
USB2TTL8 User Manual
1000 Hz USB TTL Interface

Document Version: 1.0.0
Last Updated: March 1st, 2019

For Firmware Version 1.0.5

Please read this manual fully before using the USB2TTL8 device. Improper connections to the
USB2TTL8 DB25 port can cause the USB2TTL8 device to reset, or even permanently damage
the USB2TTL8 microcontroller. Damage caused by over or reverse voltage conditions resulting
from improper wiring to the DB25 port is ​not ​covered by the USB2TTL8 warranty.

Contents
Contents

Overview

Setup
USB 2.0 Cable
Female DB25 Port
Device Software
LabHackers Device Manager
Detecting Serial Port

DB25 Port Pin Out
STROBE Pin
DATA Pins
MODE Pin
RES Pin

Status LED

Device Configuration

Reading or Writing Data
WRITE Mode

Reading via Parallel Port
READ Mode

Writing via Parallel Port
Hardware Flow Control
READ_CHANGE_USEC Command
Read Event Types

Serial Events
Keyboard Events

BITS2KEYS
BYTE2KEY

USB Serial Interface
USB Serial Port Settings
Commands

PING
GET CONFIG
SET

NAME
DATA_MODE
FLOW_CONTROL
READ_CHANGE_USEC
BIT2KEY
KEY_DURATION

READ
WRITE
WRITEP
LOAD_DEFAULT_CONFIG
RESET_CONFIG

USB2TTL8 Keyboard Mapping Table
Modifier Keys
Standard Keys

Overview

The USB2TTL8 is a 1000 Hz USB Serial to 8 bit TTL device that provides a ​flexible TTL option
for computers without a parallel port. ​Data Pins D0-7 are used to either read or write 8 bits in
parallel (DB25 pins 2 - 9). USB Serial commands are used to set device options and write data
to the DB25 Data Pins. When in read mode, changes in the Data Pins are communicated to the
computer as either USB Serial or as standard keyboard events.

● 1000 Hz USB Serial Interface.
● Use as a TTL Input ​or​ TTL Output Device.
● Provides a Flexible TTL Option for Computers Without a Parallel Port.
● Write / Set TTL Lines using Simple Serial Commands.
● Read / Detect TTL Changes as Serial Messages or Standard Keyboard Events.
● Control TTL Write Pulse Duration with usec Resolution.
● Works with Windows 10, Linux, and MacOS.
● Supports Bi-Directional Parallel Data Port Interface.
● Supported TTL Logic Levels: 0 - 3.3/5V Input; 0 - 3.3V Output.

Setup
For the USB2TTL8 to work properly, it must be:

1. Connected to a USB 2.0 port of the computer that will use the USB2TTL8 Serial Port.
2. Interfaced to a 0 - 3.3/5 V TTL system using the Female DB25 Port (specifically pins 2 -

9 for data).

USB 2.0 Cable
Connect the USB2TTL8 USB cable to the computer that will be reading / writing data via the
USB2TTL8 USB Serial port. The USB2TTL8 device is also powered from this USB connection.

Female DB25 Port
The DB25 Port of the USB2TTL8 device is used to read or write up to 8 TTL signals.

Connect the DB25 port to a computer Parallel Port using a ​Male to Male DB25 straight through
cable​ and data can be written / read from the USB2TTL8 by reading / writing to the Parallel Port
DATA Register (pins 2 - 9).

Important:​ The USB2TTL8 will not work if connected to a parallel port using a standard printer
parallel port cable; a straight through patch cable is needed.

A Male DB25 breakout board / box can be used for general purpose interfacing to the
USB2TTL8 DB25 port.

Device Software
Windows 10, OS X, and Linux all automatically detect the USB2TTL8 as both a 1000 Hz USB
Serial and Keyboard device; no device drivers are required.

For Windows 7, a USB Serial driver must be installed before the USB2TTL8 USB Serial
interface can be used. Please ​install the USB Serial driver​ supplied by PJRC, makers of the
microcontroller used in the USB2TTL8. Only install this driver if using Windows 7 / XP.

For Linux, a udev rule must be changed to allow read/write access to the USB2TTL8 USB serial
port. ​https://www.pjrc.com/teensy/49-teensy.rules

https://www.labhackers.com/downloads/serial_install.exe
https://www.labhackers.com/downloads/49-teensy.rules

LabHackers Device Manager
LabHackers Device Manager is used to configure the USB2TTL8 device. If using Windows or
macOS, download a binary version of the software from:

http://www.labhackers.com/downloads.html

LabHackers Device Manager is written in Python and can be run from source on Linux. Please
contact LabHackers for further information.

