RICOH

R5524N SERIES

USB HIGH-SIDE POWER SWITCH

NO.EA-188-111212

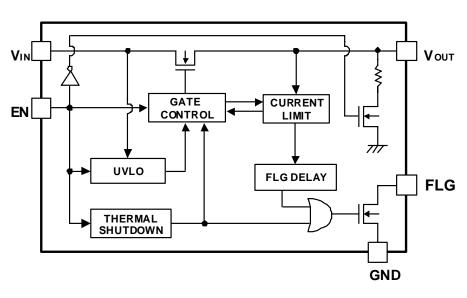
OUTLINE

The R5524N series is CMOS-based high-side MOSFET switch ICs for Universal Serial Bus (USB) applications. Using Nch FET as a switching transistor, low ON resistance (Typ.100m Ω) and reverse current protection is possible.

An Over-current limit circuit, a thermal shutdown circuit, and an under voltage lockout circuit (UVLO) are built in as protection circuits. Further, a delay circuit for flag signal after detecting over-current, is embedded to prevent miss-operation of error flag because of inrush current.

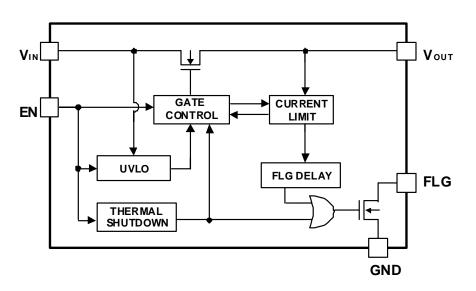
In order to support easy power-line design, the over-current level is highly accurate.

The R5524N series is ideal for applications of protection for USB power supply. Since the package is small SOT-23-5, high density mounting on board is possible.


FEATURES

- N-channel MOS High-Side switch IC
- Switch ON ResistanceTyp. $100m\Omega$ (5V input)
- Current Limit ThresholdMin. 650mA (001A/B, 002A/B), Min.1.25A (004A)
- Over-current LimitMin. 550mA
- Flag Delay TimeTyp. 20ms.
- Built-in under-voltage lockout circuit (UVLO)
- Built-in Thermal Shutdown Circuit
- Built-in Reverse current protection circuit
- PackageSOT-23-5
- Built-in Soft-start Function

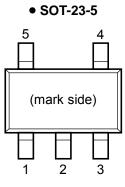
APPLICATIONS


- PCs and PC peripherals
- Digital Televisions (DTV)
- Set Top Boxes (STB)
- Printers
- PDA
- Game Consoles

BLOCK DIAGRAM

R5524NxxxA

R5524NxxxB



SELECTION GUIDE

The over-current limit protection type, the Current Limit Threshold and the auto discharge function for the ICs can be selected at the user's request.

Product Name	ct Name Package Quantity per Reel Pb Free H		Halogen Free		
R5524N00x*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes	
 x : Select the combination of 1 : Latch Off Type (Curre 2 : Constant Current Type 4 : Constant Current Type * : Auto discharge function a (A) with auto discharge function (B) without auto discharge 	nt Limit Threshold Min.6 (Current Limit Thresho (Current Limit Threshold t off state are options as ction at off state	50mA) ld Min.650mA) l Min.1.25A) (B Versior			

PIN CONFIGURATIONS

PIN DESCRIPTION

Pin No	Symbol	Pin Description	
1	VIN	Input Pin	
2	GND	Ground Pin	
3	EN	Enable Pin ("H" active)	
4	FLG	FLG pin (Open Drain Output)	
5	Vout	Output Pin	

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
VIN	Input Voltage	6.0	V
VEN	Enable Pin Input Voltage	-0.3 to 6.0	V
VFLG	Flag Voltage	-0.3 to 6.0	V
IFLG	Flag Current	14	mA
Vout	Output Voltage	-0.3 to 6.0	V
Ιουτ	Output Current	Internal Limited	
PD	Power Dissipation (SOT-23-5) *	420	mW
Topt	Operating Temperature	-40 to 85	°C
Tstg	Storage Temperature	–55 to 125	°C

*) For Power Dissipation please refer to PACKAGE INFORMATION to be described.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

