

General Description

The MAX3738 is a +3.3V laser driver designed for multirate transceiver modules with data rates from 155Mbps to 2.7Gbps. Lasers can be DC-coupled to the MAX3738 for reduced component count and ease of multirate operation.

Laser extinction ratio control (ERC) combines the features of automatic power control (APC), modulation compensation, and built-in thermal compensation. The APC loop maintains constant average optical power. Modulation compensation increases the modulation current in proportion to the bias current. These control loops, combined with thermal compensation, maintain a constant optical extinction ratio over temperature and lifetime.

The MAX3738 accepts differential data input signals. The wide 5mA to 60mA (up to 85mA AC-coupled) modulation current range and up to 100mA bias current range, make the MAX3738 ideal for driving FP/DFB lasers in fiber optic modules. External resistors set the required laser current levels. The MAX3738 provides transmit disable control (TX_DISABLE), single-point fault tolerance, bias-current monitoring, and photocurrent monitoring. The device also offers a latched failure output (TX_FAULT) to indicate faults, such as when the APC loop is no longer able to maintain the average optical power at the required level. The MAX3738 is compliant with the SFF-8472 transmitter diagnostic and SFP MSA timing requirements.

The MAX3738 is offered in a 4mm x 4mm, 24-pin thin QFN package and operates over the extended -40°C to +85°C temperature range.

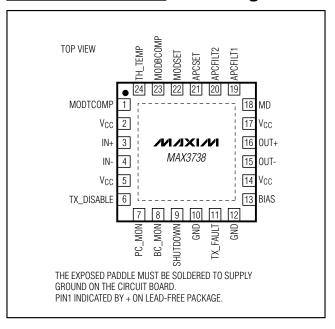
Applications

Multirate OC-3 to OC-48 FEC Transceivers Gigabit Ethernet SFF/SFP and GBIC **Transceivers**

1Gbps/2Gbps Fibre Channel SFF/SFP and GBIC **Transceivers**

Features

- ♦ Single +3.3V Power Supply
- ♦ 47mA Power-Supply Current
- ♦ 85mA Modulation Current
- ♦ 100mA Bias Current
- **♦** Automatic Power Control (APC)
- **♦ Modulation Compensation**
- **♦ On-Chip Temperature Compensation**
- ♦ Self-Biased Inputs for AC-Coupling
- **♦** Ground-Referenced Current Monitors
- **♦ Laser Shutdown and Alarm Outputs**
- ♦ Enable Control and Laser Safety Feature


Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX3738ETG	-40°C to 85°C	24 Thin QFN	T2444-3
MAX3738ETG+	-40°C to 85°C	24 Thin QFN	T2444-3

⁺Denotes lead-free package.

Typical Application Circuit appears at end of data sheet.

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

 OUT+, OUT-, BIAS Current.....-20mA to +150mA Continuous Power Dissipation (TA = +85°C) 24-Pin TQFN (derate 20.8mW/°C above +85°C)1805mW Operating Junction Temperature Range.....-55°C to +150°C 24-Pin TQFN (derate 20.8mW/°C above +85°C)1805mW Storage Temperature Range-55°C to +150°C

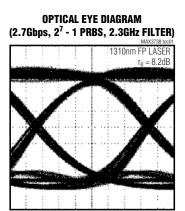
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

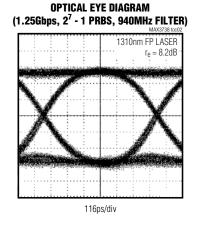
 $(V_{CC} = +2.97V \text{ to } +3.63V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_{CC} = +3.3V, I_{BIAS} = 60\text{mA}, I_{MOD} = 60\text{mA}, T_A = +25^{\circ}\text{C}, unless otherwise noted.})$ (Notes 1, 2)

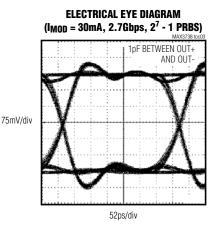
PARAMETER	SYMBOL	COI	NDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY	•			•			
Supply Current	Icc	(Note 3)			47	60	mA
Power-Supply Noise Rejection	PSNR	f ≤ 1MHz, 100mAp	P-P (Note 4)		33		dB
I/O SPECIFICATIONS				•			
Differential Input Swing	V _{ID}	DC-coupled, Figur	e 1	0.2		2.4	V _{P-P}
Common-Mode Input	V _{СМ}			1.7		V _{CC} - V _{ID} / 4	V
LASER BIAS							
Bias-Current-Setting Range				1		100	mA
Bias Off Current		TX_DISABLE = hig	jh			0.1	mA
Bias-Current Monitor Ratio		IBIAS / IBC_MON		68	79	95	mA/mA
LASER MODULATION							
Modulation Current-Setting Range	IMOD	(Note 5)		5		85	mA
Output Edge Speed		20% to 80% (Notes 6, 7)	5mA ≤ I _{MOD} ≤ 85mA		65	80	ps
Output Overshoot/Undershoot		With 1pF between	OUT+ and OUT-		±6		%
Random Jitter		(Notes 6, 7)			0.62	1.3	psRMS
		2.7Gbps, 5mA ≤ I _N	MOD ≤ 85mA		18	40	
Deterministic litter (Notes C. O)		1.25Gbps, 5mA ≤	I _{MOD} ≤ 85mA		20	41	
Deterministic Jitter (Notes 6, 8)		622Mbps, 5mA ≤ I	MOD≤85mA		24	46	psp-p
		155Mbps, 5mA ≤ I	MOD≤85mA		45	100]
Modulation-Current Temperature		(Note 6)	$5mA \le I_{MOD} \le 10mA$		±175	±600	ppm/°C
Stability		(Note o)	$10mA \le I_{MOD} \le 85mA$		±125	±480	ррпі, С
Modulation-Current-Setting Error		15 Ω load,	$5mA \le I_{MOD} \le 10mA$			±20	%
Modulation-Current-Setting Error		$T_A = +25^{\circ}C$	10mA < I _{MOD} ≤ 85mA			±15	/0
Modulation Off Current		TX_DISABLE = hig	jh			0.1	mA
AUTOMATIC POWER AND EXTI	NCTION RAT	IO CONTROLS					
Monitor-Diode Input Current Range	IMD	Average current in	to the MD pin	18		1500	μΑ
MD Pin Voltage						1.4	V
MD Current Monitor Ratio		IMD / IPC_MON		0.85	0.93	1.15	mA/mA

