
现货库存、技术资料、百科信息、热点资讯，精彩尽在鼎好!

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

INTRODUCTION

SAMSUNG's S3C44B0X 16/32-bit RISC microprocessor is designed to provide a cost-effective and high performance
micro-controller solution for hand-held devices and general applications. To reduce total system cost, S3C44B0X
also provides the following: 8KB cache, optional internal SRAM, LCD controller, 2-channel UART with handshake, 4-
channel DMA, System manager (chip select logic, FP/ EDO/SDRAM controller), 5-channel timers with PWM, I/O
ports, RTC, 8-channel 10-bit ADC, IIC-BUS interface, IIS-BUS interface, Sync. SIO interface and PLL for clock.

The S3C44B0X was developed using a ARM7TDMI core, 0.25 um CMOS standard cells, and a memory compiler. Its
low-power, simple, elegant and fully static design is particularly suitable for cost-sensitive and power sensitive
applications. Also S3C44B0X adopts a new bus architecture, SAMBA II (SAMSUNG ARM CPU embedded
Microcontroller Bus Architecture).

An outstanding feature of the S3C44B0X is its CPU core, a 16/32-bit ARM7TDMI RISC processor (66MHz) designed
by Advanced RISC Machines, Ltd. The architectural enhancements of ARM7TDMI include the Thumb de-
compressor, an on-chip ICE breaker debug support, and a 32-bit hardware multiplier.

By providing a complete set of common system peripherals, the S3C44B0X minimizes overall system costs and
eliminates the need to configure additional components. The integrated on-chip functions that are described in this
document are as follows:

• 2.5V Static ARM7TDMI CPU core with 8KB cache . (SAMBA II bus architecture up to 66MHz)

• External memory controller. (FP/EDO/SDRAM Control, Chip Select logic)

• LCD controller (up to 256 color DSTN) with 1-ch LCD-dedicated DMA.

• 2-ch general DMAs / 2-ch peripheral DMAs with external request pins

• 2-ch UART with handshake(IrDA1.0, 16-byte FIFO) / 1-ch SIO

• 1-ch multi-master IIC-BUS controller

• 1-ch IIS-BUS controller

• 5-ch PWM timers & 1-ch internal timer

• Watch Dog Timer

• 71 general purpose I/O ports / 8-ch external interrupt source

• Power control: Normal, Slow, Idle, and Stop mode

• 8-ch 10-bit ADC.

• RTC with calendar function.

• On-chip clock generator with PLL.

http://www.icmade.com

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-2

FEATURES

Architecture

• Integrated system for hand-held devices and
general embedded applications.

• 16/32-Bit RISC architecture and powerful
instruction set with ARM7TDMI CPU core.

• Thumb de-compressor maximizes code density
while maintaining performance.

• On-chip ICEbreaker debug support with JTAG-
based debugging solution.

• 32x8 bit hardware multiplier.

• New bus architecture to implement Low-Power
SAMBA II(SAMSUNG's ARM CPU embedded
Micro-controller Bus Architecture).

System Manager

• Little/Big endian support.

• Address space: 32Mbytes per each bank. (Total
256Mbyte)

• Supports programmable 8/16/32-bit data bus
width for each bank.

• Fixed bank start address and programmable bank
size for 7 banks.

• Programmable bank start address and bank size
for one bank.

• 8 memory banks.
- 6 memory banks for ROM, SRAM etc.
- 2 memory banks for ROM/SRAM/DRAM(Fast
Page, EDO, and Synchronous DRAM)

• Fully Programmable access cycles for all
memory banks.

• Supports external wait signal to expend the bus
cycle.

• Supports self-refresh mode in DRAM/SDRAM for
power-down.

• Supports asymmetric/symmetric address of
DRAM.

Cache Memory & internal SRAM

• 4-way set associative ID(Unified)-cache with
8Kbyte.

• The 0/4/8 Kbytes internal SRAM using unused
cache memory.

• Pseudo LRU(Least Recently Used) Replace
Algorithm.

• Write through policy to maintain the coherence
between main memory and cache content.

• Write buffer with four depth.

• Request data first fill technique when cache miss
occurs.

Clock & Power Manager

• Low power

• The on-chip PLL makes the clock for operating
MCU at maximum 66MHz.

• Clock can be fed selectively to each function
block by software.

• Power mode: Normal, Slow, Idle and Stop mode.
Normal mode: Normal operating mode.
Slow mode: Low frequency clock without PLL
Idle mode: Stop the clock for only CPU
Stop mode: All clocks are stopped

• Wake up by EINT[7:0] or RTC alarm interrupt from
Stop mode.

Interrupt Controller

• 30 Interrupt sources
(Watch-dog timer, 6 Timer, 6 UART, 8 External
interrupts, 4 DMA , 2 RTC, 1 ADC, 1 IIC, 1 SIO)

• Vectored IRQ interrupt mode to reduce interrupt
latency.

• Level/edge mode on the external interrupt sources

• Programmable polarity of edge and level

• Supports FIQ (Fast Interrupt request) for very
urgent interrupt request

FEATURES (Continued)

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-3

Timer with PWM (Pulse Width Modulation)

• 5-ch 16-bit Timer with PWM / 1-ch 16-bit internal
timer with DMA-based or interrupt-based
operation

• Programmable duty cycle, frequency, and polarity

• Dead-zone generation.

• Supports external clock source.

RTC (Real Time Clock)

• Full clock feature: msec, sec, min, hour, day,
week, month, year.

• 32.768 KHz operation.

• Alarm interrupt for CPU wake-up.

• Time tick interrupt

General purpose input/output ports

• 8 external interrupt ports

• 71 multiplexed input/output ports

UART

• 2-channel UART with DMA-based or interrupt-
based operation

• Supports 5-bit, 6-bit, 7-bit, or 8-bit serial data
transmit/receive

• Supports H/W handshaking during
transmit/receive

• Programmable baud rate

• Supports IrDA 1.0 (115.2kbps)

• Loop back mode for testing

• Each channel have two internal 32-byte FIFO for
Rx and Tx.

DMA Controller

• 2 channel general purpose Direct Memory Access
controller without CPU intervention.

• 2 channel Bridge DMA (peripheral DMA)
controller.

• Support IO to memory, memory to IO, IO to IO
with the Bridge DMA which has 6 type's DMA
requestor: Software, 4 internal function blocks
(UART, SIO, Timer, IIS), and External pins.

• Programmable priority order between DMAs (fixed
or round-robin mode)

• Burst transfer mode to enhance the transfer rate
on the FPDRAM, EDODRAM and SDRAM.

• Supports fly-by mode on the memory to external
device and external device to memory transfer
mode

A/D Converter

• 8-ch multiplexed ADC.

• Max. 100KSPS/10-bit.

LCD Controller

• Supports color/monochrome/gray LCD panel

• Supports single scan and dual scan displays

• Supports virtual screen function

• System memory is used as display memory

• Dedicated DMA for fetching image data from
system memory

• Programmable screen size

• Gray level: 16 gray levels

• 256 Color levels

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-4

FEATURES (Continued)

Watchdog Timer

• 16-bit Watchdog Timer

• Interrupt request or system reset at time-out

IIC-BUS Interface

• 1-ch Multi-Master IIC-Bus with interrupt-based
operation.

• Serial, 8-bit oriented, bi-directional data transfers
can be made at up to 100 Kbit/s in the standard
mode or up to 400 Kbit/s in the fast mode.

IIS-BUS Interface

• 1-ch IIS-bus for audio interface with DMA-based
operation.

• Serial, 8/16bit per channel data transfers

• Supports MSB-justified data format

SIO (Synchronous Serial I/O)

• 1-ch SIO with DMA-based or interrupt -based
operation.

• Programmable baud rates.

• Supports serial data transmit/receive operations
8-bit in SIO.

Operating Voltage Range

• Core : 2.5V I/O : 3.0 V to 3.6 V

Operating Frequency

• Up to 66 MHz

Package

• 160 LQFP / 160 FBGA

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-5

BLOCK DIAGRAM

Bus Arbiter

Memory I/F
ROM/SRAM

DRAM/SDRAM

LCD
DMA

LCD
CONT.

Interrupt CONT.

ZDMA (2-Ch)

Write Buffer

ARM7TDMI
CPU Core

Cache 8K-byte

Power
Management

CPU Unit

Boundary Scan
ARM7TDMI TAP

Controller

System Bus Bridge & Arbitration /
BDMA (2-Ch)

S
y
s
t
e
m

B
u
s

P
e
r
i
p
h
e
r
a
l

B
u
s

GPIO
(Controller)

I2C Bus
Controller

I2S Bus
Controller

UART 0,1 (Each
16byte FIFO)

Synchronout I/O

PWM Timer
0-4,5 (internal)

ADC

Watchdog Timer

RTC
(Real Time Clock)

Clock Generator
(PLL)

SIOCK

TCLK EXTCLK

AIN[7:0]

32,768 Hz

G
e
n
e
r
a
l

P
u
r
p
o
s
e

I
/
O

JTAG

Figure 1-1. S3C44B0X Block Diagram

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-6

PIN ASSIGNMENTS

1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 2019 2221 2423 2625 2827 3029 3231 3433 35

A
D

D
R

3
A

D
D

R
2

A
D

D
R

1
A

D
D

R
0/G

P
A

0
nC

A
S

0
nC

A
S

1
nC

A
S

2:nS
C

A
S

/G
P

B
2

nC
A

S
3:nS

R
A

S
/G

P
B

3
V

D
D

IO
V

S
S

IO

nG
C

S
1/G

P
B

6
nG

C
S

0

nB
E

0:nW
B

E
0:D

Q
M

0
nB

E
1:nW

B
E

1:D
Q

M
1

nB
E

2:nW
B

E
2:D

Q
M

2/G
P

B
4

nB
E

3:nW
B

E
3:D

Q
M

3/G
P

B
5

nO
E

nW
E

nG
C

S
3/G

P
B

8
nG

C
S

2/G
P

B
7

V
S

S
V

D
D

nG
C

S
5/G

P
B

10
nG

C
S

4/G
P

B
9

nG
C

S
7:nS

C
S

1:nR
A

S
1

nG
C

S
6:nS

C
S

0:nR
A

S
0

S
C

LK
/G

P
B

1
S

C
K

E
/G

P
B

0

nX
D

R
E

Q
0/nX

B
R

E
Q

/G
P

F4
nW

A
IT/G

P
F2

E
xIN

T0/V
D

4/G
P

G
0

nX
D

A
C

K
0/nX

B
A

C
K

/G
P

F3

V
D

D
E

xIN
T1/V

D
5/G

P
G

1

E
xIN

T2/nC
TS

0/G
P

G
2

V
S

S

E
xIN

T3/nR
TS

0/G
P

G
3

E
xIN

T5/IIS
D

I/G
P

G
5

E
xIN

T4/IIS
C

LK
/G

P
G

4

E
xIN

T6/IIS
D

O
/G

P
G

6

36 3837 4039

DATA3
DATA4

ADDR15

ADDR18/GPA3
ADDR19/GPA4

DATA6

V
S

S

ENDIAN/CODECLK/GPE8

9193 8788 85 8384 828692 8990 81107

104
103

98 97 94106
105

102
101
100
99 96 95118
117

112
111

108

120
119

116
115
114
113

110
109

V
D

0/G
P

D
0

V
D

D
D

A
TA

24/nX
D

A
C

K
1/G

P
C

8
D

A
TA

25/nX
D

R
E

Q
1/G

P
C

9

R
xD

0/G
P

E
2

TxD
0/G

P
E

1

D
A

TA
26/nR

TS
1/G

P
C

10
D

A
TA

27/nC
TS

1/G
P

C
11

D
A

TA
28/TxD

1/G
P

C
12

D
A

TA
29/R

xD
1/G

P
C

13
D

A
TA

30/nR
TS

0/G
P

C
14

D
A

TA
31/nC

TS
0/G

P
C

15

V
D

1/G
P

D
1

V
D

3/G
P

D
3

V
D

2/G
P

D
2

V
LIN

E
/G

P
D

5
V

C
LK

/G
P

D
4

V
FR

A
M

E
/G

P
D

7
V

M
/G

P
D

6

V
D

D
R

T
C

V
S

S
IO

X
TA

L1
E

X
TA

L1

A
V

C
O

M
V

D
D

A
D

C

A
R

E
FT

A
R

E
FB

A
IN

6
A

IN
7

D
A

TA
18/IIS

D
I/G

P
C

2
D

A
TA

19/IIS
C

LK
/G

P
C

3
D

A
TA

20/V
D

7/G
P

C
4

D
A

TA
21/V

D
6/G

P
C

5
D

A
TA

22/V
D

5/G
P

C
6

D
A

TA
23/V

D
4/G

P
C

7

D
A

TA
14

D
A

TA
15

D
A

TA
16/IIS

LR
C

K
/G

P
C

0

S3C44B0X
160-QFP

ADDR9
ADDR10
ADDR11

VSSIO
ADDR12
ADDR13
ADDR14

ADDR16/GPA1

VSS
ADDR23/GPA8

ADDR17/GPA2

ADDR20/GPA5
ADDR21/GPA6
ADDR22/GPA7

ADDR24/GPA9
VDD

DATA1
DATA0

DATA2

DATA5

DATA7

DATA9
DATA8

VDDIO
VSSIO

DATA11
DATA10

DATA13
DATA12

TDO
VDDIO
VSSIO
CLKout/GPE0
nRESET
OM0
OM1
OM2
OM3

VDD
IICSCL/GPF0

SIOCLK/nCTS1/IISCLK/GPF8
SIORxD/RxD1/IISDI/GPF7
SIORDY/TxD1/IISDO/GPF6
SIOTxD/nRTS1/IISLRCK/GPF5
IICSDA/GPF1

XTAL0
VSS

PLLCAP
EXTAL0

TOUT0/GPE3
EXTCLK

TOUT2/TCLK/GPE5
TOUT1/TCLK/GPE4

TOUT4/VD7/GPE7
TOUT3/VD6/GPE6

VSSADC
VSSIO

AIN1
AIN0

AIN3
AIN2

AIN5
AIN4

ADDR4
ADDR5
ADDR6
ADDR7
ADDR8

122

127
128
129

125
126

123
124

121

143
142
141
140
139
138
137
136
135
134
133
132
131
130

154
153
152
151
150
149
148
147
146
145
144

157
156
155

160
159
158

ExINT7/IISLRCK/GPG7
nTRST
TCK
TMS
TDI

41
42
43
44
45
46

54
53

47
48
49
50
51
52

56
55

58
57

60
59

62
61

64
63

66
65

68
67

70
69

71

73
72

75
74

77
76

78

80
79

D
A

TA
17/IIS

D
O

/G
P

C
1

Figure 1-2. S3C44B0X Pin Assignments (160 LQFP)

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-7

P

N

M

L

K

J

H

G

F

E

D

C

B

A

Ball Pad A1
Corner Indicator

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bottom View

Figure 1-3. S3C44B0X Pin Assignments (160 FBGA)

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-8

Table 1-1. 160-Pin LQFP Pin Assignment

Pin
No.

Pin Name Default
Function

I/O State (2)

@BUS REQ.
I/O State (2)

@STOP
I/O State
@Initial

I/O TYPE(6)

1 ADDR3 ADDR3 Hi-z Hi-z O phot8

2 ADDR2 ADDR2

3 ADDR1 ADDR1

4 ADDR0/GPA0 ADDR0 Hi-z/O Hi-z/O

5 nCAS0 nCAS0 Hi-z Low

6 nCAS1 nCAS1

7 nCAS2:nSCAS/GPB2 nSCAS High/Low/O

8 nCAS3:nSRAS/GPB3 nSRAS

9 VDDIO VDDIO –(3) –(3) P vdd3op

10 VSSIO VSSIO vss3op

11 nBE0:nWBE0:DQM0 DQM0 Hi-z Hi-z O phot6

12 nBE1:nWBE1:DQM1 DQM1

13 nBE2:nWBE2:DQM2/GPB4 DQM2

14 nBE3:nWBE3:DQM3/GPB5 DQM3

15 nOE nOE phot8

16 nWE nWE phot6

17 nGCS0 nGCS0 phot8

18 nGCS1/GPB6 nGCS1 Hi-z/O Hi-z/O

19 nGCS2/GPB7 nGCS2

20 nGCS3/GPB8 nGCS3

21 VDD VDD − − P vdd2I

22 VSS VSS vss2I

23 nGCS4/GPB9 nGCS4 Hi-z/O Hi-z/O O phot8

24 nGCS5/GPB10 nGCS5

25 nGCS6:nSCS0:nRAS0 nSCS0 Hi-z High/High/Low

26 nGCS7:nSCS1:nRAS1 nSCS1

27 SCKE/GPB0 SCKE Hi-z/O Low/O phot6

28 SCLK/GPB1 SCLK High/O phot10

29 nWAIT/GPF2 GPF2 − − IO phbsu50ct8sm

30 nXDREQ0/nXBREQ/GPF4 GPF4

31 nXDACK0/nXBACK/GPF3 GPF3

32 ExINT0/VD4/GPG0 GPG0

33 ExINT1/VD5/GPG1 GPG1

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-9

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-10

Table 1-1. 160-Pin LQFP Pin Assignment (Continued)

Pin
No.

Pin Name Default
Function

I/O State
@BUS REQ.

I/O State
@STOP

I/O State
@Initial

I/O TYPE

34 VDD VDD − − P vdd2i

35 VSS VSS vss2i

36 ExINT2/nCTS0/GPG2 GPG2 IO phbsu50ct8sm

37 ExINT3/nRTS0/GPG3 GPG3

38 ExINT4/IISCLK/GPG4 GPG4

39 ExINT5/IISDI/GPG5 GPG5

40 ExINT6/IISDO/GPG6 GPG6

41 ExINT7/IISLRCK/GPG7 GPG7

42 nTRST nTRST I phis

43 TCK TCK

44 TMS TMS

45 TDI TDI

46 TDO TDO O phot6

47 VDDIO VDDIO P vdd3op

48 VSSIO VSSIO vss3op

49 CLKout/GPE0 GPE0 IO phbsu50ct8sm

50 nRESET nRESET I phis

51 OM0 OM0 I(1)

52 OM1 OM1

53 OM2 OM2

54 OM3 OM3

55 ENDIAN/CODECLK/GPE8 CODECLK IO(1) phbsu50ct8sm

56 SIOCLK/nCTS1/IISCLK/GPF8 GPF8

57 SIORxD/RxD1/IISDI/GPF7 GPF7

58 SIORDY/TxD1/IISDO/GPF6 GPF6

59 SIOTxD/nRTS1/IISLRCK/GPF5 GPF5

60 IICSDA/GPF1 GPF1 phbsu50cd4sm

61 IICSCL/GPF0 GPF0

62 VDD VDD P vdd2i

63 VSS VSS vss2i

64 XTAL0 XTAL0 AI(5) phsoscm16

65 EXTAL0 EXTAL0 AO(5)

66 PLLCAP PLLCAP AI(5) phnc50_option

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-11

Table 1-1. 160-Pin LQFP Pin Assignment (Continued)

Pin
No.

Pin Name Default
Function

I/O State
@BUS REQ.

I/O State
@STOP

I/O State
@Initial

I/O TYPE

67 EXTCLK EXTCLK − − I phis

68 TOUT0/GPE3 GPE3 IO phbsu50ct8sm

69 TOUT1/TCLK/GPE4 GPE4

70 TOUT2/TCLK/GPE5 GPE5

71 TOUT3/VD6/GPE6 GPE6

72 TOUT4/VD7/GPE7 GPE7

73 VSSIO VSSIO P vss3op

74 VSSADC VSSADC vss2t

75 AIN0 AIN0 AI(5) phnc50

76 AIN1 AIN1

77 AIN2 AIN2

78 AIN3 AIN3

79 AIN4 AIN4

80 AIN5 AIN5

81 AIN6 AIN6

82 AIN7 AIN7

83 AREFT AREFT phnc50_option

84 AREFB AREFB

85 AVCOM AVCOM

86 VDDADC VDDADC P vdd2t

87 XTAL1 XTAL1 I phnc50

88 EXTAL1 EXTAL1 O

89 VDDRTC VDDRTC P vdd2t

90 VSSIO VSSIO vss3op

91 VFRAME/GPD7 GPD7 IO phbsu50ct8sm

92 VM/GPD6 GPD6

93 VLINE/GPD5 GPD5

94 VCLK/GPD4 GPD4

95 VD3/GPD3 GPD3

96 VD2/GPD2 GPD2

97 VD1/GPD1 GPD1

98 VD0/GPD0 GPD0

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-12

Table 1-1. 160-Pin LQFP Pin Assignment (Continued)

Pin
No.

Pin Name Default
Function

I/O State
@BUS REQ.

I/O State
@STOP

I/O State
@Initial

I/O TYPE

99 RxD0/GPE2 GPE2 − − IO phbsu50ct8sm

100 TxD0/GPE1 GPE1

101 DATA31/nCTS0/GPC15 DATA31 Hi-z/IO Hi-z/IO I(Hi-z) phbsu50ct12sm

102 DATA30/nRTS0/GPC14 DATA30

103 DATA29/RxD1/GPC13 DATA29

104 DATA28/TxD1/GPC12 DATA28

105 DATA27/nCTS1/GPC11 DATA27

106 DATA26/nRTS1/GPC10 DATA26

107 DATA25/nXDREQ1/GPC9 DATA25

108 DATA24/nXDACK1/GPC8 DATA24

109 VDD VDD − − P vdd2i

110 VSS VSS vss2i

111 DATA23/VD4/GPC7 DATA23 Hi-z/IO Hi-z/IO I(Hi-z) phbsu50ct12sm

112 DATA22/VD5/GPC6 DATA22

113 DATA21/VD6/GPC5 DATA21

114 DATA20/VD7/GPC4 DATA20

115 DATA19/IISCLK/GPC3 DATA19

116 DATA18/IISDI/GPC2 DATA18

117 DATA17/IISDO/GPC1 DATA17

118 DATA16/IISLRCK/GPC0 DATA16

119 DATA15 DATA15 Hi-z Hi-z I(Hi-z)

120 DATA14 DATA14

121 DATA13 DATA13

122 DATA12 DATA12

123 DATA11 DATA11

124 DATA10 DATA10

125 VDDIO VDDIO − − P vdd3op

126 VSSIO VSSIO vss3op

127 DATA9 DATA9 Hi-z Hi-z I(Hi-z) phbsu50ct12sm

128 DATA8 DATA8

129 DATA7 DATA7

130 DATA6 DATA6

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-13

Table 1-1. 160-Pin LQFP Pin Assignment (Concluded)

Pin
No.

Pin Name Default
Function

I/O State
@BUS REQ.

I/O State
@STOP

I/O State
@Initial

I/O TYPE

131 DATA5 DATA5 Hi-z Hi-z I(Hi-z) phbsu50ct12sm

132 DATA4 DATA4

133 DATA3 DATA3

134 DATA2 DATA2

135 DATA1 DATA1

136 DATA0 DATA0

137 ADDR24/GPA9 ADDR24 Hi-z/O Hi-z/O O phot8

138 VDD VDD − − P vdd2i

139 VSS VSS vss2i

140 ADDR23/GPA8 ADDR23 Hi-z/O Hi-z/O O phot8

141 ADDR22/GPA7 ADDR22

142 ADDR21/GPA6 ADDR21

143 ADDR20/GPA5 ADDR20

144 ADDR19/GPA4 ADDR19

145 ADDR18/GPA3 ADDR18

146 ADDR17/GPA2 ADDR17

147 ADDR16/GPA1 DATA16

148 ADDR15 ADDR15 Hi-z Hi-z

149 ADDR14 ADDR14

150 ADDR13 ADDR13

151 ADDR12 ADDR12

152 VSSIO VSSIO − − P vss3op

153 ADDR11 ADDR11 Hi-z Hi-z O phot8

154 ADDR10 ADDR10

155 ADDR9 ADDR9

156 ADDR8 ADDR8

157 ADDR7 ADDR7

158 ADDR6 ADDR6

159 ADDR5 ADDR5

160 ADDR4 ADDR4

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-14

Table 1-2. 160-Pin FBGA Pin Assignment

Pin No. Pin Name Pin No. Pin Name

A1 ADDR4 C1 ADDR1

A2 ADDR5 C2 ADDR0/GPA0

A3 ADDR6 C3 nCAS0

A4 ADDR10 C4 ADDR8

A5 ADDR13 C5 VSSIO

A6 ADDR17/GPA2 C6 ADDR15

A7 ADDR20/GPA5 C7 ADDR21/GPA6

A8 ADDR23/GPA8 C8 ADDR22/GPA7

A9 DATA0 C9 ADDR24/GPA9

A10 DATA4 C10 DATA3

A11 DATA8 C11 DATA7

A12 DATA11 C12 VDDIO

A13 DATA12 C13 DATA17/IISDO/GPC1

A14 DATA14 C14 DATA16/IISLRCK/GPC0

B1 ADDR2 D1 nCAS3:nSRAS/GPB3

B2 ADDR3 D2 nCAS2:nSCAS/GPB2

B3 ADDR7 D3 VDDIO

B4 ADDR9 D4 nCAS1

B5 ADDR12 D5 ADDR11

B6 ADDR16/GPA1 D6 ADDR14

B7 ADDR19/GPA4 D7 ADDR18/GPA3

B8 VSS D8 VDD

B9 DATA1 D9 DATA2

B10 DATA5 D10 DATA6

B11 DATA9 D11 VSSIO

B12 DATA10 D12 DATA18/IISDI/GPC2

B13 DATA13 D13 DATA19/IISCLK/GPC3

B14 DATA15 D14 DATA20/VD7/GPC4

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-15

Table 1-2. 160-Pin FBGA Pin Assignment (Continued)

Pin No. Pin Name Pin No. Pin Name

E1 nBE1:nWBE1:DQM1 H1 nGCS4/GPB9

E2 nBE0:nWBE0:DQM0 H2 nGCS5/GPB10

E3 nBE2:nWBE2:DQM2/GPB4 H3 VSS

E4 VSSIO H4 nGCS6:nSCS0:nRAS0

E11 DATA21/VD6/GPC5 H11 VD0/GPD0

E12 DATA22/VD5/GPC6 H12 DATA31/nCTS0/GPC15

E13 DATA23/VD4/GPC7 H13 RxD0/GPE2

E14 VSS H14 TxD0/GPE1

F1 nWE J1 nGCS7:nSCS1:nRAS1

F2 nOE J2 SCKE/GPB0

F3 nGCS0 J3 SCLK/GPB1

F4 nBE3:nWBE3:DQM3/GPB5 J4 nWAIT/GPF2

F11 VDD J11 VCLK/GPD4

F12 DATA24/nXDACK1/GPC8 J12 VD1/GPD1

F13 DATA25/nXDREQ1/GPC9 J13 VD3/GPD3

F14 DATA26/nRTS1/GPC10 J14 VD2/GPD2

G1 nGCS3/GPB8 K1 nXDREQ0/nXBREQ0/GPF4

G2 nGCS2/GPB7 K2 nXDACK0/nXBACK0/GPF3

G3 VDD K3 ExINT0/VD4/GPG0

G4 nGCS1/GPB6 K4 ExINT1/VD5/GPG1

G11 DATA27/nCTS1/GPC11 K11 VSSIO

G12 DATA30/nRTS0/GPC14 K12 VLINE/GPD5

G13 DATA28/TxD1/GPC12 K13 VFRAME/GPD7

G14 DATA29/RxD1/GPC13 K14 VM/GPD6

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-16

Table 1-2. 160-Pin FBGA Pin Assignment (Continued)

Pin No. Pin Name Pin No. Pin Name

L1 VDD N1 ExINT5/IISDI/GPG5

L2 VSS N2 ExINT7/IISLRCK/GPG7

L3 ExINT2/nCTS0/GPG2 N3 TMS

L4 TDO N4 VDDIO

L5 nRESET N5 OM0

L6 OM3 N6 ENDIAN/CODECLK/GPE8

L7 SIORDY/TxD1/IISDO/GPF6 N7 SIOTxD/nRTS1/IISLRCK/GPF5

L8 EXTAL0 N8 XTAL0

L9 TOUT1/TCLK/GPE4 N9 EXTCLK

L10 VSSIO N10 TOUT3/VD6/GPE6

L11 VDDADC N11 AIN0

L12 VDDRTC N12 AIN2

L13 XTAL1 N13 AIN6

L14 EXTAL1 N14 AIN7

M1 ExINT4/IISCLK/GPG4 P1 ExINT6/IISDO/GPG6

M2 ExINT3/nRTS0/GPG3 P2 nTRST

M3 TDI P3 TCK

M4 CLKout/GPE0 P4 VSSIO

M5 OM2 P5 OM1

M6 SIORxD/RxD1/IISDI/GPF7 P6 SIOCLK/nCTS1/IISCLK/GPF8

M7 IICSCL/GPF0 P7 IICSDA/GPF1

M8 VDD P8 VSS

M9 TOUT0/GPE3 P9 PLLCAP

M10 TOUT4/VD7/GPE7 P10 TOUT2/TCLK/GPE5

M11 AIN1 P11 VSSADC

M12 AVCOM P12 AIN3

M13 AREFB P13 AIN4

M14 AREFT P14 AIN5

NOTES :
1. OM[3:0] and ENDIAN value are latched only at the rising edge of nRESET. Therefore, when nRESET is L, the pins of

OM[3:0] and ENDIAN are in input state. After nRESET becomes H, the pin of ENDIAN will be in output state.
2. The @BUS REQ. shows the pin states at the external bus, which is used by the other bus master. The @STOP shows

the pin states when S3C44B0X is in STOP mode.
3. ' − ' mark indicates the unchanged pin state at STOP mode or Bus released mode.
4. IICSDA,IICSCL pins are open-drain type.
5. AI/AO means analog input/output.

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-17

I/O Type Descriptions

vdd2i, vss2i 2.5V Vdd/Vss for internal logic

vdd3op, vss3op 3.3V Vdd/Vss for external interface logic

vdd2t, vss2t 2.5V Vdd/Vss for analog circuitry

phsoscm16 Oscillator cell with enable and feedback resistor

phbsu50ct12sm bi-directional pad, CMOS schmitt-trigger, 50KΩ pull-up resistor with control,
tri-state, Io=12mA

phbsu50ct8sm bi-directional pad, CMOS schmitt-trigger, 50KΩ pull-up resistor with control,
tri-state, Io=8mA

phbsu50cd4sm bi-directional pad, CMOS schmitt-trigger, 50KΩ pull-up resistor with control,
tri-state, Io=4mA

phot6 output pad, tri-state, Io=6mA

phot8 output pad, tri-state, Io=8mA

phot10 output pad, tri-state, Io=10mA

phis input pad, CMOS schmitt-trigger

phnc50, phnc50_option pad for analog pin

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-18

SIGNAL DESCRIPTIONS

Table 1-3. S3C44B0X Signal Descriptions

Signal I/O Description

BUS CONTROLLER

OM[1:0] I OM[1:0] sets S3C44B0X in the TEST mode, which is used only at fabrication. Also, it
determines the bus width of nGCS0. The logic level is determined by the pull-up/down
resistor during the RESET cycle.

00:8-bit 01:16-bit 10:32-bit 11:Test mode

ADDR[24:0] O ADDR[24:0] (Address Bus) outputs the memory address of the corresponding bank .

DATA[31:0] IO DATA[31:0] (Data Bus) inputs data during memory read and outputs data during
memory write. The bus width is programmable among 8/16/32-bit.

nGCS[7:0] O nGCS[7:0] (General Chip Select) are activated when the address of a memory is within
the address region of each bank. The number of access cycles and the bank size can
be programmed.

nWE O nWE (Write Enable) indicates that the current bus cycle is a write cycle.

nWBE[3:0] O Write Byte Enable

nBE[3:0] O Upper Byte/Lower Byte Enable(In case of SRAM)

nOE O nOE (Output Enable) indicates that the current bus cycle is a read cycle.

nXBREQ I nXBREQ (Bus Hold Request) allows another bus master to request control of the local
bus. BACK active indicates that bus control has been granted.

nXBACK O nXBACK (Bus Hold Acknowledge) indicates that the S3C44B0X has surrendered
control of the local bus to another bus master.

nWAIT I nWAIT requests to prolong a current bus cycle. As long as nWAIT is L, the current bus
cycle cannot be completed.

ENDIAN I It determines whether or not the data type is little endian or big endian. The logic level
is determined by the pull-up/down resistor during the RESET cycle.

0:little endian 1:big endian

DRAM/SDRAM/SRAM

nRAS[1:0] O Row Address Strobe

nCAS[3:0] O Column Address strobe

nSRAS O SDRAM Row Address Strobe

nSCAS O SDRAM Column Address Strobe

nSCS[1:0] O SDRAM Chip Select

DQM[3:0] O SDRAM Data Mask

SCLK O SDRAM Clock

SCKE O SDRAM Clock Enable

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-19

Table 1-3. S3C44B0X Signal Descriptions (Continued)

Signal I/O Description

LCD CONTROL UNIT

VD[7:0] O LCD Data Bus

VFRAME O LCD Frame signal

VM O VM alternates the polarity of the row and column voltage

VLINE O LCD line signal

VCLK O LCD clock signal

TIMER/PWM

TOUT[4:0] O Timer output[4:0]

TCLK I External clock input

INTERRUPT CONTROL UNIT

EINT[7:0] I External Interrupt request

DMA

nXDREQ[1:0] I External DMA request

nXDACK[1:0] O External DMA acknowledge

UART

RxD[1:0] I UART receives data input

TxD[1:0] O UART transmits data output

nCTS[1:0] I UART clear to send input signal

nRTS[1:0] O UART request to send output signal

IIC-BUS

IICSDA IO IIC-bus data

IICSCL IO IIC-bus clock

IIS-BUS

IISLRCK IO IIS-bus channel select clock

IISDO O IIS-bus serial data output

IISDI I IIS-bus serial data input

IISCLK IO IIS-bus serial clock

CODECLK O CODEC system clock

SIO

SIORXD I SIO receives data input

SIOTXD O SIO transmits data output

SIOCK IO SIO clock

SIORDY IO SIO handshake signal when DMA completes the SIO operation

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-20

Table 1-3. S3C44B0X Signal Descriptions (Continued)

Signal I/O Description

ADC

AIN[7:0] AI ADC input[7:0]

AREFT AI ADC Top Vref

AREFB AI ADC Bottom Vref

AVCOM AI ADC Common Vref

GENERAL PORT

P[70:0] IO General input/output ports (some ports are output mode only)

RESET & CLOCK

nRESET ST nRESET suspends any operation in progress and places S3C44B0X into a known reset
state. For a reset, nRESET must be held to L level for at least 4 MCLK after the
processor power has been stabilized.

OM[3:2] I OM[3:2] determines how the clock is made.

00 = Crystal(XTAL0,EXTAL0), PLL on 01 = EXTCLK, PLL on
10, 11 = Chip test mode.

EXTCLK I External clock source when OM[3:2] = 01b
If it isn't used, it has to be H (3.3V).

XTAL0 AI Crystal Input for internal osc circuit for system clock.
If it isn't used, XTAL0 has to be H (3.3V).

EXTAL0 AO Crystal Output for internal osc circuit for system clock. It is the inverted output of
XTAL0. If it isn't used, it has to be a floating pin.

PLLCAP AI Loop filter capacitor for system clock PLL. (700pF)

XTAL1 AI 32 KHz crystal input for RTC.

EXTAL1 AO 32 KHz crystal output for RTC. It is the inverted output of XTAL1.

CLKout O Fout or Fpllo clock

JTAG TEST LOGIC

nTRST I nTRST(TAP Controller Reset) resets the TAP controller at start.
If debugger is used, A 10K pull-up resistor has to be connected.
If debugger(black ICE) is not used, nTRST pin must be at L or low active pulse.

TMS I TMS (TAP Controller Mode Select) controls the sequence of the TAP controller's
states. A 10K pull-up resistor has to be connected to TMS pin.

TCK I TCK (TAP Controller Clock) provides the clock input for the JTAG logic.
A 10K pull-up resistor must be connected to TCK pin.

TDI I TDI (TAP Controller Data Input) is the serial input for test instructions and data.
A 10K pull-up resistor must be connected to TDI pin.

TDO O TDO (TAP Controller Data Output) is the serial output for test instructions and data.

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-21

Table 1-3. S3C44B0X Signal Descriptions (Concluded)

Signal I/O Description

POWER

VDD P S3C44B0X core logic VDD (2.5 V)

VSS P S3C44B0X core logic VSS

VDDIO P S3C44B0X I/O port VDD (3.3 V)

VSSIO P S3C44B0X I/O port VSS

RTCVDD P RTC VDD (2.5 V or 3.0 V, Not support 3.3V)
(This pin must be connected to power properly if RTC isn't used)

VDDADC P ADC VDD(2.5 V)

VSSADC P ADC VSS

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-22

S3C44B0X SPECIAL REGISTERS

Table 1-4. S3C44B0X Special Registers

Register
Name

Address
(B. Endian)

Address
(L. Endian)

Acc.
Unit

Read/
Write

Function

CPU WRAPPER

SYSCFG 0x01c00000 ← W R/W System Configuration

NCACHBE0 0x01c00004 Non Cacheable Area 0

NCACHBE1 0x01c00008 Non Cacheable Area 1

SBUSCON 0x01c40000 System Bus Control

MEMORY CONTROLLER

BWSCON 0x01c80000 ← W R/W Bus Width & Wait Status Control

BANKCON0 0x01c80004 Boot ROM Control

BANKCON1 0x01c80008 BANK1 Control

BANKCON2 0x01c8000c BANK2 Control

BANKCON3 0x01c80010 BANK3 Control

BANKCON4 0x01c80014 BANK4 Control

BANKCON5 0x01c80018 BANK5 Control

BANKCON6 0x01c8001c BANK6 Control

BANKCON7 0x01c80020 BANK7 Control

REFRESH 0x01c80024 DRAM/SDRAM Refresh Control

BANKSIZE 0x01c80028 Flexible Bank Size

MRSRB6 0x01c8002c Mode register set for SDRAM

MRSRB7 0x01c80030 Mode register set for SDRAM

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-23

Table 1-4. S3C44B0X Special Registers (Continued)

Register
Name

Address
(B. Endian)

Address
(L. Endian)

Acc.
Unit

Read/
Write

Function

UART

ULCON0 0x01d00000 ← W R/W UART 0 Line Control

ULCON1 0x01d04000 UART 1 Line Control

UCON0 0x01d00004 UART 0 Control

UCON1 0x01d04004 UART 1 Control

UFCON0 0x01d00008 UART 0 FIFO Control

UFCON1 0x01d04008 UART 1 FIFO Control

UMCON0 0x01d0000c UART 0 Modem Control

UMCON1 0x01d0400c UART 1 Modem Control

UTRSTAT0 0x01d00010 R UART 0 Tx/Rx Status

UTRSTAT1 0x01d04010 UART 1 Tx/Rx Status

UERSTAT0 0x01d00014 UART 0 Rx Error Status

UERSTAT1 0x01d04014 UART 1 Rx Error Status

UFSTAT0 0x01d00018 UART 0 FIFO Status

UFSTAT1 0x01d04018 UART 1 FIFO Status

UMSTAT0 0x01d0001c UART 0 Modem Status

UMSTAT1 0x01d0401c UART 1 Modem Status

UTXH0 0x01d00023 0x01d00020 B W UART 0 Transmission Hold

UTXH1 0x01d04023 0x01d04020 UART 1 Transmission Hold

URXH0 0x01d00027 0x01d00024 R UART 0 Receive Buffer

URXH1 0x01d04027 0x01d04024 UART 1 Receive Buffer

UBRDIV0 0x01d00028 ← W R/W UART 0 Baud Rate Divisor

UBRDIV1 0x01d04028 UART 1 Baud Rate Divisor

SIO

SIOCON 0x01d14000 ← W R/W SIO Control

SIODAT 0x01d14004 SIO Data

SBRDR 0x01d14008 SIO Baud Rate Prescaler

ITVCNT 0x01d1400c SIO Interval Counter

DCNTZ 0x01d14010 SIO DMA Count Zero

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-24

Table 1-4. S3C44B0X Special Registers (Continued)

Register
Name

Address
(B. Endian)

Address
(L. Endian)

Acc.
Unit

Read/
Write

Function

IIS

IISCON 0x01d18000,02,03 0x01d18000 B,HW,W R/W IIS Control

IISMOD 0x01d18004,06 0x01d18004 HW,W IIS Mode

IISPSR 0x01d18008,0a,0b 0x01d18008 B,HW,W IIS Prescaler

IISFIFCON 0x01d1800c,0e 0x01d1800c HW,W IIS FIFO Control

IISFIF 0x01d18012 0x01d18010 HW IIS FIFO Entry

I/O PORT

PCONA 0x01d20000 ← W R/W Port A Control

PDATA 0x01d20004 Port A Data

PCONB 0x01d20008 Port B Control

PDATB 0x01d2000c Port B Data

PCONC 0x01d20010 Port C Control

PDATC 0x01d20014 Port C Data

PUPC 0x01d20018 Pull-up Control C

PCOND 0x01d2001c Port D Control

PDATD 0x01d20020 Port D Data

PUPD 0x01d20024 Pull-up Control D

PCONE 0x01d20028 Port E Control

PDATE 0x01d2002c Port E Data

PUPE 0x01d20030 Pull-up Control E

PCONF 0x01d20034 Port F Control

PDATF 0x01d20038 Port F Data

PUPF 0x01d2003c Pull-up Control F

PCONG 0x01d20040 Port G Control

PDATG 0x01d20044 Port G Data

PUPG 0x01d20048 Pull-up Control G

SPUCR 0x01d2004c Special Pull-up

EXTINT 0x01d20050 External Interrupt Control

EXTINPND 0x01d20054 External Interrupt Pending

WATCHDOG TIMER

WTCON 0x01d30000 ← W R/W Watchdog Timer Mode

WTDAT 0x01d30004 Watchdog Timer Data

WTCNT 0x01d30008 Watchdog Timer Count

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-25

Table 1-4. S3C44B0X Special Registers (Continued)

Register
Name

Address
(B. Endian)

Address
(L. Endian)

Acc.
Unit

Read/
Write

Function

A/D CONVERTER

ADCCON 0x01d40000,02,03 0x01d40000 B,HW,W R/W ADC Control

ADCPSR 0x01d40004,06,07 0x01d40004 ADC Prescaler

ADCDAT 0x01d40008,0a 0x01d40008 HW,W R Digitized 10 bit Data

PWM TIMER

TCFG0 0x01d50000 ← W R/W Timer Configuration

TCFG1 0x01d50004 Timer Configuration

TCON 0x01d50008 Timer Control

TCNTB0 0x01d5000c Timer Count Buffer 0

TCMPB0 0x01d50010 Timer Compare Buffer 0

TCNTO0 0x01d50014 R Timer Count Observation 0

TCNTB1 0x01d50018 R/W Timer Count Buffer 1

TCMPB1 0x01d5001c Timer Compare Buffer 1

TCNTO1 0x01d50020 R Timer Count Observation 1

TCNTB2 0x01d50024 R/W Timer Count Buffer 2

TCMPB2 0x01d50028 Timer Compare Buffer 2

TCNTO2 0x01d5002c R Timer Count Observation 2

TCNTB3 0x01d50030 R/W Timer Count Buffer 3

TCMPB3 0x01d50034 Timer Compare Buffer 3

TCNTO3 0x01d50038 R Timer Count Observation 3

TCNTB4 0x01d5003c R/W Timer Count Buffer 4

TCMPB4 0x01d50040 Timer Compare Buffer 4

TCNTO4 0x01d50044 R Timer Count Observation 4

TCNTB5 0x01d50048 R/W Timer Count Buffer 5

TCNTO5 0x01d5004c R Timer Count Observation 5

IIC

IICCON 0x01d60000 ← W R/W IIC Control

IICSTAT 0x01d60004 IIC Status

IICADD 0x01d60008 IIC Address

IICDS 0x01d6000c IIC Data Shift

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-26

Table 1-4. S3C44B0X Special Registers (Continued)

Register
Name

Address
(B. Endian)

Address
(L. Endian)

Acc.
Unit

Read/
Write

Function

RTC

RTCCON 0x01d70043 0x01d70040 B R/W RTC Control

RTCALM 0x01d70053 0x01d70050 RTC Alarm

ALMSEC 0x01d70057 0x01d70054 Alarm Second

ALMMIN 0x01d7005b 0x01d70058 Alarm Minute

ALMHOUR 0x01d7005f 0x01d7005c Alarm Hour

ALMDAY 0x01d70063 0x01d70060 Alarm Day

ALMMON 0x01d70067 0x01d70064 Alarm Month

ALMYEAR 0x01d7006b 0x01d70068 Alarm Year

RTCRST 0x01d7006f 0x01d7006c RTC Round Reset

BCDSEC 0x01d70073 0x01d70070 BCD Second

BCDMIN 0x01d70077 0x01d70074 BCD Minute

BCDHOUR 0x01d7007b 0x01d70078 BCD Hour

BCDDAY 0x01d7007f 0x01d7007c BCD Day

BCDDATE 0x01d70083 0x01d70080 BCD Date

BCDMON 0x01d70087 0x01d70084 BCD Month

BCDYEAR 0x01d7008b 0x01d70088 BCD Year

TICINT 0x01D7008E 0x01D7008C Tick time count

CLOCK & POWER MANAGEMENT

PLLCON 0x01d80000 ← W R/W PLL Control

CLKCON 0x01d80004 Clock Control

CLKSLOW 0x01d80008 Slow clock Control

LOCKTIME 0x01d8000c PLL lock time Counter

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-27

Table 1-4. S3C44B0X Special Registers (Continued)

Register
Name

Address
(B. Endian)

Address
(L. Endian)

Acc.
Unit

Read/
Write

Function

INTERRUPT CONTROLLER

INTCON 0x01e00000 ← W R/W Interrupt Control

INTPND 0x01e00004 R Interrupt Request Status

INTMOD 0x01e00008 R/W Interrupt Mode Control

INTMSK 0x01e0000c Interrupt Mask Control

I_PSLV 0x01e00010 IRQ Interrupt Previous Slave

I_PMST 0x01e00014 IRQ Interrupt Priority Master

I_CSLV 0x01e00018 R IRQ Interrupt Current Slave

I_CMST 0x01e0001c IRQ Interrupt Current Master

I_ISPR 0x01e00020 IRQ Interrupt Pending Status

I_ISPC 0x01e00024 W IRQ Interrupt Pending Clear

F_ISPR 0x01e00038 R FIQ Interrupt Pending

F_ISPC 0x01e0003c W FIQ Interrupt Pending Clear

LCD CONTROLLER

LCDCON1 0x01f00000 ← W R/W LCD Control 1

LCDCON2 0x01f00004 LCD Control 2

LCDCON3 0x01f00040 LCD Control 3

LCDSADDR1 0x01f00008 Frame Upper Buffer Start Address 1

LCDSADDR2 0x01f0000c Frame Lower Buffer Start Address 2

LCDSADDR3 0x01f00010 Virtual Screen Address

REDLUT 0x01f00014 RED Lookup Table

GREENLUT 0x01f00018 GREEN Lookup Table

BLUELUT 0x01f0001c BLUE Lookup Table

DP1_2 0x01f00020 Dithering Pattern duty 1/2

DP4_7 0x01f00024 Dithering Pattern duty 4/7

DP3_5 0x01f00028 Dithering Pattern duty 3/5

DP2_3 0x01f0002c Dithering Pattern duty 2/3

DP5_7 0x01f00030 Dithering Pattern duty 5/7

DP3_4 0x01f00034 Dithering Pattern duty 3/4

DP4_5 0x01f00038 Dithering Pattern duty 4/5

DP6_7 0x01f0003c Dithering Pattern duty 6/7

DITHMODE 0x01f00044 Dithering Mode

PRODUCT OVERVIEW S3C44B0X RISC MICROPROCESSOR

1-28

Table 1-4. S3C44B0X Special Registers (Concluded)

Register
Name

Address
(B. Endian)

Address
(L. Endian)

Acc.
Unit

Read/W
rite

Function

DMA

ZDCON0 0x01e80000 ← W R/W ZDMA0 Control

ZDISRC0 0x01e80004 ZDMA 0 Initial Source Address

ZDIDES0 0x01e80008 ZDMA 0 Initial Destination Address

ZDICNT0 0x01e8000c ZDMA 0 Initial Transfer Count

ZDCSRC0 0x01e80010 R ZDMA 0 Current Source Address

ZDCDES0 0x01e80014 ZDMA 0 Current Destination Address

ZDCCNT0 0x01e80018 ZDMA 0 Current Transfer Count

ZDCON1 0x01e80020 R/W ZDMA 1 Control

ZDISRC1 0x01e80024 ZDMA 1 Initial Source Address

ZDIDES1 0x01e80028 ZDMA 1 Initial Destination Address

ZDICNT1 0x01e8002c ZDMA 1 Initial Transfer Count

ZDCSRC1 0x01e80030 R ZDMA 1 Current Source Address

ZDCDES1 0x01e80034 ZDMA 1 Current Destination Address

ZDCCNT1 0x01e80038 ZDMA 1 Current Transfer Count

BDCON0 0x01f80000 R/W BDMA 0 Control

BDISRC0 0x01f80004 BDMA 0 Initial Source Address

BDIDES0 0x01f80008 BDMA 0 Initial Destination Address

BDICNT0 0x01f8000c BDMA 0 Initial Transfer Count

BDCSRC0 0x01f80010 R BDMA 0 Current Source Address

BDCDES0 0x01f80014 BDMA 0 Current Destination Address

BDCCNT0 0x01f80018 BDMA 0 Current Transfer Count

BDCON1 0x01f80020 R/W BDMA 1 Control

BDISRC1 0x01f80024 BDMA 1 Initial Source Address

BDIDES1 0x01f80028 BDMA 1 Initial Destination Address

BDICNT1 0x01f8002c BDMA 1 Initial Transfer Count

BDCSRC1 0x01f80030 R BDMA 1 Current Source Address

BDCDES1 0x01f80034 BDMA 1 Current Destination Address

BDCCNT1 0x01f80038 BDMA 1 Current Transfer Count

S3C44B0X RISC MICROPROCESSOR PRODUCT OVERVIEW

1-29

IMPORTANT NOTES ABOUT S3C44B0X SPECIAL REGISTERS

1. In the little endian mode, L. endian address must be used. In the big endian mode, B. endian address must be
used.

2. The special registers have to be accessed by the recommended access unit.

3. All registers except ADC registers, RTC registers and UART registers must be read/written in word unit (32bit) at
little/big endian.

4. It is very important that the ADC registers, RTC registers and UART registers be read/written by the specified
 access unit and the specified address. Moreover, one must carefully consider which endian mode is used.

5. W: 32-bit register, which must be accessed by LDR/STR or int type pointer(int *).
 HW: 16-bit register, which must be accessed by LDRH/STRH or short int type pointer(short int *).
 B: 8-bit register, which must be accessed by LDRB/STRB or char type pointer(char *).

S3C44B0X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-1

2 PROGRAMMER'S MODEL

OVERVIEW

S3C44B0X has been developed using the advanced ARM7TDMI core, which has been designed by Advanced
RISC Machines, Ltd.

PROCESSOR OPERATING STATES

From the programmer's point of view, the ARM7TDMI can be in one of two states:

• ARM state which executes 32-bit, word-aligned ARM instructions.

• THUMB state which can execute 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit 1
to select between alternate halfwords.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT,
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State

Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand register.

• On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode's link register, and execution commences at the exception's vector address.

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

PROGRAMMER'S MODEL S3C44B0X RISC MICROPROCESSOR

2-2

BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

31

8

4

0

23

9

5

1

10

6

2

11

7

3

8 7 0

4

0

8

Higher Address

Lower Address

Word Address

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

24 1516

Figure 2-1. Big-Endian Addresses of Bytes within Words

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word's least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines
7 through 0.

31 23 8 7 0

4

0

8

Higher Address

Lower Address

Word Address

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

24 1516

8

4

0

9

5

1

10

6

2

11

7

3

Figure 2-2. Little-Endian Addresses of Bytes whthin Words

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

Data Types

ARM7TDMI supports byte (8-bit), halfword (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

S3C44B0X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-3

OPERATING MODES

ARM7TDMI supports seven modes of operation:

• User (usr): The normal ARM program execution state

• FIQ (fiq): Designed to support a data transfer or channel process

• IRQ (irq): Used for general-purpose interrupt handling

• Supervisor (svc): Protected mode for the operating system

• Abort mode (abt): Entered after a data or instruction prefetch abort

• System (sys): A privileged user mode for the operating system

• Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in User mode. The non-user modes' known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information.

Register 14 is used as the subroutine link register. This receives a copy of R15 when a Branch
and Link (BL) instruction is executed. At all other times it may be treated as a
general-purpose register. The corresponding banked registers R14_svc, R14_irq,
R14_fiq, R14_abt and R14_und are similarly used to hold the return values of R15
when interrupts and exceptions arise, or when Branch and Link instructions are
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits
[31:2] contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This contains condition code flags
and the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM state, many FIQ handlers do
not need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers
mapped to R13 and R14, allowing each of these modes to have a private stack pointer and link registers.

PROGRAMMER'S MODEL S3C44B0X RISC MICROPROCESSOR

2-4

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13
R14
R15 (PC)

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13_svc

R14_svc

R15 (PC)

R0
R1
R2
R3
R4
R5
R6
R7

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R8_fiq

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13_abt

R14_abt

R15 (PC)

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13_irq

R14_irq

R15 (PC)

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor IRQAbort Undefined

ARM State General Registers and Program Counter

ARM State Program Status Registers

CPSR CPSR
SPSR_fiq

CPSR
SPSR_irq

= banked register

CPSR
SPSR_und

CPSR
SPSR_abt

CPSR
SPSR_svc

Figure 2-3. Register Organization in ARM State

S3C44B0X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-5

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, R0-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs)
for each privileged mode. This is shown in Figure 2-4.

R0
R1
R2
R3
R4
R5
R6
R7

LR
SP

PC

System & User FIQ Supervisor IRQAbort Undefined

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

CPSR CPSR
SPSR_fiq

CPSR
SPSR_svc

CPSR
SPSR_abt

CPSR
SPSR_irq

CPSR
SPSR_und

= banked register

LR_fiq

R0
R1
R2
R3
R4
R5
R6
R7
SP_fiq

PC
LR_svc

R0
R1
R2
R3
R4
R5
R6
R7
SP_svc

PC
LR_und

R0
R1
R2
R3
R4
R5
R6
R7
SP_und

PC
LR_fiq

R0
R1
R2
R3
R4
R5
R6
R7
SP_fiq

PC
LR_abt

R0
R1
R2
R3
R4
R5
R6
R7
SP_abt

PC

Figure 2-4. Register Organization in THUMB State

PROGRAMMER'S MODEL S3C44B0X RISC MICROPROCESSOR

2-6

The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

• THUMB state R0-R7 and ARM state R0-R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

• THUMB state SP maps onto ARM state R13

• THUMB state LR maps onto ARM state R14

• The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5.

R0
R1
R2
R3
R4
R5
R6
R7

Stack Pointer (SP)
Link register (LR)

Program Counter (PC)
CPSR
SPSR

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12

Stack Pointer (R13)
Link register (R14)

Program Counter (R15)
CPSR
SPSR

Lo
-r

eg
is

te
rs

H
i-r

eg
is

te
rs

THUMB state ARM state

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

S3C44B0X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-7

Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-34.

THE PROGRAM STATUS REGISTERS

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register's functions are:

• Hold information about the most recently performed ALU operation

• Control the enabling and disabling of interrupts

• Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

~ ~31

Condition Code Flags

Overflow

N Z C V I F T M4 M3 M2 M1 M0

30 29 2728 26 25 24 23 8 7 6 5 4 3 2 1 0

(Reserved) Control Bits

Carry/Borrow/Extend
Zero
Negative/Less Than

Mode bits
State bit
FIQ disable
IRQ disable

~ ~

Figure 2-6. Program Status Register Format

PROGRAMMER'S MODEL S3C44B0X RISC MICROPROCESSOR

2-8

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
be changed when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in THUMB
state, otherwise it is executing in ARM state. This is reflected on the TBIT external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
processor's operating mode, as shown in Table 2-1. Not all combinations of the mode bits
define a valid processor mode. Only those explicitly described shall be used. The user
should be aware that if any illegal value is programmed into the mode bits, M[4:0], then the
processor will enter an unrecoverable state. If this occurs, reset should be applied.

