
现货库存、技术资料、百科信息、热点资讯，精彩尽在鼎好!

S3C4530A PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

INTRODUCTION

Samsung's S3C4530A 16/32-bit RISC microcontroller is a cost-effective, high-performance microcontroller
solution for Ethernet-based systems. An integrated Ethernet controller, the S3C4530A, is designed for use in
managed communication hubs and routers.

The S3C4530A is built around an outstanding CPU core: the 16/32-bit ARM7TDMI RISC processor designed by
Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general purpose microprocessor macro-cell
that was developed for use in application-specific and custom-specific integrated circuits. Its simple, elegant, and
fully static design is particularly suitable for cost-sensitive and power-sensitive applications.

The S3C4530A offers a configurable 8-Kbyte unified cache/SRAM and Ethernet controller which reduces total
system cost. Most of the on-chip function blocks have been designed using an HDL synthesizer and the
S3C4530A has been fully verified in Samsung's state-of-the-art ASIC test environment.

Important peripheral functions include two HDLC channels with buffer descriptor, two UART channels with full
modem interface signal and 32byte buffer, 2-channel GDMA, two 32-bit timers, and 26 programmable I/O ports.
On-board logic includes an interrupt controller, DRAM/ SDRAM controller, and a controller for ROM/SRAM and
flash memory. The System Manager includes an internal 32-bit system bus arbiter and an external memory
controller.

The following integrated on-chip functions are described in detail in this user's manual:

— 8-Kbyte unified cache/SRAM

— I2C interface

— Ethernet controller

— HDLC controller

— GDMA

— UART

— Timers

— Programmable I/O ports

— Interrupt controller

http://www.icmade.com

PRODUCT OVERVIEW S3C4530A

1-2

FEATURES

Architecture

• Integrated system for embedded ethernet
applications

• Fully 16/32-bit RISC architecture

• Little/Big-Endian mode supported basically, the
internal architecture is big-endian.
So, the little-endian mode only support for
external memory.

• Efficient and powerful ARM7TDMI core

• Cost-effective JTAG-based debug solution

• Boundary scan

System Manager

• 8/16/32-bit external bus support for
ROM/SRAM, flash memory, DRAM, and
external I/O

• One external bus master with bus request/
acknowledge pins

• Support for EDO/normal or SDRAM

• Programmable access cycle (0-7 wait cycles)

• Four-word depth write buffer

• Cost-effective memory-to-peripheral DMA
interface

Unified Instruction/Data Cache

• Two-way, set-associative, unified 8-Kbyte cache

• Support for LRU (least recently used) protocol

• Cache is configurable as an internal SRAM

I2C Serial Interface

• Master mode operation only

• Baud rate generator for serial clock generation

Ethernet Controller

• DMA engine with burst mode

• DMA Tx/Rx buffers (256 bytes Tx, 256 bytes
Rx)

• MAC Tx/Rx FIFO buffers (80 bytes Tx, 16 bytes
Rx)

• Data alignment logic

• Endian translation

• 100/10-Mbit per second operation

• Full compliance with IEEE standard 802.3

• MII(10/100Mbps) or 7-wire 10-Mbps interface

• Station management signaling

• On-chip CAM (up to 21 destination addresses)

• Full-duplex mode with PAUSE feature

• Long/short packet modes

• PAD generation

HDLCs

• HDLC protocol features:

— Flag detection and synchronization

— Zero insertion and deletion

— Idle detection and transmission

— FCS generation and detection (16-bit)

— Abort detection and transmission

• Address search mode (expandable to 4 bytes)

• Selectable CRC or No CRC mode

• Automatic CRC generator preset

• Digital PLL block for clock recovery

• Baud rate generator

• NRZ/NRZI/FM/Manchester data formats for
Tx/Rx

• Loop-back and auto-echo modes

• Tx/Rx FIFOs have 8-word (8 × 32-bit) depth

• Selectable 1-word or 4-word data transfer mode

• Data alignment logic

• Endian translation

• Programmable interrupts

• Modem interface

• Up to 10 Mbps operation

• HDLC frame length based on octets

• 2-channel DMA buffer descriptor for Tx/Rx on
each HDLC

S3C4530A PRODUCT OVERVIEW

1-3

DMA Controller

• 2-channel General DMA for memory-to-
memory, memory-to-UART, UART-to-memory
data transfers without CPU intervention

• Initiated by a software or external DMA request

• Increments or decrements a source or
destination address in 8-bit, 16-bit or 32-bit data
transfers

• 4-data burst mode

UARTs

• Two UART (serial I/O) blocks with DMA-based
or interrupt-based operation

• High speed(460Kbps) UART support with 32
byte Tx/Rx FIFO and modem interface signals

• Support for 5-bit, 6-bit, 7-bit, or 8-bit serial data
transmit and receive

• Automatic baud rate detection

• Eight control character comparison for software
control

• Programmable baud rates

• 1 or 2 stop bits

• Odd or even parity

• Break generation and detection

• Parity, overrun, and framing error detection

• ×16 clock mode

• Infra-red (IR) Tx/Rx support (IrDA)

Timers

• Two programmable 32-bit timers

• Interval mode or toggle mode operation

Programmable I/O

• 26 programmable I/O ports

• Pins individually configurable to input, output, or
I/O mode for dedicated signals

Interrupt Controller

• 21 interrupt sources, including 4 external
interrupt sources

• Normal or fast interrupt mode (IRQ, FIQ)

• Prioritized interrupt handling

PLL

• The external clock can be multiplied by on-chip
PLL to provide high frequency system clock

• The input frequency range is 10-40 MHz

• The output frequency is 5 times of input clock.
To get 50 MHz, input clock frequency should be
10 MHz.

Operating Voltage Range

• 3.3 V ± 5 %

Operating Temperature Range

• 0
o

C to + 70
o

C

Operating Frequency

• Up to 50 MHz

Package Type

• 208 pin QFP

PRODUCT OVERVIEW S3C4530A

1-4

ARM7TDMI
32-bit RISE CPU

CPU Interface

8-Kbyte
Unified
Cache

4-Word
Write
Buffer

Bus Rounter

I2C

26 General I/O ports

Interruput Controller

UART 0,1

32-bit Timer 0,1

GDMA 0,1

PLL

Memory
Controller

with
Refresh
Control

System
Bus

Arbiter

2-Channel HDLCs
with DMAs

2-channel BDMA

Ethernet Controller

BDMA RAMs
Tx Buffer (256 bytes)
Rx Buffer (256 bytes)

CAM (128 bytes)

MAC
Tx FIFO (80 bytes)
Rx FIFO (16 bytes)

TAP Controller for JTAG

MII or
7-wire

Remote
port A,B

External
Bus

Master

4-bank
External

I/O
Device

4-bank
DRAM

6-bank
ROM
SRAM
FLASH

Console or
Modem I/F

SCL
SDA

26 I/O Ports including
 4: Ext INT req.
 2: Timer out (0,1)
 2: Ext DMA REQ.
 2: Ext DMA ACK
 14: UART

Figure 1-1. S3C4530A Block Diagram

S3C4530A PRODUCT OVERVIEW

1-5

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

1
2
3
4
5
6
7
8
9
10

18
17

11
12
13
14
15
16

20
19

22
21

24
23

26
25

28
27

30
29

32
31

34
33

36
35

38
37

40
39

42
41

44
43

46
45

48
47

50
49

52
51

VDD

VSS

nUADSR1/P<23>
UATXD1/P<24>

nUADTR1/P<25>
nDTRA
RXDA

nRTSA
TXDA

nCTSA

RxDB
nDTRB

VDD

VSS

nDCDA
RXCA

nSYNCA
TXCA

TXDB
nRTSB

VSS

VDD

nDCDB
nCTSB

nSYNCB
RXCB

CRS/CRS_ 10M
TXCB

RXD<0>/RXD_10M
RX DV/LINK_10M

VSS

VDD

RXD<2>
RXD<1>

RX ERR
RXD<3>

COL/COL_10M
RX_CLK/RXCLK_10M

TXD<1>/LOOP_10M
TXD<0>/TXD_10M

VSS

VDD

TXD<3>
TXD<2>

TXCLK/TXCLK_10M
Tx_ERR/POCMP_10M

MDIO
TX_EN/TXEN_10M

MDC
LITTLE

VSS

VDD

VSS

VDD

XDATA<16>
XDATA<15>
XDATA<14>
XDATA<13>
XDATA<12>
XDATA<11>
XDATA<10>
XDATA<9>

XDATA<3>
XDATA<4>

XDATA<8>
XDATA<7>
XDATA<6>
VSS

VDD

XDATA<5>

XDATA<1>
XDATA<2>

ADDR<21>
XDATA<0>

ADDR<19>
ADDR<20>

VSS

ADDR<18>

ADDR<17>
VDD

ADDR<15>
ADDR<16>

ADDR<13>
ADDR<14>

ADDR<11>
ADDR<12>

ADDR<9>
ADDR<10>/AP

VSS

ADDR<8>

ADDR<7>
VDD

ADDR<5>
ADDR<6>

ADDR<3>
ADDR<4>

ADDR<1>
ADDR<2>

ExtMACK
ADDR<0>

nWBE<3>/DQM<3>
ExtMREQ

VDD

VSS

V
D

D
a

V
S

S
a

F
IL

T
E

R
V

D
D

V
S

S

T
C

K
T

M
S

T
D

I
T

D
0

nT
R

S
T

T
M

O
D

E
U

C
LK V
D

D

V
S

S

nE
C

S
<

0>
nE

C
S

<
1>

nE
C

S
<

2>
nE

C
S

<
3>

nE
W

A
IT

nO
E

B
O

S
IZ

E
<

0>
B

O
S

IZ
E

<
1>

nR
C

S
<

0>
C

LK
O

E
N

S
D

C
LK

/M
C

LK
O

V
D

D

V
S

S

X
C

LK V
S

S

nR
E

S
E

T
C

LK
S

E
L

nR
C

S
<

1>
nR

C
S

<
2>

nR
C

S
<

3>
nR

C
S

<
4>

nR
C

S
<

5>
nS

D
C

S
<

0>
/n

R
A

S
<

0>
nS

D
C

S
<

1>
/n

R
A

S
<

1>
nS

D
C

S
<

2>
/n

R
A

S
<

2> V
D

D

V
S

S

nS
D

C
S

<
3>

/n
R

A
S

<
3>

nS
D

R
A

S
/n

C
A

S
<

0>
nS

D
C

A
S

/n
C

A
S

<
2>

C
K

E
/n

C
A

S
<

2>
nC

A
S

<
3>

nD
W

E
D

Q
M

<
0>

/n
W

B
E

<
0>

D
Q

M
<

1>
/n

W
B

E
<

1>
D

Q
M

<
2>

/n
W

B
E

<
2> V

D
D

V
S

S

156
155
154
153
152
151
150
149
148
147

139
140

146
145
144
143
142
141

137
138

135
136

133
134

131
132

129
130

127
128

125
126

123
124

121
122

119
120

117
118

115
116

113
114

111
112

109
110

107
108

105
106

20
8

20
7

20
6

20
5

20
4

20
3

20
2

20
1

20
0

19
9

19
8

19
7

19
6

19
5

19
4

19
3

19
2

19
1

19
0

18
9

18
8

18
7

18
6

18
5

18
4

18
3

18
2

18
1

18
0

17
9

17
8

17
7

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

V
S

S

V
D

D

U
A

R
X

D
1/

P
<

22
>

nU
A

D
T

R
0/

P
<

21
>

U
A

T
X

D
0/

P
<

20
>

nU
A

D
S

R
0/

P
<

19
>

U
A

R
X

D
0/

P
<

18
>

S
D

A
S

C
A

P
<

17
>

/T
O

U
T

1
V

S
S

V
D

D

P
<

16
>

/T
O

U
T

0
P

<
15

>
/n

X
D

A
C

K
<

1>
P

<
14

>
/n

X
D

A
C

K
<

0>
P

<
13

>
/n

X
D

R
E

Q
<

1>
P

<
12

>
/n

X
D

R
E

Q
<

0>
P

<
11

>
/X

IN
R

E
Q

<
3>

P
<

10
>

/X
IN

R
E

Q
<

2>
P

<
9>

/X
IN

R
E

Q
<

1>
V

S
S

V
D

D

P
<

8>
/X

IN
R

E
Q

<
0>

P
<

7>
/n

U
A

R
T

S
1

P
<

6>
/n

U
A

C
T

S
1

P
<

5>
/n

U
A

D
C

D
1

P
<

4>
/n

U
A

R
T

S
0

P
<

3>
/n

U
A

C
T

S
0

P
<

2>
/n

U
A

D
C

D
0

P
<

1>
V

S
S

V
D

D

P
<

0>
X

D
A

T
A

<
31

>
X

D
A

T
A

<
30

>
X

D
A

T
A

<
29

>
X

D
A

T
A

<
28

>
X

D
A

T
A

<
27

>
X

D
A

T
A

<
26

>
X

D
A

T
A

<
25

>
V

S
S

V
D

D

X
D

A
T

A
<

24
>

X
D

A
T

A
<

23
>

X
D

A
T

A
<

22
>

X
D

A
T

A
<

21
>

X
D

A
T

A
<

20
>

X
D

A
T

A
<

19
>

X
D

A
T

A
<

18
>

X
D

A
T

A
<

17
>

V
S

S

V
D

D

S3C4530A

(208-QFP)

Figure 1-2. S3C4530A Pin Assignment Diagram

PRODUCT OVERVIEW S3C4530A

1-6

SIGNAL DESCRIPTIONS

Table 1-1. S3C4530A Signal Descriptions

Signal Pin No. Type Description

XCLK 80 I S3C4530A System Clock source. If CLKSEL is Low, PLL output
clock is used as the S3C4530A internal system clock. If CLKSEL
is High, XCLK is used as the S3C4530A internal system clock.

MCLKO/SDCLK (1) 77 O System Clock Out. MCLKO is monitored as the inverting phase
of internal system clock, SCLK.
SDCLK is system clock for SDRAM

CLKSEL 83 I Clock Select. When CLKSEL is '0'(low level), PLL output clock
can be used as the master clock. When CLKSEL is '1'(high
level), the XCLK is used as the master clock.

nRESET 82 I Not Reset. nRESET is the global reset input for the S3C4530A.
To allow a system reset, and for internal digital filtering, nRESET
must be held to Low level for at least 64 master clock cycles.
Refer to "Figure 3. S3C4530A reset timing diagram" for more
details about reset timing.

CLKOEN 76 I Clock Out Enable/Disable. (See the pin description for MCLKO.)

TMODE 63 I Test Mode. The TMODE bit settings are interpreted as follows:
'0' = normal operating mode, '1' = chip test mode.
This TMODE pin also can be used to change MF of PLL.
To get 5 times internal system clock from external clock, '0'(low
level) should be assigned to TMODE. If '1'(high level), MF will be
changed to 6.6.

FILTER 55 AI If the PLL is used, 820pF capacitor should be connected between
the pin and analog ground.

TCK 58 I JTAG Test Clock. The JTAG test clock shifts state information
and test data into, and out of, the S3C4530A during JTAG test
operations. This pin is internally connected pull-down.

TMS 59 I JTAG Test Mode Select. This pin controls JTAG test operations
in the S3C4530A. This pin is internally connected pull-up.

TDI 60 I JTAG Test Data In. The TDI level is used to serially shift test
data and instructions into the S3C4530A during JTAG test
operations. This pin is internally connected pull-up.

TDO 61 O JTAG Test Data Out. The TDO level is used to serially shift test
data and instructions out of the S3C4530A during JTAG test
operations.

nTRST 62 I JTAG Not Reset. Asynchronous reset of the JTAG logic.
This pin is internally connected pull-up.

S3C4530A PRODUCT OVERVIEW

1-7

Table 1-1. S3C4530A Signal Descriptions (Continued)

Signal Pin No. Type Description

ADDR[21:0]/
ADDR[10]/AP (1)

117-110,
129-120,
135-132

O Address Bus. The 22-bit address bus, ADDR[21:0], covers the full
4M word address range of each ROM/SRAM, flash memory,
DRAM, and the external I/O banks.
The 23-bit internal address bus used to generate DRAM address.
The number of column address bits in DRAM bank can be
programmed 8bits to 11bits use by DRAMCON registers.
ADDR[10]/AP is the auto pre-charge control pin. The auto pre-
charge command is issued at the same time as burst read or
burst write by asserting high on ADDR[10]/AP.

XDATA[31:0] 141-136,
154-144,
166-159,
175-169

I/O External (bi-directional, 32-bit) Data Bus. The S3C4530A data
bus supports external 8-bit, 16-bit, and 32-bit bus sizes.

nRAS[3:0]/
nSDCS[3:0] (1)

94, 91, 90,
89

O Not Row Address Strobe for DRAM. The S3C4530A supports up
to four DRAM banks. One nRAS output is provided for each
bank. nSDCS[3:0] are chip select pins for SDRAM.

nCAS[3:0]

nCAS[0]/nSDRAS

nCAS[1]/nSDCAS

nCAS[2]/CKE (1)

98, 97, 96,
95

O Not column address strobe for DRAM. The four nCAS outputs
indicate the byte selections whenever a DRAM bank is accessed.
nSDRAS is row address strobe signal for SDRAM. Latches row
addresses on the positive going edge of the SDCLK with
nSDRAS low. Enable row access and pre-charge. nSDCAS is
column address strobe for SDRAM. Latches column addresses
on the positive going edge of the SDCLK with nSDCAS low.
Enables column access. CKE is clock enable signal for SDRAM.
Masks SDRAM system clock, SDCLK to freeze operation from
the next clock cycle. SDCLK should be enabled at least one
cycle prior to new command. Disable input buffers of SDRAM for
power down in standby.

nDWE 99 O DRAM Not Write Enable. This pin is provided for DRAM bank
write operations. (nWBE[3:0] is used for write operations to the
ROM/ SRAM/flash memory banks.) .

nECS[3:0] 70, 69, 68,
67

O Not External I/O Chip Select. Four external I/O banks are
provided for external memory-mapped I/O operations. Each I/O
bank stores up to 16 Kbytes. nECS signals indicate which of the
four external I/O banks is selected.

nEWAIT 71 I Not External Wait. This signal is activated when an external I/O
device or ROM/SRAM/flash bank 0 to 5 needs more access
cycles than those defined in the corresponding control register.

PRODUCT OVERVIEW S3C4530A

1-8

Table 1-1. S3C4530A Signal Descriptions (Continued)

Signal Pin No. Type Description

nRCS[5:0] 88, 84, 75 O Not ROM/SRAM/Flash Chip Select. The S3C4530A can access
up to six external ROM/SRAM/Flash banks. By controlling the
nRCS signals, you can map CPU addresses into the physical
memory banks.

B0SIZE[1:0] 74, 73 I Bank 0 Data Bus Access Size. Bank 0 is used for the boot
program. You use these pins to set the size of the bank 0 data
bus as follows: '01' = one byte, '10' = half-word, '11' = one word,
and '00' = reserved.

nOE 72 O Not Output Enable. Whenever a memory access occurs, the nOE
output controls the output enable port of the specific memory
device.

nWBE[3:0]/
DQM[3:0] (1)

107,

102, 100

O Not Write Byte Enable. Whenever a memory write access
occurs, the nWBE output controls the write enable port of the
specific memory device (except for DRAM). For DRAM banks,
CAS[3:0] and nDWE are used for the write operation.
DQM is data input/output mask signal for SDRAM.

ExtMREQ 108 I External Bus Master Request. An external bus master uses this
pin to request the external bus. When it activates the ExtMREQ
signal, the S3C4530A drives the state of external bus pins to high
impedance. This lets the external bus master take control of the
external bus. When it has the control, the external bus master
assumes responsibility for DRAM refresh operations. The
ExtMREQ signal is deactivated when the external bus master
releases the external bus. When this occurs, ExtMACK goes Low
level and the S3C4530A assumes the control of the bus.

ExtMACK 109 O External Bus Acknowledge. (See the ExtMREQ pin description.)

MDC 50 O Management Data Clock. The signal level at the MDC pin is used
as a timing reference for data transfers that are controlled by the
MDIO signal.

MDIO 48 I/O Management Data I/O. When a read command is being
executed, data that is clocked out of the PHY is presented on this
pin. When a write command is being executed, data that is
clocked out of the controller is presented on this pin for the
Physical Layer Entity, PHY.

LITTLE 49 I Little endian mode selection pin. If LITTLE is High, S3C4530A
operate in little endian mode. If Low, then in Big endian mode.
Default value is low because this pin is pull-downed internally.

COL/COL_10M 38 I Collision Detected/Collision Detected for 10M. COL is asserted
asynchronously with minimum delay from the start of a collision
on the medium in MII mode. COL_10M is asserted when a 10-
Mbit/s PHY detects a collision.

S3C4530A PRODUCT OVERVIEW

1-9

Table 1-1. S3C4530A Signal Descriptions (Continued)

Signal Pin No. Type Description

TX_CLK/
TXCLK_10M

46 I Transmit Clock/Transmit Clock for 10M. The controller drives
TXD[3:0] and TX_EN from the rising edge of TX_CLK. In MII
mode, the PHY samples TXD[3:0] and TX_EN on the rising edge
of TX_CLK. For data transfers, TXCLK_10M is provided by the
10-Mbit/s PHY.

TXD[3:0]
LOOP_10M

TXD_10M

44, 43,

40, 39

O Transmit Data/Transmit Data for 10M/Loop-back for 10M.
Transmit data is aligned on nibble boundaries. TXD[0]
corresponds to the first bit to be transmitted on the physical
medium, which is the LSB of the first byte and the fifth bit of that
byte during the next clock. TXD_10M is shared with TXD[0] and
is a data line for transmitting to the 10-Mbit/s PHY. LOOP_10M is
shared with TXD[1] and is driven by the loop-back bit in the
control register.

TX_EN/
TXEN_10M

47 O Transmit Enable/Transmit Enable for 10M. TX_EN provides
precise framing for the data carried on TXD[3:0]. This pin is
active during the clock periods in which TXD[3:0] contains valid
data to be transmitted from the preamble stage through CRC.
When the controller is ready to transfer data, it asserts
TXEN_10M.

TX_ERR/
PCOMP_10M

45 O Transmit Error/Packet Compression Enable for 10M. TX_ERR is
driven synchronously to TX_CLK and sampled continuously by
the Physical Layer Entity, PHY. If asserted for one or more
TX_CLK periods, TX_ERR causes the PHY to emit one or more
symbols which are not part of the valid data, or delimiter set
located somewhere in the frame that is being transmitted.
PCOMP_10M is asserted immediately after the packet’ s DA field
is received. PCOMP_10M is used with the Management Bus of
the DP83950 Repeater Interface Controller (from National
Semiconductor). The MAC can be programmed to assert
PCOMP if there is a CAM match, or if there is not a match. The
RIC (Repeater Interface Controller) uses this signal to compress
(shorten) the packet received for management purposes and to
reduce memory usage. (See the DP83950 Data Sheet, published
by National Semiconductor, for details on the RIC Management
Bus.) This pin is controlled by a special register, with which you
can define the polarity and assertion method (CAM match active
or not match active) of the PCOMP signal.

CRS/CRS_10M 28 I Carrier Sense/Carrier Sense for 10M. CRS is asserted
asynchronously with minimum delay from the detection of a non-
idle medium in MII mode. CRS_10M is asserted when a 10-
Mbit/s PHY has data to transfer. A 10-Mbit/s transmission also
uses this signal.

RX_CLK/
RXCLK_10M

37 I Receive Clock/Receive Clock for 10M. RX_CLK is a continuous
clock signal. Its frequency is 25 MHz for 100-Mbit/s operation,
and 2.5 MHz for 10-Mbit/s. RXD[3:0], RX_DV, and RX_ERR are
driven by the PHY off the falling edge of RX_CLK, and sampled
on the rising edge of RX_CLK. To receive data, the RXCLK_10 M
clock comes from the 10Mbit/s PHY.

PRODUCT OVERVIEW S3C4530A

1-10

Table 1-1. S3C4530A Signal Descriptions (Continued)

Signal Pin No. Type Description

RXD[3:0]/
RXD_10M

 35, 34,

33, 30

I Receive Data/Receive Data for 10M. RXD is aligned on nibble
boundaries. RXD[0] corresponds to the first bit received on the
physical medium, which is the LSB of the byte in one clock
period and the fifth bit of that byte in the next clock. RXD_10M is
shared with RXD[0] and it is a line for receiving data from the 10-
Mbit/s PHY.

RX_DV/LINK_10M 29 I Receive Data Valid/Link Status for 10M. PHY asserts RX_DV
synchronously, holding it active during the clock periods in which
RXD[3:0] contains valid data received. PHY asserts RX_DV no
later than the clock period when it places the first nibble of the
start frame delimiter (SFD) on RXD[3:0]. If PHY asserts RX_DV
prior to the first nibble of the SFD, then RXD[3:0] carries valid
preamble symbols. LINK_10M is shared with RX_DV and used to
convey the link status of the 10-Mbit/s endec. The value is stored
in a status register.

RX_ERR 36 I Receive Error. PHY asserts RX_ERR synchronously whenever it
detects a physical medium error (e.g., a coding violation). PHY
asserts RX_ERR only when it asserts RX_DV.

TXDA 9 O HDLC Ch-A Transmit Data. The serial output data from the
transmitter is coded in NRZ/NRZI/FM/Manchester data format.

RXDA 7 I HDLC Ch-A Receive Data. The serial input data received by the
device should be coded in NRZ/NRZI/FM/Manchester data
format. The data rate should not exceed the rate of the
S3C4530A internal master clock.

nDTRA 6 O HDLC Ch-A Data Terminal Ready. nDTRA output indicates that
the data terminal device is ready for transmission and reception.

nRTSA 8 O The nRTS pin goes low at that time the data into the TxFIFO.
And this pin output state can be controlled directly using RTS bit
in TCON register. If this bit set to one, nRTS goes low state.
If the AutoEn bit set to one, the data in TxFIFO can be
transmitted only when the nCTS state has low. If AutoEn bit set
to zero, the data in TxFIFO can be transmitted irrespective of the
nCTS state.

nCTSA 10 I HDLC Ch-A Clear To Send. The S3C4530A stores each
transition of nCTS to ensure that its occurrence would be
acknowledged by the system. If AutoEn bit set to one, it is
possible to transmit data only when nCTS active state.

nDCDA 13 I HDLC Ch-A Data Carrier Detected. If AutoEn bit is set to one,
high level on this pin resets and inhibits the receiver register.
Data from a previous frame that may remain in the RxFIFO is
retained. The S3C4530A stores each transition of nDCD. If
AutoEn bit set to one, it is possible to receive data only when
nDCD active state.

nSYNCA 15 O HDLC Ch-A Sync is detected. This indicates the reception of a
flag. The nSYNC output goes low for one bit time beginning at
the last bit of the flag.

S3C4530A PRODUCT OVERVIEW

1-11

Table 1-1. S3C4530A Signal Descriptions (Continued)

Signal Pin No. Type Description

RXCA 14 I HDLC Ch-A Receiver Clock. When this clock input is used as the
receiver clock, the receiver samples the data on the positive
edge of RXCA clock. It is possible to samples the data on the
negative edge by register setting. This clock can be the source
clock of the receiver, the baud rate generator, or the DPLL.

TXCA 16 I/O HDLC Ch-A Transmitter Clock. When this clock input is used as
the transmitter clock, the transmitter shifts data on the negative
transition of the TXCA clock . It is possible to samples the data
on the positive edge by register setting. If you do not use TXCA
as the transmitter clock, you can use it as an output pin for
monitoring internal clocks such as the transmitter clock, receiver
clock, and baud rate generator output clocks.

TXDB 20 O HDLC Ch-B Transmit Data. See the TXDA pin description.

RXDB 18 I HDLC Ch-B Receive Data. See the RXDA pin description.

nDTRB 17 O HDLC Ch-B Data Terminal Ready. See the nDTRA pin
description.

nRTSB 19 O HDLC Ch-B Request To Send. See the nRTSA pin description.

nCTSB 23 I HDLC Ch-B Clear To Send. See the nCTSA pin description.

nDCDB 24 I HDLC Ch-B Data Carrier Detected. See the nDCDA pin
description.

nSYNCB 26 O HDLC Ch-B Sync is detected. See the nSYNCA pin description.

RXCB 25 I HDLC Ch-B Receiver Clock. See the RXCA pin description.

TXCB 27 I/O HDLC Ch-B Transmitter Clock. See the TXCA pin description.

UCLK 64 I The external UART clock input. MCLK or PLL generated clock
can be used as the UART clock. You can use UCLK, with an
appropriate divided by factor, if a very precious baud rate clock is
required.

UARXD0/P[18] 202 I/B UART0 Receive Data. RXD0 is the UART0 input signal for
receiving serial data. This pin can be used general I/O port also.
It can be controlled by IOPCON register. See chapter 12.

UATXD0/P[20] 204 O/B UART0 Transmit Data. TXD0 is the UART0 output signal for
transmitting serial data. This pin can be used general I/O port
also. It can be controlled by IOPCON register. See chapter 12.

nUADSR0/P[19] 203 I/B Not UART0 Data Set Ready. This input signals in the UART0 that
the peripheral (or host) is ready to transmit or receive serial data.
See chapter 10.

nUADTR0/P[21] 205 O/B Not UART0 Data Terminal Ready. This output signals the host
(or peripheral) that UART0 is ready to transmit or receive serial
data. This pin output state can be controlled by UART0 control
register.

PRODUCT OVERVIEW S3C4530A

1-12

Table 1-1. S3C4530A Signal Descriptions (Continued)

Signal Pin No. Type Description

nUADCD0/P[2] 180 I/B This input pin function is determined by hardware flow control bit
value in UART control register. If hardware flow control bit set to
one, UART can receive the receiving data only when this pin
state is active.

nUACTS0/P[3] 181 I/B This input pin function controlled by hardware flow control bit
value in UART control register. If hardware flow control bit set to
one, UART can transmit the transmitting data only when this pin
state is active.

nUARTS0/P[4] 182 O/B This pin output state goes Low or High according to the transmit
data is in Tx buffer or Tx FIFO when hardware flow control bit
value set to one in UART control register. If Tx buffer or Tx FIFO
has data to send, this pin state goes low. If hardware flow control
bit is zero, this pin output can be controlled directly by UART
control register[25] bit value.

UARXD1/P[22] 206 I/B See UART0 description.

UATXD1/P[24] 4 O/B See UART0 description.

nUADTR1/P[25] 5 O/B See UART0 description.

nUADSR1/P[23] 3 I/B See UART0 description.

nUADCD1/P[5] 183 I/B See UART0 description.

nUACTS1/P[6] 184 I/B See UART0 description.

nUARTS1/P[7] 185 O/B See UART0 description.

S3C4530A PRODUCT OVERVIEW

1-13

Table 1-1. S3C4530A Signal Descriptions (Continued)

Signal Pin No. Type Description

P[1:0] 179, 176 I/O General I/O ports. See the I/O ports, chapter 12.

XINTREQ[3:0]
P[11:8]

191 - 189,
186

I/O External interrupt request lines or general I/O ports.

See the I/O ports, chapter 12.

nXDREQ[1:0]/
P[13:12]

193, 192 I/O Not External DMA requests for GDMA or general I/O ports.

See the I/O ports, chapter 12.

nXDACK[1:0]
P[15:14]

195, 194 I/O Not External DMA acknowledge from GDMA or general I/O ports.

See the I/O ports, chapter 12.

TOUT0/P[16] 196 I/O Timer 0 out or general I/O port. See the I/O ports, chapter 12.

TOUT1/P[17] 199 I/O Timer 1 out or general I/O port. See the I/O ports, chapter 12.

SCL 200 I/O I2C serial clock.

SDA 201 I/O I2C serial data.

VDDP 1, 21, 41,
56, 78, 92,
105, 118,
130, 155,
167, 177,
197

Power I/O pad power

VDDI 11, 31, 51,
65, 103,
142, 157,
187, 207

Power Internal core power

VSSP 2, 22, 42,
57, 79, 81,
93, 106,
119, 131,
156, 168,
178, 198

GND I/O pad ground

VSSI 12, 32, 52,
66, 104,
143, 158,
188, 208

GND Internal core ground

VDDA 53 Power Analog power for PLL

VSSA/VBBA 54 GND Analog/Bulk ground for PLL

NOTE: SDRAM or EDO/normal DRAM interface signal pins are shared functions. It′s functions will be configured by
SYSCFG[31].

PRODUCT OVERVIEW S3C4530A

1-14

Table 1-2. S3C4530A Pin List and PAD Type

Group Pin Name Pin Counts I/O Type Pad Type Description

System XCLK 1 I ptic S3C4530A system source clock.

Configuration MCLKO 1 O pob4 System clock out.

 (8) CLKSEL 1 I ptic Clock select.

nRESET 1 I ptis Not reset.

CLKOEN 1 I ptic Clock out enable/disable.

TMODE 1 I ptic Test mode.

LITTLE 1 I pticd Little endian mode select pin

FILTER 1 I pia_bb PLL filter pin

TAP Control TCK 1 I ptic JTAG test clock.

 (5) TMS 1 I pticu JTAG test mode select.

TDI 1 I pticu JTAG test data in.

TDO 1 O ptot2 JTAG test data out.

nTRST 1 I pticu JTAG not reset.

Memory ADDR[21:0] 22 O ptot6 Address bus.

Interface XDATA[31:0] 32 I/O ptbsut6 External, bi-directional, 32-bit data bus.

(83) nRAS[3:0] 4 O ptot4 Not row address strobe for DRAM.

nCAS[3:0] 4 O ptot4 Not column address strobe for DRAM.

nDWE 1 O ptot4 Not write enable for DRAM.

nECS[3:0] 4 O ptot4 Not external I/O chip select.

nEWAIT 1 I ptic Not external wait signal.

nRCS[5:0] 6 O ptot4 Not ROM/SRAM/flash chip select.

B0SIZE[1:0] 2 I ptic Bank 0 data bus access size.

nOE 1 O ptot4 Not output enable.

nWBE[3:0] 4 O ptot4 Not write byte enable.

ExtMREQ 1 I ptic External master bus request.

ExtMACK 1 O pob1 External bus acknowledge.

S3C4530A PRODUCT OVERVIEW

1-15

Table 1-2. S3C4530A Pin List and PAD Type (Continued)

Group Pin Name Pin
Counts

I/O
Type

Pad
Type

Description

Ethernet MDC 1 O pob4 Management data clock.

Controller MDIO 1 I/O ptbcut4 Management data I/O.

(18) COL/ COL_10M 1 I ptis Collision detected/collision detected for
10M.

TX_CLK/ TXCLK_10M 1 I ptis Transmit data/transmit data for 10M.

TXD[3:0]/TXD_10M 4 O pob4 Transmit data/transmit data for 10M.

TX_EN/ TXEN_10M 1 O pob4 Transmit enable or transmit enable for
10M.

TX_ERR/ PCOMP_10M 1 O pob4 Transmit error/packet compression
enable for 10M.

CRS/ CRS_10M 1 I ptis Carrier sense/carrier sense for 10M.

RX_CLK/ RXCLK_10M 1 I ptis Receive clock/receive clock for 10M.

RXD[3:0]/ RXD_10M 4 I ptis Receive data/receive data for 10M.

RX_DV/ LINK_10M 1 I ptis Receive data valid.

RX_ERR 1 I ptis Receive error.

HDLC TXDA 1 O pob4 HDLC channel A transmit data.

Channel A RXDA 1 I ptis HDLC channel A receive data.

(9) nDTRA 1 O pob4 HDLC channel A data terminal ready.

nRTSA 1 O pob4 HDLC channel A request to send.

nCTSA 1 I ptis HDLC channel A clear to send.

nDCDA 1 I ptis HDLC channel A data carrier detected.

nSYNCA 1 O pob4 HDLC channel A sync is detected.

RXCA 1 I ptis HDLC channel A receiver clock.

TXCA 1 I/O ptbsut1 HDLC channel A transmitter clock.

HDLC TXDB 1 O pob4 HDLC channel B transmit data.

Channel B RXDB 1 I ptis HDLC channel B receive data.

(9) nDTRB 1 O pob4 HDLC channel B data terminal ready.

nRTSB 1 O pob4 HDLC channel B request to send.

nCTSB 1 I ptis HDLC channel B clear to send.

nDCDB 1 I ptis HDLC channel B data carrier detected.

nSYNCB 1 O pob4 HDLC channel B sync is detected.

RXCB 1 I ptis HDLC channel B receiver clock.

TXCB 1 I/O ptbsut1 HDLC channel B transmitter clock.

PRODUCT OVERVIEW S3C4530A

1-16

Table 1-2. S3C4530A Pin List and PAD Type (Continued)

Group Pin Name Pin Counts I/O Type Pad Type Description
UART 0 (8) UCLK 1 I ptis UART External Clock for UART0/UART1

UARXD0/
P[18]

1 I/B ptbst4sm UART 0 receive data.

UATXD0/
P[20]

1 O/B ptbst4sm UART 0 transmit data.

nUADTR0/
P[21]

1 O/B ptbst4sm Not UART 0 data terminal ready.

nUADSR0/
P[19]

1 I/B ptbst4sm Not UART0 data set ready.

nUADCD0/
P[2]

1 I/B ptbst4sm Not UART0 data carrier detect.

nUACTS0/
P[3]

1 I/B ptbst4sm Not UART0 clear to send.

nUARTS0/
P[4]

1 O/B ptbst4sm Not UART0 request to send

UART 1 (7) UARXD1/
P[22]

1 I/B ptbst4sm UART 1 receive data.

UATXD1/
P[24]

1 O/B ptbst4sm UART 1 transmit data.

nUADTR1/
P[25]

1 O/B ptbst4sm Not UART 1 data terminal ready.

nUADSR1/
P[23]

1 I/B ptbst4sm Not UART 1 data set ready.

nUADCD1/
P[5]

1 I/B ptbst4sm Not UART1 data carrier detect.

nUACTS1/
P[6]

1 I/B ptbst4sm Not UART1 clear to send.

nUARTS1/
P[7]

1 O/B ptbst4sm Not UART1 request to send

General P[1:0] 2 I/O ptbst4sm General I/O port.

Purpose I/O
port

XINTREQ
[3:0] /P[11:8]

4 I/O ptbst4sm External interrupt request or general I/O
port.

(XINTREQ,
nXDREQ,

nXDREQ[1:0]
/ P[13:12]

2 I/O ptbst4sm External DMA requests for GDMA or
general I/O ports.

nXDACK,
Timer0,1),

nXDACK[1:0]
/ P[15:14]

2 I/O ptbst4sm External DMA acknowledge from GDMA
or general I/O ports.

(18) TIMER0/
P[16]

1 I/O ptbst4sm Timer 0 out or general I/O port.

TIMER1/
P[17]

1 I/O ptbst4sm Timer 1 out or general I/O port.

I2C (2) SCL 1 I/O ptbcd4 I2C serial clock.

SDA 1 I/O ptbcd4 I2C serial data.

S3C4530A PRODUCT OVERVIEW

1-17

Table 1-3. S3C4530A PAD Type

Pad

Type

I/O

Type

Current
Drive

Cell Type Feature Slew-Rate
Control

ptic I - LVCMOS Level 5V-tolerant -

ptis I - LVCMOS Schmit Trigger Level 5V-tolerant -

pticu I - LVCMOS Level 5V-tolerant
Pull-up register

-

pticd I - LVCMOS Level 5V-tolerant
Pull-down register

-

pia_bb I - Analog input with separate bulk bias - -

pob1 O 1mA Normal Buffer - -

ptot2 O 2mA Tri-state Buffer 5V-tolerant -

pob4 O 4mA Normal Buffer - -

ptot4 O 4mA Tri-state Buffer 5V-tolerant -

ptot6 O 6mA Tri-state Buffer 5V-tolerant -

ptbsut1 I/O 1mA LVCMOS Schmit trigger level Tri-
state Buffer

5V-tolerant Pull-up
register

-

ptbcut4 I/O 4mA LVCMOS Level Tri-state Buffer 5V-tolerant Medium

ptbcd4 I/O 4mA LVCMOS Level Open drain Buffer 5V-tolerant -

ptbst4sm I/O 4mA LVCMOS Schmit trigger level 5V-tolerant Medium

ptbsut6 I/O 6mA LVCMOS Schmit trigger level 5V-tolerant
pull-up register

-

NOTE: pticu and pticd provides 100K Ohm Pull-up(down) register. For detail information about the pad type,
see Chapter 4. Input/Output Cells of the "STD90/MDL90 0.35um 3.3V Standard Cell Library Data Book",
produced by Samsung Electronics Co., Ltd, ASIC Team

64*fMCLK 512*fMCLK

nRESET

nRSCO

NOTE: After the falling edge of nRESET, the S3C4530A count 64 cycles for a system reset
and needs further 512 cycles for a TAG RAM clear of cache.
After these cycles, the S3C4530A asserts nRCS0 when the nRESET is released.

 Figure 1-3. Reset Timing Diagram

PRODUCT OVERVIEW S3C4530A

1-18

CPU CORE OVERVIEW

The S3C4530A CPU core is a general purpose 32-bit ARM7TDMI microprocessor, developed by Advanced RISC
Machines, Ltd. (ARM). The core architecture is based on Reduced Instruction Set Computer (RISC) principles.
The RISC architecture makes the instruction set and its related decoding mechanism simpler and more efficient
than those with microprogrammed Complex Instruction Set Computer (CISC) systems. High instruction
throughput and impressive real-time interrupt response are among the major benefits of the architecture.
Pipelining is also employed so that all components of the processing and memory systems can operate
continuously. The ARM7TDMI has a 32-bit address bus.

An important feature of the ARM7TDMI processor that makes itself distinct from the ARM7 processor is a unique
architectural strategy called THUMB. The THUMB strategy is an extension of the basic ARM architecture
consisting of 36 instruction formats. These formats are based on the standard 32-bit ARM instruction set, while
having been re-coded using 16-bit wide opcodes.

As THUMB instructions are one-half the bit width of normal ARM instructions, they produce very high-density
codes. When a THUMB instruction is executed, its 16-bit opcode is decoded by the processor into its equivalent
instruction in the standard ARM instruction set. The ARM core then processes the 16-bit instruction as it would a
normal 32-bit instruction. In other words, the THUMB architecture gives 16-bit systems a way to access the 32-bit
performance of the ARM core without requiring the full overhead of 32-bit processing.

As the ARM7TDMI core can execute both standard 32-bit ARM instructions and 16-bit THUMB instructions, it
allows you to mix the routines of THUMB instructions and ARM code in the same address space. In this way, you
can adjust code size and performance, routine by routine, to find the best programming solution for a specific
application.

Address
Register

Address
Incrementer

Register Bank

Multiplier

Barrel
Shifter

32-BIT ALU

Write Data
Register

Instruction
Decoder and
Logic Controll

Instruction
Pipeline and Read

Data Register

Figure 1-4. ARM7TDMI Core Block Diagram

S3C4530A PRODUCT OVERVIEW

1-19

INSTRUCTION SET

The S3C4530A instruction set is divided into two subsets: a standard 32-bit ARM instruction set and a 16-bit
THUMB instruction set.

The 32-bit ARM instruction set is comprised of thirteen basic instruction types, which can, in turn, be divided into
four broad classes:

• Four types of branch instructions which control program execution flow, instruction privilege levels, and
switching between an ARM code and a THUMB code.

• Three types of data processing instructions which use the on-chip ALU, barrel shifter, and multiplier to
perform high-speed data operations in a bank of 31 registers (all with 32-bit register widths).

• Three types of load and store instructions which control data transfer between memory locations and the
registers. One type is optimized for flexible addressing, another for rapid context switching, and the third for
swapping data.

• Three types of co-processor instructions which are dedicated to controlling external co-processors. These
instructions extend the off-chip functionality of the instruction set in an open and uniform way.

NOTE

 All 32-bit ARM instructions can be executed conditionally.

The 16-bit THUMB instruction set contains 36 instruction formats drawn from the standard 32-bit ARM instruction
set. The THUMB instructions can be divided into four functional groups:

• Four branch instructions.

• Twelve data processing instructions, which are a subset of the standard ARM data processing instructions.

• Eight load and store register instructions.

• Four load and store multiple instructions.

NOTE

Each 16-bit THUMB instruction has a corresponding 32-bit ARM instruction with an identical processing
model.

The 32-bit ARM instruction set and the 16-bit THUMB instruction set are good targets for compilers of many
different high-level languages. When an assembly code is required for critical code segments, the ARM
programming technique is straightforward, unlike that of some RISC processors which depend on sophisticated
compiler technology to manage complicated instruction interdependencies.

Pipelining is employed so that all parts of the processor and memory systems can operate continuously.
Typically, while one instruction is being executed, its successor is being decoded, and the third instruction is
being fetched from memory.

PRODUCT OVERVIEW S3C4530A

1-20

MEMORY INTERFACE

The CPU memory interface has been designed to help the highest performance potential to be realized without
incurring high costs in the memory system. Speed-critical control signals are pipelined so that system control
functions can be implemented in standard low-power logic. These pipelined control signals allow you to fully
exploit the fast local access modes, offered by industry standard dynamic RAMs.

OPERATING STATES

From a programmer′s point of view, the ARM7TDMI core is always in one of two operating states. These states,
which can be switched by software or by exception processing, are:

• ARM state (when executing 32-bit, word-aligned, ARM instructions), and

• THUMB state (when executing 16-bit, half-word aligned THUMB instructions).

OPERATING MODES

The ARM7TDMI core supports seven operating modes:

• User mode: a normal program execution state

• FIQ (Fast Interrupt Request) mode: for supporting a specific data transfer or channel processing

• IRQ (Interrupt Request) mode: for general purpose interrupt handling

• Supervisor mode: a protected mode for the operating system

• Abort mode: entered when a data or instruction pre-fetch is aborted

• System mode: a privileged user mode for the operating system

• Undefined mode: entered when an undefined instruction is executed

Operating mode changes can be controlled by software. They can also be caused by external interrupts or
exception processing. Most application programs execute in user mode. Privileged modes (that is, all modes
other than User mode) are entered to service interrupts or exceptions, or to access protected resources.

S3C4530A PRODUCT OVERVIEW

1-21

REGISTERS

The S3C4530A CPU core has a total of 37 registers: 31 general-purpose 32-bit registers, and 6 status registers.
Not all of these registers are always available. Whether a registers is available to the programmer at any given
time depends on the current processor operating state and mode.

NOTE

When the S3C4530A is operating in ARM state, 16 general registers and one or two status registers can
be accessed at any time. In privileged mode, mode-specific banked registers are switched in.

Two register sets, or banks, can also be accessed, depending on the core′s current state, the ARM state register
set and the THUMB state register set:

• The ARM state register set contains 16 directly accessible registers: R0-R15. All of these registers, except for
R15, are for general-purpose use, and can hold either data or address values. An additional (17th) register,
the CPSR (Current Program Status Register), is used to store status information.

• The THUMB state register set is a subset of the ARM state set. You can access 8 general registers, R0-R7,
as well as the program counter (PC), a stack pointer register (SP), a link register (LR), and the CPSR. Each
privileged mode has a corresponding banked stack pointer, link register, and saved process status register
(SPSR).

The THUMB state registers are related to the ARM state registers as follows:

• THUMB state R0-R7 registers and ARM state R0-R7 registers are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

• THUMB state SP, LR, and PC are mapped directly to ARM state registers R13, R14, and R15, respectively

In THUMB state, registers R8-R15 are not part of the standard register set. However, you can access them for
assembly language programming and use them for fast temporary storage, if necessary.

PRODUCT OVERVIEW S3C4530A

1-22

EXCEPTIONS

An exception arises when the normal flow of program execution is interrupted, e.g., when processing is diverted
to handle an interrupt from a peripheral. The processor state just prior to handling the exception must be
preserved so that the program flow can be resumed when the exception routine is completed. Multiple exceptions
may arise simultaneously.

To process exceptions, the S3C4530A uses the banked core registers to save the current state. The old PC value
and the CPSR contents are copied into the appropriate R14 (LR) and SPSR registers The PC and mode bits in
the CPSR are adjusted to the value corresponding to the type of exception being processed.

The S3C4530A core supports seven types of exceptions. Each exception has a fixed priority and a corresponding
privileged processor mode, as shown in Table 1-4.

Table 1-4. S3C4530A CPU Exceptions

Exception Mode on Entry Priority

Reset Supervisor mode 1 (highest)

Data abort Abort mode 2

FIQ FIQ mode 3

IRQ IRQ mode 4

Prefetch abort Abort mode 5

Undefined instruction Undefined mode 6

SWI Supervisor mode 6 (lowest)

S3C4530A PRODUCT OVERVIEW

1-23

SPECIAL REGISTERS

Table 1-5. S3C4530A Special Registers

Group Registers Offset R/W Description Reset/Value

System SYSCFG 0x0000 R/W System configuration register 0x4FFFFF91

Manager CLKCON 0x3000 R/W Clock control register 0x00000000

EXTACON0 0x3008 R/W External I/O timing register 1 0x00000000

EXTACON1 0x300C R/W External I/O timing register 2 0x00000000

EXTDBWTH 0x3010 R/W Data bus width for each memory bank 0x00000000

ROMCON0 0x3014 R/W ROM/SRAM/Flash bank 0 control register 0x20000060

ROMCON1 0x3018 R/W ROM/SRAM/Flash bank 1 control register 0x00000060

ROMCON2 0x301C R/W ROM/SRAM/Flash bank 2 control register 0x00000060

ROMCON3 0x3020 R/W ROM/SRAM/Flash bank 3 control register 0x00000060

ROMCON4 0x3024 R/W ROM/SRAM/Flash bank 4 control register 0x00000060

ROMCON5 0x3028 R/W ROM/SRAM/Flash bank 5 control register 0x00000060

DRAMCON0 0x302C R/W DRAM bank 0 control register 0x00000000

DRAMCON1 0x3030 R/W DRAM bank 1 control register 0x00000000

DRAMCON2 0x3034 R/W DRAM bank 2 control register 0x00000000

DRAMCON3 0x3038 R/W DRAM bank 3 control register 0x00000000

REFEXTCON 0x303C R/W Refresh and external I/O control register 0x000083ED

Ethernet BDMATXCON 0x9000 R/W Buffered DMA receive control register 0x00000000

(BDMA) BDMARXCON 0x9004 R/W Buffered DMA transmit control register 0x00000000

BDMATXPTR 0x9008 R/W Transmit frame descriptor start address 0x00000000

BDMARXPTR 0x900C R/W Receive frame descriptor start address 0x00000000

BDMARXLSZ 0x9010 R/W Receive frame maximum size Undefined

BDMASTAT 0x9014 R/W Buffered DMA status 0x00000000

CAM 0x9100-
0x917C

W CAM content (32 words) Undefined

BDMATXBUF 0x9200-
0x92FC

R/W BDMA Tx buffer (64 words) for test mode
addressing

Undefined

BDMARXBUF 0x9800-
0x99FC

R/W BDMA Rx buffer (64 words) for test mode
addressing

Undefined

Ethernet MACON 0xA000 R/W Ethernet MAC control register 0x00000000

(MAC) CAMCON 0xA004 R/W CAM control register 0x00000000

MACTXCON 0xA008 R/W MAC transmit control register 0x00000000

MACTXSTAT 0xA00C R/W MAC transmit status register 0x00000000

MACRXCON 0xA010 R/W MAC receive control register 0x00000000

MACRXSTAT 0xA014 R/W MAC receive status register 0x00000000

PRODUCT OVERVIEW S3C4530A

1-24

Table 1-5. S3C4530A Special Registers (Continued)

Group Registers Offset R/W Description Reset/Value

Ethernet STADATA 0xA018 R/W Station management data 0x00000000

(MAC) STACON 0xA01C R/W Station management control and address 0x00006000

CAMEN 0xA028 R/W CAM enable register 0x00000000

EMISSCNT 0xA03C R/W Missed error count register 0x00000000

EPZCNT 0xA040 R Pause count register 0x00000000

ERMPZCNT 0xA044 R Remote pause count register 0x00000000

ETXSTAT 0x9040 R Transmit control frame status 0x00000000

HDLC HMODE 0x7000 R/W HDLC mode register 0x00000000

Channel A HCON 0x7004 R/W HDLC control register 0x00000000

HSTAT 0x7008 R/W HDLC status register 0x00010400

HINTEN 0x700C R/W HDLC interrupt enable register 0x00000000

HTXFIFOC 0x7010 W TxFIFO frame continue register -

HTXFIFOT 0x7014 W TxFIFO frame terminate register -

HRXFIFO 0x7018 R HDLC RxFIFO entry register 0x00000000

HBRGTC 0x701C R/W HDLC baud rate generate time constant 0x00000000

HPRMB 0x7020 R/W HDLC preamble constant 0x00000000

HSAR0 0x7024 R/W HDLC station address 0 0x00000000

HSAR1 0x7028 R/W HDLC station address 1 0x00000000

HSAR2 0x702C R/W HDLC station address 2 0x00000000

HSAR3 0x7030 R/W HDLC station address 3 0x00000000

HMASK 0x7034 R/W HDLC mask register 0x00000000

HDMATxPTR 0x7038 R/W DMA Tx buffer descriptor pointer 0x00000000

HDMARxPTR 0x703C R/W DMA Rx buffer descriptor pointer 0x00000000

HMFLR 0x7040 R/W Maximum frame length register 0x00000000

HRBSR 0x7040 R/W DMA receive buffer size register 0x00000000

HSYNC 0x7048 R/W HDLC Sync Register 0x7E

TCON 0x704C R/W Transparent Control Register 0x00000000

 HDLC HMODE 0x8000 R/W HDLC mode register 0x00000000

Channel B HCON 0x8004 R/W HDLC control register 0x00000000

HSTAT 0x8008 R/W HDLC status register 0x00010400

HINTEN 0x800C R/W HDLC interrupt enable register 0x00000000

HTXFIFOC 0x8010 W TxFIFO frame continue register 0x00000000

HTXFIFOT 0x8014 W TxFIFO frame terminate register 0x00000000

HRXFIFO 0x8018 R HDLC RxFIFO entry register 0x00000000

HBRGTC 0x801C R/W HDLC baud rate generate time constant 0x00000000

HPRMB 0x8020 R/W HDLC preamble constant 0x00000000

S3C4530A PRODUCT OVERVIEW

1-25

Table 1-5. S3C4530A Special Registers (Continued)

Group Registers Offset R/W Description Reset/Value

HDLC HSAR0 0x8024 R/W HDLC station address 0 0x00006000

Channel B HSAR1 0x8028 R/W HDLC station address 1 0x00000000

HSAR2 0x802C R/W HDLC station address 2 0x00000000

HSAR3 0x8030 R HDLC station address 3 0x00000000

HMASK 0x8034 R HDLC mask register 0x00000000

HDMATxPTR 0x8038 R DMA Tx buffer descriptor pointer 0x00000000

HDMARxPTR 0x803C R/W DMA Rx buffer descriptor pointer 0x00000000

HMFLR 0x8040 R/W Maximum frame length register 0x00000000

HRBSR 0x8044 R/W DMA receive buffer size register 0x00000000

HSYNC 0x8048 R/W HDLC Sync Register 0x7E

TCON 0x804C R/W Transparent Control Register 0x00000000

I/O Ports IOPMOD 0x5000 R/W I/O port mode register 0x00000000

IOPCON 0x5004 R/W I/O port control register 0x00000000

IOPDATA 0x5008 R/W Input port data register 0x00000000

Interrupt INTMOD 0x4000 R/W Interrupt mode register Undefined

Controller INTPND 0x4004 R/W Interrupt pending register 0x00000000

INTMSK 0x4008 R/W Interrupt mask register 0x00000000

INTPRI0 0x400C R/W Interrupt priority register 0 0x003FFFFF

INTPRI1 0x4010 R/W Interrupt priority register 1 0x07060504

INTPRI2 0x4014 R/W Interrupt priority register 2 0x0B0A0908

INTPRI3 0x4018 R/W Interrupt priority register 3 0x0F0E0D0C

INTPRI4 0x401C R/W Interrupt priority register 4 0x13121110

INTPRI5 0x4020 R/W Interrupt priority register 5 0x00000014

INTOFFSET 0x4024 R Interrupt offset address register 0x00000054

INTOSET_FIQ 0x4030 R FIQ interrupt offset register 0x00000054

INTOSET_IRQ 0x4034 R IRQ interrupt offset register 0x00000054

 I2C Bus IICCON 0XF000 R/W I2C bus control status register 0x00000054

IICBUF 0xF004 R/W I2C bus shift buffer register Undefined

IICPS 0xF008 R/W I2C bus prescaler register 0x00000000

IICCOUNT 0xF00C R I2C bus prescaler counter register 0x00000000

GDMA GDMACON0 0xB000 R/W GDMA channel 0 control register 0x00000000

GDMACON1 0xC000 R/W GDMA channel 1 control register 0x00000000

GDMASRC0 0xB004 R/W GDMA source address register 0 Undefined

GDMADST0 0xB008 R/W GDMA destination address register 0 Undefined

PRODUCT OVERVIEW S3C4530A

1-26

Table 1-5. S3C4530AC Special Registers (Continued)

Group Registers Offset R/W Description Reset/Value

GDMA GDMASRC1 0xC004 R/W GDMA source address register 1 Undefined

GDMADST1 0xC008 R/W GDMA destination address register 1 Undefined

GDMACNT0 0xB00C R/W GDMA channel 0 transfer count register Undefined

GDMACNT1 0xC00C R/W GDMA channel 1 transfer count register Undefined

UART UCON0 0xD000 R/W UART channel 0 control register 0x00

UCON1 0xE000 R/W UART channel 1 control register 0x00

USTAT0 0xD004 R/W UART channel 0 status register 0xE0240

USTAT1 0xE004 R/W UART channel 1 status register 0xE0240

UINTEN0 0xD008 R/W UART channel 0 interrupt enable register 0x00000000

UINTEN1 0xE008 R/W UART channel 1 interrupt enable register 0x00000000

UTXBUF0 0xD00C W UART channel 0 transmit holding register Undefined

UTXBUF1 0xE00C W UART channel 1 transmit holding register Undefined

URXBUF0 0xD010 R UART channel 0 receive buffer register Undefined

URXBUF1 0xE010 R UART channel 1 receive buffer register Undefined

UBRDIV0 0xD014 R/W Baud rate divisor register 0 0x00

UBRDIV1 0xE014 R/W Baud rate divisor register 1 0x00

UCC1_0 0xD018 R/W UART0 Control Character Register 1 0x00000000

UCC1_1 0xE018 R/W UART1 Control Character Register 1 0x00000000

UCC2_0 0xD01C R/W UART0 Control Character Register 2 0x00000000

UCC2_1 0xE01C R/W UART1 Control Character Register 2 0x00000000

Timers TMOD 0x6000 R/W Timer mode register 0x00000000

TDATA0 0x6004 R/W Timer 0 data register 0x00000000

TDATA1 0x6008 R/W Timer 1 data register 0x00000000

TCNT0 0x600C R/W Timer 0 count register 0xffffffff

TCNT1 0x6010 R/W Timer 1 count register 0xffffffff

S3C4530A PROGRAMMER'S MODEL

2-1

2 PROGRAMMER′′S MODEL

OVERVIEW

S3C4530A was developed using the advanced ARM7TDMI core designed by advanced RISC machines, Ltd.

Processor Operating States

From the programmer′s point of view, the ARM7TDMI can be in one of two states:

— ARM state which executes 32-bit, word-aligned ARM instructions.

— THUMB state which operates with 16-bit, half-word-aligned THUMB instructions. In this state, the PC uses bit
1 to select between alternate half-words.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State

Entry into ARM state happens:

1. On execution of the BX instruction with the state bit clear in the operand register.

2. On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode′s link register, and execution commences at the exception′s vector address.

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

PROGRAMMER'S MODEL S3C4530A

2-2

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

8

4

0

24

31

5

9 15 8 7 0 Word address

8

4

0

9

5

1

10

6

2

11

7

3

Higher address

Lower address

w Most significant byte is at lowest address
w Word is addressed by byte address of most signficant byte

Figure 2-1. Big-Endian Addresses of Bytes within Words

NOTE

The data locations in the external memory are different with Figure 2-1 in the S3C4620. Please refer to
the chapter 4, system manager.

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word′s least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines
7 through 0.

Word address

w Most significant byte is at lowest address
w Word is addressed by byte address of least signficant byte

8

4

0

24

31

16

23 15 8 7 0

11

7

3

10

6

2

9

5

1

8

4

0

Higher address

Lower address

Figure 2-2. Little-Endian Addresses of Bytes Words

S3C4530A PROGRAMMER'S MODEL

2-3

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARM7TDMI supports byte (8-bit), half-word (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

OPERATING MODES

ARM7TDMI supports seven modes of operation:

— User (usr): The normal ARM program execution state

— FIQ (fiq): Designed to support a data transfer or channel process

— IRQ (irq): Used for general-purpose interrupt handling

— Supervisor (svc): Protected mode for the operating system

— Abort mode (abt): Entered after a data or instruction prefetch abort

— System (sys): A privileged user mode for the operating system

— Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in User mode. The non-user modes known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

PROGRAMMER'S MODEL S3C4530A

2-4

REGISTERS

ARM7TDMI has a total of 37 registers-31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information.

Register 14 is used as the subroutine link register. This receives a copy of R15 when a branch
and link (BL) instruction is executed. At all other times it may be treated as a
general-purpose register. The corresponding banked registers R14_svc, R14_irq,
R14_fiq, R14_abt and R14_und are similarly used to hold the return values of
R15 when interrupts and exceptions arise, or when branch and link instructions are
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits
[31:2] contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This contains condition code flags
and the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM state, many FIQ handlers do
not need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers
mapped to R13 and R14, allowing each of these modes to have a private stack pointer and link registers.

S3C4530A PROGRAMMER'S MODEL

2-5

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

System & User FIQ Supervisor About IRG Undefined

ARM State Program Status Register

= banked register

ARM State General Registers and Program Counter

R0

R1

R2

R3

R4

R5

R6

R7

R10

R8

R9

R11

R12

R15 (PC)

R13_und

R14_und

R0

R1

R2

R3

R4

R5

R6

R7

R10

R8

R9

R11

R12

R15 (PC)

R13_irq

R14_irq

R0

R1

R2

R3

R4

R5

R6

R7

R10

R8

R9

R11

R12

R15 (PC)

R13_abt

R14_abt

R10

R8

R9

R11

R12

R15 (PC)

R13_svc

R14_svc

R0

R1

R2

R3

R4

R5

R6

R7

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

Figure 2-3. Register Organization in ARM State

PROGRAMMER'S MODEL S3C4530A

2-6

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, R0–R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked stack pointers, link registers and Saved Process Status Registers (SPSRs) for
each privileged mode. This is shown in Figure 2-4.

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

System & User FIQ Supervisor About IRG Undefined

THUMB State Program Status Registers

= banked register

THUMB State General Registers and Program Counter

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

SP_fiq

LR_fiq

R0

R1

R2

R3

R4

R5

R6

R7

PC

SP_svg

LR_svc

R0

R1

R2

R3

R4

R5

R6

R7

PC

SP_abt

LR_abt

R0

R1

R2

R3

R4

R5

R6

R7

PC

SP_irq

LR_irq

R0

R1

R2

R3

R4

R5

R6

R7

PC

SP_und

LR_und

R0

R1

R2

R3

R4

R5

R6

R7

PC

Figure 2-4. Register Organization in THUMB State

S3C4530A PROGRAMMER'S MODEL

2-7

The Relationship between ARM and THUMB State Registers

The THUMB state registers relate to the ARM state registers in the following way:

— THUMB state R0–R7 and ARM state R0–R7 are identical

— THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

— THUMB state SP maps onto ARM state R13

— THUMB state LR maps onto ARM state R14

— The THUMB state program counter maps onto the ARM state program counter (R15)

This relationship is shown in Figure 2-5.

R0

R1

R2

R3

R4

R5

R6

R7

R0

R1

R2

R3

R5

R6

R7

R8

R9

R10

R11

R12

Stack Pointer (R13)

Link Register (R14)

Program Counter (R15)

CPSR

SPSR

Stack Pointer (SP)

Link Register (LR)

Program Counter (PC)

CPSR

SPSR

THUMB State ARM State

Lo
-r

eg
is

te
rs

H
i-r

eg
is

te
rs

R4

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

PROGRAMMER'S MODEL S3C4530A

2-8

Accessing Hi-Registers in THUMB State

In THUMB state, registers R8–R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0–R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register′s functions are:

— Hold information about the most recently performed ALU operation

— Control the enabling and disabling of interrupts

— Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

N Z C V I F T M4 M3 M2 M1 M0

31 30 29 28 27 26 25 24 8 7 6 5 4 3 2 1 0

Condition Code Flags (Reserved) Control Bits

Overflow

Carry/Borrow/Extend

Zero

Negative/Less Than

Mode bits

State bit

FIQ disable

FRQ disable

Figure 2-6. Program Status Register Format

S3C4530A PROGRAMMER'S MODEL

2-9

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.

In THUMB state, only the branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
change when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in
THUMB state, otherwise it is executing in ARM state. This is reflected on the TBIT
external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these disable the IRQ and
FIQ interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
processor′s operating mode, as shown in Table 2-1. Not all combinations of the
mode bits define a valid processor mode. Only those explicitly described shall be
used. The user should be aware that if any illegal value is programmed into the
mode bits, M[4:0], then the processor will enter an unrecoverable state. If this
occurs, reset should be applied.

PROGRAMMER'S MODEL S3C4530A

2-10

Table 2-1. PSR Mode. Bit Values

M[4:0] Mode Visible THUMB State Registers Visible ARM State Registers

10000 User R7..R0,

LR, SP

PC, CPSR

R14..R0,

PC, CPSR

10001 FIQ R7..R0,

LR_fiq, SP_fiq

PC, CPSR, SPSR_fiq

R7..R0,

R14_fiq..R8_fiq,

PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,

LR_irq, SP_irq

PC, CPSR, SPSR_irq

R12..R0,

R14_irq..R13_irq,

PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,

LR_svc, SP_svc,

PC, CPSR, SPSR_svc

R12..R0,

R14_svc..R13_svc,

PC, CPSR, SPSR_svc

10111 Abort R7..R0,

LR_abt, SP_abt,

PC, CPSR, SPSR_abt

R12..R0,

R14_abt..R13_abt,

PC, CPSR, SPSR_abt

11011 Undefined R7..R0

LR_und, SP_und,

PC, CPSR, SPSR_und

R12..R0,

R14_und..R13_und,

PC, CPSR

11111 System R7..R0,

LR, SP

PC, CPSR

R14..R0,

PC, CPSR

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR′s flag or
control bits, you must ensure that these unused bits are not altered. Also, your
program should not rely on them containing specific values, since in future
processors they may read as one or zero.

S3C4530A PROGRAMMER'S MODEL

2-11

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
See Exception Priorities on page 2-14.

