K4S51163PF-Y(P)F

8M x 16Bit x 4 Banks Mobile-SDRAM

FEATURES

- 1.8V power supply.
- · LVCMOS compatible with multiplexed address.
- Four banks operation.
- · MRS cycle with address key programs.
 - -. CAS latency (1, 2 & 3).
 - -. Burst length (1, 2, 4, 8 & Full page).
 - -. Burst type (Sequential & Interleave).
- · EMRS cycle with address key programs.
- All inputs are sampled at the positive going edge of the system clock.
- Burst read single-bit write operation.
- Special Function Support.
 - -. PASR (Partial Array Self Refresh).
 - -. Internal TCSR (Temperature Compensated Self Refresh)
 - -. DS (Driver Strength)
- · DQM for masking.
- · Auto refresh.
- 64ms refresh period (8K cycle).
- Commercial Temperature Operation (-25°C ~ 70°C).
- 1 /CS Support.
- 2Chips DDP 54Balls FBGA(-YXXX -Pb, -PXXX -Pb Free).

GENERAL DESCRIPTION

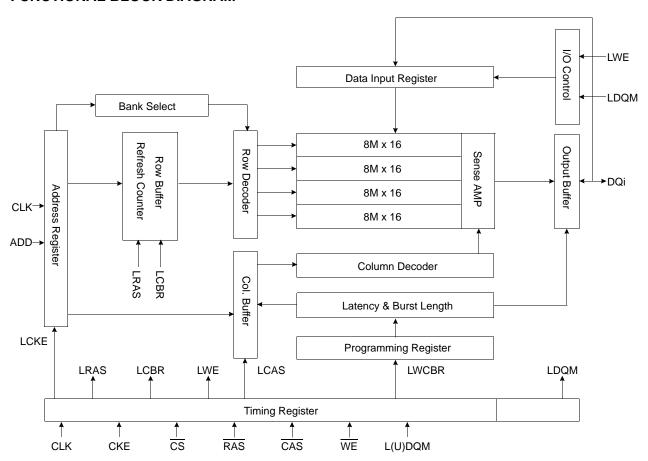
The K4S51163PF is 536,870,912 bits synchronous high data rate Dynamic RAM organized as 4 x 8,388,608 words by 16 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock and I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst lengths and programmable latencies allow the same device to be useful for a variety of high bandwidth and high performance memory system applications.

ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package	
K4S51163PF-Y(P)F75	133MHz(CL=3),83MHz(CL=2)		EA EDOA DE	
K4S51163PF-Y(P)F90	111MHz(CL=3),83MHz(CL=2)	LVCMOS	54 FBGA Pb (Pb Free)	
K4S51163PF-Y(P)F1L	111MHz(CL=3)*1,66MHz(CL=2)		,	

⁻ F : Low Power, Commercial Temperature(-25°C ~ 70°C)

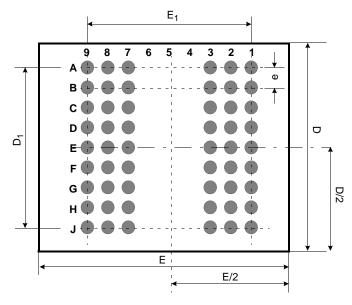
Notes :


- 1. In case of 40MHz Frequency, CL1 can be supported.
- Samsung are not designed or manufactured for use in a device or system that is used under circumstance in which human life is potentially at stake.
 Please contact to the memory marketing team in samsung electronics when considering the use of a product contained herein for any specific purpose, such as medical, aerospace, nuclear, military, vehicular or undersea repeater use.

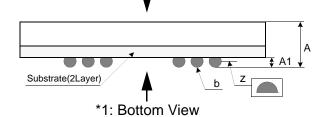
Address configuration

Organization	Bank	Row	Column Address	
32M x16	BA0,BA1	A0 - A12	A0 - A9	

FUNCTIONAL BLOCK DIAGRAM

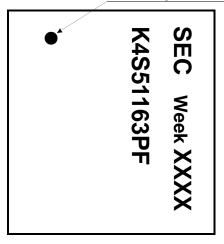


Package Dimension and Pin Configuration



< Top View*2 >

	54Ball(6x9) FBGA									
	1	2	3	7	8	9				
Α	VSS	DQ15	VSSQ	VDDQ	DQ0	VDD				
В	DQ14	DQ13	VDDQ	VSSQ	DQ2	DQ1				
С	DQ12	DQ11	VSSQ	VDDQ	DQ4	DQ3				
D	DQ10	DQ9	VDDQ	VSSQ	DQ6	DQ5				
Е	DQ8	NC	VSS	VDD	LDQM	DQ7				
F	UDQM	CLK	CKE	CAS	RAS	WE				
G	A12	A11	A9	BA0	BA1	CS				
Н	A8	A7	A6	A0	A1	A10				
J	VSS	A5	A4	А3	A2	VDD				



