Model Sim-

Xilinx Edition 1l

User’s Manual

Version 5.7c

Published: 11/Mar/03

The world’s most popular HDL simulator

ModelSim User’s Manual

ModelSim is produced by Model Technology™, a Mentor Graphics Corporation
company. Copying, duplication, or other reproduction is prohibited without the
written consent of Model Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark and Signal Spy, TraceX, ChaseX and Model
Technology are trademarks of Mentor Graphics Corporation. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXIm is a trademark of
Globetrotter Software, Inc. IBM, AT, and PC are registered trademarks, AIX and
RISC System/6000 are trademarks of International Business Machines
Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Moatif is a trademark of the Open Software Foundation,
Inc. in the USA and other countries. SPARC is a registered trademark and
SPARCSstation is a trademark of SPARC International, Inc. Sun Microsystems is a
registered trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright © 1990 -2003, Model Technology, a Mentor Graphics Corporation
company. All rights reserved. Confidential. Online documentation may be printed
by licensed customers of Model Technology and Mentor Graphics for internal
business purposes only.

ModelSim support

Support for ModelSim is available from your FPGA vendor. See the About
ModelSim dialog box (accessed via the Help menu) for contact information.

UM-3

Table of Contents

1 - Introduction (UM-13)

Standardssupported L L L L UM-14
ASSUMPLiONS L L L e e UM-14
Sectionsinthisdocument L L. UM-14
What isan"HDL item" oo UM-16
Textconventions L e e UM-16

2 - Projects (UM-17)

Introduction L L Lo e e e e e UM-18
How do projects differ from pre-5.5versions? UM-19
Project conversion betweenversions L L0 L UM-19

Getting started withprojects Lo UM-20
Step1l— Creatinganew projecto UM-20
Step 2— Adding itemstotheprojecto oL UM-21
Step 3— Compiling thefiles.o UM-24
Step4— Simulatingadesign L . L oL Lo L UM-25
Other basic project operationso UM-25

TheProjecttab e UM-26
Projecttabcontextmenu Lo UM-27

Changing compileorder L. UM-28
Groupingfiles. oL UM-29

Creating a Simulation Configuration UM-30

Organizing projectswithfolders UM-32

Setting compiler options L L L L L L L UM-34

Accessing projectsfromthecommandlineo UM-35

3 - Design libraries (UM-37)

Designlibrary contentso UM-38
Designlibrarytypes e e UM-39
Working with designlibraries Lo UM-40
Managinglibrary contents L. UM-41
Assigning alogical nameto adesignlibrary UM-43
Movingalibraryo e UM-44
Specifying theresourcelibrarieso oL UM-45
Predefined libraries.o UM-46
Alternate IEEE librariessuppliedo oL UM-46
Regenerating your design libraries.o Lo UM-47
Importing FPGA librarieso UM-48

ModelSim User's Manual

UM-4 Table of Contents

4 - VHDL simulation (UM-49)

Compiling VHDL designs .
Invoking the VHDL compiler
Dependency checking .
Range and index checking .

Simulating VHDL designs .

Simulator resolution limit
Deltadelays

Using the Textl O package .
Syntax for file declaration .

Using STD_INPUT and STD OUTPUTWIthIn ModelSrm o

TextlO implementation issues
Reading and writing hexadecimal numbers
Dangling pointers
The ENDLINE function .
The ENDFILE function . .
Using alternative input/output frle;
Providing stimulus .

VITAL specification and source code
VITAL packages

ModelSim VITAL compliance .
VITAL compliance checking . .

Compiling and simulating with accelerated VITAL packages .

Util package . .
get_resolution .
init_signal_driver() .
init_signal_spy() . .
signal_force() .
signal_release()
tored() . . .
to time() . .

5 - Verilog simulation (UM-67)

Compilation
Incremental comprlatron
Library usage . .
Verilog-XL compati bIe comprler arguments .
Verilog-XL ‘uselib compiler directive

Simulation .
Simulator resol utron I|m|t
Event ordering in Verilog designs .
Negative timing check limits . .
Verilog-XL compatible simulator arguments. .

Céll libraries . .
Delay modes

ModelSim User’'s Manual

. . UM-50
. . UM-50
. . UM-50

. UM-50

. . UM-52
. . UM-52
. UM-53

. . UM-55
. . UM-55
. UM-56

. . UM-57

. UM-58
. .UM-58
. . UM-58
. . UM-58
. . UM-59

. UM-59

. UM-60
. UM-60

. . UM-60
. UM-60

. UM-61

. UM-62
. . UM-62
. . UM-63
. . UM-63
. . UM-63
. UM-63
. . UM-64
. UM-65

. . UM-69
. . UM-70
. . UM-72
. . UM-73

.UM-74

. . UM-76
. . UM-77
. UM-79
. . UM-83
. UM-86

. . UM-87
. UM-87

UM-5

Systemtasks L L L L e e e e e UM-89
IEEE Std 1364 systemtaskso UM-89
Verilog-XL compatiblesystemtasks UM-92
ModelSim Verilogsystemtasks.o UM-94

Compilerdirectives e e e e e UM-95
IEEE Std 1364 compiler directiveso UM-95
Verilog-XL compatible compiler directives UM-96

VerilogPLI/VPL. o e e e UM-97
Registering PLI applications00 UM-97
Registering VPl applicationso UM-99
Compiling and linking PLI/VPI C applications UM-101
Compiling and linking PLI/VPI C++ applications. UM-102
Specifying the PLI/VPI filetoload UM-103
PLiexample UM-104
VPlexample Lo e UM-105
ThePLI callback reasonargument UM-106
Thesizetf callback functiono UM-107
PLI objecthandles UM-107
Third party PLI applicationso UM-108
Support for VHDL objects L Lo UM-109
IEEEStd 1364 ACCroutineSo UM-110
IEEE Std 1364 TFroutines. o o v o e UM-111
Verilog-XL compatibleroutines.o UM-113
64-bitsupportinthePLI L .o UM-113
PLI/VPItracing o o e e UM-113
Debugging PLI/VPI applicationcode UM-115

6 - WLF files (datasets) and virtuals (UM-117)

WLFfiles(datasets) UM-118
SavingasimulationtoaWLFfile UM-119
Openingdatasets. e UM-119
Viewing dataset structure L ..o UM-120
Managing multipledatasetso UM-121
Saving at intervalswith Dataset Snapshot UM-123

Virtual Objects (User-defined buses,andmore) UM-125
Virtual signals. L L e UM-125
Virtual functions. L L0 e UM-126
Virtual regions L L L L L e UM-127
Virtual types L L e UM-127

Dataset, WLF file, and virtual commands UM-128

7 - Graphic interface (UM-129)

Window overview e e e e e UM-130
Commonwindow features. Lo e UM-131
Quick accesstoolbars L L L oL e UM-132
DragandDrop e e e e UM-132

ModelSim User's Manual

UM-6

Table of Contents

Command history .
Automatic window updatrng .
Finding names

Sorting HDL items .

Saving window layout

Context menus

Menu tear off . .
Tree window hierarchical view .

Main window . .

Workspace .

Transcript .. Co
The Main window menu bar .
The Main window toolbar .

The Main window status bar .
Mouse and keyboard shortcuts .

Dataflow window .

Adding itemsto the wi ndow .

Linksto other windows . .

Dataflow window menu bar

The Dataflow window toolbar .
Exploring the connectivity of your design .
Zooming and panning .

Tracing events (causality) .

Tracing the source of an unknown (X)
Finding items by name in the Dataflow window
Saving thedisplay . . .
Configuring page setup . .

Symbol mapping . . .o
Configuring window options .

List window

HDL itemsyou can view .

Adding HDL itemsto the List W|nd0W .

The List window menu bar . . .
Editing and formatting HDL itemsin the Llst wi ndow .
Combining itemsin the List window . . .
Setting List window display properties .

Finding items by namein the List window

Setting time markersin the List window

Saving List window datato afile .

List window keyboard shortcuts .

Process window .

The Process window menu bar

Signalswindow .

The Signals window menu bar
Filtering the signal list
Forcing signal and net values .

Adding HDL itemsto the Wave and Lrst W|ndows or aWLFf|Ie.

Finding HDL itemsin the Signals window
Setting signa breakpoints .

ModelSim User’'s Manual

UM-132
UM-133
UM-133
UM-133
UM-134
UM-134
UM-134
UM-135

UM-137
UM-138
UM-139
UM-140
UM-145
UM-147
UM-147

UM-149
UM-149
UM-150
UM-150
UM-153
UM-156
UM-158
UM-159
UM-160
UM-161
UM-162
UM-164
UM-165
UM-166

UM-168
UM-168
UM-169
UM-170
UM-172
UM-174
UM-175
UM-177
UM-178
UM-179
UM-180

UM-181
UM-182

UM-183
UM-184
UM-185
UM-186
UM-187
UM-188
UM-189

Defining clock signals

Source window .
The Source window menu bar
The Source window toolbar
Setting file-line breakpoints
Checking HDL item values and descrrptrons
Finding and replacing in the Source window .
Setting tab stops in the Source window .

Structure window
Structure window menu bar
Structure window context menu .
Finding itemsin the Structure window .

Variableswindow .
The Variables window menu bar ..
Finding HDL itemsin the Variableswindow . .

Wave window
Pathname pane
Values pane
Waveform pane . .
Cursor panes
HDL itemsyou can view
Adding HDL itemsin the Wave wi ndow
The Wave window menu bar .
The Wave window toolbar .
Using dividers .
Splitting Wave window panes .
Combining itemsin the Wave window .
Displaying drivers of the selected waveform .

Editing and formatting HDL itemsin the Wave wi ndow .

Setting Wave window display properties .

Setting signal breakpoints .

Finding items by name or value in the Wave wi ndow
Using time cursors in the Wave window

Examining waveform values . .
Zooming - changing the waveform drsplay range .
Saving zoom range and scroll position with bookmarks
Wave window mouse and keyboard shortcuts

Saving waveforms .

Compiling with the graphic interface
Locating source errors during compilation .
Setting default compile options .

Simulating with the graphic interface
Design tab Coe e
VHDL tab .

Verilogtab .

Librariestab

SDFtab .

Optionstab . . .
Setting default srmulatlon optlons .

UM-7

UM-189

UM-191
UM-192
UM-194
UM-197
UM-197
UM-197
UM-198

UM-199
UM-200
UM-201
UM-202

UM-203
UM-204
UM-205

UM-206
UM-206
UM-207
UM-207
UM-207
UM-207
UM-208
UM-209
UM-212
UM-215
UM-216
UM-217
UM-218
UM-219
UM-222
UM-224
UM-225
UM-226
UM-228
UM-228
UM-229
UM-231
UM-233

UM-238
UM-239
UM-240

UM-245
UM-245
UM-247
UM-249
UM-250
UM-251
UM-253
UM-254

ModelSim User's Manual

UM-8 Table of Contents

Creating and managing breakpoints UM-258
Signal breakpoints L L L L L e UM-258
File-linebreakpointso UM-258
Breakpointsdialogo UM-259

Miscellaneoustoolsandadd-onso Lo UM-262
TheGUI ExpressionBuilder UM-262
Languagetemplates Lo e UM-264

Graphicinterfacecommands L Lo UM-267

8 - Signal Spy (UM-269)

Introduction L L L e e e UM-270
init_signal_driver L L L L L L e UM-271
init signal spy L e e e e e e UM-274
signal_force L L L e e e UM-276
signal_release. L L L L L L e e e UM-278
$init_signal_driver L e e e e UM-280
Sint_signal_spy L e e e e UM-283
$signal_force L L e e UM-285
$signal_release L L e e e e UM-287

9 - Standard Delay Format (SDF) Timing Annotation (UM-289)

Specifying SDF filesfor simulationo UM-290
Instance specification L L Lo UM-290
SDF specification withtheGUI UM-291
Errorsandwarnings L oo UM-291

VHDLVITAL SDF o e e e UM-292
SDFtoVHDL genericmatching UM-292
Resolvingerrors e e e e UM-293

VerilogSDF e e UM-294
The $sdf annotatesystemtask UM-294
SDFto Verilog construct matching UM-295
Optional edge specificationso UM-298
Optional conditionso UM-299
Roundedtimingvalues Lo UM-299

SDF for Mixed VHDL and VerilogDesigns UM-300

Interconnectdelays L L UM-300

Disablingtimingcheckso UM-300

Troubleshooting oL UM-301
Mistaking a component or module name for aninstancelabel UM-302
Forgetting to specify theinstanceo L. UM-302

ModelSim User’'s Manual

UM-9

10 - Value Change Dump (VCD) Files (UM-303)

ModelSimVCD commandsandVCDtasks UM-304

CreatingaVCDfileUM-306
Flow for four-state VCDfile UM-306
Flow for extended VCDfile UM-306
CasesenditivityUM-306

Resimulating adesign fromaVCDfile UM-307

A VCD filefromsourcetooutput UM-309
VCD simulatorcommands UM-309
VCDoutput UM310

Capturingportdriverdata UM312
Supported TSSl states. UM312
StrengthvaluesUM-313
Port identifier code P U] \Y/ B X K
ExampIeVCDoutputfromvcddumpports T 0]V By !

11 - Tcl and macros (DO files) (UM-315)

Tcl featureswithin ModelSm UM-316
TolReferencesUM-316
Tclcommandsoy s UM31Y

Tclcommandsyntax UM-318
if commandsyntaxUM32
setcommandsyntax oo oo ... UM-322
Command substitution UM322
Command separatoro e e e e s UM-322
Multiple-linecommands. UM-322
Evaluationorder e e e e e e s o UMB22
Tclrelatlonalexpremonevaluanon.....................UM-322
Variable subgtitution UM-323
Systemcommands UM-323

Listprocessing v e e e e e e e e e e e e s s UMB24
ModelSimTclcommandsUM324

ModelSim Tcl timecommandsUM-32%
Conversions e e e e e s s e e s o UMEs
Relations.UM-325
ArithmeticUM-3206

Tclexamples s UMY
Example2UM-328

Macros (DO files) . . I 0 | V B i
UsngParameterswnhDOflI% e U] Y c <
Making macro parametersoptional . . . N U]V X 74
Useful commands for handlmgbreakpomtsanderrors N U | V B X

ModelSim User's Manual

UM-10 Table of Contents

A - ModelSim variables (UM-335)

Variablesettingsreport Lo L Lo UM-336
Persona preferences L . L L L oL e e e UM-336
Returning to the original ModelSimdefaults UM-337
Environment variables Lo L Lo UM-337
Creating environment variablesinWindows UM-339
Referencing environment variableswithin ModelSim UM-340
Removing temp files(VSOUT) UM-340
Preference variableslocated inINI files UM-341
[Library] library pathvariables UM-341
[vcom] VHDL compiler control variables UM-342
[vlog] Verilog compiler control variableso L. UM-343
[vsim] simulator control variableso L. UM-344
Commonly used INI variables UM-349
Preference variableslocated in Tcl files UM-352
User-definedvariables UM-352
Morepreferences L Lo e e e UM-352
Variableprecedence Lo Lo UM-353
Simulator statevariables L L L L L UM-353
Referencing simulator statevariables.o L. UM-354
Specia considerationsfor thenow variableo UM-354

B - ModelSim shortcuts (UM-355)

Wave window mouse and keyboard shortcuts UM-356
List window keyboard shortcuts UM-357
Command shortcuts L UM-358
Mouse and keyboard shortcutsin Main and Sourcewindows UM-359

Right mousebutton. UM-360

C - ModelSim messages (UM-361)

ModelSimmessagesystem L oL L0 o UM-362
Messageformat L Lo UM-362
Getting moreinformation L L Lo L Lo UM-362

SuUppressing warning mesSSages« . . e e e e e e e e UM-363
Suppressing VCOM warning messages« v v e e e UM-363
Suppressing VLOG warning messages v . oo e UM-363
Suppressing VSIM warning messageso e UM-363

Exitcodes L UM-364

Miscellaneousmessages L oo e e e UM-366
Empty port namewarning L L. Lo UM-366
Lockmessageo UM-366
Metavaluedetected warning Lo Lo UM-366

ModelSim User’'s Manual

UM-11

Sensitivity listwarning L L L Lo UM-367
Tcl Initidlizationerror2o UM-367
Toofewportconnectionso UM-368
VSIM licenselost UM-369

D - System initialization (UM-371)

Filesaccessedduringstartupo UM-372
Environment variablesaccessed during startup L . L. L L L. UM-373
Initializationsequence L L L L Lo e UM-374

E - Tips and techniques (UM-377)

Running command-line and batch-mode smulations UM-378
Saving and viewing waveformsin batchmode UM-379
Setting up librariesfor groupuse L L L L Lo UM-379
UsingaDOfiletotestforassertions. UM-380
Locating assertionwarnings UM-380
Sampling signalsat aclockchange UM-381
Configuring aList trigger with ExpressionBuilder UM-382
Converting signal valuestostrings Lo oo UM-384
Converting an integer into abit_vectoro UM-385
Detectinginfinitezero-delay loops UM-386
Referencing source fileswith locationmaps UM-387

Using locationmappingo UM-387

Pathnamesyntax L Lo UM-388

How location mappingworks. UM-388

Mapping with Tcl variableso UM-388
Performance affected by scheduled eventsbeingcancelled UM-389
Modelingmemory inVHDLo UM-390

Index (UM-401)

ModelSim User's Manual

UM-12

ModelSim User’s Manual

UM-13

1 - Introduction

Chapter contents

StandardssupportedUM-14
AssumptionsumM-14
SectionsinthisdocumentUM-14
Whatisan"HDL item"UM-16
TextconventionsUM-16
Whatisan"HDL item"UM-16

This documentation was written for Model Sim version 5.7c¢ for Microsoft Windows 98/
Me/NT/2000/XP. If the Model Sim software you are using is a later release, check the
README filethat accompanied the software. Any supplemental information will bethere.

ModelSim User's Manual

UM-14 1 - Introduction

Standards supported

ModelSim VHDL supports both the IEEE 1076-1987 and 1076-1993 VHDL, the
1164-1993 Sandard Multivalue Logic Systemfor VHDL Interoperability, and the
1076.2-1996 Sandard VHDL Mathematical Packages standards. Any design developed
with Model Sim will be compatible with any other VHDL system that is compliant with
either IEEE Standard 1076-1987 or 1076-1993.

ModelSim Verilog is based on |EEE Std 1364-1995 and a partial implementation of
1364-2001 Standard Hardware Description Language Based on the Verilog Hardware
Description Language (see /<install_dir>/modeltech/docs/technotes/viog_2001.note for
implementation details). The Open Verilog International Verilog LRM version 2.0 isalso
applicableto alarge extent. Both PLI (Programming Language Interface) and VCD (Value
Change Dump) are supported for Model Sim PE and SE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b, VITAL'95 - |IEEE
1076.4-1995, and VITAL 2000 — |EEE 1076.4-2000.

Assumptions

We assume that you are familiar with the use of your operating system. If you are not
familiar with Microsoft Windows, we recommend that you work through the tutorials
provided with M S Windows before using Model Sim.

We also assume that you have aworking knowledge of VHDL and Verilog. Although
ModelSim is an excellent tool to use while learning HDL concepts and practices, this
document is not written to support that goal.

Finally, we make the assumption that you have worked the appropriate lessons in the
ModelSSim Tutorial and are therefore familiar with the basic functionality of Model Sim.
The ModelSim Tutorial is available from the Model Sim Help menu.

Sections in this document

In addition to thisintroduction, you will find the following major sectionsin this document:

2 - Projects (UM-17)
This chapter discusses Model Sim "projects”, a container for design files and their
associated simulation properties.

3 - Design libraries (UM-37)
To simulate an HDL design using Model Sim, you need to know how to create,
compile, maintain, and delete design libraries as described in this chapter.

4 - VHDL simulation (UM-49)
This chapter is an overview of compilation and simulation for VHDL within the
Model Sim environment.

5- Verilog simulation (UM-67)

This chapter is an overview of compilation and simulation for Verilog within the
Model Sim environment.

ModelSim User’'s Manual

Sections in this document UM-15

6 - WLF files (datasets) and virtuals (UM-117)
This chapter describes datasets and virtuals - both methodsfor viewing and organizing
simulation datain ModelSim.

7 - Graphic interface (UM-129)
This chapter describes the graphic interface available while operating Model Sim.
Model Sim’s graphic interface is designed to provide consistency throughout all
operating system environments.

8 - Signa Spy (UM-269)
Thischapter describes Signal Spy, aset of VHDL proceduresand Verilog system tasks
that let you monitor, drive, force, or release an item from anywhere in the hierarchy of
aVHDL or mixed design.

9 - Standard Delay Format (SDF) Timing Annotation (UM-289)
This chapter discusses Model Sim’ simplementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

10 - Value Change Dump (VCD) Files (UM-303)
This chapter explains Model Technology’s Verilog VCD implementation for
ModelSim. The VCD usage is extended to include VHDL designs.

11 - Tcl and macros (DO files) (UM-315)
This chapter provides an overview of Tcl (tool command language) as used with
ModelSim.

A - ModelSim variables (UM-335)
This appendix describes environment, system, and preference variables used in
ModelSim.

B - Model Sim shortcuts (UM-355)
This appendix describes Model Sim keyboard and mouse shortcuts.

C - Model Sim messages (UM-361)
This appendix describes Model Sim error and warning messages.

D - System initialization (UM-371)
This appendix describes what happens during Model Sim startup.

E - Tips and techniques (Um-377)

This appendix contains a collection of Model Sim usage exampl es taken from our
manuals and tech support solutions.

ModelSim User's Manual

UM-16 1 - Introduction

What is an "HDL item"

Because Model Sim works with both VHDL and Verilog, “HDL” refersto either VHDL or
Verilog when aspecific languagereferenceis not needed. Depending on the context, “HDL
item” can refer to any of the following:

VHDL block statement, component instantiation, constant, generate
statement, generic, package, signal, or variable

Verilog function, module instantiation, named fork, named begin, net,
task, or register variable

Text conventions

Text conventions used in this manual include:

italic text

provides emphasis and sets off filenames, path names, and
design unit names

bold text

indicates commands, command options, menu choices,
package and library logical names, aswell as variables,
dialog box selections, and language keywords

monospace type

monospace typeisused for program and command examples

Theright angle (>)

is used to connect menu choices when traversing menus as
in: File> Quit

UPPER CASE

denotesfile types used by ModelSim (e.g., DO, WLF, INI,
MPF, PDF, etc.)

ModelSim User’'s Manual

UM-17

2 - Projects

Chapter contents

Introduction JUM-18
What are proj ects’) .oUM-18
What are the benefits of proj ects’) .oUM-18
How do projects differ from pre-5.5 versi ons’>UM-19
Project conversion betweenversons.UM-19

Getting started withprojectsUM-20
Step 1 — CreatinganewprojectUM-20
Step 2— Addingitemsto theproject.UM-21
Step 3— Compiling thefiles.UM-21
Step 4 — Simulatingadesign.UM-21
Other basic project operations.UM-25

TheProjectteb.UM-26
Sorting thelist.UM-26
Project tabcontextmenuUM-27

Changing compileorderUM-28
Auto-generating compileorderUM-28
Groupingfiles.UM-29

Creating a Simulation ConfigurationUM-30

Organizing projectswithfoldersUM-32

Setting compiler optionsUM-34

Accessing projectsfrom thecommandlineUM-35

This chapter discusses Model Sim projects. Projects simplify the process of compiling and
simulating adesign and are a great tool for getting started with Model Sim.

ModelSim User's Manual

UM-18 2 - Projects

Introduction

What are projects?

Projects are collection entitiesfor HDL designs under specification or test. At aminimum,
projects have aroot directory, awork library, and "metadata’ which are storedina.mpf file
located in aproject’sroot directory. The metadatainclude compiler switch settings, compile
order, and file mappings. Projects may also include;

» HDL sourcefiles or references to source files
« other files such as READMEs or other project documentation

local libraries

« referencesto global libraries

Simulation Configurations (see "Creating a Simulation Configuration” (UM-30)

Folders (see "Organizing projects with folders" (UM-32))

A | mportant: Project metadata are updated and stored only for actions taken within the
project itself. For example, if you have afilein aproject, and you compilethat filefrom
the command line rather than using the project menu commands, the project will not
update to reflect any new compile settings.

What are the benefits of projects?

ModelSim User’'s Manual

Projects offer benefits to both new and advanced users. Projects

« simplify interaction with Model Sim; you don’t need to understand the intricacies of
compiler switches and library mappings

« eliminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project

* remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to HDL sourcefiles

« alow usersto share libraries without copying filesto alocal directory; you can establish
references to source files that are stored remotely or locally

« allow you to changeindividual parameters across multiplefiles; in previousversionsyou
could only set parametersonefile at atime

« enable"what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

« reload .ini variable settings every timethe project is opened; in previousversions you had
to quit Model Sim and restart the program to read in anew .ini file

Introduction UM-19

How do projects differ from pre-5.5 versions?

Projects haveimproved agreat deal from versions prior to 5.5. Some of the key differences
include:

A new interface eliminates the need to write custom scripts.

« Youdon't haveto copy filesinto aspecific directory; you can establish referencesto files
in any location.

Y ou don't have to specify compiler switches; the automatic defaults will work for many
designs. However, if you do want to customize the settings, you do it through a dialog
box rather than by writing a script.

All metadata (compiler settings, compile order, file mappings, etc.) are stored in the
project .mpf file.

P Note: Due to the significant changes, projects created in versions prior to 5.5 cannot be
converted automatically. If you created a project in an earlier version, you will need to
recreate it in versions later than 5.5. With the new interface even the most complex
project should take less than 15 minutes to recreate. Follow the instructionsin the
ensuing pages to recreate your project.

Project conversion between versions

Projectsare generally not backwards compatible for either number or letter releases. When
you open aproject created in an earlier version (e.g, you' reusing 5.6 and you open a project
created in 5.5), you' || see amessage warning that the project will be converted to the newer
version. Y ou havethe option of continuing with the conversion or cancelling the operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup fileis named < project name>.mpf.bak and is created in the
same directory in which the original project islocated.

ModelSim User's Manual

UM-20 2 - Projects

Getting started with projects
This section describes the four basic steps to working with a project.

Step 1 — Creating a new project (Um-20)
This creates a.mpf file and aworking library.

Step 2 — Adding items to the project (UM-21)
Projects canreference or include HDL sourcefiles, foldersfor organization, simulations,
and any other files you want to associate with the project. Y ou can copy filesinto the
project directory or simply create mappings to files in other locations.

Step 3 — Compiling the files (UM-24)
This checks syntax and semantics and creates the pseudo machine code Model Sim uses
for simulation.

Step 4 — Simulating a design (UM-25)

This specifies the design unit you want to simulate and opens a structure tab in the Main
window workspace.

Step 1 — Creating a new project

Select File> New > Project (Main window) to create anew project. Thisopensthe Create
Project dialog.

Create Projeckt £
— Project Mame
Itesl

— Project Location

|E:£mndeltech£win32 Browse. ..

—Default Libram Mame

|wu:urk

Ok Cancel

The dialog includes these options:

» Project Name
The name of the new project.

 Project Location
The directory in which the .mpf file will be created.

 Default Library Name
The name of the working library. See "Design library types" (UM-39) for more details on
work libraries. Y ou can generally leave the Default Library Name set to "work." The

ModelSim User’'s Manual

Getting started with projects UM-21

name you specify will be used to create aworking library subdirectory within the Project
Location.

After selecting OK, you will see ablank Project tab in the workspace area of the Main
window and the Add Itemsto the Project diaog.

ﬁMudElSim : -10] x|
File Edit Wiew Compile Simulate Tools wwindow Helo ;

; R Add items to the Projeck I E|
=R || L8E

— Click on the icon to add items of that type:—
Wiorkspace : x|

7
M ame IStatus IType Il:lrl: ’ | D
workspace

\ Create Mew File Add Exizting File

Create Simulation Create Mew Folder

A il
| Froject | Library

: Cloze |
|F'rn:njeu::t . test |::N|:| Design Loaded=

I -

The name of the current project is shown at the bottom left corner of the Main window.

Step 2 — Adding items to the project

The Add Itemsto the Project dialog includes these options:

» Create New File
Create anew VHDL, Verilog, Tcl, or text file using the Source window. See below for
details.

« Add Existing File
Add an existing file. See below for details.
» Create Smulation

Create a Simulation Configuration that specifies source files and simulator options. See
"Creating a Simulation Configuration” (UM-30) for details.

» Create New Folder
Create an organization folder. See "Organizing projects with folders' (um-32) for details.

ModelSim User's Manual

UM-22 2 - Projects

ModelSim User’'s Manual

Create New File

TheCreateNew File command letsyou createanew VHDL, Verilog, Tcl, or text fileusing
the Source window. Y ou can al so access this command by selecting File> Add to Project
> New File (Main window) or right-clicking

B

Create Project File
— Filz Mame
|f|:u:|.'»f Browse. .. |
—Add file az wpe Folder
I"v"erilng zl ’7ITD|:| Level ZI

0k, | Eancell

The Create Project File dialog includes these options:

* FileName

The name of the new file.

« Add fileastype

The type of the new file. Select VHDL, Verilog, TCL, or text.

* Folder

The organization folder in which you want the new file placed. Y ou must first create
folders in order to access them here. See "Organizing projects with folders' (um-32) for

details.

When you select OK, the Source window opens with an empty file, and thefileislisted in
the Project tab of the Main window workspace.

Getting started with projects UM-23

Add Existing File

Y ou can also access this command by selecting File > Add to Project > Existing File
(Main window) or by right-clicking

Add file to Project =]

— File Hame

|t|:|:|unter.'-.f counter.w Browse. .. |

—Addfile az tppe—————— Folder
||:Iefault ﬁl ’;:up Level ZI

{* Feference from curent locatio ¢ {Copy to project directong

k. | Eancell

The Add fileto Project dialog includes these options:

» FileName
The name of thefile to add. Y ou can add multiplefiles at one time.

« Add fileastype
The type of thefile. "Default”" assigns type based on the file extension (e.g., .v istype
Verilog).

* Folder
The organization folder in which you want the file placed. Y ou must first create folders
in order to access them here. See "Organizing projects with folders' (um-32) for details.

» Referencefrom current location/Copy to project directory
Choosewhether to reference thefile from its current location or to copy it into the project
directory.

When you select OK, thefile(s) islisted in the Project tab of the Main window workspace.

ModelSim User's Manual

UM-24 2 - Projects

Step 3 — Compiling the files

The question marks next to the files in the Project tab denote either the files haven't been
compiled into the project or the source has changed since the last compile. To compile the
files, select Compile > Compile All (Main window) or right click in the Project tab and

select Compile > Compile All.

ﬁMDdElSin‘l

=101 %
File Edit Wiew Compile Simulate Tools wWindow Help
| sua
Wiork space 3|
M arne IStatus IT_I,Ipe ||:|r,: ‘ﬂ Loading project test =
conber. N

5 toounter. v > Yerilc E dit I
- Compile L4 Compile Selected
Simulate W
Add to Project L Compile Out-of-D1ate
Femaove from FProject Compile Order....
i I I Cloze Project Compile Report...
-| Bl Tbiay Properties... Compile Summary. .. 3
: : = Compile Properties... [
|F'r|:|JE|::t : test |::N|:| Design Loaded= Mo Crorreeer % : o
Once compilationisfinished, click theLibrary tab, expand library work by clicking the"+",
and you' |l see the two compiled design units.
ﬁMudElSim -0 =|

File Edit Wiew Compile Simulate Tools wwindow Help
=B |eng
Wiorkspace |
B # Loading project test fimt
e I T}Ipe I B # Compile of tcounter.y was successful.
=} ok Library Cim # Compile of countery was successiul
1] counter Module C:Am # 2 compiles, O failed with no emars.
J test_counter h*!n:u:lule C:ém MadelSims
] italz000 Library — $M0
[Il iEEE Library 0
m M endaleien TR I ikezmm thAN d

| |

E2

| Froject | Library

|F'r|:|ject - test |~::N|:| Design Loaded=

|~::N|:| Context=

ModelSim User’'s Manual

Getting started with projects UM-25

Step 4 — Simulating a design

To simulate one of the designs, either double-click the name or right-click the name and
select Simulate. A new tab appears showing the structure of the active simulation.

[ModelSim]] |

File Edit Miew Compile Simulate Tools wWindow Help

|| o || RIS PR

Wwiorkspace | !
Instance | Design Lnit | Design Unit | || Loading project test i
Compile of toounter.y was successhul,
E"t counter counter b odule # Compile of counter.yw was successhul
o increment counter Function # 2 compiles, 0 failed with no emors,

wim wark. counter
waim wark. counter
Loading wark. counter

WSk 43 |
< [B L
[F'ru:uieu:t l Libram | zim Filesj j
|F'r|:|ject : test |N|:|W: Ons Delta: O |5im:f|:uunter o

At this point you are ready to run the simulation and analyze your results. Y ou often do this
by adding signals to the Wave window and running the simulation for a given period of
time. See the ModelSm Tutorial for examples.

Other basic project operations

Open an existing project

If you previoudly exited M odel Sim with a project open, M odel Sim automatically will open
that same project upon startup. Y ou can open a different project by selecting File > Open
> Project (Main window).

Close a project

Select File > Close > Project (Main window). This closes the Project tab but leaves the
Library tab open in the workspace. Note that you cannot close a project whileasimulation
isin progress.

Delete a project

Select File> Delete > Proj ect (Main window). Y ou cannot del ete a project whileit isopen.

ModelSim User's Manual

UM-26 2 - Projects

The Project tab

The Project tab contains information about the itemsin your project. By default thetabis
divided into five columns.

ﬁMDdElEin‘l | - 0] x|

File Edit Miew Compile Simulate Tools Window Help
0B | SR || wiELEEE ®
Wiork space =]
M Status | T Order |Modiied - =
ame . | atus | upe | rder | odifie VEIM 4
=H] “HOL filez Falder
testadder. vhd ? WYHOL 3 11411/02
adder.vhd 2 11411402
=] “erilog files Folder
boounker. v + Wernlog 0 11411/02
counter.y v Werlog 1 11102
M verlog_sim Simul... ~|
+ | -~
-[Froject l Library | =zim FiIesJ j
|F'rn:njeu::t - test |N|:|w: Ons Delta: O |5im:fcuunter >

Sorting the list

ModelSim User’'s Manual

Name — The name of afile or object.

Status — ldentifies whether a source file has been successfully compiled. Applies only to

VHDL or Verilogfiles. A question mark meansthefile hasn't been compiled or the source
file has changed since the last successful compile; an X means the compilefailed; a check
mark means the compile succeeded.

Type — Thefile type as determined by registered file types on Windows or the type you
specify when you add the file to the project.

Order — The order in which the file will be compiled when you execute a Compile All
command.

M odified — The date and time of the last modification to the file.

Y ou can hide or show columns by right-clicking on a column title and selecting or
deselecting entries.

Y ou can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down
arrow) or ascending (up arrow).

The Project tab

Project tab context menu

Like the other workspace tabs, the Project tab has a context menu that you access by
clicking your right mouse button anywhere in the tab.

The context menu has the following options:

Edit
Open the selected file in the Model Sim editor.
Compile > Compile Selected

Compilethe selected file(s). Notethat if you select afolder and select Compile Selected,
it will compile all filesin the folder and any sub-folders.

Compile > Compile All
Compile all source filesincluded in the project.

Compile > Compile Out-of-Date
Compile source files that have been modified since the last compile.

Compile > Compile Order
Set compile order for all filesin the project. See " Changing compile order" (um-28) for
more details.

Compile > Compile Report
Show the compilation history of the selected file.

Compile > Compile Summary
Show the compilation history of the entire project.

Compile > Compile Properties
View/change project compiler settings for the selected source file(s).

Simulate
L oad the design unit(s) and associated simulation options from the selected Simulation
Configuration. See "Creating a Simulation Configuration” (UM-30) for more details.

Add to Project > New File
Add anew file to the project.

Add to Project > Existing File
Add an extant file to the project.

Add to Project > Simulation Configuration
Create anew Simulation Configuration. See " Creating a Simulation Configuration" (UM-
30) for more details.

Add to Project > Folder
Add an organization folder to the project. See"Organizing projectswith folders" (Um-32)
for more details.

Remove from Project
Remove the selected item from the project.

Close Project
Close the active project.

Properties
View/change project compiler settings for the selected source file(s).

UM-27

ModelSim User's Manual

UM-28 2 - Projects

Changing compile order

When you compileall filesin aproject, Model Sim by default compilesthefilesinthe order
inwhich they were added to the project. Y ou have two alternativesfor changing the default
compile order: 1) select and compile each file individually; 2) specify a custom compile
order.

To specify a custom compile order, follow these steps:

1 Select Compile> Compile Order (Main window) or select it from the context menuin
the Project tab.

Compile Order A
— Current Order

| Proc.y

| cachey

D and2.vhd -

wn] =etvhd

] vl vhd i

:_ﬁ] top.whd

« [»] x>

........................

Auto Generate]2 | I:ar'u:ell

2 Dragthefilesinto the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

Auto-generating compile order

ModelSim User’'s Manual

The Auto Generate button in the Compile Order dialog (see above) "determines’ the

correct compile order by making multiple passes over thefiles. It starts compiling from the
top; if afilefailsto compile due to dependencies, it moves that file to the bottom and then
recompilesit after compiling the rest of the files. It continues in this manner until all files
compile successfully or until afile(s) can’t be compiled for reasons other than dependency.

Changing compile order UM-29

Grouping files

Y ou can group two or more filesin the Compile Order dialog so they are sent to the
compiler at the same time. For example, you might have one file with a bunch of Verilog
define statements and a second file that is a Verilog module. Y ou would want to compile
these two files together.

To group files, follow these steps:

1 Select thefiles you want to group.

Compile Order |
—— Current Order
wpl andZ.vh 2
WH sgt.vhd -
E_ﬁ] util. whd
:_ﬁ] top.vhd
K
Ar
¥
1| | | ows
Auto Generate]33 | Cancel |

1"
2 Click the Group button. ﬂ
. . L |
To ungroup files, select the group and click the Ungroup button. !

ModelSim User's Manual

UM-30 2 - Projects

Creating a Simulation Configuration

A Simulation Configuration associates a design unit(s) and its simulation options. For
example, say you routinely load a particular design and you have to specify the simulator
resolution, generics, and SDF timing files. Ordinarily you would have to specify those
options each time you |l oad the design. With a Simulation Configuration, you would specify
the design and those options and then save the configuration with aname (e.g., top_config).
The name is then listed in the Project tab and you can double-click it to load the design
along with its options.

To create a Simulation Configuration, follow these steps:

1 Select File> Add to Project > Simulation Configuration (Main window) or select it
from the context menu in the Project tab.

|3 Simulate B | d
— Simulation Configuration Mame Flace in Folder————
|Simulatin:-n 1 ’;np Level ZI

Design | YHOL | Yerilog | Libraries | SDF | Options |
M arne I Tupe I Path
Ill wark, Librany C:/modeltech/examplesfwark
[ll wital2000 Library $MODEL_TECH/. Avital2000
il ie== Library $MODEL_TECH/..fieee
Ill modelzim_lib Librany FMODEL_TECH/../modelzim_lib
Il =t Library $MODEL_TECH/../std
Il std_developerskit Library $MODEL_TECH/../std_developers
m SUNOPEYE Librany FMODEL_TECH/../synopsys
JH} veriog Library ~ $MODEL_TECH/. Averilog

|

§ =
Simulate R esolution
’r @ault 1' O ptimize |
Concel |

2 Specify anameinthe Simulation Configuration Namefield.

3 Specify thefolder in which you want to place the configuration (see Organizing projects
with folders (uM-32)).

4 Select one or more design unit(s) and click Add.

ModelSim User’'s Manual

Creating a Simulation Configuration UM-31

5 Usethe other tabsin the dialog to specify any required simulation options. All of the
optionsin this dialog are described under " Simulating with the graphic interface" (Um-

245).
Click OK and the ssimulation configuration is added to the Project tab.
Iﬁ:|'l‘*1::m:ln:l5in1 =10 =|
File Edit Wiew Compile Simulate Tools wWindow Help
= BB || S || oElEER B e
Wtk space %]
M arne : IStatus IT_I.Ipe IEIru:Ier IMDdlfled = 1| PN —
== YHOL files Folder
testadder. vhd iy WHOL 3 114102
114102
Folder
toounter. v v Werilog 0 111102
coLinter. v o Werilog 1 1Aa1/02
«| | i
-[F'n:uiectl Libram | zim Files] j
|F'r|:|ject : test |N|:|w: Ons Delta: 0 |5im:ft:nunter -

Double-click the object to load it.

ModelSim User's Manual

UM-32 2 - Projects

Organizing projects with folders

The more files you add to a project, the harder it can be to locate the item you need. Y ou
can add "folders' to the project to organize your files. These folders are akin to directories
in that you can have multiple levels of folders and sub-folders. However, no actual
directories are created via the file system-the folders are present only within the project
file

Adding a folder
To add afolder to your project, select File> Add to Project > Folder.

Add Folder =

— Folder Mame

I"u-"erih:ug

— Folder Location

k. | Eancell

Specify the Folder Name, the location for the folder, and click OK. The folder will be
displayed in the Project tab.

Iﬁ:|'l‘*1::m:ln:l5in1 =10 =|
File Edit Wiew Compile Simulate Tools wWindow Help
S BR || SEg|| R oELEE
Wtk space %]
M arne : |Status IT_I.Ipe IEIru:Ier IMDdlfled = 1| PN —
EH_] YHOL files Folder
WHOL 3 114102
| adder.vhd WHOL & 114102
=H_] “erlog files Folder
L f,,1] teountery Werilog 11,1102
coLnter. v v Werilog 1 1Aa1/02
M verlog_sim Sirnul... -]
«| | i
-[F'n:uiectl Libram | zim Files] j
|F'r|:|ject : test |N|:|w: Ons Delta: 0 |5im:ft:nunter -

ModelSim User’'s Manual

Organizing projects with folders UM-33

Y ou use the folders when you add new objects to the project. For example, when you add
afile, you can select which folder to placeit in.

Add file to Project £

— File Hame

|tu:u:uunter.v counter.y Browse. . |

— Addfile az type——————— Folder
|defau|t ﬁl ’;:up Lewel 1'

{* {Feference from current locations © iCopy to project directong

k. | Cancel

If you want to move afileinto afolder later on, you can do so using the Properties dialog
for thefile (right-click on the file and select Properties from the context menu).

Project Compiler Settings H

izeneral] YHOL]

— Project Properties
[T DaMat Compile Compile to libran: Iwark _I

Flace in Folder: I 'WHDL] _I

— File Properties

File: stimulus. vhd
Location: C:/modeltech/eramples
M S-D0S name: C:ymodeltechexampleshstimuluz. vhd

Type: WYHOL Change Type |

Size; 43 [3KE]
b odification Time: Sat Dec 08 12:37: 20 Pacific Daplight Time 2001
Last Compile: Source haz not been compiled.

File &ttributes: Archive

| Cancel |

ModelSim User's Manual

UM-34 2 - Projects

Setting compiler options

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options
that affect how a design is compiled and subsequently simulated. Y ou can customize the
settings on individual files or agroup of files.

A 'mportant: Any changes you make to the compile properties outside of the project,
whether from the command line, the GUI, or the modelsim.ini file, will not affect the
properties of files already in the project.

To customize specific files, select thefile(s) inthe Project tab, right click on thefile names,
and select Properties. Theresulting dialog varies depending on the number and type of
filesyou have selected. If you select asingle VHDL or Verilog file, you' || see the General
tabandthe VHDL or Verilogtab, respectively. Onthe General tab, you'll seefile properties
such as Type, Location, and Size. If you select multiple files, the file properties on the
General tab are not listed. Finally, if you select both aVHDL fileand aVerilogfile, you'll
see all three tabs but no file information on the General tab.

Project Compiler Settings K|

General] UHDL] Werilog]

— Project Properties

[T DoMot Compile Compile o librany: Iw-:urk

CRCR

Flace in Folder: |T|:||:| Level

— File Properties

ultiple files selected

k. | Eann::ell

The General tab includes these options:;

» Do Not Compile
Determines whether the file is excluded from the compile.

» Compiletolibrary
Specifies to which library you want to compile the file; defaults to the working library.

* Placein Folder
Specifies the folder in which to place the selected file(s). See "Organizing projects with
folders' (um-32) for details on folders.

* File Properties
A variety of information about the selected file (e.g, type, size, path). Displaysonly if a
singlefile is selected in the Project tab.

The definitions of the options on the VHDL and Verilog tabs can be found in the section
" Setting default compile options' (UM-240).

ModelSim User’'s Manual

Accessing projects from the command line UM-35

When setting options on a group of files, keep in mind the following:

« If two or morefileshave different settings for the same option, the checkbox inthe dialog
will be"grayed out." If you change the option, you cannot changeit back to a"multi- state
setting" without cancelling out of the dialog. Once you click OK, Model Sim will set the
option the same for all selected files.

« |f you select acombination of VHDL and Verilog files, the options you set onthe VHDL
and Verilog tabs apply only to those file types.

Accessing projects from the command line

Generally, projects are used from within the Model Sim GUI. However, standal one tools
will use the project file if they are invoked in the project's root directory. If you want to
invoke outside the project directory, set the MODEL SIM environment variable with the
path to the project file (<Project_Root_Dir>/<Project_Name>.mpf).

Y ou can also use the project command (CR-104) from the command line to perform
common operations on new projects. The command is to be used outside of asimulation

session.

ModelSim User's Manual

UM-36

ModelSim User’s Manual

UM-37

3 - Design libraries

Chapter contents

Designlibrary contents.UM-38
DesignunitinformationUM-38
ArchivesUM-38

DesignlibrarytypesUM-39

Working with design libraries.UM-40
CregtingalibraryUM-40
Managing library contentsUM-41
Assigning alogical nametoadesignlibraalyUM-43
MovingalibrasyUM-4

Specifying theresource librariesUM-45
VHDL resourcelibrariesUM-45
Predefined librariesUM-46
Alternate IEEE librariessupplied.UM-46
Regenerating your design librariesUM-47

Importing FPGA librariesUM-48

VHDL contains libraries, which are objects that contain compiled design units; libraries
are given names so they may be referenced. Verilog designs simulated within Model Sim
are compiled into libraries as well.

ModelSim User's Manual

UM-38 3 - Design libraries

Design library contents

A design library is adirectory or archive that serves as arepository for compiled design
units. The design units contained in adesign library consist of VHDL entities, packages,
architectures, and configurations; and Verilog modules and UDPs (user-defined
primitives). The design units are classified as follows:

* Primary design units
Consist of entities, package declarations, configuration declarations, modules, and
UDPs. Primary design units within a given library must have unique names.

» Secondary design units
Consist of architecture bodies and package bodies. Secondary design units are associated
with a primary design unit. Architectures by the same name can exist if they are
associated with different entities.

Design unit information

Archives

ModelSim User’'s Manual

The information stored for each design unit in adesign library is:
* retargetable, executable code

« debugging information

* dependency information

By default design libraries are stored in a directory structure with a sub-directory for each
design unit in thelibrary. Alternatively, you can configure adesign library to use archives.
In this case each design unit is stored in its own archive file. To create an archive, use the
-ar chive argument to the vlib command (CR-180).

Generally you would do thisonly in the rare case that you hit the reference count limit on
I-nodesduetothe".." entriesin thelower-level directories. Anexample of an error message
that is produced when thislimitis hitis:

nkdir: cannot create directory ‘65534’: Too many |inks

Archives may also have limited value to customers seeking disk space savings.
Note that GMAKE won't work with these archives on the IBM platform.

Design library types UM-39

Design library types

There aretwo kinds of design libraries: working libraries and resource libraries. A working
libraryisthelibrary into which adesign unit isplaced after compilation. A resourcelibrary
contains design units that can be referenced within the design unit being compiled. Only
one library can be the working library; in contrast, any number of libraries (including the
working library itself) can be resource libraries during a compilation.

The library named work has specia attributes within Model Sim; it is predefined in the

compiler and need not be declared explicitly (i.e. library work). It isa so thelibrary name
used by the compiler asthe default destination of compiled design units. In other words the
work library istheworking library. In al other aspectsit is the same as any other library.

ModelSim User's Manual

UM-40 3 - Design libraries

Working with design libraries

The implementation of adesign library is not defined within standard VHDL or Verilog.
Within Model Sim design libraries are implemented as directories and can have any legal
name allowed by the operating system, with one exception; extended identifiers are not
supported for library names.

Creating a library

When you create a project (see "Getting started with projects’ (Um-20)), ModelSim
automatically creates aworking design library. If you don’t create a project, you need to
create aworking design library before you run the compiler. This can be done from either
the command line or from the Model Sim graphic interface.

From the Model Sim prompt or a DOS prompt, use this vlib command (CR-180):

vlib <directory_pat hname>

To create anew library with the Model Sim graphic interface, select File> New > Library
(Main window).

Create a Mew Library A

— LCreate

* {3 new library and a logical mapping to it

" amap to an existing libran

— Library Hame:

|W|:|rk

— Library Phyzizal Mame:

|wu:|rk

Cancel |

The Createa New Library dialog box includes these options:

» Createanew library and alogical mapping to it
Typethe new library nameinto the Library Namefield. This creates alibrary sub-
directory in your current working directory, initially mapped to itself. Once created, the
mapped library is easily remapped to a different library.

» Createamap to an existing library
Typethe new library name into the Library Namefield, then type into the Library
Mapsto field or Browse to select alibrary name for the mapping.

* Library Name
Typethelogical name of the new library into this field.

ModelSim User’'s Manual

Working with design libraries

 Library Physical Name
Type the physical name of the new library into thisfield. Model Sim will create a
directory with this name.

e Library Mapsto
Type or Browse for amapping for the specified library. Thisfield isvisible and can be
changed only when the Create a map to an existing library option is selected.

When you click OK, Model Sim creates the specified library directory and writes a
specially-formatted file named _info into that directory. The _info file must remain in the
directory to distinguish it asaModelSim library.

The new map entry is written to the modelsim.ini filein the [Library] section. See
"[Library] library path variables" (Um-341) for more information.

P Note: Remember that adesign library isaspecial kind of directory; the only way to
createalibrary isto usethe Model Sim GUI or the vlib command (CR-180). Do not create
libraries using DOS or Windows commands.

Managing library contents

Iﬁ:|'l‘*1::m:ln:l5in1 2 -0 =|

File Edit

Library contents can be viewed, deleted, recompiled, edited and so on using either the
graphic interface or command line.

The Library tab in the Main window workspace provides access to design units
(configurations, modules, packages, entities, and architectures) in alibrary. Thelisting is
organized hierarchically, and the unit types are identified both by icon (entity (E), module
(M), and so forth) and the Type column.

Yiew Compile Simulate Tools Window Help

| S| &

“Workspace %] :
i ame IT_I,IpE IF'ath ModelSins —
=L work. Library C:/dat

adder E ity C:./mo
addern Entity C:/mo
and? E ritity C:hDA,
andg E ity C:/mo
cache kodule C./dat j

«| | -

LiI:urar_I,I| j
|<:N|:| Design Loaded:= | o

UM-41

ModelSim User's Manual

UM-42 3 - Design libraries

ModelSim User’'s Manual

The Library tab has acontext menu that you access by clicking your right mouse buttonin
the Library tab.

Simulate
Edit...
Fefrezh
Recompile
O ptirnize
Ilpdate

Delete
Mew ¥

Properties. ..

The context menu includes the following commands:

Simulate

L oads the selected design unit and opens structure and Files tabs in the workspace.
Related command line command isvsim (CR-189).

Edit

Opensthe selected design unit in the Source window, or if alibrary is selected, opensthe
Edit Library Mapping dialog (see "Library mappings with the GUI" (UM-43)).

Refresh
Rebuilds the library image of the selected library without using source code. Related
command line command is vcom (CR-145) or with the -r efr esh argument.

Recompile
Recompiles the selected design unit. Related command line command isvcom (CR-145)
or.

Update
Updates the display of available libraries and design units.

Delete
Deletes the selected design unit. Related command line command isvdel (CR-151).

Deleting apackage, configuration, or entity will remove the design unit from thelibrary.
If you delete an entity that has one or more architectures, the entity and all its associated
architectures will be deleted.

Y ou can al'so delete an architecture without deleting its associated entity. Expand the
entity, right-click the desired architecture name, and select Delete. Y ou are prompted for
confirmation before any design unit is actually deleted.

New
Create anew library.

Properties
Displays various properties (e.g., Name, Type, Source, etc.) of the selected design unit
or library.

Working with design libraries UM-43

Assigning a logical name to a design library

VHDL useslogical library names that can be mapped to Model Sim library directories. By
default, Model Sim can find librariesin your current directory (assuming they havetheright
name), but for it to find libraries | ocated el sewhere, you need to map alogical library name
to the pathname of the library.

Y ou can use the GUI, acommand, or aproject to assign alogical nameto adesign library.

Library mappings with the GUI

To associate alogical name with alibrary, select the library in the workspace, right-click
and select Edit from the context menu. This brings up adialog box that allows you to edit
the mapping.

Edit Library Mapping k|

— Library M apping Mame

— Library Pathhame

|E:.-’dataf|u:uw.-’w-:urk

Browse. .. |

] | Cancel

The dialog box includes these options;

e Library Mapping Name
Thelogical name of thelibrary.

e Library Pathname
The pathname to the library.

Library mapping from the command line

Y ou can issue a command to set the mapping between alogical library name and a
directory; itsformis:

vap <l ogi cal _nane> <directory_pat hname>

Y ou may invoke thiscommand from either aDOS prompt or from the command linewithin
ModelSim.

When you use vmap (CR-188) this way you are modifying the modelsim.ini file. Y ou can
also modify modelsim.ini manually by adding a mapping line. To do this, use atext editor
and add aline under the [Library] section heading using the syntax:

<l ogi cal _nanme> = <di rectory_pat hname>

ModelSim User's Manual

UM-44 3 - Design libraries

More than onelogical name can be mapped to asingle directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Li brary]
work = /usr/rick/design
ny_asic = /usr/rick/design

This would allow you to use either the logical namework or my_asicinalibrary or use
clauseto refer to the same design library.

The vmap command (CR-188) can a so be used to display the mapping of alogical library
name to adirectory. To do this, enter the shortened form of the command:

vmap <l ogi cal _nane>

Library search rules
The system searches for the mapping of alogical name in the following order:
* First the system looks for amodelsim.ini file.

« |If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify alogical name that does not resolveto
an existing directory.

Moving a library

ModelSim User’'s Manual

Individual design unitsin adesign library cannot be moved. An entire design library can
be moved, however, by using standard operating system commands for moving adirectory
or an archive.

Specifying the resource libraries UM-45

Specifying the resource libraries

Verilog resource libraries

Model Sim supports and encourages separate compilation of distinct portions of a Verilog
design. The vlog (CR-181) compiler is used to compile one or more source filesinto a
specified library. The library thus contains pre-compiled modules and UDPs that are
referenced by the simulator asit loads the design. See "Library usage' (UM-72).

A mportant: Resource libraries are specified differently for Verilog and VHDL. For
Verilog you use either the -L or -Lf argument to vlog (CR-181).

VHDL resource libraries

WithinaVHDL sourcefile, you usethe VHDL library clause to specify logical names of
one or more resource libraries to be referenced in the subsequent design unit. The scope of
alibrary clauseincludesthetext region that startsimmediately after thelibrary clauseand
extendsto the end of the declarative region of the associated design unit. It does not extend
to the next design unit in thefile.

Notethat thelibrary clauseisnot used to specify theworking library into which thedesign
unit is placed after compilation; the vcom command (CR-145) adds compiled design units
to the current working library. By default, thisisthe library named work. To change the
current working library, you can use vcom -wor k and specify the name of the desired target
library.

Default binding rules

A common question related to resource librariesis how Model Sim handles default binding
for components. Model Sim addresses default binding at compile time. When looking for
an entity to bind with, Model Sim searches the currently visible libraries for an entity with
the same name as the component. Model Sim does this because | EEE 1076-1987 contained
aflaw that made it almost impossible for an entity to be directly visibleif it had the same
name as the component. In short, if acomponent was declared in an architecture, any like-
named entity above that declaration would be hidden because component/entity names
cannot be overloaded. As aresult we implemented the following rules for determining
default binding:

« If adirectly visible entity has the same name as the component, use it.

* If the component is declared in a package, search the library that contained the package
for an entity with the same name.

 Search thework library.
« Search al other libraries that are currently visible by means of thelibrary clause.

ModelSim User's Manual

UM-46 3 - Design libraries

In |EEE 1076-1993, the flaw was partially fixed in that the name look-up for the default
entity ignores component declarations. However, you could still encounter problems.
Consider the case where you declare acomponent C in a package P, library L contains an
entity C, and you have the following lines of code:

library L;
use L.P.all; -- Mkes conponent C visible
use L.all; -- Because L.C exists and entity and conmponent cannot be

overl oaded, neither L.C nor L.P.C are directly visible.

In this case you couldn’t have the statement:
Ul: C PORT MAP (pl => ...);

Instead, you need to have:
Ul: P.C PORT MAP (pl => ...);

Because the default binding rules in IEEE 1076 contain these flaws, different smulators
implement default binding in different ways.

Predefined libraries

Certain resource libraries are predefined in standard VHDL. The library named std
contains the packages standar d and textio, which should not be modified. The contents of
these packages and other aspects of the predefined language environment are documented
in the IEEE Sandard VHDL Language Reference Manual, Sd 1076-1987 and ANS/IEEE
Sd 1076-1993. See also, "Using the TextlO package" (UM-55).

A VHDL use clause can be specified to select particular declarationsin alibrary or package
that are to be visible within a design unit during compilation. A use clause references the
compiled version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

LI BRARY std, work;
USE std. standard. al |

To specify that al declarationsin alibrary or package can be referenced, add the suffix .all
to the library/package name. For example, the use clause above specifies that all
declarationsin the package standard in the design library named std are to be visible to the
VHDL design file in which the use clause is placed. Other libraries or packages are not
visible unless they are explicitly specified using alibrary or use clause.

Another predefined library iswork, the library where a design unit is stored after it is
compiled as described earlier. There is no limit to the number of libraries that can be
referenced, but only one library is modified during compilation.

Alternate IEEE libraries supplied
Theinstallation directory may contain two or more versions of the |IEEE library:

* ieeepure
Contains only |EEE approved std_logic_1164 packages (accelerated for Model Sim).

ModelSim User’'s Manual

Specifying the resource libraries UM-47

. ieee
Contains precompiled Synopsys and |EEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std logic 1164, std logic_misc, std_logic textio, std_logic_arith,
std_logic_signed, std logic_unsigned, vital _primitives, and vital_timing.

Y ou can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini file in the installation directory defaults to the ieee library.

Regenerating your design libraries

Depending on your current Model Sim version, you may need to regenerate your design
libraries before running a simulation. Check the installation README file to seeif your
libraries require an update. Y ou can regenerate your design libraries using the Refresh
command from the Library tab context menu (see"Managing library contents" (UM-41)), or
by using the -r efr esh argument to vcom (CRr-145) and vlog (CR-181).

From the command line, you would use vcom with the -r efr esh option to update VHDL
design unitsin alibrary, and vlog with the -r efr esh option to update Verilog design units.
By default, the work library is updated; use -work <library> to update a different library.
For example, if you have alibrary named mylib that contains both VHDL and Verilog
design units:

vcom -work nylib -refresh
viog -work nylib -refresh

An important feature of -refresh is that it rebuilds the library image without using source
code. This means that models delivered as compiled libraries without source code can be
rebuilt for a specific release of Model Sim (4.6 and later only). In general, thisworks for
moving forwards or backwards on arel ease. Moving backwards on arel ease may not work
if the models used compiler switches or directives (Verilog only) that do not exist in the
older release.

P Note: Youdon't need to regeneratethe std, ieee, vital 22b, and verilog libraries. Also, you
cannot use the -r efr esh option to update libraries that were built before the 4.6 release.

ModelSim User's Manual

UM-48 3 - Design libraries

Importing FPGA libraries

ModelSim User’'s Manual

Model Simincludes animport wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct
mappings and target directories.

A | mportant: The FPGA libraries you import must be pre-compiled. Most FPGA vendors
supply pre-compiled libraries configured for use with Model Sim.

To import an FPGA library, select File> Import > Library (Main window).

|5 ‘Import Library Wizard

The Import Libran 'wizard will step you through the tazks necessany
to reference and uze a librany.

& library can be either an existing Model Technology library or an
FPGA library that wou received from an FPGA vendaor. [f the librany
was received fram an FPGA wendor, it must be a precompiled
library.

Fleaze enter the location of the libran to be imported belov.

Impart Library Pathnarne

Brawse. ..

< Presious

Mext » | Cancel

Follow the instructions in the wizard to complete the import.

UM-49

4 - VHDL simulation

Chapter contents

CompilingvVHDL designs.UM-50
CreatingadesignlibraryUM-50
Invoking the VHDL compiler.UM-B0
Dependency checking.UM-B0
RangeandindexcheckingUM-50

SimulatingVHDL designs.UM-B2
Simulator resolution limit.UM-52
DetaddlaysUM-53

Using the TextlO package.UM-55
Syntax for file declaration. UM-55
Using STD_INPUT and STD OUTPUTWlthln ModeIS|m .. . UM-56

TextlO implementationissues.UM-57
Writing stringsand aggregatesUM-57
Reading and writing hexadecimal numbersUM-58
Danglingpointers.UM-58
The ENDLINE functionUM-58
The ENDFILE functionUM-58
Using alternanvemput/outputflleﬁ JUM-R9
Providing stimulusUM-B9

VITAL specification and sourcecode.UM-60

VITALpackagesUM-60

ModelSim VITAL compliance.UM-60
VITAL compliancechecking. UM-60
Compiling and simulating with accelerated VITAL packageﬁ . . UM-61

Compiling and simulating with accelerated VITAL packages . . . UM-61

UtilpackageUM-62
get_resolution.UM-62
init_signal_driver()UM-63
init_signal_spy()UM-63
signa_foree()UM-63
signal_release()UM-63
toredd)UM-64
totime()UM-65

This chapter provides an overview of compilation and simulation for VHDL ; using the
TextlO package with Model Sim; Model Sim'’ s implementation of the VITAL (VHDL
Initiative Towards ASIC Libraries) specification for ASIC modeling; and documentation
on Model Sim’s special built-in utilities package.

The TextlO package is defined within the VHDL Language Reference Manuals, |EEE Std
1076-1987 and |IEEE Sd 1076-1993; it allows human-readable text input from a declared
source within aVHDL file during simulation.

ModelSim User's Manual

UM-50 4 - VHDL simulation

Compiling VHDL designs

Creating a design library

Before you can compile your design, you must create alibrary in which to store the
compilation results. Use vlib (CR-180) to create a new library. For example:

vlib work
This creates a library named wor k. By default, compilation results are stored in the work
library.

P Note: Thework library is actually a subdirectory named work. This subdirectory
contains a special filenamed _info. Do not create libraries using MS Windows or DOS
commands — always use the vlib command (CR-180).

See "Design libraries' (uM-37) for additional information on working with libraries.

Invoking the VHDL compiler

Model Sim compiles one or more VHDL design unitswith asingleinvocation of vcom (CR-
145), the VHDL compiler. The design units are compiled in the order that they appear on
the command line. For VHDL, the order of compilation isimportant — you must compile
any entities or configurations before an architecture that references them.

Y ou can simulate a design containing units written with both the 1076 -1987 and 1076
-1993 versionsof VHDL. To do so you will need to compileunitsfrom each VHDL version
separately. The vcom (CR-145) command compiles units written with version 1076 -1987
by default; use the -93 option with vcom (CR-145) to compile units written with version
1076 -1993. Y ou can al so change the default by modifying the modelsim.ini file (see
"Preference variables located in INI files' (UM-341) for more information).

Dependency checking

Dependent design units must be reanalyzed when the design units they depend on are
changed in the library. vcom (CR-145) determines whether or not the compilation results
have changed. For example, if you keep an entity and its architectures in the same source
file and you modify only an architecture and recompile the source file, the entity
compilation resultswill remain unchanged and you will not have to recompile design units
that depend on the entity.

Range and index checking

ModelSim User’'s Manual

A range check verifiesthat a scalar value defined with a range subtypeis always assigned
avaluewithin its range. An index check verifies that whenever an array subscript
expression is evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. You can
disable range checks (potentially offering a performance advantage) and index checks
using arguments to the vcom (CR-145) command. Or, you can use the NoRangeCheck and
Nol ndexCheck variables in the modelsim.ini file to specify whether or not they are
performed. See "Preference variables|ocated in INI files' (UM-341).

Compiling VHDL designs UM-51

Range checksin Model Sim are slightly more restrictive than those specified by the VHDL
LRM. Model Sim requires any assignment to asignal to also be in range whereas the LRM
reguires only that range checks be done whenever asignal isupdated. Most assignmentsto
signals update the signal anyway, and the more restrictive requirement allows Model Sim

to generate better error messages.

ModelSim User's Manual

UM-52 4 - VHDL simulation

Simulating VHDL designs

After compiling the design units, you can simulate your designs with veim (CR-189). This
section discusses simulation from the Windows/DOScommand line. Y ou can also use a
project to simulate (see " Getting started with projects” (uUM-20)) or the Simulate dial og box
(see "Simulating with the graphic interface” (UM-245)).

For VHDL invoke vsim (CR-189) with the name of the configuration, or entity/architecture
pair. Note that if you specify a configuration you may not specify an architecture.

This example invokes vsim (CR-189) on the entity my_asic and the architecture structure:

vsim my_asic structure

vsim (CR-189) is capable of annotating adesign using VITAL compliant modelswithtiming
data from an SDF file. Y ou can specify the min:typ:max delay by invoking vsim with the
-sdfmin, -sdftyp and -sdfmax options. Using the SDF file f1.sdf in the current work
directory, the following invocation of vsim annotates maximum timing values for the
design unit my_asic:

vsim -sdf max /ny_asic=f1l.sdf ny_asic

By default, thetiming checkswithin VITAL modelsare enabled. They can be disabled with
the +notimingchecks option. For example:

vsi m +not i m ngchecks topnod

Simulator resolution limit

ModelSim User’'s Manual

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The default
resolution limit is set to the value specified by the Resolution (UM-347) variable in the
modelsim.ini file. Y ou can view the current resolution by invoking the report command
(CR-109) with the simulator state option.

Overriding the resolution

Y ou can override Model Sim’s default resolution by specifying the -t option on the
command line or by selecting adifferent Simulator Resolution in the Simulate dialog box.
Availableresolutions are: 1x, 10x or 100x of fs, ps, ns, us, ms, or sec.

For exampl e this command chooses 10 ps resolution:

vsim -t 10ps topnod

Clearly you need to be careful when doing thistype of operation. If the resolution set by -t
islarger than adelay valuein your design, the delay valuesin that design unit are rounded
to the next multiple of the resolution. In the example above, adelay of 4 pswould be
rounded to O ps.

Choosing the resolution

Y ou should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it
will limit the maximum simulation time limit, and it will degrade performance in some
Cases.

Delta delays

Simulating VHDL designs UM-53

Event-based simulators such as Model Sim may process many events at agiven simulation
time. Multiple signals may need updating, statements that are sensitive to these signals
must be executed, and any new events that result from these statements must then be
gueued and executed as well. The steps taken to evaluate the design without advancing

simulation time are referred to as "deltatimes” or just "deltas.”

The diagram bel ow representsthe process for VHDL designs. This process continues until
the end of simulation time.

Execute
concurrent

current time

statements at

!

Advance
simulation
time

No

Advance

:

Any transactions
| to process?

¢Yes

Any events to

P deltatime <

No

process?

#Yes

Executeconcurrent
statements that are
sensitive to events

This mechanism in event-based simulators may cause unexpected results. Consider the
following code snippet:

cl k2 <= clk;

process (rs

begi n
if(rst =
s0 <=

t, clk)

"0’)then

o

elsif(clk’event and clk="1") then

s0 <=

end if;
end process

process (rst,
begi n
if(rst =

np;

1

cl k2)

"0’)then

ModelSim User's Manual

UM-54

4 - VHDL simulation

sl <='0";
el sif(clk2 event and cl k2="1") then
sl <= sO0;
end if;
end process;

In this example you have two synchronous processes, one triggered with clk and the other
with clk2. To your surprise, the signals change in the clk2 process on the same edge as they
are set in the clk process. As aresult, the value of inp appears at sl rather than sO. What is
going on?