Action on Entering an Exception

When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the appropriate Link Register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the Link Register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has
been entered from THUMB state, then the value written into the Link Register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the
case of SWI, MOVS PC, R14_svc will always return to the next instruction regardless of whether the SWI
was executed in ARM or THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which depends on the exception

4. Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nesting of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

PROGRAMMER'S MODEL S3C4530A

2-12

Exception Entry/Exit Summary

Table 2-2 summarizes the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes

ARM R14_x THUMB R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA – – 4

NOTES:
1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimizing the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR's F flag (but note that this is not possible from User mode). If the F flag
is clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

S3C4530A PROGRAMMER'S MODEL

2-13

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signalled by the external
ABORT input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

— Prefetch abort: occurs during an instruction prefetch.

— Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

— Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

— The swap instruction (SWP) is aborted as though it had not been executed.

— Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (ie it has the base in the transfer list), the overwriting is
prevented. All register overwriting is prevented after an abort is indicated, which means in particular that R15
(always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt,#4 ; for a prefetch abort, or
SUBS PC,R14_abt,#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

PROGRAMMER'S MODEL S3C4530A

2-14

Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or
Thumb):

MOV PC,R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap.
This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM
or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode in Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software Interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

S3C4530A PROGRAMMER′′S MODEL

2-15

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

1. Reset

2. Data abort

3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decoding of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR's F flag is clear),
ARM7TDMI enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from
FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be
added to worst-case FIQ latency calculations.

PROGRAMMER′′S MODEL S3C4530A

2-16

Interrupt Latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will be executing the
instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq.
This is 4 processor cycles.

Reset

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to fetch
instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value
of the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR's T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.

S3C4530A INSTRUCTION SET

3-1

3 INSTRUCTION SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data processing/
PSR Transfer

Multiply

Multiply Long

Single data swap

Branch and exchange

Halfword data transfer:
register offset
Halfword data transfer:
immediate offset

Block data transfer

Branch

Coprocessor data
transfer
Coprocessor data
Operation
Coprocessor register
Transfer

Software Interrupt

Undefined

Single data transfer

Cond 1 1 1 1 Ignored by processor

Cond 1 1 1 0 CRn RdCP Opc L CP# CP# 1 CRm

Cond 1 1 1 0 CRn CRdCP Opc CP# CP# 0 CRm

Cond 1 1 0 P U N W L Rn CRd CP# Offset

Cond 1 0 1 L Offset

Cond 1 0 0 P U S W L Rn Register List

Cond 0 1 1 1

Cond 0 1 1 P U B W L Rn Rd Offset

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm

Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn

Cond 0 0 0 1 0 B 0 0 Rn Rd Rm0 0 0 0 1 0 0 1

Cond 0 0 0 0 1 U A S RdHi RnLo Rn 1 0 0 1 Rm

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Cond 0 0 1 Opcode S Rn Rd Operand2

Figure 3-1. ARM Instruction Set Format

NOTE

Some instruction codes are not defined but do not cause the Undefined instruction trap to be taken, for
instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their
action may change in future ARM implementations.

INSTRUCTION SET S3C4530A

3-2

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd: = Rn + Op2 + Carry

ADD Add Rd: = Rn + Op2

AND AND Rd: = Rn AND Op2

B Branch R15: = address

BIC Bit clear Rd: = Rn AND NOT Op2

BL Branch with link R14: = R15, R15: = address

BX Branch and exchange R15: = Rn,

T bit: = Rn[0]

CDP Coprocessor data processing (coprocessor-specific)

CMN Compare negative CPSR flags: = Rn + Op2

CMP Compare CPSR flags: = Rn - Op2

EOR Exclusive OR Rd: = (Rn AND NOT Op2)

OR (op2 AND NOT Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd: = (address)

MCR Move CPU register to coprocessor register cRn: = rRn {<op>cRm}

MLA Multiply accumulate Rd: = (Rm * Rs) + Rn

MOV Move register or constant Rd: = Op2

MRC Move from coprocessor register to CPU register Rn: = cRn {<op>cRm}

MRS Move PSR status/flags to register Rn: = PSR

MSR Move register to PSR status/flags PSR: = Rm

MUL Multiply Rd: = Rm * Rs

MVN Move negative register Rd: = 0xFFFFFFFF EOR Op2

S3C4530A INSTRUCTION SET

3-3

Table 3-1. The ARM Instruction Set (Continued)

Mnemonic Instruction Action

ORR OR Rd: = Rn OR Op2

RSB Reverse subtract Rd: = Op2 - Rn

RSC Reverse subtract with carry Rd: = Op2 - Rn-1 + Carry

SBC Subtract with carry Rd: = Rn - Op2-1 + Carry

STC Store coprocessor register to memory Address: = CRn

STM Store multiple Stack manipulation (push)

STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn - Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd: = [Rn], [Rn] := Rm

TEQ Test bit-wise equality CPSR flags: = Rn EOR Op2

TST Test bits CPSR flags: = Rn AND Op2

INSTRUCTION SET S3C4530A

3-4

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction′s condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction′s mnemonic. For example, a branch (B in assembly language) becomes BEQ for "Branch if "Equal",
which means the branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to “Always" (suffix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning

0000 EQ Z set Equal

0001 NE Z clear Not equal

0010 CS C set Unsigned higher or same

0011 CC C clear Unsigned lower

0100 MI N set Negative

0101 PL N clear Positive or zero

0110 VS V set Overflow

0111 VC V clear No overflow

1000 HI C set and Z clear Unsigned higher

1001 LS C clear or Z set Unsigned lower or same

1010 GE N equals V Greater or equal

1011 LT N not equal to V Less than

1100 GT Z clear AND (N equals V) Greater than

1101 LE Z set OR (N not equal to V) Less than or equal

1110 AL (Ignored) Always

S3C4530A INSTRUCTION SET

3-5

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

31 2427 19 15 8 7 0

00 0 1 10 0 0 11 1 1 11 1 1 11 1 1 00 0 1Cond Rn

28 16 111223 20 4 3

[3:0] Operand Register
If bit0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit0 of Rn =0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

Figure 3-2. Branch and Exchange Instructions

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequential (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.
BX {cond} Rn

{cond} Two character condition mnemonic. See Table 3-2.
Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behaviour is undefined.

INSTRUCTION SET S3C4530A

3-6

Examples

ADR R0, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
•
•
•
ADR R5, Back_to_ARM ; Generate branch target to word aligned address

; - hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
•
•
•
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back_to_ARM

S3C4530A INSTRUCTION SET

3-7

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The
instruction encoding is shown in Figure 3-3, below.

31 2427

Cond Offset

28 23

[24] Link Bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

25

101 L

0

Figure 3-3. Branch Instructions

Branch instructions contain a signed 2’s complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must
take account of the pre-fetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the pre-fetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by branch with link use MOV PC,R14 if the link register is still valid or LDM
Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

INSTRUCTION CYCLE TIMES

Branch and branch with link instructions take 2S + 1N incremental cycles, where S and N are defined as
sequential (S-cycle) and internal (I-cycle).

INSTRUCTION SET S3C4530A

3-8

ASSEMBLER SYNTAX

Items in {} are optional. Items in < > must be present.

B{L}{cond} <expression>

{L} Used to request the branch with link form of the instruction. If absent, R14 will not be
affected by the instruction.

{cond} A two-character mnemonic as shown in Table 3-2. If absent then AL (Always) will be
used.

<expression> The destination. The assembler calculates the offset.

Examples

here BAL here ; Assembles to 0xEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.
BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.

S3C4530A INSTRUCTION SET

3-9

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2.
The instruction encoding is shown in Figure 3-4.

31 2427 19 15

Cond Operand2

28 16 111221

[15:12] Destination Register
0 = Branch 1 = Branch with Link

[19:16] 1st operand Register
0 = Branch 1 = Branch with Link

[20] Set condition Codes
0 = Do not after condition codes 1 = Set condition codes

[24:21] Operation Code
0000 = AND-Rd: = Op1 AND Op2
0001 = EOR-Rd: = Op1 EOR Op2
0010 = SUB-Rd: = Op1-Op2
0011 = RSB-Rd: = Op2-Op1
0100 = ADD-Rd: = Op1+Op2
0101 = ADC-Rd: = Op1+Op2+C
0110 = SBC-Rd: = OP1-Op2+C-1
0111 = RSC-Rd: = Op2-Op1+C-1
1000 = TST-set condition codes on Op1 AND Op2
1001 = TEO-set condition codes on OP1 EOR Op2
1010 = CMP-set condition codes on Op1-Op2
1011 = SMN-set condition codes on Op1+Op2
1100 = ORR-Rd: = Op1 OR Op2
1101 = MOV-Rd: =OP2
1110 = BIC-Rd: = Op1 AND NOT Op2
1111 = MVN-Rd: = NOT Op2

[25] Immediate Operand
0 = Operand 2 is a register 1 = Operand 2 is an immediate Value

[11:0] Operand 2 Type Selection

[31:28] Condition Field

26 25

00 L

20

Opcode S Rn Rd

0

Rotate

Shift Rm

[3:0] 2nd Operand Register [11:4] Shift applied to Rm

311 04

811 07

Imm

[7:0] Unsigned 8 bit immediate value [11:8] Shift applied to Imm

Figure 3-4. Data Processing Instructions

INSTRUCTION SET S3C4530A

3-10

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the I bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-3.

S3C4530A INSTRUCTION SET

3-11

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-3. ARM Data Processing Instructions

Assembler Mnemonic Opcode Action

AND 0000 Operand1 AND operand2

EOR 0001 Operand1 EOR operand2

SUB 0010 Operand1 - operand2

RSB 0011 Operand2 - operand1

ADD 0100 Operand1 + operand2

ADC 0101 Operand1 + operand2 + carry

SBC 0110 Operand1 - operand2 + carry - 1

RSC 0111 Operand2 - operand1 + carry - 1

TST 1000 As AND, but result is not written

TEQ 1001 As EOR, but result is not written

CMP 1010 As SUB, but result is not written

CMN 1011 As ADD, but result is not written

ORR 1100 Operand1 OR operand2

MOV 1101 Operand2 (operand1 is ignored)

BIC 1110 Operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V
flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands
were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag
will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N
flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

INSTRUCTION SET S3C4530A

3-12

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the shift field in the instruction. This field indicates the type of shift to be performed (logical left or right, arithmetic
right or rotate right). The amount by which the register should be shifted may be contained in an immediate field
in the instruction, or in the bottom byte of another register (other than R15). The encoding for the different shift
types is shown in Figure 3-5.

0

[6:5] Shift Type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:7] Shift Amount
5 bit unsigned integer

[6:5] Shift Type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:8] Shift Register
Shift amount specified in bottom-byte of Rs

456711

1

456711 8

0RS

Figure 3-5. ARM Shift Operations

Instruction Specified Shift Amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry
output which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see
above). For example, the effect of LSL #5 is shown in Figure 3-6.

31 27 26

Contents of Rm

Value of Operand 2

carry out

0

0

0000

Figure 3-6. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

S3C4530A INSTRUCTION SET

3-13

31

Contents of Rm

Value of Operand 2

0

carry out

45

00000

Figure 3-7. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which
has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as
logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure 3-
8.

31

Contents of Rm

Value of Operand 2

0

carry out

4530

Figure 3-8. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

INSTRUCTION SET S3C4530A

3-14

Rotate right (ROR) operations reuse the bits which overshoot in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9. The form of the shift field which might be expected to give ROR #0 is

31

Contents of Rm

Value of Operand 2

0

carry out

45

Figure 3-9. Rotate Right

used to encode a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right by one
bit position of the 33 bit quantity formed by appending the CPSR C flag to the most significant end of the
contents of Rm as shown in Figure 3-10.

31

Contents of Rm

Value of Operand 2

01

carry outC
in

Figure 3-10. Rotate Right Extended

S3C4530A INSTRUCTION SET

3-15

Register Specified Shift Amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

1. LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2. LSL by more than 32 has result zero, carry out zero.

3. LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4. LSR by more than 32 has result zero, carry out zero.

5. ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6. ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7. ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

INSTRUCTION SET S3C4530A

3-16

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in
the rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and CPSR.
This form of instruction should not be used in User mode.

USING R15 AS AN OPERAND

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR
transfer operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a
privileged mode and to do nothing if in User mode.

S3C4530A INSTRUCTION SET

3-17

INSTRUCTION CYCLE TIMES

Data processing instructions vary in the number of incremental cycles taken as follows:

Table 3-4. Incremental Cycle Times

Processing Type Cycles

Normal data processing 1S

Data processing with register specified shift 1S + 1I

Data processing with PC written 2S + 1N

Data processing with register specified shift and PC written 2S + 1N + 1I

NOTE: S, N and I are as defined sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle) respectively.

ASSEMBLER SYNTAX

— MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2>

— CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

— AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> Rm{,<shift>} or,<#expression>

{cond} A two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm Expressions evaluating to a register number.

<#expression> If this is used, the assembler will attempt to generate a shifted immediate 8-bit field
to match the expression. If this is impossible, it will give an error.

<shift> <Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit
with extend).

<shiftname>s ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
code.)

INSTRUCTION SET S3C4530A

3-18

Examples

ADDEQ R2,R4,R5 ; If the Z flag is set make R2: = R4 + R5
TEQS R4,#3 ; Test R4 for equality with 3.

; (The S is in fact redundant as the
; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

; from SPSR_mode.

S3C4530A INSTRUCTION SET

3-19

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the data processing operations and are implemented
using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS

— In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

— Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor
will enter an unpredictable state.

— The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

— You must not specify R15 as the source or destination register.

— Also, do not attempt to access an SPSR in User mode, since no such register exists.

INSTRUCTION SET S3C4530A

3-20

MRS (Transfer Register Contents or Immediate Value to PSR Flag Bits Only)

Cond Soucer OperandPd 101001111

31 222728 11122123

I 1000

26 25 24 0

Cond 0000000000010 Pd 101001111

31 222728 11122123

Rm

MRS (Transfer Register Contents to PSR)

4 3 0

Cond 00000000000000010 RdPs 001111

31 2227 1528 16 11122123

MRS (Transfer PSR Contents to a Register)

0

[3:0] Source Register

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[15:21] Destination Register

[19:16] Source PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[3:0] Source Register
[11:4] Source operand is an immediate value

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to Imm

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[25] Immediate Operand
0 = Source operand is a register
1 = SPSR_<current mode>

[11:0] Source Operand

[31:28] Condition Field

00000000 Rm

11 4 3 0

Rotate Imm

11 08 7

Figure 3-11. PSR Transfer

S3C4530A INSTRUCTION SET

3-21

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N, Z, C, V, I, F, T & M[4:0]); the remaining bits are
reserved for use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:

— The reserved bits should be preserved when changing the value in a PSR.

— Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

Examples

The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N, Z, C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as sequential (S-cycle).

INSTRUCTION SET S3C4530A

3-22

ASSEMBLER SYNTAX

— MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

— MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

— MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

— MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>, <#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written to the N, Z, C
and V flags respectively.

Key:

{cond} Two-character condition mnemonic. See Table 3-2.

Rd and Rm Expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are

SPSR and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

<#expression> Where this is used, the assembler will attempt to generate a shifted immediate 8-bit
field to match the expression. If this is impossible, it will give an error.

Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] ← 0xA (set N, C; clear Z, V)
MRS Rd,CPSR ; Rd[31:0] ← CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] ← Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] ← Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] ← 0x5 (set Z, V; clear N, C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0] ← Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] ← Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] ← 0xC (set N, Z; clear C, V)
MRS Rd,SPSR ; Rd[31:0] ← SPSR_<mode>[31:0]

S3C4530A INSTRUCTION SET

3-23

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

31 27 19 15

Cond

28 16 111221 20

S Rd Rn

[15:12][11:8][3:0] Operand Registers
[19:16] Destination Register

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[31:28] Condition Field

22

1 0 0 1Rs RmA00 0 0 0 0

8 7 4 3 0

Figure 3-12. Multiply Instructions

The multiply form of the instruction gives Rd: = Rm * Rs. Rn is ignored, and should be set to zero for
compatibility with possible future upgrades to the instruction set. The multiply-accumulate form gives Rd: = Rm *
Rs + Rn, which can save an explicit ADD instruction in some circumstances. Both forms of the instruction work
on operands which may be considered as signed (2’ complement) or unsigned integers.

The results of a signed multiply nd of an unsigned multiply of 32 bit operands differ only in the upper 32 bits-the
low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits of a
multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
0xFFFFFFF6 0x0000001 0xFFFFFF38

If the Operands are Interpreted as Signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as
0xFFFFFF38.

If the Operands are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

INSTRUCTION SET S3C4530A

3-24

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (overflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + mI and MLA 1S + (m+1)I cycles to execute, where S and I are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m The number of 8 bit multiplier array cycles is required to complete the multiply,
which is controlled by the value of the multiplier operand specified by Rs.
Its possible values are as follows

1 If bits [32:8] of the multiplier operand are all zero or all one.

2 If bits [32:16] of the multiplier operand are all zero or all one.

3 If bits [32:24] of the multiplier operand are all zero or all one.

4 In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

Examples

MUL R1,R2,R3 ; R1: = R2 * R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1: = R2 * R3 + R4, setting condition

codes.

S3C4530A INSTRUCTION SET

3-25

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL,MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

31 27 19 15

Cond

28 16 11122123

U

20

S RdHi RdLo

[11:8][3:0] Operand Registers
[19:16][15:12] Source Destination Registers

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned
1 = Signed

[31:28] Condition Field

22

00 0 0 1 1 0 0 1Rs RmA

8 7 4 3 0

Figure 3-13. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of
the form RdHi, RdLo: = Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of
the result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi, RdLo: = Rm * Rs + RdHi, RdLo. The lower 32 bits of the 64
bit number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower
32 bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an
unsigned 64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement
signed numbers and write a two's-complement signed 64 bit result.

OPERAND RESTRICTIONS

— R15 must not be used as an operand or as a destination register.

— RdHi, RdLo, and Rm must all specify different registers.

INSTRUCTION SET S3C4530A

3-26

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Its possible values are as follows:

For Signed Instructions SMULL, SMLAL:

— If bits [31:8] of the multiplier operand are all zero or all one.

— If bits [31:16] of the multiplier operand are all zero or all one.

— If bits [31:24] of the multiplier operand are all zero or all one.

— In all other cases.

For Unsigned Instructions UMULL, UMLAL:

— If bits [31:8] of the multiplier operand are all zero.

— If bits [31:16] of the multiplier operand are all zero.

— If bits [31:24] of the multiplier operand are all zero.

— In all other cases.

S and I are defined as sequential (S-cycle) and internal (I-cycle), respectively.

S3C4530A INSTRUCTION SET

3-27

ASSEMBLER SYNTAX

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo, RdHi, Rm, Rs Unsigned multiply long 32 x 32 = 64

UMLAL{cond}{S} RdLo, RdHi, Rm, Rs Unsigned multiply & Accumulate long 32 x 32 + 64 = 64

SMULL{cond}{S} RdLo, RdHi, Rm, Rs Signed multiply long 32 x 32 = 64

SMLAL{cond}{S} RdLo, RdHi, Rm, Rs Signed multiply & Accumulate long 32 x 32 + 64 = 64

where:

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

Examples

UMULL R1, R4, R2, R3 ; R4, R1: = R2 * R3
UMLALS R1, R5, R2, R3 ; R5, R1: = R2 * R3 + R5, R1 also setting condition codes

INSTRUCTION SET S3C4530A

3-28

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address
used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15 0

Cond

28 16 11122123

B

20

L Rn Rd

22

01 I P U OffsetW

26 2425

[15:12] Source/Destination Registers

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[25] Immediate Offset
0 = Offset is an immediate value

[11:0] Offset

Shift

Immediate

[11:0] Unsigned 12-bit immediate offset

11

11

Rm

[3:0] Offset register [11:4] Shift applied to Rm

[31:28] Condition Field

0

4 3 0

Figure 3-14. Single Data Transfer Instructions

S3C4530A INSTRUCTION SET

3-29

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U = 1) or subtracted from (U = 0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P = 1) or after (post-indexed, P
= 0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W = 1), or the old base value may be kept (W = 0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B = 1) or a word (B = 0) between an ARM7TDMI register
and memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core.
The two possible configurations are described below.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros.
Please see Figure 2-2.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

INSTRUCTION SET S3C4530A

3-30

LDR from word aligned address

A+3

A

A+2

A+1

Memory

24

16

8

0

A

B

C

D

Register

24

16

8

0

A

B

C

D

LDR from address offset by 2

A+3

A

A+2

A+1

Memory

24

16

8

0

A

B

C

D

Register

24

16

8

0

A

B

C

D

Figure 3-15. Little-Endian Offset Addressing

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros.
Please see Figure 2-1.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

S3C4530A INSTRUCTION SET

3-31

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.

Example:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the data abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S,N and I
are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

INSTRUCTION SET S3C4530A

3-32

ASSEMBLER SYNTAX

<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

{T} If T is present the W bit will be set in a post-indexed instruction, forcing non-
privileged mode for the transfer cycle. T is not allowed when a pre-indexed

addressing mode is specified or implied.

Rd An expression evaluating to a valid register number.

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will
subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this case base
write-back should not be specified.

<Address>can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed address. If the address is out of
range, an error will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register,

 shifted by <shift>

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register,

shifted as by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify
the shift amount by a register.

{!} Writes back the base register (set the W bit) if! is present.

S3C4530A INSTRUCTION SET

3-33

Examples

STR R1,[R2,R4]! ; Store R1 at R2 + R4 (both of which are registers)
; and write back address to R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back R2 + R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2 + 16, but don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2 + R3 * 4.
LDREQB R1,[R6,#5] ; Conditionally load byte at R6 + 5 into

; R1 bits 0 to 7, filling bits 8 to 31 with zeros.
STR R1,PLACE ; Generate PC relative offset to address PLACE.
PLACE

INSTRUCTION SET S3C4530A

3-34

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15

Cond

28 16 11122123

0

20

L Rn Rd

[3:0] Offset Register

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfwords
 1 1 = Signed byte
 1 1 = Signed half words

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U 0000W

2425

1 RmS H 1

8 7 6 5 4 3 0

Figure 3-16. Half-word and Signed Data Transfer with Register Offset

S3C4530A INSTRUCTION SET

3-35

31 27 19 15

Cond

28 16 11122123

1

20

L Rn Rd

[3:0] Immediate Offset (Low Nibble)

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfwords
 1 1 = Signed byte
 1 1 = Signed half words

[11:8] Immediate Offset (High Nibble)

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U OffsetW

2425

1 OffsetS H 1

8 7 6 5 4 3 0

Figure 3-17. Half-word and Signed Data Transfer with Immediate Offset and Auto-Indexing

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that
bit 11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U = 1) or subtracted from (U =
0) the base register Rn. The offset modification may be performed either before (pre-indexed, P = 1) or after
(post-indexed, P = 0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W = 1), or the old base may be kept (W = 0). In the case of post-indexed addressing,
the write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base.

The Write-back bit should not be set high (W = 1) when post-indexed addressing is selected.

INSTRUCTION SET S3C4530A

3-36

HALF-WORD LOAD AND STORES

Setting S = 0 and H = 1 may be used to transfer unsigned Half-words between an ARM7TDMI register and
memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALF-WORD LOADS

The S bit controls the loading of sign-extended data. When S = 1 the H bit selects between Bytes (H = 0) and
Half-words (H = 1). The L bit should not be set low (Store) when Signed (S = 1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALF-WORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.

A half-word load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on
a word boundary and on data bus inputs 31 through to 16 if it is a half-word boundary, (A[1]=1).The supplied
address should always be on a half-word boundary. If bit 0 of the supplied address is high then the ARM7TDMI
will load an unpredictable value. The selected half-word is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the half-word.

A half-word store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate half-word subsystem to store the data.
Note that the address must be half-word aligned, if bit 0 of the address is high this will cause unpredictable
behaviour.

S3C4530A INSTRUCTION SET

3-37

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1.

A half-word load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to 0 if it is a half-word boundary, (A[1] =1). The supplied
address should always be on a half-word boundary. If bit 0 of the supplied address is high then the ARM7TDMI
will load an unpredictable value. The selected half-word is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the half-word.

A half-word store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate half-word subsystem to store the data.
Note that the address must be half-word aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input high whereupon the data abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H, SH, SB) instructions take 1S + 1N + 1I. LDR(H, SH, SB) PC take 2S + 2N + 1I incremental
cycles. S,N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle),
respectively. STRH instructions take 2N incremental cycles to execute.

INSTRUCTION SET S3C4530A

3-38

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

H Transfer half-word quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended half-word (Only valid for LDR)

Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed address. If the address is out of
range, an error will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm offset of +/- contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.
In this case base write-back should not be specified.

{!} Writes back the base register (set the W bit) if ! is present.

S3C4530A INSTRUCTION SET

3-39

Examples

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the half-word address
; contained in R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the half-word in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte

; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[R0] ; Conditionally load R11 with the sign extended contents

; of the half-word address contained in R0.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC,#(FRED-HERE-8)]; Store the half-word in R5 at address FRED
FRED

INSTRUCTION SET S3C4530A

3-40

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 27 19 15

Cond

28 162123

S

20

L Rn

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[31:28] Condition Field

22

100 P U W

2425

Register list

24 0

Figure 3-18. Block Data Transfer Instructions

S3C4530A INSTRUCTION SET

3-41

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn = 0x1000 and write back of the modified
base is required (W = 1). Figure 3.19-22 show the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W = 0), Rn would have retained its initial
value of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have
been overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

1 2

3 4

Rn R1

R1

R5

R1

R5

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-19. Post-Increment Addressing

INSTRUCTION SET S3C4530A

3-42

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-20. Pre-Increment Addressing

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-21. Post-Decrement Addressing

S3C4530A INSTRUCTION SET

3-43

Rn

1

R1

R1

2

R5

3

R1

R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-22. Pre-Decrement Addressing

USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the user bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the user bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV R0, R0 after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

INSTRUCTION SET S3C4530A

3-44

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the abort signal high. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Aborts during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

— Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

— The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where S,N
and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM
instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

S3C4530A INSTRUCTION SET

3-45

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0, R2–R7, R10}).

{!} If present requests write-back (W = 1), otherwise W = 0.

{^} If present set S bit to load the CPSR along with the PC, or force transfer of user
bank when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-6.

Table 3-6. Addressing Mode Names

Name Stack Other L Bit P Bit U Bit

Pre-Increment load LDMED LDMIB 1 1 1

Post-Increment load LDMFD LDMIA 1 0 1

Pre-Decrement load LDMEA LDMDB 1 1 0

Post-Decrement load LDMFA LDMDA 1 0 0

Pre-Increment store STMFA STMIB 0 1 1

Post-Increment store STMEA STMIA 0 0 1

Pre-Decrement store STMFD STMDB 0 1 0

Post-Decrement store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F
and E refer to a “full” or "empty” stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM
down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean increment after,
increment before, decrement after, decrement before.

INSTRUCTION SET S3C4530A

3-46

Examples

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 <- (SP), CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling
routine:

STMED SP!,{R0–R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0–R3,R15} ; Restore workspace and return.

S3C4530A INSTRUCTION SET

3-47

SINGLE DATA SWAP (SWP)

31 19 15

Cond

28 16 11122123

B

20

00 Rn Rd

[3:0] Source Register

[15:12] Destination Register

[19:16] Base Register

[22] Byte/Word Bit
0 = Swap word quantity
1 = Swap word quantity

[31:28] Condition Field

22

00010 0000 Rm1001

27 8 7 4 3 0

Figure 3-23. Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are “locked” together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to
treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The lock output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B = 1) or a word (B = 0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

INSTRUCTION SET S3C4530A

3-48

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the data abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S, N and I are defined as squential (S-
cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn Expressions evaluating to valid register numbers

Examples

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.

S3C4530A INSTRUCTION SET

3-49

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below

31 2427

1111Cond Comment Field (Ignored by Processor)

28 23

[31:28] Condition Field

0

Figure 3-24. Software Interrupt Instruction

The software interrupt instruction is used to enter supervisor mode in a controlled manner. The instruction causes
the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed value
(0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external memory
management hardware) from modification by the user, a fully protected operating system may be constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
squential (S-cycle) and non-squential (N-cycle).

INSTRUCTION SET S3C4530A

3-50

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two character condition mnemonic, Table 3-2.

<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).

Examples

SWI ReadC ; Get next character from read stream.
SWI WriteI+ “k” ; Output a “k” to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; Addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
 . . .

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor ; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7. Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in R0 bits 0-7.

LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return,

; restoring processor mode and flags.

S3C4530A INSTRUCTION SET

3-51

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The S3C4530A, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefined instruction trap to be taken on the S3C4530A. These
coprocessor instructions can be emulated by the undefined trap handler. Even though external coprocessor can
not be connected to the S3C4530A, the coprocessor instructions are still described here in full for completeness.
(Remember that any external coprocessor described in this section is a software emulation.)

31 2427 19 15

Cond CRm

28 16 111223 20

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register

[19:16] Coprocessor operand register

[23:20] Coprocessor operation code

[31:28] Condition Field

0CpCp#CRdCRn1110 CP Opc

8 7 5 4 3 0

Figure 3-25. Coprocessor Data Operation Instruction

THE COPROCESSOR FIELDS

Only bit 4 and bits 24 to 31 are significant to ARM7TDMI. The remaining bits are used by coprocessors. The
above field names are used by convention, and particular coprocessors may redefine the use of all fields except
CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

INSTRUCTION SET S3C4530A

3-52

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and I are defined as sequential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm
respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

Examples

CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2 to do operation 5 (type 2)
; on CR2 and CR3, and put the result in CR1.

S3C4530A INSTRUCTION SET

3-53

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessor's registers directly to
memory. ARM7TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts
the data and controls the number of words transferred.

[7:0] Unsigned 8 Bit Immediate Offset

[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[31:28] Condition Field

31 27 19 15

Cond

28 16 11122123

N

20

L Rn CRd

22

110 P U CP#W

2425

Offset

8 7 0

Figure 3-26. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance N =
0 could select the transfer of a single register, and N = 1 could select the transfer of all the registers for context
switching.

INSTRUCTION SET S3C4530A

3-54

ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U = 1) or subtracted from (U = 0)
the base register (Rn); this calculation may be performed either before (P = 1) or after (P = 0) the base is used as
the transfer address. The modified base value may be overwritten back into the base register (if W = 1), or the
old value of the base may be preserved (W = 0). Note that post-indexed addressing modes require explicit
setting of the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address
one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved,
and must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES

Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to execute, where:

n The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop.

S, N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.

S3C4530A INSTRUCTION SET

3-55

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N = 1), otherwise perform short transfer
(N = 0)

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in
the CRd field

<Address> can be:
1 An expression which generates an address:

The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed address. If the address is out of
range, an error will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

A post-indexed addressing specification:
Rn],<#expression offset of <expression> bytes
{!} write back the base register (set the W bit) if! is

 present
Rn is an expression evaluating to a valid

 ARM7TDMI register number.

NOTE

If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

Examples

LDC p1,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; Conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

INSTRUCTION SET S3C4530A

3-56

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI
register into a floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 27 19 15

Cond

28 16 11122123 20

L CRn Rd

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Number

[15:12] ARM source/Destination Register

[19:16] Coprocessor Source/Destination Register

[20] Load/Store Bit
0 = Store to coprocessor
1 = Load from coprocessor

[21] Coprocessor Operation Mode

[31:28] Condition Field

1110 CP Opc CP#

24

CRm1CP

8 7 5 4 3 0

Figure 3-27. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

S3C4530A INSTRUCTION SET

3-57

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+ 12.

INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are defined as sequential
(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bI +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L = 1)

MCR Move from ARM7TDMI register to coprocessor (L = 0)

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

Rd An expression evaluating to a valid ARM7TDMI register number

cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

Examples

MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

INSTRUCTION SET S3C4530A

3-58

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

31 27

Cond

28 25 24

011 xxxxxxxxxxxxxxxxxxxx 1 xxxx

5 4 3 0

Figure 3-28. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 1I + 1N cycles, where S, N and I are defined as sequential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

S3C4530A INSTRUCTION SET

3-59

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly they
just save code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; Test value,
ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,# ” ”-1 ; Range test
MOVLS Rc,# “” ; IF Rc<= ”” OR Rc=ASCII(127)

; THEN Rc:= ” ”

INSTRUCTION SET S3C4530A

3-60

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM Cross development toolkit, available from your supplier. A short general purpose divide
routine follows.

; Enter with numbers in Ra and Rb.
MOV Rcnt,#1 ; Bit to control the division.

Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; Put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; Shift control bit
MOVNE Rb,Rb,LSR#1 ; Halve unless finished.
BNE Div2 ; Divide result in Rc, remainder in Ra.

Overflow Detection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result

UMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,Rd ASR#31 ; +1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,Rd, ASR#31 ; +1 cycle and a register
BNE overflow

S3C4530A INSTRUCTION SET

3-61

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ; 1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BVS overflow ; 1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit: = bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
; Rb (1 bit in Rb lsb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; Carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

INSTRUCTION SET S3C4530A

3-62

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:

1. If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2. If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5*9 = 45

S3C4530A INSTRUCTION SET

3-63

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

; Enter with address in Ra (32 bits) uses
; Rb, Rc result in Rd. Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; Get word aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; Produce bottom of result word (if not aligned)
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

INSTRUCTION SET S3C4530A

3-64

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the
ARM7TDMI core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format
instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

Move Shifted register

00

0

0 0 0

0 0 0

0 0 0

1

0

0

0 1 0

0

0

0

0

0

1

11

1

1

1

1

00

0 0 0

1

1

1

1

11

1

1

0

L

0

1

1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

0 0 0

0

1 1

1 1

0 0

10

0

L

1 0 R

1 1 0

1 0 SP

1 L

L

S

H

0

0

1 B L

0 1 H

0 1 B

0 0 1

1 1 I Op

Op

Op

Op

Op

L 0

S 1

Offset5 Rs Rd

Rn/offset3

Rd

Rs Rd

Offset8

Rs

Rd/Hd

Rd

H1 H2 Rs/Hs

Rd

Word8

Rd

RbRo

Ro Rb

Rd

Offset5 Rb Rd

Rb RdOffset5

Rd

Rd

Word8

Word8

SWord7

Rb

Cond

Rlist

Rlist

Softset8

Value8

Offset11

Offset

Add/subtract

Move/compare/add/
subtract immediate

ALU operations

Hi regiter operations
/branch exchange

PC-relative load

Load/store with register
offset

Load/store with immediate
offset

Load/store sign-extended
byte/halfword

Load/store halfword

SP-relative load/store

Load address

Add offset to stack pointer

Push/pop register

Multiple load/store

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 3-29. THUMB Instruction Set Formats

S3C4530A INSTRUCTION SET

3-65

OPCODE SUMMARY

The following table summarises the THUMB instruction set. For further information about a particular instruction
please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

ADC Add with carry V – V

ADD Add V V V (1)

AND AND V – V

ASR Arithmetic shift right V – V

B Unconditional branch V – –

Bxx Conditional branch V – –

BIC Bit clear V – V

BL Branch and link V – –

BX Branch and exchange V V –

CMN Compare negative V – V

CMP Compare V V V

EOR EOR V – V

LDMIA Load multiple V – –

LDR Load word V – –

LDRB Load byte V – –

LDRH Load half-word V – –

LSL Logical shift left V – V

LDSB Load sign-extended byte V – –

LDSH Load sign-extended half-word V – –

LSR Logical shift right V – V

MOV Move register V V V (2)

MUL Multiply V – V

MVN Move negative register V – V

NEG Negate V – V

ORR OR V – V

POP Pop registers V – –

PUSH Push registers V – –

POR Rotate right V – V

INSTRUCTION SET S3C4530A

3-66

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

SBC Subtract with carry V – V

STMIA Store multiple V – –

STR Store word V – –

STRB Store byte V – –

STRH Store half-word V – –

SWI Software interrupt – – –

SUB Subtract V – V

TST Test bits V – V

NOTES:
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

S3C4530A INSTRUCTION SET

3-67

FORMAT 1: MOVE SHIFTED REGISTER

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[10:6] Immediate Vale

[12:11] Opcode
0 = LSL
1 = LSR
2 = ASR

Offset5

6 5 3 2

Rd0 0

13 12 11

Op Rs

Figure 3-30. Format 1

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-8. Summary of Format 1 Instructions

OP THUMB Assembler ARM Equivalent Action

00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL #Offset5 Shift Rs left by a 5-bit immediate value and
store the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR #Offset5 Perform logical shift right on Rs by a 5-bit
immediate value and store the result in Rd.

10 ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR #Offset5 Perform arithmetic shift right on Rs by a 5-bit
immediate value and store the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

INSTRUCTION SET S3C4530A

3-68

FORMAT 2: ADD/SUBTRACT

15

0

14 10

[2:0] Destination Register

[5:3] Source Register

[8:6] Register/Immediate Value

[9] Opcode
0 = ADD
1 = SUB

[10] Immediate Flag
0 = Register operand
1 = Immediate oerand

Rn/Offset3 Rd0 0

13 12 11

Op Rs

9 8

1 1 1

6 5 3 2 0

Figure 3-31. Format 2

OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-9. Summary of Format 2 Instructions

OP I THUMB Assembler ARM Equivalent Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs.
Place result in Rd.

0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs, #Offset3 Add 3-bit immediate value to contents of Rs.
Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of Rs.
Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs, #Offset3 Subtract 3-bit immediate value from contents
of Rs. Place result in Rd.

S3C4530A INSTRUCTION SET

3-69

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD R0, R3, R4 ; R0 : = R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ; R6 : = R2 - 6 and set condition codes.

INSTRUCTION SET S3C4530A

3-70

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15 0

0

14 10

[7:0] Immediate Value

[10:8] Source/Destination Register

[12:11] Opcode
0 = MOV
1 = CMP
2 = ADD
3 = SUB

Offset8Rd0 0

13 12 11

Op

78

Figure 3-32. Format 3

OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-10. Summary of Format 3 Instructions

OP THUMB Assembler ARM Equivalent Action

00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit immediate
value.

10 ADD Rd, #Offset8 ADDS Rd, Rd, #Offset8 Add 8-bit immediate value to contents of Rd and
place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 Subtract 8-bit immediate value from contents of
Rd and place the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

MOV R0, #128 ; R0 : = 128 and set condition codes
CMP R2, #62 ; Set condition codes on R2 - 62
ADD R1, #255 ; R1 : = R1 + 255 and set condition codes
SUB R6, #145 ; R6 : = R6 - 145 and set condition codes

S3C4530A INSTRUCTION SET

3-71

FORMAT 4: ALU OPERATIONS

15 0

0

14 10

[2:0] Source/Destination Register

[5:3] Source Register 2

[9:6] Opcode

56 3

Rd0 0

13 12 11

Op Rs0 0 0

9 2

Figure 3-33. Format 4

OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes

Table 3-11. Summary of Format 4 Instructions

OP THUMB Assembler ARM Equivalent Action

0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd: = Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd: = Rd EOR Rs

0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd : = Rd << Rs

0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd : = Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd : = Rd ASR Rs

0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd : = Rd + Rs + C-bit

0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd : = Rd - Rs - NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd : = Rd ROR Rs

1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = - Rs

1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd - Rs

1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd: = Rd OR Rs

1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd: = Rs * Rd

1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd: = Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd: = NOT Rs

INSTRUCTION SET S3C4530A

3-72

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

EOR R3, R4 ; R3 : = R3 EOR R4 and set condition codes
ROR R1, R0 ; Rotate right R1 by the value in R0, store

; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,

; store the result in R5. Set condition codes ie R5 = - R3
CMP R2, R6 ; Set the condition codes on the result of R2 - R6
MUL R0, R7 ; R0 : = R7 * R0 and set condition codes

S3C4530A INSTRUCTION SET

3-73

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[6] Hi Operand Flag 2

[7] Hi Operand Flag 1

[9:8] Opcode

6 5 3 2

Rd/Hd0 0

13 12 11

Op Rs/Hs0 0 0

9 8 7

H1 H2

Figure 3-34. Format 5

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1 = 0, H2 = 0 for Op = 00 (ADD), Op = 01 (CMP) and Op = 10 (MOV) is undefined, and should
not be used.

INSTRUCTION SET S3C4530A

3-74

Table 3-12. Summary of Format 5 Instructions

OP H1 H2 THUMB Assembler ARM Equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15 to a register in
the range 0-7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a register in
the range 8-15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15.

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7 with a
register in the range 8-15. Set the condition
code flags on the result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15 with a
register in the range 0-7. Set the condition
code flags on the result.

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range 8-15. Set
the condition code flags on the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the range 8-15
to a register in the range 0-7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the range 0-7
to a register in the range 8-15.

00 0 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers in the
range 8-15.

00 1 0 BX Rs BX Rs Perform branch (plus optional state change) to
address in a register in the range 0-7.

00 1 1 BX Hs BX Hs Perform branch (plus optional state change) to
address in a register in the range 8-15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit 0 = 0 Causes the processor to enter ARM state.
Bit 0 = 1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

S3C4530A INSTRUCTION SET

3-75

Examples

Hi-Register Operations

ADD PC, R5 ; PC := PC + R5 but don't set the condition codes.CMP
R4, R12 ; Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

; Switch from THUMB to ARM state.
ADR R1,outofTHUMB ; Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ; Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie. ARM state here.

 ...
ALIGN
CODE32
outofTHUMB ; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit 0 cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

INSTRUCTION SET S3C4530A

3-76

FORMAT 6: PC-RELATIVE LOAD

15 0

0

14 10

[7:0] Immediate Value

[10:8] Destination Register

Word 80 0

13 12 11

Rd0 0

8 7

Figure 3-35. Format 6

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-13. Summary of PC-Relative Load Instruction

THUMB Assembler ARM Equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 words, 1020 bytes)
in Imm to the current value of the PC. Load
the word from the resulting address into Rd.

NOTE: The value specified by #Imm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than
the address of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

Examples

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.

S3C4530A INSTRUCTION SET

3-77

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 L B

9 8

Ro0

Figure 3-36. Format 7

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-14.

Table 3-14. Summary of Format 7 Instructions

L B THUMB Assembler ARM Equivalent Action

0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:
Calculate the target address by adding together the
value in Rb and the value in Ro. Store the contents of
Rd at the address.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by adding together the
value in Rb and the value in Ro. Store the byte value
in Rd at the resulting address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by adding together the
value in Rb and the value in Ro. Load the contents of
the address into Rd.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:
Calculate the source address by adding together the
value in Rb and the value in Ro. Load the byte value
at the resulting address.

INSTRUCTION SET S3C4530A

3-78

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STR R3, [R2,R6] ; Store word in R3 at the address
; formed by adding R6 to R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding R7 to R0.

S3C4530A INSTRUCTION SET

3-79

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALF-WORD

[2:0] Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag
0 = Operand not sing-extended
1 = Operand sing-extended

[11] H Flag

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 H S

9 8

Ro1

Figure 3-37. Format 8

OPERATION

These instructions load optionally sign-extended bytes or half-words, and store half-words. The THUMB
assembler syntax is shown below.

Table 3-15. Summary of format 8 instructions

L B THUMB Assembler ARM Equivalent Action

0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store half-word:
Add Ro to base address in Rb. Store bits 0–15 of Rd at
the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load half-word:
Add Ro to base address in Rb. Load bits 0–15 of Rd from
the resulting address, and set bits 16-31 of Rd to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:

Add Ro to base address in Rb. Load bits 0–7 of Rd from
the resulting address, and set bits 8-31 of Rd to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended half-word:

Add Ro to base address in Rb. Load bits 0–15 of Rd from
the resulting address, and set bits 16-31 of Rd to bit 15.

INSTRUCTION SET S3C4530A

3-80

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the
; address formed by adding R0 to R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended half-word
; found at the address formed by adding R2 to R4.

S3C4530A INSTRUCTION SET

3-81

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Offset Register

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[12] Byte/Word Flad
0 = Transfer word quantity
1 = Transfer byte quantity

15 0

0

14 10 6 5 3 2

Rd1 1

13 12 11

RbB L Offset5

Figure 3-38. Format 9

OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit offset. The
THUMB assembler syntax is shown in Table 3-16

Table 3-16. Summary of Format 9 Instructions

L B THUMB Assembler ARM Equivalent Action

0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by adding together the
value in Rb and Imm. Store the contents of Rd at
the address.

0 1 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding together the
value in Rb and Imm. Load Rd from the address.

1 0 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by adding together the
value in Rb and Imm. Store the byte value in Rd at
the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by adding together the
value in Rb and Imm. Load the byte value at the
address into Rd.

NOTE: For word accesses (B = 0), the value specified by #Imm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

INSTRUCTION SET S3C4530A

3-82

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

S3C4530A INSTRUCTION SET

3-83

FORMAT 10: LOAD/STORE HALF-WORD

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Immediate Value

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb0 L Offset5

Figure 3-39. Format 10

OPERATION

These instructions transfer half-word values between a Lo register and memory. Addresses are pre-indexed,
using a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Half-word Data Transfer Instructions

L THUMB Assembler ARM Equivalent Action

0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and store bits 0–15 of
Rd at the resulting address.

1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load bits 0–15 from the
resulting address into Rd and set bits 16-31 to zero.

NOTE: #Imm is a full 6-bit address but must be half-word-aligned (ie with bit 0 set to 0),
since the assembler places #Imm >> 1 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
; 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the half-word found at the address formed
by

; adding 4 to R7. Note that the THUMB opcode will
; contain 2 as the Offset5 value.

INSTRUCTION SET S3C4530A

3-84

 FORMAT 11: SP-RELATIVE LOAD/STORE

[7:0] Immediate Value

[10:8] Destination Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 0

13 12 11

Word 81 L Rd

78

Figure 3-40. Format 11

OPERATION

The instructions in this group perform an SP-relative load or store. The THUMB assembler syntax is shown in the
following table.

Table 3-18. SP-Relative Load/Store Instructions

L THUMB Assembler ARM Equivalent Action

0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 bytes) in Imm to
the current value of the SP (R7). Store the contents of
Rd at the resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 bytes) in Imm to
the current value of the SP (R7). Load the word from the
resulting address into Rd.

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #Imm >> 2 in the Word8 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.

S3C4530A INSTRUCTION SET

3-85

FORMAT 12: LOAD ADDRES

[7:0] 8-bit Unsigned Constant

[10:8] Destination Register

[11] Source
0 = PC
1 = SP

15 0

1

14 10

0 1

13 12 11

Word 80 SP Rd

78

Figure 3-41. Format 12

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-19. Load Address

SP THUMB Assembler ARM Equivalent Action

0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value of the program counter
(PC) and load the result into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value of the stack pointer (SP)
and load the result into Rd.

NOTE: The value specified by #Imm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #Imm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

INSTRUCTION SET S3C4530A

3-86

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD R2, PC, #572 ; R2: = PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6: = SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

S3C4530A INSTRUCTION SET

3-87

FORMAT 13: ADD OFFSET TO STACK POINTER

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

15 0

1

14 10

0 1

13 12 11

SWord 71 0 0

789 6

0 0 S

Figure 3-42. Format 13

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-20. The ADD SP Instruction

S THUMB Assembler ARM Equivalent Action

0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).

1 ADD SP, #-Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #Imm can be up to -/+ 508, but must be word-aligned (ie with bits 1:0 set to 0)
since the assembler converts #Imm to an 8-bit sign + magnitude number before placing it in field SWord7.
The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD SP, #268 ; SP (R13): = SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S = 0.

ADD SP, #-104 ; SP (R13): = SP - 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S = 1.

INSTRUCTION SET S3C4530A

3-88

FORMAT 14: PUSH/POP REGISTERS

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 1

13 12 11

Rlist1 L 0

789

1 R

Figure 3-43. Format 14

OPERATION

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be full descending.

Table 3-21. PUSH and POP Instructions

 L B THUMB
Assembler

ARM Equivalent Action

0 0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by Rlist onto the stack.
Update the stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13!, { Rlist, R14} Push the Link Register and the registers specified
by Rlist (if any) onto the stack. Update the stack
pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the registers specified
by Rlist. Update the stack pointer.

1 1 POP { Rlist, PC } LDMIA R13!, {Rlist, R15} Pop values off the stack and load into the registers
specified by Rlist. Pop the PC off the stack.
Update the stack pointer.

S3C4530A INSTRUCTION SET

3-89

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

PUSH {R0–R4,LR} ; Store R0, R1, R2, R3, R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2, R6, PC} ; Load R2, R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

INSTRUCTION SET S3C4530A

3-90

FORMAT 15: MULTIPLE LOAD/STORE

[7:0] Register List

[10:8] Base Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

1 0

13 12 11

Rlist0 L

78

Rb

Figure 3-44. Format 15

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-22. The Multiple Load/Store Instructions

L THUMB Assembler ARM Equivalent Action

0 STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by Rlist, starting at the base
address in Rb. Write back the new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by Rlist, starting at the base
address in Rb. Write back the new base address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STMIA R0!, {R3-R7} ; Store the contents of registers R3-R7
; starting at the address specified in
; R0, incrementing the addresses for each word.
; Write back the updated value of R0.

S3C4530A INSTRUCTION SET

3-91

FORMAT 16: CONDITIONAL BRANCH

[7:0] 8-bit Signed Immediate

[11:8] Condition

15 0

1

14

1 0

13 12 11

SOffset 81

78

Cond

Figure 3-45. Format 16

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 3-23. The Conditional Branch Instructions

Code THUMB
Assembler

ARM Equivalent Action

0000 BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher or same)

0011 BCC label BCC label Branch if C clear (unsigned lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear (unsigned higher)

1001 BLS label BLS label Branch if C clear or Z set (unsigned lower or same)

1010 BGE label BGE label Branch if N set and V set, or N clear and V clear
(greater or equal)

INSTRUCTION SET S3C4530A

3-92

Table 3-23. The Conditional Branch Instructions (Continued)

Code THUMB
Assembler

ARM Equivalent Action

1011 BLT label BLT label Branch if N set and V clear, or N clear and V set (less than)

1100 BGT label BGT label Branch if Z clear, and either N set and V set or N clear and V
clear (greater than)

1101 BLE label BLE label Branch if Z set, or N set and V clear, or N clear and V set
(less than or equal)

NOTES:
1. While label specifies a full 9-bit two’s complement address, this must always be half-word-aligned (ie with bit 0 set to 0)

since the assembler actually places label >> 1 in field SOffset8.
2. Cond = 1110 is undefined, and should not be used.

Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

CMP R0, #45 ; Branch to over-if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
... ; the number of half-words to offset.
...

over ... ; Must be half-word aligned.
...

S3C4530A INSTRUCTION SET

3-93

FORMAT 17: SOFTWARE INTERRUPT

[7:0] Comment Field

15 0

1

14

1 0

13 12 11

Value 81

7810 9

1 1 1 1

Figure 3-46. Format 17

OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-24. The SWI Instruction

THUMB Assembler ARM Equivalent Action

SWI Value 8 SWI Value 8 Perform Software Interrupt:

Move the address of the next instruction into LR, move CPSR
to SPSR, load the SWI vector address (0x8) into the PC.
Switch to ARM state and enter SVC mode.

NOTE: Value 8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

SWI 18 ; Take the software interrupt exception.
; Enter Supervisor mode with 18 as the
; requested SWI number.

INSTRUCTION SET S3C4530A

3-94

FORMAT 18: UNCONDITIONAL BRANCH

[10:0] Immediate Value

15 0

1

14

1 1

13 12 11

Offset110

10

0

Figure 3-47. Format 18

OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current
instruction.

Table 3-25. Summary of Branch Instruction

THUMB Assembler ARM Equivalent Action

B label BAL label (half-word offset) Branch PC relative +/- Offset11 << 1, where label is PC
+/- 2048 bytes.

NOTE: The address specified by label is a full 12-bit two′s complement address,
but must always be half-word aligned (ie bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

Examples

here B here ; Branch onto itself. Assembles to 0xE7FE.
; (Note effect of PC offset).

B jimmy ; Branch to 'jimmy'.
... ; Note that the THUMB opcode will contain the number of

; half-words to offset.
Jimmy ... ; Must be half-word aligned.

S3C4530A INSTRUCTION SET

3-95

FORMAT 19: LONG BRANCH WITH LINK

[10:0] Long Branch and Link Offset High/Low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

15 0

1

14

1 1

13 12 11

Offset1

10

H

Figure 3-48. Format 19

OPERATION

This format specifies a long branch with link.

The assembler splits the 23-bit two’s complement half-word offset specified by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction.

INSTRUCTION SET S3C4530A

3-96

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-26. The BL Instruction

H THUMB Assembler ARM Equivalent Action

0 BL label none LR := PC + OffsetHigh << 12

1 temp := next instruction address
PC := LR + OffsetLow << 1
LR := temp | 1

Examples

BL faraway ; Unconditionally Branch to 'faraway'
next ... ; and place following instruction

; address, ie “next”, in R14,the Link
; register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of half-words to offset.

faraway ... ; Must be Half-word aligned.

S3C4530A INSTRUCTION SET

3-97

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2^n (-2, -4, -8, ...)

LSL Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by -2^n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n+1, 2^n-1, -2^n or -2^n-1} * 2^n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) ; (2..5)
LSL Ra, Ra, #n ; MOV Ra, Ra, LSL #n

INSTRUCTION SET S3C4530A

3-98

GENERAL PURPOSE SIGNED DIVIDE
This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

;Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1 if negative
ASR R0, R1, #31 ; Get 0 or -1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in R0 & R2) for later use in determining ; sign of quotient & remainder.
PUSH {R0, R2}

;Justification, shift 1 bit at a time until divisor (R0 value) ; is just <= than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l
MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real subtract

0 ADC R0, R0 ; Shift result and add 1 if subtract succeeded
CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_l ; tested subtracting the 'ones' value).

;Now fix up the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back
EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = -1
SUB R0, R3
EOR R1, R2 ; Negate remainder if dividend sign = -1
SUB R1, R2
MOV pc, lr

S3C4530A INSTRUCTION SET

3-99

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS a4, a1, #&80000000
RSBMI a1, a1, #0
EORS ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS a3, a1
BEQ divide_by_zero

just_l ; Justification stage shifts 1 bit at a time
CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO s_loop

div_l
CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3
TEQ a3, a1
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV a1, a4
MOVS ip, ip, ASL #1
RSBCS a1, a1, #0
RSBMI a2, a2, #0
MOV pc, lr

INSTRUCTION SET S3C4530A

3-100

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and
ARM code.

Thumb Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

MOV a2, a1
LSR a3, a1, #2
SUB a1, a3
LSR a3, a1, #4
ADD a1, a3
LSR a3, a1, #8
ADD a1, a3
LSR a3, a1, #16
ADD a1, a3
LSR a1, #3
ASL a3, a1, #2
ADD a3, a1
ASL a3, #1
SUB a2, a3
CMP a2, #10
BLT %FT0
ADD a1, #1
SUB a2, #10

0
MOV pc, lr

ARM Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

SUB a2, a1, #10
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1
ADDPL a1, a1, #1
ADDMI a2, a2, #10
MOV pc, lr

S3C4530A SYSTEM MANAGER

4-1

4 SYSTEM MANAGER

OVERVIEW

The S3C4530A System Manager has the following functions.

— To arbitrate system bus access requests from several master blocks based on fixed priorities or round-robin
method by SYSCONF[3] register value.

— To provide the required memory control signals for external memory accesses. For example, if a master
block such as the DMA controller or the CPU generates an address that corresponds to a DRAM bank, the
System Manager's DRAM controller generates the required normal/EDO or SDRAM access signals. The
interface signals for normal/EDO or SDRAM can be switched by SYSCFG[31].

— To provide the required signals for bus traffic between the S3C4530A and ROM/SRAM and the external I/O
banks.

— To compensate for differences in bus width for data flowing between the external memory bus and the
internal data bus.

— S3C4530A supports both little and big endian for external memory or I/O devices.

NOTE

By generating an external bus request, an external device can access the S3C4530A's external memory
interface pins. In addition, the S3C4530A can access slow external devices by using a Wait signal. The
Wait signal, which is generated by the external device, extends the duration of the CPU’s memory
access cycle beyond its programmable value.

SYSTEM MANAGER S3C4530A

4-2

SYSTEM MANAGER REGISTERS

To control the external memory operations, the System Manager uses a dedicated set of special registers (see
Table 4-1). By programming the values in the System Manager special registers, you can specify such things as

— Memory type

— External bus width access cycle

— Control signal timing (RAS and CAS, for example)

— Memory bank locations

— The sizes of memory banks to be used for arbitrary address spacing

The System Manager uses some special registers to control the generation and processing of the control signals,
addresses, and data that are required by the external devices in a standard system configuration. The special
registers are also used to control access to six banks of ROM/SRAM/Flash, four banks of DRAM, four banks of
the external I/O banks, and a special register mapping area.

The address resolution for each memory bank base pointer is 1M bytes (20 bits) and the base address pointer is
6 bits. This gives a total addressable memory bank space of 16 M words.

NOTE

When writing a value to a memory bank control register from ROMCON0 to REFEXTCON (locations
0x3014 to 0x303C), as shown in Table 4-1, you must always set the register using a single STM (Store
Multiple) instruction. Additionally, the address spaces for successive memory banks must not overlap in
the system memory map.

S3C4530A SYSTEM MANAGER

4-3

16K words-4M words (32 bits)
ADDR [21:0]

64K words
(Fixed for all I/O banks)

Continuous 256K word space
for 4 external I/O banks

16K words (fixed)

0, 4 or 8K bytes (fixed)

0x3FFFFFF

16M words
(16M X 32 bits)

SA [25:0]

0x0000000

Reserved

Special register bank

Internal SRAM

External I/O bank 3

External I/O bank 2

External I/O bank 1

External I/O bank 0

DRAM/SDRAM bank 3

DRAM/SDRAM bank 2

DRAM/SDRAM bank 1

DRAM/SDRAM bank 0

ROM/SRAM/Flash bank 5

ROM/SRAM/Flash bank 4

ROM/SRAM/Flash bank 3

ROM/SRAM/Flash bank 2

ROM/SRAM/Flash bank 1

ROM/SRAM/Flash bank 0

Note: You can define banks anywhere within the 64-Mbyte address space.

Figure 4-1. S3C4530A System Memory Map

SYSTEM MANAGER S3C4530A

4-4

SYSTEM MEMORY MAP

Following are several important features to note about the S3C4530A system memory map:

— The size and location of each memory bank is determined by setting the registers for "current bank base
pointer" and "current bank end pointer". You can use this base/next bank pointer concept to set up a
consecutive memory map. To do this, you set the base pointer of the "next bank" to the same address as the
next pointer of the "current bank". Please note that when setting the bank control registers, the address
boundaries of consecutive banks must not overlap. This rule should be applied even if one or more banks are
disabled.

— Four external I/O banks are defined in a continuous address space. A programmer can only set the base
pointer for external I/O bank 0. Then, the start address of the external I/O bank 1 is the start address of the
external I/O bank 0 + 256KB. Similarly, the start address of the external I/O bank 2 is the start address of the
external I/O bank 0 + 512KB, and the start address of the external I/O bank 3 is the start address of the
external I/O bank 0 + 768KB. Therefore, the total consecutive addressable space of the four external I/O
banks is defined as the start address of the external I/O bank 0 + 1024KB.

— Within the addressable space, the start address of each I/O bank is not fixed. You can use bank control
registers to assign a specific bank start address by setting the bank’s base pointer. The address resolution is
1M bytes. The bank’s start address is defined as "base pointer << 20" and the bank‘s end address (except for
external I/O banks) is "next pointer << 20 - 1".

After a power-on or system reset, all bank address pointer registers are initialized to their default values. In this
case, all bank pointers except for the next pointer of ROM/SRAM/Flash bank 0 are set to zero. This means that,
except for ROM/SRAM/Flash bank 0, all banks are undefined following a system startup.

The reset values for the next pointer and the base pointer of ROM/SRAM/Flash bank 0 are 0x200 and 0x000,
respectively. This means that a system reset automatically defines ROM/SRAM/Flash bank 0 as a 32-Mbyte
space with a start address of zero. This initial definition of ROM/SRAM/Flash bank 0 lets the system power-on or
reset operation pass control to the user-supplied boot code that is stored in the external ROM. (This code is
located at address 0 in the system memory map.) When the boot code (i.e. ROM program) is executed, it
performs various system initialization tasks and reconfigures the system memory map according to the
application’s actual external memory and device configuration.

The initial system memory map following system start-up is shown in Figure 4-2.

S3C4530A SYSTEM MANAGER

4-5

0x3FFFFFF
Special Function

Registers

ROM/SRAM/FLASH
Bank 0 Area

(Non-accessible)

Undefined Area

ROM/SRAM/FLASH
Bank 0 Area
(Accessible)

0x3FF0000

0x2000000

0x0000000

4 M Address [21:0]

32 M

64 M Bytes
SA [25:0]

Figure 4-2. Initial System Memory Map (After Reset)

Table 4-1. System Manager Registers

Registers Offset R/W Description Reset Value

SYSCFG 0x0000 R/W System configuration register 0x4FFFFF91

CLKCON 0x3000 R/W Clock control register 0x00000000

EXTACON0 0x3008 R/W External I/O timing register 1 0x00000000

EXTACON1 0x300C R/W External I/O timing register 2 0x00000000

EXTDBWTH 0x3010 R/W Data bus width of each bank 0x00000000

ROMCON0 0x3014 R/W ROM/SRAM/Flash bank 0 control register 0x20000060

ROMCON1 0x3018 R/W ROM/SRAM/Flash bank 1 control register 0x00000060

ROMCON2 0x301C R/W ROM/SRAM/Flash bank 2 control register 0x00000060

ROMCON3 0x3020 R/W ROM/SRAM/Flash bank 3 control register 0x00000060

ROMCON4 0x3024 R/W ROM/SRAM/Flash bank 4 control register 0x00000060

ROMCON5 0x3028 R/W ROM/SRAM/Flash bank 5 control register 0x00000060

DRAMCON0 0x302C R/W DRAM bank 0 control register 0x00000000

DRAMCON1 0x3030 R/W DRAM bank 1 control register 0x00000000

DRAMCON2 0x3034 R/W DRAM bank 2 control register 0x00000000

DRAMCON3 0x3038 R/W DRAM bank 3 control register 0x00000000

REFEXTCON 0x303C R/W Refresh and external I/O control register 0x000083ED

SYSTEM MANAGER S3C4530A

4-6

EXTERNAL ADDRESS TRANSLATION METHOD DEPENDS ON THE WIDTH OF EXTERNAL MEMORY

The S3C4530A address bus is, in some respects, different than the bus used in other standard CPUs. Based on
the required data bus width of each memory bank, the internal system address bus is shifted out to an external
address bus, ADDR[21:0]. This means that the memory control signals such as nRAS[3:0], nCAS[3:0],
nECS[3:0], nRCS[5:0], and nWBE[3:0] are generated by the system manager according to a pre-configured
external memory scheme (see Table 4-2). This is applied to SDRAM signals as same method.

Table 4-2. Address Bus Generation Guidelines

Data Bus Width External Address Pins, ADDR[21:0] Accessible Memory Size

8-bit A21–A0 (internal) 4M bytes

16-bit A22–A1 (internal) 4M half-words

32-bit A23–A2 (internal) 4M words

Data bus width configuration
(8-bit/16-bit/32-bit)

8-bit

16-bit

32-bit

System address bus: SA [25:0]

22-bit

22-bit

22-bit

22-bit

InternalExternal

SA [21:0]

SA [22:1]

SA [23:2]

External Address Pins
ADDR [21:0]

Figure 4-3. External Address Bus Diagram

S3C4530A SYSTEM MANAGER

4-7

CONNECTION OF EXTERNAL MEMORY WITH VARIOUS DATA WIDTH

As another example, let us see how the S3C4530A maps CPU address spaces to physical addresses in external
memory:

When the CPU issues an arbitrary address to access an external memory device, the S3C4530A compares the
upper 5 bits of the issued address with the address pointers of all memory banks. It does this by consecutively
subtracting each address pointer value from the CPU address. There are two reasons why this subtraction
method is used:

— To check the polarities of the subtraction result so as to identify which bank corresponds to the address
issued by the CPU.

— To derive the offset address for the corresponding bank.

When the bank is identified and the offset has been derived, the corresponding bank selection signal (nRCS[5:0],
or nECS[3:0]) is generated, and the derived offset is driven to address external memory through the S3C4530A
physical address bus.

The S3C4530A can be configured as big-endian or little-endian mode by external little/big selection pin (LITTLE,
49).

In Big Endian mode, the most significant byte of the external memory data is stored at the lowest numbered byte
and the least significant byte at the highest numbered byte.

For example, in case of the external word memory system, Byte 0 of the memory is connected to data lines 31
through 24, D[31:24].

In Little Endian mode, vice versa. (See Figure 4-4 External Memory Interface)

SYSTEM MANAGER S3C4530A

4-8

ENDIAN MODES

S3C4530A supports both little-endian and big-endian for external memory or I/O devices by setting the pin
LITTLE (pin 49). The system diagram for S3C4530A is shown in

S3C4530A

CPU
(ARM7TMDI)

CPU Addr.

CPU Data Bus

031

Memory
Controller

Special RegisterCPU Register

SA (Addr.)

SD (Data)

ADDR

XDATA

031

031 Bit Number

...X0

...X4

...X8

...XC

Word
Address

External
Memory

Figure 4-4. Data Bus Connection with External Memory

Below tables(4-3 through 4-14) are show the program/data path between the CPU register and the external
memory using little-/big-endian and word/half-word/byte access.

