N

MICROCHIP

dsPIC30F6010
Data Sheet

High-Performance
Digital Signal Controllers

© 2004 Microchip Technology Inc.

Preliminary DS70119D

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—1S0/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microlD, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,
PowerCal, Powerlnfo, PowerMate, PowerTool, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total
Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Q Printed on recycled paper. 11/12/04

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70119D-page ii

Preliminary

© 2004 Microchip Technology Inc.

MICROCHIP

dsPIC30F6010

dsPIC30F6010 Enhanced Flash
16-bit Digital Signal Controller

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsP/C30F
Programmer’s Reference Manual (DS70030).

High-Performance Modified RISC CPU:

* Modified Harvard architecture

» C compiler optimized instruction set architecture
with flexible Addressing modes

* 84 base instructions
» 24-bit wide instructions, 16-bit wide data path

» 144 Kbytes on-chip Flash program space
(Instruction words)

» 8 Kbytes of on-chip data RAM
» 4 Kbytes of non-volatile data EEPROM
* Up to 30 MIPs operation:

- DC to 40 MHz external clock input

- 4 MHz-10 MHz oscillator input with
PLL active (4x, 8x, 16x)

* 44 interrupt sources
- 5 external interrupt sources

- 8 user selectable priority levels for each
interrupt source

- 4 processor trap sources
* 16 x 16-bit working register array

DSP Engine Features:

* Dual data fetch
» Accumulator write back for DSP operations
* Modulo and Bit-Reversed Addressing modes

» Two, 40-bit wide accumulators with optional
saturation logic

» 17-bit x 17-bit single cycle hardware fractional/
integer multiplier

» All DSP instructions single cycle
» + 16-bit single cycle shift

Peripheral Features:

+ High current sink/source 1/O pins: 25 mA/25 mA
» Timer module with programmable prescaler:

- Five 16-bit timers/counters; optionally pair
16-bit timers into 32-bit timer modules

+ 16-bit Capture input functions
 16-bit Compare/PWM output functions
+ 3-wire SPI™ modules (supports 4 Frame modes)

« 12C™ module supports Multi-Master/Slave mode
and 7-bit/10-bit addressing

* 2 UART modules with FIFO Buffers
» 2 CAN modules, 2.0B compliant

Motor Control PWM Module Features:

+ 8 PWM output channels

- Complementary or Independent Output
modes

- Edge and Center Aligned modes
* 4 duty cycle generators
+ Dedicated time base
» Programmable output polarity
» Dead Time control for Complementary mode
* Manual output control
+ Trigger for A/D conversions

Quadrature Encoder Interface Module
Features:

* Phase A, Phase B and Index Pulse input

+ 16-bit up/down position counter

» Count direction status

 Position Measurement (x2 and x4) mode

» Programmabile digital noise filters on inputs

+ Alternate 16-bit Timer/Counter mode

* Interrupt on position counter rollover/underflow

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 1

dsPIC30F6010

Analog Features: + Self-reprogrammable under software control

» Power-on Reset (POR), Power-up Timer (PWRT)
and Oscillator Start-up Timer (OST)

* Flexible Watchdog Timer (WDT) with on-chip low
power RC oscillator for reliable operation

« Fail-Safe clock monitor operation detects clock
failure and switches to on-chip low power RC

» 10-bit Analog-to-Digital Converter (A/D) with
4 S/H Inputs:

- 500 Ksps conversion rate
- 16 input channels
- Conversion available during Sleep and Idle

* Programmable Low Voltage Detection (PLVD) oscillator
* Programmable Brown-out Detection and Reset » Programmable code protection
generation .

In-Circuit Serial Programming™ (ICSP™)
+ Selectable Power Management modes

Special Microcontroller Features:
- Sleep, Idle and Alternate Clock modes

» Enhanced Flash program memory:

- 10,000 erase/write cycle (min.) for CMOS Technology:
industrial temperature range, 100K (typical))
. Data EEPROM memory: » Low power, high speed Flash technology
» Wide operating voltage range (2.5V to 5.5V)

- 100,000 erase/write cycle (min.) for k
industrial temperature range, 1M (typical) * Industrial and Extended temperature ranges
* Low power consumption

dsPIC30F Motor Control and Power Conversion Family*

Device | pins | e, Bytest | SRAM | EEPROM | Timer | Ut Dy | copppor| 40100 | Quad | 12 £, |2
Instructions PWM PWM S2|0 | =

dsPIC30F2010 | 28 12K/4K 512 1024 3 4 2 6 ch 6 ch Yes |1 | 1] 1]-
dsPIC30F3010 | 28 24K/8K 1024 1024 5 4 2 6 ch 6 ch Yes |1 |1 1]-
dsPIC30F4012 | 28 48K/16K 2048 1024 5 4 2 6 ch 6 ch Yes [1 [1] 1]1
dsPIC30F3011 |40/44 24K/8K 1024 1024 5 4 4 6 ch 9 ch Yes [2 |1 1] -
dsPIC30F4011 |40/44| 48K/16K 2048 1024 5 4 4 6 ch 9 ch Yes |2 | 1] 1|1
dsPIC30F5015 | 64 66K/22K 2048 1024 5 4 4 8 ch 16 ch Yes |1 2|1 |1
dsPIC30F6010 | 80 144K/48K | 8192 4096 5 8 8 8 ch 16 ch Yes | 2| 2| 1|2

* This table provides a summary of the dsPIC30F6010 peripheral features. Other available devices in the dsPIC30F
Motor Control and Power Conversion Family are shown for feature comparison.

DS70119D-page 2 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

Pin Diagram
80-Pin TQFP
N~
2
pd -~
£883¢2 £
SO MEBo. . BESEC 3
EEcrcogyi Zzz229838¢8
2SSisxx%y, 39805pE28
SEFE58555888888888¢8%
BRRPREPRYIRNIRE28:883238 5
PWM3H/RE5 10 60 |1 EMUC1/SOSCO/T1CK/CNO/RC14
PWMA4L/RE6 2 59 [__] EMUD1/SOSCI/CN1/RC13
PWM4H/RE7 3 58 [__1 EMUC2/OC1/RDO
T2CK/RC1 4 57 [1C4/RD11
T4CK/RC3 5 56 1 IC3/RD10
SCK2/CN8/RG6 6 55 [IC2/RD9
SDI2/CN9/RG7 7 54 [__]IC1/RD8
SDO2/CN10/RG8 8 53 [_] INT4/RA15
MCLR 9 52 1 INT3/RA14
SS2/CN11/RG9 10 51] Vss
Vss 11 dsPIC30F6010 50 [__] OSC2/CLKO/RC15
VDD 12 49 [_] OSC1/CLKI
FLTA/INT1/RE8 13 48 [vop
FLTB/INT2/RE9 14 47] SCL/IRG2
AN5/QEB/CN7/RB5 15 46] SDA/RG3
AN4/QEA/CN6/RB4 16 45] EMUC3/SCK1/INTO/RF6
AN3/INDX/CN5/RB3 17 44 1 SDI/RF7
AN2/SST/LVDIN/CN4/RB2 18 43] EMUD3/SDO1/RF8
PGC/EMUC/AN1/CN3/RB1 19 42] UIRX/RF2
PGD/EMUD/ANO/CN2/RBO 20 41 [UTTX/RF3
g

rec<<>>raenn>>Sono0oon0onl Ny
IS EITL gL Lreoelk g g
5 Z 6 g Z22¢ Se3IS8gzz
g<&u <<z =z zzzz2Z2 200
Q £ << TI<T09090 %%
%) = = X X
z 2 8&%K
< o~ =355

Q

w0

z

<

Note: Pinout subject to change.

© 2004 Microchip Technology Inc. Preliminary DS70119D-page 3

dsPIC30F6010

Table of Contents

T.0 DEVICE OVEIVIEWeeeiieiiiiieie e e e ettt e e e e ettt e e e e e s e et eeeeeeeesaaaeseeeaeseassaeeaeeeeesaasbaeeeeee e s ssssseeeeeeesnssseeeaeaeaeassssseeaeeeasssnsseeneesansnnseen 5
2.0 CPU ArChiItECIUINE OVEIVIEW........eiiiiiie et etie et iee st e et e e et e e e e et e e e easeeeasbeee s sseeeeasbeeeaasseeeassseeesseeeaasseeesnsseaesaseeeansaeeeasseeennseeans 11
O (=100 Lo YA @ (o - 141721 (1o] o WSO PRUPRUSOPPRPIN

4.0 Address Generator Units...
LT O [01 (=4 U o) <RSP URR
6.0 FIash Program IMEMOIYoo.ei ittt et h et h e a e ookt e bt e b4 e e b e e ea bt et eehb e e b et eae e et e e e b e e bt e eaneenneeeateeees
7.0 Data EEPROM Memory
8.0 I/OPorts....ccccuee
9.0 Timer1 Module
10.0 TIMEI2/3 MOTUIE ...ttt ettt e et e bt et e e ehb e e bt e e b et e bt e eae e et e e ebe e e bt e sat e e bt e nat e et e e eaneesanesaneenns
11,0 TMEIA/E MOTUIE ...ttt h et h bt et e e bt a e et e ettt eee e et e he e e e eb e e s bt e bt e b e et e e e e et e es e nbeennenaeeinens
12.0 Input Capture Module
13.0 Output Compare Module...........cccceeiiernenn.
14.0 Quadrature Encoder Interface (QEI) Module .
15.0 Motor CONtrol PWIM IMOTUIEcviiiiiiieiee et e et e e e m e e e r e e s me e b e e e et e ennesre e e e nreeneen
ST O TS o I o T T PR SRRPRRR
17.0 120 MOAUIE ...t
18.0 Universal Asynchronous Receiver Transmitter (UART) Module .
19.0 CAN MOQUIEoviiiiieesie e
20.0 10-bit High Speed Analog-to-Digital Converter (A/D) MOAUIEcoouiiiiiii ettt e e e e ee s
b IO V) (=Y o 1 Y =1 (1] o PSSP PRPRN
22.0 Instruction Set Summary ...
A I B T=1Y =T foT o] 40 1T T ST U o] oo SO U UP P RTTROTROt
24.0 EIECtCal CaraCteriStICSc.veiiieeeiiteeteste ettt ettt ettt b e et sae e et e Rt e e e bt e e e ek e et e bt e e e e e eneenreene e nnenn
25.0 Packaging INfOMMIETIONoi ittt ettt et b e he e e ae e et e e et e e bt e bttt nee ettt e bt naeeene e
(O3 I 1 Lo U o] oo SRR TRPTR
Systems Information and Upgrade Hot Line .. .
R (o o i T T TSSOSO P OP PSPPI
[oTe (¥ o1 g o [T g1 i) ioz= 1 io] IS VS] (=10 o HO PSP UUPRRR

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.
We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

* Microchip’s Worldwide Web site; http://www.microchip.com
» Your local Microchip sales office (see last page)
» The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include
literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

DS70119D-page 4 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsP/C30F
Programmer’s Reference Manual (DS70030).

This document contains device specific information for
the dsPIC30F6010 device. The dsPIC30F devices
contain extensive Digital Signal Processor (DSP) func-
tionality within a high-performance 16-bit microcontroller
(MCU) architecture. Figure 1-1 shows a device block
diagram for the dsPIC30F6010 device.

© 2004 Microchip Technology Inc. Preliminary DS70119D-page 5

dsPIC30F6010

FIGURE 1-1: dsPIC30F6010 BLOCK DIAGRAM
Y Data Bus
X Data Bus
4} @ PR %16 %16 16 VREF-/RA9
Interrupt Data Latch| |Data Latch| |——>] VREF+/RAT0

PSV & Table INT3/RA14

Controller Y Data X Data
Data Access INT4/RA15

24| Control Block|{[® 16 RAM RAM

(4 Kbytes) (4 Kbytes) PORTA

Address Address
4 Latch Latch

[X] PGC/EMUC/ANO/CN2/RBO
j%e j%e ==X PGD/EMUD/AN1/CN3/RB1

16
< j% X AN2/SST/LVDIN/CN4/RB2
24 \/ vacu|| XRAGU
PCU| PCH | PCL X WAGU

AN3/INDX/CN5/RB3
Program Counter

Stack Loo
Address Latch Control Cont?ol g

Program Memory Logic Logic R
N |
(144 Kbytes) X| AN8/RB8

Data EEPROM
(4 Kbytes) Effective Address

Data Latch 16 le=< AN12/RB12
<=[X/AN13/RB13
AN14/RB14
DX AN15/0CFB/ICN12/RB15

L ROM Latch |— 16
24 PORTB

R 1 - T2CK/RC1

[T4CK/RC3
16 @ 16 7= EMUD1/SOSCI/CN1/RC13
TR EMUC1/SOSCO/T1CK/CNO/RC14
2/CLKO/RC1
el W Reg Aray 0SC2/CLKO/RC15

Decode

Instruction
Decode & 616
Control

Control Signals‘ ‘ * ‘ ‘ DSP \

0 Divid
to Various Blocks Power-up Engine LIJVr:ite

Timer

Timing Oscillator —
OSCH/CLKI Generation = Start-up Timer Jg
POR/BOR ALU<16>

& Reset
MCLR Watchdog 16 16
Timer

|Z|—> Low Voltage
VDD, Vss Detect
AVDD, AVss PORTD

PORTC

pa

EMUC2/0C1/RD0O
<] EMUD2/0C2/RD1
OC3/RD2
OC4/RD3
OC5/CN13/RD4
<] OC6/CN14/RD5
OC7/CN15/RD6
OCB8/CN16/UPDN/RD7
IC1/RD8

IC2/RD9
IC3/RD10
IC4/RD11
IC5/RD12
IC6/CN19/RD13
IC7/CN20/RD 14
IC8/CN21/RD15

=X PWM1L/REQ
CANT, _ Input Output) e PWM1H/RE1
CAN2 10-bit ADC Capture Compare 1“C =] PWM2L/RE2

Module Module e PWM2H/RE3
} {} ﬁ {} ﬁ le>IX| PWM3L/RE4
} L <] PWM3H/RES
& {} 4& {} @ le =] PWM4L/REG
PWM4H/RE7

SPI1, QEl Motor Control UART1, <= FLTA/INT1/RES

SPI2 Timers PWM UART2 > X| FLTB/INT2/RE9
PORTE

i

C2RX/RGO =] C1RX/RFO

C2TX/RG1 Y]] C1TX/RF1
SCL/RG2 [X]=>| U1RX/RF2
SDARG3 e U1TX/RF3
SCK2/CN8/RG6 U2RX/CN17/RF4
SDI2/CN9/RG7 U2TX/CN18/RF5
SDO2/CN10/RG8 EMUC3/SCK1/INTO/RF6

SS2/CN11/RG9 SDI1/RF7
EMUD3/SDO1/RF8

Rk

PORTG PORTF

DS70119D-page 6 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

Table 1-1 provides a brief description of the device 1/10
pinout and the functions that are multiplexed to a port
pin. Multiple functions may exist on one port pin. When
multiplexing occurs, the peripheral module’s functional
requirements may force an override of the data

direction of the port pin.

TABLE 1-1: dsPIC30F6010 I/O PIN DESCRIPTIONS
Pin Name Pin Buffer Description
Type Type
ANO-AN15 I Analog |Analog input channels.
ANO and AN1 are also used for device programming data and clock inputs,
respectively.
AVDD P P Positive supply for analog module.
AVss P P Ground reference for analog module.
CLKI I ST/CMOS |External clock source input. Always associated with OSC1 pin function.
CLKO 0] — Oscillator crystal output. Connects to crystal or resonator in Crystal
Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always
associated with OSC2 pin function.
CNO-CN23 | ST Input change notification inputs.
Can be software programmed for internal weak pull-ups on all inputs.
COFS I/0 ST Data Converter Interface frame synchronization pin.
CSCK I/0 ST Data Converter Interface serial clock input/output pin.
CSDI I ST Data Converter Interface serial data input pin.
CSDO (0] — Data Converter Interface serial data output pin.
C1RX I ST CAN1 bus receive pin.
C1TX (0] — CAN1 bus transmit pin.
C2RX I ST CAN2 bus receive pin.
C2TX 0] — CAN2 bus transmit pin.
EMUD I/0 ST ICD Primary Communication Channel data input/output pin.
EMUC I/0 ST ICD Primary Communication Channel clock input/output pin.
EMUD1 1/0 ST ICD Secondary Communication Channel data input/output pin.
EMUC1 1/0 ST ICD Secondary Communication Channel clock input/output pin.
EMUD2 1/0 ST ICD Tertiary Communication Channel data input/output pin.
EMUC2 1/0 ST ICD Tertiary Communication Channel clock input/output pin.
EMUD3 I/0 ST ICD Quaternary Communication Channel data input/output pin.
EMUC3 I/0 ST ICD Quaternary Communication Channel clock input/output pin.
IC1-IC8 | ST Capture inputs 1 through 8.
INDX I ST Quadrature Encoder Index Pulse input.
QEA I ST Quadrature Encoder Phase A input in QEI mode.
Auxiliary Timer External Clock/Gate input in Timer mode.
QEB I ST Quadrature Encoder Phase A input in QEI mode.
Auxiliary Timer External Clock/Gate input in Timer mode.
UPDN (0] CMOS |Position Up/Down Counter Direction State.
INTO I ST External interrupt 0.
INT1 I ST External interrupt 1.
INT2 I ST External interrupt 2.
INT3 I ST External interrupt 3.
INT4 I ST External interrupt 4.
LVDIN I Analog |Low Voltage Detect Reference Voltage input pin.
Legend: CMOS= CMOS compatible input or output Analog = Analog input
ST = Schmitt Trigger input with CMOS levels (0] = OQutput
I = Input P = Power

© 2004 Microchip Technology Inc.

