H	큰
	、入

第8章 VLAN 配置	8-1
8.1 简介	8-1
8.1.1 VLAN 的产生	8-2
8.1.2 VLAN 的实现	8-4
8.1.3 VLAN 间的通信	8-7
8.1.4 VLAN Trunk	8-9
8.1.5 VLAN 聚合	. 8-10
8.1.6 VLAN 的 Stacking 和 Mapping 功能	. 8-10
8.1.7 VLAN Damping 功能	. 8-11
8.1.8 参考信息	. 8-11
8.2 配置基于端口的 VLAN	. 8-11
8.2.1 建立配置任务	. 8-11
8.2.2 创建 VLAN 并配置其属性	. 8-13
8.2.3 配置交换式以太网接口的属性	. 8-13
8.2.4 将交换式以太网接口加入到 VLAN 中	. 8-14
8.2.5 配置 VLAN 间路由	. 8-14
8.2.6 检查配置结果	. 8-15
8.3 配置子接口支持 VLAN 间的通信	. 8-15
8.3.1 建立配置任务	. 8-15
8.3.2 配置子接口的 IP 地址	. 8-16
8.3.3 配置子接口封装 dot1q	. 8-16
8.3.4 检查配置结果	. 8-17
8.4 配置 VLAN Trunk	. 8-17
8.4.1 建立配置任务	. 8-17
8.4.2 配置接入 VLAN	. 8-18
8.4.3 配置端口允许多个 VLAN 通过	. 8-18
8.4.4 检查配置结果	. 8-19
8.5 配置 VLAN 聚合	. 8-19
8.5.1 建立配置任务	. 8-19
8.5.2 配置 sub-VLAN	. 8-20
8.5.3 创建 super-VLAN	. 8-21
8.5.4 配置 VLAN 接口的 IP 地址	. 8-21
8.5.5 配置 super-VLAN 的 ARP 代理功能	. 8-22
8.5.6 检查配置结果	. 8-22
8.6 配置 VLAN 的 Stacking 和 Mapping 功能	. 8-22
8.6.1 建立配置任务	. 8-22

	8.6.2 配置 VLAN Stacking 功能	8-23
	8.6.3 配置 VLAN Mapping 功能	8-23
	8.6.4 检查配置结果	8-24
8.7	配置 VLAN Damping 功能	8-24
	8.7.1 建立配置任务	
	8.7.2 配置 VLAN Damping 功能	8-25
	8.7.3 检查配置结果	8-25
8.8	维护	8-25
	8.8.1 清除 VLAN 报文统计信息	8-25
	8.8.2 调试 VLAN	8-25
8.9	配置举例	8-26
	8.9.1 配置 VLAN 示例	8-26
	8.9.2 配置基于端口的 VLAN 示例	8-28
	8.9.3 配置不同 VLAN 通过路由器通信示例	8-31
	8.9.4 配置 VLAN 与非 VLAN 通过路由器通信示例	8-34
	8.9.5 配置 VLAN Trunk 示例	8-35
	8.9.6 配置 Trunk 接口示例	8-38
	8.9.7 配置 VLAN 聚合示例	8-39
8.10	D 故障处理	8-43
	8.10.1 向 VLAN 中加入端口失败	8-43
	8.10.2 删除 VLAN 失败	
	8.10.3 配置 VLAN 接口失败	
	8.10.4 把 VLAN 设置成 super-VLAN 失败	
	8.10.5 把 VLAN 加入到 super-VLAN 时失败	8-45
	8.10.6 从 Trunk 端口中删除 VLAN 时失败	

第8章 VLAN 配置

虚拟局域网 VLAN (Virtual Local Area Network)用来把某些特定的用户从逻辑上进行划分,而无需考虑他们所在的物理位置。它利用虚拟工作组实现在一个 LAN 内隔离广播域。VLAN 在功能和操作上与传统的 LAN 基本相同。

下表列出了本章包含的内容。

如果您需要	请阅读
了解 VLAN 的基本概念	<u>简介</u>
使用 VLANIF 接口实现 VLAN 间通信	配置任务: <u>配置基于端口的 VLAN</u>
	配置举例: 配置基于端口的 VLAN 示例
使用路由器的三层接口实现 VLAN 间通信	配置任务: 配置子接口支持 VLAN 间的通信
	配置举例 1: 配置不同 VLAN 通过路由器通信示例
	配置举例 2: <u>配置 VLAN 与非 VLAN 通过路由器通</u> <u>信示例</u>
实现不同交换机下同一 VLAN 的用户互通	配置任务: 配置 VLAN Trunk
	配置举例 1. <u>配置 VLAN Trunk 示例</u>
	配置举例 2: 配置 Trunk 接口示例
解决多个 VLAN 占用 IP 地址过多	配置任务: <u>配置 VLAN 聚合</u>
	配置举例: 配置 VLAN 聚合示例
部署大量 VLAN	配置任务: 配置 VLAN 的 Stacking 和 Mapping 功 能
抑制 VLAN 接口震荡	配置任务: 配置 VLAN Damping 功能
清除 VLAN 统计信息、调试 VLAN	<u>维护</u>
检测和排除 VLAN 的运行故障	<u>故障处理</u>

8.1 简介

本节介绍配置 VLAN 需要理解的知识,具体包括:

- VLAN 的产生
- <u>VLAN 的实现</u>
- VLAN 间的通信

- VLAN Trunk
- <u>VLAN 聚合</u>
- VLAN 的 Stacking 和 Mapping 功能
- VLAN Damping 功能
- <u>参考信息</u>

8.1.1 VLAN 的产生

1. 传统局域网方案

早期的局域网 LAN 技术是基于总线型结构的,如图 8-1所示。

图8-1 传统局域网组网图

这种设计本身存在两个问题:

- 可能在同一时刻有多于一个的节点在试图发送消息,那么它们将产生冲突。
- 由于从任意节点发出的消息都会被发送到其他节点,形成广播,就需要用某种 方法把消息只传到目标节点。

后来在网络中加入集线器(HUB),实现了星型的物理拓扑。但是仍采用共享介质进行通讯,冲突问题没有解决。

网络中计算机数量越多冲突越严重,网络效率越低,这种网络构成了一个冲突域。 以太网采用基于载波侦听多路访问/冲突检测 CSMA/CD (Carrier Sense Multiple Access/Collision Detect)技术,来检测网络冲突,但并没有从根本上解决冲突。

该网络同时也是一个广播域。当网络中发送信息的计算机数量越多时,广播流量将 会耗费大量带宽。

因此,传统网络不仅面临冲突域和广播域两大难题,而且无法保障传输信息的安全。

2. 隔离冲突域

为了扩展传统 LAN,以接入更多计算机,同时避免冲突的恶化,网桥(Bridge)和 二层交换机接连出现了。

网桥可以连接 2 个冲突域,实现隔离冲突。而从网桥技术发展出来的二层局域网交换机(L2 Switch)能够隔离多个冲突域,如图 8-2所示。

🛄 说明:

本手册中将二层局域网交换机简称为交换机。

图8-2 二层交换机组网图

Bridge 和交换机采用交换方式将来自入端口的信息转发到出端口上,克服了共享介质上的访问冲突问题,从而将冲突域缩小到端口级。

交换机接收网段上的所有数据帧。根据数据帧中的源 MAC 地址进行学习,构建 MAC 地址表,存放 MAC 地址和端口的对应关系。

对于收到的数据帧,交换机如果能够在 MAC 地址表中查到目的 MAC 地址,则把帧 基于目的 MAC 地址进行二层转发,因此具有隔离冲突的作用。

如果目的地址不在 MAC 地址表中,交换机会向除了接收端口外的所有端口发送广播,这就有可能导致网络中发生广播风暴。

因此,采用交换机进行组网,通过二层快速交换解决了冲突域问题,但是广播域和 信息安全问题依旧存在。

3. 隔离广播域

为了减少广播,需要把没有互访需求的主机之间进行隔离。通过对交换机的端口进 行分组,每个组内是个广播域,组和组之间实现信息隔离,从而抑制广播报文跨越 组传递。

可以采用多种技术隔离局域网,由于路由器是基于三层 IP 地址信息来选择路由,因此使用路由器连接两个网段时可以有效地抑制广播报文的转发。但是路由器成本较高,因此人们设想在物理局域网上构建多个逻辑局域网,即 VLAN(Virtual Local Area Network)。