S3C4530A SYSTEM MANAGER

4-9

Table 4-3 and 4-4.
Using big-endian and word access, Program/Data path between register and external memory.
WA=Address whose LSB is 0, 4, 8, C X=Don't care
CAS3-0/nWBE3-0=0 means active and 1 means inactive

Table 4-3. Word Access Store Operation with Big-Endian

STORE (CPU Reg → External Memory)

Ext. Memory Type Word Half Word Byte

Bit Num.
CPU Register Data

31 0

abcd
31 0

abcd
31 0

abcd

CPU Address WA WA WA

Bit Num.
CPU Data Bus

31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd

Bit Num.
Internal SD Bus

31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd

External Address WA WA WA + 2 WA WA + 1 WA + 2 WA + 3

CAS3-0/nWBE3-0 0000 XX00 XX00 XXX0 XXX0 XXX0 XXX0

Bit Num.
XDATA

31 0

abcd
15 0

ab
15 0

cd
7 0

a
7 0

b
7 0

c
7 0

d

Bit Num.
Ext. Memory Data

31 0

abcd
15 0

ab
15 0

cd
7 0

a
7 0

b
7 0

c
7 0

d

Timing Sequence 1st write 2nd write 1st write 2nd write 3rd write 4th write

Table 4-4 Word Access Load Operation with Big-Endian

LOAD (CPU Reg ← External Memory)

Ext. Memory Type Word Half Word Byte

Bit Num.
CPU Register Data

31 0

abcd
31 0

abcd
31 0

abcd

CPU Address WA WA WA

Bit Num.
CPU Data Bus

31 0

abcd
31 0

abXX
31 0

abcd
31 0

aXXX
31 0

abXX
31 0

abcX
31 0

abcd

Bit Num.
Internal SD Bus

31 0

abcd
31 0

abXX
31 0

abcd
31 0

aXXX
31 0

abXX
31 0

abcX
31 0

abcd

External Address WA WA WA + 2 WA WA + 1 WA + 2 WA + 3

CAS3-0/nWBE3-0 0000 XX00 XX00 XXX0 XXX0 XXX0 XXX0

Bit Num.
XDATA

31 0

abcd
15 0

ab
15 0

cd
7 0

a
7 0

b
7 0

c
7 0

d

Bit Num.
Ext. Memory Data

31 0

abcd
15 0

ab
15 0

cd
7 0

a
7 0

b
7 0

c
7 0

d

Timing Sequence 1st read 2nd read 1st read 2nd read 3rd read 4th read

SYSTEM MANAGER S3C4530A

4-10

Table 4-5 and 4-6.
Using big-endian and half-word access, Program/Data path between register and external memory.
HA=Address whose LSB is 0, 2, 4, 6, 8, A, C, E
HAL=Address whose LSB is 0, 4, 8, C HAU=Address whose LBS is 2, 6, A, E
X=Don't care, CAS3-0/nWBE3-0=0 means active and 1 means inactive

Table 4-5. Half-Word Access Store Operation with Big-Endian

STORE (CPU Reg → External Memory)

Ext. Memory Type Word Half word Byte

Bit Num.
CPU Register Data

31 0

abcd
31 0

abcd
31 0

abcd

CPU Address HAL HAU HA HA

Bit Num.
CPU Data Bus

31 0

cdcd
31 0

cdcd
31 0

cdcd
31 0

cdcd
31 0

cdcd

Bit Num.
Internal SD Bus

31 0

cdcd
31 0

cdcd
31 0

cdcd
31 0

cdcd
31 0

cdcd

External Address HAL HAL HA HA HA + 1

CAS3-0/nWBE3-0 0011 1100 XX00 XXX0 XXX0

Bit Num.
XDATA

31 0

cdXX
31 0

XXcd
15 0

cd
7 0

c
7 0

d

Bit Num.
Ext. Memory Data

31 16

cd
15 0

cd
15 0

cd
7 0

c
7 0

d

Timing Sequence 1st write 2nd write

Table 4-6. Half-Word Access Load Operation with Big-Endian

LOAD (CPU Reg ← External Memory)

Ext. Memory Type Word Half word Byte

Bit Num.
CPU Register Data

15 0

ab
15 0

cd
15 0

ab
15 0

ab

CPU Address HAL HAU HA HA

Bit Num.
CPU Data Bus

31 0

abab
31 0

cdcd
31 0

abab
31 0

aXaX
31 0

abab

Bit Num.
Internal SD Bus

31 0

abab
31 0

cdcd
31 0

abab
31 0

aXaX
31 0

abab

External Address HAL HAL HA HA HA + 1

CAS3-0/nWBE3-0 XXXX XXXX XXXX XXXX XXXX

Bit Num.
XDATA

31 0

abcd
31 0

abcd
15 0

ab
7 0

a
7 0

b

Bit Num.
Ext. Memory Data

31 0

abcd
15 0

ab
7 0

a
7 0

b

Timing Sequence 1st read 2nd read

S3C4530A SYSTEM MANAGER

4-11

Table 4-7 and 4-8.
Using big-endian and byte access, Program/Data path between register and external memory.
BA=Address whose LSB is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
BAL=Address whose LSB is 0, 2, 4, 6, 8, A, C, E BAU=Address whose LBS is 1, 3, 5, 7, 9, B, D, F
BA0=Address whose LSB is 0, 4, 8, C BA1=Address whose LBS is 1, 5, 9, D
BA2=Address whose LSB is 2, 6, A, E BA3=Address whose LBS is 3, 7, B, F
X=Don't care CAS3-0/nWBE3-0=0 means active and 1 means inactive

Table 4-7. Byte Access Store Operation with Big-Endian

STORE (CPU Reg → External Memory)

Ext. Memory Type Word Half Word Byte

Bit Num.
CPU Register Data

31 0

abcd
31 0

abcd
31 0

abcd

CPU Address BA0 BA1 BA2 BA3 BAL BAU BA

Bit Num.
CPU Data Bus

31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd

Bit Num.
Internal SD Bus

31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd

External Address BA0 BA0 BA0 BA0 BAL BAL BA

CAS3-0/nWBE3-0 0111 1011 1101 1110 XX10 XX01 XXX0

Bit Num.
XDATA

31 0

dXXX
31 0

XdXX
31 0

XXdX
31 0

XXXd
15 0

dX
15 0

Xd
7 0

d

Bit Num.
Ext. Memory Data

31 24

d
23 16

d
15 8

d
7 0

d
15 0

d
15 0

d
7 0

d

Table 4-8. Byte Access Load Operation with Big-Endian

LOAD (CPU Reg ← External Memory)

Ext. Memory Type Word Half Word Byte

Bit Num.
CPU Register Data

7 0

a
7 0

b
7 0

c
7 0

d
7 0

a
7 0

b
7 0

a

CPU Address BA0 BA1 BA2 BA3 BAL BAU BA

Bit Num.
CPU Data Bus

31 0

aaaa
31 0

bbbb
31 0

cccc
31 0

dddd
31 0

aaaa
31 0

bbbb
31 0

aaaa

Bit Num.
Internal SD Bus

31 0

aaaa
31 0

bbbb
31 0

cccc
31 0

dddd
31 0

aaaa
31 0

bbbb
31 0

aaaa

External Address BA0 BA0 BA0 BA0 BAL BAL BA

CAS3-0/nWBE3-0 XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Bit Num.
XDATA

31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
15 0

ab
15 0

ab
7 0

a

Bit Num.
Ext. Memory Data

31 0

abcd
15 0

ab
7 0

a

SYSTEM MANAGER S3C4530A

4-12

Table 4-9 and 4-10.
Using little-endian and word access, Program/Data path between register and external memory.
WA=Address whose LSB is 0, 4, 8, C
X=Don't care
CAS3-0/nWBE3-0=0 means active and 1 means inactive

Table 4-9. Word Access Store Operation with Little-Endian

STORE (CPU Reg → External Memory)

Ext. Memory Type Word Half Word Byte

Bit Num.

CPU Register Data

31 0

abcd
31 0

abcd
31 0

abcd

CPU Address WA WA WA

Bit Num.

CPU Data Bus

31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd

Bit Num.

Internal SD Bus

31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd

External Address WA WA WA + 2 WA WA + 1 WA + 2 WA + 3

Bit Num.

XDATA

31 0

abcd
15 0

cd
15 0

ab
7 0

d
7 0

c
7 0

b
7 0

a

Bit Num.

Ext. Memory Data

31 0

abcd
15 0

cd
15 0

ab
7 0

d
7 0

c
7 0

b
7 0

a

Timing Sequence 1st write 2nd write 1st write 2nd write 3rd write 4th write

Table 4-10. Word Access Load Operation with Little-Endian

LOAD (CPU Reg ← External Memory)

Ext. Memory Type Word Half Word Byte

Bit Num.
CPU Register Data

31 0

abcd
31 0

abcd
31 0

abcd

CPU Address WA WA WA

Bit Num.
CPU Data Bus

31 0

abcd
31 0

XXcd
31 0

abcd
31 0

XXXd
31 0

XXcd
31 0

Xbcd
31 0

abcd

Bit Num.
Internal SD Bus

31 0

abcd
31 0

XXcd
31 0

abcd
31 0

XXXd
31 0

XXcd
31 0

Xbcd
31 0

abcd

External Address WA WA WA + 2 WA WA + 1 WA + 2 WA + 3

Bit Num.
XDATA

31 0

abcd
15 0

cd
15 0

ab
7 0

d
7 0

c
7 0

b
7 0

a

Bit Num.
Ext. Memory Data

31 0

abcd
15 0

cd
15 0

ab
7 0

d
7 0

c
7 0

b
7 0

a

Timing Sequence 1st read 2nd read 1st read 2nd read 3rd read 4th read

S3C4530A SYSTEM MANAGER

4-13

Table 4-11 and 4-12.
Using little-endian and half-word access, Program/Data path between register and external memory.
HA=Address whose LSB is 0, 2, 4, 6, 8, A, C, E
HAL=Address whose LSB is 0, 4, 8, C HAU=Address whose LBS is 2, 6, A, E
X=Don't care CAS3-0/nWBE3-0=0 means active and 1 means inactive

Table 4-11. Half-Word Access Store Operation with Little-Endian

STORE (CPU Reg → External Memory)

Ext. Memory Type Word Half word Byte

Bit Num.
CPU Register Data

31 0

abcd
31 0

abcd
31 0

abcd

CPU Address HAL HAU HA HA

Bit Num.
CPU Data Bus

31 0

cdcd
31 0

cdcd
31 0

cdcd
31 0

cdcd
31 0

cdcd

Bit Num.
Internal SD Bus

31 0

cdcd
31 0

cdcd
31 0

cdcd
31 0

cdcd
31 0

cdcd

External Address HAL HAL HA HA HA+1

CAS3-0/nWBE3-0 1100 0011 XX00 XXX0 XXX0

Bit Num.
XDATA

31 0

cdcd
31 0

cdcd
15 0

cd
7 0

d
7 0

c

Bit Num.
Ext. Memory Data

15 0

cd
31 16

cd
15 0

cd
7 0

d
7 0

c

Timing Sequence 1st write 2nd write

Table 4-12. Half-Word Access Load Operation with Little-Endian

LOAD (CPU Reg ← External Memory)

Ext. Memory Type Word Half word Byte

Bit Num.
CPU Register Data

15 0

cd
15 0

ab
15 0

ab
15 0

ab
15 0

ba

CPU Address HAL HAU HA HA

Bit Num.
CPU Data Bus

31 0

cdcd
31 0

abab
31 0

abab
31 0

XaXa
31 0

baba

Bit Num.
Internal SD Bus

31 0

cdcd
31 0

abab
31 0

abab
31 0

XaXa
31 0

baba

External Address HAL HAL HA HA HA+1

CAS3-0/nWBE3-0 XXXX XXXX XXXX XXXX XXXX

Bit Num.
XDATA

31 0

abcd
31 0

abcd
15 0

ab
7 0

a
7 0

b

Bit Num.
Ext. Memory Data

31 0

abcd
15 0

ab
7 0

a
7 0

b

Timing Sequence 1st read 2nd read

SYSTEM MANAGER S3C4530A

4-14

Table 4-13 and 4-14.
Using little-endian and byte access, Program/Data path between register and external memory.
BA=Address whose LSB is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
BAL=Address whose LSB is 0, 2, 4, 6, 8, A, C, E BAU=Address whose LBS is 1, 3, 5, 7, 9, B, D, F
BA0=Address whose LSB is 0, 4, 8, C BA1=Address whose LBS is 1, 5, 9, D
BA2=Address whose LSB is 2, 6, A, E BA3=Address whose LBS is 3, 7, B, F
X=Don't care CAS3-0/nWBE3-0=0 means active and 1 means inactive

Table 4-13. Byte Access Store Operation with Little-Endian

STORE (CPU Reg → External Memory)

Ext. Memory Type Word Half Word Byte

Bit Num.
CPU Register Data

31 0

abcd
31 0

abcd
31 0

abcd

CPU Address BA0 BA1 BA2 BA3 BAL BAU BA

Bit Num.
CPU Data Bus

31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd

Bit Num.
Internal SD Bus

31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd
31 0

dddd

External Address BA0 BA0 BA0 BA0 BAL BAL BA

CAS3-0/nWBE3-0 1110 1101 1011 0111 XX10 XX01 XXX0

Bit Num.
XDATA

31 0

XXXd
31 0

XXdX
31 0

XdXX
31 0

dXXX
15 0

Xd
15 0

dX
15 0

d

Bit Num.
Ext. Memory Data

7 0

d
15 8

d
23 16

d
31 24

d
7 0

d
15 8

d
7 0

d

Table 4-14. Byte Access Load Operation with Little-Endian

LOAD (CPU Reg ← External Memory)

Ext. Memory Type Word Half Word Byte

Bit Num.
CPU Register Data

7 0

d
7 0

c

7 0

b

7 0

a

7 0

b

7 0

a

7 0

a

CPU Address BA0 BA1 BA2 BA3 BAL BAU BA

Bit Num.
CPU Data Bus

31 0

dddd
31 0

cccc
31 0

bbbb
31 0

aaaa
31 0

bbbb
31 0

aaaa
31 0

aaaa

Bit Num.
Internal SD Bus

31 0

dddd
31 0

cccc
31 0

bbbb
31 0

aaaa
31 0

bbbb
31 0

aaaa
31 0

aaaa

External Address BA0 BA0 BA0 BA0 BAL BAL BA

CAS3-0/nWBE3-0 XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Bit Num.
XDATA

31 0

abcd
31 0

abcd
31 0

abcd
31 0

abcd
15 0

ab
15 0

ab
7 0

a

Bit Num.
Ext. Memory Data

31 0

abcd
15 0

ab
7 0

a

S3C4530A SYSTEM MANAGER

4-15

BUS ARBITRATION

In the S3C4530A micro-controller, the term "system bus" refers to the separate system address and data buses
inside the chip. The S3C4530A's internal function blocks, or external devices, can request mastership of the
system bus and then hold the system bus in order to perform data transfers. Because the design of S3C4530A
bus allows only one bus master at a time, a bus controller is required to arbitrate when two or more internal units
or external devices simultaneously request bus mastership. The S3C4530A can support fixed priority and round-
robin method by register setting.

When the bus mastership is granted to an internal function block or an external device, other pending requests
are not acknowledged until the previous bus master has released the bus.

To facilitate bus arbitration, priorities are assigned to each internal S3C4530A function block. The bus controller
arbitration requests for the bus mastership according to these fixed priorities. In the event of contention,
mastership is granted to the function block with the highest assigned priority. In case of round-robin, bus
contention does not occurred. However, external bus master request has the highest fixed priority always. Fixed
priorities are listed in Table 4-15.

NOTE

An external bus master can also be granted bus mastership and hold the S3C4530A system bus. In
Table 4-15, you will note that all external devices are assigned the identical priority. Therefore, in the
systems made up of several external devices that can become the bus master, an external circuitry must
be implemented to assign additional bus arbitration priorities to all potential external bus masters.

Table 4-15. Bus Priorities for Arbitration

Function Block Bus Priority (Group)

External bus master A-1 (Highest priority in Group A)

DRAM memory refresh controller A-2

General DMA 1 (GDMA 1) A-3

General DMA 0 (GDMA 0) A-4

High level data link controller B (HDLC B) A-5

High level data link controller A (HDLC A) A-6

MAC buffered DMA (BDMA) A-7 (Lowest priority in Group A)

Writer buffer B-1 (Highest priority in Group B)

Bus router B-2 (Lowest priority in Group B)

NOTE: The internal function blocks are divided into two groups, Group A and Group B. Within each group, the bus
arbitration priorities are fixed according to the assigned level only when SYSCONF[3] set to one. In this case, if any
function block is a highest priority within Group, then, it can seize the system bus continuously though other function
block request the system bus. If SYSCONF[3] set to zero, the function blocks can seize the system bus as the
round-robin method. The relative priority of Group A and Group B is determined more or less in an alternating
manner.

SYSTEM MANAGER S3C4530A

4-16

EXTERNAL BUS MASTERSHIP

The S3C4530A can receive and acknowledge bus request signals (ExtMREQs) that are generated by an external
bus master. When the CPU asserts an external bus acknowledge signal (ExtMACK), the mastership is granted to
the external bus master, assuming the external bus request is still active.

The S3C4530A's memory interface signals become floating before the external bus acknowledge signal go to
active. Therefore, if the external device drive that signal as soon as received the ACK, wrong data can be written
to unexpected address on SDRAM. To avoid this, the external device should drive nSDCS to high level when
ACK received. And then drive that signal at the 2’nd MCLKO rising edge from nSDCS high level. The period
between floating and ACK active, the floating signal has no influence because that signals remains same address
and same data for a long time.

The S3C4530A does not perform DRAM refreshes when it is not the bus master. When an external bus master is
in control of the external bus, and if it retains control for a long period of time, it must assume the responsibility of
performing the necessary DRAM refresh operations.

ExtMREQ

Address, Data, nOE,
nWBE, nDWE, nRCS,

nCAS, nRAS

MCLKO

ExtMACK

Data

tEMRh

Data

tEMRs

tEMZ

tEMAr tEMAf

Figure 4-5. External Bus Request Timing

NOTE: When External Bus Master requests the ExtMREQ during the Sync DRAM writing cycles, the ExtMACK can be
generated with the wrong writing control signals of Sync DRAM. Just floating the Sync DRAM control signals at the
time ExtMACK , it can cause the feasible active writing on the Sync DRAM. As the result, the wrong data can be
written into unexpected address on Sync DRAM. If this address is in the range of stack or code area, the crash will
be happen sooner or later. The other memory interfaces doesn’t have this problem, which is asynchronous with
MCLKO, that is why Sync DRAM write cycle only. You can avoid this by disabling the SDCS (Sync DRAM Chip
Select HIGH) as soon as receiving the ExtMACK and driving the Address and Data after one or two MCLKO cycles.

S3C4530A SYSTEM MANAGER

4-17

CONTROL REGISTERS

SYSTEM CONFIGURATION REGISTER (SYSCFG)

The System Manager has one system configuration register, SYSCFG. The SYSCFG register determines the
start address of the System Manager’s special registers and the start address of internal SRAM.

You also use SYSCFG settings to control the write buffer enable, the cache enable, and the stall enable
operations.

All DRAM banks can be configured to SDRAM banks by setting the Synchronous DRAM mode (SYSCFG[31]).

NOTE

If you write a "10" into the cache mode field, SYSCFG[5:4], the cache enable bit is cleared automatically
(see Figure 4-6).

Table 4-16. SYSCFG Register

Registers Offset R/W Description Reset Value

SYSCFG 0x0000 R/W System configuration register 0x4FFFFF91

SYSTEM MANAGER S3C4530A

4-18

[0] Stall enable (SE)
Must be set to zero.

[1] Cache enable (CE)
When set to "1", cache operations are enabled.

[2] Write buffer enable (WE)
When set to "1", write buffer operations are enabled.

[3] Fixed Priority (FP)
0 = Round-robin
1 = Fixed priority within Group

[5:4] Cache mode (CM)
This 2-bit value determines how internal memory is to be
devided into cache and SRAM.
00 = 4-Kbyte SRAM, 4Kbyte cache
01 = 0-Kbyte SRAM, 8Kbyte cache
10 = 8-Kbyte SRAM, 0Kbyte cache

NOTE : When you write 10 to this field, the cache enable
 bit is cleared automatically.

[15:6] Internal SRAM base pointer
This 10-bit address becomes the upper address of SRAM,
A25 through A16. The remaining SRAM address, A15
through A0, are filled with zeros.

[25:16] Special register bank base pointer
The resolution of this value is 64K. Therefore, to place
the start address at 1800000H (24M), use this formula:
Setting value = (1800000H/64K) << 16.

[30:26] Product Identifier (PD_ID)
00001 = S3C4510X (KS32C50100)
11001 = S3C4510B
00011 = S3C4530X (KS32C50300)
10011 = S3C4530A

[31] Sync. DRAM Mode
0 = Normal/EDO DRAM interface for 4 DRAM banks
1 = Sync. DRAM interface for 4 DRAM banks.

31 034 12

S
D
M

W
E

C
E

S
E

252630

PD_ID Special Register Bank
Base Pointer

Internal SRAM
Base Pointer CM

1516 6 5

F
P

Figure 4-6. System Configuration Register (SYSCFG)

S3C4530A SYSTEM MANAGER

4-19

Start Address Setting

The start address of the System Manager special register area is initialized to 4FFFFF91H. (You can also set the
start address to an arbitrary value, for example 3FF0000H.) When you have set the start address of the special
register area, the register addresses are automatically defined as the start address plus the register’s offset.

Assume for example, that a reset initializes the start address to 3FF0000H. The offset address of the ROMCON
register is 3014H. Therefore, the physical address for ROMCON is 3FF0000H + 3014H = 3FF3014H. If you
modified the start address of the special register area to 3000000H, the new address for the ROMCON register
would be 3003014H.

Cache Disable/Enable

To enable or disable the cache, you set the cache enable (CE) bit of the SYSCFG register to "1" or "0",
respectively. Because cache memory does not have an auto-flush feature, you must be careful to verify the
coherency of data whenever you re-enable the cache. You must also carefully check any changes that the DMA
controller may make to data stored in memory. (Usually, the memory area that is allocated to DMA access
operations must be non-cacheable.)

The internal 8-Kbyte SRAM can be used as a cache area. To configure this area, you use the cache mode bits,
SYSCFG[5:4]. If you do not need to use the entire 8-Kbyte area as cache, you can use the remaining area as
internal SRAM. This area is accessed using the address of the base pointer in the internal SRAM field.

Write Buffer Disable/Enable

The S3C4530A has four programmable write buffer registers that are used to improve the speed of memory write
operations. When you enable a write buffer, the CPU writes data into the write buffer, instead of an external
memory location. This saves the cycle that would normally be required to complete the external memory write
operation. The four write buffers also enhance the performance of the ARM7TDMI core’s store operations.

To maintain data coherency between the cache and external memory, the S3C4530A uses a write-through policy.
An internal 4-level write buffer compensates for performance degradation caused by write-through.
(For more information, see Chapter 5.)

Stall Disable/Enable

Stall Enable bit is used when the CPU accesses data under non-sequential mode and the system clock is too fast
to decode the local address within the given time.

When the stall option is enabled, the CPU core logic inserts a wait about non-sequential memory access
occurred. So, the CPU core has more time margin. When the stall bit disabled, the logic does not insert a wait.

SYSTEM MANAGER S3C4530A

4-20

SYSTEM CLOCK AND MUX BUS CONTROL REGISTER

CLOCK CONTROL REGISTER (CLKCON)

There is a clock control register in the System Manager. This control register is used to divide the internal system
clock, so the slower clock than the system clock can be made by clock dividing value. In this register, ROM bank
5 address/data MUX. enable control and ROM bank 0, 1, 2, 3, 4, 5 wait enable function is included.

Table 4-17. CLKCON Register

Registers Offset R/W Description Reset Value

CLKCON 0x3000 R/W Clock control register 0x00000000

Table 4-18. CLKCON Register Description

Bit Number Bit Name Description

[15:0] Clock dividing value S3C4530A System Clock source. If CLKSEL is Low, PLL output
clock is used as the S3C4530A internal system clock. If CLKSEL
is High, XCLK is used as the S3C4530A internal system clock.
The internal system clock is divided by this value. The clock
divided is used to drive the CPU and system peripherals. Only
one bit can be set in CLKCON[15:0], that is, the clock dividing
value is defined as 1, 2, 4, 8, 16,... If all bits are zero, a non-
divided clock is used.

[16] ROM bank 5 wait enable Wait cycle will check the next cycle after a chip selection signal is
activated.

[17] ROM bank 5
address/data MUX.
enable

Using multiplex bus at ROM bank 5, this bit must be set to 1.

[19:18] MUX Bus address cycle When the address phase of multiplexed bus is not enough long
for external device to receive, the address phase can be
extended by setting this bit.

00 = 1 MCLK
01 = 2 MCLK
10 = 3 MCLK

[20] ROM bank 5 wait 1 cycle
delay

Wait cycle will check the second cycle after a chip selection
signal is activated.

[21,23,25,27,29] ROM bank 4,3,2,1,0 wait
enable

Wait cycle will check the next cycle after the each chip selection
signal is activated.
[21] = ROM bank 4, [23] = ROM bank 3, [25] = ROM bank 2
[27] = ROM bank 1, [29] = ROM bank 0

[22,24,26,28,30] ROM bank 4,3,2,1,0 wait
1 cycle delay

Wait cycle will check the second cycle after the each chip
election signal is activated.
[21] = ROM bank 4, [23] = ROM bank 3, [25] = ROM bank 2
[27] = ROM bank 1, [29] = ROM bank 0

[31] Test bit This bit is for factory use only. During the normal operation, it
must always be 0.

S3C4530A SYSTEM MANAGER

4-21

31 19 1516

[15:0] Clock diving value
If all bits are 0, non-divided clock is used. Only one bit
can be set in CLKCON[15:0]. That is, the clock diving
value is defined as 1,2,4,8,16,...
Internal system clock, fMCLK = fICLK/(CLKCON+1)

[16] ROM bank 5 wait enable
0 = Disable ROM bank 5 wait.
1 = Enable ROM bank 5 wait.

[17] ROM bank 5 address/data bus Mux enable
0 = Normal operation
1 = Enable bus multiplexing

[19:18] Mux bus Address (tAC)
00 = 1 MCLK
01 = 2 MCLK
10 = 3 MCLK

[20] ROM bank 5 wait 1 cycle delay
0 = no delay
1 = 1 cycle delay

[21,23,25,27,29] ROM bank wait enable
0 = disable ROM bank wait
1 = Enable ROM bank wait
 [21] = ROM bank 4, [23] = ROM bank 3
 [25] = ROM bank 2, [27] = ROM bank 1
 [29] = ROM bank 0

[22,24,26,28,30] ROM bank wait 1 cycle delay
0 = no delay
1 = 1 cycle delay
 [22] = ROM bank 4, [24] = ROM bank 3
 [26] = ROM bank 2, [28] = ROM bank 1
 [30] = ROM bank 0

[31] Test bit
This bit should be always 0.

Clock Divided Value

018 1720

CLKCON

25 212224 232629 28 2730

Figure 4-7. Clock Control Register (CLKCON)

SYSTEM MANAGER S3C4530A

4-22

SYSTEM CLOCK

The external clock input, XCLK, can be used to the internal system clock by assign VDD to CLKSEL pin. Using
PLL as the internal system clock, CLKSEL pin has to be assigned to VSS. In this case, the internal system clock is
XCLK x MF. To get 50MHz of system clock, a 10MHz external clock(XCLK) must be used.

PLL
0: MF = 5.0
1: MF = 6.6

1

MUX
Clock Divider for

Low Power Control
(CLKCON)

CLKSEL

TMOD

XCLK

MF (2)

pdown (1)

ICLK

Internal
System
Clock(SCLK)
MCLK

NOTES:
1. If CLKSEL is 1, the PLL block became to the state of power down.
2. MF means multiplication factor.

0

MCLKO

CLKOEN

Figure 4-8. System Clock Circuit

S3C4530A SYSTEM MANAGER

4-23

For the purpose of power save, Clock Control Register (CLKCON) can be programmed at low frequency. When
the internal system clock is divided by CLKCON, its duty-cycle is changed.

If CLKCON is programmed to zero, the internal system clock remains the same as the internal clock, ICLK. In
other cases, the duty cycle of internal system clock is no longer 50%.

Figure 4-9 shows the internal system clock, SCLK waveform according to the clock dividing value.

ICLK

SCLK(MCLK)
CLKCON = 0

SCLK(MCLK)
CLKCON = 1

SCLK(MCLK)
CLKCON = 2

Figure 4-9. Divided System Clocks Timing Diagram

SYSTEM MANAGER S3C4530A

4-24

EXTERNAL I/O ACCESS CONTROL REGISTERS (EXTACON0/1)

The System Manager has four external I/O access control registers. These registers correspond to up to four
external I/O banks that are supported by S3C4530A. Table 4-19 describes two registers that are used to control
the timing of external I/O bank accesses.

You can control the external I/O access cycles using either a specified value or an external wait signal, nEWAIT.
To obtain access cycles that are longer than a specified value, you can delay the active time of nOE or nWBE by
tCOS value setting. After nOE or nWBE active, nEWAIT should be active previously at the first MCLKO rising
edge. In case of ROM bank, nRCS and nOE/nWBE signals are activated simultaneously; that is, there is no
control parameter as like tCOS. As a result, nEWAIT should be valid previously at the second MCLKO rising
edge (at the third MCLKO rising edge when ROM bank wait 1 cycle delay value is 1) after nRCS active for the
ROM bank.

EXTACON0 is used to set the access timings for external I/O banks 0 and 1. EXTACON1 is used to set the
external access timings for I/O banks 2 and 3.

NOTE

The base pointer for external I/O bank 0 is set in the REFEXTCON register(REFEXTCON register is in
DRAM control registers part).

Table 4-19. External I/O Access Control Register Description

Registers Offset R/W Description Reset Value

EXTACON0 0x3008 R/W External I/O access timing register 0 0x00000000

EXTACON1 0x300C R/W External I/O access timing register 1 0x00000000

S3C4530A SYSTEM MANAGER

4-25

[2:0] Chip selection set-up time on nOE/nWBE
(tCOS0, tCOS2)

[18:16] tCOS1, tCOS3
000 = 0 cycle 100 = 4 cycles
001 = 1 cycle 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[5:3] Address set-up time before nECS
(tACS0, tACS2)

[21:19] tACS1, tACS3
000 = 0 cycle 100 = 4 cycles
001 = 1 cycle 101 = 5 cycle
010 = 2 cycles 110 = 6 cycle
011 = 3 cycles 111 = 7 cycles

[8:6] Chip selection hold time on nECS
(tCOH0, tCOH2)

[24:22] tCOH1, tCOH3
000 = 0 cycle 100 = 4 cycles
001 = 1 cycle 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[11:9] Access cycles
(nOE/nWBE low time) (tACC0, tACC2)

[27:25] tACC1, tACC3
000 = 0 cycle 100 = 4 cycles
001 = 1 cycle 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

15 031

0

0

30

0

0

29

0

0

28

0

0

0

0

14

0

0

13

0

0

12

0

0

1119 161827 25 22 2124

tACC1

tACC3

tCOH1

tCOH3

tACS1

tACS3

tCOS1

tCOS3

3 29 6 58

tACC0

tACC2

tCOH0

tCOH2

tACS0

tACS2

tCOS0

tCOS2

EXTACON0

EXTACON1

Figure 4-10. External I/O Access Control Registers (EXTACON0, EXTACON1)

SYSTEM MANAGER S3C4530A

4-26

nECS

nOE

Address

Data

nEWAIT

MCLKO

tACS = 0 (0 cycle)
tCOS = 0 (0 cycle)
tACC = 5 (6 cycles)
tCOH = 0 (0 cycle)

Data Fetch

Addr

tACC

Data

tNROE

tNECStNECS

tNROE

tADDRh

Figure 4-11. External I/O Read Timing 1 (tCOH = 0, tACC = 5, tCOS = 0, tACS = 0)

S3C4530A SYSTEM MANAGER

4-27

nECS

nOE

Address

Data

nEWAIT

MCLKO

tACS = 1 (1 cycle)
tCOS = 0 (0 cycle)
tACC = 4 (5 cycles)
tCOH = 1 (1 cycle)

Data Fetch

Addr

tNECS

tACC

Data

tCOH

tNROEtNROE

tNECS

tADDRh

tACS

Figure 4-12. External I/O Read Timing 2 (tCOH = 1, tACC = 4, tCOS = 0, tACS = 1)

SYSTEM MANAGER S3C4530A

4-28

nECS

nOE

Address

Data

nEWAIT

MCLKO

tACS = 1 (1 cycle)
tCOS = 1 (1 cycle)
tACC = 1 (2 cycles)
tCOH = 1 (1 cycle)

Data Read Point

tNROE

Addr

tNECS

tACCtACS

tCOS

Data

tCOH

tNROE

tNECS

tADDRd

tWs tWh

Figure 4-13. External I/O Read Timing with nEWAIT (tCOH = 1, tACC = 1, tCOS = 1, tACS = 1)

When nEWAIT is asserted for external I/O banks, it would be better to set the tCOS and tCOH value to minimum 1

cycle for safe operation. The nEWAIT should be valid at the first MCLKO rising edge after nOE active.
The nEWAIT de-assertion timing depends on the applied Ext. I/O devices.

S3C4530A SYSTEM MANAGER

4-29

nECS

nWBE

Address

Data

nEWAIT

MCLKO

tACS = 0 (0 cycle)
tCOS = 0 (0 cycle)
tACC = 5 (6 cycles)
tCOH = 0 (0 cycle)

Addr

tNWBE tNWBE

Data

tNECStNECS

tACC

tADDRd

tWDh

tADDRh

tWDd

Figure 4-14. External I/O Write Timing 1 (tCOH = 0, tACC = 5, tCOS = 0, tACS = 0)

SYSTEM MANAGER S3C4530A

4-30

nECS

nWBE

Address

Data

nEWAIT

MCLKO

tACS = 1 (1 cycle)
tCOS = 0 (0 cycle)
tACC = 4 (5 cycles)
tCOH = 1 (1 cycle)

tACS
tCOH

tADDRd

Addr

Data

tNECS

tWDd
tWDh

tACC

tNWBE tNWBE

tNECS

Figure 4-15. External I/O Write Timing 2 (tCOH = 1, tACC = 4, tCOS = 0, tACS = 1)

S3C4530A SYSTEM MANAGER

4-31

nECS

nWBE

Address

Data

nEWAIT

Addr

MCLKO

tACS = 1 (1 cycle)
tCOS = 1 (1 cycle)
tACC = 1 (2 cycles)
tCOH = 1 (1 cycle)

tACS

tCOS

tCOH

tADDRd

tACC

Data

tNECStNECS

tWDd
tWDh

tWs tWh

tNWBEtNWBE

Figure 4-16. External I/O Write Timing with nEWAIT (tCOH = 1, tACC = 1, tCOS = 1, tACS = 1)

SYSTEM MANAGER S3C4530A

4-32

DATA BUS WIDTH REGISTER (EXTDBWTH)

The S3C4530A has interfaces for 8/16/32-bit external ROMs, SRAMs, flash memories, DRAMs, SDRAMs, and
external I/O ports. Using data bus width register, you can set the data bus width that is required for specific
external memory and external I/O banks.

NOTE

In Figure 4-17, the term "Disable" means that the S3C4530A does not generate the access signal for the
corresponding external I/O bank.

Table 4-20. EXTDBWTH Register Description

Registers Offset R/W Description Reset Value

EXTDBWTH 0x3010 R/W Data bus width of each bank 0x00000000

S3C4530A SYSTEM MANAGER

4-33

31

[1:0] Data bus width for ROM/SRAM/FLASH bank 0 (DSR0)
DSR0 is read-only data at the B0SIZE [1:0] pins. DSR0 is used as read-only
because ROM/SRAM/FLASH bank 0 is used to boot the ROM while the data
bus width for ROM/SRAM/FLASH bank 0 is set using B0SIZE [1:0].
00 = Not permitted
01 = Byte (8 bits)
10 = Half-word (16 bits)
11 = Word (32 bits)

[3:2] Data bus width for ROM/SRAM/FLASH bank 1 (DSR1)

[5:4] DSR2, [7:6] DSR3, [9:8] DSR4, [11:10] DSR5
00 = Disable
01 = Byte (8 bits)
10 = Half- word (16 bits)
11 = Word (32 bits)

[13:12] Data bus width for DRAM bank 0 (DSD0)

[15:14] DSD1, [17:16] DSD2, [19:18] DSD3
00 = Disable
01 = Byte (8 bits)
10 = Half-word (16 bits)
11 = Word (32 bits)

[21:20] Data bus width for external I/O bank 0 (DSX0)

[23:22] DSX1, [25:24] DSX2, [27:26] DSX3
00 = Dissable
01 = Byte (8 bits)
10 = Half-word (16 bits)
11 = Word (32 bits)

NOTE: When you select "Disable", the assigned external I/O
bank access signal is not generated.

30 29

0EXTDBWTH 0 0 0

28 2627

DSX3

2425

DSX2

2223

DSX1

2021

DSX0

1819

DSD3

1617

DSD2

1415

DSD1

1213

DSD0

1011

DSR5

89

DSR4

67

DSR3

45

DSR2

23

DSR1

01

DSR0

Figure 4-17. Data Bus Width Register (EXTDBWTH)

SYSTEM MANAGER S3C4530A

4-34

ROM/SRAM/FLASH CONTROL REGISTERS(ROMCON)

The System Manager has six control registers for ROM, SRAM, and flash memory (see Table 4-21). These
registers correspond to the up to six ROM/SRAM/Flash banks that are supported by S3C4530A.

For ROM/SRAM/Flash bank 0, the external data bus width is determined by the signal at the B0SIZE[1:0] pins:

When B0SIZE[1:0] = "01", the external bus width for ROM/SRAM/Flash bank 0 is 8 bits.

When B0SIZE[1:0] = "10", the external bus width for ROM/SRAM/Flash bank 0 is 16 bits.

When B0SIZE[1:0] = "11", the external bus width for ROM/SRAM/Flash bank 0 is 32 bits.

You can determine the start address of a special register's bank by the value of the corresponding "special
register bank base pointer". The control register’s physical address is always the sum of the register’s bank base
pointer plus the register’s offset address.

NOTE

If you attach SRAM to a ROM/SRAM/Flash bank, you must set the page mode configuration bits,
ROMCONn[1:0], in the corresponding control register to "00" (normal ROM).

Table 4-21. ROM/SRAM/Flash Control Register Description

Registers Offset R/W Description Reset Value

ROMCON0 0x3014 R/W ROM/SRAM/Flash bank 0 control register 0x20000060

ROMCON1 0x3018 R/W ROM/SRAM/Flash bank 1 control register 0x00000060

ROMCON2 0x301C R/W ROM/SRAM/Flash bank 2 control register 0x00000060

ROMCON3 0x3020 R/W ROM/SRAM/Flash bank 3 control register 0x00000060

ROMCON4 0x3024 R/W ROM/SRAM/Flash bank 4 control register 0x00000060

ROMCON5 0x3028 R/W ROM/SRAM/Flash bank 5 control register 0x00000060

S3C4530A SYSTEM MANAGER

4-35

31

[1:0] Page mode configuration (PMC)
00 = Normal ROM 01 = 4-word page
10 = 8-word page 11 = 16-word page

[3:2] Page address access time (tPA)
00 = 5 cycles 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[6:4] Programmable access cycle (tACC)
000 = Disable bank 001 = 2 cycles
010 = 3 cycle 011 = 4 cycles
110 = 7 cycle 111 = Reserved

[19:14] ROM/SRAM/Flash bank # base pointer
This value is the start address of the ROM/SRAM/Flash bank #.
The start address is calculated as ROM/SRAM/FLASH bank #
base pointer << 20.

[29:24] ROM/SRAM/FLASH bank # next pointer
The start address is calculated as ROM/SRAM/FLASH bank #
base pointer << 20.

00
ROM/SRAM/Flash

Bank # Next Pointer

6 4

tACC

23 01

PMCtPAROMCON#

30 29 24 23

ROM/SRAM/Flash
Bank # Base Pointer

20 19 14 13

Figure 4-18. ROM/SRAM/FLASH Control Registers (ROMCON0 - ROMCON5)

SYSTEM MANAGER S3C4530A

4-36

nRCS

tNRCStNRCS

nOE

Address

Data

tADDRd

Addr

MCLKO

tACC

tACC = 4 (5 cycles)

Data Fetch Point

tNROE

tADDRh

tRDs tRDh

Data

Figure 4-19. ROM/SRAM/Flash Read Access Timing

S3C4530A SYSTEM MANAGER

4-37

nRCS

tNRCS

nOE

Address

Data

tADDRd

Addr

MCLKO

tACC

tACC = 2 (3 cycles)
tPA = 1 (2 cycles)
PMC = 1 (4 word page)

tNROE

Addr + 1 Addr + 2 Addr + 3

tNRCS

tPA tPA tPA

Data Data Data Data

Data Fetch Data FetchData Fetch Data Fetch

tRDh tRDh tRDh tRDh

tNROE

Figure 4-20. ROM/SRAM/Flash Page Read Access Timing

SYSTEM MANAGER S3C4530A

4-38

nRCS

tNRCStNRCS

nWBE

Address

Data

tADDRd

Data

Addr

MCLKO

tACC

tACC = 4 (5 cycles)

tWDd

tNWBE tNWBE

Figure 4-21. ROM/SRAM/Flash Write Access Timing

S3C4530A SYSTEM MANAGER

4-39

nRCS

tNRCStNRCS

nWBE

Address

Data

Addr

MCLKO

tACC

tACC = 2 (3 cycles)
tPA = 1 (2 cycles)
PMC = 1 (4 word page)

tPA

tADDRd

Addr + 1

tADDRh

Data Data

tADDRd

tNWBEtNWBE

Figure 4-22. ROM/SRAM/Flash Page Write Access Timing

SYSTEM MANAGER S3C4530A

4-40

nRCS

tNRCStNRCS

nWBE

Address

Data

tADDRd

Data

Addr

MCLKO

tACC

tACC = 2 (3 cycles)
tPA = 1 (2 cycles)
PMC = 1 (4 word page)

tADDRd

Addr + 1

tADDRh

nOE

tNROEtNROE

Data

Data Fetch

NOTE 1

NOTE 1 Page hit case: tPA
 Page miss case: tACC

tNWBE
tNWBE

tPA (or tACC)

Figure 4-23. ROM/SRAM/Flash Read and Write Access Timing

S3C4530A SYSTEM MANAGER

4-41

nRCS

tNRCStNRCS

nWBE

Address

Data Data

Addr

MCLKO

tACC

tACC = 2 (3 cycles)
tPA = 1 (2 cycles)
PMC = 1 (4 word page)

tPA

tADDRd

Addr + 1

tADDRh

nOE

tNROEtNROE

Data

Data Fetch

tADDRd

tNWBE tNWBE

Figure 4-24. ROM/SRAM/Flash Write and Read Access Timing

SYSTEM MANAGER S3C4530A

4-42

ROM BANK 5 ADDRESS/DATA MULTIPLEXED BUS AND NEWAIT

Overview

The S3C4530A has separate address and data bus. S3C4530A supports multiplexed address/data bus for low
cost chips that require multiplexed bus. To support this feature, the S3C4530A has one special bank (ROM bank
5) which can support address/data multiplexed bus and 4-data burst access by GDMA. For this feature, you
should set the MUX enable bit and wait enable bit of CLKCON register.

You can also use ROM bank 5 as normal ROM bank by clearing MUX enable bit of CLKCON register.

When you set the ROM bank 5 to zero wait enable bit in the CLKCON register, wait cycle can be added by
nEWAIT pin for ROM banks. The nEWAIT pin also can be used to add wait cycle for EXT I/O bank regardless of
the wait enable bit. However, in case of ROM banks, it is active only by enable bit set.

Random Access by CPU

At the first cycle of ROM bank 5, address comes out from data bus. Therefore, any device that is connected to
the ROM bank 5 can get address. The rest cycle is for data. As the S3C4530A has not a dedicated address
strobe signal for address phase in the data bust, you should generate address strobe signal in the application
device.

Four-data Burst Access by GDMA

When you set FB (4-data burst enable) bit in the GDMACON register, the GDMA requests 4-data burst access.
When you access ROM bank 5 by 4-data burst mode, the multiplexed ROM bank 5 bus has only one address
phase. Therefore, you should internally calculate the address at the data phase. To notify the 4-data burst mode
to ROM bank 5 device, the ADDR[21] remains "1" during address phase.

S3C4530A SYSTEM MANAGER

4-43

1 wait

nRCS[5]

tNRCStNRCS

nOE

Address

Data

nEWAIT

tAC

tADDRd

Data

Addr

MCLKO

nWBE

tNWBE

tACC

tNWBE

tAC = 0 (1 cycle)
tACC = 1 (2 cycles)
MUX BUS Enable

Data CycleAddress
Cycle

Addr

Figure 4-25. Muxed Bus Write Access of ROM/SRAM/FLASH Bank 5 with nEWAIT

SYSTEM MANAGER S3C4530A

4-44

1 wait

nRCS[5]

nOE

Address

Data

nEWAIT

tAC

Addr

MCLKO

nWBE

tAC = 0 (1 cycle)
tACC = 1 (2 cycles)
MUX BUS Enable

Address
Cycle

Data Read Point

tACC

Data Cycle

DataAddr

tADDRd

tNROEtNROE

tNRCStNRCS

Figure 4-26. Muxed Bus Read Access of ROM/SRAM/FLASH Bank 5 with nEWAIT

S3C4530A SYSTEM MANAGER

4-45

nRCS[5]

tNRCS

nOE

Address

Data

nEWAIT

tAC

tADDRd

Data 0

Addr 0

MCLKO

nWBE

tNWBE

tAC = 0 (1 cycle)
tACC = 1 (2 cycles)
MUX BUS Enable

Address
Cycle

Data Cycle

Addr Data 1 Data 2 Data 3

Addr 1 Addr 2 Addr 3

tNWBE

tNRCS

tACC tACC tACC tACC

Figure 4-27. Four-data Burst Mode Write Timing of ROM/SRAM/FLASH Bank 5 When GDMA Requests

SYSTEM MANAGER S3C4530A

4-46

nRCS[5]

tNRCS

nOE

Address

Data

nEWAIT

tAC

tADDRd

Data 0

Addr 0

MCLKO

nWBE

tAC = 0 (1 cycle)
tACC = 1 (2 cycles)
MUX BUS Enable

Address
Cycle

Data Cycle

tNRCS

Addr Data 1 Data 2 Data 3

Addr 1 Addr 2 Addr 3

tNROE tNROE

tACC tACC tACC tACC

Figure 4-28. Four-data Burst Mode Read Timing of ROM/SRAM/FLASH Bank 5 When GDMA Requests

S3C4530A SYSTEM MANAGER

4-47

1 wait

nRCS

nOE

Address

Data

nEWAIT

Addr

MCLKO

nWBE

tACC = 1 (2 cycles)

Data Read Point

tACC

tADDRd

Data

tNROE

tNRCStNRCS

tNROE

Figure 4-29. ROM/SRAM/FLASH Banks Read Access with nEWAIT

SYSTEM MANAGER S3C4530A

4-48

1 wait

nRCS

nOE

Address

Data

nEWAIT

Addr

MCLKO

nWBE

tACC = 1 (2 cycles)

Data Write Point

tACC

tADDRd

Data

tNWBE

tNRCStNRCS

tNWBE

Figure 4-30. ROM/SRAM/FLASH Banks Write Access with nEWAIT

S3C4530A SYSTEM MANAGER

4-49

DRAM CONTROL REGISTERS

The System Manager has four DRAM control registers, DRAMCON0–DRAMCON3. These registers correspond
to the up to four DRAM banks that are supported by S3C4530A. A fifth register, REFEXTCON, is used to set the
base pointer for external I/O bank 0.

S3C4530A supports EDO, normal, Synchronous DRAM(SDRAM). SDRAM mode can be selected by setting
SYSCFG[31]. If this bit is set to '1', all DRAM banks are selected SDRAM. Otherwise, EDO/FP DRAM banks are
selected.

Table 4-22. DRAM and External I/O Control Register Description

Registers Offset R/W Description Reset Value

DRAMCON0 0x302C R/W DRAM bank 0 control register 0x00000000

DRAMCON1 0x3030 R/W DRAM bank 1 control register 0x00000000

DRAMCON2 0x3034 R/W DRAM bank 2 control register 0x00000000

DRAMCON3 0x3038 R/W DRAM bank 3 control register 0x00000000

REFEXTCON 0x303C R/W Refresh and external I/O control register 0x000083FD

SYSTEM MANAGER S3C4530A

4-50

[0] EDO mode (EDO)(note 1)

0 = Normal DRAM (Fast page mode DRAM)
1 = EDO DRAM

[2:1] CAS strobe time (tCS)(note 2)

00 = 1 cycle 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[3] CAS pre-charge time (tCP)(note 1)

0 = 1 cycle 1 = 2 cycles

[7] RAS to CAS delay (tRC or tRCD)
0 = 1 cycle 1 = 2 cycles

[9:8] RAS pre-charge time (tRP)
00 = 1 cycle 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[19:14] DRAM bank # base pointer
This value indicates the start address of DRAM bank #.
The start address is calculated as RAM bank # base
pointer << 20

[29:24] DRAM bank # next pointer
The start address is calculated as DRAM bank # base
pointer << 20

[31:30] Number of column address bits in
 DRAM bank # (CAN)
00 = 8 bits 01 = 9 bits
10 = 10 bits 11 = 11 bits

NOTES:
1. In SDRAM mode, these bits are reserved.
2. In SDRAM mode, tcs is fixed with one cycle.

DRAMCON#

31 30 29

CAN

20

DRAM Bank #
Next Pointer

19 10 9 4

0

23 01

DRAM Bank #
Base Pointer tRP tCS

t
C
P

E
D
O

24 23 14 13 8 67

t
R
C

Figure 4-31. DRAM Control Registers (DRAMCON0-DRAMCON3)

S3C4530A SYSTEM MANAGER

4-51

nRAS

nOE

Address

Data

MCLKO

nDWE

tRP = 0 (1 cycle)
tCS = 1 (2 cycles)
tCP = 0 (1 cycle)
tRC = 0 (1 cycle)

nCAS

tRP tCS tCS

Data

Data Fetch
(EDO DRAM)

Data Fetch
(Normal DRAM)

Data

Data Fetch
(EDO DRAM)

Data Fetch
(Normal DRAM)

Column Addr

tCP

Data Data

tNROE tNROE

tNRASrtNRASf

tNCASr

tADDRd

Row
Addr

Column Addr (same page)

tNCASf

tRC

Figure 4-32. EDO/FP DRAM Bank Read Timing (Page Mode)

SYSTEM MANAGER S3C4530A

4-52

nRAS

nDWE

Address

Data

MCLKO

nOE

tRP = 0 (1 cycle)
tCS = 1 (2 cycles)
tCP = 0 (1 cycle)
tRC = 0 (1 cycle)

nCAS

tCP

Data

tRC

Column Addr

tNDWE

tRP

tNRASf

Row
Addr Column Addr (same page)

tNRASr

tNCASwr

tNDWE

tCS tCS

tADDRd

Data

tNCASwf

Figure 4-33. EDO/FP DRAM Bank Write Timing (Page Mode)

S3C4530A SYSTEM MANAGER

4-53

CKE

nSDCS

ADDR

MCLKO

Key

nSDRAS

nSDCAS

BA

A10/AP

nDWE

DQM

200um Precharge
(all banks)

Auto
Refresh

Auto
Refresh

Mode
Register Set

(MRS)

KEY
RFU

0

A9

TM

0 0

A8 A7

CAS Latency

0 1 0

A6 A5 A4

BT

0

A3

Burst Length

0 0 0

A2 A1 A0

High level is necessary.

Figure 4-34. SDRAM Power-up Sequence

SYSTEM MANAGER S3C4530A

4-54

NOTE 3

NOTES:
1. There is minimum 1 cycle gap between data-in and data-out of
 SDRAM to prevent bus confliction.
2. All DQM signals go to zero during read operation.
3. Only valid signals go to zero during write operation.

nSDCS

ADDR

MCLKO

nSDRAS

nSDCAS

nDWE

DATA

DQM

1 2 3 4 5 6 7 8 9 10 11 12 13

Row

Precharge
(all banks)

Row
active

Read Fetch Write Read Fetch

CKE

NOTE 2

0x00xF 0xF 0x0 0xF

WdRd Rd

Col0 Col2Col1

tRP

tRCD

NOTE 1

Figure 4-35. Non-burst, Read-Write-Read Cycles @CAS Latency = 2, Burst Length = 1

S3C4530A SYSTEM MANAGER

4-55

MCLKO

nSDCS

nSDRAS

nSDCAS

nDWE

CKE

DQM

1 2 3 4 5 6 7 8 9 10 11 12 13

Address

Data

Precharge
(all banks)

Row active Read

Row

tRCD

tRP

Col0 Col1 Col2 Col3

Rd2Rd0 Rd3Rd1

0xF 0xF0x0

Fetch Fetch Fetch Fetch

Figure 4-36. SDRAM Burst-Read

SYSTEM MANAGER S3C4530A

4-56

MCLKO

nSDCS

nSDRAS

nSDCAS

nDWE

CKE

DQM

1 2 3 4 5 6 7 8 9 10 11 12 13

Address

Data

Precharge
(all banks)

Row active

Row

tRCD

tRP

Col0 Col1 Col2 Col3

D2D1D0 D3

0xF 0xF0x0

Write Write Write Write

Figure 4-37. SDRAM Burst-Write

S3C4530A SYSTEM MANAGER

4-57

DRAM INTERFACE FEATURES

The S3C4530A provides a fully programmable external DRAM interface. You can easily modify the
characteristics of this interface by manipulating the corresponding DRAM control registers. Programmable
features include

— External data bus width

— Control fast page or EDO mode by DRAMCON[0]

— Select fast page/EDO mode or SDRAM mode by SYSCFG

— Number of access cycles for each DRAM bank, and

— CAS strobe time, CAS pre-charge time, RAS to CAS delay, RAS pre-charge time

The refresh and external I/O control register, REFEXTCON, controls DRAM refresh operations and external I/O
bank accesses. The S3C4530A eliminates the need for an external refresh signal by automatically issuing an
internal CAS-before-RAS refresh or auto-refresh control signal.

The S3C4530A generates row and column addresses for DRAM accesses with 26-bit internal address bus. It also
supports symmetric or asymmetric DRAM addressing by changing the number of column address lines from 8 to
11.

EDO Mode DRAM Accesses

The timing for accessing a DRAM in EDO mode is comparable to DRAM accesses in normal fast page mode.
However, in EDO mode, the S3C4530A CPU fetches data (when read) one-half clock later than in normal fast
page mode. This is possible because EDO mode can validate the data even if CAS goes High when RAS is Low.
In this way, gives the CPU sufficient time to access and latch the data so that the overall memory access cycle
time can be reduced.

Synchronous DRAM Accesses

Synchronous DRAM interface features are as follows:

• MRS cycle with address key program
— CAS latency (2 cycles)
— Burst length (1)
— Burst type (Sequential)

• Auto refresh

• Four word burst transfer for cache linefill, ETHERNET DMA and HDLC DMA operation.

• SDRAM interface signal: CKE, SDCLK, nSDCS[3:0], nSDCAS, nSDRAS, DQM[3:0], ADDR[10]/AP

The address bits except row and column address among the 23-bit internal address bus can be assigned to Bank
select address(BA) for SDRAM.

See the SDRAM interface example, Figure 4-38.

SYSTEM MANAGER S3C4530A

4-58

Available Samsung SDRAM Components for S3C4530A

Components

S3C4530A can support below SDRAM configuration for 1 bank.

• 2MBytes to 1 bank → 1 × (2Mx32 with 4banks)

• 4MBytes to 1 bank → 2 × (1Mx16 with 2banks)

• 8MBytes to 1 bank → 4 × (2Mx8 with 2banks)

• 16MBytes to 1bank → 2 × (4Mx16 with 2/4banks)

• 32MBytes to 1bank → 4 × (8Mx8 with 2/4banks)

You can select any combination among them.
SDRAM components that are available are as follow.
x4 SDRAM whose capacity is larger than 16M SDRAM is not supported at S3C4530A.

16M bit SDRAM

— 4Mx4 with 2banks (supported) RA0–RA10, CA0–CA9

— 2Mx8 with 2banks (supported) RA0–RA10, CA0–CA8

— 1Mx16 with 2banks (supported) RA0–RA10, CA0–CA7

64M bit 2Banks SDRAM

— 16Mx4 with 2banks (not supported) RA0–RA12, CA0–CA9

— 8Mx8 with 2banks (supported) RA0–RA12, CA0–CA8

— 4Mx16 with 2banks (supported) RA0–RA12, CA0–CA7

64M bit 4Banks SDRAM

— 16Mx4 with 4banks (not supported) RA0–RA11, CA0–CA9

— 8Mx8 with 4banks (supported) RA0–RA11, CA0–CA8

— 4Mx16 with 4banks (supported) RA0–RA11, CA0–CA7

2Mx32 (64M bit) SDRAM

— 2Mx32 with 4banks (supported) RA0–RA10, CA0–CA7

S3C4530A SYSTEM MANAGER

4-59

100 Pin DIMM Module SDRAM

KMM330S104CT

— 1Mx32 based on 2
1Mx16 2banks components RA0–RA10, CA0–CA7

KMM330S204CT

— 2Mx32 based on 4
1Mx16 2banks components RA0–RA10, CA0–CA7

KMM330S2424CT

— 4Mx32 based on 2
4Mx16 4banks components RA0–RA11, CA0–CA7

KMM330S824CT

— 8Mx32 based on 4
4Mx16 4banks components RA0–RA11, CA0–CA7

SYSTEM MANAGER S3C4530A

4-60

Relationship Between CAN (Column Address Number) and Address MUX Output for SDRAM

Table 4-23. CAN and Address MUX Output

CAN Output External Address Pins (ADDR)

Timing [21:15] 14 13 12 11 10 9 8 7-0

00 Column
address

x A22 A21 A20 A19 A10/AP A9 A8 A7-A0

Row
address

x A22 A21 A20 A19 A18 A17 A16 A15-A8

01 Column
address

x 0 A22 A21 A20 A10/AP A9 A8 A7-A0

Row
address

x 0 A22 A21 A20 A19 A18 A17 A16-A9

10 Column
address

x 0 0 A22 A21 A10/AP A9 A8 A7-A0

Row
address

x 0 0 A22 A21 A20 A19 A18 A17-A10

NOTES:
1. A22 to A0 depends on external bus width. In case of x32 memory, A[22:0] is word address.
2. A[22:0] consists of: Bank Address + Valid Row Address + Valid Column Address

DRAM BANK SPACE

The S3C4530A DRAM interface supports four DRAM banks. Each bank can have a different configuration. You
use the DRAM control registers, DRAMCON0-DRAMCON3, to program the DRAM access cycles and memory
bank locations.

Each DRAM control register has two 10-bit address pointers, one base pointer and one next pointer, to denote the
start and end address of each DRAM bank. The 10-bit pointer values are mapped to the address [25:16]. This
gives each bank address an offset value of 64 K bytes (16 bits). The next pointer value will be the DRAM bank's
end address + 1.

System Initialization Values

When the system is initialized, the four DRAM control registers are initialized to 00000000H, disabling all external
DRAMs.

S3C4530A SYSTEM MANAGER

4-61

S3C4530A

CLK D3

CS

CKE

RAS

CAS

WE

Addr

DQM

DQ0-7

CLK D2

CS

CKE

RAS

CAS

WE

Addr

DQM

DQ0-7

CLK D1

CS

CKE

RAS

CAS

WE

Addr

DQM

DQ0-7

CLK D0

CS

CKE

RAS

CAS

WE

Addr

DQM

DQ0-7

MCLKO/SDCLK

nRAS/nSDCS 0,1,2,3

nCAS2/CKE

nCAS0/nSDRAS

nCAS1/nSDCAS

nDWE
ADDR[10:0]

nWBE[3:0]/DQM[3:0]

XDATA[31:0]

ADDR[11]
BA0 All

SDRAM's
BA pin

<3>

<2>

<1>

<0>

Figure 4-38. SDRAM Application Example
(4 components have the following features: 1M ×× 8bit ×× 2Banks 9bit column, 11bit-row address)

SYSTEM MANAGER S3C4530A

4-62

DRAM REFRESH AND EXTERNAL I/O CONTROL REGISTER

The S3C4530A DRAM interface supports the CAS-before-RAS (CBR) refresh mode for EDO/FP DRAM and
auto-refresh for SDRAM. Settings in the DRAM refresh and external I/O control register, REFEXTCON, control
DRAM refresh mode, refresh timings, and refresh intervals. REFEXTCON also contains the 10-bit base pointer
value for the external I/O bank 0.

NOTE

Whenever the S3C4530A CPU writes one of system manager registers, the validity of special register
field (that is, the VSF bit) is automatically cleared and the external bus is disabled. To reactivate external
bus, you must set the VSF bit to "1" using a STMIA instruction. It is recommended that programmers
always use STMIA instructions to write the 10 system manager special registers. The instruction used to
set the VSF bit should always be the last instruction in the register write sequence.

S3C4530A SYSTEM MANAGER

4-63

[9:0] External I/O bank 0 base pointer (base address)
This value is the start address of I/O external I/O bank 0.
Start address is defined as external I/O bank 0 base
pointer << 20. The end address of external I/O bank 0 is defined as external
I/O bank 0 base pointer >> 20 + 256 Kbytes - 1.

NOTE: All external I/O banks are located in the continuous adress space which begins at
 the start address of external I/O bank 0. In case of PD_ID value is 0x13, the
 size of each external I/O bank is fixed at 256Kbytes. The start and end addresses
 of the other three external I/O banks can be derived from the external I/O bank 0
 base pointer value.
 In case of PD_ID value is 0x03, each bank's space is 16Kbytes. And it's base
 pointer can be handled with 10bit.

[15] Validity of spedial register field (VSF)
0 = Not accessible to memory bank
1 = Accessible to memory bank

[16] Refresh enable (REN)
0 = Disable DRAM refresh
1 = Enable DRAM refresh

[19:17] CAS hold time (tchr)
 ROW cycle time (tRC) (note 1)

000 = 1 cycle 001 = 2 cycles
010 = 3 cycles 011 = 4 cycles
100 = 5 cycles 101 = Not used (6 cycles)
110 = Not used 111 = Not used

[20] CAS setup time (tCSR) (note 2)

0 = 1 cycle
1 = 2 cycles

[31:21] Refresh count value (duration)
The refresh period is calculate as (211 - value + 1)/fMCK

NOTES:
1. In EDO/normal DRAM mode, CAS hold time can be
 programmed upto 5 cycles. But in SDRAM mode, this
 bit fields function are defined as ROW Cycle Time
 (tRC) and can be programmed upto 6 cycles.
2. In SDRAM mode, this bit field is reserved.

Refresh Count Value tCHRREFEXTCON

t
C
S
R

R
E
N

V
S
F

0 0 0 0 0
External I/O Bank 0

Base Pointer

31 20 19 10 9 021 17 16 15 14 13 12 11 4 3

Figure 4-39. DRAM Refresh and External I/O Control Register (REFEXTCON)

SYSTEM MANAGER S3C4530A

4-64

Continuous 256 Kword address
space for 4 external I/O banks

64 Kwords (fixed for all I/O banks)

External I/O Bank 3

External I/O Bank 2

External I/O Bank 1

External I/O Bank 0

End Address of
External I/O Bank 0

Start Address of
External I/O Bank 0

Start address of external I/O bank n =
(External I/O bank 0 base pointer << 20) + 256 Kbytes x n

End address of external I/O bank n =
(External I/O bank 0 base pointer << 20) + 256 Kbytes x (n + 1) - 1

Where, n is an external I/O bank number (= 0, 1, 2, 3)

Figure 4-40. External I/O Bank Address Map

S3C4530A SYSTEM MANAGER

4-65

nDWE/
nOE

MCLKO

nCAS

nRAS

Address

Data

Figure 4-41. EDO/FP DRAM Refresh Timing

SYSTEM MANAGER S3C4530A

4-66

MCLKO

nDWE

CKE

nSDCS
tRP

Precharge
(all banks)

Auto
Refresh

New
Command

nSDRAS

nSDCAS

tRC

High level is necessary

Figure 4-42. Auto Refresh Cycle of SDRAM

NOTE: At auto-refresh cycle, DRAM bank0's tRP bit field is used as RAS pre-charge time parameter.

S3C4530A UNIFIED INSTRUCTION/DATA CACHE

5-1

5 UNIFIED INSTRUCTION/DATA CACHE

OVERVIEW

The S3C4530A CPU has a unified internal 8K byte instruction/data cache. Using cache control register settings,
you can use part or all of this cache as internal SRAM. To raise the cache hit ratio, the cache is configured using
two-way, set-associative addressing. The replacement algorithm is pseudo-LRU (Least Recently Used).

The cache line size is four words (16 bytes). When a miss occurs, four words must be fetched consecutively from
external memory. Typically, RISC processors take advantage of unified instruction/data caches to improve
performance. Without an instruction cache, bottlenecks that occur during instruction fetches from external
memory may seriously degrade performance.

CACHE CONFIGURATION

The S3C4530A’s 4K byte, two-way set-associative instruction/data cache uses a 15-bit tag address for each set.
The CS bits (a 2-bit value) in tag memory stores information for cache replacement. When a reset occurs, the CS
value is "00", indicating that the contents of cache set 0 and cache set 1 are invalid. When the first cache fill
operation occurs while exiting from the reset operation, the CS value becomes "01" at the specified line to
indicate that only set 0 is valid. When the subsequent cache fill occurs, the CS value becomes "11" at the
specified line, indicating that the contents of both set 0 and set 1 are valid.

UNIFIED INSTRUCTION/DATA CACHE S3C4530A

5-2

switch

CS Set 1 Tag Set 0 Tag

15 (14)2

Tag RAM (32-bit)

Set 1 Icache line = 4 instruction/data (128-bit) Set 0 Icache line = 4 instruction/data (128-bit)

Decoder

6-bit 2-bit

Height = 128 (256)

7 (8)-bit

Height =
128 (256)

32

2

(Set 0 Hit)
(Set 1 Hit)

15Enable non-cacheable control

15 (14)

2

32

32

Instr3 Instr2 Instr1 Instr0

32-bit

Instr3 Instr2 Instr1 Instr0

32-bit

7 (8)-bit

31 2728

Tag Address (15-bit)

25 030 29 26 10 9 4 3 2 124 23

Bit 28 24 23

1 0 0
1 0 1
1 1 0

Set 0 direct access
Set 1 direct access
TAG direct access

Figure 5-1. Memory Configuration for 4-Kbyte (or 8-Kbyte) Cache

S3C4530A UNIFIED INSTRUCTION/DATA CACHE

5-3

CACHE REPLACE OPERATIONS

When the contents of two sets are valid and when the content of the cache must be replaced due to a cache
miss, the CS value becomes "10" at specified line. This indicates that the content of set 0 (S0) was replaced.
When CS is "10" and when another replacement is required due to a cache miss, the content of set 1 (S1) is
replaced by changing the CS value to "01".

To summarise, at its normal steady state, the CS value is changed from "01" or "10" to "10" or "01". This
modification provides the information necessary to implement a 2-bit pseudo-LRU (Least Recently Used) cache
replacement policy.

S0 only: 01

miss

Hit

; Set 0, set 1 all invalid

; Chahe miss occurs

; Set 0 = valid, set 1 = invalid
 Status does not change on hit

; Read miss

; AV_S1D = All valid and set 1 is dirty.
 Dirty means to access just before;
 status does not change on hit.

; AV_S0D = All valid and set 0 is dirty.

miss

AV-S0D: 10AV-S1D: 11

Hit 1 Hit 0

Miss or hit 1

Miss or hit 0

Reset(/)

NVALID: 00

Figure 5-2. Cache Replace Algorithm State Diagram

UNIFIED INSTRUCTION/DATA CACHE S3C4530A

5-4

CACHE DISABLE/ENABLE

To disable the cache disable entirely following a system reset, you must set SYSCFG[1] to "0". By setting the
cache mode bits, SYSCFG[5:4], you can specify a cache size of 0, 4, or 8K bytes. If you do not need the entire 8-
Kbyte area for cache, you can use the remaining area as normal internal SRAM. The start address of the internal
SRAM area is defined by writing an appropriate value to SYSCFG[15:6].

CACHE FLUSH OPERATION

To flush cache lines, you must write a zero to Tag memory bits 31 and 30, respectively.

The 4-Kbyte set 0 RAM area, 4-Kbyte set 1 RAM area, and the 1-Kbyte Tag RAM area (total 256 words) can be
accessed from locations 0x10000000H, 0x10800000H, and 0x11000000H, respectively. You can do this
independently of the current cache mode bit and cache enable bit settings.

Tag RAM is normally cleared by hardware following a power-on reset. However, if you change the cache or
memory bank configuration when the cache is being enabled, you will have to clear the Tag RAM area using
application software.