ELECTRICAL CHARACTERISTICS (continued)

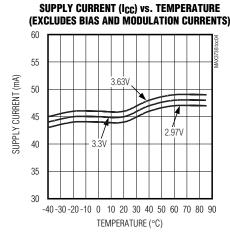

 $(V_{CC} = +2.97V \text{ to } +3.63V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_{CC} = +3.3V, I_{BIAS} = 60\text{mA}, I_{MOD} = 60\text{mA}, T_A = +25^{\circ}\text{C}, unless otherwise noted.})$ (Notes 1, 2)

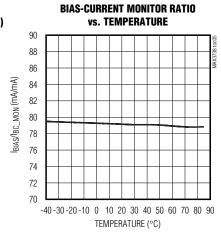
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
APC Loop Time Constant		$C_{APC_FILT} = 0.01 \mu F$, $\Delta I_{MD} / \Delta I_{BIAS} = 1/70$		3.3		μs
APC Setting Stability		(Note 6)		±100	±480	ppm/°C
APC Setting Accuracy		T _A = +25°C			±15	%
I _{MOD} Compensation-Setting Range by Bias	K	$K = \Delta I_{MOD} / \Delta I_{BIAS}$	0		1.5	mA/mA
I _{MOD} Compensation-Setting Range by Temperature	TC	$TC = \Delta I_{MOD} / \Delta T \text{ (Note 6)}$	0		1.0	mA/°C
Threshold-Setting Range for Temperature Compensation	T _{TH}	(Note 6)	+10		+60	°C
LASER SAFETY AND CONTROL						
Bias and Modulation Turn-Off Delay		CAPC_FILT = 0.01μ F, Δ I _{MD} / Δ I _{BIAS} = $1/80$ (Note 6)			5	μs
Bias and Modulation Turn-On Delay		CAPC_FILT = $0.01\mu\text{F}$, ΔI_{MD} / ΔI_{BIAS} = $1/80$ (Note 6)			600	μs
Threshold Voltage at Monitor Pins	V _{REF}	Figure 5	1.14	1.3	1.39	V
INTERFACE SIGNALS						
TX_DISABLE Input High	VHI		2.0			V
TX_DISABLE Input Low	V_{LO}	$R_{PULL} = 45k\Omega (typ)$			0.8	V
TX_DISABLE Input Current		$V_{HI} = V_{CC}$			15	μΑ
TA_DISABLE Input Guirent		V _{LO} = GND		-70	-140	μА
TX_FAULT Output Low		Sinking 1mA, open collector			0.4	V
Shutdown Output High		Sourcing 100µA	V _C C - 0.4			V
Shutdown Output Low		Sinking 100µA			0.4	V

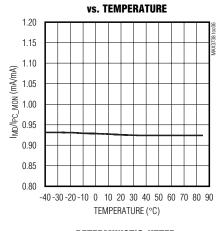

- **Note 1:** AC characterization is performed using the circuit in Figure 2 using a PRBS 2^{23} 1 or equivalent pattern.
- Note 2: Specifications at -40°C are guaranteed by design and characterization.
- Note 3: Excluding IBIAS and IMOD. Input data is AC-coupled. TX_FAULT open, SHUTDOWN open.
- Note 4: Power-supply noise rejection (PSNR) = 20log₁₀(V_{noise (on VCC)} / ΔV_{OUT}). V_{OUT} is the voltage across the 15Ω load when IN+ is high
- Note 5: The minimum required voltage at the OUT+ and OUT- pins is +0.75V.
- Note 6: Guaranteed by design and characterization.
- Note 7: Tested with 00001111 pattern at 2.7Gbps.
- Note 8: DJ includes pulse-width distortion (PWD).

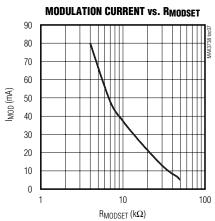

Typical Operating Characteristics

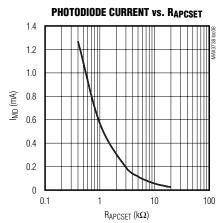
 $(V_{CC} = +3.3V, C_{APC} = 0.01\mu F, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25^{\circ}C, unless otherwise noted.)$