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR's flag or control bits,
you must ensure that these unused bits are not altered. Also, your program should not rely
on them containing specific values, since in future processors they may read as one or
zero.

S3C44B0X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-9

Table 2-1. PSR Mode Bit Values

M[4:0] Mode Visible THUMB state registers Visible ARM state registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq, R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc, R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt, R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12..R0,
R14_und, R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

Reserved bits The remaining bits in the PSR's are reserved. When changing a PSR's flag or control bits,
 you must ensure that these unused bits are not altered. Also, your program should not rely
 on them containing specific values, since in future processors they may read as one or
 zero.

PROGRAMMER'S MODEL S3C44B0X RISC MICROPROCESSOR

2-10

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
See Exception Priorities on page 2-14.

Action on Entering an Exception

When handling an exception, the ARM7TDMI:

1. Preserves the address of the next instruction in the appropriate Link Register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the Link Register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-2 on for details). If the exception has
been entered from THUMB state, then the value written into the Link Register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the
case of SWI, MOVS PC, R14_svc will always return to the next instruction regardless of whether the SWI
was executed in ARM or THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which depends on the exception

4. Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

S3C44B0X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-11

Exception Entry/Exit Summary

Table 2-2 summarises the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes

ARM R14_x THUMB R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA – – 4

NOTES:
1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimising the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR's F flag (but note that this is not possible from User mode). If the F flag
is clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

PROGRAMMER'S MODEL S3C44B0X RISC MICROPROCESSOR

2-12

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signalled by the external
ABORT input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

• Prefetch abort: occurs during an instruction prefetch.

• Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

• The swap instruction (SWP) is aborted as though it had not been executed.

• Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (ie it has the base in the transfer list), the overwriting is
prevented. All register overwriting is prevented after an abort is indicated, which means in particular that R15
(always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt,#4 ; for a prefetch abort, or
SUBS PC,R14_abt,#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

S3C44B0X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-13

Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or
Thumb):

MOV PC,R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core.

Undefined Instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap.
This mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM
or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-3. Exception Vectors

Address Exception Mode in Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software Interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

PROGRAMMER'S MODEL S3C44B0X RISC MICROPROCESSOR

2-14

Exception Priorites

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

1. Reset

2. Data abort

3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR's F flag is clear),
ARM7TDMI enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from
FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection. The time for this exception entry should be
added to worst-case FIQ latency calculations.

S3C44B0X RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-15

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will be executing the
instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq.
This is 4 processor cycles.

RESET

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to
fetch instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value
of the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR's T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.

PROGRAMMER'S MODEL S3C44B0X RISC MICROPROCESSOR

2-16

NOTES

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-1

3 INSTRUCTION SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

Cond Rn Data/Processing/
PSR Transfer

0 0 I SOpcode

0 0 0 P U 0 W L

0 0 0 P U 1 W L

0 1 I P U B W L

0 1 I

1 0 0 P U B W L

11 11 1 1 11

1 0 L1

1 1 0 P U B W L

1 1 11

1 1 01

1 1 01 L

Rd

Rd

RnRdHi RdLo

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rn Register List

Rn

CRn

CRn

CRd

Rd

CP Opc

CP
Opc

Operand2

Rs

Rm

Rm

Rm

Rm

Rn

Rn

Rd

Offset Offset

CRd OffsetCP#

CP#

CP#

CP

CP

CRm

CRm

Ignored by processor

0

1

Offset

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 00 A S

A SU10 0 00

0 0 0 0 0 01 B

1 00 010 0 0

1

1

1

1

1

1

0

0

0

0

H

H

0

0

0

0

S

S

1

1

1

0

1

1

1

0

0

1

0

0

1

0

0

1

0

0

1

Multiply

Multiply Long

Single Data Swap

Branch and Exchange

Halfword Data Transfer:
register offset

Halfword Data Transfer:
immendiate offset

Single Data Transfer

Undefined

Block Data Transfer

Branch

Coprocessor Register Transfer

Coprocessor Data Operation

Coprocessor Data Transfer

Software Interrupt

Offset

27 26 25 24 23 22 21 20 19 18 17 16 15 1314 12 11 1031 30 29 28 9 8 7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20 19 18 17 16 15 1314 12 11 1031 30 29 28 9 8 7 6 5 4 3 2 1 0

Figure 3-1. ARM Instruction Set Format

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-2

NOTE

Some instruction codes are not defined but do not cause the Undefined instruction trap to be taken, for
instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their
action may change in future ARM implementations.

INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd: = Rn + Op2 + Carry

ADD Add Rd: = Rn + Op2

AND AND Rd: = Rn AND Op2

B Branch R15: = address

BIC Bit Clear Rd: = Rn AND NOT Op2

BL Branch with Link R14: = R15, R15: = address

BX Branch and Exchange R15: = Rn, T bit: = Rn[0]

CDP Coprocessor Data Processing (Coprocessor-specific)

CMN Compare Negative CPSR flags: = Rn + Op2

CMP Compare CPSR flags: = Rn - Op2

EOR Exclusive OR Rd: = (Rn AND NOT Op2)
OR (Op2 AND NOT Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd: = (address)

MCR Move CPU register to coprocessor
register

cRn: = rRn {<op>cRm}

MLA Multiply Accumulate Rd: = (Rm × Rs) + Rn

MOV Move register or constant Rd: = Op2

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-3

Table 3-1. The ARM Instruction Set (Continued)

Mnemonic Instruction Action

MRC Move from coprocessor register to
CPU register

Rn: = cRn {<op>cRm}

MRS Move PSR status/flags to register Rn: = PSR

MSR Move register to PSR status/flags PSR: = Rm

MUL Multiply Rd: = Rm × Rs

MVN Move negative register Rd: = 0 × FFFFFFFF EOR Op2

ORR OR Rd: = Rn OR Op2

RSB Reverse Subtract Rd: = Op2 - Rn

RSC Reverse Subtract with Carry Rd: = Op2 - Rn - 1 + Carry

SBC Subtract with Carry Rd: = Rn - Op2 - 1 + Carry

STC Store coprocessor register to memory address: = CRn

STM Store Multiple Stack manipulation (Push)

STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn - Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd: = [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags: = Rn EOR Op2

TST Test bits CPSR flags: = Rn AND Op2

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-4

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction's condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction's mnemonic. For example, a Branch (B in assembly language) becomes BEQ for "Branch if Equal",
which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (suffix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2. Condition Code Summary

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same

0011 CC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same

1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-5

BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream will be decoded as ARM or THUMB instructions.

31 2427 19 15 8 7 0

00 0 1 10 0 0 11 1 1 11 1 1 11 1 1 00 0 1Cond Rn

28 16 111223 20 4 3

[3:0] Operand Register
If bit0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit0 of Rn =0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

Figure 3-2. Branch and Exchange Instructions

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequential (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.

BX {cond} Rn
{cond} Two character condition mnemonic. See Table 3-2.
Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behavior is undefined.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-6

Examples

ADR R0, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
•

•

•
ADR R5, Back_to_ARM ; Generate branch target to word aligned address

; - hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
•

•

•
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back_to_ARM

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-7

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The
instruction encoding is shown in Figure 3-3, below.

31 2427

Cond Offset

28 23

[24] Link bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

25

101 L

0

Figure 3-3. Branch Instructions

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must
take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously loaded into
a register. In this case the PC should be manually saved in R14 if a Branch with Link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

INSTRUCTION CYCLE TIMES

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as
sequential (S-cycle) and internal (I-cycle).

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-8

ASSEMBLER SYNTAX

Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression>

{L} Used to request the Branch with Link form of the instruction. If absent, R14 will not be
affected by the instruction.

{cond} A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be
used.

<expression> The destination. The assembler calculates the offset.

EXAMPLES

here BAL here ; Assembles to 0xEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.
BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-9

DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2.
The instruction encoding is shown in Figure 3-4.

31 2427 19 15

Cond Operand2

28 16 111221

[15:12] Destination register
0 = Branch 1 = Branch with link

[19:16] 1st operand register
0 = Branch 1 = Branch with link

[20] Set condition codes
0 = Do not after condition codes 1 = Set condition codes

[24:21] Operation codes
0000 = AND-Rd: = Op1 AND Op2
0001 = EOR-Rd: = Op1 EOR Op2
0010 = SUB-Rd: = Op1-Op2
0011 = RSB-Rd: = Op2-Op1
0100 = ADD-Rd: = Op1+Op2
0101 = ADC-Rd: = Op1+Op2+C
0110 = SBC-Rd: = OP1-Op2+C-1
0111 = RSC-Rd: = Op2-Op1+C-1
1000 = TST-set condition codes on Op1 AND Op2
1001 = TEO-set condition codes on OP1 EOR Op2
1010 = CMP-set condition codes on Op1-Op2
1011 = SMN-set condition codes on Op1+Op2
1100 = ORR-Rd: = Op1 OR Op2
1101 = MOV-Rd: =Op2
1110 = BIC-Rd: = Op1 AND NOT Op2
1111 = MVN-Rd: = NOT Op2

[25] Immediate operand
0 = Operand 2 is a register 1 = Operand 2 is an immediate value

[11:0] Operand 2 type selection

26 25

00 L

20

OpCode S Rn Rd

0

Rotate

Shift Rm

[3:0] 2nd operand register [11:4] Shift applied to Rm

311 04

811 07

Imm

[7:0] Unsigned 8 bit immediate value [11:8] Shift applied to Imm

[31:28] Condition field

Figure 3-4. Data Processing Instructions

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-10

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the
value of the I bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-3.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-11

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-3. ARM Data Processing Instructions

Assembler Mnemonic OP Code Action

AND 0000 Operand1 AND operand2

EOR 0001 Operand1 EOR operand2

WUB 0010 Operand1 - operand2

RSB 0011 Operand2 operand1

ADD 0100 Operand1 + operand2

ADC 0101 Operand1 + operand2 + carry

SBC 0110 Operand1 - operand2 + carry - 1

RSC 0111 Operand2 - operand1 + carry - 1

TST 1000 As AND, but result is not written

TEQ 1001 As EOR, but result is not written

CMP 1010 As SUB, but result is not written

CMN 1011 As ADD, but result is not written

ORR 1100 Operand1 OR operand2

MOV 1101 Operand2 (operand1 is ignored)

BIC 1110 Operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V
flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands
were considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag
will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N
flag will be set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-12

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the bottom byte of another register (other than R15). The encoding for the
different shift types is shown in Figure 3-5.

0

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:7] Shift amount
5 bit unsigned integer

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:8] Shift register
Shift amount specified in bottom-byte of Rs

456711

1

456711 8

0RS

Figure 3-5. ARM Shift Operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded, except that the least significant discarded bit becomes the shifter carry
output which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see
above). For example, the effect of LSL #5 is shown in Figure 3-6.

31 27 26

Contents of Rm

Value of Operand 2

carry out

0

0

0000

Figure 3-6. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-13

31

Contents of Rm

Value of Operand 2

0

carry out

45

00000

Figure 3-7. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which
has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as
logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow
LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure
3-8.

31

Contents of Rm

Value of Operand 2

0

carry out

4530

Figure 3-8. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all
ones or all zeros, according to the value of bit 31 of Rm.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-14

Rotate right (ROR) operations reuse the bits which "overshoot" in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For
example, ROR #5 is shown in Figure 3-9.

31

Contents of Rm

Value of Operand 2

0

carry out

45

Figure 3-9. Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a special function of the
barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit quantity formed by
appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure 3-10.

31

Contents of Rm

Value of Operand 2

01

carry outC
in

Figure 3-10. Rotate Right Extended

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-15

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

1. LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2. LSL by more than 32 has result zero, carry out zero.

3. LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4. LSR by more than 32 has result zero, carry out zero.

5. ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6. ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7. ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-16

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in
the rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and CPSR.
This form of instruction should not be used in User mode.

USING R15 AS AN OPERANDY

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer
operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a privileged
mode and to do nothing if in User mode.

INSTRUCTION CYCLE TIMES

Data Processing instructions vary in the number of incremental cycles taken as follows:

Table 3-4. Incremental Cycle Times

Processing Type Cycles

Normal data processing 1S

Data processing with register specified shift 1S + 1I

Data processing with PC written 2S + 1N

Data processing with register specified shift and PC written 2S + 1N +1I

NOTE: S, N and I are as defined sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle) respectively.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-17

ASSEMBLER SYNTAX

•• MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2>

•• CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

•• AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> Rm{,<shift>} or,<#expression>

{cond} A two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm Expressions evaluating to a register number.

<#expression> If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<shift> <Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with
extend).

<shiftname>s ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
code.)

EXAMPLES

ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5
TEQS R4,#3 ; Test R4 for equality with 3.

; (The S is in fact redundant as the
; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

; from SPSR_mode.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-18

PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in
Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS

•• In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

•• Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor
will enter an unpredictable state.

•• The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

•• You must not specify R15 as the source or destination register.

•• Also, do not attempt to access an SPSR in User mode, since no such register exists.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-19

MRS (transfer register contents or immediate value to PSR flag bits only)

Cond Source operandPd 101001111

31 222728 11122123

I 1000

26 25 24 0

Cond 0000000000010 Pd 101001111

31 222728 11122123

Rm

MRS (transfer register contents to PSR)

4 3 0

Cond 00000000000000010 RdPs 001111

31 2227 1528 16 11122123

MRS (transfer PSR contents to a register)

0

[3:0] Source Register

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[15:21] Destination Register

[19:16] Source PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[3:0] Source Register
[11:4] Source operand is an immediate value

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to Imm

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[25] Immediate Operand
0 = Source operand is a register
1 = SPSR_<current mode>

[11:0] Source Operand

[31:28] Condition Field

00000000 Rm

11 4 3 0

Rotate Imm

11 08 7

Figure 3-11. PSR Transfer

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-20

RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules
should be observed:

• The reserved bits should be preserved when changing the value in a PSR.

• Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

EXAMPLES

The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as Sequential (S-cycle).

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-21

ASSEMBLY SYNTAX

•• MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

•• MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

•• MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

•• MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written to the N,Z,C
and V flags respectively.

Key:

{cond} Two-character condition mnemonic. See Table 3-2..

Rd and Rm Expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are SPSR
and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

<#expression> Where this is used, the assembler will attempt to generate a shifted immediate 8-bit field
to match the expression. If this is impossible, it will give an error.

EXAMPLES

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA (set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5 (set Z,V; clear N,C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0]<- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC (set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-22

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication.

31 27 19 15

Cond

28 16 111221 20

S Rd Rn

[15:12][11:8][3:0] Operand Registers
[19:16] Destination Register

[20] Set Condition Code
0 = Do not after condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[31:28] Condition Field

22

1 0 0 1Rs RmA00 0 0 0 0

8 7 4 3 0

Figure 3-12. Multiply Instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be set to zero for compatibility
with possible future upgrades to the instruction set. The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which
can save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands
which may be considered as signed (2's complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits -
the low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits
of a multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
0xFFFFFFF6 0x0000001 0xFFFFFF38

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-23

If the Operands Are Interpreted as Signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as
0xFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-24

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + mI and MLA 1S + (m+1)I cycles to execute, where S and I are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m The number of 8 bit multiplier array cycles is required to complete the multiply, which is
controlled by the value of the multiplier operand specified by Rs. Its possible values are
as follows

1 If bits [32:8] of the multiplier operand are all zero or all one.

2 If bits [32:16] of the multiplier operand are all zero or all one.

3 If bits [32:24] of the multiplier operand are all zero or all one.

4 In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-2..

{S} Set condition codes if S present

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

EXAMPLES

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4, Setting condition codes.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-25

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL, MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results.
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

31 27 19 15

Cond

28 16 11122123

U

20

S RdHi RdLo

[11:8][3:0] Operand Registers
[19:16][15:12] Source Destination Registers

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned
1 = Signed

[31:28] Condition Field

22

00 0 0 1 1 0 0 1Rs RmA

8 7 4 3 0

Figure 3-13. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of
the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of the
result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit
number to produce a 64 bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower 32 bits of the 64 bit
number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower 32
bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an
unsigned 64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement
signed numbers and write a two's-complement signed 64 bit result.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-26

OPERAND RESTRICTIONS

•• R15 must not be used as an operand or as a destination register.

•• RdHi, RdLo, and Rm must all specify different registers.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Its possible values are as follows:

For Signed INSTRUCTIONS SMULL, SMLAL:

•• If bits [31:8] of the multiplier operand are all zero or all one.

•• If bits [31:16] of the multiplier operand are all zero or all one.

•• If bits [31:24] of the multiplier operand are all zero or all one.

•• In all other cases.

For Unsigned Instructions UMULL, UMLAL:

•• If bits [31:8] of the multiplier operand are all zero.

•• If bits [31:16] of the multiplier operand are all zero.

•• If bits [31:24] of the multiplier operand are all zero.

•• In all other cases.

S and I are defined as sequential (S-cycle) and internal (I-cycle), respectively.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-27

ASSEMBLER SYNTAX

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32 x 32 = 64

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32 x 32 + 64 = 64

SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32 x 32 = 64

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32 x 32 + 64 = 64

where:

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

EXAMPLES

UMULL R1,R4,R2,R3 ; R4,R1:=R2*R3
UMLALS R1,R5,R2,R3 ; R5,R1:=R2*R3+R5,R1 also setting condition codes

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-28

SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address
used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15 0

Cond

28 16 11122123

B

20

L Rn Rd

22

01 I P U OffsetW

26 2425

[15:12] Source/Destination Registers

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate Offset
0 = Offset is an immediate value

[11:0] Offset

Shift

Immediate

[11:0] Unsigned 12-bit immediate offset

11

11

Rm

[3:0] Offset register [11:4] Shift applied to Rm

[31:28] Condition Field

0

4 3 0

Figure 3-14. Single Data Transfer Instructions

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-29

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core.
The two possible configurations are described below.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros.
Please see Figure 2-2.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-30

LDR from word aligned address

A+3

A

A+2

A+1

memory

24

16

8

0

A

B

C

D

register

24

16

8

0

A

B

C

D

LDR from address offset by 2

A+3

A

A+2

A+1

memory

24

16

8

0

A

B

C

D

register

24

16

8

0

A

B

C

D

Figure 3-15. Little-Endian Offset Addressing

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros.
Please see Figure 2-1.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-31

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.

EXAMPLE:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S,N and I
are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-32

ASSEMBLER SYNTAX

<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

{T} If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

Rd An expression evaluating to a valid register number.

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will
subtract 8 from
the offset value to allow for ARM7TDMI pipelining. In this case base write-back should
not be specified.

<Address>can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted

by <shift>

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted as

by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify the shift
amount by a register.

{!} Writes back the base register (set the W bit) if! is present.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-33

EXAMPLES

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are registers)
; and write back address to R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back R2+R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQB R1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31 with zeros.
STR R1,PLACE ; Generate PC relative offset to address PLACE.
PLACE

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-34

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15

Cond

28 16 11122123

0

20

L Rn Rd

[3:0] Offset Register

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfword
 1 1 = Signed byte
 1 1 = Signed halfword

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U 0000W

2425

1 RmS H 1

8 7 6 5 4 3 0

Figure 3-16. Halfword and Signed Data Transfer with Register Offset

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-35

31 27 19 15

Cond

28 16 11122123

1

20

L Rn Rd

[3:0] Immediate Offset (Low Nibble)

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfword
 1 1 = Signed byte
 1 1 = Signed halfword

[11:8] Immediate Offset (High Nibble)

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U OffsetW

2425

1 OffsetS H 1

8 7 6 5 4 3 0

Figure 3-17. Halfword and Signed Data Transfer with Immediate Offset and Auto-Indexing

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that
bit 11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base may be kept (W=0). In the case of post-indexed addressing, the
write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base.

The Write-back bit should not be set high (W=1) when post-indexed addressing is selected.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-36

HALFWORD LOAD AND STORES

Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM7TDMI register and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALFWORD LOADS

The S bit controls the loading of sign-extended data. When S=1 the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALFWORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-37

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to 0 if it is a halfword boundary, (A[1]=1). The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI
will load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register.
For unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I. LDR(H,SH,SB) PC take 2S + 2N + 1I incremental cycles.
S,N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STRH
instructions take 2N incremental cycles to execute.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-38

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2..

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm offset of +/- contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this
case base write-back should not be specified.

{!} Writes back the base register (set the W bit) if ! is present.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-39

EXAMPLES

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the halfword address
; contained in R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte

; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[R0] ; Conditionally load R11 with the sign extended contents

; of the halfword address contained in R0.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC,#(FRED-HERE-8)]; Store the halfword in R5 at address FRED
FRED

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-40

BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit
corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 27 19 15

Cond

28 162123

S

20

L Rn

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[31:28] Condition Field

22

100 P U W

2425

Register list

24 0

Figure 3-18. Block Data Transfer Instructions

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-41

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of the modified
base is required (W=1). Figure 3.19-22 show the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial value
of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have been
overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

1 2

3 4

Rn R1

R1
R5

R1
R5
R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-19. Post-Increment Addressing

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-42

Rn

1

R1

R1

2

R5

3

R1
R5

4

R7Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-20. Pre-Increment Addressing

Rn

1

R1

R1

2

R5

3

R1
R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-21. Post-Decrement Addressing

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-43

Rn

1

R1

R1

2

R5

3

R1
R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-22. Pre-Decrement Addressing

USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV R0, R0 after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-44

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system.

Abort during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

• Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

• The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where S,N
and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM
instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-45

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{!} If present requests write-back (W=1), otherwise W=0.

{^} If present set S bit to load the CPSR along with the PC, or force transfer of user bank
when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-6.

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit

Pre-Increment Load LDMED LDMIB 1 1 1

Post-Increment Load LDMFD LDMIA 1 0 1

Pre-Decrement Load LDMEA LDMDB 1 1 0

Post-Decrement Load LDMFA LDMDA 1 0 0

Pre-Increment Store STMFA STMIB 0 1 1

Post-Increment Store STMEA STMIA 0 0 1

Pre-Decrement Store STMFD STMDB 0 1 0

Post-Decrement Store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F
and E refer to a "full" or "empty" stack, i.e. whether a pre-index has to be done (full) before storing to the stack.
The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM
down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After,
Increment Before, Decrement After, Decrement Before.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-46

EXAMPLES

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 ← (SP), CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 ← (SP), CPSR <- SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling
routine:

STMED SP!,{R0-R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0-R3,R15} ; Restore workspace and return.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-47

SINGLE DATA SWAP (SWP)

31 19 15

Cond

28 16 11122123

B

20

00 Rn Rd

[3:0] Source Register

[15:12] Destination Register

[19:16] Base Register

[22] Byte/Word Bit
0 = Swap word quantity
1 = Swap word quantity

[31:28] Condition Field

22

00010 0000 Rm1001

27 8 7 4 3 0

Figure 3-23. Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are "locked" together (the
processor cannot be interrupted until both operations have completed, and the memory manager is warned to
treat them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM7TDMI register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-48

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the Data Abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and I are defined as sequential
(S-cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn Expressions evaluating to valid register numbers

EXAMPLES

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-49

SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-24, below.

31 2427

1111Cond Comment Field (Ignored by Processor)

28 23

[31:28] Condition Field

0

Figure 3-24. Software Interrupt Instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed
value (0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external
memory management hardware) from modification by the user, a fully protected operating system may be
constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
sequential (S-cycle) and non-sequential (N-cycle).

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-50

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two character condition mnemonic, Table 3-2.

<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).

EXAMPLES

SWI ReadC ; Get next character from read stream.
SWI WriteI+"k” ; Output a "k" to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; Addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
• • •
Zero EQU 0

ReadC EQU 256
WriteI EQU 512

Supervisor ; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7. Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in R0 bits 0-7.
• • •
LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return,

; restoring processor mode and flags.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-51

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The S3C44B0X, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have a on-chip coprocessor also.

So then all coprocessor instructions will cause the undefined instruction trap to be taken on the S3C44B0X.
These coprocessor instructions can be emulated by the undefined trap handler. Even though external
coprocessor can not be connected to the S3C44B0X, the coprocessor instructions are still described here in full
for completeness. (Remember that any external coprocessor described in this section is a software emulation.)

31 2427 19 15

Cond CRm

28 16 111223 20

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register

[19:16] Coprocessor operand register

[23:20] Coprocessor operation code

[31:28] Condition Field

0CpCp#CRdCRn1110 CP Opc

8 7 5 4 3 0

Figure 3-25. Coprocessor Data Operation Instruction

Only bit 4 and bits 24 to 31 The coprocessor fields are significant to ARM7TDMI. The remaining bits are used by
coprocessors. The above field names are used by convention, and particular coprocessors may redefine the use
of all fields except CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to
15) for each coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the
CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-52

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and I are defined as sequential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

EXAMPLES

CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2 to do operation 5 (type 2)
; on CR2 and CR3, and put the result in CR1.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-53

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction encoding is shown in Figure 3-26.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessors's registers directly to
memory. ARM7TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts
the data and controls the number of words transferred.

[7:0] Unsigned 8 Bit Immediate Offset

[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

31 27 19 15

Cond

28 16 11122123

N

20

L Rn CRd

22

110 P U CP#W

2425

Offset

8 7 0

Figure 3-26. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance
N=0 could select the transfer of a single register, and N=1 could select the transfer of all the registers for context
switching.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-54

ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0) the
base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used as the
transfer address. The modified base value may be overwritten back into the base register (if W=1), or the old
value of the base may be preserved (W=0). Note that post-indexed addressing modes require explicit setting of
the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address
one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved,
and must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES

Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to execute, where:

n The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop.

S, N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-55

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-2..

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:
[Rn],<#expression offset of <expression> bytes
{!} write back the base register (set the W bit) if! is present
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE

If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining.

EXAMPLES

LDC p1,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; Conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-56

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.. The
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI
register into a floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 27 19 15

Cond

28 16 11122123 20

L CRn Rd

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Number

[15:12] ARM Source/Destination Register

[19:16] Coprocessor Source/Destination Register

[20] Load/Store Bit
0 = Store to coprocessor
1 = Load from coprocessor

[21] Coprocessor Operation Mode

[31:28] Condition Field

1110 CP Opc CP#

24

CRm1CP

8 7 5 4 3 0

Figure 3-27. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is
derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-57

TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are defined as sequential
(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bI +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM7TDMI register (L=1)

MCR Move from ARM7TDMI register to coprocessor (L=0)

{cond} Two character condition mnemonic. See Table 3-2

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

Rd An expression evaluating to a valid ARM7TDMI register number

cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

EXAMPLES

MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-58

UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The
instruction format is shown in Figure 3-28.

31 27

Cond

28 25 24

011 xxxxxxxxxxxxxxxxxxxx 1 xxxx

5 4 3 0

Figure 3-28. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 1I + 1N cycles, where S, N and I are defined as sequential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-59

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly they
just save code.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR

CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (Run Time)

MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; Test value,
ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,# " "-1 ; Range test
MOVLS Rc,# "" ; IF Rc<= "" OR Rc=ASCII(127)

; THEN Rc:= "."

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-60

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM Cross Development Toolkit, available from your supplier. A short general purpose divide
routine follows.

; Enter with numbers in Ra and Rb.
MOV Rcnt,#1 ; Bit to control the division.

Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; Put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; Shift control bit
MOVNE Rb,Rb,LSR#1 ; Halve unless finished.
BNE Div2 ; Divide result in Rc, remainder in Ra.

Overflow Detection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result

UMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,Rd ASR#31 ; +1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,Rd, ASR#31 ; +1 cycle and a register
BNE overflow

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-61

5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ; 1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BVS overflow ; 1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
; Rb (1 bit in Rb lsb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; Carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)

 EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-62

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:

1. If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2. If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5*9 = 45

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-63

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

; Enter with address in Ra (32 bits) uses
; Rb, Rc result in Rd. Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; Get word aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; Produce bottom of result word (if not aligned)
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-64

NOTES

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-65

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the
ARM7TDMI core.

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format
instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb
instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

Move Shifted register

00

0

0 0 0

0 0 0

0 0 0

1

0

0

0 1 0

0

0

0

0

0

1

11

1

1

1

1

00

0 0 0

1

1

1

1

11

1

1

0

L

0

1

1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

0 0 0

0

1 1

1 1

0 0

10

0

L

1 0 R

1 1 0

1 0 SP

1 L

L

S

H

0

0

1 B L

0 1 H

0 1 B

0 0 1

1 1 I Op

Op

Op

Op

Op

L 0

S 1

Offset5 Rs Rd

Rn/offset3

Rd

Rs Rd

Offset8

Rs

Rd/Hd

Rd

H1 H2 Rs/Hs

Rd

Word8

Rd

RbRo

Ro Rb

Rd

Offset5 Rb Rd

Rb RdOffset5

Rd

Rd

Word8

Word8

SWord7

Rb

Cond

Rlist

Rlist

Softset8

Value8

Offset11

Offset

Add/subtract

Move/compare/add/
subtract immediate

ALU operations

Hi register operations
/branch exchange

PC-relative load

Load/store with register
offset

Load/store with immediate
offset

Load/store sign-extended
byte/halfword

Load/store halfword

SP-relative load/store

Load address

Add offset to stack pointer

Push/pop register

Multiple load/store

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 3-29. THUMB Instruction Set Formats

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-66

OPCODE SUMMARY

The following table summarizes the THUMB instruction set. For further information about a particular instruction
please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

ADC Add with Carry Y – Y

ADD Add Y – Y (1)

AND AND Y – Y

ASR Arithmetic Shift Right Y – Y

B Unconditional branch Y – –

Bxx Conditional branch Y – –

BIC Bit Clear Y – Y

BL Branch and Link – – –

BX Branch and Exchange Y Y –

CMN Compare Negative Y – Y

CMP Compare Y Y Y

EOR EOR Y – Y

LDMIA Load multiple Y – –

LDR Load word Y – –

LDRB Load byte Y – –

LDRH Load halfword Y – –

LSL Logical Shift Left Y – Y

LDSB Load sign-extended byte Y – –

LDSH Load sign-extended halfword Y – –

LSR Logical Shift Right Y – Y

MOV Move register Y Y Y (2)

MUL Multiply Y – Y

MVN Move Negative register Y – Y

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-67

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

NEG Negate Y – Y

ORR OR Y – Y

POP Pop register Y – –

PUSH Push register Y – –

ROR Rotate Right Y – Y

SBC Subtract with Carry Y – Y

STMIA Store Multiple Y – –

STR Store word Y – –

STRB Store byte Y – –

STRH Store halfword Y – –

SWI Software Interrupt – – –

SUB Subtract Y – Y

TST Test bits Y – Y

NOTES:
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-68

FORMAT 1: MOVE SHIFTED REGISTER

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[10:6] Immediate Vale

[12:11] Opcode
0 = LSL
1 = LSR
2 = ASR

Offset5

6 5 3 2

Rd0 0

13 12 11

Op Rs

Figure 3-30. Format 1

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-8. Summary of Format 1 Instructions

OP THUMB Assembler ARM Equipment Action

00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL #Offset5 Shift Rs left by a 5-bit immediate
value and store the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR #Offset5 Perform logical shift right on Rs by
a 5-bit immediate value and store
the result in Rd.

10 ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR
#Offset5

Perform arithmetic shift right on Rs
by a 5-bit immediate value and
store the result in Rd.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-69

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-70

FORMAT 2: ADD/SUBTRACT

15

0

14 10

[2:0] Destination Register

[5:3] Source Register

[8:6] Register/Immediate Vale

[9] Opcode
0 = ADD
1 = SUB

[10] Immediate Flag
0 = Register operand
1 = Immediate oerand

Rn/Offset3 Rd0 0

13 12 11

Op Rs

9 8

1 1 1

6 5 3 2 0

Figure 3-31. Format 2

OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-9. Summary of Format 2 Instructions

OP I THUMB Assembler ARM Equipment Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs.
Place result in Rd.

0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs, #Offset3 Add 3-bit immediate value to contents of
Rs. Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs, #Offset3 Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-71

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R0, R3, R4 ; R0 := R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ; R6 := R2 - 6 and set condition codes.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-72

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15 0

0

14 10

[7:0] Immediate Vale

[10:8] Source/Destination Register

[12:11] Opcode
0 = MOV
1 = CMP
2 = ADD
3 = SUB

Offset8Rd0 0

13 12 11

Op

78

Figure 3-32. Format 3

OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-10. Summary of Format 3 Instructions

OP THUMB Assembler ARM Equipment Action

00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit
immediate value.

10 ADD Rd, #Offset8 ADDS Rd, Rd, #Offset8 Add 8-bit immediate value to contents of
Rd and place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 Subtract 8-bit immediate value from
contents of Rd and place the result in Rd.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-73

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

MOV R0, #128 ; R0 := 128 and set condition codes
CMP R2, #62 ; Set condition codes on R2 - 62
ADD R1, #255 ; R1 := R1 + 255 and set condition codes
SUB R6, #145 ; R6 := R6 - 145 and set condition codes

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-74

FORMAT 4: ALU OPERATIONS

15 0

0

14 10

[2:0] Source/Destination Register

[5:3] Source Register 2

[9:6] Opcode

56 3

Rd0 0

13 12 11

Op Rs0 0 0

9 2

Figure 3-33. Format 4

OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-11. Summary of Format 4 Instructions

OP THUMB Assembler ARM Equipment Action

0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs

0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd := Rd << Rs

0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd := Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs

0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit

0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd - Rs - NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs

1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = - Rs

1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd - Rs

1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd := Rd OR Rs

1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd := Rs * Rd

1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-75

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

EOR R3, R4 ; R3 := R3 EOR R4 and set condition codes
ROR R1, R0 ; Rotate Right R1 by the value in R0, store

; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,

; Store the result in R5. Set condition codes ie R5 = - R3
CMP R2, R6 ; Set the condition codes on the result of R2 - R6
MUL R0, R7 ; R0 := R7 * R0 and set condition codes

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-76

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[6] Hi Operand Flag 2

[7] Hi Operand Flag 1

[9:8] Opcode

6 5 3 2

Rd/Hd0 0

13 12 11

Op Rs/Hs0 0 0

9 8 7

H1 H2

Figure 3-34. Format 5

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01 (CMP) and Op = 10 (MOV) is undefined, and should not
be used.

Table 3-12. Summary of Format 5 Instructions

Op H1 H2 THUMB assembler ARM equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15 to a
register in the range 0-7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a
register in the range 8-15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7
with a register in the range 8-15. Set
the condition code flags on the result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15
with a register in the range 0-7. Set
the condition code flags on the result.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-77

Table 3-12. Summary of Format 5 Instructions (Continued)

Op H1 H2 THUMB assembler ARM equivalent Action

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range
8-15. Set the condition code flags on
the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the
range 8-15 to a register in the range 0-
7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the
range 0-7 to a register in the range
8-15.

10 1 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers in
the range 8-15.

11 0 0 BX Rs BX Rs Perform branch (plus optional state
change) to address in a register in the
range 0-7.

11 0 1 BX Hs BX Hs Perform branch (plus optional state
change) to address in a register in the
range 8-15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a Branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit 0 = 0 Causes the processor to enter ARM state.
Bit 0 = 1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-78

EXAMPLES

Hi-Register Operations

ADD PC, R5 ; PC := PC + R5 but don't set the condition codes.
CMP R4, R12 ; Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

; Switch from THUMB to ARM state.
ADR R1,outofTHUMB ; Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ; Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie. ARM state here.

 •

•
ALIGN
CODE32
outofTHUMB ; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit 0 cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-79

FORMAT 6: PC-RELATIVE LOAD

15 0

0

14 10

[7:0] Immediate Value

[10:8] Destination Register

Word 80 0

13 12 11

Rd0 0

8 7

Figure 3-35. Format 6

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-13. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the PC. Load the
word from the resulting address into Rd.

NOTE: The value specified by #Imm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than the address
of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-80

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-81

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 L B

9 8

Ro0

Figure 3-36. Format 7

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-82

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-14.

Table 3-14. Summary of Format 7 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:
Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the contents of Rd at the
address.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by adding
together the value in Rb and the value in
Ro. Store the byte value in Rd at the
resulting address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the contents of the address into
Rd.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:
Calculate the source address by adding
together the value in Rb and the value in
Ro. Load the byte value at the resulting
address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R3, [R2,R6] ; Store word in R3 at the address
; formed by adding R6 to R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding R7 to R0.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-83

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD

[2:0] Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag
0 = Operand not sing-extended
1 = Operand sing-extended

[11] H Flag

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 H S

9 8

Ro1

Figure 3-37. Format 8

OPERATION

These instructions load optionally sign-extended bytes or halfwords, and store halfwords. The THUMB assembler
syntax is shown below.

Table 3-15. Summary of format 8 instructions

L B THUMB assembler ARM equivalent Action

0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store halfword:

Add Ro to base address in Rb. Store bits
0-15 of Rd at the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load halfword:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:

Add Ro to base address in Rb. Load bits
0-7 of Rd from the resulting address, and
set bits 8-31 of Rd to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended halfword:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to bit 15.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-84

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the
; address formed by adding R0 to R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword
; found at the address formed by adding R2 to R4.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-85

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Offset Register

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[12] Byte/Word Flad
0 = Transfer word quantity
1 = Transfer byte quantity

15 0

0

14 10 6 5 3 2

Rd1 1

13 12 11

RbB L Offset5

Figure 3-38. Format 9

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-86

OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit
offset. The THUMB assembler syntax is shown in Table 3-16.

Table 3-16. Summary of Format 9 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the contents of Rd at the address.

1 0 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding
together the value in Rb and Imm. Load
Rd from the address.

0 1 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the byte value in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by adding
together the value in Rb and Imm. Load
the byte value at the address into Rd.

NOTE: For word accesses (B = 0), the value specified by #Imm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-87

FORMAT 10: LOAD/STORE HALFWORD

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Immediate Value

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb0 L Offset5

Figure 3-39. Format 10

OPERATION

These instructions transfer halfword values between a Lo register and memory. Addresses are pre-indexed, using
a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Halfword Data Transfer Instructions

L THUMB assembler ARM equivalent Action

0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and store
bits 0 - 15 of Rd at the resulting address.

1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load bits
0-15 from the resulting address into Rd and
set bits 16-31 to zero.

NOTE: #Imm is a full 6-bit address but must be halfword-aligned (ie with bit 0 set to 0) since the assembler places
#Imm >> 1 in the Offset5 field.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-88

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
; 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the halfword found at the address formed by
; adding 4 to R7. Note that the THUMB opcode will contain
; 2 as the Offset5 value.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-89

FORMAT 11: SP-RELATIVE LOAD/STORE

[7:0] Immediate Value

[10:8] Destination Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 0

13 12 11

Word 81 L Rd

78

Figure 3-40. Format 11

OPERATION

The instructions in this group perform an SP-relative load or store. The THUMB assembler syntax is shown in the
following table.

Table 3-18. SP-Relative Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Store the contents of Rd at the
resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Load the word from the resulting
address into Rd.

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #Imm >> 2 in the Word8 field.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-90

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-91

FORMAT 12: LOAD ADDRESS

[7:0] 8-bit Unsigned Constant

[10:8] Destination Register

[11] Source
0 = PC
1 = SP

15 0

1

14 10

0 1

13 12 11

Word 80 SP Rd

78

Figure 3-41. Format 12

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-19. Load Address

L THUMB assembler ARM equivalent Action

0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value of the
program counter (PC) and load the result
into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value of the stack
pointer (SP) and load the result into Rd.

NOTE: The value specified by #Imm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #Imm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-92

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R2, PC, #572 ; R2 := PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6 := SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-93

FORMAT 13: ADD OFFSET TO STACK POINTER

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

15 0

1

14 10

0 1

13 12 11

SWord 71 0 0

789 6

0 0 S

Figure 3-42. Format 13

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-20. The ADD SP Instruction

L THUMB assembler ARM equivalent Action

0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).

1 ADD SP, # -Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #Imm can be up to -/+ 508, but must be word-aligned (ie with bits 1:0 set to 0)
since the assembler converts #Imm to an 8-bit sign + magnitude number before placing it in field SWord7.
The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD SP, #268 ; SP (R13) := SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #-104 ; SP (R13) := SP - 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S=1.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-94

FORMAT 14: PUSH/POP REGISTERS

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 1

13 12 11

Rlist1 L 0

789

1 R

Figure 3-43. Format 14

OPERATION

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be Full Descending.

Table 3-21. PUSH and POP Instructions

L B THUMB assembler ARM equivalent Action

0 0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by Rlist onto
the stack. Update the stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13!,
{ Rlist, R14 }

Push the Link Register and the registers
specified by Rlist (if any) onto the stack.
Update the stack pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the
registers specified by Rlist. Update the
stack pointer.

1 1 POP { Rlist, PC } LDMIA R13!, {Rlist, R15} Pop values off the stack and load into
the registers specified by Rlist. Pop the
PC off the stack. Update the stack
pointer.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-95

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

PUSH {R0-R4,LR} ; Store R0,R1,R2,R3,R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-96

FORMAT 15: MULTIPLE LOAD/STORE

[7:0] Register List

[10:8] Base Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

1 0

13 12 11

Rlist0 L

78

Rb

Figure 3-44. Format 15

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-22. The Multiple Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STMIA R0!, {R3-R7} ; Store the contents of registers R3-R7
; starting at the address specified in
; R0, incrementing the addresses for each word.
; Write back the updated value of R0.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-97

FORMAT 16: CONDITIONAL BRANCH

[7:0] 8-bit Signed Immediate

[11:8] Condition

15 0

1

14

1 0

13 12 11

SOffset 81

78

Cond

Figure 3-45. Format 16

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 2-23. The Conditional Branch Instructions

L THUMB assembler ARM equivalent Action

0000 BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher or same)

0011 BCC label BCC label Branch if C clear (unsigned lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear (unsigned higher)

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-98

Table 2-23. The Conditional Branch Instructions (Continued)

L THUMB assembler ARM equivalent Action

1001 BLS label BLS label Branch if C clear or Z set (unsigned lower or
same)

1010 BGE label BGE label Branch if N set and V set, or N clear and V
clear (greater or equal)

1011 BLT label BLT label Branch if N set and V clear, or N clear and V
set (less than)

1100 BGT label BGT label Branch if Z clear, and either N set and V set
or N clear and V clear (greater than)

1101 BLE label BLE label Branch if Z set, or N set and V clear, or N
clear and V set (less than or equal)

NOTES
1. While label specifies a full 9-bit two's complement address, this must always be halfword-aligned (ie with bit 0 set to 0)

since the assembler actually places label >> 1 in field SOffset8.
2. Cond = 1110 is undefined, and should not be used.

Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

CMP R0, #45 ; Branch to over-if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
• ; the number of halfwords to offset.
•

over • ; Must be halfword aligned.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-99

FORMAT 17: SOFTWARE INTERRUPT

[7:0] Comment Field

15 0

1

14

1 0

13 12 11

Value 81

7810 9

1 1 1 1

Figure 3-46. Format 17

OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-24. The SWI Instruction

THUMB assembler ARM equivalent Action

SWI Value 8 SWI Value 8 Perform Software Interrupt:
Move the address of the next instruction into LR,
move CPSR to SPSR, load the SWI vector address
(0x8) into the PC. Switch to ARM state and enter
SVC mode.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

SWI 18 ; Take the software interrupt exception.
; Enter Supervisor mode with 18 as the
; requested SWI number.

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-100

FORMAT 18: UNCONDITIONAL BRANCH

[10:0] Immediate Value

15 0

1

14

1 1

13 12 11

Offset110

10

0

Figure 3-47. Format 18

OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current
instruction.

Table 3-25. Summary of Branch Instruction

THUMB assembler ARM equivalent Action

B label BAL label (halfword offset) Branch PC relative +/- Offset11 << 1, where label is
PC +/- 2048 bytes.

NOTE: The address specified by label is a full 12-bit two's complement address,
but must always be halfword aligned (ie bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

EXAMPLES

here B here ; Branch onto itself. Assembles to 0xE7FE.
; (Note effect of PC offset).

B jimmy ; Branch to 'jimmy'.
• ; Note that the THUMB opcode will contain the number of
•
• ; halfwords to offset.

jimmy • ; Must be halfword aligned.

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-101

FORMAT 19: LONG BRANCH WITH LINK

[10:0] Long Branch and Link Offset High/Low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

15 0

1

14

1 1

13 12 11

Offset1

10

H

Figure 3-48. Format 19

OPERATION

This format specifies a long branch with link.

The assembler splits the 23-bit two's complement half-word offset specified by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-102

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-26. The BL Instruction

L THUMB assembler ARM equivalent Action

0 BL label none LR := PC + OffsetHigh << 12

1 temp := next instruction address

PC := LR + OffsetLow << 1

LR := temp | 1

EXAMPLES

BL faraway ; Unconditionally Branch to 'faraway'
next • ; and place following instruction

• ; address, ie "next", in R14,the Link
; register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of halfwords to offset.

faraway • ; Must be Half-word aligned.
•

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-103

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2^n (-2, -4, -8, ...)

LSL Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by -2^n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n+1, 2^n-1, -2^n or -2^n-1} * 2^n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) ; (2..5)
LSL Ra, Ra, #n ; MOV Ra, Ra, LSL #n

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-104

GENERAL PURPOSE SIGNED DIVIDE

This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

;Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with -1 (0×FFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1 if negative
ASR R0, R1, #31 ; Get 0 or -1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with -1 (0×FFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in R0 & R2) for later use in determining ; sign of quotient & remainder.
PUSH {R0, R2}

;Justification, shift 1 bit at a time until divisor (R0 value) ; is just <= than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l
MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real subtract

0 ADC R0, R0 ; Shift result and add 1 if subtract succeeded

CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_l ; tested subtracting the 'ones' value).

S3C44B0X RISC MICROPROCESSOR ARM INSTRUCTION SET

3-105

Now fix up the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back
EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = - 1
SUB R0, R3
EOR R1, R2 ; Negate remainder if dividend sign = - 1
SUB R1, R2
MOV pc, lr

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS a4, a1, #&80000000
RSBMI a1, a1, #0
EORS ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS a3, a1
BEQ divide_by_zero

just_l ; Justification stage shifts 1 bit at a time
CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO s_loop

div_l
CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3
TEQ a3, a1
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV a1, a4
MOVS ip, ip, ASL #1
RSBCS a1, a1, #0
RSBMI a2, a2, #0
MOV pc, lr

ARM INSTRUCTION SET S3C44B0X RISC MICROPROCESSOR

3-106

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and
ARM code.

Thumb Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

MOV a2, a1
LSR a3, a1, #2
SUB a1, a3
LSR a3, a1, #4
ADD a1, a3
LSR a3, a1, #8
ADD a1, a3
LSR a3, a1, #16
ADD a1, a3
LSR a1, #3
ASL a3, a1, #2
ADD a3, a1
ASL a3, #1
SUB a2, a3
CMP a2, #10
BLT %FT0
ADD a1, #1
SUB a2, #10

0
MOV pc, lr

ARM Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

SUB a2, a1, #10
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1
ADDPL a1, a1, #1
ADDMI a2, a2, #10
MOV pc, lr

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-1

4 MEMORY CONTROLLER

OVERVIEW

The S3C44B0X memory controller provides the necessary memory control signals for external memory access.
S3C44B0X has the following features;

— Little/Big endian(selectable by an external pin)

— Address space: 32Mbytes per each bank (total 256MB:8 banks)

— Programmable access size(8/16/32-bit) for all banks

— Total 8 memory banks
6 memory banks for ROM, SRAM etc.
2 memory banks for ROM, SRAM, FP/EDO/SDRAM etc .

— 7 fixed memory bank start address and programmble bank size

— 1 flexible memory bank start address and programmable bank size

— Programmable access cycles for all memory banks

— External wait to extend the bus cycles

— Supports self-refresh mode in DRAM/SDRAM for power-down

— Supports asymmetrically or symmetrically addressable DRAM

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-2

0x1000_0000
SROM/DRAM/SDRAM

(nGCS7)
0x0e00_0000

SROM/DRAM/SDRAM
(nGCS6)

0x0c00_0000
SROM

(nGCS5)
0x0a00_0000

SROM
(nGCS4)

0x0800_0000
SROM

(nGCS3)
0x0600_0000

SROM
(nGCS2)

0x0400_0000
SROM

(nGCS1)
0x0200_0000

0x01c0_0000
SROM

(nGCS0)
0x0000_0000

2/4/8/16/32MB

2/4/8/16/32MB

Refer to
Table 4-1

32MB

32MB

32MB

32MB

32MB

Special function
Registers (4M bytes)

28MB

256MB SA[27:0]
Accessable Region

NOTE: SROM means ROM or SRAM type memory

Figure 4-1. S3C44B0X Memory Map after Reset

Table 4-1. Bank 6/7 Address

Address 2MB 4MB 8MB 16MB 32MB

 Bank 6

Start address 0xc00_0000 0xc00_0000 0xc00_0000 0xc00_0000 0xc00_0000

End address 0xc1f_ffff 0xc3f_ffff 0xc7f_ffff 0xcff_ffff 0xdff_ffff

 Bank 7

Start address 0xc20_0000 0xc40_0000 0xc80_0000 0xd00_0000 0xe00_0000

End address 0xc3f_ffff 0xc7f_ffff 0xcff_ffff 0xdff_ffff 0xfff_ffff

NOTE: Bank 6 and 7 must have the same memory size.

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-3

FUNCTION DESCRIPTION

LITTLE ENDIAN/BIG ENDIAN

While nRESET is L, the ENDIAN pin defines which endian mode should be selected. If the ENDIAN pin is connected
to Vss with a pull-down resistor, the little endian mode is selected. If the pin is connected to Vdd with a pull-up
resistor, the big endian mode is selected.

ENDIAN Input @Reset ENDIAN Mode

0 Little endian

1 Big endian

BANK0 BUS WIDTH

The data bus width of BANK0 (nGCS0) should be configured as one of 8-bit,16-bit and 32-bit. Because the BANK0 is
the booting ROM bank(map to 0x0000_0000), the bus width of BANK0 should be determined before the first ROM
access, which will be determined by the logic level of OM[1:0] at Reset.

OM1 (Operating Mode 1) OM0 (Operating Mode 0) Booting ROM Data width

0 0 8-bit

0 1 16-bit

1 0 32-bit

1 1 Test Mode

Programming Memory Controller

All thirteen memory control registers have to be written using the STMIA instruction as shown in the following
example;

ldr r0, =SMRDATA
ldmia r0, {r1-r13}
ldr r0, =0x01c80000 ; BWSCON Address
stmia r0, {r1-r13}

SMRDATA DATA
 DCD 0x22221210 ; BWSCON
 DCD 0x00000600 ; GCS0
 DCD 0x00000700 ; GCS1
 DCD 0x00000700 ; GCS2
 DCD 0x00000700 ; GCS3
 DCD 0x00000700 ; GCS4
 DCD 0x00000700 ; GCS5
 DCD 0x0001002a ; GCS6, EDO DRAM(Trcd=3, Tcas=2, Tcp=1, CAN=10bit)
 DCD 0x0001002a ; GCS7, EDO DRAM
 DCD 0x00960000 + 953 ; Refresh(REFEN=1, TREFMD=0, Trp=3, Trc=5, Tchr=3)
 DCD 0x0 ; Bank Size, 32MB/32MB
 DCD 0x20 ; MRSR 6(CL=2)
 DCD 0x20 ; MRSR 7(CL=2)

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-4

MEMORY(SROM/DRAM/SDRAM) ADDRESS PIN CONNECTIONS

MEMORY ADDR. PIN S3C44B0X ADDR.
@ 8-bit DATA BUS

S3C44B0X ADDR.
@ 16-bit DATA BUS

S3C44B0X ADDR.
@ 32-bit DATA BUS

A0 A0 A1 A2

A1 A1 A2 A3

A2 A2 A3 A4

A3 A3 A4 A5

.

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-5

SDRAM BANK ADDRESS PIN CONNECTION

Table 4-2. SDRAM Bank Address configuration

Bank Size Bus Width Base Component Memory Configuration Bank Address

2MByte x8 16Mbit (1M x 8 x 2Bank) x 1 A20

x16 (512K x 16 x 2B) x 1

4MB x8 16Mb (2M x 4 x 2B) x 2 A21

x16 (1M x 8 x 2B) x 2

x32 (512K x 16 x 2B) x 2

8MB x16 16Mb (2M x 4 x 2B) x 4 A22

x32 (1M x 8x 2B) x 4

x8 64Mb (4M x 8 x 2B) x 1

x8 (2M x 8 x 4B) x 1 A[22:21]

x16 (2M x 16 x 2B) x 1 A22

x16 (1M x 16 x 4B) x 1 A[22:21]

x32 (512K x 32 x 4B) x 1

16MB x32 16Mb (2M x 4 x 2B) x 8 A23

x8 64Mb (8M x 4 x 2B) x 2

x8 (4M x 4 x 4B) x 2 A[23:22]

x16 (4M x 8 x 2B) x 2 A23

x16 (2M x 8 x 4B) x 2 A[23:22]

x32 (2M x 16 x 2B) x 2 A23

x32 (1M x 16 x 4B) x 2 A[23:22]

x8 128Mb (4M x 8 x 4B) x 1

x16 (2M x 16 x 4B) x 1

32MB x16 64Mb (8M x 4 x 2B) x 4 A24

x16 (4M x 4 x 4B) x 4 A[24:23]

x32 (4M x 8 x 2B) x 4 A24

x32 (2M x 8 x 4B) x 4 A[24:23]

x16 128Mb (4M x 8 x 4B) x 2

x32 (2M x 16 x 4B) x 2

x8 256Mb (8M x 8 x 4B) x 1

x16 (4M x 16 x 4B) x 1

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-6

ROM Memory Interface Example

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

D0
D1
D2
D3
D4
D5
D6
D7

nWE
nOE
nGCSn

Figure 4-2. Memory Interface with 8bit ROM

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

D0
D1
D2
D3
D4
D5
D6
D7

nWBE0
nOE
nGCSn

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

D8
D9
D10
D11
D12
D13
D14
D15

nWBE1
nOE
nGCSn

Figure 4-3. Memory Interface with 8bit ROM x 2

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-7

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

D0
D1
D2
D3
D4
D5
D6
D7

nWBE0
nOE
nGCSn

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

D8
D9
D10
D11
D12
D13
D14
D15

nWBE1
nOE
nGCSn

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

D16
D17
D18
D19
D20
D21
D22
D23

nWBE2
nOE
nGCSn

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

D24
D25
D26
D27
D28
D29
D30
D31

nWBE3
nOE
nGCSn

Figure 4-4. Memory Interface with 8bit ROM x 4

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nWE
nOE
nCE

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

nWE
nOE
nGCSn

Figure 4-5. Memory Interface with 16bit ROM

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-8

SRAM Memory Interface Example

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nWE
nOE
nCS
nUB
nLB

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

nWE
nOE
nGCSn
nBE1
nBE0

Figure 4-6. Memory Interface with 16bit SRAM

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-9

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nWE
nOE
nCS
nUB
nLB

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

nWE
nOE
nGCSn
nBE1
nBE0

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nWE
nOE
nCS
nUB
nLB

D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

nWE
nOE
nGCSn
nBE2
nBE3

Figure 4-7. Memory Interface with 16bit SRAM x 2

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-10

DRAM Memory Interface Example

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12

nRAS0
nCAS0
nCAS1

nWE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

nRAS
nLCAS
nUCAS
nWE
nOE

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

Figure 4-8. Memory Interface with 16bit DRAM

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13

nRAS0
nCAS0
nCAS1

nWE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

nRAS
nLCAS
nUCAS
nWE
nOE

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13

nRAS0
nCAS2
nCAS3

nWE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

nRAS
nLCAS
nUCAS
nWE
nOE

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

Figure 4-9. Memory Interface with 16bit DRAM x 2

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-11

SDRAM Memory Interface Example

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12

A21
A22

DQM0
DQM1

SCKE
SCLK

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

BA0
BA1
LDQM
UDQM

SCKE
SCLK

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nSCS
nSRAS
nSCAS

nWE

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

nSCS0
nSRAS
nSCAS
nWE

Figure 4-10. Memory Interface with 16bit SDRAM (4Mx16, 4bank)

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13

A22
A23

DQM0
DQM1

SCKE
SCLK

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

BA0
BA1
LDQM
UDQM

SCKE
SCLK

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nSCS
nSRAS
nSCAS

nWE

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

nSCS0
nSRAS
nSCAS
nWE

A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13

A22
A23

DQM2
DQM3

SCKE
SCLK

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

BA0
BA1
LDQM
UDQM

SCKE
SCLK

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nSCS
nSRAS
nSCAS

nWE

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

nSCS0
nSRAS
nSCAS
nWE

Figure 4-11. Memory Interface with 16bit SDRAM (4Mx16 * 2ea, 4bank)

NOTE: Please refer to Table 4-2 the Bank Address configurations of SDRAM.