NON-CACHEABLE AREA CONTROL BIT

Although the cache affects the entire system memory, it is sometimes necessary to define non-cacheable areas
when the consistency of data stored in memory and the cache must be ensured. To support this, the S3C4530A
provides a non-cacheable area control bit in the address field, ADDR[26].

If ADDR[26] in the ROM/SRAM, flash memory, DRAM, or external I/O bank's access address is "0", then the
accessed data is cacheable. If the ADDR[26] value is "1", the accessed data is non-cacheable.

Cacheable Area

Non-cacheable
Area

Cacheable Area

002_0000

3FF_FFFF

000_FFFF

000_0000
000_0000

Cacheable Area

400_0000

401_0000

401_FFFF

3FF_FFFF 7FF_FFFF

NOTE: The non-cacheable area has the same space in memory
as the cacheable area. To access the non-cacheable
area, you can change the address of the space in memory
using non-cacheable control bit.

16 M word

Non-cacheable Area

Figure 5-3. Non-Cacheable Area Control

NOTE

A SWAP command must be used within a non-cacheable area.

S3C4530A I2C BUS CONTROLLER

 6-1

6 I2C BUS CONTROLLER

OVERVIEW

The S3C4530A's internal IC bus (I2C-bus) controller has the following important features:

— It requires only two bus lines, a serial data line (SDA) and a serial clock line (SCL). When the I2C-bus is free,
both lines are High level.

— Each device that is connected to the bus is software-addressable by a single master using a unique address.
slave relationships on the bus are constant. The bus master can be either a master-transmitter or a master-
receiver. The I2C bus controller supports only single master mode.

— It supports 8-bit, bi-directional, serial data transfers.

— The number of ICs that you can connect to the same I2C-bus is limited only by the maximum bus
capacitance of 400 pF.

Figure 6-1 shows a block diagram of the S3C4530A I2C-bus controller

Data
Control

SCL
Control 0

Serial
Clock

Prescaler

Control Status Register (IICCON)

0 BUSY COND1 COND0 ACK LRB IEN

Prescaler Register (IICPS)

System Clock (fMCK)

16

SCL

SDA

BF

Shift Buffer Register (IICBUF)

Figure 6-1. I2C BUS Block Diagram

I2C BUS CONTROLLER S3C4530A

6-2

FUNCTIONAL DESCRIPTION

The S3C4530A I2C bus controller is the master of the serial I2C-bus. Using a prescaler register, you can program
the serial clock frequency that is supplied to the I2C bus controller. The serial clock frequency is calculated as
follows:

MCLK / (16 × (prescaler register value + 1) + 3)

To initialize the serial I2C-bus, the programmer sends a start code by writing "01" to bits [5:4]of the control status
register, IICCON. The bus controller then sends the 7-bit slave address and a read/write control bit through shift
buffer register. The receiver sends an acknowledge by pulling the SDA line from high to low during a master SCL
pulse.

To continue the data write operation, you must set the BF bit in the control status register and then write the data
to the shift buffer register. Whenever the shift buffer register is read or written, the BF bit is cleared
automatically. For the consecutive read/write operations, you must set the ACK bit in the control status register.

For read operations, you can read the data after you have set the BF bit in the control status register. To signal
the end of the read operation, you can reset the ACK bit to inform the receiver/transmitter when the last byte is to
be written/read.

Following a read/write operation, you set IICCON[5:4] to "10" to generate a stop code. If you want to complete
another data transfer before issuing the Stop code, you can send the start code using the repeat start command
(with IICCON[5:4] = "11"). When the slave address and read/write control bit have been sent, and when the
receive acknowledge has been issued to control SCL timing, the data transfer is initiated.

S3C4530A I2C BUS CONTROLLER

 6-3

I2C-BUS CONCEPTS

Basic Operation

The I2C-bus has two wires, a serial data line (SDL) and a serial clock line (SCL), to carry information between the
ICs connected to the bus. Each IC is recognized by a unique address and can operate as either a transmitter or
receiver, depending on the function of the specific ICs.

The I2C-bus is a multi-master bus. This means that more than one IC which is capable of controlling the bus can
be connected to it. data transfers proceed as follows:

Case 1: A master IC wants to send data to another IC (slave):

1. Master addresses slave

2. Master sends data to the slave (master is transmitter, slave is receiver)

3. Master terminates the data transfer

Case 2: A master IC wants to receive information from another IC (slave):

1. Master addresses slave

2. Master receives data from the slave (master is receiver, slave is transmitter)

3. Master terminates the data transfer

Even in case 2, the master IC must generate the timing signals and terminate the data transfer.

If two or more masters try to put information simultaneously onto the bus, the first master to issue a "1" when the
other issues a "0" will lose the bus arbitration. The clock signals used for arbitration are a synchronized
combination of the clocks generated by the bus masters using the wired-AND connection to the SCL line.

The master IC is always responsible for generating the clock signals on the I2C-bus. Bus clock signals from a
master can only be altered by 1) a slow slave IC which "stretches" the signal by temporarily holding the clock line
Low, or 2) by another master IC during arbitration.

General Characteristics

Both SDA and SCL are bi-directional lines which are connected to a positive supply voltage through a pull-up
resistor.

When the I2C-bus is free, the SDA and SCL lines are both high level. The output stages of I2C interfaces
connected to the bus have an open-drain or open-collector to perform the wired-AND function. Data on the I2C-
bus can be transferred at a rate up to 100 Kbits/s. The number of interfaces that can be connected to the bus is
solely dependent on the limiting bus capacitance of 400 pF.

Bit Transfers

Due to the variety of different ICs (CMOS, NMOS, and I2L, for example) which can be connected to the I2C-bus,
the levels of logic zero (low) and logic one (high) are not fixed and depend on the associated level of VDD. One

clock pulse is generated for each data bit that is transferred.

I2C BUS CONTROLLER S3C4530A

6-4

Data Validity

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line
can only change when clock signal on the SCL line is low.

Start and Stop Conditions

Start and stop conditions are always generated by the master. The bus is considered to be busy after the start
condition is generated. The bus is considered to be free again when a brief time interval has elapsed following
the Stop condition.

— Start condition: a High-to-Low transition of the SDA line while SCL is high.

— Stop condition: a Low-to-High transition of the SDA line while SCL is high.

Start
Condition

Address
P

9

Stop
Condition

SDA

SCL 1-7 8 91-7 8 91-7 8

R/W ACK DATA ACK DATA ACK
S

Figure 6-2. Start and Stop Conditions

S3C4530A I2C BUS CONTROLLER

 6-5

DATA TRSANSFER OPERATIONS

Data Byte Format

Every data byte that is put on the SDA line must be 8 bits long. The number of bytes that can be transmitted per
transfer is unlimited. Each byte must be followed by an acknowledge bit. Data is transferred MSB-first.

If the receiver cannot receive another complete byte of data until it has performed some other function (such as
servicing an internal interrupt), it can hold the clock line SCL Low to force the transmitter into a wait state. The
data transfer then continues when the receiver is ready for another byte of data and releases the SCL line.

Acknowledge Procedure

Data transfer with acknowledge is obligatory. The acknowledge-related clock pulses must be generated by the
bus master. The transmitter releases the SDA line (High) during the acknowledge clock pulse.

The receiver must pull down the SDA line during the acknowledge pulse so that it remains stable low during the
High period of this clock pulse.

Usually, a receiver which has been addressed is obliged to generate an acknowledge after each byte is received.
When a slave receiver does not acknowledge from the slave address, the slave must leave the data line high.
The master can then generate a stop condition to abort the transfer.

If a slave receiver acknowledges the slave address, but later in the transfer cannot receive any more data bytes,
the master must again abort the transfer. This is indicated by the slave not generating the acknowledge on the
first byte to follow. The slave leaves the data line high and the master generates the stop condition.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not
generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must then
release the data line to let the master generate the stop condition.

I2C BUS CONTROLLER S3C4530A

6-6

Data Transfer Format

Data transfers uses the format shown in Figure 6-3. After the start condition has been generated, a 7-bit slave
address is sent. The eighth bit is a data direction bit (R/W). A "0" direction bit indicates a transmission (Write)
and a "1" indicates a request for data (Read).

A data transfer is always terminated by a stop condition which is generated by the master. However, if a master
still wishes to communicate on the bus, it can generate another start condition and address another slave without
first generating a stop condition. This feature supports the use of various combinations of read/write formats for
data transfers.

S Slave address W A Data 1 (8 bits) A Data 2 Data MA A P

S Slave address R A Data 1 (8 bits) A Data 2 Data MA A P

Multiple Byte Slave Receiver Format:

Multiple Byte Slave Transmitter Format:

NOTE: S (Start)
W (Write; bit value is 0)
R (Read; bit value is 1)
P (Stop),
A (Acknowledge; The ACK is first sent to the slave. Afterwards, the direction
depends on the data transfer direction. In other words, if the mater reads the data,
it sends the ACK.)

Figure 6-3. Data Transfer Format

S3C4530A I2C BUS CONTROLLER

 6-7

I2C-Bus Addressing

The addressing procedure for the I2C-bus is such that the first byte after the start condition determines which
slave the master will select. Usually, this first byte immediately follows the start procedure.

An exception is the "general call" address which can address all ICs simultaneously. When this address is used,
all ICs should, in theory, respond with an acknowledge. However, ICs can also be made to ignore this address.
The second byte of the general call address then defines the action to be taken.

Definition of Bits in the First Data Byte

The first seven bits of the first data byte make up the slave address. The eighth bit is the LSB, or direction bit,
which determines the direction (R/W) of the message.

When an address is sent, each IC on the bus compares the first 7 bits received following start condition with its
own address. If the addresses match, the IC considers itself addressed by the master as a slave receiver or a
slave transmitter.

General Call Address

The general call address can be used to address every IC that connected to the I2C-bus. However, if an IC does
not need any of the data supplied within the general call structure, it can ignore this address by not
acknowledging it.

If an IC does require data from a general call address, it can then acknowledge this address and behave as a
slave receiver. The second and following bytes will be acknowledged by every slave receiver capable of handling
this data. A slave which cannot process one of these bytes must ignore it by not acknowledging. The meaning of
the general call address is always specified in the second byte.

Start Byte

Every data transfer is preceded by a start procedure:

— A start condition, S

— A start byte, "00000001"

— An acknowledge (ACK) clock pulse, and

— A repeated start condition, Sr

After the start condition (S) has been transmitted by a master which requires bus access, the start byte
("00000001") is transmitted. Another IC can therefore sample the SDA line at a low sampling rate until one of the
seven zeros in the start byte is detected. After it detects this low level on the SDA line, the IC can switch to a
higher sampling rate to find the repeated start condition (Sr) which is then used for synchronization. (A) hardware
receiver will reset upon receipt of the repeated start condition (Sr) and will therefore ignore the start byte.)

An acknowledge-related clock pulse is generated after the start byte. This is done only to conform with the byte
handling format used on the bus. No IC is allowed to acknowledge the start byte.

I2C BUS CONTROLLER S3C4530A

6-8

I2C BUS SPECIAL REGISTERS

The I2C-bus controller has three special registers: a control status register (IICCON), a prescaler register (IICPS),
and a shift buffer register (IICBUF).

Control Status Register (IICCON)

The control status register for the I2C-bus, IICCON, is described in Table 6-2.

Table 6-1. Control Status Register (IICCON)

Register Offset Address R/W Description Rest Value

IICCON 0xf000 R/W Control status register 0x00000000

Table 6-2. IICCON Register Description

Bit Number Bit Name Description

[0] Buffer flag (BF) The BF bit is set when the buffer is empty in transmit mode or
when the buffer is full in receive mode. To clear the buffer, you
write a "0" to this bit. The BF bit is cleared automatically
whenever the IICBUF register is written or read. If you set BF bit
to one, the I2C -bus is stopped. To activate I2C-bus, you should
clear the BF bit to zero.

[1] Interrupt enable (IEN) Setting the interrupt enable bit to "1" enables the I2C-bus
interrupt.

[2] Last received bit (LRB) The LRB bit is read only. It holds the value of the last received bit
over the I2C-bus. Normally, this bit will be the value of the slave
acknowledgement. To check for slave acknowledgement, you
test the LRB.

[3] Acknowledge enable
(ACK)

The ACK bit is normally set to "1". This causes the I2C-bus
controller to send an acknowledge automatically after each byte.
This bit must be "0" when the I2C-bus controller is operating in
receiver mode and requires no further data to be received from
the slave transmitter. This causes a negative acknowledge on the
I2C-bus, which halts further reception from the slave device.

[5:4] COND1, COND0 These bits control the generation of the start, Stop, and repeat
Start conditions: "00" = no effect, "01" = start, "10" = stop, and
"11" = repeat start.

[6] Bus busy (BUSY) This bit is a read-only flag that indicates when the I2C-bus is in
use. A "1" indicates that the bus is busy. This bit is set or cleared
by a start or stop condition, respectively.

[7] Reset If "1" is written to the reset bit, the I2C-bus controller is reset to its
initial state.

[31:8] Reserved Not applicable.

S3C4530A I2C BUS CONTROLLER

 6-9

[0] Buffer Flag (BF)
0 = Automatically cleared when the IICBUF register is written or read. To
manually clear the BF, write 0.
1 = Automatically set when the buffer is empty in transmit mode or when the
buffer is full in receive mode.

[1] Interrupt enable (IEN)
0 = Disable
1 = Enable; an interrupt is generated if the BF bit is 1.

[2] Last received bit (LRB)
Use this read-only status bit to theck for ACK signals from the receiver (slave), or
to monitor SDA operation of SDA when writing 11 to IICCON [5:4] for repeated
starts.
0 = The most recent SDA is low. (ACK is received)
1 = The most recent SDA is high. (ACK not received)

[3] Acknowledge enable (ACK)
Controls generation of an ACK signal in receive mode.
0 = Do not generate an ACK at 9th SCL (No more received data is required from
the slave)
1 = Generate an ACK signal at 9th SCL.

[5:4] COND 1 and COND 0
Generate a bus control such as start or stop.
00 = No effect.
01 = Generate start condition.
10 = Generate stop condition.
11 = SCL will be released to high level to generate repeated start condition.

[6] Bus busy (BUSY)
Data transmission is in progress on the IIC-bus.
0 = Bus is currently not in use. (not busy)
1 = Bus is in use. (busy)

[7] Reset
0 = Normal
1 = Reset the IIC-bus controller.

[31:8] Reserved

B
F

I
E
N

L
R
B

A
C
K

C
O
N
D
0

C
O
N
D
1

B
U
S
Y

R
E
S
E
T

Reserved

31 8 7 09 6 5 4 3 2 1

Figure 6-4. I2C Control Status Register

I2C BUS CONTROLLER S3C4530A

6-10

Shift Buffer Register (IICBUF)

The shift buffer register for the I2C-bus described in Table 6-4.

Table 6-3. IICBUF Register

Register Offset Address R/W Description Rest Value

IICBUF 0xf004 R/W Shift buffer register Undefined

Table 6-4. IICBUF Register Description

Bit Number Bit Name Description

[7:0] Data This data field acts as serial shift register and read buffer for
interfacing to the I2C-bus. All read and write operations to/from the
I2C-bus are done via this register. The IICBUF register is a
combination of a shift register and a data buffer. 8-bit parallel data is
always written to the shift register, and read form the data buffer. I2C-
bus data is always shifted in or out of the shift register.

[31:8] Reserved Not applicable.

Prescaler Register (IICPS)

The prescaler register for the I2C-bus is described in Table 6-6.

Table 6-5. IICPS Register

Register Offset Address R/W Description Rest Value

IICPS 0xf008 R/W Prescaler register 0x00000000

Table 6-6. IICPS Register Description

Bit Number Bit Name Description

[15:0] Prescaler value This prescaler value is used to generate the serial I2C-bus clock. The
system clock is divided by (16 x (prescaler value + 1) + 3) to make the
serial I2C clock. If the prescaler value is zero, the system clock is when
divided by 19 to make the serial I2C clock.

[31:16] Reserved Not applicable.

S3C4530A I2C BUS CONTROLLER

 6-11

Prescaler Counter Register (IICCNT)

The prescaler counter register for the I2C-bus is described in Table 6-8.

Table 6-7. IICCNT Register

Register Offset Address R/W Description Rest Value

IICCNT 0xf00c R/W Prescaler counter register 0x00000000

Table 6-8. IICCNT Register Description

Bit Number Bit Name Description

[15:0] Counter value This 16-bit value is the value of the prescaler counter. It is read (in test
mode only) to check the counter’s current value.

[31:16] Reserved Not applicable.

I2C BUS CONTROLLER S3C4530A

6-12

NOTES

S3C4530A ETHERNET CONTROLLER

7-1

7 ETHERNET CONTROLLER

OVERVIEW

The S3C4530A has an ethernet controller which operates at either 100-Mbits or 10-Mbits per second in half-
duplex or full-duplex mode. In half-duplex mode, the controller supports the IEEE 802.3 carrier sense multiple
access with collision detection (CSMA/CD) protocol. In full-duplex mode, it supports the IEEE 802.3 MAC control
layer, including the pause operation for flow control.

The ethernet controller′s MAC layer supports both the media independent interface (MII) and the buffered DMA
interface (BDI). The MAC layer itself consists of the receive and the transmit blocks, a flow control block, a
content addressable memory (CAM) for storing network addresses, and a number of command, status, and error
counter registers.

The MII supplies the transmit and receive clocks of 25 MHz for 100-Mbit/s operation or 2.5 MHz at the 10-Mbit/s
speed. The MII conforms to the ISO/IEC 802-3 standards for a media-independent layer which separates
physical layer issues from the MAC layer.

ETHERNET CONTROLLER S3C4530A

7-2

S
y
s
t
e
m

B
u
s

B
D
I

M
I
I
/

10
M
b
p
s

7
-

W
i
r
e

BDMA Tx
Buffer

Controller BDMA Tx
Buffer

(64 Words)

Bus Arbiter/
Controller

BDMA Rx
Buffer

(64 Words)BDMA Rx
Buffer

Controller
CAM Contents

Memory
(32-Words)

MAC

Address
CAM Interface

and Comparator

MAC Control
and Status

Register

BDMA+SBUS I/F

32

32

32

Physical
Layer

BDMA Control
and Status
Register

Station
Manager

32

32

32

8

8

MAC Tx
Buffer

(80 bytes)

MAC Rx
Buffer

(16 bytes)

Preamble/
Jam/Pad/CRC

Generator

MAC Tx
Buffer

Controller

MAC Rx
Buffer

Controller

Flow
Controller

CRC
Checker

M
D
I

Figure 7-1. Ethernet System Flow Control

S3C4530A ETHERNET CONTROLLER

7-3

FEATURES AND BENEFITS

The most important features and benefits of the S3C4530A ethernet controller are as follows:

— Cost-effective connection to an external RIC/Ethernet backbone

— Buffered DMA (BDMA) engine using burst mode

— BDMA Tx/Rx buffers (256 bytes/256 bytes)

— MAC Tx/Rx FIFOs (80 bytes/16 bytes) to support re-transmit after collision without DMA request and to
handle DMA latency

— Data alignment logic

— Endian translation

— Support for old and new media (compatible with existing 10-Mbit/s networks)

— 100-Mbit/s or 10-Mbits/s operation to increase price/performance options and to support phased conversions

— Full IEEE 802.3 compatibility for existing applications

— Media Independent interface (MII) or 7-wire interface

— Station management (STA) signaling for external physical layer configuration and link negotiation

— On-chip CAM (21 addresses)

— Full-duplex mode for doubled bandwidth

— Pause operation hardware support for full-duplex flow control

— Long packet mode for specialized environments

— Short packet mode for fast testing

— PAD generation for ease of processing and reduced processing time

ETHERNET CONTROLLER S3C4530A

7-4

MAC FUNCTION BLOCKS

The major function blocks of the ethernet controller′s MAC layer are described in Table 7-1 and Figure 7-1.

Table 7-1. MAC Function Block Descriptions

Function Block Description

Media Independent
Interface (MII)

The interface between the physical layer and the transmit and receive blocks.

Transmit block Moves the outgoing data from the transmit buffer to the MII. The transmit block
includes circuits for generating the CRC, checking parity, and generating
preamble or jam. The transmit block also has timers for back-off after collision
and for the interframe gap the follows a transmission.

Receive block Accepts incoming data from the MII and stores it in the receive FIFO. The
receive block has logic for computing and checking the CRC value, generating
parity for data from the MII, and checking minimum and maximum packet
lengths. The receive block also has a content addressable memory (CAM) block
which provides for address lookup, and for acceptance or rejection for packets
based on their destination address.

Flow control block Recognizes MAC control packets and supports the pause operation for full-duplex
links. The flow control block also supports generation of pause packets, and
provides timers and counters for pause control.

MAC control (command)
and status registers

Controls programmable options, including the enabling or disabling of signals
which notify the system when conditions occur. The status registers hold
information for error handling software, and the error counters accumulate
statistical information for network management software.

Loop-back circuit Provides for MAC-layer testing in isolation from the MII and physical layer.

S3C4530A ETHERNET CONTROLLER

7-5

B
D
I

Tx_DB[7:9]

Backoff
and

Intergap
Timer Parity Check

Transmit Block

MAC
Loop-back

10
M
b
/
s

I/F

TxD_10

Flow Control

CRC and
CAM Filter

MAC Control and
Status Register

MII Station
Manager

M
I
I

RxD_10

TxD[3:0]

RxD[3:0]

MDC

Rx_DB[7:0] MAC
Receive

FIFO
(16 bytes)

Parity
Generator

MAC
Transmit

FIFO
(80 bytes)

Receive Block

MDIO

Preamble and
Jam Generator

Pad and CRC
Generator

Figure 7-2. MAC Layer Flow Control Function Blocks

ETHERNET CONTROLLER S3C4530A

7-6

MEDIA INDEPENDENT INTERFACE (MII)

Transmit and receive blocks both operate using the MII, which was developed by the IEEE802.3 task force on
100-Mbit/s ethernet. This interface has the following characteristics:

— Media independence

— Multi-vendor points of interoperability

— Supports connection of MAC layer and physical layer entity (PHY) devices

— Capable of supporting both 100-Mbit/s and 10-Mbit/s data rates

— Data and delimiters are synchronous to clock references

— Provides independent 4-bit wide transmit and receive data paths

— Uses TTL signal levels that are compatible with common digital CMOS ASIC processes

— Supports connection of PHY layer and station management (STA) devices

— Provides a simple management interface

— Capable of driving a limited length of shielded cable

PHYSICAL LAYER ENTITY (PHY)

The physical layer entity, or PHY, performs all of the decoding/encoding on incoming and outgoing data. The
manner of decoding and encoding (Manchester for 10BASE-T, 4B/5B for 100BASE-X, or 8B/6T for 100BASE-T4)
does not affect the MII. The MII provides the raw data it receives, starting with the preamble and ending with the
CRC. The MII expects raw data for transmission, also starting with the preamble and ending with the CRC. The
MAC layer also generates jam data and transmits it to the PHY.

BUFFERED DMA INTERFACE (BDI)

The buffered DMA interface (BDI) supports read and write operations across the system bus. Two eight-bit buses
transfer data with optional parity checking. The system interface initiates data transfers. The MAC-layer controller
responds with a ready signal to accept data for transmission, or to deliver data which has been received. An end-
of-frame signal indicates the boundary between packets.

S3C4530A ETHERNET CONTROLLER

7-7

THE MAC TRANSMIT BLOCK

The MAC transmit block is responsible for transmitting data. It complies with the IEEE802.3 standard for carrier
sense multiple access with collision detection (CSMA/CD) protocol. The MAC transmit block consists of the
following sections:

— Transmit FIFO and controllers

— Preamble and jam generators

— Pad generator

— Parallel CRC generator

— Threshold logic and counters

— Back-off and retransmit timers

— Transmit state machine

Figure 7-3 shows the MAC transmit function blocks in detail.

Tx_DB [7:0]
and PARITY

Write FIFO
Controller

and Counter

Threshold
Logic and
Counters

SYS_CLK Domain

MAC
Transmit

FIFO
(80 x 9)

Parity
Check

Preamble and
JAM generator

Transmit
State

Matchine

Tx_CLK Domain

9

9 8
TxD [3:0]

CrS

Tx_er

Tx_en

Col

Tx_CLK

M
I
I

a
n
d

10
M
b
y
t
e

I/F

B
D
I Read FIFO

Controller
and Counter

Back off and
Retransmit

Timers

Tx_EOF

Tx_wr#

Tx_rdy

PAD
Generator CRC

Generator

Figure 7-3. MAC Transmit Function Blocks

ETHERNET CONTROLLER S3C4530A

7-8

Transmit FIFO and Read/Write Controllers

The transmit FIFO has an 80-byte depth. An extra bit is associated with each data byte for parity checking. This
80-byte by 9-bit size allows the first 64 bytes of a data packet to be stored and retransmitted, without further
system involvement, in case of a collision. If no collision occurs and transmission is underway, the additional 16
bytes handle system latency and avoid FIFO under-run.

When the system interface has set the transmit enable bit in the appropriate control register, the transmit state
machine requests data from the BDI. The system controller then fetches data from the system memory.

The FIFO controller stores data in the transmit FIFO until the threshold for transmit data is satisfied. The FIFO
controller passes a handshaking signal to the transmit state machine, indicating that sufficient data is in the FIFO
to start the transmit operation. If the FIFO is not full, the FIFO controller issues a request to the BDI for more
data. The transmit state machine continues transmitting data until it detects the end-of-frame signal, which
signals the last byte. It then appends the calculated CRC to the end of the data (unless the CRC truncate bit in
the transmit control register is set). The packet transmit bit in the status register is set, generating an interrupt if it
is enabled.

The FIFO counters in this block (the Write counter) and the transmit FIFO counter of the transmit state machine
(the Read counter) co-ordinate their functions based on each other's count value, although they do have different
clock sources.

The FIFO controller stores parity bits with the data in the FIFO. It checks for parity and can halt transmission
after reading the data out of the FIFO and sending it for the CRC calculation. If a parity error occurs, the FIFO
controller sets an error status bit, generating an interrupt if it is enabled.

Preamble and Jam Generator

As soon as the transmit enable bit in the control register is set and there are eight bytes of data in the FIFO, the
transmit state machine starts the transmission by asserting the Tx_en signal and transmitting the preamble and
the start frame delimiter (SFD). In case there is a collision, it transmits a 32-bit string of "1s" after the preamble
as a jam pattern.

PAD Generator

If a short data packet is transmitted, the MAC will normally generate pad bytes to extend the packet to a
minimum of 64 bytes. The pad bytes consist entirely of "0" bits. A control bit is also used to suppress the
generation of pad bytes.

Parallel CRC Generator

The CRC generation of the outgoing data starts from the destination address and continues through the data
field. You can suppress CRC generation by setting the appropriate bit in the transmit control register. This is
useful in testing, for example, to force the transmission of a bad CRC in order to test error detection in the
receiver. It can also be useful in certain bridge or switch applications, where end-to-end CRC checking is desired.

S3C4530A ETHERNET CONTROLLER

7-9

Threshold Logic and Counters

The transmit state machine uses a counter and logic to control the threshold of when transmission can begin.
before it attempts to initiate transmission, the MAC waits until eight bytes or a complete packet has been placed
in the transmit FIFO. This gives the DMA engine some latency without causing an underflow during transmission.

Back-Off and Retransmit Timers

When a collision is detected on the network, the transmitter block stops the transmission and starts a jamming
pattern to ensure that all the nodes detect the collision. After this, the transmitter waits for a minimum of 96 bit
times and then retransmits the data. After 16 attempts, the transmit state machine sets an error bit and
generates an interrupt, if enabled, to signify the failure to transmit a packet due to excessive collisions. It flushes
the FIFO, and the MAC is ready for the next packet.

Transmit Data Parity Checker

Data in the FIFO is odd-parity protected. When data is read for transmission, the transmit state machine checks
the parity. If a parity error is detected, the transmit data parity checker does the following:

— It stops transmission.

— It sets the parity error bit in the transmit status register.

— It generates an interrupt, if enabled.

Transmit State Machine

The transmit state machine is the central control logic for the transmit block. It controls the passing of signals, the
timers, and the posting of errors in the status registers.

ETHERNET CONTROLLER S3C4530A

7-10

THE MAC RECEIVE BLOCK

The MAC receive block is responsible for receiving data. It complies with the IEEE802.3 standard for carrier
sense multiple access with collision detection (CSMA/CD) protocol.

After it receives a packet, the receive block checks for a number of error conditions: CRC errors, alignment
errors, and length errors. Several of these checks can be disabled by setting bits in the appropriate control
registers. depending on the CAM status, the destination address and the receive block may reject an otherwise
acceptable packet. The MAC receive block consists of the following units:

— Receive FIFO, FIFO controller, and counters

— Receive BDI state machine

— Threshold logic and counters

— CAM block for address recognition

— Parallel CRC checker

— Receive state machine

The main components of the receive block are shown in Figure 7-4.

Rx_DB [7:0]
and parity

9
MAC Receive

FIFO
(16X10)CAM

Checker

CRC
Checker

Receive
BDI state
Machine

Rx_rd

Rx_rdy

Rx_EOF

Rx_keep

Rx_toss

Rx_load

CAM_hit#

Read
address

SYS_CLK Domain Rx_CLK Domain

Write address
/WE

Receive
State

Machine

Parity
Check

RxD[3:0]

Rx_DV

Rx_er

Rx_clk

B
D

I

M
II

an
d

7-
W

ire
 I/

F

Write FIFO
controller

and counter

Thershold
logic and
counter

Write FIFO
controller

and counter

SFD
Detect

Figure 7-4. MAC Receive Function Blocks

S3C4530A ETHERNET CONTROLLER

7-11

Receive FIFO Controller

The receive FIFO controller accepts data one byte at a time. Parity starts with the destination address. The
receive controller updates the counter with the number of bytes received. As the FIFO stores the data, the CAM
block checks the destination address against its stored address. If the CAM recognizes the address, the FIFO
continues receiving the packet. If the CAM block does not recognize the address and rejects the packet, the
receive block discards the packet and flushes the FIFO.

Address CAM and Address Recognition

The CAM block provides direct comparison address recognition. The CAM compares the destination address of
the received packet to stored addresses. If it finds a match, the receive state machine continues to receive the
packet. The CAM is organized to hold six-byte address entries. With its 32-word size, the CAM can store 21
address entries.

CAM address entries 0, 1, and 18 are used to send the pause control packet. To send a pause control packet,
you must write the destination address to CAM0, the source address to CAM1, and length/type, op-code, and
operand to the CAM18 entry. You must them write the MAC transmit control register to set the send pause
control bit. In addition, CAM19 and CAM20 can be used to construct a user-define control frame.

Parallel CRC Checker

The receive block computes a CRC across the data and the transmitted CRC, and then checks that the resulting
syndrome is valid. A parallel CRC checking scheme handles data arriving in 4-bit nibbles at 100 Mbps. To
support full-duplex operation, the receive and transmit blocks have independent CRC circuits.

Receive State Machine

In MII mode, the receive block receives data from the MII on the RxD[3:0] lines. This data is synchronized to
Rx_clk at 25 MHz or 2.5 MHz. In 7-wire mode, and at 10 MHz, data is received on the RxD_10 line only.

After it detects the preamble and SFD, the receive state machine arranges data in byte configurations, generates
parity, and stores the result in the receive FIFO one byte at a time. If the CAM block accepts the destination
address, the receive FIFO stores the rest of the packet. At the end of the reception, the receive block marks the
packet received by setting the appropriate bits in the receive status register. Any error in reception will reset the
FIFO and the state machine will wait for the end of the current packet. It will then idle while it is waiting for the
next preamble and SFD.

BDMA Interface Receive State Machine

The BDMA I/F receive state machine issues the Rx_rdy signal to request that the receive FIFO have data
whenever data is present in the receive FIFO. The last byte of the packet is signaled by asserting the Rx_EOF.
In case there are any errors during the reception, or if there is a CRC error at the end, the BDMA I/F receive
state machine asserts the Rx_toss signal to indicate that the received packet should be discarded.

ETHERNET CONTROLLER S3C4530A

7-12

FLOW CONTROL BLOCK

The flow control block provides for the following functions:

— Recognition of MAC control frames received by the receive block

— Transmission of MAC control frames, even if transmitter is paused

— Timers and counters for pause operation

— Command and status register (CSR) interface

— Options for passing MAC control frames through to software drivers

The receive logic in the flow control block recognizes a MAC control frame as follows:

— The length/type field must have the special value specified for MAC control frames. The destination address
must be recognized by the CAM. The frame length must be 64 bytes, including CRC. The CRC must be
valid, and the frame must contain a valid pause op-code and operation.

— If the length/type field does not have the special value specified for MAC control frames, the MAC takes no
action, and the packet is treated as a normal packet. If the CAM does not recognize the destination address,
the MAC rejects the packet. If the packet length is not 64 bytes, including CRC, the MAC does not perform
the operation. The packet is then marked as a MAC control packet, and is passed forward to the software
drivers, if pass-through is enabled.

You can set control bits in the transmit status register to generate a Full-Duplex pause operation or other MAC
control functions, even if the transmitter itself is paused. Two timers and two corresponding CSR registers are
used during a pause operation. One timer/register pair is used when a received packet causes the transmitter to
pause. The other pair is used to approximate the pause status of the other end of the link, after the transmitter
sends a Pause command.

The command and status register (CSR) interface provides control and status bits within the transmit and receive
control registers and status registers. These lets you initiate the sending of a MAC control frame, enable and
disable MAC control functions, and read the values of the flow control counters.

Control bits are provided for processing MAC control frames entirely within the controller, or for passing MAC
control frames on to the software drivers. This lets you enable flow control by default even on software drivers
which are not otherwise "flow control aware".

S3C4530A ETHERNET CONTROLLER

7-13

BUFFERED DMA INTERFACE

BUFFERED DMA (BDMA) CONTROL BLOCKS

The BDMA engine controls a transmit buffer and a receive buffer. The BDMA transmit buffer holds data and
status information for packets being transmitted. The BDMA receive buffer holds data and status information for
packets being received. Each FIFO has a control block which controls data being placed in, and removed from,
the buffers.

S
Y
S
T
E
M

B
U
S

I/F

BUS
Arbiter

Tx_Underflow

nREQ_Tx

nREQ_Rx

Tx
Control
Machine

B
D
I

B
D
M
A

I/F

Tx_clk

Tx_wr

Tx_rdy

Half_full

Tx_DB[7:0]

SD [31:0]

(

(

Half_empty

Half_full

-

HEAD Ptr

TAIL Ptr

BDMA
Tx

Buffer
(32 x 64)

Rx Bus
Request

Address
Generator

Target Address
for Rx

Source Address
for Tx

Rx Bus
Request

RX_over flow

Data Swapper Big/Little
BDMA

Rx
Buffer

(33 x 64)

-

Rx_Widget

Rx
Control
Machine

Rx_DB[7:0]

Half_empty

Rx_rdy

Rx_clk

Rx_rd

SA[25:0]

Byte-to-Word
Converter

HEAD Ptr

TAIL Ptr

nACK

nREQ

SD[31:0]

Word-to-Byte
Converter

Tx widget

Big/little

Figure 7-5. BDMA Control Blocks

ETHERNET CONTROLLER S3C4530A

7-14

The Bus Arbiter

The bus arbiter decides which of the BDMA buffer controllers, transmit (Tx) or receive (Rx), has the highest
priority for accessing the system bus. The prioritization is dynamic. The BDMA arbiter outputs a bus request
signal (nREQ) to the system manager when

— A buffer contains more words than the Rx burst size,

— An EOF (End of Frame) was saved to the buffer, or

— A buffer contains more free space than the Tx burst size.

After it receives a bus acknowledge signal (nACK) from the system manager, the BDMA bus arbiter determines
the correct bus access priority. If nREQ_Tx and nREQ_Rx were requested simultaneously, the bus arbiter
decodes the nACK signal using the following method:

switch (Half_empty, Half_full)
 { case 2'b01: nACK_Rx ← nACK
 case 2'b10: nACK_Tx ← nACK
 default: //case 2'b00 or 2'b11:
 if (Rx buffsize (Head - Tail) < Tx buffsize) // Rx more urgent
 nACK_Rx ← nACK
 else nACK_Tx ←← nACK}

S3C4530A ETHERNET CONTROLLER

7-15

BDMA Bus Control Logic

The function blocks of the BDMA controller provide logic for controlling bus master read and write operations
across the system bus. This control logic supports the following operations:

— Burst size control, to optimize system bus utilization.

— Transmit threshold control (based on 1/8 of transmit buffer size) to match transmission latency to system bus
latency.

— Little-Endian byte swapping, to support the data transfer of Little-Endian memory usage for frame data.

— A transmit/receive alignment widget to circumvent word alignment restrictions.

In systems with an ATM LAN emulation or an MPOA interface, and in certain other systems as well, the
beginning of a packet should be placed on a byte or half-word boundary. You may not, however misalign the
BDMA transfer, as this would complicate the design of the DMA, and would degrade performance. To avoid this,
you can use an alignment widget between the BDMA buffer (word) and the MAC FIFO (byte).

In the receiver, the BDMA bus control logic inserts a programmable number of bytes (up to three) into the
received data stream while the preamble is being received. This adds some padding to the beginning of the
frame. This padding can then be used to solve alignment problems downstream, without having to use a copy of
the buffer. Because there is never more than three bytes, this feature does not degrade performance. Also,
because the data is inserted prior to the concatenation of bytes into words, it does not misalign the subsequent
DMA transfer.

The length of the alignment data is read from a control register. This length value should be set by software
immediately after the MAC module is reset, and it should not be modified.

You can use a corresponding transmit alignment widget to remove data from the buffer. In the simplest
implementation, the widget discards the first "n" bytes (up to three), where "n" is the value read from the transmit
frame descriptor which configures the transmit alignment widget.

MEMORY DATA STRUCTURES

The flow control 100-/10-Mbit/s ethernet controller uses three data structures to exchange control information and
data:

— Transmit frame descriptor

— Receive frame descriptor

— Frame data buffer

Each frame descriptor has the following elements:

— Frame start address

— Ownership bit

— Control field for transmitter

— Status field

— Frame length

— Next frame descriptor pointer

Figure 7-6 shows data structures of the transmit and receive frame descriptors.

ETHERNET CONTROLLER S3C4530A

7-16

DATA FRAMES

The ownership bit in the MSB of the frame start address controls the owner of the descriptor. When the
ownership bit is "1", the BDMA controller owns the descriptor. When this bit is "0", the CPU owns the descriptor.
The owner of the descriptor always owns the associated data frame. (The descriptor's frame start address field
always points to this frame.)

As it receives the data frame, software sets the maximum frame size register in the BDMA block to the system
frame buffer size (typically, to 1536 or 2048). Software also sets the Rx frame descriptor start address register to
point to a chain of frame descriptors, all of which have their ownership bit set.

The BDMA engine can then be started to set the BDMA receive enable bit in the BDMARXCON register. When a
frame is received, it is copied into memory at the address specified by the Rx frame start address. Please note
that no configurable offset or page boundary calculation is required. The received frame is written into the frame
data buffer until the end of frame is reached, or until the length exceeds the configured maximum frame size.

If the entire frame is received successfully, the status bits in the frame descriptor are set to indicate this.
Otherwise, the status bits are set to indicate that an error occurred. The ownership bit in the frame start address
field is cleared and an interrupt may now be generated. The BDMA controller copies the next frame descriptor
register value into the Rx frame descriptor start address register. If the next frame descriptor address is null (0),
the BDMA simply halts, and all subsequent frames are dropped. Otherwise, the descriptor is read in, and the
BDMA controller starts again with the next frame, as described in the previous paragraph.

If the received frame size exceeds the maximum frame size, the data frame will be overwritten by the last word
of maximum frame. The overflow data is written to the Rx status bit [19] in the receive frame descriptor. When
the BDMA reads a descriptor, if the ownership bit is not set, it has two options:

— Skip to the next frame descriptor, or

— Generate an interrupt and halt the BDMA operation.

Transmit frame descriptors contain the following components:

— A four-byte pointer to the frame data

— Widget alignment control bits [6:5]

— Frame data pointer increment/decrement bit [4]

— Little-Endian control bit [3]

— Interrupt enable after transmit [2]

— No-CRC [1], and

— No-padding [0]

During transmission, the two-byte frame length at the Tx frame descriptor is moved into the BDMA internal Tx
register. After transmission, Tx status is saved in the Tx frame descriptor. The BDMA controller then updates the
next frame descriptor address register for the linked list structure.

When the Tx frame descriptor start address register points to the first frame buffer, transmitter starts transmitting
the frame data into the frame buffer memory.

S3C4530A ETHERNET CONTROLLER

7-17

O Frame Data Pointer

Reserved

Rx Status Frame Length

Next Frame Descriptor Pointer

[31] Ownership bit (O)
0 = CPU
1 = BDMA

[30:0] Frame Data Pointer
Address of the frame data to be saved.

[15:0] Frame Length
The size of the received frame.

[31:16] Rx Status
The Rx status field of the receive frame is updated by the MAC after reception is
complete.

[31:0] Next frame descriptor pointer
Address of next frame descriptor.

31 1516 030

Figure 7-6. Data Structure of Rx Frame Descriptor

ETHERNET CONTROLLER S3C4530A

7-18

15

O

31

Frame Data Pointer

16

Reserved

Tx Status Frame Length

Next Frame Descriptor Pointer

0

[0] No-padding mode (P)
0 = Padding mode 1 = No-padding mode

[1] No-CRC mode (C)
0 = CRC mode 1 = No-CRC mode

[2] MAC transmit interrupt enable after transmission of this frame (T)
0 = Disable 1 = Enable

[3] Little-Endian mode (L)
0 = Big-endian 1 = Little-endian

[4] Frame data pointer increment/decrement (A)
0 = Decrement 1 = Increment

[6:5] Widget alignment control (WA)
(Non-aligned data must be transmitted without alignment control.)
00 = No invalid bytes 01 = One invalid byte
10 = Two invalid bytes 11 = Three invalid bytes

[31] Ownership bit (0)
0 = CPU 1 = BDMA

[30:0] Frame data pointer
The address of the frame data to be transmitted.

[15:0] Frame length
The size of the transmit frame.

[31:16] Tx status
This Tx frame status field is updated by the MAC after transmission.

[31:0] Next frame descriptor pointer
The address of the next frame descriptor.

30

PCTLAWA

7 6 5 4 3 2 1

Figure 7-7. Data Structure of Tx Frame Descriptor

S3C4530A ETHERNET CONTROLLER

7-19

[19] Over maximum size (OvMax)
Set if the received frame data size exceeds the maximum frame size.

[21] Control received (CtlRcv)
Set if the received packet is a MAC control frame.

[22] Interrupt on receive (IntRx)
Set if reception of packet caused an interrupt condition. This includes Good
received, if the Engood bit, MACRXCON [14], is set.

[23] Receive 10 Mb/s status (Rx10stat)
Set if packet was received over the 7-wire interface. Reset if packet was received
over the MII.

[24] Alignment error (AlignErr)
Frame length in bits was not a multiple of eight and the CRC was invalid.

[25] CRC Error (CRCErr)
CRC at end of packet did not match the computed value, or else the PHY
asserted Rx_er during packet reception.

[26] Overflow error (Overflow)
The MAC receive FIFO was full when it needed to store a received byte.

[27] Long error (LongErr)
Received a frame longer than 1518 bytes. Not set if the long enable bit set to one
in the receive control register.

[29] Receive parity error (RxPar)
MAC receive FIFO has detected a parity error.

[30] Good received (Good)
Successfully received a packet with no errors. If EnGood = 1, an interrupt is
generated on each packet that is received successfully.

[31] Reception halted (RxHalted)
Reception interrupted by user clearing RxEN or setting Haltlmm in the MAC
control register.

17

R
x
H
a
l
t
e
d

31 1630

G
o
o
d

R
x
p
a
r

0

L
o
n
g
E
r
r

O
v
e
r
f
l
o
w

C
R
C
E
r
r

A
l
i
g
n
E
r
r

R
x
1
0
S
t
a
t

I
n
t
R
x

0

O
v
M
a
x

0 0 0

29 28 27 26 25 24 23 22 21

C
t
i
R
c
v

20 1819

Rx Status

Figure 7-8. Rx Descriptor Status Bits

ETHERNET CONTROLLER S3C4530A

7-20

R
x
H
a
l
t
e
d

31 16

[19:16] Transmit collision count (TxCollCnt)
Count of collisions during transmission of a single packet. After 16 collisions, TxColl
is zero, and ExColl is set.

[20] Excessive collision (ExColl)
16 collisions occured in the same packet.

[21] Transmit deferred (TxDefer)

[22] Paused

[23] Interrupt on transmit (IntTx)
Set if transmission of packet caused an interrupt condition. This includes the enable
completion (EnComp), MACTXCON [14], if enabled.

[24] Underrun (Under)
MAC transmit FIFO becomes empty during transmission.

[25] Deferral (Defer)
MAC defers for max_deferral 0.32768ms for 100Mbit/s or 3.27680ms for 10Mbit/s.

[26] No carrier (NCarr)
Carrier sense is not detected during the entire transmission of a packet
(from the SFD to the CRC).

[27] SQE error (SQErr)
After transmit frame, set if the fake collision (COL) signal did not come from the PHY
for 1.6 µs.

[28] Late collision (LateColl)
A collision occurred after 512 bit times (64 byte times)

[29] Transmit parity error (TxPar)
MAC transmit FIFO detected a parity error.

[30] Completion (Comp)
MAC complete a transmit or discard of one packet.

[31] Transmission halted (TxHalted)
Transmission halted by clearing RxEn or setting the Haltlmm in the MAC control
register. Or, an interrupt was generated by an error condition (not completion).

30

C
o
m
p

T
x
p
a
r

L
a
t
e
C
o
l
l

S
Q
E
r
r

N
C
a
r
r

D
e
f
e
r

U
n
d
e
r

I
n
t
T
x

P
a
u
s
e
d

E
x
C
o
l
l

TxCollCnt

29 28 27 26 25 24 23 22 21

T
x
D
e
f
e
r

20 19

Tx Status

Figure 7-9. Tx Descriptor Status Bits

S3C4530A ETHERNET CONTROLLER

7-21

Frame
Descriptor

Start Address
Register

Frame Data Pointer #1

Status Frame Length

Next Frame Descriptor

Frame Data Pointer #2

Status Frame Length

Next Frame Descriptor

Frame Data #1

Unused

Frame Data #2

Unused

Frame Data #N

(For Ring Type
 Linked List)

In single linked lists, the last next frame
descriptor is filled with a Null address

Memory for Frame Buffer

BDMARXLSZ

BDMARXLSZ

Receive Frame
Maximum Size

Register
(BDMARXLSZ)

Frame Data Pointer #N

Status

Next Frame Descriptor

Frame Length

Figure 7-10. Data Structure of the Receive Frame Data Buffer

ETHERNET CONTROLLER S3C4530A

7-22

ETHERNET CONTROLLER SPECIAL REGISTERS

The special registers used by the S3C4530A ethernet controller are divided into two main groups:

— BDMA control and status registers

— MAC control and status registers

BDMA CONTROL AND STATUS REGISTERS

All registers that contain a memory address must store the address in a word-aligned format.

Table 7-2. BDMA Control and Status Registers

Registers Offset R/W Description Reset Value

BDMATXCON 0x9000 R/W Buffered DMA transmit control register 0x00000000

BDMARXCON 0x9004 R/W Buffered DMA receive control register 0x00000000

BDMATXPTR 0x9008 R/W Transmit frame descriptor start address 0xFFFFFFFF

BDMARXPTR 0x900C R/W Receive frame descriptor start address 0xFFFFFFFF

BDMARXLSZ 0x9010 R/W Receive frame maximum size Undefined

BDMASTAT 0x9014 R/W Buffered DMA status 0x00000000

CAM 0x9100–0x917C W CAM content (32 words) Undefined

BDMATXBUF
(1)

0x9200–0x92FC R/W BDMA transmit (Tx) buffer (64 words)
for test mode addressing only

Undefined

BDMARXBUF
(1)

0x9800–0x98FC
0x9900–0x99FC

R/W BDMA receive (Rx) buffer (64 words)
for test mode addressing only

Undefined

NOTES:
1. For testing, you can read the BDMA Tx/Rx buffer directly. The BDMA receive buffer has a 64 word by 33 bit size.

The highest bit, [32], indicates the data frame boundary, as shown in the following illustration:

32 31 0
0x9800

0x98FC

0x9900

0x99FC

EOF (End of Frame); Boundary of frame data.

Figure 7-11. End of Frame Bit

2. You can access the EOF bit by reading the address range, 0x9800-0x98FC (read into LSB bit 0).

S3C4530A ETHERNET CONTROLLER

7-23

Buffered DMA Transmit Control Register

The buffered DMA transmit control register, BDMATXCON, is described in Tables 7-3 and 7-4 below.

Table 7-3. BDMATXCON Register

Registers Offset R/W Description Reset Value

BDMATXCON 0x9000 R/W Buffered DMA transmit control register 0x00000000

Table 7-4. BDMA Transmit Control Register Description

Bit Number Bit Name Description

[4:0] BDMA Tx burst size
(BTxBRST)

(Word size + 1) of data bursts requested in BDMA mode. By
setting BTxBRST as following values, you can select 4times of
burst size by bit value. That is, you can select 1, 4, 8, 12, 16,
20, 24, 28, 32 word burst size. 0x00 - 0x02 word size is 0, that
is, burst size is 1 word. 0x03 - 0x06 word size is 3, 4 words.
0x07 - 0x0a is 7, 8 words. 0x0b - 0x0e is 11, 12 words. 0x0f -
0x12 is 15, 16 words. 0x13 - 0x16 is 19, 20 words. 0x17 - 0x1a
is 23, 24 words. 0x1b - 0x1e is 27, 28 words. 0x1f is 31, 32
words.

[5] BDMA Tx stop/skip frame by
owner bit (BTxSTSKO)

This bit determines whether the BDMA Tx controller issues an
interrupt, if enabled, or skips the current frame and goes to the
next frame descriptor (assuming BDMA is not the owner).

[6] Reserved Not applicable.

[7] BDMA Tx complete to send
control packet interrupt enable
(BTxCCPIE)

Setting this bit enables the BDMA Tx complete to send contol
packet interrupt when the MAC has finished sending the
control packet.

[8] BDMA Tx Null list interrupt
enable (BTxNLIE)

This bit enables the BDMA Tx Null list interrupt which indicates
that the transmit frame descriptor start address pointer,
BDMATXPTR, in the BDMA Tx block has a null (0x00000000)
address.

[9] BDMA Tx not owner interrupt
enable (BTxNOIE)

This bit enables the BDMA Tx not owner interrupt when the
ownership bit of the current frame does not belong to the
BDMA controller, and if the BTxSTSKO bit is set.

[10] BDMA Tx buffer empty
interrupt enable (BTxEmpty)

Set this bit is "1" to enable the Tx buffer empty interrupt.

[13:11] BDMA transmit to MAC Tx
start level (BTxMSL)

These bits determine when the new frame data in BDMA Tx
buffer can be moved to the MAC Tx FIFO when a new frame
arrives.
000 means no wait, 001 means wait to fill 1/8 of the BDMA Tx
buffer, 010 means wait to fill 2/8 of the buffer, and so on
through 100 which means wait to fill 4/8 of the BDMA Tx
buffer.

NOTE: If the last data of the frame arrives in BDMA Tx buffer,
the data transfer from the BDMA Tx buffer to the MAC Tx
FIFO starts immediately, regardless of the level of these bits.

ETHERNET CONTROLLER S3C4530A

7-24

Table 7-4. BDMA Transmit Control Register Description (Continued)

Bit Number Bit Name Description

[14] BDMA Tx enable (BTxEn) When the Tx enable bit is set to "1", the BDMA Tx block is
enabled. Even if this bit is disabled, buffer data will be moved
to the MAC Tx FIFO until the BDMA Tx buffer underflows (as
long as the FIFO is not empty and the MAC Tx is enabled).
This bit is automatically disabled in the following cases: 1) if
the next frame pointer is null, or 2) if the owner bit is zero, and
the BTxSTSKO bit is set.

NOTE: The frame descriptor start address pointer must be
assigned before the BDMA Tx enable bit is set.

[15] BDMA Tx reset (BTxRS) Set this bit to "1" to reset the BDMA Tx block.

S3C4530A ETHERNET CONTROLLER

7-25

[4:0] BDMA Tx burst size (BTxBRST)
(Word size + 1) of data bursts reqested in BDMA mode. You can select 4times of burst
size by bit value. That is, you can select 1, 4, 8, 12, 16, 20, 24, 28, 32 word burst size.
0x00 - 0x02 : 1 word burst size 0x03 - 0x06 : 4 word burst size
0x07 - 0x0a : 8 word burst size 0x0b - 0x0e : 12 word burst size
0x0f - 0x12 : 16 word burst size 0x13 - 0x16 : 20 word burst size
0x17 - 0x1a : 24 word burst size 0x1b - 0x1e : 28 word burst size
0x1f : 32 word burst size

[5] BDMA Tx stop/skip frame by owner bit
0 = Skips the current frame and goes to the next frame descriptor (if BDMA is not the
owner of the frame)
1 = BDMA transmitter generates an interrupt (if enabled).

[6] Reserved

[7] BDMA Tx complete to send control packet interrupt enable (BTxCCPIE)
0 = Disable complete to send control packet interrupt.

1 = Enable complete to send control packet interrupt. (The interrupt is generated when the MAC
completes sending the control packet).

[8] BDMA Tx Null list interrupt enable
0 = Disable transmit Null list interrupt.
1 = Enable Null list interrupt to indicate that BDMATxPTR in the BDMA Tx unit has a Null
address (0x00000000).

[9] BDMA Tx not owner interrupt enable (BTxNOIE)
0 = Disable BDMA Tx not owner interrupt for the current frame.
1 = Enable BDMA Tx not owner interrupt for the current frame (and if the BTxSTSKO bit is set).

[10] BDMA Tx buffer empty interrupt (BTxEmpty)
0 = Disable Tx buffer empty interrupt.
1 = Enable Tx buffer empty interrupt.

[13:11] BDMA transmit to MAC Tx start level (BTxMSL)
000 = No waiting 001 = Wait to fill 1/8 of the Tx buffer
010 = Wait to fill 2/8 of the Tx buffer 011 = Wait to fill 3/8 of the Tx buffer
100 = Wait to fill 4/8 of the Tx buffer

NOTE: Use this formula to calculate transmit time to the MAC Tx FIFO tBtOM:
 tBtOM = (BTxMSL/8) * size of the BDMA Tx buffer

[14] BDMA Tx enable (BTxEn)
0 = Disable the BDMA transmitter.
1 = Enable the BDMA transmitter.

[15] BDMA Tx reset (BTxRS)
0 = No effect.
1 = Reset the BDMA Tx block.

RESERVED

B
T
x
R
s

B
T
x
E
n

B
T
x
M
S
L

B
T
x
E
m
p
t
y

B
T
x
N
O
I
E

B
T
x
N
L
I
E

B
T
x
C
C
P
I
E

B
T
x
S
T
S
K
O

BTxBRST

31 16 15 14 13 12 11 10 9 8 7 6 5 4 0

Figure 7-12. Buffered DMA Transmit Control Register

ETHERNET CONTROLLER S3C4530A

7-26

Buffered DMA Receive Control Register

The buffered DMA receive control register, BDMARXCON, is described in Tables 7-5 and 7-6 below.

Table 7-5. BDMA RXCON Register

Register Offset Address R/W Description Rest Value

BDMARXCON 0x9004 R/W Buffered DMA receive control register 0x00000000

Table 7-6. BDMA Receive Control Register Description

Bit Number Bit Name Description

[4:0] BDMA Rx burst size
(BRxBRST)

(Word size + 1) of data bursts requested in BDMA mode. By
setting BRxBRST as following values, you can select 4times of
burst size by bit value. That is, you can select 1, 4, 8, 12, 16,
20, 24, 28, 32 word burst size. 0x00 - 0x02 word size is 0, that
is, burst size is 1 word. 0x03 - 0x06 word size is 3, 4 words.
0x07 - 0x0a is 7, 8 words. 0x0b - 0x0e is 11, 12 words. 0x0f -
0x12 is 15, 16 words. 0x13 - 0x16 is 19, 20 words. 0x17 - 0x1a
is 23, 24 words. 0x1b - 0x1e is 27, 28 words. 0x1f is 31, 32
words.

[5] BDMA Rx stop/skip frame by
owner bit (BRxSTSKO)

This bit determines whether the BDMA Rx controller issues an
interrupt, if enabled, or skips the current frame and goes to the
next frame descriptor (assuming BDMA is not the owner).

[6] BDMA Rx memory address
inc/dec (BRxMAINC)

This bit determines whether the address is incremented or
decremented. If this bit is set to "1", the address will be
incremented.

[7] BDMA Rx every received
frame interrupt enable
(BRxDIE)

This bit enables the BDMA Rx every received frame interrupt
which is generated by the BDMA controller each time is moves
a complete data frame into memory.

[8] BDMA Rx Null list interrupt
enable (BRxNLIE)

This bit enables the BDMA Rx null list interrupt which indicates
that the receive frame descriptor start address pointer,
BDMARXPTR, in the BDMA Rx block has a null (0x00000000)
address.

[9] BDMA Rx not owner interrupt
enable (BRxNOIE)

This bit enables the BDMA Rx not owner interrupt when the
ownership bit of the current frame does not belong to the
BDMA controller, and if the BRxSTSKO bit is set.

[10] BDMA Rx maximum size over
interrupt enable (BRxMSOIE)

This bit enables the BDMA Rx maximum size over interrupt
when the received frame size is larger than the value in
receive frame maximum size register.

[11] BDMA Rx Big/Little Endian
(BRxLittle)

This bit determines whether the data is stored in Little- or Big-
Endian format. If it is set to "1", word swapping will take place
between the receive buffer and the system data bus.

[13:12] BDMA Rx word alignment
(BRxWA)

The Rx word alignment bits determine how many bytes are
invalid in the first word of each data frame. These invalid bytes
are inserted when the word is assembled by the BDMA
controller. "00" = No invalid bytes, "01" = 1 invalid byte, "10" =
2 invalid bytes, and "11" = 3 invalid bytes.

S3C4530A ETHERNET CONTROLLER

7-27

ETHERNET CONTROLLER S3C4530A

7-28

Table 7-6. BDMA Receive Control Register Description (Continued)

Bit Number Bit Name Description

[14] BDMA Rx enable (BRxEn) When the Rx enable bit is set to "1", the BDMA Rx block is
enabled. Even if this bit is disabled, the MAC will receive Rx
data until the MAC Rx FIFO overflows (as long as the FIFO is
not empty and the MAC Rx is enabled). This bit is
automatically disabled in the following cases: 1) if the next
frame pointer is Null, or 2) if the owner bit is zero, and the
BRxSTSKO bit is set.

NOTE: The frame descriptor start address pointer must be
assigned before the BDMA Rx enable bit is set.

[15] BDMA Rx reset (BRxRS) Set this bit to "1" to reset the BDMA Rx block.

[16] BDMA Rx buffer empty
interrupt enable (BRxEmpty)

Set this bit is "1" to enable the Rx buffer empty interrupt.

[17] BDMA Rx early notify
interrupt enable (BRxEarly)

Set this bit to "1" to enable the Rx early notify interrupt. The
function of this interrupt is to note the length of a data frame
that is being received from its frame length field.

S3C4530A ETHERNET CONTROLLER

7-29

RESERVED

B
R
x
E
a
r
l
y

B
R
x
E
m
p
t
y

B
R
x
R
s

B
R
x
E
n

B
R
x
W
A

B
R
x
L
i
t
t
l
e

B
R
x
M
s
O
I
E

B
R
x
N
O
I
E

B
R
x
N
L
I
E

B
R
x
D
I
E

B
R
x
M
A
I
N
C

B
R
x
S
T
S
K
O

B
R
x
S
T
S
K
O

BRxBRST

31 18 17 16 15 14 13 12

[4:0] BDMA Rx burst size (BRxBRST)
(Word size + 1) of data bursts reqested in BDMA mode. You can select 4times of burst
size by bit value. That is, you can select 1, 4, 8, 12, 16, 20, 24, 28, 32 word burst size.
0x00 - 0x02 : 1 word burst size 0x03 - 0x06 : 4 word burst size
0x07 - 0x0a : 8 word burst size 0x0b - 0x0e : 12 word burst size
0x0f - 0x12 : 16 word burst size 0x13 - 0x16 : 20 word burst size
0x17 - 0x1a : 24 word burst size 0x1b - 0x1e : 28 word burst size
0x1f : 32 word burst size

[5] BDMA Rx stop/skip frame (or interrupt if not owner of the current frame (BRxSTSKO)
0 = Skips the current frame and goes to the next frame descriptor.
1 = BDMA receiver generates an interrupt (if enabled).

[6] BDMA Rx memory address increment/decrement (DRxMAINC)
0 = Decrement the frame memory address.
1 = Increment the frame memory address.

[7] BDMA Rx every receuve frane interrupt enable (BRxDIE)
0 = Disable frame receive done interrupt.
1 = Enable frame receive done interrupt.

[8] BDMA Rx Null list interrupt enable (BRxNLIE)
0 = Disable Null address (0x00000000) receive interrupt.
1 = Enable Null address (0x00000000) receive interrupt.

[9] BDMA Rx not owner interrupt enable (BRxMSOIE)
0 = Disable interrupt for BDMA Rx not owner of the current frame.
1 = Enable interrupt for BDMA Rx not onwer of the current frame.

[10] BDMA Rx maximum size over interrupt enable (BRxMSOIE)
0 = Disable interrupt for received frame if larger than the maximum frame size.
1 = Enable interrupt for received frame if larger than the maximum frmae size.

[11] BDMA Rx Big/Little Endian (BRxLittle)
0 = Big-Endian frame data format.
1 = Little-Endian. (Frame data in BDMA Rx buffer is word-swapped on the system bus).

[13:12] BDMA Rx word alignment (BRxWA)
00 = Do not insert an invalid byte in the first received frame data.
01 = Insert one invalid byte in the first received frame data.
10 = Insert two invalid bytes in the firat received frame data.
11 = Insert three invalid bytes in the first received frame data.

[14] BDMA Rx enable (BRxEn)
0 = Disable the BDMA receiver. (If the MAC Rx FIFO is not empty, move data to the BDMA Rx
buffer).
1 = Enable the BDMA receiver.

[15] BDMA Rx reset (BRxRs)
0 = No effect.
1 = Reset the BDMA receiver.

[16] BDMA Rx buffer empty interrupt (RxEmpty)
0 = Disable the Rx buffer empty interrupt.
1 = Enable the Rx buffer empty interrupt.

[17] BDMA Rx early notify interrupt (BRxEarly)
0 = Disable the Rx early notify interrupt.
1 = Enable the interrupt when BDMA captures the length of the received frame type.

BDMARXCON register

Figure 7-13. Buffered DMA Receiver Control Register

ETHERNET CONTROLLER S3C4530A

7-30

BDMA Transmit Frame Descriptor Start Address Register

Table 7-7. BDMATXPTR Register

Registers Offset R/W Description Reset Value

BDMATXPTR 0x9008 R/W Buffered DMA transmit control register 0xFFFFFFFF

Table 7-8. BDMA Transmit Frame Descriptor Start Address Register Description

Bit Number Bit Name Description

[25:0] BDMA transmit frame
descriptor start address

The BDMA transmit frame descriptor start address register
contains the address of the frame descriptor on the frame to
be sent. During a BDMA operation, this start address pointer is
updated to the next frame address.

BDMA Receive Frame Descriptor Start Address Register

Table 7-9. BDMARXPTR Register

Registers Offset R/W Description Reset Value

BDMARXPTR 0x900C R/W Buffered DMA transmit control register 0xFFFFFFFF

Table 7-10. BDMA Receive Frame Descriptor Start Address Register Description

Bit Number Bit Name Description

[25:0] BDMA receive frame
descriptor start address

The BDMA receive frame descriptor start address register
contains the address of the frame descriptor on the frame to
be saved. During a BDMA operation, this start address pointer
is updated to the next frame address.

S3C4530A ETHERNET CONTROLLER

7-31

BDMA Receive Frame Maximum Size Register

Table 7-11. BDMARXLSZ Register

Registers Offset R/W Description Reset Value

BDMARXLSZ 0x9010 R/W Receive frame maximum size Undefined

Table 7-12. BDMA Receive Frame Maximum Size Register Description

Bit Number Bit Name Description

[15:0] BDMA receive frame
maximum size (BRxLSZ)

This register value controls how many bytes per frame can be
saved to memory. If the received frame size exceeds the
value stored in this location, an error condition is reported.

[31:16] BDMA receive frame length
(BRxFSZ), read-only

When an early notification (early notify) interrupt occurs, the
frame Length/Ethernet type field contains the Frame size of
the frame that is currently being received.
To save space in the frame memory buffer, you can determine
the current frame length by 1) enabling the early notification
interrupt, and 2) reading the BRxFSZ field when the interrupt
occurs.
To calculate the value of the next frame start address pointer,
you add the current frame size value (BRxFSZ) to the BDMA
receive start address register. (For a control packet, additional
space may be needed.)

NOTE: To obtain the next Rx frame address that is to be
saved in the Rx frame start address register, we recommend
that you first halt the BDMA operation.

BDMA Status Register

Table 7-13. BDMASTAT Register

Registers Offset R/W Description Reset Value

BDMASTAT 0x9014 R/W Buffered DMA status 0x00000000

ETHERNET CONTROLLER S3C4530A

7-32

Table 7-14. BDMA Status Register Description

Bit Number Bit Name Description

[0] BDMA Rx done every
received frame (BRxRDF)

This bit is set each time the BDMA receiver moves one
received data frame to memory. This bit must be cleared for
the receiving next frame interrupt generation.

[1] BDMA Rx null list (BRxNL) If this bit is set, the BDMARXPTR has a null address. Even if
BDMA Rx is disabled, data is transferred from the MAC Rx
FIFO to the BDMA Rx buffer until the BDMA Rx buffer
overflows.

[2] BDMA Rx not owner (BRxNO) If this bit is set, BDMA is not the owner of the current data
frame. The BRxSTSKO bit is set and BDMA Rx is stopped.

[3] BDMA Rx maximum size over
(BRxMSO)

If this bit is set, the received frame size is larger than the value
in the Rx frame maximum size register, BDMARXLSZ.

[4] BDMA Rx buffer empty
(BRxEmpty)

If this bit is set, the BDMA Rx buffer is empty.

[5] Early notification (BRxSEarly) This bit is set when the BDMA receiver has received the
length/Ether-type field of the current frame.

[6] Reserved Not applicable.

[7] One more frame data in
BDMA receive buffer
(BRxFRF)

This bit is set whenever an additional data frame is received in
the BDMA receive buffer.

[15:8] Number of frames in BDMA
receive buffer (BRxNFR)

This value indicates the total number of data frames currently
in the BDMA receive buffer.

[16] BDMA Tx complete to send
control packet (BTxCCP)

Bit [16] is set each time the MAC sends a complete control
packet.