Preliminary DS70119D-page 7

dsPIC30F6010

TABLE 1-1: dsPIC30F6010 1/0 PIN DESCRIPTIONS (CONTINUED)

Pin Name Pin Buffer Description
Type Type
FLTA I ST PWM Fault A input.
FLTB I ST PWM Fault B input.
PWM1L o] — PWM 1 Low output.
PWM1H 0] — PWM 1 High output.
PWM2L] — PWM 2 Low output.
PWM2H 0] — PWM 2 High output.
PWM3L 0] — PWM 3 Low output.
PWM3H (@) — PWM 3 High output.
PWM4L (@) — PWM 4 Low output.
PWM4H 0] — PWM 4 High output.
MCLR /P ST Master Clear (Reset) input or programming voltage input. This pin is an active
low Reset to the device.
OCFA I ST Compare Fault A input (for Compare channels 1, 2, 3 and 4).
OCFB I ST Compare Fault B input (for Compare channels 5, 6, 7 and 8).
0OC1-0C8 (@) — Compare outputs 1 through 8.
0OSCH1 ST/CMOS |Oscillator crystal input. ST buffer when configured in RC mode; CMOS

I
0OSC2 1/0 — otherwise.
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
mode. Optionally functions as CLKO in RC and EC modes.

PGD 110 ST In-Circuit Serial Programming data input/output pin.
PGC I ST In-Circuit Serial Programming clock input pin.
RA9-RA10 1/0 ST PORTA is a bi-directional 1/0 port.
RA14-RA15 I/0 ST
RB0O-RB15 I/O ST PORTB is a bi-directional I/O port.
RC1 1/0 ST PORTC is a bi-directional 1/0 port.
RC3 I/0 ST
RC13-RC15 I/0 ST
RDO0-RD15 1/0 ST PORTD is a bi-directional 1/0 port.
REO-RE9 I/0 ST PORTE is a bi-directional I/0 port.
RFO-RF8 1/0 ST PORTF is a bi-directional 1/0 port.
RGO0-RG3 I/O ST PORTG is a bi-directional 1/0O port.
RG6-RG9 I/O ST
SCK1 I/0 ST Synchronous serial clock input/output for SPI™ #1.
SDI1 I ST SPI #1 Data In.
SDO1 o] — SPI #1 Data Out.
SS1 I ST SPI #1 Slave Synchronization.
SCK2 1/0 ST Synchronous serial clock input/output for SPI #2.
SDI2 I ST SPI #2 Data In.
SDO2] — SPI #2 Data Out.
SS2 I ST SPI #2 Slave Synchronization.
SCL I/0 ST Synchronous serial clock input/output for 12C.
SDA I/0 ST Synchronous serial data input/output for 1C.
SOSCO (0] — 32 kHz low power oscillator crystal output.
SOSCI I ST/CMOS |32 kHz low power oscillator crystal input. ST buffer when configured in RC
mode; CMOS otherwise.
Legend: CMOS= CMOS compatible input or output Analog = Analog input
ST = Schmitt Trigger input with CMOS levels (0] = Output
I = Input P = Power

DS70119D-page 8 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

TABLE 1-1: dsPIC30F6010 I/O PIN DESCRIPTIONS (CONTINUED)
Pin Name Pin Buffer Description
Type Type

T1CK I ST Timer1 external clock input.

T2CK I ST Timer2 external clock input.

T3CK I ST Timer3 external clock input.

T4CK I ST Timer4 external clock input.

T5CK I ST Timer5 external clock input.

U1RX I ST UART1 Receive.

u1TX o — UART1 Transmit.

U1ARX I ST UART1 Alternate Receive.

U1ATX (0] — UART1 Alternate Transmit.

U2RX I ST UART2 Receive.

u2TXx (0] — UART2 Transmit.

VDD P — Positive supply for logic and 1/O pins.

Vss P — Ground reference for logic and 1/O pins.

VREF+ I Analog |Analog Voltage Reference (High) input.

VREF- I Analog |Analog Voltage Reference (Low) input.

Legend: CMOS= CMOS compatible input or output Analog = Analog input
ST = Schmitt Trigger input with CMOS levels (0] = Output
I = Input P = Power

© 2004 Microchip Technology Inc.

Preliminary DS70119D-page 9

dsPIC30F6010

NOTES:

DS70119D-page 10 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

2.0 CPUARCHITECTURE
OVERVIEW

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsP/C30F
Programmer’s Reference Manual (DS70030).

This document provides a summary of the
dsPIC30F6010 CPU and peripheral function. For a
complete description of this functionality, please refer
to the dsPIC30F Family Reference Manual (DS70046).

2.1 Core Overview

The core has a 24-bit instruction word. The Program
Counter (PC) is 23 bits wide with the Least Significant
(LS) bit always clear (see Section 3.1), and the Most
Significant (MS) bit is ignored during normal program
execution, except for certain specialized instructions.
Thus, the PC can address up to 4M instruction words
of user program space. An instruction pre-fetch mech-
anism is used to help maintain throughput. Program
loop constructs, free from loop count management
overhead, are supported using the DO and REPEAT
instructions, both of which are interruptible at any point.

The working register array consists of 16x16-bit regis-
ters, each of which can act as data, address or offset
registers. One working register (W15) operates as a
software stack pointer for interrupts and calls.

The data space is 64 Kbytes (32K words) and is split
into two blocks, referred to as X and Y data memory.
Each block has its own independent Address Genera-
tion Unit (AGU). Most instructions operate solely
through the X memory AGU, which provides the
appearance of a single unified data space. The
Multiply-Accumulate (MAC) class of dual source DSP
instructions operate through both the X and Y AGUs,
splitting the data address space into two parts (see
Section 3.2). The X and Y data space boundary is
device specific and cannot be altered by the user. Each
data word consists of 2 bytes, and most instructions
can address data either as words or bytes.

There are two methods of accessing data stored in
program memory:

» The upper 32 Kbytes of data space memory can
be mapped into the lower half (user space) of pro-
gram space at any 16K program word boundary,
defined by the 8-bit Program Space Visibility Page
(PSVPAG) register. This lets any instruction
access program space as if it were data space,
with a limitation that the access requires an addi-
tional cycle. Moreover, only the lower 16 bits of
each instruction word can be accessed using this
method.

+ Linear indirect access of 32K word pages within
program space is also possible using any working
register, via table read and write instructions.
Table read and write instructions can be used to
access all 24 bits of an instruction word.

Overhead-free circular buffers (modulo addressing) are
supported in both X and Y address spaces. This is pri-
marily intended to remove the loop overhead for DSP
algorithms.

The X AGU also supports bit-reversed addressing on
destination effective addresses, to greatly simplify input
or output data reordering for radix-2 FFT algorithms.
Refer to Section 4.0 for details on modulo and
bit-reversed addressing.

The core supports Inherent (no operand), Relative, Lit-
eral, Memory Direct, Register Direct, Register Indirect,
Register Offset and Literal Offset Addressing modes.
Instructions are associated with predefined Addressing
modes, depending upon their functional requirements.

For most instructions, the core is capable of executing
a data (or program data) memory read, a working reg-
ister (data) read, a data memory write and a program
(instruction) memory read per instruction cycle. As a
result, 3-operand instructions are supported, allowing
C = A+B operations to be executed in a single cycle.

A DSP engine has been included to significantly
enhance the core arithmetic capability and throughput.
It features a high speed 17-bit by 17-bit multiplier, a
40-bit ALU, two 40-bit saturating accumulators and a
40-bit bi-directional barrel shifter. Data in the accumu-
lator or any working register can be shifted up to 16 bits
right or 16 bits left in a single cycle. The DSP instruc-
tions operate seamlessly with all other instructions and
have been designed for optimal real-time performance.
The MAC class of instructions can concurrently fetch
two data operands from memory, while multiplying two
W registers. To enable this concurrent fetching of data
operands, the data space has been split for these
instructions and linear for all others. This has been
achieved in a transparent and flexible manner, by ded-
icating certain working registers to each address space
for the MAC class of instructions.

The core does not support a multi-stage instruction
pipeline. However, a single stage instruction pre-fetch
mechanism is used, which accesses and partially
decodes instructions a cycle ahead of execution, in
order to maximize available execution time. Most
instructions execute in a single cycle, with certain
exceptions.

The core features a vectored exception processing
structure for traps and interrupts, with 62 independent
vectors. The exceptions consist of up to 8 traps (of
which 4 are reserved) and 54 interrupts. Each interrupt
is prioritized based on a user assigned priority between
1 and 7 (1 being the lowest priority and 7 being the
highest) in conjunction with a predetermined ‘natural
order’. Traps have fixed priorities, ranging from 8 to 15.

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 11

dsPIC30F6010

2.2 Programmer’s Model

The programmer’s model is shown in Figure 2-1 and
consists of 16x16-bit working registers (W0 through
W15), 2x40-bit accumulators (AccA and AccB),
STATUS register (SR), Data Table Page register
(TBLPAG), Program Space Visibility Page register
(PSVPAG), DO and REPEAT registers (DOSTART,
DOEND, DCOUNT and RCOUNT), and Program
Counter (PC). The working registers can act as data,
address or offset registers. All registers are memory
mapped. WO acts as the W register for file register
addressing.

Some of these registers have a shadow register asso-
ciated with each of them, as shown in Figure 2-1. The
shadow register is used as a temporary holding register
and can transfer its contents to or from its host register
upon the occurrence of an event. None of the shadow
registers are accessible directly. The following rules
apply for transfer of registers into and out of shadows.

* PUSH.S and POP.S
WO, W1, W2, W3, SR (DC, N, QV, Z and C bits
only) are transferred.

* DO instruction
DOSTART, DOEND, DCOUNT shadows are
pushed on loop start, and popped on loop end.

When a byte operation is performed on a working reg-
ister, only the Least Significant Byte of the target regis-
ter is affected. However, a benefit of memory mapped
working registers is that both the Least and Most
Significant Bytes can be manipulated through byte
wide data memory space accesses.

2.21 SOFTWARE STACK POINTER/
FRAME POINTER

The dsPIC® devices contain a software stack. W15 is
the dedicated software stack pointer (SP), and will be
automatically modified by exception processing and
subroutine calls and returns. However, W15 can be ref-
erenced by any instruction in the same manner as all
other W registers. This simplifies the reading, writing
and manipulation of the stack pointer (e.g., creating
stack frames).

Note: In order to protect against misaligned

stack accesses, W15<0> is always clear.

W15 is initialized to 0x0800 during a Reset. The user
may reprogram the SP during initialization to any
location within data space.

W14 has been dedicated as a stack frame pointer as
defined by the LNK and ULNK instructions. However,
W14 can be referenced by any instruction in the same
manner as all other W registers.

222 STATUS REGISTER

The dsPIC core has a 16-bit Status Register (SR), the
LS Byte of which is referred to as the SR Low Byte
(SRL) and the MS Byte as the SR High Byte (SRH).
See Figure 2-1 for SR layout.

SRL contains all the MCU ALU operation status flags
(including the Z bit), as well as the CPU Interrupt Prior-
ity Level status bits, IPL<2:0>, and the REPEAT active
status bit, RA. During exception processing, SRL is
concatenated with the MS Byte of the PC to form a
complete word value which is then stacked.

The upper byte of the SR register contains the DSP
Adder/Subtractor status bits, the DO Loop Active bit
(DA) and the Digit Carry (DC) status bit.

223 PROGRAM COUNTER

The Program Counter is 23 bits wide. Bit 0 is always
clear. Therefore, the PC can address up to 4M
instruction words.

DS70119D-page 12

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

FIGURE 2-1: dsPIC30F6010 PROGRAMMER’S MODEL
D15 DO
WO/WREG A e !
| - PUSH.S Shadow
WA1
W2 | |:| DO Shadow |
Lo _|
_ w3 Legend
w4
DSP Operand w5
f -
Registers W6
. w7
Working Registers
e v g Reg
w9
DSP Address S
Registers w10
W11
N~—
W12/DSP Offset
W13/DSP Write Back
W14/Frame Pointer
W15/Stack Pointer /
SPLIM I Stack Pointer Limit Register
AD39 AD31 AD15 ADO
DSP AccA
Accumulators AccB
PC22 PCO
I I 0 ‘ Program Counter
7 0
| TBLPAG | Data Table Page Address
7 0
| PSVPAG | Program Space Visibility Page Address
15 0
| RCOUNT | REPEAT Loop Counter
15 0
| DCOUNT n DO Loop Counter
22 0
| DOSTART ﬂ DO Loop Start Address
22
| DOEND H DO Loop End Address
!
15 0
| CORCON | Core Configuration Register
|oa [oB | sA | sB|oaB|saB| DA | DC FIPLZ‘ IPL1[IPLO| RA[N [ov] Z | ¢ | status Register
< SRH > < SRL

© 2004 Microchip Technology Inc. Preliminary DS70119D-page 13

dsPIC30F6010

23 Divide Support

The dsPIC devices feature a 16/16-bit signed fractional
divide operation, as well as 32/16-bit and 16/16-bit
signed and unsigned integer divide operations, in the
form of single instruction iterative divides. The following
instructions and data sizes are supported:

1. DIVF - 16/16 signed fractional divide

The divide instructions must be executed within a
REPEAT loop. Any other form of execution (e.g. a series
of discrete divide instructions) will not function correctly
because the instruction flow depends on RCOUNT. The
divide instruction does not automatically set up the
RCOUNT value, and it must, therefore, be explicitly and
correctly specified in the REPEAT instruction, as shown
in Table 2-1 (REPEAT will execute the target instruction
{operand value+1} times). The REPEAT loop count must

2. DIV.sd - 32/16 signed divide ! \) !
3. DIV.ud - 32/16 unsigned divide be set up for 18 |te.ra_t|ons of thg DIV/]?IVF instruction.
. . Thus, a complete divide operation requires 19 cycles.
4. DIV.sw-— 16/16 signed divide
5. DIV.uw— 16/16 unsigned divide Note: The Divide flow is interruptible. However,
the user needs to save the context as
appropriate.
TABLE 2-1: DIVIDE INSTRUCTIONS
Instruction Function
DIVF Signed fractional divide: Wm/Wn — WO0; Rem — W1
DIV.sd Signed divide: (Wm+1:Wm)/Wn — W0; Rem — W1
DIV.sw (or DIV.s) Signed divide: Wm/Wn — W0; Rem — W1
DIV.ud Unsigned divide: (Wm+1:Wm)/Wn — WO0; Rem — W1
DIV.uw (or DIV.u) Unsigned divide: Wm/Wn — WO0; Rem — W1

24 DSP Engine

The DSP engine consists of a high speed 17-bit x
17-bit multiplier, a barrel shifter, and a 40-bit adder/
Subtractor (with two target accumulators, round and
saturation logic).

The dsPIC30F devices have a single instruction flow
which can execute either DSP or MCU instructions.
Many of the hardware resources are shared between
the DSP and MCU instructions. For example, the
instruction set has both DSP and MCU Multiply
instructions which use the same hardware multiplier.

The DSP engine also has the capability to perform inher-
ent accumulator-to-accumulator operations, which
require no additional data. These instructions are ADD,
SUB and NEG.

The DSP engine has various options selected through
various bits in the CPU Core Configuration Register
(CORCON), as listed below:

1. Fractional or integer DSP multiply (IF).

Signed or unsigned DSP multiply (US).
Conventional or convergent rounding (RND).
Automatic saturation on/off for AccA (SATA).
Automatic saturation on/off for AccB (SATB).

Automatic saturation on/off for writes to data
memory (SATDW).

7. Accumulator Saturation mode selection
(ACCSAT).

‘ Note: For CORCON layout, see Table 4-2.

o0k~ wN

A block diagram of the DSP engine is shown in
Figure 2-2.

TABLE 2-2: DSP INSTRUCTION
SUMMARY
Instruction Algebraic Operation
CLR A=0
ED A=(x-y)?
EDAC A=A+ (x—y)?
MAC A=A+ (x*y)
MOVSAC No change in A
MPY A=x*y
MPY.N A=—-x*y
MSC A=A-x*y

DS70119D-page 14

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

FIGURE 2-2: DSP ENGINE BLOCK DIAGRAM

40-bit Accumulator A

4ol4

40-bit Accumulator B

Carry/Borrow Out

Carry/Borrow In

Saturate

Adder

A Ne?ate

YVYY

40 |Round

4
40 0

Y Data Bus

40

16

Logic

> Barrel
Shifter

40

Sign-Extend
A

I

-

>

32

A
DO~V =C —~+Q (N

Zero Backfill

32

33

17-bit
Multiplier/Scaler

A
16 16

X Data Bus

16

_____ L
To/From W Array |-

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 15

dsPIC30F6010

241 MULTIPLIER

The 17x17-bit multiplier is capable of signed or
unsigned operation and can multiplex its output using a
scaler to support either 1.31 fractional (Q31) or 32-bit
integer results. Unsigned operands are zero-extended
into the 17th bit of the multiplier input value. Signed
operands are sign-extended into the 17th bit of the mul-
tiplier input value. The output of the 17x17-bit multiplier/
scaler is a 33-bit value, which is sign-extended to 40
bits. Integer data is inherently represented as a signed
two’s complement value, where the MSB is defined as
a sign bit. Generally speaking, the range of an N-bit
two’s complement integer is 2N to 2N1 _ 1. For a
16-bit integer, the data range is -32768 (0x8000) to
32767 (0x7FFF), including 0. For a 32-bit integer, the
data range is -2,147,483,648 (0x8000 0000) to
2,147,483,645 (OX7FFF FFFF).

