

NX700 Series Controller NX-CPU700p User Manual

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Because of these differences, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Samsung Automation be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Samsung Automation cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Samsung Automation. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Samsung Automation. is prohibited.

Throughout this manual we use notes to make you aware of safety considerations.

WARNING

Identifies information about practices or circumstances which may lead to serious personal injury or death, property damage, or economic loss.

IMPORTANT

Identifies information that is critical for successful application and understanding of the product.

ATTENTION

Identifies information about practices or circumstances that can lead to minor personal injury, property damage, economic loss, or product malfunction. However, depending on circumstances, failure to follow the directions accompanying this symbol may also lead to serious consequences.

Contents

1.	NX-CPU700p PLC Features and System Configuration Module Types and Combinations	7 10
2.	Hardware Features and Specifications Overall Specifications	15
	Backplane and Expansion Cable Processor Module Power Supply Module	17 19
	I/O Modules	
3.	Addressing Overview	35
	Addressing Overview	35
	Bit and Word Addressing	36
	Double Word Addressing	37
	Absolute Addressing	38
	I/O Addressing	39
	Special Registers	41
	Timer/Counter Area	48
	Processor Operation Mode	52
	Processor Processing Procedure	53
4.	Installation and Wiring	55
	Installation	55
	Power Supply Module Wiring	57
	Input and Output Wiring	60
	Terminal Block Type Module Wiring	66
	Connector Type Module Wiring	67
	Safety Measures	72
	NX-CPU700p Processor Module Communications Specifications	73
	EEPROM Backup	
5.	Test Run and Troubleshooting	
	Test Run Precautions	75
	Test Run Procedure	76
	Test Run Flow Charts	77
	Inspection and Maintenance	83

6.	Programming Instructions	87
	Basic Sequence Instructions	87
	Timer, Counter and Shift Register Instructions	88
	Comparison Instructions	89
	Substitution, Increment and Decrement Instructions	
	Arithmetic Instructions	90
	Logical Instructions	91
	Rotation Instructions	91
	Word Conversion Instructions	92
	Bit Conversion Instructions	93
	Move Instructions	94
	Program Control Instructions	95
	System Control Instructions	96
	Communications Control Instructions	97
7.	NX-CPU700p System Product Dimensions	99
7.	NX-CPU700p System Product Dimensions System Dimensions	
7.		99
7.	System Dimensions	99 99
7.	System Dimensions	99 99
7.	System Dimensions	99 99 100
7.	System Dimensions Backplane Dimensions Power Supply Module Dimensions) Processor and I/O Modules Dimensions	99 99 100 101
7.	System Dimensions Backplane Dimensions Power Supply Module Dimensions) Processor and I/O Modules Dimensions Specialty Module Dimensions	99 100 100 101
7.	System Dimensions	99 99 100 101 101 102
	System Dimensions Backplane Dimensions Power Supply Module Dimensions) Processor and I/O Modules Dimensions Specialty Module Dimensions NX-IOLINK Module Dimensions Decimal, Bin, Hex, BCD, Gray Code Cross-reference Table	99100101101102
	System Dimensions	99100101102105
	System Dimensions Backplane Dimensions Power Supply Module Dimensions) Processor and I/O Modules Dimensions Specialty Module Dimensions NX-IOLINK Module Dimensions Decimal, Bin, Hex, BCD, Gray Code Cross-reference Table ASCII Code Table Spendix. Communication Protocols	9999100101102103105
	System Dimensions Backplane Dimensions Power Supply Module Dimensions) Processor and I/O Modules Dimensions Specialty Module Dimensions NX-IOLINK Module Dimensions Decimal, Bin, Hex, BCD, Gray Code Cross-reference Table ASCII Code Table Communication Protocols Communication Protocols	9999100101102103105106

Safety Instructions

Please read this manual and the related documentation thoroughly and familiarize yourself with product information, safety instructions and other directions before installing, operating, performing inspection and preventive maintenance. Make sure to follow the directions correctly to ensure normal operation of the product and your safety.

WARNING

- If this product is used in a situation that may cause personal injury and/or significant product damage, implement safe measures such as use of fault-safe equipment.
- Do not use this product under the conditions exposed to explosive gases. It may cause an explosion.

ATTENTION

- Make sure to use an external device when configuring the protective circuit breakers for emergencies or interlock circuits.
- Fasten the terminal screws tightly to ensure that the cable connection is secure. Incorrect cable connection may cause overheating and product malfunction.
- Operate and keep the product under the allowed conditions directed in product specifications.
 Otherwise it may cause overheating and product malfunction.
- Do not disassemble or remodel the product.
 Otherwise it may cause an electric shock or malfunction.
- Do not touch the terminals when the power is on.
 Otherwise it may cause an electric shock.

Installation Environment

ATTENTION

Do not install your PLC system if any of the following conditions are present:

- Ambient temperature outside the range of 0 to 55 °C (32 to 131 °F)
- Direct sunlight
- Humidity outside the range of 30% to 85% (non-condensing)
- Chemicals that may affect electronic parts
- Excessive or conductive dust, or salinity
- High voltage, strong magnetic fields, or strong electromagnetic influences
- Direct impact and excessive vibration

ATTENTION

Electrostatic Discharges

Under dry condition, excessive electrostatic discharges may occur. Make sure to remove electrostatic discharges by touching a grounded metal piece before touching your controller system modules.

ATTENTION

Cleaning

Never use chemicals such as thinner because they melt, deform or discolor PCB boards.

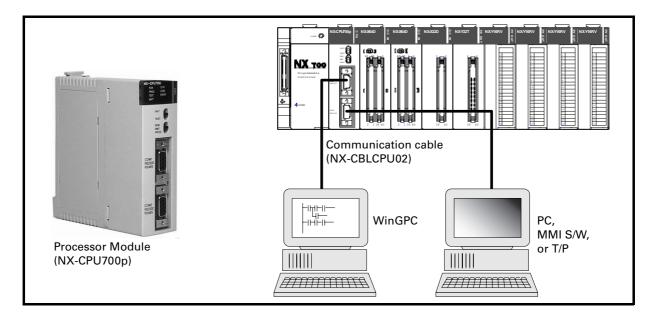
ATTENTION

Precautions for use of power

- Run your PLC system only after the I/O devices and motor devices have started. (For example, first power on in the PROG mode, then change the operation mode to RUN.)
- Make sure to power off I/O devices after ensuring PLC operation is stopped.
- If you power on/off I/O devices when the PLC system is in operation, the system may malfunction because input signal noises may be recognized as normal inputs.

ATTENTION

Before powering on


Make sure to follow these directions before powering on your PLC system.

- When installing the system, ensure that there are no metal chips or conductive fragments that stick to wiring cables.
- Ensure that power supply and I/O wirings and power supply voltage are all correct.
- Securely fasten installation and terminal screws.
- Set the operation mode switch to PROG mode.

System Configuration

NX-CPU700p PLC Features and System Configuration

System configuration

Features

• High-speed processing

With the high-speed ASIC, the NX-CPU700p processes basic instructions at a speed of 0.2 μ s per step.

• Runtime Editing

The NX-CPU700p processor module allows you to modify instructions while operating.

• Built-In Real Time Clock (RTC)

Built-in real time clock supports programming by time and date.

• High-capacity programming and memory backup

The NX-CPU700p allows you to program up to 20K words. Built-in flash EEPROM allows you to save programs separately.

• Self-diagnostics

Self-diagnostics allows you to minimize system errors and maximize diagnostic efficiency.

• Maximum 1600 I/O points

With a 12-slot base backplane and a 12-slot expansion backplane, you can use up to 1600 I/O points (when all I/Os are configured with 64-point digital I/O modules).

• Supports various I/O and specialty modules

The NX-CPU700p processor module supports 24V dc input (16, 32, and 64 points), 110V ac input, 220V ac input, relay output, transistor output (16, 32, and 64 points), SSR output, A/D, D/A, RTD, TC, high-speed counter, CCU+, and SCU.

• WinGPC as programming tool

WinGPC, which is the programming tool for NX-CPU700p processor module, lets you create, edit, download, and upload your control program, and allows you to perform processor status monitoring, force I/O, and I/O status montioring as well. It is a powerful, easy-to-use programming tool.

Various I/O backplane options (up to 12 slots)

The NX-CPU700p PLC allows you to choose one from 3-, 5-, 8-, 10-, or 12-slot backplanes for maximum system configuration flexibility.

• Built-in RS232C/RS485, 2 ports

With two built-in communication ports, the NX-CPU700p processor module allows you to connect directly to computers or touch panels and exchange a high volume of data at high speed. The COM2 port supports a simple user-defined communication, and allows you to connect to barcode readers, inverters, or servo motors. (Binary communication is available.)

I/O Backplanes and I/O Points

3-Slot Type

NX-BASE03 48 Points: 16-point I/O 192 Points: 32-point I/O

8-Slot Type

NX-BASE08 128 Points: 16-point I/O 512 Points: 64-point I/O

5-Slot Type

NX-BASE0) 80 Points: 16-point I/O 320 Points: 64-point I/O

10-Slot Type

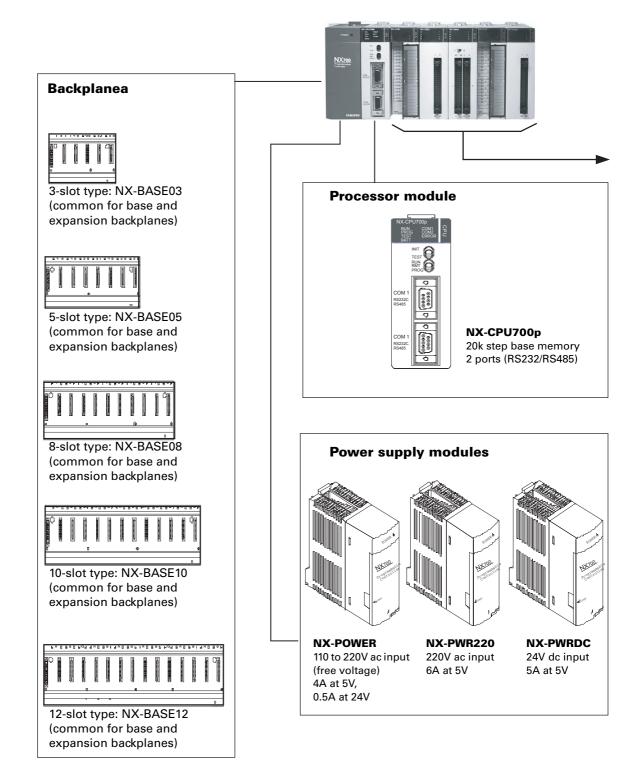
NX-BASE10 160 Points: 16-point I/O 640 Points: 64-point I/O

12-Slot Type

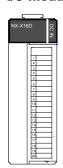
NX-BASE12 192 Points: 16-point I/O 768 Points: 64-point I/O

• Flexible system configuration: 5 types of backplane (3-, 5-, 8-, 10- and 12-slot)

The NX-CPU700p PLC has 5 types of backplane (3-, 5-, 8-, 10 and 12-slot type), providing you with very flexible I/O configuration.


All backplanes, I/O modules, power supply, and specialty modules are available to other NX700 series PLC systems, for example, NX-CPU700 or NX-CPU750A system.

• Maximum 1600 I/O points


With a 12-slot base backplane and a 12-slot expansion backplane, you can use up to 1600 I/O points by configuring all I/Os with 64-point digital I/O modules.

Module Types and Combinations

Combinations of backplanes and modules

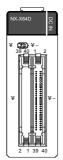
I/O modules

• 16-point input 24V dc In:

NX-X16D 110V ac In: NX-X16A110 220V ac In: NX-X16A220) • 16-point output

Relay Out: NX-Y16R NX-Y16RV **Transistor Out:** NX-Y16T

SSR Out: NX-Y16SSR

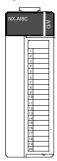


32-point input

24V dc In: NX-X32D

• 32-point output Relay Out: NX-Y32RV **Transistor Out:**

NX-Y32T


• 64-point input

> 24V dc In: NX-X64D

• 64-point output

> Transistor Out: NX-Y64T

Specialty modules

Analog input • RTD input

8-channel current input: NX-AI8C 8-channel

voltage input: NX-AI8V

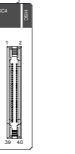
Analog output

4-channel current output: NX-AO4C

4-channel voltage output: NX70-AO4V

8-channel: NX-RTD8 4-channel: NX-RTD4

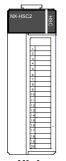
• TC input


8-channel: NX-TC8 4-channel:

NX-TC4

• Highperformance high-speed counter

> 4-channel: NX-HSC4

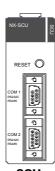

Pulse output module

4-channel: NX-PULSE4

Positioning module

(supporting open collector or line drive output)

1-axis: NX-POSI1 2-axes: NX-POSI2 3-axes: NX-POSI3 4-axes: NX-POSI4



High-speed counter

2-channel: NX-HSC2

CCU+ NX-CCU+

SCU NX-SCU

Remote I/O Master **NX-MASTER**

Slave **NX-SLAVE**

MW-LINK Module

NX-MWLINK (Multi W-Link and W-Link functions)

Processor Module

NX-CPU700p 20k step, 0.2 μ s 2 comm. ports WinGPC S/W

Software & cables

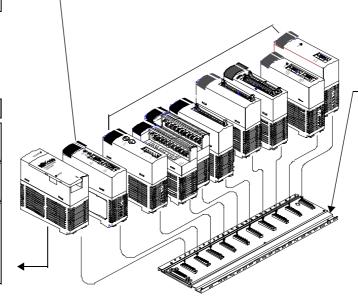
Programming tool: WinGPC S/W Comm. cables to PC: NX-CPUCBL02, NX-CPUCBL05

Specialty Module (1)

A/D, D/A, RTD, TC CCU, SCU High-speed counter (1, 2CH) DevicedNet System

Specialty Module (2)

High-performance, high-speed counter (4CH) Positioning module (1, 2, 3, 4 axes) Pulse output module (4CH) Remote I/O system MW-LINK system


I/O Module

16-point type 32-point type 64-point type

Power Supply Module

AC Type
1) NX-POWER
110/220V ac, free voltage
4A at 5V, 0.5A at 24V
2) NX-PWR220
110/220V ac, free voltage
6A at 5V

DC Type NX-PWRDC 24V dc input 5A at 5V

Backplane

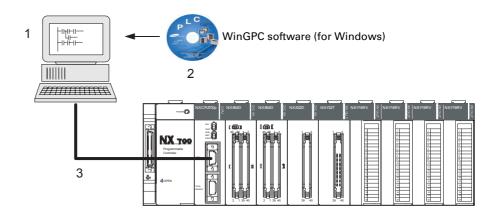
3-slot type 5-slot type 8-slot type 10-slot type 12-slot type

Available Combinations and Restrictions

Restrictions by Module

 $\ensuremath{\mathsf{O}}$: Available, \triangle : Version 2.0 or higher required, ③: Not available

		Ba	sic	m	odu	ıle		Sp	ecia	alty m	od	ule		Ne	tw	ork	m	odu	ıle
Conf	Module	Processor module	Backplane (3, 5, 8, 10, and 12-slot)	Power supply module	Input module	Output module	A/D, D/A, RTD, TC modules	Positioning module (1,2,3 and 4 axes)	High-speed counter (1, 2CH)	High-performance high-speed counter (4CH)	Pulse I/O module (4CH)	SCU (2CH)	CCU+ 1CH) (1)	Remote I/O master module (1)	Remote I/O slave module (1)	MW-Link module (1)	EtherNet module (1)	DeviceNet master module	Profi-DP master module
Base backplane	Mount the modules in the following order, starting from the leftmost slot of the backplane. Power supply module Processor module I/O module or specialty module	0	0	0	0	0	0	_	0	Δ	Δ	0	0	Δ	Δ	Δ	3	Δ	Δ
Expansion backplane	Mount the modules in the following order, starting from the leftmost slot of the backplane. • Power supply module • I/O module or specialty module	3	0	0	0	0	0	3	0	3	3	0	3	3	3	3	3	3	3

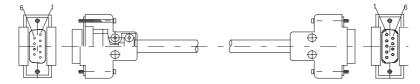

(1) Restrictions on available link modules

Module		Availability with NX-CPU700p			
CCU+		Only one unit available			
MW-Link module		Available with NX-CPU700p version 2.0 or higher			
W-Link Module W-Link 2 mode		Unavailable			
EtherNet module		Unavailable			
Remote I/O Master and Slave modules		Available with NX-CPU700p version 2.0 or higher			
Positioning, High-performance high-speed counter (4CH), and Pulse I/O modules		Available with NX-CPU700p version 2.0 or higher			

Programming Tools

Tools required for programming

The following tools are required when programming with WinGPC.


1. Personal computer

2. WnGPC (for Windows)

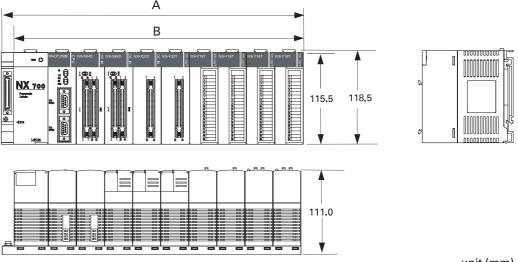
WinGPC is the programming tool for editing and debugging PLC programs for NX series controllers. WinGPC supports Microsoft Windows operating system.

3. Cable for programming

For connection to the communication port of the NX70 processor module, you can either purchase and use NX-CBLCPU02 or NX-CBLCPU05 cable or construct the needed cables as follows:

Computer

	or module onnector		Computer 9-pin connector		
Signal	Pin No.		Pin No.	Signal	
TXD	2		2	RXD	
RXD	3		3	TXD	
-	4		4	DTR	
S.G	5		5	S.G	
485(-)	6		6	DSR	
485(+)	7	•	7	RTS	
-	8		8	CTS	
VCC	9		9	-	


Hardware Features and Specifications

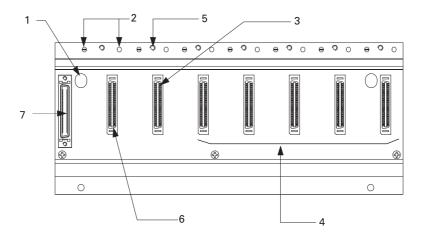
Overall Specifications

General specifications

Item		Specifications				
Temperature	Operating	0 °C to +55 °C (32 °F to 131 °F)				
Temperature	Storage	-25 °C to +70 °C (-13 °F to 158 °F)				
Humidity	Operating	30 to 85% RH (non-condensing)				
Huillialty	Storage	30 to 85% RH (non-condensing)				
Withstand	voltago	1500V ac for 1 minute between external terminal (ac) and frame ground (FG)				
Withstand voltage		500V ac for 1 minute between external terminal (dc) and frame ground (FG)				
Insulation resistance		100 $\text{M}\Omega$ or more at 500 mega V dc between external terminal and frame ground (FG)				
Vibration immunity		10 to 55 Hz 1 sweep per minute, 0.75 mm peak to peak, 10 minutes per axis (X, Y, Z)				
Shock immunity		10G 4 times for each X, Y, Z direction				
Noise immunity		1500 Vp-p with 50 ns to 1 μ s pulse width (generated by noise simulator)				
Environ	ment	IP 20				

Dimensions (unit: mm)

unit (mm)


	3-slot type	5-slot type	8-slot type	10-slot type	12-slot type
A (mm)	205.0	276.0	381.0	452.0	522.0
B (mm)	183.8	254.2	359.8	430.2	500.6

Performance specifications

Pro	cessor	NX-CPU700p			
Contro	ol method	Stored program, cyclic operation			
Exte	rnal I/O	1,600 points			
Instructions	Basic	28 types			
instructions	Advanced	150 types			
	Basic instructions	0.2 to 0.4 µs per step			
Processing speed	Advanced instructions	0.4 to several tens of μ s per step			
Max. program size		20K words			
I/O contact (R)		R0.0 to R127.15 (2,048 points, 128 words)			
	Link contact (L)	L0.0 to L63.15 (1,024 points, 64 words)			
	Internal contact (M)	M0.0 to M127.15 (2,048 points, 128 words) (Where, M0.0 to M63.15 can be used as link contact.)			
	Keep contact (K)	K0.0 to M127.15 (2,048 points, 128 words)			
	Special contact (F)	F0.0 to F15.15 (256 points)			
Memory map	Time ou/Counter	256 channels (Timer + Counter), Set value range: 0 to 65535			
	contacts	Timer: 0.01 second: CH000 to CH063 (64 channels), 0.1 second: CH064 to CH255 (192 channels)			
	(TC or TIM)	Counter: CH000 to CH255 (256 channels)			
	Data register (W)	W0000 to W2047, W3072 to W5119 (4,096 words)			
	Special register (W, SR)	W256 (=SR000) to W3071 (=SR511) (512 words)			
Real time	e clock (RTC)	Year, Month, Day, Hour, Minute, Second, Day of the week			
	Port 1	Supports both RS232 and RS485, 9600/19200/38400 bps			
		Supports both RS232 and RS485, 4800/9600/19200/38400 bps			
Communication	Port 2	Supports a user-defined protocol (which allows connecting a barcode reader, an inverter, or a servo driver)			
		Supports binary communication			
Backup usi	ing flash ROM	Built-in user program backup capability			

Backplane and Expansion Cable

Backplane (NX-BASE03, NX-BASE05, NX-BASE08, NX-BASE10, NX-BASE12)

Description

1. Backplane mounting hole

This hole is for mounting a backplane on a control panel (control box). Use M5 screw for mounting.

2. Module mounting guide holes

When mounting a module on the backplane, align the mounting clamp of the module with this hole.

When using as a base backplane (processor side backplane), mount modules, starting from the leftmost slot, in the order of power supply module, processor module, and I/O (specialty) modules.

When using as an expansion backplane, mount modules, starting from the leftmost slot, in the order of power supply module and I/O (specialty) modules.

3. Connector for processor module

Mount the processor module onto this slot. Make sure to mount the processor module next to the power supply module. When using as an expansion backplane, I/O (specialty) modules can also be mounted onto this slot

4. Connectors for I/O modules (specialty modules)

Mount I/O (specialty) modules onto these slots.

5. Module fixing hole

These holes are for holding a mounted module in place on a backplane. Fasten the screw on the module through this hole.

