# FG200/FG300 合成函数发生器 用户说明书



**IM 706111-01C** 第1版

### 前言

感谢您购买FG200/FG300系列函数发生器。 此说明书介绍了FG的功能和操作方法,并说明了重要的安全知识及处理方法。 使用FG前,请仔细通读本说明书,并将说明书存放在安全的地方,以便将来随时参 考。建议您将本说明书放在机器附近,以便随时翻阅。 另外,FG200/300系列函数发生器共配有两本说明书,另一本说明书的详情如下:

|                     | 编号            | 内容              |
|---------------------|---------------|-----------------|
| FG200/FG300 GP-IB接口 | IM1706111-12E | 介绍了GP-IB接口的使用方法 |
| 用户说明书               |               |                 |

注意

- 产品升级时, 横河有权改变产品的功能、性能及其他规格, 而无须事先通知客户。
- · 横河将努力提供正确且不断更新的说明书。如发现任何错误或对此说明书的解释有任何 疑问,请与横河公司联系。
- 未经允许,不得影印或复印此说明书的任何部分。
- •保修卡与机器一起放在FG包装箱内,遗失后不补。请仔细阅读保修卡并保存在安全的 地方。

商标

- •MS-DOS是Microsoft公司的注册商标。
- IBM和PC/AT是IBM公司的注册商标。
- Lotus 1-2-3是Lotus-Development公司的注册商标。

版本

1995年9月 第1版

# 检查包装箱

初次开箱时,请确认FG主机型号及其附件是有无误,是否完好无损。如发现任何问题,请及时与供应商联系。

### FG200/FG300 主机

机器的后面板处贴着一个标签,上面标注着FG的型号和后缀代码,请确认此标签以确保 您收到的正是您订购的机器。



### 型号及后缀代码

| 型号     | 后缀代码 | 机型    |                        |
|--------|------|-------|------------------------|
| 706111 |      | FG210 | 1-Ch                   |
| 706112 |      | FG220 | 2-Ch                   |
| 706121 |      | FG310 | 1-Ch (带任意扫描和简单的任意波形功能) |
| 706122 |      | FG320 | 2-Ch (带任意扫描和简单的任意波形功能) |

| 电源电压 | -0             | 100-240VAC |             |
|------|----------------|------------|-------------|
| 电源线  | -D· · · · · ·  | UL/CSA 标准  | 编号:A1006WD  |
|      | -F · · · · · · | VDE 标准     | 编号: A1009WD |
|      | _J· · · · · ·  | BS 标准      | 编号: A1023WD |
|      | -R· · · · ·    | SAA 标准     | 编号: A1024WD |
| 选件   | /R1· ·         | 外部扫描控制     |             |

#### 机器编号

当有问题需与供应商联系时,请告知此编号。

#### 提示

建议您保留机器包装箱。 在需要携带或运输FG时,机器包装箱将非常有用。

### 随箱附件

请确认包装箱内是否包含以下附件,这些附件是否完好无损。



### 选配附件

FG支持下列选配附件。如果您订购了如下附件,请确认箱内是否包含了所有附件,每个附件是否完好无损。

如有任何问题或想追加订购如下附件,请与供应商联系。

| 附件名称        | 型号        | 说明            |
|-------------|-----------|---------------|
| 并行连接线       | 705926    | 1m; 26针接口     |
| BNC线(1m)    | 366924    | 1m            |
| BNC线 (2m)   | 366925    | 2m            |
| BNC鳄鱼线 (1m) | 366926    | 1 m           |
| 适配器         | 366921    | BNC插头-香蕉连接器插头 |
| 适配器         | 366927    | BNC插头-RCA插头   |
| 适配器         | 366928    | BNC插头-RCA插头   |
| 机架固件        | 751533-ЕЗ | EIA单个机架用      |
| 机架固件        | 751534-E3 | EIA复合机架用      |
| 机架固件        | 751533-J3 | JIS单个机架       |
| 机架固件        | 751534-J3 | JIS复合机架       |

# 安全须知

此产品配有接地保护端子,符合IEC安全标准。为确保安全使用仪器,请遵守以下安全须知。如因未遵守安全须知而导致机器发生故障,横河电机不负任何责任。

• 在FG主机上有如下标记,此标记表示可能有潜在的危险。



这个标记出现在机器上,表示某个操作有潜在的危险。如果不严格按照 用户说明书或服务说明书中的指示操作,可能会损坏机器或伤及人身。

- 请仔细阅读以下所有警告事项。
   如无视警告事项操作机器,可能会引发潜在的危及生命的触电事故。
  - 警告
  - ・电源
    - 开机前,必须确保源电压与FG的电源电压相符。
  - 电源线与插头
     为防止触电和火灾,请务必使用横河电机提供的电源线。主电源插头必须插进有
     接地保护端子的插座里,请勿使用没有接地保护的外接电源。
  - 接地保护 开机前要确保接好接地保护,以防止触电。 • 接地保护的重要性
    - 请不要切断内外接地保护线,也不要断开与接地保护端子的连接。否则将引起潜 在的触电事故。
  - 接地保护与保险丝有问题时 当接地保护或保险丝有问题时,请不要使用仪器。
     不要在易燃环境中运行机器
  - 请不要在有易燃液体与气体的环境中使用仪器。在这样的环境中使用任何电子仪器都有可能引发事故。
  - 不要打开机箱
     仪器的某些区域是有高电压的,所以接上电源后请不要打开机箱。只有具备一定
     技能的人才可以打开。
  - **外部连接** 为确保安全,请在连接仪器或控制主机前接好接地保护。

# 说明书内容简介

| 章节 | 标题                              | 内容简介                                                              |  |
|----|---------------------------------|-------------------------------------------------------------------|--|
| 1  | 特点与功能                           | 此章解释并介绍了FG的操作原理、特点与功能。<br>请仔细阅读这些内容,以便熟悉FG的机器特性。<br>此章不介绍详细的操作方法。 |  |
| 2  | 控制与接口                           | 此章解释了前面板操作键、前/后面板接口、屏幕显示和<br>触摸键的作用与用法。                           |  |
| 3  | 基础知识                            | 此章包括了安全相关信息,并介绍怎么安装、连接和开机。                                        |  |
| 4  | 基础输出设置                          |                                                                   |  |
| 5  | 扫描设置                            | 此章介绍了怎样设置扫描输出。                                                    |  |
| 6  | 调制设置                            | 此章介绍了怎样设置调制输出。                                                    |  |
| 7  | <b>序列设置与输出</b><br>(FG310/FG320) | 此章介绍了怎样设置和操作序列输出。                                                 |  |
| 8  | 任意波形与扫描模式<br>(FG310/FG320)      | 此章介绍了怎样定义任意波形。                                                    |  |
| 9  | 外部控制信号与<br>输出信号                 | 此章介绍了控制信号输入的用法及FG输出信号的意义与用法。                                      |  |
| 10 | 其他功能                            | 此章介绍了其他操作功能:软盘格式化、自动数据加载、保存/<br>调用等功能。                            |  |
| 11 | 疑难解答与测试                         | 此章介绍了错误信息、疑难解答、自测功能、<br>性能检测的方法与标准。                               |  |
| 12 | 规格                              | 此章介绍了FG200/300系列的规格。                                              |  |
| 附录 |                                 | 附录1介绍了怎样设置和使用任意扫描模式。                                              |  |
|    |                                 | 附录2介绍了对数扫描和对数阶梯扫描的相关信息。                                           |  |
|    |                                 | 附录3介绍了软盘的内容、结构和用法。                                                |  |
| 索引 |                                 |                                                                   |  |

此说明书共包括12个章节、3个附录和1个索引,详情如下。

# 说明书中出现的符号与标记

### 标注单位

k,即1000。例如:100kHz即100,000Hz。 K,即1024。例如:128KW波形存储空间。

符号

[]括号代表是一个硬键。例如: [TRIG]。

标记

以下标记用于提醒用户仔细阅读重要信息。



此标记出现在FG主机上,它用于提示某些操作会有潜在的危险,如果不按照用户明书中的指示操作机器,可能会损坏机器 或伤及人身。



此标记用于提示至关重要的安全信息。如忽视警告内容,可能会导 致潜在的人身伤害或死亡。



提示与FG操作相关的重要信息。

# 目录

| 前言                 | 1 |
|--------------------|---|
| ₩ ~<br>龄杳包装箱       | 2 |
| 安全须知               | 4 |
| 关于深入               | 5 |
| 》。<br>说明书中出现的符号与标记 | 6 |

### 第1章 功能

| 1.1  | FG200/FG300波形发生器1-1    |
|------|------------------------|
| 1.2  | FG200/FG300系列内部配置1-3   |
| 1.3  | 选择输出模式 (连续、触发、门、DC)1-4 |
| 1.4  | 选择输出功能 (输出波形)1-5       |
| 1.5  | 设定输出条件 (频率、电压、衰减)1-6   |
| 1.6  | 扫描设置1-7                |
| 1.7  | 调制设置1-9                |
| 1.8  | 序列设置1-11               |
| 1.9  | 生成任意波形1-12             |
| 1.10 | 信号输入输出1-13             |
| 1.11 | 其他功能1-14               |
|      |                        |

### 第2章 名称与各组成部分的用法

| 2.1 | 前面板  | 2- | 1 |
|-----|------|----|---|
| 2.2 | 后面板  | 2- | 2 |
| 2.3 | 屏幕显示 | 2- | 3 |

### 第3章 观测、测量波形前的准备工作

|              | 3.1 | 安全注意事项   | . 3-1 |
|--------------|-----|----------|-------|
|              | 3.2 | 安装       | . 3-2 |
| $\mathbb{A}$ | 3.3 | 连接电源线    | . 3-4 |
|              | 3.4 | 电源ON/OFF | . 3-5 |
| Ā            | 3.5 | 波形输出     | . 3-6 |

### 第4章 基本操作

| 4.1 | 设置输出模式                                                                             |               |
|-----|------------------------------------------------------------------------------------|---------------|
|     | MODE:CONT/TRIG/GATE/DC                                                             |               |
| 4.2 | 选择输出波形                                                                             |               |
|     | FUNC:SINE/SQUARE/TRIANGLE/PULSE/ARBITRARY( <b>仅限</b> FG310/FG320)                  |               |
| 4.3 | 设置输出频率                                                                             |               |
|     | FREQ:0.001mHz ~ 15MHz/0.001mHz ~ 200kHz                                            |               |
| 4.4 | 设置输出电压                                                                             |               |
|     | AMPL:-20Vpp $\sim$ 20Vpp, OFFSET:-10V $\sim$ 10V, HIGH LEVEL/LOW LEVEL:-10V $\sim$ | 10V,TTL LEVEL |
| 4.5 | 设置相位                                                                               |               |
|     | PHASE:-10000deg ~ 10000deg                                                         |               |
| 4.6 | 设置输出衰减器;输出设为OFF                                                                    |               |
|     | OUTPUT:1/1/1/10/1/100,OFF                                                          |               |
| 4.7 | 设置触发源和脉冲周期                                                                         |               |
|     | BURST:1~65535周期, TRIG INT/EXT, TRIG FREQ:1mHz~50kHz                                |               |
|     |                                                                                    |               |

2

3

4

5

7

8

9

10

11

12

附录

索

| 第5章                 | 设置   | 扫描输出                                                                 |                   |
|---------------------|------|----------------------------------------------------------------------|-------------------|
|                     | 5.1  | 设置扫描模式                                                               |                   |
|                     |      | S. MODE:REPEAT/SINGLE/SINGLE & HOLD                                  |                   |
|                     | 5.2  | 设置扫描类型                                                               |                   |
|                     |      | S. TYPE:LINEAR/LOG/LINEAR STEP/LOG STEP/ARBITRARY(仅限FG310/320), (SWE | EP RATIO), (STEP) |
|                     | 5.3  | 设置扫描项目                                                               |                   |
|                     |      | S. ITEM:FREQ/PHASE/AMPL/OFFSET/(DUTY)/FREQ & AMPL                    |                   |
|                     | 5.4  | 设置扫描条件                                                               |                   |
|                     |      | START FREQ, STOP FREQ, CENTER FREQ, SPAN FREQ                        |                   |
|                     |      | START PHASE, STOP PHASE, CENTER PHASE, SPAN PHASE                    |                   |
|                     |      | START AMPL, STOP AMPL, CENTER AMPL, SPAN AMPL                        |                   |
|                     |      | START OFFSET, STOP OFFSET, CENTER OFFSET, SPAN OFFSET                |                   |
|                     |      | START DUTY, STOP DUTY, CENTER DUTY, SPAN DUTY                        |                   |
|                     |      | SWEEP TIME                                                           |                   |
|                     | 5.5  | 扫描控制 (ON/OFF、保持)                                                     |                   |
|                     |      | SWEEP OFF/ON, HOLD OFF/ON                                            |                   |
|                     | 5.6  | 设置扫描标记                                                               |                   |
|                     |      | START MARKER, STOP MARKER, CENTER MARKER, SPAN MARKER                |                   |
| 第6章                 | 设置   | 调制输出                                                                 |                   |
| •••                 | 6.1  | 设置调制类型                                                               |                   |
|                     |      | M. TYPE:AM/DSB-SC AM/FM/PM/PWM/OFFSET                                |                   |
|                     | 6.2  | 洗择调制器波形                                                              | 6-2               |
|                     |      | M. FUNC:SINE/TRIANGLE/PULSE/ARBITRARY(何閱FG310/320)                   |                   |
|                     | 63   | 设置调制参数·调制ON/OFF调制                                                    | 6-3               |
|                     | 0.0  | DEPTH, DEVIATION, MODULATE ON/OFF                                    |                   |
| <b>第</b> 7音         | 讼署   | - 输出 定利 (77月FC310/320)                                               |                   |
| <b>粐</b> / 早        |      |                                                                      | 7 1               |
|                     | 7.1  | · 通过序列编辑器设直序列(仅限FG310/FG320)                                         |                   |
|                     | 7.2  | 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                             |                   |
|                     | 7.3  | 保存、加载、删除序列数据文件 (仅限FG310/FG320)                                       | 7-4               |
| 第8章                 | 任意   | 波形与扫描模式 (仅限FG310/320)                                                |                   |
|                     | 8.1  | 加载波形数据 (仅限FG310/FG320)                                               |                   |
|                     | 8.2  | 由文本数据生成任意波形 (仅限FG310/FG320)                                          |                   |
|                     | 8.3  | 保存、删除波形和文本文件 (仅限FG310/FG320)                                         |                   |
| 第9章                 | 外部   | 控制信号与输出信号                                                            |                   |
| $\triangle$         | 9.1  | 通过TRIG/GATE输入控制波形输出                                                  |                   |
| $\triangle$         | 9.2  | 通过SWP HOLD输入保持扫描                                                     |                   |
| $\overline{\wedge}$ | 9.3  | 通过SUM IN输入增加输出偏置电压                                                   |                   |
| $\overline{\wedge}$ | 9.4  | 通过VCA输入控制振幅                                                          | 9-5               |
| <u>~~</u>           | 95   | CH1 SYNC OUT端口的用注                                                    | 9_6               |
| <u>~:&gt;</u>       | 0.6  |                                                                      | 0.7               |
| <u> </u>            | 9.0  |                                                                      |                   |
| <u> </u>            | 9./  |                                                                      |                   |
| <u>/!\</u>          | 9.8  |                                                                      |                   |
| <u>_!\</u>          | 9.9  | SWP CIKL IN (/KI选件)模拟扫描控制的用法                                         |                   |
| $\Delta$            | 9.10 | DIGITAL CTRL I/O (/R1选件)的用法                                          |                   |

1

2

3

4

5

6

7

8

### 第10章 其他功能

| 10.1   | 两通道同步相位 (仅限FG220/FG320)      |  |
|--------|------------------------------|--|
| ⚠ 10.2 | 软盘格式化 (仅限FG310/FG320)        |  |
| 10.3   | 软盘自动加载、加载与保存 (仅限FG310/FG320) |  |
| 10.4   | 保存/调用输出设置(在内部存储器里保存或调用)      |  |
| 10.5   | 两通道同步设置 (仅限FG220/FG320)      |  |
| 10.6   | 通道间拷贝输出设置 (仅限FG220/FG320)    |  |
| 10.7   | 初始化输出设置                      |  |
| 10.8   | 调节对比度; 打开/关闭按键音              |  |
| 10.9   | 设置日期和时间 (仅限FG310/FG320)      |  |

### 第11章 疑难解答、维护与检测

|                      | 11.1 | 错误信息: 错误原因及纠错 | 11-1   |
|----------------------|------|---------------|--------|
|                      | 11.2 | 疑难解答          | 11-3   |
|                      | 11.3 | 自测            | 11-4   |
|                      | 11.4 | 性能检测          | . 11-6 |
| $\underline{\wedge}$ | 11.5 | 断路器的位置与操作     | 11-14  |

### 第12章 规格

| 12.1 | 性能规格              | 12-1 |
|------|-------------------|------|
| 12.2 | 功能规格              | 12-3 |
| 12.3 | 辅助输入/输出           | 12-4 |
| 12.4 | 显示器、驱动器、GP-IB通信接口 | 12-5 |
| 12.5 | 通用规格              | 12-6 |
| 12.6 | 外部尺寸              | 12-7 |

### 附录

| 附录1 | 任意波形扫描证 | 段置(实例)          | 附录-1 |
|-----|---------|-----------------|------|
| 附录2 | 负值对数扫描  |                 | 附录-2 |
| 附录3 | 软盘样本数据  | (仅限FG310/FG320) | 附录-3 |

#### 索引

索

### 1.1 FG200/FG300波形发生器

数字生成波形

函数发生器是按照波形产生的原理不同而分类的。FG200/FG300系列函数发生器是通过直接数字合成技术(DDS)生成波形的,另外两种生成波形的方法分别是模拟生成波形和PLL生成波形。这三种方法简介如下:

#### 模拟生成波形

模拟发生器利用积分器和比较器生成三角波和方波信号,当三角波信号通过由二极管和电 阻组成的电路时,可以生成正弦波。模拟生成波形的价格便宜,大多数信号发生器都采用 这种方式。但是模拟生成波形的频率精度比较低,而且低频工作状态不稳定。

#### PLL(锁相环路)生成波形

PLL电路包括:(a) 一个压控振荡器,保持输出频率与控制电压频率一致;(b)一个 可编程 可任意设置的分频器;(c)一个基准振荡器;(d)一个相位比较器,用于比较基准振荡器发 出的信号波与滤波器输出波形之间的相位差异;(e)一个低通滤波器。PLL发生器用相位差 异来调节控制电压,使输出频率与基准振荡器经分频器产生的频率保持一致,因此它的频 率精度非常高。缺点是运行成本太高(为提高精度,必须使用复合电路),频率变化缓慢, 低频工作状态不稳定。

#### DDS(直接数字合成)生成波形

DDS发生器把各种式样的波形的数字信号保存在内存里。当用户选定波形和频率(时钟频率)时,发生器则按照选定的时钟频率读出波形数据。读出的数据通过D/A转换器转换为模拟信号。由于采用了全数字的方法,DDS发生器可以克服传统信号发生器的缺陷。

#### DDS波形生成原理

如下图所示,电路由用于生成基准时钟信号的晶体振荡器、相位运算单元、波形存储单元、数字/模拟转换器和低通滤波器组成。波形存储器中保存着已选波形的一个完整周期内的定义数据。存储单元的地址与波形相位相对应。



首先,根据用户选择的频率将N输入到加法器中。锁存器输出结果,与此同时第一个晶体 振荡器时钟周期也是N,这就是第一次读波形存储器时的地址。

锁存器将输出值反馈给加法器,两个输入都去N值,所以加法器输出2N。锁存器将在下一 个时钟周期输出2N。以后每个时钟周期里随着时钟相位越来越高,锁存器的输出都会增加 N(3N,4N,5N...)。每个输出值都有指定地址,波形存储器会根据这些地址信号送出波形数 据,再由D/A转换器转换成模拟信号。低通滤波器通常会从信号中滤除不想要的高频成 分,以消除干扰。 用户可以通过N值来控制任何时钟周期的波形输出频率。当N值等于一个地址增量时,连续的时钟周期将读取连续的地址数据。当N值等于三个地址增量时,连续的时钟周期将读取每三个地址数据(每读取一次跳过两个地址),这可以有效地提高波形输出频率。 使用DDS方式时,通过改变加法器里的N值,可以保存各种各样的频率。改变波形后,可以马上将不同样式的波形保存到波形存储器中。

### 1.2 FG200/FG300系列内部配置

### 结构图



#### 信号流程图

将一个周期的自定义波形数据导入8KW的波形存储器中,将48-bit相位计数器的相位增量 值设好,决定着相位增量的大小(也决定着频率的大小)。然后,相位计数器开始输出数 值,每个值都指定波形存储器中的一个特定的地址。

在波形存数器中读取的地址数据通过12-bit波形输出D/A转换器转换成信号,然后信号通过 相应的低通滤波器(因波形类型而异),滤除高次谐波频波。选择方波输出时,通过低通滤 波器后的正弦波被送到比较器,整形后输出方波信号。接着,此信号将通过一个模拟复用 器调整其宽度,并增加其偏置。此时,信号将通过放大器,然后通过输出衰减器,最后经 由FG的输出端口输出。48-bit相位计数器和D/A转换器用于生成输出波形,其周期速度为 40.2107MHz。

单独的DDS电路不能进行扫描操作,16KW的扫描存储器中保存着扫描参数,64-bit的相位 计数器可以从此存储器中读取与扫描时间相对应的数据。数据被送到扫描数据复用器并被 锁存,然后找到其相应参数的位置。频率、相位、占空比被锁存到内部ASIC暂存器,然 后输出到48-bit相位计数器。振幅、偏置、扫描值则相反,通过单独的16-bit D/A转换器被 转换成信号,每个信号都会通过指定的滤波器,然后被送到下一个处理单元(如模拟复用 器)。64-bit相位计数器和D/A转换器用于波形震荡,其周期速度为628.292kHz。