When the multiplier is configured for fractional multipli-
cation, the data is represented as a two’s complement
fraction, where the MSB is defined as a sign bit and the
radix point is implied to lie just after the sign bit
(QX format). The range of an N-bit two’s complement
fraction with this implied radix point is -1.0 to (1-2"N).
For a 16-bit fraction, the Q15 data range is -1.0
(0x8000) to 0.999969482 (0Ox7FFF), including 0 and
has a precision of 3.01518x107°. In Fractional mode, a
16x16 multiply operation generates a 1.31 product,
which has a precision of 4.65661x1071°.

The same multiplier is used to support the MCU multi-
ply instructions, which include integer 16-bit signed,
unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or
word sized operands. Byte operands will direct a 16-bit
result, and word operands will direct a 32-bit result to
the specified register(s) in the W array.

242 DATA ACCUMULATORS AND
ADDER/SUBTRACTOR

The data accumulator consists of a 40-bit adder/
subtractor with automatic sign extension logic. It can
select one of two accumulators (A or B) as its pre-
accumulation source and post-accumulation destina-
tion. For the ADD and LAC instructions, the data to be
accumulated or loaded can be optionally scaled via the
barrel shifter, prior to accumulation.

2.4.21 Adder/Subtractor, Overflow and
Saturation

The adder/subtractor is a 40-bit adder with an optional
zero input into one side and either true or complement
data into the other input. In the case of addition, the
carry/borrow input is active high and the other input is
true data (not complemented), whereas in the case of
subtraction, the carry/borrow input is active low and the
other input is complemented. The adder/subtractor
generates overflow status bits SA/SB and OA/OB,
which are latched and reflected in the status register.

» Overflow from bit 39: this is a catastrophic
overflow in which the sign of the accumulator is
destroyed.

» Overflow into guard bits 32 through 39: this is a
recoverable overflow. This bit is set whenever all
the guard bits are not identical to each other.

The adder has an additional saturation block which
controls accumulator data saturation, if selected. It
uses the result of the adder, the overflow status bits
described above, and the SATA/B (CORCON<7:6>)
and ACCSAT (CORCON<4>) mode control bits to
determine when and to what value to saturate.

Six status register bits have been provided to support
saturation and overflow; they are:

1. OA:
AccA overflowed into guard bits

2. OB:
AccB overflowed into guard bits

3. SA:
AccA saturated (bit 31 overflow and saturation)
or
AccA overflowed into guard bits and saturated
(bit 39 overflow and saturation)

4. SB:
AccB saturated (bit 31 overflow and saturation)
or
AccB overflowed into guard bits and saturated
(bit 39 overflow and saturation)

5. OAB:
Logical OR of OA and OB
6. SAB:

Logical OR of SA and SB

The OA and OB bits are modified each time data
passes through the adder/Subtractor. When set, they
indicate that the most recent operation has overflowed
into the accumulator guard bits (bits 32 through 39).
The OA and OB bits can also optionally generate an
arithmetic warning trap when set and the correspond-
ing overflow trap flag enable bit (OVATEN, OVBTEN) in
the INTCON1 register (refer to Section 5.0) is set. This
allows the user to take immediate action, for example,
to correct system gain.

DS70119D-page 16

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

The SA and SB bits are modified each time data passes
through the adder/subtractor, but can only be cleared by
the user. When set, they indicate that the accumulator
has overflowed its maximum range (bit 31 for 32-bit sat-
uration, or bit 39 for 40-bit saturation) and will be satu-
rated (if saturation is enabled). When saturation is not
enabled, SA and SB default to bit 39 overflow and thus
indicate that a catastrophic overflow has occurred. If the
COVTE bit in the INTCONA1 register is set, SA and SB
bits will generate an arithmetic warning trap when satu-
ration is disabled.

The overflow and saturation status bits can optionally
be viewed in the Status Register (SR) as the logical OR
of OA and OB (in bit OAB) and the logical OR of SA and
SB (in bit SAB). This allows programmers to check one
bit in the Status Register to determine if either accumu-
lator has overflowed, or one bit to determine if either
accumulator has saturated. This would be useful for
complex number arithmetic which typically uses both
the accumulators.

The device supports three Saturation and Overflow
modes.

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the
saturation logic loads the maximally positive 9.31
(OX7FFFFFFFFF) or maximally negative 9.31
value (0x8000000000) into the target accumula-
tor. The SA or SB bit is set and remains set until
cleared by the user. This is referred to as ‘super
saturation’ and provides protection against erro-
neous data or unexpected algorithm problems
(e.g., gain calculations).

2. Bit 31 Overflow and Saturation:
When bit 31 overflow and saturation occurs, the
saturation logic then loads the maximally posi-
tive 1.31 value (0x007FFFFFFF) or maximally
negative 1.31 value (0x0080000000) into the
target accumulator. The SA or SB bit is set and
remains set until cleared by the user. When this
Saturation mode is in effect, the guard bits are not
used (so the OA, OB or OAB bits are never set).

3. Bit 39 Catastrophic Overflow
The bit 39 overflow status bit from the adder is
used to set the SA or SB bit, which remain set
until cleared by the user. No saturation operation
is performed and the accumulator is allowed to
overflow (destroying its sign). If the COVTE bit in
the INTCON1 register is set, a catastrophic
overflow can initiate a trap exception.

2.4.2.2 Accumulator ‘Write Back’

The MAC class of instructions (with the exception of
MPY, MPY.N, ED and EDAC) can optionally write a
rounded version of the high word (bits 31 through 16)
of the accumulator that is not targeted by the instruction
into data space memory. The write is performed across
the X bus into combined X and Y address space. The
following addressing modes are supported:

1. W13, Register Direct:
The rounded contents of the non-target accumula-
tor are written into W13 as a 1.15 fraction.

2. [W13]+=2, Register Indirect with Post-Increment:
The rounded contents of the non-target accumu-
lator are written into the address pointed to by
W13 as a 1.15 fraction. W13 is then
incremented by 2 (for a word write).

2423 Round Logic

The round logic is a combinational block, which per-
forms a conventional (biased) or convergent (unbiased)
round function during an accumulator write (store). The
Round mode is determined by the state of the RND bit
in the CORCON register. It generates a 16-bit, 1.15 data
value which is passed to the data space write saturation
logic. If rounding is not indicated by the instruction, a
truncated 1.15 data value is stored and the LS Word is
simply discarded.

Conventional rounding takes bit 15 of the accumulator,
zero-extends it and adds it to the ACCxH word (bits 16
through 31 of the accumulator). If the ACCxL word (bits
0 through 15 of the accumulator) is between 0x8000
and OxFFFF (0x8000 included), ACCxH is incre-
mented. If ACCxL is between 0x0000 and Ox7FFF,
ACCxH is left unchanged. A consequence of this algo-
rithm is that over a succession of random rounding
operations, the value will tend to be biased slightly
positive.

Convergent (or unbiased) rounding operates in the
same manner as conventional rounding, except when
ACCxL equals 0x8000. If this is the case, the LS bit (bit
16 of the accumulator) of ACCxH is examined. Ifitis ‘1’,
ACCxH is incremented. If it is ‘0’, ACCxH is not modi-
fied. Assuming that bit 16 is effectively random in
nature, this scheme will remove any rounding bias that
may accumulate.

The SAC and SAC.R instructions store either a trun-
cated (SAC) or rounded (SAC. R) version of the contents
of the target accumulator to data memory, via the X bus
(subject to data saturation, see Section 2.4.2.4). Note
that for the MAC class of instructions, the accumulator
write back operation will function in the same manner,
addressing combined MCU (X and Y) data space
though the X bus. For this class of instructions, the data
is always subject to rounding.

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 17

dsPIC30F6010

2424 Data Space Write Saturation

In addition to adder/subtractor saturation, writes to data
space may also be saturated, but without affecting the
contents of the source accumulator. The data space
write saturation logic block accepts a 16-bit, 1.15 frac-
tional value from the round logic block as its input,
together with overflow status from the original source
(accumulator) and the 16-bit round adder. These are
combined and used to select the appropriate 1.15 frac-
tional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data
(after rounding or truncation) is tested for overflow and
adjusted accordingly. For input data greater than
0x007FFF, data written to memory is forced to the max-
imum positive 1.15 value, Ox7FFF. For input data less
than OxFF8000, data written to memory is forced to the
maximum negative 1.15 value, 0x8000. The MS bit of
the source (bit 39) is used to determine the sign of the
operand being tested.

If the SATDW bit in the CORCON register is not set, the
input data is always passed through unmodified under
all conditions.

243 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit
arithmetic or logic right shifts, or up to 16-bit left shifts
in a single cycle. The source can be either of the two
DSP accumulators or the X bus (to support multi-bit
shifts of register or memory data).

The shifter requires a signed binary value to determine
both the magnitude (number of bits) and direction of the
shift operation. A positive value will shift the operand
right. A negative value will shift the operand left. A
value of 0 will not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a
40-bit result for DSP shift operations and a 16-bit result
for MCU shift operations. Data from the X bus is pre-
sented to the barrel shifter between bit positions 16 to
31 for right shifts, and bit positions 0 to 15 for left shifts.

DS70119D-page 18

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

3.0 MEMORY ORGANIZATION

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsP/C30F
Programmer’s Reference Manual (DS70030).

3.1 Program Address Space

The program address space is 4M instruction words. It
is addressable by the 23-bit PC, table instruction
Effective Address (EA), or data space EA, when
program space is mapped into data space, as defined
by Table 3-1. Note that the program space address is
incremented by two between successive program
words, in order to provide compatibility with data space
addressing.

User program space access is restricted to the lower
4M instruction word address range (0x000000 to
O0x7FFFFE), for all accesses other than TBLRD/TBLWT,
which use TBLPAG<7> to determine user or configura-
tion space access. In Table 3-1, Read/Write instruc-
tions, bit 23 allows access to the Device ID, the User ID
and the configuration bits. Otherwise, bit 23 is always
clear.

FIGURE 3-1:

PROGRAM SPACE
MEMORY MAP FOR

Configuration Memory

User Memory
Space

Space

dsPIC30F6010
Reset - GOTO Instruction 000000
Reset - Target Address 000002
000004
Vector Tables
Interrupt Vector Table
00007E
Reserved 000080 /
Alternate Vector Table 000084
0000FE
User Flash 000100
Program Memory
(48K instructions)
017FFE
018000
Reserved
(Read 0’s)
7FEFFE
7FF000
Data EEPROM
(4 Kbytes)
TFFFFE
800000
Reserved
8005BE
UNITID (32 instr.) 8005C0
8005FE
800600
Reserved
F7FFFE
Device Configuration F80000
Registers F8000E
F80010
Reserved
FEFFFE
FF0000
DEVID (2) FFFFFE

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 19

dsPIC30F6010

TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION

A T Access Program Space Address
ccess lype Space <23> <22:16> | <15> | <14:1> <0>
Instruction Access User 0 PC<22:1> 0
TBLRD/TBLWT User TBLPAG<7:0> Data EA <15:0>
(TBLPAG<7> = 0)
TBLRD/TBLWT Configuration TBLPAG<7:0> Data EA <15:0>
(TBLPAG<7>=1)
Program Space Visibility |User 0 | PSVPAG<7:0> | Data EA <14:0>
FIGURE 3-2: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION
[! 23 bits |
Using | L
Program | 0 | Program Counter 0
Counter
| | Select |
elec
o L)) EA |
Using Y | |
Program 0 | PSVPAG Reg | |
Space < > | |,
Visibility | | 8 bits 15 bits ||
. | o
|
| | '
o | EA
Using 1/0 | TBLPAG Reg | |
Table ' — 1 |
Instruction | 8bis 16 bits : |
N %
A ¢ A
User/
Configuration 24-bit EA | Byte
Space | Select
Select |
Note: Program Space Visibility cannot be used to access bits <23:16> of a word in program memory.

DS70119D-page 20 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

3.11 DATA ACCESS FROM PROGRAM
MEMORY USING TABLE

INSTRUCTIONS

This architecture fetches 24-bit wide program memory.
Consequently, instructions are always aligned. How-
ever, as the architecture is modified Harvard, data can
also be present in program space.

There are two methods by which program space can
be accessed; via special table instructions, or through
the remapping of a 16K word program space page into
the upper half of data space (see Section 3.1.2). The
TBLRDL and TBLWTL instructions offer a direct method
of reading or writing the LS Word of any address within
program space, without going through data space. The
TBLRDH and TBLWTH instructions are the only method
whereby the upper 8 bits of a program space word can
be accessed as data.

The PC is incremented by two for each successive
24-bit program word. This allows program memory
addresses to directly map to data space addresses.
Program memory can thus be regarded as two 16-bit
word wide address spaces, residing side by side, each
with the same address range. TBLRDL and TBLWTL
access the space which contains the LS Data Word,
and TBLRDH and TBLWTH access the space which
contains the MS Data Byte.

Figure 3-2 shows how the EA is created for table oper-
ations and data space accesses (PSV = 1). Here,
P<23:0> refers to a program space word, whereas
D<15:0> refers to a data space word.

A set of Table Instructions are provided to move byte or
word sized data to and from program space.

1. TBLRDL: Table Read Low
Word: Read the LS Word of the program
address;
P<15:0> maps to D<15:0>.
Byte: Read one of the LS Bytes of the program
address;
P<7:0> maps to the destination byte when byte
select = 0;
P<15:8> maps to the destination byte when byte
select = 1.

2. TBLWTL: Table Write Low (refer to Section 6.0
for details on Flash Programming).

3. TBLRDH: Table Read High
Word: Read the MS Word of the program
address;
P<23:16> maps to D<7:0>; D<15:8> always
be = 0.
Byte: Read one of the MS Bytes of the program
address;
P<23:16> maps to the destination byte when
byte select = 0;
The destination byte will always be = 0 when
byte select = 1.

4. TBLWTH: Table Write High (refer to Section 6.0
for details on Flash Programming).

FIGURE 3-3: PROGRAM DATA TABLE ACCESS (LS WORD)
PC Address 23 16

0x000000 00000000

0x000002 00000000

0x000004 |y 00000000 /

0x000006 00000000 /

/ TBLRDL.B (Wn<0> = 0)

Program Memory TBLRDL. W
Phantom’ Byte TBLRDL.B (Wn<0> = 1)

(Read as ‘0’).

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 21

dsPIC30F6010

FIGURE 3-4:

PROGRAM DATA TABLE ACCESS (MS BYTE)

TBLRDH.W

16 8 0

PC Address 23
0x000000 00000000 4
0x000002 00000000

0x000004 ’ 00000000

0x000006 00009000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

TBLRDH.B

AN

TBLRDH.B (Wn<O0> = 0)

(Wn<0> = 1)

3.1.2 DATA ACCESS FROM PROGRAM
MEMORY USING PROGRAM SPACE
VISIBILITY

The upper 32 Kbytes of data space may optionally be
mapped into any 16K word program space page. This
provides transparent access of stored constant data
from X data space, without the need to use special
instructions (i.e., TBLRDL/H, TBLWTL/H instructions).

Program space access through the data space occurs
if the MS bit of the data space EA is set and program
space visibility is enabled, by setting the PSV bit in the
Core Control register (CORCON). The functions of
CORCON are discussed in Section 2.4, DSP Engine.

Data accesses to this area add an additional cycle to
the instruction being executed, since two program
memory fetches are required.

Note that the upper half of addressable data space is
always part of the X data space. Therefore, when a
DSP operation uses program space mapping to access
this memory region, Y data space should typically con-
tain state (variable) data for DSP operations, whereas
X data space should typically contain coefficient
(constant) data.

Although each data space address, 0x8000 and higher,
maps directly into a corresponding program memory
address (see Figure 3-5), only the lower 16-bits of the
24-bit program word are used to contain the data. The
upper 8 bits should be programmed to force an illegal
instruction to maintain machine robustness. Refer
to the dsPIC30F Programmer’s Reference Manual
(DS70030) for details on instruction encoding.

Note that by incrementing the PC by 2 for each pro-
gram memory word, the LS 15 bits of data space
addresses directly map to the LS 15 bits in the corre-
sponding program space addresses. The remaining
bits are provided by the Program Space Visibility Page
register, PSVPAG<7:0>, as shown in Figure 3-5.

Note: PSV access is temporarily disabled during

Table Reads/Writes.

For instructions that use PSV which are executed
outside a REPEAT loop:

+ The following instructions will require one instruc-
tion cycle in addition to the specified execution
time:

- MAC class of instructions with data operand
pre-fetch

- MOV instructions

- MOV.D instructions

+ All other instructions will require two instruction
cycles in addition to the specified execution time
of the instruction.

