
ModelSim®
Xilinx Edition II

User’s Manual
V e r s i o n 5 . 7 c

P u b l i s h e d : 1 1 / M a r / 0 3
T h e w o r l d ’ s m o s t p o p u l a r H D L s i m u l a t o r

ii

Model
ModelSim is produced by Model Technology™, a Mentor Graphics Corporation
company. Copying, duplication, or other reproduction is prohibited without the
written consent of Model Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark and Signal Spy, TraceX, ChaseX and Model
Technology are trademarks of Mentor Graphics Corporation. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXlm is a trademark of
Globetrotter Software, Inc. IBM, AT, and PC are registered trademarks, AIX and
RISC System/6000 are trademarks of International Business Machines
Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Motif is a trademark of the Open Software Foundation,
Inc. in the USA and other countries. SPARC is a registered trademark and
SPARCstation is a trademark of SPARC International, Inc. Sun Microsystems is a
registered trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright © 1990 -2003, Model Technology, a Mentor Graphics Corporation
company. All rights reserved. Confidential. Online documentation may be printed
by licensed customers of Model Technology and Mentor Graphics for internal
business purposes only.

ModelSim support

Support for ModelSim is available from your FPGA vendor. See the About
ModelSim dialog box (accessed via the Help menu) for contact information.
Sim User’s Manual

 UM-3
Table of Contents

1 - Introduction (UM-13)

Standards supported . UM-14

Assumptions . UM-14

Sections in this document . UM-14

What is an "HDL item" . UM-16

Text conventions . UM-16

2 - Projects (UM-17)

Introduction . UM-18
How do projects differ from pre-5.5 versions? UM-19
Project conversion between versions . UM-19

Getting started with projects . UM-20
Step 1 — Creating a new project . UM-20
Step 2 — Adding items to the project . UM-21
Step 3 — Compiling the files . . UM-24
Step 4 — Simulating a design . UM-25
Other basic project operations . UM-25

The Project tab . UM-26
Project tab context menu . UM-27

Changing compile order . UM-28
Grouping files . . UM-29

Creating a Simulation Configuration . . UM-30

Organizing projects with folders . UM-32

Setting compiler options . UM-34

Accessing projects from the command line . UM-35

3 - Design libraries (UM-37)

Design library contents . UM-38

Design library types . UM-39

Working with design libraries . UM-40
Managing library contents . UM-41
Assigning a logical name to a design library UM-43
Moving a library . . UM-44

Specifying the resource libraries . UM-45
Predefined libraries . . UM-46
Alternate IEEE libraries supplied . UM-46
Regenerating your design libraries . . UM-47

Importing FPGA libraries . UM-48
ModelSim User’s Manual

UM-4 Table of Contents

Model
4 - VHDL simulation (UM-49)

Compiling VHDL designs . . UM-50
Invoking the VHDL compiler . UM-50
Dependency checking . . UM-50
Range and index checking . UM-50

Simulating VHDL designs . . UM-52
Simulator resolution limit . UM-52
Delta delays . UM-53

Using the TextIO package . . UM-55
Syntax for file declaration . UM-55
Using STD_INPUT and STD_OUTPUT within ModelSim UM-56

TextIO implementation issues . UM-57
Reading and writing hexadecimal numbers UM-58
Dangling pointers . UM-58
The ENDLINE function . . UM-58
The ENDFILE function . UM-58
Using alternative input/output files . UM-59
Providing stimulus . UM-59

VITAL specification and source code . UM-60

VITAL packages . UM-60

ModelSim VITAL compliance . UM-60
VITAL compliance checking . . UM-60

Compiling and simulating with accelerated VITAL packages UM-61

Util package . UM-62
get_resolution . . UM-62
init_signal_driver() . . UM-63
init_signal_spy() . . UM-63
signal_force() . UM-63
signal_release() . UM-63
to_real() . UM-64
to_time() . . UM-65

5 - Verilog simulation (UM-67)

Compilation . UM-69
Incremental compilation . . UM-70
Library usage . UM-72
Verilog-XL compatible compiler arguments UM-73
Verilog-XL ‘uselib compiler directive . UM-74

Simulation . UM-76
Simulator resolution limit . UM-77
Event ordering in Verilog designs . UM-79
Negative timing check limits . UM-83
Verilog-XL compatible simulator arguments UM-86

Cell libraries . UM-87
Delay modes . UM-87
Sim User’s Manual

 UM-5
System tasks . UM-89
IEEE Std 1364 system tasks . UM-89
Verilog-XL compatible system tasks . . UM-92
ModelSim Verilog system tasks . . UM-94

Compiler directives . UM-95
IEEE Std 1364 compiler directives . UM-95
Verilog-XL compatible compiler directives UM-96

Verilog PLI/VPI . . UM-97
Registering PLI applications . UM-97
Registering VPI applications . UM-99
Compiling and linking PLI/VPI C applications UM-101
Compiling and linking PLI/VPI C++ applications UM-102
Specifying the PLI/VPI file to load . UM-103
PLI example . UM-104
VPI example . UM-105
The PLI callback reason argument . UM-106
The sizetf callback function . UM-107
PLI object handles . UM-107
Third party PLI applications . UM-108
Support for VHDL objects . UM-109
IEEE Std 1364 ACC routines . UM-110
IEEE Std 1364 TF routines . UM-111
Verilog-XL compatible routines . UM-113
64-bit support in the PLI . UM-113
PLI/VPI tracing . UM-113
Debugging PLI/VPI application code . UM-115

6 - WLF files (datasets) and virtuals (UM-117)

WLF files (datasets) . UM-118
Saving a simulation to a WLF file . UM-119
Opening datasets . UM-119
Viewing dataset structure . UM-120
Managing multiple datasets . UM-121
Saving at intervals with Dataset Snapshot UM-123

Virtual Objects (User-defined buses, and more) UM-125
Virtual signals . UM-125
Virtual functions . UM-126
Virtual regions . UM-127
Virtual types . UM-127

Dataset, WLF file, and virtual commands . UM-128

7 - Graphic interface (UM-129)

Window overview . UM-130

Common window features . UM-131
Quick access toolbars . UM-132
Drag and Drop . UM-132
ModelSim User’s Manual

UM-6 Table of Contents

Model
Command history . UM-132
Automatic window updating . UM-133
Finding names . UM-133
Sorting HDL items . UM-133
Saving window layout . UM-134
Context menus . UM-134
Menu tear off . UM-134
Tree window hierarchical view . UM-135

Main window . UM-137
Workspace . UM-138
Transcript . UM-139
The Main window menu bar . UM-140
The Main window toolbar . UM-145
The Main window status bar . UM-147
Mouse and keyboard shortcuts . UM-147

Dataflow window . UM-149
Adding items to the window . UM-149
Links to other windows . UM-150
Dataflow window menu bar . UM-150
The Dataflow window toolbar . UM-153
Exploring the connectivity of your design UM-156
Zooming and panning . UM-158
Tracing events (causality) . UM-159
Tracing the source of an unknown (X) . UM-160
Finding items by name in the Dataflow window UM-161
Saving the display . UM-162
Configuring page setup . UM-164
Symbol mapping . UM-165
Configuring window options . UM-166

List window . UM-168
HDL items you can view . UM-168
Adding HDL items to the List window . UM-169
The List window menu bar . UM-170
Editing and formatting HDL items in the List window UM-172
Combining items in the List window . UM-174
Setting List window display properties . UM-175
Finding items by name in the List window UM-177
Setting time markers in the List window UM-178
Saving List window data to a file . UM-179
List window keyboard shortcuts . UM-180

Process window . UM-181
The Process window menu bar . UM-182

Signals window . UM-183
The Signals window menu bar . UM-184
Filtering the signal list . UM-185
Forcing signal and net values . UM-186
Adding HDL items to the Wave and List windows or a WLF file UM-187
Finding HDL items in the Signals window UM-188
Setting signal breakpoints . UM-189
Sim User’s Manual

 UM-7
Defining clock signals . UM-189

Source window . UM-191
The Source window menu bar . UM-192
The Source window toolbar . UM-194
Setting file-line breakpoints . UM-197
Checking HDL item values and descriptions UM-197
Finding and replacing in the Source window UM-197
Setting tab stops in the Source window . UM-198

Structure window . UM-199
Structure window menu bar . UM-200
Structure window context menu . UM-201
Finding items in the Structure window . UM-202

Variables window . UM-203
The Variables window menu bar . UM-204
Finding HDL items in the Variables window UM-205

Wave window . UM-206
Pathname pane . UM-206
Values pane . UM-207
Waveform pane . UM-207
Cursor panes . UM-207
HDL items you can view . UM-207
Adding HDL items in the Wave window UM-208
The Wave window menu bar . UM-209
The Wave window toolbar . UM-212
Using dividers . UM-215
Splitting Wave window panes . UM-216
Combining items in the Wave window . UM-217
Displaying drivers of the selected waveform UM-218
Editing and formatting HDL items in the Wave window UM-219
Setting Wave window display properties UM-222
Setting signal breakpoints . UM-224
Finding items by name or value in the Wave window UM-225
Using time cursors in the Wave window UM-226
Examining waveform values . UM-228
Zooming - changing the waveform display range UM-228
Saving zoom range and scroll position with bookmarks UM-229
Wave window mouse and keyboard shortcuts UM-231
Saving waveforms . UM-233

Compiling with the graphic interface . UM-238
Locating source errors during compilation UM-239
Setting default compile options . UM-240

Simulating with the graphic interface . UM-245
Design tab . UM-245
VHDL tab . UM-247
Verilog tab . UM-249
Libraries tab . UM-250
SDF tab . UM-251
Options tab . UM-253
Setting default simulation options . UM-254
ModelSim User’s Manual

UM-8 Table of Contents

Model
Creating and managing breakpoints . UM-258
Signal breakpoints . UM-258
File-line breakpoints . UM-258
Breakpoints dialog . UM-259

Miscellaneous tools and add-ons . UM-262
The GUI Expression Builder . UM-262
Language templates . UM-264

Graphic interface commands . UM-267

8 - Signal Spy (UM-269)

Introduction . UM-270

init_signal_driver . UM-271

init_signal_spy . UM-274

signal_force . UM-276

signal_release . UM-278

$init_signal_driver . UM-280

$init_signal_spy . UM-283

$signal_force . UM-285

$signal_release . UM-287

9 - Standard Delay Format (SDF) Timing Annotation (UM-289)

Specifying SDF files for simulation . UM-290
Instance specification . UM-290
SDF specification with the GUI . UM-291
Errors and warnings . UM-291

VHDL VITAL SDF . UM-292
SDF to VHDL generic matching . UM-292
Resolving errors . UM-293

Verilog SDF . UM-294
The $sdf_annotate system task . UM-294
SDF to Verilog construct matching . UM-295
Optional edge specifications . UM-298
Optional conditions . UM-299
Rounded timing values . UM-299

SDF for Mixed VHDL and Verilog Designs . UM-300

Interconnect delays . UM-300

Disabling timing checks . UM-300

Troubleshooting . UM-301
Mistaking a component or module name for an instance label UM-302
Forgetting to specify the instance . UM-302
Sim User’s Manual

 UM-9
10 - Value Change Dump (VCD) Files (UM-303)

ModelSim VCD commands and VCD tasks . UM-304

Creating a VCD file . UM-306
Flow for four-state VCD file . UM-306
Flow for extended VCD file . UM-306
Case sensitivity . UM-306

Resimulating a design from a VCD file . UM-307

A VCD file from source to output . UM-309
VCD simulator commands . UM-309
VCD output . UM-310

Capturing port driver data . UM-312
Supported TSSI states . UM-312
Strength values . UM-313
Port identifier code . UM-313
Example VCD output from vcd dumpports UM-314

11 - Tcl and macros (DO files) (UM-315)

Tcl features within ModelSim . UM-316

Tcl References . UM-316

Tcl commands . UM-317

Tcl command syntax . UM-318
if command syntax . UM-320
set command syntax . UM-321
Command substitution . UM-321
Command separator . UM-322
Multiple-line commands . UM-322
Evaluation order . UM-322
Tcl relational expression evaluation . UM-322
Variable substitution . UM-323
System commands . UM-323

List processing . UM-324

ModelSim Tcl commands . UM-324

ModelSim Tcl time commands . UM-325
Conversions . UM-325
Relations . UM-325
Arithmetic . UM-326

Tcl examples . UM-327
Example 2 . UM-328

Macros (DO files) . UM-331
Using Parameters with DO files . UM-331
Making macro parameters optional . UM-332
Useful commands for handling breakpoints and errors UM-333
ModelSim User’s Manual

UM-10 Table of Contents

Model
A - ModelSim variables (UM-335)

Variable settings report . UM-336

Personal preferences . UM-336

Returning to the original ModelSim defaults UM-337

Environment variables . UM-337
Creating environment variables in Windows UM-339
Referencing environment variables within ModelSim UM-340
Removing temp files (VSOUT) . UM-340

Preference variables located in INI files . UM-341
[Library] library path variables . UM-341
[vcom] VHDL compiler control variables UM-342
[vlog] Verilog compiler control variables UM-343
[vsim] simulator control variables . UM-344
Commonly used INI variables . UM-349

Preference variables located in Tcl files . UM-352
User-defined variables . UM-352
More preferences . UM-352

Variable precedence . UM-353

Simulator state variables . UM-353
Referencing simulator state variables . UM-354
Special considerations for the now variable UM-354

B - ModelSim shortcuts (UM-355)

Wave window mouse and keyboard shortcuts UM-356

List window keyboard shortcuts . UM-357

Command shortcuts . UM-358

Mouse and keyboard shortcuts in Main and Source windows UM-359
Right mouse button . UM-360

C - ModelSim messages (UM-361)

ModelSim message system . UM-362
Message format . UM-362
Getting more information . UM-362

Suppressing warning messages . UM-363
Suppressing VCOM warning messages . UM-363
Suppressing VLOG warning messages . UM-363
Suppressing VSIM warning messages . UM-363

Exit codes . UM-364

Miscellaneous messages . UM-366
Empty port name warning . UM-366
Lock message . UM-366
Metavalue detected warning . UM-366
Sim User’s Manual

 UM-11
Sensitivity list warning . UM-367
Tcl Initialization error 2 . UM-367
Too few port connections . UM-368
VSIM license lost . UM-369

D - System initialization (UM-371)

Files accessed during startup . UM-372

Environment variables accessed during startup UM-373

Initialization sequence . UM-374

E - Tips and techniques (UM-377)

Running command-line and batch-mode simulations UM-378

Saving and viewing waveforms in batch mode UM-379

Setting up libraries for group use . UM-379

Using a DO file to test for assertions . UM-380

Locating assertion warnings . UM-380

Sampling signals at a clock change . UM-381

Configuring a List trigger with Expression Builder UM-382

Converting signal values to strings . UM-384

Converting an integer into a bit_vector . UM-385

Detecting infinite zero-delay loops . UM-386

Referencing source files with location maps . UM-387
Using location mapping . UM-387
Pathname syntax . UM-388
How location mapping works . UM-388
Mapping with Tcl variables . UM-388

Performance affected by scheduled events being cancelled UM-389

Modeling memory in VHDL . UM-390

Index (UM-401)
ModelSim User’s Manual

UM-12

Model
Sim User’s Manual

 UM-13
1 - Introduction

Chapter contents
Standards supported UM-14

Assumptions UM-14

Sections in this document UM-14

What is an "HDL item" UM-16

Text conventions UM-16

What is an "HDL item" UM-16

This documentation was written for ModelSim version 5.7c for Microsoft Windows 98/
Me/NT/2000/XP. If the ModelSim software you are using is a later release, check the
README file that accompanied the software. Any supplemental information will be there.
ModelSim User’s Manual

UM-14 1 - Introduction

Model
Standards supported

ModelSim VHDL supports both the IEEE 1076-1987 and 1076-1993 VHDL, the
1164-1993 Standard Multivalue Logic System for VHDL Interoperability, and the
1076.2-1996 Standard VHDL Mathematical Packages standards. Any design developed
with ModelSim will be compatible with any other VHDL system that is compliant with
either IEEE Standard 1076-1987 or 1076-1993.

ModelSim Verilog is based on IEEE Std 1364-1995 and a partial implementation of
1364-2001 Standard Hardware Description Language Based on the Verilog Hardware
Description Language (see /<install_dir>/modeltech/docs/technotes/vlog_2001.note for
implementation details). The Open Verilog International Verilog LRM version 2.0 is also
applicable to a large extent. Both PLI (Programming Language Interface) and VCD (Value
Change Dump) are supported for ModelSim PE and SE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b, VITAL’95 – IEEE
1076.4-1995, and VITAL 2000 – IEEE 1076.4-2000.

Assumptions

We assume that you are familiar with the use of your operating system. If you are not
familiar with Microsoft Windows, we recommend that you work through the tutorials
provided with MS Windows before using ModelSim.

We also assume that you have a working knowledge of VHDL and Verilog. Although
ModelSim is an excellent tool to use while learning HDL concepts and practices, this
document is not written to support that goal.

Finally, we make the assumption that you have worked the appropriate lessons in the
ModelSim Tutorial and are therefore familiar with the basic functionality of ModelSim.
The ModelSim Tutorial is available from the ModelSim Help menu.

Sections in this document

In addition to this introduction, you will find the following major sections in this document:

2 - Projects (UM-17)

This chapter discusses ModelSim "projects", a container for design files and their
associated simulation properties.

3 - Design libraries (UM-37)

To simulate an HDL design using ModelSim, you need to know how to create,
compile, maintain, and delete design libraries as described in this chapter.

4 - VHDL simulation (UM-49)

This chapter is an overview of compilation and simulation for VHDL within the
ModelSim environment.

5 - Verilog simulation (UM-67)

This chapter is an overview of compilation and simulation for Verilog within the
ModelSim environment.
Sim User’s Manual

Sections in this document UM-15
6 - WLF files (datasets) and virtuals (UM-117)

This chapter describes datasets and virtuals - both methods for viewing and organizing
simulation data in ModelSim.

7 - Graphic interface (UM-129)

This chapter describes the graphic interface available while operating ModelSim.
ModelSim’s graphic interface is designed to provide consistency throughout all
operating system environments.

8 - Signal Spy (UM-269)

This chapter describes Signal Spy, a set of VHDL procedures and Verilog system tasks
that let you monitor, drive, force, or release an item from anywhere in the hierarchy of
a VHDL or mixed design.

9 - Standard Delay Format (SDF) Timing Annotation (UM-289)

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

10 - Value Change Dump (VCD) Files (UM-303)

This chapter explains Model Technology’s Verilog VCD implementation for
ModelSim. The VCD usage is extended to include VHDL designs.

11 - Tcl and macros (DO files) (UM-315)

This chapter provides an overview of Tcl (tool command language) as used with
ModelSim.

A - ModelSim variables (UM-335)

This appendix describes environment, system, and preference variables used in
ModelSim.

B - ModelSim shortcuts (UM-355)

This appendix describes ModelSim keyboard and mouse shortcuts.

C - ModelSim messages (UM-361)

This appendix describes ModelSim error and warning messages.

D - System initialization (UM-371)

This appendix describes what happens during ModelSim startup.

E - Tips and techniques (UM-377)

This appendix contains a collection of ModelSim usage examples taken from our
manuals and tech support solutions.
ModelSim User’s Manual

UM-16 1 - Introduction

Model
What is an "HDL item"

Because ModelSim works with both VHDL and Verilog, “HDL” refers to either VHDL or
Verilog when a specific language reference is not needed. Depending on the context, “HDL
item” can refer to any of the following:

Text conventions

Text conventions used in this manual include:

VHDL block statement, component instantiation, constant, generate
statement, generic, package, signal, or variable

Verilog function, module instantiation, named fork, named begin, net,
task, or register variable

italic text provides emphasis and sets off filenames, path names, and
design unit names

bold text indicates commands, command options, menu choices,
package and library logical names, as well as variables,
dialog box selections, and language keywords

monospace type monospace type is used for program and command examples

The right angle (>) is used to connect menu choices when traversing menus as
in: File > Quit

UPPER CASE denotes file types used by ModelSim (e.g., DO, WLF, INI,
MPF, PDF, etc.)
Sim User’s Manual

 UM-17
2 - Projects

Chapter contents
Introduction UM-18

What are projects?. UM-18
What are the benefits of projects?. UM-18
How do projects differ from pre-5.5 versions? UM-19
Project conversion between versions UM-19

Getting started with projects UM-20
Step 1 — Creating a new project UM-20
Step 2 — Adding items to the project. UM-21
Step 3 — Compiling the files UM-21
Step 4 — Simulating a design. UM-21
Other basic project operations. UM-25

The Project tab UM-26
Sorting the list UM-26
Project tab context menu UM-27

Changing compile order UM-28
Auto-generating compile order UM-28
Grouping files UM-29

Creating a Simulation Configuration UM-30

Organizing projects with folders UM-32

Setting compiler options UM-34

Accessing projects from the command line UM-35

This chapter discusses ModelSim projects. Projects simplify the process of compiling and
simulating a design and are a great tool for getting started with ModelSim.
ModelSim User’s Manual

UM-18 2 - Projects

Model
Introduction

What are projects?

Projects are collection entities for HDL designs under specification or test. At a minimum,
projects have a root directory, a work library, and "metadata" which are stored in a .mpf file
located in a project’s root directory. The metadata include compiler switch settings, compile
order, and file mappings. Projects may also include:

• HDL source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

• Simulation Configurations (see "Creating a Simulation Configuration" (UM-30)

• Folders (see "Organizing projects with folders" (UM-32))

What are the benefits of projects?

Projects offer benefits to both new and advanced users. Projects

• simplify interaction with ModelSim; you don’t need to understand the intricacies of
compiler switches and library mappings

• eliminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project

• remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to HDL source files

• allow users to share libraries without copying files to a local directory; you can establish
references to source files that are stored remotely or locally

• allow you to change individual parameters across multiple files; in previous versions you
could only set parameters one file at a time

• enable "what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

• reload .ini variable settings every time the project is opened; in previous versions you had
to quit ModelSim and restart the program to read in a new .ini file

Important: Project metadata are updated and stored only for actions taken within the
project itself. For example, if you have a file in a project, and you compile that file from
the command line rather than using the project menu commands, the project will not
update to reflect any new compile settings.
Sim User’s Manual

Introduction UM-19
How do projects differ from pre-5.5 versions?

Projects have improved a great deal from versions prior to 5.5. Some of the key differences
include:

• A new interface eliminates the need to write custom scripts.

• You don’t have to copy files into a specific directory; you can establish references to files
in any location.

• You don’t have to specify compiler switches; the automatic defaults will work for many
designs. However, if you do want to customize the settings, you do it through a dialog
box rather than by writing a script.

• All metadata (compiler settings, compile order, file mappings, etc.) are stored in the
project .mpf file.

Project conversion between versions

Projects are generally not backwards compatible for either number or letter releases. When
you open a project created in an earlier version (e.g, you’re using 5.6 and you open a project
created in 5.5), you’ll see a message warning that the project will be converted to the newer
version. You have the option of continuing with the conversion or cancelling the operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup file is named <project name>.mpf.bak and is created in the
same directory in which the original project is located.

Note: Due to the significant changes, projects created in versions prior to 5.5 cannot be
converted automatically. If you created a project in an earlier version, you will need to
recreate it in versions later than 5.5. With the new interface even the most complex
project should take less than 15 minutes to recreate. Follow the instructions in the
ensuing pages to recreate your project.
ModelSim User’s Manual

UM-20 2 - Projects

Model
Getting started with projects

This section describes the four basic steps to working with a project.

Step 1 — Creating a new project (UM-20)

This creates a .mpf file and a working library.

Step 2 — Adding items to the project (UM-21)

Projects can reference or include HDL source files, folders for organization, simulations,
and any other files you want to associate with the project. You can copy files into the
project directory or simply create mappings to files in other locations.

Step 3 — Compiling the files (UM-24)

This checks syntax and semantics and creates the pseudo machine code ModelSim uses
for simulation.

Step 4 — Simulating a design (UM-25)

This specifies the design unit you want to simulate and opens a structure tab in the Main
window workspace.

Step 1 — Creating a new project

Select File > New > Project (Main window) to create a new project. This opens the Create
Project dialog.

The dialog includes these options:

• Project Name
The name of the new project.

• Project Location
The directory in which the .mpf file will be created.

• Default Library Name
The name of the working library. See "Design library types" (UM-39) for more details on
work libraries. You can generally leave the Default Library Name set to "work." The
Sim User’s Manual

Getting started with projects UM-21
name you specify will be used to create a working library subdirectory within the Project
Location.

After selecting OK, you will see a blank Project tab in the workspace area of the Main
window and the Add Items to the Project dialog.

The name of the current project is shown at the bottom left corner of the Main window.

Step 2 — Adding items to the project

The Add Items to the Project dialog includes these options:

• Create New File
Create a new VHDL, Verilog, Tcl, or text file using the Source window. See below for
details.

• Add Existing File
Add an existing file. See below for details.

• Create Simulation
Create a Simulation Configuration that specifies source files and simulator options. See
"Creating a Simulation Configuration" (UM-30) for details.

• Create New Folder
Create an organization folder. See "Organizing projects with folders" (UM-32) for details.

workspace
ModelSim User’s Manual

UM-22 2 - Projects

Model
Create New File

The Create New File command lets you create a new VHDL, Verilog, Tcl, or text file using
the Source window. You can also access this command by selecting File > Add to Project
> New File (Main window) or right-clicking

The Create Project File dialog includes these options:

• File Name
The name of the new file.

• Add file as type
The type of the new file. Select VHDL, Verilog, TCL, or text.

• Folder
The organization folder in which you want the new file placed. You must first create
folders in order to access them here. See "Organizing projects with folders" (UM-32) for
details.

When you select OK, the Source window opens with an empty file, and the file is listed in
the Project tab of the Main window workspace.
Sim User’s Manual

Getting started with projects UM-23
Add Existing File

You can also access this command by selecting File > Add to Project > Existing File
(Main window) or by right-clicking

The Add file to Project dialog includes these options:

• File Name
The name of the file to add. You can add multiple files at one time.

• Add file as type
The type of the file. "Default" assigns type based on the file extension (e.g., .v is type
Verilog).

• Folder
The organization folder in which you want the file placed. You must first create folders
in order to access them here. See "Organizing projects with folders" (UM-32) for details.

• Reference from current location/Copy to project directory
Choose whether to reference the file from its current location or to copy it into the project
directory.

When you select OK, the file(s) is listed in the Project tab of the Main window workspace.
ModelSim User’s Manual

UM-24 2 - Projects

Model
Step 3 — Compiling the files

The question marks next to the files in the Project tab denote either the files haven’t been
compiled into the project or the source has changed since the last compile. To compile the
files, select Compile > Compile All (Main window) or right click in the Project tab and
select Compile > Compile All.

Once compilation is finished, click the Library tab, expand library work by clicking the "+",
and you’ll see the two compiled design units.
Sim User’s Manual

Getting started with projects UM-25
Step 4 — Simulating a design

To simulate one of the designs, either double-click the name or right-click the name and
select Simulate. A new tab appears showing the structure of the active simulation.

At this point you are ready to run the simulation and analyze your results. You often do this
by adding signals to the Wave window and running the simulation for a given period of
time. See the ModelSim Tutorial for examples.

Other basic project operations

Open an existing project

If you previously exited ModelSim with a project open, ModelSim automatically will open
that same project upon startup. You can open a different project by selecting File > Open
> Project (Main window).

Close a project

Select File > Close > Project (Main window). This closes the Project tab but leaves the
Library tab open in the workspace. Note that you cannot close a project while a simulation
is in progress.

Delete a project

Select File > Delete > Project (Main window). You cannot delete a project while it is open.
ModelSim User’s Manual

UM-26 2 - Projects

Model
The Project tab

The Project tab contains information about the items in your project. By default the tab is
divided into five columns.

Name – The name of a file or object.

Status – Identifies whether a source file has been successfully compiled. Applies only to
VHDL or Verilog files. A question mark means the file hasn’t been compiled or the source
file has changed since the last successful compile; an X means the compile failed; a check
mark means the compile succeeded.

Type – The file type as determined by registered file types on Windows or the type you
specify when you add the file to the project.

Order – The order in which the file will be compiled when you execute a Compile All
command.

Modified – The date and time of the last modification to the file.

You can hide or show columns by right-clicking on a column title and selecting or
deselecting entries.

Sorting the list

You can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down
arrow) or ascending (up arrow).
Sim User’s Manual

The Project tab UM-27
Project tab context menu

Like the other workspace tabs, the Project tab has a context menu that you access by
clicking your right mouse button anywhere in the tab.

The context menu has the following options:

• Edit
Open the selected file in the ModelSim editor.

• Compile > Compile Selected
Compile the selected file(s). Note that if you select a folder and select Compile Selected,
it will compile all files in the folder and any sub-folders.

• Compile > Compile All
Compile all source files included in the project.

• Compile > Compile Out-of-Date
Compile source files that have been modified since the last compile.

• Compile > Compile Order
Set compile order for all files in the project. See "Changing compile order" (UM-28) for
more details.

• Compile > Compile Report
Show the compilation history of the selected file.

• Compile > Compile Summary
Show the compilation history of the entire project.

• Compile > Compile Properties
View/change project compiler settings for the selected source file(s).

• Simulate
Load the design unit(s) and associated simulation options from the selected Simulation
Configuration. See "Creating a Simulation Configuration" (UM-30) for more details.

• Add to Project > New File
Add a new file to the project.

• Add to Project > Existing File
Add an extant file to the project.

• Add to Project > Simulation Configuration
Create a new Simulation Configuration. See "Creating a Simulation Configuration" (UM-

30) for more details.

• Add to Project > Folder
Add an organization folder to the project. See "Organizing projects with folders" (UM-32)
for more details.

• Remove from Project
Remove the selected item from the project.

• Close Project
Close the active project.

• Properties
View/change project compiler settings for the selected source file(s).
ModelSim User’s Manual

UM-28 2 - Projects

Model
Changing compile order

When you compile all files in a project, ModelSim by default compiles the files in the order
in which they were added to the project. You have two alternatives for changing the default
compile order: 1) select and compile each file individually; 2) specify a custom compile
order.

To specify a custom compile order, follow these steps:

1 Select Compile > Compile Order (Main window) or select it from the context menu in
the Project tab.

2 Drag the files into the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

Auto-generating compile order

The Auto Generate button in the Compile Order dialog (see above) "determines" the
correct compile order by making multiple passes over the files. It starts compiling from the
top; if a file fails to compile due to dependencies, it moves that file to the bottom and then
recompiles it after compiling the rest of the files. It continues in this manner until all files
compile successfully or until a file(s) can’t be compiled for reasons other than dependency.
Sim User’s Manual

Changing compile order UM-29
Grouping files

You can group two or more files in the Compile Order dialog so they are sent to the
compiler at the same time. For example, you might have one file with a bunch of Verilog
define statements and a second file that is a Verilog module. You would want to compile
these two files together.

To group files, follow these steps:

1 Select the files you want to group.

2 Click the Group button.

To ungroup files, select the group and click the Ungroup button.
ModelSim User’s Manual

UM-30 2 - Projects

Model
Creating a Simulation Configuration

A Simulation Configuration associates a design unit(s) and its simulation options. For
example, say you routinely load a particular design and you have to specify the simulator
resolution, generics, and SDF timing files. Ordinarily you would have to specify those
options each time you load the design. With a Simulation Configuration, you would specify
the design and those options and then save the configuration with a name (e.g., top_config).
The name is then listed in the Project tab and you can double-click it to load the design
along with its options.

To create a Simulation Configuration, follow these steps:

1 Select File > Add to Project > Simulation Configuration (Main window) or select it
from the context menu in the Project tab.

2 Specify a name in the Simulation Configuration Name field.

3 Specify the folder in which you want to place the configuration (see Organizing projects
with folders (UM-32)).

4 Select one or more design unit(s) and click Add.
Sim User’s Manual

Creating a Simulation Configuration UM-31
5 Use the other tabs in the dialog to specify any required simulation options. All of the
options in this dialog are described under "Simulating with the graphic interface" (UM-

245).

Click OK and the simulation configuration is added to the Project tab.

Double-click the object to load it.
ModelSim User’s Manual

UM-32 2 - Projects

Model
Organizing projects with folders

The more files you add to a project, the harder it can be to locate the item you need. You
can add "folders" to the project to organize your files. These folders are akin to directories
in that you can have multiple levels of folders and sub-folders. However, no actual
directories are created via the file system–the folders are present only within the project
file.

Adding a folder

To add a folder to your project, select File > Add to Project > Folder.

Specify the Folder Name, the location for the folder, and click OK. The folder will be
displayed in the Project tab.
Sim User’s Manual

Organizing projects with folders UM-33
You use the folders when you add new objects to the project. For example, when you add
a file, you can select which folder to place it in.

If you want to move a file into a folder later on, you can do so using the Properties dialog
for the file (right-click on the file and select Properties from the context menu).
ModelSim User’s Manual

UM-34 2 - Projects

Model
Setting compiler options

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options
that affect how a design is compiled and subsequently simulated. You can customize the
settings on individual files or a group of files.

To customize specific files, select the file(s) in the Project tab, right click on the file names,
and select Properties. The resulting dialog varies depending on the number and type of
files you have selected. If you select a single VHDL or Verilog file, you’ll see the General
tab and the VHDL or Verilog tab, respectively. On the General tab, you’ll see file properties
such as Type, Location, and Size. If you select multiple files, the file properties on the
General tab are not listed. Finally, if you select both a VHDL file and a Verilog file, you’ll
see all three tabs but no file information on the General tab.

The General tab includes these options:

• Do Not Compile
Determines whether the file is excluded from the compile.

• Compile to library
Specifies to which library you want to compile the file; defaults to the working library.

• Place in Folder
Specifies the folder in which to place the selected file(s). See "Organizing projects with
folders" (UM-32) for details on folders.

• File Properties
A variety of information about the selected file (e.g, type, size, path). Displays only if a
single file is selected in the Project tab.

The definitions of the options on the VHDL and Verilog tabs can be found in the section
"Setting default compile options" (UM-240).

Important: Any changes you make to the compile properties outside of the project,
whether from the command line, the GUI, or the modelsim.ini file, will not affect the
properties of files already in the project.
Sim User’s Manual

Accessing projects from the command line UM-35
When setting options on a group of files, keep in mind the following:

• If two or more files have different settings for the same option, the checkbox in the dialog
will be "grayed out." If you change the option, you cannot change it back to a "multi- state
setting" without cancelling out of the dialog. Once you click OK, ModelSim will set the
option the same for all selected files.

• If you select a combination of VHDL and Verilog files, the options you set on the VHDL
and Verilog tabs apply only to those file types.

Accessing projects from the command line

Generally, projects are used from within the ModelSim GUI. However, standalone tools
will use the project file if they are invoked in the project's root directory. If you want to
invoke outside the project directory, set the MODELSIM environment variable with the
path to the project file (<Project_Root_Dir>/<Project_Name>.mpf).

You can also use the project command (CR-104) from the command line to perform
common operations on new projects. The command is to be used outside of a simulation
session.
ModelSim User’s Manual

UM-36

Model
Sim User’s Manual

 UM-37
3 - Design libraries

Chapter contents
Design library contents. UM-38

Design unit information UM-38
Archives UM-38

Design library types UM-39

Working with design libraries UM-40
Creating a library UM-40
Managing library contents UM-41
Assigning a logical name to a design library UM-43
Moving a library UM-44

Specifying the resource libraries UM-45
VHDL resource libraries UM-45
Predefined libraries UM-46
Alternate IEEE libraries supplied UM-46
Regenerating your design libraries UM-47

Importing FPGA libraries UM-48

VHDL contains libraries, which are objects that contain compiled design units; libraries
are given names so they may be referenced. Verilog designs simulated within ModelSim
are compiled into libraries as well.
ModelSim User’s Manual

UM-38 3 - Design libraries

Model
Design library contents

A design library is a directory or archive that serves as a repository for compiled design
units. The design units contained in a design library consist of VHDL entities, packages,
architectures, and configurations; and Verilog modules and UDPs (user-defined
primitives). The design units are classified as follows:

• Primary design units
Consist of entities, package declarations, configuration declarations, modules, and
UDPs. Primary design units within a given library must have unique names.

• Secondary design units
Consist of architecture bodies and package bodies. Secondary design units are associated
with a primary design unit. Architectures by the same name can exist if they are
associated with different entities.

Design unit information

The information stored for each design unit in a design library is:

• retargetable, executable code

• debugging information

• dependency information

Archives

By default design libraries are stored in a directory structure with a sub-directory for each
design unit in the library. Alternatively, you can configure a design library to use archives.
In this case each design unit is stored in its own archive file. To create an archive, use the
-archive argument to the vlib command (CR-180).

Generally you would do this only in the rare case that you hit the reference count limit on
I-nodes due to the ".." entries in the lower-level directories. An example of an error message
that is produced when this limit is hit is:

mkdir: cannot create directory ‘65534’: Too many links

Archives may also have limited value to customers seeking disk space savings.

Note that GMAKE won’t work with these archives on the IBM platform.
Sim User’s Manual

Design library types UM-39
Design library types

There are two kinds of design libraries: working libraries and resource libraries. A working
library is the library into which a design unit is placed after compilation. A resource library
contains design units that can be referenced within the design unit being compiled. Only
one library can be the working library; in contrast, any number of libraries (including the
working library itself) can be resource libraries during a compilation.

The library named work has special attributes within ModelSim; it is predefined in the
compiler and need not be declared explicitly (i.e. library work). It is also the library name
used by the compiler as the default destination of compiled design units. In other words the
work library is the working library. In all other aspects it is the same as any other library.
ModelSim User’s Manual

UM-40 3 - Design libraries

Model
Working with design libraries

The implementation of a design library is not defined within standard VHDL or Verilog.
Within ModelSim design libraries are implemented as directories and can have any legal
name allowed by the operating system, with one exception; extended identifiers are not
supported for library names.

Creating a library

When you create a project (see "Getting started with projects" (UM-20)), ModelSim
automatically creates a working design library. If you don’t create a project, you need to
create a working design library before you run the compiler. This can be done from either
the command line or from the ModelSim graphic interface.

From the ModelSim prompt or a DOS prompt, use this vlib command (CR-180):

vlib <directory_pathname>

To create a new library with the ModelSim graphic interface, select File > New > Library
(Main window).

The Create a New Library dialog box includes these options:

• Create a new library and a logical mapping to it
Type the new library name into the Library Name field. This creates a library sub-
directory in your current working directory, initially mapped to itself. Once created, the
mapped library is easily remapped to a different library.

• Create a map to an existing library
Type the new library name into the Library Name field, then type into the Library
Maps to field or Browse to select a library name for the mapping.

• Library Name
Type the logical name of the new library into this field.
Sim User’s Manual

Working with design libraries UM-41
• Library Physical Name
Type the physical name of the new library into this field. ModelSim will create a
directory with this name.

• Library Maps to
Type or Browse for a mapping for the specified library. This field is visible and can be
changed only when the Create a map to an existing library option is selected.

When you click OK, ModelSim creates the specified library directory and writes a
specially-formatted file named _info into that directory. The _info file must remain in the
directory to distinguish it as a ModelSim library.

The new map entry is written to the modelsim.ini file in the [Library] section. See
"[Library] library path variables" (UM-341) for more information.

Managing library contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the
graphic interface or command line.

The Library tab in the Main window workspace provides access to design units
(configurations, modules, packages, entities, and architectures) in a library. The listing is
organized hierarchically, and the unit types are identified both by icon (entity (E), module
(M), and so forth) and the Type column.

Note: Remember that a design library is a special kind of directory; the only way to
create a library is to use the ModelSim GUI or the vlib command (CR-180). Do not create
libraries using DOS or Windows commands.
ModelSim User’s Manual

UM-42 3 - Design libraries

Model
The Library tab has a context menu that you access by clicking your right mouse button in
the Library tab.

The context menu includes the following commands:

• Simulate
Loads the selected design unit and opens structure and Files tabs in the workspace.
Related command line command is vsim (CR-189).

• Edit
Opens the selected design unit in the Source window, or if a library is selected, opens the
Edit Library Mapping dialog (see "Library mappings with the GUI" (UM-43)).

• Refresh
Rebuilds the library image of the selected library without using source code. Related
command line command is vcom (CR-145) or with the -refresh argument.

• Recompile
Recompiles the selected design unit. Related command line command is vcom (CR-145)
or .

• Update
Updates the display of available libraries and design units.

• Delete
Deletes the selected design unit. Related command line command is vdel (CR-151).

Deleting a package, configuration, or entity will remove the design unit from the library.
If you delete an entity that has one or more architectures, the entity and all its associated
architectures will be deleted.

You can also delete an architecture without deleting its associated entity. Expand the
entity, right-click the desired architecture name, and select Delete. You are prompted for
confirmation before any design unit is actually deleted.

• New
Create a new library.

• Properties
Displays various properties (e.g., Name, Type, Source, etc.) of the selected design unit
or library.
Sim User’s Manual

Working with design libraries UM-43
Assigning a logical name to a design library

VHDL uses logical library names that can be mapped to ModelSim library directories. By
default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map a logical library name
to the pathname of the library.

You can use the GUI, a command, or a project to assign a logical name to a design library.

Library mappings with the GUI

To associate a logical name with a library, select the library in the workspace, right-click
and select Edit from the context menu. This brings up a dialog box that allows you to edit
the mapping.

The dialog box includes these options:

• Library Mapping Name
The logical name of the library.

• Library Pathname
The pathname to the library.

Library mapping from the command line

You can issue a command to set the mapping between a logical library name and a
directory; its form is:

vmap <logical_name> <directory_pathname>

You may invoke this command from either a DOS prompt or from the command line within
ModelSim.

When you use vmap (CR-188) this way you are modifying the modelsim.ini file. You can
also modify modelsim.ini manually by adding a mapping line. To do this, use a text editor
and add a line under the [Library] section heading using the syntax:

<logical_name> = <directory_pathname>
ModelSim User’s Manual

UM-44 3 - Design libraries

Model
More than one logical name can be mapped to a single directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Library]
work = /usr/rick/design
my_asic = /usr/rick/design

This would allow you to use either the logical name work or my_asic in a library or use
clause to refer to the same design library.

The vmap command (CR-188) can also be used to display the mapping of a logical library
name to a directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Library search rules

The system searches for the mapping of a logical name in the following order:

• First the system looks for a modelsim.ini file.

• If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify a logical name that does not resolve to
an existing directory.

Moving a library

Individual design units in a design library cannot be moved. An entire design library can
be moved, however, by using standard operating system commands for moving a directory
or an archive.
Sim User’s Manual

Specifying the resource libraries UM-45
Specifying the resource libraries

Verilog resource libraries

ModelSim supports and encourages separate compilation of distinct portions of a Verilog
design. The vlog (CR-181) compiler is used to compile one or more source files into a
specified library. The library thus contains pre-compiled modules and UDPs that are
referenced by the simulator as it loads the design. See "Library usage" (UM-72).

VHDL resource libraries

Within a VHDL source file, you use the VHDL library clause to specify logical names of
one or more resource libraries to be referenced in the subsequent design unit. The scope of
a library clause includes the text region that starts immediately after the library clause and
extends to the end of the declarative region of the associated design unit. It does not extend
to the next design unit in the file.

Note that the library clause is not used to specify the working library into which the design
unit is placed after compilation; the vcom command (CR-145) adds compiled design units
to the current working library. By default, this is the library named work. To change the
current working library, you can use vcom -work and specify the name of the desired target
library.

Default binding rules

A common question related to resource libraries is how ModelSim handles default binding
for components. ModelSim addresses default binding at compile time. When looking for
an entity to bind with, ModelSim searches the currently visible libraries for an entity with
the same name as the component. ModelSim does this because IEEE 1076-1987 contained
a flaw that made it almost impossible for an entity to be directly visible if it had the same
name as the component. In short, if a component was declared in an architecture, any like-
named entity above that declaration would be hidden because component/entity names
cannot be overloaded. As a result we implemented the following rules for determining
default binding:

• If a directly visible entity has the same name as the component, use it.

• If the component is declared in a package, search the library that contained the package
for an entity with the same name.

• Search the work library.

• Search all other libraries that are currently visible by means of the library clause.

Important: Resource libraries are specified differently for Verilog and VHDL. For
Verilog you use either the -L or -Lf argument to vlog (CR-181).
ModelSim User’s Manual

UM-46 3 - Design libraries

Model
In IEEE 1076-1993, the flaw was partially fixed in that the name look-up for the default
entity ignores component declarations. However, you could still encounter problems.
Consider the case where you declare a component C in a package P, library L contains an
entity C, and you have the following lines of code:

library L;
use L.P.all; -- Makes component C visible
use L.all; -- Because L.C exists and entity and component cannot be

overloaded, neither L.C nor L.P.C are directly visible.

In this case you couldn’t have the statement:

U1: C PORT MAP (p1 => ...);

Instead, you need to have:

U1: P.C PORT MAP (p1 => ...);

Because the default binding rules in IEEE 1076 contain these flaws, different simulators
implement default binding in different ways.

Predefined libraries

Certain resource libraries are predefined in standard VHDL. The library named std
contains the packages standard and textio, which should not be modified. The contents of
these packages and other aspects of the predefined language environment are documented
in the IEEE Standard VHDL Language Reference Manual, Std 1076-1987 and ANSI/IEEE
Std 1076-1993. See also, "Using the TextIO package" (UM-55).

A VHDL use clause can be specified to select particular declarations in a library or package
that are to be visible within a design unit during compilation. A use clause references the
compiled version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

LIBRARY std, work;
USE std.standard.all

To specify that all declarations in a library or package can be referenced, add the suffix .all
to the library/package name. For example, the use clause above specifies that all
declarations in the package standard in the design library named std are to be visible to the
VHDL design file in which the use clause is placed. Other libraries or packages are not
visible unless they are explicitly specified using a library or use clause.

Another predefined library is work, the library where a design unit is stored after it is
compiled as described earlier. There is no limit to the number of libraries that can be
referenced, but only one library is modified during compilation.

Alternate IEEE libraries supplied

The installation directory may contain two or more versions of the IEEE library:

• ieeepure
Contains only IEEE approved std_logic_1164 packages (accelerated for ModelSim).
Sim User’s Manual

Specifying the resource libraries UM-47
• ieee
Contains precompiled Synopsys and IEEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std_logic_1164, std_logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std_logic_unsigned, vital_primitives, and vital_timing.

You can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini file in the installation directory defaults to the ieee library.

Regenerating your design libraries

Depending on your current ModelSim version, you may need to regenerate your design
libraries before running a simulation. Check the installation README file to see if your
libraries require an update. You can regenerate your design libraries using the Refresh
command from the Library tab context menu (see "Managing library contents" (UM-41)), or
by using the -refresh argument to vcom (CR-145) and vlog (CR-181).

From the command line, you would use vcom with the -refresh option to update VHDL
design units in a library, and vlog with the -refresh option to update Verilog design units.
By default, the work library is updated; use -work <library> to update a different library.
For example, if you have a library named mylib that contains both VHDL and Verilog
design units:

vcom -work mylib -refresh
vlog -work mylib -refresh

An important feature of -refresh is that it rebuilds the library image without using source
code. This means that models delivered as compiled libraries without source code can be
rebuilt for a specific release of ModelSim (4.6 and later only). In general, this works for
moving forwards or backwards on a release. Moving backwards on a release may not work
if the models used compiler switches or directives (Verilog only) that do not exist in the
older release.

Note: You don't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you
cannot use the -refresh option to update libraries that were built before the 4.6 release.
ModelSim User’s Manual

UM-48 3 - Design libraries

Model
Importing FPGA libraries

ModelSim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct
mappings and target directories.

To import an FPGA library, select File > Import > Library (Main window).

Follow the instructions in the wizard to complete the import.

Important: The FPGA libraries you import must be pre-compiled. Most FPGA vendors
supply pre-compiled libraries configured for use with ModelSim.
Sim User’s Manual

 UM-49
4 - VHDL simulation

Chapter contents
Compiling VHDL designs UM-50

Creating a design library UM-50
Invoking the VHDL compiler UM-50
Dependency checking UM-50
Range and index checking UM-50

Simulating VHDL designs UM-52
Simulator resolution limit UM-52
Delta delays UM-53

Using the TextIO package UM-55
Syntax for file declaration. UM-55
Using STD_INPUT and STD_OUTPUT within ModelSim . . . UM-56

TextIO implementation issues UM-57
Writing strings and aggregates UM-57
Reading and writing hexadecimal numbers UM-58
Dangling pointers UM-58
The ENDLINE function UM-58
The ENDFILE function UM-58
Using alternative input/output files UM-59
Providing stimulus UM-59

VITAL specification and source code UM-60

VITAL packages UM-60

ModelSim VITAL compliance. UM-60
VITAL compliance checking UM-60
Compiling and simulating with accelerated VITAL packages . . UM-61

Compiling and simulating with accelerated VITAL packages . . . UM-61

Util package UM-62
get_resolution UM-62
init_signal_driver() UM-63
init_signal_spy() UM-63
signal_force() UM-63
signal_release() UM-63
to_real() UM-64
to_time() UM-65

This chapter provides an overview of compilation and simulation for VHDL; using the
TextIO package with ModelSim; ModelSim’s implementation of the VITAL (VHDL
Initiative Towards ASIC Libraries) specification for ASIC modeling; and documentation
on ModelSim’s special built-in utilities package.

The TextIO package is defined within the VHDL Language Reference Manuals, IEEE Std
1076-1987 and IEEE Std 1076-1993; it allows human-readable text input from a declared
source within a VHDL file during simulation.
ModelSim User’s Manual

UM-50 4 - VHDL simulation

Model
Compiling VHDL designs

Creating a design library

Before you can compile your design, you must create a library in which to store the
compilation results. Use vlib (CR-180) to create a new library. For example:

vlib work

This creates a library named work. By default, compilation results are stored in the work
library.

See "Design libraries" (UM-37) for additional information on working with libraries.

Invoking the VHDL compiler

ModelSim compiles one or more VHDL design units with a single invocation of vcom (CR-

145), the VHDL compiler. The design units are compiled in the order that they appear on
the command line. For VHDL, the order of compilation is important – you must compile
any entities or configurations before an architecture that references them.

You can simulate a design containing units written with both the 1076 -1987 and 1076
-1993 versions of VHDL. To do so you will need to compile units from each VHDL version
separately. The vcom (CR-145) command compiles units written with version 1076 -1987
by default; use the -93 option with vcom (CR-145) to compile units written with version
1076 -1993. You can also change the default by modifying the modelsim.ini file (see
"Preference variables located in INI files" (UM-341) for more information).

Dependency checking

Dependent design units must be reanalyzed when the design units they depend on are
changed in the library. vcom (CR-145) determines whether or not the compilation results
have changed. For example, if you keep an entity and its architectures in the same source
file and you modify only an architecture and recompile the source file, the entity
compilation results will remain unchanged and you will not have to recompile design units
that depend on the entity.

Range and index checking

A range check verifies that a scalar value defined with a range subtype is always assigned
a value within its range. An index check verifies that whenever an array subscript
expression is evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. You can
disable range checks (potentially offering a performance advantage) and index checks
using arguments to the vcom (CR-145) command. Or, you can use the NoRangeCheck and
NoIndexCheck variables in the modelsim.ini file to specify whether or not they are
performed. See "Preference variables located in INI files" (UM-341).

Note: The work library is actually a subdirectory named work. This subdirectory
contains a special file named _info. Do not create libraries using MS Windows or DOS
commands – always use the vlib command (CR-180).
Sim User’s Manual

Compiling VHDL designs UM-51
Range checks in ModelSim are slightly more restrictive than those specified by the VHDL
LRM. ModelSim requires any assignment to a signal to also be in range whereas the LRM
requires only that range checks be done whenever a signal is updated. Most assignments to
signals update the signal anyway, and the more restrictive requirement allows ModelSim
to generate better error messages.
ModelSim User’s Manual

UM-52 4 - VHDL simulation

Model
Simulating VHDL designs

After compiling the design units, you can simulate your designs with vsim (CR-189). This
section discusses simulation from the Windows/DOScommand line. You can also use a
project to simulate (see "Getting started with projects" (UM-20)) or the Simulate dialog box
(see "Simulating with the graphic interface" (UM-245)).

For VHDL invoke vsim (CR-189) with the name of the configuration, or entity/architecture
pair. Note that if you specify a configuration you may not specify an architecture.

This example invokes vsim (CR-189) on the entity my_asic and the architecture structure:

vsim my_asic structure

vsim (CR-189) is capable of annotating a design using VITAL compliant models with timing
data from an SDF file. You can specify the min:typ:max delay by invoking vsim with the
-sdfmin, -sdftyp and -sdfmax options. Using the SDF file f1.sdf in the current work
directory, the following invocation of vsim annotates maximum timing values for the
design unit my_asic:

vsim -sdfmax /my_asic=f1.sdf my_asic

By default, the timing checks within VITAL models are enabled. They can be disabled with
the +notimingchecks option. For example:

vsim +notimingchecks topmod

Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The default
resolution limit is set to the value specified by the Resolution (UM-347) variable in the
modelsim.ini file. You can view the current resolution by invoking the report command
(CR-109) with the simulator state option.

Overriding the resolution

You can override ModelSim’s default resolution by specifying the -t option on the
command line or by selecting a different Simulator Resolution in the Simulate dialog box.
Available resolutions are: 1x, 10x or 100x of fs, ps, ns, us, ms, or sec.

For example this command chooses 10 ps resolution:

vsim -t 10ps topmod

Clearly you need to be careful when doing this type of operation. If the resolution set by -t
is larger than a delay value in your design, the delay values in that design unit are rounded
to the next multiple of the resolution. In the example above, a delay of 4 ps would be
rounded to 0 ps.

Choosing the resolution

You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it
will limit the maximum simulation time limit, and it will degrade performance in some
cases.
Sim User’s Manual

Simulating VHDL designs UM-53
Delta delays

Event-based simulators such as ModelSim may process many events at a given simulation
time. Multiple signals may need updating, statements that are sensitive to these signals
must be executed, and any new events that result from these statements must then be
queued and executed as well. The steps taken to evaluate the design without advancing
simulation time are referred to as "delta times" or just "deltas."

The diagram below represents the process for VHDL designs. This process continues until
the end of simulation time.

This mechanism in event-based simulators may cause unexpected results. Consider the
following code snippet:

.

.

.
 clk2 <= clk;

 process (rst, clk)
 begin
 if(rst = ’0’)then
 s0 <= ’0’;
 elsif(clk’event and clk=’1’) then
 s0 <= inp;

 end if;
 end process;

process (rst, clk2)
 begin
 if(rst = ’0’)then

Execute
concurrent
statements at
current time

Advance
delta time

Any transactions
to process?

No

Yes

Any events to
process?

No

Execute concurrent
statements that are
sensitive to events

Advance
simulation
time

Yes
ModelSim User’s Manual

UM-54 4 - VHDL simulation

Model
 s1 <= ’0’;
 elsif(clk2’event and clk2=’1’) then
 s1 <= s0;
 end if;
 end process;
.
.
.

In this example you have two synchronous processes, one triggered with clk and the other
with clk2. To your surprise, the signals change in the clk2 process on the same edge as they
are set in the clk process. As a result, the value of inp appears at s1 rather than s0. What is
going on?

Here is what’s happing. During simulation an event on clk occurs (from the testbench).
From this event ModelSim performs the "clk2 <= clk" assignment and the process which
is sensitive to clk. Before advancing the simulation time, ModelSim finds that the process
sensitive to clk2 can also be run. Since there are no delays present, the effect is that the
value of inp appears at s1 in the same simulation cycle.

In order to get the expected results, you must do one of the following:

1 insert delay at every output

2 make certain to use the same clock

3 insert a delta delay

To insert a delta delay, you would modify the code like this:

process (rst, clk)
 begin
 if(rst = ’0’)then
 s0 <= ’0’;
 elsif(clk’event and clk=’1’) then
 s0 <= inp;
 s0_delayed <= s0;
 end if;
 end process;

 process (rst, clk2)
 begin
 if(rst = ’0’)then
 s1 <= ’0’;
 elsif(clk2’event and clk2=’1’) then
 s1 <= s0_delayed;
 end if;
 end process;

The best way to debug delta delay problems is observe your signals in the List window.
There you can see how values change at each delta time.
Sim User’s Manual

Using the TextIO package UM-55
Using the TextIO package

To access the routines in TextIO, include the following statement in your VHDL source
code:

USE std.textio.all;

A simple example using the package TextIO is:

USE std.textio.all;
ENTITY simple_textio IS
END;

ARCHITECTURE simple_behavior OF simple_textio IS
BEGIN

PROCESS
VARIABLE i: INTEGER:= 42;
VARIABLE LLL: LINE;

BEGIN
WRITE (LLL, i);
WRITELINE (OUTPUT, LLL);
WAIT;

END PROCESS;
END simple_behavior;

Syntax for file declaration

The VHDL’87 syntax for a file declaration is:

file identifier : subtype_indication is [mode] file_logical_name ;

where "file_logical_name" must be a string expression.

The VHDL’93 syntax for a file declaration is:

file identifier_list : subtype_indication [file_open_information] ;

where "file_open_information" is:

[open file_open_kind_expression] is file_logical_name

You can specify a full or relative path as the file_logical_name; for example (VHDL’87):

Normally if a file is declared within an architecture, process, or package, the file is opened
when you start the simulator and is closed when you exit from it. If a file is declared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNs from the subprogram. Alternatively, the opening of files can be delayed until
the first read or write by setting the DelayFileOpen variable in the modelsim.ini file. Also,
the number of concurrently open files can be controlled by the ConcurrentFileLimit
variable. These variables help you manage a large number of files during simulation. See
Appendix A - ModelSim variables for more details.
ModelSim User’s Manual

UM-56 4 - VHDL simulation

Model
Using STD_INPUT and STD_OUTPUT within ModelSim

The standard VHDL’87 TextIO package contains the following file declarations:

file input: TEXT is in "STD_INPUT";
file output: TEXT is out "STD_OUTPUT";

The standard VHDL’93 TextIO package contains these file declarations:

file input: TEXT open read_mode is "STD_INPUT";
file output: TEXT open write_mode is "STD_OUTPUT";

STD_INPUT is a file_logical_name that refers to characters that are entered interactively
from the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current
buffer from a prompt in the Main window. The lines written to the STD_OUTPUT file
appear in the Main window transcript.
Sim User’s Manual

TextIO implementation issues UM-57
TextIO implementation issues

Writing strings and aggregates

A common error in VHDL source code occurs when a call to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the
VHDL procedure:

WRITE (L, "hello");

will cause the following error:

ERROR: Subprogram "WRITE" is ambiguous.

In the TextIO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRITE(L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE(L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

The error occurs because the argument "hello" could be interpreted as a string or a bit
vector, but the compiler is not allowed to determine the argument type until it knows which
function is being called.

The following procedure call also generates an error:

WRITE (L, "010101");

This call is even more ambiguous, because the compiler could not determine, even if
allowed to, whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

• Use a qualified expression to specify the type, as in:

WRITE (L, string’("hello"));

• Call a procedure that is not overloaded, as in:

WRITE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedure in the
io_utils package, which is located in the file <install_dir>/modeltech/examples/
io_utils.vhd.
ModelSim User’s Manual

UM-58 4 - VHDL simulation

Model
Reading and writing hexadecimal numbers

The reading and writing of hexadecimal numbers is not specified in standard VHDL. The
Issues Screening and Analysis Committee of the VHDL Analysis and Standardization
Group (ISAC-VASG) has specified that the TextIO package reads and writes only decimal
numbers.