Here iswhat’s happing. During simulation an event on clk occurs (from the testbench).
From this event Model Sim performs the "clk2 <= clk" assignment and the process which
is sengitive to clk. Before advancing the simulation time, Model Sim finds that the process
sensitive to clk2 can aso be run. Since there are no delays present, the effect isthat the
value of inp appears at sl in the same simulation cycle.

In order to get the expected results, you must do one of the following:
1 insert delay at every output
2 make certain to use the same clock

3 insert adeltadelay
To insert adeltadelay, you would modify the code like this:

process (rst, clk)

begi n
if(rst =70)then
s0 <= '0';
elsif(clk’event and clk="1") then
s0 <= inp;
sO_del ayed <= sO
end if;

end process;

process (rst, clk2)
begi n
if(rst =0)then
sl <="'0";
el sif(cl k2 event and cl k2="1") then
sl <= s0_del ayed
end if;
end process;

The best way to debug delta delay problemsis observe your signalsin the List window.
There you can see how values change at each deltatime.

ModelSim User’'s Manual

Using the TextlO package @ UM-55

Using the TextlO package

To access the routines in Textl O, include the following statement in your VHDL source
code:

USE std.textio.all;

A simple example using the package TextlO is:

USE std.textio.all;
ENTITY sinple_textio IS
END;

ARCHI TECTURE si npl e_behavi or OF sinple_textio IS

BEGI N

PROCESS
VARI ABLE i: | NTEGER = 42;
VARI ABLE LLL: LINE;

BEGI N
WRITE (LLL, i);
WRI TELI NE (OUTPUT, LLL);
VAIT;

END PROCESS;

END si npl e_behavi or;

Syntax for file declaration
The VHDL' 87 syntax for afile declaration is:

fileidentifier : subtype indicationi s [node] file_logical _nane ;

where "file_logical_name" must be a string expression.
The VHDL' 93 syntax for afile declaration is:

fileidentifier list : subtype indication [file open_information] ;

where"fil e open_i nformation"is

[open file_open_kind_expression] is file_logical_nane

Y ou can specify afull or relative path as the file_logical_name; for example (VHDL'87):

Normally if afileisdeclared within an architecture, process, or package, thefileis opened
when you start the ssmulator and is closed when you exit from it. If afileisdeclared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNS from the subprogram. Alternatively, the opening of files can be delayed until
thefirst read or write by setting the DelayFileOpen variablein the modelsim.ini file. Also,
the number of concurrently open files can be controlled by the ConcurrentFileLimit
variable. These variables help you manage a large number of files during ssmulation. See
Appendix A - Model Sim variables for more details.

ModelSim User's Manual

UM-56 4 - VHDL simulation

Using STD_INPUT and STD_OUTPUT within ModelSim

The standard VHDL' 87 TextlO package contains the following file declarations:
file input: TEXTiS in "STD INPUT";
file output: TEXT i S out "STD OUTPUT";
The standard VHDL' 93 Textl O package contains these file declarations:
file input: TEXT open read_node i S "STD | NPUT";
file output: TEXT open wite_node i S "STD_OUTPUT";

STD_INPUT isafile logica _name that refersto characters that are entered interactively
from the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In Model Sim, reading from the STD_INPUT file allows you to enter text into the current
buffer from a prompt in the Main window. The lines written to the STD_OUTPUT file
appear in the Main window transcript.

ModelSim User’'s Manual

TextlO implementation issues UM-57

TextlO implementation issues

Writing strings and aggregates

A common error in VHDL source code occurswhen acall to aWRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the
VHDL procedure:

VR TE (L, "hello");

will cause the following error:
ERROR: Subprogram "WRI TE" is ambi guous.

In the TextlO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRI TE(L: inout LINE, VALUE: in Bl T_VECTOR;
JUSTIFIED: in SIDE = RIGHT; FIELD: in WDTH := 0);

procedure WRI TE(L: inout LINE, VALUE: in STRI NG
JUSTIFIED: in SIDE = RIGHT; FIELD: in WDTH := 0);

The error occurs because the argument "hello" could be interpreted as a string or a bit
vector, but the compiler isnot allowed to determine the argument type until it knowswhich
functionis being called.

The following procedure call also generates an error:

WRI TE (L, "010101");
This call is even more ambiguous, because the compiler could not determine, even if
allowed to, whether the argument "010101" should beinterpreted as astring or abit vector.
There are two possible solutions to this problem:
» Useaqualified expression to specify thetype, asin:

WRI TE (L, string ("hello"));

« Call aprocedure that is not overloaded, asin:
WRI TE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and callsthe
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedurein the
io_utils package, which islocated in thefile <install_dir>/modeltech/examples/
io_utils.vhd.

ModelSim User’'s Manual

UM-58 4 - VHDL simulation

Reading and writing hexadecimal numbers

The reading and writing of hexadecimal numbersis not specified in standard VHDL. The
I ssues Screening and Analysis Committee of the VHDL Analysis and Standardization
Group (ISAC-VASG) has specified that the Textl O package reads and writes only decimal
numbers.

To expand this functionality, Model Sim supplies hexadecimal routines in the package
io_utils, whichislocated inthefile<install_dir>/modeltech/examples/io_utils.vhd. Touse
these routines, compile theio_utils package and then include the following use clausesin
your VHDL source code:

use std.textio.all;
use work.io_utils.all;

Dangling pointers

Dangling pointers are easily created when using the Textl O package, because
WRITELINE de-allocates the access type (pointer) that is passed to it. Following are
examples of good and bad VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and al |l ocate buffer
L2 := L1, -- Copy pointers
WRI TELI NE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and al | ocate buffer
L2 := new string’ (L1.all); -- Copy contents
WRI TELI NE (outfile, L1); -- Deall ocate buffer

The ENDLINE function

The ENDLINE function described in the IEEE Sandard VHDL Language Reference
Manual, |EEE Sd 1076-1987 containsinvalid VHDL syntax and cannot be implemented
in VHDL. Thisis because access types must be passed as variables, but functions only
allow constant parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed
from the TextlO package. The following test may be substituted for this function:;

(L = NULL) OR (L' LENGTH = 0)

The ENDFILE function

ModelSim User’'s Manual

Inthe VHDL Language Reference Manuals, |EEE Sd 1076-1987 and | EEE Std 1076-1993,
the ENDFILE function islisted as:

- function ENDFILE (L: in TEXT) return BOOLEAN,

Asyou can see, this function is commented out of the standard TextlO package. Thisis
because the ENDFILE function isimplicitly declared, so it can be used with files of any
type, not just files of type TEXT.

TextlO implementation issues UM-59

Using alternative input/output files

Y ou can use the Textl O package to read and write to your own files. To do this, just declare
an input or output file of type TEXT. For example, for an input file:

The VHDL' 87 declaration is:
file nyinput : TEXT i S in "pathnane. dat";

The VHDL' 93 declaration is:
file nyinput : TEXT open read_node i S "pathnane. dat";

Then include the identifier for thisfile ("myinput” in this example) in the READLINE or
WRITELINE procedure call.

Providing stimulus

Y ou can stimulate and test a design by reading vectors from afile, using them to drive
values onto signals, and testing theresults. A VHDL test bench has been included with the
ModelSim install files as an example. Check for thisfile:

<install_dir>/modeltech/examples/stimulus.vhd

ModelSim User’'s Manual

UM-60 4 - VHDL simulation

VITAL specification and source code

VITAL ASIC Modeling Specification

The |IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

|EEE Customer Service
445 Hoes Lane
Piscataway, NJ 08855-1331

Tel: (732) 981-0060
Fax: (732) 981-1721
home page: http://www.ieee.org

VITAL source code

The source code for VITAL packagesis provided in the/<install_dir>/vhdl_src/vital22b,
Nvital95, or /vital2000 directories.

VITAL packages

VITAL 1995 accel erated packages are pre-compiled into theieee library in the installation
directory. VITAL 2000 accelerated packages are pre-compiled into the vital2000 library.
If you need to use the newer library, you'll need to add a use clause to your VHDL codeto
access the VITAL 2000 packages. For example:

LI BRARY vi t al 2000;
USE vi t al 2000. al |

ModelSim VITAL compliance

A simulator is VITAL compliant if it implements the SDF mapping and if it correctly
simulates designs using the VITAL packages, as outlined in the VITAL Model
Development Specification. Model Sim is compliant with the IEEE 1076.4 VITAL ASIC
Modeling Specification. In addition, Model Sim acceleratesthe VITAL_Timing,
VITAL_Primitives, and VITAL_memory packages. The optimized procedures are
functionally equivalent to the IEEE 1076.4 VITAL ASIC Modeling Specification (VITAL
1995 and 2000).

VITAL compliance checking

ModelSim User’'s Manual

If you areusing VITAL 2.2b, you must turn off the compliance checking either by not
setting the attributes, or by invoking vcom (CR-145) with the option -novitalcheck.

http://www.ieee.org

Compiling and simulating with accelerated VITAL packages UM-61

Compiling and simulating with accelerated VITAL packages

vcom (CR-145) automatically recognizesthat a VITAL function is being referenced from
the ieeelibrary and generates code to call the optimized built-in routines.

Invoke with the -novital option if you do not want to use the built-in VITAL routines
(when debugging for instance). To exclude al VITAL functions, use -novital all:

vcom -novital all design.vhd

To exclude selected VITAL functions, use one or more -novital <fname> options:
vcom -novital Vital Ti mi ngCheck -novital Vital AND design.vhd
The -novital switch only affects callsto VITAL functions from the design units currently

being compiled. Pre-compiled design units referenced from the current design units will
still call the built-in functions unless they too are compiled with the -novital option.

ModelSim VITAL built-inswill be updated in step with new releases of the VITAL
packages.

ModelSim User's Manual

UM-62 4 - VHDL simulation

Util package

get_resolution

ModelSim User’'s Manual

The util package, included in Model Sim versions 5.5 and later, serves as a container for
various VHDL utilities. The packageis part of themodelsim_liblibrary whichislocated in
the modeltech tree and is mapped in the default modelsim.ini file.

Toaccessthe utilitiesin the package, you would add lineslike the following to your VHDL
code:

l'ibrary nodelsimlib;
use nodel simlib.util.all;

get_resolution returns the current simulator resolution as areal number. For example, 1
femtosecond corresponds to 1e-15.

Syntax

resval := get_resolution;

Returns

Name Type Description

resva real The simulator resolution represented as a real

Arguments
None

Related functions
to_real() (UM-64)
to_time() (UM-65)

Example
If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

Util package

init_signal_driver()

The init_signal_driver() procedure drives the value of aVVHDL signal or Verilog net onto
anexisting VHDL signal or Verilog net. Thisallowsyou to drivesignalsor netsat any level
of the design hierarchy from within aVVHDL architecture (e.g., a testbench).

Seeinit_signal_driver (UM-271) in Chapter 8 - Sgnal Spy for complete detail s and syntax
on this procedure.

init_signal_spy()

signal_force()

Theinit_signal_spy() utility mirrorsthe value of a VHDL signal or Verilog register/net
onto an existing VHDL signal or Verilog register. This allows you to reference signals,
registers, or nets at any level of hierarchy from within aVHDL architecture (e.g., a
testbench).

Seeinit_signa_spy (Um-274) in Chapter 8 - Signal Spy for complete details and syntax on
this procedure.

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net. Thisallowsyouto force signals, registers, or nets at any level of the
design hierarchy fromwithinaVVHDL architecture (e.g., atestbench). A signal_forceworks
the same asthe for ce command (CR-82) with the exception that you cannot issue arepeating
force.

Seesignal_force (UM-276) in Chapter 8 - Signal Spy for complete details and syntax on this
procedure.

signal_release()

The signal_release() procedure releases any force that was applied to an existing VHDL
signal or Verilog register or net. Thisallows you to release signals, registers, or nets at any
level of the design hierarchy from within aVHDL architecture (e.g., atestbench). A
signal_release works the same as the nofor ce command (CR-92).

See signal_release (UM-278) in Chapter 8 - Signal Spy for complete details and syntax on
this procedure.

UM-63

ModelSim User's Manual

UM-64 4 - VHDL simulation

to_real()

ModelSim User’'s Manual

to_real() converts the physical type time value into areal value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fsto areal and the simulator
resolution was ps, then the real value would be 2.0 (i.e., 2 ps).

Syntax
realval := to_real (timeval)

Returns

Name Type Description

realva real The time value represented as areal with

respect to the simulator resolution

Arguments

Name Type Description

timeval time The value of the physical type time

Related functions
get_resolution (UM-62)

to_time() (UM-65)

Example

If the simulator resolution is set to ps, and you enter the following function:
realval := to_real (12.99 ns);
then the value returned to realval would be 12990.0. If you wanted the returned value to be

in units of nanoseconds (ns) instead, you would use the get_r esolution (Um-62) function to
recalculate the value:

realval := 1e+9 * (to_real (12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := le+l5 * (to_real (12.99 ns)) * get_resolution()

to_time()

Util package

to_time() converts areal value into atime value with respect to the current simulator
resolution. The precision of the converted value is determined by the simulator resolution.
For example, if you were converting 5.9 to atime and the simulator resolution was ps, then
the time value would be 6 ps.

Syntax
tinmeval := to_tine(realval);

Returns

Name Type Description

timeval time Thereal value represented as a physical type

time with respect to the simulator resolution

Arguments

Name Type Description

realval real Thevalue of the typerea

Related functions
get_resolution (UM-62)

to_real() (UM-64)

Example

If the simulator resolution is set to ps, and you enter the following function:

timeval = to_tinme(72.49);

then the value returned to timeval would be 72 ps.

UM-65

ModelSim User's Manual

UM-66

ModelSim User’s Manual

UM-67

5 - Verilog simulation

Chapter contents

Compilation . . . e L UM-e9
Incremental comp|lat|on e Y EY (0]
Library usage . . e L UM-T2
Verilog-XL compati bIe compller argumentsUM-73
Verilog-XL ‘uselib compiler directiveUM-74

SimulationUM-76
Invoking thesmulator e Y BY (¢
Simulator resolution limit.UM-77
Event orderingin VerilogdesignsUM-79
Negativetiming check limitsUwmM-83
Verilog-XL compatible simulator arguments.UM-86

Cell libraries . . T] \Y 3274
SDF timing annotanon T] \v 3374
DelaymodesUM-87

Systemtasks . . e U] |V 83 1°)
|EEE Std 1364 wstem tasks N 0 \Y S ¢
Verilog-XL compatiblesystemtasks.UM-92
ModelSim Verilog systemtasksUM-%4

Compiler directives . . e LUM-95
| EEE Std 1364 compiler d| rectwe; e JUM-95
Verilog-XL compatible compiler directivesUM-96

Verilog PLI/VPIL . . . e . UMYy
Registering PLI appllcat|ons e e UMYy
Registering VPI applications UM-9
Compiling and linking PLI/VPI C appllcatlons UM-101
Compiling and linking PLI/VPI C++ applications UM-102
Specifying the PLI/VPI filetoload UM-103
PLlexample UM-104
VPl example UM-105
The PLI callback reason argument UM-106
The sizetf callback function UM-107
PLI objecthandles. UM-107
Third party PLI applications UM-108
Support for VHDL objects UM-109
|IEEE Std 1364 ACCroutines. UM-110
|IEEE Std 1364 TFroutines UM-111
Verilog-XL compatibleroutines UM-113
64-bit supportinthefPL.! UM-113
PLI/VPI tracing« UM-113
Debugging PLI/VPI appllcatlon code. UM-115

ModelSim User's Manual

UM-68 5 - Verilog simulation

ModelSim User’'s Manual

This chapter describes how to compile and simulate Verilog designs with ModelSim
Verilog. Model Sim Verilog implements the Verilog language as defined by the |EEE Std
1364, and it is recommended that you obtain this specification as a reference manual.

In addition to the functionality described inthe IEEE Std 1364, Model Sim Verilog includes
the following features:

« Standard Delay Format (SDF) annotator compatible with many ASIC and FPGA vendor's
Verilog libraries

 Vaue Change Dump (VCD) file extensions for ASIC vendor test tools
» Dynamic loading of PLI/VPI applications

» Compilation into retargetable, executable code

* Incremental design compilation

« Extensive support for mixing VHDL and Verilog in the same design (including SDF
annotation)

« Graphic Interface that is common with ModelSim VHDL
 Extensionsto provide compatibility with Verilog-XL
The following | EEE Std 1364 functionality is partially implemented in Model Sim Verilog:

* Verilog Procedural Interface (VPI) (see /<install_dir>/modeltech/docs/technotes/
Verilog_VPIl.note for details)

» Verilog 2001 (see/<install_dir>/modeltech/docs/technotes/viog_2000.note for details)

Many of the examplesin this chapter are shown from the command line. For compiling and
simulating within a project or ModelSim’s GUI see:

 Getting started with projects (UM-20)
« Compiling with the graphic interface (Um-238)
« Simulating with the graphic interface (UM-245)

Compilation UM-69

Compilation

Before you can simulate a Verilog design, you must first create alibrary and compile the
Verilog source code into that library. This section provides detailed information on
compiling Verilog designs. For information on creating a design library, see Chapter 3 -
Design libraries.

The Model Sim Verilog compiler, viog, compiles Verilog source code into retargetable,
executable code, meaning that the library format is compatible across all supported
platforms and that you can simulate your design on any platform without having to
recompile your design specifically for that platform. Asyou compile your design, the
resulting object code for modules and UDPs is generated into alibrary. By default, the
compiler places resultsinto the work library. Y ou can specify an alternate library with the
-work argument. The following is a simple example of how to create awork library,
compile adesign, and simulate it:

Contents of top.v:

nodul e top;
initial $display("Hello world");
endnodul e

Create the work library:

% vlib work

Compile the design:

% vlog top.v
- Conpiling nodul e top

Top | evel nodul es:
top

View the contents of the work library (optional):

% vdi r
MCODULE t op

Simulate the design:

% vsim-c top

Loadi ng work.top
VSIM 1> run -all

Hello world
VSIM 2> quit

In this example, the simulator was run without the graphic interface by specifying the -c
argument. After the design was loaded, the simulator command run -all was entered,
meaning to simulate until there are no more simulator events. Finally, the quit command
was entered to exit the simulator. By default, alog of the simulation is written to the
transcript filein the current directory.

ModelSim User's Manual

UM-70 5 - Verilog simulation

Incremental compilation

By default, Model Sim Verilog supports incremental compilation of designs, thus saving
compilation time when you modify your design. Unlike other Verilog simulators, thereis
no requirement that you compile the entire design in one invocation of the compiler .

Y ou are not required to compile your design in any particular order because all module and
UDP instantiations and external hierarchical references are resolved when the design is
loaded by the simulator. Incremental compilation is made possible by deferring these
bindings, and as aresult some errors cannot be detected during compilation. Commonly,
these errorsinclude: modules that were referenced but not compiled, incorrect port
connections, and incorrect hierarchical references.

The following example shows how a hierarchical design can be compiled in top-down
order:

Contents of top.v:

nodul e top;
or2 or2_i (nl, a, b);
and2 and2_i (n2, nl, c);
endnodul e

Contents of and2.v:

nodul e and2(y, a, b);
out put vy;
i nput a, b;
and(y, a, b);
endnodul e

Contents of or2.v:

nodul e or2(y, a, b);
out put y;
i nput a, b;
or(y, a, b);
endnodul e

Compile the design in top down order (assumes work library already exists):

% vlog top.v
- Conpiling nmodul e top

Top | evel nodul es:
top
% vl og and2.v
- Conpi ling nodul e and2

Top | evel nodul es:
and2
% vlog or2.v
- Conpiling nmodul e or2

Top | evel nodul es:
or2

Note that the compiler lists each module as atop level module, although, ultimately, only
top isatop-level module. If amoduleis not referenced by another module compiled in the
same invocation of the compiler, thenit islisted asatop level module. Thisisjust an

ModelSim User’'s Manual

Compilation

informative message and can be ignored during incremental compilation. The messageis
more useful when you compile an entire design in one invocation of the compiler and need
to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v

- Conpiling nodul e top

- Conpi ling nodul e and2

- Conpiling nodul e or2

Top | evel nodul es
top

The most efficient method of incremental compilation isto manually compile only the
modules that have changed. Thisis not always convenient, especially if your source files
have compiler directive interdependencies (such as macros). In this case, you may prefer to
always compile your entire design in one invocation of the compiler. If you specify the
-incr argument, the compiler will automatically determine which modules have changed
and generate code only for those modules. Thisis not as efficient as manual incremental
compilation because the compiler must scan all of the source code to determine which
modules must be compiled.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v

- Conpiling nodul e top

- Conpi ling nodul e and2

- Conpiling nmodul e or2

Top | evel nodul es
top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
- Ski ppi ng nodul e top
- Ski ppi ng nodul e and2
- Conpiling nmodul e or2

Top | evel nodul es
top

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation isintelligent about when to compile a module. For
example, changing acomment in your source code does not result in arecompile; however,
changing the compiler command line arguments results in arecompile of all modules.

P Note: Changes to your source code that do not change functionality but that do affect
source code line numbers (such as adding a comment line) will cause all affected
modul esto be recompiled. This happens because debug information must be kept current
so that Model Sim can trace back to the correct areas of the source code.

UM-71

ModelSim User's Manual

UM-72 5 - Verilog simulation

Library usage

ModelSim User’'s Manual

All modules and UDPsin aVerilog design must be compiled into one or more libraries.
Onelibrary is usually sufficient for a simple design, but you may want to organize your
modulesinto various libraries for acomplex design. If your design uses different modules
having the same name, then you are required to put those modules in different libraries
because design unit names must be unique within alibrary.

The following isan example of how you may organize your ASIC cellsinto onelibrary and
therest of your design into another:
% vlib work
%vlib asiclib
% vliog -work asiclib and2.v or2.v
- Conpi li ng nodul e and2
- Conpiling nodul e or2

Top | evel nodul es
and2
or2
% vlog top.v
- Conpiling nodul e top

Top | evel nodul es
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to
place theresultsin the asiclib library rather than the default work library.

Since instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are
loaded from the library named wor k unless you prefix the modules with the <library>.
option. All other Verilog instantiations are resolved in the following order:

« Search libraries specified with -L f argumentsin the order they appear on the command
line.

 Search thelibrary specified in the "Verilog-XL “uselib compiler directive" (UM-74).

* Search libraries specified with -L argumentsin the order they appear on the command
line.

* Search thework library.
» Search thelibrary explicitly named in the specia escaped identifier instance name.

Thework library is not necessarily alibrary named wor k—rather, the work library refers
to the library containing the module that instantiates the module or UDP that is currently
being searched for. Thisdefinitionisuseful if you have hierarchical modulesorganizedinto
separatelibrariesand if sub-module namesoverlap among thelibraries. Inthissituation you
want the modules to search for their sub-modulesin the work library first. Thisis
accomplished by specifying -L work first in the list of search libraries.

For example, assume you have a top-level module top that instantiates module modA from
library libA and module modB from library libB. Furthermore, modA and modB both
instantiate modules named cell A, but the definition of cell A compiled into libA is different
from that compiled into libB. In this case, it isinsufficient to just specify -L libA - L libB
asthe search libraries because instantiations of cell Afrom modB resolveto thelibA version
of cell A. The appropriate search library arguments are -L. work -L libA -L libB.

Compilation UM-73

Verilog-XL compatible compiler arguments

The compiler arguments listed below are equivalent to Verilog-XL arguments and may
ease the porting of adesign to Model Sim. See the vliog command (CR-181) for adescription
of each argument.

+def i ne+<nacr o_nane>[=<nmcr o_t ext >]
+del ay_node_di stri but ed
+del ay_node_pat h

+del ay_node_uni t

+del ay_node_zero

-f <filename>

+i ncdi r +<directory>

+m ndel ays

+maxdel ays

+nowar n<rmenoni ¢>

+t ypdel ays

-u

Arguments supporting source libraries

The compiler arguments listed below support source libraries in the same manner as
Verilog-XL. See the viog command (CR-181) for a description of each argument.

Note that these source libraries are very different from the libraries that the Model Sim
compiler uses to store compilation results. Y ou may find it convenient to use these
arguments if you are porting a design to Model Sim or if you are familiar with these
arguments and prefer to use them.

Source libraries are searched after the source files on the command line are compiled. If
there are any unresolved references to modules or UDPs, then the compiler searches the
source libraries to satisfy them. The modules compiled from source libraries may in turn
have additional unresolved references that cause the source libraries to be searched again.
This processis repeated until all references are resolved or until no new unresolved
referencesarefound. Sourcelibrariesare searched in the order they appear on the command
line.

-v <fil enanme>

-y <directory>
+l i bext +<suf fi x>
+l i brescan
+nol i bcel

-R [<si margs>]

ModelSim User's Manual

UM-74 5 - Verilog simulation

Verilog-XL ‘uselib compiler directive

ModelSim User’'s Manual

The *uselib compiler directive is an alternative source library management scheme to the
-v, -y, and +libext compiler arguments. It has the advantage that a design may reference
different modules having the same name. Y ou compile designs that contain ‘uselib
directive statements using the -compile_uselibs argument (described below) to vlog (CR-
181).

The syntax for the ‘uselib directiveis:

‘uselib <library_reference>..

where <library_reference> is:

dir=<library_directory> | file=<library_file> | |ibext=<file_extension>
l'i b=<li brary_name>

The library references are equivalent to command line arguments as follows:

dir=<library_directory> -y <library_directory>
file=<library_file> -v <library_file>
I i bext=<fil e_extension> +libext+<file_extension>

For example, the following directive

‘uselib dir=/h/vendorA libext=.v

is equivalent to the following command line arguments:

-y /h/vendor A +li bext+.v

Since the ‘uselib directives are embedded in the Verilog source code, thereis more
flexibility in defining the source libraries for the instantiations in the design. The
appearance of a‘uselib directive in the source code explicitly defines how instantiations
that follow it are resolved, completely overriding any previous ‘uselib directives.

-compile_uselibs argument

Use the -compile_uselibs argument to vlog (CR-181) to reference ‘ uselib directives. The
argument finds the source files referenced in the directive, compiles them into
automatically created object libraries, and updates the modelsim.ini file with the logical
mappings to the libraries.

When using -compile_uselibs, Model Sim determines into what directory to compile the
object libraries by choosing, in order, from the following three values:

 The directory name specified by the -compile_uselibs argument. For example,
-conpil e_uselibs=./mnmydir

» Thedirectory specified by the MTI_USELIB_DIR environment variable (see
"Environment variables' (UM-337))

« A directory named mti_uselibs that is created in the current working directory

P Note: In ModelSim versions prior to 5.5, the library files referenced by the ‘uselib
directive were not automatically compiled by ModelSim Verilog. To maintain
backwards compatibility, thisis till the default behavior when -compile_uselibsis not
used. See www.model.com/products/documentation/pre55 uselib.pdf for a description
of the pre-5.5 implementation.

http://www.model.com/products/documentation/pre55_uselib.pdf

Compilation

The following code fragment and compiler invocation show how two different modules
that have the same name can be instantiated within the same design:
nodul e top;
‘uselib dir=/h/vendorA |ibext=.v
NAND2 ul(nl, n2, n3)
‘uselib dir=/h/vendorB |ibext=.v
NAND2 u2(n4, n5, n6)
endnodul e

This allows the NAND2 modul e to have different definitions in the vendorA and vendorB
libraries.

‘uselib is persistent

As mentioned above, the appearance of a ‘uselib directivein the source code explicitly
defines how instantiations that follow it are resolved. This may result in unexpected
consequences. For example, consider the following compile command:

vlog -conpile_uselibs dut.v srtr.v
Assume that dut.v contains a ‘uselib directive. Since srtr.v is compiled after dut.v, the
‘uselib directiveis still in effect. When srtr isloaded it isusing the ‘uselib directive from

dut.v to decide where to locate modules. If thisisnot what you intend, then you need to put
an empty ‘uselib at the end of dut.v to "close" the previous ‘uselib statement.

UM-75

ModelSim User's Manual

UM-76 5 - Verilog simulation

Simulation

TheModel Sim simulator can load and simulate both Verilog and VHDL designs, providing
auniform graphic interface and simulation control commandsfor debugging and analyzing
your designs. The graphic interface and simulator commands are described elsewhere in
this manual, while this section focuses specifically on Verilog simulation.

Invoking the simulator

ModelSim User’'s Manual

A Verilog design is ready for simulation after it has been compiled into one or more
libraries. The simulator may then be invoked with the names of the top-level modules
(many designs contain only onetop level module). For example, if your top level modules
are "testbench" and "globals', then invoke the simulator as follows:

vsi m t est bench gl obal s

After the smulator |oads the top-level modules, it iteratively loads the instantiated modules
and UDPsin the design hierarchy, linking the design together by connecting the ports and
resolving hierarchical references. By default all modules and UDPs are loaded from the
library named wor k. Modules and UDPs from other libraries can be specified using the -L
or -Lf argumentsto vaim (see "Library usage" (UM-72) for details).

On successful loading of the design, the simulation time is set to zero, and you must enter
arun command to begin simulation. Commonly, you enter run -all to run until there are
no more simulation events or until $finish is executed in the Verilog code. Y ou can also
run for specific time periods (e.g., run 100 ns). Enter the quit command to exit the
simulator.

Simulation UM-77

Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The
resolution limit defaults to the smallest time precision found among all of the ‘timescale
compiler directivesin the design. Here is an example of a‘timescale directive:

‘tinescale 1 ns / 100 ps

Thefirst number isthetime unitsand the second number isthetime precision. Thedirective
above causes time values to be read as ns and to be rounded to the nearest 100 ps.

Modules without timescale directives

Y ou may encounter unexpected behavior if your design contains some modules with
timescale directives and others without. The time units for modules without atimescale
directive default to the simulator resolution. For example, say you have the two modules
shown in the table below:

Module 1 Module 2
“timescale 1 ns/ 10 ps module mod2 (set);
module mod1 (set); output set;
reg set;
output set; parameter d = 1.55;
reg set;
parameter d = 1.55; initial
begin
initial set = 1'bz;
begin #d set = 1'b0;
set = 1'bz; #d set = 1'bl;
#d set = 1'b0; end
#d set = 1'bl,
end endmodule
endmodule

If youinvokevsim asvsi m mod2 nod1 then Module 1 setsthe simulator resolution to 10 ps.
Module 2 has no timescale directive, so the time units default to the simulator resolution,
inthis case 10 ps. If you watched /modl/set and /mod2/set in the Wave window, you’' d see
that in Module 1 it transitions every 1.55 ns as expected (because of the 1 nstime unit in
thetimescale directive). However, in Module 2, set transitions every 20 ps. That' s because
the delay of 1.55in Module 2 isread as 15.5 ps and is rounded up to 20 ps.

In such cases Model Sim will issue the following warning message during elaboration:

** \Warning: (vsim3010) [TSCALE] - Module 'npdl’ has a ‘timescale directive
in effect, but previous nodul es do not.

ModelSim User's Manual

UM-78 5 - Verilog simulation

ModelSim User’'s Manual

If you invoke vsim asvsi m nod1 nod2, the simulation results would be the same but
Model Sim would produce a different warning message:

** \Warning: (vsim3009) [TSCALE] - Modul e 'nmpd2’ does not have a ‘timescale
directive in effect, but previous nodul es do.

These warnings should ALWAY S be investigated.

If the design contains no ‘timescal e directives, then the resolution limit and time units
default to the value specified by the Resolution (UM-347) variable in the modelsim.ini file.
(Thevariableis set to 1 ps by default.)

Multiple timescale directives

Asalluded to above, your design can have multiple timescale directives. The timescale
directive takes effect where it appearsin a source file and applies to all source fileswhich
follow in the same vlog (CR-181) command. Separately compiled modules can also have
different timescales. The simulator determines the smallest timescale of all the modulesin
adesign and uses that as the simulator resol ution.

Overriding the resolution

Y ou can overridethe simulator resolution (or Model Sim’ s default resolution) by specifying
the -t argument on the command line or by selecting adifferent Simulator Resolutioninthe
Simulate dialog box. Available resolutions are: 1x, 10x or 100x of fs, ps, ns, us, ms, or sec.

For exampl e this command chooses 10 ps resolution:

vsim-t 10ps top

Clearly you need to be careful when doing thistype of operation. If the resolution set by -t
islarger than the timescale of some module, the time values in that module are rounded to
the next multiple of the resolution. In the example above, adelay of 4 pswould be rounded
to O ps.

Choosing the resolution

Y ou should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it
will limit the maximum simulation time limit, and it will degrade performance in some
cases.

Simulation UM-79

Event ordering in Verilog designs

Event-based simulators such as Model Sim may process multiple events at a given
simulation time. The Verilog languageis defined such that you cannot explicitly control the
order in which simultaneous events are processed. Unfortunately, some designsrely on a
particular event order, and these designs may behave differently than you expect.

Event queues

Section 5 of the IEEE Std 1364-1995 L RM defines several event queues that determine the
order in which events are evaluated. At the current simulation time, the simulator has the
following pending events:

* active events
* inactive events
« non-blocking assignment update events
* monitor events
* future events
- inactive events
- non-blocking assignment update events

The LRM dictatesthat events are processed asfollows— 1) all active events are processed;
2) the inactive events are moved to the active event queue and then processed; 3) the
non-blocking events are moved to the active event queue and then processed; 4) the monitor
events are moved to the active queue and then processed; 5) simulation advancesto the next
time where there is an inactive event or a non-blocking assignment update event.

Within the active event queue, the events can be processed in any order, and new active
events can be added to the queue in any order. In other words, you cannot control event
order within the active queue. The example below illustrates potential ramifications of this
situation.

Say you have these four statements:
1 dways@(q) p=q;

2 aways @(q) p2 = not g;

3 aways @(p or p2) clk = p and p2;

4 aways @(posedge clk)
and current values asfollows: g =0, p=0, p2=1

ModelSim User's Manual

UM-80 5 - Verilog simulation

The tables below show two of the many valid evaluations of these statements. Evaluation
events are denoted #, where # is the statement to be evaluated. Update events are denoted
<name> (old->new) where < name> indicatesthe reg being updated and new isthe updated

value.

Table 1: Evaluation 1

Event being processed Active event queue
q(0 - 1)

q(0 - 1) 1,2

1 p(0 - 1),2

p(0 - 1) 3,2

3 ck(© - 1),2

clk(0 - 1) 4,2

4 2

2 p2(1 - 0)

p2(1 - 0) 3

3 ck® - 0)

clk(® - 0) <empty>

Table 2: Evaluation 2

Event being processed Active event queue
a0 - 1)
q(0 - 1) 1,2
1 p(0 - 1),2
2 p2(1 - 0), p(0 - 1)
p(0 - 1) 3,p2(1 - 0)
p2(1 - 0) 3
3 <empty> (clk doesn’t change)

Again, both evaluations are valid. However, in Evaluation 1, clk hasaglitch oniit; in
Evaluation 2, clk doesn't. Thisindicates that the design has a zero-delay race condition on
clk.

ModelSim User’'s Manual

Simulation

'Controlling’ event queues with blocking/non-blocking assignments

The only control you have over event order isto assign an event to aparticular queue. Y ou
do thisviablocking or non-blocking assignments.

Blocking assignments

Blocking assignments place an event in the active, inactive, or future queues depending on
what type of delay they have:

* ablocking assignment without a delay goes in the active queue
* ablocking assignment with an explicit delay of 0 goesin the inactive queue
« ablocking assignment with a non-zero delay goes in the future queue

Non-blocking assignments

A non-blocking assignment goes into either the non-blocking assignment update event
gueue or the future non-blocking assignment update event queue. (Non-blocking
assignments with no delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. This insures that
all outputs of flip-flops do not change until after all flip-flops have been evaluated.
Attempting to use non-blocking assignments in combinational logic paths to remove race
conditions may only cause more problems. (In the preceding example, changing all
statements to non-blocking assignments would not remove the race condition.) This
includes using non-blocking assignments in the generation of gated clocks.

The following is an example of how to properly use non-blocking assignments.

genl: always @naster)
clkl = master;

gen2: always @cl k1)
cl k2 = clki1;

fl1: always @ posedge cl k1)
begi n
gl <= di;
end

f2: al wvays @ posedge cl k2)
begi n
g2 <= ql;
end

If written thisway, a value on d1 always takes two clock cyclesto get from d1 to g2.
If you change clk1 = master and clk2 = clk1 to non-blocking assignmentsor g2 <= g1 and
gl <= d1 to blocking assignments, then d1 may get to g2 is less than two clock cycles.

Debugging event order issues

Since many models have been developed on Verilog-XL, Model Sim tries to duplicate
Verilog-XL event ordering to ease the porting of those models to Model Sim. However,
Model Sim does not match Verilog-XL event orderingin al cases, and if amodel ported to
Model Sim does not behave as expected, then you should suspect that there are event order
dependencies.

UM-81

ModelSim User's Manual

UM-82 5 - Verilog simulation

ModelSim User’'s Manual

Model Sim helps you track down event order dependencies with the following compiler
arguments; -compat, -hazards, and -keep_delta.

See the vlog command (CR-181) for descriptions of -compat and -keep_delta.

Hazard detection

The-hazar d argument to vsim (CR-189) detects event order hazardsinvolving simultaneous
reading and writing of the same register in concurrently executing processes. vsim detects
the following kinds of hazards:

* WRITE/WRITE:
Two processes writing to the same variable at the same time.

 READ/WRITE:
One process reading avariable at the same timeiit is being written to by another process.
ModelSim callsthis a READ/WRITE hazard if it executed the read first.

* WRITE/READ:
Same as aREAD/WRITE hazard except that M odel Sim executed the write first.

vsim issues an error message when it detects a hazard. The message pinpointsthe variable
and the two processes involved. Y ou can have the simulator break on the statement where
the hazard is detected by setting the break on assertion level to error.

To enable hazard detection you must invoke vlog (CR-181) with the -hazar ds argument
when you compile your source code and you must also invoke vsim with the -hazar ds
argument when you simulate.

A mportant: Enabling -hazardsimplicitly enables the -compat argument. As aresult,
using this argument may affect your simulation results.

Limitations of hazard detection

» Reads and writesinvolving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selects istoo
high.

« A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

* A WRITE/READ or READ/WRITE hazard isflagged even if the write does not modify
the variable's value.

« Glitches on nets caused by non-guaranteed event ordering are not detected.

Simulation UM-83

Negative timing check limits

Verilog supports negative limit values in the $setuphold and $recrem system tasks. These
tasks have optional delayed versions of input signalsto insure proper evaluation of models
with negative timing check limits. Delay values for these delayed nets are determined by
the simulator so that valid datais available for evaluation before a clocking signal.

Example

$set uphol d(posedge cl k, negedge d, 5, -3, Notifier,,, clk_dly, d_dly);

d violation 5 3
region s

0
clk 1

Model Sim calculates the delay for signal d_dly as 4 time unitsinstead of 3. It doesthisto
prevent d_dly and clk_dly from occurring simultaneously when aviolation isn’t reported.

P Note: Model Sim accepts negative limit checks by default, unlike current versions of
Verilog-XL. To match Verilog-XL default behavior (i.e., zeroing all negative timing
check limits), use the +no_neg_tcheck argument to vsim (CR-189).

Negative timing constraint algorithm

The algorithm Model Sim uses to calculate delays for delayed netsisn’t described in IEEE
Std 1364. Rather, Model Sim matches Verilog-XL behavior. The algorithm attemptsto find
aset of delays so the data net is valid when the clock net transitions and the timing checks
are satisfied. The algorithm isiterative because a set of delays can be selected that satisfies
all timing checksfor apair of inputs but then causes mis-ordering of another pair (where
both pairs of inputs share a common input). When a set of delaysthat satisfiesall timing
checksis found, the delays are said to converge.

When none of the delay sets cause convergence, the algorithm pessimistically changes the
timing check limits to force convergence. Basically the algorithm zeroes the smallest
negative $setup/$recovery limit. If anegative $setup/$recovery doesn't exist, then the
algorithm zeros the smallest negative $hold/$removal limit. After zeroing anegative limit,
the delay calculation procedure is repeated. If the delays don’'t converge, the algorithm
zeros another negative limit, repeating the process until convergence is found.

ModelSim User's Manual

UM-84 5 - Verilog simulation

ModelSim User’'s Manual

A simple example will help clarify the algorithm. Assume you have the following timing
checks:
$set uphol d(posedge cl k, posedge d, 3, -2, NOTIFIER,,, clk_dly, d_dly);
$set uphol d(posedge cl k, negedge d, 6, -5, NOTIFIER ,, clk_dly, d_dly);
t
t

$set uphol d(posedge cl k, posedge 20, -12 , NOTIFIER,,, clk_dly, t_dly);
$set uphol d(posedge cl k, negedge 18, -11 , NOTIFIER,,, clk_dly, t_dly);

The violation regionsfor t and d in this example are:

t violation 20 12
; s
regi on 18 11
AN
d viol ation 3 2
regi ons 6 5 e
NANANN 0
cl k |

Note that the delays between clk/clk_dly, t/t_dly, and d/d_dly are not edge sensitive, and
they must be the same for both rising and falling transitions of clk, t,and d. A d =>d_dly
delay of 5 will satisfy the negedge case (transitions of d from 5 to 0 before clk won't be
latched), but valid transitions of posedge d, in the region of 5 to 3 before clk, won't latch
correctly. Therefore, to find convergence, the algorithm starts zeroing negative $hold
limits (-12, then -11, and then -5). The check limits on t are zeroed first because of their
magnitude.

Model Sim will display messages when limits are zeroed if you use the +ntc_warn
argument. Even if you don’'t set +ntc_warn, Model Sim displays a summary of any zeroed
limits.

Extending check limits without zeroing

If zeroing limitsistoo pessimistic for your design, you can use the vsim (CR-189) arguments
-extend_tcheck _data limit and -extend_tcheck ref limit instead. These arguments
cause aone-time extension of qualifying dataor reference limitsin an attempt to provide a
solution prior to any limit zeroing. A limit qualifiesif it bounds a violation region which
does not overlap arelated violation region.

An examplewill help illustrate. Assume you have the following timing checks:

$set uphol d(posedge clk, posedge d, 45, 70, notifier,,,dclk,dd);
$set uphol d(posedge clk, negedge d, 216, -68, notifier,,,dclk,dd);

The violation regions for d in this example are:

d violation 45 70

regi ons 216 - 68 s
AN 0

clk |

Simulation

Thedelay net delay analysisin this case does not provide asolution. Therequired negative
hold delay of 68 between d and dd could cause a non-violating posedge d transition to be
delayed on dd so that it could arrive after dclk for functional evaluation. By default the -68
hold limit is set pessimistically to 0 to insure the correct functional evaluation.

Alternatively, you could use -extend_tcheck_data_limit to overlap theregions. In this
example we must specify the percentage by which to "decrease” the negative hold limitin
order to overlap the positive setup limit. In other words, you must extend the 216, -68
region to 216, -44. Y ou would calcul ate the percentage as follows:

1 Calculate the size of the negative edge violation region:
216- 68 =148

2 Calculate the gap between the negative hold limit and the positive setup limit and add
one timing unit to alow for overlap:

68-45=23+1=24

3 Divide the gap size by the violation region size:
247148 = .16
Hence, you would set -extend_tcheck _data limit to 16.

P Note: ModelSim will extend the limit only asfar asis needed to derive asolution. So if
you used 100 in the previous example, it would still only extend the limit 16 percent.
Indeed, in some casesit may be easiest to select alarge percentage number and not worry
about an exact calculation.

UM-85

ModelSim User's Manual

UM-86 5 - Verilog simulation

Verilog-XL compatible simulator arguments

The simulator arguments listed below are equivalent to Verilog-XL arguments and may
ease the porting of a design to Model Sim. See the vsim (CR-189) for a description of each
argument.

+al t _pat h_del ays

-1 <fil ename>

+maxdel ays

+m ndel ays

+mul ti source_i nt_del ays
+no_cancel | ed_e_nsg
+no_neg_t chk
+no_notifier

+no_pat h_edge

+no_pul se_nsg

+no_show _cancel | ed_e
+nosdf war n

+nowar n<rmenoni ¢>

+nt c_warn

+pul se_e/ <per cent >
+pul se_e_styl e_ondet ect
+pul se_e_styl e_onevent
+pul se_i nt _e/ <percent >
+pul se_i nt _r/ <percent >
+pul se_r/ <percent >
+sdf _nocheck_cel | type
+sdf _ver bose
+show_cancel | ed_e
+transport _i nt _del ays
+transport _pat h_del ays
+t ypdel ays

ModelSim User’'s Manual

Cell libraries UM-87

Cell libraries

Model Technology passed the ASIC Council’ s Verilog test suite and achieved the"Library
Tested and Approved" designation from Si2 Labs. This test suiteis designed to ensure
Verilog timing accuracy and functionality and isthefirst significant hurdle to complete on
the way to achieving full ASIC vendor support. As a consequence, many ASIC and FPGA
vendors' Verilog cell libraries are compatible with Model Sim Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays
and timing constraints for the cells. See section 13 in the | EEE Std 1364-1995 for details
on specify blocks, and section 14.5 for details on timing constraints. Model Sim Verilog
fully implements specify blocks and timing constraints as defined in |EEE Std 1364 along
with some Verilog-XL compatible extensions.

SDF timing annotation

Model Sim Verilog supports timing annotation from Standard Delay Format (SDF) files.
See Chapter 9 - Sandard Delay Format (SDF) Timing Annotation for details.

Delay modes

Verilog models may contain both distributed delays and path delays. The delays on
primitives, UDPs, and continuous assignments are the distributed delays, whereas the port-
to-port delays specified in specify blocks are the path delays. These delays interact to
determine the actual delay observed. Most Verilog cells use path delays exclusively, with
the distributed delays set to zero. For example,

modul e and2(y, a, b);
input a, b;
out put vy;

and(y, a, b);

speci fy
(a =>1y)
(b =>y)
endspeci fy
endnodul e

In the above two-input "and" gate cell, the distributed delay for the"and" primitiveis zero,
and the actual delays observed on the module ports are taken from the path delays. Thisis
typical for most cells, but acomplex cell may require non-zero distributed delays to work
properly. Even so, these delays are usually small enough that the path delays take priority
over the distributed delays. The ruleisthat if amodule contains both path delays and
distributed delays, then the larger of the two delays for each path shall be used (as defined
by the IEEE Std 1364). Thisisthe default behavior, but you can specify alternate delay
modes with compiler directives and arguments. These arguments and directives are
compatible with Verilog-XL. Compiler delay mode arguments take precedence over delay
mode directives in the source code.

ModelSim User's Manual

UM-88 5 - Verilog simulation

ModelSim User’'s Manual

Distributed delay mode

In distributed delay mode the specify path delays are ignored in favor of the distributed
delays. Select this delay mode with the +delay_mode distributed compiler argument or
the ‘delay_mode distributed compiler directive.

Path delay mode

In path delay mode the distributed delays are set to zero in any module that contains a path
delay. Select this delay mode with the +delay_mode_path compiler argument or the
‘delay_mode_path compiler directive.

Unit delay mode

In unit delay mode the distributed delays are set to one (the unit is the time_unit specified
inthe‘timescale directive), and the specify path delays and timing constraints areignored.
Select this delay mode with the +delay_mode_unit compiler argument or the
‘delay_mode_unit compiler directive.

Zero delay mode

In zero delay mode the distributed delays are set to zero, and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_zero
compiler argument or the ‘delay_mode_zer o compiler directive.

System tasks UM-89

System tasks

The |EEE Std 1364 defines many system tasks as part of the Verilog language, and
ModelSim Verilog supports all of these along with several non-standard Verilog-XL
system tasks. The system tasks listed in this chapter are built into the simulator, although
some designs depend on user-defined system tasks implemented with the Programming
Language Interface (PLI) or Verilog Procedural Interface (VPI). If the simulator issues
warnings regarding undefined system tasks, then it islikely that these system tasks are
defined by aPLI/VPI application that must be loaded by the ssimulator.

IEEE Std 1364 system tasks
The following system tasks are described in detail in the IEEE Std 1364.

Timescale tasks Simulator Simulation time Command line
control tasks functions input
$printtimescale $finish $realtime $test$plusargs
$timeformat $stop $stime $value$plusargs
$time
Probabilistic Conversion Stochastic Timing check
distribution functions analysis tasks tasks
functions
$dist_chi_square $hitstoreal $0_add $hold
$dist_erlang Sitor $g_exam $nochange
$dist_exponential Prealtobits $q_full $period
$dist_normal $rtoi $q initidize $recovery
$dist_poisson $signed $q_remove $setup
$dist_t $unsigned $setuphold
$dist_uniform $skew
$random Swidth
$removal
$recrem

ModelSim User's Manual

UM-90 5 - Verilog simulation

Display tasks PLA modeling tasks Value change dump (VCD)
file tasks

$display $async$and$array $dumpall

$displayb $asyncnandsarray $dumpfile

$displayh $async$orSarray $dumpflush

$displayo $async$norSarray $dumplimit

$monitor $asynchand$plane $dumpoff

$monitorb $asyncInand$plane $dumpon

$monitorh $asyncordplane $dumpvars

$monitoro $async$nor$plane

$monitoroff $sync$andSarray

$monitoron $sync$nand$array

$strobe $sync$or$array

$strobeb $syncsnorsarray

$strobeh $syncsand$plane

$strobeo $syncSnand$plane

Pwrite $sync$or$plane

Pwriteb $sync$nor$plane

Pwriteh

$writeo

ModelSim User’'s Manual

File I/O tasks
$fclose
$fdisplay
$fdisplayb
$fdisplayh
$fdisplayo
$ferror
$fflush
$fgetc
$fgets
$fmonitor
$fmonitorb
$fmonitorh

$fmonitoro

$fopen
$fread
$fscanf
$fseek
$fstrobe
$fstrobeb
$fstrobeh
$fstrobeo
$ftell
$fwrite

$fwriteb

System tasks

$fwriteh
$fwriteo
$readmemb
$readmemh
$rewind
$sdf _annotate
$sformat
$sscanf
$swrite
$swriteb
$swriteh
$swriteo
$ungetc

P Note: $readmemb and $readmemh match the behavior of Verilog-XL rather than IEEE
Std 1364. Specifically, they load datainto memory starting with the lowest address. For
example, whether you make the declaration meror y[127: 0] Or nenory[0: 127] ,
Model Sim will load data starting at address 0 and work upwards to address 127.

UM-91

ModelSim User's Manual

UM-92 5 - Verilog simulation

Verilog-XL compatible system tasks

ModelSim User’'s Manual

Thefollowing system tasks are provided for compatibility with Verilog-XL. Although they
are not part of the |IEEE standard, they are described in an annex of the |EEE Std 1364.

$countdrivers
$getpattern
$sreadnmenb
$sreadmenmh

The following system tasks are also provided for compatibility with Verilog-XL; they are
not described in the |EEE Std 1364.

$deposi t (vari abl e, val ue);
This system task sets a Verilog register or net to the specified value. variableis the
register or net to be changed; value is the new value for the register or net. The value
remains until there is a subsequent driver transaction or another $deposit task for the
same register or net. This system task operates identically to the ModelSim
for ce -deposit command.

$di sabl e_war ni ngs(“ <keywor d>" ?<, <nodul e_i nst ance>>*?) ;
This system task instructs Model Sim to disable warnings about timing check violations
or triregs that acquire avalue of ‘X’ due to charge decay. <keyword> may be decay or
timing. If you don't specify amodule_instance, Model Sim disables warnings for the
entire simulation.

$enabl e_war ni ngs(“ <keywor d>" ?<, <nodul e_i nst ance>>*?) ;
This system task enables warnings about timing check violations or triregs that acquire a
value of ‘X’ due to charge decay. <keyword> may be decay or timing. If you don’'t
specify amodule_instance, Model Sim enables warnings for the entire simulation.

The following system tasks are extended to provide additional functionality for negative
timing constraints and an alternate method of conditioning, asin Verilog-XL.

$recovery(reference event, data_event, renoval _limt, recovery_limt,
[notifier], [tstanmp_cond], [tcheck_cond], [del ayed_reference],
[del ayed_dat a])

The $recovery system task normally takesarecovery_limit asthe third argument and an
optional notifier as the fourth argument. By specifying alimit for both the third and
fourth arguments, the $recovery timing check istransformed into acombination removal
and recovery timing check similar to the $recrem timing check. The only differenceis
that the removal_limit and recovery_limit are swapped.

$set uphol d(cl k_event, data_event, setup_limt, hold_limt, [notifier],
[tstanp_cond], [tcheck_cond], [delayed_clk], [delayed_data])

The tstamp_cond argument conditions the data_event for the setup check and the
clk_event for the hold check. This aternate method of conditioning precludes specifying
conditionsin the clk_event and data_event arguments.

The tcheck_cond argument conditions the data_event for the hold check and the
clk_event for the setup check. Thisalternate method of conditioning precludes specifying
conditionsin the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.

System tasks

The delayed_data argument is a net that is continuoudly assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

The delayed_clk and delayed_data arguments are provided to ease the modeling of
devices that may have negative timing constraints. The model’s logic should reference
the delayed clk and delayed data nets in place of the normal clk and data nets. This
ensures that the correct datais latched in the presence of negative constraints. The
simul ator automatically calculatesthe delaysfor delayed clk and delayed data such that
the correct datais latched as long as atiming constraint has not been violated. See
"Negative timing check limits' (um-83) for more details.

The following system tasks are Verilog-XL system tasks that are not implemented in
ModelSim Verilog, but have equivalent simulator commands.

$input ("fil ename")
This system task reads commands from the specified filename. The equivalent ssmulator
command isdo <filename>.

$list[(hierarchical _nane)]
This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the graphic interface Structure
window. The corresponding source code is displayed in the Source window.

$reset
This system task resets the simulation back to its time 0 state. The equiva ent simulator
command isrestart.

$restart("fil enane")
This system task setsthe simulation to the state specified by filename, saved in aprevious
call to $save. The equivalent simulator command isrestore <filename>.

$save("fil ename")
This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hi erarchi cal _nane)
This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent smulator command is environment <pathname>.

$showscopes
This system task displays alist of scopes defined in the current interactive scope. The
equivalent simulator command is show.

$showars
This system task displays alist of registers and nets defined in the current interactive
scope. The equivaent simulator command is show.

UM-93

ModelSim User's Manual

UM-94 5 - Verilog simulation

ModelSim Verilog system tasks

ModelSim User’'s Manual

The following system tasks are specific to Model Sim. They are not included in the IEEE
Std 1364 nor are they likely supported in other simulators. Their use may limit the
portability of your code.

$init_signal _driver
The $init_signal_driver() system task drives the value of a VVHDL signal or Verilog net
onto an existing VHDL signal or Verilog net. This allowsyou to drive signals or nets at
any level of the design hierarchy from within a VVerilog module (e.g., atestbench). See
$init_signal_driver (UM-280) in Chapter 8 - Sgnal Spy for complete detailsand syntax on
this system task.

$init_signal _spy
The $init_signal_spy() system task mirrors the value of a VVHDL signal or Verilog
register/net onto an existing Verilog register or VHDL signal. This system task allows
youto reference signals, registers, or netsat any level of hierarchy fromwithinaVerilog
module (e.g., atestbench). See $init_signal_spy (Um-283) in Chapter 8 - Sgnal Spy for
complete details and syntax on this system task.

$signal _force
The $signal_force() system task forces the val ue specified onto an existing VHDL signal
or Verilog register or net. Thisallows you to force signals, registers, or nets at any level
of the design hierarchy from within aVerilog module (e.g., atestbench). A $signal_force
works the same as the for ce command (CR-82) with the exception that you cannot issue a
repeating force. See$signal_force (UM-285) in Chapter 8 - Sgnal Spy for complete details
and syntax on this system task.

$si gnal _rel ease
The $signal_release() system task releases a value that had previously been forced onto
an existing VHDL signal or Verilog register or net. A $signal_release works the same as
the nofor ce command (CR-92). See $signal_release (UM-287) in Chapter 8 - Sgnal Spy for
complete details and syntax on this system task.

$sdf _done
Thistask isa"cleanup" function that removes internal buffers, called MIPDs, that have
adelay value of zero. These MIPDs are inserted in response to the -v2k _int_delay
argument to the vsim command (CR-189). In general the simulator will automatically
remove al zero delay MI1PDs. However, if you have $sdf_annotate() callsin your design
that are not getting executed, the zero-delay M1PDs are not removed. Adding the
$sdf _done task after your last $sdf _annotate() will remove any zero-delay MIPDs that
have been created.

Compiler directives

Compiler directives UM-95

ModelSim Verilog supports all of the compiler directives defined in the IEEE Std 1364,

some Verilog-XL compiler directives, and some that are proprietary.

Many of the compiler directives (such as ‘timescale) take effect at the point they are
defined in the source code and stay in effect until the directiveisredefined or until it isreset
to its default by a‘resetall directive. The effect of compiler directives spans source files,
so the order of source files on the compilation command line could be significant. For
example, if you have afile that defines some common macros for the entire design, then

you might need to place it first in the list of files to be compiled.

The ‘resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the |EEE Std 1364):

‘cel |l define
‘defaul t _decay_tine
“defaul t_nettype

“del ay_node_di stri buted

“del ay_node_path
“del ay_node_uni t
“del ay_node_zero
“protected
“tinmescal e
“unconnected_drive
“uselib

ModelSim Verilog implicitly defines the following macro:

“define MODEL_TECH

IEEE Std 1364 compiler directives

The following compiler directives are described in detail in the IEEE Std 1364.

“cel | define
“defaul t _nettype
“define

‘el se

“elsif
“endcel | defi ne
“endif

“ifdef

‘i fndef

“include

‘line

“nounconnect ed_drive
“resetal
“tinmescal e
“unconnected_drive
“undef

ModelSim User's Manual

UM-96 5 - Verilog simulation

Verilog-XL compatible compiler directives
The following compiler directives are provided for compatibility with Verilog-XL.

‘defaul t _decay_tine <tine>
Thisdirective specifies the default decay timeto be used in trireg net declarationsthat do
not explicitly declare a decay time. The decay time can be expressed as areal or integer
number, or as"infinite" to specify that the charge never decays.

“del ay_node_di stri but ed
Thisdirective disables path delaysin favor of distributed delays. See"Delay modes” (UM-
87) for details.

“del ay_node_path
This directive sets distributed delays to zero in favor of path delays. See "Delay modes’
(um-87) for details.

“del ay_node_uni t
This directive sets path delays to zero and non-zero distributed delays to one time unit.
See Delay modes (UM-87) for details.

“del ay_node_zero
This directive sets path delays and distributed delaysto zero. See"Delay modes' (UM-87)
for details.

“uselib
Thisdirective is an aternative to the -v, -y, and +libext source library compiler
arguments. See"Verilog-XL ‘uselib compiler directive" (um-74) for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog.
Many of thesedirectivesareirrelevant to Model Sim Verilog, but may appear in code being
ported from Verilog-XL.

“accelerate

“aut oexpand_vectornets
“disable_portfaults
“enabl e_portfaults
“expand_vect ornets
“noaccel erate
“noexpand_vectornets
 nor enove_gat enanes
* nor enobve_net nanes
“nosuppress_faults
“renove_gat enanmes

" renove_net nanes
“suppress_faults

The following Verilog-XL compiler directives produce warning messagesin ModelSim
Verilog. These are not implemented in Model Sim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

“default_trireg_strength

" signed

“unsi gned

ModelSim User’'s Manual

Verilog PLI/VPI UM-97

Verilog PLI/VPI

The Verilog PLI (Programming Language Interface) and VPI (Verilog Procedural
Interface) both provide a mechanism for defining system tasks and functions that
communicate with the simulator through a C procedural interface. There are many third
party applicationsavailablethat interfaceto Verilog s mulatorsthrough the PLI (see"Third
party PLI applications’ (UM-108)). In addition, you may write your own PLI/VPI
applications.

Model Sim Verilog implementsthe PLI asdefined inthe |EEE Std 1364, with the exception
of theacc_handle_datapath() routine. We did not implement theacc_handle_datapath()
routine because the information it returns is more appropriate for a static timing analysis
tool. The VPI is partially implemented as defined in the |EEE Std 1364-2001. The list of
currently supported functionality can be found in the following file:

<install_dir>/nodel tech/docs/technotes/Veril og_VPI.note

The |EEE Std 1364 is the reference that defines the usage of the PLI/VPI routines. This
manual only describes details of using the PLI/VPI with Model Sim Verilog.

Registering PLI applications

Each PLI application must register its system tasks and functions with the simulator,
providing the name of each system task and function and the associated callback routines.
Since many PLI applications already interface to Verilog-XL, ModelSim Verilog PLI
applications make use of the same mechanism to register information about each system
task and function in an array of s tfcell structures. This structure is declared in the
veriuser.h include file as follows:

typedef int (*p_tffn)();

typedef struct t_tfcell {
short type;/* USERTASK, USERFUNCTI ON, or USERREALFUNCTI ON */
short data;/* passed as data argument of callback function */
p_tffn checktf; /* argument checking callback function */

p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn msctf; /* mscellaneous reason call back function */

char *tfnane;/* nane of systemtask or function */

/* The following fields are ignored by Mdel Sim Verilog */
int forwef;
char *tfveritool;
char *tferrnessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *nanecel | _p;
int warning_printed;
} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in
the |IEEE Std 1364. The simulator calls these functions for various reasons. All callback
functions are optional, but most applications contain at least the calltf function, whichis
called when the system task or function is executed in the Verilog code. Thefirst argument
tothe callback functionsisthe value supplied in the datafield (many PLI applications don't

ModelSim User's Manual

UM-98 5 - Verilog simulation

ModelSim User’'s Manual

use thisfield). The type field defines the entry as either a system task (USERTASK) or a
system function that returns either aregister (USERFUNCTION) or aredl
(USERREALFUNCTION). The ttname field is the system task or function name (it must
begin with $). The remaining fields are not used by Model Sim Verilog.

On loading of aPLI application, the simulator first looks for an init_usertfs function, and
then averiusertfs array. If init_usertfsis found, the simulator calls that function so that it
can call mti_RegisterUserTF() for each system task or function defined. The
mti_RegisterUserTF() function is declared in veriuser.h asfollows:

void nti_RegisterUserTF(p_tfcell usertf);

The storage for each usertf entry passed to the simulator must persist throughout the
simulation because the simulator de-references the usertf pointer to call the callback
functions. We recommend that you define your entriesin an array, with the last entry set to
0. If the array is named veriusertfs (asisthe case for linking to Verilog-XL), then you don't
have to provide an init_usertfs function, and the simulator will automatically register the
entries directly from the array (the last entry must be 0). For example,
s_tfcell veriusertfs[] = {

{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},

{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},

{0} /* last entry nmust be 0 */

b
Alternatively, you can add aniinit_usertfsfunction to explicitly register each entry fromthe
array:

void init_usertfs()

{

p_tfcell usertf = veriusertfs
whil e (usertf->type)
nti_Regi sterUser TF(usertf ++)
}

Itisan error if aPLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI| applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be a dynamically loadable library, see
"Compiling and linking PLI/VPI C applications’ (Um-101)). The PLI applications are
specified as follows (note that on a Windows platform the file extension would be .dll):

* Asalistinthe Veriuser entry in the modelsim.ini file:
Veriuser = pliappl.so pliapp2.so pliappn.so

» Asalistinthe PLIOBJS environment variable:
% setenv PLIOBJS "pliappl.so pliapp2.so pliappn.so"

» Asa-pli argument to the simulator (multiple arguments are allowed):
-pli pliappl.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used smultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the librariesin all cases.

Verilog PLI/VPI UM-99

Registering VPI applications

Each VPl application must register its system tasks and functions and its callbacks with the
simulator. To accomplishthis, one or more user-created regi stration routines must be called
at simulation startup. Each registration routine should make one or more calls to
vpi_register_systf() to register user-defined system tasks and functions and
vpi_register_ch() to register callbacks. The registration routines must be placed in atable
named vlog_startup_routines so that the simulator can find them. The table must be
terminated with a0 entry.

Example
PLI _I NT32 MyFuncCal I tf(PLI_BYTE8 *user_data)
...}
PLI _I NT32 MyFuncConpi |l etf(PLI_BYTE8 *user_data)
...}
PLI _I NT32 MyFuncSi zetf(PLI_BYTE8 *user_data)
{ ...}
PLI _I NT32 MyEndOf ConpCB(p_cb_data cb_data_p)
{ ...}
PLI _INT32 MyStartOf SinCB(p_cb_data cb_data_p)
{ ...}
voi d Regi sterMySystfs(void)

{

vpi Handl e t npH;
s_cb_data cal |l back;
Ss_vpi _systf_data systf_data;

systf_data.type vpi SysFunc;
systf_dat a. sysfunctype vpi Si zedFunc;
systf_data.tfnanme "$myfunc";
systf_data.calltf MyFuncCal I tf;

systf_data. conpiletf
systf_data. sizetf MyFuncSi zetf;
systf_data. user_data 0;

tnpH = vpi _register_systf(&systf_data);
vpi _free_object (tmH);

MyFuncConpi | et f;

cal | back. reason
cal I back.cb_rtn MyEndOf CompCB;
cal | back. user _data 0;

tnpH = vpi _register_cb(&cal | back);
vpi _free_object (tmH);

cbEndOf Conpi | e;

cal | back. reason
cal | back.cb_rtn My St art O Si nCB;
cal | back. user _data 0;

tnpH = vpi _register_cb(&cal |l back);
vpi _free_object (tmH);

cbStart O Si nul ati on;

}

void (*vlog_startup_routines[]) () ={
Regi st er MySyst fs,
0 /* last entry nmust be 0 */

b

ModelSim User's Manual

UM-100 5 - Verilog simulation

ModelSim User’'s Manual

Loading VPI applications into the ssimulator is the same as described in "Registering PLI
applications’ (UM-97).

PLI and VPl applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

« If aninit_usertfs() function exists, then it is executed and only those system tasks and
functions registered by callsto mti_RegisterUserTF() will be defined.

« If aninit_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

« If aninit_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functionsin the viog_startup_routines table will be defined.

Asaresult, when PLI and VVPI applications exist in the same application object file, they
must be registered in the same manner. VPl registration functions that would normally be
listed in avlog_startup_routines table can be called from an init_usertfs() function instead.

Verilog PLI/VPI UM-101

Compiling and linking PLI/VPI C applications

The following platform-specific instructions show you how to compile and link your
PLI/VPI C applications so that they can be loaded by Model Sim. Microsoft Visual C/C++
is supported for creating Windows DL L s while gcc and cc compilers are supported for
creating UNIX shared libraries.

The PLI/VPI routines are declared in the include files located in the Model Sim
<install_dir>/modeltech/include directory. Theacc_user.h file declaresthe ACC routines,
the veriuser.h file declares the TF routines, and the vpi_user.h file declares the VPI
routines.

Thefollowing instructions assume that the PL1 or VPI application isin asingle sourcefile.
For multiple source files, compile each file as specified in the instructions and link all of
the resulting object files together with the specified link instructions.

Although compilation and simulation switches are platform-specific, loading shared
librariesisthe samefor all platforms. For information on loading libraries, see " Specifying
the PLI/VPI fileto load" (UM-103).

Windows platforms
cl -c -I<install_dir>\nodeltech\include app.c

link -dll -export:<init_function> app.obj \
<install_dir>\nodeltech\win32\ntipli.lib /out:app.dll

For the Verilog PL1, the <init_function> should be "init_usertfs'. Alternatively, if thereis
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs'. For the Verilog VP, the <init_function> should be "vlog_startup_routines".
These reguirements ensure that the appropriate symbol isexported, and thusModel Sim can
find the symbol when it dynamically loadsthe DLL.

ThePLI and VPI have been tested with DL L sbuilt using Microsoft Visual C/C++ compiler
version 4.1 or greater.

The gcc compiler cannot be used to compile PLI/VPI applications under Windows. Thisis
because gcc does not support the Microsoft .lib/.dll format.

When executing ¢l commandsin aDO file, use the/NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.

ModelSim User's Manual

UM-102 5 - Verilog simulation

Compiling and linking PLI/VPI C++ applications

ModelSim User’'s Manual

Model Sim does not have direct support for any language other than standard C; however,
C++ code can be loaded and executed under certain conditions.

Since ModelSim's PLI/VPI functions have a standard C prototype, you must prevent the
C++ compiler from mangling the PLI/VPI function names. This can be accomplished by
using the following type of extern:

extern "C'

{
<PLI/VPI application function prototypes>

}

The header files veriuser.h, acc_user.h, and vpi_user.h aready include thistype of extern.
Y ou must also put the PLI/VPI shared library entry point (veriusertfs, init_usertfs, or
vlog_startup_routines) inside of thistype of extern.