ELECTRICAL CHARACTERISTICS

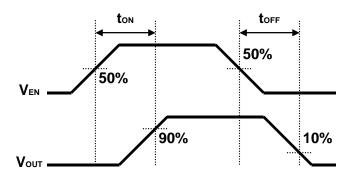
• R5524N

	<u></u>						opt=25°C
Symbol	ltem	Conditions		Min.	Тур.	Max.	Unit
Vin	Input Voltage			2.7		5.5	V
DD1	Supply Current (Active Mode)	Vout=OPEN,EN="H",VIN=5V			110	180	μA
DD2	Supply Current (Standby Mode)	Vout=OPEN,EN="L",VIN=5V			0.1	1.0	μA
RON	Switch On Resistance	VIN=5V, IOUT=500mA			100	150	mΩ
ton	Output Turn-on Delay	VIN=5V, RL=6	δ0Ω		400		μS
toff	Output Turn-off Delay	VIN=5V, RL=6	δ0Ω		50		μS
Vuvlo	UVLO Released Voltage	V _{IN} =increasing		2.3	2.5	2.7	V
VHYS	UVLO Hysteresis Range	V _{IN} =decreas	ing		0.1		V
	Current Limit Threshold	001A/001B 002A/002B	V _{IN} =5V	650	800	980	mA
Ітн		0044	V _{IN} =5V	1.25	1.55	1.85	А
		004A	V _{IN} =5V,Topt=0 ~ 70°C	1.2	1.55	1.9	
ILIM		VIN=5V, 5ms after Vout=0V		550	650	800	mA
t FD	Flag Delay Time* ¹	V _{IN} =5V, From Over Current to FLG="L"		7	20	30	ms
TTSD	Thermal Shutdown Temperature	Junction Temperature			135		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			120		°C
IEN	Enable Pin Input Current				0.01	1.0	μA
V _{EN1}	Enable Pin Input Voltage 1	V _{EN} =increasing		2.0		6.0	V
Ven2	Enable Pin Input Voltage 2	V _{EN} =decreasing		-0.3		0.8	V
Ιιο	Output Leakage Current				0.1	1.0	μA
Vlf	Flag "L" Output Voltage	Isink=1mA				0.4	V
FOF	Flag Off Current	V _{FLG} =5.5V			0.01	1.0	μA
REV	Reverse Leakage Current	VIN=0V, VOUT=5.5V				50	μA
RLOW	Nch. On Resistance for Auto Discharge (A Version)				450		Ω

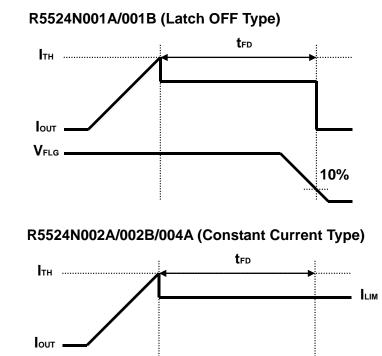
*1) Flag delay time depends on input voltage.

The specification in _____ is checked and guaranteed by design engineering.

All of unit are tested and specified under load conditions such that Tj≈Topt=25°C except for Thermal Shutdown item.


RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.


TIMING CHART

Output ON Time, Output OFF Time

V_{FLG}

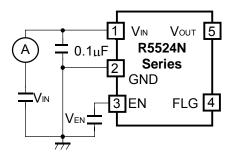
Flag Delay Time

10%

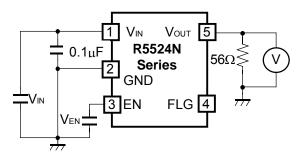
The Over-Current Limitation Function

R5524N001A/001B has the built-in latch-off type over-current limit circuit. When the over-current is detected, the protection circuit becomes active and the switch-transistor is turned OFF. The latch function is released if the input voltage value is exceeded in the release threshold of the UVLO circuit value after when it became lower than the detection threshold of the UVLO circuit value; or the EN pin set to the enabling condition again after set to the disabling condition.