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-12

MEMORY CONTROLLER SPECIAL REGISGERS

BUS WIDTH & WAIT CONTROL REGISTER (BWSCON)

Register Address R/W Description Reset Value

BWSCON 0x01C80000 R/W Bus Width & Wait Status Control Register 0x000000

BWSCON Bit Description Initial state

ST7 [31] This bit determines SRAM for using UB/LB for bank 7
0 = Not using UB/LB (Pin[14:11] is dedicated nWBE[3:0])
1 = Using UB/LB (Pin[14:11] is dedicated nBE[3:0])

0

WS7 [30] This bit determines WAIT status for bank 7
(If bank7 has DRAM or SDRAM, WAIT function is not supported)
0 = WAIT disable 1 = WAIT enable

0

DW7 [29:28] These two bits determine data bus width for bank 7
00 = 8-bit 01 = 16-bit, 10 = 32-bit

0

ST6 [27] This bit determines SRAM for using UB/LB for bank 6
0 = Not using UB/LB (Pin[14:11] is dedicated nWBE[3:0])
1 = Using UB/LB (Pin[14:11] is dedicated nBE[3:0])

0

WS6 [26] This bit determines WAIT status for bank 6
(If bank6 has DRAM or SDRAM, WAIT function is not supported)
0 = WAIT disable, 1 = WAIT enable

0

DW6 [25:24] These two bits determine data bus width for bank 6
00 = 8-bit 01 = 16-bit, 10 = 32-bit

0

ST5 [23] This bit determines SRAM for using UB/LB for bank 5
0 = Not using UB/LB (Pin[14:11] is dedicated nWBE[3:0])
1 = Using UB/LB (Pin[14:11] is dedicated nBE[3:0])

0

WS5 [22] This bit determines WAIT status for bank 5
0 = WAIT disable, 1 = WAIT enable

0

DW5 [21:20] These two bits determine data bus width for bank 5
00 = 8-bit 01 = 16-bit, 10 = 32-bit

0

ST4 [19] This bit determines SRAM for using UB/LB for bank 4
0 = Not using UB/LB (Pin[14:11] is dedicated nWBE[3:0])
1 = Using UB/LB (Pin[14:11] is dedicated nBE[3:0])

0

WS4 [18] This bit determines WAIT status for bank 4
0 = WAIT disable 1 = WAIT enable

0

DW4 [17:16] These two bits determine data bus width for bank 4
00 = 8-bit 01 = 16-bit, 10 = 32-bit

0

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-13

BUS WIDTH & WAIT CONTROL REGISTER (BWSCON) (Continued)

BWSCON Bit Description Initial state

ST3 [15] This bit determines SRAM for using UB/LB for bank 3
0 = Not using UB/LB (Pin[14:11] is dedicated nWBE[3:0])
1 = Using UB/LB (Pin[14:11] is dedicated nBE[3:0])

0

WS3 [14] This bit determines WAIT status for bank 3
0 = WAIT disable 1 = WAIT enable

0

DW3 [13:12] These two bits determine data bus width for bank 3
00 = 8-bit 01 = 16-bit, 10 = 32-bit

0

ST2 [11] This bit determines SRAM for using UB/LB for bank 2
0 = Not using UB/LB (Pin[14:11] is dedicated nWBE[3:0])
1 = Using UB/LB (Pin[14:11] is dedicated nBE[3:0])

0

WS2 [10] This bit determines WAIT status for bank 2
0 = WAIT disable 1 = WAIT enable

0

DW2 [9:8] These two bits determine data bus width for bank 2
00 = 8-bit 01 = 16-bit, 10 = 32-bit

0

ST1 [7] This bit determines SRAM for using UB/LB for bank 1
0 = Not using UB/LB (Pin[14:11] is dedicated nWBE[3:0])
1 = Using UB/LB (Pin[14:11] is dedicated nBE[3:0])

0

WS1 [6] This bit determines WAIT status for bank 1
0 = WAIT disable, 1 = WAIT enable

0

DW1 [5:4] These two bits determine data bus width for bank 1
00 = 8-bit 01 = 16-bit, 10 = 32-bit

0

DW0 [2:1] Indicates data bus width for bank 0 (read only)
00 = 8-bit 01 = 16-bit, 10 = 32-bit
The states are selected by OM[1:0] pins

–

ENDIAN [0] Indicates endian mode (read only)
0 = Little endian 1 = Big endian
The states are selected by ENDIAN pins

–

NOTES:
1. All types of master clock in this memory controller correspond to the bus clock.

For example, MCLK in DRAM and SRAM is same as the bus clock, and SCLK in SDRAM is also the same as the bus
clock. In this chapter (Memory Controller), one clock means one bus clock.

2. nBE[3:0] is the 'AND' signal nWBE[3:0] and nOE

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-14

BANK CONTROL REGISTER (BANKCONn: nGCS0-nGCS5)

Register Address R/W Description Reset Value

BANKCON0 0x01C80004 R/W Bank 0 control register 0x0700

BANKCON1 0x01C80008 R/W Bank 1 control register 0x0700

BANKCON2 0x01C8000C R/W Bank 2 control register 0x0700

BANKCON3 0x01C80010 R/W Bank 3 control register 0x0700

BANKCON4 0x01C80014 R/W Bank 4 control register 0x0700

BANKCON5 0x01C80018 R/W Bank 5 control register 0x0700

BANKCONn Bit Description Initial State

Tacs [14:13] Address set-up before nGCSn
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

00

Tcos [12:11] Chip selection set-up nOE
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

00

Tacc [10:8] Access cycle
000 = 1 clock 001 = 2 clocks
010 = 3 clocks 011 = 4 clocks
100 = 6 clocks 101 = 8 clocks
110 = 10 clocks 111 = 14 clocks

111

Toch [7:6] Chip selection hold on nOE
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

000

Tcah [5:4] Address holding time after nGCSn
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

00

Tpac [3:2] Page mode access cycle @ Page mode
00 = 2 clocks 01 = 3 clocks
10 = 4 clocks 11 = 6 clocks

00

PMC [1:0] Page mode configuration
00 = normal (1 data) 01 = 4 data
10 = 8 data 11 = 16 data

00

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-15

BANK CONTROL REGISTER (BANKCONn: nGCS6-nGCS7)

Register Address R/W Description Reset Value

BANKCON6 0x01C8001C R/W Bank 6 control register 0x18008

BANKCON7 0x01C80020 R/W Bank 7 control register 0x18008

BANKCONn Bit Description Initial State

MT [16:15] These two bits determine the memory type for bank6 and bank7
00 = ROM or SRAM 01 = FP DRAM
10 = EDO DRAM 11 = Sync. DRAM

11

Memory Type = ROM or SRAM [MT=00] (15-bit)

Tacs [14:13] Address set-up before nGCS
00 = 0 clock 01 = 1 clock 10 = 2 clocks 11 = 4
clocks

00

Tcos [12:11] Chip selection set-up nOE
00 = 0 clock 01 = 1 clock 10 = 2 clocks 11 = 4
clocks

00

Tacc [10:8] Access cycle
000 = 1 clock 001 = 2 clocks
010 = 3 clocks 011 = 4 clocks
100 = 6 clocks 101 = 8 clocks
110 = 10 clocks 111 = 14 clocks

111

Toch [7:6] Chip selection hold on nOE
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

00

Tcah [5:4] Address hold time on nGCSn
00 = 0 clock 01 = 1clock 10 = 2 clocks 11 = 4 clocks

00

Tpac [3:2] Page mode access cycle @ Page mode
00 = 2 clocks 01 = 3 clocks
10 = 4 clocks 11 = 6 clocks

00

PMC [1:0] Page mode configuration
00 = normal (1 data) 01 = 4 consecutive accesses
10 = 8 consecutive accesses 11 = 16 consecutive accesses

00

Memory Type = FP DRAM [MT=01] or EDO DRAM [MT=10] (6-bit)

Trcd [5:4] RAS to CAS delay
00 = 1 clock 01 = 2 clocks
10 = 3 clocks 11 = 4 clocks

00

Tcas [3] CAS pulse width
0 = 1 clock 1 = 2 clocks

0

Tcp [2] CAS pre-charge
0 = 1 clock 1 = 2 clocks

0

CAN [1:0] Column address number
00 = 8-bit 01 = 9-bit
10 = 10-bit 11 = 11-bit

00

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-16

BANK CONTROL REGISTER (BANKCONn: nGCS6-nGCS7) (Continued)

Memory Type = SDRAM [MT=11] (4-bit)

Trcd [3:2] RAS to CAS delay
00 = 2 clocks 01 = 3 clocks 10 = 4 clocks

10

SCAN [1:0] Column address number
00 = 8-bit 01 = 9-bit 10= 10-bit

00

SUPPORTED BANK 6/7 MEMORY CONFIGURATION

Bank Support Not support

Bank7 SROM DRAM SDRAM SROM SDRAM DRAM

Bank6 DRAM SROM SROM SDRAM DRAM SDRAM

NOTE: SROM means ROM or SRAM type memory

REFRESH CONTROL REGISTER

Register Address R/W Description Reset Value

REFRESH 0x01C80024 R/W DRAM/SDRAM refresh control register 0xac0000

REFRESH Bit Description Initial State

REFEN [23] DRAM/SDRAM Refresh Enable
0 = Disable 1 = Enable(self or CBR/auto refresh)

1

TREFMD [22] DRAM/SDRAM Refresh Mode
0 = CBR/Auto Refresh 1 = Self Refresh
In self-refresh time, the DRAM/SDRAM control signals are driven to
the appropriate level.

0

Trp [21:20] DRAM/SDRAM RAS pre-charge Time
DRAM :
00 = 1.5 clocks 01 = 2.5 clocks 10 = 3.5 clocks 11 = 4.5 clocks
SDRAM :
00 = 2 clocks 01 = 3 clocks 10 = 4 clocks 11 = Not
support

10

Trc [19:18] SDRAM RC minimum Time
00 = 4 clocks 01 = 5 clocks 10 = 6 clocks 11 = 7 clocks

11

Tchr [17:16] CAS Hold Time(DRAM)
00 = 1 clock 01 = 2 clocks 10 = 3 clocks 11 = 4 clocks

00

Reserved [15:11] Not use 0000

Refresh
Counter

[10:0] DRAM/SDRAM refresh count value. Please, refer to chap. 6 DRAM
refresh controller bus priority section.
Refresh period = (211-refresh_count+1)/MCLK

Ex) If refresh period is 15.6 us and MCLK is 60 MHz,
 the refresh count is as follows;
 refresh count = 211 + 1 - 60x15.6 = 1113

0

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-17

MEMORY CONTROLLER S3C44B0X RISC MICROPROCESSOR

4-18

BANKSIZE REGISTER

Register Address R/W Description Reset Value

BANKSIZE 0x01C80028 R/W Flexible bank size register 0x0

BANKSIZE Bit Description Initial State

SCLKEN [4] SCLK will be generated only during SDRAM access cycle. This
feature will reduce the power consumption. 1 is recommended.
0 = normal SCLK 1 = SCLK for reducing power consumption

0

Reserved [3] Not use 0

BK76MAP [2:0] BANK6/7 memory map
000 = 32M/32M 100 = 2M/2M 101 = 4M/4M
110 = 8M/8M 111 = 16M/16M

000

SDRAM MODE REGISTER SET REGISTER (MRSR)

Register Address R/W Description Reset Value

MRSRB6 0x01C8002C R/W Mode register set register bank6 xxx

MRSRB7 0x01C80030 R/W Mode register set register bank7 xxx

MRSR Bit Description Initial State

Reserved [11:10] Not use –

WBL [9] Write burst length
0 is the recommended value

x

TM [8:7] Test mode
00: mode register set,
01, 10, 11: reserved

xx

CL [6:4] CAS latency
000 = 1 clock, 010 = 2 clocks, 011=3 clocks
the others = reserved

xxx

BT [3] Burst type
0: Sequential (recommended)
1: N/A

x

BL [2:0] Burst length
000: 1
the others: N/A

xxx

NOTE: MRSR register must not be reconfigured while the code is running on SDRAM.

IMPORTANT NOTES

1. All 13 memory control registers have to be written using the STMIA instruction.
2. In STOP mode/SL_IDLE mode, DRAM/SDRAM has to enter the DRAM/SDRAM self-refresh mode.

S3C44B0X RISC MICROPROCESSOR MEMORY CONTROLLER

4-19

NOTES

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-1

5 CLOCK & POWER MANAGEMENT

OVERVIEW

The Clock Generator in S3C44B0X can generate the required clock signals for the CPU as well as peripherals.
The Clock Generator can be controlled to supply or disconnect the clock to each peripheral block by S/W, which
will reduce the power. As well as this kind of S/W controllability, S3C44B0X has various power management
schemes to keep optimal power consumption for a given task.

The power management in S3C44B0X consists of five modes : Normal mode, Slow mode, Idle mode, Stop mode
and SL Idle mode for LCD. The Normal mode is used to supply clocks to CPU as well as all peripherals in
S3C44B0X. In this case, the power consumption will be maximized when all peripherals are turned on. The user
can control the operation of peripherals by S/W. For example, if a timer and DMA are not needed, the user can
disconnect the clock to the timer and DMA to reduce power. The Slow mode is non-PLL mode. Unlike the Normal
mode, the Slow mode uses an external clock directly as master clock in S3C44B0X without PLL. In this case, the
power consumption depends on the frequency of the external clock only. The power consumption due to PLL itself
is excluded. The Idle mode disconnects the clock only to CPU core while it supplies the clock to all peripherals. By
using this Idle mode, power consumption due to CPU core can be reduced. Any interrupt request to CPU can
wake-up from Idle mode. The Stop mode freezes all clocks to the CPU as well as peripherals by disabling PLL.
The power consumption is only due to the leakage current in S3C44B0X, which is less than 10 uA. The wake-up
from Stop mode can be done by external interrupt to CPU. The SL Idle mode causes the LCD controller to work. In
this case, the clock to CPU and all peripherals except LCD controller should be stopped, therefore, the power
consumption in the SL Idle mode is less than that in the Idle mode.

CLOCK & POWER MANAGEMENT S3C44B0X RISC MICROPROCESSOR

5-2

FUNCTION DESCRIPTION

CLOCK GENERATION

Figure 5-1 shows a block diagram of the clock generator. The main clock source comes from an external crystal or
external clock. The clock generator has an oscillator(Oscillation Amplifier) which should be connected to an
external crystal, and also has a PLL (Phase-Locked-Loop) which takes the low frequency oscillator output as its
input and generates the high frequency clock required by S3C44B0X. The clock generator block has the logic to
generate a stable clock frequency after a reset or a stop mode.

OSC

PLL
CLOCK

CONTROL
LOGIC

XTAL0
EXTAL0

EXTCLK

00

01

Fin

00,01

PWRDN

powerdown

Test Mode
only(10, 11)

OM[3:2]

Fpllo

Fout
(MCLK)

CLKout
(External)

MUX

MUX

MUX

Port E control
MUX5
for Timer5

Figure 5-1. Clock Generator Block Diagram

CLOCK SOURCE SELECTION

Table 5-1 shows the relationship between the combination of mode control pins (OM3 and OM2) and the selection
of source clock for S3C44B0X. The OM[3:2] status is latched internally by referring the OM3 and OM2 pins at the
rising edge of nRESET.

Table 5-1. Clock source selection at boot-up

Mode OM[3:2] Clock Source Crystal Driver PLL starting state Fout
00 Crystal clock enable enable (1) PLL Output (1)
01 Ext. Clock disable enable (1) PLL Output (1)

Others(10, 11) Test mode

NOTE: Although the PLL starts just after a reset, the PLL output can not be used as Fout until the S/W writes valid
 settings to the PLLCON register. Before this valid setting, the clock from crystal oscillator or Ext. clock source will
 be used as Fout directly. Even if the user wants to maintain the default value of PLLCON register, the user should
 write the same value into PLLCON register.

If the S3C44B0X operates by PLL output from XTAL0 & EXTAL0, the EXTCLK can be dedicated as TCLK for
Timer 5.

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-3

PLL (PHASE-LOCKED-LOOP)

The PLL within the clock generator is the circuit which synchronizes an output signal with a reference input signal
in frequency and phase. In this application, it includes the following basic blocks (Figure 5-2 shows the clock
generator block diagram); the VCO(Voltage Controlled Oscillator) to generate the output frequency proportional to
input DC voltage, the divider P to divide the input frequency(Fin) by p, the divider M to divide the VCO output
frequency by m which is input to PFD(Phase Frequency Detector), the divider S to divide the VCO output
frequency by s which is Fpllo(the output frequency from PLL block), the phase difference detector, charge pump,
and loop filter. The output clock frequency Fpllo is related to the reference input clock frequency Fin by the
following equation:

 Fpllo = (m * Fin) / (p * 2s)
 m = M (the value for divider M)+ 8, p = P(the value for divider P) + 2

The following sections describe the operation of the PLL, that includes the phase difference detector, charge
pump, VCO (Voltage controlled oscillator), and loop filter. If the PLL is on, Fpllo is same as Fout as shown in
Figure 5-1.

Phase Difference Detector (PFD)
The PFD monitors the phase difference between the Fref (the reference frequency as shown in Fig. 5-2) and Fvco
(the output frequency from VCO and Divider M block) and generates a control signal(tracking signal) when it
detects a difference.

Charge Pump (PUMP)
The charge pump converts the PFD control signal into a proportional charge in voltage across the external filter
that drives the VCO.

Loop Filter
The control signal that the PFD generates for the charge pump, may generate large excursions(ripples) each time
the Fvco output is compared to the Fref. To avoid overloading the VCO, a low pass filter samples and filters the
high-frequency components out of the control signal. The filter is typically a single-pole RC filter consisting of a
resistor and capacitor.

A recommended capacitance in the external loop filter(Capacitance as shown in Figure 5-2) is 700pF.

Voltage Controlled Oscillator (VCO)
The output voltage from the loop filter drives the VCO, causing its oscillation frequency to increase or decrease
linearly as a function of variations in average voltage. When the Fvco output matches Fref in terms of frequency
as well as phase, the PFD stops sending a control signal to the charge pump, which in turn stabilizes the input
voltage to the loop filter. The VCO frequency then remains constant, and the PLL remains locked onto the system
clock.

Usual Condition for PLL & Clock Generator
The following conditions are generally used.

Loop filter capacitance 700-820 pF
External feedback resistance 1Mohm
External X-tal frequency 6-20 Mhz
External capacitance used for X-tal 15-22 pF

CLOCK & POWER MANAGEMENT S3C44B0X RISC MICROPROCESSOR

5-4

Divider
P

Loop Filter
Fin

M[7:0]

S[1:0]

PWRDN

PFD

Divider
M

P[5:0]

Fvco

PUMP

VCO

Divider
S

Fref

Fpllo

R

700pF

C

Internal

PLLCAP

External

Figure 5-2. PLL (Phase-Locked Loop) Block Diagram

EXTCLK

XTAL0

EXTAL0

EXTCLK

XTAL0

EXTAL0

External
OSC

a) X-TAL oscillation b) External clock source

VDD
or

External
Clock for
Timer5

VDD

1Mohm

Figure 5-3. Main Oscillator Circuit Examples

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-5

CLOCK CONTROL LOGIC

The clock control logic determines the clock source to be used, i.e., the PLL clock or the direct OSC clock. When
PLL is configured to a new frequency value, the clock control logic disables the FOUT until the PLL output is
stabilized using the PLL locking time. The clock control logic is also activated at power-on reset and wake-up from
power-down mode.

PLL Lock Time
The lock time is the time required for PLL output stabilization. The lock time should be bigger than 208us. After
reset and wake-up from STOP and SL_IDLE mode, respectively, the lock-time is inserted automatically by the
internal logic with lock time count register. The automatically inserted lock time is calculated as follows;

t_lock(the PLL lock time by H/W logic) = (1/ Fin) x n, (n = LTIMECNT value)

Power-On Reset
Figure 5-4 shows the clock behavior during the power-on reset sequence. The crystal oscillator begins oscillation
within several milliseconds. When nRESET is released after the stabilization of OSC clock, the PLL starts to
operate according to the default PLL configuration. However PLL is commonly known to be unstable after power-
on reset, so Fin fed directly to Fout instead of the Fpllo(PLL output) before the S/W newly configures the PLLCON.
Even if the user wants to use the default value of PLLCON register after Reset, the user should write the same
value into PLLCON register by S/W.

The PLL begins the lockup sequence again toward the new frequency only after the S/W configures the PLL with a
new frequency. Fout can be configured to be PLL output(Fpllo) immediately after lock time.

nRESET

OSC

VCO
output

Power

PLL can operate after OM[3:2] is latched.

Clock
Disable lock time

PLL is configured by S/W first time.

VCO is adapted to new clock frequency.

Fout

The logic operates by OSC
clcok. Fout is new frequency.

Figure 5-4. Power-On Reset Sequence

CLOCK & POWER MANAGEMENT S3C44B0X RISC MICROPROCESSOR

5-6

Change PLL Settings In Normal Operation Mode
During the operation of S3C44B0X in Normal mode, if the user wants to change the frequency by writing the PMS
value, the PLL lock time is automatically inserted. During the lock time, the clock is not supplied to the internal
blocks in S3C440X. The timing diagram is as follow.

PLL_CLK

PMS setting

PLL Lock-time

FOUT

It changes to new PLL clock
after lock time automatically

Figure 5-5. The Case that Changes Slow Clock by Setting PMS Value

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-7

POWER MANAGEMENT

The power management block controls the system clocks by software for reduction of power consumption in
S3C44B0X. These schemes are related to PLL, clock control logic, peripheral clock control, and wake-up signal.

S3C44B0X has five power-down modes. The following section describes each power managing mode. The
transition between the modes is not allowed freely. For available transitions among the modes, please refer to
Figure 5-11.

Normal Mode
In normal mode, all peripherals(UART, DMA, Timer, and so on) and the basic blocks(CPU core, bus controller,
memory controller, interrupt controller, and power management block) may operate fully. But, the clock to each
peripheral, except the basic blocks, can be stopped selectively by S/W to reduce power consumption.

NOTE: The basic blocks consist of the CPU core, bus controller, memory controller, interrupt controller,
 and power management.

IDLE Mode
In IDLE mode, the clock to CPU core is stopped except bus controller, memory controller, interrupt controller, and
power management block. To exit IDLE mode, EINT[7:0], or RTC alarm interrupt, or the other interrupts should be
activated. (If users are willing to use EINT[7:0], GPIO block has to be turned on before the activation).

STOP Mode
In STOP mode, all clocks are stopped for minimum power consumption. Therefore, the PLL and oscillator circuit
are also stopped. Just after exiting the STOP mode, only THAW mode is available. In other words, the user cannot
return to NORMAL mode from STOP mode as shown in Fig. 5-11, directly. To exit from STOP mode, EINT[7:0] or
RTC alarm interrupt has to be activated.

Just after entering into the STOP mode, the Clock Control Logic output the Fin-clock, instead of the Fpllo-clock,
from Fout during 16 Fin-clocks. After 16 Fin-clocks, the Fout is stopped and S3C44B0X enters into STOP mode
completely. The latency time from command issue of the power down by STOP mode to actual entrance into
power down mode is calculated as follows:

Power down latency time = Input clock period (crystal oscillator clock or external clock) * 16

If S3C44B0X is in the SLOW mode, the S3C44B0X enters into STOP mode immediately because the frequency of
the clock in slow mode is lower than Fin.

The S3C44B0X can exit from STOP mode by external interrupts or RTC alarm interrupt. During the wake-up
sequences, the crystal oscillator and PLL may begin to operate. The lock time is also needed to stabilize Fout. The
lock time is inserted automatically and guaranteed by power management logic. During this lock time the clock is
not supplied. Just after wake-up sequences wake-up interrupt(alarm or external interrupt) is requested.

CLOCK & POWER MANAGEMENT S3C44B0X RISC MICROPROCESSOR

5-8

Wake-up

Fin
(X-tal)

VCO
Output

Clock
Disable

Fout

16 OSC clocks

STOP mode is initiated.

lock time

Figure 5-6. Entering STOP Mode and Exiting STOP Mode (Wake-up)

IMPORTANT NOTES

Before entering STOP mode, the following 6 items must be obeyed.

 1) DRAM has to be in self-refresh mode during STOP mode to retain valid memory data.

 2) LCD display must be stopped before entering STOP mode because DRAM is in self-refresh mode
 and LCD can't access DRAM during DRAM self-refresh mode. If LCD display is turned on,
 SYSTEM will be hanged up.

 3) The ports of S3C44B0X must be configured properly according to your system to reduce power
 consumption.

 4) Before entering STOP mode the CPU must be in SLOW mode with PLL on. The PLL will be
turned off automatically in STOP mode.

 5) For the period of entering into STOP mode, if there is any wake-up request at last 3rd clock edge
before the CPU goes into STOP mode, S3C44B0X will never respond to that wake-up source. For
example, if EIN0 is asserted at that point, the EINT0 cannot wake up the system anymore, however
other sources can wake up the system and then the EINT0 can be used for wake-up source in the
next time. So, it is strongly recommended that any wake-up signals should not be asserted until
entering into STOP mode completely. If your application cannot prevent wake-up request at that
clock, please refer to the workaround document, which is located on our web sight.

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-9

Start slow
with PLL on

Enter into
STOP mode

FOUT

Wake up request should
not occur here

6) When S3C44B0X enters STOP mode, MCLK should be more than 2.5 times of Fin (X-tal frequency).
 After wake-up (in NORMAL mode), user can change MCLK to the frequency that user want.
 For example, if Fin is 20MHz and a user want MCLK=36MHz, the MCLK before entering into STOP
 mode should be more than 50MHz. After wake-up and S3C44B0X returns to NORMAL mode from
 STOP mode, MCLK can be changed from 50MHz to 36MHz by setting PLLCON register.

7) When S3C44B0X enters STOP mode in the level triggered EINT mode, the level EINT wake-up
 should not be active. If the level EINT wake-up is active, S3C44B0X should skip entering into STOP
 mode.

SL_IDLE Mode (S_LCD Mode)
In SL_IDLE mode, the clock to the basic blocks is stopped. Only the LCD controller is working to maintain the LCD
screen. Less power is consumed in the SL_ILDE mode than in the IDLE mode. Before entering into SL_IDLE
mode, SLOW mode has to be entered and PLL has to be turned off. After SLOW mode entrance and PLL-off,
0x46(LCDC enable, IDLE enable, and SL_IDLE enable)should be written into the CLKCON register to enter into
SL_IDLE mode.

To exit SL_IDLE mode, EINT[7:0] or RTC alarm interrupt has to be activated. In this case, the processor mode will
change into Slow Mode automatically as shown in Fig. 5-11. To return to Normal mode, users have to wait until the
end of lock time, then disable the SLOW mode and clear the SL_IDLE bit. In the PLL lock time, the SLOW clock is
supplied. DRAM has to be in self-refresh mode during SL_IDLE mode to retain the valid data in DRAM.

PLL_CLK

SLOW_BIT

S/W Lock time

Slow mode enable

PLL off PLL off

FOUT

It changes to PLL clock after
slow mode is disabled

Devided OSC
clock

SL_IDLE SL_IDLE enable SL_IDLE mode is end

Wake_Up
Wake_Up is accured by
Alarm or EINT[7:0]

PLL on

Slow mode disable
after lock time

Figure 5-7. Entering SL_IDLE Mode and Exiting SL_IDLE Mode (Wake-up)

CLOCK & POWER MANAGEMENT S3C44B0X RISC MICROPROCESSOR

5-10

SLOW Mode (non-PLL Mode)
Power consumption can be reduced in the SLOW mode by applying a slow clock and excluding the power
consumption from the PLL, itself. The Fout is the frequency of divide_by_n of Fin without PLL. The divider ratio is
determined by SLOW_VAL in the CLKSLOW control register.

 Fout = Fin / (2 x SLOW_VAL), when SLOW_VAL is bigger than 0
 Fout = Fin , when SLOW_VAL is 0

In SLOW mode, the PLL will be turned off to reduce the PLL power consumption. When PLL is turned off in SLOW
mode and users change power mode from SLOW mode to NORMAL mode, the PLL needs clock stabilization
time(PLL lock time). This PLL stabilization time is automatically inserted by the internal logic with lock time count
register. The PLL stability time will take 400us after PLL is turn on. During PLL lock time, the Fout is SLOW clock.

Users can change the frequency by enabling SLOW mode bit in CLKSLOW register in PLL on state. The SLOW
clock is generated during SLOW mode. The timing diagram is as follow.

PLL_CLK

Slow mode disable

FOUT

Slow mode enableSlow bit

It changes to PLL clock
after slow mode off

Divided OSC clock

PLL off

Figure 5-8. The Case that Exit_from_Slow_Mode Command is Issued in PLL on State

If users exit from SLOW mode to Normal mode by disabling the SLOW mode bit in the CLKSLOW register after
PLL lock time, the frequency is changed just after SLOW mode is disabled. The timing diagram is as follow.

PLL_CLK

FOUT

Slow bit

Divided OSC clock

PLL off

S/W lock time

Slow mode disable

PLL off PLL on

Slow mode enable

It changes to PLL clock
after slow mode off

Figure 5-9. The Case that Exit_from_Slow_Mode Command is Issued after Lock Time is End

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-11

If users exit from SLOW mode to Normal mode by disabling SLOW mode bit and PLL off bit simultaneously in
CLKSLOW register, the frequency is changed just after the PLL lock time. The timing diagram is as follow.

PLL_CLK

FOUT

Slow bit

Divided
OSC clock

PLL off

H/W lock time

PLL off PLL on

Slow mode enable

It changes to PLL clock
after lock time automatically

Slow mode disable

Figure 5-10. The Case that Exit_from_Slow_Mode Command is Issued

the Instant PLL_on Command is Issued.

Wake-Up & THAW State
When the S3C44B0X is woken up from power down mode(STOP mode) by an EINT[7:0] or a RTC alarm interrupt,
the processor state will be changed into THAW state as shown in Figure 5-11. In thaw state, the configuration of
the CLKCON should be ignored because the CLKCON value, which had been set before the entrance to stop
mode, can not reflect the actual processor state.

After the wake-up from STOP mode, the processor is in THAW mode as explained above. The new value, which
reflects the new state, has to be re-written into the CLKCON register. Eventually, the processor state will be
changed from THAW state to Normal or SLOW or even STOP mode.

Just after writing the valid configuration value into the CLKCON, the mode returns to normal mode, slow mode, or
even STOP mode.

Table 5-2. The Status of PLL and Fout after Wake-Up

Mode before wake-up PLL on/off after wake up Fout after wake up and
before the lock time

Fout after the lock time
by internal logic

STOP off → on no clock normal mode clock
SL_IDLE � slow mode clock �

IDLE unchanged unchanged unchanged

Signaling EINT[7:0] For Wake-Up
The S3C44B0X can be woken up from SL_IDLE mode or STOP mode only if the following conditions are met.

a) Level signal(H or L) or edge signal(rising or falling or both) is asserted on EINTn input pin.
b) EINTn pin has to be configured as EINT in PCONG register.

It is important to configure the EINTn in the PCONG register as an external interrupt pins. For wake-up, we need
H/L level or rising/falling edge or both edge signals on EINTn pin.

Just after wake-up the corresponding EINTn pin will not be used for wake-up. This means that these pins can be

CLOCK & POWER MANAGEMENT S3C44B0X RISC MICROPROCESSOR

5-12

used as external interrupt request pins again.

Entering IDLE Mode
If CLKCON[2] is set to 1 to enter the IDLE mode, S3C44B0X will enter into IDLE mode after some delay(until when
the power control logic receives ACK signal from the CPU wrapper).

PLL On/Off
The PLL can only be turned off for power saving in slow mode. If PLL is turned off in any other mode, MCU
operation is not guaranteed.

When the processor is in SLOW mode and tries to change its state into other state requiring that PLL be turned
on, then SLOW_BIT should be clear to move to another state after PLL stabilization.

PUPS register and STOP/SL_IDLE mode
In STOP/SL_IDLE mode, the data bus(D[31:0] or D[15:0]) is Hi-z state.

But, because of the characteristics of I/O pad, the data bus pull-up resistors have to be turned on to reduce the
power consumption in STOP/SL_IDLE mode. D[31:16] pin pull-up resistors can be controlled by PUPC and PUPD
registers. D[15:0] pin pull-up resistors can be controlled by the PUPS register.

OUTPUT PORT State and STOP/SL_IDLE mode
If output is L, the current will be consumed through the internal parasitic resistance; if the output is H, the current
will not be consumed. If a port is configured as an output port, the current consumption can be reduced if the
output state is H.

The output ports are recommended to be in H state to reduce STOP mode current consumption.

ADC Power Down
The ADC has an additional power-down bit in ADCCON. If S3C44B0X enters the STOP mode, the ADC should
enter it's own power-down mode.

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-13

POWER MANAGEMENT STATE MACHINE

SL_IDLE_BIT=1

IDLE_BIT=0, STOP_BIT=0
& SLOW_BIT=0

SL_IDLE

IDLE

STOP

THAW
state

NORMAL
(SLOW_BIT=0)

SLOW
(SLOW_BIT=1)

EINT[7:0] ,RTC alarm

IDLE_BIT=1

Interrupts, EINT[7:0], RTC alarm

STOP_BIT=1

STOP_BIT=1 EINT[7:0]
RTC alarm

SLOW
(PLL on)

PLL_OFF=0
& SLOW_BIT=1

Figure 5-11. Power Management State Machine

CLOCK & POWER MANAGEMENT S3C44B0X RISC MICROPROCESSOR

5-14

CLOCK GENERATOR & POWER MANAGEMENT SPECIAL REGISTER

PLL CONTROL REGISTER (PLLCON)

Fpllo = (m * Fin) / (p * 2s)
m = (MDIV + 8), p = (PDIV + 2), s = SDIV

NOTE: Fpllo must be greater than 20Mhz and less than 66Mhz.

Example
If Fin=14.318Mhz and Fout=60Mhz, the calculated value is as follows;
MDIV=59, PDIV=6 and SDIV=1 (This value may be calculated using PLLSET.EXE utility, provided by SAMSUNG.)

PLL VALUE SELECTION GUIDE

1. Fpllo * 2s has to be less than 170 MHz.

2. S should be as great as possible.

3. (Fin / p) is recommended to be 1Mhz or above. But, (Fin / p) < 2Mhz.

Register Address R/W Description Reset Value
PLLCON 0x01D80000 R/W PLL configuration Register 0x38080

PLLCON Bit Description Initial State

MDIV [19:12] Main divider control 0x38
PDIV [9:4] Pre-divider control 0x08
SDIV [1:0] Post divider control 0x0

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-15

CLOCK CONTROL REGISTER (CLKCON)

Register Address R/W Description Reset Value
CLKCON 0x01D80004 R/W Clock generator control Register 0x7ff8

CLKCON Bit Description Initial State
IIS [14] Controls MCLK into IIS block

0 = Disable, 1 = Enable
1

IIC [13] Controls MCLK into IIC block
0 = Disable, 1 = Enable

1

ADC [12] Controls MCLK into ADC block
0 = Disable, 1 = Enable

1

RTC [11] Controls MCLK into RTC control block.
Even if this bit is cleared to 0, RTC timer is alive.
0 = Disable, 1 = Enable

1

GPIO [10] Controls MCLK into GPIO block
Set to 1 to use interrupt requests by EINT[4:7]
0 = Disable, 1 = Enable

1

UART1 [9] Controls MCLK into UART1 block
0 = Disable, 1 = Enable

1

UART0 [8] Controls MCLK into UART0 block
0 = Disable, 1 = Enable

1

BDMA0,1 [7] Controls MCLK into BDMA block
0 = Disable, 1 = Enable
(If BDMA is turned off, the peripherals in the peripheral bus may not
be accessed)

1

LCDC [6] Controls MCLK into LCDC block
0 = Disable, 1 = Enable

1

SIO [5] Controls MCLK into SIO block
0 = Disable, 1 = Enable

1

ZDMA0,1 [4] Controls MCLK into ZDMA block
0 = Disable, 1 = Enable

1

PWMTIMER [3] Controls MCLK into PWMTIMER block
0 = Disable, 1 = Enable

1

IDLE BIT [2] Enters IDLE mode. This bit can't be cleared automatically.
0 = Disable, 1 = Transition to IDLE(SL_IDLE) mode

0

SL_IDLE [1] SL_IDLE mode option. This bit can't be cleared automatically.
0 = Disable, 1 = SL_IDLE mode.
To enter SL_IDLE mode, CLKCON register has to be 0x46.

0

STOP BIT [0] Enters STOP mode. This bit can't be cleared automatically.
0 = Disable 1 = Transition to STOP mode

0

CLOCK & POWER MANAGEMENT S3C44B0X RISC MICROPROCESSOR

5-16

CLOCK SLOW CONTROL REGISTER (CLKSLOW)

Register Address R/W Description Reset Value
CLKSLOW 0x01D80008 R/W Slow clock control register 0x9

CLKSLOW Bit Description Initial State
PLL_OFF [5] 0 : PLL is turned on.

 PLL is turned on only when SLOW_BIT is 1.
 After PLL stabilization time (minimum 150uS), SLOW_BIT
 may be cleared to 0.
1 : PLL is turned off.
 PLL is turned off only when SLOW_BIT is 1.

0x0

SLOW_BIT [4] 0 : Fout = Fpllo (PLL output)
1: Fout = Fin / (2 x SLOW_VAL), (SLOW_VAL > 0)
 Fout = Fin, (SLOW_VAL = 0)

0x0

SLOW_VAL [3:0] The divider value for the slow clock when SLOW_BIT is on. 0x9

LOCK TIME COUNT REGISTER (LOCKTIME)

Register Address R/W Description Reset Value
LOCKTIME 0x01D8000C R/W PLL lock time count register 0xfff

LOCKTIME Bit Description Initial State
LTIME CNT [11:0] PLL lock time count value 0xfff

S3C44B0X RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

 5-17

NOTES

S3C44B0X RISC MICROPROCESSOR CPU WRAPPER & BUS PRIORITIES

6-1

6 CPU WRAPPER & BUS PRIORITIES

OVERVIEW

The CPU wrapper consists of a cache, write buffer, and CPU core. The bus arbitration logic determines the priority of
each bus master.

The CPU wrapper has an 8-Kbyte internal memory. The internal memory can be used in three ways. First the 8-
Kbyte memory can be used as an 8KB unified (instruction/data) cache. Second, the internal memory can be used as
a 4-Kbyte unified cache and a 4-Kbyte internal SRAM. Third, the internal memory can be used wholly as an 8-Kbyte
internal SRAM.

The internal unified (instruction/data) cache adopts four-way set associative architecture with a four-word (16 bytes)
line size. It has a write-through policy to keep data coherency. When a cache miss occurs, four words of memory
are fetched sequentially from external memory. It has an LRU (Least Recently Used) algorithm to raise the hit ratio.
The unified cache deals with instruction and data by distinguishing them.

The internal SRAM mainly will be used to reduce ISR(interrupt service routine) execution time. ISR execution time
will be reduced because the internal SRAM has the fastest access time. Also, the ISR in SRAM is very efficient
because most ISR codes may cause cache-miss.

The bus arbitration logic can determine the priorities of bus masters. The bus arbitration logic supports a round-robin
priority mode and a fixed priority mode. Also, The priorities among LCD_DMA, BDMA, ZDMA, nBREQ (external bus
masters) can be changed by S/W.

CPU WRAPPER & BUS PRIORITIES S3C44B0X RISC MICROPROCESSOR

6-2

S
eg

3
T

ag

LR
U

S
eg

2
T

ag
S

eg
1

T
ag

S
eg

0
T

ag

D
ec

od
er

H
ei

gh
t =

 1
28

17
17

17

31
28

27
11

10
0

1
2

3
4

7

S
el

ec
t

S
et

In
st

r3
In

st
r2

In
st

r1
In

st
r0

In
st

r3
In

st
r2

In
st

r1
In

st
r0

In
st

r3
In

st
r2

In
st

r1
In

st
r0

In
st

r3
In

st
r2

In
st

r1
In

st
r0

7

32
32

32

32
32

17 17
17

17
17

Figure 6-1. Cache Memory Configuration

S3C44B0X RISC MICROPROCESSOR CPU WRAPPER & BUS PRIORITIES

6-3

CACHE OPERATION

Cache Organization

S3C44B0X cache has an 8KB (or 4KB) cache memory, four Tag RAMs and one LRU memory. The internal unified
(instructions/data) cache adopts a four-way set associative architecture with 4-word (16 bytes) line size. It has a
write-through policy to keep data coherency. It has an LRU (Least Recently Used) algorithm to raise the hit ratio.

Cache Replace Operation

After a system is initialized, the value of CS is set to "0000", signifying that the contents of set 0, set1, set2 and set
3 cache memories are invalid. When a cache fill occurs, the value of CS is changed to "0110" at the specified line,
which signifies that only set 0 is valid. When the subsequent cache fill occurs, the value of CS will be "0011" at the
specified line, which represents that contents of both set 0 and set 2 are valid. When the subsequent cache fill
occurs, the value of CS will be "0101" at the specified line, which represents that contents of set 0, set 1, and set 2
are valid. And succesive cache fill make CS "1000" at the specified line, which represents that all caches are valid.

The value of CS "1xxx" represents that all of the sets are valid. Then the next cache miss occurs, the least
significant 3 bits of CS select set are replaced. First bit selects a group of sets. "0" selects group 0 (which contains
set0 and set1) , otherwise group1 (which contains set2 and set3). Second bit selects the set of group 0 . "0"
selects set0, otherwise set1. Third bit selects the set of group 1. "0" selects set2, otherwise set 3. For example, if
LS 3bit is 000, the victim is set0. If LS 3bit is "101", the victim is set3.

Cache Line Replacement

All 4 Lines in the set valid

S0 = 0?

S1 = 0?

Replace Invalid Line

No

Yes

L0 or L1 least
resently used

Yes No

L2 or L3 least
resently used

Replace
Line L0

Replace
Line L1

Replace
Line L2

S2 = 0?
NoYes

Replace
Line L3

Figure 6-2. Cache Replace Configuration

CPU WRAPPER & BUS PRIORITIES S3C44B0X RISC MICROPROCESSOR

6-4

Cache Disable Operation

The S3C44B0X cache provides the entire-cache-enable/disable mode. You can enable cache by setting the value of
CM in SYSCFG to 01 or 11, and disable it by clearing SYSCFG[2:1] to 00. When the cache disable mode is
specified, instructions and data are always fetched from external memory. The S3C44B0X can also provide non-
cacheable areas in cache-enable-mode for some particular memory access operations, such as the DMA operation.
The two non-cacheable areas are specified by four special registers to be introduced later.

Data coherency is important when the cache memory is re-enabled because the cache memory does not have auto
flush mode. You also have to be cautious whether or not DMA changes memory data. The DMA accessible memory
area should be non-cacheable to keep data coherency. To keep data coherency between cache and external
memory, S3C44B0X uses the write-through method.

Cache Flushing

A cache flushing can re-enable the cache operation. When the cache is disabled, the LRU RAM can be manipulated
exactly like normal memory. The cache can be flushed by writing 0 to the LRU RAM and making all cache data
invalid. The memory location of the LRU memory is as follows:

NOTE

Cache flushing must be executed only in the cache disable mode.

Non-Cacheable Area

The S3C44B0X provides two non-cacheable areas. Each of them requires two cache control fields, which indicate the
start and end address of each non-cacheable area. In a non-cacheable area, the cache is not updated when cache
misses a read.

Usually a cache stores any data in the whole system memory area, but sometimes it needs a non-cacheable area
because the cache cannot keep track of the external memory device whose contents are changed without read/write
operation.

The size of a non-cacheable area can be increased/decreased by 4KB units. The end address has to point the next
4KB block. For example, if non-cacheable area is 0x10000~0x22fff, the start address value of NCACHBEn is 0x10
and the end address value of NCACHBEn is 0x23.

To Speed Up a Program Execution by Considering Cache Usage

1. Locates the ISRs, which is executed most frequently, on the internal SRAM.

2. Let ISR not be cached. Most ISR codes cause a cache miss, and the codes in the cache memory are not
re-used because the code is erased by main codes, executed after exiting the ISR.

3. Locates the functions which are related to each other together and executes them concurrently. This function
aggregation reduce cache misses.

4. Somtimes, if the data area is assigned as non cachable area, the program execution speed will be higher,
because most variables are not re-used. Refreshing the 16 byte cache memory is wasteful for un-reused
variables.

S3C44B0X RISC MICROPROCESSOR CPU WRAPPER & BUS PRIORITIES

6-5

INTERNAL SRAM (INTERNAL MEMORY MAP)

S3C44B0X has a maximum 8 KB 4way set associative cache or internal SRAM. If the internal SRAM is 4 KB, the
other 4KB internal memory can be used as a 2 way set associative cache. The memory access cycle of the internal
SRAM is 1 MCLK cycle.

Cache Size SRAM Size Note

8KB (4way) None 4 way set associative

4KB (2way) 4KB 2 way set associative
SRAM uses the area allocated for sets 2 and 3 of 8KB cache.

None 8KB 4 way set associative

Addresses in a set memory is increased sequentially and addresses in TAG/LRU increases of 16byte.
Don't access the interval addresses between 0x10003004 and 0x1000300f .

Area(Set/Cache) Memory Map Address Size

cache set 0 0x10000000 - 0x100007ff 2KB

cache set 1 0x10000800 - 0x10000fff 2KB

cache set 2 0x10001000 - 0x100017ff 2KB

cache set 3 0x10001800 - 0x10001fff 2KB

cache tag 0 0x10002000 - 0x100027f0 512bytes (note)

cache tag 1 0x10002800 - 0x10002ff0 512bytes (note)

cache tag 2 0x10003000 - 0x100037f0 512bytes (note)

cache tag 3 0x10003800 - 0x10003ff0 512bytes (note)

LRU 0x10004000 - 0x100047f0 512bytes (note)

NOTE: The cache tag3:0 & LRU must be read/written by word access (32bit). The address bit[3:0] of .tag & LRU must be 0.
For example, if you want to read the 2nd item among 128 cache tag 0 items, you should not read the address
0x10002004, but 0x10002010. Therefore, the tag0 addresses are 0x10002000, 0x10002010, 0x10002020,...,
0x100027f0.

0x1000_0000

0x1000_0010

0x1000_0020

0x1000_0800

0x1000_07f0

Valid data

Valid data

Valid data

Valid data

.

.

.

0x1000_2000

0x1000_2010

0x1000_2020

0x1000_2800

0x1000_27f0
Valid data

.

.

.

1 word
(valid)

3 word
(invalid)

4 word

Tag0
(512B)

Size
2KB

Set 0
(2KB)

CPU WRAPPER & BUS PRIORITIES S3C44B0X RISC MICROPROCESSOR

6-6

Figure 6-3. Cache Memory Mapping

WRITE-BUFFER OPERATION

Write Buffer Operation

S3C44B0X has four write buffer registers to enhance memory writing performance. When the write buffer mode is
enabled, the CPU writes data into the write buffer registers instead of an external memory even when the external
bus is already occupied by another bus master like DMA.

The write buffer block will write the data when the system bus is not occupied by higher priority bus masters. Also,
CPU performance will be enhanced because the CPU does not have to wait the completion of the write operation.

The write buffer has 4 registers. Each register includes a 32-bit data field, a 28-bit address field, and a 2-bit status
field.

27

[31:0] Write Buffer Data
Data to be written into external memory

[1:0] MAS
00 = 8-bit data mode
01 = 16-bit data mode
10 = 32-bit data mode
11 = Not used

[27:0] Address
Indicates the address of write data

0310

Write Buffer DataMASAddress

Figure 6-4. Write Buffer Configuration

S3C44B0X RISC MICROPROCESSOR CPU WRAPPER & BUS PRIORITIES

6-7

BUS PRIORITY MAP

In S3C44B0X, there are seven bus masters, LCD_DMA, BDMA0, BDMA1, ZDMA0, ZDMA1, nBREQ (external bus
masters), and CPU wrapper. The priorities among these bus masters after a reset are as follows;

1. DRAM refresh controller

2. LCD_DMA

3. ZDMA0,1

4. BDMA0,1

5. External bus master

6. Write buffer

7. Cache & CPU

The bus priorities among LCD_DMA, ZDMA, BDMA, and an external bus master can be programmed by the
SBUSCON register. The CPU wrapper always has the lowest priority regardless of the SBUSCON register.

The round-robin priority mode or fixed priority mode can be selected. In the round-robin priority mode, the bus master
which had once served will have the lowest priority. In this way, all the bus masters have equal priorities.

In the fixed priority mode, each bus master's priority is written onto SBUSCON. SBUSCON determines which is 1st -
4th priority bus master.

CPU WRAPPER & BUS PRIORITIES S3C44B0X RISC MICROPROCESSOR

6-8

CPU WRAPPER SPECIAL REGISTERS

There are 3 control registers for the CPU wrapper block (cache, write buffer, and ARM7TDMI). SYSCFG register
controls the general system operation. NCACHBE0 & NCACHBE1 registers provide non-cacheable areas.

SYSTEM CONFIGURATION REGISTER (SYSCFG)

Register Address R/W Description Reset Value

SYSCFG 0x01C00000 R/W System Cofiguration Register 0x01

SYSCFG Bit Description Initial State

Reserved [7] Reserved to 0 0

Reserved [6] Reserved to 0 0

DA(reserved) [5] DATA ABORT controls. This bit is recommended to be 0.
0: Enable data abort 1: Disable data abort

0

RSE(reserved) [4] Enable read stall option. This bit is recommended to be 0.
0: read stall disable 1: read stall enable

(Read stall option: Insert one internal wait cycle when reading
data for cache & CPU core.)

0

WE [3] This bit determines write buffer enable / disable. Some external
devices, which require the minimum writing cycle time, do not
operate normally because the period between consecutive
writings is shortened the write buffer.
0 = Disable write buffer operation
1 = Enable write buffer operation

0

CM [2:1] These two bits determine cache mode
00 = Disable cache (8KB internal SRAM)
01 = Half cache enable (4KB cache, 4KB internal SRAM)
10 = Reserved
11 = Full Cache enable (8KB cache)

00

SE [0] Enable stall option. This bit is recommended to be 0.
0:stall disable 1:stall enable

(Stall option: Insert one internal wait cycle when a non-
sequential address is generated for caching)

1

S3C44B0X RISC MICROPROCESSOR CPU WRAPPER & BUS PRIORITIES

6-9

NON-CACHEABLE AREA CONTROL REGISTER (NCACHBEn)

Register Address R/W Description Reset Value

NCACHBE0 0x01C00004 R/W Start address & end address of non-cacheable area 0 0x00000000

NCACHBE1 0x01C00008 R/W Start address & end address of non-cacheable area 1 0x00000000

NCACHBE0 Bit Description Initial State

SE0 [31:16] End address of non-cacheable area 0.
These 16 bits provide the end address of non-cacheable area 0.
The minimum non-cacheable area is 4 Kbytes.

SE0 = (End address + 1)/4K

0x0000

SA0 [15:0] Start address of non-cacheable area 0.
These 16 bits provide the start address of non-cacheable area 0.
SA0 = Start address/4K

0x0000

NCACHBE1 Bit Description Initial State

SE1 [31:16] End address of non-cacheable area 1
These 16 bits provide the end address of non-cacheable area 1.
The minimum non-cacheable area is 4Kbytes.

SE1 = (End address + 1)/4K

0x0000

SA1 [15:0] Start address of non-cacheable area 1.
These 16 bits provide the start address of non-cacheable area 1.
The minimum non-cacheable area is 4Kbytes.

SA1 = Start address/4K

0x0000

CPU WRAPPER & BUS PRIORITIES S3C44B0X RISC MICROPROCESSOR

6-10

BUS PRIORITY SPECIAL REGISTER

SYSTEM BUS PRIORITY CONTROLLER (SBUSCON)

Register Address R/W Description Reset Value

SBUSCON 0x01C40000 R/W Determines the bus priorities among the bus masters 0x80001B1B

SBUSCON Bit Description Initial State

FIX [31] 0: round-robin priorities
1: fixed priorities

0x1

S_LCD_DMA [15:14] Indicates the LCD_DMA bus priority (read only)
00: 1st 01: 2nd 10: 3rd 11: 4th

00

S_ZDMA [13:12] Indicates the ZDMA bus priority (read only)
00: 1st 01: 2nd 10: 3rd 11: 4th

01

S_BDMA [11:10] Indicates the BDMA bus priority (read only)
00: 1st 01: 2nd 10: 3rd 11: 4th

10

S_nBREQ [9:8] Indicates the nBREQ bus priority (read only)
00: 1st 01: 2nd 10: 3rd 11: 4th

11

LCD_DMA [7:6] Determines the LCD_DMA bus priority
00: 1st 01: 2nd 10: 3rd 11: 4th

00

ZDMA [5:4] Determines the ZDMA bus priority
00: 1st 01: 2nd 10: 3rd 11: 4th

01

BDMA [3:2] Determines the BDMA bus priority
00: 1st 01: 2nd 10: 3rd 11: 4th

10

nBREQ [1:0] Determines the nBREQ bus priority
00: 1st 01: 2nd 10: 3rd 11: 4th

11

NOTE: The priorities are only valid in the fixed priority mode.

S3C44B0X RISC MICROPROCESSOR DMA

7-1

7 DMA

OVERVIEW

The S3C44B0X has 4 channel DMA Controllers. The two DMAs(we call it ZDMA : General DMA) are attached to
SSB (Samsung System Bus) and the other two DMAs(we call it as BDMA : Bridge DMA) are inside the bridge,
which is an interface layer between SSB and SPB (Samsung Peripheral Bus).

The two ZDMA controllers attached to SSB are to transfer data from memory to memory, from memory to I/O
memory(Fixed destination), and from I/O devices and I/O devices to memory. The other two BDMA controllers
transfer data from memory to I/O devices and I/O devices to memory. In this case, I/O devices means the
peripherals, attached to SPB like SIO, IIS and UART. The main advantage of DMA is that it can transfer the data
without CPU intervention. The operation of ZDMA and BDMA can be initiated by S/W, the request from internal
peripherals or the external request pins (nXDREQ0,1).

The most important feature in ZDMA is the on-the-fly mode, which reduces the number of cycles during DMA
operation between external memory and a fixed external peripheral (Fixed source or destination addressed device).
Usually, the DMA transfer consists of two separate cycles, one is 'Read' from the source memory or I/O device and
the other is 'Write' to memory or destination I/O device. To perform these operations, the memory controller reads the
data on data bus and writes this data to data bus, again. The on-the-fly-mode has inseparable Read/Write cycle. In
other words, the memory controller generates the acknowledge signal for the source or destination device to read or
write data on the data bus. At the same time, the memory controller also generates the Read or Write-related control
signals for memory access. This kind of on-the-fly-mode can reduce the number of required DMA cycles, different
from the general DMA cycles, which has separate Read and Write cycles. To operate the on-the-fly mode, the bus
size of the source should be the same as that of the destination.

