

MOPS/520 User's Guide

Document Revision 2.4

CONTENTS

1.	USER IN	NFORMATION1
	1.1	About This Manual1
	1.2	Copyright Notice
	1.3	Trademarks2
	1.4	Standards2
	1.5	Warranty2
	1.6	Iechnical Support
2.	INTROD	UCTION4
2	2.1	MOPS/5204
	2.2	The MOPS Family5
2	2.3	PC/104 an Embedded PC Standard6
3.	GETTIN	G STARTED7
4.	SPECIFI	ICATIONS
2	11	Functional Specifications 8
2	4.2	Mechanical Specifications
	4.2.1.	PC/104 Bus Connector (ISA part)9
	4.2.2.	PC/104-Plus Bus Connector (optional PCI part)9
	4.2.3.	PCB Dimensions
	4.2.4.	Height9
	4.2.5.	Weight9
2	4.3	Electrical Specifications10
	4.3.1.	Supply Voltage
	4.3.2.	Supply Voltage Ripple
	4.3.3.	Supply Current (Typical)
	4.3.4.	Supply Current (Maximum)
	4.3.3. 1 <i>1</i>	EXTERIAL KIC DALLELY
-	+. + 1 5	Environmental Specifications
-	451	Temperature 11
	4.5.2.	Humidity
5.	CPU, CH	IIPSET, SUPER-I/O CONTROLLER
Ę	5 1 ·	CPU and Chinset
Į	5.2	CPU and Chipset Configuration
Ę	5.3	Super I/O Controller
Ę	5.4	Super I/O Controller Configuration
6.	SYSTEM	MEMORY
7.	ISA ANI	D PCI BUS EXPANSION

7.1	PC/104 Bus (ISA part)	. 15
7.1.1.	PC/104 Connectors	. 15
7.1.2.	PC/104 Configuration	16
7.1.3.	I/O Address Mapping Limitation	16
7.1.4.	Signal Limitations	16
7.2	PC/104-Plus (optional PCI part)	16
7.2.1.	PCI Connector (PC/104-Plus)	. 16
7.2.2.	PC/104-Plus Configuration	. 17
7.3	PC/104 and PC/104-Plus Stack	. 17
8. SERIAL	-COMMUNICATION INTERFACE	.18
8 1	Connectors	18
82	Configuration	10
8.3	Limitations	20
0 DADALI		21
9. FARALI		. 21
9.1	Connector	. 21
9.2	Configuration	. 22
9.3	Limitations	. 22
10. KEYBO	ARD AND FEATURE INTERFACE	23
10.1	Connector	. 23
10.2	Configuration	25
10.3	Signal Descriptions	25
10.3.1	Example Connection AT-keyboard and Other Functions	26
11 PS/2 M		27
11.15/21		07
11.1	Configuration	. 27
11.Z	Configuration	. 27
12. USB IN	TERFACE	28
12.1	Connector	. 28
12.2	Configuration	. 28
12.3	Limitations	28
13. FLOPPY	/-DRIVE INTERFACE	.29
13.1	Connector	20
13 1 1	Connector Diagram	30
13.2	Configuration	30
10.2	comgutation	. 50
14. IDE INI	ERFACE	.31
14. IDE INI 14.1	ERFACE	. 31 .31
14. IDE INI 14.1 14.2	ERFACE Connector Configuration	. 31 . 31 . 32
14. IDE INI 14.1 14.2 15. ETHERN	ERFACE Connector Configuration NET INTERFACE	.31 .31 .32 .33
14. IDE INI 14.1 14.2 15. ETHERN 15.1	ERFACE Connector Configuration INTERFACE Connector	.31 .32 .32 .33
14. IDE INI 14.1 14.2 15. ETHERN 15.1 15.2	ERFACE Connector Configuration NET INTERFACE Connector Configuration	.31 .32 .32 .33 .33 .33

16. POWER	CONNECTION	.35
16.1	Connector	.35
16.2	Power Pins	.36
16.3	External Battery	.37
17. CAN CO	NTROLLER INTERFACE (OPTIONAL)	.38
17.1	Connector	.38
17.2	Configuration	.39
18. WATCH	DOG TIMER	.40
18.1	Configuration	.40
18.2	Programming	.40
18.2.1	. Initialization	.40
18.2.2	. Trigger	.40
19. APPEN	DIX A: SYSTEM RESOURCE ALLOCATIONS	.41
19.1	Interrupt Request (IRQ) Lines	.41
19.2	Direct Memory Access (DMA) Channels	. 42
19.3	Метогу Мар	. 43
19.3.1	. Using Expanded Memory Managers	. 44
19.4	I/O Address Map	. 45
19.5	Peripheral Component Interconnect (PCI) Devices	.46
20. APPEN	DIX B: BIOS OPERATION	.47
20.1	Determining the BIOS Version	.47
20.2	Setup Guide	.48
20.2.1	. Start Phoenix BIOS Setup Utility	.48
20.2.2	. General Information	. 48
20.3	Main Menu	.50
20.3.1	. Master or Slave Submenus	.51
20.3.2	. Memory Shadow Submenu	.51
20.4	Advanced Menu	.52
20.4.1	. Advanced Chipset Control Submenu	.53
20.4.2	. PCI Configuration Submenu	.54
20.4.3	PCI Device, Slot #X Submenu	.55
20.4.4	. PCI/PNP ISA UMB Region Exclusion Submenu	. 55
20.4.5	. PCI/PNP ISA IRQ Exclusion Submenu	.56
20.4.6	. PCI/PNP ISA IRQ Exclusion Submenu	.56
20.4.7	. Keyboard Features Submenu	.57
20.4.8	I/O Device Configuration Submenu	. 57
20.4.9	. Watchdog Settings Submenu	.58
20.5	Security Menu	.59
20.6	Boot Menu	.60
20.6.1	. Dark Boot	.60
20.6.2	. Boot Device Priority Submenu	.61
20.7	MultiBoot	. 62
20.7.1	. Boot First Menu	.62

		. 70
		. 76
24.1.3. 24.2	. ISA SCSI Support	.76
24.1 24.1.1 24.1.2	ISA Bus Available ISA Signals I/O Address Mapping	.76 .76 .76
23.3 24. APPENI	DIX F: LIMITATIONS AND HINTS	.75 .76
23.1 23.2 23.3	Connector Functions and Interface Cables Pinout Table	. 71 . 72 . 73
23. APPENI	DIX E: CONNECTOR LAYOUT	.71 71
20.11 21. APPENI 22. APPENI	DIX C: BLOCK DIAGRAM	. 07 .68 .F
20.9.2 20.9.3 20.9.4 20.10	 Remote Control Client Extension LAN RPL ROM DOT-Matrix LCD BIOS extension Updating or Restoring BIOS 	.65 .65 .65 .66
20.9.1	Kontron BIOS Extensions	. 63 . 64 . 64

This page left blank intentionally.

1. USER INFORMATION

1.1 About This Manual

This document provides information about products from Kontron Embedded Modules AG and/or its subsidiaries. No warranty of suitability, purpose, or fitness is implied. While every attempt has been made to ensure that the information in this document is accurate, the information contained within is supplied "as-is" and is subject to change without notice.

For the circuits, descriptions and tables indicated, Kontron assumes no responsibility as far as patents or other rights of third parties are concerned.

1.2 Copyright Notice

Copyright © 2003 Kontron Embedded Modules AG.

All rights reserved. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the express written permission of Kontron.

JUMPtec Industrielle Computertechnik AG and Kontron Embedded Computers AG merged in July 2002. JUMPtec is now known as Kontron Embedded Modules GmbH. Products labeled and sold under the Kontron Embedded Modules name (formerly JUMPtec) are now considered Kontron products for all practical purposes, including warranty and support.

DIMM-PC®, PISA®, ETX Components SBC, JUMPtec®, and Kontron Embedded Modules are registered trademarks of Kontron Embedded Modules GmbH©.