For instructions that use PSV which are executed
inside a REPEAT loop:

» The following instances will require two instruction
cycles in addition to the specified execution time
of the instruction:

- Execution in the first iteration

- Execution in the last iteration

- Execution prior to exiting the loop due to an
interrupt

- Execution upon re-entering the loop after an
interrupt is serviced

* Any other iteration of the REPEAT loop will allow
the instruction, accessing data using PSV, to
execute in a single cycle.

DS70119D-page 22

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

FIGURE 3-5: DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION
Data Space Program Space
0x0000 1 0x000100
|
15 PSVPAG |
EA<15>=0
0x00 |
8
|
Data 16 |
Space 0x8000 Y |
EA 15 23 15 0
EA<15> =1 Address > I 0x001200
15" | Concatenation [23" | X
|
Upper half of Data
Space is mapped €— |
into Program Space |
OxFFFF . 0x017FFE
BSET CORCON, #2 ; PSV bit set
MOV #0x00, WO ; Set PSVPAG register
MOV WO, PSVPAG
MOV 0x9200, WO ; Access program memory location \J
; using a data space access Data Read
Note: PSVPAG is an 8-bit register, containing bits <22:15> of the program space address
(i.e., it defines the page in program space to which the upper half of data space is being mapped).

3.2 Data Address Space

The core has two data spaces. The data spaces can be
considered either separate (for some DSP instruc-
tions), or as one unified linear address range (for MCU
instructions). The data spaces are accessed using two
Address Generation Units (AGUs) and separate data
paths.

3.21 DATA SPACE MEMORY MAP

The data space memory is split into two blocks, X and
Y data space. A key element of this architecture is that
Y space is a subset of X space, and is fully contained
within X space. In order to provide an apparent linear
addressing space, X and Y spaces have contiguous
addresses.

When executing any instruction other than one of the
MAC class of instructions, the X block consists of the 64
Kbyte data address space (including all Y addresses).
When executing one of the MAC class of instructions,
the X block consists of the 64 Kbyte data address
space excluding the Y address block (for data reads
only). In other words, all other instructions regard the
entire data memory as one composite address space.
The MAC class instructions extract the Y address space
from data space and address it using EAs sourced from
W10 and W11. The remaining X data space is
addressed using W8 and W9. Both address spaces are
concurrently accessed only with the MAC class
instructions.

A data space memory map is shown in Figure 3-6.

Figure 3-7 shows a graphical summary of how X and Y
data spaces are accessed for MCU and DSP
instructions.

© 2004 Microchip Technology Inc. Preliminary DS70119D-page 23

dsPIC30F6010

FIGURE 3-6: dsPIC30F6010 DATA SPACE MEMORY MAP
Address 16 bits Address
- MSB LSB >
0x0001 ' 0x0000 ~
2 Kbyte SFR Space
SFR Space OX07FF | Ox07FE
~ 0x0801 | 0x0800
| 8 Kbyte
Near
X Data RAM (X —
ata . *) Data
[Space
8 Kbyte Ox17FF | 0x17FE
SRAM Space 0x1801 | 0x1800
Ox1FFF |- _ __ __ __ 4 Ox1FFE -
Y Data RAM (Y)
I
. OX27FF | Ox27FE
0x2801 | 0x2800
I
oxgoo1 | == == =7 0x8000
I
I
X Ijata
Unimplemented (X)
|
Optionally |
Mapped |
into Program
Memory |
I
I
I
I
OxFFFF I OxFFFE

DS70119D-page 24 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

FIGURE 3-7: DATA SPACE FOR MCU AND DSP (MAC CLASS) INSTRUCTIONS EXAMPLE
r— — - — — A
SFR SPACE | | SFR SPACE .
| | O
UNUSED <
| |)
| | x
(Y SPACE) " Y SPACE : UNUSED |
(@]
< | |
o
————————)
X
| I
| | N
| UNUSED | 2
| | 7
| | x
| |
- - - — — _I
Non-MAcC Class Ops (Read/Write) MAC Class Ops Read Only

MAC Class Ops (Write)

Indirect EA using any W Indirect EA using W8, W9 Indirect EA using W10, W11

© 2004 Microchip Technology Inc. Preliminary DS70119D-page 25

dsPIC30F6010

3.2.2 DATA SPACES

The X data space is used by all instructions and sup-
ports all addressing modes. There are separate read
and write data buses. The X read data bus is the return
data path for all instructions that view data space as
combined X and Y address space. It is also the X
address space data path for the dual operand read
instructions (MAC class). The X write data bus is the
only write path to data space for all instructions.

The X data space also supports Modulo Addressing for
all instructions, subject to Addressing mode restric-
tions. Bit-Reversed Addressing is only supported for
writes to X data space.

The Y data space is used in concert with the X data
space by the MAC class of instructions (CLR, ED,
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to pro-
vide two concurrent data read paths. No writes occur
across the Y bus. This class of instructions dedicates
two W register pointers, W10 and W11, to always
address Y data space, independent of X data space,
whereas W8 and W9 always address X data space.
Note that during accumulator write back, the data
address space is considered a combination of X and Y
data spaces, so the write occurs across the X bus.
Consequently, the write can be to any address in the
entire data space.

The Y data space can only be used for the data pre-
fetch operation associated with the MAC class of
instructions. It also supports Modulo Addressing for
automated circular buffers. Of course, all other instruc-
tions can access the Y data address space through the
X data path, as part of the composite linear space.

The boundary between the X and Y data spaces is
defined as shown in Figure 3-6 and is not user pro-
grammable. Should an EA point to data outside its own
assigned address space, or to a location outside phys-
ical memory, an all-zero word/byte will be returned. For
example, although Y address space is visible by all
non-MAC instructions using any Addressing mode, an
attempt by a MAC instruction to fetch data from that
space, using W8 or W9 (X space pointers), will return
0x0000.
TABLE 3-2: EFFECT OF INVALID
MEMORY ACCESSES

Data Returned

Attempted Operation

EA = an unimplemented address 0x0000
W8 or W9 used to access Y data 0x0000
space in a MAC instruction

W10 or W11 used to access X 0x0000

data space in a MAC instruction

All effective addresses are 16 bits wide and point to
bytes within the data space. Therefore, the data space
address range is 64 Kbytes or 32K words.

3.2.3 DATA SPACE WIDTH

The core data width is 16-bits. All internal registers are
organized as 16-bit wide words. Data space memory is
organized in byte addressable, 16-bit wide blocks.

3.24 DATA ALIGNMENT

To help maintain backward compatibility with
PICmicro® devices and improve data space memory
usage efficiency, the dsPIC30F instruction set supports
both word and byte operations. Data is aligned in data
memory and registers as words, but all data space EAs
resolve to bytes. Data byte reads will read the complete
word, which contains the byte, using the LS bit of any
EA to determine which byte to select. The selected byte
is placed onto the LS Byte of the X data path (no byte
accesses are possible from the Y data path as the MAC
class of instruction can only fetch words). That is, data
memory and registers are organized as two parallel
byte wide entities with shared (word) address decode,
but separate write lines. Data byte writes only write to
the corresponding side of the array or register which
matches the byte address.

As a consequence of this byte accessibility, all effective
address calculations (including those generated by the
DSP operations, which are restricted to word sized
data) are internally scaled to step through word aligned
memory. For example, the core would recognize that
Post-Modified Register Indirect Addressing mode,
[Ws++], will result in a value of Ws+1 for byte
operations and Ws+2 for word operations.

All word accesses must be aligned to an even address.
Mis-aligned word data fetches are not supported, so
care must be taken when mixing byte and word opera-
tions, or translating from 8-bit MCU code. Should a mis-
aligned read or write be attempted, an Address Error
trap will be generated. If the error occurred on a read,
the instruction underway is completed, whereas if it
occurred on a write, the instruction will be executed but
the write will not occur. In either case, a trap will then
be executed, allowing the system and/or user to exam-
ine the machine state prior to execution of the address
fault.

FIGURE 3-8: DATA ALIGNMENT
15 MS Byte 87 LS Byte 0
0001 Byte 1 Byte 0 0000
0003 Byte 3 Byte 2 0002
0005 Byte 5 Byte 4 0004

DS70119D-page 26

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

All byte loads into any W register are loaded into the
LS Byte. The MSB is not modified.

A sign-extend (SE) instruction is provided to allow
users to translate 8-bit signed data to 16-bit signed
values. Alternatively, for 16-bit unsigned data, users
can clear the MSB of any W register by executing a
zero-extend (ZE) instruction on the appropriate
address.

Although most instructions are capable of operating on
word or byte data sizes, it should be noted that some
instructions, including the DSP instructions, operate
only on words.

3.25 NEAR DATA SPACE

An 8 Kbyte ‘near’ data space is reserved in X address
memory space between 0x0000 and Ox1FFF, which is
directly addressable via a 13-bit absolute address field
within all memory direct instructions. The remaining X
address space and all of the Y address space is
addressable indirectly. Additionally, the whole of X data
space is addressable using MOV instructions, which
support memory direct addressing with a 16-bit
address field.

3.2.6 SOFTWARE STACK

The dsPIC device contains a software stack. W15 is
used as the Stack Pointer.

The stack pointer always points to the first available
free word and grows from lower addresses towards
higher addresses. It pre-decrements for stack pops and
post-increments for stack pushes, as shown in
Figure 3-9. Note that for a PC push during any CALL
instruction, the MSB of the PC is zero-extended before
the push, ensuring that the MSB is always clear.

Note: A PC push during exception processing
will concatenate the SRL register to the
MSB of the PC prior to the push.

There is a Stack Pointer Limit register (SPLIM) associ-
ated with the stack pointer. SPLIM is uninitialized at
Reset. As is the case for the stack pointer, SPLIM<0>
is forced to ‘0’, because all stack operations must be
word aligned. Whenever an effective address (EA) is
generated using W15 as a source or destination
pointer, the address thus generated is compared with
the value in SPLIM. If the contents of the Stack Pointer
(W15) and the SPLIM register are equal and a push
operation is performed, a Stack Error Trap will not
occur. The Stack Error Trap will occur on a subsequent
push operation. Thus, for example, if it is desirable to
cause a Stack Error Trap when the stack grows beyond
address 0x2000 in RAM, initialize the SPLIM with the
value, Ox1FFE.

Similarly, a Stack Pointer Underflow (Stack Error) trap
is generated when the stack pointer address is found to
be less than 0x0800, thus preventing the stack from
interfering with the Special Function Register (SFR)
space.

A write to the SPLIM register should not be immediately
followed by an indirect read operation using W15.

FIGURE 3-9: CALL STACK FRAME
0x0000 15 0

(2]

2

3

o<

5 PC<15:0> <& W15 (before CALL)

o 5 | [00000000dPC<22:16>

) T <Free Word> <& \W15 (after CALL)

A
POP: [--W15]
PUSH: [W15++]

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 27

dsPIC30F6010

¥q pazileiuiun =0 :pusbe

0000 OTOO 0000 0000 Ell aNyd NSd €1dl 1vSOOV | MALVS | 91VS | VIVS 01a 11a Z1a 1a3 SN - - - ¥00 NOJdH0D
0000 0000 0000 0000 o] Zz NO N vy 07dl Ldl Z1dl oda va avs avo as VS a0 YO ¢v00 s
nnnn nnng 0000 0000 HAN3O0d — - — - - - - - — 0¥00 HAN3O0a
0nnn nnnn nnnn nnnn 0 7aN3oa 3€00 71anN3oa
nonn nnng 0000 0000 HLYvLSOd _ = _ = _ = = = = = _ = = 0£00 | HLYVLSOQ
onnn nnnn nnnn nnnn 0 71YVLSOd ve€00 119v1isod
nnnn nnonn nnnn nnnn INNODAd 8€00 1INNOD2A
nnnn nnnn nnnn nnnn 1INNOJY 9€00 1NNODYH
0000 0000 0000 0000 OVdASd — — — — — — — — €00 OVdASd
0000 0000 0000 0000 ovdlgl — — — — — — — — Z€00 ovdidL
0000 0000 0000 0000 HOd _ — — — — — — — — — 0€00 HOd
0000 0000 0000 0000 10d 3200 10d
0000 0000 0000 0000 naoov _ (<6€>809V) uoisusx3-ubls 0200 Nngoov
0000 0000 0000 0000 Hgo2Vv V200 HEooVv
0000 0000 0000 0000 1900V 8200 1900V
0000 0000 0000 0000 Nvoov _ (<6€>V¥D0V) Uoisusx3-ubls 9200 NvYOoVv
0000 0000 0000 0000 HYOOV 200 HYOOV
0000 0000 0000 0000 VOOV 2200 VOOV
0000 0000 0000 0000 NINdS 0200 WIS
0000 0000 000T 0000 SLM 3100 SLM
0000 0000 0000 0000 LM 0100 LM
0000 0000 0000 0000 €LM V100 €LM
0000 0000 0000 0000 LW 8100 ZLM
0000 0000 0000 0000 LLM 9100 LIM
0000 0000 0000 0000 0L 7100 0LM
0000 0000 0000 0000 6M Z100 6M
0000 0000 0000 0000 8M 0100 8M
0000 0000 0000 0000 LM 3000 LM
0000 0000 0000 0000 9M 0000 IM
0000 0000 0000 0000 SM V000 SM
0000 0000 0000 0000 M 8000 M
0000 0000 0000 0000 €M 9000 EM
0000 0000 0000 0000 M 000 ZM
0000 0000 0000 0000 L 2000 LM
0000 0000 0000 0000 OIUM / OM 0000 oM
9je)g J9say oug L yga A1) eyga v g suga 9g Lng 8 g 63g oL¥a [LLug | 2L¥g | €9 viyg sl g mAMM.h_MuN\ aweN ¥y4s

dVIN 4318193 F-H0D

‘€-€ 319vl

© 2004 Microchip Technology Inc.

iminary

Prel

DS70119D-page 28

dsPIC30F6010

"Splay 1q Jaysibal Jo suonduosep 1o (9700.SA) [enueyy sousisey Ajied J0€0I4SP 0) 19joy 90N

uq pazieuiun =0 :pusben

0000 0000 0000 00OO <0:¢€l>1NJISsIa - - 2500 1NOISIa
nnnn nnnn nnnn nnon <0:¥1>gX N3yg 0G00 AFdax
Innn nnnn nnnn nnnn 1 <l:GL>3A 300 AN3IAONA
onnn nnnn nnnn nnon 0 <l:GlL>SA J¥00 1HSAONA
Innn nnnn nnnn nnnn | <1:GL>3x v¥00 AN3IAONX
onnn nnnn nnnn nnnn 0 <1:GL>SX 8¥00 14SAOINX
0000 0000 0000 0000 <0:€>INMX <0:€>NMA <0:¢>NMg — — N3IAOWA | NIAOWX | 9t00 NOJAOW
awo
9)e)s jasay o¥g Lya cug cHg vig sug 9ug Lng g Hg 639 oLyg | LLyg | zZiug | L9 ving sLNg mAwm._vqu SweN y4s
(Q3INNILNOD) dVIN ¥31SID3Y WO :¢-€ 319Vl

DS70119D-page 29

iminary

Prel

© 2004 Microchip Technology Inc.

dsPIC30F6010

NOTES:

DS70119D-page 30 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

4.0 ADDRESS GENERATOR UNITS

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsP/C30F
Programmer’s Reference Manual (DS70030).

The dsPIC core contains two independent address
generator units: the X AGU and Y AGU. The Y AGU
supports word sized data reads for the DSP MAC class
of instructions only. The dsPIC AGUs support three
types of data addressing:

» Linear Addressing

* Modulo (Circular) Addressing

+ Bit-Reversed Addressing

Linear and Modulo Data Addressing modes can be

applied to data space or program space. Bit-Reversed
addressing is only applicable to data space addresses.

4.1 Instruction Addressing Modes

The addressing modes in Table 4-1 form the basis of
the addressing modes optimized to support the specific
features of individual instructions. The addressing
modes provided in the MAC class of instructions are
somewhat different from those in the other instruction

types.

TABLE 4-1:

411 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field
(f) to directly address data present in the first 8192
bytes of data memory (near data space). Most file
register instructions employ a working register WO,
which is denoted as WREG in these instructions. The
destination is typically either the same file register, or
WREG (with the exception of the MUL instruction),
which writes the result to a register or register pair. The
MOV instruction allows additional flexibility and can
access the entire data space during file register
operation.

41.2 MCU INSTRUCTIONS
The three-operand MCU instructions are of the form:
Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (i.e., the
addressing mode can only be register direct), which is
referred to as Wb. Operand 2 can be a W register,
fetched from data memory, or a 5-bit literal. The result
location can be either a W register or an address
location. The following addressing modes are
supported by MCU instructions:

* Register Direct

* Register Indirect

 Register Indirect Post-modified
» Register Indirect Pre-modified
+ 5-bit or 10-bit Literal

Note: Not all instructions support all the address-
ing modes given above. Individual
instructions may support different subsets

of these addressing modes.

FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode

Description

File Register Direct

The address of the file register is specified explicitly.

Register Direct

The contents of a register are accessed directly.

Register Indirect

The contents of Wn forms the EA.