DMA S3C44B0X RISC MICROPROCESSOR

7-2

ZDMA/BDMA OPERATION

ZDMA (GENERAL DMA)

Figure 7-1 shows the internal diagram of a ZDMA block. The ZDMA is interfaced to SSB and can transfer data from
external memory to external memory. Unlikely the BDMA(Bridge DMA), this DMA can be used to transfer data
between memory-mapped device or memories. In other words, data transfer between fixed source and external
memory, external memory and external memory, and external memory and fixed destination can be done by using
this DMA. The DMA operation can be started by S/W or an external DMA request signal, which will be explained
later.

In the ZDMA, there is a temporary buffer which allows multiple transfers to enhance bus utilization as well as transfer
speed. In other words, the S3C44B0X has a 4-word FIFO-type buffer to support the 4-word burst transfer during DMA
operation. For example, during the DMA operation between memories, a 4-word burst write happens after a 4-word
burst read.

S
ource S

elector
S

ource S
elector

ZDMA 0

ZDMA 1

S
B

S
_S

ignals

SSB

SBS_STATE

FIFO
(4-WORD)

Channel
Arbiter

ZDMA
Control

nXDREQ[0], nXACK[0]
nXDREQ[1], nXACK[1]

Figure 7-1. ZDMA Controller Block Diagram

S3C44B0X RISC MICROPROCESSOR DMA

7-3

BDMA (BRIDGE DMA)

Figure 7-2 shows the internal diagram of a BDMA block. The BDMA is in the Bridge, which is the interface layer
between SSB and SPB. The main role of BDMA is to transfer the data between external memory and internal
peripherals like UART, IIS and SIO, which are attached to SPB. The timer can also request a DMA operation
anytime; it is useful for operating the ADC block automatically. Usually, the CPU or other master devices should
access the external memory through memory controller, which is attached to SPB. Please be reminded that the
BDMA is also a type of master device. To transfer the data from memory (peripheral devices) to peripheral devices
(memory) attached to SPB (SSB), the memory controller attached to SSB should be used. Because the BDMA is in
the Bridge, which is an interface layer between SSB and SPB, it can transfer the data between two devices, which
are attached to SSB as well as SPB.

The BDMA cannot support a 4-word burst transfer (the block transfer mode) because BDMA does not have a
temporary buffer and because the peripheral devices attached to SPB is slow. Specifically, the BDMA can support
the data transfer from external memory to external memory, a slightly ineffective way of data transfer if you look at
the block diagram. Even if BDMA can support the data transfer between external memories, ZDMA is recommended
for use instead of to transfer data between external memories faster transfer and optional bus utilization are required.
But, if more number of DMA channels for data transfer between external memories (Maximum 2 channels using
ZDMA) is needed, the BDMA can be used.

Source Selector

UART0Source SelectorBDMA 0

BDMA 1
SBS_Signals

SSB

SIO

SPB_Sginals

SPB

SBS_STATE

SLAVE
Peripheral

Channel
Arbiter
BDMA
Control

IIS

x
UART1
TIMER

x

Figure 7-2. BDMA Controller Block Diagram

DMA S3C44B0X RISC MICROPROCESSOR

7-4

EXTERNAL DMA REQ/ACK PROTOCOL

There are four types of external DMA request/acknowledge protocols. Each type defines how the signals like DMA
request and acknowledge are related to these protocols. Because ZDMA and BDMA can support external triggering,
these protocols correspond to ZMDA only, not BDMA.

Handshake Mode

In the handshake mode, the DMA can generate a single DMA acknowledge corresponding to the single DMA
request. The Figure 7-3 shows the handshake mode of DMA operation. In this figure, the DMA service means a
paired or an inseparable Read and Write cycle during DMA operation, which is one DMA operation. During one DMA
operation (Pared or inseparable Read and Write cycle), the bus controller does not allocate bus usage right to other
bus masters. If the user wants to allocate the bus usage properly for the higher priority master during one DMA
operation, the user should use the single step mode, which is explained in the next page. The single step mode
considers one DMA operation to consist of separable Read and Write cycle. It means that the bus controller can
allocate the bus usage to other higher bus master between Read and Write cycle.

The DMA request by nXDREQ causes one byte, one half word, or one word to be transmitted. The handshake mode
requires the DMA request for every data transfer. The nXDREQ can be released after active nXDACK and request
again after inactive nXDACK as shown in Figure 7-3.

nXDACK[1]

nXDREQ[1]

DMA Service

Figure 7-3. Handshake Mode Diagram

S3C44B0X RISC MICROPROCESSOR DMA

7-5

Single Step Mode

The single step mode means that there are two DMA acknowledge cycles indicating DMA read and write cycle. The
single step mode is usually used for test or debugging because the bus mastership can be handed over to other bus
master between Read and Write. During the inactive period of nXDACK, i.e., between Read and Write cycle, the bus
controller re-evaluates the bus priority to determine the new bus mastership. Therefore, data transfer slower than that
of the hand shake mode is expected.

When the DMA request signal goes low, the bus controller indicates the bus allocation for the DMA operation by
lowering the DMA acknowledge signal if there is no higher priority bus request. During the first low level period of the
DMA acknowledge signal, there will be a DMA read cycle. After the DMA read cycle, there will be a rising of the
DMA acknowledge signal to indicate the end of the DMA read cycle. Simultaneously, the next DMA write cycle
initiates if the DMA request signal is still low at the rising edge of DMA acknowledge. But, if the DMA request signal
is already high at the rising edge of DMA acknowledge, the next DMA write cycle will be delayed until a new DMA
request signal is activated. These two cases are shown in below Figure 7-4 and Figure 7-5.

nXDACK[1]

nXDREQ[1]

Ready

DMA Read Cycle DMA Write Cycle

Figure 7-4. Single Step Mode (Case 1)

nXDACK[1]

nXDREQ[1]

Ready
State

DMA Read Cycle DMA Write Cycle

Idle
State

Figure 7-5. Single Step Mode (Case 2)

DMA S3C44B0X RISC MICROPROCESSOR

7-6

Whole Service Mode

The whole service mode means that the specified number of DMA operations, i.e., number of DMA operations based
on transfer count, will be initiated by a single activation of DMA Request, and will be proceeded without further
activations of DMA requests. The figure below shows how the whole service mode proceeds. The nXDACK signal will
be active until the end of the whole DMA operations.

If the number of DMA transfer operation is too large, the long bus occupation during the whole service mode of DMA
operation may cause problem because the other bus services will not be provided. To solve this kind of problem, the
DMA releases the bus mastership in the whole service mode every time one unit (1byte, or 1 half-word, or 1 word) is
transferred. When the DMA releases the bus mastership, the other bus masters, such as the CPU, the other DMA,
and the external bus master, may have bus mastership. This feature in the whole service mode can provide the
optimal bus sharing, preventing the monopoly of bus mastership by DMA. If the other master intercepts the bus
mastership as shown in Figure 7-7, the remainder of DMA operation can be executed after servicing the impinged
bus mastership, without the re-activation of nXDREQ.

nXDACK[1]

nXDREQ[1]

DMA
Service

DMA
Service

DMA
Service

Figure 7-6. Whole Service Mode

nXDACK[1]

nXDREQ[1]

The other service

DMA
Service

DMA
Service

DMA
Service

DMA
Service

DMA
Service

Figure 7-7. Whole Service Mode When Another Bus Master Acquires Bus Mastership

S3C44B0X RISC MICROPROCESSOR DMA

7-7

Demand Mode

Demand mode implies continuous DMA transfer cycles as long as DMA request signal is activated, as shown in
figure 7-8.

Unlike the whole service mode, this mode does not permit the bus hand-over bus mastership to higher priority bus
master, which make this request to bus controller during DMA operations. In other words, no other bus master can
have bus mastership during the demand mode.

The sole monopoly of the bus mastership in demand mode prevents the demand mode from exceeding the specified
maximum time, such as the DRAM refresh period.

nXDACK[1]

nXDREQ[1]

DMA
Service

DMA
Service

DMA
Service

Figure 7-8. Demand Mode

NOTE

The bus controller does not permit the hand-over of bus mastership during the DMA operation using the
demand mode. In other words, the DMA monopolizes bus usage right up to the completion of DMA
operation. Care is warranted when using the DMA operation in the demand mode because this kind of
monopoly may cause an un-expected malfunction on other masters by blocking optimal bus sharing.

DMA S3C44B0X RISC MICROPROCESSOR

7-8

DMA TRANSFER MODE

There are three types of DMA transfer modes (Unit transfer mode, Block transfer mode and On the fly transfer mode).
Different from the external DMA request/acknowledge protocol, the DMA transfer mode defines the number of
reads/writes per unit transfer as shown in the following table.

DMA Transfer Mode Read/Write

Unit transfer 1 unit read, then 1 unit write

Block transfer 4 unit burst read, then 4 unit burst write

On-the-fly transfer 1 unit read or 1 unit write exclusively

Unit Transfer Mode

The unit transfer mode means that the paired DMA read/write cycle happens corresponding each DMA request as
shown below in Figure. Figure 7-9 shows the example case of the unit transfer mode at the handshake mode.

Read
Byte

Write
Byte

Read
Byte

Write
Byte

nXDACK[1]

nXDREQ[1]

Figure 7-9. Unitary Transfer Mode with Handshake mode

S3C44B0X RISC MICROPROCESSOR DMA

7-9

Block (4-word) Transfer Mode

The block (4-word) transfer mode means that the successive 4-word DMA read cycle happens before the successive
4-word DMA write cycle, as shown in Figure 7-10. Figure 7-10 shows an example of the block transfer mode with
single step mode.

If the block transfer mode is used, the total data size to be transferred should be a multiple of 16 bytes. In other
words, the minimum transfer size is 16 bytes, i.e., 4 words. Because the DMA count is defined in byte unit, 16
should be the DMA transfer count in the case of 4 words transfer. If the transfer size or DMA count is not a multiple
of 16, for example 16, 32, 48, 64, and so on, the DMA can not transfer the data completely. If assume 100 bytes-
transfer (DMA count is 100), 6x16 = 96 bytes can be transferred. But, the remaining 4 bytes can not be transferred
because DMA operation will be stopped after 96 bytes transfer. The users should be aware of this characteristics
when they select the block transfer mode of DMA.

NOTE: The ADDR[3:0] should be '0' to meet 16-byte align condition in Block Transfer Mode.

nXDACK[1]

nXDREQ[1]

ReadyRead Burst Write Burst

Figure 7-10. Block Transfer Mode With Single Step Mode

DMA S3C44B0X RISC MICROPROCESSOR

7-10

On-the-fly Transfer Mode

The on-the-fly transfer mode means that when DMA reads/writes data, a fixed addressed external device writes/reads
the data by DMA acknowledge signals (nXDACK0/1). In the other modes, the DMA reads data before writing the
data.

In on-the-fly transfer mode, the read and write operation occur simultaneously. The DMA acknowledge signal notifies
the external device to read or write. Simultaneously, the memory controller should generate Read-related or Write-
related control signals to the external memory. If the external device can support the on-the-fly mode (can read/write
the data by DMA acknowledge), the data transfer rates will be doubled. During the on-the-fly transfer cycle,
S3C44B0X data bus will be in Hi-z state. Figure 7-11 shows the example of the on-the-fly transfer mode with the
whole service mode.

nXDACK[1]

nXDREQ[1]

The other service

Read Read Read Read Read Read

Figure 7-11. On-the-fly Transfer Mode with Whole Transfer Mode

S3C44B0X RISC MICROPROCESSOR DMA

7-11

DMA REQUEST SOURCE SELECTION

In ZDMA, S/W or H/W produces the nXDREQ (external DMA request signal), which is the DMA request source. The
S/W trigger can be done by writing the CMD field as 01 in ZDCON0/1 register, i.e., the start of DMA. Before the start
of DMA, the DMA-related parameters, such as source address, destination address, transfer count and so on,
should be configured. Based-on these configuration, the DMA operation will start when the CMD field is written as
01. In S/W trigger, the DMA operations will continue as long as the burst mastership is allocated to the DMA master
and as long as the DMA transfer count or TC(Terminal Count) reaches zero, i.e., the completion of DMA operation. If
the higher bus master acquires the bus mastership, DMA operations will continue after the service of higher priority
bus master. The DMA operations can also be initiated by nXDREQ(External DMA request signal) as well as S/W if
the DMA is configured for the external trigger mode, i.e., enable External DMA request by writing QDS bit as 1 in the
ZDCON0/1 register.
In BDMA, there are six hardware request sources, UART0, UART1, SIO , Timer and IIS. The BDMA can be initiated
by software as the ZDMA. These sources can be selected by writing the QSC field in the BDICNT register.

AUTO RELOAD MODE

In the auto reload mode, the register content of Z(B)DCSRCn, Z(B)DCDSTn, and Z(B)DCCNTn are reloaded from the
registers of Z(B)DISRCn, Z(B)DIDESn, and Z(B)DICNTn when the DMA count decreases to 0. The configuration
parameters relating to DMA operation are contained in the registers of Z(B)DISRCn, Z(B)DIDESn, and Z(B)DICNTn,
for example, soure/destination address and source/destination transfer count. This kind of Auto-reloading can
preschedule DMA operation automatically. In other words, to change the configuration, the configuration in the
registers of Z(B)DISRCn, Z(B)DIDESn, and Z(B)DICNTn should be changed before the end of DMA operation based-
on current configuration. But, this kind of parameter auto-reloading can not guarantee the DMA re-run automatically
after the current DMA operation. The DMA will re-run if Z(B)DCONn CMD field is written newly or external DMA
request is issued.

To support the Auto-reload mdoe, the DMA should have two registers sets. The registers, Z(B)DISRCn, Z(B)DIDESn,
and Z(B)DICNTn, have the initial configuration for DMA operation as above-mentioned and registers, Z(B)DCSRCn,
Z(B)DCDESn and Z(B)DCCNTn, have the configuraion reflecting the current DMA operation. For example, these
register should have dynamic values of source address, destination address, and the remained transfer count or
TC(Terminal Count) during DMA operation.

The register contents of Z(B)DISRCn, Z(B)DIDESn, and Z(B)DICNTn can be reloaded into the registers Z(B)DCSRCn,
Z(B)DCDESn and Z(B)DCCNTn under one of the four cases.

case 1) Auto Reload(AR) is equal to 1 and DMA Count reaches to 0, which are normal auto-reload mode of
DMA
 operation.

case 2) Writes new configuration into the Z(B)DISRC0, Z(B)DIDES0, and Z(B)DICNT0. If DMA is in Auto-reload
mode, these new contests of the register will be re-loaded automatically as same as above case.

 If DMA is not active, these new configuration will be written into registers, Z(B)DISRC0, Z(B)DIDES0,
 and Z(B)DICNT0, immediately

case 3) When DMA is enable, i.e., EN bit in Z(B)DICNT register changes from 0 to 1. The register contents of
 Z(B)DISRC0, Z(B)DIDES0, and Z(B)DICNT0 will be loaded into the registers of Z(B)DCSRC0,
 Z(B)DCDES0, and Z(B)DCCNT0 immediately to start of DMA operation, regardless of whether the DMA
 is in Auto-reload mode, or not.

case 4) S/W command is Cancel. When user writes the CMD field as 11 in the register of ZDCON0/1. In this
 case, the register content of Z(B)DISRC0, Z(B)DIDES0, and Z(B)DICNT0 will be loaded into the
 registers, Z(B)DCSRC0, Z(B)DCDES0, and Z(B)DCCNT0 immediately.

DMA S3C44B0X RISC MICROPROCESSOR

7-12

DMA SPECIAL REGISTERS

ZDMA CONTROL REGISTER (ZDCONn)

Register Address R/W Description Reset Value

ZDCON0 0x01E80000 R/W ZDMA 0 Control Register 0x00

ZDCON1 0x01E80020 R/W ZDMA 1 Control Register 0x00

ZDCONn Bit Description Initial State

INT [7:6] Reserved 00

STE [5:4] Status of DMA channel (Read only)
00 = Ready 01 = Not TC yet
10 = Terminal Count 11 = N/A
Before the DMA counter decreases from the initial counter value, STE
is still in the ready state.

00

QDS [3:2] Disable/Enable External DMA request (nXDREQ)
00 = Enable other = Disable

00

CMD [1:0] Software commands
00: No command. After writing 01,10,11, CMD bit is
 cleared automatically. nXDREQ is available.
01: Starts DMA operation by S/W without nXDREQ. S/W start
 function can be used only in the whole mode. As DMA is in
 the whole mode, the DMA will operate until the counter is 0.
 If nXDREQ is used , this command must not be issued.
10: Pauses DMA operation. But nXDREQ is still available.
11: Cancels DMA operation.

00

NOTE: If users start the ZDMA operation by CMD=01b, the DREQ protocol must be whole service mode.

S3C44B0X RISC MICROPROCESSOR DMA

7-13

ZDMA0 INITIAL SOURCE/DESTINATION ADDRESS AND COUNT REGISTERS
(ZDISRC0, ZDIDES0, ZDICNT0)

Register Address R/W Description Reset Value

ZDISRC0 0x01E80004 R/W ZDMA 0 initial source address Register 0x00000000

ZDIDES0 0x01E80008 R/W ZDMA 0 initial destination address Register 0x00000000

ZDICNT0 0x01E8000C R/W ZDMA 0 initial count register 0x00000000

ZDMA0 CURRENT SRC/DST ADDRESS AND COUNT REGISTERS (ZDCSRC0, ZDCDES0, ZDCCNT0)

Register Address R/W Description Reset Value

ZDCSRC0 0x01E80010 R ZDMA 0 current source address Register 0x00000000

ZDCDES0 0x01E80014 R ZDMA 0 current destination address Register 0x00000000

ZDCCNT0 0x01E80018 R ZDMA 0 current count register 0x00000000

NOTE: These registers are read-only.

ZDMA1 INITIAL SOURCE/DESTINATION ADDRESS AND COUNT REGISTERS
(ZDISRC1, ZDIDES1, ZDICNT1)

Register Address R/W Description Reset Value

ZDISRC1 0x01E80024 R/W ZDMA 1 initial source address Register 0x00000000

ZDIDES1 0x01E80028 R/W ZDMA 1 initial destination address Register 0x00000000

ZDICNT1 0x01E8002C R/W ZDMA 1 initial count register 0x00000000

ZDMA1 CURRENT SRC/DST ADDRESS AND COUNT REGISTERS (ZDCSRC1, ZDCDES1, ZDCCNT1)

Register Address R/W Description Reset Value

ZDCSRC1 0x01E80030 R ZDMA 1 current source address Register 0x00000000

ZDCDES1 0x01E80034 R ZDMA 1 current destination address Register 0x00000000

ZDCCNT1 0x01E80038 R ZDMA 1 current count register 0x00000000

NOTE: These registers are read-only.

DMA S3C44B0X RISC MICROPROCESSOR

7-14

ZDMAn INITIAL/CURRENT SOURCE ADDRESS REGISTERS (ZDISRC, ZDCSRC)

ZDISRCn/ZDCSRCn Bit Description Initial State

DST [31:30] Data size for transfer
00 = Byte, 01 = Half word
10 = Word, 11 = Not used
If the block transfer mode is used, the DST must be 10.

00

DAL [29:28] Direction of address for load
00 = N/A, 01 = Increment
10 = Decrement, 11 = Fixed

00

ISADDR/CSADDR [27:0] Initial/current source address for ZDMAn 0x0000000

ZDMAn INITIAL/CURRENT DESTINATION ADDRESS REGISTERS (ZDIDES, ZDCDE)

ZDIDESn/ZDCDESn Bit Description Initial State

OPT [31:30] DMA internal options. OPT = 10 is recommended.

bit 31: Indicates how nXDREQ is sampled in the single
 step mode. 1 is recommended.

bit 30: If the DST is half-word or word and if the DMA mode
 is not the block transfer mode, this bit takes a role.

1: DMA does word-swap or half-word swap
 Before transfer: B0,B1,B2,B3,B4,B5,B6,B7...
 word-swapped data: B3,B2,B1,B0,B7,B6,B5,B4,...
 half-word-swapped data: B1,B0,B3,B2,B5,B4,B7,B6,...

0: normal

00

DAS [29:28] Direction of address for store
00 = N/A 01 = Increment
10 = Decrement 11 = Fixed

00

IDADDR/CDADDR [27:0] Initial/current destination address for ZDMAn 0x0000000

S3C44B0X RISC MICROPROCESSOR DMA

7-15

ZDMAn INITIAL/CURRENT COUNT REGISTERS (ZDICNT, ZDCCNT)

ZDICNTn/ZDCCNTn Bit Description Initial State

QSC [31:30] DREQ(DMA request) source selection
00 = nXDREQ[0] 01 = nXDREQ[1]
10 = N/A 11 = N/A

00

QTY [29:28] DREQ protocol
00 = Handshake 01 = Single step
10 = Whole Service 11 = Demand

00

TMD [27:26] Transfer mode
00 = Not used 01 = Unit transfer mode
10 = Block(4-word) transfer mode 11 = On the fly

If block transfer mode is selected, the ADDR[3:0] should be '0' to
meet 16-byte align condition.

00

OTF [25:24] On the fly mode
00 = N/A 01 = N/A
10 = Read time on the fly 11 = Write time on the fly

00

INTS [23:22] Interrupt mode set
00 = Polling mode 01 = N/A
10 = Int. whenever transferred
11 = Int. whenever terminated count

00

AR [21] Auto-reload and Auto-start after DMA count are 0.
0 = Disable
1 = Enable. Even after DMA count is 0, the DMA H/W
 enable bit (EN bit) is still 1.
 But, DMA will start to operate only if the start command
 or nXDREQ is activated.

0

EN [20] DMA H/W enable/disable
0 = Disable DMA
1 = Enable DMA.

If the QDS bit is 00b, DMA request can be serviced. Also if the
S/W command is started, the DMA operation will occur.
If the EN bit is 0, DMA will not operate even though S/W
command is started.
If the S/W command is canceled, the DMA operation will be
canceled and EN bit will be cleared to 0.
At the terminal count, the EN bit will be cleared to 0.

NOTE: Do not set the EN bit and the other bits of ZDICNT register at
the same time. User have to set EN bit after setting the other bits of
ZDICNT register as following steps,
1. Set ZDICNT register with disabled En bit.
2. Set EN bit enable.

0

ICNT/CCNT [19:0] Initial/current transfer count for ZDMAn.

If 1 byte is transferred, the ICNT will be decreased by 1.
If 1 half-word is transferred, the ICNT will be decreased by 2.
If 1 word is transferred, the ICNT will be decreased by 4.
For example, if the data size of a transfer is word and the
count is 4n+3, the last 3 bytes will not be transferred.

0x00000

DMA S3C44B0X RISC MICROPROCESSOR

7-16

 BDMAn CONTROL REGISTER (BDCON)

Register Address R/W Description Reset Value

BDCON0 0x01F80000 R/W Bridge DMA 0 Control Register 0x00

BDCON1 0x01F80020 R/W Bridge DMA 1 Control Register 0x00

BDCONn Bit Description Initial State

INT [7:6] Reserved 00

STE [5:4] Status of DMA channel (Read only)
00 = Ready 01 = Not TC yet
10 = Terminal Count 11 = N/A
Before the DMA counter decreases from a initial counter value,
STE is still the ready state.

00

QDS [3:2] Disable/Enable External/Internal DMA request
(UARTn, SIO, IIS, Timer)
00 = Enable Other = Disable

00

CMD [1:0] Software commands
00: No command. After writing 01, 10, 11, CMD bits are cleared
automatically.
01: Reserved
10: Reserved
11: Cancels DMA operation.

00

S3C44B0X RISC MICROPROCESSOR DMA

7-17

BDMA0 INITIAL SRC/DST ADDRESS AND COUNT REGISTERS (BDISRC0, BDIDES0, BDICNT0)

Register Address R/W Description Reset Value

BDISRC0 0x01F80004 R/W BDMA 0 initial source address Register 0x00000000

BDIDES0 0x01F80008 R/W BDMA 0 initial destination address Register 0x00000000

BDICNT0 0x01F8000C R/W BDMA 0 initial count register 0x00000000

BDMA0 CURRENT SRC/DST ADDRESS AND COUNT REGISTERS (BDCSRC0, BDCDES0, BDCCNT0)

Register Address R/W Description Reset Value

BDCSRC0 0x01F80010 R BDMA 0 current source address Register 0x00000000

BDCDES0 0x01F80014 R BDMA 0 current destination address Register 0x00000000

BDCCNT0 0x01F80018 R BDMA 0 current count register 0x00000000

NOTE: These registers are read-only.

BDMA1 INITIAL SRC/DST ADDRESS AND COUNT REGISTERS (BDISRC1, BDIDES1, BDICNT1)

Register Address R/W Description Reset Value

BDISRC1 0x01F80024 R/W BDMA 1 initial source address Register 0x00000000

BDIDES1 0x01F80028 R/W BDMA 1 initial destination address Register 0x00000000

BDICNT1 0x01F8002C R/W BDMA 1 initial count register 0x00000000

BDMA1 CURRENT SRC/DST ADDRESS AND COUNT REGISTERS (BDCSRC1, BDCDES1, BDCCNT1)

Register Address R/W Description Reset Value

BDCSRC1 0x01F80030 R BDMA 1 current source address Register 0x00000000

BDCDES1 0x01F80034 R BDMA 1 current destination address Register 0x00000000

BDCCNT1 0x01F80038 R BDMA 1 current count register 0x00000000

NOTE: These registers are read-only.

DMA S3C44B0X RISC MICROPROCESSOR

7-18

BDMAn INITIAL/CURRENT SOURCE ADDRESS REGISTERS (BDISRC, BDCSRC)

BDISRCn/BDCSRCn Bit Description Initial State

DST [31:30] Data size for transfer
00 = Byte 01 = Half word
10 = Word 11 = Not used

00

DAL [29:28] Direction of address for load
00 = N/A 01 = Increment
10 = Decrement 11 = Internal peripheral (fixed address)

00

ISADDR/CSADDR [27:0] Initial/current source address for BDMAn.
If the destination is the internal peripherals, the SFR address
has to be used.
For example, if the source is the UART0 Rx buffer, the
UART0 Rx buffer address will be used.

0x0000000

BDMAn INITIAL/CURRENT DESTINATION ADDRESS REGISTERS (BDIDES, BDCDES)

BDIDESn/BDCDESn Bit Description Initial State

TDM [31:30] Transfer direction mode
00 = Reserved
01 = M2IO (from external memory to internal peripheral)
10 = IO2M (from internal peripheral to external memory)
11 = IO2IO (from internal peripheral to internal peripheral)

NOTE: The initial value is '00' , but you must change TDM
value as another though the BDMA channel is unused.

00

DAS [29:28] Direction of address for store
00 = N/A 01 = Increment
10 = Decrement 11 = Internal peripheral (fixed address)

00

IDADDR/CDADDR [27:0] Initial/current destination address for BDMAn

If the destination is the internal peripherals, the SFR
address has to be used.

For example, if the destination is UART0 Tx buffer, the
UART0 Tx buffer address will be used.

0x0000000

S3C44B0X RISC MICROPROCESSOR DMA

7-19

BDMA0 INITIAL/CURRENT COUNT REGISTERS (BDICNT0, BDCCNT0)

BDICNT0/BDCCNT0 Bit Description Initial State

QSC [31:30] DMA request source selection
00 = N/A 01 = IIS
10 = UART0 11 = SIO

00

Reserved [29:28] 00: handshake mode 00

Reserved [27:26] 01: unit transfer mode 01

Reserved [25:24] 00: on-the-fly mode is not supported in BDMAn 00

INTS [23:22] Interrupt mode set
00 = Polling mode 01 = N/A
10 = Int. whenever transferred
11 = Int. whenever terminated count

00

AR [21] Auto-reload and Auto-start after DMA count are 0.
0= Disable
1= Enable. Even after DMA count is 0, the DMA H/W
 enable bit (EN bit) is still 1.
 But, DMA will start to operate only if the start command
 or DMA request is activated

0

EN [20] DMA H/W enable/disable
0 = Disable DMA
1 = Enable DMA.

If the QDS bit is 00b, DMA request can be serviced. Also if the
S/W command is started, the DMA operation will occur.
If the EN bit is 0, DMA will not operate even though S/W
command is started.
If the S/W command is canceled, the DMA operation will be
canceled and EN bit will be cleared to 0.
At the terminal count, the EN bit will be cleared to 0.

NOTE: Do not set the EN bit and the other bits of BDICNT register
at the same time. User have to set EN bit after setting the other bits
of BDICNT register as following steps,
1. Set BDICNT register with disabled En bit.
2. Set EN bit enable.

0

ICNT/CCNT [19:0] Transfer count for BDMA0. The transfer count must be right
value. For example, if DST is word, ICNT must be 4n.

If 1 byte is transferred, the ICNT will be decreased by 1.
If 1 half-word is transferred, the ICNT will be decreased by 2.
If 1 word is transferred, the ICNT will be decreased by 4.

0x00000

DMA S3C44B0X RISC MICROPROCESSOR

7-20

BDMA1 INITIAL/CURRENT COUNT REGISTERS (BDICNT1, BDCCNT1)

BDICNT1/BDCCNT1 Bit Description Initial State

QSC [31:30] DMA request source selection
00 = N/A 01 = Timer
10 = UART1 11 = SIO

00

Reserved [29:28] 00: handshake mode 00

Reserved [27:26] 01: unit transfer mode 01

Reserved [25:24] 00: on-the-fly mode is not supported in BDMAn 00

INTS [23:22] Interrupt mode set
00 = Polling mode 01 = N/A
10 = Int. whenever transferred
11 = Int. whenever terminated count

00

AR [21] Auto-reload and Auto-start after DMA count are 0.
0= Disable
1= Enable. Even after DMA count is 0, the DMA H/W
 enable bit (EN bit) is still 1.
 But, DMA will start to operate only if the start command
 or DMA request is activated

0

EN [20] DMA H/W enable/disable
0 = Disable DMA
1 = Enable DMA.

If the QDS bit is 00b, DMA request can be serviced. Also if the
S/W command is started, the DMA operation will occur.
If the EN bit is 0, DMA will not operate even though S/W
command is started.
If the S/W command is canceled, the DMA operation will be
canceled and EN bit will be cleared to 0.
At the terminal count, the EN bit will be cleared to 0.

NOTE: Do not set the EN bit and the other bits of BDICNT register
at the same time. User have to set EN bit after setting the other bits
of BDICNT register as following steps,
1. Set BDICNT register with disabled En bit.
2. Set EN bit enable.

0

ICNT/CCNT [19:0] Transfer count for BDMA1. The transfer count must be right
value. For example, if DST is word, ICNT must be 4n.

If 1 byte is transferred, the ICNT will be decreased by 1.
If 1 half-word is transferred, the ICNT will be decreased by 2.
If 1 word is transferred, the ICNT will be decreased by 4.

0x00000

S3C44B0X RISC MICROPROCESSOR I/O PORTS

8-1

8 I/O PORTS

OVERVIEW

S3C44B0X has 71 multi-functional input/output port pins. There are seven ports:

— Two 9-bit input/output ports. (Port E and F)

— Two 8-bit input/output ports. (Port D and G)

— One 16-bit input/output port. (Port C)

— One 10-bit output port. (Port A)

— One 11-bit output port. (Port B)

Each port can be easily configured by software to meet various system configuration and design requirements. The
function of each pin to be used must be defined before starting the main program. If the multiplexed functions on a
pin are not used, the pin can be configured as I/O ports.

Before pin configurations, the initial pin states are configured elegantly to avoid some problems.

I/O PORTS S3C44B0X RISC MICROPROCESSOR

8-2

Table 8-1. S3C44B0X Port Configuration Overview

Port A Selectable Pin functions

Function 1 Function 2

PA9 output only ADDR24

PA8 output only ADDR23

PA7 output only ADDR22

PA6 output only ADDR21

PA5 output only ADDR20

PA4 output only ADDR19

PA3 output only ADDR18

PA2 output only ADDR17

PA1 output only ADDR16

PA0 output only ADDR0

Port B Selectable Pin functions

Function 1 Function 2

PB10 output only nGCS5

PB9 output only nGCS4

PB8 output only nGCS3

PB7 output only nGCS2

PB6 output only nGCS1

PB5 output only nWBE3:nBE3:DQM3

PB4 output only nWBE2:nBE2:DQM2

PB3 output only nSRAS:nCAS3

PB2 output only nSCAS:nCAS2

PB1 output only SCLK

PB0 output only SCKE

S3C44B0X RISC MICROPROCESSOR I/O PORTS

8-3

Table 8-1. S3C44B0X Port Configuration Overview (Continued)

Port C Selectable Pin functions

Function 1 Function 2 Function 3

PC15 Input/output DATA31 nCTS0

PC14 Input/output DATA30 nRTS0

PC13 Input/output DATA29 RxD1

PC12 Input/output DATA28 TxD1

PC11 Input/output DATA27 nCTS1

PC10 Input/output DATA26 nRTS1

PC9 Input/output DATA25 nXDREQ1

PC8 Input/output DATA24 nXDACK1

PC7 Input/output DATA23 VD4

PC6 Input/output DATA22 VD5

PC5 Input/output DATA21 VD6

PC4 Input/output DATA20 VD7

PC3 Input/output DATA19 IISCLK

PC2 Input/output DATA18 IISDI

PC1 Input/output DATA17 IISDO

PC0 Input/output DATA16 IISLRCK

Port D Selectable Pin functions

Function 1 Function 2

PD7 Input/output VFRAME

PD6 Input/output VM

PD5 Input/output VLINE

PD4 Input/output VCLK

PD3 Input/output VD3

PD2 Input/output VD2

PD1 Input/output VD1

PD0 Input/output VD0

I/O PORTS S3C44B0X RISC MICROPROCESSOR

8-4

Table 8-1. S3C44B0X Port Configuration Overview (Continued)

Port E Selectable Pin functions

Function 1 Function 2 Function 3

PE8 ENDIAN CODECLK input/output

PE7 Input/output TOUT4 VD7

PE6 Input/output TOUT3 VD6

PE5 Input/output TOUT2 TCLK

PE4 Input/output TOUT1 TCLK

PE3 Input/output TOUT0 -

PE2 Input/output RxD0 -

PE1 Input/output TxD0 -

PE0 Input/output Fpllo Fout

Port F Selectable Pin functions

Function 1 Function 2 Function 3 Function 4

PF8 input/output nCTS1 SIOCK IISCLK

PF7 input/output RxD1 SIORxD IISDI

PF6 input/output TxD1 SIORDY IISDO

PF5 input/output nRTS1 SIOTxD IISLRCK

PF4 input/output nXBREQ nXDREQ0 –

PF3 input/output nXBACK nXDACK0 –

PF2 input/output nWAIT – –

PF1 input/output IICSDA – –

PF0 input/output IICSCL – –

Port G Selectable Pin Functions

Function 1 Function 2 Function 3

PG7 input/output IISLRCK EINT7

PG6 input/output IISDO EINT6

PG5 input/output IISDI EINT5

PG4 input/output IISCLK EINT4

PG3 input/output nRTS0 EINT3

PG2 input/output nCTS0 EINT2

PG1 input/output VD5 EINT1

PG0 input/output VD4 EINT0

NOTES:

S3C44B0X RISC MICROPROCESSOR I/O PORTS

8-5

1. The underlined function name is selected just after a reset.(ENDIAN(PE8) is used only when nRESET is L.
2. IICSDA and IICSCL pins are open-drain pin. So, this pin needs pull-up resistors when used as output port(PF[1:0]).

PORT CONTROL DESCRIPTIONS

PORT CONFIGURATION REGISTER (PCONA-G)

In S3C44B0X, most pins are multiplexed pins. Therefore, the functions for each pin should be selected. The PCONn
(port control register) determines which function is used for each pin.

If PG0 - PG7 are used for the wakeup signal in power down mode, these ports must be configured in interrupt mode.

PORT DATA REGISTER (PDATA-G)

If these ports are configured as output ports, data can be written to the corresponding bit of PDATn. If Ports are
configured as input ports, the data can be read from the corresponding bit of PDATn.

PORT PULL-UP REGISTER (PUPC-G)

The port pull-up resistor controls the pull-up resistor enable/disable of each port group. When the corresponding bit is
0, the pull-up resistor of the pin is enabled. When 1, the pull-up resistor is disabled.

EXTERNAL INTERRUPT CONTROL REGISTER

The 8 external interrupts are requested by various signaling methods. The EXTINT register configures the signaling
method among the low level trigger, high level trigger, falling edge trigger, rising edge trigger, and both edge triggers
for the external interrupt request

Because each external interrupt pin has a digital filter, the interrupt controller can recognize the request signal longer
than 3 clocks.

I/O PORTS S3C44B0X RISC MICROPROCESSOR

8-6

I/O PORT CONTROL REGISTER

PORT A CONTROL REGISTERS (PCONA, PDATA, PUPA)

Port A control registers are shown in Table 8-2:

Register Address R/W Description Reset Value

PCONA 0x01D20000 R/W Configures the pins of port A 0x3ff

PDATA 0x01D20004 R/W The data register for port A Undef.

Table 8-2. Port of Group A Control Registers (PCONA,PDATA)

PCONA Bit Description

PA9 [9] 0 = Output 1 = ADDR24

PA8 [8] 0 = Output 1 = ADDR23

PA7 [7] 0 = Output 1 = ADDR22

PA6 [6] 0 = Output 1 = ADDR21

PA5 [5] 0 = Output 1 = ADDR20

PA4 [4] 0 = Output 1 = ADDR19

PA3 [3] 0 = Output 1 = ADDR18

PA2 [2] 0 = Output 1 = ADDR17

PA1 [1] 0 = Output 1 = ADDR16

PA0 [0] 0 = Output 1 = ADDR0

PDATA Bit Description

PA[9:0] [9:0] When the port is configured as an output port, the pin state is the same as the
corresponding bit.
When the port is configured as a functional pin, an undefined value will be read.

S3C44B0X RISC MICROPROCESSOR I/O PORTS

8-7

PORT B CONTROL REGISTERS (PCONB, PDATB)

Port B control registers are shown in Table 8-3:

Register Address R/W Description Reset Value

PCONB 0x01D20008 R/W Configures the pins of port B 0x7ff

PDATB 0x01D2000C R/W The data register for port B Undef.

Table 8-3. Port of Group B Control Registers (PCONB,PDATB)

PCONB Bit Description

PB10 [10] 0 = Output 1 = nGCS5

PB9 [9] 0 = Output 1 = nGCS4

PB8 [8] 0 = Output 1 = nGCS3

PB7 [7] 0 = Output 1 = nGCS2

PB6 [6] 0 = Output 1 = nGCS1

PB5 [5] 0 = Output 1 = nWBE3/nBE3/DQM3

PB4 [4] 0 = Output 1 = nWBE2/nBE2/DQM2

PB3 [3] 0 = Output 1 = nSRAS/nCAS3

PB2 [2] 0 = Output 1 = nSCAS/nCAS2

PB1 [1] 0 = Output 1 = SCLK

PB0 [0] 0 = Output 1 = SCKE

PDATB Bit Description

PB[10:0] [10:0] When the port is configured as an output port, the pin state is the same as the
corresponding bit.
When the port is configured as a functional pin, an undefined value will be read.

I/O PORTS S3C44B0X RISC MICROPROCESSOR

8-8

PORT C CONTROL REGISTERS (PCONC, PDATC, PUPC)

Port C control registers are shown in Table 8-4:

Register Address R/W Description Reset Value

PCONC 0x01D20010 R/W Configures the pins of port C 0xaaaaaaaa

PDATC 0x01D20014 R/W The data register for port C Undef.

PUPC 0x01D20018 R/W pull-up disable register for port C 0x0

Table 8-4. Port of Group C Control Registers (PCONC,PDATC,PUPC)

PCONC Bit Description

PC15 [31:30] 00 = Input 01 = Output
10 = DATA31 11 = nCTS0

PC14 [29:28] 00 = Input 01 = Output
10 = DATA30 11 = nRTS0

PC13 [27:26] 00 = Input 01 = Output
10 = DATA29 11 = RxD1

PC12 [25:24] 00 = Input 01 = Output
10 = DATA28 11 = TxD1

PC11 [23:22] 00 = Input 01 = Output
10 = DATA27 11 = nCTS1

PC10 [21:20] 00 = Input 01 = Output
10 = DATA26 11 = nRTS1

PC9 [19:18] 00 = Input 01 = Output
10 = DATA25 11 = nXDREQ1

PC8 [17:16] 00 = Input 01 = Output
10 = DATA24 11 = nXDACK1

PC7 [15:14] 00 = Input 01 = Output
10 = DATA23 11 = VD4

PC6 [13:12] 00 = Input 01 = Output
10 = DATA22 11 = VD5

PC5 [11:10] 00 = Input 01 = Output
10 = DATA21 11 = VD6

PC4 [9:8] 00 = Input 01 = Output
10 = DATA20 11 = VD7

PC3 [7:6] 00 = Input 01 = Output
10 = DATA19 11 = IISCLK

PC2 [5:4] 00 = Input 01 = Output
10 = DATA18 11 = IISDI

PC1 [3:2] 00 = Input 01 = Output
10 = DATA17 11 = IISDO

PC0 [1:0] 00 = Input 01 = Output
10 = DATA16 11 = IISLRCK

S3C44B0X RISC MICROPROCESSOR I/O PORTS

8-9

PDATC Bit Description

PC[15:0] [15:0] When the port is configured as an input port, the corresponding bit is the pin state.
When the port is configured as an output port, the pin state is the same as the
corresponding bit. When the port is configured as a functional pin, an undefined value
will be read.

PUPC Bit Description

PC[15:0] [15:0] 0: the pull up resistor attached to the corresponding port pin is enabled.
1: the pull up resistor is disabled.

I/O PORTS S3C44B0X RISC MICROPROCESSOR

8-10

PORT D CONTROL REGISTERS (PCOND, PDATD, PUPD)

Port D control registers are shown in Table 8-5.

Register Address R/W Description Reset Value

PCOND 0x01D2001C R/W Configures the pins of port D 0x0000

PDATD 0x01D20020 R/W The data register for port D Undef.

PUPD 0x01D20024 R/W Pull-up disable register for port D 0x0

 Table 8-5. Port of Group D Control Registers (PCOND, PDATD, PUPD)

PCOND Bit Description

PD7 [15:14] 00 = Input 01 = Output
10 = VFRAME 11 = Reserved

PD6 [13:12] 00 = Input 01 = Output
10 = VM 11 = Reserved

PD5 [11:10] 00 = Input 01 = Output
10 = VLINE 11 = Reserved

PD4 [9:8] 00 = Input 01 = Output
10 = VCLK 11 = Reserved

PD3 [7:6] 00 = Input 01 = Output
10 = VD3 11 = Reserved

PD2 [5:4] 00 = Input 01 = Output
10 = VD2 11 = Reserved

PD1 [3:2] 00 = Input 01 = Output
10 = VD1 11 = Reserved

PD0 [1:0] 00 = Input 01 = Output
10 = VD0 11 = Reserved

PDATD Bit Description

PD[7:0] [7:0] When the port is configured as an input port, the corresponding bit is the pin state.
When the port is configured as an output port, the pin state is the same as the
corresponding bit.

When the port is configured as a functional pin, an undefined value will be read.

PUPD Bit Description

PD[7:0] [7:0] 0: the pull up resistor attached to the corresponding port pin is enabled.
1: the pull up resistor is disabled.

S3C44B0X RISC MICROPROCESSOR I/O PORTS

8-11

PORT E CONTROL REGISTERS (PCONE, PDATE)

Port E control registers are shown in Table 8-6:

Register Address R/W Description Reset Value

PCONE 0x01D20028 R/W Configures the pins of port E 0x00

PDATE 0x01D2002C R/W The data register for port E Undef.

PUPE 0x01D20030 R/W pull-up disable register for port E 0x00

Table 8-6. Port of Group E Control Registers (PCONE, PDATE)

PCONE Bit Description

PE8 [17:16] 00 = Reserved(ENDIAN) 01 = Output
10 = CODECLK 11 = Reserved
PE8 can be used as ENDIAN only during the reset cycle.

PE7 [15:14] 00 = Input 01 = Output
10 = TOUT4 11 = VD7

PE6 [13:12] 00 = Input 01 = Output
10 = TOUT3 11 = VD6

PE5 [11:10] 00 = Input 01 = Output
10 = TOUT2 11 = TCLK in

PE4 [9:8] 00 = Input 01 = Output
10 = TOUT1 11 = TCLK in

PE3 [7:6] 00 = Input 01 = Output
10 = TOUT0 11 = Reserved

PE2 [5:4] 00 = Input 01 = Output
10 = RxD0 11 = Reserved

PE1 [3:2] 00 = Input 01 = Output
10 = TxD0 11 = Reserved

PE0 [1:0] 00 = Input 01 = Output
10 = Fpllo out 11 = Fout out

NOTE: Please refer to Fig. 5-1 when selecting Fpllo or Fout.

PDATE Bit Description

PE[8:0] [8:0] When the port is configured as an output port, the pin state is the same as the
corresponding bit.

When the port is configured as a functional pin, the undefined value will be read.

PUPE Bit Description

PE[7:0] [7:0] 0: the pull up resistor attached to the corresponding port pin is enabled.
1: the pull up resistor is disabled.

PE8 do not have programmable pull-up resistor.

I/O PORTS S3C44B0X RISC MICROPROCESSOR

8-12

PORT F CONTROL REGISTERS (PCONF, PDATF, PUPF)

Port F control registers are shown in Table 8-7 below:

Register Address R/W Description Reset Value

PCONF 0x01D20034 R/W Configures the pins of port F 0x0000

PDATF 0x01D20038 R/W The data register for port F Undef.

PUPF 0x01D2003C R/W pull-up disable register for port F 0x000

 Table 8-7. Port of Group F Control Registers (PCONF, PDATF, PUPF)

PCONF Bit Description

PF8 [21:19] 000 = Input 001 = Output 010 = nCTS1
011 = SIOCLK 100 = IISCLK Others = Reserved

PF7 [18:16] 000 = Input 001 = Output 010 = RxD1
011 = SIORxD 100 = IISDI Others = Reserved

PF6 [15:13] 000 = Input 001 = Output 010 = TxD1
011 = SIORDY 100 = IISDO Others = Reserved

PF5 [12:10] 000 = Input 001 = Output 010 = nRTS1
011 = SIOTxD 100 = IISLRCK Others = Reserved

PF4 [9:8] 00 = Input 01 = Output
10 = nXBREQ 11 = nXDREQ0

PF3 [7:6] 00 = Input 01 = Output
10 = nXBACK 11 = nXDACK0

PF2 [5:4] 00 = Input 01 = Output
10 = nWAIT 11 = Reserved

PF1 [3:2] 00 = Input 01 = Output
10 = IICSDA 11 = Reserved

PF0 [1:0] 00 = Input 01 = Output
10 = IICSCL 11 = Reserved

PDATF Bit Description

PF[8:0] [8:0] When the port is configured as an input port, the corresponding bit is the pin state.
When the port is configured as an output port, the pin state is the same as the
corresponding bit.

When the port is configured as a functional pin, the undefined value will be read.

PUPF Bit Description

PF[8:0] [8:0] 0: the pull up resistor attached to the corresponding port pin is enabled.
1: the pull up resistor is disabled.

S3C44B0X RISC MICROPROCESSOR I/O PORTS

8-13

PORT G CONTROL REGISTERS (PCONG, PDATG, PUPG)

Port G control registers are shown in Table 8-8:

If PG0 - PG7 are to be used for wake-up signals in power down mode, the ports will be set in the interrupt mode.

Register Address R/W Description Reset Value

PCONG 0x01D20040 R/W Configures the pins of port G 0x0

PDATG 0x01D20044 R/W The data register for port G Undef.

PUPG 0x01D20048 R/W Pull-up disable register for port G 0x0

Table 8-8. Port of Group G Control Registers (PCONG, PDATG, PUPG)

PCONG Bit Description

PG7 [15:14] 00 = Input 01 = Output
10 = IISLRCK 11 = EINT7

PG6 [13:12] 00 = Input 01 = Output
10 = IISDO 11 = EINT6

PG5 [11:10] 00 = Input 01 = Output
10 = IISDI 11 = EINT5

PG4 [9:8] 00 = Input 01 = Output
10 = IISCLK 11 = EINT4

PG3 [7:6] 00 = Input 01 = Output
10 = nRTS0 11 = EINT3

PG2 [5:4] 00 = Input 01 = Output
10 = nCTS0 11 = EINT2

PG1 [3:2] 00 = Input 01 = Output
10 = VD5 11 = EINT1

PG0 [1:0] 00 = Input 01 = Output
10 = VD4 11 = EINT0

PDATG Bit Description

PG[7:0] [7:0] When the port is configured as an input port, the corresponding bit is the pin state.
When the port is configured as an output port, the pin state is the same as the
corresponding bit.

When the port is configured as a functional pin, the undefined value will be read.

PUPG Bit Description

PG[7:0] [7:0] 0: the pull up resistor attached to the corresponding port pin is enabled.
1: the pull up resistor is disabled.

I/O PORTS S3C44B0X RISC MICROPROCESSOR

8-14

SPECIAL PULL-UP RESISTOR CONTROL REGISTER (SPUCR)

D[15:0] pin pull-up resistor can be controlled by the SPUCR register.

In STOP/SL_IDLE mode, the data bus(D[31:0] or D[15:0] is in Hi-Z state. But, because of the characteristics of IO
pad, the data bus pull-up resistors have to be turned on to reduce the power consumption in STOP/SL_IDLE mode.
D[31:16] pin pull-up resistors can be controlled by PUPC register. D[15:0] pin pull-up resistors can be controlled by
the SPUCR register.

In STOP mode, memory control signals can be selected as Hi-z state or previous state in order to protect against
memory mal-functions by setting the HZ@STOP field in SPUCR register.

Register Address R/W Description Reset Value

SPUCR 0x01D2004C R/W Special Pull-up register[2:0] 0x4

Table 8-9. D[15:0] Pull-up Control Register (SPUCR)

PCONG Bit Description

HZ@STOP [2] 0 = Previous state of PAD 1 = HZ @ stop

SPUCR1 [1] 0 = DATA[15:8] port pull-up resistor is enabled
1 = DATA[15:8] port pull-up resistor is disabled

SPUCR0 [0] 0 = DATA[7:0] port pull-up resistor is enabled
1 = DATA[7:0] port pull-up resistor is disabled

S3C44B0X RISC MICROPROCESSOR I/O PORTS

8-15

EXTINT (EXTERNAL INTERRUPT CONTROL REGISTER)

The 8 external interrupts can be requested by various signaling methods. The EXTINT register configures the
signaling method between the level trigger and edge trigger for the external interrupt request, and also configures the
signal polarity.

Register Address R/W Description Reset Value

EXTINT 0x01D20050 R/W External Interrupt control Register 0x000000

 Table 8-10. External Interrupt Control Register (EXTINT)

EXTINT Bit Description

EINT7 [30:28] Setting the signaling method of the EINT7.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EINT6 [26:24] Setting the signaling method of the EINT6.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EINT5 [22:20] Setting the signaling method of the EINT5.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EINT4 [18:16] Setting the signaling method of the EINT4.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EINT3 [14:12] Setting the signaling method of the EINT3.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EINT2 [10:8] Setting the signaling method of the EINT2.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EINT1 [6:4] Setting the signaling method of the EINT1.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EINT0 [2:0] Setting the signaling method of the EINT0.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

NOTE: Because each external interrupt pin has a digital filter, the interrupt controller can recognize a request signal
that is longer than 3 clocks.

I/O PORTS S3C44B0X RISC MICROPROCESSOR

8-16

EXTINTPND (EXTERNAL INTERRUPT PENDING REGISTER)

The external interrupt requests(4, 5, 6, and 7) are 'OR'ed to provide a single interrupt source to interrupt controller.
EINT4, EINT5, EINT6, and EINT7 share the same interrupt request line(EINT4/5/6/7) in interrupt controller. If each of
the 4 bits in the external interrupt request is generated, EXTINTPNDn will be set as 1. The interrupt service routine
must clear the interrupt pending condition(INTPND) after clearing the external pending condition(EXTINTPND).
EXTINTPND is cleared by writing 1.

Register Address R/W Description Reset Value

EXTINTPND 0x01D20054 R/W External interrupt pending Register 0x00

Table 8-11. D[15:0] Pull-Up Control Register (PUPS)

PUPS Bit Description

EXTINTPND3 [3] If EINT7 is activated, EXINTPND3 bit is set to 1, and also INTPND[21] is set to 1.

EXTINTPND2 [2] If EINT6 is activated, EXINTPND2 bit is set to 1, and also INTPND[21] is set to 1.

EXTINTPND1 [1] If EINT5 is activated, EXINTPND1 bit is set to 1, and also INTPND[21] is set to 1.

EXTINTPND0 [0] If EINT4 is activated, EXINTPND0 bit is set to 1, and also INTPND[21] is set to 1.

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-1

9 PWM TIMER

OVERVIEW

The S3C44B0X has six 16-bit timers, each timer can operate in interrupt-based or DMA-based mode. The timers 0,
1, 2, 3 and 4 have the PWM function (Pulse Width Modulation). Timer 5 has an internal timer only with no output
pins. Timer 0 has a dead-zone generator, which is used with a large current device.

Timer 0 and timer 1 share an 8-bit prescaler; timers 2 & 3 share another 8-bit prescaler; and timers 4 & 5 share the
other 8-bit prescaler. Each timer, except timers 4 and 5, has a clock-divider which has 5 different divided signals
(1/2, 1/4, 1/8, 1/16, 1/32). Timers 4/5 have 4 divided signals(1/2, 1/4, 1/8, 1/16) and one input TCLK/EXTCLK. Each
timer block receives its own clock signals from the clock-divider, which receives the clock from the corresponding 8-
bit prescaler. The 8-bit prescaler is programmable and divides the MCLK signal according to the loading value which
is stored in TCFG0 and TCFG1 registers.

The timer count buffer register(TCNTBn) has an initial value which is loaded into the down-counter when the timer is
enabled. The timer compare buffer register(TCMPBn) has an initial value which is loaded into the compare register to
be compared with the down-counter value. This double buffering feature of TCNTBn and TCMPBn makes the timer
generate a stable output when the frequency and duty ratio are changed.

Each timer has its own 16-bit down-counter which is driven by the timer clock. When the down-counter reaches zero,
the timer interrupt request is generated to inform the CPU that the timer operation has been completed. When the
timer counter reaches zero, the value of corresponding TCNTBn is automatically loaded into the down-counter to
continue the next operation. However, if the timer stops, for example, by clearing the timer enable bit of TCONn
during the timer running mode, the value of TCNTBn will not be reloaded into the counter.

The value of TCMPBn is used for PWM (pulse width modulation). The timer control logic changes the output level
when the down-counter value matches the value of the compare register in the timer control logic. Therefore, the
compare register determines the turn-on time(or turn-off time) of an PWM output.

