

LP265/LP365 Micropower Programmable Quad Comparator

General Description

Typical Connection

The LP365 consists of four independent voltage comparators. The comparators can be programmed, four at the same time, for various supply currents, input currents, response times and output current drives. This is accomplished by connecting a single resistor between the V_{CC} and I_{SET} pins.

These comparators can be operated from split power supplies or from a single power supply over a wide range of voltages. The input can sense signals at ground level even with single supply operation. The unique output NPN transistor stages are uncommitted to either power supply. They can be connected directly to various logic system supplies so that they are highly flexible to interface with various logic families.

Application areas include battery power circuits, threshold detectors, zero crossing detectors, simple serial A/D converters, VCO, multivibrators, voltage converters, power sequencers, and high performance V/F converters, and RTD linearization.

LOGIC GND

TL/H/5023-1

 $(V^+) - (V^-) - 1.3V$

R_{SET}

 $I_{SUPPLY} \approx 22 \times I_{SET}$

Features

- Single programming resistor to tailor power consumption, input current, speed and output current drive capability
- \blacksquare Wide single supply voltage range or dual supplies (4 V_{DC} to 36 V_{DC} or ± 2.0 V_{DC} to ± 18 V_{DC})
- \blacksquare Low supply current drain (10 $\mu A)$ and low power consumption (10 $\mu W/comparator)$ @ I_{SET} = 0.5 μA
- V_{CC} = 5_{VDC} ■ Uncommitted output stage—selectable output levels
- Oncommitted output stage—selectable output levels
 Output directly compatible with DTL, TTL, CMOS, MOS
 - or other special logic families
- Input common-mode range includes ground
- Differential input voltage equal to the power supply voltage

Connection Diagram

©1995 National Semiconductor Corporation TL/H/5023

Programming Equation

ISET

RRD-B30M115/Printed in U. S. A.

LP265/LP365 Micropower Programmable Quad Comparator

December 1994

Absolute Maximum If Military/Aerospace specifi please contact the Nation Office/Distributors for availal	n Ratings fied devices are required, nal Semiconductor Sales ability and specifications.	Power Dissipation (Note 3) T _j Max θ _{jA} Lead Temp.	M Package 500 mW 115℃ 115℃/W	N Pa 500 11 90°
Differential Input Voltage	$\pm 36 V_{DC}$ $\pm 36 V_{DC}$	(Soldering—10 sec.) (Vapor Phase—60 sec.)	215°C	26
Dutput Short Circuit to V _E (Not	e 2) Continuous	(Infrared—15 sec.) Operating Temp. Range LP365:	$220^{\circ}C \le 0^{\circ}C \le 10^{\circ}$	$T_A \leq +$
/ _{OUT} with Respect to V _E ESD Tolerance (Note 10)	V _E −7V≤V _{OUT} ≤V _E +36V 2000V	Storage Temp. Range	$-40^{\circ}C \le T$	$A \leq +$

Electrical Characteristics (Note 4) Low power V_S=5V, I_{SET}=10 μ A

			LP365A			LP365			
Symbol	Parameter	Conditions	Тур	Tested Limit (Note 5)	Design Limit (Note 6)	Тур	Tested Limit (Note 5)	Design Limit (Note 6)	Units (Limit)
V _{OS}	Input Offset Voltage	V _{CM} =OV, R _S =100	1	3	6	3	6	9	mV (Max)
I _{OS}	Input Offset Current	V _{CM} =0V LP265	2	20	50	4	25 25	75 150	nA (Max)
IB	Input Bias Current	V _{CM} =0V LP265	10	50	125	15 15	75	200	nA (Max)
A _{VOL}	Large Signal Voltage Gain	R _L =100k	500	50	50	300	25	25	V/mV (Min)
V _{CM} Input Common- Mode Voltage Range			0	о		0	ο	V (Max)	
			3	3		3	3	V (Min)	
CMRR	Common-Mode Rejection Ratio	0≤V _{CM} ≤3V	85	75	70	80	75	70	dB (Min)
PSRR	Supply Voltage Rejection Ratio	$\begin{array}{c} \pm 2.5 V {\leq} V_S \\ {\leq} \pm 3.5 V \end{array}$	75	65	65	70	65	65	dB (Min)
IS	Supply Current	All Inputs = 0V, $R_L = \infty$	215	250	300	225	275	300	μA (Max)
V _{OH}	Output Voltage High	$V_{C} = 5V,$ $V_{E} = 0V,$ $R_{L} = 100k$		4.9	4.5		4.9	4.5	V (Min)
V _{OL}	Output Voltage Low	V _E =0V		0.4	0.4		0.4	0.4	V (Max)
ISINK	Output Sink Current	V _E =0V, V _O =0.4V	2.4	1.2	0.6	2.0	0.8	0.4	mA (Min)
I _{LEAK}	Output Leakage Current	V _C =5V, V _E =0V	2	50	5000	2	100	5000	nA (Max)
t _R	Response Time	$V_{CC} = 5V,$ $V_{E} = 0V,$ $R_{L} = 5k,$ $C_{L} = 10 \text{ pF}$ (Note 7)	4			4			μs

