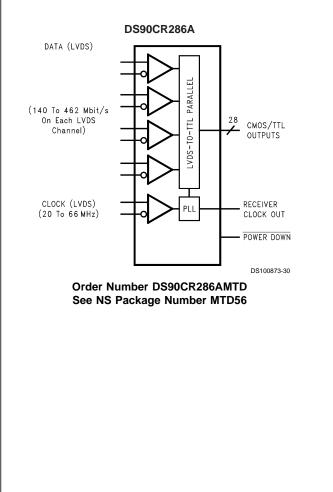
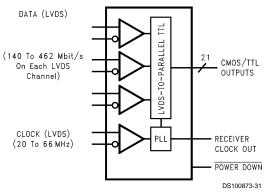


DS90CR286A/DS90CR216A +3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link—66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link—66 MHz

General Description


The DS90CR286A receiver converts the four LVDS data streams (Up to 1.848 Gbps throughput or 231 Megabytes/ sec bandwidth) back into parallel 28 bits of CMOS/TTL data. Also available is the DS90CR216A that converts the three LVDS data streams (Up to 1.386 Gbps throughput or 173 Megabytes/sec bandwidth) back into parallel 21 bits of CMOS/TTL data. Both Receivers' outputs are Rising edge strobe.


This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 66 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set & Hold Times on RxOUTPUTs
- Rx power consumption <270 mW (typ) @66MHz Worst Case
- Rx Power-down mode <200µW (max)
- ESD rating >7 kV (HBM), >700V (EIAJ)
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead or 48-lead TSSOP package
- Operating Temperature: -40°C to +85°C

DS90CR216A

Order Number DS90CR216AMTD See NS Package Number MTD48

S90CR286A/DS90CR216A +3.3V Rising Edge 66 MHz, +3.3V Rising Edge Data Strobe LVDS Receiver 21-Bit Channel Link—66 MHz Data Strobe LVDS Receiver 28-Bit Channe

June 1999

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +4V
CMOS/TTL Output Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Receiver Input Voltage	-0.3V to (V _{CC} + 0.3V)
Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Lead Temperature (Soldering, 4 sec)	+260°C
Maximum Package Power Dissipation	Capacity @ 25°C
MTD56 (TSSOP) Package:	
DS90CR286A	1.61 W
MTD48 (TSSOP) Package:	
DS90CR216A	1.89 W

Package Derating: DS90CR286A 12.4 mW/°C above +25°C DS90CR216A 15 mW/°C above +25°C ESD Rating (HBM, 1.5 kΩ, 100 pF) > 7 kV (EIAJ, 0Ω, 200 pF) > 700V

Recommended Operating Conditions

	Min	Nom	Max	Units	
Supply Voltage (V _{CC})	3.0	3.3	3.6	V	
Operating Free Air					
Temperature (T _A)	-40	+25	+85	°C	
Receiver Input Range	0		2.4	V	
Supply Noise Voltage (V_{CC})			100	mV_{PP}	

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Condition	Min	Тур	Max	Units	
CMOS/T	IL DC SPECIFICATIONS			•			
V _{OH}	High Level Output Voltage	I _{OH} = -0.4 mA		2.7	3.3		V
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA			0.06	0.3	V
l _{os}	Output Short Circuit Current	V _{OUT} = 0V			-60	-120	mA
LVDS RE	CEIVER DC SPECIFICATIONS						
V _{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold			-100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V, V_{CC} = 3.6V$	V			±10	μA
		$V_{IN} = 0V, V_{CC} = 3.6V$				±10	μA
RECEIVE	R SUPPLY CURRENT						
ICCRW Receiver Supply Curre	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern, DS90CR286A (<i>Figures</i>	f = 33 MHz		49	65	mA
			f = 37.5 MHz		53	70	mA
		<i>1, 2)</i> , T _A =−10°C to +70°C	f = 66 MHz		81	105	mA
ICCRW	CCRW Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern,	f = 40 MHz		53	70	mA
		DS90CR286A <i>(Figures</i> <i>1, 2)</i> , T _A =-40°C to +85°C	f = 66 MHz		81	105	mA
ICCRW	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern, DS90CR216A (<i>Figures</i>	f = 33 MHz		49	55	mA
			f = 37.5 MHz		53	60	mA
		<i>1, 2)</i> , T _A =−10°C to +70°C	f = 66 MHz		78	90	mA
ICCRW F	Receiver Supply Current Worst Case	C _L = 8 pF, Worst Case Pattern,	f = 40 MHz		53	60	mA
		DS90CR216A <i>(Figures</i> <i>1, 2)</i> , T _A =–40°C to +85°C	f = 66 MHz		78	90	mA
ICCRZ	Receiver Supply Current	Power Down = Low			10	55	μA
	Power Down	Receiver Outputs Stay L					
	Power Down Mode						