< Top View*2 >

Pin Name Pin Function CLK System Clock CS Chip Select CKE Clock Enable A0 ~ A12 Address BA₀ ~ BA₁ Bank Select Address RAS Row Address Strobe CAS Column Address Strobe WE Write Enable L(U)DQM Data Input/Output Mask **DQ**0 ~ 15 Data Input/Output VDD/Vss Power Supply/Ground VDDQ/VSSQ Data Output Power/Ground

#A1 Ball Origin Indicator

Symbol	Min	Тур	Max
Α	1.00	1.10	1.20
A ₁	0.27	0.32	0.37
Е	-	11.5	-
E ₁	-	6.40	-
D	-	10.0	-
D ₁	-	6.40	-
е	-	0.80	-
b	0.45	0.50	0.55
Z	-	-	0.10

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1.0 ~ 2.6	V
Voltage on VDD supply relative to Vss	VDD, VDDQ	-1.0 ~ 2.6	V
Storage temperature	Тѕтс	-55 ~ +150	°C
Power dissipation	Po	1.0	W
Short circuit current	los	50	mA

NOTES:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = -25 to 70°C for Commercial)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	VDD	1.7	1.8	1.95	V	
Supply voltage	VDDQ	1.7	1.8	1.95	V	
Input logic high voltage	ViH	0.8 x VDDQ	1.8	VDDQ + 0.3	V	1
Input logic low voltage	VIL	-0.3	0	0.3	V	2
Output logic high voltage	Voн	VDDQ -0.2	-	-	V	Iон = -0.1mA
Output logic low voltage	Vol	-	-	0.2	V	IoL = 0.1mA
Input leakage current	ILI	-2	-	2	uA	3

NOTES:

- 1. VIH (max) = 2.2V AC.The overshoot voltage duration is \leq 3ns.
- 2. VIL (min) = -1.0V AC. The undershoot voltage duration is \leq 3ns.
- 3. Any input $0V \le VIN \le VDDQ$.

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with tri-state outputs.

CAPACITANCE (VDD = 1.8V, TA = $23^{\circ}C$, f = 1MHz, VREF = $0.9V \pm 50$ mV)

Pin	Symbol	Min	Max	Unit	Note
Clock	Ссік	3.0	6.0	pF	
RAS, CAS, WE, CS, CKE	CIN	3.0	6.0	pF	
DQM	CIN	1.5	3.0	pF	
Address	CADD	3.0	6.0	pF	
DQ0 ~ DQ15	Соит	3.0	5.0	pF	

^{4.} Dout is disabled, $0V \le VOUT \le VDDQ$.

DC CHARACTERISTICS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = -25 to $70^{\circ}C$ for Commercial)

Donomotor	Council al	ymbol Test Condition			Versio	11:4	Nata	
Parameter Symbol Test Condition		on	-75 -90 -1		-1L	Unit	Note	
Operating Current (One Bank Active)	Icc1	Burst length = 1 tRC ≥ tRC(min) Io = 0 mA			90	80	mA	1
Precharge Standby Current in	Icc2P	CKE ≤ VIL(max), tcc = 10ns			0.6	•	mA	
power-down mode	Icc2PS	CKE & CLK ≤ VIL(max), tcc =	∞		0.6		IIIA	
Precharge Standby Current	Icc2N	CKE ≥ VIH(min), CS ≥ VIH(mir Input signals are changed on			20		- mA	
in non power-down mode		CKE \geq VIH(min), CLK \leq VIL(max), tcc = ∞ Input signals are stable			2			
Active Standby Current	ІссзР	CKE ≤ VIL(max), tcc = 10ns		10			A	
in power-down mode	in power-down mode Icc3PS C		CKE & CLK ≤ VIL(max), tcc = ∞				— mA	
Active Standby Current	ІссзN	CKE ≥ VIH(min), CS ≥ VIH(mir Input signals are changed on		40			mA	
in non power-down mode (One Bank Active)	Icc3NS	CKE \geq VIH(min), CLK \leq VIL(max), tcc = ∞ Input signals are stable			10			
Operating Current (Burst Mode)	Icc4	Io = 0 mA Page burst 4Banks Activated tccd = 2CLKs	Page burst 4Banks Activated			120	mA	1
Refresh Current	Icc5	tarfc ≥ tarfc(min)	170	170	170	mA		
			TCSR Range	Max 4	10	Max 70	°C	
Self Refresh Current	Icc6	CKE ≤ 0.2V	Full Array	400		900		
Seii Kellesti Culterii	ICCO	UNE ≥ U.ZV	1/2 of Full Array	320		600	uA	
		1/4 of Full Array 280 500		280		500		