To expand this functionality, ModelSim supplies hexadecimal routines in the package
io_utils, which is located in the file <install_dir>/modeltech/examples/io_utils.vhd. To use
these routines, compile the io_utils package and then include the following use clauses in
your VHDL source code:

use std.textio.all;
use work.io_utils.all;

Dangling pointers

Dangling pointers are easily created when using the TextIO package, because
WRITELINE de-allocates the access type (pointer) that is passed to it. Following are
examples of good and bad VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and allocate buffer
L2 := L1; -- Copy pointers
WRITELINE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and allocate buffer
L2 := new string’(L1.all); -- Copy contents
WRITELINE (outfile, L1); -- Deallocate buffer

The ENDLINE function

The ENDLINE function described in the IEEE Standard VHDL Language Reference
Manual, IEEE Std 1076-1987 contains invalid VHDL syntax and cannot be implemented
in VHDL. This is because access types must be passed as variables, but functions only
allow constant parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed
from the TextIO package. The following test may be substituted for this function:

(L = NULL) OR (L’LENGTH = 0)

The ENDFILE function

In the VHDL Language Reference Manuals, IEEE Std 1076-1987 and IEEE Std 1076-1993,
the ENDFILE function is listed as:

-- function ENDFILE (L: in TEXT) return BOOLEAN;

As you can see, this function is commented out of the standard TextIO package. This is
because the ENDFILE function is implicitly declared, so it can be used with files of any
type, not just files of type TEXT.
Sim User’s Manual

TextIO implementation issues UM-59
Using alternative input/output files

You can use the TextIO package to read and write to your own files. To do this, just declare
an input or output file of type TEXT. For example, for an input file:

The VHDL’87 declaration is:

file myinput : TEXT is in "pathname.dat";

The VHDL’93 declaration is:

file myinput : TEXT open read_mode is "pathname.dat";

Then include the identifier for this file ("myinput" in this example) in the READLINE or
WRITELINE procedure call.

Providing stimulus

You can stimulate and test a design by reading vectors from a file, using them to drive
values onto signals, and testing the results. A VHDL test bench has been included with the
ModelSim install files as an example. Check for this file:

<install_dir>/modeltech/examples/stimulus.vhd
ModelSim User’s Manual

UM-60 4 - VHDL simulation

Model
VITAL specification and source code

VITAL ASIC Modeling Specification

The IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

IEEE Customer Service
445 Hoes Lane
Piscataway, NJ 08855-1331

Tel: (732) 981-0060
Fax: (732) 981-1721
home page: http://www.ieee.org

VITAL source code

The source code for VITAL packages is provided in the /<install_dir>/vhdl_src/vital22b,
/vital95, or /vital2000 directories.

VITAL packages

VITAL 1995 accelerated packages are pre-compiled into the ieee library in the installation
directory. VITAL 2000 accelerated packages are pre-compiled into the vital2000 library.
If you need to use the newer library, you’ll need to add a use clause to your VHDL code to
access the VITAL 2000 packages. For example:

LIBRARY vital2000;
USE vital2000.all

ModelSim VITAL compliance

A simulator is VITAL compliant if it implements the SDF mapping and if it correctly
simulates designs using the VITAL packages, as outlined in the VITAL Model
Development Specification. ModelSim is compliant with the IEEE 1076.4 VITAL ASIC
Modeling Specification. In addition, ModelSim accelerates the VITAL_Timing,
VITAL_Primitives, and VITAL_memory packages. The optimized procedures are
functionally equivalent to the IEEE 1076.4 VITAL ASIC Modeling Specification (VITAL
1995 and 2000).

VITAL compliance checking

If you are using VITAL 2.2b, you must turn off the compliance checking either by not
setting the attributes, or by invoking vcom (CR-145) with the option -novitalcheck.
Sim User’s Manual

http://www.ieee.org

Compiling and simulating with accelerated VITAL packages UM-61
Compiling and simulating with accelerated VITAL packages

vcom (CR-145) automatically recognizes that a VITAL function is being referenced from
the ieee library and generates code to call the optimized built-in routines.

Invoke with the -novital option if you do not want to use the built-in VITAL routines
(when debugging for instance). To exclude all VITAL functions, use -novital all:

vcom -novital all design.vhd

To exclude selected VITAL functions, use one or more -novital <fname> options:

vcom -novital VitalTimingCheck -novital VitalAND design.vhd

The -novital switch only affects calls to VITAL functions from the design units currently
being compiled. Pre-compiled design units referenced from the current design units will
still call the built-in functions unless they too are compiled with the -novital option.

ModelSim VITAL built-ins will be updated in step with new releases of the VITAL
packages.
ModelSim User’s Manual

UM-62 4 - VHDL simulation

Model
Util package

The util package, included in ModelSim versions 5.5 and later, serves as a container for
various VHDL utilities. The package is part of the modelsim_lib library which is located in
the modeltech tree and is mapped in the default modelsim.ini file.

To access the utilities in the package, you would add lines like the following to your VHDL
code:

library modelsim_lib;
use modelsim_lib.util.all;

get_resolution

get_resolution returns the current simulator resolution as a real number. For example, 1
femtosecond corresponds to 1e-15.

Syntax

resval := get_resolution;

Returns

Arguments

None

Related functions

to_real() (UM-64)

to_time() (UM-65)

Example

If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

Name Type Description

resval real The simulator resolution represented as a real
Sim User’s Manual

Util package UM-63
init_signal_driver()

The init_signal_driver() procedure drives the value of a VHDL signal or Verilog net onto
an existing VHDL signal or Verilog net. This allows you to drive signals or nets at any level
of the design hierarchy from within a VHDL architecture (e.g., a testbench).

See init_signal_driver (UM-271) in Chapter 8 - Signal Spy for complete details and syntax
on this procedure.

init_signal_spy()

The init_signal_spy() utility mirrors the value of a VHDL signal or Verilog register/net
onto an existing VHDL signal or Verilog register. This allows you to reference signals,
registers, or nets at any level of hierarchy from within a VHDL architecture (e.g., a
testbench).

See init_signal_spy (UM-274) in Chapter 8 - Signal Spy for complete details and syntax on
this procedure.

signal_force()

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net. This allows you to force signals, registers, or nets at any level of the
design hierarchy from within a VHDL architecture (e.g., a testbench). A signal_force works
the same as the force command (CR-82) with the exception that you cannot issue a repeating
force.

See signal_force (UM-276) in Chapter 8 - Signal Spy for complete details and syntax on this
procedure.

signal_release()

The signal_release() procedure releases any force that was applied to an existing VHDL
signal or Verilog register or net. This allows you to release signals, registers, or nets at any
level of the design hierarchy from within a VHDL architecture (e.g., a testbench). A
signal_release works the same as the noforce command (CR-92).

See signal_release (UM-278) in Chapter 8 - Signal Spy for complete details and syntax on
this procedure.
ModelSim User’s Manual

UM-64 4 - VHDL simulation

Model
to_real()

to_real() converts the physical type time value into a real value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fs to a real and the simulator
resolution was ps, then the real value would be 2.0 (i.e., 2 ps).

Syntax

realval := to_real(timeval);

Returns

Arguments

Related functions

get_resolution (UM-62)

to_time() (UM-65)

Example

If the simulator resolution is set to ps, and you enter the following function:

realval := to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to be
in units of nanoseconds (ns) instead, you would use the get_resolution (UM-62) function to
recalculate the value:

realval := 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := 1e+15 * (to_real(12.99 ns)) * get_resolution();

Name Type Description

realval real The time value represented as a real with
respect to the simulator resolution

Name Type Description

timeval time The value of the physical type time
Sim User’s Manual

Util package UM-65
to_time()

to_time() converts a real value into a time value with respect to the current simulator
resolution. The precision of the converted value is determined by the simulator resolution.
For example, if you were converting 5.9 to a time and the simulator resolution was ps, then
the time value would be 6 ps.

Syntax

timeval := to_time(realval);

Returns

Arguments

Related functions

get_resolution (UM-62)

to_real() (UM-64)

Example

If the simulator resolution is set to ps, and you enter the following function:

timeval := to_time(72.49);

then the value returned to timeval would be 72 ps.

Name Type Description

timeval time The real value represented as a physical type
time with respect to the simulator resolution

Name Type Description

realval real The value of the type real
ModelSim User’s Manual

UM-66

Model
Sim User’s Manual

 UM-67
5 - Verilog simulation

Chapter contents
Compilation UM-69

Incremental compilation UM-70
Library usage UM-72
Verilog-XL compatible compiler arguments UM-73
Verilog-XL ‘uselib compiler directive UM-74

Simulation UM-76
Invoking the simulator UM-76
Simulator resolution limit UM-77
Event ordering in Verilog designs UM-79
Negative timing check limits UM-83
Verilog-XL compatible simulator arguments UM-86

Cell libraries UM-87
SDF timing annotation UM-87
Delay modes UM-87

System tasks UM-89
IEEE Std 1364 system tasks UM-89
Verilog-XL compatible system tasks UM-92
ModelSim Verilog system tasks UM-94

Compiler directives UM-95
IEEE Std 1364 compiler directives UM-95
Verilog-XL compatible compiler directives UM-96

Verilog PLI/VPI UM-97
Registering PLI applications UM-97
Registering VPI applications UM-99
Compiling and linking PLI/VPI C applications UM-101
Compiling and linking PLI/VPI C++ applications UM-102
Specifying the PLI/VPI file to load UM-103
PLI example UM-104
VPI example UM-105
The PLI callback reason argument UM-106
The sizetf callback function UM-107
PLI object handles. UM-107
Third party PLI applications UM-108
Support for VHDL objects UM-109
IEEE Std 1364 ACC routines UM-110
IEEE Std 1364 TF routines UM-111
Verilog-XL compatible routines UM-113
64-bit support in the PLI UM-113
PLI/VPI tracing UM-113
Debugging PLI/VPI application code UM-115
ModelSim User’s Manual

UM-68 5 - Verilog simulation

Model
This chapter describes how to compile and simulate Verilog designs with ModelSim
Verilog. ModelSim Verilog implements the Verilog language as defined by the IEEE Std
1364, and it is recommended that you obtain this specification as a reference manual.

In addition to the functionality described in the IEEE Std 1364, ModelSim Verilog includes
the following features:

• Standard Delay Format (SDF) annotator compatible with many ASIC and FPGA vendor's
Verilog libraries

• Value Change Dump (VCD) file extensions for ASIC vendor test tools

• Dynamic loading of PLI/VPI applications

• Compilation into retargetable, executable code

• Incremental design compilation

• Extensive support for mixing VHDL and Verilog in the same design (including SDF
annotation)

• Graphic Interface that is common with ModelSim VHDL

• Extensions to provide compatibility with Verilog-XL

The following IEEE Std 1364 functionality is partially implemented in ModelSim Verilog:

• Verilog Procedural Interface (VPI) (see /<install_dir>/modeltech/docs/technotes/
Verilog_VPI.note for details)

• Verilog 2001 (see /<install_dir>/modeltech/docs/technotes/vlog_2000.note for details)

Many of the examples in this chapter are shown from the command line. For compiling and
simulating within a project or ModelSim’s GUI see:

• Getting started with projects (UM-20)

• Compiling with the graphic interface (UM-238)

• Simulating with the graphic interface (UM-245)
Sim User’s Manual

Compilation UM-69
Compilation

Before you can simulate a Verilog design, you must first create a library and compile the
Verilog source code into that library. This section provides detailed information on
compiling Verilog designs. For information on creating a design library, see Chapter 3 -
Design libraries.

The ModelSim Verilog compiler, vlog, compiles Verilog source code into retargetable,
executable code, meaning that the library format is compatible across all supported
platforms and that you can simulate your design on any platform without having to
recompile your design specifically for that platform. As you compile your design, the
resulting object code for modules and UDPs is generated into a library. By default, the
compiler places results into the work library. You can specify an alternate library with the
-work argument. The following is a simple example of how to create a work library,
compile a design, and simulate it:

Contents of top.v:

module top;
initial $display("Hello world");

endmodule

Create the work library:

% vlib work

Compile the design:

% vlog top.v
-- Compiling module top

Top level modules:
top

View the contents of the work library (optional):

% vdir
MODULE top

Simulate the design:

% vsim -c top
Loading work.top
VSIM 1> run -all
Hello world
VSIM 2> quit

In this example, the simulator was run without the graphic interface by specifying the -c
argument. After the design was loaded, the simulator command run -all was entered,
meaning to simulate until there are no more simulator events. Finally, the quit command
was entered to exit the simulator. By default, a log of the simulation is written to the
transcript file in the current directory.
ModelSim User’s Manual

UM-70 5 - Verilog simulation

Model
Incremental compilation

By default, ModelSim Verilog supports incremental compilation of designs, thus saving
compilation time when you modify your design. Unlike other Verilog simulators, there is
no requirement that you compile the entire design in one invocation of the compiler .

You are not required to compile your design in any particular order because all module and
UDP instantiations and external hierarchical references are resolved when the design is
loaded by the simulator. Incremental compilation is made possible by deferring these
bindings, and as a result some errors cannot be detected during compilation. Commonly,
these errors include: modules that were referenced but not compiled, incorrect port
connections, and incorrect hierarchical references.

The following example shows how a hierarchical design can be compiled in top-down
order:

Contents of top.v:

module top;
or2 or2_i (n1, a, b);
and2 and2_i (n2, n1, c);

endmodule

Contents of and2.v:

module and2(y, a, b);
output y;
input a, b;
and(y, a, b);

endmodule

Contents of or2.v:

module or2(y, a, b);
output y;
input a, b;
or(y, a, b);

endmodule

Compile the design in top down order (assumes work library already exists):

% vlog top.v
-- Compiling module top

Top level modules:
top

% vlog and2.v
-- Compiling module and2

Top level modules:
and2

% vlog or2.v
-- Compiling module or2

Top level modules:
or2

Note that the compiler lists each module as a top level module, although, ultimately, only
top is a top-level module. If a module is not referenced by another module compiled in the
same invocation of the compiler, then it is listed as a top level module. This is just an
Sim User’s Manual

Compilation UM-71
informative message and can be ignored during incremental compilation. The message is
more useful when you compile an entire design in one invocation of the compiler and need
to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

The most efficient method of incremental compilation is to manually compile only the
modules that have changed. This is not always convenient, especially if your source files
have compiler directive interdependencies (such as macros). In this case, you may prefer to
always compile your entire design in one invocation of the compiler. If you specify the
-incr argument, the compiler will automatically determine which modules have changed
and generate code only for those modules. This is not as efficient as manual incremental
compilation because the compiler must scan all of the source code to determine which
modules must be compiled.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
-- Skipping module top
-- Skipping module and2
-- Compiling module or2

Top level modules:
top

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation is intelligent about when to compile a module. For
example, changing a comment in your source code does not result in a recompile; however,
changing the compiler command line arguments results in a recompile of all modules.

Note: Changes to your source code that do not change functionality but that do affect
source code line numbers (such as adding a comment line) will cause all affected
modules to be recompiled. This happens because debug information must be kept current
so that ModelSim can trace back to the correct areas of the source code.
ModelSim User’s Manual

UM-72 5 - Verilog simulation

Model
Library usage

All modules and UDPs in a Verilog design must be compiled into one or more libraries.
One library is usually sufficient for a simple design, but you may want to organize your
modules into various libraries for a complex design. If your design uses different modules
having the same name, then you are required to put those modules in different libraries
because design unit names must be unique within a library.

The following is an example of how you may organize your ASIC cells into one library and
the rest of your design into another:

% vlib work
% vlib asiclib
% vlog -work asiclib and2.v or2.v
-- Compiling module and2
-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v
-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to
place the results in the asiclib library rather than the default work library.

Since instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are
loaded from the library named work unless you prefix the modules with the <library>.
option. All other Verilog instantiations are resolved in the following order:

• Search libraries specified with -Lf arguments in the order they appear on the command
line.

• Search the library specified in the "Verilog-XL `uselib compiler directive" (UM-74).

• Search libraries specified with -L arguments in the order they appear on the command
line.

• Search the work library.

• Search the library explicitly named in the special escaped identifier instance name.

The work library is not necessarily a library named work—rather, the work library refers
to the library containing the module that instantiates the module or UDP that is currently
being searched for. This definition is useful if you have hierarchical modules organized into
separate libraries and if sub-module names overlap among the libraries. In this situation you
want the modules to search for their sub-modules in the work library first. This is
accomplished by specifying -L work first in the list of search libraries.

For example, assume you have a top-level module top that instantiates module modA from
library libA and module modB from library libB. Furthermore, modA and modB both
instantiate modules named cellA, but the definition of cellA compiled into libA is different
from that compiled into libB. In this case, it is insufficient to just specify -L libA - L libB
as the search libraries because instantiations of cellA from modB resolve to the libA version
of cellA. The appropriate search library arguments are -L work -L libA -L libB.
Sim User’s Manual

Compilation UM-73
Verilog-XL compatible compiler arguments

The compiler arguments listed below are equivalent to Verilog-XL arguments and may
ease the porting of a design to ModelSim. See the vlog command (CR-181) for a description
of each argument.

+define+<macro_name>[=<macro_text>]
+delay_mode_distributed
+delay_mode_path
+delay_mode_unit
+delay_mode_zero
-f <filename>
+incdir+<directory>
+mindelays
+maxdelays
+nowarn<mnemonic>
+typdelays
-u

Arguments supporting source libraries

The compiler arguments listed below support source libraries in the same manner as
Verilog-XL. See the vlog command (CR-181) for a description of each argument.

Note that these source libraries are very different from the libraries that the ModelSim
compiler uses to store compilation results. You may find it convenient to use these
arguments if you are porting a design to ModelSim or if you are familiar with these
arguments and prefer to use them.

Source libraries are searched after the source files on the command line are compiled. If
there are any unresolved references to modules or UDPs, then the compiler searches the
source libraries to satisfy them. The modules compiled from source libraries may in turn
have additional unresolved references that cause the source libraries to be searched again.
This process is repeated until all references are resolved or until no new unresolved
references are found. Source libraries are searched in the order they appear on the command
line.

-v <filename>
-y <directory>
+libext+<suffix>
+librescan
+nolibcell
-R [<simargs>]
ModelSim User’s Manual

UM-74 5 - Verilog simulation

Model
Verilog-XL ‘uselib compiler directive

The ‘uselib compiler directive is an alternative source library management scheme to the
-v, -y, and +libext compiler arguments. It has the advantage that a design may reference
different modules having the same name. You compile designs that contain ‘uselib
directive statements using the -compile_uselibs argument (described below) to vlog (CR-

181).

The syntax for the ‘uselib directive is:

‘uselib <library_reference>...

where <library_reference> is:

dir=<library_directory> | file=<library_file> | libext=<file_extension> |
lib=<library_name>

The library references are equivalent to command line arguments as follows:

dir=<library_directory> -y <library_directory>
file=<library_file> -v <library_file>
libext=<file_extension> +libext+<file_extension>

For example, the following directive

‘uselib dir=/h/vendorA libext=.v

is equivalent to the following command line arguments:

-y /h/vendorA +libext+.v

Since the ‘uselib directives are embedded in the Verilog source code, there is more
flexibility in defining the source libraries for the instantiations in the design. The
appearance of a ‘uselib directive in the source code explicitly defines how instantiations
that follow it are resolved, completely overriding any previous ‘uselib directives.

-compile_uselibs argument

Use the -compile_uselibs argument to vlog (CR-181) to reference ‘uselib directives. The
argument finds the source files referenced in the directive, compiles them into
automatically created object libraries, and updates the modelsim.ini file with the logical
mappings to the libraries.

When using -compile_uselibs, ModelSim determines into what directory to compile the
object libraries by choosing, in order, from the following three values:

• The directory name specified by the -compile_uselibs argument. For example,
-compile_uselibs=./mydir

• The directory specified by the MTI_USELIB_DIR environment variable (see
"Environment variables" (UM-337))

• A directory named mti_uselibs that is created in the current working directory

Note: In ModelSim versions prior to 5.5, the library files referenced by the ‘uselib
directive were not automatically compiled by ModelSim Verilog. To maintain
backwards compatibility, this is still the default behavior when -compile_uselibs is not
used. See www.model.com/products/documentation/pre55_uselib.pdf for a description
of the pre-5.5 implementation.
Sim User’s Manual

http://www.model.com/products/documentation/pre55_uselib.pdf

Compilation UM-75
The following code fragment and compiler invocation show how two different modules
that have the same name can be instantiated within the same design:

module top;
‘uselib dir=/h/vendorA libext=.v
NAND2 u1(n1, n2, n3);
‘uselib dir=/h/vendorB libext=.v
NAND2 u2(n4, n5, n6);

endmodule

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

‘uselib is persistent

As mentioned above, the appearance of a ‘uselib directive in the source code explicitly
defines how instantiations that follow it are resolved. This may result in unexpected
consequences. For example, consider the following compile command:

vlog -compile_uselibs dut.v srtr.v

Assume that dut.v contains a ‘uselib directive. Since srtr.v is compiled after dut.v, the
‘uselib directive is still in effect. When srtr is loaded it is using the ‘uselib directive from
dut.v to decide where to locate modules. If this is not what you intend, then you need to put
an empty ‘uselib at the end of dut.v to "close" the previous ‘uselib statement.
ModelSim User’s Manual

UM-76 5 - Verilog simulation

Model
Simulation

The ModelSim simulator can load and simulate both Verilog and VHDL designs, providing
a uniform graphic interface and simulation control commands for debugging and analyzing
your designs. The graphic interface and simulator commands are described elsewhere in
this manual, while this section focuses specifically on Verilog simulation.

Invoking the simulator

A Verilog design is ready for simulation after it has been compiled into one or more
libraries. The simulator may then be invoked with the names of the top-level modules
(many designs contain only one top level module). For example, if your top level modules
are "testbench" and "globals", then invoke the simulator as follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated modules
and UDPs in the design hierarchy, linking the design together by connecting the ports and
resolving hierarchical references. By default all modules and UDPs are loaded from the
library named work. Modules and UDPs from other libraries can be specified using the -L
or -Lf arguments to vsim (see "Library usage" (UM-72) for details).

On successful loading of the design, the simulation time is set to zero, and you must enter
a run command to begin simulation. Commonly, you enter run -all to run until there are
no more simulation events or until $finish is executed in the Verilog code. You can also
run for specific time periods (e.g., run 100 ns). Enter the quit command to exit the
simulator.
Sim User’s Manual

Simulation UM-77
Simulator resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulator resolution limit. The
resolution limit defaults to the smallest time precision found among all of the ‘timescale
compiler directives in the design. Here is an example of a ‘timescale directive:

‘timescale 1 ns / 100 ps

The first number is the time units and the second number is the time precision. The directive
above causes time values to be read as ns and to be rounded to the nearest 100 ps.

Modules without timescale directives

You may encounter unexpected behavior if your design contains some modules with
timescale directives and others without. The time units for modules without a timescale
directive default to the simulator resolution. For example, say you have the two modules
shown in the table below:

If you invoke vsim as vsim mod2 mod1 then Module 1 sets the simulator resolution to 10 ps.
Module 2 has no timescale directive, so the time units default to the simulator resolution,
in this case 10 ps. If you watched /mod1/set and /mod2/set in the Wave window, you’d see
that in Module 1 it transitions every 1.55 ns as expected (because of the 1 ns time unit in
the timescale directive). However, in Module 2, set transitions every 20 ps. That’s because
the delay of 1.55 in Module 2 is read as 15.5 ps and is rounded up to 20 ps.

In such cases ModelSim will issue the following warning message during elaboration:

** Warning: (vsim-3010) [TSCALE] - Module ’mod1’ has a ‘timescale directive
in effect, but previous modules do not.

Module 1 Module 2

`timescale 1 ns / 10 ps

module mod1 (set);

output set;
reg set;
parameter d = 1.55;

initial
begin
set = 1'bz;
#d set = 1'b0;
#d set = 1'b1;

end

endmodule

module mod2 (set);

output set;
reg set;
parameter d = 1.55;

initial
begin
set = 1'bz;
#d set = 1'b0;
#d set = 1'b1;

end

endmodule
ModelSim User’s Manual

UM-78 5 - Verilog simulation

Model
If you invoke vsim as vsim mod1 mod2, the simulation results would be the same but
ModelSim would produce a different warning message:

** Warning: (vsim-3009) [TSCALE] - Module ’mod2’ does not have a ‘timescale
directive in effect, but previous modules do.

These warnings should ALWAYS be investigated.

If the design contains no ‘timescale directives, then the resolution limit and time units
default to the value specified by the Resolution (UM-347) variable in the modelsim.ini file.
(The variable is set to 1 ps by default.)

Multiple timescale directives

As alluded to above, your design can have multiple timescale directives. The timescale
directive takes effect where it appears in a source file and applies to all source files which
follow in the same vlog (CR-181) command. Separately compiled modules can also have
different timescales. The simulator determines the smallest timescale of all the modules in
a design and uses that as the simulator resolution.

Overriding the resolution

You can override the simulator resolution (or ModelSim’s default resolution) by specifying
the -t argument on the command line or by selecting a different Simulator Resolution in the
Simulate dialog box. Available resolutions are: 1x, 10x or 100x of fs, ps, ns, us, ms, or sec.

For example this command chooses 10 ps resolution:

vsim -t 10ps top

Clearly you need to be careful when doing this type of operation. If the resolution set by -t
is larger than the timescale of some module, the time values in that module are rounded to
the next multiple of the resolution. In the example above, a delay of 4 ps would be rounded
to 0 ps.

Choosing the resolution

You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it
will limit the maximum simulation time limit, and it will degrade performance in some
cases.
Sim User’s Manual

Simulation UM-79
Event ordering in Verilog designs

Event-based simulators such as ModelSim may process multiple events at a given
simulation time. The Verilog language is defined such that you cannot explicitly control the
order in which simultaneous events are processed. Unfortunately, some designs rely on a
particular event order, and these designs may behave differently than you expect.

Event queues

Section 5 of the IEEE Std 1364-1995 LRM defines several event queues that determine the
order in which events are evaluated. At the current simulation time, the simulator has the
following pending events:

• active events

• inactive events

• non-blocking assignment update events

• monitor events

• future events

- inactive events

- non-blocking assignment update events

The LRM dictates that events are processed as follows – 1) all active events are processed;
2) the inactive events are moved to the active event queue and then processed; 3) the
non-blocking events are moved to the active event queue and then processed; 4) the monitor
events are moved to the active queue and then processed; 5) simulation advances to the next
time where there is an inactive event or a non-blocking assignment update event.

Within the active event queue, the events can be processed in any order, and new active
events can be added to the queue in any order. In other words, you cannot control event
order within the active queue. The example below illustrates potential ramifications of this
situation.

Say you have these four statements:

1 always@(q) p = q;

2 always @(q) p2 = not q;

3 always @(p or p2) clk = p and p2;

4 always @(posedge clk)

and current values as follows: q = 0, p = 0, p2=1
ModelSim User’s Manual

UM-80 5 - Verilog simulation

Model
The tables below show two of the many valid evaluations of these statements. Evaluation
events are denoted #, where # is the statement to be evaluated. Update events are denoted
<name>(old->new) where <name> indicates the reg being updated and new is the updated
value.

Again, both evaluations are valid. However, in Evaluation 1, clk has a glitch on it; in
Evaluation 2, clk doesn’t. This indicates that the design has a zero-delay race condition on
clk.

Table 1: Evaluation 1

Event being processed Active event queue

q(0 → 1)

q(0 → 1) 1, 2

1 p(0 → 1), 2

p(0 → 1) 3, 2

3 clk(0 → 1), 2

clk(0 → 1) 4, 2

4 2

2 p2(1 → 0)

p2(1 → 0) 3

3 clk(1 → 0)

clk(1 → 0) <empty>

Table 2: Evaluation 2

Event being processed Active event queue

q(0 → 1)

q(0 → 1) 1, 2

1 p(0 → 1), 2

2 p2(1 → 0), p(0 → 1)

p(0 → 1) 3, p2(1 → 0)

p2(1 → 0) 3

3 <empty> (clk doesn’t change)
Sim User’s Manual

Simulation UM-81
’Controlling’ event queues with blocking/non-blocking assignments

The only control you have over event order is to assign an event to a particular queue. You
do this via blocking or non-blocking assignments.

Blocking assignments

Blocking assignments place an event in the active, inactive, or future queues depending on
what type of delay they have:

• a blocking assignment without a delay goes in the active queue

• a blocking assignment with an explicit delay of 0 goes in the inactive queue

• a blocking assignment with a non-zero delay goes in the future queue

Non-blocking assignments

A non-blocking assignment goes into either the non-blocking assignment update event
queue or the future non-blocking assignment update event queue. (Non-blocking
assignments with no delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. This insures that
all outputs of flip-flops do not change until after all flip-flops have been evaluated.
Attempting to use non-blocking assignments in combinational logic paths to remove race
conditions may only cause more problems. (In the preceding example, changing all
statements to non-blocking assignments would not remove the race condition.) This
includes using non-blocking assignments in the generation of gated clocks.

The following is an example of how to properly use non-blocking assignments.

gen1: always @(master)
clk1 = master;

gen2: always @(clk1)
clk2 = clk1;

f1 : always @(posedge clk1)
begin

q1 <= d1;
end

f2: always @(posedge clk2)
begin

q2 <= q1;
end

If written this way, a value on d1 always takes two clock cycles to get from d1 to q2.
If you change clk1 = master and clk2 = clk1 to non-blocking assignments or q2 <= q1 and
q1 <= d1 to blocking assignments, then d1 may get to q2 is less than two clock cycles.

Debugging event order issues

Since many models have been developed on Verilog-XL, ModelSim tries to duplicate
Verilog-XL event ordering to ease the porting of those models to ModelSim. However,
ModelSim does not match Verilog-XL event ordering in all cases, and if a model ported to
ModelSim does not behave as expected, then you should suspect that there are event order
dependencies.
ModelSim User’s Manual

UM-82 5 - Verilog simulation

Model
ModelSim helps you track down event order dependencies with the following compiler
arguments: -compat, -hazards, and -keep_delta.

See the vlog command (CR-181) for descriptions of -compat and -keep_delta.

Hazard detection

The -hazard argument to vsim (CR-189) detects event order hazards involving simultaneous
reading and writing of the same register in concurrently executing processes. vsim detects
the following kinds of hazards:

• WRITE/WRITE:
Two processes writing to the same variable at the same time.

• READ/WRITE:
One process reading a variable at the same time it is being written to by another process.
ModelSim calls this a READ/WRITE hazard if it executed the read first.

• WRITE/READ:
Same as a READ/WRITE hazard except that ModelSim executed the write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable
and the two processes involved. You can have the simulator break on the statement where
the hazard is detected by setting the break on assertion level to error.

To enable hazard detection you must invoke vlog (CR-181) with the -hazards argument
when you compile your source code and you must also invoke vsim with the -hazards
argument when you simulate.

Limitations of hazard detection

• Reads and writes involving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selects is too
high.

• A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

• A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

• Glitches on nets caused by non-guaranteed event ordering are not detected.

Important: Enabling -hazards implicitly enables the -compat argument. As a result,
using this argument may affect your simulation results.
Sim User’s Manual

Simulation UM-83
Negative timing check limits

Verilog supports negative limit values in the $setuphold and $recrem system tasks. These
tasks have optional delayed versions of input signals to insure proper evaluation of models
with negative timing check limits. Delay values for these delayed nets are determined by
the simulator so that valid data is available for evaluation before a clocking signal.

Example

$setuphold(posedge clk, negedge d, 5, -3, Notifier,,, clk_dly, d_dly);;

ModelSim calculates the delay for signal d_dly as 4 time units instead of 3. It does this to
prevent d_dly and clk_dly from occurring simultaneously when a violation isn’t reported.

Negative timing constraint algorithm

The algorithm ModelSim uses to calculate delays for delayed nets isn’t described in IEEE
Std 1364. Rather, ModelSim matches Verilog-XL behavior. The algorithm attempts to find
a set of delays so the data net is valid when the clock net transitions and the timing checks
are satisfied. The algorithm is iterative because a set of delays can be selected that satisfies
all timing checks for a pair of inputs but then causes mis-ordering of another pair (where
both pairs of inputs share a common input). When a set of delays that satisfies all timing
checks is found, the delays are said to converge.

When none of the delay sets cause convergence, the algorithm pessimistically changes the
timing check limits to force convergence. Basically the algorithm zeroes the smallest
negative $setup/$recovery limit. If a negative $setup/$recovery doesn't exist, then the
algorithm zeros the smallest negative $hold/$removal limit. After zeroing a negative limit,
the delay calculation procedure is repeated. If the delays don’t converge, the algorithm
zeros another negative limit, repeating the process until convergence is found.

Note: ModelSim accepts negative limit checks by default, unlike current versions of
Verilog-XL. To match Verilog-XL default behavior (i.e., zeroing all negative timing
check limits), use the +no_neg_tcheck argument to vsim (CR-189).

3

clk

d violation 5
region

0

ModelSim User’s Manual

UM-84 5 - Verilog simulation

Model
A simple example will help clarify the algorithm. Assume you have the following timing
checks:

$setuphold(posedge clk, posedge d, 3, -2 , NOTIFIER,,, clk_dly, d_dly);
$setuphold(posedge clk, negedge d, 6, -5 , NOTIFIER,,, clk_dly, d_dly);
$setuphold(posedge clk, posedge t, 20, -12 , NOTIFIER,,, clk_dly, t_dly);
$setuphold(posedge clk, negedge t, 18, -11 , NOTIFIER,,, clk_dly, t_dly);

The violation regions for t and d in this example are:

Note that the delays between clk/clk_dly, t/t_dly, and d/d_dly are not edge sensitive, and
they must be the same for both rising and falling transitions of clk, t, and d. A d => d_dly
delay of 5 will satisfy the negedge case (transitions of d from 5 to 0 before clk won’t be
latched), but valid transitions of posedge d, in the region of 5 to 3 before clk, won’t latch
correctly. Therefore, to find convergence, the algorithm starts zeroing negative $hold
limits (-12, then -11, and then -5). The check limits on t are zeroed first because of their
magnitude.

ModelSim will display messages when limits are zeroed if you use the +ntc_warn
argument. Even if you don’t set +ntc_warn, ModelSim displays a summary of any zeroed
limits.

Extending check limits without zeroing

If zeroing limits is too pessimistic for your design, you can use the vsim (CR-189) arguments
-extend_tcheck_data_limit and -extend_tcheck_ref_limit instead. These arguments
cause a one-time extension of qualifying data or reference limits in an attempt to provide a
solution prior to any limit zeroing. A limit qualifies if it bounds a violation region which
does not overlap a related violation region.

An example will help illustrate. Assume you have the following timing checks:

$setuphold(posedge clk, posedge d, 45, 70, notifier,,,dclk,dd);
$setuphold(posedge clk, negedge d, 216, -68, notifier,,,dclk,dd);

The violation regions for d in this example are:

6 5

3 2

clk

t violation
region

d violation
regions

20 12

18 11

0

216 -68

45 70

clk

d violation
regions

0

Sim User’s Manual

Simulation UM-85
The delay net delay analysis in this case does not provide a solution. The required negative
hold delay of 68 between d and dd could cause a non-violating posedge d transition to be
delayed on dd so that it could arrive after dclk for functional evaluation. By default the -68
hold limit is set pessimistically to 0 to insure the correct functional evaluation.

Alternatively, you could use -extend_tcheck_data_limit to overlap the regions. In this
example we must specify the percentage by which to "decrease" the negative hold limit in
order to overlap the positive setup limit. In other words, you must extend the 216, -68
region to 216, -44. You would calculate the percentage as follows:

1 Calculate the size of the negative edge violation region:

216 - 68 = 148

2 Calculate the gap between the negative hold limit and the positive setup limit and add
one timing unit to allow for overlap:

68 - 45 = 23 + 1 = 24

3 Divide the gap size by the violation region size:

24 / 148 = .16

Hence, you would set -extend_tcheck_data_limit to 16.

Note: ModelSim will extend the limit only as far as is needed to derive a solution. So if
you used 100 in the previous example, it would still only extend the limit 16 percent.
Indeed, in some cases it may be easiest to select a large percentage number and not worry
about an exact calculation.
ModelSim User’s Manual

UM-86 5 - Verilog simulation

Model
Verilog-XL compatible simulator arguments

The simulator arguments listed below are equivalent to Verilog-XL arguments and may
ease the porting of a design to ModelSim. See the vsim (CR-189) for a description of each
argument.

+alt_path_delays
-l <filename>
+maxdelays
+mindelays
+multisource_int_delays
+no_cancelled_e_msg
+no_neg_tchk
+no_notifier
+no_path_edge
+no_pulse_msg
+no_show_cancelled_e
+nosdfwarn
+nowarn<mnemonic>
+ntc_warn
+pulse_e/<percent>
+pulse_e_style_ondetect
+pulse_e_style_onevent
+pulse_int_e/<percent>
+pulse_int_r/<percent>
+pulse_r/<percent>
+sdf_nocheck_celltype
+sdf_verbose
+show_cancelled_e
+transport_int_delays
+transport_path_delays
+typdelays
Sim User’s Manual

Cell libraries UM-87
Cell libraries

Model Technology passed the ASIC Council’s Verilog test suite and achieved the "Library
Tested and Approved" designation from Si2 Labs. This test suite is designed to ensure
Verilog timing accuracy and functionality and is the first significant hurdle to complete on
the way to achieving full ASIC vendor support. As a consequence, many ASIC and FPGA
vendors’ Verilog cell libraries are compatible with ModelSim Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays
and timing constraints for the cells. See section 13 in the IEEE Std 1364-1995 for details
on specify blocks, and section 14.5 for details on timing constraints. ModelSim Verilog
fully implements specify blocks and timing constraints as defined in IEEE Std 1364 along
with some Verilog-XL compatible extensions.

SDF timing annotation

ModelSim Verilog supports timing annotation from Standard Delay Format (SDF) files.
See Chapter 9 - Standard Delay Format (SDF) Timing Annotation for details.

Delay modes

Verilog models may contain both distributed delays and path delays. The delays on
primitives, UDPs, and continuous assignments are the distributed delays, whereas the port-
to-port delays specified in specify blocks are the path delays. These delays interact to
determine the actual delay observed. Most Verilog cells use path delays exclusively, with
the distributed delays set to zero. For example,

module and2(y, a, b);
input a, b;
output y;

and(y, a, b);

specify
(a => y) = 5;
(b => y) = 5;

endspecify
endmodule

In the above two-input "and" gate cell, the distributed delay for the "and" primitive is zero,
and the actual delays observed on the module ports are taken from the path delays. This is
typical for most cells, but a complex cell may require non-zero distributed delays to work
properly. Even so, these delays are usually small enough that the path delays take priority
over the distributed delays. The rule is that if a module contains both path delays and
distributed delays, then the larger of the two delays for each path shall be used (as defined
by the IEEE Std 1364). This is the default behavior, but you can specify alternate delay
modes with compiler directives and arguments. These arguments and directives are
compatible with Verilog-XL. Compiler delay mode arguments take precedence over delay
mode directives in the source code.
ModelSim User’s Manual

UM-88 5 - Verilog simulation

Model
Distributed delay mode

In distributed delay mode the specify path delays are ignored in favor of the distributed
delays. Select this delay mode with the +delay_mode_distributed compiler argument or
the ‘delay_mode_distributed compiler directive.

Path delay mode

In path delay mode the distributed delays are set to zero in any module that contains a path
delay. Select this delay mode with the +delay_mode_path compiler argument or the
‘delay_mode_path compiler directive.

Unit delay mode

In unit delay mode the distributed delays are set to one (the unit is the time_unit specified
in the ‘timescale directive), and the specify path delays and timing constraints are ignored.
Select this delay mode with the +delay_mode_unit compiler argument or the
‘delay_mode_unit compiler directive.

Zero delay mode

In zero delay mode the distributed delays are set to zero, and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_zero
compiler argument or the ‘delay_mode_zero compiler directive.
Sim User’s Manual

System tasks UM-89
System tasks

The IEEE Std 1364 defines many system tasks as part of the Verilog language, and
ModelSim Verilog supports all of these along with several non-standard Verilog-XL
system tasks. The system tasks listed in this chapter are built into the simulator, although
some designs depend on user-defined system tasks implemented with the Programming
Language Interface (PLI) or Verilog Procedural Interface (VPI). If the simulator issues
warnings regarding undefined system tasks, then it is likely that these system tasks are
defined by a PLI/VPI application that must be loaded by the simulator.

IEEE Std 1364 system tasks

The following system tasks are described in detail in the IEEE Std 1364.

Timescale tasks Simulator
control tasks

Simulation time
functions

Command line
input

$printtimescale $finish $realtime $test$plusargs

$timeformat $stop $stime $value$plusargs

$time

Probabilistic
distribution
functions

Conversion
functions

Stochastic
analysis tasks

Timing check
tasks

$dist_chi_square $bitstoreal $q_add $hold

$dist_erlang $itor $q_exam $nochange

$dist_exponential $realtobits $q_full $period

$dist_normal $rtoi $q_initialize $recovery

$dist_poisson $signed $q_remove $setup

$dist_t $unsigned $setuphold

$dist_uniform $skew

$random $width

$removal

$recrem
ModelSim User’s Manual

UM-90 5 - Verilog simulation

Model
Display tasks PLA modeling tasks Value change dump (VCD)
file tasks

$display $async$and$array $dumpall

$displayb $async$nand$array $dumpfile

$displayh $async$or$array $dumpflush

$displayo $async$nor$array $dumplimit

$monitor $async$and$plane $dumpoff

$monitorb $async$nand$plane $dumpon

$monitorh $async$or$plane $dumpvars

$monitoro $async$nor$plane

$monitoroff $sync$and$array

$monitoron $sync$nand$array

$strobe $sync$or$array

$strobeb $sync$nor$array

$strobeh $sync$and$plane

$strobeo $sync$nand$plane

$write $sync$or$plane

$writeb $sync$nor$plane

$writeh

$writeo
Sim User’s Manual

System tasks UM-91
File I/O tasks

$fclose $fopen $fwriteh

$fdisplay $fread $fwriteo

$fdisplayb $fscanf $readmemb

$fdisplayh $fseek $readmemh

$fdisplayo $fstrobe $rewind

$ferror $fstrobeb $sdf_annotate

$fflush $fstrobeh $sformat

$fgetc $fstrobeo $sscanf

$fgets $ftell $swrite

$fmonitor $fwrite $swriteb

$fmonitorb $fwriteb $swriteh

$fmonitorh $swriteo

$fmonitoro $ungetc

Note: $readmemb and $readmemh match the behavior of Verilog-XL rather than IEEE
Std 1364. Specifically, they load data into memory starting with the lowest address. For
example, whether you make the declaration memory[127:0] or memory[0:127],
ModelSim will load data starting at address 0 and work upwards to address 127.
ModelSim User’s Manual

UM-92 5 - Verilog simulation

Model
Verilog-XL compatible system tasks

The following system tasks are provided for compatibility with Verilog-XL. Although they
are not part of the IEEE standard, they are described in an annex of the IEEE Std 1364.

$countdrivers
$getpattern
$sreadmemb
$sreadmemh

The following system tasks are also provided for compatibility with Verilog-XL; they are
not described in the IEEE Std 1364.

$deposit(variable, value);

This system task sets a Verilog register or net to the specified value. variable is the
register or net to be changed; value is the new value for the register or net. The value
remains until there is a subsequent driver transaction or another $deposit task for the
same register or net. This system task operates identically to the ModelSim
force -deposit command.

$disable_warnings(“<keyword>”?<,<module_instance>>*?);

This system task instructs ModelSim to disable warnings about timing check violations
or triregs that acquire a value of ‘X’ due to charge decay. <keyword> may be decay or
timing. If you don’t specify a module_instance, ModelSim disables warnings for the
entire simulation.

$enable_warnings(“<keyword>”?<,<module_instance>>*?);

This system task enables warnings about timing check violations or triregs that acquire a
value of ‘X’ due to charge decay. <keyword> may be decay or timing. If you don’t
specify a module_instance, ModelSim enables warnings for the entire simulation.

The following system tasks are extended to provide additional functionality for negative
timing constraints and an alternate method of conditioning, as in Verilog-XL.

$recovery(reference event, data_event, removal_limit, recovery_limit,
[notifier], [tstamp_cond], [tcheck_cond], [delayed_reference],
[delayed_data])

The $recovery system task normally takes a recovery_limit as the third argument and an
optional notifier as the fourth argument. By specifying a limit for both the third and
fourth arguments, the $recovery timing check is transformed into a combination removal
and recovery timing check similar to the $recrem timing check. The only difference is
that the removal_limit and recovery_limit are swapped.

$setuphold(clk_event, data_event, setup_limit, hold_limit, [notifier],
[tstamp_cond], [tcheck_cond], [delayed_clk], [delayed_data])

The tstamp_cond argument conditions the data_event for the setup check and the
clk_event for the hold check. This alternate method of conditioning precludes specifying
conditions in the clk_event and data_event arguments.

The tcheck_cond argument conditions the data_event for the hold check and the
clk_event for the setup check. This alternate method of conditioning precludes specifying
conditions in the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.
Sim User’s Manual

System tasks UM-93
The delayed_data argument is a net that is continuously assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

The delayed_clk and delayed_data arguments are provided to ease the modeling of
devices that may have negative timing constraints. The model’s logic should reference
the delayed_clk and delayed_data nets in place of the normal clk and data nets. This
ensures that the correct data is latched in the presence of negative constraints. The
simulator automatically calculates the delays for delayed_clk and delayed_data such that
the correct data is latched as long as a timing constraint has not been violated. See
"Negative timing check limits" (UM-83) for more details.

The following system tasks are Verilog-XL system tasks that are not implemented in
ModelSim Verilog, but have equivalent simulator commands.

$input("filename")

This system task reads commands from the specified filename. The equivalent simulator
command is do <filename>.

$list[(hierarchical_name)]

This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the graphic interface Structure
window. The corresponding source code is displayed in the Source window.

$reset

This system task resets the simulation back to its time 0 state. The equivalent simulator
command is restart.

$restart("filename")

This system task sets the simulation to the state specified by filename, saved in a previous
call to $save. The equivalent simulator command is restore <filename>.

$save("filename")

This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hierarchical_name)

This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent simulator command is environment <pathname>.

$showscopes

This system task displays a list of scopes defined in the current interactive scope. The
equivalent simulator command is show.

$showvars

This system task displays a list of registers and nets defined in the current interactive
scope. The equivalent simulator command is show.
ModelSim User’s Manual

UM-94 5 - Verilog simulation

Model
ModelSim Verilog system tasks

The following system tasks are specific to ModelSim. They are not included in the IEEE
Std 1364 nor are they likely supported in other simulators. Their use may limit the
portability of your code.

$init_signal_driver

The $init_signal_driver() system task drives the value of a VHDL signal or Verilog net
onto an existing VHDL signal or Verilog net. This allows you to drive signals or nets at
any level of the design hierarchy from within a Verilog module (e.g., a testbench). See
$init_signal_driver (UM-280) in Chapter 8 - Signal Spy for complete details and syntax on
this system task.

$init_signal_spy

The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog
register/net onto an existing Verilog register or VHDL signal. This system task allows
you to reference signals, registers, or nets at any level of hierarchy from within a Verilog
module (e.g., a testbench). See $init_signal_spy (UM-283) in Chapter 8 - Signal Spy for
complete details and syntax on this system task.

$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal
or Verilog register or net. This allows you to force signals, registers, or nets at any level
of the design hierarchy from within a Verilog module (e.g., a testbench). A $signal_force
works the same as the force command (CR-82) with the exception that you cannot issue a
repeating force. See $signal_force (UM-285) in Chapter 8 - Signal Spy for complete details
and syntax on this system task.

$signal_release

The $signal_release() system task releases a value that had previously been forced onto
an existing VHDL signal or Verilog register or net. A $signal_release works the same as
the noforce command (CR-92). See $signal_release (UM-287) in Chapter 8 - Signal Spy for
complete details and syntax on this system task.

$sdf_done

This task is a "cleanup" function that removes internal buffers, called MIPDs, that have
a delay value of zero. These MIPDs are inserted in response to the -v2k_int_delay
argument to the vsim command (CR-189). In general the simulator will automatically
remove all zero delay MIPDs. However, if you have $sdf_annotate() calls in your design
that are not getting executed, the zero-delay MIPDs are not removed. Adding the
$sdf_done task after your last $sdf_annotate() will remove any zero-delay MIPDs that
have been created.
Sim User’s Manual

Compiler directives UM-95
Compiler directives

ModelSim Verilog supports all of the compiler directives defined in the IEEE Std 1364,
some Verilog-XL compiler directives, and some that are proprietary.

Many of the compiler directives (such as ‘timescale) take effect at the point they are
defined in the source code and stay in effect until the directive is redefined or until it is reset
to its default by a ‘resetall directive. The effect of compiler directives spans source files,
so the order of source files on the compilation command line could be significant. For
example, if you have a file that defines some common macros for the entire design, then
you might need to place it first in the list of files to be compiled.

The ‘resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the IEEE Std 1364):

‘celldefine
‘default_decay_time
`default_nettype
`delay_mode_distributed
`delay_mode_path
`delay_mode_unit
`delay_mode_zero
`protected
`timescale
`unconnected_drive
`uselib

ModelSim Verilog implicitly defines the following macro:

`define MODEL_TECH

IEEE Std 1364 compiler directives

The following compiler directives are described in detail in the IEEE Std 1364.

`celldefine
`default_nettype
`define
`else
`elsif
`endcelldefine
`endif
`ifdef
‘ifndef
`include
‘line
`nounconnected_drive
`resetall
`timescale
`unconnected_drive
`undef
ModelSim User’s Manual

UM-96 5 - Verilog simulation

Model
Verilog-XL compatible compiler directives

The following compiler directives are provided for compatibility with Verilog-XL.

‘default_decay_time <time>

This directive specifies the default decay time to be used in trireg net declarations that do
not explicitly declare a decay time. The decay time can be expressed as a real or integer
number, or as "infinite" to specify that the charge never decays.

`delay_mode_distributed

This directive disables path delays in favor of distributed delays. See "Delay modes" (UM-

87) for details.

`delay_mode_path

This directive sets distributed delays to zero in favor of path delays. See "Delay modes"
(UM-87) for details.

`delay_mode_unit

This directive sets path delays to zero and non-zero distributed delays to one time unit.
See Delay modes (UM-87) for details.

`delay_mode_zero

This directive sets path delays and distributed delays to zero. See "Delay modes" (UM-87)
for details.

`uselib

This directive is an alternative to the -v, -y, and +libext source library compiler
arguments. See "Verilog-XL ‘uselib compiler directive" (UM-74) for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog.
Many of these directives are irrelevant to ModelSim Verilog, but may appear in code being
ported from Verilog-XL.

`accelerate
`autoexpand_vectornets
`disable_portfaults
`enable_portfaults
`expand_vectornets
`noaccelerate
`noexpand_vectornets
`noremove_gatenames
`noremove_netnames
`nosuppress_faults
`remove_gatenames
`remove_netnames
`suppress_faults

The following Verilog-XL compiler directives produce warning messages in ModelSim
Verilog. These are not implemented in ModelSim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

`default_trireg_strength
`signed
`unsigned
Sim User’s Manual

Verilog PLI/VPI UM-97
Verilog PLI/VPI

The Verilog PLI (Programming Language Interface) and VPI (Verilog Procedural
Interface) both provide a mechanism for defining system tasks and functions that
communicate with the simulator through a C procedural interface. There are many third
party applications available that interface to Verilog simulators through the PLI (see "Third
party PLI applications" (UM-108)). In addition, you may write your own PLI/VPI
applications.

ModelSim Verilog implements the PLI as defined in the IEEE Std 1364, with the exception
of the acc_handle_datapath() routine. We did not implement the acc_handle_datapath()
routine because the information it returns is more appropriate for a static timing analysis
tool. The VPI is partially implemented as defined in the IEEE Std 1364-2001. The list of
currently supported functionality can be found in the following file:

<install_dir>/modeltech/docs/technotes/Verilog_VPI.note

The IEEE Std 1364 is the reference that defines the usage of the PLI/VPI routines. This
manual only describes details of using the PLI/VPI with ModelSim Verilog.

Registering PLI applications

Each PLI application must register its system tasks and functions with the simulator,
providing the name of each system task and function and the associated callback routines.
Since many PLI applications already interface to Verilog-XL, ModelSim Verilog PLI
applications make use of the same mechanism to register information about each system
task and function in an array of s_tfcell structures. This structure is declared in the
veriuser.h include file as follows:

typedef int (*p_tffn)();

typedef struct t_tfcell {
short type;/* USERTASK, USERFUNCTION, or USERREALFUNCTION */
short data;/* passed as data argument of callback function */
p_tffn checktf; /* argument checking callback function */
p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn misctf; /* miscellaneous reason callback function */
char *tfname;/* name of system task or function */

/* The following fields are ignored by ModelSim Verilog */
int forwref;
char *tfveritool;
char *tferrmessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *namecell_p;
int warning_printed;

} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in
the IEEE Std 1364. The simulator calls these functions for various reasons. All callback
functions are optional, but most applications contain at least the calltf function, which is
called when the system task or function is executed in the Verilog code. The first argument
to the callback functions is the value supplied in the data field (many PLI applications don’t
ModelSim User’s Manual

UM-98 5 - Verilog simulation

Model
use this field). The type field defines the entry as either a system task (USERTASK) or a
system function that returns either a register (USERFUNCTION) or a real
(USERREALFUNCTION). The tfname field is the system task or function name (it must
begin with $). The remaining fields are not used by ModelSim Verilog.

On loading of a PLI application, the simulator first looks for an init_usertfs function, and
then a veriusertfs array. If init_usertfs is found, the simulator calls that function so that it
can call mti_RegisterUserTF() for each system task or function defined. The
mti_RegisterUserTF() function is declared in veriuser.h as follows:

void mti_RegisterUserTF(p_tfcell usertf);

The storage for each usertf entry passed to the simulator must persist throughout the
simulation because the simulator de-references the usertf pointer to call the callback
functions. We recommend that you define your entries in an array, with the last entry set to
0. If the array is named veriusertfs (as is the case for linking to Verilog-XL), then you don’t
have to provide an init_usertfs function, and the simulator will automatically register the
entries directly from the array (the last entry must be 0). For example,

s_tfcell veriusertfs[] = {
{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},
{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},
{0} /* last entry must be 0 */

};

Alternatively, you can add an init_usertfs function to explicitly register each entry from the
array:

void init_usertfs()
{

p_tfcell usertf = veriusertfs;
while (usertf->type)

mti_RegisterUserTF(usertf++);
}

It is an error if a PLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be a dynamically loadable library, see
"Compiling and linking PLI/VPI C applications" (UM-101)). The PLI applications are
specified as follows (note that on a Windows platform the file extension would be .dll):

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the libraries in all cases.
Sim User’s Manual

Verilog PLI/VPI UM-99
Registering VPI applications

Each VPI application must register its system tasks and functions and its callbacks with the
simulator. To accomplish this, one or more user-created registration routines must be called
at simulation startup. Each registration routine should make one or more calls to
vpi_register_systf() to register user-defined system tasks and functions and
vpi_register_cb() to register callbacks. The registration routines must be placed in a table
named vlog_startup_routines so that the simulator can find them. The table must be
terminated with a 0 entry.

Example

PLI_INT32 MyFuncCalltf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyFuncCompiletf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyFuncSizetf(PLI_BYTE8 *user_data)
{ ... }

PLI_INT32 MyEndOfCompCB(p_cb_data cb_data_p)
{ ... }

PLI_INT32 MyStartOfSimCB(p_cb_data cb_data_p)
{ ... }

void RegisterMySystfs(void)

 {

vpiHandle tmpH;
s_cb_data callback;

 s_vpi_systf_data systf_data;

 systf_data.type = vpiSysFunc;
 systf_data.sysfunctype = vpiSizedFunc;
 systf_data.tfname = "$myfunc";
 systf_data.calltf = MyFuncCalltf;
 systf_data.compiletf = MyFuncCompiletf;
 systf_data.sizetf = MyFuncSizetf;
 systf_data.user_data = 0;
 tmpH = vpi_register_systf(&systf_data);

vpi_free_object(tmpH);

 callback.reason = cbEndOfCompile;
 callback.cb_rtn = MyEndOfCompCB;
 callback.user_data = 0;
 tmpH = vpi_register_cb(&callback);

vpi_free_object(tmpH);

callback.reason = cbStartOfSimulation;
 callback.cb_rtn = MyStartOfSimCB;
 callback.user_data = 0;

tmpH = vpi_register_cb(&callback);
vpi_free_object(tmpH);

}
void (*vlog_startup_routines[]) () = {

RegisterMySystfs,
 0 /* last entry must be 0 */
};
ModelSim User’s Manual

UM-100 5 - Verilog simulation

Model
Loading VPI applications into the simulator is the same as described in "Registering PLI
applications" (UM-97).

PLI and VPI applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

• If an init_usertfs() function exists, then it is executed and only those system tasks and
functions registered by calls to mti_RegisterUserTF() will be defined.

• If an init_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

• If an init_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functions in the vlog_startup_routines table will be defined.

As a result, when PLI and VPI applications exist in the same application object file, they
must be registered in the same manner. VPI registration functions that would normally be
listed in a vlog_startup_routines table can be called from an init_usertfs() function instead.
Sim User’s Manual

Verilog PLI/VPI UM-101
Compiling and linking PLI/VPI C applications

The following platform-specific instructions show you how to compile and link your
PLI/VPI C applications so that they can be loaded by ModelSim. Microsoft Visual C/C++
is supported for creating Windows DLLs while gcc and cc compilers are supported for
creating UNIX shared libraries.

The PLI/VPI routines are declared in the include files located in the ModelSim
<install_dir>/modeltech/include directory. The acc_user.h file declares the ACC routines,
the veriuser.h file declares the TF routines, and the vpi_user.h file declares the VPI
routines.

The following instructions assume that the PLI or VPI application is in a single source file.
For multiple source files, compile each file as specified in the instructions and link all of
the resulting object files together with the specified link instructions.

Although compilation and simulation switches are platform-specific, loading shared
libraries is the same for all platforms. For information on loading libraries, see "Specifying
the PLI/VPI file to load" (UM-103).

Windows platforms

cl -c -I<install_dir>\modeltech\include app.c
link -dll -export:<init_function> app.obj \

<install_dir>\modeltech\win32\mtipli.lib /out:app.dll

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there is
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus ModelSim can
find the symbol when it dynamically loads the DLL.

The PLI and VPI have been tested with DLLs built using Microsoft Visual C/C++ compiler
version 4.1 or greater.

The gcc compiler cannot be used to compile PLI/VPI applications under Windows. This is
because gcc does not support the Microsoft .lib/.dll format.

When executing cl commands in a DO file, use the /NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.
ModelSim User’s Manual

UM-102 5 - Verilog simulation

Model
Compiling and linking PLI/VPI C++ applications

ModelSim does not have direct support for any language other than standard C; however,
C++ code can be loaded and executed under certain conditions.

Since ModelSim’s PLI/VPI functions have a standard C prototype, you must prevent the
C++ compiler from mangling the PLI/VPI function names. This can be accomplished by
using the following type of extern:

extern "C"
{

<PLI/VPI application function prototypes>
}

The header files veriuser.h, acc_user.h, and vpi_user.h already include this type of extern.
You must also put the PLI/VPI shared library entry point (veriusertfs, init_usertfs, or
vlog_startup_routines) inside of this type of extern.

Since ModelSim is a C program and does not include a C++ main, you cannot use iostreams
such as cout to print information. You must use io_mcdprintf(), io_printf(),
vpi_mcd_printf(), vpi_printf(), vpi_vprintf(), or vpi_mcd_vprintf() to print to the transcript
file.

The following platform-specific instructions show you how to compile and link your
PLI/VPI C++ applications so that they can be loaded by ModelSim. Microsoft Visual C++
is supported for creating Windows DLLs.

Although compilation and simulation switches are platform-specific, loading shared
libraries is the same for all platforms. For information on loading libraries, see "Specifying
the PLI/VPI file to load" (UM-103).

Windows platforms

Microsoft Visual C++:

cl -c [-GX] -I<install_dir>\modeltech\include app.cxx
link -dll -export:<init_function> app.obj \

<install_dir>\modeltech\win32\mtipli.lib /out:app.dll

The -GX argument enables exception handling.