[17] BDMA Tx null list (BTxNL) If this bit is set, the BDMATXPTR value is a null address. In
this case, BDMA Tx is disabled but data continues to be
transferred from the BDMA Tx buffer to the MAC Tx FIFO until
the BDMA Tx buffer underflows. This bit is read only.
If you set BDMA Tx reset bit by software, this bit is cleared
automatically. To resume data transfer, you must then set the
new frame descriptor pointer and enable BDMA Tx.

[18] BDMA Tx not owner (BTxNO) If [18] is set, BDMA is not owner of the current frame. In this
case, the BSTSKO bit is set and BDMA Tx is stopped.

[19] Reserved Not applicable.

[20] BDMA Tx buffer empty
(BTxEmpty)

If this bit is set, the BDMA Tx buffer is empty.

[31:21] Reserved Not applicable.

S3C4530A ETHERNET CONTROLLER

7-33

31 16 15

[0] BDMA Rx done evert received frame (BRxRDF)
0 = Reset frame data receive state.
1 = Receipt of the data frame is complete.

[1] BDMA Rx Null list (BRxNL)
0 = Reset state of new frame descriptor (BDMARXPTR) is set.
1 = Current frame descriptor address is Null (0x00000000).

[2] BDMA Rx not owner (BRxNO)
0 = BDMA is owner of the current frame.
1 = The owner of the current frame is not BDMA (CPU). In this case, BDMA Rx is
stopped and the BSTSKO bit is set.

[3] BDMA Rx maximum size over (BRxMSO)
0 = Reset state or next frame arrived at BDMA Rx buffer.
1 = Received frame exceeds the maximum frame size.

[4] BDMA Rx buffer empty (BRxEmpty)
0 = Not empty.
1 = BDMA Rx buffer empty.

[5] Early notify (BRxSEarly)
0 = Normal operation.
1 = Lengthe of current frame can be accessed by reading the BDMA receive maximum
frame size register, BDMARXLSZ [31:16].

[7] One more frame data in BDMA receive buffer (BRxFRF)
0 = Only one frame data in BDMA receive buffer.
1 = One more frame data was in the BDMA receive buffer.

[15:8] Number of frame data in BDMA receive buffer (BRxNFR)

[16] BDMA Tx complete to send control packet (BTxCCP)
0 = Clear but by writing a 1 to this bit or by resetting BDMA Tx.
1 = MAC complete to send the control packet.

[17] BDMA Tx Null list (BTxNL)
0 = Reset stste of new frame descriptor (BDMATXPTR) is set.
1 = Current frame descriptor address is Null (0x00000000).

[18] BDMA Tx not owner (BTxNO)
0 = BDMA is owner of the current frame.
1 = The owner of the current frame is not BDMA (CPU). In this case, BDMA Tx is
 stopped if the BTxSTSKO bit is set to one.

[19] Reserved

[20] BDMA Tx buffer empty (BTxEmpty)
0 = Not empty
1 = BDMA Tx buffer empty.

[31:21] Reserved

NOTE: Bit 0, 1, 2, 3, 4, 16, 17, 18 and 20 should be cleared for interrupt generation
for the next frame. The method is write 1 to the corresponding bit location.

8 7 6 5 4 021 20 19 18 17 3 2 1

Reserved BRxNFR

B
R
x
F
R
F

X

B
R
x
S
E
a
r
l
y

B
T
x
E
m
p
t
y

X

B
T
x
N
O

B
T
x
N
L

B
T
x
C
C
P

B
R
x
E
m
p
t
y

B
R
x
M
S
O

B
R
x
N
O

B
R
x
N
L

B
R
x
R
D
F

Figure 7-14. BDMA Status Register

ETHERNET CONTROLLER S3C4530A

7-34

Content Address Memory (CAM) Register

There are 21 CAM entries for the destination address and the pause control packet. For the destination address
CAM value, one destination address consists of 6 bytes. Using the 32-word space (32 × 4 bytes), you can
therefore maintain up to 21 separate destination addresses.

You use CAM entries 0, 1, and 18 to send pause control packets. To send a pause control packet, you write the
CAM0 entry with the destination address, the CAM1 entry with the source address, and the CAM 18 entry with
length/type, opcode, and operand. You then set the send pause bit in the MAC transmit control register.

Table 7-15. CAM Register

Registers Offset R/W Description Reset Value

CAM 0x9100–0x917C W CAM content (32 words) Undefined

Table 7-16. Content Address Memory (CAM) Register Description

Bit Number Bit Name Description

[31:0] CAM content (CAM) The CPU uses the CAM content register as a data base for
destination address. To activate the CAM function, you must
set the appropriate enable bits in CAM enable register.

S3C4530A ETHERNET CONTROLLER

7-35

MEDIA ACCESS CONTROL (MAC) REGISTERS

This section describes the control and status registers for the flow control 100-/10-Mbit/s ethernet MAC. These
include a master MAC control register, control registers for transmit and receive, control registers for the CAM, a
counter for network management, and various flow control registers (see Table 7-17).

Table 7-17. MAC Control and Status Registers

Registers Offset R/W Description Reset Value

MACON 0XA000 R/W MAC control 0x00000000

CAMCON 0xA004 R/W CAM control 0x00000000

MACTXCON 0xA008 R/W Transmit control 0x00000000

MACTXSTAT 0xA00C R/W Transmit status 0x00000000

MACRXCON 0xA010 R/W Receive control 0x00000000

MACRXSTAT 0xA014 R/W Receive status 0x00000000

STADATA 0xA018 R/W Station management data 0x00000000

STACON 0xA01C R/W Station management control and address 0x00006000

CAMEN 0xA028 R/W CAM enable 0x00000000

EMISSCNT 0xA03C RClr/W Missed error count 0x00000000

EPZCNT 0xA040 R Pause count 0x00000000

ERMPZCNT 0xA044 R Remote pause count 0x00000000

ETXSTAT 0x9040 R Transmit control frame status 0x00000000

NOTE: MAC transmit/receive interrupt is generated whenever the Tx/Rx status field of Tx/Rx frame descriptor is written.

ETHERNET CONTROLLER S3C4530A

7-36

MAC Control Register

The MAC control register provides global control and status information for the MAC. The missed roll/link10 bit is
a status bit. All other bits are MAC control bits.

MAC control register settings affect both transmission and reception. You can also control transmit and receive
operations separately. To select customized operating features, you should write this register during power-up.
This way, you will not need to write or read it again during normal operation.

After a reset is complete, the MAC controller clears the reset bit. Not all PHYs support full-duplex operation.
(setting the MAC loopback bit overrides the full-duplex bit.) Also, some 10-Mb/s PHYs may interpret the loop10
bit to control different functions, and manipulate the link10 bit to indicate a different status condition.

Table 7-18. MACON Register

Registers Offset R/W Description Reset Value

MACON 0XA000 R/W MAC control 0x00000000

Table 7-19. MAC Control Register Description

Bit Number Bit Name Description

[0] Halt request (HaltReq) Set this bit to stop data packet transmission and reception as
soon as Tx/Rx of any current packets has been completed.

[1] Halt immediate (HaltImm) Set this bit to immediately stop all transmission and reception.

[2] Software reset (Reset) Set this bit to reset all MAC control and status register and
MAC state machines.

[3] Full-duplex (FullDup) Set this bit to start transmission while reception is in progress.

[4] MAC loopback (MACLoop) Set this bit to cause transmission signals to be presented as
input to the receive circuit without leaving the controller.

[5] Reserved Not applicable

[6] MII-OFF Use this bit to select the connection mode. If this bit is set to
one, 10 M bits/s interface will select the 10 M bits/s endec.
Otherwise, the MII will be selected.

[7] Loop 10 Mb/s (Loop10) If this bit is set, the Loop_10 external signal is asserted to the
10-Mb/s endec.

[9:8] Reserved Not applicable.

[10] Missed roll (MissRoll) This bit is automatically set when the missed error counter
rolls over.

[11] Reserved Not applicable.

[12] MDC-OFF Clear this bit to enable the MDC clock generation for power
management. If it is set to one, the MDC clock generation is
disabled.

[13] Enable missed roll
(EnMissRoll)

Set this bit to generate an interrupt whenever the missed error
counter rolls over.

[14] Reserved Not applicable

[15] Link status 10 Mb/s (Link10) This bit value is read as a buffered signal on the link 10 pin.

[31:16] Reserved Not applicable.

S3C4530A ETHERNET CONTROLLER

7-37

CAM Control Register

The three accept bits in the CAM control register are used to override CAM rejections. To place the MAC in
promiscuous mode, use CAM control register settings to accept packets with all three types of destination
addresses. The three types of destination address packets are as follows:

— Station packets, which has an even first byte. For example, 00-00-00-00-00-00.

— A multicast-group, which has an odd first byte, but which is not FF-FF-FF-FF-FF-FF. For example, 01-00-00-
00-00-00.

— A broadcast, defined as FF-FF-FF-FF-FF-FF.

When you enable CAM compare mode, the CAM memory reads the destination addresses to filter incoming
messages. (You will recall that the CAM memory consists of 6-byte entries.) An alternative way to place the MAC
in promiscuous mode is to set, in turn, to accept the them. To reject all packets, simply clear all of the bits in the
CAMCON register.

Table 7-20. CAMCON Register

Registers Offset R/W Description Reset Value

CAMCON 0XA004 R/W CAM control 0x00000000

Table 7-21. CAM Control Register Description

Bit Number Bit Name Description

[0] Station accept (StationAcc) Set this bit to accept any packet with a "unicast" station
address.

[1] Group accept (GroupAcc) Accept any packet with a multicast-group address.

[2] Broadcast accept (BroadAcc) Accept any packet with a broadcast address.

[3] Negative CAM (NegCAM) When this bit is "0", packets the CAM recognizes are accepted
and others are rejected. When "1", packets the CAM
recognizes are rejected and others are accepted.

[4] Compare enable (CompEn) Set this bit to enable compare mode.

[31:5] Reserved Not applicable.

ETHERNET CONTROLLER S3C4530A

7-38

MAC Transmit Control Register

To generate an interrupt after each packet, set the enable completion bit and all of the MAC error enable bits.
Using MAC transmit control register settings, you can also selectively enable interrupts for specific conditions.

Table 7-22. MACTXCON Register

Registers Offset R/W Description Reset Value

MACTXCON 0XA008 R/W Transmit control 0x00000000

Table 7-23. MAC Transmit Control Register Description

Bit Number Bit Name Description

[0] Transmit enable (TxEn) Set this bit to enable transmission. To stop transmission
immediately, clear the transmit enable bit to "0".

[1] Transmit halt request (TxHalt) Set this bit to halt transmission after completing any current
packet.

[2] Suppress padding (NoPad) Set to not generate pad bytes for packets of less than 64 bytes.

[3] Suppress CRC (NoCRC) Set to suppress addition of a CRC at the end of a packet.

[4] Fast back-off (FBack) Set this bit to use faster back-off times for testing.

[5] No defer (NoDef) Set to disable the defer counter. (The defer counter keeps
counting until the carrier sense (CrS) bit is turned off.)

[6] Send Pause (SdPause) Set this bit to send a pause command or other MAC control
packet. The send pause bit is automatically cleared when a
complete MAC control packet has been transmitted. Writing a
"0" to this register bit has no effect.

[7] MII 10-Mb/s SQE test mode
enable (SQEn)

Set this bit to enable MII 10-Mb/s SQE test mode.

[8] Enable underrun (EnUnder) Set this bit to generate an interrupt if the MAC transmit FIFO is
empty during a transmission.

[9] Enable deferral (EnDefer) Set this bit to generate an interrupt if the MAC defers for
MAX_DEFERRAL time: "0" = 0.32768 ms at 100 Mb/s; "1" =
3.2768 ms at 10-Mb/s.

[10] Enable no carrier (EnNCarr) Set this bit to generate an interrupt if a carrier sense is not
detected while an entire packet is transmitted.

[11] Enable excessive collision
(EnExColl)

Set this bit to enable an interrupt if 16 collisions occur in the
same packet.

[12] Enable late collision
(EnLateColl)

Set this bit to generate an interrupt if a collision occurs after 512
bit times (or 64 byte times).

[13] Enable transmit parity
(EnTxPar)

Set this bit to generate an interrupt if a parity error is detected in
the MAC transmit FIFO.

[14] Enable completion (EnComp) Set this bit to generate an interrupt whenever the MAC
transmits or discards one packet.

[31:15] Reserved Not applicable.

S3C4530A ETHERNET CONTROLLER

7-39

MAC Transmit Status Register

A transmission status flag is set in the transmit status register, MACTXSTAT, whenever the corresponding event
occurs. In addition, an interrupt is generated if the corresponding enable bit in the transmit control register is set.
A MAC transmit FIFO parity error sets TxPar, and also clears TxEn, if the interrupt is enabled.

You can read and mask the five low-order bits as a single collision count. That is, when ExColl is "1", TxColl is
"0". If TxColl is not "0", then ExColl is "0".

Table 7-24. MACTXSTAT Register

Registers Offset R/W Description Reset Value

MACTXSTAT 0XA00C R/W Transmit status 0x00000000

Table 7-25. MAC Transmit Status Register Description

Bit Number Bit Name Description

[3:0] Transmit collision count
(TxColl)

This 4-bit value is the count of collisions that occurred while
successfully transmitting the packet.

[4] Excessive collision (ExColl) This bit is set if 16 collisions occur while transmitting the
same packet. In this case, packet transmission is aborted.

[5] Transmit deferred (TxDeferred) This bit is set if transmission of a packet was deferred
because of a delay during transmission.

[6] Paused (Paused) This bit is set if transmission of a packet was delayed due to
a Pause being received.

[7] Interrupt on transmit (IntTx) This bit is set if transmission of a packet causes an interrupt
condition.

[8] Underrun (Under) This bit is set if the MAC transmit FIFO becomes empty
during a packet transmission.

[9] Deferral (Defer) This bit is set if the MAC defers a transfer because of
MAX_DEFERRAL at 0.32768 ms for 100 Mb/s or 3.2768 ms
for 10Mb/s.

[10] No carrier (NCarr) This bit is set if no carrier sense is detected during the
transmission a packet.

[11] Signal quality error (SQE) According to the IEEE802.3 rule, the SQE signal reports the
status of the PMA (MAU or transceiver) operation to the MAC
layer. After transmission is complete and 1.6 µs has elapsed,
a collision detection signal is issued for 1.5 µs to the MAC
layer. This signal is called the SQE test signal. The MAC sets
the SQE bit in the MACTXSTAT register if this signal is not
reported within the IFG time of 6.4µs.

[12] Late collision (LateColl) This bit is set if a collision occurs after 512 bit times (or 64
byte times).

[13] Transmit parity error (TxPar) This bit is set if a collision occurs after 512 bit times (or 64
byte times).

[14] Completion (Comp) This bit is set when the MAC transmits, or discards, one
packet.

[15] Transmission halted (TxHalted) Transmission was halted by clearing the TxEn bit or the halt
immediate (HaltImm) bit.

[31:16] Reserved Not applicable.

ETHERNET CONTROLLER S3C4530A

7-40

MAC Receive Control Register

To issue an interrupt after each packet is received, set the enable good bit and all of the error enable bits in the
MACRXCON register. You can also enable interrupts for specific conditions. Standard packet length values do
not include a preamble or a start frame delimiter (SFD).

Table 7-26. MACRXCON Register

Registers Offset R/W Description Reset Value

MACRXCON 0XA010 R/W Receive control 0x00000000

Table 7-27. MAC Receive Control Register Description

Bit Number Bit Name Description

[0] Receive enable (RxEn) Set this bit to "1" to enable MAC receive operation. If "0", stop
reception immediately.

[1] Receive halt request (RxHalt) Set this bit to halt reception after completing the reception of
any current packet.

[2] Long enable (LongEn) Set this bit to receive frames with lengths greater than 1518
bytes.

[3] Short enable (ShortEn) Set this bit to receive frames with lengths less than 64 bytes.

[4] Strip CRC value (StripCRC) Set this bit to check the CRC, and then strip it from the
message.

[5] Pass control packet (PassCtl) Set this bit to enable the passing of control packets to a MAC
client.

[6] Ignore CRC value
(IgnoreCRC)

Set this bit to disable CRC value checking.

[7] Reserved Not applicable.

[8] Enable alignment (EnAlign) Set this bit to enable the alignment interrupt. An alignment
interrupt occurs when a packet is received whose length (in bits)
is not a multiple of eight, and whose CRC is invalid.

[9] Enable CRC error
(EnCRCErr)

Set this bit to enable the CRC interrupt. A CRC interrupt occurs
when a packet is received whose CRC is invalid or if, during its
reception, the PHY asserts Rx_er.

[10] Enable overflow (EnOver) Set this bit to enable the overflow interrupt. An overflow
interrupt is generated when a packet is received and the MAC
receive FIFO is full.

[11] Enable long error (EnLongErr) Set this bit to enable the long error interrupt. A long error
interrupt is generated when a frame longer than 1518 bytes is
received (unless the long enable bit is set).

[12] Reserved Not applicable.

[13] Enable receive parity
(EnRxPar)

Set this bit to enable a receive parity interrupt if the MAC
receive FIFO detects a parity error.

[14] Enable Good (EnGood) Set this bit to enable the good (packet) interrupt upon error-free
reception of a complete data packet.

[31:15] Reserved Not applicable.

NOTE: The frame lengths given above do not include preamble and start frame delimiter (SFD).

S3C4530A ETHERNET CONTROLLER

7-41

MAC Receive Status Register

A receive status flag is set in the MAC receive status register, MACRXSTAT, whenever the corresponding event
occurs. When a status flag is set, it remains set until another packet arrives, or until software writes a "1" to the
flag to clear the status bit. If the corresponding interrupt enable bit in the receive control register is set, an
interrupt is generated whenever a status flag is set. A MAC receive parity error sets RxPar, and also clears the
RxEn bit (if an interrupt is enabled).

Table 7-28. MACRXSTAT Register

Registers Offset R/W Description Reset Value

MACRXSTAT 0XA014 R/W Receive status 0x00000000

Table 7-29. MAC Receive Status Register Description

Bit Number Bit Name Description

[4:0] Reserved Not applicable.

[5] Control frame received (CtlRecd) This bit is set if the packet received is a MAC control frame
(type = 8808H), if the CAM recognizes the packet address,
and if the frame length is 64 bytes.

[6] Interrupt on receive (IntRx) This bit is set if the reception of a packet caused an
interrupt to be generated. This includes a good received
interrupt, if the EnGood bit is set.

[7] Receive 10-Mb/s status
(Rx10Stat)

This bit is set to "1" if a packet was received over the 7-wire
interface or to "0" if a packet was received over the MII.

[8] Alignment error (AlignErr) This bit is set if the frame length in bits was not a multiple of
eight and the CRC was invalid.

[9] CRC error (CRCErr) This bit is set if the CRC at the end of a packet did not
match the computed value, or else the PHY asserted Rx_er
during packet reception.

[10] Overflow error (overflow) This bit is set if the MAC receive FIFO was full when it
needed to store a received byte.

[11] Long error (LongErr) This bit is set if the MAC received a frame longer than 1518
bytes. (It is not set if the long enable bit in the receive
control register, MACRXCON, is set.)

[12] Reserved Not applicable.

[13] Receive parity error (RxPar) This bit is set if a parity error is detected in the MAC receive
FIFO.

[14] Good received (Good) This bit is set if a packet was successfully received with no
errors. If EnGood = "1", an interrupt is also generated.

[15] Reception halted (RxHalted) This bit is set if reception was halted by clearing RxEn or by
setting the HaltImm bit in the MAC control register,
MACON.

[31:16] Reserved Not applicable.

ETHERNET CONTROLLER S3C4530A

7-42

MAC Station Management Data Register

Table 7-30. STADATA Register

Registers Offset R/W Description Reset Value

STADATA 0XA018 R/W Station management data 0x00000000

Table 7-31. Station Management Register Description

Bit Number Bit Name Description

[15:0] Station management data. This register contains a 16-bit data value for the station
management function.

S3C4530A ETHERNET CONTROLLER

7-43

MAC Station Management Data Control and Address Register

The MAC controller provides support for reading and writing station management data to the PHY. Setting
options in station management registers does not affect the controller. Some PHYs may not support the option to
suppress preambles after the first operation.

Table 7-32. STACON Register

Registers Offset R/W Description Reset Value

STACON 0XA01C R/W Station management control and address 0x00008000

Table 7-33. STACON Register Description

Bit Number Bit Name Description

[4:0] PHY register address (Addr) A 5-bit address, contained in the PHY, of the register to be
read or written.

[9:5] PHY address (PHY) The 5-bit address of the PHY device to be read or written.

[10] Write (Wr) To initiate a write operation, set this bit to "1". For a read
operation, clear it to "0".

[11] Busy bit (Busy) To start a read or write operation, set this bit to "1". The MAC
controller clears the Busy bit automatically when the operation
is completed.

[12] Preamble suppress (PreSup) If you set this bit, the preamble is not sent to the PHY. If it is
clear, the preamble is sent.

[15:13] MDC clock rating Control the MDC period.
MD_CA[15:13] MDC period

 000 16 × (1/fMCLK)

 001 18 × (1/fMCLK)

 010 20 × (1/fMCLK)

 . .
 . .

 111 30 × (1/fMCLK)

MDC period = MD_CA[15:13] × 2 + 16
Default MDC_CA[15:13] = 100

[31:16] Reserved Not applicable.

ETHERNET CONTROLLER S3C4530A

7-44

CAM Enable Register

The CAM enable register, CAMEN, indicates which CAM entries are valid, using a direct comparison mode. Up
to 21 entries, numbered 0 through 20, may be active, depending on the CAM size. If the CAM is smaller than 21
entries, the higher bits are ignored.

Table 7-34. CAMEN Register

Registers Offset R/W Description Reset Value

CAMEN 0XA028 R/W CAM enable 0x00000000

Table 7-35. CAM Enable Register Description

Bit Number Bit Name Description

[20:0] CAM enable (CAMEn) Set the bits in this 21-bit value to selectively enable CAM
locations 20 through 0. To disable a CAM location, clear the
appropriate bit.

[31:21] Reserved Not applicable.

S3C4530A ETHERNET CONTROLLER

7-45

MAC Missed Error Count Register

The value in the missed error count register, EMISSCNT, indicates the number of packets that were discarded
due to various type of errors. Together with status information on packets transmitted and received, the missed
error count register and the two pause count registers provide the information required for station management.

Reading the missed error counter register clears the register. It is then the responsibility of software to maintain a
global count with more bits of precision.

The counter rolls over from 0x7FFF to 0x8000 and sets the corresponding bit in the MAC control register. It also
generates an interrupt if the corresponding interrupt enable bit is set. If station management software wants more
frequent interrupts, you can set the missed error count register to a value closer to the rollover value of 0x7FFF.
For example, setting a register to 0x7F00 would generate an interrupt when the count value reaches 256
occurrences.

Table 7-36. EMISSCNT Register

Registers Offset R/W Description Reset Value

EMISSCNT 0XA03C R(Clr)/W Missed error count 0x00000000

Table 7-37. Missed Error Count Register Description

Bit Number Bit Name Description

[15:0] Alignment error count
(AlignErrCnt)

The number of packets received with alignment errors. This
software counter increments at the end of a packet reception if
the Rx_Stat value indicates an alignment error.

CRC error count (CRCErrCnt) The number of packets received with a CRC error. This
software counter increments if the Rx_Stat value indicates a
CRC error. If the Rx_Stat value indicates another type of error,
such as an alignment error, this counter is not incremented.

Missed error count
(MissErrCnt)

The number of valid packets rejected by the MAC unit
because of MAC receive FIFO overflows, parity errors, or
because the Rx_En bit was cleared. This count does not
include the number of packets rejected by the CAM.

[31:16] Reserved Not applicable.

ETHERNET CONTROLLER S3C4530A

7-46

MAC Received Pause Count Register

The received pause count register, EPZCNT, stores the current value of the 16-bit received pause counter.

Table 7-38. EPZCNT Register

Registers Offset R/W Description Reset Value

EPZCNT 0XA040 R Pause count 0x00000000

Table 7-39. Received Pause Count Register Description

Bit Number Bit Name Description

[15:0] Received pause count
(EPZCNT)

The count value indicates the number of time slots the
transmitter was paused due to the receipt of control pause
operation packets from the MAC.

MAC Remote Pause Count Register

The remote Pause count register, ERMPZCNT, stores the current value of the 16-bit remote Puase counter.

Table 7-40. ERMPZCNT Register

Registers Offset R/W Description Reset Value

ERMPZCNT 0XA044 R Remote pause count 0x00000000

Table 7-41. Remote Pause Count Register Description

Bit Number Bit Name Description

[15:0] Received pause count
(EPZCNT)

The count value indicates the number of time slots that a
remote MAC was paused as a result of its sending control
pause operation packets.

S3C4530A ETHERNET CONTROLLER

7-47

MAC Transmit Control Frame Status

The transmit control frame status register, ETXSTAT, is a RAM-based register which provides the status of a
MAC control packet as it is sent to a remote station. This operation is controlled by the SdPause bit in the
transmit control register, MACTXCON.

It is the responsibility of the DMA engine to read this register, and to generate an interrupt to notify the system
that the transmission of a MAC control packet has been completed.

Table 7-42. ETXSTAT Register

Registers Offset R/W Description Reset Value

ETXSTAT 0X9040 R Transmit control frame status 0x00000000

Table 7-43. Transmit Control Frame Register Description

Bit Number Bit Name Description

[15:0] Tx_Stat value A 16-bit value indicating the status of a MAC control packet as
it is sent to a remote station. Read by the DMA engine.

ETHERNET CONTROLLER S3C4530A

7-48

ETHERNET CONTROLLER OPERATIONS

This section contains additional details about the following operations of the S3C4530A ethernet controller:

— MAC frame and packet formats

— Transmitting a frame

— Receiving a frame

— Full-duplex pause operation

— Error signalling and network management

MAC Frame and Packet Formats

The MAC transmits each byte of all fields, except the FCS, least-significant bit first. In this document, the term
"packet" is used to denote all of the bytes that are transmitted and received, while "frame" refers only to the bytes
delivered by the station for transmission, and to the station who is receiving.

Table 7-44 lists the eight fields in a standard data packet (IEEE 802.3/Ethernet frame). See also Figure 7-13.

Table 7-44. MAC Frame and Package Format Description

Field Name Field Size Description

Preamble 7 bytes The bits in each preamble byte are 10101010, transmitted from left
to right.

Start frame delimiter
(SFD)

1 byte The SFD bits are 10101011, transmitted from left to right.

Destination address 6 bytes The destination address can be an individual address or a multicast
(or broadcast) address.

Source address 6 bytes The MAC does not interpret the source address bytes. However, to
qualify as a valid station address, the first bit transmitted (the LSB
of the first byte) must be a "0".

Length or type 2 bytes The MAC treats length fields greater than 1500 bytes as type fields.
Byte values less than or equal to 1500 indicate the number of
logical link control (LLC) data bytes in the data field. The MAC
transmits the high-order byte first.

Logical link control
(LLC) data

46 to 1500 bytes Data bytes used for logical link control.

PAD 0 to 46 bytes If the LLC data is less than 46 bytes long, the MAC transmits pad
bytes of all zeros.

Frame check
sequence (FCS)

4 bytes The FCS field contains a 16-bit error detection code that is
computed as a function of all fields except the preamble, the SFD,
and the FCS itself. The FCS - 32 polynomial function is as follows: "
X32 + X26 + X23 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 +
X2 + X1 + 1".

S3C4530A ETHERNET CONTROLLER

7-49

Packet (Encoded on the Medium)

Added by
Transmitter,
Stripped by

Receiver

Data Frame (sent by user) Added by transmitter

Data frame (delivered to user) Optionaly stripped
by receiver

Preamble
S
F
D

Destination
Address

Source
Address

Length or
type

LLC data PAD FCS

4 bytes0-4646-1500
bytes2 bytes6 bytes6 bytes17 bit

LLC header LLC information field

DSAP SSAP CTRL IP/X.25/......

SNAP

DSAP SSAP CTRL OUI PID IP/X.25/......

1 byte 1 byte 1 byte 3 bytes 2 bytes

DSAP = Destination service access point
CTRL = Control field
OUI = Origanizationally unique identifier
SFD = Starting frame delimiter

SSAP = Source service access point
SNAP = Subnetwork access protocol
PID = Protocol identifier
LLC = Logical lick control
FCS = Frame check sequence

OR

Figure 7-15. Fields of an IEEE802.3/Ethernet Packet (Frame)

Options That Affect the Standard MAC Frame

There are a number of factors and options which can affect the standard MAC frame, as described in Table 7-44:

— Some PHYs may deliver a longer or shorter preamble.

— Short packet mode permits LLC data fields with less than 46 bytes. Options are available to suppress
padding and to support the reception of short packets.

— Long packet mode supports LLC data fields with more than 1500 bytes. An option is also available to support
to reception of long packets.

— "No CRC" mode suppresses the appending of a CRC field.

— "Ignore CRC" mode allows the reception of packets without valid CRC fields.

ETHERNET CONTROLLER S3C4530A

7-50

Destination Address Format

Bit 0 of the destination address is an address type designation bit. It identifies the address as either an individual
or a group address. Group addresses are sometimes called "multicast" addresses and individual addresses are
called "unicast" addresses. The broadcast address is a special group address in the special hex format: FF-FF-
FF-FF-FF-FF.

Bit 1 of the destination address distinguishes between locally or globally administered addresses. For globally
administered or universal (U) addresses, the bit value is "0". If an address is to be assigned locally, you must set
this bit to "1". For the broadcast address, this bit must also be set to "1".

Destination Address

Block ID or OUI (3 bytes)
MAC Address (3 bytes)

U/L I/G

[0] Individual or group flag (I/G)
0 = Individual (= unicast) address.
1 = Group (= multicast) address.

[1] Universal or local address flag (U/L)
0 = Universal address.
1 = Local address.

Figure 7-16. Destination Address Format

Special Flow Control Destination Address

The current specification for full-duplex flow control specifies a special destination address for the Pause
operation packet. In order for the MAC to receive packets which contain this special destination address, the
address must be programmed in one of the CAM entries. This CAM entry must then be enabled, and the CAM
activated.

Some CAM entries are also used when generating a flow control packet using the SdPause bit in the MAC
transmit control register.

S3C4530A ETHERNET CONTROLLER

7-51

TRANSMITTING A FRAME

To transmit a frame, the transmit enable bit in the transmit control register must be set and the transmit halt
request bit must be zero. In addition, the halt immediate and halt request bits in the MAC control register must be
"0". These conditions are normally set after any BDMA controller initialization has occurred. The system then
uses the Tx_wr# and Tx_EOF signals to transfer bytes to the transmit data buffer.

The transmit state machine starts transmitting the data in the FIFO, and will retain the first 64 bytes until after
this station has acquired the net. At that time, the transmit block requests more data and transmits it until the
system asserts the Tx_EOF input, signaling the end of data to be transmitted. The transmit block appends the
calculated CRC to the end of the packet, and transmission ends. It then sets the transmit status register bit 0,
signaling a successful transmission. This action may causes an interrupt, if enabled.

A frame transmit operation can be subdivided into two operations, 1) a MII interface operation, and 2) a BDMA/
MAC interface operation.

BDI TRANSMIT OPERATION

The BDI transmit operation is a simple FIFO mechanism. The BDMA engine stores data to be transmitted, and
the transmit state machine empties it when the MAC successfully acquires the net.

Note that the two time domains intersect at the FIFO controller. The writing and reading of data is asynchronous
and on different clocks. Reading is driven by either a 25-MHz or a 2.5-MHz transmit clock. Writing is driven by
the synchronous Sys_clk, which is asynchronous to Tx_clk.

After a reset, the transmit FIFO is empty. The transmit block asserts the Tx_rdy signal, and transmission is
disabled. To enable transmission, the system must set the transmit enable bit in the transmit control register. In
addition, eight bytes of data must be present in the transmit FIFO. The BDMA engine can start stuffing data into
the FIFO, and then enable the transmit bit. (Or it can enable the transmit bit first and then start stuffing data into
the FIFO.) The transmit operation can only start if both of these conditions are met.

ETHERNET CONTROLLER S3C4530A

7-52

BDI Transmit Timing

When the transmit block asserts the Tx_rdy signal, the BDMA engine can write data into the transmit FIFO by
asserting the Tx_wr# signal. Figure 7-15 shows timing sequences for back-to-back transfers and transfers with
wait states. This is a synchronous interface, which means that data is latched in at the rising edge of the Sys_clk
when Tx_wr# is asserted. For slower interfaces, the rising edge of Tx_wr# can be delayed.

This is the equivalent of asserting a wait state in a synchronous operation. The transmit FIFO machine checks
the Tx_par and the Tx_EOF bits. If there is a parity error, the transmit block aborts the transmission, resets the
FIFO, and generates an interrupt by setting the TxPar bit in the transmit status register.

The Tx_EOF bit signals the end of one frame to be transmitted. When it detects this bit, the transmit block de-
asserts Tx_rdy until it has transmitted the packet. It then re-asserts Tx_rdy when the BDMA can transfer the next
packet into the MAC FIFO.

SYS_CLK

Rx_rdy

Rx_wr#

Rx_DB

Rx_BE#

Rx_par

Rx_EOF

~~
~~

~~

B1 B2 B3

B1 B2 B3

~~
~~

B1 B2 B3

~~
~~

~~
~~

~~
~~

Figure 7-17. BDI Transmit Data Timing

S3C4530A ETHERNET CONTROLLER

7-53

MII TRANSMIT OPERATION

The transmit block consists of three state machines: the gap_ok state machine, the back_off state machine, and
the main transmit state machine.

The gap_ok State Machine

The gap_ok state machine tracks and counts the inter-gap timing between the frames. When not operating in
full-duplex mode, it counts 96 bit times from the deassertion of the carrier sense (CrS) signal. If there is any
traffic within the first 64 bit times, the gap_ok state machine reset itself and starts counting from zero.

If there is any traffic in the last 1/3 of the inter-frame gap, the gap_ok state machine continues counting.
Following a successful transmission, a gap_ok is sent at the end of the next 96 bit times, regardless of the
network traffic.

In full-duplex mode, the gap_ok state machine starts counting at the end of the transmission and the gap_ok
signal is sent at the end of the 96 bit times, regardless of the network traffic.

Attempt_count>=
Max_attempt?

Assemble MAC frame

Carrier sense==ON?

Wait for interframe gap
(96-bit time), start Tx
with preamble + SFD

Collision detected?

Done. Complete Tx

Wait for back-off time:
(=slot time x r),
k = minimum (n, back-off limit (=10))
0<=n <Max_attempt (=16)
0<= random integer (r) <= 2k

Continue
transmission

Preamble and SFD
transmitted?

Stop transmission,
send 32-bit jam,
++ Attemp_count

Report attempt limit
exceeded error

; To upper level layer

Yes

Yes

Yes

Yes

Figure 7-18. CSMA/CD Transmit Operation

ETHERNET CONTROLLER S3C4530A

7-54

The back_off State Machine

The back_off state machine implements the back-off and retry algorithm of the 802.3 CSMA/CD. When a
collision is detected, the main transmit state machine starts the back_off state machine′s counters and waits for
the back-off time (including zero) to elapse. This time is a multiple of 512 bit times that elapse before the packet
that caused the collision is re-transmitted.

Each time there is a collision (for one single packet), the back_off state machine increments an internal retry
attempt countner. A 11-bit pseudo random number generator outputs a random number by selecting a subset of
the value of the generator at any time. The subset is incremented by one bit for each subsequent attempt. This
implementation is represented by the following equation:

0 =< random integer(r) < 2K

K = min (n, backoff limit (= 10))

where "r" is the number of slot times the MAC must wait in case of a collision, and "n" is the number of retry
attempts.

For example, after the first collision, "n" is 1 and "r" is a random number between 0 and 1. The pseudo random
generator in this case is one-bit wide and gives a random number of either 0 or 1. After the second attempt, "r" is
a random number between 0 and 3. Therefore, the state machine looks at the two least-significant bits of the
random generator (n = 2), which gives a value between 0 and 3.

The Main Transmit State Machine

The main transmit state machine implements the remaining MAC layer protocols. If there is data to be
transferred, if the inter-frame gap is valid, and if the MII is ready (that is, if there are no collisions and no CRS in
full-duplex mode), the transmit block then transmits the preamble followed by the SFD.

After the SFD and preamble are transmitted, the block transmits 64 bytes of the data, regardless of the packet
length, unless short transmission is enabled. This means that if the packet is less than 64 bytes, it will pad the
LLC data field with zeros. It will also appends the CRC to the end of the packet, if CRC generation is enabled.

If there is any collision during this first 72 bytes (8 bytes of preamble and SFD, and 64 bytes of the frame), the
main transmit state machine stops the transmission and transmits a jam pattern (32 bits of 1′s). It then
increments the collision attempt counter, returns control to the back_off state machine, and re-transmits the
packet when the back-off time has elapsed and the gap time is valid.

If there are no collisions, the transmit block transmits the rest of the packet. At this time (that is, after the first 60
bytes have been transmitted without collisions), the main transmit state machine lets the BDMA engine overwrite
the packet. After it transmits the first 64 bytes, the transmit block transmits the rest of the packet, appending the
CRC to the end. parity errors, FIFO errors, or more than 16 collisions will cause the transmit state machine to
abort the packet (no retry) and queue up the next packet.

In case of any transmission errors, the transmit block sets the appropriate error bit in the transmit status register.
It may also generate an interrupt, depending on the enable bit settings in the transmit control register.

S3C4530A ETHERNET CONTROLLER

7-55

Tx_clk

Tx_en

TxD [3:0]

Crs

~~
P

~~
R E A M B L E

~~
~~

~~
~~Col

Figure 7-19. Timing for Transmit without Collision

Tx_clk

Tx_en

TxD [3:0]

Crs

P1 P2 P3 P4 P5 P6 P7 P8

Col

J1 J2 J3 J4

Figure 7-20. Timing for Transmit with Collision in Preamble

ETHERNET CONTROLLER S3C4530A

7-56

RECEIVING A FRAME

The receive block, when enabled, constantly monitors a data stream coming either from the MII or, if in loop-
back mode, from the transmit block. The MII supplies from zero to seven bytes of preamble, followed by the start
frame delimiter (SFD). The receive block checks that the first nibbles received are preamble, and then looks for
the SFD (10101011) in the first eight bytes. If it does not detect the SFD by then, it treats the packet as a
fragment and discards it.

The first nibble of destination address follows the SFD, least-significant bits first. When it has received a byte,
the receive block generates parity, stores the byte with its parity in the receive FIFO, and asserts Rx_rdy. It
combines subsequent nibbles into bytes and stores them in the FIFO.

BDI RECEIVE DATA TIMING

When the system asserts Rx_rd#, the receive block reads the first byte from the FIFO, checks parity, and drives
the byte on Rx_DB, and the byte's parity on Rx_par. If the FIFO is now empty, it drops Rx_rdy. When it drives
out the last byte of a packet, it asserts Rx_EOF.

Figure 7-19 shows the timing sequence for transmitting bytes back-to-back, transmitting with wait states, and
transmitting the last byte.

Sys_clk

Rx_rdy

Rx_rd#

Rx_DB

Rx_par

Rx_EOF

~~
~~

~~

B1 B2 B3 BN

PAR PAR PAR PAR

~~
~~

~~
~~

~~

Figure 7-21. BDI Receive Data Timing

S3C4530A ETHERNET CONTROLLER

7-57

RECEIVE FRAME TIMING WITH/WITHOUT ERROR

If, during frame reception, both Rx_DV and Rx_er are asserted, a CRC error is reported for the current packet.

As each nibble of the destination address is received, the CAM block attempts to recognize it. After receiving the
last destination address nibble, if the CAM block rejects the packet, the receive block asserts the Rx_toss signal,
and discards any bytes not yet removed from the receive FIFO that came from the current packet. If this
operation leaves the FIFO empty, it drops Rx_rdy.

Figure 7-20 shows the MII receive data timing without error. The RX_DV signal, which entered the MII from the
PCS layer, will be ON when the PCS layer recovers the Rx_clk from the receive bit stream and delivers the
nibble data on RxD[3:0] data line. The RX_DV signal must be ON before the starting frame delimiter(SFD) is
received. When the Rx_DV signal is ON, the preamble and SFD parts of the frame header are delivered to MII,
synchronized with the 25-MHz Rx_clk. (The carrier sense (CrS) signal was turned on during receive frame.)

As its response to the Rx_er signal, the MII immediately inserts an alternative data bit stream into the receive
data stream. As a result, the MAC discards this received error frame using the FCS.

Rx_clk

Rx_DV

RxD [3:0]

Crs

~~
~~

~~
~~Rx_er

~~
~~ Preamble SFD DA SFD

Figure 7-22. Receiving Frame without Error

Rx_clk

Rx_DV

RxD [3:0]

Crs

~~
~~

~~
~~Rx_er

~~
~~ Preamble SFD DA SFD

Figure 7-23. Receiving Frame with Error

ETHERNET CONTROLLER S3C4530A

7-58

Carrier Sense== On

Carrier sense = On,
after detection SFD,

store byte-stream in in FISO

Recognize Address?

Move the byte stream in
the FIFO to the receive

buffer memory

Frame too short ?

Frame too long?

Valid FCS ?

Interrput CPU for
Handing the Frame

MAC Drive Software
(Software jobs for typical LAN cards)

Discard the Frame
Report Error Status

yse

no

Disassemble Frame

Check ethertype or length field

Signal to Upper Layer

Figure 7-24. CSMA/CD Receive Operation

S3C4530A ETHERNET CONTROLLER

7-59

THE MII STATION MANAGER

The MDIO (management data input/output) signal line is the transmit and receive path for control/status
information for the station management entity, STA. The STA controls and reads the current operating status of
the PHY layer. The speed of transmit and receive operations is determined by the management data clock,
MDC.

The frame structure of the STA which writes command to control registers, or which reads the status register of a
PHY device, is shown Table 7-45. The PHY address is defined as the identification (ID) value of the various PHY
devices that may be concected to a single MAC. Register addresses can contain the ID value for up to 32 types
of PHY registers.

Turn-around bits are used to regulate the turn-around time of the transmit/receive direction between the STA and
a PHY device. So that the STA can read the set value of a PHY device register, it must transmit the frame data,
up to a specific register address, to the PHY device. During the write time (which is an undirected transmission),
the STA transmits a stream of turn-around bits. As a result, by transmitting a write or read message to a PHY
device through the MDIO, the STA can issue a request to set the operation or to read the operation status.

As its response this message, the PHY device resets itself, sets loop-back mode, selects active/non-active auto-
negotiation process, separates the PHY and MII electrically, and determines whether or not to activate the
collision detection process.

When it receives a read command, the PHY reports the kind of PHY device it is, such as 100Base-T4, FDX
100base-X, HDX 100Base-X, 10-Mb/s FDX, or 10-Mb/s HDX.

Table 7-45. STA Frame Structure Description

Preamble Start of
Frame

Operation
Code

PHY
Address

Register
Address

Turnaround Data Idle

Write
(Command)

11111111
(32 bits)

01 01 (write) 5 bits 5 bits 10 (2 bits) 16 bits
(register
value)

Z

Read (Status) 11111111
(32 bits)

01 10 (read) 5 bits 5 bits Z0 16 bits
(register
value)

Z

Direction: STA to PHY Direction: PHY to STA

ETHERNET CONTROLLER S3C4530A

7-60

FULL-DUPLEX PAUSE OPERATIONS

Transmit Pause Operation

To enable a full-duplex Pause operation, the special broadcast address for MAC control packets must be
programmed into the CAM, and the corresponding CAM enable bit set. The special broadcast address can be a
CAM location. To optimize the utilization CAM entries, you can specify a preference for specific CAM locations.
This feature is described below.

The MAC receive circuit recognizes a full-duplex Pause operation when the following conditions are met:

— The type/length field has the special value for MAC Control packets, 0x8808.

— The packet is recognized by the CAM.

— The length of the packet is 64 bytes.

— The operation field specifies a Pause operation.

When a full-duplex pause operation is recognized, the MAC receive circuit loads the operand value into the
pause count register. It then signals both the MAC and the BDMA engine that the pause should begin at the end
of the current packet, if any.

The pause circuit maintains the pause counter, and decrements it to zero. It does this before it signals the end of
the pause operation, and before allowing the transmit circuit to resume its operation.

If a second full-duplex pause operation is recognized while the first operation is in effect, the pause counter is
reset with the current operand value. Note that a count value of zero may cause pre-mature termination of a
pause operation that is already in progress.

Remote Pause Operation

To send a remote pause operation, following these steps:

1. Program CAM location 0 with the destination address.

2. Program CAM location 1 with the source address.

3. Program CAM location 18 with length/type field, opcode, and operand.

4. Program the 2 bytes that follow the operand with 0000H.

5. Program the three double words that follow CAM location 18 with zeros.

6. Write the transmit control register to set the SdPause bit.

The destination address and source address are commonly used as the special broadcast address for MAC
control frames and the local station address, respectively. To support future uses of MAC control frames, these
values are fully programmable in the flow control 100-/10-Mbit/s Ethernet MAC.

When the remote Pause operation is completion, the transmit status is written to the transmit control frame status
register. The BDMA engine is responsible for providing an interrupt enable control.

S3C4530A ETHERNET CONTROLLER

7-61

Error Signalling

The error/abnormal operation flags asserted by the MAC are arranged into transmit and receive groups. These
flag groups are located either in the transmit status register (Tx_stat) or the receive status register (Rx_stat). A
missed packet error counter is included for system network management purposes.

Normally, software does not have enough direct control to examine the status registers directly. Therefore, the
BDMA engine must store the values in system memory so that they can be examined there by software.

Reporting of Transmission Errors

A transmit operation terminates when the entire packet (preamble, SFD, data, and CRC) has been successfully
transmitted through the MII without a collision. In addition, the transmit block detects and reports both internal
and network errors.

Under the following conditions, the transmit operation will be aborted (in most cases).

Parity error The 8 bits of data coming in through the BDII has an optional parity bit. A
parity bit also protects each byte in the MAC transmit FIFO. If a parity error
occurs, it is reported to the transmit state machine, and the transmission is
aborted. A detected parity error sets the TxPar bit in the transmit status register.

Transmit FIFO underrun The 80-byte transmit FIFO can handle a system latency of 6.4bi (640 bit times).
An underrun of the transmit FIFO during transmission indicates a system
problem (namely, that the system cannot keep up with the demands of the
MAC), and the transmission is aborted.

No CRS The carrier sense signal (CrS) is monitored from the beginning of the start of
frame delimiter (SFD) to the last byte transmitted. A "No CrS" indicates that CrS
was never present during transmission (a possible network problem), but the
ransmission will NOT be aborted. Note that during loop-back mode, the MAC is
disconnected from the network, and a "No CRC" will not be detected.

Excessive collision error Whenever the MAC encounters a collision during transmit, it will back off,
update the "attempt counter," and retry the transmission later on. When the
attempt counter reaches 16 (16 attempts that all resulted in a collision), the
transmission is aborted. This indicates a network problem.

Late collision error (Transmit out of window collision)
Normally, the MAC would detect a collision (if one occurs) within the first 64
bytes of data that are transmitted, including the preamble and SFD. If a collision
occurs after this time frame, a possible network problem is indicated. The error
is reported to the transmit state machine, but the transmission is NOT aborted.
Instead, it performs a back-off, as usual.

Excessive deferral error During its first attempt to send a packet, the MAC may have to defer the
transmission because the network is busy. If this deferral time is longer than 32K
bit times, the transmission is aborted. Excessive deferral errors indicate a
possible network problem.

ETHERNET CONTROLLER S3C4530A

7-62

Reporting of Receive Errors

When it detects a start of frame delimiter (SFD), the receive state machine starts putting data it has received
from the MII into the receive FIFO. It also checks for internal errors (FIFO overruns) while reception is in
progress.

When the receive operation is completed, the receive state machine checks for external errors, such as frame
alignment, length, CRC, and frame too long.

The following is a description of the types of errors that may occur during a receive operation:

Priority error A parity bit protects each byte in the MAC receive FIFO. If a parity error occurs,
it is reported to the receive state machine. A detected parity error sets the RxPar
bit in the receive status register.

Frame Alignment Error (Dribble)
After receiving a packet, the receive block checks that the incoming packet
(including CRC) was correctly framed on an 8-bit boundary. If it is not and if the
CRC is invalid, data has been disrupted through the network, and the receive
block reports a frame alignment error. A CRC error is also reported.

CRC Error After receiving a packet, the receive block checks the CRC for validity, and
reports a CRC error if it is invalid. The receive unit can detect network-related
errors such as CRC, frame alignment, and length errors. It can also detect these
types of errors in the following combinations:

— CRC errors only

— Frame alignment and CRC errors only

— Length and CRC errors only

— Frame alignment, length, and CRC errors

Frame too long The receive block checks the length of the incoming packet at the end of
reception (including CRC, but excluding preamble and SFD). If the length is
longer than the maximum frame size of 1518 bytes, the receive block reports
receiving a "long packet", unless long frame mode is enabled.

Receive FIFO overrun During reception, the incoming data are put into the receive FIFO temporarily
before they are transferred to the system memory. If the FIFO is filled up
because of excessive system latency or for other reasons, the receive block sets
the overrun bit in the receive status register.

MII error The PHY informs the MAC if it detects a medium error (such as a coding
violation) by asserting the input pin Rx_er. When the MAC sees Rx_er asserted,
it sets CRCErr bit of the receive status register.

S3C4530A ETHERNET CONTROLLER

7-63

Timing Parameters for MII Transactions

The timing diagrams in this section conform to the guidelines described in the "Draft Supplement to ANSI/IEEE
Std. 802.3, Section 22.3, Signal Characteristics."

TX_CLK

TXD[3:0]

TX_EN
Output Valid

4.9ns MIN28ns MIN

Figure 7-25. Transmit Signal Timing Relationship at MII

RX_CLK

RXD[3:0]

RX_DV

Th : 5nsTs : 3ns

Input
Valid

Figure 7-26. Receive Signal Timing Relationship at MII

MDC

MDIO Input Valid

Ts : 15ns

Figure 7-27. MDIO Sourced by PHY

MDC

MDIO Output Valid

Th : 13ns

Figure 7-28. MDIO Sourced by STA

ETHERNET CONTROLLER S3C4530A

7-64

MAC CONTROLLER 7-WIRE INTERFACE TIMING

Table 7-46. 7-Wire Interface Receive Timing

Symbol Condition Min Typ Max Unit

Ts_crs CRS low to high setup time 0.92 ns

Th_crs CRS low to high hold time 0.38 ns

Ts_dv RX_DV set-up time 0.9 ns

Th_dv RX_DV hold time 0.4 ns

Ts_d RxD set-up time 0.79 ns

Th_d RxD hold time 0.51 ns

Ts_er Rx_er set-up time 0.9 ns

Th_er Rx_er hold time 0.4 ns

Tcyc Rx_clk clock period 100 ns

Rx_clk

Rx_DV

RxD

Crs

Rx_er

Th_crs

Ts_crs

Preamble SFD CRC

Tcyc

DA

Th_dv Ts_dv

Th_d Ts_d

Th_er Ts_er

Figure 7-29. Rx Timing in 7 Wire Interface

S3C4530A ETHERNET CONTROLLER

7-65

Table 7-47. 7-Wire Interface Transmit Timing

Symbol Condition Min Typ Max Unit

Ts_en Tx_en set-up time 0.8 ns

Th_en Tx_en hold time 0.71 ns

Ts_crs CRS set-up time 0.72 ns

Th_crs CRS hold time 0.75 ns

Ts_d TxD set-up time 1.2 ns

Th_d TxD hold time 0.5 ns

Ts_col COL set-up time 0.82 ns

Th_col COL hold time 0.79 ns

Tcol COL minimum active time 200 ns

Tx_clk

Tx_en

TxD

Crs

Th_cn Th_colTs_en

Ts_col

Th_crs Ts_crs

Th_dTs_d

Col

Tcol

Figure 7-30. Tx Timing in 7 Wire Interface

ETHERNET CONTROLLER S3C4530A

7-66

NOTES

S3C4530A HDLC CONTROLLERS

8-1

8 HDLC CONTROLLERS

OVERVIEW

The S3C4530A has two high-level data link controllers (HDLCs) to support two-channel serial communications.

The HDLC module supports a CPU/data link interface that conforms to the synchronous data link control (SDLC)
and high-level data link control (HDLC) standards. In addition, the following function blocks are integrated into the
HDLC module:

— Two-channel DMA engine for Tx/Rx

— Support buffer descriptors per frame

— Digital phase-locked loop (DPLL) block

— Baud rate generator (BRG)

HDLC CONTROLLERS S3C4530A

8-2

FEATURES

Important features of the S3C4530A HDLC block are as follows:

— Protocol features:

Flag detection and synchronization

Zero insertion and deletion

Idle detection and transmission

FCS encoding and detection (16-bit)

 Transparent mode support

Time Slot Assignor support (TSA)

Abort detection and transmission

— Four address station registers and one mask register for address search mode

— Selectable CRC/No-CRC mode

— Automatic CRC generator pre-set

— Digital PLL block for clock recovery

— Baud rate generator

— NRZ/NRZI/FM/Manchester data formats for Tx/Rx

— Loop-back and auto-echo mode

— Tx and Rx FIFOs with 8-word (8 X 32-bit) depth

— Selectable 1-word or 4-word data transfer mode for Tx/Rx

— Data alignment logic

— Endian translation

— Programmable interrupts

— Modem interface

— Hardware flow control

— Buffer descriptor for Tx / Rx

— Two-channel DMA Controller

Two channels for HTxFIFO and HRXFIFO
Single or 4-word (4 X 32-bit) burst transfer mode
Maximum frame size allows for up to 64K bytes

— Up to 10 Mbps full-duplex operation using an external/internal clock

— HDLC frame length based on octets

S3C4530A HDLC CONTROLLERS

8-3

FUNCTION DESCRIPTIONS

Figure 8-1 shows the HDLC module's function blocks. These function blocks are described in detail in the
following sections.

DMA
Controlller

Address

Bus Arbiter/
Controller

Address

Data

Control

Tx FIFO
(8 Words)

Flag/Abort/Idle
Generateor and

Transmitter

Receive shift
Register

Rx FIFO
(8 words)

FCS Generator

Zero
Insertion

Flag/Abort/Idle
Detection

Zero
Delection loop

DPLL
dplloutR

dplloutT

RxD

TxC

TxD

autoecho

RxC

MCLK2
(= 25 MHz)

brgout1

brgout2

Word

S
ystem

 B
U

S

HDLC Control
and Status
Registers

FCS Checker

Encoder

Decoder

R
em

ote S
erial P

ort

BRG

Figure 8-1. HDLC Module Block Diagram

HDLC CONTROLLERS S3C4530A

8-4

HDLC FRAME FORMAT

The HDLC transmits and receives data (address, control, information and CRC field) in a standard format called
a frame. All frames start with an opening flag (beginning of flag, BOF, 7EH) and end with a closing flag (end of
flag, EOF, 7EH). Between the opening and the closing flags, a frame contains an address (A) field, a control (C)
field, an information (I) field (optional), and a frame check sequence (FCS) field (see Table 8-1).

Table 8-1. HDLC Data Frame Format

Opening
Flag

Address
Field

Control
Field

Information
Field

Frame Check
Sequence Field

Closing
Flag

01111110 8 bits per byte 8 bits per byte 8 bits per byte;
variable length

16 bits 01111110

NOTE: The address field can be extended up to four bytes using a optional software control setting.

Flag (F)

A flag is a unique binary pattern (01111110) that is used to delimit HDLC frames. This pattern is generated
internally by the transmitter. An opening flag starts a frame and a closing flag ends the frame. Opening flags and
closing flags are automatically appended to frames.

A single flag pattern can optionally serve as both the closing flag of one frame and the opening flag of the next
one. This feature is controlled by the double-flag (FF), single-flag (F), or frame separator selection bit (the
TxSDFL bit in the HCON register).

Order of Bit Transmission

Address field, control field, and information field bytes are transferred between the CPU and the HDLC module in
parallel over the data bus. These bytes are transmitted and received LSB first. The 16-bit frame check sequence
(FCS) field is, however, transmitted and received MSB first.

S3C4530A HDLC CONTROLLERS

8-5

Address (A) Field

The eight bits that follow the opening flag are called address (A) field. The address field are expendable. To
extend this address byte, simply user-defined address write to the station address register. To check address byte
against the incoming data, have to be used the MASK register. If match occurred, the frame's data including
address and CRC(16-bit) into the HRXFIFO and then moved to system memory. If it is not matched, simply
discarded. S3C4530A allows up to 32-bits address. For instance, SDLC and LAPB use an 8-bit address. LAPD
further divides its 16-bit address into different fields to specify various access points one piece of equipment.
Some HDLC-type protocol allows for extended addressing beyond 16-bit.

Control (C) Field

The eight bits that follow the address field are called the control (link control, C) field. The S3C4530A HDLC
module treats the control field in the same way as the information field. That is, it passes the eight bits to the
CPU or memory during reception. The CPU is responsible for how the control field is handled and what happens
to it.

Information (I) Field

The information (I) field follows the control (C) field and precedes the frame check sequence (FCS) field. The
information field contains the data to be transferred. Not every frame, however, must actually contain information
data. The word length of the I-field is eight bits in the S3C4530A HDLC module. And Its total length can be
extended by 8 bits until terminated by the FCS field and the closing flag.

Frame Check Sequence (FCS) Field

The 16 bits that precede the closing flag comprise the frame check sequence (FCS) field. The FCS field contains
the cyclic redundancy check character, CRCC. The polynomial x16 + x12 + x5 + 1 is used both for the
transmitter and the receiver. Both the transmitter and the receiver polynomial registers are all initialized to 1 prior
to calculating of the FCS. The transmitter calculates the frame check sequence of all address bits, control bits,
and information fields. It then transmits the complement of the resulting remainder as the FCS value.

The receiver performs a similar calculation for all address, control, and information bits, as well as for all the FCS
fields received. It then compares the result to F0B8H. When a match occurs, the frame valid (RxFV) status bit is
set to '1'. When the result does not match, the receiver sets the CRC error bit (RxCRCE) to '1'. The transmitter
and the receiver automatically perform these FCS generation, transmission and checking functions. The
S3C4530A HDLC module also supports NO CRC operation mode. In NO CRC mode, transmitter does not
append FCS to the end of data and the receiver also does not check FCS. In this mode, the data preceding the
closing flag is transferred to the HRXFIFO. In CRC mode, the FCS field is transferred to the HRXFIFO.

HDLC CONTROLLERS S3C4530A

8-6

PROTOCOL FEATURES

INVALID FRAME

A valid frame must have at least the A, C, and FCS fields between its opening and closing flags. Even if no-CRC
mode is set, the frame size should not be less than 32 bits. There are three invalid frame conditions:

Short frame: a frame that contains less than 25 bits between flags. Short frames are ignored.

Invalid frame: a frame with 25 bits or more, having a CRC compare error or non- byte-aligned. Invalid frames
are transferred to the HRXFIFO, then the invalid frame error flag (RxCRCE, RxNO in the status

 register) is set to indicate that an invalid frame has been received.

Aborted frame: a frame aborted by the reception of an abort sequence is handled as an invalid frame.

ZERO INSERTION AND ZERO DELETION

The zero insertion and zero deletion feature, which allows the content of a frame to be transparent, is handled
automatically by the HDLC module. While the transmitter inserts a binary '0' following any sequence of five 1s
within a frame, the receiver deletes a binary '0' that follows a sequence of five 1s within a frame.

ABORT

The function of early termination of a data link is called an abort The transmitter aborts a frame by sending at
least eight consecutive 1s immediately after the abort transmitter control bit (TxABT in HCON) is set to '1'.
(Setting this control bit automatically clears the HTxFIFO.)

The abort sequence can be extended up to (at least) 16 consecutive 1s by setting the abort extend control bit
(TxABTEXT in HCON) to '1'. This feature is useful for forcing the mark idle state. The receiver interprets the
reception of seven or more consecutive 1s as an abort.

The receiver responds the abort received as follows:

An abort in an 'out of frame' condition: an abort has no meaning during the idle or the time fill

An abort 'in frame' after less than 25 bits are received after an opening flag: under this condition, no field of
the aborted frame is transferred to the HRXFIFO. The HDLC module clears the aborted frame data in the
receiver and flag synchronization. The aborted reception is indicated in the status register.

An abort 'in frame' after 25 bits or more are received after an opening flag: in this condition, some fields of
the aborted frame may be transferred to the HRXFIFO. The abort status is set in the status register and the
data of the aborted frame in the HRXFIFO is cleared. Flag synchronization is also cleared and the DMA
operation for receiving is aborted too.

IDLE AND TIME FILL

When the transmitter is not transmitting a frame, it is in an idle state. The transmitter signals that it has entered
an idle state in one of the following two ways: 1) by transmitting a continuous series of flag patterns (time fill), or
2) by transmitting a stream of consecutive 1s (mark idle). The flags and mark idle are not transferred to the
HRXFIFO.

The flag or mark idle selection bit (TxFLAG in HCON) controls this function: when TxFLAG is '0', mark idle is
selected; when TxFLAGIDLE is '1', the time fill method is selected.

S3C4530A HDLC CONTROLLERS

8-7

FIFO STRUCTURE

In both transmit and receive directions, 32-byte(8 word) deep FIFOs are provided for the intermediate storage of
data between the serial interface and the CPU interface.

TWO-CHANNEL DMA ENGINE

The HDLC module has a two-channel DMA engine for Tx/Rx FIFOs. The DMA TX channel programming and the
RX channel programming are described in the transmitter and receiver operation sections, respectively.

BAUD RATE GENERATOR

The HDLC module contains a programmable baud rate generator(BRG). The BRG register contains a 16-bit time
constant register, a 12-bit down counter for time constant value, two control bit to divide 16, and another two
control bits to divide 16 or 32. A clock diagram of the BRG is shown in Figure 8-2.

At a start-up, the flip-flop on the output is set in a High state, the value in the time constant register is loaded into
the counter, and the counter starts counting down. The output of the baud rate generator may toggle upon
reaching zero, the value in the time constant register is loaded into the counter, and the process is repeated. The
time constant may be changed any time, but the new value does not take effect until the next load of the counter.

The output of the baud rate generator may be used as either the transmit clock, the receive clock, or both. It can
also drive the digital phase-locked loop. If the receive or transmit clock is not programmed to come from the TXC
pin, the output of the baud rate generator may be echoed out via the TXC pin.

The following formula relates the time constant to the baud rate where MCLK2 or RXC is the baud rate generator
input frequency in Hz. BRG generates 2 output signals, BRGOUT1, BRGOUT2, for transmit/receive clocks and
the DPLL input clock.

BRGOUT1 = (MCLK2 or RXC) / (CNT0 + 1) / (16CNT1)
BRGOUT2 = BRGOUT1 / (1 or 16 or 32 according to CNT2 value of the HBRGTC)

BRGOUT2
12-bit counter

CNT0

BRGCLK

Divide by
1 or 16

CNT1

Divide by
1 or 16 or 32

CNT2

RxC

MCLK2

BRGOUT1

CNT0: HBRGTC [15:4]
CNT1: HBRGTC [3:2]
CNT2: HBRGTC [1:0]
BRGCLK: HMODE [19]

Figure 8-2. Baud Rate Generator Block Diagram

The example in the following Table assumes a 25MHz clock from MCLK2, a 24.576MHz clock from RxC,
showing a time constant for a number of commonly used baud rates.

HDLC CONTROLLERS S3C4530A

8-8

Table 8-2. Baud Rate Example of HDLC

Baud Rate MCLK = 25 MHz R××C = 24.576 MHz

(BRGOUT2) CNT0 CNT1 CNT2 Freq. Dev.(%) CNT0 CNT1 CNT2 Freq. Dev.(%)

1200 1301 0 1 1200.1 0.0 1279 0 1 1200.0 0.0

2400 650 0 1 2400.2 0.0 639 0 1 2400.0 0.0

4800 324 0 1 4807.7 0.2 319 0 1 4800.0 0.0

9600 162 0 1 9585.9 -0.1 159 0 1 9600.0 0.0

19200 80 0 1 19290.1 0.5 79 0 1 19200.0 0.0

38400 40 0 1 38109.8 -0.8 39 0 1 38400.0 0.0

57600 26 0 1 57870.4 0.5 26 0 1 56888.9 -1.2

115200 13 0 1 111607.1 -3.1 12 0 1 118153.8 2.6

S3C4530A HDLC CONTROLLERS

8-9

DIGITAL PHASE-LOCKED LOOP (DPLL)

The HDLC module contains a digital phase-locked loop (DPLL) function to recover clock information from a data
stream with NRZI or FM encoding. The DPLL is driven by a clock that is normally 32 (NRZI) or 16 (FM) times the
data rate. The DPLL uses this clock, along with the data stream, to construct the clock.

This clock may then be used as the receive clock, the transmit clock, or both.

Figure 8-3 shows a block diagram of the digital phase-locked loop. It consists of a 5-bit counter, an edge detector
and a pair of output decoders.

Edge
Detector

Count Modifier Decoder
Receive Clock

dplloutR

HMODE[18:16]

5-bit Counter Decoder
Transmit clock

dplloutT

RxD

TxC
RxC

MCLK
BRGOUT1
BRGOUT2

Figure 8-3. DPLL Block Diagram

CLOCK USAGE METHOD

NOTE: BRGCLK = HMODE [19]
DPLLCLK = HMODE [18:16]
TxCLK = HMODE [22:20]
RxCLK = HMODE [26:24]

DPLLOUTT

DPLLORTR

DPLL

TxC
RxC

MCLK
BRGOUT1
BRGOUT2

DPLLCLK

BRGOUT1

BRGOUT2

Baud Rate
Generator

BRGCLK

RxC

MCLK2

Transmit

Data

Transmit

Clock

TxC
RxC

DPLLOUTT
BRGOUT1
BRGOUT2

Transmitter

TxCLK

Receive

Data

Receive

Clock

TxC
RxC

DPLLOUTT
BRGOUT1
BRGOUT2

Receiver

RxCLK

Figure 8-4. Clock Usage Method Diagram

HDLC CONTROLLERS S3C4530A

8-10

In the NRZ/NRZI mode, the DPLL source clock must be 32 times the data rates. In this mode, the transmit and
receive clock outputs of the DPLL are identical, and the clocks are phased so that the receiver samples the data
in the middle of the bit cell.

The DPLL counts the 32x clock using an internal 5-bit counter. As the 32x clock is counted, the DPLL searches
the incoming data stream for edges (either positive or negative transition). The output of DPLL is High while the
DPLL is waiting for an edge in the incoming data stream. When it detects a transition, the DPLL starts the clock
recovery operation.

The first sampling edge of the DPLL occurs at the counter value of 16 after the first edge is detected in the
incoming data stream. The second sampling edge occurs following the next 16. When the transition of incoming
data occurs at a count value other than 16, the DPLL adjusts its clock outputs during the next 0 to 31 counting
cycle by extending or shortening its count by one, which effectively moves the edge of the clock sampling the
receive data closer to the center of the bit cell.

The adding or subtracting of a count of 1 will produce a phase jitter of 5.63 degrees on the output. Because the
DPLL uses both edges of the incoming signal for its clock source comparison, the mark-space ratio (50%) of the
incoming signal must not deviate more than 1.5% of its baud rate if proper locking is to occur.