1.3 **Trademarks**

The following lists the trademarks of components used in this board.

- IBM, XT, AT, PS/2 and Personal System/2 are trademarks of International Business Machines Corp.
- > Microsoft is a registered trademark of Microsoft Corp.
- > Intel is a registered trademark of Intel Corp.
- All other products and trademarks mentioned in this manual are trademarks of their respective owners.

1.4 Standards

Kontron Embedded Modules is certified to ISO 9000 standards.

1.5 Warranty

This Kontron Embedded Modules product is warranted against defects in material and workmanship for the warranty period from the date of shipment. During the warranty period, Kontron Embedded Modules will at its discretion decide to repair or replace defective products.

Within the warranty period, the repair of products is free of charge as long as warranty conditions are observed.

The warranty does not apply to defects resulting from improper or inadequate maintenance or handling by the buyer, unauthorized modification or misuse, operation outside of the product's environmental specifications or improper installation or maintenance.

Kontron Embedded Modules will not be responsible for any defects or damages to other products not supplied by Kontron Embedded Modules that are caused by a faulty Kontron Embedded Modules product.

1.6 **Technical Support**

Technicians and engineers from Kontron Embedded Modules and/or its subsidiaries and official distributors are available for technical support. We are committed to making our product easy to use and will help you use our products in your systems.

Before contacting Kontron Embedded Modules technical support, please contact your local representative or consult our Web site for the latest product documentation, utilities, and drivers. If the information does not help to solve the problem, contact us by telephone.

Asia	Europe	North/South America
Kontron Embedded Technology (Asia Pacific)	Kontron Embedded Modules GmbH	Kontron America
Far East Science Park, 2nd Floor No. 2, Lane 50, Nan Kang Road Section 3, Nan Kang District Taipei, Taiwan	Brunnwiesenstr. 16 94469 Deggendorf – Germany	6260 Sequence Drive San Diego, CA 92121-4371
Tel: +886-2-2782-0201	Tel: +49 (0) 991-37024-0	Tel: 888-294-4558
Fax: +886-2-2782-7486	Fax: +49 (0) 991-37024-104	Fax: (858) 677-0898

2. INTRODUCTION

2.1 *MOPS/520*

The MOPS/520 is based on the ÉlanSC520 microcontroller (32-bit Am5x86® CPU). The system runs at CPU clock speeds of 100MHz or 133MHz. The boards integrate the complete functionality of a motherboard and include the following features:

- > CPU
- > System BIOS
- Up to 64MB SDRAM
- Keyboard controller
- Real-time clock

Additional peripheral functions include:

- COM1, COM2, COM3 and COM4
- > LPT1
- Floppy interface
- > IDE-hard disk interface
- Watchdog time (WDT)
- Ethernet controller
- CAN bus interface (optional)

The MOPS/520 is not equipped with a graphics controller and requires an external graphicscontroller board on the PC/104 or PC/104+ bus to provide output to a CRT monitor.

2.2 The MOPS Family

MOPS (Minimized Open PC System) PC/104 products represent the "Proven PC Platform for Instant Solutions." Each MOPS module is characterized by the same pinout for the keyboard, COM1 and COM2, 44-pin IDE, LPT, and 1st LAN. These homogeneous features facilitate easy upgrades within the Kontron Embedded Modules GmbH MOPS PC/104 product family.

Whenever a LCD panel is required, MOPS products with onboard graphics controllers serve as the right choice. Display connections are simplified when using these units, which come with a JUMPtec Intelligent LVDS Interface (JILI) and a JUMPtec Intelligent Panel Adapter (JIPA) interface. The two interfaces can recognize which display is connected and then independently set all video parameters. These interfaces are not available on all MOPS products.

All MOPS-PC/104 are plug-and-work enabled to further reduce time-to-market.

As part of the standard features package, all MOPS PC/104 modules come with a JUMPtec Intelligent Device Architecture (JIDA) interface, which is integrated into the BIOS of the PC/104 modules. This interface enables hardware independent access to the MOPS-PC/104 features that cannot be accessed via standard APIs. Functions such as watchdog timer, brightness and contrast of LCD backlight and user bytes in the EEPROM can be configured with ease by taking advantage of this standard MOPS PC/104 module feature.

All MOPS PC/104 products can be remote controlled by using JRC software feature. This allows you to change, update, and maintain the MOPS products from a host computer via a serial connection.

2.3 PC/104 an Embedded PC Standard

Over the past decade, PC architecture has become an accepted platform for far more than desktop applications. Dedicated and embedded applications for PCs are beginning to appear everywhere.

By standardizing hardware and software around the broadly supported PC architecture, embedded system designers can substantially reduce development costs, risks, and time-to-market.

For these reasons, companies that embed microcomputers as controllers within their products seek ways to reap the benefits of using the PC architecture. However, the standard form factor of a PC bus (12.4" x 4.8") and its associated card cages and backplanes are too bulky and expensive for most embedded control applications.

The only practical way to embed the PC architecture in space-and power-sensitive applications has been to design a PC chip by chip directly into the product. But this runs counter to growing trend away from "reinventing the wheel." Whenever possible, top management now encourages outsourcing of components and technologies to reduce development costs and accelerate product design cycles.

A need has arisen for a more compact implementation of the PC bus, satisfying the reduced space and power constraints of embedded control applications. PC/104 was developed in response to this need. It offers full architecture, hardware and software compatibility with the PC bus but in ultra-compact (3.6" x 3.8") stackable modules. PC/104 is ideally suited to the unique requirements of embedded control applications.

Although configuration and application possibilities with PC/104 modules are practically limitless, there are two ways to use them in embedded system designs:

Standalone module stacks

PC/104 modules are self-stacking. The modules are used like ultra-compact bus boards but without a need for backplanes or card cages. Stacked modules are spaced 0.6 inches apart. (The three-module stack measures 3.6 by 3.8 by 2 inches.) Companies using PC/104 module stacks within their products frequently create one or more of their own application-specific PC/104 modules.

Component-line applications

In this configuration, the modules function as highly integrated components, plugged into custom carrier boards that contain application-specific interfaces and logic. The modules' self-stacking bus can be useful to install multiple modules in one location. This facilitates product upgrades or options and allows temporary addition of modules during system debug or test.

3. **GETTING STARTED**

The easiest way to get the MOPS/520 board running is to use a starter kit from Kontron Embedded Modules GmbH. Take the following steps:

- 1. Turn off the power supply (part of the starter kit).
- 2. Connect the power supply to the starter kit baseboard (part of the starter kit).
- 3. Plug a graphics-controller board to the PC/104 bus, the ISA bus slots, the PC/104-Plus bus or the PCI bus slots on the starter kit. (There are starter kits available with and without PC/104 graphics boards included.)
- 4. Connect the CRT monitor to the graphics controller board.
- 5. Plug the MOPS/520 to the PC/104 bus stack on the starter kit baseboard.
- 6. Make all necessary connections from the MOPS/520 to the starter kit board. (Cables come with the starter kit). The starter kit board offers various interfaces on standard connectors.
- 7. Plug a keyboard to the starter kit's keyboard connector.
- 8. Connect the floppy drive (part of the starter kit) with the data cable (part of the starter kit) to the MOPS/520 floppy interface.
- 9. Connect the power supply to the floppy's power connector.
- 10. Plug a hard-drive data cable to the MOPS/520 hard-disk interface. Attach the hard disk to the connector at the opposite end of the cable.
- 11. If necessary, connect the power supply to the hard disk's power connector.
- 12. Make sure all your connections have been done correctly.
- 13. Turn on the power.
- 14. Enter the BIOS by pressing the F2 key during bootup. Make all necessary changes in the BIOS setup. See the BIOS chapter of this manual for details.