Detecting Serial Port
When the USB2TTL8 is connected to to a computer (the host), it is registered as both a USB
Keyboard and USB Serial Device. The serial port address assigned to the USB2TTL8 is
handled by the computer operating system. Unless the experiment software being used
automatically detects connected LabHackers devices, the Serial Port address assigned to the
device must be determined and manually specified in the experiment software. LabHackers
provides two methods to read the USB Serial Port address assigned to an USB2TTL8 device:

1. LabHackers Device Manager
Launch LabHackers Device Manager with a USB2TTL8 device connected; the Serial
Port for the device is listed on the General tab

2. Python Script
To determine the device serial port using Python, run the
examples/python/detect_usb2ttl8.py example. If a USB2TTL8 device is connected to the
computer the script should print something like:

USB2TTL8 Device:

Name: USB2TTL8
Serial Port: COM276
Serial Number: LH0002E215

http://www.labhackers.com/downloads.html

DB25 Port Pin Out
The USB2TTL8 uses the following DB25 pins.

● N/A indicates that the pin can not be used as an input or output.
● GND indicates ground pins.
● Voltage ranges indicate the USB2TTL8 tolerance for the given pin in the given mode.

Pin Name Input Output

1 STROBE 0 - 5.0 V N/A

2 - 9 DATA Pins 0 - 5.0 V 0 - 3.3 V

10 RES N/A 0 - 3.3 V

11 MODE N/A 0 - 3.3 V

12 - 25 Ground Pins GND

The USB2TTL8 inputs that support 5V also work with 3.3 V inputs.

Important: ​Do not apply > 5V to any pin of the USB2TTL8 DB25 port or permanent damage
could occur to the device.

STROBE Pin
DB25 Pin: 1
INPUT
Optionally used for READ mode hardware handshaking.
See the READ Mode section for further details.

DATA Pins
DB25 Pin: 2 - 9
INPUT or OUTPUT
Used to read or write DATA byte depending on the current USB2TTL8 data mode.

MODE Pin
DB25 Pin: 11
OUTPUT Only
The device connected to the USB2TTL8 DB25 port can use this pin to read the current data
mode of the USB2TTL8.

High = WRITE Mode
LOW = READ Mode.

RES Pin
DB25 Pin: 10
This pin is currently not used by the USB2TTL8 firmware.

Status LED
The USB2TTL8 includes a status LED mounted next to the USB cable connection on the
device. The color of the LED indicates if the device has an open USB serial connection to the
host and whether the device is in data READ or WRITE mode.

LED Color Meaning

Red IDLE: No open USB Serial connection with the host computer.

Green WRITE: The USB2TTL8 is configured to write to the data port (pins 2 - 9).

Blue READ: The USB2TTL8 is configured to read from the data port (pins 2 - 9).

Device Configuration

USB2TTL8 settings can be updated by using the LabHackers Device Manager application or
with the USB2TTL8 USB Serial interface SET command.

Label Description SET Cmd Options Default

Name Name of device instance. NAME 8 char ascii
string

USB2TTL8

Data Mode Set whether the 8 data lines are
in Read (Input) or Write
(Output) mode.

DATA_MODE READ
WRITE

WRITE

Read Event
Type

When in Read Mode, set what
type of event is created when
the data byte value changes.

READ_EVT_TYPE SERIAL
BITS2KEYS
BYTE2KEY

Serial

Enable
Offline
Keyboard
Events

When in Read mode and
generating keyboard events,
controls whether the
USB2TTL8 should create
keyboard events regardless of
USB Serial connection state. 0
= Only generate events when
serial connection is open
(default). 1 = Always generate
keyboard events.

OFFLINE_KB_EVEN
TS

0, 1 0

BITS2KEYS
Mappings

Set the Data bits to Keyboard
key mapping used when
generating BITS2KEYS read
events.

BIT2KEY See Keyboard
Mapping Table

{KEY_0,
KEY_1, KEY_2,
KEY_3, KEY_4,
KEY_5, NONE,
NONE};

BYTE2KEY
Mappings

Set the Data byte to Keyboard
key mappings used when
generating BYTE2KEY read
events.