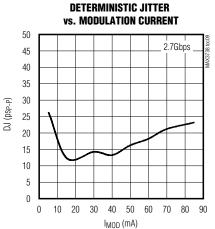


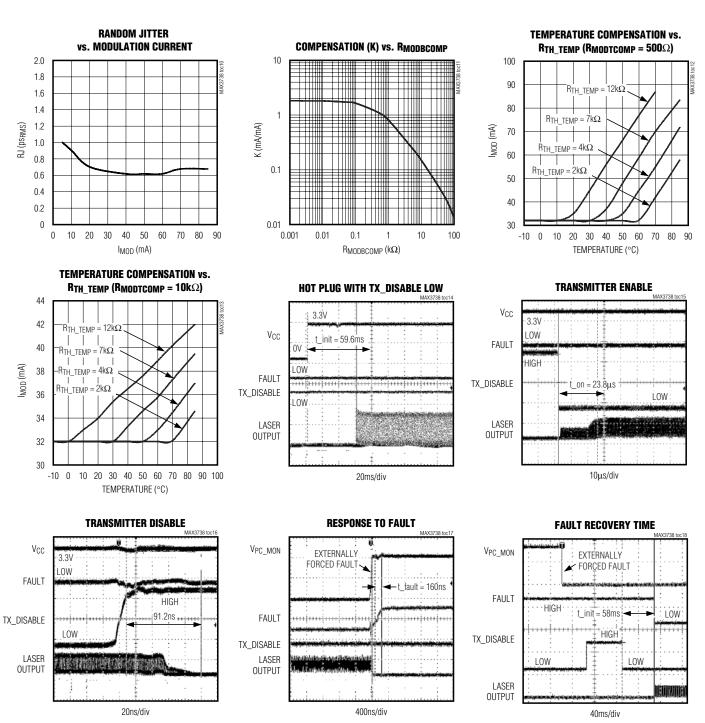

54ps/div






PHOTOCURRENT MONITOR RATIO





Typical Operating Characteristics (continued)

 $(V_{CC} = +3.3V, C_{APC} = 0.01\mu F, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25^{\circ}C, unless otherwise noted.)$

____Pin Description

PIN	NAME	FUNCTION
1	MODTCOMP	Modulation-Current Compensation from Temperature. A resistor at this pin sets the temperature coefficient of the modulation current when above the threshold temperature. Leave open for zero temperature compensation.
2, 5, 14, 17	V _C C	+3.3V Supply Voltage
3	IN+	Noninverted Data Input
4	IN-	Inverted Data Input
6	TX_DISABLE	Transmitter Disable, TTL. Laser output is disabled when TX_DISABLE is asserted high or left unconnected. The laser output is enabled when this pin is asserted low.
7	PC_MON	Photodiode-Current Monitor Output. Current out of this pin develops a ground-referenced voltage across an external resistor that is proportional to the monitor diode current.
8	BC_MON	Bias-Current Monitor Output. Current out of this pin develops a ground-referenced voltage across an external resistor that is proportional to the bias current.
9	SHUTDOWN	Shutdown Driver Output. Voltage output to control an external transistor for optional shutdown circuitry.
10, 12	GND	Ground
11	TX_FAULT	Open-Collector Transmit Fault Indicator (Table 1)
13	BIAS	Laser Bias-Current Output
15	OUT-	Inverted Modulation-Current Output. IMOD flows into this pin when input data is low.
16	OUT+	Noninverted Modulation-Current Output. IMOD flows into this pin when input data is high.
18	MD	Monitor Photodiode Input. Connect this pin to the anode of a monitor photodiode. A capacitor to ground is required to filter the high-speed AC monitor photocurrent.
19	APCFILT1	Connect a capacitor (CAPC) between pin 19 (APCFILT1) and pin 20 (APCFILT2) to set the dominant pole of the APC feedback loop.
20	APCFILT2	(See pin 19)
21	APCSET	A resistor connected from this pin to ground sets the desired average optical power.
22	MODSET	A resistor connected from this pin to ground sets the desired constant portion of the modulation current.
23	MODBCOMP	Modulation-Current Compensation from Bias. Couples the bias current to the modulation current. Mirrors IBIAS through an external resistor. Leave open for zero-coupling.
24	TH_TEMP	Threshold for Temperature Compensation. A resistor at this pin programs the temperature above which compensation is added to the modulation current.
EP	Exposed Pad	Ground. Solder the exposed pad to the circuit board ground for specified thermal and electrical performance.

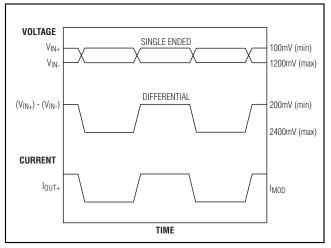


Figure 1. Required Input Signal and Output Polarity

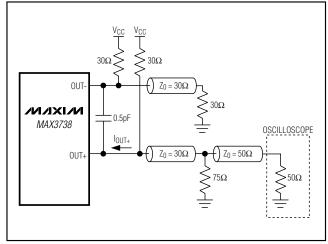


Figure 2. Test Circuit for Characterization

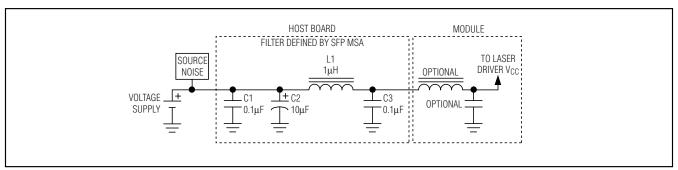


Figure 3. Supply Filter

Detailed Description

The MAX3738 laser driver consists of three main parts: a high-speed modulation driver, biasing block with ERC, and safety circuitry. The circuit design is optimized for high-speed, low-voltage (+3.3V) operation (Figure 4).

High-Speed Modulation Driver

The output stage is composed of a high-speed differential pair and a programmable modulation current source. The MAX3738 is optimized for driving a 15Ω load. The minimum instantaneous voltage required at OUT- is 0.7V for modulation currents up to 60mA and 0.75V for currents from 60mA to 85mA. Operation above 60mA can be accomplished by AC-coupling or with sufficient voltage at the laser to meet the driver output voltage requirement.

To interface with the laser diode, a damping resistor (RD) is required. The combined resistance damping resistor and the equivalent series resistance (ESR) of

the laser diode should equal 15Ω . To further damp aberrations caused by laser diode parasitic inductance, an RC shunt network may be necessary. Refer to Maxim Application Note: *HFAN-02.0: Interfacing Maxim Laser Drivers with Laser Diodes* for more information.

At data rates of 2.7Gbps, any capacitive load at the cathode of a laser diode degrades optical output performance. Because the BIAS output is directly connected to the laser cathode, minimize the parasitic capacitance associated with the pin by using an inductor to isolate the BIAS pin parasitics form the laser cathode.