In the FM mode, the DPLL clock must be 16 times the data rate. The 5-bit counter in the DPLL counts from 0 to
31, so the DPLL makes two sampling clocks during the 0 to 31 counting cycle. The DPLL output is Low while the
DPLL is waiting for an edge in the incoming data stream. The first edge the DPLL detects is assumed to be a
valid clock edge. From this point, the DPLL begins to generate output clocks.

In this mode, the transmit clock output of the DPLL lags the receive clock outputs by 90 degrees to make the
transmit and receive bit cell boundaries the same, because the receiver must sample the FM data at a one-
quarter and three-quarters bit time.

You can program the 32X clock for the DPLL to originate from one of the RXC input pins, from the TxC pin, or
from the baud rate generator output. You can also program the DPLL output to be "echoed out" of the HDLC
module over the TXC pin(if the TXC pin is not being used as an input).

During idle time, you can set the TxPRMB in HCON to send the special pattern required for a remote DPLL to
lock the phase. In this case, the content of the HPRMB register is sent repeatedly. The length of preamble is
determined by TxPL bit in HMODE[10:8].

It is noticed that the frequency of the receive clock (RxC) should be slower than half of the internal system clock
i.e., MCLK/2. Otherwise, the data transfer from receive FIFO to memory could be lost.

S3C4530A HDLC CONTROLLERS

8-11

HDLC OPERATIONAL DESCRIPTION

The following sections describe the operation of the HDLC module.

HDLC INITIALIZATION

A power-on or reset operation initializes the HDLC module and forces it into the reset state. After a reset, the
CPU must write a minimum set of registers, as well as any options set, based on the features and operating
modes required.

First, the configuration of the serial port and the clock mode must be defined. These settings include the
following:

— Data format select

— BRG clock select

— DPLL clock select

— Transmit clock select

— Receive clock select

— BRG/DPLL enable to use internal clock

You must also set the clock for various components before each component is enabled. Additional registers may
also have to be programmed, depending on the features you select. All settings for the HDLC mode register,
HMODE, and the HDLC control register, HCON, must be programmed before the HDLC is enabled.

To enable the HDLC module, you must write a '1' to the receiver enable bit and/or the transmitter enable bit.
During normal operation, you can disable the receiver or the transmitter by writing a '0' to the RxEN or TxEN bit,
respectively. You can disable the receiver and HRXFIFO or the transmitter and HTxFIFO by writing a '1' to the
RxRS or TxRS bit, respectively.

HDLC CONTROLLERS S3C4530A

8-12

HDLC DATA ENCODING/DECODING

Data encoding is used to allow the transmission of clock and data information over the same medium. This saves
the need to transmit clocks and data over a separate medium as would normally be required for synchronous
data. The HDLC provides four different data encoding methods, selected by bits in HCON1[18:16]. An example
of these four encoding methods is shown in figure 8-5.

1 1 0 0 1 0Data

NRZ

NRZI

FM1
(Biphase Mark)

FM0
(Biphase Space)

Manchester

NRZ, NRZI Type

TxClock

Data

RxClock

FM0/FM1/Manchester type

TxClock

Data

RxClock

NOTE: Transmit clock and receive clock can be controlled by softwear using HMODE[3:2] register.
This timing diagram is one example of HMODE[3:2] bit value set to '00'.
HMODE[2]: Rx clock inversion bit (RxCINV)
HMODE[3]: Tx clock inversion bit (TxCINV)

Bit Cell Level:

High = 1
Low = 0

No Change = 1
Change = 0

Bit Center Transition:
Transition = 1
No Transition = 0

No Transition = 1
Transition = 0

High Low = 1
Low High = 0

Figure 8-5. Data Encoding Methods and Timing Diagrams

S3C4530A HDLC CONTROLLERS

8-13

HDLC TRANSMITTER OPERATION

The HTxFIFO register cannot be pre-loaded when the transmitter is disabled. After the HDLC Tx is enabled, the
flag or mark idle control bit (TxFLAG in HCON) is used to select either the mark idle state (inactive idle) or the
flag 'time fill' (active idle) state. This active or inactive idle state will continue until data is loaded into the
HTxFIFO.

The content of the HPRMB register can be sent out by setting the TxPRMB in HCON for the remote DPLL before
the data is loaded into the HTxFIFO. The length of preamble to be transmitted is determined by TxPL bits in
HMODE.

The availability of data in the HTxFIFO is indicated by the HTxFIFO available bit (TxFA in HSTAT) under the
control of the 4-word transfer mode bit (Tx4WD in HCON).

When you select 1-word transfer mode (not 4-word select mode), one word can be loaded into the HTxFIFO
(assuming the TxFA bit is set to '1'). When you select 4-word transfer mode, four successive words can be
transferred to the FIFO if the TxFA bit is set to '1'.

The nCTS (clear-to-send) input, nRTS (request-to-send), and nDCD (data-carrier-detect) are provided for a
modem or other hardware peripheral interface.

In auto enable mode, nCTS becomes the transmitter enable. However, the transmitter enable bit must be set
before the nCTS pin is used in this manner. When the AUTOEN is "0" and there are data to transmit, the
transmitter enforces nRTS pin to go "Low" and starts to send the data from TxFIFO. When the AUTOEN is "1"
and there are data to transmit, the transmitter must wait nCTS pin "Low" before transmission.

The TxFC status bit(in HSTAT) can cause an interrupt to be generated upon frame completion (This bit is set
when there is no data in HTxFIFO and when the closing flag or an abort is transmitted).

HDLC CONTROLLERS S3C4530A

8-14

Transmitter Interrupt Mode

The first byte of a frame (the address field) should be written into the Tx FIFO at the 'frame continue' address.
Then, the transmission of the frame data starts automatically. The bytes of the frame continue to be written into
the Tx FIFO as long as data is written to the 'frame continue' address. The HDLC logic keeps track of the field
sequence within the frame.

The frame is terminated when the last frame data is written to the Tx FIFO's 'frame terminate' address. The FCS
field is automatically appended by hardware, along with a closing flag. Data for a new frame can be loaded into
the Tx FIFO immediately after the previous frame data, if TxFA is '1'. The closing flag can serve as the opening
flag of the next frame or separate opening and closing flags can be transmitted. If a new frame is not ready to be
transmitted, a flag time fill or mark idle pattern is transmitted automatically.

If the Tx FIFO becomes empty at any time during the frame transmission, an under-run occurs and the
transmitter automatically terminates the frame by transmitting an abort. The under-run state is indicated when the
transmitter under-run status bit (TxU) is '1'.

Whenever you set the transmission abort control bit (TxABT in HCON), the transmitter immediately aborts the
frame (transmits at least eight consecutive 1s), clearing the Tx FIFO. If the transmission abort extension control
bit (TxABTEXT) is set at the time, an idle pattern (at least 16 consecutive 1s) is transmitted. An abort or idle in an
out- of-frame condition can be useful to gain 8 or 16 bits of delay time between read and write operations.

Transmitter DMA Mode

To use DMA operation without CPU intervention, you have to make Tx buffer descriptor chain in advance. And
set the DMA Tx buffer descriptor pointer(DMATxPTR) register to the address of the first buffer descriptor of the
chain, and then DMA Tx channel should be enabled.

When Tx under-run or CTS lost condition occurs during DMA operation, DMA Tx enable bit(HCON[6]) is cleared
and DMA Tx operation is stopped. This situation is reported to system with DTxABT bit set(HSTAT[22]).

In case of Tx under-run, abort signal sent and then DTxEen bit cleared automatically. In case of CTS lost, TxD
output goes high state as long as nCTS remains high level when auto enable bit set to one.

S3C4530A HDLC CONTROLLERS

8-15

HDLC RECEIVER OPERATION

The HDLC receiver is provided with data and a pre-synchronized clock by means of the RXD and the internal
DPLL clock, the TXC pin, or the RXC pin. The data is a continuous stream of binary bits. One of the
characteristics of this bit stream is that a maximum of five consecutive 1s can occur unless an abort, flag, or idle
condition occurs. The receiver continuously searches (bit-by-bit) for flags and aborts.

When a flag is detected, the receiver synchronizes the frame to the flag timing. If a series of flags is received,
the receiver re-synchronizes the frame to each successive flag.

If the frame is terminated because of a short frame condition (frame data is less than 32 bits after an opening
flag), the frame is simply ignored. Noise on the data input line (RXD) during time fill can cause this kind of invalid
frame.

The received data which is clocked by the external TXC or RXC, or by an internal DPLL or BRG source enters a
56-bit or 32-bit shift register before it is transferred into the HRXFIFO. Synchronization is established when a flag
is detected in the first eight locations of the shift register. When synchronization has been achieved, data is
clocked through to the last byte location of the shift register where it is transferred into the HRXFIFO.

In 1-word transfer mode, when the HRXFIFO available bit (RxFA) is '1', data is available at least in one-word. In
4-word transfer mode, the RxFA is '1' when data is available in the last four FIFO register locations (registers 4,
5, 6, and 7). The nDCD input is provided for a modem or other hardware interface. If AutoEN bit in HCON[28] is
set to '1', the receiver operation is dependent on the nDCD input level. Otherwise, receiver operation is free of
the nDCD input level.

Receiver Interrupt Mode

Whenever data is available in the HRXFIFO, an interrupt is generated by RxFA (if the interrupt is enabled). The
CPU reads the HDLC status register either in response to the interrupt request or in turn during a polling
sequence.

When the received data available bit (RxFA) is '1', the CPU can read the data from the HRXFIFO. If the CPU
reads normal data or address data from the HRXFIFO, the RxFA bit is automatically cleared.

In CRC mode, the 16 bits preceding the closing flag are regarded as the FCS and checked by hardware, and they
are transferred to the HRXFIFO. Also, in no CRC mode, without the hardware checking, all data bits preceding
the closing flag are transferred to the HRXFIFO. When the closing flag is sent to the receiver, the frame is
terminated. Whatever data is present in the most significant byte of the receiver, the shift register is right justified
and transferred to the HRXFIFO. The frame boundary pointer, which is explained in the HRXFIFO register
section, is set simultaneously in the HRXFIFO. When the last byte of the frame appears at the 1-word or 4-word
boundary location of the HRXFIFO, depending on the settings of the Rx4WD control bit, the frame boundary
pointer sets the frame valid status bit (if the frame is completed with no error) or the RxCRCE status bit(if the
frame was completed, but with a CRC error).

If the frame reception is completed, an RxCRCE interrupt (for a frame error) or an RxFV interrupt (for normal
state) is generated. At this point, the CPU can read the Rx remaining bytes (RxRB) status bits to know how many
bytes of this frame still remain in the HRXFIFO.

When you set the frame discontinue control bit (the incoming frame discard control bit) to '1', the receiver
discards the current frame data without dropping the flag synchronization. You can use this feature to ignore a
frame with a non-matched address.

HDLC CONTROLLERS S3C4530A

8-16

Receiver DMA Mode

To use DMA operation without CPU intervention, you have to make Rx buffer descriptor chain in advance. And
set the DMA Rx buffer descriptor pointer(DMARxPTR) register to the address of the first buffer descriptor of the
chain, and then DMA Rx channel should be enabled.

HARDWARE FLOW CONTROL

last

TxClock

TxD

RTS

CTS

Figure 8-6. nCTS already Asserted

When nCTS is active and there exists data to be transmitted in Tx FIFO, nRTS enters Low, allowing data
transmission. At the beginning of the data is an open flag while at the end a closing flag. If the frame being
transferred discontinues, nRTS goes back to the High after the data transmission is completed.

TxClock

TxD

RTS

CTS

Data

14 - 22 cycles

5-13 cycles

Figure 8-7. CTS Lost during Transmission

When the condition of nCTS is shifted from Low to High, it is detected at the falling edge of Tx clock, where
nRTS also goes High. For about 5 to 13 cycles after nRTS enters High, the data transmission continues. nRTS
remains High for a maximum of 22 cycles and goes back to the Low condition if there remains any data to be
transmitted in HTxFIFO. If nCTS is still High even when nRTS went back to Low, not the data in HTxFIFO but a
mark idle pattern is transmitted when AutoEn bit set to one.

S3C4530A HDLC CONTROLLERS

8-17

TxClock

TxD

RTS

CTS

Data

14 - 22 cycles

Figure 8-8. CTS Delayed on

If nCTS remains still High for a while after nRTS enters Low to allow data transmission from HTxFIFO, the data
transmission starts 5-12 cycles after nCTS is shifted to Low.

HDLC CONTROLLERS S3C4530A

8-18

TRANSPARENT OPERATION

The S3C4530A can transmit or receive the data from the CPU without any modification in the transparent mode.
In this mode, no protocol conversion such as zero insertion/deletion, flag insertion/detection, abort
transmission/detection in HDLC frame is performed by the hardware. Instead, any protocol can be implemented
on the transmission channel by the software. The S3C4530A performs simply a serial-to-parallel and parallel-to-
serial conversion.

TRANSPARENT TRANSMITTER OPERATION

The transmitter enters transparent mode by setting TxTRANS to "1" in HMODE. The transmitter starts to send "1"
in idle state. When the AUTOEN is "0" and there are data to transmit, the transmitter enforces nRTS pin to go
"Low" and starts to send the data from TxFIFO. When the AUTOEN is "1" and there are data to transmit, the
transmitter must wait nCTS pin "Low" before transmission. Once these conditions are met, the transmission will
be started. When the last byte sent from TxFIFO, the transmitter sends "1" after last byte transmission. If the
TxREV in HCON is set to "1", each data byte will be reversed in its bit order before transmission (msb first
transmitted).

TRANSPARENT RECEIVER OPERATION

The receiver enters in transparent mode by setting RxTRANS to "1" in HMODE. In this mode, the receiver waits
to gain synchronization before receiving data. Once the reception begins, the receiver moves the data from RxD
pin to RxFIFO. The receiver will not stop receiving data until the TRxSTOP in HCON is set to "1", which makes
the rceiver to stop receiving and to go to wait synchroniztion again. If the RxREV in HCON is set to "1", each
data byte will be reversed in its bit order before entering RxFIFO (msb first received).

TRANSPARENT SYNCHRONIZATION

The S3C4530A must be synchronized before transmitting or receiving data. The synchronization method is
selectable by software control. The transmitter achieves synchornization by monitoring nCTS pin depending on
AUTOEN in HCON. If AUTOEN is "0", the transmitter is allowed to transmit data anytime there are data in
TxFIFO. However, if AUTOEN is "1", the transmitter can start transmission only when the state of nCTS pin is
"low".
The receiver can be synchronized two ways. When AUTOEN is "0" and the receiver is transparent mode, the
receiver searches the RxD for the pattern in HSYNC register. Once the pattern in HSYNC content is detected on
the RxD, the data reception will be started. This synchronization method is inline-synchronization. Another
synchronization is achieved when AUTOEN is "1" and the receiver is transparent mode. In this condition, the
receiver monitors DCD pin to find a negative transition and then starts to receive data from RxD. Once the data
reception begins, the transition of DCD pin will be ignored and data can be received until TRxSTOP is set to one
by CPU then the new synchronization process begins. This synchronization method is external synchronization. If
the TRxSTOP in HCON is set to "1", the receiver stops data reception and goes to wait synchronization again.

S3C4530A HDLC CONTROLLERS

8-19

TSA (TIME SLOT ASSIGNER)

The S3C4530A includes one time-slot-assignor (TSA), which provides flexible data path control between the two
HDLCs and external interfaces. Two types of data interface can be supported by the S3C4530A with the TSA:
Data Communication Equipment (DCE), Pulse Code Modulation (PCM) highway (non-multiplexed mode and
multiplexed mode).

Each TSA can be programmed to select one between DCE and PCM highway (non-multiplexed) interface. In
DCE interface, the internal HDLC can directly be connected to the external serial interface. In PCM highway
interface, the TSA is located between the HDLC and the external serial interface. By intervening in-between, the
TSA provides the appropriate HDLC clocks during its programmed timeslot within an 8-KHz frame.

The TSA can support a maximum data rate up to 10Mbps with HDLCs. In PCM highway interface, up to 156
time-slots can be supported with credible data transfer. Although the S3C4530A can support up to 4096 bit
positions (12-bit programmable), this requires a lower frequency of FSC or a high frequency of clock rates.

The PCM highway (multiplexed) is pin-multiplexed with HDLCA pin interface and the HDLCB pins are dedicated
to DCE interface.

HDLCA

HDLCB

MUX

DCEA

TDM

DCEB

DCE/IOM2
interface

DCE interface

TSA

TDMA

TDMB

Figure 8-9. TSA Block Diagram

HDLC CONTROLLERS S3C4530A

8-20

HDLC EXTERNAL PIN MULTIPLEXED SIGNALS

HDLC external pins are multiplexed among the operating mode. The Mode bits in TSACFG determines the
operating mode of each TSA and HDLC external pins are automatically configured according to Mode bits as
follows.

Table 8-3. HDLC External Pin Multiplexed Signals

Channel External Interface Default Signal

DCE PCM

A DCE_TXCA PCM_FSC DCE_TXCA

DCE_TXDA PCM_TXD DCE_TXDA

DCE_RXCA PCM_DCL DCE_RXCA

DCE_RXDA PCM_RXD DCE_RXDA

B DCE_TXCB - DCE_TXCB

DCE_TXDB - DCE_TXDB

DCE_RXCB - DCE_RXCB

DCE_RXDB - DCE_RXDB

OPERATION

The Time Slot Assignor (TSA) controllers are configured as follows:

1. Configure the TSACFG register.

— Define the start bit position for each TSA.

— Define the stop bit position for each TSA.

— Determine operating mode for each TSA (DCE, PCM highway (non-multiplexed or multiplexed).

2. Enable TSA by setting TSAEN bit in TSACFG[0] to "1".

3. Program each intended HDLC channel

Clock Divide

In PCM mode, the TSA provides each HDLC channel with proper clock according to its programmed timeslot. In
this process, the clock frequency is either the same as or 1/2 times that of the external clock. When the Divide bit
in TSAxCFG[3] is set to "1", each HDLC channel is provided with half frequency clock of external clock and the tx
data is shifted out every two external clock. When the Divide bit in TSAxCFG[3] is "0", each HDLC channel is
provided with the external clock and the tx data is shifted out every one clock.

S3C4530A HDLC CONTROLLERS

8-21

MEMORY DATA STRUCTURE

The flow control to the HDLC controller uses two data structures to exchange control information and data.

— Transmit buffer descriptor

— Receive buffer descriptor

Each Tx DMA buffer descriptor has the following elements.

— Buffer data pointer

— Ownership bit

— Control field for transmitter

— Status field for Tx

— Transmit buffer length

— Next buffer descriptor pointer

Each Rx DMA buffer descriptor has the following elements.

— Buffer data pointer

— Ownership bit

— Status field for Rx

— Accumulated received buffer length for a frame

— Next buffer descriptor pointer

HDLC CONTROLLERS S3C4530A

8-22

DATA BUFFER DESCRIPTOR

The ownership bit in the MSB of the buffer data pointer controls the ownership of the descriptor. When the
ownership bit is '1', the DMA controller owns the descriptor. When this bit is '0', the CPU has the descriptor. The
owner of the descriptor always owns the associated data frame. (The descriptor's buffer data pointer field always
points to this buffer for about a frame.)

As it receives the data, the software sets the maximum frame length register. If the received data is longer than
the value of the maximum frame length register, this frame is ignored and the FLV bit is set. The software also
sets the DMA Rx buffer descriptor pointer to point to a chain of buffer descriptors, all of which have their
ownership bit.

The DMA controller can be started to set the DMA Rx enable bit in the control register. When a frame is
received, it is moved into memory at the address specified by the DMA Rx data buffer pointer. If a frame is
longer than the value of the RxBufSize register, then the next buffer descriptors are fetched to receive the frame.

That is, to handle a frame, one or more buffer descriptors could be used. Please note that no configurable offset
or page boundary calculation is required. The received frame is moved to the buffer memory whose address is
pointed to by the buffer data pointer until the end of frame, or until the length exceeds the maximum frame length
configured. If the length exceeds the maximum frame length configured, the frame length violated bit is set.

If the entire frame is received successfully, the status bits in the receive buffer descriptor are set to indicate the
received frame status. The ownership bit in the buffer descriptor pointer is cleared by the CPU which has the
ownership and an interrupt may now be generated. The DMA controller copies the next buffer descriptor pointer
into the DMA Rx buffer descriptor pointer register.

If the next buffer descriptor pointer is null(0), the DRxEN bit is cleared, and DMA Rx operation is stopped.
Otherwise, the descriptor is read, and the DMA controller starts again with the next data, as described in the
previous paragraph.

When the DMA reads a descriptor, if the ownership bit is not set, it has two options:

Skip to the next buffer descriptor when DRxSTSK bit is '0'

Generate an interrupt and halt the DMA operation when DRxSTSK bit is '1'

During transmission, the two-byte frame length at the Tx buffer descriptor is moved to the DMA internal Tx
register. After transmission, the Tx status is saved in the Tx buffer descriptor. The DMA controller then updates
the next buffer descriptor pointer for the linked list structure.

When the DMA Tx buffer descriptor register points to the first buffer descriptor, the transmitter starts transmitting
the frame data from the buffer memory to Tx FIFO.

S3C4530A HDLC CONTROLLERS

8-23

BUFFER DESCRIPTOR

TRANSMIT BUFFER DESCRIPTOR

31 1516

[30:0] Buffer Data Pointer
[31] Ownership (O)
0 = CPU 1 = DMA

Tx Control Bits
[0] Preamble (P)
0 = No preamble 1 = Preamble
[1] TxNO CRC Mode (N)
0 = CRC mode 1 = No CRC mode
[2] Little-Endian Mode (E)
0 = Big-Endian 1 = Little-Endian
[3] Last (L)
0 = This is not the last buffer in the frame.
1 = This is the last buffer inth frame.
[4] Buffer Data Pointer Decrement (D)
0 = Increment 1 = Decrement
[6:5] Widget Aligment Control (WA)
00 = No invalid bytes 01 =1 invalid bytes
10 = 2 invalid bytes 11 = 3 invalid bytes

[23:0] Buffer Lenght

Tx Status Bit
This bit may be regarded as valid when the L bit (in Tx control bit) is set.
[26] Transmission Completion (T)
0 = Normal 1 = One frame completed

[31:0] Next Buffer Descriptor Pointer
The address of the next buffer descriptor

018 17 121314 91011 678 345 121921 20

O

222325 24262729 2830

Buffer Data Pointer

Reserved WA D L E N P

Reserved T Buffer Length

Next Buffer Descriptor Pointer

Figure 8-10. Transmit Buffer Descriptor

HDLC CONTROLLERS S3C4530A

8-24

RECEIVE BUFFER DESCRIPTOR

31 1516

[30:0] Buffer Data Pointer
[31] Ownership (O)
0 = CPU 1 = DMA
[15:0] Buffer Length
Received buffer lengths are wrote to this buffer descriptor

Rx Status Bits
This bits may be regarded as valid when L bit (in Rx status bit) is set.
[16] CD Lost (CD)
0 = Normal 1 = CD lost occurs
[17] CRC Error (CE)
0 = Normal
1 = CRC error occurs to the frame received.
[18] Non-octet Aligned Frame (NO)
0 = Normal
1 = Non-octet aligned frame is reveived.
[19] Over-run (OV)
0 = Normal
1 = The reveived frame overruns.
[20] DPLL Two Miss (DTM)
0 = Normal 1 = DPLL two miss clock occurs.
[21] Rx Abort (ABT)
0 = Normal
1 = The received frame aborted.
[22] First In Frame (F)
0 = This buffer descriptor status is not the first to the frame.
1 = This buffer descriptor status is the first to the frame.
[23] Last Frame (L)
0 = This buffer descriptor status is not the last to the frame.
1 = This buffer descriptor status is the first to the frame.
[24] Frame Length Violation (FLV)
0 = Normal
1 = This received frame length exceeds the value of the maximum frame length register.
[31:0] Next Buffer Descriptor Pointer
The address of the next buffer descriptor

018 17 121314 91011 678 345 121921 20

O

222325 24262729 2830

Buffer Data Pointer

Reserved

Reserved F
L
V

Buffer Length

Next Buffer Descriptor Pointer

L F
A
B
T

D
T
M

O
V

N
O

C
D

Figure 8-11. Receive Buffer Descriptor

S3C4530A HDLC CONTROLLERS

8-25

Rx Buffer
Descriptor

Start Address
Pointer

Buffer Data Pointer #1

Reserved

Next Buffer Descriptor

Status Buffer Length

Buffer Data Pointer #2

Reserved

Next Buffer Descriptor

Status Buffer Length

Buffer Data Pointer #N

Reserved

Next Buffer Descriptor

Status Buffer Length

In single linked lists, the next buffer
descriptor is filled with a null
address.

Buffer Data #1

Unused

Buffer Data #2

Unused

Buffer Data #N

Unused

Rx Bufsize
Register

Value

Rx Bufsize
Register

Value

NOTE: Buffer length is accumulated until the last bit is set in STATUS.
Buffer data pointer indicates the buffer memory start address.

Figure 8-12. Data Structure of the Receive Data Buffer

HDLC CONTROLLERS S3C4530A

8-26

HDLC SPECIAL REGISTERS

The HDLC special registers are defined as read-only or write-only registers according to the direction of
information flow. The addresses of these registers are shown in Table 8-4 and 8-5.

The transmitter FIFO register can be accessed using two different addresses, the frame terminate address and
the frame continue address. The functions of these addresses are discussed in detail in the FIFO section below.

Table 8-4. HDLC Channel A Special Registers

Registers Offset R/W Description Reset Value

HMODE 0×7000 R/W HDLC mode register 0×00000000

HCON 0×7004 R/W HDLC control register 0×00000000

HSTAT 0×7008 R/W HDLC status register 0×00000000

HINTEN 0×700c R/W HDLC interrupt enable register 0×00000000

HTxFIFOC
(Frame Continue)

0×7010 W HTxFIFO frame continue register -

HTxFIFOT
(Frame
Terminate)

0×7014 W HTxFIFO frame terminate register -

HRxFIFO 0×7018 R HRxFIFO entry register 0×00000000

HBRGTC 0×701c R/W HDLC BRG time constant register 0×00000000

HPRMB 0×7020 R/W HDLC preamble register 0×00000000

HSAR0 0×7024 R/W HDLC station address 0 0×00000000

HSAR1 0×7028 R/W HDLC station address 1 0×00000000

HSAR2 0×702c R/W HDLC station address 2 0×00000000

HSAR3 0×7030 R/W HDLC station address 3 0×00000000

HMASK 0×7034 R/W HDLC mask register 0×00000000

HDMATxPTR 0×7038 R/W DMA Tx buffer descriptor pointer 0×FFFFFFFF

HDMARxPTR 0×703c R/W DMA Rx buffer descriptor pointer 0×FFFFFFFF

HMFLR 0×7040 R/W Maximum frame length register 0×XXXX0000

HRBSR 0×7044 R/W Receive buffer size register 0×XXXX0000

HSYNC 0x7048 R/W HDLC Sync Register 0x7E

TCON 0x704c R/W Transparent Control register 0x00000000

TSACFG 0x7800 W TSA configuration register 0x00000000

TSAASLOT 0x7804 W TSA A time slot register 0x00000000

TSABSLOT 0x7808 W TSA B time slot register 0x00000000

S3C4530A HDLC CONTROLLERS

8-27

Table 8-5. HDLC Channel B Special Registers

Registers Offset R/W Description Reset Value

HMODE 0×8000 R/W HDLC mode register 0×00000000

HCON 0×8004 R/W HDLC control register 0×00000000

HSTAT 0×8008 R/W HDLC status register 0×00000000

HINTEN 0×800c R/W HDLC interrupt enable register 0×00000000

HTxFIFOC
(Frame Continue)

0×8010 W HTxFIFO frame continue register -

HTxFIFOT
(Frame
Terminate)

0×8014 W HTxFIFO frame terminate register -

HRxFIFO 0×8018 R HRxFIFO entry register 0×00000000

HBRGTC 0×801c R/W HDLC BRG time constant register 0×00000000

HPRMB 0×8020 R/W HDLC preamble register 0×00000000

HSAR0 0×8024 R/W HDLC station address 0 0×00000000

HSAR1 0×8028 R/W HDLC station address 1 0×00000000

HSAR2 0×802c R/W HDLC station address 2 0×00000000

HSAR3 0×8030 R/W HDLC station address 3 0×00000000

HMASK 0×8034 R/W HDLC mask register 0×00000000

HDMATxPTR 0×8038 R/W DMA Tx buffer descriptor pointer 0×FFFFFFFF

HDMARxPTR 0×803c R/W DMA Rx buffer descriptor pointer 0×FFFFFFFF

HMFLR 0×8040 R/W Maximum frame length register 0×XXXX0000

HRBSR 0×8044 R/W Receive buffer size register 0×XXXX0000

HSYNC 0x8048 R/W HDLC Sync Register 0x7E

TCON 0x804c R/W Transparent Control register 0x00000000

HDLC CONTROLLERS S3C4530A

8-28

HDLC GLOBAL MODE REGISTER

Table 8-6. HMODEA and HMODEB Register

Registers Offset R/W Description Reset Value

HMODEA 0×7000 R/W HDLC Mode register 0×00000000

HMODEB 0×8000 R/W HDLC Mode register 0×00000000

Table 8-7. HMODE Register Description

Bit
Number

Bit Name Description

[0] Multi-Frame in HTxFIFO
in DMA operation (MFF)

If this bit is set, more than one frame can be loaded into HTxFIFO. In this
case, the frame size may be less than the FIFO size.

[1] Reserved Not applicable.

[2] Rx clock
inversion(RXCINV)

If this bit is set to '0', the receive clock samples the data at the rising edge.
If this bit is set to '1', the receive clock samples the data at the falling edge.

[3] Tx clock
inversion(TXCINV)

If this bit is set to '0', the transmit clock shifts the data at the falling edge.
If this bit is set to '1', the transmit clock shifts the data at the rising edge.

[4] Rx Little-Endian mode
(RxLittle)

This bit determines whether the data is in Little- or Big-endian format.
HRXFIFO is in Little-endian. If this bit is set to '0', then the data on the
system bus should be in Big-endian. Therefore the bytes will be swapped
in Big- endian.

[5] Tx Little-Endian mode
(TxLittle)

This bit determines whether Tx data is in Little or Big endian (TxLittle)
format. HTxFIFO is in Little-endian. If this bit is set to '1', the data on the
system bus is Little endian. If this bit is set to '0', the data on the system
bus is in Big-endian. (that is, the data bytes are swapped to be Little endian
format.)

[6] Rx Transparent mode
(RxTRANS)

If this bit set to one, HDLC Rx operates transparent mode. Otherwise,
operates HDLC mode.

[7] Tx Transparent mode
(TxTRANS)

If this bit set to one, HDLC Tx operates transparent mode. Otherwise,
operates HDLC mode.

[10:8] Tx preamble
length(TxPL)

These bits determine the length of preamble to be sent before the opening
flag when the TxPRMB bit is set in the control register.
000 1byte, 001 2bytes, ..., and 111 8bytes will be sent.

[11] Reserved Not applicable.

[14:12] Data formats (DF) When the DF bits are '000', data is transmitted and received in the NRZ
data format. When DF is '001', the NRZI (zero complement) data format is
selected. DF = '010' selects the FM0 data format, DF = '011' the FM1 data
format, and DF = '100' the Manchester data format.

[15] Reserved Not applicable.

[18:16] DPLL clock select
(DPLLCLK)

Using this setting, you can configure the clock source for DPLL to one of
the following pins: TXC, RXC, MCLK, BRGOUT1, or BRGOUT2. To select
one of these pins, set the DPLLCLK bits to '000', '001', '010', '011', or '100',
respectively.

S3C4530A HDLC CONTROLLERS

8-29

Table 8-7. HMODE Register Description (Continued)

Bit
Number

Bit Name Description

[19] BRG clock select
(BRGCLK)

If this bit is '1', MCLK2 is selected as the source clock for the baud rate
generator (BRG). If this bit is '0', the external clock at the RXC pin is
selected as the BRG source clock.

[22:20] Tx clock select (TxCLK) Using this setting, you can configure the transmit clock source to one of the
following pins: TXC, RXC, DPLLOUTT, BRGOUT1, or BRGOUT2.
To select one of these pins, set the TxCLK bits to '000', '001', '010', '011',
or '100', respectively.

[26:24] Rx clock select (RxCLK) Using this setting, you can configure the receive clock source to one of the
following pins: TXC, RXC, DPLLOUTR, BRGOUT1, or BRGOUT2.

To select one of these pins, set the RxCLK bits to '000', '001', '010', '011',
or '100', respectively.

[30:28] TXC output pin select
(TXCOPS)

If you do not use the clock at the TXC pin as the input clock, you can use
the TXC pin to monitor TxCLK, RxCLK, BRGOUT1, BRGOUT2,
DPLLOUTT, and DPLLOUTR. To select the clock you want to monitory,
set the TXCOPS to '000', '001', '010', '011', or '100', respectively.

[31] Reserved Not applicable.

HDLC CONTROLLERS S3C4530A

8-30

[0] Muilt-Frame in TxFIFO in DMA Opeatiom (MFF)
0 = Single frame in TxFIFO 1 = Multi frame in TxFIFO
[1] Reserved
[2] Rx Clock Inversion (RxCINV)
0 = Rx clock rising 1 = Rx clock falling
[3] Tx Clock Inversion (TxCINV)
0 = Tx clock falling 1 = Tx clock rising
[4] Rx Little-Endian Mode (RxLittle)
0 = The Rx data on the system bus is in Big-Endian format.
1 = The Rx data on the system bus is in Little-Endian format.
[5] Tx Little-Endian Mode (TxLittle)
0 = The Tx data on the system bus is in Big-Endian format.
1 = The Tx data on the system bus is in Little-Endian format.
[6] Rx Transparent Mode (RxTRANS)
0 = Normal HDLC 1 = Transparent operation
[7] Tx Transparent Mode (TxTRANS)
0 = Normal HDLC 1 = Transparent operation
[10:8] Tx Preamble Length (TxPL)
000 = 1 byte 010 = 3 byte 100 = 5 byte 110 = 7 byte
001 = 2 byte 011 = 4 byte 101 = 6 byte 111 = 8 byte
[11] Reserved
[14:12] Data Format (DF)
000 = NRZ 001 = NRZI 010 = FM0 011 = FMI 100 = Machester
[15] Reserved
[18:16] DPLL Clock Select (DPLLCLK)
000 = TXC pin 001 = RXC pin 010 = MCLK 011 = BRGOUT1 100 = BRGOUT2
[19] BRG Clock Select (BRGCLK)
0 = RXC pin is selected. 1 = MCLK2 is selected.
[22:20] Tx Clock Select (TxCLK)
000 = TXC pin 001 = RXC pin 010 = DPLLOUTT 011 = BRGOUT1 100 = BRGOUT2
[23] Reserved
[26:24] Rx Clock Select (RxCLK)
000 = TXC pin 001 = RXC pin 010 = DPLLOUTT 011 = BRGOUT1 100 = BRGOUT2
[27] Reserved
[30:28] TXC Output Pin Select (TXCOPS)
This pin is used for output only when it is not used as an input clock for th
DPLL, TxCLK, or RxCLK.
000 = Tx clock 001 = Rx clock 010 = BRGOUT1
011 = BRGOUT2 100 = DPLLOUTT 101 = DPLLOUTR
[31] Reserved

31 0345 12

TXC
OPS

30 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

RxCLK TxCLK

B
R
G
C
L
K

DPLL
CLK DF

T
x
L
i
t
t
l
e

TxPL

R
x
L
i
t
t
l
e

T
x
C
I
N
V

R
x
C
I
N
V

M
F
F

T
x
T
R
A
N
S

R
x
T
R
A
N
S

Figure 8-13. HMODE Register

S3C4530A HDLC CONTROLLERS

8-31

HDLC CONTROL REGISTER

Table 8-8. HCONA and HCONB Register

Registers Offset R/W Description Reset Value

HCONA 0×7004 R/W HDLC channel A control register 0x00000000

HCONB 0x8004 R/W HDLC channel B control register 0x00000000

Table 8-9. HCON Register Description

Bit
Number

Bit Name Description

[0] Tx reset (TxRS) Set this bit to '1' to reset the Tx block. Tx block comprises HTxFIFO and a
transmitter block.

[1] Rx reset (RxRS) Set this bit to '1' to reset the Rx block. Rx block comprises HRXFIFO and a
receiver block.

[2] DMA Tx reset (DTxRS) Set this bit to '1' to reset the DMA Tx block.

[3] DMA Rx reset (DRxRS) Set this bit to '1' to reset the DMA Rx block.

[4] Tx enable (TxEN) When the TxEN bit is '0', the transmitter enters a disabled state and the
line becomes high state. In this case, the transmitter block is cleared
except for the HTxFIFO and the status bits associated with transmit
operation are cleared. Data cannot be loaded into the HTxFIFO.
If this bit is set to '1', the idle pattern is sent continuously. In this case, the
data can be loaded into HTxFIFO, and then sent.

[5] Rx enable (RxEN) When the RxEN bit is '0', the receiver enters a disabled state and can not
detect the flag pattern, if any. In this case, receiver block is cleared except
for the HRXFIFO and the status bits associated with receiver operation are
cleared. Data cannot be received.
If this bit is set to '1', the flag pattern is detected. In this case, the data
received can be loaded into the HRXFIFO, and moved to system memory.

[6] DMA Tx enable
(DTxEN)

The DTxEN bit lets the HDLC Tx operate on a bus system in DMA mode.
When DMA Tx is enabled, an interrupt request caused by TxFA status is
inhibited and the HDLC does not use the interrupt request to request a data
transfer. DMA Tx monitors the HTxFIFO and fills the HTxFIFO. This bit is
auto disabled when Tx under-run occurs, or CTS lost, or next buffer
descriptor pointer reach null, or the owner bit is not DMA mode when
DTxSTSK bit is set. If Tx under-run occurs, DTxABT(in HSTAT) bit set,
and abort signal sent. If CTS lost occurs, DTxABT bit set and TxD output
goes high state as long as CTS remains high level.

HDLC CONTROLLERS S3C4530A

8-32

Table 8-9. HCON Register Description (Continued)

Bit
Number

Bit Name Description

[7] DMA Rx enable
(DRxEN)

The DrxEN bit lets the HDLC Rx operate on a bus system in DMA mode.
When DMA Rx is enabled, an interrupt request caused by the RxFA status
is inhibited, and the HDLC does not use the interrupt request to request a
data transfer. DMA Rx monitors the HRXFIFO and moves the data from
the HRXFIFO to memory. This bit is automatically disabled when the next
buffer descriptor pointer becomes null, or the owner bit is not in DMA mode
when the DTxSTSK bit is set.

[8] DPLL enable (DPLLEN) Setting this bit enables the DPLL, causing the DPLL to enter search mode.
In Search mode, the DPLL searches for a locking edge in the incoming
data stream.
After DPLL is enabled (in NRZI mode for example), the DPLL starts
sampling immediately after the first edge is detected. (In FM mode, the
DPLL examines the clock edge of every other bit to decide what correction
must be made to remain in sync.) If the DPLL does not detect an edge
during the expected window, it sets the one clock missing bit.
If the DPLL does not detect an edge after two successive attempts, it sets
the two clock missing bit and the DPLL automatically enters the Search
mode. To reset both clocks missing latches, you can disable and re-enable
the DPLL using the reset Rx status.

[9] BRG enable (BRGEN) This bit controls the operation of the baud rate generator (BRG). To enable
the BRG counter, set the BRGEN bit to '1'. To inhibit counting, clear the bit
to '0'.

[10] Tx 4 word mode

(Tx4WD)

When this bit is '0', and TxFA bit in status register is '1', it is indicated that
Tx FIFO is empty for 1 word. It means that 1-word data can be loaded to
Tx FIFO.
Similarly, when this bit is '1', the same status register bit indicate that 4
words of data can be loaded to Tx FIFO without reading the status bit for a
second time.
Specifically, the status register bit affected by the 1-word or 4-word transfer
setting are the transmit data available (TxFA) bit.

[11] Rx 4 word mode

(Rx4WD)

When this bit is '0', and the RxFA bit in the status register is '1', it is
indicated that Rx FIFO has 1-word data. It means that 1 word data can be
moved to memory.
Similarly, when this bit is '1', the same status register bit indicates that 4
words of data can be moved in the memory without reading the status bit
for a second time.
Specifically, the status register bit affected by the 1-word or 4-word transfer
setting are the receive data available (RxFA) bit, and the residue bytes
status bits, RxRB[3:0].

S3C4530A HDLC CONTROLLERS

8-33

Table 8-9. HCON Register Description (Continued)

Bit
Number

Bit Name Description

[13:12] Rx widget alignment
(RxWA)

These bits determine how many bytes are invalid in the first memory word
of the frame to be received. The invalid bytes are inserted when the word
is assembled in the HRXFIFO. '00' =No Invalid bytes;
'01' = 1 invalid byte, '10' = 2 invalid bytes, '11' = 3 invalid bytes.

[14] DMA Tx stop or skip
(DTxSTSK)

This bit determines a DMA Tx stop or skip when DMA has not the
ownership associated with the Tx buffer descriptor. DMA Tx is disabled in
this condition when this bit is set.

[15] DMA Rx stop or skip
(DRxSTSK)

This bit determines a DMA Rx stop or skip when DMA has not the
ownership associated with the Rx buffer descriptor. If this bit is set, DMA
Rx is disabled.

[16] DMA Rx memory
address decrement
(DRxMADEC)

This bit determines whether the address is increased or decreased. If this
bit is set to '1', then the address will be decremented.

[17] Tx flag idle (TxFLAG) This bit selects the flag 'time fill' mode (active idle) or the mark idle mode
(inactive idle) for the transmitter. The selected active or inactive idle state
continues until data is sent (after nRESET has return to High level). The
flag idle pattern is 7EH; the mark idle pattern is FFH.

[18] Tx single flag
(TxSFLAG)

This bit controls whether separate closing and opening flags are
transmitted in succession to delimit frames. When this bit is '0',
independent opening and closing flags are transmitted in order to separate
frame.
When this bit is set to '1', the closing flag of the current frame serves as
the opening flag of the next frame.

[19] Tx loop-back mode
(TxLOOP)

This bit is used for self-testing. If this bit is set to '1', the transmit data
output (TxD) is internally connected to the receiver data input (RxD). In
Loop-back mode, nCTS and nDCD inputs are ignored. For normal
operation, this bit should always be '0'.

[20] Rx echo mode
(RxECHO)

Setting this bit to '1' selects the auto-echo mode of operation. In this mode,
the TXD pin is connected to RXD as in local loop-back mode, but the
receiver still monitors the RXD input.

[21] Tx abort extension
(TxABTEXT)

When this bit is set to '1', the abort pattern that is initiated when TxABT =
'1' is extended to at least 16 bits of 1s in succession, and the mark idle
state is entered.

[22] Tx abort (TxABT) When this bit is set to '1', an abort sequence of at least eight bits of 1s is
transmitted. The abort is initiated and the HTxFIFO is cleared. TxABT is
then cleared automatically by hardware.

HDLC CONTROLLERS S3C4530A

8-34

Table 8-9. HCON Register Description (Continued)

Bit
Number

Bit Name Description

[23] Tx preamble (TxPRMB) When this bit is set to '1', the content of the HPRMB register is transmitted
as many TxPL bit values in interrupt mode instead of mark idle or time fill
mode. This is useful for sending the data needed by the DPLL to lock the
phase. In DMA mode, this bit is meaningless.

[24] Tx data terminal ready
(TxDTR)

The TxDTR bit directly controls the nDTR output state. Setting this bit
forces the nDTR pin to Low level. When you clear the TxDTR bit, nDTR
goes High.

[25] Rx frame discontinue
(RxDISCON)

When this bit is set, the frame currently received is ignored and the data in
this frame is discarded. Only the last frame received is affected. There is
no effect on subsequent frames, even if the next frame enters the receiver
when the discontinue bit is set. This bit is automatically cleared after a
cycle.

[26] Tx no CRC (TxNOCRC) When this bit is set to '1', the CRC is not appended to the end of a frame
by hardware.

[27] Rx no CRC (RxNOCRC) When this bit is set to '1', the receiver does not check for CRC by
hardware. (CRC data is always moved to the HRXFIFO.)

[28] Auto enable (AutoEN) This bit programs the function of both nDCD and nCTS. However, TxEN
and RxEN must be set before the nCTS and nDCD pins can be used.
When this bit is '0', if the nCTS becomes high, the transmitter sends mark
idle pattern. However, though the nDCD becomes high, the receiver can
receive the data.

When this bit is '1', if the nCTS becomes high, the transmitter send mark
idle but clears the HTxFIFO and the Tx block. If nDCD becomes high, the
receiver can't operate, and the HRXFIFO and Rx blocks are cleared.

[29] Transparent Rx stop
(TRxSTOP)

This bit reset value is zero. If this bit set to one, the receive operation is
ended in transparent mode. And then the receiver start to search Sync.
If this bit set to one in HDLC mode, Rx FIFO cleared except for receiver.
So, the data in receiver can be moved to Rx FIFO at this time.

[30] Transmit reverse
(TxREV)

If this bit set to one, the data will be sent MSB first. If this bit set to zero,
LSB first.

[31] Receive reverse
(RxREV)

If this bit set to one, the received data will be MSB first. If this bit set to
zero, LSB first.

S3C4530A HDLC CONTROLLERS

8-35

[0] Tx reset (TxRS)
0 = Normal 1 = TxFIFOmand Tx block are reset.
[1] Rx reset (RxRS)
0 = Normal operation 1 = RxFIFO and Tx block are reset.
[2] DMA Tx reset (DTxRS)
0 = Normal operation 1 = DMA Tx block is reset.
[3] DMA Rx reset (DRxRS)
0 = Normal operation 1 = DMA Rx block is reset.
[4] Tx enable (TxEN)
0 = Tx disabled 1 = Tx enabled
[5] Rx enable (RxEN)
0 = Rx disabled 1 = Rx enabled
[6] DMA Tx enable (DTxEN)
0 = DMA Tx disabled 1 = DMA Tx enabled
[7] DMA Rx enable (DRxEN)
0 = DMA Rx disabled 1 = DMA Rx enabled
[8] DPLL enable (DPLLEN)
0 = Disable
1 = Enable; DPLL enters search mode for a locking edge in the incoming data stream.
[9] BRG enable (BRGEN)
0 = BRG counter is inbibited.
1 = BRG counter is enabled.
[10] Tx 4 word burst mode (Tx4WD)
0 = 1-word mode selected. 1 = 4-word mode selected.
[11] Rx 4 word burst mode (Rx4WD)
0 = 1-word mode selected. 1 = 4-word mode selected.
[13:12] Rx widget algnment (RxWA)
00 = No invalid byte
01 = 1 invalid byte
10 = 2 invalid byte
11 = 3 invalid byte
[14] DMA Tx stop or skip (DTxSTSK)
0 = DMA Tx skips when DMA not owner bit is set.
1 = DMA Tx stops when DMA not owner bit is set.
[15] DMA Rx stop or skip (DRxSTSK)
0 = DMA Rx skips when DMA not owner bit is set.
1 = DMA Rx stops when DMA not owner bit is set.
[16] DMA Rx stop or skip (DRxMADEC)
0 = Address is incremented. 1 = Address is decremented.
[17] Tx flag idle (TxFLAG)
0 = Enter mark idle mode (a bit pattern of consecutive ones)
1 = Enter time fill mode (a bit pattern of consecutive opening (closing) flag, as in string
 01111110 01111110......

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

A
u
t
o
E
N

R
x
E
N

T
x
E
N

R
x
D
I
S
C
O
N

R
x
N
O
C
R
C

T
x
N
O
C
R
C

T
x
D
T
R

T
x
P
R
M
B

T
x
A
B
T

T
x
A
B
T
E
X
T

R
x
E
C
H
O

T
x
L
O
O
P

T
x
S
F
L
A
G

T
x
F
L
A
G

D
R
x
M
A
D
E
C

D
R
x
S
T
S
K

D
T
x
S
T
S
K

R
x
4
W
D

T
x
4
W
D

B
R
G
E
N

D
P
L
L
E
N

D
R
x
E
N

D
T
x
E
N

R
x
W
A

D
T
x
R
S

R
x
R
S

D
R
x
R
S

T
x
R
S

R
x
R
E
V

T
x
R
E
V

T
R
x
S
t
o
p

Figure 8-14. HDLC Control Register (HCON)

HDLC CONTROLLERS S3C4530A

8-36

[18] Tx single flat (TxSFLAG)
0 = Double flag mode (a closing & opening flags are used to separate frames)
1 = Single flag mode (only one flags are used to separate frames)
[19] Tx loop-back mode (TxLOOP)
0 = Normal operation.
1= The tramsmit data output is internally connected to the receiver data input for self testing.
[20] Rx echo mode (RxECHO)
0 = Disable Tx auto-echo mode.
1 = Enable Rx DMA Tx block is reset.
[21] Tx abort extension (TxABTEXT)
0 = At least consecutive eigth 1s are transferred.
1 = At least 16 consecutive 1s are transferred.
[22] Tx abort (TxABT)
0 = Normal
1 = Enable (at least eight consecutive 1s are trnasmitted.)
[23] Tx preamble (TxPRMB)
0 = Transmit a mark idle is time fill bit pattern.
1 = Transmit the content of HPRMB
[24] Tx data terminology ready (TxDTR)
0 = nDTR goes high level.
1 = nDTR goes low level.
[25] Rx frame discontinue (TxDISCON)
0 = Normal
1 = Ignore the currently received frame
[26] Tx No CRC (TxNOCRC)
0 = Disable
1 = CRC is not appended by hardware.
[27] Rx No CRC (RxNOCR)
0 = Disable
1 = Receiver does not check CRC by hardware.
 (CRC is treated as data in any case)
[28] Auto enable (AutoEN)
0 = Normal operation. Even if the nCTS or nDCD become high, the transmitter can send
 tx data and the receiver can receive rx data.
1 = If the nDCD or nCTS become high, the transmitter can not send tx data and the
 receiver can not receive rx data.
[29] Transparent Rx Stop (TRxStop)
0 = Normal 1 = Stop receive operation.
[30] Tx reverse (TxREV)
0 = Normal 1 = Send Tx data reversly.
[29] Rx reverse (RxREV)
0 = Normal operation 1 = Receive Rx data reversly.

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

A
u
t
o
E
N

R
x
E
N

T
x
E
N

R
x
D
I
S
C
O
N

R
x
N
O
C
R
C

T
x
N
O
C
R
C

T
x
D
T
R

T
x
P
R
M
B

T
x
A
B
T

T
x
A
B
T
E
X
T

R
x
E
C
H
O

T
x
L
O
O
P

T
x
S
F
L
A
G

T
x
F
L
A
G

D
R
x
M
A
D
E
C

D
R
x
S
T
S
K

D
T
x
S
T
S
K

R
x
4
W
D

T
x
4
W
D

B
R
G
E
N

D
P
L
L
E
N

D
R
x
E
N

D
T
x
E
N

R
x
W
A

D
T
x
R
S

R
x
R
S

D
R
x
R
S

T
x
R
S

R
x
R
E
V

T
x
R
E
V

T
R
x
S
t
o
p

Figure 8-14. HDLC Control Register (HCON) (Continued)

S3C4530A HDLC CONTROLLERS

8-37

HDLC STATUS REGISTER (HSTAT)

 NOTE

Reading the HDLC status register is a non-destructive process. The method used to clear a High-level
status condition depends on the bit's function and operation mode(DMA or interrupt). For details, please
see the description of each status register.

Table 8-10. HSTATA and HSTATB Register

Registers Offset R/W Description Reset Value

HSTATA 0x7008 R/W HDLC Channel A Status Register 0X00000000

HSTATB 0x8008 R/W HDLC Channel B Status Register 0X00000000

SUMMARY

There are two kinds of bits in a status register.

1. TxFA, TxCTS, RxFA, RxDCD, RxFV, RxCRCE, RxNO, RxIERR, and RxOV bits are show each bit's
status. These bits are set or cleared automatically according to the status of each bit.

2. All other bits are cleared by the CPU writing '1' to each bit.

HDLC CONTROLLERS S3C4530A

8-38

Table 8-11. HSTAT Register Description

Bit
Number

Bit Name Description

[3:0] Rx remaining bytes
(RxRB)

(RxRB + 1) indicates how many data bytes are valid in a 1-word or 4-word
boundary when the receiver has received a complete frame. In 1-word
transfer mode, the RxRB value is either 0, 1, 2, or 3. In 4-word mode, it is
0, 1, ..., 14, or 15.

[4] Tx frame complete
(TxFC)

This status bit is automatically set to '1' when the two conditions are met:
1) there is no data in the Tx FIFO, and 2) either an abort or a closing flag is
transmitted. You can clear this bit by writing '1' to this bit.

[5] Tx FIFO available
(TxFA)

If this bit is '1', the data to be sent can be loaded into the HTxFIFO
register. In 1-word transfer mode, the TxFA status bit is set to '1' when the
first register of the HTxFIFO is empty.

In 4-word transfer mode, TxFA = '1' when the first four 32-bit registers of
the HTxFIFO are empty. The TxFA status condition is automatically
cleared when HTxFIFO is no longer available. During DMA Tx operation,
this bit is always '0', so not generating interrupt.

[6] Tx clear-to-send
(TxCTS)

The nCTS input is projected to this status bit. If the level at the nCTS input
pin is Low, this status bit is'1'. If nCTS input pin is High level, TxCTS is '0'.
This bit does not generate an interrupt.

[7] Tx stored clear-to-send
(TxSCTS)

This bit is set to '1' each time a transition in nCTS input occurs. You can
clear this bit by writing '1' to this bit.

[8] Tx under-run (TxU) When the transmitter runs out of data during a frame transmission, an
under-run occurs and the frame is automatically terminated by transmitting
an abort sequence. The under-run condition is indicated when TxU is '1'.
You can clear this bit by writing a '1' to this bit.

[9] Rx FIFO available
(RxFA)

This status bit indicates when the data received can be read from the Rx
FIFO. When RxFA is '1', it indicates that data (other than an address or a
final data word) is available in the HRXFIFO. In 1-word transfer mode,
RxFA bit set to '1' when received data is available in the last FIFO register.
In 4-word transfer mode, it is set to '1' when the data received is available
in the last four 32-bit FIFO registers. Even if the data reside in FIFO for
only two words, when the Last bit is set, Rx FIFO is regarded as valid. (The
received data available condition is cleared automatically when the data
received is no longer available.) During DMA Rx operation, this bit is
always zero, so does not generate an interrupt.

[10] Tx Frame Good (TxFG) This bit set to one when one frame sent well.

S3C4530A HDLC CONTROLLERS

8-39

Table 8-11. HSTAT Register Description (Continued)

Bit
Number

Bit Name Description

[11] Rx flag detected (RxFD) This bit is set to one when the last bit of the flag sequence is received.
This bit generates an interrupt if enabled.
You can clear this bit by writing one to this bit.

[12] Rx data carrier detected
(RxDCD)

The DCD status bit mirrors the state of the nDCD input pin. If nDCD input
pin is low, this status bit is '1'. If nDCD input pin is High, it is '0'. This bit
does not generate an interrupt.

[13] Rx stored data carrier
detected (RxSDCD)

This bit is set to '1' when a transition in nDCD input occurs, and can
generate interrupt, if enabled. You can clear this bit by writing a '1' to this
bit.

 [14] Rx frame valid (RxFV) This bit signals frame's ending boundary to the CPU and also indicates that
no frame error occurred. It is set when the last data byte of a frame is
transferred into the last location of the Rx FIFO and is available to be read.

[15] Rx idle (RxIDLE) The RxIDLE status bit indicates that a minimum of 15 consecutive 1s have
been received. The event is stored in the status register and can be used
to trigger a receiver interrupt. The RxIDLE bit continues to reflect the
inactive idle condition until a '0' is received. You can clear this bit by
writing a '1' to this bit.

[16] Rx abort (RxABT) The RxABT status bit is set to '1' when seven or more consecutive 1s
(abort sequence) have been received. When an abort is received in an 'in-
frame' condition, the event is stored in the status register triggering an
interrupt request. You can clear this bit by writing a '1' to this bit.

[17] Rx CRC error
(RxCRCE)

The RxCRCE status bit is set a frame is completed with a CRC error.

[18] Rx non-octet align
(RxNO)

The RxNO bit is set to '1', if received data is non-octet aligned frame.

[19] Rx overrun (RxOV) The RxOV status bit is set to '1', if the data received is transferred into the
HRXFIFO when it is full, resulting in a loss of data. Continued overruns
destroy data in the first FIFO register.

[20] DMA Rx memory
overflow (RxMOV)

This bit is set when there is no more buffer during receiving data. If this bit
is set, DRxEN bit is cleared. You can clear this bit by writing '1' to this bit.

[21] Reserved. Not applicable.

[22] DMA Tx abort

(DTxABT)

This bit is set to one when abort signal is sent due to the Tx under-run or
CTS lost occurred. If this bit is set, DTxEN(in HCON) bit cleared. You can
clear this bit by writing '1' to this bit.

HDLC CONTROLLERS S3C4530A

8-40

Table 8-11. HSTAT Register Description (Continued)

Bit
Number

Bit Name Description

[23] Rx internal error
(RxIERR)

This bit is set to '1' when received frame will be detected error possibility
due to the receive clock is unstable.

[24] DMA Rx frame done
every received frame
(DRxFD)

This bit is set when a DMA Rx operation has successfully operated a frame
to memory from HRXFIFO, and when the last byte of a frame has been
written to memory. This bit generate interrupt when set to '1' to know a
frame is received. You can clear this bit by writing '1' to this bit.

[25] DMA Rx null list
(DRxNL)

If this bit is set, the DMA Rx buffer descriptor pointer has a null address. In
this case, DMA Rx is disabled and the data transfer from the Rx FIFO to
buffer memory is discontinued. So the HRXFIFO is cleared. You can clear
this bit by writing '1' to this bit.

[26] DMA Rx not owner
(DRxNO)

This bit is set, when DMA is not owner of the current buffer descriptor, and
DRxSTSK bit was set. In this case, DMA Rx is disabled and can generate
interrupt, if enabled. If DRxSTSK bit is zero, this bit is always zero. You
can clear this bit by writing '1' to this bit.

[27] DMA Tx frame done
(DTxFD)

This bit is set to '1' when DMA Tx operation has successfully transferred a
frame from memory to Tx FIFO. You can clear this bit by writing '1' to this
bit.

 [28] DMA Tx null list
(DTxNL)

If this bit is set '1', the DMA Tx buffer descriptor pointer has a null address.
In this case, DMA Tx is disabled and the data to be transferred
discontinued from the buffer memory to Tx FIFO. You can clear this bit by
writing '1' to this bit.

[29] DMA Tx not owner
(DTxNO)

This bit is set, when DMA is not owner of the current buffer descriptor, and
DTxSTSK bit was set. In this case, DMA Tx disabled and can generate
interrupt, if enabled. If DTxSTSK bit is zero, this bit is always zero. You
can clear this bit by writing '1' to this bit.

[30] DPLL one clock missing
(DPLLOM)

When operating in FM/Manchester mode, the DPLL sets this bit to '1' if it
does not detect an edge in its first attempt. You can clear this bit by writing
a '1' to this bit.

[31] DPLL two clock missing
(DPLLTM)

When it is operating in the FM/Manchester mode, the DPLL sets this bit to
'1' if it does not detect an edge in two successive attempts. At the same
time the DPLL enters Search mode. In NRZ/NRZI mode, and while the
DPLL is disabled, this bit is always '0'. You can clear this bit by writing a '1'
to this bit.

S3C4530A HDLC CONTROLLERS

8-41

[3:0] Rx remaining bytes (RxRB)
At 1-word boundary: At 4-word boundary:
0000 = Valid data byte is 1 0000 = Valid data byte is 1
0001 = Valid data byte is 2 .
0010 = Valid data byte is 3 .
0011 = Valid data byte is 4 1111 = Valid data byte is 16
[4] Tx frame complete (TxFC)
0 = Normal operation
1 = Automatically set; if two conditions are met:
 1) Tx FIFO is empty. 2) An abort or a closing flag is transmitted.
[5] Tx FIFO available (TxFA)
0 = Tx FIFO is not available.
1 = Tx FIFO is available. (that is, the data to be transmitted can now be
 loaded into the Tx FIFO.)
[6] Tx clear-to send (TxCTS)
0 = Level at the nCTS input pin is High.
1 = Level at the nCTS input pin is Low.
[7] Tx stored clear-to-send (TxSCTS)
0 = Normal operation
1 = A transition occured at the nCTS input. (This transition can be used to
 trigger an interrupt.)
[8] Tx underrun (TxU)
0 = Normal operation
1 = The transmitter ran out of data during transmission.
[9] Rx FIFO available (RxFA)
0 = Normal operation 1 = Data is available in the RxFIFO.
[10] Tx frame good (TxFG)
0 = Normal operation 1 = Tx data sent well.
[11] Rx flag detected (RxFD)
0 = Normal operation
1 = This bit is set, when the last bit of the flag sequence is received.
[12] Rx data-carrier-detected (RxDCD)
0 = nDCD input pin is High 1 = nDCD input pin is Low
[13] Rx stored data-carrier-detected (RxSDCD)
0 = Normal operation
1 = When a transition of the nDCD input occurs, this bit is set.
[14] Rx frame valid (RxFV)
0 = Normal operation
1 = The last data byte if a frame is transgerred into the last location of RxFIFO.
[15] Rx idle (RxIDLE)
0 = Normal operation
1 = A minimum 15 consecutive 1s have been reveived.

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

D
T
x
N
L

T
x
F
A

T
x
F
C

D
R
x
N
L

D
T
x
F
D

D
R
x
N
O

D
R
x
F
D

R
x
I
E
R
R

D
T
x
A
B
T

R
x
M
O
V

R
x
O
V

R
x
N
O

R
x
C
R
C
E

R
x
A
B
T

R
x
I
D
L
E

R
x
F
V

R
x
F
D

R
x
F
A

T
x
U

T
x
S
C
T
S

T
x
C
T
S

R
x
S
D
C
D

R
x
R
B

D
P
L
L
T
M

D
P
L
L
O
M

D
T
x
N
O

R
x
D
C
D

T
x
F
G

Figure 8-15. HDLC Status Register

HDLC CONTROLLERS S3C4530A

8-42

[16] Rx abort (RxABT)
0= Normal operation
1 = Seven or more consecutive 1s have been received, in-frame condition.
[17] Rx CRC error (RxCRCE)
0 = Normal operation
1 = A frame Rx operation is completed with a CRC error.
[18] Rx non-octet align (RxNO)
0 = Received frame is octet.
1 = Received frame is not octet.
[19] Rx overrun (RxOV)
0 = Normal operation
1 = Received data is transferred into the RxFIFO when it is full.
[20] Rx memory overflow (RxMOV)
0 = Normal operation
1 = Indicates memory overflow when Rx buffer descriptor next pointer has null address.
[21] Reserved
[22] DMA Tx abort (DTxABT)
0 = Normal operation
1 = Abort signal is sended and DMA Tx enable bit is cleared.
[23] Rx internal error (RxIERR)
0 = Normal operation
1 = Received frame is not stable due to receive clock is unstable.
[24] DMA Rx frame done every received frame (DRxFD)
0 = Normal operation
1 = DMA Rx operation has successfully transferred a frame from RxFIFO to buffer memory.
[25] DMA Rx null list (DRxNL)
0 = Normal operation
1 = DMA Rx buffer descriptor pointer has a null address.
[26] DMA Rx not owner (DRxNO)
0 = DMA has the ownership.
1 = CPU has the ownership.
[27] DMA Tx frame done (DTxFD)
0 = Normal operation
1 = DMA Tx operation has successfully transferred a frame from memory to TxFIFO.
[28] DMA Tx null list (DTxNL)
0 = Normal operation
1 = DMA Tx buffer descriptor pointer has a null address.
[29] DMA Tx not owner (DTxNO)
0 = DMA has the ownership.
1 = CPU has the ownership.
[30] DPLL one clock missing (DPLLOM)
0 = Normal operation
1 = Set in FM/Machester mode when DPLL does not detect an edge on the first entry.
[31] DPLL two clock missing (DPLLTM)
0 = Normal operation
1 = DPLL was not detected on two consecutive edges an search mode sas entered.