6. Connector for power supply module

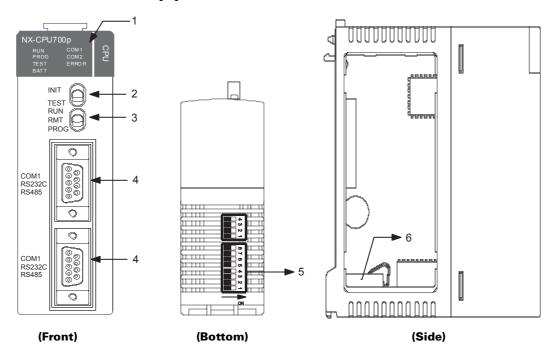
7. Connector for expansion cable

When using as an exansion backplane, use this connector to connect an expansion cable.

Backplane types

Туре	Number of slots	Catalog number	Weight (g)	Remarks
	3	NX-BASE03	250g	
Common for	5	NX-BASE05	330g	
base and expansion	8	NX-BASE08	460g	
backplanes	10	NX-BASE10	570g	
	12	NX-BASE12	660g	

Expansion cable (NX-EXPCBL)


Expansion cable

Cable length	Catalog number	Remarks
1.5m	NX-EXPCBL15	Common for
0.8m	NX-EXPCBL08	NX700 PLCs

Processor Module

NX-CPU700p processor module

• Hardware features

1. Status LED

Indicates the operation status of PLC, such as run, stop, error, and alarm.

2. Initialize/Test switch

Test switch is unused at present.

3. Mode switch

Used to change the operation mode of the controller.

4. RS232/RS485 communication ports (9-pin COM1 and COM2 ports)

Used to connect to the programming tool (WinGPC), touch panel, or MMI. Allows user-defined communication (COM2 port).

5. TOOL connector for programming (TOOL, RS232C), 9 pins

Connector for connection with programming tool (WinFPST S/W).

6. Operation condition setting switches

DIP switch 1 (4 poles, termination resistance setting)

DIP switch 2 (8 poles, communication and program booting method setting)

7. Memory backup battery

Backup battery for internal memory (RAM).

Shipped with the battery connector disconnected.

• Status LEDs

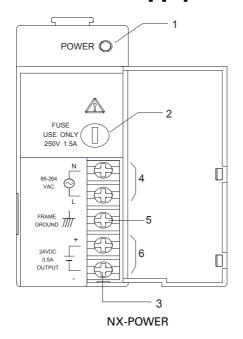
LED	Color	Description
RUN	Green	On when the processor is running.
PROG	Green	On when the program can be edited.
BATT	Red	On when the battery is not mounted or is low.
TEST	Green	Not used
COM1	Green	Flashing when the processor is communicating via COM1.
COM2	Green	Flashing when the processor is communicating via COM2.
ERROR	Red	On when a processor error occurs.

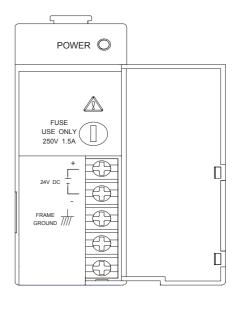
Mode switch

Mode	Mode Description					
RUN	Sets the processor operation mode to RUN mode.					
RMT	Sets the processor operation mode to RUN or PROG mode.					
PROG	Stops the processor, i.e, sets the processor operation mode to PROG mode.					

• Initialize switch

When set to the INIT position, all CPU errors are cleared. This operation is valid only when the Mode switch is set to PROG mode.


- Operating condition setting switches
- Switch for termination resistance setting (DIP switch 1)


Pin	Pin No.		in ting	Description	DIP Switch 1
4			ON	For RS-485 communication, set both pins 3 and 4 to On if the system is a termination station. (Enables termination for COM1 terminal)	
4	3	OFF	OFF	For RS-485 communication, set both pins 3 and 4 to Off if the system is not a termination station. (Disables termination for COM1 terminal)	
2	1	ON	ON	For RS-485 communication, set both pins 1 and 2 to On if the system is a termination station. (Enables termination for COM2 terminal)	ON
2	'	OFF	OFF	For RS-485 communication, set both pins 1 and 2 to Off if the system is not a termination station. (Disables termination for COM2 terminal)	

 Switch for communication and program booting method setting (DIP switch 2)

Pin No.		_	in ting	Description	DIP Switch 2		
		OFF	OFF	Sets the communication speed on COM2 terminal to 9600 bps			
8	7	ON	OFF	Sets the communication speed on COM2 terminal to 19200 bps			
0	/	OFF	ON	Sets the communication speed on COM2 terminal to 38400 bps			
		ON	ON	Sets the communication speed on COM2 terminal to 4800 bps			
		OFF	OFF	Sets the communication speed on COM1 terminal to 9600 bps			
6	5	ON	OFF	Sets the communication speed on COM1 terminal to 19200 bps			
0	5	OFF	ON	Sets the communication speed of COM1 terminal to 38400 bps	87		
		ON	ON	Sets the communication speed on COM1 terminal to 4800 bps	5 4 4 3 2 1		
	1	ON		Selects RS-485 communications for COM1	ON ON		
	4 OFF		FF	Selects RS-232C communications for COM1	C.N		
	3 ON OFF		N	Selects RS-485 communications for COM2			
,							FF
2		OFF		Always set to Off. (Reserved for system setting)			
,	1	0	N	Loads the program from EEPROM (flash ROM) at power-on.			
	ı	0	FF	Operates the system with the program in RAM at power-on.			

Power Supply Module

NX-PWRDC

• Hardware features

1. Power status LED

Turns on when power is on.

2. Power fuse holder

3. Terminal block

Terminal block for power wiring. Crimped terminal for M3.5 can be used. Detachable.

4. Power input terminal

110-240V AC Free Voltage power input terminal (NX-PWR220 is only for 220V ac).

5. Frame ground (FG) terminal

As a grounding terminal, it is connected to the metal part of the backplane. Use triple grounding to prevent electric shock.

6. Service power terminal (24V DC)

DC power supply to input and output unit.

e

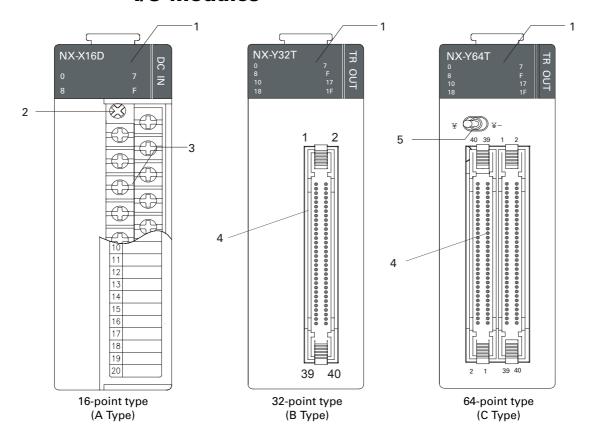
This service power terminal should not be connected to any commercial power supplies in parallel because it causes an error.

Specifications

Input type	AC inpu	t power	DC input power
Catalog number	NX-POWER	NX-PWR220	NX-PWRDC
Input rated voltage	110 to 220V AC Free Voltage	220V AC	24V DC
Allowed voltage range	85 to 264V AC 176 to 264V AC		24V DC ± 10%
Input power frequency	47 to		
Inrush current	20A o		
Rated output current	5V 4.0A, 24V 0.5A	5V 6.0A	5V 3.0A
Fuse	250V 1.5A		
Weight	350g	300g	320g

ATTENTION

NX-POWER module does not guarantee protection against momentary power failure at 110V ac.


ATTENTION

Make sure that total current consumption of all modules mounted on the backplane does not exceed the rated current capacity of the power supply module.

- 5V power is supplied from the power supply module mounted on the same backplane.
- The 24V control power is used for supplying a dc power to I/O module.
- Do not connect this 24V control power with other commercial power supplies in parallel. It may cause error or product malfunction.
- A 250V 1A fuse is used for AC power. (The fuse is built into the power supply module.)
- Be careful that the 24V side on the external terminal does not exceed the current capacity. (It may cause system errors.)

I/O Modules

Hardware features

1. I/O Status LED

Shows I/O ON/OFF status.

2. Terminal block fixing screw

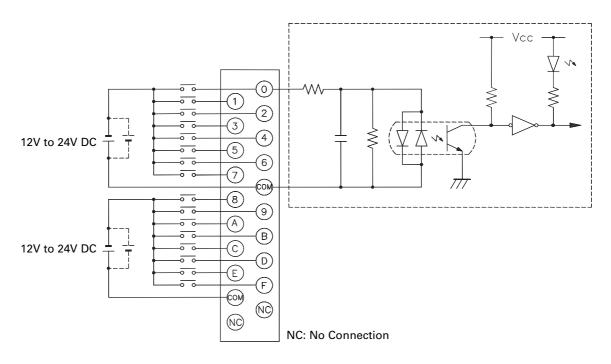
Fixes detachable terminal block on the unit.

3. Terminal block (20P, detachable terminal block)

Terminal block for I/O and power wiring. Crimped terminal for M3.5 can be used. See "Terminal Block Type Module Wiring" in Chapter 4.

4. Connector 32 points (40P x 1), Connector 64 points (40P x 2)

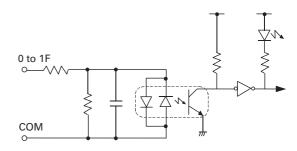
Connector for I/O contact and power wiring. Use harness for PIN type or flat cable. See "Connector Type Module Wiring" in Chapter 4 for details.


5. Indication shift switch (64 points unit)

Convert the 64-point unit LED into front 32 points and rear 32 points.

Input unit specifications

Product	name	DC input module
Catalog number		NX-X16D
Number of input p	points	16 points
Insulation method	I	Photocoupler
Rated input voltag	je	12 to 24V
Operating voltage	range	10.2 to 26.4V
Max. input curren	t	10mA or less (for 24V)
ON voltage/currer	nt	Min. 9.6V
OFF voltage/curre	nt	Max. 2.5V
Input impedance:		Approx. 3 K Ω
Response time	$OFF \to ON$	10ms or less
nesponse time	$ON \to OFF$	10ms or less
Internal current co	onsumption (5V)	65mA or less
Common method		8 points/1COM (Common for polarity +, -)
Operation indicate	or	LED
External cable cor	nnection type	Terminal block connection (M3.5), Detachable terminal block (20 pins)
Recommended ca	ble size	0.5 to 1.25 mm ²
Capacity		170g
Types		(A) Type


Internal circuit and wiring diagram

Produc	t name	DC input module
Catalog number		NX-X32D
Number of input	points	32 points
Insulation metho	d	Photocoupler
Rated input volta	ge	12 to 24V
Use voltage rang	е	10.2 to 26.4V
Max. input currer	nt	10mA or less (for 24V)
ON voltage/curre	nt	Min. 9.6V
OFF voltage/curre	ent	Max. 2.5V
Input impedance		Approx. 3 KΩ
Pagnanga tima	$OFF \to ON$	10ms or less
Response time	$ON \to OFF$	10ms or less
Internal current c	onsumption (5V)	130mA or less
Common method	t	32 points/1COM (Common for polarity +, -)
Operation indicat	tor	LED
External cable co	nnection type	Connector (40 pin x 1 EA)
Recommended c	able size	0.2 mm ²
Capacity		140g
Types		(B) Type

Г					
					,
-		X0	1	2	X1 0 0
-		2	3	4	3 00
-		4	5	6	5 0
-	 -	6	7	8	7 0 0
-		8	9	10	9 -0
-		Α	11	12	B 00
-		С	13	14	D
-		XE	15	16	XF O
-		X10	17	18	X11 0 0
-		12	19	20	13 0 0
-		14	21	22	15 0 0
-		16	23	24	17 0 0
-	 -	18	25	26	19 0 0
-		1A	27	28	1B
-		1C	29	30	1D 0 0
-		X1E	31	32	X1F o o
24V		NC	33	34	NC
DC .]	NC	35	36	NC
L		COM	37	38	СОМ
	-	COM	39	40	СОМ

Internal circuit

- → The COM terminal of a connector has a short inside of the unit.
- → For wiring method, See "Terminal Block Type Module Wiring" in Chapter 4.
- Use separate commercial cable harness (NX-CBLDC) and Pin Type Ass'y (CPL8890) for external connection.
- → NC: No Connection

Produc	t name	DC input module
Catalog number		NX-X64D
Number of input	points	64 points
Insulation metho	d	Photocoupler
Rated input volta	ge	12 to 24V
Operating voltage	e range	10.2 to 26.4V
Max. input currer	nt	10mA or less (for 24V)
ON voltage/curre	nt	Min. 9.6V
OFF voltage/curre	ent	Max. 2.5V
Input impedance		Approx. 3 KΩ
Response time	$OFF \to ON$	10ms or less
nesponse time	$ON \to OFF$	10ms or less
Internal current c	onsumption (5V)	250mA or less
Common method	d	32 points/1COM (Common for polarity +, -)
Operation indicat	or	LED indication (display by 32 points conversion)
External cable co	nnection type	Connector (40 pin x 2 EA)
Recommended ca	able size	0.2 mm ²
Capacity		200g
Types		(C) Type

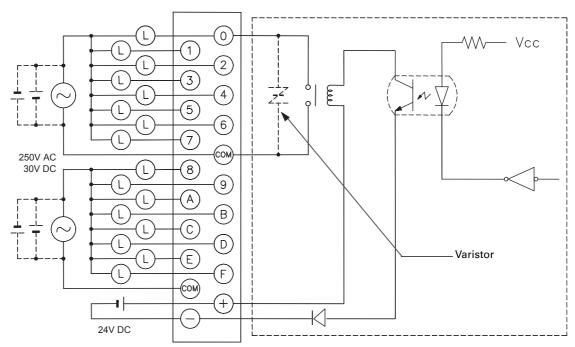
Internal circuit


Same as NX-X32D.

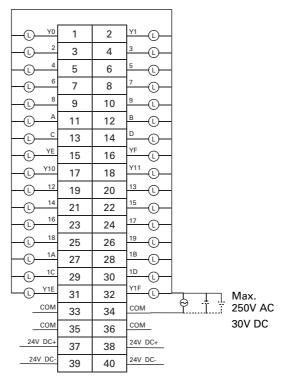
- The connectors [I] and [II] have opposite orientation each other, so be careful with wiring.
- → The COM terminal of the connector has a short inside of the unit.
- → For wiring method, See "Terminal Block Type Module Wiring" in Chapter 4.
- Use separate commercial cable harness (NX-CBLDC) and Pin Type Ass'y (CPL8890) for external connection.
- → NC: No Connection

Produc	t name	AC in	put module
Catalog number		NX-X16A110	NX-X16A220
Number of input	points	16 points	
Insulation metho	d	Photocoupler	
Rated input volta	ge	AC 100 to 120V	AC 200 to 240V
Operating voltag	e range	AC 85 to 132V	AC 170 to 264V
Max. input curre	nt	20mA or less	
ON voltage/curre	nt	Min. 80V/6mA	Min. 160V/6mA
OFF voltage/curr	ent	Max. 30V/3mA	Max. 50V/3mA
Input impedance		Approx. 15K Ω	Approx. 20KΩ
Decrease times	$OFF \to ON$	15ms or less	
Response time	$ON \to OFF$	20ms or less	
Internal current of	onsumption (5V)	60mA or less	
Common method	d	8 points/1COM	
Operation indica	tor	LED	
External cable co	nnection type	Terminal block connect terminal block (20 pins)	
Recommended c	able size	0.5 to 1.25 mm ²	
Capacity		200g	
Types		(A) Type	

Internal circuit


NOTE NX-X16A220: 200-240V AC

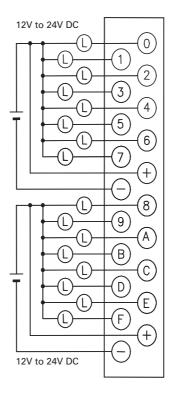
Output module specifications


Produc	t name	RELAY out	put module
Catalog number		NX-Y16R	NX-Y16RV
Number of outpu	ıt points	16 points	
Insulation metho	d	Photocoupler	
Rated load voltag	је	2A 250V AC, 2A 30V DC	
Descriptions times	$OFF \to ON$	10ms or less	
Response time	$ON \to OFF$	10ms or less	
Life time	Mechanical	30 million times	
Life time	Electric	200 thousand times	
External power s	upply	24V 150mA or less	
Surge protection		N/A	Varistor
Internal current o	onsumption (5V)	120mA or less	
Common method	d	8 points/1COM	
Operation indica	tor	LED	
External cable connection type		Terminal block connection (M3.5), Detachable terminal block (20 pins)	
Recommended c	able size	0.5 to 1.25 mm ²	
Capacity		225g	235g
Types		(A) Type	

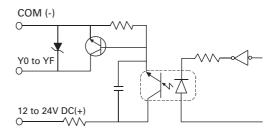
Internal circuit and wiring diagram

NX-Y16R: No varistor NX-Y16RV: Varistor

Produc	t name	RELAY output module
Catalog number		NX-Y32RV
Number of outpu	ıt points	32 points
Insulation metho	d	Photocoupler
Rated load voltag	је	1A 250V AC, 1A 30V DC
Response	$OFF \to ON$	10ms or less
time	$ON \to OFF$	10ms or less
Life time	Mechanical	30 million times
Life time	Electric	200 thousand times
External power s	upply	24V 150mA or less
Surge protection	circuit	Varistor
Internal current of	onsumption (5V)	180mA or less
Common method	d	32 points/1COM
Operation indica	tor	LED
External cable connection type		Connector (40 pin x 1 EA)
Recommended cable size		0.2 mm ²
Capacity		300g
Types		(В) Туре

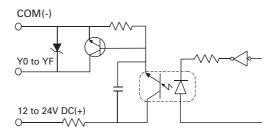


Internal circuit

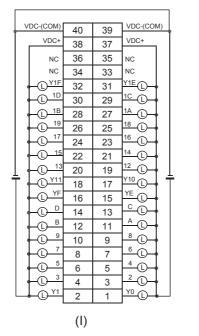

Same as NX-Y16RV.

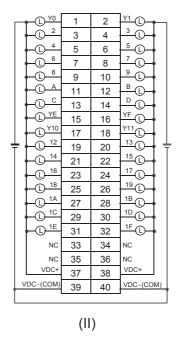
- → The COM terminal of the connector has a short inside of the unit.
- → For wiring method, See "Terminal Block Type Module Wiring" in Chapter 4.
- Use separate commercial cable harness (NX-CBLRY) and Pin Type Ass'y (CPL8890) for external connection.

Produc	t name	TR output module
Catalog number		NX-Y16T
Number of input	points	16 points
Insulation method	d	Photocoupler
Rated load voltag	je	12 to 24V DC
Operating load vo	oltage range	10 to 30V DC
Max. load current	t	0.6A/point
OFF state leakage	current	100 μA or less
Poon on so time	$OFF \to ON$	1ms or less
Response time	$ON \to OFF$	1ms or less
Internal current c	onsumption (5V)	120mA or less
Surge absorber		Zener diode
Common method	1	8 points/1COM
Operation indicat	or	LED
External cable connection type		Terminal block connection (M3.5), Detachable terminal block (20 pins)
Recommended ca	able size	0.5 to 1.25 mm ²
Capacity		170g
Types		(A) Type


Internal circuit

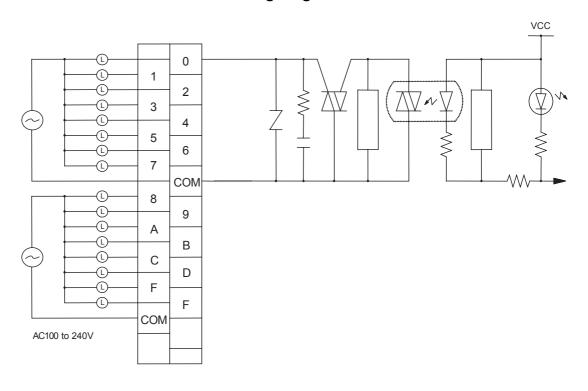
Produc	t name	TR output module
Catalog number		NX-Y32T
Number of input	points	32 points
Insulation metho	d	Photocoupler
Rated load voltag	e	12 to 24V DC
Operating load vo	oltage range	10 to 30V AC
Max. load current	t	0.4A/point
OFF state leakage	current	100 μA or less
Posnonso timo	$OFF \to ON$	1ms or less
Response time	$ON \to OFF$	1ms or less
Internal current c	onsumption (5V)	180mA or less
Surge absorber		Zener diode
Common method	I	32 points/1COM
Operation indicat	or	LED
External cable co	nnection type	Connector (40 pin x 1 EA)
Recommended ca	able size	0.2 mm ²
Capacity		140g
Types		(B) Type


(L) Y0	1	2	Y1 (L)
(L) 2	3	4	3 L
L 4	5	6	5 (L)
<u>□ 6</u>	7	8	7 L
(L) 8	9	10	9 (L)
L A	11	12	B L
⊕ © c	13	14	D (L)
U YE	15	16	YF L
<u> </u>	17	18	Y11
L 12	19	20	13 L
L 14	21	22	15 L
(L) 16	23	24	17 L
L 18	25	26	19 L
(L) 1A	27	28	1B (L)
(L) 1C	29	30	1D L
L 1E	31	32	1F L
NC	33	34	NC
NC	35	36	NC
VDC+	37	38	VDC+
VDC - (COM)	39	40	VDC - (COM)


Internal circuit

- → COM (VDC-) and VDC+ (12 to 24V) terminals of the connector has a short inside of the unit.
- → For wiring method, See "Terminal Block Type Module Wiring" in Chapter 4.
- Use separate commercial cable harness (NX-CBLTR) and Pin Type Ass'y (CPL8890) for external connection.
- → NC: No Connection

Product name		TR output module	
Catalog number		NX-Y64T	
Number of input points		64 points	
Insulation method		Photocoupler	
Rated load voltage		12 to 24V DC	
Operating load voltage range		10 to 30V AC	
Max. load current		0.2A/point	
OFF state leakage current		100 μA or less	
Response time	$OFF \to ON$	1ms or less	
	$ON \to OFF$	1ms or less	
Internal current consumption (5V)		250mA or less	
Surge absorber		Zener diode	
Common method		32 points/1COM	
Operation indicator		LED indication (display by 32 points conversion)	
External cable connection type		Connector (40 pin x 2 EA)	
Recommended cable size		0.2 mm ²	
Capacity		205g	
Types		(C) Type	


Internal circuit

Same as NX-Y32T.