Extinction Ratio Control

The extinction ratio (r_e) is the laser on-state power divided by the off-state power. Extinction ratio remains constant if peak-to-peak and average power are held constant:

$$r_e = (2P_{AVG} + P_{P-P}) / (2P_{AVG} - P_{P-P})$$

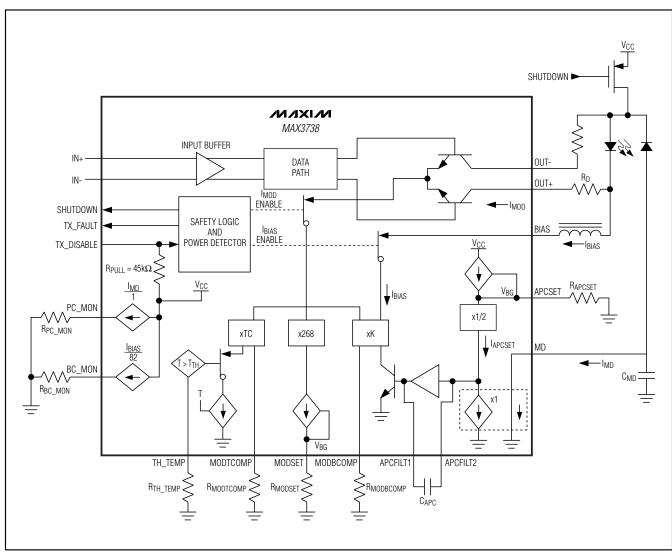


Figure 4. Functional Diagram

Average power is regulated using APC, which keeps constant current from a photodiode coupled to the laser. Peak-to-peak power is maintained by compensating the modulation current for reduced slope efficiency (η) of laser over time and temperature:

$$P_{AVG} = I_{MD} / \rho_{MON}$$

 $P_{P-P} = \eta \times I_{MOD}$

Modulation compensation from bias increases the modulation current by a user-selected proportion (K) needed to maintain peak-to-peak laser power as bias current increases with temperature. Refer to Maxim Application Note *HFAN-02.21* for details:

$K = \Delta I_{MOD} / \Delta I_{BIAS}$

This provides a first-order approximation of the current increase needed to maintain peak-to-peak power. Slope efficiency decreases more rapidly as temperature increases. The MAX3738 provides additional temperature compensation as temperature increases past a user-defined threshold (T_{TH}).

B _______/N/XI/M

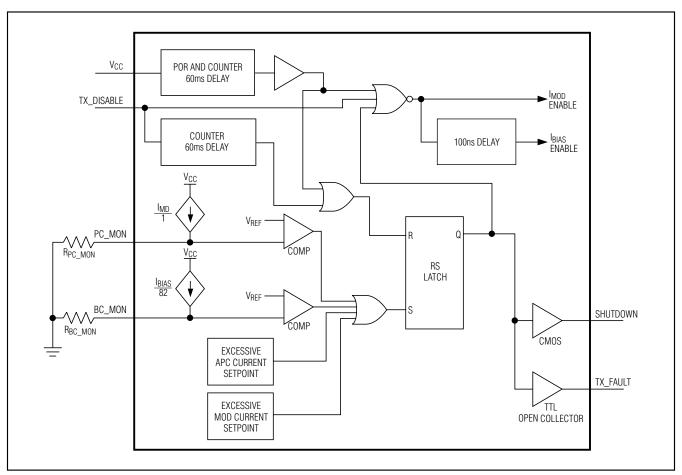


Figure 5. Simplified Safety Circuit

programmed threshold.

Table 1. Typical Fault Conditions

If any of the I/O pins are shorted to GND or V_{CC} (single-point failure; see Table 2), and the bias current or the photocurrent exceeds the programmed threshold.

End-of-life (EOL) condition of the laser diode. The bias current and/or the photocurrent exceed the programmed threshold.

Laser cathode is grounded and photocurrent exceeds the programming threshold.

No feedback for the APC loop (broken interconnection, defective monitor photodiode), and the bias current exceeds the

Table 2. Circuit Responses to Various Single-Point Faults

PIN	CIRCUIT RESPONSE TO OVERVOLTATGE OR SHORT TO V _{CC}	CIRCUIT RESPONSE TO UNDERVOLTAGE OR SHORT TO GROUND
TX_FAULT	Does not affect laser power.	Does not affect laser power.
TX_DISABLE	Modulation and bias currents are disabled.	Normal condition for circuit operation.
IN+	The optical average power increases, and a fault occurs if V _{PC_MON} exceeds the threshold. The APC loop responds by decreasing the bias current.	The optical average power decreases, and the APC loop responds by increasing the bias current. A fault state occurs if V _{BC_MON} exceeds the threshold voltage.
IN-	The optical average power decreases and the APC loop responds by increasing the bias current. A fault state occurs if V _{BC_MON} exceeds the threshold voltage.	The optical average power increases and a fault occurs if V _{PC_MON} exceeds the threshold. The APC loop responds by decreasing the bias current.
MD	This disables bias current. A fault state occurs.	The APC circuit responds by increasing the bias current until a fault is detected; then a fault* state occurs.
SHUTDOWN	Does not affect laser power. If the shutdown circuitry is used, the laser current is disabled.	Does not affect laser power.
BIAS	In this condition, the laser forward voltage is 0V and no light is emitted.	Fault state* occurs. If the shutdown circuitry is used, the laser current is disabled.
OUT+	The APC circuit responds by increasing the bias current until a fault is detected; then a fault state* occurs.	Fault state* occurs. If the shutdown circuitry is used, the laser current is disabled.
OUT-	Does not affect laser power.	Does not affect laser power.
PC_MON	Fault state* occurs.	Does not affect laser power.
BC_MON	Fault state* occurs.	Does not affect laser power.
APCFILT1	$I_{\mbox{\footnotesize{BIAS}}}$ increases until $V_{\mbox{\footnotesize{BC_MON}}}$ exceeds the threshold voltage.	I _{BIAS} increases until V _{BC_MON} exceeds the threshold voltage.
APCFILT2	I _{BIAS} increases until V _{BC_MON} exceeds the threshold voltage.	IBIAS increases until VBC_MON exceeds the threshold voltage.
MODSET	Does not affect laser power.	Fault state* occurs.
APCSET	Does not affect laser power.	Fault state* occurs.