BYTE2KEY See Keyboard
Mapping Table

No Mappings

Key Press
Duration

Maximum key press duration
used while USB2TTL8 is
operating in BITS2KEYS or
BYTE2KEY event mode. 0 =

KEY_DURATION 0 - 60000 msec 100

No maximum duration.

Flow Control Set the hardware flow control
the USB2TTL8 will use.

FLOW_CONTROL OFF
STROBE_REA
D

OFF

Read Usec Usec debounce period on data
input changes.

READ_CHANGE_US
EC

0 to 512 usec 5

Reading or Writing Data
The USB2TTL8 operates the 8 data pins in either READ or WRITE Mode.

● In READ mode, the USB2TTL8 device configures the data pins as 8 bit digital inputs.
● In WRITE mode, the USB2TTL8 data pins are configured as an 8 bit digital output.

Important:​ For correct operation, the hardware connected to the USB2TTL8 DB25 port must be
configured to either write to or read from the data port (pins 2 - 9 of the DB25).

WRITE Mode
Status LED Color: Green
MODE Pin: LOW

When the USB2TTL8 is in WRITE mode, the data byte or an individual data bit value can be set
using the WRITE and WRITEP commands. Please see each USB Serial commands section for
more details.

Note: ​When a WRITE command is sent to the USB2TTL8 all 8 data bits are updated in parallel.
However, the data line signals can become desynchronized from one another during
transmission, resulting in the possibility of occasional (< 0.25%), short (< 5 usec), transient
values being read. To handle these transients, it is suggested that the program or device
reading the TTL output of the USB2TTL8 perform a double read whenever a change is
detected. The value from the second read should be stable and can therefore be used.

Reading via Parallel Port
If you are interfacing the USB2TTL8 with a PC Parallel Port, ensure that the parallel port is set
to be able to read from the data register. Set bit 5 of the parallel ports Control register to 1 or
HIGH.

Example Python script to​ enable reading on parallel port ​data register:

v = winioport.inp(parallelPortAddress+2)
v = v | 1<<5
winioport.out(parallelPortAddress+2, v)

READ Mode
Status LED Color: Blue
MODE Pin: HIGH

When the USB2TTL8 is in READ mode, data is read from the USB2TTL8 data port. When the
data port value changes, USB Serial or Keyboard events are generated by the USB2TTL8
device.

The current value of the USB2TTL8 data port can also be read using the READ serial
command.

Writing via Parallel Port
If you are interfacing the USB2TTL8 with a PC Parallel Port, ensure that the parallel port is set
to be able to write to the data register by setting bit 5 of the parallel ports Control register to 0 or
LOW.
Example Python script to​ enable writing on parallel port ​data register:

v = winioport.inp(parallelPortAddress+2)
v = v & ~(1<<5)
winioport.out(parallelPortAddress+2, v)

Hardware Flow Control
By default, no hardware flow control is used between the USB2TTL8 data lines and device
connected to them. This means, for example, that if the device writing to the Data byte does not
update all 8 data bits simultaneously, it is very likely that the USB2TTL8 will read several Data
byte value changes in quick succession.

When the USB2TTL8 is in Read mode, STROBE_READ flow control mode can be used. When
STROBE_READ is enabled, the USB2TTL8 device only reads the data byte on the falling edge
of a STROBE line (pin1) change. This allows the device connected to the DB25 port to first write
to the data pins, and then toggle the STROBE line HIGH-LOW-HIGH to trigger the USB2TTL8
to read the data byte.

When using the USB2TTL8 STROBE_READ feature, the device writing to the Data lines must:

1. On initialization, set the STROBE line (Pin 1) to HIGH.
2. Write to the Data lines as normal.
3. To instruct the USB2TTL8 to read the Data lines, set the STROBE line to LOW.
4. Reset the STROBE line to HIGH.
5. Repeat 2 - 4 as required.

READ_CHANGE_USEC Command

If hardware flow control is off, the READ_CHANGE_USEC command can be used to set the
number of usec the USB2TTL8 waits after detecting a change in the data port value before
reading the data port again and returning this last read value. This gives the data pins time to
stabilize and can catch desynchronization that may have occurred to the changed data signal
lines during transmission .

Default value is 5 usec.

Read Event Types

The USB2TTL8 can generate USB Serial messages or Keyboard events when a change in the
data byte value is detected. Use the LabHackers Device Manager to the event type to use, or
use the SET READ_EVT_TYPE serial command.