Electrical Characteristics (Continued)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Typical values are given for V_{CC} = 3.3V and T_{A} = +25C.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and Δ V _{OD}).

Receiver Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Units	
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 2)		2	5	ns	
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 2)		1.8	5	ns	
RSPos0	Receiver Input Strobe Position for Bit 0 (<i>Figure 9</i> , <i>Figure 10</i>)	1.0	1.4	2.15	ns	
RSPos1	Receiver Input Strobe Position for Bit 1		4.5	5.0	5.8	ns
RSPos2	Receiver Input Strobe Position for Bit 2		8.1	8.5	9.15	ns
RSPos3	Receiver Input Strobe Position for Bit 3		11.6	11.9	12.6	ns
RSPos4	Receiver Input Strobe Position for Bit 4		15.1	15.6	16.3	ns
RSPos5	Receiver Input Strobe Position for Bit 5		18.8	19.2	19.9	ns
RSPos6	Receiver Input Strobe Position for Bit 6		22.5	22.9	23.6	ns
RSPos0	Receiver Input Strobe Position for Bit 0 (<i>Figure 9</i> , <i>Figure 10</i>)	0.7	1.1	1.4	ns	
RSPos1	Receiver Input Strobe Position for Bit 1	eiver Input Strobe Position for Bit 1				ns
RSPos2	Receiver Input Strobe Position for Bit 2		5.1	5.5	5.8	ns
RSPos3	Receiver Input Strobe Position for Bit 3		7.3	7.7	8.0	ns
RSPos4	Receiver Input Strobe Position for Bit 4		9.5	9.9	10.2	ns
RSPos5	Receiver Input Strobe Position for Bit 5		11.7	12.1	12.4	ns
RSPos6	eceiver Input Strobe Position for Bit 6		13.9	14.3	14.6	ns
RSKM	RxIN Skew Margin (Note 4) (Figure 11)	f = 40 MHz	490			ps
		f = 66 MHz	400			ps
RCOP	RxCLK OUT Period (Figure 3)	RxCLK OUT Period (Figure 3)				ns
RCOH	RxCLK OUT High Time (Figure 3)	f = 40 MHz	10.0	12.2		ns
RCOL	RxCLK OUT Low Time (Figure 3)		10.0	11.0		ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 3)	UT Setup to RxCLK OUT (Figure 3)		11.6		ns
RHRC	RxOUT Hold to RxCLK OUT (Figure 3)		6.0	11.6		ns
RCOH	RxCLK OUT High Time (Figure 3) f = 66 MHz		5.0	7.6		ns
RCOL	RxCLK OUT Low Time (Figure 3)		5.0	6.3		ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 3)		4.5	7.3		ns
RHRC	RxOUT Hold to RxCLK OUT (Figure 3)	4.0	6.3		ns	
RCCD	RxCLK IN to RxCLK OUT Delay 25°C, V _{CC} = 3.3V (Note 5)(Figure 4)			5.0	7.5	ns
RPLLS	Receiver Phase Lock Loop Set (Figure 5)			10	ms	
RPDD	Receiver Power Down Delay (Figure 8)			1	μs	

Note 4: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window - RSPos). This margin allows for LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter (less than 250 ps).

Note 5: Total latency for the channel link chipset is a function of clock period and gate delays through the transmitter (TCCD) and receiver (RCCD). The total latency for the 215/285 transmitter and 216A/286A receiver is: (T + TCCD) + (2*T + RCCD), where T = Clock period.