Register Indirect Post-modified

The contents of Wn forms the EA. Wn is post-modified (incremented or
decremented) by a constant value.

Register Indirect Pre-modified
to form the EA.

Wnhn is pre-modified (incremented or decremented) by a signed constant value

Register Indirect with Register Offset |The sum of Wn and Wb forms the EA.

Register Indirect with Literal Offset The sum of Wn and a literal forms the EA.

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 31

dsPIC30F6010

41.3 MOVE AND ACCUMULATOR
INSTRUCTIONS

Move instructions and the DSP Accumulator class of
instructions provide a greater degree of addressing
flexibility than other instructions. In addition to the
addressing modes supported by most MCU instruc-
tions, Move and Accumulator instructions also support
Register Indirect with Register Offset Addressing
mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA. How-
ever, the 4-bit Wb (Register Offset) field is
shared between both source and
destination (but typically only used by
one).

In summary, the following addressing modes are
supported by Move and Accumulator instructions:
* Register Direct
* Register Indirect
» Register Indirect Post-modified
* Register Indirect Pre-modified
* Register Indirect with Register Offset (Indexed)
* Register Indirect with Literal Offset
+ 8-bit Literal
+ 16-bit Literal
Note: Not all instructions support all the address-
ing modes given above. Individual

instructions may support different subsets
of these addressing modes.

414 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED,
EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also
referred to as MAC instructions, utilize a simplified set of
addressing modes to allow the user to effectively
manipulate the data pointers through register indirect
tables.

The two source operand pre-fetch registers must be a
member of the set {W8, W9, W10, W11}. For data
reads, W8 and W9 will always be directed to the X
RAGU and W10 and W11 will always be directed to the
Y AGU. The effective addresses generated (before and
after modification) must, therefore, be valid addresses
within X data space for W8 and W9 and Y data space
for W10 and W11.

Note: Register Indirect with Register Offset
Addressing is only available for W9 (in X

space) and W11 (in Y space).

In summary, the following addressing modes are
supported by the MAC class of instructions:

* Register Indirect

* Register Indirect Post-modified by 2

* Register Indirect Post-modified by 4

+ Register Indirect Post-modified by 6

+ Register Indirect with Register Offset (Indexed)

41.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above,
some instructions use literal constants of various sizes.
For example, BRA (branch) instructions use 16-bit
signed literals to specify the branch destination directly,
whereas the DIST instruction uses a 14-bit unsigned
literal field. In some instructions, such as ADD Acc, the
source of an operand or result is implied by the opcode
itself. Certain operations, such as NOP, do not have any
operands.

4.2 Modulo Addressing

Modulo addressing is a method of providing an auto-
mated means to support circular data buffers using
hardware. The objective is to remove the need for soft-
ware to perform data address boundary checks when
executing tightly looped code, as is typical in many
DSP algorithms.

Modulo addressing can operate in either data or pro-
gram space (since the data pointer mechanism is essen-
tially the same for both). One circular buffer can be
supported in each of the X (which also provides the
pointers into Program space) and Y data spaces. Mod-
ulo addressing can operate on any W register pointer.
However, it is not advisable to use W14 or W15 for Mod-
ulo addressing, since these two registers are used as
the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be
configured to operate in one direction, as there are cer-
tain restrictions on the buffer start address (for incre-
menting buffers) or end address (for decrementing
buffers) based upon the direction of the buffer.

The only exception to the usage restrictions is for buff-
ers which have a power-of-2 length. As these buffers
satisfy the start and end address criteria, they may
operate in a Bi-directional mode, (i.e., address bound-
ary checks will be performed on both the lower and
upper address boundaries).

DS70119D-page 32

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

4.2.1 START AND END ADDRESS

The Modulo addressing scheme requires that a
starting and an end address be specified and loaded
into the 16-bit modulo buffer address registers:
XMODSRT, XMODEND, YMODSRT and YMODEND
(see Table 3-3)..

Note: Y-space modulo addressing EA calcula-
tions assume word-sized data (LS bit of
every EA is always clear).

The length of a circular buffer is not directly specified. It
is determined by the difference between the corre-
sponding start and end addresses. The maximum pos-
sible length of the circular buffer is 32K words
(64 Kbytes).

422 W ADDRESS REGISTER
SELECTION

The Modulo and Bit-Reversed Addressing Control reg-
ister MODCON<15:0> contains enable flags as well as
a W register field to specify the W address registers.
The XWM and YWM fields select which registers will
operate with modulo addressing. If XWM = 15, X RAGU
and X WAGU modulo addressing are disabled. Simi-
larly, if YWM = 15, Y AGU modulo addressing is
disabled.

The X Address Space Pointer W register (XWM) to
which modulo addressing is to be applied, is stored in
MODCON<3:0> (see Table 3-3). Modulo addressing is
enabled for X data space when XWM is set to any value
other than 15 and the XMODEN bit is set at
MODCON<15>.

The Y Address Space Pointer W register (YWM) to
which modulo addressing is to be applied, is stored in
MODCON<7:4>. Modulo addressing is enabled for Y
data space when YWM is set to any value other than 15
and the YMODEN bit is set at MODCON<14>.

FIGURE 4-1: MODULO ADDRESSING OPERATION EXAMPLE

Byte

Address MOV #0x1100, WO
MOV WO, XMODSRT ;set modulo start address
MOV #0x1163,WO0
MOV WO, MODEND ;set modulo end address

0x1100 MOV #0x8001, WO

MOV WO, MODCON ;enable W1, X AGU for modulo
MOV #0x0000,WO ;WO holds buffer fill value
MOV #0x1110,W1 ;point W1l to buffer
DO AGAIN, #0x31 ;£i11 the 50 buffer locations
MOV WO, [W1l++] ;£111 the next location

0x1163 \

Start Addr = 0x1100
End Addr = 0x1163
Length = 0x0032 words

AGAIN: INC WO, WO ;increment the fill value

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 33

dsPIC30F6010

423 MODULO ADDRESSING

APPLICABILITY

Modulo addressing can be applied to the effective
address (EA) calculation associated with any W regis-
ter. It is important to realize that the address bound-
aries check for addresses less than or greater than the
upper (for incrementing buffers) and lower (for decre-
menting buffers) boundary addresses (not just equal
to). Address changes may, therefore, jump beyond
boundaries and still be adjusted correctly.

Note:

The modulo corrected effective address is
written back to the register only when Pre-
Modify or Post-Modify Addressing mode is
used to compute the Effective Address.
When an address offset (e.g., [W7+W2]) is
used, modulo address correction is per-
formed, but the contents of the register
remains unchanged.

4.3

Bit-Reversed addressing is intended to simplify data re-
ordering for radix-2 FFT algorithms. It is supported by
the X AGU for data writes only.

The modifier, which may be a constant value or register
contents, is regarded as having its bit order reversed.
The address source and destination are kept in normal
order. Thus, the only operand requiring reversal is the
modifier.

Bit-Reversed Addressing

4.3.1 BIT-REVERSED ADDRESSING

IMPLEMENTATION
Bit-Reversed addressing is enabled when:

1. BWM (W register selection) in the MODCON

register is any value other than 15 (the stack can

not be accessed using bit-reversed addressing)

and

the BREN bit is set in the XBREV register and

3. the addressing mode used is Register Indirect
with Pre-Increment or Post-Increment.

FIGURE 4-2:

If the length of a bit-reversed buffer is M = 2N bytes,
then the last ‘N’ bits of the data buffer start address
must be zeros.

XB<14:0> is the bit-reversed address modifier or ‘pivot
point’ which is typically a constant. In the case of an
FFT computation, its value is equal to half of the FFT
data buffer size.

Note:

All Bit-Reversed EA calculations assume
word sized data (LS bit of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)
addresses.

When enabled, bit-reversed addressing will only be
executed for register indirect with pre-increment or
post-increment addressing and word sized data writes.
It will not function for any other addressing mode or for
byte-sized data, and normal addresses will be gener-
ated instead. When bit-reversed addressing is active,
the W address pointer will always be added to the
address modifier (XB) and the offset associated with
the Register Indirect Addressing mode will be ignored.
In addition, as word sized data is a requirement, the LS
bit of the EA is ignored (and always clear).

Note:

Modulo addressing and bit-reversed
addressing should not be enabled
together. In the event that the user
attempts to do this, bit reversed address-
ing will assume priority when active for the
X WAGU, and X WAGU modulo address-
ing will be disabled. However, modulo
addressing will continue to function in the
X RAGU.

If bit-reversed addressing has already been enabled by
setting the BREN (XBREV<15>) bit, then a write to the
XBREV register should not be immediately followed by
an indirect read operation using the W register that has
been designated as the bit-reversed pointer.

BIT-REVERSED ADDRESS EXAMPLE

Sequential Address

b15 b13|b12 [b11 |b10| b9 | b8 | b7 b5

b14

b6

b4

b3

b2 |b1| O

Bit Locations Swapped Left-to-Right
Y Around Center of Binary Value

b15|b14|b13|b12 [b11{b10| b9 | b8 | b7| b6 | b5

b1

b2

b3|b4| O

T

Pivot Point

Bit-Reversed Address

XB = 0x0008 for a 16-word Bit-Reversed Buffer

DS70119D-page 34

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

TABLE 4-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)
Normal Address Bit-Reversed Address
A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 8
0 0 1 0 2 0 1 0 0 4
0 0 1 1 3 1 1 0 0 12
0 1 0 0 4 0 0 1 0 2
0 1 0 1 5 1 0 1 0 10
0 1 1 0 6 0 1 1 0 6
0 1 1 1 7 1 1 1 0 14
1 0 0 0 8 0 0 0 1 1
1 0 0 1 9 1 0 0 1 9
1 0 1 0 10 0 1 0 1 5
1 0 1 1 11 1 1 0 1 13
1 1 0 0 12 0 0 1 1 3
1 1 0 1 13 1 0 1 1 11
1 1 1 0 14 0 1 1 1 7
1 1 1 1 15 1 1 1 1 15
TABLE 4-3: BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER
Buffer Size (Words) XB<14:0> Bit-Reversed Address Modifier Value
4096 0x0800
2048 0x0400
1024 0x0200
512 0x0100
256 0x0080
128 0x0040
64 0x0020
32 0x0010
16 0x0008
8 0x0004
4 0x0002
2 0x0001

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 35

dsPIC30F6010

NOTES:

DS70119D-page 36 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

5.0 INTERRUPTS

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsP/C30F

Programmer’s Reference Manual (DS70030).

The dsPIC30F6010 has 44 interrupt sources and 4
processor exceptions (traps), which must be arbitrated
based on a priority scheme.

The CPU is responsible for reading the Interrupt Vec-
tor Table (IVT) and transferring the address contained
in the interrupt vector to the program counter. The
interrupt vector is transferred from the program data
bus into the program counter, via a 24-bit wide
multiplexer on the input of the program counter.

The Interrupt Vector Table (IVT) and Alternate Inter-
rupt Vector Table (AIVT) are placed near the beginning
of program memory (0x000004). The IVT and AIVT
are shown in Figure 5-1.

The interrupt controller is responsible for pre-
processing the interrupts and processor exceptions,
prior to their being presented to the processor core.
The peripheral interrupts and traps are enabled, priori-
tized and controlled using centralized special function
registers:

* IFS0<15:0>, IFS1<15:0>, IFS2<15:0>
All interrupt request flags are maintained in these
three registers. The flags are set by their respec-
tive peripherals or external signals, and they are
cleared via software.

+ IEC0<15:0>, IEC1<15:0>, IEC2<15:0>
All Interrupt Enable Control bits are maintained in
these three registers. These control bits are used
to individually enable interrupts from the
peripherals or external signals.

+ IPC0<15:0>... IPC11<7:0>
The user assignable priority level associated with
each of these 44 interrupts is held centrally in
these twelve registers.

* |PL<3:0> The current CPU priority level is explic-
itly stored in the IPL bits. IPL<3> is present in the
CORCON register, whereas IPL<2:0> are present
in the status register (SR) in the processor core.

* INTCON1<15:0>, INTCON2<15:0>
Global interrupt control functions are derived from
these two registers. INTCON1 contains the con-
trol and status flags for the processor exceptions.
The INTCONB2 register controls the external inter-
rupt request signal behavior and the use of the
alternate vector table.

Note: Interrupt Flag bits get set when an inter-
rupt condition occurs, regardless of the
state of its corresponding Enable bit. User
software should ensure the appropriate
Interrupt Flag bits are clear prior to
enabling an interrupt.

All interrupt sources can be user assigned to one of
seven priority levels, 1 through 7, via the IPCx
registers. Each interrupt source is associated with an
interrupt vector, as shown in Table 5-1. Levels 7 and 1
represent the highest and lowest maskable priorities,
respectively.

Note: Assigning a priority level of O to an inter-
rupt source is equivalent to disabling that
interrupt.

If the NSTDIS bit (INTCON1<15>) is set, nesting of
interrupts is prevented. Thus, if an interrupt is currently
being serviced, processing of a new interrupt is pre-
vented, even if the new interrupt is of higher priority
than the one currently being serviced.

Note: The IPL bits become read-only whenever
the NSTDIS bit has been set to ‘1’.

Certain interrupts have specialized control bits for
features like edge or level triggered interrupts, inter-
rupt-on-change, etc. Control of these features remains
within the peripheral module which generates the
interrupt.

The DISI instruction can be used to disable the
processing of interrupts of priorities 6 and lower for a
certain number of instructions, during which the DISI bit
(INTCON2<14>) remains set.

When an interrupt is serviced, the PC is loaded with the
address stored in the vector location in Program Mem-
ory that corresponds to the interrupt. There are 63 dif-
ferent vectors within the IVT (refer to Figure 5-2). These
vectors are contained in locations 0x000004 through
0x0000FE of program memory (refer to Figure 5-2).
These locations contain 24-bit addresses, and in order
to preserve robustness, an address error trap will take
place should the PC attempt to fetch any of these
words during normal execution. This prevents execu-
tion of random data as a result of accidentally decre-
menting a PC into vector space, accidentally mapping
a data space address into vector space, or the PC roll-
ing over to 0x000000 after reaching the end of imple-
mented program memory space. Execution of a GOTO
instruction to this vector space will also generate an
address error trap.

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 37

dsPIC30F6010

5.1 Interrupt Priority

The user assignable Interrupt Priority (IP<2:0>) bits for
each individual interrupt source are located in the LS 3-
bits of each nibble, within the IPCx register(s). Bit 3 of
each nibble is not used and is read as a ‘0’. These bits
define the priority level assigned to a particular interrupt
by the user.

Note: The user selectable priority levels start at
0, as the lowest priority, and level 7, as the
highest priority.

Since more than one interrupt request source may be
assigned to a specific user specified priority level, a
means is provided to assign priority within a given level.
This method is called “Natural Order Priority”.

Natural Order Priority is determined by the position of
an interrupt in the vector table, and only affects
interrupt operation when multiple interrupts with the
same user-assigned priority become pending at the
same time.

Table 5-1 lists the interrupt numbers and interrupt
sources for the dsPIC devices and their associated
vector numbers.

Note 1: The natural order priority scheme has 0
as the highest priority and 53 as the
lowest priority.

2: The natural order priority number is the
same as the INT number.

The ability for the user to assign every interrupt to one
of seven priority levels implies that the user can assign
a very high overall priority level to an interrupt with a
low natural order priority. For example, the PLVD (Low
Voltage Detect) can be given a priority of 7. The INTO
(external interrupt 0) may be assigned to priority level
1, thus giving it a very low effective priority.

TABLE 5-1: INTERRUPT VECTOR TABLE
INT Vector Interrupt Source
Number | Number
Highest Natural Order Priority

0 8 INTO - External Interrupt O

1 9 IC1 - Input Capture 1

2 10 OC1 - Output Compare 1

3 11 T1 - Timer 1

4 12 IC2 - Input Capture 2

5 13 OC2 - Output Compare 2

6 14 T2 - Timer 2

7 15 T3 - Timer 3

8 16 SPI1

9 17 U1RX - UART1 Receiver
10 18 U1TX - UART1 Transmitter
11 19 ADC - ADC Convert Done
12 20 NVM - NVM Write Complete
13 21 SI2C - I2C Slave Interrupt
14 22 |MI2C - I°C Master Interrupt
15 23 Input Change Interrupt

16 24 INT1 - External Interrupt 1
17 25 IC7 - Input Capture 7

18 26 IC8 - Input Capture 8

19 27 OC3 - Output Compare 3
20 28 OC4 - Output Compare 4
21 29 T4 - Timer 4

22 30 T5 - Timer 5

23 31 INT2 - External Interrupt 2
24 32 U2RX - UART2 Receiver
25 33 U2TX - UART2 Transmitter
26 34 SPI2

27 35 C1 - Combined IRQ for CAN1
28 36 IC3 - Input Capture 3

29 37 IC4 - Input Capture 4

30 38 IC5 - Input Capture 5

31 39 IC6 - Input Capture 6

32 40 OCS5 - Output Compare 5
33 41 OC6 - Output Compare 6
34 42 OC7 - Output Compare 7
35 43 OC8 - Output Compare 8
36 44 INT3 - External Interrupt 3
37 45 INT4 - External Interrupt 4
38 46 C2 - Combined IRQ for CAN2
39 47 PWM - PWM Period Match
40 48 QEI - QEI Interrupt

41 49 Reserved

42 50 LVD - Low Voltage Detect
43 51 FLTA - PWM Fault A

44 52 FLTB - PWM Fault B

45-53 53-61 |Reserved

Lowest Natural Order Priority

DS70119D-page 38

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

5.2 Reset Sequence

A Reset is not a true exception, because the interrupt
controller is not involved in the Reset process. The pro-
cessor initializes its registers in response to a Reset,
which forces the PC to zero. The processor then begins
program execution at location 0x000000. A GOTO
instruction is stored in the first program memory loca-
tion, immediately followed by the address target for the
GOTO instruction. The processor executes the GOTO to
the specified address and then begins operation at the
specified target (start) address.