8.1.2 VLAN 的实现

1. VLAN 技术

VLAN 将一个物理的 LAN 在逻辑上划分成多个广播域(多个 VLAN)。VLAN 内的 主机间可以直接通信,而 VLAN 间不能直接互通,这样,广播报文被限制在一个 VLAN 内。

除了划分广播域, VLAN 还可以满足更复杂的网络应用。

例如,一个写字楼租给不同的企业客户,如果这些企业客户都建立各自独立的 LAN, 企业的网络投资成本将很高;如果各用户共用写字楼已有的 LAN,又会导致企业信 息安全无法保证。

采用 VLAN,可以实现各企业客户共享 LAN 设施,同时保证各自的网络信息安全。

图 8-3 是一个典型的 VLAN 应用。3 台交换机放置在不同的地点,比如写字楼的不同楼层。每台交换机分别连接 3 台计算机,他们分别属于 3 个不同的 VLAN,比如不同的企业客户。在图中,一个虚线框内表示一个 VLAN。

图8-3 VLAN 的典型应用示意图

2. VLAN 的划分

理论上有如下几种 VLAN 划分方式:

- 基于端口:根据交换机的端口编号来划分 VLAN。计算机所属的 VLAN 由端口 所属的 VLAN 决定。
- 基于 MAC 地址:根据计算机网卡的 MAC 地址来划分 VLAN。
- 基于网络层协议:例如将运行 IP 的计算机划分为一个 VLAN,将运行 IPX 的 计算机划分为另一个 VLAN。
- 基于网络地址。
- 基于应用层协议。

IEEE于 1999 年颁布了 802.1Q 协议标准草案,定义了基于端口和 MAC 地址划分 VLAN 的标准。

🛄 说明:

VRP 实现基于端口的 VLAN 划分。

3. VLAN 帧格式

IEEE 802.1Q 标准对 Ethernet 帧格式进行了修改,在源 MAC 地址字段和协议类型 字段之间加入 4 字节的 802.1Q Tag,如图 8-4所示。

	Destination Source		802.1Q Tag		l enath		ECS
Leader Character	Address	Address	Туре	PRI/ CFI /VID	/Type	Data	(CRC-32)
8 bytes	6 bytes	6 bytes	4 by	/tes	2 bytes	46-1517 bytes	4 bytes

图8-4 基于 802.1Q 的 VLAN 帧格式

802.1Q Tag 包含 4 个字段,其含义如下:

- Type: 长度为2字节,表示帧类型。取值为0x8100时表示802.1Q Tag帧。
 如果不支持802.1Q 的设备收到这样的帧,会将其丢弃。
- PRI: 长度为3比特,表示帧的优先级,取值范围为0~7,用于QoS。
- CFI: Canonical Format Indicator,长度为1比特,表示MAC地址是否是经 典格式,用于令牌环网和FDDI。
- VID: VLAN ID,长度为 12 比特,表示该帧所属的 VLAN。在 VRP 中,VLAN ID 0 用于表示缺省 VLAN。

4. 端口类型

在 802.1Q 中定义 VLAN 帧后,有些设备的端口可以识别 VLAN 帧,有些设备的端口则不能识别 VLAN 帧。

根据对 VLAN 帧的识别情况,将端口分为 4 类: Access 端口、Trunk 端口、Hybrid 端口、Q-in-Q 端口。

前三种端口的区别如表 8-1 所示。

端口类型	对帧的识别情况	是否允许带 Tag 的帧	用途
Access 端口	只识别 Ethernet 帧,不识别 VLAN帧	_	用于交换机与计 算机直接连接
Trunk 端口	能识别普通 VLAN,允许多个 VLAN 的帧通过	通过的帧必须带 Tag	用于交换机与交 换机连接
Hybrid 端口	能识别普通 VLAN 帧和默认 VLAN帧,允许多个 VLAN 的帧 通过	通过的帧可以带 Tag, 也可以不带 Tag	用于交换机与包 含交换机和计算 机的网络连接

表8-1 端口差异比较

Q-in-Q 端口是 Q-in-Q 协议使用的端口类型。VRP 提供的 Q-in-Q 端口,可以给帧加 上双重 Tag,即在原来 Tag 的基础上,给帧加上一个新的 Tag,从而可以支持多达 4096 × 4096 个 VLAN,满足城域网对 VLAN 数量的需求。

🛄 说明:

- Q-in-Q 协议的核心思想是只为每个用户分配一个公网 VLAN 号,当带 Tag 的用 户报文进入服务提供商的骨干网络时,统一插入新分配的公网 VLAN 号,当报文 到达骨干网另一侧的 PE 设备时,剥离新加的公网 VLAN tag,还原出用户报文 后再传送给 CE 设备。由于在骨干网中传递的报文有两层 802.1Q Tag 头(一个 公网 Tag,一个私网 Tag),所以称之为 Q-in-Q 协议。
- CE(Customer Edge):用户网络边缘设备,有接口直接与服务提供商 SP(Service Provider)网络相连。
- PE (Provider Edge): 服务提供商边缘路由器,是服务提供商网络的边缘设备, 与 CE 直接相连。

5. 交换机对帧的处理

交换机对帧的处理包括三个过程。

(1) 接收过程

接收的帧可以是带 Tag 的 VLAN 帧,也可以是不带 Tag 的普通 Ethernet 帧。

交换机根据接收帧的端口类型及配置决定对帧的操作:增加 Tag、直接丢弃或继续 处理。

(2) 查找和路由过程

二层交换机根据帧的目的 MAC 地址、VLAN ID,查找 VLAN 配置信息,决定把帧发送到哪个端口。

(3) 发送过程

将帧从出端口发送到以太网段。

出端口可以配置对 Tag 的处理。例如,如果出端口所在网段上的主机不能识别 802.1Q Tag,则先将该 Tag 去掉后再发送;如果出端口与其他交换机相连,则直接 发送,保持 Tag 不变。

8.1.3 VLAN 间的通信

划分 VLAN 后,不同 VLAN 的计算机之间不能实现二层通信。

如果在 VLAN 间通信, 需要建立 IP 路由。有两种实施方案。

🛄 说明:

大多数设备只支持下述两种方式中的一种,请根据设备的实际情况选择实施方案。

1. 部署路由器

多数情况下,LAN 通过交换机的以太网接口(交换式以太网接口)与路由器的以太 网接口(路由式以太接口)相连,如图 8-5所示。

图8-5 通过路由器实现 VLAN 间的通信

假定在交换机上已划分了 VLAN2 和 VLAN3。为实现 VLAN2 和 VLAN3 间的通信, 需要在路由器与交换机相连的以太网接口上创建 2 个子接口,在子接口上配置 802.1Q 封装和 IP 地址。并将交换机与路由器相连的以太网端口类型改为 Hybrid, 允许 VLAN2 和 VLAN3 的帧通过。

详细的配置过程,请参见配置子接口支持 VLAN 间的通信。

2. 在交换机上配置 VLANIF 接口

如果交换机支持 IP 路由特性,就可以不通过路由器实现 VLAN 间通信。

在图 8-6所示的网络中,交换机上划分了 2 个 VLAN: VLAN2 和 VLAN3。此时可在 交换机上创建 2 个 VLAN 接口,并为它们配置 IP 地址和路由,实现 VLAN2 与 VLAN3 的通信。

图8-6 通过 VLANIF 实现 VLAN 间的通信

🛄 说明:

配置 VLAN 后,就可以通过 interface vlanif 命令创建 VLAN 接口。VLAN 接口是一种虚拟接口,具有三层属性。

8.1.4 VLAN Trunk

在交换机上,一般的端口只能属于一个 VLAN,只能识别和发送本 VLAN 的报文。 当 VLAN 跨越交换机时,就需要交换机间的端口能够同时识别和发送多个 VLAN 的 报文。同样的问题也存在于支持 VLAN 的交换机和路由器之间。这种能够识别和发 送多个 VLAN 的报文的链路称为 Trunk。

Trunk 有两个作用:

- 中继作用:把 VLAN 报文透明传输到互联的交换机或路由器,从而扩展 VLAN。
- 干线作用: 一条 Trunk 链路上可以传输多个 VLAN 的报文。

实现 Trunk 的协议常用的是 IEEE 802.1Q, 它通过 VLAN TAG 字段识别 VLAN。

Trunk(干道)是在两台路由器之间的一条点到点链路,每台路由器的相应端口称为 干道端口。一条干道可以传输多个 VLAN 的数据流,并允许用户将 VLAN 的范围从 一台路由器扩展到另一台路由器。