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there is
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus ModelSim can
find the symbol when it dynamically loads the DLL.

The GNU C++ compiler cannot be used to compile PLI/VPI applications under Windows.
This is because GNU C++ does not support the Microsoft .lib/.dll format.

When executing cl commands in a DO file, use the /NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.
Sim User’s Manual

Verilog PLI/VPI UM-103
Specifying the PLI/VPI file to load

The PLI/VPI applications are specified as follows:

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI/VPI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the libraries in all cases.

See also Appendix A - ModelSim variables for more information on the modelsim.ini file.
ModelSim User’s Manual

UM-104 5 - Verilog simulation

Model
PLI example

The following example is a trivial, but complete PLI application.

hello.c:

#include "veriuser.h"
static PLI_INT32 hello()
{

io_printf("Hi there\n");
return 0;

}
s_tfcell veriusertfs[] = {

{usertask, 0, 0, 0, hello, 0, "$hello"},
{0} /* last entry must be 0 */

};

hello.v:

module hello;
initial $hello;

endmodule

Compile the PLI code for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include hello.c
% ld -G -o hello.sl hello.o

Compile the Verilog code:

% vlib work
% vlog hello.v

Simulate the design:

% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hi there
VSIM 2> quit
Sim User’s Manual

Verilog PLI/VPI UM-105
VPI example

The following example is a trivial, but complete VPI application. A general VPI example
can be found in <install_dir>/modeltech/examples/vpi.

hello.c:

#include "vpi_user.h"
static PLI_INT32 hello(PLI_BYTE8 * param)
{

vpi_printf("Hello world!\n");
return 0;

}

void RegisterMyTfs(void)
{

s_vpi_systf_data systf_data;
vpiHandle systf_handle;
systf_data.type = vpiSysTask;
systf_data.sysfunctype = vpiSysTask;
systf_data.tfname = "$hello";
systf_data.calltf = hello;
systf_data.compiletf = 0;
systf_data.sizetf = 0;
systf_data.user_data = 0;
systf_handle = vpi_register_systf(&systf_data);
vpi_free_object(systf_handle);

}

void (*vlog_startup_routines[])() = {
RegisterMyTfs,
0

};

hello.v:

module hello;
initial $hello;

endmodule

Compile the VPI code for the Solaris operating system:

% gcc -c -I<install_dir>/include hello.c
% ld -G -o hello.sl hello.o

Compile the Verilog code:

% vlib work
% vlog hello.v

Simulate the design:

% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hello world!
VSIM 2> quit
ModelSim User’s Manual

UM-106 5 - Verilog simulation

Model
The PLI callback reason argument

The second argument to a PLI callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See IEEE Std 1364 for a
description of the reason constants. The following details relate to ModelSim Verilog, and
may not be obvious in the IEEE Std 1364. Specifically, the simulator passes the reason
values to the misctf callback functions under the following circumstances:

reason_endofcompile

For the completion of loading the design.

reason_finish

For the execution of the $finish system task or the quit command.

reason_startofsave

For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This allows the PLI application to prepare for the save, but it
shouldn’t save its data with calls to tf_write_save() until it is called with reason_save.

reason_save

For the execution of the checkpoint command. This is when the PLI application must
save its state with calls to tf_write_save().

reason_startofrestart

For the start of execution of the restore command, but before any of the simulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn’t restore its state with calls to tf_read_restart() until it is called with
reason_restart. The reason_startofrestart value is passed only for a restore command, and
not in the case that the simulator is invoked with -restore.

reason_restart

For the execution of the restore command. This is when the PLI application must restore
its state with calls to tf_read_restart().

reason_reset

For the execution of the restart command. This is when the PLI application should free
its memory and reset its state. We recommend that all PLI applications reset their internal
state during a restart as the shared library containing the PLI code might not be reloaded.
(See the -keeploaded (CR-191) and -keeploadedrestart (CR-191) arguments to
vsim for related information.)

reason_endofreset

For the completion of the restart command, after the simulation state has been reset but
before the design has been reloaded.

reason_interactive

For the execution of the $stop system task or any other time the simulation is interrupted
and waiting for user input.

reason_scope

For the execution of the environment command or selecting a scope in the structure
window. Also for the call to acc_set_interactive_scope() if the callback_flag argument is
non-zero.

reason_paramvc

For the change of value on the system task or function argument.
Sim User’s Manual

Verilog PLI/VPI UM-107
reason_synch

For the end of time step event scheduled by tf_synchronize().

reason_rosynch

For the end of time step event scheduled by tf_rosynchronize().

reason_reactivate

For the simulation event scheduled by tf_setdelay().

reason_paramdrc

Not supported in ModelSim Verilog.

reason_force

Not supported in ModelSim Verilog.

reason_release

Not supported in ModelSim Verilog.

reason_disable

Not supported in ModelSim Verilog.

The sizetf callback function

A user-defined system function specifies the width of its return value with the sizetf
callback function, and the simulator calls this function while loading the design. The
following details on the sizetf callback function are not found in the IEEE Std 1364:

• If you omit the sizetf function, then a return width of 32 is assumed.

• The sizetf function should return 0 if the system function return value is of Verilog type
"real".

• The sizetf function should return -32 if the system function return value is of Verilog type
"integer".

PLI object handles

Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routine is called. However, some of
the objects are created on demand, and the handles to these objects become invalid after
acc_close() is called. The following object types are created on demand in ModelSim
Verilog:

accOperator (acc_handle_condition)
accWirePath (acc_handle_path)
accTerminal (acc_handle_terminal, acc_next_cell_load, acc_next_driver, and

acc_next_load)
accPathTerminal (acc_next_input and acc_next_output)
accTchkTerminal (acc_handle_tchkarg1 and acc_handle_tchkarg2)
accPartSelect (acc_handle_conn, acc_handle_pathin, and acc_handle_pathout)

If your PLI application uses these types of objects, then it is important to call acc_close()
to free the memory allocated for these objects when the application is done using them.

If your PLI application places value change callbacks on accRegBit or accTerminal objects,
do not call acc_close() while these callbacks are in effect.
ModelSim User’s Manual

UM-108 5 - Verilog simulation

Model
Third party PLI applications

Many third party PLI applications come with instructions on using them with ModelSim
Verilog. Even without the instructions, it is still likely that you can get it to work with
ModelSim Verilog as long as the application uses standard PLI routines. The following
guidelines are for preparing a Verilog-XL PLI application to work with ModelSim Verilog.

Generally, a Verilog-XL PLI application comes with a collection of object files and a
veriuser.c file. The veriuser.c file contains the registration information as described above
in "Registering PLI applications" (UM-97). To prepare the application for ModelSim
Verilog, you must compile the veriuser.c file and link it to the object files to create a
dynamically loadable object (see "Compiling and linking PLI/VPI C applications" (UM-

101)). For example, if you have a veriuser.c file and a library archive libapp.a file that
contains the application’s object files, then the following commands should be used to
create a dynamically loadable object for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include veriuser.c
% ld -G -o app.sl veriuser.o libapp.a

The PLI application is now ready to be run with ModelSim Verilog. All that’s left is to
specify the resulting object file to the simulator for loading using the Veriuser entry in the
modesim.ini file, the -pli simulator argument, or the PLIOBJS environment variable (see
"Registering PLI applications" (UM-97)).

Note: On the HP700 platform, the object files must be compiled as position-independent
code by using the +z compiler argument. Since, the object files supplied for Verilog-XL
may be compiled for static linking, you may not be able to use the object files to create
a dynamically loadable object for ModelSim Verilog. In this case, you must get the third
party application vendor to supply the object files compiled as position-independent
code.
Sim User’s Manual

Verilog PLI/VPI UM-109
Support for VHDL objects

The PLI ACC routines also provide limited support for VHDL objects in an all VHDL
design. The following table lists the VHDL objects for which handles may be obtained and
their type and fulltype constants:

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include
file. All of these objects (except signals) are scope objects that define levels of hierarchy in
the Structure window. Currently, the PLI ACC interface has no provision for obtaining
handles to generics, types, constants, variables, attributes, subprograms, and processes.

Type Fulltype Description

accArchitecture accArchitecture instantiation of an architecture

accArchitecture accEntityVitalLevel0 instantiation of an architecture whose entity is marked
with the attribute VITAL_Level0

accArchitecture accArchVitalLevel0 instantiation of an architecture which is marked with the
attribute VITAL_Level0

accArchitecture accArchVitalLevel1 instantiation of an architecture which is marked with the
attribute VITAL_Level1

accArchitecture accForeignArch instantiation of an architecture which is marked with the
attribute FOREIGN and which does not contain any
VHDL statements or objects other than ports and generics

accArchitecture accForeignArchMixed instantiation of an architecture which is marked with the
attribute FOREIGN and which contains some VHDL
statements or objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()

accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSignal signal declaration
ModelSim User’s Manual

UM-110 5 - Verilog simulation

Model
IEEE Std 1364 ACC routines

ModelSim Verilog supports the following ACC routines, described in detail in the IEEE
Std 1364.

acc_append_delays acc_append_pulsere acc_close

acc_collect acc_compare_handles acc_configure

acc_count acc_fetch_argc acc_fetch_argv

acc_fetch_attribute acc_fetch_attribute_int acc_fetch_attribute_str

acc_fetch_defname acc_fetch_delay_mode acc_fetch_delays

acc_fetch_direction acc_fetch_edge acc_fetch_fullname

acc_fetch_fulltype acc_fetch_index acc_fetch_location

acc_fetch_name acc_fetch_paramtype acc_fetch_paramval

acc_fetch_polarity acc_fetch_precision acc_fetch_pulsere

acc_fetch_range acc_fetch_size acc_fetch_tfarg

acc_fetch_itfarg acc_fetch_tfarg_int acc_fetch_itfarg_int

acc_fetch_tfarg_str acc_fetch_itfarg_str acc_fetch_timescale_info

acc_fetch_type acc_fetch_type_str acc_fetch_value

acc_free acc_handle_by_name acc_handle_calling_mod_m

acc_handle_condition acc_handle_conn acc_handle_hiconn

acc_handle_interactive_scope acc_handle_loconn acc_handle_modpath

acc_handle_notifier acc_handle_object acc_handle_parent

acc_handle_path acc_handle_pathin acc_handle_pathout

acc_handle_port acc_handle_scope acc_handle_simulated_net

acc_handle_tchk acc_handle_tchkarg1 acc_handle_tchkarg2

acc_handle_terminal acc_handle_tfarg acc_handle_itfarg

acc_handle_tfinst acc_initialize acc_next

acc_next_bit acc_next_cell acc_next_cell_load

acc_next_child acc_next_driver acc_next_hiconn

acc_next_input acc_next_load acc_next_loconn

acc_next_modpath acc_next_net acc_next_output

acc_next_parameter acc_next_port acc_next_portout
Sim User’s Manual

Verilog PLI/VPI UM-111
IEEE Std 1364 TF routines

ModelSim Verilog supports the following TF routines, described in detail in the IEEE Std
1364.

acc_next_primitive acc_next_scope acc_next_specparam

acc_next_tchk acc_next_terminal acc_next_topmod

acc_object_in_typelist acc_object_of_type acc_product_type

acc_product_version acc_release_object acc_replace_delays

acc_replace_pulsere acc_reset_buffer acc_set_interactive_scope

acc_set_pulsere acc_set_scope acc_set_value

acc_vcl_add acc_vcl_delete acc_version

Note: acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string value of
a parameter. Because of this, the function acc_fetch_paramval_str() has been added to
the PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It functions in a
manner similar to acc_fetch_paramval() except that it returns a char *.
acc_fetch_paramval_str() can be used on all platforms.

io_mcdprintf io_printf mc_scan_plusargs

tf_add_long tf_asynchoff tf_iasynchoff

tf_asynchon tf_iasynchon tf_clearalldelays

tf_iclearalldelays tf_compare_long tf_copypvc_flag

tf_icopypvc_flag tf_divide_long tf_dofinish

tf_dostop tf_error tf_evaluatep

tf_ievaluatep tf_exprinfo tf_iexprinfo

tf_getcstringp tf_igetcstringp tf_getinstance

tf_getlongp tf_igetlongp tf_getlongtime

tf_igetlongtime tf_getnextlongtime tf_getp

tf_igetp tf_getpchange tf_igetpchange

tf_getrealp tf_igetrealp tf_getrealtime

tf_igetrealtime tf_gettime tf_igettime

tf_gettimeprecision tf_igettimeprecision tf_gettimeunit

tf_igettimeunit tf_getworkarea tf_igetworkarea
ModelSim User’s Manual

UM-112 5 - Verilog simulation

Model
tf_long_to_real tf_longtime_tostr tf_message

tf_mipname tf_imipname tf_movepvc_flag

tf_imovepvc_flag tf_multiply_long tf_nodeinfo

tf_inodeinfo tf_nump tf_inump

tf_propagatep tf_ipropagatep tf_putlongp

tf_iputlongp tf_putp tf_iputp

tf_putrealp tf_iputrealp tf_read_restart

tf_real_to_long tf_rosynchronize tf_irosynchronize

tf_scale_longdelay tf_scale_realdelay tf_setdelay

tf_isetdelay tf_setlongdelay tf_isetlongdelay

tf_setrealdelay tf_isetrealdelay tf_setworkarea

tf_isetworkarea tf_sizep tf_isizep

tf_spname tf_ispname tf_strdelputp

tf_istrdelputp tf_strgetp tf_istrgetp

tf_strgettime tf_strlongdelputp tf_istrlongdelputp

tf_strrealdelputp tf_istrrealdelputp tf_subtract_long

tf_synchronize tf_isynchronize tf_testpvc_flag

tf_itestpvc_flag tf_text tf_typep

tf_itypep tf_unscale_longdelay tf_unscale_realdelay

tf_warning tf_write_save
Sim User’s Manual

Verilog PLI/VPI UM-113
Verilog-XL compatible routines

The following PLI routines are not defined in IEEE Std 1364, but ModelSim Verilog
provides them for compatibility with Verilog-XL.

char *acc_decompile_exp(handle condition)

This routine provides similar functionality to the Verilog-XL acc_decompile_expr
routine. The condition argument must be a handle obtained from the acc_handle_condition
routine. The value returned by acc_decompile_exp is the string representation of the
condition expression.

char *tf_dumpfilename(void)

This routine returns the name of the VCD file.

void tf_dumpflush(void)

A call to this routine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsimtime(int *aof_hightime)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are
returned by the routine, while the high-order bits are stored in the aof_hightime argument.

64-bit support in the PLI

The PLI function acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string
value of a parameter. Because of this, the function acc_fetch_paramval_str() has been
added to the PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It
functions in a manner similar to acc_fetch_paramval() except that it returns a char *.
acc_fetch_paramval_str() can be used on all platforms.

PLI/VPI tracing

The foreign interface tracing feature is available for tracing PLI and VPI function calls.
Foreign interface tracing creates two kinds of traces: a human-readable log of what
functions were called, the value of the arguments, and the results returned; and a set of
C-language files that can be used to replay what the foreign interface code did.

The purpose of tracing files

The purpose of the logfile is to aid you in debugging PLI or VPI code. The primary purpose
of the replay facility is to send the replay files to MTI support for debugging co-simulation
problems, or debugging PLI/VPI problems for which it is impractical to send thePLI/VPI
code. We still need you to send the VHDL/Verilog part of the design to actually execute a
replay, but many problems can be resolved with the trace only.

Invoking a trace

To invoke the trace, call vsim (CR-189) with the -trace_foreign argument:

Syntax

vsim
-trace_foreign <action> [-tag <name>]
ModelSim User’s Manual

UM-114 5 - Verilog simulation

Model
Arguments

<action>

Specifies one of the following actions:

-tag <name>

Used to give distinct file names for multiple traces. Optional.

Examples

vsim -trace_foreign 1 mydesign

Creates a logfile.

vsim -trace_foreign 3 mydesign

Creates both a logfile and a set of replay files.

vsim -trace_foreign 1 -tag 2 mydesign

Creates a logfile with a tag of "2".

The tracing operations will provide tracing during all user foreign code-calls, includingPLI/
VPI user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog VCL
callbacks.

Value Action Result

1 create log only writes a local file called
"mti_trace_<tag>"

2 create replay only writes local files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and replay
Sim User’s Manual

Verilog PLI/VPI UM-115
Debugging PLI/VPI application code

In order to debug your PLI/VPI application code in a debugger, your application code must
be compiled with debugging information (for example, by using the -g option) and without
optimizations (for example, don’t use the -O option). You must then load vsim into a
debugger. Even though vsim is stripped, most debuggers will still execute it. You can
invoke the debugger directly on vsim (for example, "ddd ‘which vsim‘") or you can attach
the debugger to an already running vsim process. In the second case, you must attach to the
PID for vsim, and you must specify the full path to the vsim executable (for example, "gdb
$MTI_HOME/sunos5/vsim 1234").

On Solaris, AIX, and Linux systems you can use either gdb or ddd. On HP-UX systems
you can use the wdb debugger from HP. You will need version 1.2 or later.

Since initially the debugger recognizes only vsim’s PLI/VPI function symbols, when
invoking the debugger directly on vsim you need to place a breakpoint in the first PLI/VPI
function that is called by your application code. An easy way to set an entry point is to put
a call to acc_product_version() as the first executable statement in your application code.
Then, after vsim has been loaded into the debugger, set a breakpoint in this function. Once
you have set the breakpoint, run vsim with the usual arguments (e.g., "run -c top").

On HP-UX you might see some warning messages that vsim does not have debugging
information available. This is normal. If you are using Exceed to access an HP machine
from Windows NT, it is recommended that you run vsim in command line or batch mode
because your NT machine may hang if you run vsim in GUI mode. Click on the "go"
button, or use F5 or the go command to execute vsim in wdb.

When the breakpoint is reached, the shared library containing your application code has
been loaded. In some debuggers you must use the share command to load the PLI/VPI
application's symbols.

On HP-UX you might see a warning about not finding "__dld_flags" in the object file. This
warning can be ignored. You should see a list of libraries loaded into the debugger. It
should include the library for your PLI/VPI application. Alternatively, you can use share
to load only a single library.

At this point all of the PLI/VPI application's symbols should be visible. You can now set
breakpoints in and single step through your PLI/VPI application code.
ModelSim User’s Manual

UM-116

Model
Sim User’s Manual

 UM-117
6 - WLF files (datasets) and virtuals

Chapter contents
WLF files (datasets) UM-118

Saving a simulation to a WLF file UM-119
Opening datasets UM-119
Viewing dataset structure UM-120
Managing multiple datasets UM-121
Saving at intervals with Dataset Snapshot UM-123
Virtual Objects (User-defined buses, and more) UM-125

Virtual Objects (User-defined buses, and more) UM-125
Virtual signals UM-125
Virtual functions UM-126
Virtual regions UM-127
Virtual types UM-127

Dataset, WLF file, and virtual commands UM-128

A ModelSim simulation can be saved to a wave log format (WLF) file for future viewing
or comparison to a current simulation. We use the term "dataset" to refer to a WLF file that
has been reopened for viewing.

With ModelSim release 5.3 and later, you can open more than one WLF file for
simultaneous viewing. You can also create virtual signals that are simple logical
combinations of, or logical functions of, signals from different datasets.
ModelSim User’s Manual

UM-118 6 - WLF files (datasets) and virtuals

Model
WLF files (datasets)

Wave log format (WLF) files store saved simulation data. Any number of WLF files can
be reloaded for viewing or comparing to the active simulation. The term "dataset" refers to
a logical name that is assigned to the WLF file when it is reloaded.

A dataset prefix identifies each WLF file that is opened. The current active simulation is
prefixed by "sim," while any datasets are prefixed by the name of the WLF file. For
example, two datasets are displayed in the Wave window below—the current simulation is
shown in the top pane and is indicated by the "sim" prefix; a dataset from a previous
simulation is shown in the bottom pane and is indicated by the "gold" prefix.

Note: The simulator resolution (see "Simulator resolution limit" (UM-52)) must be the
same for all datasets you’re comparing, including the current simulation.
Sim User’s Manual

WLF files (datasets) UM-119
Saving a simulation to a WLF file

If you add items to the Dataflow, List, or Wave windows, or log items with the log
command, the results of each simulation run are automatically saved to a WLF file called
vsim.wlf in the current directory. If you run a new simulation in the same directory, the
vsim.wlf file is overwritten with the new results.

If you want to save the WLF file and not have it overwritten, select File > Save Dataset >
sim (Main window) or File > Save> sim dataset (Wave window). Or, you can use the -wlf
<filename> argument to the vsim command (CR-189) or the dataset save command (CR-

62).

Opening datasets

To open a dataset, select either File > Open > Dataset (Main window) or use the dataset
open command (CR-60).

The Open Dataset dialog includes the following options.
• Dataset Pathname

Identifies the path and filename of the WLF file you want to open.

• Logical Name for Dataset
This is the name by which the dataset will be referred. By default this is the name of the
WLF file.

Important: If you do not use dataset save or dataset snapshot, you must end a
simulation session with a quit or quit -sim command in order to produce a valid WLF
file. If you don’t end the simulation in this manner, the WLF file will not close properly.
ModelSim may issue the error message "bad magic number" when you try to open an
incomplete dataset in subsequent sessions.
ModelSim User’s Manual

UM-120 6 - WLF files (datasets) and virtuals

Model
Viewing dataset structure

Each dataset you open creates a Structure tab in the Main window workspace. The tab is
labeled with the name of the dataset and displays the same data as the "Structure window"
(UM-199).

The graphic below shows three Structure tabs: one for the active simulation (sim) and one
each for two datasets (gold and test).

If you have too many tabs to display in the available space, you can scroll the tabs left or
right by clicking and dragging them .

Each Structure tab has a context menu that you access by clicking the right mouse button.
See "Structure window context menu" (UM-201) for details.
Sim User’s Manual

WLF files (datasets) UM-121
Managing multiple datasets

GUI

When you have one or more datasets open, you can manage them using the Dataset
Browser. To open the browser, select View > Datasets (Main window).

The Dataset Browser dialog box includes the following options.

• Open
Opens the Open Dataset dialog box (see "Opening datasets" (UM-119)) so you can open
additional datasets.

• Close
Closes the selected dataset. This will also remove the dataset’s Structure tab in the Main
window workspace.

• Make Active
Makes the selected dataset "active." You can also effect this change by double-clicking
the dataset name. Active dataset means that if you type a region path as part of a
command and omit the dataset prefix, the active dataset will be assumed. It is equivalent
to typing env <dataset>: at the VSIM prompt. The active dataset is displayed at the
bottom of the Main window.

• Rename
Allows you to assign a new logical name for the selected dataset.

Command line

You can open multiple datasets when the simulator is invoked by specifying more than one
vsim -view <filename> option. By default the dataset prefix will be the filename of the
WLF file. You can specify a different dataset name as an optional qualifier to the
vsim -view switch on the command line using the following syntax:

-view <dataset>=<filename>
ModelSim User’s Manual

UM-122 6 - WLF files (datasets) and virtuals

Model
For example: vsim -view foo=vsim.wlf

ModelSim designates one of the datasets to be the "active" dataset, and refers all names
without dataset prefixes to that dataset. The active dataset is displayed in the context path
at the bottom of the Main window. When you select a design unit in a dataset’s Structure
tab, that dataset becomes active automatically. Alternatively, you can use the Dataset
Browser or the environment command (CR-74) to change the active dataset.

Design regions and signal names can be fully specified over multiple WLF files by using
the dataset name as a prefix in the path. For example:

sim:/top/alu/out

view:/top/alu/out

golden:.top.alu.out

Dataset prefixes are not required unless more than one dataset is open, and you want to refer
to something outside the active dataset. When more than one dataset is open, ModelSim
will automatically prefix names in the Wave and List windows with the dataset name. You
can change this default by selecting Tools > Window Preferences (Wave and List
windows).

ModelSim also remembers a "current context" within each open dataset. You can toggle
between the current context of each dataset using the environment command (CR-74),
specifying the dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo.
The context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to as just "current context") is
used for finding objects specified without a path.

The Signals window can be locked to a specific context of a dataset. Being locked to a
dataset means that the window will update only when the content of that dataset changes.
If locked to both a dataset and a context (e.g., test: /top/foo), the window will update only
when that specific context changes. You specify the dataset to which the window is locked
by selecting File > Environment (Signals window).

Restricting the dataset prefix display

The default for dataset prefix viewing is set with a variable in pref.tcl,
PrefMain(DisplayDatasetPrefix). Setting the variable to 1 will display the prefix, setting
it to 0 will not. It is set to 1 by default. Either edit the pref.tcl file directly or use the Tools
> Edit Preferences (Main window) command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment
command (CR-74) with the -dataset option (you won’t need to specify this option if the
variable noted above is set to 1). The environment command line switches override the
pref.tcl variable.
Sim User’s Manual

WLF files (datasets) UM-123
Saving at intervals with Dataset Snapshot

Dataset Snapshot lets you periodically copy data from the current simulation WLF file to
another file. This is useful for taking periodic "snapshots" of your simulation or for clearing
the current simulation WLF file based on size or elapsed time.

Once you have logged the appropriate items, select Tools > Dataset Snapshot (Wave
window).

The Dataset Snapshot dialog includes these options:

Dataset Snapshot State

• Enabled/Disabled
Enable or disable Dataset Snapshot. All other dialog options are unavailable if Disabled
is selected.
ModelSim User’s Manual

UM-124 6 - WLF files (datasets) and virtuals

Model
Snapshot Type

• Simulation Time
Specifies that data is copied to the specified snapshot file every <x> time units. Default
is 1000000 time units.

• WLF File Size
Specifies that data is copied to the specified snapshot file whenever the current
simulation WLF file reaches <x> megabytes. Default is 100 MB.

Snapshot Contents

• Snapshot contains only data since previous snapshot
Specifies that each snapshot contains only data since the last snapshot. This option causes
ModelSim to clear the current simulation WLF file each time a snapshot is taken.

• Snapshot contains all previous data
Specifies that each snapshot contains all data from the time signals were first logged. The
entire contents of the current simulation WLF file are saved each time a snapshot is taken.

Snapshot Directory and File

• Directory
The directory in which ModelSim saves the snapshot files.

• File Prefix
The name of the snapshot files. ModelSim adds .wlf to the snapshot files.

Overwrite / Increment

• Always replace snapshot file
Specifies that a single file is created for all snapshots. Each new snapshot overwrites the
previous.

• Use incrementing suffix on snapshot files
Specifies that a new file is created for each snapshot. Each new snapshot creates a
separate file (e.g., vsim_snapshot_0.wlf, vsim_snapshot_1.wlf, etc.).
Sim User’s Manual

Virtual Objects (User-defined buses, and more) UM-125
Virtual Objects (User-defined buses, and more)

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in
the ModelSim simulation kernel. ModelSim supports the following kinds of virtual objects:

• Virtual signals (UM-125)

• Virtual functions (UM-126)

• Virtual regions (UM-127)

• Virtual types (UM-127)

Virtual objects are indicated by an orange diamond as illustrated by bus below:

Virtual signals

Virtual signals are aliases for combinations or subelements of signals written to the WLF
file by the simulation kernel. They can be displayed in the Signals, List, and Wave
windows, accessed by the examine command, and set using the force command. You can
create virtual signals using the Tools > Combine Signals (Wave and List windows)
command or use the virtual signal command (CR-175). Once created, virtual signals can be
dragged and dropped from the Signals window to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that
corresponds to the nearest common ancestor of all the elements of the virtual signal. The
virtual signal command has an -install <region> option to specify where the virtual signal
should be installed. This can be used to install the virtual signal in a user-defined region in
ModelSim User’s Manual

UM-126 6 - WLF files (datasets) and virtuals

Model
order to reconstruct the original RTL hierarchy when simulating and driving a
post-synthesis, gate-level implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. The virtual hide command (CR-166) can be used to hide the display of the
broken-down bits if you don’t want them cluttering up the Signals window.

If the virtual signal has elements from more than one WLF file, it will be automatically
installed in the virtual region virtuals:/Signals.

Virtual signals are not hierarchical – if two virtual signals are concatenated to become a
third virtual signal, the resulting virtual signal will be a concatenation of all the subelements
of the first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command
(CR-173). By default, when quitting, ModelSim will append any newly-created virtuals (that
have not been saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave
or List format, you will need to execute the virtuals.do file (or some other equivalent) to
restore the virtual signal definitions before you re-load the Wave or List format during a
later run. There is one exception: "implicit virtuals" are automatically saved with the Wave
or List format.

Implicit and explicit virtuals

An implicit virtual is a virtual signal that was automatically created by ModelSim without
your knowledge and without you providing a name for it. An example would be if you
expand a bus in the Wave window, then drag one bit out of the bus to display it separately.
That action creates a one-bit virtual signal whose definition is stored in a special location,
and is not visible in the Signals window or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals".

Virtual functions

Virtual functions behave in the GUI like signals but are not aliases of combinations or
elements of signals logged by the kernel. They consist of logical operations on logged
signals and can be dependent on simulation time. They can be displayed in the Signals,
Wave, and List windows and accessed by the examine command (CR-75), but cannot be set
by the force command (CR-82).

Examples of virtual functions include the following:

• a function defined as the inverse of a given signal

• a function defined as the exclusive-OR of two signals

• a function defined as a repetitive clock

• a function defined as "the rising edge of CLK delayed by 1.34 ns"

Virtual functions can also be used to convert signal types and map signal values.

The result type of a virtual signal can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these
types. Verilog types are converted to VHDL 9-state std_logic equivalents and Verilog net
strengths are ignored.
Sim User’s Manual

Virtual Objects (User-defined buses, and more) UM-127
Virtual functions can be created using the virtual function command (CR-163).

Virtual functions are also implicitly created by ModelSim when referencing bit-selects or
part-selects of Verilog registers in the GUI, or when expanding Verilog registers in the
Signals, Wave or List window. This is necessary because referencing Verilog register
elements requires an intermediate step of shifting and masking of the Verilog "vreg" data
structure.

Virtual regions

User-defined design hierarchy regions can be defined and attached to any existing design
region or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in
a gate-level design and to locate virtual signals. Thus, virtual signals and virtual regions can
be used in a gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command (CR-172).

Virtual types

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual type is then used in a type conversion
expression to convert a signal to values of the new type. When the converted signal is
displayed in any of the windows, the value will be displayed as the enumeration string
corresponding to the value of the original signal.

Virtual types are created using the virtual type command (CR-178).
ModelSim User’s Manual

UM-128 6 - WLF files (datasets) and virtuals

Model
Dataset, WLF file, and virtual commands

The table below provides a brief description of the actions associated with datasets, WLF
files, and virtual commands. For complete details about syntax, arguments, and usage, refer
to the ModelSim Command Reference.

Command name Action

dataset alias (CR-55) assigns an additional name (alias) to a dataset

dataset clear (CR-56) removes all event data from the current simulation WLF file while keeping
all currently logged signals logged

dataset close (CR-57) closes the specified dataset

dataset info (CR-58) reports a variety of information about a dataset

dataset list (CR-59) lists all open datasets

dataset open (CR-60) opens a WLF file

dataset rename (CR-61) assigns a new logical name to the specified dataset

dataset save (CR-62) saves the current simulation to a WLF file

dataset snapshot (CR-63) saves the current simulation to a WLF file at regular intervals

log (CR-87) creates a WLF file for the current simulation

nolog (CR-93) suspends writing of data to the WLF file for the specified signals

searchlog (CR-116) searches one or more of the currently open WLF files for a specified
condition

virtual function (CR-163) creates a new signal that consists of logical operations on existing signals and
simulation time

virtual region (CR-172) creates a new user-defined design hierarchy region

virtual signal (CR-175) creates a new signal that consists of concatenations of signals and
subelements

virtual type (CR-178) creates a new enumerated type

vsim (CR-189) -wlf <filename> creates a WLF file for the simulation which can be reopened as a dataset

wlf2log (CR-211) translates a ModelSim WLF file (vsim.wlf) to a QuickSim II logfile

wlfman (CR-213) allows you to get information about and manipulate WLF files

wlfrecover (CR-215) attempts to "repair" WLF files that are incomplete due to a crash or the file
being copied prior to completion of the simulation
Sim User’s Manual

 UM-129
7 - Graphic interface

Chapter contents
Window overview UM-130

Common window features UM-131

Main window UM-137

Dataflow window UM-149

List window UM-168

Process window UM-181

Signals window UM-183

Source window. UM-191

Structure window UM-199

Variables window UM-203

Wave window UM-206

Compiling with the graphic interface UM-238

Simulating with the graphic interface UM-245

Creating and managing breakpoints UM-258

Miscellaneous tools and add-ons UM-262

Graphic interface commands UM-267

ModelSim User’s Manual

UM-130 7 - Graphic interface

Model
Window overview

The ModelSim simulation and debugging environment consists of nine windows. A brief
description of each window follows:

• Main window (UM-137)

The initial window that appears upon startup. All subsequent ModelSim windows are
opened from the Main window. This window contains the session transcript; the
Workspace, which can contain Project, Library, Structure, and Files tabs; and the
coverage panes when you have simulated with "Code Coverage" (UM-283).

• Dataflow window (UM-149)

 Lets you trace signals and nets through your design by showing related processes.

• List window (UM-168)

Shows the simulation values of selected VHDL signals and variables and Verilog nets,
registers, and variables in tabular format.

• Process window (UM-181)

Displays a list of processes in the region currently selected in the Structure window.

• Signals window (UM-183)

Shows the names and current values of VHDL signals, and Verilog nets, registers, and
variables in the region currently selected in the Structure window.

• Source window (UM-191)

Displays the HDL source code for the design.

• Structure window (UM-199)

Displays the hierarchy of structural elements such as VHDL component instances,
packages, blocks, generate statements, and Verilog model instances, named blocks, tasks
and functions. In versions 5.5 and later, this same information is displayed in the Main
window workspace.

• Variables window (UM-203)

Displays VHDL constants, generics, variables, and Verilog registers and variables in the
current process and their current values.

• Wave window (UM-206)

Displays waveforms, and current values for the VHDL signals and variables and Verilog
nets, registers, and variables you have selected. Current and past simulations can be
compared side-by-side in one Wave window.
Sim User’s Manual

Common window features UM-131
Common window features

ModelSim’s graphic interface provides many features that add to its usability; features
common to many of the windows are described below.

• Cut/Copy/Paste/Delete into any entry box by clicking the right
mouse button in the entry box.

• Standard cut/copy/paste shortcut keystrokes – ^X/^C/^V – will
work in all entry boxes.

• When the focus changes to an entry box, the contents of that box
are selected (highlighted). This allows you to replace the current
contents of the entry box with new contents with a simple paste
command, without having to delete the old value.

• Dialog boxes will appear on top of their parent window (instead of the upper left corner
of the screen).

• You can change the title of any window with the -title switch of the view command. See
view command (CR-156) for details.

Feature Feature applies to these windows

Quick access toolbars (UM-132) Dataflow, Main, Source, and Wave windows

Drag and Drop (UM-132) Dataflow, List, Process, Signals, Source, Structure,
Variables, and Wave windows

Command history (UM-132) Main window command line

Automatic window updating (UM-133) Dataflow, Process, Signals, and Structure windows

Finding names (UM-133) various windows

Sorting HDL items (UM-133) Process, Signals, Source, Structure, Variables and Wave
windows

Menu tear off (UM-134) all windows

Combining items in the List window (UM-174),
Combining items in the Wave window (UM-217)

List and Wave windows

Tree window hierarchical view (UM-135) Structure, Signals, Variables, and Wave windows
ModelSim User’s Manual

UM-132 7 - Graphic interface

Model
• The middle mouse button will allow you to paste the following into the transcript
window:

–text currently selected in the transcript window,

–a current primary X-Windows selection (can be from another application), or

–contents of the clipboard.

• The Edit > Paste operation in the Transcript pane will ONLY paste from the clipboard.

• All menus highlight their accelerator keys.

Quick access toolbars

Buttons on the Dataflow, Main, Source, and Wave windows provide access to commonly
used commands and functions.

Drag and Drop

Drag and drop of HDL items is possible between the following windows. Using the left
mouse button, click and release to select an item, then click and hold to drag it.

• Drag items from these windows:
Dataflow, List, Process, Signals, Source, Structure, Variables, and Wave windows

• Drop items into these windows:
Dataflow, List, and Wave windows

Command history

Avoid entering long commands twice; use the down and up keyboard arrows to move
through the command history for the current simulation.

Note: Selecting text in the transcript window makes it the current primary X-Windows
selection. This way you can copy transcript window selections to other X-Windows
windows (xterm, emacs, etc.).

Note: Drag and drop works to rearrange items within the List and Wave windows as
well.
Sim User’s Manual

Common window features UM-133
Automatic window updating

Selecting an item in the following windows automatically updates other related ModelSim
windows as indicated below:

Finding names

• Find HDL item names with the Edit > Find menu selection in these windows:
Dataflow, List, Process, Signals, Source, Structure, Variables, and Wave windows.

A Find request that starts with a backslash (\) forces case sensitivity. Elsewhere in the
pattern backslashes are used to escape special interpretation of basic regular expression
characters. To search explicitly for a backslash character, it is necessary to escape the
character. For example, to match \Arch Signal 1\, the pattern \\Arch... is required.

Sorting HDL items

Use the View > Sort menu selection in the Process, Signals, Structure, Variables and Wave
windows to sort HDL items in ascending, descending or declaration order.

Names such as net_1, net_10, and net_2 will sort numerically in the Signals and Wave
windows.

Select an item in this window To update these windows

Dataflow window (UM-149) Process window (UM-181)

Signals window (UM-183)

Source window (UM-191)

Structure window (UM-199)

Variables window (UM-203)

Process window (UM-181) Dataflow window (UM-149)

Signals window (UM-183)

Source window (UM-191)

Variables window (UM-203)

Signals window (UM-183) Dataflow window (UM-149)

Structure window (UM-199) or structure
pane in Main window Workspace

Process window (UM-181)

Signals window (UM-183)

Source window (UM-191)
ModelSim User’s Manual

UM-134 7 - Graphic interface

Model
Saving window layout

You can save the current positions and sizes of ModelSim windows as a default. Follow
these steps to save the layout as a default:

1 Position and size the windows the way you want them to display.

2 Select Tools > Save Preferences (Main window) and save the modelsim.tcl file into the
desired directory.

3 Modify the "Working Directory" of your ModelSim shortcut to point at the directory, or
set the MODELSIM_TCL environment variable to point at the directory (see "Creating
environment variables in Windows" (UM-339) for more details).

Context menus

Context menus refer to menus that "pop-up" in the middle of the interface by clicking the
right mouse button. The commands on the menu change depending on where in the
interface you click. In other words, the menus change based on the context of their use.
These menus are available in the following windows: Dataflow, List, Main, Signals,
Source, Structure, and Wave.

Menu tear off

All window menus can be "torn off " to create a separate menu window. To tear off, click
on the menu, then select the dotted-line button at the top of the menu.
Sim User’s Manual

Common window features UM-135
Tree window hierarchical view

ModelSim provides a hierarchical, or "tree view" of some aspects of your design in the
Main window Structure tabs and the Structure, Signals, Variables, and Wave windows.

HDL items you can view

Depending on which window you are
viewing, one entry is created for each
of the following VHDL and Verilog
HDL items within the design:

VHDL items

(indicated by a dark blue square icon)
signals, variables, component
instantiations, generate statements,
block statements, and packages

Verilog items

(indicated by a lighter blue circle icon)
parameters, registers, nets, module
instantiations, named forks, named
begins, tasks, and functions

Virtual items

(indicated by an orange diamond icon)
virtual signals, buses, and functions,
see "Virtual Objects (User-defined
buses, and more)" (UM-125) for more
information
ModelSim User’s Manual

UM-136 7 - Graphic interface

Model
Viewing the hierarchy

Whenever you see a tree view, as in the Structure window displayed here, you can use the
mouse to collapse or expand the hierarchy. Select the symbols as shown below to change
the view of the structure.

Finding items within tree windows

You can open the Find dialog box within all windows by selecting Edit > Find or by using
<control-s> (UNIX) or <control-f> (Windows).

Options within the Find dialog box allow you to search unique text-string fields within the
specific window. See also,

• "Finding items by name in the List window" (UM-177),

• "Finding HDL items in the Signals window" (UM-188), and

• "Finding items by name or value in the Wave window" (UM-225).

Symbol Description

[+] click a plus box to expand the item and view the structure

[-] click a minus box to hide a hierarchy that has been expanded
Sim User’s Manual

Main window UM-137
Main window

The Main window is pictured below as it appears when ModelSim is first invoked. Note
that your operating system graphic interface provides the window-management frame only;
ModelSim handles all internal-window features including menus, buttons, and scroll bars.

You can customize the Main window layout–click and drag on the bars noted in the graphic
above to change the position of the panes and toolbars. You can also change the relative
size of each pane by dragging on its border. The graphic below shows a customized layout.

Click and
drag on the
bars to
reposition
toolbars or
panes
ModelSim User’s Manual

UM-138 7 - Graphic interface

Model
The graphic below shows the Main window as it might appear when you have a project and
a design loaded.

The menu bar at the top of the window provides access to a wide variety of simulation
commands and ModelSim preferences. The toolbar provides buttons for quick access to the
many common commands. The status bar at the bottom of the window gives you
information about the data in the active ModelSim window. The panes display different
parts of your design or different features of ModelSim. The panes, menu bar, toolbar, and
status bar are described in detail below.

Workspace

The Workspace is available in ModelSim versions 5.5 and later. It provides convenient
access to projects, libraries, design files, compiled design units, simulation/dataset
structures, and Waveform Comparison objects. It can be hidden or displayed by selecting
View > Workspace (Main window).

The Workspace can display five types of tabs as shown in the graphic above.

• Project tab
Shows all files that are included in the open project. See Chapter 2 - Projects for details.

• Library tab
Shows design libraries and compiled design units. See "Managing library contents" (UM-

41) for details.

Workspace

active processes

Transcript
Sim User’s Manual

Main window UM-139
• Structure tabs
Shows a hierarchical view of the active simulation and any open datasets. This is the
same data that is displayed in the "Structure window" (UM-199). There is one tab for the
current simulation and one tab for each open dataset. See "Viewing dataset structure"
(UM-120) for details.

Transcript

The Transcript portion of the Main window maintains a running history of commands that
are invoked and messages that occur as you work with ModelSim. When a simulation is
running, the Transcript displays a VSIM prompt, allowing you to enter command-line
commands from within the graphic interface.

You can scroll backward and forward through the current work history by using the vertical
scrollbar. You can also use arrow keys to recall previous commands, or copy and paste
using the mouse within the window (see "Mouse and keyboard shortcuts" (UM-147) for
details).

Saving the Main window transcript file

Variable settings determine the filename used for saving the Main window transcript. If
either PrefMain(file) in the modelsim.tcl file or TranscriptFile in the modelsim.ini file is
set, then the transcript output is logged to the specified file. By default the TranscriptFile
variable in modelsim.ini is set to transcript. If either variable is set, the transcript contents
are always saved and no explicit saving is necessary.

If you would like to save an additional copy of the transcript with a different filename, you
can use the File > Transcript > Save Transcript As, or File > Transcript > Save
Transcript menu items. The initial save must be made with the Save Transcript As
selection, which stores the filename in the Tcl variable PrefMain(saveFile). Subsequent
saves can be made with the Save Transcript selection. Since no automatic saves are
performed for this file, it is written only when you invoke a Save command. The file is
written to the specified directory and records the contents of the transcript at the time of the
save.

Using the saved transcript as a macro (DO file)

Saved transcript files can be used as macros (DO files). See the do command (CR-68) for
more information.

Active processes

This pane displays all processes that are scheduled to run during the current simulation
cycle. You can hide or display this pane by selecting View > Active Process (Main
window). This same data can be displayed in the "Process window" (UM-181).
ModelSim User’s Manual

UM-140 7 - Graphic interface

Model
The Main window menu bar

The menu bar at the top of the Main window lets you access many ModelSim commands
and features. The menus are listed below with brief descriptions of each command’s use.

File menu

New provides these options:
Folder – create a new folder in the current directory
Source – create a VHDL, Verilog, or Other source file
Project – create a new project
Library – create a new design library and mapping; see "Creating a library" (UM-40)

Open provides these options:
File – open the selected hdl file
Project – open the selected .mpf project file
Dataset – open the specified WLF file and assign it the specified dataset name
Exclusion File – open "Exclusion filter files" (UM-298) for Code Coverage

Close provides these options:
Project – close the currently open project file
Dataset – close the specified dataset

Import provides this option:
Library – import FPGA libraries; see "Importing FPGA libraries" (UM-48)

Save provides these options:
sim dataset – save data from the current simulation
Exclusion File – save "Exclusion filter files" (UM-298) for Code Coverage

Delete provides this option:
Project – delete the selected .mpf project file

Change Directory change to a different working directory

Transcript provides these options:
Save Transcript – save the Main window transcript to the file indicated with a
"Save Transcript As" selection (this selection is not initially available because the
transcript is written to the transcript file by default), see "Saving the Main window
transcript file" (UM-139)

Save Transcript As – save the Main window transcript to a file
Clear Transcript – clear the Main window transcript display
Print – print the contents of the Transcript window

Add to Project provides these options:
File – add files to the open Project; see "Step 2 — Adding items to the project" (UM-

21)
Simulation Configuration – add an object representing a design unit(s) and its
associated simulation options; see "Creating a Simulation Configuration" (UM-30)

Folder – add an organization folder to the current project; see "Organizing projects
with folders" (UM-32)
Sim User’s Manual

Main window UM-141
Edit menu

View menu

Recent Directories
Recent Projects

display a list of the most recent working directories or projects, respectively

Quit quit ModelSim

Copy copy the selected text

Paste paste the previously cut or copied text

Select All select all text in the Main window transcript

Unselect All deselect all text in the Main window transcript

Find search the transcript forward or backward for the specified text
string

All Windows open all ModelSim windows

Dataflow open and/or view the Dataflow window (UM-149)

List open and/or view the List window (UM-168)

Process open and/or view the Process window (UM-181)

Signals open and/or view the Signals window (UM-183)

Source open and/or view the Source window (UM-191)

Structure open and/or view the Structure window (UM-199)

Variables open and/or view the Variables window (UM-203)

Wave open and/or view the Wave window (UM-206)

Datasets open the Dataset Browser to open, close, rename, or activate a
dataset

Coverage provides these options:
Current Exclusions – hide or show the Exclusions pane
Missed Coverage – hide or show the Missed Coverage pane
Instance Coverage – hide or show the Instance Coverage pane

Active Process hide or show the Active processes (UM-139) pane

Workspace hide or show the Workspace (UM-138)

Encoding select from alphabetical list of encoding names that enable proper
display of character representations used by various operating
systems or file systems, such as Unicode, ASCII, or Shift-JIS.

Properties show information about the item selected in the workspace
ModelSim User’s Manual

UM-142 7 - Graphic interface

Model
Compile menu

Simulate menu

Compile compile HDL source files; not enabled if you have a project open

Compile Options set both VHDL and Verilog compile options; disabled if you have
a project open

Compile All compile all files in the open project; see "Step 3 — Compiling the
files" (UM-24) for details

Compile Selected compile the files selected in the project tab; disabled if you don’t
have a project open

Compile Order set the compile order of the files in the open project; see
"Changing compile order" (UM-28) for details

Compile Report report on the compilation history of the selected file(s) in the
project

Compile Summary report on the compilation history of all files in the project

Simulate load the selected design unit; see Simulating with the graphic
interface (UM-245)

Simulation Options set various simulation options;

Run provides seven options:
Run <default> – run simulation for one default run length; change
the run length with Simulate > Simulation Options, or use the
Run Length text box on the toolbar
Run -All – run simulation until you stop itContinue – continue the
simulationRun -Next – run to the next event time
Step – single-step the simulatorStep -Over – execute without
single-stepping through a subprogram call
Restart – reload the design elements and reset the simulation time
to zero; only design elements that have changed are reloaded; you
specify whether to maintain the following after restart–List and
Wave window environment, breakpoints, logged signals, and
virtual definitions; see also the restart command (CR-111)

Break stop the current simulation run

End Simulation quit the current simulation run
Sim User’s Manual

Main window UM-143
Tools menu

Breakpoints open the Breakpoints dialog box; see "Setting file-line
breakpoints" (UM-197) for details

Options
(all options are set
for the current
session only)

provides these options:
Transcript File – set a transcript file to save for this session only
Command History – set a file for saving command history only,
no comments
Save File – set filename for Save Transcript, and Save Transcript
As
Saved Lines – limit the number of lines saved in the transcript
(default is 5000)
Line Prefix – specify the comment prefix for the transcript
Update Rate – specify the update frequency for the Main status
bar
ModelSim Prompt – change the title of the ModelSim prompt
VSIM Prompt – change the title of the VSIM prompt
Paused Prompt – change the title of the Paused prompt
HTML Viewer – specify the path to your browser; used for
displaying online help

Edit Preferences set various preference variables; see
http://www.model.com/resources/pref_variables/frameset.htm

Save Preferences save current ModelSim settings to a Tcl preference file; http://
www.model.com/resources/pref_variables/frameset.htm
ModelSim User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

UM-144 7 - Graphic interface

Model
Window menu

Help menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile all open windows horizontally

Tile Vertically tile all open windows vertically

Layout Stylea

a.You can specify a Layout Style to become the default for ModelSim. After choosing
the Layout Style you want, select Tools > Save Preferences and the layout style will
be saved to the PrefMain(layoutStyle) preference variable.

provides these options:
Default - restore the windows to version 5.5 layout
Millennium - restore the windows to version 5.6 layout
Classic - restore the windows to pre-5.5 layout
Cascade - cascade all open windows
Horizontal - tile all open windows horizontally
Vertical - tile all open windows vertically

Icon Children icon all but the Main window

Icon All icon all windows

Deicon All deicon all windows

<window_name> list of up to nine open windows including one for each file opened
in the Source window; use the Windows menu item to see a
complete list

Windows open dialog with complete list of open windows

About ModelSim display ModelSim application information (e.g., software
version)

Release Notes view current release notes with the ModelSim notepad (CR-95)

Welcome Menu open the Welcome screen

Documentation open and read ModelSim documentation in PDF or HTML
format; PDF files can be read with a free Adobe Acrobat reader
available on the ModelSim installation CD or from
www.adobe.com

Tcl Help open the Tcl command reference (man pages) in Windows help
format

Tcl Man Pages open the Tcl /Tk 8.3 manual in HTML format

Technotes select a technical note to view from the drop-down list
Sim User’s Manual

http://www.adobe.com

Main window UM-145
The Main window toolbar

Buttons on the Main window toolbar give you quick access to these ModelSim commands
and functions.

Main window toolbar buttons

Button Menu equivalent Command equivalents

Open
open the Open File dialog

File > Open > File

Copy
copy the selected text within the
Main window transcript

Edit > Copy see: "Mouse and keyboard
shortcuts" (UM-147)

Paste
paste the copied text to the cursor
location

Edit > Paste see: "Mouse and keyboard
shortcuts" (UM-147)

Compile
open the Compile HDL Source
Files dialog box to select files for
compilation

Compile > Compile vcom <arguments>, or
vlog <arguments>

see: vcom (CR-145) or vlog (CR-

181)

Compile All
compile all files in the open
project

Compile > Compile vcom <arguments>, or
vlog <arguments>

see: vcom (CR-145) or vlog (CR-

181)

Simulate
load the selected design unit or
simulation configuration object

Simulate > Simulate vsim <arguments>

see: vsim (CR-189)

Restart
reload the design elements and
reset the simulation time to zero,
with the option of using current
formatting, breakpoints, and
WLF file

Simulate > Run >
Restart

restart <arguments>

see: restart (CR-111)

Run Length
specify the run length for the
current simulation

Simulate > Simulation
Options

run <specific run length>

see: run (CR-114)
ModelSim User’s Manual

UM-146 7 - Graphic interface

Model
Run
run the current simulation for the
specified run length

Simulate > Run > Run
<default_run_length>

run (no arguments)

see: run (CR-114)

Continue Run
continue the current simulation
run until the end of the specified
run length or until it hits a
breakpoint or specified break
event

Simulate > Run >
Continue

run -continue

see: run (CR-114)

Run -All
run the current simulation
forever, or until it hits a
breakpoint or specified break
event

Simulate > Run >
Run -All

run -all

see: run (CR-114), see "Assertions
tab" (UM-255)

Break
stop the current simulation run

Simulate > Break none

Step
step the current simulation to the
next HDL statement

Simulate > Run > Step step

see: step (CR-122)

Step Over
HDL statements are executed but
treated as simple statements
instead of entered and traced line
by line

Simulate > Run >
Step -Over

step -over

see: step (CR-122)

Main window toolbar buttons

Button Menu equivalent Command equivalents
Sim User’s Manual

Main window UM-147
The Main window status bar

Fields at the bottom of the Main window provide the following information about the
current simulation:

Mouse and keyboard shortcuts

The following mouse actions and special keystrokes can be used to edit commands in the
entry region of the Main window. They can also be used in editing the file displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSim
to open the Notepad editor).

Field Description

Project name of the current project

Now the current simulation time, using the default resolution units
(see "Simulating with the graphic interface" (UM-245)), or a
larger time unit if one can be used without a fractional remainder

Delta the current simulation iteration number

environment name of the current context (item selected in the Structure
window (UM-199))

Keystrokes Result

< left | right - arrow > move the cursor left | right one character

< up | down - arrow > scroll through command history (in Source
window, move cursor one line up | down)

< control > < left | right - arrow > move cursor left | right one word

< shift > < left | right | up | down - arrow > extend selection of text

< control > < shift > < left | right - arrow > extend selection of text by word

< up | down - arrow > scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down > move cursor up | down one paragraph

< alt > activate or inactivate menu bar mode

< alt > < F4 > close active window

< backspace > delete character to the left

< home > move cursor to the beginning of the line
ModelSim User’s Manual

UM-148 7 - Graphic interface

Model
The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

< end > move cursor to the end of the line

< control > < home > move cursor to the beginning of the text

< control > < end > move cursor to the end of the text

< esc > cancel

< control - a > select the entire content of the widget

< control - c > copy the selection

< control - f > find

< F3 > find next

< control - k > delete from the cursor to the end of the line

< control - s > save

< control - t > reverse the order of the two characters to the
right of the cursor

< control - u > delete line

< control - v > paste from the clipboard

< control - x > cut the selection

< F8 > search for the most recent command that
matches the characters typed

< F9 > run simulation

< F10 > continue simulation

< F11 > single-step

< F12 > step-over

Keystrokes Result
Sim User’s Manual

Dataflow window UM-149
Dataflow window

The Dataflow window allows you to explore the "physical" connectivity of your design.
The window displays processes and signals, nets, and registers.

Adding items to the window

You can use any of the following methods to add items to the Dataflow window:

• drag and drop items from other windows

• use the Navigate menu options in the Dataflow window

• use the add dataflow command (CR-31)

• double-click any waveform in the Wave window display

The Navigate menu offers four commands that will add items to the window. The
commands include:

View region — clear the window and display all signals from the current region

Add region — display all signals from the current region without first clearing window

View all nets — clear the window and display all signals from the entire design

Add ports — add port symbols to the port signals in the current region

Note: OEM versions of ModelSim have limited Dataflow functionality. Many of the
features described below will operate differently. The window will show only one
process and its attached signals or one signal and its attached processes, as displayed in
the graphic below.
ModelSim User’s Manual

http://www.model.com/contact_us.asp

UM-150 7 - Graphic interface

Model
When you view regions or entire nets, the window initially displays only the drivers of the
added items in order to reduce clutter. You can easily view readers by selecting an item and
invoking Navigate > Expand net to readers.

A small circle above an input signal on a block denotes a trigger signal that is on the
process’ sensitivity list.

Links to other windows

The Dataflow window has links to other windows as described below:

Dataflow window menu bar

The following menu commands are available from the Dataflow window menu bar. Many
of the commands are also available from the context menu (click right or 3rd mouse
button).

File menu

Window Link

 Main window (UM-137) select a signal or process in the Dataflow window, and
the Structure pane updates if that item is in a different
design unit

 Process window (UM-181) select a process in either window, and that process is
highlighted in the other

 Signals window (UM-183) select a signal in either window, and that signal is
highlighted in the other

 Wave window (UM-206) • trace through the design in the Dataflow
window, and the associated signals are added to
the Wave window

• move a cursor in the Wave window, and the
values update in the Dataflow window

 Source window (UM-191) select an item in the Dataflow window, and the
Source window updates if that item is in a
different source file

Print print the current view of the Dataflow window

Print Postscript print/save the current view of the Dataflow window to a postscript
device/file

Page setup configure page formatting for printing

Close close the Dataflow window; note that this erases whatever is
currently displayed in the window
Sim User’s Manual

Dataflow window UM-151
Edit menu

View menu

Navigate menu

Undo undo the last action

Redo redo the last undone action

Cut cut the selected object(s)

Copy copy the selected object(s)

Paste paste the previously cut or copied object(s) into the display

Erase selected clear selected object from window

Select all select all objects in the window

Unselect all deselect all currently selected objects

Erase highlight remove green highlighting from interconnect lines

Erase all clear all objects from window

Regenerate clear and redraw the display using an optimal layout

Find search for an instance or signal

Find Next search for next occurrence of instance or signal

Show Wave open the embedded wave viewer pane

Select set left mouse button to select mode and middle mouse button to
zoom mode

Zoom set left mouse button to zoom mode and middle mouse button to
pan mode

Pan set left mouse button to pan mode and middle mouse button to
zoom mode

Default set mouse to default mode

Expand net to
drivers

display driver(s) of the selected signal, net, or register

Expand net to
readers

display reader(s) of the selected signal, net, or register

Expand net display driver(s) and reader(s) of the selected signal, net, or
register
ModelSim User’s Manual

UM-152 7 - Graphic interface

Model
Trace menu

Tools menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Hide selected remove the selected component and all other components from
the same region and replace them with a single component
representing that region

Show selected expand the selected component to show all underlying
components

View region clear the window and display all signals from the current region

Add region display all signals from the current region without first clearing
the window

View all nets clear the window and display all signals from the entire design

Add ports add port symbols to the port signals in the current region

TraceXTM step back to the last driver of an unknown (X) value

ChaseXTM jump to the source of an unknown (X) value

TraceX Delay step back in time to the last driver of an unknown (X) value

ChaseX Delay jump back in time to the point where the output value transitions
to X

Trace next event move the next event cursor to the next input event driving the
selected output

Trace event set jump to the source of the selected input event

Trace event reset return the next event cursor to the selected output

Load built-in
symbol map

load a .bsm file for mapping symbol instances; see "Symbol
mapping" (UM-165)

Load symlib library load a user-defined symbol library

Create symlib index create an index for a user-defined symbol library

Options configure Dataflow window preferences
Sim User’s Manual

Dataflow window UM-153
The Dataflow window toolbar

The buttons on the Dataflow window toolbar are described below.