- COM (VDC-) and VDC+ (12 to 24V) terminals of the connector has a short inside of the unit.
- → For wiring method, See "Terminal Block Type Module Wiring" in Chapter 4.
- Use separate commercial cable harness (NX-CBLTR) and Pin Type Ass'y (CPL8890) for external connection.
- → NC: No Connection

Product name		SSR output module	
Catalog number		NX-Y16SSR	
Number of input points		16 points	
Insulation method		SSR	
Rated load voltage		100 to 240V AC	
Operating load voltage range		85 to 264V AC	
Max. load current		0.5A/point	
OFF state leakage current		100 μA or less	
Poonance time	$OFF \to ON$	1ms or less	
Response time	$ON \to OFF$	0.5 CYCLE + 1ms or less	
Internal current consumption (5V)		250mA or less	
Fuse rating		3A	
Common method		8 points/1COM	
Operation indicator		LED	
External cable connection type		Terminal block connection (M3.5), Detachable terminal block (20 pins)	
Recommended cable size		0.5 to 1.25 mm ²	
Weight		Approx. 240g	
Types		(A) Type	

Internal circuit and wiring diagram

Addressing Overview

Addressing Overview

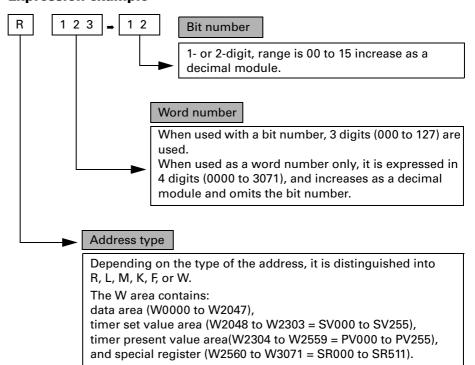
All the memory used for external I/O processing and internal data processing has always both address and data (the content).

Addressing space is classified as R, L, M, K, F, TC, and W. These letters are used to designate a specific area in memory as shown in the following table.

Memory areas	Addresses	Description
External I/O area (R)	R000.0 to R127.15	 Local I/O memory area that can be set when configuring I/O module. 2048 points, 128 words
	R640.0 to R127.15	Remote I/O memory area (user defined area)1024 points, 64 words
Link contact (L)	L000.0 to L063.15	 Link contact shared memory area, 1024 points, Loop 0 Can be used as internal contacts when not used as link contacts.
Internal contact (M)	M000.0 to M127.15	Internal auxiliary contact memory area2048 points, 128 words
	M000.0 to M063.15	When link loop 1 is used, this area can be used shared memory area for link contacts
Keep contact (K)	K000.0 to K127.15	 Retentive internal auxiliary contact memory area 2048 points, 128 words
Special contact (F)	F000.0 to F015.15	Special internal contact memory area256 points, 16 words
Timer/Counter (TC)	Contacts: TC000 to TC255 Set value: SV000 to SV255 Present value: PV000 to PV255	 The same 256 channels are used for contacts, set values, or preset values. TC indicates "contact". SV is Set Value, PV is Present Value. The data value range of SV and PV is from 0 to 65535.
Data register (W)	W000 to W2047	 Area that retains the data in case of power failure Bit addressing is not possible. Cleared when downloading program
	W0000 to W0127	Can be configured as shared memory area for loop 0 link contacts
	W0128 to W2557	Can be configured as shared memory area for loop1 link contacts
Special register (SR)	SR000 to SR511	 Special internal data area for processor status and RTC Make sure to use available areas only described in this manual.

- The R, L, M, K, F, and TC areas can be used for both bit and word addressing.
- The W area can be used to process word data only.
- The L area can be used as internal contacts.
- Keep contact (K), data register (W), and counter's preset value register retain their last values before power was removed.
 Cleared when a new program is downloaded.

Bit and Word Addressing

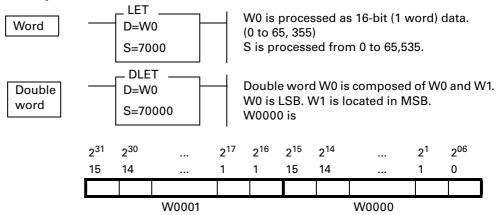

A bit address is composed of a character (R, L, M, K, F) that identifies its type, a five digit word address (0.0 to 127.15, increases by 0 to 15). The timer/counter contact is represented by the TC label followed by three digits. The three digits indicate the channel number of the timer/counter (TC000 to TC255). TIM000 indicates a contact instead of TC000 for PGM10 and PGM-500.

A word address is composed of a character (R, L, M, K, W) and a four digit number (0000 to 2047). Special registers have alternative address representation. Special registers SR000 to SR511 can be also represented as W2560 to W3071.

Both of bit and word addresses can be used to address the memory areas of R, L, M, K. However, be cautious that instructions use a specific type of address, either bit or word address, and the used addresses are resolved automatically depending on the type of instruction.

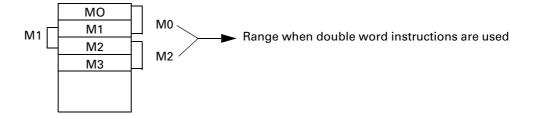
A bit can have the content of either On (1) or Off (0) state. A word is composed of 16 bits and holds a data value from 0 to 65,535. A double word is composed of 32 bits and holds a data value from 0 to 4,294,967,295.

Expression example



Double Word Addressing

Double word addressing is same with word addressing, except that 32-bit data is referenced by the specified address and its next address.


The type of instruction used determines which addressing, word or double word addressing, is applied. For comparison instructions, the programmer must be in "Double Mode" to enter a double-word comparison. For other instructions, those instructions that start with a D in front of the related word instruction are double word instructions, and the data is processed as double words

Example 1:

The value of D or S of the instruction can process data from 0 to 4,294,967,295.

Example 2:

Absolute Addressing

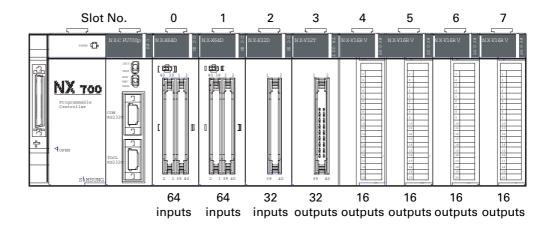
In LDR, DLDR, STO, and DSTO instructions, an absolute address is used to indirectly reference a register or to utilize the built-in communication port.

Classification	Register address		olute ress
	auuress	Dec.	Hex.
	R0	0	\$0000
	R1	1	\$0001
External	R2	2	\$0002
I/O			
	R126	126	\$007E
	R127	127	\$007F
	LO	128	\$0080
	L1	129	\$0081
Link area	L2	130	\$0082
Lilik alea	•••		
	L62	190	\$00BE
	L63	191	\$00BF
	M0	192	\$00C0
	M1	192	\$00C1
	M2	194	\$00C2
Internal contact	M3	195	\$00C3
	•••		
	M126	318	\$013E
	M127	319	\$013F
	K0	320	\$0140
	K1	321	\$0141
	K2	322	\$0142
Internal Keep contact	K3	323	\$0143
	K126	446	\$01BE
	K127	447	\$01BF

Classification	Register address	Absolute address		
	auuress	Dec.	Hex.	
	F0	448	\$01C0	
	F1	449	\$01C1	
Special Internal	F2	450	\$01C2	
contact				
	F126	462	\$01CE	
	F127	462	\$01CF	
	W0	512	\$0200	
	W1	513	\$0201	
Data area	W2	514	\$0202	
Data area				
	W2046	2558	\$09FE	
	W2047	2559	\$09FF	
	SV000	2560	\$0A00	
T/C	SV001	2561	\$0A01	
set value				
	SV255	2815	\$0AFF	
	PV000	2816	\$0B00	
T/C	PV001	2817	\$0B01	
present value				
	PV255	3071	\$0BFF	
	SR000	3072	\$0C00	
Status	SR001	3073	\$0C01	
Status				
	SR511	3583	\$0DFF	
	W3072	3584	\$0E00	
Expansion data area ⁽¹⁾				
arou	W5119	5631	\$15FF	

⁽¹⁾ Expansion data area is the memory space of 2048 words specially designed for NX-CPU700p $\,$

An absolute bit address, which is often used in communication, consists of an absolute word address and a bit number (0 to 15, represented as \$0 to \$F) as shown below.


	15	4	3	0
absolute bit address	absolute word addres	s	bit number	_

For example, the absolute bit address for internal contact K127.12 is \$1BFC (hex). (\$1BFC = absolute word address \$01BF + bit number \$C)

I/O Addressing

Addressing is based on the location of the module.

Example 1: 8-slot system

Example of addressing for the system shown above

Slot number		00	01	02	03	04	05	06	07
Word address		R0 to R3	R4 to R7	R8 to R9	R10 to R11	R12	R13	R14	R15
		R0.0	R4.0	R8.0	R10.0	R12.0	R13.0	R14.0	R15.0
	Processor	R0.1	R4.1	R8.1	R10.1	R12.1	R13.1	R14.1	R15.1
Bit address	module	R0.2	R4.2	R8.2	R10.2	R12.2	R13.2	R14.2	R15.2
addicss		~	~	~	~	~	~	~	~
		R0.15	R7.15	R9.15	R11.15	R12.15	R13.15	R14.15	R15.15

I/O addressing guidelines

The processor automatically distinguishes input address from output address for each module mounted.

A word address is allocated to a 16-point input or output module. For a 32-point mixed I/O module, 2 word addresses are allocated, a word address for inputs and another for outputs. For the 16-point mixed I/O module, 2 word addresses are allocated but only the lower 8 bits (0 to 7) of each word address can be used.

The modules mounted into the slots that are closer to the processor module have lower addresses.

An empty slot means no module is mounted and a blank module (NX-DUMMY) may be installed.

Occupied I/O points by module (unit: word)

The table below shows the occupied I/O points for each module when the memory space is allocated automatically by the system.

Catalog number ^(a)	I/O occupied points ^(b)	Input ^(b)	Output
NX-X16D	1	1	
NX-X16A110	1	1	
NX-X16A220	1	1	
NX-X32D	2	2	
NX-X64D	4	4	
NX-Y16R	1		1
NX-Y16RV	1		1
NX-Y16T	1		1
NX-Y16SSR	1		1
NX-Y32RV	2		2
NX-Y32T	2		2
NX-64T	4		4
NX-AI8C	8 (1)	8 (1)	
NX-AI8V	8 (1)	8 (1)	
NX-AO4C	4 (1)	(1)	4
NX-AO4V	4 (1)	(1)	4
NX-AO8C	8 (1)	(1)	8
NX-AO8V	8 (1)	(1)	8
NX-RTD8	8 (1)	8 (1)	
NX-RTD4	4 (1)	4 (1)	
NX-TC8	8 (1)	8 (1)	
NX-TC4	4 (1)	4 (1)	
NX-HSC1	2	1	1
NX-HSC2	2	1	1
NX-HSC4	4	2	2
NX-PULSE4	4	2	2
NX-POSI1	4	2	2
NX-POSI2	4	2	2
NX-POSI3	8	4	4
NX-POSI4	8	4	4
NX-CCU+	0	Not Applicable	Not Applicable
NX-SCU	2	1	1
NX-MASTER	0	Not Applicable	Not Applicable
NX-MWLINK	0	Not Applicable	Not Applicable
NX-DEVICE	2	1	1

⁽a) For digital I/O and analog modules, manual addressing is possible and the size of allocated space can be larger than the I/O occuplied word presented in the table above.

⁽b) The number in parenthesis indicates the number of words occupied when the shared memory method is used for addressing.

Special Registers

Word registers F000 to F015

Address	Function	Description
F000 register	System check/control	System self-check/program checking, operation control
F001 register	System check/clock	0.01/0.02/0.1 ms timer output, calculation results, carry flag
F002 register	Link control	Link installation and operation mode setting
F003 register	Link control	Link installation and operation mode setting
F004 register	Link status flag	Link participating station information
F005 register	Link status flag	Link participating station information
F006 register	Link status flag	Link data receiving information flag
F007 register	Link status flag	Link data receiving information flag
F008 register	Remote control flag	Remote operation control flag
F009 register	Remote control flag	Remote operation control flag
F010 register	Remote control flag	Remote operation control flag
F011 register	Remote control flag	Remote operation control flag
E012 register	User-defined	For port COM2
F012 register	communication flag	User-defined communication control flag
F013 register	System reservation	
F014 register	PID control	PID operation mode and operation/stop control flag
F015 register	PID control	PID operation mode and operation/stop control flag

Word register F000 (F0. $\underline{0}$ to F0. $\underline{15}$)

Only a bit process is available.

Address	Function	Description	Normal status
F0.00	System check	When the power is applied, the system self-checks the ROM. Should any fault exist, the error lamp is turned on. Output and operation are halted.	OFF
F0.01	CPU ROM check	When the power is applied, the system self-checks the ROM. Should any fault exist, the error lamp is turned on. Output and operation are halted.	OFF
F0.02	CPU RAM check	When the power is applied, the system self-checks the RAM. Should any fault exist, the error lamp is turned on. Output and operation are halted	OFF
F0.03	User program memory error	If the user program memory is damaged or the program is faulty, the error lamp is turned on. Output and operation are halted.	OFF
F0.04	Program syntax error	The CPU initially runs and checks the user program's syntax. In the case of an error, the error lamp is turned on. Output and operation are halted.	OFF
F0.05	Module range error	Indicates an invalid R word (>64) used.	OFF
F0.06	Module change error	On when an I/O module is removed/added/fails while the system is running. The error lamp is on and the CPU keeps running. Turned off when the error is corrected.	OFF
F0.07	Module type error	On when the I/O module information that is stored in the CPU and module that is installed are different types, the error lamp is turned on. Operation stops.	OFF
F0.08	Input data control	Off when the running CPU input module's data is not updated. (Input update is turned Off.)	ON
F0.09	Output data control	Off to suspend updating of the output modules while the CPU is in the Run state. (Output update is turned Off). The outputs are maintained in their last valid state prior to update being disabled.	ON
F0.10	All output off	Turns all outputs off while CPU is in the Run state. (Outputs are disabled)	ON
F0.11	Constant cycle interrupt	On when the constant cycle interrupt instructions are used. (Refer to the INT instructions.) (The cycle time is defined by the user.)	OFF
F0.12	Watchdog error	On when a scan time exceeds the watchdog set time.	OFF
F0.13	Disable module type checking	On when the CPU starts the initial Run and the program is checked without performing I/O module type verification.	
F0.14	Program changes during running	On when a user corrects the program while in Run mode. If there are any syntax errors, the CPU is stopped.	
F0.15	Run state control	On when the CPU is in the Run state. Off when stopped or paused.	ON

Word register F1 (F1.0 to F1.15)

Only a bit process is available.

Address	Function	Description	Remarks
F1.0	First single scan	Maintain On state for first single-scan period, when the CPU shanges its status stop to Run.	
F1.1	Scan clock	Cycle On/Off state for each scan during the program. (1Scan On, 1Scan Off)	
F1.2	0.02-second clock	10 ms: On, 10 ms: Off	
F1.3	0.1-second clock	50 ms: On, 50 ms: Off	
F1.4	1-second clock	500 ms: On, 500 ms: Off	
F1.5	Instantaneous interrupt	On when power is off for 20 ms or more.	Maintained
F1.6	CPU running status	On when the CPU is in the run state.	
F1.7	Keep area error display	On when the K retentive data is destroyed and/or changed.	
F1.8	Carry flag	On in the event of carry when performing math instruction.	
F1.9	Division by zero error	On when the denominator of division commands is zero.	
F1.10	Range designation error	On when the absolute address exceeds the specified range.	
F1.11	Reserved	System use area	Do not use
F1.12	W area error indication	System use area	
F1.13	Reserved	System use area	Do not use
F1.14	Reserved	System use area	Do not use
F1.15	Reserved	System use area	Do not use

NOTE The 16 bits in the F1 address provide the CPU's special function and self-diagnosis result. They are used for status contacts only, and are not used to modify or control the PLC. Only the F1.5 instantaneous interrupt display contact should be used as an output contact by the user, to be turned off after power loss indication.

Word register F12 (F12.<u>0</u> to F12.<u>15</u>)

Only a bit process is available.

Address	Function	Description	Remarks
F12.0	RTC check	On when the RTC is enabled.	-
F12.2	Flash	On when the 9.6 KW of flash memory is installed.	-
F12.3	Flash	On when the 16 KW of flash memory is installed.	-
F12.5	Battery error	On when the battery is not connected or the voltage is lower than the backup voltage.	-
F12.7	Periodical scan error	On when any error exists in the periodical program.	
F12.10	RTC set error	On when there is an error setting the RTC.	Output
F12.11	Saving Flash and checking boot	Off when the program is normally saved into Flash by setting F12.15 On.	Output
F12.12	EEPROM backup check	On when the program in EEPROM is the same with that in RAM.	
F12.13	RTC Set 1	On when you change the year, month, day, or date. Off when the data set is normal.	I/O
F12.14	RTC Set 2	On when you change the hour, minute, or second. Off when the data set is normal.	I/O
F12.15	Saving Flash	On when you save the current program into the flash. Off when the data set is normal.	I/O

Special registers SR0 to SR016 (W2560 to W2576)

May be modified - each is composed of 1 word.

Address	Function	Description		
SR000	CPU ID number	Indicates the CPU ID number in the lower 8 bits. 0 to 223 are the valid user-defined values, 255 is the default value.		
SR001	CPU state	Indicates current CPU information state. (run/stop/remote control/error) MSB ← 03 02 01 00 Error = 1 CPU run control (same as F0.15) CPU switch remote control (REM) = 1 CPU switch STOP= 0		
SR2	Watchdog time	Indicates the user program watchdog time (unit: msec)		
SR3	Scan time	Indicates the scan time when executing a program. Updated at every scan (unit: msec)		
SR4	Max. scan time	Indicates maximum value of scan time when executing a program.		
SR5 to SR7	Link module number	Link module number as set by the link # 1, 2, 3		
SR8	PID table	PID register block start address		
SR9 to SR10	Reserved	System use area		
SR11 to SR16	Remote I/O information	Remote setup area		

Special registers SR017 to SR511 (W2577 to W3071)

May be changed - each is composed of 1 word.

Address	Function	Description				
		Gives result of self-diagnosis by CPU. Indicates error content .				
		MSB ← 7 6 5 4 3 2 1 0				
		Watchdog time error = ON ◀				
SR017	System error information	Undefined instruction = ON ◀				
	imormation	Peripheral device fault = ON ◀				
		Misc. logic faults = ON ◀				
		Logic circuit fault = ON ◀				
		Microcomputer fault = ON ◀				
SR018	Location of undefined instruction	Indicates the location of the instruction (the step number) that caused an undefined instruction error during program execution.				
SR019	Reserved	System use area				
SR020	Multiplication	Stores high order bit values upon executing 16 bit multiplication instructions.				
SR021	Lower remainder	Stores the low order bit values of remainder after a division instruction has been executed.				
SR022	Higher remainder	Stores the high order bit values of the remainder after a division instruction has been executed.				
SR023 to SR027	Reserved	System use area				
SR028 to SR029	Defective slot information	Location of defective slots mounted onto the basic slot				
SR030 to SR48	Reserved	System use area (syntax information and system information)				
SR49 to SR79	Slot information	Stores slot information for installed I/O modules.				
SR261 to SR279 *	Remote control domain	Contains remote I/O configuration data.				
SR289 to SR297	RTC	Contains real time clock information (year, month, day, hour, minute, second, date).				
SR298 to SR373 *	User-defined communication area	For port COM2 User-defined communication area				
SR374 to SR379 *	Link error information	Link error information data.				
SR380 to SR511	Reserved	System use area				

^{*} Applied when using wire link modules

Program syntax error status register SR30 (W2590)

Indicates the result of the automatic check on the user program syntax when the programmer or GPC executes a syntax check, and when the operation mode is switched from the Stop state to the Run state. If the value of W2590 is not zero, F004 bit turns On. The error lamp also turns On.

Error correction method:

Find the error in the CPU online mode and then correct the program.

Word	Bit	Description
	0	On if the I/O number range of bit process instruction is beyond the specified range or designates an external contact/output module which is not installed.
	1	On if the channel number of the timer or the counter exceeds 255 or is duplicated.
	2	On if the bit or word number in the advanced instruction is beyond the specified range or if it designates a module which is not installed.
	3	On if a word number in the refresh instruction (INPR, OUTR) is beyond the specified range, or if it designates a module which is not installed.
	4	On if an undefined instruction exists.
	5	On in event of a user program memory writing error.
	6	On in event of miscellaneous errors.
	7	On if the user program memory is abnormal.
SR30	8	On if an error on external I/O address and bit/word/double word numbers used occurs. For example, the first slot is set with an input module and OUT R00001 is designated.
	9	On if the label numbers of the JMP or CALL instructions exceed 63, the corresponding instruction LBL or SBR does not exist, and/or the corresponding LBL/SBR instructions exist prior to JMP/CALL instructions.
	10	On if the label number of the LBL instruction exceeds 63 and/or is duplicated.
	11	On if the JMPS/JMP instructions are mistakenly combined and/or used.
	12	On if the FOR/NEXT instructions are mistakenly combined and/or used more than four times. (Loop)
	13	On if SBR/RET instructions are not combined and/or used and/or the SBR instructions overlap or exceed 63.
	14	On if NT/RETI instructions are not combined and/or used and/or more than two sets of INT instructions are used.
	15	On if no END instruction inserted automatically.

Real-time clock registers SR289 to SR297 (W2849 to W2857)

Sets the time of the built-in clock (RTC) and stores and displays the present time. Data is stored in BCD format.

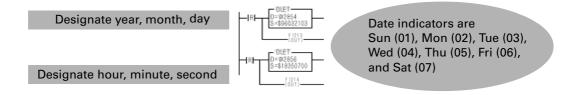
 $(\bigcirc: bit = 0; x: bit change)$

ū		Bit address		Details														
Classification	Address	Adjustment indication	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SR289	Year (4-digit BCD)																
Current	SR290	Date: day	0	0	×	×	×	×	×	×	0	0	0	0	0	×	×	×
time	SR291	Year: month	0	×	×	×	×	×	×	×	0	0	0	×	×	×	×	×
	SR292	Second: 00	0	0	×	×	×	×	×	×	0	0	0	0	0	0	0	0
	SR293	Hour: minute	0	0	×	×	×	×	×	×	0	0	0	0	0	0	0	0
	SR294	Date: day	0	0	×	×	×	×	×	×	0	0	0	0	0	×	×	×
Time	SR295	Year: month	0	×	×	×	×	×	×	×	0	0	0	×	×	×	×	×
setting	SR296	Second: 00	0	0	×	×	×	×	×	×	0	0	0	0	0	0	0	0
	SR297	Hour: minute	0	0	×	×	×	×	×	×	0	0	0	0	0	0	0	0

* Usable for NX70-CPU70p2 module only

In SR289, the year can be read in a 4-digit BCD.