SinceModel SimisaC program and does not include aC++ main, you cannot useiostreams
such as cout to print information. Y ou must use io_mcdprintf(), io_printf(),
vpi_med_printf(), vpi_printf(), vpi_vprintf(), or vpi_mcd_vprintf() to print to the transcript
file.

The following platform-specific instructions show you how to compile and link your
PLI/VPI C++ applications so that they can beloaded by Model Sim. Microsoft Visual C++
is supported for creating Windows DL Ls.

Although compilation and simulation switches are platform-specific, loading shared
librariesisthe samefor all platforms. For information on loading libraries, see " Specifying
the PLI/VPI fileto load" (UM-103).

Windows platforms
Microsoft Visual C++:

cl -c [-GX] -I<install_dir>\nodeltech\include app.cxx
link -dll -export:<init_function> app.obj \
<install_dir>\nodeltech\win32\ntipli.lib /out:app.dll

The -GX argument enables exception handling.

For the Verilog PLI, the <init_function> should be"init_usertfs'. Alternatively, if thereis
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs'. For the Verilog VPI, the<init_function> should be"vlog_startup_routines'.
These requirements ensure that the appropriate symbol isexported, and thus Model Sim can
find the symbol when it dynamically loadsthe DLL.

The GNU C++ compiler cannot be used to compile PLI/V Pl applications under Windows.
Thisis because GNU C++ does not support the Microsoft .lib/.dll format.

When executing ¢l commandsin aDO file, use the/NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.

Verilog PLI/VPI UM-103

Specifying the PLI/VPI file to load
The PLI/VPI applications are specified as follows:
* Asalistinthe Veriuser entry in the modelsim.ini file:
Veriuser = pliappl.so pliapp2.so pliappn.so
* Asalistinthe PLIOBJS environment variable:
% setenv PLIOBJS "pliappl.so pliapp2.so pliappn.so"

* Asa-pli argument to the simulator (multiple arguments are allowed):
-pli pliappl.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI/VPI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the librariesin all cases.

See also Appendix A - Model Sm variables for more information on the modelsim.ini file.

ModelSim User's Manual

UM-104 5 - Verilog simulation

PLI example

The following example isatrivial, but complete PLI application.

hel l o.c:

#i ncl ude "veriuser.h"

static PLI_INT32 hello()

{
io_printf("H there\n")
return O;

}

s_tfcell veriusertfs[] = {
{usertask, 0, 0, O, hello, 0, "$hello"},
{0} /* last entry nmust be 0 */

b

hell 0. v:

nodul e hel | o;
initial $hello;

endnodul e

Conpile the PLI code for the Solaris operating system

%cc -c -l<install _dir>/nodeltech/include hello.c
%ld -G-0 hello.sl hello.o

Conpil e the Veril og code

% vlib work
% vlog hello.v

Simul ate the design

%vsim-c -pli hello.sl hello
Loadi ng work. hello

Loading ./hello.s

VSIM 1> run -al

H there

VSIM 2> quit

ModelSim User’'s Manual

Verilog PLI/VPI UM-105

VPI example

The following exampleis atrivial, but complete VPI application. A general VPl example
can be found in <install_dir>/modeltech/examples/vpi.

hel l o.c:

#i ncl ude "vpi _user.h"
static PLI_INT32 hello(PLI_BYTE8 * paranm

{
vpi _printf("Hello world!\n");
return O;

}

voi d RegisterMyTfs(void)

{
s_vpi _systf_data systf_data;
vpi Handl e systf_handl e;
systf_data.type = vpi SysTask;
systf_dat a. sysfunctype = vpi SysTask;
systf_data.tfnane = "$hel | 0";
systf_data.calltf = hel |l 0;
systf_data. conpil etf = 0;
systf_dat a. si zetf = 0;
systf_data. user_data = 0;
systf_handl e = vpi _register_systf(&systf_data);
vpi _free_object(systf_handle);

}

void (*vlog_startup_routines[])() = {
Regi st er MyTf s,
0

b

hel | 0. v:
nodul e hel | o;
initial $hello;
endnodul e

Conpile the VPI code for the Solaris operating system

% gcc -c -l<install_dir>/include hello.c
%ld -G-0 hello.sl hello.o

Conpil e the Verilog code:

% vlib work
% vlog hello.v

Si mul ate the design:

%vsim-c -pli hello.sl hello
Loadi ng work. hello

Loading ./hello.sl

VSIM 1> run -all

Hello world!

VSIM 2> quit

ModelSim User's Manual

UM-106 5 - Verilog simulation

The PLI callback reason argument

ModelSim User’'s Manual

The second argument to a PL| callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See |EEE Std 1364 for a
description of the reason constants. The following details relate to Model Sim Verilog, and
may not be obviousin the IEEE Std 1364. Specifically, the simulator passes the reason
values to the misctf callback functions under the following circumstances:

reason_endof conpil e
For the completion of loading the design.

reason_fini sh
For the execution of the $finish system task or the quit command.

reason_start of save
For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This allows the PLI application to prepare for the save, but it
shouldn't save its datawith callsto tf_write_save() until it is called with reason_save.

reason_save
For the execution of the checkpoint command. Thisis when the PLI application must
saveits state with calls to tf_write_save().

reason_start of restart
For the start of execution of the restore command, but before any of the simulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn't restore its state with callsto tf_read_restart() until it is called with
reason_restart. Thereason_startofrestart valueis passed only for arestore command, and
not in the case that the simulator isinvoked with -restore.

reason_restart
For the execution of therestor e command. Thisiswhen the PL I application must restore
its state with callsto tf_read restart().

reason_reset
For the execution of the restart command. Thisiswhen the PLI application should free
itsmemory and reset its state. We recommend that all PLI applicationsreset their internal
state during arestart asthe shared library containing the PLI code might not be reloaded.
(Seethe- keepl oaded (Cr-191) and - keepl oadedr est art (CR-191) argumentsto
vsim for related information.)

reason_endof r eset
For the completion of therestart command, after the simulation state has been reset but
before the design has been rel oaded.

reason_interactive
For the execution of the $stop system task or any other time the simulation isinterrupted
and waiting for user input.

reason_scope
For the execution of the environment command or selecting a scope in the structure
window. Alsofor thecall to acc_set_interactive _scope() if the callback_flag argument is
non-zero.

reason_paranmvc
For the change of value on the system task or function argument.

Verilog PLI/VPI UM-107

reason_synch

For the end of time step event scheduled by tf_synchronize().

reason_rosynch
For the end of time step event scheduled by tf_rosynchronize().

reason_reactivate
For the simulation event scheduled by tf_setdelay().

reason_par andrc

Not supported in ModelSim Verilog.

reason_force

Not supported in ModelSim Verilog.

reason_rel ease

Not supported in ModelSim Verilog.

reason_di sabl e

Not supported in ModelSim Verilog.

The sizetf callback function

A user-defined system function specifies the width of its return value with the sizetf
callback function, and the simulator calls this function while loading the design. The
following details on the sizetf callback function are not found in the IEEE Std 1364:

* If you omit the sizetf function, then areturn width of 32 is assumed.

 The sizetf function should return O if the system function return value is of Verilog type
"rea".

* Thesizetf function should return-32 if the system function return valueis of Verilog type
"integer".

PLI object handles

Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routineis called. However, some of
the objects are created on demand, and the handles to these objects become invalid after
acc_close() iscalled. The following object types are created on demand in Model Sim
Verilog:

accOperator (acc_handl e_condition)

accWrePath (acc_handl e_pat h)

accTerm nal (acc_handl e_term nal, acc_next_cell_l oad, acc_next_driver, and

acc_next _| oad)
accPat hTerm nal (acc_next_i nput and acc_next_out put)

accTchkTerm nal (acc_handl e_tchkargl and acc_handl e_t chkar g2)
accPart Sel ect (acc_handl e_conn, acc_handl e_pat hin, and acc_handl e_pat hout)

If your PLI application uses these types of objects, then it isimportant to call acc_close()
to free the memory allocated for these objects when the application is done using them.

If your PLI application placesvalue change callbacks on accRegBiIt or accTerminal objects,
do not call acc_close() while these callbacks are in effect.

ModelSim User's Manual

UM-108 5 - Verilog simulation

Third party PLI applications

ModelSim User’'s Manual

Many third party PLI applications come with instructions on using them with ModelSim
Verilog. Even without the instructions, it is still likely that you can get it to work with
ModelSim Verilog as long as the application uses standard PLI routines. The following
guidelinesarefor preparing aVerilog-XL PLI application to work with Model Sim Verilog.

Generally, a Verilog-XL PLI application comes with a collection of object filesand a
veriuser.c file. The veriuser.c file contains the registration information as described above
in "Registering PLI applications' (UM-97). To prepare the application for Model Sim
Verilog, you must compile the veriuser.c file and link it to the object files to create a
dynamically loadable object (see "Compiling and linking PLI/VPI C applications’ (Um-
101)). For example, if you have a veriuser.c file and alibrary archive libapp.a file that
contains the application’s object files, then the following commands should be used to
create adynamically loadable object for the Solaris operating system:

%cc -c -l<install_dir>/nodeltech/include veriuser.c
%ld -G -0 app.sl veriuser.o libapp.a

The PLI application is now ready to be run with ModelSim Verilog. All that's left isto
specify the resulting object file to the simulator for loading using the Veriuser entry inthe
modesim.ini file, the -pli simulator argument, or the PLIOBJS environment variable (see
"Registering PLI applications' (UM-97)).

P Note: Onthe HP700 platform, the object files must be compiled as position-independent
code by using the +z compiler argument. Since, the object files supplied for Verilog-XL
may be compiled for static linking, you may not be able to use the object files to create
adynamically loadable object for Model Sim Verilog. In this case, you must get the third
party application vendor to supply the object files compiled as position-independent
code.

Verilog PLI/VPI UM-109

Support for VHDL objects

The PLI ACC routines also provide limited support for VHDL objectsin anall VHDL
design. Thefollowing tableliststhe VHDL objects for which handles may be obtained and
their type and fulltype constants:

Type

Fulltype

Description

accArchitecture

accArchitecture

instantiation of an architecture

accArchitecture

accEntityVitalLevelO

instantiation of an architecture whose entity is marked
with the attribute VITAL LevelO

accArchitecture

accArchVitaLevelO

instantiation of an architecture which is marked with the
attribute VITAL LevelO

accArchitecture

accArchVitalLevell

instantiation of an architecture which is marked with the
attribute VITAL Levell

accArchitecture

accForeignArch

instantiation of an architecture which is marked with the
attribute FOREIGN and which does not contain any
VHDL statements or objects other than ports and generics

accArchitecture

accForeignArchMixed

instantiation of an architecture which is marked with the
attribute FOREIGN and which contains some VHDL
statements or objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()
accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSigna signal declaration

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include
file. All of these objects (except signals) are scope objectsthat definelevels of hierarchy in
the Structure window. Currently, the PLI ACC interface has no provision for obtaining
handles to generics, types, constants, variables, attributes, subprograms, and processes.

ModelSim User's Manual

UM-110 5 - Verilog simulation

IEEE Std 1364 ACC routines
Model Sim Verilog supports the following ACC routines, described in detail in the |EEE

Std 1364.

acc_append_delays

acc_append pulsere

acc_close

acc_collect

acc_compare_handles

acc_configure

acc_count

acc fetch argc

acc fetch_argv

acc fetch_attribute

acc fetch attribute int

acc fetch_attribute_str

acc_fetch defname

acc _fetch _delay mode

acc_fetch delays

acc fetch direction

acc _fetch edge

acc_fetch fullname

acc_fetch_fulltype

acc_fetch index

acc_fetch_location

acc_fetch_name

acc_fetch _paramtype

acc_fetch_paramval

acc fetch polarity

acc_fetch precision

acc fetch pulsere

acc fetch range

acc fetch size

acc fetch_tfarg

acc fetch_itfarg

acc fetch tfarg int

acc fetch_itfarg_int

acc fetch tfarg str

acc fetch itfarg str

acc fetch_timescale info

acc fetch type

acc _fetch type str

acc_fetch _value

acc free

acc_handle by name

acc_handle_calling_mod_m

acc_handle_condition

acc_handle _conn

acc_handle_hiconn

acc_handle interactive _scope

acc_handle_loconn

acc_handle_modpath

acc_handle notifier

acc_handle_object

acc_handle_parent

acc_handle path

acc_handle pathin

acc_handle pathout

acc_handle port

acc_handle_scope

acc_handle simulated net

acc_handle_tchk

acc_handle_tchkargl

acc_handle_tchkarg2

acc_handle_terminal

acc_handle tfarg

acc_handle itfarg

acc_handle_tfinst

acc_initialize

acc_next

acc_next_bit

acc_next_cell

acc_next_cdl load

acc_next_child

acc_next_driver

acc_next_hiconn

acc_next_input acc_next_load acc_next_loconn
acc_next_modpath acc_next_net acc_next_output
acc_next_parameter acc_next_port acc_next_portout

ModelSim User’'s Manual

Verilog PLI/VPI

UM-111

acc_next_primitive

acc_next_scope

acc_next_specparam

acc_next_tchk

acc_next_terminal

acc_next_topmod

acc_object_in typelist

acc_object_of_type

acc_product_type

acc_product_version

acc_release object

acc _replace delays

acc_replace pulsere acc_reset_buffer acc_set_interactive_scope
acc_set pulsere acc_set scope acc_set_value
acc vcl_add acc_vcl_delete acc_version

P Note: acc_fetch paramval () cannot be used on 64-bit platformsto fetch astring val ue of
aparameter. Because of this, the function acc_fetch paramval_str() has been added to
the PLI for thisuse. acc_fetch paramval_str() isdeclared in acc_user.h. It functionsin a
manner similar to acc_fetch paramval() except that it returns a char *.
acc_fetch paramval_str() can be used on all platforms.

IEEE Std 1364 TF routines
Model Sim Verilog supports the following TF routines, described in detail in the |IEEE Std

1364.
io_mcdprintf io_printf mc_scan_plusargs
tf_add_long tf_asynchoff tf_iasynchoff
tf_asynchon tf_iasynchon tf_clearalldelays
tf_iclearalldelays tf_compare long tf_copypvc flag
tf_icopypvc_flag tf_divide_long tf_dofinish
tf_dostop tf_error tf_evaluatep
tf_ievaluatep tf_exprinfo tf_iexprinfo
tf_getcstringp tf_igetcstringp tf_getinstance
tf_getlongp tf_igetlongp tf_getlongtime
tf_igetlongtime tf_getnextlongtime tf_getp
tf_igetp tf_getpchange tf_igetpchange
tf_getrealp tf_igetrealp tf_getrealtime
tf_igetrealtime tf_gettime tf_igettime
tf_gettimeprecision tf_igettimeprecision tf_gettimeunit
tf_igettimeunit tf_getworkarea tf_igetworkarea

ModelSim User's Manual

UM-112 5 - Verilog simulation

tf_long_to real tf_longtime_tostr tf_message
tf_mipname tf_imipname tf_movepvc_flag
tf_imovepvc flag tf_multiply_long tf_nodeinfo
tf_inodeinfo tf_nump tf_inump
tf_propagatep tf_ipropagatep tf_putlongp
tf_iputlongp tf_putp tf_iputp
tf_putrealp tf_iputrealp tf_read restart
tf_real_to_long tf_rosynchronize tf_irosynchronize
tf_scale longdelay tf_scale realdelay tf_setdelay
tf_isetdelay tf_setlongdelay tf_isetlongdelay
tf_setrealdelay tf_isetrealdelay tf_setworkarea
tf_isetworkarea tf_sizep tf_isizep
tf_spname tf_ispname tf_strdel putp
tf_istrdelputp tf_strgetp tf_istrgetp

tf_strgettime

tf_strlongdel putp

tf_istrlongdelputp

tf_strrealdelputp

tf_istrrealdelputp

tf_subtract_long

tf_synchronize tf_isynchronize tf_testpvc flag
tf_itestpvc flag tf_text tf_typep

tf_itypep tf_unscale longdelay tf_unscale realdelay
tf_warning tf_write save

ModelSim User’'s Manual

Verilog PLI/VPI

Verilog-XL compatible routines

The following PLI routines are not defined in | EEE Std 1364, but ModelSim Verilog
provides them for compatibility with Verilog-XL.

char *acc_deconpi | e_exp(handl e condi tion)
This routine provides similar functionality to the Verilog-XL acc_decompile_expr
routine. The condition argument must be a handle obtained from the acc_handle_condition

routine. The value returned by acc_decompile_exp isthe string representation of the
condition expression.

char *tf_dunpfil ename(voi d)

This routine returns the name of the VCD file.

void tf_dunpflush(void)
A call to thisroutine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsintine(int *aof _hightine)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are
returned by the routine, while the high-order bits are stored in the aof _hightime argument.

64-bit support in the PLI

PLI/VPI tracing

ThePLI function acc_fetch paramval () cannot be used on 64-bit platformsto fetch astring
value of a parameter. Because of this, the function acc_fetch_paramval_str() has been
added to the PLI for thisuse. acc_fetch _paramval_str() isdeclared in acc_user.h. It
functions in amanner similar to acc_fetch paramval() except that it returns achar *.

acc fetch paramval_str() can be used on all platforms.

The foreign interface tracing feature is available for tracing PL1 and VPI function calls.
Foreign interface tracing creates two kinds of traces: a human-readable log of what
functions were called, the value of the arguments, and the results returned; and a set of
C-language files that can be used to replay what the foreign interface code did.

The purpose of tracing files

The purpose of thelogfileisto aid youin debugging PLI or VPI code. The primary purpose
of thereplay facility isto send the replay filesto MTI support for debugging co-simulation
problems, or debugging PLI/VVPI problems for which it isimpractical to send thePLI/VPI
code. We still need you to send the VHDL/Verilog part of the design to actually execute a
replay, but many problems can be resolved with the trace only.

Invoking a trace

Toinvokethetrace, call vsim (CR-189) with the -trace_foreign argument:

Syntax

vsim
-trace_foreign <action> [-tag <nane>]

UM-113

ModelSim User's Manual

UM-114 5 - Verilog simulation

ModelSim User’'s Manual

Arguments

<action>
Specifies one of the following actions:

Value Action Result

1 create log only writes alocal file called
"mti_trace <tag>"

2 create replay only writeslocal files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and replay

-tag <name>
Used to give distinct file names for multiple traces. Optional.

Examples

vsim -trace_foreign 1 nydesign
Creates alogfile.

vsim -trace_foreign 3 nydesign
Creates both alogfile and a set of replay files.

vsim-trace_foreign 1 -tag 2 nydesign
Creates alogfile with atag of "2".

Thetracing operationswill providetracing during all user foreign code-calls, includingPL1/
VPl user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog VCL
callbacks.

Verilog PLI/VPI UM-115

Debugging PLI/VPI application code

In order to debug your PLI/VPI application code in adebugger, your application code must
be compiled with debugging information (for example, by using the -g option) and without
optimizations (for example, don’t use the -O option). Y ou must then load vsim into a
debugger. Even though vsim is stripped, most debuggers will still executeit. Y ou can
invokethe debugger directly on vsim (for example, "ddd * whi ch vsi ni ") Or you can attach
the debugger to an already running vsim process. In the second case, you must attach to the
PID for vsim, and you must specify the full path to the vsim executable (for example, "gdb
$MTI _HOVE/ sunos5/ vsi m 1234").

On Solaris, AlX, and Linux systems you can use either gdb or ddd. On HP-UX systems
you can use the wdb debugger from HP. Y ou will need version 1.2 or later.

Sinceinitially the debugger recognizes only vsim’s PLI/VPI function symbols, when
invoking the debugger directly on vsim you need to place abreakpoint in thefirst PLI/VPI
function that is called by your application code. An easy way to set an entry point isto put
acall to acc_product_version() as the first executable statement in your application code.
Then, after vsim has been loaded into the debugger, set a breakpoint in thisfunction. Once
you have set the breakpoint, run vsim with the usual arguments (e.g., "run -c top").

On HP-UX you might see some warning messages that vsim does not have debugging
information available. Thisis normal. If you are using Exceed to access an HP machine
from Windows NT, it is recommended that you run vsim in command line or batch mode
because your NT machine may hang if you run vsim in GUI mode. Click on the "go"
button, or use F5 or the go command to execute vsim in wdb.

When the breakpoint is reached, the shared library containing your application code has
been loaded. In some debuggers you must use the share command to load the PLI/VPI
application's symbols.

OnHP-UX you might seeawarning about not finding"__ dld flags' inthe object file. This
warning can be ignored. Y ou should see alist of libraries |oaded into the debugger. It
should include the library for your PL1/VPI application. Alternatively, you can use share
toload only asingle library.

At this point all of the PLI1/VPI application's symbols should be visible. Y ou can now set
breakpoints in and single step through your PLI/V Pl application code.

ModelSim User's Manual

UM-116

ModelSim User’s Manual

UM-117

6 - WLF files (datasets) and virtuals

Chapter contents

WLF files (datasets) UM-118
Saving asimulation to aWLFflle UM-119
Openingdatasets UM-119
Viewing dataset structure. UM-120
Managing multiple datasets uM-121
Saving at intervals with Dataset Snapshot . . .« .« . . UmMm-123
Virtual Objects (User-defined buses,andmore) UM-125

Virtual Objects (User-defined buses,andmore) UM-125
Virtua signls UM-125
Virtual functions UM-126
Virtual regions UM-127
Virtual types UM-127

Dataset, WLF file, and virtual commands. UM-128

A Model Sim simulation can be saved to awave log format (WLF) file for future viewing
or comparison to a current simulation. We usetheterm "dataset" to refer toaWLF filethat
has been reopened for viewing.

With ModelSim release 5.3 and later, you can open more than one WLF file for
simultaneous viewing. Y ou can also create virtual signals that are simple logical
combinations of, or logical functions of, signals from different datasets.

ModelSim User's Manual

UM-118 6 - WLF files (datasets) and virtuals

WLF files (datasets)

Wave log format (WLF) files store saved simulation data. Any number of WLF files can
be rel oaded for viewing or comparing to the active simulation. The term "dataset” refersto
alogical namethat is assigned to the WLF file when it is rel oaded.

A dataset prefix identifies each WLF file that is opened. The current active simulation is
prefixed by "sim," while any datasets are prefixed by the name of the WLF file. For
exampl e, two datasets are displayed in the Wave window bel ow—the current simulationis
shown in the top pane and is indicated by the "sim" prefix; a dataset from a previous
simulation is shown in the bottom pane and is indicated by the "gold" prefix.

==+t wave - default -|O] x|

File Edit M“iew Insert Format Tools Window

SHS $BRBM KK [N o Q& QB EF ELDEN

e e
1

Curzor 1 I
i

1] [+ 4« [[[.|
|2u5 to 2864 ns |

P Note: The simulator resolution (see " Simulator resolution limit" (UM-52)) must be the
same for all datasets you’' re comparing, including the current simulation.

ModelSim User’'s Manual

WLF files (datasets) UM-119

Saving a simulation to a WLF file

If you add itemsto the Dataflow, List, or Wave windows, or log items with the log
command, the results of each simulation run are automatically saved to aWLF file called
vsim.wif in the current directory. If you run a new simulation in the same directory, the
vsimwif file is overwritten with the new results.

If you want to save the WLF file and not have it overwritten, select File > Save Dataset >
sim (Main window) or File > Save> sim dataset (Wave window). Or, you can use the -wlf
<filename> argument to the vsim command (CR-189) or the dataset save command (CR-
62).

A 'mportant: If you do not use dataset save or dataset snapshot, you must end a
simulation session with a quit or quit -sim command in order to produce avalid WLF
file. If you don't end the simulation in this manner, the WLF file will not close properly.
Model Sim may issue the error message "bad magic number" when you try to open an
incompl ete dataset in subsequent sessions.

Opening datasets

To open adataset, select either File > Open > Dataset (Main window) or use the dataset
open command (CR-60).

Cpen Datazet

— D atazet Pathname

| j Browse. .. |

— Loagical Mame for Datazet

Ok Cancel

The Open Dataset dialog includes the following options.
» Dataset Pathname
Identifies the path and filename of the WLF file you want to open.

» Logical Namefor Dataset
Thisisthe name by which the dataset will be referred. By default thisis the name of the
WLFfile.

ModelSim User's Manual

UM-120 6 - WLF files (datasets) and virtuals

Viewing dataset structure

Each dataset you open creates a Structure tab in the Main window workspace. Thetab is
labeled with the name of the dataset and displays the same data as the " Structure window"
(UM-199).

The graphic below shows three Structure tabs: one for the active simulation (sim) and one
each for two datasets (gold and test).

7] Modelsim =10] =]

File Edit Wiew Compile Simulate Tools Window Help

|SBRR || &g ||EF wElEE S PR

Workspace A :
i |Design Ukt IDesign |~ ||# Loading C:/modelechAwin32/ .. /modelzim_lib.u j
— — til[bady)
= top(only) Architec # Loading C:/modeltechAwind2? . Averlog. v|_type
Jr proc tadule s[body]
X cache M odule # Lu:uau:l!ng k. top[only]
Loading wark. proc
& m rmemary Module # Loading wark. cache
W std_logic_utl std_logic_utl Package # Loading waork. std_logic_util{body]
|t |t Pack # Loading waork. cache_zet[only]
W v tpes viYREs 3cRads j # Loading waork. mermon
R S | ~
[Libraryq gold l testl im U’iles] VSIM 3> 5
|NIII'-.-'-.-'Z Ons Delta: 0 |5|m:a’t|:|p o

If you have too many tabs to display in the available space, you can scroll the tabs | eft or
right by clicking and dragging them .

Each Structure tab has a context menu that you access by clicking the right mouse button.
See "Structure window context menu" (UM-201) for details.

ModelSim User’'s Manual

WLF files (datasets) UM-121

Managing multiple datasets

GUI

When you have one or more datasets open, you can manage them using the Dataset
Browser. To open the browser, select View > Datasets (Main window).

Dataset Browser : H
[atazet Contest tode Pathname

L] qald Atop Wi C: /dataflow gold. wilf

] zim Atop Simulation Mo zignalz logoed

C: /dataflowetest wlf

Kl | B

Open... Cloze M ake Active Rename... Done

The Dataset Browser dialog box includes the following options.

* Open
Opens the Open Dataset dialog box (see "Opening datasets" (UM-119)) SO you can open
additional datasets.

* Close
Closes the selected dataset. Thiswill also remove the dataset’ s Structuretabinthe Main
window workspace.

* Make Active
Makes the selected dataset "active." Y ou can also effect this change by double-clicking
the dataset name. Active dataset means that if you type aregion path as part of a
command and omit the dataset prefix, the active dataset will be assumed. It is equivalent
totyping env <dat aset >: at the VSIM prompt. The active dataset is displayed at the
bottom of the Main window.

* Rename
Allows you to assign a new logical name for the selected dataset.

Command line

Y ou can open multiple datasets when the simulator isinvoked by specifying morethan one
vsim -view <filename> option. By default the dataset prefix will be the filename of the
WLFfile. You can specify adifferent dataset name as an optional qualifier to the

vsim -view switch on the command line using the following syntax:

-vi ew <dat aset >=<fi | enane>

ModelSim User's Manual

UM-122 6 - WLF files (datasets) and virtuals

ModelSim User’'s Manual

For example: vsim -view foo=vsim.wlf

Model Sim designates one of the datasets to be the "active" dataset, and refers all names
without dataset prefixesto that dataset. The active dataset is displayed in the context path
at the bottom of the Main window. When you select adesign unit in a dataset’s Structure
tab, that dataset becomes active automatically. Alternatively, you can use the Dataset
Browser or the environment command (CR-74) to change the active dataset.

Design regions and signal names can be fully specified over multiple WLF files by using
the dataset name as a prefix in the path. For example:

sim/top/al u/ out
vi ew / t op/ al u/ out

gol den: . t op. al u. out

Dataset prefixesare not required unless more than one dataset isopen, and you want to refer
to something outside the active dataset. When more than one dataset is open, ModelSim
will automatically prefix namesin the Wave and List windows with the dataset name. Y ou
can change this default by selecting Tools > Window Preferences (Wave and List
windows).

Model Sim also remembers a " current context” within each open dataset. Y ou can toggle
between the current context of each dataset using the environment command (CR-74),
specifying the dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo.
The context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to asjust "current context") is
used for finding objects specified without a path.

The Signals window can be locked to a specific context of a dataset. Being locked to a
dataset means that the window will update only when the content of that dataset changes.
If locked to both a dataset and a context (e.g., test: /top/foo), the window will update only
when that specific context changes. Y ou specify the dataset to which the window islocked
by selecting File > Environment (Signals window).

Restricting the dataset prefix display

The default for dataset prefix viewing is set with avariable in pref.tcl,

PrefM ain(DisplayDatasetPr efix). Setting the variable to 1 will display the prefix, setting
it to Owill not. It isset to 1 by default. Either edit the pref.tcl file directly or use the Tools
> Edit Preferences (Main window) command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment
command (CR-74) with the -dataset option (you won't need to specify this option if the
variable noted aboveis set to 1). The environment command line switches override the
pref.tcl variable.

WLF files (datasets) UM-123

Saving at intervals with Dataset Snapshot

Dataset Snapshot lets you periodically copy datafrom the current simulation WLF file to
another file. Thisisuseful for taking periodic "snapshots" of your simulation or for clearing
the current simulation WLF file based on size or elapsed time.

Once you have logged the appropriate items, select Tools > Dataset Snapshot (Wave
window).

Dataset Snapshot £

—Datazet Snapshot State

{* Enabled " Disabled

— Snapzhat Type
¥ Simulation Time I 'IEIEIEIEIEIEII hz ZI

" WLF File Size I 100 | Megabytes

— Snapzhot Contents

" Shapshot containg only data since previous shapshat,

% Snapshot containg all previous data.

— Snapshat Directary and File

— Directony File Prefix
IE:a’datafIDw Browsze... | ’r\fsim_snapshnt

— Owepnrites ncrement

* Always replace snapshot file.

™ Usze incrementing suffi< on znapshot fles.

— Selected Snapshot Filename

: Adataflowevzim_snapshob.wif

ok LCancel

The Dataset Snapshot dialog includes these options:

Dataset Snapshot State

 Enabled/Disabled
Enable or disable Dataset Snapshot. All other dialog options are unavailableif Disabled

is selected.

ModelSim User's Manual

UM-124 6 - WLF files (datasets) and virtuals

ModelSim User’'s Manual

Snapshot Type

e Simulation Time
Specifies that datais copied to the specified snapshot file every <x> time units. Default
is 1000000 time units.

* WLF FileSize
Specifies that data is copied to the specified snapshot file whenever the current
simulation WLF file reaches <x> megabytes. Default is 100 MB.

Snapshot Contents

» Snapshot contains only data since previous snapshot
Specifiesthat each snapshot contains only data since thelast snapshot. This option causes
ModelSim to clear the current simulation WLF file each time a snapshot is taken.

» Snapshot containsall previous data
Specifiesthat each snapshot containsall datafrom thetime signalswerefirst logged. The
entire contents of the current simulation WLF file are saved each time a snapshot is taken.

Snapshot Directory and File

* Directory
The directory in which Model Sim saves the snapshot files.

* FilePrefix
The name of the snapshot files. Model Sim adds .wif to the snapshot files.

Overwrite / Increment

« Alwaysreplace snapshot file
Specifiesthat asinglefileiscreated for al snapshots. Each new snapshot overwritesthe
previous.

« Useincrementing suffix on snapshot files
Specifies that anew file is created for each snapshot. Each new snapshot creates a
separate file (e.g., vam_snapshot_0.wlf, vaim_snapshot_1.wif, etc.).

Virtual Objects (User-defined buses, and more) UM-125

Virtual Objects (User-defined buses, and more)

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in
the Model Sim simulation kernel. Model Sim supportsthe following kinds of virtual objects:

* Virtual signals (UM-125)

 Virtual functions (UM-126)

* Virtua regions (UM-127)

* Virtual types (UM-127)

Virtual objects are indicated by an orange diamond as illustrated by bus below:

==+t wave - default -|O] x|

File Edit M“iew Insert Format Tools Window

SHS $BRBM KK [N o Q& QB EF ELDEN
) r1 |

1] [+ 4 3 [|]
|Eln5t|:|E!Ef1ns |

i
Curzor 1 51 hz I
i

Virtual signals

Virtual signals are aliases for combinations or subelements of signals written to the WLF
file by the simulation kernel. They can be displayed in the Signals, List, and Wave
windows, accessed by the examine command, and set using the for ce command. Y ou can
create virtual signals using the Tools > Combine Signals (Wave and List windows)
command or usethevirtual signal command (CR-175). Once created, virtual signals can be
dragged and dropped from the Signals window to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that

corresponds to the nearest common ancestor of all the elements of the virtual signal. The
virtual signal command hasan -install <region> option to specify wherethe virtual signal
should beinstalled. Thiscan be used to install the virtual signal in auser-defined regionin

ModelSim User's Manual

UM-126 6 - WLF files (datasets) and virtuals

order to reconstruct the original RTL hierarchy when simulating and driving a
post-synthesis, gate-level implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. Thevirtual hide command (CR-166) can be used to hide the display of the
broken-down bits if you don’t want them cluttering up the Signals window.

If the virtual signal has elements from more than one WLF file, it will be automatically
installed in the virtual region virtuals:/Sgnals.

Virtual signals are not hierarchical —if two virtual signals are concatenated to become a
third virtual signal, theresulting virtual signal will beaconcatenation of all the subelements
of the first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command
(CR-173). By default, when quitting, Model Sim will append any newly-created virtual s (that
have not been saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave
or List format, you will need to execute the virtuals.do file (or some other equivalent) to
restore the virtual signal definitions before you re-load the Wave or List format during a
later run. Thereisone exception: "implicit virtuals' are automatically saved with the Wave
or List format.

Implicit and explicit virtuals

Animplicit virtual isavirtual signal that was automatically created by Model Sim without
your knowledge and without you providing a name for it. An example would be if you
expand a bus in the Wave window, then drag one bit out of the busto display it separately.
That action creates a one-bit virtual signal whose definition is stored in a special location,
and is not visible in the Signals window or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals".

Virtual functions

ModelSim User’'s Manual

Virtual functions behave in the GUI like signals but are not aliases of combinations or
elements of signals logged by the kernel. They consist of logical operations on logged
signals and can be dependent on simulation time. They can be displayed in the Signals,
Wave, and List windows and accessed by the examine command (CR-75), but cannot be set
by the for ce command (CR-82).

Examples of virtual functions include the following:

« afunction defined as the inverse of agiven signal

« afunction defined as the exclusive-OR of two signals

« afunction defined as arepetitive clock

« afunction defined as "therising edge of CLK delayed by 1.34 ns"

Virtual functions can also be used to convert signal types and map signal values.

Theresult type of avirtual signal can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these
types. Verilog types are converted to VHDL 9-state std_|ogic equivalents and Verilog net
strengths are ignored.

Virtual Objects (User-defined buses, and more) UM-127

Virtual functions can be created using the virtual function command (CR-163).

Virtual functions are also implicitly created by Model Sim when referencing bit-selects or
part-selects of Verilog registersin the GUI, or when expanding Verilog registersin the
Signals, Wave or List window. Thisis necessary because referencing Verilog register
elements requires an intermediate step of shifting and masking of the Verilog "vreg" data
structure.

Virtual regions

User-defined design hierarchy regions can be defined and attached to any existing design
region or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in
agate-level designandtolocatevirtua signals. Thus, virtual signalsand virtual regionscan
be used in a gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command (CR-172).

Virtual types

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual typeisthen used in atype conversion
expression to convert asignal to values of the new type. When the converted signal is
displayed in any of the windows, the value will be displayed as the enumeration string
corresponding to the value of the original signal.

Virtual types are created using the virtual type command (CR-178).

ModelSim User's Manual

UM-128 6 - WLF files (datasets) and virtuals

Dataset, WLF file, and virtual commands

The table below provides a brief description of the actions associated with datasets, WLF
files, and virtual commands. For compl ete detail s about syntax, arguments, and usage, refer
to the Model Sm Command Reference.

Command name

Action

dataset alias (CR-55)

assigns an additional name (alias) to a dataset

dataset clear (CR-56)

removes all event data from the current ssimulation WLF file while keeping
all currently logged signals logged

dataset close (CR-57)

closes the specified dataset

dataset info (CR-58)

reports a variety of information about a dataset

dataset list (CR-59)

listsall open datasets

dataset open (CR-60)

opensaWLFfile

dataset rename (CR-61)

assigns anew logical name to the specified dataset

dataset save (CR-62)

saves the current simulation to aWLF file

dataset snapshot (CR-63)

saves the current simulation to aWLF file at regular intervals

log (CR-87)

creates aWLF file for the current simulation

nolog (CR-93)

suspends writing of data to the WLF file for the specified signals

searchlog (CR-116)

searches one or more of the currently open WLF files for a specified
condition

virtual function (CR-163)

createsanew signal that consists of logical operationson existing signalsand
simulation time

virtual region (CR-172)

creates a new user-defined design hierarchy region

virtual signal (CR-175)

creates anew signal that consists of concatenations of signals and
subelements

virtual type (CR-178)

creates a new enumerated type

vsim (CR-189) -wlf <filename>

creates a WLF file for the simulation which can be reopened as a dataset

wlif2log (CR-211)

translates a Model Sim WLF file (vsim.wif) to a QuickSim Il logfile

wlfman (CR-213)

allows you to get information about and manipulate WLF files

wlfrecover (CR-215)

attemptsto "repair* WLF files that are incomplete due to a crash or the file
being copied prior to completion of the simulation

ModelSim User’'s Manual

UM-129

7 - Graphic interface

Chapter contents

Window overview UM-130
Common window features. UM-131
Manwindow UM-137
Dataflow window UM-149
Liswindow UM-168
Processwindow UM-181
Signaswindow UM-183
Sourcewindow. UM-191
Structurewindow UM-199
Varigbleswindow UM-203
Wavewindow UM-206
Compiling with the graphicinterface UM-238
Simulating with the graphicinterface UM-245
Creating and managing breskpoints UM-258
Miscellaneoustoolsandadd-ons UM-262
Graphic interfacecommands UM-267

ModelSim User's Manual

UM-130 7 - Graphic interface

Window overview

ModelSim User’'s Manual

The Model Sim simulation and debugging environment consists of nine windows. A brief
description of each window follows:

Main window (UM-137)

The initial window that appears upon startup. All subsequent Model Sim windows are
opened from the Main window. This window contains the session transcript; the
Workspace, which can contain Project, Library, Structure, and Files tabs; and the
coverage panes when you have simulated with "Code Coverage" (UM-283).

Dataflow window (UM-149)
Lets you trace signals and nets through your design by showing related processes.

List window (UM-168)
Shows the simulation values of selected VHDL signals and variables and Verilog nets,
registers, and variables in tabular format.

Process window (UM-181)
Displaysalist of processesin the region currently selected in the Structure window.

Signals window (UM-183)
Shows the names and current values of VHDL signals, and Verilog nets, registers, and
variablesin the region currently selected in the Structure window.

Source window (UM-191)
Displays the HDL source code for the design.

Structure window (UM-199)

Displaysthe hierarchy of structural elements such as VHDL component instances,
packages, blocks, generate statements, and V erilog model instances, named blocks, tasks
and functions. In versions 5.5 and later, this same information is displayed in the Main
window workspace.

Variables window (UM-203)
DisplaysVHDL constants, generics, variables, and Verilog registers and variablesin the
current process and their current values.

Wave window (UM-206)

Displayswaveforms, and current valuesfor the VHDL signalsand variables and Verilog
nets, registers, and variables you have selected. Current and past simulations can be
compared side-by-side in one Wave window.

Common window features UM-131

Common window features

Model Sim’s graphic interface provides many features that add to its usability; features
common to many of the windows are described below.

Feature Feature applies to these windows
Quick access toolbars (UM-132) Dataflow, Main, Source, and Wave windows
Drag and Drop (UM-132) Dataflow, List, Process, Signals, Source, Structure,
Variables, and Wave windows
Command history (UM-132) Main window command line
Automatic window updating (UM-133) Dataflow, Process, Signals, and Structure windows
Finding names (UM-133) various windows
Sorting HDL items (UM-133) Process, Signals, Source, Structure, Variables and Wave
windows
Menu tear off (UM-134) al windows
Combining itemsin the List window (UM-174), List and Wave windows
Combining itemsin the Wave window (UM-217)
Tree window hierarchical view (UM-135) Structure, Signals, Variables, and Wave windows
 Cut/Copy/Paste/Del ete into any entry box by clicking the right
mouse button in the entry box. E“t
. opy
« Standard cut/copy/paste shortcut keystrokes — *X/*C/"V —will Paste
work in all entry boxes.
Delete
* When the focus changes to an entry box, the contents of that box
are selected (highlighted). This allows you to replace the current Select Al

contents of the entry box with new contents with a simple paste
command, without having to delete the old value.

* Dialog boxeswill appear on top of their parent window (instead of the upper left corner
of the screen).

* You can changethetitle of any window with the -title switch of the view command. See
view command (CR-156) for details.

ModelSim User's Manual

UM-132 7 - Graphic interface

» The middle mouse button will allow you to paste the following into the transcript
window:

—text currently selected in the transcript window,
—acurrent primary X-Windows selection (can be from another application), or

—contents of the clipboard.

P Note: Selecting text in the transcript window makesiit the current primary X-Windows
selection. Thisway you can copy transcript window selections to other X-Windows
windows (xterm, emacs, €tc.).

» The Edit > Paste operation in the Transcript pane will ONLY paste from the clipboard.
« All menus highlight their accelerator keys.

Quick access toolbars

File Edit WYew Insert Format Tools Window

FEHS FRREA K Xl nm &G @fEFIELENE S 3

Buttons on the Dataflow, Main, Source, and Wave windows provide access to commonly
used commands and functions.

Drag and Drop

Drag and drop of HDL itemsis possible between the following windows. Using the left
mouse button, click and release to select an item, then click and hold to drag it.

» Drag itemsfrom these windows:
Dataflow, List, Process, Signals, Source, Structure, Variables, and Wave windows

« Drop itemsinto these windows:
Dataflow, List, and Wave windows

P Note: Drag and drop works to rearrange items within the List and Wave windows as
well.

Command history

Avoid entering long commands twice; use the down and up keyboard arrows to move
through the command history for the current simulation.

ModelSim User’'s Manual

Automatic window updating

Finding names

Common window features UM-133

Selecting an item in the following windows automatically updates other related Model Sim

windows as indicated bel ow:

Select an item in this window To update these windows

Dataflow window (UM-149) Process window (UM-181)

Signals window (UM-183)

Source window (UM-191)

Structure window (UM-199)

V ariables window (UM-203)

Process window (Um-181)

Dataflow window (UM-149)

Signals window (UM-183)

Source window (UM-191)

Variables window (UM-203)

Signals window (UM-183)

Dataflow window (UM-149)

Structure window (UM-199) or structure Process window (UM-181)

pane in Main window Workspace : :
Signals window (UM-183)

Source window (UM-191)

 Find HDL item names with the Edit > Find menu selection in these windows:
Dataflow, List, Process, Signals, Source, Structure, Variables, and Wave windows.

A Find request that starts with abackslash (\) forces case sensitivity. Elsewherein the
pattern backslashes are used to escape special interpretation of basic regular expression
characters. To search explicitly for a backslash character, it is necessary to escape the
character. For example, to match \Arch Signal 1\, the pattern \Arch... isrequired.

Sorting HDL items

UsetheView > Sort menu selectionin the Process, Signals, Structure, Variablesand Wave

windows to sort HDL items in ascending, descending or declaration order.

Names such asnet_1, net_10, and net_2 will sort numericaly in the Signals and Wave

windows.

ModelSim User's Manual

UM-134 7 - Graphic interface

Saving window layout

Context menus

Menu tear off

ModelSim User’'s Manual

Y ou can save the current positions and sizes of Model Sim windows as a default. Follow
these steps to save the layout as a default:

1 Position and size the windows the way you want them to display.

2 Select Tools> Save Prefer ences (Main window) and save the modelsim.tcl fileinto the
desired directory.

3 Modify the "Working Directory" of your Model Sim shortcut to point at the directory, or
set the MODEL SIM_TCL environment variable to point at the directory (see " Creating
environment variablesin Windows' (UM-339) for more details).

Context menus refer to menus that "pop-up" in the middle of the interface by clicking the
right mouse button. The commands on the menu change depending on where in the
interface you click. In other words, the menus change based on the context of their use.
These menus are available in the following windows: Dataflow, List, Main, Signals,
Source, Structure, and Wave.

All window menus can be "torn off " to create a separate menu window. To tear off, click
on the menu, then select the dotted-line button at the top of the menu.

Common window features UM-135

Tree window hierarchical view

Model Sim provides a hierarchical, or "tree view" of some aspects of your design in the
Main window Structure tabs and the Structure, Signals, Variables, and Wave windows.

HDL items you can view

Depending on which window you are
viewing, one entry is created for each

File Edit Miew Swindow

of the following VHDL and Verilog E—g_i
HDL items within the design: = o
%J read
VHDL items o wiite
(indicated by a dark blue square icon) -
signals, variables, component — hash
instantiations, generate statements, —wd update_mru
block statements, and packages —«d pick_set
i svzread
Verilog items i spswrite
(indicated by alighter blue circleicon) —« st hi
parameters, registers, nets, module — I 0
instantiations, named forks, named — [l
begins, tasks, and functions — Ml =2
—H 2
Virtual items L m
(indicated by an orange diamond icon) M std_logic_uti
virtual signals, buses, and functions, M vLtypes
see "Virtual Objects (User-defined B std_logic_1164
buses, and more)" (UM-125) for more B standard 3
information
x| | »
sim:ftop S

ModelSim User's Manual

UM-136 7 - Graphic interface

ModelSim User’'s Manual

Viewing the hierarchy

Whenever you see atree view, asin the Structure window displayed here, you can use the
mouse to collapse or expand the hierarchy. Select the symbols as shown below to change

the view of the structure.

Symbol

Description

[+]

click aplus box to expand the item and view the structure

[-]

click aminus box to hide a hierarchy that has been expanded

Finding items within tree windows

Y ou can open the Find dial og box within all windows by selecting Edit > Find or by using

<control-s> (UNIX) or <control-f> (Windows).

Options within the Find dialog box allow you to search unique text-string fields within the

specific window. See also,

* "Finding items by namein the List window" (UM-177),

* "Finding HDL itemsin the Signals window" (um-188), and

* "Finding items by name or value in the Wave window" (UM-225).

Main window UM-137

Main window

The Main window is pictured below as it appears when ModelSim is first invoked. Note
that your operating system graphic interface provides the window-management frameonly;
Model Sim handles al internal-window features including menus, buttons, and scroll bars.

Iﬁ]lf"""li!I"I:|E|5in'| -
File Edit M“iew Compile Simulste Tools Window Help

=RR||eng
Click and ‘wiorkspace % —
d th e A1 [quit -sim
b;&:g tc;n e | N Type | Bt cd C:/modeltech
reposition]l witalzoo0 Library $MOC # reading madelsir. ini
toolbars or [Il IEEPLIE Library C:dfma .
panes I vitalz. 25 Libay C:/mo ModelSirn:

Il ie== Library $MOC

m modelzim_lib Libram 0L —

i =t Library $MOC

-1l std developerskit Library $0C d

1 I | _,I

| Library

|-::N|:| Diesign Loaded= |

Y ou can customize the Main window |ayout—click and drag on the bars noted in the graphic
above to change the position of the panes and toolbars. Y ou can also change the relative
size of each pane by dragging on its border. The graphic below shows a customized layout.

ﬁMDdElEin‘l _|of x|

File Edit Wiew Compile Simulate Tools Window Help

=Be || sag
Wiorkspace

I ame | Tupe | Path I
m wital2000 Library FMODEL_TECH/. Avital2000

- M irernine | ikraru [frndeltechdierenire

Libramn |

quiik -gim it
cd C:/modeltech
reading modelzim.ini

kodelSim:

LLs

b

=Mo Design Loaded=

i

ModelSim User's Manual

UM-138 7 - Graphic interface

ﬁMDdElEin‘l

The graphic below shows the Main window as it might appear when you have aproject and

adesign loaded.

File Edit Miew Compile Simulate Tools Window Help

=10 x|

Workspace —p

=B || oosfElEIEE BB S
“Wiorkspace 12| | Active processes |
Inztance |Design LUnit |Desigr ﬂ il
top[only] Archite
=] proc b odule
- ho- e b~ l- d
a | i bd
| Praject | Library | sim | Files | gald | compare | 1| A | »

Transcript——»p

Loading work. cache_set[only]

Loading work. mermony

datazet open C: /dataflove/gold. wif gold

C: /dataflow/gold. wif opened as datazet "gald"
compare start gald zim

compare optionz -track,

WSIM 28

Froject : test |Mow: 0 ns Delta: O sim:ftap

Workspace

ModelSim User’'s Manual

active processes

The menu bar at the top of the window provides access to awide variety of simulation

commands and Model Sim preferences. Thetoolbar provides buttonsfor quick accessto the

many common commands. The status bar at the bottom of the window gives you

information about the data in the active Model Sim window. The panes display different

parts of your design or different features of Model Sim. The panes, menu bar, toolbar, and

status bar are described in detail below.

The Workspace is availablein Model Sim versions 5.5 and later. It provides convenient
access to projects, libraries, design files, compiled design units, simulation/dataset

structures, and Waveform Comparison objects. It can be hidden or displayed by selecting

View > Workspace (Main window).
The Workspace can display five types of tabs as shown in the graphic above.
e Project tab

Shows all files that are included in the open project. See Chapter 2 - Projectsfor details.

e Library tab

Shows design libraries and compiled design units. See "Managing library contents" (UM-

41) for details.

Transcript

Main window

* Structuretabs
Shows a hierarchical view of the active simulation and any open datasets. Thisisthe
same data that is displayed in the " Structure window" (Um-199). There is one tab for the
current simulation and one tab for each open dataset. See "Viewing dataset structure”
(UM-120) for details.

The Transcript portion of the Main window maintains arunning history of commands that
are invoked and messages that occur as you work with ModelSim. When asimulation is
running, the Transcript displaysaVSIM prompt, allowing you to enter command-line
commands from within the graphic interface.

Y ou can scroll backward and forward through the current work history by using the vertical
scrollbar. Y ou can also use arrow keys to recall previous commands, or copy and paste
using the mouse within the window (see "Mouse and keyboard shortcuts" (Um-147) for
details).

Saving the Main window transcript file

Variable settings determine the filename used for saving the Main window transcript. If
either PrefM ain(file) in the modelsim.tcl file or TranscriptFile in the modelsim.ini fileis
set, then the transcript output islogged to the specified file. By default the TranscriptFile
variable in modelsim.ini is set to transcript. If either variable is set, the transcript contents
are always saved and no explicit saving is necessary.

If you would like to save an additional copy of the transcript with a different filename, you
can usethe File> Transcript > Save Transcript As, or File> Transcript > Save
Transcript menu items. The initial save must be made with the Save Transcript As
selection, which stores the filename in the Tcl variable PrefMain(saveFile). Subsequent
saves can be made with the Save Transcript selection. Since no automatic saves are
performed for thisfile, it iswritten only when you invoke a Save command. Thefileis
written to the specified directory and records the contents of the transcript at the time of the
save.

Using the saved transcript as a macro (DO file)

Saved transcript files can be used as macros (DO files). See the do command (CR-68) for
more information.

Active processes

This pane displays all processes that are scheduled to run during the current simulation
cycle. You can hide or display this pane by selecting View > Active Process (Main
window). This same data can be displayed in the "Process window" (UM-181).

UM-139

ModelSim User's Manual

UM-140 7 - Graphic interface

The Main window menu bar

The menu bar at the top of the Main window lets you access many Model Sim commands
and features. The menus are listed below with brief descriptions of each command’ s use.

File menu

New provides these options:

Folder — create a new folder in the current directory

Source — create a VHDL, Verilog, or Other sourcefile

Project — create a new project

Library — create anew design library and mapping; see"Creating alibrary” (Um-40)

Open provides these options:

File — open the selected hdl file

Project — open the selected .mpf project file

Dataset — open the specified WLF file and assign it the specified dataset name
Exclusion File — open "Exclusion filter files" (um-298) for Code Coverage

Close provides these options:
Project — close the currently open project file
Dataset — close the specified dataset

Import provides this option:
Library —import FPGA libraries; see "Importing FPGA libraries' (um-48)

Save provides these options:
sim dataset — save data from the current simulation
Exclusion File — save "Exclusion filter files' (um-298) for Code Coverage

Delete provides this option:

Project — delete the selected .mpf project file
Change Directory change to a different working directory
Transcript provides these options:

Save Transcript — save the Main window transcript to the file indicated with a
"Save Transcript As' selection (this selectionis not initially available because the
transcript iswritten to the transcript file by default), see " Saving the Main window
transcript file" (UM-139)

Save Transcript As— save the Main window transcript to afile

Clear Transcript — clear the Main window transcript display

Print — print the contents of the Transcript window

Add to Project provides these options:

File—add filesto the open Project; see " Step 2 — Adding itemsto the project” (UM-
21)

Simulation Configuration — add an object representing a design unit(s) and its
associated simulation options; see " Creating a Simulation Configuration” (UM-30)
Folder — add an organization folder to the current project; see "Organizing projects
with folders" (um-32)

ModelSim User’'s Manual

Main window

UM-141

Recent Directories
Recent Projects

display alist of the most recent working directories or projects, respectively

Quit quit ModelSim
Edit menu
Copy copy the selected text
Paste paste the previously cut or copied text
Select All select all text in the Main window transcript
Unselect All deselect all text in the Main window transcript
Find search the transcript forward or backward for the specified text
string
View menu
All Windows open al Model Sim windows
Dataflow open and/or view the Dataflow window (UM-149)
List open and/or view the List window (UM-168)
Process open and/or view the Process window (UM-181)
Signals open and/or view the Signals window (UM-183)
Source open and/or view the Source window (UM-191)
Structure open and/or view the Structure window (UM-199)
Variables open and/or view the Variables window (UM-203)
Wave open and/or view the Wave window (UM-206)
Datasets open the Dataset Browser to open, close, rename, or activate a
dataset
Coverage provides these options:

Current Exclusions — hide or show the Exclusions pane
Missed Coverage — hide or show the Missed Coverage pane
Instance Coverage — hide or show the Instance Coverage pane

Active Process

hide or show the Active processes (UM-139) pane

Workspace hide or show the Workspace (UM-138)

Encoding select from al phabetical list of encoding namesthat enable proper
display of character representations used by various operating
systems or file systems, such as Unicode, ASCII, or Shift-JIS.

Properties show information about the item selected in the workspace

ModelSim User's Manual

UM-142 7 - Graphic interface

Compile menu

Compile

compile HDL source files; not enabled if you have a project open

Compile Options

set both VHDL and Verilog compile options; disabled if you have
aproject open

Compile All compileall filesin the open project; see" Step 3— Compiling the
files' (uUm-24) for details

Compile Selected compile thefiles selected in the project tab; disabled if you don't
have a project open

Compile Order set the compile order of the filesin the open project; see

"Changing compile order" (UM-28) for details

Compile Report

report on the compilation history of the selected file(s) in the
project

Compile Summary

report on the compilation history of all filesin the project

Simulate menu

Simulate

load the selected design unit; see Simulating with the graphic
interface (UM-245)

Simulation Options

set various simulation options;

Run

provides seven options:

Run <default>—run simulation for one default run length; change
the run length with Simulate > Simulation Options, or use the
Run Length text box on the toolbar

Run -All —run simulation until you stop itContinue — continue the
simulationRun -Next — run to the next event time

Step — single-step the simulatorStep -Over — execute without
single-stepping through a subprogram call

Restart — rel oad the design elements and reset the simulation time
to zero; only design elementsthat have changed are rel oaded; you
specify whether to maintain the following after restart—List and
Wave window environment, breakpoints, logged signal's, and
virtual definitions; see also therestart command (CR-111)

Break

stop the current simulation run

ModelSim User’'s Manual

End Simulation

quit the current simulation run

Main window

Tools menu
Breakpoints open the Breakpoints dialog box; see "Setting file-line
breakpoints" (UM-197) for details
Options provides these options:

(all options are set
for the current
session only)

Transcript File — set atranscript file to save for this session only
Command History — set afile for saving command history only,
no comments

Save File —set filename for Save Transcript, and Save Transcript
As

Saved Lines— limit the number of lines saved in the transcript
(default is 5000)

Line Prefix — specify the comment prefix for the transcript
Update Rate — specify the update frequency for the Main status
bar

Model Sim Prompt — change the title of the Model Sim prompt
VSIM Prompt — change the title of the VSIM prompt

Paused Prompt — change the title of the Paused prompt

HTML Viewer — specify the path to your browser; used for
displaying online help

Edit Preferences

set various preference variables; see
http://www.model.com/resources/pref variables/frameset.htm

Save Preferences

save current Model Sim settingsto a Tcl preferencefile; http:/
www.model.com/resources/pref _variables/frameset.htm

UM-143

ModelSim User's Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

UM-144 7 - Graphic interface

ModelSim User’'s Manual

Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

Tile Verticaly tile al open windows vertically

Layout Style? provides these options:
Default - restore the windows to version 5.5 layout
Millennium - restore the windows to version 5.6 layout
Classic - restore the windows to pre-5.5 layout
Cascade - cascade all open windows
Horizontal - tile all open windows horizontally
Vertical - tile al open windows vertically

Icon Children icon all but the Main window

Icon All icon al windows

Deicon All deicon all windows

<window_name>

list of up to nine open windowsincluding onefor each file opened
in the Source window; use the Windows menu item to see a
complete list

Windows

open dialog with complete list of open windows

a.Y ou can specify aLayout Style to becomethe default for Model Sim. After choosing
the Layout Style you want, select Tools > Save Prefer ences and the layout style will
be saved to the PrefMain(layoutStyle) preference variable.

Help menu
About ModelSim display Model Sim application information (e.g., software
version)
Release Notes view current release notes with the Model Sim notepad (CR-95)
Welcome Menu open the Welcome screen

Documentation

open and read Model Sim documentation in PDF or HTML
format; PDF files can be read with afree Adobe Acrobat reader
available on the Model Sim installation CD or from
www.adobe.com

Tcl Help open the Tcl command reference (man pages) in Windows help
format

Tcl Man Pages open the Tcl /Tk 8.3 manual in HTML format

Technotes select atechnical note to view from the drop-down list

http://www.adobe.com

The Main window toolbar

Main window

Buttons on the Main window toolbar give you quick access to these Model Sim commands

and functions.

UM-145

Main window toolbar buttons

paste the copied text to the cursor
location

Button Menu equivalent Command equivalents
Open File> Open > File
Eq. open the Open File dialog
Copy Edit > Copy see: "Mouse and keyboard
copy the selected text within the shortcuts' (UM-147)
& Main window transcript
Paste Edit > Paste see: "Mouse and keyboard

shortcuts' (UM-147)

Compile

open the Compile HDL Source
Filesdialog box to select filesfor
compilation

Compile > Compile

vcom <arguments>, or
vlog <arguments>

see: vcom (CR-145) or vlog (CR-
181)

Compile All
compile all filesin the open
project

Compile > Compile

vcom <arguments>, or
vlog <arguments>

see: vcom (CR-145) or vlog (CR-
181)

Simulate
load the selected design unit or
simulation configuration object

Simulate > Simulate

vsim <arguments>

See: vsim (CR-189)

Restart

reload the design elements and
reset the smulation time to zero,
with the option of using current
formatting, breakpoints, and
WLFfile

Simulate > Run >
Restart

restart <arguments>

see: restart (CR-111)

| 03

Run Length
specify therun length for the
current simulation

Simulate > Simulation
Options

run <specific run length>

SEE run (CR-114)

ModelSim User's Manual

UM-146 7 - Graphic interface

Main window toolbar buttons

Button

Menu equivalent

Command equivalents

Run
run the current simulation for the
specified run length

Simulate > Run > Run
<default_run_length>

run (no arguments)

SEe: run (CR-114)

Continue Run

continue the current simulation
run until the end of the specified
run length or until it hitsa
breakpoint or specified break
event

Simulate > Run >
Continue

run -continue

SEee: run (CR-114)

Run -All

run the current simulation
forever, or until it hitsa
breakpoint or specified break
event

Simulate > Run >
Run -All

run -all

See: run (CR-114), see "Assertions
tab" (Um-255)

instead of entered and traced line
by line

Break Simulate > Break none
@ stop the current simulation run
Step Simulate > Run > Step step
F} step the current simulation to the
next HDL statement see: step (CR-122)
Step Over Simulate > Run > step -over
ﬁl HDL statementsare executed but Step -Over
treated as simple statements see: step (CR-122)

ModelSim User’'s Manual

Main window UM-147

The Main window status bar

Froject : rl Mow: O ns Delta: O sim:ftapdp y:
Fields at the bottom of the Main window provide the following information about the
current simulation:

Field Description
Project name of the current project
Now the current simulation time, using the default resolution units

(see "Simulating with the graphic interface” (UM-245)), or a
larger time unit if one can be used without afractional remainder

Delta the current simulation iteration number

environment name of the current context (item selected in the Structure
window (UM-199))

Mouse and keyboard shortcuts

The following mouse actions and special keystrokes can be used to edit commandsin the
entry region of the Main window. They can also be used in editing thefile displayed in the
Source window and all Notepad windows (enter the notepad command within Model Sim

to open the Notepad editor).
Keystrokes Result
< left | right - arrow > move the cursor left | right one character
< up | down - arrow > scroll through command history (in Source
window, move cursor one line up | down)
< control > < |eft | right - arrow > move cursor |eft | right one word

< shift > < left |right |up |down - arrow > | extend selection of text

< control > < shift > <left|right - arrow > | extend selection of text by word

< up | down - arrow > scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down > move cursor up | down one paragraph

<at> activate or inactivate menu bar mode

<dt><F4> close active window

< backspace > delete character to the left

< home > move cursor to the beginning of the line

ModelSim User's Manual

UM-148 7 - Graphic interface

Keystrokes

Result

<end>

move cursor to the end of theline

< control > < home >

move cursor to the beginning of the text

< control > < end >

move cursor to the end of the text

<esc>

cancel

< control - a>

select the entire content of the widget

< control - ¢ >

copy the selection

< control - f >

find

<F3>

find next

< control - k >

delete from the cursor to the end of the line

< control - s>

save

< control -t >

reverse the order of the two charactersto the
right of the cursor

< control - u>

deleteline

< control - v >

paste from the clipboard

< control - x >

cut the selection

<F8> search for the most recent command that
matches the characters typed

<F9> run simulation

<F10> continue simulation

<F11> single-step

<F12> step-over

The Main window allows insertions or pastes only after the prompt; therefore, you don't
need to set the cursor when copying strings to the command line.

ModelSim User’'s Manual

Dataflow window UM-149

Dataflow window

The Dataflow window allows you to explore the "physical" connectivity of your design.
The window displays processes and signals, nets, and registers.

P Note: OEM versions of Model Sim have limited Dataflow functionality. Many of the
features described below will operate differently. The window will show only one
process and its attached signals or one signal and its attached processes, as displayed in
the graphic below.

Adding items to the window

Fil= Edit

Wiew Mavigate Trace Tools ‘wWindow

=10 x|

SN ad PEBOOM e » %NHE D2 2H
@G @ [

Extended mode disabled I |Keep| 1 | fprociclk 7]

#IMITIAL#SS

Y ou can use any of the following methods to add items to the Dataflow window:
« drag and drop items from other windows

« use the Navigate menu options in the Dataflow window

« usethe add dataflow command (CR-31)

* double-click any waveform in the Wave window display

The Navigate menu offers four commands that will add itemsto the window. The
commands include:

View region — clear the window and display all signals from the current region

Add region — display al signals from the current region without first clearing window
View all nets— clear the window and display all signals from the entire design

Add ports— add port symbols to the port signalsin the current region

ModelSim User's Manual

http://www.model.com/contact_us.asp

UM-150 7 - Graphic interface

When you view regions or entire nets, the window initially displays only the drivers of the
added itemsin order to reduce clutter. Y ou can easily view readers by selecting anitem and
invoking Navigate > Expand net to readers.

A small circle above aninput signal on ablock denotes atrigger signal that is on the

process’ sensitivity list.

Links to other windows

The Dataflow window has links to other windows as described below:

Window

Link

Main window (UM-137)

select asignal or processin the Dataflow window, and
the Structure pane updatesiif that itemisin adifferent
design unit

Process window (UM-181)

select aprocess in either window, and that processis
highlighted in the other

Signals window (UM-183)

select asignal in either window, and that signal is
highlighted in the other

Wave window (UM-206)

« trace through the design in the Dataflow
window, and the associated signalsare added to
the Wave window

¢ move acursor in the Wave window, and the
values update in the Dataflow window

Source window (UM-191)

select an item in the Dataflow window, and the
Source window updates if that itemisina
different source file

Dataflow window menu bar

ModelSim User’'s Manual

The following menu commands are available from the Datafl ow window menu bar. Many
of the commands are also available from the context menu (click right or 3rd mouse

button).
File menu
Print print the current view of the Dataflow window
Print Postscript print/savethe current view of the Dataflow window to a postscript
deviceffile
Page setup configure page formatting for printing
Close close the Dataflow window; note that this erases whatever is
currently displayed in the window

Dataflow window

Edit menu

Undo undo the last action

Redo redo the last undone action

Cut cut the selected object(s)

Copy copy the selected object(s)

Paste paste the previously cut or copied object(s) into the display

Erase selected clear selected object from window

Select all select all objectsin the window

Unselect all deselect all currently selected objects

Erase highlight remove green highlighting from interconnect lines

Erase all clear al objects from window

Regenerate clear and redraw the display using an optimal layout

Find search for an instance or signa

Find Next search for next occurrence of instance or signal

View menu

Show Wave open the embedded wave viewer pane

Select set left mouse button to select mode and middle mouse button to
zoom mode

Zoom set left mouse button to zoom mode and middle mouse button to
pan mode

Pan set left mouse button to pan mode and middle mouse button to
zoom mode

Default set mouse to default mode

Navigate menu

Expand net to display driver(s) of the selected signal, net, or register
drivers

Expand net to display reader(s) of the selected signal, net, or register
readers

Expand net display driver(s) and reader(s) of the selected signal, net, or

register

UM-151

ModelSim User's Manual

UM-152 7 - Graphic interface

Hide selected remove the selected component and all other components from
the same region and replace them with a single component
representing that region

Show selected expand the selected component to show all underlying
components

View region clear the window and display all signals from the current region

Add region display al signals from the current region without first clearing
the window

View all nets clear the window and display all signals from the entire design

Add ports add port symbols to the port signalsin the current region

Trace menu

TraceX '™ step back to the last driver of an unknown (X) value

Chasex ™ jump to the source of an unknown (X) value

TraceX Delay step back in timeto the last driver of an unknown (X) value

ChaseX Delay jump back in time to the point where the output value transitions

to X

Trace next event

move the next event cursor to the next input event driving the
selected output

Trace event set

jump to the source of the selected input event

Trace event reset

return the next event cursor to the selected output

Tools menu
Load built-in load a .bsm file for mapping symbol instances; see " Symbol
symbol map mapping" (UM-165)

Load symlib library

load a user-defined symbol library

Create symlib index

create an index for a user-defined symbol library

Options

configure Dataflow window preferences

Window menu

The Window menu isidentical in all windows. See "Window menu" (UM-144) for a

description of the commands.

ModelSim User’'s Manual

The Dataflow window toolbar

The buttons on the Dataflow window toolbar are described below.