触发控制电路通过改变ASIC控制外部控制和同步信号。

通过/R1选件,外部模拟信号可以控制扫描。模拟信号被12-bitA/D转换器转换成数字信号,每个数字信号数值对应扫描存储器中的指定地址。

FG的高精度LCD和触摸屏更易于输入各种参数值,操作起来很方便。FG310和 FG320都配有内置软盘驱动器,可以用于保存、载入/载出数据。

# 1.3 选择输出模式(连续、触发、门、DC)

用户可以选择4种输出模式中的任何一种。

连续 (CONT)

在此模式下, FG生成的是一个连续的波形。此模式适用于扫描或调制输出。



触发 (TRIG)

在此模式下,FG输出一个脉冲信号的同时,也同步输出一个触发信号。脉冲信号由指 定周期的波形组成。使用时可以选择外部或内部触发,详情如下。

外部触发

从外部源输入一个触发信号,或者通过按前面板上的TRIG键或发出GP-IB命令生成触发 信号。



・内部触发

在指定的触发频率下,FG内部发出周期触发信号。每次触发都会输出脉冲信号。



i](GATE)

当门信号状态为ENABLE时,FG将保持波形输出状态。可以从外部源输入门信号,或者可以通过按前面板上的TRIG键发出门信号。只有满周期(无间隙周期)时才能输出波形,详情如下。



直流电 (DC)



# 1.4 选择输出功能(输出波形)

FG提供如下输出功能。

正弦波

频率在1µHz~15MHz之间时,FG可以生成正弦波。

方波

频率在1µHz~15MHz之间时,FG可以生成方波(占空比固定为50%)。

### 三角波

FG可以生成三角波和斜波,"对称性"的设置决定着波形的精度。频率可以设在1µHz ~ 15MHz之间。只有频率在1µHz ~ 200kHz之间时,才可以得到高质量的输出波形。

#### 脉冲波

占空比可以设在0%~100%之间,频率可以设在1µHz~15MHz之间。只有频率在1µHz~200kHz之间时,才可以得到高质量的输出波形。

#### 任意波 (FG310/FG320)

FG310和FG320可以定义并保存8个任意波形,除了直接在FG里生成波形,也可以在外部 定义波形后将波形保存到FG。频率在1 $\mu$ Hz~15MHz之间时可以生成任意波形。只有频率 在1 $\mu$ Hz~200kHz之间时,才可以得到高质量的输出波形。



### 1.5 设置输出条件(频率、电压、衰减)

### 输出频率

任何波形的频率都可以设在 $1\mu$ Mz ~ 15MHz之间。三角波、脉冲波、任意波形只有频率在 $1\mu$ Hz ~ 200kHz之间时,才可以得到高质量的输出结果。

输出电压



・通过设置振幅和偏置



・通过设置高、低电平



・通过选择TTL电平

可以自动将输出设为TTL电压电平 (0V,5V)。



相位

・1通道输出

在TRIG模式与GATE模式下,相位设置决定着波形输出相位的开始和结束。在连续输出 模式或DC模式下,相位设置不影响其他设置。



#### •2通道输出(仅限FG220/FG320) 相位设置适用于上面介绍过的TRIG模式和GATE模式。另外,还可以选择CH1输出和 CH2输出的相差(在CONT / TRIG / GATE模式下有效)。



多台设备输出(详见P1-13)
 可以将几台FG相互连接起来,并可以同步输出。此时,相位设置将决定这些仪器
 间的相差。

输出衰减

通过此功能可以将输出电平降至1/10或1/100,也可以通过振幅/偏置电压或高/低电平参数设置输出电压。

### 1.6 扫描设置

扫描模式

- FG提供了三种不同的扫描模式,详情如下:
- **重复:**重复扫描。

• 单一: 触发一次扫描一次。

• 单一&保持: 触发一次扫描一次, 但将保持扫描值直到下次触发。



扫描类型

扫描类型决定着扫描的清新度。有如下四种不同的扫描类型可供选择:



・任意模式(只有FG310/FG320有8种任意扫描模式)

扫描项目

通过此设置选择要扫描的参数(即波形属性),有六个项目可供选择:

・频率
・相位
・相位
・振幅
へへへへいいい
・振幅
へへへいいい
・病置电压
へいいい
・方室比: 只适用于脉冲波
・频率 & 振幅: 同步扫描频率和振幅
へへいいい

1

#### 扫描条件

可以设置以下扫描条件:

• 开始/结束 或 中心值/频距

扫描频率时,可以通过选择开始频率和结束频率来设置范围,也可以通过指定中心频率 和总频距来设置范围。扫描时,设好开始频率后逐渐变化,直到达到结束频率(因选择 的扫描类型而异)。如果开始频率低于结束频率,扫描时频率会升高;如果开始频率高 于结束频率,扫描时频率会降低。



扫描保持

扫描监视

#### 1.7 调制设置

载波

被选输出波形 (如1.4所述)在调制输出时可以用作载波。设置载波时,到主输出设置画) 界面并选择下述参数。

- ・载波 可以选择任何输出波形作为载波:正弦波、方波(占空比=50%)、三角波(任何对称性)、 脉冲波 (任何占空比)。使用FG310或FG320时,也可以选择8种任意波形中的任意一种 作为载波。
- ・ 载波频率 载波频率可设为1µHz~15MHz(但高质量脉冲波、三角波或任意波形输出时,频率不 能超过200kHz)。

・载波相位

•AM (振幅调制)

可以同步设置几个通道或几台相连FG的相位。

・载波输出电压 可以通过指定振幅和偏置电压,或高/低电平来设置载波输出电压。

调制类型

以下有6种调制类型可供选择:



- •DSB-SC AM (双边带抑制载波振幅调制)



•FM (频率调制)





• PWM (脉宽调制):载波为脉冲波时



・偏置调制 

调制波形





### 调制条件

#### ・调制频率

频率可以设在1mHz~50kHz之间。

- ・其他条件
  - 根据调制类型不同,还可以设置其他多种条件,具体如下:
  - AM:
    - 设置调制幅度。



- DSB-SC AM:
  - 不设置;调制幅度为固定值。
- FM:
  - 设置峰值频率偏差 (载波信号频率和瞬时调制频率的峰值不同)。



- PM:
  - 设置峰值相位偏差。
- PWM:
  - 设置峰值占空比偏差。
- ・偏置调制:
  - 设置峰值偏置偏差。

### 1.8 序列设置

一个序列由256个不同的步骤组成,每个步骤都是一个不同的输出参数集合。所有步骤 都将生成相同类型的波形,但是每个步骤都可以定义一组独立的参数:如频率、相位、 振幅、偏置、占空比和标记。通过发出触发信号,可以跳过当前步骤,每发一次触发信 号可以跳过1个步骤(有时也会随机跳动,详情如下)。

可以为每个步骤都设置一个独立的标记, CH1 MARKER OUT端口可以实时输出标记值并 将其作为序列记号。另外, 还可以通过输出结果观测每个步骤的变化。



FG支持外部序列控制选件,通过此选件可以在各个步骤间自由切换。尤其,用这个选件可以输入每步的步骤数(8bit的数字),通过步骤数就可以直接选择每个步骤。另外,还可以通过这个功能生成数字调制波形(如FSK、PSK),详情如下。

FSK(频移键控)



# 1.9 生成任意波形

FG可以自定义、上传多达8组任意波形,并可将这些任意波形作为输出波形、扫描波形、 载波或调制波形。定义任意波形的方法有3种,详情如下:

• **外部生成波形后,用软盘将其加载到FG。** 横河DL4000系列或DL5000系列数字示波器、AG系列任意波形发生器或其他设备都可以生成任意波形。



• 可以在FG中输入有代表意义的点(X,Y轴),然后再用线将这些点连接起来(用直线、阶 梯直线或曲线),即可生成任意波形。可以在FG的文本编辑窗口中输入每个点的相应 值。



• 可以通过PC、制表软件(LOTUS 1-2-3)或其他程序生成每个点,然后用软盘加载或 通过GP-IB接口将数据下载到FG中。



#### 扫描标记和事件标记

使用时,可以将任意脉冲模式与任意波形组合。如果将波形作为扫描控制,此波形将自定义一系列扫描标记,FG实时将这些标记作为扫描程序通过CH1 MARKER OUT端口输出。如果将波形作为常规波形输出,则FG需要外部扫描控制选件(详见下页),此波形将定义一系列事件信号(3位)。

### 1.10 信号输入/输出

FG后面板上有很多输入/输出接口,各种接口及其用法详情如下:

• TRIG IN/GATE IN (触发/门输入)

触发或门输出时,可以通过此接口输入外部触发信号或门脉冲。

- SWP HOLD IN (**扫描保持输入**) 此接口用于接受外部扫描保持控制信号。
- SUM IN/VCA IN (偏置/振幅控制输入) 此接口用于外加偏置电压,或控制输出波形的振幅。 (外部偏置或振幅控制将自动超过波形的内部偏置或振幅设置。)
- CH1 SYNC OUT (CH1波形同步输出)
- CH1输出时,此接口同步输出TTL电平脉冲。在示波器中观测输出波形时,输出信号 可以作为触发信号。



CH1 MARKER OUT

此接口用于输出CH1的标记信号。CH1处于扫描状态时,此接口输出扫描标记信号; CH1处于序列状态时,此接口输出序列标记信号。在示波器中观测输出波形时,输出 信号可以作为触发信号。

・CH1 SWEEP OUT (CH1扫描/调制输出)

此接口用于输出CH1扫描或调制信号状态的再现信号。扫描被再现为线性信号,在每个 扫描周期内其范围为-10V~+10V。调制被再现为调制信号,偏置为0,振幅为20Vpp。



• OPER SYNC IN/OPER SYNC OUT (同步) 此接口用于多台相互连接的FG间的同步输出。



最多可以连接8台FG

外部扫描控制(选件)

- ・SWP CTRL IN (模拟扫描控制输入)
- 此接口用于从外部控制序列、扫描或调制。
- ・DIGITAL CTRL I/O (数字控制输入/输出)
  - 通过此接口输入一个8-bit的数字信号后可以控制序列输出、扫描输出或调制输出,也可以输出3-bit的序列标记或扫描标记,还可以输出任意波形事件标记。通过此选件,可将标记值设为0~7,如果没有此选件,标记值只可设为0~1。

## 1.11 其他功能

FG提供了如下辅助功能:

・两通道相位同步

两通道输出(FG220和FG320)时,可以查看频率变化时每个通道的反应:另外还可以 (a)重复同步通道相位,(b)保持连续输出。连续输出时,仍然可以随时按键强制重复 同步。

```
・保持相位同步
```

・保持连续輸出



• **软盘格式化(仅限于FG310/FG320)** FG可以将软盘格式为:

2HD: 1.2MB 或 1.44MB MS-DOS

2DD: 640KB 或 720KB MS-DOS

- 参数自动加载(仅限于FG310/FG320)
   开机时,可以让FG自动从软盘中重新加载所有数据(参数值、序列数据、任意波形数据)。将数据保存到软盘后,开机并将软盘插进驱动器即可。
- 两通道同步设置(仅限于FG220/FG320)
   可以两通道同步设置振幅、相位、偏置、占空比或扫描时间。
   也可以在保持通道间相位关系的同时,改变频率设置。
- 通道间拷贝(仅限于FG220/FG320) 可以将输出设置从一个通道拷贝到另外一个通道。当两个通道需要相同设置时,此功 能非常好用。
- 初始化输出设置 可以将所有输出设置调回出厂默认状态。
- ・对比度调整

可以调整LCD对比度,以适应周围工作环境。

・蜂鸣报警ON/OFF

FG报警器可以自由设为ON或OFF。如果设为ON,每次按键或发生错误时蜂鸣器都会响一次。

- **日历**-**时钟功能(仅限于FG310/FG320)** FG310和FG320均内置了日历时钟。日期与时间都是出厂默认设置,可以自由更改。当 把数据保存到软盘时,软盘会记录保存日期和时间。
- ・自测

FG内置了包括内存、电路板、键盘操作、显示及其他功能的自测程序。通过自测功 能可以检查系统的运行情况,也可以在请求服务帮助前先弄清是什么问题。

# 2.1 前面板

FG320





### 2.2 后面板

### (选配/R1外部扫描控制选件时)



# 2.3 屏幕显示



调制设置画面(按[MOD]键调出) 详见第6章



调出ARB(任意波形生成)窗口

### 3.1 安全注意事项

安全注意

- •使用机器之前,请仔细阅读本说明书第4页的安全注意事项。
- 请不要拿走FG的保护盖。机器内部有非常危险的高电压零部件。如果机器需要维修或 调整,请与横河公司联系。
- 如果机器冒烟,或发出异味,或不能正常操作,请马上关闭电源并拔掉电源线。然后,请与横河公司联系。
- 运行中如果冷却扇停止工作,机器将显示下图所示的错误信息。看到此信息时,请马 上关闭电源。风扇(在机器后面板上)可能被堵住了。请确认并拿走障碍物,然后重新起 动机器。如果风扇再次停止工作,请关闭电源并马上与横河公司联系。

### ERROR

906: Fan stopped. Turn OFF the power immediately.

请不要将其它东西放到电源线上,请随时保持电源线远离热的物体。关闭电源后,请拔出电源插头,请不要让电源线与机器连接。电源线如有破损,请与供应商联系并获取新电源线(电源线详情请参照P2)

### 操作注意

- •请不要将装有液体的容器或有潜在危险的物体放在机器上。
- •请不要让机器受到震荡或强烈的碰撞,震荡或碰撞将损坏机器的硬件设备。 (配有内置软驱时尤其应该注意此点)

另外,碰到接口或连接线时,可能会增加输出信号的电噪音。

- •请保持机器端口远离充电物体,端口静电将损坏内部零件。
- 如果长时间不使用机器,请拔掉电源线。
- 如要搬运或移动机器,请拔掉电源线和电线插头。请按下图所示方法搬运机器(FG主机 重约5kg)。



- •请不要用尖利物体接触LCD(触摸屏),尖利物体可能会损坏屏幕。
- 请不要用苯或其它溶解性溶液清洗橡胶零件,否则会留下污点。清洁盖子或面板时,请用于软布轻轻擦拭。机器特别脏的时候,请用一块湿布蘸着被稀释的中性清洗液轻轻擦拭,然后用另一块布擦干机器。

# 3.2 安装



警 告

 通常,机器运行时不能将其竖放并让风口朝下。此时,若机器发生故障, 热气从风口排出时容易引起火灾。如果必须要将机器竖起,请在风口下面 放一块金属板或涂有阻燃剂的物体(UL94-1或更高的)。



放置

请在符合下述环境条件的场合安装FG。

- 周围温度和湿度 操作时,周围温度和湿度一定要在如下范围内:
  - 温度: 5°C ~40°C 高精度输出时的温度要求是: 23±2°C
  - 湿度: 20%~80% RH、无结露。 高精度输出时的湿度要求是: 50±10% RH

#### 提示

```
机器从温度低的地方移动到温度高的地方或急速改变周围温度时,将产生结露现象。
如果液体凝结在机器上,使用机器前一定要在稳定的环境下至少放置一个小时。
```

・通风

如果通风不好,机器可能会过热。要随时保持机器后面的排风口干净、通畅,不要挡住机器顶部和中部的通风孔。



- ・其它条件
  - 在平整的地方安装机器,详情如下:
  - •远离太阳光和其它发热源。
  - •远离油烟、蒸汽、灰尘、腐蚀性气体及其他污染物。
  - •远离强磁场。
  - •远离高压设备和电线。
  - •远离机械振动。

### 放置角度

可以水平放置机器,也可以让机器稍微向后倾斜,如下图所示。 倾斜放置时,将机器支架向前拉,直到适合的角度。如果表面太滑,需要加上后腿橡皮支 架(配件)。收起支架时,将其向内推至原位即可。



机架安装

有时候需要将机器安装到选配的机架固件上。 安装方法请参照机架说明书。 可用机架固件如下:

| 名称    | 型号        | 说明     |
|-------|-----------|--------|
| 机架安装件 | 751533-ЕЗ | EIA 单架 |
| 机架安装件 | 751534-E3 | EIA 双架 |
| 机架安装件 | 751533-J3 | JIS 单架 |
| 机架安装件 | 751534-J3 | JIS 双架 |

# 3.3 连接电源线

连接前....

连接电源线前,请仔细阅读安全信息。疏忽下述警告可能会导致触电或仪器受损。

- 合适的电源线可能会引起触电或火灾。
- •确保将电源线插在标准的带保护地线的3脚插座中。
- •禁止使用不接地的延长线。

连接

- 1. 确保前面板上的电源开关状态为OFF。
- 2. 将提供的电源线插进FG后面板上的电源接口。
- 3. 将电源线的另一端插入带接地保护的3脚插座中。接地插座要求如下:

额定电源电压: 允许电压范围: 额定电源频率: 允许电源频率范围: 最大电源功耗: 100 ~ 240 VAC 90 ~ 264 VAC 50 ~ 60 Hz 48 ~ 63 Hz 125VA



### 3.4 电源ON/OFF

### 开机前准备

•确保机器按上述3.2的要求正确安装。

•确保电源线按上述3.3的要求插在合适的插座里。

#### 电源开关

电源开关在前面板的左下方。开机时按一次,关机时再按一次。



### 开机初始化

- 开机后,机器将执行如下初始化检查:
- ・ROM校验测试
- DRAM校验测试
- 校正检查

检查期间,面板上的任何键都无效。初始化完成后,FG将显示主输出设置画面并可以开始 操作面板上的键。

#### 提示

- •如果未能成功启动机器,请关掉电源开关后执行如下操作:
  - 确认电源线是否连接正确,是否插牢。
  - •确认电源插座的电压是否符合要求(详见P3-4)。
- •确认断路器是否正确(详见P11-14)。
- 上述检查如还不能解决问题,请与横河公司联系。

提高精度...

如果要得到高精度的波形输出,开机后FG至少需要30分钟的预热时间。请保持周围环境 温度为23±2°C,周围湿度为50±10%RH。 (详细请见P3-2)

关机

关机后,FG保留最后一次设置,下次开机时会自动恢复最后一次设置。但是,所有的任 意波形数据和序列数据将不会被保存。如果您的机器配有软驱(仅限FG310和FD320),请在 关机前将所有重要信息保存到软盘中。

提示

关机后,内置的锂电池将支持所有的保留设置,电池寿命约为10年(周围环境温度为23°C时)。电池即 将耗尽时,FG可能会开始显示错误的日期和时间,或不能正确保存/调用机器设置。如发现此类问题,请参照P11-4进行机器自测。如果测试结果为低电池报警,请及时更换电池。电池必须由有资格 的服务工程师予以更换,届时请与横河公司联系。

# 3.5 波形输出

位置

波形输出端口在前面板的右下方,连接线必须有BNC连接头。

### FG220 / FG320的输出端口



### 输出端口规格

| 连接头类型:  | BNC                            |
|---------|--------------------------------|
| 连接头的数量: | FG210/FG310:1个; FG220/FG320:2个 |
| 最大输出电压: | 10V (空载时)                      |
| 输出阻抗:   | 正在输出时: 50Ω±1%; 不输出时为空载         |
| 接地:     | 接机箱的地线                         |
|         |                                |





• 输出端口禁止短路或直接接电压源,否则将损坏硬件。

提示

某些设置会导致输出电压大于±10V。此时,输出的波形可能无法与波形设置相匹配。





解释

可以从以下4种输出模式中任选其一:

CONT (连续)

当输出为ON时, FG将连续输出波形。

TRIG (触发)

FG接收到一个触发信号后,输出特定周期(脉冲周期)的脉冲信号,直到接到下一个触发信号后才会再开始输出信号。另外,还可以通过按[TRIG] 键进行触发。 此时需设置一个内部周期触发或从外部源输入一个触发信号。

触发源、脉冲周期、周期触发的具体设置,详见4.7(P4-9)。

触发输入和触发边沿选择详情请见9.1(P9-1)。





#### 触发输入和门极性选择详情请见9.1(P9-1)。

#### DC (直流电)

GATE (]])

当输出为ON时,FG将输出连续的DC信号,此信号输出将持续到中止输出或改变输出模式为止。

DC电压量程设定详情请见4.4 (P4-4)。

提示

- 改变输出模式时,FG将自动停止所有当前扫描、调制或序列输出。当输出设为扫描、调制或 序列输出时,FG自动将输出模式重设为CONT(连续)。
- 扫描或调制输出时, 主输出设置画面将显示XXX SWEEPING! 或 XXX MODULATING! (XXX分别指扫描项目或调制类型)。当切换至序列输出时, 屏幕将显示 SEQUENCE EXECUTING!(正在执行序列输出)。
- 用触发信号或门信号输出方波时, 其初始值是不稳定的。

# 4.2 选择输出波形



#### 设置对称性(三角波)或占空比(脉冲波)

选择三角波或脉冲波时,主输出设置画面将显示{SYMMETRY}或{DUTY}按钮。按下按钮后,可以通过以下方式设置数值。

- 用键盘输入需要的数值后按[%]。
- 将光标移到下一个需要设置的数值下面,然后用旋钮选择数值。重复以上操作直到所有数 值都设好(如果屏幕不能显示所有数值,可以将光标移至最右边,再按一下[>]键。