4. SPECIFICATIONS

4.1 Functional Specifications

- > Processor
 - AMD ELANTM SC520-133 with 16KB write-back cache (100MHz or 133MHz)
- > Onboard memory
 - 16/32/64MB SDRAM
- Super I/O controller
 - Winbond W83977FA
- > Phoenix BIOS, 256KB Flash EEPROM
- > Four serial ports
 - Three 16550 RS232C ports
 - One TTL port
- > One parallel port interface (LPT1)
 - SPP, EPP or ECP
- USB controller Opti 82C861
 - Two USB 1.1 compliant OHCI ports
- **Ethernet: Davicom DM9102A network controller**
 - 32-bit Fast Ethernet
 - 100/10BASE-T auto-negotiated
 - according to the common criteria of the embedded technology market segment
- Floppy and IDE-hard disk interface
- > AT-compatible keyboard and PS/2 mouse
- Real-time clock with external battery support
- Watchdog timer (WDT)
- Optional Intel® 82527 controller
 - CAN Bus Interface
- > 5V-only operation
- > PC/104 ISA bus and optional PC/104 plus PCI bus

4.2 Mechanical Specifications

4.2.1. PC/104 Bus Connector (ISA part)

> One 2 X 32 pin stackthrough and one 2 X 20 pin stackthrough connector

4.2.2. PC/104-Plus Bus Connector (optional PCI part)

> PC/104plus: 4 x 30 pin 2mm connector

The PC/104plus connector does not have a connector shroud. You cannot use a PC/104plus board with a connector shroud on the top of a MOPS/520. This mechanical limitation does not reduce the functionality of a MOPS/520 board. You can order a module without a connector shroud or place the MOPS/520 board at the top of the stack.

4.2.3. PCB Dimensions

> 96 x 90 mm (3.8" x 3.6") without exceeding peripheral connectors

4.2.4. Height

> 23.5 mm max (including PC/104 connector pins)

4.2.5. Weight

> 90 g (full feature version)

4.3 Electrical Specifications

4.3.1. Supply Voltage

> 5V DC +/- 5%

4.3.2. Supply Voltage Ripple

100 mV peak to peak 0 - 20 MHz

4.3.3. Supply Current (Typical)

- > 850mA (16MB SDRAM onboard at 133MHz)
- > 980mA (64MB SDRAM onboard at 133MHz)

4.3.4. Supply Current (Maximum)

> 2.2A

(calculated theoretical value from all components maximum supply currents)

4.3.5. External RTC Battery

- **External RTC battery voltage: 2.0-3.3 V (typ 2.5V)**
- > External RTC battery quiescent current, typ 5uA

4.4 *MTBF*

The following MTBF (Mean Time Between Failure) values were calculated using a combination of manufacturer's test data, if the data was available, and a Bellcore calculation for the remaining parts. The Bellcore calculation used is "Method 1 Case 1". In that particular method the components are assumed to be operating at a 50 % stress level in a 40° C ambient environment and the system is assumed to have not been burned in. Manufacturer's data has been used wherever possible. The manufacturer's data, when used, is specified at 50° C, so in that sense the following results are slightly conservative. The MTBF values shown below are for a 40° C office or telecommunications environment. Higher temperatures and other environmental stresses (extreme altitude, vibration, salt water exposure, etc.) will lower the MTBF values.

System MTBF (hours) : 172.966 for full feature version

Notes: Fans usually shipped with Kontron Embedded Modules GmbH products have 50,000-hour typical operating life. The above estimates assume no fan, but a passive heat sinking arrangement.
 Estimated RTC battery life (as opposed to battery failures) is not accounted for in the above figures and need to be considered for separately. Battery life depends on both temperature and operating conditions. When the Kontron unit has external power; the only battery drain is from leakage paths.

4.5 Environmental Specifications

4.5.1. Temperature

- > Operating: 0 to +60 C (*) (with appropriate airflow.)
- Nonoperating: -10 to +85 °C (noncondensing)

Notes: The maximum case temperature of the AMD Elan SC520 is 80°C. The maximum operating temperature is the maximum measurable temperature on any spot on a module's surface. Maintain the temperature according to the above specification.

4.5.2. Humidity

- Operating: 10% to 90% (noncondensing)
- Nonoperating: 5% to 95% (noncondensing)

5. CPU, CHIPSET, SUPER-I/O CONTROLLER

5.1 CPU and Chipset

The MOPS/520 features an AMD ElanTM SC520 single chip, which includes an Am5x86 processor with clock speeds up to 133MHz, and a chipset. This integrated 32-bit microcontroller provides the following features:

- Synchronous DRAM (SDRAM) controller
- > 33MHz, 32-bit PCI bus (revision 2.2-compliant)
- > 100MHz and 133MHz operating frequencies
- PCI 3.3V/5V-tolerance interface
- Low-voltage operation (core V CC = 2.5V)
- 5V tolerant I/O (3.3V output levels)
- Floating point unit (FPU) and 16KB write-back cache
- > Enhanced direct-memory access (DMA) controller
 - Double-buffer chaining
 - Extended address and transfer counts
 - Flexible channel routing
- Enhanced, programmable-interrupt controller (PIC) prioritizes 22 interrupt levels (up to 15 external sources) with flexible routing
- Two 16550-compatible Universal Asynchronous Receiver/Transmitter (UARTs)
 - Operate at baud rates up to 1.15 Mbps
 - Optional DMA interface
- Programmable interval timer (PIT)
- Real-time clock (RTC)
 - Battery backup capability
 - 114 bytes of RAM
- > Watchdog timer (WDT) guards against runaway software
- > IDE hard disk interface (through SC520 general purpose bus)

5.2 CPU and Chipset Configuration

See the Advanced Chipset Control Submenu section of the Appendix B: BIOS chapter for information on possible settings.

5.3 Super I/O Controller

The MOPS/520 uses the Winbond W83977F A or compatible Super I/O Controller chip for additional peripheral functions like:

- > 8042 keyboard controller with PS/2 mouse support
- > Floppy disk drive controller
 - For one drive with up to 2.88MB capacity floppy disks
 - Compatible with industry standard 82077/765
- > Two high-speed serial communication ports (UARTs)
 - 16550 compatible with 16 byte send receive FIFOs
 - Baud rates up to 115.2K
- Parallel port
 - Compatible with IBM parallel port
 - Supports PS/2 compatible bi-directional mode, EPP and ECP (IEEE1284 compatible)

5.4 Super I/O Controller Configuration

See the I/O Device Configuration Submenu section of the Appendix B: BIOS chapter for information on possible settings of the features included in the I/O controller.

6. SYSTEM MEMORY

The MOPS/520 is available with different memory configurations. It can be equipped with onboard soldered 16MB, 32MB or 64MB of SDRAM. Customers cannot upgrade the memory.

7. ISA AND PCI BUS EXPANSION

The design of the MOPS/520 follows the standard PC/104 form factor and offers both ISA- and optional PCI-bus signals. The PC/104-Plus standard is downward compatible with PC/104 and enables the use of standard PC/104 and PC/104-Plus adapter cards.

7.1 PC/104 Bus (ISA part)

The PC/104 bus consists of two connectors that use 104 pins in total.

- XT bus connector (64 pins)
- > AT bus connector (40 pins, which is optional for 16 bit-data bus system)

The pinout of the PC/104 bus connectors corresponds to the pinout of the ISA bus connectors with some added ground pins. The two PC systems with different form factors are electrically compatible.

The **XT bus connector**, Row A and B.

The corresponding 64-pin stackthrough header (ISA bus = 62pins) has two added ground pins at the end of the connector (Pin A32 and Pin B32). The pinout between PC/104 bus and XT ISA bus is identical between A1 - A31 and B1 - B31.

The AT bus extension connector, Row C and D.