FEATURES

— Six 16-bit timers with DMA-based or interrupt-based operation

— Three 8-bit prescalers & Two 5-bit dividers & One 4-bit divider

— Programmable duty control of output waveform (PWM)

— Auto-reload mode or one-shot pulse mode

— Dead-zone generator

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-2

MCLK

8-Bit
Prescaler

1/8

1/4

1/16

1/32

Clock
Divider

M
U

X0

Dead Zone
Generator

TOUT0

TOUT1

TOUT2

TOUT5 (No Pin)

1/2

M
U

X0Control
Logic

TCMPB0 TCNTB0

Control
Logic

TCMPB1 TCNTB1

M
U

X1

8-Bit
Prescaler 1/8

1/4

1/16

1/32

Clock
Divider

M
U

X2
1/2

M
U

X3

Control
Logic

TCMPB2 TCNTB2

TOUT3
Control
Logic

TCMPB3 TCNTB3

TOUT4

8-Bit
Prescaler

1/8

1/4

1/16

Clock
Divider

M
U

X4

1/2

M
U

X5

Control
Logic

TCMPB4 TCNTB4

Control
Logic

TCNTB5TCLK

EXTCLK

Figure 9-1. 16-bit PWM Timer Block Diagram

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-3

PWM TIMER OPERATION

PRESCALER & DIVIDER

An 8-bit prescaler and an independent 4-bit divider make the following output frequencies:

4-bit divider settings minimum resolution
(prescaler = 1)

maximum resolution
(prescaler = 255)

maximum interval
(TCNTBn = 65535)

1/2 (MCLK = 66 MHz) 0.030 us (33.0 MHz) 7.75 us (58.6 KHz) 0.50 sec

1/4 (MCLK = 66 MHz) 0.060 us (16.5 MHz) 15.5 us (58.6 KHz) 1.02 sec

1/8 (MCLK = 66 MHz) 0.121 us (8.25 MHz) 31.0 us (29.3 KHz) 2.03 sec

1/16 (MCLK = 66 MHz) 0.242 us (4.13 MHz) 62.1 us (14.6 KHz) 4.07 sec

1/32 (MCLK = 66 MHz) 0.485 us (2.06 MHz) 125 us (7.32 KHz) 8.13 sec

BASIC TIMER OPERATION

Timer is stoppedTimer is startedStart bit = 1 TCNTn = TCMPn Auto-reload

1

TCNTn = TCMPn

0TCMPn

TCNTn 3 3 2 1 0 2 1 0 0

TCNTBn = 3
TCMPBn = 1

Manual Update = 1
Auto-reload = 1

TCNTBn = 2
TCMPBn = 0

Manual Update = 0
Auto-reload = 1

Interrupt Request

Auto-reload = 0

Interrupt Request

TOUTn

Command

Status

Figure 9-2. Timer operations

A timer (except the timer ch-5) has TCNTBn, TCNTn, TCMPBn and TCMPn. TCNTBn and TCMPBn are loaded into
TCNTn and TCMPn when the timer reaches 0. When TCNTn reaches 0, the interrupt request will occur if the interrupt
is enabled. (TCNTn and TCMPn are the names of the internal registers. The TCNTn register can be read from the
TCNTOn register)

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-4

AUTO-RELOAD & DOUBLE BUFFERING

S3C44B0X PWM Timers have a double buffering feature, which can change the reload value for the next timer
operation without stopping the current timer operation. So, although the new timer value is set, a current timer
operation is completed successfully.

The timer value can be written into TCNTBn (timer counter buffer register) and the current counter value of the timer
can be read from TCNTOn (timer count observation register). If TCNTBn is read, the read value is not the current
state of the counter but the reload value for the next timer duration.

The auto-reload is the operation, which copies the TCNTBn into TCNTn when TCNTn reaches 0. The value, written
into TCNTBn, is loaded to TCNTn only when the TCNTn reaches to 0 and auto-reload is enabled. If the TCNTn is 0
and the auto-reload bit is 0, the TCNTn does not operate any further.

Write
TCNTBn = 100

Write
TCNTBn = 200

Start
TCNTBn = 150

Auto-reload

150 100 100 200

Interrupt

Figure 9-3. Example of Double Buffering Feature

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-5

TIMER INITIALIZATION USING MANUAL UPDATE BIT AND INVERTER BIT

Because an auto-reload operation of the timer occurs when the down counter reaches to 0, a starting value of the
TCNTn is not defined at first. In this case, the starting value has to be loaded by the manual update bit. The
sequence of starting a timer is as follows;

1) Write the initial value into TCNTBn and TCMPBn

2) Set the manual update bit of the corresponding timer. It is recommended to configure the inverter on/off bit.

3) Set the start bit of the corresponding timer to start the timer(At the same time, clear the manual update bit).

Also, if the timer is stopped by force, the TCNTn retains the counter value and is not reloaded from TCNTBn. If new
value has to be set, manual update has to be done.

NOTE

Whenever TOUT inverter on/off bit is changed, the TOUTn logic value will be changed whether or not the
timer runs. Therefore, it is desirable that the inverter on/off bit is configured with the manual update bit.

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-6

EXAMPLE OF A TIMER OPERATION

TOUTn

1 2 4 6

50 110 4040 6020

3 7 9 10

5 8 11

Figure 9-4. Example of a Timer Operation

The result of the following procedure is shown in Figure 9-4.

1. Enable the auto-reload feature. Set the TCNTBn as 160 (50+110) and the TCMPBn as 110. Set the manual
update bit and configure the inverter bit(on/off). The manual update bit sets TCNTn and TCMPn to the values of
TCNTBn and TCMPBn, respectively.

And then, set TCNTBn and TCMPBn as 80 (40+40) and 40, respectively, to determine the next reload value.

2. Set the start bit, provided that manual_update is 0 and inverter is off and auto-reload is on. The timer starts
counting down after latency time within the timer resolution.

3. When TCNTn has the same value with TCMPn, the logic level of TOUTn is changed from low to high.

4. When TCNTn reaches 0, the interrupt request is generated and TCNTBn value is loaded into a temporary
register. At the next timer tick, TCNTn is reloaded with the temporary register value(TCNTBn).

5. In the ISR(interrupt service routine), the TCNTBn and TCMPBn are set as 80 (20+60) and 60, respectively, which
is used for the next duration.

6. When TCNTn has the same value as TCMPn, the logic level of TOUTn is changed from low to high.

7. When TCNTn reaches 0, TCNTn is reloaded automatically with TCNTBn. At the same time, the interrupt request
is generated.

8. In the ISR (interrupt service routine), auto-reload and interrupt request are disabled to stop the timer.

9. When the value of TCNTn is same as TCMPn, the logic level of TOUTn is changed from low to high.

10. Even when TCNTn reaches to 0, TCNTn is not any more reloaded and the timer is stopped because auto-reload
has been disabled.

11. No interrupt request is generated.

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-7

PWM (PULSE WIDTH MODULATION)

Write
TCMPBn = 60

Write
TCMPBn = 50

Write
TCMPBn = 40

Write
TCMPBn = 30

Write
TCMPBn = 30

Write
TCMPBn = Next PWM Value

60 50 40 30 30

Figure 9-5. Example of PWM

PWM feature can be implemented by using the TCMPBn. PWM frequency is determined by TCNTBn. A PWM value
is determined by TCMPBn in figure 9-5.

For a lower PWM output value, decrease the TCMPBn value. For a higher PWM output value, increase the TCMPBn
value. If an output inverter is enabled, the increment/decrement may be reversed.

Because of the double buffering feature, TCMPBn, for a next PWM cycle, can be written at any point in the current
PWM cycle by ISR or something else

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-8

OUTPUT LEVEL CONTROL

Inverter off

Initial State Period 1 Period 2 Timer Stop

Inverter on

Figure 9-6. Inverter On/Off

The following methods can be used to maintain TOUT as high or low.(assume the inverter is off)

1. Turn off the auto-reload bit. And then, TOUTn goes to high level and the timer is stopped after TCNTn reaches to
0. This method is recommended.

2. Stop the timer by clearing the timer start/stop bit to 0. If TCNTn ≤ TCMPn, the output level is high. If TCNTn
>TCMPn, the output level is low.

3. Write the TCMPBn which is bigger than TCNTBn. This inhibits the TOUTn from going to high because TCMPBn
can not have the same value as TCNTn.

4. TOUTn can be inverted by the inverter on/off bit in TCON. The inverter removes the additional circuit to
adjust the output level.

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-9

DEAD ZONE GENERATOR

The dead zone is for the PWM control in a power device. This feature is used to insert the time gap between a turn-
off of a switching device and a turn on of another switching device. This time gap prohibits the two switching devices
turning on simultaneously, even for a very short time.

TOUT0 is the PWM output. nTOUT0 is the inversion of the TOUT0. If the dead zone is enabled, the output wave form
of TOUT0 and nTOUT0 will be TOUT0_DZ and nTOUT0_DZ, respectively. nTOUT0_DZ is routed to the TOUT1 pin.

In the dead zone interval, TOUT0_DZ and nTOUT0_DZ can never be turned on simultaneously.

TOUT0

nTOUT0

TOUT0_DZ

nTOUT0_DZ

Deadzone
Interval

Figure 9-7. The Wave Form When a Dead Zone Feature is Enabled

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-10

DMA REQUEST MODE

The PWM timer can generate a DMA request at every specific times. The timer keeps DMA request signal low until
the timer receives the ACK signal. When the timer receives the ACK signal, it makes the request signal inactive.
One of 6 timers can generate a DMA request. The timer, that generates the DMA request, is determined by setting
DMA mode bits(in TCFG1 register). If a timer is configured as DMA request mode, the timer does not generate an
interrupt request. The others can generate interrupt normally.

DMA mode configuration and DMA / interrupt operation

DMA mode DMA
request

Timer0 INT Timer1 INT Timer2 INT Timer3 INT Timer4 INT Timer5 INT

0000 No select ON ON ON ON ON ON

0001 Timer0 OFF ON ON ON ON ON

0010 Timer1 ON OFF ON ON ON ON

0011 Timer2 ON ON OFF ON ON ON

0100 Timer3 ON ON ON OFF ON ON

0101 Timer4 ON ON ON ON OFF ON

0110 Timer5 ON ON ON ON ON OFF

0111 No select ON ON ON ON ON ON

MCLK

Timer4_Int_tmp

DMA mode

nDMA_ACK

nDMA_REQ

Timer4_Int

1 0 1

Figure 9-8. The Timer4 DMA mode operation

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-11

PWM TIMER CONTROL REGISTERS

TIMER CONFIGURATION REGISTER0 (TCFG0)

Timer input clock Frequency = MCLK / {prescaler value + 1} / {divider value}
{prescaler value} = 0-255
{divider value} = 2, 4, 8, 16, 32

Register Address R/W Description Reset Value

TCFG0 0x01D50000 R/W Configures the three 8-bit prescalers 0x00000000

TCFG0 Bit Description Initial State

Dead zone length [31:24] These 8 bits determine the dead zone length. The 1 unit time of
the dead zone length is equal to the 1 unit time of timer 0.

0x00

Prescaler 2 [23:16] These 8 bits determine prescaler value for Timer 4 & 5 0x00

Prescaler 1 [15:8] These 8 bits determine prescaler value for Timer 2 & 3 0x00

Prescaler 0 [7:0] These 8 bits determine prescaler value for Timer 0 & 1 0x00

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-12

TIMER CONFIGURATION REGISTER1 (TCFG1)

Register Address R/W Description Reset Value

TCFG1 0x01D50004 R/W 6-MUX & DMA mode selecton register 0x00000000

TCFG1 Bit Description Initial State

DMA mode [27:24] Select DMA request channel
0000 = No select (all interrupt) 0001 = Timer0
0010 = Timer1 0011 = Timer2
0100 = Timer3 0101 = Timer4
0110 = Timer5 0111 = Reserved

000

MUX 5 [23:20] Select MUX input for PWM Timer5.
0000 = 1/2 0001 = 1/4 0010 = 1/8
0011 = 1/16 01xx = EXTCLK

000

MUX 4 [19:16] Select MUX input for PWM Timer4.
0000 = 1/2 0001 = 1/4 0010 = 1/8
0011 = 1/16 01xx = TCLK

000

MUX 3 [15:12] Select MUX input for PWM Timer3.
0000 = 1/2 0001 = 1/4 0010 = 1/8
0011 = 1/16 01xx = 1/32

000

MUX 2 [11:8] Select MUX input for PWM Timer2.
0000 = 1/2 0001 = 1/4 0010 = 1/8
0011 = 1/16 01xx = 1/32

000

MUX 1 [7:4] Select MUX input for PWM Timer1.
0000 = 1/2 0001 = 1/4 0010 = 1/8
0011 = 1/16 01xx = 1/32

000

MUX 0 [3:0] Select MUX input for PWM Timer0.
0000 = 1/2 0001 = 1/4 0010 = 1/8
0011 = 1/16 01xx = 1/32

000

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-13

TIMER CONTROL REGISTER (TCON)

Register Address R/W Description Reset Value

TCON 0x01D50008 R/W Timer control register 0x00000000

TCON Bit Description initial state

Timer 5 auto reload
on/off

[26] This bit determines auto reload on/off for Timer 5.
0 = One-shot 1 = Interval mode (auto reload)

0

Timer 5 manual
update (note)

[25] This bit determines the manual update for Timer 5.
0 = No operation 1 = Update TCNTB5

0

Timer 5 start/stop [24] This bit determines start/stop for Timer 5.
0 = Stop 1 = Start for Timer 5

0

Timer 4 auto reload
on/off

[23] This bit determines auto reload on/off for Timer 4.
0 = One-shot 1 = Interval mode (auto reload)

0

Timer 4 output
inverter on/off

[22] This bit determines output inverter on/off for Timer4.
0 = Inverter off 1 = Inverter on for TOUT4

0

Timer 4 manual
update (note)

[21] This bit determines the manual update for Timer 4.
0 = No operation 1 = Update TCNTB4, TCMPB4

0

Timer 4 start/stop [20] This bit determines start/stop for Timer 4.
0 = Stop 1 = Start for Timer 4

0

Timer 3 auto reload
on/off

[19] This bit determines auto reload on/off for Timer 3.
0 = One-shot 1 = Interval mode (auto reload)

0

Timer 3 output
inverter on/off

[18] This bit determines output inverter on/off for Timer 3.
0 = Inverter off 1 = Inverter on for TOUT3

0

Timer 3 manual
update (note)

[17] This bit determine manual update for Timer 3.
0 = No operation 1 = Update TCNTB3, TCMPB3

0

Timer 3 start/stop [16] This bit determines start/stop for Timer 3.
0 = Stop 1 = Start for Timer 3

0

Timer 2 auto reload
on/off

[15] This bit determines auto reload on/off for Timer 2.
0 = One-shot 1 = Interval mode (auto reload)

0

Timer 2 output
inverter on/off

[14] This bit determines output inverter on/off for Timer 2.
0 = Inverter off 1 = Inverter on for TOUT2

0

Timer 2 manual
update (note)

[13] This bit determines the manual update for Timer 2.
0 = No operation 1 = Update TCNTB2, TCMPB2

0

Timer 2 start/stop [12] This bit determines start/stop for Timer 2.
0 = Stop 1 = Start for Timer 2

0

NOTE: This bit has to be cleared at next writing.

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-14

TIMER CONTROL REGISTER (TCON) (Continued)

TCON Bit Description initial state

Timer 1 auto reload
on/off

[11] This bit determines the auto reload on/off for Timer1.
0 = One-shot 1 = Interval mode (auto reload)

0

Timer 1 output
inverter on/off

[10] This bit determines the output inverter on/off for Timer1.
0 = Inverter off 1 = Inverter on for TOUT1

0

Timer 1 manual
update (note)

[9] This bit determines the manual update for Timer 1.
0 = No operation 1 = Update TCNTB1, TCMPB1

0

Timer 1 start/stop [8] This bit determines start/stop for Timer 1.
0 = Stop 1 = Start for Timer 1

0

Dead zone enable [4] This bit determines the dead zone operation.
0 = Disable 1 = Enable

0

Timer 0 auto reload
on/off

[3] This bit determines auto reload on/off for Timer 0.
0 = One-shot 1 = Interval mode(auto reload)

0

Timer 0 output
inverter on/off

[2] This bit determines the output inverter on/off for Timer 0.
0 = Inverter off 1 = Inverter on for TOUT0

0

Timer 0 manual
update (note)

[1] This bit determines the manual update for Timer 0.
0 = No operation 1 = Update TCNTB0, TCMPB0

0

Timer 0 start/stop [0] This bit determines start/stop for Timer 0.
0 = Stop 1 = Start for Timer 0

0

NOTE: This bit has to be cleared at next writing.

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-15

TIMER 0 COUNT BUFFER REGISTER & COMPARE BUFFER REGISTER (TCNTB0, TCMPB0)

Register Address R/W Description Reset Value

TCNTB0 0x01D5000C R/W Timer 0 count buffer register 0x00000000

TCMPB0 0x01D50010 R/W Timer 0 compare buffer register 0x00000000

TCMPB0 Bit Description Initial State

Timer 0 compare
buffer register

[15:0] Setting compare buffer value for Timer 0

NOTE: This value must be smaller than TCNTB0

0x00000000

TCNTB0 Bit Description Initial State

Timer 0 count buffer
register

[15:0] Setting count buffer value for Timer 0 0x00000000

TIMER 0 COUNT OBSERVATION REGISTER (TCNTO0)

Register Address R/W Description Reset Value

TCNTO0 0x01D50014 R Timer 0 count observation register 0x00000000

TCNTO0 Bit Description Initial State

Timer 0
observation register

[15:0] Setting count observation value for Timer 0 0x00000000

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-16

TIMER 1 COUNT BUFFER REGISTER & COMPARE BUFFER REGISTER (TCNTB1, TCMPB1)

Register Address R/W Description Reset Value

TCNTB1 0x01D50018 R/W Timer 1 count buffer register 0x00000000

TCMPB1 0x01D5001C R/W Timer 1 campare buffer register 0x00000000

TCMPB1 Bit Description Initial State

Timer 1 compare
buffer register

[15:0] Setting compare buffer value for Timer 1

NOTE: This value must be smaller than TCNTB1

0x00000000

TCNTB1 Bit Description Initial State

Timer 1 count buffer
register

[15:0] Setting count buffer value for Timer 1 0x00000000

TIMER 1 COUNT OBSERVATION REGISTER(TCNTO1)

Register Address R/W Description Reset Value

TCNTO1 0x01D50020 R Timer 1 count observation register 0x00000000

TCNTO1 Bit Description initial state

Timer 1
observation register

[15:0] Setting count observation value for Timer 1 0x00000000

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-17

TIMER 2 COUNT BUFFER REGISTER & COMPARE BUFFER REGISTER (TCNTB2, TCMPB2)

Register Address R/W Description Reset Value

TCNTB2 0x01D50024 R/W Timer 2 count buffer register 0x00000000

TCMPB2 0x01D50028 R/W Timer 2 campare buffer register 0x00000000

TCMPB2 Bit Description Initial State

Timer 2 compare
buffer register

[15:0] Setting compare buffer value for Timer 2

NOTE: This value must be smaller than TCNTB2

0x00000000

TCNTB2 Bit Description Initial State

Timer 2 count buffer
register

[15:0] Setting count buffer value for Timer 2 0x00000000

TIMER 2 COUNT OBSERVATION REGISTER (TCNTO2)

Register Address R/W Description Reset Value

TCNTO2 0x01D5002C R Timer 2 count observation register 0x00000000

TCNTO2 Bit Description Initial State

Timer 2
observation register

[15:0] Setting count observation value for Timer 2 0x00000000

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-18

TIMER 3 COUNT BUFFER REGISTER & COMPARE BUFFER REGISTER (TCNTB3, TCMPB3)

Register Address R/W Description Reset Value

TCNTB3 0x01D50030 R/W Timer 3 count buffer register 0x00000000

TCMPB3 0x01D50034 R/W Timer 3 campare buffer register 0x00000000

TCMPB3 Bit Description Initial State

Timer 3 compare
buffer register

[15:0] Setting compare buffer value for Timer 3

NOTE: This value must be smaller than TCNTB3

0x00000000

TCNTB3 Bit Description Initial State

Timer 3 count buffer
register

[15:0] Setting count buffer value for Timer 3 0x00000000

TIMER 3 COUNT OBSERVATION REGISTER (TCNTO3)

Register Address R/W Description Reset Value

TCNTO3 0x01D50038 R Timer 3 count observation register 0x00000000

TCNTO3 Bit Description Initial State

Timer 3
observation register

[15:0] Setting count observation value for Timer 3 0x00000000

S3C44B0X RISC MICROPROCESSOR PWM TIMER

9-19

TIMER 4 COUNT BUFFER REGISTER & COMPARE BUFFER REGISTER (TCNTB4, TCMPB4)

Register Address R/W Description Reset Value

TCNTB4 0x01D5003C R/W Timer 4 count buffer register 0x00000000

TCMPB4 0x01D50040 R/W Timer 4 campare buffer register 0x00000000

TCMPB4 Bit Description Initial State

Timer 4 compare
buffer register

[15:0] Setting compare buffer value for Timer 4

NOTE: This value must be smaller than TCNTB4

0x00000000

TCNTB4 Bit Description Initial State

Timer 4 count buffer
register

[15:0] Setting count buffer value for Timer 4 0x00000000

TIMER 4 COUNT OBSERVATION REGISTER (TCNTO4)

Register Address R/W Description Reset Value

TCNTO4 0x01D50044 R Timer 4 count observation register 0x00000000

TCNTO4 Bit Description Initial State

Timer 4
observation register

[15:0] Setting count observation value for Timer 4 0x00000000

PWM TIMER S3C44B0X RISC MICROPROCESSOR

9-20

TIMER 5 COUNT BUFFER REGISTER (TCNTB5)

Register Address R/W Description Reset Value

TCNTB5 0x01D50048 R/W Timer 5 count buffer register 0x00000000

TCNTB5 Bit Description Initial State

Timer 5 count buffer
register

[15:0] Setting count buffer value for Timer 5 0x00000000

TIMER 5 COUNT OBSERVATION REGISTER (TCNTO5)

Register Address R/W Description Reset Value

TCNTO5 0x01D5004C R Timer 5 count observation register 0x00000000

TCNTO5 Bit Description Initial State

Timer 5
observation register

[15:0] Setting count observation value for Timer 5 0x00000000

S3C44B0X RISC MICROPROCESSOR UART

10-1

10 UART

OVERVIEW

The S3C44B0X UART (Universal Asynchronous Receiver and Transmitter) unit provides two independent
asynchronous serial I/O (SIO) ports, each of which can operate in interrupt-based or DMA-based mode. In other
words, UART can generate an interrupt or DMA request to transfer data between CPU and UART. It can support bit
rates of up to 115.2K bps. Each UART channel contains two 16-byte FIFOs for receive and transmit.

The S3C44B0X UART includes programmable baud-rates, infra-red (IR) transmit/receive, one or two stop bit insertion,
5-bit, 6-bit, 7-bit or 8-bit data width and parity checking.

Each UART contains a baud-rate generator, transmitter, receiver and control unit, as shown in Figure10-1. The baud-
rate generator can be clocked by MCLK. The transmitter and the receiver contain 16-byte FIFOs and data shifters.
Data, which is to be transmitted, is written to FIFO and then copied to the transmit shifter. It is then shifted out by
the transmit data pin (TxDn). The received data is shifted from the receive data pin (RxDn), and then copied to FIFO
from the shifter.

FEATURES

— RxD0,TxD0,RxD1,TxD1 with DMA-based or interrupt-based operation

— UART Ch 0 with IrDA 1.0 & 16-byte FIFO

— UART Ch 1 with IrDA 1.0 & 16-byte FIFO

— Supports handshake transmit / receive

UART S3C44B0X RISC MICROPROCESSOR

10-2

BLOCK DIAGRAM

Buad-rate
Generator

Control
Unit

Transmit Shifter

Transmit FIFO (16 Byte)

Transmitter

Receive FIFO (16 Byte)

Receive Shifter

Receiver

Peripheral BUS

TXDn

Clock Source

RXDn

Figure 10-1. UART Block Diagram (with FIFO)

S3C44B0X RISC MICROPROCESSOR UART

10-3

UART OPERATION

The following sections describe the UART operations that include data transmission, data reception, interrupt
generation, baud-rate generation, loopback mode, infra-red mode, and auto flow control.

Data Transmission

The data frame for transmission is programmable. It consists of a start bit, 5 to 8 data bits, an optional parity bit and
1 to 2 stop bits, which can be specified by the line control register (UCONn). The transmitter can also produce the
break condition. The break condition forces the serial output to logic 0 state for a duration longer than one frame
transmission time. This block transmit break signal after the present transmission word transmits perfectly. After the
break signal transmit, continously transmit data into the Tx FIFO (Tx holding register in the case of Non-FIFO mode).

Data Reception

Like the transmission, the data frame for reception is also programmable. It consists of a start bit, 5 to 8 data bits,
an optional parity bit and 1 to 2 stop bits in the line control register (UCONn). The receiver can detect overrun error,
parity error, frame error and break condition, each of which can set an error flag.

 - The overrun error indicates that new data has overwritten the old data before the old data has been read.
 - The parity error indicates that the receiver has detected an unexpected parity condition.
 - The frame error indicates that the received data does not have a valid stop bit.
 - The break condition indicates that the RxDn input is held in the logic 0 state for a duration longer than one
 frame transmission time.

Receive time-out condition occurs when it does not receive data during the 3 word time and the Rx FIFO is not
empty in the FIFO mode.

Auto Flow Control(AFC)

S3C44B0X's UART supports auto flow control with nRTS and nCTS signals, in case it would have to connect UART
to UART. If users connect UART to a Modem, disable auto flow control bit in UMCONn register and control the signal
of nRTS by software.

In AFC, nRTS is controlled by condition of the receiver and operation of transmitter is controlled by the nCTS signal.
The UART's transmitter transfers the data in FIFO only when nCTS signal active(In AFC, nCTS means that the other
UART's FIFO is ready to receive data). Before the UART receives data, nRTS has to be activated when its receive
FIFO has a spare more than 2-byte and has to be inactivated when its receive FIFO has a spare under 1-byte(In
AFC, nRTS means that its own receive FIFO is ready to receive data).

RxD

nRTS

UART A

TxD

nCTS

UART B

TxD

nCTS

UART A

RxD

nRTS

UART B

Transmission case in
UART A

Reception case in
UART A

Figure 10-2. UART AFC interface

UART S3C44B0X RISC MICROPROCESSOR

10-4

Non Auto-Flow control(Controlling nRTS and nCTS by S/W)

Rx operation

1. Select receive mode(Interrupt or BDMA mode)

2. Check the value of Rx FIFO count in UFSTATn register. If the value is less than 15, users have to set the value of
UMCONn[0] to '1'(activate nRTS), and if it is equal or larger than 15 users have to set the value to '0'(inactivate
nRTS).

3. Repeat item 2.

Tx operation

1. Select transmit mode(Interrupt or BDMA mode)

2. Check the value of UMSTATn[0]. If the value is '1'(nCTS is activated), users write the data to Tx buffer or Tx FIFO
register.

RS-232C interface

If users connect to modem interface(not equal null modem), nRTS, nCTS, nDSR, nDTR, DCD and nRI signals are
need. In this case, users control these signals with general I/O ports by S/W because the AFC does not support the
RS-232C interface.

S3C44B0X RISC MICROPROCESSOR UART

10-5

Interrupt/DMA Request Generation

Each UART of S3C44B0X has seven status(Tx/Rx/Error) signals: Overrun error, Parity error, Frame error, Break,
Receive FIFO/buffer data ready, Transmit FIFO/buffer empty, and Transmit shifter empty, all of which are indicated by
the corresponding UART status register (UTRSTATn/UERSTATn).

The overrun error, parity error, frame error and break condition are referred to as the receive error status, each of
which can cause the receive error status interrupt request, if the receive-error-status-interrupt-enable bit is set to one
in the control register UCONn. When a receive-error-status-interrupt-request is detected, the signal causing the
request can be identified by reading UERSTSTn.

When the receiver transfers the data of the receive shifter to the receive FIFO, it activates the receive FIFO full status
signal which will cause the receive interrupt, if the receive mode in control register is selected as the interrupt mode.

When the transmitter transfers data from its transmit FIFO to its transmit shifter, the transmit FIFO empty status
signal is activated. The signal causes the transmit interrupt if the transmit mode in control register is selected as that
interrupt mode.

The receive-FIFO-full and transmit-FIFO-empty status signals can also be connected to generate the DMA request
signals if the receive/transmit mode is selected as the DMA mode.

Table 10-1. Interrupts In Connection with FIFO

Type FIFO Mode Non-FIFO Mode

Rx interrupt Each time receive data reaches the trigger
level of receive FIFO, the Rx interrupt will be
generated.

When the FIFO is not empty and does not
receive data during 3 word time, the Rx
interrupt will be generated (receive time out).

Each time receive data becomes full, the
receive shift register, generates an interrupt.

Tx interrupt Each time transmit data reaches the trigger
level of transmit FIFO, the Tx interrupt will be
generated.

Each time transmit data become empty,
the transmit holding register generates an
interrupt.

Error interrupt Frame error, parity error, and break signal are
detected and received in bytes, and will
generate an error interrupt.

When it gets to the top of the receive FIFO,
the error interrupt will be generated
(overrun error).

All errors generate an error interrupt
immediately. However if another error
occurs at the same time, only one interrupt
is generated.

UART S3C44B0X RISC MICROPROCESSOR

10-6

UART Error Status FIFO

UART has the status FIFO besides the Rx FIFO register. The status FIFO indicates which data, among FIFO
registers, is received with an error. The error interrupt will be issued only when the data, which has an error, is ready
to read out. To clear the status of FIFO, the URXHn with an error and UERSTATn must be read out.

For example,

It is assumed that the UART FIFO receives A, B, C, D, E characters sequentially and the frame error occurrs while
receiving 'B' , and the parity error occurs while receiving 'D'.

Although the UART error occurred, the error interrupt will not be generated because the character, which was
received with an error, has not been read yet. The error interrupt will occur when the character is read out.

Time Sequence Flow Error Interrupt Note

#0 When no character is read out –

#1 After A is read out The frame error(in B) interrupt occurs The 'B' has to be read out

#2 After B is read out –

#3 After C is read out The parity error(in D) interrupt occurs The 'D' has to be read out

#4 After D is read out –

#5 After E is read out –

-
-
-
-
-
-
-
-
-
-
-

'E'
'D'
'C'
'B'
'A'

RX-FIFO

break error parity error frame error

URXHn Error Status Generator Unit

STATUS-FIFO

Figure 10-3. A Case showing UART Receiving 5 Characters with 2 Errors

S3C44B0X RISC MICROPROCESSOR UART

10-7

Baud-Rate Generation

Each UART's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the
baud-rate generator can be selected with the S3C44B0X's internal system clock. The baud-rate clock is generated
by dividing the source clock by 16 and a 16-bit divisor specified in the UART baud-rate divisor register (UBRDIVn).
The UBRDIVn can be determined as follows:

UBRDIVn = (round_off)(MCLK/(bps x 16)) -1

where the divisor should be from 1 to (216-1). For example, if the baud-rate is 115200 bps and MCLK is 40 MHz ,
UBRDIVn is:

UBRDIVn = (int)(40000000/(115200 x 16)+0.5) -1
 = (int)(21.7+0.5) -1
 = 22 -1 = 21

Loop-back Mode

The S3C44B0X UART provides a test mode referred to as the loopback mode, to aid in isolating faults in the
communication link. In this mode, the transmitted data is immediately received. This feature allows the processor to
verify the internal transmit and to receive the data path of each SIO channel. This mode can be selected by setting
the loopback-bit in the UART control register (UCONn).

Break Condition

The break is defined as a continuous low level signal for more than one frame transmission time on the transmit data
output.

UART S3C44B0X RISC MICROPROCESSOR

10-8

IR (Infrared) Mode

The S3C44B0X UART block supports Infrared (IR) transmission and reception, which can be selected by setting the
Infrared-mode bit in the UART control register (ULCONn). The implementation of the mode is shown in Figure 10-3.

In IR transmit mode, the transmit period is pulsed at a rate of 3/16, the normal serial transmit rate (when the transmit
data bit is zero); In IR receive mode, the receiver must detect the 3/16 pulsed period to recognize a zero value (refer
to the frame timing diagrams shown in Figures 10-5 and 10-6).

Note: The received pulse is recognized by S3C44B0X which sampling frequency is 1/16 bit frame time, so
when it communicates in low speed the Rx pulse must be longer than 1/16 bit frame time. In case of 9600-
baud rate, the Rx pulse width must be longer than 6.51us. (Bit frame width = 104.1us, sampling frequency =
6.51us)

IrDA Tx
Encoder

0

1

0

1

IrDA Rx
Decoder

TxD

RxD

TxD

IRS

RxD

RE

UART
Block

Figure 10-4. IrDA Function Block Diagram

S3C44B0X RISC MICROPROCESSOR UART

10-9

Start
Bit

Stop
Bit

Data Bits

SIO Frame

0 1 0 1 0 0 1 1 0 1

Figure 10-5. Serial I/O Frame Timing Diagram (Normal UART)

0

Start
Bit

Stop
Bit

Data Bits

IR Transmit Frame

Bit
Time Pulse Width = 3/16 Bit Frame

0 0 0 0 11111

Figure 10-6. Infra-Red Transmit Mode Frame Timing Diagram

0

Start
Bit

Stop
Bit

Data Bits

IR Receive Frame

0 0 0 0 11111

Figure 10-7. Infra-Red Receive Mode Frame Timing Diagram

UART S3C44B0X RISC MICROPROCESSOR

10-10

UART SPECIAL REGISTERS

UART LINE CONTROL REGISTER

There are two UART line control registers, ULCON0 and ULCON1, in the UART block.

Register Address R/W Description Reset Value

ULCON0 0x01D00000 R/W UART channel 0 line control register 0x00

ULCON1 0x01D04000 R/W UART channel 1 line control register 0x00

ULCONn Bit Description Initial State

Reserved [7] 0

Infra-Red Mode [6] The Infra-Red mode determines whether or not to use the Infra-
Red mode.
0 = Normal mode operation
1 = Infra-Red Tx/Rx mode

0

Parity Mode [5:3] The parity mode specifies how parity generation and checking
are to be performed during UART transmit and receive operation.
0xx = No parity
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as 1
111 = Parity forced/checked as 0

000

Number of stop bit [2] The number of stop bits specifies how many stop bits are to be
used to signal end-of-frame.
0 = One stop bit per frame
1 = Two stop bit per frame

0

Word length [1:0] The word length indicates the number of data bits to be
transmitted or received per frame.
00 = 5-bits 01 = 6-bits
10 = 7-bits 11 = 8-bits

00

S3C44B0X RISC MICROPROCESSOR UART

10-11

UART CONTROL REGISTER

There are two UART control registers, UCON0 and UCON1, in the UART block.

Register Address R/W Description Reset Value

UCON0 0x01D00004 R/W UART channel 0 control register 0x00

UCON1 0x01D04004 R/W UART channel 1 control register 0x00

UCONn Bit Description Initial State

Tx interrupt type [9] Interrupt request type
0 = Pulse (Interrupt is requested the instant Tx buffer
 becomes empty)
1 = Level (Interrupt is requested while Tx buffer is empty)

0

Rx interrupt type [8] Interrupt request type
0 = Pulse (Interrupt is requested the instant Rx buffer receives
 the data)
1 = Level (Interrupt is requested while Rx buffer is receiving
 data)

0

Rx time out enable [7] Enable/Disable Rx time out interrupt when UART FIFO is
enabled. The interrupt is a receive interrupt.
0 = Disable 1 = Enable

0

Rx error status
interrupt enable

[6] This bit enables the UART to generate an interrupt if an
exception, such as a break, frame error, parity error, or overrun
error occurs during a receive operation.
0 = Do not generate receive error status interrupt
1 = Generate receive error status interrupt

0

Loop-back Mode [5] Setting loop-back bit to 1 causes the UART to enter the loop-
back mode. This mode is provided for test purposes only.
0 = Normal operation 1 = Loop-back mode

0

Send Break Signal [4] Setting this bit causes the UART to send a break during 1 frame
time. This bit is auto-cleared after sending the break signal.
0 = Normal transmit 1 = Send break signal

0

Transmit Mode [3:2] These two bits determine which function is currently able to write
Tx data to the UART transmit holding register.
00 = Disable 01 = Interrupt request or polling mode
10 = BDMA0 request (Only for UART0)
11 = BDMA1 request (Only for UART1)

00

Receive Mode [1:0] These two bits determine which function is currently able to read
data from UART receive buffer register.
00 = Disable, 01 = Interrupt request or polling mode
10 = BDMA0 request (Only for UART0)
11 = BDMA1 request (Only for UART1)

00

UART S3C44B0X RISC MICROPROCESSOR

10-12

UART FIFO CONTROL REGISTER

There are two UART FIFO control registers, UFCON0 and UFCON1, in the UART block.

Register Address R/W Description Reset Value

UFCON0 0x01D00008 R/W UART channel 0 FIFO control register 0x0

UFCON1 0x01D04008 R/W UART channel 1 FIFO control register 0x0

UFCONn Bit Description Initial State

Tx FIFO Trigger
Level

[7:6] These two bits determine the trigger level of transmit FIFO.
00 = Empty 01 = 4-byte
10 = 8-byte 11 = 12-byte

00

Rx FIFO Trigger
Level

[5:4] These two bits determine the trigger level of receive FIFO.
00 = 4-byte 01 = 8-byte
10 = 12-byte 11 = 16-byte

00

Reserved [3] 0

Tx FIFO Reset [2] This bit is auto-cleared after resetting FIFO
0 = Normal 1= Tx FIFO reset

0

Rx FIFO Reset [1] This bit is auto-cleared after resetting FIFO
0 = Normal 1= Rx FIFO reset

0

FIFO Enable [0] 0 = FIFO disable 1 = FIFO mode 0

NOTE: When the UART does not reach the FIFO trigger level and does not receive data during 3 word time in DMA receive
mode with FIFO, the Rx interrupt will be generated (receive time out), and the users should check the FIFO status
and read out the rest.

UART MODEM CONTROL REGISTER

There are two UART MODEM control registers, UMCON0 and UMCON1, in the UART block.

Register Address R/W Description Reset Value

UMCON0 0x01D0000C R/W UART channel 0 Modem control register 0x0

UMCON1 0x01D0400C R/W UART channel 1 Modem control register 0x0

UMCONn Bit Description Initial State

Reserved [7:5] These bits must be 0's 00

AFC(Auto Flow
Control)

[4] 0 = Disable 1 = Enable 0

Reserved [3:1] These bits must be 0's 00

Request to Send [0] If AFC bit is enabled, this value will be ignored. In this case the
S3C44B0X will control nRTS automatically.
If AFC bit is disabled, nRTS must be controlled by S/W.
0 = 'H' level(Inactivate nRTS) 1 = 'L' level(Activate nRTS)

0

S3C44B0X RISC MICROPROCESSOR UART

10-13

UART TX/RX STATUS REGISTER

There are two UART Tx/Rx status registers, UTRSTAT0 and UTRSTAT1, in the UART block.

Register Address R/W Description Reset Value

UTRSTAT0 0x01D00010 R UART channel 0 Tx/Rx status register 0x6

UTRSTAT1 0x01D04010 R UART channel 1 Tx/Rx status register 0x6

UTRSTATn Bit Description Initial State

Transmit shifter
empty

[2] This bit is automatically set to 1 when the transmit shift register
has no valid data to transmit and the transmit shift register is
empty.
0 = Not empty
1 = Transmit holding & shifter register empty

1

Transmit buffer
empty

[1] This bit is automatically set to 1 when the transmit buffer
register does not contain valid data.
0 =The buffer register is not empty
1 = Empty
If the UART uses the FIFO, users should check Tx FIFO Count
bits and Tx FIFO Full bit in the UFSTAT register instead of this
bit.

1

Receive buffer
data ready

[0] This bit is automatically set to 1 whenever the receive buffer
register contains valid data, received over the RXDn port.
0 = Completely empty
1 = The buffer register has a received data
If the UART uses the FIFO, users should check Rx FIFO Count
bits in the UFSTAT register instead of this bit.

0

UART S3C44B0X RISC MICROPROCESSOR

10-14

UART ERROR STATUS REGISTER

There are two UART Rx error status registers, UERSTAT0 and UERSTAT1, in the UART block.

Register Address R/W Description Reset Value

UERSTAT0 0x01D00014 R UART channel 0 Rx error status register 0x0

UERSTAT1 0x01D04014 R UART channel 1 Rx error status register 0x0

UERSTATn Bit Description Initial State

Break Detect [3] This bit is automatically set to 1 to indicate that a break signal
has been received.
0 = No break receive
1 = Break receive

0

Frame Error [2] This bit is automatically set to 1 whenever a frame error occurs
during receive operation.
0 = No frame error during receive
1 = Frame error

0

Parity Error [1] This bit is automatically set to 1 whenever a parity error occurs
during receive operation.
0 = No parity error during receive
1 = Parity error

0

Overrun Error [0] This bit is automatically set to 1 whenever an overrun error
occurs during receive operation.
0 = No overrun error during receive
1 = Overrun error

0

NOTE: These bits (UERSATn[3:0]) are automatically cleared to 0 when the UART error status register is read.

S3C44B0X RISC MICROPROCESSOR UART

10-15

UART FIFO STATUS REGISTER

Only the UARTn has a 16-byte transmit FIFO & a 16-byte receive FIFO.

There are two UART FIFO status registers, UFSTAT0 and UFSTAT1, in the UART block.

Register Address R/W Description Reset Value

UFSTAT0 0x01D00018 R UART channel 0 FIFO status register 0x00

UFSTAT1 0x01D04018 R UART channel 1 FIFO status register 0x00

UFSTATn Bit Description Initial State

Reserved [15:10] 0

Tx FIFO Full [9] This bit is automatically set to 1 whenever transmit FIFO is full
during transmit operation
0 = 0-byte ≤ Tx FIFO data ≤ 15-byte
1 = Full

0

Rx FIFO Full [8] This bit is automatically set to 1 whenever receive FIFO is full
during receive operation
0 = 0-byte ≤ Rx FIFO data ≤ 15-byte
1 = Full

0

Tx FIFO Count [7:4] Number of data in Tx FIFO 0

Rx FIFO Count [3:0] Number of data in Rx FIFO 0

UART S3C44B0X RISC MICROPROCESSOR

10-16

UART MODEM STATUS REGISTER

There are two UART modem status register, UMSTAT0 and UMSTAT1, in the UART block.

Register Address R/W Description Reset Value

UMSTAT0 0x01D0001C R UART channel 0 Modem status register 0x0

UMSTAT1 0x01D0401C R UART channel 1 Modem status register 0x0

UMSTATn Bit Description Initial State

Delta CTS [4] This bit indicates that the nCTS input to S3C44B0X has changed
state since the last time it was read by CPU.
(Refer to Fig. 10-7)
0 = Has not changed
1 = Has changed

0

Reserved [3:1] Reserved

Clear to Send [0] 0 = CTS signal is not activated(nCTS pin is high)
1 = CTS signal is activated(nCTS pin is low)

0

nCTS

Delta CTS

Read_UMSTATn

Figure 10-8. nCTS and Delta CTS Timing diagram

S3C44B0X RISC MICROPROCESSOR UART

10-17

UART TRANSMIT HOLDING(BUFFER) REGISTER & FIFO REGISTER

UTXHn has an 8-bit data for transmission data

Register Address R/W Description Reset Value

UTXH0 0x01D00020(L)
0x01D00023(B)

W
(by byte)

UART channel 0 transmit holding register –

UTXH1 0x01D04020(L)
0x01D04023(B)

W
(by byte)

UART channel 1 transmit holding register –

UTXHn Bit Description Initial State

TXDATAn [7:0] Transmit data for UARTn –

NOTE: (L): When the endian mode is Little endian.
(B): When the endian mode is Big endian.

UART RECEIVE HOLDING (BUFFER) REGISTER & FIFO REGISTER

URXHn has an 8-bit data for received data..

Register Address R/W Description Reset Value

URXH0 0x01D00024(L)

0x01D00027(B)

R
(by byte)

UART channel 0 receive buffer register –

URXH1 0x01D04024(L)
0x01D04027(B)

R
(by byte)

UART channel 1 receive buffer register –

URXHn Bit Description Initial State

RXDATAn [7:0] Receive data for UARTn –

NOTE: When an overrun error occurs, the URXHn must be read. If not, the next received data will also make an
overrun error, even though the overrun bit of USTATn had been cleared.

UART S3C44B0X RISC MICROPROCESSOR

10-18

UART BAUD RATE DIVISION REGISTER

The value stored in the baud rate divisor register, UBRDIV, is used to determine the serial Tx/Rx clock rate
(baud rate) as follows:

UBRDIVn = (round_off)(MCLK / (bps x 16)) -1

where the divisor should be from 1 to (216-1). For example, if the baud-rate is 115200 bps and MCLK is 40 MHz,
UBRDIVn is:

UBRDIVn = (int)(40000000 / (115200 x 16)+0.5) -1
 = (int)(21.7+0.5) -1
 = 22 -1 = 21

Register Address R/W Description Reset Value

UBRDIV0 0x01D00028 R/W Baud rate divisior register 0 –

UBRDIV1 0x01D04028 R/W Baud rate divisior register 1 –

UBRDIV n Bit Description Initial State

UBRDIV [15:0] Baud rate division value
UBRDIVn > 0

–

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-1

11 INTERRUPT CONTROLLER

OVERVIEW

The interrupt controller in S3C44B0X receives the request from 30 interrupt sources. These interrupt sources are
provided by internal peripherals such as the DMA controller, UARTand SIO, etc. In these interrupt sources, the four
external interrupts(EINT4/5/6/7) are 'OR'ed to the interrupt controller. The UART0 and 1 Error interrupt are 'OR'ed , as
well.

The role of the interrupt controller is to ask for the FIQ or IRQ interrupt request to the ARM7TDMI core after making
the arbitration process when there are multiple interrupt requests from internal peripherals and external interrupt
request pins.

Originally, ARM7TDMI core only permits the FIQ or IRQ interrupt, which is the arbitration process based on priority
by software. For example, if you define all interrupt source as IRQ (Interrupt Mode Setting), and, if there are 10
interrupt requests at the same time, you can determine the interrupt service priority by reading the interrupt pending
register, which indicates the type of interrupt request that will occur.

This kind of interrupt process requires a long interrupt latency until to jump to the exact service routine.
(The S3C44B0X may support this kind of interrupt processing.)

To solve the above-mentioned problem, S3C44B0X supports a new interrupt processing called vectored interrupt
mode, which is a general feature of the CISC type micro-controller, to reduce the interrupt latency. In other words,
the hardware inside the S3C44B0X interrupt controller provides the interrupt service vector directly.

When the multiple interrupt sources request interrupts, the hardware priority logic determines which interrupt should
be serviced. At same time, this hardware logic applies the jump instruction of the vector table to 0x18(or 0x1c),
which performs the jump to the corresponding service routine. Compared with the previous software method, it will
reduce the interrupt latency, dramatically.

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-2

INTERRUPT CONTROLLER OPERATION

F-bit and I-bit of PSR (program status register)

If the F-bit of PSR (program status register in ARM7TDMI CPU) is set to 1, the CPU does not accept the FIQ (fast
interrupt request)from the interrupt controller. If I-bit of PSR (program status register in ARM7TDMI CPU) is set to 1,
the CPU does not accept the IRQ (interrupt request)from the interrupt controller. So, to enable the interrupt reception,
the F-bit or I-bit of PSR has to be cleared to 0 and also the corresponding bit of INTMSK has to be cleared to 0.

Interrupt Mode

ARM7TDMI has 2 types of interrupt mode, FIQ or IRQ. All the interrupt sources determine the mode of interrupt to be
used at interrupt request.

Interrupt Pending Register

Indicates whether or not an interrupt request is pending. When a pending bit is set, the interrupt service routine starts
whenever the I-flag or F-flag is cleared to 0. Interrupt Pending Register is a read-only register, so the service routine
must clear the pending condition by writing a 1 to I_ISPC or F_ISPC.

Interrupt Mask Register

Indicates that an interrupt has been disabled if the corresponding mask bit is 1. If an interrupt mask bit of INTMSK is
0, the interrupt will be serviced normally. If the corresponding mask bit is 1 and the interrupt is generated, the
pending bit will be set. If the global mask bit is set to 1, the interrupt pending bit will be set but all interrupts will not
be serviced.

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-3

INTERRUPT SOURCES

Among 30 interrupt sources, 26 sources are provided for the interrupt controller. Four external interrupt (EINT4/5/6/7)
requests are ORed to provide a single interrupt source to the interrupt controller, and two UART error interrupts
(UERROR0/1) are the same configuration.

Sources Descriptions Master Group Slave ID

EINT0 External interrupt 0 mGA sGA

EINT1 External interrupt 1 mGA sGB

EINT2 External interrupt 2 mGA sGC

EINT3 External interrupt 3 mGA sGD

EINT4/5/6/7 External interrupt 4/5/6/7 mGA sGKA

TICK RTC Time tick interrupt mGA sGKB

INT_ZDMA0 General DMA0 interrupt mGB sGA

INT_ZDMA1 General DMA1 interrupt mGB sGB

INT_BDMA0 Bridge DMA0 interrupt mGB sGC

INT_BDMA1 Bridge DMA1 interrupt mGB sGD

INT_WDT Watch-Dog timer interrupt mGB sGKA

INT_UERR0/1 UART0/1 error Interrupt mGB sGKB

INT_TIMER0 Timer0 interrupt mGC sGA

INT_TIMER1 Timer1 interrupt mGC sGB

INT_TIMER2 Timer2 interrupt mGC sGC

INT_TIMER3 Timer3 interrupt mGC sGD

INT_TIMER4 Timer4 interrupt mGC sGKA

INT_TIMER5 Timer5 interrupt mGC sGKB

INT_URXD0 UART0 receive interrupt mGD sGA

INT_URXD1 UART1 receive interrupt mGD sGB

INT_IIC IIC interrupt mGD sGC

INT_SIO SIO interrupt mGD sGD

INT_UTXD0 UART0 transmit interrupt mGD sGKA

INT_UTXD1 UART1 transmit interrupt mGD sGKB

INT_RTC RTC alarm interrupt mGKA –

INT_ADC ADC EOC interrupt mGKB –

NOTE: EINT4, EINT5, EINT6, and EINT7 share the same interrupt request line. Therefore, the ISR (interrupt service
routine) will discriminate these four interrupt sources by reading the EXTINPND[3:0] register. EXTINPND[3:0] must
be cleared by writing a 1 in the ISR after the corresponding ISR has been completed.

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-4

INTERRUPT PRIORITY GENERATING BLOCK

There is the interrupt priority generating block only for IRQ interrupt request. If the vectored mode is used and an
interrupt source is configured as ISR in INTMOD register, the interrupt will be processed by the interrupt priority
generating block.

The priority generating block consists of five units, 1 master unit and 4 slave units. Each slave priority generating unit
manages six interrupt sources. The master priority generating unit manages 4 slave units and 2 interrupt sources.

Each slave unit has 4 programmable priority sources (sGn) and 2 fixed priotiry sources (sGKn). The priority among
the 4 sources in each slave unit is programmable. The other 2 fixed priorities have the lowest priority among the 6
sources.

The master priority generating unit determines the priority between the 4 slave units and 2 interrupt sources. The 2
interrupt sources, INT_RTC and INT_ADC, have the lowest priority among 26 interrupt sources.

mGA, B, C, D

mGKA, B

sGA, B, C, D

sGKA, B

sGA, B, C, D

sGKA, B

sGA, B, C, D

sGKA, B

sGA, B, C, D

sGKA, B

mGA

mGB

mGC

mGD

mGKA
mGKB

ARM IRQ

EINT0, 1, 2, 3

EINT4/5/6/7

ZDMA0, ZD MA1
BRDMA0, BRDMA1

UERR0/1

TIMER0, 1, 2, 3

TIMER4, 5

RXD0, 1
IIC, SIO

TXD0, 1

RTC

ADC

TICK

WDT

Figure 11-1. Priority Generating Block

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-5

INTERRUPT PRIORITY

If source A is configured to FIQ and source B is configured to IRQ, source A has higher priority than source B
because a FIQ interrupt has higher priority than an IRQ interrupt in all cases.

If source A and source B are in different master groups and the master group priority of source A is higher than the
master group priority of source B, the priority of source A is higher than source B.

If source A and source B are in the same master group and source A has higher priority than source B, source A
has the higher priority.

The priorities of sGA, sGB, sGC, and sGD are always higher than those of sGKA and sGKB. The priorities among
sGA,sGB,sGC and sGD are programmable or are determined by the round-robin method. Between sGKA and sGKB,
sGKA has always the higher priority.

The group priority of mGA, mGB, mGC, and mGD are always higher than that of mGKA and mGKB. So, the
priorities of mGKA and mGKB are the lowest among the other interrupt sources. The group priority among mGA,
mGB, mGC and, mGD is programmable or is determined by the round-robin method. Between mGKA and mGKB,
mGKA always has the higher priority.

VECTORED INTERRUPT MODE (ONLY FOR IRQ)

S3C44B0X has a new feature, the vectored interrupt mode, to reduce the interrupt latency time.

If ARM7TDMI receives the IRQ interrupt request from the interrupt controller, ARM7TDMI executes an instruction at
0x00000018. In vectored interrupt mode, the interrupt controller will load branch instructions on the data bus when
ARM7TDMI fetches the instructions at 0x00000018. The branch instructions let the program counter be a unique
address corresponding to each interrupt source.

The interrupt controller generates the machine code for branching to the vector address of each interrupt source. For
example, If EINT0 is IRQ, the interrupt controller must generate the branch instruction which branches from 0x18 to
0x20. So, the interrupt controller generates the machine code, 0xea000000.

The user program code must locate the branch instruction, which branches to the corresponding ISR (interrupt
service routine) at each vector address. The machine code, branch instruction, at the corresponding vector address
is calculated as follows;

Branch Instruction machine code for vectored interrupt mode

 = 0xea000000 +((<destination address> - <vector address> - 0x8)>>2)

For example, if Timer 0 interrupt to be processed in vector interrupt mode, the branch instruction, which jumps to the
ISR, is located at 0x00000060. The ISR start address is 0x10000. The following 32bit machine code is written at
0x00000060.

machine code@0x00000060 : 0xea000000+((0x10000-0x60-0x8)>>2) = 0xea000000+0x3fe6 = 0xea003fe6

The machine code is usually generated automatically by the assembler and therefore the machine code does not
have to be calculated as above.

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-6

Interrupt Sources Vector Address

EINT0 0x00000020

EINT1 0x00000024

EINT2 0x00000028

EINT3 0x0000002c

EINT4/5/6/7 0x00000030

INT_TICK 0x00000034

INT_ZDMA0 0x00000040

INT_ZDMA1 0x00000044

INT_BDMA0 0x00000048

INT_BDMA1 0x0000004c

INT_WDT 0x00000050

INT_UERR0/1 0x00000054

INT_TIMER0 0x00000060

INT_TIMER1 0x00000064

INT_TIMER2 0x00000068

INT_TIMER3 0x0000006c

INT_TIMER4 0x00000070

INT_TIMER5 0x00000074

INT_URXD0 0x00000080

INT_URXD1 0x00000084

INT_IIC 0x00000088

INT_SIO 0x0000008c

INT_UTXD0 0x00000090

INT_UTXD1 0x00000094

INT_RTC 0x000000a0

INT_ADC 0x000000c0

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-7

EXAMPLE OF VECTORED INTERRUPT MODE

In the vectored interrupt mode, CPU will branch to each interrupt address when an interrupt request is generated. So,
there must be the branch instruction to jump each corresponding ISR on it's own address as follows;

ENTRY
b ResetHandler ; 0x00
b HandlerUndef ; 0x04
b HandlerSWI ; 0x08
b HandlerPabort ; 0x0c
b HandlerDabort ; 0x10
b . ; 0x14
b HandlerIRQ ; 0x18
b HandlerFIQ ; 0x1c

ldr pc,=HandlerEINT0 ; 0x20
ldr pc,=HandlerEINT1
ldr pc,=HandlerEINT2
ldr pc,=HandlerEINT3
ldr pc,=HandlerEINT4567
ldr pc,=HandlerTICK ; 0x34
b .
b .
ldr pc,=HandlerZDMA0 ; 0x40
ldr pc,=HandlerZDMA1
ldr pc,=HandlerBDMA0
ldr pc,=HandlerBDMA1
ldr pc,=HandlerWDT
ldr pc,=HandlerUERR01 ; 0x54
b .
b .
ldr pc,=HandlerTIMER0 ; 0x60
ldr pc,=HandlerTIMER1
ldr pc,=HandlerTIMER2
ldr pc,=HandlerTIMER3
ldr pc,=HandlerTIMER4
ldr pc,=HandlerTIMER5 ; 0x74
b .
b .
ldr pc,=HandlerURXD0 ; 0x80
ldr pc,=HandlerURXD1
ldr pc,=HandlerIIC
ldr pc,=HandlerSIO
ldr pc,=HandlerUTXD0
ldr pc,=HandlerUTXD1 ; 0x94
b .
b .
ldr pc,=HandlerRTC ; 0xa0
b .
b .
b .
b .
b .
b .
ldr pc,=HandlerADC ; 0xb4

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-8

EXAMPLE FOR NON-VECTORED INTERRUPT MODE USING I_ISPR

In the non-vectored interrupt mode, the IRQ/FIQ handler will move the PC to the corresponding ISR by analyzing
I_ISPR/F_ISPR register. HandleXXX addresses hold each corresponding ISR routine start addresses. The source
code for an IRQ interrupt is as follows;

ENTRY
b ResetHandler ; for debug
b HandlerUndef ; handlerUndef
b HandlerSWI ; SWI interrupt handler
b HandlerPabort ; handlerPAbort
b HandlerDabort ; handlerDAbort
b . ; handlerReserved
b IsrIRQ
b HandlerFIQ
.