1/(输出-周期) (占空比-周期-设置) < 25ns
步骤



解释

#### 设置范围

无论哪种波形,频率均可设为1µHZ~15MHz。如果需要高精度的波形输出,频率不能超过200kHz(此限制不适用于正弦波和占空比为50%的方波)。

## 单位和精度

可选单位共有4种:mHz、Hz、kHz或MHz,精度取决于如何选择下述设置。但要注意,数值最大长度为9位,这与所选单位无关。

| 设置  | 单位            | 精度      |
|-----|---------------|---------|
| mHz | 0.001mHz      | (1µHz)  |
| Hz  | 0.000001Hz    | (1µHz)  |
| kHz | 0.00000001kHz | (10µHz) |
| MHz | 0.00000001MHz | (10mHz) |

#### 如何设置输出频率

设置输出频率的方法有以下两种:

- 用键盘输入频率数值([<]键可作退格键用),然后按适合的单位按钮({MHz}、 {kHz}、{Hz}或{mHz})。
- 用箭头键将光标移至要设置的数值下面,然后用旋钮设置数值(详见下图)。重复上述操作直到设完所有数值。如有必要,可以按单位按钮更改频率单位(如不能显示要设置的数值,可以将光标移至最右边,再按一次[>]键)。



#### 提示

- 两通道输出时如要改变频率,可以通过以下两种方法:
  - (1)暂时切断输出,将相位合在一起。
- (2)两个通道均保持连续输出状态。
- 详情请见10.1 (P10-1)。
- ·如何同时设置两个通道的输出频率,详见10.5 (P10-7)。

## 设置输出电压 4.4

步骤

通过振幅和偏置电压设置输出电压:



通过高/低电平设置输出电压:



OFF

TTL

LEVEL

4 设置TTL电平

PHASE

SYNC

UTIL

TRIG

DC信号输出时的DC电平:



解释

## 振幅: 单位、范围、精度

设为负数时,振幅将反向。

| 单位    | 设置范围         | 精度     |
|-------|--------------|--------|
| Vpp   | ±20Vpp       | 1mVpp  |
| mVpp  | ±20000mVpp   | 1mVpp  |
| Vrms  | ± 7.071Vrms* | 1mVrms |
| mVrms | ± 7071mVrms* | 1mVrms |

\* 型号是指正弦波的设置范围。方波与脉冲波的设置范围为 10Vrms; 三角波的设置范围为 5.774Vrms。单位Vrms与mVrms不能用于任意波形。两通道同时设置振幅时,也不能使用单位 Vrms与mVrms(详见P10-7)。

## 偏置:单位、范围、精度

| 单位 | 设置范围           | 精度  |  |
|----|----------------|-----|--|
| V  | $\pm 10V$      | 1mV |  |
| mV | $\pm 10000$ mV | 1mV |  |

## 高/低电平:单位、范围、精度

当高电平值比低电平值小时,振幅将反向。如果高/低电平之间的差异大于20V,FG则会把高/低电平间的差异调整到20V。

| 单位 | 设置范围           | 精度  |
|----|----------------|-----|
| v  | $\pm 20V$      | 1mV |
| mV | $\pm 20000$ mV | 1mV |

## TTL**电平设置**

设置TTL电平时,自动选择以下数值: 振幅: 5.000Vpp 偏置电压: 2.500V 高电平: 5.000V 低电平: 0.000V

## DC输出电平:单位、范围、精度

| 单位 | 设置范围           | 精度  |  |
|----|----------------|-----|--|
| V  | $\pm 10V$      | 1mV |  |
| mV | $\pm 10000$ mV | 1mV |  |

(接下页)

## 设置输出电压

可以按照以下2种方法设置输出电压:

- 1. 用键盘输入数值([<]键可作退格键用),然后选择相应的单位按钮。
- 用箭头键将光标移至要设置的数值下面,然后用旋钮设置数值(如下图所示)。重复以上操作,直到设置好所有数值为止。如有必要,也可以按单位按钮改变频率单位(如果不能显示所有设置数值,可以将光标移至最右边,再按一次[>]键)。



#### 提示

- •振幅/偏置电压的设置与高/低电平的设置紧密相连,改变任何一组的设置,另一组都会自动进行相应的更改。
- 设置的数值如果高于规定最大值或低于规定最小值,将被自动调整至规定最大值或规定最小值。
- 输出电压设置是对输出衰减为1/1且阻抗为HIGH时的输出电压进行设置。
- 在测量带偏置电压的波形幅值的RMS值时,测量结果的RMS值是去除偏置电压后波形的RMS值。
- 脉冲(如正弦波)高/低电平的中间点等于这些电平的平均值,这说明脉冲波的RMS值与波形的占 空比无关。
- •如果用RMS单位设置振幅,当改变波形类型后,此单位会自动变为Vpp。
- •两通道同步设置振幅和偏置电压的具体方法,详见10.5(P10-7)。
- 部分振幅与偏置电压的组合或SUM IN (偏置IN)与VCA IN (振幅控制)输入的组合将导致输出电压 超过±10V。电压超过此值时, FG可能无法输出精准的波形。

# 4.5 设置相位

步骤



解释

#### 范围和精度

范围: -10,000.00 deg ~ + 10,000.00 deg

## 精度: 0.01 deg

## 怎么使用相位设置

• **单通道输出时:** 

此设置决定着触发输出和门输出的开始/结束相位。

两通道输出时:
 此设置决定着触发输出和门输出的开始/结束相位,也决定着连续/触发/门输出时通道与
 通道间的相差。

#### 相位的设置

可以按以下两种方法设置相位:

- 1. 用键盘输入相位值([<]键可作退格键用),然后按{DEG}图标。
- 用箭头键将光标移至要设置的数值下面,然后用旋钮设置数值(详见下图),重复以上操作,直到设好所有数值(如果不能显示所有数值,可以将光标移至最右边,按[>]键)。



#### 两通道同步相位

在工具菜单中选择{SYNCHRO}图标,然后将CHANNEL SYNC(通道同步)设为"ON",这样可使两通道自动相位同步(仅限FG220/FG320)。但要注意,改变任何波形的频率后波形输出都将中断。解决方法是将CHANNEL SYNC(通道同步)设为"OFF"。再次同步相位时,按 {PHASE SYNC}鍵即可(在输出窗口中)。

详情请见10.1(P10-1)。

#### 提示

- 如果设置的值比规定最大值大或比规定最小值小, FG将自动把这些数值调为规定最大值或 规定最小值。
- •设置两通道同步相位的具体方法,详见10.5 (P10-7)。

# 4.6 设置输出衰减器;输出设为OFF

步骤



解释

#### 设置输出衰减器

设置电压时将输出电压设为1/10或1/100,分别按{1/10}或{1/100}。选择无衰减输出时按 {1/1}。如果选择{TTL LEVEL}输出,单位将自动变为1/1。

#### 将输出设为OFF

按{OFF}图标切断已选通道的波形输出,可以通过按{TTL LEVEL}图标或任何衰减器图标 来恢复输出。

## 在开机或输出初始化时强制将输出设为OFF。

以下操作可以把输出强制设为OFF:

- (1)开机时 (2)FG重新初始化时 (3)FG从内存中加载设置时
- 1. 按[UTIL]键调出工具菜单。
- 2. 按{CONFIG}图标调出配置窗口。
- 3. 按 {InitOUT} 图标,将初始化设为OFF。

| UTILITY      |                                  | ESC             | ן כ |                                       |
|--------------|----------------------------------|-----------------|-----|---------------------------------------|
| CONFIGURATIO | N<br>CONTRA-<br>ST 15<br>InitOUT | DATE/<br>TIME   |     | ————————————————————————————————————— |
| FREQ         | - DUAL SETTI                     | NG ————<br>DUTY |     |                                       |
| 🔲 AMPL       | OFFSET                           | SWEEP TIME      |     |                                       |

## 提示

出现低电压信号时,可以将衰减器设为1/10或1/100,这样可以得到优质的信号/噪音比。

# 4.7 设置触发源和脉冲周期

步骤



#### 脉冲 (脉冲周期)

允许周期为1~65,535周期。

TRIG INT/EXT (选择触发类型)

按{TRIG INT/EXT}图标可选择内部和外部触发。

设为"EXT"时,FG将只识别外部触发。另外还可以手动设置触发(按[TRIG]图标)或在触发 输入端口输入触发信号。端口的连接与触发边沿的选择,详见9.1。 设为"INT"时,FG将在特定的触发频率下,生成内部周期触发(详情如下)。

#### TRIG FREQ(触发频率)

内部触发时要设置触发频率。允许范围为1mHz~50,000kHz,分辨率为1mHz。

#### 设置脉冲周期和触发频率

- 可按以下两种方法进行设置:
- 用 键盘输入数值([<]键可作退格键用),然后按{cycles}图标(设置突发周期时)或按相应 频率单位图标(设置触发频率时)。
- 用箭头键将光标移至要设置的数值下面,然后用旋钮设置数值(详见下图)。重复上述操 作直到设完所有数值。如有必要,可以按屏幕中的单位图标改变单位(如果屏幕上未显 示所有可设置数值,可以将光标移至最右边生成保留数值,然后按[>]键)。



- 正在进行脉冲输出时,FG将不会响应触发(无论内部触发还是外部触发)。如果FG输出全脉 冲周期,将再次进行触发。
- 内部触发抖动为1.64s。

4

步骤



解释

可以选择以下4种扫描模式: REPEAT (**重复**) 重复地进行扫描。

SINGLE (单一)

每接到一次触发信号就扫描一次。

可以手动按[TRIG]键发出触发信号,也可以通过TRIG IN端口和GP-IB命令进行外部触发。

SINGLE & HOLD (单一&保持) 开始输出波形时不进行扫描。接到第一个触发信号后开始扫描一次,连续波形输出状态将 保持到此扫描完成。接到下一个触发信号后波形返回起始状态。发一个触发信号就开始一 次扫描,此过程可以重复操作。



## 提示

- 单一&保持扫描时,如果扫描时间≤26.1ms,扫描将达不到终值。FG将终值(保持值)维持在设置 值的0.2%之内。
- 在主输出设置画面选择、设置所有目标波形的参数(除了扫描参数),详见第4章。
- 扫描ON/OFF设置, 详见5.5 (P5-6)。

5

#### 设置扫描类型 5.2

步骤



解释

即线性扫描,可将扫描速率以0.01%的步长设为0%~100%(扫描速率详见P1-8)。



・ LINEAR STEP(线性阶梯) 即线性阶梯扫描,可将扫描阶梯段数设为2~100的整数,默认值为10。



即对数阶梯扫描,可将扫描阶梯段数设为2~100的整数,默认值为10。

FG300系列可以选择一个任意波形作为扫描模式。除了频率&振幅扫描项目外,都可以 选择任何任意波形(A1~A8)。当扫描项目是频率&振幅时,频率扫描和振幅扫描则将分 别自动选择A1和A2。

如何生成任意波形,详见第8章。

## 设置扫描速率和扫描段数

扫描类型是线性或对数时,扫描设置画面将显示{SWEEP RATIO}图标。扫描类型是线性 阶梯或对数阶梯时,扫描设置画面将显示{STEP}图标。设置时,按下相应图标并进行以下 任一操作。

- 用键盘输入数值, 然后按单位图标。
- •用箭头键将光标移至下一个要设置的数值下面,然后用旋钮设置数值。重复以上操 作直到设完所有数值。

## 提示

有关对数扫描的相关信息,详见附录2。

# 5.3 设置扫描项目

步骤



解释

## 选择扫描项目

可以选择以下6种扫描项目:

- FREQ (频率)
   扫描波形的频率。
- PHASE(相位) 扫描波形的相位。
- AMPL (振幅) 扫描波形的振幅。
- OFFSET (偏置)
- 扫描波形的偏置电压。 • DUTY(占空比)
  - 扫描波形的占空比。输出波形为脉冲波时才可选择此项。
- FREQ & AMPL (频率&振幅) 扫描波形的频率和振幅。选择任意波形时,FG将自动为频率扫描选择A1,为振幅扫描 选择A2。

## 设置扫描条件

根据所选扫描项目不同,可以多种条件设置。具体设置与步骤请见5.4。

提示

在主输出设置画面选择、设置目标波形的所有参数(除了扫描参数)。扫描参数的设置方法详见下页。

# 5.4 设置扫描条件

步骤

频率扫描时,屏幕显示如下:



• 振幅区域

范围: 0Vpp~40Vpp (正弦波: ±14.142Vrms; 方波/脉冲波: ±20Vrms; 三角波: ±11.547Vrms) 精度: 1mVpp 默认值: 4Vpp

#### 偏置扫描时,请按以下要求进行设置:

- 开始偏置(扫描类型为"任意"时,设为最小值)
   范围: -10V~+10V 精度: 1mV 默认值: -2V
- 结束偏置(扫描类型为"任意"时,设为最大值)
   范围: -10V ~+10V 精度: 1mV 默认值: 2V
- ・ 中心偏置
   范围: -10V~+10V 精度: 1mV 默认值: 0V
   ・ 偏置区域
  - 范围: 0V~20V 精度: 1mV 默认值: 4V

#### 占空比扫描时,请按以下要求进行设置:

- ・ 开始占空比
  范围: 0%~100% 精度: 0.01% 默认值: 10%
  ・ 结束占空比
- 范围: 0%~100% 精度: 0.01% 默认值: 90%
- 中心占空比
  - 范围: 0%~100% 精度: 0.01% 默认值: 50%
- 占空比区域
   范围: 0%~100% 精度: 0.01% 默认值: 80%

#### 频率&振幅扫描时

请按上述说明设置频率和振幅。

#### 设置扫描时间

扫描时间的范围、精度、默认值设置与其它扫描项目的设置相同。 范围: 1ms~1000s 精度: 10μs 默认值: 1s 注意: 重复模式下扫描抖动为1.6μs。

#### 确认设置

扫描设置画面显示已选扫描项目的图标。设置时,按相应图标后进行以下任一操作。

- 1. 用键盘输入数值([<]键可作退格键用),然后按相应单位图标。
- 用箭头键将光标移至需要设置的数值下面,然后用旋钮设置数值(详见下图)。重复以 上操作直至设置全部数值。如有必要,也可以按单位图标更改频率单位(如不能显示所 有数值,可以将光标移至最右边生成保持数值,然后再按一次[>]键。



- 每个扫描项目的开始/结束设置都与中心/区域设置有关。改变任何一组的设置后,另一组的设 置都将自动更改。
- 设置值大于规定最大值或小于规定最小值时, FG自动将设置值调为规定值。
- •任意波形扫描时,如果最小值大于最大值,扫描前FG将翻转波形的Y坐标。

# 5.5 扫描控制(ON/OFF/保持)







## 解释

## 扫描ON/OFF

{SWEEP ON/OFF}图标用于打开或关闭扫描。具体设置因扫描模式而异。

- •扫描模式为重复时,每按一次{SWEEP OFF/ON}图标,就打开或关闭一次扫描。
- 扫描模式为单一或单一&保持时,按{SWEEP ON}图标后使触发处于等待状态,当下 一个触发到来时启动扫描。按{SWEEP OFF}图标后关闭扫描。

开始扫描后,输出模式自动变为"连续",而调制与序列自动切换为OFF。

下述操作将导致扫描自动停止:

- 改变输出模式时
- 打开调制功能时
- 打开序列功能时

## 保持ON/OFF

按{HOLD OFF/ON}图标可设置或释放保持。保持功能同时应用于两个通道,而不能 仅为某一个通道设为保持。

## 扫描监测

按{MONITOR}图标后,屏幕将实时显示扫描项目及扫描过程中数值的变化。 如果观测功能为ON且扫描为保持状态,屏幕将显示现行扫描值(保持)。然后可以用旋 转按钮增加或减少扫描值。扫描切换为ON后,将从新值处重新开始扫描。

## 提示

SWP HOLD IN端口发出的外部信号可以控制扫描保持状态。无论按不按{HOLD ON/OFF}图标,当端口电平为HIGH时,都可以强制保持扫描。

# 5.6 设置扫描标记

步骤

频率扫描时,屏幕显示如下:



解释

频率扫描时,具体设置如下:

| ・开始标记                                                                           |
|---------------------------------------------------------------------------------|
| 范围: 1µHz~15MHz 精度: 1µHz (或9位) 默认值: 1kHz                                         |
| ・结束标记                                                                           |
| 范围: 1µHz~15MHz 精度: 1µHz (或9位) 默认值: 5kHz                                         |
| ・中心标记                                                                           |
| 范围: 1µHz~15MHz 精度: 1µHz (或9位) 默认值: 3kHz                                         |
| ・区域标记                                                                           |
| 范围: 0µHz ~ 15MHz  精度: 1µHz (或9位)  默认值: 4kHz                                     |
| 相位扫描时、具体设置如下。                                                                   |
|                                                                                 |
| 范围: -360deg ~ +360deg   精度: 0.01deg   默认值: 0deg                                 |
| • 结束标记                                                                          |
| 范围: -360deg~+360deg 精度: 0.01deg 默认值: 90deg                                      |
| · 中心标记                                                                          |
| 范围: -360deg~+360deg 精度: 0.01deg 默认值: 45deg                                      |
| <ul> <li>・标记区域</li> </ul>                                                       |
| 范围: 0deg~720deg 精度: 0.01deg 默认值: 90deg                                          |
| 疟植灼带 目体沿黑加下                                                                     |
| 城相扫油,关件这里如下:<br>。 工地标记                                                          |
| • 开知你吃<br>英国: + 2017mm (正弦速: + 2,0711/mm): 古速/脸冲速: + 101/mm): 二条速: + 5,2741/mm) |
| 地面、エ200pp(正弦波、エ7.0/10/mis, 万波/亦冲波、エ100/mis, 二用波、エ3.//40/mis                     |
| 有度:1mvpp 款认追:1vpp                                                               |
|                                                                                 |
| 范围: ±20Vpp(止弦波: ±/.0/1Vrms; 万波/脉冲波: ±10Vrms; 三角波: ±5.//4Vrm;                    |
| 精度: Imvpp 默认值: 3 vpp                                                            |
|                                                                                 |
| 1011111111111111111111111111111111111                                           |
| 精度: 1m∨pp 默认值: 2∨pp                                                             |
|                                                                                 |

(下页继续)

5-7

• 区域标记

范围: 0~40Vpp (正弦波: ±14.142Vrms; 方波/脉冲波: ±20Vrms; 三角波: ±11.547Vrms) 精度: 1mVpp 默认值: 2Vpp

偏置电压扫描时,具体设置如下:

- 开始标记
- 范围: -10V~+10V 精度: 1mV 默认值: -1V • 结束标记
- 范围: –10V ~ +10V 精度: 1mV 默认值: 1V
- ・中心标记
   范围:-10V~+10V 精度:1mV 默认值:0V
   ・区域标记
  - 范围: 0V~20V 精度: 1mV 默认值: 2V

#### 占空比扫描时,具体设置如下:

- 开始标记
  范围: 0%~100% 精度: 0.01% 默认值: 10%
  结束标记
- 范围: 0%~100% 精度: 0.01% 默认值: 50%
- 中心标记
   范围: 0%~100% 精度: 0.01% 默认值: 30%
- 区域标记 范围: 0%~100% 精度: 0.01% 默认值: 40%

#### 标记设置

选好扫描项目后,扫描设置画面将显示相应的图标。设置数值时,按相应的图标后, 执行以下任一操作即可。

- 1. 用键盘输入数值([<]键可作退格键用),然后按相应的单位图标。
- 用箭头键将光标移至要设置的数值下面,然后用旋钮设置数值(详见下图)。 重复以上操作直到设置好所有数值为止。如有必要,也可以按屏幕中的单位图标更改 单位(如果不能显示所有数值,可以将光标移至最右边并生成保留数值,再按一次[>] 键)。



#### 输出扫描标记信号

输出扫描标记信号的相关信息,详细请见9.6(P9-7)和9.10(P9-14)。

#### 提示

- •频率&振幅扫描时,FG不能输出扫描标记信号。以下情况除外:当扫描类型为"任意"时,FG可以 输出任意波形A1的扫描标记信号(频率扫描)。
- 每个扫描项目的开始/结束设置都与中心/区域设置有关。改变任何一组的数值,另一对都 将自动更改其数值。
- 当设置的数值高于规定最大值低于规定最小值时,FG将分别自动把数值调整为规定最大值或规定 最小值。
- •如果标记设置值超过实际扫描范围,FG将不会输出标记信号。

## 6.1 设置调制类型

步骤



解释

## 设置载波

在主输出设置画面(按[WAVE]键)设置载波。其步骤与设置非调制输出波形一样,详情请见第4章的设置指南。在调制设置画面可以直接设置或改变载波调制特性的数值,具体方法如下:

## 选择调制类型

可以选择以下几种调制类型:

- AM (振幅调制)
   可以在调制设置画面设置载波振幅。
- DSB-SC AM (双边带抑制载波振幅调制) 可以在调制设置画面设置载波振幅。
- FM (频率调制)
   可以在调制设置画面设置载波频率。
- PM (相位调制) 可以在调制设置画面设置载波相位。
- PWM (脉宽调制)
   脉冲波调制(占空比调制)只有在载波为脉冲波形时适用。可以在调制设置画面设置载 波占空比。
- OFFSET 可以在调制设置画面设置载波偏置。

#### 提示

调制ON/OFF切换详情请见6.3(P6-3)。

# 6.2 选择调制器波形

步骤 3 调出调制功能窗口 1 选择通道 CH CH1 ESC MODULATION FUNCTION WAVE SWEEP Л 62 MOD 2 调出调制设置画面 **A**5  $\sim \sim$ UTIL ΔI +-----TRIG 4 选择调制器波形 解释 选择调制器波形 可以选择以下4种调制器波形 正弦波 三角波 对称性设为0.00%~100.00%,详情如下。 Л 脉冲波 占空比设为0.00%~100.00%,详情如下。 +\*\*\* 任意波形A1~A8 (仅限FG310/FG320) 如何生成任意波形,详见第8章。 设置对称性(三角波)或占空比(脉冲波) 已选调制波形是三角波或脉冲波时,主输出设置画面将分别显示{SYMMETRY}图标或