8.1.5 VLAN 聚合

为了在交换机上实现 VLAN 间通信,需要为每个 VLAN 接口配置一个 IP 地址,以实现 VLAN 间路由。如果 VLAN 很多,将占用许多 IP 地址资源。VLAN 聚合(VLAN aggregation)可以解决多个 VLAN 占用多个 IP 地址的问题。

VLAN 聚合是将多个 VLAN 集中在一起,形成一个 super-VLAN。组成 super-VLAN 的 VLAN 被称作 sub-VLAN。

可以创建一个 VLAN 接口,使其对应一个 super-VLAN,只在该接口上配置 IP 地址, 不必为每个 sub-VLAN 分配 IP 地址,所有 sub-VLAN 共用 IP 网段,从而解决 IP 地 址使用效率的问题。

8.1.6 VLAN 的 Stacking 和 Mapping 功能

在实际应用中,尤其是在城域网中,需要使用大量 VLAN 来隔离用户。而 IEEE802.1Q 定义的 VLAN Tag 域只有 12 个比特,最多可以支持 4096 个 VLAN,其中可分配的 只有 4094 个,全 "0"和全 "1"的 VLAN 有其他用途。

VRP 提供端口 VLAN VPN 特性,可以给报文加双重 VLAN Tag,即,在报文原来 VLAN Tag 的基础上,增加新的 VLAN Tag (即 Q-in-Q),最多可提供 4096×4096 个 VLAN,其中可分配的为 4094×4094 个。

VLAN 的 Stacking 和 Mapping 功能是对报文新增加 VLAN Tag 的两种方式。

用户可以选择配置需要添加的 VLAN Tag(inside-vlan)。

1. VLAN Stacking

VLAN Stacking 对 Q-in-Q 功能进行了扩展:

- 在 Q-in-Q 端口上,只能配置一个外层 VLAN,而在具备 VLAN Stacking 功能的端口可以配置多个外层 VLAN,端口可以根据用户的配置给不同 VLAN 的帧加上不同的外层 Tag。
- Q-in-Q端口只能在接收帧时给帧加上外层 Tag,在发送帧时将帧最外层的 Tag 剥掉;具备 VLAN Stacking 功能的端口既可以在发送帧时也可以在接收帧时, 给帧加上外层 Tag 或将帧最外层的 Tag 剥掉。

2. VLAN Mapping

VRP 提供 VLAN Mapping 功能。当在端口配置了两个以上的 VLAN ID 映射后,端口在向外发送本地 VLAN 的帧时,将帧中的 VLAN Tag 替换成外部 VLAN 的 VLAN Tag; 在接收外部 VLAN 的帧时,将帧中的 VLAN Tag 替换成本地 VLAN 的 VLAN Tag,这样不同 VLAN 间就实现了互相通信。

此外,要想借助 VLAN Mapping 实现两个 VLAN 内设备互相通信,则这两个 VLAN 内设备的 IP 地址还必须处于同一网段。

8.1.7 VLAN Damping 功能

对于接入路由器,一般都有主接口和备用接口。当路由器处于正常情况时,主接口 处于正常转发状态,备用接口不转发报文。

当主接口所在链路出现问题时,在备用接口没有正常工作之前,路由器上的 VLANIF 接口状态会变为 Down,从而导致整网的路由出现振荡。当备用接口正常工作后,VLANIF 接口再次变为 Up 状态,整网路由再次振荡收敛。整个过程将持续几秒时间。

当使能 VLANIF 的 Damping 功能时,VLAN 中最后一个处于 Up 状态的的端口变为 Down 后,会抑制一定时间(抑制时间可配置)再上报给 VLANIF 接口,如果在抑制时间内 VLAN 中有端口 Up,则 VLANIF 保持 Up 状态不变。

也就是说,VLAN Damping 功能可以适当延迟向 VLANIF 接口上报接口 Down 状态的时间,从而抑制不必要的路由振荡。

8.1.8 参考信息

如果要更详细了解 VLAN 的原理,请参考以下文档。

- RFC 3069 : VLAN Aggregation for Efficient IP Address Allocation
- IEEE 802.1Q : IEEE Standards for Local and Metropolitan Area Networks : Virtual Bridged Local Area Networks
- IEEE 802.10 : Interoperable LAN/MAN Security Standard
- YD/T 1260-2003:基于端口的虚拟局域网(VLAN)技术要求和测试方法

8.2 配置基于端口的 VLAN

8.2.1 建立配置任务

1. 应用环境

华为公司的通用交换路由器 NE40 和 NE40E 提供两类以太网接口板:

- 交换式以太网接口板:提供交换式以太网接口,只具备二层特性,不能切换成
 三层模式(路由式)。
- 路由式以太网接口板:提供路由式以太网接口,可以配置三层特性,并可以通 过命令切换到二层模式(交换式)。

只有交换式以太网接口才能加入到 VLAN。

VRP 实现基于端口的 VLAN 划分,并提供以下 VLAN 属性的配置。

- VLAN 广播属性:当 VLAN 的一个端口收到一个广播报文或收到单播报文,但 在 MAC 地址表中没有对应目的 MAC 地址时,该端口将向 VLAN 内的其他端 口广播该报文。如果配置了静态 MAC 地址表项,或者为了安全需要限制恶意 广播报文,可以禁止在 VLAN 上转发广播报文。
- 禁止 VLAN 的 MAC 地址学习:在配置了静态 MAC 地址表的情况下,可以禁止 VLAN 上的 MAC 地址学习功能,以提高安全性。启动 VLAN 上的 MAC 地址学习功能时,为了保持转发效率,可对 MAC 地址表中 MAC 地址的数量进行限制。并设置当 MAC 地址的数量超过限制值时采取的动作,如 discard (丢弃)或 forward (转发),或 alarm (向网管发送告警)。

2. 前置任务

在配置基于端口的 VLAN 之前, 需完成对端口的特性的配置。

3. 数据准备

在配置基于端口的 VLAN 之前,需准备以下数据:

序号	数据
1	VLAN 的编号
2	VLAN 上 MAC 地址表的表项限制值
3	加入到 VLAN 中的以太网接口的编号
4	以太网接口的类型以及优先级值
5	VLAN 接口的 IP 地址和子网掩码

4. 配置过程

序号	过程
1	创建 VLAN 并配置其属性
2	配置交换式以太网接口的属性
3	将交换式以太网接口加入到 VLAN 中
4	<u>配置 VLAN 间路由</u>
5	检查配置结果

🛄 说明:

如果需要配置多个 VLAN,则需要重复上面的配置过程 1~3。如果交换机支持三层 特性,并且各 VLAN 之间需要互相通信,则需要配置 VLAN 间的路由。

8.2.2 创建 VLAN 并配置其属性

步骤	操作	命令
1	进入系统视图	system-view
2	创建 VLAN 并进入 VLAN 视图	vlan vlan-id
3	配置 VLAN 的广播属性	broadcast disable
4	配置 VLAN 上的 MAC 地址学习功能	mac-address learning disable
5	配置 VLAN 上的 MAC 地址的限制	<pre>mac-limit { action { discard forward } alarm { disable enable } maximum max rate interval } *</pre>

VLAN 的编号范围为 1~4094。创建 VLAN 时,如果该 VLAN 已存在,则直接进入 该 VLAN 视图。

如果要批量创建 VLAN,可以先使用 vlan batch 命令先批量创建,再使用 vlan vlan-id 命令进入相应的 VLAN 命令视图。

缺省情况下,使能 VLAN 的广播属性,使能 VLAN 的 MAC 地址学习。

8.2.3 配置交换式以太网接口的属性

步骤	操作	命令
1	进入系统视图	system-view
2	进入以太网接口视图	interface { ethernet gigabitethernet } interface-number
3	设置端口为交换式端口	portswitch
4	设置端口的类型	<pre>port link-type { access dot1q-tunnel hybrid trunk }</pre>
5	设置端口的优先级	port priority priority-value
6	设置端口所属的缺省 VLAN	port default vlan vlan-id

🛄 说明:

端口类型配置为 Trunk 后,不支持 port default vlan 命令。

如果交换式以太网接口直接与计算机连接,则该接口需要配置成 Access 端口或 Hybrid 端口。

如果交换式以太网接口与另一个交换机的以太网接口连接,则该接口需要配置成 Trunk 端口或 Hybrid 端口。

当同一 VLAN 下有多个端口时,可以指定端口的优先级,优先级取值范围为 0~7, 值越大优先级越高。优先级高的端口收到的报文将被优先转发。

8.2.4 将交换式以太网接口加入到 VLAN 中

有两种方法可以将交换式以太网接口加入到 VLAN 中,如下。

1. 在以太网接口视图下配置端口的缺省 VLAN

步骤	操作	命令
1	进入系统视图	system-view
2	进入以太网接口视图	interface { ethernet gigabitethernet } interface-number
3	设置端口所属的缺省 VLAN	port default vlan vlan-id

2. 在 VLAN 视图下指定 VLAN 包含的端口

步骤	操作	命令
1	进入系统视图	system-view
2	创建 VLAN 并进入 VLAN 视图	vlan vlan-id
3	配置 VLAN 包含的端口	<pre>port interface-type { interface-number1 [to interface-number2] } &<1-10></pre>

加入 VLAN 的端口必须是交换式接口。

输入端口范围时,应保证输入的端口格式正确,关键字 to 之后的端口号要大于 to 之前的端口号,并要保证采用 to 形式输入的端口类型相同,且两者之间包含的端口都存在。

一条 port 命令中,最多可以使用 10 次 to 形式输入 10 个端口范围。

8.2.5 配置 VLAN 间路由

步骤	操作	命令
1	进入系统视图	system-view

步骤	操作	命令
2	创建 VLAN 接口	interface vlanif vlan-id
3	配置 VLAN 接口的 IP 地址	<pre>ip address ip-address { mask mask-length } [sub]</pre>

创建 VLAN 接口时,相关联的 VLAN 必须已经存在。

创建 VLAN 接口后,可以在 VLAN 接口上配置 IP 特性,操作方法跟其他以太网接口 的配置类似。

不同 VLAN 接口的 IP 地址应该在不同的网段,这样不同 VLAN 的用户之间才具有可达的路由。

8.2.6 检查配置结果

步骤	操作	命令
1	查看 VLAN 信息	display vlan [vlan-id] [statistics verbose]
2	显示 VLAN 接口信息	display interface vlanif [vlan-id] [{ begin exclude include } regular-expression]
3	显示Trunk端口上可通过的VLAN 信息	display port allow-vlan [interface-type interface-number]
4	查看指定 VLAN 的报文收发统计 信息	display vlan vlan-id statistics
5	查看指定子接口的 VLAN 报文收 发统计信息	display vlan statistics { vid vlan-id interface { ethernet gigabitethernet } interface-number.subinterface-number } *

8.3 配置子接口支持 VLAN 间的通信

8.3.1 建立配置任务

1. 应用环境

如果要实现 VLAN 之间的三层互通,必须使用路由器或三层交换机连接各个 VLAN。

本节介绍通过部署路由器实现 VLAN 间互通的解决方案。

为了实现不同 VLAN 之间的通信,需要在路由器的与交换机相连的以太网接口上创建子接口,再在子接口上分别配置封装 802.1Q。

2. 前置任务

在配置接口封装 VLAN 协议之前,需创建以太网子接口并配置其物理属性。

3. 数据准备

在配置接口封装 VLAN 协议之前,需准备以下数据:

序号	数据
1	路由器以太网接口编号和子接口号
2	子接口的 IP 地址及掩码
3	接口所属 VLAN ID 的范围

4. 配置过程

序号	过程
1	<u>配置子接口的 IP 地址</u>
2	配置子接口封装 dot1q

3 <u>检查配置结果</u>

8.3.2 配置子接口的 IP 地址

步骤	操作	命令
1	进入系统视图	system-view
2	创建子接口并进入子接口视图	interface { ethernet gigabitethernet } interface-number.subinterface-number
3	配置子接口的 IP 地址	<pre>ip address ip-address { mask mask-length } [sub]</pre>

🛄 说明:

当接口下配有子接口时,在主接口连续执行 shutdown 和 undo shutdown 操作之间的时间间隔应至少为 15 秒。

8.3.3 配置子接口封装 dot1q

步骤	操作	命令
1	进入系统视图	system-view

步骤	操作	命令
2	进入子接口视图	interface { ethernet gigabitethernet EthTrunk } interface-number.subinterface-number
3	设置以太网子接口的封装类型及 关联的 VLAN ID	vlan-type dot1q low-vid [high-vid]
	或设置 Eth-Trunk 子接口的封装 类型及关联的 VLAN ID	vlan-type dot1q vlan-id

缺省情况下,子接口上无封装,也没有与子接口关联的 VLAN ID。

为了保证 VLAN 的连通性,两端的子接口关联的 VLAN ID 必须相同。

🛄 说明:

VRP 支持在一个子接口下最多关联 64 个 VLAN,但在实际路由器上只能配置一个 VLAN,即,实际可用的命令形式为 vlan-type dot1q *low-vid*。

8.3.4 检查配置结果

步骤	操作	命令
1	查看指定 VLAN 的报文收发统计 信息	display vlan vlan-id statistics
2	查看指定子接口的 VLAN 报文收 发统计信息	display vlan statistics { vid vlan-id interface { ethernet gigabitethernet } interface-number.subinterface-number } *

8.4 配置 VLAN Trunk

8.4.1 建立配置任务

1. 应用环境

如果 VLAN 跨越多个以太网交换机,为了实现不同交换机下同一 VLAN 的用户互通, 需要将交换机互连的接口配置为 Trunk 端口或 Hybrid 端口。

该以太网端口是本以太网交换机用来与其他以太网交换机互连的,并且必须是交换 式以太网口。

2. 前置任务

在配置 VLAN Trunk 之前,需完成对以太网端口属性的配置。

3. 数据准备

在配置 VLAN Trunk 之前,需准备以下数据:

序号	数据
1	接入 VLAN 的 VLAN ID 及其包含的端口编号
2	需要启动 VLAN Trunk 功能的端口编号

4. 配置过程

序号	过程
1	<u>配置接入 VLAN</u>
2	配置端口允许多个 VLAN 通过
3	检查配置结果

8.4.2 配置接入 VLAN

步骤	操作	命令
1	进入系统视图	system-view
2	创建 VLAN 并进入 VLAN 视图	vlan vlan-id
3	配置 VLAN 包含的端口	<pre>port interface-type { interface-number1 [to interface-number2] } &<1-10></pre>

可以通过 Trunk 端口的 VLAN 必须是接入 VLAN。且不能在接入 VLAN 接口下配置 IP 地址等三层特性。

此操作过程需要在以太网中各交换机上进行。如果配置多个 VLAN, 重复此操作。

8.4.3 配置端口允许多个 VLAN 通过

步骤	操作	命令
1	进入系统视图	system-view
2	进入以太网接口视图	<pre>interface { ethernet gigabitethernet } interface-number</pre>

步骤	操作	命令
3	设置端口为 Trunk 端口或 Hybrid 端口	port link-type { trunk hybrid }
4	配置 Trunk 端口通过的 VLAN	<pre>port trunk allow-pass vlan { { vlan-id1 [to vlan-id2] } &<1-10> all }</pre>
	或配置 Hybrid 端口出方向不带 Tag 的 VLAN	<pre>port hybrid untagged vlan { { vlan-id1 [to vlan-id2] } &<1-10> all }</pre>

为转发指定 VLAN 的报文,以太网端口需要加入到指定 VLAN 中。

Trunk 端口和 Hybrid 端口可以加入到多个 VLAN 中,从而实现本交换机的 VLAN 与 对端交换机上相同 VLAN 的互通。

Hybrid 端口还可以设置哪些 VLAN 的报文打标签,哪些不打标签,从而对不同 VLAN 报文区别处理。

🛄 说明:

- Access 端口只能加入到一个 VLAN 中。
- untagged 方式的端口只能加入已经存在的 VLAN。

8.4.4 检查配置结果

步骤	操作	命令
1	查看 VLAN 信息	display vlan [vlan-id] [statistics verbose]
2	显示 Trunk 端口上可通过的 VLAN信息	display port allow-vlan [interface-type interface-number]