NOTES:

- 1. Measured with outputs open.
- 2. Unless otherwise noted, input swing level is CMOS(VIH /VIL=VDDQ/VSSQ).

AC OPERATING TEST CONDITIONS (VDD = $1.7V \sim 1.95V$, TA = -25 to 70°C for Commercial)

Parameter	Value	Unit
AC input levels (Vih/Vil)	0.9 x Vddq / 0.2	V
Input timing measurement reference level	0.5 x Vddq	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	0.5 x Vddq	V
Output load condition	See Figure 2	

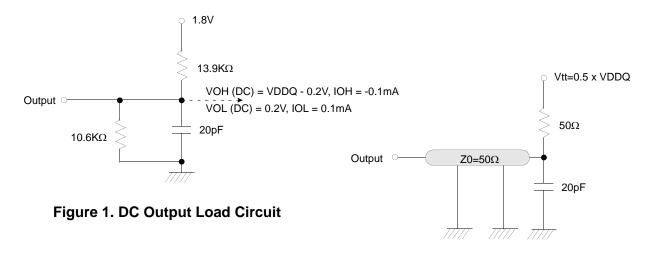


Figure 2. AC Output Load Circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Compleal		Version	Unit	NI 4	
		Symbol	-75	-75 -90		Unit	Note
Row active to row active delay		trrd(min)	15	18	18	ns	1
RAS to CAS delay		trcd(min)	22.5	24	27	ns	1
Row precharge time		trp(min)	22.5	24	27	ns	1
Dow optive time		tras(min)	50	50	50	ns	1
Row active time		tras(max)		100	1	us	
Row cycle time		trc(min)	72.5	74	77	ns	1
Last data in to row precharge		trdl(min)		15		ns	2
Last data in to Active delay		tdal(min)		tRDL + tRP	-		
Last data in to new col. address delay		tcdl(min)	1			CLK	2
Last data in to burst stop		tBDL(min)	1			CLK	2
Auto refresh cycle time		tarfc(min)	80			ns	
Exit self refresh to active command		tsrfx(min)	120			ns	
Col. address to col. address delay		tccd(min)	1			CLK	3
Number of valid output data	CAS	S latency=3	2				
Number of valid output data	CAS	S latency=2	1			ea	4
Number of valid output data	CAS	S latency=1		-	0	1	

NOTES:

^{1.} The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer.

^{2.} Minimum delay is required to complete write.

^{3.} All parts allow every cycle column address change.

^{4.} In case of row precharge interrupt, auto precharge and read burst stop.

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Parameter		Symbol	-	75	-90		-1L		Unit	Note
		Syllibol	Min	Max	Min	Max	Min	Max	Unit	Note
	CAS latency=3	tcc	7.5		9		9			
CLK cycle time	CAS latency=2	tcc	12	1000	12	1000	15	1000	ns	1
	CAS latency=1	tcc	-		-		25			
	CAS latency=3	tsac		6		7		7		
CLK to valid output delay	CAS latency=2	tsac		9		9		10	ns	1,2
	CAS latency=1	tsac		-		-		20		
	CAS latency=3	tон	2.0		2.0		2.0			2
Output data hold time	CAS latency=2	tон	2.0		2.0		2.0		ns	
	CAS latency=1	tон	-		-		2.0			
CLK high pulse width		tсн	2.5		3.0		3.0		ns	3
CLK low pulse width		tcL	2.5		3.0		3.0		ns	3
Input setup time		tss	2.0		2.0		2.0		ns	3
Input hold time		tsн	1		1		1.5		ns	3
CLK to output in Low-Z		tsız	1		1		1		ns	2
	CAS latency=3			6		7		7		
CLK to output in Hi-Z	CAS latency=2	tsHZ		9		9		10	ns	
	CAS latency=1					-		20		

NOTES:

If tr & tf is longer than 1ns, transient time compensation should be considered,

^{1.} Parameters depend on programmed CAS latency.

