libA" is different from that compiled into "libB". In this case, it is insufficient to just
specify "-L libA - L libB" as the search libraries because instantiations of "cellA" from
"modB" resolve to the "libA" version of "cellA". The appropriate search library options are
"-L work -L libA -L libB".
5-78 Verilog Simulation ModelSim SE User’s Manual

Compilation
Verilog-XL compatible compiler options

See vlog (CR-250) for a complete list of compiler options. The options described here are
equivalent to Verilog-XL options. Many of these are provided to ease the porting of a
design to ModelSim Verilog.

+define+<macro_name>[=<macro_text>]

This option allows you to define a macro from the command line that is equivalent to the
following compiler directive:

‘define <macro_name> <macro_text>

Multiple +define options are allowed on the command line. A command line macro
overrides a macro of the same name defined with the ‘define compiler directive.

+incdir+<directory>

This option specifies which directories to search for files included with ‘include
compiler directives. By default, the current directory is searched first and then the
directories specified by the +incdir options in the order they appear on the command
line. You may specify multiple +incdir options as well as multiple directories separated
by "+" in a single +incdir option.

+delay_mode_distributed

This option disables path delays in favor of distributed delays. See Delay modes (5-97)
for details.

+delay_mode_path

This option sets distributed delays to zero in favor of path delays. See Delay modes (5-

97) for details.

+delay_mode_unit

This option sets path delays to zero and non-zero distributed delays to one time unit. See
Delay modes (5-97) for details.

+delay_mode_zero

This option sets path delays and distributed delays to zero. See Delay modes (5-97) for
details.

-f <filename>

This option reads more command line arguments from the specified text file. Nesting of
-f options is allowed.

+mindelays

This option selects minimum delays from the "min:typ:max" expressions. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

+typdelays

This option selects typical delays from the "min:typ:max" expressions. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

+maxdelays

This option selects maximum delays from the "min:typ:max" expressions. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.
ModelSim SE User’s Manual Verilog Simulation 5-79

Compilation
+nowarn<mnemonic>

This option disables the class of warning messages specified by <mnemonic>. This
option only disables warning messages accompanied by a mnemonic enclosed in square
brackets. For example,

WARNING: test.v(2): [TFMPC] - Too few port connections.

This warning message can be disabled with the +nowarnTFMPC option.

-u

This option treats all identifiers in the source code as all uppercase.

Options supporting source libraries

The following options support source libraries in the same manner as Verilog-XL. Note that
these libraries are source libraries and are very different from the libraries that the
ModelSim compiler uses to store compilation results. You may find it convenient to use
these options if you are porting a design to ModelSim or if you are familiar with these
options and prefer to use them.

Source libraries are searched after the source files on the command line are compiled. If
there are any unresolved references to modules or UDPs, then the compiler searches the
source libraries to satisfy them. The modules compiled from source libraries may in turn
have additional unresolved references that cause the source libraries to be searched again.
This process is repeated until all references are resolved or until no new unresolved
references are found. Source libraries are searched in the order they appear on the command
line.

-v <filename>

This option specifies a source library file containing module and UDP definitions.
Modules and UDPs within the file are compiled only if they match previously unresolved
references. Multiple -v options are allowed.

-y <directory>

This option specifies a source library directory containing module and UDP definitions.
Files within this directory are compiled only if the file names match the names of
previously unresolved references. Multiple -y options are allowed.

+libext+<suffix>

This option works in conjunction with the -y option. It specifies file extensions for the
files in a source library directory. By default the compiler searches for files without
extensions. If you specify the +libext option, then the compiler will search for a file with
the suffix appended to an unresolved name. You may specify only one +libext option,
but it may contain multiple suffixes separated by "+". The extensions are tried in the
order they appear in the +libext option.

+librescan

This option changes how unresolved references are handled that are added while
compiling a module or UDP from a source library. By default, the compiler attempts to
resolve these references as it continues searching the source libraries. If you specify the
+librescan option, then the new unresolved references are deferred until after the current
pass through the source libraries. They are then resolved by searching the source libraries
from the beginning in the order they are specified on the command line.
5-80 Verilog Simulation ModelSim SE User’s Manual

Compilation
+nolibcell

By default, all modules compiled from a source library are treated as though they contain
a ‘celldefine compiler directive. This option disables this default. The ‘celldefine
directive only affects the PLI Access routines acc_next_cell and acc_next_cell_load.

-R <simargs>

This option instructs the compiler to invoke the simulator after compiling the design. The
compiler automatically determines which top level modules are to be simulated. The
command line arguments following -R are passed to the simulator, not the compiler.
Place the -R option at the end of the command line or terminate the simulator command
line arguments with a single "-" character to differentiate them from compiler command
line arguments.

The -R option is not a Verilog-XL option, but it is used by ModelSim Verilog to combine
the compile and simulate phases together as you may be used to doing with Verilog-XL.
It is not recommended that you regularly use this option because you will incur the
unnecessary overhead of compiling your design for each simulation run. Mainly, it is
provided to ease the transition to ModelSim Verilog.

Verilog-XL ‘uselib compiler directive

The ‘uselib compiler directive is an alternative source library management scheme to the
-v, -y, and +libext compiler options. It has the advantage that a design may reference
different modules having the same name. You compile designs that contain ‘uselib
directive statements using the -compile_uselibs vlog switch (described below).

The syntax for the ‘uselib directive is:

‘uselib <library_reference>...

where <library_reference> is:

dir=<library_directory> | file=<library_file> | libext=<file_extension> |
lib=<library_name>

In Verilog-XL, the library references are equivalent to command line options as follows:

dir=<library_directory> -y <library_directory>
file=<library_file> -v <library_file>
libext=<file_extension> +libext+<file_extension>

For example, the following directive

‘uselib dir=/h/vendorA libext=.v

is equivalent to the following command line options:

-y /h/vendorA +libext+.v

Since the ‘uselib directives are embedded in the Verilog source code, there is more
flexibility in defining the source libraries for the instantiations in the design. The
appearance of a ‘uselib directive in the source code explicitly defines how instantiations
that follow it are resolved, completely overriding any previous ‘uselib directives.

For example, the following code fragment shows how two different modules that have the
same name can be instantiated within the same design:

‘uselib dir=/h/vendorA file=.v
NAND2 u1(n1, n2, n3);
ModelSim SE User’s Manual Verilog Simulation 5-81

Compilation
‘uselib dir=/h/vendorB file=.v
NAND2 u2(n4, n5, n6);

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

-compile_uselibs argument

In ModelSim versions 5.5 and later, a vlog argument eases the use of ‘uselib directives. The
-compile_uselibs argument finds the source files referenced in the directive, compiles
them into automatically created object libraries, and updates the modelsim.ini file with the
logical mappings to the libraries.

When using -compile_uselibs, ModelSim determines into what directory to compile the
object libraries by choosing, in order, from the following three values:

• The directory name specified by the -compile_uselibs argument. For example,
-compile_uselibs=./mydir

• The directory specified by the MTI_USELIB_DIR environment variable (see
"Environment variables" (B-393))

• A directory named "mti_uselibs" that is created in the current working directory

pre-5.5 release implementation

In ModelSim versions prior to 5.5, the library files referenced by the ‘uselib directive were
not automatically compiled by ModelSim Verilog. To maintain backwards compatibility,
this is still the default behavior when -compile_uselibs (see above) is not used. The
following describes the pre-5.5 release implementation.

Because it is an important feature of ‘uselib to allow a design to reference multiple modules
having the same name, independent compilation of the source libraries referenced by the
‘uselib directives is required. Each source library should be compiled into its own object
library. The compilation of the code containing the ‘uselib directives only records which
object libraries to search for each module instantiation when the design is loaded by the
simulator.

Because the ‘uselib directive is intended to reference source libraries, ModelSim Verilog
must infer the object libraries from the library references. The rule is to assume an object
library named work in the directory defined in the library reference
dir=<library_directory> or the directory containing the file in the library reference
file=<library_file>. The library reference libext=<file_extension> is ignored in the
pre-5.5 release implementation. For example, the following ‘uselib directives infer the
same object library:

‘uselib dir=/h/vendorA

‘uselib file=/h/vendorA/libcells.v

In both cases ModelSim Verilog assumes that the library source is compiled into the object
library /h/vendorA/work.

ModelSim Verilog also extends the ‘uselib directive to explicitly specify the object library
with the library reference lib=<library_name>. For example,

‘uselib lib=/h/vendorA/work
5-82 Verilog Simulation ModelSim SE User’s Manual

Compilation
The library name can be a complete path to a library, or it can be a logical library name
defined with the vmap command. Since this usage of ‘uselib is an extension, it may be
desirable to qualify it with an ‘ifdef to make it portable to other Verilog systems. For
example,

‘ifdef MODEL_TECH
‘uselib lib=vendorA
‘else
‘uselib dir=/h/vendorA libext=.v
‘endif

The MODEL_TECH macro is automatically defined by the ModelSim compiler.
ModelSim SE User’s Manual Verilog Simulation 5-83

Simulation
Simulation

The ModelSim simulator can load and simulate both Verilog and VHDL designs, providing
a uniform graphic interface and simulation control commands for debugging and analyzing
your designs. The graphic interface and simulator commands are described elsewhere in
this manual, while this section focuses specifically on Verilog simulation.

Invoking the simulator

A Verilog design is ready for simulation after it has been compiled into one or more
libraries. The simulator may then be invoked with the names of the top level modules
(many designs contain only one top level module). For example, if your top level modules
are "testbench" and "globals", then invoke the simulator as follows:

vsim testbench globals

Note: When working with designs that contain optimized code, this syntax may vary.
Please see "Compiling for faster performance" (5-90) for details.

If a top-level module name is not specified, ModelSim will present the Load Design dialog
box from which you can choose one or more top-level modules. See "Simulating with the
graphic interface" (8-256) for more information.

After the simulator loads the top level modules, it iteratively loads the instantiated modules
and UDPs in the design hierarchy, linking the design together by connecting the ports and
resolving hierarchical references. By default, all modules and UDPs are loaded from the
library named work.

On successful loading of the design, the simulation time is set to zero, and you must enter
a run command to begin simulation. Commonly, you enter run -all to run until there are
no more simulation events or until $finish is executed in the Verilog code. You can also
run for specific time periods (e.g., run 100 ns). Enter the quit command to exit the
simulator.

Simulation resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulation resolution limit. The
resolution limit defaults to the smallest time precision found among all of the ‘timescale
compiler directives in the design. The time precision is the second number in the ‘timescale
directive. For example, "10 ps" in the following directive:

‘timescale 1 ns / 10 ps

The time precision should not be unnecessarily small because it will limit the maximum
simulation time limit, and it will degrade performance in some cases. If the design contains
no ‘timescale directives, then the resolution limit defaults to the "resolution" value
specified in the modelsim.ini file (default is 1 ns). In any case, you can override the default
resolution limit by specifying the -t option on the command line.

For example, to explicitly choose 100 ps resolution:

vsim -t 100ps top
5-84 Verilog Simulation ModelSim SE User’s Manual

Simulation
This forces 100 ps resolution even if the design has finer time precision. As a result, time
values with finer precision are rounded to the nearest 100 ps.

Event order issues

The Verilog language is defined such that the simulator is not required to execute
simultaneous events in any particular order. Unfortunately, some models are inadvertently
written to rely on a particular event order, and these models may behave differently when
ported to another Verilog simulator. A model with event order dependencies is ambiguous
and should be corrected. For example, the following code is ambiguous:

module top;
reg r;

initial r = 0;
initial r = 1;

initial #10 $display(r);
endmodule

The value displayed for "r" depends on the order that the simulator executes the initial
constructs that assign to "r". Conceptually, the initial constructs run concurrently and the
simulator is allowed to execute them in any order. ModelSim Verilog executes the initial
constructs in the order they appear in the module, and the value displayed for "r" is "1".
Verilog-XL produces the same result, but a simulator that displays "0" is not incorrect
because the code is ambiguous.

Since many models have been developed on Verilog-XL, ModelSim Verilog duplicates
Verilog-XL event ordering as much as possible to ease the porting of those models to
ModelSim Verilog. However, ModelSim Verilog does not match Verilog-XL event
ordering in all cases, and if a model ported to ModelSim Verilog does not behave as
expected, then you should suspect that there are event order dependencies.

Tracking down event order dependencies is a tedious task, so ModelSim Verilog aids you
with a couple of compiler options:

-compat

This option turns off optimizations that result in different event ordering than Verilog-XL.
ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it is inefficient to do so. Using this option does not help you find the event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance.

-hazards

This option detects event order hazards involving simultaneous reading and writing of the
same register in concurrently executing processes.

vsim (CR-258) detects the following kinds of hazards:

• WRITE/WRITE:
Two processes writing to the same variable at the same time.

• READ/WRITE:
One process reading a variable at the same time it is being written to by another process.
ModelSim calls this a READ/WRITE hazard if it executed the read first.
ModelSim SE User’s Manual Verilog Simulation 5-85

Simulation
• WRITE/READ:
Same as a READ/WRITE hazard except that ModelSim executed the write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable
and the two processes involved. You can have the simulator break on the statement where
the hazard is detected by setting the break on assertion level to error.

To enable hazard detection you must invoke vlog (CR-250) with the -hazards option when
you compile your source code and you must also invoke vsim with the -hazards option
when you simulate.

Limitations of hazard detection:

• Reads and writes involving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selects is too
high.

• A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

• A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

• Glitches on nets caused by non-guaranteed event ordering are not detected.

Verilog-XL compatible simulator options

See vsim (CR-258) for a complete list of simulator options. The options described here are
equivalent to Verilog-XL options. Many of these are provided to ease the porting of a
design to ModelSim Verilog.

+alt_path_delays

Specify path delays operate in inertial mode by default. In inertial mode, a pending output
transition is cancelled when a new output transition is scheduled. The result is that an
output may have no more than one pending transition at a time, and that pulses narrower
than the delay are filtered. The delay is selected based on the transition from the cancelled
pending value of the net to the new pending value. The +alt_path_delays option
modifies the inertial mode such that a delay is based on a transition from the current
output value rather than the cancelled pending value of the net. This option has no effect
in transport mode (see +pulse_e/<percent> and +pulse_r/<percent>).

-l <filename>

By default, the simulation log is written to the file "transcript". The -l option allows you
to specify an alternate file.

+maxdelays

This option selects the maximum value in min:typ:max expressions. The default is the
typical value. This option has no effect if the min:typ:max selection was determined at
compile time.

+mindelays

This option selects the minimum value in min:typ:max expressions. The default is the
typical value. This option has no effect if the min:typ:max selection was determined at
compile time.

+multisource_int_delays

This option enables multisource interconnect delays with transport delay behavior and
pulse handling. ModelSim uses a unique delay value for each driver-to-driven module
5-86 Verilog Simulation ModelSim SE User’s Manual

Simulation
interconnect path specified in the SDF file. Pulse handling is configured using the
+pulse_int_e and +pulse_int_r switches (described below).

+no_neg_tchk

This option disables negative timing check limits by setting them to zero. By default
negative timing check limits are enabled. This is just the opposite of Verilog-XL, where
negative timing check limits are disabled by default, and they are enabled with the
+neg_tchk option.

+no_notifier

This option disables the toggling of the notifier register argument of the timing check
system tasks. By default, the notifier is toggled when there is a timing check violation,
and the notifier usually causes a UDP to propagate an X. Therefore, the +no_notifier
option suppresses X propagation on timing violations.

+no_path_edge

This option causes ModelSim to ignore the input edge specified in a path delay. The result
is that all edges on the input are considered when selecting the output delay. Verilog-XL
always ignores the input edges on path delays.

+no_pulse_msg

This option disables the warning message for specify path pulse errors. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection
limit and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error
results in a warning message, and the pulse is propagated as an X. The +no_pulse_msg
option disables the warning message, but the X is still propagated.

+no_tchk_msg

This option disables error messages issued by timing check system tasks when timing
check violations occur. However, notifier registers are still toggled and may result in the
propagation of X’s for timing check violations.

+nosdfwarn

This option disables warning messages during SDF annotation.

+notimingchecks

This option completely disables all timing check system tasks.

+nowarn<mnemonic>

This option disables the class of warning messages specified by <mnemonic>. This
option only disables warning messages accompanied by a mnemonic enclosed in square
brackets. For example,

WARNING: test.v(2): [TFMPC] - Too few port connections.

This warning message can be disabled with the +nowarnTFMPC option.

+ntc_warn

This option enables warning messages from the negative timing constraint algorithm.
This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of
the negative limits to zero and recalculates the delays. This process is repeated until a
solution is found. A warning message is issued for each negative limit set to zero. By
default these warnings are disabled.
ModelSim SE User’s Manual Verilog Simulation 5-87

Simulation
+pulse_e/<percent>

This option controls how pulses are propagated through specify path delays, where
<percent> is a number between 0 and 100 that specifies the error limit as a percentage of
the path delay. A pulse greater than or equal to the error limit propagates to the output in
transport mode (transport mode allows multiple pending transitions on an output). A
pulse less than the error limit and greater than or equal to the rejection limit (see +pulse_r/
<percent>) propagates to the output as an X. If the rejection limit is not specified, then it
defaults to the error limit. For example, consider a path delay of 10 along with a
+pulse_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. This results in the propagation of pulses greater than or equal to 8, while all other
pulses are filtered. Note that you can force specify path delays to operate in transport
mode by using the +pulse_e/0 option.

+pulse_int_e/<percent>

This option is analogous to +pulse_e, except it applies to interconnect delays only.

+pulse_int_r/<percent>

This option is analogous to +pulse_r, except it applies to interconnect delays only.

+pulse_r/<percent>

This option controls how pulses are propagated through specify path delays, where
<percent> is a number between 0 and 100 that specifies the rejection limit as a percentage
of the path delay. A pulse less than the rejection limit is suppressed from propagating to
the output. If the error limit is not specified (see +pulse_e (5-88)), then it defaults to the
rejection limit.

+pulse_e_style_ondetect

This option selects the "on detect" style of propagating pulse errors (see +pulse_e/
<percent>). A pulse error propagates to the output as an X, and the "on detect" style
is to schedule the X immediately, as soon as it has been detected that a pulse error has
occurred. The "on event" style is the default for propagating pulse errors (see
+pulse_e_style_onevent).

+pulse_e_style_onevent

This option selects the "on event" style of propagating pulse errors (see +pulse_e/
<percent>). A pulse error propagates to the output as an X, and the "on event" style is
to schedule the X to occur at the same time and for the same duration that the pulse would
have occurred if it had propagated through normally. The "on event" style is the default
for propagating pulse errors.

+sdf_nocheck_celltype

By default, the SDF annotator checks that the CELLTYPE name in the SDF file matches
the module or primitive name for the CELL instance. It is an error if the names do not
match. The +sdf_nocheck_celltype option disables this error check.

+sdf_verbose

This option displays a summary of the design objects annotated for each SDF file.

+transport_int_delays

By default, interconnect delays operate in inertial mode (pulses smaller than the delay are
filtered). The +transport_int_delays option selects transport mode with pulse control
for single-source nets (one interconnect path). In transport mode, narrow pulses are
propagated through interconnect delays. This option works independent from
+multisource_int_delays.
5-88 Verilog Simulation ModelSim SE User’s Manual

Simulation
+transport_path_delays

By default, path delays operate in inertial mode (pulses smaller than the delay are
filtered). The +transport_path_delays option selects transport mode for path delays. In
transport mode, narrow pulses are propagated through path delays. Note that this option
affects path delays only, and not primitives. Primitives always operate in inertial delay
mode.

+typdelays

This option selects the typical value in min:typ:max expressions. This is the default. This
option has no effect if the min:typ:max selection was determined at compile time.
ModelSim SE User’s Manual Verilog Simulation 5-89

Compiling for faster performance
Compiling for faster performance

This section describes how to use the "-fast" compiler option to analyze and optimize an
entire design for improved simulation performance. This option improves performance for
RTL, behavioral, and gate-level designs (See below for important information specific to
gate-level designs.).

ModelSim’s default mode of compilation defers module instantiations, parameter
propagation, and hierarchical reference resolution until the time that a design is loaded by
the simulator (see "Incremental compilation" (5-76)). This has the advantage that a design
does not have to be compiled all at once, allowing independent compilation of modules
without requiring knowledge of the context in which they are used.

Compiling modules independently provides flexibility to the user, but results in less
efficient simulation performance in many cases. For example, the compiler must generate
code for a module containing parameters as though the parameters are variables that will
receive their final values when the design is loaded by the simulator. If the compiler is
allowed to analyze the entire design at once, then it can determine the final values of
parameters and treat them as constants in expressions, thus generating more efficient code.
This is just one example of many other optimizations that require analysis of the entire
design.

Compiling with -fast

The "-fast" compiler option allows the compiler to propagate parameters and perform
global optimizations. A requirement of using the "-fast" option is that you must compile the
source code for your entire design in a single invocation of the compiler. The following is
an example invocation of the compiler and its resulting messages:

% vlog -fast cpu_rtl.v

-- Compiling module fp_unit

-- Compiling module mult_56

-- Compiling module testbench

-- Compiling module cpu

-- Compiling module i_unit

-- Compiling module mem_mux

-- Compiling module memory32

-- Compiling module op_unit

Top level modules:

testbench

Analyzing design...

Optimizing 8 modules of which 6 are inlined:

-- Inlining module i_unit(fast)

-- Inlining module mem_mux(fast)

-- Inlining module op_unit(fast)
5-90 Verilog Simulation ModelSim SE User’s Manual

Compiling for faster performance
-- Inlining module memory32(fast)

-- Inlining module mult_56(fast)

-- Inlining module fp_unit(fast)

-- Optimizing module cpu(fast)

-- Optimizing module testbench(fast)

The "Analyzing design..." message indicates that the compiler is building the design
hierarchy, propagating parameters, and analyzing design object usage. This information is
then used in the final step of generating module code optimized for the specific design.
Note that some modules are inlined into their parent modules.

Once the design is compiled, it can be simulated in the usual way:

% vsim -c testbench

Loading work.testbench(fast)

Loading work.cpu(fast)

VSIM 1> run -all

VSIM 2> quit

As the simulator loads the design, it issues messages indicating that the optimized modules
are being loaded. There are no messages for loading the inlined modules because their code
is inlined into their parent modules.

Note: If you want to optimize a very large netlist, you should only optimize the cell
libraries using the -fast option. (The -forcecode option should also be specified.) The netlist
itself should be compiled with the default settings. Optimizing in this manner reduces
compilation time and compiler memory usage significantly.

Compiling gate-level designs with -fast

Gate-level designs often have large netlists that are slow to compile with -fast. In most
cases, we recommend the following flow for optimizing gate-level designs:

• Compile the cell library using -fast and the -forcecode argument. The -forcecode
argument ensures that code is generated for in-lined modules.

• Compile the device under test and testbench without -fast.

• Create separate work directories for the cell library and the rest of the design.

One case where you wouldn’t follow this flow is when the testbench has hierarchical
references into the cell library. Optimizing the library alone would result in unresolved
references. In such a case, you’ll have to compile the library, design, and testbench with
-fast in one invocation of the compiler. The hierarchical reference cells are then not
optimized.

You can use the write report command (CR-281) command and the -debugCellOpt
argument to vlog command (CR-250) to obtain information about which cells have and have
not been optimized. write report produces a text file that lists all modules. Modules with
"(cell)" following their names are optimized cells. For example,

Module: top
Architecture: fast

Module: bottom (cell)
ModelSim SE User’s Manual Verilog Simulation 5-91

Compiling for faster performance
Architecture: fast

In this case, both top and bottom were compiled with -fast, but top was not optimized and
bottom was.

The -debugCellOpt argument is used with -fast when compiling the cell library. Using this
argument results in Transcript window output that identifies why certain cells were not
optimized.

Referencing the optimized design

The compiler automatically assigns a secondary name to distinguish the design-specific
optimized code from the unoptimized code that may coexist in the same library. The default
secondary name for optimized code is "fast", and the default secondary name for
unoptimized code is "verilog". You may specify an alternate name (other than "fast") for
optimized code using the -fast=<option>. For example, to assign the secondary name
"opt1" to your optimized code, you would enter the following:

% vlog -fast=opt1 cpu_rtl.v

If you have multiple designs that use common modules compiled into the same library, then
you need to assign a different secondary name for each design so that the optimized code
for a module used in one design context is not overwritten with the optimized code for the
same module used in another context. This is true even if the designs are small variations
of each other, such as different testbenches. For example, suppose you have two
testbenches that instantiate and test the same design. You might assign different secondary
names as follows:

% vlog -fast=t1 testbench1.v design.v

-- Compiling module testbench1

-- Compiling module design

Top level modules:

testbench1

Analyzing design...

Optimizing 2 modules of which 0 are inlined:

-- Optimizing module design(t1)

-- Optimizing module testbench1(t1)

% vlog -fast=t2 testbed2.v design.v

-- Compiling module testbench2

-- Compiling module design

Top level modules:

testbench2
5-92 Verilog Simulation ModelSim SE User’s Manual

Compiling for faster performance
Analyzing design...

Optimizing 2 modules of which 0 are inlined:

-- Optimizing module design(t2)

-- Optimizing module testbench2(t2)

All of the modules within design.v compiled for testbench1 are identified by t1 within the
library, whereas for testbench2 they are identified by t2. When the simulator loads
testbench1, the instantiations from testbench1 reference the t1 versions of the code.
Likewise, the instantiations from testbench2 reference the t2 versions. Therefore, you only
need to invoke the simulator on the desired top-level module and the correct versions of
code for the lower level instances are automatically loaded.

The only time that you need to specify a secondary name to the simulator is when you have
multiple secondary names associated with a top-level module. If you omit the secondary
name, then, by default, the simulator loads the most recently generated code (optimized or
unoptimized) for the top-level module. You may explicitly specify a secondary name to
load specific optimized code (specify "verilog" to load the unoptimized code). For
example, suppose you have a top-level testbench that works in conjunction with each of
several other top-level modules that only contain defparams that configure the design. In
this case, you need to compile the entire design for each combination, using a different
secondary name for each. For example,

% vlog -fast=c1 testbench.v design.v config1.v

-- Compiling module testbench

-- Compiling module design

-- Compiling module config1

Top level modules:

testbench

config1

Analyzing design...

Optimizing 3 modules of which 0 are inlined:

-- Optimizing module design(c1)

-- Optimizing module testbench(c1)

-- Optimizing module config1(c1)

% vlog -fast=c2 testbench.v design.v config2.v

-- Compiling module testbench

-- Compiling module design

-- Compiling module config2

Top level modules:

testbench

config2
ModelSim SE User’s Manual Verilog Simulation 5-93

Compiling for faster performance
Analyzing design...

Optimizing 3 modules of which 0 are inlined:

-- Optimizing module design(c2)

-- Optimizing module testbench(c2)

-- Optimizing module config2(c2)

Since the module "testbench" has two secondary names, you must specify which one you
want when you invoke the simulator. For example,

% vsim ’testbench(c1)’ config1

Note that it is not necessary to specify the secondary name for config1, because it has only
one secondary name. If you omit the secondary name, the simulator defaults to loading the
secondary name specified in the most recent compilation of the module.

If you prefer to use the "Load Design" dialog box to select top-level modules, then those
modules compiled with -fast can be expanded to view their secondary names. Click on the
one you wish to simulate.

To view the library contents, select Design > Browse Libraries to see the modules and
their associated secondary names. Also, you can execute the vdir command (CR-223) on a
specific module. For example,

VSIM 1> vdir design

MODULE design

Optimized Module t1

Optimized Module t2

Note: In some cases, an optimized module will have "__<n>" appended to its secondary
name. This happens when multiple instantiations of a module require different versions of
optimized code (for example, when the parameters of each instance are set to different
values).

Enabling design object visibility with the +acc option

Some of the optimizations performed by the -fast option impact design visibility to both the
user interface and the PLI routines. Many of the nets, ports, and registers are unavailable
by name in user interface commands and in the various graphic interface windows. In
addition, many of these objects do not have PLI Access handles, potentially affecting the
operation of PLI applications. However, a handle is guaranteed to exist for any object that
is an argument to a system task or function.

In the early stages of design, you may choose to compile without the -fast option so as to
retain full debug capabilities. Alternatively, you may use one or more +acc options in
conjunction with -fast to enable access to specific design objects. However, keep in mind
that enabling design object access may reduce simulation performance.

The syntax for the +acc option is as follows:

+acc[=<spec>][+<module>[.]]
5-94 Verilog Simulation ModelSim SE User’s Manual

Compiling for faster performance
<spec> is one or more of the following characters:

If <spec> is omitted, then access is enabled for all objects.

<module> is a module name, optionally followed by "." to indicate all children of the
module. Multiple modules are allowed, each separated by a "+". If no modules are
specified, then all modules are affected.

If your design uses PLI applications that look for object handles in the design hierarchy,
then it is likely that you will need to use the +acc option. For example, the built-in
$dumpvars system task is an internal PLI application that requires handles to nets and
registers so that it can call the PLI routine acc_vcl_add to monitor changes and dump the
values to a VCD file. This requires that access is enabled for the nets and registers that it
operates on. Suppose you want to dump all nets and registers in the entire design, and that
you have the following $dumpvars call in your testbench (no arguments to $dumpvars
means to dump everything in the entire design):

initial $dumpvars;

Then you need to compile your design as follows to enable net and register access for all
modules in the design:

% vlog -fast +acc=rn testbench.v design.v

As another example, suppose you only need to dump nets and registers of a particular
instance in the design (the first argument of 1 means to dump just the variables in the
instance specified by the second argument):

initial $dumpvars(1, testbench.u1);

Then you need to compile your design as follows (assuming testbench.u1 refers to a module
named "design"):

% vlog -fast +acc=rn+design testbench.v design.v

<spec> Meaning

r Enable access to registers (including memories, integer,
time, and real types).

n Enable access to nets.

b Enable access to individual bits of vector nets. This is necessary
for PLI applications that require handles to individual bits of
vector nets. Also, some user interface commands require this
access if you need to operate on net bits.

p Enable access to ports. This disables the module inlining
optimization, and should be used for PLI applications that
require access to port handles, or for debugging (see below).

c Enable access to library cells. By default any Verilog module
bracketed with a ‘celldefine / ‘endcelldefine may be optimized,
and debug and PLI access may be limited. This option keeps
module cell visibility.
ModelSim SE User’s Manual Verilog Simulation 5-95

Compiling for faster performance
Finally, suppose you need to dump everything in the children instances of testbench.u1 (the
first argument of 0 means to also include all children of the instance):

initial $dumpvars(0, testbench.u1);

Then you need to compile your design as follows:

% vlog -fast +acc=rn+design. testbench.v design.v

To gain maximum performance, it may be necessary to enable the minimum required
access within the design.

Using pre-compiled libraries

When using the -fast option, if the source code is unavailable for any of the modules
referenced in a design, then you must instruct the compiler to search libraries for the
precompiled modules. The compiler optimizes pre-compiled modules the same as if the
source code is available. The optimized code for a pre-compiled module is written to the
same library in which the module is found.

The compiler automatically searches libraries specified in the ‘uselib directive (see
Verilog-XL ‘uselib compiler directive (5-81)). If your design exclusively uses ‘uselib
directives to reference modules in other libraries, then you don’t need to specify library
search options to the compiler.

The library search options supported by the compiler are identical to those supported by the
simulator (e.g., -L and -Lf; see Library usage (5-78)). The compiler also searches the
libraries in the same order as the simulator (-Lf libraries first, followed by ‘uselib libraries,
and finally -L libraries). However, unlike the simulator, the compiler does not search the
work library by default.

Note: The library search options you specify to the compiler must also be specified to the
simulator when you simulate the design.
5-96 Verilog Simulation ModelSim SE User’s Manual

Cell Libraries
Cell Libraries

Model Technology is the first Verilog simulation vendor to pass the ASIC Council’s
Verilog test suite and achieve the "Library Tested and Approved" designation from Si2
Labs. This test suite is designed to ensure Verilog timing accuracy and functionality and is
the first significant hurdle to complete on the way to achieving full ASIC vendor support.
As a consequence, many ASIC and FPGA vendors’ Verilog cell libraries are compatible
with ModelSim Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays
and timing constraints for the cells. See section 13 in the IEEE Std 1364-1995 for details
on specify blocks, and section 14.5 for details on timing constraints. ModelSim Verilog
fully implements specify blocks and timing constraints as defined in IEEE Std 1364 along
with some Verilog-XL compatible extensions.

SDF timing annotation

ModelSim Verilog supports timing annotation from Standard Delay Format (SDF) files.
See Chapter 12 - Standard Delay Format (SDF) Timing Annotation for details.

Delay modes

Verilog models may contain both distributed delays and path delays. The delays on
primitives, UDPs, and continuous assignments are the distributed delays, whereas the port-
to-port delays specified in specify blocks are the path delays. These delays interact to
determine the actual delay observed. Most Verilog cells use path delays exclusively, with
the distributed delays set to zero. For example,

module and2(y, a, b);
input a, b;
output y;

and(y, a, b);

specify
(a => y) = 5;
(b => y) = 5;

endspecify
endmodule

In the above two-input "and" gate cell, the distributed delay for the "and" primitive is zero,
and the actual delays observed on the module ports are taken from the path delays. This is
typical for most cells, but a complex cell may require non-zero distributed delays to work
properly. Even so, these delays are usually small enough that the path delays take priority
over the distributed delays. The rule is that if a module contains both path delays and
distributed delays, then the larger of the two delays for each path shall be used (as defined
by the IEEE Std 1364). This is the default behavior, but you can specify alternate delay
modes with compiler directives and options. These options and directives are compatible
with Verilog-XL. Compiler delay mode options take precedence over delay mode
directives in the source code.
ModelSim SE User’s Manual Verilog Simulation 5-97

Cell Libraries
Distributed delay mode

In distributed delay mode the specify path delays are ignored in favor of the distributed
delays. Select this delay mode with the +delay_mode_distributed compiler option or the
‘delay_mode_distributed compiler directive.

Path delay mode

In path delay mode the distributed delays are set to zero. Select this delay mode with the
+delay_mode_path compiler option or the ‘delay_mode_path compiler directive.

Unit delay mode

In unit delay mode the distributed delays are set to one (the unit is the time_unit specified
in the ‘timescale directive), and the specify path delays and timing constraints are ignored.
Select this delay mode with the +delay_mode_unit compiler option or the
‘delay_mode_unit compiler directive.

Zero delay mode

In zero delay mode the distributed delays are set to zero, and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_zero
compiler option or the ‘delay_mode_zero compiler directive.
5-98 Verilog Simulation ModelSim SE User’s Manual

System Tasks
System Tasks

The IEEE Std 1364 defines many system tasks as part of the Verilog language, and
ModelSim Verilog supports all of these along with several non-standard Verilog-XL
system tasks. The system tasks listed in this chapter are built into the simulator, although
some designs depend on user-defined system tasks implemented with the Programming
Language Interface (PLI) or Verilog Procedural Interface (VPI). If the simulator issues
warnings regarding undefined system tasks, then it is likely that these system tasks are
defined by a PLI/VPI application that must be loaded by the simulator.

IEEE Std 1364 system tasks

The following system tasks are described in detail in the IEEE Std 1364.

Timescale tasks Simulator
control tasks

Simulation time
functions

Command line
input

$printtimescale $finish $realtime $test$plusargs

$timeformat $stop $stime $value$plusargs

$time

Probabilistic
distribution
functions

Conversion
functions

Stochastic
analysis tasks

Timing check
tasks

$dist_chi_square $bitstoreal $q_add $hold

$dist_erlang $itor $q_exam $nochange

$dist_exponential $realtobits $q_full $period

$dist_normal $rtoi $q_initialize $recovery

$dist_poisson $signed $q_remove $setup

$dist_t $unsigned $setuphold

$dist_uniform $skew

$random $width

$removal

$recrem
ModelSim SE User’s Manual Verilog Simulation 5-99

System Tasks
Display tasks PLA modeling tasks Value change dump (VCD)
file tasks

$display $async$and$array $dumpall

$displayb $async$nand$array $dumpfile

$displayh $async$or$array $dumpflush

$displayo $async$nor$array $dumplimit

$monitor $async$and$plane $dumpoff

$monitorb $async$nand$plane $dumpon

$monitorh $async$or$plane $dumpvars

$monitoro $async$nor$plane $dumpportson

$monitoroff $sync$and$array $dumpportsoff

$monitoron $sync$nand$array $dumpportsall

$strobe $sync$or$array $dumpportsflush

$strobeb $sync$nor$array $dumpports

$strobeh $sync$and$plane $dumpportslimit

$strobeo $sync$nand$plane

$write $sync$or$plane

$writeb $sync$nor$plane

$writeh

$writeo
5-100 Verilog Simulation ModelSim SE User’s Manual

System Tasks
Note: $readmemb and $readmemh match the behavior of Verilog-XL rather than IEEE Std
1364. Specifically, it loads data into memory starting with the lowest address. For example,
whether you make the declaration memory[127:0] or memory[0:127], ModelSim will load
data starting at address 0 and work upwards to address 127.

File I/O tasks

$fclose $fopen $fwriteh

$fdisplay $fread $fwriteo

$fdisplayb $fscanf $readmemb

$fdisplayh $fseek $readmemh

$fdisplayo $fstrobe $rewind

$ferror $fstrobeb $sdf_annotate

$fflush $fstrobeh $sformat

$fgetc $fstrobeo $sscanf

$fgets $ftell $swrite

$fmonitor $fwrite $swriteb

$fmonitorb $fwriteb $swriteh

$fmonitorh $swriteo

$fmonitoro $ungetc
ModelSim SE User’s Manual Verilog Simulation 5-101

System Tasks
Verilog-XL compatible system tasks

The following system tasks are provided for compatibility with Verilog-XL. Although they
are not part of the IEEE standard, they are described in an annex of the IEEE Std 1364.

$countdrivers
$getpattern
$sreadmemb
$sreadmemh

The following system tasks are also provided for compatibility with Verilog-XL, but they
are not described in the IEEE Std 1364.

$system("operating system shell command");

This system task executes the specified operating system shell command and displays the
result. For example, to list the contents of the working directory on Unix:

$system("ls");

The following system tasks are extended to provide additional functionality for negative
timing constraints and an alternate method of conditioning, as does Verilog-XL.

$setuphold(clk_event, data_event, setup_limit, hold_limit, [notifier],
[tstamp_cond], [tcheck_cond], [delayed_clk], [delayed_data])

The tstamp_cond argument conditions the data_event for the setup check and the clk_event
for the hold check. This alternate method of conditioning precludes specifying conditions
in the clk_event and data_event arguments.

The tcheck_cond argument conditions the data_event for the hold check and the clk_event
for the setup check. This alternate method of conditioning precludes specifying conditions
in the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.

The delayed_data argument is a net that is continuously assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

The delayed_clk and delayed_data arguments are provided to ease the modeling of devices
that may have negative timing constraints. The model’s logic should reference the
delayed_clk and delayed_data nets in place of the normal clk and data nets. This ensures
that the correct data is latched in the presence of negative constraints. The simulator
automatically calculates the delays for delayed_clk and delayed_data such that the correct
data is latched as long as a timing constraint has not been violated.

$recovery(reference event, data_event, removal_limit, recovery_limit,
[notifier], [tstamp_cond], [tcheck_cond], [delayed_reference],
[delayed_data])

The $recovery system task normally takes a recovery_limit as the third argument and an
optional notifier as the fourth argument. By specifying a limit for both the third and
fourth arguments, the $recovery timing check is transformed into a combination removal
and recovery timing check similar to the $recrem timing check. The only difference is
that the removal_limit and recovery_limit are swapped.

The following system tasks are Verilog-XL system tasks that are not implemented in
ModelSim Verilog, but have equivalent simulator commands.
5-102 Verilog Simulation ModelSim SE User’s Manual

System Tasks
$input("filename")

This system task reads commands from the specified filename. The equivalent simulator
command is do <filename>.

$list[(hierarchical_name)]

This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the graphic interface Structure
window. The corresponding source code is displayed in the source window.

$reset

This system task resets the simulation back to its time 0 state. The equivalent simulator
command is restart.

$restart("filename")

This system task sets the simulation to the state specified by filename, saved in a previous
call to $save. The equivalent simulator command is restore <filename>.

$save("filename")

This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hierarchical_name)

This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent simulator command is environment <pathname>.

$showscopes

This system task displays a list of scopes defined in the current interactive scope. The
equivalent simulator command is show.

$showvars

This system task displays a list of registers and nets defined in the current interactive
scope. The equivalent simulator command is show.
ModelSim SE User’s Manual Verilog Simulation 5-103

System Tasks
$init_signal_spy

The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog register/
wire (called the spy_object) onto an existing Verilog register or VHDL signal (called the
dest_object). This system task allows you to reference VHDL signals at any level of
hierarchy from within a Verilog module; or, reference Verilog registers/wires at any level
of hierarchy from within a Verilog module when there is an interceding VHDL block.

This system task works only in ModelSim versions 5.5 and newer.

Syntax

$init_signal_spy(spy_object, dest_object, verbose)

Returns

Nothing

Arguments

Limitations

• When mirroring the value of a VHDL signal onto a Verilog register, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Mirroring slices or single bits of a vector is not supported. If you do reference a slice or
bit of a vector, the function will assume that you are referencing the entire vector.

Name Type Description

spy_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/wire. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
Verilog register or VHDL signal. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the spy_object’s value
is mirrored onto the dest_object. Default is 0,
no message.
5-104 Verilog Simulation ModelSim SE User’s Manual

System Tasks
Example

module ...
...
reg top_sig1;
...
initial

begin
$init_signal_spy("/top/uut/inst1/sig1","/top_sig1", 1);

end
...
endmodule

In this example, the value of "/top/uut/inst1/sig1" will be mirrored onto
"/top_sig1".
ModelSim SE User’s Manual Verilog Simulation 5-105

Compiler Directives
Compiler Directives

ModelSim Verilog supports all of the compiler directives defined in the IEEE Std 1364 and
some additional Verilog-XL compiler directives for compatibility.

Many of the compiler directives (such as ‘define and ‘timescale) take effect at the point
they are defined in the source code and stay in effect until the directive is redefined or until
it is reset to its default by a ‘resetall directive. The effect of compiler directives spans
source files, so the order of source files on the compilation command line could be
significant. For example, if you have a file that defines some common macros for the entire
design, then you might need to place it first in the list of files to be compiled.

The ‘resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the IEEE Std 1364):

‘celldefine
‘default_decay_time
`define_nettype
`delay_mode_distributed
`delay_mode_path
`delay_mode_unit
`delay_mode_zero
`timescale
`unconnected_drive
`uselib

ModelSim Verilog implicitly defines the following macro:

`define MODEL_TECH

IEEE Std 1364 compiler directives

The following compiler directives are described in detail in the IEEE Std 1364.

`celldefine
`default_nettype
`define
`else
`endcelldefine
`endif
`ifdef
‘ifndef
`include
‘line
`nounconnected_drive
`resetall
`timescale
`unconnected_drive
`undef

Verilog-XL compatible compiler directives

The following compiler directives are provided for compatibility with Verilog-XL.

‘default_decay_time <time>
5-106 Verilog Simulation ModelSim SE User’s Manual

Compiler Directives
This directive specifies the default decay time to be used in trireg net declarations that do
not explicitly declare a decay time. The decay time can be expressed as a real or integer
number, or as infinite to specify that the charge never decays.

‘delay_mode_distributed

This directive disables path delays in favor of distributed delays. See Delay modes (5-97)
for details.

‘delay_mode_path

This directive sets distributed delays to zero in favor of path delays. See Delay modes (5-

97) for details.

‘delay_mode_unit

This directive sets path delays to zero and non-zero distributed delays to one time unit. See
Delay modes (5-97) for details.

‘delay_mode_zero

This directive sets path delays and distributed delays to zero. See Delay modes (5-97) for
details.

‘uselib

This directive is an alternative to the -v, -y, and +libext source library compiler options.
See Verilog-XL ‘uselib compiler directive (5-81) for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog.
Many of these directives are irrelevant to ModelSim Verilog, but may appear in code being
ported from Verilog-XL.

‘accelerate
‘autoexpand_vectornets
‘disable_portfaults
‘enable_portfaults
‘endprotect
‘expand_vectornets
‘noaccelerate
‘noexpand_vectornets
‘noremove_gatenames
‘noremove_netnames
‘nosuppress_faults
‘protect
‘remove_gatenames
‘remove_netnames
‘suppress_faults

The following Verilog-XL compiler directives produce warning messages in ModelSim
Verilog. These are not implemented in ModelSim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

‘default_trireg_strength
‘signed
‘unsigned
ModelSim SE User’s Manual Verilog Simulation 5-107

Using the Verilog PLI/VPI
Using the Verilog PLI/VPI

The Verilog PLI (Programming Language Interface) and VPI (Verilog Procedural
Interface) both provide a mechanism for defining system tasks and functions that
communicate with the simulator through a C procedural interface. There are many third
party applications available that interface to Verilog simulators through the PLI (see Third
party PLI applications (5-120)). In addition, you may write your own PLI/VPI applications.

ModelSim Verilog implements the PLI as defined in the IEEE Std 1364, with the exception
of the acc_handle_datapath routine. We did not implement the acc_handle_datapath
routine because the information it returns is more appropriate for a static timing analysis
tool. In version 5.5, the VPI is partially implemented as defined in the IEEE Std 1364. The
list of currently supported functionality can be found in the following directory:

<install_dir>/modeltech/docs/technotes/Verilog_VPI.note.

The IEEE Std 1364 is the reference that defines the usage of the PLI/VPI routines. This
manual only describes details of using the PLI/VPI with ModelSim Verilog.

Registering PLI applications

Each PLI application must register its system tasks and functions with the simulator,
providing the name of each system task and function and the associated callback routines.
Since many PLI applications already interface to Verilog-XL, ModelSim Verilog PLI
applications make use of the same mechanism to register information about each system
task and function in an array of s_tfcell structures. This structure is declared in the
veriuser.h include file as follows:

typedef int (*p_tffn)();

typedef struct t_tfcell {
short type;/* USERTASK, USERFUNCTION, or USERREALFUNCTION */
short data;/* passed as data argument of callback function */

p_tffn checktf; /* argument checking callback function */
p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn misctf; /* miscellaneous reason callback function */

char *tfname;/* name of system task or function */

/* The following fields are ignored by ModelSim Verilog */
int forwref;
char *tfveritool;
char *tferrmessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *namecell_p;
int warning_printed;

} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in
the IEEE Std 1364. The simulator calls these functions for various reasons. All callback
functions are optional, but most applications contain at least the calltf function, which is
called when the system task or function is executed in the Verilog code. The first argument
to the callback functions is the value supplied in the data field (many PLI applications don’t
use this field). The type field defines the entry as either a system task (USERTASK) or a
5-108 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI
system function that returns either a register (USERFUNCTION) or a real
(USERREALFUNCTION). The tfname field is the system task or function name (it must
begin with $). The remaining fields are not used by ModelSim Verilog.

On loading of a PLI application, the simulator first looks for an init_usertfs function, and
then a veriusertfs array. If init_usertfs is found, the simulator calls that function so that it
can call mti_RegisterUserTF() for each system task or function defined. The
mti_RegisterUserTF() function is declared in veriuser.h as follows:

void mti_RegisterUserTF(p_tfcell usertf);

The storage for each usertf entry passed to the simulator must persist throughout the
simulation because the simulator de-references the usertf pointer to call the callback
functions. It is recommended that you define your entries in an array, with the last entry set
to 0. If the array is named veriusertfs (as is the case for linking to Verilog-XL), then you
don’t have to provide an init_usertfs function, and the simulator will automatically register
the entries directly from the array (the last entry must be 0). For example,

s_tfcell veriusertfs[] = {
{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},
{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},
{0} /* last entry must be 0 */

};

Alternatively, you can add an init_usertfs function to explicitly register each entry from the
array:

void init_usertfs()
{

p_tfcell usertf = veriusertfs;
while (usertf->type)

mti_RegisterUserTF(usertf++);
}

It is an error if a PLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be a dynamically loadable library, see
"Compiling and linking PLI/VPI applications" (5-111)). The PLI applications are specified
as follows:

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli option to the simulator (multiple options are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the libraries in all cases.
ModelSim SE User’s Manual Verilog Simulation 5-109

Using the Verilog PLI/VPI
Registering VPI applications

Each VPI application must register its system tasks and functions and its callbacks with the
simulator. To accomplish this, one or more user-created registration routines must be called
at simulation startup. Each registration routine should make one or more calls to
vpi_register_systf() to register user-defined system tasks and functions and
vpi_register_cb() to register callbacks. The registration routines must be placed in a table
named vlog_startup_routines so that the simulator can find them. The table must be
terminated with a 0 entry.

Example

PLI_INT32 MyFuncCalltf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyFuncCompiletf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyFuncSizetf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyEndOfCompCB(p_cb_data cb_data_p)
{ ... }

PLI_INT32 MyStartOfSimCB(p_cb_data cb_data_p)
{ ... }

void RegisterMySystfs(void)

 {

 s_cb_data callback;
 s_vpi_systf_data systf_data;

 systf_data.type = vpiSysFunc;
 systf_data.sysfunctype = vpiSizedFunc;
 systf_data.tfname = "$myfunc";
 systf_data.calltf = MyFuncCalltf;
 systf_data.compiletf = MyFuncCompiletf;
 systf_data.sizetf = MyFuncSizetf;
 systf_data.user_data = 0;
 vpi_register_systf(&systf_data);

 callback.reason = cbEndOfCompile;
 callback.cb_rtn = MyEndOfCompCB;
 callback.user_data = 0;
 (void) vpi_register_cb(&callback);

 callback.reason = cbStartOfSimulation;
 callback.cb_rtn = MyStartOfSimCB;
 callback.user_data = 0;
 (void) vpi_register_cb(&callback);
 }

void (*vlog_startup_routines[]) () = {
RegisterMySystfs,

 0 /* last entry must be 0 */
};

Loading VPI applications into the simulator is the same as described in Registering PLI
applications (5-108).
5-110 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI
PLI and VPI applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

• If an init_usertfs() function exists, then it is executed and only those system tasks and
functions registered by calls to mti_RegisterUserTF() will be defined.

• If an init_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

• If an init_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functions in the vlog_startup_routines table will be defined.

As a result, when PLI and VPI applications exist in the same application object file, they
must be registered in the same manner. VPI registration functions that would normally be
listed in a vlog_startup_routines table can be called from an init_usertfs() function instead.

Compiling and linking PLI/VPI applications

ModelSim Verilog uses operating system calls to dynamically load PLI and VPI
applications when the simulator loads a design. Therefore, the applications must be
compiled and linked for dynamic loading on a specific operating system. The PLI/VPI
routines are declared in the include files located in the ModelSim <install_dir>/modeltech/
include directory. The acc_user.h file declares the ACC routines, the veriuser.h file declares
the TF routines, and the vpi_user.h file declares the VPI routines.

The following instructions assume that the PLI or VPI application is in a single source file.
For multiple source files, compile each file as specified in the instructions and link all of
the resulting object files together with the specified link instructions.

Windows NT/95/98/2000 platforms

Under Windows ModelSim loads a 32-bit dynamically linked library for each
PLI/VPI application. The following compile and link steps are used to create the
necessary.dll file (and other supporting files) using the Microsoft Visual C/C++ compiler.

cl -c -I<install_dir>\modeltech\include app.c
link -dll -export:<init_function> app.obj \
<install_dir>\modeltech\win32\mtipli.lib

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there is
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus ModelSim can
find the symbol when it dynamically loads the DLL.

The PLI and VPI have been tested with DLLs built using Microsoft Visual C/C++ compiler
version 4.1 or greater.

The gcc compiler cannot be used to compile PLI/VPI applications under Windows. This is
because gcc does not support the Microsoft .lib/.dll format.
ModelSim SE User’s Manual Verilog Simulation 5-111

Using the Verilog PLI/VPI
Linux platform

Under Linux, ModelSim loads shared objects. Use these gcc or cc compiler commands to
create a shared object:

gcc compiler:

gcc -c -I/<install_dir>/modeltech/include app.c
ld -shared -E -o app.so app.o

cc compiler:

cc -c -I/<install_dir>/modeltech/include app.c
ld -shared -E -o app.so app.o

Solaris platform

Under SUN Solaris, ModelSim loads shared objects. Use these gcc or cc compiler
commands to create a shared object:

gcc compiler:

gcc -c -I/<install_dir>/modeltech/include app.c
ld -G -B symbolic -o app.so app.o

cc compiler:

cc -c -I/<install_dir>/modeltech/include app.c
ld -G -B symbolic -o app.so app.o

Note: When using -B symbolic with ld, all symbols are first resolved within the shared
library at link time. This will result in a list of undefined symbols. This is only a warning
for shared libraries and can be ignored.

If app.so is in your current directory you must force Solaris to search the directory. There
are two ways you can do this:

• Add “. / “ before app.so in the PLI library specification, or

• Load the path as a UNIX shell environment variable:
LD_LIBRARY_PATH= <library path without filename>

64-bit Solaris platform

On a 64-bit Sun system, use the following cc compiler commands to prepare PLI/VPI code
for dynamic linking with ModelSim:

cc -v -xarch=v9 -O -I$MTI_HOME/include -c app.c
ld -G app.o -o app.so
5-112 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI
HP700 platform

ModelSim loads shared libraries on the HP700 workstation. A shared library is created by
creating object files that contain position-independent code (use the +z or -fpic compiler
option) and by linking as a shared library (use the -b linker option). Use these gcc or cc
compiler commands:

gcc compiler:

gcc -c -fpic -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o -lc

cc compiler:

cc -c +z -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o -lc

Note that -fpic may not work with all versions of gcc.

for HP-UX 11.0 users

If you are building the PLI/VPI library under HP-UX 11.0, you should not specify the
"-lc" option to the invocation of ld, since this will cause an incorrect version of the standard
C library to be loaded.

In other words, build libraries like this:

cc -c +z -I<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o

If you receive the error "Exec format error" when the simulator is trying to load a PLI/VPI
library, then you have most likely built under 11.0 and specified the
"-lc" option. Just rebuild without "-lc" (or rebuild on an HP-UX 10.0 machine).

64-bit HP platform

On a 64-bit HP system, use the following cc compiler commands to prepare PLI/VPI code
for dynamic linking with ModelSim:

cc -v +DA2.0W -O -I<install_dir>/modeltech/include -c app.c
ld -G app.o -o app.so

IBM RS/6000 platform

ModelSim loads shared libraries on the IBM RS/6000 workstation. The shared library must
import ModelSim's PLI/VPI symbols, and it must export the PLI or VPI application’s
initialization function or table. ModelSim's export file is located in the ModelSim
installation directory in rs6000/mti_exports.

If your PLI/VPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command. The resulting object must be marked as shared reentrant
using these gcc or cc compiler commands for AIX 4.x:

gcc compiler:

gcc -c -I/<install_dir>/modeltech/include app.c
ld -o app.sl app.o -bE:app.exp \
-bI:/<install_dir>/modeltech/rs6000/mti_exports\
-bM:SRE -bnoentry -lc
ModelSim SE User’s Manual Verilog Simulation 5-113

Using the Verilog PLI/VPI
cc compiler:

cc -c -I/<install_dir>/modeltech/include app.c
ld -o app.sl app.o -bE:app.exp \
-bI:/<install_dir>/modeltech/rs6000/mti_exports\
-bM:SRE -bnoentry -lc

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs". Alternatively, if there is no init_usertfs function,
then the exported symbol should be "veriusertfs". For the VPI, the exported symbol should
be "vlog_startup_routines". These requirements ensure that the appropriate symbol is
exported, and thus ModelSim can find the symbol when it dynamically loads the shared
object.

64-bit RS/60000 platform

Only version 4.3 of AIX supports the 64-bit platform. A gcc 64-bit compiler is not available
at this time. The cc commands are as follows:

cc -c -q64 -I/<install_dir>/modeltech/include app.c
cc -o app.sl app.o -q64 -bE:app.exp \
-bI:/<install_dir>/modeltech/rs64/mti_exports\
-Wl-G -bnoentry

Note: When using AIX 4.3 in 32-bit mode, you must add the switch -d use_inttypes to
the compile command lines. This switch prevents a name conflict that occurs between
inttypes.h and mti.h.

Using 64-bit ModelSim with 32-bit PLI/VPI Applications

If you have 32-bit PLI/VPI applications and wish to use 64-bit ModelSim, you will need to
port your code to 64 bits by moving from the ILP32 data model to the LP64 data model.
We strongly recommend that you consult the following 64-bit porting guides for the
appropriate platform:

Sun

Solaris 7 64-bit Developer’s Guide

http://docs.sun.com:80/ab2/coll.45.10/SOL64TRANS/

HP

HP-UX 64-bit Porting and Transition Guide

http://docs.hp.com:80/dynaweb/hpux11/hpuxen1a/0462/@Generic__BookView

HP-UX 11.x Software Transition Kit

http://software.hp.com/STK/

IBM

AIX 64-bit Migration Guide

http://www.developer.ibm.com/library/aix4.3/Sun
5-114 Verilog Simulation ModelSim SE User’s Manual

http://docs.sun.com:80/ab2/coll.45.10/SOL64TRANS/
http://docs.hp.com:80/dynaweb/hpux11/hpuxen1a/0462/@Generic__BookView
http://software.hp.com/STK/
http://www.developer.ibm.com/library/aix4.3/Sun

Using the Verilog PLI/VPI
Specifying the PLI/VPI file to load

The PLI applications are specified as follows:

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli option to the simulator (multiple options are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

Note: On Windows platforms, the file names shown above should end with ".dll" rather
than ".so".

The various methods of specifying PLI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the libraries in all cases.

See also Appendix B - ModelSim Variables for more information on the modelsim.ini file.
ModelSim SE User’s Manual Verilog Simulation 5-115

Using the Verilog PLI/VPI
PLI example

The following example is a trivial, but complete PLI application.

hello.c:

#include "veriuser.h"
static hello()
{

io_printf("Hi there\n");
}
s_tfcell veriusertfs[] = {

{usertask, 0, 0, 0, hello, 0, "$hello"},
{0} /* last entry must be 0 */

};

hello.v:

module hello;
initial $hello;

endmodule

Compile the PLI code for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include hello.c
% ld -G -o hello.sl hello.o

Compile the Verilog code:

% vlib work
% vlog hello.v

Simulate the design:

% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hi there
VSIM 2> quit

VPI example

The following example is a trivial, but complete VPI application.

hello.c:

#include "vpi_user.h"
static hello()
{

vpi_printf("Hello world!\n");
}

void RegisterMyTfs(void)
{

s_vpi_systf_data systf_data;
systf_data.type = vpiSysTask;
systf_data.sysfunctype = vpiSysTask;
systf_data.tfname = "$hello";
systf_data.calltf = hello;
systf_data.compiletf = 0;
systf_data.sizetf = 0;
5-116 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI
systf_data.user_data = 0;
vpi_register_systf(&systf_data);
vpi_free_object(systf_handle);

}

void (*vlog_startup_routines[])() = {
RegisterMyTfs,
0

};

hello.v:

module hello;
initial $hello;

endmodule

Compile the VPI code for the Solaris operating system:

% gcc -c -I<install_dir>/include hello.c
% ld -G -o hello.sl hello.o

Compile the Verilog code:

% vlib work
% vlog hello.v

Simulate the design:

% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hello world!
VSIM 2> quit

Note: A general VPI example can be found in <install_dir>/modeltech/examples/vpi.

The PLI callback reason argument

The second argument to a PLI callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See IEEE Std 1364 for a
description of the reason constants. The following details relate to ModelSim Verilog, and
may not be obvious in the IEEE Std 1364. Specifically, the simulator passes the reason
values to the misctf callback functions under the following circumstances:

reason_endofcompile

For the completion of loading the design.

reason_finish

For the execution of the $finish system task or the quit command.

reason_startofsave

For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This allows the PLI application to prepare for the save, but it
shouldn’t save its data with calls to tf_write_save until it is called with reason_save.

reason_save

For the execution of the checkpoint command. This is when the PLI application must
save its state with calls to tf_write_save.
ModelSim SE User’s Manual Verilog Simulation 5-117

reason_startofrestart

For the start of execution of the restore command, but before any of the simulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn’t restore its state with calls to tf_read_restart until it is called with reason_restart.
The reason_startofrestart value is passed only for a restore command, and not in the case
that the simulator is invoked with -restore.

reason_restart

For the execution of the restore command. This is when the PLI application must restore
its state with calls to tf_read_restart.

reason_reset

For the execution of the restart command. This is when the PLI application should free
its memory and reset its state. We recommend that all PLI applications reset their internal
state during a restart as the shared library containing the PLI code might not be reloaded.
(See the -keeploaded (CR-260) and -keeploadedrestart (CR-260) vsim
arguments for related information.)

reason_endofreset

For the completion of the restart command, after the simulation state has been reset but
before the design has been reloaded.

reason_interactive

For the execution of the $stop system task or any other time the simulation is interrupted
and waiting for user input.

reason_scope

For the execution of the environment command or selecting a scope in the structure
window. Also for the call to acc_set_interactive_scope if the callback_flag argument is
non-zero.

reason_paramvc

For the change of value on the system task or function argument.

reason_synch

For the end of time step event scheduled by tf_synchronize.

reason_rosynch

For the end of time step event scheduled by tf_rosynchronize.

reason_reactivate

For the simulation event scheduled by tf_setdelay.

reason_paramdrc

Not supported in ModelSim Verilog.

reason_force

Not supported in ModelSim Verilog.

reason_release

Not supported in ModelSim Verilog.

reason_disable

Not supported in ModelSim Verilog.
5-118 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI
The sizetf callback function

A user-defined system function specifies the width of its return value with the sizetf
callback function, and the simulator calls this function while loading the design. The
following details on the sizetf callback function are not found in the IEEE Std 1364:

• If you omit the sizetf function, then a return width of 32 is assumed.