8.5 配置 VLAN 聚合

8.5.1 建立配置任务

1. 应用环境

VLAN 聚合(VLAN aggregation)用于解决多个 VLAN 占用多个 IP 地址的问题。

VLAN 聚合将多个 VLAN 集中在一起,形成一个 super-VLAN。组成 super-VLAN 的 VLAN 被称作 sub-VLAN,所有 sub-VLAN 共用一个 IP 网段。

当以太网存在大量 VLAN 时, 配置 VLAN 聚合还可以简化配置。

2. 前置任务

在配置 VLAN 聚合之前,需完成对以太网端口属性的配置。

3. 数据准备

在配置 VLAN 聚合之前,需准备以下数据:

序号	数据
1	sub-VLAN的 VLAN ID 及其包含的端口编号
2	super-VLAN 的 VLAN ID
3	VLAN 接口的 IP 地址和掩码

4. 配置过程

序号	过程
1	<u>配置 sub-VLAN</u>
2	创建 super-VLAN
3	<u> 配置 VLAN 接口的 IP 地址</u>
4	检查配置结果

8.5.2 配置 sub-VLAN

步骤	操作	命令
1	进入系统视图	system-view
2	创建 VLAN 并进入 VLAN 视图	vlan vlan-id
3	配置 VLAN 包含的端口	<pre>port interface-type { interface-number1 [to interface-number2] } &<1-10></pre>

在配置 super-VLAN 之前必须先配置好 sub-VLAN。

新创建的 VLAN 缺省认为是 sub-VLAN。配置 sub-VLAN 时,只需将端口加入到已 创建的 VLAN 中即可。不能在 sub-VLAN 接口上配置 IP 地址等三层特性。

8.5.3 创建 super-VLAN

步骤	操作	命令
1	进入系统视图	system-view
2	创建 VLAN 并进入 VLAN 视图	vlan vlan-id
3	设置成 super-VLAN	aggregate-vlan
4	将 sub-VLAN 加入到 super-VLAN 中	<pre>access-vlan { vlan-id1 [to vlan-id2] } &<1-10></pre>

super-VLAN 与 sub-VLAN 必须使用不同的 VLAN ID。并且 super-VLAN 不能包含 任何物理端口。

只有 sub-VLAN 才能加入到 super-VLAN 中。如果要将多个 VLAN 批量加入到 super-VLAN 中,必须保证这些 VLAN 均符合 sub-VLAN 的条件,否则这些 VLAN 都不能成功加入 super-VLAN。

🛄 说明:

在 VLAN 视图下执行命令 undo aggregate-vlan,可以将一个 super-VLAN 端口改变为 sub-VLAN 端口。

8.5.4 配置 VLAN 接口的 IP 地址

步骤	操作	命令
1	进入系统视图	system-view
2	创建 VLAN 接口	interface vlanif vlan-id
3	配置 VLAN 接口的 IP 地址	<pre>ip address ip-address { mask mask-length } [sub]</pre>

在 interface vlanif 命令中,参数 *vlan-id* 是创建 super-VLAN 时指定的 VLAN ID。 VLAN 接口的 IP 地址所在的网段应包含各 sub-VLAN 用户所在的子网段。

8.5.5 配置 super-VLAN 的 ARP 代理功能

步骤	操作	命令
1	进入系统视图	system-view
2	创建 VLAN 接口	interface vlanif vlan-id
3	使能 VLAN 接口的 ARP 代理	arp-proxy enable
4	使能 sub-vlan 间的 ARP 代理	arp-proxy inter-sub-vlan-proxy enable

<u>/</u>] _{注意},

Super-VLAN 接口必须配置了 IP 地址, 配置 Super-VLAN 的 ARP 代理功能才能生效。

8.5.6 检查配置结果

步骤	操作	命令
1	查看 VLAN 信息	display vlan [vlan-id] [statistics verbose]
2	显示 VLAN 接口信息	<pre>display interface vlanif [vlan-id] [{ begin exclude include } regular-expression]</pre>

8.6 配置 VLAN 的 Stacking 和 Mapping 功能

8.6.1 建立配置任务

1. 应用环境

当需要较多的 VLAN 数量时,可以配置 VLAN 的 Stacking 和 Mapping 功能。通过 对 VLAN 增加新的 Tag,使 VLAN 的可用数目范围变大,解决 VLAN 数目资源紧缺 的问题。

2. 前置任务

在配置 VLAN 的 Stacking 和 Mapping 功能之前,需要完成以太网端口基本属性的 配置。

3. 数据准备

在配置 VLAN 的 Stacking 和 Mapping 功能之前,需准备以下数据:

序号	数据
1	指定 VLAN 的编号

4. 配置过程

序号	过程
1	配置 VLAN Stacking 功能
2	配置 VLAN Mapping 功能
3	检查配置结果

8.6.2 配置 VLAN Stacking 功能

步骤	操作	命令
1	进入系统视图	system-view
2	进入指定以太网端口视图	interface { ethernet gigabitethernet } interface-number
3	设置端口为交换式端口	portswitch
4	启用 VLAN Stacking 功能	port vlan-stacking outside-vlan vlan-id1 [to vlan-id2] stack-vlan vlan-id3
		或
		port vlan-stacking ce-default-vlan stack-vlan vlan-id3

缺省情况下,端口不启用 VLAN Stacking 功能。

8.6.3 配置 VLAN Mapping 功能

步骤	操作	命令
1	进入系统视图	system-view
2	进入指定以太网端口视图	interface { ethernet gigabitethernet } interface-number
3	设置端口为交换式端口	portswitch
4	启用 VLAN Mapping 功能	port vlan-mapping outside-vlan vlan-id1 [to vlan-id2] map-vlan vlan-id3

缺省情况下,端口不使能 VLAN Mapping 功能。

8.6.4 检查配置结果

步骤	操作	命令
1	查看 VLAN 信息	display vlan [vlan-id] [statistics verbose]

8.7 配置 VLAN Damping 功能

8.7.1 建立配置任务

1. 应用环境

当路由器升级或者主备倒换时,非常容易引起网络震荡,但是当这样的震荡不需要 马上向 VLANIF 接口上报时,可以启动该功能。

2. 前置任务

在配置 VLAN Damping 功能之前,需要完成对以太网接口属性的配置。

3. 数据准备

在配置 VLAN Damping 之前,需准备以下数据:

序号	数据
1	VLAN ID 及其包含的端口编号
2	VLAN Damping 的抑制时间

4. 配置过程

序号	过程
1	<u>配置 VLAN Damping 功能</u>
2	检查配置结果

8.7.2 配置 VLAN Damping 功能

步骤	操作	命令
1	进入系统视图	system-view
2	进入指定的 VLANIF 视图	interface vlanif interface-number
3	设置抑制时间	damping time delay-time

8.7.3 检查配置结果

步骤	操作	命令
1	查看 VLAN 接口的信息	display interface vlanif interface-number

8.8 维护

本节包含如下的内容:

- <u>清除 VLAN 报文统计信息</u>
- <u>调试 VLAN</u>

8.8.1 清除 VLAN 报文统计信息

在确认需要清除 VLAN 报文统计信息后,请在用户视图下执行下面的 reset 命令。

操作	命令
清除指定 VLAN 的报文统计信息	reset vlan statistics [vid] vlan-id
清除指定子接口的 VLAN 报文统计信息	reset vlan statistics interface interface-type interface-number

8.8.2 调试 VLAN

<u>/</u>] 注意:

打开调试开关将影响系统的性能。调试完毕后,应及时执行 undo debugging all 命令关闭调试开关。

在出现 VLAN 运行故障时,请在用户视图下执行下面的 debugging 命令对 VLAN 进行调试,查看调试信息,并定位故障的原因。打开调试信息开关的操作步骤请参 考《通用路由平台 VRP 操作手册 系统分册》的"系统维护配置"。

操作	命令					
打开 VLAN 报文的调试开关	debugging interface-num	vlan nber][v	packet vid vlan-id]]	interface	interface-type

🛄 说明:

如果 debugging vlan packet 不指定任何可选参数,将对所有处于 VLAN 中子接口 的 VLAN 报文调试开关有效。

8.9 配置举例

本节包含如下配置举例:

- <u>配置 VLAN 示例</u>
- 配置基于端口的 VLAN 示例
- 配置不同 VLAN 通过路由器通信示例
- 配置 VLAN 与非 VLAN 通过路由器通信示例
- <u>配置 VLAN Trunk</u> 示例
- <u>配置 Trunk 接口示例</u>
- <u>配置 VLAN 聚合示例</u>

8.9.1 配置 VLAN 示例

1. 组网需求

如<u>图 8-7</u>所示,某部门的局域网包含 4 台主机,这四台主机分属两个小组。要求将 这两个小组之间隔离,使组间不能互相通信。

图8-7 配置 VLAN 组网图

2. 配置思路

采用如下的思路配置 VLAN:

- (1) 创建 VLAN
- (2) 将端口加入 VLAN

3. 数据准备

为完成此配置例,需准备如下的数据:

- 以太网端口 Ethernet1/0/1 和 Ethernet1/0/2 属于 VLAN2
- 以太网端口 Ethernet1/0/3 和 Ethernet1/0/4 属于 VLAN3

4. 配置步骤

(1) 配置交换机

创建 VLAN2。

<Quidway> **system-view**

[Quidway] **vlan 2**

向 VLAN2 中加入端口 Ethernet1/0/1 和 Ethernet1/0/2。

[Quidway-vlan2] port ethernet 1/0/1 to 1/0/2

创建 VLAN3。

[Quidway] vlan 3

向 VLAN3 中加入端口 Ethernet1/0/3 和 Ethernet1/0/4。

[Quidway-vlan3] port ethernet 1/0/3 to 1/0/4

(2) 验证配置结果

从第 1 组内的任一台主机 ping 第 2 组内的任一台主机,无法 ping 通,证明两组间 的已实现隔离。

5. 配置文件

```
#
 sysname Quidway
#
vlan batch 2 to 3
#
interface Ethernet1/0/1
port default vlan 2
#
interface Ethernet1/0/2
port default vlan 2
#
interface Ethernet1/0/3
port default vlan 3
#
interface Ethernet1/0/4
port default vlan 3
#
return
```

8.9.2 配置基于端口的 VLAN 示例

1. 组网需求

创建两个 VLAN: VLAN2 和 VLAN3。

VLAN2 包含端口 GE1/0/0 和 GE2/0/0, VLAN3 包含端口 GE3/0/0 和 GE4/0/0。这 些 GE 端口均是路由式接口。

图8-8 VLAN 配置示例图

2. 配置思路

采用如下的思路配置基于端口的 VLAN:

- (1) 将路由式接口配置为交换式接口
- (2) 配置 VALN 并加入端口
- (3) 配置 VLANIF 接口的路由

3. 数据准备

为完成此配置例,需准备如下的数据:

- 以太网端口 Ethernet1/0/0 和 Ethernet2/0/0 属于 VLAN2
- 以太网端口 Ethernet3/0/0 和 Ethernet4/0/0 属于 VLAN3
- VLANIF2的 IP 地址为 120.1.1.1/24
- VLANIF3的 IP 地址为 130.1.1.1/24

4. 配置步骤

(1) 配置 VLAN2

#将接口切换成二层模式。

```
<Router> system-view

[Router] interface gigabitethernet 1/0/0

[Router-GigabitEthernet1/0/0] portswitch

[Router] interface gigabitethernet 2/0/0

[Router-GigabitEthernet2/0/0] portswitch

[Router-GigabitEthernet2/0/0] quit
```

创建 VLAN2。

[Router] vlan 2

向 VLAN2 中加入 GE1/0/0 和 GE2/0/0。

[Router-vlan2] port gigabitethernet 1/0/0 to 2/0/0

[Router-vlan2] quit

#配置 VLAN 接口。

```
[Router] interface vlanif 2
[Router-Vlanif2] ip address 120.1.1.1 24
[Router-Vlanif2] quit
```

(2) 配置 VLAN3

#将接口切换成二层模式。

```
[Router] interface gigabitethernet 3/0/0
[Router-GigabitEthernet3/0/0] portswitch
[Router-GigabitEthernet3/0/0] quit
[Router] interface gigabitethernet 4/0/0
[Router-GigabitEthernet4/0/0] portswitch
[Router-GigabitEthernet4/0/0] quit
```

创建 VLAN3。

[Router] vlan 3

#向 VLAN3 中加入 GE3/0/0 和 GE4/0/0。

[Router-vlan3] port gigabitethernet 3/0/0 to 4/0/0 [Router-vlan3] quit

配置 VLAN 接口。

[Router] interface vlanif 3
[Router-Vlanif3] ip address 130.1.1.1 24
[Router-Vlanif3] quit

(3) 检查配置结果

配置完成后,在各主机上配置默认网关为本主机所连路由器接口的 IP 地址,则 VLAN2 中的主机能够和 VLAN3 中的主机通信。

```
5. 配置文件
```

```
#
sysname Router
#
vlan batch 2 to 3
#
interface Vlanif2
ip address 120.1.1.1 255.255.255.0
```

```
#
interface Vlanif3
ip address 130.1.1.1 255.255.255.0
#
interface GigabitEthernet1/0/0
portswitch
port default vlan 2
#
interface GigabitEthernet2/0/0
portswitch
port default vlan 2
#
interface GigabitEthernet3/0/0
portswitch
port default vlan 3
#
interface GigabitEthernet4/0/0
portswitch
port default vlan 3
#
return
```

8.9.3 配置不同 VLAN 通过路由器通信示例

1. 组网需求

路由器 Router 的路由式接口 GE1/0/0 与 SwitchB 上行口相连,路由式接口 GE2/0/0 与 SwitchA 上行口相连。

SwitchA的下行按端口划分为VLAN40和30。SwitchB的下行按端口划分为VLAN10和20。

要求 VLAN10、20、30 及 40 之间能够互通。

图8-9 不同 VLAN 通过路由器通信

2. 配置思路

采用如下的思路配置不同 VLAN 通过路由器通信:

- (1) 配置各以太网接口的封装方式均采用 802.1Q
- (2) 配置各以太网接口所属的 VLAN ID
- (3) 配置各以太网接口的 IP 地址

3. 数据准备

为完成此配置例,需准备如下的数据:

- 以太网子接口 GE1/0/0.1 和 GE1/0/0.2 的 VLAN ID 为 10 和 20
- 以太网子接口 GE2/0/0.1 和 GE2/0/0.2 的 VLAN ID 为 30 和 40
- 以太网子接口 GE1/0/0.1 和 GE1/0/0.2 的 IP 地址为 10.110.6.3 和 10.110.5.3
- 以太网子接口 GE2/0/0.1 和 GE2/0/0.2 的 IP 地址为 10.110.4.3 和 10.110.3.3

4. 配置步骤

(1) 配置连接 SwitchB 的接口

创建并配置以太网子接口 GE1/0/0.1。

```
<Router> system-view

[Router] interface gigabitethernet 1/0/0.1

[Router-GigabitEthernet1/0/0.1] vlan-type dot1q 10

[Router-GigabitEthernet1/0/0.1] ip address 10.110.6.3 255.255.255.0

[Router-GigabitEthernet1/0/0.1] quit

# 创建并配置以太网子接口 GE1/0/0.2。
```

```
[Router] interface gigabitethernet 1/0/0.2
[Router-GigabitEthernet1/0/0.2] vlan-type dot1q 20
[Router-GigabitEthernet1/0/0.2] ip address 10.110.5.3 255.255.255.0
[Router-GigabitEthernet1/0/0.2] quit
```

(2) 配置连接 SwitchA 的接口

创建并配置以太网子接口 GE2/0/0.1。

```
[Router] interface gigabitethernet 2/0/0.1
[Router-GigabitEthernet2/0/0.1] vlan-type dot1q 30
[Router-GigabitEthernet2/0/0.1] ip address 10.110.4.3 255.255.255.0
[Router-GigabitEthernet2/0/0.1] quit
```

创建并配置以太网子接口 GE2/0/0.2。

```
[Router] interface gigabitethernet 2/0/0.2
[Router-GigabitEthernet2/0/0.2] vlan-type dot1q 40
[Router-GigabitEthernet2/0/0.2] ip address 10.110.3.3 255.255.255.0
[Router-GigabitEthernet2/0/0.2] quit
```