^{*}A fault state asserts the TX_FAULT pin, disables the modulation and bias currents, and asserts the SHUTDOWN pin.

Safety Circuitry

The safety circuitry contains a disable input (TX_DISABLE), a latched fault output (TX_FAULT), and fault detectors (Figure 5). This circuitry monitors the operation of the laser driver and forces a shutdown if a fault is detected (Table 1). The TX_FAULT pin should be pulled high with a $4.7k\Omega$ to $10k\Omega$ resistor to V_{CC} as required by the SFP MSA. A single-point fault can be a short to V_{CC} or GND. See Table 2 to view the circuit response to various single-point failure. The transmit fault condition is latched until reset by a toggle or TX_DISABLE or V_{CC} . The laser driver offers redundant laser diode shutdown through the optional shutdown circuitry as shown in the $Typical\ Applications\ Circuit$. This shutdown transistor prevents a single-point fault at the laser from creating an unsafe condition.

Safety Circuitry Current Monitors

The MAX3738 features monitors (BC_MON, PC_MON) for bias current (IBIAS) and photocurrent (IMD). The monitors are realized by mirroring a fraction of the currents and developing voltages across external resistors connected to ground. Voltages greater than VREF at PC_MON or BC_MON result in a fault state. For example, connecting a 100Ω resistor to ground at each monitor output gives the following relationships:

$$V_{BC_MON} = (I_{BIAS} / 82) \times 100\Omega$$

 $V_{PC_MON} = I_{MD} \times 100\Omega$

External sense resistors can be used for high-accuracy measurement of bias and photodiode currents. On-chip isolation resistors are included to reduce the number of components needed to implement this function.

10 _______/VI/XI/M

Table 3. Optical Power Relations

PARAMETER	SYMBOL	RELATION
Average Power	Pavg	$P_{AVG} = (P_0 + P_1) / 2$
Extinction Ratio	r _e	$r_e = P_1 / P_0$
Optical Power of a One	P ₁	$P_1 = 2P_{AVG} \times r_e / (r_e + 1)$
Optical Power of a Zero	P ₀	$P_0 = 2P_{AVG} / (r_e + 1)$
Optical Amplitude	P _{P-P}	P _{P-P} = P ₁ - P ₀
Laser Slope Efficiency	η	$\eta = P_{P-P} / I_{MOD}$
Modulation Current	IMOD	$I_{MOD} = P_{P-P} / \eta$
Threshold Current	ITH	P ₀ at I ≥ I _{TH}
Bias Current (AC-Coupled)	IBIAS	I _{BIAS} ≥ I _{TH} + I _{MOD} / 2
Laser to Monitor Transfer	рмон	I _{MD} / P _{AVG}

Note: Assuming a 50% average input duty cycle and mark density.

Design Procedure

When designing a laser transmitter, the optical output is usually expressed in terms of average power and extinction ratio. Table 3 shows relationships that are helpful in converting between the optical average power and the modulation current. These relationships are valid if the mark density and duty cycle of the optical waveform are 50%.

For a desired laser average optical power (P_{AVG}) and optical extinction ratio (r_e), the required bias and modulation currents can be calculated using the equations in Table 3. Proper setting of these currents requires knowledge of the laser to monitor transfer (ρ_{MON}) and slope efficiency (η).

Programming the Monitor-Diode Current Set Point

The MAX3738 operates in APC mode at all times. The bias current is automatically set so average laser power is determined by the APCSET resistor:

$$PAVG = IMD / \rho MON$$

The APCSET pin controls the set point for the monitor diode current. An internal current regulator establishes the APCSET current in the same manner as the MODSET pin. See the Photodiode Current vs. RAPCSET graph in the *Typical Operating Characteristics* and select the value of RAPCSET that corresponds to the required current at +25°C.

IMD = 1/2 x VREF / RACPSET

The laser driver automatically adjusts the bias to maintain the constant average power. For DC-coupled laser diodes:

IAVG = IBIAS + IMOD / 2

Programming the Modulation Current with Compensation

Determine the modulation current from the laser slope efficiency:

$$I_{MOD} = 2 \times P_{AVG} / \eta \times (r_{e} - 1) / (r_{e+} + 1)$$

The modulation current of the MAX3738 consists of a static modulation current (I_{MODS}), a current proportional to I_{BIAS}, and a current proportional to temperature. The portion of I_{MOD} set by MODSET is established by an internal current regulator, which maintains the reference voltage of V_{REF} across the external programming resistor. See the Modulation Current vs. R_{MODSET} graph in the *Typical Operating Characteristics* and select the value of R_{MODSET} that corresponds to the required current at +25°C:

$$\begin{split} & \text{IMOD} = \text{IMODS} + \text{K} \times \text{IBIAS} + \text{IMODT} \\ & \text{IMODS} = 268 \times \text{VREF} / \text{RMODSET} \\ & \text{IMODT} = \text{TC} \times (\text{T} - \text{TTH}) & \text{I} \text{T} > \text{TTH} \\ & \text{IMODT} = 0 & \text{I} \text{T} \leq \text{TTH} \end{split}$$

An external resistor at the MODBCOMP pin sets current proportional to IBIAS. Open circuiting the MODBCOMP pin can turn off the interaction between IBIAS and IMOD:

$$K = 1700 / (1000 + R_{MODBCOMP}) \pm 10\%$$

If I_{MOD} must be increased from I_{MOD1} to I_{MOD2} to maintain the extinction ratio at elevated temperatures, the required compensation factor is:

$$K = (I_{MOD2} - I_{MOD1}) / (I_{BIAS2} - I_{BIAS1})$$

A threshold for additional temperature compensation can be set with a programming resistor at the TH TEMP pin:

 $T_{TH} = -70^{\circ}\text{C} + 1.45\text{M}\Omega\,/\,(9.2\text{k}\Omega + \text{R}_{TH_TEMP})^{\circ}\text{C} \pm 10\%$ The temperature coefficient of thermal compensation above T_{TH} is set by RMODTCOMP. Leaving the MODTCOMP pin open disables additional thermal compensation:

$$TC = 1 / (0.5 + R_{MODTCOMP}(k\Omega)) \text{ mA/°C } \pm 10\%$$

Current Compliance (I_{MOD} ≤ 60mA), DC-Coupled

The minimum voltage at the OUT+ and OUT- pins is 0.7V.

For:

VDIODE = Diode bias point voltage (1.2V typ)

 R_L = Diode bias point resistance (5 Ω typ)

 R_D = Series matching resistor (20 Ω typ)

For compliance:

VOUT+ = VCC - VDIODE - IMOD × (RD + RL) - IBIAS × RL ≥ 0.7V

Current Compliance (IMOD > 60mA), AC-Coupled

For applications requiring modulation current greater than 60mA, headroom is insufficient from proper operation of the laser driver if the laser is DC-coupled. To avoid this problem, the MAX3738's modulation output can be AC-coupled to the cathode of a laser diode. An external pullup inductor is necessary to DC-bias the modulation output at VCC. Such a configuration isolates laser forward voltage from the output circuitry and allows the output at OUT+ to swing above and below the supply voltage (VCC). When AC-coupled, the MAX3738 modulation current can be programmed up to 85mA. Refer to Maxim Application Note *HFAN-02.0: Interfacing*

Maxim's Laser Drivers with Laser Diodes for more information on AC-coupling laser drivers to laser diodes. For compliance:

 $V_{OUT+} = V_{CC} - I_{MOD} / 2 \times (R_D + R_L) \ge 0.75 V$

Determine CAPC

The APC loop filter capacitor (CAPC) must be selected to balance the requirements for fast turn-on and minimal interaction with low frequencies in the data pattern. The low-frequency cutoff is:

 $C_{APC}(\mu F) \cong 68 / (f_{3dB}(kHz) \times (\eta \times \rho_{MON})^{1.1})$

High-frequency noise can be filtered with an additional cap, $C_{\mbox{\scriptsize MD}}$, from the MD pin to ground.

The MAX3738 is designed so turn-on time is faster than 1ms for most laser gain values ($\eta \times \rho_{MON}$). Choosing a smaller value of CAPC reduces turn-on time. Careful balance between turn-on time and low-frequency cutoff may be needed at low data rates for some values of laser gain.

Interface Models

Figures 6 and 7 show simplified input and output circuits for the MAX3738 laser driver. If dice are used, replace package parasitic elements with bondwire parasitic elements.

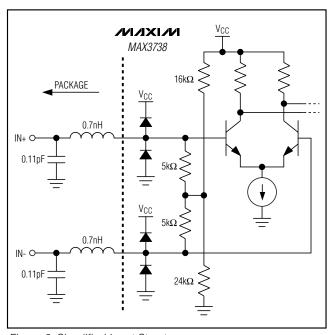


Figure 6. Simplified Input Structure

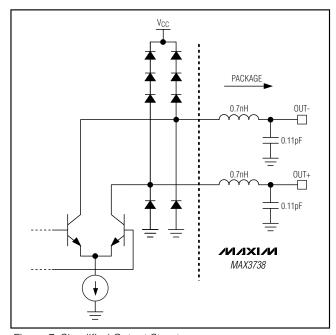


Figure 7. Simplified Output Structure

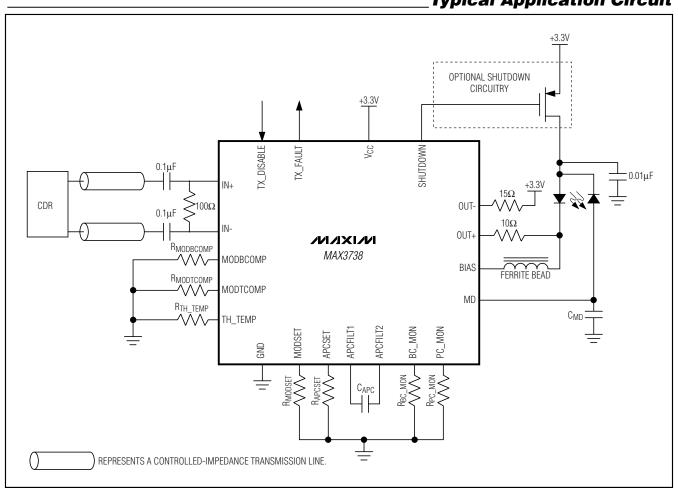
Layout Considerations

To minimize loss and crosstalk, keep the connections between the MAX3738 output and the laser diode as short as possible. Use good high-frequency layout techniques and multilayer boards with uninterrupted ground plane to minimize EMI and crosstalk. Circuit boards should be made using low-loss dielectrics. Use controlled-impedance lines for data inputs, as well as the module output.

Laser Safety and IEC 825

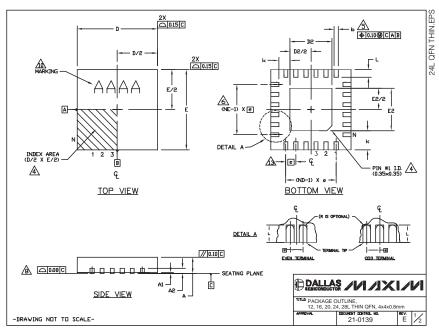
Using the MAX3738 laser driver alone does not ensure that a transmitter design is IEC 825 compliant. The entire transmitter circuit and component selections must be considered. Each customer must determine the level of fault tolerance required by their application, recognizing that Maxim products are not designed or authorized for use as components in systems intended for surgical implant into the body, for applications intended to sup-

port or sustain life, or for any other application where the failure of a Maxim product could create a situation where personal injury or death may occur.