The corresponding 40-pin stackthrough header (ISA bus = 36 pins) has four added ground pins, two on each side of the connector. To avoid confusion, the first two pins are defined as Pin C0 and Pin D0. The additional ground pins at the end of the connector are defined as C19 and D19. The pinout between PC/104 bus and AT ISA bus is identical between C1 - C18 and D1 - D18.

The MOPS/520 features both – XT bus and AT bus extension – on two, dual-row socket connector with 2.54mm x 2.54mm grid (0.1" x 0.1").

7.1.1. **PC/104 Connectors**

The PC-104 bus is available through the P800A and P800B connectors.

A detailed description of the signals including electrical characteristics and timings is beyond the scope of this document. Please refer to the official ISA bus and PC/104 specifications for more details.

7.1.2. PC/104 Configuration

When using add-on boards on the PC/104 bus, make sure that there are no resource conflicts in the system. Carefully choose hardware interrupts, DMA channels, memory and I/O address ranges to avoid resource conflicts, which are often the reason for a board or a feature not functioning correctly. See Appendix A: System Resource Allocation for information about the resources already used by the MOPS/520.

7.1.3. I/O Address Mapping Limitation

In the default BIOS configuration the MOPS/520 only maps I/O addresses below 400h to the external ISA respectively PC104 bus. All higher I/O addresses are directed to the PCI. There are some configuration capabilities in the BIOS setup concerning changes in that configuration See the I/O Device Configuration Submenu section of the Appendix B: BIOS chapter for information on possible settings of ISA I/O areas.

7.1.4. Signal Limitations

Because of the chipset architecture of the SC520, it is not possible to offer all signals of the ISA bus part to the PC/104 connector. The following signals are missing:

IRQ15, /DACK0, DRQ0, /DACK6, DRQ6, /DACK7, DRQ7, /MASTER

7.2 PC/104-Plus (optional PCI part)

The MOPS/520 is available in different versions with or without PC/104-Plus bus. On boards with this option a quad-row socket stack-through connector with a $2\text{mm} \times 2\text{mm} (0.79^{\circ\circ} \times 0.79^{\circ\circ})$ pitch that implements the standard 32-bit PCI bus signals is available.

The PC/104plus connector does not have a connector shroud. You cannot use a PC/104plus board with a connector shroud on the top of a MOPS/520. This mechanical limitation does not reduce the functionality of a MOPS/520 board. You can order a module without a connector shroud or place the MOPS/520 board at the top of the stack.

7.2.1. PCI Connector (PC/104-Plus)

The PC/104-Plus bus is available through the optional connector X1300.

A detailed description of the signals including electrical characteristics and timings is beyond the scope of this document. Please refer to the official PCI bus and PC/104-Plus specifications for more details.

7.2.2. PC/104-Plus Configuration

When using add-on boards on the PC/104-Plus bus, these boards have to be associated to a "PCIslot". Make sure that there are no resource conflicts in the system. Carefully choose PCI interrupts, REQ/GNT pairs and IDSEL for the add-on board. See the technical manual of the addon board for more details.

The MOPS/520's PCI bus can be configured to optimize your system. See the PCI Configuration Submenu in Appendix B: BIOS for more information on configuration.

7.3 PC/104 and PC/104-Plus Stack

PC/104 and PC/104-Plus adapter cards are mounted in a stack-through manner. Adapter cards are designed with plugs on their undersides that mate with the PC/104 socket connectors of MOPS/520. PC/104 adapters can support the socket connector version on their topside and allow further stacking of adapters.

Whenever possible use the MOPS/520 as top module of the PC/104 stack as the CPU board is normally the board with the highest heat dissipation.

8. SERIAL-COMMUNICATION INTERFACE

Four fully functional serial ports (COMA, COMB, COMC, and COMD) provide asynchronous serial communications. COMA through COMC support RS-232 operation modes and are compatible with the serial-port implementation used on the IBM Serial Adapter. COMD is a TTL level interface. They are 16550 high-speed UART compatible and support 16-byte FIFO buffers for transfer rates from 50baud to 115.2Kbaud.

8.1 **Connectors**

COMA is available through the P400 connector (10 pins) and COMB through the P401 connector (10 pins). These two serial interfaces come from the Winbond W83977F super-I/O controller. To have the signals available on the standard serial interface connectors DSUB9 or DSUB25, an adapter cable is required. A 9-pin DSUB cable is available from Kontron (KAB-DSUB9-2, Part Number 96017-0000-00-0).

The following table shows the pinouts for COMA and COMB, as well as necessary connections for DSUB adapters.

Header	Pin	Signal Name	Function	In / Out	DSUB-25	DSUB-9
	1	/DCD	Data Carrier Detect	In	8	1
1 2	2	/DSR	Data Set Ready	In	6	6
> 음음 (3	RxD	Receive Data	In	3	2
1665	4	/RTS	Request to Send	Out	4	7
9 🔲 🗆 10	5	TxD	Transmit Data	Out	2	3
	6	/CTS	Clear to Send	In	5	8
	7	/DTR	Data Terminal Ready	Out	20	4
	8	/RI	Ring Indicator	In	22	9
	9	GND	Signal Ground		7	5
	10	VCC (*)	+5V			

Notes: (*)

To protect the external power lines of peripheral devices, make sure that:

-- the wires have the right diameter to withstand the maximum available current -- the enclosure of the peripheral device fulfils the fire-protecting requirements of

-- IEC/EN 60950.

COMC is available through the P403 connector (10 pins in line) COMD is available through the P404 connector (10 pins in line). These two serial interfaces come from the AMD ElanTM SC520 microcontroller. To have the signals available on the standard serial interface connectors DSUB9 or DSUB25, an adapter cable is required. A 9-pin DSUB cable is available from Kontron (KAB-DSUB9-3, Part Number 96061-0000-00-0).

Header Pin Signal Name		Function	In / Out	DSUB-25	DSUB-9	
	1	/DCD	Data Carrier Detect	In	8	1
	2	/DSR	Data Set Ready	In	6	6
	3	RxD	Receive Data	In	3	2
	4	/RTS	Request to Send	Out	4	7
	5	TxD	Transmit Data	Out	2	3
	6	/CTS	Clear to Send	In	5	8
118 11	7	/DTR	Data Terminal Ready	Out	20	4
	8	/RI	Ring Indicator	In	22	9
	9	GND	Signal Ground		7	5
1	10	VCC (*)	+5V			

Notes: (*) To protect the external power lines of peripheral devices, make sure that: -- the wires have the right diameter to withstand the maximum available current -- the enclosure of the peripheral device fulfils the fire-protecting requirements of -- IEC/EN 60950.

To find the location of the serial ports on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

8.2 **Configuration**

You can set the four serial input/output interfaces to a variety of I/O addresses and IRQ configurations (See the table below). All these settings are changeable from the MOPS/520 BIOS menu. Refer to the I/O Device Configuration submenu in the Appendix B: BIOS Operation chapter for detailed information on configuration.

Serial Port	Possible I/O Addresses	Possible IRQs
COMA	3F8h, 2F8h, 3E8h, 2E8h	3, 4, 10
COMB	3F8h, 2F8h, 3E8h, 2E8h	3, 4, 11
COMC	3F8h	4
COMD	2F8	3

Note: Most operating systems detect the serial port with the I/O address 3F8h as COM1 and 2F8h as COM2. If COMC and COMD are enabled, the system will detect them as COM1 and COM2.

8.3 Limitations

The SC520 integrated serial ports (Serial Ports C and D on the MOPS/520) show two deviations from standard UART behavior:

- > The delta-ring-indicator bit in the modem status register (Bit 2) is only set when the ring-indicator signal has changed from an active to an inactive state after the last time the modem status register was read. Usually this bit is set for RI changes from inactive to active as well.
- In the 16550-compatible mode, a received data interrupt is generated when the very first data byte of a continuous data stream is placed in FIF0. This error only occurs for the first character of a continuous data stream received by the UART. Following a FIF0 time-out interrupt for the first character received, the remainder of the data stream will be indicated according to the trigger value set in the RFRT bits of the UART FIF0 control registers.