Button Menu equivalent

Print
print the current view of the Dataflow window

File > Print

Select mode
set left mouse button to select mode and middle
mouse button to zoom mode

View > Select

Zoom mode
set left mouse button to zoom mode and middle
mouse button to pan mode

View > Zoom

Pan mode
set left mouse button to pan mode and middle
mouse button to zoom mode

View > Pan

Cut
cut the selected object(s)

Edit > Cut

Copy
copy the selected object(s)

Edit > Copy

Paste
paste the previously cut or copied object(s)

Edit > Paste

Undo
undo the last action

Edit > Undo

Redo
redo the last undone action

Edit > Redo

Find
search for an instance or signal

Edit > Find
ModelSim User’s Manual

UM-154 7 - Graphic interface

Model
Trace input net to event
move the next event cursor to the next input event
driving the selected output

Trace > Trace next event

Trace Set
jump to source of selected input event

Trace > Trace event set

Trace Reset
return the next event cursor to the selected output

Trace > Trace event
reset

Trace net to driver of X
step back to the last driver of an unknown value

Trace > TraceX

Expand net to all drivers
display driver(s) of the selected signal, net, or
register

Navigate > Expand net
to drivers

Expand net to all drivers and readers
display driver(s) and reader(s) of the selected
signal, net, or register

Navigate > Expand net

Expand net to all readers
display reader(s) of the selected signal, net, or
register

Navigate > Expand net
to readers

Erase highlight
clear the green highlighting which identifies the
path you’ve traversed through the design

Edit > Erase highlight

Erase all
clear the window

Edit > Erase all

Regenerate
clear and redraw the display using an optimal
layout

Edit > Regenerate

Button Menu equivalent
Sim User’s Manual

Dataflow window UM-155
Zoom In
zoom in by a factor of two from current view

none

Zoom Out
zoom out by a factor of two from current view

none

Zoom Full
zoom out to show all components in window

none

Stop Drawing
halt any drawing currently happening in the
window

none

Show Wave
display the embedded wave viewer pane

View > Show Wave

Button Menu equivalent
ModelSim User’s Manual

UM-156 7 - Graphic interface

Model
Exploring the connectivity of your design

A primary use of the Dataflow window is exploring the "physical" connectivity of your
design. One way of doing this is by expanding the view from process to process. This
allows you to see the drivers/receivers of a particular signal, net, or register.

You can expand the view of your design using menu commands or your mouse. To expand
with the mouse, simply double click a signal, register, or process. Depending on the specific
item you click, the view will expand to show the driving process and interconnect, the
reading process and interconnect, or both.

Alternatively, you can select a signal, register, or net, and use one of the toolbar buttons or
menu commands described below:

As you expand the view, note that the "layout" of the design may adjust to best show the
connectivity. For example, the location of an input signal may shift from the bottom to the
top of a process.

Tracking your path through the design

You can quickly traverse through many components in your design. To help mark your
path, the items that you have expanded are highlighted in green.

You can clear this highlighting using the Edit > Erase highlight command.

Expand net to all drivers
display driver(s) of the selected signal, net, or
register

Navigate > Expand net
to drivers

Expand net to all drivers and readers
display driver(s) and reader(s) of the selected
signal, net, or register

Navigate > Expand net

Expand net to all readers
display reader(s) of the selected signal, net, or
register

Navigate > Expand net
to readers
Sim User’s Manual

Dataflow window UM-157
The embedded wave viewer

Another way of exploring your design is to use the Dataflow window’s embedded wave
viewer. This viewer closely resembles, in appearance and operation, the stand-alone Wave
window (see "Wave window" (UM-206) for more information).

The wave viewer is opened using the View > Show Wave command.

One common scenario is to place signals in the wave viewer and the Dataflow panes, run
the design for some amount of time, and then use time cursors to investigate value changes.
In other words, as you place and move cursors in the wave viewer pane (see "Using time
cursors in the Wave window" (UM-226) for details), the signal values update in the Dataflow
pane.

Another scenario is to select a process in the Dataflow pane, which automatically adds to
the wave viewer pane all signals attached to the process.

See "Tracing events (causality)" (UM-159) for another example of using the embedded wave
viewer.
ModelSim User’s Manual

UM-158 7 - Graphic interface

Model
Zooming and panning

The Dataflow window offers several tools for zooming and panning the display.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zooming with the mouse

To zoom with the mouse, you can either use the middle mouse button or enter Zoom Mode

by selecting View > Zoom and then use the left mouse button.

Four zoom options are possible by clicking and dragging in different directions:

• Down-Right: Zoom Area (In)

• Up-Right: Zoom Out (zoom amount is displayed at the mouse cursor)

• Down-Left: Zoom Selected

• Up-Left: Zoom Full

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixels to activate.

Panning with the mouse

To pan with the mouse you must enter Pan Mode by selecting View > Pan.

Now click and drag with the left mouse button to pan the design.

Zoom In
zoom in by a factor
of two from the
current view

Zoom Out
zoom out by a
factor of two from
current view

Zoom Full
zoom out to view
the entire
schematic
Sim User’s Manual

Dataflow window UM-159
Tracing events (causality)

One of the most useful features of the Dataflow window is tracing an event to see the cause
of an unexpected output. This feature uses the Dataflow window’s embedded wave viewer
(see "The embedded wave viewer" (UM-157) for more details).

In short you identify an output of interest in the Dataflow pane and then use time cursors in
the wave viewer pane to identify events that contribute to the output.

The process for tracing events is as follows:

1 Log all signals before starting the simulation (add log -r /*).

2 After running a simulation for some period of time, open the Dataflow window and the
wave viewer pane.

3 Add a process or signal of interest into the Dataflow window (if adding a signal, find its
driving process). Select the process and all signals attached to the selected process will
appear in the wave viewer pane.

4 Place a time cursor on an edge of interest; the edge should be on a signal that is an output
of the process.

5 Select Trace > Trace next event.

A second cursor is added at the most recent input event.

6 Keep selecting Trace > Trace next event until you've reached an input event of interest.
Note that the signals with the events are selected in the wave pane.

7 Now select Trace > Trace set.

The Dataflow display "jumps" to the source of the selected input event(s). The operation
follows all signals selected in the wave viewer pane. You can change which signals are
followed by changing the selection.

8 To continue tracing, go back to step 5 and repeat.

If you want to start over at the originally selected output, select Trace > Trace reset.
ModelSim User’s Manual

UM-160 7 - Graphic interface

Model
Tracing the source of an unknown (X)

Another useful debugging option is locating the source of an unknown (X). Unknown
values are most clearly seen in the Wave window—the waveform displays in red when a
value is unknown.

The procedure for tracing an unknown is as follows:

1 Load your design.

2 Log all signals in the design or any signals that may possibly contribute to the unknown
value (log -r /* will log all signals in the design).

3 Add signals to the Wave window or wave viewer pane, and run your design the desired
length of time.

4 Put a cursor on the time at which the signal value is unknown.

5 Add the signal of interest to the Dataflow window, making sure the signal is selected.

6 Select Trace > TraceX, Trace > TraceX Delay, Trace > ChaseX, or Trace > ChaseX
Delay.

These commands behave as follows:

TraceX / TraceX Delay— Step back to the last driver of an X value. TraceX Delay works
similarly but it steps back in time to the last driver of an X value. TraceX should be used
for RTL designs; TraceX Delay should be used for gate-level netlists with backannotated
delays.

Trace > ChaseX / ChaseX Delay — "Jumps" through a design from output to input,
following X values. ChaseX Delay acts the same as ChaseX but also moves backwards in
Sim User’s Manual

Dataflow window UM-161
time to the point where the output value transitions to X.ChaseX should be used for RTL
designs; ChaseX Delay should be used for gate-level netlists with backannotated delays.

Finding items by name in the Dataflow window

Select Edit > Find to search for signal, net, or register names or an instance of a
component.

Enter an item name and specify whether it is an instance of a process (Instance); a signal,
net, or register (Signal); or either (Any).

Specify Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

If you want to zoom in on the located item, select Zoom To. You can continue searching
using the Find Next button.
ModelSim User’s Manual

UM-162 7 - Graphic interface

Model
Saving the display

Saving a .eps file

Select File > Print Postscript to save the waveform as a .eps file.

The Print Postscript dialog box includes these options:

Printer

• File name
Enter a filename for the encapsulated Postscript (.eps) file to create; or browse to a
previously created .eps file and use that filename.

Paper

Setup button

See "Printer Page Setup" (UM-236).
Sim User’s Manual

Dataflow window UM-163
Printing on Windows platforms

Select File > Print to print the Dataflow display or to save the display to a file.

The Print dialog box includes these options:

Printer

• Name
Choose the printer from the drop-down menu. Set printer properties with the Properties
button.

• Status
Indicates the availability of the selected printer.

• Type
Printer driver name for the selected printer. The driver determines what type of file is
output if "Print to file" is selected.

• Where
The printer port for the selected printer.

• Comment
The printer comment from the printer properties dialog box.

• Print to file
Make this selection to print the display to a file instead of a printer. The printer driver
determines what type of file is created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a .prn or printer control language file. To create an
encapsulated Postscript file (.eps) use the File > Print Postscript menu selection.
ModelSim User’s Manual

UM-164 7 - Graphic interface

Model
Configuring page setup

Clicking the Setup button in the Print Postscript or Print dialog box allows you to define
the following options (this is the same dialog that opens via File > Page setup).

The Dataflow Page Setup dialog box includes these options:

• View
Specifies Full (everything in the window) or Current View (only that which is visible).

• Highlight
Specifies that highlighting (see "Tracking your path through the design" (UM-156)) is On
or Off.

• Color Mode
Specifies Color (256 colors), Invert Color (gray-scale) or Mono (monochrome) color
mode.

• Orientation
Specifies Landscape (horizontal) or Portrait (vertical) orientation.

• Paper
Specifies the font to use for printing.
Sim User’s Manual

Dataflow window UM-165
Symbol mapping

The Dataflow window has built-in mappings for all Verilog primitive gates (i.e., AND, OR,
etc.). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. This is done through a file containing name pairs, one per
line, where the first name is the concatenation of the design unit and process names,
(DUname.Processname), and the second name is the name of a built-in symbol. For
example:

xorg(only).p1 XOR
org(only).p1 OR
andg(only).p1 AND

Entities and modules are mapped the same way:

AND1 AND
AND2 AND # A 2-input and gate
AND3 AND
AND4 AND
AND5 AND
AND6 AND
xnor(test) XNOR

Note that for primitive gate symbols, pin mapping is automatic.

The Dataflow window looks in the current working directory and inside each library
referenced by the design for the file dataflow.bsm (.bsm stands for "Built-in Symbol Map).
It will read all files found.

User-defined symbols

You can also define your own symbols using an ASCII symbol library file format for
defining symbol shapes. This capability is delivered via Concept Engineering’s NlviewTM
widget Symlib format. For more specific details on this widget, see www.model.com/
products/documentation/nlviewSymlib.html.

The Dataflow window will search the current working directory, and inside each library
referenced by the design, for the file dataflow.sym. Any and all files found will be given to
the Nlview widget to use for symbol lookups. Again, as with the built-in symbols, the DU
name and optional process name is used for the symbol lookup. Here's an example of a
symbol for a full adder:

symbol adder(structural) * DEF \
port a in -loc -12 -15 0 -15 \
pinattrdsp @name -cl 2 -15 8 \
port b in -loc -12 15 0 15 \
pinattrdsp @name -cl 2 15 8 \
port cin in -loc 20 -40 20 -28 \
pinattrdsp @name -uc 19 -26 8 \
port cout out -loc 20 40 20 28 \

pinattrdsp @name -lc 19 26 8 \
port sum out -loc 63 0 51 0 \
pinattrdsp @name -cr 49 0 8 \
path 10 0 0 7 \
path 0 7 0 35 \
path 0 35 51 17 \
path 51 17 51 -17 \
path 51 -17 0 -35 \
path 0 -35 0 -7 \
path 0 -7 10 0
ModelSim User’s Manual

http://www.model.com/products/documentation/nlviewSymlib.html
http://www.model.com/products/documentation/nlviewSymlib.html

UM-166 7 - Graphic interface

Model
Port mapping is done by name for these symbols, so the port names in the symbol definition
must match the port names of the Entity|Module|Process (in the case of the process, it’s the
signal names that the process reads/writes).

Configuring window options

You can configure several options that determine how the Dataflow window behaves. The
settings affect only the current session.

Select Tools > Options to open the Dataflow Options dialog box.

The General options tab includes these options:

• Hide Cells
By default the Dataflow window automatically hides instances that have either
’celldefine, VITAL_LEVEL0, or VITAL_LEVEL1 attributes. Unchecking this disables
automatic cell hiding.

• Keep Dataflow
Keeps previous contents when adding new signals or processes to the window.

• Show Hierarchy
Displays connectivity using hierarchical references. Note that selecting this will erase the
current contents of the window.

• Bottom inout pins
Places inout pins on the bottom of components rather than on the right with output pins.

Important: When you create or modify a symlib file, you must generate a file index.
This index is how the Nlview widget finds and extracts symbols from the file. To
generate the index, select Tools > Create symlib index (Dataflow window) and specify
the symlib file. The file will be rewritten with a correct, up-to-date index.
Sim User’s Manual

Dataflow window UM-167
• Disable Sprout
Displays only the selected signal or process with its immediate fanin/fanout. Configures
window to behave like the Dataflow window of versions prior to 5.6.

• Select equivalent nets
If the item you select traverses hierarchy, then ModelSim selects all connected items
across the hierarchy.

• Log nets
Logs signals when they are added to the window.

• Select environment
Updates the Structure, Signals, and Source windows to reflect the net selected in the
Dataflow window.

The Warning options tab includes these options:

• Enable diverging X fanin warning
Enables the warning message, "ChaseX: diverging X fanin. Reduce the selection list and
try again."

• Enable depth limit warning
Enables the warning message, "ChaseX: Stop because depth limit reached! Possible
loop?"

• Enable X event at time 0 warning
Enables the warning message, ""Driving X event at time 0."
ModelSim User’s Manual

UM-168 7 - Graphic interface

Model
List window

The List window displays the results of your simulation run in tabular format. The window
is divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and delta visible on the left.

HDL items you can view

One entry is created for each of the following items within the design:

• VHDL
signals and process and shared variables

• Verilog
nets, registers, and variables

• Virtuals
Virtual signals and functions

Note: Constants, generics, and parameters are not viewable in the List or Wave windows.
Sim User’s Manual

List window UM-169
Adding HDL items to the List window

Before adding items to the List window you may want to set the window display properties
(see "Setting List window display properties" (UM-175)). You can add items to the List
window in several ways.

Adding items with drag and drop

You can drag and drop items into the List window from the Signals, Source, Process,
Variables, Wave, or Structure window. Select the items in the first window, then drop them
into the List window. Depending on what you select, all items or any portion of the design
may be added.

Adding items from the Main window command line

Invoke the add list (CR-32) command to add one or more individual items; separate the
names with a space:

add list <item_name> <item_name>

You can add all the items in the current region with this command:

add list *

Or add all the items in the design with:

add list -r /*

Adding items with a List window format file

To use a List window format file you must first save a format file for the design you are
simulating. The saved format file can then be used as a DO file to recreate the List window
formatting. Follow these steps:

• Add HDL items to your List window.

• Edit and format the items to create the view you want (see "Editing and formatting HDL
items in the List window" (UM-172)).

• Save the format to a file by selecting File > Save Format (List window).

To use the format file, start with a blank List window, and run the DO file in one of two
ways:

• Invoke the do (CR-68) command from the command line:
do <my_list_format>

• Select File > Load Format from the List window menu bar.

Note: List window format files are design-specific; use them only with the design you
were simulating when they were created. If you try to use the wrong format file,
ModelSim will advise you of the HDL items it expects to find.
ModelSim User’s Manual

UM-170 7 - Graphic interface

Model
The List window menu bar

The following menu commands are available from the List window menu bar.

File menu

Edit menu

Open Dataset open an existing WLF file

Save Dataset save data from the current simulation to a WLF file

Write List save the List window data to a text file in one of three formats; see
"Saving List window data to a file" (UM-179) for details

Save Format save the current List window display and signal preferences to a
DO (macro) file; running the DO file will reformat the List
window to match the display as it appeared when the DO file was
created

Load Format run a List window format DO file previously saved with Save
Format

Close close this copy of the List window

Cut cut the selected item field from the listing; see "Editing and
formatting HDL items in the List window" (UM-172)

Copy copy the selected item field

Paste paste the previously cut or copied item to the left of the currently
selected item

Delete delete the selected item field

Select All select all signals in the List window

Unselect All deselect all signals in the List window

Add Marker add a time marker at the currently selected line

Delete Marker delete the selected marker from the listing

Find find the specified item label within the List window
Sim User’s Manual

List window UM-171
View menu

Tools menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Signal Properties set label, radix, trigger on/off, and field width for the selected item

Goto choose the time marker to go to from a list of current markers

Combine Signals combine the selected fields into a user-defined bus; keep copies of
the original items rather than moving them; see "Combining items
in the List window" (UM-174)

Window
Preferences

set display properties for all items in the window: delta settings,
trigger on selection, strobe period, label size, and dataset prefix
ModelSim User’s Manual

UM-172 7 - Graphic interface

Model
Editing and formatting HDL items in the List window

Once you have the HDL items you want in the List window, you can edit and format the
list to create the view you find most useful. (See also, "Adding HDL items to the List
window" (UM-169))

To edit an item:

Select the item’s label at the top of the List window or one of its values from the listing.
Move, copy or remove the item by selecting commands from the List window Edit menu
(UM-170) menu.

You can also click+drag to move items within the window.

To format an item:

Select the item’s label at the top of the List window or one of its values from the listing,
then select View > Signal Properties (List window). The resulting List Signal Properties
dialog box allows you to set the item’s label, label width, triggering, and radix.

The List Signal Properties dialog box includes these options:

• Signal
Shows the full pathname of the selected signal.

• Display Name
Specifies the label that appears at the top of the List window column.
Sim User’s Manual

List window UM-173
• Radix
Specifies the radix (base) in which the item value is expressed. The default radix is
symbolic, which means that for an enumerated type, the List window lists the actual
values of the enumerated type of that item. You can change the default radix for the
current simulation using either Simulate > Simulation Options (Main window) or the
radix command (CR-108). You can change the default radix permanently by editing the
DefaultRadix (UM-345) variable in the modelsim.ini file.

For the other radixes - binary, octal, decimal, unsigned, hexadecimal, or ASCII - the item
value is converted to an appropriate representation in that radix. In the system
initialization file, modelsim.tcl, you can specify the list translation rules for arrays of
enumerated types for binary, octal, decimal, unsigned decimal, or hexadecimal item
values in the design unit.

Changing the radix can make it easier to view information in the List window. Compare
the image below (with decimal values) with the image on page UM-168 (with symbolic
values).

• Width
Allows you to specify the desired width of the column used to list the item value. The
default is an approximation of the width of the current value.

• Trigger: Triggers line
Specifies that a change in the value of the selected item causes a new line to be displayed
in the List window.

• Trigger: Does not trigger line
Specifies that a change in the value of the selected item does not affect the List window.

The trigger specification affects the trigger property of the selected item. See also,
"Setting List window display properties" (UM-175).
ModelSim User’s Manual

UM-174 7 - Graphic interface

Model
Combining items in the List window

You can combine signals in the List window into busses. A bus is a collection of signals
concatenated in a specific order to create a new virtual signal with a specific value. To
create a bus, select one or more signals in the List window and then choose Tools >
Combine Signals.

The Combine Selected Signals dialog box includes these options:

• Name
Specifies the name of the newly created bus.

• Order of Indexes
Specifies in which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the List window will be assigned an index of 0. If set to
Descending, the first signal selected will be assigned the highest index number. Note that
the signals are added to the bus in the order that they appear in the window. Ascending
and descending affect only the order and direction of the indexes of the bus.

• Remove selected signals after combining
Specifies whether you want to remove the selected signals from the List window once the
bus is created.
Sim User’s Manual

List window UM-175
Setting List window display properties

Before you add items to the List window you can set the window’s display properties. To
change when and how a signal is displayed in the List window, select Tools > Window
Preferences (List window). The resulting Modify Display Properties dialog box contains
tabs for Window Properties and Triggers.

Window Properties tab

The Window Properties tab includes these options:

• Signal Names
Sets the number of path elements to be shown in the List window. For example, "0"
shows the full path. "1" shows only the leaf element.

• Max Title Rows
Sets the maximum number of rows in the name pane.

• Dataset Prefix: Always Show Dataset Prefixes
Displays the dataset prefix associated with each signal pathname. Useful for displaying
signals from multiple datasets.

• Dataset Prefix: Show Dataset Prefix if 2 or more
Displays dataset prefixes if there are signals in the window from 2 or more datasets.
ModelSim User’s Manual

UM-176 7 - Graphic interface

Model
• Dataset Prefix: Never Show Dataset Prefixes
Turns off display of dataset prefixes.

Trigger settings tab

The Triggers tab controls the triggering for the display of new lines in the List window.
You can specify whether an HDL item trigger or a strobe trigger is used to determine when
the List window displays a new line. If you choose Trigger on: Signal Change, then you
can choose between collapsed or expanded delta displays. You can also choose a
combination of signal and strobe triggers. To use gating, Signal Change or Strobe or both
must be selected. See "Configuring a List trigger with Expression Builder" (UM-382) for an
example.

The Triggers tab includes the following options:

• Expand Deltas
When selected with the Trigger on: Signal Change check box, displays a new line for
each time step on which items change, including deltas within a single unit of time
resolution.

• Collapse Deltas
Displays only the final value for each time unit.

• No Deltas
Hides simulation cycle (delta) column.
Sim User’s Manual

List window UM-177
• Trigger On Signal Change
Triggers on signal changes. Defaults to all signals. Individual signals can be excluded
from triggering by using the View > Signal Properties dialog box or by originally
adding them with the -notrigger option to the add list command (CR-32).

• Trigger On Strobe
Triggers on the Strobe Period you specify; specify the first strobe with First Strobe at:.

• Use Gating Expression
Enables triggers to be gated on (a value of 1) or off (a value of 0) by the specified
ExpressionOn Duration
The duration for gating to remain open after the last list row in which the expression
evaluates to true; expressed in x number of default timescale units. Gating is
level-sensitive rather than edge-triggered.

Finding items by name in the List window

The Find dialog box
allows you to search for
text strings in the List
window. Select Edit >
Find (List window) to
bring up the Find dialog
box.

Enter a text string and
Find it by searching
Right or Left through the
List window display.
Specify Name to search the real pathnames of the items or Label to search their assigned
names (see "Setting List window display properties" (UM-175)).

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.
ModelSim User’s Manual

UM-178 7 - Graphic interface

Model
Setting time markers in the List window

Select Edit > Add Marker (List window) to tag the selected list line with a marker. The
marker is indicated by a thin box surrounding the marked line. The selected line uses the
same indicator, but its values are highlighted. Delete markers by first selecting the marked
line, then selecting Edit > Delete Marker.

Finding a marker

Choose a specific marked line to view by selecting View > Goto. The marker name (on the
Goto list) corresponds to the simulation time of the selected line.
Sim User’s Manual

List window UM-179
Saving List window data to a file

Select File > Write List (List window) to save the List window data in one of these
formats:

• Tabular
writes a text file that looks like the window listing

ns delta /a /b /cin /sum /cout
0 +0 X X U X U
0 +1 0 1 0 X U
2 +0 0 1 0 X U

• Events
writes a text file containing transitions during simulation

@0 +0
/a X
/b X
/cin U
/sum X
/cout U
@0 +1
/a 0
/b 1
/cin 0

• TSSI
writes a file in standard TSSI format; see also, the write tssi command (CR-222)

0 00000000000000010?????????
2 00000000000000010???????1?
3 00000000000000010??????010
4 00000000000000010000000010
100 00000001000000010000000010

You can also save List window output using the write list command (CR-218).
ModelSim User’s Manual

UM-180 7 - Graphic interface

Model
List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key Action

<left arrow> scroll listing left (selects and highlights the item to the left of the
currently selected item)

<right arrow> scroll listing right (selects and highlights the item to the right of
the currently selected item)

<up arrow> scroll listing up

<down arrow> scroll listing down

<page up>
<control-up arrow>

scroll listing up by page

<page down>
<control-down
arrow>

scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signal

<shift-tab> searches backward (up) to the previous transition on the selected
signal (does not function on HP workstations)

<shift-left arrow>
<shift-right arrow>

extends selection left/right

<control-f> opens the Find dialog box to find the specified item label within
the list display
Sim User’s Manual

Process window UM-181
Process window

The Process window displays a list of processes. If View > Active is selected then all
processes scheduled to run during the current simulation cycle are displayed along with the
pathname of the instance in which each process is located. If View > In Region is selected
then only the processes in the currently selected region are displayed.

Each HDL item in the scrollbox is
preceded by one of the following
indicators:

• <Ready>
Indicates that the process is
scheduled to be executed within
the current delta time.

• <Wait>
Indicates that the process is
waiting for a VHDL signal or
Verilog net or variable to change
or for a specified time-out period.

• <Done>
Indicates that the process has
executed a VHDL wait statement
without a time-out or a sensitivity list. The process will not restart during the current
simulation run.

If you select a "Ready" process, it will be executed next by the simulator.

When you click on a process in the Process window, the following windows are updated:

Note: In ModelSim versions 5.7 and later the information contained in the Process
window can also be displayed in the Main window Workspace (UM-138). Select View >
Active Process (Main window) when running a simulation.

Window updated Result

 Dataflow window (UM-149) highlights the selected process

 Signals window (UM-183) shows the signals in the region in which the process is
located

 Source window (UM-191) shows the associated source code

 Structure window (UM-199) shows the region in which the process is located

 Variables window (UM-203) shows the VHDL variables and Verilog registers and
variables in the process
ModelSim User’s Manual

UM-182 7 - Graphic interface

Model
The Process window menu bar

The following menu commands are available from the Process window menu bar.

File menu

Edit menu

View menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Save List save the process tree to a text file viewable with the ModelSim
notepad (CR-95)

Environment Follow Context Selection: update the window based on the
selection in the Structure window (UM-199);

Fix to Current Context: maintain the current view, do not update

Close close this copy of the Process window

Copy copy the selected process’ full name

Select All select all processes in the Process window

Unselect All deselect all processes in the Process window

Find find the specified text string within the process list; choose the
Status (ready, wait or done), the Process label, or the path to
search, and the search direction: down or up

Active display all the processes that are scheduled to run during the
current simulation cycle

In Region display any processes that exist in the region that is selected in the
Structure window

Sort sort the process list in either ascending, descending, or
declaration order
Sim User’s Manual

Signals window UM-183
Signals window

The Signals window is divided into two panes. The left pane shows the names of HDL
items in the current region (which is selected in the Structure window). The right pane
shows the values of the associated HDL items at the end of the current run. The data in this
pane is similar to that shown in the Wave window (UM-206), except that the values do not
change dynamically with movement of the selected Wave window cursor.

You can double-click a signal and it will highlight that signal in the Source window
(opening a Source window if one is not open already). You can also right click a signal
name, and add it to the List, or Wave windows or the current log file.

Horizontal scroll bars for each window pane allow scrolling to the right or left in each pane
individually. The vertical scroll bar will scroll both panes together.

The HDL items can be sorted in ascending, descending, or declaration order.

HDL items you can view

One entry is created for each of the
following VHDL and Verilog items
within the design:

VHDL items

signals, generics, shared variables

Verilog items

nets, registers, variables, named events,
and module parameters

Virtual items

(indicated by an orange diamond icon)
virtual signals and virtual functions; see
"Virtual signals" (UM-125) for more
information

VHDL composite types (arrays and
record types) and Verilog vector nets,
vector registers, and memories are shown in a hierarchical fashion. ModelSim indicates
hierarchy with plus (expandable), minus (expanded), and blank (single level) boxes. See
"Tree window hierarchical view" (UM-135) for more information.
ModelSim User’s Manual

UM-184 7 - Graphic interface

Model
The Signals window menu bar

The following menu commands are available from the Signals window menu bar.

File menu

Edit menu

Save List save the signals tree to a text file viewable with the ModelSim
notepad (CR-95)

Environment allow the window contents to change based on the current
environment; or, fix to a specific context or dataset

Close close this copy of the Signals window

Copy copy the current selection in the Signals window

Select All select all items in the Signals window

Unselect All unselect all items in the Signals window

Expand Selected expand the hierarchy of the selected items

Collapse Selected collapse the hierarchy of the selected items

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Force apply stimulus to the specified Signal Name; specify Value, Kind
(Freeze/Drive/Deposit), Delay, and Cancel; see also the force
command (CR-82)

Noforce remove the effect of any active force command (CR-82) on the
selected HDL item; see also the noforce command (CR-92)

Clock define clock signals by Signal Name, Period, Duty Cycle, Offset,
and whether the first edge is rising or falling, see"Defining clock
signals" (UM-189)

Find find the specified text string within the Signals window; choose
the Name or Value field to search and the search direction: down
or up
Sim User’s Manual

Signals window UM-185
View menu

Add menu

Tools menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Filtering the signal list

The View > Filter menu allows you to specify which HDL items
are shown in the Signals window. Multiple options can be
selected.

Signal Declaration open the source file in the Source window and highlight the signal
declaration

Sort sort the signals tree in either ascending, descending, or declaration
order

Justify Values justify values to the left or right margins of the window pane

Filter choose the port and signal types to view (Input Ports, Output
Ports, InOut Ports and Internal Signals) in the Signals window

Wave place the Selected Signals, Signals in Region, or Signals in Design
in the Wave window (UM-206)

List place the Selected Signals, Signals in Region, or Signals in Design
in the List window (UM-168)

Log place the Selected Signals, Signals in Region, or Signals in Design
in the WLF file

Breakpoints open the Breakpoints dialog; see "Creating and managing
breakpoints" (UM-258)
ModelSim User’s Manual

UM-186 7 - Graphic interface

Model
Forcing signal and net values

The Edit > Force command displays a dialog box that allows you to apply stimulus to the
selected signal or net. Multiple signals can be selected and forced; the force dialog box
remains open until all of the signals are either forced, skipped, or you close the dialog box.
To cancel a force command, use the Edit > NoForce command. See also the force
command (CR-82).

The Force dialog box includes these options:

• Signal Name
Specifies the signal or net for the applied stimulus.

• Value
Initially displays the current value, which can be changed by entering a new value into
the field. A value can be specified in radixes other than decimal by using the form (for
VHDL and Verilog, respectively):

base#value -or- b|o|d|h’value

16#EE or h’EE, for example, specifies the hexadecimal value EE.

• Kind: Freeze
Freezes the signal or net at the specified value until it is forced again or until it is unforced
with a noforce command (CR-92).

Freeze is the default for Verilog nets and unresolved VHDL signals and Drive is the
default for resolved signals.

If you prefer Freeze as the default for resolved and unresolved signals, you can change
the default force kind in the modelsim.ini file; see Appendix A - ModelSim variables.

• Kind: Drive
Attaches a driver to the signal and drives the specified value until the signal or net is
forced again or until it is unforced with a noforce command (CR-92). This type of force
is illegal for unresolved VHDL signals.

• Kind: Deposit
Sets the signal or net to the specified value. The value remains until there is a subsequent
driver transaction, or until the signal or net is forced again, or until it is unforced with a
noforce command (CR-92).
Sim User’s Manual

Signals window UM-187
• Delay For
Allows you to specify how many time units from the current time the stimulus is to be
applied.

• Cancel After
Cancels the force command (CR-82) after the specified period of simulation time.

• OK
When you click the OK button, a force command (CR-82) is issued with the parameters
you have set, and is echoed in the Main window. If more than one signal is selected to
force, the next signal down appears in the dialog box each time the OK button is selected.
Unique force parameters can be set for each signal.

Adding HDL items to the Wave and List windows or a WLF file

Use the Add menu to add items from the
Signals window to the Wave window
(UM-206), List window (UM-168), or log
file (WLF file). You can also access
these same commands by right-clicking
a signal in the window.

The WLF file is written as an archive file
in binary format and is used to drive the
List and Wave windows at a later time.
Once signals are added to the WLF file they cannot be removed. If you begin a simulation
by invoking vsim (CR-189) with the -view <WLF_fileame> argument, ModelSim reads the
WLF file to drive the Wave and List windows.

Choose one of the following options from the Add sub-menus:

• Selected Signals
Adds only the item(s) selected in the Signals window.

• Signals in Region
Adds all items in the region that is selected in the Structure window.

• Signals in Design
Adds all items in the design.

Adding items from the Main window command line

Another way to add items to the Wave or List window or the WLF file is to enter the one
of the following commands at the VSIM prompt (choose either the add list (CR-32), add
wave (CR-35), or log (CR-87) command):

add list | add wave | log <item_name> <item_name>

You can add all the items in the current region with this command:

add list | add wave | log *

Or add all the items in the design with:

add list | add wave | log -r /*

If the target window (Wave or List) is closed, ModelSim opens it when you when you
invoke the command.
ModelSim User’s Manual

UM-188 7 - Graphic interface

Model
Finding HDL items in the Signals window

To find the specified text string within the Signals window, choose the Name or Value field
to search and the search direction: Down or Up.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

You can also do a quick find from the keyboard. When the Signals window is active, each
time you type a letter the signal selector (highlight) will move to the next signal whose
name begins with that letter.
Sim User’s Manual

Signals window UM-189
Setting signal breakpoints

You can set "Signal breakpoints" (UM-258) in the Signal window. When a signal breakpoint
is hit, a message appears in the Main window Transcript stating which signal caused the
breakpoint.

To insert a signal breakpoint, select a signal, click your right mouse button , and select
Insert Breakpoint. See "Creating and managing breakpoints" (UM-258) for more
information.

Defining clock signals

Select Edit > Clock to define clock signals by Name, Period, Duty Cycle, Offset, and
whether the first edge is rising or falling. You can also specify a simulation period after
which the clock definition should be cancelled.

For clock signals starting on the rising edge, the definition for Period, Offset, and Duty
Cycle is as follows:

Period

Offset High Time

Low Value

High Value

Duty Cycle = High Time/Period
ModelSim User’s Manual

UM-190 7 - Graphic interface

Model
If the signal type is std_logic, std_ulogic, bit, verilog wire, verilog net, or any other logic
type where 1 and 0 are valid, then 1 is the default High Value and 0 is the default Low
Value. For other signal types, you will need to specify a High Value and a Low Value for
the clock.
Sim User’s Manual

Source window UM-191
Source window

The Source window allows you to view and edit your HDL source code. When you first
load a design, the source file will display automatically if the Source window is open.
Alternatively, you can select an item in a Structure tab of the Main window or use the File
> Open command (Source window) to add a file to the window..

The window displays your source code with line numbers. As shown in the picture below,
you may also see the following:

• Blue line numbers – denote lines on which you can set a breakpoint

• Blue arrow – denotes a process that you have selected in the Process window (UM-181)

• Red diamonds – denote file-line breakpoints; hollow diamonds denote breakpoints that
are currently disabled

• File tabs representing each open file

• Templates pane – displays Language templates (UM-264)

Note that files open by default in read-only mode. You can toggle this mode by selecting
Edit > read only.
ModelSim User’s Manual

UM-192 7 - Graphic interface

Model
The Source window menu bar

The following menu commands are available from the Source window menu bar.

File menu

Edit menu

To edit a source file, make sure read only is not selected on the Edit menu.

New edit a new (VHDL, Verilog or Other) source file

Open select a source file to open

Open Design
Source

open a dialog that lists all source files for the current design

Close File close the active source file

Use Source specify an alternative file to use for the current source file; this
alternative source mapping exists for the current simulation only

Source Directory add to a list of directories to search for source files; you can set
this permanently using the SourceDir variable in the modelsim.tcl
file

Save save the current source file

Save As save the current source file with a different name

Print print the current source file

Close close the Source window

<editing option> basic editing options include: Undo, Cut, Copy, Paste, Select All,
and Unselect All

Clear highlights clear highlights that result from double-clicking an error message
or a line in a Performance Analyzer report

Comment Selected turn the selected lines into comments by inserting the correct
language comment character at the beginning of each line

Uncomment
Selected

removes comment characters from the selected lines

Find find the specified text string or regular expression within the
source file; there is an option to match case or search backwards

Find Next find the next occurrence of a string specified with the Find
command

Replace find the specified text string or regular expression and replace it
with the specified text string or regular expression

read only toggle the read-only status of the current source file
Sim User’s Manual

Source window UM-193
View menu

Tools menu

Show line numbers toggle line numbers

Show language
templates

toggle display of Language templates (UM-264) pane

Properties list a variety of information about the source file; for example, file
type, file size, file modification date

Examine display the current value of the selected HDL item; same as the
examine (CR-75) command; the item name is shown in the title bar

Describe display information about the selected HDL item; same as the
describe command (CR-66); the item name is shown in the title bar

Compile compile the currently active HDL source file

Breakpoints add, edit, or delete file-line and signal breakpoints; see "Creating
and managing breakpoints" (UM-258)

Options set various Source window options; see Options sub-menu below
ModelSim User’s Manual

UM-194 7 - Graphic interface

Model
Options sub-menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-144) for a
description of the commands.

The Source window toolbar

Buttons on the Source window toolbar give you quick access to these ModelSim commands
and functions.

Colorize Source colorize key words, variables, and comments

Highlight
Executable Lines

highlight the line numbers of executable lines

Middle Mouse
Button Paste

enable/disable pasting by pressing the middle-mouse button

Verilog
Highlighting

specify Verilog-style colorizing

VHDL Highlighting specify VHDL-style colorizing

Freeze File maintain the same source file in the Source window (useful when
you have two Source windows open; one can be updated from the
Structure window (UM-199), the other frozen)

Freeze View disable updating the source view from the
Process window (UM-181)

Auto-Indent Mode indent code automatically when editing the file

Tab Stops set tab stop distance in Source window (see "Setting tab stops in
the Source window" (UM-198))

Source window toolbar buttons

Button Menu equivalent Other equivalents

Compile this file
open the Compile HDL Source
File dialog

Tools > Compile use vcom or vlog command at the
VSIM prompt

see: vcom (CR-145) or
vlog (CR-181) command

Open Source File
open the Open File dialog box
(you can open any text file for
editing in the Source window)

File > Open select an HDL item in the
Structure window, the associated
source file is loaded into the
Source window
Sim User’s Manual

Source window UM-195
Save Source File
save the file in the Source
window

File > Save none

Print
prints the current source file

File > Print none

Cut
cut the selected text within the
Source window

Edit > Cut see: "Mouse and keyboard
shortcuts" (UM-147)

Copy
copy the selected text within the
Source window

Edit > Copy see: "Mouse and keyboard
shortcuts" (UM-147)

Paste
paste the copied text to the cursor
location

Edit > Paste see: "Mouse and keyboard
shortcuts" (UM-147)

Undo
undo the last action

Edit > Undo <control - z><control - ->

Find
find the specified text string
within the source file; match case
option

Edit > Find <control -f>

Restart
reload the design elements and
reset the simulation time to zero,
with the option of using current
formatting, breakpoints, and
WLF file

Main window: Simulate
> Run > Restart

restart <arguments>

see: restart (CR-111)

Run Length
specify the run length for the
current simulation

Main window: Simulate
> Simulation Options

run <specific run length>

see: run (CR-114)

Run
run the current simulation for the
specified run length

Main window: Simulate
> Run
<default_run_length>

run (no arguments)

see: run (CR-114)

Source window toolbar buttons

Button Menu equivalent Other equivalents
ModelSim User’s Manual

UM-196 7 - Graphic interface

Model
Continue Run
continue the current simulation
run until the end of specified run
length or until it hits a breakpoint
or specified break event

Main window: Simulate
> Run > Continue

run -continue

see: run (CR-114)

Run -All
run the current simulation
forever, or until it hits a
breakpoint or specified break
event

Main window: Simulate
> Run > Run -All

run -all

see: run (CR-114), see "Assertions
tab" (UM-255)

Break
stop the current simulation run

Main window: Simulate
> Break

none

Step
steps the current simulation to
the next HDL statement

Main window:
Simulate > Run > Step

step (no arguments)

see: step (CR-122) command

Step Over
HDL statements are executed but
treated as simple statements
instead of entered and traced line
by line

Main window:
Simulate > Run > Step
-Over

step -over

see: step (CR-122) command

Show language templates
toggle display of language
template pane

View > Show Language
Templates

none

Source window toolbar buttons

Button Menu equivalent Other equivalents
Sim User’s Manual

Source window UM-197
Setting file-line breakpoints

You can easily set "File-line breakpoints" (UM-258) in the Source window using your
mouse. Click on a blue line number at the left side of the Source window, and a red diamond
denoting a breakpoint will appear. The breakpoints are toggles – click once to create the
colored diamond; click again to disable or enable the breakpoint.

To delete the breakpoint completely, click the red diamond with your right mouse button,
and select Remove Breakpoint. Other options on the context menu include:

• Disable/Enable Breakpoint
Deactivate or activate the selected breakpoint.

• Edit Breakpoint
Open the File Breakpoint dialog to change breakpoint arguments; see "Adding a
breakpoint" (UM-260) for a description of the dialog.

• Edit All Breakpoints
Open the Modify Breakpoints dialog; see "Breakpoints dialog" (UM-259).

Checking HDL item values and descriptions

There are two quick methods to determine the value and description of an HDL item
displayed in the Source window:

• select an item, then choose Tools > Examine or Tools > Describe from the Source
window menu

• pause over an item with your mouse pointer to see an examine pop-up

You can also invoke the examine (CR-75) and/or describe (CR-66) command on the
command line or in a macro.

Finding and replacing in the Source window

The Find dialog box
allows you to find
and replace text
strings or regular
expressions in the
Source window.
Select Edit > Find
or Edit > Replace to
bring up the Find
dialog box. If you
select Edit > Find,
the Replace field is absent from the dialog.

Enter the value to search for in the Find field. If you are doing a replace, enter the
appropriate value in the Replace field. Optionally specify whether the entries are case
sensitive and whether to search backwards from the current cursor location. Check the
Regular expression checkbox if you are using regular expressions.
ModelSim User’s Manual

UM-198 7 - Graphic interface

Model
Setting tab stops in the Source window

You can set tab stops in the Source window by selecting Tools > Options > Tab Stops or
by editing the tabs variable in the Edit Preferences dialog.

Follow these steps to set tab stops using the GUI.

1 Select Tools > Options > Tab Stops (Source window).

2 In the dialog that appears, enter either a single number "n" and units, which sets a tab
stop every n units, or enter a list of numbers which sets a tab at each location. Available
units and their abbreviations are as follows:

If you don’t specify units, they default to characters.

Here are three examples:

• Enter 5 to set a tab stop every 5 characters.

• Enter 10c to set a tab stop every 10 centimeters.

• Enter a list of numbers like the following to set tab stops at specific character locations:
21 49 77 105 133 161 189 217 245 273 301 329 357 385 413 441 469

Units Abbreviations

centimeters c, cm

millimeters m, mm

inches i, in

points p

pixels (screen units) u

characters char, chars

Important: Do not use quotes or braces in the list (i.e., "21 49" or {21 49}); this will
cause the GUI to hang.
Sim User’s Manual

Structure window UM-199
Structure window

The Structure window provides a hierarchical view of the structure of your design. An entry
is created by each HDL item within the design.

HDL items you can view

The following HDL items for VHDL
and Verilog are represented by
hierarchy within the Structure
window.

VHDL items

(indicated by a dark blue square
icon)
component instantiations, generate
statements, block statements, and
packages

Verilog items

(indicated by a lighter blue circle
icon)
module instantiations, named forks,
named begins, tasks, and functions

Virtual items

(indicated by an orange diamond
icon)
virtual regions; see "Virtual Objects
(User-defined buses, and more)"
(UM-125) for more information.

You can expand and contract the
display to view the hierarchical
structure by clicking on the boxes
that contain "+" or "-". Clicking "+" expands the hierarchy so the sub-elements of that item
can be seen. Clicking "-" contracts the hierarchy.

The first line of the Structure window indicates the top-level design unit being simulated.
By default, this is the only level of the hierarchy that is expanded upon opening the
Structure window.

Note: In ModelSim versions 5.5 and later, the information contained in the Structure
window is shown in the structure tabs of the Main window Workspace (UM-138). The
Structure window will not display by default. You can display the Structure window at
any time by selecting View > Structure (Main window). The discussion below applies
to both the Structure window and the structure tabs in the workspace.
ModelSim User’s Manual

UM-200 7 - Graphic interface

Model
When you select a region in the Structure window, it becomes the current region and is
highlighted; the Source window (UM-191) and Signals window (UM-183) change
dynamically to reflect the information for that region. This feature provides a useful method
for finding the source code for a selected region because the system keeps track of the
pathname where the source is located and displays it automatically, without the need for
you to provide the pathname.

Also, when you select a region in the Structure window, the Process window (UM-181) is
updated if In Region is selected in that window. The Process window will in turn update
the Variables window (UM-203).

Structure window menu bar

The following menu commands are available from the Structure window menu bar. Some
of the commands are also available from a context menu in a Structure tab of the Main
window workspace.

File menu

Edit menu

View menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Save List save the structure tree to a text file viewable with the ModelSim
notepad (CR-95)

Environment 1) specify that the window contents change when the active
dataset is changed; 2) fix the window contents to a specific
dataset; or 3) change to a new root context

Close close this copy of the Structure window

Copy copy the current selection in the Structure window

Expand Selected expand the hierarchy of the selected item

Collapse Selected collapse the hierarchy of the selected item

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Find find the specified text string within the structure tree; see "Finding
items in the Structure window" (UM-202)

Sort sort the structure tree in either ascending, descending, or
declaration order
Sim User’s Manual

Structure window UM-201
Structure window context menu

The Structure window has a context menu that you access by clicking the right-mouse
button.

The Structure tab context menu includes the following options.

• View Source
Opens the source file in the Source window (UM-191). Double-clicking will also open the
source file.

• Add
Add the selected item to the Dataflow, List, or Wave window or to the current Log file.

• Sort
Sorts the HDL items in the Structure tab by alphabetic (ascending or descending) or
declaration order.

• Find
Opens the Find dialog. See "Finding items in the Structure window" (UM-202) for details.

• Expand Selected
Shows the hierarchy of the selected HDL item.

• Collapse Selected
Hides the hierarchy of the selected HDL item.

• Expand All
Shows the hierarchy of all HDL items in the list.

• Collapse All
Hides the hierarchy of all HDL items in the list.

• Save List
Writes the HDL item names in the Structure tab to a text file.

• Save Dataset
Saves the current simulation to a WLF file.
ModelSim User’s Manual

UM-202 7 - Graphic interface

Model
• End Simulation
Terminates the active simulation. This command will be Close <dataset name> on a
dataset Structure tab.

• Close <dataset name>
Closes the specified dataset.

Finding items in the Structure window

The Find dialog box
allows you to search
for text strings in the
Structure window.
Select Edit > Find
(Structure window)
to bring up the Find
dialog box.

Enter the value to
search for in the Find
field. Specify
whether you are
looking for an
Instance, Entity/Module, or Architecture. Also specify which direction to search.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.
Sim User’s Manual

Variables window UM-203
Variables window

The Variables window is divided into two window panes. The left pane lists the names of
HDL items within the current process. The right pane lists the current value(s) associated
with each name. The pathname of the current process is displayed at the bottom of the
window.

HDL items you can view

The following HDL items for
VHDL and Verilog are
viewable within the Variables
window.

VHDL items

constants, generics, and
variables

Verilog items

registers and variables

VHDL composite types
(arrays and record types) and
Verilog vector registers and
memories are shown in a
hierarchical fashion.
ModelSim indicates hierarchy
with plus (expandable), minus (expanded), and blank (single level) boxes. See "Tree
window hierarchical view" (UM-135) for more information.

To change the value of a VHDL variable, constant, or generic or a Verilog register or
variable, move the pointer to the desired name and click to highlight the selection. Select
Edit > Change (Variables window) to bring up a dialog box that lets you specify a new
value. You can enter any value that is valid for the variable. An array value must be
specified as a string (without surrounding quotation marks). To modify the values in a
record, you need to change each field separately.

Click on a process in the Process window to change the Variables window.
ModelSim User’s Manual

UM-204 7 - Graphic interface

Model
The Variables window menu bar

The following menu commands are available from the Variables window menu bar.

File menu

Edit menu

View menu

Add menu

Save List save the variable tree to a text file viewable with the ModelSim
notepad (CR-95)

Environment Follow Process Selection: update the window based on the
selection in the Process window (UM-181)

Fix to Current Process: maintain the current view, do not update

Close close this copy of the Variables window

Copy copy the selected items in the Variables window

Select All select all items in the Variables window

Unselect All deselect all items in the Variables window

Expand Selected expand the hierarchy of the selected item

Collapse Selected collapse the hierarchy of the selected item

Expand All expand the hierarchy of all items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Change change the value of the selected HDL item

Find find the specified text string within the variables tree; choose the
Name or Value field to search and the search direction: Down or
Up

Sort sort the variables tree in either ascending, descending, or
declaration order

Justify Values justify values to the left or right margins of the window pane

Wave/List/Log place the Selected Variables or Variables in Region in the Wave
window (UM-206), List window (UM-168), or WLF file
Sim User’s Manual

Variables window UM-205
Window menu

The Window menu is identical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Finding HDL items in the Variables window

To find the specified text string within the Variables window, choose the Name or Value
field to search and the search direction: Down or Up.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

You can also do a quick find from the keyboard. When the Variables window is active, each
time you type a letter the highlight will move to the next item whose name begins with that
letter.
ModelSim User’s Manual

UM-206 7 - Graphic interface

Model
Wave window

The Wave window, like the List window, allows you to view the results of your simulation.
In the Wave window, however, you can see the results as HDL waveforms and their values.

The Wave window is divided into a number of window panes. All window panes in the
Wave window can be resized by clicking and dragging the bar between any two panes.

Pathname pane

The pathname pane displays signal pathnames. Signals can be displayed with full
pathnames, as shown here, or with only the leaf element displayed. You can increase the
size of the pane by clicking and dragging on the right border. The selected signal is
highlighted.

The white bar along the left margin indicates the selected dataset (see "Splitting Wave
window panes" (UM-216)).

pathnames values waveforms

cursorscursors names and values
Sim User’s Manual

Wave window UM-207
Values pane

The values pane displays the values of the displayed signals.

The radix for each signal can be symbolic, binary, octal, decimal, unsigned, hexadecimal,
ASCII, or default. The default radix can be set by selecting Simulate > Simulation
Options (Main window) (see "Setting default simulation options" (UM-254)).

The data in this pane is similar to that shown in the Signals window (UM-183), except that
the values change dynamically whenever a cursor in the waveform pane is moved.

Waveform pane

The waveform pane displays the waveforms that correspond to the displayed signal
pathnames. It also displays up to 20 cursors. Signal values can be displayed in analog step,
analog interpolated, analog backstep, literal, logic, and event formats. Each signal can be
formatted individually. The default format is logic.

If you rest your mouse pointer on a signal in the waveform pane, a popup displays with
information about the signal. You can toggle this popup on and off in the Wave Window
Properties dialog (see "Setting Wave window display properties" (UM-222)).

Cursor panes

There are three cursor panes–the left pane shows the cursor names; the middle pane shows
the current simulation time and the value for each cursor; and the right pane shows the
absolute time value for each cursor and relative time between cursors. Up to 20 cursors can
be displayed. See "Using time cursors in the Wave window" (UM-226) for more information.

HDL items you can view

VHDL items

(indicated by a dark blue square)
signals and process and shared variables

Verilog items

(indicated by a light blue circle)
nets, registers, variables, and named events

Virtual items

(indicated by an orange diamond)
virtual signals, buses, and functions, see; "Virtual Objects (User-defined buses, and more)"
(UM-125) for more information

Comparison items

(indicated by a yellow triangle)
comparison region and comparison signals; see Chapter 10 - Waveform Comparison for
more information

Note: Constants, generics, and parameters are not viewable in the List or Wave
windows.
ModelSim User’s Manual

UM-208 7 - Graphic interface

Model
The data in the item values pane is very similar to the Signals window, except that the
values change dynamically whenever a cursor in the waveform pane is moved.

At the bottom of the waveform pane you can see a time line, tick marks, and a readout of
each cursor’s position. As you click and drag to move a cursor, the time value at the cursor
location is updated at the bottom of the cursor.

You can resize the window panes by clicking on the bar between them and dragging the bar
to a new location.

Waveform and signal-name formatting are easily changed via the Format menu (UM-211).
You can reuse any formatting changes you make by saving a Wave window format file, see
"Adding items with a Wave window format file" (UM-208).

Adding HDL items in the Wave window

Before adding items to the Wave window you may want to set the window display
properties (see "Setting Wave window display properties" (UM-222)). You can add items to
the Wave window in several ways.

Adding items from the Signals window with drag and drop

You can drag and drop items into the Wave window from the List, Process, Signals, Source,
Structure, or Variables window. Select the items in the first window, then drop them into
the Wave window. Depending on what you select, all items or any portion of the design can
be added.

Adding items from the command line

To add specific HDL items to the window, enter (separate the item names with a space):

VSIM> add wave <item_name> <item_name>

You can add all the items in the current region with this command:

VSIM> add wave *

Or add all the items in the design with:

VSIM> add wave -r /*

Adding items with a Wave window format file

To use a Wave window format file you must first save a format file for the design you are
simulating. Follow these steps:

1 Add the items you want in the Wave window with any method shown above.

2 Edit and format the items, see "Editing and formatting HDL items in the Wave window"
(UM-219) to create the view you want .

3 Save the format to a file by selecting File > Save Format (Wave window).

To use the format file, start with a blank Wave window and run the DO file in one of two
ways:

• Invoke the do command (CR-68) from the command line:

VSIM> do <my_wave_format>
Sim User’s Manual

Wave window UM-209
• Select File > Load Format (Wave window).

The Wave window menu bar

The following menu commands and button options are available from the Wave window
menu bar. Many of these commands are also available via a context menu by clicking your
right mouse button within the Wave window itself.

File menu

Edit menu

Note: Wave window format files are design-specific; use them only with the design you
were simulating when they were created.

Open Dataset open a dataset

Save Dataset save the current simulation to a WLF file

Save Format save the current Wave window display and signal preferences to a DO
(macro) file; running the DO file will reformat the Wave window to
match the display as it appeared when the DO file was created

Load Format run a Wave window format (DO) file previously saved with Save
Format

Save Image saves bitmap file of Wave window

Page Setup configure page setup including paper size, margins, label width,
cursors, grid, color, scaling and orientation

Print send the contents of the Wave window to a selected printer; see
"Saving waveforms" (UM-233) for details

Print Postscript save or print the waveform display as a Postscript file; see "Saving
waveforms" (UM-233) for details

Close close this copy of the Wave window

Cut cut the selected item and waveform from the Wave window; see
"Editing and formatting HDL items in the Wave window" (UM-

219)

Copy copy the selected item and waveform

Paste paste the previously cut or copied item above the currently
selected item

Delete delete the selected item and its waveform

Edit Cursor open a dialog to specify the location of the selected cursor

Delete Cursor delete the selected cursor from the window
ModelSim User’s Manual

UM-210 7 - Graphic interface

Model
View menu

Delete Window
Pane

delete the selected window pane

Select All
Unselect All

select, or unselect, all item names in the pathname pane

Find find the specified item label within the pathname pane or the
specified value within the value pane

Zoom <selection> selection: Full, In, Out, Last, or Range to change the waveform
display range

Mouse Mode toggle mouse pointer between Select Mode (click left mouse
button to select, drag with middle mouse button to zoom) and
Zoom Mode (drag with left mouse button to zoom, click middle
mouse button to select)

Signal Declaration open the source file in the Source window and highlight the signal
declaration for the currently selected signal

Cursors choose a cursor to go to from a list of available cursors

Bookmarks choose a bookmark to go to from a list of available bookmarks

Goto Time scroll the Wave window so the specified time is in view; "g"
hotkey produces the same result

Sort sort the top-level items in the pathname pane; sort with full path
name or viewed name; use ascending or descending order

Justify Values justify values to the left or right margins of the window pane

Refresh Display clear the Wave window, empty the file cache, and rebuild the
window from scratch

 Properties set properties for the selected item (use the Format menu to
change individual properties)
Sim User’s Manual

Wave window UM-211
Insert menu

Format menu

Tools menu

Window menu

The Window menu is identical in all windows. See "Window menu" (UM-144) for a
description of the commands.

Divider insert a divider at the current location

Breakpoint add a breakpoint on the selected signal; see "Signal breakpoints"
(UM-258)

Bookmark add a bookmark with the current zoom range and scroll location;
see "Saving zoom range and scroll position with bookmarks" (UM-

229)

Cursor add a cursor to the waveform pane

Window Pane split the pathname, values and waveform window panes to
provide room for a new waveset

Radix set the selected items’ radix

Format set the waveform format for the selected item – Literal, Logic,
Event, Analog

Color set the color for the selected item from a color palette

Height set the waveform height in pixels for the selected item

Breakpoints add, edit, and delete signal breakpoints; see "Creating and
managing breakpoints" (UM-258)

Bookmarks add, edit, delete, and goto bookmarks; see "Saving zoom range
and scroll position with bookmarks" (UM-229)

Dataset Snapshot enable periodic saving of simulation data to a WLF file

Combine Signals combine the selected items into a user-defined bus

Window
Preferences

set various display properties such as signal path length, cursor
snap distance, row margin, dataset prefixes, waveform popup, etc.
ModelSim User’s Manual

UM-212 7 - Graphic interface

Model
The Wave window toolbar

The Wave window toolbar gives you quick access to these ModelSim commands and
functions.

Wave window toolbar buttons

Button Menu equivalent Other options

Load Wave Format
run a Wave window format (DO)
file previously saved with Save
Format

File > Load Format do wave.do
see do command (CR-68)

Save Wave Format
save the current Wave window
display and signal preferences to a
do (macro) file

File > Save Format none

Print
print a user-selected range of the
current Wave window display to a
printer or a file

File > Print
File > Print Postscript

none

Cut
cut the selected signal from the
Wave window

Edit > Cut right mouse in pathname pane > Cut

Copy
copy the selected signal in the
signal-name pane

Edit > Copy right mouse in pathname pane >
Copy

Paste
paste the copied signal above
another selected signal

Edit > Paste right mouse in pathname pane >
Paste

Find
find a name or value in the Wave
window

Edit > Find <control-f>

Add Cursor
add a cursor to the center of the
waveform pane

Insert > Cursor right mouse in cursor pane
Sim User’s Manual

Wave window UM-213
Delete Cursor
delete the selected cursor from the
window

Edit > Delete Cursor right mouse in cursor pane > Delete
Cursor n

Find Previous Transition
locate the previous signal value
change for the selected signal

Edit > Search
(Search Reverse)

keyboard: Shift + Tab

Find Next Transition
locate the next signal value
change for the selected signal

Edit > Search
(Search Forward)

keyboard: Tab

Select Mode
set mouse to Select Mode – click
left mouse button to select, drag
middle mouse button to zoom

View > Mouse Mode >
Select Mode

none

Zoom Mode
set mouse to Zoom Mode – drag
left mouse button to zoom, click
middle mouse button to select

View > Mouse Mode >
Zoom Mode

none

Zoom in 2x
zoom in by a factor of two from
the current view

View > Zoom > Zoom In keyboard: i I or +

right mouse in wave pane > Zoom
In

Zoom out 2x
zoom out by a factor of two from
current view

View > Zoom > Zoom
Out

keyboard: o O or -

right mouse in wave pane > Zoom
Out

Zoom Full
zoom out to view the full range of
the simulation from time 0 to the
current time

View > Zoom > Zoom
Full

keyboard: f or F

right mouse in wave pane > Zoom
Full

Stop Wave Drawing
halts any waves currently being
drawn in the Wave window

none none

Wave window toolbar buttons

Button Menu equivalent Other options
ModelSim User’s Manual

UM-214 7 - Graphic interface

Model
Restart
reloads the design elements and
resets the simulation time to zero,
with the option of keeping the
current formatting, breakpoints,
and WLF file

Main menu:
Simulate > Run > Restart

restart <arguments>

see: restart (CR-111)

Run
run the current simulation for the
default time length

Main menu:
Simulate > Run > Run
<default_length>

use the run command at the VSIM
prompt

see: run (CR-114)

Continue Run
continue the current simulation
run

Main menu:
Simulate > Run >
Continue

use the run -continue command at
the VSIM prompt

see: run (CR-114)

Run -All
run the current simulation forever,
or until it hits a breakpoint or
specified break event

Main menu:
Simulate > Run > Run
-All

use the run -all command at the
VSIM prompt

see: run (CR-114), also see
"Assertions tab" (UM-255)

Break
stop the current simulation run

none none

Show Drivers
display driver(s) of the selected
signal, net, or register in the
Dataflow window

[Dataflow window]
Navigate > Expand net to
drivers

[Dataflow window] Expand net to
all drivers

right mouse in wave pane > Show
Drivers

Wave window toolbar buttons

Button Menu equivalent Other options
Sim User’s Manual

Wave window UM-215
Using dividers

Dividers serve as a visual aid to signal debugging, allowing you to separate signals and
waveforms for easier viewing. Dividing lines can be placed in the pathname and values
window panes by selecting Insert > Divider (Wave window). Or, you can add a divider
using the -divider argument to the add wave command (CR-35).