Dataflow window UM-153

Button Menu equivalent

Print File > Print
% print the current view of the Dataflow window

Select mode View > Select
.ni set left mouse button to select mode and middle

mouse button to zoom mode

Zoom mode View > Zoom
= set left mouse button to zoom mode and middle

2 mouse button to pan mode

Pan mode View > Pan
$ set |eft mouse button to pan mode and middle

mouse button to zoom mode

Cut Edit > Cut
.;Ii{- cut the selected object(s)

Copy Edit > Copy
copy the selected object(s)

Paste Edit > Paste
E paste the previously cut or copied object(s)

Undo Edit > Undo

undo the last action
2

Redo Edit > Redo
Q redo the last undone action

Find Edit > Find
ﬂ search for an instance or signal

ModelSim User's Manual

UM-154 7 - Graphic interface

Button

Menu equivalent

Je

Traceinput net to event
movethe next event cursor to the next input event
driving the selected output

Trace > Trace next event

Trace Set Trace > Trace event set
- jump to source of selected input event
Trace Reset Trace > Trace event
5 return the next event cursor to the selected output | reset

Tracenet todriver of X
step back to the last driver of an unknown value

Trace > TraceX

Expand net to all drivers
display driver(s) of the selected signal, net, or
register

Navigate > Expand net
to drivers

Expand net to all driversand readers
display driver(s) and reader(s) of the selected
signal, net, or register

Navigate > Expand net

Expand net to all readers
display reader(s) of the selected signal, net, or
register

Navigate > Expand net
to readers

Erase highlight
clear the green highlighting which identifies the
path you' ve traversed through the design

Edit > Erase highlight

poa

Eraseall
clear the window

Edit > Erase dll

ModelSim User’'s Manual

Regenerate
clear and redraw the display using an optimal
layout

Edit > Regenerate

Dataflow window UM-155

Button Menu equivalent

Zoom In none

(ﬂ zoom in by afactor of two from current view
Zoom Out none

El zoom out by afactor of two from current view
Zoom Full none

% zoom out to show all components in window
Stop Drawing none

halt any drawing currently happening in the
window

Show Wave
display the embedded wave viewer pane

View > Show Wave

ModelSim User's Manual

UM-156 7 - Graphic interface

Exploring the connectivity of your design

ModelSim User’'s Manual

A primary use of the Dataflow window is exploring the "physical" connectivity of your
design. One way of doing thisis by expanding the view from process to process. This
allows you to see the driversireceivers of a particular signal, net, or register.

Y ou can expand the view of your design using menu commands or your mouse. To expand
with themouse, simply doubleclick asignal, register, or process. Depending on the specific
item you click, the view will expand to show the driving process and interconnect, the
reading process and interconnect, or both.

Alternatively, you can select asignal, register, or net, and use one of the toolbar buttons or
menu commands described bel ow:

Expand net to all drivers Navigate > Expand net
display driver(s) of the selected signal, net, or to drivers

a" register
Expand net to all driversand readers Navigate > Expand net

= display driver(s) and reader(s) of the selected
:J'E signal, net, or register

Expand net to all readers Navigate > Expand net
display reader(s) of the selected signal, net, or to readers
"E register

Asyou expand the view, note that the "layout" of the design may adjust to best show the
connectivity. For example, the location of an input signal may shift from the bottom to the
top of a process.

Tracking your path through the design

Y ou can quickly traverse through many componentsin your design. To help mark your
path, the items that you have expanded are highlighted in green.

{#17#1

Y ou can clear this highlighting using the Edit > Erase highlight command. il

Dataflow window UM-157

The embedded wave viewer

Another way of exploring your design is to use the Dataflow window’ s embedded wave
viewer. Thisviewer closely resembles, in appearance and operation, the stand-alone Wave
window (see "Wave window" (UM-206) for more information).

The wave viewer is opened using the View > Show Wave command. ﬂ

One common scenario is to place signalsin the wave viewer and the Dataflow panes, run
the design for some amount of time, and then use time cursorsto investigate val ue changes.
In other words, as you place and move cursorsin the wave viewer pane (see "Using time

cursorsinthe Wavewindow" (UM-226) for details), the signal values updatein the Dataflow
pane.

== dataflow el B2
File Edit Wiew Mavigate Trace Tools Window

G MmaP BB e +82%%€ @221]
G @ folw

TITTTTTTITT

4

FEHE BRI KK NG §E QR EFIEIEIES

A Mtopdpdne |
o Mtop/pdsth
H Atopdpddata
b topdpdadd_r
o Jtop/pddata r

231 n=

| » f

Another scenario isto select a processin the Dataflow pane, which automatically adds to
the wave viewer pane al signals attached to the process.

See"Tracing events (causality)" (UM-159) for another exampl e of using the embedded wave
viewer.

ModelSim User's Manual

UM-158 7 - Graphic interface

Zooming and panning

ModelSim User’'s Manual

The Dataflow window offers several tools for zooming and panning the display.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zoom In Zoom Out

(ﬂ zoomin by afactor El zoom out by a
of two from the factor of two from
current view current view
Zoom Full
zoom out to view

% the entire
schematic

Zooming with the mouse

To zoom with the mouse, you can either use the middle mouse button or enter Zoom Mode

by selecting View > Zoom and then use the left mouse button. 'E_‘.I

Four zoom options are possible by clicking and dragging in different directions:

* Down-Right: Zoom Area (In)

e Up-Right: Zoom Out (zoom amount is displayed at the mouse cursor)

e Down-Left: Zoom Selected

e Up-Left: Zoom Full

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixelsto activate.

Panning with the mouse

To pan with the mouse you must enter Pan Mode by selecting View > Pan. 4$i

Now click and drag with the left mouse button to pan the design.

Dataflow window UM-159

Tracing events (causality)

One of the most useful features of the Dataflow window istracing an event to seethe cause
of an unexpected output. Thisfeature uses the Dataflow window’ s embedded wave viewer
(see "The embedded wave viewer" (UM-157) for more details).

In short you identify an output of interest in the Dataflow pane and then usetime cursorsin
the wave viewer pane to identify events that contribute to the output.

The process for tracing eventsis as follows:
1 Logall signas before starting the simulation (add log -r /*).

2 After running asimulation for some period of time, open the Dataflow window and the
wave viewer pane.

3 Addaprocessor signal of interest into the Dataflow window (if adding asignal, find its
driving process). Select the process and all signals attached to the selected process will
appear in the wave viewer pane.

4 Place atime cursor on an edge of interest; the edge should be on asignal that isan output
of the process.

5 Select Trace > Trace next event. | |4

A second cursor is added at the most recent input event.

6 Keepselecting Trace> Tracenext event until you'vereached an input event of interest.
Note that the signals with the events are selected in the wave pane.

7 Now select Trace> Traceset. | 4=

The Dataflow display "jumps" to the source of the selected input event(s). The operation
follows all signals selected in the wave viewer pane. Y ou can change which signals are
followed by changing the selection.

8 To continue tracing, go back to step 5 and repeat.
If you want to start over at the originally selected output, select Trace > Trace reset.

ModelSim User's Manual

UM-160 7 - Graphic interface

Tracing the source of an unknown (X)

Another useful debugging option is locating the source of an unknown (X). Unknown
values are most clearly seen in the Wave window—the waveform displaysin red when a
value is unknown.

== wave - default ;IEIEI

File Edit Wiew Insert Format Tools Window

FEHES sRRBI G X EA "o &G @R EFIELEIE

A top/pdt_out

‘| [| =
0 ns to 546 ns

|
|
m

4

The procedure for tracing an unknown is as follows:
1 Loadyour design.

2 Logall signalsinthe design or any signalsthat may possibly contribute to the unknown
value (log -r /* will log all signalsin the design).

3 Add signalsto the Wave window or wave viewer pane, and run your design the desired
length of time.

4 Put acursor on the time at which the signal value is unknown.

5 Add thesignal of interest to the Dataflow window, making sure the signal is selected.

6 Select Trace> TraceX, Trace> TraceX Delay, Trace> ChaseX, or Trace> ChaseX
Delay.

These commands behave as follows:

TraceX / TraceX Delay— Step back to the last driver of an X vaue. TraceX Delay works
similarly but it steps back in time to the last driver of an X value. TraceX should be used
for RTL designs; TraceX Delay should be used for gate-level netlists with backannotated
delays.

Trace > ChaseX / ChaseX Delay — "Jumps" through a design from output to input,
following X values. ChaseX Delay actsthe same as ChaseX but also moves backwardsin

ModelSim User’'s Manual

Dataflow window UM-161

time to the point where the output value transitions to X.ChaseX should be used for RTL
designs; ChaseX Delay should be used for gate-level netlists with backannotated delays.

Finding items by name in the Dataflow window

Select Edit > Find to search for signal, net, or register names or an instance of a

component.
|
Find: | Fird
Type Find Mext

& Ang [T Ewact
" |nztance
= Signal [T ZoomTo

Cloze |

Enter an item name and specify whether it is an instance of a process (Instance); asignal,
net, or register (Signal); or either (Any).

Specify Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clkL.

If you want to zoom in on the located item, select Zoom To. Y ou can continue searching
using the Find Next button.

ModelSim User's Manual

UM-162 7 - Graphic interface

Saving the display

Saving a .eps file

Select File> Print Postscript to save the waveform as a .epsfile.

Print Postscript £
— Frinter
£ Print command: |I|:| -d Ipl ;I
" File hame: | Browse... |
—Paper

Paper zize: |

Fant; |

il
Border Wwidth: | -
il

Ok | Cancel

The Print Postscript dialog box includes these options:

Printer

* Filename
Enter afilename for the encapsulated Postscript (.eps) file to create; or browseto a
previously created .eps file and use that filename.

Paper

Setup button
See "Printer Page Setup" (UM-236).

ModelSim User’'s Manual

Dataflow window UM-163

Printing on Windows platforms

Select File > Print to print the Dataflow display or to save the display to afile.

21|

Froperties... |

— Printer

M ame:

Statis: Feady
Type: HF Lazerlet 5L

Where: LFT1:
Corment; [Pt ta file
— Print range — Copies
Lo | Mumber of copies; 1 :
€ Pages From; ID b ID
€ Selection Ijl

ak I Cancel

The Print dialog box includes these options:

Printer

Name
Choose the printer from the drop-down menu. Set printer properties with the Properties
button.

Status
Indicates the availability of the selected printer.

Type
Printer driver name for the selected printer. The driver determines what type of fileis
output if "Print to file" is selected.

Where
The printer port for the selected printer.

Comment
The printer comment from the printer properties dial og box.

Print tofile

Make this selection to print the display to afile instead of a printer. The printer driver
determines what type of file is created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a .prn or printer control language file. To create an
encapsulated Postscript file (.eps) use the File > Print Postscript menu selection.

ModelSim User's Manual

UM-164 7 - Graphic interface

Configuring page setup

Clicking the Setup button in the Print Postscript or Print dialog box allows you to define
the following options (this is the same dialog that opens via File > Page setup).

Dataflow Page Setup k|
= — Highlight
& Full Off
™ Curmrent Yiew £ On
—Color Mode——— ~ Orientation
" Color
iy = Portrait
£ |rvert Color
% |andscape
" Mono
—Paper
Font: ;I
Ok | Cancel |

The Dataflow Page Setup dialog box includes these options:
* View
Specifies Full (everything in the window) or Current View (only that whichisvisible).
« Highlight
Specifiesthat highlighting (see " Tracking your path through the design” (Um-156)) isOn
or Off.

» Color Mode
Specifies Color (256 colors), Invert Color (gray-scale) or Mono (monochrome) color
mode.

* Orientation
Specifies Landscape (horizontal) or Portrait (vertical) orientation.

* Paper
Specifies the font to use for printing.

ModelSim User’'s Manual

Dataflow window UM-165

Symbol mapping

The Dataflow window hasbuilt-in mappingsfor all Verilog primitivegates(i.e., AND, OR,
etc.). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. This is done through afile containing name pairs, one per
line, where the first name is the concatenation of the design unit and process names,
(DUname.Processname), and the second name is the name of a built-in symbol. For
example:

xorg(only).pl XOR

org(only).pl OR
andg(only).pl AND

Entities and modul es are mapped the same way:

AND1 AND

AND2 AND # A 2-input and gate
AND3 AND

AND4 AND

AND5 AND

AND6 AND

xnor (test) XNOR

Note that for primitive gate symbols, pin mapping is automatic.

The Dataflow window looks in the current working directory and inside each library
referenced by the design for the file datafl ow.bsm (.bsm stands for "Built-in Symbol Map).
It will read al files found.

User-defined symbols

Y ou can also define your own symbols using an ASCII symboal library file format for
defining symbol shapes. This capability is delivered via Concept Engineering’s Niview™
widget Symlib format. For more specific details on this widget, see www.model.com/
products/documentati on/nlviewSymlib.html.

The Dataflow window will search the current working directory, and inside each library
referenced by the design, for thefile dataflow.sym. Any and all filesfound will be given to
the Nlview widget to use for symbol lookups. Again, aswith the built-in symbols, the DU
name and optional process name is used for the symbol lookup. Here's an example of a
symbol for afull adder:

synmbol adder(structural) * DEF \
port ain -loc -12 -15 0 -15\
pinattrdsp @ane -cl 2 -15 8\
port b in -loc -12 15 0 15\
pinattrdsp @ane -cl 2 15 8 \
port cinin -loc 20 -40 20 -28 \
pi nattrdsp @ane -uc 19 -26 8 \
port cout out -loc 20 40 20 28 \
pinattrdsp @ane -lc 19 26 8 \
port sumout -loc 63 0 51 0
pi nattrdsp @ane -cr 49 0 8
path 10 0 0 7 \
path 0 7 0 35\
path 0 35 51 17 \
path 51 17 51 -17 \
path 51 -17 0 -35\
path 0 -35 0 -7\
path 0 -7 10 0

\
\

ModelSim User's Manual

http://www.model.com/products/documentation/nlviewSymlib.html
http://www.model.com/products/documentation/nlviewSymlib.html

UM-166 7 - Graphic interface

Port mapping isdone by namefor these symbols, so the port namesin the symbol definition
must match the port names of the Entity|M odule|Process (in the case of the process, it’ sthe
signal names that the process reads/writes).

A mportant: When you create or modify a symlib file, you must generate afile index.
Thisindex is how the Nlview widget finds and extracts symbols from thefile. To
generate theindex, select Tools> Create symlib index (Dataflow window) and specify
the symlib file. The file will be rewritten with a correct, up-to-date index.

Configuring window options

ModelSim User’'s Manual

Y ou can configure several optionsthat determine how the Dataflow window behaves. The
settings affect only the current session.

Select Tools > Optionsto open the Dataflow Options dialog box.

Dataflow Options ;i_" £

General optionz] WWiarming options]

V¥ Hide cells

Hide the internals of a ¥ Keep Dataflow

'!:-"tll[l'a,n';n,yL:TE" ["celldefing ar [Show Hierarchy

v Battom inout ping

[~ Dizable Sprout

[Select equivalent nets
[Lognets

¥ Select Environment

ok Cancel

The General options tab includes these options:

* HideCdlls
By default the Dataflow window automatically hides instances that have either
‘celldefine, VITAL_LEVELO, or VITAL_LEVEL1 attributes. Unchecking this disables
automatic cell hiding.

» Keep Dataflow
K eeps previous contents when adding new signals or processes to the window.

» Show Hierarchy
Displaysconnectivity using hierarchical references. Notethat selecting thiswill erasethe
current contents of the window.

« Bottom inout pins
Places inout pins on the bottom of components rather than on the right with output pins.

Dataflow window UM-167

« Disable Sprout
Displays only the selected signal or process with itsimmediate fanin/fanout. Configures
window to behave like the Dataflow window of versions prior to 5.6.

» Select equivalent nets
If the item you select traverses hierarchy, then Model Sim selects all connected items
across the hierarchy.

e Lognets
Logs signals when they are added to the window.

» Select environment
Updates the Structure, Signals, and Source windows to reflect the net selected in the
Dataflow window.

Dataflow Dptions ;i_" £

General optionz : W arning Dptinns]

¥ Enable diverging # fanin warking
[V Enable depth limit warning

¥ Enable i event at time 0 warning

k. LCancel

The War ning options tab includes these options:

« Enablediverging X fanin warning
Enables the warning message, " ChaseX: diverging X fanin. Reduce the selection list and
try again."

« Enabledepth limit warning

Enables the warning message, "ChaseX: Stop because depth limit reached! Possible
loop?"

» Enable X event at time O warning
Enables the warning message, ""Driving X event at time 0."

ModelSim User's Manual

UM-168 7 - Graphic interface

List window

The List window displaystheresults of your simulation run in tabular format. The window
is divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and delta visible on the | eft.

: =10l x|
Fil= Edit Wiew Tools SWindow
ns—g ftopfolk—, ftop/paddr—, ftopspdata—,. ftop/fsaddr—, j
delta— ftop/pru—, fLopfsru—,
ftopsfpstrb— ftopisstrb—,
ftopsprdy— ftopfsrdy—
1540 +0 1l 01 1 00000111 QOoQOQQQoooooolll o 1 1 0oooodlll
1550 +0 001 1 00000111 Q0OOOQQQ000000111 @0 1 1 0ooo0o0lll
1580 +0 1 01 1 00000111 O0OOOQQQ000000111 @0 1 1 00o0o0o0lll
1585 +0 1 01 1 00000111 0OOOQQQ000000111 0 1 0 0ooo0o0lll J
1520 +0 1 01 0 00000111 QOOQ0QQQo0000011l 0 1 0 0oooodlll
1500 +0 00 1 0 00000111 0O0OO0QQQ000000111 0 1 0 0000011l
15z0 +0 1 01 0 00000111 0OOOQQQ000000111 0 1 O 00oo0o0lll
1525 +0 1 00 1 00001000 EEZZZZEZZEZEZEZZZZEZZ 0 1 1 00000111
1540 +III‘ OO0 0 1 00001000 ZEEZZZEZEEEZEZZZEE 0 1 1 00000111 j

< | Moz

HDL items you can view

Oneentry is created for each of the following items within the design:

« VHDL
signals and process and shared variables

» Verilog
nets, registers, and variables

* Virtuas
Virtual signals and functions

P> Note: Constants, generics, and parameters are not viewable in the List or Wave windows.

ModelSim User’'s Manual

List window UM-169

Adding HDL items to the List window

Before adding itemsto the List window you may want to set the window display properties
(see "Setting List window display properties* (UM-175)). Y ou can add items to the List
window in severa ways.

Adding items with drag and drop

Y ou can drag and drop items into the List window from the Signals, Source, Process,
Variables, Wave, or Structure window. Select theitemsin the first window, then drop them
into the List window. Depending on what you select, all items or any portion of the design
may be added.

Adding items from the Main window command line

Invoke the add list (CR-32) command to add one or more individual items; separate the
names with a space:

add list <itemnane> <item name>

Y ou can add all theitemsin the current region with this command:
add list *

Or add dl theitemsin the design with:
add list -r /*

Adding items with a List window format file

To use aList window format file you must first save aformat file for the design you are
simulating. The saved format file can then be used asa DO file to recreate the List window
formatting. Follow these steps:

« Add HDL itemsto your List window.

* Edit and format theitemsto create the view you want (see "Editing and formatting HDL
itemsin the List window" (UM-172)).

» Savetheformat to afile by selecting File > Save Format (List window).

To use the format file, start with ablank List window, and run the DO file in one of two
ways:
* Invoke the do (CR-68) command from the command line:

do <ny_list_format>

» Select File> Load For mat from the List window menu bar.

P Note: List window format files are design-specific; use them only with the design you
were simulating when they were created. If you try to use the wrong format file,
Model Sim will advise you of the HDL itemsit expects to find.

ModelSim User's Manual

UM-170 7 - Graphic interface

The List window menu bar

The following menu commands are available from the List window menu bar.

File menu

Open Dataset

open an existing WLF file

Save Dataset

save data from the current simulation to aWLF file

Write List

savetheList window datato atext filein one of three formats; see
"Saving List window datato afile" (Um-179) for details

Save Format

save the current List window display and signal preferencesto a
DO (macro) file; running the DO file will reformat the List
window to match the display asit appeared when the DO filewas
created

Load Format

run aList window format DO file previously saved with Save
Format

Close

close this copy of the List window

Edit menu

Cut

cut the selected item field from the listing; see "Editing and
formatting HDL itemsin the List window" (UM-172)

Copy

copy the selected item field

Paste

paste the previously cut or copied item to the left of the currently
selected item

Delete

delete the selected item field

Select All

select all signalsinthe List window

Unselect All

deselect all signalsin the List window

Add Marker

add atime marker at the currently selected line

Delete Marker

delete the selected marker from the listing

Find

find the specified item label within the List window

ModelSim User’'s Manual

View menu

List window UM-171

Signal Properties

set label, radix, trigger on/off, and field width for the selected item

Goto choose the time marker to go to from alist of current markers
Tools menu
Combine Signals combinethe sel ected fieldsinto auser-defined bus; keep copiesof
theoriginal itemsrather than moving them; see" Combining items
inthe List window" (UM-174)
Window set display properties for all itemsin the window: delta settings,
Preferences trigger on selection, strobe period, label size, and dataset prefix

Window menu

The Window menu isidentical in al windows. See "Window menu" (UM-144) for a
description of the commands.

ModelSim User's Manual

UM-172 7 - Graphic interface

Editing and formatting HDL items in the List window

ModelSim User’'s Manual

Once you have the HDL items you want in the List window, you can edit and format the
list to create the view you find most useful. (See also, "Adding HDL itemsto the List
window" (UM-169))

To edit an item:

Select the item’ s label at the top of the List window or one of its values from the listing.
Move, copy or remove the item by selecting commands from the List window Edit menu
(UM-170) menu.

Y ou can aso click+drag to move items within the window.

To format an item:

Select theitem’s label at the top of the List window or one of its values from the listing,
then select View > Signal Properties (List window). The resulting List Signal Properties
dialog box allows you to set the item’ s label, label width, triggering, and radix.

|55 ‘List Signal Properties - 10] x|

Signal:

Digplay M ame: I

— Radix

& Symbolic "aficth: I Characters
Binary
Octal

Decimal

nzigned Trigger:
Hexadecimal " Triggers line

ASC &' Dioes not kigger line

'y ¥ 1 '3y

D efauilt

ok, Cancel Apply

TheList Signal Properties dialog box includes these options:
* Signal
Shows the full pathname of the selected signal.
 Display Name
Specifies the label that appears at the top of the List window column.

List window UM-173

» Radix
Specifies the radix (base) in which the item value is expressed. The default radix is
symbolic, which means that for an enumerated type, the List window lists the actual
values of the enumerated type of that item. Y ou can change the default radix for the
current simulation using either Simulate > Simulation Options (Main window) or the
radix command (CR-108). Y ou can change the default radix permanently by editing the
DefaultRadix (UM-345) variable in the modelsim.ini file.

For the other radixes - binary, octal, decimal, unsigned, hexadecimal, or ASCII - theitem
value is converted to an appropriate representation in that radix. In the system
initialization file, modelsim.tcl, you can specify the list translation rules for arrays of
enumerated types for binary, octal, decimal, unsigned decimal, or hexadecimal item
valuesin the design unit.

Changing the radix can make it easier to view information in the List window. Compare
the image below (with decimal values) with the image on page um-168 (with symbolic
values).

: =10i x|
File Edit Yiew Tools ‘Wwindow
ns— fuop/elk~y reopipdate~y, YRR,
delta—, fLop/pru—, fLopfsru—,
ftopsSpstrbh—, ftopSfsstrbh—,
ftopisprdy— ftopfsrdy—
Jtopspaddr—, foopfsaddr—,

1540 40 1011 7 7011 7 7
0011l 7 7011 7 7 |
1580 +0 1011 7 7011 7 7
1535 +0 1011 7 7010 7 7
1550 +0 1010 7 7010 7 7
1lg00 +0 oa1lana 7 7010 7 7
lez0 40 1010 7 TO010 7 7
1g25 +0 1001 g Z 011 7 Z d

‘] Y

e Width
Allows you to specify the desired width of the column used to list the item value. The
default is an approximation of the width of the current value.

e Trigger: Triggersline
Specifiesthat achangein the value of the selected item causes anew lineto be displayed
in the List window.

» Trigger: Doesnot trigger line
Specifies that a change in the value of the selected item does not affect the List window.

The trigger specification affects the trigger property of the selected item. See also,
"Setting List window display properties’ (UM-175).

ModelSim User's Manual

UM-174 7 - Graphic interface

Combining items in the List window

ModelSim User’'s Manual

Y ou can combine signalsin the List window into busses. A busisacollection of signals
concatenated in a specific order to create anew virtual signal with a specific value. To
create a bus, select one or more signalsin the List window and then choose Tools >
Combine Signals.

Combine Selected Signals X

M arne: ||

Order of Indexes
|7 © Azcending % Descending

™ Remove selected signals after combining

1] LCancel

The Combine Selected Signals dialog box includes these options:

* Name
Specifies the name of the newly created bus.

» Order of Indexes
Specifiesin which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the List window will be assigned an index of 0. If set to
Descending, thefirst signal selected will be assigned the highest index number. Note that
the signals are added to the bus in the order that they appear in the window. Ascending
and descending affect only the order and direction of the indexes of the bus.

» Remove selected signals after combining
Specifieswhether you want to remove the selected signalsfrom the List window once the
busis created.

List window UM-175

Setting List window display properties

Before you add items to the List window you can set the window’ s display properties. To
change when and how a signal is displayed in the List window, select Tools > Window
Preferences (List window). The resulting Modify Display Properties dialog box contains
tabs for Window Properties and Triggers.

Window Properties tab

EA IMDdif"_f Display Properties {list}) ' ._ i ||:||i|

Wfindo F'ru:uperties] Triggers]

Signal Mames: IEI Fath Elemnentz [0 for Full Path)

b ax Title Rows; IE

— Datazet Prefix

" Always Show Datazet Prefizes

£+ Show Datazet Prefisez if 2 or more

£ Mever Show Datazet Prefises

ok LCancel Apply

The Window Properties tab includes these options:

 Signal Names
Sets the number of path elements to be shown in the List window. For example, "0"
shows the full path. "1" shows only the leaf element.

* Max Title Rows
Sets the maximum number of rows in the name pane.

» Dataset Prefix: Always Show Dataset Prefixes
Displays the dataset prefix associated with each signal pathname. Useful for displaying
signals from multiple datasets.

 Dataset Prefix: Show Dataset Prefix if 2 or more
Displays dataset prefixesif there are signals in the window from 2 or more datasets.

ModelSim User's Manual

UM-176 7 - Graphic interface

 Dataset Prefix: Never Show Dataset Prefixes
Turns off display of dataset prefixes.

Trigger settings tab

The Trigger s tab controls the triggering for the display of new linesin the List window.
Y ou can specify whether an HDL item trigger or astrobe trigger is used to determine when
the List window displays anew line. If you choose Trigger on: Signal Change, then you
can choose between collapsed or expanded delta displays. Y ou can also choose a
combination of signal and strobe triggers. To use gating, Signal Change or Strobe or both
must be selected. See"Configuring a List trigger with Expression Builder" (um-382) for an

example.
I 'Mudiﬁr Display Properties {list} i |E||£|
—Deltas:

{* Expand Deltas " Collapse Deltaz " MoDeltas

—Tngger On:
[V i Ciahal Chon Strobe Penod: |0 n=

[T Stobe First Strobe at: IEI his

— Tngger Gating:

[Use Gating E <pression Ilze Exprezsion Builder

Expression: |

0On Duration: |EI nz

ok, LCancel Apply

The Trigger s tab includes the following options:

« Expand Deltas
When selected with the Trigger on: Signal Change check box, displays anew line for
each time step on which items change, including deltas within a single unit of time
resolution.

» Collapse Deltas
Displays only the final value for each time unit.

* No Ddltas
Hides simulation cycle (delta) column.

ModelSim User’'s Manual

List window UM-177

« Trigger On Signal Change
Triggers on signal changes. Defaults to all signals. Individual signals can be excluded
from triggering by using the View > Signal Properties dialog box or by originally
adding them with the -notrigger option to the add list command (CR-32).

* Trigger On Strobe
Triggerson the Strobe Period you specify; specify thefirst strobe with First Strobeat:.

» Use Gating Expression
Enables triggers to be gated on (avaue of 1) or off (avalue of 0) by the specified
ExpressionOn Duration
The duration for gating to remain open after the last list row in which the expression
evaluates to true; expressed in x number of default timescale units. Gating is
level-sensitive rather than edge-triggered.

Finding items by name in the List window

The Find dialog box =
alowsyoutosearchfor LRI S A
text strings in the List _ _
window. Select Edit > Find: | Find Nest
Find (List window) to : : :
bring up the Find dialog Field Direction Llizee
box. e = Ri
Mame Right ™ Exact
Enter atext string and | ahel = Left
Find it by searching WV &wuto wiap
Right or L eft through the

List window display.
Specify Name to search the real pathnames of the items or L abel to search their assigned
names (see "Setting List window display properties’ (UM-175)).

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

ModelSim User's Manual

UM-178 7 - Graphic interface

Setting time markers in the List window

Select Edit > Add Marker (List window) to tag the selected list line with a marker. The
marker isindicated by athin box surrounding the marked line. The selected line uses the
same indicator, but its values are highlighted. Delete markers by first selecting the marked
ling, then selecting Edit > Delete Marker.

Finding a marker

=10l x|

File Edit | Wiew Tools Window

ms- - -~ = = - l fcop fpaddr—, feopfpdata—, j

d Signal Properties. .. frop/fsru—g
fopS=sstrbh—
g reopssrd

| 1240 40 1] 3 1268n: | EZZEZEEZEZEZZZiEZ 0

1zs0 40 1 o 1300 n: P _E22222Z222222222 0 s

| 165 +0 1 T J._J. Toooorr] 0000000000000110 O

12580 40 00 1 1 00000110 0000000000000110 0

1z00 1 0 1 1 00000110 0000000000000 u]

1z00 41 1 01 1 00000110 Oo0000oo00000011a o

1z05 40 1 01 1 00000110 Qoooodooooonolla o

. =~
«| I A

Choose a specific marked line to view by selecting View > Goto. The marker name (on the
Goto list) corresponds to the simulation time of the selected line.

ModelSim User’'s Manual

List window UM-179

Saving List window data to a file

Select File> WriteList (List window) to save the List window datain one of these
formats:

» Tabular
writes atext file that looks like the window listing

ns delta /a /b /cin / sum / cout
0 +0 X X U X U
0 +1 0 1 0 X U
2 0 1 0 X U

* Events
writes atext file containing transitions during simulation

@ +0
/a X

/b X
/cin U
/sum X
/cout U
@ +1
/a 0

/b 1
/cin O

e TSSI
writes afilein standard TSSI format; see also, the write tssi command (CR-222)

4 00000000000000010000000010
100 00000001000000010000000010

Y ou can also save List window output using the writelist command (CR-218).

ModelSim User's Manual

UM-180 7 - Graphic interface

List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the

ModelSim User’'s Manual

indicated actions:
Key Action
<left arrow> scroll listing left (selectsand highlightstheitem to theleft of the

currently selected item)

<right arrow>

scroll listing right (sel ects and highlightstheitem to the right of
the currently selected item)

<up arrow>

scroll listing up

<down arrow>

scroll listing down

<page up>
<control-up arrow>

scroll listing up by page

<page down>
<control-down
arrow>

scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signa
<shift-tab> searchesbackward (up) to the previoustransition on the sel ected

signal (does not function on HP workstations)

<shift-left arrow>
<shift-right arrow>

extends selection left/right

<control-f>

opensthe Find dialog box to find the specified item |abel within
thelist display

Process window UM-181

Process window

P Note: In ModelSim versions 5.7 and later the information contained in the Process
window can also be displayed in the Main window Workspace (UM-138). Select View >
Active Process (Main window) when running a simulation.

The Process window displays alist of processes. If View > Activeis selected then all
processes schedul ed to run during the current simulation cycle are displayed along with the
pathname of the instance in which each processislocated. If View > In Region is selected
then only the processes in the currently selected region are displayed.

Each HDL item in the scrollbox is

preceded by one of the following BT process =]

indicators: File Edit Miew ‘Window

* <Ready> -
Indicates that the processis
scheduled to be executed within
the current deltatime.

o <Wait> e
Indicates that the processis
waiting for aVHDL signa or
Verilog net or variable to change
or for a specified time-out period. hd

« <Done> +| |+
Indicates that the process has gim: ftopdc
executed a VHDL wait statement
without a time-out or a sensitivity list. The process will not restart during the current
simulation run.

If you select a"Ready" process, it will be executed next by the simulator.
When you click on a process in the Process window, the following windows are updated:

Window updated Result

Dataflow window (UM-149) highlights the selected process

Signals window (UM-183) showsthe signalsin theregion in which the processis
located

Source window (UM-191) shows the associated source code

Structure window (UM-199) shows the region in which the processis located

Variables window (UM-203) shows the VHDL variables and Verilog registers and
variablesin the process

ModelSim User's Manual

UM-182 7 - Graphic interface

The Process window menu bar

The following menu commands are available from the Process window menu bar.

File menu

SavelList

save the process tree to atext file viewable with the Model Sim
notepad (CR-95)

Environment

Follow Context Selection: update the window based on the
selection in the Structure window (UM-199);

Fix to Current Context: maintain the current view, do not update

Close

close this copy of the Process window

Edit menu

Copy

copy the selected process' full name

Select All

select all processesin the Process window

Unselect All

deselect all processesin the Process window

Find

find the specified text string within the process list; choose the
Status (ready, wait or done), the Process label, or the path to
search, and the search direction: down or up

View menu

Active

display all the processes that are scheduled to run during the
current simulation cycle

In Region

display any processesthat exist intheregion that isselected inthe
Structure window

Sort

sort the process list in either ascending, descending, or
declaration order

Window menu

The Window menu isidentical in all windows. See "Window menu" (UM-144) for a
description of the commands.

ModelSim User’'s Manual

Signals window UM-183

Signals window

The Signals window is divided into two panes. The left pane shows the names of HDL
itemsin the current region (which is selected in the Structure window). The right pane
showsthevalues of the associated HDL items at the end of the current run. The dataiin this
paneis similar to that shown in the Wave window (UM-206), except that the values do not
change dynamically with movement of the selected Wave window cursor.

Y ou can double-click asignal and it will highlight that signal in the Source window
(opening a Source window if oneis not open aready). Y ou can aso right click asigna
name, and add it to the List, or Wave windows or the current log file.

Horizontal scroll barsfor each window pane alow scrolling to theright or Ieft in each pane
individually. The vertical scroll bar will scroll both panes together.

The HDL items can be sorted in ascending, descending, or declaration order.

HDL items you can view

Oneentry is created for each of the =10 %]

following VHDL and Verilog items File Edit Yiew &dd Toaols Window
within the design: clk

pris

VHDL items il
signals, generics, shared variables priy

paddr
Verilog items

nets, registers, variables, named events,
and module parameters

Virtual items

(indicated by an orange diamond icon)
virtual signalsand virtual functions; see
"Virtual signals' (Um-125) for more
information

. sim:ftop P

VHDL composite types (arrays and
record types) and Verilog vector nets,
vector registers, and memories are shown in a hierarchical fashion. Model Sim indicates
hierarchy with plus (expandable), minus (expanded), and blank (single level) boxes. See
"Tree window hierarchical view" (UM-135) for more information.

ModelSim User's Manual

UM-184 7 - Graphic interface

The Signals window menu bar

The following menu commands are available from the Signals window menu bar.

File menu

Save List save the signals tree to atext file viewable with the Model Sim
notepad (CR-95)

Environment alow the window contents to change based on the current
environment; or, fix to a specific context or dataset

Close close this copy of the Signals window

Edit menu

Copy copy the current selection in the Signals window

Select All select all items in the Signals window

Unselect All unselect al itemsin the Signals window

Expand Selected expand the hierarchy of the selected items

Collapse Selected collapse the hierarchy of the selected items

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Force apply stimulusto the specified Signal Name; specify Value, Kind
(Freeze/Drive/Deposit), Delay, and Cancel; see also the force
command (CR-82)

Noforce remove the effect of any active for ce command (CR-82) on the
selected HDL item; see also the nofor ce command (CR-92)

Clock define clock signals by Signal Name, Period, Duty Cycle, Offset,
and whether the first edgeisrising or falling, see"Defining clock
signals' (Um-189)

Find find the specified text string within the Signals window; choose
the Name or Value field to search and the search direction: down
or up

ModelSim User’'s Manual

View menu

Signals window

Signal Declaration

open the source filein the Source window and highlight the signal
declaration

Sort

sort thesignalstreein either ascending, descending, or declaration
order

Justify Values

justify values to the left or right margins of the window pane

Filter

choose the port and signal typesto view (Input Ports, Output
Ports, InOut Ports and Internal Signals) in the Signals window

Add menu

Wave

placethe Selected Signals, Signalsin Region, or Signalsin Design
in the Wave window (UM-206)

List

placethe Selected Signals, Signalsin Region, or Signalsin Design
in the List window (UM-168)

Log

placethe Selected Signals, Signalsin Region, or Signalsin Design
inthe WLFfile

Tools menu

Breakpoints

open the Breakpoints dialog; see " Creating and managing
breakpoints" (UM-258)

Window menu

The Window menu isidentical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Filtering the signal list

TheView > Filter menu allowsyou to specify which HDL items

are shown in the Signal's window. Multiple options can be i/ Filter [Ij[=]

selected.

[nput Parts
Cutput Parts
[n0t Ports
Internal Signals

UM-185

ModelSim User's Manual

UM-186 7 - Graphic interface

Forcing signal and net values

The Edit > For ce command displays a dialog box that allows you to apply stimulus to the
selected signal or net. Multiple signals can be selected and forced; the force dialog box
remains open until al of the signals are either forced, skipped, or you close the dialog box.
To cancel aforce command, use the Edit > NoFor ce command. See also the force
command (CR-82).

Force Selected Signal

Signal Hame: |

'H"alue:IEI

Kind
’7 ¥ Freeze = Diive ' Deposit

Delay FDI:IEI
Cancel Mter:l

ak. | Cancel

The For ce dialog box includes these options:

 Signal Name
Specifies the signal or net for the applied stimulus.

* Value
Initially displays the current value, which can be changed by entering a new value into
the field. A value can be specified in radixes other than decimal by using the form (for
VHDL and Verilog, respectively):

base#val ue -or- b|o|d|h’value

16#EE or h' EE, for example, specifies the hexadecimal value EE.

» Kind: Freeze
Freezesthesignal or net at the specified value until it isforced again or until it isunforced
with anofor ce command (CR-92).

Freezeisthe default for Verilog nets and unresolved VHDL signalsand Driveisthe
default for resolved signals.

If you prefer Freeze as the default for resolved and unresolved signals, you can change
the default force kind in the modelsim.ini file; see Appendix A - ModelSm variables.

 Kind: Drive
Attaches adriver to the signal and drives the specified value until the signal or net is
forced again or until it is unforced with anofor ce command (CR-92). This type of force
isillegal for unresolved VHDL signals.

« Kind: Deposit
Setsthesignal or net to the specified value. The value remains until there is a subsequent

driver transaction, or until the signal or net is forced again, or until it is unforced with a
nofor ce command (CR-92).

ModelSim User’'s Manual

Signals window UM-187

» Delay For
Allows you to specify how many time units from the current time the stimulusis to be
applied.

e Cancel After
Cancels the for ce command (CR-82) after the specified period of simulation time.

« OK
When you click the OK button, a for ce command (CR-82) is issued with the parameters
you have set, and is echoed in the Main window. If more than one signal is selected to
force, the next signal down appearsin the dial og box each timethe OK buttonis selected.
Unique force parameters can be set for each signal.

Adding HDL items to the Wave and List windows or a WLF file

Usethe Add menu to add items from the

Signals window to the Wave window] Ol x
(UM-206), List window (Um-168), or log m _I_I_Il

file (WLF file). Y ou can also access H’—H_fave P I_ % ; e I_ =
these same commands by right-clicking L ki SeeRtd AlnEls
Liog » Signals in Region

asignal in the window.

Signals in Design

TheWLFfileiswritten asan archivefile
in binary format and is used to drive the
List and Wave windows at alater time.
Once signals are added to the WLF file they cannot be removed. If you begin asimulation
by invoking vsim (CR-189) withthe-view <WLF_fileame> argument, Model Sim readsthe
WLF file to drive the Wave and List windows.

Choose one of the following options from the Add sub-menus:

» Selected Signals
Adds only the item(s) selected in the Signals window.

 Signalsin Region
Addsal itemsin the region that is selected in the Structure window.

 Signalsin Design
Addsal itemsin the design.
Adding items from the Main window command line

Another way to add items to the Wave or List window or the WLF fileisto enter the one
of the following commands at the VSIM prompt (choose either the add list (CR-32), add
wave (CR-35), or log (CR-87) command):

add list | add wave | |og <itemname> <item name>

You can add all the items in the current region with this command:

add list | add wave | log *

Or add all the items in the design with:;

add list | add wave | log -r /*

If the target window (Wave or List) is closed, Model Sim opens it when you when you
invoke the command.

ModelSim User's Manual

UM-188 7 - Graphic interface

Finding HDL items in the Signals window

Tofind the specified text string within the Signalswindow, choosethe Nameor Valuefield
to search and the search direction: Down or Up.

Find in .signals]
Fird: || Fird Mest
Field Direction Close
© Meme £ Down [T Exact
 Walue Up
WV Auto Wrap

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

Y ou can also do a quick find from the keyboard. When the Signals window is active, each
time you type aletter the signal selector (highlight) will move to the next signal whose
name begins with that letter.

ModelSim User’'s Manual

Setting signal breakpoints

Signals window UM-189

Y ou can set "Signal breakpoints" (UM-258) in the Signal window. When asignal breakpoint
is hit, amessage appears in the Main window Transcript stating which signal caused the

breakpoint.

Toinsert asignal breakpoint, select asignal, click your right mouse button , and select
Insert Breakpoint. See "Creating and managing breakpoints" (UM-258) for more

information.

Defining clock signals

Select Edit > Clock to define clock signals by Name, Period, Duty Cycle, Offset, and
whether the first edge isrising or falling. Y ou can also specify asimulation period after
which the clock definition should be cancelled.

Claock. Marme
’;n:s'tnp.-"clk

—offzet Dty
[i |50
— Penod — LCancel
100 |
Logic Yalues
ﬁigh: I'I Lo IEI
First Edge———
F Rising " Falling
] Cancel

For clock signals starting on the rising edge, the definition for Period, Offset, and Duty

Cycleisasfollows:

Period

High Value

Low Value

Offset

High Time

Duty Cycle = High Time/Period

ModelSim User's Manual

UM-190 7 - Graphic interface

If the signal typeisstd logic, std_ulogic, bit, verilog wire, verilog net, or any other logic
type where 1 and O are valid, then 1 is the default High Value and 0 is the default Low
Value. For other signal types, you will need to specify aHigh Value and aLow Value for

the clock.

ModelSim User’'s Manual

Source window UM-191

Source window

SOUFCE - proc.w E _ O] =
|

Fil= Edit

The Source window allows you to view and edit your HDL source code. When you first
load a design, the source file will display automatically if the Source window is open.
Alternatively, you can select an item in a Structure tab of the Main window or use the File
> Open command (Source window) to add afile to the window..

The window displays your source code with line numbers. As shown in the picture below,
you may also see the following:

« Blue line numbers — denote lines on which you can set a breakpoint
* Blue arrow — denotes a process that you have selected in the Process window (UM-181)

 Red diamonds — denote file-line breakpoints; hollow diamonds denote breakpoints that
are currently disabled

« File tabs representing each open file
» Templates pane — displays Language templates (UM-264)

View Tools ‘Window

LEEHS Y 2R OAXOK EF wHEEEE MR x

"'Ilnﬂl

C:/modeltech/examples/mixedHD L proc. | j Templates

&
—

4|>| pru:u:.vltu:up.vhd] |;u _*I ‘| | +]

7L
TG
77
78
73
20
21
82
83
24
2L
=1
a7
=]
239

#4 Bead back 10 locations ﬁ\ Mew Dezign Wizard &

for {a = U7 & < fa=at 1y Language Constucts

SF uncomment for wavecompare = cp
timuluz Generators
iF #10 readia, di;

readia, d);
if (d I== a)
("(t: Pead/Mri
ernd

if f{werbose) {"Read/WMr
[
ernd
end
endmodule

||

|Ln: 85, Col: 0 - read-only o

Note that files open by default in read-only mode. Y ou can toggle this mode by selecting
Edit > read only.

ModelSim User's Manual

UM-192 7 - Graphic interface

The Source window menu bar

The following menu commands are available from the Source window menu bar.

ModelSim User’'s Manual

File menu
New edit anew (VHDL, Verilog or Other) sourcefile
Open select a source file to open
Open Design open adialog that lists all source filesfor the current design
Source
Close File close the active sourcefile
Use Source specify an aternative file to use for the current sourcefile; this

alternative source mapping exists for the current simulation only

Source Directory

add to alist of directories to search for source files; you can set
thispermanently using the Sour ceDir variableinthe modelsim.tcl
file

Save save the current source file
Save As save the current source file with a different name
Print print the current sourcefile
Close close the Source window
Edit menu

To edit asource file, make sure read only is not selected on the Edit menu.

<editing option> basic editing optionsinclude: Undo, Cut, Copy, Paste, Select All,
and Unselect All

Clear highlights clear highlightsthat result from double-clicking an error message
or alinein a Performance Analyzer report

Comment Selected turn the selected lines into comments by inserting the correct
language comment character at the beginning of each line

Uncomment removes comment characters from the selected lines

Selected

Find find the specified text string or regular expression within the
source file; thereis an option to match case or search backwards

Find Next find the next occurrence of a string specified with the Find
command

Replace find the specified text string or regular expression and replace it
with the specified text string or regular expression

read only toggle the read-only status of the current source file

Source window UM-193

View menu

Show line numbers toggle line numbers

Show language toggle display of Language templates (UM-264) pane
templates
Properties list avariety of information about the sourcefile; for example, file

type, file size, file modification date

Tools menu

Examine display the current value of the selected HDL item; same as the
examine (CR-75) command; theitem nameis shownin thetitle bar

Describe display information about the selected HDL item; same as the
describe command (CR-66); theitem nameis shownin thetitle bar

Compile compile the currently active HDL source file

Breakpoints add, edit, or delete file-line and signal breakpoints; see " Creating
and managing breakpoints" (UM-258)

Options set various Source window options; see Options sub-menu below

ModelSim User's Manual

UM-194 7 - Graphic interface

Options sub-menu

Colorize Source

colorize key words, variables, and comments

Highlight
Executable Lines

highlight the line numbers of executable lines

Middle Mouse enable/disable pasting by pressing the middle-mouse button
Button Paste

Verilog specify Verilog-style colorizing

Highlighting

VHDL Highlighting

specify VHDL-style colorizing

Freeze File maintain the same source file in the Source window (useful when
you have two Source windows open; one can be updated from the
Structure window (UM-199), the other frozen)

Freeze View disable updating the source view from the

Process window (Um-181)

Auto-Indent Mode

indent code automatically when editing the file

Tab Stops

set tab stop distance in Source window (see " Setting tab stopsin
the Source window" (UM-198))

Window menu

The Window menu isidentical in all windows. See "Window menu" (UM-144) for a
description of the commands.

The Source window toolbar

Buttons on the Source window toolbar give you quick accessto these M odel Sim commands
and functions.

Source window toolbar buttons

Button

Menu equivalent Other equivalents

&

Compilethisfile
open the Compile HDL Source
File dialog

Tools > Compile use vcom or vliog command at the

VSIM prompt

See: VCcom (CR-145) Of
vlog (CR-181) command

T

ModelSim User’'s Manual

Open SourceFile

open the Open File dialog box
(you can open any text file for
editing in the Source window)

select an HDL itemin the
Structure window, the associated
source fileisloaded into the
Source window

File > Open

Source window

UM-195

Source window toolbar buttons

Button Menu equivalent Other equivalents
Save Source File File > Save none
] savethefilein the Source
il window
Print File > Print none
% prints the current sourcefile
Cut Edit > Cut see: "Mouse and keyboard
.;Ii{- cut the selected text within the shortcuts' (UM-147)
Source window
Copy Edit > Copy see: "Mouse and keyboard
copy the selected text within the shortcuts' (UM-147)
& Source window
Paste Edit > Paste see: "Mouse and keyboard
E paste the copied text to the cursor shortcuts' (UM-147)
location
Undo Edit > Undo <control - z><control - ->
undo the last action
Ll
Find Edit > Find <control -f>

find the specified text string
withinthe sourcefile; match case
option

Restart

reload the design elements and
reset the smulation time to zero,
with the option of using current
formatting, breakpoints, and
WLFfile

Main window: Simulate
> Run > Restart

restart <arguments>

see: restart (CR-111)

| 03

Run Length
specify therun length for the
current simulation

Main window: Simulate
> Simulation Options

run <specific run length>

SEE run (CR-114)

Run
run the current simul ation for the
specified run length

Main window: Simulate
> Run
<default_run_length>

run (no arguments)

SEe: run (CR-114)

ModelSim User's Manual

UM-196 7 - Graphic interface

Source window toolbar buttons

Button

Menu equivalent

Other equivalents

Continue Run

El‘ continue the current simulation
run until the end of specified run

length or until it hitsabreakpoint

or specified break event

Main window: Simulate
> Run > Continue

run -continue

SEe: run (CR-114)

Run -All

run the current simulation
forever, or until it hitsa

breakpoint or specified break

event

Main window: Simulate
> Run > Run -All

run -all

See: run (CR-114), see "Assertions
tab" (Um-255)

Break
@ stop the current simulation run

Main window: Simulate
> Break

none

Step
F} steps the current simulation to
the next HDL statement

Main window:
Simulate > Run > Step

step (no arguments)

see: step (CR-122) command

Step Over

ﬁl HDL statementsare executed but
treated as simple statements
instead of entered and traced line
by line

Main window:
Simulate > Run > Step
-Over

step -over

see: step (CR-122) command

Show language templates

ﬁ_hl toggle display of language
template pane

View > Show Language
Templates

none

ModelSim User’'s Manual

Source window

Setting file-line breakpoints

You can easily set "File-line breakpoints” (UM-258) in the Source window using your
mouse. Click on ablueline number at theleft side of the Source window, and ared diamond
denoting a breakpoint will appear. The breakpoints are toggles — click once to create the
colored diamond; click again to disable or enable the breakpoint.

To delete the breakpoint completely, click the red diamond with your right mouse button,
and select Remove Breakpoint. Other options on the context menu include:

 Disable/Enable Breakpoint
Deactivate or activate the selected breakpoint.

« Edit Breakpoint
Open the File Breakpoint dialog to change breakpoint arguments; see "Adding a
breakpoint" (UM-260) for a description of the dialog.

« Edit All Breakpoints
Open the M odify Breakpoints dialog; see "Breakpoints dialog" (UM-259).

Checking HDL item values and descriptions

There are two quick methods to determine the value and description of an HDL item
displayed in the Source window:

» select an item, then choose Tools > Examine or Tools > Describe from the Source
window menu

* pause over an item with your mouse pointer to see an examine pop-up

Y ou can also invoke the examine (CR-75) and/or describe (CR-66) command on the
command line or in a macro.

Finding and replacing in the Source window

The Find dialog box

alowsyou to find Find in: source - top.vhd oo E|
and replace text _ _

strings or regular Find: | Find Mext

expressionsin the
Source window.
Select Edit > Find
or Edit > Replaceto
bring up the Find ™ Regular expression
dialog box. If you

select Edit > Find,

the Replace field is absent from the dialog.

Replace: | Replace

[T Caze sensitive [T Search backwards Cloze

Enter the value to search for in the Find field. If you are doing a replace, enter the
appropriate value in the Replace field. Optionally specify whether the entries are case
sensitive and whether to sear ch backwar ds from the current cursor location. Check the
Regular expression checkbox if you are using regular expressions.

UM-197

ModelSim User's Manual

UM-198 7 - Graphic interface

Setting tab stops in the Source window

ModelSim User’'s Manual

Y ou can set tab stopsin the Source window by selecting Tools > Options > Tab Stopsor
by editing the tabs variable in the Edit Preferences dialog.

Follow these steps to set tab stops using the GUI.
1 Select Tools> Options> Tab Stops (Source window).
2 Inthedialog that appears, enter either a single number "n" and units, which sets atab

stop every n units, or enter alist of numberswhich setsatab at each location. Available
units and their abbreviations are as follows:

Units Abbreviations
centimeters c,cm
millimeters m, mm

inches i,in

points p

pixels (screen units) u

characters char, chars

If you don’t specify units, they default to characters.
Here are three examples:

 Enter 5to set atab stop every 5 characters.

« Enter 10c to set atab stop every 10 centimeters.

 Enter alist of numbers like the following to set tab stops at specific character locations:
2149 77 105 133 161 189 217 245 273 301 329 357 385 413 441 469

A mportant: Do not use quotes or bracesin thelist (i.e., "21 49" or {21 49}); thiswill
cause the GUI to hang.

Structure window UM-199

Structure window

P Note: In ModelSim versions 5.5 and later, the information contained in the Structure
window is shown in the structure tabs of the Main window Workspace (UM-138). The
Structure window will not display by default. Y ou can display the Structure window at
any time by selecting View > Structure (Main window). The discussion below applies
to both the Structure window and the structure tabs in the workspace.

The Structure window providesahierarchical view of the structure of your design. Anentry
is created by each HDL item within the design.

HDL items you can view

ThefollowingHDL itemsfor VHDL E =101 x|
and Verilog are represented by File Edit Wiew \Window
hierarchy within the Structure _ -
window. E_E o i
VHDL items %j E:ti
(indicated by a dark blue square - ©
icon) - hash
component instantiations, generate i update_miu
statements, block statements, and L pick_set
packages) zyzread

o ol spswite
Verilog items LD get_hit
(indicated by alighter bluecircle — I =0
icon) — I =1
module instantiations, named forks, L =2
named begins, tasks, and functions Lo =3

— m

Virtual items o jd_ll:ugic_util
(indicated by an orange diamond W vltvpes
icon) B std logic 1164
virtual regions; see"Virtual Objects W standard =
(User-defined buses, and more)" =
(UM-125) for more information. ‘| | »
Y ou can expand and contract the sim:ftop é

display to view the hierarchical
structure by clicking on the boxes
that contain"+" or "-". Clicking "+" expands the hierarchy so the sub-elements of that item
can be seen. Clicking "-" contracts the hierarchy.

Thefirst line of the Structure window indicates the top-level design unit being simulated.
By default, thisisthe only level of the hierarchy that is expanded upon opening the
Structure window.

ModelSim User's Manual

UM-200 7 - Graphic interface

When you select aregion in the Structure window, it becomes the current region and is
highlighted; the Source window (Um-191) and Signals window (uUM-183) change
dynamically toreflect theinformation for that region. Thisfeature providesauseful method
for finding the source code for a selected region because the system keeps track of the
pathname where the source is located and displays it automatically, without the need for
you to provide the pathname.

Also, when you select aregion in the Structure window, the Process window (UM-181) is
updated if In Region is selected in that window. The Process window will in turn update
the Variables window (UM-203).

Structure window menu bar

The following menu commands are available from the Structure window menu bar. Some
of the commands are also available from a context menu in a Structure tab of the Main
window workspace.

File menu

Save List save the structure tree to atext file viewable with the Model Sim
notepad (CR-95)

Environment 1) specify that the window contents change when the active
dataset is changed; 2) fix the window contents to a specific
dataset; or 3) change to a new root context

Close close this copy of the Structure window

Edit menu

Copy copy the current selection in the Structure window

Expand Selected expand the hierarchy of the selected item

Collapse Selected collapse the hierarchy of the selected item

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Find find the specified text string within the structuretree; see"Finding
items in the Structure window" (UM-202)

View menu
Sort sort the structure tree in either ascending, descending, or

declaration order

Window menu

The Window menu isidentical in all windows. See "Window menu" (UM-144) for a
description of the commands.

ModelSim User’'s Manual

Structure window UM-201

Structure window context menu

The Structure window has a context menu that you access by clicking the right-mouse
button.

Wiew Saunce
Add k

Sort k
Find...

Expand Selected
Collapse Selected
E=pand All
Collapze All

Sawe List...
Sawve Dataszet...

End Sirmulatian

The Structure tab context menu includes the following options.

» View Source
Opensthe source file in the Source window (UM-191). Double-clicking will also open the
source file.

» Add
Add the selected item to the Dataflow, List, or Wave window or to the current Log file.

» Sort
Sorts the HDL itemsin the Structure tab by al phabetic (ascending or descending) or
declaration order.

* Find
Opensthe Find dialog. See "Finding itemsin the Structure window" (Um-202) for details.

» Expand Selected
Shows the hierarchy of the selected HDL item.

 Collapse Selected
Hides the hierarchy of the selected HDL item.

» Expand All
Shows the hierarchy of all HDL itemsin the list.

» Collapse All
Hides the hierarchy of all HDL itemsin thelist.

* Savelist
Writes the HDL item names in the Structure tab to atext file.

¢ Save Dataset
Saves the current smulation to a WLF file.

ModelSim User's Manual

UM-202 7 - Graphic interface

* End Simulation
Terminates the active simulation. This command will be Close <dataset name> on a
dataset Structure tab.

 Close <dataset name>
Closes the specified dataset.

Finding items in the Structure window

The Find dialog box
allows you to search
for text stringsin the . -
Structure window. Find:] Find Mext

Find in .struckure

Select Edit > Find Field ~Direction

(Structure window) Claze

to bring up the Find * |nstance

dialog box. & Down

" Entity/todule [T Ewact
Enter the valueto , " Up
searchforintheFind " Achitecture
field. Specify

whether you are

¥ ko Wiap

looking for an
Instance, Entity/Module, or Architecture. Also specify which direction to search.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

ModelSim User’'s Manual

Variables window UM-203

Variables window

The Variables window is divided into two window panes. The left pane lists the names of
HDL items within the current process. The right pane lists the current value(s) associated
with each name. The pathname of the current processis displayed at the bottom of the
window.

HDL items you can view
Evariahles

The following HDL itemsfor : — :
VHDL and Verilog are File Edit “iew &dd window

viewable within the Variables = gy =
window. {10 nel
tpd_clk_to count {15 nslt

VHDL items — ihcrement

constants, generics, and wal 01110001

variables iFpLt 01110001
result 0117100071

Verilog items cary

registers and variables e

VHDL composite types :

(arrays and record types) and 1 [*] < »

Verilog vector registers and sifn:foounter/ctr

memories are shownina
hierarchical fashion.

Model Sim indicates hierarchy
with plus (expandable), minus (expanded), and blank (single level) boxes. See "Tree
window hierarchical view" (Um-135) for more information.

To change the value of aVHDL variable, constant, or generic or a Verilog register or
variable, move the pointer to the desired name and click to highlight the selection. Select
Edit > Change (Variables window) to bring up adialog box that |ets you specify a new
value. You can enter any value that isvalid for the variable. An array value must be
specified as a string (without surrounding quotation marks). To modify the valuesin a
record, you need to change each field separately.

Click on a process in the Process window to change the Variables window.

ModelSim User's Manual

UM-204 7 - Graphic interface

The Variables window menu bar

The following menu commands are available from the V ariables window menu bar.

File menu
Save List save the variable tree to atext file viewable with the Model Sim
notepad (CR-95)
Environment Follow Process Selection: update the window based on the
selection in the Process window (Um-181)
Fix to Current Process. maintain the current view, do not update
Close close this copy of the Variables window
Edit menu
Copy copy the selected items in the Variables window
Select All select al itemsin the Variables window
Unselect All deselect all itemsin the Variables window
Expand Selected expand the hierarchy of the selected item

Collapse Selected collapse the hierarchy of the selected item

Expand All expand the hierarchy of all items that can be expanded
Collapse All collapse the hierarchy of all expanded items
Change change the value of the selected HDL item
Find find the specified text string within the variables tree; choose the
Name or Value field to search and the search direction: Down or
Up
View menu
Sort sort the variables tree in either ascending, descending, or
declaration order
Justify Values justify values to the left or right margins of the window pane
Add menu
Wave/List/Log place the Selected Variables or Variablesin Region in the Wave

window (UM-206), List window (UM-168), or WLF file

ModelSim User’'s Manual

Variables window UM-205

Window menu

The Window menu isidentical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Finding HDL items in the Variables window

To find the specified text string within the V ariables window, choose the Name or Value
field to search and the search direction: Down or Up.

Find in .variables |
Fird: | Find Mest
Field Direction Close
* Mame = Down ™ Exact
£ Walue Up
¥ Auto wrap

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

Y ou can also do aquick find from the keyboard. When the Variableswindow isactive, each

timeyou type aletter the highlight will move to the next item whose name begins with that
letter.

ModelSim User's Manual

UM-206 7 - Graphic interface

Wave window

The Wavewindow, likethe List window, allowsyou to view theresults of your simulation.
Inthe Wave window, however, you can seetheresultsas HDL waveformsand their values.

The Wave window is divided into a number of window panes. All window panesin the
Wave window can be resized by clicking and dragging the bar between any two panes.

pathnames values waveforms

===t wave - defaulk

File Edit M“iew| Insert Format Tools Window

1]

| 3140 ns to 4001 ns |

cursors names and values cursors

Pathname pane

The pathname pane displays signal pathnames. Signals can be displayed with full
pathnames, as shown here, or with only the leaf element displayed. Y ou can increase the

size of the pane by clicking and dragging on the right border. The selected signal is
highlighted.

The white bar along the left margin indicates the selected dataset (see " Splitting Wave
window panes’ (UM-216)).

ModelSim User’'s Manual

Values pane

Wave window

The values pane displays the values of the displayed signals.

Theradix for each signal can be symbolic, binary, octal, decimal, unsigned, hexadecimal,
ASCII, or default. The default radix can be set by selecting Simulate > Simulation
Options (Main window) (see "Setting default simulation options' (UM-254)).

The datain this pane is similar to that shown in the Signals window (UM-183), except that
the values change dynamically whenever a cursor in the waveform pane is moved.

Waveform pane

Cursor panes

The waveform pane displays the waveforms that correspond to the displayed signal
pathnames. It also displays up to 20 cursors. Signal values can be displayed in analog step,
anal og interpolated, analog backstep, literal, logic, and event formats. Each signal can be
formatted individually. The default format is logic.

If you rest your mouse pointer on asignal in the waveform pane, a popup displays with
information about the signal. Y ou can toggle this popup on and off in the Wave Window
Properties dialog (see " Setting Wave window display properties’ (Um-222)).

There are three cursor panes-the left pane shows the cursor names; the middle pane shows
the current simulation time and the value for each cursor; and the right pane shows the

absol ute time value for each cursor and relative time between cursors. Up to 20 cursors can
be displayed. See"Using time cursorsin the Wave window" (UM-226) for more information.

HDL items you can view

VHDL items

(indicated by a dark blue square)
signals and process and shared variables

Verilog items

(indicated by alight blue circle)
nets, registers, variables, and named events

Virtual items

(indicated by an orange diamond)
virtual signals, buses, and functions, see; "Virtual Objects (User-defined buses, and more)"
(UM-125) for more information

Comparison items

(indicated by ayellow triangl€)
comparison region and comparison signals; see Chapter 10 - Waveform Comparison for
more information

P Note: Constants, generics, and parameters are not viewable in the List or Wave
windows.

UM-207

ModelSim User's Manual

UM-208 7 - Graphic interface

The datain the item values pane is very similar to the Signals window, except that the
values change dynamically whenever a cursor in the waveform pane is moved.

At the bottom of the waveform pane you can see atime line, tick marks, and a readout of
each cursor’ s position. Asyou click and drag to move acursor, the time value at the cursor
location is updated at the bottom of the cursor.

Y ou can resize the window panes by clicking on the bar between them and dragging the bar
to anew location.

Waveform and signal-name formatting are easily changed via the Format menu (Um-211).
Y ou can reuse any formatting changes you make by saving aWave window format file, see
"Adding items with a Wave window format file" (UM-208).

Adding HDL items in the Wave window

ModelSim User’'s Manual

Before adding items to the Wave window you may want to set the window display
properties (see " Setting Wave window display properties’ (UM-222)). Y ou can add itemsto
the Wave window in several ways.

Adding items from the Signals window with drag and drop

Y ou can drag and drop itemsinto the Wavewindow from the List, Process, Signal's, Source,
Structure, or Variables window. Select the itemsin the first window, then drop them into
the Wave window. Depending on what you select, all itemsor any portion of the design can
be added.

Adding items from the command line
To add specific HDL itemsto the window, enter (separate the item names with a space):

VSI M> add wave <item nane> <item nane>

Y ou can add all theitemsin the current region with this command:
VSI M> add wave *

Or add all the items in the design with:;
VSI > add wave -r [*

Adding items with a Wave window format file

To use aWave window format file you must first save aformat file for the design you are
simulating. Follow these steps:

1 Add theitems you want in the Wave window with any method shown above.

2 Edit and format the items, see "Editing and formatting HDL itemsin the Wave window"
(UM-219) to create the view you want .

3 Savetheformat to afile by selecting File > Save Format (Wave window).

To use the format file, start with ablank Wave window and run the DO file in one of two
ways:
* Invoke the do command (CR-68) from the command line;

VSI M> do <ny_wave_f or nat >

Wave window

» Sedlect File> L oad Format (Wave window).

P Note: Wave window format files are design-specific; use them only with the design you
were simulating when they were created.

The Wave window menu bar

The following menu commands and button options are available from the Wave window
menu bar. Many of these commands are al so available via a context menu by clicking your
right mouse button within the Wave window itself.

File menu

UM-209

Open Dataset

open a dataset

Save Dataset

save the current simulation to aWLF file

Save Format

savethe current Wave window display and signal preferencestoaDO
(macro) file; running the DO file will reformat the Wave window to
meatch the display asit appeared when the DO file was created

Load Format

run a Wave window format (DO) file previously saved with Save
Format

Save Image

saves bitmap file of Wave window

Page Setup

configure page setup including paper size, margins, label width,
cursors, grid, color, scaling and orientation

Print

send the contents of the Wave window to a selected printer; see
"Saving waveforms" (Um-233) for details

Print Postscript

save or print the waveform display as a Postscript file; see "Saving
waveforms' (UM-233) for details

Close

close this copy of the Wave window

Edit menu

Cut

cut the selected item and waveform from the Wave window; see
"Editing and formatting HDL items in the Wave window" (UM-
219)

Copy

copy the selected item and waveform

Paste

paste the previously cut or copied item above the currently
selected item

Delete

delete the selected item and its waveform

Edit Cursor

open adialog to specify the location of the selected cursor

Delete Cursor

delete the selected cursor from the window

ModelSim User's Manual

UM-210 7 - Graphic interface

ModelSim User’'s Manual

Delete Window del ete the selected window pane
Pane
Select All select, or unselect, all item names in the pathname pane
Unselect All
Find find the specified item label within the pathname pane or the
specified value within the value pane
View menu

Zoom <selection>

selection: Full, In, Out, Last, or Range to change the waveform
display range

Mouse Mode

toggle mouse pointer between Select Mode (click left mouse
button to select, drag with middle mouse button to zoom) and
Zoom Mode (drag with left mouse button to zoom, click middie
mouse button to select)

Signal Declaration

open the sourcefilein the Source window and highlight the signal
declaration for the currently selected signal

Cursors choose a cursor to go to from alist of available cursors

Bookmarks choose a bookmark to go to from alist of available bookmarks

Goto Time scroll the Wave window so the specified timeisin view; "g"
hotkey produces the same result

Sort sort the top-level itemsin the pathname pane; sort with full path
name or viewed name; use ascending or descending order

Justify Values justify values to the left or right margins of the window pane

Refresh Display clear the Wave window, empty the file cache, and rebuild the
window from scratch

Properties set properties for the selected item (use the Format menu to

change individual properties)

Wave window

Insert menu

Divider insert adivider at the current location

Breakpoint add a breakpoint on the selected signal; see "Signal breakpoints”
(UM-258)

Bookmark add a bookmark with the current zoom range and scroll location;
see " Saving zoom range and scroll position with bookmarks' (um-
229)

Cursor add a cursor to the waveform pane

Window Pane split the pathname, values and waveform window panesto

provide room for a new waveset

Format menu

Radix set the selected items' radix

Format set the waveform format for the selected item — Literal, Logic,
Event, Analog

Color set the color for the selected item from a color palette

Height set the waveform height in pixels for the selected item

Tools menu

Breakpoints add, edit, and delete signal breakpoints; see "Creating and
managing breakpoints' (UM-258)

Bookmarks add, edit, delete, and goto bookmarks; see " Saving zoom range
and scroll position with bookmarks" (um-229)

Dataset Snapshot enable periodic saving of simulation datato aWLF file

Combine Signals combine the selected items into a user-defined bus

Window set various display properties such as signal path length, cursor

Preferences snap distance, row margin, dataset prefixes, waveform popup, etc.

Window menu

The Window menu isidentical in all windows. See "Window menu" (UM-144) for a
description of the commands.

UM-211

ModelSim User's Manual

UM-212 7 - Graphic interface

The Wave window toolbar

The Wave window toolbar gives you quick access to these Model Sim commands and

functions.