9. PARALLEL-COMMUNICATION INTERFACE

The MOPS/520 incorporates an IBM XT/AT compatible parallel port. It can be set to bidirectional and supports EPP and ECP operating modes. The bi-directional functions are compatible with those of an IBM PS/2 style parallel port. This functionality is always available and does not conflict with printer use.

9.1 *Connector*

The parallel port is available through the J400 connector (26 pins). To have the signals available on a standard, parallel-interface connector DSUB-25, an adapter cable is required, which is offered by Kontron (KAB-DSUB25-1, Part Number 96015-0000-00-0).

Header	Pin	Signal Name	Function	In / Out	DSUB-25
	1	/STB	Strobe	Out	1
1 🔳 🗆 2	3	Data 0	Data 0	I/O	2
	5	Data 1	Data 1	I/O	3
ì 등 등 성	7	Data 2	Data 2	I/O	4
1665	9	Data 3	Data 3	I/O	5
	11	Data 4	Data 4	I/O	6
› · 吕믐 ‹	13	Data 5	Data 5	I/O	7
)	15	Data 6	Data 6	I/O	8
	17	Data 7	Data 7	I/O	9
[19	/ACK	Acknowledge	In	10
25 0 0 26	21	/BUSY	Busy	In	11
	23	PE	Paper out	In	12
	25	/SLCT	Select out	In	13
	2	/AFD	Autofeed	Out	14
	4	/ERR	Error	In	15
	6	/INIT	Init	Out	16
	8	/SLIN	Select in	Out	17
	26	VCC (*)	+ 5 V		NC
	10,12	GND	Signal Ground		18 - 25
	14,16	GND	Signal Ground		18 - 25
	18,20	GND	Signal Ground		18 - 25
	22,24	GND	Signal Ground		18 - 25

The following table shows the pinout as well as necessary connections for a DSUB-25 adapter.

Notes: (*) To protect the external power lines of peripheral devices, make sure that: -- the wires have the right diameter to withstand the maximum available current

-- the enclosure of the peripheral device fulfils the fire-protecting requirements of

-- IEC/EN 60950.

To find the location of the parallel port on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

9.2 Configuration

The parallel-port mode, I/O addresses, and IRQs are changeable in the MOPS/520 BIOS Setup Utility. You can program the base I/O-address 378h, 3BCh, 278h, disable the interface or set it to AUTO. You can choose IRQ5 or IRQ7 as the parallel-port interrupt. In ECP mode it is possible to choose DMA 1 or DMA 3.

Refer to the I/O Device Configuration Submenu in the Appendix B: BIOS Operation chapter for additional information on configuration.

9.3 Limitations

Because of chipset limitations, parallel-port mode ECP, as well as parallel-port base address 3BCh (any mode) cannot be used when a PCI video adapter is installed. The restrictions do not apply if you use ISA video adapters.

10. KEYBOARD AND FEATURE INTERFACE

The keyboard and feature connector of the MOPS/520 offers five functions. The interface connects the following:

- Keyboard
- Keyboard lock switch
- > Speaker
- > Battery
- Reset button

10.1 *Connector*

The keyboard and feature connector is available through Connector P402 (10 pins).

An adapter cable is required to connect a standard keyboard to this interface. There are two adapter cables available from Kontron:

- > AT-keyboard (KAB-KB-1, Part Number 96023-0000-00-0)
- > PS/2-keyboard (KAB-KB-PS2, Part Number 96060-0000-00-0)

The adapter cables do not know the other's functions on this interface.

Header	Pin	Signal Name	Function	5-pin Din (Diode)	6-pin MiniDin (PS2)
	1	Speaker	Speaker output		
1 2	2	GND	Ground		
<u>} </u>	3	/RESIN	Reset input		
7001	4	/KBLOCK	Keyboard lock		
9 🔲 10	5	KBDAT	Keyboard data	2	1
	6	KBCLK	Keyboard clock	1	5
	7	GND	Ground	4	3
	8	VCC (*)	+5V	5	4
	9	BATT	Battery in (3,0V)		
	10	PWRGOOD	Powergood		

The following table shows the pinout as well as necessary connections for adapters.

Notes: (*) To protect the external power lines of peripheral devices, make sure that: -- the wires have the right diameter to withstand the maximum available current -- the enclosure of the peripheral device fulfils the fire-protecting requirements of

-- IEC/EN 60950.

To find the location of the keyboard and feature connector on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

10.2 **Configuration**

Refer to the Keyboard Features submenu in the Appendix B: BIOS chapter for information on configuration.

10.3 Signal Descriptions

/KBLOCK (Keyboard Lock)

- Input on CPU modules
- > Output on any other module
- > Input to the keyboard controller input Port 1, Bit 7

PWRGOOD

- > Input on CPU modules
- > When POWERGOOD goes high, it starts the reset generator on the CPU module to pull the onboard reset line high after a valid reset period. You also can use this pin as a low active hardware reset for modules.

/RESIN (Reset input)

- Input on CPU modules
- > When /RESIN is pulled low, the reset generator on the CPU module pulls the onboard reset line low, too and the chipset gets a hardware reset.

Speaker

- > Open collector output on modules that drive a loudspeaker
- > Input on modules that connects an 8-0hm loudspeaker to this pin.
- An 8-Ohm loudspeaker is connected between SPEAKER and GND. Connect only one loudspeaker to this pin. The CPU usually drives this pin. However, other modules also can use this signal to drive the system loudspeaker.

KBDAT (Keyboard Data)

- > Bi-directional I/O pin on CPU modules
- > Keyboard data signal

KBCLK (Keyboard Clock)

- Bi-directional I/O pin on CPU modules
- Keyboard clock signal

VBATT (System Battery Connection)

- > This pin connects a system battery to all modules.
- The battery voltage has to be higher than 2.0V and lower than 3.3V. A 3V battery is recommended.
- A battery is not needed to hold CMOS setup data. Your configurations for hard disks, floppy drives, and other peripherals are saved in an onboard DRAM. However, you need a battery to save the CMOS date and time when power supply is turned off.

10.3.1. Example Connection AT-keyboard and Other Functions

11. **PS/2 MOUSE INTERFACE**

The super-I/O controller of the MOPS/520 supports a PS/2 mouse.

11.1 Connector

The PS/2 mouse interface is available on Connector U406 (4 pins).

An adapter cable is required to connect a standard PS/2 mouse. The cable is available from Kontron (KAB-MOUSE-PS2, Part Number 96062-0000-00-0).

The following table shows the pinout and connections for a PS/2 mouse adapter.

Header	Pin	Signal Name	Function	6-pin MiniDin (PS2)
	1	MSDAT	Mouse data	1
	2	VCC (*)	+5V	4
	3	GND	Ground	3
1	4	MSCLK	Mouse clock	5

Notes: (*) To protect the external power lines of peripheral devices, make sure that: -- the wires have the right diameter to withstand the maximum available current -- the enclosure of the peripheral device fulfils the fire-protecting requirements of -- IEC/EN 60950.

To find the location of the PS/2 mouse connector on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

11.2 **Configuration**

You can set the PS/2 mouse to enabled, disabled or autodetect from the BIOS Setup. If you enable the mouse, the IRQ12 is used as the interrupt and is no longer available for other devices. Please refer to the Advanced Menu in the Appendix B: BIOS chapter for additional information on configuration.

12. USB INTERFACE

The MOPS/520 is equipped with a PCI-to-USB bridge Opti 82C861. It comes with two USB ports. They follow the OHCI specification and are USB-1.1 compliant. You can expand the amount of USB connections by adding external hubs. You can connect up to 127 USB peripherals to each hub.