• The sizetf function should return 0 if the system function return value is of Verilog type
"real".

• The sizetf function should return -32 if the system function return value is of Verilog type
"integer".

PLI object handles

Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routine is called. However, some of
the objects are created on demand, and the handles to these objects become invalid after
acc_close() is called. The following object types are created on demand in ModelSim
Verilog:

accOperator (acc_handle_condition)
accWirePath (acc_handle_path)
accTerminal (acc_handle_terminal, acc_next_cell_load, acc_next_driver, and

acc_next_load)
accPathTerminal (acc_next_input and acc_next_output)
accTchkTerminal (acc_handle_tchkarg1 and acc_handle_tchkarg2)
accPartSelect (acc_handle_conn, acc_handle_pathin, and acc_handle_pathout)
accRegBit (acc_handle_by_name, acc_handle_tfarg, and acc_handle_itfarg)

If your PLI application uses these types of objects, then it is important to call acc_close()
to free the memory allocated for these objects when the application is done using them.

If your PLI application places value change callbacks on accRegBit or accTerminal objects,
do not call acc_close() while these callbacks are in effect.
ModelSim SE User’s Manual Verilog Simulation 5-119

Using the Verilog PLI/VPI
Third party PLI applications

Many third party PLI applications come with instructions on using them with ModelSim
Verilog. Even without the instructions, it is still likely that you can get it to work with
ModelSim Verilog as long as the application uses standard PLI routines. The following
guidelines are for preparing a Verilog-XL PLI application to work with ModelSim Verilog.

Generally, a Verilog-XL PLI application comes with a collection of object files and a
veriuser.c file. The veriuser.c file contains the registration information as described above
in "Registering PLI applications". To prepare the application for ModelSim Verilog, you
must compile the veriuser.c file and link it to the object files to create a dynamically
loadable object (see "Compiling and linking PLI/VPI applications" (5-111)). For example,
if you have a veriuser.c file and a library archive libapp.a file that contains the application’s
object files, then the following commands should be used to create a dynamically loadable
object for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include veriuser.c
% ld -G -o app.sl veriuser.o libapp.a

That’s all there is to it. The PLI application is ready to be run with ModelSim Verilog. All
that’s left is to specify the resulting object file to the simulator for loading using the Veriuser
modesim.ini file entry, the -pli simulator option, or the PLIOBJS environment variable (see
"Registering PLI applications" (5-108)).

Note: On the HP700 platform, the object files must be compiled as position-independent
code by using the +z compiler option. Since, the object files supplied for Verilog-XL may
be compiled for static linking, you may not be able to use the object files to create a
dynamically loadable object for ModelSim Verilog. In this case, you must get the third
party application vendor to supply the object files compiled as position-independent code.
5-120 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI
Support for VHDL objects

The PLI ACC routines also provide limited support for VHDL objects in either an all
VHDL design or a mixed VHDL/Verilog design. The following table lists the VHDL
objects for which handles may be obtained and their type and fulltype constants:

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include
file. All of these objects (except signals) are scope objects that define levels of hierarchy in
the Structure window. Currently, the PLI ACC interface has no provision for obtaining
handles to generics, types, constants, variables, attributes, subprograms, and processes.
However, some of these objects can be manipulated through the ModelSim VHDL foreign
interface (mti_* routines). See the FLI Reference Manual for more information.

Type Fulltype Description

accArchitecture accArchitecture instantiation of an architecture

accArchitecture accEntityVitalLevel0 instantiation of an architecture whose entity is marked
with the attribute VITAL_Level0

accArchitecture accArchVitalLevel0 instantiation of an architecture which is marked with the
attribute VITAL_Level0

accArchitecture accArchVitalLevel1 instantiation of an architecture which is marked with the
attribute VITAL_Level1

accArchitecture accForeignArch instantiation of an architecture which is marked with the
attribute FOREIGN and which does not contain any
VHDL statements or objects other than ports and generics

accArchitecture accForeignArchMixed instantiation of an architecture which is marked with the
attribute FOREIGN and which contains some VHDL
statements or objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()

accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSignal signal declaration
ModelSim SE User’s Manual Verilog Simulation 5-121

Using the Verilog PLI/VPI
IEEE Std 1364 ACC routines

ModelSim Verilog supports the following ACC routines, described in detail in the IEEE Std
1364.

acc_append_delays acc_append_pulsere acc_close

acc_collect acc_compare_handles acc_configure

acc_count acc_fetch_argc acc_fetch_argv

acc_fetch_attribute acc_fetch_attribute_int acc_fetch_attribute_str

acc_fetch_defname acc_fetch_delay_mode acc_fetch_delays

acc_fetch_direction acc_fetch_edge acc_fetch_fullname

acc_fetch_fulltype acc_fetch_index acc_fetch_location

acc_fetch_name acc_fetch_paramtype acc_fetch_paramval

acc_fetch_polarity acc_fetch_precision acc_fetch_pulsere

acc_fetch_range acc_fetch_size acc_fetch_tfarg

acc_fetch_itfarg acc_fetch_tfarg_int acc_fetch_itfarg_int

acc_fetch_tfarg_str acc_fetch_itfarg_str acc_fetch_timescale_info

acc_fetch_type acc_fetch_type_str acc_fetch_value

acc_free acc_handle_by_name acc_handle_calling_mod_m

acc_handle_condition acc_handle_conn acc_handle_hiconn

acc_handle_interactive_scope acc_handle_loconn acc_handle_modpath

acc_handle_notifier acc_handle_object acc_handle_parent

acc_handle_path acc_handle_pathin acc_handle_pathout

acc_handle_port acc_handle_scope acc_handle_simulated_net

acc_handle_tchk acc_handle_tchkarg1 acc_handle_tchkarg2

acc_handle_terminal acc_handle_tfarg acc_handle_itfarg

acc_handle_tfinst acc_initialize acc_next

acc_next_bit acc_next_cell acc_next_cell_load

acc_next_child acc_next_driver acc_next_hiconn

acc_next_input acc_next_load acc_next_loconn

acc_next_modpath acc_next_net acc_next_output

acc_next_parameter acc_next_port acc_next_portout
5-122 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI
Note: acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string value of
a parameter. Because of this, the function acc_fetch_paramval_str() has been added to the
PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It functions in a
manner similar to acc_fetch_paramval() except that it returns a char *.
acc_fetch_paramval_str() can be used on all platforms.

IEEE Std 1364 TF routines

ModelSim Verilog supports the following TF routines, described in detail in the IEEE Std
1364.

acc_next_primitive acc_next_scope acc_next_specparam

acc_next_tchk acc_next_terminal acc_next_topmod

acc_object_in_typelist acc_object_of_type acc_product_type

acc_product_version acc_release_object acc_replace_delays

acc_replace_pulsere acc_reset_buffer acc_set_interactive_scope

acc_set_pulsere acc_set_scope acc_set_value

acc_vcl_add acc_vcl_delete acc_version

io_mcdprintf io_printf mc_scan_plusargs

tf_add_long tf_asynchoff tf_iasynchoff

tf_asynchon tf_iasynchon tf_clearalldelays

tf_iclearalldelays tf_compare_long tf_copypvc_flag

tf_icopypvc_flag tf_divide_long tf_dofinish

tf_dostop tf_error tf_evaluatep

tf_ievaluatep tf_exprinfo tf_iexprinfo

tf_getcstringp tf_igetcstringp tf_getinstance

tf_getlongp tf_igetlongp tf_getlongtime

tf_igetlongtime tf_getnextlongtime tf_getp

tf_igetp tf_getpchange tf_igetpchange

tf_getrealp tf_igetrealp tf_getrealtime

tf_igetrealtime tf_gettime tf_igettime

tf_gettimeprecision tf_igettimeprecision tf_gettimeunit

tf_igettimeunit tf_getworkarea tf_igetworkarea

tf_long_to_real tf_longtime_tostr tf_message
ModelSim SE User’s Manual Verilog Simulation 5-123

Using the Verilog PLI/VPI
tf_mipname tf_imipname tf_movepvc_flag

tf_imovepvc_flag tf_multiply_long tf_nodeinfo

tf_inodeinfo tf_nump tf_inump

tf_propagatep tf_ipropagatep tf_putlongp

tf_iputlongp tf_putp tf_iputp

tf_putrealp tf_iputrealp tf_read_restart

tf_real_to_long tf_rosynchronize tf_irosynchronize

tf_scale_longdelay tf_scale_realdelay tf_setdelay

tf_isetdelay tf_setlongdelay tf_isetlongdelay

tf_setrealdelay tf_isetrealdelay tf_setworkarea

tf_isetworkarea tf_sizep tf_isizep

tf_spname tf_ispname tf_strdelputp

tf_istrdelputp tf_strgetp tf_istrgetp

tf_strgettime tf_strlongdelputp tf_istrlongdelputp

tf_strrealdelputp tf_istrrealdelputp tf_subtract_long

tf_synchronize tf_isynchronize tf_testpvc_flag

tf_itestpvc_flag tf_text tf_typep

tf_itypep tf_unscale_longdelay tf_unscale_realdelay

tf_warning tf_write_save
5-124 Verilog Simulation ModelSim SE User’s Manual

Using the Verilog PLI/VPI
Verilog-XL compatible routines

The following PLI routines are not defined in IEEE Std 1364, but ModelSim Verilog
provides them for compatibility with Verilog-XL.

char *acc_decompile_exp(handle condition)

This routine provides similar functionality to the Verilog-XL acc_decompile_expr
routine. The condition argument must be a handle obtained from the acc_handle_condition
routine. The value returned by acc_decompile_exp is the string representation of the
condition expression.

char *tf_dumpfilename(void)

This routine returns the name of the VCD file.

void tf_dumpflush(void)

A call to this routine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsimtime(int *aof_hightime)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are
returned by the routine, while the high-order bits are stored in the aof_hightime argument.

64-bit support in the PLI

The PLI function acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string
value of a parameter. Because of this, the function acc_fetch_paramval_str() has been
added to the PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It
functions in a manner similar to acc_fetch_paramval() except that it returns a char *.
acc_fetch_paramval_str() can be used on all platforms.

PLI/VPI tracing

The foreign interface tracing feature is available for tracing PLI and VPI function calls.
Foreign interface tracing creates two kinds of traces: a human-readable log of what
functions were called, the value of the arguments, and the results returned; and a set of
C-language files that can be used to replay what the foreign interface code did.

The purpose of tracing files

The purpose of the logfile is to aid you in debugging PLI or VPI code. The primary purpose
of the replay facility is to send the replay file to MTI support for debugging co-simulation
problems, or debugging PLI/VPI problems for which it is impractical to send the PLI/VPI
code. We still need you to send the VHDL/Verilog part of the design to actually execute a
replay, but many problems can be resolved with the trace only.

Invoking a trace

To invoke the trace, call vsim (CR-258) with the -trace_foreign option:

Syntax

vsim
-trace_foreign <action> [-tag <name>]
ModelSim SE User’s Manual Verilog Simulation 5-125

Using the Verilog PLI/VPI
Arguments

<action>

Specifies one of the following actions:

-tag <name>

Used to give distinct file names for multiple traces. Optional.

Examples

vsim -trace_foreign 1 mydesign

Creates a logfile.

vsim -trace_foreign 3 mydesign

Creates both a logfile and a set of replay files.

vsim -trace_foreign 1 -tag 2 mydesign

Creates a logfile with a tag of "2".

The tracing operations will provide tracing during all user foreign code-calls, including
PLI/VPI user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog
VCL callbacks.

Value Action Result

1 create log only writes a local file called
"mti_trace_<tag>"

2 create replay only writes local files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and replay
5-126 Verilog Simulation ModelSim SE User’s Manual

6 - Mixed VHDL and Verilog Designs

Chapter contents
Separate compilers, common libraries 6-128

Mapping data types 6-128
VHDL generics 6-128
Verilog parameters 6-129
VHDL and Verilog ports 6-129
Verilog states 6-130

VHDL instantiation of Verilog design units 6-132
Verilog instantiation criteria 6-132
Component declaration 6-132
vgencomp component declaration 6-134
VCD output 6-135

Verilog instantiation of VHDL design units 6-136
VHDL instantiation criteria 6-136
SDF annotation 6-136

ModelSim single-kernel simulation (SKS) allows you to simulate designs that are written
in VHDL and/or Verilog. This chapter outlines data mapping and the criteria established to
instantiate design units between HDLs.

The boundaries between VHDL and Verilog are enforced at the level of a design unit. This
means that although a design unit must be either all VHDL or all Verilog, it may instantiate
design units from either language. Any instance in the design hierarchy may be a design
unit from either HDL without restriction. SKS technology allows the top-level design unit
to be either VHDL or Verilog. As you traverse the design hierarchy, instantiations may
freely switch back and forth between VHDL and Verilog.
ModelSim SE User’s Manual Mixed VHDL and Verilog Designs 6-127

Separate compilers, common libraries
Separate compilers, common libraries

VHDL source code is compiled by vcom (CR-217) and the resulting compiled design units
(entities, architectures, configurations, and packages) are stored in a library. Likewise,
Verilog source code is compiled by vlog (CR-250) and the resulting design units (modules
and UDPs) are stored in a library.

Libraries can store any combination of VHDL and Verilog design units, provided the
design unit names do not overlap (VHDL design unit names are changed to lower case).

See "Design libraries" (3-41) for more information about library management and see the
vcom (CR-217) and the vlog commands.

Mapping data types

Cross-HDL instantiation does not require any extra effort on your part. As ModelSim loads
a design it detects cross-HDL instantiations – made possible because a design unit's HDL
type can be determined as it is loaded from a library – and the necessary adaptations and
data type conversions are performed automatically.

A VHDL instantiation of Verilog may associate VHDL signals and values with Verilog
ports and parameters. Likewise, a Verilog instantiation of VHDL may associate Verilog
nets and values with VHDL ports and generics. ModelSim automatically maps between the
HDL data types as shown below.

VHDL generics

When a scalar type receives a real value, the real is converted to an integer by truncating
the decimal portion.

Type time is treated specially: the Verilog number is converted to a time value according
to the ‘timescale directive of the module.

Physical and enumeration types receive a value that corresponds to the position number
indicated by the Verilog number. In VHDL this is equivalent to T’VAL(P), where T is the
type, VAL is the predefined function attribute that returns a value given a position number,
and P is the position number.

VHDL type Verilog type

integer integer or real

real integer or real

time integer or real

physical integer or real

enumeration integer or real

string string literal
6-128 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

Mapping data types
Verilog parameters

The type of a Verilog parameter is determined by its initial value.

VHDL and Verilog ports

The allowed VHDL types for ports connected to Verilog nets and for signals connected to
Verilog ports are:

The vl_logic type is an enumeration that defines the full state set for Verilog nets, including
ambiguous strengths. The bit and std_logic types are convenient for most applications, but
the vl_logic type is provided in case you need access to the full Verilog state set. For
example, you may wish to convert between vl_logic and your own user-defined type. The
vl_logic type is defined in the vl_types package in the pre-compiled verilog library. This
library is provided in the installation directory along with the other pre-compiled libraries
(std and ieee). The source code for the vl_types package can be found in the files installed
with ModelSim. (See \modeltech\vhdl_src\verilog\vltypes.vhd.)

VHDL type Verilog type

integer integer

real real

string string

Allowed VHDL types

bit

bit_vector

std_logic

std_logic_vector

vl_logic

vl_logic_vector
ModelSim SE User’s Manual Mixed VHDL and Verilog Designs 6-129

Mapping data types
Verilog states

Verilog states are mapped to std_logic and bit as follows:

For Verilog states with ambiguous strength:

• bit receives '0'

• std_logic receives 'X' if either the 0 or 1 strength component is greater than or equal to
strong strength

• std_logic receives 'W' if both the 0 and 1 strength components are less than strong
strength

Verilog std_logic bit

HiZ 'Z' '0'

Sm0 'L' '0'

Sm1 'H' '1'

SmX 'W' '0'

Me0 'L' '0'

Me1 'H' '1'

MeX 'W' '0'

We0 'L' '0'

We1 'H' '1'

WeX 'W' '0'

La0 'L' '0'

La1 'H' '1'

LaX 'W' '0'

Pu0 'L' '0'

Pu1 'H' '1'

PuX 'W' '0'

St0 '0' '0'

St1 '1' '1'

StX 'X' '0'

Su0 '0' '0'

Su1 '1' '1'

SuX 'X' '0'
6-130 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

Mapping data types
VHDL type bit is mapped to Verilog states as follows:

VHDL type std_logic is mapped to Verilog states as follows:

bit Verilog

’0’ St0

’1’ St1

std_logic Verilog

’U’ StX

’X’ StX

’0’ St0

’1’ St1

’Z’ HiZ

’W’ PuX

’L’ Pu0

’H’ Pu1

'–' StX
ModelSim SE User’s Manual Mixed VHDL and Verilog Designs 6-131

VHDL instantiation of Verilog design units
VHDL instantiation of Verilog design units

Once you have generated a component declaration for a Verilog module, you can
instantiate the component just like any other VHDL component. In addition, you can
reference a Verilog module in the entity aspect of a component configuration – all you need
to do is specify a module name instead of an entity name. You can also specify an optional
architecture name, but it will be ignored because Verilog modules do not have
architectures.

Verilog instantiation criteria

A Verilog design unit may be instantiated from VHDL if it meets the following criteria:

• The design unit is a module (UDPs are not allowed).

• The ports are named ports (Verilog allows unnamed ports).

• The ports are not connected to bidirectional pass switches (it is not possible to handle pass
switches in VHDL).

Component declaration

A Verilog module that is compiled into a library can be referenced from a VHDL design as
though the module is a VHDL entity. The interface to the module can be extracted from the
library in the form of a component declaration by running vgencomp (CR-224). Given a
library and module name, vgencomp (CR-224) writes a component declaration to standard
output.

The default component port types are:

• std_logic

• std_logic_vector

Optionally, you can choose:

• bit and bit_vector

• vl_logic and vl_logic_vector

VHDL and Verilog identifiers

The identifiers for the component name, port names, and generic names are the same as the
Verilog identifiers for the module name, port names and parameter names. If a Verilog
identifier is not a valid VHDL 1076-1987 identifier, it is converted to a VHDL 1076-1993
extended identifier (in which case you must compile the VHDL with the -93 switch). Any
uppercase letters in Verilog identifiers are converted to lowercase in the VHDL identifier,
except in the following cases:

• The Verilog module was compiled with the -93 switch. This means vgencomp (CR-224)
should use VHDL 1076-1993 extended identifiers in the component declaration to
preserve case in the Verilog identifiers that contain uppercase letters.

• The Verilog module port and generic names are not unique unless case is preserved. In
this event, vgencomp (CR-224) behaves as if the module was compiled with the -93
switch for those names only.
6-132 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

VHDL instantiation of Verilog design units
Examples

If the Verilog module is compiled with -93:

Verilog identifier VHDL identifier

topmod topmod

TOPMOD topmod

TopMod topmod

top_mod top_mod

_topmod _topmod\

\topmod topmod

\\topmod\ \topmod\

Verilog identifier VHDL identifier

topmod topmod

TOPMOD \TOPMOD\

TopMod \TopMod\

top_mod top_mod

_topmod _topmod\

\topmod topmod

\\topmod\ \topmod\
ModelSim SE User’s Manual Mixed VHDL and Verilog Designs 6-133

VHDL instantiation of Verilog design units
vgencomp component declaration

vgencomp (CR-224) generates a component declaration according to these rules:

Generic clause

A generic clause is generated if the module has parameters. A corresponding generic is
defined for each parameter that has an initial value that does not depend on any other
parameters.

The generic type is determined by the parameter’s initial value as follows:

The default value of the generic is the same as the parameter’s initial value.

Examples

Port clause

A port clause is generated if the module has ports. A corresponding VHDL port is defined
for each named Verilog port.

You can set the VHDL port type to bit, std_logic, or vl_logic. If the Verilog port has a
range, then the VHDL port type is bit_vector, std_logic_vector, or vl_logic_vector. If the
range does not depend on parameters, then the vector type will be constrained accordingly,
otherwise it will be unconstrained.

Examples

Parameter value Generic type

integer integer

real real

string literal string

Verilog parameter VHDL generic

parameter p1 = 1 - 3; p1 : integer := -2;

parameter p2 = 3.0; p2 : real := 3.000000;

parameter p3 = "Hello"; p3 : string := "Hello";

Verilog port VHDL port

input p1; p1 : in std_logic;

output [7:0] p2; p2 : out std_logic_vector(7 downto 0);

output [4:7] p3; p3 : out std_logic_vector(4 to 7);

inout [width-1:0] p4; p4 : inout std_logic_vector;
6-134 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

VHDL instantiation of Verilog design units
Configuration declarations are allowed to reference Verilog modules in the entity aspects
of component configurations. However, the configuration declaration cannot extend into a
Verilog instance to configure the instantiations within the Verilog module.

VCD output

When creating a VCD file for designs that have bi-directional ports, you first have to use
the splitio command (see "Extracting the proper stimulus for bidirectional ports" (13-344)).
Be aware that VCD file output will vary between a design coded in VHDL and the same
design coded in Verilog with timing wrapped in VHDL. The difference occurs because
splitio generates Extended VCD stimulus files, and the Extended VCD format is supported
only for pure VHDL designs.
ModelSim SE User’s Manual Mixed VHDL and Verilog Designs 6-135

Verilog instantiation of VHDL design units
Verilog instantiation of VHDL design units

You can reference a VHDL entity or configuration from Verilog as though the design unit
is a module of the same name (in lower case).

VHDL instantiation criteria

A VHDL design unit may be instantiated from Verilog if it meets the following criteria:

• The design unit is an entity/architecture pair or a configuration declaration.

• The entity ports are of type bit, bit_vector, std_ulogic, std_ulogic_vector, vl_ulogic,
vl_ulogic_vector, or their subtypes. The port clause may have any mix of these types.

• The generics are of type integer, real, time, physical, enumeration, or string. String is the
only composite type allowed.

Port associations may be named or positional. Use the same port names and port positions
that appear in the entity.

Named port associations

Named port associations are not case sensitive – unless a VHDL port name is an extended
identifier (1076-1993). If the VHDL port name is an extended identifier, the association is
case sensitive and the VHDL identifier’s leading and trailing backslashes are removed
before comparison.

Generic associations are provided via the module instance parameter value list. List the
values in the same order that the generics appear in the entity. The defparam statement is
not allowed for setting generic values.

An entity name is not case sensitive in Verilog instantiations. The entity default architecture
is selected from the work library unless specified otherwise.

Verilog does not have the concept of architectures or libraries, so the escaped identifier is
employed to provide an extended form of instantiation:

\mylib.entity(arch) u1 (a, b, c);
\mylib.entity u1 (a, b, c);
\entity(arch) u1 (a, b, c);

If the escaped identifier takes the form of one of the above and is not the name of a design
unit in the work library, then the instantiation is broken down as follows:

• library = mylib

• design unit = entity

• architecture = arch

SDF annotation

A mixed VHDL/Verilog design can also be annotated with SDF. See "SDF for Mixed
VHDL and Verilog Designs" (12-336) for more information.
6-136 Mixed VHDL and Verilog Designs ModelSim SE User’s Manual

7 - Datasets (saved simulations) and virtuals

Chapter contents
Datasets 7-138

Saving a simulation to a dataset 7-138
Opening datasets 7-139
Viewing dataset structure 7-140
Managing datasets 7-142
Using datasets with ModelSim commands 7-142
Restricting the dataset prefix display 7-143

Virtual Objects (User-defined buses, and more) 7-144
Virtual signals 7-144
Virtual functions 7-145
Virtual regions 7-146
Virtual types 7-146

Dataset, logfile, and virtual commands 7-147

A ModelSim simulation can be saved to a logfile (using the -wlf <filename> argument to
the vsim command (CR-258)) for future viewing or comparison to a current simulation. We
use the term "dataset" to refer to a logfile that has been reopened in the program.

With ModelSim release 5.3 and later, you can open more than one dataset for simultaneous
viewing. You can also create virtual signals that are simple logical combinations of, or
logical functions of, signals from different datasets.
ModelSim SE User’s Manual Datasets (saved simulations) and virtuals 7-137

Datasets
Datasets

The term "dataset" refers to a simulation waveform database that was saved and then
subsequently reloaded for viewing or comparing. Any number of datasets can be opened in
view mode. View mode allows you to view, but not run, a previous simulation.

A prefix identifies each dataset that is opened. The current active simulation is prefixed by
"sim," while any datasets loaded for viewing are prefixed by the filename of the logfile. For
example, two datasets are displayed in the Wave window below—the current simulation is
shown in the top pane and is indicated by the "sim" prefix; a dataset from a previous
simulation is shown in the bottom pane and is indicated by the "test1" prefix.

Note: The simulator time resolution (see Resolution (B-400)) must be the same for all
datasets you’re comparing, including the current simulation.

Saving a simulation to a dataset

The results of each simulation run are automatically saved to a dataset file called vsim.wlf
in the current directory. If you run a new simulation in the same directory, the vsim.wlf file
is overwritten with the new results. Therefore, you should use the -wlf <filename>
argument to the vsim command (CR-258) to specify a different name if you want to save the
dataset.

Important: You must end a simulation session with a quit or quit -sim command in order
to produce a valid dataset. If you don’t end the simulation in this manner, the dataset will
not close properly, and ModelSim will issue an error when you try to open the dataset in
subsequent sessions.
7-138 Datasets (saved simulations) and virtuals ModelSim SE User’s Manual

Datasets
Opening datasets

To open a dataset, select either File > Open > Dataset (Main window) or File > Open
Dataset (Wave window).

The Open Dataset dialog box includes the following options.
• Dataset Pathname

Identifies the path and filename of the logfile you want to open.

• Logical Name for Dataset
This is the name by which the dataset will be referred. By default this is the filename of
the logfile.

Important: You must end a simulation session with a quit or quit -sim command in order
to produce a valid dataset. If you don’t end the simulation in this manner, the dataset will
not close properly, and ModelSim will issue an error when you try to open the dataset in
subsequent sessions.
ModelSim SE User’s Manual Datasets (saved simulations) and virtuals 7-139

Datasets
Viewing dataset structure

In versions 5.5 and later, each dataset you open creates a Structure page in the Main
window workspace. This page contains the same data as the "Structure window" (8-210),
but you get one for each dataset.

The graphic below shows three Structure pages: one for the active simulation ("Sim") and
one each for two open datasets ("Test" and "Gold").

If you have too many tabs to display in the available space, you can scroll the tabs left or
right by clicking and dragging them.

Each Structure page has a context menu that you access by clicking the right mouse button
(Windows—2nd button, UNIX—3rd button) anywhere within the Structure page.
7-140 Datasets (saved simulations) and virtuals ModelSim SE User’s Manual

Datasets
The Structure page context menu includes the following options.

• Save As
Writes the HDL item names in the Structure page to a text file.

• Sort
Sorts the HDL items in the Structure page by alphabetic (ascending or descending) or
declaration order.

• Expand Selected
Shows the hierarchy of the selected HDL item.

• Collapse Selected
Hides the hierarchy of the selected HDL item.

• Expand All
Shows the hierarchy of all HDL items in the list.

• Collapse All
Hides the hierarchy of all HDL items in the list.

• Find
Opens the Find dialog. See "Finding items in the Structure window" (8-212) for details.
ModelSim SE User’s Manual Datasets (saved simulations) and virtuals 7-141

Datasets
Managing datasets

When you have one or more datasets open, you can manage them using the Dataset
Browser. To open the browser, select View > Datasets (Main window).

The Dataset Browser dialog box includes the following options.

• Open Dataset
Opens the View Dataset dialog box (see "Opening datasets" (7-139)) so you can open
additional datasets.

• Close Dataset
Closes the selected dataset. This will also remove the dataset’s Structure page in the Main
window workspace.

• Make Active
Makes the selected dataset "active." You can also effect this change by double-clicking
the dataset name. Active dataset means that if you type a region path as part of a
command and omit the dataset prefix, the active dataset will be assumed. It is equivalent
to typing: env <dataset>: at the VSIM prompt.

• Rename Dataset
Allows you to assign a new logical name for the selected dataset.

Using datasets with ModelSim commands

Multiple datasets can be opened when the simulator is invoked by specifying more than one
vsim -view <filename> option. By default the dataset prefix will be the filename of the
WLF file. A different dataset name can also be specified as an optional qualifier to the vsim
-view switch on the command line using the following syntax:

-view <dataset>=<filename>

For example: vsim -view foo=vsim.wlf
7-142 Datasets (saved simulations) and virtuals ModelSim SE User’s Manual

Datasets
Design regions and signal names can be fully specified over multiple logfiles by using the
dataset name as a prefix in the path. For example:

sim:/top/alu/out

view:/top/alu/out

golden:.top.alu.out

Dataset prefixes are not required unless more than one dataset is open, and you want to refer
to something outside the default dataset. When more than one dataset is open, ModelSim
will automatically prefix names in the Wave and List window with the dataset name. You
can change this default by selecting Edit > Display Properties (Wave window) and
Prop > Display Props (List window).

ModelSim designates one of the datasets to be the "active" dataset, and refers all names
without dataset prefixes to that dataset. The active dataset is displayed in the context path
at the bottom of the Main window. When you select a design unit in a dataset’s Structure
page, that dataset becomes active automatically. Alternatively, you can use the Dataset
Browser or the environment command (CR-114) to change the active dataset.

ModelSim remembers a "current context" within each open dataset. You can toggle
between the current context of each dataset using the environment command (CR-114),
specifying the dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo.
The context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to as just "current context") is
used for finding objects specified without a path.

The Signals window can be locked to a specific context of a dataset. Being locked to a
dataset means that the window will update only when the content of that dataset changes.
If locked to both a dataset and a context (e.g., test: /top/foo), the window will update only
when that specific context changes. You specify the dataset to which the window is locked
by selecting File > Environment (Signals window).

Restricting the dataset prefix display

The default for dataset prefix viewing is set with a variable in pref.tcl,
PrefMain(DisplayDatasetPrefix). Setting the variable to 1 will display the prefix, setting
it to 0 will not. It is set to 1 by default. Either edit the pref.tcl file directly or use the Options
> Edit Preferences (Main window) command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment
command (CR-114) with the -dataset option (you won’t need to specify this option if the
variable noted above is set to 1). The environment command line switches override the
pref.tcl variable.
ModelSim SE User’s Manual Datasets (saved simulations) and virtuals 7-143

Virtual Objects (User-defined buses, and more)
Virtual Objects (User-defined buses, and more)

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in
the ModelSim simulation kernel. Beginning with release 5.3, ModelSim supports the
following kinds of virtual objects:

• Virtual signals (7-144)

• Virtual functions (7-145)

• Virtual regions (7-146)

• Virtual types (7-146)

Virtual objects are indicated by an orange diamond as illustrated by BUS1 below:

Virtual signals

Virtual signals are aliases for combinations or subelements of signals written to the logfile
by the simulation kernel. They can be displayed in the Signals, List, and Wave windows,
accessed by the examine command, and set using the force command. Virtual signals can
be created via a menu in the Wave and List windows (Edit > Combine), or with the virtual
signal command (CR-245). Virtual signals can also be dragged and dropped from the
Signals window to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that
corresponds to the nearest common ancestor of all the elements of the virtual signal. The
virtual signal command has an -install <region> option to specify where the virtual signal
should be installed. This can be used to install the virtual signal in a user-defined region in
7-144 Datasets (saved simulations) and virtuals ModelSim SE User’s Manual

Virtual Objects (User-defined buses, and more)
order to reconstruct the original RTL hierarchy when simulating and driving a
post-synthesis, gate-level implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. The virtual hide command (CR-236) can be used to hide the display of the
broken-down bits if you don’t want them cluttering up the Signals window.

If the virtual signal has elements from more than one logfile, it will be automatically
installed in the virtual region "virtuals:/Signals."

Virtual signals are not hierarchical – if two virtual signals are concatenated to become a
third virtual signal, the resulting virtual signal will be a concatenation of all the subelements
of the first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command
(CR-243). By default, when quitting, ModelSim will append any newly-created virtuals (that
have not been saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave
or List format, you will need to execute the virtuals.do file (or some other equivalent) to
restore the virtual signal definitions before you re-load the Wave or List format during a
later run. There is one exception: "implicit virtuals" are automatically saved with the Wave
or List format.

Implicit and explicit virtuals

An implicit virtual is a virtual signal that was automatically created by ModelSim without
your knowledge and without you providing a name for it. An example would be if you
expand a bus in the Wave window, then drag one bit out of the bus to display it separately.
That action creates a one-bit virtual signal whose definition is stored in a special location,
and is not visible in the Signals window or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals".

Virtual functions

Virtual functions behave in the GUI like signals but are not aliases of combinations or
elements of signals logged by the kernel. They consist of logical operations on logged
signals and can be dependent on simulation time. They can be displayed in the Signals,
Wave, and List windows and accessed by the examine command (CR-115), but cannot be
set by the force command (CR-121).

Examples of virtual functions include the following:

• a function defined as the inverse of a given signal

• a function defined as the exclusive-OR of two signals

• a function defined as a repetitive clock

• a function defined as "the rising edge of CLK delayed by 1.34 ns"

Virtual functions can also be used to convert signal types and map signal values.

The result type of a virtual signal can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these
types. Verilog types are converted to VHDL 9-state std_logic equivalents and Verilog net
strengths are ignored.
ModelSim SE User’s Manual Datasets (saved simulations) and virtuals 7-145

Virtual Objects (User-defined buses, and more)
Virtual functions can be created using the virtual function command (CR-233).

Virtual functions are also implicitly created by ModelSim when referencing bit-selects or
part-selects of Verilog registers in the GUI, or when expanding Verilog registers in the
Signals, Wave or List windows. This is necessary because referencing Verilog register
elements requires an intermediate step of shifting and masking of the Verilog "vreg" data
structure.

Virtual regions

User-defined design hierarchy regions can be defined and attached to any existing design
region or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in
a gate-level design and to locate virtual signals. Thus, virtual signals and virtual regions can
be used in a gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command (CR-242).

Virtual types

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual type is then used in a type conversion
expression to convert a signal to values of the new type. When the converted signal is
displayed in any of the windows, the value will be displayed as the enumeration string
corresponding to the value of the original signal.

Virtual types are created using the virtual type command (CR-248).
7-146 Datasets (saved simulations) and virtuals ModelSim SE User’s Manual

Dataset, logfile, and virtual commands
Dataset, logfile, and virtual commands

The table below provides a brief description of the actions associated with datasets,
logfiles, and virtual commands. For complete details about syntax, arguments, and usage,
refer to the ModelSim Command Reference.

Command name Action

dataset close (CR-95) closes the specified dataset

dataset list (CR-96) lists all open datasets

dataset open (CR-97) opens a dataset

dataset rename (CR-98) assigns a new logical name to the specified dataset

log (CR-131) creates a logfile for the current simulation

nolog (CR-139) suspends writing of data to the logfile for the specified signals

searchlog (CR-180) searches one or more of the currently open logfiles for a specified condition

virtual function (CR-233) creates a new signal that consists of logical operations on existing signals and
simulation time

virtual region (CR-242) creates a new user-defined design hierarchy region

virtual signal (CR-245) creates a new signal that consists of concatenations of signals and
subelements

virtual type (CR-248) creates a new enumerated type

vsim (CR-258) -wlf <filename> creates a logfile for the simulation which can be reopened as a dataset
ModelSim SE User’s Manual Datasets (saved simulations) and virtuals 7-147

7-148 Datasets (saved simulations) and virtuals ModelSim SE User’s Manual

8 - ModelSim Graphic Interface

Chapter contents
Window overview 8-150

Common window features 8-151

Main window 8-157

Dataflow window 8-171

List window 8-175

Process window 8-190

Signals window 8-193

Source window. 8-201

Structure window 8-210

Variables window 8-213

Wave window 8-216

Compiling with the graphic interface 8-250

Simulating with the graphic interface 8-256

ModelSim tools 8-269

Graphic interface commands 8-277

Customizing the interface 8-279

The example graphics in this chapter illustrate ModelSim’s graphic interface within a
Windows environment; however, ModelSim’s interface is designed to provide consistency
across all supported platforms. Your operating system provides the basic window-
management frames, while ModelSim controls all internal window features such as menus,
buttons, and scroll bars.

Because ModelSim’s graphic interface is based on Tcl/Tk, you are able to customize your
simulation environment. Easily-accessible preference variables and configuration
commands give you control over the use and placement of windows, menus, menu options,
and buttons.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-149

Window overview
Window overview

The ModelSim simulation and debugging environment consists of nine window types.
Multiple windows of each type can be used during simulation (with the exception of the
Main window). To make an additional window select View > New (Main window). A brief
description of each window follows:

• Main window (8-157)

The initial window that appears upon startup. All subsequent ModelSim windows are
opened from the Main window. This window contains the session transcript.

• Dataflow window (8-171)

Lets you trace signals and nets through your design by showing related processes.

• List window (8-175)

Shows the simulation values of selected VHDL signals and variables and Verilog nets
and register variables in tabular format.

• Process window (8-190)

Displays a list of processes in the region currently selected in the Structure window.

• Signals window (8-193)

Shows the names and current values of VHDL signals, and Verilog nets and register
variables in the region currently selected in the Structure window.

• Source window (8-201)

Displays the HDL source code for the design. (Your source code can remain hidden if
you wish, see "Source code security and -nodebug" (E-433).)

• Structure window (8-210)

Displays the hierarchy of structural elements such as VHDL component instances,
packages, blocks, generate statements, and Verilog model instances, named blocks, tasks
and functions. In versions 5.5 and later, this same information is displayed in the Main
window workspace.

• Variables window (8-213)

Displays VHDL constants, generics, variables, and Verilog register variables in the
current process and their current values.

• Wave window (8-216)

Displays waveforms, and current values for the VHDL signals and variables and Verilog
nets and register variables you have selected. Current and past simulations can be
compared side-by-side in one Wave window.
8-150 ModelSim Graphic Interface ModelSim SE User’s Manual

Common window features
Common window features

ModelSim’s graphic interface provides many features that add to its usability; features
common to many of the windows are described below.

• Cut/Copy/Paste/Delete into any entry box by clicking the right
mouse button in the entry box.

• Standard cut/copy/paste shortcut keystrokes – ^X/^C/^V – will
work in all entry boxes.

• When the focus changes to an entry box, the contents of that box
are selected (highlighted). This allows you to replace the current
contents of the entry box with new contents with a simple paste
command, without having to delete the old value.

• Dialog boxes will appear on top of their parent window (instead of the upper left corner
of the screen)

Feature Feature applies to these windows

Quick access toolbars (8-152) Main, Source, and Wave windows

Drag and Drop (8-152) Dataflow, List, Signals, Source, Structure, Variables, and
Wave windows

Command history (8-152) Main window command line

Automatic window updating (8-153) Dataflow, Process, Signals, and Structure windows

Finding names, searching for values, and locating
cursors (8-153)

various windows

Sorting HDL items (8-154) Process, Signals, Source, Structure, Variables and Wave
windows

Multiple window copies (8-154) all windows except the Main window

Menu tear off (8-154) all windows

Customizing menus and buttons (8-154) all windows

Combining signals into a user-defined bus (8-154) List and Wave windows

Tree window hierarchical view (8-155) Structure, Signals, Variables, and Wave windows
ModelSim SE User’s Manual ModelSim Graphic Interface 8-151

Common window features
• The Main window includes context menus that are accessed by
clicking the right mouse button.

• The middle mouse button will allow you to paste the following
into the transcript window:

–text currently selected in the transcript window,

–a current primary X-Windows selection (can be from another
application), or

–contents of the clipboard.

Note: Selecting text in the transcript window makes it the current
primary X-Windows selection. This way you can copy transcript
window selections to other X-Windows windows (xterm, emacs, etc.).

• The Edit > Paste operation in the transcript window will ONLY paste from the clipboard.

• All menus highlight their accelerator keys.

Quick access toolbars

Buttons on the Main, Source, and Wave windows provide access to commonly used
commands and functions. See, "The Main window toolbar" (8-166), "The Source window
toolbar" (8-204), and "The Wave window toolbar" (8-224).

Drag and Drop

Drag and drop of HDL items is possible between the following windows. Using the left
mouse button, click and release to select an item, then click and hold to drag it.

• Drag items from these windows:
Dataflow, List, Signals, Source, Structure, Variables, and Wave windows

• Drop items into these windows:
Dataflow, List, and Wave windows

Note: Drag and drop works to rearrange items within the List and Wave windows as well.

Command history

Avoid entering long commands twice; use the down and up keyboard arrows to move
through the command history for the current simulation.

Transcript window
context menu
8-152 ModelSim Graphic Interface ModelSim SE User’s Manual

Common window features
Automatic window updating

Selecting an item in the following windows automatically updates other related ModelSim
windows as indicated below:

Finding names, searching for values, and locating cursors

• Find HDL item names with the Edit > Find menu selection in these windows:
List, Process, Signals, Source, Structure, Variables, and Wave windows.

• Search for HDL item values with the Edit > Search menu selection in these windows:
List, and Wave windows.

You can also:

• Locate time markers in the List window with the Markers > Goto menu selection.

• Locate time cursors in the Wave window with the Cursor > Goto menu selection.

In addition to the menu selections above, the virtual event <<Find>> is defined for all
windows. The default binding is to <Key-F19> in most windows (the Find key on a Sun
keyboard). You can bind <<Find>> to other events with the Tcl/Tk command event add.
For example,

event add <<Find>> <control-Key-F>

Select an item in this window To update these windows

Dataflow window (8-171)

(with a process selected in the center of
the window)

Process window (8-190)

Signals window (8-193)

Source window (8-201)

Structure window (8-210)

Variables window (8-213)

Process window (8-190) Dataflow window (8-171)

Signals window (8-193)

Structure window (8-210)

Variables window (8-213)

Signals window (8-193) Dataflow window (8-171)

Structure window (8-210) Process window (8-190)

Signals window (8-193)

Source window (8-201)
ModelSim SE User’s Manual ModelSim Graphic Interface 8-153

Common window features
Sorting HDL items

Use the Edit > Sort menu selection in the windows below to sort HDL items in ascending,
descending or declaration order.

Process, Signals, Structure, Variables and Wave windows

Names such as net_1, net_10, and net_2 will sort numerically in the Signals and Wave
windows.

Multiple window copies

Use the View > New menu selection from the Main window (8-157) to create multiple
copies of the same window type. The new window will become the default window for that
type.

Context menus

Context menus refer to menus that "pop-up" in the middle of the interface by clicking the
right mouse button (Windows—2nd button, UNIX—3rd button). The commands on the
menu change depending on where in the interface you click. In other words, the menus
change based on the context of their use.

Menu tear off

All window menus can be "torn off " to create a separate menu window. To tear off, click
on the menu, then select the dotted-line button at the top of the menu.

Customizing menus and buttons

Menus can be added, deleted, and modified in all windows. Custom buttons can also be
added to window toolbars. See

• "Customizing the interface" (8-279),

• "Customizing menus and buttons" (8-154), and

• "The Button Adder" (8-269) for more information.

Combining signals into a user-defined bus

You can collect selected items in the List window (8-175) and Wave window (8-216) displays
and combine them into a bus named by you. In the List window, the Edit > Combine menu
selection allows you to move the selected items to the new bus as long as they are all scalars
or arrays of the same base type (records are not yet supported).

In the Wave window (8-216), the Edit > Combine menu selection requires all selected items
to be either all scalars or all arrays of the same size. The benefit of this added restriction is
that the bus can be expanded to show each element as a separate waveform. Using the
flatten option allows scalars and various array sizes to be mixed, but foregoes display of
child waveforms.

The keep option in both windows copies the signals rather than moving them.
8-154 ModelSim Graphic Interface ModelSim SE User’s Manual

Common window features
Tree window hierarchical view

ModelSim provides a hierarchical, or "tree view" of some aspects of your design in the
Main window Structure pages and the Structure, Signals, Variables, and Wave windows.

HDL items you can view

Depending on which window you are
viewing, one entry is created for each
of the following VHDL and Verilog
HDL items within the design:

VHDL items

(indicated by a dark blue square icon)
signals, variables, component
instantiations, generate statements,
block statements, and packages

Verilog items

(indicated by a lighter blue circle icon)
parameters, registers, nets, module
instantiations, named forks, named
begins, tasks, and functions

Virtual items

(indicated by an orange diamond icon)
virtual signals, buses, and functions,
see "Virtual Objects (User-defined
buses, and more)" (7-144) for more
information

Viewing the hierarchy

Whenever you see a tree view, as in the
Structure window displayed here, you can use the mouse to collapse or expand the
hierarchy. Select the symbols as shown below to change the view of the structure.

Symbol Description

[+] click a plus box to expand the item and view the structure

[-] click a minus box to hide a hierarchy that has been expanded
ModelSim SE User’s Manual ModelSim Graphic Interface 8-155

Common window features
Finding items within tree windows

You can open the Find dialog box within all windows (except the Dataflow windows) by
selecting Edit > Find or by using <control-s> (Unix) or <control-f> (Windows).

Options within the Find dialog box allow you to search unique text-string fields within the
specific window. See also,

• "Finding items by name in the List window" (8-185),

• "Finding HDL items in the Signals window" (8-198), and

• "Finding items by name or value in the Wave window" (8-237).
8-156 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window
Main window

The Main window is pictured below as it appears when ModelSim is first invoked. Note
that your operating system graphic interface provides the window-management frame only;
ModelSim handles all internal-window features including menus, buttons, and scroll bars.

The menu bar at the top of the window provides access to a wide variety of simulation
commands and ModelSim preferences. The toolbar provides buttons for quick access to the
many common commands. The status bar at the bottom of the window gives you
information about the data in the active ModelSim window. The menu bar, toolbar, and
status bar are described in detail below.

workspace

transcript
ModelSim SE User’s Manual ModelSim Graphic Interface 8-157

Main window
Workspace

The workspace is available in software versions 5.5 and later. It provides convenient access
to projects, compiled design units, and simulation/dataset structures. It can be hidden or
displayed by selecting the View > Hide/Show Workspace command.

The workspace can display three types of pages, as shown in the graphic below.

• Project page
Shows all files that are included in the open project. See Chapter 2 - Projects and system
initialization for details.

• Library page
Shows compiled design units in the specified library. See "Managing library contents"
(3-44) for details.

• Structure pages
Shows a hierarchical view of the active simulation and any open datasets. This is the
same data that is displayed in the "Structure window" (8-210). There is one page for the
current simulation and one page for each open dataset. See "Viewing dataset structure"
(7-140) for details.

• Compare page
Shows comparison objects that were created by doing a waveform comparison. See
Chapter 11 - Waveform Comparison for details.
8-158 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window
Transcript

The transcript portion of the Main window maintains a running history of commands that
are invoked and messages that occur as you work with ModelSim. When a simulation is
running, the transcript displays a VSIM prompt, allowing you to enter command-line
commands from within the graphic interface.

You can scroll backward and forward through the current work history by using the vertical
scrollbar. You can also use arrow keys to recall previous commands, or copy and paste
using the mouse within the window; see "Mouse and keyboard shortcuts in the Transcript
and Source windows" (8-168) for details.

Saving the Main window transcript file

Variable settings determine the filename used for saving the Main window transcript. If
either PrefMain(file) in modelsim.tcl, or TranscriptFile in modelsim.ini file is set, then the
transcript output is logged to the specified file. By default the TranscriptFile variable in
modelsim.ini is set to transcript. If either variable is set, the transcript contents are always
saved and no explicit saving is necessary.

If you would like to save an additional copy of the transcript with a different filename, you
can use the File > Save Transcript As, or File > Save Transcript menu items. The initial
save must be made with the Save Transcript As selection, which stores the filename in the
Tcl variable PrefMain(saveFile). Subsequent saves can be made with the Save Transcript
selection. Since no automatic saves are performed for this file, it is written only when you
invoke a Save command. The file is written to the specified directory and records the
contents of the transcript at the time of the save.

Using the saved transcript as a macro (DO file)

Saved transcript files can be used as macros (DO files). See the do command (CR-104) for
more information.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-159

Main window
The Main window menu bar

The menu bar at the top of the Main window lets you access many ModelSim commands
and features. The menus are listed below with brief descriptions of each command’s use.

File menu

New provides three options:
Folder – create a new folder in the current directory
Source – create a VHDL, Verilog, or Other source file
Project – create a new project

Open provides three options:
File – open the selected hdl file
Project – open the selected .mpf project file
Dataset – open the specified logfile and assign it the specified dataset name

Close provides three options:
Project – close the currently open project file
Dataset – close the specified dataset

Delete provides one option:
Project – delete the selected .mpf project file

Change Directory change to a different working directory

Save Transcript save the current contents of the transcript window to the file indicated with a "Save
Transcript As" selection (this selection is not initially available because the
transcript is written to the transcript file by default), see "Saving the Main window
transcript file" (8-159)

Save Transcript As... save the current contents of the transcript window to a file

Clear Transcript clear the Main window transcript display

Options
(all options are set for the
current session only)

Transcript File: set a transcript file to save for this session only
Command History: file for saving command history only, no comments
Save File: set filename for Save Transcript, and Save Transcript As
Saved Lines: limit the number of lines saved in the transcript (default is 5000)
Line Prefix: specify the comment prefix for the transcript
Update Rate: specify the update frequency for the Main status bar
ModelSim Prompt: change the title of the ModelSim prompt
VSIM Prompt: change the title of the VSIM prompt
Paused Prompt: change the title of the Paused prompt

<path list> a list of the most recent working directory changes

Quit quit ModelSim
8-160 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window
Edit menu

Design menu

Copy copy the selected text

Paste paste the previously cut or copied text to the left of the currently
selected text

Select All select all text in the Main window transcript

Unselect All deselect all text in the Main window transcript

Find search the transcript forward or backward for the specified text
string

Breakpoints open the Breakpoints dialog box; see "Setting file-line
breakpoints" (8-205) for details

Browse Libraries browse all libraries within the scope of the design; see also
"Managing library contents" (3-44)

Create a New
Library

create a new library or map a library to a new name; see "Creating
a library" (3-43)

Import Library import FPGA libraries; see "Importing FPGA libraries" (3-53) for
details

Compile compile HDL source files into the current project’s work library

Load Design initiate simulation by specifying the top level design unit in the
Design tab; specify HDL specific simulator settings with the
VHDL and Verilog tabs; specify the library to search for design
units instantiated from Verilog with the Libraries tab; specify
settings relating to the annotation of design timing with the SDF
tab

End Simulation end the simulation (returns to the ModelSim command line)
ModelSim SE User’s Manual ModelSim Graphic Interface 8-161

Main window
View menu

Project menu

All open all ModelSim windows

Hide/Show
Workspace

hide or show the workspace

Layout Stylea

a.You can specify a Layout Style to become the default for ModelSim. After choosing
the Layout Style you want, select Options > Save Preferences and the layout style
will be saved to the PrefMain(layoutStyle) preference variable.

provides five options:
Default - restore the window layout to that used for versions 5.5
and later
Classic - restore the window layout to that used in versions prior
to 5.5
Cascade - Cascade all open windows
Horizontal - Tile all open windows horizontally
Vertical - Tile all open windows vertically

Source open and/or view the Source window (8-201)

Structure open and/or view the Structure window (8-210)

Variables open and/or view the Variables window (8-213)

Signals open and/or view the Signals window (8-193)

List open and/or view the List window (8-175)

Process open and/or view the Process window (8-190)

Wave open and/or view the Wave window (8-216)

Dataflow open and/or view the Dataflow window (8-171)

Datasets open the Dataset Browser for selecting the current Dataset

New create a new window of the specified type

Other if the Performance Analyzer and/or Code Coverage is turned on,
this selection will allow viewing of: Hierarchical Profile, Ranked
Profile, and Source Coverage

Compile Order set the compile order of the files in the open Project; see
"Changing compile order" (2-34) for details

Compile All compile all files in the open Project; see "Step 3 — Compile the
files" (2-32) for details

Add File to Project add file(s) to the open Project; see "Step 2 — Add files to the
project" (2-31) for details
8-162 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window
Run menu

Compare menu

Run <default> run simulation for one default run length; change the run length
with Options > Simulation, or use the Run Length text box on the
toolbar

Run -All run simulation until you stop it; see also the run command (CR-

176)

Continue continue the simulation; see also the run command (CR-176) and
the -continue option

Run -Next run to the next event time

Step single-step the simulator; see also the step command (CR-187)

Step -Over execute without single-stepping through a subprogram call

Restart reload the design elements and reset the simulation time to zero;
only design elements that have changed are reloaded; you specify
whether to maintain the following after restart—list and wave
window environment, breakpoints, logged signals, and virtual
definitions; see also the restart command (CR-170)

Start Comparison start a new comparison

Comparison Wizard receive step-by-step assistance while creating a waveform
comparison

Run Comparison compute differences from time zero until the end of the
simulation

End Comparison stop difference computation and close the currently open
comparison

Add provides three options:
Compare by Signal - specify signals for comparison
Compare by Region - designate a reference region for a
comparison
Clocks - define clocks to be used in a comparison

Options set options for waveform comparisons

Differences provides four options:
Clear - clear all differences from the Wave window
Show - display differences in a text format in the Main window
Transcript
Save - save computation differences to a file that can be
reloaded later
Write Report - save computation differences to a text file
ModelSim SE User’s Manual ModelSim Graphic Interface 8-163

Main window
Macro menu

Options menu

Window menu

Rules provides two options:
Show - display the rules used to set up the waveform
comparison
Save - save rules for waveform comparison to a file

Reload load saved differences and rules files

Execute Macro browse for and execute a DO file (macro)

Execute Old PE
Macro

call and execute an old PE 4.7 macro without changing the macro
to SE 5.5; backslashes can be selected as pathname delimiters

Convert Old PE
Macro

convert old PE 4.7 macro to SE 5.5 macro without changing the
file; backslashes can be selected as pathname delimiters

Macro Helper UNIX only - invoke the Macro Helper tool; see also "The Macro
Helper" (8-270)

Tcl Debugger invoke the Tcl debugger, TDebug; see also "The Tcl Debugger"
(8-271)

TclPro Debugger invoke the TclPro Debugger by Scriptics® if installed. TclPro
Debugger can be acquired from Scriptics at www.scriptics.com.

Compile set both VHDL and Verilog compile options; see "Setting default
compile options" (8-252)

Simulation set various simulation options; see "Setting default simulation
options" (8-265)

Edit Preferences set various preference variables; see
http://www.model.com/resources/pref_variables/frameset.htm

Save Preferences save current ModelSim settings to a Tcl preference file; see
http://www.model.com/resources/pref_variables/frameset.htm

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window
8-164 ModelSim Graphic Interface ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

Main window
Help menu

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)

About ModelSim display ModelSim application information (e.g., software version)

Release Notes view current release notes with the ModelSim notepad (CR-141)

Enable Welcome enable the Welcome screen for starting a new project or opening
an existing project when ModelSim is initiated

Welcome Menu open the Welcome screen

Information about
Help

view the readme file pertaining to ModelSim’s online
documentation

SE Documentation open and read ModelSim documentation in PDF or HTML
format; PDF files can be read with a free Adode Acrobat reader
available on the ModelSim installation CD or from
www.adobe.com

Tcl Help open the Tcl command reference (man pages) in Windows help
format

Tcl Syntax open Tcl syntax details in HTML format

Tcl Man Pages open the Tcl /Tk 8.0 manual in HTML format

Technotes select a technical note to view from the drop-down list
ModelSim SE User’s Manual ModelSim Graphic Interface 8-165

http://www.adobe.com

Main window
The Main window toolbar

Buttons on the Main window toolbar give you quick access to these ModelSim commands
and functions.

co
m

pil
e

loa
d

de
sig

n
co

py
pa

ste

re
sta

rt
ru

n

ru
n

len
gt

h

co
nt

in
ue

 ru
n

ru
n

-a
ll

st
ep

 o
ve

r

st
ep

br
ea

k

Main window toolbar buttons

Button Menu equivalent Command equivalents

Compile
open the Compile HDL Source
Files dialog box to select files for
compilation

Design > Compile, also
Options > Compile
(opens the Compile
Options dialog box)

vcom <arguments>, or
vlog <arguments>

see: vcom (CR-217) or vlog (CR-

250)

Load Design
open the Load Design dialog box
to initiate simulation

Design > Load Design vsim <arguments>

see: vsim (CR-258)

Copy
copy the selected text within the
Main window transcript

Edit > Copy see: "Mouse and keyboard
shortcuts in the Transcript and
Source windows" (8-168)

Paste
paste the copied text to the cursor
location

Edit > Paste see: "Mouse and keyboard
shortcuts in the Transcript and
Source windows" (8-168)

Restart
reload the design elements and
resets the simulation time to
zero, with the option of using
current formatting, breakpoints,
and logfile

Run > Restart restart <arguments>

see: restart (CR-170)

Run Length
specify the run length for the
current simulation

none run <specific run length>

see: run (CR-176)
8-166 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window
Run
run the current simulation for the
specified run length

Run > Run
<default_run_length>

run (no arguments)

see: run (CR-176)

Continue Run
continue the current simulation
run until the end of specified run
length or until it hits a breakpoint
or specified break event

Run > Continue run -continue

see: run (CR-176)

Run -All
run the current simulation
forever, or until it hits a
breakpoint or specified break
event

Run > Run -All run -all

see: run (CR-176), see "Assertion
settings page" (8-266)

Break
stop the current simulation run

none none

Step
step the current simulation to the
next HDL statement

Run > Step step

see: step (CR-187)

Step Over
HDL statements are executed but
treated as simple statements
instead of entered and traced line
by line

Run > Step -Over step -over

see: step (CR-187)

Main window toolbar buttons

Button Menu equivalent Command equivalents
ModelSim SE User’s Manual ModelSim Graphic Interface 8-167

Main window
The Main window status bar

Fields at the bottom of the Main window provide the following information about the
current simulation:

Mouse and keyboard shortcuts in the Transcript and Source windows

The following mouse actions and special keystrokes can be used to edit commands in the
entry region of the Main window. They can also be used in editing the file displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSim
to open the Notepad editor).