(3) 检查配置结果

配置完成后, VLAN10、20、30及40之间的主机能够相互 ping 通。

5. 配置文件

Router 的配置文件。

```
#
 sysname Router
#
interface GigabitEthernet1/0/0.1
vlan-type dot1q 10
ip address 10.110.6.3 255.255.255.0
#
interface GigabitEthernet1/0/0.2
vlan-type dot1g 20
ip address 10.110.5.3 255.255.255.0
#
interface GigabitEthernet2/0/0.1
vlan-type dot1q 30
ip address 10.110.4.3 255.255.255.0
interface GigabitEthernet2/0/0.2
vlan-type dot1q 40
ip address 10.110.3.3 255.255.255.0
#
return
```

8.9.4 配置 VLAN 与非 VLAN 通过路由器通信示例

1. 组网需求

交换机 SwitchA 支持 VLAN。SwitchB 上没有配置 VLAN。要求 VLAN 10 成员能够 与 SwitchB 上的主机通信。

图8-10 VLAN 与非 VLAN 通过路由器通信

2. 配置思路

采用如下的思路配置 VLAN 与非 VLAN 通过路由器通信:

- (1) 配置与 SwitchA 相连的路由式接口 GE1/0/0.1 封装方式采用 802.1Q
- (2) 配置与 SwitchA 相连的路由式接口 GE1/0/0.1 与 VLAN10 在同一网段
- (3) 配置与 SwitchB 相连的路由式接口 GE2/0/0 与 SwitchB 在同一网段

3. 数据准备

为完成此配置例,需准备如下的数据:

- SwitchA的下行按端口划分为 VLAN 10 和 VLAN 20
- 路由式接口 GE1/0/0.1 的 IP 地址为 10.110.2.5
- 路由式接口 GE2/0/0 的 IP 地址为 10.110.3.5

4. 配置步骤

(1) 配置连接 SwitchA 的路由器接口。

创建并配置以太网子接口 GE1/0/0.1。

<Router> system-view

```
[Router] interface gigabitethernet 1/0/0.1
[Router-GigabitEthernet1/0/0.1] vlan-type dotlq 10
# 配置其 IP 地址,与 SwitchA 的 VLAN 10 在同一网段。
[Router-GigabitEthernet1/0/0.1] ip address 10.110.2.5 255.255.255.0
[Router-GigabitEthernet1/0/0.1] quit
(2) 配置连接 SwitchB 的路由器接口。
# 配置接口 GE2/0/0,使其 IP 地址与 SwitchB 的主机在同一网段。
[Router] interface gigabitethernet 2/0/0
[Router-GigabitEthernet2/0/0] ip address 10.110.3.5 255.255.255.0
(3) 检查配置结果
配置完成后,VLAN10 的主机与 SwitchB 的主机能够相互 ping 通。
```

5. 配置文件

```
#
sysname Router
#
interface GigabitEthernet1/0/0.1
vlan-type dot1q 10
ip address 10.110.2.5 255.255.255.0
#
interface GigabitEthernet2/0/0
ip address 10.110.3.5 255.255.255.0
#
return
```

8.9.5 配置 VLAN Trunk 示例

1. 组网需求

两台路由器 RouterA 和 RouterB, 配置 RouterA 的交换式接口 GE1/0/0 为 Trunk 端口, 允许 VLAN 5、9 通过, 配置 RouterB 的交换式接口 GE1/0/0 也为 Trunk 端口, 允许 VLAN 5、9 通过。

图8-11 VLAN Trunk 配置示例图

2. 配置思路

采用如下的思路配置 VLAN Trunk:

- (1) 配置各路由器的接口为交换式接口
- (2) 把各路由器的接口加入到 VLAN5 和 VLAN9
- (3) 配置各路由器的接口允许 VLAN5 和 VLAN9 的帧通过

3. 数据准备

为完成此配置例,需准备如下的数据:

- 路由器的接口编号均为 GE1/0/0
- VLAN ID 为 5 和 9

4. 配置步骤

(1) 配置 RouterA

配置 RouterA 的接口 GE1/0/0 为交换式接口。

```
<RouterA> system-view

[RouterA] interface gigabitethernet 1/0/0

[RouterA-GigabitEthernet1/0/0] portswitch

[RouterA-GigabitEthernet1/0/0] quit
```

创建 VLAN,将 GE1/0/0 加入到 VLAN5 和 VLAN9。

```
[RouterA] vlan 5
[RouterA-vlan5] port gigabitethernet 1/0/0
[RouterA-vlan5] quit
[RouterA] vlan 9
[RouterA-vlan9] port gigabitethernet 1/0/0
```

```
[RouterA-vlan9] quit
```

配置交换式接口 GE1/0/0 为 VLAN Trunk 端口, 允许 VLAN 5、9 通过。

```
[RouterA] interface gigabitethernet 1/0/0
```

[RouterA-GigabitEthernet1/0/0] port link-type trunk

```
[RouterA-GigabitEthernet1/0/0] port trunk allow-pass vlan 5 9
```

```
[RouterA-GigabitEthernet1/0/0] quit
```

(2) 配置 RouterB

配置 RouterB 的接口 GE1/0/0 为交换式接口。

```
<RouterB> system-view

[RouterB] interface gigabitethernet 1/0/0

[RouterB-GigabitEthernet1/0/0] portswitch

[RouterB-GigabitEthernet1/0/0] quit
```

创建 VLAN,将 GE1/0/0 加入到 VLAN5 和 VLAN9。

```
[RouterB] vlan 5
[RouterB-vlan5] port gigabitethernet 1/0/0
[RouterB-vlan5] quit
[RouterB] vlan 9
[RouterB-vlan9] port gigabitethernet 1/0/0
[RouterB-vlan9] quit
```

配置交换式接口 GE1/0/0 为 VLAN Trunk 端口,允许 VLAN 5、9 通过。

```
[RouterB] interface gigabitethernet 1/0/0
[RouterB-GigabitEthernet1/0/0] port link-type trunk
[RouterB-GigabitEthernet1/0/0] port trunk allow-pass vlan 5 9
[RouterB-GigabitEthernet1/0/0] quit
```

(3) 检查配置结果

配置完成好后,用 display port allow-vlan 查看 Trunk 端口上可以通过的 VLAN 信息。

```
5. 配置文件
```

```
(1) RouterA 的配置文件
#
sysname RouterA
#
vlan batch 5 9
#
interface GigabitEthernet1/0/0
portswitch
port trunk allow-pass vlan 5 9
#
```

```
return
(2) RouterB的配置文件
#
sysname RouterB
#
vlan batch 5 9
#
interface GigabitEthernet1/0/0
portswitch
port trunk allow-pass vlan 5 9
#
```

8.9.6 配置 Trunk 接口示例

1. 组网需求

以太网交换机 SwitchA 使用 Trunk 接口 Ethernet0/0/1 连接到 SwitchB,为该 Trunk 接口配置缺省 VLAN ID,当接收到 Untagged 的报文时,Trunk 接口将此报文直接 发往缺省 VLAN ID 标识的 VLAN。

2. 配置思路

采用如下的思路配置 Trunk 接口:

- (1) 创建 VLAN
- (2) 配置以太网接口为 Trunk 类型
- (3) 配置以太网接口允许通过的 VLAN ID 和缺省 VLAN ID

3. 数据准备

为完成此配置例,需准备如下的数据:

- 缺省 VLAN ID 为 100
- 允许通过的 VLAN ID 为 2、6~50 和 100

4. 配置步骤

```
(1) 以下是 SwitchA 的配置, SwitchB 的配置与 SwitchA 类似。
```

创建 VLAN 100。

<SwitchA> **system-view**

[SwitchA] **vlan 100**

[SwitchA-vlan100] quit

#进入 Ethernet0/0/1 以太网接口视图。

[SwitchA] interface ethernet0/0/1

配置接口 Ethernet0/0/1 为 Trunk 接口,并允许 2、6 到 50、100 等 VLAN 通过。

[SwitchA-Ethernet0/0/1] portswitch

[SwitchA-Ethernet0/0/1] port link-type trunk

[SwitchA-Ethernet0/0/1] port trunk allow-pass vlan 2 6 to 50 100 $\,$

配置接口 Ethernet0/0/1 的缺省 VLAN ID 为 100。

[SwitchA-Ethernet0/0/1] port default vlan 100 [SwitchA-Ethernet0/0/1] quit

(2) 检查配置结果

配置完成好后,用 display port allow-vlan 查看 Trunk 端口上可以通过的 VLAN 信息。

5. 配置文件

SwitchA 的配置文件。

```
#
sysname SwitchA
#
interface Ethernet0/0/1
portswitch
port default vlan 100
port trunk allow-pass vlan 2 6 to 50 100
#
return
```