Serial Events
Command:​ SET READ_EVT_TYPE

When the USB2TTL8 device is in READ mode and READ_EVT_TYPE is set to Serial, any
change to the DB25 data port state will generate a serial message of the form:

value\n

where

value Current value of data byte. 0 -
255.

Keyboard Events
The USB2TTL8 supports two modes of TTL to Keyboard event generation: BITS2KEYS and
BYTE2KEY.

In BITS2KEYS mode, each bit of the data byte is mapped to a key. When the bit is HIGH, the
associated key is pressed. When the bit is LOW, the associated key is released.The maximum
duration of key presses in this mode is set using the KEY_DURATION device setting.

In BYTE2KEY mode, each data byte value between 0 and 255 can be assigned to a key. When
the data changes value a key press is created if it has an associated keyboard key mapping.
The maximum duration of key presses in this mode is set using the KEY_DURATION device
setting.

BITS2KEYS

When the USB2TTL8 is in READ mode and is set to create BITS2KEYS Keyboard events, each
bit of the data byte is mapped to a keyboard key or modifier. When a data bit goes HIGH, the
associated key is pressed for ‘Key Press Duration’ msec, or until the data bit goes LOW,
whichever occurs first. Therefore 0 to 8 keys (6 standard, 2 modifiers) can be pressed at any
time based on the data byte value. For example, using the default key mappings for the
BITS2KEYS mode:

Data Byte Value Pressed Keys

0 None

1 '0'

2 ‘1’

3 ‘0’, ‘1’

4 ‘2’

8 ‘3’

16 ‘4’

32 ‘5’

64 None

128 None

255 ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’

BYTE2KEY

The USB2TTL8 stores a 256 Data byte value to Keyboard key mapping table. A value of 0
indicates no keyboard mapping for the given data byte value. This is also the factory default for
all 256 possible values.

When the USB2TTL8 is in READ mode and is set to create BYTE2KEY Keyboard events, a
change in the Data byte value causes the associated keyboard key (if any) to be pressed for

‘Key Press Duration’ msec, or until the data byte value changes, whichever comes first. At most
one key is pressed at a time when in BYTE2KEY mode.

USB Serial Interface
When a connection is made to the USB Serial port of a USB2TTL8 device, the device accepts
the connection and waits for commands. Each command is an ASCII line ending in a newline
character.

When a command is received by a USB2TTL8 device, it is processed and a response is sent
back to the computer. The response contents, if any, is a variable length string ending in a
newline character.

USB Serial Port Settings
When connecting to the USB2TTL8 USB Serial port from within your own software, the device’s
Serial port name / address must be known. A Python example of how to detect the USB2TTL8
devices connected to a computer, see the USB2TTL8 detect_usb2ttl8.py Python script.

The baud rate set by your software for the Serial Port connection doesn't really matter as it is
ignored. The USB2TTL8 USB Serial connection can send and receive up to 64 bytes / msec.

The timeout setting used for the USB2TTL8 Serial connection in your software can be an
important setting to consider. The ​appropriate timeout ​value to use depends on the design of
your program and the software being used. A timeout of 0.01 (10 msec) to 0.1 (100 msec) us
often fine. For programs requiring more of a non blocking read operation inside the main
experiment program, set the timeout to 0 or 0.001 (1 msec) at most.

Commands

PING
Ask the USB2TTL8 to identify itself.

Format
PING\n

Reply
{"PING":"USB2TTL8","ID":"LHxxxxxxxx"}\n

GET CONFIG
Read the current USB2TTL8 device configuration, returned as a json encoded dictionary.

Format

GET CONFIG\n

Reply

{"version": "0.7.1", "model_name": "USB2TTL8", "product_serial": "LH000xxxxx",
"loop_freq": 123.00, "name": "USB2TTL8", "data_mode": 1, "handshaking_mode": 0,
"read_event_type": 1, "read_dx_interval": 5, "bit2key":
[61479,61470,61471,61472,61473,61474,57348,57345],"byte2key":
{},"keypress_duration": 0}\n

SET
Set a USB2TTL8 device setting. SET accepts one of the following key arguments.

Note: Changes made to USB2TTL8 settings are not saved to the devices’ eeprom until a
SAVE_CONFIG​ ​command is received by the USB2TTL8.

NAME
Set the USB2TTL8 8 character name. Default is “USB2TTL8”.