已远调制波形是二角波或脉冲波时,主制出设置画面将分别显示{SYMMETRY}图标 {DUTY}图标。按相应图标,然后用下列方法之一设置数值。

- •用键盘输入数值,然后按{%}图标。
- 用箭头键将光标移至要设置的数值下面,然后用旋钮选择数值。重复以上操作直到设完 所有数值为止。





调制器波形抖动为1.64s。

# 6.3 设置调制参数;调制ON/OFF切换



解释

#### 设置调制参数

每种调制类型都有一个可以决定调制程度的参数。

| •AM: 幅度             |              |            |  |  |
|---------------------|--------------|------------|--|--|
| 范围:0%~100%          | 精度: 0.01%    | 默认值: 50%   |  |  |
| ・FM: 偏差             |              |            |  |  |
| 范围: 0MHz ~ 7.5MHz   | 精度: 0.001mHz | 默认值: 100Hz |  |  |
| ・PM: 偏差(相位偏差)       |              |            |  |  |
| 范围: 0deg ~ 360deg   | 精度: 0.01deg  | 默认值: 90deg |  |  |
| ・PWM: 偏差(占空比偏差      | <b>E</b> )   |            |  |  |
| 范围:0%~50%           | 精度: 0.01%    | 默认值: 10%   |  |  |
| ・OFFSET: 偏差(偏置电压偏差) |              |            |  |  |
| 范围: 0V~10V          | 精度:1mV       | 默认值:1V     |  |  |

#### 设置载波调制特性数值

除了可以在主输出设置画面中设置所有的载波参数,还可以直接在调制设置画面中设置或 调整载波的调制特性参数。可调载波参数因调制类型而异,详情如下:

| ・AM → 载波振幅        | ・PM → 载波相位     |
|-------------------|----------------|
| ・DSB-SC AM → 载波振幅 | •PWM → 载波占空比   |
| ・FM → 载波频率        | ・OFFSET → 载波偏置 |

#### 设置参数

调制设置画面显示已选调制类型的图标。按相应图标,然后用以下方法之一设置数值:

- 用键盘输入数值, 然后按单位图标。
- 将光标移至要设置的数值下面,用旋钮选择数值。重复以上操作直至设完所有数 值。

#### 调制ON/OFF切换

用{MODULATE ON/OFF}图标可以设置调制ON或OFF。当调制为ON时,输出模式自动变为"连续",扫描和序列将自动关闭。改变输出模式或开始扫描/序列后,调制将自动变为 OFF。

当调制为ON时,任何载波参数的更改都将无效。除非将调制切换成OFF然后再设为ON。

## 7.1 通过序列编辑器设置序列(仅限FG310/FG320)

步骤



按[UTIL]键后显示工具菜单,然后按{SEQ}图标显示序列窗口(详见下图)。

解释

#### 设置输出波形和衰减器

在主输出设置画面(按[WAVE]键)选择输出波形并设置衰减器。每次开始序列输出后,输 出模式都会自动变为连续。 **输出波形的设置,详见**4.2(P4-2)。输出衰减器的设置,详见4.6(P4-8)。

#### 设置序列参数

序列的每个步骤都包括6个参数,占一个页面。每个序列可以设256步。除了序列标记 外,所有参数的范围、精度、默认值请见4.2~4.5。

序列标记输出的详细信息请见9.6和9.10。



(下页继续)

7

## 序列编辑的重要信息

- 第1页空白时按{ENTER}图标, FG将自动设置参数, 与在主输出设置画面中设置波形参数相同。
- 没编辑完页面就结束编辑的话,此页面内所有已设置项目都将无效。
- 一个或多个参数空白时按{ENTER}图标, FG将自动拷贝前一页的相应参数值。
- 跳到指定页面:将光标移至页面显示区,用键盘输入希望的页面编号,然后按 {ENTER}图标。
- 输入指数: 按{EXP}图标, 然后用键盘输入指数值("+"或"-", 后跟一个个位数)(例如: 2.00000E+3)。

## 7.2 输出序列(仅限FG310/FG320)

步骤

序列输出为ON时,屏幕显示如下:



跳到下一序列

解释

#### 序列输出ON/OFF切换

按{SEQUENCE ON/OFF}图标一次后即开始序列输出。输出第一步的信息后屏幕将显示上 图中的当前步骤的参数。再按一次{SEQUENCE ON/OFF}图标后可将序列切换为OFF,如 P7-3上图所示,屏幕也可以切换回去。

序列设为ON时,输出模式自动变为"连续",而扫描和调制则自动切换为OFF。改变输出 模式或切换为扫描/调制输出时,序列输出将自动切换为OFF。

#### 跳到下一序列

按[TRIG]键,或者向触发端口发出触发信号,或者发出GP-IB \*TRG命令,都可以跳到下一序列(通过TRIG IN/GATE IN端口控制输出的详细信息请见9.1)。

#### 提示

将序列输出设为ON时,主输出设置画面将显示"SEQUENCE EXECUTING!"信息。

## 7.3 保存、加载、删除序列数据文件 (仅限FG310/FG320)

## 步骤

在序列窗口(详见P7-1)按{FILE}图标后,FG显示文件窗口,详见下图。下图显示的是FG 软盘中保存的序列文件的名称。



## 解释

## 保存或加载文件...

在序列窗口按{FILE}图标前,请插入相应的软盘。 没插软盘就按{FILE}图标的话,FG会提示错误信息"无软盘,请插入软盘"。 看到此信息时,请按{OK}图标,并插入相应软盘,然后再按一次{FILE}图标。

## 将数据保存至文件

要保存在序列窗口选中的数据时,按{SAVE}图标即可。此时,FG将显示下图所示文件/保存窗口。输入由1-8个数字和字母组成的文件名。用下图显示的字母图标输入字母,用键 盘输入数字即可,[<]键可作退格键用。

上述设置完成后,按{ENTER}键将数据保存到软盘。FG将生成一个文件,将数据保存到 此文件后返回文件窗口。

FG将自动为文件添加扩展名".CSV"。所有文件都将保存在序列目录下。

| ~                 |           |
|-------------------|-----------|
| SEQUENCE ESC ]    | 返回文件窗口    |
| FILE/SAVE         |           |
| FILE NAME SEQ0012 | 文件名输入     |
| ABCDEFG           |           |
| HIJKLMN           |           |
| O P Q R S T U     |           |
| UWXYZ/_ENTER      | 生成文件并保存数据 |
|                   |           |

#### 加载一个序列文件

1.将保存着文件的软盘插入软驱。

- 2.在序列窗口按{FILE}图标后,出现文件画面。文件画面将显示软盘序列目录下的所 有".CSV"文件。
- 3.用旋钮选中要加载的文件。

4.按 {LOAD}图标, FG加载文件并返回序列窗口。

#### 序列文件格式

序列信息以文本形式出现,此格式经常被用于工作表和数据库。每步的数据按下列顺序 被保存下来:频率、相位、振幅、偏置电压、占空比、标记。

外部生成一个序列数据文件时,也必须使用此格式。将外部生成的数据保存到软盘时,应确保将文件保存在"序列"目录下,并给文件添加".CSV"扩展名。

| 频率 | 相位 | 振幅 | 偏置电压 | 占空比 | 标记 |
|----|----|----|------|-----|----|
|----|----|----|------|-----|----|

1.00000E+3,0.000,10.0000,0.0000,50.00,0

2.00000E+3,0.000,10.0000,0.0000,50.00,0

3.00000E+3,0.000,10.0000,0.0000,50.00,0

#### 删除一个或多个序列文件

- 1. 将存有数据的软盘插入驱动器。
- 2. 在序列窗口按{FILE}键后出现文件画面。此画面将显示所有在软盘序列目录下的 ".CSV"文件。
- 3. 用旋钮选中要删除的文件,按{DELETE SET}图标为此文件作个标记。此时,文件的 左边将出现一个星号 (\*),这就表示此文件已被做好删除标记,详情请见下图。
- 4. 要删除多个文件时, 重复上述(3)的操作。如果标记错了文件或要取消标记时, 将光标移至该文件处, 再按一次{DELETE SET}图标即可。
- 5. 按{DELETE EXEC}图标执行删除,就可以删除所有的被标记文件。

|      | NAME | DATE     |
|------|------|----------|
| ×AAA | .CSV | 94.12.26 |
| ecc  | 190  | 94 12 65 |

提示

执行上述操作时,如果显示错误信息,请参见11.1 (P11-1)。

# 8.1 加载波形数据(仅限FG310/FG320)

## 步骤

- 1. 将存有波形数据的软盘插入软驱。
- 2. 按[UTIL]键调出工具菜单。
- 3. 按{ARB}图标调出ARB窗口。
- 4. 按{ARB NO.}图标打开ARB NO.窗口(任意波形选择窗口)。



5. 选择要加载的目标文件



6. 按{FILE}图标(ARB窗口)调出文件窗口。



8

- 7. 用旋钮选择中要加载的文件。此时屏幕上当前被选文件呈高亮状态(如果 文件是在另一个系统中生成的,则应该先按{C. DIR}图标切换到包含此文件的目录 里)。
- 8. 按{LOAD}图标加载。



软盘中的波形文件名称 用旋钮选择目标文件

#### 修改(裁剪或规划)加载的波形...

9. 按{MODIFY}图标调出修改窗口。



#### 裁剪波形...

10. 设置开始位置时,按{X START CURSOR}图标后将光标移至希望的开始位置。设置结束位置时,按{X STOP CURSOR}图标后将光标移至希望的结束位置。可以用旋钮或 左右箭头键(精度更高)移动光标。每按一次箭头键,光标只移动一个点。



11. 设置好位置后, 按{X CLIPPING}图标可以裁剪波形范围。 规划波形...

12. 按{Y NORMALIZE}图标。



解释

#### 兼容波形数据

FG310和FG320可以加载以下任何横河设备生成的波形数据。此处未提及的设备是否兼 容,请与横河公司联络。

• 所有任意波形发生器(文件扩展名为".WDT")

• 数字示波器DL4000系列和DL5000系列(文件扩展名为".WVF")

• 示波记录仪ORM系列OR1400(文件扩展名为".DAT")

FG310和FG320总是将波形储存到FG-WAVE目录下,但其它类型的设备却未必。加载 其它类型设备生成的数据文件时,必须先选择合适的目录(上述步骤的第7步)。具体操 作方法如下:

- 1. 用旋钮选择"<..>"文件。
- 2. 按{C.DIR}图标移至根目录。
- 3. 用旋钮选择包含目标文件的目录。
- 4. 按{C. DIR}图标显示已选目录中的文件。

#### 任意波形的最大数

FG内部存储器最多可以保存8个任意波形(A1~A8)。

#### 修改波形数据

可对加载的波形进行(1)裁剪,(2)规划

#### ・裁减波形

通过此功能可以选择和展开波形的任意一段。首先,设好希望的开始点与结束点,然后 按{X CLIPPING}图标执行操作。FG将放弃被选区域以外的波形,然后沿X轴拉长已选 波形区域,此段波形将和原波形一样。

・规化波形

通过此功能可以沿Y轴方向展开波形,使其最大值与最高点匹配,最小值与最低点匹配。波形规化可以提高信噪比(S/N ratio)。

#### 提示

在键盘上按0或1(FG如配有外部扫描控制选件,则按0~7)后,可以改变已选波形区域的标记值(上述 步骤10)。

# 8.2 从文本数据生成任意波形(仅限FG310/FG320)

## 步骤

- 1. 按[UTIL]键调出工具菜单。
- 2. 按{ARB}图标调出ARB窗口。

定义区域…

3. 按{AREA DEFINE}图标调出区域定义窗口。



4. 设置最大X值和最大最小Y值。

| ARE ARB NO I    | —— 返回ARB窗口             |
|-----------------|------------------------|
| Xmax 1.00000E+0 | —— 选择最大X值              |
| Ymin 10.0000E+3 | —— 选择最小Y值              |
|                 | —— 选择最大Y值<br>—— 确认教字设置 |
|                 |                        |



5. 设置完所有数值以后,按{ESC}图标返回ARB窗口。

## 输入文本数据...

6. 按{TEXT EDIT}图标调出文本编辑窗口。



 7. 输入X/Y轴相应值和每个点的标记值。 (详细信息请见P8-6的"生成文本数据"。)



## 选择插补方式…

- 8. 按{INTERPOLATE}图标调出插入窗口。
- 9. 选择插补方式。



## 说明

#### 定义区域

X轴沿波形方向显示不同的相位,在0点与X最大值之间定义一个波形周期,这与此任意波 形是否用作输出波形、扫描波形或调整波形无关。

Y轴显示输出电压。当某波形被用作输出波形时,Y轴最小值与最大值将分别与波形的高/ 低电平电压相匹配。作为扫描波形时,这些设置值将作为扫描参数中的最大最小值。作为 调整波形时,这些设置值将作为最大负向/正向偏差。

X{ss}max{/ss}的设置范围: -999.999E+9 to +999.999E+9

Y{ss}min{/ss}的设置范围: -999.999E+9 to +999.999E+9

Y{ss}max{/ss}的设置范围: -999.999E+9 to +999.999E+9

Ymax



X最小值总是0

#### 生成文本数据

用文本数据在波形上定义各个独立的点(X, Y轴相应点),同时也在每个点上定义输出用的标记值。如果此波形被用作输出波形,每个标记都会定义一个事件输出值(0或1;配有外部扫描控制选件的话则是0~7)。如果此波形被用作扫描波形,每个标记都有一个扫描标记电平(0为低电平,1为高电平;配有外部扫描控制选件的话则是0~7)。

在每个任意波形上最多可以定义256个点,从左至右定义(从X最小值到X最大值)。每个连续的点值必须比前一个点值大。如要退后并插入一个低X值点,用旋钮选中比希望的点值 大的点,然后按{INS LINE}图标直接插入一个新的点。



提示

从CH1 MARKER OUT端口输出标记时,详情请见9.6(P9-7)。 从DIGITAL CTRL I/O接口输出标记时,详情请见9.10。

## 生成和加载外部定义的文本数据

为将数据加载到FG,要在外部编辑器或电子表格里生成波形定义数据(文本定义)。输入数据时请使用下述格式:

| AR       | EA<br>nov V    | / min V max | r. |  |
|----------|----------------|-------------|----|--|
| DATA     |                |             |    |  |
| X1<br>X2 | ,Y1,N<br>,Y2,N | 41<br>42    |    |  |
| :        | :              | :           |    |  |

Xn, Yn, Mn分别代表X轴、Y轴和标记值的点n。将文件保存在软盘中,放在"TEXT"**目录下**。要确保文件的扩展名为".CSV"。

加载数据时,要将软盘插到FG软驱里。调出ARB窗口,按{TEXT EDIT}图标打开文本编辑窗口,然后按{FILE}图标。用光标选择想要的文件,然后按{LOAD}图标。



## 选择插补方式

插入法决定着FG怎样连接相近的点并生成最终的波形文件。可以选择以下任何一种方法:

- ・LINEAR: 直线连接法
- ・STEP: 阶梯式连接法
- RELAX SPLINE: 张弛线法,用自由终点的线条连接。
- PERIOD SPLINE: 周期样条法,用周期性的线条连接(由平滑线连接终点与起点)

## 8.3 保存、删除波形和文本文件 (仅限FG310/FG320)

步骤

保存/删除波形

调出ARB窗口(详见P8-1)后按{FILE}图标。文件窗口显示如下:



此文件已被作了删除标记

#### 保存/删除波形文本数据

调出ARB窗口,按{TEXT EDIT}图标打开文本编辑窗口,然后按{FILE}图标。 文本编辑窗口显示如下:



文件前面的"\*"表示此文件已被作了删除标记

## 解释

## 准备

将软盘(保存或删除文件)插入软驱。 有关软盘操作等的相关信息,详情请见10.2。

#### 保存一个波形或文本数据到文件

按{SAVE}图标后,将出现下面的文件/保存窗口。输入一个由数字和字母组成的8个字符 的文件名,然后按字母图标输入字母,用键盘输入数字,[<]键可用作退格键用。 完成上述操作后,按{ENTER}图标将数据保存到软盘里。FG将生成一个文件,将数据写 入文件,然后返回之前的文件窗口。

FG自动为波形文件指定扩展名".WVF",为文本文件指定扩展名".CSV"。

|                                           | )                |
|-------------------------------------------|------------------|
| ARB NO.                                   | 返回文件窗口           |
| TEXT EDIT>FILE_SAVE<br>FILE NAME ARB00001 | 輸入文件名            |
| A B C D E F G                             |                  |
| HIJKLMN                                   |                  |
| O P Q R S T U                             |                  |
|                                           | └───── 生成文件并保存数据 |
|                                           | J                |

#### 删除波形或文本文件

- 1. 将存有要删除文件的软盘插入软驱。
- 2. 在 ARB窗口 (删除波形文件)或 文本编辑 窗口(删除文本文件)按{FILE}图标后, 跳出相应的文件窗口。
- 3. 用 旋 钮 选 中 要 删 除 文 件 的 文 件 名 , 按 {DELETE SET} 图标给这个文件做个标 记。文件名左边的星号(\*)表示此文件已被作好删除标记,详见下图。
- 4. 如果还要标记其他文件, 重复上述(3)的操作即可。标记错误或取消标记时, 选中该文件后再按一次{DELETE SET}图标即可。
- 5. 按{DELETE EXEC}图标删除所有的被标记文件。

|      | NAME | DATE     |
|------|------|----------|
| ×ÁÁA | .CSV | 94.12.26 |
| CCC  | 1194 | 94 12 85 |

提示

在执行上述操作过程中出现错误信息时,处理详情请见11.1(P11-1).

# 9.1 通过TRIG/GATE输入控制波形输出

本章主要介绍如何通过外部触发或门信号来控制波形输出。尤其,可以通过门信号控制脉 冲输出,还可以通过触发信号控制脉冲输出、单一扫描、单一&保持扫描、序列输出。触 发信号和门信号应该符合下列规格。

#### 触发/门触发输入规格

输入电平: TTL电平 无损输入电压: -10V~+15V输入 阻抗: 至少1kΩ



注意

输入端口电压不宜过高,否则将损坏机器。

输入端口和电路

TRIG IN/GATE IN端口在机器的后面板上,此端口可用于触发输入和门输入。



•



时序图



通过触发输入控制序列输出



- •振幅和偏置扫描需要5µs的建立周期。
- 扫描/序列输出的触发抖动为1.6µs。

## 相关参数

触发/门输入需要合适的参数设置,相关参数设置如下:

#### 输出模式(详见P4-1)

通过触发输入控制脉冲时,要将输出模式设为TRIG。通过门输出控制脉冲时,要将输出模式设为GATE。

#### 触发源与脉冲周期(详见P4-9)

通过触发输入控制脉冲:将触发类型设为INT或EXT (内部或外部),然后设一个脉冲周期 值(BURST)。

## 触发沿、门信号极性

1. 按[UTIL]键调出菜单。

2. 按 {TRIG SLOPE} 图标调出触发沿窗口。



 选择适合的触发沿或门极性,此设置决定着触发信号在触发脉冲的哪个 边沿发生触发。门输入时,此设置可以选择正逻辑或负逻辑。

|               | ESC     |               |
|---------------|---------|---------------|
| TRIGGER SLOPE |         |               |
|               | <b></b> | 选择下降沿触发和负逻辑电平 |
|               |         |               |
|               |         | J             |

#### 选择上升沿触发和正逻辑电平

#### 提示

- 触发/门极性信号通过人工触发信号来使输出复位(就像通过{TRIG}发生触发信号一样)。这就意味着当TRIG/GATE IN设为HIGH时, {TRIG}图标无效。
- 切换触发边沿参数可能会导致发出错误的触发信号。
- 触发/门出入不限定通道,两个通道都可以接受输入。
- 触发/门输入时,屏幕的右上角会出现"TRIG"图标。

# 9.2 通过SWP HOLD输入保持扫描

SWP HOLD输入时,发出扫描-保持信号即可保持扫描。此信号应该符合下列规格。

## 扫描-保持输入规格

输入电平:TTL电平 无损输入电压:-10V~+15V 脉宽:至少2ks 输入逻辑:正逻辑 输入阻抗:至少1kΩ





•输入端口电压不宜过高,否则将损坏机器。

## 输入端口

输入端口位于机器的后面板上。



输入电路



时序图



振幅与偏置扫描需要5µs的建立周期。

相关参数

在扫描设置画面中按{HOLD ON/OFF}图标后可以保持扫描。图标为ON或执行输入后(逻辑OR),都将保持扫描。有关扫描保持的详细信息,请见5.5(P5-6)。

提示

- 扫描保持时间抖动约为1.6<sup>µ</sup>s。
- 扫描保持将影响两个通道,仅一个通道无法保持扫描。另外还要注意,通过外部扫描控制选件控制扫描时,不能使用扫描保持输入。

9

# 9.3 通过SUM IN输入增加输出偏置电压

通过SUM IN输入可以给输出波形增加偏置电压。此电压将代替波形的内部偏置设置(如 有)。输入信号应该符合下列规格:

## 偏置电压输入规格

额定输入电压: ±10V输入带宽: 100kHz (-3dB) (typ)

无损输入电压: ±35V 输入阻抗: 约20kΩ





• 输入端口电压不宜过高,否则将损坏机器。

输入端口

输入端口位于机器的后面板上,支持偏置电压输入和VCA输入。



时序图



设置

1.按[UTILITY]键调出工具菜单。
 2.按{SUM/VCA}图标调出SUM/VCA窗口。

UTILITY STORE/ RECALL INIT COPY TRIG CONFIG SYNCHRO SLOPE OPTION SELF SUM/VCA 调出SUM/VCA窗口 CONTROL TEST ſĒ Ē 3.按接收偏置电压通道的{SUM}图标。