Dividing lines can be assigned any name or no name at all. The default name is "New
Divider." In the illustration below, two datasets have been separated with a Divider called
"gold." Notice that the waveforms in the waveform window pane have been separated by
the divider as well.

After you have added a divider, you can move it, change its properties (name and size), or
delete it.

To move a divider — Click and drag the divider to the location you want

To change a divider’s name and size — Click the divider with the right mouse button and
select Divider Properties from the pop-up menu

To delete a divider — Select the divider and either press the <Delete> key on your
keyboard or select Delete from the pop-up menu
ModelSim User’s Manual

UM-216 7 - Graphic interface

Model
Splitting Wave window panes

The pathnames, values and waveforms window panes of the Wave window display can be
split to accommodate signals from one or more datasets. Selecting Insert > Window Pane
(Wave window) creates a space below the selected dataset and makes the new window pane
the selected pane. (The selected wave window pane is indicated by a white bar along the
left margin of the pane.)

In the illustration below, the Wave window is split, showing the current active simulation
with the prefix "sim," and a second view-mode dataset, with the prefix "gold."

For more information on viewing multiple simulations, see Chapter 6 - WLF files
(datasets) and virtuals.
Sim User’s Manual

Wave window UM-217
Combining items in the Wave window

You can combine signals in the Wave window into busses. A bus is a collection of signals
concatenated in a specific order to create a new virtual signal with a specific value. To
create a bus, select one or more signals in the Wave window and then choose Tools >
Combine Signals.

The Combine Selected Signals dialog box includes these options:

• Name
Specifies the name of the newly created bus.

• Order of Indexes
Specifies in which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the Wave window will be assigned an index of 0. If set to
Descending, the first signal selected will be assigned the highest index number. Note that
the signals are added to the bus in the order that they appear in the window. Ascending
and descending affect only the order and direction of the indexes of the bus.

• Remove selected signals after combining
Specifies whether you want to remove the selected signals from the Wave window once
the bus is created.
ModelSim User’s Manual

UM-218 7 - Graphic interface

Model
In the illustration below, three signals have been combined to form a new bus called "bus".
Note that the component signals are listed in the order in which they were selected in the
Wave window. Also note that the value of the bus is made up of the values of its component
signals, arranged in a specific order. Virtual objects are indicated by an orange diamond.

Other virtual items in the Wave window

See "Virtual Objects (User-defined buses, and more)" (UM-125) for information about other
virtual items viewable in the Wave window.

Displaying drivers of the selected waveform

You can automatically display in the Dataflow window the drivers of a signal selected in
the Wave window. You can do this three ways:

• Select a waveform and click the Show Drivers button on the toolbar.

• Select a waveform and select Show Drivers from the shortcut menu

• Double-click a waveform edge (you can enable/disable this option in the display
properties dialog; see "Setting Wave window display properties" (UM-222))

This operation will open the Dataflow window and display the drivers of the signal selected
in the Wave window. The Wave pane in the Dataflow window will also open showing the
Sim User’s Manual

Wave window UM-219
selected signal with a cursor at the selected time. The Dataflow window will show the
signal(s) values at the current time cursor position.

Editing and formatting HDL items in the Wave window

Once you have the HDL items you want in the Wave window, you can edit and format the
list in the pathname and values panes to create the view you find most useful. (See also,
"Setting Wave window display properties" (UM-222).)

To edit an item:

Select the item’s label in the pathname pane or its waveform in the waveform pane. Move,
copy, or remove the item by selecting commands from the Wave window Edit menu (UM-

209).

You can also click+drag to move items within the pathnames and values panes:

• to select several items:
control+click to add or subtract from the selected group

• to move the selected items:
re-click and hold on one of the selected items, then drag to the new location

To format an item:

Select the item’s label in the pathname pane or its waveform in the waveform pane, then
select View > Signal Properties (Wave window) or use the selections in the Format menu.

When you select View > Signal Properties the Wave Signal Properties dialog box opens.
It has three tabs: View, Format, and Compare.
ModelSim User’s Manual

UM-220 7 - Graphic interface

Model
The View tab includes these options:

• Display Name
Specifies a new name (in the pathname pane) for the selected signal.

• Radix
Specifies the Radix of the selected signal(s). Setting this to default causes the signal’s
radix to change whenever the default is modified using the radix command (CR-108).
Item values are not translated if you select Symbolic.

• Wave Color
Specifies the waveform color. Select a new color from
the color palette, or enter a color name. The Default
button in the Colors palette allows you to return the
selected item’s color back to its default value.

• Name Color
Specifies the signal name’s color. Select a new color
from the color palette, or enter a color name. The
Default button in the Colors palette allows you to
return the selected item’s color back to its default
value.

The Format tab includes these options (see next page for example graphic):

• Format: Literal
Displays the waveform as a box containing the item value (if the value fits the space
available). This is the only format that can be used to list a record.
Sim User’s Manual

Wave window UM-221
• Format: Logic
Displays values as U, X, 0, 1, Z, W, L, H, or -.

• Format: Event
Marks each transition during the simulation run.

• Format: Analog [Step | Interpolated | Backstep]
Analog Step
Displays the waveform in step style.

Analog Interpolated
Displays the waveform in interpolated style.

Analog Backstep
Displays the waveform in backstep style. Often used for power calculations.

Offset and Scale
Allows you to adjust the scale of the item as it is seen on the display. Offset is the number
of pixels offset from zero. The scale factor reduces (if less than 1) or increases (if greater
than 1) the number of pixels displayed.

Only the following types are supported in Analog format:

VHDL types:
All vectors - std logic vectors, bit vectors, and vectors derived from these types
Scalar integers
Scalar reals
Scalar times

Verilog types:
All vectors
Scalar reals
Scalar integers

• Height
Allows you to specify the height (in pixels) of the waveform.

The signals in the following illustration demonstrate the various signal formats.

The Compare tab includes the same options as those in the Add Signal Options dialog box
(see "Comparison Method tab" (UM-309)).
ModelSim User’s Manual

UM-222 7 - Graphic interface

Model
Setting Wave window display properties

You can define display properties of the Wave window by selecting Tools > Window
Preferences (Wave window). You can make these changes permanent by selecting Tools
> Save Preferences (Main window). See "Preference variables located in Tcl files" (UM-

352) for details on changing window properties permanently.

The dialog box has two tabs–Display and Grid & Timeline.

The Display tab includes the following options:

• Display Signal Path
Sets the display to show anything from the full pathname of each signal (e.g., sim:/top/
clk) to only its leaf element (e.g., sim:clk). A non-zero number indicates the number of
path elements to be displayed. The default is Full Path.

• Justify Value
Specifies whether the signal values will be justified to the left margin or the right margin
in the values window pane.
Sim User’s Manual

Wave window UM-223
• Snap Distance
Specifies the distance the cursor needs to be placed from an item edge to jump to that
edge (a 0 specification turns off the snap).

• Row Margin
Specifies the distance in pixels between top-level signals.

• Child Row Margin
Specifies the distance in pixels between child signals.

• Waveform Popup Enable
Toggles on/off the popup that displays when you rest your mouse pointer on a signal or
comparison object.

• Waveform Selection Highlighting Enabled
Toggles on/off waveform highlighting. When enabled the waveform is highlighted if you
select the waveform or its value.

• Double-Click to Show Drivers (Dataflow Window)
Toggles on/off double-clicking to show the drivers of the selected waveform. See
"Displaying drivers of the selected waveform" (UM-218) for more details.

• Dataset Prefix
Specifies how signals from different datasets are displayed.

Always Show Dataset Prefixes
All dataset prefixes will be displayed along with the dataset prefix of the current
simulation ("sim").

Show Dataset Prefixes if 2 or more
Displays all dataset prefixes if 2 or more datasets are displayed. "sim" is the default prefix
for the current simulation.

Never Show Dataset Prefixes
No dataset prefixes will be displayed. This selection is useful if you are running only a
single simulation.
ModelSim User’s Manual

UM-224 7 - Graphic interface

Model
The Grid & Timeline tab is used to configure grid lines and the horizontal axis in the
waveform pane. You can also access this tab by right-clicking in the cursor tracks at the
bottom of the Wave window and selecting Grid & Timeline Properties. The tab has the
following options:

• Grid Offset
Specifies the time (in user time units) of the first grid line. Default is 0.

• Grid Period
Specifies the time (in user time units) between subsequent grid lines. Default is 1.

• Minimum Grid Spacing
Specifies the closest (in pixels) two grid lines can be drawn before intermediate lines will
be removed. Default is 40.

• Timeline Configuration
Specifies whether to display simulation time or grid period count on the horizontal axis.
Default is to display simulation time.

Sorting a group of HDL items

Select View > Sort to sort the items in the pathname and values panes.

Setting signal breakpoints

You can set "Signal breakpoints" (UM-258) in the Wave window. When a signal breakpoint
is hit, a message appears in the Main window Transcript stating which signal caused the
breakpoint.

To insert a signal breakpoint, select a signal, click your right mouse button , and select
Insert Breakpoint. A breakpoint will be set on the selected signal. See "Creating and
managing breakpoints" (UM-258) for more information.
Sim User’s Manual

Wave window UM-225
Finding items by name or value in the Wave window

The Find dialog box
allows you to search for
text strings in the Wave
window. Select
Edit > Find (Wave
window) to bring up
the Find dialog box.

Choose either the
Name or Value field to
search and enter the
value to search for in
the Find field. Find the
item by searching Down or Up through the Wave window display.

Check Exact if you only want to find items that match your search exactly. For example,
searching for "clk" without Exact will find /top/clk and clk1.

Check Auto Wrap to continue the search at the beginning of the window.

The find operation works only within the active pane.
ModelSim User’s Manual

UM-226 7 - Graphic interface

Model
Using time cursors in the Wave window

When the Wave window is first drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. You can add
cursors to the waveform pane by selecting Insert > Cursor (or the Add Cursor button
shown below). The selected cursor is drawn as a bold solid line; all other cursors are drawn
with thin lines. Remove cursors by selecting them and selecting Edit > Delete Cursor (or
the Delete Cursor button shown below).

Naming cursors

By default cursors are named "Cursor <n>". To rename a cursor, click the name in the left-
hand cursor pane with your right mouse button. Type a new name and press the <Enter>
key on your keyboard.

interval measurement

selected cursor is bold

click name or value to
select or double-click to
jump to that cursor locked cursor is red

Add Cursor
add a cursor to the
waveform window

Delete Cursor
delete the selected cursor
from the window
Sim User’s Manual

Wave window UM-227
Locking cursors

You can lock a cursor in position so it won’t move. Click a cursor with your right-mouse
button and select Lock <cursor name>. The cursor turns red and you can no longer move
it with the mouse. As a convenience, you can hold down the <shift> key and click-and-drag
the cursor. Once you let go of the cursor, it will be locked in the new position. To unlock a
cursor, right-click it and select Unlock <cursor name>.

Finding cursors

The cursor value corresponds to the simulation time of that cursor. Choose a specific cursor
view by selecting View > Cursors.

You can also access cursors by clicking a name or value in the left-hand cursor pane.
Single-clicking selects a cursor; double-clicking jumps to a cursor. Alternatively, you can
click a value with your second mouse button and type the value to which you want to scroll.

Making cursor measurements

Each cursor is displayed with a time box showing the precise simulation time at the bottom.
When you have more than one cursor, each time box appears in a separate track at the
bottom of the display. ModelSim also adds a delta measurement showing the time
difference between two adjacent cursor positions.

If you click in the waveform display, the cursor closest to the mouse position is selected
and then moved to the mouse position. Another way to position multiple cursors is to use
the mouse in the time box tracks at the bottom of the display. Clicking anywhere in a track
selects that cursor and brings it to the mouse position.

Cursors will "snap" to a waveform edge if you click or drag a cursor to within ten pixels of
a waveform edge. You can set the snap distance in the Window Preferences dialog (select
Tools > Window Preferences). You can position a cursor without snapping by dragging
in the cursor track below the waveforms.

You can also move cursors to the next transition of a signal with these toolbar buttons:

Find Previous
Transition
locate the previous signal
value change for the
selected signal

Find Next Transition
locate the next signal
value change for the
selected signal
ModelSim User’s Manual

UM-228 7 - Graphic interface

Model
Examining waveform values

You can use your mouse to display a dialog that shows the value of a waveform at a
particular time. You can do this two ways:

• Rest your mouse pointer on a waveform. After a short delay, a dialog will pop-up that
displays the value for the time at which your mouse pointer is positioned. If you’d prefer
that this popup not display, it can be toggled off in the display properties. See "Setting
Wave window display properties" (UM-222).

• Right-click a waveform and select Examine. A dialog displays the value for the time at
which you clicked your mouse.

Zooming - changing the waveform display range

Zooming lets you change the simulation range in the waveform pane. You can zoom using
the context menu, toolbar buttons, mouse, keyboard, or commands.

You can access Zoom commands from the View menu on the toolbar or by clicking the
right mouse button in the waveform pane.

The Zoom menu options include:

• Zoom Full
Redraws the display to show the entire simulation from time 0 to the current simulation
time.

• Zoom In
Zooms in by a factor of two, increasing the resolution and decreasing the visible range
horizontally.

• Zoom Out
Zooms out by a factor of two, decreasing the resolution and increasing the visible range
horizontally.

• Zoom Last
Restores the display to where it was before the last zoom operation.

• Zoom Range
Brings up a dialog box that allows you to enter the beginning and ending times for a range
of time units to be displayed.

Zooming with toolbar buttons

These zoom buttons are available on the toolbar:

Zoom in 2x
zoom in by a factor of two
from the current view

Zoom out 2x
zoom out by a factor of
two from current view

Zoom Full
zoom out to view the full
range of the simulation
from time 0 to the current
time

Zoom Mode
change mouse pointer to
zoom mode; see below
Sim User’s Manual

Wave window UM-229
Zooming with the mouse

To zoom with the mouse, first enter zoom mode by selecting View > Mouse Mode > Zoom
Mode (Wave window). The left mouse button (<Button-1>) then offers 3 zoom options by
clicking and dragging in different directions:

• Down-Right or Down-Left: Zoom Area (In)

• Up-Right: Zoom Out

• Up-Left: Zoom Fit

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than
10 pixels to activate.

You can also enter zoom mode temporarily by holding the <Ctrl> key down while in select
mode.

With the mouse in the Select Mode, the middle mouse button will perform the above zoom
operations.

Zooming keyboard shortcuts

See "Wave window mouse and keyboard shortcuts" (UM-231) for a complete list of Wave
window keyboard shortcuts.

Saving zoom range and scroll position with bookmarks

Bookmarks allow you to save a particular zoom range and scroll position. This lets you
return easily to a specific view later. You save the bookmark with a name, and then access
the named bookmark from the Bookmark menu.

Bookmarks are saved in the Wave format file (see "Adding items with a Wave window
format file" (UM-208)) and are restored when the format file is read. There is no limit to the
number of bookmarks you can save.

Bookmarks can also be created and managed from the command line. See the bookmark
add wave command (CR-42) for details.

To add a bookmark, select Insert > Bookmark (Wave window).
ModelSim User’s Manual

UM-230 7 - Graphic interface

Model
The Bookmark Properties dialog includes the following options.

• Bookmark Name
A text label to assign to the bookmark. The name will identify the bookmark on the
View > Bookmarks menu.

• Zoom Range
A starting value and ending value that define the zoom range.

• Top Index
The item that will display at the top of the Wave window. For instance, if you specify 15,
the Wave window will be scrolled down to show the 15th item in the window.

• Save zoom range with bookmark
When checked the zoom range will be saved in the bookmark.

• Save scroll location with bookmark
When checked the scroll location will be saved in the bookmark.

Once the bookmark is saved, select it by name from the View > Bookmarks menu, and the
Wave window will be zoomed and scrolled accordingly.

To edit or delete a bookmark, select Tools > Bookmarks (Wave window).

The Bookmark Selection dialog includes the following options.

• Add (bookmark add wave)
Add a new bookmark.

• Modify
Edit the selected bookmark.

• Delete (bookmark delete wave)
Delete the selected bookmark.

• Goto (bookmark goto wave)
Zoom and scroll the Wave window using the selected bookmark.
Sim User’s Manual

Wave window UM-231
Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - left-button - drag down and right>a

a. If you enter zoom mode by selecting View > Mouse Mode > Zoom Mode, you do
not need to hold down the <Ctrl> key.

zoom area (in)

< control - left-button - drag up and right> zoom out

< control - left-button - drag up and left> zoom fit

<left-button - drag> (Select mode)
< middle-button - drag> (Zoom mode)

moves closest cursor

< control - left-button - click on a scroll arrow > scrolls window to very top or
bottom(vertical scroll) or far left or
right (horizontal scroll)

Keystroke Action

i I or + zoom in (mouse pointer must be over the the cursor or waveform
panes)

o O or - zoom out (mouse pointer must be over the the cursor or
waveform panes)

f or F zoom full (mouse pointer must be over the the cursor or
waveform panes)

l or L zoom last (mouse pointer must be over the the cursor or
waveform panes)

r or R zoom range (mouse pointer must be over the the cursor or
waveform panes)

<up arrow>/
<down arrow>

with mouse over waveform pane, scrolls entire window up/
down one line; with mouse over pathname or values pane,
scrolls highlight up/down one line

<left arrow> scroll pathname, values, or waveform pane left

<right arrow> scroll pathname, values, or waveform pane right

<page up> scroll waveform pane up by a page

<page down> scroll waveform pane down by a page
ModelSim User’s Manual

UM-232 7 - Graphic interface

Model
<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> open the find dialog box; searches within the specified field in
the pathname pane for text strings

<control-left arrow> scroll pathname, values, or waveform pane left by a page

<control-right arrow> scroll pathname, values, or waveform pane right by a page

Keystroke Action
Sim User’s Manual

Wave window UM-233
Saving waveforms

Saving a .eps file

Select File > Print Postscript (Wave window) to save the waveform as a .eps filewrite
wave command (CR-224). Printing and writing preferences are controlled by the dialog box
shown below.

The Write Postscript dialog box includes these options:

Printer

• File name
Enter a filename for the encapsulated Postscript (.eps) file to be created; or browse to a
previously created .eps file and use that filename.

Signal Selection

• All signals
Print all signals.

• Current View
Print signals in the current view.

• Selected
Print all selected signals.
ModelSim User’s Manual

UM-234 7 - Graphic interface

Model
Time Range

• Full Range
Print all specified signals in the full simulation range.

• Current view
Print the specified signals for the viewable time range.

• Custom
Print the specified signals for a user-designated From and To time.

Setup button

See "Printer Page Setup" (UM-236)

Printing on Windows platforms

Select File > Print (Wave window) to print all or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).
Printing and writing preferences are controlled by the dialog box shown below.

Printer

• Name
Choose the printer from the drop-down menu. Set printer properties with the Properties
button.

• Status
Indicates the availability of the selected printer.
Sim User’s Manual

Wave window UM-235
• Type
Printer driver name for the selected printer. The driver determines what type of file is
output if "Print to file" is selected.

• Where
The printer port for the selected printer.

• Comment
The printer comment from the printer properties dialog box.

• Print to file
Make this selection to print the waveform to a file instead of a printer. The printer driver
determines what type of file is created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a .prn or printer control language file. To create an
encapsulated Postscript file (.eps) use the File > Print Postscript menu selection.

Signal Selection

• All signals
Print all signals.

• Current View
Print signals in current view.

• Selected
Print all selected signals.

Time Range

• Full Range
Print all specified signals in the full simulation range.

• Current view
Print the specified signals for the viewable time range.

• Custom
Print the specified signals for a user-designated From and To time.

Setup button

See "Printer Page Setup" (UM-236)
ModelSim User’s Manual

UM-236 7 - Graphic interface

Model
Printer Page Setup

Clicking the Setup button in the Write Postscript or Print dialog box allows you to define
the following options (this is the same dialog that opens via File > Page setup).

• Paper Size
Select your output page size from a number of options; also choose the paper width and
height.

• Margins
Specify the page margins; changing the Margin will change the Scale and Page
specifications.

• Label width
Specify Auto Adjust to accommodate any length label, or set a fixed label width.

• Cursors
Turn printing of cursors on or off.

• Grid
Turn printing of grid lines on or off.
Sim User’s Manual

Wave window UM-237
• Color
Select full color printing, grayscale, or black and white.

• Scaling
Specify a Fixed output time width in nanoseconds per page – the number of pages output
is automatically computed; or, select Fit to to define the number of pages to be output
based on the paper size and time settings; if set, the time-width per page is automatically
computed.

• Orientation
Select the output page orientation, Portrait or Landscape.
ModelSim User’s Manual

UM-238 7 - Graphic interface

Model
Compiling with the graphic interface

You can use a project or the Compile HDL Source Files dialog box to compile VHDL or
Verilog designs. For information on compiling in a project, see "Getting started with
projects" (UM-20). To open the Compile HDL Source Files dialog, select Compile >
Compile (Main window).

From the Compile HDL Source Files dialog box you can:

• select source files to compile in any language combination

• specify the target library for the compiled design units

• select among the compiler options for either VHDL or Verilog

Select the Default Options button to change the compiler options, see "Setting default
compile options" (UM-240) for details. The same Compiler Options dialog box can also be
accessed by selecting Compile > Compile Options (Main window) or by selecting
Compile Properties from the context menu in the Project tab.

Select the Edit Source button to view or edit a source file via the Compile dialog box. See
"Source window" (UM-191) for additional source file editing information.
Sim User’s Manual

Compiling with the graphic interface UM-239
Locating source errors during compilation

If a compiler error occurs during compilation, a red error message is printed in the Main
transcript. Double-click on the error message to open the source file in an editable Source
window with the error highlighted.

double-click on the error in the Main window
and the error is highlighted and ready
to edit in the Source window
ModelSim User’s Manual

UM-240 7 - Graphic interface

Model
Setting default compile options

Select Compile > Compile Options (Main window) to bring up the Compiler Options
dialog.

VHDL compiler options tab

The VHDL compiler options tab includes the following options:

• Use 1993 Language Syntax
Specifies the use of VHDL93 during compilation. The 1987 standard is the default. Same
as the -93 argument to the vcom command (CR-145). Edit the VHDL93 (UM-351) variable
in the modelsim.ini file to set a permanent default.

Important: Note that changes made in the Compiler Options dialog box become the
default for all future simulations.
Sim User’s Manual

Compiling with the graphic interface UM-241
• Use explicit declarations only
Used to ignore an error in packages supplied by some other EDA vendors; directs the
compiler to resolve ambiguous function overloading in favor of the explicit function
definition. Same as the -explicit argument to the vcom command (CR-145). Edit the
Explicit (UM-342) variable in the modelsim.ini file to set a permanent default.

Although it is not intuitively obvious, the = operator is overloaded in the std_logic_1164
package. All enumeration data types in VHDL get an “implicit” definition for the =
operator. So while there is no explicit = operator, there is an implicit one. This implicit
declaration can be hidden by an explicit declaration of = in the same package (LRM
Section 10.3). However, if another version of the = operator is declared in a different
package than that containing the enumeration declaration, and both operators become
visible through use clauses, neither can be used without explicit naming, for example:

ARITHMETIC.”=”(left, right)

This option allows the explicit = operator to hide the implicit one.

• Disable loading messages
Disables loading messages in the Main window. Same as the -quiet argument for the
vcom command (CR-145). Edit the Quiet (UM-342) variable in the modelsim.ini file to set
a permanent default.

• Show source lines with errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-source argument to the vcom command (CR-145). Edit the Show_source (UM-342)
variable in the modelsim.ini file to set a permanent default.

• Disable All Optimizations
Instructs the compiler to remove all optimizations. Same as the -O0 argument to the
vcom command (CR-145). Useful when running "Code Coverage" (UM-283), where
optimizations can skew results.

Flag Warnings on:

• Unbound Component
Flags any component instantiation in the VHDL source code that has no matching entity
in a library that is referenced in the source code, either directly or indirectly. Edit the
Show_Warning1 (UM-343) variable in the modelsim.ini file to set a permanent default.

• Process without a WAIT statement
Flags any process that does not contain a wait statement or a sensitivity list. Edit the
Show_Warning2 (UM-343) variable in the modelsim.ini file to set a permanent default.

• Null Range
Flags any null range, such as 0 down to 4. Edit the Show_Warning3 (UM-343) variable in
the modelsim.ini file to set a permanent default.

• No space in time literal (e.g. 5ns)
Flags any time literal that is missing a space between the number and the time unit. Edit
the Show_Warning4 (UM-343) variable in the modelsim.ini file to set a permanent default.

• Multiple drivers on unresolved signals
Flags any unresolved signals that have multiple drivers. Edit the Show_Warning5 (UM-

343) variable in the modelsim.ini file to set a permanent default.
ModelSim User’s Manual

UM-242 7 - Graphic interface

Model
Check for:

• Synthesis
Turns on limited synthesis-rule compliance checking. Checks only signals used (read) by
a process; also, checks understand only combinational logic, not clocked logic. Edit the
CheckSynthesis (UM-342) variable in the modelsim.ini file to set a permanent default.

• Vital Compliance
Toggle Vital compliance checking. Edit the NoVitalCheck (UM-342) variable in the
modelsim.ini file to set a permanent default.

Optimize for:

• StdLogic1164
Causes the compiler to perform special optimizations for speeding up simulation when
the multi-value logic package std_logic_1164 is used. Unless you have modified the
std_logic_1164 package, this option should always be checked. Edit the Optimize_1164
(UM-342) variable in the modelsim.ini file to set a permanent default.

• Vital
Toggle acceleration of the Vital packages. Edit the NoVital (UM-342) variable in the
modelsim.ini file to set a permanent default.

Verilog compiler options tab
Sim User’s Manual

Compiling with the graphic interface UM-243
• Enable runtime hazard checks
Enables the run-time hazard checking code. Same as the -hazards argument to the vlog
command (CR-181). Edit the Hazard (UM-343) variable in the modelsim.ini file to set a
permanent default.

• Convert identifiers to upper-case
Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Same as the -u argument to the vlog command (CR-181). Edit the UpCase (UM-343)
variable in the modelsim.ini file to set a permanent default.

• Verilog 1995 Compatible
Some requirements in Verilog 2000 conflict with requirements in the 1995 LRM. Use of
this option ensures that code that was valid according to the 1995 LRM can still be
compiled. Same as the -vlog59compat argument for the vlog command (CR-181). Edit the
vlog95compat (UM-343) variable in the modelsim.ini file to set a permanent default.

• Disable loading messages
Disables loading messages in the Main window. Same as the -quiet argument for the
vlog command (CR-181). Edit the Quiet (UM-342) variable in the modelsim.ini file to set a
permanent default.

• Show source lines with errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-source argument to the vlog command (CR-181). Edit the Show_source (UM-342) variable
in the modelsim.ini file to set a permanent default.

• Disable All Optimizations
Instructs the compiler to remove all optimizations. Same as the -O0 argument to the vlog
command (CR-181). Useful when running "Code Coverage" (UM-283), where
optimizations can skew results.

Other Verilog Options:

• Library Search
Specifies the Verilog source library directory to search for undefined modules. Same as
the -y <library_directory> argument for the vlog command (CR-181).

• Extension
Specifies the suffix of files in the library directory. Multiple suffixes can be used. Same
as the +libext+<suffix> argument for the vlog command (CR-181).

• Library File
Specifies the Verilog source library file to search for undefined modules. Same as the -v
<library_file> argument for the vlog command (CR-181).

• Include Directory
Specifies a directory for files included with the ‘include filename compiler directive.
Same as the +incdir+<directory> argument for the vlog command (CR-181).

• Macro
Defines a macro to execute during compilation. Same as the compiler directive: ‘define
ModelSim User’s Manual

UM-244 7 - Graphic interface

Model
macro_name macro_text. Also the same as the
+define+<macro_name> [=<macro_text>] argument for the vlog command (CR-181).

Note: When you specify Other Verilog Options, they are saved into a file called vlog.opt.
If you do this while a project is open, an OptionFile entry is written into your project file.
If you do this when a project is not open, an OptionFile entry is written into the
modelsim.ini file that you are currently using.
Sim User’s Manual

Simulating with the graphic interface UM-245
Simulating with the graphic interface

You can use the Library tab in the workspace or the Simulate dialog box to simulate a
compiled design. To simulate from the Library tab, simply double-click a design unit. To
open the Simulate dialog, select Simulate > Simulate (Main window).

Six tabs - Design, VHDL, Verilog, Libraries, SDF, and Options - allow you to select
various simulation options.

You can switch between tabs to modify settings, then begin simulation by selecting the OK
button.

Design tab

Note: To begin simulation you must have compiled design units located in a design
library, see "Creating a design library" (UM-50).
ModelSim User’s Manual

UM-246 7 - Graphic interface

Model
The Design tab includes these options:

• Simulate
Specifies the design unit(s) to simulate. You can simulate several Verilog top-level
modules or a VHDL top-level design unit in one of three ways:

- Type a design unit name (configuration, module, or entity) into the field, separate
additional names with a space. Specify library/design units with the following syntax:

[<library_name>.]<design_unit>

- Select a design unit from the list. You can select multiple design units from the list by
using the control key when you click.

• Resolution
(-t [<multiplier>]<time_unit>)
The drop-down menu sets the simulator time units.

Simulator time units can be expressed as any of the following:

See also, "Simulator resolution limit" (UM-52).

Simulation time units

1fs, 10fs, or 100fs femtoseconds

1ps, 10ps, or 100ps picoseconds

1ns, 10ns, or 100ns nanoseconds

1us, 10us, or 100us microseconds

1ms, 10ms, or 100ms milliseconds

1sec, 10sec, or 100sec seconds
Sim User’s Manual

UM-247

Model
VHDL tab

The VHDL tab includes these options:

Generics

The Add button opens a dialog box (shown below) that allows you to specify the value of
generics within the current simulation; generics are then added to the Generics list. You
can also select a generic on the listing to Delete or Edit.

From the Specify a
Generic dialog box you can
set the following options.

• Generic Name (-g
<Name>=<Value>)
The name of the generic
parameter. Type it in as it
appears in the VHDL
source (case is ignored).

• Generic Value
Specifies a value for all
generics in the design
with the given name
(above) that have not
received explicit values in generic maps (such as top-level generics and generics that
Sim User’s Manual

UM-248 7 - Graphic interface

Model
would otherwise receive their default value). The value must be appropriate for the
declared data type of the generic. No spaces are allowed in the specification (except
within quotes) when specifying a string value.

• Override Instance - specific Values (-G <Name>=<Value>)
Select to override generics that received explicit values in generic maps. The name and
value are specified as above. The use of this switch is indicated in the Override column
of the Generics list.

VITAL

• Disable Timing Checks (+notimingchecks)
Disables timing checks generated by VITAL models.

• Use Vital 2.2b SDF Mapping (-vital2.2b)
Selects SDF mapping for VITAL 2.2b (default is Vital95).

• Disable Glitch Generation (-noglitch)
Disables VITAL glitch generation.

TEXTIO files

• STD_INPUT (-std_input <filename>)
Specifies the file to use for the VHDL textio STD_INPUT file. Use the Browse button
to locate a file within your directories.

• STD_OUTPUT (-std_output <filename>)
Specifies the file to use for the VHDL textio STD_OUTPUT file. Use the Browse button
to locate a file within your directories.
Sim User’s Manual

Simulating with the graphic interface UM-249
Verilog tab

The Verilog tab includes these options:

Pulse Options

• Disable pulse error and warning messages (+no_pulse_msg)
Disables path pulse error warning messages.

• Rejection Limit (+pulse_r/<percent>)
Sets the module path pulse rejection limit as a percentage of the path delay.

• Error Limit (+pulse_e/<percent>)
Sets the module path pulse error limit as a percentage of the path delay.
ModelSim User’s Manual

UM-250 7 - Graphic interface

Model
Other Options

• Enable Hazard Checking (-hazards)
Enables hazard checking in Verilog modules.

• Disable Timing Checks in Specify Blocks (+notimingchecks)
Disables the timing check system tasks ($setup, $hold,...) in specify blocks.

• Delay Selection (+mindelays | +typdelays | +maxdelays)
Use the drop-down menu to select timing for min:typ:max expressions.

• User Defined Arguments (+<plusarg>)
Arguments are preceded with “+”, making them accessible through the Verilog PLI
routine mc_scan_plusargs. The values specified in this field must have a "+" preceding
them or ModelSim may parse them incorrectly.

Libraries tab

The Libraries tab includes these options:

• Search Libraries (-L)
Specifies the libraries to search for design units instantiated from Verilog.

• Search Libraries First (-Lf)
Same as Search Libraries but these libraries are searched before ‘uselib.
Sim User’s Manual

Simulating with the graphic interface UM-251
SDF tab

The SDF (Standard Delay Format) tab includes these options:

SDF Files

Click the Add button to specify the SDF files to load for the current simulation; files are
then added to the Region/File list. You may also select a file on the listing to Delete or
Edit (opens the dialog box below).
ModelSim User’s Manual

UM-252 7 - Graphic interface

Model
From the Add SDF File dialog box you can set the following options.

• SDF file ([<region>] = <sdf_filename>)
Specifies the SDF file to use for annotation. Use the Browse button to locate a file within
your directories.

• Apply to region ([<region>] = <sdf_filename>)
Specifies the design region to use with the selected SDF options.

• Delay (-sdfmin | -sdftyp | -sdfmax)
The drop-down menu selects delay timing (min, typ or max) to be used from the specified
SDF file. See also, "Specifying SDF files for simulation" (UM-290).

SDF options

• Disable SDF warnings (-sdfnowarn)
Select to disable warnings from the SDF reader.

• Reduce SDF errors to warnings (-sdfnoerror)
Change SDF errors to warnings so the simulation can continue.

• Multi-Source Delay (-multisource_delay <sdf_option>)
Select max, min or latest delay. Controls how multiple PORT or INTERCONNECT
constructs that terminate at the same port are handled. By default, the Module Input Port
Delay (MIPD) is set to the max value encountered in the SDF file. Alternatively, you can
choose the min or latest of the values.
Sim User’s Manual

Simulating with the graphic interface UM-253
Options tab

The Options tab includes these options:

• Enable source file coverage (-coverage)
Turn on collection of Code Coverage statistics. See Chapter 9 - Code Coverage.

• Treat non-existent VHDL files ... (-absentisempty)
Cause VHDL files opened for read that target non-existent files to be treated as empty,
rather than ModelSim issuing fatal error messages.

• Do not share file descriptors... (-nofileshare)
By default ModelSim shares a file descriptor for all VHDL files opened for write or
append that have identical names. This option turns off file descriptor sharing.

• WLF File (-wlf <filename>)
Specify the name of the wave log format (WLF) file to create. The default is vsim.wlf.

• Assert File (-assertfile <filename>)
Designate an alternative file for recording assertion messages. By default assertion
messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (see "Creating a transcript file" (UM-349)).

• Other options
Specify any other vsim command (CR-189) arguments.
ModelSim User’s Manual

UM-254 7 - Graphic interface

Model
Setting default simulation options

Select Simulate > Simulation Options (Main window) to bring up the Simulation
Options dialog box shown below.

Defaults tab

The Defaults tab includes these options:

• Default Radix
Sets the default radix for the current simulation run. You can also use the radix (CR-108)
command to set the same temporary default. A permanent default can be set by editing
the DefaultRadix (UM-345) variable in the modelsim.ini file. The chosen radix is used for
all commands (force (CR-82), examine (CR-75), change (CR-50) are examples) and for
displayed values in the Signals, Variables, Dataflow, List, and Wave windows.

• Suppress Warnings
Selecting From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. Edit the StdArithNoWarnings (UM-347)
variable in the modelsim.ini file to set a permanent default.

Selecting From IEEE Numeric Std Packages suppresses warnings generated within the
accelerated numeric_std and numeric_bit packages. Edit the NumericStdNoWarnings
(UM-347) variable in the modelsim.ini file to set a permanent default.

Note: Changes made in the Simulation Options dialog box are the default for the
current simulation only. Options can be saved as the default for future simulations by
editing the simulator control variables in the modelsim.ini file; the variables to edit are
noted in the text below.
Sim User’s Manual

Simulating with the graphic interface UM-255
• Default Run
Sets the default run length for the current simulation. Edit the RunLength (UM-347)
variable in the modelsim.ini file to set a permanent default.

• Iteration Limit
Sets a limit on the number of deltas within the same simulation time unit to prevent
infinite looping. Edit the IterationLimit (UM-346) variable in the modelsim.ini file to set a
permanent iteration limit default.

• Default Force Type
Selects the default force type for the current simulation. Edit the DefaultForceKind (UM-

345) variable in the modelsim.ini file to set a permanent default.

Assertions tab

The Assertions tab includes these options:

• Break on Assertion
Selects the assertion severity that will stop simulation. Edit the BreakOnAssertion (UM-

345) variable in the modelsim.ini file to set a permanent default.

• Ignore Assertions For
Selects the assertion type to ignore for the current simulation. Multiple selections are
possible. Edit the IgnoreFailure, IgnoreError, IgnoreWarning, and IgnoreNote (UM-346)
variables in the modelsim.ini file to set permanent defaults.
ModelSim User’s Manual

UM-256 7 - Graphic interface

Model
When an assertion type is ignored, no message will be printed, nor will the simulation
halt (even if break on assertion is set for that type).

WLF Files tab

The WLF Files tab includes these options:

• WLF File Size Limit
Limits the WLF file by size (as closely as possible) to the specified number of megabytes.
If both size and time limits are specified, the most restrictive is used. Setting it to 0 results
in no limit. Edit the WLFSizeLimit (UM-348) variable in the modelsim.ini file to set a
permanent default.

• WLF File Time Limit
Limits the WLF file by size (as closely as possible) to the specified amount of time. If
both time and size limits are specified, the most restrictive is used. Setting it to 0 results
in no limit. Edit the WLFTimeLimit (UM-348) variable in the modelsim.ini file to set a
permanent default.

• Compress WLF data
Compresses WLF files to reduce their size. You would typically only disable
compression for troubleshooting purposes. Edit the WLFCompress (UM-348) variable in
the modelsim.ini file to set a permanent default.

Note: Assertions that appear within an instantiation or configuration port map clause
conversion function will not stop the simulation regardless of the severity level of the
assertion.
Sim User’s Manual

Simulating with the graphic interface UM-257
• Delete WLF file on exit
Specifies whether the WLF file should be deleted when the simulation ends. Edit the
WLFDeleteOnQuit (UM-348) variable in the modelsim.ini file to set a permanent default.

• Design Hierarchy
Specifies whether to save all design hierarchy in the WLF file or only regions containing
logged signals. Edit the WLFSaveAllRegions (UM-348) variable in the modelsim.ini file
to set a permanent default.
ModelSim User’s Manual

UM-258 7 - Graphic interface

Model
Creating and managing breakpoints

ModelSim supports both signal (i.e., when conditions) and file-line breakpoints.
Breakpoints can be set from multiple locations in the GUI or from the command line.

Signal breakpoints

Signal breakpoints (when conditions) instruct ModelSim to perform actions when the
specified conditions are met. For example, you can break on a signal value or at a specific
simulator time (see the when command (CR-205) for additional details). When a breakpoint
is hit, a message in the Main window transcript identifies the signal that caused the
breakpoint.

Setting signal breakpoints from the command line

You use the when command (CR-205) to set a signal breakpoint from the VSIM> prompt.
See the Command Reference for further details.

Setting signal breakpoints from the GUI

Signal breakpoints are most easily set in the Signals window (UM-183) and the Wave
window (UM-206). Select a signal, click your right mouse button, and select Insert
Breakpoint from the context menu. A breakpoint is set on that signal and will be listed in
the Breakpoints dialog.

Alternatively you can set signal breakpoints from the Breakpoints dialog (UM-259).

File-line breakpoints

File-line breakpoints are set on executable lines in your source files. When the line is hit,
the simulator stops.

Setting file-line breakpoints from the command line

You use the bp command (CR-46) to set a file-line breakpoint from the VSIM> prompt. See
the Command Reference for further details.

Setting file-line breakpoints from the GUI

File-line breakpoints are most easily set using your mouse in the Source window (UM-191).
Click on a blue line number at the left side of the Source window, and a red diamond
denoting a breakpoint will appear. The breakpoints are toggles – click once to create the
colored diamond; click again to disable or enable the breakpoint. To delete the breakpoint
completely, click the red diamond with your right mouse button, and select Remove
Breakpoint.

Alternatively you can set file-line breakpoints from the Breakpoints dialog (UM-259).
Sim User’s Manual

Creating and managing breakpoints UM-259
Breakpoints dialog

The Breakpoints dialog box allows you to create and manage both Signal breakpoints (UM-

258) and File-line breakpoints (UM-258). Select Tools > Breakpoints from the Main,
Signals, Source, or Wave windows to open the dialog.

The Breakpoints dialog includes these options:

• Breakpoints
List of all existing breakpoints. Breakpoints set from anywhere in the GUI, or from the
command line, are listed. A red ’X’ through the hand icon means the breakpoint is
currently disabled.

• Add
Create a new signal or file-line breakpoint. See below for more details.

• Modify
Change properties of an existing breakpoint. See below for more details.

• Disable/Enable
De-activate or activate the selected breakpoint.

• Delete
Delete the selected breakpoint.

• Label
Text label of the selected breakpoint.
ModelSim User’s Manual

UM-260 7 - Graphic interface

Model
• Condition
The condition under which the breakpoint will be hit.

• Command
The command that will be executed when the breakpoint is hit.

Adding a breakpoint

Click Add to add a new breakpoint, and you will see the Add Breakpoint dialog.

Choose whether to create a signal breakpoint or a file-line breakpoint and then select Next.
Depending on which type of breakpoint you’re creating, you’ll see one of the two dialogs
below. These are the same dialogs you’ll see if you modify an exiting breakpoint.

The Signals Breakpoint dialog includes these options:

• Breakpoint Label
Specify an optional text label for the breakpoint.

• Breakpoint Condition
Specify condition(s) to be met for the command(s) to be executed. See the when
command (CR-205) for more information on creating the condition statement.
Sim User’s Manual

Creating and managing breakpoints UM-261
• Breakpoint Commands
Specify command(s) to be executed when the condition is met. Any ModelSim or Tcl
command or series of commands are valid, with one exception – the run command (CR-

114) cannot be used.

The File Breakpoint dialog includes these options:

• File
Specify the file in which to set the breakpoint.

• Line
Specify the line number on which to set the breakpoint. Note that breakpoints can be set
only on executable lines.

• Instance Name
Specify a region in which to apply the breakpoint. If left blank the breakpoint affects
every instance in the design.

• Breakpoint Condition
Specify a condition that determines whether the breakpoint is hit.

• Breakpoint Commands
Specify command(s) to be executed when the breakpoint is hit. Any ModelSim or Tcl
command or series of commands is valid, with one exception – the run command (CR-

114) cannot be used.
ModelSim User’s Manual

UM-262 7 - Graphic interface

Model
Miscellaneous tools and add-ons

Several miscellaneous tools and add-ons are available from ModelSim menus. Follow the
links below for more information.

• The GUI Expression Builder (UM-262)

Edit > Search > Search for Expression > Builder (List or Wave window)
Helps you build logical expressions for use in Wave and List window searches and
several simulator commands. For expression format syntax see
"GUI_expression_format" (CR-15).

• Language templates (UM-264)

View > Show language templates (Source window)
Helps you write VHDL or Verilog code

The GUI Expression Builder

The GUI Expression Builder is a feature of the Wave and List Signal Search dialog boxes,
and the List trigger properties dialog box. It aids in building a search expression that
follows the "GUI_expression_format" (CR-15).

To locate the Builder:

• select Edit > Search (List or Wave window)

• select the Search for Expression option in the resulting dialog box

• select the Builder button

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in a signal name, you can select the signal in
the associated Wave or List window and press Insert Reference Signal in the Expression
Sim User’s Manual

UM-263

Model
Builder. The result will be the full signal name added to the expression field. All Expression
Builder buttons correspond to the "Expression syntax" (CR-18).

To search for when a signal reaches a particular value

Select the signal in the Wave window and click Insert Selected Signal and ==. Then, click
the value buttons or type a value.

To evaluate only on clock edges

Click the && button to AND this condition with the rest of the expression. Then select the
clock in the Wave window and click Insert Selected Signal and ‘rising. You can also
select the falling edge or both edges.

Operators

Other buttons will add operators of various kinds (see "Expression syntax" (CR-18)), or you
can type them in.

See "Configuring a List trigger with Expression Builder" (UM-382) for an additional
Expression builder example.
Sim User’s Manual

UM-264 7 - Graphic interface

Model
Language templates

ModelSim language templates help you write VHDL or Verilog code. They are a collection
of wizards, menus, and dialogs that produce code for new designs, language constructs,
logic blocks, etc.

To use the templates, either open an existing HDL file in the Source window (UM-191), or
select File > New (Source window) to create a new file. Once the file is open, select View
> Show language templates . This displays a pane that shows the available templates.

The templates that appear depend on the type of file you create. For example Module and
Primitive templates are available for Verilog files, and Entity and Architecture templates
are available for VHDL files.

Important: The language templates are not intended to replace thorough knowledge of
HDL coding. They are intended as an interactive "reference" for creating small sections
of code. If you are unfamiliar with VHDL or Verilog, you should attend a training class
or consult one of the many books available on HDL languages.
Sim User’s Manual

Miscellaneous tools and add-ons UM-265
Double-click an item in the list to begin creating code. Some of the items bring up wizards
while others insert code into your HDL file. The dialog below is part of the wizard for
creating a new design. Simply follow the directions in the wizards.

Code inserted into your source file may contain yellow or gray highlighted "fields". Yellow
highlighting identifies an object that needs a name. Double-click the yellow object to enter
a name. Note that all yellow objects with the same label (e.g., "configuration_name" below)
will change to whatever name you enter. This ensures matching fields remain in synch.
ModelSim User’s Manual

UM-266 7 - Graphic interface

Model
Gray highlighting indicates that a context menu with additional commands is available. In
the example below, right-clicking "configuration_declarative_part" gives you three options
for continuing the definition of the Configuration.

The first menu item is always "DELETE." This allows you to remove unwanted objects
from the HDL code, such as optional fields.

Keyboard shortcut

<control - p> edits a yellow field and expands a gray field.
Sim User’s Manual

Graphic interface commands UM-267
Graphic interface commands

The following commands provide control and feedback during simulation. Only brief
descriptions are provided here; for more information and command syntax see the
ModelSim Command Reference.

Window control and
feedback commands

Description

batch_mode (CR-40) returns a 1 if ModelSim is operating in batch mode, otherwise returns a 0;
it is typically used as a condition in an if statement

configure (CR-51) invokes the List or Wave widget configure command for the current
default List or Wave window

notepad (CR-95) a simple text editor; used to view and edit ASCII files or create new files

write preferences (CR-219) saves the current GUI preference settings to a Tcl preference file
ModelSim User’s Manual

UM-268

Model
Sim User’s Manual

 UM-269
8 - Signal Spy

Chapter contents
Introduction UM-270

Designed for testbenches UM-270

init_signal_driver UM-271

init_signal_spy UM-274

signal_force UM-276

signal_release UM-278

$init_signal_driver UM-280

$init_signal_spy UM-283

$signal_force UM-285

$signal_release UM-287

This chapter describes the Signal SpyTM procedures and system tasks. These allow you to
monitor, drive, force, and release hierarchical items in VHDL or mixed designs.
ModelSim User’s Manual

UM-270 8 - Signal Spy

Model
Introduction

The Verilog language allows access to any signal from any other hierarchical block without
having to route it via the interface. This means you can use hierarchical notation to either
assign or determine the value of a signal in the design hierarchy from a testbench. This
capability fails when a Verilog testbench attempts to reference a signal in a VHDL block
or reference a signal in a Verilog block through a VHDL level of hierarchy.

This limitation exists because VHDL does not allow hierarchical notation. In order to
reference internal hierarchical signals, you have to resort to defining signals in a global
package and then utilize those signals in the hierarchical blocks in question. But, this
requires that you keep making changes depending on the signals that you want to reference.

The Signal Spy procedures and system tasks overcome the aforementioned limitations.
They allow you to monitor (spy), drive, force, or release hierarchical objects in a VHDL or
mixed design.

The VHDL procedures are provided via the "Util package" (UM-62) within the modelsim_lib
library. To access the procedures you would add lines like the following to your VHDL
code:

library modelsim_lib;
use modelsim_lib.util.all;

The Verilog tasks are available as built-in "System tasks" (UM-89). The table below shows
the VHDL procedures and their corresponding Verilog system tasks.

Designed for testbenches

Signal Spy limits the portability of your code. HDL code with Signal Spy procedures or
tasks works only in ModelSim, not other simulators. We therefore recommend using Signal
Spy only in testbenches, where portability is less of a concern, and the need for such a tool
is more applicable.

VHDL procedures Verilog system tasks

init_signal_driver (UM-271) $init_signal_driver (UM-280)

init_signal_spy (UM-274) $init_signal_spy (UM-283)

signal_force (UM-276) $signal_force (UM-285)

signal_release (UM-278) $signal_release (UM-287)
Sim User’s Manual

init_signal_driver UM-271
init_signal_driver

The init_signal_driver() procedure drives the value of a VHDL signal or Verilog net (called
the src_object) onto an existing VHDL signal or Verilog net (called the dest_object). This
allows you to drive signals or nets at any level of the design hierarchy from within a VHDL
architecture (e.g., a testbench).

The init_signal_driver procedure drives the value onto the destination signal just as if the
signals were directly connected in the HDL code. Any existing or subsequent drive or force
of the destination signal, by some other means, will be considered with the
init_signal_driver value in the resolution of the signal.

Call only once

The init_signal_driver procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_driver only once for a particular
pair of signals. Once init_signal_driver is called, any change on the source signal will be
driven on the destination signal until the end of the simulation.

Thus, we recommend that you place all init_signal_driver calls in a VHDL process. You
need to code the VHDL process correctly so that it is executed only once. The VHDL
process should not be sensitive to any signals and should contain only init_signal_driver
calls and a simple wait statement. The process will execute once and then wait forever. See
the example below.

Syntax
init_signal_driver(src_object, dest_object, delay, delay_type, verbose)

Returns

Nothing
ModelSim User’s Manual

UM-272 8 - Signal Spy

Model
Arguments

Related procedures

init_signal_spy (UM-274), signal_force (UM-276), signal_release (UM-278)

Limitations

• When driving a Verilog net, the only delay_type allowed is inertial. If you set the delay
type to mti_transport, the setting will be ignored and the delay type will be mti_inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to the
nearest resolution unit; no special warning will be issued.

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog net. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.

delay time Optional. Specifies a delay relative to the time
at which the src_object changes. The delay
can be an inertial or transport delay. If no
delay is specified, then a delay of zero is
assumed.

delay_type del_mode Optional. Specifies the type of delay that will
be applied. The value must be either
mti_inertial or mti_transport. The default is
mti_inertial.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object is
driving the dest_object. Default is 0, no
message.
Sim User’s Manual

init_signal_driver UM-273
Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
signal clk0 : std_logic;

begin

gen_clk0 : process
begin

clk0 <= ’1’ after 0 ps, ’0’ after 20 ps;
wait for 40 ps;

end process gen_clk0;

drive_sig_process : process
begin

init_signal_driver("clk0", "/testbench/uut/blk1/clk", open, open, 1);
init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100 ps, \
mti_transport);
wait;

end process drive_sig_process;

...

end;

The above example creates a local clock (clk0) and connects it to two clocks within the
design hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed.
The open entries allow the default delay and delay_type while setting the verbose
parameter to a 1. The .../blk2/clk will match the local clk0 but be delayed by 100 ps.
ModelSim User’s Manual

UM-274 8 - Signal Spy

Model
init_signal_spy

The init_signal_spy() procedure mirrors the value of a VHDL signal or Verilog register/net
(called the src_object) onto an existing VHDL signal or Verilog register/net (called the
dest_object). This allows you to reference signals, registers, or nets at any level of hierarchy
from within a VHDL architecture (e.g., a testbench).

The init_signal_spy procedure only sets the value onto the destination signal and does not
drive or force the value. Any existing or subsequent drive or force of the destination signal,
by some other means, will override the value that was set by init_signal_spy.

Call only once

The init_signal_spy procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_spy once for a particular pair of
signals. Once init_signal_spy is called, any change on the source signal will mirror on the
destination signal until the end of the simulation.

Thus, we recommend that you place all init_signal_spy calls in a VHDL process. You need
to code the VHDL process correctly so that it is executed only once. The VHDL process
should not be sensitive to any signals and should contain only init_signal_spy calls and a
simple wait statement. The process will execute once and then wait forever, which is the
desired behavior. See the example below.

Syntax
init_signal_spy(src_object, dest_object, verbose)

Returns

Nothing

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.
Sim User’s Manual

init_signal_spy UM-275
Related functions

init_signal_driver (UM-271), signal_force (UM-276), signal_release (UM-278)

Limitations

• When mirroring the value of a Verilog register/net onto a VHDL signal, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Verilog memories (arrays of registers) are not supported.

Example
library ieee, modelsim_lib;
use ieee.std_logic_1164.all
use modelsim_lib.util.all;
entity top is
end;

architecture only of top is
signal top_sig1 : std_logic;

begin
...
spy_process : process
begin

init_signal_spy("/top/uut/inst1/sig1","/top_sig1",1);
wait;

end process spy_process;
...

end;

In this example, the value of /top/uut/inst1/sig1 will be mirrored onto /top_sig1.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register. Use
the path separator to which your simulation is
set (i.e., "/" or "."). A full hierarchical path
must begin with a "/" or ".". The path must be
contained within double quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the spy_object’s value
is mirrored onto the dest_object. Default is 0,
no message.

Name Type Description
ModelSim User’s Manual

UM-276 8 - Signal Spy

Model
signal_force

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net (called the dest_object). This allows you to force signals, registers,
or nets at any level of the design hierarchy from within a VHDL architecture (e.g., a
testbench).

A signal_force works the same as the force command (CR-82) with the exception that you
cannot issue a repeating force. The force will remain on the signal until a signal_release, a
force or release command, or a subsequent signal_force is issued. Signal_force can be
called concurrently or sequentially in a process.

Syntax
signal_force(dest_object, value, rel_time, force_type, cancel_period,
verbose)

Returns

Nothing

Arguments

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

value string Required. Specifies the value to which the
dest_object is to be forced. The specified
value must be appropriate for the type.

rel_time time Optional. Specifies a time relative to the
current simulation time for the force to occur.
The default is 0.

force_type forcetype Optional. Specifies the type of force that will
be applied. The value must be one of the
following; default, deposit, drive, or freeze.
The default is "default" (which is "freeze" for
unresolved objects or "drive" for resolved
objects). See the force command (CR-82) for
further details on force type.
Sim User’s Manual

signal_force UM-277
Related functions

init_signal_driver (UM-271), init_signal_spy (UM-274), signal_release (UM-278)

Limitations

You cannot force bits or slices of a register; you can force only the entire register.

Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
begin

force_process : process
begin

signal_force("/testbench/uut/blk1/reset", "1", 0 ns, freeze, open, 1);
signal_force("/testbench/uut/blk1/reset", "0", 40 ns, freeze, 2 ms, 1);
wait;

end process force_process;

...

end;

The above example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced
to a "0", 2 ms after the second signal_force call was executed.

If you want to skip parameters so that you can specify subsequent parameters, you need to
use the keyword "open" as a placeholder for the skipped parameter(s). The first
signal_force procedure illustrates this, where an "open" for the cancel_period parameter
means that the default value of -1 ms is used.

cancel_period time Optional. Cancels the signal_force command
after the specified period of time units.
Cancellation occurs at the last simulation
delta cycle of a time unit. A value of zero
cancels the force at the end of the current time
period. Default is -1 ms. A negative value
means that the force will not be cancelled.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the value is being
forced on the dest_object at the specified time.
Default is 0, no message.

Name Type Description
ModelSim User’s Manual

UM-278 8 - Signal Spy

Model
signal_release

The signal_release() procedure releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registers or nets at any level of the design hierarchy from within a VHDL architecture (e.g.,
a testbench).

A signal_release works the same as the noforce command (CR-92). Signal_release can be
called concurrently or sequentially in a process.

Syntax
signal_release(dest_object, verbose)

Returns

Nothing

Arguments

Related functions

init_signal_driver (UM-271), init_signal_spy (UM-274), signal_force (UM-276)

Limitations

• You cannot release a bit or slice of a register; you can release only the entire register.

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the signal is being
released and the time of the release. Default is
0, no message.
Sim User’s Manual

signal_release UM-279
Example
library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is

signal release_flag : std_logic;

begin

stim_design : process
begin

...
wait until release_flag = ’1’;
signal_release("/testbench/dut/blk1/data", 1);
signal_release("/testbench/dut/blk1/clk", 1);
...

end process stim_design;

...

end;

The above example releases any forces on the signals data and clk when the signal
release_flag is a "1". Both calls will send a message to the transcript stating which signal
was released and when.
ModelSim User’s Manual

UM-280 8 - Signal Spy

Model
$init_signal_driver

The $init_signal_driver() system task drives the value of a VHDL signal or Verilog
register/net (called the src_object) onto an existing VHDL signal or Verilog net (called the
dest_object). This allows you to drive signals or nets at any level of the design hierarchy
from within a Verilog module (e.g., a testbench).

The $init_signal_driver system task drives the value onto the destination signal just as if
the signals were directly connected in the HDL code. Any existing or subsequent drive or
force of the destination signal, by some other means, will be considered with the
$init_signal_driver value in the resolution of the signal.

Call only once

The $init_signal_driver system task creates a persistent relationship between the source and
destination signals. Hence, you need to call $init_signal_driver only once for a particular
pair of signals. Once $init_signal_driver is called, any change on the source signal will be
driven on the destination signal until the end of the simulation.

Thus, we recommend that you place all $init_signal_driver calls in a Verilog initial block.
See the example below.

Syntax
$init_signal_driver(src_object, dest_object, delay, delay_type, verbose)

Returns

Nothing

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog net. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.
Sim User’s Manual

$init_signal_driver UM-281
Related procedures

$init_signal_spy (UM-283), $signal_force (UM-285), $signal_release (UM-287)

Limitations

• When driving a Verilog net, the only delay_type allowed is inertial. If you set the delay
type to 1 (transport), the setting will be ignored, and the delay type will be inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to the
nearest resolution unit; no special warning will be issued.

delay integer, real, or
time

Optional. Specifies a delay relative to the time
at which the src_object changes. The delay
can be an inertial or transport delay. If no
delay is specified, then a delay of zero is
assumed.

delay_type integer Optional. Specifies the type of delay that will
be applied. The value must be either 0
(inertial) or 1 (transport). The default is 0.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the src_object is
driving the dest_object. Default is 0, no
message.

Name Type Description
ModelSim User’s Manual

UM-282 8 - Signal Spy

Model
Example
‘timescale 1 ps / 1 ps

module testbench;

reg clk0;

initial begin
clk0 = 1;
forever begin
#20 clk0 = ~clk0;

end
end

initial begin
$init_signal_driver("clk0", "/testbench/uut/blk1/clk", , , 1);
$init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100, 1);

end

...

endmodule

The above example creates a local clock (clk0) and connects it to two clocks within the
design hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed.
The .../blk2/clk will match the local clk0 but be delayed by 100 ps. For the second call to
work, the .../blk2/clk must be a VHDL based signal, because if it were a Verilog net a 100
ps inertial delay would consume the 40 ps clock period. Verilog nets are limited to only
inertial delays and thus the setting of 1 (transport delay) would be ignored.
Sim User’s Manual

$init_signal_spy UM-283
$init_signal_spy

The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog register/
net (called the src_object) onto an existing VHDL signal or Verilog register/net (called the
dest_object). This allows you to reference signals, registers, or nets at any level of hierarchy
from within a Verilog module (e.g., a testbench).