12.1 Connector

The USB ports are available through the P1000 and the P1001 connectors (4 pins). To have the signals available on the standard USB interface connectors, an adapter cable is required. A USB interface cable is available from Kontron (KAB-USB-1, Part Number 96054-0000-00-0). The following table shows the pinouts for the USB connector.

Header	Pin	Signal Name	Function
	1	VCC(*)	+5V
	2	USB0	USB-
	3	USB1	USB+
1	4	GND	Ground

Notes: (*) To protect the external power lines of peripheral devices, make sure that:

-- the wires have the right diameter to withstand the maximum available current

-- the enclosure of the peripheral device fulfils the fire-protecting requirements of

-- IEC/EN 60950.

To find the location of the USB ports on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

12.2 Configuration

There are no configuration entries available for the USB ports in the BIOS Setup Utility.

12.3 *Limitations*

The power contacts for USB devices on Pin 1 and Pin 4 are not protected. They are suitable to supply connected USB devices with a maximum of 500mA power dissipation. Don't supply external USB devices with a higher power dissipation through this pins. Always use a fuse for power on external USB connectors, otherwise a defective USB device may damage the MOPS/520.

13. FLOPPY-DRIVE INTERFACE

The floppy-drive interface of the MOPS/520 uses a 2.88MB super I/O floppy-disk controller and can support one floppy disk drive with densities that range from 360kB to 2.88MB. The controller is 100% IBM compatible.

13.1 Connector

The floppy disk interface is available on the flat-foil Connector J401 (26 pins). This type of connector is often internally used in notebooks to connect a slim-line floppy drive.

There are different accessories available for this interface from Kontron. To connect a standard 3.5" floppy drive, use an adapter cable (ADA-FLOPPY-2, Part Number 96001-0000-00-0). If you have a slim-line 3.5" floppy drive, you may need a flat foil cable (KAB-FLOPPY/MOPS-1, Part Number 96019-0000-00-0). It also is possible to get a slim line 3.5" floppy drive with cable from Kontron (FLOPPY-MOPS-1, Part Number 96010-0000-00-0).

The following table shows the connector pinout.

Header	Pin	Signal Name	Function	Pin	Signal Name	Function
	1	VCC (*)	+5V	2	/IDX	Index
1 📃	3	VCC (*)	+5V	4	/DS0	Drive Select 0
=	5	VCC (*)	+5V	6	/DCHNG	Disk Change
	7	VCC (*)	+5V	8	NC	Not connected
=	9	RPM	Drive Density	10	/MTR0	Motor on 0
=	11	NC	Not connected	12	/DIR	Direction Select
=	13	NC	Not connected	14	/Step	Step
=	15	GND	Ground	16	/WDATA	Write Data
	17	GND	Ground	18	/WGATE	Write Gate
-	19	GND	Ground	20	/TRK0	Track 00
	21	GND	Ground	22	/WRPRT	Write Protect
	23	GND	Ground	24	/RDATA	Read Data
	25	GND	Ground	26	/CHDSEL	Side One Select

Notes: (*)

*) To protect the external power lines of peripheral devices, make sure that:

-- the wires have the right diameter to withstand the maximum available current

-- the enclosure of the peripheral device fulfils the fire-protecting requirements of -- IEC/EN 60950.

To find the location of floppy-drive interface on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

13.1.1. Connector Diagram

13.2 Configuration

You can configure the floppy disk interface in the BIOS Setup Utility. You can choose the 3.5" (common) or 5.25" drive types with densities of 360kB, 720kB, 1.2MB, 1.25MB, 1.44MB or 2.88MB. Refer to the Main Menu section of the Appendix B: BIOS Operation chapter for more information on configuring the floppy drive.

You also can disable the floppy-disk interface in the I/O Device Configuration Submenu.
14. **IDE INTERFACE**

The MOPS/520 features one IDE interface that can drive two hard disks. When two devices share a single adapter they are connected in a master/slave, daisy-chain configuration. If only one drive is in the system, you must set it as the master.

14.1 **Connector**

The IDE interface is available through Connector J300 (44 pins). This interface is designed in 2mm grid for optimal connectivity to a 2.5" hard disk.

There are several accessories available for IDE connectivity.

You can use two cables to directly connect a hard disk in a 2.5" form factor (KAB-IDE-2MM, Part Number 96021-0000-00-0) or a 3.5" form factor (KAB-IDE-25, Part Number 96020-0000-00-0).

You can plug a Kontron chipDISK, which is an IDE hard disk that uses Flash technology, into the IDE interface and mechanically mount it by using a mini-spacer on the chipDISK hole. You also can use a chipDISK adapter (chipDISK-ADA1, Part Number 96004-0000-00-0) or compact Flash adapter (CFC-ADA1, Part Number 96004-0000-00-2) for more disk support.

The following table shows the pinout.

Header	Pin	Signal Name	Function	Pin	Signal Name	Function
	1	/RESET	Reset	2	GND	Ground
1 2	3	HDD7	Data 7	4	HDD8	Data 8
> 음음 (5	HDD6	Data 6	6	HDD9	Data 9
666	7	HDD5	Data 5	8	HDD10	Data 10
	9	HDD4	Data 4	10	HDD11	Data 11
> 음음 (11	HDD3	Data 3	12	HDD12	Data 12
1665	13	HDD2	Data 2	14	HDD13	Data 13
	15	HDD1	Data 1	16	HDD14	Data 14
> 음음 <	17	HDD0	Data 0	18	HDD15	Data 15
2665	19	GND	Ground	20	Key (NC)	Key pin
	21	NC	Not connected	22	GND	Ground
[23	/IOW	I/O write	24	GND	Ground
2 문문 전	25	/IOR	I/O read	26	GND	Ground
	27	IOCHRDY	I/O channel ready	28	RES	Reserved
[문문]	29	NC	Not connected	30	GND	Ground
2 문문 전	31	IRQ14	Interrupt	32	/IOCS16	16bit I/O
	33	SA1	Addr 1	34	NC	Not connected
43[□□]44	35	SA0	Addr 0	36	SA2	Addr 2
	37	/CS0	Chip select 0	38	CS1	Chip select 1
	39	NC	Not connected	40	GND	Ground
	41	VCC (*)	+5V	42	VCC (Motor)	+5V
	43	GND	Ground	44	NC	Not connected

Notes: (*) To protect the external power lines of peripheral devices, make sure that:

-- the wires have the right diameter to withstand the maximum available current -- the enclosure of the peripheral device fulfils the fire-protecting requirements of

-- IEC/EN 60950.

To find the location of IDE-controller interface on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

14.2 Configuration

The IDE interface offers several configuration settings. Refer to the Main Menu and I/O Device Configuration Submenu in the Appendix B: BIOS Operation chapter for additional information on configuration.

15. ETHERNET INTERFACE

The MOPS/520 uses the Davicom DM9102A PCI Fast Ethernet Controller. The network controller supports a 10/100Base-T interface. The device auto-negotiates the use of a 10Mbit/sec or 100Mbit/sec connection. You can enable an onboard LAN RPL ROM to support the boot up of the system via Ethernet and a PXE-boot server.

The Davicom DM9102A provides the following features:

- > Integrated Fast Ethernet MAC, Physical Layer, and transceiver on one chip
- Compliance with PCI Specification 2.2
- > PCI-bus-master architecture
- > EEPROM 93C46 interface supports node ID, access-configuration information
- Compliance with IEEE 802.3u 100Base-TX and 802.3 10Base-T
- Compliance with IEEE 802.3u autonegotiation protocol for automatic link- type selection
- Full-duplex/half-duplex capability
- Support IEEE 802.3x Full Duplex Flow Control
- > Digital clock recovery circuit using advanced digital algorithm to reduce jitter
- > High-performance 100Mbps clock generator and data-recovery circuit
- Loopback mode for easy system diagnostics

Note: The Ethernet interface works according to the common criteria of the embedded technology market segment.