UTILITY 返回工具菜单 ESC sum/vca CH1 OFF SUM VCA 给通道1加外部偏置电压 CH2 OFF SUM VCA 给道2加外部偏偏置电压 提示 •如要通道接收SUM IN信号,在主输出设置画面(详见P4-4)中设置的所有内部偏置电压都将被自动 取消。如果输出模式为DC, FG将输出SUM IN信号,内部设置的DC电压将被忽视。

<sup>•</sup> 偏置输入不能和偏置扫描、偏置调制或序列输出一起使用。


# 9.5 CH1 SYNC OUT端口的用法

通道1输出时, CH1 SYNC OUT端口输出TTL电平信号。端口的输出规格如下:

## CH1 SYNC OUT规格

输出电平: TTL电平 输出阻抗: 约50Ω(串联端子)



注意

• 输入端口电压不宜过高,否则将损坏机器。

• 不要让端口短路或接到小于1k Ω 的负载上, 否则将损坏机器。

## 输出端口

输出端口位于机器的后面板上。



## 输出电流



## 9.6 CH1 MARKER OUT端口的用法

CH1 MARKER OUT端口输出通道1的扫描标记和序列标记,详情如下。 端口的输出规格如下:

#### CH1 MARKER OUT规格

输出电平: TTL电平 输出阻抗: 约50Ω(串联端子)



注意

• 输入端口电压不宜过高,否则将损坏机器。

•不要让端口短路或接到小于1k Ω 的负载上,否则将损坏机器。

输出端口

输出端口位于机器后的后面板上。



#### 输出电路



时序图

输出CH1扫描标记时

当扫描值在结束点与开始点之间时,标记信号为HIGH ("1")。其他情况下,均为LOW ("0")。



9

#### 标记输出的相关参数

扫描标记参数(详见P5-7)

用开始/结束或中心/区域参数设置HIGH标记输出时需要的扫描范围。在此范围外扫描 时,将输出LOW标记。



#### 设置开始或中心标记

任意波形扫描时的扫描标记(详见P8-2和P8-6)

在修改窗口中设置标记。用光标选好区域后,通过键盘输入[0]或[1]选择此区域的标记级别。

光标



也可以在文本编辑窗口选择标记级别。将光标移至MKR栏,然后在键盘上按[0]或[1]。

标记设置

| ARB NO.<br>AI             | ESC |
|---------------------------|-----|
|                           |     |
| 2 200.000E-3 10.0000E+3 0 |     |

#### 序列标记(详见P7-1)

将每步的标记值设为1(HIGH)或0(LOW)。

|        |            |     | , . <b>.</b> |
|--------|------------|-----|--------------|
| PAGE   | 1          | ∕6  |              |
| FREQ   | 1.00000E+3 | Hz  |              |
| PHASE  | 0.00       | deg |              |
| AMPL   | 10.000     | Vpp |              |
| DFFSET | 0.000      | Ŷ   | 序列标记         |
| DUTY   | 0.00       | N   |              |
| MARKER | 0 -        |     | 任由立区域→ [0]   |
|        |            |     |              |

#### 提示

使用外部扫描控制选件(可用3位标记)时,CH1标记输出只反映标记值的最低位。

## 9.7 CH1 SWP OUT端口的用法

CH1 SWP OUT端口可以输出通道1扫描或调制信号。端口的输出规格如下:

## CH1 SWP OUT规格

输出电平: ±10V 输出阻抗: 约50Ω(串联端子)



注意

- 输入端口电压不宜过高,否则将损坏机器。
- 不要让端口短路或接到小于1k Ω 的负载上, 否则将损坏机器。

## 输出端口

输出端口位于机器的后面板上。



时序图

#### 输出CH1扫描信号时

扫描时电压线性上升,开始于-10V结束于+10V。





## 9.8 多台机器间的连接与同步

一次性可以相互连接8台函数发生器并使其同步运行。连接机器是通过OPER SYNC IN 和OPER SYNC OUT端口。设置连接与具体操作如下:



OPER SYNC IN和OPER SYNC OUT端口位于机器的后面板上。请用并联连接线#705926 (长为1m)连接每台机器。如果用错了连接线,设置将不能正常运行。







时序图



触发操作(单一扫描、单一&保持扫描或序列输出)抖动为1.64%。

## 设置同步操作

1.按[UTIL]键调出调出菜单。

2.按 {SYNCHRO}图标调出同步设置窗口



3.按{MASTER}图标将FG设为主机,或按{SLAVE}图标将其设为从机。设好后,通道同步设置(详见P10-1)将自动变为"ON"。



提示

- 在主机输出窗口中按{PHASE SYNC}图标后,可以强制几台相连的FG同步相位输出。改变任何 一台从机的输出设置后,都要强制执行同步,因为这些改变将导致机器无法继续同步。详细操 作信息请见10.1 (P10-1)。
- 连接FG前,如果将其中一台设为同步输出,则此机器可能无法正确操作。

## 9.9 SWP CTRL IN (/R1选件)模拟扫描控制的用法

向SWP CTRL IN端口发一个模拟信号,可以从外部控制扫描。 信号规格如下:

## SWP CTRL IN规格

 額定输入: ±10V
 输入帯宽: 80kHz (-3dB) (typ)
 无损输入电压: ±35V
 输入阻抗: 约20k Ω



注意

• 输入端口电压不宜过高,否则将损坏机器。

输入端口

输入端口位于机器的后面板上。

SWP CTRL (0)¥ ± 10V A

### 时序图

输入电压的开始值为-10V,结束值为+10V。输入如何控制开始频率为1kHz、结束频率为 10kHz的频率扫描,详情如下图所示。

| 扫描控制输入 |            | 10V<br>-10V |
|--------|------------|-------------|
| 波形輸出   |            | 10 V        |
|        | 10kHz 1kHz |             |

### 设置

1.按 [UTIL]键调出工具菜单。

2.按 {OPTION CONTROL}图标调出R1选件控制设置窗口。



4.按 {ANALOG}图标。



选择模拟输入控制

## 扫描设置

扫描参数的设置详情请见第4章。使用模拟扫描控制时,推荐进行如下设置,以确保在--10V时开始扫描,在+10V时结束扫描。 扫描类型:线性 扫描速率:100%

#### 注意

SWP CTRL IN端口也可用作控制调制输出或序列输出。调制输出时,输入值-10V将生成最大负电压,而输入值+10V将生成最大正电压,-10V对应第1步,而+10V对应第256步。

## 9.10 DIGITAL CTRL I/O (/R1选件)的用法

通过数字控制输入/输出端口可以输入扫描和序列地址,也可以输出标记值和事件值。 输入/输出规格详情如下:

#### 序列/扫描地址输入规格

位数:8 无损输入电压:-10V~+15V 输入电平:TTL电平输入阻抗:至 $0^{1k\Omega}$ 

扫描时钟输出规格

输出频率: 628.292kHz 输出电平: TTL电平 输出阻抗: 约100 <sup>Ω</sup>(串行端子)

标记输出规格

位数: 3/CH 输出电平: TTL电平 输出阻抗: 约100 Ω(串行端子)

事件输出规格

位数: 3/CH 输出电平: TTL电平 输出阻抗: 约100 Ω(串行端子)



注意

• 输出端口电压不宜过高,否则将损坏FG。

•不要让输出端口短路或接到小于1k Ω 的负载上,否则将损坏FG。

## 输入/输出端口

输入/输出端口位于机器的后面板上,是25-pin D-sub端口。 建议使用下述连接线进行连接。 JAE-DB-25PF-N 类型:JAE-DB-C2-J9(JAE公司生产) 为确保无故障操作,连接线长度应不超过1米。

| 13 |         |         | 1                 |
|----|---------|---------|-------------------|
| 7  | DIGITAL | CTRL    |                   |
|    | *****   | * * * * | • • • •           |
| L  | ¥****   | * * * * | <u>•••</u> ∢      |
|    |         |         | $\langle \rangle$ |
| 25 |         |         | 14                |

| Pin                    | 信号                     | Pin    | 信号             | Pin | 信号             |  |
|------------------------|------------------------|--------|----------------|-----|----------------|--|
| 1                      | GND                    | 10     | SEQ/SWP ADRS 2 | 19  | CH2 EVENT 0    |  |
| 2                      | CH1 MARKER 1           | 11     | SEQ/SWP ADRS 4 | 20  | CH2 EVENT 2    |  |
| 3                      | CH2 MARKER 0           | 12     | SEQ/SWP ADRS 6 | 21  | SWP CLK        |  |
| 4                      | CH2 MARKER 2           | 13     | GND            | 22  | SEQ/SWP ADRS 1 |  |
| 5                      | CH1 EVENT 0            | 14     | CH1 MARKER 0   | 23  | SEQ/SWP ADRS 3 |  |
| 6                      | CH1 EVENT 2            | 15     | CH1 MARKER 2   | 24  | SEQ/SWP ADRS 5 |  |
| 7                      | CH2 EVENT 1            | 16     | CH2 MARKER 1   | 25  | SEQ/SWP ADRS 7 |  |
| 8                      | GND                    | 17     | GND            |     |                |  |
| 9                      | SEQ/SWP ADRS 0         | 18     | CH1 EVENT 1    |     |                |  |
| SEQ/SWP                | ADRS 0~7:序列地址或         | 日描地址输入 | <b>`</b>       |     |                |  |
| CH1 MARI               | KER 0~2:通道1标记输出        | 1      |                |     |                |  |
| CH2 MARI               | CH2 MARKER 0~2.通道2标记输出 |        |                |     |                |  |
| CH1 EVENT 0~2. 通道1事件输出 |                        |        |                |     |                |  |
| CH2 EVEN               | TT0~2: 通道2事件输出         |        |                |     |                |  |
| GND:接地                 | 也                      |        |                |     |                |  |
|                        |                        |        |                |     |                |  |

#### 数字输入设置

1.按[UTIL]键调出工具菜单。

2.按{OPTION CONTROL}图标调出R1选件控制设置窗口。





序列地址输入

#### •生成P7-1描述的序列数据。

・如何跳过一个序列,如何切换序列输出ON/OFF,详情请见P7-3。

通过数字控制输入功能,输入每步的代表数字(8位)后可直接切换序列。此时,不需 要触发信号就可以随意由一个序列跳向另一序列(使用触发信号时,则必须按次序进行 序列间切换)。序列共有1~256个,可以输入0到255的数字代表这些序列。要选择第n步 时,则要输入数字n-1。

扫描地址输入

标准扫描控制值为14位,从初值到终值共有16,384个分阶。数字控制时可用8位,即256 个分阶表示扫描值。每输入8位值就选择一个分阶。地址"0"对应的是初值,地址"255"对 应的是终值。正在使用数字扫描控制时,扫描模式与时间设置将无效。

・扫描输出设置详情请见P5-2~P5-5。

调制地址输入

标准扫描控制时使用14位,允许有16,384个细分值。数字控制时仅提供8位,即256个细分 值。每输入一个8位数字值就选择这些细分值中的一个。地址"0"对应的是最大负向电压, 地址"255"对应的是最大正向电压。

•调制输出设置详情请见P6-1~P6-3。

## 扫描时钟输出

序列、扫描或调制输出时,数据升级时钟脉冲也一起输出。用这个输出作为控制地址输入时间的阀值。 要注意的是,此输出是通道1的时钟信号。关闭通道同步功能(在工具菜单的同步窗口)后, 两通道间的同步操作立即停止。通道同步功能详情请见10-1。

### 标记输出

每个通道都可以独立输出标记。根据当前波形输出类型不同(扫描、调制或序列),标 记输出也不同,具体如下:

• 扫描输出时

(a)扫描(除了任意波形扫描): 1位值(0或1),等于扫描标记设置。
(b)任意波形扫描: 3位值(0~7),设在任意波形之内。
3位标记的设置方法,请见P8-6与P8-3。

- 调制输出时
  - 任意波形调制时,输出的时3位(0~7)的波形标记值。
- 序列输出时 输出的是序列内的3位标记值(0~7),详情请见P7-1。

## 事件输出

适用于任意波形输出。可以在这些波形中输入3位的事件值(0~7)。这些值将被输出,就像 输出波形一样。每个通道可以独立输出事件值。事件设置步骤与设置3位的扫描标记数据 相同,详情请见P8-6与P8-3。

## 10.1 两通道同步相位(仅限FG220/FG320)

步骤

- 1. 按[UTIL]键调出工具菜单。
- 2. 按 {SYNCHRO}图标调出同步设置窗口。



- •保持两通道同步相位:
- 3. 按 {ON}图标。
- ·选择连续波形输出:
- 4. 按 {OFF}图标。
  - 主机与从机的当前状态为同步操作(OPERATION SYNC)时, {OFF}图标将不会出现。 按{NORMAL}图标后,可以将FG调回常规模式,此时会出现{OFF}图标。

| UTILITY                                    | ESC   |           |
|--------------------------------------------|-------|-----------|
| SYNCHRO<br>OPERATION SYNC<br>NORMAL MASTER | SLAVE |           |
| CHANNEL SYNC                               |       | 保持通道间相位同步 |

选择连续波形输出

TTL LEVEL PHASE SYNC

通道同步设置决定着当两个通道的频率变了以后,相位是否可以重新同步。如要保持同步,两个通道都将暂时停止波形输出,找到对应的相位后重新开始同步。选择连续输出时,两个通道的输出都将保持连续状态,相位将不重新同步。 • 保持同步 • 连续输出

(CHANNEL SYNC = ON) (CHANNEL SYNC = OFF) CH1 CH1 输出 输出 CH2 CH2 输出 输出 CH1频率改变 CH2频率改变 CH1**频率改变** CH2频率改变 连续输出时,任何时候在主输出设置画面的输出窗口中按{PHASE SYNC}图标后都可以 重新让两个通道同步进行相位输出(先到主输出设置画面,再按{OUTPUT}图标,最后按 {PHASE SYNC}图标)。但要注意,如果两个通道用的是不同的输出模式(或几台FG相互连接时),那么{PHASE SYNC}图标有可能不起作用。 1/1 1/10 1/100 OFF

同步相位

解释

## 10.2 软盘格式化(仅限FG310/FG320)

## 步骤

- 1. 把要格式化的软盘插入软驱。
- 2. 按[UTIL]键调出工具菜单。
- 3. 按{FLOPPY}图标调出软盘(格式化/自动加载)窗口。



4. 按{FORMAT}图标调出FDD/FORMAT窗口。



调出FDD/FORMAT窗口。

- 5. 选择格式类型。
- 6. 按{EXEC}图标开始格式化。



### 解释

- 软盘格式
- FG支持以下3.5"软盘格式:
- 2HD: 1.2MB或1.44MB MS-DOS格式。
- •2DD: 640KB或720KB MS-DOS格式。



**从驱动器中取出软盘** 读取灯灭后,按弹出按钮即可。



注 意

读取灯亮时,请勿弹出软盘。读取数据时如果取出软盘,将损坏驱动器的磁头或毁坏磁盘。

#### 自动生成目录

格式化时,FG自动生成如下3种目录:

- •FG\_WAVE 保存任意波形数据(二进制)
- ・SEQUENCE 保存序列数据
- •TEXT 保存任意波形文本数据

### 磁盘操作

有关磁盘操作详情,请见磁盘附带的使用说明。

10

# 10.3 软盘自动加载、加载与保存(仅限FG310/FG320)

## 步骤

#### 将当前设置保存到软盘:

- 1. 将软盘插入软驱。
- 2. 按[UTIL]键调出工具菜单。
- 3. 按{FLOPPY}图标调出软盘窗口。



4. 按{AUTOLOAD}图标调出自动加载窗口。



5. 按{UPDATE}图标将当前设置保存到软盘,此数据将覆盖(更新)软盘中已保存的内容。



#### 将当前设置保存到软盘

#### 从软盘自动加载数据(开机加载)

开机前,请插入保存着需加载文件的软盘。机器启动后,将自动加载已保存的数据。 **开机后传输** 

按照上述步骤1~4操作,然后在自动加载窗口中按{LOAD}图标。

## 解释

### 目标参数

自动加载、加载或保存数据时,FG将加载或保存所有的参数设置(配置窗口内的设置除 外)、所有的任意波形数据(文本或非文本)和所有的序列数据。

提示

如何插入、格式化软盘,详情请见P10-2。

10

## 10.4 保存/调用输出设置(在内部存储器里保存或调用)

## 步骤

- 1. 按[UTIL]键调出工具菜单。
- 2. 按{STORE/RECALL}图标调出保存/调用窗口。



- 3. 如要将输出设置保存到存储单元或从存储单元调用,按相应存储单元的"存储编号"即 可(可以直接按键盘上的相应数字键)。
- 4. 按{STORE}图标把输出设置保存到选好的存储单元,或按{RECALL}图标从存储单元 中调用输出设置。



### 解释

#### 存储单元

通过此功能,可以将当前输出设置保存到内部存储器的指定区域,也可以将其从存储器中调用。存储单元由数字代表(0~9)。任何时候均可保存多达10个不同的输出设置。

#### 目标参数

可以保存或调用两个通道的所有参数设置,但下述参数出外:

- 序列数据、序列ON/OFF设置
- 任意波形数据(文本或非文本)
- 在调整窗口设置的参数

#### 提示

- 未在存储区域保存任何设置时如要调用数据,FG将设置所有参数为默认值。(默认值详 情请见P10-9。)
- •初始化(详见P10-9)不影响保存过的设置内容。
- 要调用保存的内容时,序列输出将自动切换为OFF。

## 10.5 两通道同步设置(仅限FG220/FG320)

通过"双重设置"功能,可以同时输入两个通道的参数设置。使用此功能时,可以同时使 用任何或所有的输出波形参数(频率、振幅、相位、偏置电压和占空比),扫描时间也可 以同时设置。

步骤

- 1. 按 [UTIL]键调出工具菜单。
- 2. 按 {CONFIG}图标调出调整窗口。



3. 按双重设置区域内的方形图标选择需要双重设置的参数。选择一个参数后,当前通道1的设置将马上被复制到通道2。



### 解释

参数

可用双重模式设置下列任何或所有参数:

- ・频率
- ・相位
- ・占空比

振幅
 偏置电压
 わせい回

・扫描时间

#### 显示

FG显示双重指示器,以提示所有设置已应用于两个通道。



## 10.6 通道间拷贝输出设置(仅限FG220/FG320)

## 步骤

1.按[UTIL]键调出工具菜单。
 2.按{COPY}图标调出拷贝窗口。





3.选择{CH1 -> CH2}或{CH2 -> CH1}。

4.按{EXEC}图标执行拷贝。



## 解释

### 方向选择

1. 把设置参数从通道1拷贝到通道2时,选择{CH1 -> CH2}。

2. 把设置参数从通道2拷贝到通道1时,选择{CH2 -> CH1}。

### 目标参数

如下设置不能拷贝:

- •任意波形数据(文本、非文本)
- 调整窗口里设置的参数

包括序列数据、序列ON/OFF在内的其他数据都可以拷贝。

### 提示

伴随拷贝操作,FG将把通道选择设为目的通道。

## 10.7 初始化输出设置

## 步骤

- 1. 按[UTIL]键调出工具菜单。
- 2. 按{INIT}图标调出初始化窗口。



3. 按{EXEC}图标进行初始化设置。如果不想初始化,按{CANCEL}图 标后即可返回工具菜单。



取消并返回工具菜单

## 解释

#### 目标参数

如下参数不能初始化:

- 序列数据
- •任意波形数据(文本、非文本)
- 调整窗口里设置的参数

## 初始(默认)值

| 波形画面       | 扫描画面             | 调制画面              | 工具菜单                     |
|------------|------------------|-------------------|--------------------------|
| MODE:CONT  | S.MODE:REPEAT    | M.TYPE:AM         | OPE SYNC:NORMAL          |
| FUNC:SINE  | S.TYPE:LIN       | M.FUNC:SINE       | CH SYNC:OFF(FG210/FG310) |
| OUTPUT:1/1 | S.ITEM:FREQ      | MOD FREQ:100Hz    | :ON(FG220/FG320)         |
| FREQ:1kHz  | START FREQ:1kHz  | DEPTH:50%         | TRIG SLOPE:↑             |
| PHASE:0deg | STOP:10kHz       | CARRIER AMPL:2Vpp | SUM/VCA:OFF              |
| AMPL:2Vpp  | START MARKER:1   | kHz               | MODULATE: OFF OPTION     |
| CONTROL:NO | RMAL*            |                   |                          |
| OFFSET:0V  | STOP MARKER:5k   | Hz                | *外部扫描控制选件安装时有效           |
|            | SWEEP TIME:1s    |                   |                          |
|            | SWEEP RATIO:1009 | 6                 |                          |
|            | HOLD:OFF         |                   |                          |
|            | SWEEP: OFF       |                   |                          |

10

## 10.8 调节对比度;打开/关闭按键音

## 步骤

1.按[UTIL]键调出工具菜单。
 2.按{CONFIG}图标调出调节窗口。



## 调节屏幕对比度:

3.按{CNTRST}图标,然后用旋钮进行调节。

### 打开/关闭按键声音:

3.按{BEEP ON/OFF}图标选择ON或OFF。

#### UTILITY ESC -返回工具菜单 CONFIGURATION ٠ GPIB CNTRST DATE/ 9 TIME InitOUT DFF/ON BEEP OFF/DN DUAL SETTING 📕 FREQ PHASE 🔲 DUTY AMPL OFFSET 🔲 SWEEP TIME

按此图标后用旋钮调节屏幕对比度

## 打开/关闭按键音

### 解释

#### 调节屏幕对比度

屏幕对比度可以任意设为31个等级(0~30)。 可以用旋钮进行调节。

#### 打开或关闭按键音

设为ON时,每按一次图标FG就会响一次。

#### 提示

打开或关闭电源或按P10-9进行初始化时,在调整窗口进行的设置将保持有效。

## 10.9 设置日期和时间(仅限FG310/FG320)

## 步骤

1.按[UTIL]键调出工具窗口。
 2.按{CONFIG}图标调出调节窗口。



3. 按{DATE/TIME}图标调出日期/时间窗口。

调出日期/时间窗口



- 4. 按要更改项目的相应图标(年、月、日、小时或分钟), 然后用旋钮更改设置项目。
- 5. 按{EXEC}图标确认新设置。如果不确认,任何设置改变都将无效。未确认的设置项 目将被反白。



### 解释

## 设置范围

可以设置1980年1月1日到2079年12月31日之间的任何一天。FG会正确反映闰年。

## 11.1 错误信息:错误原因及纠错

步骤

FG通常会提示以下3种信息:

- ・错误信息
  - 错误信息用于提示无法进行操作或系统状态反常。
- ・**警告**信息
  - 警告信息用于提示正在进行不当操作,需要注意。
- 状态信息 出现在屏幕下方的此信息用于提示当前状态。如:"AM MODULATING!".