5.21 RESET SOURCES

There are 6 sources of error which will cause a device
reset.

* Watchdog Time-out:
The watchdog has timed out, indicating that the
processor is no longer executing the correct flow
of code.

* Uninitialized W Register Trap:
An attempt to use an uninitialized W register as
an address pointer will cause a Reset.

* lllegal Instruction Trap:
Attempted execution of any unused opcodes will
result in an illegal instruction trap. Note that a
fetch of an illegal instruction does not result in an
illegal instruction trap if that instruction is flushed
prior to execution due to a flow change.

» Brown-out Reset (BOR):
A momentary dip in the power supply to the
device has been detected, which may result in
malfunction.

* Trap Lockout:
Occurrence of multiple Trap conditions simulta-
neously will cause a Reset.

5.3 Traps

Traps can be considered as non-maskable interrupts
indicating a software or hardware error, which adhere
to a predefined priority as shown in Figure 5-1. They
are intended to provide the user a means to correct
erroneous operation during debug and when operating
within the application.

Note: If the user does not intend to take correc-
tive action in the event of a trap error
condition, these vectors must be loaded
with the address of a default handler that
simply contains the RESET instruction. If,
on the other hand, one of the vectors
containing an invalid address is called, an

address error trap is generated.

Note that many of these trap conditions can only be
detected when they occur. Consequently, the question-
able instruction is allowed to complete prior to trap
exception processing. If the user chooses to recover
from the error, the result of the erroneous action that
caused the trap may have to be corrected.

There are 8 fixed priority levels for traps: Level 8
through Level 15, which implies that the IPL3 is always
set during processing of a trap.

If the user is not currently executing a trap, and he sets
the IPL<3:0> bits to a value of ‘0111’ (Level 7), then all
interrupts are disabled, but traps can still be processed.

5.3.1 TRAP SOURCES

The following traps are provided with increasing prior-
ity. However, since all traps can be nested, priority has
little effect.

Math Error Trap:

The Math Error trap executes under the following three
circumstances:

1. Should an attempt be made to divide by zero,
the divide operation will be aborted on a cycle
boundary and the trap taken.

2. If enabled, a Math Error trap will be taken when
an arithmetic operation on either accumulator A
or B causes an overflow from bit 31 and the
Accumulator Guard bits are not utilized.

3. If enabled, a Math Error trap will be taken when
an arithmetic operation on either accumulator A
or B causes a catastrophic overflow from bit 39
and all saturation is disabled.

4. If the shift amount specified in a shift instruction

is greater than the maximum allowed shift
amount, a trap will occur.

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 39

dsPIC30F6010

Address Error Trap:

This trap is initiated when any of the following

circumstances occurs:

1. A misaligned data word access is attempted.

2. A data fetch from our unimplemented data
memory location is attempted.

3. A data access of an unimplemented program
memory location is attempted.

4. An instruction fetch from vector space is
attempted.

Note: In the MAC class of instructions, wherein
the data space is split into X and Y data
space, unimplemented X space includes
all of Y space, and unimplemented Y
space includes all of X space.

5. Execution of a “BRA #1literal” instruction or a
“GOTO #1literal” instruction, where literal
is an unimplemented program memory address.

6. Executing instructions after modifying the PC to
point to unimplemented program memory
addresses. The PC may be modified by loading
a value into the stack and executing a RETURN
instruction.

Stack Error Trap:

This trap is initiated under the following conditions:

1. The stack pointer is loaded with a value which is
greater than the (user programmable) limit value
written into the SPLIM register (stack overflow).

2. The stack pointer is loaded with a value which is
less than 0x0800 (simple stack underflow).

Oscillator Fail Trap:

This trap is initiated if the external oscillator fails and
operation becomes reliant on an internal RC backup.

5.3.2 HARD AND SOFT TRAPS

It is possible that multiple traps can become active
within the same cycle (e.g., a misaligned word stack
write to an overflowed address). In such a case, the
fixed priority shown in Figure 5-2 is implemented,
which may require the user to check if other traps are
pending, in order to completely correct the fault.

‘Soft’ traps include exceptions of priority level 8 through
level 11, inclusive. The arithmetic error trap (level 11)
falls into this category of traps.

‘Hard’ traps include exceptions of priority level 12
through level 15, inclusive. The address error (level
12), stack error (level 13) and oscillator error (level 14)
traps fall into this category.

Each hard trap that occurs must be acknowledged
before code execution of any type may continue. If a
lower priority hard trap occurs while a higher priority
trap is pending, acknowledged, or is being processed,
a hard trap conflict will occur.

The device is automatically Reset in a hard trap conflict
condition. The TRAPR status bit (RCON<15>) is set
when the Reset occurs, so that the condition may be
detected in software.

FIGURE 5-1: TRAP VECTORS
Reset - GOTO Instruction 0x000000
Reset - GOTO Address 0x000002
_A Reserved 0x000004
| Oscillator Fail Trap Vector

Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector

VT Reserved Vector

Reserved Vector

Reserved Vector

| Interrupt 0 Vector 0x000014

Interrupt 1 Vector

Decreasing
Priority

V Interrupt 52 Vector
v Interrupt 53 Vector 0x00007E
Reserved 0x000080
eserved 0x000082
A | Reserved 0x000084
Oscillator Fail Trap Vector

Stack Error Trap Vector

Address Error Trap Vector
Math Error Trap Vector

AIVT Reserved Vector
Reserved Vector
Reserved Vector
Interrupt 0 Vector 0x000094
Interrupt 1 Vector

v Interrupt 52 Vector
Interrupt 53 Vector 0x0000FE

DS70119D-page 40

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

5.4 Interrupt Sequence

All interrupt event flags are sampled in the beginning of
each instruction cycle by the IFSx registers. A pending
interrupt request (IRQ) is indicated by the flag bit being
equal to a ‘1’ in an IFSx register. The IRQ will cause an
interrupt to occur if the corresponding bit in the interrupt
enable (IECx) register is set. For the remainder of the
instruction cycle, the priorities of all pending interrupt
requests are evaluated.

If there is a pending IRQ with a priority level greater
than the current processor priority level in the IPL bits,
the processor will be interrupted.

The processor then stacks the current program counter
and the low byte of the processor status register (SRL),
as shown in Figure 5-2. The low byte of the status reg-
ister contains the processor priority level at the time,
prior to the beginning of the interrupt cycle. The proces-
sor then loads the priority level for this interrupt into the
status register. This action will disable all lower priority
interrupts until the completion of the Interrupt Service
Routine.

FIGURE 5-2: INTERRUPT STACK
FRAME
0x0000 15 0

PC<15:0>
SRL IPL3| PC<22:16
<Free Word> |<«— W15 (after CALL)

<<—\\/15 (before CALL)

Stack Grows Towards
Higher Address

-
|

POP : [--W15]
PUSH : [W15++]

Note 1: The user can always lower the priority level
by writing a new value into SR. The Interrupt
Service Routine must clear the interrupt flag
bits in the IFSx register before lowering the
processor interrupt priority, in order to avoid
recursive interrupts.

2: The IPL3 bit (CORCON<3>) is always clear
when interrupts are being processed. It is
set only during execution of traps.

The RETFIE (Return from Interrupt) instruction will
unstack the program counter and status registers to
return the processor to its state prior to the interrupt
sequence.

5.5 Alternate Vector Table

In Program Memory, the Interrupt Vector Table (IVT) is
followed by the Alternate Interrupt Vector Table (AIVT),
as shown in Figure 5-1. Access to the Alternate Vector
Table is provided by the ALTIVT bit in the INTCON2
register. If the ALTIVT bit is set, all interrupt and excep-
tion processes will use the alternate vectors instead of
the default vectors. The alternate vectors are organized
in the same manner as the default vectors. The AIVT
supports emulation and debugging efforts by providing
a means to switch between an application and a sup-
port environment, without requiring the interrupt vec-
tors to be reprogrammed. This feature also enables
switching between applications for evaluation of
different software algorithms at run time.

If the AIVT is not required, the program memory allo-
cated to the AIVT may be used for other purposes.
AIVT is not a protected section and may be freely
programmed by the user.

5.6 Fast Context Saving

A context saving option is available using shadow reg-
isters. Shadow registers are provided for the DC, N,
QV, Z and C bits in SR, and the registers WO through
Wa3. The shadows are only one level deep. The shadow
registers are accessible using the PUSH. S and POP. S
instructions only.

When the processor vectors to an interrupt, the
PUSH. S instruction can be used to store the current
value of the aforementioned registers into their
respective shadow registers.

If an ISR of a certain priority uses the PUSH.S and
POP.S instructions for fast context saving, then a
higher priority ISR should not include the same instruc-
tions. Users must save the key registers in software
during a lower priority interrupt, if the higher priority ISR
uses fast context saving.

5.7 External Interrupt Requests

The interrupt controller supports five external interrupt
request signals, INTO-INT4. These inputs are edge
sensitive; they require a low-to-high or a high-to-low
transition to generate an interrupt request. The
INTCONZ2 register has five bits, INTOEP-INT4EP, that
select the polarity of the edge detection circuitry.

5.8 Wake-up from Sleep and Idle

The interrupt controller may be used to wake up the
processor from either Sleep or Idle modes, if Sleep or
Idle mode is active when the interrupt is generated.

If an enabled interrupt request of sufficient priority is
received by the interrupt controller, then the standard
interrupt request is presented to the processor. At the
same time, the processor will wake-up from Sleep or
Idle and begin execution of the Interrupt Service
Routine (ISR) needed to process the interrupt request.

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 41

dsPIC30F6010

'spjel})1q Je)siBal Jo suonduosep 1o} (9¥00.SQ) [BNUEN eousiejey Ajie- H0EI4SP O} 1ajeY :9joN

uq paziepiuun = :pusben

00TO 0000 0000 0000 <0'z>dIg14 = = = = = = _ = _ = = = _ = _ = — |vvoo LLOdI
00TO0 0000 00TO 00TO <0:2>dII30 — — — — — <0:Z2>dIan1 — <0:Z2>dIv1iid — 8v00 0L0dI
00TO0 00TO 00TO 00TO <0:¢>dI€LNI — <0:2>dILyLNI — <0:2>dI2O — <0:Z>dINMd — 9v00 60dI
00TO 00TO 00TO 00TO <0:¢>dISO0 — <0:¢>dI900 — <0:¢>dILD0 — <0:¢>dI800 — V00 80dl
00TO 00TO OOTO 00TO <0:2>dIgDl — <0:¢>dI¥Ql - <0:¢>dISOl - <0:2>dI99lI - Zvo0 20dl
00TO 00TO OO0TO 00TO <0:¢>dIXden — <0:Zg>dIXlen — <0:¢>dI2ldS — <0:2>dIlLO - 0v00 90dI
00TO0 00TO 00TO 00TO <0:¢>dI¥00 — <0:¢>dlIvL — <0:2>dISL — <0:Z>dIZLNI — 3600 Sodl
00TO0 00TO 00TO 00TO <0:¢>dILLNI — <0:2>dIL2l — <0:2>dI82l — <0:2>dI€D00 — 0600 ¥Odl
00TO 00TO 00TO 00TO <0:¢>dINAN - <0:¢>dIO¢IS - <0:¢>dIOZCIN - <0:¢>dIND - V600 €0dl
00TO 00TO OOTO 00TO <0:2>dILIdS — <0:¢>dIXdLn - <0:¢>dIXLiN - <0:¢>dIlav - 8600 20dl
00TO 00TO 0O0TO 00TO <0:¢>dI22l — <0:¢>dIc00 — <0:Z¢>dlcL — <0:¢>dlel — 9600 10dI
00TO0 00TO 00TO 00TO <0:¢>dI0LNI — <0:2>dILOl — <0:2>dILO0 — <0:¢>dlL L — 600 00dI
0000 0000 0000 0000| 3ISOO 31900 31,00 31800 JIELNI JIPINI| 3120 | JIINMG | 3NIFD0 — 3IAAT | JIviad | 3191004 — — — 0600 [4oE ||
0000 0000 0000 0000| JILLNI E[Vae]] 3182l 31€00 Elize]e} EliA8 JIGL | JIZLNI | JIX"en | JiIXLen | 3i2lds Ell%e} El%e]] Ellze]] 3160l 31901 | 3800 103l
0000 0000 0000 0000(| 3IOLNI El]%e]] 31100 L 3122l 31200 | 3Jlcl JIEL JlLIdS | XN | JIXLiN | JIAVY | JINAN | JI02IS | FIOCIN | JIND [D800 003l
0000 0000 0000 0000| dISOO 41900 41200 41800 dIELNI dI7INI| 4120 | dIANMd | 41130 - d1AaAT | dIvLld | digld — - — 8800 ¢S4l
0000 0000 0000 0000 4dILLNI 41201 Ellse]] 41€00 dI¥00 divl dISL | JIZLNI | dIX¥2n | dIX1Zn | dI2IdS Ell%e] Ell%e]] Elize]l Elle]] 41921 | 9800 LS4l
0000 0000 0000 0000| dIOLNI El1%e] 41100 dilL E|lze] 41200 | 4digL digL diLidS | dIXYLN | dIXLiN | dIdV | JINAN | J102IS | JI10ZIN | dIND | #800 0S4l
0000 0000 0000 0000| A30LNI | A3LLINI | d3ZLNI d3ELNI d3avLINI — - - — - - - - - - IAILTY | 2800 | ZNODLNI
0000 0000 0000 0000 — TIVA0SO0 | Hd3IMLS | 9H3HAAV | dY3IHLVIN — - - 31A0D | 319A0 | ALVAO - — - - SIALSN| 0800 [LNOOJLNI

91e]S 18S9y oug Tud cud eug v ug sugd 9ug g g ud 619 ot ug TTug | ¢ctug | €TUg | YTUG | STUG | dAV mwrﬂ_mwz

dVIN H31SI1934 H3TTOHLNOD LdNHHILNI ¢-6 319vl

© 2004 Microchip Technology Inc.

iminary

Prel

DS70119D-page 42

dsPIC30F6010

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsP/C30F

Programmer’s Reference Manual (DS70030).

The dsPIC30F family of devices contains internal
program Flash memory for executing user code. There
are two methods by which the user can program this
memory:

1. In-Circuit Serial Programming™ (ICSP™)
2. Run Time Self-Programming (RTSP)

6.1 In-Circuit Serial Programming
(ICSP)

dsPIC30F devices can be serially programmed while in
the end application circuit. This is simply done with two
lines for Programming Clock and Programming Data
(which are named PGC and PGD respectively), and
three other lines for Power (VDD), Ground (Vss) and
Master Clear (MCLR). this allows customers to manu-
facture boards with unprogrammed devices, and then
program the microcontroller just before shipping the
product. This also allows the most recent firmware or a
custom firmware to be programmed.

6.2 Run Time Self-Programming
(RTSP)

RTSP is accomplished using TBLRD (table read) and
TBLWT (table write) instructions.

With RTSP, the user may erase program memory, 32
instructions (96 bytes) at a time and can write program
memory data, 32 instructions (96 bytes) at a time.

6.3 Table Instruction Operation Summary

The TBLRDL and the TBLWTL instructions are used to
read or write to bits <15:0> of program memory.
TBLRDL and TBLWTL can access program memory in
Word or Byte mode.

The TBLRDH and TBLWTH instructions are used to read
or write to bits<23:16> of program memory. TBRLRDH
and TBLWTH can access program memory in Word or
Byte mode.

A 24-bit program memory address is formed using
bits<7:0> of the TBLPAG register and the effective
address (EA) from a W register specified in the table
instruction, as shown in Figure 6-1.

FIGURE 6-1: ADDRESSING FOR TABLE AND NVM REGISTERS
o 24 bits b
Using VT N
Program | 0 | Program Counter [0]
Counter
| Il
| ||
| NVMADR Reg EA []
Using |
NVMADR 1/0 | NVMADRU Reg |
Addressing U - |=|
| | 8bits | 16 bits ||
o , |
| | | Working Reg EA |
. |
Using
1
Table /0 | TBLPAG Reg | |
Instruction | | 8 bits | 16 bits I
L 1ol
¢ Byte
User/Configuration Select
Space Select 24-bit EA

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 43

dsPIC30F6010

6.4 RTSP Operation

The dsPIC30F Flash program memory is organized
into rows and panels. Each row consists of 32 instruc-
tions, or 96 bytes. Each panel consists of 128 rows, or
4K x 24 instructions. RTSP allows the user to erase one
row (32 instructions) at a time and to program 32
instructions at one time.