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

D
T
x
N
L

T
x
F
A

T
x
F
C

D
R
x
N
L

D
T
x
F
D

D
R
x
N
O

D
R
x
F
D

R
x
I
E
R
R

D
T
x
A
B
T

R
x
M
O
V

R
x
O
V

R
x
N
O

R
x
C
R
C
E

R
x
A
B
T

R
x
I
D
L
E

R
x
F
V

R
x
F
D

R
x
F
A

T
x
U

T
x
S
C
T
S

T
x
C
T
S

R
x
S
D
C
D

R
x
R
B

D
P
L
L
T
M

D
P
L
L
O
M

D
T
x
N
O

R
x
D
C
D

T
x
F
G

Figure 8-15. HDLC Status Register (Continued)

S3C4530A HDLC CONTROLLERS

8-43

HDLC INTERRUPT ENABLE REGISTER (HINTEN)

Table 8-12. HINTENA and HINTENB Register

Registers Offset R/W Description Reset Value
HINTENA 0x700c R/W HDLC Interrupt Enable Register 0X00000000

HINTENB 0x800c R/W HDLC Interrupt Enable Register 0X00000000

Table 8-13. HINTEN Register Description

Bit
Number

Bit Name Description

[3:0] Reserved –

[4] TxFCIE Tx frame complete interrupt enable

[5] TxFAIE Tx FIFO available to write interrupt enable

[6] Reserved

[7] TxSCTSIE CTS transition has occurred interrupt enable

[8] TxUIE Tx under-run has occurred interrupt enable

[9] RxFAIE Rx FIFO available to read interrupt enable

[10] TxFGIE Tx Frame Good interrupt enable

[11] RxFDIE Rx flag detected interrupt enable

[12] Reserved

[13] RxSDCDIE DCD transition interrupt enable

[14] RxFVIE Rx frame valid interrupt enable

[15] RxIDLEIE Idle detected interrupt enable

[16] RxABTIE Abort detected interrupt enable

[17] RxCRCEIE CRC error frame interrupt enable

[18] RxNOIE Non-octet aligned frame interrupt enable

[19] RxOVIE Rx overrun interrupt enable

[20] RxMOVIE Rx memory overflow interrupt enable

[21] Reserved

[22] DTxABTIE DMA Tx abort interrupt enable

[23] RxIERRIE Rx internal error interrupt enable

[24] DRxFDIE DMA Rx frame done interrupt enable

[25] DRxNLIE DMA Rx null list interrupt enable

[26] DRxNOIE DMA Rx not owner interrupt enable

[27] DTxFDIE DMA Tx frame done every transmitted frame interrupt enable

[28] DTxNLIE DMA Tx null list interrupt enable

[29] DTxNOIE DMA Tx not owner interrupt enable

[30] DPLLOMIE DPLL one clock missing interrupt enable

[31] DPLLTMIE DPLL two clocks missing interrupt enable

HDLC CONTROLLERS S3C4530A

8-44

[3:0] Reserved

[4] Tx frame complete interrupt enable
 (TxFCIE)

[5] Tx FIFO available to write interrupt
 enable (TxFAIE)

[6] Reserved

[7] CTS transition has occurred interrupt
 enable (TxSCTIE)

[8] Transmit underrun has occured
 interrupt enable (TxUIE)

[9] RxFIFO available to read interrupt
 enable (RxFAIE)

[10] Tx frame good interrupt enable
 (TxFGIE)

[11] Flag detected interrupt enable
 (RxFDIE)

[12] Reserved

[13] DCD transition interrupt enable
 (RxSDCDIE)

[14] Valid frame interruopt enable (RxFVIE)

[15] Idle detected interruot enable
 (RxIDLEIE)

[16] Abort detected interrupt enable
 (RxABTIE)

[17] CRC error frame interrupt enable
 (RxCRCEIE)

[18] Non-dctet aligned frame interrupt enable
 (RxNOIE)

[19] Rx overrun interrupt enable (RxOVIE)

[20] Rx memory overflow interrupt enable
 (RxMOVIE)

[21] Reserved

[22] DMA Tx abort interrupt enable
 (DTxABTIE)

[23] Rx internal error interrupt enable
 (RxIERRIEN)

[24] DMA Rx frame done every received frame
 interrupt enable (DRxFDIE)

[25] DMA Rx null list interrupt enable
 (DRxNLIE)

[26] DMA Rx not owner interrupt enable
 (DRxNOIE)

[27] DMA Tx frame done every received frame
 interrupt enable (DTxFDIE)

[28] DMA Tx null list interrupt enable
 (DTxNLIE)

[29] DMA Tx not owner interrupt enable
 (DTxNOIE)

[30] DPLL one missing interrupt enable
 (DPLLOMIE)

[31] DPLL two missing interrupt enable
 (DPLLTMIE)

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

D
T
x
N
L
I
E

T
x
F
A
I
E

T
x
F
C
I
E

D
R
x
N
L
I
E

D
T
x
F
D
I
E

D
R
x
N
O
I
E

D
R
x
F
D
I
E

R
x
I
E
R
R
I
E

D
T
x
A
B
T
I
E

R
x
M
O
V
I
E

R
x
O
V
I
E

R
x
N
O
I
E

R
x
C
R
C
E
I
E

R
x
A
B
T
I
E

R
x
I
D
L
E
I
E

R
x
F
V
I
E

R
x
F
D
I
E

R
x
F
A
I
E

T
x
U
I
E

T
x
S
C
T
S
I
E

R
x
S
D
C
D
I
E

D
P
L
L
T
M
I
E

D
P
L
L
O
M
I
E

D
T
x
N
O
I
E

T
x
F
G
I
E

Figure 8-16. HDLC Interrupt Enable Register

S3C4530A HDLC CONTROLLERS

8-45

HDLC TX FIFO (HTXFIFO)

The Tx FIFO consists of eight 32-bit registers that are used for buffer storage of data to be transmitted. Data is
always transferred from a full register to an empty adjacent register. The Tx FIFO can be addressed at two
different register addresses: the 'frame continue' address and the 'frame terminate' address.

Each register has four pointers, data valid pointer bit (4 bits), last pointer bit, NoCRC pointer bit, Preamble
pointer bit. The data valid pointer bit indicates whether each byte is valid or not. The last byte pointer bit indicates
whether the frame to be sent has the frame last byte or not. The NoCRC pointer bit determines whether the CRC
data is to be appended or not by hardware.

When a valid data byte is written to the 'frame continue' address, the data valid pointer is set, but the last byte
pointer is not set. When a valid data byte is written to the 'frame terminate' address, the data valid pointer and
last byte pointer are set together. To reset these pointers, you write a '1' to either the TxABT bit or the TxRS bit in
the HCON register.

In DMA mode, when the DMA controller writes data to the HTxFIFO, Tx buffer descriptor Buffer Length field
value must be pre-set. However, if the Last bit is set in buffer descriptor, the last byte pointer in HTxFIFO is also
set. This means the last byte of the frame is in HTxFIFO. If the transmitted frame is longer than the Buffer
Length field value, the last byte pointer will not be set, and the next buffer descriptor having the last byte pointer
bit will be used.

The pointers continue shifting through the FIFO. When the transmitter detects a positive transition in the data
valid pointer at the last location of the FIFO, it initiates a frame with an opening flag. When it detects a negative
transition in the last byte pointer at the last location of the FIFO, it closes the frame, appending the CRC and a
closing flag follows.

The status of the Tx FIFO is indicated by the transmitter FIFO register available (TxFA) status bit. When TxFA =
'1', the Tx FIFO is available for loading data and data can be loaded into it. (This function is controlled by the
Tx4WD bit.) The HTxFIFO is reset by writing a '1' to the Tx reset, or the TxABT bit or by the nRESET. During a
reset operation, the TxFA status bit is suppressed and data loading is inhibited.

8 Tx Data

TxFIFO Data Valid (4-bit)

8-bit 8-bit 8-bit 8-bit

Last (1-bit) NoCRC Preamble

Figure 8-17. HDLC Tx FIFO Function Diagram

HDLC CONTROLLERS S3C4530A

8-46

HDLC RX FIFO (HRXFIFO)

The Rx FIFO consists of eight 32-bit registers that are used for the buffer storage of the data received. Data
bytes are always transferred from a full register to an adjacent empty register. Each register has pointer bits that
indicate the frame status. When these pointers appear at the last 1-word or 4-word FIFO location, they update the
LAST bit(indicating the last of a frame), the OVERRUN bit, the CRC error bit, or Non-octet aligned bit.

The HRXFIFO data available (RxFA) status bits indicate the current state of the HRXFIFO. When the HRXFIFO
data status bit is '1', the HRXFIFO is ready to be read. The HRXFIFO data status is controlled by the 4-word or 1-
word transfer selection bit (Rx4WD). When an overrun occurs, the overrun frame of the HRXFIFO is no longer
valid.

An 'in frame' abort or a High level on nDCD input with the AutoEN bit in HCON is set to '1', the frame is cleared in
the HRXFIFO. (The last byte of the previous frame, which is separated by the frame boundary pointer, is
retained). Data in HRXFIFO should be read by word size.

The HRXFIFO is cleared by the Rx reset bit set to '1', an abort signal received, or nRESET

Rx Data

RxFIFO Data Valid

8-bit 8-bit 8-bit 8-bit

Last OV CRCE NO

Figure 8-18. HDLC Rx FIFO Function Diagram

S3C4530A HDLC CONTROLLERS

8-47

HDLC BRG TIME CONSTANT REGISTERS (HBRGTC)

Table 8-14. HBRGTCA and HBRGTCB Register

Registers Offset R/W Description Reset Value

HBRGTCA 0x701c R/W HDLC BRG Time Constant Register 0X00000000

HBRGTCB 0x801c R/W HDLC BRG Time Constant Register 0X00000000

The HDLC BRG time constant register value can be changed at any time, but the new value does not take effect
until the next time the constant is loaded into the down counter. No attempt is made to synchronize the loading of
the time constant into HBRGTC while the clock is driving the down counter. For this reason, you should first
disable the baud rate generator before loading the new time constant into the HBRGTC register.

The formula for determining the appropriate time constant for a given baud rate is shown below. The desired rate
is shown in bits per second. This formula shows how the counter decrements from N down to zero-plus-one
cycles for reloading the time constant. This value is then fed to a toggle flip-flop to generate the square wave
output.

BRGOUT1 = (MCLK2 or RXC) / (CNT0 + 1) / (16CNT1)
BRGOUT2 = (MCLK2 or RxC) / (CNT0+1) / (16CNT1) / (1 or 16 or 32 according to CNT2 value of the HBRGTC)

31 1516

[1:0] Time constant value for CNT2
00 = divide by 1
01 = adivide by 16
10 = divide by 32

[3:2] Time constant value for CNT1
00 = divide by 1
01 = divide by 16

[15:4] Time constant value for CNT0

018 17 121314 91011 678 345 12

CNT0 CNT1

1921 20

CNT2

222324252627282930

Figure 8-19. HDLC BRG Time Constant Register

HDLC CONTROLLERS S3C4530A

8-48

HDLC PREAMBLE CONSTANT REGISTER (HPRMB)

The HPRMB register is used to meet the DPLL requirements for phase-locking. The preamble pattern is
transmitted as many Tx preamble length bit values in HMODE[10:8] when the Tx preamble bit (TxPRMB) is '1',
and then the Tx preamble bit is cleared automatically. The opening flag follows this preamble pattern, and the
data will be transmitted.

Table 8-15. HPRMBA and HPRMBB Register

Registers Offset R/W Description Reset Value

HPRMBA 0x7020 R/W HDLC Preamble Constant Register 0X00000000

HPRMBB 0x8020 R/W HDLC Preamble Constant Register 0X00000000

31 1516

[7:0] Preamble Pattern

018 17 121314 91011 678 345 121921 20

Preamble Pattern

222324252627282930

Figure 8-20. HDLC Preamble Constant Register

The reference for the preamble pattern of each data mode is as follows:

Table 8-16. Preamble Reference Pattern

Data Mode Preamble Pattern

NRZ AA

NRZI 00

FM0 FF

FM1 00

MANCHESTER AA

S3C4530A HDLC CONTROLLERS

8-49

HDLC STATION ADDRESS REGISTERS (HSADR0-3) AND HMASK REGISTER

Each HDLC controller has five 32-bit registers for address recognition: four station address registers and one
mask register. Generally, the HDLC controller reads the address of the frame from the receiver, to check it
against the four station address values, and then masks the result with the user-defined HMASK register. A "1" in
the HMASK register represents a bit position for which an address compare should occur. A "0" represents a
masked bit position. If you check the address up to four bytes, the HMASK register value should be 0xffffffff.
Dependent on the HMASK register value, the frame's address is compared. If the address is not matched, this
frame is discarded.

Table 8-17. HSADR and HMASK Register

Registers Offset R/W Description Reset Value

HSADR0A 0x7024 R/W HDLC station address 0 0X00000000

HSADR1A 0x7028 R/W HDLC station address 1 0X00000000

HSADR2A 0x702c R/W HDLC station address 2 0X00000000

HSADR3A 0x7030 R/W HDLC station address 3 0X00000000

HMASKA 0x7034 R/W HDLC address mask register 0X00000000

HSADR0B 0x8024 R/W HDLC station address 0 0X00000000

HSADR1B 0x8028 R/W HDLC station address 1 0X00000000

HSADR2B 0x802c R/W HDLC station address 2 0X00000000

HSADR3B 0x8030 R/W HDLC station address 3 0X00000000

HMASKB 0x8034 R/W HDLC address mask register 0X00000000

NOTE: Recognize one 32-bit address
 and the 32-bit broadcast address

HMASK

HSADR0

HSADR1

HSADR3

HSADR2

HMASK

HSADR0

HSADR1

HSADR3

HSADR2

0xFF000000

0x55XXXXXX

0x55XXXXXX

0x55XXXXXX

0x55XXXXXX

NOTE: Recognize a single 8-bit address

0xFF FF FF FF

0xABCDEFGH

0xFF FF FF FF

0xABCDEFGH

0xABCDEFGH

Figure 8-21. Address Recognition

HDLC CONTROLLERS S3C4530A

8-50

31 1516

Station address byte register and MASK register

018 17 121314 91011 678 345 121921 20

Fourth byte

222324252627282930

Third byteSecond byteFirst byte

[31:24] First address byte
[23:16] Second address byte
[15: 8] Third address byte
[7 : 0] Fourth address byte

Figure 8-22. HDLC Station Address and HMASK Register

DMA TX BUFFER DESCRIPTOR POINTER REGISTER

The DMA transmit buffer descriptor pointer register contains the address of the Tx buffer data pointer on the data
to be sent. During a DMA operation, the buffer descriptor pointer is updated by the next buffer data pointer.

Table 8-18. DMA Tx Buffer Descriptor Pointer Registers

Registers Offset R/W Description Reset Value

HDMATXPTRA 0x7038 R/W DMA Tx Buffer Descriptor Pointer 0XFFFFFFFF

HDMATXPTRB 0x8038 R/W DMA Tx Buffer Descriptor Pointer 0XFFFFFFFF

31 1516

[25:0] DMA Tx Buffer Descriptor Pointer

018 17 121314 91011 678 345 121921 20

DMA Tx Buffer Descriptor Pointer

222324252627282930

Figure 8-23. DMA Tx Buffer Descriptor Pointer

S3C4530A HDLC CONTROLLERS

8-51

DMA RX BUFFER DESCRIPTOR POINTER REGISTER

The DMA receive buffer descriptor pointer register contains the address of the Rx buffer data pointer on the data
to be received. During a DMA operation, the buffer descriptor pointer is updated by the next buffer data pointer.

Table 8-19. DMA Rx Buffer Descriptor Pointer Registers

Registers Offset R/W Description Reset Value

HDMARXPTRA 0x703c R/W DMA Rx Buffer Descriptor Pointer 0XFFFFFFFF

HDMARXPTRB 0x803c R/W DMA Rx Buffer Descriptor Pointer 0XFFFFFFFF

31 1516

[25:0] DMA Rx Buffer Descriptor Pointer

018 17 121314 91011 678 345 121921 20

DMA Rx Buffer Descriptor Pointer

222324252627282930

Figure 8-24. DMA Rx Buffer Descriptor Pointer

MAXIMUM FRAME LENGTH REGISTER

The HDLC controller checks the length of an incoming frame against the user-defined value in DMA mode. If the
frame received exceeds this register value, the frame is discarded, and FLV(Frame Length Violated) bit is set in
the buffer descriptor belonging to that frame.

Table 8-20. HDMATXCNT and HDMARXCNT Registers

Registers Offset R/W Description Reset Value

HMFLRA 0x7040 R/W Maximum Frame Length 0xXXXX0000

HMFLRB 0x8040 R/W Maximum Frame Length 0xXXXX0000

31 1516

[15:0] Maximum Frame Length

018 17 121314 91011 678 345 121921 20

Maximum Frame Length

222324252627282930

Figure 8-25. Maximum Frame Length Register

HDLC CONTROLLERS S3C4530A

8-52

RECEIVE BUFFER SIZE REGISTER

The Rx buffer size register contains the 16-bit user-defined value. This user-defined count value determines the
buffer size for one Buffer Descriptor. If incoming HDLC frame is longer than the Rx buffer size register value, the
next buffer descriptor having the Rx buffer size value will be used.

Table 8-21. DMA Rx Buffer Size Register

Registers Offset R/W Description Reset Value

HRBSRA 0x7044 R/W Receive Buffer Size Register 0xXXXX0000

HRBSRB 0x8044 R/W Receive Buffer Size Register 0xXXXX0000

31 1516

[15:0] Receive Buffer Size Register

018 17 121314 91011 678 345 121921 20

Receive Buffer Size

222324252627282930

Figure 8-26. DMA Receive Buffer Size Register

SYNCHRONIZATION REGISTER

The HDLC synchronous register content will be sent during flag idle in HDLC mode. In mark idle mode, this
register content can not used. However, in transparent mode with in-line sync, this register value used for
searching sync pattern . This sync pattern is used as like opening or closing flag. In-line sync or out-line sync
determined by AutoEn bit value. If AutoEn bit is set to zero, it is determined to in-line sync in transparent mode.

Table 8-22. Synchronization Register

Registers Offset R/W Description Reset Value

HSYNCA 0x7048 R/W HDLC Sync Register 0x7E

HSYNCB 0x8048 R/W HDLC Sync Register 0x7E

31 1516

[7:0] Sync Pattern

018 17 121314 91011 678 345 121921 20

Sync Pattern

222324252627282930

Figure 8-27. HDLC Synchronization Register

S3C4530A HDLC CONTROLLERS

8-53

TRANSPARENT CONTROL REGISTER

The HDLC transparent register controls the transparent data flow. This is composed with Data sampling field and
RTS control field.

Table 8-23. Transparent Control Register

Registers Offset R/W Description Reset Value

TCONA 0x704C R/W Transparent Control Register 0xXXXX0000

TCONB 0x804C R/W Transparent Control Register 0xXXXX0000

Bit Number Bit Name Description

[1:0] Data sampling
(DS)

These bit values determine which data bits are regarded as valid
after the nDCD state active. 00 = the first valid bit is D4, 01 = the
first valid bit is D3, 10 = D2 and 11 = D1. See Figure 8-28, data
sampling method.

[3:2] Reserved Not applicable.

[4] RTS control(RTS) It this bit set to one, the nRTS pin goes Low.

[31:5] Reserved Not applicable.

Data

nDCD

RxC

Sampled here if DS value is 01.

D1 D2 D3 D4 D5 D6 D7 D8

Figure 8-28. Data Sampling Method

HDLC CONTROLLERS S3C4530A

8-54

TSA CONFIGURATION REGISTER

TSA control register handles the interface of HDLCs with the external world. This enables and disables the TSA
block, select whether to MUX each channel source and determine the data rate on the DCL clock.

Table 8-24. Transparent Control Register

Registers Offset R/W Description Reset Value

TSACFG 0x7800 W TSA Configuration Register 0x00000000

Bit Number Bit Name Description

[0] TSA Enable (TSAEN) You can enable the Time Slot Assignor by setting this bit as 1.

[1] A mode select (AMODE) HDLC channel A can be used as a DCE mode or PCM highway.
If you set this bit, A-channel will be assigned as PCM highway.

[2] B mode select(BMODE) HDLC channel B can be used as a DCE mode or PCM highway.
If you set this bit, A-channel will be assigned as PCM highway.

[3] Clock divide (CLKDIV) Using this, the data clock (DCL) can be divided by 2. If you set
as 1, the data clock will be a rate divided by 2 of the RxC pin.

[31:4] Reserved Not applicable.

31 1516

[0] TSA enable bit
0 : TSA Disable 1 : TSA Enable
[1] Mode Selection on the HDLC channel A
0 = DCE 1 = PCM Highway (non-multiplexed)
[2] Mode Selection on the HDLC channel B
0 = DCE 1 = PCM Highway (non-multiplexed)
[3] Clock Divide
0 = 1x Clock mode 1 = 0.5x Clock mode

018 17 121314 91011 678 345 121921 20222324252627282930

T
S
A
E
N

RESERVED

A
M
O
D
E

B
M
O
D
E

C
L
K
D
I
V

Figure 8-29. TSA Configure Register

S3C4530A HDLC CONTROLLERS

8-55

TSA CHANNEL TIME SLOT REGISTER

This time slot register will assign the each TDM channel into the specified period. Simply setting the start and the
end location, you can load the each channel data through the PCM Highway. If the start value is smaller than the
end bit, the data will be continued through the two frames until meet the start position.

Table 8-25. Transparent Control Register

Registers Offset R/W Description Reset Value

TSAACFG 0x7804 W TSA A Time Slot Register 0x00000000

TSABCFG 0x7808 W TSA B Time Slot Register 0x00000000

Bit Number Bit Name Description

[11:0] START The location of start bit at which the HDLCx time slot assigned

[15:12] Reserved Not applicable.

[27:16] STOP The location of (stop+1) bit at which the HDLCx time slot assigned

For instance, if you want to stop the TSA at 7-th bit, then you should
set it as the value 8.

[31:28] Reserved Not applicable.

31 1516

[11: 0] The location of START bit of the time slot

[15:12] Reserved

[27:16] The location of STOP bit of the time slot

[31:28] Reserved

018 17 121314 91011 678 345 121921 20222324252627282930

RESERVED STOP BIT RESERVED START BIT

Figure 8-30. TSA Time Slot Position Register

HDLC CONTROLLERS S3C4530A

8-56

NOTE: You can refer the application note of S3C4510 on using the HDLC, the general items related on it will not be
covered in this manual.

PROGRAMMING GUIDE FOR TRANSPARENT MODE

Actually, the every operation in Transparent Mode is same with the HDLC mode, except that this mode does not
compare the starting/closing flag and doesn’t have the zero inserting/deleting feature. That mean you can get
higher data rate than HDLC mode, which gives you the merits for sending or receiving the image data or file
transfer.

Definition for Transparent mode

You can see the definition for the Transparent mode in Listing 1

Listing 1. Definition for Transparent Mode

#define SetSyncPattern(channel, pattern) HSYNC(channel) = pattern

#define SetDataSample(channel, first) TCON(channel) = first

Transparent mode initialization

After finishing the HDLC initialization, you need to set control bits for this mode.

STEP 1. Set the TxTRANS or RxTRANS in HMODE register.
STEP 2. Set the sync type using the AutoEn bit.
STEP 3. Set the sync pattern for finding the start point of frame.
STEP 4. Setting the sampling field and RTS for external synchronization.

Listing 2. A part of HdlcInitialize() in Transparent Mode

int HdlcPortInit(tHdlcDev *Hdlc)

{

 …

 if(Hdlc->TxCommMode == COMM_MODE_TRANS)

HMODE(channel) |= TxTRANS ;

 If(Hdlc->RxCommMode == COMM_MODE_TRANS)

HMODE(channel) |= RxTRANS;

 HCON(channel) &= ~AutoEN; // AutoEN = 0

 SetSyncPattern(channel, 0x7E);

 SetDataSample(channel, FirstValidD4);

 …

}

S3C4530A HDLC CONTROLLERS

8-57

inline-synchronization

This program sets the in-line synchronization in Listing 1. By disabling the AutoEn in HCON and RTS in TCON,
the receiver will start to receive the data after searching the sync pattern.

external synchronization

To use the external synchronization, you need to enabling the AutoEn in HCON and RTS in TCON. After
detection DCD, start to receive the receive data. Once the reception begins, the transition of DCD pin will be
ignored and data can be received until TRxSTOP is set to one by CPU then the new synchronization process
begins.

Transmitting a transparent frame.

Finishing the intialization, you can send data through transparent channel. Only the difference from the HDLC
mode, you should give the sync pattern of the receiver side at the first byte of frame. Because the transparent
mode don’t use the Station Address, you don’t have to write down the station address on the frame data.

Listing 3. Transmit _Frame()

 …

 // Step 1. Set the Sync pattern of the receiver side

 FrameBuffer.Header.Address[0] = 0x7E ;

 // Step 2. Fill the any kind of data from the 2nd byte in frame

FrameBuffer.Header.Address[1] = 0x12;

FrameBuffer.Header.Address[2] = 0x34 ;

FrameBuffer.Header.Address[3] = 0x56 ;

FrameBuffer.Header.Control[0] = 0x78;

for (i=0;i<Size-(sizeof(tHDLCHeader));i++)

FrameBuffer.Information[i] = (U8)(i & 0xFF) ;

 // Step 3. Send HDLC frame.

 if (SendHdlcFrame(channel,(U8 *)&FrameBuffer,Size))

Print(“\n Sending Error”);

Receiving a transparent frame.

Either DMA or INT operation mode can be used for the transmitting the transparent frame. But it is strongly
suggested that you use the INT mode for receiving the transparent frame. That’s why it’s hard to find the closing
conditions that you have to know in case of DMA mode. In the INT mode receiving, you don’t mind checking the
status bit related on the flags, like RxFD, RxFV. If there is any received data in RxFIFO, you can see RxFA of
HSTAT at the interrupt service routine. Listing 4 says how to receive the data. By the way, you have to check the
boundary of the Frame. It is essential to make codes for detecting ending condition from the received data.

HDLC CONTROLLERS S3C4530A

8-58

Listing 4. HdlcCpuTransRxIsr()

// Step 1. Check Any received data in FIFO

if (IntHdlcStatus & RxFA) {

 // Step 2. Read received data from HDLC receive FIFO entry

 if(!ReadDataFromFifo(channel,RemainByte)){

 // If the ending condition meet, update and assign new buffer

// Step 3. Get current receive buffer descriptor point

CRxBDPtr = (tBufferDescriptor *)gCRxBDPtr[channel];

// Step 4. Clear owner to CPU

CRxBDPtr->BufferDataPtr &= Bownership_CPU ;

// Step 5. Get length and status

CRxBDPtr->LengthField = ModeIntRxDataSize[channel] ;

CRxBDPtr->StatusField = IntHdlcStatus ;

// Step 6. Get Next buffer descriptor

gCRxBDPtr[channel] = (U32)CRxBDPtr->NextBufferDescriptor ;

// Step 7. Initialize HDLC DMA for next comming frame

CpuHdlcRxInit(channel);

}

}

S3C4530A HDLC CONTROLLERS

8-59

Listing 5. ReadDataFormFIFO()

/*

 * Function : ReadDataFromFifo

 * Description : Read frame data from HDLC Rx FIFO

 * This function is only used when interrupt mode receive

 */

int ReadDataFromFifo(U32 channel, U32 bcnt)

{

int i, cnt ;

U32 *TestBuffer;

cnt = (int)(((bcnt&~3)+4)/4) ;

ModeIntRxDataSize[channel] += (bcnt+1) ;

for (i=0 ; i<cnt ; i++)

*ModeIntRxDataBuffer[channel]++ = HRXFIFO(channel) ;

// [NOTE] Give the ending condition for Transparnet Mode

// If you are not in the Transparent Mode , you can delete this code

TestBuffer = ModeIntRxDataBuffer[channel] - 1 ;

if(*TestBuffer == 0xffffffff)

{

if (HCON(channel) & AutoEN) HCON |= TrxStop ;

return 0;

 }

else

return 1 ;

}

HDLC CONTROLLERS S3C4530A

8-60

PROGRAMMING GUIDE FOR TIME SLOT ASSIGNOR

One time-slot-assignor (TSA) is equipped for the flexible control of two HDLCs. You can upload/download data
separately to /from each channel through time-slot-assignor.

Definition for Time Slot Assignor

Time slot Assignor has three registers. You can see the handling of this block is simple.

Listing 6. Definition for Time Slot Assignor

/**/

/* S32C4530 : TSA registers */

/**/

#define TSACON (Vpint(Base_Addr+0x7800))

#define TSASLOT(channel) (Vpint(Base_Addr+0x7804+ channel*4))

Time Slot Assignor initialisation

Before starting the HDLC initialisation, you need to set TSA registers.

[note] You do not initialise TSA after HDLC registers initialisation, if you do, HDLC registers will be crashed by writing any
data into TSA registers. And the TSA registers are write-only, if you read, the value is not what you write. Whenever
you want to change even only one of TSA registers, you should re-initialise the HDLC after changing.

STEP 1. Check whether the external-interface is correct for PCM mode in Table 8-3.
 (FSC : TxC pin , DCL : RxC pin)

STEP 2. Set the TSA configuration register for each channel

STEP 3. Set the TSA channel Time Slot registers for the slot time-window.

STEP 4. Initialising the HDLC as External Clock use.

Listing 7. TsaInitialize()

int TsaInitialize(tHdlcDev *Hdlc)

{

 U8 channel;

 U16 start[2] = {STARTA,STARTB};

 U16 stop[2] = {STOPA,STOPB};

 Hdlc->TxClk = TxCTxC ;

 Hdlc->RxClk = RxCRxC ;

 TSACON = TSAEN | PCMA | PCMB ;

 for(channel = TSAA; channel<=TSAB;channel++)

 TSASLOT(channel) = start[channel] | (stop[channel] <<16);

}

S3C4530A HDLC CONTROLLERS

8-61

How to Writing the TSA Time Slot Position Registers

When you set the time slot position, you need to know the internal slot window operation. Internally the number of
clocks during FSC one-cycle is the starting value of SLOT CNT after FSC rising edge and the value one is
followed. So If the FSC has 8-clock and you want to window the time slot from first to third DCL clock, then you
can set as Figure 8-31.

NOTE: You should take caution on setting this registers by checking the outer signals like TXD and RXD pin. And
the TxD pin will be high-impedance (floating) outside the time window.

SLOT CNT

Time Slot

DCL [RxC]

FSC [TxC]

8 1 2 3 4 5 6 7

Slot Open

 When you set the followin values.

#define START 8
#defin STOP 3
TSASLOT(channel) = START | (STOP<<16)

Figure 8-31. TSA Time Slot

TSA Operation

After finishing the TSA and HDLC initialization, you can send/receive data through HDLC channel A. The
operation scheme is same with the HDLC and Transparent mode. So you can use the same functions for sending
and receiving.

HDLC CONTROLLERS S3C4530A

8-62

NOTES

S3C4530A DMA CONTROLLER

9-1

9 DMA CONTROLLER

OVERVIEW

The S3C4530A has a two-channel general DMA controller, called the GDMA. The two-channel GDMA performs
the following data transfers without CPU intervention:

— Memory-to-memory (memory to/from memory)

— UART-to-memory (serial port to/from memory)

The on-chip GDMA can be started by software and/or by an external DMA request (nXDREQ). Software can also
be used to restart a GDMA operation after it has been stopped.

CPU can recognize when a GDMA operation has been completed by software polling and/or when it receives an
appropriate internally generated GDMA interrupt. The S3C4530A GDMA controller can increment or decrement
source or destination addresses and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers.

System BUS

GDMA Channel 0

nDREQ

nDACK

 GDMA Channel 1

nDREQ

Port 14 Data

GDMA

IOPCON [27:26]

nXDACK 0

IOPCON [29:28]

nXDACK 1

Port 15 Data

GDMAMode Selection

Mode Selection

nXDREQ 1

UART1

UART0

nXDREQ 0

nDACK

Figure 9-1. GDMA Controller Block Diagram

DMA CONTROLLER S3C4530A

9-2

GDMA SPECIAL REGISTERS

Table 9-1. GDMA Special Registers Overview

Registers Offset R/W Description Reset Value

GDMACON0 0xB000 R/W GDMA controller channel 0 control register 0×00000000

GDMACON1 0xC000 R/W GDMA controller channel 1 control register 0×00000000

GDMASRC0 0xB004 R/W GDMA channel 0 source address register Undefined

GDMADST0 0xB008 R/W GDMA channel 0 destination address register Undefined

GDMASRC1 0xC004 R/W GDMA channel 1 source address register Undefined

GDMADST1 0xC008 R/W GDMA channel 1 destination address register Undefined

GDMACNT0 0xB00C R/W GDMA channel 0 transfer count register Undefined

GDMACNT1 0xC00C R/W GDMA channel 1 transfer count register Undefined

GDMA CONTROL REGISTERS

Table 9-2. GDMACON0 and GDMACON1 Registers

Registers Offset R/W Description Reset Value

GDMACON0 0xB000 R/W GDMA controller channel 0 control register 0×00000000

GDMACON1 0xC000 R/W GDMA controller channel 1 control register 0×00000000

Table 9-3. GDMA Control Register Description

Bit Number Bit Name Reset Value

[0] Run enable/disable Setting this bit to "1", starts a DMA operation. To stop DMA, you
must clear this bit to "0". You can use the GMA run bit control
address (GDMACON offset address + 0x20) to manipulate this bit.
By using the run bit control address, other GDMA control register
values are not affected.

[1] Busy status When DMA starts, this read-only status bit is automatically set to
"1". When it is "0", DMA is idle.

[3:2] GDMA mode selection Four sources can initiate a DMA operation: 1) software (memory-
to-memory), 2) an external DMA request (nXDREQ), 3) the UART0
block, and 4) the UART1 block. The mode selection setting
determines which source can initiate a DMA operation at any given
time.

[4] Destination address
direction

This bit controls whether the destination address will be
decremented ("1") or incremented ("0") during a DMA operation.

[5] Source address direction This bit controls whether the source address will be decremented
("1") or incremented ("0") during a DMA operation.

S3C4530A DMA CONTROLLER

9-3

Table 9-3. GDMA Control Register Description (Continued)

Bit Number Bit Name Reset Value

[6] Destination address fix This bit determines whether or not the destination address will be
changed during a DMA operation. You use this feature when
transferring data from multiple sources to a single destination.

[7] Source address fix This bit determines whether or not the source address will be
changed during a DMA operation. You use this feature when
transferring data from a single source to multiple destinations.

[8] Stop interrupt enable To start/stop a DMA operation, you set/clear the run enable bit. If
the stop interrupt enable bit is "1" when DMA starts, a stop interrupt
is generated when DMA operation stops. If this bit is "0", the stop
interrupt is not generated.

[9] Four-data burst enable If this bit is set to one, GDMA operates under 4-data burst mode.
under the 4-data burst mode, 4 consecutive source addresses are
read and then are written to the consecutive destination addresses.
If 4-data burst mode is set to one, "transfer count register" should
be set carefully because the 4-data burst move is executed during
decreasing of the transfer count. The 4-data burst mode can be
used only when GMDA mode is software or external DMA request
mode.

[10] Peripheral direction This bit is used to specify the direction of a DMA operation when
the mode bits [3:2] are set to '10' (UART0 from/to memory) or '11'
(UART1 from/to memory). If this bit is "1", DMA operates in the
memory-to-peripheral direction (e.g., to the parallel port or UART).
When it is "0", DMA operates in the peripheral-to-memory
direction.

[11] Single/Block mode This bit determines the number of external DMA requests
(nXDREQs) that are required for a DMA operation. In Single mode,
when [11] = "0", the S3C4530A requires an external DMA request
for every DMA operation.
In Block mode, when [11] = "1", the S3C4530A requires only one
external DMA request during the entire DMA operation. An entire
DMA operation is defined as the operation of DMA until the counter
value is zero.
NOTE: You should not use block mode together with demand
 mode, or single mode in conjunction with continuous
 mode.

[13:12] Transfer width These bits determine the transfer data width to be one byte, one
half-word, or one word. If you select a byte transfer operation, the
source/destination address will be incremented or decremented by
one with each transfer. Each half-word transfer increments or
decrements the address by two, and each word transfer by four.

DMA CONTROLLER S3C4530A

9-4

Table 9-3. GDMA Control Register Description (Continued)

Bit Number Bit Name Reset Value

[14] Continuous mode This bit lets the DMA controller hold the system bus until the DMA
transfer count value is zero. You must therefore manipulate this bit
carefully so that DMA transfer operations do not exceed a
acceptable time interval (as, for example, in a DRAM refresh
operation).
NOTE: You can use continuous mode together with a software
 request mode.

[15] Demand mode Setting this bit speeds up external DMA operations. When [15]="1",
the DMA transfers data when the external DMA request signal
(nXDREQ) is active. The amount of data transferred depends on
how long nXDREQ is active. When nXDREQ is active and DMA
gets the bus in Demand mode, DMA holds the system bus until the
nXDREQ signal becomes non-active. Therefore, the period of the
active nXDREQ signal should be carefully timed so that the entire
operation does not exceed an acceptable interval (as, for example,
in a DRAM refresh operation).

NOTE: In demand mode, you must clear the single/block and
 continuous mode control bits to "0".

NOTE: To ensure the reliability of DMA operations, the GDMA control register bits must be configured independently and
carefully.

S3C4530A DMA CONTROLLER

9-5

[0] Run enable (RE)
0 = Disable DMA operation 1 = Enable DMA operation

[1] Busy status (BS)
0 = DMA is idle 1 = DMA is active

[3:2] Mode selection (MODE)
00 = Software mode (memory to memory)
01 = External EXTDREQ mode (for external devices)
10 = UART0 block 11 = UART1 block

[4:] Destination address direction (DA)
0 = Increase source address 1 = Decrease source address

[5] Source address direction (SA)
0 = Increase source address 1 = Decrease source address

[6] Destination address fix (DF)
0 = Increase/decrease destination address
1 = Do not change destination address (fix)

[7] Source address fix (SF)
0 = Increase/decrease source address
1 = Do not change source address (fix)

[8] Stop interrupt enable (SI)
0 = Do not generate a stop interrupt when DMA stops
1 = Generate a stop interrupt when DMA stops

[9] Four-data burst enable (FB)
0 = Disable 4-data burst mode
1 = Enable 4-data burst mode

[10] Transfer direction (for UART0/UART1 only) (TD)
0 = UART0/UART1 to memory 1 = Memory to UART0/UART1

[11] Single/block mode (SB)
0 = One nXDREQ initiates a single DMA operation
1 = One nXDREQ initiates a whole DMA operation

[13:12] Transfer width (TW)
00 = Byte (8 bits) 01 = Half-word (16 bits)
10 = Word (32 bits) 11 = No use

[14] Continuous mode (CN)
0 = Normal operation
1 = Hold system bus until the whole DMA operation stops

[15] Demand mode (DM)
0 = Normal external DMA mode 1 = Demand mode

R
E

B
S

M
O
D
E

D
A

S
A

D
F

S
F

S
I

F
B

T
D

S
B

T
W

C
N

D
M

31 16 13 12 11 10 9 8 7 6 5 4 3 2 1 01415

Figure 9-2. GDMA Control Register

DMA CONTROLLER S3C4530A

9-6

GDMA SOURCE/DESTINATION ADDRESS REGISTERS

The GDMA source/destination address registers contain the 26-bit source/destination addresses for GDMA
channels 0 and 1. Depending on the settings you make to the GDMA control register (GDMACON), the source or
destination addresses will either remain the same, or they will be incremented or decremented.

Table 9-4. GDAMSRC0/1 and GDMADST0/1 Registers

Registers Offset R/W Description Reset Value

GDMASRC0 0xB004 R/W GDMA channel 0 source address register Undefined

GDMADST0 0xB008 R/W GDMA channel 0 destination address register Undefined

GDMASRC1 0xC004 R/W GDMA channel 1 source address register Undefined

GDMADST1 0xC008 R/W GDMA channel 1 destination address register Undefined

31 26 25 0

Source/Destination Address

[25:0] Source/destination address

Figure 9-3. GDMA Source/Destination Address Register

S3C4530A DMA CONTROLLER

9-7

DMA TRANSFER COUNT REGISTERS

The DMA transfer count registers contain the 24-bit current count value of the number of DMA transfers
completed for GDMA channels 0 and 1.

The count value is always decremented by one for each completed DMA operation, regardless of the GDMA data
transfer width or four-data burst mode.

NOTE

At the 4-data burst mode, actual transfer data size will be "Transfer Count x4."

Table 9-5. GDMACNT0/1 Registers

Registers Offset R/W Description Reset Value

GDMACNT0 0xB00C R/W GDMA channel 0 transfer count register Undefined

GDMACNT1 0xC00C R/W GDMA channel 1 transfer count register Undefined

31 24 23 0

Transfer Count

[23:0] Transfer count

Figure 9-4. DMA Transfer Count Register

DMA CONTROLLER S3C4530A

9-8

GDMA FUNCTION DESCRIPTION

The following sections provide a functional description of the GDMA controller operations.

GDMA TRANSFERS

The GDMA transfers data directly between a requester and a target. The requester and target are memory,
UART or external devices. An external device requests GDMA service by activating nXDREQ signal. A channel
is programmed by writing to registers which contain requester address, target address, the amount of data, and
other control contents. UART, external I/O, or Software(memory) can request GDMA service. UART is internally
connected to the GDMA.

STARTING/ENDING GDMA TRANSFERS

GDMA starts to transfer data after the GDMA receives service request from nXDREQ signal, UART, or Software.
When the entire buffer of data has been transferred, the GDMA becomes idle. If you want to perform another
buffer transfer, the GDMA must be reprogrammed. Although the same buffer transfer will be performed again,
the GDMA must be reprogrammed.

DATA TRANSFER MODES

Single Mode

A GDMA request (nXDREQ or an internal request) causes one byte, one half-word, or one word to be transmitted
if 4-data burst mode is disable state, or four times of transfer width if 4-data burst mode is enable state. Single
mode requires a GDMA request for each data transfer. The nXDREQ signal can be de-asserted after checking
that nXDACK has been asserted.

nXDREQ

nXDACK

RD/WR Cycle

Figure 9-5. External DMA Requests (Single Mode)

S3C4530A DMA CONTROLLER

9-9

Block Mode

The assertion of only one GDMA request (nXDREQ or an internal request) causes all of the data, as specified by
the control register settings, to be transmitted in a single operation. The GDMA transfer is completed when the
transfer counter value reaches zero. The nXDREQ signal can be de-asserted after checking that nXDACK has
been asserted.

nXDREQ

nXDACK

RD/WR Cycle

Figure 9-6. External DMA Requests (Block Mode)

Demand Mode

In demand mode, the GDMA continues transferring data as long as the GDMA request input (nXDREQ) is held
active.

nXDREQ

nXDACK

RD/WR Cycle

Figure 9-7. External DMA Requests (Demand Mode)

DMA CONTROLLER S3C4530A

9-10

tEMRS setup time

tEMRh hold time

tEMAf delay
(falling)

tEMAr delay
(rising)

5.8 ns

worst best

0 ns

28.64 ns 13.29 ns

21.9 ns 9.68 ns

nXDREQ

nXDACK

tEMRs tEMRh

tEMAf tEMAr

Min.3 cycles

mclko

Figure 9-9. External DMA Requests Detailed Timing (S3C4530A)

S3C4530A DMA CONTROLLER

9-11

CLOCK DESCRIPTION

The internal clock(In_MCLK; This is the operating clock on the S3C4530A) differs from mclko(pad out clock). For
more clear description, internal clock(In_MCLK) is used at this timing diagram. Following Figure 9-9 is the
relationship of internal clock(In_MCLK) and mclko(pad out clock). You must think one more step that is the
concern with mclko.

tEMRS setup time

tEMRh hold time

tEMAf delay
(falling)

tEMAr delay
(rising)

5.8 ns

worst best

0 ns

28.64 ns 13.29 ns

21.9 ns 9.68 ns

nXDREQ

nXDACK

tEMRs tEMRh

tEMAf tEMAr

Min.3 cycles

mclko

Figure 9-10. MCLKO and SCLK (In_MCLK)

DMA CONTROLLER S3C4530A

9-12

SINGLE AND ONE DATA BURST MODE (GDMACON[11] = 0, [9] = 0)

DREQ and DACK signals are active low.

NOTES:
1. In this region, DMA operation is independent of the number of DREQ signal pulse. For example, although
 DREQ signal pulses 3 times in the <a> region, GDMAC transfers data only one time from source address to
 destination address. Current DREQ signal is idle state(deasserted) when DACK siganl is idle state
 (high). Otherwise, GDMAC recognizes current DREQ signal as next one and transfers next data.
 I recommand that DREQ signal is deasserted when DACK signal is active.
2. is three more cycles(3+a cycles). The 'a' is internal system bus acquistion time.
3. <c> signal falls at negative edge In_MCLK clock after source data is valid.

In_MCLK

DREQ

Source
Address

Destination
Address

Source
Data

Destination
data

Recommand
Deasserted Time

DACK

Address

Data

b

c

a

Figure 9-11. Single and One Data Burst Mode Timing

S3C4530A DMA CONTROLLER

9-13

SINGLE AND FOUR DATA BURST MODE (GDMACON[11] = 0, [9] = 1)

DREQ & DACK signals are active low.
In the four data burst mode, GDMA COUNT Register(GDMA CNT) value decreases by 1 after 4 data transfer.

NOTES:
1. In this region, DMA operation is independent of the number of DREQ signal pulse. For example, although
 DREQ signal pulses 3 times in the <a> region, GDMAC transfers data only one time from source address to
 destination address. Current DREQ signal is idle state(deasserted) when DACK siganl is idle state
 (high). Otherwise, GDMAC recognizes current DREQ signal as next one and transfers next data.
 I recommand that DREQ signal is deasserted when DACK signal is active.
2. is three more cycles(3+a cycles). The 'a' is internal system bus acquistion time.
3. <c> signal falls at negative edge In_MCLK clock after source data is valid.

In_MCLK

DREQ

Source
Address

Destination
Address

Source
Data

Destination
data

Recommand
Deasserted Time

DACK

Address

Data

b

c

a

Figure 9-12. Single and Four Data Burst Mode Timing

DMA CONTROLLER S3C4530A

9-14

BLOCK AND ONE DATA BURST MODE (GDMACON[11] = 1, [9] = 0)

DREQ and DACK signals are active low.
GDMAC transfers data from DREQ signal is active till GDMA COUNT Register consumes.

In_MCLK

DREQ

Recommand
Deasserted Time

DACK

Address

Data

Source
Address

Destination
Address

Source
Address

Destination
Address

Source
Data

Destination
Data

Source
Data

Destination
Data

a

NOTE: <a> is in the block mode, GDMAC starts to operate with first DREQ signal. So in the ideal case,
GDMAC don't care the number of DREQ signal pulse. But I recommand that DREQ siganl is
deasserted when DACK signal is active state.

Figure 9-13. Block and One Data Burst Mode Timing

BLOCK AND FOUR DATA BURST (GDMACON[11] = 1, [9] = 1)

This timing diagram is the same with Single and one data burst exception four data burst.

one data burst; source address0 and source data0 → destination address0 and destination data0 →

four data burst; source address0 and source data0 → source address1 and source data1 → source address2 and
 source data2 → source address3 and source data3 → destination address0 and destination data0
 → destination address1 and destination data1 → destination address2 and destination data2 →
 destination address3 and destination data3 → source address4 and source data4 →

NOTE

In the four data burst mode, GDMA COUNT Register value decreases by 1 after 4 data transfer.

S3C4530A DMA CONTROLLER

9-15

CONTINUOUS AND ONE BURST MODE (GDMACON[14] = 1, [9] = 0)

DREQ and DACK signals are active low.

In_MCLK

DREQ

Recommand Time

DACK

Address

Data

S0 D0 S1 D1 S2 D2 S3 D3

GDMA

CNT

NOTE: S# is source address#, and D# is destination address#.

8 7 6 5 4 3 2 1 0

Figure 9-14. Continuous and One Burst Mode Timing

CONTINUOUS AND FOUR DATA BURST MODE (GDMACON[14] = 1, [9] = 1)

This timing diagram is the same with Continuous and one data burst exception four data burst.

one data burst; source address0 and source data0 → destination address0 and destination data0 → source
 address1 and source data1 → destination address1 and destination data1 → ...

four data burst; source address0 and source data0 → source address1 and source data1 → source address2 and
 source data2 → source address3 and source data3 → destination address0 and destination data0
 → destination address1 and destination data1 → destination address2 and destination data2 →
 destination address2 and destination data2 → destination address3 and destination data3 → ...

NOTE

In the four data burst mode, GDMA COUNT Register value decreases by 1 after 4 data transfer.

DMA CONTROLLER S3C4530A

9-16

DEMAND AND ONE DATA BURST MODE (GDMACON[15] = 1, [9] = 0)

DREQ and DACK signals are active low.

In_MCLK

DREQ

DACK

Address

Data

S0 D0 S1 D1 S2 D2

GDMA

CNT

NOTE: S# is source address#, and D# is destination address#.
If GDMA CNT is zero, GDMAC do not transfer data although DREQ signal asserted.

8 7 6 5 4 3 2 1 0

S3 D3

Figure 9-15. Demand and One Data Burst Mode Timing

DEMAND & FOUR DATA BURST MODE (GDMACON[15] = 1, [9] = 1)

This timing diagram is the same with Demand & one data burst exception four data burst.

one data burst; source address0 and source data0 → destination address0 and destination data0 → ...

four data burst; source address0 and source data0 → source address1 and source data1 → source address2 and
 source data2 → source address3 and source data3 → destination address0 and destination data0
 → destination address1 and destination data1 → destination address2 and destination data2 →
 destination address2 and destination data2 → destination address3 and destination data3 → ...

NOTE

If you want to use continuous mode, you must set block mode not single mode.
If you want to use demand mode, you must set single mode not block mode.

S3C4530A UART

10-1

10 SERIAL I/O (UART)

OVERVIEW

The S3C4530A UART (Universal Asynchronous Receiver/Transmitter) unit provides two independent
asynchronous serial I/O (SIO) ports. Each port can operate in interrupt-based or DMA-based mode. That is, the
UART can generate internal interrupts or DMA requests to transfer data between the CPU and the serial I/O
ports.

The most important features of the S3C4530A UART include:

— Programmable baud rates

— 32-byte Transmit FIFO and 32-byte Receive FIFO

— UART source clock selectable (Internal clock : MCLK2, External clock : EUCLK)

— Infra-red (IR) transmit/receive

— Insertion of one or two Stop bits per frame

— Selectable 5-bit, 6-bit, 7-bit, or 8-bit data transfers

— Parity checking

Each SIO unit has a baud rate generator, transmitter, receiver, and a control unit, as shown in Figure 10-1. The
baud-rate generator can be driven by the internal system clock, MCLK, or by the external clock, UCLK. Auto
Baud Rate Generator try to get the baud rate from input data in this mode. The transmitter and receiver blocks
have independent data buffer registers and data shifters. And 32-byte transmit FIFO and 32-byte receive FIFO is
also provided which include transmit and receive buffer.

In non-FIFO mode, transmit data is written first to the transmit buffer register. From there, it is copied to the
transmit shifter and then shifted out by the transmit data pin, UATXDn. Receive data is shifted in by the receive
data pin, UARXDn. It is then copied from the shifter to the receive buffer register when one data byte has been
received.

Otherwise, you can select FIFO mode. In FIFO mode, transmit and receive use transmit FIFO and receive FIFO,
instead of Tx/Rx buffer register. They are controlled by each FIFO trigger level.

The SIO control units provide software controls for mode selection, and for status and interrupt generation.

In S3C4530A, software flow control or hardware flow control can be selected according to the application.
To use modem interface signal, see chapter 12 IOPCON1 register.

UART S3C4530A

10-2

Control
and

Status
Block

BaudRate Generator
and Detector

Modem Control Signal

TxBuffer Register

Transmit FIFO
(32 Bytes)

Transmit Shift
Register

RxBuffer Register

Receiver FIFO
(32 Bytes)

Receiver Shift
Register

IR Tx Encoder

IR Rx Decoder

1
0

UART TxDn

UART RxDn

UCLK

Baud Rate
Divisor

Transmit Data

Receive Data

Transmit Control

Receive Control

Receive Status

Transmit Status

Control Character Register

UART_CLK

MCLK2

UCON: UCLK

UCON: IR

S
ys

te
m

 B
U

S

0
1

0
1

Figure 10-1. Serial I/O Block Diagram

S3C4530A UART

10-3

UART SPECIAL REGISTERS

Table 10-1. UART Special Registers Overview

Register Offset Address R/W Description Reset Value

UCON0 0xD000 R/W UART0 control register 0x00

UCON1 0xE000 R/W UART1 control register 0x00

USTAT0 0xD004 R/W UART0 status register 0xE0240

USTAT1 0xE004 R/W UART1 status register 0xE0240

UINTEN0 0xD008 R/W UART0 interrupt enable register 0xC0

UINTEN1 0xE008 R/W UART1 interrupt enable register 0xC0

UTXBUF0 0xD00C W UART0 transmit buffer register 0xXX

UTXBUF1 0xE00C W UART1 transmit buffer register 0xXX

URXBUF0 0xD010 R UART0 receive buffer register 0xXX

URXBUF1 0xE010 R UART1 receive buffer register 0xXX

UBRDIV0 0xD014 R/W UART0 baud rate divisor register 0x00

UBRDIV1 0xE014 R/W UART1 baud rate divisor register 0x00

CONCHAR1_0 0xD018 R/W UART0 control character register 1 0x00

CONCHAR1_1 0xE018 R/W UART1 control character register 1 0x00

CONCHAR2_0 0xD01C R/W UART0 control character register 2 0x00

CONCHAR2_1 0xE01C R/W UART1 control character register 2 0x00

UART S3C4530A

10-4

UART CONTROL REGISTERS

Table 10-2. UCON0 and UCON1 Registers

Registers Offset Address R/W Description Reset Value

UCON0 0XD000 R/W UART0 control register 0x00

UCON1 0xE000 R/W UART1 control register 0x00

Table 10-3. UART Control Register Description

Bit Number Bit Name Reset Value

[1:0] Transmit mode (TMODE) This two-bit value determine which function is currently able to
write Tx data to the UART transmit buffer register, UTXBUF.
00 = disable Tx mode. 01 = interrupt request
10 = GDMA ch 0 request 11 = GDMA ch 1 request

[3:2] Receive mode (RMODE) This two-bit value determine which function is currently able to
write Tx data to the UART transmit buffer register, UTXBUF.
00 = disable Rx mode. 01 = interrupt request
10 = GDMA ch 0 request 11 = GDMA ch 1 request

[4] Send Break (SBR) Set this bit to one to cause the UART to send a break. If this bit
value is zero, a break does not send. A break is defined as a
continuous Low level signal on the transmit data output with the
duration of more than one frame transmission time.

[5] Serial Clock Selection
(UCLK)

This selection bit specifies the clock source.
0 = Internal (MCLK2)
1 = External (UCLK)

[6] Auto Baud Rate Detect
(ABRD)

Setting this bit causes the UART to enter Auto Baud Rate Detect
mode. In this mode, UART try to get the baud rate from input data.

[7] Look-back mode
(LOOPB)

Setting this bit causes the UART to enter Loop-back mode. In
Loop-back mode, the transmit data output is sent High level and
the transmit buffer register, UTXBUF, is internally connected to the
receive buffer register, URXBUF.
NOTE: This mode is provided for test purposes only. For normal
operation, this bit should always be "0".

[10:8] Parity mode (PMD) The 3-bit parity mode value specifies how parity generation and
checking are to be performed during UART transmit and receive
operations:
0xx = no parity 100 = odd parity 101 = even parity
110 = parity is forced/checked as a "1"
111 = parity forced/checked as a "0".

[11] Number of Stop bits
(STB)

This bit specifies how many stop bits are used to signal end-of-
frame (EOF) :
0 = one stop bit per frame 1 = two stop bit per frame

S3C4530A UART

10-5

Table 10-3. UART Control Register Description (Continued)

Bit Number Bit Name Reset Value

[13:12] Word Length (WL) This two bit word length value indicates the number of data bits to
be transmitted or received per frame :
00 = 5bits 01 = 6bits 10 = 7bits 11 = 8bits

[14] Infra-red mode (IR) The S3C4530A UART block supports infra-red (IR) transmit and
receive operations. In IR mode, the transmit period is pulsed at a
rate of 3/16 that of the normal serial transmit rate (when the
transmit data value in the UTXBUF register is zero).
To enable IR mode operation, you set ULCON[7] to "1". Otherwise,
the UART operates in normal mode. In IR receive mode, the
receiver must detect the
3/16 pulsed period to recognize a zero value in the receiver buffer
register, URXBUF, as the IR receive data.
When this bit is "0", normal UART mode is selected. When it is "1",
infra-red Tx/Rx mode is selected.

[15] Reserved This bit should be cleared by zero.

[16] Transmit FIFO enable
(TFEN)

S3C4530A UART block support 32 byte FIFO. If this bit set to one,
transmit data moved to Tx FIFO and then sent.

[17] Receive FIFO enable
(RFEN)

S3C4530A UART block support 32 byte FIFO. If this bit set to one,
receive data moved to Rx FIFO.

[18] Transmit FIFO reset
(TFRST)

If this bit set to one, transmit FIFO will be reset. In this case, if
there is data in transmit shift register, it will be sent.

[19] Receive FIFO reset
(RFRST)

If this bit set to one, receive FIFO will be reset. In this case, if there
is data in receive shift register, it will be received.

[21:20] Transmit FIFO trigger
level (TFTL)

This two bit trigger level value determines when the transmitter
start to transmit data in 32-byte transmit FIFO :
00 = 30-byte empty/32-byte 01 = 24/32
10 = 16/32 11 = 8/32

[23:22] Receive FIFO trigger
level (TFTL)

This two bit trigger level value determines when the receiver start
to move the received data in 32-byte receive FIFO :
00 = 1-byte vaild/32-byte 01 = 8/32
10 = 18/32 28 = 8/32

[24] Data Terminal Ready to
pin (DTR)

This bit directly controls the nUADTR pin. Setting this bit to one,
the nUADTR pin goes to Low level. If you set this bit to zero, it
goes High level.

[25] Request to Send to pin
(RTS)

This bit directly controls the nUARTS pin only when the UART is
not hardware flow control mode. If this bit set to one, nUARTS pin
goes Low level. Otherwise, it remains High level.

[27:26] Reserved This bit should be cleared by zero.

UART S3C4530A

10-6

Table 10-3. UART Control Register Description (Continued)

Bit Number Bit Name Reset Value

[28] Hardware Flow Control
Enable (HFEN)

This bit determines whether UART select hardware flow control or
not. If this bit set to one, UART will control all pins concerning to
hardware flow control. This pins are nCTS, nDCD and nRTS.

[29] Software Flow Control
Enable (SFEN)

This bit determines whether UART select software flow control or
not. If this bit set to one, UART will act in software flow control.
In this mode, you have to use Control Character register.

[31:30] Reserved This bit should be cleared by zero.

S3C4530A UART

10-7

[1:0] SIO transmit mode selection (TMODE)
00 = Disable
01 = Interrupt request
10 = GDMA channel 0 request
11 = GDMA channel 1 request

[3:2] SIO receive mode selection (RMODE)
00 = Disable
01 = Interrupt request
10 = GDMA channel 0 request
11 = GDMA channel 1 request

[4] Send Break (SBR)
0 = Normal TxData send 1 = Send Break signal

[5] Serial Clock Selection (CKSL)
0 = Internal systen clock divided 2 (MCLK2)
1 = External UART clock (UCLK)

[6] Auto Baud Rate Detect (AUBD)
0 = Normal operating mode.
1 = Auto Baud Rate Detect mode

[7] Loopback mode (LOOB)
0 = Normal operating mode.
1 = Enable Loopback mode (only for test)

[10:8] Parity mode (PMD)
0xx = No parity. 100 = Odd parity.
101 = Even parity. 110 = Parity forced/checked as 1
111 = Parity forced/checked as 0

[11] Stop Bits (STB)
0 = 1 stop bit 1 = 2 stop bits.

[13:12] Word Length (WL)
00 = 5-bit 01 = 6-bit
10 = 7-bit 11 = 8-bit

[14] Infra-red mode (IR)
0 = normal operating mode. 1 = Infrared Tx/Rx mode

[15] Reserved (This bit should be cleared)

H
F
E
N

C
K
S
L

S
B
R

R
T
S

D
T
R

R
F
T
L

T
F
T
L

W
L

R
F
R
S
T

T
F
R
S
T

R
F
E
N

T
F
E
N

P
M
D

L
O
O
B

A
U
B
D

S
T
B

R
M
O
D
E

T
M
O
D
E

I
R

S
F
E
N

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

Figure 10-2. UART Control Register

UART S3C4530A

10-8

[16] Transmit FIFO Enable (TFEN)
0 = Disable Transmit FIFO
1 = Enable Transmit FIFO

[17] Receive FIFO Enable (RFEN)
0 = Disable Receive FIFO
1 = Enable Receive FIFO

[18] Tranmit FIFO Reset (TFRST)
0 = Normal operation
1 = Reset Transmit FIFO

[19] Receive FIFO Reset (RFRST)
0 = Normal operation 1 = Reset Receive FIFO

[21:20] Transmit FIFO Trigger Level (TFTL)
00 = 30/32 byte data
01 = 24/32 byte data
10 = 16/32 byte data
11 = 8/32 byte data (empty Tx data / TxFIFO depth)

[23:22] Receive FIFO Trigger Level (RFTL)
00 = 1/32 byte data
01 = 8/32 byte data
10 = 18/32 byte data
11 = 28/32 byte data (valid Rx data / RxFIFO depth)

[24] Data Terminal Ready to pin (DTR)
0 = nDTR goes high level. 1 = nDTR goes low level.

[25] Request To Send to pin (RTS)
0 = nRTS goes high level. 1 = nRTS goes low level.

[27:26] Reserved (This bit should be cleared)

[28] Hardware Flow Control Enable (HFEN)
0 = Disable Hardware Flow Control.
1 = Enable Hardware Flow Control.

[29] Software Flow Control Enable (SFEN)
0 = Disable Software Flow Control.
1 = Enable Software Flow Control.

[31:30] Reserved (This bit should be cleared)

H
F
E
N

C
K
S
L

S
B
R

R
T
S

D
T
R

R
F
T
L

T
F
T
L

W
L

R
F
R
S
T

T
F
R
S
T

R
F
E
N

T
F
E
N

P
M
D

L
O
O
B

A
U
B
D

S
T
B

R
M
O
D
E

T
M
O
D
E

I
R

S
F
E
N

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

Figure 10-2. UART Control Register (Continued)

S3C4530A UART

10-9

UART STATUS REGISTERS

Table 10-4. UCON0 and UCON1 Registers

Registers Offset Address R/W Description Reset Value

USTAT0 0XD004 R/W UART0 status register 0xE0240

USTAT1 0xE004 R/W UART1 status register 0xE0240

Table 10-5. UART Control Register Description

Bit Number Bit Name Reset Value

[0] Receive Data Valid
(RDV)

This bit automatically set to one when Receive FIFO-top or
URXBUF contains a valid data received over the serial port. The
received data can be read from Receive FIFO-top or URXBUF .
When this bit is "0", there is no valid data.
According to the current setting of the UART receive mode bits, an
interrupt or DMA request is generated when USTAT[0] is "1". In
case of UCON[3:2]='01' and UINTEN[0]=1,interrupt requested, and
UCON[3:2]='10' or '11', DMA request occurred.
You can clear this bit by reading Receive FIFO or URXBUF.

NOTE : Whether Receive FIFO top or URXBUF is depends on the
UCON[17] RFEN.

[1] Break Signal Detected
(BSD)

This bit automatically set to one to indicate that a break signal has
been received in Receive FIFO-top or URXBUF.
If the BSD interrupt enable bit, UINTEN[1], is "1", a interrupt is
generated when a break occurs.
You can clear this bit by writing '1' to this bit.

[2] Frame Error (FER) This bit automatically set to "1" whenever a frame error occurs
during a serial data receive operation. A frame error occurs when a
zero is detected instead of the Stop bit(s).
If the FER interrupt enable bit, UINTEN[2], is "1", a interrupt is
generated when a frame error occurs.
You can clear this bit by writing '1' to this bit.

[3] Parity Error (PER) This bit automatically set to "1" whenever a parity error occurs
during a serial data receive operation. If the PER interrupt enable
bit, UINTEN[3], is "1", a interrupt is generated when a parity error
occurs.
You can clear this bit by writing '1' to this bit.

UART S3C4530A

10-10

Table 10-5. UART Control Register Description (Continued)

Bit Number Bit Name Reset Value

[4] Overrun Error (OER) This bit automatically set to "1" whenever an overrun error occurs
during a serial data receive operation. When URXBUF has a
previous valid data, but a new received data is going to be written
into URXBUF during non-FIFO mode and when a new received
data is going to be written into RXFIFO with FIFO full during FIFO
mode. USTAT[4] is set to '1'.
If the OER interrupt enable bit, UINTEN[4], is "1", a interrupt is
generated when a overrun error occurs.
You can clear this bit by writing '1' to this bit.

[5] Control Character Detect
(CCD)

USTAT[5] is automatically set to "1" to indicate that a control character
has been received.

If the CCD interrupt enable bit, UINTEN[5], is "1", an interrupt is
generated when a control character is detected.
You can clear this bit by writing '1' to this bit.

[6] Data carrier Detect
(DCD)

This bit set to 1 if nUADCD pin is high at the time UART Receiver
checks a newly received data whether the data is good frame or not.

If the DCD interrupt enable bit, UINTEN[6], is "1", a interrupt is
generated when a data carrier is detected.
This bit can be used for error check bit in hardware flow control
mode.

[7] Receive FIFO Data
trigger level reach
(RFREA)

In Receive FIFO mode, this bit indicate Receive FIFO has valid data
and reach Rx trigger level. So UART request DMA to move data in
Receive FIFO. In non-FIFO mode, if URXBUF has a received data , this
bit is set to '1' also,
An interrupt or DMA request is generated when USTAT[7] is "1". In
case of UCON[3:2]='01' and UINTEN[7]=1,interrupt requested, and
UCON[3:2]='10' or '11', DMA request occurred.

You can clear this bit by reading Receive FIFO or URXBUF with a
good data. If any error, this bit is cleared by writing '1' to
corresponding error bit in USTAT register.

[8] Receive FIFO empty
(RFEMT)

This bit is only for CPU to monitor UART. When Receive FIFO is
empty, this bit is set to '1'. After reset, default value is '1' .

[9] Receive FIFO full
(RFFUL)

This bit is only for CPU to monitor UART. When Receive FIFO is
full, this bit is set to '1'. After reset, default value is '0'

[10] Receive FIFO overrun
(RFOV)

This bit is set to '1' when Receive FIFO overrun occurs during the
Receive FIFO mode.
You can clear this bit by writing '1' to this bit.

[11] Receiver in idle (RIDLE) This bit is only for CPU to monitor UART. The RxIDLE status bit
indicates that the inactive state of RxDATA.

S3C4530A UART

10-11

Table 10-5. UART Control Register Description (Continued)

Bit Number Bit Name Reset Value

[12] Receive Event time out
(E_RxTO)

During Receive FIFO mode, if there is a valid data in URXFIFO or
Receive FIFO within a promised time internal which is determined
according to WL(Word Length) , this bit is set to '1' . URXFIFO is for
non-FIFO mode and Receive FIFO is for FIFO mode.

If the E_RxTO interrupt enable bit, UINTEN[12], is "1", an interrupt
is generated when a receive event time out is detected and valid
data reside in URXBUF or Receive FIFO. You can clear this bit by
writing '1' to this bit.
NOTE : Event time = WL*4 +12
This bit set to one when the Rx data resides in RxFIFO.

[13] Reserved Not applicable.

[14] Data Set ready (DSR) This bit is only for CPU to monitor UART.
When nUADSR level is low , this bit is set. And nUADSR high, this
bit is cleared.

[15] Clear To Send (CTS) This bit is only for CPU to monitor UART.
When nUACTS level is low , this bit is set. And nUACTS high, this
bit is cleared.

[16] CTS Event occurred
(E_CTS)

This bit is set to '1' whenever nUCTS level changed.
If the E_CTS interrupt enable bit, UINTEN[16], is "1", a interrupt is
generated when a CTS event is occurred.
You can clear this bit by writing '1' to this bit.

[17] Transmit Complete (TC) This bit is only for CPU to monitor UART.
USTAT[17] is automatically set to "1" when the transmit holding
register has no valid data to transmit and when the Tx shift register
is empty. After Reset , Default value is '1'

[18] Transmit Holding
Register Empty (THE)

In Transmit FIFO mode, when Transmit FIFO is empty to trigger
level, this bit set to '1'.
In non-FIFO mode, when UTXBUF is empty without regarding Tx
shift register , this bit set to '1'.
An interrupt or DMA request is generated when USTAT[18] is "1".
In case of UCON[1:0]='01' and UINTEN[18]=1, an interrupt
requested, and UCON[1:0]='10' or '11', DMA request occurred.
You can clear this bit by writing TxDATA into UTXBUF or Transmit
FIFO.

[19] Transmit FIFO Empty
(TFEMT)

This bit is only for CPU to monitor UART.
When Transmit FIFO is empty, this bit is set to '1'.
After reset, default value is '1'

[20] Transmit FIFO full
(TFFUL)

This bit is only for CPU to monitor UART.
When Transmit FIFO is full, this bit is set to '1'.
After reset, default value is '0' .

[31:21] Reserved Not applicable.