Field Description

Now the current simulation time, using the default resolution units
(see "Simulating with the graphic interface" (8-256)), or a larger
time unit if one can be used without a fractional remainder

Delta the current simulation iteration number

<dataset name> name of the current dataset (item selected in the Structure
window (8-210))

Mouse - UNIX Mouse - Windows Result

< left-button - click > move the insertion cursor

< left-button - press > + drag select

< shift - left-button - press > extend selection

< left-button - double-click > select word

< left-button - double-click > + drag select word + word

< control - left-button - click > move insertion cursor without
changing the selection

< left-button - click > on previous ModelSim or VSIM prompt copy and paste previous command
string to current prompt

< middle-button - click > none paste clipboard

< middle-button - press > + drag none scroll the window
8-168 ModelSim Graphic Interface ModelSim SE User’s Manual

Main window
Keystrokes - UNIX Keystrokes - Windows Result

< left | right - arrow > move cursor left | right one character

< control > < left | right - arrow > move cursor left | right one word

< shift > < left | right | up | down - arrow > extend selection of text

< control > < shift > < left | right - arrow > extend selection of text by word

< up | down - arrow > scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down > moves cursor up | down one paragraph

< control > < home > move cursor to the beginning of the text

< control > < end > move cursor to the end of the text

< backspace >, < control-h > < backspace > delete character to the left

< delete >, < control-d > < delete > delete character to the right

none esc cancel

< alt > activate or inactivate menu bar mode

< alt > < F4 > close active window

< control - a >, < home > < home > move cursor to the beginning of the line

< control - b > move cursor left

< control - d > delete character to the right

< control - e >, < end > < end > move cursor to the end of the line

< control - f > move cursor right one character

< control - k > delete to the end of line

< control - n > move cursor one line down (Source window
only under Windows)

< control - o > none insert a newline character in front of the cursor

< control - p > move cursor one line up (Source window only
under Windows)

< control - s > < control - f > find

< F3 > find next

< control - t > reverse the order of the two characters to the
right of the cursor

< control - u > delete line
ModelSim SE User’s Manual ModelSim Graphic Interface 8-169

Main window
The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

< control - v > PageDn move cursor down one screen

< control - w > < control - x > cut the selection

< control - x >, < control - s> < control - s > save

< control - y >, F18 < control - v > paste the selection

none < control - a > select the entire contents of the widget

< control - \ > clear any selection in the widget

< control - _>, < control - / > < control - Z > undoes previous edits in the Source window

< meta - "<" > none move cursor to the beginning of the file

< meta - ">" > none move cursor to the end of the file

< meta - v > PageUp move cursor up one screen

< Meta - w> < control - c > copy selection

< F8 > search for the most recent command that
matches the characters typed (Main window
only)

Keystrokes - UNIX Keystrokes - Windows Result
8-170 ModelSim Graphic Interface ModelSim SE User’s Manual

Dataflow window
Dataflow window

The Dataflow window allows you to trace VHDL signals or Verilog nets and registers
through your design. Double-click an item with the left mouse button to move it to the
center of the Dataflow display.

VHDL signals or processes in the Dataflow window:

• A signal is displayed in the center of the window with all the processes that drive the
signal on the left, and all the processes that read the signal on the right.

• A process is displayed with all the signals read by the process shown as inputs on the left
of the window, and all the signals driven by the process on the right.

Verilog nets/registers or processes in the Dataflow window:

• A net or register is displayed in the center of the window with all the processes that drive
the net or register on the left, and all the processes triggered by the net or register on the
right.

• A process is displayed with all the nets or registers that trigger the process shown as
inputs on the left of the window, and all the nets or registers driven by the process on the
right.

Link to active cursor in Wave window

In versions 5.5 and later, the value of a signal, net, or register in the Dataflow window is
linked to the active cursor in the Wave window. As you move the active cursor in the Wave
window, the value of the signal, net, or register in the Dataflow window will update.

signal, net, register process
ModelSim SE User’s Manual ModelSim Graphic Interface 8-171

Dataflow window
Dataflow window menu bar

The following menu commands and button options are available from the Dataflow
window menu bar.

File menu

Window menu

Save Postscript save the current dataflow view as a Postscript file; see "Saving the
Dataflow window as a Postscript file" (8-174)

Selection Selection > Follow Selection updates the Dataflow window when
the Process window (8-190) or Signals window (8-193) changes;
Selection > Fix Selection freezes the view selected from within
the Dataflow window

Close close this copy of the Dataflow window; you can create a new
window with View > New from the "The Main window menu
bar" (8-160)

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)
8-172 ModelSim Graphic Interface ModelSim SE User’s Manual

Dataflow window
Tracing HDL items with the Dataflow window

The Dataflow window is linked with the Signals window (8-193) and the Process window
(8-190). To examine a particular process in the Dataflow window, click on the process name
in the Process window. To examine a particular HDL item in the Dataflow window, click
on the item name in the Signals window.

With a signal in the center of the Dataflow window, you can:

• click once on a process name in the Dataflow window to make the Source, Process,
Signals, and Variable windows update to show that process,

• click twice on a process name in the Dataflow window to move the process to the center
of the Dataflow window

With a process in the center of the Dataflow window, you can:

• click twice on an item name to move that item to the center of the Dataflow window.

The backward and forward buttons on the toolbar are analogous to Back and Forward
buttons in a web browser. They move backward or forward through previous views of the
dataflow.

The Dataflow window will display the current process when you single-step or when
ModelSim hits a breakpoint.

move backward through dataflow views

move forward through dataflow views
ModelSim SE User’s Manual ModelSim Graphic Interface 8-173

Dataflow window
Saving the Dataflow window as a Postscript file

Select File > Save Postscript (Dataflow window) to save the current Dataflow view as a
Postscript file. Configure the Postscript output with the following dialog box, or use the
Options > Edit Preferences (Main window) command.

The dialog box has the
following options:

• Postscript File
specify the name of the
file to save, default is
dataflow.ps

• Orientation
specify Landscape
(horizontal) or Portrait
(vertical) orientation

• Color Mode
specify Color (256
colors), Gray (gray-scale)
or Mono (monochrome)
color mode

• Postscript
specify Normal Postscript
or EPS (Encapsulated
Postscript) file type

• Color Map
specify the color mapping from current Dataflow window colors to Postscript colors
8-174 ModelSim Graphic Interface ModelSim SE User’s Manual

List window
List window

The List window displays the results of your simulation run in tabular format. The window
is divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and delta visible on the left.

HDL items you can view

One entry is created for each of the following VHDL and Verilog HDL items within the
design:

• VHDL items
signals and process variables

• Verilog items
nets and register variables

• Comparison items
comparison regions and comparison signals; see Chapter 11 - Waveform Comparison for
more information

• Virtual items
Virtual signals and functions

Note: Constants, generics, and parameters are not viewable in the List or Wave windows.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-175

List window
The List window menu bar

The following menu commands are available from the List window menu bar.

File menu

Edit menu

Markers menu

Write List (format) save the listing as a text file in one of three formats: tabular,
events, or TSSI

Load Format run a List window format DO file previously saved with Save
Format

Save Format save the current List window display and signal preferences to a
DO (macro) file; running the DO file will reformat the List
window to match the display as it appeared when the DO file was
created

Close close this copy of the List window; you can create a new window
with View > New from the "The Main window menu bar" (8-160)

Cut cut the selected item field from the listing; see "Editing and
formatting HDL items in the List window" (8-181)

Copy copy the selected item field

Paste paste the previously cut or copied item to the left of the currently
selected item

Delete delete the selected item field

Combine combine the selected fields into a user-defined bus; keep copies of
the original items rather than moving them; see "Combining
signals into a user-defined bus" (8-154)

Select All select all signals in the List window

Unselect All deselect all signals in the List window

Find find the specified item label within the List window

Search search the List window for a specified value, or the next transition
for the selected signal

Add Marker add a time marker at the currently selected line

Delete Marker delete the selected marker from the listing

Goto choose the time marker to go to from a list of current markers
8-176 ModelSim Graphic Interface ModelSim SE User’s Manual

List window
Prop menu

Window menu

Display Props set display properties for all items in the window: delta settings,
trigger on selection, strobe period, label size, and dataset prefix

Signal Props set label, radix, trigger on/off, and field width for the selected item

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)
ModelSim SE User’s Manual ModelSim Graphic Interface 8-177

List window
Setting List window display properties

Before you add items to the List window you can set the window’s display properties. To
change when and how a signal is displayed in the List window, select Prop > Display
Props (List window). The resulting Modify Display Properties dialog box contains options
for Trigger Settings and Window Properties.

Window Properties page

The Window Properties page includes these options:

• Signal Names
Sets the number of path elements to be shown in the List window. For example, "0"
shows the full path. "1" shows only the leaf element.

• Max Title Rows
Sets the maximum number of rows in the name pane.

• Dataset Prefix: Show All Dataset Prefixes
Displays the dataset prefix associated with each signal pathname. Useful for displaying
signals from multiple datasets.

• Dataset Prefix: Show All Except "sim"
Displays all dataset prefixes except the one associated with the current simulation –
"sim." Useful for displaying signals from multiple datasets.
8-178 ModelSim Graphic Interface ModelSim SE User’s Manual

List window
• Dataset Prefix: Show No Dataset Prefixes
Turns off display of dataset prefixes.

Trigger settings page

The Triggers page controls the triggering for the display of new lines in the List window.
You can specify whether an HDL item trigger or a strobe trigger is used to determine when
the List window displays a new line. If you choose Trigger on: Signals, then you can
choose between collapsed or expanded delta displays. You can also choose a combination
of signal or strobe triggers. To use gating, Signals or Strobe or both must be selected.

The Triggers page includes the following options:

• Deltas:Expand Deltas
When selected with the Trigger on: Signals check box, displays a new line for each time
step on which items change, including deltas within a single unit of time resolution.

• Deltas:Collapse Deltas
Displays only the final value for each time unit.

• Deltas:No Deltas
Hides simulation cycle (delta) column.

• Trigger On: Signals
Triggers on signal changes. Defaults to all signals. Individual signals can be excluded
from triggering by using the Prop > Signals Props dialog box or by originally adding
them with the -notrigger option to the add list command (CR-28).
ModelSim SE User’s Manual ModelSim Graphic Interface 8-179

List window
• Trigger On: Strobe
Triggers on the Strobe Period you specify; specify the first strobe with First Strobe at:.

• Trigger Gating: Expression
Enables triggers to be gated on and off by an overriding expression, much like a hardware
signal analyzer might be set up to start recording data on a specified setup of address bits
and clock edges. Affects the display of data, not the acquisition of the data.

• Use Expression Builder (button)
Opens the Expression Builder to help you write a gating expression. See "The GUI
Expression Builder" (8-275)

• Expression
Enter the expression for trigger gating into this field, or use the Expression Builder (select
the Use Expression Builder button). The expression is evaluated when the List window
would normally have displayed a row of data (given the trigger on signals and strobe
settings above).

• On Duration
The duration for gating to remain open after the last list row in which the expression
evaluates to true; expressed in x number of default timescale units. Gating is level-
sensitive rather than edge-triggered.

List window gating information is saved as configuration statements when the list format
is saved. The gating portion of a configuration statement might look like this:

configure list config -usegating 1
configure list config -gateduration 100
configure list config -gateexpr {<expression>}

Adding HDL items to the List window

Before adding items to the List window you may want to set the window display properties
(see "Setting List window display properties" (8-178)). You can add items to the List
window in several ways.

Adding items with drag and drop

You can drag and drop items into the List window from the Signals, Source, Process,
Variables, Wave, Dataflow, or Structure window. Select the items in the first window, then
drop them into the List window. Depending on what you select, all items or any portion of
the design may be added.

Adding items from the Main window command line

Invoke the add list (CR-28) command to add one or more individual items; separate the
names with a space:

add list <item_name> <item_name>

You can add all the items in the current region with this command:

add list *

Or add all the items in the design with:

add list -r / *
8-180 ModelSim Graphic Interface ModelSim SE User’s Manual

List window
Adding items with a List window format file

To use a List window format file you must first save a format file for the design you are
simulating. The saved format file can then be used as a DO file to recreate the List window
formatting. Follow these steps:

• Add HDL items to your List window.

• Edit and format the items to create the view you want (see "Editing and formatting HDL
items in the List window" (8-181)).

• Save the format to a file by selecting File > Save Format (List window).

To use the format (do) file, start with a blank List window, and run the DO file in one of
two ways:

• Invoke the do (CR-104) command from the command line:
do <my_list_format>

• Select File > Load Format from the List window menu bar.

Select Edit > Select All and Edit > Delete to remove the items from the current List
window or create a new, blank List window by selecting View > New > List (Main
window). You may find it useful to have two differently formatted windows open at the
same time, see "Examining simulation results with the List window" (8-184).

Note: List window format files are design-specific; use them only with the design you
were simulating when they were created. If you try to use the wrong format file, ModelSim
will advise you of the HDL items it expects to find.

Editing and formatting HDL items in the List window

Once you have the HDL items you want in the List window, you can edit and format the
list to create the view you find most useful. (See also, "Adding HDL items to the List
window" (8-180))

To edit an item:

Select the item’s label at the top of the List window or one of its values from the listing.
Move, copy or remove the item by selecting commands from the List window Edit menu
(8-176) menu.

You can also click+drag to move items within the window:

• to select several contiguous items:
click+drag to select additional items to the right or the left of the original selection

• to select several items randomly:
Control+click to add or subtract from the selected group

• to move the selected items:
re-click on one of the selected items, hold and drag it to the new location
ModelSim SE User’s Manual ModelSim Graphic Interface 8-181

List window
To format an item:

Select the item’s label at the top of the List window or one of its values from the listing,
then select Prop > Signal Props (List window). The resulting Modify Signal Properties
dialog box allows you to set the item’s label, label width, triggering, and radix.

The Modify Signal Properties dialog box includes these options:

• Signal
Shows the full pathname of the selected signal.

• Label
Specifies the label that appears at the top of the List window column.

• Radix
Specifies the radix (base) in which the item value is expressed. The default radix is
symbolic, which means that for an enumerated type, the List window lists the actual
values of the enumerated type of that item. You can change the default radix for the
current simulation using either Options > Simulation (Main window) or the radix
command (CR-166). You can change the default radix permanently by editing the
DefaultRadix (B-399) variable in the modelsim.ini file.

For the other radixes - binary, octal, decimal, unsigned, hexadecimal, or ASCII - the item
value is converted to an appropriate representation in that radix. In the system
initialization file, modelsim.tcl, you can specify the list translation rules for arrays of
enumerated types for binary, octal, decimal, unsigned decimal, or hexadecimal item
values in the design unit.
8-182 ModelSim Graphic Interface ModelSim SE User’s Manual

List window
• Width
Allows you to specify the desired width of the column used to list the item value. The
default is an approximation of the width of the current value.

• Trigger: Triggers line
Specifies that a change in the value of the selected item causes a new line to be displayed
in the List window.

• Trigger: Does not trigger line
Specifies that a change in the value of the selected item does not affect the List window.

The trigger specification affects the trigger property of the selected item. See also, "Setting
List window display properties" (8-178).
ModelSim SE User’s Manual ModelSim Graphic Interface 8-183

List window
Examining simulation results with the List window

Because you can use the Main window View menu (8-162) to create a second List window,
you can reformat another List window after the simulation run if you decide a different
format would reveal the information you’re after. Compare the two illustrations.

In the first List window, the HDL items are formatted as symbolic and use an item change
to trigger a line; the field width was changed to accommodate the default label width. The
window divider maintains the time and delta in the left pane; signals in the right pane can
be viewed by scrolling. For the second listing, the item radix for paddr, pdata, saddr, and
sdata is now decimal.

The divider bar
separates time and
delta from values;
signal values are
listed in symbolic
format; and an item
change triggers a
new line.

Signal values are
listed in decimal
format;
8-184 ModelSim Graphic Interface ModelSim SE User’s Manual

List window
Finding items by name in the List window

The Find dialog box allows you to search for text strings in the List window. Select Edit >
Find (List window) to bring up the Find dialog box.

Enter a text string and
Find it by searching
Right or Left through the
List window display.
Specify Name to search
the real pathnames of the
items or Label to search
their assigned names (see
"Setting List window
display properties" (8-

178)). Checking Auto
Wrap makes the search continue at the beginning of the window. Note that you can change
an item’s label.

Searching for item values in the List window

Select an item in the List window. Select Edit > Search (List window) to bring up the List
Signal Search dialog box.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-185

List window
Signal Name(s) shows a list of the items currently selected in the List window. These items
are the subject of the search. The search is based on these options:

• Search Type: Any Transition
Searches for any transition in the selected signal(s).

• Search Type: Rising Edge
Searches for rising edges in the selected signal(s).

• Search Type: Falling Edge
Searches for falling edges in the selected signal(s).

• Search Type: Search for Signal Value
Searches for the value specified in the Value field; the value should be formatted using
VHDL or Verilog numbering conventions; see "Numbering conventions" (CR-291).

Note: If your signal values are displayed in binary radix, see "Searching for binary signal
values in the GUI" (CR-300) for details on how signal values are mapped between a binary
radix and std_logic.

• Search Type: Search for Expression
Searches for the expression specified in the Expression field evaluating to a boolean
true. Activates the Builder button so you can use "The GUI Expression Builder" (8-275)
if desired.

The expression can involve more than one signal but is limited to signals logged in the
List window. Expressions can include constants, variables, and DO files. If no expression
is specified, the search will give an error. See "Expression syntax" (CR-302) for more
information.

• Search Options: Match Count
Indicates the number of transitions or matches to search.You can search for the n-th
transition or the n-th match on value.

• Search Options: Ignore Glitches
Ignores zero width glitches in VHDL signals and Verilog nets.

The Search Results are indicated at the bottom of the dialog box.
8-186 ModelSim Graphic Interface ModelSim SE User’s Manual

List window
Setting time markers in the List window

Select Markers > Add Marker (List window) to tag the selected list line with a marker.
The marker is indicated by a thin box surrounding the marked line. The selected line uses
the same indicator, but its values are highlighted. Delete markers by first selecting the
marked line, then selecting Markers > Delete Marker.

Finding a marker

Choose a specific marked line to view by selecting Markers > Goto. The marker name (on
the Goto list) corresponds to the simulation time of the selected line.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-187

List window
List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key Action

<arrow up> scroll listing up (selects and highlights the line above the
currently selected line)

<arrow down> scroll listing down (selects and highlights the line below the
currently selected line)

<arrow left> scroll listing left

<arrow right> scroll listing right

<page up> scroll listing up by page

<page down> scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signal

<shift-tab> searches backward (up) to the previous transition on the selected
signal (does not function on HP workstations)

<control-f> Windows
<control-s> UNIX

opens the find dialog box; finds the specified item label within
the list display
8-188 ModelSim Graphic Interface ModelSim SE User’s Manual

List window
Saving List window data to a file

Select File > Write List (format) (List window) to save the List window data in one of
these formats:

• tabular
writes a text file that looks like the window listing

ns delta /a /b /cin /sum /cout
0 +0 X X U X U
0 +1 0 1 0 X U
2 +0 0 1 0 X U

• event
writes a text file containing transitions during simulation

@0 +0
/a X
/b X
/cin U
/sum X
/cout U
@0 +1
/a 0
/b 1
/cin 0

• TSSI
writes a file in standard TSSI format; see also, the write tssi command (CR-283)

0 00000000000000010?????????
2 00000000000000010???????1?
3 00000000000000010??????010
4 00000000000000010000000010
100 00000001000000010000000010

You can also save List window output using the write list command (CR-279).
ModelSim SE User’s Manual ModelSim Graphic Interface 8-189

Process window
Process window

The Process window displays a list of processes. If View > Active is selected then all
processes scheduled to run during the current simulation cycle are displayed along with the
pathname of the instance in which each process is located. If View > In Region is selected
then only the processes in the currently selected region are displayed.

Each HDL item in the scrollbox is
preceded by one of the following
indicators:

• <Ready>
Indicates that the process is
scheduled to be executed within
the current delta time.

• <Wait>
Indicates that the process is
waiting for a VHDL signal or
Verilog net or variable to change
or for a specified time-out period.

• <Done>
Indicates that the process has
executed a VHDL wait statement
without a time-out or a sensitivity list. The process will not restart during the current
simulation run.

If you select a "Ready" process, it will be executed next by the simulator.

When you click on a process in the Process window, the following windows are updated:

Window updated Result

 Structure window (8-210) shows the region in which the process is located

 Variables window (8-213) shows the VHDL variables and Verilog register
variables in the process

 Source window (8-201) shows the associated source code

 Dataflow window (8-171) shows the process, the signals, nets, and registers the
process reads, and the signals, nets, and registers
driven by the process

 Source window (8-201) shows the signals, nets, and registers declared in the
region in which the process is located
8-190 ModelSim Graphic Interface ModelSim SE User’s Manual

Process window
The Process window menu bar

The following menu commands are available from the Process window menu bar.

File menu

Edit menu

View menu

Save As save the process tree to a text file viewable with the ModelSim
notepad (CR-141)

Environment Follow Context Selection: update the window based on the
selection in the Structure window (8-210); Fix to Current
Context: maintain the current view, do not update

Close close this copy of the Process window; you can create a new
window with View > New from the "The Main window menu bar"
(8-160)

Copy copy the selected process’ full name

Sort sort the process list in either ascending, descending, or declaration
order

Select All select all processes in the Process window

Unselect All deselect all processes in the Process window

Find find the specified text string within the process list; choose the
Status (ready, wait or done), the Process label, or the path to
search, and the search direction: down or up

Active display all the processes that are scheduled to run during the
current simulation cycle

In Region display any processes that exist in the region that is selected in the
Structure window
ModelSim SE User’s Manual ModelSim Graphic Interface 8-191

Process window
Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)
8-192 ModelSim Graphic Interface ModelSim SE User’s Manual

Signals window
Signals window

The Signals window is divided into two window panes. The left pane shows the names of
HDL items in the current region (which is selected in the Structure window). The right pane
shows the values of the associated HDL items at the end of the current run. The data in this
pane is similar to that shown in the Wave window (8-216), except that the values do not
change dynamically with movement of the selected Wave window cursor.

You can double-click a signal and it will highlight that signal in the Source window
(opening a Source window if one is not open already).

Horizontal scroll bars for each window pane allow scrolling to the right or left in each pane
individually. The vertical scroll bar will scroll both panes together.

The HDL items can be sorted in ascending, descending, or declaration order.

HDL items you can view

One entry is created for each of the
following VHDL and Verilog items
within the design:

VHDL items

signals

Verilog items

nets, register variables, named events,
and module parameters

Virtual items

(indicated by an orange diamond icon)
virtual signals and virtual functions; see
"Virtual signals" (7-144) for more
information

The names of any VHDL composite
types (arrays and record types) are shown in a hierarchical fashion.

Hierarchy also applies to Verilog nets and vector memories. (Verilog vector registers do
not have hierarchy because they are not internally represented as arrays.)

Hierarchy is indicated in typical ModelSim fashion with plus (expandable), minus
(expanded), and blank (single level) boxes.

See "Tree window hierarchical view" (8-155) for more information.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-193

Signals window
The Signals window menu bar

The following menu commands are available from the Signals window menu bar.

File menu

Edit menu

Save As save the signals tree to a text file viewable with the ModelSim
notepad (CR-141)

Environment allow the window contents to change based on the current
environment; or, fix to a specific context or dataset

Close close this copy of the Signals window; you can create a new
window with View > New from the "The Main window menu bar"
(8-160)

Copy copy the current selection in the Signals window

Sort sort the signals tree in either ascending, descending, or declaration
order

Select All select all items in the Signals window

Unselect All unselect all items in the Signals window

Expand Selected expand the hierarchy of the selected items

Collapse Selected collapse the hierarchy of the selected items

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Force apply stimulus to the specified Signal Name; specify Value, Kind
(Freeze/Drive/Deposit), Delay, and Cancel; see also the force
command (CR-121)

Noforce remove the effect of any active force command (CR-121) on the
selected HDL item; see also the noforce command (CR-138)

Clock define clock signals by Signal Name, Period, Duty Cycle, Offset,
and whether the first edge is rising or falling, see"Defining clock
signals" (8-200)

Justify Values justify values to the left or right margins of the window pane

Find find the specified text string within the Signals window; choose
the Name or Value field to search and the search direction: down
or up; see also the search command (CR-178)
8-194 ModelSim Graphic Interface ModelSim SE User’s Manual

Signals window
View menu

Window menu

Selecting HDL item types to view

The View > Filter menu selection allows you to specify which
HDL items are shown in the Signals window. Multiple options
can be selected.

Wave/List/Log place the Selected Signals, Signals in Region, or Signals in Design
in the Wave window (8-216), List window (8-175), or logfile

Filter choose the port and signal types to view (Input Ports, Output
Ports, InOut Ports and Internal Signals) in the Signals window

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)
ModelSim SE User’s Manual ModelSim Graphic Interface 8-195

Signals window
Forcing signal and net values

The Edit > Force command displays a dialog box that allows you to apply stimulus to the
selected signal or net. Multiple signals can be selected and forced; the force dialog box
remains open until all of the signals are either forced, skipped, or you close the dialog box.
To cancel a force command, use the Edit > NoForce command. See also the force
command (CR-121).

The Force dialog box includes these options:

• Signal Name
Specifies the signal or net for the applied stimulus.

• Value
Initially displays the current value, which can be changed by entering a new value into
the field. A value can be specified in radixes other than decimal by using the form (for
VHDL and Verilog, respectively):

base#value -or- b|o|d|h’value

16#EE or h’EE, for example, specifies the hexadecimal value EE.

• Kind: Freeze
Freezes the signal or net at the specified value until it is forced again or until it is unforced
with a noforce command (CR-138).

Freeze is the default for Verilog nets and unresolved VHDL signals and Drive is the
default for resolved signals.

If you prefer Freeze as the default for resolved and unresolved signals, you can change
the default force kind in the modelsim.ini file; see "Projects and system initialization" (2-

25).

• Kind: Drive
Attaches a driver to the signal and drives the specified value until the signal or net is
forced again or until it is unforced with a noforce command (CR-138). This value is illegal
for unresolved VHDL signals.
8-196 ModelSim Graphic Interface ModelSim SE User’s Manual

Signals window
• Kind: Deposit
Sets the signal or net to the specified value. The value remains until there is a subsequent
driver transaction, or until the signal or net is forced again, or until it is unforced with a
noforce command (CR-138).

• Delay For
Allows you to specify how many time units from the current time the stimulus is to be
applied.

• Cancel After
Cancels the force command (CR-121) after the specified period of simulation time.

• OK
When you click the OK button, a force command (CR-121) is issued with the parameters
you have set, and is echoed in the Main window. If more than one signal is selected to
force, the next signal down appears in the dialog box each time the OK button is selected.
Unique force parameters can be set for each signal.

Adding HDL items to the Wave and List windows or a logfile

Before adding items to the List or Wave window you may want to set the window display
properties (see "Setting List window display properties" (8-178)). Once display properties
have been set, you can add items to the windows or logfile in several ways.

Adding items with the Signals window View menu

Use the View menu with either the
Wave, List, or Log selection to add HDL
items to the Wave window (8-216), List
window (8-175), or a logfile, respectively.

The logfile is written as an archive file in
binary format and is used to drive the
List and Wave windows at a later time.
Once signals are added to the logfile they
cannot be removed. If you begin a
simulation by invoking vsim (CR-258) with the -view <logfile_name> option, ModelSim
reads the logfile to drive the Wave and List windows.

Choose one of the following options (ModelSim opens the target window for you):

• Selected Signal
Lists only the item(s) selected in the Signals window.

• Signals in Region
Lists all items in the region that is selected in the Structure window.

• Signals in Design
Lists all items in the design.

Adding items from the Main window command line

Another way to add items to the Wave or List window or the logfile is to enter the one of
the following commands at the VSIM prompt (choose either the add list (CR-28), add wave
(CR-37), or log (CR-131) command):

add list | add wave | log <item_name> <item_name>
ModelSim SE User’s Manual ModelSim Graphic Interface 8-197

Signals window
You can add all the items in the current region with this command:

add list | add wave | log *

Or add all the items in the design with:

add list | add wave | log -r /*

If the target window (Wave or List) is closed, ModelSim opens it when you when you
invoke the command.

Finding HDL items in the Signals window

To find the specified text string within the Signals window, choose the Name or Value field
to search and the search direction: Down or Up.

You can also do a quick find from the keyboard. When the Signals window is active, each
time you type a letter the signal selector (highlight) will move to the next signal whose
name begins with that letter.

Setting signal breakpoints

You can set signal breakpoints (a.k.a., when breakpoints; see the when command (CR-273)
for more details) via a context menu in the Signal window. When statements instruct
ModelSim to perform actions when the specified conditions are met. For example, you can
break on a signal value or at a specific simulator time (see "Time-based breakpoints" (CR-

275)) . When a breakpoint is hit, a message appears in the transcript window about which
signal caused the breakpoint.

To access the breakpoint commands, select a signal and then click your right mouse button
(2nd button in Windows; 3rd button in UNIX). To set a breakpoint on a selected signal,
select Add Breakpoint from the context menu. To remove a breakpoint from a selected
signal, select Remove Signal Breakpoint. To remove all breakpoints in the current region,
select Remove All Signal Breakpoints. To see a list of currently set breakpoints, select
Show Breakpoints.
8-198 ModelSim Graphic Interface ModelSim SE User’s Manual

Signals window
The Edit Breakpoint command opens the Edit When dialog box.

The Edit When dialog includes the following options:

• Condition
The condition(s) to be met for the specified command(s) to be executed. Required. See
the when command (CR-273) for more information on creating the condition statement.

• Opt. Label
An optional text label for the when statement.

• Command(s)
The command(s) to be executed when the specified condition is met. Any ModelSim or
Tcl command or series of commands are valid with one exception—the run command
(CR-176) cannot be used.

The Edit All Breakpoints command opens the Breakpoints dialog box. See "Setting file-
line breakpoints" (8-205) for details.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-199

Signals window
Defining clock signals

Select Edit > Clock to define clock signals by Name, Period, Duty Cycle, Offset, and
whether the first rising edge is rising or falling. You can also specify a simulation period
after which the clock definition should be cancelled.

For clock signals starting on the rising edge, the definition for Period, Offset, and Duty
Cycle is as follows:

If the signal type is std_logic, std_ulogic, bit, verilog wire, verilog net, or any other logic
type where 1 and 0 are valid, then 1 is the default High Value and 0 is the default Low
Value. For other signal types, you will need to specify a High Value and a Low Value for
the clock.

Period

Offset High Time

Low Value

High Value

Duty Cycle = High Time/Period
8-200 ModelSim Graphic Interface ModelSim SE User’s Manual

Source window
Source window

The Source window allows you to view and edit your HDL source code. When you first
load a design, the source file will display automatically if the Source window is open.
Alternatively, you can select an item in the Structure window (8-210) or use the File > Open
command (Source window) to add a file to the window. (Your source code can remain
hidden if you wish; see "Source code security and -nodebug" (E-433)).

The window is divided into two panes—the left-hand pane contains line numbers, and the
right-hand pane contains the source file. The pathname of the source file is indicated in the
header of the Source window.

As shown in the picture below, you may also see the following in the left-hand pane:

• Green line numbers— denote executable lines

• Blue arrow—denotes a process that you have selected in the Process window (8-190)

• Red circles—denote file-line breakpoints; hollow circles denote breakpoints that are
currently disabled
ModelSim SE User’s Manual ModelSim Graphic Interface 8-201

Source window
The Source window menu bar

The following menu commands are available from the Source window menu bar.

File menu

Edit menu

To edit a source file, make sure the Read Only option in the Source Options dialog box is
not selected (use the Edit > read only (Source menu) selection).

New edit a new (VHDL, Verilog or Other) source file

Open select a source file to open

Use Source specify an alternative file to use for the current source file; this
alternative source mapping exists for the current simulation only

Source Directory add to a list of directories (the SourceDir variable in modelsim.tcl)
to search for source files

Properties list a variety of information about the source file; for example, file
type, file size, file modification date

Save save the current source file

Save As save the current source file with a different name

Compile compile HDL source files

Close close this copy of the Source window; you can create a new
window with View > New from the "The Main window menu bar"
(8-160)

<editing option> basic editing options include: Undo, Cut, Copy, Paste, Select All,
and Unselect All; see "Mouse and keyboard shortcuts in the
Transcript and Source windows" (8-168)

Find find the specified text string or regular expression within the
source file; there is an option to match case or search backwards

Find Next find the next occurrence of a string specified with the Find
command

Replace find the specified text string or regular expression and replace it
with the specified text string or regular expression

Previous Coverage
Miss

when simulating with Code Coverage (10-291), finds the previous
line of code that was not used in the simulation

Next Coverage Miss when simulating with Code Coverage (10-291), finds the next line
of code that was not used in the simulation

Breakpoints add, edit, or delete file-line and signal breakpoints; see "Setting
file-line breakpoints" (8-205)
8-202 ModelSim Graphic Interface ModelSim SE User’s Manual

Source window
Object menu

Options menu

Window menu

read only toggle the read-only status of the current source file

Describe display information about the selected HDL item; same as the
describe command (CR-100); the item name is shown in the title
bar

Examine display the current value of the selected HDL item; same as the
examine (CR-115) command; the item name is shown in the title
bar

Colorize Source colorize key words, variables, and comments

Highlight
Executable Lines

highlight the line numbers of executable lines

Middle Mouse
Button Paste

enable/disable pasting by pressing the middle-mouse button

Verilog
Highlighting

specify Verilog-style colorizing

VHDL Highlighting specify VHDL-style colorizing

Freeze File maintain the same source file in the Source window (useful when
you have two Source windows open; one can be updated from the
Structure window (8-210), the other frozen)

Freeze View disable updating the source view from the
Process window (8-190)

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window
ModelSim SE User’s Manual ModelSim Graphic Interface 8-203

Source window
The Source window toolbar

Buttons on the Source window toolbar give you quick access to these ModelSim commands
and functions.

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)

ste
p

ov
er

ste
p

fin
d

pa
ste

co
pycu

t

sa
ve

 so
ur

ce
 fil

e

op
en

 so
ur

ce
 fil

e

co
m

pil
e

so
ur

ce
 fil

e

Source window toolbar buttons

Button Menu equivalent Other equivalents

Compile Source File
open the Compile HDL Source
File dialog

File > Compile use vcom or vlog command at the
VSIM prompt

see: vcom (CR-217) or
vlog (CR-250) command

Open Source File
open the Open File dialog box
(you can open any text file for
editing in the Source window)

File > Open select an HDL item in the
Structure window, the associated
source file is loaded into the
Source window

Save Source File
save the file in the Source
window

File > Save none

Cut
cut the selected text within the
Source window

Edit > Cut see: "Mouse and keyboard
shortcuts in the Transcript and
Source windows" (8-168)

Copy
copy the selected text within the
Source window

Edit > Copy see: "Mouse and keyboard
shortcuts in the Transcript and
Source windows" (8-168)
8-204 ModelSim Graphic Interface ModelSim SE User’s Manual

Source window
Setting file-line breakpoints

You can set breakpoints three different ways:

• Using the command line; see the bp (CR-48) (breakpoint) command for details

• Using your mouse in the Source window

• Using the Edit > Breakpoints menu selection

Setting breakpoints with your mouse

To set a breakpoint with your mouse, click on a green line number at the left side of the
window (breakpoints can be set only on executable lines). The breakpoints are toggles –
click once to create the colored dot; click again to disable or enable the breakpoint. To
delete the breakpoint completely, click the colored dot with your right mouse button, and
select Remove Breakpoint.

Paste
paste the copied text to the cursor
location

Edit > Paste see: "Mouse and keyboard
shortcuts in the Transcript and
Source windows" (8-168)

Find
find the specified text string
within the source file; match case
option

Edit > Find <control -f> (Windows)
<control -s> (UNIX)

Step
steps the current simulation to
the next HDL statement

Main window:
Run > Step

use step command at the VSIM
prompt

see: step (CR-187) command

Step Over
HDL statements are executed but
treated as simple statements
instead of entered and traced line
by line

Main window:
Run > Step -Over

use the step -over command at the
VSIM prompt

see: step (CR-187) command

Source window toolbar buttons

Button Menu equivalent Other equivalents
ModelSim SE User’s Manual ModelSim Graphic Interface 8-205

Source window
Setting breakpoints with the Edit > Breakpoints command

Selecting Edit > Breakpoints (Source window) opens the dialog box shown below.

The Breakpoints dialog box allows you to create and manage both file-line and signal
breakpoints (a.k.a., when breakpoints). For details on signal breakpoints, see "Setting
signal breakpoints" (8-198) and the when command (CR-273).
8-206 ModelSim Graphic Interface ModelSim SE User’s Manual

Source window
You can enable and disable existing breakpoints by checking or unchecking the box next
to the breakpoint’s name. To add a new file-line breakpoint, select Add BP (or Edit
Selected for an existing file-line breakpoint).

The Add/Edit Breakpoint dialog box includes the following options:

• File Name
The file name in which you want to set the breakpoint. Required. The button next to this
field allows you to browse to select a file.

• Line #
The line number on which you want to set the breakpoint. Required.

• Condition
The condition(s) that determine whether the breakpoint is hit. See the bp command (CR-

48) for more information on creating the condition statement.

• Instance
Specify a region in which the breakpoint should be set. If left blank, the breakpoint
affects every instance in the design.

• Command(s)
One or more commands that you want executed at the breakpoint.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-207

Source window
Editing the source file in the Source window

Several toolbar buttons (shown above), mouse actions, and special keystrokes can be used
to edit the source file in the Source window. See "Mouse and keyboard shortcuts in the
Transcript and Source windows" (8-168) for a list of mouse and keyboard editing options.

Checking HDL item values and descriptions

There are two quick methods to determine the value and description of an HDL item
displayed in the Source window:

• select an item, then chose Object > Examine or Object > Description from the Source
window menu

• select an item with the right mouse button to see an examine pop-up (select "now" to
examine the current simulation time in VHDL code)

You can also invoke the examine (CR-115) and/or describe (CR-100) command on the
command line or in a macro.

Finding and replacing in the Source window

The Find dialog box allows you to find and replace text strings or regular expressions in the
Source window. Select Edit > Find or Edit > Replace to bring up the Find dialog box. If
you select Edit > Find, the Replace field is absent from the dialog.

Enter the value to
search for in the
Find field. If you are
doing a replace,
enter the appropriate
value in the Replace
field. Optionally
specify whether the
entries are case
sensitive and
whether to search
backwards from the current cursor location. Check the Regular expression checkbox if
you are using regular expressions.
8-208 ModelSim Graphic Interface ModelSim SE User’s Manual

Source window
Setting tab stops in the Source window

You can set tab stops in the Source window by selecting the Main window Options > Edit
Preferences command. Follow these steps:

1 Select the By Names tab.

2 Select Source in the first column, and then select the "tabs" item in the second column.

3 Press the Change Value button.

4 In the dialog that appears, enter a single number "n", which sets a tab stop every n
characters (where a character width is the width of the "8" character).

or

Enter a list of screen distances for the tab stops. For instance,
21 49 77 105 133 161 189 217 245 273 301 329 357 385 413 441 469

The number 21 or 21p means 21 pixels; the number 3c means three centimeters; the number
1i means one inch.

Important: Do not use quotes or braces in the list (i.e., "21 49" or {21 49}). This will cause
the GUI to hang.

You can also set tab stops using the PrefSource(tabs) Tcl preference variable.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-209

Structure window
Structure window

Note: In ModelSim versions 5.5 and later the information contained in the Structure
window is shown in the structure pages of the Main window Workspace (8-158). The
Structure window will not display by default. You can display the Structure window at any
time by selecting View > Structure (Main window). The discussion below applies to both
the Structure window and the structure pages in the Workspace.

The Structure window provides a hierarchical view of the structure of your design. An entry
is created by each HDL item within the design. (Your design structure can remain hidden
if you wish, see "Source code security and -nodebug" (E-433).)

HDL items you can view

The following HDL items for VHDL
and Verilog are represented by
hierarchy within Structure window.

VHDL items

(indicated by a dark blue square
icon)
component instantiation, generate
statements, block statements, and
packages

Verilog items

(indicated by a lighter blue circle
icon)
module instantiations, named forks,
named begins, tasks, and functions

Virtual items

(indicated by an orange diamond
icon)
virtual regions; see "Virtual Objects
(User-defined buses, and more)" (7-

144) for more information.

You can expand and contract the
display to view the hierarchical
structure by clicking on the boxes
that contain "+" or "-". Clicking "+"
expands the hierarchy so the sub-elements of that item can be seen. Clicking "-" contracts
the hierarchy.

The first line of the Structure window indicates the top-level design unit being simulated.
By default, this is the only level of the hierarchy that is expanded upon opening the
Structure window.
8-210 ModelSim Graphic Interface ModelSim SE User’s Manual

Structure window
Instance name components in the Structure window

An instance name displayed in the Structure window consists of the following parts:

• instantiation label
Indicates the label assigned to
the component or module
instance in the instantiation
statement.

• entity or module
Indicates the name of the
entity or module that has been instantiated.

• architecture
Indicates the name of the architecture associated with the entity (not present for Verilog).

When you select a region in the Structure window, it becomes the current region and is
highlighted; the Source window (8-201) and Signals window (8-193) change dynamically to
reflect the information for that region. This feature provides a useful method for finding the
source code for a selected region because the system keeps track of the pathname where the
source is located and displays it automatically, without the need for you to provide the
pathname.

Also, when you select a region in the Structure window, the Process window (8-190) is
updated if In Region is selected in that window; the Process window will in turn update the
Variables window (8-213).

The Structure window menu bar

The following menu commands are available from the Structure window menu bar.

File menu

Edit menu

instantiation label entity or module
(architecture)

Save As save the structure tree to a text file viewable with the ModelSim
notepad (CR-141)

Environment allow the window contents to change when the active dataset is
changed; or, fix to a specific dataset

Close close this copy of the Structure window; you can create a new
window with View > New from the "The Main window menu bar"
(8-160)

Copy copy the current selection in the Structure window

Sort sort the structure tree in either ascending, descending, or
declaration order

Expand Selected expand the hierarchy of the selected item

Collapse Selected collapse the hierarchy of the selected item
ModelSim SE User’s Manual ModelSim Graphic Interface 8-211

Structure window
Window menu

Finding items in the Structure window

The Find dialog box allows you to search for text strings in the Structure window. Select
Edit > Find (Structure window) to bring up the Find dialog box.

Enter the value to
search for in the Find
field. Specify whether
you are looking for an
Instance,
Entity/Module, or
Architecture. Also
specify which direction
to search. Check Auto
Wrap to have the
search continue at the
top of the window.

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Find find the specified text string within the structure tree; see "Finding
items in the Structure window" (8-212)

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)
8-212 ModelSim Graphic Interface ModelSim SE User’s Manual

Variables window
Variables window

The Variables window is divided into two window panes. The left pane lists the names of
HDL items within the current process. The right pane lists the current value(s) associated
with each name. The pathname of the current process is displayed at the bottom of the
window. (The internal variables of your design can remain hidden if you wish, see "Source
code security and -nodebug" (E-433).)

HDL items you can view

The following HDL items for
VHDL and Verilog are viewable
within the Variables window.

VHDL items

constants, generics, and variables

Verilog items

register variables

The names of any VHDL composite
types (arrays and record types) are
shown in a hierarchical fashion.
Hierarchy also applies to Verilog
vector memories. (Verilog vector
registers do not have hierarchy
because they are not internally
represented as arrays.) Hierarchy is
indicated in typical ModelSim
fashion with plus (expandable) and
minus (expanded). See "Tree
window hierarchical view" (8-155)
for more information.

To change the value of a VHDL variable, constant, or generic or a Verilog register variable,
move the pointer to the desired name and click to highlight the selection. Select Edit >
Change (Variables window) to bring up a dialog box that lets you specify a new value.
Note that "Variable Name" is a term that is used loosely in this case to signify VHDL
constants and generics as well as VHDL and Verilog register variables. You can enter any
value that is valid for the variable. An array value must be specified as a string (without
surrounding quotation marks). To modify the values in a record, you need to change each
field separately.

Click on a process in the Process window to change the Variables window.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-213

Variables window
The Variables window menu bar

The following menu commands are available from the Variables window menu bar.

File menu

Edit menu

View menu

Save As save the variables tree to a text file viewable with the ModelSim
notepad (CR-141)

Environment Follow Process Selection: update the window based on the
selection in the Process window (8-190); Fix to Current Process:
maintain the current view, do not update

Close close this copy of the Variables window; you can create a new
window with View > New from the "The Main window menu bar"
(8-160)

Copy copy the selected items in the Variables window

Sort sort the variables tree in either ascending, descending, or
declaration order

Select All select all items in the Variables window

Unselect All deselect all items in the Variables window

Expand Selected expand the hierarchy of the selected item

Collapse Selected collapse the hierarchy of the selected item

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Change change the value of the selected HDL item

Justify Values justify values to the left or right margins of the window pane

Find find the specified text string within the variables tree; choose the
Name or Value field to search and the search direction: Down or
Up

Wave/List/Log place the Selected Variables or Variables in Region in the Wave
window (8-216), List window (8-175), or logfile
8-214 ModelSim Graphic Interface ModelSim SE User’s Manual

Variables window
Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)
ModelSim SE User’s Manual ModelSim Graphic Interface 8-215

Wave window
Wave window

The Wave window, like the List window, allows you to view the results of your simulation.
In the Wave window, however, you can see the results as HDL waveforms and their values.

The Wave window is divided into a number of window panes. All window panes in the
Wave window can be resized by clicking and dragging the bar between any two panes.

Pathname pane

The pathname pane displays signal pathnames. Signals
can be displayed with full pathnames, as shown here, or
with only the leaf element displayed. You can increase
the size of the pane by clicking and dragging on the right
border. The selected signal is highlighted.

The white bar along the left margin indicates the selected
dataset (see Splitting Wave window panes (8-228)).

unused pane

th
8-216 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Values pane

A values pane displays the values of the displayed signals.

The radix for each signal can be symbolic, binary, octal,
decimal, unsigned, hexadecimal, ASCII, or default. The
default radix can be set by selecting Options >
Simulation (Main window) (see "Setting default
simulation options" (8-265)).

The data in this pane is similar to that shown in the
Signals window (8-193), except that the values change
dynamically whenever a cursor in the waveform pane
(below) is moved.

Waveform pane

The waveform pane displays the waveforms that correspond to the displayed signal
pathnames. It also displays up to 20 cursors. Signal values can be displayed in analog step,
analog interpolated, analog backstep, literal, logic, and event formats. Each signal can be
formatted individually. The default format is logic.

The window pane below the pathnames window pane and to the left of the cursor panes is
unused at this time.

values pane

waveform pane

cursors
ModelSim SE User’s Manual ModelSim Graphic Interface 8-217

Wave window
Cursor panes

There are two cursor panes, as shown below. The left pane shows the time value for each
cursor. The selected cursor’s value is highlighted. The right pane shows the absolute time
value for each cursor and relative time between cursors. Up to 20 cursors can be displayed.

HDL items you can view

VHDL items

(indicated by a dark blue square)
signals and process variables

Verilog items

(indicated by a light blue circle)
nets, register variables, and named
events

Virtual items

(indicated by an orange diamond)
virtual signals, buses, and functions,
see; "Virtual Objects (User-defined
buses, and more)" (7-144) for more
information

Comparison items

(indicated by a yellow triangle)
comparison region and comparison signals; see Chapter 11 - Waveform Comparison for
more information

Note: Constants, generics, and parameters are not viewable in the List or Wave windows.

The data in the item values pane is very similar to the Signals window, except that the
values change dynamically whenever a cursor in the waveform pane is moved.

At the bottom of the waveform pane you can see a time line, tick marks, and a readout of
each cursor’s position. As you click and drag to move a cursor, the time value at the cursor
location is updated at the bottom of the cursor.

You can resize the window panes by clicking on the bar between them and dragging the bar
to a new location.

two cursor panes
8-218 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Waveform and signal-name formatting are easily changed via the Format menu (8-223).
You can reuse any formatting changes you make by saving a Wave window format file, see
"Adding items with a Wave window format file" (8-219).

Adding HDL items in the Wave window

Before adding items to the Wave window you may want to set the window display
properties (see "Setting Wave window display properties" (8-235)). You can add items to
the Wave window in several ways.

Adding items from the Signals window with drag and drop

You can drag and drop items into the Wave window from the List, Process, Signals, Source,
Structure, or Variables window. Select the items in the first window, then drop them into
the Wave window. Depending on what you select, all items or any portion of the design can
be added.

Adding items from the Main window command line

To add specific HDL items to the window, enter (separate the item names with a space):

add wave <item_name> <item_name>

You can add all the items in the current region with this command:

add wave *

Or add all the items in the design with:

add wave -r /*

Adding items with a Wave window format file

To use a Wave window format file you must first save a format file for the design you are
simulating. Follow these steps:

1 Add the items you want in the Wave window with any method shown above.

2 Edit and format the items, see "Editing and formatting HDL items in the Wave window" (8-

230) to create the view you want .

3 Save the format to a file by selecting File > Save Format (Wave window).

To use the format file, start with a blank Wave window and run the DO file in one of two
ways:

• Invoke the do command (CR-104) from the command line:

do <my_wave_format>

• Select File > Load Format (Wave window).

Use Edit > Select All and Edit > Delete to remove the items from the current Wave
window, use the delete command (CR-99) with the wave option, or create a new, blank
Wave window with View > New > Wave (Main window).

Note: Wave window format files are design-specific; use them only with the design you
were simulating when they were created.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-219

Wave window
The Wave window menu bar

The following menu commands and button options are available from the Wave window
menu bar. If you see a dotted line at the top of a drop-down menu, you can select it to create
a separate menu window. Many of these commands are also available via a context menu
by clicking your right mouse button within the wave window itself.

File menu

Open Dataset open a dataset

New Divider insert a divider at the current location

New Group setup a new group element – a container for other items that can be
moved, cut and pasted like other objects (NOT CURRENTLY
IMPLEMENTED)

Save Format save the current Wave window display and signal preferences to a DO
(macro) file; running the DO file will reformat the Wave window to
match the display as it appeared when the DO file was created

Load Format run a Wave window format (DO) file previously saved with Save
Format

Page Setup setup page for printing; options include: paper size, margins, label
width, cursors, color, scaling and orientation

Print (Windows
only)

send the contents of the Wave window to a selected printer; options
include:
All signals – print all signals
Current View – print signals in current view for the time displayed
Selected – print all or current view signals for user-designated time

Print Postscript save or print the waveform display as a Postscript file; options
include:
All Signals – print all signals
Current View – print signals in current view for the time displayed
Selected – print all or current view signals for user-designated time

New Window
Pane

split the pathname, values and waveform window panes to provide
room for a new waveset

Remove
Window Pane

remove window split and active waveset
8-220 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Edit menu

Cursor menu

Refresh Display clear the Wave window, empty the file cache, and rebuild the window
from scratch

Close close this copy of the Wave window; you can create a new window
with View > New from "The Main window menu bar" (8-160)

Cut cut the selected item and waveform from the Wave window; see
"Editing and formatting HDL items in the Wave window" (8-230)

Copy copy the selected item and waveform

Paste paste the previously cut or copied item above the currently
selected item

Delete delete the selected item and its waveform

Select All
Unselect All

select, or unselect, all item names in the name pane

Combine combine the selected fields into a user-defined bus

Signal Breakpoints add, edit, and delete signal breakpoints; see "Setting signal
breakpoints" (8-198)

Sort sort the top-level items in the name pane; sort with full path name
or viewed name; use ascending or descending order

Find find the specified item label within the pathname pane or the
specified value within the value pane

Search search the waveform display for a specified value, or the next
transition for the selected signal; see: "Searching for item values
in the Wave window" (8-237)

Justify Values justify values to the left or right margins of the window pane

Display Properties set display properties for signal path length, cursor snap distance,
row margin, and dataset prefixes

 Signal Properties set label, height, color, radix, and format for the selected item (use
the Format menu selections below to quickly change individual
properties); also set properties related to waveform comparisons

Add Cursor add a cursor to the center of the waveform window

Delete Cursor delete the selected cursor from the window

Goto choose a cursor to go to from a list of current cursors
ModelSim SE User’s Manual ModelSim Graphic Interface 8-221

Wave window
Zoom menu

Compare menu

Bookmark menu

Zoom <selection> selection: Full, In, Out, Last, Area with mouse button 1, or Range
to change the waveform display range

Start Comparison start a new comparison

Comparison Wizard receive step-by-step assistance while creating a waveform
comparison

Run Comparison compute differences from time zero until the end of the
simulation

End Comparison stop difference computation and close the currently open
comparison

Add provides three options:
Compare by Signal - specify signals for comparison
Compare by Region - designate a reference region for a
comparison
Clocks - define clocks to be used in a comparison

Options set options for waveform comparisons

Differences provides four options:
Clear - clear all differences from the Wave window
Show - display differences in a text format in the Main window
Transcript
Save - save computation differences to a file that can be
reloaded later
Write Report - save computation differences to a text file

Rules provides two options:
Show - display the rules used to set up the waveform
comparison
Save - save rules for waveform comparison to a file

Reload load saved differences and rules files

Add Bookmark add a new bookmark that saves a specific zoom and scroll range

Edit Bookmarks edit an existing bookmark

<bookmark_name> list of currently defined bookmarks
8-222 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Format menu

Window menu

Radix set the selected item’s radix

Format set the waveform format for the selected item – Literal, Logic,
Event, Analog

Color set the color for the selected item from a color palette

Height set the waveform height in pixels for the selected item

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

Customize use the The Button Adder (8-269) to define and add a button to
either the tool or status bar of the specified window

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (8-162) in the Main
window, or use the view command (CR-226)
ModelSim SE User’s Manual ModelSim Graphic Interface 8-223

Wave window
The Wave window toolbar

The Wave window toolbar gives you quick access to these ModelSim commands and
functions.

co
py

pa
st

e

cu
t

ru
n

fin
d

pr
ev

io
us

 tr
an

si
tio

n

co
nt

in
ue

 ru
n

ru
n

-a
ll

zo
om

 in
 2

x

br
ea

k

lo
ad

 w
av

e
fo

rm
at

sa
ve

 w
av

e f
or

mat

ad
d

cu
rs

or

fin
d

ne
xt

 tr
an

si
tio

n

zo
om

 fu
ll

zo
om

 a
re

a

zo
om

 o
ut

 2
x

de
le

te
 c

ur
so

r

pr
int

 w
av

ef
or

m

re
st

ar
t

fir
st

 d
iff

er
en

ce

pr
ev

io
us

 d
iff

er
en

ce
ne

xt
 d

iff
er

en
ce

la
st

 d
iff

er
en

ce

Wave window toolbar buttons

Button Menu equivalent Other options

Load Wave Format
run a Wave window format (DO)
file previously saved with Save
Format

File > Load Format do wave.do
see do command (CR-104)

Save Wave Format
saves the current Wave window
display and signal preferences to a
do (macro) file

File > Save Format none

Print Waveform
prints a user-selected range of the
current Wave window display to a
printer or a file

File > Print
File > PrintPostscript

none

Cut
cut the selected signal from the
Wave window

Edit > Cut right mouse in pathname pane > Cut

Copy
copy the selected signal in the
signal-name pane

Edit > Copy right mouse in pathname pane >
Copy
8-224 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Paste
paste the copied signal above
another selected signal

Edit > Paste right mouse in pathname pane >
Paste

Add Cursor
add a cursor to the center of the
waveform pane

Cursor > Add Cursor none

Delete Cursor
delete the selected cursor from the
window

Cursor > Delete Cursor none

Find Previous Transition
locate the previous signal value
change for the selected signal

Edit > Search
(Search Reverse)

keyboard: Shift + Tab

left <arguments>
see left command (CR-129)

Find Next Transition
locate the next signal value
change for the selected signal

Edit > Search
(Search Forward)

keyboard: Tab

right <arguments>
see right command (CR-174)

Zoom in 2x
zoom in by a factor of two from
the current view

Zoom > Zoom In keyboard: i I or +

right mouse in wave pane > Zoom
In

Zoom out 2x
zoom out by a factor of two from
current view

Zoom > Zoom Out keyboard: o O or -

right mouse in wave pane > Zoom
Out

Zoom area with mouse button 1
use the cursor to outline a zoom
area

Zoom > Zoom Range keyboard: r or R

right mouse in wave pane > Zoom
Area

Zoom Full
zoom out to view the full range of
the simulation from time 0 to the
current time

Zoom > Zoom Full keyboard: f or F

right mouse in wave pane > Zoom
Full

Wave window toolbar buttons

Button Menu equivalent Other options
ModelSim SE User’s Manual ModelSim Graphic Interface 8-225

Wave window
Restart
reloads the design elements and
resets the simulation time to zero,
with the option of keeping the
current formatting, breakpoints,
and logfile

Main menu:
Run > Restart

restart <arguments>

see: restart (CR-170)

Run
run the current simulation for the
default time length

Main menu:
Run > Run
<default_length>

use the run command at the VSIM
prompt

see: run (CR-176)

Continue Run
continue the current simulation
run

Main menu:
Run > Continue

use the run -continue command at
the VSIM prompt

see: run (CR-176)

Run -All
run the current simulation forever,
or until it hits a breakpoint or
specified break event

Main menu:
Run > Run -All

use run -all command at the VSIM
prompt

see: run (CR-176), also see
"Assertion settings page" (8-266)

Break
stop the current simulation run

none none

Find First Difference
find the first difference in a
waveform comparison

none none

Find Previous Difference
find the previous difference in a
waveform comparison

none none

Find Next Difference
find the next difference in a
waveform comparison

none none

Find Last Difference
find the last difference in a
waveform comparison

none none

Wave window toolbar buttons

Button Menu equivalent Other options
8-226 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Using Dividers

Dividing lines can be placed in the pathname and values window panes by selecting File >
New Divider (Wave window). Dividers serve as a visual aid to signal debugging, allowing
you to separate signals and waveforms for easier viewing.

Dividing lines can be assigned any name, or no name at all. The default name is "New
Divider." In the illustration below, VHDL signals have been separated from Verilog signals
with a Divider called "Verilog." Notice that the waveforms in the waveform window pane
have been separated by the divider as well.

After you have added a divider, you can move it, change its properties (name and size), or
delete it.

To move a divider — Click and drag the divider to the location you want

To change a divider’s name and size — Click the divider with the right (Windows) or
third (UNIX) mouse button and select Divider Properties from the pop-up menu

To delete a divider — Select the divider and either press the <Delete> key on your
keyboard or select Delete from the pop-up menu
ModelSim SE User’s Manual ModelSim Graphic Interface 8-227

Wave window
Splitting Wave window panes

The pathnames, values and waveforms window panes of the Wave window display can be
split to accommodate signals from one or more datasets. Selecting File > New Window
Pane (Wave window) creates a space below the selected waveset and makes the new
window pane the selected pane. (The selected wave window pane is indicated by a white
bar along the left margin of the pane.)

In the illustration below, the Wave window is split, showing the current active simulation
with the prefix "sim," and a second view-mode dataset, with the prefix "test1."

For more information on viewing multiple simulations, see Chapter 7 - Datasets (saved
simulations) and virtuals.
8-228 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Combining items in the Wave window

You can combine signals in the Wave window into busses. A bus is a collection of signals
concatenated in a specific order to create a new virtual signal with a specific value. To
create a bus, select one or more signals in the Wave window and then choose Edit >
Combine. .

The Combine Selected Signals dialog box includes these options:

• Combine Into
Only the Bus option is valid at this time. Groups are not currently implemented.

• Order of Indexes
Specifies in which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the Wave window will be assigned an index of 0. If set to
Descending, the first signal selected will be assigned the highest index number.

• Remove selected signals after combining
Specifies whether you want to remove the selected signals from the Wave window once
the bus is created

In the illustration below, three signals have been combined to form a new bus called BUS1.
Note that the component signals are listed in the order in which they were selected in the
Wave window. Also note that the bus’ value is made up of the values of its component
signals arranged in a specific order. Virtual objects are indicated by an orange diamond.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-229

Wave window
Other virtual items in the Wave window

See "Virtual Objects (User-defined buses, and more)" (7-144) for information about other
virtual items viewable in the Wave window.

Editing and formatting HDL items in the Wave window

Once you have the HDL items you want in the Wave window, you can edit and format the
list in the pathname and values panes to create the view you find most useful. (See also,
"Setting Wave window display properties" (8-235).)

To edit an item:

Select the item’s label in the pathname pane or its waveform in the waveform pane. Move,
copy, or remove the item by selecting commands from the Wave window Edit menu (8-

221).

You can also click+drag to move items within the pathnames and values panes:

• to select several items:
control+click to add or subtract from the selected group

• to move the selected items:
re-click and hold on one of the selected items, then drag to the new location
8-230 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
To format an item:

Select the item’s label in the pathname pane or its waveform in the waveform pane, then
select Edit > Signal Properties (Wave window). The resulting Wave Signal Properties
dialog box has three tabs: View, Format, and Compare.

The View tab includes these options:

• Display Name
Specifies a new name (in the pathname pane) for the selected signal.

• Radix
Specifies the Radix of the selected signal(s). Setting this to default causes the signal’s
radix to change whenever the default is modified using the radix command (CR-166).
Item values are not translated if you select Symbolic.

• Wave Color
Specifies the waveform color. Select a new color from the color palette, or enter an
X-Windows color name.

• Name Color
Specifies the signal name’s color. Select a new color from the color palette, or enter an
X-Windows color name.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-231

Wave window
The Format tab includes these options:

• Format: Literal
Displays the waveform as a box containing the item value (if the value fits the space
available). This is the only format that can be used to list a record.

• Format: Logic
Displays values as U, X, 0, 1, Z, W, L, H, or -.

• Format: Event
Marks each transition during the simulation run.
8-232 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
• Format: Analog [Step | Interpolated | Backstep]
All signals in the following illustration are the same /top/clk signal. Starting with "analog
step", the /top/clk signal has been relabeled to illustrate each different wave format.

Analog Step
Displays a waveform in step style.