Exposed-Pad (EP) Package

The exposed pad on the 24-pin TQFN provides a very low thermal resistance path for heat removal from the IC. The pad is also electrical ground on the MAX3738 and should be soldered to the circuit board ground for proper thermal and electrical performance. Refer to Maxim Application Note *HFAN-08.1: Thermal Considerations of QFN and Other Exposed-Paddle Packages* at www.maxim-ic.com for additional information.

Chip Information


TRANSISTOR COUNT: 1884 PROCESSS: SiGe/Bipolar

Typical Application Circuit

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

				COM	4DN	DIME	IZN	ZNE									E	XPOS	SED	PAD	VAR	IATI	DNS	
PKG	12	L 4x	4	16	L 4x	4	20	L 4×	4	2.	4L 4×	(4	28	3L 4×	(4	1	PKG.		132			E5		DOVN
REF.	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	1	CODES	MIN.	NOM.	MAX.	MIN.	NDM.	MAX.	ALLOVE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.90	0.70	0.75	0.80	0.70	0.75	0.80	l	T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20.0	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	20.0	0.05	l	T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2		.20 RE	F	0	20 RE	F	0	20 RE	F	0	20 RE	F	0	20 RE	F	l	T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25	l	T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	NO
D	3,90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	l I	T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
£	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	Į I	T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	NO
e	_	0.80 BS	_	_	65 BS		_	.50 BS		_	1.50 BS	_	_	.40 BS	_	ı	T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	H	T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45		0.65	0.30	0.40	0.50	0.30	0.40	0.50	H	T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	NO
N	-	12		\vdash	16		_	20		-	24		_	28	-	יו	T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	NO
ND		3		_	4	_	_			_	6													
NE		-												-		1								
NOTE	DIMENS						TO A		4.5M-	1994.	6 WGGD-	-2		7 VGGE										
NOTE 1.		VGGB SIONING MENSIO	NS ARE	IN M	WGGC	ERS. A	TO A	wggd-:	4.5M-	1994.	_	-2		_										
NOTE 1. 2. 3.	DIMENS ALL DIV N IS T	VGGB SIONING MENSION HE TOT TRMINAL 15-1 SI	NS ARE TAL NUI . ∯1 ID	IN MI MBER (ENTIFIE 2. DETA	WGGC ING CO LUMETI OF TERM IR AND ILS OF	ERS. AI MINALS TERMI TERMI	TO AS	SME YI ARE IN	4.5M- I DEGRI NG CON	1994. EES. WENTK RE OPT	WGGD-	ALL CD	NFORM UST BE	VGGE TO LOCAT	TED WIT	HIN								
NOTE 1. 2. 3. 4.	DIMENS ALL DIV N IS TO THE TE JESD 9 THE ZO	VGG38 SIONING MENSION HE TOT RMINAL 15-1 SI ONE INC	NS ARE TAL NUT #1 ID PP-012 DICATED APPLIE	IN MI MBER (ENTIFIE DETA), THE	WGGC ING CC LUMETI OF TERM R AND ILS OF TERMIN	ERS. AI MINALS TERMI TERMII IAL #1	TO AS	SME YI ARE IN JABBERII JERNTI FIER M	14.5M— I DEGRI NG CON FIER AF AY BE	1994. EES. WENTK RE OPT ETIHEF	ON SHA	ALL CO BUT M OLD OR	NFORM UST BE MARKE	TO LOCAL										
NOTE 1. 2. 3. 4.	DIMENS ALL DIM N IS THE TE JESD 9 THE ZO DIMENS	VGGB SIONING WENSION HE TOT RMINAL 5-1 SI SONE INE SION 6 TERMIN	NS ARE TAL NUT #1 IC PP-012 DICATED APPLIE AL TIP.	IN MI MBER (DENTIFIE 2. DETA). THE S TO I	WGGC ING CC LUMETI OF TERM R AND ILS OF TERMIN METALLI	ERS. AI MINALS TERMI TERMI VAL #1 ZED TE	TO AS NGLES NAL NI NAL #1 IDENTI	SME YI ARE IN JAMBERII JOENTI FIER M	14.5M— I DEGRI NG CON FIER AF IAY BE IS MEA	1994. EES. WENTK WE OPT EITHER	ON SHATIONAL, RAMO	ALL CO BUT M OLD OR EEN O.	NFORM UST BE MARKI 25 mm	TO LOCAL ED FEA	TURE.									
NOTE 1. 2. 3. 4.	DIMENS ALL DIV N IS THE TE JESD 9 THE ZO DIMENS FROM	VGGB SIONING MENSION HE TOT RMINAL 55-1 SI SONE INE SION B TERMIN D NE F	NS ARE TAL NUT PP-012 DICATED APPLIE AL TIP.	IN MI MENTIFIE DETA DETA DETA DETA DETA DETA DETA DET	WGGC ING CC LUMETE OF TERM ILS OF TERMIN METALLI NUMB	ERS. AI MINALS TERMI TERMII IAL #1 ZED TE	TO AS	SME YI ARE IN JMBERII JDERTII FIER M	14.5M— I DEGRI NG CON FIER AR IAY BIE IS MEA	1994. EES. WENTK WE OPT EITHER	ON SHATIONAL, RAMO	ALL CO BUT M OLD OR EEN O.	NFORM UST BE MARKI 25 mm	TO LOCAL ED FEA	TURE.									