Each panel of program memory contains write latches
that hold 32 instructions of programming data. Prior to
the actual programming operation, the write data must
be loaded into the panel write latches. The data to be
programmed into the panel is loaded in sequential
order into the write latches; instruction 0, instruction 1,
etc. The addresses loaded must always be from an
even group of 32 boundary.

The basic sequence for RTSP programming is to set up
a table pointer, then do a series of TBLWT instructions
to load the write latches. Programming is performed by
setting the special bits in the NVMCON register. 32
TBLWTL and 32 TBLWTH instructions are required to
load the 32 instructions.

All of the table write operations are single word writes
(2 instruction cycles), because only the table latches
are written.

Atfter the latches are written, a programming operation
needs to be initiated to program the data.

The Flash Program Memory is readable, writable and
erasable during normal operation over the entire VDD
range.

6.5 RTSP Control Registers

The four SFRs used to read and write the program
Flash memory are:

+ NVMCON

+ NVMADR

+ NVMADRU

+ NVMKEY

6.5.1 NVMCON REGISTER

The NVMCON register controls which blocks are to be
erased, which memory type is to be programmed, and
start of the programming cycle.

6.5.2 NVMADR REGISTER

The NVMADR register is used to hold the lower two
bytes of the effective address. The NVMADR register
captures the EA<15:0> of the last table instruction that
has been executed and selects the row to write.

6.5.3 NVMADRU REGISTER

The NVMADRU register is used to hold the upper byte
of the effective address. The NVMADRU register cap-
tures the EA<23:16> of the last table instruction that
has been executed.

6.5.4 NVMKEY REGISTER

NVMKEY is a write-only register that is used for write
protection. To start a programming or an erase
sequence, the user must consecutively write 0x55 and
0xAA to the NVMKEY register. Refer to Section 6.6 for
further details.

Note: The user can also directly write to the
NVMADR and NVMADRU registers to
specify a program memory address for
erasing or programming.

DS70119D-page 44

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

6.6

Programming Operations

A complete programming sequence is necessary for
programming or erasing the internal Flash in RTSP
mode. A programming operation is nominally 2 msec in
duration and the processor stalls (waits) until the oper-
ation is finished. Setting the WR bit (NVMCON<15>)
starts the operation, and the WR bit is automatically
cleared when the operation is finished.

6.6.1 PROGRAMMING ALGORITHM FOR

PROGRAM FLASH

The user can erase or program one row of program
Flash memory at a time. The general process is:

1. Read one row of program Flash (32 instruction
words) and store into data RAM as a data
“‘image”.

2. Update the data image with the desired new
data.

3. Erase program Flash row.

4. Write 32 instruction words of data from data

RAM “image” into the program Flash write

latches.

5. Program 32 instruction words into program
Flash.
a) Setup NVMCON register for multi-word,

program Flash, program, and set WREN
bit.

b) Write ‘55’ to NVMKEY.

c) Write ‘AA to NVMKEY.

d) Set the WR bit. This will begin program
cycle.

e) CPU will stall for duration of the program
cycle.

f) The WR bit is cleared by the hardware
when program cycle ends.

6. Repeat steps 1 through 5 as needed to program
desired amount of program Flash memory.

6.6.2 ERASING A ROW OF PROGRAM

MEMORY

Example 6-1 shows a code sequence that can be used

to erase a row (32 instructions) of program memory.

Initialize PM Page Boundary SFR
Intialize in-page EA[15:0] pointer
Intialize NVMADR SFR

Block all interrupts with priority <7
for next 5 instructions

Start the erase sequence
Insert two NOPs after the erase
command is asserted

a) Setup NVMCON register for multi-word,
program Flash, erase, and set WREN bit.
b) Write address of row to be erased into
NVMADRU/NVMDR.
c) Write ‘55" to NVMKEY.
d) Write ‘AA’ to NVMKEY.
e) Setthe WR bit. This will begin erase cycle.
f) CPU will stall for the duration of the erase
cycle.
g) The WR bit is cleared when erase cycle
ends.
EXAMPLE 6-1: ERASING A ROW OF PROGRAM MEMORY
; Setup NVMCON for erase operation, multi word write
; program memory selected, and writes enabled
MOV #0x4041,W0 ;
MOV WO NVMCON ; Init NVMCON SFR
; Init pointer to row to be ERASED
MOV #tblpage (PROG_ADDR) , WO ;
MOV WO NVMADRU ;
MOV #tbloffset (PROG_ADDR) , WO ;
MOV WO, NVMADR ;
DISI #5 H
MOV #0x55, WO
MOV W0 NVMKEY ; Write the 0x55 key
MOV #0xAA, W1 H
MOV W1l NVMKEY ; Write the 0xAA key
BSET NVMCON,, #WR ;
NOP ;
NOP i

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 45

dsPIC30F6010

6.6.3 LOADING WRITE LATCHES

Example 6-2 shows a sequence of instructions that
can be used to load the 96 bytes of write latches. 32
TBLWTL and 32 TBLWTH instructions are needed to
load the write latches selected by the table pointer.

EXAMPLE 6-2: LOADING WRITE LATCHES

MOV #0x0000, WO
MOV WO TBLPAG
MOV #0x6000,WO0

; 0th program word
MOV #LOW_WORD_0, W2
MOV #HIGH_BYTE_0, W3
TBLWTL W2 [WO]
TBLWTH W3'[WO++]

; lst_program word
MOV #LOW_WORD_1, W2
MOV #HIGH BYTE 1,W3
TBLWTL W2 [WO]
TBLWTH W3I[WO++]

; 2nd_program_word
MOV #LOW_WORD_2, W2
MOV #HIGH_BYTE 2,W3
TBLWTL W2, [wWo]
TBLWTH W3, [WO++]

; 31lst_program word
MOV #LOW_WORD_31, W2
MOV #HIGH_BYTE_31,W3
TBLWTL W2 [WO]
TBLWTH W3 K [W0++]

; program memory selected, and writes enabled

7

; Initialize PM Page Boundary SFR
; An example program memory address
; Perform the TBLWT instructions to write the latches

; Write
; Write

; Write
; Write

; Write

; Write

; Write
; Write

; Set up a pointer to the first program memory location to be written

PM
PM

PM
PM

PM

PM

PM
PM

Note: In Example 6-2, the contents of the upper byte of W3 has no effect.

low word into program latch
high byte into program latch

low word into program latch
high byte into program latch

low word into program latch

high byte into program latch

low word into program latch
high byte into program latch

6.6.4 INITIATING THE PROGRAMMING
SEQUENCE

For protection, the write initiate sequence for NVMKEY
must be used to allow any erase or program operation
to proceed. After the programming command has been
executed, the user must wait for the programming time
until programming is complete. The two instructions
following the start of the programming sequence
should be NOPs.

EXAMPLE 6-3: INITIATING A PROGRAMMING SEQUENCE
DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions
MOV #0x55,W0
MOV WO’NVMKEY ; Write the 0x55 key
MOV #O0XAA, W1 ;
MOV W1l NVMKEY ; Write the 0xAA key
BSET NVMCON, #WR ; Start the erase sequence
NOP ; Insert two NOPs after the erase
NOP ; command is asserted

DS70119D-page 46 Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

'spjol} 11q JaysiBal Jo suonduosap 1o} (9¥00.SQ) [enue sousiafey Ajiwe J0EOI4SP O} 1aJeY 930N

1g pezijeuiun = :pusben

0000 0000 0000 0000 <0:L>A3M - — - — - — - - 9910 ATINAN
nonn nonn 0000 0000 <9}:€¢>dAVINAN - - — - - - - - 9.0 NYAYNAN
nnnn nnnn nnnn nnnn <0:G1>4AVINAN 2910 HAVINAN
0000 0000 0000 0000 <0:9>d09O0yd — |lEML| — — — — dJdIEM NIIM dMW 0920 NOOJWAN

S13as3 v oug _ 1 yg _ cud _ eng _ v g _ sug _ 9ug Llyg (s¥ug | eug |olyg|Liyug |z g €l yg viyg Sl g “ppYvY aweN 3|4
dVIN 431SI193d NAN ‘l-9 319vl

DS70119D-page 47

iminary

Prel

© 2004 Microchip Technology Inc.

dsPIC30F6010

NOTES:

DS70119D-page 48 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

7.0 DATA EEPROM MEMORY

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046). For more information on the device
instruction set and programming, refer to the dsP/C30F
Programmer’s Reference Manual (DS70030).

The Data EEPROM Memory is readable and writable
during normal operation over the entire VDD range. The
data EEPROM memory is directly mapped in the
program memory address space.

The four SFRs used to read and write the program
Flash memory are used to access data EEPROM
memory, as well. As described in Section 4.0, these
registers are:

+ NVMCON
*+ NVMADR
+ NVMADRU
* NVMKEY

The EEPROM data memory allows read and write of
single words and 16-word blocks. When interfacing to
data memory, NVMADR, in conjunction with the
NVMADRU register, is used to address the EEPROM
location being accessed. TBLRDL and TBLWTL instruc-
tions are used to read and write data EEPROM. The
dsPIC30F6010 device has 8 Kbytes (4K words) of data
EEPROM, with an address range from 0x7FFO000 to
Ox7FFFFE.

A word write operation should be preceded by an erase
of the corresponding memory location(s). The write
typically requires 2 ms to complete, but the write time
will vary with voltage and temperature.

A program or erase operation on the data EEPROM
does not stop the instruction flow. The user is respon-
sible for waiting for the appropriate duration of time
before initiating another data EEPROM write/erase
operation. Attempting to read the data EEPROM while
a programming or erase operation is in progress results
in unspecified data.

Control bit WR initiates write operations, similar to pro-
gram Flash writes. This bit cannot be cleared, only set,
in software. This bit is cleared in hardware at the com-
pletion of the write operation. The inability to clear the
WR bit in software prevents the accidental or
premature termination of a write operation.

The WREN bit, when set, will allow a write operation.
On power-up, the WREN bit is clear. The WRERR bit is
set when a write operation is interrupted by a MCLR
Reset, or a WDT Time-out Reset, during normal oper-
ation. In these situations, following Reset, the user can
check the WRERR bit and rewrite the location. The
address register NVMADR remains unchanged.

Note: Interrupt flag bit NVMIF in the IFSO regis-
ter is set when write is complete. It must be

cleared in software.

71 Reading the Data EEPROM

A TBLRD instruction reads a word at the current pro-
gram word address. This example uses W0 as a
pointer to data EEPROM. The result is placed in
register W4, as shown in Example 7-1.

EXAMPLE 7-1: DATA EEPROM READ

MOV #LOW_ADDR_WORD,W0 ; Init Pointer
MOV #HIGH_ADDR_WORD, W1

MoV W1 TBLPAG

TBLRDL [WO], W4 ; read data EEPROM

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 49

dsPIC30F6010

7.2 Erasing Data EEPROM

7.21 ERASING A BLOCK OF DATA

EEPROM

In order to erase a block of data EEPROM, the
NVMADRU and NVMADR registers must initially
point to the block of memory to be erased. Configure
NVMCON for erasing a block of data EEPROM, and
set the ERASE and WREN bits in NVMCON register.
Setting the WR bit initiates the erase, as shown in

Example 7-2.
EXAMPLE 7-2: DATA EEPROM BLOCK ERASE
; Select data EEPROM block, ERASE, WREN bits
MOV #4045,W0
MOV WOINVMCON ; Initialize NVMCON SFR

7

Start erase cycle by setting WR after writing key sequence

DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions

MOV #0x55, W0 ;

MOV WO NVMKEY ; Write the 0x55 key

MOV H#OxXAA, W1 H

MOV W1 NVMKEY ; Write the 0xAA key

BSET NVMCON, #WR ; Initiate erase sequence

NOP

NOP

CPU is

; Erase cycle will complete in 2mS.
; User can poll WR bit, use NVMIF or Timer

not stalled for the Data Erase Cycle
IRQ to determine erasure complete

7.2.2

ERASING A WORD OF DATA

EEPROM

The NVMADRU and NVMADR registers must point to
the block. Select erase a block of data Flash, and set
the ERASE and WREN bits in NVMCON register.
Setting the WR bit initiates the erase, as shown in

Example 7-3.
EXAMPLE 7-3: DATA EEPROM WORD ERASE
; Select data EEPROM word, ERASE, WREN bits
MOV #4044 ,WO0
MOV WO NVMCON

; Start erase cycle by setting WR

; Erase cycle will complete in 2mS.
; User can poll WR bit,

after writing key sequence

DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions

MOV #0x55, W0 ;

MOV WO'NVMKEY ; Write the 0x55 key

MOV #OxXAA, W1 i

MOV WllNVMKEY ; Write the 0xAA key

BSET NVMCON, #WR ; Initiate erase sequence

NOP

NOP

CPU is not stalled for the Data Erase Cycle

use NVMIF or Timer IRQ to determine erasure complete

DS70119D-page 50

Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

7.3 Writing to the Data EEPROM

To write an EEPROM data location, the following
sequence must be followed:
1. Erase data EEPROM word.

a) Select word, data EEPROM, erase and set
WREN bit in NVMCON register.

b) Write address of word to be erased into
NVMADRU/NVMADR.

c) Enable NVM interrupt (optional).

d) Write ‘55’ to NVMKEY.

e) Write ‘AA’ to NVMKEY.

f) Setthe WR bit. This will begin erase cycle.

g) Either poll NVMIF bit or wait for NVMIF
interrupt.

h) The WR bitis cleared when the erase cycle
ends.
2. Write data word into data EEPROM write
latches.
3. Program 1 data word into data EEPROM.
a) Select word, data EEPROM, program, and
set WREN bit in NVMCON register.

The write will not initiate if the above sequence is not
exactly followed (write 0x55 to NVMKEY, write OxAA to
NVMCON, then set WR bit) for each word. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in NVMCON must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM, due to unexpected code exe-
cution. The WREN bit should be kept clear at all times,
except when updating the EEPROM. The WREN bit is
not cleared by hardware.

After a write sequence has been initiated, clearing the
WREN bit will not affect the current write cycle. The WR
bit will be inhibited from being set unless the WREN bit
is set. The WREN bit must be set on a previous instruc-
tion. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the Non-Volatile Memory
Write Complete Interrupt Flag bit (NVMIF) is set. The
user may either enable this interrupt, or poll this bit.
NVMIF must be cleared by software.

7.31 WRITING A WORD OF DATA
EEPROM

Once the user has erased the word to be programmed,
then a table write instruction is used to write one write
latch, as shown in Example 7-4.

b) Enable NVM write done interrupt (optional).
c) Write ‘55 to NVMKEY.
d) Write ‘AA’ to NVMKEY.
e) Set The WR bit. This will begin program
cycle.
f) Either poll NVMIF bit or wait for NVM
interrupt.
g) The WR bit is cleared when the write cycle
ends.
EXAMPLE 7-4: DATA EEPROM WORD WRITE
; Point to data memory
MOV #LOW_ADDR_WORD, WO
MOV #HIGH _ADDR_WORD, W1
MOV W1 TBLPAG
MOV #LOW (WORD) , W2
TBLWTL w2 [wWol

; Select data EEPROM for 1 word op
MOV #0x4004,WO0
MOV WO ’NVMCON

; Operate key to allow write operation

MOV #0x55, WO
MOV WO NVMKEY
MOV #OXAA, W1
MOV W1 NVMKEY
BSET NVMCON , #WR
NOP

NOP

; The NVMADR captures last table access address

DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions

; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete

; Init pointer

; Get data
; Write data

; Write the 0x55 key

; Write the OxAA key
; Initiate program sequence

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 51

dsPIC30F6010

7.3.2 WRITING A BLOCK OF DATA

EEPROM

To write a block of data EEPROM, write to all sixteen
latches first, then set the NVMCON register and
program the block.

EXAMPLE 7-5: DATA EEPROM BLOCK WRITE
MOV #LOW_ADDR_WORD, WO ; Init pointer
MOV #HIGH ADDR_WORD, W1
MOV leTBLPAG
MOV #datal, W2 ; Get 1st data
TBLWTL W2 [WOJ++ ; write data
MOV #data2, W2 ; Get 2nd data
TBLWTL W2 [WOl++ ; write data
MOV #data3, W2 ; Get 3rd data
TBLWTL W2 [WOJ ++ ; write data
MOV #data4d, W2 ; Get 4th data
TBLWTL W2 [WOJ ++ ; write data
MOV #data5, W2 ; Get 5th data
TBLWTL W2 [WOl++ ; write data
MOV #data6, W2 ; Get 6th data
TBLWTL W2 [WOJ++ ; write data
MOV #data7, W2 ; Get 7th data
TBLWTL W2 [WOJ ++ ; write data
MOV #data8, W2 ; Get 8th data
TBLWTL W2 [WOl++ ; write data
MOV #data9, W2 ; Get 9th data
TBLWTL W2 [WOJ++ ; write data
MOV #datal0, W2 ; Get 10th data
TBLWTL W2 [WOJ ++ ; write data
MOV #datall, W2 ; Get 11th data
TBLWTL W2 [WOJ ++ ; write data
MOV #datal2, W2 ; Get 12th data
TBLWTL W2 [WOJ++ ; write data
MOV #datal3, W2 ; Get 13th data
TBLWTL W2 [WOl++ ; write data
MOV #datald, W2 ; Get 1l4th data
TBLWTL W2 [WOJ ++ ; write data
MOV #datal5, W2 ; Get 15th data
TBLWTL W2 [WOJ ++ ; write data
MOV #datale, W2 ; Get 1e6th data
TBLWTL W2’[WO]++ ; write data. The NVMADR captures last table access address.
MOV #0x400A,WO0 ; Select data EEPROM for multi word op
MOV WO NVMCON ; Operate Key to allow program operation
DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions
MOV #0x55, W0
MOV WO NVMKEY ; Write the 0x55 key
MOV #OxXAA, WL
MOV leNV’MKEY ; Write the 0xAA key
BSET NVMCON, #WR ; Start write cycle
NOP
NOP

7.4 Write Verify

Depending on the application, good programming
practice may dictate that the value written to the mem-
ory should be verified against the original value. This
should be used in applications where excessive writes
can stress bits near the specification limit.