8.9.7 配置 VLAN 聚合示例

1. 组网需求

VLAN2 和 VLAN3 组成 super-VLAN: VLAN4。

作为 sub-VLAN 的 VLAN2 和 VLAN3 之间不能互相 ping 通。

配置 ARP 代理功能后, VLAN2 和 VLAN3 之间可以互相 ping 通。

图8-13 配置 VLAN 聚合示例图

2. 配置思路

采用如下思路配置 VLAN 聚合:

- (1) 把路由器接口转换为二层接口
- (2) 把路由器接口加入到相应的 sub-VLAN 中
- (3) 把 sub-VLAN 聚合为 super-VLAN
- (4) 配置 super-VLAN 的路由
- (5) 配置 super-VLAN 的 ARP 代理功能

3. 数据准备

为完成此配置例,需准备如下的数据:

- GE1/0/0 和 GE2/0/0 属于 VLAN2
- GE3/0/0 和 GE4/0/0 属于 VLAN3
- super-VLAN 的 ID 为 4
- super-VLAN 的 IP 地址为 100.1.1.12

4. 配置步骤

(1) 配置 VLAN2

#将接口切换成二层模式。

<RouterA> **system-view** [RouterA] **interface gigabitethernet 1/0/0** [RouterA-GigabitEthernet1/0/0] **portswitch**

```
[RouterA-GigabitEthernet1/0/0] quit
[RouterA] interface gigabitethernet 2/0/0
[RouterA-GigabitEthernet2/0/0] portswitch
[RouterA-GigabitEthernet2/0/0] quit
# 创建 VLAN2。
[RouterA] vlan 2
# 向 VLAN2 中加入 GE1/0/0 和 GE2/0/0。
[RouterA-vlan2] port gigabitethernet 1/0/0 to 2/0/0
[RouterA-vlan2] quit
(2) 配置 VLAN3
#将接口切换成二层模式。
[RouterA] interface gigabitethernet 3/0/0
[RouterA-GigabitEthernet3/0/0] portswitch
[RouterA-GigabitEthernet3/0/0] quit
[RouterA] interface gigabitethernet 4/0/0
[RouterA-GigabitEthernet4/0/0] portswitch
[RouterA-GigabitEthernet4/0/0] quit
# 创建 VLAN3。
[RouterA] vlan 3
#向 VLAN3 中加入 GE3/0/0 和 GE4/0/0。
[RouterA-vlan3] port gigabitethernet 3/0/0 to 4/0/0
[RouterA-vlan3] quit
(3) 配置 VLAN4
# 配置 super-VLAN。
[RouterA] vlan 4
[RouterA-vlan4] aggregate-vlan
[RouterA-vlan4] access-vlan 2 to 3
# 配置 VLANif。
[RouterA] interface vlanif 4
```

```
[RouterA-Vlanif4] ip address 100.1.1.12 255.255.255.0
[RouterA-Vlanif4] quit
```

(4) 配置 PC

分别为各 PC 配置 IP 地址,并使它们和 VLAN4 处于同一网段。

配置成功后,各 PC 与路由器之间可以相互 ping 通,但 VLAN2 的 PC 与 VLAN3 的 PC 间不可以相互 ping 通。

(5) 配置 ARP 代理功能

```
[RouterA] interface vlanif 4
[RouterA-Vlanif4] arp-proxy enable
[RouterA-Vlanif4] arp-proxy inter-sub-vlan-proxy enable
(6) 检查配置结果
配置完成后, VLAN2 的 PC 与 VLAN3 的 PC 间可以相互 ping 通。
```

🛄 说明:

对于 NE40, arp-proxy enable 是必须配置的。

5. 配置文件

```
RouterA 的配置文件
#
sysname RouterA
#
vlan batch 2 to 4
#
vlan 4
aggregate-vlan
access-vlan 2 to 3
#
interface Vlanif4
ip address 100.1.1.12 255.255.255.0
arp-proxy enable
arp-proxy inter-sub-vlan-proxy enable
#
interface GigabitEthernet1/0/0
portswitch
port default vlan 2
#
interface GigabitEthernet2/0/0
portswitch
port default vlan 2
#
interface GigabitEthernet3/0/0
portswitch
port default vlan 3
#
interface GigabitEthernet4/0/0
portswitch
port default vlan 3
```

```
port default vlan 3
#
return
```

8.10 故障处理

本节介绍以下故障的处理方法:

- <u>向 VLAN 中加入端口失败</u>
- <u>删除 VLAN 失败</u>
- <u>配置 VLAN 接口失败</u>
- 把 VLAN 设置成 super-VLAN 失败
- 把 VLAN 加入到 super-VLAN 时失败
- <u>从 Trunk 端口中删除 VLAN 时失败</u>

8.10.1 向 VLAN 中加入端口失败

1. 故障现象

向 VLAN 中加入端口失败。

2. 分析

可能的原因有:

- 端口不存在
- 端口的默认 VLAN ID 属于其他 VLAN
- 要加入的 VLAN 为 super-VLAN
- 端口已经加入了其他 Trunk 接口

3. 处理过程

步骤	操作
1	首先检查输入的端口是否都存在,命令行输入是否正确。
2	使用 display interface 命令确认该端口的默认 VLAN ID 不属于其它 VLAN。
3	使用 display vlan 命令确认该 VLAN 不是 super-VLAN, 聚合 VLAN 不能包含有端口。
4	在接口视图下执行 display this 查看该端口的当前配置,确认该端口没有加入 Trunk接口。

8.10.2 删除 VLAN 失败

1. 故障现象

删除 VLAN 失败。

2. 分析

可能的原因有:

- 该 VLAN 不存在
- 存在已创建的 VLAN 接口

3. 处理过程

步骤	操作
1	使用 display vlan 命令确认该 VLAN 是否存在。
2	使用 display interface vlanif 命令确认 VLAN 接口是否存在。如果存在 VLAN 接口, 需要先删除 VLAN 接口。

8.10.3 配置 VLAN 接口失败

1. 故障现象

配置 VLAN 接口失败。

2. 分析

可能的原因有:

- 没有配置 VLAN
- VLAN 是 sub-VLAN

3. 处理过程

步骤	操作
1	使用 display interface vlanif 检查是否配了 VLAN。
2	使用 display vlan <i>vlan-id</i> 命令检查 VLAN 是否为 sub-VLAN。

8.10.4 把 VLAN 设置成 super-VLAN 失败

1. 故障现象

把 VLAN 设置成 super-VLAN 失败。

2. 分析

可能的原因有:

- 没有删除 VLAN 包含的物理端口
- VLAN 是 sub-VLAN

3. 处理过程

步骤	操作
1	使用 display vlan vlan-id 命令检查该 VLAN 是否包含物理端口,删除端口后才能设置成功。
2	使用 display vlan <i>vlan-id</i> 命令检查该 VLAN 是否是 sub-VLAN, sub-VLAN 不能直接 设置成 super-VLAN。

8.10.5 把 VLAN 加入到 super-VLAN 时失败

1. 故障现象

_

把 VLAN 加入到 super-VLAN 时失败。

2. 分析

可能的原因有:

- 该 VLAN 已经是 super-VLAN
- 该 VLAN 是其他 super-VLAN 中的 sub-VLAN

3. 处理过程

步骤 操作

1 使用 **display vlan** *vlan-id* 命令检查该 VLAN 类型, 查看 VLAN 是否已是 super-VLAN, 或者已加入其它 super-VLAN, 如果是,则不能加入。

8.10.6 从 Trunk 端口中删除 VLAN 时失败

1. 故障现象

从 Trunk 端口中删除 VLAN 时失败。

2. 分析

可能的原因有:

- Trunk 端口没有配置此 VLAN 的 ID
- 该 VLAN 是缺省 VLAN

3. 处理过程

步骤	操作
1	执行 display port allow-vlan 命令,检查该端口是否含有此 VLAN ID。
2	使用 display vlan <i>vlan-id</i> 命令,检查该 VLAN 是否是缺省 VLAN。