^{2.} If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

^{3.} Assumed input rise and fall time (tr & tf) = 1ns.

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

SIMPLIFIED TRUTH TABLE

С	OMMAND		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	BA0,1	A10/AP	A12,A11, A9 ~ A0	Note
Register	Mode Regis	ster Set	Н	Х	L	L	L	L	Х		OP COI	DE	1, 2
	Auto Refres	sh	Н	Н	L	L	L	Н	Х		Х		3
Refresh		Entry		L	_	_	_	''	^		^		
Refresi	Self Refresh	Exit	L	Н	L	Н	Н	Н	х		X		3
	LAIL		L	""	Н	Х	Х	Х	^		^		3
Bank Active & Ro	Bank Active & Row Addr.			Х	L	L	Н	Н	Х	V	Row	Address	
Read & Auto Precharge Disable				V					· ·	.,	L	Column	4
Column Address	Auto Precha	arge Enable	Н	X	L	Н	L	Н	Х	V	Н	Address (A0~A9)	4, 5
Write & Auto Precharge Disable				V					V	V	L	Column	4
Column Address Auto Precharge Enable			Н	Х	L	Н	L	L	Х	V	Н	Address (A0~A9)	4, 5
Burst Stop			Н	Х	L	Н	Н	L	Х		Х		6
Precharge	Bank Selec	tion	Н	Х	L	L	Н	L	Х	V	L	Х	
Frecharge	All Banks		111	^	_	_	"	L	^	Х	Н	^	
		Entry	Н	L	Н	H X X X X							
Clock Suspend of Active Power Do		Litty	'''	_	L	V	V	V	^		Х		
		Exit	L	Н	Χ	Х	Х	Х	Х				
		Entry	Н	L	Н	Х	Х	Х	х				
Precharge Powe	r Down	Entry	П	_	L	Н	Н	Н	^		Х		
Mode Exit		L	Н	Н	Х	Х	Х	х		^			
Exit			L	П	L	V	٧	V	^				
DQM	DQM					Х			V		Х		7
No Operation Co	la Oparation Command			Х	Н	Х	Х	Х	Х		Х		
TNO Operation Co	lo Operation Command			^	L	Н	Н	Н	^				

(V=Valid, X=Don't Care, H=Logic High, L=Logic Low)

NOTES:

1. OP Code: Operand Code

A0 ~ A12 & BA0 ~ BA1 : Program keys. (@MRS)

MRS can be issued only at all banks precharge state.A new command can be issued after 2 CLK cycles of MRS.

3. Auto refresh functions are the same as CBR refresh of DRAM.

The automatical precharge without row precharge command is meant by "Auto".

Auto/self refresh can be issued only at all banks precharge state.

Partial self refresh can be issued only after setting partial self refresh mode of EMRS.

- 4. BA0 ~ BA1 : Bank select addresses.
- During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst.

New row active of the associated bank can be issued at tRP after the end of burst.

- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at the positive going edge of CLK masks the data-in at that same CLK in write operation (Write DQM latency is 0), but in read operation, it makes the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2).

A. MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with Normal MRS

Address	BA0 ~ BA1	A12 ~ A10/AP	A9 *2	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
Function	"0" Setting for Normal MRS	RFU ^{*1}	W.B.L	Test I	Mode	CA	AS Later	псу	вт	Ви	ırst Lenç	gth

Normal MRS Mode

	-	Test Mode		CA	S Late	ency		Burst	Туре	Burst Length						
A8	A7	Туре	A6	A5	A4	Latency	А3		Туре		Туре		A 1	A0	BT=0	BT=1
0	0	Mode Register Set	0	0	0	Reserved	0	Sequential		0	0	0	1	1		
0	1 Reserved 0		0	1	1	1	Int	Interleave		0	1	2	2			
1	0	Reserved	0	1	0	2		Mode Select		0	1	0	4	4		
1	1	Reserved	0	1	1	3	BA1	BA0	Mode	0	1	1	8	8		
	Write	Burst Length	1	0	0	Reserved				1	0	0	Reserved	Reserved		
Α9		Length	1	0	1	Reserved	0	Set		1	0	1	Reserved	Reserved		
0	Burst		1	1	0	Reserved	U	0	for Nor- mal MRS	1	1	0	Reserved	Reserved		
1	1 Single Bit		1	1	1	Reserved				1	1	1	Full Page	Reserved		