Ex) \$1998=1998, \$2000=2000


SR289 to SR297 for clock functions are shown in BCD, so it is convenient to confirm in HEX.

NOTE Set the range as follows:

Year: 00 to 99, Month: 01 to 12, Day: 01 to 31, Day of Week: 01 to 07 (Sun. to Sat.) Hour: 00 to 23, Minute: 00 to 59, Second: 00 to 59

1. Ladder setting method:

For example, current date and time are: Tuesday, March 21, 1996, 18:35:07

- 2. When changing the year, month, date, or day, new data is input in SR295, SR294, then the F12.14 bit is turned On. The F12.10 bit is kept Off.
- 3. When changing the hour, minute, and second, new data is input in SR297, SR296, then the F12.14 bit is turned on. If the new data is not set correctly, the F12.10 bit turns on.
- 4. The display date and set value are expressed in BCD so it is convenient to input as hex (\$).
- 5. The year, month, and day are automatically changed.

Timer/Counter Area

Timer/counter set value and present value addresses

	Set	Present		Set	Present			Present
Channel	value	value	Channel	value	value	Channel	Set value	value
	(SV)	(PV)		(SV)	(PV)		(SV)	(PV)
0	W2048	W2304	40	W2088	W2344	80	W2128	W2384
1	W2049	W2305	41	W2089	W2345	81	W2129	W2385
2	W2050	W2306	42	W2090	W2346	82	W2130	W2386
3	W2051	W2307	43	W2091	W2347	83	W2131	W2387
4	W2052	W2308	44	W2092	W2348	84	W2132	W2388
5	W2053	W2309	45	W2093	W2349	85	W2133	W2389
6	W2054	W2310	46	W2094	W2350	86	W2134	W2390
7	W2055	W2311	47	W2095	W2351	87	W2135	W2391
8	W2056	W2312	48	W2096	W2352	88	W2136	W2392
9	W2057	W2313	49	W2097	W2353	89	W2137	W2393
10	W2058	W2314	50	W2098	W2354	90	W2138	W2394
11	W2059	W2315	51	W2099	W2355	91	W2139	W2395
12	W2060	W2316	52	W2100	W2356	92	W2140	W2396
13	W2061	W2317	53	W2101	W2357	93	W2141	W2397
14	W2062	W2318	54	W2102	W2358	94	W2142	W2398
15	W2063	W2319	55	W2103	W2359	95	W2143	W2399
16	W2064	W2320	56	W2104	W2360	96	W2144	W2400
17	W2065	W2321	57	W2105	W2361	97	W2145	W2401
18	W2066	W2322	58	W2106	W2362	98	W2146	W2402
19	W2067	W2323	59	W2107	W2363	99	W2147	W2403
20	W2068	W2324	60	W2108	W2364	100	W2148	W2404
21	W2069	W2325	61	W2109	W2365	101	W2149	W2405
22	W2070	W2326	62	W2110	W2366	102	W2150	W2406
23	W2071	W2327	63	W2111	W2367	103	W2151	W2407
24	W2072	W2328	64	W2112	W2368	104	W2152	W2408
25	W2073	W2329	65	W2113	W2369	105	W2153	W2409
26	W2074	W2330	66	W2114	W2370	106	W2154	W2410
27	W2075	W2331	67	W2115	W2371	107	W2155	W2411
28	W2076	W2332	68	W2116	W2372	108	W2156	W2412
29	W2077	W2333	69	W2117	W2373	109	W2157	W2413
30	W2078	W2334	70	W2118	W2374	110	W2158	W2414
31	W2079	W2335	71	W2119	W2375	111	W2159	W2415
32	W2080	W2336	72	W2120	W2376	112	W2160	W2416
33	W2081	W2337	73	W2121	W2377	113	W2161	W2417
34	W2082	W2338	74	W2122	W2378	114	W2162	W2418
35	W2083	W2339	75	W2123	W2379	115	W2163	W2419
36	W2084	W2340	76	W2124	W2380	116	W2164	W2420
37	W2085	W2341	77	W2125	W2381	117	W2165	W2421
38	W2086	W2342	78	W2126	W2382	118	W2166	W2422
39	W2087	W2343	79	W2127	W2383	119	W2167	W2423

NOTE If you change the above registers while the program is running or program them incorrectly, errors or damage may occur. Be sure you understand the programming procedures of the timer/counter thoroughly.

	Set	Present		Set	Present		Set value	Present
Channel	value	value	Channel	value	value	Channel	(SV)	value (PV)
	(SV)	(PV)		(SV)	(PV)	212	W2260	W2516
120	W2168	W2424	166	W2214	W2470	213	W2261	W2517
121	W2169	W2425	167	W2215	W2471	214	W2262	W2518
122	W2170	W2426	168	W2216	W2472	215	W2263	W2519
123	W2171	W2427	169	W2217	W2473	216	W2264	W2520
124	W2172	W2428	170	W2218	W2474	217	W2265	W2521
125	W2173	W2429	171	W2219	W2475	218	W2266	W2522
126	W2174	W2430	172	W2220	W2476	219	W2267	W2523
127	W2175	W2431	173	W2221	W2477	220	W2268	W2524
128	W2176	W2432	174	W2222	W2478	221	W2269	W2525
129	W2177	W2433	175	W2223	W2479	222	W2270	W2526
130	W2178	W2434	176	W2224	W2480	223	W2271	W2527
131	W2179	W2435	177	W2225	W2481	224	W2272	W2528
132	W2180	W2436	178	W2226	W2482	225	W2273	W2529
133	W2181	W2437	179	W2227	W2483	226	W2274	W2530
134	W2182	W2438	180	W2228	W2484	227	W2275	W2531
135	W2183	W2439	181	W2229	W2485	228	W2276	W2532
136	W2184	W2440	182	W2230	W2486	229	W2277	W2533
137	W2185	W2441	183	W2231	W2487	230	W2278	W2534
138	W2186	W2442	184	W2232	W2488	231	W2279	W2535
139	W2187	W2443	185	W2233	W2489	232	W2280	W2536
140	W2188	W2444	186	W2234	W2490	233	W2281	W2537
141	W2189	W2445	187	W2235	W2491	234	W2282	W2538
142	W2190	W2446	188	W2236	W2492	235	W2283	W2539
143	W2191	W2447	189	W2237	W2493	236	W2284	W2540
144	W2192	W2448	190	W2238	W2494	237	W2285	W2541
145	W2193	W2449	191	W2239	W2495	238	W2286	W2542
146	W2194	W2450	192	W2240	W2496	239	W2287	W2543
147	W2195	W2451	193	W2241	W2497	240	W2288	W2544
148	W2196	W2452	194	W2242	W2498	241	W2289	W2545
149	W2197	W2453	195	W2243	W2499	242	W2290	W2546
150	W2198	W2454	196	W2244	W2500	243	W2291	W2747
151	W2199	W2455	197	W2245	W2501	244	W2292	W2548
152	W2200	W2456	198	W2246	W2502	245	W2293	W2549
153	W2201	W2457	199	W2247	W2503	246	W2294	W2550
154	W2202	W2458	200	W2248	W2504	247	W2295	W2551
155	W2203	W2459	201	W2249	W2505	248	W2296	W2552
156	W2204	W2460	202	W2250	W2506	249	W2297	W2553
157	W2205	W2461	203	W2251	W2507	250	W2298	W2554
158	W2206	W2462	204	W2252	W2508	251	W2299	W2555
159	W2207	W2463	205	W2253	W2509	252	W2300	W2556
160	W2208	W2464	206	W2254	W2510	253	W2301	W2557
161	W2209	W2465	207	W2255	W2511	254	W2302	W2558
162	W2210	W2466	208	W2256	W2512	255	W2303	W2559
163	W2211	W2467	209	W2257	W2513		1.12000	
164	W2212	W2468	210	W2258	W2514	1		
101	W2212	VV2 100	011	14/0050	14/05/15	1		

165

W2213

W2469

211

NOTE • Channel: The inherent number of the timer and the counter (numbers that are equivalent to 000 of TC000).

W2515

W2259

- Set Value (SV): The designated value for the timer (to turn On) and the counter (number of times On) to start operation.
- Present Value (PV): Current processing value of the timer (elapsed time) and the counter (number of counts).

Address (register)

Address refers to the location of memory being used. It can refer to the external I/O module and internal memory.

An address is categorized into 1 bit, 16 bits (word), or 32 bits (double word).

Bit

A bit is the minimum module required for calculation. It can be either On (1) or Off (0).

Byte

A byte is made up of 8 bits. It can hold data values from 0 to 255. In base 16, or hexadecimal, a byte can be expressed as 0 to FF. You cannot have a value greater than 255 when using one byte.

Word

A word is made of 16 bits. It can hold data values from 0 to 65,535. In base 16 a word can be expressed as 0 to FFFF.

NX PLCs set R, M, K, F, and W areas into word areas and can be processed without any separate measures.

Double Word

A double word is made of 32 bits. It can hold data values from 0 to 4,294,976,295. In base 16, a double word can be expressed as 0 to FFFFFFF. In the D32LT, a double word is made up of two consecutive word addresses as follows:

Double word address = Start word address + Next word address.

Example: When using W003, W003 (double word address) = W003 (start word address) + W004 (next word address)

Scan Time

The CPU follows a procedure in which it 1) reads the inputs, 2) processes the ladder program, and 3) updates the outputs. It continually repeats this process. This 3-step process is called a "scan," and the time it takes to complete this process is the "scan time." In a typical PLC application, most of the scan time is used to process the program. When programming, keep in mind that the scan time will increase as you increase the number of inputs and outputs and/or the size of the program

Edge

An edge is defined as the point when an input changes state. For example, a rising edge occurs during the very first scan after the input has changed from Off to On. A falling edge occurs after the input has changed from On to Off.

BCD (Binary Coded Decimal)

BCD is used to express a decimal digit (0 to 9) using 4 bits. Conversion of BCD values can be done in hexadecimal calculations.

Example: 59 (BCD) = 59 (HEX), 32 (BCD) = 32 (HEX)

Flash ROM

It refers to a ROM (EEPROM) that stores programs. Since its contents can be deleted periodically, it is frequently used for equipments that deals with programs such as a PLC.

How to use a register

- R (Relay) register (Can be bit, word or double word)
 Indicates the external I/O register that directly connects to the general I/O module
- M (Memory) register (Can be bit, word or double word)
 An internal bit memory address which supports the relay of logical operations. It is used as a word or double-word variable for general calculations and programs.

When the power of the PLC is turned off or the CPU has stopped, the register value is reset to 0.

W (Word) register (Can be bit, word or double word)
 Same usage as M registers. The value is preserved after the power is turned off, but can be cleared by program downloads or special command words.

NOTE Not used as a bit (register only for word use)

• **K** (**Keep**) register (**Can be bit, word or double word**)
Used for general calculation programs. The value is preserved after the power is turned off.

• F (Flag) register (Only process bit)

These bit registers provide special application specific functions to the programmer of the PLC. They are also used as system control bits, providing Run/Stop control of the PLC.

- When a calculation or input value exceeds 65,535 (FFFF)
 - Use a double word instruction that can store and calculate values over 65,535 in the K, M, R, and W registers. When a double word instruction is used, it can represent values up to 4,294,967,295 (2³²).
- When you want to reload the contents or values that you worked today

Use the K and W area. These are preserved unless specifically erased. The W area is erased by special instructions or program downloads.

 When you need numerical expressions such as A+B=C, 34×45=D, A1>C1.

Use the R, M, W, and K area. If you use the R area, you can refer to and output calculated values in I/O modules.

- For bit operations, such as setting, resetting, shifting, or rotating Use the M, K, and R area. You cannot perform bit operations in the W area.
- When you want to refer to or modify the set value of the timer or counter.

Refer to or modify W2048 to W2303 or SV0 to SV255.

 When you want to refer to or modify the present value of the timer or counter.

Refer to or modify the address area from W2304 to W2559 or from PV0 to PV255. The value holds true in STOP (PROG.) state in this area.

The present value (PV) of the counter is maintained even after the power is off.

Processor Operation Mode

What is the Processor operation mode?

The processor has an external RUN/REMOTE/PROG switch. The PLC performs a system check that determines the position of the switch. The switch position determines which operating mode the PLC is in. It can set to RUN, STOP, REMOTE, or ERROR mode.

RUN Mode (operating)

The PLC reads the external contact signals in Run mode and executes the user program stored in RAM. The external outputs are updated every scan according to program results.

STOP Mode

The user program is stopped and the external outputs are turned Off. In the Stop mode, you may correct, delete or transfer the program.(This is the only mode in which you can save a program in flash memory.)

PAUSE Mode

A user program is operated at every scan and the I/O and result value is maintained. This mode is used when checking and debugging a program at every scan. This mode is similar to the Stop mode, but it does not initialize data.

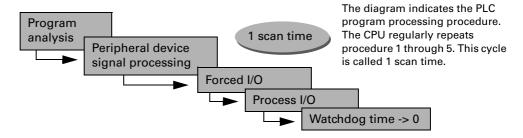
ERROR Mode

It occurs when the CPU module finds internal defects after running the self-diagnoses. Functions are not executed normally in this mode. When an error occurs, the CPU stops all programs and turns all output off. When an Error mode occurs, the user should check the error code and take appropriate measures. Then turn the power on or put the mode conversion switch in Prog and press the Initialize Key to clear the error.

Allowed Functions in Operation Modes

Operation mode selector switch	Operation mode	RUN	status I LED G LED	Program change	Data change	Initialize switch is enabled	Mode at power off-on
RUN	RUN	≎	•	Disallowed	Allowed	0	Run
NON	STOP	•	≎	Allowed	Allowed	0	Run
REMOTE	RUN	≎	≎	Allowed	Allowed	0	Run
TILIVIOTE	PAUSE	•	≎	Allowed	Allowed	0	Pause
PROG	STOP	•	≎	Allowed	Allowed	0	Stop

When the PROG.LED is on, you can change the user program.


The INITIALIZE switch clears errors when the mode switch is set to PROG.

When the mode switch is set to REMOTE and power is switched from Off to On, the previous mode of operation is restored.

When debugging the user program, the mode switch should be set to REMOTE.

Processor Processing Procedure

Program processing procedure

Program analysis

Executes the program from its first step to its final step and stores the internal/external output in the working RAM.

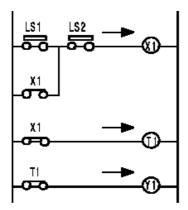
Peripheral device signal processing

Stores data from the communication module or peripheral device to the internal memory.

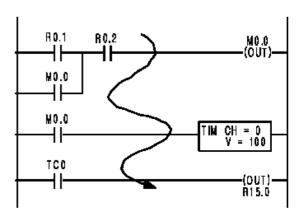
Forced I/O processing

Turns on/off forced I/O bits, if any.

• I/O processing


Preserves the On/Off state of the external I/O and uses it as an input in the next scan. (For accurate processing, input should continue for more than 1 scan time.)

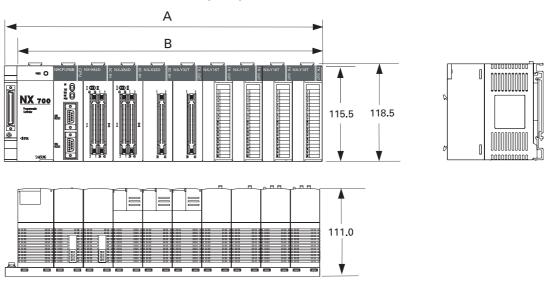
The processed program outputs are sent from internal memory to the external memory.


Watchdog time initialization

The watchdog elapsed time value is set to 0. (This value is the watchdog calculation point until the next scan.)

The following illustration shows the difference between the relay board and PLC sequence processing. The relay carries out all sequences simultaneously while the PLC processes sequentially throughout the program.

Processing of relay sequence (Parallel process)


Processing of PLC program (Serial process)

Installation and Wiring

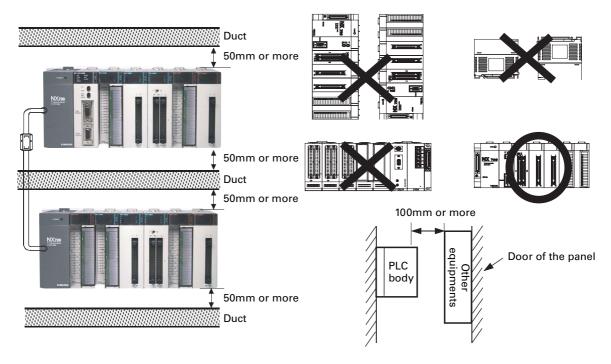
Installation

Installation space and environment

External dimensions (mm)

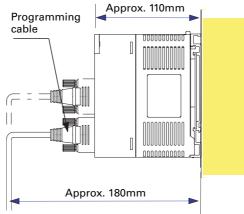
unit (mm)

	3-slot type	5-slot type	8-slot type	10-slot type	12-slot type
A (mm)	205.0	276.0	381.0	452.0	522.0
B (mm)	183.8	254.2	359.8	430.2	500.6


Installation location

Be sure to maintain a sufficient distance from wiring ducts, and other machines below and above the module for proper ventilation.

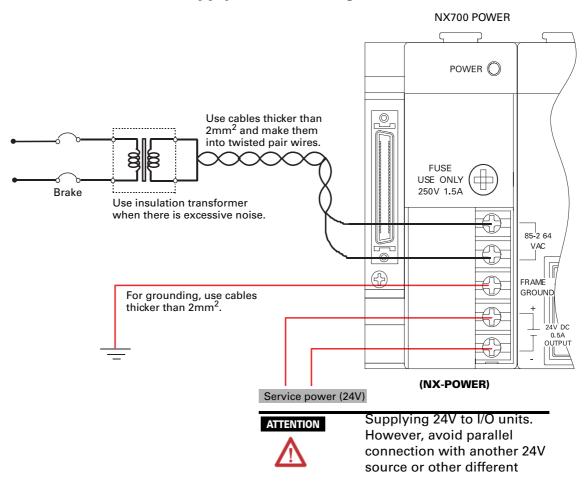
Do not install the modules stacked up or horizontally. Doing so will prevent proper cooling of the module and cause overheating inside the PLC (programmable controller).


Do not install the module above devices which generate heat such as heaters, transistors or large scale resistors.

In order to eliminate any effects from noise emission, power wires and electromagnetic devices should be kept at least 100 mm away from the surfaces of the module. When installing the module behind the doors of the operation panel, be especially careful to maintain these distances.

Space for programming tool connection

Leave a space of at least 180 mm from the mounting surface for programming tool connections and wiring.

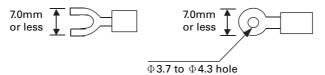


Avoid installing the module in the following conditions

- Ambient temperature outside the range of 0 to 55 °C
- Ambient humidity outside the range of 30 to 85% RH
- Sudden temperature changes causing condensation
- Inflammable or corrosive gases
- Excessive airborne dust, metal particles, salinity
- Benzene, thinner, alcohol, other organic solvents or strong alkaline solutions such as ammonia or caustic soda
- Excessive vibration or shock
- Direct sunlight
- Location near high-tension wires, high-voltage devices, power cables, power devices, or other devices with generate large power surges or electronic fields when starting and stopping (esp. if within 100 mm)

Power Supply Module Wiring

Power supply module wiring


The output voltage of a power supply should be within the allowed voltage

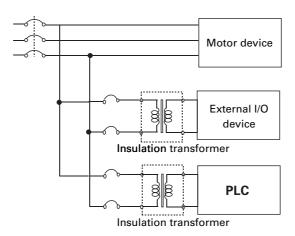
Product name	Rated input voltage	Allowed voltage range
NX-POWER	110-220V AC	85-264V AC

Power supply unit terminal screw

→ Use M3.5 screw for terminal.

- → It is recommended that you use crimped terminal for wiring.
- Open type terminal
- Circular terminal

Use 2mm² twisted pair cable or larger

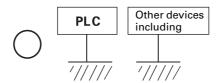

- Use power supply wire that is thicker than 2mm² to minimize voltage drops.
- Use twisted pair cable to minimize noise effects.

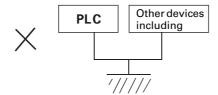
Proper compressed connection terminal

- Circular type terminal (O type Lug)
- Circular type terminal with insulation resistance
- Open type terminal (Y type Lug)

Power supply system

Use separate wiring systems for the PLC module, I/O module, and power supply module as shown in the following diagram.


Use isolation transformer for noisy environments


- Use a low noise power supply.
- Use an isolation transformer to reduce the noise as illustrated above.

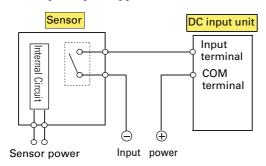
Grounding

Ground the PLC for noisy environments

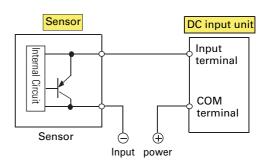
- Connected to the metal part of backplane, the frame ground terminal is connected to a solid earth ground.
- Use ground wires with a minimum of 2mm 2 and the triple grounding connection which has a resistance of less than 100 Ω
- The point of grounding should be as close to the PLC as possible and the ground wire should be as short as possible.
- If two devices share a single ground point, it may produce an adverse effect. Always use an exclusive ground for each device.

Input and Output Wiring

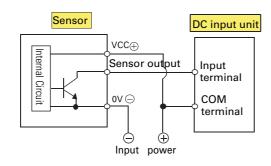
Input wiring

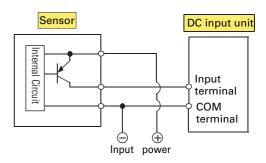

Checkpoints for input module wiring

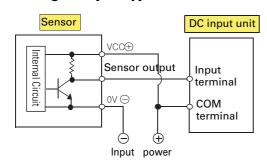
There can be limits on the number of points that can be simultaneously turned on, based on the module type. Check such limits in the specifications of each input module. In particular, be careful when using in high ambient temperature.


The connection method for each type of input device including sensor is described below.

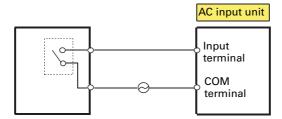
Photoelectric sensors and proximity sensors


Relay output type

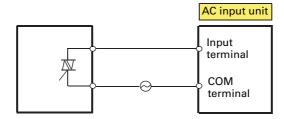

2 wired type


NPN open collector output type

PNP open collector output type

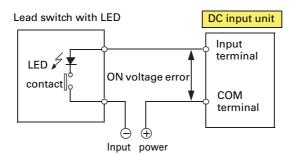


Voltage output type



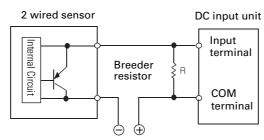
Connection example with AC input device

Contact output type



Non-contact output type

Cautions when using lead switch with LED


Even when using input contact with embedded serial LED such as lead switch with LED, make sure to supply voltage higher than ON voltage to the PLC input terminal. Pay extra attention, in particular, when connecting multiple switches in serial.