Analog Interpolated
Displays the waveform in interpolated style.

Analog Backstep
Displays the waveform in backstep style. Often used for power calculations.

Offset and Scale
Allows you to adjust the scale of the item as it is seen on the display. Offset is the number
of pixels offset from zero. The scale factor reduces (if less than 1) or increases (if greater
than 1) the number of pixels displayed.

Only the following types are supported in Analog format:

VHDL types:
All vectors - std logic vectors, bit vectors, and vectors derived from these types
Scalar integers
Scalar reals
Scalar time

Verilog types:
All vectors
Scalar real
Scalar integers
ModelSim SE User’s Manual ModelSim Graphic Interface 8-233

Wave window
• Height
Allows you to specify the height (in pixels) of the waveform.

The Compare tab includes the same options as those in the Add Signal Options dialog
box (see Adding Signals, Regions and/or Clocks (11-307)).
8-234 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Setting Wave window display properties

You can define the display properties of the pathname and values window panes by
selecting Edit > Display Properties (Wave window).

The Wave Window Properties dialog box includes the following options:

• Display Signal Path
Sets the display to show anything from the full pathname of each signal (e.g., sim:/top/
clk) to only its leaf element (e.g., sim:clk). A non-zero number indicates the number of
path elements to be displayed. The default is Full Path.

• Justify Value
Specifies whether the signal values will be justified to the left margin or the right margin
in the values window pane.

• Snap Distance
Specifies the distance the cursor needs to be placed from an item edge to jump to that
edge (a 0 specification turns off the snap).

• Row Margin
Specifies the distance in pixels between top-level signals.

• Child Row Margin
Specifies the distance in pixels between child signals.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-235

Wave window
• Dataset Prefix
Specifies how signals from different datasets are displayed.

Always Show Dataset Prefixes
All dataset prefixes will be displayed along with the dataset prefix of the current
simulation ("sim").

Show Dataset Prefixes if 2 or more
Displays all dataset prefixes if 2 or more datasets are displayed. "sim" is the default prefix
for the current simulation.

Never Show No Dataset Prefixes
No dataset prefixes will be displayed. This selection is useful if you are running only a
single simulation.

Sorting a group of HDL items

Select Edit > Sort to sort the items in the pathname and values panes.

Setting signal breakpoints

You can set signal breakpoints (a.k.a., when breakpoints; see the when command (CR-273)
or "Setting signal breakpoints" (8-198) for more details) using a pop-up menu. Start by
selecting a signal and then clicking your second (Windows) or third (UNIX) mouse button.
Select Signal Breakpoints from the pop-up menu and you’ll see six items:

• Add
Creates a signal breakpoint on the selected signal

• Edit Breakpoints
Opens the Edit When dialog. See "Setting signal breakpoints" (8-198) for more
information.

• Edit All Breakpoints
Opens the Breakpoints dialog. See "Setting file-line breakpoints" (8-205) for more
information.

• Remove Signal
Removes the signal breakpoint from the selected signal

• Remove All Signals
Removes all signal breakpoints

• Show All
Shows a list of all signal breakpoints

When a breakpoint is hit, a message appears in the transcript window about which signal
caused the breakpoint. Breakpoints created by the when command (CR-273) are not affected
by the Remove All Signals menu pick, nor are they reported via Show All.
8-236 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Finding items by name or value in the Wave window

The Find dialog box allows you to search for text strings in the Wave window. Select
Edit > Find (Wave window) to bring up the Find dialog box.

Choose either the Name
or Value field to search
and enter the value to
search for in the Find
field. Find the item by
searching Down or Up
through the Wave
window display. Auto
Wrap continues the
search at the top of the
window.

The find operation works only within the active pane.

Searching for item values in the Wave window

Select an item in the Wave window and then select Edit > Search to bring up the Wave
Signal Search dialog box.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-237

Wave window
The Wave Signal Search dialog box includes these options:

You can locate values for the Signal Name(s) shown at the top of the dialog box. The
search is based on these options:

• Search Type: Any Transition
Searches for any transition in the selected signal(s).

• Search Type: Rising Edge
Searches for rising edges in the selected signal(s).

• Search Type: Falling Edge
Searches for falling edges in the selected signal(s).

• Search Type: Search for Signal Value
Searches for the value specified in the Value field; the value should be formatted using
VHDL or Verilog numbering conventions; see "Numbering conventions" (CR-291).

Note: If your signal values are displayed in binary radix, see "Searching for binary
signal values in the GUI" (CR-300) for details on how signal values are mapped between
a binary radix and std_logic.

• Search Type: Search for Expression
Searches for the expression specified in the Expression field evaluating to a boolean
true. Activates the Builder button so you can use "The GUI Expression Builder" (8-275)
if desired.

The expression can involve more than one signal but is limited to signals logged in the
Wave window. Expressions can include constants, variables, and DO files. If no
expression is specified, the search will give an error. See "Expression syntax" (CR-302)
for more information.

• Search Options: Match Count
You can search for the n-th transition or the n-th match on value; Match Count indicates
the number of transitions or matches to search for.

The Search Results are indicated at the bottom of the dialog box.
8-238 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Using time cursors in the Wave window

When the Wave window is first drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. You can add
cursors to the waveform pane with the Cursor > Add Cursor menu selection (or the Add
Cursor button shown below). The selected cursor is drawn as a bold solid line; all other
cursors are drawn with thin dashed lines. Remove cursors by selecting them and selecting
Cursor > Delete Cursor (or the Delete Cursor button shown below).

fin
d

pr
ev

io
us

 tr
an

sit
io
n

zo
om

 in
 2

x

ad
d

cu
rs

or

fin
d

ne
xt

 tr
an

sit
io
n

zo
om

 fu
ll

zo
om

 a
re

a

zo
om

 o
ut

 2
x

de
let

e
(s

ele
cte

d)
 cu

rs
or

These Wave window
buttons give you quick
access to cursor placement
and zooming.

Click and drag with
the center mouse
button to zoom in
on an area of the
display.

interval measurement

selected cursor is bold

Add Cursor
add a cursor to the center
of the waveform window

Delete Cursor
delete the selected cursor
from the window
ModelSim SE User’s Manual ModelSim Graphic Interface 8-239

Wave window
Finding a cursor

The cursor value (on the Goto list) corresponds to the simulation time of that cursor.
Choose a specific cursor view by selecting Cursor > Goto.

Making cursor measurements

Each cursor is displayed with a time box showing the precise simulation time at the bottom.
When you have more than one cursor, each time box appears in a separate track at the
bottom of the display. ModelSim also adds a delta measurement showing the time
difference between two adjacent cursor positions.

If you click in the waveform display, the cursor closest to the mouse position is selected
and then moved to the mouse position. Another way to position multiple cursors is to use
the mouse in the time box tracks at the bottom of the display. Clicking anywhere in a track
selects that cursor and brings it to the mouse position.

The cursors are designed to snap to the closest wave edge to the left on the waveform that
the mouse pointer is positioned over. You can control the snap distance via the
Edit > Display Properties menu selection.

You can position a cursor without snapping by dragging in the area below the waveforms.

You can also move cursors to the next transition of a signal with these toolbar buttons:

Zooming - changing the waveform display range

Zooming lets you change the simulation range in the waveform pane. You can zoom with
either the context menu, toolbar buttons, mouse, keyboard, or commands.

Using the Zoom menu

You can use the Wave window menu bar, or call up the context menu by clicking the right
mouse button in the waveform pane.

The Zoom menu options include:

• Zoom Area with Mouse Button 1
Use mouse button 1 to create a zoom area. Position the mouse cursor to the left side of
the desired zoom interval, press mouse button 1 and drag to the right. Release when the
box has expanded to the right side of the desired zoom interval.

• Zoom In
Zooms in by a factor of two, increasing the resolution and decreasing the visible range
horizontally.

• Zoom Out
Zooms out by a factor of two, decreasing the resolution and increasing the visible range
horizontally.

Find Previous
Transition
locate the previous signal
value change for the
selected signal

Find Next Transition
locate the next signal
value change for the
selected signal
8-240 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
• Zoom Full
Redraws the display to show the entire simulation from time 0 to the current simulation
time.

• Zoom Last
Restores the display to where it was before the last zoom operation.

• Zoom Range
Brings up a dialog box that allows you to enter the beginning and ending times for a range
of time units to be displayed.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zooming with the mouse

To zoom with the mouse, position the mouse cursor to the left side of the desired zoom
interval, press the middle mouse button (three-button mouse), or <Ctrl>+left mouse button
(two-button mouse), and while continuing to press, drag to the right and then release at the
right side of the desired zoom interval.

Zooming keyboard shortcuts

See "Wave window mouse and keyboard shortcuts" (8-244) for a complete list of Wave
window keyboard shortcuts.

Saving zoom range and scroll position with bookmarks

Bookmarks allow you to save a particular zoom range and scroll position. This lets you
return easily to a specific view later. You save the bookmark with a name, and then access
the named bookmark from the Bookmark menu.

Bookmarks are saved in the Wave format file (see "Adding items with a Wave window
format file" (8-219)) and are restored when the format file is read. There is no limit to the
number of bookmarks you can save.

Bookmarks can also be created and managed from the command line. See bookmark add
wave command (CR-44) for details.

Zoom in 2x
zoom in by a factor of two
from the current view

Zoom area
use the cursor to outline a
zoom area

Zoom out 2x
zoom out by a factor of
two from current view

Zoom Full
zoom out to view the full
range of the simulation
from time 0 to the current
time
ModelSim SE User’s Manual ModelSim Graphic Interface 8-241

Wave window
To add a bookmark, select Bookmark > Add Bookmark (Wave window).

The Bookmark Properties dialog includes the following options.

• Bookmark Label
A text label to assign to the bookmark. The label will identify the bookmark on the
Bookmark menu.

• Zoom
A starting value and ending value that define the zoom range.

• Top Index
The item that will display at the top of the wave window. For instance, if you specify 15,
the Wave window will be scrolled down to show the 15th item in the window.

• Save zoom range with bookmark
When checked the zoom range will be saved in the bookmark.

• Save scroll location with bookmark
When checked the scroll location will be saved in the bookmark.

Once the bookmark is saved, select it by name from the Bookmark menu, and the Wave
window will be zoomed and scrolled accordingly.
8-242 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
To edit or delete a bookmark, select Bookmark > Edit Bookmarks (Wave window).

The Bookmark Selection dialog includes the following options.

• Add (bookmark add wave)
Add a new bookmark

• Modify
Edit the selected bookmark

• Delete (bookmark delete wave)
Delete the selected bookmark

• Delete All (bookmark delete wave)
Delete all bookmarks

• Goto (bookmark goto wave)
Zoom and scroll the Wave window using the selected bookmark
ModelSim SE User’s Manual ModelSim Graphic Interface 8-243

Wave window
Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - left-button - click on a scroll arrow > scrolls window to very top or
bottom(vertical scroll) or far left or
right (horizontal scroll)

< middle mouse-button - click in scroll bar trough>
(UNIX) only

scrolls window to position of click

Keystroke Action

i I or + zoom in

o O or - zoom out

f or F zoom full; mouse pointer must be over the the cursor or
waveform panes

l or L zoom last

r or R zoom range

<arrow up> scroll waveform display up by selecting the item above the
currently selected item

<arrow down> scroll waveform display down by selecting the item below the
currently selected item

<arrow left> scroll waveform display left

<arrow right> scroll waveform display right

<page up> scroll waveform display up by a page

<page down> scroll waveform display down by a page

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> Windows
<control-s> UNIX

open the find dialog box; searches within the specified field in
the pathname pane for text strings
8-244 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
Printing and saving waveforms

Saving a .eps file and printing under UNIX

Select File > Print Postscript (Wave window) to print all or part of the waveform in the
current Wave window in UNIX, or save the waveform as a .eps file on any platform (see
also write wave command (CR-285)). Printing and writing preferences are controlled by the
dialog box shown below.

The Write Postscript dialog box includes these options:

Printer

• Print command
Enter a UNIX print command to print the waveform in a UNIX environment.

• File name
Enter a filename for the encapsulated Postscript (.eps) file to be created; or browse to a
previously created .eps file and use that filename.

Signal Selection

• All signals
Print all signals.

• Current View
Print signals in the current view

• Selected
Print all selected signals

Time Range
ModelSim SE User’s Manual ModelSim Graphic Interface 8-245

Wave window
• Full Range
Print all specified signals in the full simulation range.

• Current view
Print the specified signals for the viewable time range.

• Custom
Print the specified signals for a user-designated From and To time.

Setup button

See "Printer Page Setup" (8-248)

Printing on Windows platforms

Select File > Print (Wave window) to print all or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).
Printing and writing preferences are controlled by the dialog box shown below.

Printer

• Name
Choose the printer from the drop-down menu. Set printer properties with the Properties
button.

• Status
Indicates the availability of the selected printer.

• Type
Printer driver name for the selected printer. The driver determines what type of file is
output if "Print to file" is selected.
8-246 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
• Where
The printer port for the selected printer.

• Comment
The printer comment from the printer properties dialog box.

• Print to file
Make this selection to print the waveform to a file instead of a printer. The printer driver
determines what type of file is created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a .prn or printer control language file. To create an
encapsulated Postscript file (.eps) use the File > Print Postscript menu selection.

Signal Selection

• All signals
Print all signals.

• Current View
Print signals in current view.

• Selected
Print all selected signals.

Time Range

• Full Range
Print all specified signals in the full simulation range.

• Current view
Print the specified signals for the viewable time range.

• Custom
Print the specified signals for a user-designated From and To time.

Setup button

See "Printer Page Setup" (8-248)
ModelSim SE User’s Manual ModelSim Graphic Interface 8-247

Wave window
Printer Page Setup

Clicking the Setup button in the Write Postscript or Print dialog box allows you to define
the following options (this is the same dialog that opens via File > Page setup).

• Paper Size
Select your output page size from a number of options; also choose the paper width and
height.

• Margins
Specify the page margins; changing the Margin will change the Scale and Page
specifications.

• Label width
Specify Auto Adjust to accommodate any length label, or set a fixed label width.

• Cursors
Turn printing of cursors on or off.

• Grid
Turn printing of grid lines on or off.
8-248 ModelSim Graphic Interface ModelSim SE User’s Manual

Wave window
• Color
Select full color printing, grayscale or black and white.

• Scaling
Specify a Fixed output time width in nanoseconds per page – the number of pages output
is automatically computed; or, select Fit to to define the number of pages to be output
based on the paper size and time settings; if set, the time-width per page is automatically
computed.

• Orientation
Select the output page orientation, Portrait or Landscape.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-249

Compiling with the graphic interface
Compiling with the graphic interface

You can use a project or the Compile HDL Source Files dialog box to compile VHDL or
Verilog designs. For information on compiling in a project, see "Getting started with
projects" (2-28). To open the Compile HDL Source Files dialog, select the Compile button
(Main window) or Design > Compile.

The Compile HDL Source Files dialog box opens as shown below.
8-250 ModelSim Graphic Interface ModelSim SE User’s Manual

Compiling with the graphic interface
From the Compile HDL Source Files dialog box you can:

• select source files to compile in any language combination

• specify the target library for the compiled design units

• select among the compiler options for either VHDL or Verilog

Select the Default Options button to change the compiler options, see "Setting default
compile options" (8-252) for details. The same Compiler Options dialog box can also be
accessed by selecting Options > Compile (Main window) or by selecting Compile
Properties from the context menu in Project tab.

Select the Edit Source button to view or edit a source file via the Compile dialog box. See
"Source window" (8-201) for additional source file editing information.

Locating source errors during compilation

If a compiler error occurs during compilation, a red error message is printed in the Main
transcript. Double-click on the error message to open the source file in an editable Source
window with the error highlighted.

double-click on the error in the Main window
and the error is highlighted and ready

to edit in the Source window
ModelSim SE User’s Manual ModelSim Graphic Interface 8-251

Compiling with the graphic interface
Setting default compile options

Select Options > Compile (Main window) to bring up the Compiler Options dialog box
shown below. OK accepts the changes made and closes the dialog box. Apply makes the
changes with the dialog box open so you can test your settings. Cancel closes the dialog
box and makes no changes. The options found on each page of the dialog box are detailed
below. Changes made in the Compiler Options dialog box become the default for all
future simulations.

VHDL compiler options page

• Use 1993 language syntax
Specifies the use of VHDL93 during compilation. The 1987 standard is the default. Same
as the -93 switch for the vcom command (CR-217). Edit the VHDL93 (B-405) variable in
the modelsim.ini file to set a permanent default.

• Don’t put debugging info in library
Models compiled with this option do not use any of the ModelSim debugging features.
Consequently, your user will not be able to see into the model. This also means that you
cannot set breakpoints or single step within this code. Don’t compile with this option
until you’re done debugging. Same as the -nodebug switch for the vcom command (CR-

217). See "Source code security and -nodebug" (E-433) for more details. Edit the NoDebug
(B-397) variable in the modelsim.ini file to set a permanent default.
8-252 ModelSim Graphic Interface ModelSim SE User’s Manual

Compiling with the graphic interface
• Use explicit declarations only
Used to ignore an error in packages supplied by some other EDA vendors; directs the
compiler to resolve ambiguous function overloading in favor of the explicit function
definition. Same as the -explicit switch for the vcom command (CR-217). Edit the Explicit
(B-397) variable in the modelsim.ini file to set a permanent default.

Although it is not intuitively obvious, the = operator is overloaded in the std_logic_1164
package. All enumeration data types in VHDL get an “implicit” definition for the =
operator. So while there is no explicit = operator, there is an implicit one. This implicit
declaration can be hidden by an explicit declaration of = in the same package (LRM
Section 10.3). However, if another version of the = operator is declared in a different
package than that containing the enumeration declaration, and both operators become
visible through use clauses, neither can be used without explicit naming, for example:

ARITHMETIC.”=”(left, right)

This option allows the explicit = operator to hide the implicit one.

• Disable loading messages
Disables loading messages in the Main window. Same as the -quiet switch for the vcom
command (CR-217). Edit the Quiet (B-397) variable in the modelsim.ini file to set a
permanent default.

• Show source lines with errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-source switch for the vcom command (CR-217). Edit the Show_source (B-397) variable
in the modelsim.ini file to set a permanent default.

Flag Warnings on:

• Unbound Component
Flags any component instantiation in the VHDL source code that has no matching entity
in a library that is referenced in the source code, either directly or indirectly. Edit the
Show_Warning1 (B-397) variable in the modelsim.ini file to set a permanent default.

• Process without a WAIT statement
Flags any process that does not contain a wait statement or a sensitivity list. Edit the
Show_Warning2 (B-397) variable in the modelsim.ini file to set a permanent default.

• Null Range
Flags any null range, such as 0 down to 4. Edit the Show_Warning3 (B-397) variable in
the modelsim.ini file to set a permanent default.

• No space in time literal (e.g. 5ns)
Flags any time literal that is missing a space between the number and the time unit. Edit
the Show_Warning4 (B-397) variable in the modelsim.ini file to set a permanent default.

• Multiple drivers on unresolved signals
Flags any unresolved signals that have multiple drivers. Edit the Show_Warning5 (B-397)
variable in the modelsim.ini file to set a permanent default.

Check for:

• Synthesis
Turns on limited synthesis-rule compliance checking. Edit the CheckSynthesis (B-396)
variable in the modelsim.ini file to set a permanent default.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-253

• Vital Compliance
Toggle Vital compliance checking. Edit the NoVitalCheck (B-397) variable in the
modelsim.ini file to set a permanent default.

Optimize for:

• StdLogic1164
Causes the compiler to perform special optimizations for speeding up simulation when
the multi-value logic package std_logic_1164 is used. Unless you have modified the
std_logic_1164 package, this option should always be checked. Edit the Optimize_1164
(B-397) variable in the modelsim.ini file to set a permanent default.

• Vital
Toggle acceleration of the Vital packages. Edit the NoVital (B-397) variable in the
modelsim.ini file to set a permanent default.

Verilog compiler options page

• Enable run-time hazard checks
Enables the run-time hazard checking code. Same as the -hazards switch for the vlog
command (CR-250). Edit the Hazard (B-398) variable in the modelsim.ini file to set a
permanent default.
8-254 ModelSim Graphic Interface ModelSim SE User’s Manual

Compiling with the graphic interface
• Disable debugging data
Models compiled with this option do not use any of the ModelSim debugging features.
Consequently, your user will not be able to see into the model. This also means that you
cannot set breakpoints or single step within this code. Don’t compile with this option
until you’re done debugging. Same as the -nodebug switch for the vlog command (CR-

250). See "Source code security and -nodebug" (E-433) for more details. Edit the NoDebug
(B-397) variable in the modelsim.ini file to set a permanent default.

• Convert Verilog identifiers to upper-case
Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Same as the -u switch for the vlog command (CR-250). Edit the UpCase (B-398)
variable in the modelsim.ini file to set a permanent default.

• Disable loading messages
Disables loading messages in the Main window. Same as the -quiet switch for the vlog
command (CR-250). Edit the Quiet (B-397) variable in the modelsim.ini file to set a
permanent default.

• Show source lines with errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-source switch for the vlog command (CR-250). Edit the Show_source (B-397) variable in
the modelsim.ini file to set a permanent default.

Other Verilog Options:

• Library Search
Specifies the Verilog source library directory to search for undefined modules. Same as
the -y <library_directory> switch for the vlog command (CR-250).

• Extension
Specifies the suffix of files in the library directory. Multiple suffixes can be used. Same
as the +libext+<suffix> switch for the vlog command (CR-250).

• Library File
Specifies the Verilog source library file to search for undefined modules. Same as the -v
<library_file> switch for the vlog command (CR-250).

• Include Directory
Specifies a directory for files included with the ‘include filename compiler directive.
Same as the +incdir+<directory> switch for the vlog command (CR-250).

• Macro
Defines a macro to execute during compilation. Same as the compiler directive: ‘define
macro_name macro_text. Also the same as the
+define+<macro_name> [=<macro_text>] switch for the vlog command (CR-250).
ModelSim SE User’s Manual ModelSim Graphic Interface 8-255

Simulating with the graphic interface
Simulating with the graphic interface

You can use a project or the Load Design dialog box to simulate a compiled design. For
information on simulating in a project, see "Getting started with projects" (2-28). To open
the Load Design dialog, select the Load Design button (Main window) or Design > Load
Design.

Five pages - Design, VHDL, Verilog, Libraries, and SDF - allow you to select various
simulation options.

You can switch between pages to modify settings, then begin simulation by selecting the
Load button. If you select Cancel, all selections remain unchanged and you are returned to
the Main window; the Exit button (only active before simulation) closes ModelSim. The
Save Settings button allows you to save the preferences on all pages to a DO (macro) file.

Compile before you simulate

To begin simulation you must have compiled design units located in a design library, see
"Creating a design library" (4-57).

Note: Many of the dialog box options discussed in this section include parenthetical
elements that correspond to vsim (CR-258) command options. For example,
Simulator Resolution (-time [<multiplier>]<time_unit>).
8-256 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface
Design selection page

Note: The Exit button closes the Load Design dialog box and quits ModelSim.

The Design page includes these options:

• Library
Specifies a library to view. Make certain your selection is a valid ModelSim library —
the library must be created by ModelSim and it’s directory must include a _info file.

• Design Unit
This hierarchical list allows you to select one top-level entity or configuration to be
simulated. All entities, configurations, and modules that exist in the specified library are
displayed in the list box. Architectures can be viewed by selecting the "+" box before any
name.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-257

Simulating with the graphic interface
• Simulate (<configuration> | <module> | <entity> [(<architecture>)])
Specifies the design unit(s) to simulate. You can simulate several Verilog top-level
modules or a VHDL top-level design unit in one of three ways:

1 Type a design unit name (configuration, module, or entity) into the field, separate
additional names with a space. Specify library/design units with the following
syntax:

[<library_name>.]<design_unit>

2 Click on a name in the Design Unit list below and click the Add button.
3 Leave this field blank and click on a name in the Design Unit list (single unit only).

• Simulator Resolution
(-time [<multiplier>]<time_unit>)
The drop-down menu sets the simulator time units (original default is ns).

Simulator time units can be expressed as any of the following:

See also, "Selecting the time resolution" (4-58).

Simulation time units

1fs, 10fs, or 100fs femtoseconds

1ps, 10ps, or 100ps picoseconds

1ns, 10ns, or 100ns nanoseconds

1us, 10us, or 100us microseconds

1ms, 10ms, or 100ms milliseconds

1sec, 10sec, or 100sec seconds
8-258 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface
VHDL settings page

The VHDL page includes these options:

Generics

The Add button opens a dialog box (shown below) that allows you to specify the value
of generics within the current simulation; generics are then added to the Generics list.
You can also select a generic on the listing to Delete or Edit.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-259

From the Specify a
Generic dialog box you can
set the following options.

• Generic Name (-g
<Name>=<Value>)
The name of the generic
parameter. Type it in as it
appears in the VHDL
source (case is ignored).

• Value
Specifies a value for all
generics in the design
with the given name
(above) that have not
received explicit values in generic maps (such as top-level generics and generics that
would otherwise receive their default value). The value must be appropriate for the
declared data type of the generic parameter. No spaces are allowed in the specification
(except within quotes) when specifying a string value.

• Override Instance - specific Values (-G <Name>=<Value>)
Select to override generics that received explicit values in generic maps. The name and
value are specified as above. The use of this switch is indicated in the Override Instance
column of the Generics list.

The OK button adds the generic to the Generics listing; Cancel dismisses the dialog box
without changes.

VITAL

• Disable Timing Checks (+notimingchecks)
Disables timing checks generated by VITAL models.

• Use Vital 2.2b SDF Mapping (-vital2.2b)
Selects SDF mapping for VITAL 2.2b (default is Vital95).

• Disable Glitch Generation (-noglitch)
Disables VITAL glitch generation.

TEXTIO files

• STD_INPUT (-std_input <filename>)
Specifies the file to use for the VHDL textio STD_INPUT file. Use the Browse button
to locate a file within your directories.

• STD_OUTPUT (-std_output <filename>)
Specifies the file to use for the VHDL textio STD_OUTPUT file. Use the Browse button
to locate a file within your directories.
8-260 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface
Verilog settings page

The Verilog page includes these options:

• Delay Selection (+mindelays | +typdelays | +maxdelays)
Use the drop-down menu to select timing for min:typ:max expressions.
Also see: "Timing check disabling" (4-58).

Pulse Options

• Disable pulse error and warning messages (+no_pulse_msg)
Disables path pulse error warning messages.

• Rejection Limit (+pulse_r/<percent>)
Sets the module path pulse rejection limit as a percentage of the path delay.

• Error Limit (+pulse_e/<percent>)
Sets the module path pulse error limit as a percentage of the path delay.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-261

Other Options

• Enable Hazard Checking (-hazards)
Enables hazard checking in Verilog modules.

• Disable Timing Checks in Specify Blocks (+notimingchecks)
Disables the timing check system tasks ($setup, $hold,...) in specify blocks.

• User Defined Arguments (+<plusarg>)
Arguments are preceded with “+”, making them accessible through the Verilog PLI
routine mc_scan_plusargs. The values specified in this field must have a "+" preceding
them or ModelSim may incorrectly parse them.

Libraries settings page

The Libraries page includes these options:

• Search Libraries (-L)
Specifies the library to search for design units instantiated from Verilog.

• Search Libraries First (-Lf)
Same as Search Libraries but these libraries are searched before ‘uselib.
8-262 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface
SDF settings page

The SDF (Standard Delay Format) page includes these options:

SDF Files

The Add button opens a dialog box that allows you to specify the SDF files to load for
the current simulation; files are then added to the Region/File list. You may also select
a file on the listing to Delete or Edit (opens the dialog box below).
ModelSim SE User’s Manual ModelSim Graphic Interface 8-263

Simulating with the graphic interface
From the Specify an SDF File dialog box you can set the following options.

• SDF file ([<region>] = <sdf_filename>)
Specifies the SDF file to use for annotation. Use the Browse button to locate a file within
your directories.

• Apply to region ([<region>] = <sdf_filename>)
Specifies the design region to use with the selected SDF options.

• Delay Selection (-sdfmin | -sdftyp | -sdfmax)
The drop-down menu selects delay timing (min, typ or max) to be used from the specified
SDF file. See also, "Specifying SDF files for simulation" (12-326).

The OK button places the specified SDF file and delay on the Region/File list; Cancel
dismisses the dialog box without changes.

SDF options

• Disable SDF warnings (-sdfnowarn)
Select to disable warnings from the SDF reader.

• Reduce SDF errors to warnings (-sdfnoerror)
Change SDF errors to warnings so the simulation can continue.

• Multi-Source Delay (-multisource_delay <sdf_option>)
Select max, min or latest delay. Controls how multiple PORT or INTERCONNECT
constructs that terminate at the same port are handled. By default, the Module Input Port
Delay (MIPD) is set to the max value encountered in the SDF file. Alternatively, you can
choose the min or latest of the values.
8-264 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface
Setting default simulation options

Select Options > Simulation... (Main window) to bring up the Simulation Options dialog
box shown below. Options you can set for the current simulation include: default radix,
default force type, default run length, iteration limit, warning suppression, break on
assertion specifications, and WLF file configuration. OK accepts the changes made and
closes the dialog box. Apply makes the changes with the dialog box open so you can test
your settings. Cancel closes the dialog box and makes no changes. The options found on
each page are detailed below.

Note: Changes made in the Simulation Options dialog box are the default for the current
simulation only. Options can be saved as the default for future simulations by editing the
simulator control variables in the modelsim.ini file; the variables to edit are noted in the text
below. You can use Notepad (see notepad command (CR-141)) to edit the variables in
modelsim.ini if you wish. See also, "Projects and system initialization" (2-25) for more
information.

Default settings page

The Defaults page includes these options:

• Default Radix
Sets the default radix for the current simulation run. You can also use the radix (CR-166)
command to set the same temporary default. A permanent default can be set by editing
the DefaultRadix (B-399) variable in the modelsim.ini file. The chosen radix is used for
all commands (force (CR-121), examine (CR-115), change (CR-52) are examples) and for
displayed values in the Signals, Variables, Dataflow, List, and Wave windows.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-265

Simulating with the graphic interface
• Suppress Warnings
Selecting From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. Edit the StdArithNoWarnings (B-400) variable
in the modelsim.ini file to set a permanent default.

Selecting From IEEE Numeric Std Packages suppresses warnings generated within the
accelerated numeric_std and numeric_bit packages. Edit the NumericStdNoWarnings (B-

400) variable in the modelsim.ini file to set a permanent default.

• Default Run
Sets the default run length for the current simulation. Edit the RunLength (B-400) variable
in the modelsim.ini file to set a permanent default.

• Iteration Limit
Sets a limit on the number of deltas within the same simulation time unit to prevent
infinite looping. Edit the IterationLimit (B-399) variable in the modelsim.ini file to set a
permanent iteration limit default.

• Default Force Type
Selects the default force type for the current simulation. Edit the DefaultForceKind (B-

399) variable in the modelsim.ini file to set a permanent default.

Assertion settings page

The Assertions page includes these options:

• Break on Assertion
Selects the assertion severity that will stop simulation. Edit the BreakOnAssertion (B-398)
variable in the modelsim.ini file to set a permanent default.
8-266 ModelSim Graphic Interface ModelSim SE User’s Manual

Simulating with the graphic interface
• Ignore Assertions For
Selects the assertion type to ignore for the current simulation. Multiple selections are
possible. Edit the IgnoreFailure, IgnoreError, IgnoreWarning, and IgnoreNote (B-399)
variables in the modelsim.ini file to set permanent defaults.

When an assertion type is ignored, no message will be printed, nor will the simulation
halt (even if break on assertion is set for that type).

Note: Assertions that appear within an instantiation or configuration port map clause
conversion function will not stop the simulation regardless of the severity level of the
assertion.

WLF settings page

The WLF Files page includes these options:

• WLF File Size Limit
Limits the WLF file by size (as closely as possible) to the specified number of megabytes.
If both size and time limits are specified, the most restrictive is used. Setting it to 0 results
in no limit. Edit the WLFSizeLimit (B-401) variable in the modelsim.ini file to set a
permanent default.

• WLF File Time Limit
Limits the WLF file by size (as closely as possible) to the specified amount of time. If
both time and size limits are specified, the most restrictive is used. Setting it to 0 results
in no limit. Edit the WLFTimeLimit (B-401) variable in the modelsim.ini file to set a
permanent default.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-267

Simulating with the graphic interface
• Compress WLF data
Compresses WLF files to reduce their size. You would typically only disable
compression for troubleshooting purposes. Edit the WLFCompress (B-401) variable in the
modelsim.ini file to set a permanent default.

• Delete WLF file on exit
Specifies whether the WLF file should be deleted when the simulation ends. Edit the
WLFDeleteOnQuit (B-401) variable in the modelsim.ini file to set a permanent default.

• Design Hierarchy
Specifies whether to save all design hierarchy in the WLF file or only regions containing
logged signals. Edit the WLFSaveAllRegions (B-401) variable in the modelsim.ini file to
set a permanent default.
8-268 ModelSim Graphic Interface ModelSim SE User’s Manual

ModelSim tools
ModelSim tools

Several tools are available from ModelSim menus. The menu selections to locate the tools
are below the tool names. Follow the links for more information on each tool.

• "The Button Adder" (8-269)

Window > Customize (any window)
Allows you to add a temporary function button or toolbar to any window.

• "The Macro Helper" (8-270)

Macro > Macro Helper (Main window)
Creates macros by recording mouse movements and key strokes. UNIX only (excluding
Linux).

• "The Tcl Debugger" (8-271)

Macro > Tcl Debugger (Main window)
Helps you debug your Tcl procedures.

• "The GUI Expression Builder" (8-275)

Edit > Search > Search for Expression > Builder (List or Wave window)
Helps you build logical expressions for use in Wave and List window searches and
several simulator commands. For expression format syntax see
"GUI_expression_format" (CR-297).

The Button Adder

The ModelSim Button Adder creates a single button, or a combined button and toolbar in
any currently opened ModelSim window. The button exists until you close the window.
(See "Buttons the easy way" (8-279).)

Note: When a button is created with the Button Adder, the commands that created the
button are echoed in the transcript. The transcript can then be saved and used as a DO file,
allowing you to reuse the commands to recreate the button from a startup DO file. See
"Using a startup file" (B-404) for additional information.

Invoke the Button Adder from any ModelSim window menu: Window > Customize.

You have the following options
for adding a button:

• Window Name is the name of
the window to which you
wish to add the button.

• Button Name is the button’s
label.

• Function can be any
command or macro you
might execute from the ModelSim command line. For example, you might want to add a
Run or Step button to the Wave window.

Locate the button within the window with these selections:

• Toolbar places the button on a new toolbar.

• Footer adds the button to the Main window’s status bar.
ModelSim SE User’s Manual ModelSim Graphic Interface 8-269

ModelSim tools
Justify the button within the menu bar/toolbar with these selections:

• Right places the button on the right side of the menu/toolbar.

• Left adds the button on the left side of the menu/toolbar.

• Top places the button at the top/center of the menu bar or toolbar.

• Bottom places the button at the bottom/center of the menu bar or toolbar.

The Macro Helper

This tool is available for UNIX only (excluding Linux).

The purpose of the Macro Helper is to aid macro creation by recording a simple series of
mouse movements and key strokes. The resulting file can be called from a more complex
macro by using the play (CR-148) command. Actions recorded by the Macro Helper can
only take place within the ModelSim GUI (window sizing and repositioning are not
recorded because they are handled by your operating system’s window manager). In
addition, the run (CR-176) commands cannot be recorded with the Macro Helper but can be
invoked as part of a complex macro.

Select Macro > Macro Helper (Main
window) to access the Macro Helper.

• Record a macro
by typing a new macro file name into
the field provided, then press Record.
Use the Pause and Stop buttons as
shown in the table below.

• Play a macro
by entering the file name of a Macro Helper file into the field and pressing Play.

Files created by the Macro Helper can be viewed with the notepad (CR-141).

See the macro_option command (CR-135) for playback speed, delay and debugging options
for completed macro files.

Button Description

Record/Stop Record begins recording and toggles to Stop once a recording
begins

Insert Pause inserts a .5 second pause into the macro file; press the button more
than once to add more pause time; the pause time can
subsequently be edited in the macro file

Play plays the Macro Helper file specified in the file name field
8-270 ModelSim Graphic Interface ModelSim SE User’s Manual

ModelSim tools
The Tcl Debugger

We would like to thank Gregor Schmid for making TDebug available for use in the public
domain.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of FITNESS FOR A PARTICULAR
PURPOSE.

Starting the debugger

Select Macro > Tcl Debugger (Main window) to run the debugger. Make sure you use the
ModelSim and TDebug menu selections to invoke and close the debugger. If you would like
more information on the configuration of TDebug see Help > Technotes > tdebug.

The following text is an edited summary of the README file distributed with TDebug.

How it works

TDebug works by parsing and redefining Tcl/Tk-procedures, inserting calls to ‘td_eval’ at
certain points, which takes care of the display, stepping, breakpoints, variables etc. The
advantages are that TDebug knows which statement in what procedure is currently being
executed and can give visual feedback by highlighting it. All currently accessible variables
and their values are displayed as well. Code can be evaluated in the context of the current
procedure. Breakpoints can be set and deleted with the mouse.

Unfortunately there are drawbacks to this approach. Preparation of large procedures is slow
and due to Tcl’s dynamic nature there is no guarantee that a procedure can be prepared at
all. This problem has been alleviated somewhat with the introduction of partial preparation
of procedures. There is still no possibility to get at code running in the global context.

The Chooser

Select Macro > Tcl Debugger (Main window) to open the TDebug chooser.

The TDebug chooser has three parts. At
the top the current interpreter, vsim.op_,
is shown. In the main section there are
two list boxes. All currently defined
procedures are shown in the left list
box. By clicking the left mouse button
on a procedure name, the procedure
gets prepared for debugging and its
name is moved to the right list box.
Clicking a name in the right list box
returns a procedure to its normal state.

Press the right mouse button on a
procedure in either list box to get its
program code displayed in the main
debugger window.

The three buttons at the bottom let you
force a Rescan of the available
procedures, Popup the debugger window or Exit TDebug. Exiting from TDebug doesn’t
ModelSim SE User’s Manual ModelSim Graphic Interface 8-271

ModelSim tools
terminate ModelSim, it merely detaches from vsim.op_, restoring all prepared procedures
to their unmodified state.

The Debugger

Select the Popup button in the Chooser to open the debugger window.

The debugger window is divided into the main region with the name of the current
procedure (Proc), a listing in which the expression just executed is highlighted, the Result
of this execution and the currently available Variables and their values, an entry to Eval
expressions in the context of the current procedure and some button controls for the state
of the debugger.

A procedure listing displayed in the main region will have a darker background on all lines
that have been prepared. You can prepare or restore additional lines by selecting a region
(<Button-1>, standard selection) and choosing Selection > Prepare Proc or Selection >
Restore Proc from the debugger menu (or by pressing ^P or ^R).

When using ‘Prepare’ and ‘Restore’, try to be smart about what you intend to do. If you
select just a single word (plus some optional white space) it will be interpreted as the name
of a procedure to prepare or restore. Otherwise, if the selection is owned by the listing, the
corresponding lines will be used.

Be careful with partial prepare or restore! If you prepare random lines inside a ‘switch’ or
‘bind’ expression, you may get surprising results on execution, because the parser doesn’t
know about the surrounding expression and can’t try to prevent problems.
8-272 ModelSim Graphic Interface ModelSim SE User’s Manual

ModelSim tools
There are seven possible debugger states, one for each button and an ‘idle’ or ‘waiting’ state
when no button is active. The button-activated states are:

Closing the debugger doesn’t quit it, it only does ‘wm withdraw’. The debugger window
will pop up the next time a prepared procedure is called. Make sure you close the debugger
with Debugger > Close.

Breakpoints

To set/unset a breakpoint, double-click inside the listing. The breakpoint will be set at the
innermost available expression that contains the position of the click. There’s no support
for conditional or counted breakpoints.

The Eval entry supports a simple history mechanism available via the <Up_arrow> and
<Down_arrow> keys. If you evaluate a command while stepping through a procedure, the
command will be evaluated in the context of the procedure; otherwise it will be evaluated
at the global level. The result will be displayed in the result field. This entry is useful for a
lot of things, but especially to get access to variables outside the current scope.

Button Description

Stop stop after next expression, used to get out of slow/fast/nonstop
mode

Next execute one expression, then revert to idle

Slow execute until end of procedure, stopping at breakpoints or when
the state changes to stop; after each execution, stop for ‘delay’
milliseconds; the delay can be changed with the ‘+’ and ‘-’ buttons

Fast execute until end of procedure, stopping at breakpoints

Nonstop execute until end of procedure without stopping at breakpoints or
updating the display

Break terminate execution of current procedure
ModelSim SE User’s Manual ModelSim Graphic Interface 8-273

ModelSim tools
Try entering the line ‘global td_priv’ and watch
the Variables box (with global and array
variables enabled of course).

Configuration

You can customize TDebug by setting up a file
named .tdebugrc in your home directory. See the
TDebug README at Help > Technotes >
tdebug for more information on the configuration
of TDebug.

TclPro Debugger

The Macro menu in the Main window contains a
selection for the TclPro Debugger from Scriptics
Corporation. This debugger can be acquired from
Scriptics at their web site: www.scriptics.com.
Once acquired, do the following steps to use the
TclPro Debugger:

1 Launch TclPro Debugger

2 Launch ModelSim

3 Select Macro > TclPro Debugger (Main window)

This will connect ModelSim to the Scriptics TclPro Debugger.
8-274 ModelSim Graphic Interface ModelSim SE User’s Manual

ModelSim tools
The GUI Expression Builder

The GUI Expression Builder is a feature of the Wave and List Signal Search dialog boxes,
and the List trigger properties dialog box. It aids in building a search expression that
follows the "GUI_expression_format" (CR-297).

To locate the Builder:

• select Edit > Search (List or Wave window)

• select the Search for Expression option in the resulting dialog box

• select the Builder button

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in a signal name, you can select the signal in
the associated Wave or List window and press Insert Reference Signal in the Expression
Builder. The result will be the full signal name added to the expression field. All Expression
Builder buttons correspond to the "Expression syntax" (CR-302).
ModelSim SE User’s Manual ModelSim Graphic Interface 8-275

ModelSim tools
To search for when a signal reaches a particular value

Select the signal in the Wave window and click Insert Reference Signal and ==. Then,
click the value buttons or type a value.

To evaluate only on clock edges

Click the && button to AND this condition with the rest of the expression. Then select the
clock in the Wave window and click Insert Reference Signal and ‘rising. You can also
select the falling edge or both edges.

Operators

Other buttons will add operators of various kinds (see "Expression syntax" (CR-302)), or you
can type them in.

To save the expression as a Tcl variable

The Save button allows you to save the expression to a Tcl variable.

See"Setting up a List trigger with Expression Builder" (E-444) for an additional Expression
builder example.
8-276 ModelSim Graphic Interface ModelSim SE User’s Manual

Graphic interface commands
Graphic interface commands

The following commands provide control and feedback during simulation as well as the
ability to edit, and add menus and buttons to the interface. Only brief descriptions are
provided here; for more information and command syntax see the ModelSim Command
Reference.

Window control and
feedback commands

Description

batch_mode (CR-42) returns a 1 if ModelSim is operating in batch mode, otherwise returns a 0;
it is typically used as a condition in an if statement

configure (CR-88) invokes the List or Wave widget configure command for the current
default List or Wave window

down (CR-105) moves the active marker in the List window down to the next transition on
the selected signal that matches the specifications

getactivecursortime (CR-124) gets the time of the active cursor in the Wave window

getactivemarkertime (CR-125) gets the time of the active marker in the List window

left (CR-129) searches left through the specified Wave window for signal transitions or
values

notepad (CR-141) a simple text editor; used to view and edit ASCII files or create new files

play (CR-148) UNIX only (excluding Linux) - replays a sequence of keyboard and
mouse actions that were previously saved to a file with the record
command (CR-167)

property list (CR-161) changes properties of an HDL item in the List window display

property wave (CR-162) changes properties of an HDL item in the waveform or signal name display
in the Wave window

record (CR-167) UNIX only (excluding Linux) - starts recording a replayable trace of all
keyboard and mouse actions

right (CR-174) searches right through the specified Wave window for signal transitions or
values

search (CR-178) searches the specified window for one or more items matching the
specified pattern(s)

seetime (CR-182) scrolls the List or Wave window to make the specified time visible

transcribe (CR-193) displays a command in the Main window, then executes the command

up (CR-196) moves the active marker in the List window up to the next transition on the
selected signal that matches the specifications

write preferences (CR-280) saves the current GUI preference settings to a Tcl preference file
ModelSim SE User’s Manual ModelSim Graphic Interface 8-277

Graphic interface commands
Window menu and button
commands

Description

add button (CR-26) adds a user-defined button to the Main window button bar

add_menu (CR-31) adds a menu to the menu bar of the specified window

add_menucb (CR-33) creates a checkbox within the specified menu of the specified window

add_menuitem (CR-34) creates a menu item within the specified menu of the specified window

add_separator (CR-35) adds a separator as the next item in the specified menu path in the specified
window

add_submenu (CR-36) creates a cascading submenu within the specified menu_path of the
specified window

change_menu_cmd (CR-53) changes the command to be executed for a specified menu item label, in the
specified menu, in the specified window

disable_menu (CR-102) disables the specified menu within the specified window; useful if you
want to restrict access to a group of ModelSim features

disable_menuitem (CR-103) disables a specified menu item within the specified menu_path of the
specified window; useful if you want to restrict access to a specific
ModelSim feature

enable_menu (CR-112) enables a previously-disabled menu

enable_menuitem (CR-113) enables a previously-disabled menu item
8-278 ModelSim Graphic Interface ModelSim SE User’s Manual

Customizing the interface
Customizing the interface

Try customizing ModelSim’s interface yourself; use the command examples for add
button (CR-26) and add_menu (CR-31) to add a button to the Main window, and a new
menu to the Signals window (8-193). Results of the button and menu commands are shown
below

Buttons the easy way

"The Button Adder" (8-269) tool makes adding buttons easy. Select Window > Customize
in any window to access the Button Adder. Buttons you create are not permanent; they exist
only during the current session. To reuse a button, save the Main transcript (File > Save
Transcript As) after the button is created. Edit the file to contain only button-creation
commands, then pass the filename as an argument to the do command (CR-104) to recreate
the button.

• The pwd button was added to the Main
window with the add button command (CR-

26). Buttons can be added to the status bar as
well.

• The Mine menu was added to the Signals
window with the add_menu command (CR-

31).

• The Do My Own Thing menu item was added
with the add_menuitem command (CR-34)

• The menu separator was added with the
add_separator command (CR-35).

• The ChangeCase and Vars submenus were
added with the add_submenu command (CR-

36).

• You can also add a menu checkbox (like those
in this menu tearoff) with the add_menucb
command (CR-33).
ModelSim SE User’s Manual ModelSim Graphic Interface 8-279

8-280 ModelSim Graphic Interface ModelSim SE User’s Manual

9 - Performance Analyzer

Chapter contents
Introducing Performance Analysis. 9-282

A Statistical Sampling Profiler 9-282

Getting Started 9-283

Interpreting the data 9-283
Viewing Performance Analyzer Results 9-284
Interpreting the Name Field 9-286
Interpreting the Under(%) and In(%) Fields 9-286
Differences in the Ranked and Hierarchical Views 9-287

Ranked/Hierarchical Profile Window Features 9-288
The report option 9-289

Setting preferences with Tcl variables 9-290

Performance Analyzer commands 9-290

You can use the Performance Analyzer to easily identify areas in your simulation where
performance can be improved. The Performance Analyzer can be used at all levels of
design simulation – Functional, RTL, and Gate Level – and has the potential to save hours
of regression test time. In addition, ASIC and FPGA design flows benefit from the use of
this tool.

Note: The Performance Analyzer does not work on Windows 95.
ModelSim SE User’s Manual Performance Analyzer 9-281

Introducing Performance Analysis
Introducing Performance Analysis

The Performance Analyzer provides an interactive graphical representation of where
ModelSim is spending its time while running your design. This feature enables you to
quickly determine what is impacting the design environment’s simulation performance.
Those familiar with the design and validation environment will be able to find first-level
improvements in a matter of minutes.

For example, the Performance Analyzer might show some or all of the following

• A non-accelerated VITAL library cell is impacting simulation run time

• A process is consuming more time than necessary because of non-required items in its
sensitivity list

• A testbench process is active even though it is not needed

• A random number process is consuming simulation resources when in a test bench that
is running in non-random mode

With this information, you can make changes to the VHDL or Verilog source code that will
speed up the simulation.

A Statistical Sampling Profiler

The Performance Analyzer feature in ModelSim is a statistical sampling profiler. It
periodically "wakes up" and samples the current simulation at a user-determined rate, and
records what is executing in the simulation during the sample period. The advantage of
statistical analysis is that an entire simulation may not have to be run to get good
information from the Performance Analyzer. A few thousand samples, for example, can be
accumulated before pausing the simulation to see where simulation time is being spent.
9-282 Performance Analyzer ModelSim SE User’s Manual

Getting Started
During sampling, the Samples field in the footer of the Main window displays the number
of profiling samples collected, and each sample becomes one data point in the simulation
profile.

Getting Started

Performance analysis occurs during the ModelSim run command and is displayed
graphically as a profile of simulator performance. To enable the Performance Analyzer, use
the profile on command at the VSIM prompt. After this command is executed, all
subsequent run commands will have profiling statistics gathered for them. With the
Performance Analyzer enabled and a run command initiated, the simulator will provide a
message indicating that profiling has started.

The Performance Analyzer is turned off by issuing the profile off command at the VSIM
prompt. Any ModelSim run commands that follow will not be profiled.

Profiling results are cumulative. Therefore, each run command performed with profiling
ON will add new information to the data being gathered. To clear this data, issue the profile
clear command at the VSIM prompt.

Interpreting the data

The Performance Analyzer is most helpful in those situations where a high percentage of
simulation time is being spent in a particular module. For example, say the Performance
Analyzer shows that the simulation is spending 60% of its time in module X. This
information can be used to find where module X was implemented poorly and to implement
a change that runs several times faster.

More commonly, the Performance Analyzer will tell you that 30% of simulation time was
spent in model X, 25% in model Y, and 20% in model Z. In such situations, careful
ModelSim SE User’s Manual Performance Analyzer 9-283

Interpreting the data
examination and improvement of each model may result in a significant overall speed
improvement.

There are times, however, when the Performance Analyzer tells you nothing better than that
the simulation has executed in several hundred different models and has spent less than 1%
of its time in any one of them. In such situations, the Performance Analyzer provides little
helpful information and simulation improvement must come from a higher level
examination of how the design can be changed or optimized.

Viewing Performance Analyzer Results

The Performance Analyzer provides two views of the collected data – a hierarchical and a
ranked view. The hierarchical view is accessed by clicking View > Other > Hierarchical
Profile (Main window). The ranked view is accessed by selecting View > Other > Ranked
Profile.
9-284 Performance Analyzer ModelSim SE User’s Manual

Interpreting the data
The Hierarchical view can also be invoked by entering view_profile at the VSIM prompt.
In the Hierarchical Profile window, you can expand and collapse various levels to hide data
that is not useful and/or is cluttering the data display. Click on a the ’-’ box to collapse all
levels beneath the entry. Click on the ’+’ box to expand an entry. By default, all levels are
fully expanded. In the hierarchical view below, two lines (retrieve.vhd:35 and store.vhd:43)
are taking the majority of the simulation time.
ModelSim SE User’s Manual Performance Analyzer 9-285

Interpreting the data
The Ranked view can be invoked by entering view_profile_ranked. The modules and code
lines are ranked in order of the amount of simulation time used. The two lines that are
taking up most of the simulation time – retrieve.vhd:35 and store.vhd:43 – appear at the top
of the list under the VHDL module that contains them.

Interpreting the Name Field

The Name, Under(%) and In(%) fields appear in both the ranked and hierarchical views.
These fields are interpreted identically in both views. Typically a Name consists of an HDL
file and line number pair. Most useful names consist of a line of VHDL or Verilog source
code. If you use a PLI/VPI or FLI routine, then the name of the C function that implements
that routine can also appear in the name field.

vsim is a stripped executable file, so that any functions inside of it will be credited to the
line of code that uses the function.

The hierarchical view opens with all levels displayed. You can collapse the hierarchical
view by clicking the boxes next to the high-level names. At this time, the hierarchical view
will not remember which levels are opened or closed when data is reloaded. By default,
hierarchical levels are opened every time data is reloaded.

Interpreting the Under(%) and In(%) Fields

The In(%) and Under(%) columns describe the percentage of the total simulation time
spent in and under a function listed in the Name field.

The distinction between In(%) and Under(%) is subtle but important. For the
retrieve.vhd:35 entry in the hierarchical and ranked views above, Under(%) is 44 and In(%)
is 10. "Under(%)" means that this particular line and all support routines it needed took
44% of total simulation time. "In(%)" means that 10% of the total simulation time was
actually spent executing this line of VHDL code.
9-286 Performance Analyzer ModelSim SE User’s Manual

Interpreting the data
In the body of the Hierarchical Profile or Ranked Profile windows, you can double-click on
any VHDL/Verilog file and line-number pair to bring up that file in the Source Window
with the selected line highlighted. In the diagram below, retrieve.vhd:35 was selected in the
Hierarchical Profile and, consequently, is highlighted in the Source window.

The actual line of VHDL code for retrieve.vhd:35 is:

IF (i=ramadrs((counter_size-1)downto 0))THEN

Differences in the Ranked and Hierarchical Views

The hierarchical view differs from the ranked view in two important respects.

• Entries in the Name column of the hierarchical view are indented in order to show which
functions or routines call which others.

• A %Parent column in the hierarchical view allows you to see what percentage of a parent
routine’s simulation time is used in which subroutines.

Indentation in the Name column of the Hierarchical Profile window indicates which line is
calling a function. For example, in the hierarchical view above, the line store.vhd:43 calls
ieee_src/mti_std_logic_unsigned.vhd:429.

The hierarchical view presents data in a call-graph style format that provides more context
than does the ranked view about where simulation time is spent . For example, your models
may contain several instances of a utility function that compute the maximum of 3-delay
values. A ranked view might reveal that the simulation spent 60% of its time in this utility
function, but would not tell you which routine or routines were making the most use of it.
The hierarchical view will reveal which line is calling the function most frequently. Using
this information, you might decide that instead of calling the function every time to
compute the maximum of the 3-delays, this spot in your VHDL code can be used to
compute it just once. You can then store the maximum delay value in a local variable.

The %Parent column provides the percent of simulation time a given entry used of its
parent’s total simulation time. From this column, you can calculate the percentage of total
simulation time taken up by any function. For example, if a particular parent entry used
ModelSim SE User’s Manual Performance Analyzer 9-287

Ranked/Hierarchical Profile Window Features
10% of the total simulation time, and it called a routine that used 80% of its simulation time,
then the percentage of total simulation time spent in that routine would be 80% of 10%, or
8%.

In addition to these differences, the ranked view displays any particular function only once,
regardless of where it was used. In the hierarchical view, the function can appear multiple
times – each time in the context of where it was used.

Ranked/Hierarchical Profile Window Features

The Ranked and Hierarchical Profile windows have a number of features that can
manipulate the data displayed. Most of these features are contained in a toolbar in the
header of the window, which displays an icon for each feature. Placing the mouse over an
icon causes its function to be displayed.

The Find Entry
icon provides
access to a search
function that can
be used to search
for a given string
in the window.
Type text in the
entry box and then
press Return or
click the
binocular icon.

The Under%
filter allows you
to specify a cutoff
percentage for
displaying the
data. By default,
every entry in the
profiling data that
has spent at least
1% of the
simulation time
under that entry
will be displayed.

The hierCutoff
and rankCutoff
variables provide
a similar function.
See "Setting
preferences with
Tcl variables" (9-

290).

The Update Data
icon causes the
data to be
reloaded from the
simulator. If you
change the cutoff
percentage or do
an additional
simulation run the
Ranked and
Hierarchical
Profile windows
are not
automatically
updated. You
should click on
this button to
update the data
being displayed in
these windows.

The Save to File
icon allows the
data to be saved to
disk. You will be
prompted for the
output file name.

The profile
report command
(CR-158) provides
another way to
save profile data.
9-288 Performance Analyzer ModelSim SE User’s Manual

Ranked/Hierarchical Profile Window Features
The report option

You can also use the profile report command (CR-158) to save the Performance Analyzer
results.

profile report [<option>]

The arguments to the command are [-hierarchical | -ranked] [-file<filename>] [-cutoff
<percentage>]. For example, the command

profile report -hierarchical -file hier.rpt -cutoff 4

will produce a profile report in a text file called hier.rpt, as shown here.
ModelSim SE User’s Manual Performance Analyzer 9-289

Setting preferences with Tcl variables
Setting preferences with Tcl variables

Various Tcl variables control how the Hierarchical Profile and Ranked Profile windows are
displayed.You can set these preference variables by selecting Options > Edit Preferences
> By Name > Profile (Main window). Use the Apply button to view temporary changes,
or Save the changes to a local modelsim.tcl file. Once saved, the preferences will be the
default for subsequent simulations invoked from the same directory. See http://
www.model.com/resources/pref_variables/frameset.htm for more information on the
individual variables.

Performance Analyzer commands

The table below provides a brief description of the profile commands; follow the links for
complete command syntax.

See the ModelSim Command Reference for complete command details.

Command Description

profile clear (CR-153) clears any data that has been gathered during previous run commands;
after this command is executed, all profiling data will be reset

profile interval (CR-154) selects the frequency with which the profiler collects samples during a run
command

profile off (CR-155) disables runtime profiling

profile on (CR-156) enables runtime analysis of where your simulation is spending its time

profile option (CR-157) changes various profiling options

profile report (CR-158) produces a textual output of the profiling statistics that have been
gathered up to this point
9-290 Performance Analyzer ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

10 - Code Coverage

Chapter contents
Enabling Code Coverage 10-292

The coverage_source window 10-296
Excluding lines and files 10-296

The coverage_summary window 10-292
Summary information 10-293
Misses tab 10-293
Exclusions tab 10-293
The coverage_summary window menu bar 10-294
Merging coverage report files 10-298

Exclusion filter files 10-299
Syntax 10-299
Arguments. 10-299
Example 10-299
Default filter file 10-299

Code Coverage preference variables 10-300

Code Coverage commands. 10-300

Code Coverage gives you graphical and report file feedback on how your source code is
being executed. This integrated feature provides three important benefits to the ModelSim
user:

1 Because it’s integrated into the ModelSim engine, it is totally non-intrusive – it doesn’t
require instrumented HDL code as do third-party code coverage products.

2 It has very little impact on simulation performance (typically less than 5%).

3 There is no need to recompile to obtain code coverage statistics. ModelSim version 5.3 and
later libraries fully support this feature.
ModelSim SE User’s Manual Code Coverage 10-291

Enabling Code Coverage
Enabling Code Coverage

To enable code coverage, begin simulation with the -coverage option to the vsim command
(CR-258). With coverage enabled, ModelSim counts how many times each executable line
is executed during simulation (number of "hits"). The information is then displayed in the
coverage_source and coverage_summary windows. Or, you can save the information in
several different text reports (see below for details).

Note: To view the maximum number of lines while doing code coverage, use the
-O0 (capital O zero) argument when you compile your design files. This argument
minimizes compiler optimizations.

The coverage_summary window

The coverage_summary window provides a graphical view of code coverage. To display
the coverage_summary window, select View > Other > Source Coverage (Main window)
or enter view_coverage at the VSIM prompt.

The window is split into two panes: the top pane displays Summary information (10-293) on
a per file basis; the bottom pane displays lines misses on the Misses tab (10-293) and file or
line exclusions on the Exclusions tab (10-293).

summary

misses and
exclusions
10-292 Code Coverage ModelSim SE User’s Manual

The coverage_summary window
The coverage_summary window is linked to The coverage_source window (10-296). When
you select a file in the top pane, that file displays in the coverage_source window. Likewise,
if you select a line number in the bottom pane, that line is scrolled to in the coverage_source
window. In addition, any exclusions you make in the coverage_summary window
automatically show up in the coverage_source window and vice versa.

Summary information

The top pane of the coverage_summary window shows all of the design files that have
executable lines of code. The columns of information include:

• The Pathname column shows the path and file name.

• The Lines column contains the number of executable lines in the file.

• The Hits column indicates the number of executable lines that have been executed in the
current simulation.

• The Percentage column is the current ratio of Hits to Lines. There is also a bar chart that
graphically displays this percentage. If the coverage percentage is below 90%, the bar
chart is displayed in red (you can change the percentage by editing the
PrefCoverage(cutoff) preference variable).