Full Page Length x16: 512Mb(1024)

Register Programmed with Extended MRS

Address	BA1	BA0	A12 ~ A10/AP	A9	A8	A7	A6	A5	A4	А3	A2	A 1	A0
Function	Mode	Select		RFU*1			D	S	RF	·U*1		PASR	

EMRS for PASR(Partial Array Self Ref.) & DS(Driver Strength)

	ľ	Mode Selec	t			Driv	er Stre	ength				PASR
BA1	BA0		Mode		A6 A5 Driver Stren		er Strength	A2	A1	A0	Size of Refreshed Area	
0	0	No	rmal MRS		0	0	Full		0	0	0	Full Array
0	1	F	Reserved		0	1		1/2		0	1	1/2 of Full Array
1	0	EMRS fo	r Mobile SDF	RAM	1	0	1/4		0	1	0	1/4 of Full Array
1	1	F	Reserved		1	1		1/8	0	1	1	Reserved
		I.	Reserved	Addre	ss				1	0	0	Reserved
A12~/	A10/AP	A9	A8	4	١7	Δ	١4	А3	1	0	1	Reserved
0		0	0		0		0	0	1	1	0	Reserved
	U				U	'	·		1	1	1	Reserved

1.RFU(Reserved for future use) should stay "0" during MRS cycle.
2.If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.

Partial Array Self Refresh

- 1. In order to save power consumption, Mobile SDRAM has PASR option.
- 2. Mobile SDRAM supports 3 kinds of PASR in self refresh mode: Full Array, 1/2 of Full Array, 1/4 of Full Array

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

BA1=0 BA0=0 BA0=1 BA1=1 BA0=0 BA1=1 BA0=1

- Full Array

- 1/2 Array

- 1/4 Array

Partial Self Refresh Area

Internal Temperature Compensated Self Refresh (TCSR)

Note:

- 1. In order to save power consumption, Mobile-SDRAM includes the internal temperature sensor and control units to control the self refresh cycle automatically according to the two temperature range; Max. 40 °C, Max. 70 °C.
- 2. If the EMRS for external TCSR is issued by the controller, this EMRS code for TCSR is ignored.

Tomporatura Banga		Unit								
Temperature Range	Full Array	1/2 of Full Array	/2 of Full Array 1/4 of Full Array							
Max. 40 °C	400	320	280	uA						
Max. 70 °C	900	600	500	uA						

B. POWER UP SEQUENCE

- 1. Apply power and attempt to maintain CKE at a high state and all other inputs may be undefined.
- Apply VDD before or at the same time as VDDQ.
- 2. Maintain stable power, stable clock and NOP input condition for a minimum of 200us.
- 3. Issue precharge commands for all banks of the devices.
- 4. Issue 2 or more auto-refresh commands.
- 5. Issue a mode register set command to initialize the mode register.
- 6. Issue a extended mode register set command to define DS or PASR operating type of the device after normal MRS.

EMRS cycle is not mandatory and the EMRS command needs to be issued only when DS or PASR is used.

The default state without EMRS command issued is the half driver strength and full array refreshed.

The device is now ready for the operation selected by EMRS.

For operating with DS or PASR , set DS or PASR mode in EMRS setting stage.

In order to adjust another mode in the state of DS or PASR mode, additional EMRS set is required but power up sequence is not needed again at this time. In that case, all banks have to be in idle state prior to adjusting EMRS set.

C. BURST SEQUENCE

1. BURST LENGTH = 4

Initial	Address		Sogu	ential		Interleave						
A 1	A0	†	Sequ	entiai								
0	0	0	1	2	3	0	1	2	3			
0	1	1	2	3	0	1	0	3	2			
1	0	2	3	0	1	2	3	0	1			
1	1	3	0	1	2	3	2	1	0			

2. BURST LENGTH = 8

Init	ial Addr	ess				Sean	ontial							Interi	0370			
A2	A1	A0	Sequential									morieave						
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0