NOTE 1. 2. 3. A. 7.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND AND	VGGB SIONING MENSION HE TOT RMINAL 15-1 SI ONE INC SION B TERMINAL D NE F	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PO	IN MI MEER C PENTIFIE 2. DETA 3. THE S TO I TO THE DSSIBLE	WGGC LUMETI OF TERMIN HETALLI HUMB IN A	ers. A Minals Termi Termi Val #1 ZED TE SYMME	TO AS NGLES NAL NIL IDENTI ERMINAL TERMI	MGGD-SME YI ARE IN MBERII IDENTI FIER M L AND NALS C FASHK	14.5M— I DEGRI NG CON FIER AF IAY BE IS MEA	1994. EES. WENTK E OPT ETTHEF SURED H D A	ON SHATIONAL, R A MO	ALL CD BUT M OLD OR EEN O.	NFORM UST BE MARKI 25 mm	TO LOCATED FEA	TURE.									
NOTE 1. 2. 3. 4. 7. 6.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI	VGGB SIONING MENSION HE TOT RMINAL 15-1 SI SONE INC TERMIN D NE F ULATION VARITY	NS ARE (AL NUI PP-012 DICATED APPLIE REFER APPLIE APPLIE	IN MI MEER (MENTIFIE DETA THE STOIL TO THE STOIL	WGGC LUMETI OF TERMIN ILS OF TERMIN METALLI : NUMB : IN A THE EX	ERS. AMMINALS TERMINALS TERMINAL #1 ZED TE ER OF SYMME POSED	TO AS NGLES NAL NI IDENTI ERMINAL TERMI TERMI TRICAL HEAT	SME YI ARE IN JAMBERII IDENTI FIER M L AND NALS C FASHIK SINK S	14.5M— I DEGRI NG CON FIER AF AY BE IS MEA	1994. EES. WENTK RE OPT EITHER SURED H D A	WGGD-	ALL CO BUT M OLD OR EEN O. SIDE RI	NFORM UST BE MARKE 25 mm SPECTI	TO LOCATED FEA	TURE.									
NOTE 1. 2. 3. 4. 7. 6. 9.	DIMENS ALL DIM N IS THE TE JESD 9 THE ZO DIMENS FROM ND AND DEPOPI GOPLAN	VGGB SIONING MENSION HE TOT CRIMINAL ISON IN TERMINAL TER	NS ARE (AL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE IFORMS	E IN MI MEDER (DENTIFIE 2. DETA 3. THE S TO I TO THE S TO I TO JE	WGGC LUMETI OF TERMIN ILS OF TERMIN METALLI : NUMB : IN A THE EXI DEC M	ERS. AMMINALS TERMINALS TERMINAL #1 ZED TE ER OF SYMME POSED 0220,	TO AS NOL NU NOL MI IDENTI ERMINAL TERMI TERICAL HEAT EXCEP	SME YI ARE IN JMBERII IDENTIFIER M L AND NALS C FASHIK SINK S T FOR	I 4.5M— I DEGRI NG CON FIER AF AY BE IS MEA IN EACI	1994. EES. WENTK RE OPT EITHER SURED H D A	WGGD-	ALL CO BUT M OLD OR EEN O. SIDE RI	NFORM UST BE MARKE 25 mm SPECTI	TO LOCATED FEA	TURE.									
NOTE 1. 2. 3. 4. 5. 7. 6. 9. M.	DIMENS ALL DIM N IS THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPE COPLAY	VGGB SIONING MENSION HE TOT CRMINAL IS-1 SI SNE INC SION B TERMINAL D NE F ULATION NARITY IG CON C IS FO	NS ARE (AL NUI) #1 ID PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE IFORMS OR PAC	E IN MI MBER (PENTIFIE 2. DETA 1. THE IS TO I TO THE DSSIBLE S TO I TO JE KAGE (WGGC LUMETIOF TERMIN LIS OF TERMIN METALLI INUMB IN IN A THE EXI DRIENTA	ERS. AMMINALS TERMINALS TERMINAL #1 ZED TE ER OF SYMME POSED 0220, ATION F	TO AS NGLES NAL NI IDENTI ERMINAI TERMI TERM	SME YI ARE IN JMBERII IDENTIFIER M L AND NALS C FASHIK SINK S T FOR	I 4.5M— I DEGRI NG CON FIER AF AY BE IS MEA IN EACI	1994. EES. WENTK RE OPT EITHER SURED H D A	WGGD-	ALL CO BUT M OLD OR EEN O. SIDE RI	NFORM UST BE MARKE 25 mm SPECTI	TO LOCATED FEA	TURE.									
NOTE 1. 2. 3. 4. 5. 7. 6. 9. M. 11. C	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND AND DEPOPE COPLAN DRAWIN JARKING	VGGB SIONING WENSION HE TOT TRIMINAL 15-1 SI DNE INC SIONE INC HERMIN D NE F ULATION WARITY G CON C IS FC ARITY S	NS ARE (AL NUI PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE IFORMS OR PAC SHALL I	E IN MI MBER (MENTIFIE 2. DETA 1. THE S TO I TO THE DSSIBLE S TO I TO JE KAGE (NOT EX	WGGC LUMETE OF TERMIN METALLI INUMB	ERS. AMMINALS TERMINALS TERMINAL #1 ZED TE ER OF SYMME POSED 0220, ATION F 0.08mm	TO AS NGLES NAL NI IDENTI ERMINAI TERMI TERM	SME YI ARE IN JMBERII IDENTIFIER M L AND NALS C FASHIK SINK S T FOR	I 4.5M— I DEGRI NG CON FIER AF AY BE IS MEA IN EACI	1994. EES. WENTK RE OPT EITHER SURED H D A	WGGD-	ALL CO BUT M OLD OR EEN O. SIDE RI	NFORM UST BE MARKE 25 mm SPECTI	TO LOCATED FEA	TURE.									

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.