By default, the summary information is sorted by Pathname. You can sort by another
column by clicking on the column heading (i.e., Lines, Hits, %).

A totals row at the bottom of the summary information shows coverage statistics for all of
the files combined.

Misses tab

The Misses tab lists lines from the current file with no hits. Select a file in the top pane of
the coverage_summary window to see that file’s missed lines.

This tab also lets you select lines to exclude. Select the line(s) you want to exclude, click
your right mouse button, and select Exclude Selected Lines. The lines you exclude will be
shown in the Exclusions tab and also marked with a green "X" in The coverage_source
window (10-296).

Exclusions tab

The Exclusions tab lists all file and line exclusion filters for the current simulation. This
includes line or file exclusions made in the Misses tab or in the coverage_source window.

The Exclusions tab offers several commands via a context menu. Click anywhere within
the tab with your right mouse button to get the following context menu:

The menu has the following options:

• Include Entire Selected Files
Adds selected lines or files back into the
coverage statistics. If you have multiple lines
excluded in one file, it will add back all of
them. To add back individual lines, use the
coverage_source window.
ModelSim SE User’s Manual Code Coverage 10-293

The coverage_summary window
• Revert To Initial Filter
Returns filtering to the default exclusion filter file

• Clear Out Current Filter
Clears active exclusion filters

• Load a New Filter
Opens a different exclusion filter file

• Disable/Enable Filtering
Disables/enables filtering. Acts as a toggle. Allows you to temporarily turn off filtering
to see raw code coverage statistics.

• Cancel
Closes the context menu

The coverage_summary window menu bar

The coverage_summary window has three menus: File, Coverage, and Report. Brief
descriptions of each command are given below.

File menu

Coverage menu

Open > Coverage >
Merge Coverage

Merges saved reports into the current analysis. See "Merging
coverage report files" (10-298) for more details

Open > Coverage >
Apply a Previous
Coverage

Clears the current coverage statistics and loads a previously
saved coverage report

Open > Load a New
Filter

Loads an exclusion filter file. See "Exclusion filter files" (10-

299) for more details

Save > Line Coverage Saves a textual report of the source file summary data and
details for each executable line in the file

Save > Current Filter Saves the current exclusion filter to a file that can be reloaded
later. See "Exclusion filter files" (10-299) for more details

Close Closes the view_coverage window

Clear Current Coverage Clears the current coverage statistics

Revert To Initial Filter Returns filtering to the default exclusion filter file

Clear out Current Filter Clears active exclusion filters

Disable/Enable Filtering Disables/Enables filtering. Acts as a toggle.
10-294 Code Coverage ModelSim SE User’s Manual

The coverage_summary window
Report menu

Save Summary Coverage Saves a textual report of the summary lines, hits, and
percentages for each source file being analyzed

Save Line Coverage Saves a textual report of the source file summary data and
details for each executable line in the file

Save Excluded Lines Saves a textual report of the lines and files that are currently
being excluded from the coverage statistics

Save Zeroed Lines Saves a textual report like the Line Coverage report but only
includes those lines that have zero coverage

Save Totals Saves a one line text report of the total files, lines, hits and
overall percentage for the current analysis

Save As Lets you choose from the above reports in one dialog
ModelSim SE User’s Manual Code Coverage 10-295

The coverage_source window

You can open the coverage_source window by selecting a file in the pathname column of
"The coverage_summary window" (10-292). The coverage_source window is an enhanced
version of the standard Source window (8-201). When code coverage is enabled, an
additional column appears on the left side of the window. This column identifies how many
times each executable line of code has been executed during simulation (lines that are not
executed are highlighted with a red zero); and it marks with a green "X" lines that have been
excluded from the code coverage statistics.

You can skip to "missed lines" using the Edit > Previous Coverage Miss and Edit > Next
Coverage Miss commands, or by pressing <Shift> - <Tab> (previous miss) or Tab (next
miss).

Excluding lines and files

There may be certain lines or files that you do not want to include in the code coverage
statistics. In the coverage_source window, click your right mouse button in the far-left
column (the one with the hit counts) to display the following context menu:

The menu has the following options:

• Exclude Coverage Line #
Excludes the specified line number from the
code coverage statistics.

• Exclude Entire File
Excludes the entire file from the code
coverage statistics.
10-296 Code Coverage ModelSim SE User’s Manual

The coverage_source window
• Do Not Exclude Coverage Line #
Adds the specified line number back into the code coverage statistics .

• Do Not Exclude Entire File
Adds the file back into the code coverage statistics.

Any exclusions you make in the coverage_source window will show up in the Excluded tab
of The coverage_summary window (10-292).
ModelSim SE User’s Manual Code Coverage 10-297

Merging coverage report files
Merging coverage report files

You can merge the results from two or more analyses. Select File > Open > Coverage >
Merge Coverage from the coverage_summary window.

The Merge Coverage Reports dialog has the following options:

• Coverage File Name to Read From
Specify one or more saved coverage reports that you want to merge into the current
analysis

• Clear out accumulated coverage data
When checked, clears coverage statistics from the current analysis before merging in
saved coverage reports

• Keep coverage data for files not in the current design
When checked, includes coverage data from all files you are merging in, even if they are
not part of the current design. If you then select one of those included files in the
coverage_source window, it will pop-up an Open Source dialog so you can point to the
location of the file.
10-298 Code Coverage ModelSim SE User’s Manual

Exclusion filter files
Exclusion filter files

Exclusion filter files specify files and line numbers that you wish to exclude from the
coverage statistics. You can create the filter file in any text editor or save the current filter
in the coverage_source window by selecting File > Save > Current Filter. To load the
filter during a future analysis, select File > Open > Load a New Filter.

Syntax
<filename> [[<range> ...] [<line#> ...]] | all
...

Arguments

<filename>

The name of the file you want to exclude. Required. The filter file may include an
unlimited number of filename entries, each on its own line.

<range>, ...

A range of line numbers you want to exclude. Optional. Enter the range in "# - #" format.
For example, 32 - 35. You can specify multiple ranges separated by spaces.

<line#>, ...

A line number that you want to exclude. Optional. You can specify multiple line numbers
separated by spaces.

all

Specifies that all lines in the file should be excluded. Required if a range or line number
is not specified.

Example
control.vhd 72 - 76 84 93
testring.vhd all

Default filter file

The Tcl preference variable PrefCoverage(pref_InitFilterFrom) specifies a default filter
file and path to read when a design is loaded with the -coverage switch. By default this
variable is set to "Exclude.cov". See "Code Coverage preference variables" (10-300) for
details on changing this variable.
ModelSim SE User’s Manual Code Coverage 10-299

Code Coverage preference variables
Code Coverage preference variables

Various Tcl variables control how the coverage data is displayed. You can set these
preference variables by selecting Options > Edit Preferences > By Name > Coverage
(Main window). Use the Apply button to view temporary changes, or Save the changes to
a local modelsim.tcl file. Once saved, the preferences will be the default for subsequent
simulations invoked from the same directory. See http://www.model.com/resources/
pref_variables/frameset.htm for more information on the individual variables.

Code Coverage commands

The commands below are available once Code Coverage is active. Enable code coverage
with the -coverage option to the vsim command (CR-258).

The table below provides a brief description of the coverage commands; follow the links
for complete command syntax.

See the ModelSim Command Reference for complete command details.

Command Description

coverage clear (CR-92) clears all coverage data obtained during previous run commands

coverage reload (CR-93) merges coverage statistics with the output of a previous coverage
report command

coverage report (CR-94) used to produce a textual output of the coverage statistics that have
been gathered up to this point
10-300 Code Coverage ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

11 - Waveform Comparison

Chapter contents
Introducing Waveform Comparison 11-302

Two Modes of Comparison 11-303
Comparing Hierarchical and Flattened Designs 11-303

Graphical Interface to Waveform Comparison 11-305
Opening Dataset Comparison 11-305
Adding Signals, Regions and/or Clocks 11-307
Setting Compare Options 11-314
Wave window display. 11-316
Printing compare differences 11-321
List window display 11-322

Command-line interface to Waveform Comparison 11-323
Preference Variables 11-323
Compare commands 11-323
ModelSim SE User’s Manual Waveform Comparison 11-301

Introducing Waveform Comparison
Introducing Waveform Comparison

The ModelSim Waveform Comparison feature allows you to compare the current live
simulation against a reference wave logfile or dataset (.wlf file), compare two saved
datasets, or compare different parts of the current live simulation. You can view the results
of these comparisons in the Wave and List windows and generate a text file of the results
in the Main window.

With the Waveform Comparison feature you can:

• specify the signals or regions to be compared,

• define tolerances for timing differences,

• set a start time and end time for the comparison,

• limit the comparison to a specific number of timing differences, and

• step through a succession of timing differences via buttons in the Wave window.

By default, Waveform Comparison computes the timing differences between test signals
and reference signals from time zero to the end of the shortest dataset, or to the end of the
current live simulation. But you can also specify an optional start time and end time, or you
can limit the comparison to a specific number of encountered timing differences. In
addition, you can exclude windows of time with -when conditions in either the clock
definitions or in the compare add command (CR-63). The display will indicate intervals of
time during which no attempt was made to compute differences.

All waveform differences encountered in the waveform comparison are summarized and
listed in the transcript area of the Main window. Waveform differences are also displayed
in the Wave and List windows (see Wave window display (11-316) and List window display
(11-322)). Icons in the toolbar of the Wave window allow you to step forward and backward
through successive differences. Or, you can use the Tab and Shift-Tab keys on your
keyboard to move to the next or previous difference of a selected signal.

You can also write a list of the differences to a file using the compare info command (CR-

73).
11-302 Waveform Comparison ModelSim SE User’s Manual

Introducing Waveform Comparison
Two Modes of Comparison

The Waveform Comparison feature provides two modes of comparison: continuous and
clocked.

Continuous Compare

In the continuous mode, a test signal (or a group of test signals within a region) is compared
to a reference signal (or a group of reference signals within a region) at each transition of
the reference. Timing differences between the test and reference signals are highlighted
with rectangular red difference markers in the Wave window and yellow markers in the List
window.

The continuous compare mode allows you to specify two edge tolerances for timing
differences. The leading edge tolerance specifies how much earlier the test signal edge may
occur before the reference signal edge. The trailing edge tolerance specifies how much later
the test signal edge may occur after the reference signal edge. The default value for both
tolerances is zero. In addition, these tolerances may be specified differently for each signal
compared.

Clocked Compare

In the clocked mode, also called strobed comparison, one or more clocks are defined. A test
signal is then compared to a reference signal and both are sampled relative to the defined
clock. The clock can be defined as the rising or falling edge (or either edge) of a particular
signal plus a user-specified delay. The design need not have any events occurring at the
specified clock time.

Differences between the test signal(s) and clock are highlighted with red diamonds in the
Wave window.
ModelSim SE User’s Manual Waveform Comparison 11-303

Introducing Waveform Comparison
Comparing Hierarchical and Flattened Designs

If you are comparing a hierarchical RTL design simulation against a flattened synthesized
design simulation, you may have different hierarchies, different signal names, and the
buses may be broken down into one-bit signals in the gate-level design. All of these
differences can be handled by ModelSim’s Waveform Comparison feature.

• If the test design is hierarchical but the hierarchy is different from the hierarchy of the
reference design, you can use the compare add command (CR-63) to specify which
region path in the test design corresponds to that in the reference design.

• If the test design is flattened and test signal names are different from reference signal
names, the compare add command (CR-63) allows you to specify which signal in the test
design will be compared to which signal in the reference design.

• If, in addition, buses have been dismantled, or "bit-blasted", you can use the -rebuild
option of the compare add command (CR-63) to automatically rebuild the bus in the test
design. This will allow you to look at the differences as one bus versus another.

If signals in the RTL test design are different in type from the synthesized signals in the
reference design – registers versus nets, for example – the Waveform Comparison feature
will automatically do the type conversion for you. If the type differences are too extreme
(say integer versus real), Waveform Comparison will let you know.
11-304 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
Graphical Interface to Waveform Comparison

Waveform Comparison is initiated from either the Main or Wave window by selecting
Compare > Start Comparison.

Opening Dataset Comparison

The Start
Comparison dialog
box allows you
define the
Reference and Test
datasets.

Reference
Dataset

The Reference
Dataset is the .wlf
file that the test
dataset will be
compared to. It can
be a saved dataset,
the current
simulation dataset,
or any part of the
current simulation
dataset.

Test Dataset

The Test Dataset is the .wlf file that will be compared against the Reference Dataset. Like
the Reference Dataset, it can be a saved dataset, the current simulation dataset, or any part
of the current simulation dataset.

• Use Current Simulation
Selects the current simulation to be used as the Test Dataset. Provides for an optional
update on the comparison after each simulation run.

• Specify Dataset
Allows you to select any saved .wlf file to be used as the Test Dataset.

You can specify either dataset by typing in a dataset name, by selecting a dataset from a
drop-down history of past dataset selections, or by clicking either of the Browse buttons.
ModelSim SE User’s Manual Waveform Comparison 11-305

Graphical Interface to Waveform Comparison
Both Browse buttons take you to the Select Dataset File dialog where you can browse for
the dataset you want.

Once the Reference and Test Datasets have been specified, clicking "OK" in the Compare
Dataset dialog box will place a Compare tab in the project pane of the Main window. After
adding the signals, regions and/or clocks you want to use in the comparison (see "Adding
Signals, Regions and/or Clocks" (11-307)) you’ll be able to drag compare objects from this
project tab into the Wave and List windows.

Compare tab
11-306 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
Adding Signals, Regions and/or Clocks

To designate the signals, regions and/or clocks to be used in the comparison, click
Compare > Add in the Main or Wave window, then make a selection (Compare by Signal
(11-307), Compare by Region (11-311), Clocks) from the popup menu.

Compare by Signal

Clicking Compare > Add >
Compare by Signal in the
Wave window opens the
structure_browser window,
where you can specify
signals to be used in the
comparison.

You can also set signal
options by clicking the
Options button, which
opens the Add Signal
Options dialog box.
ModelSim SE User’s Manual Waveform Comparison 11-307

Graphical Interface to Waveform Comparison
• Add Signal Options
The Add Signal Options dialog allows you to select the Waveform Comparison method to be
used – Clocked (Strobed) or Continuous – and to specify a when expression that must
evaluate to "true" or 1 at the signal edge for the clock to become effective. A when expression
can be built using "The GUI Expression Builder" (8-275), which is accessed by clicking the
Builder button.

Clocked Comparison

If the Clocked Comparison
method is chosen, you can select
a clock from the drop-down
history of past clock selections
or click the Clocks button to add
a new clock.

Clicking the Clocks button opens
the Comparison Clocks dialog
box where you can add, modify
or delete signals.
11-308 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
The Add button
opens the Add Clock
dialog, where you
can define a clock
signal name, a delay
signal offset, the
signal upon which
the clock will be
based, and whether
the compare strobe
edge will be the
rising or falling edge
or both. You can also
use "The GUI
Expression Builder"
(8-275) to specify a
when expression that
must evaluate to
"true" or 1 at the
signal edge for the
clock to become
effective.

Clicking the Modify
button in the
Comparison Clocks
dialog opens the
Modify Clock
dialog. This dialog
provides the same
functionality as the
Add Clock dialog.
ModelSim SE User’s Manual Waveform Comparison 11-309

Graphical Interface to Waveform Comparison
Continuous Comparison

With the Continuous Comparison method you can set leading and trailing edge
tolerances. The leading edge tolerance specifies how much earlier the test signal edge
may occur before the reference signal edge. The trailing edge tolerance specifies how
much later the test signal edge may occur after the reference signal edge. The default
value for both tolerances is zero. In addition, these tolerances may be specified
differently for each signal compared.

With Continuous Comparison, you can also use "The GUI Expression Builder" (8-275) to
specify a when expression that must evaluate to "true" or 1 at the signal edge for the clock
to become effective.
11-310 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
Compare by Region

Clicking Compare > Add > Compare by Region in the Wave window opens the Add
Comparison by Region window, where you can specify signals to be used in the
comparison.

Region Data Tab

• Reference Region
Allows you to specify the reference region that will be used in the comparison.

• Test Region
Allows you to specify a test region that might have a different name from that of the
reference region.

• Compare Signals of Type
Allows you to specify that All Types of signals will be used in the comparison or only
Selected Types (In, Out, InOut, Internal, or Port).

• Recursive Search
Specifies whether to search for signals in the hierarchy below the selected region.
ModelSim SE User’s Manual Waveform Comparison 11-311

Graphical Interface to Waveform Comparison
Comparison Method Tab

Allows you to select clocked or continuous comparison, and provides the capability to
specify a "When" expression.

• Clocked Comparison
Allows you can select a clock
from the drop-down history of
past clock selections. Or, you can
click the Clocks button to add a
new clock.

Clicking the Clocks button opens
the Comparison Clocks dialog
box.

To add a signal, click the Add
button to open the Add Clock
dialog box, where you can define
a clock signal name, a delay
signal offset, the signal upon
which the clock will be based,
and whether the compare strobe
edge will be the rising or falling
edge or both. You can also use
the Expression Builder to Specify
11-312 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
a When Expression that must evaluate to "true" or 1 at the signal edge for the clock to
become effective.

• Continuous Comparison
With the Continuous Comparison method you can set leading and trailing edge
tolerances. The leading edge tolerance specifies how much earlier the test signal edge
may occur before the reference signal edge. The trailing edge tolerance specifies how
much later the test signal edge may occur after the reference signal edge. The default
value for both tolerances is zero. In addition, these tolerances may be specified
differently for each signal compared.

• Specify When Expression
Allows you to use "The GUI Expression Builder" (8-275) to specify a when expression
that must evaluate to "true" or 1 at the signal edge for the clock to become effective.
ModelSim SE User’s Manual Waveform Comparison 11-313

Graphical Interface to Waveform Comparison
Setting Compare Options

Selecting Compare > Options in either the Main or Wave windows provides access to the
Add Signal Options dialog box. This dialog is divided into two tabs – the General Options
tab and the Comparison Method tab.

• General Options

Comparison Limit Count –– Allows you to limit the waveform comparison to a specific
number of total differences and/or a specific number of differences per signal.

VHDL Matching –– Allows you to designate which VHDL signal values will match the
VHDL X and Z values.

Verilog Matching –– Allows you to designate which Verilog signal values will match
the Verilog X and Z values. It also allows you to ignore the strength of the Verilog signal
and consider only logic values.

Save as Default — Allows you to save all changes as the new default settings for
subsequent waveform comparisons.

Reset to Default — Resets all settings to original default values.

Automatically add comparisons to the wave window?— Specifies whether new signal
comparison objects are added automatically to the Wave window.
11-314 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
• Comparison Method

Clocked (Strobed) Comparison — Allows you to select a default reference clock signal
via a selection history or a browse button.

Continuous Comparison — Allows you to set leading and trailing edge tolerances for
the waveform comparison. The leading edge tolerance specifies how much earlier the test
signal edge may occur before the reference signal edge. The trailing edge tolerance
specifies how much later the test signal edge may occur after the reference signal edge.
The default value for both tolerances is zero.

Specify When Expression — Allows you to specify a when expression that must
evaluate to "true" or 1 at the signal edge for the clock to become effective. Clicking the
Builder button will give you access to "The GUI Expression Builder" (8-275).

Save as Default — Allows you to save all changes as the new default settings for
subsequent waveform comparisons.

Reset to Default — Resets all settings to original default values.
ModelSim SE User’s Manual Waveform Comparison 11-315

Graphical Interface to Waveform Comparison
Wave window display
11-316 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
The Wave window provides a graphic
display of waveform comparison results.
Pathnames of all test signals included in
the waveform comparison are denoted by
yellow triangles. Test signals that contain
timing differences when compared with
the reference signals are denoted by a red
X over the yellow triangle.

Timing differences are also indicated by
red bars in the vertical and horizontal
scroll bars of the waveform display, and
by red difference markers on the
waveforms themselves. Rectangular
difference markers denote continuous

differences. Diamond difference markers denote clocked differences. Placing your mouse
cursor over any difference marker will initiate a popup display that provides timing details
for that difference.

The values column of the Wave window displays the words "match" or "diff" for every test
signal, depending on the location of the selected cursor. "Match" indicates that the value of
the test signal matches the value of the reference signal at the time of the selected cursor.
"Diff" indicates a difference between the test and reference signal values at the selected
cursor.

difference markers

difference detailsThe "diff" designation in the Values column relates to the
position of the selected cursor.

Pathnames Values Waveform display
ModelSim SE User’s Manual Waveform Comparison 11-317

Graphical Interface to Waveform Comparison
Compare icons

The Wave window includes four
waveform comparison icons that
enable you to quickly locate the first
and last waveform difference and
move the cursor in steps to the previous
or next difference. The next and
previous icons move between
differences on all signals in the Wave
window. If you want to move between differences for the selected signal only, use <tab>
(next) or <shift>-<tab> (previous).

Compare menu

The Compare menu provides a number of options for controlling waveform comparisons.

• Start Comparison
Opens the Compare Dataset dialog box (page 11-305) where you can enter reference and
test dataset names.

• Comparison Wizard
Gives step-by-step assistance while you create a waveform comparison.

Find first difference Find last difference

Find previous difference Find next difference
11-318 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
• Run Comparison
Computes the number of differences from time zero to the end of the simulation run, from
time zero until the maximum total number of differences per signal limit is reached, or
from time zero until the maximum total number of differences for all signals compared
is reached. This information is posted to the Main window transcript and saved to the
compare_info.txt file. It is equivalent to the compare run command (CR-80).

• End Comparison
Stops difference computation and closes the currently open comparison.

• Add

Compare by Signal — Opens the structure_browser dialog box (page 11-307) and
allows you to designate signals for comparison.

Compare by Region — Opens the Add Comparison by Region dialog box (page 11-
311) and allows you to designate a reference region for comparison. Also allows you to
designate a test region of a different name.

Clocks — Opens the Comparison Clocks dialog box (page 11-308) and allows you to
define clocks to be used in the comparison.

• Options
Opens the Add Signal Options dialog box (page 11-314), which allows you to define a
number of waveform comparison options.
ModelSim SE User’s Manual Waveform Comparison 11-319

Graphical Interface to Waveform Comparison
• Differences

Clear — Clears all differences from the Wave window and resets the waveform
comparison function. It is equivalent to the compare reset command (CR-79).

Show — Displays the difference in text format in the transcript area of the Main window.
It is equivalent to the compare info command (CR-73).

Save — Opens the Specify Differences File dialog box where you can save the
differences to a file that can be reloaded later in ModelSim. The default file name is
"compare.dif".

Write Report— Saves a report of the differences to a text file that you can view.
11-320 Waveform Comparison ModelSim SE User’s Manual

Graphical Interface to Waveform Comparison
• Rules

Show — Displays the rules or instructions used to set up the waveform compare. It is
equivalent to the compare list command (CR-74).

Save — Opens the Specify Rule File dialog box and allows you to assign a name to the
file that will contain all rules for making the comparison. The default file name is
"compare.rul."

• Reload
Opens the Reload and Redisplay Compare Differences dialog box and allows you to
enter or browse for waveform rules and difference file names.

Printing compare differences

You can print the compare differences shown in the Wave window either to a printer or to
a Postscript file. See "Printing and saving waveforms" (8-245) for details.
ModelSim SE User’s Manual Waveform Comparison 11-321

Graphical Interface to Waveform Comparison
List window display

Compare objects can be displayed in the List window too. Differences are highlighted with
a yellow background. Tabbing on selected columns moves the selection to the next
difference (actually difference edge). Shift-tabbing moves the selection backwards.

Right-clicking on a yellow-highlighted difference gives you three options: Diff info,
Annotate diff, and Ignore/Noignore diff. With these options you can elect to display
difference information, you can ignore selected differences or turn off ignore, and you can
annotate individual differences.
11-322 Waveform Comparison ModelSim SE User’s Manual

Command-line interface to Waveform Comparison
Command-line interface to Waveform Comparison

Preference Variables

Various Tcl variables control the default options of the Waveform Comparison feature. See
http://www.model.com/resources/pref_variables/frameset.htm for details on how to set
these variables.

Compare commands

The table below provides a brief description of the compare commands. Follow the links
for complete command syntax.

See ModelSim Commands for complete command details.

Command Description

compare add (CR-63) defines a comparison between the signals in a specified reference design
and the signals in a specified test design

compare annotate (CR-66) allows a difference to be flagged as ignore, or an additional text string to
be attached

compare clock (CR-67) defines a clock for clocked comparison; or, if -delete is specified, deletes
a previously-defined clock

compare delete (CR-71) deletes a signal or region from the current open comparison.

compare end (CR-72) destroys the compare data structures and forgets clock definitions and
signals selected for comparison

compare info (CR-73) writes out results of the comparison; writes to the transcript unless the
-write option is specified

compare list (CR-74) shows all the compare region and compare signal commands currently
in effect

compare options (CR-75) sets values for various compare options on the Tcl parser side; when
subsequent commands are called, these values become the defaults

compare reset (CR-79) clears the current compare differences, allowing another compare start
to be executed

compare reload (CR-78) reloads comparison differences to allow viewing without recomputation

compare run (CR-80) registers required callbacks and runs the difference computation on the
signals selected for comparison; reports the total number of errors found

compare savediffs (CR-81) saves the comparison result differences in a form that can be reloaded later

compare saverules (CR-82) saves the comparison setup information (or "rules") to a file that can be re-
executed later as a command file; saves compare options and all clock
definitions and region and signal selections
ModelSim SE User’s Manual Waveform Comparison 11-323

http://www.model.com/resources/pref_variables/frameset.htm

Command-line interface to Waveform Comparison
compare see command (CR-83) causes the specified compare difference to be made visible in the specified
wave window, using whatever horizontal and vertical scrolling is
necessary

compare start command (CR-84) initializes internal data structures for waveform compare

compare stop command (CR-86) used internally by the compare stop button to suspend comparison
computations in progress

compare update command (CR-87) used internally to update the comparison differences when comparing a
live simulation against a .wlf file

Command Description
11-324 Waveform Comparison ModelSim SE User’s Manual

12 - Standard Delay Format (SDF) Timing Annotation

Chapter contents
Specifying SDF files for simulation 12-326

Instance specification 12-326
SDF specification with the GUI 12-327
Errors and warnings 12-327

VHDL VITAL SDF 12-328
SDF to VHDL generic matching 12-328
Resolving errors 12-329

Verilog SDF 12-330
The $sdf_annotate system task 12-330
SDF to Verilog construct matching 12-331
Optional edge specifications 12-333
Optional conditions 12-334
Rounded timing values 12-335

SDF for Mixed VHDL and Verilog Designs 12-336

Interconnect delays. 12-336

Troubleshooting 12-337
Specifying the wrong instance 12-337
Mistaking a component or module name for an instance label . . 12-338
Forgetting to specify the instance 12-338

Obtaining the SDF specification 12-339

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’s built-in SDF annotator. ASIC and FPGA vendors usually provide tools that
create SDF files for use with their cell libraries. Refer to your vendor’s documentation for
details on creating SDF files for your library. Many vendors also provide instructions on
using their SDF files and libraries with ModelSim.

The SDF specification was originally created for Verilog designs, but it has also been
adopted for VHDL VITAL designs. In general, the designer does not need to be familiar
with the details of the SDF specification because the cell library provider has already
supplied tools that create SDF files that match their libraries.

Note: In order to conserve disk space, ModelSim will read sdf files that were compressed
using the standard unix/gnu file compression algorithm. The filename must end with the
suffix ".Z" for the decompress to work.
ModelSim SE User’s Manual Standard Delay Format (SDF) Timing Annotation 12-325

Specifying SDF files for simulation
Specifying SDF files for simulation

ModelSim supports SDF versions 1.0 through 3.0. The simulator’s built-in SDF annotator
automatically adjusts to the version of the file. Use the following vsim (CR-258) command-
line options to specify the SDF files, the desired timing values, and their associated design
instances:

-sdfmin [<instance>=]<filename>
-sdftyp [<instance>=]<filename>
-sdfmax [<instance>=]<filename>

Any number of SDF files can be applied to any instance in the design by specifying one of
the above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical,
and -sdfmax to select maximum timing values from the SDF file.

Instance specification

The instance paths in the SDF file are relative to the instance to which the SDF is applied.
Usually, this instance is an ASIC or FPGA model instantiated under a testbench. For
example, to annotate maximum timing values from the SDF file myasic.sdf to an instance
u1 under a top-level named testbench, invoke the simulator as follows:

vsim -sdfmax /testbench/u1=myasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. This is usually
incorrect because in most cases the model is instantiated under a testbench or within a
larger system level simulation. In fact, the design can have several models, each having its
own SDF file. In this case, specify an SDF file for each instance. For example,

vsim -sdfmax /system/u1=asic1.sdf -sdfmax /system/u2=asic2.sdf system

One exception to the rule of never omitting the instance name occurs when your SDF file
contains only one instance. In this case, you can omit the instance name. For example, if
myasic.sdf has only one instance of u1, the first command above would look as follows:

vsim -sdfmax myasic.sdf testbench
12-326 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Specifying SDF files for simulation
SDF specification with the GUI

As an alternative to the command-line options, you can specify SDF files in the Load
Design dialog box under the SDF tab.

You can access this dialog by invoking the simulator without any arguments or by selecting
Design > Load Design (Main window). For Verilog designs, you can also specify SDF
files by using the $sdf_annotate system task. See "The $sdf_annotate system task" (12-330)
for more details.

Errors and warnings

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim (CR-258) to
change SDF errors to warnings so that the simulation can continue. Warning messages can
be suppressed by using vsim with either the -sdfnowarn or +nosdfwarn options.

Another option is to use the SDF page from the Load Design dialog box (shown above).
Select Disable SDF warnings (-sdfnowarn, or +nosdfwarn) to disable warnings, or select
Reduce SDF errors to warnings (-sdfnoerror) to change errors to warnings.

See "Troubleshooting" (12-337) for more information on errors and warnings, and how to
avoid them.
ModelSim SE User’s Manual Standard Delay Format (SDF) Timing Annotation 12-327

VHDL VITAL SDF
VHDL VITAL SDF

VHDL SDF annotation works on VITAL cells only. The IEEE 1076.4 VITAL ASIC
Modeling Specification describes how cells must be written to support SDF annotation.
Once again, the designer does not need to know the details of this specification because the
library provider has already written the VITAL cells and tools that create compatible SDF
files. However, we provide the following summary to help you understand simulator error
messages. For additional VITAL specification information, see "Obtaining the VITAL
specification and source code" (4-65).

SDF to VHDL generic matching

An SDF file contains delay and timing constraint data for cell instances in the design. The
annotator must locate the cell instances and the placeholders (VHDL generics) for the
timing data. Each type of SDF timing construct is mapped to the name of a generic as
specified by the VITAL modeling specification. The annotator locates the generic and
updates it with the timing value from the SDF file. It is an error if the annotator fails to find
the cell instance or the named generic. The following are examples of SDF constructs and
their associated generic names:

SDF construct Matching VHDL generic name

(IOPATH a y (3)) tpd_a_y

(IOPATH (posedge clk) q (1) (2)) tpd_clk_q_posedge

(INTERCONNECT u1/y u2/a (5)) tipd_a

(SETUP d (posedge clk) (5)) tsetup_d_clk_noedge_posedge

(HOLD (negedge d) (posedge clk) (5)) thold_d_clk_negedge_posedge

(SETUPHOLD d clk (5) (5)) tsetup_d_clk & thold_d_clk

(WIDTH (COND (reset==1’b0) clk) (5)) tpw_clk_reset_eq_0
12-328 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

VHDL VITAL SDF
Resolving errors

If the simulator finds the cell instance but not the generic then an error message is issued.
For example,

ERROR: myasic.sdf(18):
Instance ’/testbench/dut/u1’ does not have a generic named ’tpd_a_y’

In this case, make sure that the design is using the appropriate VITAL library cells. If it is,
then there is probably a mismatch between the SDF and the VITAL cells. You need to find
the cell instance and compare its generic names to those expected by the annotator. Look
in the VHDL source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the
VITAL library cells are not being used. If the generic names do look like VITAL timing
generic names but don’t match the names expected by the annotator, then there are several
possibilities:

• The vendor’s tools are not conforming to the VITAL specification.

• The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

• The vendor’s library and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim (CR-258) with
the -vital2.2b option:

vsim -vital2.2b -sdfmax /testbench/u1=myasic.sdf testbench

For more information on resolving errors see "Troubleshooting" (12-337).
ModelSim SE User’s Manual Standard Delay Format (SDF) Timing Annotation 12-329

Verilog SDF
Verilog SDF

Verilog designs can be annotated using either the simulator command-line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The
command-line options annotate the design immediately after it is loaded, but before any
simulation events take place. The $sdf_annotate task annotates the design at the time it is
called in the Verilog source code. This provides more flexibility than the command-line
options.

The $sdf_annotate system task

The syntax for $sdf_annotate is:

Syntax

$sdf_annotate
(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"],
["<mtm_spec>"], ["<scale_factor>"], ["<scale_type>"]);

Arguments

"<sdffile>"

String that specifies the SDF file. Required.

<instance>

Hierarchical name of the instance to be annotated. Optional. Defaults to the instance
where the $sdf_annotate call is made.

"<config_file>"

String that specifies the configuration file. Optional. Currently not supported, this
argument is ignored.

"<log_file>"

String that specifies the logfile. Optional. Currently not supported, this argument is
ignored.

"<mtm_spec>"

String that specifies the delay selection. Optional. The allowed strings are "minimum",
"typical", "maximum", and "tool_control". Case is ignored and the default is
"tool_control". The "tool_control" argument means to use the delay specified on the
command line by +mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

"<scale_factor>"

String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier is a real number that is used to
scale the corresponding delay in the SDF file.

"<scale_type>"

String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec> delay
selection is always used to select the delay scaling factor, but if a <scale_type> is
specified, then it will determine the min/typ/max selection from the SDF file. The
allowed strings are "from_min", "from_minimum", "from_typ", "from_typical",
"from_max", "from_maximum", and "from_mtm". Case is ignored, and the default is
"from_mtm", which means to use the <mtm_spec> value.
12-330 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Verilog SDF
Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at
the end of the argument list. For example, to specify only the SDF file and the instance it
applies to:

$sdf_annotate("myasic.sdf", testbench.u1);

To also specify maximum delay values:

$sdf_annotate("myasic.sdf", testbench.u1, , , "maximum");

SDF to Verilog construct matching

The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each
SDF construct, the annotator locates the cell instance and updates each specify path delay
or timing check that matches. An SDF construct can have multiple matches, in which case
each matching specify statement is updated with the SDF timing value. SDF constructs are
matched to Verilog constructs as follows:

IOPATH is matched to specify path delays or primitives:

The IOPATH construct usually annotates path delays. If the module contains no path
delays, then all primitives that drive the specified output port are annotated.

INTERCONNECT and PORT are matched to input port:

Both of these constructs identify a module input or inout port and create an internal net that
is a delayed version of the port. This is called a Module Input Port Delay (MIPD). All
primitives, specify path delays, and specify timing checks connected to the original port are
reconnected to the new MIPD net.

PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

If the input and output ports are omitted in the SDF, then all path delays are matched in the
cell.

SDF Verilog

(IOPATH (posedge clk) q (3) (4)) (posedge clk => q) = 0;

(IOPATH a y (3) (4)) buf u1 (y, a);

SDF Verilog

(INTERCONNECT u1.y u2.a (5)) input a;

(PORT u2.a (5)) inout a;

SDF Verilog

(PATHPULSE a y (5) (10)) (a => y) = 0;

(GLOBALPATHPULSE a y (30) (60)) (a => y) = 0;
ModelSim SE User’s Manual Standard Delay Format (SDF) Timing Annotation 12-331

Verilog SDF
DEVICE is matched to primitives or specify path delays:

If the SDF cell instance is a primitive instance, then that primitive’s delay is annotated. If
it is a module instance, then all specify path delays are annotated that drive the output port
specified in the DEVICE construct (all path delays are annotated if the output port is
omitted). If the module contains no path delays, then all primitives that drive the specified
output port are annotated (or all primitives that drive any output port if the output port is
omitted).

SETUP is matched to $setup and $setuphold:

HOLD is matched to $hold and $setuphold:

SETUPHOLD is matched to $setup, $hold, and $setuphold:

RECOVERY is matched to $recovery:

REMOVAL is matched to $removal:

SDF Verilog

(DEVICE y (5)) and u1(y, a, b);

(DEVICE y (5)) (a => y) = 0; (b => y) = 0;

SDF Verilog

(SETUP d (posedge clk) (5)) $setup(d, posedge clk, 0);

(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);

(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(RECOVERY (negedge reset) (posedge clk) (5)) $recovery(negedge reset, posedge clk, 0);

SDF Verilog

(REMOVAL (negedge reset) (posedge clk) (5)) $removal(negedge reset, posedge clk, 0);
12-332 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Verilog SDF
RECREM is matched to $recovery, $removal, and $recrem:

SKEW is matched to $skew:

WIDTH is matched to $width:

PERIOD is matched to $period:

NOCHANGE is matched to $nochange:

Optional edge specifications

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

• A match occurs if the SDF port does not have an edge.

• A match occurs if the specify port does not have an edge.

• A match occurs if the SDF port edge is identical to the specify port edge.

• A match occurs if explicit edge transitions in the specify port edge overlap with the SDF
port edge.

These rules allow SDF annotation to take place even if there is a difference between the
number of edge-specific constructs in the SDF file and the Verilog specify block. For
example, the Verilog specify block may contain separate setup timing checks for a falling

SDF Verilog

(RECREM (negedge reset) (posedge clk) (5) (5)) $recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5)) $removal(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5)) $recrem(negedge reset, posedge clk, 0);

SDF Verilog

(SKEW (posedge clk1) (posedge clk2) (5)) $skew(posedge clk1, posedge clk2, 0);

SDF Verilog

(WIDTH (posedge clk) (5)) $width(posedge clk, 0);

SDF Verilog

(PERIOD (posedge clk) (5)) $period(posedge clk, 0);

SDF Verilog

(NOCHANGE (negedge write) addr (5) (5)) $nochange(negedge write, addr, 0, 0);
ModelSim SE User’s Manual Standard Delay Format (SDF) Timing Annotation 12-333

Verilog SDF
and rising edge on data with respect to clock, while the SDF file may contain only a single
setup check for both edges:

In this case, the cell accommodates more accurate data than can be supplied by the tool that
created the SDF file, and both timing checks correctly receive the same value. Likewise,
the SDF file may contain more accurate data than the model can accommodate.

In this case, both SDF constructs are matched and the timing check receives the value from
the last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF file is limited to posedge and negedge. The explicit edge
specifiers are 01, 0x, 10, 1x, x0, and x1. The set of [01, 0x, x1] is equivalent to posedge,
while the set of [10, 1x, x0] is equivalent to negedge. A match occurs if any of the explicit
edges in the specify port match any of the explicit edges implied by the SDF port. For
example,

Optional conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

• A match occurs if the SDF does not have a condition.

• A match occurs for a timing check if the SDF port condition is semantically equivalent
to the specify port condition.

• A match occurs for a path delay if the SDF condition is lexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);

(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);

(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(data, edge[01, 0x] clk, 0);

SDF Verilog

(SETUP data (COND (reset!=1) (posedge clock)) (5)) $setup(data, posedge clk &&& (reset==0), 0);
12-334 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Verilog SDF
The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded timing values

The SDF TIMESCALE construct specifies time units of values in the SDF file. The
annotator rounds timing values from the SDF file to the time precision of the module that
is annotated. For example, if the SDF TIMESCALE is 1ns and a value of .016 is annotated
to a path delay in a module having a time precision of 10ps (from the timescale directive),
then the path delay receives a value of 20ps. The SDF value of 16ps is rounded to 20ps.
Interconnect delays are rounded to the time precision of the module that contains the
annotated MIPD.

SDF Verilog

(COND (r1 || r2) (IOPATH clk q (5))) if (r1 || r2) (clk => q) = 5; // matches

(COND (r1 || r2) (IOPATH clk q (5))) if (r2 || r1) (clk => q) = 5; // does not match
ModelSim SE User’s Manual Standard Delay Format (SDF) Timing Annotation 12-335

SDF for Mixed VHDL and Verilog Designs
SDF for Mixed VHDL and Verilog Designs

Annotation of a mixed VHDL and Verilog design is very flexible. VHDL VITAL cells and
Verilog cells can be annotated from the same SDF file. This flexibility is available only by
using the simulator’s SDF command-line options. The Verilog $sdf_annotate system task
can annotate Verilog cells only. See the vsim command (CR-258) for more information on
SDF command-line options.

Interconnect delays

An interconnect delay represents the delay from the output of one device to the input of
another. With Verilog designs, ModelSim can model single interconnect delays or
multisource interconnect delays. See "Arguments, Verilog" (CR-265) under the vsim
command for more information on the relevant command-line switches.

Per VHDL VITAL ’95, there is no convenient way to handle interconnect delays from
multiple outputs to a single input. Interconnect delay is modeled in the receiving device as
a single delay from an input port to an internal node. (The node is explicitly declared.) The
default is to use the value of the maximum encountered delay in the SDF file. Alternatively,
you can choose the minimum or latest value of the multiple delays with the vsim command
(CR-258) -multisource_delay option.

-multisource_delay min|max|latest

Timing checks are performed on the interconnect delayed versions of input ports. This may
result in misleading timing constraint violations, because the ports may satisfy the
constraint while the delayed versions may not. If the simulator seems to report incorrect
violations, be sure to account for the effect of interconnect delays.
12-336 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Troubleshooting
Troubleshooting

Specifying the wrong instance

By far, the most common mistake in SDF annotation is to specify the wrong instance to the
simulator’s SDF options. The most common case is to leave off the instance altogether,
which is the same as selecting the top-level design unit. This is generally wrong because
the instance paths in the SDF are relative to the ASIC or FPGA model, which is usually
instantiated under a top-level testbench. (One exception is when you have a single instance
in the SDF file.) See "Instance specification" (12-326) for an example.

A common example for both VHDL and Verilog test benches is provided below. For
simplicity, the test benches do nothing more than instantiate a model that has no ports.

VHDL testbench

entity testbench is end;

architecture only of testbench is
component myasic
end component;

begin
dut : myasic;

end;

Verilog testbench

module testbench;
myasic dut();

endmodule

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate simulator invocation might be:

vsim -sdfmax /testbench/dut=myasic.sdf testbench

Optionally, you can leave off the name of the top-level:

vsim -sdfmax /dut=myasic.sdf testbench

The important thing is to select the instance for which the SDF is intended. If the model is
deep within the design hierarchy, an easy way to find the instance name is to first invoke
the simulator without SDF options, open the structure window, navigate to the model
instance, select it, and enter the environment command (CR-114). This command displays
the instance name that should be used in the SDF command-line option.
ModelSim SE User’s Manual Standard Delay Format (SDF) Timing Annotation 12-337

Troubleshooting
Mistaking a component or module name for an instance label

Another common error is to specify the component or module name rather than the instance
label. For example, the following invocation is wrong for the above testbenches:

vsim -sdfmax /testbench/myasic=myasic.sdf testbench

This results in the following error message:

ERROR: myasic.sdf:
The design does not have an instance named ’/testbench/myasic’.

Forgetting to specify the instance

If you leave off the instance altogether, then the simulator issues a message for each
instance path in the SDF that is not found in the design. For example,

vsim -sdfmax myasic.sdf testbench

Results in:

ERROR: myasic.sdf:
Failed to find INSTANCE ’/testbench/u1’

ERROR: myasic.sdf:
Failed to find INSTANCE ’/testbench/u2’

ERROR: myasic.sdf:
Failed to find INSTANCE ’/testbench/u3’

ERROR: myasic.sdf:
Failed to find INSTANCE ’/testbench/u4’

ERROR: myasic.sdf:
Failed to find INSTANCE ’/testbench/u5’

WARNING: myasic.sdf:
This file is probably applied to the wrong instance.

WARNING: myasic.sdf:
Ignoring subsequent missing instances from this file.

After annotation is done, the simulator issues a summary of how many instances were not
found and possibly a suggestion for a qualifying instance:

WARNING: myasic.sdf:
Failed to find any of the 358 instances from this file.

WARNING: myasic.sdf:
Try instance ’/testbench/dut’ - it contains all instance paths from this
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see "Resolving errors" (12-329) for specific VHDL VITAL SDF troubleshooting.
12-338 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

Obtaining the SDF specification
Obtaining the SDF specification

The SDF specification is available from Open Verilog International:

Lynn Horobin
phone: (408)358-9510
fax: (408)358-3910
email: info@ovi.org
home page: http://www.ovi.org
ModelSim SE User’s Manual Standard Delay Format (SDF) Timing Annotation 12-339

mailto:info@ovi.org
http://www.ovi.org

12-340 Standard Delay Format (SDF) Timing Annotation ModelSim SE User’s Manual

13 - Value Change Dump (VCD) Files

Chapter contents
ModelSim VCD commands and VCD tasks 13-342

Resimulating a VHDL design from a VCD file 13-344
Extracting the proper stimulus for bidirectional ports 13-344
Specifying a filename and state mappings 13-344
Creating the VCD file 13-344

A VCD file from source to output 13-346
VHDL source code 13-346
VCD simulator commands 13-346
VCD output 13-347

Capturing port driver data 13-349
Supported TSSI states 13-349
Strength values 13-350
Port identifier code 13-350
Example VCD output from vcd dumpports 13-351

This chapter explains Model Technology’s Verilog VCD implementation for ModelSim.

The VCD file format is specified in the IEEE 1364 standard. It is an ASCII file containing
header information, variable definitions, and variable value changes. VCD is in common
use for Verilog designs, and is controlled by VCD system task calls in the Verilog source
code. ModelSim provides simulator command equivalents for these system tasks and
extends VCD support to VHDL designs; the ModelSim commands can be used on either
VHDL or Verilog designs.

VHDL VCD files can be used for resimulation with the vsim -vcdread command. See
"Resimulating a VHDL design from a VCD file" (13-344).

Note: If you need vendor-specific ASIC design-flow documentation that incorporates
VCD, please contact your ASIC vendor.
ModelSim SE User’s Manual Value Change Dump (VCD) Files 13-341

ModelSim VCD commands and VCD tasks
ModelSim VCD commands and VCD tasks

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the
VCD file along with the results of those commands. The table below maps the VCD
commands to their associated tasks.

ModelSim versions 5.5 and later support multiple VCD files. This functionality is an
extension of the IEEE Std 1364 specification. The tasks behave the same as the IEEE
equivalent tasks such as $dumpfile, $dumpvar, etc. The difference is that $fdumpfile can
be called multiple times to create more than one VCD file, and the remaining tasks require
a filename argument to associate their actions with a specific file.

VCD commands VCD system tasks

vcd add (CR-198) $dumpvars

vcd checkpoint (CR-199) $dumpall

vcd file (CR-208) $dumpfile

vcd flush (CR-212) $dumpflush

vcd limit (CR-213) $dumplimit

vcd off (CR-214) $dumpoff

vcd on (CR-215) $dumpon

VCD commands VCD system tasks

vcd add (CR-198) -file <filename> $fdumpvars

vcd checkpoint (CR-199) <filename> $fdumpall

vcd files (CR-210) <filename> $fdumpfile

vcd flush (CR-212) <filename> $fdumpflush

vcd limit (CR-213) <filename> $fdumplimit

vcd off (CR-214) <filename> $fdumpoff

vcd on (CR-215) <filename> $fdumpon
13-342 Value Change Dump (VCD) Files ModelSim SE User’s Manual

ModelSim VCD commands and VCD tasks
ModelSim versions 5.5 and later also support dumpports system tasks. The table below
maps the VCD dumpports commands to their associated tasks.

VCD dumpports commands VCD system tasks

vcd dumpports (CR-201) $dumpports

vcd dumpportsall (CR-203) $dumpportsall

vcd dumpportsflush (CR-204) $dumpportsflush

vcd dumpportslimit (CR-205) $dumpportslimit

vcd dumpportsoff (CR-206) $dumpportsoff

vcd dumpportson (CR-207) $dumpportson
ModelSim SE User’s Manual Value Change Dump (VCD) Files 13-343

Resimulating a VHDL design from a VCD file
Resimulating a VHDL design from a VCD file

A VCD file intended for resimulation is created by capturing the ports of a VHDL design
unit instance within a testbench or design. The following discussion shows you how to
prepare a VCD file for resimulation. Note that the preparation varies depending on your
design. Also note that you cannot resimulate with VCD stimulus in a Verilog or
mixed-language design.

Extracting the proper stimulus for bidirectional ports

To extract the proper stimulus for bidirectional ports, the splitio command (CR-185) must
be used before creating the VCD file. This splits bidirectional ports into separate signals
that mirror the output driving contributions of their related ports. By recording in the VCD
file both the resolved value of a bidirectional port and its output driving contribution, an
appropriate stimulus can be derived by vsim -vcdread. The splitio command (CR-185)
operates on a bidirectional port and creates a new signal having the same name as the port
suffixed with "__o". This new signal must be captured in the VCD file along with its related
bidirectional port. See the description of the splitio command (CR-185) for more details.

Note: When using the splitio command in conjunction with VCD files, be aware that VCD
file output will vary between a model coded in VHDL and the same model coded in Verilog
with timing wrapped in VHDL. The difference occurs because splitio generates Extended
VCD stimulus files, and the Extended VCD format is supported only for pure VHDL
designs.

Specifying a filename and state mappings

After using splitio, the VCD filename and state mapping are specified using the vcd files
command (CR-210) with the -nomap -direction options.

Note that the -nomap option is not necessary if the port types on the top-level design are
bit or bit_vector. It is required, however, for std_logic ports because it records the entire
std_logic state set. This allows the -vcdread option to duplicate the original stimulus on the
ports.

The default VCD file is dump.vcd, but you can specify a different filename with vcd files.

Creating the VCD file

After invoking vcd files you can create the new VCD file by executing vcd add (CR-198)
at the time you wish to begin capturing value changes. To dump everything in a design to
a dump file you might use a command like this:

vcd add -r /*

At a minimum, the VCD file must contain the in and inout ports of the design unit. Value
changes on all other signals are ignored by -vcdread. This also means that the simulation
results are not checked against the VCD file.

After the VCD file is created, it can be input to vsim (CR-258) with the -vcdread option to
resimulate the design unit stand-alone.
13-344 Value Change Dump (VCD) Files ModelSim SE User’s Manual

Resimulating a VHDL design from a VCD file
Example

The following example illustrates a typical sequence of commands to create a VCD file for
input to -vcdread. Assume that a VHDL testbench named testbench instantiates dut with
an instance name of u1, and that you would like to simulate testbench and later be able to
resimulate dut stand-alone:

vsim -c -t ps testbench
VSIM 1> splitio /u1/*
VSIM 2> vcd files -nomap -direction
VSIM 3> vcd add -ports /u1/*
VSIM 4> run 1000
VSIM 5> quit

Now, to resimulate using the VCD file:

vsim -c -t ps -vcdread dump.vcd dut
VSIM 1> run 1000
VSIM 2> quit

Note: You must manually invoke the run command (CR-176) even when using -vcdread.
ModelSim SE User’s Manual Value Change Dump (VCD) Files 13-345

A VCD file from source to output
A VCD file from source to output

The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD output.

VHDL source code

The design is a simple shifter device represented by the following VHDL source code:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity SHIFTER_MOD is
port (CLK, RESET, data_in : IN STD_LOGIC;

Q : INOUT STD_LOGIC_VECTOR(8 downto 0));

END SHIFTER_MOD ;

architecture RTL of SHIFTER_MOD is

begin
process (CLK,RESET)
begin

if (RESET = ’1’) then
Q <= (others => ’0’) ;

elsif (CLK’event and CLK = ’1’) then
Q <= Q(Q’left - 1 downto 0) & data_in ;

end if ;
end process ;

end ;

VCD simulator commands

At simulator time zero, the designer executes the following commands and quits the
simulator at time 1200:

vcd files output.vcd
vcd add -r *
force reset 1 0
force data_in 0 0
force clk 0 0
run 100
force clk 1 0, 0 50 -repeat 100
run 100
vcd off
force reset 0 0
force data_in 1 0
run 100
vcd on
run 850
force reset 1 0
run 50
vcd checkpoint
13-346 Value Change Dump (VCD) Files ModelSim SE User’s Manual

A VCD file from source to output
VCD output

The VCD file created as a result of the preceding scenario would be called output.vcd. The
following pages show how it would look.

VCD output

$comment
File created using the following

command:
vcd files output.vcd

$date
Fri Jan 12 09:07:17 2000

$end
$version

ModelSim EE/PLUS 5.4
$end
$timescale

1ns
$end
$scope module shifter_mod $end
$var wire 1 ! clk $end
$var wire 1 " reset $end
$var wire 1 # data_in $end
$var wire 1 $ q [8] $end
$var wire 1 % q [7] $end
$var wire 1 & q [6] $end
$var wire 1 ’ q [5] $end
$var wire 1 (q [4] $end
$var wire 1) q [3] $end
$var wire 1 * q [2] $end
$var wire 1 + q [1] $end
$var wire 1 , q [0] $end
$upscope $end
$enddefinitions $end
#0
$dumpvars
0!
1"
0#
0$
0%
0&

0’
0(
0)
0*
0+
0,
$end
#100
1!
#150
0!
#200
1!
$dumpoff
x!
x"
x#
x$
x%
x&
x’
x(
x)
x*
x+
x,
$end
#300
$dumpon
1!
0"
1#
0$
0%
ModelSim SE User’s Manual Value Change Dump (VCD) Files 13-347

A VCD file from source to output
0&
0’
0(
0)
0*
0+
1,
$end
#350
0!
#400
1!
1+
#450
0!
#500
1!
1*
#550
0!
#600
1!
1)
#650
0!
#700
1!
1(
#750
0!
#800
1!
1’
#850
0!
#900
1!
1&
#950
0!

#1000
1!
1%
#1050
0!
#1100
1!
1$
#1150
0!
1"
0$
0%
0&
0’
0(
0)
0*
0+
0,
#1200
1!
$dumpall
1!
1"
1#
0$
0%
0&
0’
0(
0)
0*
0+
0,
$end
13-348 Value Change Dump (VCD) Files ModelSim SE User’s Manual

Capturing port driver data
Capturing port driver data

Some ASIC vendor’s toolkits read a VCD file format that provides details on port drivers.
This information can be used, for example, to drive a tester. See the ASIC vendor’s
documentation for toolkit specific information.

In ModelSim use the vcd dumpports command (CR-201) to create a VCD file that captures
port driver data.

Port driver direction information is captured as TSSI states in the VCD file. Each time an
external or internal port driver changes values, a new value change is recorded in the VCD
file with the following format:

 p<TSSI state> <0 strength> <1 strength> <identifier_code>

Supported TSSI states

The supported <TSSI states> are:

Input (testfixture) Output (dut)

D low L low

U high H high

N unknown X unknown

Z tri-state T tri-state

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving unknown)

f tri-state

A unknown (input driving low and output driving high)

a unknown (input driving low and output driving unknown)

C unknown (input driving unknown and output driving low)

b unknown (input driving high and output driving unknown)

B unknown (input driving high and output driving low)

c unknown (input driving unknown and output driving high)
ModelSim SE User’s Manual Value Change Dump (VCD) Files 13-349

Capturing port driver data
Strength values

The <strength> values are based on Verilog strengths:

Port identifier code

The <identifier_code> is an integer preceded by < that starts at zero and is incremented for
each port in the order the ports are specified. Also, the variable type recorded in the VCD
header is "port".

Strength VHDL std_logic mappings

0 highz ’Z’

1 small

2 medium

3 weak

4 large

5 pull ’W’,’H’,’L’

6 strong ’U’,’X’,’0’,’1’,’-’

 7 supply
13-350 Value Change Dump (VCD) Files ModelSim SE User’s Manual

Capturing port driver data
Example VCD output from vcd dumpports

The following is an example VCD file created with the vcd dumpports command.

$comment

File created using the following command:

vcd dumpports results/dump1

$end

$date

Tue Aug 20 13:33:02 2000

$end

$version

ModelSim Version 5.4c

$end

$timescale

1ns

$end

$scope module top1 $end

$scope module u1 $end

$var port 1 <0 a $end

$var port 1 <1 b $end

$var port 1 <2 c $end

$upscope $end

$upscope $end

$enddefinitions $end

#0

$dumpports

pN 6 6 <0

pX 6 6 <1

p? 6 6 <2

$end

#10

pX 6 6 <1

pN 6 6 <0

p? 6 6 <2

#20
pL 6 0 <1
pD 6 0 <0
pa 6 6 <2
#30
pH 0 6 <1
pU 0 6 <0
pb 6 6 <2
#40
pT 0 0 <1
pZ 0 0 <0
pX 6 6 <2
#50
pX 5 5 <1
pN 5 5 <0
p? 6 6 <2
#60
pL 5 0 <1
pD 5 0 <0
pa 6 6 <2
#70
pH 0 5 <1
pU 0 5 <0
pb 6 6 <2
#80
pX 6 6 <1
pN 6 6 <0
p? 6 6 <2
ModelSim SE User’s Manual Value Change Dump (VCD) Files 13-351

13-352 Value Change Dump (VCD) Files ModelSim SE User’s Manual

14 - Logic Modeling SmartModels

Chapter contents
VHDL SmartModel interface 14-354

Creating foreign architectures with sm_entity 14-355
Vector ports 14-357
Command channel. 14-358
SmartModel Windows 14-359
Memory arrays 14-360

Verilog SmartModel interface 14-361
LMTV usage documentation 14-361
Linking the LMTV interface to the simulator. 14-361
Compiling Verilog shells 14-361

The Logic Modeling SWIFT-based SmartModel library can be used with ModelSim VHDL
and Verilog. The SmartModel library is a collection of behavioral models supplied in
binary form with a procedural interface that is accessed by the simulator. This chapter
describes how to use the SmartModel library with ModelSim.

Note: The SmartModel library must be obtained from Logic Modeling along with the
SmartModel library documentation that describes how to use it. This chapter only describes
the specifics of using the library with ModelSim SE.
ModelSim SE User’s Manual Logic Modeling SmartModels 14-353

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface
VHDL SmartModel interface

ModelSim VHDL interfaces to a SmartModel through a foreign architecture. The foreign
architecture contains a foreign attribute string that associates a specific SmartModel with
the architecture. On elaboration of the foreign architecture, the simulator automatically
loads the SmartModel library software and establishes communication with the specific
SmartModel.

The ModelSim software locates the SmartModel interface software based on entries in the
modelsim.ini initialization file. The simulator and the sm_entity tool (for creating foreign
architectures) both depend on these entries being set correctly. These entries are found
under the [lmc] section of the default modelsim.ini file located in the ModelSim installation
directory. The default settings are as follows:

[lmc]

; ModelSim’s interface to Logic Modeling’s SmartModel SWIFT software
libsm = $MODEL_TECH/libsm.sl
; ModelSim’s interface to Logic Modeling’s SmartModel SWIFT software (Windows
NT)
; libsm = $MODEL_TECH/libsm.dll
; Logic Modeling’s SmartModel SWIFT software (HP 9000 Series 700)
; libswift = $LMC_HOME/lib/hp700.lib/libswift.sl
; Logic Modeling’s SmartModel SWIFT software (IBM RISC System/6000)
; libswift = $LMC_HOME/lib/ibmrs.lib/swift.o
; Logic Modeling’s SmartModel SWIFT software (Sun4 Solaris)
; libswift = $LMC_HOME/lib/sun4Solaris.lib/libswift.so
; Logic Modeling’s SmartModel SWIFT software (Windows NT)
; libswift = $LMC_HOME/lib/pcnt.lib/libswift.dll
; Logic Modeling’s SmartModel SWIFT software (Linux)
; libswift = $LMC_HOME/lib/x86_linux.lib/libswift.so

The libsm entry points to the ModelSim dynamic link library that interfaces the foreign
architecture to the SmartModel software. The libswift entry points to the Logic Modeling
dynamic link library software that accesses the SmartModels. The simulator automatically
loads both the libsm and libswift libraries when it elaborates a SmartModel foreign
architecture.

By default, the libsm entry points to the libsm.sl supplied in the ModelSim installation
directory indicated by the MODEL_TECH environment variable. ModelSim
automatically sets the MODEL_TECH environment variable to the appropriate directory
containing the executables and binaries for the current operating system. If you are running
the Windows operating system, then you must comment out the default libsm entry
(precede the line with the ";" character) and uncomment the libsm entry for the Windows
operating system.