Cautions when using 2 wired type

Use a breeder resistor as below when the leakage current from 2 wired type photoelectric switch or proximity switch keeps flowing into the PLC.

DC 12-24V type input unit (OFF voltage 2.5V, input impedance 3 K $\!\Omega$)

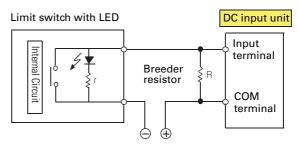
I: Leakage current (mA)

R: Breeder resistance ($K\Omega$)

Since the OFF voltage of input is 2.5V, determine the R value to set the voltage between COM terminal and input terminal to be 2.5V or less.

Input impedance is 3 $\kappa\Omega$

$$Ix = \frac{3R}{3+R} \le 2.5, R \le \frac{7.5}{3l-2.5}$$
 (K\O)


For the resistor, W can be calculated as follows:

$$W = \frac{\text{(Power supply voltage)}}{R}$$
Use 3 to 5 times larger value.

Cautions when using limit switch with LED

Use a breeder resistor as below when the leakage current from limit switch with LED keeps flowing into the PLC or LED is accidentally turned on.

DC 12-24V type input unit (OFF voltage 2.5V, input impedance 3 $K\Omega$)

r: Internal resistance of limit switch ($K\Omega$)

R: Breeder resistance ($K\Omega$)

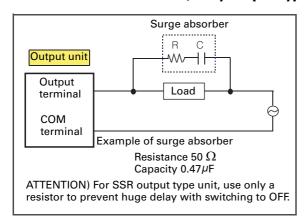
Since the OFF voltage of the input is 2.5V, set R to get the following current,

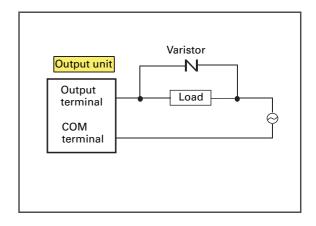
$$I = \frac{24 - 2.5}{R}$$
 or more

when the power supply voltage is 24V. Once calculating I, follow the same steps as those for 2 wired sensors described on the previous page.

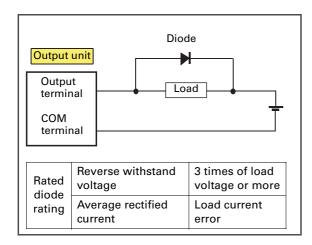
$$R \le \frac{7.5}{3l-2.5}$$
 (K Ω) $W = \frac{\text{(Power supply voltage)}^2}{R} \times \text{(3 to 5 times)}$

Output wiring

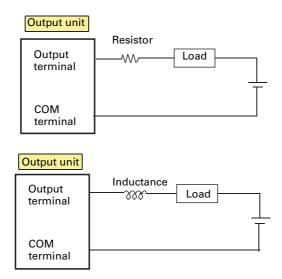

Checkpoints for output unit wiring


- → There can be limits on the number of points that can be simultaneously turned on or load current, based on the unit type. Refer to the specification of each unit. Pay extra attention, in particular, when ambient temperature is high.
- Connect protection circuit to inductive load or capacity load, etc. as below.
- There can be current limitation per Common for output units, so make sure not to exceed the allowed range.

Protection circuit for inductive load


- Connect protection circuit in parallel with the inductive load.
- In particular, when switching the DC inductive load with relay output type, the protection circuit dramatically affects the lifetime of a system. Make sure to connect diodes at both sides of the load.

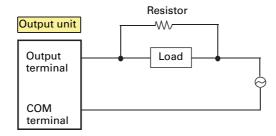
AC load (Relay output type)



DC load

Cautions when using capacity load

Use protection circuit as below to minimize the effect of a load with high inrush current.



Use an external fuse to protect against overload

- Units embedded with fuse can prevent damages in case of output shortage.
- Since the unit with embedded fuse cannot protect all the components against overload, it is recommended that you use an external fuse for every point.
- The components of output unit may not be protected in case of shortage.

Cautions for leakage current

A low-current load may not be OFF due to leakage current in the SSR output unit. In such a case, connect a resistor in parallel with the load.

Common cautions for I/O module

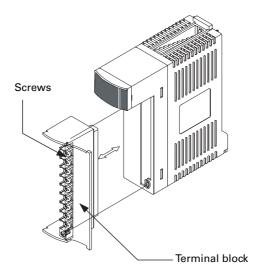
Input/output/motor cables should be separated from each other.

Separate input/output wirings from power wirings as far as possible. Do not let them pass the same duct and do not bind them together.

Separate I/O and motor cables from high-voltage cables at least 100mm.

Terminal Block Type Module Wiring

Compressed terminal, M3.0


The terminal base for the NX70 PLC I/O modules (Terminal Type) uses M3.0 terminal screw. Use the following compressed terminals for terminal wiring.

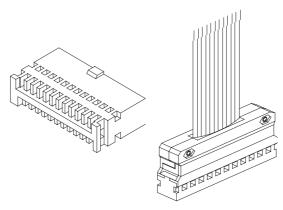
Open terminal Circular terminal

Removable terminal block

- Terminal block of this type of I/O unit can be separated from the unit with wires connected, by unfastening the screws on both ends.
- → Make sure to refasten the screws after wiring.

Connector Type Module Wiring

Wiring

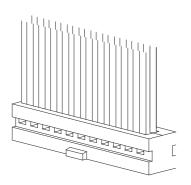

Wiring method

Both NX700 32-point I/O module (NX-X32D, NX-Y32RV, NX-Y32T) and 64-point I/O module (NX-X64D, NX-Y64T) use 40-pin MIL type connectors. To connect to external devices,

- 1. Insert each pin into socket
- 2. or, use harness with flat cables. (Available on the market)

Connecting PIN type

PIN type connection. Insert each PIN into a socket. Detail wirings are shown on the next page.



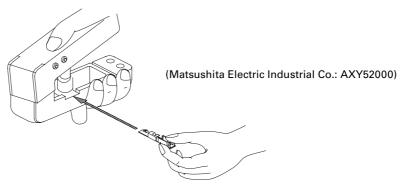
Product name	Catalog number	Product specifications
I/O connector ASS'Y (Pin type)	NX-PIN40 (CPL8890)	40 pins40 PinsConnector hoodSockets are included.

Applied products						
32 points	NX-X32D (DC IN 32 points) NX-Y32T (TR OUT 32 points) NX-Y32RV (Relay OUT 32 points)					
64 points	NX-X64D (DC IN 64 points) NX-Y64T (TR OUT 64 points)					

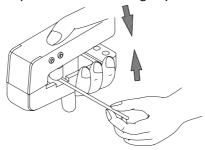
Connecting with harness (Using flat cable connector)

40-pin flat cable connector is used, and 20 crimped terminals are connected at the end. Its total length is 1.5m. Direct connection to the unit.

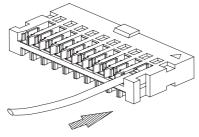
Product name	Catalog number	Product specifications
	NX-CBLDC	DC IN 32 points, 64 points Connectors harness cable 1.5m
Flat cable ASS'Y	NX-CBLTR	TR OUT 32 points, 64 points Connectors harness cable 1.5m
	NX-CBLRY	Relay OUT 32 points Connectors harness cable 1.5m


Applied products						
32 points	NX-X32D (DC IN 32 points) NX-Y32T (TR OUT 32 points) NX-Y32RV (Relay OUT 32 points)					
64 points	NX-X64D (DC IN 64 points) NX-Y64T (TR OUT 64 points)					

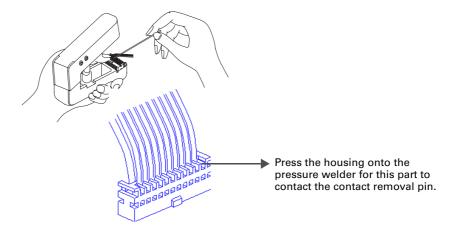
Pressure welding socket for PIN type connection


Direct pressure welding with clothings on saves wiring time and efforts.

Wiring


1. Bend the contact part at a carrier, and set it into the pressure welding device.

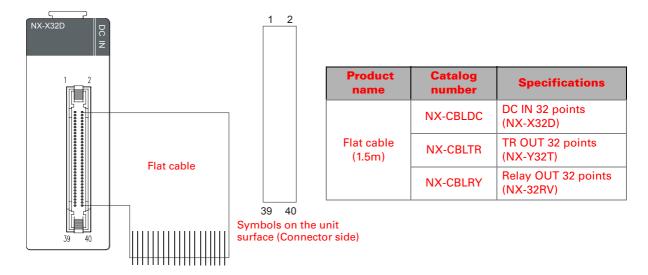
2. Insert both cables with case on until touching each other, and hold the pressure welder slightly.



3. Insert the cables into the housing once welding is done.

Contact removal pin for wiring failure.

In case of wiring failure or cable pressure welding failure, use the contact removal pin with the welder to remove the contact

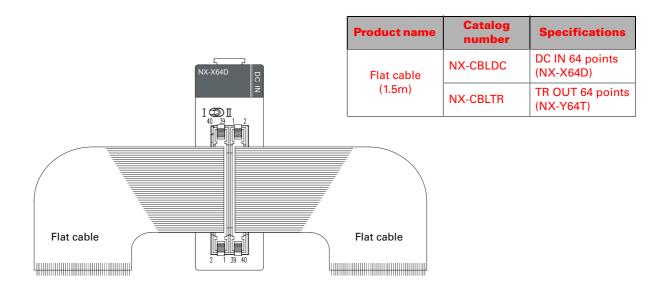


Wiring flat cable connector

Cautions when using flat cable connector

When a flat cable connector is used for direct connection, the mapping between cable No. and I/O No. is as follows:

Connecting 32-point unit (NX-X32D, NX-Y32T, NX-Y32RV)


Mapping table between flat cable No. and I/O (32 points)

Symbols on the unit surface	NX-X32D	NX-Y32T	NX-Y32RV
1	X 0	Y 0	Υ 0
2	X 1	Y 1	Y 1
3	X 2	Y 2	Y 2
4	X 3	Y 3	Y 3
5	X 4	Y 4	Y 4
6	X 5	Y 5	Y 5
7	X 6	Y 6	Y 6
8	X 7	Y 7	Y 7
9	X 8	Y 8	Y 8
10	X 9	Y 9	Y 9
11	ΧA	ΥA	ΥA
12	ΧB	ΥB	YB
13	ХC	YC	YC
14	X D	Y D	ΥD
15	ΧE	ΥE	ΥE
16	ΧF	YF	ΥF
17	X 10	Y 10	Y 10
18	X 11	Y 11	Y 11
19	X 12	Y 12	Y 12
20	X 13	Y 13	Y 13

Symbols on the unit surface	NX-X32D	NX-Y32T	NX-Y32RV
21	X 14	Y 14	Y 14
22	X 15	Y 15	Y 15
23	X 16	Y 16	Y 16
24	X 17	Y 17	Y 17
25	X 18	Y 18	Y 18
26	X 19	Y 19	Y 19
27	X 1A	Y 1A	Y 1A
28	X 1B	Y 1B	Y 1B
29	X 1C	Y 1C	Y 1C
30	X 1D	Y 1D	Y 1D
31	X 1E	Y 1E	Y 1E
32	X 1F	Y 1F	Y 1F
33	NC	NC	COM
34	NC	NC	COM
35	NC	NC	COM
36	NC	NC	COM
37	COM	V DC+	24V DC+
38	COM	V DC+	24V DC+
39	COM	V DC-	24V DC-
40	COM	V DC-	24V DC-

NC: No Connection

Connecting 64-point unit (NX-X64D, NX-Y64T)

Mapping table between flat cable No. and I/O (64 points)

Symbols on the unit surface	NX-X64D	NX-Y64T
1	X 0	Y 0
2	X 1	Y 1
3	X 2	Y 2
4	X 3	Y 3
5	X 4	Y 4
6	X 5	Y 5
7	X 6	Y 6
8	X 7	Y 7
9	X 8	Y 8
10	X 9	Y 9
11	ΧA	ΥA
12	ΧB	ΥB
13	ХC	YC
14	X D	ΥD
15	ΧE	ΥE
16	ΧF	ΥF
17	X 10	Y 10
18	X 11	Y 11
19	X 12	Y 12
20	X 13	Y 13

Symbols on the unit surface	NX-X64D	NX-Y64T
21	X 14	Y 14
22	X 15	Y 15
23	X 16	Y 16
24	X 17	Y 17
25	X 18	Y 18
26	X 19	Y 19
27	X 1A	Y 1A
28	X 1B	Y 1B
29	X 1C	Y 1C
30	X 1D	Y 1D
31	X 1E	Y 1E
32	X 1F	Y 1F
33	NC	NC
34	NC	NC
35	NC	NC
36	NC	NC
37	COM	V DC+
38	COM	V DC+
39	COM	V DC-
40	COM	V DC-

NC: No Connection

ATTENTION

Be careful that Connector (I) and connector (II) are opposite.

Safety Measures

Precautions regarding system design

In certain applications, malfunction may occur for the following reasons:

- The timing difference between opening and closing of the PLC power supply, the I/O modules and power equipment
- An operation time lag when a momentary power failure occurs
- Abnormality in the PLC, external power supply, or other devices

In order to prevent a malfunction resulting in system shutdown choose the adequate safety measures listed in the following:

Interlock circuits on the outside of PLC

When a motor clockwise/counter-clockwise operation is controlled, provide an interlock circuit that prevents clockwise and counter-clockwise signals from inputting into the motor at the same time.

Emergency stop circuits on the outside of PLC

Install the emergency stop circuits outside the PLC to stop the power supply of the output device.

Start PLC after other devices (Start up sequence)

The PLC should be operated after all of the I/O devices and the power equipments are energized.

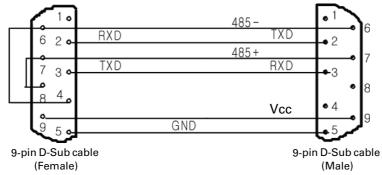
- Switch to RUN mode after the start of PLC.
- Use a timer circuit to delay the start of PLC.

Watchdog timer

The watchdog timer is a program error and hardware error detection timer. It goes On when the scan time exceeds 640 ms.

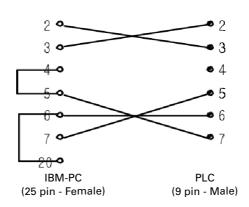
When the watchdog timer is activated, at the same time the ALARM LED lights, the ALARM contacts on the power supply module turn to On, all output modules are turned Off and the module is put in halted state. (The system is in a non-processing state that includes communications with programming tools as well.)

NX-CPU700p Processor Module Communications Specifications


Connection specification	RS485	R\$232C	Remarks	
Transfer distance (Max)	1.2 Km	15 m		
Transmission speed	38,400, 19,200	DIP switch setting		
Protocol	Half duplex asy			
Parity	No			
Stop bit	1 stop bit			
Cable type	Twisted	d pair cable	Use shield cable	

RS232C/RS485 cable wiring diagram: NX-CBLCPU02 (2m), NX-CBLCPU05 (5m)

NX-CBLCPU02 (2m)


NX-CBLCPU05 (5m)

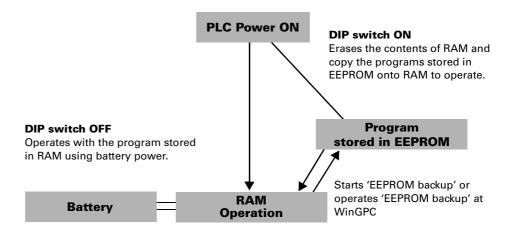
RS-232C is available without connecting <u>485+</u>, <u>485-</u>, <u>Vcc</u> signals.

Reference (25 pin to 9 pin) wiring diagram

EEPROM Backup

What's EEPROM backup?

EEPROM (Electric Erase Programmable Read Only Memory) can retain the data when the power is turned off, and erase or record data when the power is turned on. This function allows you to retain the PLC program when the power is turned off. And it also erases an existing program and records a new one when correcting or storing a program after turning on the power.


Applicable models

The types of EEPROM can be defined by its characteristics. The CPUs for OE MAX NX70 (NX70-CPU70p1 and NX70-CPU70p2) PLC use the flash memory.

This function is widely used since it is easy to use, store, and transfer data, and is built in the NX70 PLC (NX70-CPU70p2).

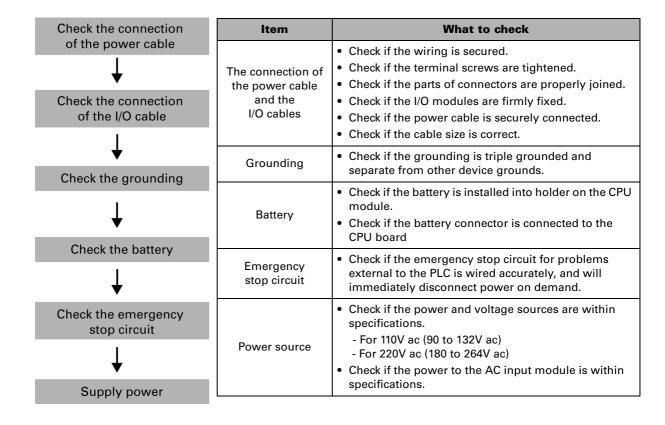
EEPROM uses 29EE512 and has a minimum of 3000 times to write to flash memory. It should be noted that the memory is to be changed when exceeding the use of over 3,000 times.

Procedure

Backup using WinGPC

How to backup using WinGPC

Connect Online.


Save the completed program onto the PLC (Download: WinGPC => PLC).

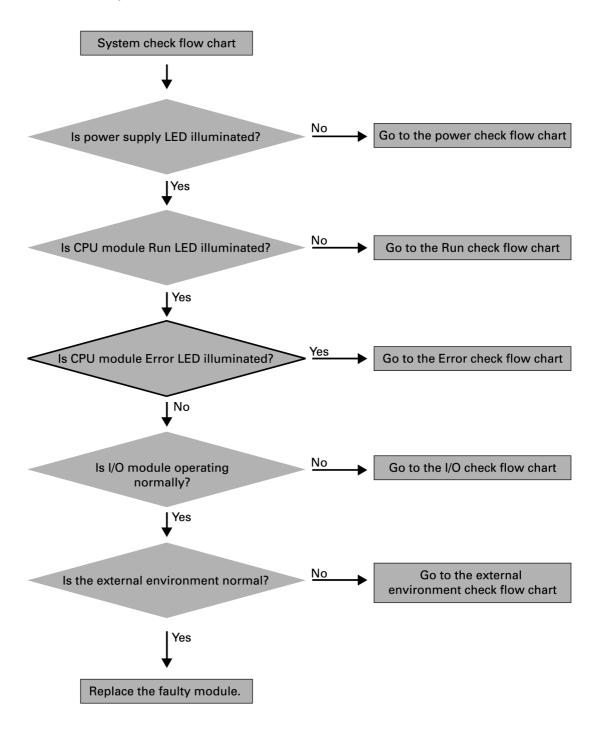
Select the 'EEPROM Backup (E)' in the 'Online' menu.

Test Run and Troubleshooting

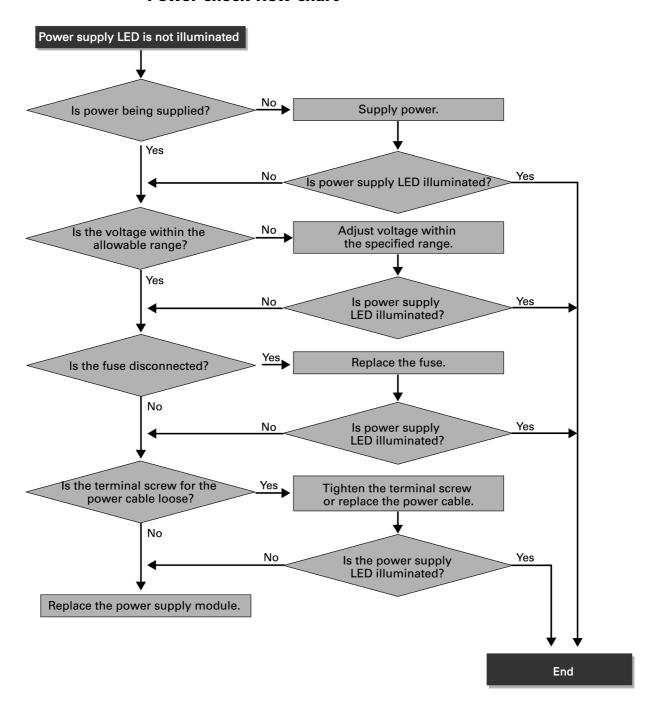
Test Run Precautions

Before installing the I/O wiring of the PLC and supplying power, check the following items.