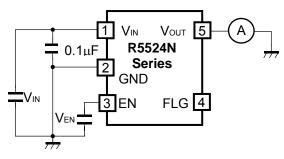
If the over current condition occurred when the input voltage value was close to the minimum operating input voltage value. Under this condition, the voltage descends by the parasitic impedance on the power supply side, and it might fall below the detection threshold of the UVLO circuit. In this case, the switch-transistor is turned OFF and because of that the voltage drop of power line's parasitic impedance stops; the latch function is released with the UVLO and it becomes the over current condition again. The switch transistor keeps continual ON and OFF until one of the following is done; increasing the input voltage value; the setting of EN pin is disabling; or reducing the value of load current.

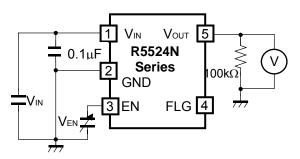

Moreover, the supply-voltage changed by the load-current dramatically changed depends upon the parasitic impedance of the wiring on the load side or the power supply side. Due to this, decreasing the parasitic impedance by the wiring on board is recommended.

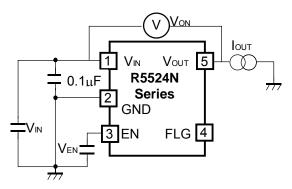
The switch transistor of R5524N001A/001B is turned OFF when the latch-off-function operates under the condition of the load of the constant current as the load device, such as the electronic load and so on, connecting with the V_{OUT} pin of R5524N001A/001B. Because the load device keeps the constant current, the V_{OUT} pin voltage may become negative potential. If the V_{OUT} pin is exceed the absolute maximum rating may cause the permanent damages to the device, please avoid using in this situation.

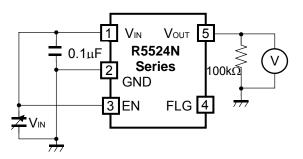

R5524N002A/002B/004A has the built-in over current protection circuit as the constant current type. It detects as the over-current condition, if the current flows as the ITH defined. Then operating the switch transistor to limit the output current to be the constant current defined by the I_{LIM} .

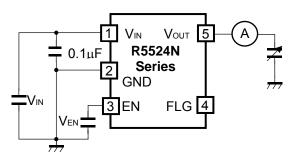
If the condition of the over-current limit caused by the V_{OUT} pin clamped to the GND were continued the temperature of the ICs would increase drastically. The switch-transistor is turned OFF if the temperature of the ICs becomes over 135°C (Typ.). And after this, the switch-transistor is turned ON again when the temperature of ICs decreased approximately 15°C. The switch-transistor keeps continual ON and OFF until either the switch is turned OFF or the V_{OUT} pin is removed from GND.