Wave window toolbar buttons

Button

Menu equivalent

Other options

L oad Wave Format
~ run a Wave window format (DO)
[=- file previously saved with Save
Format

File > Load Format

do wave.do
see do command (CR-68)

Save Wave For mat

save the current Wave window
display and signal preferencestoa
do (macro) file

AL

File > Save Format

none

Print

print a user-selected range of the

% current Wavewindow display toa
printer or afile

File> Print
File > Print Postscript

none

E? add a cursor to the center of the
waveform pane

ModelSim User’'s Manual

Cut Edit > Cut right mouse in pathname pane > Cut
.;Ii{- cut the selected signal from the

Wave window

Copy Edit > Copy right mouse in pathname pane >
copy the selected signal in the Copy

5 signal-name pane

Paste Edit > Paste right mouse in pathname pane >
E paste the copied signal above Paste

another selected signal

Find Edit > Find <control-f>
ﬂ find a name or value in the Wave

window

Add Cursor Insert > Cursor right mouse in cursor pane

Wave window UM-213

Wave window toolbar buttons

Button

Menu equivalent

Other options

A

Delete Cur sor
delete the selected cursor from the
window

Edit > Delete Cursor

right mousein cursor pane > Delete
Cursor n

zoom in by afactor of two from
the current view

Find Previous Transition Edit > Search keyboard: Shift + Tab
—lt locate the previous signal value (Search Reverse)
change for the selected signal
Find Next Transition Edit > Search keyboard: Tab
ﬂ— locate the next signal value (Search Forward)
change for the selected signal
Select Mode View > Mouse Mode > none
.ni set mouse to Select Mode —click | Select Mode
left mouse button to select, drag
middle mouse button to zoom
Zoom Mode View > Mouse Mode > none
= set mouse to Zoom Mode—drag | Zoom Mode
o left mouse button to zoom, click
middle mouse button to select
Zoom in 2x View >Zoom>ZoomIn | keyboard:i | or +

right mouse in wave pane > Zoom
In

Zoom out 2x
zoom out by afactor of two from
current view

View > Zoom > Zoom
Out

keyboard: 0 O or -

right mouse in wave pane > Zoom
Out

Zoom Full

zoom out to view the full range of
the simulation from time 0 to the
current time

View > Zoom > Zoom
Full

keyboard: f or F

right mouse in wave pane > Zoom
Full

Stop Wave Drawing
halts any waves currently being
drawn in the Wave window

none

none

ModelSim User's Manual

UM-214 7 - Graphic interface

Wave window toolbar buttons

Button

Menu equivalent

Other options

Restart

reloads the design elements and

resets the simulation time to zero,
with the option of keeping the

current formatting, breakpoints,

and WLFfile

Main menu:
Simulate > Run > Restart

restart <arguments>

see: restart (CR-111)

Run
run the current simulation for the
: default time length

Main menu:
Simulate > Run > Run
<default_length>

use the run command at the VSIM
prompt

SEE run (CR-114)

run the current simulation forever,
or until it hits a breakpoint or

Simulate > Run > Run
-All

Continue Run Main menu: use the run -continue command at
El‘ continue the current simulation Simulate > Run > the VSIM prompt
run Continue
See: run (CR-114)
Run -All Main menu: use therun -all command at the

VSIM prompt

g stop the current simulation run

specified break event See: run (CR-114), also see
"Assertions tab" (UM-255)
Break none none

Show Drivers

display driver(s) of the selected
a" signal, net, or register in the
Dataflow window

[Dataflow window]
Navigate > Expand net to
drivers

[Dataflow window] Expand net to
al drivers

right mouse in wave pane > Show
Drivers

ModelSim User’'s Manual

Using dividers

===t wave - default

File Edit igw

Insert

Wave window UM-215

Dividers serve as avisual aid to signal debugging, allowing you to separate signals and
waveforms for easier viewing. Dividing lines can be placed in the pathname and values
window panes by selecting Insert > Divider (Wave window). Or, you can add a divider
using the -divider argument to the add wave command (CR-35).

Dividing lines can be assigned any name or no name at all. The default nameis"New
Divider." In theillustration below, two datasets have been separated with a Divider called
"gold." Notice that the waveforms in the waveform window pane have been separated by
the divider as well.

Format Tools Window

Lz’ |

(=

gl

gold

qold: /t
1 gold:

BE&: &

Curzor 1

E=Ni:)

¢ faTth

2820 ng

1]

| » | v] |

|EI hs to 864 ns

| /

After you have added a divider, you can moveit, change its properties (hame and size), or
deleteit.

Tomoveadivider — Click and drag the divider to the location you want

Tochangeadivider’snameand size— Click thedivider with the right mouse button and
select Divider Properties from the pop-up menu

Todeleteadivider — Select the divider and either press the <Delete> key on your
keyboard or select Delete from the pop-up menu

ModelSim User's Manual

UM-216 7 - Graphic interface

Splitting Wave window panes

The pathnames, values and waveforms window panes of the Wave window display can be
split to accommodate signals from one or more datasets. Selecting I nsert >Window Pane
(Wavewindow) createsaspace bel ow the sel ected dataset and makes the new window pane
the selected pane. (The selected wave window paneisindicated by awhite bar along the
left margin of the pane.)

In theillustration below, the Wave window is split, showing the current active simulation
with the prefix "sim," and a second view-mode dataset, with the prefix "gold."

For moreinformation on viewing multiple simulations, see Chapter 6 - WLF files
(datasets) and virtuals.

==+t wave - default -|O] x|

File Edit M“iew Insert Format Tools Window

SHS $BRBM KK [N o Q& QB EF ELDEN

Curzor 1 I
i

1] [+ 4« [[[.|
|2u5 to 2864 ns |

ModelSim User’'s Manual

Wave window UM-217

Combining items in the Wave window

Y ou can combine signalsin the Wave window into busses. A busisa collection of signals
concatenated in a specific order to create anew virtual signal with a specific value. To
create a bus, select one or more signals in the Wave window and then choose Tools >
Combine Signals.

Combine Selected Signals X

M arne: ||

Order of Indexes
|7 © Azcending % Descending

™ Remove selected signals after combining

1] LCancel

The Combine Selected Signals dialog box includes these options:

* Name
Specifies the name of the newly created bus.

» Order of Indexes
Specifiesin which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the Wave window will be assigned an index of 0. If set to
Descending, thefirst signal selected will be assigned the highest index number. Note that
the signals are added to the bus in the order that they appear in the window. Ascending
and descending affect only the order and direction of the indexes of the bus.

» Remove selected signals after combining
Specifies whether you want to remove the sel ected signals from the Wave window once
the busis created.

ModelSim User's Manual

UM-218 7 - Graphic interface

Intheillustration below, three signals have been combined to form anew bus called "bus".
Note that the component signals are listed in the order in which they were selected in the
Wavewindow. Also note that the value of the busis made up of the values of its component
signals, arranged in a specific order. Virtual objects are indicated by an orange diamond.

==t wave - default == EI

File Edit ew Insert Formak Tools Window

SHS| »PRBMI N KT [N G QR ELEE 3

a0y 5t |

0000000 Q0000000 W!::l 00000010 ooooooil |)
0 D::IED:IEEZDZEDZE -

1] |4 3 | I -
|DnstnBEf1ns |

A
Mo 2 z
Curzor 1
o

Other virtual items in the Wave window

See"Virtual Objects (User-defined buses, and more)" (uM-125) for information about other
virtual items viewable in the Wave window.
Displaying drivers of the selected waveform

Y ou can automatically display in the Dataflow window the drivers of asignal selected in
the Wave window. Y ou can do this three ways:

+ Select awaveform and click the Show Drivers button on the toolbar. 34-

» Select awaveform and select Show Drivers from the shortcut menu

» Double-click awaveform edge (you can enable/disable this option in the display
properties dialog; see " Setting Wave window display properties’ (UM-222))

Thisoperation will open the Dataflow window and display the driversof the signal selected
in the Wave window. The Wave pane in the Dataflow window will also open showing the

ModelSim User’'s Manual

Wave window UM-219

selected signal with a cursor at the selected time. The Dataflow window will show the
signal(s) values at the current time cursor position.

Editing and formatting HDL items in the Wave window

Once you have the HDL items you want in the Wave window, you can edit and format the
list in the pathname and val ues panes to create the view you find most useful. (See also,
"Setting Wave window display properties’ (UM-222).)

To edit an item:

Select theitem’ slabel in the pathname pane or its waveform in the waveform pane. Move,
copy, or remove the item by selecting commands from the Wave window Edit menu (UM-
209).

Y ou can also click+drag to move items within the pathnames and values panes:

* to select several items:
control+click to add or subtract from the selected group

* to move the selected items:
re-click and hold on one of the selected items, then drag to the new location

To format an item:

Select theitem’ s label in the pathname pane or its waveform in the waveform pane, then
select View > Signal Properties(Wavewindow) or usethe selectionsin the For mat menu.

When you select View > Signal Propertiesthe Wave Signal Properties dialog box opens.
It has three tabs: View, Format, and Compare.

W ave Signal Properties

Signal: wzim: Mtop/paddr
— Dzplay Hame

——Radix — " ave Calor

" Symbolic ¢ Unsigned I I::::I-:urs...l

" Binary ' Hexadecimal

= Octal = ASCI —Mame Calor————————

i Decimal 1 Default I En:nln:nrs...l

Ok | Cancel Apply |

ModelSim User's Manual

UM-220 7 - Graphic interface

The View tab includes these options:

 Display Name
Specifies anew name (in the pathname pane) for the selected signal.
» Radix
Specifies the Radix of the selected signal(s). Setting this to default causesthe signal’s

radix to change whenever the default is modified using the radix command (CR-108).
Item values are not translated if you select Symbolic.

* Wave Color

Specifiesthe waveform color. Select anew color from
the color palette, or enter a color name. The Default — Palette

button in the Colors palette allows you to return the
selected item’s color back to its default value.

* Name Color
Specifies the signal name's color. Select anew color
from the color palette, or enter a color name. The
Default button in the Colors palette allows you to
return the selected item’s color back to its default
value.

Drefault

Wave Signal Properties

Signal: wairn: Atop/paddr

— Format

& Literal € Logic " Ewent " Analog

——Analog Display

[Heighj " Analog Step Offset: [00
I'I? = Analog Interpolated
" Analog Backstep Sl |1'D

Ok | Cancel Apply |

The For mat tab includes these options (see next page for example graphic):

e Format: Literal
Displays the waveform as a box containing the item value (if the value fits the space
available). Thisisthe only format that can be used to list arecord.

ModelSim User’'s Manual

Wave window UM-221

» Format: Logic
Displaysvaluesas U, X, 0,1, Z, W, L, H, or -.

* Format: Event
Marks each transition during the simulation run.

« Format: Analog [Step | Interpolated | Backstep]
Analog Sep
Displays the waveform in step style.

Analog | nterpolated
Displays the waveform in interpolated style.

Analog Backstep
Displays the waveform in backstep style. Often used for power calculations.

Offset and Scale

Allowsyou to adjust the scale of theitem asit is seen on the display. Offset isthe number
of pixelsoffset from zero. The scale factor reduces (if lessthan 1) or increases (if greater
than 1) the number of pixels displayed.

Only the following types are supported in Analog format:

VHDL types:
All vectors - std logic vectors, bit vectors, and vectors derived from these types
Scalar integers
Scalar reds
Scalar times

Verilog types:
All vectors

Scalar reds
Scalar integers

» Height
Allows you to specify the height (in pixels) of the waveform.

The signalsin the following illustration demonstrate the various signal formats.

===t wave - default Bi=

File Edit Wigw

Insert

Format Tools Window

event

anala T h—-p

SHS| 2 R@MI XK RN G| QS QB EF)ELEDE aﬂ

1 (0o ooy o WF:DDDDDD:DD:DD

iiiiiiiiiiiéiiiiiiiiiiiii
""" |—|___

]

The Compar etab includes the same options as those in the Add Signal Options dialog box
(see "Comparison Method tab" (UM-309)).

ModelSim User's Manual

UM-222 7 - Graphic interface

Setting Wave window display properties

Y ou can define display properties of the Wave window by selecting Tools > Window
Prefer ences (Wave window). Y ou can make these changes permanent by selecting Tools
> Save Preferences (Main window). See "Preference variables located in Tcl files' (UM-
352) for details on changing window properties permanently.

The dialog box has two tabs-Display and Grid & Timeline.

Window Preferences %)

Display | Grid & Timeline |

—Dizplay Signal Path—————— —Snap Distance
0 [# elements) 10 [pixels]
[z O far full path ~FRow Margin
4 [pixels]
sy Ele ~Child Frow Margin——
f* Left ¢ Right 2 [pixels)
~Enable/Dizable

¥ “waveform Popup Enabled
[T “waveform Selection Highlighting Enabled
¥ Double-Click to Shove Drivers [D ataflow Window]

—Dratazet Prefiz Display
£~ Always Show Datazet Prefises
% Show Datazet Prefizes if 2 or mare

= Mever Show D atazet Prefizes

ok LCancel

The Display tab includes the following options:

 Display Signal Path
Sets the display to show anything from the full pathname of each signal (e.g., sim:/top/
clk) to only itsleaf element (e.g., sm:clk). A non-zero number indicates the number of
path elements to be displayed. The default is Full Path.

 Justify Value
Specifieswhether the signal valueswill be justified to theleft margin or the right margin
in the values window pane.

ModelSim User’'s Manual

Wave window

 Snap Distance
Specifies the distance the cursor needs to be placed from an item edge to jump to that
edge (a 0 specification turns off the snap).

* Row Margin
Specifies the distance in pixels between top-level signals.

e Child Row Margin
Specifies the distance in pixels between child signals.

» Waveform Popup Enable
Toggles on/off the popup that displays when you rest your mouse pointer on asignal or
comparison object.

» Waveform Selection Highlighting Enabled
Toggleson/off waveform highlighting. When enabled thewaveform ishighlighted if you
select the waveform or its value.

» Double-Click to Show Drivers (Dataflow Window)
Toggles on/off double-clicking to show the drivers of the selected waveform. See
"Displaying drivers of the selected waveform" (Um-218) for more details.

» Dataset Prefix
Specifies how signals from different datasets are displayed.

Always Show Dataset Prefixes

All dataset prefixes will be displayed along with the dataset prefix of the current
simulation ("sim").

Show Dataset Prefixesif 2 or more

Displaysall dataset prefixesif 2 or moredatasetsaredisplayed. "sim" isthedefault prefix
for the current simulation.

Never Show Dataset Prefixes
No dataset prefixes will be displayed. This selection isuseful if you are running only a
single simulation.

UM-223

ModelSim User's Manual

UM-224 7 - Graphic interface

Window Preferences bl

Display ~ Grid & Timeline |

—Gnd Configuration

0 nz 40 [pirels

—Gnd Period

1 s Feset to Default |

—Gnd Offset———— "Minimum Gnd Spacing
]—‘

— Timeline Configuration
£+ Dizplay simulation time in timeline area

" Dizsplay grid period count [cycle count)

The Grid & Timelinetab is used to configure grid lines and the horizontal axisin the
waveform pane. Y ou can also access this tab by right-clicking in the cursor tracks at the
bottom of the Wave window and selecting Grid & Timeline Properties. The tab has the
following options;

e Grid Offset
Specifies the time (in user time units) of thefirst grid line. Default is 0.

* Grid Period
Specifies the time (in user time units) between subsequent grid lines. Default is 1.

e Minimum Grid Spacing
Specifiestheclosest (in pixels) two grid lines can be drawn before intermediate lineswill
be removed. Default is 40.

» Timeline Configuration
Specifies whether to display simulation time or grid period count on the horizontal axis.
Default isto display simulation time.

Sorting a group of HDL items

Select View > Sort to sort the items in the pathname and val ues panes.

Setting signal breakpoints

ModelSim User’'s Manual

Y ou can set "Signal breakpoints® (UM-258) in the Wave window. When asignal breakpoint
is hit, amessage appears in the Main window Transcript stating which signal caused the
breakpoint.

Toinsert asignal breakpoint, select asignal, click your right mouse button , and select
Insert Breakpoint. A breakpoint will be set on the selected signal. See "Creating and
managing breakpoints" (UM-258) for more information.

Wave window UM-225

Finding items by name or value in the Wave window

The Find dialog box _
allowsyoutosearchfor LAl EIREELE A
text stringsinthe Wave
window. Select Find: || Find Next
Edit > Find (Wave \ . q
window) to bring up Field Direction Cleae
the Find dialog box. * MName = Down F Exact
Choose either the e
) Walue Up
Nameor Valuefield to W AutoWrap

search and enter the
valueto search for in
theFind field. Find the
item by searching Down or Up through the Wave window display.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.
The find operation works only within the active pane.

ModelSim User's Manual

UM-226 7 - Graphic interface

Using time cursors in the Wave window

==+t wave - default 3 o]

File Edit M“iew Insert Format Tools Window

SHS $BM KK [N o Q& & EFELEE

< I | IR e E|
| 3140 ns to 4001 ns |

click name or value to interval measurement

select or double-click to

jump to that cursor locked cursor is red selected cursor is bold

When the Wave window isfirst drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. Y ou can add
cursors to the waveform pane by selecting Insert > Cursor (or the Add Cursor button
shown below). The selected cursor isdrawn asabold solid line; all other cursorsare drawn
with thin lines. Remove cursors by selecting them and selecting Edit > Delete Cursor (or
the Delete Cursor button shown below).

Add Cursor Delete Cursor
E? add a cursor to the ,Pé delete the sel ected cursor
waveform window from the window

Naming cursors

By default cursors are named " Cursor <n>". To rename a cursor, click the name in the left-
hand cursor pane with your right mouse button. Type a new name and press the <Enter>
key on your keyboard.

ModelSim User’'s Manual

Wave window UM-227

Locking cursors

You can lock acursor in position so it won't move. Click acursor with your right-mouse
button and select L ock <cursor name>. The cursor turns red and you can no longer move
it with the mouse. As aconvenience, you can hold down the <shift> key and click-and-drag
the cursor. Onceyou let go of the cursor, it will belocked in the new position. To unlock a
cursor, right-click it and select Unlock <cursor name>.

Finding cursors

The cursor value correspondsto the simulation time of that cursor. Choose aspecific cursor
view by selecting View > Cursors.

Y ou can also access cursors by clicking a name or value in the |eft-hand cursor pane.
Single-clicking selects a cursor; double-clicking jumps to a cursor. Alternatively, you can
click avalue with your second mouse button and type the value to which you want to scroll.

Making cursor measurements

Each cursor is displayed with atime box showing the precise simulation time at the bottom.
When you have more than one cursor, each time box appears in a separate track at the
bottom of the display. Model Sim also adds a delta measurement showing the time
difference between two adjacent cursor positions.

If you click in the waveform display, the cursor closest to the mouse position is selected
and then moved to the mouse position. Another way to position multiple cursorsisto use
the mouse in the time box tracks at the bottom of the display. Clicking anywherein atrack
selects that cursor and brings it to the mouse position.

Cursorswill "snap" to awaveform edgeif you click or drag a cursor to within ten pixels of
awaveform edge. Y ou can set the snap distance in the Window Preferences dialog (select
Tools>Window Preferences). Y ou can position a cursor without snapping by dragging
in the cursor track below the waveforms.

Y ou can also move cursors to the next transition of a signal with these toolbar buttons:

Find Previous Find Next Transition
Transition locate the next signal

—lt locate the previous signal ﬂ— value change for the
value change for the selected signal
selected signal

ModelSim User's Manual

UM-228 7 - Graphic interface

Examining waveform values

Y ou can use your mouse to display a dialog that shows the value of awaveform at a
particular time. Y ou can do this two ways:

Rest your mouse pointer on awaveform. After a short delay, a dialog will pop-up that
displaysthevalue for the time at which your mouse pointer is positioned. If you' d prefer
that this popup not display, it can be toggled off in the display properties. See " Setting
Wave window display properties’ (UM-222).

Right-click awaveform and select Examine. A dialog displays the value for the time at
which you clicked your mouse.

Zooming - changing the waveform display range

ModelSim User’'s Manual

Zooming lets you change the simulation range in the waveform pane. Y ou can zoom using
the context menu, toolbar buttons, mouse, keyboard, or commands.

Y ou can access Zoom commands from the View menu on the toolbar or by clicking the
right mouse button in the waveform pane.

The Zoom menu options include:

Zoom Full
Redraws the display to show the entire simulation from time O to the current simulation
time.

Zoom In
Zoomsin by afactor of two, increasing the resolution and decreasing the visible range
horizontally.

Zoom Out
Zooms out by afactor of two, decreasing the resolution and increasing the visible range
horizontally.

Zoom L ast
Restores the display to where it was before the last zoom operation.

Zoom Range
Brings up adialog box that allowsyou to enter the beginning and ending timesfor arange
of time units to be displayed.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

&

Zoom in 2x
zoomin by afactor of two
from the current view

Zoom out 2x
zoom out by afactor of
two from current view

Zoom Full

zoom out to view the full
range of the simulation
from time O to the current
time

Zoom Mode
change mouse pointer to
zoom mode; see below

Wave window UM-229

Zooming with the mouse

To zoom with the mouse, first enter zoom mode by selecting View > M ouse M ode > Zoom
M ode (Wave window). The left mouse button (<Button-1>) then offers 3 zoom options by
clicking and dragging in different directions:

« Down-Right or Down-Left: Zoom Area (In)
* Up-Right: Zoom Out
* Up-Léeft: Zoom Fit

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixelsto activate.

Y ou can also enter zoom mode temporarily by holding the <Ctrl> key down whilein select
mode.

With the mouse in the Select M ode, the middle mouse button will perform the above zoom
operations.

Zooming keyboard shortcuts

See "Wave window mouse and keyboard shortcuts' (um-231) for a complete list of Wave
window keyboard shortcuts.

Saving zoom range and scroll position with bookmarks

Bookmarks allow you to save a particular zoom range and scroll position. Thisletsyou
return easily to aspecific view later. Y ou save the bookmark with a name, and then access
the named bookmark from the Bookmark menu.

Bookmarks are saved in the Wave format file (see "Adding items with a Wave window
format file" (UM-208)) and are restored when the format file isread. Thereisno limit to the
number of bookmarks you can save.

Bookmarks can aso be created and managed from the command line. See the bookmark
add wave command (CR-42) for details.

To add a bookmark, select Insert > Bookmark (Wave window).

Bookmark Properties (wave! B

—— Bookmark Mame

|I:n:n:ukmark[l

—Zoom Fange Top Index—
|EI hz tol 315 nz ’E

¥ Save zoom range with bookmark

¥ i5ave scroll location with bookmark:

k. | Cancel

ModelSim User's Manual

UM-230 7 - Graphic interface

ModelSim User’'s Manual

The Bookmark Properties dialog includes the following options.

Bookmark Name
A text label to assign to the bookmark. The name will identify the bookmark on the
View > Bookmarks menu.

Zoom Range
A starting value and ending value that define the zoom range.

Top Index
Theitem that will display at thetop of the Wave window. For instance, if you specify 15,
the Wave window will be scrolled down to show the 15th item in the window.

Save zoom range with bookmark
When checked the zoom range will be saved in the bookmark.

Save scroll location with bookmark
When checked the scroll location will be saved in the bookmark.

Oncethe bookmark is saved, select it by name from the View > Bookmar ks menu, and the
Wave window will be zoomed and scrolled accordingly.

To edit or delete a bookmark, select Tools > Bookmarks (Wave window).

Bookmark Selection {.u A
biookmarkD
ook mark 1 Add
kadify...
Delete
ot
B ookmark Configuration
Mame: biookmark
Zoom Range: {0 nzt {628 ne}
Top Index:]
Ok, Cancel

The Bookmark Selection dialog includes the following options.

Add (bookmark add wave)
Add anew bookmark.

M odify
Edit the selected bookmark.

Delete (bookmark delete wave)
Delete the selected bookmark.

Goto (bookmark goto wave)
Zoom and scroll the Wave window using the sel ected bookmark.

Wave window mouse and keyboard shortcuts

Wave window UM-231

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action

Result

< control - |eft-button - drag down and right>?

zoom area (in)

< control - left-button - drag up and right>

zoom out

< control - left-button - drag up and left>

zoom fit

<left-button - drag> (Select mode)
< middle-button - drag> (Zoom mode)

moves closest cursor

< control - |eft-button - click on a scroll arrow >

scrolls window to very top or
bottom(vertical scroll) or far left or

right (horizontal scroll)

a. If you enter zoom mode by selecting View > M ouse M ode > Zoom M ode, you do
not need to hold down the <Ctrl> key.

Keystroke Action

il or + zoom in (mouse pointer must be over thethe cursor or waveform
panes)

0O or - zoom out (mouse pointer must be over the the cursor or
waveform panes)

forF zoom full (mouse pointer must be over the the cursor or
waveform panes)

| or L zoom last (mouse pointer must be over the the cursor or
waveform panes)

rorR zoom range (mouse pointer must be over the the cursor or
waveform panes)

<up arrow>/ with mouse over waveform pane, scrolls entire window up/

<down arrow> down one line; with mouse over pathname or values pane,
scrolls highlight up/down one line

<left arrow> scroll pathname, values, or waveform pane | eft

<right arrow> scroll pathname, values, or waveform pane right

<page up> scroll waveform pane up by a page

<page down> scroll waveform pane down by a page

ModelSim User's Manual

UM-232 7 - Graphic interface

Keystroke Action

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> open the find dialog box; searches within the specified field in
the pathname pane for text strings

<control-left arrow> scroll pathname, values, or waveform pane left by a page

<control-right arrow> scroll pathname, values, or waveform paneright by a page

ModelSim User’'s Manual

Wave window UM-233

Saving waveforms

Saving a .eps file

Select File> Print Postscript (Wave window) to save the waveform as a .epsfilewrite
wave command (CR-224). Printing and writing preferences are controlled by the dial og box

shown below.
Wite Postscipt__H|
—Printer

" Print command: |||:| -d Ip1 ll
Setup... |
i* File name: |I::MINNT;"F‘eriIes.-"charleys'[Browsze. .. |

—Signal Selection — Time Range
Al signals " Full Bange 0 ns 2820 ns
% Cunent view * Curent view 1869 n= 2869 ns

" Selected " Custom Fr-:um:l i’ To i’

Ok | Cancel |

The Write Postscript dialog box includes these options:

Printer

* Filename
Enter afilename for the encapsulated Postscript (.eps) file to be created; or browseto a
previously created .epsfile and use that filename.

Signal Selection

» All signals
Print all signals.

» Current View
Print signals in the current view.

» Selected
Print all selected signals.

ModelSim User's Manual

UM-234 7 - Graphic interface

Time Range

 Full Range
Print all specified signalsin the full simulation range.

e Current view
Print the specified signals for the viewable time range.

» Custom

Print the specified signals for a user-designated From and To time.
Setup button
See "Printer Page Setup” (UM-236)

Printing on Windows platforms

Select File> Print (Wave window) to print al or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).
Printing and writing preferences are controlled by the dialog box shown below.

—Printer

Mame: [M\LINKAGE'HP Laserlet 5L | F'ru:upertiesl

Statusz: Feady

Tupe: HF Lazenlet 5L Setup... |

Where: Local
Comment; [~ Frint ta file
—Signal Selecton————— ~ Time Flange
Al signals " FulRange 0O ns 2820 nz
= Curmrent view % Curent view 1869 ns 2869 ns

" Selected " Custom Frarm: ﬁ T ﬁ

Ok | Cancel |
Printer
* Name
Choose the printer from the drop-down menu. Set printer propertieswith the Properties
button.
» Status

Indicates the availability of the selected printer.

ModelSim User’'s Manual

Wave window UM-235

* Type
Printer driver name for the selected printer. The driver determines what type of fileis
output if "Print to file" is selected.

* Where
The printer port for the selected printer.

* Comment
The printer comment from the printer properties dial og box.

* Print tofile
Make this selection to print the waveform to afileinstead of aprinter. The printer driver
determines what type of fileis created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a.prn or printer control language file. To create an
encapsul ated Postscript file (.eps) use the File > Print Postscript menu selection.

Signal Selection

» All signals
Print all signals.

» Current View
Print signalsin current view.

» Selected
Print all selected signals.

Time Range

 Full Range
Print all specified signalsin the full simulation range.

e Current view
Print the specified signals for the viewable time range.

e Custom
Print the specified signals for a user-designated From and To time.

Setup button
See "Printer Page Setup” (UM-236)

ModelSim User's Manual

UM-236 7 - Graphic interface

Printer Page Setup

Clicking the Setup button in the Write Postscript or Print dialog box allows you to define
the following options (thisis the same dialog that opens via File > Page setup).

FPage Setup
—Paper bk arging
Faper zize: Top |05 ﬂ
Lett ¥ -
e J Battom: [0.5 ZI
width: |85 = Left: |05 =
Height |11.0 = Right [05 =
—Label width —Curgore— —Gnid
£ Color
& Auto Sdjust = Oif Ot
i Grayscale
" Fised widthe [1.5 2 inches " On &+ On
' B
~Scaling ~Onentation
" Fived: |5EIEI hz j’per page " Paortrait

& Fit to: |1 ﬁpage[s] wide

¢ Landscape

LCancel

» Paper Size

Select your output page size from a number of options; also choose the paper width and

height.
e Margins

Specify the page margins; changing the M ar gin will change the Scale and Page

specifications.
« Labe width

Specify Auto Adjust to accommodate any length label, or set afixed label width.

e Cursors

Turn printing of cursors on or off.

* Grid

Turn printing of grid lines on or off.

ModelSim User’'s Manual

Wave window UM-237

 Color
Select full color printing, grayscale, or black and white.

 Scaling
Specify aFixed output time width in nanoseconds per page —the number of pages output
isautomatically computed; or, select Fit to to define the number of pages to be output
based on the paper size and time settings; if set, the time-width per page is automatically
computed.

* Orientation
Select the output page orientation, Portrait or L andscape.

ModelSim User's Manual

UM-238 7 - Graphic interface

Compiling with the graphic interface

Y ou can use a project or the Compile HDL Sour ce Files dialog box to compile VHDL or
Verilog designs. For information on compiling in a project, see "Getting started with
projects” (UM-20). To open the Compile HDL Source Files dialog, select Compile >
Compile (Main window).

Compile HDL Source Files d |
Library: Iwu:urk j
Look in: | ‘= dataflow -] « ® e B
| 1demos set.vhd
| Jwork t-:up.vhd
wy|andz . whd tnp_n:rig.'-.fhu:l
yi|cache,w tnp_spy.vhd
WL | MEmary v util.vhl:l
;_ﬁprn:uc.v

File narme; | Compile

Files of type: [HDL Files [vl vhd" vhoy hdlive] 7] Dane

Default Dptionz. . Edit Source |

From the Compile HDL Source Files dialog box you can:;

« select source files to compilein any language combination

« specify the target library for the compiled design units

* select among the compiler options for either VHDL or Verilog

Select the Default Options button to change the compiler options, see " Setting default
compile options" (UM-240) for details. The same Compiler Options dialog box can aso be
accessed by selecting Compile > Compile Options (Main window) or by selecting
Compile Properties from the context menu in the Project tab.

Select the Edit Sour ce button to view or edit a source file viathe Compile dialog box. See
"Source window" (UM-191) for additional source file editing information.

ModelSim User’'s Manual

Compiling with the graphic interface UM-239

Locating source errors during compilation

If acompiler error occurs during compilation, ared error message is printed in the Main
transcript. Double-click on the error message to open the source filein an editable Source
window with the error highlighted.

7] Modelsim o]
File Edit Yew Compile Simulate Tools Window Help
=hB|emg
“Wiorkspace x|
= # -- Compiling entity adder j
Hamc I LE: # -- Compiling architecture rtl of adder
| = Errar: [voom-11] Could not find work, gates.
Ill wital2000 Librz # = Errar: C:modeltechiexamplestadder vhd[24]:
[Il ieee Libre cannot find expanded name: work, gates
o - B = Ermar: C:dmodetechsexamples adder. vhd(24):
[Il rodelzin_lib Librz Unkgaun field: gates.
[Il std Libre # = ¥rror: C:/modektech/esamples adder. vhd(25]:
A L L - IR DL Comnpiler exiting
«| |] # C:/modeltechiwind2Aecom failed.
Library ModelSirn: |

|=:Nc: Design Loaded:

|<Nn Context:

double-click on the error in the Main window
and the error is highlighted and ready
to edit in the Source window

File \Edit Wiew Tools Window

SEHS L RBOMOX B[m

& I I é\l C:/modeltech/examples/add
1a sum <= (a Xor b) xor cing;
13 cout <= (a and b) or {cin and a) or (o
Z0 end rtl;
z1
ZZ
23 —— soription of adder using component in

24 use work.gates_all;
25h architecture structural of adder i=s

26 signal xorl out,
Z7 andl_out
] andz out,

1| Pl proc.y | adder.vhd J

ModelSim User’'s Manual

UM-240 7 - Graphic interface

Setting default compile options

Select Compile > Compile Options (Main window) to bring up the Compiler Options
dialog.

A 'mportant: Note that changes made in the Compiler Options dialog box become the
default for al future smulations.

VHDL compiler options tab

Compiler Dptions B K|

WHOL | Weriog |

[T Use 19932 Language Syntax [T Dizable loading meszages
[” Daon't put debugging info in librany [T Show source lines with emars
¥ Use explicit declarations only [T Dizable &l Optimizations
— Check for———— — Report ‘W armings On:

[Synthesiz

¥ Unbound component

Iv ital Compliance ;
¥ Process without a WalT statement

¥ Mull Fange

— Optimize for:
¥ Mo space in time literal [2.g. s
W StdLogicl164

v wital

<

¥ tultiple drivers on unresalved signals

ok LCancel Apply

The VHDL compiler options tab includes the following options:

¢ Use 1993 L anguage Syntax
Specifiesthe use of VHDL 93 during compilation. The 1987 standard isthe default. Same
asthe-93 argument to the vcom command (CR-145). Edit the VHDL 93 (Um-351) variable
in the modelsim.ini file to set a permanent default.

ModelSim User’'s Manual

Compiling with the graphic interface

Use explicit declarations only

Used to ignore an error in packages supplied by some other EDA vendors; directs the
compiler to resolve ambiguous function overloading in favor of the explicit function
definition. Same as the -explicit argument to the vcom command (CR-145). Edit the
Explicit (uM-342) variable in the modelsim.ini file to set a permanent default.

Although itisnot intuitively obvious, the = operator isoverloaded inthestd_logic 1164
package. All enumeration data typesin VHDL get an “implicit” definition for the =
operator. So while there is no explicit = operator, there is an implicit one. Thisimplicit
declaration can be hidden by an explicit declaration of = in the same package (LRM
Section 10.3). However, if another version of the = operator is declared in a different
package than that containing the enumeration declaration, and both operators become
visible through use clauses, neither can be used without explicit naming, for example:

ARI THVETI C. " =" (l eft, right)
This option alows the explicit = operator to hide the implicit one.

Disable loading messages

Disables loading messages in the Main window. Same as the -quiet argument for the
vcom command (CR-145). Edit the Quiet (UM-342) variable in the modelsim.ini file to set
a permanent default.

Show sourcelineswith errors

Causes the compiler to display the relevant lines of code in the transcript. Same as the
-sour ce argument to the vcom command (CR-145). Edit the Show_source (UM-342)
variable in the modelsim.ini file to set a permanent default.

Disable All Optimizations

Instructs the compiler to remove all optimizations. Same as the -O0 argument to the
vcom command (CR-145). Useful when running "Code Coverage" (UM-283), where
optimizations can skew results.

Flag Warnings on:

Unbound Component

Flags any component instantiation in the VHDL source code that has no matching entity
inalibrary that isreferenced in the source code, either directly or indirectly. Edit the
Show_Warningl (uUm-343) variable in the modelsim.ini file to set a permanent defaullt.

Processwithout a WAIT statement
Flags any process that does not contain await statement or a sensitivity list. Edit the
Show_Warning2 (um-343) variable in the modelsim.ini file to set a permanent defaullt.

Null Range
Flags any null range, such as 0 down to 4. Edit the Show_Warning3 (UM-343) variablein
the modelsim.ini file to set a permanent default.

No spacein timeliteral (e.g. 5ns)
Flags any timeliteral that is missing a space between the number and the time unit. Edit
the Show_Warning4 (Um-343) variablein the modelsim.ini file to set apermanent defaullt.

Multipledriverson unresolved signals
Flags any unresolved signals that have multiple drivers. Edit the Show_Warning5 (Um-
343) variable in the modelsim.ini file to set a permanent default.

UM-241

ModelSim User’'s Manual

UM-242 7 - Graphic interface

ModelSim User’'s Manual

Check for:

e Synthesis
Turnson limited synthesis-rule compliance checking. Checks only signalsused (read) by
aprocess; also, checks understand only combinational logic, not clocked logic. Edit the
CheckSynthesis (UM-342) variable in the modelsim.ini file to set a permanent default.

* Vital Compliance
Toggle Vital compliance checking. Edit the NoVital Check (UM-342) variable in the
modelsim.ini file to set a permanent defaullt.

Optimize for:

» StdLogicl164
Causes the compiler to perform specia optimizations for speeding up simulation when
the multi-value logic package std logic 1164 is used. Unless you have modified the
std_logic 1164 package, this option should always be checked. Edit the Optimize 1164
(UM-342) variable in the modelsim.ini file to set a permanent default.

* Vital
Toggle acceleration of the Vital packages. Edit the NoVital (UM-342) variable in the
modelsim.ini file to set a permanent default.

Verilog compiler options tab

Compiler Dptions £
YHDL * Weriog |
[Enable runtime hazard checks [T Dizable loading meszages
[T Dizable debugging data [T Show source lines with emars
[T Convert idertifiers to upper-caze [T Dizable all optimizations
[‘“erilog 1995 Compatible [T Enable “pratect uzage

— Other Yerilog Optionz

Library Search...

Estenzion... —

Library File...

Inzlude Directon. .

Macro...

ok Cancel Apply

Compiling with the graphic interface

« Enableruntime hazard checks
Enables the run-time hazard checking code. Same as the -hazar ds argument to the viog
command (CR-181). Edit the Hazard (UM-343) variable in the modelsim.ini fileto set a
permanent default.

« Convert identifiersto upper-case
Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Same asthe-u argument to the vlog command (CR-181). Edit the UpCase (UM-343)
variable in the modelsim.ini file to set a permanent default.

» Verilog 1995 Compatible
Some requirementsin Verilog 2000 conflict with requirementsin the 1995 LRM. Use of
this option ensures that code that was valid according to the 1995 LRM can still be
compiled. Same asthe-vlog59compat argument for the viog command (CR-181). Edit the
vlog95compat (UM-343) variable in the modelsim.ini file to set a permanent default.

« Disable loading messages
Disables loading messages in the Main window. Same as the -quiet argument for the
vlog command (CR-181). Edit the Quiet (UM-342) variable in the modelsim.ini fileto set a
permanent default.

» Show sourcelineswith errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-sour ce argument to the viog command (CR-181). Edit the Show_source (UM-342) variable
in the modelsim.ini file to set a permanent default.

* Disable All Optimizations
Instructs the compiler to removeall optimizations. Same asthe -O0 argument to the viog
command (CR-181). Useful when running "Code Coverage" (UM-283), where
optimizations can skew results.

Other Verilog Options:

* Library Search
Specifiesthe Verilog source library directory to search for undefined modules. Same as
the -y <library_directory> argument for the vlog command (CR-181).

« Extension
Specifies the suffix of filesin the library directory. Multiple suffixes can be used. Same
as the +libext+<suffix> argument for the viog command (CR-181).

e Library File
Specifiesthe Verilog source library file to search for undefined modules. Same asthe -v
<library_file> argument for the viog command (CR-181).

* Include Directory
Specifies adirectory for filesincluded with the ‘include filename compiler directive.
Same as the +incdir +<dir ectory> argument for the viog command (CR-181).

* Macro
Defines amacro to execute during compilation. Same as the compiler directive: ‘ define

UM-243

ModelSim User’'s Manual

UM-244 7 - Graphic interface

macro_name macro_text. Also the same asthe
+definet<macro_name> [=<macro_text> | argument for the vlog command (CR-181).

P Note: When you specify Other Verilog Options, they are saved into afilecalled viog.opt.
If you do thiswhile aproject is open, an OptionFile entry iswritten into your project file.
If you do this when a project is not open, an OptionFile entry iswritten into the
modelsim.ini file that you are currently using.

ModelSim User’'s Manual

Simulating with the graphic interface

Simulating with the graphic interface

Design tab

Y ou can use the Library tab in the workspace or the Simulate dialog box to smulate a
compiled design. To simulate from the Library tab, ssmply double-click a design unit. To

open the Simulate dialog, select Simulate > Simulate (Main window).

Six tabs - Design, VHDL, Verilog, Libraries, SDF, and Options - allow you to select

various simulation options.

Y ou can switch between tabsto modify settings, then begin simul ation by selecting the OK

button.

P Note: To begin simulation you must have compiled design units located in adesign
library, see "Creating adesign library" (UM-50).

|3 Simulate o] [
Design | WHOL | Werilog | Libraries | SDF | Options |
M ame | Tupe | Fath fovs
[Il wark, Librarm c:fdataflow Aok,
[Il test Library C:/dataflovetest
J:Il wital2000 Libramy FMODEL_TECH/. Avital2000
m igEE Librar FMODEL_TECH!../igee
II]_ miadelzim_lib Library FMODEL_TECHY.. /modelzim_lib
[Il ztd Library $MODEL_TECH/../std
,[Il gtd_developerskit Library FMODEL_TECH/.. fetd_developer:
Ill FUNOPEYE Libram FMODEL_TECH,../synopzyz
M werilog Library FMODEL_TECH... /verlog =
ol | i
— Simulate Rezolution
I ’;ault ZI Dptimize

ok | Cancel

UM-245

ModelSim User's Manual

UM-246 7 - Graphic interface

ModelSim User’'s Manual

The Design tab includes these options:
e Simulate

Specifies the design unit(s) to simulate. Y ou can simulate several Verilog top-level
modules or aVHDL top-level design unit in one of three ways:

- Type adesign unit name (configuration, module, or entity) into the field, separate
additional names with a space. Specify library/design units with the following syntax:

[<library_nane>.]<design_unit>
- Select adesign unit from the list. Y ou can select multiple design units from the list by
using the control key when you click.

Resolution
(-t [<multiplier>]<time_unit>)
The drop-down menu sets the simulator time units.

Simulator time units can be expressed as any of the following:

Simulation time units

1fs, 10fs, or 100fs femtoseconds
1ps, 10ps, or 100ps picoseconds
1ns, 10ns, or 100ns nanoseconds
1us, 10us, or 100us microseconds
1ms, 10ms, or 100ms milliseconds
1sec, 10sec, or 100sec seconds

See dls0, "Simulator resolution limit" (UM-52).

UM-247

VHDL tab

Simulate #
Design WHOL | Werilng | Libraries | SDF | Options |
— Generics
M ame | W alue | Override Add.
b odify. ..
Delete
11 | H
— WITAL — TExTIO Filez
— STO_IMPUT
[T Dizable Timing Checks I Browse.
r IJge Wital 2,206 SDF Mapping
[default is Wital 95) ——STD_0UTPUT
[T Dizable Glitch Generation | Browse. ..
OF, | Cancel |

The VHDL tab includes these options:

Generics

The Add button opens a dialog box (shown below) that allows you to specify the value of
generics within the current simulation; generics are then added to the Genericslist. You
can also select ageneric on the listing to Delete or Edit.

From the Specify a
Genericdialog box you can | Specify a Generic -10] =|
set the following options. S
« Generic Name (-g |
<Name>=<Value>)
The name of the generic — Gereric ¥ alue

parameter. Typeitinasit |
appears inthe VHDL
source (case isignored).

[T Oweride Instance-specific Yalues
» Generic Value
Specifies avalue for al Ok,
genericsin the design
with the given name
(above) that have not
received explicit values in generic maps (such as top-level generics and generics that

Cahcel

ModelSim User’s Manual

UM-248 7 - Graphic interface

would otherwise receive their default value). The value must be appropriate for the
declared data type of the generic. No spaces are alowed in the specification (except
within quotes) when specifying a string value.

« Override I nstance - specific Values (-G <Name>=<Vaue>)
Select to override generics that received explicit valuesin generic maps. The name and
value are specified as above. The use of this switch isindicated in the Override column
of the Genericslist.

VITAL

« Disable Timing Checks (+notimingchecks)
Disables timing checks generated by VITAL models.

» UseVital 2.2b SDF Mapping (-vital2.2b)
Selects SDF mapping for VITAL 2.2b (default is Vital95).

 Disable Glitch Generation (-noglitch)
Disables VITAL glitch generation.

TEXTIO files

o STD_INPUT (-std_input <filename>)
Specifiesthe file to use for the VHDL textio STD_INPUT file. Use the Browse button
to locate afile within your directories.

e STD_OUTPUT (-std_output <filename>)
Specifiesthefileto usefor theVHDL textio STD_OUTPUT file. Usethe Browse button
to locate afile within your directories.

ModelSim User’'s Manual

Simulating with the graphic interface UM-249

Verilog tab

Simulate £

Design | WHOL Werilog | Libraries | SDF | Optians |

— Pulze Options — Other Optionz

Digable pulze error and r Enable Hazard Checking
Warning mesgages [-hazards]

[+nio_pulze_mzg)
Digable Timing Checks in

— Rejection Limit—————— [Specify Blocks
I— % (rpulse_i] [+hotimingohecks]
— Emor Limit —Delay Selection
I % [+pulze_g]
- ||:Iefault ZI

FLlser Defined Arguments [+<pluzarg:]—

Optimize Preferences. . |

k. | Cancel |

The Verilog tab includes these options:

Pulse Options

* Disable pulseerror and warning messages (+no_pulse_msg)
Disables path pulse error warning messages.

« Regection Limit (+pulse_r/<percent>)
Sets the modul e path pulse rejection limit as a percentage of the path delay.

e Error Limit (+pulse_e/<percent>)
Sets the module path pulse error limit as a percentage of the path delay.

ModelSim User's Manual

UM-250 7 - Graphic interface

Other Options

» Enable Hazard Checking (-hazards)
Enables hazard checking in Verilog modules.

« Disable Timing Checksin Specify Blocks (+noti mingchecks)
Disables the timing check system tasks ($setup, $hold,...) in specify blocks.
» Delay Selection (+mindelays | +typdelays | +maxdelays)
Use the drop-down menu to select timing for min:typ:max expressions.
» User Defined Arguments (+<plusarg>)
Arguments are preceded with “+”, making them accessible through the Verilog PLI

routine mc_scan_plusar gs. The values specified in thisfield must have a"+" preceding
them or Model Sim may parse them incorrectly.

Libraries tab

Simulate |

Design | YHOL | Werilog Libraries | SDF | Options |

—Search Libraries [-L |

Add...
b adify...

Delete

—Search Libraries First [-Lf |

Add...
b odify...

Delete

k. | Cancel |

The Librariestab includes these options:
* Search Libraries(-L)
Specifiesthe libraries to search for design units instantiated from Verilog.

» Search LibrariesFirst (-Lf)
Same as Search Libraries but these libraries are searched before ‘usdlib.

ModelSim User’'s Manual

Simulating with the graphic interface UM-251

SDF tab

Simulate ' £

Design | WHOL | Werilog | Libraries SDF | Optians |

— SDF Files
Add...
b iy, ..
Delete
—SOF Options b uilti-5 ource delay
[T Dizable 5DF warnings
) O latest min O man
[” Feduce SOF emrors bo warnings

k. | Cancel |

The SDF (Standard Delay Format) tab includes these options:

SDF Files

Click the Add button to specify the SDF filesto load for the current ssimulation; filesare
then added to the Region/Filelist. You may also select afile on the listing to Delete or
Edit (opens the dialog box below).

|4 Add SDF Entry =10 x|

—SDF File

| Browse. . |

—Apply to Reagion Delay—
; o

[| Cancel

ModelSim User's Manual

UM-252 7 - Graphic interface

From the Add SDF File dialog box you can set the following options.

» SDF file ([<region>] = <sdf_filename>)
Specifiesthe SDFfileto use for annotation. Use the Br owse button to locate afile within
your directories.

« Apply toregion ([<region>] = <sdf_filename>)
Specifies the design region to use with the selected SDF options.
» Delay (-sdfmin | -sdftyp | -sdf max)

The drop-down menu selectsdelay timing (min, typ or max) to be used from the specified
SDF file. See also, " Specifying SDF files for simulation” (UM-290).

SDF options

+ Disable SDF war nings (-sdfnowarn)
Select to disable warnings from the SDF reader.

» Reduce SDF errorsto war nings (-sdf noerror)
Change SDF errorsto warnings so the simulation can continue.

* Multi-Sour ce Delay (-multisource_delay <sdf_option>)
Select max, min or latest delay. Controls how multiple PORT or INTERCONNECT
constructs that terminate at the same port are handled. By default, the Module I nput Port
Delay (MIPD) is set to the max value encountered in the SDF file. Alternatively, you can
choose the min or latest of the values.

ModelSim User’'s Manual

Simulating with the graphic interface UM-253

Options tab

Simulate K|

Design | YHOL | Verilog | Libraries | SDF Options |

[T Enable source file coverage
[T Treat non-existent WHOL filez opened for read as empty

r Do not share file descnptors for WHOL fles opened
for write or append that have identical names

— "LF File Bzzert File
| Browse... | ’T Browsze...

— [Other optionz

] Cancel

The Options tab includes these options:

 Enable source file cover age (-coverage)
Turn on collection of Code Coverage statistics. See Chapter 9 - Code Coverage.

» Treat non-existent VHDL files... (-absentisempty)
Cause VHDL files opened for read that target non-existent files to be treated as empty,
rather than Model Sim issuing fatal error messages.

» Do not sharefiledescriptors... (-nofileshare)
By default Model Sim shares a file descriptor for all VHDL files opened for write or
append that have identical names. This option turns off file descriptor sharing.

* WLF File (-wlIf <filename>)
Specify the name of the wave log format (WLF) file to create. The default is vsim.wif.

o Assert File (-assertfile <filename>)
Designate an alternative file for recording assertion messages. By default assertion
messages are output to the file specified by the TranscriptFile variablein the
modelsim.ini file (see"Creating atranscript file" (UM-349)).

« Other options
Specify any other vsim command (CR-189) arguments.

ModelSim User's Manual

UM-254 7 - Graphic interface

Setting default simulation options

Select Simulate > Simulation Options (Main window) to bring up the Simulation
Options dialog box shown below.

P Note: Changes made in the Simulation Options dialog box are the default for the
current simulation only. Options can be saved as the default for future simulations by
editing the simulator control variablesin the modelsim.ini file; the variables to edit are
noted in the text below.

Defaults tab

[¥] Simulation Dptions M=l B4
—Default Badie———— — Suppreszs Warnings:
¥ Symbaolic [" From Spnopsys Packages
' Binamy [~ From IEEE Mumeric 5td Packages
 Octal
 Decimal ~ Default Run ~Defaulk Force Type——
i~ Unsigned : " " Freeze
® [Hamdzdine Iberation Limnit « Dive
CAsOl 1000 i~ Deposit
k. LCancel Apply

The Defaults tab includes these options;

 Default Radix
Sets the default radix for the current simulation run. Y ou can also use ther adix (CR-108)
command to set the same temporary default. A permanent default can be set by editing
the DefaultRadix (UM-345) variable in the modelsim.ini file. The chosen radix isused for
all commands (for ce (CR-82), examine (CR-75), change (CR-50) are examples) and for
displayed valuesin the Signals, Variables, Dataflow, List, and Wave windows.

* Suppress Warnings
Selecting From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. Edit the StdArithNoWarnings (UM-347)
variable in the modelsim.ini file to set a permanent default.

Selecting From | EEE Numeric Std Pack ages suppresseswarnings generated within the
accelerated numeric_std and numeric_bit packages. Edit the NumericStdNoWarnings
(UM-347) variable in the modelsim.ini file to set a permanent default.

ModelSim User’'s Manual

Simulating with the graphic interface UM-255

 Default Run
Sets the default run length for the current simulation. Edit the RunLength (UM-347)
variable in the modelsim.ini file to set a permanent default.

* Iteration Limit
Sets alimit on the number of deltas within the same simulation time unit to prevent
infinite looping. Edit the IterationLimit (UM-346) variablein the modelsim.ini fileto set a
permanent iteration limit default.

 Default Force Type
Selects the default force type for the current simulation. Edit the DefaultForceKind (Um-
345) variable in the modelsim.ini file to set a permanent default.

Assertions tab
m Simulation Options [_ | O]

—Break on Aszertion ~lgnore &ssertions For—
* Fatal [T Failure
" Failure [Emar
" Emar [T “Waming
™ Waming [Mote
" Mate

k. LCancel Apply

The Assertions tab includes these options:

* Break on Assertion
Selects the assertion severity that will stop simulation. Edit the BreakOnA ssertion (UM-
345) variable in the modelsim.ini file to set a permanent default.

* lIgnore Assertions For
Selects the assertion type to ignore for the current simulation. Multiple selections are
possible. Edit the IgnoreFailure, IgnoreError, IgnoreWarning, and IgnoreNote (UM-346)
variables in the modelsim.ini file to set permanent defaults.

ModelSim User's Manual

UM-256 7 - Graphic interface

When an assertion type isignored, no message will be printed, nor will the ssimulation
halt (even if break on assertion is set for that type).

P Note: Assertionsthat appear within an instantiation or configuration port map clause
conversion function will not stop the simulation regardless of the severity level of the
assertion.

WLF Files tab

E Simulation Options [_ O] x|

 WLF Filz Size Limit—————— [—"WILF File Time Lirnit

{* Mo Size Limit * Mo Time Limit

" Size Limit |0 " Time Limit [0 [ns =]

—wLF Abtrnbutes——————— — D'esign Hierarchy
¥ Compress WLF data. ' Save regiohs containing logged signals.
[Delete WLF file an exit. i~ Save all regions in design.
k. LCancel Apply

The WLF Filestab includes these options:

* WLF File SizeLimit
Limitsthe WL Ffileby size (asclosely as possible) to the specified number of megabytes.
If both sizeand time limits are specified, the most restrictiveisused. Setting it to O results
in no limit. Edit the WLFSizeLimit (uM-348) variable in the modelsim.ini fileto set a
permanent default.

* WLF File TimeLimit
Limitsthe WLF file by size (as closely as possible) to the specified amount of time. If
both time and size limits are specified, the most restrictive is used. Setting it to O results
in no limit. Edit the WLFTimeLimit (uM-348) variable in the modelsim.ini fileto set a
permanent default.

e Compress WLF data
Compresses WLF files to reduce their size. Y ou would typically only disable
compression for troubleshooting purposes. Edit the WLFCompress (UM-348) variable in
the modelsim.ini file to set a permanent default.

ModelSim User’'s Manual

Simulating with the graphic interface UM-257

» Delete WLF file on exit
Specifies whether the WLF file should be deleted when the simulation ends. Edit the
WLFDel eteOnQuit (UM-348) variable in the modelsim.ini file to set a permanent default.

« Design Hierarchy
Specifieswhether to save all design hierarchy in the WLF file or only regions containing
logged signals. Edit the WL FSaveAllRegions (UM-348) variable in the modelsim.ini file
to set a permanent defaullt.

ModelSim User's Manual

UM-258 7 - Graphic interface

Creating and managing breakpoints

Model Sim supports both signal (i.e., when conditions) and file-line breakpoints.
Breakpoints can be set from multiple locations in the GUI or from the command line.

Signal breakpoints

Signal breakpoints (when conditions) instruct Model Sim to perform actions when the
specified conditions are met. For example, you can break on a signal value or at a specific
simulator time (see the when command (CR-205) for additional details). When a breakpoint
is hit, amessage in the Main window transcript identifies the signal that caused the
breakpoint.

Setting signal breakpoints from the command line

Y ou use the when command (CR-205) to set asignal breakpoint from the VSIM> prompt.
See the Command Reference for further details.

Setting signal breakpoints from the GUI

Signal breakpoints are most easily set in the Signals window (UM-183) and the Wave
window (UM-206). Select a signal, click your right mouse button, and select I nsert
Breakpoint from the context menu. A breakpoint is set on that signal and will belisted in
the Breakpoints dialog.

Alternatively you can set signal breakpoints from the Breakpoints dial og (UM-259).

File-line breakpoints

ModelSim User’'s Manual

File-line breakpoints are set on executable linesin your source files. When the lineis hit,
the simulator stops.

Setting file-line breakpoints from the command line

Y ou use the bp command (CR-46) to set afile-line breakpoint from the VSIM> prompt. See
the Command Reference for further details.

Setting file-line breakpoints from the GUI

File-line breakpoints are most easily set using your mouse in the Source window (UM-191).
Click on ablue line number at the left side of the Source window, and ared diamond
denoting a breakpoint will appear. The breakpoints are toggles — click once to create the
colored diamond; click again to disable or enable the breakpoint. To delete the breakpoint
completely, click the red diamond with your right mouse button, and select Remove
Breakpoint.

Alternatively you can set file-line breakpoints from the Breakpoints dialog (Um-259).

Creating and managing breakpoints UM-259

Breakpoints dialog

The Breakpoints dialog box allows you to create and manage both Signal breakpoints (Um-
258) and File-line breakpoints (Um-258). Select Tools > Breakpoints from the Main,
Signals, Source, or Wave windows to open the dialog.

Modify Breakpoints A

— Breakpaointz

% C:/dataflow/proc.vLine: 44

{lﬁ - #dataflawproc. wLine: 30 Add

% sim: Atop/zstrb

M sim: fbop/pr Madify...

Enable

4| I LI Delete
— Label

gim;Aopdestb
— Condition

zim: ftopfestrh
— Command

echo "Break on sim: topdzstrib' ; ztop

Ok | Cancel

The Breakpoints dialog includes these options:

» Breakpoints
List of all existing breakpoints. Breakpoints set from anywhere in the GUI, or from the
command line, arelisted. A red ' X’ through the hand icon means the breakpoint is
currently disabled.

» Add
Create anew signal or file-line breakpoint. See below for more details.

* Modify
Change properties of an existing breakpoint. See below for more details.

« Disable/Enable
De-activate or activate the selected breakpoint.

» Delete
Delete the selected breakpoint.

* Label
Text label of the selected breakpoint.

ModelSim User’'s Manual

UM-260 7 - Graphic interface

 Condition
The condition under which the breakpoint will be hit.

» Command
The command that will be executed when the breakpoint is hit.

Adding a breakpoint
Click Add to add a new breakpoint, and you will see the Add Breakpoint dial og.

Add Breakpoint a £

Breakpoint Type

* Bazed on a Signal or Signal Yalue

" Bazed on a File and Line number

M et | Cancel

Choose whether to create asignal breakpoint or afile-line breakpoint and then select Next.
Depending on which type of breakpoint you’re creating, you'll see one of the two dialogs
below. These are the same dialogs you'll seeif you modify an exiting breakpoint.

Signal Breakpoink i £

— Breakpoint Label

— Breakpoint Condition

Breakpaint Commandz

.........................

The Signals Breakpoint dialog includes these options:

» Breakpoint Label
Specify an optional text label for the breakpoint.

« Breakpoint Condition
Specify condition(s) to be met for the command(s) to be executed. See the when
command (CR-205) for more information on creating the condition statement.

ModelSim User’'s Manual

Creating and managing breakpoints UM-261

« Breakpoint Commands
Specify command(s) to be executed when the condition is met. Any ModelSim or Tcl
command or series of commands are valid, with one exception — the run command (CR-
114) cannot be used.

File Breakpoint 3 £

— File

|| Browsze. .. |
— Line— Instance Mame—————
—

— Breakpoint Condition

— Breakpoint Commandz

k. | Ear‘u:ell

The File Breakpoint dialog includes these options:

* File
Specify the file in which to set the breakpoint.

* Line
Specify theline number on which to set the breakpoint. Note that breakpoints can be set
only on executable lines.

* Instance Name
Specify aregion in which to apply the breakpoint. If left blank the breakpoint affects
every instance in the design.

« Breakpoint Condition
Specify a condition that determines whether the breakpoint is hit.

« Breakpoint Commands
Specify command(s) to be executed when the breakpoint is hit. Any ModelSim or Tcl
command or series of commands is valid, with one exception —the run command (CR-
114) cannot be used.

ModelSim User’'s Manual

UM-262 7 - Graphic interface

Miscellaneous tools and add-ons

Severa miscellaneous tools and add-ons are available from Model Sim menus. Follow the
links below for more information.

» The GUI Expression Builder (UM-262)
Edit > Sear ch > Search for Expression > Builder (List or Wave window)
Helps you build logical expressions for use in Wave and List window searches and
several simulator commands. For expression format syntax see
"GUI_expression_format" (CR-15).

 Language templates (UM-264)
View > Show language templates (Source window)
Helps you write VHDL or Verilog code

The GUI Expression Builder

The GUI Expression Builder is afeature of the Wave and List Signal Search dialog boxes,
and the List trigger properties dialog box. It aidsin building a search expression that
follows the "GUI_expression_format" (CR-15).

To locate the Builder:

« select Edit > Search (List or Wave window)

« select the Sear ch for Expression option in the resulting dialog box
« select the Builder button

|5 'Expression Builder

FEHpressiDn

— Ex=pression Builder
Ingzernt Selected Signal | [| e=
'event "ising 'Falling A Il I=
AMD| OR 1] 1 b r= g
®OR| SLL b z {= +
SEL| SRaA H L * ¢ %
Clear Save Test | Ok | Cancel

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in asignal name, you can select the signal in
the associated Wave or List window and press Insert Reference Signal in the Expression

ModelSim User’'s Manual

UM-263

ModelSim User’s Manual

Builder. Theresult will bethefull signal name added to the expressionfield. All Expression
Builder buttons correspond to the "Expression syntax™ (CR-18).

To search for when a signal reaches a particular value

Select the signal inthe Wavewindow and click I nsert Selected Signal and ==. Then, click
the value buttons or type a value.

To evaluate only on clock edges

Click the & & buttonto AND this condition with the rest of the expression. Then select the
clock in the Wave window and click I nsert Selected Signal and ‘rising. Y ou can also
select the falling edge or both edges.

Operators

Other buttonswill add operators of various kinds (see " Expression syntax" (CR-18)), or you
can typethemin.

See "Configuring a List trigger with Expression Builder" (Um-382) for an additional
Expression builder example.

UM-264 7 - Graphic interface

Language templates

Model Sim language templates help youwrite VHDL or Verilog code. They areacollection
of wizards, menus, and dialogs that produce code for new designs, language constructs,
logic blocks, etc.

A 'mportant: The language templates are not intended to replace thorough knowledge of
HDL coding. They areintended as an interactive "reference” for creating small sections
of code. If you are unfamiliar with VHDL or Verilog, you should attend atraining class
or consult one of the many books available on HDL languages.

To use the templates, either open an existing HDL file in the Source window (UM-191), or
select File > New (Source window) to create a new file. Once thefileis open, select View
> Show language templates . This displays a pane that shows the available templ ates.

@ source - Untitled-1.¥ =10l =|
File Edit Wiew Tools ‘Window

BE2HE b BRR MO ER 0HELELEY & & B D

® |ins Urtitled-1.v | =1 Templates

1 By Mew Design
T Language Constructs
J:Il Libram D efinitions
E] E ity
1A Architecture

Declarations
Statements
Bz Stimuluz Generators il
j I Clock -
- 25 -
A|¥[] Uniitied-1.v | EEER e el [+
[|t 1.Col 0 o

The templates that appear depend on the type of file you create. For example Module and
Primitive templates are available for Verilog files, and Entity and Architecture templates
are available for VHDL files.

ModelSim User’'s Manual

Miscellaneous tools and add-ons UM-265

Double-click anitemin thelist to begin creating code. Some of the items bring up wizards
while othersinsert code into your HDL file. The dialog below is part of the wizard for
creating a new design. Simply follow the directions in the wizards.

|5 Create New Design Wizard ; -10] x|

Thiz page allows vou to add each port of the block. Type the part
name in the zignal box and then zelect the port's type. |f the type s
a vector then fill in the range in the boxes provided.

“'ou can delete pinz by zelecting them on the diagram.

After nou have completed each port use the Add button ko have
the port added to the block. Once all the portz: have been entered
zelect the Finizh button.

— Port o Add/Delete

Signal: [b ZI
Fange: |7 Z lﬂ_ﬁ

Bliischon e
|7F In © Out © InOut

Add| Delete |

Codeinserted into your sourcefile may contain yellow or gray highlighted "fields". Y ellow
highlighting identifies an object that needs aname. Double-click the yellow object to enter
aname. Notethat al yellow objectswith the samelabel (e.g., "configuration_name" below)
will change to whatever name you enter. This ensures matching fields remain in synch.

B source - Untitled-1.vhd 3 =]

File Edit Wiew Tools Window

S & BB DM O EF s

hd I'” 11I Untitlad-1.vhd |L Templates

R New Design
EHT Language Constructs
J:IlLibrar_l,l Drefinitions
E] Ertity
A Architecture
\P] Package

Configuration
C] Declaration
1 Specification

0

CONFIGURATION configuration name OF entits
configuration declaratiwve part
block configuration

END confiquration name;

LTy B O TR o I

ModelSim User's Manual

UM-266 7 - Graphic interface

Gray highlighting indicates that a context menu with additional commandsis available. In
the example bel ow, right-clicking "configuration_declarative part” givesyouthreeoptions
for continuing the definition of the Configuration.

@ source - Untitled-1.vhd : B
File Edit YWiew Tools Sindow

e HSEG % BB DM oK EF i

& | int Untitled-1.vhd [=] Templates

BR New Design
EHT Language Constructs
MLihrar_l,l Drefinitions
E] Entity
A Architecture
P] Packags

Configuration
%g Declaration
IC] Specification

Declarations

CONFIGURATION conficuration name 0F entits
configuration deglaratiwe part
bln:u:]-:_cnnfigurat% DELETE

END conficuration name; s

Aftnbute Specification
qroup_declaration

Ton o W M

Statements

— = Cheehoan Cmemr—bern

=
I<_|p [Untitled-1.vhd | [l il 4 |
|

e 2 Cak 1R - madified

Thefirst menuitem isalways "DELETE." This allows you to remove unwanted objects
from the HDL code, such as optional fields.

Keyboard shortcut
<control - p> editsayellow field and expands agray field.

ModelSim User’'s Manual

Graphic interface commands UM-267

Graphic interface commands

The following commands provide control and feedback during simulation. Only brief
descriptions are provided here; for more information and command syntax see the
Model Sm Command Reference.

Window control and Description

feedback commands

batch_mode (CR-40) returnsalif Model Sim is operating in batch mode, otherwise returns a0;
itistypically used as acondition in an if statement

configure (CR-51) invokes the List or Wave widget configure command for the current
default List or Wave window

notepad (CR-95) asimpletext editor; used to view and edit ASCI|I files or create new files

write preferences (CR-219) saves the current GUI preference settingsto a Tcl preferencefile

ModelSim User's Manual

UM-268

ModelSim User’s Manual

UM-269

8 - Signal Spy

Chapter contents

Introducton UM-270

Designed fortestbenches UM-270
init signal_driver UM-271
init_signal_spy. UM-274
signal force UM-276
signal release UM-278
$init_signal_driver. UM-280
$init signal_spy UM-283
$signa_force UM-28
$signal_release. UM-287

This chapter describes the Signal Spy™ procedures and system tasks. These allow you to
monitor, drive, force, and release hierarchical itemsin VHDL or mixed designs.

ModelSim User's Manual

UM-270 8 - Signal Spy

Introduction

The Verilog language all ows accessto any signal from any other hierarchical block without
having to route it viathe interface. This means you can use hierarchical notation to either
assign or determine the value of asignal in the design hierarchy from atestbench. This
capability failswhen a Verilog testbench attempts to reference asignal in aVHDL block
or reference asignal in a Verilog block through aVHDL level of hierarchy.

This limitation exists because VHDL does not alow hierarchical notation. In order to
reference internal hierarchical signals, you have to resort to defining signalsin a global
package and then utilize those signals in the hierarchical blocksin question. But, this
requiresthat you keep making changes depending on the signal sthat you want to reference.

The Signal Spy procedures and system tasks overcome the aforementioned limitations.
They allow you to monitor (spy), drive, force, or release hierarchical objectsinaVHDL or
mixed design.