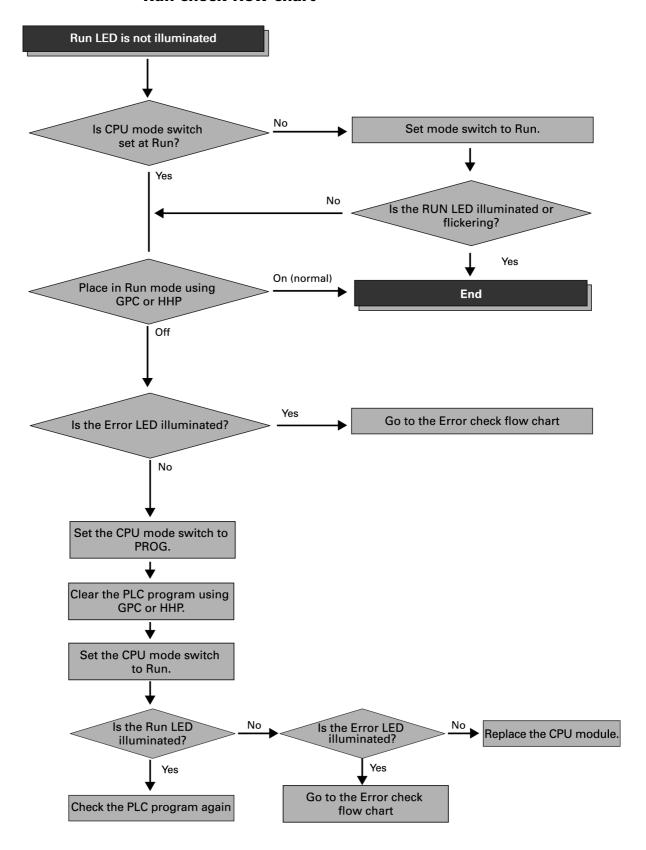
Test Run Procedure

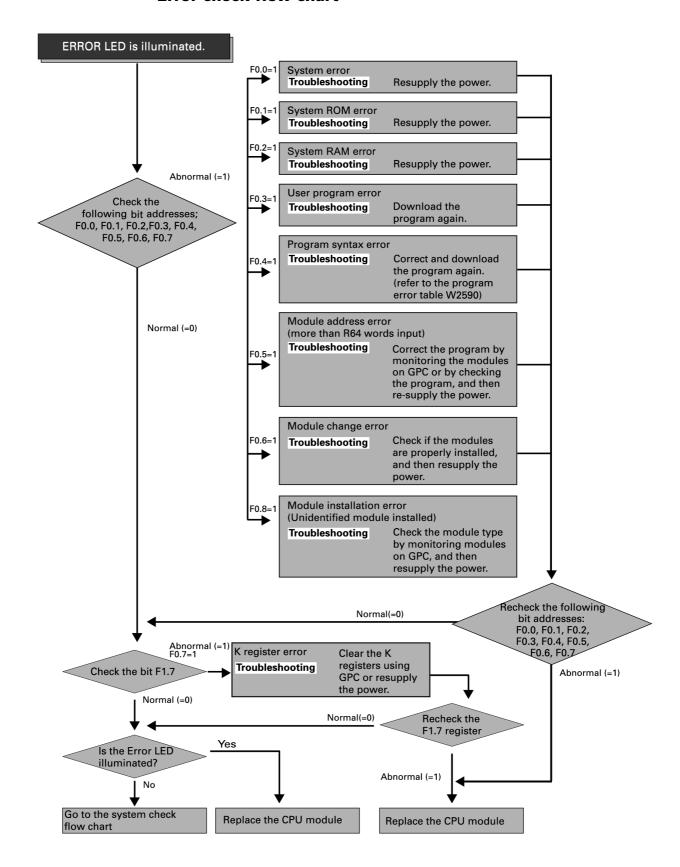

When the PLC has been installed and wired, begin test run in the following order.

Supply power	Item	What to check/do
—		 Check if the input voltage of the power supply module is within specifications. Check if the power voltage for the I/O modules is within
Check the battery	Supply power	specifications.
	очры, рошо.	 Connect WinGPC to the CPU module. (Set the CPU module to the PROG mode.)
★		Turn on the power source.
Check I/O wiring		Check the LED display of the power supply module.
l l	Initialize memory	 Initialize the PLC using WinGPC. (This clears the program on the PLC.)
▼ Programming	Check I/O	Check the LED of the input modules and use the monitor function of WinGPC or HHP after test run the input device.
Frogramming	wiring	Check the wiring of the output by turning the output On/Off Check the wiring of the output by turning the output On/Off Check the wiring of the output by turning the output On/Off
↓	_	using the monitor mode of WinGPC. (set CPU module to Run mode.)
Test run		Input the program instructions using WinGPC.
l l	Programming	 Download the program from WinGPC into the CPU module, if any.
₩		Set the mode switch of the CPU module to run.
•	Test run	Check if the Run LED is illuminated.
Correct program	_	Check the sequence operation.
↓	Correct program	Check and correct any program errors.
Store program	Store	 Store the program onto a floppy disk or similar storage device such as HDD.
↓	program	 Print the program (ladder, mnemonic) and store it in a secure place.
End		ommended to record the PLC types, program capacity, name of date for the recorded program.

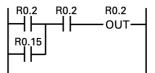

Test Run Flow Charts

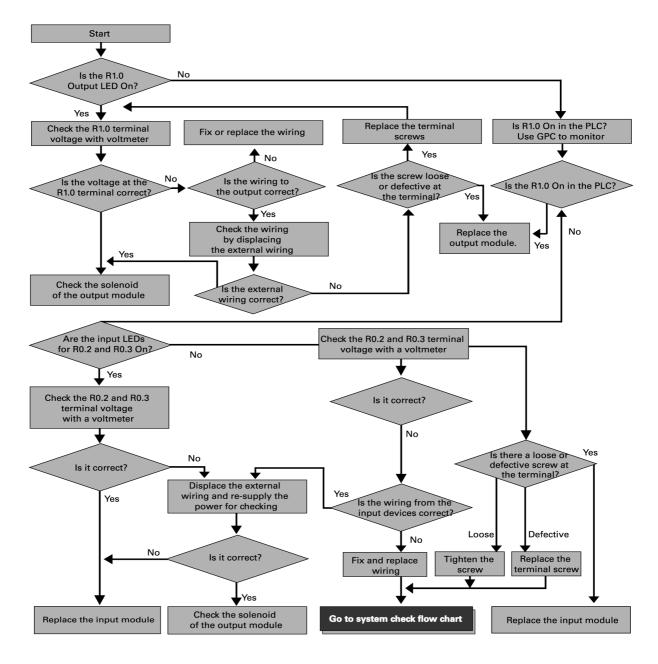
System check flow chart

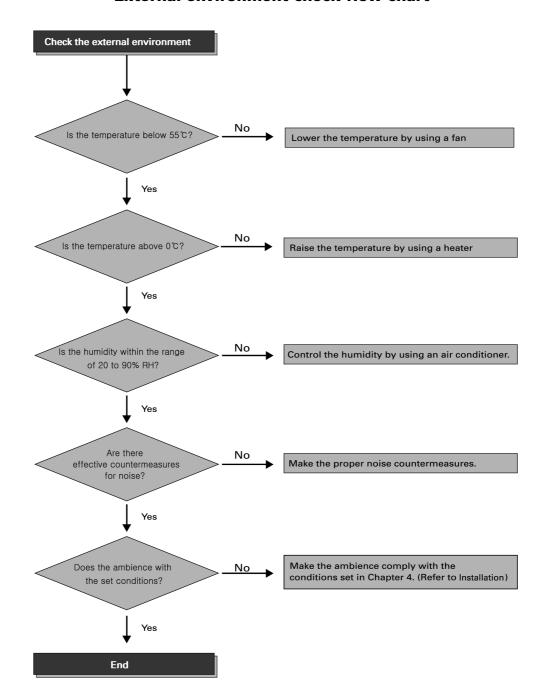

When you encounter problems during startup or test run, first of all, figure out the problems thoroughly. Check if the problems can be reproduced, and analyze the relevance to other devices. Then refer to the system check flow chart.


Power check flow chart

Run check flow chart




Error check flow chart


I/O check flow chart

This page presents an example of a troubleshooting procedure based on the right circuit.

External environment check flow chart

Inspection and Maintenance

Inspection and maintenance

Symptom	Possible cause	Action
Power supply LED will not illuminate.	Fuse blows	Replace the fuse
Fuse blows frequently.	Short circuit or defective part	Replace the power supply or the CPU module
Run LED will not illuminate.	Program errors	Correct the program
Rull LED will not mullimate.	Power line defect	Replace the CPU module
Output will not turn to On state during Run.	Short or open circuit	Replace the CPU module
I/O modules above a certain address will not operate.	I/O bus error	Replace the backplane module
Input or output module of only certain address will turn to On state.	I/O bus error	Replace the backplane module
Not all contacts on an output module operate properly.	I/O bus error	Replace the backplane module

Input module

Symptom	Possible cause	Action
	No external input power	Supply power
No inputs on an input module will	Low external input voltage	Supply rated load power
turn On (LEDs are not illuminated).	Loose terminal screw or defective contact	Tighten the screw and reconnect the module
Inputs will not turn to On state (LEDs are illuminated).	Defective input circuit	Replace the input module
Inputs will not turn to Off state.	Defective input circuit	Replace the input module
	Device connected to the input module is defective.	Replace the input device
One or more inputs on an I/O	Loose input wiring	Reconnect the input wiring
module will not turn On.	External input time is too short.	Adjust the input module
	Loose terminal screw or defective contact	Tighten the screw and reconnect the module
One or more inputs on an I/O module will not turn Off.	Defective input circuit	Replace the input module
	Low external input voltage	Supply rated input voltage
Input changes On/Off state erratically.	Noise error	Troubleshoot for noise
	Loose terminal screw or defective contact	Tighten the screw and reconnect the module
Input display LED will not illuminate (input is On in PLC).	LED error	Replace the input module

Output module

Symptom	Possible cause	Action
	No external input power	Supply power
	Low external input voltage	Supply rated load power
No outputs on an output module will turn On.	Loose terminal screw or defective contact	Tighten the screw and reconnect the module
	Defective I/O connector contacts	Replace the output module
	Defective output circuit	Reconnect the output module
No outputs on an output module will turn Off.	Defective output circuit	Replace the output module
One or more inputs on an I/O	Output time too short	Correct the program
module will not change to On state (LED is illuminated).	Defective output circuit	Replace the output module
	Incorrect output load	Replace the output load
	Short output wiring	Reconnect the output wiring
One or more inputs on an I/O module will not change to On state (LED is not illuminated).	Loose terminal screw or defective contact	Tighten screw and reconnect the module
(222 to fior mammatoa).	Defective output contact	Replace the output module or relay
	Defective output circuit	Replace the output module
One or more outputs on an I/O	Defective output circuit	Replace the output module or relay
module will not change to On state (LED is illuminated).	Error caused by leak or residual current	Replace the external load
One or more outputs on an I/O module will not turn Off (LED is not illuminated).	Defective output circuit	Replace the output module
0.00	Low external input voltage	Supply rated load power
Output changes On/Off state erratically.	Noise error	Countermeasure against noise
criatically.	Loose terminal screw or defective contact	Tighten the screw and reconnect the module
	Loose common terminal screw	Tighten the screw and reconnect the module
A set of 8 points on an I/O module operate incorrectly or identically.	Defective terminal connector	Tighten the screw and reconnect the module
	CPU module error	Replace the CPU module
Output display LED is not illuminated.	LED error	Replace the output module

Periodic inspection and maintenance items

The NX-CPU700p controller requires periodic inspection and maintenance for proper operation. The following items should be checked every six months, but the period can be shortened according to the operational environment.

Item	Check item	Requirement	Remarks
Supplied power	Does the voltage measured within the power terminal fall within the specified range?	Voltage must be within the power module input voltage specifications.	Voltmeter
	Does the temperature fall within the specified range?	0 to 55 °C	Thermometer
Environment	Does the humidity fall within the specified range?	35 to 85%RH	Hygrometer
	Is there any dust present?	No dust	Visual
I/O power	Does the control voltage supplied to the I/O modules fall within the specified limit?	Control voltage must be within the input and output modules specifications.	Voltmeter
Module	Are all modules firmly mounted?		
mounting and	Is the connection cable firmly wired?	All should be firmly secured.	Screwdriver
wiring	Is the external wiring screw tight?		
Life expectancy of parts	Contact relay	Electric lifetime: 100,000 to 300,000 operations	
OI parts	Battery	3 years at 25 °C	

Precautions when troubleshooting

- Always turn off the power whenever installing or removing modules.
- Check the module once more before replacing the defective part.
- Return the defective module for repair with any detailed information about its problems.
- When a contact is defective, clean the contact with a clean cotton and alcohol and then retest the module.
- Do not use thinner to clean since it might cause discoloration on the module's case.

Programming Instructions

IMPORTANT

Refer to the NX7/NX70/NX700 Instruction Set Reference Manual for detailed information on the NX7, NX70, and NX700 instruction set and for application examples to show the instruction set in use.

Basic Sequence Instructions

Mnemonic	Name	Ladder Symbol	Description
STR	Start	<u>⊬</u> ⊢	Starts contact A.
STN	Start Not	<u></u> <u> </u>	Starts contact B.
AND	And		Contact A series circuit
ANN	And Not	/= /	Contact B series circuit
OR	Or	/ ≠-	Contact A parallel circuit
ORN	Or Not	/∓ -1/├──	Contact B parallel circuit
OUT	Out	—(0UT) —∣	Arithmetic result output
SET	Set	±(SET)⊢	Sets output and retains On.
RST	Reset	± ≢ (RST)⊢	Resets output and retains Off.
NOT	Not	—/—	Inverts circuit.
STR DIF	Start Differential	L ∕z= - R	Starts rising edge contact ().
STR DFN	Start Dif. Not	/Æ -F├──	Starts falling edge contact (F).
AND DIF	And Dif.	Æ - R	Rising edge series connection ()
AND DFN	And Dif. Not	Æ F-	Falling edge series connection (F)
OR DIF	Or Dif	½= - R	Rising edge parallel connection ()
OR DFN	Or Dif. Not	∕Æ -F├──	Falling edge parallel connection (F)
ANB	And Block	棒片式片	Circuit blocks series connection.
ORB	Or Block	#	Circuit blocks parallel connection.
MS	Master block Set	在(MS)—	Starts master block. (for processor version 2.0 or higher)
MR	Master block Reset	/ (MR)⊢	Ends master block. (for processor version 2.0 or higher)
MCS	Master Control Set	<u></u>	Starts circuit branch.
MCR	Master Control Reset	Æ	Ends circuit branch.
-	Extension	/ 5≫—	Extension (Used in pairs with AND condition when extending. Exclusive for WinGPC, GPC5, etc)

Timer, Counter and Shift Register Instructions

Mnemonic	Name	Ladder Symbol	Description	Remarks
TIM	On Delay Timer	ATIM - Ch=00010 - SV=00050	Turns on after set delay time finant	Time base: Ch 0 to 63 = 0.01s Ch 64 to 255 = 0.1s Setting range: SV = 0 to 65535 Contact indicator: TC + channel number
TOF	Off Delay Timer	A TOF - Ch=00064 SV=00005	Turns nput lay	Time base: Ch 0 to 63 = 0.01s Ch 64 to 255 = 0.1s Setting range: SV = 0 to 65535 Contact indicator: TC + channel number
SST	Single Shot Timer	Ch=00100 SV=00005	Turns input ay time from Output 55860	Time base: Ch 0 to 63 = 0.01s Ch 64 to 255 = 0.1s Setting range: SV = 0 to 65535 Contact indicator: TC + channel number
UC	Up Counter	-U Ch=020 SV=004 -R A DC	Negut Set Value Value Output Reset	Channel range: Ch 0 to 255 (Shared with timer) Setting range: SV = 0 to 65535 Contact indicator: TC + channel number
DC	Down Counter	-D Ch=021 SV=005 R RCT	Current Set value Reset	Channel range: Ch 0 to 255 (Shared with timer) Setting range: SV = 0 to 65535 Contact indicator: TC + channel number
RCT	Ring Counter	T Ch=022 SV=004 R	Riput Set value Current Set value value	Channel range: Ch 0 to 255 (Shared with timer) Setting range: SV = 0 to 65535 Contact indicator: TC + channel number
UDC	Up-Down Counter	-0 Ch=023 -SV=003 -D -R	Ulphfiput Set value Current	Channel range: Ch 0 to 255 (Shared with timer) Setting range: SV = 0 to 65535 Contact indicator: TC + channel number
SR	Shift Register	Eb=K2.5 -P -R	Sh Sb K1.4 I value	Usable address areas for Sb and Eb: M, K 1 bit shift on each p input. Stores the status value I in Sb for every P input. Max. number of instructions: 256

Comparison Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description
STR ==	START ==	Æ ==	Æ D==	On if A is equal to B.
AND ==	AND ==	A= -	A= -	A and B are word/double word or
OR ==	OR ==	B=	. B=	data value.
STR <>	START <>	A⇔	Æ D<>	On if A is not equal to B.
AND <>	AND <>	A= -	A= -	\Rightarrow is same with \neq .
OR <>	OR <>	. <u>B</u> =	, <u>B</u> =	A and B are word/double word or data value.
STR >	START >	A>	Æ D>	
AND >	AND >	A= -	A= -	On if A is greater than B.
OR >	OR >	B=	_ B=	
STR >=	START >=	Æ>=	A D>=	
AND >=	AND >=	A= -	A= -	On if A is equal to or greater than B.
OR >=	OR >=	B=	_ B=	
STR <=	START <=	A <=	A D<=	
AND <=	AND <=	A= -	A= -	On if A is equal to or less than B.
OR <=	OR <=	_ B=	_ B=	
STR <	START <	A<	A D<	
AND <	AND <	A= -	A= -	On if A is less than B.
OR <	OR <	2 <u>B</u> =	<u> B= </u>	

NOTE For double word comparison instructions, the letter D should precede the word comparison instructions in the Mnemonic program.

Substitution, Increment and Decrement Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description
LET (DLET)	Let (Substitution)	LET D= S=	DLET D= S=	Store the value of S into D.
INC (DINC)	Decimal increment	I NC D=	DINC D=	Increment D by 1 whenever input goes on.
INCB (DINCB)	BCD increment	I NCB	DINCB — D=	Increment D by 1 in BCD mode whenever input goes on.
DEC (DDEC)	Decimal decrement	DEC D=	DDEC D=	Decrement D by 1 whenever input goes on.
DECB (DDECB)	BCD decrement	DECB D=	DDECB	Decrement D by 1 in BCD mode whenever input goes on.

Arithmetic Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description
ADD	Decimal addition	ADD D =	DADD D =	D = S1 + S2
(DADD)	Decimal addition	S1= N2=	S 1 = N2 =	(Decimal operation)
ADDB	BCD addition	ADDB	DADDB D =	D = S1 + S2
(DADDB)	DOD addition	S1= N2=	S1= N2=	(BCD operation)
SUB	Decimal	SUB D =	DSUB D =	D = S1 - S2
(DSUB)	subtraction	S1= N2=	S1= N2=	(Decimal operation)
SUBB	BCD subtraction	SUBB	DSUBB D =	D = S1 - S2
(DSUBB)	DCD Subtraction	S1= N2=	S 1= N 2=	(BCD operation)
MUL	Decimal	MUL D =	DMUL D =	D = S1 x S2
(DMUL)	multiplication	S1= N2=	S1= N2=	(Decimal operation)
MULB	BCD multiplication	MULB D = S 1 =	DMULB - D =	D = S1 x S2
(DMULB)		N2=	N2=	(BCD operation)
DIV	Decimal division	D I V D = S1=	DDIV - D = S1=	D = S1/S2 (Decimal operation),
(DDIV)		N2=	N2=	Error when S2= 0
DIVB	BCD division	D I V B	DDIVB D =	D = S1/S2 (BCD operation)
(DDIVB)		S1= N2=	N2=	Error when S2 = 0
ADC	Decimal addition	ADC D =	DADC D =	D = S1 + S2 + CY
(DADC)	with carry	S1= N2=	S 1 = N 2 =	(Decimal operation, include carry)
ADCB	BCD addition with	ADCB	DADCB D =	D = S1 + S2 + CY
(DADCB)	carry	S1= N2=	S1= N2=	(BCD operation, include carry)
SBC	Decimal	SBC D =	DSBC D =	D = S1 - S2 - CY
(DSBC)	subtraction with carry	S 1 = N2 =	S 1 = N 2 =	(Decimal operation, include carry)
SBCB	BCD subtraction	SBCB	DSBCB D =	D = S1 - S2 - CY
(DSBCB)	with carry	S1= N2=	S1= N2=	(BCD operation, include carry)
ABS	Absolute value	ABS D=	DABS D=	D = D
(DABS)				(Absolute value operation)
WNOT	NOT	WNOT D=	DNOT D=	Store 1's complement of D in D
(DNOT)	(1's complement)		DNEC	Chang 2/a agreement of D in D
NEG (DNEG)	Negative (2's complement)	NEG D=	DNEG D=	Store 2's complement of D in D (1's complement + 1) (- Result)
(DINEG)	(2.5 complement)			(15 complement + 1) (- nesuit)

Logical Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description
WAND (DAND)	AND (logical multiply)	WAND D =	DAND D =	Store AND of S1 and S2 in D S1 0 0 1 1 1 S2 0 1 0 1 O 0 0 0 1 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WOR (DOR)	OR (logical sum)	WOR D =	DOR D = S1= N2=	Store OR of S1 and S2 in D
WXOR (DXOR)	Exclusive OR (exclusive logical sum)	WXOR D =	DXOR D =	Store exclusive OR of S1 and S2 in D
WXNR (DXNR)	Exclusive OR NOT (equivalence)	WXNR D = S1= N2=	DXNR - D =	Store exclusive OR NOT of S1 and S2 in D 1 (ON if they are equal)

Rotation Instructions

Mnemonic	Instruction	Word ladder symbol	Double word ladder symbol	Description
RLC (DRLC)	Rotate left without carry	RLC D= N=	DRLC - D= N=	Rotate the content of D to the left N times. (lower -> higher)
RRC (DRRC)	Rotates right without carry	RRC - D= N=	DRRC - D= N=	Rotate the content of D to the right N times (higher -> lower) 15 \(\dots \) \(\text{word} \) \(\dots \) \(\d
ROL (DROL)	Rotate left with carry	ROL D= N=	DROL D= N=	Rotate (shift) to the left N times (Input F1.8 value to the lowest bit)
ROR (DROR)	Rotate right with carry	ROR D= N=	DROR D= N=	Rotate (shift) to the right N times (higher -> lower) (Input F1.8 value to the highest bit)
SHL (DSHL)	Shift left	SHL D= N=	DSHL - D= N=	Shift the content of D to the left N times (input 0 to the lowest bit) F1.8 15D word. 00 0
SHR (DSHR)	Shift right	SHR D= N=	DSHR - D= N=	Shift the content of D to the right N times (input 0 to the highest bit) 0 15 D word 00 F1.8

Word Conversion Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description	
BCD (DBCD)	BCD Conversion	BCD D= S=	DBCD D= S=	Convert binary value of S to BCD and store it in D. #=00111111 =63(DEC) D01100011 =\$63 (BCD)	
BIN (DBIN)	Binary Conversion	BIN D= S=	DBIN D= S=	Convert BCD of S to binary number and store it in D. S01011001 =\$39 (BCD) D001001111 =39 (DEC)	
ENCO	Encode	ENCO D= S=		Store the location of the highest set bit in S in D. $\begin{array}{c} 15.8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hline & & & & & & & & & & & & & & & & & &$	
DECO	Decode	DECO D= S=		Convert the low-order 4-bit value of S to a power of 2 (2 ^s) and store it in D. S	
SEG	7-Segment	SEG D= S=		Converts the low-order 4-bit value of S to 7-segment display pattern and store them in D. S	
XCHG (DXCHG)	Exchange	XCHG - D1= D2=	DXCHG - D1= D2=	Exchange D1 and D2 values. D1010110011 D20011	
DIS	Dissemble	DIS D= N= S=		Separate S into N+1 units, 4 bits each, and store them in the low 4 bits of words starting at D. When S=\$7325, 01111001101 =5 When N=3, 010101 = 24 D+1 0000110 = 24 D+2 00001111 = 34 D+3 00001111 = 34	
UNI	Unify	UN I D= S= N=		Combine the low 4 bits of S+1 words starting at S, and store them in D (N= 0 to 3). When N=3, S 00 0 1 5 5 5 5 5 5 5 5 5	