Uncomment the appropriate libswift entry for your operating system. The LMC_HOME
environment variable must be set to the root of the SmartModel library installation
directory. Consult Logic Modeling’s SmartModel library documentation for details.
14-354 Logic Modeling SmartModels ModelSim SE User’s Manual

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface
Creating foreign architectures with sm_entity

The ModelSim sm_entity tool automatically creates entities and foreign architectures for
SmartModels. Its usage is as follows:

Syntax

sm_entity
[-] [-xe] [-xa] [-c] [-all] [-v] [-93] [<SmartModelName>...]

Arguments

-

Read SmartModel names from standard input.

-xe

Do not generate entity declarations.

-xa

Do not generate architecture bodies.

-c

Generate component declarations.

-all

Select all models installed in the SmartModel library.

-v

Display progress messages.

-93

Use extended identifiers where needed.

<SmartModelName>

Name of a SmartModel (see the SmartModel library documentation for details on
SmartModel names).

By default, the sm_entity tool writes an entity and foreign architecture to stdout for each
SmartModel name listed on the command line. Optionally, you can include the component
declaration (-c), exclude the entity (-xe), and exclude the architecture (-xa).

The simplest way to prepare SmartModels for use with ModelSim VHDL is to generate the
entities and foreign architectures for all installed SmartModels, and compile them into a
library named lmc. This is easily accomplished with the following commands:

% sm_entity -all > sml.vhd
% vlib lmc
% vcom -work lmc sml.vhd

To instantiate the SmartModels in your VHDL design, you also need to generate
component declarations for the SmartModels. Add these component declarations to a
package named sml (for example), and compile the package into the lmc library:

% sm_entity -all -c -xe -xa > smlcomp.vhd

Edit the resulting smlcomp.vhd file to turn it into a package of SmartModel component
declarations as follows:

library ieee;
use ieee.std_logic_1164.all;
ModelSim SE User’s Manual Logic Modeling SmartModels 14-355

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface
package sml is
<component declarations go here>

end sml;

Compile the package into the lmc library:

% vcom -work lmc smlcomp.vhd

The SmartModels can now be referenced in your design by adding the following library
and use clauses to your code:

library lmc;
use lmc.sml.all;

The following is an example of an entity and foreign architecture created by sm_entity for
the cy7c285 SmartModel.

library ieee;
use ieee.std_logic_1164.all;

entity cy7c285 is
generic (TimingVersion : STRING := "CY7C285-65";

DelayRange : STRING := "Max";
MemoryFile : STRING := "memory");

port (A0 : in std_logic;
A1 : in std_logic;
A2 : in std_logic;
A3 : in std_logic;
A4 : in std_logic;
A5 : in std_logic;
A6 : in std_logic;
A7 : in std_logic;
A8 : in std_logic;
A9 : in std_logic;
A10 : in std_logic;
A11 : in std_logic;
A12 : in std_logic;
A13 : in std_logic;
A14 : in std_logic;
A15 : in std_logic;
CS : in std_logic;
O0 : out std_logic;
O1 : out std_logic;
O2 : out std_logic;
O3 : out std_logic;
O4 : out std_logic;
O5 : out std_logic;
O6 : out std_logic;
O7 : out std_logic;
WAIT_PORT : inout std_logic);

end;

architecture SmartModel of cy7c285 is
attribute FOREIGN : STRING;
attribute FOREIGN of SmartModel : architecture is

"sm_init $MODEL_TECH/libsm.sl ; cy7c285";
begin
end SmartModel;
14-356 Logic Modeling SmartModels ModelSim SE User’s Manual

VHDL SmartModel interface
Entity details

• The entity name is the SmartModel name (you can manually change this name if you
like).

• The port names are the same as the SmartModel port names (these names must not be
changed). If the SmartModel port name is not a valid VHDL identifier, then sm_entity
automatically converts it to a valid name. If sm_entity is invoked with the -93 option,
then the identifier is converted to an extended identifier, and the resulting entity must also
be compiled with the -93 option. If the -93 option had been specified in the example
above, then WAIT would have been converted to \WAIT\. Note that in this example the
port WAIT was converted to WAIT_PORT because wait is a VHDL reserved word.

• The port types are std_logic. This data type supports the full range of SmartModel logic
states.

• The DelayRange, TimingVersion, and MemoryFile generics represent the SmartModel
attributes of the same name. Consult your SmartModel library documentation for a
description of these attributes (and others). Sm_entity creates a generic for each attribute
of the particular SmartModel. The default generic value is the default attribute value that
the SmartModel has supplied to sm_entity.

Architecture details

• The first part of the foreign attribute string (sm_init) is the same for all SmartModels.

• The second part ($MODEL_TECH/libsm.sl) is taken from the libsm entry in the
initialization file, modelsim.ini.

• The third part (cy7c285) is the SmartModel name. This name correlates the architecture
with the SmartModel at elaboration.

Vector ports

The entities generated by sm_entity only contain single-bit ports, never vectored ports.
This is necessary because ModelSim correlates entity ports with the SmartModel SWIFT
interface by name. However, for ease of use in component instantiations, you may want to
create a custom component declaration and component specification that groups ports into
vectors. You can also rename and reorder the ports in the component declaration. You can
also reorder the ports in the entity declaration, but you can't rename them!

The following is an example component declaration and specification that groups the
address and data ports of the CY7C285 SmartModel:

component cy7c285
generic (TimingVersion : STRING := "CY7C285-65";

DelayRange : STRING := "Max";
MemoryFile : STRING := "memory");

port (A : in std_logic_vector (15 downto 0);
CS : in std_logic;
O : out std_logic_vector (7 downto 0);
WAIT_PORT : inout std_logic);

end component;

for all: cy7c285
use entity work.cy7c285
port map (A0 => A(0),

A1 => A(1),
ModelSim SE User’s Manual Logic Modeling SmartModels 14-357

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface
A2 => A(2),
A3 => A(3),
A4 => A(4),
A5 => A(5),
A6 => A(6),
A7 => A(7),
A8 => A(8),
A9 => A(9),
A10 => A(10),
A11 => A(11),
A12 => A(12),
A13 => A(13),
A14 => A(14),
A15 => A(15),
CS => CS,
O0 => O(0),
O1 => O(1),
O2 => O(2),
O3 => O(3),
O4 => O(4),
O5 => O(5),
O6 => O(6),
O7 => O(7),
WAIT_PORT => WAIT_PORT);

Command channel

The command channel is a SmartModel feature that lets you invoke SmartModel specific
commands. These commands are documented in the SmartModel library documentation.
ModelSim provides access to the Command Channel from the command line. The form of
a SmartModel command is:

lmc <instance_name>|-all "<SmartModel command>"

The instance_name argument is either a full hierarchical name or a relative name of a
SmartModel instance. A relative name is relative to the current environment setting (see
environment command (CR-114)). For example, to turn timing checks off for SmartModel
/top/u1:

lmc /top/u1 "SetConstraints Off"

Use -all to apply the command to all SmartModel instances. For example, to turn timing
checks off for all SmartModel instances:

lmc -all "SetConstraints Off"

There are also some SmartModel commands that apply globally to the current simulation
session rather than to models. The form of a SmartModel session command is:

lmcsession "<SmartModel session command>"

Once again, consult your SmartModel library documentation for details on these
commands.
14-358 Logic Modeling SmartModels ModelSim SE User’s Manual

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html
http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface
SmartModel Windows

Some models in the SmartModel library provide access to internal registers with a feature
called SmartModel Windows. Refer to Logic Modeling’s SmartModel library
documentation for details on this feature. The simulator interface to this feature is described
below.

Window name syntax is important. Beginning in version 5.3c of ModelSim, window names
that are not valid VHDL or Verilog identifiers are converted to VHDL extended identifiers.
For example, with a window named z1I10.GSR.OR, Modelsim will treat the name as
\z1I10.GSR.OR\ (for all commands including lmcwin, add wave, and examine). You must
then use that name in all commands. For example,

add wave /top/swift_model/\z1I10.GSR.OR\

As with all extended identifiers, case is important.

ReportStatus

The ReportStatus command displays model information, including the names of window
registers. For example,

lmc /top/u1 ReportStatus

SmartModel Windows description:

WA "Read-Only (Read Only)"
WB "1-bit"
WC "64-bit"

This model contains window registers named wa, wb, and wc. These names can be used in
subsequent window (lmcwin) commands.

SmartModel lmcwin commands

The following window commands are supported:

• lmcwin read <window_instance> [-<radix>]

• lmcwin write <window_instance> <value>

• lmcwin enable <window_instance>

• lmcwin disable <window_instance>

• lmcwin release <window_instance>

Each command requires a window instance argument that identifies a specific model
instance and window name. For example, /top/u1/wa refers to window wa in model
instance /top/u1.

lmcwin read

The lmcwin read command displays the current value of a window. The optional radix
argument is -binary, -decimal, or -hexadecimal (these names can be abbreviated). The
default is to display the value using the std_logic characters. For example, the following
command displays the 64-bit window wc in hexadecimal:

lmcwin read /top/u1/wc -h
ModelSim SE User’s Manual Logic Modeling SmartModels 14-359

http://www.synopsys.com/products/lm/docs/swift_r41/intro.html
http://www.synopsys.com/products/lm/docs/swift_r41/intro.html

VHDL SmartModel interface
lmcwin write

The lmcwin write command writes a value into a window. The format of the value
argument is the same as used in other simulator commands that take value arguments. For
example, to write 1 to window wb, and all 1’s to window wc:

lmcwin write /top/u1/wb 1
lmcwin write /top/u1/wc X"FFFFFFFFFFFFFFFF"

lmcwin enable

The lmcwin enable command enables continuous monitoring of a window. The specified
window is added to the model instance as a signal (with the same name as the window) of
type std_logic or std_logic_vector. This signal can then be referenced in other simulator
commands just like any other signal (the add list command (CR-28) is shown below). The
window signal is continuously updated to reflect the value in the model. For example, to
list window wa:

lmcwin enable /top/u1/wa
add list /top/u1/wa

lmcwin disable

The lmcwin disable command disables continuous monitoring of a window. The window
signal is not deleted, but it no longer is updated when the model’s window register changes
value. For example, to disable continuous monitoring of window wa:

lmcwin disable /top/u1/wa

lmcwin release

Some windows are actually nets, and the lmcwin write command behaves more like a
continuous force on the net. The lmcwin release command disables the effect of a previous
lmcwin write command on a window net.

Memory arrays

A memory model usually makes the entire register array available as a window. In this case,
the window commands operate only on a single element at a time. The element is selected
as an array reference in the window instance specification. For example, to read element 5
from the window memory mem:

lmcwin read /top/u2/mem(5)

Omitting the element specification defaults to element 0. Also, continuous monitoring is
limited to a single array element. The associated window signal is updated with the most
recently enabled element for continuous monitoring.
14-360 Logic Modeling SmartModels ModelSim SE User’s Manual

Verilog SmartModel interface
Verilog SmartModel interface

The SWIFT SmartModel library, beginning with release r40b, provides an optional library
of Verilog modules and a PLI application that communicates between a simulator’s PLI and
the SWIFT simulator interface. The Logic Modeling documentation refers to this as the
Logic Models to Verilog (LMTV) interface. To install this option, you must select the
simulator type "Verilog" when you run Logic Modeling’s SmartInstall program.

LMTV usage documentation

The SmartModel Library Simulator Interface Manual is installed with Logic Modeling’s
software. Look for the file: <LMC_install_dir>/doc/smartmodel/manuals/slim.pdf. This
document is written with Cadence Verilog in mind, but mostly applies to ModelSim
Verilog. Make sure you follow the instructions below for linking the LMTV interface
to the simulator.

Linking the LMTV interface to the simulator

Model Technology ships a dynamically loadable library that links ModelSim to the LMTV
interface. To link to the LMTV all you need to do is add libswiftpli.sl to the Veriuser line
in modelsim.ini as in the example below:

Veriuser = $MODEL_TECH/libswiftpli.sl

Note: On Windows platforms, the above file should be named libswiftpli.dll.

Compiling Verilog shells

Once libswiftpli.sl is in the modelsim.ini file you can compile the Verilog shells provided
by Logic Modeling. You compile them just like any other Verilog modules in ModelSim
Verilog. Details on the Verilog shells are in the SmartModel Library Simulator Interface
Manual as well. The command line plus options and LMTV system tasks described in that
document also apply to ModelSim.
ModelSim SE User’s Manual Logic Modeling SmartModels 14-361

14-362 Logic Modeling SmartModels ModelSim SE User’s Manual

15 - Logic Modeling Hardware Models

Chapter contents
VHDL Hardware Model interface 15-364

Creating foreign architectures with hm_entity 15-365
Vector ports 15-367
Hardware model commands 15-368

Logic Modeling hardware models can be used with ModelSim VHDL and Verilog. A
hardware model allows simulation of a device using the actual silicon installed as a
hardware model in one of Logic Modeling’s hardware modeling systems. The hardware
modeling system is a network resource with a procedural interface that is accessed by the
simulator. This chapter describes how to use Logic Modeling hardware models with
ModelSim.

Note: Please refer to the Logic Modeling documentation for details on using the hardware
modeler. This chapter only describes the specifics of using hardware models with
ModelSim SE.
ModelSim SE User’s Manual Logic Modeling Hardware Models 15-363

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

VHDL Hardware Model interface
VHDL Hardware Model interface

ModelSim VHDL interfaces to a hardware model through a foreign architecture. The
foreign architecture contains a foreign attribute string that associates a specific hardware
model with the architecture. On elaboration of the foreign architecture, the simulator
automatically loads the hardware modeler software and establishes communication with
the specific hardware model.

The ModelSim software locates the hardware modeler interface software based on entries
in the modelsim.ini initialization file. The simulator and the hm_entity tool (for creating
foreign architectures) both depend on these entries being set correctly. These entries are
found under the [lmc] section of the default modelsim.ini file located in the ModelSim
installation directory. The default settings are as follows:

[lmc]
; ModelSim’s interface to Logic Modeling’s hardware modeler SFI software
libhm = $MODEL_TECH/libhm.sl
; ModelSim’s interface to Logic Modeling’s hardware modeler SFI software
(Windows NT)
; libhm = $MODEL_TECH/libhm.dll
; Logic Modeling’s hardware modeler SFI software (HP 9000 Series 700)
; libsfi = <sfi_dir>/lib/hp700/libsfi.sl
; Logic Modeling’s hardware modeler SFI software (IBM RISC System/6000)
; libsfi = <sfi_dir>/lib/rs6000/libsfi.a
; Logic Modeling’s hardware modeler SFI software (Sun4 Solaris)
; libsfi = <sfi_dir>/lib/sun4.solaris/libsfi.so
; Logic Modeling’s hardware modeler SFI software (Window NT)
; libsfi = <sfi_dir>/lib/pcnt/lm_sfi.dll

The libhm entry points to the ModelSim dynamic link library that interfaces the foreign
architecture to the hardware modeler software. The libsfi entry points to the Logic
Modeling dynamic link library software that accesses the hardware modeler. The simulator
automatically loads both the libhm and libsfi libraries when it elaborates a hardware model
foreign architecture.

By default, the libhm entry points to the libhm.sl supplied in the ModelSim installation
directory indicated by the MODEL_TECH environment variable. ModelSim automatically
sets the MODEL_TECH environment variable to the appropriate directory containing the
executables and binaries for the current operating system. If you are running the Windows
operating system, then you must comment out the default libhm entry (precede the line
with the ";" character) and uncomment the libhm entry for the Windows operating system.

Uncomment the appropriate libsfi entry for your operating system, and replace <sfi_dir>
with the path to the hardware modeler software installation directory. In addition, you must
set the LM_LIB and LM_DIR environment variables as described in the Logic Modeling
documentation.
15-364 Logic Modeling Hardware Models ModelSim SE User’s Manual

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html
http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

VHDL Hardware Model interface
Creating foreign architectures with hm_entity

The ModelSim hm_entity tool automatically creates entities and foreign architectures for
hardware models. Its usage is as follows:

Syntax

hm_entity
[-xe] [-xa] [-c] [-93] <shell software filename>

Arguments

-xe

Do not generate entity declarations.

-xa

Do not generate architecture bodies.

-c

Generate component declarations.

-93

Use extended identifiers where needed.

<shell software filename>

Hardware model shell software filename (see Logic Modeling documentation for details
on shell software files)

By default, the hm_entity tool writes an entity and foreign architecture to stdout for the
hardware model. Optionally, you can include the component declaration (-c), exclude the
entity (-xe), and exclude the architecture (-xa).

Once you have created the entity and foreign architecture, you must compile it into a
library. For example, the following commands compile the entity and foreign architecture
for a hardware model named LMTEST:

% hm_entity LMTEST.MDL > lmtest.vhd
% vlib lmc
% vcom -work lmc lmtest.vhd

To instantiate the hardware model in your VHDL design, you will also need to generate a
component declaration. If you have multiple hardware models, you may want to add all of
their component declarations to a package so that you can easily reference them in your
design. The following command writes the component declaration to stdout for the
LMTEST hardware model.

% hm_entity -c -xe -xa LMTEST.MDL

Paste the resulting component declaration into the appropriate place in your design or into
a package.

The following is an example of the entity and foreign architecture created by hm_entity for
the CY7C285 hardware model:

library ieee;
use ieee.std_logic_1164.all;

entity cy7c285 is
generic (DelayRange : STRING := "Max");
port (A0 : in std_logic;
ModelSim SE User’s Manual Logic Modeling Hardware Models 15-365

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

VHDL Hardware Model interface
A1 : in std_logic;
A2 : in std_logic;
A3 : in std_logic;
A4 : in std_logic;
A5 : in std_logic;
A6 : in std_logic;
A7 : in std_logic;
A8 : in std_logic;
A9 : in std_logic;
A10 : in std_logic;
A11 : in std_logic;
A12 : in std_logic;
A13 : in std_logic;
A14 : in std_logic;
A15 : in std_logic;
CS : in std_logic;
O0 : out std_logic;
O1 : out std_logic;
O2 : out std_logic;
O3 : out std_logic;
O4 : out std_logic;
O5 : out std_logic;
O6 : out std_logic;
O7 : out std_logic;
W : inout std_logic);

end;

architecture Hardware of cy7c285 is
attribute FOREIGN : STRING;
attribute FOREIGN of Hardware : architecture is

"hm_init $MODEL_TECH/libhm.sl ; CY7C285.MDL";
begin
end Hardware;

Entity details

• The entity name is the hardware model name (you can manually change this name if you
like).

• The port names are the same as the hardware model port names (these names must not be
changed). If the hardware model port name is not a valid VHDL identifier, then
hm_entity issues an error message. If hm_entity is invoked with the -93 option, then the
identifier is converted to an extended identifier, and the resulting entity must also be
compiled with the -93 option. Another option is to create a pin-name mapping file.
Consult the Logic Modeling documentation for details.

• The port types are std_logic. This data type supports the full range of hardware model
logic states.

• The DelayRange generic selects minimum, typical, or maximum delay values. Valid
values are "min", "typ", or "max" (the strings are not case-sensitive). The default is
"max".
15-366 Logic Modeling Hardware Models ModelSim SE User’s Manual

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

VHDL Hardware Model interface
Architecture details

• The first part of the foreign attribute string (hm_init) is the same for all hardware models.

• The second part ($MODEL_TECH/libhm.sl) is taken from the libhm entry in the
initialization file, modelsim.ini.

• The third part (CY7C285.MDL) is the shell software filename. This name correlates the
architecture with the hardware model at elaboration.

Vector ports

The entities generated by hm_entity only contain single-bit ports, never vectored ports.
However, for ease of use in component instantiations, you may want to create a custom
component declaration and component specification that groups ports into vectors. You can
also rename and reorder the ports in the component declaration. You can also reorder the
ports in the entity declaration, but you can't rename them!

The following is an example component declaration and specification that groups the
address and data ports of the CY7C285 hardware model:

component cy7c285
generic (DelayRange : STRING := "Max");
port (A : in std_logic_vector (15 downto 0);

CS : in std_logic;
O : out std_logic_vector (7 downto 0);
WAIT_PORT : inout std_logic);

end component;

for all: cy7c285
use entity work.cy7c285
port map (A0 => A(0),

A1 => A(1),
A2 => A(2),
A3 => A(3),
A4 => A(4),
A5 => A(5),
A6 => A(6),
A7 => A(7),
A8 => A(8),
A9 => A(9),
A10 => A(10),
A11 => A(11),
A12 => A(12),
A13 => A(13),
A14 => A(14),
A15 => A(15),
CS => CS,
O0 => O(0),
O1 => O(1),
O2 => O(2),
O3 => O(3),
O4 => O(4),
O5 => O(5),
O6 => O(6),
O7 => O(7),
WAIT_PORT => W);
ModelSim SE User’s Manual Logic Modeling Hardware Models 15-367

VHDL Hardware Model interface
Hardware model commands

The following simulator commands are available for hardware models. Refer to the Logic
Modeling documentation for details on these operations.

lm_vectors on|off <instance_name> [<filename>]

Enable/disable test vector logging for the specified hardware model.

lm_measure_timing on|off <instance_name> [<filename>]

Enable/disable timing measurement for the specified hardware model.

lm_timing_checks on|off <instance_name>

Enable/disable timing checks for the specified hardware model.

lm_loop_patterns on|off <instance_name>

Enable/disable pattern looping for the specified hardware model.

lm_unknowns on|off <instance_name>

Enable/disable unknown propagation for the specified hardware model.
15-368 Logic Modeling Hardware Models ModelSim SE User’s Manual

http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html
http://www.synopsys.com/products/lm/docs/hw_mod/hw_mod.html

16 - Tcl and ModelSim

Chapter contents
Tcl features within ModelSim 16-370

Tcl References 16-370

Tcl commands 16-371
Tcl command syntax 16-372
if command syntax 16-374
set command syntax 16-375
Command substitution 16-376
Command separator 16-376
Multiple-line commands 16-376
Evaluation order 16-376
Tcl relational expression evaluation 16-376
Variable substitution 16-377
System commands. 16-377

List processing 16-378

ModelSim Tcl commands 16-378

ModelSim Tcl time commands 16-379

Tcl examples 16-381

This chapter provides an overview of Tcl (tool command language) as used with ModelSim.
Additional Tcl and Tk (Tcl’s toolkit) can be found through several Tcl online references
(16-370).

Tcl is a scripting language for controlling and extending ModelSim. Within ModelSim you
can develop implementations from Tcl scripts without the use of C code. Because Tcl is
interpreted, development is rapid; you can generate and execute Tcl scripts on the fly
without stopping to recompile or restart ModelSim. In addition, if ModelSim does not
provide the command you need, you can use Tcl to create your own commands.
ModelSim SE User’s Manual Tcl and ModelSim 16-369

Tcl features within ModelSim
Tcl features within ModelSim

Using Tcl with ModelSim gives you these features:

• command history (like that in C shells)

• full expression evaluation and support for all C-language operators

• a full range of math and trig functions

• support of lists and arrays

• regular expression pattern matching

• procedures

• the ability to define your own commands

• command substitution (that is, commands may be nested)

Note: ModelSim PE does not support Tk. You must be using ModelSim SE to customize
the interface.

Tcl References

Tcl printed references

Two sources of information about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout,
published by Addison-Wesley Publishing Company, Inc., and Practical Programming in
Tcl and Tk by Brent Welch published by Prentice Hall.

Tcl online references

The following are a few of the many Tcl references available:

• Select Help > Tcl Man Pages (Main window).

• Tcl man pages are also available at: http://dev.scriptics.com/man/tcl8.1

• Tcl/Tk general information is available from the Tcl/Tk Consortium:
www.tclconsortium.org

• The Scriptics Corporation, John Ousterhout’s company (the original Tcl developer):
www.scriptics.com.

Tcl tutorial

For some hands-on experience using Tcl with ModelSim, see the "Tcl/Tk and ModelSim"
lesson in the ModelSim SE Tutorial.
16-370 Tcl and ModelSim ModelSim SE User’s Manual

http://dev.scriptics.com/man/tcl8.1
http://www.tclconsortium.org
http://www.scriptics.com

Tcl commands
Tcl commands

The Tcl commands are listed below. For complete information on Tcl commands, select
Help > Tcl Man Pages (Main window) or refer to one of the Tcl/Tk resources noted above.
Also see "Preference variables located in TCL files" (B-406) for information on Tcl
variables.

Note: ModelSim command names that conflict with Tcl commands have been renamed or
have been replaced by Tcl commands. See the list below:

append array break case catch

cd close concat continue eof

error eval exec expr file

flush for foreach format gets

glob global history if incr

info insert join lappend list

llength lindex lrange lreplace lsearch

lsort open pid proc puts

pwd read regexp regsub rename

return scan seek set split

string switch tell time trace

source unset uplevel upvar while

Previous ModelSim
command

Command changed to (or replaced by)

continue run (CR-176) with the -continue option

format list | wave write format (CR-277) with either list or wave specified

if replaced by the Tcl if command, see "if command syntax" (16-

374) for more information

list add list (CR-28)

nolist | nowave delete (CR-99) with either list or wave specified

set replaced by the Tcl set command, see "set command syntax"
(16-375) for more information

source vsource (CR-270)

wave add wave (CR-37)
ModelSim SE User’s Manual Tcl and ModelSim 16-371

Tcl commands
Tcl command syntax

The former ModelSim commands, if and set are now Tcl commands. You should
understand Tcl command syntax before using these commands. The syntax, especially for
the if command, may be unfamiliar.

The following rules define the syntax and semantics of the Tcl language. Details on if
command syntax (16-374) and set command syntax (16-375) follow the general discussion of
Tcl command syntax.

1 A Tcl script is a string containing one or more commands. Semi-colons and newlines are
command separators unless quoted as described below. Close brackets ("]") are command
terminators during command substitution (see below) unless quoted.

2 A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described below. These substitutions are performed in
the same way for all commands. The first word is used to locate a command procedure to
carry out the command, then all of the words of the command are passed to the command
procedure. The command procedure is free to interpret each of its words in any way it likes,
such as an integer, variable name, list, or Tcl script. Different commands interpret their
words differently.

3 Words of a command are separated by white space (except for newlines, which are
command separators).

4 If the first character of a word is double-quote (""") then the word is terminated by the next
double-quote character. If semi-colons, close brackets, or white space characters (including
newlines) appear between the quotes then they are treated as ordinary characters and
included in the word. Command substitution, variable substitution, and backslash
substitution are performed on the characters between the quotes as described below. The
double-quotes are not retained as part of the word.

5 If the first character of a word is an open brace ("{") then the word is terminated by the
matching close brace ("}"). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within the
word is quoted with a backslash then it is not counted in locating the matching close brace).
No substitutions are performed on the characters between the braces except for backslash-
newline substitutions described below, nor do semi-colons, newlines, close brackets, or
white space receive any special interpretation. The word will consist of exactly the
characters between the outer braces, not including the braces themselves.

6 If a word contains an open bracket ("[") then Tcl performs command substitution. To do
this it invokes the Tcl interpreter recursively to process the characters following the open
bracket as a Tcl script. The script may contain any number of commands and must be
terminated by a close bracket ("]"). The result of the script (i.e. the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.
16-372 Tcl and ModelSim ModelSim SE User’s Manual

Tcl commands
7 If a word contains a dollar-sign ("$") then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of a variable.
Variable substitution may take any of the following forms:

$name

Name is the name of a scalar variable; the name is terminated by any character that isn’t a
letter, digit, or underscore.

$name(index)

Name gives the name of an array variable and index gives the name of an element within
that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on the
characters of index.

${name}

Name is the name of a scalar variable. It may contain any characters whatsoever except for
close braces.

There may be any number of variable substitutions in a single word. Variable substitution
is not performed on words enclosed in braces.

8 If a backslash ("\") appears within a word then backslash substitution occurs. In all cases
but those described below the backslash is dropped and the following character is treated
as an ordinary character and included in the word. This allows characters such as double
quotes, close brackets, and dollar signs to be included in words without triggering special
processing. The following table lists the backslash sequences that are handled specially,
along with the value that replaces each sequence.

\a Audible alert (bell) (0x7).

\b Backspace (0x8).

\f Form feed (0xc).

\n Newline (0xa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (0xb).

\<newline>whiteSpace A single space character replaces the backslash, newline, and all
spaces and tabs after the newline. This backslash sequence is
unique in that it is replaced in a separate pre-pass before the
command is actually parsed. This means that it will be replaced
even when it occurs between braces, and the resulting space will
be treated as a word separator if it isn’t in braces or quotes.

\\ Backslash ("\").
ModelSim SE User’s Manual Tcl and ModelSim 16-373

Tcl commands
Backslash substitution is not performed on words enclosed in braces, except for backslash-
newline as described above.

9 If a hash character ("#") appears at a point where Tcl is expecting the first character of the
first word of a command, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

10 Each character is processed exactly once by the Tcl interpreter as part of creating the words
of a command. For example, if variable substitution occurs then no further substitutions are
performed on the value of the variable; the value is inserted into the word verbatim. If
command substitution occurs then the nested command is processed entirely by the
recursive call to the Tcl interpreter; no substitutions are performed before making the
recursive call and no additional substitutions are performed on the result of the nested
script.

11 Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even if
the variable’s value contains spaces.

if command syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

The if command evaluates expr1 as an expression. The value of the expression must be a
boolean (a numeric value, where 0 is false and anything else is true, or a string value such
as true or yes for true and false or no for false); if it is true then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is
true then body2 is executed, and so on. If none of the expressions evaluates to true then
bodyN is executed. The then and else arguments are optional "noise words" to make the
command easier to read. There may be any number of elseif clauses, including zero. BodyN
may also be omitted as long as else is omitted too. The return value from the command is
the result of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was no bodyN.

\ooo The digits ooo (one, two, or three of them) give the octal value
of the character.

\xhh The hexadecimal digits hh give the hexadecimal value of the
character. Any number of digits may be present.
16-374 Tcl and ModelSim ModelSim SE User’s Manual

Tcl commands
set command syntax

The Tcl set command reads and writes variables. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

set varName ?value?

Description

Returns the value of variable varName. If value is specified, then sets the value of varName
to value, creating a new variable if one doesn’t already exist, and returns its value. If
varName contains an open parenthesis and ends with a close parenthesis, then it refers to
an array element: the characters before the first open parenthesis are the name of the array,
and the characters between the parentheses are the index within the array. Otherwise
varName refers to a scalar variable. Normally, varName is unqualified (does not include
the names of any containing namespaces), and the variable of that name in the current
namespace is read or written. If varName includes namespace qualifiers (in the array name
if it refers to an array element), the variable in the specified namespace is read or written.

If no procedure is active, then varName refers to a namespace variable (global variable if
the current namespace is the global namespace). If a procedure is active, then varName
refers to a parameter or local variable of the procedure unless the global command was
invoked to declare varName to be global, or unless a Tcl variable command was invoked
to declare varName to be a namespace variable.

More Tcl commands

All Tcl commands are documented from within ModelSim. Select Help > Tcl Man Page
(Main window).

Command substitution

Placing a command in square brackets [] will cause that command to be evaluated first and
its results returned in place of the command. An example is:

set a 25
set b 11
set c 3
echo "the result is [expr ($a + $b)/$c]"

will output:

"the result is 12"

This feature allows VHDL variables and signals, and Verilog nets and registers to be
accessed using:

[examine -<radix> name]

The %name substitution is no longer supported. Everywhere %name could be used, you
now can use [examine -value -<radix> name] which allows the flexibility of specifying
command options. The radix specification is optional.
ModelSim SE User’s Manual Tcl and ModelSim 16-375

Tcl commands
Command separator

A semicolon character (;) works as a separator for multiple commands on the same line. It
is not required at the end of a line in a command sequence.

Multiple-line commands

With Tcl, multiple-line commands can be used within macros and on the command line.
The command line prompt will change (as in a C shell) until the multiple-line command is
complete.

In the example below, note the way the opening brace { is at the end of the if and else lines.
This is important because otherwise the Tcl scanner won’t know that there is more coming
in the command and will try to execute what it has up to that point, which won’t be what
you intend.

if { [exa sig_a] == "0011ZZ"} {
echo "Signal value matches"
do macro_1.do

} else {
echo "Signal value fails"
do macro_2.do }

Evaluation order

An important thing to remember when using Tcl is that anything put in curly brackets {} is
not evaluated immediately. This is important for if-then-else, procedures, loops, and so
forth.

Tcl relational expression evaluation

When you are comparing values, the following hints may be useful:

• Tcl stores all values as strings, and will convert certain strings to numeric values when
appropriate. If you want a literal to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...

The following will also work:

if {[exa var_1] == "345"}...

• However, if a literal cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Z}...

will give an error.

if {[exa var_2] == "001Z"}...

will work okay.

• Don't quote single characters in single quotes:

if {[exa var_3] == ’X’}...

will give an error

if {[exa var_3] == "X"}...

will work okay.
16-376 Tcl and ModelSim ModelSim SE User’s Manual

Tcl commands
• For the equal operator, you must use the C operator "==" . For not-equal, you must use
the C operator "!=".

Variable substitution

When a $<var_name> is encountered, the Tcl parser will look for variables that have been
defined either by ModelSim or by you, and substitute the value of the variable.

Note: Tcl is case sensitive for variable names.

To access environment variables, use the construct:

$env(<var_name>)
echo My user name is $env(USER)

Environment variables can also be set using the env array:

set env(SHELL) /bin/csh

See "Simulator state variables" (B-408) for more information about ModelSim-defined
variables.

System commands

To pass commands to the UNIX shell or DOS window, use the Tcl exec command:

echo The date is [exec date]
ModelSim SE User’s Manual Tcl and ModelSim 16-377

List processing
List processing

In Tcl a "list" is a set of strings in curly braces separated by spaces. Several Tcl commands
are available for creating lists, indexing into lists, appending to lists, getting the length of
lists and shifting lists. These commands are:

Two other commands, lsearch and lsort, are also available for list manipulation. See the
Tcl man pages (Help > Tcl Man Pages) for more information on these commands.

See also the ModelSim Tcl command: lecho (CR-128)

ModelSim Tcl commands

These additional commands enhance the interface between Tcl and ModelSim. Only brief
descriptions are provided here; for more information and command syntax see the
"ModelSim Commands" (CR-9).

Command syntax Description

lappend var_name val1 val2 ... appends val1, val2, etc. to list var_name

lindex list_name index returns the index-th element of list_name; the first element is 0

linsert list_name index val1 val2 ... inserts val1, val2, etc. just before the index-th element of list_name

list val1, val2 ... returns a Tcl list consisting of val1, val2, etc.

llength list_name returns the number of elements in list_name

lrange list_name first last returns a sublist of list_name, from index first to index last; first or
last may be "end", which refers to the last element in the list

lreplace list_name first last val1, val2, ... replaces elements first through last with val1, val2, etc.

Command Description

alias (CR-41) creates a new Tcl procedure that evaluates the specified commands;
used to create a user-defined alias

find (CR-119) locates incrTcl classes and objects

lecho (CR-128) takes one or more Tcl lists as arguments and pretty-prints them to the
Main window

lshift (CR-133) takes a Tcl list as argument and shifts it in-place one place to the left,
eliminating the 0th element

lsublist (CR-134) returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

printenv (CR-152) echoes to the Main window the current names and values of all
environment variables
16-378 Tcl and ModelSim ModelSim SE User’s Manual

ModelSim Tcl time commands
ModelSim Tcl time commands

ModelSim Tcl time commands make simulator-time-based values available for use within
other Tcl procedures.

Time values may optionally contain a units specifier where the intervening space is also
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to be in the UserTimeScale. Return values are always in the current
Time Scale Units. All time values are converted to a 64-bit integer value in the current Time
Scale. This means that values smaller than the current Time Scale will be truncated to 0.

Conversions

Relations

All relation operations return 1 or 0 for true or false respectively and are suitable return
values for TCL conditional expressions. For example,

if {[eqTime $Now 1750ns]} {
...
}

Command Description

 intToTime <intHi32> <intLo32> converts two 32-bit pieces (high and low
order) into a 64-bit quantity (Time in
ModelSim is a 64-bit integer)

 RealToTime <real> converts a <real> number to a 64-bit integer
in the current Time Scale

scaleTime <time> <scaleFactor> returns the value of <time> multiplied by the
<scaleFactor> integer

Command Description

eqTime <time> <time> evaluates for equal

neqTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than

gteTime <time> <time> evaluates for greater than or equal

ltTime <time> <time> evaluates for less than

lteTime <time> <time> evaluates for less than or equal
ModelSim SE User’s Manual Tcl and ModelSim 16-379

ModelSim Tcl time commands
Arithmetic

Command Description

addTime <time> <time> add time

divTime <time> <time> 64-bit integer divide

mulTime <time> <time> 64-bit integer multiply

subTime <time> <time> subtract time
16-380 Tcl and ModelSim ModelSim SE User’s Manual

Tcl examples
Tcl examples

Example 1

The following Tcl/ModelSim example for UNIX shows how you can access system
information and transfer it into VHDL variables or signals and Verilog nets or registers.
When a particular HDL source breakpoint occurs, a Tcl function is called that gets the date
and time and deposits it into a VHDL signal of type STRING. If a particular environment
variable (DO_ECHO) is set, the function also echoes the new date and time to the transcript
file by examining the VHDL variable.

Note: In a Windows environment, the Tcl exec command shown below will execute
compiled files only, not system commands.

(in VHDL source):

signal datime : string(1 to 28) := " ";# 28 spaces

(on VSIM command line or in macro):

proc set_date {} {
global env
set do_the_echo [set env(DO_ECHO)]
set s [exec date]
force -deposit datime $s
if {do_the_echo} {

echo "New time is [examine -value datime]"
}

}
bp src/waveadd.vhd 133 {set_date; continue}

--sets the breakpoint to call set_date

This is an example of using the Tcl while loop to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b ""
set i [expr[llength $a]-1]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b ""
for {set i [expr [llength $a] -1]} {$i >= 0} {incr i -1} {

lappend b [lindex $a $i]
}

This example uses the Tcl foreach command to copy a list from variable a to variable b,
reversing the order of the elements along the way (the foreach command iterates over all
of the elements of a list):

set b ""
foreach i $a {

set b [linsert $b 0 $i]
}

ModelSim SE User’s Manual Tcl and ModelSim 16-381

Tcl examples
This example shows a list reversal as above, this time aborting on a particular element using
the Tcl break command:

set b ""
foreach i $a {

if {$i = "ZZZ"} break
set b [linsert $b 0 $i]

}

This example is a list reversal that skips a particular element by using the Tcl continue
command:

set b ""
foreach i $a {

if {$i = "ZZZ"} continue
set b [linsert $b 0 $i]

}

The last example is of the Tcl switch command:

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}

}

Example 2

This next example shows a complete Tcl script that restores multiple Wave windows to
their state in a previous simulation, including signals listed, geometry, and screen position.
It also adds buttons to the Main window toolbar to ease management of the wave files. This
example works in ModelSim SE only.

This file contains procedures to manage multiple wave files.
Source this file from the command line or as a startup script.
source <path>/wave_mgr.tcl

add_wave_buttons
Add wave management buttons to the main toolbar (new, save and load)

new_wave
Dialog box creates a new wave window with the user provided name

named_wave <name>
Creates a new wave window with the specified title

save_wave <file-root>
Saves name, window location and contents for all open

wave windows
Creates <file-root><n>.do file for each window where <n> is 1
to the number of windows. Default file-root is "wave". Also
creates windowSet.do file that contains title and geometry info.

load_wave <file-root>
Opens and loads wave windows for all files matching <file-root><n>.do
where <n> are the numbers from 1-9. Default <file-root> is "wave".
Also runs windowSet.do file if it exists.
16-382 Tcl and ModelSim ModelSim SE User’s Manual

Tcl examples
Add wave management buttons to the main toolbar

proc add_wave_buttons {} {
_add_menu main controls right SystemMenu SystemWindowFrame {Load Waves}
load_wave
_add_menu main controls right SystemMenu SystemWindowFrame {Save Waves}
save_wave
_add_menu main controls right SystemMenu SystemWindowFrame {New Wave}
new_wave
}

Simple Dialog requests name of new wave window. Defaults to Wave<n>

proc new_wave {} {
global dialog_prompt vsimPriv
set defaultName "Wave[llength $vsimPriv(WaveWindows)]"
set dialog_prompt(result) $defaultName
set windowName [GetValue . "Create Named Wave Window:"]
Debug
puts "Window name: $windowName\n";
if {$windowName == "{}"} {
 set windowName ""
}
if {$windowName != ""} {
 named_wave $windowName
} else {
 named_wave $defaultName
}

}

Creates a new wave window with the provided name (defaults to "Wave")

proc named_wave {{name "Wave"}} {
global vsimPriv
view -new wave
set newWave [lindex $vsimPriv(WaveWindows) [expr [llength \
$vsimPriv(WaveWindows)] - 1]]
wm title $newWave $name

}

Writes out format of all wave windows, stores geometry and title info in
windowSet.do file. Removes any extra files with the same fileroot.
Default file name is wave<n> starting from 1.

proc save_wave {{fileroot "wave"}} {
global vsimPriv
set n 1
set fileId [open windowSet_$fileroot.do w 755]
foreach w $vsimPriv(WaveWindows) {

echo "Saving: [wm title $w]"
set filename $fileroot$n.do
write format wave -window $w $filename
puts $fileId "wm title $w \"[wm title $w]\""
puts $fileId "wm geometry $w [wm geometry $w]"
puts $fileId "mtiGrid_colconfig $w.grid name -width \
[mtiGrid_colcget $w.grid name -width]"
puts $fileId "mtiGrid_colconfig $w.grid value -width \
[mtiGrid_colcget $w.grid value -width]"
flush $fileId
incr n

}

ModelSim SE User’s Manual Tcl and ModelSim 16-383

Tcl examples
if {![catch {glob $fileroot\[$n-9\].do}]} {
foreach f [lsort [glob $fileroot\[$n-9\].do]] {

echo "Removing: $f"
exec rm $f

}

 }

}

Provide file root argument and load_wave restores all saved widows.
Default file root is "wave".

proc load_wave {{fileroot "wave"}} {
global vsimPriv
foreach f [lsort [glob $fileroot\[1-9\].do]] {

echo "Loading: $f"
view -new wave
do $f

}
if {[file exists windowSet_$fileroot.do]} {

do windowSet_$fileroot.do
}

}

16-384 Tcl and ModelSim ModelSim SE User’s Manual

A - Technical Support, Updates, and Licensing

Appendix contents
Technical support - electronic A-386

Technical support - telephone A-387

Technical support - other channels. A-387

Updates. A-388

Online References A-388

FLEXlm Licenses A-389
ModelSim SE User’s Manual Technical Support, Updates, and Licensing A-385

Technical support - electronic
Technical support - electronic

Model Technology customers

Support questions may be submitted through the Model Technology online support form
at: www.model.com. Model Technology customers may also email test cases to
support@model.com; please provide the following information, in this format, in the body
of your email message:

• Your name:
Company:
Email address (if different from message address):
Telephone:
FAX (optional):

• ModelSim product (SE, EE or PE, and VHDL, VLOG, or PLUS):

• ModelSim Version:
(Use the Help About dialog box with Windows; type vcom for UNIX workstations.)

• Host operating system version:

• PC hardware security key authorization number:

• Ethernet card address if used for authorization:

• Host ID of license server for workstations:

• Description of the problem (please include the exact wording of any error messages):

Note: Model Technology customers in Europe should contact their distributor for support.
See www.model.com/contact_us.asp for distributor contact information.

Mentor Graphics customers

Mentor Graphics Customer Support offers a SupportNet-Email server for North American
and European companies that lets customers find product information or submit service
requests (call logs) to the SupportCenter 24 hours a day, 365 days a year. The server will
return a call log number within about 15 minutes. CAEs follow up on the call logs
submitted through SupportNet-Email using the same process as if a customer had phoned
the SupportCenter. For more information about using the SupportNet-Email server, send a
blank e-mail message to the following address: support_net@mentor.com.

Additionally, customers can open call logs or search TechNotes and AppNotes to try to find
the answers to their questions by logging onto Mentor Graphics’ Customer Support web
home page at www.mentor.com/supportnet.

If you are not yet registered for SupportNet and have an active support contract with
Mentor Graphics, you may do so by clicking Request Log-In and filling out the
information at: www.mentor.com/supportnet_register/

While all contract customers worldwide are invited to obtain a SupportNet Log-In,
SupportNet services are currently limited to customers who receive support from Mentor
support offices in North America or Europe. If you receive support from Mentor offices
outside of North America or Europe, please contact your local field office to obtain
assistance for a technical-support issue.
A-386 Technical Support, Updates, and Licensing ModelSim SE User’s Manual

http://www.model.com/support/email_support.asp
mailto:support@model.com
http://www.model.com/contact_us.asp
mailto:support_net@mentor.com
http://www.mentor.com/supportnet/
http://www.mentor.com/supportnet_register/

Technical support - telephone
Technical support - telephone

Model Technology customers worldwide

For customers who purchased from Model Technology, please contact Model Technology
via the support line at 1-503-641-1340 from 8:00 AM to 5:00 PM Pacific Time, Monday
through Friday, excluding holidays. Be sure to have your server hostID, ethernet card
address, or hardware security key authorization number handy.

Note: Model Technology customers in Europe should contact their distributor for support.
See www.model.com/contact_us.asp for distributor contact information.

Mentor Graphics customers in North America

For customers who purchased products from Mentor Graphics in North America, and are
under a current support contract, technical telephone support is available from the central
SupportCenter by calling toll-free 1-800-547-4303. The coverage window is from 5:30am
to 5:30pm Pacific Time, Monday through Friday, excluding Mentor Graphics holidays.

The more details you can supply about a problem or issue, the sooner a Corporate
Application Engineer can supply you with a solution or workaround. Be prepared to
provide the following important information:

• The priority of the call (critical, high, medium, low)

• The product about which you are calling

• Your operating system and software version numbers (accuracy is very important here)

• The steps that led to the problem or crash

• If it is a crash, the first few lines of a traceback

• Any non-Mentor Graphics tools or customized software that may be involved

Mentor Graphics customers outside North America

Customers who purchased products from Mentor Graphics outside of North America,
should contact their local support organization. A list of local Mentor Graphics support and
sales offices can be found at www.mentor.com/supportnet/support_offices.html.

Technical support - other channels

For customers who purchased ModelSim as part of a bundled product from an OEM, or
VAR, please refer to the www.model.com/partners/default.asp on the Model Technology
website for contact information.
ModelSim SE User’s Manual Technical Support, Updates, and Licensing A-387

http://www.model.com/contact_us.asp
http://www.mentor.com/supportnet/support_offices.html
http://www.model.com/partners/default.asp

Updates
Updates

Model Technology customers

You can ftp the latest version of the software from the web site at
ftp://ftp.model.com. Instructions are there as well.

Mentor Graphics customers

You can ftp the latest SE or PE version of the software from the SupportNet site at
ftp://supportnet.mentor.com/pub/mentortech/modeltech/. Instructions are there as well. A
valid license file from Mentor Graphics is needed to uncompress the ModelSim files.

Online References

The Model Technology web site (www.model.com) includes links to support, software
downloads, and many EDA information sources. Check the links below for the most
current information.

Latest version email

Place your name on our list for email notification of new releases and updates.
model.com/support/register_news_list.asp

News

Current news of Model Technology within the EDA industry.
model.com/news_events/default.asp

Partners

Model Technology’s value added partners, OEM partners, FPGA partners, ASIC
partners, and training partners.
model.com/partners/default.asp

Products

A complete collection of Model Technology product information.
model.com/products/default.asp

Technical Documents

Technical notes, application notes, FAQs.
model.com/resources/techdocs.asp

Sales

Locate ModelSim sales contacts anywhere in the world.
model.com/contact_us.asp

Support

Model Technology email support and software downloads.
model.com/support/default.asp
A-388 Technical Support, Updates, and Licensing ModelSim SE User’s Manual

ftp://ftp.model.com/pub
ftp://supportnet.mentor.com/pub/mentortech/modeltech/
http://www.model.com
http://www.model.com/support/register_news_list.asp
http://www.model.com/news_events/default.asp
http://www.model.com/partners/default.asp
http://www.model.com/products/default.asp
http://www.model.com/resources/techdocs.asp
http://www.model.com/contact_us.asp
http://www.model.com/support/default.asp

FLEXlm Licenses
FLEXlm Licenses

ModelSim uses Globetrotter’s FLEXlm license manager and files. Globetrotter FLEXlm
license files contain lines that can be referred to by the word that appears first on the line.
Each kind of line has a specific purpose and there are many more kinds of lines that MTI
does not use.

Mentor Graphics customers

Mentor Graphics provides licensing information in the Mentor Graphics Licensing chapter
in the Managing Mentor Graphics Software document. In addition, Model Technology
provides some basic Mentor Graphics licensing files. See the readme file in the MGLS-
related directory at ftp.model.com/pub/SE for more information.

Where to obtain your license

Mentor Graphics customers must contact their Mentor Graphics salesperson for ModelSim
licensing. All other customers may obtain ModelSim licenses from Model Technology.
Please contact Model Technology at license@model.com.

If you have trouble with licensing

Contact your normal technical support channel:

Technical support - electronic (A-386)

Technical support - telephone (A-387)

Technical support - other channels (A-387)

Maintenance renewals and licenses

When maintenance is renewed, a new license file that incorporates the new maintenance
expiration date will be automatically sent to you. If maintenance is not renewed, the current
license file will still permit the use of software versions built before maintenance expired
until the stop date is reached.

License transfers and server changes

Model Technology and Mentor Graphics both charge a fee for server changes or license
transfers. Contact sales@model.com for more information from Model Technology, or
contact your local Mentor Graphics sales office for Mentor Graphics purchases.

Additional licensing details

A complete discussion of licensing is located in the Start Here for ModelSim guide. For an
online version of Start Here, check the ModelSim Main window Help menu for SE
Documentation.
ModelSim SE User’s Manual Technical Support, Updates, and Licensing A-389

ftp://ftp.model.com/pub/SE/
mailto:license@model.com
mailto:sales@model.com

A-390 Technical Support, Updates, and Licensing ModelSim SE User’s Manual

B - ModelSim Variables

Appendix contents
Variable settings report B-392

Personal preferences B-392

Returning to the original ModelSim defaults B-392

Environment variables B-393

Preference variables located in INI files B-396
[Library] library path variables B-396
[vcom] VHDL compiler control variables B-396
[vlog] Verilog compiler control variables. B-398
[vsim] simulator control variables B-398
[lmc] Logic Modeling variables B-402
Setting variables in INI files B-402
Reading variable values from the INI file. B-402
Variable functions B-403

Preference variables located in TCL files B-406

Preference variable loading order B-407

Simulator state variables B-408

This appendix documents the following types of ModelSim variables:

• environment variables
Variables referenced and set according to operating system conventions. Environment
variables prepare the ModelSim environment prior to simulation.

• ModelSim preference variables
Variables used to control compiler or simulator functions (usually in .tcl files) and
modify the appearance of the ModelSim GUI (usually in INI files).

• simulator state variables
Variables that provide feedback on the state of the current simulation.
ModelSim SE User’s Manual ModelSim Variables B-391

Variable settings report
Variable settings report

The report command (CR-168) returns a list of current settings for either the simulator state,
or simulator control variables. Use the following commands at either the ModelSim or
VSIM prompt:

report simulator state
report simulator control

Personal preferences

There are several preferences stored by ModelSim on a personal basis, independent of
modelsim.ini or modelsim.tcl files. These preferences are stored in $(HOME)/.modelsim on
UNIX and in the Windows Registry under HKEY_CURRENT_USER\Software\Model
Technology Incorporated\ModelSim.

• cwd
History of the last five working directories (pwd). This history appears in the Main
window File menu.

• phst
Project History

• pinit
Project Initialization state (one of: Welcome | OpenLast | NoWelcome). This determines
whether the Welcome To ModelSim dialog box appears when you invoke the tool.

• printersetup
All setup parameters related to Printing (i.e., current printer, etc.)

The HKEY_CURRENT_USER key is unique for each user Login on Windows NT.

Returning to the original ModelSim defaults

If you would like to return ModelSim’s interface to its original state, simply rename or
delete the existing modelsim.tcl and modelsim.ini files. ModelSim will use pref.tcl for GUI
preferences and make a copy of <install_dir>/modeltech/modelsim.ini to use the next time
ModelSim is invoked without an existing project (if you start a new project the new MPF
file will use the settings in the new modelsim.ini file).
B-392 ModelSim Variables ModelSim SE User’s Manual

Environment variables
Environment variables

Before compiling or simulating, several environment variables may be set to provide the
functions described in the table below. The variables are in the autoexec.bat file on
Windows 95/98 machines, and set through the System control panel on NT machines. For
UNIX, the variables are typically found in the .login script. The LM_LICENSE_FILE
variable is required, all others are optional.

ModelSim Environment Variables

Variable Description

DOPATH used by ModelSim to search for simulator command files (do files); consists of a
colon-separated (semi-colon for Windows) list of paths to directories; optional;
this variable can be overridden by the DOPATH .tcl file variable

EDITOR specifies the editor to invoke with the edit command (CR-110)

HOME used by ModelSim to look for an optional graphical preference file and optional
location map file; see: "Preference variables located in INI files" (B-396) and
"Using location mapping" (E-437)

LM_LICENSE_FILE used by the ModelSim license file manager to find the location of the license file;
may be a colon-separated (semi-colon for Windows) set of paths, including paths
to other vendor license files; REQUIRED; see: "Using the FLEXlm License
Manager" (D-417)

MODEL_TECH set by all ModelSim tools to the directory in which the binary executables reside;
YOU SHOULD NOT SET THIS VARIABLE

MODEL_TECH_TCL used by ModelSim to find Tcl libraries for: Tcl/Tk 8.0, Tix, and vsim; defaults to
/modeltech/../tcl; may be set to an alternate path

MGC_LOCATION_MAP used by ModelSim tools to find source files based on easily reallocated "soft"
paths; optional; see: "Using location mapping" (E-437); also see the Tcl variables:
SourceDir and SourceMap

MODELSIM used by all ModelSim tools to find the modelsim.ini file; consists of a path
including the file name; optional. An alternative use of this variable is to set it to
the path of a project file (<Project_Root_Dir>/<Project_Name>.mpf). This allows
you to use project settings with command line tools. However, if you do this, the
.mpf file will replace modelsim.ini as the initialization file for all ModelSim tools.

MODELSIM_TCL used by ModelSim to look for an optional graphical preference file; can be a
colon-separated (UNIX) or semi-colon (Windows) separated list of file paths

MTI_TF_LIMIT limits the size of the VSOUT temp file (generated by the ModelSim kernel); the
value of the variable is the size of k-bytes; TMPDIR (below) controls the location
of this file, STDOUT controls the name; default = 10, 0 = no limit

MTI_USELIB_DIR specifies the directory into which object libraries are compiled when using the
-compile_uselibs argument to the vlog command (CR-250)
ModelSim SE User’s Manual ModelSim Variables B-393

Environment variables
Setting environment variables in Windows

In addition to the predefined variables shown above, you can define your own environment
variables. This example shows a user-defined library path variable that can be referenced
by the vmap command to add library mapping to the modelsim.ini file.

Using Windows 95/98

Open and edit the autoexec.bat file by adding this line:

set MY_PATH=\temp\work

Restart Windows to initialize the new variable.

Using Windows NT

Right-click the My Computer icon and select Properties, then select the Environment tab
of the System Properties control panel. Add the new variable to these fields:
Variable:MY_PATH and Value:\temp\work.

Click Set and Apply to initialize the variable (you don’t need to restart NT).

Library mapping with environment variables

Once the MY_PATH variable is set, you can use it with the vmap command (CR-257) to
add library mappings to the current modelsim.ini file.

 If you’re using the vmap command from DOS prompt type:

vmap MY_VITAL %MY_PATH%

 If you’re using vmap from ModelSim/VSIM prompt type:

vmap MY_VITAL \$MY_PATH

If you used DOS vmap, this line will be added to the modelsim.ini:

MY_VITAL = c:\temp\work

If vmap is used from the ModelSim/VSIM prompt, the modelsim.ini file will be modified
with this line:

 MY_VITAL = $MY_PATH

You can easily add additional hierarchy to the path. For example,

vmap MORE_VITAL %MY_PATH%\more_path\and_more_path

PLIOBJS used by ModelSim to search for PLI object files for loading; consists of a
space-separated list of file or path names; optional

STDOUT the VSOUT temp file (generated by the simulator kernel) is deleted when the
simulator exits; the file is not deleted if you specify a filename for VSOUT with
STDOUT; specifying a name and location (use TMPDIR) for the VSOUT file will
also help you locate and delete the file in event of a crash (an unnamed VSOUT
file is not deleted after a crash either)

TMPDIR specifies the path to a tempnam() generated file (VSOUT) containing all stdout
from the simulation kernel; optional

Variable Description
B-394 ModelSim Variables ModelSim SE User’s Manual

Environment variables
vmap MORE_VITAL \$MY_PATH\more_path\and_more_path

Note: The "$" character in the examples above is Tcl syntax that precedes a variable. The
"\" character is an escape character that keeps the variable from being evaluated during the
execution of vmap.

Referencing environment variables within ModelSim

There are two ways to reference environment variables within ModelSim. Environment
variables are allowed in a FILE variable being opened in VHDL. For example,

entity test is end;
use std.textio.all;

architecture only of test is

begin
process

FILE in_file : text is in "$ENV_VAR_NAME";
begin

wait;
end process;

end;

Environment variables may also be referenced from the ModelSim command line or in
macros using the Tcl env array mechanism:

echo "$env(ENV_VAR_NAME)"

Removing temp files (VSOUT)

The VSOUT temp file is the communication mechanism between the simulator kernel and
the ModelSim GUI. In normal circumstances the file is deleted when the simulator exits. If
ModelSim crashes, however, the temp file must be deleted manually. Specifying the
location of the temp file with TMPDIR (above) will help you locate and remove the file.

Note: There is one environment variable, MODEL_TECH, that you cannot — and should
not — set. MODEL_TECH is a special variable set by Model Technology software. Its
value is the name of the directory from which the vcom compiler or vsim simulator was
invoked. MODEL_TECH is used by the other Model Technology tools to find the
libraries.
ModelSim SE User’s Manual ModelSim Variables B-395

Preference variables located in INI files
Preference variables located in INI files

ModelSim initialization (INI) files contain control variables that specify reference library
paths and compiler and simulator settings.