UART S3C4530A

10-12

[0] Receive Data Valid (RDV)
0 = No valid data (Receive FIFO top or URXBUF)
1 = Valid data present (Receive FIFO top or URXBUF)

[1] Break Signal Deteced (BKD)
0 = No Break Signal (Receive FIFO top or URXBUF)
1 = Break received

[2] Frame Error (FER)
0 = No Frame Error (Receive FIFO top or URXBUF)
1 = Frame Error occured

[3] Parity Error (PER)
0 = No Frame Error (Receive FIFO top or URXBUF)
1 = Frame Error occured

[4] Overrun Error (OER)
0 = No Overrun Error (Receive FIFO top or URXBUF)
1 = Overrun Error occured

[5] Control Character Detect (CCD)
0 = No Control Character (Receive FIFO top or URXBUF)
1 = Control character present (Receive FIFO top or URXBUF)

[6] Data Carrier Detect Lost (DCDL)
0 = DCD pin (nUDCD) is Low at the recever checking time.
1 = DCD pin (nUDCD) is High at the recever checking time.

[7] Receive FIFO Data Trigger Level Reach (RFREA)
0 = No valid data in URXBUF or Not reached to trigger level.
1 = In RxFIFO mode, RxFIFO has valid data and reach trigger level.
 In non-FIFO mode, URXBUF has valid data.

[8] Receive FIFO Empty (RFEMT)
0 = Receive FIFO is not empty 1 = Receive FIFO is empty

[9] Receive FIFO Full (RFFUL)
0 = Receive FIFO is not full 1 = Receive FIFO is full

[10] Receive FIFO Overrun (OVFF)
0 = Receive FIFO is not occured
1 = Receive FIFO overrun occured

[11] Receiver in IDLE (IDLE)
0 = Receiver is in IDLE state
1 = Receiver is in active state

C
C
D

O
E
R

T
F
F
U
L

E
_
R
X
T
O

T
F
E
M
T

T
H
E

T
C

E
_
C
T
S

R
F
F
U
L

R
F
R
E
A

D
C
D
L

I
D
L
E

F
E
R

R
D
V

D
S
R

B
K
D

P
E
R

R
F
E
M
T

O
V
F
F

C
T
S

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

Figure 10-3. UART Status Register

S3C4530A UART

10-13

[12] Receive Event Time out (E_RxTO)
0 = A promised time is not elapsed during receiving.
1 = Valid data in a promised time
(NOTE : A promised time is determined according to WL (Word
Length) : Promised time = 4*WL + 12)

[14] Data Set Ready (DSR)
0 = DSR pin (nUDSR) goes High
1 = DSR pin (nUDSR) goes Low

[15] Clear To Send (CTS)
0 = CTS pin (nUCTS) goes High
1 = CTS pin (nUCTS) goes Low

[16] CTS event occured (E_CTS)
0 = CTS pin (nUCTS) has changed.
1 = CTS pin (nUCTS) keep it's level

[17] Transmit Complete (TC)
0 = Transmit is in progress.
1 = Transmit complete ; no data for Tx

[18] Transmit Holding Register Empty (THE)
0 = TxFIFO at trigger level or tranmit holding register is not empty.
1 = In TxFIFO mode, TxFIFO at trigger level is empty.
 In non-FIFO mode, transmit holding register is empty.

[19] Transmit FIFO Empty (TFEMT)
0 = Transmit FIFO is not empty 1 = Transmit FIFO is empty

[20] Transmit FIFO full (TFFUL)
0 = Transmit FIFO is not full 1 = Transmit FIFO is full

[31:21] Reserved

C
C
D

O
E
R

T
F
F
U
L

E
_
R
X
T
O

T
F
E
M
T

T
H
E

T
C

E
_
C
T
S

R
F
F
U
L

R
F
R
E
A

D
C
D
L

I
D
L
E

F
E
R

R
D
V

D
S
R

B
K
D

P
E
R

R
F
E
M
T

O
V
F
F

C
T
S

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

Figure 10-3. UART Status Register (Continued)

UART S3C4530A

10-14

Table 10-6. UCON0 and UCON1 Interrupt Enable Registers

Registers Offset Address R/W Description Reset Value

UINTEN0 0XD008 R/W UART0 Interrupt Enable register 0x00

UINTEN1 0xE008 R/W UART1 Interrupt Enable register 0x00

Table 10-7. UART Status Register Description

Bit Number Bit Name Reset Value

[0] RDVIE Receive Data Valid interrupt enable

[1] BSDIE Break Signal Detected interrupt enable

[2] FERIE Frame Error interrupt enable

[3] PERIE Parity Error interrupt enable

[4] OERIE Overrun Error interrupt enable

[5] CCDIE Control Character Detect interrupt enable

[6] DCDLIE DCD High at receiver checking time interrupt enable

[7] RFREAIE Receive FIFO Data trigger level reach interrupt enable

[9:8] Reserved

[10] OVFFIE Receive FIFO overrun interrupt enable

[11] Reserved

[12] E_RxTOIE Receive Event time out interrupt enable

[15:13] Reserved

[16] E_CTSIE CTS Event occurred interrupt enable

[17] Reserved

[18] THEIE Transmit Holding Register Empty interrupt enable

[31:19] Reserved

S3C4530A UART

10-15

[0] Receive Data Valid Interrupt Enable (RDRIE)

[1] Break Signal Detected Interrupt Enable (BKDIE)

[2] Frame Error Interrupt Enable (FERIE)

[3] Parity Error Interrupt Enable (PERIE)

[4] Overrun error Interrupt Enable (OVEIE)

[5] Control Character Detect Interrupt Enable (CCDIE)

[6] Data Carrier Detect Lost Interrupt Enable (DCDLIE)

[7] Receive FIFO Data Trigger Level Reach Interrupt Enable
 (RFREAIE)

[9:8] Reserved

[10] Receive FIFO overrun Interrupt Enable (OVFFIE)

[11] Reserved

[12] Receive Event Time out Interrupt Enable (E_RXTOIE)

[15:13] Reserved

[16] CTS event occured Interrupt Enable (E_CTSIE)

[17] Reserved

[18] Transmit Holding Register Empty Interrupt Enable (THEIE)
 This bit used in FIFO mode for interrupt enable when transmit
 FIFO empty as much transmit data trigger level.

[31:19] Reserved

C
C
D
I
E

O
E
R
I
E

E
_
R
X
T
O
I
E

T
H
E
I
E

E
_
C
T
S
I
E

R
F
R
E
A
I
E

D
C
D
L
I
E

F
E
R
I
E

R
D
V
I
E

B
K
D
I
E

P
E
R
I
E

O
V
F
F
I
E

31 0345 1230 29 28 27 26 25 23 22 20 19 15 14 10 924 21 18 17 16 13 12 11 8 7 6

Figure 10-4. UART Interrupt Enable Register

UART S3C4530A

10-16

UART TRANSMIT BUFFER REGISTER

S3C4530A has a 32-byte Transmit FIFO, and the bottom of FIFO is UTXBUF. All data to be transmitted are
stored into this register at first in FIFO mode, if next buffer has invalid data, then shifted to next buffer. But in
non-FIFO mode, a new data to transmit will be moved from UTXBUF to Tx shift register. The UART transmit
buffer registers, UTXBUF0 and UTXBUF1, contain an 8-bit data value to be transmitted over the UART channel.

Table 10-8. UXTBUF0 and UXTBUF1 Registers

Registers Offset Address R/W Description Reset Value

UTXBUF0 0XD00C W UART0 transmit buffer register 0xXX

UTXBUF1 0xE00C W UART1 transmit buffer register 0xXX

Table 10-9. UART Status Register Description

Bit Number Bit Name Reset Value

[7:0] Transmit data This field contains the data to be transmitted over the single
channel UART.
When this register is written, the transmit buffer register empty bit
in the status register, USTAT[6], should be "1". This is to prevent
overwriting of transmit data that may already be present in the
UTXBUF.
Whenever the UTXBUF is written with a new value, the transmit
register empty bit, USTAT[6], is automatically cleared to "0".

31

[7:0] Transmit data for UART

Transmit Data

07 346 58 12

Figure 10-5. UART Transmit Buffer Register

S3C4530A UART

10-17

UART RECEIVE BUFFER REGISTER

S3C4530A has a 32-byte Receive FIFO, and the bottom of FIFO is URXBUF. All data to be received are stored in this

register at first in FIFO mode, if next buffer has invalid data, then shifted to next buffer. But in non-FIFO mode, a new

received data will be moved to URXBUF. The UART receive buffer registers, URXBUF0 and URXBUF1, contain an 8-bit

data value to be received over the UART channel.

Table 10-10. UXRBUF0 and UXRBUF1 Registers

Registers Offset Address R/W Description Reset Value

URXBUF0 0XD010 R UART0 receive buffer register 0xXX

URXBUF1 0xE010 R UART1 receive buffer register 0xXX

Table 10-11. UART Transmit Register Description

Bit Number Bit Name Reset Value

[7:0] Receive data This field contains the data received over the single channel
UART. When the UART finishes receiving a data frame, the
receive data ready bit in the UART status register, USTAT[5],
should be "1". This prevents reading invalid receive data that may
already be present in the URXBUF. Whenever the URXBUF is
read, the receive data valid bit(USTAT[5]) is automatically cleared
to "0".

31

[7:0] Receive data for UART

Receive Data

07 346 58 12

Figure 10-6. UART Receive Buffer Register

UART S3C4530A

10-18

UART BAUD RATE DIVISOR REGISTER

The values stored in the baud rate divisor registers, UBRDIV0 and UBRDIV1, let you determine the serial Tx/Rx
clock rate (baud rate) as follows:

BRGOUT = (MCLK2 or UCLK) / (CNT0 + 1) / (16^CNT1) / 16

Table 10-12. UBRDIV0 and UBRDIV0 Registers

Registers Offset Address R/W Description Reset Value

UBRDIV0 0xD014 R/W UART0 baud rate divisor register 0x00

UBRDIV1 0xE014 R/W UART1 baud rate divisor register 0x00

31 19 1516

[3:0] Baud reate divisor value CNT1
xxx0 = divide by 1
xxx1 = divide by 16

[15:4] Time constant value for CNT0

CNT0

018 172030 29 28 27 26 25 24 23 22 21 121314 91011 678 345 12

CNT1

Figure 10-7. UART Baud Rate Divisor Register

S3C4530A UART

10-19

UART BAUD RATE EXAMPLES

UART BRG input clock, MCLK2 is the system clock frequency divided by 2.

If the system clock frequency is 50 MHz and MCLK2 is selected, the maximum BRGOUT output clock rate is
MCLK2/16 (= 1.5625 MHz).

UCLK is the external clock input pin for UART0, UART1. UART BRG input clock, MCLK2, UCLK can be selected
by UCCON[6] register.

SC

MCLK2
BRGOUT

UCLK 12-bit Counter Divide by 1 or 16 Divide by 16
Sample Clock

CNT0 CNT1

NOTE: CNT0 = UBTDIVn [15:4], CNT1 = UBRDIVn [3:0], SC = ULCON [6]

Figure 10-8. UART Baud Rate Generator (BRG)

Table 10-13. Typical Baud Rates Examples of UART

Baud Rates MCLK2 = 25 MHz UCLK = 33 MHz

(BRGOUT) CNT0 CNT1 Freq. Dev.(%) CNT0 CNT1 Freq. Dev.(%)

1200 1301 0 1200.1 0.0 1735 1 1200.08 0.0064

2400 650 0 2400.2 0.0 867 1 2400.15 0.0064

4800 324 0 4807.7 0.2 433 0 4800.31 0.0064

9600 162 0 9585.9 - 0.1 216 0 9600.61 0.0064

19200 80 0 19290.1 0.5 108 0 19113.15 0.45

38400 40 0 38109.8 - 0.8 53 0 38580.15 0.47

57600 26 0 57870.4 0.5 35 0 57870.37 0.47

115200 13 0 111607.1 - 3.1 17 0 115740.74 0.47

230400 6 0 223214.28 3.12 8 0 231481.48 0.47

460860 2 0 520833.34 13.01 4 0 416666.66 9.59

UART S3C4530A

10-20

UART CONTROL CHARACTER 1 REGISTER

This Control Character registers can be used for Software Flow control. In Software Flow Control mode, you should write

control characters into this registers. If not, the reset value will be used as control character. For example, even if you

want to use one control character, all control characters will have same value with it.

Table 10-14. UCC1_0 and UCC1_1 Registers

Registers Offset Address R/W Description Reset Value

CONCHAR1_0 0XD018 R/W UART0 control character 1 register 0x00

CONCHAR1_1 0xE018 R/W UART1 control character 1 register 0x00

31 19 1516

[7:0] Control Character 0
[15:8] Control Character 1
[23:16] Control Character 2
[31:24] Control Character 3

CONCHAR0

018 172030 29 28 27 26 25 24 23 22 21 121314 91011 678 345 12

CONCHAR1CONCHAR3 CONCHAR2

Figure 10-9. UART Control Character 1 Register

S3C4530A UART

10-21

UART CONTROL CHARACTER 2 REGISTER

This Control Character registers can be used for Software Flow control. In Software Flow Control mode, you should write

control characters into this registers. If not, the reset value will be used as control character. For example, even if you

want to use one control character, all control characters will have same value with it.

Table 10-15. UCC2_0 and UCC2_1 Registers

Registers Offset Address R/W Description Reset Value

UCC2_0 0XD01C R/W UART0 control character 2 register 0x00

UCC2_1 0xE01C R/W UART1 control character 2 register 0x00

31 19 1516

[7:0] Control Character 4
[15:8] Control Character 5
[23:16] Control Character 6
[31:24] Control Character 7

CONCHAR4

018 172030 29 28 27 26 25 24 23 22 21 121314 91011 678 345 12

CONCHAR5CONCHAR7 CONCHAR6

Figure 10-10. UART Control Character 2 Register

UART S3C4530A

10-22

< RECEIVER >

< TRANSMITTER >

URXBUF

INT_RXD

URXDn

Previous Receive Data

ParityData Bits (5-8) Stop
(1-2)

Start Start Data Bits

Valid Receive Data

WR_THR

INT_TXD

THRE

UTXDn ParityStart Data Bits (5-8) Stop
(1-2)

Start

Figure 10-11. Interrupt-Based Serial I/O Timing Diagram (Tx and Rx Only)

S3C4530A UART

10-23

<Transmitter >

WR_THR

nXDREQ

THRE

TxD

TxE Select DMA Mode

nXDACK

ParityStart Data Bits (5-8) Stop
(1-2)

Figure 10-12. DMA-Based Serial I/O Timing Diagram (Tx Only)

< RECEIVER >

URXBUFn

nXDREQ

URXDn

Previous Receive Data

ParityData Bits (5-8) Stop
(1-2)

Start Start Data Bits

Valid Receive Data

TxE Select DMA Mode

nXDACK

Figure 10-13. DMA-Based Serial I/O Timing Diagram (Rx Only)

UART S3C4530A

10-24

0 1 0 1 0 0 1 1 0 1

Start
Bit

Stop
BitData Bits

SIO Frame

Figure 10-14. Serial I/O Frame Timing Diagram (Normal UART)

0 1 0 1 0 0 1 1 0 1

Start
Bit

Stop
BitData Bits

IR Transmit Frame

Bit frame = T

3/16T

7/16T 6/16T

Figure 10-15. Infra-Red Transmit Mode Frame Timing Diagram

S3C4530A UART

10-25

0 1 0 1 0 0 1 1 0 1

Start
Bit

Stop
BitData Bits

IR Transmit Frame

Bit frame = T

3/16T

13/16T

Figure 10-16. Infra-Red Receive Mode Frame Timing Diagram

UART S3C4530A

10-26

[NOTE] YOU CAN REFER THE APPLICATION NOTE OF KS32C50100 ON USING THE UART, THE GENERAL ITEMS
RELATED ON IT WILL NOT BE COVERED IN THIS MANUAL.

Programming Guide For Using AutoBaudRate

The S3C4530A has the auto-baud rate block which detects the channel speed and sets the UARTBRD registers.
(see Figure 10-19). But the start bit duration is variable in the real line, so you need to change the UARTBRD
register value into the nearest corresponding baud-rate value by software.

To detect Auto-Baud Rate, the ABRD bit in the UARTCON should be set before receiving any UART Rx Data.
Before the position (1) in Fig 10-19, you should set the ABRD bit. After doing this, if the UART Rx Data coming,
the UART block will detect the start bit and calculate the duration until it meet the rising edge of URxD. Thatís
why you should set the LSB of the URXD as ë1í. After finishing the calculation, the ABRD bit will be cleared
automatically at the position (2) in Fig 10-19and the UART write the UARTBRD register as the calculated value at
the same time. But you can meet the frame error or parity error, because this value is not exact one in the real
line, you can see the start bit is shorter than the ideal one, see the Figure 10-19

URxD

start stopdata parity

URxD

start stopdata
parity

(1) (2)(3)

 (b) Real Uart Rx Data (uneven spacing)

 (a) Ideal Uart Rx Data (even spacing)

Figure 10-17. UART Rx Data (Ideal one and Real one)

S3C4530A UART

10-27

PRE-REQUISITION FOR USING AUTO BAUD RATE

First of all, if the line speed is higher than 57600 bps and you use the setting value of UARTBRD without S/W
reconfiguration, the first character can be error. Setting the nearest baud rate is our design goal. But some
application requires even the received first character without any error within the tolerant error rate. To do this,
you need to follow the pre-requisition. However, even you followed this method, it is impossible to support the
higher speed than 460K. The highest speed for auto-baud rate is the 230K bps when using the External
29.4912Mhz clock.

1) Using the External 29.4912Mhz Uart Clock.

2) Connect the UART RxD line to one of the xINTREQ[x].

3) Using the FIQ for the servicing xINTREQ[x] , this is only one FIQ, you cannot use any other FIQ.

4) Implement the UART reconfiguration which is recommended in Listing 2.

AUTO BAUD RATE INITIALIZATION

To use the Auto Baud Rate, you need to prepare the following initialize codes.

Listing 1. Auto Baud Rate Initializing code

void AutoBaudRateInitial(void)
{
 UARTCON1 |= ABRD ;
 IOPCON = (0x16 << 5*extint #n) ;
 INTMODE = 0x1 << (extint #n);
 IOPMOD = 0x3ffff;
 UARTBRD1 = 0x0; // This is used to reconfigure see the Listing 2
 INTPEND = 0x1 << (extint #n);
 Enable_Int(nEXT#n_INT);

}

After executing the above code, the UART is ready to receive the first character and set the UARTBRD value.
Because the URxD pin is connected to the xINTREQ , when the RxD is coming , the FIQ interrupt will be
generated. But in this case, you bear in mind that if URxD is transited before starting, xINTREQ Pending bit can
be set. So before enabling the External Interrupt, you should clear the Interrupt pending bit.

UART S3C4530A

10-28

HANDLING THE FIQ INTRRUPT

Even you use the FIQ mode, it takes few micro-seconds to meet the reconfiguration S/W. The faster
reconfiguration, you get the better result. For this reason, we provide the following the assembly service routine.
So you should design your low-level driver based on this code.

Listing 2. FIQ Handler for speeding up the UARTBRD reconfiguration

; This is the Limit value for the External UART clock 29.912 MHz
; If you use internal clock or the other External UART clock you should modify this values
BAUD230KLIMIT EQU 0xa0 ; BRD (0x0~0xa0 =>0x70)
BAUD115KLIMIT EQU 0x180 ; BRD (0xa0~0x180 =>0xf0)
BAUD56KLIMIT EQU 0x280 ; BRD (0x180~0x280 =>0x1f0)

BAUDVAL230K EQU 0x70 ; BRD (0x0~0xa0 =>0x70)
BAUDVAL115K EQU 0xf0 ; BRD (0xa0~0x180 =>0xf0)
BAUDVAL56K EQU 0x1f0 ; BRD (0x180~0x280 =>0x1f0)

SystemFiqHandler
ABDLOOP
 MOV r9,#0x4000000
 SUB r9,r9,#0x2000 ; if you use the UART channel A, you need to

 ; change the 0x2000 to 0x3000
 LDR r9,[r9,#0x14]
 MOV r10,r9
 CMP r9,#0x0
 BNE ABDSET
 B ABDLOOP
ABDSET
RECONFIG
 LDR r11,=BAUD230KLIMIT
 CMP r10,r11
 BGT BAUD115K
 LDR r9,= BAUDVAL230K
 MOV r10,#0x4000000
 SUB r10,r10,#0x2000
 STR r9,[r10,#0x14]
 B START_UART_RX
BAUD115K
 LDR r11,= BAUD115KLIMIT
 CMP r10,r11
 BGT BAUD56K
 LDR r9,= BAUDVAL115K
 MOV r10,#0x4000000
 SUB r10,r10,#0x2000
 STR r9,[r10,#0x14]

S3C4530A UART

10-29

 B START_UART_RX
BAUD56K
 LDR r11,= BAUD56KLIMIT
 CMP r10,r11
 BGT START_UART_RX
 LDR r9,= BAUDVAL56K
 MOV r10,#0x4000000
 SUB r10,r10,#0x2000
 STR r9,[r10,#0x14]
 B START_UART_RX

START_UART_RX
 STMFD sp!, {lr}
 BL StartUartReceive
 LDMFD sp!, {lr}
 SUBS pc, lr, #4

If the FIQ interrupt generated, wait until the UARTBRD value is set by H/W. Thatís why we initialize the
UARTBRD value as ë0í. This scheme will reduce the instructions to check ABRD bit and read UARTBRD
register. Comparing the UARTBRD with ë0í, if H/W write the UARTBRD, then start to reconfigure by S/W. We
use the simple way to reconfigure the UARTBRD. Firstly check the UART230KLIMIT, because it is impossible to
support the 460K speed. And finishing the reconfigure after 56K detection, because you can always get the
correct data with the UARTBRD by H/W with the speed slower than 56K. You can see the general registers are
not dumped into stack. We use only the banked register of FIQ mode, so the shared registers from r0~r7 is not
moved. This is a different point from the ordinary FIQ service routine. And this FIQ service routine is only for
UART BAUD reconfiguration. This means you cannot use any other FIQ interrupt.

Listing 3. StartUartReceive Funciton

void StartUartReceive(void)

{

 UARTRxIntOn(1);

 INTPEND = 0x1 << (extint #n);

 Disable_Int(nEXT#n_INT);

}

This function will set the UART Rx interrupt on to handle the received UART data. The important thing is the S/W
reconfiguration is used once for the start bit of first character. So disable the xINTREQ interrupt.

UART S3C4530A

10-30

PROGRAMMING GUIDE FOR USING UART TX/RX FIFO AND FLOW CONTROL

In S3C4530A, some functions are appended with S3C4510B device for the high-speed UART. The 32-byte Tx
and Rx FiFo are inside, which lessen the CPU load as well as data loss. Also adding the modem H/W interface
signals, which give the merit that no modification is used for RTS and CTS anymore. S/W flow control gives the
flexible serial data controls. The following descriptions are only for the different feature of S3C4530A from
S3C4510B. Refer the application note of ks32c50100 on using the UART for basic functions.

UART Initialize for S3C4530A

The UART should be initialized before getting into operation. UartInitialize(), and UartPortInit() function is used
for this initialization. In the following, describe the contents of this function.

In the high-speed operation of UART, you can select the Tx/Rx FIFO enable. Also if enabling the Software Flow
control and Hardware Flow control, it makes easy to implement the modem interface.

 When setting up UART controller, we use tUartDev structure, This has all parameter that should be setup for
normal operation. The Device_Entry structure is described in Listing 4

Listing 4. tUartDev structure for S3C4530A (UART.H)

// Definition For Uart Device
typedef struct
{

U32 Port ; // UART port number
U32 SrcClk ; // Tx/Rx clock PIN output source.
U32 BaudRate ; // UART baudrate
U32 Parity ; // UART Data format
U32 WordLength ;
U32 StopBit ;
U32 AutoBaudEn;
U32 TxFifo;
U32 RxFifo;
U32 HwFlow;
U32 SwFlow;

} tUartDev ;

 The initial value for each HDLC controller is described in source code Listing 5. After initializing the HDLC
parameter, the HdlcPortInit() function is used for initialize each port with initialization parameter value

S3C4530A UART

10-31

Listing 5. UartInitialize() function (UARTINIT.C)

// Uart Device
tUartDev UartDev[NUM_OF_UART_PORT] =
{

{
UART0, // Port
UCLK, // Clock Selection
UART_BAUDRATE, // Uart Baud Rate
Parity_no, // Num Of Parity bit
WL8, // Word Length
STB1, // Stop Bit;
ABRDDIS, // Auto-Baud rate control
TFEN, // TxFiFo Enable
RFEN, // RxFiFo Enable
HWFCDIS, // Hardware Flow Contol Enable
SWFCDIS, // Software Flow Contol Enable
&gUartRxStatus[UART0]

},{…}
}
/*
 * Function : UartInitialize
 * Description : UART controller initialize
 */
void UartInitialize(void)
{

int channel;
tUartDev *Uart;

 // Step 1. Global Interrupt disable during UART initializing.
 Disable_Int(nGLOBAL_INT);

// Step 2. Initialize each UART port
for(channel=UART0 ; channel<=UART1 ; channel++)
{

Uart = (tUartDev *)&UartDev[channel];

if (!UartPortInit(Uart))
Print("\n UART channel [%d] initialize error",channel) ;

/* Interrupt service routine setup */
SysSetUartInterrupt(channel)

}

// Step 3. Enable interrupt
 Enable_Int(nGLOBAL_INT);
}

After setup UART parameter, the main UART initialization is performed by UartPortInit() function. The detail of
Uart initialization function is described in source code Listing 6-

UART S3C4530A

10-32

Listing 6. UartPortInit() Function (UARTINIT.C)

/*
 * Function : UartPortInit
 * Description : UART Port initialize
 */
int UartPortInit(tUartDev *Uart)
{

U32 channel = Uart->Port ;

/* Initialize UART transmit & receive Queue */
TxQueInit(channel);
RxQueInit(channel);

/* UART interrupt off */
UARTRxIntOff(channel);
UARTTxIntOff(channel);

 /* default baud rate will be set. sysconf.h */
UARTBRD(channel) = GetUartBaudRate(EXTUCLK,Uart->BaudRate);

UARTCON(channel) = Uart->WordLength |\
Uart->Parity |\
Uart->StopBit ;

// Check The Source Clock
CheckAndEnableUartClk;
// Check The FiFo Mode and Enable
CheckAndEnableFiFoMode;
// Check The Flow Contol and Enable
CheckAndEnableFlowControl;
// If Autobaudrate, Start Autobaudrate.
CheckAndStartAutoBaudRate;

 UARTCON(channel) |= RxMode_Int | TxMode_Int ;

 return 1;
}

// Definnition for UART configuration

#define CheckAndEnableUartClk \
if(Uart->SrcClk) UARTCON(channel) |= UCLK ;

#define CheckAndEnableFiFoMode \
if(Uart->TxFifo) UARTCON(channel) |= TxTL16 | TFEN ;\
if(Uart->RxFifo) UARTCON(channel) |= RxTL28 | RFEN ;

#define CheckAndEnableFlowControl \
if(Uart->HwFlow)\
{\

S3C4530A UART

10-33

 UARTCON(channel) |= HFEN | DTR_LOW;\
 IOPCON |= UARTDCD(channel) | UARTCTS(channel) | UARTRTS(channel) | \

UARTRxD(channel) | UARTDSR(channel) | UARTTxD(channel) | UARTDTR(channel) ;\
}\
if(Uart->SwFlow)\
{\

UARTCHAR1(channel) = (XON1<<24) | (XON1<<16) | (XOFF3<<8) | XOFF3 ;\
UARTCHAR2(channel) = (XON3<<24) | (XON3<<16) | (XOFF1<<8) | XOFF1 ;\
UARTCON(channel) |= SFEN ;\

}

#define CheckAndStartAutoBaudRate \
if(Uart->AutoBaudEn) SetAutoBaud(channel);

According to the UartDev structure member value, UartPortInit function will initialize each UART port. And the
definitions show special settings for adequate operation in listing 6.

UART Polled I/O Functions

The get_char() is implemented for to receive data through UART channel in polling method.

If the UART receive buffer register[URXBUFn] is filled with received data, then RDV bit of UART status will be
set, and the get_char() will return the byte data of UEXBUFn. In this case, if the OER,FER and PER errors
happen, this bit should be cleared before receving next serial data,

Listing 7. Poll I/O functions (UARTLIB.C,UART.H)

#define WaitRcver(channel) \
while(!(UARTSTAT(channel) & RDV)) UARTSTAT(channel) = OER | FER | PER;

char get_char(uint32 channel)
{
 WaitRcver(channel);
 return UARTRXB(channel);
}

UART Functions for Interrupt

The UART interrupt service routines for data transferring are already registered at interrupt vector table at UART
initialize function, UartInitialize(), is called. (Listing 5). S3C4530A has the UARTINTEN register, which is mainly
different from S3C4510B. So the UART Tx/Rx interrupt Mask bit is used for handling the interrupt enable and
disble in case of S3C4510B. But UARTINTEN register bits are used for S3C4530A. You can see it in lising. 8.

UART S3C4530A

10-34

Listing 8. (UARTINIT.C)

/*****************************/
/* interrupt servive routine */
/*****************************/
void UARTTxIntOn(uint32 channel)
{

U32 uart_tx_int ;

uart_tx_int = (channel)? nUART1_TX_INT : nUART0_TX_INT ;

UARTINTEN(channel) |= TH_emptyIE;
Enable_Int(uart_tx_int);

}

void UARTRxIntOn(uint32 channel)
{

U32 uart_rx_int ;

uart_rx_int = (channel)? nUART1_RX_ERR_INT : nUART0_RX_ERR_INT ;

/* Enable Interrupt */
if(UARTCON(channel) & RFEN){

UARTINTEN(channel) &= ~RDVIE ;
UARTINTEN(channel) = RF_TLIE | Rx_E_TOIE ;

}
else {

UARTINTEN(channel) = RDVIE | BSDIE | FERIE | PERIE | OERIE |\
CCDIE | RF_TLIE | RF_overIE | Rx_E_TOIE ;

}

Enable_Int(uart_rx_int);
}

void UARTTxIntOff(uint32 channel)
{

U32 uart_tx_int ;

uart_tx_int = (channel)? nUART1_TX_INT : nUART0_TX_INT ;

UARTINTEN(channel) &= ~TH_emptyIE;
Enable_Int(uart_tx_int);

}

void UARTRxIntOff(uint32 channel)
{

U32 uart_rx_int ;

uart_rx_int = (channel)? nUART1_RX_ERR_INT : nUART0_RX_ERR_INT ;

Disable_Int(uart_rx_int);
}

S3C4530A UART

10-35

UART Functions for Interrupt Service Routine

In non-FIFO mode, it is easy to handle the interrupt service. If the Tx interrupt happen, it should be TH_empty
interrupt. By writing the data into UARTTxH(holding register) , you can send data through UART Tx line. As the
same way, if the Rx interrupt happen, just check whether the data is received well or not. (RDV,FER,PER,OER)
And then process the next procedure for each case.

In FIFO mode, the service routine is somewhat complicated. If the Tx interrupt happen, that means Transmit
FIFO is empty to trigger level. So we need to write the data at the extent to the Tx buffer size. When buffering
the Tx data, you need to monitor whether the Tranmit FIFO full or not. Interrupt Service Routine meets the null
data or FIFO full, then exit the interrupt service routine. If the Rx interrupt happen, the buffered data has their
own Receive Status. Therefore, until the RxFIFO empty monitored, read the Status and Data and process
corresponding procedure. Also if it meet the RxFIFO full , give the Send Break to the peer count.

Listing 9. (UARTISR.C)

void UartTxIsr(uint32 channel)
{

U32 TxStatus ;

TxStatus = UARTSTAT(channel) ;

if (TxStatus & (TH_empty | TF_empty))
UARTTXH(channel)=TxQueRead(channel);

else
UARTTxIntOff(channel);

}

void UartTxFiFoIsr(uint32 channel)
{

U32 TxStatus ;
U32 i ;
U32 depth;
U32 data;
TxStatus = UARTSTAT(channel) ;

if (TxStatus & (TH_empty | TF_empty))
{
 depth = GetTxFIFOsize(channel);

for(i=0 ; i<depth ; i++) {
data=TxQueRead(channel);
if((data == NULL) || (TxStatus & TF_full)) break;
else

UARTTXH(channel) = data;
}

}
}

void UartRxErrIsr(uint32 channel)
{

UART S3C4530A

10-36

U32 IntUartStatus ;
tURxStatus *RxStatus;
IntUartStatus = UARTSTAT(channel) ;

if (IntUartStatus & RDV){
RxQueWrite(UARTRXB(channel),channel) ;

}
else {

CHK_CLR_USTAT(BSD);
CHK_CLR_USTAT(FER);
CHK_CLR_USTAT(PER);
CHK_CLR_USTAT(OER);
CHK_CLR_USTAT(CCD);

#ifdef DEBUG_UART
UPDATE_UART_RX_STATUS(OP_MODE_CPU)

#endif
}

}

void UartRxFiFoErrIsr(uint32 channel)
{

U32 IntUartStatus ;
uint32 depth;
U32 i ;
tURxStatus *RxStatus;

depth = GetRxFIFOsize(channel);

for(i=0;i<depth;i++){

IntUartStatus = UARTSTAT(channel) ;

if(IntUartStatus & RF_empty) break;

if(IntUartStatus & RDV){

if(RxQueWrite(UARTRXB(channel),channel) == ERROR) break;
} else {

// Send Break When overflowing
if(IntUartStatus & RF_full)

UARTCON(channel) |= SendB ;

CHK_CLR_USTAT(BSD);
CHK_CLR_USTAT(FER);
CHK_CLR_USTAT(PER);
CHK_CLR_USTAT(OER);
CHK_CLR_USTAT(CCD);

#ifdef DEBUG_UART
UPDATE_UART_RX_STATUS(OP_MODE_CPU)

#endif

S3C4530A UART

10-37

}
}
CHK_CLR_USTAT(RF_over);
CHK_CLR_USTAT(Rx_E_TO);

}

Listing 10. (UARTINIT.C)

uint32 GetTxFIFOsize(uint32 channel)
{

uint32 index;
switch((UARTCON(channel) & TxTLM))
{

case TxTL30 : index = 30; break;
case TxTL24 : index = 24; break;
case TxTL16 : index = 16; break;
case TxTL8 : index = 8; break;

}
return(index);

}

uint32 GetRxFIFOsize(uint32 channel)
{

uint32 index;
switch((UARTCON(channel) & RxTLM))
{

case RxTL1 : index = 1; break;
case RxTL8 : index = 8; break;
case RxTL18 : index = 18; break;
case RxTL28 : index = 28; break;

}
return(index);

}

UART S3C4530A

10-38

NOTES

S3C4530A 32-BIT TIMERS

11-1

11 32-BIT TIMERS

OVERVIEW

The S3C4530A has two 32-bit timers. These timers can operate in interval mode or in toggle mode. The output
signals are TOUT0 and TOUT1, respectively.

You enable or disable the timers by setting control bits in the timer control register, TCON. An interrupt request is
generated whenever a timer count-out (down count) occurs.

INTERVAL MODE OPERATION

In interval mode, a timer generates a one-shot pulse of a preset timer clock duration whenever a time-out occurs.
This pulse generates a time-out interrupt that is directly output at the timer's configured output pin (TOUTn). In
this case, the timer frequency monitored at the TOUTn pin is calculated as:

fTOUT = fMCLK / Timer data value

TOGGLE MODE OPERATION

In toggle mode, the timer pulse continues to toggle whenever a time-out occurs. An interrupt request is generated
whenever the level of the timer output signal is inverted (that is, when the level toggles). The toggle pulse is
output directly at the configured output pin.

Using toggle mode, you can achieve a flexible timer clock range with 50% duty. In toggle mode, the timer
frequency monitored at the TOUTn pin is calculated as follows:

fTOUT = fMCLK / (2 * Timer data value)

fTOUT

fTOUT

Time-out Time-out Time-out

Interval Mode

Toggle Mode
(Initial TOUTn is 0)

Figure 11-1. Timer Output Signal Timing

32-BIT TIMERS S3C4530A

11-2

TIMER OPERATION GUIDELINES

The block diagram in Figure 11-2 shows how the 32-bit timers are configured in the S3C4530A. The following
guidelines apply to timer functions.

— When a timer is enabled, it loads a data value to its count register and begins decrement the count register
value.

— When the timer interval expires, the associated interrupt is generated. The base value is then reloaded and
the timer continues decrement its count register value.

— If a timer is disabled, you can write a new base value into its registers.

— If the timer is halted while it is running, the base value is not automatically re-loaded.

fMCLK 32-Bit Timer Count
Register (TCNTn)
[Down Counter]

32-Bit Timer Data
Register (TDATAn)

Pulse
Generator

TMOD.TEn

TMOD.TMDn
TMOD.TCLRn

PND

INTPND and
INTMSK

Interrupt
Request

Port 16, Port 17
Data Out

IOPCON.TOENn

Auto
Re-load

TOUTn

Figure 11-2. 32-Bit Timer Block Diagram

S3C4530A 32-BIT TIMERS

11-3

TIMER MODE REGISTER

The timer mode register, TMOD, is used to control the operation of the two 32-bit timers. TMOD register settings
are described in Figure 11-3.

Table 11-1. TMOD Register

Register Offset Address R/W Description Reset Value

TMOD 0x6000 R/W Timer mode register 32íh00000000

[0] Timer 0 enable (TE0)
0 = Disable timer 0
1 = Enable timer 0

[1] Timer 0 mode selection (TMD0)
0 = Interval mode
1 = Toggle mode

[2] Timer 0 initial TOUT0 value (TCLR0)
0 = Initial TOUT0 is 0 in toggle mode
1 = Initial TOUT0 is 1 in toggle mode

[3] Timer 1 enable (TE1)
0 = Disable timer 1
1 = Enable timer 1

[4] Timer 1 mode selection (TMD1)
0 = Interval mode
1 = Toggle mode

[5] Timer 1 initial TOUT1 value (TCLR1)
0 = Initial TOUT1 is 0 in toggle mode
1 = Initial TOUT1 is 1 in toggle mode

31 06 345 12

T
D
M
0

T
E
1

T
E
0

T
D
M
1

T
C
L
R
1

T
C
L
R
0

Figure 11-3. Timer Mode Register (TMOD)

32-BIT TIMERS S3C4530A

11-4

TIMER DATA REGISTERS

The timer data registers, TDATA0 and TDATA1, contain a value that specifies the time-out duration for each
timer. The formula for calculating the time-out duration is: (Timer data + 1) cycles.

Table 11-2. TDATA0 and TDATA1 Registers

Register Offset Address R/W Description Reset Value

TDATA0 0x6004 R/W Timer 0 data register 0x00000000

TDATA1 0x6008 R/W Timer 1 data register 0x00000000

31

[31:0] Timer 0/1 data value

Receive Data

0

Figure 11-4. Timer Data Registers (TDATA0, TDATA1)

TIMER COUNT REGISTERS

The timer count registers, TCNT0 and TCNT1, contain the current timer 0 and 1 count value, respectively, during
normal operation.

Table 11-3. TCNT0 and TCNT1 Registers

Register Offset Address R/W Description Reset Value

TCNT0 0x600C R/W Timer 0 counter register 0xFFFFFFFF

TNCT1 0x6010 R/W Timer 1 counter register 0xFFFFFFFF

31

[31:0] Timer 0/1 count value

Timer Count

0

Figure 11-5. Timer Counter Registers (TCNT0, TCNT1)

S3C4530A I/O PORTS

12-1

12 I/O PORTS

OVERVIEW

The S3C4530A has 26 programmable I/O ports. You can configure each I/O port to input mode, output mode, or
special function mode. To do this, you write the appropriate settings to the IOPMOD and IOPCON0/1 registers.
User can set filtering for the input ports using IOPCON0/1 registers.

The port0 and port1 can be determined by the IOPMOD register. But port[11:8] can be used as xINTREQ[3:0],
port[13:12] as nXDREQ[1:0], port[15:14] as nXDACK[1:0], port[16] as TOUT0, port[17] as TOUT1 depending on
the settings in IOPCON0 register. The port[7:2] and port[25:18] can be operated UART signal by IOPCON1
register. The port[7:2] default function is general I/O port and port[25:18] default function is UART port. These
ports can be controlled by IOPCON1 register.

S
Y

S
T

E
M

 B
U

S

Output
Latch

Input
Latch

Active
On/Off &

Edge
Detection

IOPDATA
(Read)

Interrupt or DMA
Request IOPCON

Filter
On/Off

IOPCON

IOPDATA
(Write)

Alternate Functions
IOPCON

VDDIOPMOD

Port11/xINTREQ3
Port12/nXDREQ0
Port13/nXDREQ1
Port14/nXDACK0
Port15/nXDACK1
Port16/TOUT0
Port17/TOUT1
Port25/DTR1

Port0 - Port1
Port2/DCD0
Port3/CTS0

Figure 12-1. I/O Port Function Diagram

I/O PORTS S3C4530X RISC MICROCONTROLLER

12-2

I/O PORT SPECIAL REGISTERS

Four registers control the I/O port configuration: IOPMOD, IOPCON0/1, and IOPDATA. These registers are
described in detail below.

I/O PORT MODE REGISTER (IOPMOD)

The I/O port mode register, IOPMOD, is used to configure the port pins, P25-P0.

NOTE

If the port is used for a special function such as an external interrupt request, an external DMA request,
or acknowledge signal or timer outputs or UART signal, its mode is determined by the IOPCON0/1
register, not by IOPMOD.

Table 12-1. IOPMOD Register

Register Offset Address R/W Description Reset Value

IOPMOD 0x5000 R/W I/O port mode register 0x00000000

31 1516

[0] I/O port mode bit for port 0
0 = Input
1 = Output

[1] I/O port mode bit for port 1
0 = Input
1 = Output

[2] I/O port mode bit for port 2
0 = Input
1 = Output

[25] I/O port mode bit for port 17
0 = Input
1 = Output

X

018 17 121314 91011 678 345 12

XXXX XXXXX XXXXX XXX

2425

X

212223 1920

XXX XXXX

Figure 12-2. I/O Port Mode Register (IOPMOD)

S3C4530A I/O PORTS

12-3

I/O PORT CONTROL REGISTER (IOPCON)

The I/O port control register, IOPCON, is used to configure the port pins, P17-P8.

NOTE

If the port is used for a special function such as an external interrupt request, an external DMA request,
or acknowledge signal and timer outputs, its mode is determined by the IOPCON register, not by
IOPMOD.

For the special input ports, S3C4530A provides 3-tap filtering. If the input signal levels are same for the three
system clock periods, that level is taken as input for dedicated signals such as external interrupt requests and
external DMA requests.

 Table 12-2. IOPCON Register

Register Offset Address R/W Description Reset Value

IOPCON0 0x5004 R/W I/O port control register 0x00000000

I/O PORTS S3C4530X RISC MICROCONTROLLER

12-4

[4:0] Control external interrupt request 0 input for port 8 (xIRQ0)
[4] Port 8 for xINTREQ0
 0 = Disable 1 = Enable
[3] 0 = Active Low 1 = Active High
[2] 0 = Filtering off 1 = Filtering on
[1:0] 00 = Level detection 01 = Rising edge detection
 10 = Falling edge detection 11 = Both edge detection

[9:5] Control edternal interruot request 1 input for port 9 (xIRQ1)
(See control external interrupt request 1.)

[14:10] Control external interrupt request 2 input for port 10 (xIRQ2)
(See control external interrupt request 2.)

[19:15] Control external interrupt request 3 input for port 10 (xIRQ3)
(See control external interrupt request 3.)

[22:20] Control external DMA request 0 input for port 12 (DRQ0)
[22] Port 12 for nXDREQ0
 0 = Disable 1 = Enable
[21] 0 = Filtering off 1 = Filtering on
[20] 0 = Active Low 1 = Active High

[25:23] Control external DMA request 1 input for port 13 (DRQ1)
[25] Port 13 for nXDREQ1
 0 = Disable 1 = Enable
[24] 0 = Filtering off 1 = Filtering on
[23] 0 = Active Low 1 = Active High

[27:26] Control external DMA acknowledge 0 output for port 14 (DAK0)
[27] Port 14 for nXDACK0
 0 = Disable 1 = Enable
[26] 0 = Active Low 1 = Active High

[29:28] Control external DMA acknowledge 1 output for port 15 (DAK1)
[29] Port 15 for nXDACK1
 0 = Disable 1 = Enable
[28] 0 = Active Low 1 = Active High

[30] Control Timeout 0 for port 16 (TOEN0)
 0 = Disable 1 = Enable

[31] Control Timeout 1 for port 17 (TOEN1)
 0 = Disable 1 = Enable

31 0345 12

D
A
K
1

T
O
E
N
1

30 29 28 27 26 25 23 22 20 19 15 14 10 9

T
O
E
N
0

D
A
K
0

D
R
Q
1

D
R
Q
0

X
I
R
Q
3

X
I
R
Q
2

X
I
R
Q
1

X
I
R
Q
1

Figure 12-3. I/O Port Control Register 0 (IOPCON0)

S3C4530A I/O PORTS

12-5

I/O PORT DATA REGISTER (IOPDATA)

The I/O port data register, IOPDATA, contains one-bit read values for I/O ports that are configured to input mode
and one-bit write values for ports that are configured to output mode. Bits[25:0] of the 26-bit I/O port register
value correspond directly to the 26 port pins, P25-P0.

Table 12-3. IOPDATA Register

Register Offset Address R/W Description Reset Value

IOPDATA 0x5008 R/W I/O port data register Undefined

[25:0] I/O port read/write values for ports 25 - 0 (P25 - P0)

NOTE: The values in the I/O port data register reflect the signal level on the
respective I/O port pins. When the ports are configured to output mode,
the bit reflects the ports write value. When the port is configured to input
mode, the bit reflects the ports read value.

31 9 8 7 6 5 4 3 2 1 0
P
1

P
0

P
10

P
9

P
8

P
7

P
6

P
5

P
4

P
3

P
2

18 17 16 15 14 13 12 11 10
P
17

P
16

P
15

P
14

P
13

P
12

P
11

25 24 23 22 21 20 19
P
23

P
22

P
21

P
20

P
19

P
18

P
24

P
25

Figure 12-4. I/O Port Data Register (IOPDATA)

I/O PORTS S3C4530X RISC MICROCONTROLLER

12-6

I/O PORT CONTROL REGISTER (IOPCON1)

The I/O port control register 1, IOPCON1, is used to configure the port pins, P7-P2 and P25-P18.
You can configure UART modem interface signals or I/O port by this register set.

NOTE

If the port is used for a UART function, its mode can be determined by the IOPCON1 register.

This register default value, P7-P2 is zero, that is I/O port function and P25-P18 is one that is UART function.

Table 12-4. IOPCON1 Register

Register Offset Address R/W Description Reset Value

IOPCON1 0x500C R/W I/O port data register 0x03fc0000

S3C4530A I/O PORTS

12-7

31

[1:0] Reserved

[2] UART DCD0 or port2
0 = port 2
1 = DCD0

[3] UART CTS0 or port3
0 = port 3
1 = CTS0

[4] UART RTS0 or port4
0 = port 4
1 = RTS0

[5] UART DCD1 or port5
0 = port 5
1 = DCD1

[6] UART CTS1 or port6
0 = port 6
1 = CTS1

[7] UART RTS1 or port7
0 = port 7
1 = RTS1

[17:8] Reserved

XXXXX X

222325 24 192021 1516 018 17 121314 91011 678 345 12

X XXXXX XX

[18] port18 or UART RxD0
0 = port 18
1 = RxD0

[19] port19 or UART DSR0
0 = port 19
1 = DSR0

[20] port20 or UART TxD0
0 = port 20
1 = TxD0

[21] port21 or UART DTR0
0 = port 21
1 = DTR0

[22] port22 or UART RxD1
0 = port 22
1 = RxD1

[23] port23 or UART DSR1
0 = port 23
1 = DSR1

[24] port24 or UART TxD1
0 = port 24
1 = TxD1

[25] port25 or UART DTR1
0 = port 25
1 = DTR1

Figure 12-5. I/O Port Control Register 1 (IOPCON1)

I/O PORTS S3C4530X RISC MICROCONTROLLER

12-8

IOPCON.xIRQn [1:0] (= 00)

IOPCON.xIRQn [1:0] (= 01)

Internal INTREQn

xINTREQn

MCLK

IOPCON.xIRQn [1:0] (= 10)

IOPCON.xIRQn [1:0] (= 11)

Figure 12-6. External Interrupt Request Timing (Active High)

IOPCON.xIRQn [1:0] (= 00)

IOPCON.xIRQn [1:0] (= 01)

Internal INTREQn

xINTREQn

MCLK

IOPCON.xIRQn [1:0] (= 10)

IOPCON.xIRQn [1:0] (= 11)

Figure 12-7. External Interrupt Request Timing (Active Low)

S3C4530A INTERRUPT CONTROLLER

13-1

13 INTERRUPT CONTROLLER

OVERVIEW

The S3C4530A interrupt controller has a total of 21 interrupt sources. Interrupt requests can be generated by
internal function blocks and at external pins.

The ARM7TDMI core recognizes two kinds of interrupts: a normal interrupt request (IRQ), and a fast interrupt
request (FIQ). Therefore all S3C4530A interrupts can be categorized as either IRQ or FIQ. The S3C4530A
interrupt controller has an interrupt pending bit for each interrupt source.

Four special registers are used to control interrupt generation and handling:

— Interrupt priority registers. The index number of each interrupt source is written to the pre-defined interrupt
priority register field to obtain that priority. The interrupt priorities are pre-defined from 0 to 20.

— Interrupt mode register. Defines the interrupt mode, IRQ or FIQ, for each interrupt source.

— Interrupt pending register. Indicates that an interrupt request is pending. If the pending bit is set, the interrupt
pending status is maintained until the CPU clears it by writing a "1" to the appropriate pending register. When
the pending bit is set, the interrupt service routine starts whenever the interrupt mask register is "0". The
service routine must clear the pending condition by writing a "1" to the appropriate pending bit. This avoids
the possibility of continuous interrupt requests from the same interrupt pending bit.

—-- Interrupt mask register. Indicates that the current interrupt has been disabled if the corresponding mask
bit is "1". If an interrupt mask bit is "0" the interrupt will be serviced normally. If the global mask bit (bit 21) is
set to "1", no interrupts are serviced. However, the source's pending bit is set if the interrupt is generated.
When the global mask bit has been set to "0", the interrupt is serviced.

INTERRUPT CONTROLLER S3C4530A

13-2

INTERRUPT SOURCES

The 21 interrupt sources in the S3C4530A interrupt structure are listed, in brief, as follows:

Table 13-1. S3C4530A Interrupt Sources

Index Values Interrupt Sources

[20] I2C-bus interrupt

[19] Ethernet controller MAC Rx interrupt

[18] Ethernet controller MAC Tx interrupt

[17] Ethernet controller BDMA Rx interrupt

[16] Ethernet controller BDMA Tx interrupt

[15] HDLC channel B Rx interrupt

[14] HDLC channel B Tx interrupt

[13] HDLC channel A Rx interrupt

[12] HDLC channel A Tx interrupt

[11] Timer 1 interrupt

[10] Timer 0 interrupt

[9] GDMA channel 1 interrupt

[8] GDMA channel 0 interrupt

[7] UART 1 receive and error interrupt

[6] UART 1 transmit interrupt

[5] UART 0 receive and error interrupt

[4] UART 0 transmit interrupt

[3] External interrupt 3

[2] External interrupt 2

[1] External interrupt 1

[0] External interrupt 0

S3C4530A INTERRUPT CONTROLLER

13-3

INTERRUPT CONTROLLER SPECIAL REGISTERS

INTERRUPT MODE REGISTER

Bit settings in the interrupt mode register, INTMOD, specify if an interrupt is to be serviced as a fast interrupt
(FIQ) or a normal interrupt (IRQ).

Table 13-2. INTMOD Register

Register Offset Address R/W Description Reset Value

INTMOD 0x4000 R/W Interrupt mode register 0x00000000

31 1516

[20:0] Interrupt mode bits

NOTE: Each of the 21 bits in the interrupt mode enable register, INTMOD,
corresponds to an interrupt source. When the source interrupt mode bit
is set to 1, the interrupt is processed by the ARM7TDMI core in FIQ
(fast interrupt) mode. Otherwise, it is processed in IRQ mode (normal
interrupt). The 21 interrupt sources are mapped as follows:

[20] I2C interrupt
[19] Ethernet controller MAC Rx interrupt
[18] Ethernet controller MAC Tx interrupt
[17] Ethernet controller BDMA Rx interrupt
[16] Ethernet controller BDMA Tx interrupt
[15] HDLC channel B Rx interrupt
[14] HDLC channel B Tx interrupt
[13] HDLC channel A Rx interrupt
[12] HDLC channel A Tx interrupt
[11] Timer 1 interrupt
[10] Timer 0 interrupt
[9] GDMA channel 1 interrupt
[8] GDMA channel 0 interrupt
[7] UART1 receive and error interrupt
[6] UART1 transmit interrupt
[5] UART0 receive and error interrupt
[4] UART0 transmit interrupt
[3] External interrupt 3
[2] External interrupt 2
[1] External interrupt 1
[0] External interrupt 0

X

018 17 121314 91011 678 345 12

XXXX XXXXX XXXXX XXX

1921 20

XXXINTMOD

Figure 13-1. Interrupt Mode Register (INTMOD)

INTERRUPT CONTROLLER S3C4530A

13-4

INTERRUPT PENDING REGISTER

The interrupt pending register, INTPND, contains interrupt pending bits for each interrupt source. This register
has to be cleared at the top of an interrupt service routine.

Table 13-3. INTPND Register

Register Offset Address R/W Description Reset Value

INTPND 0x4004 R/W Interrupt pending register 0x00000000

31 1516

[20:0] Interrupt pending bits

NOTE: Each of the 21 bits in the interrupt mode pending register, INTPND,
corresponds to an interrupt source. When an interrupt request is
generated, its pending bit is set to 1. The service routine must then
clear the pending condition by writing a 1 to the apropriate pending
bit at start. The 21 interrupt sources are mapped as follows:

[20] I2C interrupt
[19] Ethernet controller MAC Rx interrupt
[18] Ethernet controller MAC Tx interrupt
[17] Ethernet controller BDMA Rx interrupt
[16] Ethernet controller BDMA Tx interrupt
[15] HDLC channel B Rx interrupt
[14] HDLC channel B Tx interrupt
[13] HDLC channel A Rx interrupt
[12] HDLC channel A Tx interrupt
[11] Timer 1 interrupt
[10] Timer 0 interrupt
[9] GDMA channel 1 interrupt
[8] GDMA channel 0 interrupt
[7] UART1 receive and error interrupt
[6] UART1 transmit interrupt
[5] UART0 receive and error interrupt
[4] UART0 transmit interrupt
[3] External interrupt 3
[2] External interrupt 2
[1] External interrupt 1
[0] External interrupt 0

X

018 17 121314 91011 678 345 12

XXXX XXXXX XXXXX XXX

1921 20

XXXINTPND

Figure 13-2. Interrupt Pending Register (INTPND)

S3C4530A INTERRUPT CONTROLLER

13-5

INTERRUPT MASK REGISTER

The interrupt mask register, INTMSK, contains interrupt mask bits for each interrupt source.

Table 13-4. INTMSK Register

Register Offset Address R/W Description Reset Value

INTMSK 0x4008 R/W Interrupt mask register 0x003FFFFF

31 1516

[20:0] Individual interrupt mask bits

NOTE: Each of the 21 bits in the interrupt mask register, INTMSK,
(except for the global mask bit, G) corresponds to an interrupt source.
When a source interrupt mask bit is 1, the interrupt is not serviced by the
CPU when the corresponding interrupt request is generated. If the mask
bit is 0, the interrupt is serviced upon request. And if global mask bit
(bit 21) is 1, no interrupts are serviced. (However, the source pending
bit is set whenever the interrupt is generated.) After the global mask bit
is cleared, the interrupt is serviced. The 21 interrupt sources are mapped
as follows:

[20] I2C interrupt
[19] Ethernet controller MAC Rx interrupt
[18] Ethernet controller MAC Tx interrupt
[17] Ethernet controller BDMA Rx interrupt
[16] Ethernet controller BDMA Tx interrupt
[15] HDLC channel B Rx interrupt
[14] HDLC channel B Tx interrupt
[13] HDLC channel A Rx interrupt
[12] HDLC channel A Tx interrupt
[11] Timer 1 interrupt
[10] Timer 0 interrupt
[9] GDMA channel 1 interrupt
[8] GDMA channel 0 interrupt
[7] UART1 receive and error interrupt
[6] UART1 transmit interrupt
[5] UART0 receive and error interrupt
[4] UART0 transmit interrupt
[3] External interrupt 3
[2] External interrupt 2
[1] External interrupt 1
[0] External interrupt 0

[21] Global interrupt mask bit
0 = Enable interrupt requests
1 = Disable all interrupt requests

X

018 17 121314 91011 678 345 12

XXXX XXXXX XXXXX XXX

1921 20

XXGINTMSK

Figure 13-3. Interrupt Mask Register (INTMSK)

INTERRUPT CONTROLLER S3C4530A

13-6

INTERRUPT PRIORITY REGISTERS

The interrupt priority registers, INTPRI0–INTPRI5, contain information about which interrupt source is assigned to
the pre-defined interrupt priority field. Each INTPRIn register value determines the priority of the corresponding
interrupt source. The lowest priority value is priority 0, and the highest priority value is priority 20.

The index value of each interrupt source is written to one of the above 21 positions (see Figure 13-4). The
position value then becomes the written interrupt's priority value. The index value of each interrupt source is
listed in Table 13-1.

Table 13-5. Interrupt Priority Register Overview

Register Offset Address R/W Description Reset Value

INTPRI0 0x400C R/W Interrupt priority register 0 0x03020100

INTPRI1 0x4010 R/W Interrupt priority register 1 0x07060504

INTPRI2 0x4014 R/W Interrupt priority register 2 0x0B0A0908

INTPRI3 0x4018 R/W Interrupt priority register 3 0x0F0E0D0C

INTPRI4 0x401C R/W Interrupt priority register 4 0x13121110

INTPRI5 0x4020 R/W Interrupt priority register 5 0x00000014

INTPRI0
30 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0192021222324252627282931

0 0 0 0 0 0 0 0 0 0 0 0 0000 0 00 0 00 0 00 0 0

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

PRIORITY3

PRIORITY7

PRIORITY11

PRIORITY15

PRIORITY19

PRIORITY2

PRIORITY6

PRIORITY10

PRIORITY14

PRIORITY18

PRIORITY1

PRIORITY5

PRIORITY9

PRIORITY13

PRIORITY17

PRIORITY0

PRIORITY4

PRIORITY8

PRIORITY12

PRIORITY16

PRIORITY20

INTPRI1

INTPRI2

INTPRI3

INTPRI4

INTPRI5

High Priority Low Priority

Low
Priority

High
Priority

Figure 13-4. Interrupt Priority Register (INTPRIn)

S3C4530A INTERRUPT CONTROLLER

13-7

INTERRUPT OFFSET REGISTER

The interrupt offset register, INTOFFSET, contains the interrupt offset address of the interrupt, which has the
highest priority among the pending interrupts. The content of the interrupt offset address is "bit position value of
the interrupt source << 2".

If all interrupt pending bits are "0" when you read this register, the return value is "0x00000054".

This register is valid only under the IRQ or FIQ mode in the ARM7TDMI. In the interrupt service routine, you
should read this register before changing the CPU mode.

INTOSET_FIQ/INTOSET_IRQ register can be used to get the highest priority interrupt without CPU mode
change. Other usages are similar to INTOFFSET.

NOTE

If the lowest interrupt priority (priority 0) is pending, the INTOFFSET value will be "0x00000000". The
reset value will, therefore, be changed to "0x00000054" (to be differentiated from interrupt pending
priority 0).

Table 13-6. INTOFFSET Register

Register Offset Address R/W Description Reset Value

INTOFFSET 0x4024 R Interrupt offset register 0x00000054

INTOSET_FIQ 0x4030 R FIQ interrupt offset register 0x00000054

INTOSET_IRQ 0x4034 R IRQ interrupt offset register 0x00000054

INTERRUPT CONTROLLER S3C4530A

13-8

INTERRUPT PENDING BY PRIORITY REGISTER

The interrupt pending by priority register, INTPNDPRI, contains interrupt pending bits, which are re-ordered by
the INTPRIn register settings. INTPNDPRI[20] is mapped to the interrupt source of whichever bit index is written
into the priority 20 field of the INTPRIn registers.

This register is useful for testing. To validate the interrupt pending by priority value, you can obtain the highest
priority pending interrupt from the interrupt offset register, INTOFFSET.

Table 13-7. INTPNDPRI Register

Register Offset Address R/W Description Reset Value

INTPNDPRI 0x4028 R Interrupt pending by priority 0x00000000

INTERRUPT PENDING TEST REGISTER

The interrupt pending test register, INTPNDTST, is used to set or clear INTPND and INTPNDPRI. If user writes
data to this register, it is written into both the INTPND register and INTPNDPRI register. The interrupt pending
test register, INTPNDTST, is also useful for testing.

For INTPND, the same bit position is updated with the new coming data. For INTPNDPRI, the mapping bit
position by INTPRIn registers is updated with the new coming data to keep with the contents of the INTPND
register.

Table 13-8. INTPNDTST Register

Register Offset Address R/W Description Reset Value

INTPNDTST 0x402C W Interrupt pending test register 0x00000000

S3C4530A ELECTRICAL DATA

14-1

14 ELECTRICAL DATA

OVERVIEW

This chapter describes the S3C4530A electrical data.

ABSOLUTE MAXIMUM RATINGS

Table 14-1. Absolute Maximum Ratings

Parameter Symbol Rating Units

Supply Voltage VDD/VDDA – 0.3 to 3.8 V

DC input Voltage VIN 3.3 V I/O – 0.3 to VDD + 0.3 V

5 V-tolerant – 0.3 to 5.5

DC input current IIN ### 10 mA

Operating temperature TOPR 0 to 70 ###C

Storage temperature TSTG – 40 to 125 ###C

ABSOLUTE MAXIMUM RATINGS

Table 14-2. Recommended Operating Conditions

Parameter Symbol Rating Units

Supply Voltage VDD/VDDA 3.0 to 3.6 V

Oscillator frequency fOSC 10 to 50 MHz

External Loop Filter Capacitance LF 820 pF

Commercial temperature TA 0 to 70 ###C

NOTE: It is strongly recommended that all the supply pins (VDD/VDDA) be powered from the same source to avoid power

latch-up.

ELECTRICAL DATA S3C4530A

14-2

D.C. ELECTRICAL CHARACTERISTICS

Table 14-3. D.C Electrical Characteristics

VDD=3.3V 0.3 V, VEXT = 5 0.25 V, TA = 0 to 70 °C (in case of 5 V-tolerant I/O)

Parameter Symbol Conditions Min Typ Max Unit

High level input voltage LVCMOS
interface

VIH
(1) – 2.0 – – V

Low level input voltage LVCMOS
interface

VIL
(1) – – – 0.8 V

Switching threshold VT LVCMOS – 1.4 – V

Schmitt trigger positive-going threshold VT+ LVCMOS – – 2.0

Schmitt trigger negative-going
threshold

VT– LVCMOS 0.8 – –

High level input current Input buffer IIH VIN = VDD - 10 – 10 µA

Input buffer
with pull-up

10 30 60

Low level input current Input buffer IIL VIN = VSS - 10 – 10 µA

Input buffer
with pull-

down

- 60 - 30 - 10

High level output voltage Type B1 to
B16(2)

VOH IOH = – 1 µA VDD-

0.05
– – V

Type B1 IOH = – 1 mA 2.4

Type B2 IOH = – 2 mA

Type B4 IOH = – 4 mA

Type B6 IOH = – 6 mA

Low level output voltage Type B1 to
B16(2)

VOL IOL = 1 µA 0.05 V

Type B1 IOL = 1 mA 0.4

Type B2 IOL = 2 mA

Type B4 IOL = 4 mA

Type B6 IOL = 6 mA

Tri-state output leakage current IOZ VOUT = VSS or
VDD

- 10 10 µA

Maximum operating current IDD VDD = 3.6 V,
fMCLK = 50MHz

230 mA

NOTES:
1. All 5 V-tolerant inputs have less than 0.2 V hysterics.
2. Type B1 means 1mA output driver cells, and Type B6/B24 means 6mA/24mA output driver cells.

S3C4530A ELECTRICAL DATA

14-3

Table 14-4. A.C Electrical Characteristics

(TA = 0 to 70 °C, VDD = 3.0V to 3.6 V)

Signal Name Description Min Max Unit

tMCLKOd MCLKO rising edge delay for internal negative edge clock -0.44 -0.3 N

tEMz Memory control signal High-Z time 19.55 19.55 P

tEMRs ExtMREQ setup time 2.26 P

tEMRh ExtMREQ hold time 0 P

tEMAr ExtMACK rising edge delay time 5.55 11.20 P

tEMAf ExtMACK falling edge delay time 3.68 10.41 P

tADDRh Address hold time 4.28 9.29 P

tADDRd Address delay time 5.41 11.93 P

tNRCS ROM/SRAM/Flash bank chip select delay time 4.71 10.31 P

tNROE ROM/SRAM or external I/O bank output enable delay 4.70 10.27 P

tNWBE ROM/SRAM or external I/O bank write byte enable delay 5.23 11.70 N

tRDh Read data hold time 10.85 P

tWDd Write data delay time (SRAM or external I/O) 0 P

tWDh Write data hold time (SRAM or external I/O) 2.29 5.27 N

tNRASf DRAM RAS signal active delay 2.15 4.32 P

tNRASr DRAM RAS signal release delay 4.11 8.32 N

tNCASf DRAM CAS signal read active delay 4.95 10.88 P

tNCASr DRAM CAS signal release read delay time 3.93 8.56 N

tNCASwf DRAM CAS signal write active delay 4.39 9.67 N

tNCASwr DRAM CAS signal release write delay time 4.23 9.17 P

tNDWE DRAM bank write enable delay time 4.27 10.37 P

tNDOE DRAM bank out enable delay time 7.10 16.28 P

tNECS External I/O bank chip select delay time 4.79 10.48 P

tWDDd DRAM write data delay time (DRAM) 17.63 17.17 P

tWDDh DRAM write data hold time (DRAM) 3.56 3.65 P

tWs External wait setup time 11.96 P

tWh External wait hold time 0 P

NOTE: The value (N) is calculated from MCLKO falling. The others are from MCLKO rising.

ELECTRICAL DATA S3C4530A

14-4

NOTES

S3C4530A MECHANICAL DATA

15-1

15 MECHANICAL DATA

OVERVIEW

The S3C4530A is available in a 208-pin QFP package (208-QFP-2828).

MECHANICAL DATA S3C4530A

15-2

208-QFP-2828B

#144

28.00 BSC

30.60 BSC

28
.0

0
B

S
C

30
.6

0
B

S
C

0.08 MAX

0.15
+ 0.05
- 0.06

0-7

NOTE : Dimensions are in millimeters.

#1
0.

45
-0

.7
5

0.25 MIN

3.40 ± 0.20

4.10 MAX

0.50 BSC (1.25)

+ 0.07
- 0.030.20

0.08 MAX

Figure 15-1. 208-QFP-2828B Package Dimensions