IsrIRQ
sub sp,sp,#4 ; reserved for PC
stmfd sp!,{r8-r9}

ldr r9,=I_ISPR
ldr r9,[r9]
mov r8,#0x0

0 movs r9,r9,lsr #1
bcs %F1
add r8,r8,#4
b %B0

1 ldr r9,=HandleADC
add r9,r9,r8
ldr r9,[r9]
str r9,[sp,#8]
ldmfd sp!,{r8-r9,pc}
.

HandleADC # 4
HandleRTC # 4
HandleUTXD1 # 4
HandleUTXD0 # 4

.
HandleEINT3 # 4
HandleEINT2 # 4
HandleEINT1 # 4
HandleEINT0 # 4 ; 0xc1(c7)fff84

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-9

INTERRUPT CONTROLLER SPECIAL REGISTERS

INTERRUPT CONTROL REGISTER (INTCON)

Register Address R/W Description Reset Value

INTCON 0x01E00000 R/W Interrupt control Register 0x7

INTCON Bit Description initial state

Reserved [3] 0 0

V [2] This bit disables/enables vector mode for IRQ
0 = Vectored interrupt mode
1 = Non-vectored interrupt mode

1

I [1] This bit enables IRQ interrupt request line to CPU
0 = IRQ interrupt enable
1 = Reserved
Note : Before using the IRQ interrupt this bit must be cleared.

1

F [0] This bit enables FIQ interrupt request line to CPU
0 = FIQ interrupt enable (Not allowed vectored interrupt mode)
1 = Reserved
Note : Before using the FIQ interrupt this bit must be cleared.

1

NOTE: FIQ interrupt mode does not support vectored interrupt mode.

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-10

INTERRUPT PENDING REGISTER (INTPND)

Each of the 26 bits in the interrupt pending register, INTPND, corresponds to an interrupt source. When an interrupt
request is generated, it will be set to 1. The interrupt service routine must then clear the pending condition by writing
'1' to the corresponding bit of I_ISPC/F_ISPC. Although several interrupt sources generate requests simultaneously,
the INTPND will indicate all interrupt sources that generate an interrupt request. Even if the interrupt source is
masked by INTMSK, the corresponding pending bit can be set to 1.

Register Address R/W Description Reset Value

INTPND 0x01E00004 R Indicates the interrupt request status.
0 = The interrupt has not been requested
1 = The interrupt source has asserted the interrupt
 request

0x0000000

INTPND Bit Description Initial State

EINT0 [25] 0 = Not requested, 1 = Requested 0

EINT1 [24] 0 = Not requested, 1 = Requested 0

EINT2 [23] 0 = Not requested, 1 = Requested 0

EINT3 [22] 0 = Not requested, 1 = Requested 0

EINT4/5/6/7 [21] 0 = Not requested, 1 = Requested 0

INT_TICK [20] 0 = Not requested, 1 = Requested 0

INT_ZDMA0 [19] 0 = Not requested, 1 = Requested 0

INT_ZDMA1 [18] 0 = Not requested, 1 = Requested 0

INT_BDMA0 [17] 0 = Not requested, 1 = Requested 0

INT_BDMA1 [16] 0 = Not requested, 1 = Requested 0

INT_WDT [15] 0 = Not requested, 1 = Requested 0

INT_UERR0/1 [14] 0 = Not requested, 1 = Requested 0

INT_TIMER0 [13] 0 = Not requested, 1 = Requested 0

INT_TIMER1 [12] 0 = Not requested, 1 = Requested 0

INT_TIMER2 [11] 0 = Not requested, 1 = Requested 0

INT_TIMER3 [10] 0 = Not requested, 1 = Requested 0

INT_TIMER4 [9] 0 = Not requested, 1 = Requested 0

INT_TIMER5 [8] 0 = Not requested, 1 = Requested 0

INT_URXD0 [7] 0 = Not requested, 1 = Requested 0

INT_URXD1 [6] 0 = Not requested, 1 = Requested 0

INT_IIC [5] 0 = Not requested, 1 = Requested 0

INT_SIO [4] 0 = Not requested, 1 = Requested 0

INT_UTXD0 [3] 0 = Not requested, 1 = Requested 0

INT_UTXD1 [2] 0 = Not requested, 1 = Requested 0

INT_RTC [1] 0 = Not requested, 1 = Requested 0

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-11

INT_ADC [0] 0 = Not requested, 1 = Requested 0

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-12

INTERRUPT MODE REGISTER (INTMOD)

Each of the 26 bits in the interrupt mode register, INTMOD, corresponds to an interrupt source. When the interrupt
mode bit for each source is set to 1, the interrupt is processed by the ARM7TDMI core in the FIQ (fast interrupt)
mode. Otherwise, it is processed in the IRQ mode (normal interrupt). The 26 interrupt sources are summarized as
follows:

Register Address R/W Description Reset Value

INTMOD 0x01E00008 R/W Interrupt mode Register
0 = IRQ mode 1 = FIQ mode

0x0000000

INTMOD Bit Description initial state

EINT0 [25] 0 = IRQ mode 1 = FIQ mode 0

EINT1 [24] 0 = IRQ mode 1 = FIQ mode 0

EINT2 [23] 0 = IRQ mode 1 = FIQ mode 0

EINT3 [22] 0 = IRQ mode 1 = FIQ mode 0

EINT4/5/6/7 [21] 0 = IRQ mode 1 = FIQ mode 0

INT_TICK [20] 0 = IRQ mode 1 = FIQ mode 0

INT_ZDMA0 [19] 0 = IRQ mode 1 = FIQ mode 0

INT_ZDMA1 [18] 0 = IRQ mode 1 = FIQ mode 0

INT_BDMA0 [17] 0 = IRQ mode 1 = FIQ mode 0

INT_BDMA1 [16] 0 = IRQ mode 1 = FIQ mode 0

INT_WDT [15] 0 = IRQ mode 1 = FIQ mode 0

INT_UERR0/1 [14] 0 = IRQ mode 1 = FIQ mode 0

INT_TIMER0 [13] 0 = IRQ mode 1 = FIQ mode 0

INT_TIMER1 [12] 0 = IRQ mode 1 = FIQ mode 0

INT_TIMER2 [11] 0 = IRQ mode 1 = FIQ mode 0

INT_TIMER3 [10] 0 = IRQ mode 1 = FIQ mode 0

INT_TIMER4 [9] 0 = IRQ mode 1 = FIQ mode 0

INT_TIMER5 [8] 0 = IRQ mode 1 = FIQ mode 0

INT_URXD0 [7] 0 = IRQ mode 1 = FIQ mode 0

INT_URXD1 [6] 0 = IRQ mode 1 = FIQ mode 0

INT_IIC [5] 0 = IRQ mode 1 = FIQ mode 0

INT_SIO [4] 0 = IRQ mode 1 = FIQ mode 0

INT_UTXD0 [3] 0 = IRQ mode 1 = FIQ mode 0

INT_UTXD1 [2] 0 = IRQ mode 1 = FIQ mode 0

INT_RTC [1] 0 = IRQ mode 1 = FIQ mode 0

INT_ADC [0] 0 = IRQ mode 1 = FIQ mode 0

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-13

INTERRUPT MASK REGISTER (INTMSK)

Each of the 26 bits except the global mask bit in the interrupt mask register, INTMSK, corresponds to an interrupt
source. When a source interrupt mask bit is 1 and the corresponding interrupt event occurs, the interrupt is not
serviced by the CPU. If the mask bit is 0, the interrupt is serviced upon a request.

If the global mask bit is set to 1, all interrupt requests are not serviced, and the INTPND register is set to 1.

If the INTMSK is changed in ISR(interrupt service routine) and the vectored interrupt is used, an INTMSK bit can not
mask an interrupt event, which had been latched in INTPND before the INTMSK bit was set. To clear this problem,
clear the corresponding pending bit(INTPND) after changing INTMSK.

The 26 interrupt sources and global mask bit are summarized as follows:

Register Address R/W Description Reset Value

INTMSK 0x01E0000C R/W Determines which interrupt source is masked. The
masked interrupt source will not be serviced.
0 = Interrupt service is available
1 = Interrupt service is masked

0x07ffffff

IMPORTANT NOTES

1. INTMSK register can be masked only when it is sure that the corresponding interrupt does not be
 requested. If your application should mask any interrupt mask bit(INTMSK) just when the
 corresponding interrupt is issued, please contact our FAE (field application engineer).
2. If you need that all interrupt is masked, we recommend that I/F bits in CPSR are set using MRS, MSR
 instructions. The I, F bit in CPSR can be masked even when any interrupt is issued.

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-14

INTMSK Bit Description initial state

Reserved [27] 0

Global [26] 0 = Service available 1 = Masked 1

EINT0 [25] 0 = Service available 1 = Masked 1

EINT1 [24] 0 = Service available 1 = Masked 1

EINT2 [23] 0 = Service available 1 = Masked 1

EINT3 [22] 0 = Service available 1 = Masked 1

EINT4/5/6/7 [21] 0 = Service available 1 = Masked 1

INT_TICK [20] 0 = Service available 1 = Masked 1

INT_ZDMA0 [19] 0 = Service available 1 = Masked 1

INT_ZDMA1 [18] 0 = Service available 1 = Masked 1

INT_BDMA0 [17] 0 = Service available 1 = Masked 1

INT_BDMA1 [16] 0 = Service available 1 = Masked 1

INT_WDT [15] 0 = Service available 1 = Masked 1

INT_UERR0/1 [14] 0 = Service available 1 = Masked 1

INT_TIMER0 [13] 0 = Service available 1 = Masked 1

INT_TIMER1 [12] 0 = Service available 1 = Masked 1

INT_TIMER2 [11] 0 = Service available 1 = Masked 1

INT_TIMER3 [10] 0 = Service available 1 = Masked 1

INT_TIMER4 [9] 0 = Service available 1 = Masked 1

INT_TIMER5 [8] 0 = Service available 1 = Masked 1

INT_URXD0 [7] 0 = Service available 1 = Masked 1

INT_URXD1 [6] 0 = Service available 1 = Masked 1

INT_IIC [5] 0 = Service available 1 = Masked 1

INT_SIO [4] 0 = Service available 1 = Masked 1

INT_UTXD0 [3] 0 = Service available 1 = Masked 1

INT_UTXD1 [2] 0 = Service available 1 = Masked 1

INT_RTC [1] 0 = Service available 1 = Masked 1

INT_ADC [0] 0 = Service available 1 = Masked 1

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-15

IRQ VECTORED MODE REGISTERS

The priority generating block consists of five units, 1 master unit and 4 slave units. Each slave priority generating unit
manages six interrupt sources. The master priority generating unit manages 4 slave units and 2 interrupt sources.

Each slave unit has 4 programmable priority source (sGn) and 2 fixed priority sources (kn). The priority among the 4
sources in each slave unit is determined the I_PSLV register. The other 2 fixed priorities have the lowest priority
among the 6 sources.

The master priority generating unit determines the priority between 4 slave units and 2 interrupt sources using the
I_PMST register. The 2 interrupt sources,INT_RTC and INT_ADC, have the lowest priority among the 26 interrupt
sources.

If several interrupts are requested at the same time, the I_ISPR register shows only the requested interrupt source
with the highest priority.

Register Address R/W Description Reset Value

I_PSLV 0x01E00010 R/W IRQ priority of slave register 0x1b1b1b1b

I_PMST 0x01E00014 R/W IRQ priority of master register 0x00001f1b

I_CSLV 0x01E00018 R Current IRQ priority of slave register 0x1b1b1b1b

I_CMST 0x01E0001C R Current IRQ priority of master register 0x0000xx1b

I_ISPR 0x01E00020 R IRQ interrupt service pending register
(Only one service bit can be set)

0x00000000

I_ISPC 0x01E00024 W IRQ interrupt service clear register
(Whatever to be set, INTPND will be cleared
automatically)

Undef.

IMPORTANT NOTE

In FIQ mode, there is no service pending register like I_ISPR, users must check INTPND resister.

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-16

IRQ PRIORITY OF SLAVE REGISTER (I_PSLV)

I_PSLV determines the interrupt priorities among the 4 interrupt sources of each slave group.

Register Address R/W Description Reset Value

I_PSLV 0x01E00010 R/W IRQ priority of slave register 0x1b1b1b1b

I_PSLV Bit Description Initial State

PSLAVE@mGA [31:24] Determine the priorities among sGA, B, C, D of mGA.
Each sGn must have a different priority.

0x1b

PSLAVE@mGB [23:16] Determine the priorities among sGA, B, C, D of mGB.
Each sGn must have a different priority.

0x1b

PSLAVE@mGC [15:8] Determine the priorities among sGA, B, C, D of mGC.
 Each sGn must have a different priority.

0x1b

PSLAVE@mGD [7:0] Determine the priorities among sGA, B, C, D of mGD.
Each sGn must have a different priority.

0x1b

PSLAVE@mGA Bit Description Initial State

sGA (EINT0) [31:30] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

sGB (EINT1) [29:28] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

sGC (EINT2) [27:26] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

sGD (EINT3) [25:24] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

PSLAVE@mGB Bit Description Initial State

sGA (INT_ZDMA0) [23:22] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

sGB (INT_ZDMA1) [21:20] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

sGC (INT_BDMA0) [19:18] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

sGD (INT_BDMA1) [17:16] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-17

PSLAVE@mGC Bit Description Initial State

sGA (TIMER0) [15:14] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

sGB (TIMER1) [13:12] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

sGC (TIMER2) [11:10] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

sGD (TIMER3) [9:8] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

PSLAVE@mGD Bit Description Initial State

sGA (INT_URXD0) [7:6] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

sGB (INT_URXD1) [5:4] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

Sgc (INT_IIC) [3:2] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

sGD (INT_SIO) [1:0] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

NOTE: The items in I_PSLAVE must be configured with different priorities even if the corresponding interrupt source
is not used.

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-18

IRQ PRIORITY OF MASTER REGISTER (I_PMST)

I_PMST determines the interrupt priorities among the 4 slave groups.

Register Address R/W Description Reset Value

I_PMST 0x01E00014 R/W IRQ priority of master register 0x00001f1b

I_PMST Bit Description Initial State

Reserved [15:13] 000

M [12] Master operating mode
0 = round robin 1 = fix mode

1

FxSLV[A:D] [11:8] Slave operating mode
0 = round robin 1 = fix mode

1111

PMASTER [7:0] Determine the priorities among 4 slave units. 0x1b

FxSLV Bit Description Initial State

Fx@mGA [11] Determines the operating mode of slave unit @mGA 1

Fx@mGB [10] Determines the operating mode of slave unit @mGB 1

Fx@mGC [9] Determines the operating mode of slave unit @mGC 1

Fx@mGD [8] Determines the operating mode of slave unit @mGD 1

PMASTER Bit Description Initial State

mGA [7:6] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

mGB [5:4] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

mGC [3:2] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

mGD [1:0] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

NOTE: The items in I_PMST must be configured with different priorities even if the corresponding interrupt source is not
 used.

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-19

CURRENT IRQ PRIORITY OF SLAVE REGISTER (I_CSLV)

I_CSLV indicates the current priority status among the sources in each slave group. The I_CSLV may differ from
I_PSLV if the round-robin mode is enabled.

Register Address R/W Description Reset Value

I_CSLV 0x01E00018 R Current IRQ priorities of slave register 0x1b1b1b1b

I_CSLV Bit Description Initial State

CSLAVE@mGA [31:24] Indicate the current priority status of mGA 0x1b

CSLAVE@mGB [23:16] Indicate the current priority status of mGB 0x1b

CSLAVE@mGC [15:8] Indicate the current priority status of mGC 0x1b

CSLAVE@mGD [7:0] Indicate the current priority status of mGD 0x1b

CSLAVE@mGA Bit Description Initial State

sGA (EINT0) [31:30] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

sGB (EINT1) [29:28] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

sGC (EINT2) [27:26] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

sGD (EINT3) [25:24] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

CSLAVE@mGB Bit Description Initial State

sGA (INT_ZDMA0) [23:22] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

sGB (INT_ZDMA1) [21:20] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

sGC (INT_BDMA0) [19:18] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

sGD (INT_BDMA1) [17:16] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

CSLAVE@mGC Bit Description Initial State

sGA (TIMER0) [15:14] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

sGB (TIMER1) [13:12] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

sGC (TIMER2) [11:10] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

sGD (TIMER3) [9:8] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

CSLAVE@mGD Bit Description Initial State

sGA (INT_URXD0) [7:6] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

sGB (INT_URXD1) [5:4] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

sGC (INT_IIC) [3:2] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

sGD (INT_SIO) [1:0] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-20

CURRENT IRQ PRIORITY OF MASTER REGISTER (I_CMST)

I_CMST indicates the current priority status among the slave groups

Register Address R/W Description Reset Value

I_CMST 0x01E0001C R Current IRQ priority of master register 0x0000xx1b

I_CMST Bit Description Initial State

Reserved [15:14] 00

VECTOR [13:8] The lower 6 bits of corresponding branch machine code unknown

CMASTER [7:0] Current priority of master 00011011

CMASTER Bit Description Initial State

mGA [7:6] 00: 1st 01: 2nd 10: 3rd 11: 4th 00

mGB [5:4] 00: 1st 01: 2nd 10: 3rd 11: 4th 01

mGC [3:2] 00: 1st 01: 2nd 10: 3rd 11: 4th 10

mGD [1:0] 00: 1st 01: 2nd 10: 3rd 11: 4th 11

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-21

IRQ INTERRUPT SERVICE PENDING REGISTER (I_ISPR)

I_ISPR indicates the interrupt being currently serviced. Although the several interrupt pending bits are all turned on,
only one bit will be turned on.

Register Address R/W Description Reset Value

I_ISPR 0x01E00020 R IRQ interrupt service pending register 0x00000000

I_ISPR Bit Description Initial State

EINT0 [25] 0 = not serviced 1 = serviced now 0

EINT1 [24] 0 = not serviced 1 = serviced now 0

EINT2 [23] 0 = not serviced 1 = serviced now 0

EINT3 [22] 0 = not serviced 1 = serviced now 0

EINT4/5/6/7 [21] 0 = not serviced 1 = serviced now 0

INT_TICK [20] 0 = not serviced 1 = serviced now 0

INT_ZDMA0 [19] 0 = not serviced 1 = serviced now 0

INT_ZDMA1 [18] 0 = not serviced 1 = serviced now 0

INT_BDMA0 [17] 0 = not serviced 1 = serviced now 0

INT_BDMA1 [16] 0 = not serviced 1 = serviced now 0

INT_WDT [15] 0 = not serviced 1 = serviced now 0

INT_UERR0/1 [14] 0 = not serviced 1 = serviced now 0

INT_TIMER0 [13] 0 = not serviced 1 = serviced now 0

INT_TIMER1 [12] 0 = not serviced 1 = serviced now 0

INT_TIMER2 [11] 0 = not serviced 1 = serviced now 0

INT_TIMER3 [10] 0 = not serviced 1 = serviced now 0

INT_TIMER4 [9] 0 = not serviced 1 = serviced now 0

INT_TIMER5 [8] 0 = not serviced 1 = serviced now 0

INT_URXD0 [7] 0 = not serviced 1 = serviced now 0

INT_URXD1 [6] 0 = not serviced 1 = serviced now 0

INT_IIC [5] 0 = not serviced 1 = serviced now 0

INT_SIO [4] 0 = not serviced 1 = serviced now 0

INT_UTXD0 [3] 0 = not serviced 1 = serviced now 0

INT_UTXD1 [2] 0 = not serviced 1 = serviced now 0

INT_RTC [1] 0 = not serviced 1 = serviced now 0

INT_ADC [0] 0 = not serviced 1 = serviced now 0

INTERRUPT CONTROLLER S3C44B0X RISC MICROPROCESSOR

11-22

IRQ/FIQ INTERRUPT SERVICE PENDING CLEAR REGISTER (I_ISPC/F_ISPC)

I_ISPC/F_ISPC clears the interrupt pending bit (INTPND). I_ISPC/F_ISPC also informs the interrupt controller of the
end of corresponding ISR (interrupt service routine). At the end of ISR(interrupt service routine), the corresponding
pending bit must be cleared.

The bit of INTPND bit is cleared to zero by writing '1' on I_ISPC/F_ISPC. This feature reduces the code size to clear
the INTPND. The corresponding INTPND bit is cleared automatically by I_ISPC/F_ISPC, INTPND register can not be
cleared directly.

NOTE

To clear the I_ISPC/F_ISPC, the following two rules has to be obeyed.

 1) The I_ISPC/F_ISPC registers are accessed only once in ISR(interrupt service routine).
 2) The pending bit in I_ISPR/INTPND register should be cleared by writing I_ISPC register.

If these two rules are not followed, I_ISPR and INTPND register may be 0 although the interrupt has been
requested.

Register Address R/W Description Reset Value

I_ISPC 0x01E00024 W IRQ interrupt service pending clear register Undef.

F_ISPC 0x01E0003C W FIQ interrupt service pending clear register Undef.

S3C44B0X RISC MICROPROCESSOR INTERRUPT CONTROLLER

11-23

I_ISPC/F_ISPC Bit Description Initial State

EINT0 [25] 0 = No change 1 = clear the pending bit 0

EINT1 [24] 0 = No change 1 = clear the pending bit 0

EINT2 [23] 0 = No change 1 = clear the pending bit 0

EINT3 [22] 0 = No change 1 = clear the pending bit 0

EINT4/5/6/7 [21] 0 = No change 1 = clear the pending bit 0

INT_TICK [20] 0 = No change 1 = clear the pending bit 0

INT_ZDMA0 [19] 0 = No change 1 = clear the pending bit 0

INT_ZDMA1 [18] 0 = No change 1 = clear the pending bit 0

INT_BDMA0 [17] 0 = No change 1 = clear the pending bit 0

INT_BDMA1 [16] 0 = No change 1 = clear the pending bit 0

INT_WDT [15] 0 = No change 1 = clear the pending bit 0

INT_UERR0/1 [14] 0 = No change 1 = clear the pending bit 0

INT_TIMER0 [13] 0 = No change 1 = clear the pending bit 0

INT_TIMER1 [12] 0 = No change 1 = clear the pending bit 0

INT_TIMER2 [11] 0 = No change 1 = clear the pending bit 0

INT_TIMER3 [10] 0 = No change 1 = clear the pending bit 0

INT_TIMER4 [9] 0 = No change 1 = clear the pending bit 0

INT_TIMER5 [8] 0 = No change 1 = clear the pending bit 0

INT_URXD0 [7] 0 = No change 1 = clear the pending bit 0

INT_URXD1 [6] 0 = No change 1 = clear the pending bit 0

INT_IIC [5] 0 = No change 1 = clear the pending bit 0

INT_SIO [4] 0 = No change 1 = clear the pending bit 0

INT_UTXD0 [3] 0 = No change 1 = clear the pending bit 0

INT_UTXD1 [2] 0 = No change 1 = clear the pending bit 0

INT_RTC [1] 0 = No change 1 = clear the pending bit 0

INT_ADC [0] 0 = No change 1 = clear the pending bit 0

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-1

12 LCD CONTROLLER

OVERVIEW

The LCD controller within S3C44B0X consists of logic for transferring LCD image data from a video buffer located in
system memory to an external LCD driver.

The LCD controller supports monochrome, 2-bit per pixel (4-level gray scale) or 4-bit per pixel (16-level gray scale)
mode on a monochrome LCD, using a time-based dithering algorithm and FRC (Frame Rate Control) method. It can
support 8-bit per pixel (256 level color) for interfacing with a color LCD panel, also.

The LCD controller can be programmed to support the different requirements on the screen related to the number of
horizontal and vertical pixels, data line width for the data interface, interface timing, and refresh rate.

FEATURES

— Supports color/gray/monochrome LCD panels.

— Supports 3 types of LCD panels: 4-bit dual scan, 4-bit single scan, 8-bit single scan display type.

— Supports Multiple Virtual Display Screen. (Supports Hardware Horizontal/Vertical Scrolling)

— The system memory is used as the display memory.

— Dedicated DMA supports to fetch the image data from video buffer located in system memory.

— Supports multiple screen size.
Typical actual screen sizes: 640x480, 320x240, 160x160 (pixels)
Maximum virtual screen sizes(color mode): 4096x1024, 2048x2048, 1024x4096, etc

— Supports the monochrome, 4 gray levels, and 16 gray levels .

— Supports 256 level colors for color STN LCD panel.

— Supports the power saving mode(SL_IDLE Mode).

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-2

EXTERNAL INTERFACE SIGNAL

VFRAME: This is the frame synchronous signal between the LCD controller and LCD driver. It signals the
LCD panel of the start of a new frame. The LCD controller asserts VFRAME after a full frame of
display as shown in Fig. 12-3.

VLINE: This is the line synchronous pulse signal between LCD controller and LCD driver, and it is used
by the LCD driver to transfer the contents of it's horizontal line shift register to the LCD panel for
display. The LCD controller asserts VLINE after an entire horizontal line of data has been shifted

 into the LCD driver.

VCLK: This pin is the pixel clock signal between the LCD controller and LCD driver, and data is sent by
 the LCD controller on the rising edge of VCLK and sampled by LCD driver on the falling edge of

VCLK.

VM: This is the AC signal for the LCD driver. The VM signal is used by the LCD driver to alternate
the polarity of the row and column voltage used to turn the pixel on and off. The VM signal can
be toggled on every frame or toggled on the programmable number of the VLINE signal.

VD[3:0]: These are LCD pixel data output ports. For a 4-bit or 8-bit single scan display, these 4-bit data
 are used as the display data as shown in Fig. 12-4. In case of 4-bit dual scan display, these
4-bit
 plays into its role of the upper display data as shown in Fig. 12-4.

VD[7:4]: These are LCD pixel data output ports. For a 8-bit single scan display, these data are used as
 upper dispaly data as shown in Fig. 12-4. For a 4-bit dual scan display, these data are used

as lower display data as shown in Fig. 12-4.

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-3

BLOCK DIAGRAM

REGBANK

System Bus

LCDCDMA
32
32

32

TIMEGEN

VIDPRCS
VD[7:4]

VD[3:0]

VCLK
VLINE
VFRAME
VM

Figure 12-1. LCD Controller Block Diagram

The LCD controller within S3C44B0X is used to transfer the video data and to generate the necessary control signals
such as, VFRAME, VLINE, VCLK, and VM. As well as the control signals, S3C44B0X has the data ports of video
data, which are VD[7:0] as shown in Fig. 12-1. The LCD controller consists of a REGBANK, LCDCDMA, VIDPRCS,
and TIMEGEN (See Figure 12-1 LCD Controller Block Diagram). The REGBANK has 18 programmable register sets
which are used to configure the LCD controller. The LCDCDMA is a dedicated DMA, which it can transfer the video
data in frame memory to LCD driver, automatically. By using this special DMA, the video data can be displayed on
the screen without CPU intervention. The VIDPRCS receives the video data from LCDCDMA and sends the video
data through the VD[7:0] data ports to the LCD driver after changing them into a suitable data format, for example
4/8-bit single scan or 4-bit dual scan display mode. The TIMEGEN consists of programmable logic to support the
variable requirement of interface timing and rates commonly found in different LCD drivers. The TIMEGEN block
generates VFRAME, VLINE, VCLK, VM, and so on.

The description of data flow is as follows:

FIFO memory is present in the LCDCDMA. When FIFO is empty or partially empty, LCDCDMA requests data
fetching from the frame memory based on the burst memory transfer mode(Consecutive memory fetching of 4
words(16 bytes) per one burst request without allowing the bus mastership to another bus master during the bus
transfer). When this kind of transfer request is accepted by bus arbitrator in the memory controller, there will be four
successive word data transfers from system memory to internal FIFO. The total size of FIFO is 24 words, which
consists of FIFOL and FIFOH of 12 words. The S3C44B0X has two FIFOs because it needs to support the dual scan
display mode. In case of single scan mode, one of them can only be used.

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-4

LCD CONTROLLER OPERATION

TIMING GENERATOR

The TIMEGEN generates the control signals for LCD driver such as, VFRAME, VLINE, VCLK, and VM. These control
signals are closely related to the configuration on the LCDCON1/2 register in the REGBANK. Based on these
programmable configurations on the LCD control registers in REGBANK, the TIMEGEN can generate the
programmable control signals suitable to support many different types of LCD drivers.

The VFRAME pulse is asserted for a duration of the entire first line at a frequency of once per frame.
The VFRAME signal is asserted to bring the LCD's line pointer to the top of the display to start over.

The VM signal is used by the LCD driver to alternate the polarity of the row and column voltage used to turn the pixel
on and off. The toggle rate of VM signal can be controlled by using the MMODE bit of LCDCON 1 register and
MVAL[7:0] field of LCDSADDR 2 register. If the MMODE bit is 0, the VM signal is configured to toggle on every
frame. If the MMODE bit is 1, the VM signal is configured to toggle on the every number of VLINE signal by the
MVAL[7:0] value. Figure 12-3 shows an example for MMODE=0 and for MMODE=1 with the value of MVAL[7:0]=0x2.
When MMODE=1, the VM rate is related to MVAL[7:0], as shown below:

VM Rate = VLINE Rate / (2 * MVAL)

The VFRAME and VLINE pulse generation is controlled by the configurations of the HOZVAL field and the LINEVAL
field in the LCDCON2 register. Each field is related to the LCD size and display mode. In other words, the HOZVAL
and LINEVAL can be determined by the size of the LCD panel and the display mode according to the following
equation:

HOZVAL = (Horizontal display size / Number of the valid VD data line) -1

In color mode: Horizontal display size = 3 * Number of Horizontal Pixel

In case of 4-bit dual scan display the number of valid VD data line should be 4 and in case of 8-bit signal scan
display mode, the number of valid VD data lines should be 8.

LINEVAL = (Vertical display size) -1: In case of single scan display type

LINEVAL = (Vertical display size / 2) -1: In case of dual scan display type

The rate of VCLK signal can be controlled by the CLKVAL field in the LCDCON1 register. The Table 12-1 defines the
relationship of VCLK and CLKVAL. The minimum value of CLKVAL is 2.

VCLK(Hz)=MCLK/(CLKVAL x 2)

The frame rate is the VFRAM signal frequency. The frame rate is closely related to the field of WLH(VLINE pulse
width), WHLY(the delay width of VCLK after VLINE pulse), HOZVAL, VLINEBLANK, and LINEVAL in LCDCON1 and
LCDCON2 registers as well as VCLK and MCLK. Most LCD drivers need their own adequate frame rate. The frame
rate is calculated as follows;

frame_rate(Hz) = 1 / [((1/VCLK) x (HOZVAL+1)+(1/MCLK) x (WLH+WDLY+LINEBLANK)) x (LINEVAL+1)]

VCLK(Hz) = (HOZVAL+1) / [(1 / (frame_rate x (LINEVAL+1))) - ((WLH+WDLY+LINEBLANK) / MCLK)]

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-5

Table 12-1. Relation between VCLK and CLKVAL(MCLK=60MHz)

CLKVAL 60MHz/X VCLK

2 60 MHz/4 15.0 MHz

3 60 MHz/6 10.0 MHz

: : :

1023 60 MHz/2046 29.3 kHz

VIDEO OPERATION

The LCD controller within S3C44B0X supports 8-bit color mode(256 color mode), 4 level gray scale mode, 16 level
gray scale mode as well as the monochrome mode. When the gray or color mode is needed, the time-based
dithering algorithm and FRC(Frame Rate Control) method can be used to implement the shades of gray or color from
which selection can be made by using a programmable lockup table, which will be explained later. The monochrome
mode bypasses these modules(FRC and lookup table) and basically serializes the data in FIFOH (and FIFOL if a
dual scan display type is used) into 4-bit (or 8-bit if a 4-bit dual scan or 8-bit single scan display type is used)
streams by shifting the video data to the LCD driver.

The following sections describe the operation on gray mode and color mode in terms of the lookup table and FRC.

Lookup Table

The S3C44B0X can support the palette table for various selection of color or gray level mapping. This kind of
selection gives users flexibility. The lookup table is the palette which allows the selection on the level of color or
gray(Selection on 4-gray levels among 16 gray levels in case of gray mode, selection on 8 red levels among 16
levels, 8 green levels among 16 levels and 4 blue levels among 16 levels in case of color mode). In other words, users
can select 4 gray levels among 16 gray levels by using the lookup table in the 4 gray level mode.The gray levels
cannot be selected in the 16 gray level mode; all 16 gray levels must be chosen among the possible 16 gray levels.
In case of 256 color mode, 3 bits are allocated for red, 3 bits for green and 2 bits for blue. The 256 colors mean that
the colors are formed from the combination of 8 red, 8 green and 4 blue levels(8x8x4 = 256). In the color mode, the
lookup table can be used for suitable selections. Eight red levels can be selected among 16 possible red levels, 8
green levels among 16 green levels, and 4 blue levels among 16 blue levels.

Gray Mode Operation

Two gray modes are supported by the LCD controller within the S3C44B0X: 2-bit per pixel gray (4 level gray scale) or
4-bit per pixel gray (16 level gray scale). The 2-bit per pixel gray mode uses a lookup table, which allows selection on
4 gray levels among 16 possible gray levels. The 2-bit per pixel gray lookup table uses the BULEVAL[15:0] in
BLUELUT(Blue Lookup Table) register as same as blue lookup table in color mode. The gray level 0 will be denoted
by BLUEVAL[3:0] value. If BLUEVAL[3:0] is 9, level 0 will be represented by gray level 9 among 16 gray levels. If
BLUEVAL[3:0] is 15, level 0 will be represented by gray level 15 among 16 gray levels, and so on. As same as in the
case of level 0, level 1 will also be denoted by BLUEVAL[7:4], the level 2 by BLUEVAL[11:8], and the level 3 by
BLUEVAL[15:12]. These four groups among BLUEVAL[15:0] will represent level 0, level 1, level 2, and level 3. In 16
gray levels, of course there is no selection as in the 4 gray levels.

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-6

Color Mode Operation

The LCD controller in S3C44B0X can support an 8-bit per pixel 256 color display mode. The color display mode can
generate 256 levels of color using the dithering algorithm and FRC. The 8-bit per pixel are encoded into 3-bits for red,
3-bits for green, and 2-bits for blue. The color display mode uses separate lookup tables for red, green, and blue.
Each lookup table uses the REDVAL[31:0] of REDLUT register, GREENVAL[31:0] of GREENLUT register, and
BLUEVAL[15:0] of BLUELUT register as the programmable lookup table entries.

Similarly with the gray level display, 8 group or field of 4 bits in the REDLUR register, i.e., REDVAL[31:28],
REDLUT[27:24], REDLUT[23:20], REDLUT[19:16], REDLUT[15:12], REDLUT[11:8], REDLUT[7:4], and REDLUT[3:0],
are assigned to each red level. The possible combination of 4 bits(each field) is 16, and each red level should be
assigned to one level among possible 16 cases. In other words, the user can select the suitable red level by using
this type of lookup table. For green color, the GREENVAL[31:0] of the GREENLUT register is assigned as the
lookup table, as was done in the case of red color. Similarly, the BLUEVAL[15:0] of the BLUELUT register is also
assigned as a lookup table. For blue color, we need 16bit for a lookup table because 2 bits are allocated for 4 blue
levels, different from the 8 red or green levels.

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-7

DITHERING AND FRC (FRAME RATE CONTROL)

The DITHFRC block has two functions, such as a Time-based Dithering Algorithm for reducing flicker and FRC(Frame
Rate Control) for displaying gray level on the STN panel. The main principle of gray level display on the STN panel
based on FRC is described. For example, to display the third gray(3/16) level from a total of 16 levels, the 3 times
pixel should be on and 13 times pixel off. In other words, 3 frames should be selected among the 16 frames, of which
3 frames should have a pixel-on on a specific pixel while the remaining 13 frames should have a pixel-off on a specific
pixel. These 16 frames should be displayed periodically. This is basic principle on how to display the gray level on
the screen, so-called gray level display by FRC(Frame Rate Control). The actual example is shown in Table 12-2. To
represent the 14th gray level in the table, we should have a 6/7 duty cycle, which mean that there are 6 times pixel-on
and one time pixel-off. The other cases for all gray levels are also shown in Table 12-2.

In the STN LCD display, we should be reminded of one item, i.e., Flicker Noise due to the simultaneous pixel-on and
-off on adjacent frames. For example, if all pixels on first frame are turned on and all pixels on next frame are turned
off, the Flicker Noise will be maximized. To reduce the Flicker Noise on the screen, the average probability of pixel-
on and -off between frames should be as same as possible. In order to realize this, the Time-based Dithering
Algorithm, which varies the pattern of adjacent pixels on every frame, should be used. This is explained in detail. For
the 16 gray level, FRC should have the following relationship between gray level and FRC. The 15th gray level should
always have pixel-on, and the 14th gray level should have 6 times pixel-on and one times pixel-off, and the 13th gray
level should have 4 times pixel-on and one times pixel-off, ,,,,,,,, , and the 0th gray level should always have pixel-off
as shown in Table 12-2. In Table 12-3, the DP1_2 corresponds to the 7th gray level because it has half the duty cycle
from having 2 times pixel-on and 2 times pixel-off. Also, the DP4_7 corresponds to 8th gray level because it has (4/7)
duty cycle from having 4 times pixel-on and 3 times pixel-off. Using the same methodology, the DP3_5, DP2_3,
DP5_7, DP3_4, DP4_5, and DP6_7 are made to correspond to 9th, 10th, 11th, 12th, 13th, and 14th gray level,
respectively. For the gray level from 1st to 6th, the reverse sequence of DP6_7, DP4_5, DP3_4, DP2_3, DP3_5, and
DP4_7 should be used; this way, new tables for gray level of 1st to 6th are not needed. The Table 12-7 shows that the
same pixel value can not have the same FRC sequence. For example, if the Pi pixel has half gray level in Nth frame,
and if adjacent pixel of Pi+1 also has half gray level in Nth frame, and if adjacent pixel of Pi+2 also has half gray level
in Nth frame, and if adjacent pixel of Pi+3 also has half gray level in Nth frame, the Pi, Pi+1, Pi+2, and Pi+3 pixel
should be 1, 0, 1, and 0 in Nth frame. In (N+1)th frame, the Pi, Pi+1, Pi+2, and Pi+3 pixel should be 0, 1, 0, and 1 as
shown in Table 12-3. In case of arbitrary pixel values on arbitrary position, the H/W will select a suitable display value
by referring to the corresponding frame number and pixel position. This type of display methodology can randomize
the pixel display to reduce the Flicker Noise. The value of table 12-3 is just only reference, and users can specify
their own value suitable for the LCD display.

Table 12-2. Dither Duty Cycle Examples

Pre-dithered Data
(Gray Level Number)

Duty Cycle Pre-dithered Data
(Gray Level Number)

Duty Cycle

15 1 7 1/2

14 6/7 6 3/7

13 4/5 5 2/5

12 3/4 4 1/3

11 5/7 3 1/4

10 2/3 2 1/5

9 3/5 1 1/7

8 4/7 0 0
Pixel Duty Rate

S3C44B0X has eight programmable registers, such as DP6_7, DP4_5, DP5_7, DP3_4, DP2_3, DP3_5, DP4_7, and

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-8

DP1_2. The pre-dithered data 1111b has a dithering data '1' because the duty rate is 1. The pre-dithered data 0000b
has a dithering data 0 because the duty rate is 0. The pre-dithered data from 0001b to 1110b refer to DP6_7, DP4_5,
DP5_7, DP3_4, DP2_3, DP3_5, DP4_7, and DP1_2 registers for dithering data.(The dithering data are used to do
FRC.)

The DP6_7, DP4_5, DP5_7, DP3_4, DP2_3, DP3_5, DP4_7, and DP1_2, registers can also determine the duty
rates, such as 6/7, 4/5, 5/7, 3/4, 2/3, 3/5, and 4/7, respectively. For examples, 1/7 can be made by inverting 6/7.

Table 12-3. Recommended Dithering Pattern

Pattern
Name

Number of
Bits

Recommened Pattern

DP1_2 16 1010 0101 1010 0101 (0xA5A5)

DP4_7 28 1011 1010 0101 1101 1010 0110 0101 (0xBA5DA65)

DP3_5 20 1010 0101 1010 0101 1111 (0xA5A5F)

DP2_3 12 1101 0110 1011 (0xD6B)

DP5_7 28 1110 1011 0111 1011 0101 1110 1101 (0xEB7B5ED)

DP3_4 16 0111 1101 1011 1110 (0x7DBE)

DP4_5 20 0111 1110 1011 1101 1111 (0x7EBDF)

DP6_7 28 0111 1111 1101 1111 1011 1111 1110 (0x7FDFBFE)

NOTE: This figure is only explanation.
The real operation is some different.

1 1 1 1 5th FRAME
10th FRAME

.

.

.
0 1 0 1 4th FRAME

9th FRAME
.
.
.

1 0 1 0 3rd FRAME
8th FRAME

.

.

.
0 1 0 1 2nd FRAME

7th FRAME
.
.
.

1 0 1 0 1st FRAME
6th FRAME

11th FRAME.
.
.

Figure 12-2. The example of DP3_5 pattern

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-9

LCD Self Refresh Mode

The LCD controller within S3C44B0X can support the self refresh mode to reduce power comsumption. The self
refresh mode can only be applied to only the LCD which has the special LCD driver, for example, LCD panel of
SED1580D from Seiko Epson Corporation. The SED1580D has the built-in display memory, which can display the
previous stored image in the built-in display memory without image data fetch when the self refresh mode has been
invoked. The kind of self refresh mode can be made by writing the control bit of SELFREF in the LCDCON3 register.

If the SELFREF bit is set to 1, the LCD controller enters into the self refresh mode from the next line. When the LCD
controller enters into the self refresh mode, the signal of VCLK and VD should be fixed as Low and last VD value, but
the signal of VM, VFRAME, and VLINE will be generated continuously. To exit the self refresh mode, the user should
execute the following path, 1) disable the ENVID bit in LCDCON 1 register , 2) disable SELFREF bit in LCDCON 3
register and 3) enable ENVID bit again in LCDCON 1 register.

SL_IDLE Mode (LCD dedicated Idle Mode)

The SL_IDLE mode in the power management scheme should be used to enter into the LCD driver's self refresh
mode. In SL_IDLE mode, all function blocks except the LCD controller within S3C44B0X should be stopped to
reduce the power comsumption, because the power management block inserts divide_by_n input clock only to the
LCD controller.

Timing Requirements

Image data should be transferred from the memory to the LCD driver using the VD[7:0] signal. VCLK signal is used
to clock the data into the LCD driver's shift register. After each horizontal line of data has been shifted into the LCD
driver's shift register, the VLINE signal is asserted to display the line on the panel.

The VM signal provides an AC signal for the display. It is used by the LCD to alternate the polarity of the row and
column voltages, used to turn the pixels on and off, because the LCD plasma tends to deteriorate whenever
subjected to a DC voltage. It can be configured to toggle on every frame or to toggle every programmable number of
VLINE signals.

Figure 12-3 shows the timing requirements for the LCD driver interface.

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-10

VFRAME

WDLY

VM

VLINE

WLH

Full Frame Timing, MMODE = 0

LINE1LINE2LINE3LINE4LINE5LINE6 LINE1LINEn

LINE1LINE2LINE3LINE4LINE5LINE6 LINE1LINEn

First Line Timing

LINECNT decreases
&

Display the 1st line

LINEBLANK

First Line Check & Data Timing

VFRAME

VM

VLINE

VFRAME

VM

VLINE

LINECNT

VCLK

VFRAME

VM

VLINE

VCLK

VD[7:0]

Full Frame Timing, MMODE = 1

WDLY WDLY

Display the last line of the previous
frame

Figure 12-3. 8-bit Single Scan Display Type LCD Timing

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-11

Display Types

The LCD controller supports 3 types of LCD drivers: 4-bit dual scan, 4-bit single scan, and 8-bit single scan display
mode. Figure 12-4 shows these 3 different display types for monochrome displays, and figure 12-5 shows these 3
different display types for color displays.

4-bit dual scan display type
A 4-bit dual scan display uses 8 parallel data lines to shift data to both the upper and lower halves of the display at
the same time. The 4 bits of data in the 8 parallel data lines are shifted to the upper half and 4 bits of data is shifted
to the lower half, as shown in figure 12-4. The end of frame is reached when each half of the display has been shifted
and transferred. The 8 pins (VD[7:0]) for the LCD output from the LCD controller can be directly connected to the
LCD driver.

4-bit single scan display type
A 4-bit single scan display uses 4 parallel data lines to shift data to successive single horizontal lines of the display
at a time, until the entire frame has been shifted and transferred. The 4 pins(VD[3:0]) for the LCD output from the
LCD controller can be directly connected to the LCD driver, and the 4 pins(VD[7:4]) for the LCD output are not used.

8-bit single scan display type
An 8-bit single scan display uses 8 parallel data lines to shift data to successive single horizontal lines of the display
at a time, until the entire frame has been shifted and transferred. The 8 pins (VD[7:0]) for the LCD output from the
LCD controller can be directly connected to the LCD driver.

Color displays
Color displays require 3 bits (Red, Green, Blue) of image data per pixel, resulting in a horizontal shift register of
length 3 times the number of pixels per horizontal line. This RGB is shifted to the LCD driver as consecutive bits via
the parallel data lines. Figure 12-5 shows the RGB and order of the pixels in the parallel data lines for the 3 types of
color displays.

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-12

4-bit Dual Scan Display

4-bit Single Scan Display

8-bit Single Scan Display

VD3VD2 VD1 VD0 VD3 VD2 VD1 VD0

VD7 VD6 VD5 VD4 VD7 VD6 VD5 VD4

VD3 VD2 VD1 VD0 VD3 VD2 VD1 VD0

VD7 VD6 VD5 VD4 VD3 VD2 VD1 VD0

Figure 12-4. Monochrome Display Types

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-13

4-bit Dual Scan Display

4-bit Single Scan Display

8-bit Single Scan Display

VD3
R1

. VD2
G1

VD1
B1

VD0
R2

VD3
G2

VD2
B2

VD1
R3

VD0
G3

VD7
R1

VD6
G1

VD5
B1

VD4
R2

VD7
G2

VD6
B2

VD5
R3

VD4
G3

.

.

.

1 Pixel

VD3
R1

VD2
G1

VD1
B1

VD0
R2

VD3
G2

VD2
B2

VD1
R3

VD0
G3

1 Pixel

VD7
R1

VD6
G1

VD5
B1

VD4
R2

VD3
G2

VD2
B2

VD1
R3

VD0
G3

1 Pixel

Figure 12-5. Color Display Types

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-14

MEMORY DATA FORMAT (BSWP=0)

Mono 4-bit Dual Scan Display:

Video Buffer Memory:

Address Data
0000H A[31:0]
0004H B[31:0]

•

 •

•

1000H L[31:0]
1004H M[31:0]
 •

 •

 •

Mono 4-bit Single Scan Display
& 8-bit Single Scan Display:

Video Buffer Memory:

Address Data
0000H A[31:0]
0004H B[31:0]
0008H C[31:0]
 •
 •
 •

LCD Panel

LCD Panel

A[31] A[30] A[0] B[31] B[30] B[0]

L[31] L[30] L[0] M[31] M[30] M[0]

A[31] A[30] A[29] A[0] B[31] B[30] B[0] C[31] C[0]

In 4-level gray mode, 2 bits of video data correspond to 1 pixel.

In 16-level gray mode, 4 bits of video data correspond to 1 pixel.

In color mode, 8 bits (3 bits of red, 3 bits of green, 2 bits of blue) of video data correspond to 1 pixel. The color data
format in a byte is as follows;

Bit [7:5] Bit [4:2] Bit[1:0]

Red Green Blue

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-15

VIRTUAL DISPLAY

The S3C44B0X supports hardware horizontal or vertical scrolling. If the screen is scrolled, the fields of LCDBASEU
and LCDBASEL in LCDSADDR1/2 registers need to be changed(refer to Fig. 12-6) but not the values of
PAGEWIDTH and OFFSIZE.

The size of video buffer in which the image is stored should be larger than LCD panel screen size.

This is the data of line 1 of virtual screen. This is the data of line 1 of virtual screen.

This is the data of line 2 of virtual screen. This is the data of line 2 of virtual screen.

This is the data of line 3 of virtual screen. This is the data of line 3 of virtual screen.

This is the data of line 4 of virtual screen. This is the data of line 4 of virtual screen.

This is the data of line 5 of virtual screen. This is the data of line 5 of virtual screen.

This is the data of line 6 of virtual screen. This is the data of line 6 of virtual screen.

This is the data of line 7 of virtual screen. This is the data of line 7 of virtual screen.

This is the data of line 8 of virtual screen. This is the data of line 8 of virtual screen.

This is the data of line 9 of virtual screen. This is the data of line 9 of virtual screen.

This is the data of line 10 of virtual screen. This is the data of line 10 of virtual screen.

This is the data of line 11 of virtual screen. This is the data of line 11 of virtual screen.
.
.
.

Before Scrolling

View Port
(The same size
of LCD panel)

LINEVAL + 1

OFFSIZEPAGEWIDTH

This is the data of line 1 of virtual screen. This is the data of line 1 of virtual screen.

This is the data of line 2 of virtual screen. This is the data of line 2 of virtual screen.

This is the data of line 3 of virtual screen. This is the data of line 3 of virtual screen.

This is the data of line 4 of virtual screen. This is the data of line 4 of virtual screen.

This is the data of line 5 of virtual screen. This is the data of line 5 of virtual screen.

This is the data of line 6 of virtual screen. This is the data of line 6 of virtual screen.

This is the data of line 7 of virtual screen. This is the data of line 7 of virtual screen.

This is the data of line 8 of virtual screen. This is the data of line 8 of virtual screen.

This is the data of line 9 of virtual screen. This is the data of line 9 of virtual screen.

This is the data of line 10 of virtual screen. This is the data of line 10 of virtual screen.

This is the data of line 11 of virtual screen. This is the data of line 11 of virtual screen.

.

.

.

After Scrolling

LCDBASEU

LCDBASEL

Figure 12-6. Example of Scrolling in Virtual Display(single scan)

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-16

LCD CONTROLLER SPECIAL REGISTERS

LCD Control 1 Register

Register Address R/W Description Reset Value

LCDCON1 0x01F00000 R/W LCD control 1 register 0x00000000

LCDCON1 Bit Description Initial State

LINECNT (read
only)

[31:22] These bits provide the status of the line counter.
Down count from LINEVAL to 0

0000000000

CLKVAL [21:12] These bits determine the rate of VCLK. If this value can be
changed when ENVID=1, the new value will be used next frame.
VCLK = MCLK / (CLKVAL x 2) (CLKVAL ≥ 2)

0000000000

WLH [11:10] These bits determine the VLINE pulse's high level width by
counting the number of the system clock.
00 = 4 clock, 01 = 8 clock, 10 = 12 clock, 11 = 16 clock

00

WDLY [9:8] These bits determine the delay between VLINE and VCLK by
counting the number of the system clock
00 = 4clock, 01 = 8 clock, 10 = 12 clock, 11 = 16 clock

00

MMODE [7] This bit determines the toggle rate of the VM.
0 = Each Frame, 1 = The rate defined by the MVAL

0

DISMODE [6:5] These bits select the display mode.
00 = 4-bit dual scan display mode
01 = 4-bit single scan display mode
10 = 8-bit single scan display mode
11 = Not used

00

INVCLK [4] This bit controls the polarity of the VCLK active edge.
0 = The video data is fetched at VCLK falling edge
1 = The video data is fetched at VCLK rising edge

0

INVLINE [3] This bit indicates the line pulse polarity.
0 = normal 1 = inverted

0

INVFRAME [2] This bit indicates the frame pulse polarity.
0 = normal 1 = inverted

0

INVVD [1] This bit indicates the video data(VD[7:0]) polarity.
0 = Normal
1 = VD[7:0] output is inverted.

0

ENVID [0] LCD video output and the logic enable/disable.
0 = Disable the video output and the logic. The LCD FIFO is
 cleared.
1 = Enable the video output and the logic.

0

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-17

LCD Control 2 Register

Register Address R/W Description Reset Value

LCDCON2 0x01F00004 R/W LCD control 2 register 0x00000000

LCDCON2 Bit Description Initial State

LINEBLANK [31:21] These bits indicate the blank time in one horizontal line duration
time. These bits adjust the rate of the VLINE finely.

The unit of LINEBLANK is MCLK.
Ex) If the value of LINEBLANK is 10, the blank time is inserted
to VCLK during 10 system clocks.

0x000

HOZVAL [20:10] These bits determine the horizontal size of the LCD panel.

HOZVAL has to be determined to meet the condition that total
bytes of 1 line be 2n bytes. If the x size of LCD is 120 dots in
mono mode, x=120 can not be supported because 1 line
consists of 15 bytes. Instead, x=128 in mono mode can be
supported because 1 line consists of 16 bytes(2n). The
additional 8 dot will be discarded by LCD panel driver.

0x000

LINEVAL [9:0] These bits determine the vertical size of LCD panel. 0x000

LCD Control 3 Register

Register Address R/W Description Reset Value

LCDCON3 0x01F00040 R/W Test Mode Enable Register 0x00

LCDCON3 Bit Description initial state

Reserved [2:1] reserved for test 0

SELFREF [0] LCD self refresh mode enable bit
0 : LCD self refresh mode disable
1 : LCD self refresh mode enable

0

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-18

FRAME Buffer Start Address 1 Register

Register Address R/W Description Reset Value

LCDSADDR1 0x01F00008 R/W Frame buffer start address 1 register 0x000000

LCDSADDR1 Bit Description Initial State

MODESEL [28:27] These bits select the monochrome, gray, or color mode.
00 = monochrome mode 01 = 4-level gray mode
10 = 16-level gray mode 11 = color mode

00

LCDBANK [26:21] These bits indicate A[27:22] of the bank location for the video
buffer in the system memory. LCDBANK value can not be
changed even when moving the view port. LCD frame buffer
should be inside aligned 4MB region, which ensures that
LCDBANK value should not be changed when moving the view
port. So, using the malloc function the care should be taken.

0x00

LCDBASEU [20:0] These bits indicate A[21:1] of the start address of the upper
address counter, which is for the upper frame memory of dual
scan LCD or the frame memory of single scan LCD.

0x000000

NOTES:
1. LCDBANK can't be changed while ENVID=1
2. If LCDBASEU,LCDBASEL is changed during ENVID=1, the new value will be used next frame. If you use serveral frame

buffer for better display quality and if you write the previous frame memory just after changing LCDBASEU,LCDBASEL,
the items drawn on the previous frame memory may be shown. To avoid th is undesirable phenomen, you may have to
check LINECNT.

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-19

FRAME Buffer Start Address 2 Register

Register Address R/W Description Reset Value

LCDSADDR2 0x01F0000C R/W Frame buffer start address 2 register 0x000000

LCDSADDR2 Bit Description Initial State

BSWP [29] Byte swap control bit
1 : Swap Enable 0 : Swap Disable

LCD DMA fetches the frame memory data by 4 word burst
access. In little endian mode and BSWP is 0, the frame memory
data are displayed in the sequence, 4n+3th, 4n+2th ,4n+1th ,4n-
th data. If BSWP is 1, the sequence will be 4n-th, 4n+1th,
4n+2th, 4n+3th.

If the CPU is little endian mode, the frame buffer may be
accessed by only byte access mode, Because BSWP is 1, the
byte accessed data will be shown correctly also in the little
endian mode. In the other case, BSWP has to be 0.

0

MVAL [28:21] These bits define the rate at which the VM signal will toggle if
the MMODE bit is set to logic '1'.