The $init_signal_spy system task only sets the value onto the destination signal and does
not drive or force the value. Any existing or subsequent drive or force of the destination
signal, by some other means, will override the value set by $init_signal_spy.

Call only once

The $init_signal_spy system task creates a persistent relationship between the source and
the destination signal. Hence, you need to call $init_signal_spy only once for a particular
pair of signals. Once $init_signal_spy is called, any change on the source signal will mirror
on the destination signal until the end of the simulation. Thus, we recommend that you
place all $init_signal_spy calls in a Verilog initial block. See the example below.

Syntax
$init_signal_spy(src_object, dest_object, verbose)

Returns

Nothing

Arguments

Name Type Description

src_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/net. Use the
path separator to which your simulation is set
(i.e., "/" or "."). A full hierarchical path must
begin with a "/" or ".". The path must be
contained within double quotes.
ModelSim User’s Manual

UM-284 8 - Signal Spy

Model
Related tasks

$init_signal_driver (UM-280), $signal_force (UM-285), $signal_release (UM-287)

Limitations

• When mirroring the value of a VHDL signal onto a Verilog register, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Verilog memories (arrays of registers) are not supported.

Example
module testbench;
...
reg top_sig1;
...
initial

begin
$init_signal_spy("/top/uut/inst1/sig1","/top_sig1", 1);

end
...
endmodule

In this example, the value of /top/uut/inst1/sig1 will be mirrored onto /top_sig1.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
Verilog register or VHDL signal. Use the path
separator to which your simulation is set (i.e.,
"/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained
within double quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the spy_object’s value
is mirrored onto the dest_object. Default is 0,
no message.

Name Type Description
Sim User’s Manual

$signal_force UM-285
$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal
or Verilog register/net (called the dest_object). This allows you to force signals, registers,
or nets at any level of the design hierarchy from within a Verilog module (e.g., a testbench).

A $signal_force works the same as the force command (CR-82) with the exception that you
cannot issue a repeating force. The force will remain on the signal until a $signal_release,
a force or release command, or a subsequent $signal_force is issued. $signal_force can be
called concurrently or sequentially in a process.

Syntax
$signal_force(dest_object, value, rel_time, force_type, cancel_period,
verbose)

Returns

Nothing

Arguments

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

value string Required. Specifies the value to which the
dest_object is to be forced. The specified
value must be appropriate for the type.

rel_time integer, real, or
time

Optional. Specifies a time relative to the
current simulation time for the force to occur.
The default is 0.

force_type integer Optional. Specifies the type of force that will
be applied. The value must be one of the
following; 0 (default), 1 (deposit), 2 (drive),
or 3 (freeze). The default is "default" (which is
"freeze" for unresolved objects or "drive" for
resolved objects). See the force command
(CR-82) for further details on force type.
ModelSim User’s Manual

UM-286 8 - Signal Spy

Model
Related functions

$init_signal_driver (UM-280), $init_signal_spy (UM-283), $signal_release (UM-287)

Limitations

You cannot force bits or slices of a register; you can force only the entire register.

Example
‘timescale 1 ns / 1 ns

module testbench;

initial
begin
$signal_force("/testbench/uut/blk1/reset", "1", 0, 3, , 1);
$signal_force("/testbench/uut/blk1/reset", "0", 40, 3, 200000, 1);

end

...

endmodule

The above example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced
to a "0", 200000 ns after the second $signal_force call was executed.

cancel_period integer, real, time Optional. Cancels the $signal_force command
after the specified period of time units.
Cancellation occurs at the last simulation
delta cycle of a time unit. A value of zero
cancels the force at the end of the current time
period. Default is -1. A negative value means
that the force will not be cancelled.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the value is being
forced on the dest_object at the specified time.
Default is 0, no message.

Name Type Description
Sim User’s Manual

$signal_release UM-287
$signal_release

The $signal_release() system task releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registers, or nets at any level of the design hierarchy from within a Verilog module (e.g., a
testbench).

A $signal_release works the same as the noforce command (CR-92). $signal_release can be
called concurrently or sequentially in a process.

Syntax
$signal_release(dest_object, verbose)

Returns

Nothing

Arguments

Related functions

$init_signal_driver (UM-280), $init_signal_spy (UM-283), $signal_force (UM-285)

Limitations

• You cannot release a bit or slice of a register; you can release only the entire register.

Name Type Description

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilog register/net.
Use the path separator to which your
simulation is set (i.e., "/" or "."). A full
hierarchical path must begin with a "/" or ".".
The path must be contained within double
quotes.

verbose integer Optional. Possible values are 0 or 1. Specifies
whether you want a message reported in the
Transcript stating that the signal is being
released and the time of the release. Default is
0, no message.
ModelSim User’s Manual

UM-288 8 - Signal Spy

Model
Example
module testbench;

reg release_flag;

always @(posedge release_flag) begin
$signal_release("/testbench/dut/blk1/data", 1);
$signal_release("/testbench/dut/blk1/clk", 1);

end

...

endmodule

The above example releases any forces on the signals data and clk when the register
release_flag transitions to a "1". Both calls will send a message to the transcript stating
which signal was released and when.
Sim User’s Manual

 UM-289
9 - Standard Delay Format (SDF) Timing Annotation

Chapter contents
Specifying SDF files for simulation UM-290

Instance specification UM-290
SDF specification with the GUI UM-291
Errors and warnings UM-291

VHDL VITAL SDF UM-292
SDF to VHDL generic matching UM-292
Resolving errors UM-293

Verilog SDF UM-294
The $sdf_annotate system task UM-294
SDF to Verilog construct matching UM-295
Optional edge specifications UM-298
Optional conditions UM-299
Rounded timing values UM-299

SDF for Mixed VHDL and Verilog Designs UM-300

Interconnect delays. UM-300

Disabling timing checks UM-300

Troubleshooting UM-301
Specifying the wrong instance UM-301
Mistaking a component or module name for an instance label . UM-302
Forgetting to specify the instance UM-302

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’s built-in SDF annotator.

SDF and ModelSim

SDF timing annotations can be applied only to your FPGA vendor’s libraries; all other
libraries will simulate without annotation.
ModelSim User’s Manual

UM-290 9 - Standard Delay Format (SDF) Timing Annotation

Model
Specifying SDF files for simulation

ModelSim supports SDF versions 1.0 through 3.0. The simulator’s built-in SDF annotator
automatically adjusts to the version of the file. Use the following vsim (CR-189) command-
line options to specify the SDF files, the desired timing values, and their associated design
instances:

-sdfmin [<instance>=]<filename>
-sdftyp [<instance>=]<filename>
-sdfmax [<instance>=]<filename>

Any number of SDF files can be applied to any instance in the design by specifying one of
the above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical,
and -sdfmax to select maximum timing values from the SDF file.

Instance specification

The instance paths in the SDF file are relative to the instance to which the SDF is applied.
Usually, this instance is an ASIC or FPGA model instantiated under a testbench. For
example, to annotate maximum timing values from the SDF file myasic.sdf to an instance
u1 under a top-level named testbench, invoke the simulator as follows:

vsim -sdfmax /testbench/u1=myasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. This is usually
incorrect because in most cases the model is instantiated under a testbench or within a
larger system level simulation. In fact, the design can have several models, each having its
own SDF file. In this case, specify an SDF file for each instance. For example,

vsim -sdfmax /system/u1=asic1.sdf -sdfmax /system/u2=asic2.sdf system
Sim User’s Manual

Specifying SDF files for simulation UM-291
SDF specification with the GUI

As an alternative to the command-line options, you can specify SDF files in the Simulate
dialog box under the SDF tab.

You can access this dialog by invoking the simulator without any arguments or by selecting
Simulate > Simulate (Main window). See the GUI chapter for a description of this dialog.

For Verilog designs, you can also specify SDF files by using the $sdf_annotate system
task. See "The $sdf_annotate system task" (UM-294) for more details.

Errors and warnings

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim (CR-189) to
change SDF errors to warnings so that the simulation can continue. Warning messages can
be suppressed by using vsim with either the -sdfnowarn or +nosdfwarn options.

Another option is to use the SDF tab from the Simulate dialog box (shown above). Select
Disable SDF warnings (-sdfnowarn, or +nosdfwarn) to disable warnings, or select Reduce
SDF errors to warnings (-sdfnoerror) to change errors to warnings.

See "Troubleshooting" (UM-301) for more information on errors and warnings and how to
avoid them.
ModelSim User’s Manual

UM-292 9 - Standard Delay Format (SDF) Timing Annotation

Model
VHDL VITAL SDF

VHDL SDF annotation works on VITAL cells only. The IEEE 1076.4 VITAL ASIC
Modeling Specification describes how cells must be written to support SDF annotation.
Once again, the designer does not need to know the details of this specification because the
library provider has already written the VITAL cells and tools that create compatible SDF
files. However, the following summary may help you understand simulator error messages.
For additional VITAL specification information, see "VITAL specification and source
code" (UM-60).

SDF to VHDL generic matching

An SDF file contains delay and timing constraint data for cell instances in the design. The
annotator must locate the cell instances and the placeholders (VHDL generics) for the
timing data. Each type of SDF timing construct is mapped to the name of a generic as
specified by the VITAL modeling specification. The annotator locates the generic and
updates it with the timing value from the SDF file. It is an error if the annotator fails to find
the cell instance or the named generic. The following are examples of SDF constructs and
their associated generic names:

SDF construct Matching VHDL generic name

(IOPATH a y (3)) tpd_a_y

(IOPATH (posedge clk) q (1) (2)) tpd_clk_q_posedge

(INTERCONNECT u1/y u2/a (5)) tipd_a

(SETUP d (posedge clk) (5)) tsetup_d_clk_noedge_posedge

(HOLD (negedge d) (posedge clk) (5)) thold_d_clk_negedge_posedge

(SETUPHOLD d clk (5) (5)) tsetup_d_clk & thold_d_clk

(WIDTH (COND (reset==1’b0) clk) (5)) tpw_clk_reset_eq_0
Sim User’s Manual

VHDL VITAL SDF UM-293
Resolving errors

If the simulator finds the cell instance but not the generic then an error message is issued.
For example,

** Error (vsim-SDF-3240) myasic.sdf(18):
Instance ’/testbench/dut/u1’ does not have a generic named ’tpd_a_y’

In this case, make sure that the design is using the appropriate VITAL library cells. If it is,
then there is probably a mismatch between the SDF and the VITAL cells. You need to find
the cell instance and compare its generic names to those expected by the annotator. Look
in the VHDL source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the
VITAL library cells are not being used. If the generic names do look like VITAL timing
generic names but don’t match the names expected by the annotator, then there are several
possibilities:

• The vendor’s tools are not conforming to the VITAL specification.

• The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

• The vendor’s library and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim (CR-189) with
the -vital2.2b option:

vsim -vital2.2b -sdfmax /testbench/u1=myasic.sdf testbench

For more information on resolving errors see "Troubleshooting" (UM-301).
ModelSim User’s Manual

UM-294 9 - Standard Delay Format (SDF) Timing Annotation

Model
Verilog SDF

Verilog designs can be annotated using either the simulator command-line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The
command-line options annotate the design immediately after it is loaded, but before any
simulation events take place. The $sdf_annotate task annotates the design at the time it is
called in the Verilog source code. This provides more flexibility than the command-line
options.

The $sdf_annotate system task

The syntax for $sdf_annotate is:

Syntax

$sdf_annotate
(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"],
["<mtm_spec>"], ["<scale_factor>"], ["<scale_type>"]);

Arguments

"<sdffile>"

String that specifies the SDF file. Required.

<instance>

Hierarchical name of the instance to be annotated. Optional. Defaults to the instance
where the $sdf_annotate call is made.

"<config_file>"

String that specifies the configuration file. Optional. Currently not supported, this
argument is ignored.

"<log_file>"

String that specifies the logfile. Optional. Currently not supported, this argument is
ignored.

"<mtm_spec>"

String that specifies the delay selection. Optional. The allowed strings are "minimum",
"typical", "maximum", and "tool_control". Case is ignored and the default is
"tool_control". The "tool_control" argument means to use the delay specified on the
command line by +mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

"<scale_factor>"

String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier is a real number that is used to
scale the corresponding delay in the SDF file.

"<scale_type>"

String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec>
delay selection is always used to select the delay scaling factor, but if a <scale_type> is
specified, then it will determine the min/typ/max selection from the SDF file. The
allowed strings are "from_min", "from_minimum", "from_typ", "from_typical",
"from_max", "from_maximum", and "from_mtm". Case is ignored, and the default is
"from_mtm", which means to use the <mtm_spec> value.
Sim User’s Manual

Verilog SDF UM-295
Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at
the end of the argument list. For example, to specify only the SDF file and the instance to
which it applies:

$sdf_annotate("myasic.sdf", testbench.u1);

To also specify maximum delay values:

$sdf_annotate("myasic.sdf", testbench.u1, , , "maximum");

SDF to Verilog construct matching

The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each
SDF construct, the annotator locates the cell instance and updates each specify path delay
or timing check that matches. An SDF construct can have multiple matches, in which case
each matching specify statement is updated with the SDF timing value. SDF constructs are
matched to Verilog constructs as follows:

IOPATH is matched to specify path delays or primitives:

The IOPATH construct usually annotates path delays. If the module contains no path
delays, then all primitives that drive the specified output port are annotated.

INTERCONNECT and PORT are matched to input ports:

Both of these constructs identify a module input or inout port and create an internal net that
is a delayed version of the port. This is called a Module Input Port Delay (MIPD). All
primitives, specify path delays, and specify timing checks connected to the original port are
reconnected to the new MIPD net.

PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

If the input and output ports are omitted in the SDF, then all path delays are matched in the
cell.

SDF Verilog

(IOPATH (posedge clk) q (3) (4)) (posedge clk => q) = 0;

(IOPATH a y (3) (4)) buf u1 (y, a);

SDF Verilog

(INTERCONNECT u1.y u2.a (5)) input a;

(PORT u2.a (5)) inout a;

SDF Verilog

(PATHPULSE a y (5) (10)) (a => y) = 0;

(GLOBALPATHPULSE a y (30) (60)) (a => y) = 0;
ModelSim User’s Manual

UM-296 9 - Standard Delay Format (SDF) Timing Annotation

Model
DEVICE is matched to primitives or specify path delays:

If the SDF cell instance is a primitive instance, then that primitive’s delay is annotated. If
it is a module instance, then all specify path delays are annotated that drive the output port
specified in the DEVICE construct (all path delays are annotated if the output port is
omitted). If the module contains no path delays, then all primitives that drive the specified
output port are annotated (or all primitives that drive any output port if the output port is
omitted).

SETUP is matched to $setup and $setuphold:

HOLD is matched to $hold and $setuphold:

SETUPHOLD is matched to $setup, $hold, and $setuphold:

RECOVERY is matched to $recovery:

REMOVAL is matched to $removal:

SDF Verilog

(DEVICE y (5)) and u1(y, a, b);

(DEVICE y (5)) (a => y) = 0; (b => y) = 0;

SDF Verilog

(SETUP d (posedge clk) (5)) $setup(d, posedge clk, 0);

(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);

(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

SDF Verilog

(RECOVERY (negedge reset) (posedge clk) (5)) $recovery(negedge reset, posedge clk, 0);

SDF Verilog

(REMOVAL (negedge reset) (posedge clk) (5)) $removal(negedge reset, posedge clk, 0);
Sim User’s Manual

Verilog SDF UM-297
RECREM is matched to $recovery, $removal, and $recrem:

SKEW is matched to $skew:

WIDTH is matched to $width:

PERIOD is matched to $period:

NOCHANGE is matched to $nochange:

SDF Verilog

(RECREM (negedge reset) (posedge clk) (5) (5)) $recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5)) $removal(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5)) $recrem(negedge reset, posedge clk, 0);

SDF Verilog

(SKEW (posedge clk1) (posedge clk2) (5)) $skew(posedge clk1, posedge clk2, 0);

SDF Verilog

(WIDTH (posedge clk) (5)) $width(posedge clk, 0);

SDF Verilog

(PERIOD (posedge clk) (5)) $period(posedge clk, 0);

SDF Verilog

(NOCHANGE (negedge write) addr (5) (5)) $nochange(negedge write, addr, 0, 0);
ModelSim User’s Manual

UM-298 9 - Standard Delay Format (SDF) Timing Annotation

Model
Optional edge specifications

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

• A match occurs if the SDF port does not have an edge.

• A match occurs if the specify port does not have an edge.

• A match occurs if the SDF port edge is identical to the specify port edge.

• A match occurs if explicit edge transitions in the specify port edge overlap with the SDF
port edge.

These rules allow SDF annotation to take place even if there is a difference between the
number of edge-specific constructs in the SDF file and the Verilog specify block. For
example, the Verilog specify block may contain separate setup timing checks for a falling
and rising edge on data with respect to clock, while the SDF file may contain only a single
setup check for both edges:

In this case, the cell accommodates more accurate data than can be supplied by the tool that
created the SDF file, and both timing checks correctly receive the same value. Likewise,
the SDF file may contain more accurate data than the model can accommodate.

In this case, both SDF constructs are matched and the timing check receives the value from
the last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF file is limited to posedge and negedge. The explicit edge
specifiers are 01, 0x, 10, 1x, x0, and x1. The set of [01, 0x, x1] is equivalent to posedge,
while the set of [10, 1x, x0] is equivalent to negedge. A match occurs if any of the explicit
edges in the specify port match any of the explicit edges implied by the SDF port. For
example,

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);

(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);

(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(data, edge[01, 0x] clk, 0);
Sim User’s Manual

Verilog SDF UM-299
Optional conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

• A match occurs if the SDF does not have a condition.

• A match occurs for a timing check if the SDF port condition is semantically equivalent
to the specify port condition.

• A match occurs for a path delay if the SDF condition is lexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded timing values

The SDF TIMESCALE construct specifies time units of values in the SDF file. The
annotator rounds timing values from the SDF file to the time precision of the module that
is annotated. For example, if the SDF TIMESCALE is 1ns and a value of .016 is annotated
to a path delay in a module having a time precision of 10ps (from the timescale directive),
then the path delay receives a value of 20ps. The SDF value of 16ps is rounded to 20ps.
Interconnect delays are rounded to the time precision of the module that contains the
annotated MIPD.

SDF Verilog

(SETUP data (COND (reset!=1) (posedge clock)) (5)) $setup(data, posedge clk &&& (reset==0), 0);

SDF Verilog

(COND (r1 || r2) (IOPATH clk q (5))) if (r1 || r2) (clk => q) = 5; // matches

(COND (r1 || r2) (IOPATH clk q (5))) if (r2 || r1) (clk => q) = 5; // does not match
ModelSim User’s Manual

UM-300 9 - Standard Delay Format (SDF) Timing Annotation

Model
SDF for Mixed VHDL and Verilog Designs

Annotation of a mixed VHDL and Verilog design is very flexible. VHDL VITAL cells and
Verilog cells can be annotated from the same SDF file. This flexibility is available only by
using the simulator’s SDF command-line options. The Verilog $sdf_annotate system task
can annotate Verilog cells only. See the vsim command (CR-189) for more information on
SDF command-line options.

Interconnect delays

An interconnect delay represents the delay from the output of one device to the input of
another. ModelSim can model single interconnect delays or multisource interconnect
delays for Verilog, VHDL/VITAL, or mixed designs. See the vsim command for more
information on the relevant command-line arguments.

Timing checks are performed on the interconnect delayed versions of input ports. This may
result in misleading timing constraint violations, because the ports may satisfy the
constraint while the delayed versions may not. If the simulator seems to report incorrect
violations, be sure to account for the effect of interconnect delays.

Disabling timing checks

ModelSim offers a number of options for disabling timing checks on a "global" or
individual basis. The table below provides a summary of those options. See the command
and argument descriptions in the ModelSim Command Reference for more details.

Command and argument Effect

vlog +notimingchecks disables timing check system tasks for all instances in the specified
Verilog design

vlog +nospecify disables specify path delays and timing checks for all instances in the
specified Verilog design

vsim +no_neg_tchk disables negative timing check limits by setting them to zero for all
instances in the specified design

vsim +no_notifier disables the toggling of the notifier register argument of the timing
check system tasks for all instances in the specified design

vsim +no_tchk_msg disables error messages issued by timing check system tasks when
timing check violations occur for all instances in the specified design

vsim +notimingchecks disables Verilog and VITAL timing checks for all instances in the
specified design
Sim User’s Manual

Troubleshooting UM-301
Troubleshooting

Specifying the wrong instance

By far, the most common mistake in SDF annotation is to specify the wrong instance to the
simulator’s SDF options. The most common case is to leave off the instance altogether,
which is the same as selecting the top-level design unit. This is generally wrong because
the instance paths in the SDF are relative to the ASIC or FPGA model, which is usually
instantiated under a top-level testbench. See "Instance specification" (UM-290) for an
example.

A common example for both VHDL and Verilog test benches is provided below. For
simplicity, the test benches do nothing more than instantiate a model that has no ports.

VHDL testbench

entity testbench is end;

architecture only of testbench is
component myasic
end component;

begin
dut : myasic;

end;

Verilog testbench

module testbench;
myasic dut();

endmodule

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate simulator invocation might be:

vsim -sdfmax /testbench/dut=myasic.sdf testbench

Optionally, you can leave off the name of the top-level:

vsim -sdfmax /dut=myasic.sdf testbench

The important thing is to select the instance for which the SDF is intended. If the model is
deep within the design hierarchy, an easy way to find the instance name is to first invoke
the simulator without SDF options, open the structure window, navigate to the model
instance, select it, and enter the environment command (CR-74). This command displays
the instance name that should be used in the SDF command-line option.
ModelSim User’s Manual

UM-302 9 - Standard Delay Format (SDF) Timing Annotation

Model
Mistaking a component or module name for an instance label

Another common error is to specify the component or module name rather than the instance
label. For example, the following invocation is wrong for the above testbenches:

vsim -sdfmax /testbench/myasic=myasic.sdf testbench

This results in the following error message:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/myasic’.

Forgetting to specify the instance

If you leave off the instance altogether, then the simulator issues a message for each
instance path in the SDF that is not found in the design. For example,

vsim -sdfmax myasic.sdf testbench

Results in:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u1’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u2’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u3’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u4’

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u5’

** Warning (vsim-SDF-3432) myasic.sdf:
This file is probably applied to the wrong instance.

** Warning (vsim-SDF-3432) myasic.sdf:
Ignoring subsequent missing instances from this file.

After annotation is done, the simulator issues a summary of how many instances were not
found and possibly a suggestion for a qualifying instance:

** Warning (vsim-SDF-3440) myasic.sdf:
Failed to find any of the 358 instances from this file.

** Warning (vsim-SDF-3442) myasic.sdf:
Try instance ’/testbench/dut’. It contains all instance paths from this
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see "Resolving errors" (UM-293) for specific VHDL VITAL SDF troubleshooting.
Sim User’s Manual

 UM-303
10 - Value Change Dump (VCD) Files

Chapter contents
ModelSim VCD commands and VCD tasks UM-304

Creating a VCD file UM-306
Flow for four-state VCD file UM-306
Flow for extended VCD file UM-306

Resimulating a design from a VCD file UM-307
Example 1 — Verilog counter UM-307
Example 2 — VHDL adder UM-307
Example 3 — Mixed-HDL design UM-308

A VCD file from source to output UM-309
VHDL source code UM-309
VCD simulator commands UM-309
VCD output UM-310

Capturing port driver data UM-312
Supported TSSI states UM-312
Strength values UM-313
Port identifier code UM-313
Example VCD output from vcd dumpports UM-314

This chapter explains Model Technology’s Verilog VCD implementation for ModelSim.

The VCD file format is specified in the IEEE 1364 standard. It is an ASCII file containing
header information, variable definitions, and variable value changes. VCD is in common
use for Verilog designs, and is controlled by VCD system task calls in the Verilog source
code. ModelSim provides simulator command equivalents for these system tasks and
extends VCD support to VHDL designs; the ModelSim commands can be used on either
VHDL or Verilog designs.

Note: If you need vendor-specific ASIC design-flow documentation that incorporates
VCD, please contact your ASIC vendor.
ModelSim User’s Manual

UM-304 10 - Value Change Dump (VCD) Files

Model
ModelSim VCD commands and VCD tasks

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the
VCD file along with the results of those commands. The table below maps the VCD
commands to their associated tasks.

ModelSim versions 5.5 and later also support extended VCD (dumpports system tasks).
The table below maps the VCD dumpports commands to their associated tasks.

ModelSim versions 5.5 and later support multiple VCD files. This functionality is an
extension of the IEEE Std 1364 specification. The tasks behave the same as the IEEE
equivalent tasks such as $dumpfile, $dumpvar, etc. The difference is that $fdumpfile can
be called multiple times to create more than one VCD file, and the remaining tasks require
a filename argument to associate their actions with a specific file.

VCD commands VCD system tasks

vcd add (CR-127) $dumpvars

vcd checkpoint (CR-128) $dumpall

vcd file (CR-136) $dumpfile

vcd flush (CR-140) $dumpflush

vcd limit (CR-141) $dumplimit

vcd off (CR-142) $dumpoff

vcd on (CR-143) $dumpon

VCD dumpports commands VCD system tasks

vcd dumpports (CR-130) $dumpports

vcd dumpportsall (CR-131) $dumpportsall

vcd dumpportsflush (CR-132) $dumpportsflush

vcd dumpportslimit (CR-133) $dumpportslimit

vcd dumpportsoff (CR-134) $dumpportsoff

vcd dumpportson (CR-135) $dumpportson

VCD commands VCD system tasks

vcd add (CR-127) -file <filename> $fdumpvars

vcd checkpoint (CR-128) <filename> $fdumpall

vcd files (CR-138) <filename> $fdumpfile

vcd flush (CR-140) <filename> $fdumpflush
Sim User’s Manual

ModelSim VCD commands and VCD tasks UM-305
vcd limit (CR-141) <filename> $fdumplimit

vcd off (CR-142) <filename> $fdumpoff

vcd on (CR-143) <filename> $fdumpon

Important: Note that two commands (vcd file and vcd files) are available to specify a
filename and state mapping for a VCD file. Vcd file allows for only one VCD file and
exists for backwards compatibility with ModelSim versions prior to 5.5. Vcd files allows
for creation of multiple VCD files and is the preferred command to use in ModelSim
versions 5.5 and later.

VCD commands VCD system tasks
ModelSim User’s Manual

UM-306 10 - Value Change Dump (VCD) Files

Model
Creating a VCD file

There are two flows in ModelSim for creating a VCD file. One flow produces a four-state
VCD file with variable changes in 0, 1, x, and z with no strength information; the other
produces an extended VCD file with variable changes in all states and strength information
and port driver data.

Both flows will also capture port driver changes unless filtered out with optional
command-line arguments.

The commands shown below are documented in detail in the ModelSim Command
Reference.

Flow for four-state VCD file

First, compile and load the design:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

Next, with the design loaded, specify the VCD file name with the vcd file command (CR-

136) and add items to the file with the vcd add command (CR-127):

VSIM 1> vcd file myvcdfile.vcd
VSIM 2> vcd add /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be a VCD file in the working directory.

Flow for extended VCD file

First, compile and load the design:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

Next, with the design loaded, specify the VCD file name and items to add with the vcd
dumpports command (CR-130):

VSIM 1> vcd dumpports -file myvcdfile.vcd /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be an extended VCD file in the working directory.

Case sensitivity

VHDL is not case sensitive so ModelSim converts all signal names to lower case when it
produces a VCD file. Conversely, Verilog designs are case sensitive so ModelSim
maintains case when it produces a VCD file.
Sim User’s Manual

Resimulating a design from a VCD file UM-307
Resimulating a design from a VCD file

To resimulate with a VCD file, you capture the ports of a design unit instance within a
testbench or design. The design may be VHDL, Verilog, or mixed HDL. You can
resimulate only at the top level of the module for which you captured ports.

The general procedure for resimulating with a VCD file includes two steps:

1 Create a VCD file using the vcd dumpports command (CR-130).

2 Rerun without the testbench, using the -vcdstim argument to vsim (CR-189). Note that
-vcdstim works only with VCD files that were created by a ModelSim simulation.

Example 1 — Verilog counter

First, create the VCD file using vcd dumpports:

% cd ~/modeltech/examples
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter
VSIM 1> vcd dumpports -file counter.vcd /test_counter/dut/*
VSIM 2> run
VSIM 3> quit -f

Next, rerun the counter without the testbench, using the -vcdstim argument:

% vsim -vcdstim counter.vcd counter
VSIM 1> add wave /*
VSIM 2> run 200

Example 2 — VHDL adder

First, create the VCD file using vcd dumpports:

% cd ~/modeltech/examples
% vlib work
% vcom gates.vhd adder.vhd stimulus.vhd
% vsim testbench
VSIM 1> vcd dumpports -file addern.vcd /testbench/uut/*
VSIM 2> run 1000
VSIM 3> quit -f

Next, rerun the adder without the testbench, using the -vcdstim argument:

% vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"
ModelSim User’s Manual

UM-308 10 - Value Change Dump (VCD) Files

Model
Example 3 — Mixed-HDL design

First, create three VCD files, one for each module:

% cd ~/modeltech/examples/mixedHDL
% vlib work
% vlog cache.v memory.v proc.v
% vcom util.vhd set.vhd top.vhd
% vsim top
VSIM 1> vcd dumpports -file proc.vcd /top/p/*
VSIM 2> vcd dumpports -file cache.vcd /top/c/*
VSIM 3> vcd dumpports -file memory.vcd /top/m/*
VSIM 4> run 1000
VSIM 5> quit -f

Next, rerun each module separately, using the captured VCD stimulus:

% vsim -vcdstim proc.vcd proc -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim cache.vcd cache -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim memory.vcd memory -do "add wave /*; run 1000"
VSIM 1> quit -f
Sim User’s Manual

A VCD file from source to output UM-309
A VCD file from source to output

The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD output.

VHDL source code

The design is a simple shifter device represented by the following VHDL source code:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity SHIFTER_MOD is
port (CLK, RESET, data_in : IN STD_LOGIC;

Q : INOUT STD_LOGIC_VECTOR(8 downto 0));
END SHIFTER_MOD ;

architecture RTL of SHIFTER_MOD is
begin

process (CLK,RESET)
begin

if (RESET = ’1’) then
Q <= (others => ’0’) ;

elsif (CLK’event and CLK = ’1’) then
Q <= Q(Q’left - 1 downto 0) & data_in ;

end if ;
end process ;

end ;

VCD simulator commands

At simulator time zero, the designer executes the following commands and quits the
simulator at time 1200:

vcd file output.vcd
vcd add -r *
force reset 1 0
force data_in 0 0
force clk 0 0
run 100
force clk 1 0, 0 50 -repeat 100
run 100
vcd off
force reset 0 0
force data_in 1 0
run 100
vcd on
run 850
force reset 1 0
run 50
vcd checkpoint
ModelSim User’s Manual

UM-310 10 - Value Change Dump (VCD) Files

Model
VCD output

The VCD file created as a result of the preceding scenario would be called output.vcd. The
following pages show how it would look.

VCD output

$comment
File created using the following

command:
vcd files output.vcd

$date
Fri Jan 12 09:07:17 2000

$end
$version

ModelSim EE/PLUS 5.4
$end
$timescale

1ns
$end
$scope module shifter_mod $end
$var wire 1 ! clk $end
$var wire 1 " reset $end
$var wire 1 # data_in $end
$var wire 1 $ q [8] $end
$var wire 1 % q [7] $end
$var wire 1 & q [6] $end
$var wire 1 ’ q [5] $end
$var wire 1 (q [4] $end
$var wire 1) q [3] $end
$var wire 1 * q [2] $end
$var wire 1 + q [1] $end
$var wire 1 , q [0] $end
$upscope $end
$enddefinitions $end
#0
$dumpvars
0!
1"
0#
0$
0%
0&

0’
0(
0)
0*
0+
0,
$end
#100
1!
#150
0!
#200
1!
$dumpoff
x!
x"
x#
x$
x%
x&
x’
x(
x)
x*
x+
x,
$end
#300
$dumpon
1!
0"
1#
0$
0%
Sim User’s Manual

A VCD file from source to output UM-311
0&
0’
0(
0)
0*
0+
1,
$end
#350
0!
#400
1!
1+
#450
0!
#500
1!
1*
#550
0!
#600
1!
1)
#650
0!
#700
1!
1(
#750
0!
#800
1!
1’
#850
0!
#900
1!
1&
#950
0!

#1000
1!
1%
#1050
0!
#1100
1!
1$
#1150
0!
1"
0$
0%
0&
0’
0(
0)
0*
0+
0,
#1200
1!
$dumpall
1!
1"
1#
0$
0%
0&
0’
0(
0)
0*
0+
0,
$end
ModelSim User’s Manual

UM-312 10 - Value Change Dump (VCD) Files

Model
Capturing port driver data

Some ASIC vendors’ toolkits read a VCD file format that provides details on port drivers.
This information can be used, for example, to drive a tester. See the ASIC vendor’s
documentation for toolkit specific information.

In ModelSim use the vcd dumpports command (CR-130) to create a VCD file that captures
port driver data.

Port driver direction information is captured as TSSI states in the VCD file. Each time an
external or internal port driver changes values, a new value change is recorded in the VCD
file with the following format:

 p<TSSI state> <0 strength> <1 strength> <identifier_code>

Supported TSSI states

The supported <TSSI states> are:

Input (testfixture) Output (dut)

D low L low

U high H high

N unknown X unknown

Z tri-state T tri-state

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving unknown)

f tri-state

A unknown (input driving low and output driving high)

a unknown (input driving low and output driving unknown)

C unknown (input driving unknown and output driving low)

b unknown (input driving high and output driving unknown)

B unknown (input driving high and output driving low)

c unknown (input driving unknown and output driving high)
Sim User’s Manual

Capturing port driver data UM-313
Strength values

The <strength> values are based on Verilog strengths:

Port identifier code

The <identifier_code> is an integer preceded by < that starts at zero and is incremented for
each port in the order the ports are specified. Also, the variable type recorded in the VCD
header is "port".

Strength VHDL std_logic mappings

0 highz ’Z’

1 small

2 medium

3 weak

4 large

5 pull ’W’,’H’,’L’

6 strong ’U’,’X’,’0’,’1’,’-’

 7 supply
ModelSim User’s Manual

UM-314 10 - Value Change Dump (VCD) Files

Model
Example VCD output from vcd dumpports

The following is an example VCD file created with the vcd dumpports command.

$comment

File created using the following command:

vcd dumpports results/dump1

$end

$date

Tue Aug 20 13:33:02 2000

$end

$version

ModelSim Version 5.4c

$end

$timescale

1ns

$end

$scope module top1 $end

$scope module u1 $end

$var port 1 <0 a $end

$var port 1 <1 b $end

$var port 1 <2 c $end

$upscope $end

$upscope $end

$enddefinitions $end

#0

$dumpports

pN 6 6 <0

pX 6 6 <1

p? 6 6 <2

$end

#10

pX 6 6 <1

pN 6 6 <0

p? 6 6 <2

#20
pL 6 0 <1
pD 6 0 <0
pa 6 6 <2
#30
pH 0 6 <1
pU 0 6 <0
pb 6 6 <2
#40
pT 0 0 <1
pZ 0 0 <0
pX 6 6 <2
#50
pX 5 5 <1
pN 5 5 <0
p? 6 6 <2
#60
pL 5 0 <1
pD 5 0 <0
pa 6 6 <2
#70
pH 0 5 <1
pU 0 5 <0
pb 6 6 <2
#80
pX 6 6 <1
pN 6 6 <0
p? 6 6 <2
Sim User’s Manual

 UM-315
11 - Tcl and macros (DO files)

Chapter contents
Tcl features within ModelSim UM-316

Tcl References UM-316

Tcl commands UM-317

Tcl command syntax UM-318
if command syntax UM-320
set command syntax UM-321
Command substitution UM-322
Command separator UM-322
Multiple-line commands UM-322
Evaluation order UM-322
Tcl relational expression evaluation UM-322
Variable substitution UM-323
System commands. UM-323

List processing UM-324

ModelSim Tcl commands UM-324

ModelSim Tcl time commands UM-325

Tcl examples UM-327

Macros (DO files) UM-331
Creating DO files UM-331
Using Parameters with DO files UM-331
Making macro parameters optional UM-332
Useful commands for handling breakpoints and errors . . . UM-333
Error action in DO files UM-333

This chapter provides an overview of Tcl (tool command language) as used with
ModelSim. Macros in ModelSim are simply Tcl scripts that contain ModelSim and,
optionally, Tcl commands.

Tcl is a scripting language for controlling and extending ModelSim. Within ModelSim you
can develop implementations from Tcl scripts without the use of C code. Because Tcl is
interpreted, development is rapid; you can generate and execute Tcl scripts on the fly
without stopping to recompile or restart ModelSim. In addition, if ModelSim does not
provide the command you need, you can use Tcl to create your own commands.
ModelSim User’s Manual

UM-316 11 - Tcl and macros (DO files)

Model
Tcl features within ModelSim

Using Tcl with ModelSim gives you these features:

• command history (like that in C shells)

• full expression evaluation and support for all C-language operators

• a full range of math and trig functions

• support of lists and arrays

• regular expression pattern matching

• procedures

• the ability to define your own commands

• command substitution (that is, commands may be nested)

• robust scripting language for macros

Tcl References

Two books about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout, published by
Addison-Wesley Publishing Company, Inc., and Practical Programming in Tcl and Tk by
Brent Welch published by Prentice Hall. You can also consult the following online
references:

• Select Help > Tcl Man Pages (Main window).

• The Model Technology web site lists a variety of Tcl resources:
www.model.com/resources/tcltk.asp
Sim User’s Manual

http://www.model.com/resources/tcltk.asp

Tcl commands UM-317
Tcl commands

For complete information on Tcl commands, select Help > Tcl Man Pages (Main
window). Also see "Preference variables located in Tcl files" (UM-352) for information on
Tcl variables.

ModelSim command names that conflict with Tcl commands have been renamed or have
been replaced by Tcl commands. See the list below:

Previous ModelSim
command

Command changed to (or replaced by)

continue run (CR-114) with the -continue option

format list | wave write format (CR-216) with either list or wave specified

if replaced by the Tcl if command, see "if command syntax" (UM-

320) for more information

list add list (CR-32)

nolist | nowave delete (CR-65) with either list or wave specified

set replaced by the Tcl set command, see "set command syntax"
(UM-321) for more information

source vsource (CR-204)

wave add wave (CR-35)
ModelSim User’s Manual

UM-318 11 - Tcl and macros (DO files)

Model
Tcl command syntax

The following eleven rules define the syntax and semantics of the Tcl language. Additional
details on if command syntax (UM-320) and set command syntax (UM-321) follow.

1 A Tcl script is a string containing one or more commands. Semi-colons and newlines are
command separators unless quoted as described below. Close brackets ("]") are
command terminators during command substitution (see below) unless quoted.

2 A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a command procedure
to carry out the command, then all of the words of the command are passed to the
command procedure. The command procedure is free to interpret each of its words in
any way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

3 Words of a command are separated by white space (except for newlines, which are
command separators).

4 If the first character of a word is double-quote (""") then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

5 If the first character of a word is an open brace ("{") then the word is terminated by the
matching close brace ("}"). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
the word is quoted with a backslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.

6 If a word contains an open bracket ("[") then Tcl performs command substitution. To do
this it invokes the Tcl interpreter recursively to process the characters following the open
bracket as a Tcl script. The script may contain any number of commands and must be
terminated by a close bracket ("]"). The result of the script (i.e. the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.
Sim User’s Manual

Tcl command syntax UM-319
7 If a word contains a dollar-sign ("$") then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of a variable.
Variable substitution may take any of the following forms:

$name

Name is the name of a scalar variable; the name is terminated by any character that isn’t
a letter, digit, or underscore.

$name(index)

Name gives the name of an array variable and index gives the name of an element within
that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on the
characters of index.

${name}

Name is the name of a scalar variable. It may contain any characters whatsoever except
for close braces.

There may be any number of variable substitutions in a single word. Variable substitution
is not performed on words enclosed in braces.

8 If a backslash ("\") appears within a word then backslash substitution occurs. In all cases
but those described below the backslash is dropped and the following character is treated
as an ordinary character and included in the word. This allows characters such as double
quotes, close brackets, and dollar signs to be included in words without triggering special
processing. The following table lists the backslash sequences that are handled specially,
along with the value that replaces each sequence.

\a Audible alert (bell) (0x7).

\b Backspace (0x8).

\f Form feed (0xc).

\n Newline (0xa).

\r Carriage-return (0xd).

\t Tab (0x9).

\v Vertical tab (0xb).

\<newline>whiteSpace A single space character replaces the backslash, newline, and all
spaces and tabs after the newline. This backslash sequence is
unique in that it is replaced in a separate pre-pass before the
command is actually parsed. This means that it will be replaced
even when it occurs between braces, and the resulting space will
be treated as a word separator if it isn’t in braces or quotes.

\\ Backslash ("\").

\ooo The digits ooo (one, two, or three of them) give the octal value
of the character.
ModelSim User’s Manual

UM-320 11 - Tcl and macros (DO files)

Model
Backslash substitution is not performed on words enclosed in braces, except for
backslash-newline as described above.

9 If a hash character ("#") appears at a point where Tcl is expecting the first character of
the first word of a command, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

10 Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value is inserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by the recursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

11 Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even
if the variable’s value contains spaces.

if command syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

The if command evaluates expr1 as an expression. The value of the expression must be a
boolean (a numeric value, where 0 is false and anything else is true, or a string value such
as true or yes for true and false or no for false); if it is true then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is
true then body2 is executed, and so on. If none of the expressions evaluates to true then
bodyN is executed. The then and else arguments are optional "noise words" to make the
command easier to read. There may be any number of elseif clauses, including zero. BodyN
may also be omitted as long as else is omitted too. The return value from the command is
the result of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was no bodyN.

\xhh The hexadecimal digits hh give the hexadecimal value of the
character. Any number of digits may be present.
Sim User’s Manual

Tcl command syntax UM-321
set command syntax

The Tcl set command reads and writes variables. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

set varName ?value?

Description

Returns the value of variable varName. If value is specified, then sets the value of varName
to value, creating a new variable if one doesn’t already exist, and returns its value. If
varName contains an open parenthesis and ends with a close parenthesis, then it refers to
an array element: the characters before the first open parenthesis are the name of the array,
and the characters between the parentheses are the index within the array. Otherwise
varName refers to a scalar variable. Normally, varName is unqualified (does not include
the names of any containing namespaces), and the variable of that name in the current
namespace is read or written. If varName includes namespace qualifiers (in the array name
if it refers to an array element), the variable in the specified namespace is read or written.

If no procedure is active, then varName refers to a namespace variable (global variable if
the current namespace is the global namespace). If a procedure is active, then varName
refers to a parameter or local variable of the procedure unless the global command was
invoked to declare varName to be global, or unless a Tcl variable command was invoked
to declare varName to be a namespace variable.

Command substitution

Placing a command in square brackets [] will cause that command to be evaluated first and
its results returned in place of the command. An example is:

set a 25
set b 11
set c 3
echo "the result is [expr ($a + $b)/$c]"

will output:

"the result is 12"

This feature allows VHDL variables and signals, and Verilog nets and registers to be
accessed using:

[examine -<radix> name]

The %name substitution is no longer supported. Everywhere %name could be used, you
now can use [examine -value -<radix> name] which allows the flexibility of specifying
command options. The radix specification is optional.
ModelSim User’s Manual

UM-322 11 - Tcl and macros (DO files)

Model
Command separator

A semicolon character (;) works as a separator for multiple commands on the same line. It
is not required at the end of a line in a command sequence.

Multiple-line commands

With Tcl, multiple-line commands can be used within macros and on the command line.
The command line prompt will change (as in a C shell) until the multiple-line command is
complete.

In the example below, note the way the opening brace ’{’ is at the end of the if and else
lines. This is important because otherwise the Tcl scanner won't know that there is more
coming in the command and will try to execute what it has up to that point, which won't be
what you intend.

if { [exa sig_a] == "0011ZZ"} {
echo "Signal value matches"
do macro_1.do

} else {
echo "Signal value fails"
do macro_2.do }

Evaluation order

An important thing to remember when using Tcl is that anything put in curly brackets {} is
not evaluated immediately. This is important for if-then-else, procedures, loops, and so
forth.

Tcl relational expression evaluation

When you are comparing values, the following hints may be useful:

• Tcl stores all values as strings, and will convert certain strings to numeric values when
appropriate. If you want a literal to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...

The following will also work:

if {[exa var_1] == "345"}...

• However, if a literal cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Z}...

will give an error.

if {[exa var_2] == "001Z"}...

will work okay.

• Don't quote single characters in single quotes:

if {[exa var_3] == ’X’}...

will give an error

if {[exa var_3] == "X"}...

will work okay.
Sim User’s Manual

Tcl command syntax UM-323
• For the equal operator, you must use the C operator "==" . For not-equal, you must use
the C operator "!=".

Variable substitution

When a $<var_name> is encountered, the Tcl parser will look for variables that have been
defined either by ModelSim or by you, and substitute the value of the variable.

To access environment variables, use the construct:

$env(<var_name>)
echo My user name is $env(USER)

Environment variables can also be set using the env array:

set env(SHELL) /bin/csh

See "Simulator state variables" (UM-353) for more information about ModelSim-defined
variables.

System commands

To pass commands to the DOS window, use the Tcl exec command:

echo The date is [exec date]

Note: Tcl is case sensitive for variable names.
ModelSim User’s Manual

UM-324 11 - Tcl and macros (DO files)

Model
List processing

In Tcl a "list" is a set of strings in curly braces separated by spaces. Several Tcl commands
are available for creating lists, indexing into lists, appending to lists, getting the length of
lists and shifting lists. These commands are:

Two other commands, lsearch and lsort, are also available for list manipulation. See the
Tcl man pages (Help > Tcl Man Pages) for more information on these commands.

ModelSim Tcl commands

These additional commands enhance the interface between Tcl and ModelSim. Only brief
descriptions are provided here; for more information and command syntax see the
ModelSim Command Reference.

Command syntax Description

lappend var_name val1 val2 ... appends val1, val2, etc. to list var_name

lindex list_name index returns the index-th element of list_name; the first element is 0

linsert list_name index val1 val2 ... inserts val1, val2, etc. just before the index-th element of list_name

list val1, val2 ... returns a Tcl list consisting of val1, val2, etc.

llength list_name returns the number of elements in list_name

lrange list_name first last returns a sublist of list_name, from index first to index last; first or
last may be "end", which refers to the last element in the list

lreplace list_name first last val1, val2, ... replaces elements first through last with val1, val2, etc.

Command Description

alias (CR-39) creates a new Tcl procedure that evaluates the specified commands;
used to create a user-defined alias

find (CR-79) locates incrTcl classes and objects

lshift (CR-89) takes a Tcl list as argument and shifts it in-place one place to the left,
eliminating the 0th element

lsublist (CR-90) returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

printenv (CR-103) echoes to the Main window the current names and values of all
environment variables
Sim User’s Manual

ModelSim Tcl time commands UM-325
ModelSim Tcl time commands

ModelSim Tcl time commands make simulator-time-based values available for use within
other Tcl procedures.

Time values may optionally contain a units specifier where the intervening space is also
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to be in the UserTimeScale. Return values are always in the current
Time Scale Units. All time values are converted to a 64-bit integer value in the current Time
Scale. This means that values smaller than the current Time Scale will be truncated to 0.

Conversions

Relations

All relation operations return 1 or 0 for true or false respectively and are suitable return
values for TCL conditional expressions. For example,

if {[eqTime $Now 1750ns]} {
...

}

Command Description

 intToTime <intHi32> <intLo32> converts two 32-bit pieces (high and low
order) into a 64-bit quantity (Time in
ModelSim is a 64-bit integer)

 RealToTime <real> converts a <real> number to a 64-bit integer
in the current Time Scale

scaleTime <time> <scaleFactor> returns the value of <time> multiplied by the
<scaleFactor> integer

Command Description

eqTime <time> <time> evaluates for equal

neqTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than

gteTime <time> <time> evaluates for greater than or equal

ltTime <time> <time> evaluates for less than

lteTime <time> <time> evaluates for less than or equal
ModelSim User’s Manual

UM-326 11 - Tcl and macros (DO files)

Model
Arithmetic

Command Description

addTime <time> <time> add time

divTime <time> <time> 64-bit integer divide

mulTime <time> <time> 64-bit integer multiply

subTime <time> <time> subtract time
Sim User’s Manual

Tcl examples UM-327
Tcl examples

Example 1

The following Tcl/ModelSim example for UNIX shows how you can access system
information and transfer it into VHDL variables or signals and Verilog nets or registers.
When a particular HDL source breakpoint occurs, a Tcl function is called that gets the date
and time and deposits it into a VHDL signal of type STRING. If a particular environment
variable (DO_ECHO) is set, the function also echoes the new date and time to the transcript
file by examining the VHDL variable.

(in VHDL source):

signal datime : string(1 to 28) := " ";# 28 spaces

(on VSIM command line or in macro):

proc set_date {} {
global env
set do_the_echo [set env(DO_ECHO)]
set s [exec date]
force -deposit datime $s
if {do_the_echo} {

echo "New time is [examine -value datime]"
}

}
bp src/waveadd.vhd 133 {set_date; continue}

--sets the breakpoint to call set_date

This is an example of using the Tcl while loop to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b ""
set i [expr[llength $a]-1]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b ""
for {set i [expr [llength $a] -1]} {$i >= 0} {incr i -1} {

lappend b [lindex $a $i]
}

This example uses the Tcl foreach command to copy a list from variable a to variable b,
reversing the order of the elements along the way (the foreach command iterates over all
of the elements of a list):

set b ""
foreach i $a {

set b [linsert $b 0 $i]
}

Note: In a Windows environment, the Tcl exec command shown below will execute
compiled files only, not system commands.
ModelSim User’s Manual

UM-328 11 - Tcl and macros (DO files)

Model
This example shows a list reversal as above, this time aborting on a particular element using
the Tcl break command:

set b ""
foreach i $a {

if {$i = "ZZZ"} break
set b [linsert $b 0 $i]

}

This example is a list reversal that skips a particular element by using the Tcl continue
command:

set b ""
foreach i $a {

if {$i = "ZZZ"} continue
set b [linsert $b 0 $i]

}

The last example is of the Tcl switch command:

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}

}

Example 2

This next example shows a complete Tcl script that restores multiple Wave windows to
their state in a previous simulation, including signals listed, geometry, and screen position.
It also adds buttons to the Main window toolbar to ease management of the wave files. This
example works in ModelSim SE only.

This file contains procedures to manage multiple wave files.
Source this file from the command line or as a startup script.
source <path>/wave_mgr.tcl

add_wave_buttons
Add wave management buttons to the main toolbar (new, save and load)

new_wave
Dialog box creates a new wave window with the user provided name

named_wave <name>
Creates a new wave window with the specified title

save_wave <file-root>
Saves name, window location and contents for all open windows

wave windows
Creates <file-root><n>.do file for each window where <n> is 1
to the number of windows. Default file-root is "wave". Also
creates windowSet.do file that contains title and geometry info.

load_wave <file-root>
Opens and loads wave windows for all files matching <file-root><n>.do
where <n> are the numbers from 1-9. Default <file-root> is "wave".
Also runs windowSet.do file if it exists.
Sim User’s Manual

Tcl examples UM-329
Add wave management buttons to the main toolbar

proc add_wave_buttons {} {
_add_menu main controls right SystemMenu SystemWindowFrame {Load Waves} \
load_wave
_add_menu main controls right SystemMenu SystemWindowFrame {Save Waves} \
save_wave
_add_menu main controls right SystemMenu SystemWindowFrame {New Wave} \
new_wave
}

Simple Dialog requests name of new wave window. Defaults to Wave<n>

proc new_wave {} {
global dialog_prompt vsimPriv
set defaultName "Wave[llength $vsimPriv(WaveWindows)]"
set dialog_prompt(result) $defaultName
set windowName [GetValue . "Create Named Wave Window:"]
Debug
puts "Window name: $windowName\n";
if {$windowName == "{}"} {
 set windowName ""
}
if {$windowName != ""} {
 named_wave $windowName
} else {
 named_wave $defaultName
}

}

Creates a new wave window with the provided name (defaults to "Wave")

proc named_wave {{name "Wave"}} {
global vsimPriv
view -new wave
set newWave [lindex $vsimPriv(WaveWindows) [expr [llength \
$vsimPriv(WaveWindows)] - 1]]
wm title $newWave $name

}

Writes out format of all wave windows, stores geometry and title info in
windowSet.do file. Removes any extra files with the same fileroot.
Default file name is wave<n> starting from 1.

proc save_wave {{fileroot "wave"}} {
global vsimPriv
set n 1
set fileId [open windowSet_$fileroot.do w 755]
foreach w $vsimPriv(WaveWindows) {

echo "Saving: [wm title $w]"
set filename $fileroot$n.do
write format wave -window $w $filename
puts $fileId "wm title $w \"[wm title $w]\""
puts $fileId "wm geometry $w [wm geometry $w]"
puts $fileId "mtiGrid_colconfig $w.grid name -width \
[mtiGrid_colcget $w.grid name -width]"
puts $fileId "mtiGrid_colconfig $w.grid value -width \
[mtiGrid_colcget $w.grid value -width]"
flush $fileId
incr n

}

ModelSim User’s Manual

UM-330 11 - Tcl and macros (DO files)

Model
if {![catch {glob $fileroot\[$n-9\].do}]} {
foreach f [lsort [glob $fileroot\[$n-9\].do]] {

echo "Removing: $f"
exec rm $f

}
}

}

Provide file root argument and load_wave restores all saved windows.
Default file root is "wave".

proc load_wave {{fileroot "wave"}} {
global vsimPriv
foreach f [lsort [glob $fileroot\[1-9\].do]] {

echo "Loading: $f"
view -new wave
do $f

}
if {[file exists windowSet_$fileroot.do]} {

do windowSet_$fileroot.do
}

}

Sim User’s Manual

Macros (DO files) UM-331
Macros (DO files)

ModelSim macros (also called DO files) are simply scripts that contain ModelSim and,
optionally, Tcl commands. You invoke these scripts with the Tools > Execute Macro
(Main window) menu selection or the do command (CR-68).

Creating DO files

You can create DO files, like any other Tcl script, by typing the required commands in any
editor and saving the file. Alternatively, you can save the Main window transcript as a DO
file (see "Saving the Main window transcript file" (UM-139)).

The following is a simple DO file that was saved from the Main window transcript. It is
used in the dataset exercise in the ModelSim Tutorial. This DO file adds several signals to
the Wave window, provides stimulus to those signals, and then advances the simulation.

add wave ld
add wave rst
add wave clk
add wave d
add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force ld 0
force d 1010
run 1700
force ld 1
run 100
force ld 0
run 400
force rst 1
run 200
force rst 0 10
run 1500

Using Parameters with DO files

You can increase the flexibility of DO files by using parameters. Parameters specify values
that are passed to the corresponding parameters $1 through $9 in the macro file. For
example say the macro "testfile" contains the line bp $1 $2. The command below would
place a breakpoint in the source file named design.vhd at line 127:

do testfile design.vhd 127

There is no limit on the number of parameters that can be passed to macros, but only nine
values are visible at one time. You can use the shift command (CR-118) to see the other
parameters.
ModelSim User’s Manual

UM-332 11 - Tcl and macros (DO files)

Model
Making macro parameters optional

If you want to make macro parameters optional (i.e., be able to specify fewer parameter
values with the do command than the number of parameters referenced in the macro), you
must use the argc (UM-353) simulator state variable. The argc simulator state variable
returns the number of parameters passed. The examples below show several ways of using
argc.

Example 1

This macro specifies the files to compile and handles 0-2 compiler arguments as
parameters. If you supply more arguments, ModelSim generates a message.

switch $argc {
0 {vcom file1.vhd file2.vhd file3.vhd }
1 {vcom $1 file1.vhd file2.vhd file3.vhd }
2 {vcom $1 $2 file1.vhd file2.vhd file3.vhd }
default {echo Too many arguments. The macro accepts 0-2 args. }

}

Example 2

This macro specifies the compiler arguments and lets you compile any number of files.

variable Files ""
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

set Files [concat $Files $1]
shift

}
eval vcom -93 -explicit -noaccel $Files

Example 3

This macro is an enhanced version of the one shown in example 2. The additional code
determines whether the files are VHDL or Verilog and uses the appropriate compiler and
arguments depending on the file type. Note that the macro assumes your VHDL files have
a .vhd file extension.

variable vhdFiles ""
variable vFiles ""
set nbrArgs $argc
set vhdFilesExist 0
set vFilesExist 0
for {set x 1} {$x <= $nbrArgs} {incr x} {

if {[string match *.vhd $1]} {
set vhdFiles [concat $vhdFiles $1]
set vhdFilesExist 1

} else {
set vFiles [concat $vFiles $1]
set vFilesExist 1

}
shift

}
if {$vhdFilesExist == 1} {

eval vcom -93 -explicit -noaccel $vhdFiles
}
if {$vFilesExist == 1} {

eval vlog -fast -forcecode $vFiles
}

Sim User’s Manual

Macros (DO files) UM-333
Useful commands for handling breakpoints and errors

If you are executing a macro when your simulation hits a breakpoint or causes a run-time
error, ModelSim interrupts the macro and returns control to the command line. The
following commands may be useful for handling such events. (Any other legal command
may be executed as well.)

Error action in DO files

If a command in a macro returns an error, ModelSim does the following:

1 If an onerror (CR-100) command has been set in the macro script, ModelSim executes
that command.

2 If no onerror command has been specified in the script, ModelSim checks the
OnErrorDefaultAction Tcl variable. If the variable is defined, it’s action will be
invoked.

3 If neither 1 or 2 is true, the macro aborts.

command result

run (CR-114) -continue continue as if the breakpoint had not been executed, completes the run (CR-114) that
was interrupted

onbreak (CR-98) specify a command to run when you hit a breakpoint within a macro

onElabError (CR-99) specify a command to run when an error is encountered during elaboration

onerror (CR-100) specify a command to run when an error is encountered within a macro

status (CR-121) get a traceback of nested macro calls when a macro is interrupted

abort (CR-30) terminate a macro once the macro has been interrupted or paused

pause (CR-101) cause the macro to be interrupted; the macro can be resumed by entering a resume
command (CR-113) via the command line

Note: You can also set the OnErrorDefaultAction Tcl variable (see "Preference variables
located in Tcl files" (UM-352)) in the pref.tcl file to dictate what action ModelSim takes
when an error occurs.
ModelSim User’s Manual

UM-334 11 - Tcl and macros (DO files)

Model
Using the Tcl source command with DO files

Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the source command, the DO file is executed exactly as if the commands in it were
typed in by hand at the prompt. Each time a breakpoint is hit the Source window is updated
to show the breakpoint. This behavior could be inconvenient with a large DO file
containing many breakpoints.

When a do command is interrupted by an error or breakpoint, it does not update any
windows, and keeps the DO file "locked". This keeps the Source window from flashing,
scrolling, and moving the arrow when a complex DO file is executed. Typically an
onbreak resume command is used to keep the macro running as it hits breakpoints. Add
an onbreak abort command to the DO file if you want to exit the macro and update the
Source window.
Sim User’s Manual

 UM-335
A - ModelSim variables

Appendix contents
Variable settings report UM-336

Personal preferences UM-336

Returning to the original ModelSim defaults UM-337

Environment variables UM-337

Preference variables located in INI files UM-341
[Library] library path variables UM-341
[vcom] VHDL compiler control variables UM-342
[vlog] Verilog compiler control variables. UM-343
[vsim] simulator control variables UM-344
Commonly used INI variables UM-349
Commonly used INI variables UM-349

Preference variables located in Tcl files UM-352

Variable precedence UM-353

Simulator state variables UM-353
Referencing simulator state variables UM-354
Special considerations for the now variable UM-354

This appendix documents the following types of ModelSim variables:

• environment variables
Variables referenced and set according to operating system conventions. Environment
variables prepare the ModelSim environment prior to simulation.