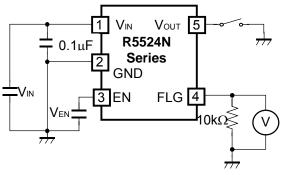

TEST CIRCUIT


Supply Current Test Circuit

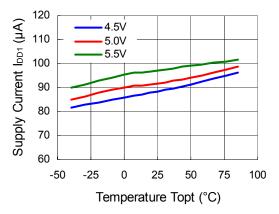

Output ON Time/Output OFF Time Test Circuit

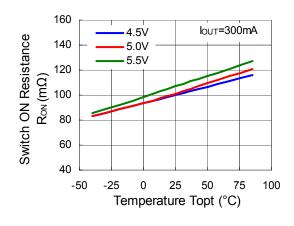

Over current Limit Test Circuit

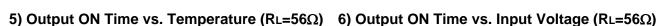

Enable Input Voltage Test Circuit

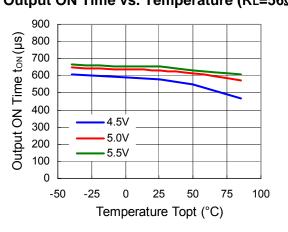

Switch ON Resistance Test Circuit

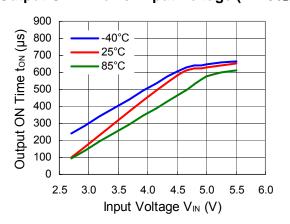
UVLO Released Voltage Test Circuit


Current Limit Threshold Test Circuit

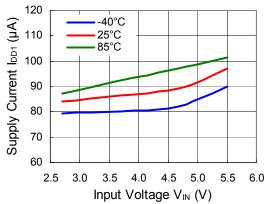

Flag Output Delay Time Test Circuit

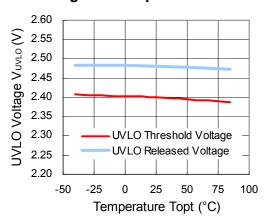

TYPICAL CHARACTERISTICS


1) Supply Current vs. Temperature

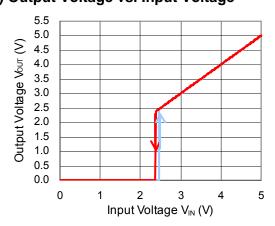


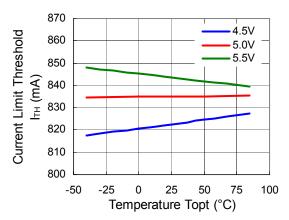
3) Switch ON Resistance vs. Temperature

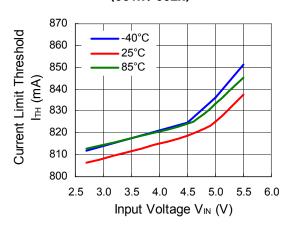


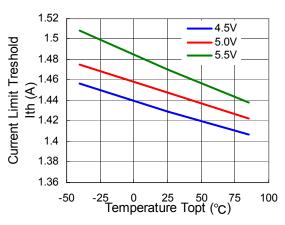


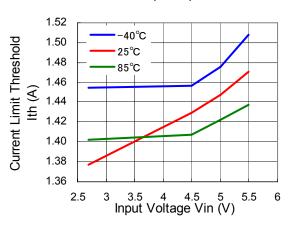
2) Supply Current vs. Input Voltage

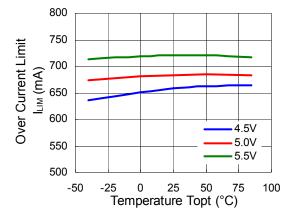


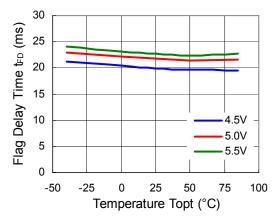


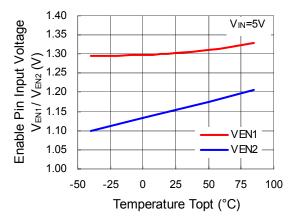

8) Output Voltage vs. Input Voltage

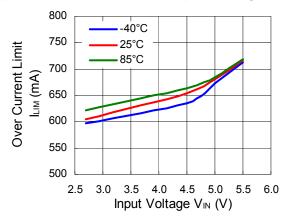

(001x / 002x)

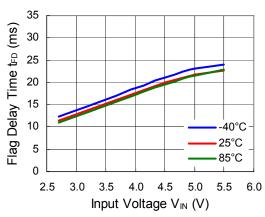

11) Current Limit Threshold vs. Input Voltage (001x / 002x)

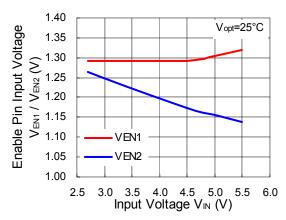

9) Current Limit Threshold vs. Temperature 10) Current Limit Threshold vs. Temperature (004A)

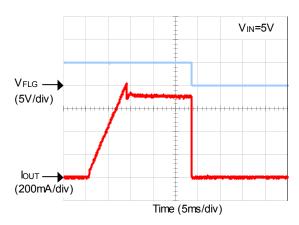

12) Current Limit Threshold vs. Input Voltage (004A)