Format

SET NAME myusbttl\n

Reply

{"reply": "SET", "param": "NAME", "arg": "​myusbttl​", "result": "OK"}\n

DATA_MODE
Set the USB2TTL8 to Data Port to Read or Write mode. Default is READ.

Format

SET DATA_MODE [READ | WRITE]\n

Reply

None

FLOW_CONTROL
Set the hardware handshaking mode used by the device. Default is OFF.

Options:

OFF No hardware flow control is used.

STROBE_READ USB2TTL8 device only reads data port on falling edge of STROBE
signal (DB25 pin 1)

Format

SET FLOW_CONTROL [OFF | STROBE_READ]\n

Reply

{"reply": "SET", "param": "FLOW_CONTROL", "arg": "OFF", "result": "OK"}\n

READ_CHANGE_USEC
If hardware flow control is off, set the number of usec the USB2TTL8 should wait after detecting
a change in the data port value before reading the data port again. This gives the data pins time
to stabilize and catch any desynchronization that may have occurred to the 8 data signals
during transmission. Supported values are 0 to 512 usec. Default is 5 usec.

Format

SET READ_CHANGE_USEC 5\n

Reply

{"reply": "SET", "param": "READ_CHANGE_USEC", "arg": "5", "result": "OK"}\n

BIT2KEY
Set one of the data bit key mappings for use when BITS2KEYS Keyboard event mode is
enabled. Default BIT2KEY Mappings:

Data Bit Key

0 ‘0’

1 ‘1’

2 ‘2’

3 ‘3’

4 ‘4’

5 ‘5’

6 ALT

7 CTRL

Format

SET BIT2KEY [bit] [keyname]

Where:

bit = 0 - 7
Keyname = (bit 0-5): Standard Key Name

 (bit 6-7): Modifier Key Name

Key Names can be found in the USB2TTL8 Keyboard Mapping Table
at the end of this document.

Example

SET BIT2KEY 1 2\n

Reply

{"reply": "SET", "param": "BIT2KEY", "arg": "1", "result": "OK"}\n

BYTE2KEY
Sets a Data byte value to Keyboard Key mapping to be used when the USB2TTL8 is in READ
BYTE2KEY Mode. For Data byte values that should not have an associated keyboard key, use
a keyname of NONE.

Format

SET BYTE2KEY [byte] [keyname]

Where:

byte = 0 - 255
keyname = Standard Key Name

Key Names can be found in the USB2TTL8 Keyboard Mapping Table at the end of this
document.

Example

SET BYTE2KEY 128 A\n

Reply
{"reply": "SET", "param": "BYTE2KEY", "arg": "128", "result": "OK"}

OFFLINE_KB_EVENTS
When the USB2TTL8 is in READ mode and is generating BITS2KEYS or BYTE2KEY Keyboard
events, the ​OFFLINE_KB_EVENTS setting is used to control if Keyboard events are only
generated when the USB2TTL8 has an active Serial connection (0, default), or if keyboard
events should be generated regardless of the USB Serial connection state (1).

Format

SET OFFLINE_KB_EVENTS [0 | 1]\n

Example

SET OFFLINE_KB_EVENTS 0\n

Reply

{"reply": "SET", "param": "OFFLINE_KB_EVENTS", "arg": "0", "result": "OK"}\n

KEY_DURATION
Sets the maximum keypress duration (in msec) for keyboard events generated while the
USB2TTL8 is in READ BYTE2KEY mode. Use 0 if the keyboard press event should only
release after the data input changes, otherwise keyboard press events will last at most
KEY_DURATION msec before the USB2TTL8 forces a keyboard release event to occur​.

Format

SET KEY_DURATION 50\n

Reply

{"reply": "SET", "param": "KEY_DURATION", "arg": "50", "result": "OK"}\n

READ
Read the current state of the USB2TTL8 data port (0-255).

Format
READ\n

Reply
0\n
...
255\n

WRITE
Set the USB2TTL8 device data port value. Optionally supports arguments for usec toggle
duration and simple pattern generation.

The WRITE command only has effect if the USB2TTL8 device has first been set to Write mode
by issuing the SET DATA_MODE WRITE command.

Format
WRITE value [duration] [next_value] [repeat]\n

value set data port byte to 0 - 255, i.e. atoi(value)

duration usec duration to hold value for

next_value 0 - 255: set data port byte to atoi(next_value) after duration usec.
-1: set data port byte to previous state after duration usec.

repeat If specified, alternate between value and next_value at a duration usec
interval until serial connection is closed.