TheVHDL proceduresare provided viathe "Util package" (Um-62) withinthemodelsim lib
library. To access the procedures you would add lines like the following to your VHDL
code:

library model simlib;
use nodel simlib.util.all;

The Verilog tasks are available as built-in " System tasks" (Um-89). The table below shows
the VHDL procedures and their corresponding Verilog system tasks.

VHDL procedures Verilog system tasks
init_signal_driver (umM-271) $init_signal_driver (UM-280)
init_signal_spy (UM-274) $init_signal_spy (UM-283)
signa_force (UM-276) $signal_force (Um-285)
signa_release (UM-278) $signal_release (UM-287)

Designed for testbenches

ModelSim User’'s Manual

Signal Spy limits the portability of your code. HDL code with Signal Spy procedures or
tasksworksonly in Model Sim, not other simulators. Wetherefore recommend using Signal
Spy only in testbenches, where portability isless of a concern, and the need for such atool
is more applicable.

init_signal_driver UM-271

init_signal_driver

Theinit_signal_driver() proceduredrivesthevalueof aVHDL signal or Verilog net (called
the src_object) onto an existing VHDL signal or Verilog net (called the dest_object). This
allowsyouto drivesignalsor netsat any level of the design hierarchy fromwithinaVHDL
architecture (e.g., atestbench).

Theinit_signal_driver procedure drives the value onto the destination signal just asif the
signalsweredirectly connected inthe HDL code. Any existing or subsequent drive or force
of the destination signal, by some other means, will be considered with the
init_signal_driver value in the resolution of the signal.

Call only once

Theinit_signal_driver procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_driver only once for a particular
pair of signals. Onceinit_signal_driver is called, any change on the source signal will be
driven on the destination signal until the end of the simulation.

Thus, we recommend that you place all init_signa_driver callsinaVHDL process. You
need to code the VHDL process correctly so that it is executed only once. The VHDL
process should not be sensitive to any signals and should contain only init_signal_driver
callsand asimplewait statement. The processwill execute once and then wait forever. See
the exampl e below.

Syntax

init_signal _driver(src_object, dest_object, delay, delay_type, verbose)

Returns
Nothing

ModelSim User's Manual

UM-272 8 - Signal Spy

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog net. Use the path
separator to which your simulationis set (i.e.,
“I"or"."). A full hierarchical path must begin
witha"/" or ".". The path must be contained
within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog net. Usethe
path separator to which your simulation is set
(i.e.,"/" or"."). A full hierarchical path must
beginwith a"/" or ".". The path must be
contained within double quotes.

delay time Optional. Specifiesadelay relativeto thetime
at which the src_object changes. The delay
can be an inertial or transport delay. If no
delay is specified, then adelay of zerois
assumed.

delay_type del_mode Optional. Specifiesthe type of delay that will
be applied. The value must be either
mti_inertial or mti_transport. The default is
mti_inertial.

verbose integer Optional. Possible valuesare O or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object is
driving the dest_object. Default is 0, no

message.

Related procedures

init_signal_spy (Um-274), signal_force (UM-276), signal_release (UM-278)

Limitations

» When driving a Verilog net, the only delay_type allowed isinertial. If you set the delay
typeto mti_transport, the setting will beignored and the delay type will be mti_inertial.

« Any delaysthat are set to avalue less than the simulator resolution will be rounded to the
nearest resolution unit; no special warning will be issued.

ModelSim User’'s Manual

init_signal_driver UM-273

Example

l'ibrary | EEE, nodel simlib;
use | EEE. std_l ogic_1164. al | ;
use nodel simlib.util.all;

entity testbench is
end;

architecture only of testbench is
signal clkO0 : std_l ogic;

begin

gen_cl kO : process

begin
clkO <= "1" after 0 ps, 'O after 20 ps;
wait for 40 ps;

end process gen_cl kO;

drive_sig_process : process

begin
init_signal _driver("clk0", "/testbench/uut/blkl/clk", open, open, 1);
init_signal _driver("cl k0", "/testbench/uut/blk2/clk", 100 ps, \
nti_transport);
wai t ;

end process drive_sig_process;

end;

The above example creates alocal clock (clk0) and connects it to two clocks within the
design hierarchy. The .../blk1/clk will match local clkO and a message will be displayed.
The open entries allow the default delay and delay_type while setting the verbose
parameter to a 1. The .../blk2/clk will match the local clkO but be delayed by 100 ps.

ModelSim User's Manual

UM-274 8 - Signal Spy

init_signal_spy

Call only once

Syntax

Returns

Arguments

ModelSim User’'s Manual

Theinit_signal_spy() procedure mirrorsthevalue of aVHDL signal or Verilog register/net
(called the src_abject) onto an existing VHDL signal or Verilog register/net (called the
dest_object). Thisallowsyouto reference signals, registers, or netsat any level of hierarchy
from within aVHDL architecture (e.g., a testbench).

Theinit_signal_spy procedure only sets the value onto the destination signal and does not
drive or forcethe value. Any existing or subsequent drive or force of the destination signal,
by some other means, will override the value that was set by init_signal_spy.

Theinit_signal_spy procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_spy once for a particular pair of
signals. Onceinit_signal_spy is called, any change on the source signa will mirror on the
destination signal until the end of the simulation.

Thus, werecommend that you placeall init_signal_spy callsinaVVHDL process. Y ou need
to code the VHDL process correctly so that it is executed only once. The VHDL process
should not be sensitive to any signals and should contain only init_signal_spy callsand a
simple wait statement. The process will execute once and then wait forever, which isthe
desired behavior. See the example below.

init_signal _spy(src_object, dest_object, verbose)

Nothing
Name Type Description
src_object string Required. A full hierarchical path (or relative

path with reference to the calling block) to a
VHDL signal or Verilog register/net. Usethe
path separator to which your simulation is set
(i.e.,"/" or"."). A full hierarchical path must
beginwith a"/" or ".". The path must be
contained within double quotes.

init_signal_spy UM-275

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilogregister. Use
the path separator to which your simulation is
set (i.e., /" or"."). A full hierarchical path
must begin with a"/* or ".". The path must be
contained within double quotes.

verbose integer Optional. Possible valuesare O or 1. Specifies
whether you want a message reported in the

Transcript stating that the spy_object’svalue
ismirrored onto the dest_object. Default is 0,

NO message.

Related functions

init_signal_driver (UM-271), signal_force (UM-276), signal_release (UM-278)

Limitations
« When mirroring thevalueof aVerilog register/net ontoaVHDL signal, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.
 Verilog memories (arrays of registers) are not supported.
Example

library ieee, nodelsimlib;
use ieee.std_logic_1164.all
use nodelsimlib.util.all;
entity top is

end;

architecture only of top is
signal top_sigl : std_logic;

begi n
Spy_process : process
begi n
init_signal _spy("/top/uut/instl/sigl","/top_sigl",1);
wai t;

end process Sspy_process;
end;

In this example, the value of /top/uut/instl/sigl will be mirrored onto /top_sigl.

ModelSim User's Manual

UM-276 8 - Signal Spy

signal_force

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net (called the dest_object). This allows you to force signals, registers,
or nets at any level of the design hierarchy from within aVHDL architecture (e.g., a

testbench).

A signal_force works the same as the for ce command (CR-82) with the exception that you
cannot issue arepeating force. The force will remain on the signal until asignal_release, a
force or release command, or a subsequent signal_force isissued. Signal_force can be
called concurrently or sequentially in a process.

Syntax

si gnal _force(dest_object,

ver bose)

Returns
Nothing

Arguments

value, rel _tine, force_type, cancel _period,

Name

Type

Description

dest_object

string

Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation isset (i.e., /" or "."). A full
hierarchical path must begin witha"/* or ".".
The path must be contained within double
quotes.

value

string

Required. Specifies the value to which the
dest_object isto be forced. The specified
value must be appropriate for the type.

rel_time

time

Optional. Specifies atime relative to the
current simulation time for the force to occur.
The default is 0.

force _type

ModelSim User’'s Manual

forcetype

Optional. Specifiesthe type of force that will
be applied. The value must be one of the
following; default, deposit, drive, or freeze.
The default is"default” (which is "freeze" for
unresolved objects or "drive" for resolved
objects). See the for ce command (CRr-82) for
further details on force type.

signal_force UM-277

Name

Type Description

cancel_period time

Optional. Cancels the signal_force command
after the specified period of time units.
Cancellation occurs at the last simulation
delta cycle of atime unit. A value of zero
cancelstheforce at the end of the current time
period. Default is-1 ms. A negative value
means that the force will not be cancelled.

verbose integer

Optional. Possible valuesare 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the value is being
forced onthedest_object at the specified time.
Default is 0, no message.

Related functions

Limitations

Example

init_signal_driver (UM-271), init_signal_spy (UM-274), signal_release (UM-278)

Y ou cannot force bits or slices of aregister; you can force only the entire register.

l'ibrary | EEE, nodel sim.lib;

use
use

enti
end;

| EEE. std_l ogi c_1164. al | ;
nodel simlib.util.all;

ty testbench is

architecture only of testbench is

begi

n

force_process : process
begin

signal _force("/testbench/uut/blkl/reset",
signal _force("/testbench/uut/bl kl/reset",
wai t;

end process force_process;

end;

wqn
"o

, 0 ns,

40 ns,

freeze, open, 1);
freeze, 2 ns, 1);

The above example forcesreset to a"1" from time O nsto 40 ns. At 40 ns, reset is forced
toa"0", 2 ms after the second signal_force call was executed.

If you want to skip parameters so that you can specify subsequent parameters, you need to
use the keyword "open" as a placeholder for the skipped parameter(s). The first
signal_force procedure illustrates this, where an "open" for the cancel_period parameter
means that the default value of -1 msis used.

ModelSim User's Manual

UM-278 8 - Signal Spy

sighal_release

Thesignal_release() procedure releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registersor netsat any level of the design hierarchy fromwithinaVHDL architecture (e.g.,

atestbench).

A signal_release works the same as the nofor ce command (CR-92). Signal_rel ease can be
called concurrently or sequentially in a process.

Syntax

si gnal _rel ease(dest_object,

Returns
Nothing

Arguments

ver bose)

Name

Type

Description

dest_object

string

Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulationisset (i.e., /" or "."). A full
hierarchical path must begin witha"/" or ".".
The path must be contained within double
quotes.

verbose

integer

Optional. Possible valuesare O or 1. Specifies
whether you want a message reported in the
Transcript stating that the signal is being
released and thetime of therelease. Default is

0, no message.

Related functions

init_signal_driver (UM-271), init_signal_spy (UM-274), signal_force (UM-276)

Limitations

 You cannot release a bit or slice of aregister; you can release only the entire register.

ModelSim User’'s Manual

signal_release UM-279

Example

l'ibrary | EEE, nodel simlib;
use | EEE. std_l ogic_1164. al | ;
use nodel simlib.util.all;

entity testbench is
end;

architecture only of testbench is

signal release_flag : std_logic;

begin
stimdesign : process
begin
wait until release_flag = '1';

signal _rel ease("/testbench/ dut/bl kl/data", 1);
si gnal _rel ease("/testbench/dut/bl k1/cl k", 1);

end process stimdesign;

end;

The above example releases any forces on the signals data and clk when the signal
release flagisa"1". Both callswill send a message to the transcript stating which signal
was rel eased and when.

ModelSim User's Manual

UM-280 8 - Signal Spy

$init_signal_driver

Call only once

Syntax

Returns

Arguments

ModelSim User’'s Manual

The $init_signal_driver() system task drives the value of aVHDL signal or Verilog
register/net (called the src_object) onto an existing VHDL signal or Verilog net (called the
dest_object). This allows you to drive signals or nets at any level of the design hierarchy
from within aVerilog module (e.g., atestbench).

The $init_signal_driver system task drives the value onto the destination signal just as if
the signals were directly connected in the HDL code. Any existing or subsequent drive or
force of the destination signal, by some other means, will be considered with the
$init_signal_driver valuein the resolution of the signal.

The$init_signal_driver systemtask creates apersistent rel ationship between the sourceand
destination signals. Hence, you need to call $init_signal_driver only once for a particular
pair of signals. Once $init_signal_driver is called, any change on the source signal will be
driven on the destination signal until the end of the simulation.

Thus, we recommend that you place all $init_signal_driver callsinaVerilog initial block.
See the example below.

$init_signal _driver(src_object, dest_object, delay, delay_type, verbose)

Nothing

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signa or Verilog net. Use the path
separator to which your simulationisset (i.e.,
“I"or"."). A full hierarchical path must begin
witha"/" or ".". The path must be contained
within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog net. Usethe
path separator to which your simulation is set
(i.e.,"/" or"."). A full hierarchical path must
beginwith a"/" or ".". The path must be

contained within double quotes.

$init_signal_driver UM-281

Name Type Description
delay integer, real, or Optional. Specifiesadelay relativeto thetime
time at which the src_object changes. The delay

can be aninertial or transport delay. If no
delay is specified, then adelay of zerois
assumed.

delay type integer Optional. Specifies the type of delay that will
be applied. The value must be either 0
(inertia) or 1 (transport). The default is 0.

verbose integer Optional. Possible valuesare 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object is
driving the dest_object. Default is 0, no

message.

Related procedures

$init_signal_spy (um-283), $signal_force (Um-285), $signal_rel ease (UM-287)

Limitations

» When driving aVerilog net, the only delay_type allowed isinertial. If you set the delay
typeto 1 (transport), the setting will beignored, and the delay type will be inertial.

» Any delaysthat are set to avalue less than the simulator resolution will be rounded to the
nearest resolution unit; no special warning will be issued.

ModelSim User's Manual

UM-282 8 - Signal Spy

Example

ModelSim User’'s Manual

‘tinescale 1 ps / 1 ps
nodul e testbench
reg cl ko;

initial begin
cl kO = 1;
forever begin
#20 cl kO = ~cl kO
end
end

initial begin

$init_signal _driver("clk0", "/testbench/uut/blkl/clk", , , 1);
$init_signal _driver("clk0", "/testbench/uut/blk2/clk", 100, 1)
end
endnodul e

The above example creates alocal clock (clk0) and connects it to two clocks within the
design hierarchy. The .../blk1/clk will match local clkO and a message will be displayed.
The .../blk2/clk will match the local clkO but be delayed by 100 ps. For the second call to
work, the .../blk2/clk must be aVVHDL based signal, because if it were aVerilog net a 100
psinertial delay would consume the 40 ps clock period. Verilog nets are limited to only
inertial delays and thus the setting of 1 (transport delay) would be ignored.

$init_signal_spy

$init_signal_spy UM-283

The $init_signal_spy() system task mirrors the value of aVHDL signal or Verilog register/
net (called the src_object) onto an existing VHDL signal or Verilog register/net (called the
dest_object). Thisallowsyouto reference signals, registers, or netsat any level of hierarchy
from within aVerilog module (e.g., atestbench).

The $init_signal_spy system task only sets the value onto the destination signal and does
not drive or force the value. Any existing or subsequent drive or force of the destination
signal, by some other means, will override the value set by $init_signal_spy.

Call only once

The $init_signal_spy system task creates a persistent relationship between the source and
the destination signal. Hence, you need to call $init_signal_spy only once for a particular
pair of signals. Once $init_signal_spy iscalled, any change on the source signal will mirror
on the destination signal until the end of the simulation. Thus, we recommend that you
place al $init_signal_spy callsinaVerilog initial block. See the example below.

Syntax
$i nit_signal _spy(src_object, dest_object, verbose)
Returns
Nothing
Arguments
Name Type Description
src_object string Required. A full hierarchical path (or relative

path with reference to the calling block) to a
VHDL signal or Verilog register/net. Use the
path separator to which your simulation is set
(i.e,"/" or"."). A full hierarchical path must
begin witha"/" or ".". The path must be
contained within double quotes.

ModelSim User's Manual

UM-284 8 - Signal Spy

Name

Type

Description

dest_object

string

Required. A full hierarchical path (or relative
path with reference to the calling block) to a
Verilog register or VHDL signal. Usethe path
separator to which your simulationisset (i.e.,
“/"or"."). A full hierarchical path must begin
witha"/" or ".". The path must be contained
within double quotes.

verbose

integer

Optional. Possible valuesare O or 1. Specifies
whether you want a message reported in the

Transcript stating that the spy_object’svalue
ismirrored onto the dest_object. Default is 0,

NO message.

Related tasks

$init_signal_driver (um-280), $signal_force (Um-285), $signal_release (UM-287)

Limitations

» When mirroring the value of a VHDL signal onto a Verilog register, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

 Verilog memories (arrays of registers) are not supported.

Example

nmodul e testbench;

reg top_sigl;

initial
begi n

$init_signal _spy("/top/uut/instl/sigl","/top_sigl", 1);

end

endnodul e

In this example, the value of /top/uut/instl/sigl will be mirrored onto /top sigl.

ModelSim User’'s Manual

$signal_force

$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal
or Verilog register/net (called the dest_object). Thisallows you to force signals, registers,
or netsat any level of thedesign hierarchy fromwithin aVerilog module (e.g., atestbench).

A $signal_force works the same as the for ce command (CR-82) with the exception that you
cannot issue arepeating force. The force will remain on the signal until a$signal_release,
aforce or release command, or a subsequent $signal_force isissued. $signal_force can be
called concurrently or sequentially in a process.

Syntax

$si gnal _force(dest_object,

ver bose)

Returns
Nothing

Arguments

value, rel _tine, force_type, cancel _period,

Name

Type

Description

dest_object

string

Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation isset (i.e., /" or "."). A full
hierarchical path must begin witha"/* or ".".
The path must be contained within double
quotes.

value

string

Required. Specifies the value to which the
dest_object isto be forced. The specified
value must be appropriate for the type.

rel_time

integer, real, or
time

Optional. Specifiesatime relative to the
current simulation time for the force to occur.
The default is 0.

force _type

integer

Optional. Specifies the type of force that will
be applied. The value must be one of the
following; O (default), 1 (deposit), 2 (drive),
or 3 (freeze). Thedefaultis"default” (whichis
"freeze" for unresolved objects or "drive" for
resolved objects). See the for ce command
(cr-82) for further details on force type.

UM-285

ModelSim User's Manual

UM-286 8 - Signal Spy

Name Type Description

cancel_period integer, real, time | Optional. Cancelsthe$signal_forcecommand
after the specified period of time units.
Cancellation occurs at the last simulation
delta cycle of atime unit. A value of zero
cancelstheforce at the end of the current time
period. Default is-1. A negative value means
that the force will not be cancelled.

verbose integer Optional. Possible valuesare O or 1. Specifies
whether you want a message reported in the
Transcript stating that the value is being
forced onthedest_object at the specified time.
Default is 0, no message.

Related functions

$init_signal_driver (um-280), Sinit_signal_spy (UM-283), $signal_release (UM-287)

Limitations

Y ou cannot force bits or slices of aregister; you can force only the entire register.

Example

‘tinescale 1 ns / 1 ns
nodul e testbench
initial
begin
$signal _force("/testbench/uut/bl kl/reset", "1", 0, 3, , 1)

$si gnal _force("/testbench/uut/blkl/reset", "0", 40, 3, 200000, 1);
end

endnodul e

The above example forcesreset to a"1" from time 0 nsto 40 ns. At 40 ns, reset is forced
toa"0", 200000 ns after the second $signal_force call was executed.

ModelSim User’'s Manual

$signal_release

The $signal_release() system task releases any force that was applied to an existing VHDL

$signal_release

signal or Verilog register/net (called the dest_object). This allows you to release signals,

registers, or nets at any level of the design hierarchy from within aVerilog module (e.g., a

testbench).

A $signal_release works the same as the nofor ce command (CR-92). $signal_release can be

called concurrently or sequentially in a process.

Syntax

$si gnal _rel ease(dest_object,

Returns
Nothing

Arguments

ver bose)

Name

Type

Description

dest_object

string

Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulationisset (i.e., /" or "."). A full
hierarchical path must begin witha"/" or ".".
The path must be contained within double
quotes.

verbose

integer

Optional. Possible valuesare O or 1. Specifies
whether you want a message reported in the
Transcript stating that the signal is being
released and thetime of therelease. Default is

0, no message.

Related functions

$init_signal_driver (um-280), Sinit_signal_spy (Um-283), $signal_force (UM-285)

Limitations

 You cannot release a bit or slice of aregister; you can release only the entire register.

UM-287

ModelSim User's Manual

UM-288 8 - Signal Spy

Example

nodul e t estbench;
reg rel ease_fl ag;
al ways @ posedge rel ease_flag) begin
$si gnal _rel ease("/testbench/ dut/bl kl/ data", 1);

$si gnal _rel ease("/testbench/dut/bl kl/clk", 1);
end

endnodul e

The above example releases any forces on the signals data and clk when the register
release flag transitionsto a"1". Both calls will send a message to the transcript stating
which signal was released and when.

ModelSim User’'s Manual

UM-289

9 - Standard Delay Format (SDF) Timing Annotation

Chapter contents

Specifying SDF filesfor smulation UM-290
Instance specification. UM-290
SDF specification withtheGul UM-291
Errorsandwarnings UM-201

VHDL VITAL SDF UM-292
SDF to VHDL generic matchi ng e UM-292
Resolvingerrors UM-293

VerilogSDF UM-294
The $sdf _annotate system task .. .o UM294
SDF to Verilog construct matching UM-295
Optional edge specifications UM-298
Optiona conditions UM-299
Roundedtimingvalues UM-29

SDF for Mixed VHDL and VerilogDesigns UM-300

Interconnectdelays. UM-300

Disablingtimingchecks UM-300

Troubleshooting UM-301
Specifying the wrong mstance .o . UM-301
Mistaking a component or module name for an mstance Iabel . UM-302
Forgetting to specify theinstance. UM-302

This chapter discusses Model Sim' s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’ s built-in SDF annotator.
SDF and ModelSim

SDF timing annotations can be applied only to your FPGA vendor’s libraries; all other
libraries will simulate without annotation.

ModelSim User's Manual

UM-290 9 - Standard Delay Format (SDF) Timing Annotation

Specifying SDF files for simulation

Model Sim supports SDF versions 1.0 through 3.0. The simulator’ s built-in SDF annotator
automatically adjuststo the version of thefile. Use the following vsim (CR-189) command-
line options to specify the SDF files, the desired timing values, and their associated design
instances:

-sdf m n [<instance>=] <fil ename>

-sdftyp [<instance>=]<fil ename>
-sdf max [<i nstance>=] <fil ename>

Any number of SDF files can be applied to any instance in the design by specifying one of
the above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical,
and -sdfmax to select maximum timing values from the SDF file.

Instance specification

ModelSim User’'s Manual

Theinstance pathsin the SDF file are relative to the instance to which the SDF is applied.
Usudlly, thisinstanceis an ASIC or FPGA moded instantiated under a testbench. For
exampl e, to annotate maximum timing values from the SDF file myasic.sdf to an instance
ul under atop-level named testbench, invoke the simulator as follows:

vsim -sdf max /testbench/ ul=nyasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. Thisisusually
incorrect because in most cases the model isinstantiated under a testbench or within a
larger system level simulation. Infact, the design can have several models, each having its
own SDFfile. In this case, specify an SDF file for each instance. For example,

vsim -sdf max /systenful=asicl. sdf -sdfmax /systenfu2=asic2.sdf system

Specifying SDF files for simulation UM-291

SDF specification with the GUI

As an alternative to the command-line options, you can specify SDF filesin the Simulate
dialog box under the SDF tab.

Design | WHOL | Werilog | Libraries SDF | Options |

—SDF Files
Add...
b odify...
Delete
—5S0F Ophions Muli-Source delay
[~ Disable SDF warnings
) O latest € min © max
[” Reduce SDF emors o warnings

] | Cancel |

Y ou can accessthisdialog by invoking the simulator without any argumentsor by selecting
Simulate > Simulate (Main window). See the GUI chapter for a description of thisdialog.

For Verilog designs, you can also specify SDF files by using the $sdf _annotate system
task. See "The $sdf_annotate system task" (UM-294) for more details.

Errors and warnings

Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim (CR-189) to
change SDF errorsto warnings so that the simulation can continue. Warning messages can
be suppressed by using vsim with either the -sdfnowar n or +nosdfwarn options.

Another option isto use the SDF tab from the Simulate dialog box (shown above). Select
Disable SDF war nings(-sdfnowarn, or +nosdfwarn) to disable warnings, or select Reduce
SDF errorsto war nings (-sdfnoerror) to change errors to warnings.

See "Troubleshooting" (Um-301) for more information on errors and warnings and how to
avoid them.

ModelSim User's Manual

UM-292 9 - Standard Delay Format (SDF) Timing Annotation

VHDL VITAL SDF

VHDL SDF annotation works on VITAL cellsonly. The IEEE 1076.4 VITAL ASIC
Modeling Specification describes how cells must be written to support SDF annotation.
Once again, the designer does not need to know the details of this specification because the
library provider has already written the VITAL cells and tools that create compatible SDF
files. However, thefollowing summary may help you understand simulator error messages.
For additional VITAL specification information, see "VITAL specification and source
code" (UM-60).

SDF to VHDL generic matching

ModelSim User’'s Manual

An SDF file contains delay and timing constraint datafor cell instancesin the design. The
annotator must locate the cell instances and the placehol ders (VHDL generics) for the
timing data. Each type of SDF timing construct is mapped to the name of a generic as
specified by the VITAL modeling specification. The annotator |ocates the generic and
updatesit with the timing value from the SDFfile. It isan error if the annotator failsto find
the cell instance or the named generic. The following are examples of SDF constructs and
their associated generic names:

SDF construct Matching VHDL generic name
(IOPATH ay (3)) tpd ay

(IOPATH (posedge clk) q (1) (2) tpd clk_q posedge
(INTERCONNECT ully u2/a(5)) tipd_a

(SETUPd (posedge clk) (5)) tsetup_d_clk_noedge posedge

(HOLD (negedge d) (posedge clk) (5)) thold _d clk negedge posedge

(SETUPHOLD d clk (5) (5)) tsetup_d_clk & thold_d_clk

(WIDTH (COND (reset==1"b0) clk) (5)) | tpw_clk reset_eq O

VHDL VITAL SDF UM-293

Resolving errors

If the simulator finds the cell instance but not the generic then an error message is issued.
For example,

** Error (vsim SDF-3240) mnyasic. sdf (18)

I nstance '/testbench/dut/ul’ does not have a generic nanmed 'tpd_a_y
In this case, make sure that the design is using the appropriate VITAL library cells. If itis,
then thereis probably amismatch between the SDF and the VITAL cells. Y ou need to find
the cell instance and compare its generic names to those expected by the annotator. L ook
inthe VHDL source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the
VITAL library cells are not being used. If the generic names do look like VITAL timing
generic names but don’'t match the names expected by the annotator, then there are several
possibilities:

» The vendor’ stools are not conforming to the VITAL specification.

» The SDF file was accidentally applied to the wrong instance. In this case, the ssmulator

also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

» Thevendor’slibrary and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim (CR-189) with
the -vital2.2b option:

vsim -vital 2. 2b -sdf max /testbench/ul=nyasic. sdf testbench

For more information on resolving errors see "Troubleshooting” (UM-301).

ModelSim User's Manual

UM-294 9 - Standard Delay Format (SDF) Timing Annotation

Verilog SDF

Verilog designs can be annotated using either the simulator command-line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The
command-line options annotate the design immediately after it is loaded, but before any
simulation events take place. The $sdf_annotate task annotates the design at the timeit is
called in the Verilog source code. This provides more flexibility than the command-line
options.

The $sdf_annotate system task

ModelSim User’'s Manual

The syntax for $sdf_annotateis:

Syntax

$sdf _annot ate
(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"]
["<mtmspec>"], ["<scale_factor>"], ["<scale_type>"]);

Arguments

"<sdf fil e>"

String that specifies the SDF file. Required.

<i nst ance>
Hierarchical name of the instance to be annotated. Optional. Defaults to the instance
where the $sdf_annotate call is made.

"<config_file>"
String that specifies the configuration file. Optional. Currently not supported, this
argument isignored.

"<log_file>"
String that specifies the logfile. Optional. Currently not supported, this argument is
ignored.

"<nt m spec>"
String that specifies the delay selection. Optional. The allowed strings are "minimum”,
"typical"”, "maximum®”, and "tool_control”. Caseisignored and the default is
"tool_control”. The "tool_control" argument means to use the delay specified on the

command line by +mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

"<scal e_factor>"
String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier isareal number that isused to
scal e the corresponding delay in the SDF file.

"<scal e_type>"
String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec>
delay selection is always used to select the delay scaling factor, but if a<scale type> is
specified, then it will determine the min/typ/max selection from the SDF file. The

allowed strings are "from_min", "from_minimum", "from_typ", "from_typical",

"from_max", "from_maximum", and "from_mtm". Case isignored, and the default is
"from_mtm", which means to use the <mtm_spec> value.

Verilog SDF UM-295

Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at
the end of the argument list. For example, to specify only the SDF file and the instance to
which it applies:

$sdf _annot ate("nyasi c. sdf ", testbench.ul);

To also specify maximum delay values:

$sdf _annot ate("nyasi c. sdf ", testbench.ul, , , "maximunt');

SDF to Verilog construct matching

The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each
SDF construct, the annotator locates the cell instance and updates each specify path delay
or timing check that matches. An SDF construct can have multiple matches, in which case
each matching specify statement is updated with the SDF timing value. SDF constructs are
matched to Verilog constructs as follows:

IOPATH is matched to specify path delays or primitives:

SDF Verilog
(IOPATH (posedge clk) q (3) (4)) (posedgeclk =>q) = 0;
(IOPATH ay (3) (4) buf ul (y, a);

The IOPATH construct usually annotates path delays. If the module contains no path
delays, then al primitives that drive the specified output port are annotated.

INTERCONNECT and PORT are matched to input ports:

SDF Verilog
(INTERCONNECT ul.y u2.a(5)) input &
(PORT u2.a(5)) inout &

Both of these constructsidentify amoduleinput or inout port and create an internal net that
isadelayed version of the port. Thisis called aModule Input Port Delay (MIPD). All
primitives, specify path delays, and specify timing checks connected to the original port are
reconnected to the new MIPD net.

PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

SDF Verilog

(PATHPULSE ay (5) (10)) (a=>y)=0;

(GLOBALPATHPULSE ay (30) (60)) (a=>y)=0;

If the input and output ports are omitted in the SDF, then all path delays are matched in the
cell.

ModelSim User's Manual

UM-296 9 - Standard Delay Format (SDF) Timing Annotation

DEVICE is matched to primitives or specify path delays:

SDF Verilog
(DEVICEY (5)) and ul(y, a, b);
(DEVICEY (5)) (a=>y)=0; (b=>y)=0;

If the SDF cell instance is a primitive instance, then that primitive’s delay is annotated. If
it isamodule instance, then all specify path delays are annotated that drive the output port
specified in the DEVICE construct (all path delays are annotated if the output port is
omitted). If the module contains no path delays, then all primitivesthat drive the specified
output port are annotated (or all primitives that drive any output port if the output port is
omitted).

SETUP is matched to $setup and $setuphold:

SDF Verilog
(SETUPd (posedge clk) (5)) $setup(d, posedge clk, 0);
(SETUPd (posedge clk) (5)) $setuphol d(posedge clk, d, 0, 0);

HOLD is matched to $hold and $setuphold:

SDF Verilog
(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);
(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SETUPHOLD is matched to $setup, $hold, and $setuphold:

SDF Verilog

(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

RECOVERY is matched to $recovery:

SDF Verilog

(RECOVERY (negedge reset) (posedge clk) (5)) $recovery(negedge reset, posedge clk, 0);

REMOVAL is matched to $removal:

SDF Verilog

(REMOVAL (negedge reset) (posedge clk) (5)) $removal (negedge reset, posedge clk, 0);

ModelSim User’'s Manual

Verilog SDF UM-297

RECREM is matched to $recovery, $removal, and $recrem:

SDF

Verilog

(RECREM (negedge reset) (posedge clk) (5) (5))

$recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5))

$removal (negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5))

$recrem(negedge reset, posedge clk, 0);

SKEW is matched to $skew:

SDF

Verilog

(SKEW (posedge clk1) (posedge clk2) (5))

$skew(posedge clkl, posedge clk2, 0);

WIDTH is matched to $width:

SDF

Verilog

(WIDTH (posedge clk) (5))

$width(posedge clk, 0);

PERIOD is matched to $period:

SDF

Verilog

(PERIOD (posedge clk) (5))

$period(posedge clk, 0);

NOCHANGE is matched to $nochange:

SDF

Verilog

(NOCHANGE (negedge write) addr (5) (5))

$nochange(negedge write, addr, 0, 0);

ModelSim User's Manual

UM-298 9 - Standard Delay Format (SDF) Timing Annotation

Optional edge specifications

ModelSim User’'s Manual

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

« A match occursif the SDF port does not have an edge.
« A match occursif the specify port does not have an edge.
« A match occursif the SDF port edge isidentical to the specify port edge.

» A match occursif explicit edge transitionsin the specify port edge overlap with the SDF
port edge.

These rules alow SDF annotation to take place even if there is a difference between the
number of edge-specific constructs in the SDF file and the Verilog specify block. For
example, the Verilog specify block may contain separate setup timing checks for afalling
and rising edge on data with respect to clock, while the SDF file may contain only asingle
setup check for both edges:

SDF Verilog
(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);
(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

Inthiscase, the cell accommodates more accurate data than can be supplied by thetool that
created the SDF file, and both timing checks correctly receive the same value. Likewise,
the SDF file may contain more accurate data than the model can accommodate.

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);

(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

Inthis case, both SDF constructs are matched and the timing check receivesthe value from
the last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF fileis limited to posedge and negedge. The explicit edge
specifiersare 01, 0x, 10, 1x, x0, and x1. The set of [01, 0x, x1] is equivalent to posedge,
whilethe set of [10, 1x, x0] is equivalent to negedge. A match occursif any of the explicit
edges in the specify port match any of the explicit edges implied by the SDF port. For
example,

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(data, edge[01, 0x] clk, 0);

Verilog SDF UM-299

Optional conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

* A match occursif the SDF does not have a condition.

« A match occurs for atiming check if the SDF port condition is semantically equivalent
to the specify port condition.

» A match occursfor apath delay if the SDF condition islexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

SDF Verilog
(SETUP data (COND (reset!=1) (posedge clock)) (5)) | $setup(data, posedge clk & & & (reset==0), 0);

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

SDF Verilog
(COND (r1]|r2) (IOPATH clk g (5))) | if (r1]|r2) (clk => q) = 5; // matches
(COND (r1]|r2) (IOPATH clk q (5))) | if (r2]|r1) (clk =>q) = 5; // does not match

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded timing values

The SDF TIMESCALE construct specifies time units of valuesin the SDF file. The
annotator rounds timing values from the SDF file to the time precision of the modul e that
isannotated. For example, if the SDF TIMESCALE is Insand avalue of .016 is annotated
to a path delay in amodul e having atime precision of 10ps (from the timescale directive),
then the path delay receives a value of 20ps. The SDF value of 16psis rounded to 20ps.
Interconnect delays are rounded to the time precision of the module that contains the
annotated MIPD.

ModelSim User's Manual

UM-300 9 - Standard Delay Format (SDF) Timing Annotation

SDF for Mixed VHDL and Verilog Designs

Annotation of amixed VHDL and Verilog designisvery flexible. VHDL VITAL cellsand
Verilog cells can be annotated from the same SDFfile. Thisflexibility isavailable only by
using the simulator’s SDF command-line options. The Verilog $sdf _annotate system task
can annotate Verilog cells only. See the vaim command (CR-189) for more information on
SDF command-line options.

Interconnect delays

An interconnect delay represents the delay from the output of one device to the input of
another. Model Sim can model single interconnect delays or multisource interconnect
delaysfor Verilog, VHDL/VITAL, or mixed designs. See the vsim command for more
information on the relevant command-line arguments.

Timing checksare performed on the interconnect delayed versions of input ports. Thismay
result in misleading timing constraint violations, because the ports may satisfy the
constraint while the delayed versions may not. If the simulator seems to report incorrect
violations, be sure to account for the effect of interconnect delays.

Disabling timing checks

Model Sim offers anumber of options for disabling timing checks on a'global" or
individual basis. The table below provides a summary of those options. See the command
and argument descriptions in the Model Sm Command Reference for more details.

Command and argument Effect

vlog +notimingchecks disables timing check system tasksfor all instances in the specified
Verilog design

vlog +nospecify disables specify path delays and timing checksfor al instancesin the
specified Verilog design

vsim +no_neg_tchk disables negative timing check limits by setting them to zero for all
instances in the specified design

vsim +no_natifier disables the toggling of the notifier register argument of the timing
check system tasks for all instances in the specified design

vsim +no_tchk_msg disables error messages issued by timing check system tasks when
timing check violations occur for al instances in the specified design

vsim +notimingchecks disables Verilog and VITAL timing checksfor al instancesin the
specified design

ModelSim User’'s Manual

Troubleshooting UM-301

Troubleshooting

Specifying the wrong instance

By far, the most common mistakein SDF annotation is to specify thewrong instanceto the
simulator’s SDF options. The most common case is to leave off the instance altogether,
which is the same as selecting the top-level design unit. Thisis generally wrong because
the instance paths in the SDF are relative to the ASIC or FPGA model, which is usually
instantiated under atop-level testbench. See "Instance specification” (UM-290) for an
example.

A common example for both VHDL and Verilog test benches is provided below. For
simplicity, the test benches do nothing more than instantiate a model that has no ports.

VHDL testbench

entity testbench is end

architecture only of testbench is
conmponent nyasic
end conponent;

begi n
dut : nyasic;

end;

Verilog testbench

nodul e testbench
nyasi c dut();
endnodul e

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate simulator invocation might be:

vsi m - sdf max /testbench/ dut =nyasi c. sdf testbench

Optionally, you can leave off the name of the top-level:

vsi m - sdf max /dut =nmyasic. sdf testbench

The important thing is to select the instance for which the SDF isintended. If the model is
deep within the design hierarchy, an easy way to find the instance name is to first invoke
the simulator without SDF options, open the structure window, navigate to the model
instance, select it, and enter the environment command (CR-74). This command displays
the instance name that should be used in the SDF command-line option.

ModelSim User’'s Manual

UM-302 9 - Standard Delay Format (SDF) Timing Annotation

Mistaking a component or module name for an instance label

Another common error isto specify the component or modul e name rather than theinstance
label. For example, the following invocation iswrong for the above testbenches:

vsi m - sdf max /testbench/ nyasi c=nyasi c. sdf testbench

This results in the following error message:

** Error (vsim SDF-3250) nyasic.sdf (0):
Failed to find I NSTANCE '/testbench/ nyasic’.

Forgetting to specify the instance

If you leave off the instance altogether, then the simulator issues a message for each
instance path in the SDF that is not found in the design. For example,

vsi m - sdf max nyasi c. sdf testbench

Resultsin:

** Error (vsim SDF-3250) mnyasic.sdf (0):
Failed to find | NSTANCE ' /testbench/ul’

** Error (vsim SDF-3250) nyasic.sdf (0):
Failed to find | NSTANCE '/t estbench/ u2’

** Error (vsim SDF-3250) nyasic.sdf (0):
Failed to find | NSTANCE '/t est bench/ u3’

** Error (vsim SDF-3250) nyasic.sdf (0):
Failed to find | NSTANCE '/t est bench/ u4’

** Error (vsim SDF-3250) nyasic.sdf (0):
Failed to find | NSTANCE '/t est bench/ u5’

** \WArning (vsi m SDF-3432) nyasic. sdf:
This file is probably applied to the wong instance.

** \WArning (vsi m SDF-3432) nyasic. sdf:
I gnoring subsequent mssing instances fromthis file.

After annotation is done, the simulator issues a summary of how many instances were not
found and possibly a suggestion for a qualifying instance:

** \WArning (vsi m SDF-3440) nyasic. sdf:
Failed to find any of the 358 instances fromthis file.

** VWArning (vsi m SDF-3442) nyasic. sdf:
Try instance '/testbench/dut’. It contains all instance paths fromthis
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see "Resolving errors' (UM-293) for specific VHDL VITAL SDF troubleshooting.

ModelSim User’'s Manual

UM-303

10 - Value Change Dump (VCD) Files

Chapter contents

ModelSim VCD commandsand VCDtasks UM-304
CreatingaVvCDfile UM-306
Flow for four-stateVCD file UM-306
Flow for extendedVCDfile UM-306
Resimulating adesign fromaVvCbfile UM-307
Examplel— Verilogcounter UM-307
Example2—VHDLadder UM-307
Example3— Mixed-HDL design UM-308
A VCD filefromsourcetooutput. UM-309
VHDL sourcecode UM-309
VCD simulator commands UM-309
vVCDoutput UM-310
Capturing port driverdata UM-312
Supported TSSI states. UM-312
Strengthvalues UM-313
Port identifiercode UM-313
Example VCD output fromved dumpports UM-314

This chapter explains Model Technology’s Verilog VCD implementation for Model Sim.

TheVCD fileformat is specified in the |IEEE 1364 standard. It isan ASCI| file containing
header information, variable definitions, and variable value changes. VCD isin common
use for Verilog designs, and is controlled by VCD system task callsin the Verilog source
code. Model Sim provides simulator command equivalents for these system tasks and
extends VCD support to VHDL designs; the Model Sim commands can be used on either
VHDL or Verilog designs.

P Note: If you need vendor-specific ASIC design-flow documentation that incorporates
VCD, please contact your ASIC vendor.

ModelSim User's Manual

UM-304 10 - Value Change Dump (VCD) Files

ModelSim VCD commands and VCD tasks

ModelSim User’'s Manual

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the
VCD file along with the results of those commands. The table below maps the VCD

commands to their associated tasks.

VCD commands

VCD system tasks

ved add (CR-127) $dumpvars
vcd checkpoint (CR-128) $dumpal
ved file (CR-136)A $dumpfile
ved flush (CR-140) $dumpflush
ved limit (CR-141) $dumplimit
ved off (CR-142) $dumpoff
ved on (CR-143) $dumpon

Model Sim versions 5.5 and later also support extended VCD (dumpports system tasks).
The table below maps the VCD dumpports commands to their associated tasks.

VCD dumpports commands

VCD system tasks

ved dumpports (CR-130)

$dumpports

vcd dumpportsall (CR-131)

$dumpportsall

ved dumpportsflush (CR-132)

$dumpportsflush

ved dumpportslimit (CR-133)

$dumpportslimit

vcd dumppor tsoff (CR-134)

$dumpportsoff

ved dumpportson (CR-135)

$dumpportson

ModelSim versions 5.5 and later support multiple VCD files. This functionality isan
extension of the IEEE Std 1364 specification. The tasks behave the same as the IEEE
equivalent tasks such as $dumpfile, $dumpvar, etc. The difference is that $fdumpfile can
be called multiple times to create more than one V CD file, and the remaining tasks require

afilename argument to associate their actions with a specific file.

VCD commands

VCD system tasks

vcd add (CR-127) -file <fil ename> $fdumpvars
ved checkpoint (CR-128) <fi | enane> $fdumpall
ved files (CR-138) <fi | enane>A $fdumpfile
ved flush (CR-140) <f i | enane> $fdumpflush

ModelSim VCD commands and VCD tasks UM-305

VCD commands VCD system tasks
ved limit (CR-141) <f i | ename> $fdumplimit

vcd off (CR-142) <fi | enane> $fdumpoff

vcd on (CR-143) <f i | enane> $fdumpon

A mportant: Note that two commands (ved file and ved files) are available to specify a
filename and state mapping for aVCD file. Vcd file allows for only one VCD file and
existsfor backwards compatibility with Model Sim versionsprior to 5.5. Vcd filesallows
for creation of multiple VCD files and is the preferred command to usein ModelSim
versions 5.5 and | ater.

ModelSim User's Manual

UM-306 10 - Value Change Dump (VCD) Files

Creating a VCD file

There are two flowsin Model Sim for creating aVCD file. One flow produces afour-state
VCD filewith variable changesin 0, 1, x, and z with no strength information; the other
produces an extended VCD file with variable changesin all states and strength information
and port driver data.

Both flows will also capture port driver changes unless filtered out with optional
command-line arguments.

The commands shown below are documented in detail in the Model S m Command
Reference.

Flow for four-state VCD file
First, compile and load the design:

% cd ~/ nodel t ech/ exanpl es

% vlib work

% vl og counter.v tcounter.v
% vsi mtest_counter

Next, with the design loaded, specify the VCD file name with the ved file command (CR-
136) and add items to the file with the ved add command (CR-127):

VSIM 1> ved file myvedfile.ved
VSIM 2> vecd add /test_counter/dut/*
VSI M 3> run

VSIM 4> quit -f

There will now be aVCD file in the working directory.

Flow for extended VCD file
First, compile and load the design:

% cd ~/ nodel t ech/ exanpl es

% vlib work

% vl og counter.v tcounter.v
% vsi mtest_counter

Next, with the design loaded, specify the VCD file name and items to add with the ved
dumpports command (CR-130):

VSIM 1> ved dunpports -file myvedfile.ved /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be an extended VCD filein the working directory.

Case sensitivity

VHDL is not case sensitive so Model Sim converts all signal namesto lower case when it
produces aVVCD file. Conversely, Verilog designs are case sensitive so ModelSim
maintains case when it produces aV CD file.

ModelSim User’'s Manual

Resimulating a design from a VCD file UM-307

Resimulating a design from a VCD file

To resimulate with aVCD file, you capture the ports of a design unit instance within a
testbench or design. The design may be VHDL, Verilog, or mixed HDL. Y ou can
resimulate only at the top level of the module for which you captured ports.

The general procedure for resimulating with aVCD fileincludes two steps:
1 Create aVCD file using the ved dumpports command (CR-130).

2 Rerun without the testbench, using the -vedstim argument to vsim (CR-189). Note that
-vedstim works only with VCD files that were created by a Model Sim simulation.

Example 1 — Verilog counter
First, create the VCD file using ved dumpports:

% cd ~/ nodel t ech/ exanpl es

% vlib work

% vl og counter.v tcounter.v

% vsi mtest_counter

VSIM 1> vecd dunpports -file counter.vecd /test_counter/dut/*
VSI M 2> run

VSIM 3> quit -f

Next, rerun the counter without the testbench, using the -vedstim argument:

% vsim -vcdstimcounter.vcd counter
VSI M 1> add wave /*
VSIM 2> run 200

Example 2 — VHDL adder
First, create the VCD file using ved dumpports:;

% cd ~/ nodel t ech/ exanpl es

% vlib work

% vcom gat es. vhd adder.vhd stinul us. vhd

% vsi mtestbench

VSIM 1> vcd dunpports -file addern.vcd /testbench/uut/*
VSI M 2> run 1000

VSIM 3> quit -f

Next, rerun the adder without the testbench, using the -vedstim argument:

% vsi m -vcdsti m addern. ved addern -gn=8 -do "add wave /*; run 1000"

ModelSim User's Manual

UM-308 10 - Value Change Dump (VCD) Files

Example 3 — Mixed-HDL design

ModelSim User’'s Manual

First, create three VCD files, one for each module:

% cd ~/ nodel t ech/ exanpl es/ ni xedHDL
% vlib work

% vl og cache.v nenory.v proc.v

% vcomutil.vhd set.vhd top.vhd

% vsimtop

VSI M 1>
VSI M 2>
VSI M 3>
VSI M 4>
VSI M 5>

vcd dunpports -file proc.ved /top/pl*
vcd dunpports -file cache.ved /top/c/*
vcd dumpports -file menory.ved /top/nml*
run 1000

quit -f

Next, rerun each module separately, using the captured VCD stimulus:

% vsim -

VSI M 1>

vcdstim proc.ved proc -do "add wave /*;
quit -f

run 1000"

% vsi m -vcdsti m cache.vcd cache -do "add wave /*; run 1000"

VSI M 1>

quit -f
% vsim -vcdsti mmenory.vced nmenory -do "add wave /*; run 1000"
quit -f

VSI M 1>

A VCD file from source to output UM-309

A VCD file from source to output

The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD output.

VHDL source code

The design is asimple shifter device represented by the following VHDL source code:

l'ibrary | EEE;
use | EEE. STD_LOGQ C_1164. al | ;

entity SH FTER_MOD is
port (CLK, RESET, data_in : IN STD_LOG C
Q : INOUT STD LOG C VECTOR(8 downto 0))
END SHI FTER_MOD

architecture RTL of SHI FTER_ MDD is
begi n
process (CLK, RESET)
begi n
if (RESET = '1') then
Q <= (others =>'0") ;
elsif (CLK event and CLK = "1') then
Q<= QQleft - 1 dowmnto 0) & data_in ;
end if ;
end process ;
end ;

VCD simulator commands

At simulator time zero, the designer executes the following commands and quits the
simulator at time 1200:

vced file output.ved
vcd add -r *

force reset 1 0
force data_in 0 O
force clk 0 0

run 100

force clk 1 0, 0 50 -repeat 100
run 100

vcd of f

force reset 0 0
force data_in 1 0
run 100

vcd on

run 850

force reset 1 0

run 50

vcd checkpoi nt

ModelSim User's Manual

UM-310 10 - Value Change Dump (VCD) Files

VCD output

TheVCD file created as aresult of the preceding scenario would be called output.ved. The
following pages show how it would look.

VCD output
$comrent (0}
File created using the follow ng 0(
comand: 0)
ved files output.ved 0*
$dat e 0+
Fri Jan 12 09:07:17 2000 0,
$end $end
$version #100
Model Sim EE/ PLUS 5. 4 1!
$end #150
$timescal e 0!
1ns #200
$end 1!
$scope nodul e shifter_nod $end $dunpof f
$var wire 1! clk $end x!
$var wire 1 " reset $end X"
$var wire 1 # data_in $end X#
$var wire 1 $ g [8] $end x$
$var wire 1 %q [7] $end X%
$var wire 1 & g [6] $end X&
$var wire 1 ' g [5] $end X’
$var wire 1 (g [4] $end x(
$var wire 1) g [3] $end X)
$var wire 1 * g [2] $end X*
$var wire 1 + g [1] $end X+
$var wire 1, g [0] $end X,
$upscope $end $end
$enddefinitions $end #300
#0 $dunpon
$dunpvar s 1!
0! 0"
1" 1#
o# 0%
0$ 0%
0%
0&

ModelSim User’'s Manual

0&

0(
0)
o*
0+

$end
#350
0
#400
1!
1+
#450
0
#500
1!

1*
#550
0
#600
1!

1)
#650
0
#700
1!

1
#750
0
#800
1!

1
#850
0
#900
1!
1&
#950
0

#1000
1

1%
#1050
0
#1100
1

1$
#1150
0

1

0$
0%
0&

0

o(

0)

0*

0+

0
#1200
1
$dunpal
1

I

1#

0$
0%
0&

0

o(

0)

0*

0+

0
$end

A VCD file from source to output UM-311

ModelSim User's Manual

UM-312 10 - Value Change Dump (VCD) Files

Capturing port driver data

Some ASIC vendors' toolkitsread aV CD file format that provides details on port drivers.
This information can be used, for example, to drive atester. See the ASIC vendor’'s
documentation for toolkit specific information.

In Model Sim use the ved dumpports command (CR-130) to createaV CD filethat captures
port driver data.

Port driver direction information is captured as TSSI statesin the VCD file. Each time an
externa or internal port driver changes values, anew value changeisrecorded in the VCD
file with the following format:

p<TSSI state> <0 strength> <1 strength> <identifier_code>

Supported TSSI states

ModelSim User’'s Manual

The supported <TSS| states> are:

Input (testfixture) Output (dut)
D low L low

U high H high

N unknown X unknown
Z tri-state T tri-state

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving unknown)

f tri-state

A unknown (input driving low and output driving high)

a unknown (input driving low and output driving unknown)

C unknown (input driving unknown and output driving low)

b unknown (input driving high and output driving unknown)

B unknown (input driving high and output driving low)

¢ unknown (input driving unknown and output driving high)

Strength values

The <strength> values are based on Verilog strengths:

Strength

VHDL std_logic mappings

0

highz

7

1

small

2

medium

weak

large

pull

"WHL

3
4
5
6

strong

uLxo)

7 supply

Port identifier code

Capturing port driver data UM-313

The<identifier_code> isaninteger preceded by < that startsat zero and isincremented for
each port in the order the ports are specified. Also, the variable type recorded in the VCD

header is"port".

ModelSim User's Manual

UM-314 10 - Value Change Dump (VCD) Files

Example VCD output from vcd dumpports

The following is an example VCD file created with the ved dumpports command.

$comment #20
File created using the following command: pL 6 0 <1
vcd dunpports resul ts/dunpl pD 6 0 <0
pa 6 6 <2
$end #30
$date pH 0 6 <1
Tue Aug 20 13:33:02 2000 puU 0 6 <0
$end pb 6 6 <2
$version #40
pT 0 0 <1
Model Si m Version 5. 4c pZ 0 0 <0
$end pX 6 6 <2
$tinescal e #50
1ns pX 5 5 <1
<
S
$scope nodul e topl $end #60
$scope nodul e ul $end pL 5 0 <1
$var port 1 <0 a $end pD 5 0 <0
$var port 1 <1 b $end pa 6 6 <2
$var port 1 <2 ¢ $end §ZFO 5 <1
$upscope $end puU 0 5 <0
$upscope $end pb 6 6 <2
$enddefinitions $end #80
#0 pX 6 6 <1
$dunpports z? 2 2 :g
pN 6 6 <0
pX 6 6 <1
p? 6 6 <2
$end
#10
pX 6 6 <1
pN 6 6 <0
p? 6 6 <2

ModelSim User’'s Manual

11 - Tcl and macros (DO files)

UM-315

Chapter contents

Tcl features within ModelSim .
Tcl References .
Tcl commands .

Tcl command syntax
if command syntax
set command syntax
Command substitution
Command separator
Multiple-line commands .
Evaluation order .
Tcl relational expression eval uat|on .
Variable substitution .
System commands.

List processing .

ModelSim Tcl commands .
ModelSim Tcl time commands
Tcl examples

Macros (DO files) .
Creating DOfiles . .
Using Parameters with DO flles .
Making macro parameters optional
Useful commands for handling breakpoints and errors
Error actionin DO files

UM-316
UM-316
UM-317

UM-318
UM-320
UM-321
UM-322
UM-322
UM-322
UM-322
UM-322
UM-323
UM-323

UM-324
UM-324
UM-325
UM-327

UM-331
UM-331
UM-331
UM-332
UM-333
UM-333

This chapter provides an overview of Tcl (tool command language) as used with
ModelSim. Macrosin Model Sim are simply Tcl scripts that contain Model Sim and,

optionally, Tcl commands.

Tcl isascripting language for controlling and extending M odel Sim. Within Model Sim you
can devel op implementations from Tcl scripts without the use of C code. Because Tcl is
interpreted, development is rapid; you can generate and execute Tcl scripts on the fly
without stopping to recompile or restart Model Sim. In addition, if Model Sim does not
provide the command you need, you can use Tcl to create your own commands.

ModelSim User's Manual

UM-316 11 - Tcl and macros (DO files)

Tcl features within ModelSim

Using Tcl with Model Sim gives you these features:

» command history (like that in C shells)

« full expression evaluation and support for all C-language operators
« afull range of math and trig functions

« support of lists and arrays

* regular expression pattern matching

* procedures

« the ability to define your own commands

» command substitution (that is, commands may be nested)

* robust scripting language for macros

Tcl References

ModelSim User’'s Manual

Two books about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout, published by
Addison-Wesley Publishing Company, Inc., and Practical Programming in Tcl and Tk by
Brent Welch published by Prentice Hall. Y ou can also consult the following online
references:

e Select Help > Tcl Man Pages (Main window).

« The Model Technology web site listsavariety of Tcl resources:
www.model.com/resources/tcltk.asp

http://www.model.com/resources/tcltk.asp

Tcl commands UM-317

Tcl commands

For complete information on Tcl commands, select Help > Tcl Man Pages (Main
window). Also see "Preference variables located in Tcl files" (um-352) for information on
Tcl variables.

Model Sim command names that conflict with Tcl commands have been renamed or have
been replaced by Tcl commands. See the list below:

Previous ModelSim Command changed to (or replaced by)

command

continue run (CRr-114) with the -continue option

format list | wave write format (CR-216) with either list or wave specified

if replaced by the Tcl if command, see "if command syntax™ (UM-
320) for more information

list add list (CR-32)

nolist | nowave delete (CR-65) with either list or wave specified

set replaced by the Tcl set command, see "set command syntax"
(uUM-321) for more information

source VSOur ce (CR-204)

wave add wave (CR-35)

ModelSim User's Manual

UM-318 11 - Tcl and macros (DO files)

Tcl command syntax

ModelSim User’'s Manual

Thefollowing eleven rules define the syntax and semantics of the Tcl language. Additional
details on if command syntax (UM-320) and set command syntax (uM-321) follow.

1 A Tcl script isastring containing one or more commands. Semi-colons and newlinesare
command separators unless quoted as described below. Close brackets (']") are
command terminators during command substitution (see below) unless quoted.

2 A command isevaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described bel ow. These substitutions are performed
inthe sameway for all commands. Thefirst word isused to locate acommand procedure
to carry out the command, then all of the words of the command are passed to the
command procedure. The command procedure is free to interpret each of itswordsin
any way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

3 Words of acommand are separated by white space (except for newlines, which are
command separators).

4 |f thefirst character of aword is double-quote (""") then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backsl ash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

5 If thefirst character of aword is an open brace ("{") then the word is terminated by the
matching close brace ("}"). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
theword is quoted with abackslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.

6 If aword contains an open bracket ("[") then Tcl performs command substitution. To do
thisitinvokesthe Tcl interpreter recursively to processthe charactersfollowing the open
bracket asa Tcl script. The script may contain any number of commands and must be
terminated by a close bracket ("]"). The result of the script (i.e. the result of itslast
command) is substituted into the word in place of the brackets and al of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.

Tcl command syntax UM-319

7 If aword containsadollar-sign ("$") then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of avariable.
Variabl e substitution may take any of the following forms:

$nanme

Name is the name of ascalar variable; the name is terminated by any character that isn't
aletter, digit, or underscore.

$name(i ndex)

Name givesthe name of an array variable and index givesthe name of an element within
that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on the
characters of index.

${ nane}

Name is the name of ascalar variable. It may contain any characters whatsoever except
for close braces.

Theremay be any number of variable substitutionsin asingleword. Variable substitution
is not performed on words enclosed in braces.

8 If abackslash ("\") appearswithin aword then backs ash substitution occurs. In all cases
but those described bel ow the backslash is dropped and the following character istreated
asan ordinary character and included in the word. Thisallows characters such as double
quotes, closebrackets, and dollar signsto beincluded in wordswithout triggering special
processing. The following table lists the backs ash sequences that are handled specially,
along with the value that replaces each sequence.

\a Audible alert (bell) (0x7).
\b Backspace (0x8).

\f Form feed (Oxc).

\n Newline (Oxa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (0xb).

\ <newl i ne>whi t eSpace A single space character replaces the backslash, newline, and all
spaces and tabs after the newline. This backslash sequenceis
uniquein that it isreplaced in a separate pre-pass before the
command isactually parsed. Thismeansthat it will be replaced
even when it occurs between braces, and the resulting space will
be treated as aword separator if it isn't in braces or quotes.

\\ Backslash ("\").

\ ooo The digits 0oo (one, two, or three of them) give the octal value
of the character.

ModelSim User's Manual

UM-320 11 - Tcl and macros (DO files)

\ xhh The hexadecimal digits hh give the hexadecimal value of the
character. Any number of digits may be present.

Backdash substitution is not performed on words enclosed in braces, except for
backslash-newline as described above.

9 If ahash character ("#') appears at a point where Tcl is expecting the first character of
thefirst word of acommand, then the hash character and the charactersthat follow it, up
through the next newline, are treated as acomment and ignored. The comment character
only has significance when it appears at the beginning of a command.

10 Each character is processed exactly once by the Tcl interpreter as part of creating the
words of acommand. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value isinserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by therecursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

11 Substitutions do not affect the word boundaries of acommand. For example, during
variable substitution the entire value of the variable becomes part of asingle word, even
if the variable's value contains spaces.

if command syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the "7
indicates an optional argument.

Syntax

if exprl ?then? bodyl elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

Theif command evaluates exprl as an expression. The value of the expression must be a
boolean (a numeric value, where 0 isfalse and anything else istrue, or a string value such
astrue or yesfor true and false or no for false); if it istrue then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if itis
true then body?2 is executed, and so on. If none of the expressions evaluates to true then
bodyN is executed. The then and else arguments are optional "noise words' to make the
command easier to read. There may be any number of elseif clauses, including zero. BodyN
may also be omitted aslong as else is omitted too. The return value from the command is
theresult of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was no bodyN.

ModelSim User’'s Manual

Tcl command syntax UM-321

set command syntax

The Tcl set command reads and writes variables. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

set varNanme ?val ue?

Description

Returnsthe value of variable varName. If valueis specified, then setsthe value of varName
to value, creating anew variable if one doesn't already exist, and returnsits value. If

var Name contains an open parenthesis and ends with a close parenthesis, then it refersto
an array element: the characters before the first open parenthesis are the name of the array,
and the characters between the parentheses are the index within the array. Otherwise
varName refersto a scalar variable. Normally, varName is unqualified (does not include
the names of any containing namespaces), and the variable of that name in the current
namespace is read or written. If varName includes namespace qualifiers (in the array name
if it refersto an array element), the variable in the specified namespace is read or written.

If no procedure is active, then varName refers to a namespace variable (global variableif
the current namespace is the global namespace). If a procedure is active, then varName
refersto a parameter or local variable of the procedure unless the global command was
invoked to declare varName to be global, or unlessa Tcl variable command was invoked
to declare varName to be a namespace variable.

Command substitution
Placing acommand in square brackets|[] will cause that command to be evaluated first and
its results returned in place of the command. An exampleis:

set a 25

set b 11

set ¢ 3

echo "the result is [expr ($a + $b)/$c]"
will output:

"the result is 12"

Thisfeature allows VHDL variables and signals, and Verilog nets and registers to be
accessed using:

[exam ne -<radi x> nane]

The %name substitution is no longer supported. Everywhere %name could be used, you
now can use [examine -value -<radix> name] which allows the flexibility of specifying
command options. The radix specification isoptional.

ModelSim User's Manual

UM-322 11 - Tcl and macros (DO files)

Command separator

A semicolon character (;) works as a separator for multiple commands on the sameline. It
isnot required at the end of alinein a command sequence.

Multiple-line commands

With Tcl, multiple-line commands can be used within macros and on the command line.
The command line prompt will change (asin a C shell) until the multiple-linecommand is
complete.

In the example below, note the way the opening brace’{’ is at the end of theif and else
lines. Thisisimportant because otherwise the Tcl scanner won't know that there is more
coming in the command and will try to execute what it has up to that point, which won't be
what you intend.

if { [exa sig_a] == "0011zz"} {
echo "Signal value matches"
do nmacro_1. do

} else {
echo "Signal value fails"
do nacro_2.do }

Evaluation order

Animportant thing to remember when using Tcl isthat anything put in curly brackets{} is
not evaluated immediately. Thisisimportant for if-then-else, procedures, loops, and so
forth.

Tcl relational expression evaluation

ModelSim User’'s Manual

When you are comparing values, the following hints may be useful:

* Tcl stores all values as strings, and will convert certain strings to numeric values when
appropriate. If you want aliteral to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...
The following will also work:
if {[exa var_1] == "345"}...

» However, if aliteral cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001z}...
will give an error.
if {[exa var_2] == "001z"}...
will work okay.
» Don't quote single characters in single quotes:
if {[exa var_3] =="'X1}...
will give an error
if {[exa var_3] == "X"}...
will work okay.

Tcl command syntax UM-323

« For the equal operator, you must use the C operator "==" . For not-equal, you must use
the C operator "!=".
Variable substitution
When a$<var_name> is encountered, the Tcl parser will look for variablesthat have been

defined either by Model Sim or by you, and substitute the value of the variable.

P Note: Tcl is case sensitive for variable names.

To access environment variables, use the construct:

$env(<var _nane>)
echo My user nane is $env(USER)

Environment variables can aso be set using the env array:
set env(SHELL) /bin/csh

See "Simulator state variables" (Um-353) for more information about Model Sim-defined
variables.

System commands

To pass commands to the DOS window, use the Tcl exec command:

echo The date is [exec date]

ModelSim User's Manual

UM-324 11 - Tcl and macros (DO files)

List processing

InTcl a"list" isaset of stringsin curly braces separated by spaces. Several Tcl commands

are available for creating

lists, indexing into lists, appending to lists, getting the length of

lists and shifting lists. These commands are:

Command syntax

Description

lappend var_namevallval2 ...

appendsvall, val2, etc. to list var_name

lindex list_name index

returns the index-th element of list_name; the first element is0

linsert list_nameindex vallval? ...

insertsvall, val2, etc. just before the index-th element of list_name

list vall, val2...

returnsa Tcl list consisting of vall, val2, etc.

Ilength list_name

returns the number of elementsin list_name

Irange list_name first last

returnsasublist of list_name, from index first to index last; first or
last may be "end", which refersto the last element in the list

Ireplacelist_namefirst last val 1, val2, ...

replaces elements first through last with vall, val 2, etc.

Two other commands, Isear ch and Isort, are also available for list manipulation. See the
Tcl man pages (Help > Tcl Man Pages) for more information on these commands.

ModelSim Tcl commands

These additional commands enhance the interface between Tcl and Model Sim. Only brief
descriptions are provided here; for more information and command syntax see the
Model Sm Command Reference.

Command Description

alias (CR-39) creates anew Tcl procedure that eval uates the specified commands;
used to create a user-defined alias

find (CR-79) locates incrTcl classes and objects

Ishift (CR-89) takesaTcl list asargument and shiftsit in-place one place to thel eft,

eliminating the Oth element

Isublist (CR-90)

returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

printenv (CR-103)

echoes to the Main window the current names and values of all
environment variables

ModelSim User’'s Manual

ModelSim Tcl time commands

Conversions

Relations

ModelSim Tcl time commands UM-325

Model Sim Tcl time commands make simul ator-time-based values avail able for use within

other Tcl procedures.

Time values may optionally contain a units specifier where the intervening spaceis also
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to bein the UserTimeScal e. Return values are alwaysin the current
Time Scale Units. All timevaluesare converted to a64-bit integer valuein the current Time
Scale. This means that values smaller than the current Time Scale will be truncated to O.

Command Description

intToTime <intHi32> <intLo32> | convertstwo 32-bit pieces (high and low
order) into a 64-bit quantity (Timein
ModelSim is a 64-bit integer)

Real ToTime <real> converts a<real> number to a 64-bit integer
in the current Time Scale

scaleTime <time> <scal eFactor> returnsthe value of <time> multiplied by the
<scal eFactor> integer

Command Description

eqTime <time> <time> evaluates for equal

neqTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than
gteTime <time> <time> evaluates for greater than or equal
[tTime <time> <time> evauates for less than

[teTime <time> <time> evaluates for less than or equal

All relation operations return 1 or O for true or false respectively and are suitable return

valuesfor TCL conditional expressions. For example,
if {[eqTinme $Now 1750ns]} ({

}

ModelSim User's Manual

UM-326 11 - Tcl and macros (DO files)

Arithmetic

ModelSim User’'s Manual

Command

Description

addTime <time> <time>

add time

divTime <time> <time>

64-bit integer divide

mul Time <time> <time>

64-hit integer multiply

subTime <time> <time>

subtract time

Tcl examples UM-327

Tcl examples

Example 1

The following Tcl/Model Sim example for UNIX shows how you can access system
information and transfer it into VHDL variables or signals and Verilog nets or registers.
When aparticular HDL source breakpoint occurs, aTcl function is called that gets the date
and time and depositsit into aVHDL signal of type STRING. If a particular environment
variable (DO_ECHO) is set, the function al so echoes the new date and time to the transcript
file by examining the VHDL variable.

P Note: In aWindows environment, the Tcl exec command shown below will execute
compiled files only, not system commands.