Bit Conversion Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description
BSET	Bit Set	BSET D= N=		Set N th bit of D to 1. D 0 0 1 0 0 1 0 0 When N=15 1 (N=0~15)
BRST	Bit Reset	BRST D= N=		Reset N th bit of D to 0. D 0 1 0 1 0 1 0 0 When N=3
BNOT	Bit Not	BNOT D= N=		Invert N th bit of D. D [0 1 1 1 0 1 0 0 When N=4 D [0 1 1 0 0 1 0 0
BTST	Bit Test	BTST D= N=		Store the value of N th bit of D to F1.8. D 0 1 1 1 0 1 0 0 When N=6 ► F1.8
SUM	Sum	SUM D= S=		Store the number of bits in S that are 1 to D. S 00011001001101001 No of 1=7 D 000000000000001111 D=7
SC	Set Carry	SC		Set carry bit (F1.8) to 1. 1 — ▶ F1.8
RC	Reset Carry	RC -		Reset carry bit (F1.8) to 0. 0 F1.8
СС	Complement Carry			Invert carry bit (F1.8). F1.8 1 0 1

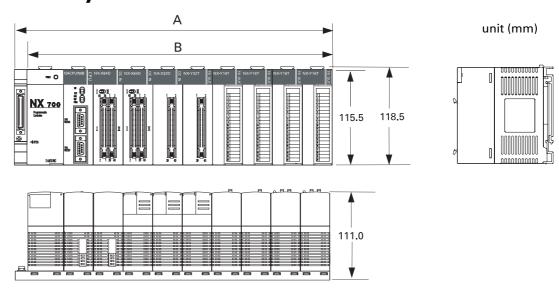
Move Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description	
MOV	Move	MOV D= S= N=		Copy Ns words from Sr to D. Sr	
FMOV	Fill Move	FMOV D= N= V=	Repeatedly copy the value V to the N words starting from D. V1010101010 When N=4 D When N=4		
BMOV	Bit Move	BMOV Db= Sb= N =		Move Ns bits from the bit address Sb to the bit address Db. Sb 0 1 1 1 1 0 1 0 0 When N=4 0 1 0 1 0 1 0 0	
BFMV	Bit Fill Move	BFMV Db=		Repeatedly copy the bit value V to the N bits staring from the bit address Db. (V=0, 1)(N=1256) (Db is bit address) When V=1, N=5 0 1 1 1 1 1 0 0 Db	
LDR (DLDR)	Load D ← (S)	LDR D= S=	DLDR D= S=	Store to D the value of the register whose absolute address is the value of S. (Refer to the manual for information about absolute address.) Register address data value S =	
STO (DSTO)	Store (D) ← S	ST0 -S= D=	DST0 - S= D=	Store the value of S to the register whose absolute address is the value of D. (Refer to the manual for information about absolute address.) Register address absolute address data value S = X D = Y ? X	

Program Control Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description	
FOR (DFOR)	For Loop	FOR D =	DFOR D =	Execute instructions in the block between FOR and corresponding NEXT. Repeat execution D times.	
NEXT	Next	NEXT -		Decrement D of FOR instruction by 1. If it is not zero, repeat execution from FOR instruction.	
JMP	Jump	JMP Lb=		Jump to the position marked LBL L (label number). (L: 0 to 63)	
LBL	Label	LBL Lb=		Position jumped to by the corresponding JMP instruction. (L:0 to 63)	
JMPS	Jump Start	JMPS		Jump to the JMPE instruction.	
JMPE	Jump End	JMPE		Position jumped to by the corresponding JMPS instruction.	
CALL	Call Subroutine	CALL - Sb=		Call subroutine Sb. (Sb = 0 to 63)	
SBR	Subroutine Start	SBR Sb=		Start subroutine Sb. (Sb = 0 to 63)	
RET	Subroutine Return	RET		End of subroutine. Return execution to the instruction after CALL.	
INT	Begin Interrupt	I NT V=		Begin the block of constant cycle scan instructions. Ni = 1 to 999 (20 msec to 10 sec) Constant cycle time = (Ni+1) x 0.01 sec	
RETI	Return Interrupt	RETI	End the block of constant cycle scar instructions.		

System Control Instructions

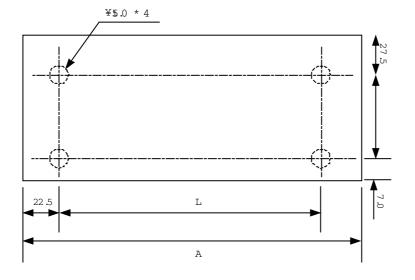

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description
INPR	Input Refresh	INPR - Ch=		Refresh external input (Receive input signal during program execution). Ch is external input word address.
OUTR	Output Refresh	OUTR Ch=		Refresh external output (Send output signal during program execution). Ch is external output word address.
WAT	Watchdog Timer	WAT		Clear watchdog scan time.
END	END	END		End of program. This instruction is automatically added by WinGPC.

Communications Control Instructions

Mnemonic	Name	Word ladder symbol	Double word ladder symbol	Description	
READ	Read Data (from shared memory of high performance module)	## READ TO=RR1 SZ=NR3 FR=NN5: NR6		Read NR3 words from the module memory address NR6 of the slot NN5, and write them to the words starting from RR1.	
WRITE	Write Data (to shared memory of high performance module)	### WRITE TO=NN1:NR2 SZ=NR3 FR=NN5		Read NR3 words from NR5, and write them to the module memory address NR2 of slot NN1.	
RMRD	Read Remote Slave Data (from shared memory of high performance module)	### A RMRD TO=NR1: RR2 NT=NN3: NN4 FR=NN5: NR6		Read NR1 words from the module memory address NR6 of the slot NN5 for the station NN4 on the remote network loop NN3, and write them in words starting at RR2.	
RMWR	Write Remote Slave Data (to shared memory of high performance module)	### A RMWR NT=NN1: NN2		Read NR5 words from the module memory address NR6, and write them to the words starting from NR4 of the slot NN3 in the station NN2 on the remote network loop NN1.	
RECV	Receive Link Data Word	### RECV T0=NR1:RR2		Read NR1 words from the module memory NR6 of the slot NN5 in the station NN4 on the link network loop NN3, and write them to the words starting from RR2.	
SEND	Send Link Data Word	## SEND# NT=NN1:NN2		Read NR5 words from the module memory NR6, and write them to the module memory starting from NR4 of the slot NN3 in the station NN2 on the link network loop NN1.	
RECVB	Receive Link Data Bit	A RECVB TO=BR1 NT=NN3:NN4 FR=NN5:NR6		Read the bit NR6 of the slot NN5 in the station NN4 on the link network loop NN3, and write it the bit register BR1.	
SENDB	Send Link Data Bit	# SENDB NT=NN1:NN2 T0=NN3:NR4 FR=NB5		Write the content of bit NB5 to the bit NR4 of the slot NN3 in the station NN2 on the link network loop NN1.	

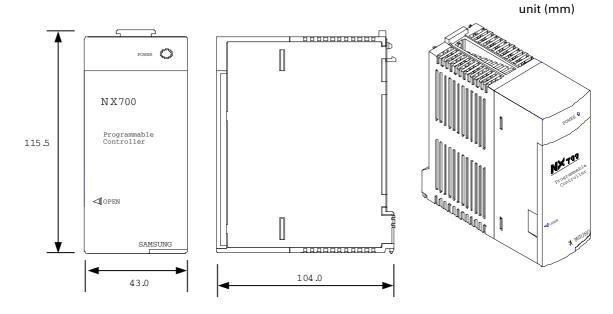
NX-CPU700p System Product Dimensions

System Dimensions

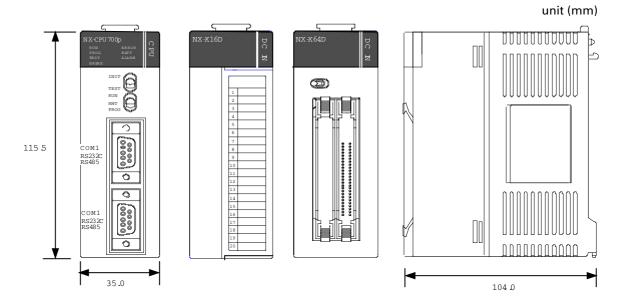


unit (mm)

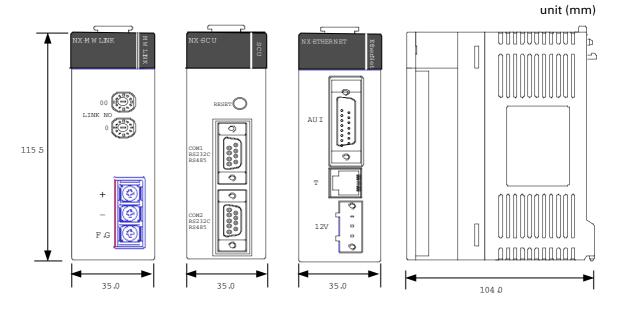
	3-slot type	5-slot type	8-slot type	10-slot type	12-slot type
A (mm)	205.0	276.0	381.0	452.0	522.0
B (mm)	183.8	254.2	359.8	430.2	500.6


Backplane Dimensions

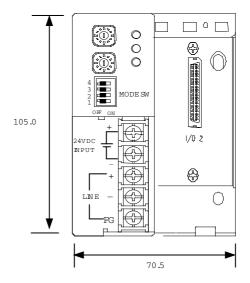
unit (mm)



Slots	Α	L
3	205.0	153.8
5	276.0	224.2
8	381.0	329.8
10	452.0	400.2
12	522.0	470.6

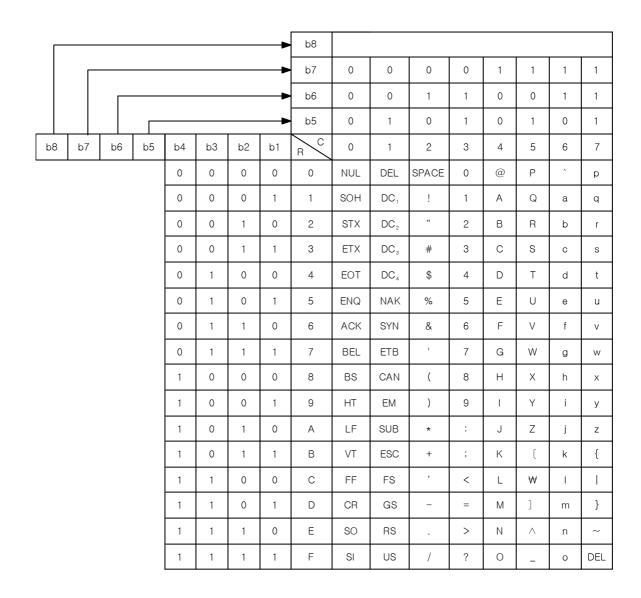

Power Supply Module Dimensions)

Processor and I/O Modules Dimensions



Specialty Module Dimensions

NX-IOLINK Module Dimensions


unit (mm)

Decimal, Bin, Hex, BCD, Gray Code Cross-reference Table

Decimal	Hexadecimal	Binary	Binary coded decimal	Gray code
		-	-	-
0	0000	00000000 00000000	0000 0000 0000 0000	0000 0000 0000 0000
1	0001	00000000 00000001	0000 0000 0000 0001	0000 0000 0000 0001
2	0002	00000000 00000010	0000 0000 0000 0010	0000 0000 0000 0011
3	0003	00000000 00000011	0000 0000 0000 0011	0000 0000 0000 0010
4	0004	00000000 00000100	0000 0000 0000 0100	0000 0000 0000 0110
5	0005	00000000 00000101	0000 0000 0000 0101	0000 0000 0000 0111
6	0006	00000000 00000110	0000 0000 0000 0110	0000 0000 0000 0101
7	0007	00000000 00000111	0000 0000 0000 0111	0000 0000 0000 0100
8	0008	00000000 00001000	0000 0000 0000 1000	0000 0000 0000 1100
9	0009	00000000 00001001	0000 0000 0000 1001	0000 0000 0000 1101
10	000A	00000000 00001010	0000 0000 0001 0000	0000 0000 0000 1111
11	000B	00000000 00001011	0000 0000 0001 0001	0000 0000 0000 1110
12	000C	00000000 00001100	0000 0000 0001 0010	0000 0000 0000 1010
13	000D	00000000 00001101	0000 0000 0001 0011	0000 0000 0000 1011
14	000E	00000000 00001110	0000 0000 0001 0100	0000 0000 0000 1001
15	000F	00000000 00001111	0000 0000 0001 0101	0000 0000 0000 1000
16	0010	00000000 00010000	0000 0000 0001 0110	0000 0000 0001 1000
17	0011	00000000 00010001	0000 0000 0001 0111	0000 0000 0001 1001
18	0012	00000000 00010010	0000 0000 0001 1000	0000 0000 0001 1011
19	0013	00000000 00010011	0000 0000 0001 1001	0000 0000 0001 1010
20	0014	00000000 00010100	0000 0000 0010 0000	0000 0000 0001 1110
21	0015	00000000 00010101	0000 0000 0010 0001	0000 0000 0001 1111
22	0016	00000000 00010110	0000 0000 0010 0010	0000 0000 0001 1101
23	0017	00000000 00010111	0000 0000 0010 0011	0000 0000 0001 1100
24	0018	00000000 00011000	0000 0000 0010 0100	0000 0000 0001 0100
25	0019	00000000 00011001	0000 0000 0010 0101	0000 0000 0001 0101
26	001A	00000000 00011010	0000 0000 0010 0110	0000 0000 0001 0111
27	001B	00000000 00011011	0000 0000 0010 0111	0000 0000 0001 0110
28	001C	00000000 00011100	0000 0000 0010 1000	0000 0000 0001 0010
29	001D	00000000 00011101	0000 0000 0010 1001	0000 0000 0001 0011
30	001E	00000000 00011110	0000 0000 0011 0000	0000 0000 0001 0001
31	001 F	00000000 00011111	0000 0000 0011 0001	0000 0000 0001 0000
32	0020	00000000 00100000	0000 0000 0011 0010	0000 0000 0011 0000
63	003F	00000000 00111111	0000 0000 0110 0011	0000 0000 0010 0000
64	0040	00000000 01000000	0000 0000 0110 0011	0000 0000 0110 0000
255	00FF	00000000 11111111	0000 0010 0101 0101	0000 0000 0110 0000

ASCII Code Table

Appendix

Communication Protocols

The communication protocol of NX-CPU700p PLC provides a complete method of communications between the graphic consol programmers (WinGPC) and the PLC by controlling programs, CPU status, and I/O at user's convenience. The user can easily expand the capabilities of the overall PLC system by communicating to the PLC using a variety of peripheral communications equipment in accordance with the following communication protocols and procedures. Additionally, the communications protocol allows for the PLCs to communicate to a central computer on a single network using RS485, at a distance of up to 1.2 km (RS232C, 15 m).

Communication Protocols for NX-CPU700p

Communication environment

- Parity: No parity
- Stop bit: 1 stop bit
- Communication method: RS232 or RS485 (optional)
- Communication speed: 4800/9600/19200/38400 bps (optional)
- Communication cable: refer to the cable wiring diagram
- Number of PLCs on a single network: Maximum of 64 (communicating 1:N using RS485)
- Maximum communication delay time: 3 seconds

Communication Protocols

Step 1-Q

Query

Q (Query) is a signal sent from the peripheral devices to the PLC after setting the network ID number and the function code for the PLC to communicate with.

Step 2-QA

Query Acknowledge

QA (Query Acknowledge) is a signal sent from the PLC to the peripheral devices, indicating that the Q signal from the peripheral device was received.

Step 3-RR

Response Request

RR (Response Request) is a signal sent from the peripheral device to the PLC, indicating that the QA signal from the PLC was received. This signal is sent when $Q\rightarrow QA$ is normal.

Step 4-R

Response

When the PLC receives the RR from the peripheral device, it determines that the communication with peripherals is successful and sends R (Response) signal to the peripherals. This R signal contains how the original Q signal from the peripheral device handled its function code. The communication cycle for one function code ends when the PLC sends the R.

Communications delay

The PLC will return a signal after receiving a Q or an RR within a specific time. However, due to errors in the communications network, CRC values, and communication speed flux, there are occasions when the PLC will not receive the signal from the peripheral device. The peripheral device should allow up to three seconds for a response from the PLC. If there are no responses to the Q or the RR message, the communication is considered to have failed, and the Q or RR should be sent again.

CPU ID

All devices connected to the network need a network ID number for communication. There is an available range of 0 to 191 network ID numbers for the NX series.

Redundancy is not permitted. When a single PLC and a peripheral device are connected, usually 0, 1, or 255 is assigned as the network ID number to the PLC. When the peripheral device wants to communicate to a connected PLC regardless of its programmed network ID number, it can use global network ID number 255, to which any PLC will respond. However, the NX series can not be used to communicate with more than two CPU modules at one time, so if you assign ID 225 as an ID of more than two CPU modules at once, it will cause communication errors.

When several CPU modules are connected to one communication network, they must use individual ID numbers. The PLC's network ID number is configured using the WinGPC.

Communication steps

The NX CPU can support 2-step or 4-step communication methods. The communication methods are easily distinguished each other by selecting and sending the function code of the Q frame. Even for the 4-step method, the 2-step method can be used for the repeated function. This function sends and receives the only RR repeatedly when you want to redo the frame you sent with query, allowing users to quickly monitor data.

• 2-step communication method

This method allows users to easily and directly program communication since it only uses the simple $\underline{O} \rightarrow \underline{R}$ steps.

2-step configuration:

 $O(\text{step 1}) \rightarrow R(\text{step 2})$

Repeated function code:

 $\underline{O(step 1)} \rightarrow \underline{R(step 2)} \rightarrow \underline{RR(step 1)} \rightarrow \underline{R(step 2)} \rightarrow$

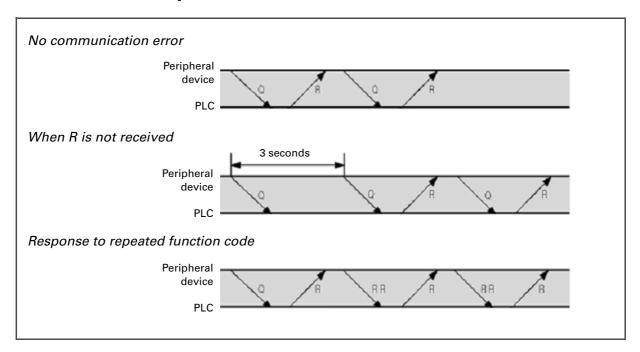
 $RR(step 1) \rightarrow R(step 2)....$

4-step communication method

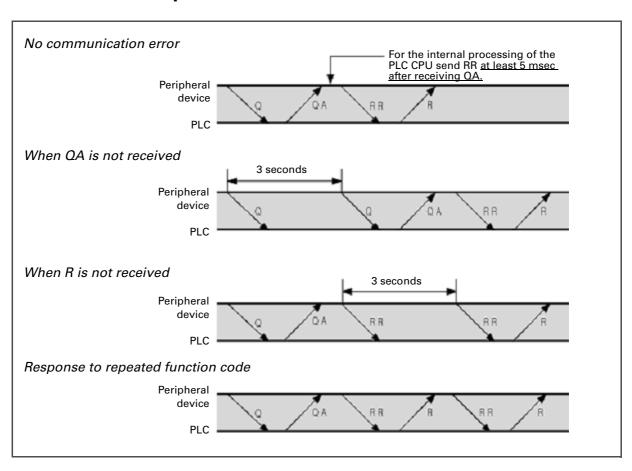
 $\underline{\mathsf{O}} \to \underline{\mathsf{OA}} \to \underline{\mathsf{RR}} \to \underline{\mathsf{R}}$.

2-step method can be used for the response to the repeated function code.

4-step configuration:


 $Q(\text{step 1}) \rightarrow QA(\text{step 2}) \rightarrow RR(\text{step 3}) \rightarrow R(\text{step 4})$

Repeated function code:


 $\underline{O(step 1)} \rightarrow \underline{OA(step 2)} \rightarrow \underline{RR(step 3)} \rightarrow \underline{R(step 4)} \rightarrow$

 $RR(step 1) \rightarrow R(step 2)...$

2-step communication method

4-step communication method

Function codes included in the query

Each function code is 1 byte. When the PLC receives a query (Q), the function code of the final response (R) is formed by adding \$80 (hex) to the function code sent by the query. The value added to the function code sent by the query differs for 2-step and 4-step by \$20 (hex).

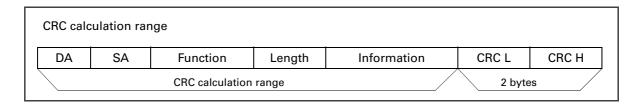
The function code of the R message can be used by the peripheral device to verify that the correct Q message has been received by the PLC.

Communication function codes

\$ notes hexadecimal notations

Communication function	Query (Q) function code		Response (R) function code		Remarks
	2-step	4-step	2-step	4-step	
Read bits	\$21	\$01	\$A1	\$81	Detailed description
Write bits	\$22	\$02	\$A2	\$82	"
Read words	\$23	\$03	\$A3	\$83	u u
Write words	\$24	\$04	\$A4	\$84	u u
Read bits and words	\$25	\$05	\$A5	\$85	u u
Write bits and words	\$26	\$06	\$A6	\$86	u u
Read program	\$27	\$07	\$A7	\$87	No detailed description
Write program	\$28	\$08	\$A8	\$88	u u
Read instruction	\$29	\$09	\$A9	\$89	u u
Change instruction	\$2A	\$0A	\$AA	\$8A	u u
Change operand	\$2B	\$0B	\$AB	\$8B	u u
Insert instruction	\$2C	\$0C	\$AC	\$8C	u u
Delete instruction	\$2D	\$0D	\$AD	\$8D	u u
Search instruction	\$2E	\$0E	\$AE	\$8E	u u
Search operand	\$2F	\$0F	\$AF	\$8F	u u
Delete all/parts of program	\$20	\$10	\$A0	\$90	u u
No service	\$00	\$00	\$00 (hex)	\$00 (hex)	"

The bit/word address assignment uses the absolute address method for reading memory locations. (Refer to *Absolute Addressing on Chapter 3*)


Please contact our technical support for more information about reading/writing program or other function codes.