If duration is 0, data port is set to value until the next WRITE command; otherwise data port is
set to value for duration usec.

If next_value == -1, data port is set to its original state after duration usec; otherwise data port
is set to next_value after duration usec. duration must be > 0 or next_value is ignored.

If repeat is specified (any value), data port output will automatically alternate between value and
next_value at a duration usec interval until the next WRITE command is received or the serial
connection is closed.

Reply
None.

WRITEP
Set a given bit of data port.

Format
WRITE dbit bvalue\n

dbit data port bit 0 - 7

bvalue 1=HIGH, 0=LOW

Reply
None.

LOAD_DEFAULT_CONFIG
Reset USB2TTL8 settings to the factory default values.

Format
LOAD_DEFAULT_CONFIG\n

Reply
{"reply": "LOAD_DEFAULT_CONFIG", "param": "", "arg": "", "result": "OK"}\n

SAVE_CONFIG
Save USB2TTL8 settings to the device memory. When the USB2TTL8 device is connected to a
computer it loads the last saved settings as default.

Format
SAVE_CONFIG\n

Reply
{"reply": "SAVE_CONFIG", "param": "", "arg": "", "result": "OK"}\n

RESET_CONFIG
Reset USB2TTL8 settings to the last saved state.

Format
RESET_CONFIG\n

Reply
{"reply": "RESET_CONFIG", "param": "", "arg": "", "result": "OK"}\n

USB2TTL8 Keyboard Mapping Table

NO KEY MAPPING 0 ‘NONE’

Modifier Keys

MODIFIERKEY_CTRL 0x01 | 0xE000 ‘CTRL’

MODIFIERKEY_SHIFT 0x02 | 0xE000 ‘SHIFT’

MODIFIERKEY_ALT 0x04 | 0xE000 ‘ALT’

MODIFIERKEY_GUI 0x08 | 0xE000 ‘GUI’

MODIFIERKEY_RIGHT_CTRL 0x10 | 0xE000 ‘RIGHT_CTRL’

MODIFIERKEY_RIGHT_SHIFT 0x20 | 0xE000 ‘RIGHT_SHIFT’

MODIFIERKEY_RIGHT_ALT 0x40 | 0xE000 ‘RIGHT_ALT’

MODIFIERKEY_RIGHT_GUI 0x80 | 0xE000 ‘RIGHT_GUI’

Standard Keys

KEY_A 4 | 0xF000 ‘a’

KEY_B 5 | 0xF000 ‘b’

KEY_C 6 | 0xF000 ‘c’

KEY_D 7 | 0xF000 ‘d’

KEY_E 8 | 0xF000 ‘r’

KEY_F 9 | 0xF000 ‘f’

KEY_G 10 | 0xF000 ‘g’

KEY_H 11 | 0xF000 ‘h’

KEY_I 12 | 0xF000 ‘i’

KEY_J 13 | 0xF000 ‘j’

KEY_K 14 | 0xF000 ‘k’

KEY_L 15 | 0xF000 ‘l’

KEY_M 16 | 0xF000 ‘m’

KEY_N 17 | 0xF000 ‘n’

KEY_O 18 | 0xF000 ‘o’

KEY_P 19 | 0xF000 ‘p’

KEY_Q 20 | 0xF000 ‘q’

KEY_R 21 | 0xF000 ‘r’

KEY_S 22 | 0xF000 ‘s’

KEY_T 23 | 0xF000 ‘t’

KEY_U 24 | 0xF000 ‘u’

KEY_V 25 | 0xF000 ‘ v ’

KEY_W 26 | 0xF000 ‘w’

KEY_X 27 | 0xF000 ‘x’

KEY_Y 28 | 0xF000 ‘y’

KEY_Z 29 | 0xF000 ‘z’

KEY_1 30 | 0xF000 ‘1’

KEY_2 31 | 0xF000 ‘2’

KEY_3 32 | 0xF000 ‘3’

KEY_4 33 | 0xF000 ‘4’

KEY_5 34 | 0xF000 ‘5’

KEY_6 35 | 0xF000 ‘6’

KEY_7 36 | 0xF000 ‘7’

KEY_8 37 | 0xF000 ‘8’

KEY_9 38 | 0xF000 ‘9’