FG会列出系统错误和警告信息并提示适当的处理对策,但不包括与通信相关的错误 信息。与通信相关的错误信息,详见FG200/FG300 GP-IB接口用户说明书 (IM706111-12E)。

## 错误信息

所有错误信息(除与通信相关的信息)将出现在屏幕的中间位置(可以与警告信息一起,在 错误日志窗口浏览与通信相关的错误信息,详见下页)。

| No. | 信息                          | 含义/对应措施                       | 详见       |
|-----|-----------------------------|-------------------------------|----------|
| 602 | 无磁盘,请插入磁盘。                  | 驱动器内没有软盘。                     | 10-3     |
|     |                             | 将磁盘插入驱动器。                     |          |
| 604 | 软盘未格式化。请格式化磁盘。              | 必须格式化软盘。                      | 10-2     |
| 605 | 未找到文件。选择合适的文件。              | 找不到已选文件。确认文件名。                | -        |
| 606 | 磁盘被写保护。关闭磁盘写保护。             | 关闭软盘的写保护。                     | -        |
| 609 | 此文件已存在。用其他名称保存。             | 此文件已存在。                       | -        |
|     |                             | 用其它名称保存文件。                    |          |
| 610 | 无效文件名。请确认文件名。               | 文件名无效。输入合适的文件名。               | 7-4, 8-8 |
| 612 | 磁盘已满。请使用新的磁盘。               | 磁盘空间已满。请使用其他磁盘。               | -        |
| 615 | 磁盘格式化失败。请再次格式化。             | 格式化失败。请再次进行磁盘格式化。             | 10-2     |
| 618 | 未找到'.HDR'文件。将HDR文件放到WVF目录下。 | 未找到HDR文件(文件扩展名为".HDR")。       | -        |
|     |                             | 请将文件放到".WVF"文件所在目录下。          |          |
| 619 | 未找到'INF'文件。将INF文件放到WDT目录下。  | 未找到INF文件(文件扩展名为",INF")        | _        |
|     |                             | 请将文件放到".WDT"文件所在目录下。          |          |
| 620 | 文件访问失败。                     | 访问文件时发生错误。文件可能已损坏。            | -        |
| 621 | 无效数据格式。请确认此文件。              | 文件格式异常。请确认此文件。                | -        |
| 622 | 无效'区域'定义。请确认此文件。            | 区域定义错误。确认文件。                  | -        |
| 623 | 此文件包含无效数据,请检查第xxx行数据。       | 文件内包含错误数据,请检查文件第xxx行数据。       | 7-5,     |
|     |                             |                               | 8-7      |
| 624 | '.HDR'.文件内有无效信息。请确认'xxx'标记。 | HDR文件内有错误信息(文件扩展名为".HDR")。    | _        |
|     |                             | 确认xxx标记的定义。                   |          |
| 625 | '.INF'文件内有无效信息。请确认'.INF'文件。 | INF文件内有错误信息(文件扩展名为".INF")。    | -        |
|     |                             | 确认文件内容。                       |          |
| 626 | 无效操作。                       | 无效操作。可能是因为序列输出时试图改变序列设置       | 4-9      |
|     |                             | 或输出模式不是"TRIG"时,却将触发源设置为"INT"。 |          |
| 906 | 风扇停止运行。请立刻关闭电源。             | 冷却风扇停止运行 请立刻关闭电源              | _        |
| 906 | 风扇停止冱行。请立刻天闭电源。             | 冷却风扇停止运行。请立刻天闭电源。             | -        |

#### 警告信息请见下页。

## 警告信息

警告条件成立后,FG屏幕的右上角将显示警告指示器。



看到此指示器时,进入工具菜单后按{ERROR LOG}图标。发生警告时,屏幕将显示警告 信息和未通知通讯错误的信息列表。如果信息太多无法一屏显示,可以用旋钮滚动显示。

| UTILITY<br>ERROR<br>001:<br>002: | LOC<br>CLEAR<br>CH1 Frequency overrange.<br>CH1,CH2 Voltage overrange. | ──────────────────────────────────── |
|----------------------------------|------------------------------------------------------------------------|--------------------------------------|
|                                  |                                                                        |                                      |

| No. | 信息          | 含义/对应措施                                               | 详见  |
|-----|-------------|-------------------------------------------------------|-----|
| 001 | CHx频率设置过高   | 通道的频率设置太高。确认设置。                                       | 4-3 |
| 002 | CHx电压设置过高   | 通道的电压设置超过范围。确认振幅与偏置电压。                                | 4-4 |
| 003 | CHx AM设置过高  | 通道的AM调制振幅设置超过范围。确认载波频率与调制幅度。                          | 4-4 |
| 004 | CHx FM设置过高  | 通道的FM调制频率设置超过范围。确认载波频率与最小偏差。                          | 6-3 |
| 005 | CHx PWM设置过高 | 通道的PWM调制占空比设置超过范围。确认载波的占空比和最大偏差。                      | 6-3 |
| 006 | CHx OM设置过高  | 通道的偏置调制电压设置超过范围。确认载波的偏置电压和最大偏差。                       | 6-3 |
| 007 | CHx SUM设置冲突 | 偏置扫描、偏置调制或序列输出时,不能使用SUM IN偏置。<br>关闭通道x的SUM IN。        | 9-4 |
| 008 | CHx VCA设置冲突 | 不能与振幅扫描、AM调制或序列输出一起使用外部振幅控制(VCA IN)。<br>关闭通道x的VCA IN。 | 9-5 |

# 11.2 疑难解答

•如何处理错误信息,详情请见P11.1。

•如果此页的信息不能解决问题,或FG需要其他服务,请与横河公司联系。

| <br>问题     | 引起原因            | 对策                                    | 详见       |
|------------|-----------------|---------------------------------------|----------|
| 无法开机       | 电源与FG的额定功率不符    | 使用正确的电源                               | 3-4      |
|            | 断路器关闭           | 检查断路器关闭原因。<br>如果FG看起来一切正常,则打开<br>断路器。 | 11-4     |
| 屏幕发白       | 对比度太暗           | 调整对比度。                                | 10-10    |
|            | 屏幕温度太低          | 周围环境至少应是5 C。                          | _        |
| 屏母图像扭曲     | 系统故障            | 关机后重启。                                | _        |
|            | FG被设为远程模式       | 将FG设为本地模式。                            | *        |
| FG不能输出波形   | 波形输出未打开。        |                                       | 4-8      |
|            | SUM/VCA设置不正确。   | 正确设置。                                 | 9-4, 9-5 |
|            | OPER SYNC设置不正确。 | 正确设置。                                 | 9-10     |
| 输出波形不正确    | FG未完全预热。        | 开机后先预热30分钟。                           | -        |
|            |                 | 正确设置。                                 | 第4章      |
| 不能将数据保存至软盘 | 磁盘未格式化。         | 新磁盘使用前必须先格式化。                         | 10-2     |
|            | 软盘未正确插入         | 驱动器完全打开后,插入磁盘。                        | 10-3     |
|            | 软盘被写保护。         | 关闭写保护。                                | -        |
|            | 软盘已满。           | 删除不必要的文件,或使用新的磁盘。                     | _        |
| 不能从软盘导入数据  | 软盘未正确插入。        | 驱动器完全打开后,插入磁盘。                        | 10-3     |

\*详情请见GP-IB接口用户手册。

## 11.3 自测

步骤

开始自测前,请断开后面板上的所有连接线。

1. 按[UTIL]键调出工具菜单,然后按{SELF TEST}图标调出自测窗口。



## 测试数字/模拟电路:

 按 {SELF TEST} 图标后按 {EXEC} 开始测试。
 FG开始测试,然后显示每个测试的结果。测试时,屏幕显示"SELFTEST EXECUTING"信息,自测结束后信息变为"SELFTEST EXECUTED",屏幕上出现 {ESC} 图标。确认是否所有的测试项目的结果都是"PASS"。结果不是"PASS"时,说 明此项目有问题。

| ITILITY | i                 | ESC ] |  |
|---------|-------------------|-------|--|
|         | SELFTEST EXECUTED | ).    |  |
| 1       | ROM/RAM Check     | PASS  |  |
| 2       | CPU board TEST    | PASS  |  |
| 3       | I∕F board TEST    | PASS  |  |
| 4       | DDS CH1 TEST      | PASS  |  |
| 5       | DDS CH2 TEST      | PASS  |  |
| 6       | ANALOG CH1 TEST   | PASS  |  |
| 7       | ANALOG CH2 TEST   | PASS  |  |
|         |                   |       |  |
|         |                   |       |  |
|         |                   |       |  |
|         |                   |       |  |

### 测试操作键和旋钮:

- 2. 按{KEY TEST}图标后按{EXEC}开始测试。
- 3. FG屏幕上将显示前面板的画面,详情如下图所示。
- 按每一个键以确认屏幕上被反白的相应图标键。旋转旋钮以确认屏幕上的旋钮图 标是否正常。



#### 测试触摸面板:

- 2. 按{TOUCH KEYTEST}图标后按{EXEC}开始测试。
- 3. 按屏幕上显示的所有图标,每按一次相应数字都将反白。按每个图标 后FG都将发出按键音。按键盘上的任意键即可返回自测窗口。

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |

#### 测试显示屏:

- 2. 按{DISPLAY TEST}图标后按{EXEC}开始测试。
- 显示器颜色为固体蓝,确认屏幕上是否有白点。
   返回自测窗口,按键盘上的任何键。



#### 解释

#### 测试出现问题时...

FG有可能已损坏,请与横河公司联系。

#### 数字/模拟测试中出现如下警告时...

数字/模拟测试中如果出现"LOW BATTERY"警告,请及时更换锂电池。如果出现 "CALIBRATION DATA LOST"警告,FG内部校正数据有可能丢失,可能需要重新校正。 只有有资格的服务工程师才能更换电池或重新校正,届时请与横河公司联络。



IM 706111-01C

## 11.4 性能测试

#### 性能测试概况...

性能测试用于确保FG可以正确运行。如果测试结果不符合规定的性能标准,请与横河公司联系,要 求调整或修理。

## 需要的设备

| 数字万用表      | Keithley 2001或替代产品                              |
|------------|-------------------------------------------------|
| 热变换器       | Ballantine 1395A-3-09或替代产品                      |
| 数字示波器      | 横河DL1300或替代产品                                   |
| 光谱分析仪      | HP 3588A或或替代产品                                  |
| 时域分析仪      | 横河TA1100 (704020) 或替代产品                         |
| 50 Ω 馈通连接器 | Hirose MR201 (0.5W) 或替代产品                       |
| 衰减器(-6dB)  | Hirose AT506 (2W) 或替代产品                         |
| 衰减器(-20dB) | Hirose AT520 (2W) 或替代产品                         |
| 低通滤波器      | $10 \mathrm{k} \Omega \pm 1\%$ , 1µF $\pm 10\%$ |
|            | 10kΩ                                            |

同轴电缆

50 Ω BNC, 1m

#### 测试环境与运行条件

- 预热时间: TA1100至少需预热两天。其他仪器(包括FG) 至少需预热30分钟。
- 环境温度: 23℃±2℃
- 环境湿度: 50%±10% RH
- •测试开始时间:只有在完全预热后才能开始运行或调整仪器。
- 连接线:用同轴电缆连接FG和其他测试仪器。

#### 调制精度

## 需要的设备

#### 数字万用表 **测试步骤**

- 1. 按如下指示设置FG和数字万用表。
- 用两通道FG (FG220或FG320)时, 要确保测量两个通道的调制精度。
  - FG设置 输出模式: CONT 输出波形:正弦波 输出频率:1kHz 相位: 0deg

- 数字万用表设置 AC电压测量 AC耦合 自动量程
- 日列重
- 偏置电压: 0V
- **输出衰减**:1/1
- 2. 把FG的输出端口与数字万用表连接起来,取得需要的读数。

. 性能指标

±(设置 ➤ 0.8% + 14mVrms)

| 允许范围                 |
|----------------------|
| 7.071Vrms ± 70mVrms  |
| 3.535Vrms ± 42mVrms  |
| 1.768Vrms ± 28mVrms  |
| 353mVrms ± 16mVrms   |
| 0mVrms ± 14mVrms     |
| -353mVrms ± 16mVrms  |
| -1.768Vrms ± 28mVrms |
| -3.535Vrms ± 42mVrms |
| -7.071Vrms ± 70mVrms |
|                      |

## 输出阻抗

**需要的设备** 数字万用表 50 Ω 馈通连接器

#### 测试步骤

- 1. 用 数 字 万 用 表 测 量 两 条 电 缆 (Rcable)和50 Ω 馈通连机器的阻抗。
  - 用两通道FG (FG220或FG320)时, 要确保测量两个通道的数据。
- 2. 按如下指示设置FG和数字万用表。
  - FG设置 输出模式: CONT 输出波形: 正弦波 输出频率: 1kHz 偏置电压: 0V

•数字万用表设置 AC电压测量 AC耦合

- 3. 把FG的输出端口与数字万用表连接起来,测量输出电压。 ("VOUT\_H").
- 4. 从输出端口拔出连接线。把50 Ω 馈通连接器连接到输出端口, 然后把数字万用表连接 到馈通连接器, 再次测量输出电压("VOUT\_50")。
  - 按如下公式计算输出阻抗(Rout):
     阻抗 = (VOUT\_H/Vout\_50-1) × 50 Rcable

#### 性能指标

| $50 \Omega \pm 1\%$ |                  |
|---------------------|------------------|
| 输出衰减器               | 指标               |
| 1/1                 | $50\pm0.5\Omega$ |
| 1/10                | $50\pm0.5\Omega$ |
| 1/100               | $50\pm0.5\Omega$ |

### 输出衰减器精度(高阻抗负载)

需要的设备

#### 数字万用表

#### 测试步骤

1. 按如下指示设 置 FG和数字万用表。

•用两通道FG (FG220或FG320)时,要确保测量两个通道的衰减精度。

| • FG设置         | • 数字万用表设置 |
|----------------|-----------|
| 输出模式: 直流电 (DC) | DC电压测量    |
| 输出电压: 10V      | 自动量程      |

2. 把FG的输出端口与数字万用表连接起来, 输入并取得需要的读数。

#### 性能指标

 $\pm 0.2\%$ 

#### 衰减器设置

| 1/1   | (输出电压设置)          |
|-------|-------------------|
| 1/10  | (输出电压设置)/10±0.2%  |
| 1/100 | (输出电压设置)/100±0.2% |

指标

#### DC输出精度(DC输出模式; 高阻抗负载)

需要的设备

## 数字万用表

### 测试步骤

- 1. 按如下指示设置 FG和数字万用表。
  - •用两通道FG (FG220或FG320)时,两个通道都执行测量。
  - •FG设置 • 数字万用表设置 输出模式: 直流电(DC) DC电压测量 输出衰减器: 1/1 自动量程
- 2. 把FG的输出端口与数字万用表连接起来, 输入并取得需要的读数。

### 性能指标

±(设置 ➤ 0.3%+20mV)

| 电压设置 | 指标                    |
|------|-----------------------|
| +10V | $+10V \pm 50mV$       |
| +5V  | $+5 \pm 35 \text{mV}$ |
| +1V  | $+1V \pm 23mV$        |
| 0V   | $0V \pm 20mV$         |
| -1V  | $-1V \pm 23mV$        |
| -5V  | $-5V \pm 35mV$        |
| -10V | $-10V \pm 50mV$       |

### (DC+AC)偏置电压精度(高阻抗负载)

需要的设备 数字万用表 低通滤波器

#### 测试步骤

1.按如下指示设置FG和数字万用表。

•用两通道FG (FG220或FG320)时,两个通道都执行测量。 ・FG设置 输出模式: CONT 输出波形: 正弦波 输出频率: 1kHz

输出衰减器: 1/1

• 数字万用表设置 DC电压测量 自动量程

2. 把FG的输出端口与数字万用表连接起来,通过低通滤波器输入,取得需要的读数。

#### 性能指标

±([设置偏置电压 ≫ 0.3%] + [设置振幅 ≫ 0.5%] + 40mV)

| 设置振幅  | 设置偏置电压 | 指标               |
|-------|--------|------------------|
| 20Vpp | 0V     | $0V \pm 140 mV$  |
| 10Vpp | +5V    | $+5V \pm 105 mV$ |
| 0Vpp  | +0V    | $0V \pm 40mV$    |
| 10Vpp | -5V    | $-5V \pm 105 mV$ |
| 20Vpp | 0V     | $0V \pm 140 mV$  |

输出正弦波、方波、三角波及脉冲波的振幅与频率精度(50 Ω 负载 )

#### 需要的设备

数字万用表 热变换器 50 Ω 馈通连接器 衰减器(-6dB)

#### 测试步骤

- 1. 按如下指示设置 FG和数字万用表。
  - •用两通道FG (FG220或FG320)时,两个通道都执行测量。

| FG设置   |       |
|--------|-------|
| 输出模式:  | CONT  |
| 相位:    | 0deg  |
| 振幅:    | 20Vpp |
| 偏置电压:  | 0V    |
| 输出衰减器: | 1/1   |

数字万用表设置
 AC电压测量
 AC耦合
 自动量程

- 通过衰减器和50 Ω 馈通连接器把FG输出端口与数字万用表连接起来,取得需要的读数。
   •测量功率-包括交流电压波动率、基频1kHz的交流电压读数。
  - •1MHz、10MHz及15MHz的正弦波输出是通过连接在衰减器上的热变换器进行测量的。

#### 性能指标

•正弦波(用数字万用表测量)

| 频率设置   | 指标     |
|--------|--------|
| 1kHz   | (基础)   |
| 100Hz  | ±0.1dB |
| 10kHz  | ±0.1dB |
| 100kHz | ±0.1dB |

#### •正弦波(用热变换器测量)

| 频率设置  | 指标           |
|-------|--------------|
| 1kHz  | (基础)         |
| 1MHz  | $\pm 0.2$ dB |
| 10MHz | ±0.5dB       |
| 15MHz | ±1.0dB       |
|       |              |

#### • 方波(用数字万用表测量)

| 频率设置  | 指标   |
|-------|------|
| 1kHz  | (基础) |
| 100Hz | ±2%  |
| 10kHz | ±2%  |

## 三角波(对称性50%)(用数字万用表测量) 频率设置 指标 1kHz (基础) 100Hz ±3%

| 10kHz | $\pm 3\%$ |
|-------|-----------|
|       |           |

# ・脉冲波(50%占空比)(用数字万用表测量) 频率设置 指标 1kHz (基础) 100Hz ± 2% 10kHz ± 2%

IM 706111-01C

## 正弦波纯度(50 Ω 负载)

## 谐波失真及谐波失真率

| • | 需要的设备      |
|---|------------|
|   | 频谱分析仪      |
|   | 衰减器(-20dB) |

### ・测试步骤

1.按如下指示设置FG和频谱分析仪。

•用两通道FG (FG220或FG320)时,两个通道都执行测量。

| 输出模式: CONT 量程: 10dBm    | 1               |
|-------------------------|-----------------|
| 输出波形: 正弦波 中心频率: 1,2,3,4 | 4,5 <b>倍</b> FG |
| 相位: 0deg 频率设            | 置               |
| 振幅: 20Vpp               |                 |
| 偏置电压: 0V                |                 |
| <b>输出衰减器</b> : 1/1      |                 |

| 频率设置   | RES BW | 频率范围   |
|--------|--------|--------|
| 100kHz | 36Hz   | 1kHz   |
| 1MHz   | 290Hz  | 10kHz  |
| 10MHz  | 2300Hz | 100kHz |
| 15MHz  | 2300Hz | 100kHz |

2.通过衰减器(-20dB)把FG的输出端口与频谱分析仪连接起来。

## ・性能指标

## •谐波失真

测量2次、3次、4次和5次谐波的最大范围。

#### 频率 指标

| 小于-55dBc |
|----------|
| 小于-45dBc |
| 小于-35dBc |
| 小于-25dBc |
|          |

#### •谐波失真率

用下列公式计算谐波失真率:

谐波失真率 = 
$$\frac{\sqrt{\left(10^{\frac{e_s}{20}}\right)^2 + \left(10^{\frac{e_s}{20}}\right)^2 + \left(10^{\frac{e_s}{20}}\right)^2 + \left(10^{\frac{e_s}{20}}\right)^2 + \left(10^{\frac{e_s}{20}}\right)^2}{10^{\frac{e_s}{20}}} \times 100\%$$
  
指标

**频率** 100kHz

#### 杂散电平

#### ・需要的设备

光谱分析衰减器(-20dB)