Query, which dictionary meaning is `question', `ask', or `question mark', means that a user or an application program requests any specific information to a corresponding part when it is used as a communication term.

Cyclic Redundancy Checking (CRC)

The CRC is a 2-byte checksum code attached to the end of the message by the sender to check if the communication frame is transmitted without error.

The sender calculates the CRC when it sends one-byte message, and the receiver should also calculate the CRC from the data of the message. Since this CRC calculation takes a long time when writing a communication program, you should find any ways to increase the speed of this part to avoid errors and improve the communication speed.

CRC-16 calculation subroutine written in BASIC

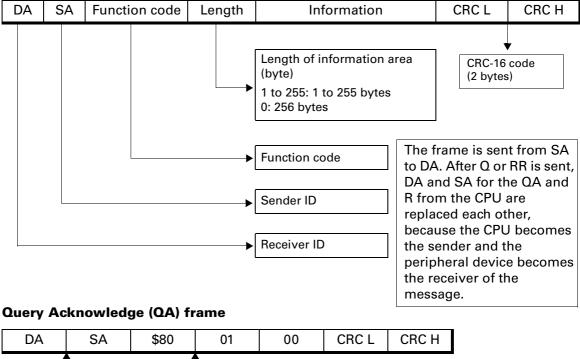
```
CRC_Sum: CRC-16 reserve code after the calculation (CRC content to be sent at the
        end of message)
        Data: CRC-16 data input to be calculated (byte data from message)
1000
       CRC_Sum = CRC_Sum XOR Data
1010
       FOR I=1 to 8
1020
       CARRY=CRC Sum AND 1
1030
       RC_Sum=CRC_Sum SHR 1
1040
       IF CARRY=1 THEN CRC_Sum XOR 0A001H
1050
       NEXTI
1060
       RFTURN
```

CRC-16 calculation subroutine written in PASCAL

```
Procedure CRC16 (Data: Byte)
Var i : Byte;

Begin
CRC_Sum := CRC_Sum xor Data;
for i : 1 to 8 do

Begin
if((CRC_Sum and 1)=1) then CRC_Sum := (CRC_Sum shr 1) xor $A001;
Else CRC_Sum: = CRC_Sum shr 1;
End;

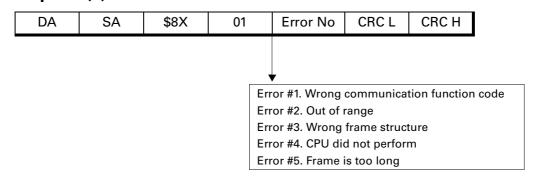

End;
```


CRC-16 calculation subroutine written in C

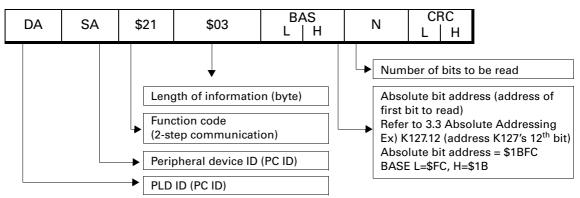
Structure of Communication Frames

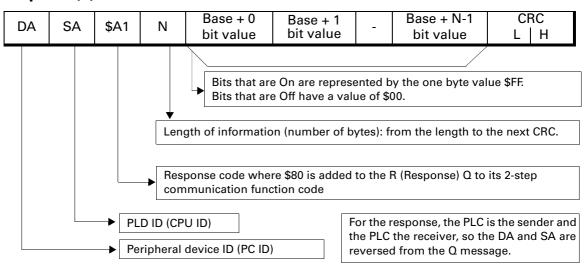
The function code is explained with the example of Query and Response frame based on the 2-step communication.

Query (Q) and Response (R) frame



Response Request (RR) frame

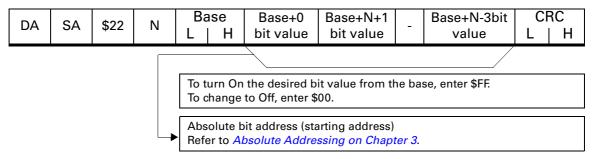

Response (R) frame for an error



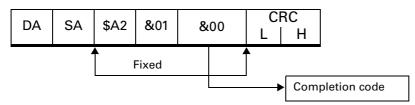
Read bits

Read the content of the bits (R, L, M, K, F, or TC) assigned to the absolute address. Can read n consecutive bits (On/Off).

Query (Q) frame

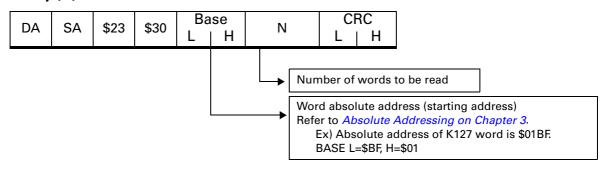


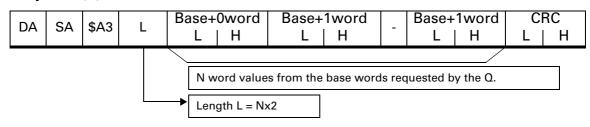
Write bits


Modify the contents of the bits stored in the absolute address (R, L, M, K, F, or TC). Change the bit state between On/Off.

Can change multiple consecutive bytes.

Query (Q) frame

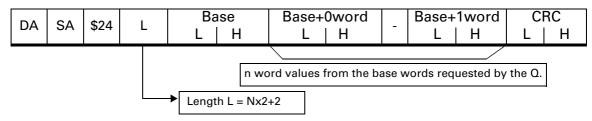

Response (R) frame



Read words

Read the content of the words (R, L, M, K, F, or W) assigned to the absolute address. Can read n consecutive words.

Query (Q) frame

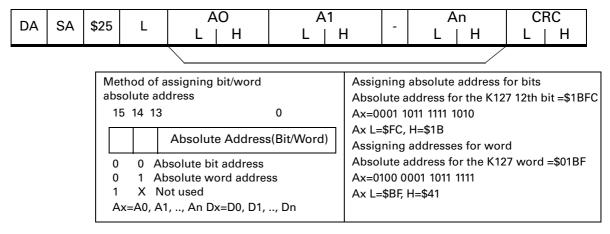


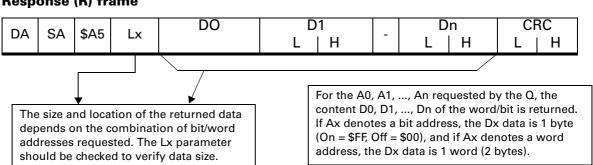

Write words

Change the content of the words (R, L, M, K, F, or W) assigned to the absolute address. Can read n consecutive words.

Query (Q) frame

Response (R) frame

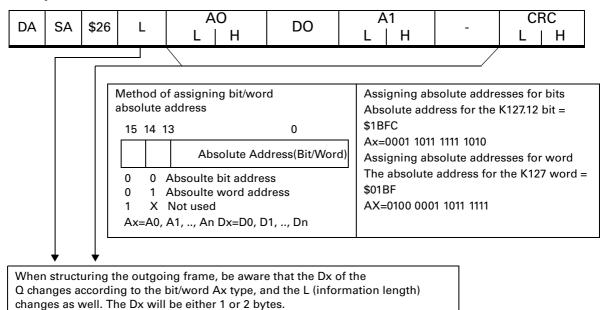



Read bits and words

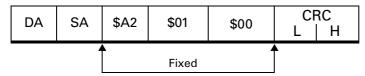
Read the bits and/or word contents of the assigned absolute addresses.

Can read bits and words regardless of their order and location in memory.

Query (Q) frame



Write bits and words


Read the bits and/or word contents of the assigned absolute addresses.

Can read bits and words regardless of their order and location in memory.

Query (Q) frame

If Ax denotes a bit address, the Dx data is 1 byte (On=\$FF, Off=\$00), and if Ax denotes a word address, the Dx is 1 word (2 bytes).

Communication Program Examples

Users can write a communication program by using the following example. For more information, contact the sales or technical department.

Program	Notes			
<plc code="" communication="" sample=""> #include <stdio.h></stdio.h></plc>	This program was written in Borland C++. It uses the peripheral devices such as PC to read M000 to M127 words, stores them in the K000 to K127,			
#include <dos.h> #include <conio.h></conio.h></dos.h>	and then compares the two registry values and indicates the results on the screen using the OK or the FAIL notation. The user may read or manipulate the various communication function codes and the sent/received information to control the PLC in various ways.			
#define PC_ID 0xE2				
#define time_limit 28 #define retrial_limit 2 #define TRUE 1 #define FALSE 0	This program consists of a header, the main program, and various functions. The buffers and variables needed to store the communication data are set as global variables, so that the main and various other functions may reference them.			
#define lower_byte(x) (unsigned int) ((x)& 0x00FF) #define upper_byte (x) (unsigned int) (((x)& 0xFF00)>>8)	By using the COM1 and COM2 ports of the computer, serial communication is possible. By using the GPU-300 card, parallel communication is also enabled.			
typedef int BOOL; unsigned int PORTADD,DIVISOR,sending_delay, receiving_delay; unsigned int sending_frame[262],receiving_frame[262];	The Qs, QAs, RRs, and Rs are handled in the job function. If there is any communication delay or frame breakdown, retry 3 times, then issue a communication error.			
unsigned int Crc; unsigned int card,i,ix,iy,smode; unsigned int port_number; unsigned int PlcID,OldID; BOOL Success; unsigned int data,JobID,retrialC; unsigned int Old,New,receiving_Index_max,sending_Index_max,	The procedure of the communication, according to the JobID is: 1.Q sending 2.QA receiving 3.RR sending 4.R receiving When an error occurs in a frame, a retransmission should be made.			
index,watchdog; unsigned int M[128],K[128]; /* Example Register */	<main of="" operations="" program="" the=""></main>			
void RR_occurring(void); void Trsport(unsigned int); unsigned int Recport(void); BOOL sending_occuring(void); BOOL receiving_occuring (void); void Crc16(unsigned int); void Job(void); unsigned int communication(void); void Mword_reading(void); void Kword_writing(void);	1. Adjusts the initial communication port and the board rate for communication. Then initializes the variables. 2. Using the communication function codes, reads the data of the M field, reads the word values of the M0 to M127 word area. The K registers are the retentive registers. 3. Uses the communication code to read the data of the K area. 4. Compares the values of the M area and the values of the K area, and indicates OK when the values are the same.			
void main(void) { unsigned int i; /* Selection of communication port */ clrscr();				
<pre>printf("PORT: COM1[1]/ COM[2]/ GPC-232[3]/GPC-485[4]/GPC- Parallel[5] = "); scanf("%d",&port_number); if ((port_number < 1) (port_number > 5)) port_number=5; /* Selection of Baudrate for Serial communication */ sending_delay=10; if (port_number != 5) {</pre>	Beginning of the main program Select the port of the peripheral device for the communication. Serial 9 pins, 25 pins Parallel GPU-300 parallel port			
printf("GPC card BAUD-RATE : 9600[1]/ 4800[2]/ 2400[3] = "); scanf("%d",&i); if ((i < 1) (i > 3)) i=1; if (i == 3) i=4;	Select board rate: 9600 bps (max): 4800 bps 2400 bps			
<pre>if ((port_number == 1) (port number == 2)) DIVISOR=12 * i; else DIVISOR=40 * i; receiving_delay=3 * i + 1; }</pre>	Set the communication environment (delay time) for the selected ports. Note: GPC-300 card port address = 0x0300			

Notes Program GPC-300 card Setting (8255chip setting)Uses the communication card that is connected, and sets the environment * Initialization of GPC card */ if(port_number == 1) PORTADD=0x3F0; if(port_number == 2) PORTADD=0x2F0; according to the PLC communication specifications, so that communication is possible. if ((port_number >= 3) && (port_number <=5)) PORTADD=0x300; outportb(0x303,0xC0);/* Mode=2 of 8255 */ outportb(0x303,0x05);/* PC2=1 of 8255 :Disable IRQ2 */ outportb(0x301,0xFF);/* PB0=1 of 8255 :Sending Enable RS-485*/ outportb(0x303,0x01);/* PC0=1 of 8255 :Serial Input Enable*/ if(port_number == 3) outportb(0x303,0x02);/* PC1=0 of 8255 RS-232 */ if(port_number == 4) outportb(0x303,0x03);/* PC1=1 of 8255 :Select RS-485 */ $if(port_number == 5)\ outportb(0x303,0x00); /*\ PC0=0\ of\ 8255$:Disable SerialInput*/ else outportb(PORTADD+0x09,(inportb(PORTADD+0x09)&0xF0));/ *Disable Interrupt*/ /* Initialization of USART-Chip: 8250 */ if (port_number != 5) outportb(PORTADD+0x0B,0x80);/* Set of DLAB=1 */
outportb(PORTADD+0x09,0x00);/* Set of High Byte DIVISOR */
outportb(PORTADD+0x08,DIVISOR);/* Set of Low Byte DIVISOR outportb(PORTADD+0x0B,0x03); /* Parity=None/Stop=1/ Lenath=8 * /* Processing communication of Read & Write */ for(;;) ----\nPLC-ID (CPU ID) :"); CPU-ID: Input PLC ID (0 to 255) scanf("%d",&PlcID); Mword_reading(); Reads the register value for the M area (M0 to M127) Kword_writing(); Stores the value for the M area in the K area. (K0 to K127) void RR_occuring(void) RR (Request Response) request function receiving_frame[2]=0; receiving_frame[3]=1; receiving_frame[4]=0; void Trsport(unsigned int data) Sends data to the communication port. if (port_number == 5) outportb(PORTADD,data); else outportb(PORTADD+0x08,data); unsigned int Recport(void) Reads the received data from the communication port. unsigned int dt; if (port_number == 5) dt=inportb(PORTADD); else dt=inportb(PORTADD+0x08); return(dt); BOOL sending_occuring(void) Outputs the data when a Send event occurs.. BOOL tf; if (port_number == 5) tf=((inportb(PORTADD+0x02) & 0x80)==0x80);else tf=((inportb(PORTADD+0x0D) & 0x20)==0x20); return(tf); BOOL receiving_occuring(void) Inputs the data when a Receiver event occurs. BOOL rf: if (port_number == 5) rf=((inportb(PORTADD+0x02) & 0x20)==0x20);else rf=((inportb(PORTADD+0x0D) & 0x01)==0x01); return(rf); void Crc16(unsigned int data) **CRC** calculation Encodes the communication data in the byte stream. Any completed communication function will be attached to the latest frame or will be compared with the attached CRC to check for data errors. (Note: The CRC method can be implemented in several ways within the unsigned int i; Crc=Crc^(data & 0x00FF); for(i=0;i<=7;i++)rule specified as shown in the left code.) $if((Crc \& 0x0001) == 0x0001) Crc=(Crc>>1)^0xA001; /* 0x0001:$ multi-nominal expression */ else Crc=Crc>>1;

Program	Notes			
void Job(void)	Communication sequence function			
{ /* JobID=0 : Change to sending-mode for serial port */ /* JobID=1 : Transmit sending-frame	JobID=0 to 4: handle Ω and ΩA frames JobID=5 to 9: handle RA and R frames			
case 0: case 5:if (port_number != 5)	JobID 0,5:			
{ if (port_number == 4) outportb(0x301,0xFF); else outportb(PORTADD+0x0C,(inportb(PORTADD+0x0C) 0x02)); delay(sending_delay); } if (JobID == 5) RR_occuring();	A frame that sends the data from the peripheral device to the PLC. It resets the watchdog and the CRC. Use a delay after the send to avoid errors due to communications delays.			
watchdog=0; index=0; sending_Index_max=5; Crc=0xFFFF; JobID++;				
<pre>break; case 1: case 6:if (receiving_occuring()) data=Recport(); if (sending_occuring()) { if (index<sending_index_max-1) pre="" {<=""></sending_index_max-1)></pre>	JobID 1,6: Sends the Q and RR data. When there is no error, it resets the watchdog and proceeds on to the next sequence.			
Trsport(receiving_frame[index]); Crc16(receiving_frame[index]); if (index==3) {				
if (receiving_frame[3]==0) sending_Index_max=256+5; else sending_Index_max=receiving_frame[3]+5; } }				
else if (index==sending_Index_max-1)				
receiving_frame[index]=lower_byte(Crc); Trsport(receiving_frame[index]); }				
else if (index==sending_Index_max)				
receiving_frame[index]=lower_byte(Crc); Trsport(receiving_frame[index]); }				
else if (index==sending_Index_max)				
{ receiving_frame[index]=upper_byte(Crc); Trsport(receiving_frame[index]); watchdog=0; JobID++; }; index++; }				
break; case 2: case 7:if (port_number != 5)	JobID=2,7:			
{ delay(receiving_delay); if (port_number ==4) outportb(0x301,0x00); else outportb(PORTADD+0x0C,(inportb(PORTADD+0x0C) & 0xFD)); }	A sequence that senses the sending of the QA and R data to the peripheral device after the completion of the functions that are received by the PLC from the previous frame.			
} JobID++;				
break; case 3:	JobID=3,8:			
case 8:if (receiving_occuring()) {	Handles the received data, and calculates the CRC of the received data.			
data=Recport(); if(data==PC_ID) {				
Crc=0xFFFF; index=1; receivingIndexmax=5; receiving_frame[0]=data; Crc16(data); JobID++; } }				

```
Notes
                                Program
 break;
 case 4:
                                                                                   JobID=4,9:
                                                                                   Stores the received data in the internal receive buffer and compares the
 case 9:if(receiving_occuring())
                                                                                  CRC value sent by the PLC to the calculated CRC value. It notifies the system that a successful communication is made when the two values
 if(index<receiving Index max-1)
                                                                                   match, and proceeds on to the next sequence.
  receiving_frame[index]=Recport();
  Crc16(receiving_frame[index]);
  if(index==3)
 if(receiving frame[3]==0) receiving Index max=256+5:
 else receiving_Index_max=receiving_frame[3]+5;
 else if(index==receiving_Index_max-1)
 receiving_frame[index]=Recport();
 if(receiving_frame[index]!=lower_byte(Crc)) JobID=(JobID & 0x05);
 else if(index==receiving Index max)
  receiving frame[index]=Recport():
  if(receiving_frame[index]==upper_byte(Crc)) JobID++; else JobID=(JobID & 0x05);
  case 10:Success=TRUE;
                                                                                   JobID=10:
                                                                                   Notifies the successful sending and receiving
                                                                                   If the frames that were sent have no response within 3 seconds, assumes it
unsigned int communication(void)
                                                                                   failed communication, and retransfers the data.
  struct time t:
                                                                                   The time from the sending and receiving is counted using the watchdog
  unsigned far *tm;
                                                                                  timer.
  int ret;
                                                                                   Resets the watchdog time when a retransfer is being made. No response
  Success=FALSE:
                                                                                   after 3 transmissions indicates a communication error. (Normal return
  receiving_frame[0]=PlcID; receiving_frame[1]=PC_ID;
                                                                                   value = 0, Abnormal return value = 1)
  retrialC=retrial_limit;
  watchdog=0; JobID=0; index=0; sending_Index_max=5; Crc=0xFFFF;
  tm=(unsigned far *) 0x046C;
  New=*tm;
  Job();
  if(watchdog>Time_limit)
  watchdog=0; retrialC--
  JobID=(JobID & 0x05);
  if(!(((Old^New) & 0x02)==0))
  watchdog=watchdog+1;
Old=New;
  }while((retrialC!=0) && (Success==FALSE));
  if(retrialC==0) ret=1;
  else ret=0;
  return(ret);
                                                                                   Reading function of the M register
void Mword_reading(void)
                                                                                   Uses the communication function code 3 (reading N consecutive words) to
  /* Example of Read-Register */
                                                                                   read the M area.
                                                                                   Note:
 Int i; receiving_frame[2]=3;/* EXAMPLE READ WORD(M000-M0127) */ receiving_frame[3]=3;/* Number Of Byte For Information = 3 */ receiving_frame[4]=0xC0;/* BASE(M000=$00c0) */ receiving_frame[5]=0;/* BASE HIGH */
                                                                                   Sending frame [4] = The lower byte of the absolute address of the words to
                                                                                   be read.
                                                                                   Sending frame [5] = The upper byte of the absolute address of the word to
  receiving_frame[6]=128;/* Number Of Byte M000-M127 */
if(communication() == 0)
                                                                                   Absolute address of M0 = 0x0C0
                                                                                   Note: Sending frame [6] = The number of words to be read.
 {
printf("READ M0000-M0127 OK\n");
for(i=0;i<=127;i++) M[i]= receiving_frame[i*2+4] + receiving_frame[i*2
                                                                                   Sends a function code requesting to read the M area, and stores the
                                                                                   received data in the buffer.
 +5]*256;
  else printf("communication error\n");
                                                                                   Writing Function of the K Register
void Kword_writing(void)
                                                                                   Uses the communication function code 4 (writing N consecutive words) to
  /* Example of Write-Register */
                                                                                   store the specified value in the K000 to K063 word.
  int i:
  receiving_frame[2]=4;
                                 /* EXAMPLE write WORD(K000-K063) */
                                                                                   Absolute address of K0 = 0x0140
  receiving_trame[3]=130; /* Number Of Byte For Intuitive receiving_frame[4]=0x40; /* BASE(K000=$0140) LOW */
receiving_frame[5]=1; /* BASE HIGH */
                                 /* Number Of Byte For Information */
  receiving_frame[5]=1;
for(i=0;i<=63;i++)
  receiving_frame[i*2 +6]= lower_byte(K[i]);
  receiving_frame[i*2 +7]= upper_byte(K[i]);
```

Program	Notes		
<pre>if(communication() == 0) printf("WRITE K0000-K0063 OK\n"); else printf("communication error\n"); receiving_frame[2]=4;</pre>	Writing function of the K Register Uses the communication function code 4 (writing N consecutive words) to store the specified value in the K064 to K127 word. Note: Absolute address of K64 = 0x0180		

NX700 Series Controller NX-CPU700p User Manual

www.samsungautomation.co.kr

Rockwell Samsung Automation

447-6, Gongse-Ri, Giheung-Eup, Youngin-City, Gyeonggi-Do, South Korea, 449-902 Tel: 82-31-280-4700 Fax: 82-31-280-4900

Technical Support

Export Sales Team
Tel: 82-31-280-4768 Fax: 82-31-280-4900

Trademarks not belonging to Rockwell Samsung Automation are property of their respective companies.

Publication RSA-NX700-UM002B-EN-P - July 2005