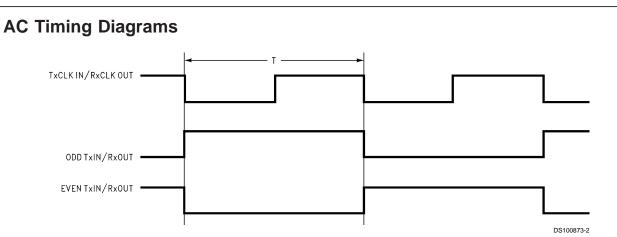
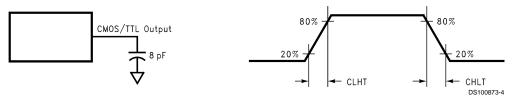
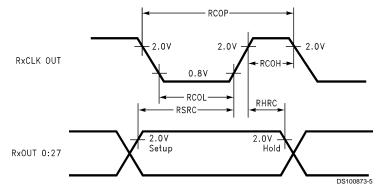
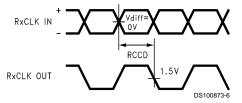
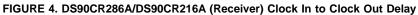
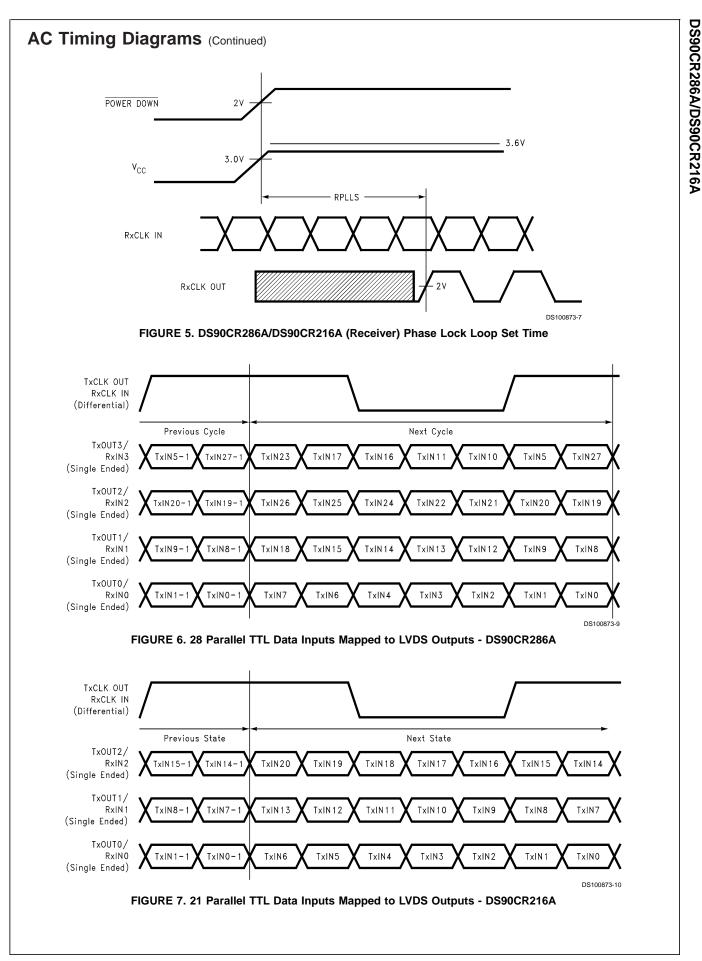
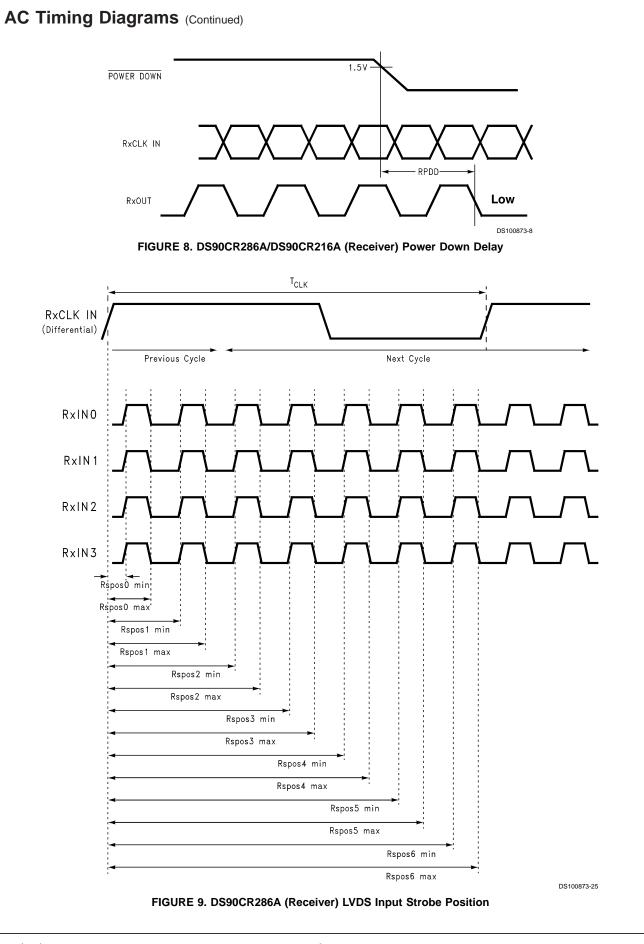
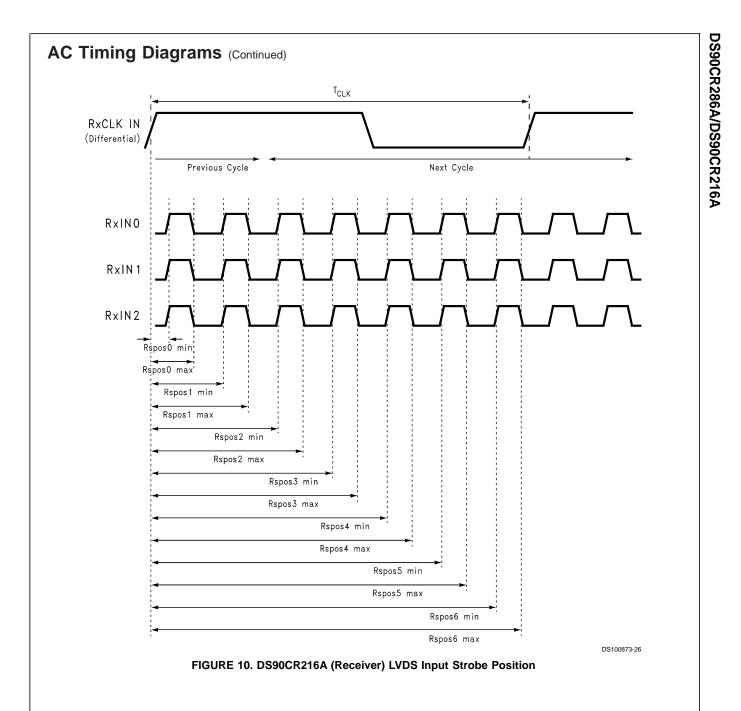