KEY_0 39 | 0xF000 ‘0’

KEY_ENTER 40 | 0xF000 ‘ENTER’

KEY_ESC 41 | 0xF000 ‘ESC’

KEY_BACKSPACE 42 | 0xF000 'BACKSPACE'

KEY_TAB 43 | 0xF000 ‘TAB’

KEY_SPACE 44 | 0xF000 ‘SPACE’

KEY_MINUS 45 | 0xF000 ‘-’

KEY_EQUAL 46 | 0xF000 ‘=’

KEY_BACKSLASH 49 | 0xF000 ‘\’

KEY_SEMICOLON 51 | 0xF000 ‘;’

KEY_QUOTE 52 | 0xF000 ‘“’

KEY_TILDE 53 | 0xF000 ‘~’

KEY_COMMA 54 | 0xF000 ‘,’

KEY_PERIOD 55 | 0xF000 ‘.’

KEY_SLASH 56 | 0xF000 ‘/’

KEY_F1 58 | 0xF000 ‘F1’

KEY_F2 59 | 0xF000 ‘F2’

KEY_F3 60 | 0xF000 ‘F3’

KEY_F4 61 | 0xF000 ‘F4’

KEY_F5 62 | 0xF000 ‘F5’

KEY_F6 63 | 0xF000 ‘F6’

KEY_F7 64 | 0xF000 ‘F7’

KEY_F8 65 | 0xF000 ‘F8’

KEY_F9 66 | 0xF000 ‘F9’

KEY_F10 67 | 0xF000 F10‘’

KEY_F11 68 | 0xF000 ‘F11’

KEY_F12 69 | 0xF000 ‘F12’

KEY_F13 104 | 0xF000 ‘F13’

KEY_F14 105 | 0xF000 ‘F14’

KEY_F15 106 | 0xF000 ‘F15’

KEY_F16 107 | 0xF000 ‘F16’

KEY_F17 108 | 0xF000 ‘F17’

KEY_F18 109 | 0xF000 ‘F18’

KEY_F19 110 | 0xF000 ‘F19’

KEY_F20 111 | 0xF000 ‘F20’

KEY_F21 112 | 0xF000 ‘F21’

KEY_F22 113 | 0xF000 ‘F22’

KEY_F23 114 | 0xF000 ‘F23’

KEY_F24 115 | 0xF000 ‘F24’

KEY_PRINTSCREEN 70 | 0xF000 'PRINTSCREEN'

KEY_PAUSE 72 | 0xF000 ‘PAUSE’

KEY_INSERT 73 | 0xF000 ‘INSERT’

KEY_HOME 74 | 0xF000 ‘HOME’

KEY_PAGE_UP 75 | 0xF000 ‘PAGE_UP’

KEY_DELETE 76 | 0xF000 ‘DELETE’

KEY_END 77 | 0xF000 ‘END’

KEY_PAGE_DOWN 78 | 0xF000 ‘PAGE_DOWN’

KEY_RIGHT 79 | 0xF000 ‘RIGHT’

KEY_LEFT 80 | 0xF000 ‘LEFT’

KEY_DOWN 81 | 0xF000 ‘DOWN’

KEY_UP 82 | 0xF000 ‘UP’

KEYPAD_1 89 | 0xF000 'NUM_1'

KEYPAD_2 90 | 0xF000 'NUM_2'

KEYPAD_3 91 | 0xF000 'NUM_3'

KEYPAD_4 92 | 0xF000 'NUM_4'

KEYPAD_5 93 | 0xF000 'NUM_5'

KEYPAD_6 94 | 0xF000 'NUM_6'

KEYPAD_7 95 | 0xF000 'NUM_7'

KEYPAD_8 96 | 0xF000 'NUM_8'

KEYPAD_9 97 | 0xF000 'NUM_9'

KEYPAD_0 98 | 0xF000 'NUM_0'

KEYPAD_SLASH 84 | 0xF000 'NUM_SLASH'

KEYPAD_ASTERIX 85 | 0xF000 'NUM_ASTERIX'

KEYPAD_MINUS 86 | 0xF000 'NUM_MINUS'

KEYPAD_PLUS 87 | 0xF000 'NUM_PLUS'

KEYPAD_ENTER 88 | 0xF000 'NUM_ENTER'

KEYPAD_PERIOD 99 | 0xF000 'NUM_PERIOD'