0x00

LCDBASEL [20:0] These bits indicate A[21:1] of the start address of the lower
address counter, which is used for the lower frame memory of
dual scan LCD.

LCDBASEL =
LCDBASEU + (PAGEWIDTH + OFFSIZE) x (LINEVAL +1)

0x0000

NOTE: Users can change the LCDBASEU and LCDBASEL values for scrolling while LCD controller is turned on. But,
users

must not change the LCDBASEU and LCDBASEL registers at the end of FRAME by referring to the LINECNT field
in LCDCON1 register. Because of the LCD FIFO fetches the next frame data prior to the change in the frame.
So, if you change the frame, the pre-fetched FIFO data will be obsolete and LCD controller will display the incorrect
screen. To check the LINECNT, interrutpt should be masked. If any interrupt is executed just after reading
LINECNT, the read LINECNT value may be obsolete because of the execution time of ISR(interrupt service routine).

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-20

FRAME Buffer Start Address 3 Register

Register Address R/W Description Reset Value

LCDSADDR3 0x01F00010 R/W Virtual screen address set 0x000000

LCDSADDR3 Bit Description Initial State

OFFSIZE [19:9] Virtual screen offset size(the number of half words)
This value defines the difference between the address of the last
half word displayed on the previous LCD line and the address of
the first half word to be displayed in the new LCD line.

0x0000

PAGEWIDTH [8:0] Virtual screen page width(the number of half words)
This value defines the width of the view port in the frame

0x000

NOTE: The values of PAGEWIDTH and OFFSIZE must be changed when ENVID bit is 0.

Example 1. LCD panel = 320*240, 16gray, single scan
 frame start address = 0xc500000
 offset dot number = 2048 dots (512 half words)

 LINEVAL = 240-1 = 0xef
 PAGEWIDTH = 320*4/16 = 0x50
 OFFSIZE = 512 = 0x200
 LCDBANK = 0xc500000 >> 22 = 0x31
 LCDBASEU = 0x100000 >> 1 = 0x80000
 LCDBASEL = 0x80000 + (0x50 + 0x200) * (0xef + 1) = 0xa2b00

Example 2. LCD panel = 320*240, 16gray, dual scan
 frame start address = 0xc500000
 offset dot number = 2048 dots (512 half words)

 LINEVAL = 120-1 = 0x77
 PAGEWIDTH = 320*4/16 = 0x50
 OFFSIZE = 512 = 0x200
 LCDBANK = 0xc500000 >> 22 = 0x31
 LCDBASEU = 0x100000 >> 1 = 0x80000
 LCDBASEL = 0x80000 + (0x50 + 0x200) * (0x77 + 1) = 0x91580

Example 3. LCD panel = 320*240, color, single scan
 frame start address = 0xc500000
 offset dot number = 1024 dots (512 half words)

 LINEVAL = 240-1 = 0xef
 PAGEWIDTH = 320*8/16 = 0xa0
 OFFSIZE = 512 = 0x200
 LCDBANK = 0xc500000 >> 22 = 0x31
 LCDBASEU = 0x100000 >> 1 = 0x80000
 LCDBASEL = 0x80000 + (0xa0 + 0x200) * (0xef + 1) = 0xa7600

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-21

RED Lookup Table Register

Register Address R/W Description Reset Value

REDLUT 0x01F00014 R/W Red lookup table register 0x00000000

REDLUT Bit Description Initial State

REDVAL [31:0] These bits define which of the 16 shades each of the 8 possible
red combinations will choose.
000 = REDVAL[3:0], 001 = REDVAL[7:4]
010 = REDVAL[11:8], 011 = REDVAL[15:12]
100 = REDVAL[19:16], 101 = REDVAL[23:20]
110 = REDVAL[27:24], 111 = REDVAL[31:28]

0x00000000

GREEN Lookup Table Register

Register Address R/W Description Reset Value

GREENLUT 0x01F00018 R/W Green lookup table register 0x00000000

GREENLUT Bit Description Initial State

GREENVAL [31:0] These bits define which of the 16 shades each of the 8 possible
green combinations will choose.

000 = GREENVAL[3:0], 001 = GREENVAL[7:4]
010 = GREENVAL[11:8], 011 = GREENVAL[15:12]
100 = GREENVAL[19:16], 101 = GREENVAL[23:20]
110 = GREENVAL[27:24], 111 = GREENVAL[31:28]

0x00000000

BLUE Lookup Table Register

Register Address R/W Description Reset Value

BLUELUT 0x01F0001C R/W Blue lookup table register 0x0000

BULELUT Bit Description Initial State

BLUEVAL [15:0] These bits define which of the 16 shades each of the 4 possible
blue combinations will choose
00 = BLUEVAL[3:0], 01 = BLUEVAL[7:4]
10 = BLUEVAL[11:8], 11 = BLUEVAL[15:12]

0x0000

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-22

Dithering Pattern DP1_2 Register

Register Address R/W Description Reset Value

DP1_2 0x01F00020 R/W Dithering pattern duty 1/2 register
(Please, refer to a sample program source for the
latest value of this register).

0xa5a5

DP1_2 Bit Description Initial state

DP1_2 [15:0] Recommended pattern value
1010 0101 1010 0101 (0xa5a5)

0xa5a5

Dithering Pattern DP4_7 Register

Register Address R/W Description Reset Value
DP4_7 0x01F00024 R/W Dithering pattern duty 4/7 register

(Please, refer to a sample program source for the
latest value of this register).

0xba5da65

DP4_7 Bit Description Initial state
DP4_7 [27:0] Recommended pattern value

1011 1010 0101 1101 1010 0110 0101 (0xba5da65)
0xba5da65

Dithering Pattern DP3_5 Register

Register Address R/W Description Reset Value

DP3_5 0x01F00028 R/W Dithering pattern duty 3/5 register
(Please, refer to a sample program source for the
latest value of this register).

0xa5a5f

DP3_5 Bit Description Initial state

DP3_5 [19:0] Recommended pattern value
1010 0101 1010 0101 1111 (0xa5a5f)

0xa5a5f

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-23

Dithering Pattern DP2_3 Register

Register Address R/W Description Reset Value

DP2_3 0x01F0002C R/W Dithering pattern duty 2/3 register
(Please, refer to a sample program source for the
latest value of this register).

0xd6b

DP2_3 Bit Description Initial state

DP2_3 [11:0] Recommended pattern value
1101 0110 1011 (0xd6b)

0xd6b

Dithering Pattern DP5_7 Register

Register Address R/W Description Reset Value

DP5_7 0x01F00030 R/W Dithering pattern duty 5/7 register
(Please, refer to a sample program source for the
latest value of this register).

0xeb7b5ed

DP5_7 Bit Description Initial state

DP5_7 [27:0] Recommended pattern value
1110 1011 0111 1011 0101 1110 1101
(0xeb7b5ed)

0xeb7b5ed

Dithering Pattern DP3_4 Register

Register Address R/W Description Reset Value
DP3_4 0x01F00034 R/W Dithering pattern duty 3/4 register

(Please, refer to a sample program source for the
latest value of this register).

0x7dbe

DP3_4 Bit Description Initial state
DP3_4 [15:0] Recommended pattern value

0111 1101 1011 1110 (0x7dbe)
0x7dbe

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-24

Dithering Pattern DP4_5 Register

Register Address R/W Description Reset Value

DP4_5 0x01F00038 R/W Dithering pattern duty 4/5 register
(Please, refer to a sample program source for the
latest value of this register).

0x7ebdf

DP4_5 Bit Description Initial state

DP4_5 [19:0] Recommended pattern value

0111 1110 1011 1101 1111 (0x7ebdf)

0x7ebdf

Dithering Pattern DP6_7 Register

Register Address R/W Description Reset Value
DP6_7 0x01F0003C R/W Dithering pattern duty 6/7 register

(Please, refer to a sample program source for the
latest value of this register).

0x7fdfbfe

DP6_7 Bit Description initial state

DP6_7 [27:0] Recommended pattern value
0111 1111 1101 1111 1011 1111 1110 (0x7fdfbfe)

0x7fdfbfe

Dithering Mode Register

Register Address R/W Description Reset Value
DITHMODE 0x01F00044 R/W Dithering Mode Register.

This register reset value is 0x00000. But, users will
have to change this value to 0x12210.
(Please, refer to a sample program source for the
latest value of this register).

0x00000

DP8_9 Bit Description initial state

DITHMODE [18:0] Use one of following value for your LCD
0x12210 or 0x0

0x00000

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-25

Register Setting Guide

The maximum VCLK frequency of the LCD controller is 16.5MHz whenever system clock frequency is 66 MHz;
therefore the LCD controller supports all existing LCD drivers. The LCD controller supports multiple screen sizes by
special register setting.

The CLKVAL value determines the frequency of VCLK. The data transmission rate for the VD port of the LCD
controller should be calculated, in order to determine the value of CLKVAL register.

The data transmission rate is given by the following equation:

CLKVAL has to be determined, such that the VCLK value is greater than the data transmission rate.

Data transmission rate = HS × VS × FR × MV
HS: Horizontal LCD size
VS: Vertical LCD size
FR: Frame rate
MV: Mode dependent value

Table 12-4. MV Value for Each Display Mode

Mode MV Value

Mono, 4-bit single scan display 1/4

Mono, 8-bit single scan display or 4-bit dual scan display 1/8

4 level gray, 4-bit single scan display 1/4

4 level gray, 8-bit single scan display or 4-bit dual scan display 1/8

16 level gray, 4-bit single scan display 1/4

16 level gray, 8-bit single scan display or 4-bit dual scan display 1/8

Color, 4-bit single scan display 3/4

Color, 8-bit single scan display or 4-bit dual scan display 3/8

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-26

The LCDBASEU register value is the first address value of the frame buffer. The lowest 4 bits must be eliminated for
burst 4 word access. The LCDBASEL register value is determined by LCD size and LCDBASEU. The LCDBASEL
value is given by the following equation:

LCDBASEL = LCDBASEU + LCDBASEL offset

Example 1:

160 x 160pixel, 4-level gray, 80 frame/sec, 4-bit single scan display, system clock frequency = 66 MHz,
WLH = 1, WDLY = 1, LCD frame buffer = SDRAM, Bus width = 16bit.

System bus occupation = (LCD data transmission frequency) / (System clock frequency)

LCD data transmission frequency = (Total LCD data during 1sec) x (Transmission cycle / 1byte)

Total LCD data during 1sec = Total LCD data x frame rate
 = 160 x 160pixel x (2bit / 1pixel) x 80Hz x (1byte / 8bit) = 512Kbyte

Transmission cycle per 1byte = Transmission clock per 4word / 16

Transmission clock per 4word = Trp(=2clk) + Trcd(=2clk) + C/L(=2clk) + Burst cycle(=8clk) = 14clk

System load (system bus occupation) : 448KHz / 66MHz = 0.68%

NOTE: The higher the system load is, the lower the CPU performance is.

Example 2 (Virtual screen register) :

4 -level gray, 4-bit single scan display, Vertual screen size = 1024 x 1024, LCD size = 320 x 240,
LCDBASEU = 0x64.

1 half-word = 8 pixels(4-level gray),
Virtual screen 1 line = 128 half-word = 1024 pixels,
LCD 1 line = 320 pixels = 40 half-word,
OFFSIZE = 128 - 40 = 88 = 0x58,
PAGEWIDTH = 40 = 0x28

LCDBASEL = LCDBASEU + (PAGEWIDTH + OFFSIZE) x (LINEVAL +1) = 100 + (40 +88) x 240 = 0x3C64

S3C44B0X RISC MICROPROCESSOR LCD CONTROLLER

12-27

Gray Level Selection Guide

S3C44B0X LCD controller can generate 16 gray level using FRC(frame rate control). The FRC characteristics may
cause unexpected patterns in gray level. These unwanted erronous patterns may be shown in fast response LCD or
at lower frame rates.

Because the quality of LCD gray levels depends on LCD's own characteristics, the user may have to select the good
gray levels after viewing all gray levels on user's own LCD.

Please select the gray level quality through the following procedures.

1. Get the latest dithering pattern register value from SAMSUNG.

2. Display 16gray bar in LCD.

3. Change the frame rate into an optimal value.

4. Change the VM alternating period to get the best quality.

5. If some gray level quality is not good, select the good gray levels, which is displayed well on your LCD.

LCD CONTROLLER S3C44B0X RISC MICROPROCESSOR

12-28

NOTES

S3C44B0X RISC MICROPROCESSOR A/D CONVERTER

13-1

13 A/D CONVERTER

OVERVIEW

The 10-bit CMOS ADC(Analog to Digital Converter) of S3C44B0X consists of a 8-channel analog input multiplexer,
auto-zeroing comparator, clock generator, 10 bit successive approximation register (SAR), and output register. This
ADC provides software-selection power-down(sleep) mode.

FEATURES

— Resolution: 10-bit

— Differential Linearity Error: ± 1 LSB

— Integral Linearity Error: ± 2 LSB (Max. ± 3 LSB)

— Maximum Conversion Rate: 100 KSPS

— Input voltage range: 0-2.5V

— Input bandwidth: 0-100 Hz (without S/H(sample&hold) circuit)

— Low Power Consumption

A/D CONVERTER S3C44B0X RISC MICROPROCESSOR

13-2

A/D CONVERTER OPERATION

BLOCK DIAGRAM

Figure 13-1 shows the functional block diagram of S3C440BX A/D converter. Note that the reference positive voltage
REFT and reference negative voltage RETB are applied internally by A/D converter power supply and ground, so no
power is applied to REFT and REFB pins. Also REFT, REFB, and analog common voltage VCOM should be
connected to bypass capacitors respectively because of voltage level stability.

AIN[7:0]

MCLK

ADCINT

PSR

DAC

SAR INT

AMUX

8

ADCDAT Data Bus10

+
COMP

CTRL

VCOM
-

Figure 13-1. A/D Converter Block Diagram

FUNCTION DESCRIPTIONS

SAR (Successive Approximation Register) A/D Converter Operation

A SAR type A/D converter basically consists of the comparator, D/A converter, and SAR logic. At the beginning of
the conversion, the MSB is switched ON and the analog input signal is compared the reference signal of D/A
converter. Because the A/D converter was designed with differential architecture, D/A converter generates the
differential reference signal internally and the two difference signals - one signal is the difference between analog
input and positive reference signal, the other is between the analog common voltage(VCOM) and negative reference
signal - are delivered to comparator. The comparator then compares the analog input with the reference signal
differentially. When the input signal is larger than the reference, then MSB remains ON and the next bit is switched
ON and a comparison will be performed. A bit by bit operation is in this system bring the reference signal within 1
LSB of the time discrete input signal.

A/D Conversion Time

When the system clock frequency is 66MHz and the prescaler value is 20, total 10-bit conversion time is as follows.

66 MHz / 2(20+1) / 16(at least 16 cycle by 10-bit operation) = 98.2 KHz = 10.2 us

NOTE: Because this A/D converter has no sample-and-hold circuit, analog input frequency should not exceed
100Hz for accurate conversion although the maximum conversion rate is 100KSPS.

S3C44B0X RISC MICROPROCESSOR A/D CONVERTER

 13-3

Sleep Mode

The ADC sleep mode is activated by setting the SLEEP bit, ADCCON[5], to '1'. In this mode, the conversion clock is
disabled and A/D conversion operation is halted. The A/D converter data register contains the previous data in sleep
mode.

NOTE: After the ADC exits the sleep mode(ADCCON[5]=1? 0), there is 10ms wait for the ADC reference voltage
 stabilization before the first AD conversion.

ADC reference pin configuration

Users must configure S3C44B0X’s reference pins(83, 84, 85) as shown in Fig.13-2.

AVCOM

10nF

AREFT AREFB

10nF 10nF

Figure 13-2. External reference pin configuration

Workaround For the ADC Data Reading Problem

The ADC converter state flag(ADCCON[6], FLAG bit) is not correct. The FLAG operates incorrectly in the following
cases:

a) The FLAG will be 1 for one ADC clock time just after the ADC conversion is started. This is not correct.
b) The FLAG will be 1 one ADC clock time ago than the ADC conversion is completed. This is not correct.

This problem will be shown conspicuously only if the ADCPSR is large. To read ADC converted data correctly ,
please refer to the following codes;

rADCCON=0x1|(0x0<<2); //Start A/D conversion
while(rADCCON &0x1); //To avoid The first FLAG error case.
 //(The START bit is cleared in one ADC clock.)
while(!(rADCCON & 0x40));
for(i=0;i<rADCPSR;i++); //To avoid The second FLAG error case
Uart_Printf("A0=%03xh ",rADCDAT);

A/D CONVERTER S3C44B0X RISC MICROPROCESSOR

13-4

The Programming Technique in ADC

1. There is no sample & hold circuit on the ADC input pin. So, The small current will flow in/out from AINn input
pins because of the ADC internal operation. If the output impedance of source signal is high, this current will
change the signal voltage. The current is about 7.6uA in the following condition.

Condition 100KSPS, 10K-ohm resister, Vsource=0.0V

Induced Current 7.8uA (78mV)

Induced ADC Error 32

1) This ADC error will be decreased if the output impedance of the signal source is reduced. For example, If
the output impedance of the signal source is 1Kohm, the induced ADC error by the ADC input current is
3(1/10).

2) The current will be also decreased if ADCPSR is large. If the ADC conversion rate is 30KSPS,
the current will be about 1.2uA. The ADCPSR value is higher, the current is lower.

2. The ADC conversion error is decreased if the ADCPSR is large beside the above ADC conversion error. If you
want accurate ADC conversion, you let the ADCPSR as large as possible.

3. Because our ADC have no sample&hold circuit, the input frequency bandwidth is 0~100Hz. This limitation is
because there is no internal sample&hold circuit. But, If you can ignore the small ADC error(or an external S/H
circuit is used), the higher frequency signal can be converted.

4. If the ADC channel is changed, the channel setup time(min. 15us) is needed. So, If the ADC channel is
changed, you must wait for 15us and then start AD conversion.

5. After the ADC exits the sleep mode(the initial state is the sleep mode), there is 10ms wait for the ADC reference
voltage stabilization before the first AD conversion.

6. Our ADC has ADC start-by-read feature. This feature can be used for DMA to move the ADC data to memory.

7. If you read the ADCDAT by polling method, you must apply the work-around for ADC data reading problem.

S3C44B0X RISC MICROPROCESSOR A/D CONVERTER

13-5

A/D CONVERTER SPECIAL REGISTERS

A/D CONVERTER CONTROL REGISTER (ADCCON)

Register Address R/W Description Reset Value

ADCCON 0x01D40000(Li/W, Li/HW,
Li/B, Bi/W)
0x01D40002(Bi/HW)
0x01D40003(Bi/B)

R/W A/D Converter control Register 0x20

ADCCON Bit Description Initial State

FLAG [6] A/D converter state flag (Read Only).
0 = A/D conversion in process
1 = End of A/D conversion
If check this bit please refer to workaround in page13-3.

0

SLEEP [5] System power down
0 = Normal operation, 1 = Sleep mode

1

INPUT
SELECT

[4:2] Clock source select
000 = AIN0 001 = AIN1 010 = AIN2 011 = AIN3
100 = AIN4 101 = AIN5 110 = AIN6 111 = AIN7

00

READ_ START [1] A/D conversion start by read
0 = Disable start by read operation
1 = Enable start by read operation

00

ENABLE_START [0] A/D conversion start by enable.
If READ_START is enabled, this value is not valid.
0 = No operation
1 = A/D conversion starts and this bit is cleared after the start-up.

0

NOTES:
1. The ADCCON register can be accessed by halfword and word unit using STRB/STRH/STR and LDRB/LDRH/LDR

instructions or char/short int/int type pointer in the Little/Big endian mode.
2. (Li/B/HW/W): Access by char/halfword/word unit when the endian mode is Little.
 (Bi/B/HW/W): Access by char/halfword/word unit when the endian mode is Big.

A/D CONVERTER S3C44B0X RISC MICROPROCESSOR

13-6

A/D CONVERTER PRESCALER REGISTER (ADCPSR)

Register Address R/W Description Reset Value

ADCPSR 0x01D40004(Li/W, Li/HW,
Li/B, Bi/W)
0x01D40006(Bi/HW)
0x01D40007(Bi/B)

R/W A/D Converter prescaler Register 0x0

ADCPSR Bit Description Initial State

PRESCALER [7:0] Prescaler value (0-255)
Division factor = 2 (prescaler_value+1).

Total clocks for ADC converstion = 2*(Prescalser_value+1)*16

0

NOTES:
1. The ADCPSR register can be accessed by halfword and word unit using STRB/STRH/STR and LDRB/LDRH/LDR

instructions or char/short int/int type pointer in Little/Big endian mode.
2. (Li/HW/W): Access by char/halfword/word unit when the endian mode is Little.

(Bi/HW/W): Access by char/halfword/word unit when the endian mode is Big.

A/D CONVERTER DATA REGISTER (ADCDAT)

After A/D conversion is completed, the ADCDAT reads the converted data. ADCDAT has to be read after the
conversion has been completed.

Register Address R/W Description Reset Value

ADCDAT 0x01D40008(Li/W, L/HW, Bi/W)
0x01D4000A(Bi/HW)

R A/D converter data register –

ADCDAT Bit Description Initial State

ADCDAT [9:0] A/D converter output data value –

NOTES:
1. The ADCDAT register can be accessed by halfword and word unit using STRH/STR and LDRH/LDR instructions or
short int/int type pointer in Little/Big endian mode.
2. (Li/HW/W): Access by halfword/word unit when the endian mode is Little.

(Bi/HW/W): Access by halfword/word unit when the endian mode is Big.

S3C44B0X RISC MICROPROCESSOR REAL TIME CLOCK

14-1

14 RTC (REAL TIME CLOCK)

OVERVIEW

The RTC (Real Time Clock) unit can be operated by the backup battery while the system power is off. The RTC can
transmit 8-bit data to CPU as BCD (Binary Coded Decimal) values using the STRB/LDRB ARM operation. The data
include second, minute, hour, date, day, month, and year. The RTC unit works with an external 32.768 KHz crystal
and also can perform the alarm function.

FEATURES

— BCD number: second, minute, hour, date, day, month, year

— Leap year generator

— Alarm function: alarm interrupt or wake-up from power down mode.

— Year 2000 problem is removed.

— Independent power pin (VDDRTC)

— Supports millisecond tick time interrupt for RTOS kernel time tick.

— Round reset function

REAL TIME CLOCK S3C44B0X RISC MICROPROCESSOR

14-2

REAL TIME CLOCK OPERATION

Time Tick Generator

215 Clock Divider Reset Register Leap Year Generator

SEC MIN HOUR DATE DAY MON YEAR

Alarm GeneratorControl Register

128 Hz RTCRST

TIME TICK

RTCALM

PMWKUP PWDN ALMINT

RTCCON

1Hz

TICNT

XTAL

EXTAL

Figure 14-1. Real Time Clock Block Diagram

LEAP YEAR GENERATOR

This block can determine whether the last date of each month is 28, 29, 30, or 31, based on data from BCDDAY,
BCDMON, and BCDYEAR. This block considers the leap year in deciding on the last date. An 8-bit counter can only
represent 2 BCD digits, so it cannot decide whether 00 year is a leap year or not. For example, it can not
discriminate between 1900 and 2000. To solve this problem, the RTC block in S3C44B0X has hard-wired logic to
support the leap year in 2000. Please note 1900 is not leap year while 2000 is leap year. Therefore, two digits of 00
in S3C44B0X denote 2000, not 1900.

READ/WRITE REGISTERS

Bit 0 of the RTCCON register must be set in order to read and write the register in RTC block. To display the sec.,
min., hour, date, month, and year, the CPU should read the data in BCDSEC, BCDMIN, BCDHOUR, BCDDAY,
BCDDATE, BCDMON, and BCDYEAR registers, respectively, in the RTC block. However, a one second deviation
may exist because multiple registers are read. For example, when the user reads the registers from BCDYEAR to
BCDMIN, the result is assumed to be 1959(Year), 12(Month), 31(Date), 23(Hour) and 59(Minute). When the user
read the BCDSEC register and the result is a value from 1 to 59(Second), there is no problem, but, if the result is 0
sec., the year, month, date, hour, and minute may be changed to 1960(Year), 1(Month), 1(Date), 0(Hour) and
0(Minute) because of the one second deviation that was mentioned. In this case, user should re-read from
BCDYEAR to BCDSEC if BCDSEC is zero.

BACKUP BATTERY OPERATION

The RTC logic can be driven by the backup battery, which supplies the power through the RTCVDD pin into RTC
block, even if the system power is off. When the system off, the interfaces of the CPU and RTC logic should be
blocked, and the backup battery only drives the oscillation circuit and the BCD counters to minimize power
dissipation.

S3C44B0X RISC MICROPROCESSOR REAL TIME CLOCK

14-3

ALARM FUNCTION

The RTC generates an alarm signal at a specified time in the power down mode or normal operation mode. In normal
operation mode, the alarm interrupt (ALMINT) is activated. In the power down mode the power management wakeup
(PMWKUP) signal is activated as well as the ALMINT. The RTC alarm register, RTCALM, determines the alarm
enable/disable and the condition of the alarm time setting.

TICK TIME INTERRUPT

The RTC tick time is used for interrupt request. The TICNT register has an interrupt enable bit and the count value for
the interrupt. The count value reaches '0' when the tick time interrupt occurs. Then the period of interrupt is as follow:

Period = (n+1) / 128 second
 n : Tick time count value (1-127)

This RTC time tick may be used for RTOS(real time operating system) kernel time tick. If time tick is generated by
RTC time tick, the time related function of RTOS will always synchronized with real time.

ROUND RESET FUNCTION

The round reset function can be performed by the RTC round reset register, RTCRST. The round boundary (30, 40, or
50 sec) of the second carry generation can be selected, and the second value is rounded to zero in the round reset.
For example, when the current time is 23:37:47 and the round boundary is selected to 40 sec, the round reset
changes the current time to 23:38:00.

NOTE

All RTC registers have to be accessed by the byte unit using the STRB,LDRB instructions or char type
pointer.

32.768KHZ X-TAL CONNECTION EXAMPLE

The Figure 14-2 is an example circuit of the RTC unit oscillation at 32.768Khz.

15-22 pF

32,768 Hz

XTAL1

EXTAL1

Figure 14-2. Main Oscillator Circuit Examples

REAL TIME CLOCK S3C44B0X RISC MICROPROCESSOR

14-4

REAL TIME CLOCK SPECIAL REGISTERS

REAL TIME CLOCK CONTROL REGISTER (RTCCON)

The RTCCON register consists of 4 bits such as the RTCEN, which controls the read/write enable of the BCD
registers, CLKSEL, CNTSEL, and CLKRST for testing.

RTCEN bit can control all interfaces between the CPU and the RTC, so it should be set to 1 in an RTC control
routine to enable data read/write after a system reset. Also before power off, the RTCEN bit should be cleared to 0 to
prevent inadvertent writing into RTC registers.

Register Address R/W Description Reset Value

RTCCON 0x01D70040(L)
0x01D70043(B)

R/W
(by byte)

RTC control Register 0x0

RTCCON Bit Description Initial State

CLKRST [3] RTC clock count reset
0 = No reset, 1 = Reset

0

CNTSEL [2] BCD count select
0 = Merge BCD counters
1 = Reserved (Separate BCD counters)

0

CLKSEL [1] BCD clock select
0 = XTAL 1/215 divided clock
1 = Reserved (XTAL clock only for test)

0

RTCEN [0] RTC read/write enable
0 = Disable, 1 = Enable

If RTC read/write feature is enabled, The STOP current will be
consumed excessively. To reduce STOP current, this bit
should be 0 while not accessing RTC. Although this bit is 0,
the RTC clock is still alive.

0

NOTES:
1. All RTC registers have to be accessed by byte unit using STRB and LDRB instructions or char type pointer.
2. (L): When the endian mode is little endian.

(B): When the endian mode is Big endian.

S3C44B0X RISC MICROPROCESSOR REAL TIME CLOCK

14-5

RTC ALARM CONTROL REGISTER (RTCALM)

RTCALM register determines the alarm enable and the alarm time. Note that the RTCALM register generates the
alarm signal through both ALMINT and PMWKUP in power down mode, but only through ALMINT in the normal
operation mode.

Register Address R/W Description Reset Value

RTCALM 0x01D70050(L)
0x01D70053(B)

R/W
(by byte)

RTC alarm control Register 0x00

RTCALM Bit Description Initial State

Reserved [7] 0

ALMEN [6] Alarm global enable
0 = Disable, 1 = Enable

0

YEAREN [5] Year alarm enable
0 = Disable, 1 = Enable

0

MONREN [4] Month alarm enable
0 = Disable, 1 = Enable

0

DAYEN [3] Day alarm enable
0 = Disable, 1 = Enable

0

HOUREN [2] Hour alarm enable
0 = Disable, 1 = Enable

0

MINEN [1] Minute alarm enable
0 = Disable, 1 = Enable

0

SECEN [0] Second alarm enable
0 = Disable, 1 = Enable

0

REAL TIME CLOCK S3C44B0X RISC MICROPROCESSOR

14-6

ALARM SECOND DATA REGISTER (ALMSEC)

Register Address R/W Description Reset Value

ALMSEC 0x01D70054(L)
0x01D70057(B)

R/W
(by byte)

Alarm second data Register 0x00

ALMSEC Bit Description Initial State

Reserved [7] 0

SECDATA [6:4] BCD value for alarm second
from 0 to 5

000

[3:0] from 0 to 9 0000

ALARM MIN DATA REGISTER (ALMMIN)

Register Address R/W Description Reset Value

ALMMIN 0x01D70058(L)
0x01D7005B(B)

R/W
(by byte)

Alarm minute data Register 0x00

ALMMIN Bit Description Initial State

Reserved [7] 0

MINDATA [6:4] BCD value for alarm minute
from 0 to 5

000

[3:0] from 0 to 9 0000

ALARM HOUR DATA REGISTER (ALMHOUR)

Register Address R/W Description Reset Value

ALMHOUR 0x01D7005C(L)
0x01D7005F(B)

R/W
(by byte)

Alarm hour data Register 0x00

ALMHOUR Bit Description Initial State

Reserved [7:6] 0

HOURDATA [5:4] BCD value for alarm hour
from 0 to 2

00

[3:0] from 0 to 9 0000

S3C44B0X RISC MICROPROCESSOR REAL TIME CLOCK

14-7

ALARM DAY DATA REGISTER (ALMDAY)

Register Address R/W Description Reset Value

ALMDAY 0x01D70060(L)
0x01D70063(B)

R/W
(by byte)

Alarm day data Register 0x01

ALMDAY Bit Description Initial State

Reserved [7:6] 0

DAYDATA [5:4] BCD value for alarm day, from 0 to 28, 29, 30, 31
from 0 to 3

00

[3:0] from 0 to 9 0001

ALARM MON DATA REGISTER (ALMMON)

Register Address R/W Description Reset Value

ALMMON 0x01D70064(L)
0x01D70067(B)

R/W
(by byte)

Alarm month data Register 0x01

ALMMON Bit Description Initial State

Reserved [7:5] 0

MONDATA [4] BCD value for alarm month
from 0 to 1

0

[3:0] from 0 to 9 0001

ALARM YEAR DATA REGISTER (ALMYEAR)

Register Address R/W Description Reset Value

ALMYEAR 0x01D70068(L)
0x01D7006B(B)

R/W
(by byte)

Alarm year data Register 0x00

ALMYEAR Bit Description Initial State

YEARDATA [7:0] BCD value for year
from 00 to 99

0x00

REAL TIME CLOCK S3C44B0X RISC MICROPROCESSOR

14-8

RTC ROUND RESET REGISTER (RTCRST)

Register Address R/W Description Reset Value

RTCRST 0x01D7006C(L)
0x01D7006F(B)

R/W
(by byte)

RTC round reset Register 0x0.

RTCRST Bit Description Initial State

SRSTEN [3] Round second reset enable
0 = Disable, 1 = Enable

0

SECCR [2:0] Round boundary for second carry generation. (note)

011 = over than 30 sec
100 = over than 40 sec
101 = over than 50 sec

00

NOTE: Otherwise, no second carry is generated.

BCD SECOND REGISTER (BCDSEC)

Register Address R/W Description Reset Value

BCDSEC 0x01D70070(L)
0x01D70073(B)

R/W
(by byte)

BCD second Register Undef.

BCDSEC Bit Description Initial State

Reserved [7] –

SECDATA [6:4] BCD value for second
from 0 to 5

–

[3:0] from 0 to 9 –

BCD MINUTE REGISTER (BCDMIN)

Register Address R/W Description Reset Value

BCDMIN 0x01D70074(L)
0x01D70077(B)

R/W
(by byte)

BCD minute Register Undef.

BCDMIN Bit Description Initial State

Reserved [7] –

MINDATA [6:4] BCD value for minute
from 0 to 5

–

[3:0] from 0 to 9 –

S3C44B0X RISC MICROPROCESSOR REAL TIME CLOCK

14-9

BCD HOUR REGISTER (BCDHOUR)

Register Address R/W Description Reset Value

BCDHOUR 0x01D70078(L)
0x01D7007B(B)

R/W
(by byte)

BCD hour Register Undef.

BCDHOUR Bit Description Initial State

Reserved [7:6] –

HOURDATA [5:4] BCD value for hour
from 0 to 2

–

[3:0] from 0 to 9 –

BCD DAY REGISTER (BCDDAY)

Register Address R/W Description Reset Value

BCDDAY 0x01D7007C(L)
0x01D7007F(B)

R/W
(by byte)

BCD day Register Undef

BCDDAY Bit Description Initial State

Reserved [7:6] –

DAYDATA [5:4] BCD value for day
from 0 to 3

–

[3:0] from 0 to 9 –

BCD DATE REGISTER (BCDDATE)

Register Address R/W Description Reset Value

BCDDATE 0x01D70080(L)
0x01D70083(B)

R/W
(by byte)

BCD date Register Undef.

BCDDATE Bit Description Initial State

Reserved [7:3] –

DATEDATA [2:0] BCD value for date
from 1 to 7

–

REAL TIME CLOCK S3C44B0X RISC MICROPROCESSOR

14-10

BCD MONTH REGISTER (BCDMON)

Register Address R/W Description Reset Value

BCDMON 0x01D70084(L)
0x01D70087(B)

R/W
(by byte)

BCD month Register Undef.

BCDMON Bit Description Initial State

Reserved [7:5] –

MONDATA [4] BCD value for month
from 0 to 1

–

[3:0] from 0 to 9 –

BCD YEAR REGISTER (BCDYEAR)

Register Address R/W Description Reset Value

BCDYEAR 0x01D70088(L)
0x01D7008B(B)

R/W
(by byte)

BCD year Register Undef.

BCDYEAR Bit Description Initial State

YEARDATA [7:0] BCD value for year
from 00 to 99

–

TICK TIME COUNT REGISTER (TICNT)

Register Address R/W Description Reset Value

TICNT 0x01D7008C(L)
0x01D7008F(B)

R/W
(by byte)

Tick time count Register 0x00000000

TICNT Bit Description Initial State

TICK INT ENABLE [7] Tick time interrupt enable
0 = disable 1 = enable

0

TICK TIME COUNT [6:0] Tick time count value. (1-127)
This counter value decreases internally, and users can not
read this real counter value in working.

000000

S3C44B0X RISC MICROPROCESSOR WATCHDOG TIMER

15-1

15 WATCHDOG TIMER

OVERVIEW

The S3C44B0X watchdog timer is used to resume the controller operation when it had been disturbed by
malfunctions such as noise and system errors. It can be used as a normal 16-bit interval timer to request interrupt
service. The watchdog timer generates the reset signal for 128 MCLK cycles.

FEATURES

— Normal interval timer mode with interrupt request

— Internal reset signal is activated for 128 MCLK cycles when the timer count value reaches 0 (time-out).

WATCHDOG TIMER S3C44B0X RISC MICROPROCESSOR

15-2

WATCHDOG TIMER OPERATION

The functional block diagram of the watchdog timer is shown in Figure 15-1. The watchdog timer uses MCLK as its
only source clock. To generate the corresponding watchdog timer clock, the MCLK frequency is prescaled first, and
the resulting frequency is divided again.

Reset Signal GeneratorWTCNT
(Down Counter)

MCLK

WTCON[4:3]

WTDAT

RESET

1/16

1/32

1/64

1/128

8-bit Prescaler

WTCON[15:8] WTCON[2] WTCON[0]

Interrupt
MUX

Figure 15-1. Watchdog Timer Block Diagram

The prescaler value and the frequency division factor are specified in the watchdog timer control register, WTCON.
The valid prescaler values range from 0 to 28-1. The frequency division factor can be selected as 16, 32, 64, or 128.

Use the following equation to calculate the watchdog timer clock frequency and the duration of each timer clock
cycle:

 t_watchdog = 1/(MCLK / (Prescaler value + 1) / Division_factor)

WTDAT & WTCNT

When the watchdog timer is enabled first, the value of WTDAT (watchdog timer data register) cannot be
automatically reloaded into the WTCNT (timer counter). For this reason, an initial value must be written to the
watchdog timer count register, WTCNT, before the watchdog timer starts.

CONSIDERATION OF DEBUGGING ENVIRONMENT

When S3C44B0X is in debug mode using Embedded ICE, the watchdog timer must not operate.

The watchdog timer can determine whether or not the current mode is the debug mode from the CPU core signal
(DBGACK signal). Once the DBGACK signal is asserted, the reset output of the watchdog timer is not activated
when the watchdog timer is expired.

S3C44B0X RISC MICROPROCESSOR WATCHDOG TIMER

15-3

WATCHDOG TIMER SPECIAL REGISTERS

WATCHDOG TIMER CONTROL REGISTER (WTCON)

Using the watchdog Timer Control register, WTCON, you can enable/disable the watchdog timer, select the clock
signal from 4 different sources, enable/disable interrupts, and enable/disable the watchdog timer output.
The watchdog timer is used to resume the S3C44B0X restart on mal-function after power-on; if controller restart is
not desired, the watchdog timer should be disabled.

If the user wants to use the normal timer provided by the watchdog timer, please enable the interrupt and disable the
watchdog timer.

Register Address R/W Description Reset Value

WTCON 0x01D30000 R/W watchdog timer control Register 0x8021

WTCON Bit Description Initial State

Prescaler value [15:8] the prescaler value
The valid range is from 0 to (28-1)

0x80

Reserved [7:6] Reserved.
These two bits must be 00 in normal operation.

00

watchdog timer
enable/disable

[5] Enable or disable bit of watchdog timer.
0 = Disable watchdog timer
1 = Enable watchdog timer

1

Clock select [4:3] This two bits determines the clock division factor
00: 1/16 01: 1/32
10: 1/64 11: 1/128

00

Interrupt
enable/disable

[2] Enable or disable bit of the interrupt.
0 = Disable interrupt generation
1 = Enable interrupt generation

0

Reserved [1] Reserved.
This bit must be 0 in normal operation

0

Reset
enable/disable

[0] Enable or disable bit of watchdog timer output for reset signal
1: asserts reset signal of the S3C44B0X at watchdog
 time-out
0: disables the reset function of the watchdog timer.

1

WATCHDOG TIMER S3C44B0X RISC MICROPROCESSOR

15-4

WATCHDOG TIMER DATA REGISTER (WTDAT)

The watchdog timer data register, WTDAT is used to specify the time-out duration. The content of WTDAT can not
be automatically loaded into the timer counter at initial watchdog timer operation. However, the first time-out occurs
by using 0x8000(initial value), after then the value of WTDAT will be automatically reloaded into WTCNT.

Register Address R/W Description Reset Value

WTDAT 0x01D30004 R/W Watchdog timer data Register 0x8000

WTDAT Bit Description Initial State

Count reload value [15:0] Watchdog timer count value for reload. 0x8000

WATCHDOG TIMER COUNT REGISTER (WTCNT)

The watchdog timer count register, WTCNT, contains the current count values for the watchdog timer during normal
operation. Note that the content of the watchdog timer data register cannot be automatically loaded into the timer
count register when the watchdog timer is enabled initially, so the watchdog timer count register must be set to an
initial value before enabling it.

Register Address R/W Description Reset Value

WTCNT 0x01D30008 R/W Watchdog timer count Register 0x8000

WTCNT Bit Description Initial State

Count value [15:0] The current count value of the watchdog timer 0x8000

S3C44B0X RISC MICROPROCESSOR IIC-BUS INTERFACE

 16-1

16 IIC-BUS INTERFACE

OVERVIEW

The S3C44B0X RISC microprocessor can support a multi-master IIC-bus serial interface. A dedicated serial data
line(SDA) and a serial clock line (SCL) carry information between bus masters and peripheral devices which are
connected to the IIC-bus. The SDA and SCL lines are bi-directional.

In multi-master IIC-bus mode, multiple S3C44B0X RISC microprocessors can receive or transmit serial data to or
from slave devices. The master S3C44B0X, which can initiate a data transfer over the IIC-bus, is responsible for
terminating the transfer. Standard bus arbitration procedure is used in this IIC-bus in S3C44B0X.

To control multi-master IIC-bus operations, values must be written to the following registers:

— Multi-master IIC-bus control register, IICCON

— Multi-master IIC-bus control/status register, IICSTAT

— Multi-master IIC-bus Tx/Rx data shift register, IICDS

— Multi-master IIC-bus address register, IICADD

When the IIC-bus is free, the SDA and SCL lines should be both at High level. A High-to-Low transition of SDA can
initiate a Start condition. A Low-to-High transition of SDA can initiate a Stop condition while SCL remains steady at
High Level.

The Start and Stop conditions can always be generated by the master devices. A 7-bit address value in the first data
byte, which is put onto the bus after the Start condition has been initiated, can determine the slave device which the
bus master device has selected. The 8th bit determines the direction of the transfer (read or write).

Every data byte put onto the SDA line should total eight bits. The number of bytes which can be sent or received
during the bus transfer operation is unlimited. Data is always sent from most-significant bit (MSB) first, and every
byte should be immediately followed by an acknowledge (ACK) bit.

IIC-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

16-2

MCLK

Address Register

SDA4-bit Prescaler

IIC-Bus Control Logic

IICSTATIICCON

Comparator

Shift Register

Shift Register
(IICDS)

Data Bus

SCL

Figure 16-1. IIC-Bus Block Diagram

Note: The IIC data hold time (tSDAH) is minimum 0ns. (Refer to figure 19-52.)
1. The IIC data hold time (tSDAH) is minimum 0ns.
 Please check the data hold time of your IIC device.
 (IIC data hold time is minimum 0ns for standard/fast bus mode in IIC specification v2.1.)
2. The IIC controller supports only IIC bus device (standard/ fast bus mode), not C bus device.

S3C44B0X RISC MICROPROCESSOR IIC-BUS INTERFACE

 16-3

THE IIC-BUS INTERFACE

 The S3C44B0X IIC-bus interface has four operation modes:

— Master transmitter mode

— Master receive mode

— Slave transmitter mode

— Slave receive mode

Functional relationships among these operating modes are described below.

START AND STOP CONDITIONS

When the IIC-bus interface is inactive, it is usually in slave mode. In other words, the interface should be in slave
mode before detecting a Start condition on the SDA line.(A Start condition can be initiated with a High-to-Low
transition of the SDA line while the clock signal of SCL is High) When the interface state is changed to the master
mode, a data transfer on the SDA line can be initiated and SCL signal generated.

A Start condition can transfer a one-byte serial data over the SDA line, and a stop condition can terminate the data
transfer. A stop condition is a Low-to-High transition of the SDA line while SCL is High. Start and Stop conditions are
always generated by the master. The IIC-bus is busy when a Start condition is generated. A few clocks after a Stop
condition, the IIC-bus will be free, again.

When a master initiates a Start condition, it should send a slave address to notify the slave device. The one byte of
address field consist of a 7-bit address and a 1-bit transfer direction indicator (that is, write or read).
If bit 8 is 0, it indicates a write operation(transmit operation); if bit 8 is 1, it indicates a request for data read(receive
operation).

The master will finish the transfer operation by transmitting a Stop condition. If the master wants to continue the data
transmission to the bus, it should generate another Start condition as well as a slave address. In this way, the read-
write operation can be performed in various formats.

SDA SDA

SCL SCL

Start
Condition

Stop
Condition

Figure 16-2. Start and Stop Condition

IIC-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

16-4

DATA TRANSFER FORMAT

Every byte placed on the SDA line should be eight bits in length. The number of bytes which can be transmitted per
transfer is unlimited. The first byte following a Start condition should have the address field. The address field can be
transmitted by the master when the IIC-bus is operating in master mode. Each byte should be followed by an
acknowledgement (ACK) bit. The MSB bit of the serial data and addresses are always sent first.

NOTES:
1. S: Start, rS: Repeat Start, P: Stop, A: Acknowledge
2. : From Master to Slave, : from Slave to Master

Write Mode Format with 7-bit Addresses

"0"
(Write) Data Transferred

(Data + Acknowledge)

S Slave Address 7bits R/W A PDATA(1Byte) A

Read Mode Format with 7-bit Addresses

"1"
(Read) Data Transferred

(Data + Acknowledge)

S Slave Address 7 bits R/W A PDATA A

Write Mode Format with 10-bit Addresses

"0"
(Write) Data Transferred

(Data + Acknowledge)

PDATA AS Slave Address
1st 7 bits R/W A Slave Address

2nd Byte A

11110XX

Read Mode Format with 10-bit Addresses

"1"
(Read)

S Slave Address
1st 7 bits

11110XX

R/W A Slave Address
2nd Byte

A rS Slave Address
1st 7 Bits

A

Data Transferred
(Data + Acknowledge)

PDATA AR/W

"1"
(Read)

Figure 16-3. IIC-Bus Interface Data Format

S3C44B0X RISC MICROPROCESSOR IIC-BUS INTERFACE

 16-5

SDA

Acknowledgement
Signal from Receiver

SCL

S

1 2 7 8 9 1 2 9

Acknowledgement
Signal from Receiver

MSB

ACK

Byte Complete, Interrupt
within Receiver

Clock Line Held Low While
Interrupts are Serviced

Figure 16-4. Data Transfer on the IIC-Bus

ACK SIGNAL TRANSMISSION

To finish a one-byte transfer operation completely, the receiver should send an ACK bit to the transmitter. The ACK
pulse should occur at the ninth clock of the SCL line. Eight clocks are required for the one-byte data transfer. The
master should generate the clock pulse required to transmit the ACK bit.

The transmitter should release the SDA line by making the SDA line High when the ACK clock pulse is received. The
receiver should also drive the SDA line Low during the ACK clock pulse so that the SDA is Low during the High
period of the ninth SCL pulse.

The ACK bit transmit function can be enabled or disabled by software (IICSTAT). However, the ACK pulse on the
ninth clock of SCL is required to complete a one-byte data transfer operation.

Data Output by
Transmitter

Data Output by
Receiver

SCL from
Master

Start
Condition

Clock Pulse for Acknowledgment

Clock to Output

987S 1 2

Figure 16-5. Acknowledge on the IIC-Bus

IIC-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

16-6

READ-WRITE OPERATION

In the transmitter mode, after the data is transferred, the IIC-bus interface will wait until IICDS(IIC-bus Data Shift
Register) is written by a new data. Until the new data is written, the SCL line will be held low. After the new data is
written to IICDS register, the SCL line will be released. The S3C44B0X should hold the interrupt to identify the
completion of current data transfer. After the CPU receives the interrupt request, it should write a new data into
IICDS, again.

In the receive mode, after a data is received, the IIC-bus interface will wait until IICDS register is read. Until the new
data is read out, the SCL line will be held low. After the new data is read out from IICDS register, the SCL line will be
released. The S3C44B0X should hold the interrupt to identify the completion of the new data reception. After the CPU
receives the interrupt request, it should read the data from IICDS.

BUS ARBITRATION PROCEDURES

Arbitration takes place on the SDA line to prevent the contention on the bus between two masters. If a master with a
SDA High level detects another master with a SDA active Low level, it will not initiate a data transfer because the
current level on the bus does not correspond to its own. The arbitration procedure will be extended until the SDA line
turns High.

However when the masters simultaneously lower the SDA line, each master should evaluate whether or not the
mastership is allocated to itself. For the purpose of evaluation, each master should detect the address bits. While
each master generates the slaver address, it should also detect the address bit on the SDA line because the
lowering of SDA line is stronger than maintaining High on the line. For example, one master generates a Low as first
address bit, while the other master is maintaining High. In this case, both masters will detect Low on the bus
because Low is stronger than High even if first master is trying to maintain High on the line. When this happens,
Low(as the first bit of address) -generating master will get the mastership and High(as the first bit of address) -
generating master should withdraw the mastership. If both masters generate Low as the first bit of address, there
should be an arbitration for second address bit, again. This arbitration will continue to the end of last address bit.

ABORT CONDITIONS

If a slave receiver can not acknowledge the confirmation of the slave address, it should hold the level of the SDA line
High. In this case, the master should generate a Stop condition and to abort the transfer.

If a master receiver is involved in the aborted transfer, it should signal the end of the slave transmit operation by
canceling the generation of an ACK after the last data byte received from the slave. The slave transmitter should then
release the SDA to allow a master to generate a Stop condition.

CONFIGURING THE IIC-BUS

To control the frequency of the serial clock (SCL), the 4-bit prescaler value can be programmed in the IICCON
register. The IIC-bus interface address is stored in the IIC-bus address register, IICADD. (By default, the IIC-bus
interface address is an unknown value.)

S3C44B0X RISC MICROPROCESSOR IIC-BUS INTERFACE

 16-7

FLOWCHARTS OF THE OPERATIONS IN EACH MODE

The following steps must be executed before any IIC tx/rx operations.

1) Write own slave address on IICADD register if needed.
2) Set IICCON Register.
 a) Enable interrupt
 b) Define SCL period
3) Set IICSTAT to enable Serial Output

START

Master Tx mode has
been configured

Write slave address to
IICDS

Write 0xF0 (M/T Start) to
IICSTAT

The data of the IICDS is
transmitted

ACK period and then
interrupt is pending

Stop?

Write new data
transmitted to IICDS

Clear pending bit to
resume

The data of the IICDS is
shifted to SDA

Write 0xD0 (M/T Stop) to
IICSTAT

Clear pending bit

Wait until the stop
condition takes effect

END

Y

N

Figure 16-6. Operations for Master/Transmitter Mode

IIC-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

16-8

START

Master Rx mode has
been configured

Write slave address to
IICDS

Write 0xF0 (M/R Start) to
IICSTAT

The data of the IICDS (slave
address) is transmitted

ACK period and then
interrupt is pending

Stop?

Read new data from
IICDS

Clear pending bit to
resume

SDA is shifted to IICDS

Write 0x90 (M/R Stop) to
IICSTAT

Clear pending bit

Wait until the stop
condition takes effect

END

Y

N

Figure 16-7. Operations for Master/Receiver Mode

S3C44B0X RISC MICROPROCESSOR IIC-BUS INTERFACE

 16-9

START

Slave Tx mode has been
configured

IIC detects start signal
and IICDS receives data

IIC compares IICADD
and IICDS (the received

slave address)

The IIC address match
interrupt is generated

Write data to IICDS

Clear pending bit to
resume

The data of the IICDS is
shifted to SDA

Interrupt is pending

END

Matched?

Stop?
Y

N

N

Y

Figure 16-8. Operations for Slave/Transmitter Mode

IIC-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

16-10

START

Slave Rx mode has been
configured

IIC detects start signal
and IICDS receives data

IIC compares IICADD
and IICDS (the received

slave address)

The IIC address match
interrupt is generated

Read IICDS

Clear pending bit to
resume

SDA is shifted to IICDS

Interrupt is pending

END

Matched?

Stop?
Y

N

N

Y

Figure 16-9. Operations for Slave/Receiver Mode

S3C44B0X RISC MICROPROCESSOR IIC-BUS INTERFACE

 16-11

IIC-BUS INTERFACE SPECIAL REGISTERS

MULTI-MASTER IIC-BUS CONTROL REGISTER (IICCON)

Register Address R/W Description Reset Value

IICCON 0x01D60000 R/W IIC-Bus control register 0000_XXXX

IICCON Bit Description Initial State

Acknowledge
enable (1)

[7] IIC-bus acknowledge enable bit
0=Disable ACK generation
1=Enable ACK generation
In Tx mode, the IICSDA is free in the ack time.
In Rx mode, the IICSDA is L in the ack time.

0

Tx clock source
selection

[6] Source clock of IIC-bus transmit clock prescaler selection bit
0 = IICCLK = fMCLK /16
1 = IICCLK = fMCLK /512

0

Tx/Rx Interrupt
enable

[5] IIC-Bus Tx/Rx interrupt enable/disable bit
0 = Disable interrupt, 1 = Enable interrupt

0

Interrupt pending
flag (2) (3)

[4] IIC-bus Tx/Rx interrupt pending flag.
Writing 1 is impossible. When this bit is read as 1, the IICSCL is
tied to L and the IIC is stopped. To resume the operation, clear
this bit as 0.
0 = 1) No interrupt pending(when read),
 2) Clear pending condition &
 Resume the operation (when write).
1 = 1) Interrupt is pending (when read)
 2) N/A (when write)

0

Transmit clock
value (4)

[3:0] IIC-Bus transmit clock prescaler
IIC-Bus transmit clock frequency is determined by this 4-bit
prescaler value, according to the following formula:
Tx clock = IICCLK/(IICCON[3:0]+1)

Undefined

NOTES:
1. Interfacing with EEPROM, the ack generation may be disabled before reading the last data in order to generate the
 STOP condition in Rx mode.
2. A IIC-bus interrupt occurs 1)when a 1-byte transmit or receive operation is completed, 2)when a general call or a slave
 address match occurs, or 3) if bus arbitration fails.
3. To time the setup time of IICSDA before IISSCL rising edge, IICDS has to be written before clearing the IIC interrupt
 pending bit.
4. IICCLK is determined by IICCON[6].
 Tx clock can vary by SCL transition time.
 When IICCON[6]=0, IICCON[3:0]=0x0 or 0x1 is not available.
5. If the IICON[5]=0, IICON[4] does not operate correctly.
 So, It is recommended to set IICCON[5]=1, although you does not use the IIC interrupt.

IIC-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

16-12

MULTI-MASTER IIC-BUS CONTROL/STATUS REGISTER (IICSTAT)

Register Address R/W Description Reset Value

IICSTAT 0x01D60004 R/W IIC-Bus control/status register 0000_0000

IICSTAT Bit Description Initial State

Mode selection [7:6] IIC-bus master/slave Tx/Rx mode select bits:
00: Slave receive mode
01: Slave transmit mode
10: Master receive mode
11: Master transmit mode

0

Busy signal status/
START STOP
condition

[5] IIC-Bus busy signal status bit:
0 = read) IIC-bus not busy (when read)
 write) IIC-bus STOP signal generation
1 = read) IIC-bus busy (when read)
 write) IIC-bus START signal generation.
 The data in IICDS will be transferred
 automatically just after the start signal.

0

Serial output enable [4] IIC-bus data output enable/disable bit:
0=Disable Rx/Tx, 1=Enable Rx/Tx

0

Arbitration
status flag

[3] IIC-bus arbitration procedure status flag bit:
0 = Bus arbitration successful
1 = Bus arbitration failed during serial I/O

0

Address-as-slave
status flag

[2] IIC-bus address-as-slave status flag bit:
0 = cleared when START/STOP condition was
 detected
1 = Received slave address matches the address
 value in the IICADD.