7.5 Protection Against Spurious Write

There are conditions when the device may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been built-in. On power-up, the WREN bit is cleared;
also, the Power-up Timer prevents EEPROM write.

The write initiate sequence and the WREN bit together,
help prevent an accidental write during brown-out,
power glitch or software malfunction.

DS70119D-page 52

Preliminary

© 2004 Microchip Technology Inc.

dsPIC30F6010

8.0 1/OPORTS

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046).

All of the device pins (except VDD, Vss, MCLR and
OSC1/CLKIN) are shared between the peripherals and
the parallel 1/O ports.

All 1/0O input ports feature Schmitt Trigger inputs for
improved noise immunity.

8.1 Parallel I/0 (PIO) Ports

When a peripheral is enabled and the peripheral is
actively driving an associated pin, the use of the pin as
a general purpose output pin is disabled. The I/O pin
may be read, but the output driver for the Parallel Port
bit will be disabled. If a peripheral is enabled, but the
peripheral is not actively driving a pin, that pin may be
driven by a port.

All port pins have three registers directly associated
with the operation of the port pin. The data direction
register (TRISx) determines whether the pin is an input
or an output. If the Data Direction bit is a ‘1’, then the
pin is an input. All port pins are defined as inputs after
a Reset. Reads from the latch (LATXx), read the latch.
Writes to the latch, write the latch (LATx). Reads from
the port (PORTX), read the port pins, and writes to the
port pins, write the latch (LATX).

Any bit and its associated data and control registers
that are not valid for a particular device will be
disabled. That means the corresponding LATx and
TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or func-
tion that is defined as an input only, it is nevertheless
regarded as a dedicated port because there is no
other competing source of outputs. An example is the
INT4 pin.

The format of the registers for PORTA are shown in
Table 8-1.

The TRISA (Data Direction Control) register controls
the direction of the RA<7:0> pins, as well as the INTx
pins and the VREF pins. The LATA register supplies
data to the outputs, and is readable/writable. Reading
the PORTA register yields the state of the input pins,
while writing the PORTA register modifies the contents
of the LATA register.

A parallel /O (PIO) port that shares a pin with a periph-
eral is, in general, subservient to the peripheral. The
peripheral’s output buffer data and control signals are
provided to a pair of multiplexers. The multiplexers
select whether the peripheral or the associated port
has ownership of the output data and control signals of
the I/0 pad cell. Figure 8-2 shows how ports are shared
with other peripherals, and the associated 1/0 cell (pad)
to which they are connected. Table 8-1 shows the
formats of the registers for the shared ports, PORTB
through PORTG.

FIGURE 8-1: BLOCK DIAGRAM OF A DEDICATED PORT STRUCTURE
Dedicated Port Module

re - - - — — — — — — — — l

| |

| Read TRIS |

1/0 Cell

| 2 | - — — — — 1
| TRIS Latch | I |
| Data Bus D Q || | |
|

| WR TRIS CKL B > :
| Data Latch 4 % |
| D Q [/0 Pad |
| WRLAT + || |
| WR Port CK™L | L— — — — 2
| j |

[

| Read LAT |

| < |

| Read Port |

Lo |

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 53

dsPIC30F6010

FIGURE 8-2: BLOCK DIAGRAM OF A SHARED PORT STRUCTURE

8.2 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the
operation of the A/D port pins. The port pins that are
desired as analog inputs must have their correspond-
ing TRIS bit set (input). If the TRIS bit is cleared
(output), the digital output level (VoH or VoL) will be
converted.

When reading the PORT register, all pins configured as
analog input channel

DS70119D-page 54 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

"Sp|ay uq Jarsifal Jo suonduosap 1oy (97002.SA) [enueyy eousiaey Ajied J0€DIdSp 0} 19)9Y :9}0N

)g pazienuiun = :pusaber]

0000 0000 0000 0000 | 0DLVT | LOLVT | 2OLV1 | €D1V — — 991V | /OLV1 | 891V | 691V — — — — — — 8320 o1V
0000 0000 0000 0000 09y 19Y [43):] €Oy — — 99y 19Y 89y 69Y — — — — — — 9320 9140d
TITT 00TT TTOO0 0000 |0OSIYL|LOSIHL|ZOSIYL|€OSIHL| — — |99SIYL | /OSIYL [8DSIYL [69SIHL — — — — — — 320 OSIYL
0000 0000 0000 0000 | O4LVT | LIV | 241V | €41V | $4LVT | S4LVT | 941V | 241V | 841V - - - - - - - ¢3¢0 41v1
0000 0000 0000 0000 044 [EX| Z4d €44 44 S4d 944 JER] 84y — - — - — - - 0320 4180d
TITT TTTT TOOO 0000 |04SIYL | L4SIYL | Z4SIYL [€4SIML | #4SIYL | S4SIYL | 94SIML | Z4SIHL | 84SI4L — - — — — - — 3320 4SIdL
0000 0000 0000 0000 | OILV] | LILV] | 3LV | €31V | ¥ILV] | 3LV | 931V | 231V | 831V | 631V - — — — - — 0dzo 31V
0000 0000 0000 0000 03y 1349 234 €3y 34 S3y 93y /34 83y 63 - - - - - - vaco 3140d
TITT TTIT TTOO0 0000 |QO3SIYL | }3SIYL | Z3SIYL [€3ISIYL |¥ISIYL|SISIYL | 93SIYL | Z3SIYL | 83SIYL | 63SIHL - - - - - - 8d20 3SIHL
0000 0000 0000 0000 | 0LV | LALV1 | 2ALV] | €ALVT | ALV | GALVT | 941V | 241V | 8LV | 641V | 0LALVT | ALY | 2LALV] | €1ALYT | 1ALV | GLALYT | 9020 atvi
0000 0000 0000 0000 0ay Layd 2ay €ay yay Say 9ay 20y 8ay 60y oLay Lay zLayd €1ay y1ay Siay | vazo alyod
TTTT TTIT TITT TTITT |O0ASIYL|LASIYL |2ASIyl [€ASIYL |¥ASIYL|SASIYNL| 9aSIyL | ZASIYL | 8ASIYL | 6ASIYL [0LASIML| LLASIYL|2LASIYL|€LASIYL| L ASI¥L|[GLASIYL | 2a20 asidL
0000 0000 0000 0000 - 101V - €O1Vv1 - - - - - - - - - €101V | 101V | GLO1V1 | 0a20 o1v1
0000 0000 0000 0000 - 10y - €0y - - - - - - - - - €104 7104 G10d |[3020 0140d
0TOT 0000 0000 OTTIT — LOSIYL - €osidL| — - - - - - - - - €LOSIYL | #1OSIYL|SLOSIHL | D020 OSIdL
0000 0000 0000 0000 | 091V | L1V | 291V | €91V | vELV] | 91V | 991V | 291V | 891V | 691V | 0L9LlV1 | LLELVYT | 2LElv | €181V | #1191V | §191v1 | 9020 a1v
0000 0000 0000 0000 0gy 194 2ay €ay yay Say 98y PACK| 89y 69y oLgy Lay zLay €18y 19y Gg1ay | 8020 g140d
TITT TTIT TITT TTITT |09SIYL|)ESIHL | Z9SIYL [€9SIYL | yaSIYL|SaSIyL | 99SIdL | 29SIdL | 89SIHL | 69SIYL [0LESIYL | LLEGSIYL | 2LEaSIdL | €1aSIHL | #19SIdL [S1ESIdL | 9020 asidL
0000 0000 0000 0000 — — — — — — — — — BVLVT | OLVLV1 — — — PLVLVT | GLVLVT | #O20 VIV
0000 0000 0000 0000 — — — — — — — — — 6vd oLvy — — — iV SLvd | 2020 V140d
0000 0000 OTTO 00TT — — — — — — — — — 6VSIYL | 0LVSIYHL — — — PLVSIYL [SLVSIYL | 0020 VSIdL

9je)S J9say oxg L yg (411] chg v g s g 9 g Lyg 8 g 64g 0L ¥g g zLyg L g v yg SLHg | Ippv wy__h“_mwz

dVIN 431SI1938 140d 01L0940€21dSP ‘-8 319Vl

DS70119D-page 55

iminary

Prel

© 2004 Microchip Technology Inc.

dsPIC30F6010

8.3 Input Change Notification Module

The Input Change Notification module provides the
dsPIC30F devices the ability to generate interrupt
requests to the processor in response to a change-of-
state on selected input pins. This module is capable of
detecting input change-of-states even in Sleep mode,
when the clocks are disabled. There are 22 external
signals (CNO through CNZ21) that may be selected
(enabled) for generating an interrupt request on a
change-of-state.

Please refer to the Pin Diagram on page 3 for CN pin
locations.

TABLE 8-2: INPUT CHANGE NOTIFICATION REGISTER MAP (BITS 15-8)

SFR
Name

CNEN1 00CO CN15IE CN14IE CN13IE CN12IE CN1IE CN10IE CNOIE CNB8IE 0000 0000 0000 0000

Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Reset State

CNEN2 00Cc2 — — — — — = == = 0000 0000 0000 0OOO

CNPU1 00C4 | CN15PUE | CN14PUE | CN13PUE | CN12PUE | CN11PUE | CN10PUE | CN9PUE | CN8PUE | 0000 0000 0000 0000

CNPU2 00C6 — — — — = = == = 0000 0000 0000 0000

Legend: u = uninitialized bit

TABLE 8-3: INPUT CHANGE NOTIFICATION REGISTER MAP (BITS 7-0)

Nsa':?e Addr. Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State
CNEN1 00CO CN7IE CNGIE CNS5IE CN4IE CN3IE CN2IE CN1IE CNOIE 0000 0000 0000 0000
CNEN2 00C2 — — CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE | 0000 0000 0000 0000
CNPU1 00C4 CN7PUE | CN6PUE | CN5PUE | CN4PUE | CN3PUE | CN2PUE | CN1PUE | CNOPUE | 0000 0000 0000 0000
CNPU2 00C6 — — CN21PUE | CN20PUE | CN19PUE | CN18PUE | CN17PUE | CN16PUE | 0000 0000 0000 0000

Legend: u = uninitialized bit

DS70119D-page 56 Preliminary © 2004 Microchip Technology Inc.

dsPIC30F6010

9.0 TIMER1 MODULE

Note: This data sheet summarizes features of this group
of dsPIC30F devices and is not intended to be a complete
reference source. For more information on the CPU,
peripherals, register descriptions and general device
functionality, refer to the dsPIC30F Family Reference
Manual (DS70046).

This section describes the 16-bit General Purpose
(GP) Timerl module and associated operational
modes.

Note: Timerl is a ‘Type A’ timer. Please refer to
the specifications for a Type A timer in
Section 24.0 Electrical Characteristics of

this document.

The following sections provide a detailed description,
including setup and control registers along with associ-
ated block diagrams for the operational modes of the
timers.

The Timerl module is a 16-bit timer which can serve as
the time counter for the real-time clock, or operate as a
free running interval timer/counter. The 16-bit timer has
the following modes:
* 16-bit Timer
 16-bit Synchronous Counter
 16-bit Asynchronous Counter
Further, the following operational characteristics are
supported:
» Timer gate operation
» Selectable prescaler settings
» Timer operation during CPU Idle and Sleep
modes
* Interrupt on 16-bit period register match or falling
edge of external gate signal

These operating modes are determined by setting the
appropriate bit(s) in the 16-bit SFR, TLCON. Figure 9-1
presents a block diagram of the 16-bit timer module.

16-bit Timer Mode: In the 16-bit Timer mode, the timer
increments on every instruction cycle up to a match
value, preloaded into the period register PR1, then
resets to 0 and continues to count.

When the CPU goes into the Idle mode, the timer will
stop incrementing, unless the TSIDL (T1CON<13>)
bit = 0. If TSIDL = 1, the timer module logic will resume
the incrementing sequence upon termination of the
CPU Idle mode.

16-bit Synchronous Counter Mode: In the 16-bit
Synchronous Counter mode, the timer increments on
the rising edge of the applied external clock signal,
which is synchronized with the internal phase clocks.
The timer counts up to a match value preloaded in PR1,
then resets to 0 and continues.

When the CPU goes into the Idle mode, the timer will
stop incrementing, unless the respective TSIDL bit = 0.
If TSIDL = 1, the timer module logic will resume the
incrementing sequence upon termination of the CPU
Idle mode.

16-bit Asynchronous Counter Mode: In the 16-bit
Asynchronous Counter mode, the timer increments on
every rising edge of the applied external clock signal.
The timer counts up to a match value preloaded in PR1,
then resets to 0 and continues.

When the timer is configured for the Asynchronous mode
of operation and the CPU goes into the Idle mode, the
timer will stop incrementing if TSIDL = 1.

© 2004 Microchip Technology Inc.

Preliminary

DS70119D-page 57

dsPIC30F6010

FIGURE 9-1: 16-BIT TIMER1 MODULE BLOCK DBRRGRAM (TYPE A TIMER)
PR1
A
Equal
Comparator x 16 TSYNC
z I
TMR1 @)

Reset
0
0
T1IF q_
Event Flag 1 Q D GATE

5_7/(;K

TGATE w
0 &
SIN)
________________________ = TCKPS<1:0>
. SOSCO/ . s TON 2
' TICK @ Tz X
! LPOSCEN - Gate Prescaler
| — . Dm 1,8, 64,256
. soscl ; : Tov
9.1 Timer Gate Operation 9

The 16-bit timer can be placed in the Gated Time Accu-
mulation mode. This mode allows the internal TCY to D
increment the respective timer when the gate input sig-
nal (T1CK pin) is asserted high. Control bit TGATE
(TLCON<6>) must be set to enable this mode. The ¢
timer must be enabled (TON = 1) and the timer clock
source set to internal (TCS = 0). .

When the CPU goes into the Idle mode, the timer will
stop incrementing, unless TSIDL = 0. If TSIDL = 1, the
timer will resume the incrementing sequence upon
termination of the CPU Idle mode. ti

9.2 Timer Prescaler

The input clock (Fosc/4 or external clock) to the 16-bit
Timer, has a prescale option of 1:1, 1:8, 1:64, and
1:256 selected by control bits TCKPS<1:0>
(TLCONK<5:4>). The prescaler counter is cleared when
any of the following occurs:

» awrite to the TMR1 register

* clearing of the TON bit (TLCON<15>)

* device Reset such as POR and BOR

However, if the timer is disabled (TON = 0), then the

timer prescaler cannot be reset since the prescaler
clock is halted.

TMR1 is not cleared when T1CON is written. It is
cleared by writing to the TMR1 register.

DS70119D-page 58 Prelimina

dsPIC30F6010

9.4 Timer Interrupt

The 16-bit timer has the ability to generate an interrupt
on period match. When the timer count matches the
period register, the T1IF bit is asserted and an interrupt
will be generated, if enabled. The T1IF bit must be
cleared in software. The timer interrupt flag T1IF is
located in the IFSO control register in the Interrupt
Controller.

When the Gated Time Accumulation mode is enabled,
an interrupt will also be generated on the falling edge of
the gate signal (at the end of the accumulation cycle).

Enabling an interrupt is accomplished via the respec-
tive Timer Interrupt Enable bit, T1IE. The Timer Inter-
rupt Enable bit is located in the IECO control register in
the Interrupt Controller.

9.5 Real-Time Clock

Timerl, when operating in Real-Time Clock (RTC)
mode, provides time-of-day and event time stamping
capabilities. Key operational features of the RTC are:
» Operation from 32 kHz LP oscillator

 8-hit prescaler

* Low power

* Real-Time Clock Interrupts

These Operating modes are determined by setting the
appropriate bit(s) in the TLCON Control register

FIGURE 9-2: RECOMMENDED

COMPONENTS FOR
TIMER1 LP OSCILLATOR
RTC

C1

| T X— SOSsClI
32.768 kHz dsPIC30FXXXX
[XTAL
SOSCO
c2 R
C1=C2=18 pF; R = 100K

9.5.1 RTC OSCILLATOR OPERATION

When the TON = 1, TCS =1 and TGATE = 0, the timer
increments on the rising edge of the 32 kHz LP oscilla-
tor output signal, up to the value specified in the period
register, and is then reset to ‘0’.

The TSYNC bit must be asserted to a logic ‘0’
(Asynchronous mode) for correct operation.

Enabling LPOSCEN (OSCCON<1>) will disable the
normal Timer and Counter modes and enable a timer
carry-out wake-up event.

When the CPU enters Sleep mode, the RTC will con-
tinue to operate, provided the 32 kHz external crystal