- ・测试步骤
  - 1. 按如下指示设置FG和光谱分析仪。

100kHz

0deg

•用两通道FG (FG220或FG320)时,两个通道都要测量杂散电平。

・FG设置

频率:

相位:

- 光谱分析仪设置 开始频率:1kHz
   结束频率:100MHz
   RES BW: 1200Hz
- 振幅: 20Vpp 偏置电压: 0V

输出模式: CONT

输出波形: 正弦波

- 输出衰减器: 1/1
- 2. 通过衰减器(-20dB)把FG的输出端口与光谱分析仪连接起来。
- 3. 在1kHz~100MHz频率范围内(除基频和谐波频率外),测量其最大干扰电平。

 ・性能指标

 频率

 指标

100kHz 小于-55dB

## 通道串扰(绝缘, 50 Ω负载)(仅限FG220/FG320)

**需要的设备** 光谱分析仪 衰减器(-20dB) 50 Ω 馈通连接器

#### 测试步骤

1. 按如下指示设置FG和光谱分析仪。

| ・FG设置  | • 光谱分析仪设置 |       |  | 设置      |         |
|--------|-----------|-------|--|---------|---------|
|        | CH1       | CH2   |  | 量程:     | +10 dBm |
| 输出模式:  | CONT      | CONT  |  | 频率范围:   | 1kHz    |
| 输出频率:  | 15MHz     | 10MHz |  | RES BW: | 36Hz    |
| 振幅:    | 20Vpp     | 20Vpp |  |         |         |
| 相位:    | 0deg      | 0deg  |  |         |         |
| 偏置电压:  | 0V        | 0V    |  |         |         |
| 输出衰减器: | 1/1       | 1/1   |  |         |         |
|        |           |       |  |         |         |

- 2. 通过衰减器 (-20dB)连接 FG的CH2输出端口与光谱分析仪。
- 3. 连接50 Ω 馈通连接器和FG的CH1输出端口。
- 4. 将光谱分析仪设为"CF 10MHz",开始测量基波信号水平。
- 5. 将光谱分析仪设为"CF 15MHz",测量CH1输出端口到CH2输出端口之间的串扰。本次测量结果和之前的测量结果的差值即为通道串扰值。

#### 性能指标

小于--65dB

脉冲特性(50Ω负载)

方波/脉冲波的上升时间和过冲

| 需要的设备    |
|----------|
| 数字示波器    |
| 50Ω馈诵连接器 |

#### ・测试步骤

1.按如下指示设置FG和光谱分析仪。 •用两通道FG (FG220或FG320)时, 要确认两个通道的上升时间和过冲。

- •FG设置 CONT 输出模式: 输出波形: 方波/脉冲波 **输出频率**: 100kHz 振幅: 20Vpp 偏置电压: 0V输出衰减器: 1/1
- 数字示波器设置

• 脉冲波(50%占空比)

小于100ns

脉冲(50%占空波)

Max: 输出pp值 + 5%

V/div: 2V/div 时间/div: 50ns/div 测量: 自动、上升、过冲

2. 用50 Ω 馈通连接器连接FG的输出端口和数字示波器,取得需要的读数。

#### 性能指标

- 上升时间
  - ・方波 小于30ns (10% - 90%)
- · 过冲
  - ・方波
    - Max: 输出pp值 + 5%

#### 脉冲波占空比的设置精度

#### ・需要的设备

时域分析仪

#### ・测试步骤

1.按如下指示设置FG和时域分析仪。 •用两通道FG (FG220或FG320)时,两个通道都要测量。 •FG设置 • 时域分析仪器设置 输出模式: CONT 功能: 脉宽测量A高电平 输出波形: 采样: 1 脉中波 输出频率: 10kHz 输入: 50 DC耦合 相位: 0deg ATT: off

20Vpp 触发电平: 0V 0V偏置电压:

输出衰减器: 1/1

振幅:

2.连接FG的输出端口和分析仪的A输入通道,开始测量。

・性能指标

| 波形  | 指标                   |
|-----|----------------------|
| 脉冲波 | $50 \mu s \pm 0.2\%$ |

IM 706111-01C

## 频率精度

### 需要的设备

时域分析仪

#### 测试步骤

按如下指示设置FG和时域分析仪。
 •用两通道FG (FG220或FG320)时,两个通道的频率精度都要测量。
 • FG设置
 • 时域分析仪设置

| FG设置   |       | ・时域分析の | 义设置       |
|--------|-------|--------|-----------|
| 输出模式:  | CONT  | 功能:    | FREQ A    |
| 输出波形:  | 正弦波   | 采样:    | 1         |
| 输出频率:  | 10MHz | 门:     | INT 1sec  |
| 相位:    | 0deg  | 输入:    | 50 Ω AC耦合 |
| 振幅:    | 20Vpp | ATT:   | off       |
| 偏置电压   | 0V    | 触发电平:  | 0V        |
| 输出衰减器: | 1/1   |        |           |

## 2. 连接FG的输出端口和分析仪的A输入通道后,开始测量。

#### 指标

±20ppm 10MHz±200Hz
## 11.5 断路器的位置与操作

位置

FG内部电路由断路器保护而不是保险丝。下图是断路器的位置:



操作

断路器可以防止FG因负载过高引起的过电流。电流过高时,断路器会跳掉并切断电源。 此时,出现重设(RESET)图标,并跳出一个白色的按钮。



重设

如果断路器跳闸,请等待至少1分钟后重设。重设时,把该键按到原来的位置即可。 如果过载情况还存在的话,断路器开启"禁-重设"功能,此时不能将按键按回原来的位置。



注意

 断路器跳掉通常表示FG内部电路出现了异常。试了一次或两次以后,如果 重设键还是无法返回原位的话,请勿继续操作。
 请立即与横河公司联络。

## 12.1 性能规格

当FG符合12.6中描述的通用规格时,以下功能适用。

#### 波形输出

| 特性                  | 规格                                      |
|---------------------|-----------------------------------------|
| 通道                  | FG220/FG320: 2、FG210/FG310: 1           |
| 标准输出波形              | 正弦波、方波(占空比固定为50%)、三角波(可变对称性)、脉冲波(可变占空比) |
| 任意波形(仅限FG310/FG320) |                                         |
| 输出振幅精度              | 12位                                     |
| 记录长度                | 8192点(频率≥4.9kHz时,长度不能达到该值)              |
| 频率范围                |                                         |
| 正弦波、方波              | 1µHz~15MHz                              |
| 三角波、脉冲波             | 1µHz~200kHz                             |
| 任意波                 | 1µHz~200kHz                             |
| 频率分辨率               | 1µHz <b>或</b> 9位                        |
| 频率精度                | ±20ppm                                  |
| 频率稳定性               | ±20ppm(周围温度:5~40℃)                      |
| 基础时钟                | 40.21071MHz                             |

#### 输出特性

| 特性                             | 规格                          |
|--------------------------------|-----------------------------|
| 最大输出电压***                      | ±10V(高阻抗负载)                 |
| 振幅范围***                        | ±20Vpp (1mVpp精度) (负值表示反向波形) |
| 振幅精度***                        | ±(0.8%设置值 +14mV)            |
| (1kHz <b>的正弦波</b> )            |                             |
| 振幅频率特性*                        |                             |
| 正弦波                            |                             |
| ≦100kHz                        | ±0.1dB                      |
| ≦1MHz                          | ±0.2dB                      |
| ≦10MHz                         | ±0.5dB                      |
| ≦15Mhz                         | ±1dB                        |
| 方波/脉冲波(50%占空比)                 |                             |
| ≦10kHz                         | ±2%                         |
| 三角波(50%对称性)                    |                             |
| ≦10kHz                         | ±3%                         |
| 偏置电压范围***                      | ±10V(1mV精度)                 |
| 偏置电压精度***                      | ±(0.3%设置精度+0.5%设置振幅 +40mV)  |
| 输出阻抗                           | 50 Ω ±1% (关掉输出时,为OPEN)      |
| 输出范围**                         | ±10V(1mV精度)                 |
| DC输出精度***                      | ±(0.3% 设置值 +20mV)           |
| 输出衰减器设置                        | 1/1, 1/10, 1/100            |
| 输出衰减器精度***                     | $\pm 0.2\%$                 |
| 通道间串扰** (仅限FG220/FG320)        | <-65dB                      |
| * RMS测量,以振幅20Vpp、偏置电           | 3压0V、负载50Ω, 频率1KHz为参考基准。    |
| I ATTA ATTA HILL THE ATTA ATTA |                             |

\*\* CH1、CH2间的串扰、CH1 = 15MHz的正弦波、CH2 = 10MHz的正弦波、振幅为20Vpp、偏置电压为0V、负载为50 $\Omega$ 。 \*\*\* 高阻抗负载

#### 正弦波纯度

| 特性                          | 规格      |  |
|-----------------------------|---------|--|
| 谐波*(2次到5次谐波的最大频率)           |         |  |
| 100kHz                      | <-55dBc |  |
| 1MHz                        | <-45dBc |  |
| 10MHz                       | <-35dBc |  |
| 15MHz                       | <-25dBc |  |
| 谐波失真率(2次到5次谐波的RMS比值)        |         |  |
| 100kHz                      | <0.3%   |  |
| 干扰值*(1kHz~100MHz的频率范围)      |         |  |
| 100kHz                      | <-55dBc |  |
| * 振幅为20Vpp、偏置电压为0V、负载为50 Ω。 |         |  |

#### 方波、脉冲波及三角波的特性

| 特性                     | 规格                     |
|------------------------|------------------------|
|                        |                        |
| 方波                     | <30ns (10% ~ 90%)      |
| 脉冲波                    | <100ns (10% ~ 90%)     |
| 过冲*                    | <(输出p-p值±5%)           |
| 占空比设置(脉冲波)             |                        |
| 范围                     | 0~100% (精度:0.01%或25ns) |
| 时间精度(≦10kHz)           | (1/设置精度)±0.2%          |
| 抖动                     | 1时钟脉冲                  |
| 对称性(三角波)               |                        |
| 范围                     | 0~100% (精度:0.01%或25ns) |
|                        | 1时钟脉冲                  |
| * 测量时,振幅为20Vpp,偏置电压为0V | , 负载为50Ω。              |

#### 脉冲

| 特性   | 规格                              |
|------|---------------------------------|
| 设置范围 | -10000deg~+10000deg (0.01deg精度) |

#### 扫描特性

| 特性            | 规格                                |
|---------------|-----------------------------------|
| 扫描类型          | 线性、对数、线性阶跃、对数阶跃、任意(仅限FG310/FG320) |
| 扫描时间范围        | 1ms~10000s (精度:10μs或5位)           |
| 扫描速率          | 0~100% (精度:0.01%或1.6μs)           |
| 外部扫描控制        | 采样频率: 628.292kHz                  |
| <u>模拟输入精度</u> | 12位                               |

#### 调整特性

| 特性                                    | 规格                                                                                          |
|---------------------------------------|---------------------------------------------------------------------------------------------|
| 载波                                    | 正弦波、方波(占空比固定为50%)、三角波(可变对称性)、脉冲波(可变占空比)、任意波形<br>(仅限FG310/FG320)。条件与CONT模式下的波形输出相同。          |
| 调制类型<br>AM<br>幅度设置<br>DSB-SC AM<br>FM | 0%~100% (精度: 0.01%)                                                                         |
| 峰值偏差设置<br>相位调制                        | 0Hz~7.5MHz (精度: 1µHz或9位)                                                                    |
| 峰值偏差设置<br>偏置电压设置                      | 0deg ~360deg (精度: 0.01deg)                                                                  |
| 峰值偏差设置<br>PWM                         | 0V~10V (精度: 1mV)                                                                            |
| 峰值偏差设置<br>调制器波形<br>调制器频率              | 0%~50% (精度: 0.01%)<br>正弦波、三角波(可变对称)、脉冲波(可变占空比)、任意波(仅限FG310/FG320)。<br>1mHz~50kHz (精度: 1mHz) |

#### 触发

| 特性       | 规格                   |
|----------|----------------------|
| 内部触发频率设置 | 1mHz~50kHz (精度:1mHz) |
| 脉冲设置     | 1~65535周起(必需为整数)     |

#### 同步运行

| 特性 | 规格              |
|----|-----------------|
| 调整 | 8台相互连接的FG可以同步输出 |
|    |                 |

# 12.2 功能规格

| 特性                   | 规格                                 |
|----------------------|------------------------------------|
|                      |                                    |
| 连续(CONT)             | FG220/FG320: 连续相位或通道间相位同步(可选)      |
|                      | FG210/FG310. 仅限连续相位                |
| 触发(TRIG)             | FG输出脉冲(指定整数周期)响应触发                 |
| 触发源                  | 外部、内部、手动、GP-IB命令                   |
| Ì](GATE)             | 门输出状态为ENABLED时,FG输出脉冲(整数周期)。       |
| 门触发源                 | 外部、手动                              |
| DC输出(DC)             | FG输出DC电压                           |
| 扫描                   |                                    |
| 重复                   | 连续扫描                               |
| 单一                   | 触发时单一扫描                            |
| 单一&保持                | 单一扫描,然后从扫描终值开始连续输出                 |
| 任意波形(仅限FG310/FG320)  |                                    |
| 应用                   | 输出波形、扫描模式、调制波形                     |
| 适用位数                 | 8                                  |
| 插补方式                 | 直线法、阶梯线法、张弛线法、周期样条法                |
| 相位设置                 |                                    |
| 应用                   | 在TRIG与GATE模式下开始/结束相位。另外,通道间相位也有不同。 |
|                      | (仅限FG220/FG320、2通道时)               |
| 存储设置                 | 存储10套面板数据以供调回                      |
| (非易失性存储器)            |                                    |
| 重设TTL                | 振幅为5V,偏置电压为2.5V (高阻抗负载)            |
| 波形输出ON/OFF           | 分开控制通道ON/OFF                       |
| 参数复制(仅限FG220/FG320)  | 把参数由一个通道复制到另一通道(CH1→CH2或CH2→CH1)   |
| 2通道同步设置(仅限FG220/FG32 | (0) 当前设置参数同时应用于两个通道设置。             |

# 12.3 辅助输入/输出

| 特性                          | 规格               |  |
|-----------------------------|------------------|--|
| TRIG/GATE IN                |                  |  |
| 输入电平                        | TTL 脉宽           |  |
|                             | >200ns           |  |
| 边沿观测                        | 触发:上升或下降(可选)     |  |
|                             | 门:高有效或低有效(可选)    |  |
| 输入阻抗                        | $>1k \Omega$     |  |
| 接口类型                        | BNC SWP          |  |
| HOLD IN                     |                  |  |
| 输入电平                        | TTL              |  |
| 脉宽                          | >2µs             |  |
| 电平观测                        | 高有效              |  |
| 输入阻抗                        | $>1k\Omega$      |  |
| 接口类型                        | BNC              |  |
| CH1 SYNC OUT                |                  |  |
| 输出电平                        | TTL              |  |
| 输出阻抗                        | 约50Ω             |  |
| 接口类型                        | BNC              |  |
| CH1 MARKER OUT (C           | 11扫描标记输出)        |  |
| 输出电平                        | TTL              |  |
| 输出阻抗                        | 约50 Ω            |  |
| 接口类型                        | BNC              |  |
| CH1 SWP OUT (CH1挂           | <b>塩/调制输出)</b>   |  |
| 输出电平                        | $\pm 10V$        |  |
| 输出阻抗                        | 约50Ω             |  |
| 接口类型                        | BNC              |  |
| SUM IN/VCA IN (外部           | f置电压/振幅控制)       |  |
| 输入电半                        | $\pm 10V$        |  |
| 输入阻抗                        | <b>έ</b> η20k Ω  |  |
|                             |                  |  |
| SWP CIKL IN (関払扫            | 验到物人)[外部扫描经制选件]  |  |
| 制八电半                        |                  |  |
| 输入阻抗                        | 約20k Q           |  |
| 送山奕型<br>(1)(日上(日上)(日)       | BNU OPER         |  |
| SYNCIN (回步制入)               |                  |  |
|                             |                  |  |
| OPER SYNC OUI (回さ           | 割田)<br>          |  |
| 佐山奕型<br>DICITAL CTRL 1/0 [4 |                  |  |
|                             | 心力抽控制延行」         |  |
| 甘油市物ン                       | 25-pm D-sub 序列/扫 |  |
| 油地址加八                       | 0                |  |
| 山政                          | o<br>TTI         |  |
| 电子                          | 514.0            |  |
| 但加加                         |                  |  |
| <b>扫抽的</b> 押制山<br>          | 628 292kHz       |  |
| 频平                          | TTI              |  |
| 电十四位                        | 4h100 0          |  |
| 担切した。                       | 53100 %          |  |
| r小に111 ロ<br>位数              | 3/СН             |  |
| 世<br>政<br>由<br>正            | TTI              |  |
| 也十四日                        | <b>41</b> 100 0  |  |
| 凹10<br>車研給山                 | 5)100 sc         |  |
| ➡ IT 刑 田                    | 3/CH             |  |
| 由亚                          | TTI              |  |
| 吃丁<br>阳 <b>培</b>            | 4/1100 O         |  |
| 阳玑                          | 51100 22         |  |

## 12.4 显示器、驱动器、GP-IB通信接口

#### 显示器规格

| 特性 | 规格                            |
|----|-------------------------------|
| 设备 | 液晶触摸屏                         |
| 精度 | $320 \times 240 \text{ dots}$ |
| 瑕疵 | < <b>像素的</b> 0.01%            |

#### 内置软驱(仅限FG310/FG320)

|      | 规格     |                        |
|------|--------|------------------------|
| 类型   | 3/5"软盘 |                        |
| 驱动器  | 1      |                        |
| 支持格式 | MS-DOS | 0KB/720KB/1.2MB/1.44MB |

#### GP-IB通信接口

| 特性   | 规格                                            |
|------|-----------------------------------------------|
| 机电特性 | 符合IEEE标准488-1978 (JIS C1901-1987)             |
| 功能   | SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0 |
| 协议   | 符合IEEE标准488.2-1987                            |
| 代码   | ISO (ASCII)                                   |
| 地址   | 可设为0~30 (talker/listener)                     |

# 12.5 通用规格

| 特性        | 规格                                               |
|-----------|--------------------------------------------------|
| 周围环境      | 周围温度:23℃±2℃、周围湿度:50%±10%RH<br>电源:100V±1% 、FG完全预热 |
| 预热环境      | 30分钟                                             |
| 运行环境      |                                                  |
| 温度        | 5°C~40°C                                         |
| 湿度        | 20%~80% RH~29°C 湿球温度计;无结露                        |
| 存储环境      |                                                  |
| 温度        | $-20^{\circ}$ C $\sim$ 60 $^{\circ}$ C           |
| 湿度        | 20%~80%RH                                        |
| 额定电源      | 100VAC~240VAC                                    |
| 允许电源波动    | 90VAC~264VAC                                     |
| 额定电源频率    | 50Hz~60Hz                                        |
| 允许功率频率波动  | 48Hz~63Hz Peak                                   |
| 峰值功耗      | 125VA                                            |
| 耐压(电源线)   | 1.5kVAC, 1 min.                                  |
| 绝缘电阻(电源线) | 500VDC, >10M Ω                                   |
| 信号地       | 所有I/O连接器的地都接到电源地线。                               |
| 外部尺寸      | 约213(W) 🗙 132(H) 🗙 350(D) mm (把手除外)              |
| 重量        | 约5kg (主机)                                        |
| 冷却方法      | 强迫通风冷却                                           |
| 安装位置      | 水平放置                                             |
| 电池备份      | 内置锂电池备份面板设置和和系统时间                                |
| 包括附件      | 电源线、2个后腿橡皮垫、软盘(仅限FG310/FG320)、1套用户说明书            |

## 12.6 外部尺寸



单位: mm

ŢШ

背面图



上述数值精确范围为±3%。

12

## 附录 1 任意波形扫描设置(实例)

此附录介绍了如何设置任意波形,并将此任意波形作为当前已选输出波形的扫描模式。先 定义波形,然后选择扫描条件。下述实例是:设置1秒钟的1kHz~10kHz的频率扫描。

#### 1. 设置区域

打开区域定义窗口。Xmax设为1s, Ymin设为1.0E+3Hz, Ymax设为10.0E+3Hz。

|                                                           | SC |
|-----------------------------------------------------------|----|
| AREA DEFINE                                               |    |
| Xmax         1.00000E+0           Ymin         1.00000E+3 |    |
| Ymax 10.0000E+3                                           |    |
| EXP ENT                                                   | R  |

#### 2. 输入波形文本数据

进入文本编辑窗口,给波形输入有代表意义的点。要确保每个点都在已选区域内: X值要在0s和1s之间,Y值要在1.0E+3Hz和10.0E+3Hz之间。

| ARB NO. A2                                                                                                                                                                | ESC            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| TEXT EDIT         Y         MKB           1         0.00000E+0         1.00000E+3         1           2         150         00000E+3         5         00000E+3         1 | NEW            |
| 3 300.000E-3 5.00000E+3 1<br>4 450.000E-3 10.0000E+3 1<br>5 600.000E-3 10.0000E+3 0                                                                                       | FILE<br>INTER- |
| 6 850.000E-3 1.00000E+3 0<br>7 1.00000E+0 1.00000E+0 0<br>8                                                                                                               | POLATE         |
| INS<br>LINE DEL<br>LINE UNDO EXP                                                                                                                                          | ENTER          |

#### 3. 选择插补法

按{INTERPOLATE}图标选择插补法。然后,FG发生波形。

#### 4. 设置扫描条件

进入扫描设置窗口设置扫描条件。把扫描项目设为FREQ、扫描类型设为刚才定义好的 任意波形、最小频率设为1kHz、最大频率设为10kHz、扫描时间设为1s。



设置已完成。现在可以把扫描设为ON,开始扫描输出。

## 附录 2 负值对数扫描

设置负数开始值和结束值的对数扫描时,请按下述说明操作。

对数阶梯扫描时的步骤基本不变,但要注意扫描经过0点时阶梯数会翻倍。

·开始值与结束值均为负值时:



## 软盘样本数据(仅限FG310/FG320)

磁盘格式

附录 3

支持的磁盘格式是2DD 720KB。

目录与文件

磁盘包括如下内容: AUTOLOAD.SET:自动导入文件 README.DOC:包含磁盘内容信息的文本文件 TEXT\:波形定义文本文件目录 FG\_WAVE\:波形文件目录 SEQUENCE\:序列文件目录 OTHERS\:其他仪器生成的样本文件目录 GPIBSMPL\:GP-IB程序例子目录

#### 解释

请在PC机中打开并读取README.DOC文件。采样程序的详细解释在GPIBSMPL目录内, 详情请见第5章的GP-IB接口用户说明书(IM706111-12E)。

#### 自动导入样本文件

样本磁盘插入软驱后,打开FG310/FG320。FG将自动导入如下数据。

任意波形

FG将导入下述7个任意波形数据:

• A1

通过文本数据和样条插值生成波形。试将此波形作为输出波形(进入主输出设置屏,按 {FUNC}图标,然后按{A1}图标)。

• A2

通过文本数据和线性插值生成波形。将此波形作为扫描模式使用。

- A3
  - 插补间隔为10deg的文本数据后生成正弦波。试着改变某些点并重新进行插补。
- A4

任意波形。试通过规化功能沿垂直方向展开波形。

- A5
  - 任意波形。试通过限制功能移动边缘区域,沿水平方向展开中心区域波形。
- A6
  - 任意波形。
- A7

声波 (bird sounds)。将此波形作为输出波形,频率设为1Hz。输出波形,通过扬声器听取声音。

• A8

未定义波形。试着自定义波形,详情请见第8章。

#### 序列数据

样本序列数据

#### 其他设置

所有设置为出厂默认值

## 索引

## Page

| * mark  |  |
|---------|--|
| <>      |  |
| #0 ~ #9 |  |
| 1/1     |  |
| 1/10    |  |
| 1/100   |  |

## Α

## Page

| A1 to A8                | 4-2, 5-2, 6-2, 8-1   |
|-------------------------|----------------------|
| Accessories             |                      |
| AM                      |                      |
| AMPL                    |                      |
| Amplitude               |                      |
| Amplitude-control input |                      |
| Amplitude modulation    | 1-9, 6-1             |
| Amplitude sweep         | 1-6, 5-3             |
| ANALOG                  |                      |
| ARB                     |                      |
| Arbitrary modulator     |                      |
| Arbitrary sweep         | 1-7, 5-2             |
| Arbitrary waveforms     | 1-5, 1-12, 4-2, Ch.8 |
| AREA DEFINE             |                      |
| Arrow keys              |                      |
| Attenuator              |                      |
| AUTO LOAD               |                      |
| Autoload                | 1-14, 10-4           |
|                         |                      |

## В

## Page

Page

| BEEP OFF/ON                 | 10-10       |
|-----------------------------|-------------|
| Beep ON/OFF switch          | 1-14, 10-10 |
| Block diagram, FG circuitry | 1-3         |
| Box contents                | 2           |
| BURST                       | 4-9         |
| Burst count                 | 1-4, 4-9    |

## С

| C.DIR          | 8-2, 8-8    |
|----------------|-------------|
| Calendar clock | 1-14, 10-11 |
| CANCEL         | 10-9        |
| CARRIER AMPL   |             |
| CARRIER FREQ   |             |
| CARRIER OFFSET | 6-3         |
| CARRIER PHASE  | 6-3         |
| Carrier wave   | 1-9, 6-3    |
| selection of   | 1-9         |
| Caution symbol | 6           |
| CENTER AMPL    | 5-4         |
| CENTER DUTY    | 5-5         |
| CENTER FREQ    |             |
| CENTER MARKER  | 5-7         |
| Center marker  |             |

| CENTER OFFSET 5-5                                |
|--------------------------------------------------|
| CENTER PHASE 5-4                                 |
| Center/span values 1-8, 5-4                      |
| CH                                               |
| CH1                                              |
| CH1 -> CH2                                       |
| CH1 MARKER OUT 1-13, 2-2, 9-7                    |
| CH1 marker output 1-13, 2-2, 9-7                 |
| CH1 output indicator                             |
| CH1 SWP OUT 1-13, 2-2, 9-9                       |
| CH1 sweep/modulation output 1-13, 2-2            |
| CH1 SYNC OUT                                     |
| CH1-synchronous output 1-13, 2-2, 9-6            |
| CH1 waveform output terminal 2-1                 |
| CH2                                              |
| CH2 -> CH1                                       |
| CH2 output indicator 2-1                         |
| CH2 waveform output terminal 2-1                 |
| Channel phase sync 1-6, 10-1                     |
| CHANNEL SYNC                                     |
| Channel-to-channel copy 1-14, 10-8               |
| CIRCUIT BREAKER                                  |
| Circuit breaker                                  |
| CLEAR                                            |
| Clipping                                         |
| CNTRST 10-10                                     |
| CONFIG                                           |
| CONFIGURATION 10-7, 10-10, 10-11                 |
| CONT                                             |
| Continuous output 1-4, 4-1                       |
| Continuous sweep 1-7, 5-1                        |
| Contrast adjustment 1-14, 10-10                  |
| Coordinate setting (for arbitrary wave) 8-4, 8-6 |
| СОРҮ 2-4, 10-8                                   |
| Copying                                          |
| Cursor 8-2                                       |
| CURSOR                                           |

### D

## Page

| DC                           |                  |
|------------------------------|------------------|
| Date/time setting            | 1-14, 3-5, 10-11 |
| DATE/TIME                    |                  |
| DATE                         |                  |
| DC                           |                  |
| DC output                    |                  |
| Level setting                | 4-5              |
| DDS                          | 1-1              |
| Default values               | 10-9             |
| DEL LINE                     | 8-5              |
| DEL PAGE                     |                  |
| DELETE EXEC                  |                  |
| DELETE SET                   |                  |
| Deleting arbitrary-wave data |                  |
| DEPTH                        |                  |
| Deviation                    | 1-10, 6-3        |
| DEVIATION                    |                  |
| Dial                         |                  |
| Dial mark                    | 2-3              |
|                              |                  |

| DIGITAL                               |                 |
|---------------------------------------|-----------------|
| Digital Control I/O                   | 1-13, 2-2, 9-9  |
| DIGITAL CTRL I/O                      | 1-13, 2-2, 9-14 |
| Dimensions                            | 12-7            |
| Direct digital synthesis              | 1-1             |
| DISPLAY TEST                          | 11-4            |
| Double-sideband surpressed carrier AM |                 |
| DSB-SC AM                             | 6-1             |
| DUAL                                  | 10-7            |
| Dual channel setting                  | 1-14, 10-7      |
| DUTY                                  | 4-2, 6-2        |
| Duty cycle                            |                 |
| Duty-cycle sweep                      | 1-7, 5-3        |
|                                       |                 |

Ε

## Page

| EJECT button  |                                  |
|---------------|----------------------------------|
| ENTER         |                                  |
| ERROR LOG     |                                  |
| Error message | 11-1                             |
| ESC           | . Ch.7, Ch.8, Ch.9, Ch.10, Ch.11 |
| Event output  |                                  |
| EXEC          | 10-2, 10-8, 10-9, 10-11, 11-4    |
| EXP           |                                  |
|               |                                  |

F

| F                                    | Page       |
|--------------------------------------|------------|
| FILE                                 | 7-1, 8-1   |
| FILE NAME                            | 7-4, 8-9   |
| FLOPPY                               | 10-2, 10-4 |
| Floppy disk                          | 3          |
| Autoload                             | 10-4       |
| Formatting                           | 10-2       |
| Insertion                            | 10-3       |
| Saving/deleting arb binary/text data | 8-8        |
| Floppy-disk drive                    | 2-1        |
| FM                                   | 1-9, 6-1   |
| FORMAT                               | 10-2       |
| Format of floppy disk                | 1-14, 10-2 |
| FREQ                                 | 4-3, 5-3   |
| Frequency-& amplitude sweep          | 1-7, 5-3   |
| Frequency modulation                 | 1-9, 6-1   |
| Frequency sweep                      | 1-7, 5-3   |
| Front panel                          | 2-1        |
| FRQ&                                 | 5-3        |
| FSK                                  | 1-11       |
| FUNC                                 | 4-2        |

G

### Page

| GATE               |                |
|--------------------|----------------|
| GATE IN            |                |
| Gate input         | 1-13, 2-2, 9-1 |
| Gate (output mode) | 1-4, 4-1       |
| GP-IB              | 2-2            |

## Page

| High level  |  |
|-------------|--|
| HIGH LEVEL  |  |
| HOLD OFF/ON |  |

## Page

| INIT                                 |            |
|--------------------------------------|------------|
| INITIALIZE                           | 10-9       |
| Initialization                       | 1-14, 10-9 |
| InitOUT OFF/ON                       | 4-8        |
| INS LINE                             |            |
| INS PAGE                             |            |
| Installation                         |            |
| Instrument No.                       |            |
| Internal configuration of FG         |            |
| Internal memory (for output setting) | 10-6       |
| Internal trigger                     | 1-4        |
| INTERPOLATE                          |            |
| Interpolation                        |            |
| Selection of method                  |            |

#### Κ

Н

L

#### Keypad KEYTEST ...... 11-4

#### L

#### Page

Page

| LCD                  | 2-1                 |
|----------------------|---------------------|
| LIN                  | 5-2                 |
| LINEAR               | 5-2, 8-7            |
| Linear interpolation | 8-7                 |
| LINEAR STEP          | 5-2                 |
| Linear-step sweep    | 1-7, 5-3            |
| Linear sweep         | 1-7, 5-2            |
| LINSTEP              | 5-2                 |
| LOAD                 | 7-4, 8-2, 8-7, 10-4 |
| Loading              |                     |
| Sequence data        |                     |
| Waveform binary data | 8-1                 |
| Waveform text data   |                     |
| LOG                  | 5-2                 |
| LOG STEP             | 5-2                 |
| Log-step sweep       | 1-7, 5-2            |
| Log sweep            | 1-7, 5-2, A-2       |
| Low level            |                     |
| LOW LEVEL            | 4-4                 |
|                      |                     |

## Μ

Page

| M.FUNC                                                            |                   |     |
|-------------------------------------------------------------------|-------------------|-----|
| M.TYPE                                                            |                   | 6-1 |
| MAIN OUT                                                          | TPUT SETUP screen | 2-3 |
| Manual trig                                                       | ger               | 4-9 |
| MARK                                                              | -                 |     |
| Markers (output signal)1-8, 1-11, 1-12, 1-13, 5-7, 8-6, 9-7, 9-14 |                   |     |
| MASTER                                                            |                   |     |
| Master unit                                                       |                   |     |

| Messages                | 11-1           |
|-------------------------|----------------|
| MKR                     | 8-6, 9-8       |
| MOD                     | 2-1, 2-4, Ch.6 |
| MOD FREQ                | 6-3            |
| MODE                    |                |
| MODEL                   | 2              |
| Model code (suffix)     | 2              |
| Model name              | 2              |
| MODIFY                  |                |
| MODULATE                | Ch.6           |
| MODULATE OFF/ON         | 6-3            |
| Modulation              | 1-9, Ch.6      |
| Conditions              | 1-10, 6-3      |
| Depth                   | 1-10, 6-3      |
| Frequency               | 1-9            |
| ON/OFF switch           | 6-3            |
| Output                  | 1-13, 2-2, 9-9 |
| Setup                   | 1-9            |
| Types                   | 1-9, 6-1       |
| MODULATION FUNCTION     | 6-2            |
| MODULATION SETUP screen | 2-4            |
| MONITOR                 | 5-6            |
| MSTR                    |                |
|                         |                |

## Ν

## Page

| NAME          |  |
|---------------|--|
| NEW           |  |
| NORMAL        |  |
| Normalization |  |
| NORMALIZE     |  |
|               |  |

## 0

## Page

| OFF                                    |
|----------------------------------------|
| OFFSET                                 |
| Offset/amplitude input 1-13, 2-2       |
| Offset input 1-13, 9-4                 |
| Offset modulation 1-9, 6-1             |
| Offset voltage 1-6, 4-4                |
| Offset voltage, as sweep item 1-7, 5-3 |
| ON                                     |
| OPER SYNC IN 1-13, 2-2, 9-10           |
| OPER SYNC OUT 1-13, 2-2, 9-10          |
| OPERATION SYNC                         |
| OPTION                                 |
| OPTION CONTROL                         |
| OUTPUT                                 |
| Output attenuator 1-3, 1-5, 4-8        |
| Output conditions 1-5                  |
| Output frequency 1-6, 4-3              |
| Output function                        |
| Output mode 1-4, 4-1                   |
| Output ON/OFF 4-8                      |
| Output settings                        |
| Initialization 10-9                    |
| Store, recall 10-6                     |
| Output voltage 1-6, 4-4                |
| Output waveform 1-5, 4-1               |
| -                                      |

| Performance testing              | 11-6       |
|----------------------------------|------------|
| Periodic spline                  | 8-7        |
| PERIOD SPLINE                    | 8-7        |
| Phase                            | 1-6, 4-7   |
| PHASE                            | 4-7, 5-3   |
| Phase (as sweep item)            | 1-7, 5-3   |
| Phase modulation                 | 1-9, 6-1   |
| PHASE SYNC                       | 4-7, 10-1  |
| Phase synchronization            | 1-13, 10-1 |
| РМ                               | 1-9, 6-1   |
| Points (for arb-wave definition) | 1-12, 8-5  |
| Power                            |            |
| Connecting                       | 3-4        |
| Connector                        | 2-2, 3-4   |
| Cord                             | 3, 3-4     |
| POWER                            | 2-1        |
| Power switch                     | 2-1, 3-5   |
| PSK                              | 1-11       |
| Pulse modulation                 | 1-9, 6-1   |
| Pulse modulator                  | 1-9, 6-2   |
| Pulse wave                       | 1-5, 4-2   |
| Pulse width modulation           | 1-9, 6-1   |
| PWM                              | 1-9, 6-1   |
|                                  |            |

## R

Ρ

## Page

| Rack mount                                       | 3-3         |
|--------------------------------------------------|-------------|
| Rear-leg rubber mounts                           |             |
| Rear panel                                       | 2-2         |
| RECALL                                           | 10-6        |
| Recalling settings from memory<br>Relaxed spline | 10-6<br>8-7 |
| RELAX SPLINE<br>REPEAT                           | 8-7<br>5-1  |
| Repeat sweep                                     | 1-7         |
|                                                  |             |

## S

## Page

| S.ITEM                             | 5-3        |
|------------------------------------|------------|
| S.MODE                             | 5-1        |
| S.TYPE                             | 5-2        |
| Sample data, in floppy disk        | A-3        |
| SAVE                               |            |
| Saving                             |            |
| Arbitrary-waveform data            |            |
| Sequence data                      |            |
| Saving settings to memory          | 10-6       |
| Screen displays                    |            |
| SELF TEST                          | 2-4, 11-4  |
| Self-testing                       | 1-14, 1-15 |
| SEQ                                |            |
| SEQUENCE                           |            |
| Sequence address input             |            |
| Sequence data                      |            |
| Sequence editor                    |            |
| Sequence marker                    | 1-11, 7-1  |
| SEQUENCE OFF/ON                    |            |
| Sequence output                    | 1-11, 7-3  |
| Sequence output ON/OFF             |            |
| SGL&HLD                            | 5-1        |
| Simultanous (dual) channel setting | 1-14, 10-7 |

Page

| Sine wave 1-5, 4-2                   |
|--------------------------------------|
| Sine-wave modulator 1-9, 6-2         |
| SINGLE                               |
| SINGLE HOLD                          |
| Single & hold sweep 1-7, 5-1         |
| Single sweep 1-7, 5-1                |
| Signal flow 1-3                      |
| Signal I/O 1-14                      |
| SLAV                                 |
| SLAVE                                |
| Slave units                          |
| Square wave                          |
| SPAN AMPL                            |
| SPAN DUTT                            |
| SPAN FREQ                            |
| SDAN MADKED 57                       |
| SPAN MARKER                          |
| SPAN OFFSET                          |
| Specifications 12-1                  |
| Spline interpolation 1-12 5-6 8-7    |
| STADT AMDI 5/                        |
| START CURSOR &2                      |
| Start cursor 8.7                     |
| START DUTY 5-2                       |
| START FREO 5-4                       |
| Start marker 1-8 5-7                 |
| START MARKER 5-7                     |
| START OFFSET 5-5                     |
| START PHASE 5-4                      |
| Start value (sweep)                  |
| STEP 5-2. 8-7                        |
| Status messages 11-10                |
| Steps (sequence)                     |
| Steps (sweep) 1-8, 5-2               |
| STOP AMPL                            |
| Stop cursor                          |
| STOP CURSOR                          |
| STOP DUTY                            |
| STOP FREQ                            |
| Stop marker 1-8, 5-7                 |
| STOP MARKER 5-7                      |
| STOP OFFSET 5-5                      |
| STOP PHASE                           |
| Stop value (sweep) 1-8, 5-4          |
| STORE                                |
| STORE/RECALL                         |
| Storing output settings 10-6         |
| SUFFIX                               |
| SUM                                  |
| SUM IN/VCA IN 1-13, 2-2, 9-4         |
| SUM/VCA                              |
| SWEEP                                |
| Sweep                                |
| Address input                        |
| Analog control input 1-13, 2-2, 9-12 |
| Clock ouptut                         |
| Conditions 1-8, 5-4                  |
| Data memory                          |
| Hold                                 |
| Hold input                           |
| 1-7, 5-3                             |
| Note                                 |
| NIONITOR                             |
| 01V/01T                              |

| Ratio                                 |                                         |
|---------------------------------------|-----------------------------------------|
| Setup                                 |                                         |
| Time                                  |                                         |
| Туре                                  |                                         |
| Sweep-control option                  |                                         |
| Sweep/modulation output               |                                         |
| SWEEP OFF/ON                          |                                         |
| SWEEP RATIO                           |                                         |
| SWEEP SETUP screen                    |                                         |
| SWEEP TIME                            |                                         |
| SWP CTRL IN                           |                                         |
| SWP HOLD IN                           |                                         |
| Synchronization (of multiple devices) |                                         |
| Symmetry                              |                                         |
| SYMMETRY                              |                                         |
| SYNCHRO                               |                                         |
|                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

#### Т

### Page

Page

Page

| TEXT EDIT                 |                              |
|---------------------------|------------------------------|
| TIME                      |                              |
| TOUCH KEYTEST             | 11-4                         |
| Triangular modulator wave |                              |
| Triangular wave           |                              |
| TRIG                      | 1-4, 2-1, 2-4, 4-1, 7-3, 9-2 |
| TRIG FREQ                 |                              |
| TRIG IN/GATE IN           |                              |
| TRIG INT/EXT              |                              |
| TRIG SLOPE                |                              |
| Trigger                   |                              |
| Frequency                 | 4-9                          |
| Input                     |                              |
| Output mode               |                              |
| Source                    |                              |
| TRIGGER SLOPE             |                              |
| Troubleshooting           | 11-3,4                       |
| TTL LEVEL                 |                              |
|                           |                              |

#### U

#### 

#### V

| VCA    | <br>9-5 |
|--------|---------|
| VCA IN | <br>9-5 |

#### W

## Page

| Warning mark                  | 2-3, 11-2      |
|-------------------------------|----------------|
| Warning messages              | 11-2           |
| Warning symbol                | 6              |
| WAVE                          | 2-1, 2-3, Ch.4 |
| Waveform data                 |                |
| Waveform generation mechanism | 1-1            |
| Waveform memory               | 1-3            |
| Waveform output terminals     |                |
| Waveform text data            | 1-12, 8-4, 88  |
|                               |                |

## Χ

| Page |
|------|
|------|

Page

| -2 |
|----|
| 4  |
| -2 |
| -2 |
|    |

#### Υ

| Y NORM | 1ALIZE | 8-3 |
|--------|--------|-----|
| Ymax   |        |     |
| Ymin   |        |     |



## 公司简介

福州福光电子有限公司是一家集研发、生产和销售的高新科技企业,专业为通信运营商、 电力和专网提供电源、传输、数据、无线等测试领域的系统集成服务。

公司成立于 1993 年,目前注册资本为 1000 万元。公司下属电源光传输事业部、无线数 据事业部、市场综合部的四十位专业工程师将为您精心选型、配套、提供技术咨询服务。我 们不仅为您提供性价比优良的专业测试仪表和解决方案,更为您提供完善的售前、售中、售 后全方位服务。

为了给用户提供规范的服务,提高服务质量,公司导入 ISO9001:2000 质量管理体系, 并于 2001 年 5 月一次性通过全球著名的认证授信机构——法国 BVQI 公司的 ISO9001 国际质 量管理体系认证。目前公司已在北京、上海、广州、西安、成都、武汉成立了技术服务中心; 并于 2004 年在深圳设立研发基地。

多年来,公司与欧美许多仪器仪表生产商建立起长期良好、共同发展的战略伙伴关系, 相继取得了世界上多家著名仪器仪表厂商的代理权。

#### 品质政策:专业品质,高效服务,永续创新,追求卓越。

发展目标:成为中国通讯行业专业测试仪器仪表最大集成服务商。

- 总 部: 福州市台江区广达路 68 号金源大广场东区 24 层 (350005)
   电话: 0591-83305858
   Http://www.fuguang.com
   佳百服务中心: 0591-83305876
- 分支机构:北京办
   上海办
   广州办

   西安办
   成都办
   武汉办