• ModelSim preference variables
Variables used to control compiler or simulator functions and modify the appearance of
the ModelSim GUI.

• simulator state variables
Variables that provide feedback on the state of the current simulation.
ModelSim User’s Manual

UM-336 A - ModelSim variables

Model
Variable settings report

The report command (CR-109) returns a list of current settings for either the simulator state,
or simulator control variables. Use the following commands at either the ModelSim or
VSIM prompt:

report simulator state
report simulator control

The simulator control variables reported by the report simulator control command can be
set interactively using the Tcl set command (UM-321).

Personal preferences

There are several preferences stored by ModelSim on a personal basis, independent of
modelsim.ini or modelsim.tcl files. These preferences are stored in the Windows Registry
under HKEY_CURRENT_USER\Software\Model Technology Incorporated\ModelSim.

• cwd
History of the last five working directories (pwd). This history appears in the Main
window File menu.

• datasets
History of previously opened datasets. Used to populate the Dataset Pathname list box
in the Open Dataset dialog.

• mti_ask_LBViewTypes, mti_ask_LBViewPath, mti_ask_LBViewLoadable
Settings for the Customize Library View dialog. Determine the view of the Library tab
in the Main window workspace.

• mti_pane_cnt, mti_pane_size, pane_#, pane_percent
Determine layout of various panes in the Main window.

• open_workspace
Setting for whether or not to display the Main window workspace.

• pinit
Project Initialization state (one of: Welcome | OpenLast | NoWelcome). This determines
whether the Welcome To ModelSim dialog box appears when you invoke the tool.

• project_history
Project History

• printersetup
All setup parameters related to Printing (i.e., current printer, etc.)

• transcriptpercent
The size of the Main window transcript pane. Expressed as a percentage of the width of
the Main window.

The HKEY_CURRENT_USER key is unique for each user Login on Windows NT.
Sim User’s Manual

Returning to the original ModelSim defaults UM-337
Returning to the original ModelSim defaults

If you would like to return ModelSim’s interface to its original state, simply rename or
delete the existing modelsim.tcl and modelsim.ini files. ModelSim will use pref.tcl for GUI
preferences and make a copy of <install_dir>/modeltech/modelsim.ini to use the next time
ModelSim is invoked without an existing project (if you start a new project the new MPF
file will use the settings in the new modelsim.ini file).

Environment variables

Before compiling or simulating, several environment variables may be set to provide the
functions described in the table below. The variables are in the autoexec.bat file on
Windows 98/Me machines, and set through the System control panel on NT/2000
machines. The LM_LICENSE_FILE variable is required; all others are optional.

ModelSim Environment Variables

Variable Description

DOPATH used by ModelSim to search for DO files (macros); consists of a colon-separated
(semi-colon for Windows) list of paths to directories; this environment variable
can be overridden by the DOPATH Tcl preference variable

The DOPATH environment variable isn’t accessible when you invoke vsim from
a Unix shell or from a Windows command prompt. It is accessible once ModelSim
or vsim is invoked. If you need to invoke from a shell or command line and use
the DOPATH environment variable, use the following syntax:

vsim -do "do <dofile_name>" <design_unit>

EDITOR specifies the editor to invoke with the edit command (CR-72)

HOME used by ModelSim to look for an optional graphical preference file and optional
location map file; see: "Preference variables located in INI files" (UM-341) and
"Using location mapping" (UM-387)

LM_LICENSE_FILE used by the ModelSim license file manager to find the location of the license file;
may be a colon-separated (semi-colon for Windows) set of paths, including paths
to other vendor license files; REQUIRED

MODEL_TECH set by all ModelSim tools to the directory in which the binary executable resides;
DO NOT SET THIS VARIABLE!

MODEL_TECH_TCL used by ModelSim to find Tcl libraries for Tcl/Tk 8.3 and vsim; may also be used
to specify a startup DO file; defaults to /modeltech/../tcl; may be set to an alternate
path

MGC_LOCATION_MAP used by ModelSim tools to find source files based on easily reallocated "soft"
paths; optional; see: "Using location mapping" (UM-387); also see the Tcl
variables: SourceDir and SourceMap
ModelSim User’s Manual

UM-338 A - ModelSim variables

Model
MODELSIM used by all ModelSim tools to find the modelsim.ini file; consists of a path
including the file name. An alternative use of this variable is to set it to the path of
a project file (<Project_Root_Dir>/<Project_Name>.mpf). This allows you to
use project settings with command line tools. However, if you do this, the .mpf
file will replace modelsim.ini as the initialization file for all ModelSim tools.

MODELSIM_TCL used by ModelSim to look for an optional graphical preference file; can be a
semi-colon separated (Windows) list of file paths

MTI_COSIM_TRACE creates an mti_trace_cosim file containing debugging information about FLI/PLI/
VPI function calls; set to any value before invoking the simulator.

MTI_TF_LIMIT limits the size of the VSOUT temp file (generated by the ModelSim kernel); the
value of the variable is the size of k-bytes; TMPDIR (below) controls the location
of this file, STDOUT controls the name; default = 10, 0 = no limit; does not
control the size of the transcript file

MTI_USELIB_DIR specifies the directory into which object libraries are compiled when using the
-compile_uselibs argument to the vlog command (CR-181)

NOMMAP if set to 1, disables memory mapping in ModelSim; this should be used only when
running on Linux 7.1; it will decrease the speed with which ModelSim reads files

PLIOBJS used by ModelSim to search for PLI object files for loading; consists of a
space-separated list of file or path names

STDOUT the VSOUT temp file (generated by the simulator kernel) is deleted when the
simulator exits; the file is not deleted if you specify a filename for VSOUT with
STDOUT; specifying a name and location (use TMPDIR) for the VSOUT file will
also help you locate and delete the file in event of a crash (an unnamed VSOUT
file is not deleted after a crash either)

TMP specifies the path to a tempnam() generated file (VSOUT) containing all stdout
from the simulation kernel

Variable Description
Sim User’s Manual

Environment variables UM-339
Creating environment variables in Windows

In addition to the predefined variables shown above, you can define your own environment
variables. This example shows a user-defined library path variable that can be referenced
by the vmap command to add library mapping to the modelsim.ini file.

Using Windows 98/Me

Open and edit the autoexec.bat file by adding this line:

set MY_PATH=\temp\work

Restart Windows to initialize the new variable.

Using Windows NT/2000/XP

Right-click the My Computer icon and select Properties, then select the Environment
tab (in Windows 2000/XP select the Advanced tab and then Environment Variables). Add
the new variable with this data—Variable:MY_PATH and Value:\temp\work.

Click Set and Apply to initialize the variable.

Library mapping with environment variables

Once the MY_PATH variable is set, you can use it with the vmap command (CR-188) to
add library mappings to the current modelsim.ini file.

 If you’re using the vmap command from DOS prompt type:

vmap MY_VITAL %MY_PATH%

 If you’re using vmap from the ModelSim/VSIM prompt type:

vmap MY_VITAL \$MY_PATH

If you used DOS vmap, this line will be added to the modelsim.ini:

MY_VITAL = c:\temp\work

If vmap is used from the ModelSim/VSIM prompt, the modelsim.ini file will be modified
with this line:

 MY_VITAL = $MY_PATH

You can easily add additional hierarchy to the path. For example,

vmap MORE_VITAL %MY_PATH%\more_path\and_more_path

vmap MORE_VITAL \$MY_PATH\more_path\and_more_path

The "$" character in the examples above is Tcl syntax that precedes a variable. The "\"
character is an escape character that keeps the variable from being evaluated during the
execution of vmap.
ModelSim User’s Manual

UM-340 A - ModelSim variables

Model
Referencing environment variables within ModelSim

There are two ways to reference environment variables within ModelSim. Environment
variables are allowed in a FILE variable being opened in VHDL. For example,

use std.textio.all;
entity test is end;
architecture only of test is
begin

process
FILE in_file : text is in "$ENV_VAR_NAME";

begin
wait;

end process;
end;

Environment variables may also be referenced from the ModelSim command line or in
macros using the Tcl env array mechanism:

echo "$env(ENV_VAR_NAME)"

Removing temp files (VSOUT)

The VSOUT temp file is the communication mechanism between the simulator kernel and
the ModelSim GUI. In normal circumstances the file is deleted when the simulator exits. If
ModelSim crashes, however, the temp file must be deleted manually. Specifying the
location of the temp file with TMPDIR (above) will help you locate and remove the file.

Note: Environment variable expansion does not occur in files that are referenced via the
-f argument to vcom, vlog, or vsim.
Sim User’s Manual

Preference variables located in INI files UM-341
Preference variables located in INI files

ModelSim initialization (INI) files contain control variables that specify reference library
paths and compiler and simulator settings. The default initialization file is modelsim.ini and
is located in your install directory.

To set these variables, edit the initialization file directly with any text editor. The syntax for
variables in the file is:

<variable> = <value>

Comments within the file are preceded with a semicolon (;).

The following tables list the variables by section, and in order of their appearance within
the INI file:

[Library] library path variables

INI file sections

[Library] library path variables (UM-341)

[vcom] VHDL compiler control variables (UM-342)

[vlog] Verilog compiler control variables (UM-343)

[vsim] simulator control variables (UM-344)

Variable name Value range Purpose

ieee any valid path; may include
environment variables

sets the path to the library containing IEEE and
Synopsys arithmetic packages; the default is
$MODEL_TECH/../ieee

modelsim_lib any valid path; may include
environment variables

sets the path to the library containing Model
Technology VHDL utilities such as Signal Spy;
the default is $MODEL_TECH/../modelsim_lib

std any valid path; may include
environment variables

sets the path to the VHDL STD library; the default
is $MODEL_TECH/../std

std_developerskit any valid path; may include
environment variables

sets the path to the libraries for MGC standard
developer’s kit; the default is
$MODEL_TECH/../std_developerskit

synopsys any valid path; may include
environment variables

sets the path to the accelerated arithmetic
packages; the default is $MODEL_TECH/../
synopsys

verilog any valid path; may include
environment variables

sets the path to the library containing VHDL/
Verilog type mappings; the default is
$MODEL_TECH/../verilog

vital2000 any valid path; may include
environment variables

sets the path to the VITAL 2000 library; the
default is $MODEL_TECH/../vital2000
ModelSim User’s Manual

UM-342 A - ModelSim variables

Model
[vcom] VHDL compiler control variables

others any valid path; may include
environment variables

points to another modelsim.ini file whose library
path variables will also be read; the path name
must include "modelsim.ini"; only one others
variable can be specified in any modelsim.ini file.

Variable name Value
range

Purpose Default

CheckSynthesis 0, 1 if 1, turns on limited synthesis rule compliance
checking; checks only signals used (read) by a
process; also, understands only combinational
logic, not clocked logic

off (0)

Explicit 0, 1 if 1, turns on resolving of ambiguous function
overloading in favor of the "explicit" function
declaration (not the one automatically created by
the compiler for each type declaration)

on (1)

IgnoreVitalErrors 0, 1 if 1, ignores VITAL compliance checking errors off (0)

NoCaseStaticError 0, 1 if 1, changes case statement static errors to warnings off (0)

NoDebug 0, 1 if 1, turns off inclusion of debugging info within
design units

off (0)

NoIndexCheck 0, 1 if 1, run time index checks are disabled off (0)

NoOthersStaticError 0, 1 if 1, disables errors caused by aggregates that are
not locally static

off (0)

NoRangeCheck 0, 1 if 1, disables run time range checking off (0)

NoVital 0, 1 if 1, turns off acceleration of the VITAL packages off (0)

NoVitalCheck 0, 1 if 1, turns off VITAL compliance checking off (0)

Optimize_1164 0, 1 if 0, turns off optimization for IEEE std_logic_1164
package

on (1)

PedanticErrors 0, 1 if 1, overrides NoCaseStaticError and
NoOthersStaticError

off(0)

Quiet 0, 1 if 1, turns off "loading..." messages off (0)

RequireConfigForAllDefault
Binding

0, 1 if 1, instructs the compiler not to generate a default
binding during compilation

off (0)

Show_source 0, 1 if 1, shows source line containing error off (0)

Show_VitalChecksWarnings 0, 1 if 0, turns off VITAL compliance-check warnings on (1)

Variable name Value range Purpose
Sim User’s Manual

Preference variables located in INI files UM-343
[vlog] Verilog compiler control variables

Show_Warning1 0, 1 if 0, turns off unbound-component warnings on (1)

Show_Warning2 0, 1 if 0, turns off process-without-a-wait-statement
warnings

on (1)

Show_Warning3 0, 1 if 0, turns off null-range warnings on (1)

Show_Warning4 0, 1 if 0, turns off no-space-in-time-literal warnings on (1)

Show_Warning5 0, 1 if 0, turns off multiple-drivers-on-unresolved-signal
warnings

on (1)

VHDL93 0, 1 if 1, turns on VHDL-1993 off (0)

Variable name Value
range

Purpose Default

Hazard 0, 1 if 1, turns on Verilog hazard checking (order-
dependent accessing of global variables)

off (0)

Incremental 0, 1 if 1, turns on incremental compilation of modules off (0)

NoDebug 0, 1 if 1, turns off inclusion of debugging info within
design units

off (0)

Quiet 0, 1 if 1, turns off "loading..." messages off (0)

Show_Lint 0, 1 if 1, turns on lint-style checking off (0)

Show_source 0, 1 if 1, shows source line containing error off (0)

vlog95compat 0, 1 if 1, disables Verilog 2001 support and makes
compiler compatible with IEEE Std 1364-1995

off (0)

Variable name Value
range

Purpose Default
ModelSim User’s Manual

UM-344 A - ModelSim variables

Model
[vsim] simulator control variables

Variable name Value range Purpose Default

AssertFile any valid
filename

alternative file for storing assertion
messages

transcript

AssertionFormat see next column defines format of assertion messages; fields
include:
%S - severity level
%R - report message
%T - time of assertion
%D - delta
%I - instance or region pathname (if
available)
%i - instance pathname with process
%O - process name
%K - kind of item path points to; returns
Instance, Signal, Process, or Unknown
%P - instance or region path without leaf
process
%F - file
%L - line number of assertion, or if from
subprogram, line from which call is made
%% - print ’%’ character

"** %S:
%R\n Time:
%T
Iteration:
%D%I\n"

AssertionFormatBreak see
AssertionFormat
above

defines format of messages for assertions
that trigger a breakpoint; see
AssertionFormat for options;

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

AssertionFormatNote see
AssertionFormat
above

defines format of messages for Note
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D%I\n"

AssertionFormatWarning see
AssertionFormat
above

defines format of messages for Warning
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D%I\n"

AssertionFormatError see
AssertionFormat
above

defines format of messages for Error
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"
Sim User’s Manual

Preference variables located in INI files UM-345
AssertionFormatFail see
AssertionFormat
above

defines format of messages for Fail
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

AssertionFormatFatal see
AssertionFormat
above

defines format of messages for Fatal
assertions; see AssertionFormat for
options; if undefined, AssertionFormat is
used unless assertion causes a breakpoint in
which case AssertionFormatBreak is used

"** %S:
%R\n
Time: %T
Iteration:
%D %K: %i
File: %F\n"

BreakOnAssertion 0-4 defines severity of assertion that causes a
simulation break (0 = note, 1 = warning, 2 =
error, 3 = failure, 4 = fatal); this variable can
be set interactively with the Tcl set
command (UM-321)

3

CheckpointCompressMode 0, 1 if 1, checkpoint files are written in
compressed format; this variable can be set
interactively with the Tcl set command
(UM-321)

on (1)

CommandHistory any valid
filename

sets the name of a file in which to store the
Main window command history

commented
out (;)

ConcurrentFileLimit any positive
integer

controls the number of VHDL files open
concurrently; this number should be less
than the current limit setting for max file
descriptors; 0 = unlimited

40

DatasetSeparator any character
except those with
special meaning
(i.e., \, {, }, etc.)

the dataset separator for fully-rooted
contexts, for example sim:/top; must not be
the same character as PathSeparator

:

DefaultForceKind freeze, drive, or
deposit

defines the kind of force used when not
otherwise specified; this variable can be set
interactively with the Tcl set command
(UM-321)

drive for
resolved
signals;
freeze for
unresolved
signals

DefaultRadix symbolic, binary,
octal, decimal,
unsigned,
hexadecimal,
ascii

a numeric radix may be specified as a name
or number (i.e., binary can be specified as
binary or 2; octal as octal or 8; etc.); this
variable can be set interactively with the Tcl
set command (UM-321)

symbolic

Variable name Value range Purpose Default
ModelSim User’s Manual

UM-346 A - ModelSim variables

Model
DefaultRestartOptions one or more of:
-force,
-nobreakpoint,
-nolist, -nolog,
-nowave

sets default behavior for the restart
command

commented
out (;)

DelayFileOpen 0, 1 if 1, open VHDL87 files on first read or
write, else open files when elaborated; this
variable can be set interactively with the Tcl
set command (UM-321)

off (0)

GenerateFormat Any non-quoted
string containing
at a minimum a
%s followed by a
%d

controls the format of a generate statement
label (don’t quote it)

 %s__%d

IgnoreError 0,1 if 1, ignore assertion errors; this variable
can be set interactively with the Tcl set
command (UM-321)

off (0)

IgnoreFailure 0,1 if 1, ignore assertion failures; this variable
can be set interactively with the Tcl set
command (UM-321)

off (0)

IgnoreNote 0,1 if 1, ignore assertion notes; this variable can
be set interactively with the Tcl set
command (UM-321)

off (0)

IgnoreWarning 0,1 if 1, ignore assertion warnings; this variable
can be set interactively with the Tcl set
command (UM-321)

off (0)

IterationLimit positive integer limit on simulation kernel iterations
allowed without advancing time; this
variable can be set interactively with the Tcl
set command (UM-321)

5000

Variable name Value range Purpose Default
Sim User’s Manual

Preference variables located in INI files UM-347
License any single
<license_option>

if set, controls ModelSim license file
search; license options include:
nomgc - excludes MGC licenses
nomti - excludes MTI licenses
noqueue - do not wait in license queue if no
licenses are available
plus - only use PLUS license
vlog - only use VLOG license
vhdl - only use VHDL license
viewsim - accepts a simulation license
rather than being queued for a viewer
license

see also the vsim command (CR-189)
<license_option>

search all
licenses

NumericStdNoWarnings 0, 1 if 1, warnings generated within the
accelerated numeric_std and numeric_bit
packages are suppressed; this variable can
be set interactively with the Tcl set
command (UM-321).

off (0)

PathSeparator any character
except those with
special meaning
(i.e., \, {, }, etc.)

used for hierarchical path names; must not
be the same character as DatasetSeparator;
this variable can be set interactively with
the Tcl set command (UM-321)

/

Resolution fs, ps, ns, us, ms,
or sec with
optional prefix of
1, 10, or 100

simulator resolution; no space between
value and units (i.e., 10fs, not 10 fs);
overridden by the -t argument to vsim (CR-

189); if your delays get truncated, set the
resolution smaller; this value must be less
than or equal to the UserTimeUnit
(described below)

ps

RunLength positive integer default simulation length in units specified
by the UserTimeUnit variable; this variable
can be set interactively with the Tcl set
command (UM-321).

100

Startup = do <DO
filename>; any
valid macro (do)
file

specifies the ModelSim startup macro; see
the do command (CR-68)

commented
out (;)

StdArithNoWarnings 0, 1 if 1, warnings generated within the
accelerated Synopsys std_arith packages
are suppressed; this variable can be set
interactively with the Tcl set command
(UM-321)

off (0)

Variable name Value range Purpose Default
ModelSim User’s Manual

UM-348 A - ModelSim variables

Model
TranscriptFile any valid
filename

file for saving command transcript;
environment variables may be included in
the path name

transcript

UnbufferedOutput 0, 1 controls VHDL and Verilog files open for
write; 0 = Buffered, 1 = Unbuffered

0

UserTimeUnit fs, ps, ns, us, ms,
sec, or default

specifies scaling for the Wave window and
the default time units to use for commands
such as force (CR-82) and run (CR-114);
should generally be set to default, in which
case it takes the value of the Resolution
variable; this variable can be set
interactively with the Tcl set command
(UM-321)

default

Veriuser one or more valid
shared object
names

list of dynamically loadable objects for
Verilog PLI/VPI applications; see "Verilog
PLI/VPI" (UM-97)

commented
out (;)

WaveSignalNameWidth 0, positive
integer

controls the number of visible hierarchical
regions of a signal name shown in the Wave
window (UM-206); the default value of zero
displays the full name, a setting of one or
above displays the corresponding level(s)
of hierarchy

0

WLFCompress 0, 1 turns WLF file compression on (1) or off (0) 1

WLFDeleteOnQuit 0, 1 specifies whether a WLF file should be
deleted when the simulation ends; if set to
0, the file is not deleted; if set to 1, the file
is deleted

0

WLFSaveAllRegions 0, 1 specifies whether to save all design
hierarchy in the WLF file (1) or only
regions containing logged signals (0)

0

WLFSizeLimit 0 - positive
integer of MB

WLF file size limit; limits WLF file by size
(as closely as possible) to the specified
number of megabytes; if both size and time
limits are specified the most restrictive is
used; setting to 0 results in no limit

0

WLFTimeLimit 0 - positive
integer of MB

WLF file time limit; limits WLF file by
time (as closely as possible) to the specified
amount of time. If both time and size limits
are specified the most restrictive is used;
setting to 0 results in no limit

0

Variable name Value range Purpose Default
Sim User’s Manual

Preference variables located in INI files UM-349
Commonly used INI variables

Several of the more commonly used modelsim.ini variables are further explained below.

Environment variables

You can use environment variables in your initialization files. Use a dollar sign ($) before
the environment variable name. For example:

[Library]
work = $HOME/work_lib
test_lib = ./$TESTNUM/work
...
[vsim]
IgnoreNote = $IGNORE_ASSERTS
IgnoreWarning = $IGNORE_ASSERTS
IgnoreError = 0
IgnoreFailure = 0

There is one environment variable, MODEL_TECH, that you cannot — and should not —
set. MODEL_TECH is a special variable set by Model Technology software. Its value is
the name of the directory from which the VCOM or VLOG compilers or VSIM simulator
was invoked. MODEL_TECH is used by the other Model Technology tools to find the
libraries.

Hierarchical library mapping

By adding an "others" clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they
will search only the library section of the initialization file specified by the "others" clause.
For example:

[Library]
asic_lib = /cae/asic_lib
work = my_work
others = /install_dir/modeltech/modelsim.ini

Since the file referred to by the "others" clause may itself contain an "others" clause, you
can use this feature to chain a set of hierarchical INI files for library mappings.

Creating a transcript file

A feature in the system initialization file allows you to keep a record of everything that
occurs in the transcript: error messages, assertions, commands, command outputs, etc. To
do this, set the value for the TranscriptFile line in the modelsim.ini file to the name of the
file in which you would like to record the ModelSim history.

; Save the command window contents to this file
TranscriptFile = trnscrpt
ModelSim User’s Manual

UM-350 A - ModelSim variables

Model
Using a startup file

The system initialization file allows you to specify a command or a do file that is to be
executed after the design is loaded. For example:

; VSIM Startup command
Startup = do mystartup.do

The line shown above instructs ModelSim to execute the commands in the macro file
named mystartup.do.

; VSIM Startup command
Startup = run -all

The line shown above instructs VSIM to run until there are no events scheduled.

See the do command (CR-68) for additional information on creating do files.

Turning off assertion messages

You can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge
number of warnings.

[vsim]
IgnoreNote = 1
IgnoreWarning = 1
IgnoreError = 1
IgnoreFailure = 1

Turning off warnings from arithmetic packages

You can disable warnings from the Synopsys and numeric standard packages by adding the
following lines to the [vsim] section of the modelsim.ini file.

[vsim]
NumericStdNoWarnings = 1
StdArithNoWarnings = 1

These variables can also be set interactively using the Tcl set command (UM-321). This
capability provides an answer to a common question about disabling warnings at time 0.
You might enter commands like the following in a DO file or at the ModelSim prompt:

set NumericStdNoWarnings 1
run 0
set NumericStdNoWarnings 0
run -all

Alternatively, you could use the when command (CR-205) to accomplish the same thing:

when {$now = @1ns } {set NumericStdNoWarnings 1}
run -all

Note that the time unit (ns in this case) would vary depending on your simulation
resolution.
Sim User’s Manual

Preference variables located in INI files UM-351
Force command defaults

The force command has -freeze, -drive, and -deposit options. When none of these is
specified, then -freeze is assumed for unresolved signals and -drive is assumed for resolved
signals. This is designed to provide compatibility with force files. But if you prefer -freeze
as the default for both resolved and unresolved signals, you can change the defaults in the
modelsim.ini file.

[vsim]
; Default Force Kind
; The choices are freeze, drive, or deposit
DefaultForceKind = freeze

Restart command defaults

The restart command has -force, -nobreakpoint, -nolist, -nolog, and -nowave options.
You can set any of these as defaults by entering the following line in the modelsim.ini file:

DefaultRestartOptions = <options>

where <options> can be one or more of -force, -nobreakpoint, -nolist, -nolog, and -nowave.

Example: DefaultRestartOptions = -nolog -force

Note: You can also set these defaults in the modelsim.tcl file. The Tcl file settings will override
the .ini file settings.

VHDL93

You can make the VHDL93 standard the default by including the following line in the INI
file:

[vcom]
; Turn on VHDL-1993 as the default. Default is off (VHDL-1987).
VHDL93 = 1

Opening VHDL files

You can delay the opening of VHDL files with an entry in the INI file if you wish. Normally
VHDL files are opened when the file declaration is elaborated. If the DelayFileOpen
option is enabled, then the file is not opened until the first read or write to that file.

[vsim]
DelayFileOpen = 1
ModelSim User’s Manual

UM-352 A - ModelSim variables

Model
Preference variables located in Tcl files

ModelSim Tcl preference variables give you control over fonts, colors, prompts, window
positions and other simulator window characteristics. Preference files, which contain Tcl
commands that set preference variables, are loaded before any windows are created, and so
will affect all windows.

When ModelSim is invoked for the first time, default preferences are loaded from the
pref.tcl file. Customized variable settings may be set from within the ModelSim GUI
(Tools > Edit Preferences (Main window)), on the ModelSim command line (with the Tcl
set command (UM-321)), or by directly editing the preference file.

The default file for customized preferences is modelsim.tcl. When ModelSim starts it
searches for a modelsim.tcl file as follows:

• use MODELSIM_TCL (UM-338) environment variable if it exists (if MODELSIM_TCL
is a list of files, each file is loaded in the order that it appears in the list); else

• use ./modelsim.tcl; else

• use $(HOME)/modelsim.tcl if it exists

For complete documentation on each Tcl preference variables, see the following URL:

http://www.model.com/resources/pref_variables/frameset.htm

User-defined variables

Temporary, user-defined variables can be created with the Tcl set command (UM-321). Like
simulator variables, user-defined variables are preceded by a dollar sign when referenced.
To create a variable with the set command:

set user1 7

You can use the variable in a command like:

echo "user1 = $user1"

More preferences

Additional compiler and simulator preferences may be set in the modelsim.ini file; see
"Preference variables located in INI files" (UM-341).

Important: If your preference file is not named modelsim.tcl, or if the file is not located
in the directories mentioned above, you must refer to it with the MODELSIM_TCL
environment variable.
Sim User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm

Variable precedence UM-353
Variable precedence

Note that some variables can be set in a .tcl file or a .ini file. A variable set in a .tcl file takes
precedence over the same variable set in a .ini file. For example, assume you have the
following line in your modelsim.ini file:

TranscriptFile = transcript

And assume you have the following line in your modelsim.tcl file:

set PrefMain(file) {}

In this case the setting in the modelsim.tcl file will override that in the modelsim.ini file, and
a transcript file will not be produced.

Simulator state variables

Unlike other variables that must be explicitly set, simulator state variables return a value
relative to the current simulation. Simulator state variables can be useful in commands,
especially when used within ModelSim DO files (macros).

Variable Result

argc returns the total number of parameters passed to the current macro

architecture returns the name of the top-level architecture currently being
simulated; for a configuration or Verilog module, this variable
returns an empty string

configuration returns the name of the top-level configuration currently being
simulated; returns an empty string if no configuration

delta returns the number of the current simulator iteration

entity returns the name of the top-level VHDL entity or Verilog module
currently being simulated

library returns the library name for the current region

MacroNestingLevel returns the current depth of macro call nesting

n represents a macro parameter, where n can be an integer in the range
1-9

Now always returns the current simulation time with time units (e.g.,
110,000 ns) Note: will return a comma between thousands

now when time resolution is a unary unit (i.e., 1ns, 1ps, 1fs): returns the
current simulation time without time units (e.g., 100000)
when time resolution is a multiple of the unary unit (i.e., 10ns,
100ps, 10fs): returns the current simulation time with time units
(e.g. 110000 ns) Note: will not return comma between thousands

resolution returns the current simulation time resolution
ModelSim User’s Manual

UM-354 A - ModelSim variables

Model
Referencing simulator state variables

Variable values may be referenced in simulator commands by preceding the variable name
with a dollar sign ($). For example, to use the now and resolution variables in an echo
command type:

echo "The time is $now $resolution."

Depending on the current simulator state, this command could result in:

The time is 12390 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a "\". For
example, \$now will not be interpreted as the current simulator time.

Special considerations for the now variable

For the when command (CR-205), special processing is performed on comparisons
involving the now variable. If you specify "when {$now=100}...", the simulator will stop
at time 100 regardless of the multiplier applied to the time resolution.

You must use 64-bit time operators if the time value of now will exceed 2147483647 (the
limit of 32-bit numbers). For example:

if { [gtTime $now 2us] } {
.
.
.

See "ModelSim Tcl time commands" (UM-325) for details on 64-bit time operators.
Sim User’s Manual

 UM-355
B - ModelSim shortcuts

Appendix contents
Wave window mouse and keyboard shortcuts UM-356

List window keyboard shortcuts UM-357

Command shortcuts UM-358

Command history shortcuts UM-358

Mouse and keyboard shortcuts in Main and Source windows . . . UM-359

Right mouse button UM-360

This appendix is a collection of the keyboard and command shortcuts available in the
ModelSim GUI.
ModelSim User’s Manual

UM-356 B - ModelSim shortcuts

Model
Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - left-button - drag down and right>a

a. If you enter zoom mode by selecting View > Mouse Mode > Zoom Mode, you do
not need to hold down the <Ctrl> key.

zoom area (in)

< control - left-button - drag up and right> zoom out

< control - left-button - drag up and left> zoom fit

<left-button - drag> (Select mode)
< middle-button - drag> (Zoom mode)

moves closest cursor

< control - left-button - click on a scroll arrow > scrolls window to very top or
bottom(vertical scroll) or far left or
right (horizontal scroll)

Keystroke Action

i I or + zoom in (mouse pointer must be over the the cursor or waveform
panes)

o O or - zoom out (mouse pointer must be over the the cursor or
waveform panes)

f or F zoom full (mouse pointer must be over the the cursor or
waveform panes)

l or L zoom last (mouse pointer must be over the the cursor or
waveform panes)

r or R zoom range (mouse pointer must be over the the cursor or
waveform panes)

<up arrow>/
<down arrow>

with mouse over waveform pane, scrolls entire window up/
down one line; with mouse over pathname or values pane,
scrolls highlight up/down one line

<left arrow> scroll pathname, values, or waveform pane left

<right arrow> scroll pathname, values, or waveform pane right

<page up> scroll waveform pane up by a page

<page down> scroll waveform pane down by a page
Sim User’s Manual

List window keyboard shortcuts UM-357
List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> open the find dialog box; searches within the specified field in
the pathname pane for text strings

<control-left arrow> scroll pathname, values, or waveform pane left by a page

<control-right arrow> scroll pathname, values, or waveform pane right by a page

Keystroke Action

Key Action

<left arrow> scroll listing left (selects and highlights the item to the left of the
currently selected item)

<right arrow> scroll listing right (selects and highlights the item to the right of
the currently selected item)

<up arrow> scroll listing up

<down arrow> scroll listing down

<page up>
<control-up arrow>

scroll listing up by page

<page down>
<control-down
arrow>

scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signal

<shift-tab> searches backward (up) to the previous transition on the selected
signal (does not function on HP workstations)

<shift-left arrow>
<shift-right arrow>

extends selection left/right

<control-f> opens the Find dialog box to find the specified item label within
the list display
ModelSim User’s Manual

UM-358 B - ModelSim shortcuts

Model
Command shortcuts

• You may abbreviate command syntax, but there’s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work.

• Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

You probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the ModelSim/VSIM prompt:

Shortcut Description

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

history shows the last few commands (up to 50 are kept)
Sim User’s Manual

Mouse and keyboard shortcuts in Main and Source windows UM-359
Mouse and keyboard shortcuts in Main and Source win-
dows

The following mouse actions and special keystrokes can be used to edit commands in the
entry region of the Main window. They can also be used in editing the file displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSim
to open the Notepad editor).

Keystrokes Result

< left | right - arrow > move the cursor left | right one character

< up | down - arrow > scroll through command history (in Source
window, move cursor one line up | down)

< control > < left | right - arrow > move cursor left | right one word

< shift > < left | right | up | down - arrow > extend selection of text

< control > < shift > < left | right - arrow > extend selection of text by word

< up | down - arrow > scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down > move cursor up | down one paragraph

< alt > activate or inactivate menu bar mode

< alt > < F4 > close active window

< backspace > delete character to the left

< home > move cursor to the beginning of the line

< end > move cursor to the end of the line

< control > < home > move cursor to the beginning of the text

< control > < end > move cursor to the end of the text

< esc > cancel

< control - a > select the entire content of the widget

< control - c > copy the selection

< control - f > find

< F3 > find next

< control - k > delete from the cursor to the end of the line

< control - s > save

< control - t > reverse the order of the two characters to the
right of the cursor
ModelSim User’s Manual

UM-360 B - ModelSim shortcuts

Model
The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

Right mouse button

The right mouse button provides shortcut menus in the most windows. See Chapter 7 -
Graphic interface for menu descriptions.

< control - u > delete line

< control - v > paste from the clipboard

< control - x > cut the selection

< F8 > search for the most recent command that
matches the characters typed

< F9 > run simulation

< F10 > continue simulation

< F11 > single-step

< F12 > step-over

Keystrokes Result
Sim User’s Manual

 UM-361
C - ModelSim messages

Appendix contents
ModelSim message system UM-362

Message format UM-362
Getting more information UM-362

Suppressing warning messages UM-363
Suppressing VCOM warning messages UM-363
Suppressing VLOG warning messages UM-363
Suppressing VSIM warning messages UM-363

Exit codes UM-364

Miscellaneous messages UM-366
Empty port name warning. UM-366
Lock message UM-366
Metavalue detected warning UM-366
Sensitivity list warning UM-367
Tcl Initialization error 2 UM-367
Too few port connections UM-368
VSIM license lost UM-369

This appendix documents various status and warning messages that are produced by
ModelSim.
ModelSim User’s Manual

UM-362 C - ModelSim messages

Model
ModelSim message system

The ModelSim message system helps you identify and troubleshoot problems while using
the application. The messages display in a standard format in the Main window transcript.
Accordingly, you can also access them from a saved transcript file (see "Saving the Main
window transcript file" (UM-139) for more details).

Message format

The format for the messages is:

** <SEVERITY LEVEL>: ([<Tool>[-<Group>]]-<MsgNum>) <Message>

SEVERITY LEVEL may be one of the following:

Tool indicates which ModelSim tool was being executed when the message was generated.
For example tool could be vcom, vdel, vsim, etc.

Group indicates the topic to which the problem is related. For example group could be FLI,
PLI, VCD, etc.

Example

** Error: (vsim-PLI-3071) ./src/19/testfile(77): $fdumplimit : Too few
arguments.

Getting more information

Each message is identified by a unique MsgNum id. You can access additional information
about a message using the unique id and the verror (CR-153) command. For example:

% verror 3071
Message # 3071:
Not enough arguments are being passed to the specified system task or
function.

severity level meaning

Note This is an informational message.

Warning There may be a problem that will affect the
accuracy of your results.

Error The tool cannot complete the operation.

Fatal The tool cannot complete execution.

INTERNAL ERROR This is an unexpected error that should be
reported to support@model.com.
Sim User’s Manual

Suppressing warning messages UM-363
Suppressing warning messages

You can suppress some warning messages. For example, you may receive warning
messages about unbound components about which you are not concerned.

Suppressing VCOM warning messages

Use the -nowarn <number> argument to vcom (CR-145) to suppress a specific warning
message. For example:

vcom -nowarn 1

Suppresses unbound component warning messages.

Alternatively, warnings may be disabled for all compiles via the modelsim.ini file (see
"[vcom] VHDL compiler control variables" (UM-342)).

The warning message numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = compliance checks
7 = optimization messages

Suppressing VLOG warning messages

Use the +nowarn<CODE> argument to vlog (CR-181) to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vlog +nowarnDECAY

Suppresses decay warning messages.

Suppressing VSIM warning messages

Use the +nowarn<CODE> argument to vsim (CR-189) to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vlog +nowarnTFMPC

Suppresses warning messages about too few port connections.
ModelSim User’s Manual

UM-364 C - ModelSim messages

Model
Exit codes

The table below describes exit codes used by ModelSim tools.

Exit code Description

0 Normal (non-error) return

1 Incorrect invocation of tool

2 Previous errors prevent continuing

3 Cannot create a system process (execv, fork, spawn, etc.)

4 Licensing problem

5 Cannot create/open/find/read/write a design library

6 Cannot create/open/find/read/write a design unit

7 Cannot open/read/write/dup a file (open, lseek, write, mmap, munmap,
fopen, fdopen, fread, dup2, etc.)

8 File is corrupted or incorrect type, version, or format of file

9 Memory allocation error

10 General language semantics error

11 General language syntax error

12 Problem during load or elaboration

13 Problem during restore

14 Problem during refresh

15 Communication problem (Cannot create/read/write/close pipe/socket)

16 Version incompatibility

19 License manager not found/unreadable/unexecutable (vlm/mgvlm)

42 Lost license

43 License read/write failure

44 Modeltech daemon license checkout failure #44

45 Modeltech daemon license checkout failure #45

90 Assertion failure (SEVERITY_QUIT)

99 Unexpected error in tool

202 Interrupt (SIGINT)

204 Illegal instruction (SIGILL)
Sim User’s Manual

Exit codes UM-365
205 Trace trap (SIGTRAP)

206 Abort (SIGABRT)

208 Floating point exception (SIGFPE)

210 Bus error (SIGBUS)

211 Segmentation violation (SIGSEGV)

213 Write on a pipe with no reader (SIGPIPE)

214 Alarm clock (SIGALRM)

215 Software termination signal from kill (SIGTERM)

216 User-defined signal 1 (SIGUSR1)

217 User-defined signal 2 (SIGUSR2)

218 Child status change (SIGCHLD)

230 Exceeded CPU limit (SIGXCPU)

231 Exceeded file size limit (SIGXFSZ)

Exit code Description
ModelSim User’s Manual

UM-366 C - ModelSim messages

Model
Miscellaneous messages

This section describes miscellaneous messages which may be associated with ModelSim.

Empty port name warning

Message text

WARNING[8]: <path/file_name>:
empty port name in port list.

Meaning

ModelSim reports these warnings if you use the -lint argument to vlog (CR-181). It reports
the warning for any NULL module ports.

Suggested action

If you wish to ignore this warning, do not use the -lint argument.

Lock message

Message text

waiting for lock by user@user. Lockfile is <library_path>/_lock

Meaning

The _lock file is created in a library when you begin a compilation into that library, and it
is removed when the compilation completes. This prevents simultaneous updates to the
library. If a previous compile did not terminate properly, ModelSim may fail to remove the
_lock file.

Suggested action

Manually remove the _lock file after making sure that no one else is actually using that
library.

Metavalue detected warning

Message text

Warning: NUMERIC_STD.">": metavalue detected, returning FALSE

Meaning

This warning is an assertion being issued by the IEEE numeric_std package. It indicates
that there is an ’X’ in the comparison.

Suggested action

The message does not indicate which comparison is reporting the problem since the
assertion is coming from a standard package. To track the problem, note the time the
warning occurs, restart the simulation, and run to one time unit before the noted time. At
this point, start stepping the simulator until the warning appears. The location of the blue
Sim User’s Manual

Miscellaneous messages UM-367
arrow in the source window will be pointing at the line following the line with the
comparison.

These messages can be turned off by setting the NumericStdNoWarnings variable to 1
from the command line or in the modelsim.ini file.

Sensitivity list warning

Message text

signal is read by the process but is not in the sensitivity list

Meaning

ModelSim outputs this message when you use the -check_synthesis argument to vcom
(CR-145). It reports the warning for any signal that is read by the process but is not in the
sensitivity list.

Suggested action

There are cases where you may purposely omit signals from the sensitivity list even though
they are read by the process. For example, in a strictly sequential process, you may prefer
to include only the clock and reset in the sensitivity list because it would be a design error
if any other signal triggered the process. In such cases, you’re only option as of version 5.7
is to not use the -check_synthesis argument. A more robust implementation of the
argument may be added to a future version.

Tcl Initialization error 2

Message text

Tcl_Init Error 2 : Can’t find a usable Init.tcl in the following directories :
./../tcl/tcl8.3 .

Meaning

This message typically occurs when the base file was not included in a Unix installation.
When you install ModelSim, you need to download and install 3 files from the ftp site.
These files are:

• modeltech-base.tar.gz

• modeltech-docs.tar.gz

• modeltech-<platform>.exe.gz

If you install only the <platform> file, you will not get the Tcl files that are located in the
base file.

This message could also occur if the file or directory was deleted or corrupted.

Suggested action

Reinstall ModelSim with all three files.
ModelSim User’s Manual

UM-368 C - ModelSim messages

Model
Too few port connections

Message text

** Warning (vsim-3017): foo.v(1422): [TFMPC] - Too few port connections.
Expected # 2, found 1. Region: /foo/tb

Meaning

This warning occurs when an instantiation has fewer port connections than the
corresponding module definition. The warning doesn’t necessarily mean anything is
wrong; it is legal in Verilog to have an instantiation that doesn’t connect all of the pins.
However, someone that expects all pins to be connected would like to see such a warning.

Here are some examples of legal instantiations that will and will not cause the warning
message.

Module definition:

module foo (a, b, c, d);

Instantiation that does not connect all pins but will not produce the warning:

foo inst1(e, f, g,); – positional association

foo inst1(.a(e), .b(f), .c(g), .d()); – named association

Instantiation that does not connect all pins but will produce the warning:

foo inst1(e, f, g); – positional association

foo inst1(.a(e), .b(f), .c(g)); – named association

Any instantiation above will leave pin d unconnected but the first example has a
placeholder for the connection. Here’s another example:

foo inst1(e, , g, h);

foo inst1(.a(e), .b(), .c(g), .d(h));

Suggested actions

• Check that there is not an extra comma at the end of the port list. (e.g., model(a,b,)). The
extra comma is legal Verilog and implies that there is a third port connection that is
unnamed.

• If you are purposefully leaving pins unconnected, you can disable these messages using
the +nowarnTFMPC argument to vsim.
Sim User’s Manual

Miscellaneous messages UM-369
VSIM license lost

Message text

Console output:
Signal 0 caught... Closing vsim vlm child.
vsim is exiting with code 4
FATAL ERROR in license manager

transcript/vsim output:
** Error: VSIM license lost; attempting to re-establish.
Time: 5027 ns Iteration: 2
** Fatal: Unable to kill and restart license process.
Time: 5027 ns Iteration: 2

Meaning

ModelSim queries the license server for a license at regular intervals. Usually these
"License Lost" error messages indicate that network traffic is high, and communication
with the license server times out.

Suggested action

Anything you can do to improve network communication with the license server will
probably solve or decrease the frequency of this problem.
ModelSim User’s Manual

UM-370

Model
Sim User’s Manual

 UM-371
D - System initialization

Appendix contents
Files accessed during startup UM-372

Environment variables accessed during startup UM-373

Initialization sequence UM-374

ModelSim goes through numerous steps as it initializes the system during startup. It
accesses various files and environment variables to determine library mappings, configure
the GUI, check licensing, and so forth.
ModelSim User’s Manual

UM-372 D - System initialization

Model
Files accessed during startup

The table below describes the files that are read during startup. They are listed in the order
in which they are accessed.

File Purpose

modelsim.ini contains initial tool settings; see "Preference variables located in
INI files" (UM-341) for specific details on the modelsim.ini file

location map file used by ModelSim tools to find source files based on easily
reallocated "soft" paths; default file name is mgc_location_map

pref.tcl contains defaults for fonts, colors, prompts, window positions,
and other simulator window characteristics; see "Preference
variables located in Tcl files" (UM-352) for specific details on the
pref.tcl file

modelsim.tcl contains user-customized settings for fonts, colors, prompts,
window positions, and other simulator window characteristics;
see "Preference variables located in Tcl files" (UM-352) for
specific details on the modelsim.tcl file

<project_name>.mpf if available, loads last project file which is specified in the
registry (Windows); see "What are projects?" (UM-18) for details
on project settings
Sim User’s Manual

Environment variables accessed during startup UM-373
Environment variables accessed during startup

The table below describes the environment variables that are read during startup. They are
listed in the order in which they are accessed. For more information on environment
variables, see "Environment variables" (UM-337).

Environment variable Purpose

MODEL_TECH set by ModelSim to the directory in which the binary executables reside
(e.g., ../modeltech/<platform>/)

MODEL_TECH_OVERRIDE provides an alternative directory for the binary executables;
MODEL_TECH is set to this path

MODELSIM identifies path to the modelsim.ini file

MGC_WD identifies the Mentor Graphics working directory

MGC_LOCATION_MAP identifies the path to the location map file; set by ModelSim if not defined

MODEL_TECH_TCL identifies the path to all Tcl libraries installed with ModelSim

HOME identifies your login directory (UNIX only)

MGC_HOME identifies the path to the MGC tool suite

TCL_LIBRARY identifies the path to the Tcl library; set by ModelSim to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

TK_LIBRARY identifies the path to the Tk library; set by ModelSim to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITCL_LIBRARY identifies the path to the [incr]Tcl library; set by ModelSim to the same
path as MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITK_LIBRARY identifies the path to the [incr]Tk library; set by ModelSim to the same
path as MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

VSIM_LIBRARY identifies the path to the Tcl files that are used by ModelSim; set by
ModelSim to the same path as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

MTI_COSIM_TRACE creates an mti_trace_cosim file containing debugging information about
FLI/PLI/VPI function calls; set to any value before invoking the
simulator.

MTI_LIB_DIR identifies the path to all Tcl libraries installed with ModelSim

MODELSIM_TCL identifies the path to the modelsim.tcl file; this environment variable can
be a list of file pathnames, separated by semicolons (Windows)
ModelSim User’s Manual

UM-374 D - System initialization

Model
Initialization sequence

The following list describes in detail ModelSim’s initialization sequence. The sequence
includes a number of conditional structures, the results of which are determined by the
existence of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except
MTI_LIB_DIR which is a Tcl variable). Instances of $(NAME) denote paths that are
determined by an environment variable (except $(MTI_LIB_DIR) which is determined by
a Tcl variable).

1 Determines the path to the executable directory (../modeltech/<platform>/). Sets
MODEL_TECH to this path, unless MODEL_TECH_OVERRIDE exists, in which case
MODEL_TECH is set to the same value as MODEL_TECH_OVERRIDE.

2 Finds the modelsim.ini file by evaluating the following conditions:

• use MODELSIM if it exists; else

• use $(MGC_WD)/modelsim.ini; else

• use ./modelsim.ini; else

• use $(MODEL_TECH)/modelsim.ini; else

• use $(MODEL_TECH)/../modelsim.ini; else

• use $(MGC_HOME)/lib/modelsim.ini; else

• set path to ./modelsim.ini even though the file doesn’t exist

3 Finds the location map file by evaluating the following conditions:

• use MGC_LOCATION_MAP if it exists (if this variable is set to "no_map", ModelSim
skips initialization of the location map); else

• use mgc_location_map if it exists; else

• use $(HOME)/mgc/mgc_location_map; else

• use $(HOME)/mgc_location_map; else

• use $(MGC_HOME)/etc/mgc_location_map; else

• use $(MGC_HOME)/shared/etc/mgc_location_map; else

• use $(MODEL_TECH)/mgc_location_map; else

• use $(MODEL_TECH)/../mgc_location_map; else

• use no map

4 Reads various variables from the [vsim] section of the modelsim.ini file. See "[vsim]
simulator control variables" (UM-344) for more details.

5 Parses any command line arguments that were included when you started ModelSim and
reports any problems.

6 Defines the following environment variables:

• use MODEL_TECH_TCL if it exists; else
Sim User’s Manual

Initialization sequence UM-375
• set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl

• set TCL_LIBRARY=$(MODEL_TECH_TCL)/tcl8.3

• set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.3

• set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itcl3.0

• set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0

• set VSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim

7 Initializes the simulator’s Tcl interpreter.

8 Checks for a valid license (a license is not checked out unless specified by a modelsim.ini
setting or command line option).

The next four steps relate to initializing the graphical user interface.

9 Sets Tcl variable "MTI_LIB_DIR"=MODEL_TECH_TCL

10 Loads $(MTI_LIB_DIR)/pref.tcl.

11 Finds the modelsim.tcl file by evaluating the following conditions:

• use MODELSIM_TCL environment variable if it exists (if MODELSIM_TCL is a list of
files, each file is loaded in the order that it appears in the list); else

• use ./modelsim.tcl; else

• use $(HOME)/modelsim.tcl if it exists

12 Loads last working directory, project file, and printer defaults from the registry
(Windows).

That completes the initialization sequence. Also note the following about the modelsim.ini
file:

• When you change the working directory within ModelSim, the tool reads the [library],
[vcom], and [vlog] sections of the local modelsim.ini file. When you make changes in the
compiler options dialog or use the vmap command, the tool updates the appropriate
sections of the file.

• The pref.tcl file references the default .ini file via the [GetPrivateProfileString] Tcl
command. The .ini file that is read will be the default file defined at the time pref.tcl is
loaded.
ModelSim User’s Manual

UM-376

Model
Sim User’s Manual

 UM-377
E - Tips and techniques

Appendix contents
Setting up libraries for group use UM-379

Using a DO file to test for assertions UM-380

Locating assertion warnings UM-380

Sampling signals at a clock change UM-381

Configuring a List trigger with Expression Builder UM-382

Converting signal values to strings UM-384

Converting an integer into a bit_vector UM-385

Referencing source files with location maps UM-387

Performance affected by scheduled events being cancelled . . . UM-389

Modeling memory in VHDL UM-390

This appendix contains various tips and techniques collected from several parts of the
manual and from answers to questions received by tech support.
ModelSim User’s Manual

UM-378 E - Tips and techniques

Model
Running command-line and batch-mode simulations

The typical method of running ModelSim is interactive: you push buttons and/or pull down
menus in a series of windows in the GUI (graphic user interface). But there are really three
specific modes of ModelSim operation: GUI, command line, and batch. Here are their
characteristics:

• GUI mode
This is the usual interactive mode; it has graphical windows, push-buttons, menus, and a
command line in the text window. This is the default mode.

• Command-line mode - running vsim.exe
This an operational mode that has only an interactive command line; no interactive
windows are opened. To run vsim in this manner, invoke it with the -c option as the first
argument from the DOS prompt in Windows.

The resulting transcript file is created in such a way that the transcript can be re-executed
without change if you desire. Everything except the explicit commands you enter will
begin with a leading comment character (#).

• Batch mode - running vsim.exe
Batch mode is an operational mode that provides neither an interactive command line,
nor interactive windows.

In a Windows environment, vsim is run from a Windows command prompt and standard
input and output are re-directed to and from files. An example of the "here-document"
technique is:

C:\modeltech> vsim ent arch <infile >outfile

where infile contains:

force reset 0
force clk 0, 0 1 50 -rep 100
run 10000
Sim User’s Manual

Saving and viewing waveforms in batch mode UM-379
Saving and viewing waveforms in batch mode

You can run vsim as a batch job and view the resulting waveforms later.

1 When you invoke vsim the first time, use the -wlf option to rename the wave log format
(WLF) file, and redirect stdin to invoke the batch mode. The command should look like
this:

vsim -wlf wavesav1.wlf counter < command.do

Within your command.do file, use the log command (CR-87) to save the waveforms you
want to look at later, run the simulation, and quit.

When vsim runs in batch mode, it does not write to the screen, and can be run in the
background.

2 When you return to work the next day after running several batch jobs, you can start up
vsim in its viewing mode with this command and the appropriate .wlf files:

vsim -view wavesav1.wlf

Now you will be able to use the Waveform and List windows normally.

Setting up libraries for group use

By adding an “others” clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they
will search the library section of the initialization file specified by the “others” clause. For
example:

[library]
asic_lib = /cae/asic_lib
work = my_work
others = /usr/modeltech/modelsim.ini
ModelSim User’s Manual

UM-380 E - Tips and techniques

Model
Using a DO file to test for assertions

You can use the onbreak command (CR-98) in a DO file to invoke commands upon the
occurrence of a simulation breakpoint. Assertions are treated as breakpoints if the severity
level is greater than or equal to the current BreakOnAssertion variable setting (see "[vsim]
simulator control variables" (UM-344)). By default a severity level of failure or above causes
a breakpoint; a severity level of error or below does not.

Here is an example of how the onbreak command might be used to test for an assertion:

set broken 0
onbreak {

set broken 1
resume

}
run -all
if { $broken } {

puts "failure"
} else {

puts "success"
}

Locating assertion warnings

You may receive assertion messages that don’t contain file and line numbers. For example:

** Warning: NUMERIC_STD.TO_UNSIGNED: vector truncated
Time: 0 ns Iteration: 0 Instance: /core_tb
** Warning: NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0
Time: 0 ns Iteration: 0 Instance: /core_tb

Set the BreakOnAssertion (UM-345) value to break on warnings. Any assertion warnings
will be treated as breakpoints, and you’ll be able to see the file and line number in the
Source window.

The value you specify determines what severity level causes a simulation break (0 = note,
1 = warning, 2 = error, 3 = failure, 4 = fatal). You can specify this in the modelsim.ini file
or from the GUI by selecting Simulate > Simulation Options (Main window) and
selecting the Assertions tab.
Sim User’s Manual

Sampling signals at a clock change UM-381
Sampling signals at a clock change

You can do this easily using the add list command (CR-32) with the -notrigger argument.
-notrigger disables triggering the display on the specified signals. For example:

add list clk -notrigger a b c

When you run the simulation, List window entries for clk, a, b, and c appear only when clk
changes.

If you want to display on rising edges only, you have two options:

1 Turn off the List window triggering on the clock signal, and then define a repeating
strobe for the list window

2 Define a "gating expression" for the List window that requires the clock to be in a
specified state. See "Configuring a List trigger with Expression Builder" (UM-382).
ModelSim User’s Manual

UM-382 E - Tips and techniques

Model
Configuring a List trigger with Expression Builder

This example shows you how to set a List window trigger based on a gating expression
created with the ModelSim Expression Builder.

If you want to look at a set of signal values ONLY during the simulation cycles during
which an enable signal rises, you would need to use the List window Trigger Gating
feature. The gating feature suppresses all display lines except those for which a specified
gating function evaluates to true.

Select Tools > Window Preferences (List window) to access the Triggers tab.

Check the Trigger Gating: Use Gating Expression check box. Then click on Use
Expression Builder. Select the signal in the List window that you want to be the enable
Sim User’s Manual

Configuring a List trigger with Expression Builder UM-383
signal by clicking on its name in the header area of the List window. Then click Insert
Selected Signal and ’rising in the Expression Builder.

Click OK to close the Expression Builder. You should see the name of the signal plus
"’rising" added to the Expression entry box of the Modify Display Properties dialog box.
(Leave the On Duration field zero for now.) Click the OK button.

If you already have simulation data in the List window, the display should immediately
switch to showing only those cycles for which the gating signal is rising. If that isn’t quite
what you want, you can go back to the expression builder and play with it until you get it
the way you want it.

If you want the enable signal to work like a "One-Shot" that would display all values for
the next, say 10 ns, after the rising edge of enable, then set the On Duration value to 10
ns. Otherwise, leave it at zero, and select Apply again. When everything is correct, click
OK to close the Modify Display Properties dialog box.

When you save the List window configuration, the list gating parameters will be saved as
well, and can be set up again by reading in that macro. You can take a look at the macro to
see how the gating can be set up using macro commands.
ModelSim User’s Manual

UM-384 E - Tips and techniques

Model
Converting signal values to strings

You may want to display certain signal values as strings. For example, rather than
displaying the value 0, you may want to display the string "idle." The virtual type
command (CR-178) allows you to do this.

The virtual type command creates a new enumerated type, known only by the GUI. The
steps for using the command are as follows:

1 Define a virtual type that contains the states:

virtual type { state0 state1 state2 state3} myState

2 Define a virtual function for translating the signal values to strings

virtual function {(mystate)mysignal} myConvertedSignal

3 Display the translated value

add wave myConvertedSignal

When myConvertedSignal is displayed in the Wave, List or Signals window, the string
"state0" will appear when mysignal == 0, "state1" when mysignal == 1, "state2" when
mysignal == 2, etc.

See the virtual type command (CR-178) in the ModelSim Command Reference for further
details.
Sim User’s Manual

Converting an integer into a bit_vector UM-385
Converting an integer into a bit_vector

The following code demonstrates how to convert an integer into a bit_vector.

library ieee;
use ieee.numeric_bit.ALL;

entity test is
end test;

architecture only of test is
signal s1 : bit_vector(7 downto 0);
signal int : integer := 45;

begin
p:process
begin

wait for 10 ns;
s1 <= bit_vector(to_signed(int,8));

end process p;
end only;
ModelSim User’s Manual

UM-386 E - Tips and techniques

Model
Detecting infinite zero-delay loops
Simulations use steps that advance simulated time, and steps that do not advance simulated
time. Steps that do not advance simulated time are called "delta cycles’ or simply ’deltas’.
Deltas are used when signal assignments are made with zero time delay (see "Delta delays"
(UM-53)for more information).

If a large number of deltas occur without advancing time, it is usually a symptom of an
infinite zero-delay loop in the design. In order to detect the presence of these loops,
ModelSim defines a limit, the “iteration limit", on the number of successive deltas that can
occur. When the iteration limit is exceeded, vsim stops the simulation and gives a warning
message.

The iteration limit default value is1000. If you receive an iteration limit warning, first
increase the iteration limit and try to continue simulation. You can set the iteration limit
from the Simulate > Simulation Options menu, or by modifying the modelsim.ini file.See
for more information on modifying the modelsim.ini file.

If the problem persists, look for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which
signals or variables are continuously oscillating. Two common causes are a loop that has
no exit, or a series of gates with zero delay where the outputs are connected back to the
inputs.
Sim User’s Manual

Referencing source files with location maps UM-387
Referencing source files with location maps

Pathnames to source files are recorded in libraries by storing the working directory from
which the compile is invoked and the pathname to the file as specified in the invocation of
the compiler. The pathname may be either a complete pathname or a relative pathname.

ModelSim tools that reference source files from the library locate a source file as follows:

• If the pathname stored in the library is complete, then this is the path used to reference
the file.

• If the pathname is relative, then the tool looks for the file relative to the current working
directory. If this file does not exist, then the path relative to the working directory stored
in the library is used.

This method of referencing source files generally works fine if the libraries are created and
used on a single system. However, when multiple systems access a library across a network
the physical pathnames are not always the same and the source file reference rules do not
always work.