(in VHDL source):

signal datine : string(lto 28) :=" ";# 28 spaces

(on VSIM command line or in macro):

proc set_date {} {
gl obal env
set do_the_echo [set env(DO_ECHO)]
set s [exec date]
force -deposit datinme $s
if {do_the_echo} {
echo "New tinme is [exam ne -value datine]"
}
}

bp src/waveadd. vhd 133 {set_date; continue}
--sets the breakpoint to call set_date

Thisis an example of using the Tcl while loop to copy alist from variable ato variable b,
reversing the order of the elements along the way:

set b ""
set i [expr[llength $a]-1]
while {$i >= 0} {
| append b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy alist from variable ato variable b,
reversing the order of the elements along the way:

set b ""

for {set i [expr [Ilength $a] -1]} {$i >= 0} {incr i -1} {
| append b [lindex $a $i]

}

This example uses the Tcl foreach command to copy alist from variable ato variable b,
reversing the order of the elements along the way (the foreach command iterates over al
of the elements of alist):

set b ""
foreach i $a {
set b [linsert $b 0 $i]

}

ModelSim User's Manual

UM-328 11 - Tcl and macros (DO files)

Thisexample showsalist reversal asabove, thistime aborting on aparticular element using
the Tcl break command:

set b ""
foreach i $a {
if {$i = "ZZZ"} break
set b [linsert $b 0 $i]
}
Thisexampleisalist reversal that skips a particular element by using the Tcl continue
command:
set b ""
foreach i $a {
if {$i = "ZZz"} continue
set b [linsert $b 0 $i]
}
The last example is of the Tcl switch command:
switch $x {
a {incr t1}
b {incr t2}
c {incr t3}
}

Example 2

This next example shows a complete Tcl script that restores multiple Wave windows to
their state in aprevious simulation, including signal s listed, geometry, and screen position.
It al so adds buttons to the Main window toolbar to ease management of thewavefiles. This
example worksin ModelSim SE only.

This file contains procedures to manage multiple wave files.
Source this file fromthe command line or as a startup script.
source <path>/wave_ngr.tc

add_wave_buttons
Add wave nanagenent buttons to the main tool bar (new, save and | oad)

new_wave
Di al og box creates a new wave wi ndow with the user provided nane

nanmed_wave <nane>
Creates a new wave window with the specified title

save_wave <file-root>
Saves nane, w ndow | ocation and contents for all open w ndows

wave w ndows

H#H# Creates <file-root><n>.do file for each wi ndow where <n> is 1
Hit to the nunber of windows. Default file-root is "wave". Also
creates wi ndowSet.do file that contains title and geonetry info.

|oad_wave <file-root>

Opens and | oads wave wi ndows for all files matching <file-root><n>.do
H## where <n> are the nunbers from1-9. Default <file-root> is "wave".
Hit Al so runs wi ndowSet.do file if it exists.

ModelSim User’'s Manual

Tcl examples UM-329

Add wave nanagement buttons to the main tool bar

proc add_wave_buttons {} {

_add_nenu nain controls right SystemMenu SystemW ndowFranme {Load Waves} \
| oad_wave

_add_nenu main controls right SystemVenu SystenW ndowrFrane {Save Waves} \
save_wave

_add_nenu nain controls right SystemMenu SystemW ndowFrame {New Wave} \
new_wave

}
Sinple D al og requests nane of new wave wi ndow. Defaults to Wave<n>

proc new wave {} {
gl obal dial og_pronpt vsinPriv
set defaul t Name "Wave[llength $vsinPriv(WaveW ndows)]"
set dial og_pronpt(result) $defaul t Name
set wi ndowNanme [CetValue . "Create Naned Wave W ndow "]

Debug
puts "W ndow nanme: $w ndowNane\ n";
if {$wi ndowName == "{}"} {
set w ndowName ""
}
if {$wi ndowNane != ""} {
naned_wave $w ndowNane
} else {
named_wave $def aul t Narme
}

}

Creates a new wave wi ndow with the provided name (defaults to "Wave")

proc named_wave {{nane "Wave"}} {
gl obal vsinPriv
Vi ew - new wave
set newMave [lindex $vsinPriv(WaveW ndows) [expr [Ilength \
$vsi mPri v(WaveW ndows)] - 1]]
wmtitle $newwave $nane

}

Wites out format of all wave wi ndows, stores geonetry and title info in
wi ndowSet.do file. Renpves any extra files with the sane fileroot.
Default file nane is wave<n> starting from 1.

proc save_wave {{fileroot "wave"}} {

gl obal vsinPriv

set n1

set fileld [open wi ndowSet_$fileroot.do w 755]

foreach w $vsi nPriv(WaveW ndows) {
echo "Saving: [wntitle $w"
set filenane $fileroot$n. do
wite format wave -wi ndow $w $fil enane
puts $fileld "wntitle $w\"[wntitle $nj\""
puts $fileld "wmgeonetry $w [wm geonetry $w "
puts $fileld "ntiGid_colconfig $w.grid name -width \
[miGid_colcget $w.grid nane -width]"
puts $fileld "ntiGid_colconfig $w.grid value -width \
[miGid_colcget $w.grid value -width]"
flush $fileld
incr n

ModelSim User's Manual

UM-330 11 - Tcl and macros (DO files)

if {![catch {glob $fileroot\[$n-9\].do}]} {
foreach f [Isort [glob $fileroot\[$n-9\].do]] {
echo "Renoving: $f"
exec rm $f

}

Provide file root argument and | oad_wave restores all saved w ndows.
Default file root is "wave".

proc | oad_wave {{fileroot "wave"}} {
gl obal vsinPriv
foreach f [Isort [glob $fileroot\[1-9\].do]] {
echo "Loading: $f"
Vi ew - new wave
do $f

if {[file exists windowSet_$fileroot.do]} {
do wi ndowSet _$fil eroot.do

}

ModelSim User’'s Manual

Macros (DO files) UM-331

Macros (DO files)

Model Sim macros (also called DO files) are simply scripts that contain Model Sim and,
optionally, Tcl commands. Y ou invoke these scripts with the Tools > Execute Macr o
(Main window) menu selection or the do command (CR-68).

Creating DO files

Y ou can create DO files, like any other Tcl script, by typing the required commandsin any
editor and saving thefile. Alternatively, you can save the Main window transcript asaDO
file (see "Saving the Main window transcript file" (UM-139)).

The following isasimple DO file that was saved from the Main window transcript. It is
used in the dataset exercise in the ModelSim Tutorial. This DO file adds several signalsto
the Wave window, provides stimulus to those signal s, and then advances the simulation.

add wave |d
add wave rst
add wave cl k
add wave d

add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force Id 0O
force d 1010
run 1700

force Id 1

run 100

force Id 0

run 400

force rst 1
run 200

force rst 0 10
run 1500

Using Parameters with DO files

Y ou canincreasethe flexibility of DO filesby using parameters. Parameters specify values
that are passed to the corresponding parameters $1 through $9 in the macro file. For
example say the macro "testfile" contains the line bp $1 $2. The command below would
place a breakpoint in the source file named design.vhd at line 127:

do testfile design.vhd 127

There isno limit on the number of parameters that can be passed to macros, but only nine
values are visible at one time. Y ou can use the shift command (CR-118) to see the other
parameters.

ModelSim User's Manual

UM-332 11 - Tcl and macros (DO files)

Making macro parameters optional

ModelSim User’'s Manual

If you want to make macro parameters optional (i.e., be able to specify fewer parameter
values with the do command than the number of parameters referenced in the macro), you
must use the argc (UM-353) simulator state variable. The argc simulator state variable
returns the number of parameters passed. The examples below show several ways of using
argc.

Example 1

This macro specifies the files to compile and handles 0-2 compiler arguments as
parameters. If you supply more arguments, M odel Sim generates a message.

switch $arge {
0 {vcomfilel.vhd file2.vhd file3.vhd }
1 {vcom$1 filel.vhd file2.vhd file3.vhd }
2 {vcom $1 $2 filel.vhd file2.vhd file3.vhd }
default {echo Too many argunments. The nacro accepts 0-2 args. }

}

Example 2
This macro specifies the compiler arguments and lets you compile any number of files.

variable Files ""

set nbrArgs $argc

for {set x 1} {$x <= $nbrArgs} {incr x} {
set Files [concat $Files $1]
shift

}

eval vcom-93 -explicit -noaccel $Files

Example 3

This macro is an enhanced version of the one shown in example 2. The additional code
determines whether the files are VHDL or Verilog and uses the appropriate compiler and
arguments depending on the file type. Note that the macro assumes your VHDL files have
a.vhd file extension.

variable vhdFiles ""
variable vFiles ""
set nbrArgs $argc
set vhdFil esExist 0
set vFil esExi st 0
for {set x 1} {$x <= $nbrArgs} {incr x} {
if {[string match *.vhd $1]} {
set vhdFiles [concat $vhdFiles $1]
set vhdFil esExist 1
} else {
set vFiles [concat $vFiles $1]
set VvFilesExist 1

}
shift

}
if {$vhdFil esExist == 1} {
eval vcom -93 -explicit -noaccel $vhdFiles

}
if {$vFilesExist == 1} {
eval vlog -fast -forcecode $vFiles

}

Macros (DO files) UM-333

Useful commands for handling breakpoints and errors

If you are executing a macro when your simulation hits a breakpoint or causes arun-time
error, Model Sim interrupts the macro and returns control to the command line. The
following commands may be useful for handling such events. (Any other legal command
may be executed as well.)

command result

run (CR-114) -continue continue as if the breakpoint had not been executed, completes the run (CR-114) that
was interrupted

onbreak (CR-98) specify acommand to run when you hit a breakpoint within a macro

onElabError (CR-99) specify acommand to run when an error is encountered during elaboration
onerror (CR-100) specify acommand to run when an error is encountered within a macro

status (CR-121) get atraceback of nested macro calls when amacro is interrupted

abort (CR-30) terminate a macro once the macro has been interrupted or paused

pause (CR-101) cause the macro to be interrupted; the macro can be resumed by entering aresume

command (CR-113) viathe command line

P Note: You canalso setthe OnErrorDefaultAction Tcl variable (see " Preference variables
located in Tcl files' (UM-352)) in the pref.tcl file to dictate what action Model Sim takes
when an error occurs.

Error action in DO files

If acommand in a macro returns an error, Model Sim does the following:

1 If anonerror (CR-100) command has been set in the macro script, Model Sim executes
that command.

2 If noonerror command has been specified in the script, Model Sim checks the
OnErrorDefaultAction Tcl variable. If the variable is defined, it's action will be
invoked.

3 If neither 1 or 2 istrue, the macro aborts.

ModelSim User's Manual

UM-334 11 - Tcl and macros (DO files)

Using the Tcl source command with DO files

ModelSim User’'s Manual

Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the sour ce command, the DO file is executed exactly asif the commandsin it were
typed in by hand at the prompt. Each time a breakpoint is hit the Source window is updated
to show the breakpoint. This behavior could be inconvenient with alarge DO file
containing many breakpoints.

When ado command is interrupted by an error or breakpoint, it does not update any
windows, and keepsthe DO file "locked". This keeps the Source window from flashing,
scrolling, and moving the arrow when a complex DO file is executed. Typically an
onbreak resume command is used to keep the macro running as it hits breakpoints. Add
an onbreak abort command to the DO fileif you want to exit the macro and update the
Source window.

UM-335

A - ModelSim variables

Appendix contents

Variable settingsreport UM-336
Persond preferences UM-336
Returning to the original ModelSim defaults UM-337
Environment variables. UM-337
Preference variableslocated in INI files UM-341
[Library] library pathvariables UM-341
[vcom] VHDL compiler control variables UM-342
[vlog] Verilog compiler control varigbles. UM-343
[vsim] simulator control variables UM-34
Commonly used INI variables UM-349
Commonly used INI variables UM-349
Preference variableslocated in Tcl files UM-352
Variableprecedence UM-353
Simulator statevariables UM-353
Referencing simulator statevariables. UM-3%4
Specia considerationsfor thenow variable UM-354

This appendix documents the following types of Model Sim variables:

 environment variables
Variables referenced and set according to operating system conventions. Environment
variables prepare the Model Sim environment prior to simulation.

« ModelSim preferencevariables
Variables used to control compiler or simulator functions and modify the appearance of
the ModelSim GUI.

e smulator statevariables
Variables that provide feedback on the state of the current simulation.

ModelSim User's Manual

UM-336 A - ModelSim variables

Variable settings report

Thereport command (CR-109) returnsalist of current settingsfor either the simul ator state,
or simulator control variables. Use the following commands at either the Model Sim or
VSIM prompt:

report sinulator state
report sinmulator control

The simulator control variablesreported by the report simulator control command can be
set interactively using the Tcl set command (UM-321).

Personal preferences

ModelSim User’'s Manual

There are several preferences stored by Model Sim on a personal basis, independent of
modelsim.ini or modelsim.tcl files. These preferences are stored in the Windows Registry
under HKEY_CURRENT_USER\Software\M odel Technology Incorporated\M odel Sim.

» cwd
History of the last five working directories (pwd). This history appearsin the Main
window File menu.

+ datasets
History of previously opened datasets. Used to populate the Dataset Pathname list box
in the Open Dataset dialog.

e mti_ask_LBViewTypes, mti_ask_LBViewPath, mti_ask_L BViewL oadable
Settings for the Customize Library View dialog. Determine the view of the Library tab
in the Main window workspace.

e mti_pane _cnt, mti_pane size, pane #, pane_percent
Determine layout of various panes in the Main window.
 open_workspace
Setting for whether or not to display the Main window workspace.
* pinit
Project Initialization state (one of: Welcome | OpenL ast | NoWelcome). This determines
whether the Welcome To ModelSim dialog box appears when you invoke the tool.
* project_history
Project History

* printersetup
All setup parameters related to Printing (i.e., current printer, etc.)

* transcriptpercent
The size of the Main window transcript pane. Expressed as a percentage of the width of
the Main window.

The HKEY_CURRENT_USER key is unique for each user Login on Windows NT.

Returning to the original ModelSim defaults UM-337

Returning to the original ModelSim defaults

If you would like to return Model Sim’s interface to its original state, simply rename or
del ete the existing model ssim.tcl and modelsim.ini files. Model Sim will use pref.tcl for GUI
preferences and make acopy of <install_dir>/modeltech/modelsim.ini to use the next time
Model Sim is invoked without an existing project (if you start a new project the new MPF
file will use the settings in the new modelsim.ini file).

Environment variables

Before compiling or simulating, several environment variables may be set to provide the
functions described in the table below. The variables are in the autoexec.bat file on
Windows 98/Me machines, and set through the System control panel on NT/2000
machines. The LM_LICENSE _FILE variableisrequired; al others are optional.

ModelSim Environment Variables

Variable Description

DOPATH used by Model Sim to search for DO files (macros); consists of a colon-separated
(semi-colon for Windows) list of pathsto directories; this environment variable
can be overridden by the DOPATH Tcl preference variable

The DOPATH environment variable isn't accessible when you invoke vsim from
aUnix shell or from aWindows command prompt. It isaccessible once Model Sim
or vsim isinvoked. If you need to invoke from a shell or command line and use
the DOPATH environment variable, use the following syntax:

vsim -do "do <dofil e_name>" <design_unit>

EDITOR specifies the editor to invoke with the edit command (CR-72)

HOME used by ModelSim to look for an optional graphical preference file and optional
location map file; see: "Preference variables located in INI files' (uM-341) and
"Using location mapping” (UM-387)

LM_LICENSE FILE used by the Model Sim license file manager to find the location of the licensefile;
may be a colon-separated (semi-colon for Windows) set of paths, including paths
to other vendor license files; REQUIRED

MODEL_TECH set by al Model Sim tools to the directory in which the binary executable resides;
DO NOT SET THISVARIABLE!

MODEL_TECH_TCL used by ModelSimto find Tcl librariesfor Tcl/Tk 8.3 and vsim; may also be used
to specify astartup DO file; defaultsto /modeltechy/../tcl; may be set to an alternate
path

MGC_LOCATION_MAP used by Model Sim tools to find source files based on easily reallocated " soft"
paths; optional; see: "Using location mapping” (UM-387); also see the Tcl
variables: SourceDir and SourceM ap

ModelSim User's Manual

UM-338 A - ModelSim variables

Variable

Description

MODELSIM

used by all ModelSim tools to find the modelsim.ini file; consists of a path
including thefile name. An alternative use of thisvariableisto set it to the path of
aproject file (<Project_Root_Dir>/<Project_Name>.mpf). This allows you to
use project settings with command line tools. However, if you do this, the .mpf
file will replace modelsim.ini asthe initiaization file for all Model Sim tools.

MODELSIM_TCL

used by ModelSim to look for an optional graphical preferencefile; canbe a
semi-colon separated (Windows) list of file paths

MTI_COSIM_TRACE

createsan mti_trace _cosim file containing debugging information about FLI/PLI/
VPI function calls; set to any value before invoking the simulator.

MTI_TF_LIMIT

limits the size of the VSOUT temp file (generated by the Model Sim kernel); the
value of the variableisthe size of k-bytes; TMPDIR (below) controlsthe location
of thisfile, STDOUT controls the name; default = 10, O = no limit; does not
control the size of the transcript file

MTI_USELIB_DIR

specifies the directory into which object libraries are compiled when using the
-compile_uselibs argument to the viog command (CR-181)

NOMMAP

if set to 1, disables memory mapping in Model Sim; this should be used only when
running on Linux 7.1; it will decrease the speed with which Model Sim reads files

PLIOBJS

used by ModelSim to search for PLI object files for loading; consists of a
space-separated list of file or path names

STDOUT

the VSOUT temp file (generated by the simulator kernel) is deleted when the
simulator exits; the file is not deleted if you specify afilename for VSOUT with
STDOUT,; specifying aname and location (use TMPDIR) for the VSOUT filewill
also help you locate and delete the file in event of a crash (an unnamed VSOUT
fileis not deleted after a crash either)

TMP

specifies the path to atempnam() generated file (VSOUT) containing all stdout
from the simulation kernel

ModelSim User’'s Manual

Environment variables UM-339

Creating environment variables in Windows

In addition to the predefined variabl es shown above, you can define your own environment
variables. This example shows a user-defined library path variable that can be referenced
by the vmap command to add library mapping to the modelsim.ini file.

Using Windows 98/Me
Open and edit the autoexec.bat file by adding this line:
set MY_PATH=\t enp\ wor k

Restart Windows to initialize the new variable.

Using Windows NT/2000/XP

Right-click the My Computer icon and select Properties, then select the Environment
tab (in Windows 2000/X P select the Advanced tab and then Environment Variables). Add
the new variable with this data—VariableMY_PATH and Vaue:\temp\work.

Click Set and Apply to initialize the variable.

Library mapping with environment variables

Oncethe MY_PATH variableis set, you can use it with the vmap command (CR-188) to
add library mappings to the current modelsim.ini file.

If you' re using the vmap command from DOS prompt type:
vRp MY_VI TAL 9%W_PATH%

If you're using vmap from the ModelSim/V SIM prompt type:
vmap MY_VI TAL \ $MY_PATH

If you used DOS vmap, this line will be added to the modelsim.ini:
MY_VI TAL = c:\tenp\work

If vmap is used from the Model Sim/V SIM prompt, the modelsim.ini file will be modified
with thisline:

MY_VI TAL = $MY_PATH
You can easily add additional hierarchy to the path. For example,
vmap MORE_VI TAL %wW_PATH% nor e_pat h\ and_nor e_pat h
vimap MORE_VI TAL \ $MY_PATH\ nor e_pat h\ and_nor e_pat h

The"$" character in the examples above is Tcl syntax that precedes a variable. The "\"
character is an escape character that keeps the variable from being evaluated during the
execution of vmap.

ModelSim User's Manual

UM-340 A - ModelSim variables

Referencing environment variables within ModelSim

There are two ways to reference environment variables within Model Sim. Environment
variables are allowed in a FIL E variable being opened in VHDL. For example,

use std.textio.all;
entity test is end;
architecture only of test is
begi n
process
FILE in_file : text is in "$ENV_VAR NAME";
begi n
wai t ;
end process;
end;

Environment variables may also be referenced from the Model Sim command line or in
macros using the Tcl env array mechanism:

echo "$env(ENV_VAR_NAME) "

P Note: Environment variable expansion does not occur in filesthat are referenced viathe
-f argument to vcom, vlog, or vsim.

Removing temp files (VSOUT)

The VSOUT temp file is the communication mechanism between the smulator kernel and
theModel Sim GUI. In normal circumstancesthefileis deleted when the simulator exits. If
Model Sim crashes, however, the temp file must be deleted manually. Specifying the

location of the temp file with TMPDIR (above) will help you locate and remove thefile.

ModelSim User’'s Manual

Preference variables located in INI files UM-341

Preference variables located in INI files

<vari abl e> = <val ue>

Comments within the file are preceded with asemicolon (;).

INI file sections

[Library] library path variables (UM-341)

[vcom] VHDL compiler control variables (UM-342)

[vlog] Verilog compiler control variables (UM-343)

[vsim] simulator control variables (UM-344)

[Library] library path variables

ModelSim initialization (INI) files contain control variables that specify reference library
paths and compiler and simulator settings. The default initialization fileismodelsim.ini and
islocated in your install directory.

To set these variables, edit theinitialization filedirectly with any text editor. The syntax for
variablesin thefileis:

The following tables list the variables by section, and in order of their appearance within
theINI file:

Variable name Value range Purpose
ieee any valid path; may include sets the path to the library containing |EEE and
environment variables Synopsys arithmetic packages; the default is
$MODEL_TECH/../ieee
modelsim_lib any valid path; may include sets the path to the library containing Model
environment variables Technology VHDL utilities such as Signal Spy;
the default is$MODEL_TECH)/../modelsim _lib
std any valid path; may include setsthepathtothe VHDL STD library; the default

environment variables

is$MODEL_TECH/../std

std_developerskit

any valid path; may include
environment variables

sets the path to the libraries for MGC standard
developer’skit; the default is
$MODEL_TECH/../std_devel operskit

synopsys any valid path; may include sets the path to the accelerated arithmetic
environment variables packages; the default is SMODEL_TECHY/../
synopsys
verilog any valid path; may include sets the path to the library containing VHDL/
environment variables Verilog type mappings, the default is
$MODEL_TECH)/../verilog
vital2000 any valid path; may include sets the path to the VITAL 2000 library; the

environment variables

default is SMODEL _TECH/../vital 2000

ModelSim User's Manual

UM-342 A - ModelSim variables

Variable name

Value range

Purpose

others

any valid path; may include
environment variables

points to another modelsim.ini file whose library
path variables will also be read; the path name
must include "modelsim.ini"; only one others
variable can be specified in any modelsim.ini file.

[vcom] VHDL compiler control variables

Variable name Value Purpose Default
range
CheckSynthesis 0,1 if 1, turns on limited synthesis rule compliance off (0)
checking; checks only signals used (read) by a
process; aso, understands only combinational
logic, not clocked logic
Explicit 0,1 if 1, turns on resolving of ambiguous function on (1)
overloading in favor of the "explicit" function
declaration (not the one automatically created by
the compiler for each type declaration)
IgnoreVitalErrors 01 if 1, ignores VITAL compliance checking errors off (0)
NoCaseStaticError 0,1 if 1, changes case statement static errorstowarnings | off (0)
NoDebug 0,1 if 1, turns off inclusion of debugging info within off (0)
design units
NolndexCheck 0,1 if 1, run time index checks are disabled off (0)
NoOthersStaticError 0,1 if 1, disables errors caused by aggregates that are off (0)
not locally static
NoRangeCheck 0,1 if 1, disables run time range checking off (0)
NoVital 0,1 if 1, turns off acceleration of the VITAL packages off (0)
NoVital Check 0,1 if 1, turns off VITAL compliance checking off (0)
Optimize 1164 0,1 if O, turns off optimization for IEEE std_logic 1164 on (1)
package
PedanticErrors 0,1 if 1, overrides NoCaseStaticError and off(0)
NoOthersStaticError
Quiet 01 if 1, turns off "loading..." messages off (0)
RequireConfigForAllDefault 0,1 if 1, instructs the compiler not to generate a default off (0)
Binding binding during compilation
Show_source 0,1 if 1, shows source line containing error off (0)
Show_VitalCheckswWarnings 01 if 0, turns off VITAL compliance-check warnings on (1)

ModelSim User’'s Manual

Preference variables located in INI files UM-343

Variable name Value Purpose Default
range

Show_Warningl 0,1 if 0, turns off unbound-component warnings on (1)

Show_Warning2 0,1 if 0, turns off process-without-a-wait-statement on (1)
warnings

Show_Warning3 0,1 if 0, turns off null-range warnings on (1)

Show_Warning4 0,1 if 0, turns off no-space-in-time-literal warnings on (1)

Show_Warning5 0,1 if 0, turnsoff multiple-drivers-on-unresolved-signal on (1)
warnings

VHDL93 0,1 if 1, turnson VHDL-1993 off (0)

[vlog] Verilog compiler control variables

Variable name Value Purpose Default
range
Hazard 0,1 if 1, turnson Verilog hazard checking (order- off (0)
dependent accessing of global variables)

Incremental 0,1 if 1, turns on incremental compilation of modules off (0)
NoDebug 0,1 if 1, turns off inclusion of debugging info within off (0)
design units
Quiet 0,1 if 1, turns off "loading..." messages off (0)
Show_Lint 01 if 1, turnson lint-style checking off (0)
Show_source 0,1 if 1, shows source line containing error off (0)
vlog95compat 0,1 if 1, disables Verilog 2001 support and makes off (0)

compiler compatible with IEEE Std 1364-1995

ModelSim User's Manual

UM-344 A - ModelSim variables

[vsim] simulator control variables

ModelSim User’'s Manual

Variable name Value range Purpose Default
AssertFile any vaid alternative file for storing assertion transcript
filename messages
AssertionFormat see next column | definesformat of assertion messages; fields | "** %S:
include: %R\n Time:
%S - severity level %T
%R - report message Iteration:
%T - time of assertion %D%I\n"
%D - delta
%I - instance or region pathname (if
available)
%i - instance pathname with process
%0 - process name
%K - kind of item path points to; returns
Instance, Signal, Process, or Unknown
%P - instance or region path without leaf
process
%F - file
%L - line number of assertion, or if from
subprogram, line from which call is made
%% - print %’ character
AssertionFormatBreak see defines format of messages for assertions "** 04S:
AssertionFormat | that trigger a breakpoint; see %R\n
above AssertionFormat for options; Time: %T
Iteration:
%D %K: %i
File: %F\n"
AssertionFormatNote See defines format of messages for Note "** 0S:
AssertionFormat | assertions; see AssertionFormat for %R\n
above options; if undefined, AssertionFormat is Time: %T
used unless assertion causesabreakpointin | Iteration:
which case AssertionFormatBreak isused | %D%I\n"
AssertionFormatWarning see defines format of messages for Warning "x* 0SS
AssertionFormat | assertions; see AssertionFormat for %R\n
above options; if undefined, AssertionFormat is Time: %T
used unless assertion causesabreakpointin | Iteration:
which case AssertionFormatBreak isused | %D%I\n"
AssertionFormatError see defines format of messages for Error "** 00S:
AssertionFormat | assertions; see AssertionFormat for %R\n
above options; if undefined, AssertionFormat is Time: %T
used unless assertion causesabreakpointin | Iteration:
which case AssertionFormatBreak isused | %D %K: %i
File: %F\n"

Preference variables located in INI files

UM-345

Variable name Value range Purpose Default
AssertionFormatFail see defines format of messages for Fail "** S
AssertionFormat | assertions; see AssertionFormat for %R\n
above options; if undefined, AssertionFormat is Time: %T
used unless assertion causesabreakpointin | Iteration:
which case AssertionFormatBreak isused | %D %K: %i
File: %F\n"
AssertionFormatFatal see defines format of messages for Fatal "*x 04S:
AssertionFormat | assertions; see AssertionFormat for %R\n
above options; if undefined, AssertionFormat is Time: %T
used unless assertion causesabreakpointin | Iteration:
which case AssertionFormatBreak isused | %D %K: %i
File: %R\n"
BreakOnAssertion 0-4 defines severity of assertion that causes a 3
simulation break (0= note, 1 =warning, 2 =
error, 3=failure, 4 =fatal); thisvariablecan
be set interactively with the Tcl set
command (UM-321)
CheckpointCompressMode 0,1 if 1, checkpoint files are writtenin on (1)
compressed format; this variable can be set
interactively with the Tcl set command
(UM-321)
CommandHistory any valid sets the name of afilein which to storethe | commented
filename Main window command history out (;)
ConcurrentFileLimit any positive controls the number of VHDL files open 40
integer concurrently; this number should be less
than the current limit setting for max file
descriptors; 0 = unlimited
DatasetSeparator any character the dataset separator for fully-rooted
except thosewith | contexts, for example sim:/top; must not be
special meaning | the same character as PathSeparator
(i.e,\,{,}, etc)
DefaultForceKind freeze, drive, or defines the kind of force used when not drive for
deposit otherwise specified; thisvariablecanbeset | resolved
interactively with the Tcl set command signals;
(UM-321) freeze for
unresolved
signals
DefaultRadix symboalic, binary, | anumericradix may be specifiedasaname | symbolic
octal, decimal, or number (i.e., binary can be specified as
unsigned, binary or 2; octal asoctal or 8; etc.); this
hexadecimal, variablecan be setinteractively withthe Tcl
ascii set command (UM-321)

ModelSim User's Manual

UM-346 A - ModelSim variables

Variable name Value range Purpose Default
DefaultRestartOptions one or more of: sets default behavior for the restart commented
-force, command out (;)
-nobreakpoint,
-nolist, -nolog,
-nowave
DelayFileOpen 0,1 if 1, open VHDLS8T7 fileson first read or off (0)
write, €lse open files when elaborated; this
variablecanbesetinteractively withtheTcl
set command (UM-321)
GenerateFormat Any non-quoted | controlsthe format of a generate statement | %s_ %d
string containing | label (don't quote it)
at aminimum a
%sfollowed by a
%d
IgnoreError 01 if 1, ignore assertion errors; this variable off (0)
can be set interactively with the Tcl set
command (UM-321)
IgnoreFailure 0,1 if 1, ignore assertion failures; thisvariable | off (0)
can be set interactively with the Tcl set
command (UM-321)
IgnoreNote 01 if 1, ignore assertion notes; thisvariablecan | off (0)
be set interactively with the Tcl set
command (UM-321)
IgnoreWarning 01 if 1, ignore assertion warnings; thisvariable | off (0)
can be set interactively with the Tcl set
command (UM-321)
IterationLimit positive integer limit on simulation kernel iterations 5000

ModelSim User’'s Manual

allowed without advancing time; this
variablecanbesetinteractively withtheTcl
set command (UM-321)

Preference variables located in INI files

UM-347

Variable name Value range Purpose Default

License any single if set, controls ModelSim license file search all
<license_option> | search; license optionsinclude: licenses

nomgc - excludes MGC licenses
nomti - excludes MTI licenses
nogueue - do not wait in license queueif no
licenses are available

plus - only use PLUS license

vlog - only use VLOG license

vhdl - only use VHDL license
viewsim - accepts a ssimulation license
rather than being queued for a viewer
license

see also the veim command (CR-189)
<license_option>

NumericStdNoWarnings 0,1 if 1, warnings generated within the off (0)

accelerated numeric_std and numeric_bit
packages are suppressed; this variable can
be set interactively with the Tcl set
command (UM-321).

PathSeparator any character used for hierarchical path names; must not | /
except thosewith | be the same character as DatasetSeparator;
special meaning | thisvariable can be set interactively with
(i.e,\,{,} etc) | theTcl set command (UM-321)

Resolution fs, ps, ns, us, ms, | simulator resolution; no space between ps
or sec with value and units (i.e., 10fs, not 10 fs);
optional prefix of | overridden by the -t argument to vsim (CR-

1, 10, or 100 189); if your delays get truncated, set the
resolution smaller; this value must be less
than or equal to the UserTimeUnit
(described below)

RunLength positive integer default simulation length in units specified | 100

by the UserTimeUnit variable; thisvariable
can be set interactively with the Tcl set
command (UM-321).

Startup =do<DO specifies the Model Sim startup macro; see | commented
filename>; any the do command (CR-68) out (;)
valid macro (do)
file

StdArithNoWarnings 01 if 1, warnings generated within the off (0)

accelerated Synopsys std_arith packages
are suppressed; this variable can be set
interactively with the Tcl set command
(UM-321)

ModelSim User's Manual

UM-348 A - ModelSim variables

Variable name Value range Purpose Default

TranscriptFile any vaid file for saving command transcript; transcript
filename environment variables may beincluded in

the path name

UnbufferedOutput 0,1 controls VHDL and Verilog filesopenfor | O

write; 0 = Buffered, 1 = Unbuffered

UserTimeUnit fs, ps, ns, us, ms, | specifiesscaling for the Wavewindow and | default
sec, or default the default time units to use for commands

such asforce (CR-82) and run (CR-114);
should generally be set to default, in which
case it takes the value of the Resolution
variable; this variable can be set
interactively with the Tcl set command
(UM-321)

Veriuser oneormorevalid | list of dynamically loadable objects for commented
shared object Verilog PLI/VPI applications; see"Verilog | out (;)
names PLI/VPI" (UM-97)

WaveSignalNameWidth 0, positive controls the number of visible hierarchical | 0
integer regionsof asignal name shownintheWave

window (UM-206); the default value of zero
displays the full name, a setting of one or
above displays the corresponding level(s)
of hierarchy

WLFCompress 0,1 turnsWLF file compression on (1) or off (0) | 1

WL FDeleteOnQuit 0,1 specifies whether a WLF file should be 0

deleted when the simulation ends; if set to
0, thefileis not deleted; if set to 1, thefile
is deleted

WLFSaveAllRegions 0,1 specifies whether to save all design 0

hierarchy in the WLF file (1) or only
regions containing logged signals (0)

WLFSizeLimit 0 - positive WLF filesizelimit; limitsWLFfileby size | O
integer of MB (asclosely as possible) to the specified

number of megabytes; if both size and time
limits are specified the most restrictiveis
used; setting to O resultsin no limit

WLFTimeLimit 0 - positive WLF file time limit; limits WLF file by 0
integer of MB time (asclosely as possibl€) to the specified

amount of time. If both time and size limits
are specified the most restrictive is used;
setting to O results in no limit

ModelSim User’'s Manual

Preference variables located in INI files UM-349

Commonly used INI variables

Severa of the more commonly used modelsim.ini variables are further explained below.

Environment variables

Y ou can use environment variablesin your initialization files. Use adollar sign ($) before
the environment variable name. For example:

[Li brary]

work = $HOVE/ work_lib

test_lib = ./$TESTNUM wor k
[vsinm

I gnoreNot e = $| GNORE_ASSERTS

| gnor eWar ni ng $| GNORE_ASSERTS

I gnoreError =
I gnoreFailure

I o

0

Thereisone environment variable, MODEL_TECH, that you cannot — and should not —
set. MODEL_TECH isaspecia variable set by Model Technology software. Itsvalueis
the name of the directory from which the VCOM or VLOG compilers or VSIM simulator
wasinvoked. MODEL_TECH is used by the other Model Technology tools to find the
libraries.

Hierarchical library mapping

By adding an "others" clause to your modelsim.ini file, you can have ahierarchy of library
mappings. If the Model Sim tools don’t find a mapping in the modelsim.ini file, then they
will search only thelibrary section of theinitialization file specified by the "others' clause.
For example:

[Li brary]

asic_lib = /caelasic_lib

work = nmy_work

others = /install _dir/npdeltech/ nodel simini

Since the file referred to by the "others' clause may itself contain an "others" clause, you
can use this feature to chain a set of hierarchical INI filesfor library mappings.

Creating a transcript file

A feature in the system initialization file allows you to keep arecord of everything that
occursin the transcript: error messages, assertions, commands, command outputs, etc. To
do this, set the value for the TranscriptFile line in the modelsim.ini file to the name of the
filein which you would like to record the Model Sim history.

; Save the command wi ndow contents to this file
TranscriptFile = trnscrpt

ModelSim User's Manual

UM-350 A - ModelSim variables

Using a startup file

The system initialization file allows you to specify acommand or ado file that isto be
executed after the design isloaded. For example:

; VSIM Startup comrand

Startup = do mnystartup. do
The line shown above instructs Model Sim to execute the commands in the macro file
named mystartup.do.

; VSIM Startup conmrand

Startup = run -all

The line shown above instructs VSIM to run until there are no events schedul ed.
See the do command (CR-68) for additional information on creating do files.

Turning off assertion messages

Y ou can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge
number of warnings.

[vsinm
I gnoreNote = 1

IgnoreWarning = 1
I gnoreError =1
lgnoreFailure = 1

Turning off warnings from arithmetic packages

Y ou can disable warnings from the Synopsys and numeric standard packages by adding the
following linesto the [vsim] section of the modelsim.ini file.

[vsin

Nurrer i ¢St dNoWar ni ngs

=1
St dAri t hNoWarnings = 1

These variables can also be set interactively using the Tcl set command (UM-321). This
capability provides an answer to acommon question about disabling warnings at time 0.
Y ou might enter commands like the following in aDO file or at the Model Sim prompt:
set Numeri cSt dNoWarni ngs 1
run 0

set Numeri cSt dNoVar ni ngs 0
run -all

Alternatively, you could use the when command (CR-205) to accomplish the same thing:

when {$now = @ns } {set NumericStdNoWarnings 1}
run -all

Note that the time unit (nsin this case) would vary depending on your simulation
resolution.

ModelSim User’'s Manual

Preference variables located in INI files UM-351

Force command defaults

The for ce command has -freeze, -drive, and -deposit options. When none of theseis
specified, then -fr eezeisassumed for unresolved signalsand -driveisassumed for resolved
signals. Thisisdesigned to provide compatibility with force files. But if you prefer -freeze
as the default for both resolved and unresolved signals, you can change the defaultsin the
modelsim.ini file.

[vsin

; Default Force Kind

; The choices are freeze, drive, or deposit
Def aul t ForceKi nd = freeze

Restart command defaults

The restart command has -for ce, -nobreakpoint, -nolist, -nolog, and -nowave options.
Y ou can set any of these as defaults by entering the following line in the modelsim.ini file:

Def aul t Restart Opti ons = <options>

where <opt i ons> can be one or more of -force, -nobreakpoint, -nolist, -nolog, and -nowave.
Example: Def aul t Restart Options = -nolog -force

Note: Y ou can also set these defaultsin the modelsim.tcl file. The Tcl file settingswill override
the .ini file settings.

VHDL93
Y ou can make the VHDL 93 standard the default by including the following linein the INI
file

[vcom
; Turn on VHDL-1993 as the default. Default is off (VHDL-1987).
VHDLO3 = 1

Opening VHDL files

Y ou can delay the opening of VHDL fileswith an entry inthe NI fileif youwish. Normally
VHDL files are opened when the file declaration is elaborated. If the DelayFileOpen
option is enabled, then the file is not opened until the first read or write to that file.

[vsim
Del ayFil eQpen = 1

ModelSim User's Manual

UM-352 A - ModelSim variables

Preference variables located in Tcl files

ModelSim Tcl preference variables give you control over fonts, colors, prompts, window
positions and other simulator window characteristics. Preference files, which contain Tcl
commandsthat set preferencevariables, are |loaded before any windows are created, and so
will affect al windows.

When ModelSim isinvoked for the first time, default preferences are loaded from the
pref.tcl file. Customized variable settings may be set from within the Model Sim GUI
(Tools> Edit Preferences (Main window)), on the Model Sim command line (with the Tcl
set command (UM-321)), or by directly editing the preference file.

The default file for customized preferencesis modelsim.tcl. When Model Sim starts it
searches for amodelsim.tcl file as follows:

* use MODELSIM_TCL (uM-338) environment variableif it exists (if MODELSIM_TCL
isalist of files, each fileisloaded in the order that it appearsin the list); else

* use ./modelsim.tcl; else
* use $(HOME)/modelsim.tcl if it exists

A mportant: If your preferencefileis not named modelsim.tcl, or if thefileis not located
in the directories mentioned above, you must refer to it with the MODELSIM_TCL
environment variable.

For complete documentation on each Tcl preference variables, see the following URL:
http://www.model.com/resources/pref variables/frameset.htm

User-defined variables

Temporary, user-defined variables can be created with the Tcl set command (UM-321). Like
simulator variables, user-defined variables are preceded by adollar sign when referenced.
To create a variable with the set command:

set userl 7

Y ou can use the variable in acommand like:

echo "userl = S$userl"

More preferences

ModelSim User’'s Manual

Additional compiler and simulator preferences may be set in the modelsim.ini file; see
"Preference variables located in INI files' (UM-341).

http://www.model.com/resources/pref_variables/frameset.htm

Variable precedence

Variable precedence

Notethat some variablescan be setina.tcl fileor a.ini file. A variable setin a.tcl filetakes
precedence over the same variable set in a.ini file. For example, assume you have the
following linein your modelsim.ini file;

TranscriptFile = transcript

And assume you have the following line in your modelsim.tcl file:
set PrefMain(file) {}

Inthiscasethe setting in the modelsim.tcl filewill overridethat inthe modelsim.ini file, and
atranscript file will not be produced.

Simulator state variables

Unlike other variables that must be explicitly set, simulator state variables return avalue
relative to the current ssmulation. Simulator state variables can be useful in commands,
especialy when used within Model Sim DO files (macros).

Variable Result
argc returns the total number of parameters passed to the current macro
architecture returns the name of the top-level architecture currently being

simulated; for a configuration or Verilog module, this variable
returns an empty string

configuration

returns the name of the top-level configuration currently being
simulated; returns an empty string if no configuration

delta returns the number of the current simulator iteration

entity returns the name of the top-level VHDL entity or Verilog module
currently being simulated

library returns the library name for the current region

MacroNestingL evel

returns the current depth of macro call nesting

n

representsamacro parameter, wheren can bean integer intherange
19

Now

always returns the current simulation time with time units (e.g.,
110,000 ns) Note: will return a comma between thousands

now

when time resolution isaunary unit (i.e., 1ns, 1ps, 1fs): returnsthe
current simulation time without time units (e.g., 100000)

when time resolution is a multiple of the unary unit (i.e., 10ns,
100ps, 10fs): returns the current simulation time with time units
(e.g. 110000 ns) Note: will not return comma between thousands

resolution

returns the current simulation time resolution

UM-353

ModelSim User's Manual

UM-354 A - ModelSim variables

Referencing simulator state variables

Variablevalues may be referenced in simulator commands by preceding the variable name
with adollar sign ($). For example, to use the now and resolution variablesin an echo
command type:

echo "The time is $now $resol ution."

Depending on the current simulator state, this command could result in:
The time is 12390 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a"\". For
example, \$now will not be interpreted as the current simulator time.

Special considerations for the now variable

For the when command (CR-205), specia processing is performed on comparisons
involving the now variable. If you specify "when { $now=100}...", the simulator will stop
at time 100 regardless of the multiplier applied to the time resolution.

Y ou must use 64-bit time operators if the time value of now will exceed 2147483647 (the
limit of 32-bit numbers). For example:

if { [gtTine $now 2us] } {

See "Model Sim Tcl time commands' (UM-325) for details on 64-bit time operators.

ModelSim User’'s Manual

UM-355

B - ModelSim shortcuts

Appendix contents

Wave window mouse and keyboard shortcuts. UM-356
List window keyboard shortcuts UM-357
Command shortcuts UM-358
Command history shortcuts UM-358
Mouse and keyboard shortcutsin Main and Sourcewindows. . . UM-359
Right mouse button UM-360

This appendix is a collection of the keyboard and command shortcuts availablein the
ModelSim GUI.

ModelSim User's Manual

UM-356 B - ModelSim shortcuts

Wave window mouse and keyboard shortcuts

ModelSim User’'s Manual

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - |eft-button - drag down and right>2 zoom area (in)

< control - left-button - drag up and right> zoom out

< control - left-button - drag up and left> zoom fit

<left-button - drag> (Select mode) moves closest cursor

< middle-button - drag> (Zoom mode)

< control - left-button - click on a scroll arrow > scrolls window to very top or
bottom(vertical scroll) or far left or
right (horizontal scroll)

a. If you enter zoom mode by selecting View > Mouse M ode > Zoom M ode, you do
not need to hold down the <Ctrl> key.

Keystroke Action

il or + zoom in (mouse pointer must be over thethe cursor or waveform
panes)

oOor - zoom out (mouse pointer must be over the the cursor or
waveform panes)

forF zoom full (mouse pointer must be over the the cursor or
waveform panes)

| or L zoom last (mouse pointer must be over the the cursor or
waveform panes)

rorR zoom range (mouse pointer must be over the the cursor or
waveform panes)

<up arrow>/ with mouse over waveform pane, scrolls entire window up/

<down arrow>

down one line; with mouse over pathname or values pane,
scrolls highlight up/down one line

<|eft arrow>

scroll pathname, values, or waveform pane | eft

<right arrow>

scroll pathname, values, or waveform paneright

<page up>

scroll waveform pane up by apage

<page down>

scroll waveform pane down by a page

List window keyboard shortcuts UM-357

Keystroke Action

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> open the find dialog box; searches within the specified field in

the pathname pane for text strings

<control-left arrow> scroll pathname, values, or waveform pane left by a page

<control-right arrow> scroll pathname, values, or waveform paneright by a page

List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key

Action

<|eft arrow>

scroll listing left (selectsand highlightstheitem to theleft of the
currently selected item)

<right arrow>

scroll listing right (selects and highlights the item to the right of
the currently selected item)

<up arrow>

scroll listing up

<down arrow>

scroll listing down

<page up>
<control-up arrow>

scroll listing up by page

<page down> scroll listing down by page

<control-down

arrow>

<tab> searches forward (down) to the next transition on the selected
signa

<shift-tab> searchesbackward (up) to the previoustransition on the sel ected

signal (does not function on HP workstations)

<shift-left arrow>
<shift-right arrow>

extends selection left/right

<control-f>

opensthe Find dialog box to find the specified item label within
thelist display

ModelSim User's Manual

UM-358 B - ModelSim shortcuts

Command shortcuts

 You may abbreviate command syntax, but there's a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work.

* Multiple commands may be entered on onelineif they are separated by semi-colons (;).
For example:

Model Si n> vl og - nodebug=ports level3.v level2.v ; vlog -nodebug top.v
The return value of the last function executed is the only one printed to the transcript.

This may cause some unexpected behavior in certain circumstances. Consider this
example;

vsim-c -do "run 20 ; sinmstats ; quit -f" top
Y ou probably expect the simstats results to display in the Transcript window, but they

will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim-do "run 20 ; echo [simstats]; quit -f" -c top

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the Model Sim/VVSIM prompt:

Shortcut Description

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt tothe active
cursor

history shows the last few commands (up to 50 are kept)

ModelSim User’'s Manual

Mouse and keyboard shortcuts in Main and Source windows

Mouse and keyboard shortcuts in Main and Source win-

dows

The following mouse actions and special keystrokes can be used to edit commandsin the
entry region of the Main window. They can also be used in editing thefile displayed in the
Source window and all Notepad windows (enter the notepad command within Model Sim

to open the Notepad editor).

Keystrokes

Result

< left | right - arrow >

move the cursor left | right one character

< up | down - arrow >

scroll through command history (in Source
window, move cursor one line up | down)

< control > < |eft | right - arrow >

move cursor |eft | right one word

< shift > < left | right | up | down - arrow >

extend selection of text

< control > < shift > <left | right - arrow >

extend selection of text by word

< up | down - arrow >

scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down >

move cursor up | down one paragraph

<at> activate or inactivate menu bar mode
<dt><F4> close active window

< backspace > delete character to the left

< home > move cursor to the beginning of the line
<end > move cursor to the end of theline

< control > < home >

move cursor to the beginning of the text

< control > < end >

move cursor to the end of the text

< esc>

cancel

< control - a>

select the entire content of the widget

< control - ¢ >

copy the selection

< control - f >

find

<F3>

find next

< control - k >

delete from the cursor to the end of the line

< control - s>

save

< control -t >

reverse the order of the two charactersto the
right of the cursor

UM-359

ModelSim User's Manual

UM-360 B - ModelSim shortcuts

Keystrokes Result

<control - u> deleteline

< control - v > paste from the clipboard

< control - x > cut the selection

<F8> search for the most recent command that
matches the characters typed

<F9> run simulation

<F10> continue simulation

<F11> single-step

<Fl12> step-over

The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

Right mouse button

The right mouse button provides shortcut menus in the most windows. See Chapter 7 -
Graphic interface for menu descriptions.

ModelSim User’'s Manual

UM-361

C - ModelSim messages

Appendix contents

ModelSim messagesystem UM-362
Messageformat UM-362
Getting moreinformation. UM-362

Suppressing warning messages UM-363
Suppressing VCOM warning m%sages UM-363
Suppressing VLOG warningmessages UM-363
Suppressing VSIM warningmessages UM-363

Exitcodes UM-364

Miscellaneousmessages UM-366
Empty port namewarning. UM-366
Lock message. UM-366
Metaval ue detected warni ng UM-366
Sensitivity lisswarning UM-367
Tcl Initidizationerror2 UM-367
Too few port connections. UM-368
VSIM licenselost. UM-369

This appendix documents various status and warning messages that are produced by
ModelSim.

ModelSim User's Manual

UM-362 C - ModelSim messages

ModelSim message system

The Model Sim message system hel ps you identify and troubleshoot problems while using
the application. The messages display in astandard format in the Main window transcript.
Accordingly, you can also access them from a saved transcript file (see " Saving the Main
window transcript file" (UM-139) for more details).

Message format

The format for the messagesis:
** <SEVERI TY LEVEL>: ([<Tool >[-<G oup>]]-<MsgNum>) <Message>

SEVERITY LEVEL may be one of the following:

severity level meaning

Note Thisis an informational message.

Warning There may be aproblem that will affect the
accuracy of your results.

Error The tool cannot compl ete the operation.

Fatal The tool cannot complete execution.

INTERNAL ERROR | Thisisan unexpected error that should be
reported to support@model.com.

T ool indicateswhich M odel Sim tool was being executed when the message was generated.
For example tool could be vcom, vdel, vaim, etc.

Group indicates the topic to which the problemisrel ated. For examplegroup could be FLI,
PLI, VCD, etc.

Example

** Error: (vsimPLI-3071) ./src/19/testfile(77): $fdunplimt : Too few
argument s.

Getting more information

Each messageisidentified by aunique MsgNum id. Y ou can access additional information
about a message using the unique id and the verror (CR-153) command. For example:

% verror 3071

Message # 3071:

Not enough argunments are being passed to the specified systemtask or
function.

ModelSim User’'s Manual

Suppressing warning messages

Suppressing warning messages

Y ou can suppress some warning messages. For example, you may receive warning
messages about unbound components about which you are not concerned.

Suppressing VCOM warning messages

Usethe- nowar n <nunber > argument to vcom (CR-145) to suppress a specific warning
message. For example:

vcom -nowarn 1
Suppresses unbound component warning messages.

Alternatively, warnings may be disabled for all compiles viathe modelsim.ini file (see
"[vcom] VHDL compiler control variables' (UM-342)).

The warning message numbers are;

1 = unbound conponent

process w thout a wait statement

nul | range

no space intime litera

mul tiple drivers on unresol ved signa
conpl i ance checks

optim zation nmessages

~N~No obhwN
Mmoo nmnn

Suppressing VLOG warning messages

Use the +nowar n<CODE> argument to vlog (CR-181) to suppress a specific warning message.
Warningsthat can be disabled include the <CODE> namein square bracketsin thewarning
message. For example:

vl og +nowar nDECAY
Suppresses decay warning messages.
Suppressing VSIM warning messages

Usethe +nowar n<CODE> argument to vsim (CR-189) to suppress a specific warning message.
Warningsthat can be disabled include the <CODE> namein square bracketsin thewarning
message. For example;

vl og +nowar nTFMPC
Suppresses warning messages about too few port connections.

UM-363

ModelSim User’'s Manual

UM-364 C - ModelSim messages

EXit codes

The table below describes exit codes used by Model Sim tools.

Exit code Description

0 Normal (non-error) return

1 Incorrect invocation of tool

2 Previous errors prevent continuing

3 Cannot create a system process (execv, fork, spawn, etc.)

4 Licensing problem

5 Cannot create/open/find/read/write adesign library

6 Cannot create/open/find/read/write a design unit

7 Cannot open/read/write/dup afile (open, Iseek, write, mmap, munmap,
fopen, fdopen, fread, dup2, etc.)

8 Fileis corrupted or incorrect type, version, or format of file

9 Memory allocation error

10 General language semantics error

11 General language syntax error

12 Problem during load or elaboration

13 Problem during restore

14 Problem during refresh

15 Communication problem (Cannot create/read/write/close pipe/socket)

16 Version incompatibility

19 License manager not found/unreadabl e/unexecutable (vim/mgvim)

42 Lost license

43 License read/write failure

44 Modeltech daemon license checkout failure #44

45 Modeltech daemon license checkout failure #45

20 Assertion failure (SEVERITY_QUIT)

99 Unexpected error in tool

202 Interrupt (SIGINT)

204 Illegal instruction (SIGILL)

ModelSim User’'s Manual

Exit codes

Exit code Description

205 Tracetrap (SIGTRAP)

206 Abort (SIGABRT)

208 Floating point exception (SIGFPE)

210 Bus error (SIGBUS)

211 Segmentation violation (SIGSEGV)

213 Write on a pipe with no reader (SIGPIPE)
214 Alarm clock (SIGALRM)

215 Software termination signal from kill (SIGTERM)
216 User-defined signa 1 (SIGUSR1)

217 User-defined signa 2 (SIGUSR2)

218 Child status change (SIGCHLD)

230 Exceeded CPU limit (SIGXCPU)

231 Exceeded file size limit (SIGXFSZ)

UM-365

ModelSim User's Manual

UM-366 C - ModelSim messages

Miscellaneous messages

This section describes miscellaneous messages which may be associated with Model Sim.

Empty port name warning

Lock message

Message text
WARNI NG 8] : <path/file_nane>:
enpty port name in port list.
Meaning

Model Sim reports these warnings if you use the -lint argument to vlog (CR-181). It reports
thewarning for any NULL module ports.

Suggested action
If you wish to ignore this warning, do not use the -lint argument.

Message text

wai ting for lock by user@iser. Lockfile is <library_path>/_| ock

Meaning

The _lock fileis created in alibrary when you begin a compilation into that library, and it
is removed when the compilation completes. This prevents simultaneous updates to the
library. If aprevious compiledid not terminate properly, Model Sim may fail to removethe
_lockfile.

Suggested action

Manually remove the _lock file after making sure that no one else is actually using that
library.

Metavalue detected warning

ModelSim User’'s Manual

Message text
Warni ng: NUMERI C_STD. ">": metaval ue detected, returning FALSE

Meaning

Thiswarning is an assertion being issued by the IEEE numeric_std package. It indicates
that thereisan "X’ in the comparison.

Suggested action

The message does not indicate which comparison is reporting the problem since the
assertion is coming from a standard package. To track the problem, note the time the
warning occurs, restart the simulation, and run to one time unit before the noted time. At
this point, start stepping the simulator until the warning appears. The location of the blue

Miscellaneous messages UM-367

arrow in the source window will be pointing at the line following the line with the
comparison.

These messages can be turned off by setting the NumericStdNoWar nings variable to 1
from the command line or in the modelsim.ini file.

Sensitivity list warning

Message text

signal is read by the process but is not in the sensitivity |ist

Meaning

Model Sim outputs this message when you use the -check _synthesis argument to vcom
(CR-145). It reports the warning for any signal that is read by the process but is not in the
sensitivity list.

Suggested action

There are cases where you may purposely omit signals from the sensitivity list even though
they are read by the process. For example, in a strictly sequential process, you may prefer
to include only the clock and reset in the sensitivity list because it would be adesign error
if any other signal triggered the process. In such cases, you' re only option as of version 5.7
isto not use the -check _synthesis argument. A more robust implementation of the
argument may be added to a future version.

Tcl Initialization error 2

Message text
Tcl _Init Error 2 : Can’t find a usable Init.tcl inthe follow ng directories :
.. ltel/tcl 8.3 .
Meaning

This message typically occurs when the base file was not included in a Unix installation.
When you install Model Sim, you need to download and install 3 files from the ftp site.
Thesefiles are:

» modeltech-base.tar.gz
» modeltech-docs.tar.gz
» modeltech-<platform>.exe.gz

If you install only the <platform> file, you will not get the Tcl filesthat are located in the
basefile.

This message could also occur if the file or directory was deleted or corrupted.

Suggested action
Reinstall Model Sim with all threefiles.

ModelSim User's Manual

UM-368 C - ModelSim messages

Too few port connections

Message text
** Warning (vsim3017): foo.v(1422): [TFMPC] - Too few port connections.
Expected # 2, found 1. Region: /foo/tb

Meaning

This warning occurs when an instantiation has fewer port connections than the
corresponding module definition. The warning doesn’t necessarily mean anything is
wrong; itislegal in Verilog to have an instantiation that doesn’t connect all of the pins.
However, someone that expects all pins to be connected would like to see such awarning.

Here are some examples of legal instantiations that will and will not cause the warning
message.
Module definition:

modul e foo (a, b, ¢, d);

Instantiation that does not connect all pins but will not produce the warning:
foo insti(e, f, g,); —positional association
foo instl(.a(e), .b(f), .c(g), .d()); —named association
Instantiation that does not connect all pins but will produce the warning:
foo insti(e, f, g); —positional association
foo instl(.a(e), .b(f), .c(g)); —named association

Any instantiation above will leave pin d unconnected but the first example has a
placeholder for the connection. Here's another example:

foo insti(e, , g, h);
foo instl(.a(e), .b(), .c(g), .d(h));

Suggested actions

« Check that thereis not an extracomma at the end of the port list. (e.g., model(a,b,)). The
extracommaislegal Verilog and implies that thereis athird port connection that is
unnamed.

« If you are purposefully leaving pins unconnected, you can disable these messages using
the +nowar nTFM PC argument to vaim.

ModelSim User’'s Manual

Miscellaneous messages UM-369

VSIM license lost

Message text

Consol e out put:

Signal 0 caught... Closing vsimvimchild.
vsimis exiting with code 4

FATAL ERROR in |icense manager

transcript/vsi mout put:

** Error: VSIMIlicense |lost; attenpting to re-establish.
Time: 5027 ns Iteration: 2

** Fatal: Unable to kill and restart |icense process.

Time: 5027 ns |Iteration: 2

Meaning

Model Sim queries the license server for alicense at regular intervals. Usually these
"License Lost" error messages indicate that network traffic is high, and communication
with the license server times out.

Suggested action

Anything you can do to improve network communication with the license server will
probably solve or decrease the frequency of this problem.

ModelSim User's Manual

UM-370

ModelSim User’s Manual

UM-371

D - System initialization

Appendix contents

Filesaccessed during startup UM-372
Environment variablesaccessed during startup UM-373
Initializationsequence. UM-374

ModelSim goes through numerous steps as it initializes the system during startup. It
accesses various files and environment variables to determine library mappings, configure
the GUI, check licensing, and so forth.

ModelSim User's Manual

UM-372 D - System initialization

Files accessed during startup

ModelSim User’'s Manual

The table bel ow describes thefiles that are read during startup. They are listed in the order

in which they are accessed.
File Purpose
modelsim.ini containsinitial tool settings; see " Preference variableslocated in

INI files" (uM-341) for specific details on the modelsim.ini file

location map file

used by Model Sim tools to find source files based on easily
reallocated "soft" paths; default file nameis mgc_location_map

pref.tcl contains defaults for fonts, colors, prompts, window positions,
and other ssimulator window characteristics; see "Preference
variableslocated in Tcl files' (Um-352) for specific details on the
pref.tcl file

modelsim.tcl contains user-customi zed settings for fonts, colors, prompts,

window positions, and other simulator window characteristics;
see "Preference variables located in Tcl files" (um-352) for
specific details on the modelsim.tcl file

<project_name>.mpf

if available, loads last project file which is specified in the
registry (Windows); see "What are projects?' (UM-18) for details
on project settings

Environment variables accessed during startup

Environment variables accessed during startup

The table bel ow describes the environment variables that are read during startup. They are
listed in the order in which they are accessed. For more information on environment
variables, see "Environment variables" (UM-337).

Environment variable

Purpose

MODEL_TECH

set by Model Sim to the directory in which the binary executables reside
(e.g., ../modeltech/<platform>/)

MODEL_TECH_OVERRIDE

provides an alternative directory for the binary executables;
MODEL_TECH isset to this path

MODELSIM

identifies path to the modelsim.ini file

MGC_WD

identifies the Mentor Graphics working directory

MGC_LOCATION_MAP

identifies the path to the location map file; set by Model Sim if not defined

MODEL_TECH_TCL

identifies the path to all Tcl librariesinstalled with ModelSim

HOME identifies your login directory (UNIX only)

MGC_HOME identifies the path to the MGC tool suite

TCL_LIBRARY identifies the path to the Tcl library; set by Model Sim to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

TK_LIBRARY identifies the path to the Tk library; set by Model Sim to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITCL_LIBRARY identifies the path to the [incr] Tcl library; set by Model Sim to the same
path as MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITK_LIBRARY identifies the path to the [incr] Tk library; set by Model Sim to the same

pathas MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

VSIM_LIBRARY

identifies the path to the Tcl files that are used by Model Sim; set by
Model Sim to the same path as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

MTI_COSIM_TRACE

creates an mti_trace_cosim file containing debugging information about
FLI/PLI/VPI function calls; set to any value before invoking the
simulator.

MTI_LIB_DIR

identifies the path to all Tcl librariesinstalled with ModelSim

MODELSIM_TCL

identifies the path to the modelsim.tcl file; this environment variable can
be alist of file pathnames, separated by semicolons (Windows)

UM-373

ModelSim User's Manual

UM-374 D - System initialization

Initialization sequence

ModelSim User’'s Manual

The following list describesin detail Model Sim’s initialization sequence. Th

e sequence

includes a number of conditional structures, the results of which are determined by the

existence of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except

MTI_LIB_DIR whichisaTcl variable). Instances of $(NAME) denote paths

that are

determined by an environment variable (except $(MTI_LIB_DIR) which is determined by

aTcl variable).

1 Determinesthe path to the executable directory (../modeltech/<platform>/). Sets

MODEL_TECH to thispath, unlessMODEL_TECH_OVERRIDE exists, i

nwhich case

MODEL_TECH is set to the same value as MODEL_TECH_OVERRIDE.

2 Findsthe modelsim.ini file by evaluating the following conditions:
* use MODELSIM if it exists; else

» use $(MGC_WD)/modelsim.ini; else

* use./modelsim.ini; else

* use $(MODEL_TECH)/modelsim.ini; else

* use $(MODEL_TECH)/../modelsim.ini; else

* use $(MGC_HOME)/lib/modelsim.ini; else

set path to ./modelsim.ini even though the file doesn’t exist

3 Findsthe location map file by evaluating the following conditions:

* useMGC_LOCATION_MAPIf it exists (if this variable is set to "no_map'
skipsinitialization of the location map); else

» use mgc_location_map if it exists; else

* use $(HOME)/mgc/mgc_location_map; else

* use $(HOME)/mgc_location_map; else

* use 3(MGC_HOME)/etc/mgc_location_map; else

 use $(MGC_HOME)/shared/etc/mgc_location_map; else
* use $(MODEL_TECH)/mgc_location_map; else

 use $(MODEL_TECH)/../mgc_location_map; €lse

* use no map

", ModelSim

4 Reads various variables from the [vsim] section of the modelsim.ini file. See "[vsim]

simulator control variables" (UM-344) for more details.

5 Parsesany command line arguments that wereincluded when you started Model Sim and

reports any problems.

6 Definesthe following environment variables:
use MODEL_TECH_TCL if it exists; else

Initialization sequence

set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl
set TCL_LIBRARY=$(MODEL_TECH_TCL)/tcl8.3
set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.3

set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itc|3.0
set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0
st VSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim

~

Initializes the simulator’s Tcl interpreter.

8 Checksfor avalidlicense (alicenseisnot checked out unless specified by amodelsim.ini
setting or command line option).

The next four stepsrelate to initializing the graphical user interface.
9 SetsTcl variable"MTI_LIB_DIR"=MODEL_TECH_TCL
10 Loads $(MTI_LIB_DIR)/pref.tcl.

11 Findsthe modelsim.tcl file by evaluating the following conditions:

* useMODELSIM_TCL environment variableif it exists (if MODELSIM_TCL isalist of
files, each file isloaded in the order that it appearsin thelist); else

* use ./modelsim.tcl; else
* use $(HOME)/modelsim.tcl if it exists

12 Loadslast working directory, project file, and printer defaults from the registry
(Windows).

That completesthe initialization sequence. Also note the following about the modelsim.ini
file

* When you change the working directory within Model Sim, the tool reads the [library],
[vcom], and [vlog] sectionsof thelocal modelsim.ini file. When you make changesin the
compiler options dialog or use the vmap command, the tool updates the appropriate
sections of thefile.

» The pref.tcl file references the default .ini file viathe [GetPrivateProfileString] Tcl
command. The .ini filethat isread will be the default file defined at the time pref.tcl is
loaded.

UM-375

ModelSim User's Manual

UM-376

ModelSim User’s Manual

UM-377

E - Tips and techniques

Appendix contents

Setting up librariesfor groupuse UM-379
UsingaDOfiletotest forassertions UM-380
Locating assertionwarnings UM-380
Sampling signalsataclockchange UM-381
Configuring aList trigger with Expression Builder UM-382
Converting signal valuestostrings UM-384
Converting an integer intoabit vector UM-38
Referencing source fileswith locationmaps UM-387
Performance affected by scheduled eventsbeing cancelled . . . UM-389
Modelingmemory invVHDL UM-390

This appendix contains various tips and techniques collected from several parts of the
manual and from answers to questions received by tech support.

ModelSim User's Manual

UM-378 E - Tips and techniques

Running command-line and batch-mode simulations

ModelSim User’'s Manual

Thetypical method of running Model Simisinteractive: you push buttonsand/or pull down
menusin aseries of windowsinthe GUI (graphic user interface). But there are really three
specific modes of Model Sim operation: GUI, command line, and batch. Here are their
characteristics:

* GUI mode
Thisisthe usual interactive mode; it has graphical windows, push-buttons, menus, and a
command line in the text window. This is the default mode.

* Command-line mode - running vsim.exe
This an operational mode that has only an interactive command line; no interactive
windows are opened. To run vsim in this manner, invoke it with the -c option asthe first
argument from the DOS prompt in Windows.

Theresulting transcript fileis created in such away that the transcript can be re-executed
without change if you desire. Everything except the explicit commands you enter will
begin with aleading comment character (#).

« Batch mode - running vsim.exe
Batch mode is an operational mode that provides neither an interactive command line,
nor interactive windows.

InaWindows environment, vsim is run from a Windows command prompt and standard
input and output are re-directed to and from files. An example of the "here-document”
techniqueis:

C.\nodel tech> vsiment arch <infile >outfile

where infile contains:

force reset 0
force clk 0, 0 1 50 -rep 100
run 10000

Saving and viewing waveforms in batch mode UM-379

Saving and viewing waveforms in batch mode
You can run vsim as a batch job and view the resulting waveforms later.

1 When you invoke vsim thefirst time, use the -wlf option to rename the wave log format
(WLF) file, and redirect stdin to invoke the batch mode. The command should look like
this:

vsim-w f wavesavl. W f counter < conmand.do

Withinyour command.do file, usethelog command (CR-87) to save thewaveformsyou
want to look at later, run the simulation, and quit.

When vsim runs in batch mode, it does not write to the screen, and can be run in the
background.

2 When you return to work the next day after running several batch jobs, you can start up
vsim in its viewing mode with this command and the appropriate .wif files:

vsim -view wavesavl. W f

Now you will be able to use the Waveform and List windows normally.

Setting up libraries for group use

By adding an “others” clause to your modelsim.ini file, you can have ahierarchy of library
mappings. If the Model Sim tools don’t find a mapping in the modelsim.ini file, then they
will search thelibrary section of theinitialization file specified by the “ others’ clause. For
example:

[library]

asic_lib = /caelasic_lib

work = nmy_work

others = /usr/nodel tech/ nodel simini

ModelSim User's Manual

UM-380 E - Tips and techniques

Using a DO file to test for assertions

Y ou can use the onbreak command (CR-98) in aDO file to invoke commands upon the
occurrence of asimulation breakpoint. Assertions are treated as breakpointsif the severity
level isgreater than or equal to the current BreakOnAssertion variable setting (see "[vsim]
simulator control variables" (UM-344)). By default aseverity level of failure or above causes
abreakpoint; a severity level of error or below does not.