15.1 *Connector*

The Ethernet interface is available through Connector X700 (8 pins).

To have the signals of the Ethernet connection available on a standard RJ45 connector, you need an adapter cable, which is offered by Kontron (KAB-MOPS-ETN1, Part Nr 96048-0000-00-0).

The following table shows the pinout.

Header	Pin	Signal Name	Function	In/Out
· · · · · · · · ·	1	TXD+	10BASE-T Transmit	Differential Output
1	2	TXD-	10BASE-T Transmit	Differential Output
	3	RXD+	10BASE-T Receive	Differential Input
	4	SHLDGND	Shield ground	
	5	SHLDGND	Shield ground	
	6	RXD-	10BASE-T Receive	Differential Input
	7	SHLDGND	Shield ground	
	8	SHLDGND	Shield ground	

Notes:	TXD+, TXD- differential-output pair drives 10 and 100Mb/s Manchester-encoded
	data to 100/10BASE-T transmit lines.
	RXD+, RXD- differential input pair receives 10 and 100Mb/s Manchester-encoded
	data from 100/10BASE-T receive lines.

To find the location of the Ethernet interface on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

15.2 Configuration

The onboard Davicom DM9102A Ethernet controller can be enabled or disabled in BIOS setup utility. Refer to the I/O Device Configuration Submenu in the Appendix B: BIOS Operation chapter for additional information on configuration.

You can download available drivers from the Kontron Web site. For further information read the read-me file or contact technical support.

15.3 Ethernet Technical Support

If any problems occur, you can solve some of them by using the latest drivers for the Davicom DM9102A controller. Kontron provides you with the latest in house- tested drivers, which can differ from newer ones. For further technical support, contact either Kontron or get support information and downloadable software updates from Davicom.

16. **POWER CONNECTION**

In some applications, the MOPS/520 is intended for use as a stand-alone module without a backplane. You need to have a power connector available on the board for direct power supply. The MOPS/520 is a +5V-only board. Peripherals can obtain additional voltage from the power connector next to the PC/104 bus. The additional voltages (+12V, -5V and -12V) are not generated onboard the MOPS/520A.

The +3.3V for PC/104-Plus boards are also not generated on the MOPS/520 board. You must supply PC/104-Plus boards separately through the PC/104-Plus bus. Use +5V PC/104-Plus add-on cards.

16.1 *Connector*

The power connector is available as P800C (8 pins).

The following table shows the pinout.

Header		Pin	Signal Name	Function	
		1	1	GND	Ground
1		2	2	+5V	+5V
			3	VBATT	Battery
			4	+12V	+12V
7		8	5	-5V	-5V
			6	-12V	-12V
			7	GND	Ground
			8	VCC	+5V

To find the location of the power connector on the MOPS/520 board, please see the Appendix E: Connector Layout chapter.

16.2 Power Pins

Every power pin on the power connector as well as on the PC/104 and PC/104-Plus bus connectors is limited to a maximum current of 1A per pin.

If a system using a MOPS/520 is only supplied from the power connector, the following limitations apply:

Power	Number of Pins	Max. Current
VCC (+5V)	2	2A
+12V	1	1A
-12V	1	1A
-5V	1	1A
GND	2	2A

A system using the MOPS/520 also can be supplied from the PC/104 and PC/104-Plus bus connectors. If only those supply voltages pins are used, the following limitations apply:

Power	Number of pins on Number of pins on ISA part PCI part		Max. Current
VCC (+5V)	4	8	4A + 8A = 12A
+12V	2	1	2A + 1A = 3A
-12V	2	1	2A + 1A = 3A
-5V	2	0	2A
+3.3V	0	10	10A
GND	8	23	8A + 23A = 31A

Modules on the PC/104 bus or PC/104-Plus bus consuming a higher supply current must provide power supply through an additional connector.

Note: The MOPS/520 is not a replacement for a backplane. Use all power pins on the power connector and on the PC/104 connectors for power supply to the MOPS/520, and also use all additional power connectors on additional I/O cards, if your system exceeds the above limitations. It is not acceptable to use only the power pins of the PC/104 connector for power supply of the full PC/104 stack.

16.3 External Battery

You can connect an external battery to Pin 3 (VBATT) of the power connector instead of Pin 9 of the KBD connector.

Note: The two battery inputs are protected against each other by diodes.

17. CAN CONTROLLER INTERFACE (OPTIONAL)

The MOPS/520 board can be equipped with an Intel 82527 CAN controller. The frequency of the data rate for the CAN bus is 8MHz.

The 82527 serial-communications controller performs serial communication, following the CAN protocol. The controller, with minimal interaction from the host microcontroller or CPU, performs all serial-communication functions such as:

- > Transmitting and receiving messages
- Filtering messages
- > Transmitting searches
- Interrupting searches

The Philips PCA82C251 CAN transceiver for 24V systems serves as the interface between the CAN protocol controller and the physical bus.

17.1 Connector

The CAN interface is available through Connector U1200 (4 pins).

Header	Pin	Signal Name	Function
	1	CAN_L	Low level CAN voltage I/O
	2	CAN H	High Level CAN voltage I/O
	3	VCC (*)	+5V
1	4	GND	Ground

Notes: (*) To protect the external power lines of peripheral devices, make sure that: -- the wires have the right diameter to withstand the maximum available current -- the enclosure of the peripheral device fulfils the fire-protecting requirements of -- IEC/EN 60950.

On the MOPS/520 board, the CAN bus terminates with two resistors of 120 Ohm in parallel across CAN_L and CAN_H. This single, 60-Ohm termination scheme is chosen to simplify CAN hookups with short bus lengths. Depending on the network topology employed and the total bus length, a modified termination network may be desirable in some applications. Under those circumstances, contact Kontron technical support for assistance.

17.2 **Configuration**

The CAN controller can be configured in the BIOS setup utility. You can enable/disable the CAN controller, choose a base I/O address location between 400hex and 2000hex and an interrupt IRQ5/IRQ9. Refer to the I/O Device Configuration Submenu in the Appendix B: BIOS chapter for information on configuration.

The I/O base address selects a range of 256 bytes in the I/O-address space, where the configuration registers of the CAN controllers are mapped. There are no special drivers available for the CAN controller. You must program the CAN controller using this address space. Refer to the datasheets of the Intel 82527 controller for details about the configuration registers and their programming. Information about those details would exceed the capabilities of this document.

18. WATCHDOG TIMER

The watchdog timer is integrated in the chipset of the MOPS/520 and can issue a reset to the system or generate a nonmaskable interrupt (NMI). The watchdog timer circuit has to be triggered within a specified time by the application software. If the watchdog is not triggered because proper software execution fails or a hardware malfunction occurs, it will reset the system or generate the NMI.

18.1 Configuration

You can set the watchdog timer to disabled, reset or NMI mode. You can specify the delay time and timeout (trigger period) from 0.5 seconds up to 32 seconds. The delay time is the time after first initialization before the trigger period starts. The timeout is the time the watchdog has to be triggered within. You can make the initialization settings in the BIOS setup. Refer to the Watchdog Settings Submenu in the Appendix B: BIOS Operation chapter for information on configuration.

18.2 **Programming**

18.2.1. Initialization

You can initialize the watchdog timer from the BIOS setup, the application software, using lowlevel programming or with help of the JIDA (Jumptec Intelligent Device Architecture) programmer's interface.

18.2.2. Trigger

The watchdog needs to be triggered out of the application software within the specified timeout period. You can only do this in the application software by using low-level programming or with help of the JIDA (Jumptec Intelligent Device Architecture) programmer's interface.

For information about low-level programming for the watchdog timer, refer to Application Note WdogP489_E???.DOC, which you can request from Kontron technical support.

For information about the JIDA programmer's interface refer to the JIDA BIOS extension section in the Appendix B: BIOS chapter and separate documents available in the JIDA software packages on the Kontron Web site.