The following tables list the variables by section, and in order of their appearance within
the INI file:

[Library] library path variables

[vcom] VHDL compiler control variables

INI file sections

[Library] library path variables (B-396)

[vcom] VHDL compiler control variables (B-396)

[vlog] Verilog compiler control variables (B-398)

[vsim] simulator control variables (B-398)

[lmc] Logic Modeling variables (B-402)

Variable name Value range Purpose

ieee any valid path; may include
environment variables

sets the path to the library containing IEEE and
Synopsys arithmetic packages; the default is /
modeltech/../ieee

std any valid path; may include
environment variables

sets the path to the VHDL STD library; the default
is /modeltech/../std

std_developerskit any valid path; may include
environment variables

sets the path to the libraries for MGC standard
developer’s kit; the default is
/modeltech/../std_developerskit

synopsys any valid path; may include
environment variables

sets the path to the accelerated arithmetic
packages; the default is /modeltech/../synopsys

verilog any valid path; may include
environment variables

sets the path to the library containing VHDL/
Verilog type mappings; the default is /modeltech/
../verilog

Variable name Value
range

Purpose Default

CheckSynthesis 0, 1 if 1, turns on limited synthesis rule compliance
checking; checks only signals used (read) by a
process

off (0)
B-396 ModelSim Variables ModelSim SE User’s Manual

Preference variables located in INI files
Explicit 0, 1 if 1, turns on resolving of ambiguous function
overloading in favor of the "explicit" function
declaration (not the one automatically created by
the compiler for each type declaration)

on (1)

IgnoreVitalErrors 0, 1 if 1, ignores VITAL compliance checking errors off (0)

NoCaseStaticError 0, 1 if 1, changes case statement static errors to warnings off (0)

NoDebug 0, 1 if 1, turns off inclusion of debugging info within
design units

off (0)

NoOthersStaticError 0, 1 if 1, disables errors caused by aggregates that are
not locally static

off (0)

NoVital 0, 1 if 1, turns off acceleration of the VITAL packages off (0)

NoVitalCheck 0, 1 if 1, turns off VITAL compliance checking off (0)

Optimize_1164 0, 1 if 0, turns off optimization for IEEE std_logic_1164
package

on (1)

Quiet 0, 1 if 1, turns off "loading..." messages off (0)

RequireConfigForAllDefault
Binding

0, 1 if 1, instructs the compiler not to generate a default
binding during compilation

off (0)

ScalarOpts 0, 1 if 1, activates optimizations on expressions that
don’t involve signals, waits or function/procedure/
task invocations

off (0)

Show_source 0, 1 if 1, shows source line containing error off (0)

Show_VitalChecksWarnings 0, 1 if 0, turns off VITAL compliance-check warnings on (1)

Show_Warning1 0, 1 if 0, turns off unbound-component warnings on (1)

Show_Warning2 0, 1 if 0, turns off process-without-a-wait-statement
warnings

on (1)

Show_Warning3 0, 1 if 0, turns off null-range warnings on (1)

Show_Warning4 0, 1 if 0, turns off no-space-in-time-literal warnings on (1)

Show_Warning5 0, 1 if 0, turns off multiple-drivers-on-unresolved-signal
warnings

on (1)

VHDL93 0, 1 if 1, turns on VHDL-1993 off (0)

Variable name Value
range

Purpose Default
ModelSim SE User’s Manual ModelSim Variables B-397

Preference variables located in INI files
[vlog] Verilog compiler control variables

[vsim] simulator control variables

Variable name Value
range

Purpose Default

Hazard 0, 1 if 1, turns on Verilog hazard checking (order-
dependent accessing of global vars)

off (0)

Incremental 0, 1 if 1, turns on incremental compilation of modules off (0)

NoDebug 0, 1 if 1, turns off inclusion of debugging info within
design units

off (0)

Quiet 0, 1 if 1, turns off "loading..." messages off (0)

Show_Lint 0, 1 if 1, turns on lint-style checking off (0)

ScalarOpts 0, 1 if 1, activates optimizations on expressions that don’t
involve signals, waits or function/procedure/task
invocations

off (0)

Show_source 0, 1 if 1, shows source line containing error off (0)

UpCase 0, 1 if 1, turns on converting regular Verilog identifiers to
uppercase. Allows case insensitivity for module
names; see also "Verilog-XL compatible compiler
options" (5-79)

off (0)

Variable name Value range Purpose Default

AssertFile any valid
filename

alternative file for storing assertion
messages

transcript

AssertionFormat see purpose sets the message to display after a break on
assertion; message formats include:
%S - severity level
%R - report message
%T - time of assertion
%D - delta
%I - instance or region pathname (if
available)
%% - print ’%’ character

"** %S:
%R\n Time:
%T
Iteration:
%D%I\n"

BreakOnAssertion 0-4 defines severity of assertion that causes a
simulation break (0 = note, 1 = warning, 2 =
error, 3 = failure, 4 = fatal)

3

CheckpointCompressMode 0, 1 if 1, checkpoint files are written in
compressed format

on (1)

CommandHistory any valid
filename

sets the name of a file in which to store the
Main window command history

commented
out (;)
B-398 ModelSim Variables ModelSim SE User’s Manual

Preference variables located in INI files
ConcurrentFileLimit any positive
integer

controls the number of VHDL files open
concurrently; this number should be less
than the current limit setting for max file
descriptors; 0 = unlimited

40

DatasetSeparator any single
character

the dataset separator for fully-rooted
contexts, for example sim:/top; must not be
the same character as PathSeparator

:

DefaultForceKind freeze, drive, or
deposit

defines the kind of force used when not
otherwise specified

drive for
resolved
signals;
freeze for
unresolved
signals

DefaultRadix symbolic, binary,
octal, decimal,
unsigned,
hexadecimal,
ascii

any radix may be specified as a number or
name (i.e., binary can be specified as binary
or 2)

symbolic

DefaultRestartOptions one or more of:
-force,
-nobreakpoint,
-nolist, -nolog,
-nowave

sets default behavior for the restart
command

commented
out (;)

DelayFileOpen 0, 1 if 1, open VHDL87 files on first read or
write, else open files when elaborated

off (0)

GenerateFormat Any non-quoted
string containing
at a minimum a
%s followed by a
%d

control the format of a generate statement
label (don’t quote it)

 %s__%d

IgnoreError 0,1 if 1, ignore assertion errors off (0)

IgnoreFailure 0,1 if 1, ignore assertion failures off (0)

IgnoreNote 0,1 if 1, ignore assertion notes off (0)

IgnoreWarning 0,1 if 1, ignore assertion warnings off (0)

IterationLimit positive integer limit on simulation kernel iterations during
one time delta

5000

Variable name Value range Purpose Default
ModelSim SE User’s Manual ModelSim Variables B-399

Preference variables located in INI files
License any single
<license_option>

if set, controls ModelSim license file
search; license options include:
nomgc - excludes MGC licenses
nomti - excludes MTI licenses
noqueue - do not wait in license queue if no
licenses are available
plus - only use PLUS license
vlog - only use VLOG license
vhdl - only use VHDL license
viewsim - accepts a simulation license
rather than being queued for a viewer
license

see also the vsim command (CR-258)
<license_option>

search all
licenses

LockedMemory positive integer;
mb of memory to
lock

for HP-UX 10.2 use only; enables memory
locking to speed up large designs (> 500mb
memory footprint); see "Accelerate
simulation by locking memory under HP-
UX 10.2" (E-439)

disabled

NumericStdNoWarnings 0, 1 if 1, warnings generated within the
accelerated numeric_std and numeric_bit
packages are suppressed

off (0)

PathSeparator any single
character

used for hierarchical path names; must not
be the same character as DatasetSeparator

/

Resolution fs, ps, ns, us, ms,
or sec with
optional prefix of
1, 10, or 100

simulator resolution; this value must be less
than or equal to the UserTimeUnit specified
below; NOTE - if your delays are truncated,
set the resolution smaller; no space between
value and units (i.e., 10ps, not 10 ps)

ns

RunLength positive integer default simulation length in units specified
by the UserTimeUnit variable

100

Startup = do <DO
filename>; any
valid macro (do)
file

specifies the ModelSim startup macro; see
the do command (CR-104)

commented
out (;)

StdArithNoWarnings 0, 1 if 1, warnings generated within the
accelerated Synopsys std_arith packages
are suppressed

off (0)

TranscriptFile any valid
filename

file for saving command transcript;
environment variables may be included in
the path name

transcript

Variable name Value range Purpose Default
B-400 ModelSim Variables ModelSim SE User’s Manual

Preference variables located in INI files
UnbufferedOutput 0, 1 controls VHDL and Verilog files open for
write; 0 = Buffered, 1 = Unbuffered

0

UserTimeUnit fs, ps, ns, us, ms,
sec, or default

specifies the default units to use for the
"<timesteps> [<time_units>]" argument to
the run command (CR-176); NOTE - the
value of this variable must be set equal to,
or larger than, the current simulator
resolution specified by the Resolution
variable shown above

ns

Veriuser one or more valid
shared objects

list of dynamically loadable objects for
Verilog PLI/VPI applications; see "Using
the Verilog PLI/VPI" (5-108)

commented
out (;)

WaveSignalNameWidth 0, positive
integer

controls the number of visible hierarchical
regions of a signal name shown in the Wave
window (8-216); the default value of zero
displays the full name, a setting of one or
above displays the corresponding level(s)
of hierarchy

0

WLFCompress 0, 1 turns WLF file compression on (1) or off (0) 1

WLFDeleteOnQuit 0, 1 specifies whether a WLF file should be
deleted when the simulation ends; if set to
0, the file is not deleted; if set to 1, the file
is deleted

0

WLFSaveAllRegions 0, 1 specifies whether to save all design
hierarchy in the WLF file (1) or only
regions containing logged signals (0)

0

WLFSizeLimit 0 - n MB WLF file size limit; limits WLF file by size
(as closely as possible) to the specified
number of megabytes; if both size and time
limits are specified the most restrictive is
used; setting to 0 results in no limit

0

WLFTimeLimit 0 - n WLF file time limit; limits WLF file by
time (as closely as possible) to the specified
amount of time. If both time and size limits
are specified the most restrictive is used;
setting to 0 results in no limit

0

Variable name Value range Purpose Default
ModelSim SE User’s Manual ModelSim Variables B-401

Preference variables located in INI files
[lmc] Logic Modeling variables

Logic Modeling SmartModels and hardware modeler interface

ModelSim’s interface with Logic Modeling’s SmartModels and hardware modeler are
specified in the [lmc] section of the INI/MPF file; for more information see "VHDL
SmartModel interface" (14-354) and "VHDL Hardware Model interface" (15-364)
respectively.

Spaces in path names

For the Src_Files and Work_Libs variables, each element in the list is enclosed within curly
braces ({}). This allows spaces inside elements (since Windows allows spaces inside path
names). For example a source file list might look like:

Src_Files = {$MODELSIM_PROJECT/counter.v} {$MODELSIM_PROJECT/tb counter.v}

Where the file tb counter.v contains a space character between the "b" and "c".

Setting variables in INI files

Edit the initialization file directly with any text editor to change or add a variable. The
syntax for variables in the file is:

<variable> = <value>

Comments within the file are preceded with a semicolon (;).

Note: The vmap command (CR-257) automatically modifies library mappings in the
current INI file.

Reading variable values from the INI file

These Tcl functions allow you to read values from the modelsim.ini file.

GetIniInt <var_name> <default_value>

Reads the integer value for the specified variable.

GetIniReal <var_name> <default_value>

Reads the real value for the specified variable.

GetProfileString <section> <var_name> [<default>]

Reads the string value for the specified variable in the specified section. Optionally
provides a default value if no value is present.

Setting Tcl variables with values from the modelsim.ini file is one use of these Tcl
functions. For example,

set MyCheckpointCompressMode [GetIniInt "CheckpointCompressMode" 1]

set PrefMain(file) [GetProfileString vsim TranscriptFile ""]
B-402 ModelSim Variables ModelSim SE User’s Manual

Preference variables located in INI files
Variable functions

Several of the more commonly used modelsim.ini variables are further explained below.

Environment variables

You can use environment variables in your initialization files. Use a dollar sign ($) before
the environment variable name.

Examples

[Library]
work = $HOME/work_lib
test_lib = ./$TESTNUM/work
...
[vsim]
IgnoreNote = $IGNORE_ASSERTS
IgnoreWarning = $IGNORE_ASSERTS
IgnoreError = 0
IgnoreFailure = 0

Tip:
There is one environment variable, MODEL_TECH, that you cannot — and should not
— set. MODEL_TECH is a special variable set by Model Technology software. Its value
is the name of the directory from which the VCOM compiler or VSIM simulator was
invoked. MODEL_TECH is used by the other Model Technology tools to find the
libraries.

Hierarchical library mapping

By adding an "others" clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they
will search the library section of the initialization file specified by the "others" clause.

Examples

[Library]
asic_lib = /cae/asic_lib
work = my_work
others = /install_dir/modeltech/modelsim.ini

Tip:

Since the file referred to by the others clause may itself contain an others clause, you can
use this feature to chain a set of hierarchical INI files.

Creating a transcript file

A feature in the system initialization file allows you to keep a record of everything that
occurs in the transcript: error messages, assertions, commands, command outputs, etc. To
do this, set the value for the TranscriptFile line in the modelsim.ini file to the name of the
file in which you would like to record the ModelSim history. The size of this file can be
controlled with the MTI_TF_LIMIT (B-393) variable.

; Save the command window contents to this file
TranscriptFile = trnscrpt
ModelSim SE User’s Manual ModelSim Variables B-403

Preference variables located in INI files
Using a startup file

The system initialization file allows you to specify a command or a do file that is to be
executed after the design is loaded. For example:

; VSIM Startup command
Startup = do mystartup.do

The line shown above instructs ModelSim to execute the commands in the macro file
named mystartup.do.

; VSIM Startup command
Startup = run -all

The line shown above instructs VSIM to run until there are no events scheduled.

See the do command (CR-104) for additional information on creating do files.

Turning off assertion messages

You can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge
number of warnings.

[vsim]
IgnoreNote = 1
IgnoreWarning = 1
IgnoreError = 1
IgnoreFailure = 1

Messages may also be turned off with Tcl variables; see "Preference variables located in
TCL files" (B-406).

Turning off warnings from arithmetic packages

You can disable warnings from the synopsys and numeric standard packages by adding the
following lines to the [vsim] section of the modelsim.ini file.

[vsim]
NumericStdNoWarnings = 1
StdArithNoWarnings = 1

Warnings may also be turned off with Tcl variables; see "Preference variables located in
TCL files" (B-406).

Force command defaults

The force command has -freeze, -drive, and -deposit options. When none of these is
specified, then -freeze is assumed for unresolved signals and -drive is assumed for resolved
signals. This is designed to provide compatibility with version 4.1 and earlier force files.
But if you prefer -freeze as the default for both resolved and unresolved signals, you can
change the defaults in the modelsim.ini file.

[vsim]
; Default Force Kind
; The choices are freeze, drive, or deposit
DefaultForceKind = freeze
B-404 ModelSim Variables ModelSim SE User’s Manual

Preference variables located in INI files
Restart command defaults

The restart command has -force, -nobreakpoint, -nolist, -nolog, and -nowave options.
You can set any of these as defaults by entering the following line in the modelsim.ini file:

DefaultRestartOptions = <options>

where <options> can be one or more of -force, -nobreakpoint, -nolist, -nolog, and -nowave.

Example: DefaultRestartOptions = -nolog -force

Note: You can also set these defaults in the modelsim.tcl file. The Tcl file settings will
override the .ini file settings.

VHDL93

You can make the VHDL93 standard the default by including the following line in the INI
file:

[vcom]
; Turn on VHDL-1993 as the default. Default is off (VHDL-1987).
VHDL93 = 1

Opening VHDL files

You can delay the opening of VHDL files with an entry in the INI file if you wish. Normally
VHDL files are opened when the file declaration is elaborated. If the DelayFileOpen option
is enabled, then the file is not opened until the first read or write to that file.

[vsim]
DelayFileOpen = 1
ModelSim SE User’s Manual ModelSim Variables B-405

Preference variables located in TCL files
Preference variables located in TCL files

ModelSim TCL preference variables give you control over fonts, colors, prompts, window
positions and other simulator window characteristics. Preference files, which contain Tcl
commands that set preference variables, are loaded before any windows are created, and so
will affect all windows. For complete documentation on Tcl preference variables, see the
following URL:

http://www.model.com/resources/pref_variables/frameset.htm

When ModelSim is invoked for the first time, default preferences are loaded from the
pref.tcl file. Customized variable settings may be set from within the ModelSim GUI, on
the ModelSim command line, or by directly editing the preference file.

The default file for customized preferences is modelsim.tcl. If your preference file is not
named modelsim.tcl, you must refer to it with the MODELSIM_TCL (B-393) environment
variable.

User-defined variables

Temporary, user-defined variables can be created with the Tcl set command. Like
simulator variables, user-defined variables are preceded by a dollar sign when referenced.
To create a variable with the set command:

set user1 7

You can use the variable in a command like:

echo "user1 = $user1"

More preferences

Additional compiler and simulator preferences may be set in the modelsim.ini and MPF
files, see "Preference variables located in INI files" (B-396).
B-406 ModelSim Variables ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm

Preference variable loading order
Preference variable loading order

ModelSim .tcl, .ini, and .mpf files all contain variables that are loaded when you start
ModelSim. The files are evaluated for variable settings in the order below.

.tcl file variables are evaluated before the design is loaded

ModelSim evaluates .tcl files prior to loading a design for simulation. Any window
user_hook_variables are evaluated after the associated window type is created.

1 The <install_dir>/modeltech/tcl/vsim/pref.tcl file is always loaded.

2 The file specified by the MODELSIM_TCL (B-393) environment variable is loaded next.

3 If MODELSIM_TCL does not exist, the modelsim.tcl in the current directory is evaluated.

4 If MODELSIM_TCL and ./modelsim.tcl do not exist, the file specified by the
HOME (B-393) environment variable is used.

.ini and .mpf file variables are evaluated after the design is loaded

After the design is loaded, .ini or .mpf file variables are found in these locations:

1 First the location specified by the MODELSIM (B-393) environment variable,

If no MODELSIM variable exists, ModelSim looks for .mpf and .ini files in the locations
shown below. Project files (.mpf) are evaluated first, if no project file is found, ModelSim
looks for an .ini file in the same location.

2 Next in the current directory if no MODELSIM variable exists.

3 Then in the directory where the executable exists (/<install_dir>/modeltech/<platform>).

4 Finally in the parent of the directory where the executable is (/<install_dir>/modeltech).

Note: The MODELSIM variable is generally set to an .ini file. Setting the variable to an
MPF file is not recommended since the file would contain project-specific information.
Setting the MODELSIM variable to an .mpf file is only recommended for batch-mode
usage.
ModelSim SE User’s Manual ModelSim Variables B-407

Simulator state variables
Simulator state variables

Unlike other variables that must be explicitly set, simulator state variables return a value
relative to the current simulation. Simulator state variables can be useful in commands,
especially when used within ModelSim DO files (macros).

Referencing simulator state variables

Variable values may be referenced in simulator commands by preceding the variable name
with a $ sign. For example, to use the now and resolution variables in an echo command
type:

echo "The time is $now $resolution."

Depending on the current simulator state, this command could result in:

The time is 12390 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a "\". For
example, \$now will not be interpreted as the current simulator time.

Variable Result

argc returns the total number of parameters passed to the current macro

architecture returns the name of the top-level architecture currently being
simulated; for a configuration or Verilog module, this variable
returns an empty string

configuration returns the name of the top-level configuration currently being
simulated; returns an empty string if no configuration

delta returns the number of the current simulator iteration

entity returns the name of the top-level VHDL entity or Verilog module
currently being simulated

library returns the library name for the current region

MacroNestingLevel returns the current depth of macro call nesting

n represents a macro parameter, where n can be an integer in the range
1-9

Now returns the current simulation time expressed in the current time
resolution (e.g., 1000 ns)

now returns the current simulation time as an absolute number of time
steps (e.g., 1000)

resolution returns the current simulation time resolution
B-408 ModelSim Variables ModelSim SE User’s Manual

C - ModelSim Shortcuts

Appendix contents
Wave window mouse and keyboard shortcuts C-410

List window keyboard shortcuts C-411

Command shortcuts C-412

Command history shortcuts C-412

Mouse and keyboard shortcuts in the Transcript and Source windows . C-413

Right mouse button C-415

This appendix is a collection of the keyboard and command shortcuts available in the
ModelSim GUI.
ModelSim SE User’s Manual ModelSim Shortcuts C-409

Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - left-button - click on a scroll arrow > scrolls window to very top or
bottom(vertical scroll) or far left or
right (horizontal scroll)

< middle mouse-button - click in scroll bar trough>
(UNIX) only

scrolls window to position of click

Keystroke Action

i I or + zoom in

o O or - zoom out

f or F zoom full; mouse pointer must be over the the cursor or
waveform panes

l or L zoom last

r or R zoom range

<arrow up> scroll waveform display up by selecting the item above the
currently selected item

<arrow down> scroll waveform display down by selecting the item below the
currently selected item

<arrow left> scroll waveform display left

<arrow right> scroll waveform display right

<page up> scroll waveform display up by a page

<page down> scroll waveform display down by a page

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> Windows
<control-s> UNIX

open the find dialog box; searches within the specified field in
the pathname pane for text strings
C-410 ModelSim Shortcuts ModelSim SE User’s Manual

List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key Action

<arrow up> scroll listing up (selects and highlights the line above the
currently selected line)

<arrow down> scroll listing down (selects and highlights the line below the
currently selected line)

<arrow left> scroll listing left

<arrow right> scroll listing right

<page up> scroll listing up by page

<page down> scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signal

<shift-tab> searches backward (up) to the previous transition on the selected
signal (does not function on HP workstations)

<control-f> Windows
<control-s> UNIX

opens the find dialog box; finds the specified item label within
the list display
ModelSim SE User’s Manual ModelSim Shortcuts C-411

Command shortcuts

You may abbreviate command syntax, but there’s a catch. The minimum characters
required to execute a command are those that make it unique. Remember, as we add new
commands some of the old shortcuts may not work. For this reason ModelSim does not
allow command name abbreviations in macro files. This minimizes your need to maintain
macro files as new commands are added.

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the ModelSim/VSIM prompt:

Shortcut Description

!! repeats the last command

!n repeats command number n; n is the VSIM prompt number (e.g.,
for this prompt: VSIM 12>, n =12)

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

his or history shows the last few commands (up to 50 are kept)
C-412 ModelSim Shortcuts ModelSim SE User’s Manual

Mouse and keyboard shortcuts in the Transcript and Source windows

The following mouse actions and special keystrokes can be used to edit commands in the
entry region of the Main window. They can also be used in editing the file displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSim
to open the Notepad editor).

Mouse - UNIX Mouse - Windows Result

< left-button - click > move the insertion cursor

< left-button - press > + drag select

< shift - left-button - press > extend selection

< left-button - double-click > select word

< left-button - double-click > + drag select word + word

< control - left-button - click > move insertion cursor without
changing the selection

< left-button - click > on previous ModelSim or VSIM prompt copy and paste previous command
string to current prompt

< middle-button - click > none paste clipboard

< middle-button - press > + drag none scroll the window

Keystrokes - UNIX Keystrokes - Windows Result

< left | right - arrow > move cursor left | right one character

< control > < left | right - arrow > move cursor left | right one word

< shift > < left | right | up | down - arrow > extend selection of text

< control > < shift > < left | right - arrow > extend selection of text by word

< up | down - arrow > scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down > moves cursor up | down one paragraph

< control > < home > move cursor to the beginning of the text

< control > < end > move cursor to the end of the text

< backspace >, < control-h > < backspace > delete character to the left

< delete >, < control-d > < delete > delete character to the right

none esc cancel

< alt > activate or inactivate menu bar mode
ModelSim SE User’s Manual ModelSim Shortcuts C-413

< alt > < F4 > close active window

< control - a >, < home > < home > move cursor to the beginning of the line

< control - b > move cursor left

< control - d > delete character to the right

< control - e >, < end > < end > move cursor to the end of the line

< control - f > move cursor right one character

< control - k > delete to the end of line

< control - n > move cursor one line down (Source window
only under Windows)

< control - o > none insert a newline character in front of the cursor

< control - p > move cursor one line up (Source window only
under Windows)

< control - s > < control - f > find

< F3 > find next

< control - t > reverse the order of the two characters to the
right of the cursor

< control - u > delete line

< control - v > PageDn move cursor down one screen

< control - w > < control - x > cut the selection

< control - x >, < control - s> < control - s > save

< control - y >, F18 < control - v > paste the selection

none < control - a > select the entire contents of the widget

< control - \ > clear any selection in the widget

< control - _>, < control - / > < control - Z > undoes previous edits in the Source window

< meta - "<" > none move cursor to the beginning of the file

< meta - ">" > none move cursor to the end of the file

< meta - v > PageUp move cursor up one screen

< Meta - w> < control - c > copy selection

< F8 > search for the most recent command that
matches the characters typed (Main window
only)

Keystrokes - UNIX Keystrokes - Windows Result
C-414 ModelSim Shortcuts ModelSim SE User’s Manual

The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

Right mouse button

The right mouse button provides shortcut menus in the Main and Wave windows. In the
Source window, the button gives you feedback on any HDL item under the cursor. See
Chapter 8 - ModelSim Graphic Interface for menu descriptions.
ModelSim SE User’s Manual ModelSim Shortcuts C-415

C-416 ModelSim Shortcuts ModelSim SE User’s Manual

D - Using the FLEXlm License Manager

Appendix contents
Starting the license server daemon. D-418

Locating the license file D-418
Controlling the license file search. D-418
Manual start D-418
Automatic start at boot time D-419
What to do if another application uses FLEXlm D-419

Format of the license file D-420

Format of the daemon options file D-420

License administration tools D-422
lmstat D-422
lmdown D-422
lmremove D-423
lmreread D-423
Administration tools for Windows D-423

This appendix covers Model Technology’s application of FLEXlm for ModelSim licensing.

Globetrotter Software’s Flexible License Manager (FLEXlm) is a network floating
licensing package that allows the application to be licensed on a concurrent usage basis, as
well as on a per-computer basis.

FLEXlm user’s manual

The content of this appendix is limited to the use of FLEXlm with Model Technology’s
software. For more information, see the FLEXlm user’s manual that is available from
Globetrotter Software’s web site:

http://www.globetrotter.com/manual.htm
ModelSim SE User’s Manual Using the FLEXlm License Manager D-417

http://www.globetrotter.com/manual.htm

Starting the license server daemon
Starting the license server daemon

Locating the license file

When the license manager daemon is started, it must be able to find the license file. The
default location is /usr/local/flexlm/licenses/license.dat for Unix or c:\flexlm\license.dat for
Windows. You can change where the daemon looks for the license file using one of two
methods:

• By starting the license manager using the -c <pathname> option.

• By setting the LM_LICENSE_FILE (B-393) environment variable to the path of the file.

More information about installing ModelSim and using a license file is available in Model
Technology’s Start Here for ModelSim guide, see "Where to find our documentation" (1-

21), or email us at license@model.com.

Controlling the license file search

By default, ModelSim checks for the existence of both Model Technology and Mentor
Graphics generated licenses. When vsim is invoked it will first locate and use any available
MTI licenses, then search for MGC licenses as needed. The following vsim command (CR-

258) switches narrow the search to exclude or include specific licenses:

The options may also be specified with the License (B-400) variable in the modelsim.ini file;
see the [vsim] simulator control variables (B-398). Note that settings made from the
command line are additive to options set in the License variable. For example, if you set
the License variable to nomgc and use the -lic_plus option from the command line, vsim
will search only for MTI SE/PLUS licenses.

Manual start

Unix

To start the license manager daemon, place the license file in the
/<install_dir>/modeltech/<platform> directory and enter the following commands:

cd /<install_dir>/modeltech/<platform>
lmgrd -c license.dat >& report.log

license option Description

-lic_nomgc excludes any MGC licenses from the search

-lic_nomti excludes any MTI licenses from the search

-lic_noqueue do not wait in license queue if no licenses are available

-lic_plus searches only for PLUS licenses

-lic_vlog searches only for VLOG licenses

-lic_vhdl searches only for VHDL licenses

-lic_viewsim accepts a simulator license rather than being queued for a
viewer license
D-418 Using the FLEXlm License Manager ModelSim SE User’s Manual

mailto:license@model.com

Starting the license server daemon
where <platform> can be sunos5, sunos5v9, hp700, hppa64, rs6000, rs64, or linux.

This can be done by an ordinary user; you should not be logged in as root.

Windows

To start the license manager daemon in Windows, place the license file in the modeltech
installation directory and enter the following commands:

cd \<install_dir>\modeltech\win32
lmgrd -app -c license.dat

Automatic start at boot time

Unix

You can cause the license manager daemon to start automatically at boot time by adding
the following line to the file /etc/rc.boot or to /etc/rc.local:

/<install_dir>/modeltech/<platform>/lmgrd -c /<install_dir>/license.dat &

Windows

You can use the FLEXlm Control Panel to enact an automatic start. See the FLEXlm End
User’s Manual for more information.

What to do if another application uses FLEXlm

If you have other applications that use FLEXlm, you can handle any conflict in one of the
following ways:

Case 1: All the license files use the same license server nodes

You can combine the license files by taking the set of SERVER lines from one license file,
and adding the DAEMON, FEATURE, and FEATURESET lines from all of the license
files. This combined file can be copied to /<install_dir>/license/license.dat and to any
location required by the other applications.

Case 2: The applications use different license server nodes

You cannot combine the license files if the applications use different servers. Instead, set
the LM_LICENSE_FILE (B-393) environment variable to be a list of files, as follows:

setenv LM_LICENSE_FILE \
lic_file1:lic_file2:/<install_dir>/license.dat

In Windows use semi-colons (;) to separate the file names.

Do not use the -c option when you start the license manager daemon. For example:

lmgrd > report.log
ModelSim SE User’s Manual Using the FLEXlm License Manager D-419

Format of the license file
Format of the license file

ModelSim license files contain three types of lines: SERVER lines, DAEMON lines, and
FEATURE lines. For example:

SERVER hostname hostid [TCP_portnumber]
DAEMON daemon-name path-to-daemon [path-to-options-file]
FEATURE name daemon-name version exp_date #users_code \

“description” [hostid]

Only the following items may be modified:

• the hostname on SERVER lines

• the TCP_portnumber on SERVER lines

• the path-to-daemon on DAEMON lines

• the path-to-options-file on DAEMON lines

• anything in the daemon options file (described in the following section)

Format of the daemon options file

You can customize your ModelSim licensing with the daemon options file. This options file
allows you to reserve licenses for specified users or groups of users, to determine which
users have access to ModelSim software, to set software time-outs, and to log activity to an
optional report writer.

RESERVE
Ensures that ModelSim will always be available to one or more users on one or more host
computers.

INCLUDE
Allows you to specify a list of users who are allowed access to the ModelSim software.

EXCLUDE
Allows you to disallow access to ModelSim for certain users.

GROUP
Allows you to define a group of users for use in the other commands.

NOLOG
Causes messages of the specified type to be filtered out of the daemon’s log output.

To use the daemon options capability, you must create a daemon options file and list its
pathname as the fourth field on the line that begins with DAEMON modeltech.

A daemon options file consists of lines in the following format:

RESERVE number feature {USER | HOST | DISPLAY | GROUP} name
INCLUDE feature {USER | HOST | DISPLAY | GROUP} name
EXCLUDE feature {USER | HOST | DISPLAY | GROUP} name
GROUP name <list_of_users>
NOLOG {IN | OUT | DENIED | QUEUED}
REPORTLOG file
D-420 Using the FLEXlm License Manager ModelSim SE User’s Manual

Format of the daemon options file
Lines beginning with the number character (#) are treated as comments. If the filename in
the REPORTLOG line starts with a plus (+) character, the old report logfile will be opened
for appending.

For example, the following options file would reserve one copy of the feature vsim for the
user walter, three copies for the user john, one copy for anyone on a computer with the
hostname of bob, and would cause QUEUED messages to be omitted from the logfile. The
user rita would not be allowed to use the vsim feature.

RESERVE 1 vsim USER walter
RESERVE 3 vsim USER john
RESERVE 1 vsim HOST bob
EXCLUDE vsim USER rita
NOLOG QUEUED

If this data were in the file named:

/usr/local/options

modify the license file DAEMON line as follows:

DAEMON modeltech /<install_dir>/<platform>/modeltech \
/usr/local/options
ModelSim SE User’s Manual Using the FLEXlm License Manager D-421

License administration tools
License administration tools

lmstat

License administration is simplified by the lmstat utility. lmstat allows a user of FLEXlm
to instantly monitor the status of all network licensing activities. lmstat allows a system
administrator at a user site to monitor license management operations, including:

• which daemons are running;

• which users are using individual features; and

• which users are using features served by a specific DAEMON.

The case-sensitive syntax is shown below:

Syntax

lmstat
-a -A
-S <daemon>
-c <license_file>
-f <feature_name>
-s <server_name>
-t <value>

Arguments

-a

Displays everything.

-A

Lists all active licenses.

-S <daemon>

Lists all users of the specified daemon’s features.

-c <license_file>

Specifies that the specified license file is to be used.

-f <feature_name>

Lists users of the specified feature(s).

-s <server_name>

Displays the status of the specified server node(s).

-t <value>

Sets the lmstat time-out to the specified value.

lmdown

The lmdown utility allows for the graceful shutdown of all license daemons (both lmgrd
and all vendor daemons) on all nodes.

Syntax

lmdown
-c [<license_file_path>]
D-422 Using the FLEXlm License Manager ModelSim SE User’s Manual

License administration tools
If not supplied here, the license file used is in either /user/local/flexlm/licenses/
license.dat, or the license file pathname in the environment variable
LM_LICENSE_FILE (B-393).

The system administrator should protect the execution of lmdown, since shutting down
the servers will cause loss of licenses.

lmremove

The lmremove utility allows the system administrator to remove a single user’s license for
a specified feature. This could be required in the case where the licensed user was running
the software on a node that subsequently crashed. This situation will sometimes cause the
license to remain unusable. lmremove will allow the license to return to the pool of
available licenses.

Syntax

lmremove
-c <file> <feature> <user> <host> <display>

lmremove removes all instances of user on the node host (on the display, if specified)
from usage of feature. If the optional -c <file> switch is specified, the indicated file will
be used as the license file. The system administrator should protect the execution of
lmremove, since removing a user’s license can be disruptive.

lmreread

The lmreread utility causes the license daemon to reread the license file and start any new
vendor daemons that have been added. In addition, all preexisting daemons will be signaled
to reread the license file for changes in feature licensing information.

Syntax

lmreread [daemon]
[-c <license_file>]

Note: If the -c option is used, the license file specified will be read by the daemon, not by
lmgrd. lmgrd rereads the file it read originally. Also, lmreread cannot be used to change
server node names or port numbers. Vendor daemons will not reread their option files as a
result of lmreread.

Administration tools for Windows

All of the Unix administration tools listed above may be used on Windows platforms as
well. However, in Windows, all of the tools are launched via the program "lmutil." For
example, if you want to run lmstat, you would type the following at a command prompt:

lmutil lmstat [-args]

The arguments for Windows are the same as those listed above for Unix.
ModelSim SE User’s Manual Using the FLEXlm License Manager D-423

D-424 Using the FLEXlm License Manager ModelSim SE User’s Manual

E - Tips and Techniques

Appendix contents
How to use checkpoint/restore E-426

Running command-line and batch-mode simulations E-428

Using macros (DO files) E-430
Command-line mode E-430

Source code security and -nodebug E-433

Saving and viewing waveforms E-434

Setting up libraries for group use E-434

Maintaining 32-bit and 64-bit modules in the same library E-434

Bus contention checking E-435

Bus float checking E-435

Design stability checking E-436

Toggle checking E-436

Detecting infinite zero-delay loops E-436

Referencing source files with location maps E-437

Accelerate simulation by locking memory under HP-UX 10.2 . . . E-439

Modeling memory in VHDL E-440

Setting up a List trigger with Expression Builder E-444

This appendix contains various tips and techniques collected from several parts of the
manual and from answers to questions received by tech support. Your suggestions, tips, and
techniques for this section would be appreciated.
ModelSim SE User’s Manual Tips and Techniques E-425

How to use checkpoint/restore
How to use checkpoint/restore

The checkpoint (CR-62) and restore (CR-172) commands will save and restore the simulator
state within the same invocation of vsim or between vsim sessions.

If you want to restore while running vsim, use the restore command (CR-172); we call this
a "warm restore". If you want to start up vsim and restore a previously-saved checkpoint,
use the -restore switch with the vsim command (CR-258); we call this a "cold restore".

Note: Checkpoint/restore allows a cold restore, followed by simulation activity, followed
by a warm restore back to the original cold-restore checkpoint file. Warm restores to
checkpoint files that were not created in the current run are not allowed except for this
special case of an original cold restore file.

The things that are saved with checkpoint and restored with the restore command are:

• simulation kernel state

• vsim.wlf file

• signals listed in the list and wave windows

• file pointer positions for files opened under VHDL

• file pointer positions for files opened by the Verilog $fopen system task

• state of foreign architectures

Things that are NOT restored are:

• state of macros

• changes made with the command-line interface (such as user-defined Tcl commands)

• state of graphical user interface windows

• toggle statistics

In order to save the simulator state, use the command

checkpoint <filename>

To restore the simulator state during the same session as when the state was saved, use the
command:

restore <filename>

To restore the state after quitting ModelSim, invoke vsim as follows:

vsim -restore <filename> [-nocompress]

The checkpoint file is normally compressed. If there is a need to turn off the compression,
you can do so by setting a special Tcl variable. Use:

set CheckpointCompressMode 0

to turn compression off, and turn compression back on with:

set CheckpointCompressMode 1
E-426 Tips and Techniques ModelSim SE User’s Manual

How to use checkpoint/restore
You can also control checkpoint compression using the modelsim.ini file in the [vsim]
section (use the same 0 or 1 switch):

[vsim]
CheckpointCompressMode = <switch>

If you use the foreign interface, you will need to add additional function calls in order to
use checkpoint/restore. See the FLI Reference Manual for more information.

The difference between checkpoint/restore and restarting

The restart (CR-170) command resets the simulator to time zero, clears out any logged
waveforms, and closes any files opened under VHDL and the Verilog $fopen system task.
You can get the same effect by first doing a checkpoint at time zero and later doing a
restore. But with restart you don’t have to save the checkpoint and the restart is likely to
be faster. But when you need to set the state to anything other than time zero, you will need
to use checkpoint/restore.

Using macros with restart and checkpoint/restore

The restart (CR-170) command resets and restarts the simulation kernel, and zeros out any
user-defined commands, but it does not touch the state of the macro interpreter. This lets
you do restart commands within macros.

The pause mode indicates that a macro has been interrupted. That condition will not be
affected by a restart, and if the restart is done with an interrupted macro, the macro will still
be interrupted after the restart.

The situation is similar for using checkpoint/restore without quitting ModelSim, that is,
doing a checkpoint (CR-62) and later in the same session doing a restore (CR-172) of the
earlier checkpoint. The restore does not touch the state of the macro interpreter so you may
also do checkpoint and restore commands within macros.
ModelSim SE User’s Manual Tips and Techniques E-427

Running command-line and batch-mode simulations
Running command-line and batch-mode simulations

The typical method of running ModelSim is interactive: you push buttons and/or pull down
menus in a series of windows in the GUI (graphic user interface). But there are really three
specific modes of ModelSim operation: GUI, command line, and batch. Here are their
characteristics:

• GUI mode
This is the usual interactive mode; it has graphical windows, push-buttons, menus, and a
command line in the text window. This is the default mode.

• Command-line mode
This an operational mode that has only an interactive command line; no interactive
windows are opened. To run vsim in this manner, invoke it with the -c option as the first
argument from either the UNIX prompt or the DOS prompt in Windows 95/98/2000/NT.

• Batch mode
Batch mode is an operational mode that provides neither an interactive command line,
nor interactive windows.

In a UNIX environment, vsim can be invoked in batch mode by redirecting standard
input using the “here-document” technique. Batch mode does not require the -c option.
In a Windows environment, vsim is run from a Windows 95/98/2000/NT DOS prompt
and standard input and output are re-directed to and from files. An example is:

vsim ent arch <<!
log -r *
run 100
do test.do
quit -f

!

Here is another example of batch mode, this time using a file as input:

vsim counter < yourfile

From a user's point of view, command-line mode can look like batch mode if you use the
vsim command (CR-258) with the -do option to execute a macro that does a quit -f (CR-165)
before returning, or if the startup.do macro does a quit -f before returning. But technically,
that mode of operation is still command-line mode because stdin is still operating from the
terminal.

The following paragraphs describe the behavior defined for the batch and command-line
modes.

Command-line mode

In command-line mode ModelSim executes any startup command specified by the Startup
(B-400) variable in the modelsim.ini file. If vsim (CR-258) is invoked with the -do
<"command_string"> option a DO file (macro) is called. A DO file executed in this
manner will override any startup command in the modelsim.ini file.
E-428 Tips and Techniques ModelSim SE User’s Manual

Running command-line and batch-mode simulations
During simulation a transcript file is created containing any messages to stdout. A transcript
file created in command-line mode may be used as a DO file if you invoke the transcript
on command (CR-194) after the design loads (see the example below). The transcript on
command will write all of the commands you invoke to the transcript file. For example, the
following series of commands will result in a transcript file that can be used for command
input if top is resimulated (remove the quit -f command from the transcript file if you want
to remain in the simulator).

vsim -c top

library and design loading messages... then execute:

transcript on
force clk 1 50, 0 100 -repeat 100
run 500
run @5000
quit -f

Note: Rename transcript files that you intend to use as DO files. They will be overwritten
the next time you run vsim if you don’t rename them. Also, simulator messages are already
commented out, but any messages generated from your design (and subsequently written
to the transcript file) will cause the simulator to pause. A transcript file that contains only
valid simulator commands will work fine; comment out anything else with a "#".

Note: Stand-alone tools will pick-up project settings in command-line mode if they are
invoked in the project's root directory. If invoked outside the project directory, stand-alone
tools will pick up project settings only if you set the MODELSIM environment variable to
the path to the project file (<Project_Root_Dir>/<Project_Name>.mpf).

Batch mode

In batch mode ModelSim behaves much as in command-line mode except that there are no
prompts, and commands from re-directed stdin are not echoed to stdout. Do not use the -c
argument with vsim for batch mode simulations because -c invokes the command-line
mode, which supplies the prompts and echoes the commands.

Tcl user_hook_variables may also be used for Tcl customization during batch-mode
simulation; see http://www.model.com/resources/pref_variables/frameset.htm.
ModelSim SE User’s Manual Tips and Techniques E-429

http://www.model.com/resources/pref_variables/frameset.htm

Using macros (DO files)
Using macros (DO files)

ModelSim macros (also called DO files) are scripts that contain ModelSim and, optionally,
Tcl commands. You invoke DO files with the Macro > Execute Macro (Main window)
menu selection or the do command (CR-104).

Creating DO files

You can create DO files by typing the required commands in any editor and saving the file.
Alternatively, you can save the Main window transcript to a DO file (see "Saving the Main
window transcript file" (8-159)).

The following is a simple DO file that was saved from the Main window transcript. It is
used in the dataset exercise in the ModelSim Tutorial. This DO file adds several signals to
the Wave window, provides stimulus to those signals, and then advances the simulation.

 add wave ld

 add wave rst

 add wave clk

 add wave d

 add wave q

 force -freeze clk 0 0, 1 {50 ns} -r 100

 force rst 1

 force rst 0 10

 force ld 0

 force d 1010

 run 1700

 force ld 1

 run 100

 force ld 0

 run 400

 force rst 1

 run 200

 force rst 0 10
 run 1500

You can write more complex macros using the Tcl scripting language. See Chapter 16 - Tcl
and ModelSim for more information.

Using Parameters with DO files

You can increase the flexibility of DO files using parameters. Parameters specify values
that are passed to the corresponding parameters $1 through $9 in the macro file. For
example,

do testfile design.vhd 127

If the macro file testfile contains the line bp $1 $2, this command would place a breakpoint
in the source file named design.vhd at line 127.

There is no limit on the number of parameters that can be passed to macros, but only nine
values are visible at one time. You can use the shift command (CR-183) to see the other
parameters.
E-430 Tips and Techniques ModelSim SE User’s Manual

Using macros (DO files)
Useful commands for handling breakpoints and errors

If you are executing a macro when your simulation hits a breakpoint or causes a run-time
error, ModelSim interrupts the macro and returns control to the command line. The
following commands may be useful for handling such events. (Any other legal command
may be executed as well.)

Note: You can also set the OnErrorDefaultAction Tcl variable in the pref.tcl file to dictate
what action ModelSim takes when an error occurs.

Error action in DO files

If a command in a macro returns an error, ModelSim does the following:

1 If an onerror (CR-146) command has been set in the macro script, ModelSim executes that
command.

2 If no onerror command has been specified in the script, ModelSim checks the
OnErrorDefaultAction Tcl variable. If the variable is defined, it will be invoked.

3 If neither 1 or 2 is true, the macro aborts.

command result

 run (CR-176) -continue continue as if the breakpoint had not been executed, completes the run (CR-176) that
was interrupted

resume (CR-173) continue running the macro

onbreak (CR-144) specify a command to run when you hit a breakpoint within a macro

onElabError (CR-145) specify a command to run when an error is encountered during elaboration

onerror (CR-146) specify a command to run when an error is encountered within a macro

status (CR-186) get a traceback of nested macro calls when a macro is interrupted

abort (CR-25) terminate a macro once the macro has been interrupted or paused

pause (CR-147) cause the macro to be interrupted, the macro can be resumed by entering a resume
command (CR-173) via the command line

transcript (CR-194) control echoing of macro commands to the Main window transcript
ModelSim SE User’s Manual Tips and Techniques E-431

Using macros (DO files)
Using the Tcl source command with DO files

Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the source command, the DO file is executed exactly as if the commands in it were
typed in by hand at the prompt. Each time a breakpoint is hit the Source window is updated
to show the breakpoint. This behavior could be inconvenient with a large DO file
containing many breakpoints.

When a do command is interrupted by an error or breakpoint, it does not update any
windows, and keeps the DO file "locked". This keeps the Source window from flashing,
scrolling, and moving the arrow when a complex DO file is executed. Typically an
onbreak resume command is used to keep the macro running as it hits breakpoints. Add
an onbreak abort command to the DO file if you want to exit the macro and update the
Source window.

See also

See the do command (CR-104). Also see the DOPATH (B-393) variable for adding a DO file
path to your environment.
E-432 Tips and Techniques ModelSim SE User’s Manual

Source code security and -nodebug
Source code security and -nodebug

The -nodebug option on both vcom (CR-217) and vlog (CR-250) hides internal model data.
This allows a model supplier to provide pre-compiled libraries without providing source
code and without revealing internal model variables and structure.

Note: ModelSim’s -nodebug compiler option provides protection for proprietary model
information. The Verilog protect compiler directive provides similar protection, but uses
a Cadence encryption algorithm that is unavailable to Model Technology.

If a design unit is compiled with -nodebug the Source window will not display the design
unit's source code, the Structure window will not display the internal structure, the Signals
window will not display internal signals (it still displays ports), the Process window will
not display internal processes, and the Variables window will not display internal variables.
In addition, none of the hidden objects may be accessed through the Dataflow window or
with ModelSim commands.

Even with the data hiding of -nodebug, there remains some visibility into models compiled
with -nodebug. The names of all design units comprising your model are visible in the
library, and you may invoke vsim (CR-258) directly on any of these design units and see the
ports. Design units or modules compiled with -nodebug can only instantiate design units
or modules that are also compiled -nodebug.

To restrict visibility into the lower levels of your design you can use the following
-nodebug switches when you compile.

Note: Don’t use the =ports switch on a design without hierarchy, or on the top level of a
hierarchical design; if you do, no ports will be visible for simulation. To properly use the
switch, compile all lower portions of the design with -nodebug=ports first, then compile the
top level with -nodebug alone.

Also note the =pli switch will not work with vcom (the VHDL compiler). PLI functions are
valid only for Verilog design units.

Command and switch Result

vcom -nodebug=ports makes the ports of a VHDL design unit invisible

vlog -nodebug=ports makes the ports of a Verilog design unit invisible

vlog -nodebug=pli prevents the use of PLI functions to interrogate the module for
information

vlog -nodebug=ports+pli
(or =pli+ports)

combines the functions of -nodebug=ports and -nodebug=pli
ModelSim SE User’s Manual Tips and Techniques E-433

Saving and viewing waveforms
Saving and viewing waveforms

You can run vsim as a batch job, but view the resulting waveforms later.

1 When you invoke vsim the first time, use the -wlf option to rename the logfile, and redirect
stdin to invoke the batch mode. The command should look like this:

vsim -wlf wavesav1.wlf counter < command.do

Within your command.do file, use the log command (CR-131) to save the waveforms you
want to look at later, run the simulation, and quit.

When vsim runs in batch mode, it does not write to the screen, and can be run in the
background.

2 When you return to work the next day after running several batch jobs, you can start up
vsim in its viewing mode with this command and the appropriate .wlf files:

vsim -view wavesav1.wlf

Now you will be able to use the Waveform and List windows normally.

Setting up libraries for group use

By adding an “others” clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they
will search the library section of the initialization file specified by the “others” clause. For
example:

[library]
asic_lib = /cae/asic_lib
work = my_work
others = /usr/modeltech/modelsim.ini

Maintaining 32-bit and 64-bit modules in the same library

It is possible with ModelSim to maintain 64-bit and 32-bit versions of a design in the same
library. To do this, you must compile the design with one of the versions (64-bit or 32-bit),
and "refresh" the design with the other version. For example:

Using the 32-bit version of ModelSim:

vcom file1.vhd
vcom file2.vhd

Next, using the 64-bit version of ModelSim:

vcom -refresh

Do not compile the design with one version, and then recompile it with the other. If you do
this, ModelSim will remove the first module, because it could be "stale."
E-434 Tips and Techniques ModelSim SE User’s Manual

Bus contention checking
Bus contention checking

Bus contention checking detects bus fights on nodes that have multiple drivers. A bus fight
occurs when two or more drivers drive a node with the same strength and that strength is
the strongest of all drivers currently driving the node. The following table provides some
examples for two drivers driving a std_logic signal:

Detection of a bus fight results in an error message specifying the node and its drivers’
current driving values. If a node's drivers later change value and the node is still in
contention, a message is issued giving the new values of the drivers. A message is also
issued when the contention ends. The bus contention checking commands can be used on
VHDL and Verilog designs.

These bus checking commands are in "ModelSim Commands" (CR-9):

• check contention add (CR-54)

• check contention config (CR-55)

• check contention off (CR-56)

Bus float checking

Bus float checking detects nodes that are in the high impedance state for a time equal to or
exceeding a user-defined limit. This is an error in some technologies. Detection of a float
violation results in an error message identifying the node. A message is also issued when
the float violation ends. The bus float checking commands can be used on VHDL and
Verilog designs.

These bus float checking commands are in "ModelSim Commands" (CR-9):

• check float add (CR-57)

• check float config (CR-58)

• check float off (CR-59)

driver 1 driver 2 fight

Z Z no

0 0 yes

1 Z no

0 1 yes

L 1 no

L H yes
ModelSim SE User’s Manual Tips and Techniques E-435

Design stability checking
Design stability checking
Design stability checking detects when circuit activity has not settled within a period you
define for synchronous designs. You specify the clock period for the design and the strobe
time within the period during which the circuit must be stable. A violation is detected and
an error message is issued if there are pending driver events at the strobe time. The message
identifies the driver that has a pending event, the node that it drives, and the cycle number.
The design stability checking commands can be used on VHDL and Verilog designs.

These design stability checking commands are in "ModelSim Commands" (CR-9):

• check stable on (CR-61)

• check stable off (CR-60)

Toggle checking
Toggle checking counts the number of transitions to 0 and 1 on specified nodes. Once the
nodes have been selected, a toggle report may be requested at any time during the
simulation. The toggle commands can be used on VHDL and Verilog designs.

These toggle checking commands are in "ModelSim Commands" (CR-9):

• toggle add (CR-190)

• toggle reset (CR-192)

• toggle report (CR-191)

Detecting infinite zero-delay loops
Simulations use steps that advance simulated time, and steps that do not advance simulated
time. Steps that do not advance simulated time are called "delta cycles". Delta cycles are
used when signal assignments are made with zero time delay.

If a large number of delta cycles occur without advancing time, it is usually a symptom of
an infinite zero-delay loop in the design. In order to detect the presence of these loops,
ModelSim defines a limit, the “iteration_limit", on the number of successive delta cycles
that can occur. When the iteration_limit is exceeded, vsim stops the simulation and gives a
warning message.

You can set the iteration_limit from the Options > Simulation menu, by modifying the
modelsim.ini file, or by setting a Tcl variable called IterationLimit (B-399).

The iteration_limit default value is 5000.

When you get an iteration_limit warning, first increase the iteration limit and try to
continue simulation. If the problem persists, look for zero-delay loops.

One approach to finding zero-delay loops is to increase the iteration limit again and start
single stepping. You should be able to see the assignment statements or processes that are
looping. Looking at the Process window will also help you to see the active looping
processes.

When the loop is found, you will need to change the design to eliminate the unstable loop.

See "Projects and system initialization" (2-25) for more information on modifying the
modelsim.ini file. And see "Preference variables located in TCL files" (B-406) for more
information on Tcl variables. Also see the Main window Help menu for Tcl Help and man
pages.
E-436 Tips and Techniques ModelSim SE User’s Manual

Referencing source files with location maps
Referencing source files with location maps

Pathnames to source files are recorded in libraries by storing the working directory from
which the compile is invoked and the pathname to the file as specified in the invocation of
the compiler. The pathname may be either a complete pathname or a relative pathname.

ModelSim tools that reference source files from the library locate a source file as follows:

• If the pathname stored in the library is complete, then this is the path used to reference
the file.

• If the pathname is relative, then the tool looks for the file relative to the current working
directory. If this file does not exist, then the path relative to the working directory stored
in the library is used.

This method of referencing source files generally works fine if the libraries are created and
used on a single system. However, when multiple systems access a library across a network
the physical pathnames are not always the same and the source file reference rules do not
always work.

Using location mapping

Location maps are used to replace prefixes of physical pathnames in the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

ModelSim tools open the location map file on invocation if the MGC_LOCATION_MAP
(B-393) environment variable is set. If MGC_LOCATION_MAP is not set, ModelSim will
look for a file named "mgc_location_map" in the following locations, in order:

• the current directory

• your home directory

• the directory containing the ModelSim binaries

• the ModelSim installation directory

Use these two steps to map your files:

1 Set the environment variable MGC_LOCATION_MAP to the path to your location map
file.

2 Specify the mappings from physical pathnames to logical pathnames:

$SRC
/home/vhdl/src
/usr/vhdl/src

$IEEE
/usr/modeltech/ieee
ModelSim SE User’s Manual Tips and Techniques E-437

Referencing source files with location maps
Pathname syntax

The logical pathnames must begin with $ and the physical pathnames must begin with /.
The logical pathname is followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have
different pathnames on different systems).

How location mapping works

When a pathname is stored, an attempt is made to map the physical pathname to a path
relative to a logical pathname. This is done by searching the location map file for the first
physical pathname that is a prefix to the pathname in question. The logical pathname is then
substituted for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/
test.vhd". If a mapping can be made to a logical pathname, then this is the pathname that is
saved. The path to a source file entry for a design unit in a library is a good example of a
typical mapping.

For mapping from a logical pathname back to the physical pathname, ModelSim expects an
environment variable to be set for each logical pathname (with the same name). ModelSim
reads the location map file when a tool is invoked. If the environment variables
corresponding to logical pathnames have not been set in your shell, ModelSim sets the
variables to the first physical pathname following the logical pathname in the location map.
For example, if you don’t set the SRC environment variable, ModelSim will automatically
set it to "/home/vhdl/src".

Mapping with Tcl variables

Two Tcl variables may also be used to specify alternative source-file paths; SourceDir and
SourceMap. See http://www.model.com/resources/pref_variables/frameset.htm.
E-438 Tips and Techniques ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm

Accelerate simulation by locking memory under HP-UX 10.2
Accelerate simulation by locking memory under HP-UX 10.2

ModelSim 5.3 and later versions contain a feature to allow HP-UX 10.2 to use locked
memory. This feature provides significant acceleration of simulation time for large designs
– i.e. with a memory footprint > 500Mb. (Test cases showed 2x acceleration of large
simulations.) The following steps show how to set up the HP-UX 10.2 so memory can be
locked.

1 Allow the average-user to lock memory. By default, this privilege is not allowed, so it has
to be enabled. To allow everyone MLOCK privileges, the administrator needs to execute
this command on the machine that will be running ModelSim:

/usr/sbin/setprivgrp -g MLOCK

To only allow a particular group MLOCK privileges, use the command:

/usr/sbin/setprivgrp <group-name> MLOCK

This allows you to lock memory. No other privileges are enabled.

2 Once the MLOCK privilege is enabled, you merely have to modify the modelsim.ini file,
and add the following entry to the [vsim] section:

LockedMemory = <some-value>

Where <some-value> is an integer representing the number of megabytes of memory to be
locked. Once this is done, the memory will be locked when vsim invokes (using this .ini
file).

ModelSim will not lock more memory than is available in the system. The maximum
memory that can be locked is: system physical memory (RAM) - 100 Mb = locked memory

When ModelSim locks memory, other processes will not have access to it. Therefore, you
should consider how much memory is locked on a per-design basis to avoid locking more
than is needed.

System parameters used for shared/locked memory may not be set (by default) high enough
to take full advantage of this feature in later generations of HP-UX. Using the "sam"
program, go to the "Configurable Parameters" window (under "Kernel Configuration").
There are several values that may need to be increased.

First, enable shared memory. The value for "shmem" should be equal to 1. Set the value for
"shmmax" as large as possible. The defaults for the values of "shmmin" and "shmseg"
should be ok. To change these parameters, you have to rebuild the kernel and reboot.
ModelSim SE User’s Manual Tips and Techniques E-439

Modeling memory in VHDL
Modeling memory in VHDL

As a VHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

• You may get a "memory allocation error" message, which typically means the simulator
ran out of memory and failed to allocate more storage.

• Or, you may get very long load, elaboration or run times.

These problems are usually explained by the fact that signals consume a substantial amount
of memory (many dozens of bytes per bit), all of which needs to be loaded or initialized
before your simulation starts.

A simple alternative implementation provides some excellent performance benefits:

• storage required to model the memory can be reduced by 1-2 orders of magnitude

• startup and run times are reduced

• associated memory allocation errors are eliminated

The trick is to model memory using variables instead of signals.

In the example below, we illustrate three alternative architectures for entity "memory".
Architecture "style_87_bad" uses a vhdl signal to store the ram data. Architecture
"style_87" uses variables in the "memory" process, and architecture "style_93" uses
variables in the architecture.

For large memories, architecture "style_87_bad" runs many times longer than the other
two, and uses much more memory. This style should be avoided.

Both architectures "style_87" and "style_93" work with equal efficiently. You’ll find some
additional flexibility with the VHDL 1993 style, however, because the ram storage can be
shared between multiple processes. For example, a second process is shown that initializes
the memory; you could add other processes to create a multi-ported memory.

To implement this model, you will need functions that convert vectors to integers. To use
it you will probably need to convert integers to vectors.

Example functions are provided below in package "conversions".

use std.standard.all;
library ieee;
use ieee.std_logic_1164.all;
use work.conversions.all;

entity memory is
generic(add_bits : integer := 12;

data_bits : integer := 32);
port(add_in : in std_ulogic_vector(add_bits-1 downto 0);

data_in : in std_ulogic_vector(data_bits-1 downto 0);
data_out : out std_ulogic_vector(data_bits-1 downto 0);
cs, mwrite : in std_ulogic;
do_init : in std_ulogic);

subtype word is std_ulogic_vector(data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;
type ram_type is array(0 to nwords-1) of word;

end;

architecture style_93 of memory is
E-440 Tips and Techniques ModelSim SE User’s Manual

Modeling memory in VHDL

shared variable ram : ram_type;

begin
memory:
process (cs)

variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = ’1’) then

ram(address) := data_in;
data_out <= ram(address);

else
data_out <= ram(address);

end if;
end if;

end process memory;
-- illustrates a second process using the shared variable
initialize:
process (do_init)

variable address : natural;
begin

if rising_edge(do_init) then
for address in 0 to nwords-1 loop

ram(address) := data_in;
end loop;

end if;
end process initialize;

end architecture style_93;

architecture style_87 of memory is
begin
memory:
process (cs)

variable ram : ram_type;

variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = ’1’) then

ram(address) := data_in;
data_out <= ram(address);

else
data_out <= ram(address);

end if;
end if;

end process;
end style_87;

architecture bad_style_87 of memory is

signal ram : ram_type;

begin
memory:
process (cs)

variable address : natural := 0;
begin
ModelSim SE User’s Manual Tips and Techniques E-441

Modeling memory in VHDL
if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = ’1’) then

ram(address) <= data_in;
data_out <= data_in;

else
data_out <= ram(address);

end if;
end if;

end process;
end bad_style_87;

--
--
use std.standard.all;
library ieee;
use ieee.std_logic_1164.all;

package conversions is
function sulv_to_natural(x : std_ulogic_vector) return

natural;
function natural_to_sulv(n, bits : natural) return

std_ulogic_vector;
end conversions;

package body conversions is

function sulv_to_natural(x : std_ulogic_vector) return
natural is

variable n : natural := 0;
variable failure : boolean := false;

begin
assert (x’high - x’low + 1) <= 31

report "Range of sulv_to_natural argument exceeds
natural range"

severity error;
for i in x’range loop

n := n * 2;
case x(i) is

when ’1’ | ’H’ => n := n + 1;
when ’0’ | ’L’ => null;
when others => failure := true;

end case;
end loop;
assert not failure

report "sulv_to_natural cannot convert indefinite
std_ulogic_vector"

severity error;

if failure then
return 0;

else
return n;

end if;
end sulv_to_natural;

function natural_to_sulv(n, bits : natural) return
std_ulogic_vector is

variable x : std_ulogic_vector(bits-1 downto 0) :=
(others => ’0’);

variable tempn : natural := n;
E-442 Tips and Techniques ModelSim SE User’s Manual

Modeling memory in VHDL
begin
for i in x’reverse_range loop

if (tempn mod 2) = 1 then
x(i) := ’1’;

end if;
tempn := tempn / 2;

end loop;
return x;

end natural_to_sulv;

end conversions;
ModelSim SE User’s Manual Tips and Techniques E-443

Setting up a List trigger with Expression Builder
Setting up a List trigger with Expression Builder

This example shows you how to set a List window trigger based on a gating expression
created with the ModelSim Expression Builder.

If you want to look at a set of signal values ONLY during the simulation cycles during
which an enable signal rises, you would need to use the List window Trigger Gating
feature. The gating feature suppresses all display lines except those for which a specified
gating function evaluates to true.