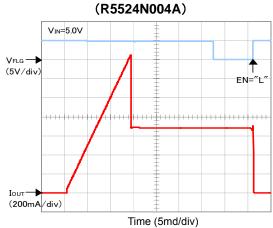

13) Over Current Limit vs. Temperature

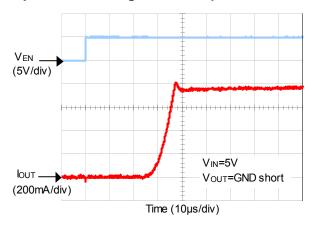

15) Flag Delay Time vs. Temperature

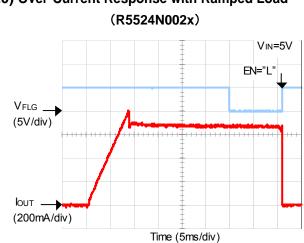

17) Enable Input Voltage vs. Temperature


14) Over Current Limit vs. Input Voltage

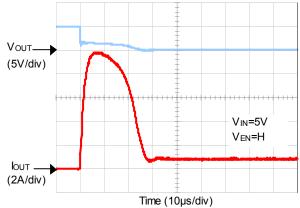

16) Flag Delay Time vs. Input Voltage



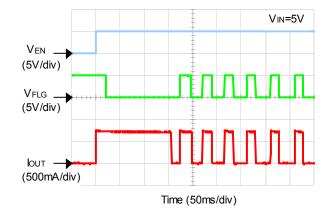

19) Over-Current Response with Ramped Load (R5524N001x)



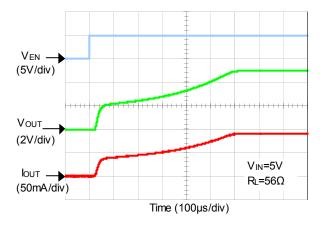
21) Over-Current Response with Ramped Load



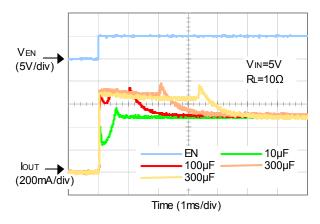
22) Over Current Limit Transient Response (Output short during enable"H")



(Enable"H"during Output short)

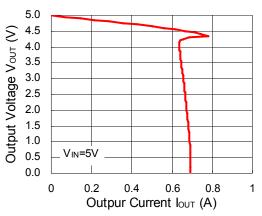


20) Over-Current Response with Ramped Load

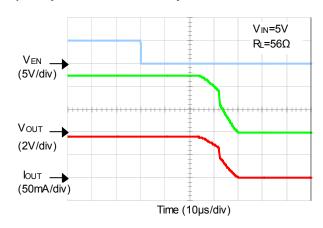

23) Thermal Shutdown Operation

25) Output ON Time Response

27) Inrush current Characteristic

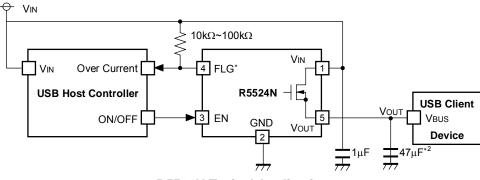


TECHNICAL NOTES


• Bypass capacitor

• Put a capacitance range from 0.1 μ F to 1 μ F bypass capacitor between V_{IN} pin and GND pin of the ICs. If the

24) Output Voltage vs. Output Current


26) Output OFF Time Response

output is shorted when without a bypass capacitor, because of the high side inductance of V_{IN} pin, the ringing may be generated and it might be a cause of an unstable operation.

• Pull-up resistance value range of flag pin

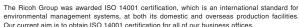
• Recommended pull-up resistance value range of flag pin is from $10k\Omega$ to $100k\Omega$.

R5524N Typical Application

*) FLG pin is Nch. open drain output.

*2) For the USB standard, the capacitor value of 120µF or more must be connected with the output pin.

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before
exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and
example application circuits for the products. The release of such information is not to be
construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic
components in standard applications (office equipment, telecommunication equipment,
measuring instruments, consumer electronic products, amusement equipment etc.). Those
customers intending to use a product in an application requiring extreme quality and reliability,
for example, in a highly specific application where the failure or misoperation of the product
could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system,
traffic control system, automotive and transportation equipment, combustion equipment, safety
devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but
semiconductor products are likely to fail with certain probability. In order to prevent any injury to
persons or damages to property resulting from such failure, customers should be careful enough
to incorporate safety measures in their design, such as redundancy feature, firecontainment


- feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

Ricoh presented with the Japan Management Quality Award for 1999. Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

Ricoh awarded ISO 14001 certification.

Ricoh completed the organization of the Lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.

Electronic Devices Company • Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands
 P.O.Box 114, 1180 AC Amstelveen
 Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd. Room403, No.2 Building, 6904Bi Bo Road, Pu Dong New district, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company Taipei office Bompiog ICE, No 51 Hangung Rd. Taipei Off

• Taipei office Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623