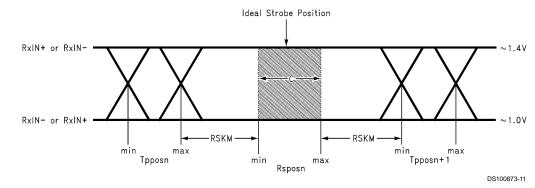
FIGURE 1. "Worst Case" Test Pattern


FIGURE 2. DS90CR286A/DS90CR216A (Receiver) CMOS/TTL Output Load and Transition Times







AC Timing Diagrams (Continued)

C — Setup and Hold Time (Internal data sampling window) defined by Rspos (receiver input strobe position) min and max Tppos — Transmitter output pulse position (min and max)

RSKM = Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) (Note 6) + ISI (Inter-symbol interference) (Note 7) Cable Skew — typically 10 ps-40 ps per foot, media dependent

Note 6: Cycle-to-cycle jitter is less than TBD ps at 66 MHz.

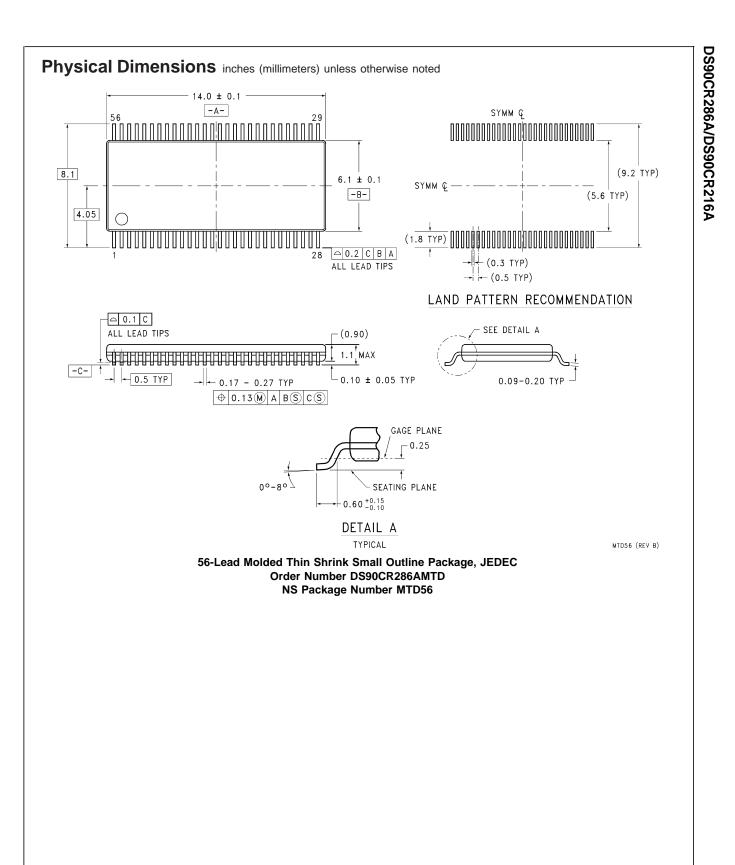
Note 7: ISI is dependent on interconnect length; may be zero.

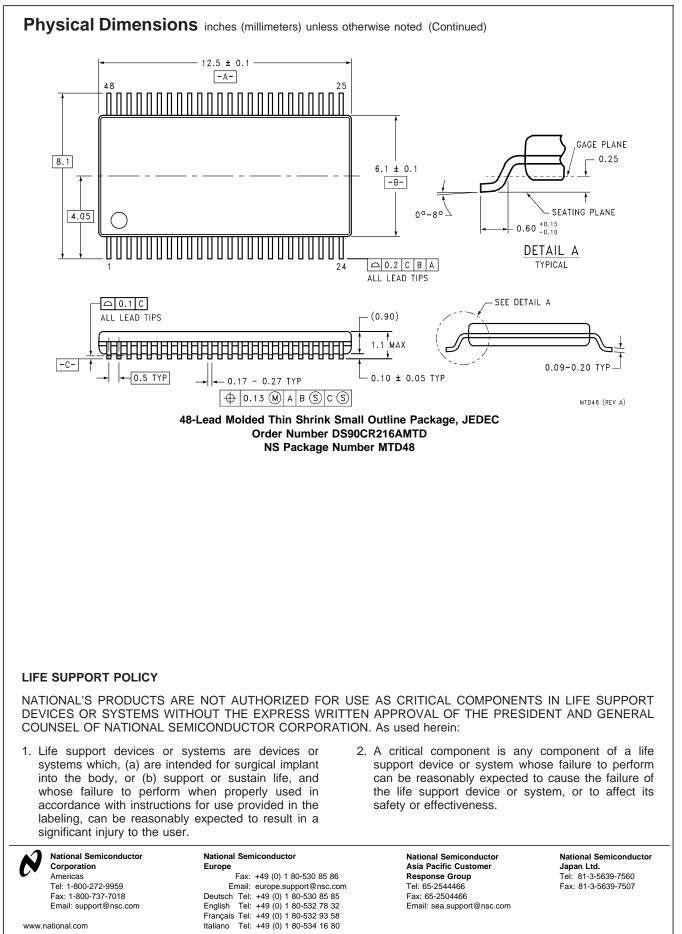
FIGURE 11. Receiver LVDS Input Skew Margin

DS90CR286A Pin Description—28-Bit Channel Link Receiver

Pin Name	I/O	No.	Description	
RxIN+	I	4	Positive LVDS differential data inputs.	
RxIN–	I	4	Negative LVDS differential data inputs.	
RxOUT	0	28	TTL level data outputs.	
RxCLK IN+	I	1	Positive LVDS differential clock input.	
RxCLK IN-	I	1	Negative LVDS differential clock input.	
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe.	
PWR DOWN	I	1	TTL level input. When asserted (low input) the receiver outputs are low.	
V _{cc}	I	4	Power supply pins for TTL outputs.	
GND	I	5	Ground pins for TTL outputs.	
PLL V _{CC}	1	1	Power supply for PLL.	
PLL GND	1	2	Ground pin for PLL.	
LVDS V _{CC}	I	1	Power supply pin for LVDS inputs.	
LVDS GND		3	Ground pins for LVDS inputs.	