Hereis an example of how the onbreak command might be used to test for an assertion:

set broken 0
onbreak {
set broken 1
resune
}
run -all
if { $broken } {
puts “"failure"
} else {
puts "success"

}

Locating assertion warnings

ModelSim User’'s Manual

Y ou may receive assertion messages that don’t contain file and line numbers. For example;
** Warni ng: NUMERI C_STD. TO_UNSI GNED: vector truncated

Time: 0 ns |Iteration: O Instance: /core_tb
** Warni ng: NUVERI C_STD. TO | NTEGER et aval ue detected, returning O
Time: O ns Iteration: O Instance: /core_tb

Set the BreakOnA ssertion (UM-345) value to break on warnings. Any assertion warnings
will be treated as breakpoints, and you'll be able to see the file and line number in the
Source window.

The value you specify determines what severity level causes a simulation break (O = note,
1 =warning, 2 = error, 3 = failure, 4 = fatal). Y ou can specify thisin the modelsim.ini file
or from the GUI by selecting Simulate > Simulation Options (Main window) and
selecting the Assertions tab.

Sampling signals at a clock change UM-381

Sampling signals at a clock change

Y ou can do thiseasily using the add list command (CR-32) with the -notrigger argument.
-notrigger disables triggering the display on the specified signals. For example:

add list clk -notrigger a b c

When you run the simulation, List window entriesfor clk, a, b, and ¢ appear only when clk
changes.

If you want to display on rising edges only, you have two options:

1 Turn off the List window triggering on the clock signal, and then define arepeating
strobe for the list window

2 Define a"gating expression” for the List window that requires the clock to bein a
specified state. See "Configuring a List trigger with Expression Builder" (um-382).

ModelSim User's Manual

UM-382 E - Tips and techniques

Configuring a List trigger with Expression Builder

ModelSim User’'s Manual

This example shows you how to set a List window trigger based on a gating expression
created with the Model Sim Expression Builder.

If you want to look at a set of signal values ONLY during the simulation cycles during
which an enable signal rises, you would need to use the List window Trigger Gating
feature. The gating feature suppresses all display lines except those for which a specified
gating function evaluates to true.

Select Tools > Window Preferences (List window) to access the Triggers tab.

|, Modify Display Properties (list) o] |

—Deltas:
¥ Expand Deltas " Collapse Deltas " Mo Deltas

—Trnigger On:

[SianalChanas Strobe Penod: |0n=

[T Shobe First Strobe at: |0 ns

— Trigger Gating:

[Usze Gating Expression Ilze Exprezsion Builder

Expression: |

0On Duration: |EI hi

ok LCancel Apply

Check the Trigger Gating: Use Gating Expression check box. Then click on Use
Expression Builder. Select the signal in the List window that you want to be the enable

Configuring a List trigger with Expression Builder UM-383

signal by clicking on its name in the header area of the List window. Then click Insert
Selected Signal and 'rising in the Expression Builder.

|55 'Expression Builder

’7 E sprezsion

— Exprezsion Builder
Inzert Selected Signal | [| ==
'riging 'falling el I I=
AMD| OR] 1 b »= £
=0R| SLL b z 4= +
SEL| SR H L * d %
Clear Save Test | Ok | Cancel

Click OK to close the Expression Builder. Y ou should see the name of the signal plus
"'rising" added to the Expression entry box of the Modify Display Properties dialog box.
(Leave the On Duration field zero for now.) Click the OK button.

If you already have simulation datain the List window, the display should immediately
switch to showing only those cycles for which the gating signal isrising. If that isn't quite
what you want, you can go back to the expression builder and play with it until you get it
the way you want it.

If you want the enable signal to work like a"One-Shot" that would display all values for
the next, say 10 ns, after the rising edge of enable, then set the On Duration value to 10
ns. Otherwise, leaveit at zero, and select Apply again. When everything is correct, click
OK to close the Modify Display Properties dialog box.

When you save the List window configuration, the list gating parameters will be saved as
well, and can be set up again by reading in that macro. Y ou can take alook at the macro to
see how the gating can be set up using macro commands.

ModelSim User's Manual

UM-384 E - Tips and techniques

Converting signal values to strings

Y ou may want to display certain signal values as strings. For example, rather than
displaying the value 0, you may want to display the string "idle." Thevirtual type
command (CR-178) allows you to do this.

The virtual type command creates a new enumerated type, known only by the GUI. The
steps for using the command are as follows:

1 Defineavirtua type that contains the states:
virtual type { stateO statel state2 state3} nyState

2 Defineavirtual function for translating the signal valuesto strings

virtual function {(mystate)nysignal} myConvertedSi gnal

3 Display the translated value
add wave nyConvertedSi gnal

When myConvertedSignal is displayed in the Wave, List or Signals window, the string
"state0" will appear when mysignal == 0, "statel" when mysignal == 1, "state2" when
mysignal == 2, etc.

See the virtual type command (CR-178) in the Model Sm Command Reference for further
details.

ModelSim User’'s Manual

Converting an integer into a bit_vector UM-385

Converting an integer into a bit_vector

The following code demonstrates how to convert an integer into abit_vector.

library ieee;
use ieee.nuneric_bit.ALL;

entity test is
end test;

architecture only of test is
signal sl1 : bit_vector(7 downto 0);

signal int : integer := 45;
begi n

p: process

begin

wait for 10 ns;
sl <= bit_vector(to_signed(int,8));
end process p;
end only;

ModelSim User's Manual

UM-386 E - Tips and techniques

Detecting infinite zero-delay loops

ModelSim User’'s Manual

Simulations use steps that advance simulated time, and steps that do not advance simulated
time. Steps that do not advance simulated time are called "deltacycles’ or smply "deltas’.
Deltas are used when signal assignments are made with zero time delay (see"Deltadelays’
(uM-53)for more information).

If alarge number of deltas occur without advancing time, it is usually a symptom of an
infinite zero-delay loop in the design. In order to detect the presence of these loops,
Model Sim defines alimit, the “iteration limit", on the number of successive deltas that can
occur. When theiteration limit is exceeded, vsim stops the simulation and givesawarning
message.

Theiteration limit default value is1000. If you receive an iteration limit warning, first
increase the iteration limit and try to continue simulation. Y ou can set the iteration limit
fromthe Simulate > Simulation Options menu, or by modifying the modelsim.ini file.See
for more information on modifying the modelsim.ini file.

If the problem persists, |ook for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which
signals or variables are continuously oscillating. Two common causes are aloop that has
no exit, or a series of gates with zero delay where the outputs are connected back to the
inputs.

Referencing source files with location maps UM-387

Referencing source files with location maps

Pathnames to source files are recorded in libraries by storing the working directory from
which the compile isinvoked and the pathname to the file as specified in the invocation of
the compiler. The pathname may be either a complete pathname or arelative pathname.

Model Sim tools that reference source files from the library locate a source file as follows:

* If the pathname stored in the library is complete, then thisis the path used to reference
thefile.

* If the pathname isrelative, then the tool looks for the file relative to the current working
directory. If thisfile does not exist, then the path relative to the working directory stored
inthelibrary is used.

Thismethod of referencing sourcefiles generally worksfineif thelibraries are created and
used on asingle system. However, when multiple systems access alibrary across anetwork
the physical pathnames are not always the same and the source file reference rules do not
alwayswork.

Using location mapping

L ocation maps are used to replace prefixes of physical pathnamesin the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

Model Sim tools open the location map file on invocation if the MGC_LOCATION_MAP
(UM-337) environment variableis set. If MGC_LOCATION_MAP s not set, ModelSim
will look for afile named "mgc_location_map" in the following locations, in order:

« the current directory

* your home directory

* the directory containing the Model Sim binaries
« the ModelSim installation directory

Use these two steps to map your files:

1 Settheenvironment variable MGC_LOCATION_MAPto the path to your location map
file

2 Specify the mappings from physical pathnamesto logical pathnames:

$SRC
/' home/ vhdl / src
/usr/vhdl/src

$I EEE
/usr/ nodel tech/ i eee

ModelSim User's Manual

UM-388 E - Tips and techniques

Pathname syntax

Thelogical pathnames must begin with $ and the physical pathnames must begin with /.
Thelogical pathnameis followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have
different pathnames on different systems).

How location mapping works

When apathname is stored, an attempt is made to map the physical pathname to a path
relative to alogical pathname. Thisis done by searching the location map file for the first
physical pathnamethat isaprefix to the pathnamein question. Thelogical pathnameisthen
substituted for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/
test.vhd". If amapping can be madeto alogical pathname, then thisisthe pathnamethat is
saved. The path to a sourcefile entry for adesign unit in alibrary is a good example of a
typical mapping.

For mapping from alogical pathname back to the physical pathname, Model Sim expects
an environment variable to be set for each logical pathname (with the same name).
Model Sim reads the | ocation map file when atool isinvoked. If the environment variables
corresponding to logical pathnames have not been set in your shell, Model Sim sets the
variablesto thefirst physical pathnamefollowing thelogical pathnamein thelocation map.
For example, if you don't set the SRC environment variable, Model Sim will automatically
set it to "/home/vhdl/src”.

Mapping with Tcl variables

ModelSim User’'s Manual

Two Tcl variables may also be used to specify alternative source-file paths; SourceDir and
SourceMap. See http://www.model .com/resources/pref variables/frameset.htm.

http://www.model.com/resources/pref_variables/frameset.htm

Performance affected by scheduled events being cancelled UM-389

Performance affected by scheduled events being cancelled

Performance will suffer if events are scheduled far into the future but then cancelled before
they take effect. This situation will act like amemory leak and slow down simulation.

In VHDL this situation can occur several ways. The most common are waits with time-out
clauses and projected waveformsin signal assignments.

The following code shows await with atime-out:
signals synch : bit :="'0";
p: process
begi n

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

Attime0, process p makesan event for time 10ms. When synch goesto 1 at 10 ns, the event
at 10 msis marked as cancelled but not deleted, and a new event is scheduled at 10ms +
10ns. The cancelled events are not reclaimed until time 10msis reached and the cancelled
event is processed. As aresult there will be 500000 (10ms/20ns) cancelled but undel eted
events. Once 10msis reached, memory will no longer increase because the simulator will
be reclaiming events as fast as they are added.

For projected waveforms the following would behave the same way:
signals synch : bit :='0";
p: process(synch)
begi n

output <= '0", "1 after 10ms;
end process;

synch <= not synch after 10 ns;

ModelSim User's Manual

UM-390 E - Tips and techniques

Modeling memory in VHDL

ModelSim User’'s Manual

AsaVHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

* You may get a"memory allocation error" message, which typically means the simulator
ran out of memory and failed to alocate enough storage.

« Or, you may get very long load, elaboration or run times.

These problems are usually explained by the fact that signals consume a substantial amount
of memory (many dozens of bytes per bit), al of which needs to be loaded or initialized
before your simulation starts.

A simple alternative implementation provides some excellent performance benefits:

« storage required to model the memory can be reduced by 1-2 orders of magnitude

* dtartup and run times are reduced

« associated memory allocation errors are eliminated

Thetrick isto model memory using variablesinstead of signals.

In the example below, we illustrate three alternative architectures for entity "memory".
Architecture "style 87_bad" uses avhdl signal to store the ram data. Architecture

"style 87" usesvariablesin the "memory" process, and architecture "style 93" uses
variablesin the architecture.

For large memories, architecture "style 87 bad" runs many times longer than the other
two, and uses much more memory. This style should be avoided.

Both architectures"style 87" and "style 93" work with equal efficiently. You'll find some
additional flexibility with the VHDL 1993 style, however, because the ram storage can be
shared between multiple processes. For example, asecond processis shown that initializes
the memory; you could add other processes to create a multi-ported memory.

To implement this model, you will need functions that convert vectors to integers. To use
it you will probably need to convert integers to vectors.

Example functions are provided below in package "conversions'.

library ieee;
use ieee.std_l ogic_1164.all;
use wor k. conversions. all;

entity menory is

generic(add_bits : integer := 12;
data_bits : integer := 32);
port(add_in : in std_ul ogic_vector(add_bits-1 downto 0);
data_in : in std_ulogic_vector(data_bits-1 downto 0);
data_out : out std_ul ogic_vector(data_bits-1 downto 0);
cs, mmite @ in std_ulogic;
do_init : in std_ulogic);
subtype word is std_ul ogi c_vector(data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;
type ramtype is array(0 to nwords-1) of word;

end;

architecture style_93 of nmenory is

shared variable ram: ramtype;

Modeling memory in VHDL

begin
menory:
process (cs)
vari abl e address : natural;
begin
if rising_edge(cs) then
address := sulv_to_natural (add_in);
if (mwrite ='1") then
ram(address) := data_in;
end if;
data_out <= ran(address);
end if;
end process nenory;
-- illustrates a second process using the shared variable
initialize:
process (do_init)
vari abl e address : natural;
begi n
if rising_edge(do_init) then
for address in 0 to nwords-1 | oop
ram(address) := data_in;
end | oop;
end if;
end process initialize;
end architecture style_93;

architecture style_87 of menory is
begi n

menory:

process (cs)

variable ram: ramtype;
vari abl e address : natural;
begi n
if rising_edge(cs) then
address := sulv_to_natural (add_in);
if (mwrite ='1") then
ram(address) := data_in;
end if;
data_out <= ran(address);
end if;
end process;
end style_ 87;

architecture bad_style_87 of nenory is

begi n
menory:
process (cs)
vari abl e address : natural := 0;
begi n
if rising_edge(cs) then
address := sulv_to_natural (add_in);

if (mwrite ='1") then
ram(address) <= data_in;
data_out <= data_in;

el se
dat a_out <= ram(address);

UM-391

ModelSim User's Manual

UM-392 E - Tips and techniques

end if;
end if;
end process;
end bad_styl e_87

library ieee;
use ieee.std_|l ogic_1164.all

package conversions is
function sulv_to_natural (x : std_ulogic_vector) return
nat ur al
function natural _to_sulv(n, bits : natural) return
std_ul ogi c_vector;
end conversi ons;

package body conversions is

function sulv_to_natural (x : std_ulogic_vector) return
natural is

variable n : natural := 0
variable failure : boolean := fal se
begi n

assert (x'high - x'low + 1) <= 31
report "Range of sulv_to_natural argunent exceeds
natural range"
severity error

for i in x'range | oop
n:=n=*2
case x(i) is
when '1" | 'H =>n:=n + 1,
when '0" | 'L => null;
when ot hers => failure := true
end case
end | oop

assert not failure
report "sulv_to_natural cannot convert indefinite
std_ul ogi c_vector"
severity error

if failure then
return O
el se
return n
end if;
end sulv_to_natural

function natural _to_sulv(n, bits : natural) return
std_ul ogi c_vector is
variable x : std_ul ogic_vector(bits-1 downto 0) :=
(others => '0");

variable tenpn : natural := n;
begi n

for i in X' reverse_range |oop

if (tenpn nod 2) = 1 then
x(i) :="1";

end if;
tempn := tenmpn / 2

end | oop

return x

ModelSim User’'s Manual

Modeling memory in VHDL UM-393

end natural _to_sulv;

end conversi ons;

ModelSim User's Manual

UM-394

ModelSim User’s Manual

UM-395

ABCDEFGHIJKLMNOPORSTUVWXY Z

Index

CR = Command Reference, UM = User’s Manual
Symbols

+typdelays CR-184
.80, shared object file
loading PLI/VPI C applications UM-101
loading PLI/VPI C++ applications UM-102
"hasX, hasX CR-19

Numerics

1076, |EEE Std UM-14
1364, |IEEE Std UM-14, UM-68
64-bit time

now variable UM-354

Tcl time commands UM-325

A

abort command CR-30
absolute time, using @ CR-14
ACC routines UM-110
accelerated packages UM-47
add list command CR-32
add wave command CR-35
alias command CR-39
annotating interconnect delays, v2k_int_delays CR-200
architecture simulator state variable UM-353
archives

described UM-38
archives, library CR-180
argc simulator state variable UM-353
arguments

passing to aDO file UM-331
arithmetic package warnings, disabling UM-350
arrays

indexes CR-10

dlices CR-10
AssertFile .ini file variable UM-344
AssertionFormat .ini file variable UM-344
AssertionFormatBreak .ini file variable UM-344
AssertionFormatError .ini file variable UM-344
AssertionFormatFail .ini file variable UM-345
AssertionFormatFatal .ini file variable UM-345
AssertionFormatNote .ini file variable UM-344
AssertionFormatWarning .ini file variable UM-344
assertions

configuring from the GUI UM-255

locating file and line number UM-380
messages, turning off UM-350
selecting severity that stops simulation UM-255
setting format of messages UM-344
testing for using a DO file UM-380

attributes, of signals, using in expressions CR-19

B

bad magic number error message UM-119
balloon dialog, toggling on/off UM-223
base (radix), specifying in List window UM-173
batch mode command CR-40
batch-mode simulations UM-378
halting CR-208
bd (breakpoint delete) command CR-41
binding, VHDL, default UM-45
blocking assignments UM-81
bookmark add wave command CR-42
bookmark delete wave command CR-43
bookmark goto wave command CR-44
bookmark list wave command CR-45
bookmarks UM-229
bp (breakpoint) command CR-46
break
on assertion UM-255
on signal value CR-205
stop simulation run UM-146, UM-196
BreakOnAssertion .ini file variable UM-345
breakpoints
conditional CR-205, UM-189
continuing simulation after CR-114
deleting CR-41, UM-197, UM-258
listing CR-46
setting CR-46, UM-197
signal breakpoints (when statements) CR-205, UM-
189
Source window, viewing in UM-191
time-based UM-189
in when statements CR-209
.bsm file UM-165
buffered/unbuffered output UM-348
busses
RTL-level, reconstructing UM-126
user-defined CR-36, UM-174, UM-217

ModelSim User's Manual

UM-396 Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

C applications dumplog64 CR-70
compiling and linking UM-101 echo CR-71
C++ applications edit CR-72

compiling and linking UM-102
case choice, must be locally static CR-147
case sensitivity

enablebp CR-73
environment CR-74
examine CR-75

VHDL vs. Verilog CR-12 exit CR-78
causality, tracing in Dataflow window UM-159 find CR-79
cd (change directory) command CR-49 force CR-82
cell libraries UM-87 graphic interface commands UM-267
cells help CR-85
hiding in Dataflow window UM-166, UM-167 history CR-86
change command CR-50 log CR-87
chasing X UM-160 Ishift CR-89

Isublist CR-90
modelssm CR-91
noforce CR-92

-check_synthesis argument CR-145
CheckpointCompressMode .ini file variable UM-345
CheckSynthesis .ini file variable UM-342

clock change, sampling signals at UM-381 nolog CR-93

combining signals, user-defined bus CR-36, UM-174, notation conventions CR-6
UM-217 notepad CR-95

command history UM-143 noview CR-96
CommandHistory .ini file variable UM-345 nowhen CR-97
command-line mode UM-378 onbreak CR-98

commands
abort CR-30
add list CR-32
add wave CR-35
alias CR-39
batch_mode CR-40
bd (breakpoint delete) CR-41
bookmark add wave CR-42
bookmark delete wave CR-43
bookmark goto wave CR-44
bookmark list wave CR-45
bp (breakpoint) CR-46
cd (change directory) CR-49
change CR-50
configure CR-51
dataset alias CR-55
dataset clear CR-56
dataset close CR-57
dataset info CR-58
dataset list CR-59
dataset open CR-60
dataset rename CR-61, CR-62
dataset snapshot CR-63
delete CR-65
describe CR-66
disablebp CR-67
do CR-68
drivers CR-69

ModelSim User’'s Manual

onElabError CR-99
onerror CR-100

pause CR-101

printenv CR-102, CR-103
pwd CR-105

quietly CR-106

quit CR-107

radix CR-108

report CR-109

restart CR-111

resume CR-113

run CR-114

searchlog CR-116

shift CR-118

show CR-119

status CR-121

step CR-122

stop CR-123

system UM-323

tb (traceback) CR-124
transcript CR-125
TreeUpdate CR-217
tssi2mti CR-126
variables referenced in CR-13
ved add CR-127

ved checkpoint CR-128
ved comment CR-129
ved dumpports CR-130

UM-397

ABCDEFGHIJKLMNOPORSTUVWXY Z

vcd dumpportsall CR-131 write preferences CR-219
vcd dumpportsflush CR-132 write report CR-220

vcd dumpportslimit CR-133 write transcript CR-221
vcd dumpportsoff CR-134 writetssi CR-222

vcd dumpportson CR-135
vcd file CR-136

vcd files CR-138

vcd flush CR-140

ved limit CR-141

vcd off CR-142

ved on CR-143

vcom CR-145

vdel CR-151

vdir CR-152

verror CR-153
vgencomp CR-154
view CR-156

virtual count CR-158
virtual define CR-159
virtual delete CR-160
virtual describe CR-161
virtual expand CR-162
virtual function CR-163
virtual hide CR-166
virtual log CR-167
virtual nohide CR-169
virtual nolog CR-170
virtual region CR-172
virtual save CR-173
virtual show CR-174
virtual signal CR-175
virtual type CR-178
vlib CR-180

viog CR-181

vmake CR-187

vmap CR-188

vsim CR-189

VSIM Tcl commands UM-324

vsimDate CR-203
vsimld CR-203
vsimVersion CR-203

write wave CR-224
comment charactersin VSIM commands CR-6
compare simulations UM-117
compatibility, of vendor libraries CR-152
compile history UM-27
compile order
auto generate UM-28
changing UM-28
compiler directives UM-95
|EEE Std 1364-2000 UM-95
XL compatible compiler directives UM-96
compiling
changing order in the GUI UM-28
compile history UM-27
default options, setting UM-240
graphic interface, with the UM-238
grouping files UM-29
options, in projects UM-34
order, changing in projects UM-28
range checking in VHDL CR-148, UM-50
source errors, locating UM-239
Verilog CR-181, UM-69
incremental compilation UM-70
XL "uselib compiler directive UM-74
XL compatible options UM-73
VHDL CR-145, UM-50
at a specified line number CR-147
selected design units (-just eapbc) CR-146
standard package (-s) CR-148
VITAL packages UM-61
component, default binding rules UM-45
concatenation
directives CR-16
of signals CR-16, CR-175
ConcurrentFileLimit .ini file variable UM-345
conditional breakpoints CR-205, UM-189
configuration simulator state variable UM-353

WaveActivateNextPane CR-217 configurations, simulating CR-189

WaveRestoreCursors CR-217 configure command CR-51
WaveRestoreZoom CR-217 connectivity, exploring UM-156

when CR-205 constants

where CR-210 in case statements CR-147

wlif2log CR-211 values of, displaying CR-66, CR-75
wlfman CR-213 context menus

wlfrecover CR-215 described UM-134

write format CR-216 Library tab UM-42

writelist CR-218 Project tab UM-27

ModelSim User's Manual

UM-398

ModelSi

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

Structure pages UM-201
convert real to time UM-65
convert time to real UM-64
Cursors
link to Dataflow window UM-150
locking UM-227
measuring time with UM-227
naming UM-226
trace events with UM-159
Wave window UM-226
customizing
viapreference variables UM-352

D

deltas
explained UM-53
Dataflow window UM-149
automatic cell hiding UM-166, UM-167
options UM-166, UM-167
pan UM-158
zoom UM-158
see also windows, Dataflow window
dataflow.bsm file UM-165
dataset alias command CR-55
Dataset Browser UM-121
dataset clear command CR-56
dataset close command CR-57
dataset info command CR-58
dataset list command CR-59
dataset open command CR-60
dataset rename command CR-61, CR-62
Dataset Snapshot UM-123
dataset snapshot command CR-63
datasets UM-117
environment command, specifying with CR-74
managing UM-121
restrict dataset prefix display UM-122
simulator resolution UM-118
DatasetSeparator .ini file variable UM-345
declarations, hiding implicit with explicit CR-149
default binding rules UM-45
default compile options UM-240
default editor, changing UM-337
DefaultForceKind .ini file variable UM-345
DefaultRadix .ini file variable UM-345
DefaultRestartOptions variable UM-346, UM-351
defaults
restoring UM-337
window arrangement UM-134

m User’s Manual

+definet CR-181
delay
delta delays UM-53

infinite zero-delay loops, detecting UM-386

interconnect CR-192
modes for Verilog models UM-87
SDF files UM-289
stimulus delay, specifying UM-187
+delay_mode distributed CR-182
+delay_mode path CR-182
+delay_mode _unit CR-182
+delay_mode zero CR-182
'delayed CR-19
DelayFileOpen .ini file variable UM-346
delete command CR-65
deleting library contents UM-41
delta simulator state variable UM-353
deltas
collapsing in the List window UM-176
hiding in the List window CR-52, UM-176
infinite zero-delay loops UM-386
referencing simulator iteration
as asimulator state variable UM-353
dependencies, checking CR-152
dependent design units UM-50
describe command CR-66
descriptions of HDL items UM-197

design hierarchy, viewing in Structure window UM-199

design library
creating UM-40
logical name, assigning UM-43
mapping search rules UM-44
resource type UM-39
VHDL design units UM-50
working type UM-39
design units UM-38
hierarchy of, viewing UM-135
report of units ssimulated CR-220
Verilog
adding to alibrary CR-181
directories
mapping libraries CR-188
moving libraries UM-44
disablebp command CR-67
distributed delay mode UM-88
dividers
adding from command line CR-35
Wave window UM-215
DLL files, loading UM-101, UM-102
do command CR-68
DO files (macros) CR-68

UM-399

ABCDEFGHIJKLMNOPORSTUVWXY Z

error handling UM-333
executing at startup UM-337, UM-347
parameters, passing to UM-331
Tcl source command UM-334
DOPATH environment variable UM-337
drivers
Dataflow Window UM-156
show in Dataflow window UM-218
Wave window UM-218
drivers command CR-69
drivers, multiple on unresolved signal UM-241
dump files, viewing in ModelSim CR-144
dumplog64 command CR-70
dumpports tasks, VCD files UM-304

E

echo command CR-71
edit command CR-72
Editing
in notepad windows UM-147, UM-359
in the Main window UM-147, UM-359
in the Source window UM-147, UM-359
EDITOR environment variable UM-337
editor, default, changing UM-337
elaboration, interrupting CR-189
embedded wave viewer UM-157
enablebp command CR-73
ENDFILE function UM-58
ENDLINE function UM-58
entities
default binding rules UM-45
entities, specifying for simulation CR-201
entity simulator state variable UM-353
enumerated types UM-384
user defined CR-178
environment command CR-74
environment variables UM-337
reading into Verilog code CR-181
referencing from Model Sim command line UM-340
referencing with VHDL FILE variable UM-340
setting in Windows UM-339
specifying library locations in modelsim.ini file
UM-341
specifying UNIX editor CR-72
transcript file, specifying location of UM-348
using in pathnames CR-12
using with location mapping UM-387
variable substitution using Tcl UM-323
viewing current names and values with printenv

CR-103
environment, displaying or changing pathname CR-74
errors
bad magic number UM-119
during compilation, locating UM-239
getting details about messages CR-153
onerror command CR-100
event order
changing in Verilog CR-181
inVerilog smulation UM-79
event queues UM-79
events, tracing UM-159
examine command CR-75
examine tooltip
toggling on/off UM-223
exit command CR-78
expand net UM-156
Explicit .ini file variable UM-342
Expression Builder UM-262
configuring a List trigger with UM-382
extended identifiers CR-14
syntax in commands CR-12

F

-f CR-182
filel/O
TextlO package UM-55
VCD files UM-303
file-line breakpoints UM-197
files, grouping for compile UM-29
filtering signalsin Signals window UM-185
find command CR-79
finding
cursorsin the Wave window UM-227
marker in the List window UM-178
names and values UM-133
folders, in projects UM-32
force command CR-82
defaults UM-351
format file
List window CR-216
Wave window CR-216, UM-208
FPGA libraries, importing UM-48

G

GenerateFormat .ini file variable UM-346
generics
assigning or overriding values with -g and -G CR-

ModelSim User's Manual

UM-400 Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

190 IgnoreWarning .ini file variable UM-346
examining generic values CR-75 implicit operator, hiding with vcom -explicit CR-149
limitation on assigning composite types CR-191 importing FPGA libraries UM-48

get_resolution() VHDL function UM-62 +incdir+ CR-182
glitches incremental compilation
disabling generation automatic UM-71
from command line CR-196 manua UM-71
from GUI UM-248 with Verilog UM-70
graphic interface UM-129 index checking UM-50
grouping files for compile UM-29 init_signal_spy UM-63
GUI preferences, saving UM-352 init_usertfs function UM-98
GUI_expression_format CR-15 initial dialog box, turning on/off UM-336
GUI expression builder UM-262 interconnect delays CR-192, UM-300
syntax CR-18 annotating per Verilog 2001 CR-200
internal signals, adding to aVCD file CR-127
H item_list file, WLF files CR-213

iteration_limit, infinite zero-delay loops UM-386
IterationLimit .ini file variable UM-346

"hasX CR-19
Hazard .ini file variable (VLOG) UM-343
hazards K
-hazards argument to viog CR-182
-hazards argument to vsim CR-197 keyboard shortcuts
limitations on detection UM-82 List window UM-180, UM-357
HDL item UM-16 Main window UM-147, UM-359
help command CR-85 Source window UM-359
hierarchy Wave window UM-231, UM-356
forcing signalsin UM-63
referencing signalsin UM-63 L

releasing signalsin UM-63

viewing signal names without UM-222
history

of commands

shortcuts for reuse CR-7, UM-358

of compiles UM-27
history command CR-86
HOME environment variable UM-337

language templates UM-264
libraries
archives CR-180
dependencies, checking CR-152
design libraries, creating CR-180, UM-40
design library types UM-39
design units UM-38
group use, setting up UM-379

I |EEE UM-46
importing FPGA libraries UM-48
1/0 including precompiled modules UM-250
TextlO package UM-55 listing contents CR-152
VCD files UM-303 mapping
ieee..ini file variable UM-341 from the command line UM-43
|EEE libraries UM-46 from the GUI UM-43
|EEE Std 1076 UM-14 hierarchically UM-349
|IEEE Std 1364 UM-14, UM-68 search rules UM-44
IgnoreError .ini file variable UM-346 modelsim_lib UM-62
IgnoreFailure .ini file variable UM-346 moving UM-44
IgnoreNote .ini file variable UM-346 multiple libraries with common modules UM-72
IgnoreVitalErrors .ini file variable UM-342 naming UM-43

ModelSim User’'s Manual

UM-401

ABCDEFGHIJKLMNOPORSTUVWXY Z

predefined UM-46

refreshing library images CR-148, CR-184, UM-47

resource libraries UM-39

std library UM-46

Synopsys UM-47

vendor supplied, compatibility of CR-152

Verilog CR-197, UM-72

VHDL library clause UM-45

working libraries UM-39

working with contents of UM-41
library simulator state variable UM-353
License variablein .ini file UM-347
licensing

Licensevariablein .ini file UM-347
lint-style checks CR-183
List window UM-168

adding itemsto CR-32

setting triggers UM-382

see also windows, List window
LM_LICENSE_FILE environment variable UM-337
location maps, referencing source files UM-387
log command CR-87
log file

log command CR-87

nolog command CR-93

overview UM-117

QuickSim Il format CR-211

redirecting with -1 CR-192

virtual log command CR-167

virtual nolog command CR-170

see also WLF files
Ishift command CR-89
Isublist command CR-90

M

MacroNestingL evel simulator state variable UM-353
macros (DO files) UM-331
breakpoints, executing at CR-47
creating from a saved transcript UM-139
depth of nesting, simulator state variable UM-353
error handling UM-333
executing CR-68
forcing signals, nets, or registers CR-82
parameters
as asimulator state variable (n) UM-353
passing CR-68, UM-331
total number passed UM-353
relative directories CR-68
shifting parameter values CR-118

startup macros UM-350
Main window UM-137
see also windows, Main window
mapping
libraries
from the command line UM-43
hierarchically UM-349
symbols
Dataflow window UM-165
mapping libraries, library mapping UM-43
math_complex package UM-47
math_real package UM-47
+maxdelays CR-183
mc_scan_plusargs, PLI routine CR-199
memory
modeling in VHDL UM-390
menus
Dataflow window UM-150
List window UM-170
Main window UM-140
Process window UM-182
Signals window UM-184
Source window UM-192
Structure window UM-200
tearing off or pinning menus UM-134
Variables window UM-204
Wave window UM-209
messages
bad magic number UM-119
echoing CR-71
getting more information CR-153
loading, disbling with -quiet CR-148, CR-183
redirecting UM-348
suppressing warnings from arithmetic packages
UM-350
turning off assertion messages UM-350
MGC _LOCATION_MAP variable UM-337
+mindelays CR-183
mnemonics, assigning to signal values CR-178
MODEL_TECH environment variable UM-337
MODEL_TECH_TCL environment variable UM-337
modeling memory in VHDL UM-390
ModelSim
commands CR-23—CR-212
modelsim command CR-91
MODELSIM environment variable UM-338
modelsim.ini
default to VHDL93 UM-351
delay file opening with UM-351
environment variablesin UM-349
force command default, setting UM-351

ModelSim User's Manual

UM-402

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

hierarchical library mapping UM-349
opening VHDL files UM-351
restart command defaults, setting UM-351
startup file, specifying with UM-350
transcript file created from UM-349
turning off arithmetic package warnings UM-350
turning off assertion messages UM-350
modelsim.tcl file UM-352
modelsim_lib UM-62
path to UM-341
MODELSIM_TCL environment variable UM-338
Modified field, Project tab UM-26
modules
handling multiple, common names UM-72
mouse shortcuts
Main window UM-147, UM-359
Source window UM-359
Wave window UM-231, UM-356
.mpf file UM-18
loading from the command line UM-35
mti_cosim_trace environment variable UM-338
MTI_TF_LIMIT environment variable UM-338
multiple drivers on unresolved signal UM-241
multiple simulations UM-117
multi-source interconnect delays CR-192

N

n simulator state variable UM-353
name case sensitivity, VHDL vs. Verilog CR-12
Namefield
Project tab UM-26
negative pulses
driving an error state CR-200
negative timing
$setuphol d/$recovery UM-92
algorithm for calculating delays UM-83
check limits UM-83
extending check limits CR-197
nets
adding to the Wave and List windows UM-187
Dataflow window, displaying in UM-149
drivers of, displaying CR-69
stimulus CR-82
values of
displaying in Signals window UM-183
examining CR-75
forcing UM-186
saving as binary log file UM-187
waveforms, viewing UM-206

ModelSim User’'s Manual

next and previous edges, finding UM-232, UM-357
Nlview widget Symlib format UM-165
no spacein timeliteral UM-241
NoCaseStaticError .ini file variable UM-342
NoDebug .ini file variable (VCOM) UM-342
NoDebug .ini file variable (VLOG) UM-343
noforce command CR-92
NolndexCheck .ini file variable UM-342
+nolibcell CR-183
nolog command CR-93
NOMMAP environment variable UM-338
non-blocking assignments UM-81
NoOthersStaticError .ini file variable UM-342
NoRangeCheck .ini file variable UM-342
notepad command CR-95
Notepad windows, text editing UM-147, UM-359
-notrigger argument UM-381
noview command CR-96
NoVita .ini file variable UM-342
NoVitalCheck .ini file variable UM-342
Now simulator state variable UM-353
now simulator state variable UM-353
+nowarn<CODE> CR-183
nowhen command CR-97
numeric_bit package UM-47
numeric_std package UM-47

disabling warning messages UM-350
NumericStdNoWarnings .ini file variable UM-347

O

onbreak command CR-98
onElabError command CR-99
onerror command CR-100
optimize for std_logic_1164 UM-242
Optimize 1164 .ini file variable UM-342
OptionFile entry in project files UM-244
order of events

changing in Verilog CR-181
ordering files for compile UM-28
organizing projects with folders UM-32
others .ini file variable UM-342

P

packages
standard UM-46
textio UM-46
util UM-62
VITAL 1995 UM-60

ABCDEFGHIJKLMNOPORSTUVWXY Z

VITAL 2000 UM-60
page setup

Dataflow window UM-164

Wave window UM-236
pan, Dataflow window UM-158
parameters

making optional UM-332

using with macros CR-68, UM-331
path delay mode UM-88
pathnames

inVSIM commands CR-10

spacesin CR-9
PathSeparator .ini file variable UM-347
pause command CR-101
PedanticErrors .ini file variable UM-342
PLI

specifying which appsto load UM-98

Veriuser entry UM-98
PLI/VPI UM-97

tracing UM-113
PLIOBJS environment variable UM-98, UM-338
popup

toggling waveform popup on/off UM-223
port driver data, capturing UM-312
Postscript

saving awaveform in UM-233

saving the Dataflow display in UM-162
precedence of variables UM-353
precision, simulator resolution UM-77
pref.tcl file UM-352
preference variables

.ini files, located in UM-341

editing UM-352

saving UM-352

Tcl files, located in UM-352
preferences, saving UM-352
primitives, symbolsin Dataflow window UM-165
printenv command CR-102, CR-103
Process window UM-181

see also windows, Process window
processes

values and pathnamesin Variables window UM-

203

without wait statements UM-241
Programming Language Interface UM-97
project context menus UM-27
project tab

information in UM-26

sorting UM-26
projects UM-17

accessing from the command line UM-35

adding filesto UM-21
benefits UM-18
compile order UM-28
changing UM-28
compiler optionsin UM-34
compiling files UM-24
context menu UM-27
creating UM-20
creating simulation configurations UM-30
differences with earlier versions UM-19
foldersin UM-32
grouping filesin UM-29
loading adesign UM-25
MODELSIM environment variable UM-338
override mapping for work directory with vcom CR-
149
override mapping for work directory with viog CR-
185
overview UM-18
propagation, preventing X propagation CR-192
pulse error state CR-200
pwd command CR-105

Q

QuickSim Il logfile format CR-211
Quiet .ini filevariable

VCOM UM-342
Quiet .ini filevariable (VLOG) UM-343
quietly command CR-106
quit command CR-107

R

race condition, problems with event order UM-79
radix
changing in Signals, Variables, Dataflow, List, and
Wave windows CR-108
character strings, displaying CR-178
default, DefaultRadix variable UM-345
of signals being examined CR-76
of signalsin Wave window CR-37
specifying in List window UM-173
radix command CR-108
range checking UM-50
disabling CR-147
enabling CR-148
readers and drivers UM-156
real type, converting to time UM-65
reconstruct RTL-level design busses UM-126

UM-403

ModelSim User's Manual

UM-404

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

record field selection, syntax CR-10
records, values of, changing UM-203
$recovery UM-92
redirecting messages, TranscriptFile UM-348
refreshing library images CR-148, CR-184, UM-47
registers
adding to the Wave and List windows UM-187
values of
displaying in Signals window UM-183
saving as binary log file UM-187
waveforms, viewing UM-206
report
simulator control UM-336
simulator state UM-336
report command CR-109
reporting
compile history UM-27
variable settings CR-13
RequireConfigForAllDefaultBinding variable UM-342
resolution
returning asarea UM-62
specifying with -t argument CR-193
verilog simulation UM-77
VHDL simulation UM-52
Resolution .ini file variable UM-347
resolution simulator state variable UM-353
resource libraries UM-45
restart command CR-111
defaults UM-351
in GUI UM-142
toolbar button UM-145, UM-195, UM-214
restoring defaults UM-337
results, saving simulations UM-117
resume command CR-113
RTL-level design busses
reconstructing UM-126
run command CR-114
RunLength .ini file variable UM-347

S

saving
simulation optionsin a project UM-30
waveforms UM-117
scope, setting region environment CR-74
SDF
disabling timing checks UM-300
errors and warnings UM-291
instance specification UM-290
interconnect delays UM-300

ModelSim User’'s Manual

mixed VHDL and Verilog designs UM-300
specification with the GUI UM-291
troubleshooting UM-301
Verilog
$sdf_annotate system task UM-294
optional conditions UM-299
optional edge specifications UM-298
rounded timing values UM-299
SDF to Verilog construct matching UM-295
VHDL
resolving errors UM-293
SDF to VHDL generic matching UM-292
$sdf_done UM-94
search libraries CR-197, UM-250
searching
in the source window UM-197
in the Structure window UM-202
List window
signal values, transitions, and names UM-177
values and names UM-133
Verilog libraries UM-72
Wave window
signal values, edges and names UM-225
searchlog command CR-116
$setuphold UM-92
shared objects
loading FLI applications
see ModelSim FLI Reference manual
loading PLI/VPI C applications UM-101
loading PL1/VPI C++ applications UM-102
shift command CR-118
Shortcuts
text editing UM-147, UM-359
shortcuts
command history CR-7, UM-358
command line caveat CR-7, UM-358
List window UM-180, UM-357
Main window UM-359
Main windows UM-147
Source window UM-359
Wave window UM-231, UM-356
show command CR-119
show drivers
Dataflow window UM-156
Wave window UM-218
show source lines with errors UM-241
Show_Lint .ini filevariable (VLOG) UM-343
Show_source .ini file variable
VCOM UM-342
Show_source .ini file variable (VLOG) UM-343
Show_VitalChecksWarning .ini file variable UM-342

ABCDEFGHIJKLMNOPORSTUVWXY Z

Show_Warningl .ini file variable UM-343
Show_Warning2 .ini file variable UM-343
Show_Warning3 .ini file variable UM-343
Show_Warning4 .ini file variable UM-343
Show_Warning5 .ini file variable UM-343
Signal Spy UM-63
signal_force UM-63
signal_release UM-63
signals
adding to aWLF file UM-187
adding to the Wave and List windows UM-187
aternative namesin the List window (-label) CR-33
alternative names in the Wave window (-label) CR-
36
applying stimulusto UM-186
attributes of, using in expressions CR-19
breakpoints CR-205, UM-189
combining into auser-defined bus CR-36, UM-174,
UM-217
Dataflow window, displaying in UM-149
drivers of, displaying CR-69
environment of, displaying CR-74
filtering in the Signals window UM-185
finding CR-79
force time, specifying CR-83
hierarchy
referencing in UM-63
releasing in UM-63
log file, creating CR-87
names of, viewing without hierarchy UM-222
pathnamesin VSIM commands CR-10
radix
specifying for examine CR-76
specifying in List window CR-33
specifying in Wave window CR-37
sampling at a clock change UM-381
states of, displaying as mnemonics CR-178
stimulus CR-82
transitions, searching for UM-228
types, selecting which to view UM-185
unresolved, multiple drivers on UM-241
values of
converting to strings UM-384
displaying in Signals window UM-183
examining CR-75
forcing anywhere in the hierarchy UM-63
replacing with text CR-178
saving as binary log file UM-187
waveforms, viewing UM-206
Signals window UM-183
see also windows, Signals window

simulating
command-line mode UM-378
comparing simulations UM-117
default run length UM-255
delays, specifying time unitsfor CR-14
design unit, specifying CR-189
graphic interface to UM-245
iteration limit UM-255
saving dataflow display as a Postscript file UM-162
saving optionsin a project UM-30
saving ssimulations CR-87, CR-194, UM-117, UM-
379
saving waveform as a Postscript file UM-233
stepping through a simulation CR-122
stimulus, applying to signals and nets UM-186
stopping simulation in batch mode CR-208
time resolution UM-246
Verilog UM-76
delay modes UM-87
hazard detection UM-82
resolution limit UM-77
XL compatible simulator options UM-86
VHDL UM-52
viewing resultsin List window UM-168
VITAL packages UM-61
Simulation Configuration
creating UM-30
simulations
event order in UM-79
saving results CR-62, CR-63, UM-117
saving results at intervals UM-123
simulator resolution
returning asareal UM-62
Verilog UM-77
VHDL UM-52
vsim -t argument CR-193
when comparing datasets UM-118
simulator state variables UM-353
simulator version CR-193, CR-203
simultaneous eventsin Verilog
changing order CR-181
sizetf callback function UM-107
so, shared object file
loading PLI/VPI C applications UM-101
loading PLI/VPI C++ applications UM-102
software version UM-144
sorting
HDL itemsin GUI windows UM-133
source directory, setting from source window UM-192
source errors, locating during compilation UM-239
source files, referencing with location maps UM-387

UM-405

ModelSim User's Manual

UM-406 Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

source libraries Verilog UM-89
arguments supporting UM-73 Verilog-XL compatible UM-92
source lines with errors
showing UM-241
spacesin pathnames CR-9
specify path delays CR-200
standards supported UM-14
startup
alternate to startup.do (vsim -do) CR-190
macro in the modelsim.ini file UM-347
macros UM-350
using a startup file UM-350
Startup .ini file variable UM-347
state variables UM-353
status bar

T

tab stops, in the Source window UM-198

tb command CR-124

Tcl UM-315—-UM-326
command separator UM-322
command substitution UM-321
command syntax UM-318
evaluation order UM-322
Man Pages in Help menu UM-144
preference variables UM-352

Main window UM-147 relational expression evaluation UM-322

status command CR-121 Sgieagloemmands UM-325
Statusfield .
Project tab UM-26 in when commands CR-206

o : substitution UM-323
:g .Iarrl:tfr:ISa\(lzig\gagle oL VSIM Tcl commands UM-324
"~ disabling warning messages UM-350 temp files, VSOUT UM-340
std_developerskit .ini file variable UM-341 text and command syntax UM-16
std_logic_arith package UM-47 Text editing UM-147, UM-359

L TextlO package
std_logic_signed package UM-47) .
std_logic_textio UM-47 aternative I/O files UM-59

std_logic_unsigned package UM-47 containing hexadecimal numbers UM-58

StdArithNoWarnings .ini file variable UM-347 dangling pointers UM-58

STDOUT environment variable UM-338 EHBE 'l-\IEEZUHC“'OH LLJJI\I\/lISSE;
step command CR-122 unction -

simulus file declaration UM-55

applying to signals and nets UM-186 I;)T(f\lliegr?gtsattilrﬂzllliumugg-w
stop command CR-123))
Structure window UM-199 standard input UM-56

see also windows, Structure window \s;tvalgii_?réj ;;)r%tcf)etgulrJeMlJ- §/|6 -
symbol mapping i

Dataflow window UM-165 WRITE_STRING procedure UM-57

symbolic constants, displaying CR-178 $E'\r/losgn6 UM-111
symbolic names, assigning to signal values CR-178 disabli ing CR-199
synopsys .ini file variable UM-341 1Sabling warning ==

. . time
nopsys libraries UM-47 .
ynopsy absolute, using @ CR-14

R imulation ti its CR-14
rule compliance checking CR-145, UM-242, UM- simulation time units CR- _
342 timeresolution asasimulator state variable UM-353
system calls time literal, missing space UM-241
VCD UM-304 time resolution
Verilog UM-89 inVerilog UM-77
system commands UM-323 ;X:QDL UM-52
stem tasks .
i ModelSim Verilog UM-94 with the GUI UM-246
VCD UM-304 with vsim command CR-193

ModelSim User’'s Manual

ABCDEFGHIJKLMNOPORSTUVWXY Z

time type, converting to real UM-64
time, time units, smulation time CR-14
time-based breakpoints UM-189
timescale directive warning, disabling CR-199
timing
$setuphol d/$recovery UM-92
annotation UM-289
disabling checks CR-183, UM-300
disabling checks for entire design CR-192
negative check limits
described UM-83
extending CR-197
title, Main window, changing CR-193
to_real VHDL function UM-64
to_time VHDL function UM-65
toggling waveform popup on/off UM-223
toolbar
Dataflow window UM-153
Main window UM-145
Wave window UM-212
tooltip, toggling waveform popup UM-223
tracing
events UM-159
source of unknown UM-160
transcript
file name, specifed in modelsim.ini UM-349
saving UM-139
TranscriptFile variable in .ini file UM-348
using asa DO file UM-139
transcript command CR-125
transcript file
redirecting with -1 CR-192
tree windows
VHDL and Verilog itemsin UM-135
viewing the design hierarchy UM-136
TreeUpdate command CR-217
triggers, in the List window UM-382
triggers, in the List window, setting UM-176
TSCALE, disabling warning CR-199
TSSI CR-222
in VCD files UM-312
tssizmti command CR-126
type
converting real to time UM-65
converting time to real UM-64
Typefield, Project tab UM-26

U

-u CR-184

unbound component UM-241
UnbufferedOutput .ini file variable UM-348
unit delay mode UM-88

unknowns, tracing UM-160

unresolved signals, multiple drivers on UM-241
use 1076-1993 language standard UM-240

use clause, specifying alibrary UM-46

use explicit declarations only UM-241
user-defined bus CR-36, UM-125, UM-174, UM-217
UserTimeUnit .ini file variable UM-348

util package UM-62

Vv

-v CR-184
v2k_int_delays CR-200

values

describe HDL items CR-66
examine HDL item values CR-75
of HDL items UM-197
replacing signal values with strings CR-178
variable settings report CR-13
variables
adding to the Wave and List windows UM-187
describing CR-66
environment variables UM-337
LM_LICENSE FILE UM-337
personal preferences UM-336
precedence between .ini and .tcl UM-353
setting environment variables UM-337
simulator state variables

current settings report UM-336

iteration number UM-353

name of entity or module asavariable UM-353
resolution UM-353

simulation time UM-353

value of

changing from command line CR-50
changing with the GUI UM-203
examining CR-75

values of

displaying in Signals window UM-183
saving as binary log file UM-187

Variables window UM-203
see also windows, Variables window
ved add command CR-127
ved checkpoint command CR-128
ved comment command CR-129
ved dumpports command CR-130
ved dumpportsall command CR-131

ModelSim User's

UM-407

Manual

UM-408

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

vcd dumpportsflush command CR-132
vcd dumpportsimit command CR-133
vcd dumpportsoff command CR-134
vcd dumpportson command CR-135
ved file command CR-136
VCD files UM-303
adding items to the file CR-127
capturing port driver data CR-130, UM-312
case sensitivity UM-306
converting to WLF files CR-144
creating CR-127, UM-306
dumping variable values CR-128
dumpports tasks UM-304
flushing the buffer contents CR-140
from VHDL source to VCD output UM-309
inserting comments CR-129
internal signals, adding CR-127
specifying maximum file size CR-141
specifying name of CR-138
specifying the file name CR-136
state mapping CR-136, CR-138
supported TSSI states UM-312
turn off VCD dumping CR-142
turn on VCD dumping CR-143
VCD system tasks UM-304
viewing files from another tool CR-144
vcd files command CR-138
ved flush command CR-140
vcd limit command CR-141
ved off command CR-142
ved on command CR-143
ved2wlf command CR-144
vcom command CR-145
vdel command CR-151
vdir command CR-152
vector elements, initializing CR-50
vendor libraries, compatibility of CR-152
Vera, see Veradocumentation
Verilog
ACC routines UM-110
capturing port driver datawith -dumpports CR-136,
UM-312
cell libraries UM-87
compiler directives UM-95
compiling and linking PL1 C applications UM-101
compiling and linking PL1 C++ applications UM-
102
compiling design units UM-69
compiling with XL "uselib compiler directive UM-
74
creating a design library UM-69

ModelSim User’'s Manual

event order in simulation UM-79
language templates UM-264
library usage UM-72
SDF annotation UM-294
sdf _annotate system task UM-294
simulating UM-76
delay modes UM-87
XL compatible options UM-86
simulation hazard detection UM-82
simulation resolution limit UM-77
source code viewing UM-191
standards UM-14
system tasks UM-89
TF routines UM-111
XL compatible compiler options UM-73
XL compatible routines UM-113
XL compatible system tasks UM-92
verilog .ini file variable UM-341
Verilog 2001
current implementation UM-14, UM-68
disabling support CR-184
Verilog PLI/VPI UM-97—UM-115
64-bit support in the PLI UM-113
compiling and linking PLI/VPI C applications UM-
101
compiling and linking PLI/VPI C++ applications
UM-102
debugging PL1/VPI code UM-113
PLI callback reason argument UM-106
PLI support for VHDL objects UM-109
registering PL1 applications UM-97
registering VPl applications UM-99
specifying the PLI/VPI file to load UM-103
Verilog-XL
compatibility with UM-67
Veriuser .ini file variable UM-98, UM-348
Veriuser, specifying PLI applications UM-98
veriuser.c file UM-108
verror command CR-153
version
obtaining via Help menu UM-144
obtaining with vsim command CR-193
obtaining with veim<info> commands CR-203
vgencomp command CR-154
VHDL
delay file opening UM-351
dependency checking UM-50
field naming syntax CR-10
file opening delay UM-351
language templates UM-264
library clause UM-45

UM-409

ABCDEFGHIJKLMNOPORSTUVWXY Z

object support in PLI UM-109
simulating UM-52
source code viewing UM-191
standards UM-14
timing check disabling UM-52
VITAL package UM-47
VHDL utilities UM-62, UM-63
get_resolution() UM-62
to_red() UM-64
to_time() UM-65
VHDL93.ini file variable UM-343
view command CR-156
viewing
design hierarchy UM-135
library contents UM-41
waveforms CR-194, UM-117
virtual count commands CR-158
virtual define command CR-159
virtual delete command CR-160
virtual describe command CR-161
virtual expand commands CR-162
virtual function command CR-163
virtual hide command CR-166, UM-126
virtual log command CR-167
virtual nohide command CR-169
virtual nolog command CR-170
virtual objects UM-125
virtual functions UM-126
virtual regions UM-127
virtual signals UM-125
virtual types UM-127
virtual region command CR-172, UM-127
virtual regions
reconstruct the RTL hierarchy in gate-level design
UM-127
virtual save command CR-173, UM-126
virtual show command CR-174
virtual signal command CR-175, UM-125
virtual signals
reconstruct RTL-level design busses UM-126
reconstruct the original RTL hierarchy UM-126
virtual hide command UM-126
virtual type command CR-178
VITAL
compiling and simulating with accelerated VITAL
packages UM-61
disabling optimizations for debugging UM-61
specification and source code UM-60
VITAL packages UM-60
vital95 .ini file variable UM-341
vlib command CR-180

vlog command CR-181

vlog.opt file UM-244

vlog95compat .ini file variable UM-343

vmake command CR-187

vmap command CR-188

VP, registering applications UM-99

VPI/PLI UM-97
compiling and linking C applications UM-101
compiling and linking C++ applications UM-102

vsim build date and version CR-203

vsim command CR-189

VSOUT temp file UM-340

w

WARNING[8], -lint argument to viog CR-183
warnings
disabling at time 0 UM-350
locating file and line number UM-380
suppressing VCOM warning messages CR-148
suppressing VLOG warning messages CR-183
suppressing VSIM warning messages CR-199
turning off warnings from arithmetic packages UM-
350
wave format file UM-208
wave log format (WLF) file CR-194, UM-117
of binary signal values CR-87
see also WLFfiles
wave viewer, Dataflow window UM-157
Wave window UM-206
in the Dataflow window UM-157
toggling waveform popup on/off UM-223
see also windows, Wave window
wave, adding CR-35
WaveA ctivateNextPane command CR-217
waveform logfile
log command CR-87
overview UM-117
see also WLFfiles
waveform popup UM-223
waveforms UM-117
saving and viewing CR-87, UM-118
saving and viewing in batch mode UM-379
viewing UM-206
WaveRestoreCursors command CR-217
WaveRestoreZoom command CR-217
WaveSignalNameWidth .ini file variable UM-348
welcome dialog, turning on/off UM-336
when command CR-205
when statement

ModelSim User's Manual

UM-410

Index

ABCDEFGHIJKLMNOPORSTUVWXY Z

setting signal breakpoints UM-189
time-based breakpoints CR-209

where command CR-210
wildcard characters

for pattern matching in simulator commands CR-13

Windows

Main window

text editing UM-147, UM-359
Source window

text editing UM-147, UM-359

windows

Dataflow window UM-149
toolbar UM-153
zooming UM-158
finding HDL item namesin UM-133
List window UM-168
adding HDL items UM-169
adding signals with aWLF file UM-187
display properties of UM-175
formatting HDL items UM-172
output file CR-218
saving datato afile UM-179
saving the format of CR-216
setting triggers UM-176, UM-382
time markers UM-133
Main window UM-137
status bar UM-147
time and delta display UM-147
toolbar UM-145
opening
from command line CR-156
with the GUI UM-141
Process window UM-181
displaying active processes UM-181
specifying next process to be executed UM-181
viewing processing in the region UM-181
saving position and size UM-134
searching for HDL item valuesin UM-133
Signals window UM-183
VHDL and Verilog items viewed in UM-183
Source window
Setting tab stops UM-198
Structure window UM-199
selecting itemsto view in Signalswindow UM-
183
VHDL and Verilog items viewed in UM-199
viewing design hierarchy UM-199
Variables window UM-203
VHDL and Verilog items viewed in UM-203
Wave window UM-206
adding HDL itemsto UM-208

ModelSim User’'s Manual

adding signals with aWLF file UM-187
cursor measurements UM-227
display properties UM-222
display range (zoom), changing UM-228
format file, saving UM-208
path elements, changing CR-53, UM-348
time cursors UM-226
zooming UM-228
WLF files
adding itemsto UM-187
creating from VCD CR-144
filtering, combining CR-213
limiting size CR-194
log command CR-87
overview UM-118
repairing CR-215
saving CR-62, CR-63, UM-119
saving at intervals UM-123
specifying name CR-194
using in batch mode UM-379
wlif2log command CR-211
wlfman command CR-213
wlfrecover command CR-215
work library UM-39
workspace UM-138
write format command CR-216
write list command CR-218
write preferences command CR-219
write report command CR-220
write transcript command CR-221
write tssi command CR-222
write wave command CR-224

X
X
tracing unknowns UM-160

X propagation
disabling for entire design CR-192

Y

-y CR-185

Z

zero delay elements UM-53
zero delay mode UM-88
zero-delay loop, infinite UM-386

UM-411

ABCDEFGHIJKLMNOPORSTUVWXYZ

zero-delay oscillation UM-386

zero-delay race condition UM-79

zoom
Dataflow window UM-158
from Wave toolbar buttons UM-228
saving range with bookmarks UM-229
with the mouse UM-229

ModelSim User's Manual

UM-412

ModelSim User’s Manual

	Bookcase
	User’s Manual
	Table of Contents
	1 - Introduction
	Standards supported
	Assumptions
	Sections in this document
	What is an "HDL item"
	Text conventions

	2 - Projects
	Introduction
	What are projects?
	What are the benefits of projects?
	How do projects differ from pre-5.5 versions?
	Project conversion between versions

	Getting started with projects
	Step 1 - Creating a new project
	Step 2 - Adding items to the project
	Step 3 - Compiling the files
	Step 4 - Simulating a design
	Other basic project operations

	The Project tab
	Sorting the list
	Project tab context menu

	Changing compile order
	Auto-generating compile order
	Grouping files

	Creating a Simulation Configuration
	Organizing projects with folders
	Adding a folder

	Setting compiler options
	Accessing projects from the command line

	3 - Design libraries
	Design library contents
	Design unit information
	Archives

	Design library types
	Working with design libraries
	Creating a library
	Managing library contents
	Assigning a logical name to a design library
	Moving a library

	Specifying the resource libraries
	Verilog resource libraries
	VHDL resource libraries
	Predefined libraries
	Alternate IEEE libraries supplied
	Regenerating your design libraries

	Importing FPGA libraries

	4 - VHDL simulation
	Compiling VHDL designs
	Creating a design library
	Invoking the VHDL compiler
	Dependency checking
	Range and index checking

	Simulating VHDL designs
	Simulator resolution limit
	Delta delays

	Using the TextIO package
	Syntax for file declaration
	Using STD_INPUT and STD_OUTPUT within ModelSim

	TextIO implementation issues
	Writing strings and aggregates
	Reading and writing hexadecimal numbers
	Dangling pointers
	The ENDLINE function
	The ENDFILE function
	Using alternative input/output files
	Providing stimulus

	VITAL specification and source code
	VITAL packages
	ModelSim VITAL compliance
	VITAL compliance checking

	Compiling and simulating with accelerated VITAL packages
	Util package
	get_resolution
	init_signal_driver()
	init_signal_spy()
	signal_force()
	signal_release()
	to_real()
	to_time()

	5 - Verilog simulation
	Compilation
	Incremental compilation
	Library usage
	Verilog-XL compatible compiler arguments
	Verilog-XL `uselib compiler directive

	Simulation
	Invoking the simulator
	Simulator resolution limit
	Event ordering in Verilog designs
	Negative timing check limits
	Verilog-XL compatible simulator arguments

	Cell libraries
	SDF timing annotation
	Delay modes

	System tasks
	IEEE Std 1364 system tasks
	Verilog-XL compatible system tasks
	ModelSim Verilog system tasks

	Compiler directives
	IEEE Std 1364 compiler directives
	Verilog-XL compatible compiler directives

	Verilog PLI/VPI
	Registering PLI applications
	Registering VPI applications
	Compiling and linking PLI/VPI C applications
	Compiling and linking PLI/VPI C++ applications
	Specifying the PLI/VPI file to load
	PLI example
	VPI example
	The PLI callback reason argument
	The sizetf callback function
	PLI object handles
	Third party PLI applications
	Support for VHDL objects
	IEEE Std 1364 ACC routines
	IEEE Std 1364 TF routines
	Verilog-XL compatible routines
	64-bit support in the PLI
	PLI/VPI tracing
	Debugging PLI/VPI application code

	6 - WLF files (datasets) and virtuals
	WLF files (datasets)
	Saving a simulation to a WLF file
	Opening datasets
	Viewing dataset structure
	Managing multiple datasets
	Saving at intervals with Dataset Snapshot

	Virtual Objects (User-defined buses, and more)
	Virtual signals
	Virtual functions
	Virtual regions
	Virtual types

	Dataset, WLF file, and virtual commands

	7 - Graphic interface
	Window overview
	Common window features
	Quick access toolbars
	Drag and Drop
	Command history
	Automatic window updating
	Finding names
	Sorting HDL items
	Saving window layout
	Context menus
	Menu tear off
	Tree window hierarchical view

	Main window
	Workspace
	Transcript
	Active processes
	The Main window menu bar
	The Main window toolbar
	The Main window status bar
	Mouse and keyboard shortcuts

	Dataflow window
	Adding items to the window
	Links to other windows
	Dataflow window menu bar
	The Dataflow window toolbar
	Exploring the connectivity of your design
	Zooming and panning
	Tracing events (causality)
	Tracing the source of an unknown (X)
	Finding items by name in the Dataflow window
	Saving the display
	Configuring page setup
	Symbol mapping
	Configuring window options

	List window
	HDL items you can view
	Adding HDL items to the List window
	The List window menu bar
	Editing and formatting HDL items in the List window
	Combining items in the List window
	Setting List window display properties
	Finding items by name in the List window
	Setting time markers in the List window
	Saving List window data to a file
	List window keyboard shortcuts

	Process window
	The Process window menu bar

	Signals window
	The Signals window menu bar
	Filtering the signal list
	Forcing signal and net values
	Adding HDL items to the Wave and List windows or a WLF file
	Finding HDL items in the Signals window
	Setting signal breakpoints
	Defining clock signals

	Source window
	The Source window menu bar
	The Source window toolbar
	Setting file-line breakpoints
	Checking HDL item values and descriptions
	Finding and replacing in the Source window
	Setting tab stops in the Source window

	Structure window
	Structure window menu bar
	Structure window context menu
	Finding items in the Structure window

	Variables window
	The Variables window menu bar
	Finding HDL items in the Variables window

	Wave window
	Pathname pane
	Values pane
	Waveform pane
	Cursor panes
	HDL items you can view
	Adding HDL items in the Wave window
	The Wave window menu bar
	The Wave window toolbar
	Using dividers
	Splitting Wave window panes
	Combining items in the Wave window
	Displaying drivers of the selected waveform
	Editing and formatting HDL items in the Wave window
	Setting Wave window display properties
	Sorting a group of HDL items
	Setting signal breakpoints
	Finding items by name or value in the Wave window
	Using time cursors in the Wave window
	Examining waveform values
	Zooming - changing the waveform display range
	Saving zoom range and scroll position with bookmarks
	Wave window mouse and keyboard shortcuts
	Saving waveforms

	Compiling with the graphic interface
	Locating source errors during compilation
	Setting default compile options

	Simulating with the graphic interface
	Design tab
	VHDL tab
	Verilog tab
	Libraries tab
	SDF tab
	Options tab
	Setting default simulation options

	Creating and managing breakpoints
	Signal breakpoints
	File-line breakpoints
	Breakpoints dialog

	Miscellaneous tools and add-ons
	The GUI Expression Builder
	Language templates

	Graphic interface commands

	8 - Signal Spy
	Introduction
	Designed for testbenches

	init_signal_driver
	Call only once
	Syntax
	Returns
	Arguments
	Related procedures
	Limitations
	Example

	init_signal_spy
	Call only once
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	signal_force
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	signal_release
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	$init_signal_driver
	Call only once
	Syntax
	Returns
	Arguments
	Related procedures
	Limitations
	Example

	$init_signal_spy
	Call only once
	Syntax
	Returns
	Arguments
	Related tasks
	Limitations
	Example

	$signal_force
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	$signal_release
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	9 - Standard Delay Format (SDF) Timing Annotation
	Specifying SDF files for simulation
	Instance specification
	SDF specification with the GUI
	Errors and warnings

	VHDL VITAL SDF
	SDF to VHDL generic matching
	Resolving errors

	Verilog SDF
	The $sdf_annotate system task
	SDF to Verilog construct matching
	Optional edge specifications
	Optional conditions
	Rounded timing values

	SDF for Mixed VHDL and Verilog Designs
	Interconnect delays
	Disabling timing checks
	Troubleshooting
	Specifying the wrong instance
	Mistaking a component or module name for an instance label
	Forgetting to specify the instance

	10 - Value Change Dump (VCD) Files
	ModelSim VCD commands and VCD tasks
	Creating a VCD file
	Flow for four-state VCD file
	Flow for extended VCD file
	Case sensitivity

	Resimulating a design from a VCD file
	Example 1 - Verilog counter
	Example 2 - VHDL adder
	Example 3 - Mixed-HDL design

	A VCD file from source to output
	VHDL source code
	VCD simulator commands
	VCD output

	Capturing port driver data
	Supported TSSI states
	Strength values
	Port identifier code
	Example VCD output from vcd dumpports

	11 - Tcl and macros (DO files)
	Tcl features within ModelSim
	Tcl References
	Tcl commands
	Tcl command syntax
	if command syntax
	set command syntax
	Command substitution
	Command separator
	Multiple-line commands
	Evaluation order
	Tcl relational expression evaluation
	Variable substitution
	System commands

	List processing
	ModelSim Tcl commands
	ModelSim Tcl time commands
	Conversions
	Relations
	Arithmetic

	Tcl examples
	Example 1
	Example 2

	Macros (DO files)
	Creating DO files
	Using Parameters with DO files
	Making macro parameters optional
	Useful commands for handling breakpoints and errors
	Error action in DO files

	A - ModelSim variables
	Variable settings report
	Personal preferences
	Returning to the original ModelSim defaults
	Environment variables
	ModelSim Environment Variables
	Creating environment variables in Windows
	Referencing environment variables within ModelSim
	Removing temp files (VSOUT)

	Preference variables located in INI files
	[Library] library path variables
	[vcom] VHDL compiler control variables
	[vlog] Verilog compiler control variables
	[vsim] simulator control variables
	Commonly used INI variables

	Preference variables located in Tcl files
	User-defined variables
	More preferences

	Variable precedence
	Simulator state variables
	Referencing simulator state variables
	Special considerations for the now variable

	B - ModelSim shortcuts
	Wave window mouse and keyboard shortcuts
	List window keyboard shortcuts
	Command shortcuts
	Command history shortcuts
	Mouse and keyboard shortcuts in Main and Source windows
	Right mouse button

	C - ModelSim messages
	ModelSim message system
	Message format
	Getting more information

	Suppressing warning messages
	Suppressing VCOM warning messages
	Suppressing VLOG warning messages
	Suppressing VSIM warning messages

	Exit codes
	Miscellaneous messages
	Empty port name warning
	Lock message
	Metavalue detected warning
	Sensitivity list warning
	Tcl Initialization error 2
	Too few port connections
	VSIM license lost

	D - System initialization
	Files accessed during startup
	Environment variables accessed during startup
	Initialization sequence

	E - Tips and techniques
	Running command-line and batch-mode simulations
	Saving and viewing waveforms in batch mode
	Setting up libraries for group use
	Using a DO file to test for assertions
	Locating assertion warnings
	Sampling signals at a clock change
	Configuring a List trigger with Expression Builder
	Converting signal values to strings
	Converting an integer into a bit_vector
	Detecting infinite zero-delay loops
	Referencing source files with location maps
	Using location mapping
	Pathname syntax
	How location mapping works
	Mapping with Tcl variables

	Performance affected by scheduled events being cancelled
	Modeling memory in VHDL

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