Symbol	Parameter	Conditions	LP365A			LP365			
			Тур	Tested Limit (Note 5)	Design Limit (Note 6)	Тур	Tested Limit (Note 5)	Design Limit (Note 6)	Units (Limit)
V _{OS}	Input Offset Voltage	V _{CM} =0V, R _S =100	1	3	6	3	6	9	mV (Max)
I _{OS}	Input Offset Current	V _{CM} =0V LP265	5	50	100	10	90	200	nA (Max)
		2. 200				10	90	500	(iviax)
I _B Input Bias Current	V _{CM} =0V LP265	60	200	500	80	300	500	nA (Max)	
A _{VOL}	Large Signal Voltage Gain	R _L =15k	500	100	100	500	100	100	V/mV (Min)
V _{CM} Input Common- Mode Voltage Range	Input Common- Mode Voltage			-15	- 15		-15	- 15	V (Max)
	Range			13	13		13	13	V (Min)
CMRR	Common-Mode Rejection Ratio	$-15V \le V_{CM} \le 13V$	85	75	70	80	75	70	dB (Min)
PSRR	Supply Voltage Rejection Ratio	$\pm 10V \le V_S$ $\le \pm 15V$	80	70	70	75	70	70	dB (Min)
IS	Supply Current	All Inputs=0V,	2.6	3	3.3	2.8	3.5	3.7	mA
		$R_L = \infty$, LP265				2.8	3.5	4.3	(Max)
V _{OH}	Output Voltage High	$V_{C} = 5V,$ $V_{E} = 0V,$ $R_{L} = 100k$		4.9	4.5		4.9	4.5	V (Min)
V _{OL}	Output Voltage Low	V _E =0V		0.4	0.4		0.4	0.4	V (Max)
I _{SINK}	Output Sink Current	V _E =0V, V _O =0.4V	10	8	5.5	7.5	6	4	mA (Min)
I _{LEAK}	Output Leakage Current	$V_{C} = 15V,$ $V_{E} = -15V$	5	50	5000	5	50	5000	nA (Max)
t _R	Response Time	$V_{CC} = 5V,$ $V_{E} = 0V,$ $R_{L} = 5k,$ $C_{L} = 10 \text{ pF}$ (Note 7)	1.0			1.0			μs

Note 1: The input voltage is not allowed to go 0.3V above V⁺ or -0.3V below V⁻ as this will turn on a parasitic transistor causing large currents to flow through the device.

Note 2: Short circuits from the output to V⁺ may cause excessive heating and eventual destruction. The current in the output leads and the V_E lead should not be allowed to exceed 30 mA. The output should not be shorted to V⁻ if V_E \leq (V⁻) + 7V.

Note 3: For operating at elevated temperatures, these devices must be derated based on a thermal resistance of θ_{jA} and T_j max. $T_j = T_A + \theta_{jA} P_D$.

Note 4: Boldface numbers apply at temperature extremes. All other numbers apply at $T_A = T_j = 25^{\circ}$ C. $V^+ = 5V$, $V^- = 0V$, $I_{SET} = 10 \ \mu$ A, $R_L = 100$ k, and $V_C = 5V$ as shown in the Typical Connection diagram.

Note 5: Guaranteed and 100% production tested.

Note 6: Guaranteed (but not 100% production tested) over the operating temperature and supply voltage ranges. These limits are not used to calculate out-going quality levels.

Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive.

Note 8: Boldface numbers apply at temperature extremes. All other numbers apply at $T_A = T_j = 25^{\circ}$ C. V + = + 15V, V = -15V, I_{SET} = 100 μ A, R_L = 100k, and V_C = 5V as shown in the Typical Connection diagram.

Note 9: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Note 10: Human body model, 1.5 k Ω in series with 100 pF.

 $H_B = V^{+}/20 \ \mu A$ Unlike most comparators, the LP365 can be used as an op amp, if suitable R-C damping networks are used.

Chopping the outputs by modulating the ${\rm I}_{\rm SET}$ current allows data to be transmitted via opto-couplers, transformers, etc.

The LP365 can also be used as a high-input-impedance follower-amplifier with the damping components shown.

f = 3 kHz

Comparator A detects when the supply voltage drops to 4V and enables comparator B to drive a piezoelectric alarm.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.