Using location mapping

Location maps are used to replace prefixes of physical pathnames in the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

ModelSim tools open the location map file on invocation if the MGC_LOCATION_MAP
(UM-337) environment variable is set. If MGC_LOCATION_MAP is not set, ModelSim
will look for a file named "mgc_location_map" in the following locations, in order:

• the current directory

• your home directory

• the directory containing the ModelSim binaries

• the ModelSim installation directory

Use these two steps to map your files:

1 Set the environment variable MGC_LOCATION_MAP to the path to your location map
file.

2 Specify the mappings from physical pathnames to logical pathnames:

$SRC
/home/vhdl/src
/usr/vhdl/src

$IEEE
/usr/modeltech/ieee
ModelSim User’s Manual

UM-388 E - Tips and techniques

Model
Pathname syntax

The logical pathnames must begin with $ and the physical pathnames must begin with /.
The logical pathname is followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have
different pathnames on different systems).

How location mapping works

When a pathname is stored, an attempt is made to map the physical pathname to a path
relative to a logical pathname. This is done by searching the location map file for the first
physical pathname that is a prefix to the pathname in question. The logical pathname is then
substituted for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/
test.vhd". If a mapping can be made to a logical pathname, then this is the pathname that is
saved. The path to a source file entry for a design unit in a library is a good example of a
typical mapping.

For mapping from a logical pathname back to the physical pathname, ModelSim expects
an environment variable to be set for each logical pathname (with the same name).
ModelSim reads the location map file when a tool is invoked. If the environment variables
corresponding to logical pathnames have not been set in your shell, ModelSim sets the
variables to the first physical pathname following the logical pathname in the location map.
For example, if you don’t set the SRC environment variable, ModelSim will automatically
set it to "/home/vhdl/src".

Mapping with Tcl variables

Two Tcl variables may also be used to specify alternative source-file paths; SourceDir and
SourceMap. See http://www.model.com/resources/pref_variables/frameset.htm.
Sim User’s Manual

http://www.model.com/resources/pref_variables/frameset.htm

Performance affected by scheduled events being cancelled UM-389
Performance affected by scheduled events being cancelled

Performance will suffer if events are scheduled far into the future but then cancelled before
they take effect. This situation will act like a memory leak and slow down simulation.

In VHDL this situation can occur several ways. The most common are waits with time-out
clauses and projected waveforms in signal assignments.

The following code shows a wait with a time-out:

signals synch : bit := ’0’;
...
p: process
begin

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0, process p makes an event for time 10ms. When synch goes to 1 at 10 ns, the event
at 10 ms is marked as cancelled but not deleted, and a new event is scheduled at 10ms +
10ns. The cancelled events are not reclaimed until time 10ms is reached and the cancelled
event is processed. As a result there will be 500000 (10ms/20ns) cancelled but undeleted
events. Once 10ms is reached, memory will no longer increase because the simulator will
be reclaiming events as fast as they are added.

For projected waveforms the following would behave the same way:

signals synch : bit := ’0’;
...
p: process(synch)
begin
 output <= ’0’, ’1’ after 10ms;
end process;

synch <= not synch after 10 ns;
ModelSim User’s Manual

UM-390 E - Tips and techniques

Model
Modeling memory in VHDL

As a VHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

• You may get a "memory allocation error" message, which typically means the simulator
ran out of memory and failed to allocate enough storage.

• Or, you may get very long load, elaboration or run times.

These problems are usually explained by the fact that signals consume a substantial amount
of memory (many dozens of bytes per bit), all of which needs to be loaded or initialized
before your simulation starts.

A simple alternative implementation provides some excellent performance benefits:

• storage required to model the memory can be reduced by 1-2 orders of magnitude

• startup and run times are reduced

• associated memory allocation errors are eliminated

The trick is to model memory using variables instead of signals.

In the example below, we illustrate three alternative architectures for entity "memory".
Architecture "style_87_bad" uses a vhdl signal to store the ram data. Architecture
"style_87" uses variables in the "memory" process, and architecture "style_93" uses
variables in the architecture.

For large memories, architecture "style_87_bad" runs many times longer than the other
two, and uses much more memory. This style should be avoided.

Both architectures "style_87" and "style_93" work with equal efficiently. You’ll find some
additional flexibility with the VHDL 1993 style, however, because the ram storage can be
shared between multiple processes. For example, a second process is shown that initializes
the memory; you could add other processes to create a multi-ported memory.

To implement this model, you will need functions that convert vectors to integers. To use
it you will probably need to convert integers to vectors.

Example functions are provided below in package "conversions".

library ieee;
use ieee.std_logic_1164.all;
use work.conversions.all;

entity memory is
generic(add_bits : integer := 12;

data_bits : integer := 32);
port(add_in : in std_ulogic_vector(add_bits-1 downto 0);

data_in : in std_ulogic_vector(data_bits-1 downto 0);
data_out : out std_ulogic_vector(data_bits-1 downto 0);
cs, mwrite : in std_ulogic;
do_init : in std_ulogic);

subtype word is std_ulogic_vector(data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;
type ram_type is array(0 to nwords-1) of word;

end;

architecture style_93 of memory is

shared variable ram : ram_type;

Sim User’s Manual

Modeling memory in VHDL UM-391
begin
memory:
process (cs)

variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = ’1’) then

ram(address) := data_in;
end if;
data_out <= ram(address);

end if;
end process memory;

-- illustrates a second process using the shared variable
initialize:
process (do_init)

variable address : natural;
begin

if rising_edge(do_init) then
for address in 0 to nwords-1 loop

ram(address) := data_in;
end loop;

end if;
end process initialize;

end architecture style_93;

architecture style_87 of memory is
begin
memory:
process (cs)

variable ram : ram_type;

variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = ’1’) then

ram(address) := data_in;
end if;
data_out <= ram(address);

end if;
end process;

end style_87;

architecture bad_style_87 of memory is

signal ram : ram_type;

begin
memory:
process (cs)

variable address : natural := 0;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = ’1’) then

ram(address) <= data_in;
data_out <= data_in;

else
data_out <= ram(address);
ModelSim User’s Manual

UM-392 E - Tips and techniques

Model
end if;
end if;

end process;
end bad_style_87;

--
--
library ieee;
use ieee.std_logic_1164.all;

package conversions is
function sulv_to_natural(x : std_ulogic_vector) return

natural;
function natural_to_sulv(n, bits : natural) return

std_ulogic_vector;
end conversions;

package body conversions is

function sulv_to_natural(x : std_ulogic_vector) return
natural is

variable n : natural := 0;
variable failure : boolean := false;

begin
assert (x’high - x’low + 1) <= 31

report "Range of sulv_to_natural argument exceeds
natural range"

severity error;
for i in x’range loop

n := n * 2;
case x(i) is

when ’1’ | ’H’ => n := n + 1;
when ’0’ | ’L’ => null;
when others => failure := true;

end case;
end loop;
assert not failure

report "sulv_to_natural cannot convert indefinite
std_ulogic_vector"

severity error;

if failure then
return 0;

else
return n;

end if;
end sulv_to_natural;

function natural_to_sulv(n, bits : natural) return
std_ulogic_vector is

variable x : std_ulogic_vector(bits-1 downto 0) :=
(others => ’0’);

variable tempn : natural := n;
begin

for i in x’reverse_range loop
if (tempn mod 2) = 1 then

x(i) := ’1’;
end if;
tempn := tempn / 2;

end loop;
return x;
Sim User’s Manual

Modeling memory in VHDL UM-393
end natural_to_sulv;

end conversions;
ModelSim User’s Manual

UM-394

Model
Sim User’s Manual

 UM-395
Index
CR = Command Reference, UM = User’s Manual
Symbols

+typdelays CR-184
.so, shared object file

loading PLI/VPI C applications UM-101
loading PLI/VPI C++ applications UM-102

’hasX, hasX CR-19

Numerics

1076, IEEE Std UM-14
1364, IEEE Std UM-14, UM-68
64-bit time

now variable UM-354
Tcl time commands UM-325

A

abort command CR-30
absolute time, using @ CR-14
ACC routines UM-110
accelerated packages UM-47
add list command CR-32
add wave command CR-35
alias command CR-39
annotating interconnect delays, v2k_int_delays CR-200
architecture simulator state variable UM-353
archives

described UM-38
archives, library CR-180
argc simulator state variable UM-353
arguments

passing to a DO file UM-331
arithmetic package warnings, disabling UM-350
arrays

indexes CR-10
slices CR-10

AssertFile .ini file variable UM-344
AssertionFormat .ini file variable UM-344
AssertionFormatBreak .ini file variable UM-344
AssertionFormatError .ini file variable UM-344
AssertionFormatFail .ini file variable UM-345
AssertionFormatFatal .ini file variable UM-345
AssertionFormatNote .ini file variable UM-344
AssertionFormatWarning .ini file variable UM-344
assertions

configuring from the GUI UM-255

locating file and line number UM-380
messages, turning off UM-350
selecting severity that stops simulation UM-255
setting format of messages UM-344
testing for using a DO file UM-380

attributes, of signals, using in expressions CR-19

B

bad magic number error message UM-119
balloon dialog, toggling on/off UM-223
base (radix), specifying in List window UM-173
batch_mode command CR-40
batch-mode simulations UM-378

halting CR-208
bd (breakpoint delete) command CR-41
binding, VHDL, default UM-45
blocking assignments UM-81
bookmark add wave command CR-42
bookmark delete wave command CR-43
bookmark goto wave command CR-44
bookmark list wave command CR-45
bookmarks UM-229
bp (breakpoint) command CR-46
break

on assertion UM-255
on signal value CR-205
stop simulation run UM-146, UM-196

BreakOnAssertion .ini file variable UM-345
breakpoints

conditional CR-205, UM-189
continuing simulation after CR-114
deleting CR-41, UM-197, UM-258
listing CR-46
setting CR-46, UM-197
signal breakpoints (when statements) CR-205, UM-

189
Source window, viewing in UM-191
time-based UM-189

in when statements CR-209
.bsm file UM-165
buffered/unbuffered output UM-348
busses

RTL-level, reconstructing UM-126
user-defined CR-36, UM-174, UM-217

C

ModelSim User’s Manual

UM-396 Index

Model
C applications
compiling and linking UM-101

C++ applications
compiling and linking UM-102

case choice, must be locally static CR-147
case sensitivity

VHDL vs. Verilog CR-12
causality, tracing in Dataflow window UM-159
cd (change directory) command CR-49
cell libraries UM-87
cells

hiding in Dataflow window UM-166, UM-167
change command CR-50
chasing X UM-160
-check_synthesis argument CR-145
CheckpointCompressMode .ini file variable UM-345
CheckSynthesis .ini file variable UM-342
clock change, sampling signals at UM-381
combining signals, user-defined bus CR-36, UM-174,
UM-217
command history UM-143
CommandHistory .ini file variable UM-345
command-line mode UM-378
commands

abort CR-30
add list CR-32
add wave CR-35
alias CR-39
batch_mode CR-40
bd (breakpoint delete) CR-41
bookmark add wave CR-42
bookmark delete wave CR-43
bookmark goto wave CR-44
bookmark list wave CR-45
bp (breakpoint) CR-46
cd (change directory) CR-49
change CR-50
configure CR-51
dataset alias CR-55
dataset clear CR-56
dataset close CR-57
dataset info CR-58
dataset list CR-59
dataset open CR-60
dataset rename CR-61, CR-62
dataset snapshot CR-63
delete CR-65
describe CR-66
disablebp CR-67
do CR-68
drivers CR-69

dumplog64 CR-70
echo CR-71
edit CR-72
enablebp CR-73
environment CR-74
examine CR-75
exit CR-78
find CR-79
force CR-82
graphic interface commands UM-267
help CR-85
history CR-86
log CR-87
lshift CR-89
lsublist CR-90
modelsim CR-91
noforce CR-92
nolog CR-93
notation conventions CR-6
notepad CR-95
noview CR-96
nowhen CR-97
onbreak CR-98
onElabError CR-99
onerror CR-100
pause CR-101
printenv CR-102, CR-103
pwd CR-105
quietly CR-106
quit CR-107
radix CR-108
report CR-109
restart CR-111
resume CR-113
run CR-114
searchlog CR-116
shift CR-118
show CR-119
status CR-121
step CR-122
stop CR-123
system UM-323
tb (traceback) CR-124
transcript CR-125
TreeUpdate CR-217
tssi2mti CR-126
variables referenced in CR-13
vcd add CR-127
vcd checkpoint CR-128
vcd comment CR-129
vcd dumpports CR-130
Sim User’s Manual

 UM-397
vcd dumpportsall CR-131
vcd dumpportsflush CR-132
vcd dumpportslimit CR-133
vcd dumpportsoff CR-134
vcd dumpportson CR-135
vcd file CR-136
vcd files CR-138
vcd flush CR-140
vcd limit CR-141
vcd off CR-142
vcd on CR-143
vcom CR-145
vdel CR-151
vdir CR-152
verror CR-153
vgencomp CR-154
view CR-156
virtual count CR-158
virtual define CR-159
virtual delete CR-160
virtual describe CR-161
virtual expand CR-162
virtual function CR-163
virtual hide CR-166
virtual log CR-167
virtual nohide CR-169
virtual nolog CR-170
virtual region CR-172
virtual save CR-173
virtual show CR-174
virtual signal CR-175
virtual type CR-178
vlib CR-180
vlog CR-181
vmake CR-187
vmap CR-188
vsim CR-189
VSIM Tcl commands UM-324
vsimDate CR-203
vsimId CR-203
vsimVersion CR-203
WaveActivateNextPane CR-217
WaveRestoreCursors CR-217
WaveRestoreZoom CR-217
when CR-205
where CR-210
wlf2log CR-211
wlfman CR-213
wlfrecover CR-215
write format CR-216
write list CR-218

write preferences CR-219
write report CR-220
write transcript CR-221
write tssi CR-222
write wave CR-224

comment characters in VSIM commands CR-6
compare simulations UM-117
compatibility, of vendor libraries CR-152
compile history UM-27
compile order

auto generate UM-28
changing UM-28

compiler directives UM-95
IEEE Std 1364-2000 UM-95
XL compatible compiler directives UM-96

compiling
changing order in the GUI UM-28
compile history UM-27
default options, setting UM-240
graphic interface, with the UM-238
grouping files UM-29
options, in projects UM-34
order, changing in projects UM-28
range checking in VHDL CR-148, UM-50
source errors, locating UM-239
Verilog CR-181, UM-69

incremental compilation UM-70
XL ’uselib compiler directive UM-74
XL compatible options UM-73

VHDL CR-145, UM-50
at a specified line number CR-147
selected design units (-just eapbc) CR-146
standard package (-s) CR-148

VITAL packages UM-61
component, default binding rules UM-45
concatenation

directives CR-16
of signals CR-16, CR-175

ConcurrentFileLimit .ini file variable UM-345
conditional breakpoints CR-205, UM-189
configuration simulator state variable UM-353
configurations, simulating CR-189
configure command CR-51
connectivity, exploring UM-156
constants

in case statements CR-147
values of, displaying CR-66, CR-75

context menus
described UM-134
Library tab UM-42
Project tab UM-27
ModelSim User’s Manual

UM-398 Index

Model
Structure pages UM-201
convert real to time UM-65
convert time to real UM-64
cursors

link to Dataflow window UM-150
locking UM-227
measuring time with UM-227
naming UM-226
trace events with UM-159
Wave window UM-226

customizing
via preference variables UM-352

D

deltas
explained UM-53

Dataflow window UM-149
automatic cell hiding UM-166, UM-167
options UM-166, UM-167
pan UM-158
zoom UM-158
see also windows, Dataflow window

dataflow.bsm file UM-165
dataset alias command CR-55
Dataset Browser UM-121
dataset clear command CR-56
dataset close command CR-57
dataset info command CR-58
dataset list command CR-59
dataset open command CR-60
dataset rename command CR-61, CR-62
Dataset Snapshot UM-123
dataset snapshot command CR-63
datasets UM-117

environment command, specifying with CR-74
managing UM-121
restrict dataset prefix display UM-122
simulator resolution UM-118

DatasetSeparator .ini file variable UM-345
declarations, hiding implicit with explicit CR-149
default binding rules UM-45
default compile options UM-240
default editor, changing UM-337
DefaultForceKind .ini file variable UM-345
DefaultRadix .ini file variable UM-345
DefaultRestartOptions variable UM-346, UM-351
defaults

restoring UM-337
window arrangement UM-134

+define+ CR-181
delay

delta delays UM-53
infinite zero-delay loops, detecting UM-386
interconnect CR-192
modes for Verilog models UM-87
SDF files UM-289
stimulus delay, specifying UM-187

+delay_mode_distributed CR-182
+delay_mode_path CR-182
+delay_mode_unit CR-182
+delay_mode_zero CR-182
’delayed CR-19
DelayFileOpen .ini file variable UM-346
delete command CR-65
deleting library contents UM-41
delta simulator state variable UM-353
deltas

collapsing in the List window UM-176
hiding in the List window CR-52, UM-176
infinite zero-delay loops UM-386
referencing simulator iteration

as a simulator state variable UM-353
dependencies, checking CR-152
dependent design units UM-50
describe command CR-66
descriptions of HDL items UM-197
design hierarchy, viewing in Structure window UM-199
design library

creating UM-40
logical name, assigning UM-43
mapping search rules UM-44
resource type UM-39
VHDL design units UM-50
working type UM-39

design units UM-38
hierarchy of, viewing UM-135
report of units simulated CR-220
Verilog

adding to a library CR-181
directories

mapping libraries CR-188
moving libraries UM-44

disablebp command CR-67
distributed delay mode UM-88
dividers

adding from command line CR-35
Wave window UM-215

DLL files, loading UM-101, UM-102
do command CR-68
DO files (macros) CR-68
Sim User’s Manual

 UM-399
error handling UM-333
executing at startup UM-337, UM-347
parameters, passing to UM-331
Tcl source command UM-334

DOPATH environment variable UM-337
drivers

Dataflow Window UM-156
show in Dataflow window UM-218
Wave window UM-218

drivers command CR-69
drivers, multiple on unresolved signal UM-241
dump files, viewing in ModelSim CR-144
dumplog64 command CR-70
dumpports tasks, VCD files UM-304

E

echo command CR-71
edit command CR-72
Editing

in notepad windows UM-147, UM-359
in the Main window UM-147, UM-359
in the Source window UM-147, UM-359

EDITOR environment variable UM-337
editor, default, changing UM-337
elaboration, interrupting CR-189
embedded wave viewer UM-157
enablebp command CR-73
ENDFILE function UM-58
ENDLINE function UM-58
entities

default binding rules UM-45
entities, specifying for simulation CR-201
entity simulator state variable UM-353
enumerated types UM-384

user defined CR-178
environment command CR-74
environment variables UM-337

reading into Verilog code CR-181
referencing from ModelSim command line UM-340
referencing with VHDL FILE variable UM-340
setting in Windows UM-339
specifying library locations in modelsim.ini file

UM-341
specifying UNIX editor CR-72
transcript file, specifying location of UM-348
using in pathnames CR-12
using with location mapping UM-387
variable substitution using Tcl UM-323
viewing current names and values with printenv

CR-103
environment, displaying or changing pathname CR-74
errors

bad magic number UM-119
during compilation, locating UM-239
getting details about messages CR-153
onerror command CR-100

event order
changing in Verilog CR-181
in Verilog simulation UM-79

event queues UM-79
events, tracing UM-159
examine command CR-75
examine tooltip

toggling on/off UM-223
exit command CR-78
expand net UM-156
Explicit .ini file variable UM-342
Expression Builder UM-262

configuring a List trigger with UM-382
extended identifiers CR-14

syntax in commands CR-12

F

-f CR-182
file I/O

TextIO package UM-55
VCD files UM-303

file-line breakpoints UM-197
files, grouping for compile UM-29
filtering signals in Signals window UM-185
find command CR-79
finding

cursors in the Wave window UM-227
marker in the List window UM-178
names and values UM-133

folders, in projects UM-32
force command CR-82

defaults UM-351
format file

List window CR-216
Wave window CR-216, UM-208

FPGA libraries, importing UM-48

G

GenerateFormat .ini file variable UM-346
generics

assigning or overriding values with -g and -G CR-
ModelSim User’s Manual

UM-400 Index

Model
190
examining generic values CR-75
limitation on assigning composite types CR-191

get_resolution() VHDL function UM-62
glitches

disabling generation
from command line CR-196
from GUI UM-248

graphic interface UM-129
grouping files for compile UM-29
GUI preferences, saving UM-352
GUI_expression_format CR-15

GUI expression builder UM-262
syntax CR-18

H

’hasX CR-19
Hazard .ini file variable (VLOG) UM-343
hazards

-hazards argument to vlog CR-182
-hazards argument to vsim CR-197
limitations on detection UM-82

HDL item UM-16
help command CR-85
hierarchy

forcing signals in UM-63
referencing signals in UM-63
releasing signals in UM-63
viewing signal names without UM-222

history
of commands

shortcuts for reuse CR-7, UM-358
of compiles UM-27

history command CR-86
HOME environment variable UM-337

I

I/O
TextIO package UM-55
VCD files UM-303

ieee .ini file variable UM-341
IEEE libraries UM-46
IEEE Std 1076 UM-14
IEEE Std 1364 UM-14, UM-68
IgnoreError .ini file variable UM-346
IgnoreFailure .ini file variable UM-346
IgnoreNote .ini file variable UM-346
IgnoreVitalErrors .ini file variable UM-342

IgnoreWarning .ini file variable UM-346
implicit operator, hiding with vcom -explicit CR-149
importing FPGA libraries UM-48
+incdir+ CR-182
incremental compilation

automatic UM-71
manual UM-71
with Verilog UM-70

index checking UM-50
init_signal_spy UM-63
init_usertfs function UM-98
initial dialog box, turning on/off UM-336
interconnect delays CR-192, UM-300

annotating per Verilog 2001 CR-200
internal signals, adding to a VCD file CR-127
item_list_file, WLF files CR-213
iteration_limit, infinite zero-delay loops UM-386
IterationLimit .ini file variable UM-346

K

keyboard shortcuts
List window UM-180, UM-357
Main window UM-147, UM-359
Source window UM-359
Wave window UM-231, UM-356

L

language templates UM-264
libraries

archives CR-180
dependencies, checking CR-152
design libraries, creating CR-180, UM-40
design library types UM-39
design units UM-38
group use, setting up UM-379
IEEE UM-46
importing FPGA libraries UM-48
including precompiled modules UM-250
listing contents CR-152
mapping

from the command line UM-43
from the GUI UM-43
hierarchically UM-349
search rules UM-44

modelsim_lib UM-62
moving UM-44
multiple libraries with common modules UM-72
naming UM-43
Sim User’s Manual

 UM-401
predefined UM-46
refreshing library images CR-148, CR-184, UM-47
resource libraries UM-39
std library UM-46
Synopsys UM-47
vendor supplied, compatibility of CR-152
Verilog CR-197, UM-72
VHDL library clause UM-45
working libraries UM-39
working with contents of UM-41

library simulator state variable UM-353
License variable in .ini file UM-347
licensing

License variable in .ini file UM-347
lint-style checks CR-183
List window UM-168

adding items to CR-32
setting triggers UM-382
see also windows, List window

LM_LICENSE_FILE environment variable UM-337
location maps, referencing source files UM-387
log command CR-87
log file

log command CR-87
nolog command CR-93
overview UM-117
QuickSim II format CR-211
redirecting with -l CR-192
virtual log command CR-167
virtual nolog command CR-170
see also WLF files

lshift command CR-89
lsublist command CR-90

M

MacroNestingLevel simulator state variable UM-353
macros (DO files) UM-331

breakpoints, executing at CR-47
creating from a saved transcript UM-139
depth of nesting, simulator state variable UM-353
error handling UM-333
executing CR-68
forcing signals, nets, or registers CR-82
parameters

as a simulator state variable (n) UM-353
passing CR-68, UM-331
total number passed UM-353

relative directories CR-68
shifting parameter values CR-118

startup macros UM-350
Main window UM-137

see also windows, Main window
mapping

libraries
from the command line UM-43
hierarchically UM-349

symbols
Dataflow window UM-165

mapping libraries, library mapping UM-43
math_complex package UM-47
math_real package UM-47
+maxdelays CR-183
mc_scan_plusargs, PLI routine CR-199
memory

modeling in VHDL UM-390
menus

Dataflow window UM-150
List window UM-170
Main window UM-140
Process window UM-182
Signals window UM-184
Source window UM-192
Structure window UM-200
tearing off or pinning menus UM-134
Variables window UM-204
Wave window UM-209

messages
bad magic number UM-119
echoing CR-71
getting more information CR-153
loading, disbling with -quiet CR-148, CR-183
redirecting UM-348
suppressing warnings from arithmetic packages

UM-350
turning off assertion messages UM-350

MGC_LOCATION_MAP variable UM-337
+mindelays CR-183
mnemonics, assigning to signal values CR-178
MODEL_TECH environment variable UM-337
MODEL_TECH_TCL environment variable UM-337
modeling memory in VHDL UM-390
ModelSim

commands CR-23–CR-212
modelsim command CR-91
MODELSIM environment variable UM-338
modelsim.ini

default to VHDL93 UM-351
delay file opening with UM-351
environment variables in UM-349
force command default, setting UM-351
ModelSim User’s Manual

UM-402 Index

Model
hierarchical library mapping UM-349
opening VHDL files UM-351
restart command defaults, setting UM-351
startup file, specifying with UM-350
transcript file created from UM-349
turning off arithmetic package warnings UM-350
turning off assertion messages UM-350

modelsim.tcl file UM-352
modelsim_lib UM-62

path to UM-341
MODELSIM_TCL environment variable UM-338
Modified field, Project tab UM-26
modules

handling multiple, common names UM-72
mouse shortcuts

Main window UM-147, UM-359
Source window UM-359
Wave window UM-231, UM-356

.mpf file UM-18
loading from the command line UM-35

mti_cosim_trace environment variable UM-338
MTI_TF_LIMIT environment variable UM-338
multiple drivers on unresolved signal UM-241
multiple simulations UM-117
multi-source interconnect delays CR-192

N

n simulator state variable UM-353
name case sensitivity, VHDL vs. Verilog CR-12
Name field

Project tab UM-26
negative pulses

driving an error state CR-200
negative timing

$setuphold/$recovery UM-92
algorithm for calculating delays UM-83
check limits UM-83
extending check limits CR-197

nets
adding to the Wave and List windows UM-187
Dataflow window, displaying in UM-149
drivers of, displaying CR-69
stimulus CR-82
values of

displaying in Signals window UM-183
examining CR-75
forcing UM-186
saving as binary log file UM-187

waveforms, viewing UM-206

next and previous edges, finding UM-232, UM-357
Nlview widget Symlib format UM-165
no space in time literal UM-241
NoCaseStaticError .ini file variable UM-342
NoDebug .ini file variable (VCOM) UM-342
NoDebug .ini file variable (VLOG) UM-343
noforce command CR-92
NoIndexCheck .ini file variable UM-342
+nolibcell CR-183
nolog command CR-93
NOMMAP environment variable UM-338
non-blocking assignments UM-81
NoOthersStaticError .ini file variable UM-342
NoRangeCheck .ini file variable UM-342
notepad command CR-95
Notepad windows, text editing UM-147, UM-359
-notrigger argument UM-381
noview command CR-96
NoVital .ini file variable UM-342
NoVitalCheck .ini file variable UM-342
Now simulator state variable UM-353
now simulator state variable UM-353
+nowarn<CODE> CR-183
nowhen command CR-97
numeric_bit package UM-47
numeric_std package UM-47

disabling warning messages UM-350
NumericStdNoWarnings .ini file variable UM-347

O

onbreak command CR-98
onElabError command CR-99
onerror command CR-100
optimize for std_logic_1164 UM-242
Optimize_1164 .ini file variable UM-342
OptionFile entry in project files UM-244
order of events

changing in Verilog CR-181
ordering files for compile UM-28
organizing projects with folders UM-32
others .ini file variable UM-342

P

packages
standard UM-46
textio UM-46
util UM-62
VITAL 1995 UM-60
Sim User’s Manual

 UM-403
VITAL 2000 UM-60
page setup

Dataflow window UM-164
Wave window UM-236

pan, Dataflow window UM-158
parameters

making optional UM-332
using with macros CR-68, UM-331

path delay mode UM-88
pathnames

in VSIM commands CR-10
spaces in CR-9

PathSeparator .ini file variable UM-347
pause command CR-101
PedanticErrors .ini file variable UM-342
PLI

specifying which apps to load UM-98
Veriuser entry UM-98

PLI/VPI UM-97
tracing UM-113

PLIOBJS environment variable UM-98, UM-338
popup

toggling waveform popup on/off UM-223
port driver data, capturing UM-312
Postscript

saving a waveform in UM-233
saving the Dataflow display in UM-162

precedence of variables UM-353
precision, simulator resolution UM-77
pref.tcl file UM-352
preference variables

.ini files, located in UM-341
editing UM-352
saving UM-352
Tcl files, located in UM-352

preferences, saving UM-352
primitives, symbols in Dataflow window UM-165
printenv command CR-102, CR-103
Process window UM-181

see also windows, Process window
processes

values and pathnames in Variables window UM-
203

without wait statements UM-241
Programming Language Interface UM-97
project context menus UM-27
project tab

information in UM-26
sorting UM-26

projects UM-17
accessing from the command line UM-35

adding files to UM-21
benefits UM-18
compile order UM-28

changing UM-28
compiler options in UM-34
compiling files UM-24
context menu UM-27
creating UM-20
creating simulation configurations UM-30
differences with earlier versions UM-19
folders in UM-32
grouping files in UM-29
loading a design UM-25
MODELSIM environment variable UM-338
override mapping for work directory with vcom CR-

149
override mapping for work directory with vlog CR-

185
overview UM-18

propagation, preventing X propagation CR-192
pulse error state CR-200
pwd command CR-105

Q

QuickSim II logfile format CR-211
Quiet .ini file variable

VCOM UM-342
Quiet .ini file variable (VLOG) UM-343
quietly command CR-106
quit command CR-107

R

race condition, problems with event order UM-79
radix

changing in Signals, Variables, Dataflow, List, and
Wave windows CR-108

character strings, displaying CR-178
default, DefaultRadix variable UM-345
of signals being examined CR-76
of signals in Wave window CR-37
specifying in List window UM-173

radix command CR-108
range checking UM-50

disabling CR-147
enabling CR-148

readers and drivers UM-156
real type, converting to time UM-65
reconstruct RTL-level design busses UM-126
ModelSim User’s Manual

UM-404 Index

Model
record field selection, syntax CR-10
records, values of, changing UM-203
$recovery UM-92
redirecting messages, TranscriptFile UM-348
refreshing library images CR-148, CR-184, UM-47
registers

adding to the Wave and List windows UM-187
values of

displaying in Signals window UM-183
saving as binary log file UM-187

waveforms, viewing UM-206
report

simulator control UM-336
simulator state UM-336

report command CR-109
reporting

compile history UM-27
variable settings CR-13

RequireConfigForAllDefaultBinding variable UM-342
resolution

returning as a real UM-62
specifying with -t argument CR-193
verilog simulation UM-77
VHDL simulation UM-52

Resolution .ini file variable UM-347
resolution simulator state variable UM-353
resource libraries UM-45
restart command CR-111

defaults UM-351
in GUI UM-142
toolbar button UM-145, UM-195, UM-214

restoring defaults UM-337
results, saving simulations UM-117
resume command CR-113
RTL-level design busses

reconstructing UM-126
run command CR-114
RunLength .ini file variable UM-347

S

saving
simulation options in a project UM-30
waveforms UM-117

scope, setting region environment CR-74
SDF

disabling timing checks UM-300
errors and warnings UM-291
instance specification UM-290
interconnect delays UM-300

mixed VHDL and Verilog designs UM-300
specification with the GUI UM-291
troubleshooting UM-301
Verilog

$sdf_annotate system task UM-294
optional conditions UM-299
optional edge specifications UM-298
rounded timing values UM-299
SDF to Verilog construct matching UM-295

VHDL
resolving errors UM-293
SDF to VHDL generic matching UM-292

$sdf_done UM-94
search libraries CR-197, UM-250
searching

in the source window UM-197
in the Structure window UM-202
List window

signal values, transitions, and names UM-177
values and names UM-133
Verilog libraries UM-72
Wave window

signal values, edges and names UM-225
searchlog command CR-116
$setuphold UM-92
shared objects

loading FLI applications
see ModelSim FLI Reference manual

loading PLI/VPI C applications UM-101
loading PLI/VPI C++ applications UM-102

shift command CR-118
Shortcuts

text editing UM-147, UM-359
shortcuts

command history CR-7, UM-358
command line caveat CR-7, UM-358
List window UM-180, UM-357
Main window UM-359
Main windows UM-147
Source window UM-359
Wave window UM-231, UM-356

show command CR-119
show drivers

Dataflow window UM-156
Wave window UM-218

show source lines with errors UM-241
Show_Lint .ini file variable (VLOG) UM-343
Show_source .ini file variable

VCOM UM-342
Show_source .ini file variable (VLOG) UM-343
Show_VitalChecksWarning .ini file variable UM-342
Sim User’s Manual

 UM-405
Show_Warning1 .ini file variable UM-343
Show_Warning2 .ini file variable UM-343
Show_Warning3 .ini file variable UM-343
Show_Warning4 .ini file variable UM-343
Show_Warning5 .ini file variable UM-343
Signal Spy UM-63
signal_force UM-63
signal_release UM-63
signals

adding to a WLF file UM-187
adding to the Wave and List windows UM-187
alternative names in the List window (-label) CR-33
alternative names in the Wave window (-label) CR-

36
applying stimulus to UM-186
attributes of, using in expressions CR-19
breakpoints CR-205, UM-189
combining into a user-defined bus CR-36, UM-174,

UM-217
Dataflow window, displaying in UM-149
drivers of, displaying CR-69
environment of, displaying CR-74
filtering in the Signals window UM-185
finding CR-79
force time, specifying CR-83
hierarchy

referencing in UM-63
releasing in UM-63

log file, creating CR-87
names of, viewing without hierarchy UM-222
pathnames in VSIM commands CR-10
radix

specifying for examine CR-76
specifying in List window CR-33
specifying in Wave window CR-37

sampling at a clock change UM-381
states of, displaying as mnemonics CR-178
stimulus CR-82
transitions, searching for UM-228
types, selecting which to view UM-185
unresolved, multiple drivers on UM-241
values of

converting to strings UM-384
displaying in Signals window UM-183
examining CR-75
forcing anywhere in the hierarchy UM-63
replacing with text CR-178
saving as binary log file UM-187

waveforms, viewing UM-206
Signals window UM-183

see also windows, Signals window

simulating
command-line mode UM-378
comparing simulations UM-117
default run length UM-255
delays, specifying time units for CR-14
design unit, specifying CR-189
graphic interface to UM-245
iteration limit UM-255
saving dataflow display as a Postscript file UM-162
saving options in a project UM-30
saving simulations CR-87, CR-194, UM-117, UM-

379
saving waveform as a Postscript file UM-233
stepping through a simulation CR-122
stimulus, applying to signals and nets UM-186
stopping simulation in batch mode CR-208
time resolution UM-246
Verilog UM-76

delay modes UM-87
hazard detection UM-82
resolution limit UM-77
XL compatible simulator options UM-86

VHDL UM-52
viewing results in List window UM-168
VITAL packages UM-61

Simulation Configuration
creating UM-30

simulations
event order in UM-79
saving results CR-62, CR-63, UM-117
saving results at intervals UM-123

simulator resolution
returning as a real UM-62
Verilog UM-77
VHDL UM-52
vsim -t argument CR-193
when comparing datasets UM-118

simulator state variables UM-353
simulator version CR-193, CR-203
simultaneous events in Verilog

changing order CR-181
sizetf callback function UM-107
so, shared object file

loading PLI/VPI C applications UM-101
loading PLI/VPI C++ applications UM-102

software version UM-144
sorting

HDL items in GUI windows UM-133
source directory, setting from source window UM-192
source errors, locating during compilation UM-239
source files, referencing with location maps UM-387
ModelSim User’s Manual

UM-406 Index

Model
source libraries
arguments supporting UM-73

source lines with errors
showing UM-241

spaces in pathnames CR-9
specify path delays CR-200
standards supported UM-14
startup

alternate to startup.do (vsim -do) CR-190
macro in the modelsim.ini file UM-347
macros UM-350
using a startup file UM-350

Startup .ini file variable UM-347
state variables UM-353
status bar

Main window UM-147
status command CR-121
Status field

Project tab UM-26
std .ini file variable UM-341
std_arith package

disabling warning messages UM-350
std_developerskit .ini file variable UM-341
std_logic_arith package UM-47
std_logic_signed package UM-47
std_logic_textio UM-47
std_logic_unsigned package UM-47
StdArithNoWarnings .ini file variable UM-347
STDOUT environment variable UM-338
step command CR-122
stimulus

applying to signals and nets UM-186
stop command CR-123
Structure window UM-199

see also windows, Structure window
symbol mapping

Dataflow window UM-165
symbolic constants, displaying CR-178
symbolic names, assigning to signal values CR-178
synopsys .ini file variable UM-341
Synopsys libraries UM-47
synthesis

rule compliance checking CR-145, UM-242, UM-
342

system calls
VCD UM-304
Verilog UM-89

system commands UM-323
system tasks

ModelSim Verilog UM-94
VCD UM-304

Verilog UM-89
Verilog-XL compatible UM-92

T

tab stops, in the Source window UM-198
tb command CR-124
Tcl UM-315–UM-326

command separator UM-322
command substitution UM-321
command syntax UM-318
evaluation order UM-322
Man Pages in Help menu UM-144
preference variables UM-352
relational expression evaluation UM-322
time commands UM-325
variable

in when commands CR-206
substitution UM-323

VSIM Tcl commands UM-324
temp files, VSOUT UM-340
text and command syntax UM-16
Text editing UM-147, UM-359
TextIO package

alternative I/O files UM-59
containing hexadecimal numbers UM-58
dangling pointers UM-58
ENDFILE function UM-58
ENDLINE function UM-58
file declaration UM-55
implementation issues UM-57
providing stimulus UM-59
standard input UM-56
standard output UM-56
WRITE procedure UM-57
WRITE_STRING procedure UM-57

TF routines UM-111
TFMPC

disabling warning CR-199
time

absolute, using @ CR-14
simulation time units CR-14
time resolution as a simulator state variable UM-353

time literal, missing space UM-241
time resolution

in Verilog UM-77
in VHDL UM-52
setting

with the GUI UM-246
with vsim command CR-193
Sim User’s Manual

 UM-407
time type, converting to real UM-64
time, time units, simulation time CR-14
time-based breakpoints UM-189
timescale directive warning, disabling CR-199
timing

$setuphold/$recovery UM-92
annotation UM-289
disabling checks CR-183, UM-300
disabling checks for entire design CR-192
negative check limits

described UM-83
extending CR-197

title, Main window, changing CR-193
to_real VHDL function UM-64
to_time VHDL function UM-65
toggling waveform popup on/off UM-223
toolbar

Dataflow window UM-153
Main window UM-145
Wave window UM-212

tooltip, toggling waveform popup UM-223
tracing

events UM-159
source of unknown UM-160

transcript
file name, specifed in modelsim.ini UM-349
saving UM-139
TranscriptFile variable in .ini file UM-348
using as a DO file UM-139

transcript command CR-125
transcript file

redirecting with -l CR-192
tree windows

VHDL and Verilog items in UM-135
viewing the design hierarchy UM-136

TreeUpdate command CR-217
triggers, in the List window UM-382
triggers, in the List window, setting UM-176
TSCALE, disabling warning CR-199
TSSI CR-222

in VCD files UM-312
tssi2mti command CR-126
type

converting real to time UM-65
converting time to real UM-64

Type field, Project tab UM-26

U

-u CR-184

unbound component UM-241
UnbufferedOutput .ini file variable UM-348
unit delay mode UM-88
unknowns, tracing UM-160
unresolved signals, multiple drivers on UM-241
use 1076-1993 language standard UM-240
use clause, specifying a library UM-46
use explicit declarations only UM-241
user-defined bus CR-36, UM-125, UM-174, UM-217
UserTimeUnit .ini file variable UM-348
util package UM-62

V

-v CR-184
v2k_int_delays CR-200
values

describe HDL items CR-66
examine HDL item values CR-75
of HDL items UM-197
replacing signal values with strings CR-178

variable settings report CR-13
variables

adding to the Wave and List windows UM-187
describing CR-66
environment variables UM-337
LM_LICENSE_FILE UM-337
personal preferences UM-336
precedence between .ini and .tcl UM-353
setting environment variables UM-337
simulator state variables

current settings report UM-336
iteration number UM-353
name of entity or module as a variable UM-353
resolution UM-353
simulation time UM-353

value of
changing from command line CR-50
changing with the GUI UM-203
examining CR-75

values of
displaying in Signals window UM-183
saving as binary log file UM-187

Variables window UM-203
see also windows, Variables window

vcd add command CR-127
vcd checkpoint command CR-128
vcd comment command CR-129
vcd dumpports command CR-130
vcd dumpportsall command CR-131
ModelSim User’s Manual

UM-408 Index

Model
vcd dumpportsflush command CR-132
vcd dumpportslimit command CR-133
vcd dumpportsoff command CR-134
vcd dumpportson command CR-135
vcd file command CR-136
VCD files UM-303

adding items to the file CR-127
capturing port driver data CR-130, UM-312
case sensitivity UM-306
converting to WLF files CR-144
creating CR-127, UM-306
dumping variable values CR-128
dumpports tasks UM-304
flushing the buffer contents CR-140
from VHDL source to VCD output UM-309
inserting comments CR-129
internal signals, adding CR-127
specifying maximum file size CR-141
specifying name of CR-138
specifying the file name CR-136
state mapping CR-136, CR-138
supported TSSI states UM-312
turn off VCD dumping CR-142
turn on VCD dumping CR-143
VCD system tasks UM-304
viewing files from another tool CR-144

vcd files command CR-138
vcd flush command CR-140
vcd limit command CR-141
vcd off command CR-142
vcd on command CR-143
vcd2wlf command CR-144
vcom command CR-145
vdel command CR-151
vdir command CR-152
vector elements, initializing CR-50
vendor libraries, compatibility of CR-152
Vera, see Vera documentation
Verilog

ACC routines UM-110
capturing port driver data with -dumpports CR-136,

UM-312
cell libraries UM-87
compiler directives UM-95
compiling and linking PLI C applications UM-101
compiling and linking PLI C++ applications UM-

102
compiling design units UM-69
compiling with XL ’uselib compiler directive UM-

74
creating a design library UM-69

event order in simulation UM-79
language templates UM-264
library usage UM-72
SDF annotation UM-294
sdf_annotate system task UM-294
simulating UM-76

delay modes UM-87
XL compatible options UM-86

simulation hazard detection UM-82
simulation resolution limit UM-77
source code viewing UM-191
standards UM-14
system tasks UM-89
TF routines UM-111
XL compatible compiler options UM-73
XL compatible routines UM-113
XL compatible system tasks UM-92

verilog .ini file variable UM-341
Verilog 2001

current implementation UM-14, UM-68
disabling support CR-184

Verilog PLI/VPI UM-97–UM-115
64-bit support in the PLI UM-113
compiling and linking PLI/VPI C applications UM-

101
compiling and linking PLI/VPI C++ applications

UM-102
debugging PLI/VPI code UM-113
PLI callback reason argument UM-106
PLI support for VHDL objects UM-109
registering PLI applications UM-97
registering VPI applications UM-99
specifying the PLI/VPI file to load UM-103

Verilog-XL
compatibility with UM-67

Veriuser .ini file variable UM-98, UM-348
Veriuser, specifying PLI applications UM-98
veriuser.c file UM-108
verror command CR-153
version

obtaining via Help menu UM-144
obtaining with vsim command CR-193
obtaining with vsim<info> commands CR-203

vgencomp command CR-154
VHDL

delay file opening UM-351
dependency checking UM-50
field naming syntax CR-10
file opening delay UM-351
language templates UM-264
library clause UM-45
Sim User’s Manual

 UM-409
object support in PLI UM-109
simulating UM-52
source code viewing UM-191
standards UM-14
timing check disabling UM-52
VITAL package UM-47

VHDL utilities UM-62, UM-63
get_resolution() UM-62
to_real() UM-64
to_time() UM-65

VHDL93 .ini file variable UM-343
view command CR-156
viewing

design hierarchy UM-135
library contents UM-41
waveforms CR-194, UM-117

virtual count commands CR-158
virtual define command CR-159
virtual delete command CR-160
virtual describe command CR-161
virtual expand commands CR-162
virtual function command CR-163
virtual hide command CR-166, UM-126
virtual log command CR-167
virtual nohide command CR-169
virtual nolog command CR-170
virtual objects UM-125

virtual functions UM-126
virtual regions UM-127
virtual signals UM-125
virtual types UM-127

virtual region command CR-172, UM-127
virtual regions

reconstruct the RTL hierarchy in gate-level design
UM-127

virtual save command CR-173, UM-126
virtual show command CR-174
virtual signal command CR-175, UM-125
virtual signals

reconstruct RTL-level design busses UM-126
reconstruct the original RTL hierarchy UM-126
virtual hide command UM-126

virtual type command CR-178
VITAL

compiling and simulating with accelerated VITAL
packages UM-61

disabling optimizations for debugging UM-61
specification and source code UM-60
VITAL packages UM-60

vital95 .ini file variable UM-341
vlib command CR-180

vlog command CR-181
vlog.opt file UM-244
vlog95compat .ini file variable UM-343
vmake command CR-187
vmap command CR-188
VPI, registering applications UM-99
VPI/PLI UM-97

compiling and linking C applications UM-101
compiling and linking C++ applications UM-102

vsim build date and version CR-203
vsim command CR-189
VSOUT temp file UM-340

W

WARNING[8], -lint argument to vlog CR-183
warnings

disabling at time 0 UM-350
locating file and line number UM-380
suppressing VCOM warning messages CR-148
suppressing VLOG warning messages CR-183
suppressing VSIM warning messages CR-199
turning off warnings from arithmetic packages UM-

350
wave format file UM-208
wave log format (WLF) file CR-194, UM-117

of binary signal values CR-87
see also WLF files

wave viewer, Dataflow window UM-157
Wave window UM-206

in the Dataflow window UM-157
toggling waveform popup on/off UM-223
see also windows, Wave window

wave, adding CR-35
WaveActivateNextPane command CR-217
waveform logfile

log command CR-87
overview UM-117
see also WLF files

waveform popup UM-223
waveforms UM-117

saving and viewing CR-87, UM-118
saving and viewing in batch mode UM-379
viewing UM-206

WaveRestoreCursors command CR-217
WaveRestoreZoom command CR-217
WaveSignalNameWidth .ini file variable UM-348
welcome dialog, turning on/off UM-336
when command CR-205
when statement
ModelSim User’s Manual

UM-410 Index

Model
setting signal breakpoints UM-189
time-based breakpoints CR-209

where command CR-210
wildcard characters

for pattern matching in simulator commands CR-13
Windows

Main window
text editing UM-147, UM-359

Source window
text editing UM-147, UM-359

windows
Dataflow window UM-149

toolbar UM-153
zooming UM-158

finding HDL item names in UM-133
List window UM-168

adding HDL items UM-169
adding signals with a WLF file UM-187
display properties of UM-175
formatting HDL items UM-172
output file CR-218
saving data to a file UM-179
saving the format of CR-216
setting triggers UM-176, UM-382
time markers UM-133

Main window UM-137
status bar UM-147
time and delta display UM-147
toolbar UM-145

opening
from command line CR-156
with the GUI UM-141

Process window UM-181
displaying active processes UM-181
specifying next process to be executed UM-181
viewing processing in the region UM-181

saving position and size UM-134
searching for HDL item values in UM-133
Signals window UM-183

VHDL and Verilog items viewed in UM-183
Source window

setting tab stops UM-198
Structure window UM-199

selecting items to view in Signals window UM-
183

VHDL and Verilog items viewed in UM-199
viewing design hierarchy UM-199

Variables window UM-203
VHDL and Verilog items viewed in UM-203

Wave window UM-206
adding HDL items to UM-208

adding signals with a WLF file UM-187
cursor measurements UM-227
display properties UM-222
display range (zoom), changing UM-228
format file, saving UM-208
path elements, changing CR-53, UM-348
time cursors UM-226
zooming UM-228

WLF files
adding items to UM-187
creating from VCD CR-144
filtering, combining CR-213
limiting size CR-194
log command CR-87
overview UM-118
repairing CR-215
saving CR-62, CR-63, UM-119
saving at intervals UM-123
specifying name CR-194
using in batch mode UM-379

wlf2log command CR-211
wlfman command CR-213
wlfrecover command CR-215
work library UM-39
workspace UM-138
write format command CR-216
write list command CR-218
write preferences command CR-219
write report command CR-220
write transcript command CR-221
write tssi command CR-222
write wave command CR-224

X

X
tracing unknowns UM-160

X propagation
disabling for entire design CR-192

Y

-y CR-185

Z

zero delay elements UM-53
zero delay mode UM-88
zero-delay loop, infinite UM-386
Sim User’s Manual

 UM-411
zero-delay oscillation UM-386
zero-delay race condition UM-79
zoom

Dataflow window UM-158
from Wave toolbar buttons UM-228
saving range with bookmarks UM-229
with the mouse UM-229
ModelSim User’s Manual

UM-412

Model
Sim User’s Manual

	Bookcase
	User’s Manual
	Table of Contents
	1 - Introduction
	Standards supported
	Assumptions
	Sections in this document
	What is an "HDL item"
	Text conventions

	2 - Projects
	Introduction
	What are projects?
	What are the benefits of projects?
	How do projects differ from pre-5.5 versions?
	Project conversion between versions

	Getting started with projects
	Step 1 - Creating a new project
	Step 2 - Adding items to the project
	Step 3 - Compiling the files
	Step 4 - Simulating a design
	Other basic project operations

	The Project tab
	Sorting the list
	Project tab context menu

	Changing compile order
	Auto-generating compile order
	Grouping files

	Creating a Simulation Configuration
	Organizing projects with folders
	Adding a folder

	Setting compiler options
	Accessing projects from the command line

	3 - Design libraries
	Design library contents
	Design unit information
	Archives

	Design library types
	Working with design libraries
	Creating a library
	Managing library contents
	Assigning a logical name to a design library
	Moving a library

	Specifying the resource libraries
	Verilog resource libraries
	VHDL resource libraries
	Predefined libraries
	Alternate IEEE libraries supplied
	Regenerating your design libraries

	Importing FPGA libraries

	4 - VHDL simulation
	Compiling VHDL designs
	Creating a design library
	Invoking the VHDL compiler
	Dependency checking
	Range and index checking

	Simulating VHDL designs
	Simulator resolution limit
	Delta delays

	Using the TextIO package
	Syntax for file declaration
	Using STD_INPUT and STD_OUTPUT within ModelSim

	TextIO implementation issues
	Writing strings and aggregates
	Reading and writing hexadecimal numbers
	Dangling pointers
	The ENDLINE function
	The ENDFILE function
	Using alternative input/output files
	Providing stimulus

	VITAL specification and source code
	VITAL packages
	ModelSim VITAL compliance
	VITAL compliance checking

	Compiling and simulating with accelerated VITAL packages
	Util package
	get_resolution
	init_signal_driver()
	init_signal_spy()
	signal_force()
	signal_release()
	to_real()
	to_time()

	5 - Verilog simulation
	Compilation
	Incremental compilation
	Library usage
	Verilog-XL compatible compiler arguments
	Verilog-XL `uselib compiler directive

	Simulation
	Invoking the simulator
	Simulator resolution limit
	Event ordering in Verilog designs
	Negative timing check limits
	Verilog-XL compatible simulator arguments

	Cell libraries
	SDF timing annotation
	Delay modes

	System tasks
	IEEE Std 1364 system tasks
	Verilog-XL compatible system tasks
	ModelSim Verilog system tasks

	Compiler directives
	IEEE Std 1364 compiler directives
	Verilog-XL compatible compiler directives

	Verilog PLI/VPI
	Registering PLI applications
	Registering VPI applications
	Compiling and linking PLI/VPI C applications
	Compiling and linking PLI/VPI C++ applications
	Specifying the PLI/VPI file to load
	PLI example
	VPI example
	The PLI callback reason argument
	The sizetf callback function
	PLI object handles
	Third party PLI applications
	Support for VHDL objects
	IEEE Std 1364 ACC routines
	IEEE Std 1364 TF routines
	Verilog-XL compatible routines
	64-bit support in the PLI
	PLI/VPI tracing
	Debugging PLI/VPI application code

	6 - WLF files (datasets) and virtuals
	WLF files (datasets)
	Saving a simulation to a WLF file
	Opening datasets
	Viewing dataset structure
	Managing multiple datasets
	Saving at intervals with Dataset Snapshot

	Virtual Objects (User-defined buses, and more)
	Virtual signals
	Virtual functions
	Virtual regions
	Virtual types

	Dataset, WLF file, and virtual commands

	7 - Graphic interface
	Window overview
	Common window features
	Quick access toolbars
	Drag and Drop
	Command history
	Automatic window updating
	Finding names
	Sorting HDL items
	Saving window layout
	Context menus
	Menu tear off
	Tree window hierarchical view

	Main window
	Workspace
	Transcript
	Active processes
	The Main window menu bar
	The Main window toolbar
	The Main window status bar
	Mouse and keyboard shortcuts

	Dataflow window
	Adding items to the window
	Links to other windows
	Dataflow window menu bar
	The Dataflow window toolbar
	Exploring the connectivity of your design
	Zooming and panning
	Tracing events (causality)
	Tracing the source of an unknown (X)
	Finding items by name in the Dataflow window
	Saving the display
	Configuring page setup
	Symbol mapping
	Configuring window options

	List window
	HDL items you can view
	Adding HDL items to the List window
	The List window menu bar
	Editing and formatting HDL items in the List window
	Combining items in the List window
	Setting List window display properties
	Finding items by name in the List window
	Setting time markers in the List window
	Saving List window data to a file
	List window keyboard shortcuts

	Process window
	The Process window menu bar

	Signals window
	The Signals window menu bar
	Filtering the signal list
	Forcing signal and net values
	Adding HDL items to the Wave and List windows or a WLF file
	Finding HDL items in the Signals window
	Setting signal breakpoints
	Defining clock signals

	Source window
	The Source window menu bar
	The Source window toolbar
	Setting file-line breakpoints
	Checking HDL item values and descriptions
	Finding and replacing in the Source window
	Setting tab stops in the Source window

	Structure window
	Structure window menu bar
	Structure window context menu
	Finding items in the Structure window

	Variables window
	The Variables window menu bar
	Finding HDL items in the Variables window

	Wave window
	Pathname pane
	Values pane
	Waveform pane
	Cursor panes
	HDL items you can view
	Adding HDL items in the Wave window
	The Wave window menu bar
	The Wave window toolbar
	Using dividers
	Splitting Wave window panes
	Combining items in the Wave window
	Displaying drivers of the selected waveform
	Editing and formatting HDL items in the Wave window
	Setting Wave window display properties
	Sorting a group of HDL items
	Setting signal breakpoints
	Finding items by name or value in the Wave window
	Using time cursors in the Wave window
	Examining waveform values
	Zooming - changing the waveform display range
	Saving zoom range and scroll position with bookmarks
	Wave window mouse and keyboard shortcuts
	Saving waveforms

	Compiling with the graphic interface
	Locating source errors during compilation
	Setting default compile options

	Simulating with the graphic interface
	Design tab
	VHDL tab
	Verilog tab
	Libraries tab
	SDF tab
	Options tab
	Setting default simulation options

	Creating and managing breakpoints
	Signal breakpoints
	File-line breakpoints
	Breakpoints dialog

	Miscellaneous tools and add-ons
	The GUI Expression Builder
	Language templates

	Graphic interface commands

	8 - Signal Spy
	Introduction
	Designed for testbenches

	init_signal_driver
	Call only once
	Syntax
	Returns
	Arguments
	Related procedures
	Limitations
	Example

	init_signal_spy
	Call only once
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	signal_force
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	signal_release
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	$init_signal_driver
	Call only once
	Syntax
	Returns
	Arguments
	Related procedures
	Limitations
	Example

	$init_signal_spy
	Call only once
	Syntax
	Returns
	Arguments
	Related tasks
	Limitations
	Example

	$signal_force
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	$signal_release
	Syntax
	Returns
	Arguments
	Related functions
	Limitations
	Example

	9 - Standard Delay Format (SDF) Timing Annotation
	Specifying SDF files for simulation
	Instance specification
	SDF specification with the GUI
	Errors and warnings

	VHDL VITAL SDF
	SDF to VHDL generic matching
	Resolving errors

	Verilog SDF
	The $sdf_annotate system task
	SDF to Verilog construct matching
	Optional edge specifications
	Optional conditions
	Rounded timing values

	SDF for Mixed VHDL and Verilog Designs
	Interconnect delays
	Disabling timing checks
	Troubleshooting
	Specifying the wrong instance
	Mistaking a component or module name for an instance label
	Forgetting to specify the instance

	10 - Value Change Dump (VCD) Files
	ModelSim VCD commands and VCD tasks
	Creating a VCD file
	Flow for four-state VCD file
	Flow for extended VCD file
	Case sensitivity

	Resimulating a design from a VCD file
	Example 1 - Verilog counter
	Example 2 - VHDL adder
	Example 3 - Mixed-HDL design

	A VCD file from source to output
	VHDL source code
	VCD simulator commands
	VCD output

	Capturing port driver data
	Supported TSSI states
	Strength values
	Port identifier code
	Example VCD output from vcd dumpports

	11 - Tcl and macros (DO files)
	Tcl features within ModelSim
	Tcl References
	Tcl commands
	Tcl command syntax
	if command syntax
	set command syntax
	Command substitution
	Command separator
	Multiple-line commands
	Evaluation order
	Tcl relational expression evaluation
	Variable substitution
	System commands

	List processing
	ModelSim Tcl commands
	ModelSim Tcl time commands
	Conversions
	Relations
	Arithmetic

	Tcl examples
	Example 1
	Example 2

	Macros (DO files)
	Creating DO files
	Using Parameters with DO files
	Making macro parameters optional
	Useful commands for handling breakpoints and errors
	Error action in DO files

	A - ModelSim variables
	Variable settings report
	Personal preferences
	Returning to the original ModelSim defaults
	Environment variables
	ModelSim Environment Variables
	Creating environment variables in Windows
	Referencing environment variables within ModelSim
	Removing temp files (VSOUT)

	Preference variables located in INI files
	[Library] library path variables
	[vcom] VHDL compiler control variables
	[vlog] Verilog compiler control variables
	[vsim] simulator control variables
	Commonly used INI variables

	Preference variables located in Tcl files
	User-defined variables
	More preferences

	Variable precedence
	Simulator state variables
	Referencing simulator state variables
	Special considerations for the now variable

	B - ModelSim shortcuts
	Wave window mouse and keyboard shortcuts
	List window keyboard shortcuts
	Command shortcuts
	Command history shortcuts
	Mouse and keyboard shortcuts in Main and Source windows
	Right mouse button

	C - ModelSim messages
	ModelSim message system
	Message format
	Getting more information

	Suppressing warning messages
	Suppressing VCOM warning messages
	Suppressing VLOG warning messages
	Suppressing VSIM warning messages

	Exit codes
	Miscellaneous messages
	Empty port name warning
	Lock message
	Metavalue detected warning
	Sensitivity list warning
	Tcl Initialization error 2
	Too few port connections
	VSIM license lost

	D - System initialization
	Files accessed during startup
	Environment variables accessed during startup
	Initialization sequence

	E - Tips and techniques
	Running command-line and batch-mode simulations
	Saving and viewing waveforms in batch mode
	Setting up libraries for group use
	Using a DO file to test for assertions
	Locating assertion warnings
	Sampling signals at a clock change
	Configuring a List trigger with Expression Builder
	Converting signal values to strings
	Converting an integer into a bit_vector
	Detecting infinite zero-delay loops
	Referencing source files with location maps
	Using location mapping
	Pathname syntax
	How location mapping works
	Mapping with Tcl variables

	Performance affected by scheduled events being cancelled
	Modeling memory in VHDL

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