0

Address zero
status flag

[1] IIC-bus address zero status flag bit:
0 = cleared when START/STOP condition was
 detected.
1 = Received slave address is 00000000b

0

Last-received bit
status flag

[0] IIC-bus last-received bit status flag bit
0 = Last-received bit is 0 (ACK was received)
1 = Last-receive bit is 1 (ACK was not received)

0

S3C44B0X RISC MICROPROCESSOR IIC-BUS INTERFACE

 16-13

MULTI-MASTER IIC-BUS ADDRESS REGISTER (IICADD)

Register Address R/W Description Reset Value

IICADD 0x01D60008 R/W IIC-Bus address register XXXX_XXXX

IICADD Bit Description Initial State

Slave address [7:0] 7-bit slave address, latched from the IIC-bus:
When serial output enable=0 in the IICSTAT, IICADD is write-
enabled. The IICADD value can be read any time, regardless of
the current serial output enable bit (IICSTAT) setting.
Slave address = [7:1]
Not mapped = [0]

XXXX_XXXX

MULTI-MASTER IIC-BUS TRANSMIT/RECEIVE DATA SHIFT REGISTER (IICDS)

Register Address R/W Description Reset Value

IICDS 0x01D6000C R/W IIC-Bus transmit/receive data shift register XXXX_XXXX

IICDS Bit Description Initial State

Data shift [7:0] 8-bit data shift register for IIC-bus Tx/Rx operation:
When serial output enable = 1 in the IICSTAT, IICDS is write-
enabled. The IICDS value can be read any time, regardless of
the current serial output enable bit (IICSTAT) setting

XXXX_XXXX

IIC-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

16-14

NOTES

S3C44B0X RISC MICROPROCESSOR IIS-BUS INTERFACE

17-1

17 IIS-BUS INTERFACE

OVERVIEW

Many digital audio systems are introduced into the consumer audio market, including compact disc, digital audio
tapes, digital sound processors, and digital TV sound. The S3C44B0X IIS(Inter-IC Sound) bus interface can be used
to implement a CODEC interface to an external 8/16-bit stereo audio CODEC IC for mini-disc and portable
applications. It supports the IIS bus data format and MSB-justified data format. IIS bus interface provides DMA
transfer mode for FIFO access instead of an interrupt. It can transmit or receive data simultaneously as well as
transmit or receive only.

FEATURES

— IIS, MSB-justified format compatible

— 8/16-bit data per channel

— 16, 32, 48fs(sampling frequency) serial bit clock per channel

— 256, 384fs master clock

— Programmable frequency divider for master clock and CODEC clock

— 32 bytes (2X16) FIFO for transmit and receive

— Normal and DMA transfer mode

IIS-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

17-2

BLOCK DIAGRAM

ADDR

DATA

CNTL

MCLK

BRFC

IPSR_A

IPSR_B

TxFIFO

RxFIFO

SCLKG

CHNC

SFTR

IISLRCK

IISCLK

IISDI

CODECLK

IISDO

Figure 17-1. IIS-Bus Block Diagram

FUNCTIONAL DESCRIPTIONS

Bus interface, register bank, and state machine(BRFC) - Bus interface logic and FIFO access are controlled by the
state machine.

3-bit dual prescaler(IPSR) - One prescaler is used as the master clock generator of the IIS bus interface and the
other is used as the external CODEC clock generator.

16-byte FIFOs(TXFIFO, RXFIFO) - In transmit data transfer, data are written to TXFIFO, and, in the receive data
transfer, data are read from RXFIFO.

Master IISCLK generaor(SCLKG) - In master mode, serial bit clock is generated from the master clock.

Channel generator and state machine(CHNC) - IISCLK and IISLRCK are generated and controlled by the channel
state machine.

16-bit shift register(SFTR) - Parallel data is shifted to serial data output in the transmit mode, and serial data input is
shifted to parallel data in the receive mode.

TRANSMIT OR RECEIVE ONLY MODE

Normal transfer

IIS control register has FIFO ready flag bits for transmit and receive FIFO. When FIFO is ready to transmit data, the
FIFO ready flag is set to '1' if transmit FIFO is not empty.
If transmit FIFO is empty, FIFO ready flag is set to '0'. When receive FIFO is not full, the FIFO ready flag for receive
FIFO is set to '1' ; it indicates that FIFO is ready to receive data. If receive FIFO is full, FIFO ready flag is set to '0'.
These flags can determine the time that CPU is to write or read FIFOs. Serial data can be transmitted or received
while CPU is accessing transmit and receive FIFOs in this way.

S3C44B0X RISC MICROPROCESSOR IIS-BUS INTERFACE

17-3

DMA transfer

In this mode, transmit or receive FIFO access is made by the DMA controller. DMA service request in transmit or
receive mode is made by the FIFO ready flag automatically.

TRANSMIT AND RECEIVE MODE

In this mode, IIS bus interface can transmit and receive data simultaneously. Because one DMA source is assigned,
normal FIFO write is done in the transmit channel, and DMA receive FIFO read is done in the receive channel and
vice versa.

AUDIO SERIAL INTERFACE FORMAT

IIS-BUS FORMAT

The IIS bus has four lines, serial data input(IISDI), serial data output(IISDO), left/right channel select(IISLRCK), and
serial bit clock(IISCLK); the device generating IISLRCK and IISCLK is the master.

Serial data is transmitted in 2's complement with the MSB first. The MSB is transmitted first because the transmitter
and receiver may have different word lengths. It is not necessary for the transmitter to know how many bits the
receiver can handle, nor does the receiver need to know how many bits are being transmitted.

When the system word length is greater than the transmitter word length, the word is truncated(least significant data
bits are set to '0') for data transmission. If the receiver is sent more bits than its word length, the bits after the LSB
are ignored. On the other hand, if the receiver is sent fewer bits than its word length, the missing bits are set to zero
internally. And so, the MSB has a fixed position, whereas the position of the LSB depends on the word length. The
transmitter always sends the MSB of the next word at one clock period after the IISLRCK change.

Serial data sent by the transmitter may be synchronized with either the trailing (HIGH to LOW) or the leading (LOW
to HIGH) edge of the clock signal. However, the serial data must be latched into the receiver on the leading edge of
the serial clock signal, and so there are some restrictions when transmitting data that is synchronized with the
leading edge.

The LR channel select line indicates the channel being transmitted. IISLRCK may change either on a trailing or
leading edge of the serial clock, but it does not need to be symmetrical. In the slave, this signal is latched on the
leading edge of the clock signal. The IISLRCK line changes one clock period before the MSB is transmitted. This
allows the slave transmitter to derive synchronous timing of the serial data that will be set up for transmission.
Furthermore, it enables the receiver to store the previous word and clear the input for the next word.

MSB(LEFT) JUSTIFIED

MSB/left justified bus has the same lines as the IIS format. It is only different with the IIS bus that transmitter always
sends the MSB of the next word when the IISLRCK change.

IIS-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

17-4

IIS-BUS FORMAT (N=8 or 16)

MSB
(1st)

2nd
Bit

N-1th
Bit

LSB
(last)

MSB
(1st)

2nd
Bit

N-1th
Bit

LSB
(last)

MSB
(1st)

LRCK

SCLK

SD

LEFT RIGHT LEFT

MSB-JUSTIFIED FORMAT (N=8 or 16)

2nd
Bit

N-1th
Bit

LSB
(last)

MSB
(1st)

2nd
Bit

N-1th
Bit

LSB
(last)

LRCK

SCLK

SD

LEFT RIGHT

MSB
(1st)

Figure 17-2. IIS-Bus and MSB(Left)-justified Data Interface Formats

SAMPLING FREQUENCY AND MASTER CLOCK

Master clock frequency(MCLK) can be selected by sampling frequency as shown in Table 17-1. Because MCLK is
made by IIS prescaler, the prescaler value and MCLK type(256 or 384fs) should be determined properly. Serial bit
clock frequency type(16/32/48fs) can be selected by the serial bit per channel and MCLK as shown in Table 17-2.

Table 17-1 CODEC clock (CODECLK = 256 or 384fs)

IISLRCK
(fs)

8.000
KHz

11.025
KHz

16.000
KHz

22.050
KHz

32.000
KHz

44.100
KHz

48.000
KHz

64.000
KHz

88.200
KHz

96.000
KHz

256fs

CODECLK 2.0480 2.8224 4.0960 5.6448 8.1920 11.2896 12.2880 16.3840 22.5792 24.5760

(MHz) 384fs

3.0720 4.2336 6.1440 8.4672 12.2880 16.9344 18.4320 24.5760 33.8688 36.8640

Table 17-2 Usable serial bit clock frequency (IISCLK = 16 or 32 or 48fs)

Serial bit per channel 8-bit 16-bit

Serial clock frequency (IISCLK)

@CODECLK=256fs 16fs, 32fs 32fs

@CODECLK=384fs 16fs, 32fs, 48fs 32fs, 48fs

S3C44B0X RISC MICROPROCESSOR IIS-BUS INTERFACE

17-5

IIS-BUS INTERFACE SPECIAL REGISTERS

IIS CONTROL REGISTER (IISCON)

Register Address R/W Description Reset Value

IISCON 0x01D18000(Li/HW, Li/W, Bi/W)
0x01D18002(Bi/HW)

R/W IIS control register 0x100

IISCON Bit Description Initial State

Left/Right channel
index (read only)

[8] 0 = Left channel
1 = Right channel

1

Transmit FIFO ready
flag (read only)

[7] 0 = FIFO is not ready (empty)
1 = FIFO is ready (not empty)

0

Receive FIFO ready
flag (read only)

[6] 0 = FIFO is not ready (full)
1 = FIFO is ready (not full)

0

Transmit DMA service
request enable

[5] 0 = Request disable
1 = Request enable

0

Receive DMA service
request enable

[4] 0 = Request disable
1 = Request enable

0

Transmit channel idle
command

[3] In Idle state the IISLRCK is inactive(pause Tx). This bit is only
effective if the IIS is a master.
0 = IISLRCK is generated.
1 = IISLRCK is not generated.

0

Receive channel idle
command

[2] In Idle state the IISLRCK is inactive(pause Rx). This bit is only
effective if the IIS is a master.
0 = IISLRCK is generated.
1 = IISLRCK is not generated.

0

IIS prescaler enable [1] 0 = Prescaler disable
1 = Prescaler enable

0

IIS interface enable
(start)

[0] 0 = IIS disable (stop)
1 = IIS enable (start)

0

NOTES:
1. The IISCON register can be accessed by halfword and word unit using STRH/STR and LDRH/LDR
 instructions or char/short int/int type pointer in Little/Big endian mode.
2. (Li/HW/W): Access by halfword/word unit when the endian mode is Little.

(Bi/HW/W): Access by halfword/word unit when the endian mode is Big.

IIS-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

17-6

IIS MODE REGISTER (IISMOD)

Register Address R/W Description Reset Value

IISMOD 0x01D18004(Li/W, Li/HW, Bi/W)
0x01D18006(Bi/HW)

R/W IIS mode register 0x0

IISMOD Bit Description Initial State

Master/slave mode select [8] 0 = Master mode (IISLRCK and IISCLK are output mode)
1 = Slave mode (IISLRCK and IISCLK are input mode)

0

Transmit/receive mode
select

[7:6] 00 = No transfer 01 = Receive mode
10 = Transmit mode 11 = Transmit and receive mode

00

Active level of left/right
channel

[5] 0 = Low for left channel (high for right channel)
1 = High for left channel (low for right channel)

0

Serial interface format [4] 0 = IIS compatible format
1 = MSB(Left)-justified format

0

Serial data bit per channel [3] 0 = 8-bit 1 = 16-bit 0

Master clock(CODECLK)
frequency select

[2] 0 = 256fs 1 = 384fs
(fs : sampling frequency)

0

Serial bit clock frequency
select

[1:0] 00 = 16fs 01 = 32fs
10 = 48fs 11 = N/A
(fs : sampling frequency)

00

NOTES:
1. The IISMOD register can be accessed by halfword and word unit using STRH/STR and LDRH/LDR instructions or short
 int/int type pointer in Little/Big endian mode.
2. (Li/HW/W): Access by halfword/word unit when the endian mode is Little.

(Bi/HW/W): Access by halfword/word unit when the endian mode is Big.

S3C44B0X RISC MICROPROCESSOR IIS-BUS INTERFACE

17-7

IIS PRESCALER REGISTER (IISPSR)

Register Address R/W Description Reset Value

IISPSR 0x01D18008(Li/B, Li/HW, Li/W, Bi/W)
0x01D1800A(Bi/HW)
0x01D1800B(Bi/B)

R/W IIS prescaler register 0x0

IISPSR Bit Description Initial State

Prescaler value A [7:4] prescaler division factor for the prescaler A
clock_prescaler_A = MCLK/<division factor>

0x0

Prescaler value B [3:0] prescaler division factor for the prescaler B
clock_prescaler_B = MCLK/<division factor>

0x0

IISPSR[3:0] / [7:4] Division Factor IISPSR[3:0] / [7:4] Division Factor

0000b 2 1000b 1

0001b 4 1001b –

0010b 6 1010b 3*

0011b 8 1011b –

0100b 10 1100b 5*

0101b 12 1101b –

0110b 14 1110b 7*

0111b 16 1111b –

NOTES:
1. If the prescaler value is 3,5,7, the duty is not 50%. In this case, the H duration is 0.5 MCLK.
2. The IISPSR register can be accessed by byte, halfword and word unit using STRB/STRH/STR and LDRB/LDRH/LDR
 instructions or char/short int/int type pointer in Little/Big endian mode.
3. (Li/B/HW/W): Access by byte/halfword/word unit when the endian mode is Little.

(Bi/B/HW/W): Access by byte/halfword/word unit when the endian mode is Big.

IIS-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

17-8

IIS FIFO CONTROL REGISTER (IISFCON)

To start IIS operation, the following procedure is needed.

1) Enable the FIFO in IISFCON register

2) Enable DMA request in IISCON register

3) Enable IIS interface start in IISCON register

To end IIS operation, the following procedure is needed.

1) Disable the FIFO. If you want to transmit the data remained in FIFO, you must not disable the FIFO and skip
this stop 1.

2) Disable DMA request in IISCON register.

3) Disable IIS interface start in IISCON register.

Register Address R/W Description Reset Value

IISFCON 0x01D1800C(Li/HW, Li/W, Bi/W)
0x01D1800E(Bi/HW)

R/W IIS FIFO interface register 0x0

IISFCON Bit Description Initial State

Transmit FIFO
access mode select

[11] 0 = Normal access mode
1 = DMA access mode

0

Receive FIFO
access mode select

[10] 0 = Normal access mode
1 = DMA access mode

0

Transmit FFO
enable

[9] 0 = FIFO disable 1 = FIFO enable 0

Receive FIFO
enable

[8] 0 = FIFO disable 1 = FIFO enable 0

Transmit FIFO data
count (read only)

[7:4] Data count value = 0-8 000

Receive FIFO data
count (read only)

[3:0] Data count value = 0-8 000

NOTES:
1. The IISFCON register can be accessed by halfword and word unit using STRH/STR and LDRH/LDR instructions or
short
 int/int type pointer in Little/Big endian mode.
2. (Li/HW/W): Access by halfword/word unit when the endian mode is Little.

(Bi/HW/W): Access by halfword/word unit when the endian mode is Big.

S3C44B0X RISC MICROPROCESSOR IIS-BUS INTERFACE

17-9

IIS FIFO REGISTER (IISFIF)

IIS bus interface contains two 16-byte FIFO for the transmit and receive mode. Each FIFO has 16-width and 8-depth
form, which allows the FIFO to handles data by halfword unit regardless of valid data size. Transmit and receive FIFO
access is performed through FIFO entry; the address of FENTRY is 0x01D18010.

Register Address R/W Description Reset Value

IISFIF 0x01D18010(Li/HW)
0x01D18012(Bi/HW)

R/W IIS FIFO register 0x0

IISFIF Bit Description Initial State

FENTRY [15:0] Transmit/Receive data for IIS 0

NOTES:
1. The IISFIF register can be accessed by halfword and word unit using STRH and LDRH instructions or short int type
 pointer in Little/Big endian mode.
2. (Li/HW): Access by halfword unit when the endian mode is Little.

(Bi/HW): Access by halfword unit when the endian mode is Big.

IIS-BUS INTERFACE S3C44B0X RISC MICROPROCESSOR

17-10

NOTES

S3C44B0X RISC MICROPROCESSOR SIO

18-1

18 SIO (SYNCHRONOUS I/O)

OVERVIEW

The S3C44B0X SIO (synchronous IO) can interface with various types of external devices that requires serial data
transfer. The SIO module can transmit or receive 8bit serial data at a frequency determined by its corresponding
control register settings. To ensure flexible data transmission rates, you can select an internal or external clock
source.

FEATURES

— 8-bit Data Buffer (SIODAT)

— 12-bit Prescaler (SBRDR)

— 8-bit Interval Counter (ITVCNT)

— Clock Selection Logic

— Serial data I/O pins (SIORXD and SIOTXD)

— External clock input/output pin (SIOCK)

— DMA run mode (auto run/flag run, SIORDY)

8-bit SIO Shift Buffer

SIOINT

SIO Control Logic

3-bit Counter

12-bit Prescaler

Data Bus

SIORDY

SIOCK

MCLK

SIORXD

SIOTXD

MUX

Figure 18-1. SIO Interface Block Diagram

SIO S3C44B0X RISC MICROPROCESSOR

18-2

SIO NORMAL OPERATION

Transmit and Receive by Serial Line Synchronously

Using the serial I/O interface, 8-bit data can be exchanged by serial line.

The serial output data comes through a serial input pin(SIORXD) and goes out through a serial output pin,
synchronously by serial clock pin (SIOCK). After transmitting or receiving data, the SIO interrupt request is activated
if a programmer enables an interrupt source.

Transmitting always occurs with reception. If you want only to transmit, you may treat the received data as dummy.

The transmission frequency is controlled by making the appropriate bit settings to the SIOCON and SBRDR
registers. The serial interface can be operated by an internal or external clock source. If the internal clock signal is
used, you can modify its frequency to adjust the baud rate data register value.

Programming Procedure

When a byte data is written into the SIODAT register, SIO starts to transmit if the SIO run bit is set and the transmit
mode bit is enabled.

To program the SIO modules, follow these basic steps:

1. Configure the I/O pins at port (SIOTXD, SIOCLK, SIORXD).

2. Set SIOCON register to properly configure the serial I/O module.

3. For interrupt generation, set the serial I/O interrupt enable bit and refer the interrupt controller to 1.

4. If you want to transmit data to the serial buffer, write data to SIODAT.

5. For receiving/transmitting, set SIOCON[3] to 1 to start the shift operation.

6. When the shift operation (transmit/receive) is completed, the SIO interrupt is requested and SIODAT has the
received data or dummy data.

7. go to step 4

S3C44B0X RISC MICROPROCESSOR SIO

18-3

SIO DMA OPERATION

Auto Run Mode (non-hand-shaking mode)

If the SIO is in the auto-run mode (non-hand-shaking mode) and the SIO transmits data using the DMA controller,
SIO can wait until the transmitted data is read by the external destination device. Not using hand-shaking, the SIO
must wait for a fixed interval between every 8-bit data. The interval is determined by the IVTCNT register. In the auto
run mode, the SIO inserts this interval after transmitting every 8-bit data.

Steps for Transmit by DMA(Refer to Fig.18-2)

1. DCNTZ[n] is cleared to 0, which allows the SIO to request DMA service. The SIO is configured
 properly, but the value of SIOCON[1:0] has to be 00b.

2. DMA is configured properly.

3. The SIO is configured as DMA transmit mode. SIOCON[3] (SIO start bit) will be ignored.

4. The SIO automatically requests DMA service without SIO start bit(SIOCON[3]).

5. The SIO transmits the data.

6. Go to step 4 until DMA count is 0.

7. DCNTZ[n] is set to 1, which stops the SIO from requesting further DMA service.

BDMA Setting

SIOCON =
xxxxxx 10b or xxxxxx 11b

(auto start)

DCNTZ[n] = 1

DMAcount == 0

START

DCNTZ[n] = 0
Setting SIOCON

(SIOCON = xx 1xxx00b)

END

Y

N

Figure 18-2. SIO Transmit by DMA

SIO S3C44B0X RISC MICROPROCESSOR

18-4

Steps for Receive by DMA(Refer to Fig.18-3)

1. DCNTZ[n] is cleared to 0, which allows the SIO to request the DMA service. The SIO is configured properly. But
the value of SIOCON[1:0] has to be 00b.

2. DMA is configured properly.

3. The SIO is configured in DMA receive only mode.

4. Set SIOCON[3] (SIO start bit) to start the receiving operation.

5. The SIO requests the DMA service after 8-bit data has been received.

6. Go to step 5 until DMA count is 0.

7. DCNTZ[n] is set to 1, which stops the SIO from requesting further DMA service.

BDMA Setting

SIOCON =
xxxxx 110 or xxxxx 111

(manual start)

DCNTZ[n] = 1

DMAcount == 0

START

DCNTZ[n] = 0
Setting SIOCON

(SIOCON = xxxxxx 00b)

END

Y

N

Figure 18-3. SIO Receive by DMA

S3C44B0X RISC MICROPROCESSOR SIO

18-5

SIOCLK

SIORXD

SIOTXD

SIOCON
Start Bit

DO7

DI7

DO6

DI6

DO5

DI5

DO4

DI4

DO3

DI3

DO2

DI2

DO1

DI1

DO0

DI0

Transmit
Complete

Figure 18-4. SIO Transmit/Receive Mode Timing diagram(Tx at Falling)

SIOCLK

SIORXD

SIOTXD DO7

DI7

DO6

DI6

DO5

DI5

DO4

DI4

DO3

DI3

DO2

DI2

DO1

DI1

DO0

DI0

SIOCON
Start Bit

Transmit
Complete

Figure 18-5. SIO Transmit/Receive Mode Timing diagram(Tx at Rising)

SIO S3C44B0X RISC MICROPROCESSOR

18-6

SIOCLK

SIOTXD
SIORXD

SIOCON
Start Bit

Transmit
Complete

DMA Condition Setting

Interval Time

~~
~~

~~
~~

NOTE: SIO Tx is auto-start regardless of the SIOCON start bit.

Figure 18-6. SIO in Non-Hand-shaking Mode Timing diagram(Auto Run Mode)

S3C44B0X RISC MICROPROCESSOR SIO

18-7

SYNCHRONOUS I/O INTERFACE SPECIAL REGISTERS

SIO CONTROL REGISTER (SIOCON)

Register Address R/W Description Reset Value

SIOCON 0x01D14000 R/W SIO control register 0x00

SIOCON Bit Description Initial State

Clock source select [7] SIO shift clock source select bit.
0 = Internal clock, 1 = External clock

0

Data direction [6] This bit controls whether MSB is transmitted first or LSB is
transmitted first.
0 = MSB mode, 1 = LSB mode

0

Tx/Rx selection [5] This bit decides whether to enable the transmit operation
enabled. If you want to only transmit, the received data in
SIODAT will be ignored.

If users want to transmit and receive, SIO supports data
transmission and reception simultaneously. Users write the data
transmitted in the SIODAT register and then SIO will transmit
the data serially. At the same time, SIO will receive the data
from an external SIO device. After the SIO transmission is
completed, the contents of SIODAT, will have the received data.
0 = Receive only mode, 1 = Transmit/Receive mode

0

Clock edge select [4] This bit determines the clock to be used for serial transmit or
receive operation.
0 = falling edge clock, 1 = rising edge clock

0

SIO start [3] This bit determines whether the SIO functions is running or has
stopped.

When BDMA Tx is used, this bit should be '0'.

0 = No action
1 = Clear 3-bit counter and start shift.
 This bit is cleared just after writing this bit as 1.

0

Shift operation [2] Determines SIO shift operation
0 = Non hand-shaking mode(Auto run mode)
1 = Reserved

0

SIO mode select [1:0] Determines how and by what SIODATA is read/written.
00 = no operations 01 = SIO interrupt mode
10 = BDMA0 mode 11 = BDMA1 mode

00

SIO S3C44B0X RISC MICROPROCESSOR

18-8

SIO DATA REGISTER (SIODAT)

Before transmitting, the SIO data register (SIODAT) contains an 8-bit data value to be transmitted. After transmitting
is completed, the SIODAT has the received data or dummy data.

Register Address R/W Description Reset Value

SIODAT 0x01D14004 R/W SIO data register 0x00

SIODAT Bit Description Initial State

SIO DATA [7:0] This field contains the data to be transmitted or received over the
SIO channel.

0x00

SIO BAUD RATE PRESCALER REGISTER (SBRDR)

The baud rate prescaler register (SBRDR) determines SIO clock rate (baud rate) as follows.

Baud rate = MCLK / 2 /(Prescaler value + 1)

Register Address R/W Description Reset Value

SBRDR 0x01D14008 R/W SIO baud rate prescaler register 0x00

SBRDR Bit Description Initial State

SBRDR [11:0] This field contains the prescaler value for the baud rate 0x00

SIO INTERVAL COUNT REGISTER (IVTCNT)

In the auto run mode, the SIO inserts this interval after transmitting every 8-bit data.

Intervals (between 8-bit data) = MCLK / 4/ (IVTCNT +1)

Register Address R/W Description Reset Value

IVTCNT 0x01D1400C R/W SIO interval counter register 0x00

IVTCNT Bit Description Initial State

IVTCNT [7:0] SIO interval counter register 0x00

S3C44B0X RISC MICROPROCESSOR SIO

18-9

SIO DMA COUNT ZERO REGISTER (DCNTZ)

When SIO operates in DMA mode, the corresponding DCNTZ bit has to be 0 initially. When DMA terminal count is
reached, the corresponding DCNTZ bit has to be set to 1.

Register Address R/W Description Reset Value

DCNTZ 0x01D14010 R/W SIO dma count zero register 0x0

DCNTZ Bit Description Initial State

DCNTZ1 [1] 0: Enables BDMA1 service request.
 When this bit is 0, the SIO can request the DMA service.
1: Disables BDMA1 service request

0

DCNTZ0 [0] 0: Enables BDMA0 service request
 When this bit is 0, the SIO can request the DMA service.
1: Disables BDMA0 service request

0

SIO S3C44B0X RISC MICROPROCESSOR

18-10

NOTES

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-1

19 ELECTRICAL DATA

ABSOLUTE MAXIMUM RATINGS

Table 19-1. Absolute Maximum Rating

Symbol Parameter Rating Unit

VDD DC Supply Voltage 3.6 V

VIN DC Input Voltage 3.3 V Input buffer 4.6

VOUT DC Input Voltage 3.3 V buffer 4.6

Ilatch Latch-up Current ± 200 mA

TSTG Storage Temperature - 40 to 125 oC

RECOMMENDED OPERATING CONDITIONS

Table 19-2. Recommended Operating Conditions

Symbol Parameter Rating Unit

VDDP DC Supply Voltage 3.3 V I/O 3.0 to 3.6 V

VDDI Internal Voltage 2.5 V tolerant 2.3 to 2.7

VDDA Analog core DC Input Voltage 2.5 V Core 2.5 ± 5%

TA Commercial temperature range 0 to 70 oC

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-2

D.C. ELECTRICAL CHARACTERISTICS

Table 19-3. Normal I/O PAD DC Electrical Characteristics

VDDP = 3.3 V ± 0.3 V, TA = 0 to 70 °C

Symbol Parameters Condition Min Typ Max Unit

VT+ Schmitt trigger, positive-going threshold LVCMOS 2.0 V

VT- Schmitt trigger, negative-going threshold LVCMOS 0.8

VH VT+ - VT- Schmitt-trigger 0.5 0.575 0.65

IIH High level input current uA

Input buffer VIN = VDDP -10 10

Input buffer with pull-up 10 33 60

IIL Low level input current uA

Input buffer VIN = VSS -10 10

Input buffer with pull-up -60 -33 -10

VOH High level output voltage (note) V

Type B6 IOH = -6 mA

Type B8 IOH = -8 mA 2.4

Type B10 IOH = -10 mA

Type B12 IOH = -12 mA

VOL Low level output voltage (note) V

Type B4 IOL = 4 mA

Type B6 IOL = 6 mA

Type B8 IOL = 8 mA 0.4

Type B10 IOL = 10 mA

Type B12 IOL = 12 mA

IDS Stop current VIN = VSS or VDD 5 uA
@25 °C

IDD Operating current 1.2 mA/MHz

NOTE: Type B4 means 4mA output driver cell, and Type B8 means 8mA output driver cells.

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-3

Table 19-4. DC Electrical Characteristics

(TA = 0 to 70 °C)

Item Symbol Min Typ Max Unit Remarks

Normal operation IDDCPU – 60* 80 mA * : 66MHz

Idle mode 23* 28 Both oscillators running, CPU
static, LCD refresh active

** Slow mode(@1MHz) ITOTAL 2.1 – ** : Total current consumption.
 (CPU+I/O)

** SL-Idle mode(@1MHz) 1

** Stop mode 5 uA
(@25 °C)

Just running 32KHz oscillator(for
RTC), all other I/O static.

RTC consumption IRTC 2 5 uA x-tal = 32.768KHz for RTC

Table 19-5. Typical current decrease percentage by CLKCON register(@66MHz)

(Unit: %)

Peri IIS IIC ADC RTC UART1 SIO ZDMA0/1 Timer012345 LCD Total

Current saving 1.3% 1.6% 0.7% 0.8% 3.8% 0.9% 2.2% 2.2% 3.2% 16.7

NOTE: This table includes each power consumption of each peripherals. For example, If you do not use IIS and you turned
 off IIS block by CLKCON register, you can save the 1.3% portion from total power consumption.

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-4

1.6 1.8 2.0 2.2 2.4 2.61.7 1.9 2.1 2.3 2.5 2.7

30

10

20

60

40

50

70
75

66

Spec. Guranteed
Area

MCLK(MHz)

VDDCPU(V)

80

Figure 19-1. Typical Operating Voltage/Frequency Range
(VDDIO=3.3V, @Room temperature & SMDK41100 board)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-5

A.C. ELECTRICAL CHARACTERISTICS

1/2 VDD1/2 VDD

tXTALCYC

NOTE: The clock input from the EXTAL0 pin.

Figure 19-2. EXTAL0 Clock Timing

tEXTHIGH

VIH

1/2 VDD
VILVIL

VIHVIH
1/2 VDD

tEXTLOW

tEXTCYC

NOTE: The clock input from the EXTCLK pin.

Figure 19-3. EXTCLK Clock Input Timing

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-6

tEX2CK

tEX2SCK

tSCK2CK

EXTCLK

CLKout

SCLK

Figure 19-4. EXTCLK/CLKout/SCLK in the case that EXTCLK is used without the PLL

tEX2CK

tEX2SCK

tSCK2CK

MCLK

CLKout

SCLK

Figure 19-5. MCLK/CLKout/SCLK in the case that EXTCLK is used with the PLL

EXTCLK

tMDRH

tRESW
nRESET

OM[3:0]

Figure 19-6. Manual Reset and OM[3:0] Input Timing

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-7

nRESET

OSC

VCO
output

MCU operates by OSC clcok.

Clock
Disable

tOSC1

Fout is new frequency.

Power

PLL can operate after OM[3:2] is latched.

PLL is configured by S/W first time.

VCO is adapted to new clock frequency.

Fout

...

...

...

tRST2RUN

Figure 19-7. Power-On Oscillation Setting Timing

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-8

Wake-up

OSC

VCO
Output

Clock
Disable

Fout

16 OSC clocks

STOP mode is initiated.

tOSC2

Figure 19-8. STOP Mode Return Oscillation Setting Timing

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-9

EX
TC

LK

nG
C

S
x

tR
A

D

nO
E

D
A

TA

A
D

D
R

nB
Ex

tR
C

D

tR
O

D
tR

O
DtR

C
D

Ta
cc

tR
A

D
tR

A
D

tR
A

D
tR

A
D

tR
A

D
tR

A
D

tR
A

D
tR

A
D

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

'1
'

Figure 19-9. ROM/SRAM Burst READ Timing(I)
(Tacs=0, Tcos=0, Tacc=2, Toch=0, Tcah=0, PMC=10b, ST=0, DW=16bit)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-10

EX
TC

LK

nG
C

S
x

tR
A

D

nO
E

D
A

TA

A
D

D
R

nB
Ex

tR
C

D

tR
O

D
tR

O
DtR

C
D

tR
BE

D
tR

BE
D

Ta
cc

tR
A

D
tR

A
D

tR
A

D
tR

A
D

tR
A

D
tR

A
D

tR
A

D
tR

A
D

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

tR
D

S tR
D

H

Figure 19-10. ROM/SRAM Burst READ Timing(II)
(Tacs=0, Tcos=0, Tacc=2, Toch=0, Tcah=0, PMC=10b, ST=1, DW=16bit)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-11

EXTCLK

nGS

nOE

ADDR

tXnBRQS
XnBREQ

tXnBRQH

XnBACK

'HZ'

'HZ'

'HZ'

tXnBACKD tXnBACKD

tHZD

tHZD

tHZD

Figure 19-11. External Bus Request in ROM/SRAM Cycle
(Tacs=0, Tcos=0, Tacc=8, Toch=0, Tcah=0, PMC=0, ST=0)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-12

EXTCLK

nGS

tRAD

Tacs

nOE
Tcos

DATA

ADDR

nBE '1'

Toch

Tcah

tRCD

tROD

tRDS

tRDH

tROD

tRCD

tRAD

Tacc

Figure 19-12. ROM/SRAM READ Timing (I)
(Tacs=2,Tcos=2, Tacc=4, Toch=2, Tcah=2, PMC=0, ST=0)

EXTCLK

nGCSx

tRAD

Tacs

nOE
Tcos

DATA

ADDR

nBEx

Toch

Tcah

tRCD

tROD

tRDS

tRDH

tROD

tRCD

tRAD

Tcos

Toch

tRBED tRBED

Tacc

Figure 19-13. ROM/SRAM READ Timing (II)
(Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2cycle, PMC=0, ST=1)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-13

EXTCLK

nGCSx

tRAD

Tacs

nWE
Tcos

DATA

ADDR

nBEx

Toch

Tcah

tRCD

tRWD

tRDD

tRWD

tRCD

tRAD

Tcos

Toch

tRWBED tRWBED

Tacc

tRDD

Figure 19-14. ROM/SRAM WRITE Timing (I)
(Tacs=2,Tcos=2,Tacc=4,Toch=2, Tcah=2, PMC=0, ST=0)

EXTCLK

nGCSx

tRAD

Tacs

nWE
Tcos

DATA

ADDR

nBEx

Toch

Tcah

tRCD

tRWD

tRDD

tRWD

tRCD

tRAD

Tcos

Toch

tRBED tRBED

Tacc

tRDD

Figure 19-15. ROM/SRAM WRITE Timing (II)
(Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2, PMC=0, ST=1)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-14

EXTCLK

nGCSx

nOE
Tacc = 6cycle

nWait

DATA

ADDR

Tacs

Tcos

delayed

tRC

NOTE : The status of nWait is checked at (Tacc-1) cycle.

sampling nWait

Figure 19-16. External nWAIT READ Timing
(Tacs=0, Tcos=0, Tacc=6, Toch=0, Tcah=0, PMC=0, ST=0)

EXTCLK

nGCSx

nWE

DATA

ADDR

tRDD

tRDD

Tacc >= 2cycle

nWait

tWS
tWH

Figure 19-17. External nWAIT WRITE Timing
(Tacs=0, Tcos=0, Tacc=4, Toch=0, Tcah=0, PMC=0, ST=0)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-15

EX
TC

LK

nR
A

S
x

tD
A

D

T
rc

d

nC
A

S
x

D
A

TA

A
D

D
R

nO
E

tD
R

D

tD
R

C
D

tD
D

S

tD
D

H

tD
O

D
T

cp
Tc

as
T

cp
Tc

as
T

cp
Tc

as
T

cp
Tc

as
T

cp
Tc

as
T

cp
Tc

as
T

cp
Tc

as
T

cp
Tc

as

Figure 19-18. DRAM (EDO) Burst READ Timing
(Trcd=2, Tcas=1, Tcp=1, Trp=3.5, MT=10b, DW = 16bit)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-16

EXTCLK

nRASx

nCASx

ADDR

nOE

tXnBRQS

XnBREQ

XnBACK

tXnBRQH

tXnBACKD tXnBACKD

'HZ'

'HZ'

'HZ'

'HZ'

tHZD

tHZD

tHZD

tHZD

tXnBRQL

Figure 19-19. External Bus Request in DRAM Cycle (Trcd=3, Tcas=2, Tcp=1, Trp=4.5)

EXTCLK

nRASx

tDAD

Trcd

nCASx

DATA

ADDR

nOE

Tcp

Trp

tDRD

tDRCD

tDDS

tDDH

tDRCD

tDRD

tDAD

TcastDOD

tDAD

tDOD

Figure 19-20. DRAM(FP) Single READ Timing (Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=01b)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-17

EXTCLK

nRASx

tDAD

Trcd

nCASx

DATA

ADDR

nOE

Tcp

Trp

tDRD

tDRCD

tDDS

tDDH

tDRCD

tDRD

tDAD

TcastDOD

tDAD

tDOD

Figure 19-21. DRAM(EDO) Single READ Timing (Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=10b)

EXTCLK

nRASx

nCASx

ADDR

nOE/nWE

Trp

tDRD

tDCCD tDCCD

tDRD

Tchr

'1'

Figure 19-22. DRAM CBR Refresh Timing (Tchr=4)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-18

EX
TC

LK

nR
A

S
x

tD
A

D

T
rc

d

nC
A

S
x

D
A

TA

A
D

D
R

nO
E

T
cp

Tr
p

tD
R

D

tD
R

C
D

tD
D

S

tD
D

H

tD
R

C
D

tD
R

D

tD
A

D

Tc
as

tD
O

D

tD
A

D

tD
R

C
D Tc

as

tD
R

C
D

tD
R

C
D

T
cp

tD
A

D

tD
R

C
D

Tc
as

tD
R

D

tD
R

C
D

tD
A

D
tD

A
D

tD
A

D

tD
D

S

tD
D

H

tD
D

S

tD
D

H

T
rc

d

Figure 19-23. DRAM(EDO) Page Hit-Miss READ Timing (Trcd=2, Tcas=2, Tcp=1, Trp=3.5, MT=10b)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-19

EXTCLK

nRASx

nCASx

ADDR

Trp

tDRD

tDCCD tDCCD

tDRD

Figure 19-24. DRAM Self Refresh Timing

EXTCLK

nRASx

tDAD

Trcd

nCASx

DATA

ADDR

nWE

Tcp

Trp

tDRD

tDWCD

tDDD tDDD

tDWCD

tDRD

tDAD

TcastDWD

tDAD

tDWD

Figure 19-25. DRAM(FP/EDO) Single Write Timing
(Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=01/10b)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-20

EX
TC

LK

nR
A

S
x

tD
A

D

T
rc

d

nC
A

S
x

D
A

TA

A
D

D
R

nW
E

T
cp

Tr
p

tD
R

D

tD
W

C
D

tD
D

D
tD

D
D

tD
W

C
D

tD
R

D

tD
A

D

Tc
as

tD
W

D

tD
A

D

tD
W

C
D Tc

as

tD
W

C
D

tD
W

C
D

T
cp

tD
A

D

tD
W

C
D

Tc
as

tD
R

D

tD
W

C
D

tD
A

D
tD

A
D

tD
A

D

tD
D

D
tD

D
DT

rc
d

Figure 19-26. DRAM(FP/EDO) Page Hit-Miss Write Timing
(Trcd=2, Tcas=2, Tcp=1, Trp=3.5, MT=01/10b)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-21

EXTCLK

nGCSx

tRAD

Tacs

nOE
Tcos

DATA

ADDR

tRCD

tROD

tRDS

tRDH

tRAD

Tacc

Figure 19-27. Masked-ROM Single READ Timing (Tacs=2, Tcos=2, Tacc=8, PMC=01/10/11b)

EXTCLK

nGCSx

tRAD

nOE

DATA

ADDR

tRCD

tROD

tRDS

tRDH

tRAD

Tacc Tpac Tpac Tpac Tpac

tRAD tRAD tRAD tRAD

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

Figure 19-28. Masked-ROM Consecutive READ Timing
(Tacs=0, Tcos=0, Tacc=3, Tpac=2, PMC=01/10/11b)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-22

S
C

LK

nS
R

A
S

tS
A

D

Tr
p

nS
C

A
S

D
A

T
A

A
D

D
R

/B
A

nB
E

x

tS
R

D

tS
D

S

tS
D

H

S
C

K
E

A
10

/A
P

nG
C

S
x

tS
C

S
D

nW
E

tS
A

D

tS
C

D

tS
W

D

'1
'

T
rc

d

tS
B

E
D

T
cl

Figure 19-29. SDRAM Single Burst READ Timing (Trp=2, Trcd=2, Tcl=2, DW=16bit)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-23

SCLK

nSRAS

nSCAS

ADDR/
BA

nBEx

tXnBRQHtXnBRQS

SCKE

A10/AP

nGCSx

nWE

'1'

XnBREQ

XnBACK

EXTCLK

tXnBACKD tXnBACKD

'HZ'

'HZ'

'HZ'

'HZ'

'HZ'

'HZ'

'HZ'

'HZ'

'HZ'

tHZD

tHZD

tHZD

tHZD

tHZD

tHZD

tHZD

tHZD

tHZD

tXnBRQL

Figure 19-30. External Bus Request in SDRAM Timing (Trp=2, Trcd=2, Tcl=2)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-24

SCLK

nSRAS

tSAD

nSCAS

DATA

ADDR/BA

nBEx

tSRD

SCKE

A10/AP

nGCSx

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSAD

tSCSD

tSRD

'HZ'

'1'

tSWD

Figure 19-31. SDRAM MRS Timing

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-25

SCLK

nSRAS

tSAD

Trp

nSCAS

DATA

ADDR/BA

nBEx

tSRD

tSDS

tSDH

SCKE

A10/AP

nGCSx

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSADtSAD

Trcd

tSCSD

tSRD

tSCSD

tSAD

tSAD

tSBED

Tcl

Figure 19-32. SDRAM Single READ Timing(I) (Trp=2, Trcd=2, Tcl=2)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-26

SCLK

nSRAS

tSAD

Trp

nSCAS

DATA

ADDR/BA

nBEx

tSRD

tSDS

tSDH

SCKE

A10/AP

nGCSx

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSADtSAD

Trcd

tSCSD

tSRD

tSCSD

tSAD

tSAD

tSBED

Tcl

Figure 19-33. SDRAM Single READ Timing(II) (Trp=2, Trcd=2, Tcl=3)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-27

SCLK

nSRAS

tSAD

Trp

nSCAS

DATA

ADDR/BA

nBEx

tSRD

SCKE

A10/AP

nGCSx

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSAD

tSCSD

tSRD

'1'

'1'

'HZ'

Trc

NOTE: Before executing auto/self refresh command, all banks must be idle state.

Figure 19-34. SDRAM Auto Refresh Timing (Trp=2, Trc=4)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-28

S
C

LK

nS
R

A
S

tS
A

D

Tr
p

nS
C

A
S

D
A

TA

A
D

D
R

/B
A

nB
Ex

tS
R

D

tS
D

S

tS
D

H

S
C

K
E

A
10

/A
P

nG
C

S
x

tS
C

S
D

nW
E

tS
A

D

tS
C

D

tS
W

D

'1
'

T
rc

d

tS
BE

D

T
cl

T
cl

T
cl

Figure 19-35. SDRAM Page Hit-Miss READ Timing (Trp=2, Trcd=2, Tcl=2)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-29

SCLK

nSRAS

tSAD

Trp

nSCAS

DATA

ADDR/BA

nBEx

tSRD

SCKE

A10/AP

nGCSx

tSCSD

nWE

tSAD

tSCD

tSWD

tSAD

tSCSD

tSRD

'1'

'1'

'HZ'

Trc

tCKED

'HZ'

'1'

'1'

'1'

'1'

'1'

tCKED

NOTE: Before executing auto/self refresh command, all banks must be idle state.

Figure 19-36. SDRAM Self Refresh Timing (Trp=2, Trc=4)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-30

SCLK

nSRAS

tSAD

Trp

nSCAS

DATA

ADDR/BA

nBEx

tSRD

tSDD

tSDD

SCKE

A10/AP

nGCSx

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSADtSAD

Trcd

tSCSD

tSRD

tSCSD

tSAD

tSAD

tSBED

Figure 19-37. SDRAM Single Write Timing (Trp=2, Trcd=2)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-31

S
C

LK

nS
R

A
S

tS
A

D

Tr
p

nS
C

A
S

D
A

TA

A
D

D
R

/B
A

nB
Ex

tS
R

D

tS
D

D

tS
D

D

S
C

K
E

A
10

/A
P

nG
C

S
x

tS
C

S
D

nW
E

tS
A

D

tS
C

D

tS
W

D

'1
'

T
rc

d

tS
BE

D

Figure 19-38. SDRAM Page Hit-Miss Write Timing (Trp=2, Trcd=2, Tcl=2)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-32

MCLK

XnDACK

tXRS

XnDREQ

tACCR tACCW

tXAS

tXAD

tCADHtCADL

Figure 19-39. External DMA Timing (Handshake, Unit transfer/Block mode I)

MCLK

XnDACK

XnDREQ

tACCW

tXAS

tCADH

tWAH

Figure 19-40. External DMA Timing (Handshake, Unit transfer/Block mode II)

MCLK

XnDACK

tXRS

XnDREQ

tCADH

tXAD

tCADL

tACCR or tACCW

tXAS

Figure 19-41. External DMA Timing (Handshake, On The Fly mode)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-33

MCLK

XnDACK

tXRS

XnDREQ

tACCRtXAD

tCADHtCADL

tXRStXRS

Figure 19-42. External DMA Timing (Single Step, Unit/Block/On-the-fly mode I)

MCLK

XnDACK

tXRS

XnDREQ

tACCRtXAD

tCADHtCADL

tACCWtWAS

tXRH

Figure 19-43. External DMA Timing (Single Step , Unit /Block/On-the-fly mode II)

MCLK

XnDACK

tXRS

XnDREQ

tACCRtXAD

tCADHtCADL

tACCWtWAS

Figure 19-44. External DMA Timing (Single Step , Unit /Block/On-the-fly mode III)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-34

MCLK

XnDACK

tXRS

XnDREQ

tACCR/tACCWtXAD

tCADHtCADL

tACCR/tACCWtWAD

Figure 19-45. External DMA Timing (Demand, On The Fly mode I)

MCLK

XnDACK

tXRS

XnDREQ

tXAD

tCADHtCADL

tWADtACCR/tACCW tACCR/tACCWtWAD

Figure 19-46. External DMA Timing (Demand, On The Fly mode II)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-35

MCLK

XnDACK

tXRS

XnDREQ

tACCR tACCWtXAD

tCADHtCADL

tXRS

Figure 19-47. External DMA Timing (Demand, Unit transfer/Block mode I)

MCLK

XnDACK

tXRS

XnDREQ

tACCR tACCWtXAD

tCADHtCADL

tWAD

Figure 19-48. External DMA Timing (Demand, Unit transfer/Block mode II)

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-36

MCLK

XnDACK

tXRS

XnDREQ

tACCR tACCWtXAD

tCADHtCADL

tWAW

Figure 19-49. External DMA Timing (Whole, Unit transfer/Block mode)

MCLK

XnDACK

tXRS

XnDREQ

tACCR /tACCWtXAD

tCADHtCADL

tWAWO

Figure 19-50. External DMA Timing (Whole, On The Fly mode)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-37

tM2CDLY

tF2CDLY

tVCLKCYC

tC2DDLY

VLINE

VCLK

VD

VM

VFRAME

Figure 19-51. LCD Controller Timing

tSTOPH

tSTARTS

tSDAS tSDAHtBUF

tSCLHIGH tSCLLOW

tSCL

IICSCL

IICSDA

Figure 19-52. IIC Interface Timing

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-38

tRDYIHtRDYIS

EXTCLK

tSIOCKO

tSIOTXD

nXWAIT

SIOCK

SIOTXD

tRDYIW

Figure 19-53. SIO Interface Transmit Timing (Rising edge clock)

tSDIS

IISCLK

IISLRCK

IISDO

CODECLK

IISDI

tSDIH

tSDO

tLRCK

Figure 19-54. SIO Interface Transmit Timing (Rising edge clock)

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-39

Table 19-6. Clock Timing Constants

(VDDP: 3.3V, VDDI: 2.5V, Ta = 25 °C, PLCAP = 70pf, max/min = typ ± 30%)

Parameter Symbol Min Typ Max Unit

External clock to CKOUT tEX2CK – 12 – ns

External clock to SCLK tEX2SCLK – 8 – ns

SCLK to CKOUT tSCLK2CK – 4 – ns

Crystal clock input frequency fXTAL 6 – 20 MHz

Crystal clock input cycle time tXTALCYC 50 – 166.7 ns

External clock input frequency fEXT 1 – 66 MHz

External clock input cycle time tEXTCYC 15.1 – 1000 ns

External clock input low level pulse width tEXTLOW 5 – – ns

External clock input high level pulse width tEXTHIGH 5 – – ns

Mode reset hold time tMDRH 3.0 – – ns

Reset assert time after clock stabilization tRESW 4 – – MCLK

Power-on oscillation setting time tOSC1 – 4096 – MCLK

STOP mode return oscillation setting time tOSC2 – 4096 – MCLK

the interval before CPU runs after nRESET is
released.

tRST2RUN – 132 – MCLK

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-40

Table 19-7. ROM/SRAM Bus Timing Constants

(VDDP: 3.3V, VDDI: 2.5V, Ta = 25°C, PLCAP = 70pf, max/min = typ ± 30%)

Parameter Symbol Min Typ Max Unit

ROM/SRAM Address Delay tRAD – 12 – ns

ROM/SRAM Chip select Delay tRCD – 11 – ns

ROM/SRAM Output enable Delay tROD – 11 – ns

ROM/SRAM read Data Setup time. tRDS – 1 – ns

ROM/SRAM read Data Hold time. tRDH – 5 – ns

ROM/SRAM Byte Enable Delay tRBED – 13 – ns

ROM/SRAM Write Byte Enable Delay tRWBED – 14 – ns

ROM/SRAM output Data Delay tRDD – 14 – ns

ROM/SRAM external Wait Setup time tWS – 1 – ns

ROM/SRAM external Wait Hold time tWH – 5 – ns

ROM/SRAM Write enable Delay tRWD – 14 – ns

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-41

Table 19-8. Clock Timing Constants

(VDDP: 3.3V, VDDI: 2.5V, Ta = 25°C, PLCAP = 70pf, max/min = typ ± 30%)

Parameter Symbol Min Typ Max Unit

DRAM Address Delay tDAD – 12 – ns

DRAM Row active Delay tDRD – 11 – ns

DRAM Read Column active Delay tDRCD – 11 – ns

DRAM Output enable Delay tDOD – 12 – ns

DRAM read Data Setup time tDDS – 1 – ns

DRAM read Data Hold time tDDH – 5 – ns

DRAM Write Cas active Delay tDWCD – 14 – ns

DRAM Cbr Cas active Delay tDCCD – 12 – ns

DRAM Write enable Delay tDWD – 13 – ns

DRAM output Data Delay tDDD – 14 – ns

Table 19-9. Memory Interface Timing Constants

(VDDP :3.3V, VDDI:2.5V, Ta = 25°C, PLCAP = 70pf, max/min = typ ± 30%)

Parameter Symbol Min Typ Max Unit

SDRAM Address Delay tSAD – 4 – ns

SDRAM Chip Select Delay tSCSD – 4 – ns

SDRAM Row active Delay tSRD – 4 – ns

SDRAM Column active Delay tSCD – 4 – ns

SDRAM Byte Enable Delay tSBED – 5 – ns

SDRAM Write enable Delay tSWD – 5 – ns

SDRAM read Data Setup time tSDS – 4 – ns

SDRAM read Data Hold time tSDH – 0 – ns

SDRAM output Data Delay tSDD – 8 – ns

SDRAM Clock Eable Delay Tcked – 5 – ns

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-42

Table 19-10. External Bus Request Timing Constants

(VDDP: 3.3V, VDDI: 2.5V, Ta = 25°C, PLCAP = 70pf, max/min = typ ± 30%)

Parameter Symbol Min Typ. Max Unit

eXternal Bus Request Setup time tXnBRQS – 2 – ns

eXternal Bus Request Hold time tXnBRQH – 5 – ns

eXternal Bus Ack Delay tXnBACKD – 15 – ns

HZ Delay tHZD – 7 – ns

Table 19-11. DMA Controller Module Signal Timing Constants

(VDDP: 3.3V, VDDI: 2.5V, Ta = 25°C, PLCAP = 70pf, max/min = typ ± 30%)

Parameter Symbol Min Typ. Max Unit

eXternal Request Setup tXRS – 3 – ns

eXternal Acknowledge Setup tXAS – 3 – ns

aCcess to Ack Delay when Low transition tCADL – 11 – ns

aCcess to Ack Delay when High transition tCADH – 9 – ns

eXternal Acknowledge Delay tXAD 2 – – MCLK

Width Acknowledge when Handshake mode tWAH 0 – – MCLK

Width of Acknowledge high when Whole mode tWAW 2 – – MCLK

Width of Acknowledge high when Whole and OTF
mode

tWAWO 0 – – MCLK

Width Ack of Single tWAS 3 – – MCLK

eXternal Request Hold tXRH 0 – – MCLK

Width of Acknowledge when Demand mode tWAD 0 – – MCLK

S3C44B0X RISC MICROPROCESSOR ELECTRICAL DATA

19-43

Table 19-12. LCD Controller Module Signal Timing Constants

(VDDP: 3.3V, VDDI: 2.5V, Ta = 25°C, PLCAP = 70pf)

Parameter Symbol Min Typ. Max Unit

VCLK cycle time tVCLKCYC 4 – – MCLK

VCLK to VD delay time tC2DDLY – – 3 ns

VM to VCLK delay time tM2CDLY 4 – – MCLK

VFRAME to VCLK delay time tF2CDLY – – 3 ns

Table 19-13. IIS Controller Module Signal Timing Constants

(VDDP: 3.3V, VDDI: 2.5V, Ta = 25°C, PLCAP = 70pf)

Parameter Symbol Min Typ. Max Unit

IISLRCK delay time tLRCK 0.5 – 5.7 ns

IISDO delay time tSDO 0.4 – 2.5 ns

IISDI input setup time tSDIS 7.9 – – ns

IISDI input hold time tSDIH 0.3 – – ns

CODEC clock frequency tCODEC 1/16 – 1 fIIS_BLOCK

Table 19-14. IIC BUS Controller Module Signal Timing

(VDDP: 3.3V, VDDI: 2.5V, Ta = 25°C, PLCAP = 70pf)

Parameter Symbol Min Typ. Max Unit

SCL clock frequency fSCL – – std. 100
fast 400

KHz

SCL high level pulse width tSCLHIGH std. 4.0
fast 0.6

– – us

SCL low level pulse width tSCLLOW std. 4.7
fast 1.3

– – us

Bus free time between STOP and START tBUF std. 4.7
fast 1.3

– – us

START hold time tSTARTS std. 4.0
fast 0.6

– – us

SDA hold time tSDAH std. 0
fast 0

– std. - fast
0.9

us

SDA setup time tSDAS std. 250
fast 100

– – ns

STOP setup time TstOPH std. 4.0
fast 0.6

– – us

NOTE: Std. means Standard Mode and fast means Fast Mode.

ELECTRICAL DATA S3C44B0X RISC MICROPROCESSOR

19-44

NOTES

S3C44B0X RISC MICROPROCESSOR MECHANICAL DATA

20-1

20 MECHANICAL DATA

PACKAGE DIMENSIONS

#160

NOTE: Dimensions are in millimeters.

#1

0.50

160-LQFP-2424

0.20
+ 0.07
- 0.03

0.08 MAX (2.25)

24.00 ± 0.10

26.00 ± 0.20

24
.0

0
±

0.
10

26
.0

0 ±
 0

.2
0

0.08 MAX

0.127
+ 0.073
- 0.037

0-7

0.
45

-0
.7

5

0.05-0.15

1.40 ± 0.05

1.60 MAX

Figure 20-1. 160-LQFP-2424 Package Dimensions

MECHANICAL DATA S3C44B0X RISC MICROPROCESSOR

20-2

Figure 20-2. 160-FBGA-12.0x12.0 Package Dimensions 1

S3C44B0X RISC MICROPROCESSOR MECHANICAL DATA

20-3

Figure 20-3. 160-FBGA-12.0x12.0 Package Dimensions 2

NOTE: To get more specific information for testing the FBGA/TQFP package using JTAG, Please contact us.

MECHANICAL DATA S3C44B0X RISC MICROPROCESSOR

20-4

NOTES