DS90CR216A Pin Description—21-Bit Channel Link Receiver


Pin Name	I/O	No.	Description
RxIN+	I	3	Positive LVDS differential data inputs. (Note 8)
RxIN-	I	3	Negative LVDS differential data inputs. (Note 8)
RxOUT	0	21	TTL level data outputs.
RxCLK IN+	I	1	Positive LVDS differential clock input.
RxCLK IN-	I	1	Negative LVDS differential clock input.
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe.
PWR DOWN	I	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{cc}	I	4	Power supply pins for TTL outputs.
GND	I	5	Ground pins for TTL outputs.
PLL V _{CC}	I	1	Power supply for PLL.
PLL GND	I	2	Ground pin for PLL.
LVDS V _{CC}	I	1	Power supply pin for LVDS inputs.
LVDS GND	I	3	Ground pins for LVDS inputs.


Note 8: These receivers have input failsafe bias circuitry to guarantee a stable receiver output for floating or terminated receiver inputs. Under these conditions receiver inputs will be in a HIGH state. If a clock signal is present, outputs will all be HIGH; if the clock input is also floating/terminated outputs will remain in the last valid state. A floating/terminated clock input will result in a LOW clock output.

Pin Diagram

DS90CR286A			DS90CR216A
RxOUT22 <u>2</u> RxOUT23 <u>3</u> RxOUT24 <u>4</u> GND <u>5</u> RxOUT25 <u>6</u> RxOUT25 <u>6</u> RxOUT27 <u>8</u> LVDS GND <u>9</u> RxIN0+ <u>10</u> RxIN0+ <u>11</u> RxIN1+ <u>12</u> LVDS V _{CC} <u>14</u> LVDS GND <u>15</u> RxIN2+ <u>16</u> RXIN2+ <u>16</u> RXIN2+ <u>16</u> RXIN2+ <u>17</u> RxCLKIN+ <u>19</u> RXIN3- <u>20</u> PLL GND <u>22</u> PLL GND <u>22</u> PLL GND <u>25</u> PWR DWN <u>26</u> RxOUT0 <u>27</u> RxOUT0 <u>27</u> RxOUT0 <u>28</u>	56 V _{CC} 55 RxOUT21 54 RxOUT20 52 RxOUT19 52 GND 51 RxOUT18 50 RxOUT17 49 RxOUT15 48 Y _{CC} 47 RxOUT14 45 RxOUT13 44 GND 42 RxOUT114 43 RxOUT12 44 RXOUT13 44 RXOUT114 45 RxOUT114 47 RxOUT113 48 RxOUT114 47 RxOUT10 40 V _{CC} 39 RxOUT10 40 V _{CC} 38 RxOUT10 40 V _{CC} 38 RxOUT10 40 V _{CC} 38 RxOUT13 37 RxOUT5 33 RxOUT4 32 RxOUT2 30 V _{CC}	RxOUT17 1 RxOUT18 3 GND 4 RxOUT19 4 RxOUT20 6 N/C 6 LVDS GND 7 RxIN0 - 9 RxIN0 - 9 RxIN1 - 10 RxIN1 + 11 RxIN1 + 12 LVDS V _{CC} 13 LVDS GND 14 RxIN2 - 15 RxCLK IN - 16 RxCLK IN + 17 RxCLK IN + 18 RxCLK IN + 18 PLL GND 19 PLL GND 20 PWR DWN RxCLK OUT 24 RxOUT0 24	48 V _{CC} 47 RxOUT16 46 RxOUT15 45 RxOUT14 43 RxOUT13 42 V _{CC} 41 RxOUT12 40 RxOUT11 39 RxOUT10 38 GND 37 RxOUT9 36 V _{CC} 35 RxOUT8 34 RxOUT6 32 GND 31 RxOUT5 30 RxOUT3 28 V _{CC} 26 RxOUT1 27 RxOUT3 28 V _{CC} 20 RXOUT1 25 GND 2010873-13 DS100873-13

DS100873-23

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.