Select Prop > Display Props (List window) to access the Triggers page.

Check the Trigger Gating: Expression check box. Then click on Use Expression
Builder. Select the signal in the List window that you want to be the enable signal by
E-444 Tips and Techniques ModelSim SE User’s Manual

Setting up a List trigger with Expression Builder
clicking on its name in the header area of the List window. Then click Insert Selected
Signal and ’rising in the Expression Builder.

Click OK to close the Expression Builder. You should see the name of the signal plus
"’rising" added to the Expression entry box of the Modify Display Properties dialog box.
(Leave the On Duration field zero for now.) Click the OK button.

If you already have simulation data in the List window, the display should immediately
switch to showing only those cycles for which the gating signal is rising. If that isn’t quite
what you want, you can go back to the expression builder and play with it until you get it
the way you want it.

If you want the enable signal to work like a "One-Shot" that would display all values for
the next, say 10 ns, after the rising edge of enable, then set the On Duration value to 10
ns. Otherwise, leave it at zero, and select Apply again. When everything is correct, click
OK to close the Modify Display Properties dialog box.

When you save the List window configuration, the list gating parameters will be saved as
well, and can be set up again by reading in that macro. You can take a look at the macro to
see how the gating can be set up using macro commands.
ModelSim SE User’s Manual Tips and Techniques E-445

E-446 Tips and Techniques ModelSim SE User’s Manual

F - What’s new in ModelSim

Appendix contents
New features F-447

Command and variable changes F-448

Documentation changes F-449

GUI changes in version 5.5 F-450

ModelSim 5.5 includes many new features and enhancements that are described in the
tables below. Links within the groups will connect you to more detail. GUI changes are
described toward the end of the appendix.

New features
What Description Where (select a link) ModelSim

release

waveform comparison compare simulations and
datasets

Chapter 11 - Waveform
Comparison

5.5

ModelSim projects projects have been completely
revamped to ease getting started
with ModelSim

Projects and system
initialization (2-25)

5.5

gate-level optimizations gate-level Verilog designs can
now be optimized using -fast

Compiling for faster
performance (5-90)

5.5

VCD file enhancements support multiple VCD files and
dumpports tasks

ModelSim VCD commands
and VCD tasks (13-342)

5.5

enhanced Code Coverage
feature

new interface and ability to
exclude files and lines

Chapter 10 - Code Coverage 5.5

vcd2wlf new utility converts VCD files to
WLF files

vcd2wlf (CR-216) 5.5

bookmarks save zoom and scroll settings in
Wave window

Saving zoom range and scroll
position with bookmarks (8-

241)

5.5

Workspace new Main window eases working
with design units and datasets

Workspace (8-158) 5.5

find and replace in Source
window

Source window now supports
search and replace for text and
regular expressions

Finding and replacing in the
Source window (8-208)

5.5

breakpoints dialog manage breakpoints via dialog
boxes

Setting signal breakpoints (8-

236)

5.5

import library wizard imports FPGA libraries Importing FPGA libraries (3-53) 5.5
ModelSim SE User’s Manual What’s new in ModelSim F-447

Command and variable changes

What Description Where (select a link) ModelSim
release

-compile_uselibs argument
for vlog

eases use of ‘uselib directives -compile_uselibs argument (5-82) 5.5

-lint argument for vlog enables lint-style checks -lint (CR-252) 5.5

middle mouse button
pasting control

enables/disables middle mouse
button pasting

Middle Mouse Button Paste (8-

203)

5.5

init_signal_spy utility reference signals, registers, or
wires at any level of hierarchy

init_signal_spy() (4-69) and
$init_signal_spy (5-104)

5.5

get_resolution function returns the current simulator
resolution as a real

get_resolution() (4-68) 5.5

to_real function converts the physical type time to
the type real

to_real() (4-70) 5.5

to_time function converts the type real to the
physical type time

to_time() (4-71) 5.5

compare commands several commands for doing
waveform comparisons

Compare commands (11-323) 5.5

bookmark commands several commands for saving/
editing bookmarks

bookmark add wave (CR-44) 5.5

PrefCompare Tcl variables Tcl preference variables for
waveform comparisons

Preference variable database 5.5

-delay argument for virtual
signal and virtual function

assign delay to signals within a
virtual command

virtual function (CR-233) &
virtual signal (CR-245)

5.5

-keeploaded and
-keeploadedrestart
arguments for vsim

leaves FLI/PLI/VPI shared
libraries loaded during a restart
or design load

-keeploaded (CR-260) and
-keeploadedrestart (CR-

260)

5.5

vsim arguments related to
WLF files

four arguments control WLF file
creation

-wlf <filename> (CR-263),
-wlfslim <size> (CR-263),
-wlftlim <duration> (CR-263),
and -wlfnocompress (CR-

264)

5.5

delay in
GUI_expression_format

assign delay to signals in a
GUI_expression

Signal attributes (CR-303) 5.5

acc_fetch_paramval_str()
function in PLI

allows fetching of a string on
64-bit platforms

64-bit support in the PLI (5-125) 5.5

WLF file control variables new vsim control variables
configure WLF file creation

Setting default simulation
options (8-265)

5.5
F-448 What’s new in ModelSim ModelSim SE User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm

Documentation changes

What Description Where (select a link) ModelSim
release

New Foreign Language
Interface Reference
manual

new manual provides detailed
documentation of FLI including
code examples

FLI Reference Manual 5.5

FLI chapter has been
eliminated

replaced by FLI reference
manual

5.5

new chapter on waveform
comparison

describes new waveform
comparison feature

Chapter 11 - Waveform
Comparison

5.5

new tutorial on waveform
comparison

practice using the new waveform
comparison feature

ModelSim Tutorial 5.5
ModelSim SE User’s Manual What’s new in ModelSim F-449

GUI changes in version 5.5
GUI changes in version 5.5

This section identifies differences between the version 5.3/5.4 GUI and the 5.5 GUI.

Main window changes F-451
Menu bar and toolbar F-451
File menu F-452
Edit menu F-453
Design menu F-454
View menu F-455
Project menu F-455
Compare menu F-456
Options menu F-456

Signals window changes F-457

Source window changes F-458
Edit menu F-458
Options menu F-458

Wave window changes. F-459
Menu bar and toolbar F-459
Edit menu F-459
Compare menu F-460
Bookmark menu F-460

Coverage_summary window changes F-461
F-450 What’s new in ModelSim ModelSim SE User’s Manual

Main window changes
Main window changes

The most obvious change in the version 5.5 Main window is the addition of the workspace.
See "Workspace" (8-158) for full details.

Menu bar and toolbar

The Main window toolbar in version 5.5 has not changed from version 5.3 / 5.4. The Main
window menu bar has new Project and Compare menus. See the following pages for
additional menu changes.

5.5

5.3 / 5.4

Workspace
ModelSim SE User’s Manual What’s new in ModelSim F-451

Main window changes
File menu

As shown below, the version 5.5 Main window File menu contains two additions. See "The
Main window menu bar" (8-160) for complete menu option details.

5.5

5.3 / 5.4

new menus

new
sub-menu

5.5
F-452 What’s new in ModelSim ModelSim SE User’s Manual

Main window changes
The graphic below shows the new menu command for importing (adding) a source file to
a project. See "Step 2 — Add files to the project" (2-31) for details.

Edit menu

See "The Main window menu bar" (8-160) for complete menu option details.

5.3 / 5.4 5.5

new 5.5 context
menu accessed
via right mouse
button on the
Project page in
the Workspace

or

new Project
menu

new 5.5 context
menu accessed
via right mouse
button on the
Project page in
the Workspace

5.5

new selection
ModelSim SE User’s Manual What’s new in ModelSim F-453

Main window changes
Design menu

See "The Main window menu bar" (8-160) for complete menu option details.

5.3 / 5.4

5.5

new 5.5 context
menu accessed
via right mouse
button on the
Project page

replaced in 5.5
by the Designs
page in the
Workspace

5.5
F-454 What’s new in ModelSim ModelSim SE User’s Manual

Main window changes
View menu

See "The Main window menu bar" (8-160) for complete menu option details.

Project menu

The Project menu is new in version 5.5. See "What are projects?" (2-26) for details.

5.5

new selections and sub-menu

5.5

new menu
ModelSim SE User’s Manual What’s new in ModelSim F-455

Main window changes
Compare menu

The Compare menu is new in version 5.5. See Chapter 11 - Waveform Comparison for
details on waveform comparisons. See also "The Main window menu bar" (8-160) for
complete menu option details..

Options menu

See "The Main window menu bar" (8-160) for complete menu option details. See also "What
are projects?" (2-26) for details on Project operations.

5.5

new menu

5.3 / 5.4

no equivalent in 5.5;
all Project editing is
done from the
Project page in the
Workspace
F-456 What’s new in ModelSim ModelSim SE User’s Manual

Signals window changes
Signals window changes

The menus accessed from the Signals menu bar are the same in version 5.5 as they were in
version 5.3 / 5.4. However, the context menu (accessed with a right mouse click in the
Signals window) has changed. See "Setting signal breakpoints" (8-198) for complete details
on this context menu.

5.3 / 5.4 5.5

new selections
ModelSim SE User’s Manual What’s new in ModelSim F-457

Source window changes
Source window changes

Edit menu

See "The Source window menu bar" (8-202) for complete menu option details.

Options menu

See "The Structure window menu bar" (8-211) for complete menu option details.

5.5

new selection

5.5

new selection
F-458 What’s new in ModelSim ModelSim SE User’s Manual

Wave window changes
Wave window changes

Menu bar and toolbar

The version 5.5 Wave window menu bar has two new menus, and the toolbar has four new
icons. See "The Wave window menu bar" (8-220) for complete menu and toolbar option
details.

Edit menu

See "The Wave window menu bar" (8-220) for complete menu option details.

new menus

new icons

5.5

new selection
ModelSim SE User’s Manual What’s new in ModelSim F-459

Compare menu

The Compare menu is new in version 5.5. See Chapter 11 - Waveform Comparison for
details on waveform comparisons. See also "The Wave window menu bar" (8-220) for
complete menu option details.

Bookmark menu

The Bookmark menu is new in version 5.5. See "Saving zoom range and scroll position
with bookmarks" (8-241) for details on bookmarks. See also "The Wave window menu bar"
(8-220) for complete menu option details.

5.5

new menu

5.5

new menu
F-460 What’s new in ModelSim ModelSim SE User’s Manual

Coverage_summary window changes
Coverage_summary window changes

The coverage_summary window has been enhanced to show line misses and exclusions
below the summary information.

new half of
window
shows line
misses and
exclusions
ModelSim SE User’s Manual What’s new in ModelSim F-461

F-462 What’s new in ModelSim ModelSim SE User’s Manual

License Agreement

IMPORTANT – USE OF THIS SOFTWARE IS SUBJECT TO LICENSE
RESTRICTIONS

CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE
SOFTWARE

This license is a legal “Agreement” concerning the use of Software between you,
the end user, either individually or as an authorized representative of the company
purchasing the license, and Mentor Graphics Corporation, Mentor Graphics
(Ireland) Limited, Mentor Graphics (Singapore) Private Limited, and their majority-
owned subsidiaries (“Mentor Graphics”). USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to these
terms and conditions, promptly return or, if received electronically, certify
destruction of Software and all accompanying items within 10 days after receipt of
Software and receive a full refund of any license fee paid.

END USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading,
or have acquired with this Agreement, including any updates, modifications,
revisions, copies, and documentation (“Software”) are copyrighted, trade secret
and confidential information of Mentor Graphics or its licensors who maintain
exclusive title to all Software and retain all rights not expressly granted by this
Agreement. Mentor Graphics or its authorized distributor grants to you, subject to
payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your
internal business purposes; and (c) on the computer hardware or at the site for
which an applicable license fee is paid, or as authorized by Mentor Graphics. A site
is restricted to a one-half mile (800 meter) radius. Mentor Graphics’ then-current
standard policies, which vary depending on Software, license fees paid or service
plan purchased, apply to the following and are subject to change: (a) relocation of
Software; (b) use of Software, which may be limited, for example, to execution of
a single session by a single user on the authorized hardware or for a restricted
period of time (such limitations may be communicated and technically
implemented through the use of authorization codes or similar devices);
(c) eligibility to receive updates, modifications, and revisions; and (d) support
services provided. Current standard policies are available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software
development (“ESD”) Software, Mentor Graphics or its authorized distributor
grants to you a nontransferable, nonexclusive license to reproduce and distribute
executable files created using ESD compilers, including the ESD run-time libraries
distributed with ESD C and C++ compiler Software that are linked into a composite
program as an integral part of your compiled computer program, provided that you
distribute these files only in conjunction with your compiled computer program.
Mentor Graphics does NOT grant you any right to duplicate or incorporate copies
of Mentor Graphics' real-time operating systems or other ESD Software, except
those explicitly granted in this section, into your products without first signing a
separate agreement with Mentor Graphics for such purpose.

3. BETA CODE.
ModelSim SE User’s Manual License Agreement - 463

3.1 Portions or all of certain Software may contain code for experimental testing
and evaluation (“Beta Code”), which may not be used without Mentor Graphics’
explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics
grants to you a temporary, nontransferable, nonexclusive license for experimental
use to test and evaluate the Beta Code without charge for a limited period of time
specified by Mentor Graphics. This grant and your use of the Beta Code shall not
be construed as marketing or offering to sell a license to the Beta Code, which
Mentor Graphics may choose not to release commercially in any form.

3.2 If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate
and test the Beta Code under normal conditions as directed by Mentor Graphics.
You will contact Mentor Graphics periodically during your use of the Beta Code to
discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the
Beta Code, including its strengths, weaknesses and recommended improvements.

3.3 You agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceives or
makes during or subsequent to this Agreement, including those based partly or
wholly on your feedback, will be the exclusive property of Mentor Graphics. Mentor
Graphics will have exclusive rights, title and interest in all such property. The
provisions of this subsection shall survive termination or expiration of this
Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably
necessary to support the authorized use. Each copy must include all notices and
legends embedded in Software and affixed to its medium and container as
received from Mentor Graphics. All copies shall remain the property of Mentor
Graphics or its licensors. You shall maintain a record of the number and primary
location of all copies of Software, including copies merged with other software, and
shall make those records available to Mentor Graphics upon request. You shall not
make Software available in any form to any person other than your employer's
employees and contractors, excluding Mentor Graphics' competitors, whose job
performance requires access. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to
Software does not disclose it or use it except as permitted by this Agreement.
Except as otherwise permitted for purposes of interoperability as specified by the
European Union Software Directive or local law, you shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive from Software any source
code. You may not sublicense, assign or otherwise transfer Software, this
Agreement or the rights under it without Mentor Graphics’ prior written consent.
The provisions of this section shall survive the termination or expiration of this
Agreement.

5. LIMITED WARRANTY.

5.1 Mentor Graphics warrants that during the warranty period Software, when
properly installed, will substantially conform to the functional specifications set forth
in the applicable user manual. Mentor Graphics does not warrant that Software will
meet your requirements or that operation of Software will be uninterrupted or error
free. The warranty period is 90 days starting on the 15th day after delivery or upon
 464 - License Agreement ModelSim SE User’s Manual

installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if
Software has been subject to misuse, unauthorized modification or installation.
MENTOR GRAPHICS’ ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE
PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B)
MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET
THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED
WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH IS LOANED TO
YOU FOR A LIMITED TERM OR AT NO COST; OR (C) EXPERIMENTAL BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

5.2 THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE.
NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO SOFTWARE OR
OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER
APPLICABLE STATUTE OR REGULATION, IN NO EVENT SHALL MENTOR
GRAPHICS OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS
OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT
SHALL MENTOR GRAPHICS' OR ITS LICENSORS' LIABILITY UNDER THIS
AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT
WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO
LIABILITY FOR ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR
IN CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION
WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT
RESULT IN DEATH OR PERSONAL INJURY. YOU AGREE TO INDEMNIFY AND
HOLD HARMLESS MENTOR GRAPHICS AND ITS LICENSORS FROM ANY
CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH SUCH USE.

8. INFRINGEMENT.

8.1 Mentor Graphics will defend or settle, at its option and expense, any action
brought against you alleging that Software infringes a patent or copyright in the
United States, Canada, Japan, Switzerland, Norway, Israel, Egypt, or the
European Union. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the claim, provided that you: (a) notify Mentor
ModelSim SE User’s Manual License Agreement - 465

Graphics promptly in writing of the action; (b) provide Mentor Graphics all
reasonable information and assistance to settle or defend the claim; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the
claim.

8.2 If an infringement claim is made, Mentor Graphics may, at its option and
expense, either (a) replace or modify Software so that it becomes noninfringing, or
(b) procure for you the right to continue using Software. If Mentor Graphics
determines that neither of those alternatives is financially practical or otherwise
reasonably available, Mentor Graphics may require the return of Software and
refund to you any license fee paid, less a reasonable allowance for use.

8.3 Mentor Graphics has no liability to you if the alleged infringement is based
upon: (a) the combination of Software with any product not furnished by Mentor
Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software
as part of an infringing process; (e) a product that you design or market; (f) any
Beta Code contained in Software; or (g) any Software provided by Mentor
Graphics’ licensors which do not provide such indemnification to Mentor Graphics’
customers.

8.4 THIS SECTION 8 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS
AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT BY
ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

9. TERM. This Agreement remains effective until expiration or termination. This
Agreement will automatically terminate if you fail to comply with any term or
condition of this Agreement or if you fail to pay for the license when due and such
failure to pay continues for a period of 30 days after written notice from Mentor
Graphics. If Software was provided for limited term use, this Agreement will
automatically expire at the end of the authorized term. Upon any termination or
expiration, you agree to cease all use of Software and return it to Mentor Graphics
or certify deletion and destruction of Software, including all copies, to Mentor
Graphics’ reasonable satisfaction.

10. EXPORT. Software is subject to regulation by local laws and United States
government agencies, which prohibit export or diversion of certain products,
information about the products, and direct products of the products to certain
countries and certain persons. You agree that you will not export in any manner
any Software or direct product of Software, without first obtaining all necessary
approval from appropriate local and United States government agencies.

11. RESTRICTED RIGHTS NOTICE. Software has been developed entirely at
private expense and is commercial computer software provided with
RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or
a U.S. Government subcontractor is subject to the restrictions set forth in the
license agreement under which Software was obtained pursuant to DFARS
227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR 52.227-19, as applicable.
Contractor/manufacturer is Mentor Graphics Corporation, 8005 Boeckman Road,
 466 - License Agreement ModelSim SE User’s Manual

Wilsonville, Oregon 97070-7777 USA.

12. THIRD PARTY BENEFICIARY. For any Software under this Agreement
licensed by Mentor Graphics from Microsoft or other licensors, Microsoft or the
applicable licensor is a third party beneficiary of this Agreement with the right to
enforce the obligations set forth in this Agreement.

13. CONTROLLING LAW. This Agreement shall be governed by and construed
under the laws of Ireland if the Software is licensed for use in Israel, Egypt,
Switzerland, Norway, South Africa, or the European Union, the laws of Japan if the
Software is licensed for use in Japan, the laws of Singapore if the Software is
licensed for use in Singapore, People’s Republic of China, Republic of China,
India, or Korea, and the laws of the state of Oregon if the Software is licensed for
use in the United States of America, Canada, Mexico, South America or anywhere
else worldwide not provided for in this section.

14. SEVERABILITY. If any provision of this Agreement is held by a court of
competent jurisdiction to be void, invalid, unenforceable or illegal, such provision
shall be severed from this Agreement and the remaining provisions will remain in
full force and effect.

15. MISCELLANEOUS. This Agreement contains the entire understanding
between the parties relating to its subject matter and supersedes all prior or
contemporaneous agreements, including but not limited to any purchase order
terms and conditions, except valid license agreements related to the subject matter
of this Agreement which are physically signed by you and an authorized agent of
Mentor Graphics. This Agreement may only be modified by a physically signed
writing between you and an authorized agent of Mentor Graphics. Waiver of terms
or excuse of breach must be in writing and shall not constitute subsequent consent,
waiver or excuse. The prevailing party in any legal action regarding the subject
matter of this Agreement shall be entitled to recover, in addition to other relief,
reasonable attorneys' fees and expenses.

Rev. 03/00
ModelSim SE User’s Manual License Agreement - 467

 468 - License Agreement ModelSim SE User’s Manual

Index
Numerics

64-bit ModelSim
using with 32-bit FLI apps 5-114

A

Accelerated packages 3-51
architecture simulator state variable B-408
argc simulator state variable B-408
AssertFile .ini file variable B-398
AssertionFormat .ini file variable B-398
Assertions

selecting severity that stops simulation 8-266

B

Base (radix)
specifying in List window 8-182

Batch-mode simulations E-428, E-429
bookmarks 8-241
Break on assertion 8-266
BreakOnAssertion .ini file variable B-398
breakpoints

deleting with the mouse 8-205
enabling and disabling 8-207
setting file-line beakpoints 8-205
setting signal breakpoints 8-198
setting with the mouse 8-205
viewing in the Source window 8-201

Busses, user-defined 8-154
Button Adder (add buttons to windows) 8-269

C

Cell libraries 5-97
Checkpoint/restore E-426
CheckpointCompressMode .ini file variable B-398
CheckSynthesis .ini file variable B-396
clear differences 11-320
clocked comparison 11-303, 11-308, 11-312
Code Coverage

coverage report command 10-300
coverage_summary window 10-292
enabling code coverage 10-292, 10-300
excluding lines and files 10-293, 10-296
invoking code coverage with vsim 4-59
miss and exclusion details 10-293
saving coverage reports 10-294

Tcl preference variables 10-300
Command reference 1-19
CommandHistory .ini file variable B-398
Command-line mode E-428
Commands

graphic interface commands 8-277
VSIM Tcl commands 16-378

commands
compare

commands 11-323
compare

add clock 11-309
add region 11-311
add signals 11-307
by signal 11-307
clear differences 11-320
clocked 11-303, 11-308, 11-312
command line interface 11-323
continuous 11-303, 11-310, 11-313
difference markers 11-317
differences 11-321
end 11-319
graphical interface 11-305
icons 11-318
limit count 11-314
list window display 11-322
menu 11-318
modify clock 11-309
options 11-314
pathnames 11-317
preference variables 11-323
reference dataset 11-305
reference region 11-311
reload 11-321
rules 11-321
run 11-319
save differences 11-320
show differences 11-320
signal options 11-308
specify dataset 11-305
specify when expression 11-310
start 11-318
startup wizard 11-318
tab 11-306
test dataset 11-305
test region 11-311
timing differences 11-317
tolerance 11-310, 11-313
tolerances 11-303
values 11-317
verilog matching 11-314
ModelSim SE User’s Manual Index - 469

VHDL matching 11-314
wave window display 11-316
waveforms 11-301
write report 11-320

compare by region 11-311
compare commands 11-323
compare simulations 7-137
compare waveforms 7-137, 8-228
comparison modes 11-303
comparison wizard 11-318
Compilation and Simulation

Verilog 5-73–5-126
VHDL 4-55–4-67

Compiler directives 5-106
IEEE Std 1364-2000 5-106
XL compatible compiler directives 5-106

Compiling
invoking the VHDL compiler 4-57
locating source errors 8-251
setting default options 8-252
setting options in projects 2-35
setting order in projects 2-34
Verilog

incremental compilation 5-76
optimizing performance 5-90
XL ’uselib compiler directive 5-81
XL compatible options 5-79

Verilog compile options 8-254
VHDL 4-57
VHDL compile options 8-252
with the graphic interface 8-250
with VITAL packages 4-67

Component declaration
generating VHDL from Verilog 6-134
with vgencomp 6-134

Concatenation of signals 7-147
ConcurrentFileLimit .ini file variable B-399
configuration simulator state variable B-408
context menus

coverage_source window 10-296
described 8-154
Library page 3-45
Signal window 8-198
Structure pages 7-140

continuous comparison 11-303, 11-310
convert real to time 4-71
convert time to real 4-70
coverage report command 10-300
coverage_summary window 10-292
cursors

link to Dataflow window 8-171

Wave window 8-239

D

Dataflow window (see also, Windows) 8-171
Dataset Browser 7-142
datasets 7-137, 11-302

managing 7-142
reference 11-305
restrict dataset prefix display 7-143
simulator time resolution 7-138
specifying for compare 11-305
test 11-305

DatasetSeparator .ini file variable B-399
Default compile options 8-252
DefaultForceKind .ini file variable B-399
DefaultRadix .ini file variable B-399
DefaultRestartOptions .ini file variable B-399, B-405
Defaults

restoring B-392
Delay

detecting infinite zero-delay loops E-436
interconnect 5-86
modes for Verilog models 5-97
SDF files 12-325
specifying stimulus delay 8-197

DelayFileOpen .ini file variable B-399
deleting library contents 3-44
Delta

collapse deltas in the List window 8-179
referencing simulator iteration

as a simulator state variable B-408
Delta cycles E-436
delta simulator state variable B-408
Dependent design units 4-57
Descriptions of HDL items 8-208
Design hierarchy

viewing in Structure window 8-210
Design library

assigning a logical name 3-47
creating 3-43
for VHDL design units 4-57
mapping search rules 3-48
resource type 3-42
working type 3-42

Design units 3-42
viewing hierarchy 8-155

Directories
moving libraries 3-49
See also, Libraries
ModelSim SE User’s Manual Index - 470

DO files (macros)
error handling E-431
passing parameters to E-430
Tcl source command E-432

documentation 1-21
DOPATH environment variable B-393
dumpports tasks

VCD files 13-343

E

Editing
in notepad windows 8-168, C-413
in the Main window 8-168, C-413
in the Source window 8-168, C-413

EDITOR environment variable B-393
Email

Model Technology’s email address 1-23
end comparison 11-319
ENDFILE function 4-63
ENDLINE function 4-63
entity simulator state variable B-408
Environment variables B-393

accessed during startup 2-38
for locating license file D-418
location of modelsim.ini file B-407
referencing from ModelSim command line B-395
referencing with VHDL FILE variable B-395
setting before compiling or simulating B-393
setting in Windows B-394
specify transcript file location with TranscriptFile

B-400
specifying library locations in modelsim.ini file

B-396
used in Solaris linking for FLI and PLI/VPI 5-112
using with location mapping E-437
variable substitution using Tcl 16-377

Errors during compilation, locating 8-251
Event order issues 5-85
excluding lines and files from Code Coverage 10-293,

10-296
exclusion filter 10-293
Explicit .ini file variable B-397
Expression Builder 11-312

specify when expression 11-310, 11-312, 11-313
Expression Builder, see GUI expression builder
Extended identifier 6-132

F

F8 function key 8-170, C-414
file-line breakpoints 8-205
Finding

a cursor in the Wave window 8-240
a marker in the List window 8-187

Finding names, and searching for values 8-153
FLEXlm license manager D-417–D-423

administration tools for Windows D-423
license server utilities D-422

force command defaults B-404
Foreign language interface

tracing 5-125
format file

Wave window 8-219

G

GenerateFormat .ini file variable B-399
Generics, VHDL 6-128
get_resolution() VHDL function 4-68
Graphic interface 8-149–8-279

UNIX support 1-16
graphical interface

waveform comparison 11-305
GUI_expression_format

GUI expression builder 8-275

H

Hazard .ini file variable (VLOG) B-398
HDL item 1-20
Hierarchical profile 9-285
History shortcuts C-412
hm_entity 15-365
HOME environment variable B-393

I

ieee .ini file variable B-396
IEEE libraries 3-51
IEEE std 1076 1-17, 4-55
IEEE std 1364 1-17, 5-73
IgnoreError .ini file variable B-399
IgnoreFailure .ini file variable B-399
IgnoreNote .ini file variable B-399
IgnoreVitalErrors .ini file variable B-397
IgnoreWarning .ini file variable B-399
ModelSim SE User’s Manual Index - 471

Incremental compilation
automatic 5-77
manual 5-77
with Verilog 5-76

init_signal_spy 4-69
initial dialog box

turning on/off B-392
Initialization sequence 2-39
Installation

locating the license file D-418
Instantiation in mixed-language design

Verilog from VHDL 6-132
VHDL from Verilog 6-136

Instantiation label 8-211
Interconnect delays 5-86, 12-336
Iteration_limit

detecting infinite zero-delay loops E-436
IterationLimit .ini file variable B-399

K

Keyboard shortcuts
List window 8-188, C-411
Wave window 8-244, C-410

L

Libraries
64-bit and 32-bit in same library 3-52
alternate IEEE libraries 3-51
creating design libraries 3-43
design library types 3-42
design units 3-42
ieee_numeric 3-51
ieee_synopsis 3-51
mapping from the command line 3-48
mapping hierarchy B-403
mapping search rules 3-48
mapping with the GUI 3-47
moving 3-49
naming 3-47
predefined 3-50
rebuilding ieee_numeric 3-51
rebuilding ieee_synopsis 3-51
refreshing library images 3-51
resource libraries 3-42
setting up for groups E-434
std 3-50
verilog 5-78, 6-129
VHDL library clause 3-50

working libraries 3-42
working with contents 3-44

libraries
modelsim_lib 4-68

library simulator state variable B-408
Licensing

License variable in .ini file B-400
locating the license file D-418
using the FLEXlm license manager D-417

List window
waveform comparison 11-322

List window (see also, Windows) 8-175
List window, see Windows
LM_LICENSE_FILE environment variable B-393
lmdown license server utility D-422
lmgrd license server utility D-422
lmremove license server utility D-423
lmreread license server utility D-423
lmstat license server utility D-422
lmutil license server utility D-423
Locating source errors during compilation 8-251
Location maps

referencing source files E-437
LockedMemory .ini file variable B-400
logfile 11-302
logfiles 7-137, E-434
Logic Modeling

SmartModel
command channel 14-358
compiling Verilog shells 14-361

SmartModel Windows
lmcwin commands 14-359
memory arrays 14-360

M

MacroNestingLevel simulator state variable B-408
Macros (DO files)

creating from a saved transcript 8-159
depth of nesting, simulator state variable B-408
DO files (macros) E-430
error handling E-431
parameter as a simulator state variable (n) B-408
parameter total as a simulator state variable B-408
passing parameters to E-430
startup macros B-404

Main window (see also, Windows) 8-157
Mapping Verilog states in mixed designs 6-130
math_complex package 3-51
math_real package 3-51
ModelSim SE User’s Manual Index - 472

Memory
locked memory under HP-UX 10.2 E-439
modeling in VHDL E-440

Menus
customizing menus and buttons 8-154
Dataflow window 8-172
List window 8-176
Main window 8-160
Process window 8-191
see also context menus
Signals window 8-194
Source window 8-202
Structure window 8-211
tearing off or pinning menus 8-154
Variables window 8-214
Wave window 8-220

Messages
turning off assertion messages B-404
turning off warnings from arithmetic packages

B-404
MGC_LOCATION_MAP environment variable B-393
Miss and Exclusion details 10-293
Mixed-language simulation 6-127
MODEL_TECH environment variable B-393
MODEL_TECH_TCL environment variable B-393
Modeling memory in VHDL E-440
ModelSim

custom setup with daemon options D-420
license file D-418

MODELSIM environment variable B-393
modelsim.ini

default to VHDL93 B-405
hierarchial library mapping B-403
opening VHDL files B-405
to specify a startup file B-404
turning off arithmetic warnings B-404
turning off assertion messages B-404
using environment variables in B-403
using to create a transcript file B-403
using to define force command default B-404
using to define restart command defaults B-405
using to delay file opening B-405

MODELSIM_TCL environment variable B-393
MPF file

loading from the command line 2-36
MTI_TF_LIMIT environment variable B-393
Multiple drivers on unresolved signal 8-253
multiple simulations 7-137

N

n simulator state variable B-408
negative timing checks 5-102
Nets

adding to the Wave and List windows 8-197
displaying in Dataflow window 8-171
displaying values in Signals window 8-193
forcing signal and net values 8-196
saving values as binary log file 8-197
viewing waveforms 8-216

New features F-447
Next and previous edges, finding 8-244, C-410
No space in time literal 8-253
NoCaseStaticError .ini file variable B-397
NoDebug .ini file variable (VCOM) B-397
NoDebug .ini file variable (VLOG) B-398
NoOthersStaticError .ini file variable B-397
Notepad windows, text editing 8-168, C-413
NoVital .ini file variable B-397
NoVitalCheck .ini file variable B-397
Now simulator state variable B-408
now simulator state variable B-408
numeric_bit package 3-51
numeric_std package 3-51
NumericStdNoWarnings .ini file variable B-400

O

Online references 1-22
Operating systems supported 1-16
Optimize for std_logic_1164 8-254
Optimize_1164 .ini file variable B-397

P

Packages
standard 3-50
textio 3-50
vital_memory 3-51

packages
util 4-68

Parameters, using with macros E-430
pathnames 11-317
PathSeparator .ini file variable B-400
Performance Analyzer 9-281

%parent field 9-287
commands 9-290
getting started 9-283
ModelSim SE User’s Manual Index - 473

hierarchical profile 9-285
in(%) field 9-286
interpreting data 9-283
name field 9-286
profile report command 9-289
ranked profile 9-287
report option 9-289
setting preferences 9-290
statistical sampling 9-282
under(%) field 9-286
view_profile command 9-285
view_profile_ranked command 9-286
viewing results 9-284

PLI/VPI see Verilog PLI
PLIOBJS environment variable B-394
port driver data

capturing 13-349
Ports

VHDL and Verilog 6-129
Postscript

saving a waveform in 8-245
preference variables

waveform compare 11-323
Preferences

performance analyzer preferences 9-290
printing

comparison differences 11-321
Process window (see also, Windows) 8-190
Process without a wait statement 8-253
Processes

displayed in Dataflow window 8-171
values and pathnames in Variables window 8-213

profile report command 9-289
Project files

modelsim.ini
MODELSIM environment variable B-393

modelsim.mpf
project definition 2-26

projects
accessing from the command line 2-36
adding files to 2-31
changing compile order 2-34
compiling the files 2-32
creating 2-29
customizing settings 2-34
differences in 5.5 2-27
loading a design 2-33
setting compiler options in 2-35

’protect compiler directive E-433

Q

Quiet .ini file variable (VCOM) B-397
Quiet .ini file variable (VLOG) B-398

R

Radix
specifying in List window 8-182
specifying in Signals window 8-196

Ranked profile 9-287
real type

converting to time 4-71
Rebuilding supplied libraries 3-51
Reconstruct RTL-level design busses 7-145
Records

changing values of 8-213
reference region 11-311
reference signals 11-302
Refreshing library images 3-51
Register variables

adding to the Wave and List windows 8-197
displaying values in Signals window 8-193
saving values as binary log file 8-197
viewing waveforms 8-216

RequireConfigForAllDefaultBinding variable B-397
Resolution 4-58
resolution 4-68
Resolution .ini file variable B-400
resolution simulator state variable B-408
Resource library 3-42
Restart 8-163, 8-166, 8-226
restart command defaults B-405
Restoring defaults B-392
RunLength .ini file variable B-400

S

save differences 11-320
Saving and viewing waveforms 7-137, 8-220
ScalarOpts .ini file variable B-397, B-398
SDF

errors and warnings 12-327
instance specification 12-326
interconnect delays 12-336
mixed VHDL and Verilog designs 12-336
obtaining the specification 12-339
specification with the GUI 12-327
troubleshooting 12-337
ModelSim SE User’s Manual Index - 474

Verilog
$sdf_annotate system task 12-330
optional conditions 12-334
optional edge specifications 12-333
rounded timing values 12-335
SDF to Verilog construct matching 12-331

Verilog SDF annotation 12-330
VHDL

Resolving errors 12-329
SDF to VHDL generic matching 12-328

Searching
for values and finding names in windows 8-153
List window

signal values, transitions, and names 8-185
Verilog libraries 5-78
waveform

signal values, edges and names 8-208, 8-212,
8-237

searchLog simulator command 7-147
Shortcuts

command history C-412
command line caveat C-412
List window 8-188, C-411
text editing 8-168, C-413
Wave window 8-244, C-410

show differences 11-320
Show source lines with errors 8-253
Show_source .ini file variable (VCOM) B-397
Show_source .ini file variable (VLOG) B-398
Show_VitalChecksWarning .ini file variable B-397
Show_Warning1 .ini file variable B-397
Show_Warning2 .ini file variable B-397
Show_Warning3 .ini file variable B-397
Show_Warning4 .ini file variable B-397
Show_Warning5 .ini file variable B-397
signal breakpoints 8-198
Signal spy 4-69
Signal transitions

searching for 8-240
Signals

adding to a log file 8-197
adding to the Wave and List windows 8-197
applying stimulus to 8-196
combining into a user-defined bus 8-154
displaying in Dataflow window 8-171
displaying values in Signals window 8-193
referencing in the hierarchy 4-69
saving values as binary log file 8-197
selecting signal types to view 8-195
viewing waveforms 8-216

Signals window (see also, Windows) 8-193

Simulating
applying stimulus to signals and nets 8-196
batch mode E-428
command-line mode E-428
comparing simulations 7-137, 11-301
mixed Verilog and VHDL Designs

compilers 6-128
libraries 6-128
Verilog parameters 6-129
Verilog state mapping 6-130
VHDL and Verilog ports 6-129
VHDL generics 6-128

saving simulations 7-137, E-434
saving waveform as a Postscript file 8-245
setting default run length 8-266
setting iteration limit 8-266
setting time resolution 8-258
speeding-up with Performance Analyzer 9-281
Verilog

delay modes 5-97
event order issues 5-85
hazard detection 5-86
optimizing performance 5-90
resolution limit 5-84
XL compatible simulator options 5-86

VHDL 4-58
invoking code coverage 4-59

viewing results in List window 8-175
with the graphic interface 8-256
with VITAL packages 4-67

Simulation and Compilation
Verilog 5-73–5-126
VHDL 4-55–4-67

simulator resolution
returning as a real 4-68

sizetf callback function 5-119
sm_entity 14-355
SmartModels

creating foreign architectures with sm_entity
14-355

invoking SmartModel specific commands 14-358
lmcwin commands 14-359
memory arrays 14-360
Verilog interface 14-361
VHDL interface 14-354

Software updates A-385
software version 8-165
Sorting

sorting HDL items in VSIM windows 8-154
Source code

source code security E-433
ModelSim SE User’s Manual Index - 475

Source directory, setting from source window 8-202
Source files

referencing with location maps E-437
Source window (see also, Windows) 8-201
specify when expression 11-312
Speeding-up the simulation 9-281
Standards supported 1-17
Startup

environment variables access during 2-38
files accessed during 2-37
macro in the modelsim.ini file B-400
startup macro in command-line mode E-428
using a startup file B-404

Startup .ini file variable B-400
Startup macros B-404
Status bar

Main window 8-168
std .ini file variable B-396
std_developerskit .ini file variable B-396
std_logic_arith package 3-51
std_logic_signed package 3-51
std_logic_unsigned package 3-51
StdArithNoWarnings .ini file variable B-400
STDOUT environment variable B-394
Stimulus

applying to signals and nets 8-196
Structure window (see also, Windows) 8-210
Support A-385
Symbolic link to design libraries (UNIX) 3-48
synopsys .ini file variable B-396
system calls

VCD 13-342
Verilog 5-99

System initialization 2-37
system tasks

VCD 13-342
Verilog 5-99

T

tab stops
in the Source window 8-209

Tcl 16-369–16-380
command separator 16-376
command substitution 16-375
command syntax 16-372
evaluation order 16-376
history shortcuts C-412
Man Pages in Help menu 8-165
relational expression evaluation 16-376

variable substitution 16-377
VSIM Tcl commands 16-378

Technical support A-385
test region 11-311
test signals 11-302
Text and command syntax 1-20
Text editing, see Editing
TextIO package 4-55

alternative I/O files 4-64
containing hexadecimal numbers 4-63
dangling pointers 4-63
ENDFILE function 4-63
ENDLINE function 4-63
file declaration 4-60
implementation issues 4-62
providing stimulus 4-64
standard input 4-61
standard output 4-61
WRITE procedure 4-62
WRITE_STRING procedure 4-62

Time
handling negative timing constraints 5-102
setting the resolution 4-58, 5-84, 8-258
time resolution as a simulator state variable B-408

time type
converting to real 4-70

timing differences 11-302, 11-317
TMPDIR environment variable B-394
to_real VHDL function 4-70
to_time VHDL function 4-71
tolerance

leading edge 11-310, 11-313
trailing edge 11-310, 11-313

tolerances 11-303
Toolbar

Main window 8-166
Wave window 8-224

Tracing HDL items with the Dataflow window 8-173
Transcript file

saving 8-159
TranscriptFile variable in .ini file B-400

Tree windows
VHDL and Verilog items in 8-155
viewing the design hierarchy 8-155

Triggers, setting in the List window 8-179, E-444
TSSI

in VCD files 13-349
type

converting real to time 4-71
converting time to real 4-70
ModelSim SE User’s Manual Index - 476

U

Unbound Component 8-253
UnbufferedOutput .ini file variable B-401
UpCase .ini file variable B-398
Updates A-385
Use 1076-1993 language standard 8-252
Use clause

specifying a library 3-50
Use explicit declarations only 8-253
User-defined bus 7-144, 8-154
UserTimeUnit .ini file variable B-401
util package 4-68

V

Values of HDL items 8-208
Variables

environment variables B-393
LM_LICENSE_FILE B-393
loading order at ModelSim startup B-407
personal preferences B-392
reading from the .ini file B-402
setting environment variables B-393
simulator state variables

current settings report B-392
iteration number B-408
name of entity or module as a variable B-408
resolution B-408
simulation time B-408

Variables window (see also, Windows) 8-213
Variables, HDL

changing value of with the GUI 8-213
VCD files

capturing port driver data 13-349
creating 13-344
dumpports tasks 13-343
extracting the proper stimulus 13-344
from VHDL source to VCD output 13-346
supported TSSI states 13-349
VCD system tasks 13-342

Verilog
capturing port driver data with -dumpports 13-349
cell libraries 5-97
compile options 8-254
compiler directives 5-106
compiling design units 5-75
compiling with XL ’uselib compiler directive 5-81
component declaration 6-134
creating a design library 5-75

instantiation criteria in mixed-language design
6-132

instantiation of VHDL design units 6-136
library usage 5-78
mapping states in mixed designs 6-130
mixed designs with VHDL 6-127
parameters 6-129
SDF annotation 12-330
sdf_annotate system task 12-330
simulating 5-84

delay modes 5-97
event order issues 5-85
XL compatible options 5-86

simulation hazard detection 5-86
simulation resolution limit 5-84
SmartModel interface 14-361
source code viewing 8-201
standards 1-17
system tasks 5-99
XL compatible compiler options 5-79
XL compatible routines 5-125
XL compatible system tasks 5-102

verilog .ini file variable B-396
Verilog PLI

64-bit support 5-125
callback reason argument 5-117
registering applications 5-108
support for VHDL objects 5-121

Verilog PLI/VPI 5-108–5-126
compiling and linking PLI/VPI applications 5-111
debugging PLI/VPI code 5-125
specifying the PLI/VPI file to load 5-115

Verilog Procedural Interface 5-108
Veriuser .ini file variable B-401
version

obtaining 8-165
VHDL

compile options 8-252
compiling design units 4-57
creating a design library 4-57
delay file opening B-405
dependency checking 4-57
file opening delay B-405
Hardware Model interface 15-364
instantiation from Verilog 6-136
instantiation of Verilog 6-128
library clause 3-50
mixed designs with Verilog 6-127
object support in PLI 5-121
simulating 4-58
SmartModel interface 14-354
ModelSim SE User’s Manual Index - 477

source code viewing 8-201
standards 1-17
timing check disabling 4-58
VITAL package 3-51

VHDL utilities 4-68, 4-69
get_resolution() 4-68
to_real() 4-70
to_time() 4-71

VHDL93 .ini file variable B-397
view_profile command 9-285
view_profile_ranked command 9-286
Viewing and saving waveforms 7-137, 8-220
Viewing design hierarchy 8-155
viewing library contents 3-44
virtual hide command 7-145
Virtual objects 7-144

virtual functions 7-145
virtual regions 7-146
virtual signals 7-144
virtual types 7-146

virtual region command 7-146
Virtual regions

reconstruct the RTL Hierarchy in gate level design
7-146

virtual save command 7-145
virtual signal command 7-144
Virtual signals

reconstruct RTL-level design busses 7-145
reconstruct the original RTL hierarchy 7-145
virtual hide command 7-145

VITAL
compiling and simulating with accelerated VITAL

packages 4-67
compliance warnings 4-66
obtaining the specification and source code 4-65
VITAL 2000 library 3-51
VITAL packages 4-66

VPI 5-108
VSIM commands

searchLog 7-147

W

Warnings
turning off warnings from arithmetic packages

B-404
Wave format file 8-219
Wave window

compare waveforms 11-316
values column 11-317

Wave window (see also, Windows) 8-216
Waveform Comparison 11-301

add clock 11-309
add region 11-311
adding signals 11-307
clear differences 11-320
clocked comparison 11-303, 11-308, 11-312
command line interface 11-323
compare by region 11-311
compare by signal 11-307
compare commands 11-323
compare menu 11-318
compare options 11-314
compare tab 11-306
comparison method 11-315
comparison method tab 11-312
comparison modes 11-303
comparison wizard 11-318
continuous comparison 11-303, 11-310, 11-313
dataset 11-302
difference markers 11-317
end 11-319
features 11-302
flattened designs 11-304
graphical interface 11-305
hierarchical designs 11-304
icons 11-318
introduction 11-302
leading edge tolerance 11-310, 11-313
limit count 11-314
List window display 11-322
logfile 11-302
modify clock 11-309
pathnames 11-317
preference variables 11-323
printing differences 11-321
reference dataset 11-305
reference region 11-311
reference signals 11-302
reload 11-321
rules 11-321
run

run comparison 11-319
save differences 11-320
show differences 11-320
signal options 11-308
specify when expression 11-310, 11-312, 11-313
specifying a dataset 11-305
start 11-318
test dataset 11-305
test region 11-311
ModelSim SE User’s Manual Index - 478

test signals 11-302
timing differences 11-302, 11-317
tolerances 11-303
trailing edge tolerance 11-310, 11-313
values column 11-317
Verilog matching 11-314
VHDL matching 11-314
Wave window display 11-316
write report 11-320

waveform comparison 7-137, 8-228
Waveforms 7-137

saving 8-220
saving and viewing E-434
saving as a .eps file 8-220
viewing 8-216

WaveSignalNameWidth .ini file variable B-401
Web site

Model Technology’s home-page URL 1-23
Welcome dialog

turning on/off B-392
Windows

finding HDL item names 8-153
opening multiple copies 8-154
opening with the GUI 8-162
searching for HDL item values 8-153
adding buttons 8-269
coverage_source 10-296
coverage_summary 10-292
Dataflow window 8-171

tracing signals and nets 8-173
List window 8-175

adding HDL items 8-180
adding signals with a log file 8-197
examining simulation results 8-184
formatting HDL items 8-181
locating time markers 8-153
saving to a file 8-189
setting display properties 8-178
setting triggers 8-179, E-444

Main window 8-157
status bar 8-168
text editing 8-168, C-413
time and delta display 8-168
toolbar 8-166

Process window 8-190
displaying active processes 8-190

specifying next process to be executed 8-190
viewing processing in the region 8-190

Signals window 8-193
VHDL and Verilog items viewed in 8-193

Source window 8-201
setting tab stops 8-209
text editing 8-168, C-413
viewing HDL source code 8-201

Structure window 8-210
HDL items viewed in 8-210
instance names 8-211
selecting items to view in Signals window

8-193
VHDL and Verilog items viewed in 8-210
viewing design hierarchy 8-210

Variables window 8-213
displaying values 8-213
VHDL and Verilog items viewed in 8-213

Wave window 8-216
adding HDL items 8-219
adding signals with a log file 8-197
changing display range (zoom) 8-240
changing path elements B-401
cursor measurements 8-240
locating time cursors 8-153
saving format file 8-219
searching for HDL item values 8-237
setting display properties 8-235
using time cursors 8-239
zoom options 8-240
zooming 8-240

Work library 3-42
workspace 8-158
write

waveform comparison report 11-320

Z

Zero-delay loop, detecting infinite E-436
Zoom

from Wave toolbar buttons 8-241
from Zoom menu 8-240
options 8-240
saving range with bookmarks 8-241
with the mouse 8-241
ModelSim SE User’s Manual Index - 479

ModelSim SE User’s Manual Index - 480

	ModelSim User’s Manual
	Table of Contents
	1 - Introduction
	Performance tools included with ModelSim SE
	ModelSim’s graphic interface
	Standards supported
	Assumptions
	Sections in this document
	Command reference
	Text conventions
	What is an "HDL item"
	Where to find our documentation
	Download a free PDF reader with Search

	Online References - www.model.com
	Comments

	2 - Projects and system initialization
	Introduction
	How do projects differ in version 5.5?

	Getting started with projects
	Step 1 — Create a new project
	Step 2 — Add files to the project
	Step 3 — Compile the files
	Step 4 — Simulate a design
	Other project operations

	Customizing project settings
	Changing compile order
	Setting compiler options

	Accessing projects from the command line
	System initialization
	Files accessed during startup
	Environment variables accessed during startup
	Initialization sequence

	3 - Design libraries
	Design library contents
	Design library types
	Working with design libraries
	Managing library contents
	Assigning a logical name to a design library
	Moving a library

	Specifying the resource libraries
	Predefined libraries
	Alternate IEEE libraries supplied
	VITAL 2000 library
	Rebuilding supplied libraries
	Regenerating your design libraries
	Verilog resource libraries
	Maintaining 32-bit and 64-bit versions in the same library

	Importing FPGA libraries

	4 - VHDL Simulation
	Compiling VHDL designs
	Invoking the VHDL compiler
	Dependency checking

	Simulating VHDL designs
	Invoking the simulator from the Main window
	Invoking Code Coverage with vsim

	Using the TextIO package
	Syntax for file declaration
	Using STD_INPUT and STD_OUTPUT within ModelSim

	TextIO implementation issues
	Reading and writing hexadecimal numbers
	Dangling pointers
	The ENDLINE function
	The ENDFILE function
	Using alternative input/output files
	Providing stimulus

	Obtaining the VITAL specification and source code
	VITAL packages
	ModelSim VITAL compliance
	VITAL compliance checking
	VITAL compliance warnings

	Compiling and Simulating with accelerated VITAL packages
	Util package
	get_resolution()
	init_signal_spy()
	to_real()
	to_time()

	5 - Verilog Simulation
	Compilation
	Incremental compilation
	Library usage
	Verilog-XL compatible compiler options
	Verilog-XL `uselib compiler directive

	Simulation
	Simulation resolution limit
	Event order issues
	Verilog-XL compatible simulator options

	Compiling for faster performance
	Compiling with -fast
	Compiling gate-level designs with -fast
	Referencing the optimized design
	Enabling design object visibility with the +acc option
	Using pre-compiled libraries

	Cell Libraries
	Delay modes

	System Tasks
	IEEE Std 1364 system tasks
	Verilog-XL compatible system tasks
	$init_signal_spy

	Compiler Directives
	IEEE Std 1364 compiler directives
	Verilog-XL compatible compiler directives

	Using the Verilog PLI/VPI
	Registering PLI applications
	Registering VPI applications
	Compiling and linking PLI/VPI applications
	The PLI callback reason argument
	The sizetf callback function
	PLI object handles
	Third party PLI applications
	Support for VHDL objects
	IEEE Std 1364 ACC routines
	IEEE Std 1364 TF routines
	Verilog-XL compatible routines
	64-bit support in the PLI
	PLI/VPI tracing

	6 - Mixed VHDL and Verilog Designs
	Separate compilers, common libraries
	Mapping data types
	VHDL generics
	Verilog parameters
	VHDL and Verilog ports
	Verilog states

	VHDL instantiation of Verilog design units
	Component declaration
	vgencomp component declaration
	VCD output

	Verilog instantiation of VHDL design units

	7 - Datasets (saved simulations) and virtuals
	Datasets
	Saving a simulation to a dataset
	Opening datasets
	Viewing dataset structure
	Managing datasets
	Using datasets with ModelSim commands
	Restricting the dataset prefix display

	Virtual Objects (User-defined buses, and more)
	Virtual signals
	Virtual functions
	Virtual regions
	Virtual types

	Dataset, logfile, and virtual commands

	8 - ModelSim Graphic Interface
	Window overview
	Common window features
	Quick access toolbars
	Drag and Drop
	Command history
	Automatic window updating
	Finding names, searching for values, and locating cursors
	Sorting HDL items
	Multiple window copies
	Context menus
	Menu tear off
	Customizing menus and buttons
	Combining signals into a user-defined bus
	Tree window hierarchical view

	Main window
	Workspace
	Transcript
	The Main window menu bar
	The Main window toolbar
	The Main window status bar
	Mouse and keyboard shortcuts in the Transcript and Source windows

	Dataflow window
	Link to active cursor in Wave window
	Dataflow window menu bar
	Tracing HDL items with the Dataflow window
	Saving the Dataflow window as a Postscript file

	List window
	HDL items you can view
	The List window menu bar
	Setting List window display properties
	Adding HDL items to the List window
	Editing and formatting HDL items in the List window
	Examining simulation results with the List window
	Finding items by name in the List window
	Searching for item values in the List window
	Setting time markers in the List window
	List window keyboard shortcuts
	Saving List window data to a file

	Process window
	The Process window menu bar

	Signals window
	The Signals window menu bar
	Selecting HDL item types to view
	Forcing signal and net values
	Adding HDL items to the Wave and List windows or a logfile
	Finding HDL items in the Signals window
	Setting signal breakpoints
	Defining clock signals

	Source window
	The Source window menu bar
	The Source window toolbar
	Setting file-line breakpoints
	Editing the source file in the Source window
	Checking HDL item values and descriptions
	Finding and replacing in the Source window
	Setting tab stops in the Source window

	Structure window
	The Structure window menu bar
	Finding items in the Structure window

	Variables window
	The Variables window menu bar

	Wave window
	Pathname pane
	Values pane
	Waveform pane
	Cursor panes
	HDL items you can view
	Adding HDL items in the Wave window
	The Wave window menu bar
	The Wave window toolbar
	Using Dividers
	Splitting Wave window panes
	Combining items in the Wave window
	Editing and formatting HDL items in the Wave window
	Setting Wave window display properties
	Setting signal breakpoints
	Finding items by name or value in the Wave window
	Searching for item values in the Wave window
	Using time cursors in the Wave window
	Finding a cursor
	Making cursor measurements
	Zooming - changing the waveform display range
	Saving zoom range and scroll position with bookmarks
	Wave window mouse and keyboard shortcuts
	Printing and saving waveforms

	Compiling with the graphic interface
	Locating source errors during compilation
	Setting default compile options

	Simulating with the graphic interface
	Design selection page
	VHDL settings page
	Verilog settings page
	Libraries settings page
	SDF settings page
	SDF options
	Setting default simulation options

	ModelSim tools
	The Button Adder
	The Macro Helper
	The Tcl Debugger
	The GUI Expression Builder

	Graphic interface commands
	Customizing the interface

	9 - Performance Analyzer
	Introducing Performance Analysis
	A Statistical Sampling Profiler

	Getting Started
	Interpreting the data
	Viewing Performance Analyzer Results
	Interpreting the Name Field
	Interpreting the Under(%) and In(%) Fields
	Differences in the Ranked and Hierarchical Views

	Ranked/Hierarchical Profile Window Features
	The report option

	Setting preferences with Tcl variables
	Performance Analyzer commands

	10 - Code Coverage
	Enabling Code Coverage
	The coverage_summary window
	Summary information
	Misses tab
	Exclusions tab
	The coverage_summary window menu bar

	The coverage_source window
	Excluding lines and files

	Merging coverage report files
	Exclusion filter files
	Code Coverage preference variables
	Code Coverage commands

	11 - Waveform Comparison
	Introducing Waveform Comparison
	Two Modes of Comparison
	Comparing Hierarchical and Flattened Designs

	Graphical Interface to Waveform Comparison
	Opening Dataset Comparison
	Adding Signals, Regions and/or Clocks
	Setting Compare Options
	Wave window display
	Printing compare differences
	List window display

	Command-line interface to Waveform Comparison

	12 - Standard Delay Format (SDF) Timing Annotation
	Specifying SDF files for simulation
	Instance specification
	SDF specification with the GUI
	Errors and warnings

	VHDL VITAL SDF
	SDF to VHDL generic matching
	Resolving errors

	Verilog SDF
	The $sdf_annotate system task
	SDF to Verilog construct matching
	Optional edge specifications
	Optional conditions
	Rounded timing values

	SDF for Mixed VHDL and Verilog Designs
	Interconnect delays
	Troubleshooting
	Mistaking a component or module name for an instance label
	Forgetting to specify the instance

	Obtaining the SDF specification

	13 - Value Change Dump (VCD) Files
	ModelSim VCD commands and VCD tasks
	Resimulating a VHDL design from a VCD file
	Specifying a filename and state mappings
	Creating the VCD file

	A VCD file from source to output
	VCD simulator commands
	VCD output

	Capturing port driver data
	Supported TSSI states
	Strength values
	Port identifier code
	Example VCD output from vcd dumpports

	14 - Logic Modeling SmartModels
	VHDL SmartModel interface
	Creating foreign architectures with sm_entity
	Vector ports
	Command channel
	SmartModel Windows
	Memory arrays

	Verilog SmartModel interface
	LMTV usage documentation
	Linking the LMTV interface to the simulator
	Compiling Verilog shells

	15 - Logic Modeling Hardware Models
	VHDL Hardware Model interface
	Creating foreign architectures with hm_entity
	Vector ports
	Hardware model commands

	16 - Tcl and ModelSim
	Tcl features within ModelSim
	Tcl References
	Tcl commands
	Tcl command syntax
	if command syntax
	set command syntax
	Command substitution
	Command separator
	Multiple-line commands
	Evaluation order
	Tcl relational expression evaluation
	Variable substitution
	System commands

	List processing
	ModelSim Tcl commands
	ModelSim Tcl time commands
	Conversions
	Relations
	Arithmetic

	Tcl examples
	Example 2

	A - Technical Support, Updates, and Licensing
	Technical support - electronic
	Mentor Graphics customers

	Technical support - telephone
	Mentor Graphics customers in North America
	Mentor Graphics customers outside North America

	Technical support - other channels
	Updates
	Online References
	FLEXlm Licenses

	B - ModelSim Variables
	Variable settings report
	Personal preferences
	Returning to the original ModelSim defaults
	Environment variables
	Setting environment variables in Windows
	Referencing environment variables within ModelSim
	Removing temp files (VSOUT)

	Preference variables located in INI files
	[Library] library path variables
	[vcom] VHDL compiler control variables
	[vlog] Verilog compiler control variables
	[vsim] simulator control variables
	[lmc] Logic Modeling variables
	Setting variables in INI files
	Reading variable values from the INI file
	Variable functions

	Preference variables located in TCL files
	User-defined variables
	More preferences

	Preference variable loading order
	Simulator state variables
	Referencing simulator state variables

	C - ModelSim Shortcuts
	Wave window mouse and keyboard shortcuts
	List window keyboard shortcuts
	Command shortcuts
	Command history shortcuts
	Mouse and keyboard shortcuts in the Transcript and Source windows
	Right mouse button

	D - Using the FLEXlm License Manager
	Starting the license server daemon
	Controlling the license file search
	Manual start
	Automatic start at boot time
	What to do if another application uses FLEXlm

	Format of the license file
	Format of the daemon options file
	License administration tools
	lmdown
	lmremove
	lmreread
	Administration tools for Windows

	E - Tips and Techniques
	How to use checkpoint/restore
	The difference between checkpoint/restore and restarting
	Using macros with restart and checkpoint/restore

	Running command-line and batch-mode simulations
	Command-line mode
	Batch mode

	Using macros (DO files)
	Using Parameters with DO files

	Source code security and -nodebug
	Saving and viewing waveforms
	Setting up libraries for group use
	Maintaining 32-bit and 64-bit modules in the same library
	Bus contention checking
	Bus float checking
	Design stability checking
	Toggle checking
	Detecting infinite zero-delay loops
	Referencing source files with location maps
	Using location mapping
	Pathname syntax
	How location mapping works
	Mapping with Tcl variables

	Accelerate simulation by locking memory under HP-UX 10.2
	Modeling memory in VHDL
	Setting up a List trigger with Expression Builder

	F - What’s new in ModelSim
	New features
	Command and variable changes
	Documentation changes
	GUI changes in version 5.5
	Main window changes
	Signals window changes
	Source window changes
	Wave window changes
	Coverage_summary window changes

	License Agreement
	Index