19. APPENDIX A: SYSTEM RESOURCE ALLOCATIONS

19.1 Interrupt Request (IRQ) Lines

Please note that Kontron PC/104 devices were designed after the draft of P996 Specification for ISA systems. Because of this, shareable interrupts are not supported. Some PC/104 add-on board manufacturers do not follow the P996 Specification and allow shareable interrupts. If you want to use such PC/104 boards with Kontron devices, contact the manufacturer of the add-on board and ask about switching to non-interrupt sharing.

IRQ #	Use	Available	Comment
0	Timer0	No	
1	Keyboard	No	
2	Cascade	No	
3	COM2	No	Note (1), Note (2)
4	COM1	No	Note (1), Note (2)
5	CAN-Bus	No	Note (1), Note (3), Note (4)
6	FDC	No	Note (1)
7	LPT1	No	Note (1), Note (3)
8	RTC	No	
9		Yes	Note (4)
10	COM3	No	Note (1), Note (2)
11	COM4	No	Note (1), Note (2)
12	PS/2 Mouse	No	Note (1)
13	FPU	No	
14	IDE0	No	Note (1)
15		No	Not available on the PC/104 bus with MOPS/520

Notes:

(1) If the "used for" device is disabled in setup, the corresponding interrupt is available for other devices.

(2) ATTENTION: BIOS settings determine which physical COM connector is assigned to a logical COM port.

(3) LPT1 also can be configured for IRQ5 (avoid conflict with the CAN controller by changing its interrupt).

(4) Users can assign the CAN controller IRQ9 if needed.

19.2 Direct Memory Access (DMA) Channels

DMA #	Use	Available	Comment
0		No	Not available on PC/104 bus with MOPS/520
1		Yes	Note (2)
2	FDC	No	Note (1)
3	LPT1	No	Note (3)
4	Cascade	No	Not available
5		Yes	
6		No	Not available on PC/104 bus with MOPS/520
7		No	Not available on PC/104 bus with MOPS/520

Notes:

(1) If the Used For device is disabled in setup, the corresponding DMA channel is available for other devices.

(2) LPT1 also can be configured for DMA Channel #1.

(3) The DMA channel is only used in ECP mode; it is free in other modes.

19.3 *Memory Map*

The MOPS/520 processor module can come with up to 64MB of memory. The first 640KB of DRAM are used as main memory.

Using DOS, you can address 1MB of memory directly. Memory area above 1MB (high memory, extended memory) is accessed under DOS via special drivers such as HIMEM.SYS and EMM386.EXE, which are part of the operating system. Please refer to the operating system documentation or special textbooks for information about HIMEM.SYS and EMM386.EXE.

Other operating systems (Linux or Windows versions) allow you to address the full memory area directly.

Upper Memory	Use	Available	Comment
A0000h – BFFFFh	VGA Memory	No	Mainly used by graphic adapter cards. If PCI graphic card is in the system this memory area is mapped to PCI bus.
C0000h – C7FFFh	VGA BIOS	Yes	Free for ISA bus or shadow RAM in standard configuration, mainly used by graphic adapter cards!
C8000h – DFFFFh		Yes	Free for ISA bus or shadow RAM in standard configuration. If onboard LAN RPL ROM is enabled, JRC is used or alphanumeric LCD support is enabled; a 32K block is shadowed for BIOS extensions, starting with first free area at C8000h or D0000h or D8000h. (BIOS extensions do not use the whole shadow block.)
E0000h – F0000h	System BIOS	No	

19.3.1. Using Expanded Memory Managers

MOPS/520 extension BIOSes may be mapped to an upper memory area. (See the previous table.). Some add-on boards also have optional ROMs or use drivers that communicate with their corresponding devices via memory mapped I/O such as dual-ported RAM. These boards have to share the upper memory area with the Expanded Memory Manager's EMS frame. This often causes several problems in the system.

Most EMMs scan the upper memory area for extension BIOSes (optional ROMs) and choose a free memory area for their frame if it is not explicitly set. Normally, they are not always capable of detecting special memory-mapped I/O areas. You need to tell the EMM which memory areas are not available for the EMS frames, which is most of the time done by using special exclusion parameters.

If the Expanded Memory Manager you use cannot detect extension BIOSes (optional ROMs), make sure you excluded all areas in the upper memory, which are used by extension BIOSes, too. Your instruction in the CONFIG.SYS concerning the Expanded Memory Manager should look like this: (question marks for location of extension BIOS).

MS-DOS Example:

DEVICE=EMM386.EXE X=????-???? X=E000-FFFF

Note: When booting up your system using this configuration under MS-DOS, the exclusion of area F000 to FFFF causes a warning. Microsoft reports that this message will always appear when the F000 segment lies in the shadow RAM. This is a bug of EMM386, not of the MOPS/520.

Please carefully read the technical manuals of add-on cards used with the MOPS/520 for the memory areas they use. If necessary, also exclude their memory locations to avoid a conflict with the EMM.

19.4 *I/O Address Map*

The I/O-port addresses of the processor module MOPS/520 are functionally identical to a standard PC/AT. All addresses not mentioned in this table should be available. We recommend that you do not use I/O addresses below 0110hex with additional hardware for compatibility reasons, even if they are available on the MOPS/520.

I/O Addresses	Use	Available	Comment
0000-000Fh	Slave DMA Controller	No	Fixed
0010h	SC520 chipset	No	Fixed
0020-0026h	Interrupt Controller 1	No	Fixed
0040-0043h	Counter/timer	No	Fixed
0044	SC520 chipset	No	Fixed
0060-0065h	Keyboard controller	No	Fixed
0070-0071h	Real-time clock	No	Fixed
0072h	SC520 chipset	No	Fixed
0080-008Fh	DMA page register 74LS612	No	Fixed
0090-0094h	System Control + Fast A20 Gate	No	Fixed
00A0-00A2h	Interrupt Controller 2	No	Fixed
00C0-00DFh	DMA Controller 2	No	Fixed
00E1h	System Control	No	Fixed
00F0h	Floating Point Error Int. Clear	No	Fixed
0100-0103h	Onboard GPIO port	No	Fixed
01F0-01F8h	Fixed disk	No	Fixed
0278-027Fh	Parallel Port 2	Yes	Free in standard configuration, but possible address of LPT.
02E8-02EFh	User specific Serial Port (COM4)	Yes	Free in standard configuration, but possible address of COM.
02F8-02FFh	Serial Port 2	No	Default for COM B, free with different configuration.
0370-0377h	Configuration Port	No	Configuration address for Winbond- controller.
0378-037Fh	Parallel Port 1	No	Default for LPT 1; free with different configuration.
03BC-03C4h	User-specific Parallel Port	Yes	Free in standard configuration but possible address of LPT.
03E8-03Efh	User-specific Serial Port (COM3)	Yes	Free in standard configuration, but possible address of COM.
03F0-03F7h	Diskette controller	No	Fixed.
03F8-03FFh	Serial Port 1	No	Default for COM A; free if different configuration used.
0400-04FFh		Yes	Free in standard configuration but possible address of CAN
1000-107Fh	Ethernet Controller	No	Free if Ethernet Controller is disabled
1000-10FFh		Yes	Free in standard configuration but possible address of CAN
1600-16FFh		Yes	Free in standard configuration but possible address of CAN
2000-20FFh		No	Default address range of CAN controller

Note: The MOPS/520 only maps addresses up to 03FFhex to the ISA bus. All higher addresses are by default mapped to the PCI bus. You can map additional ISA I/O areas to the ISA bus in the BIOS setup. See I/O Device Configuration submenu in the BIOS chapter Appendix B: for details.

19.5 Peripheral Component Interconnect (PCI) Devices

All devices follow the PCI 2.1 specification. The BIOS and OS control memory and I/O resources. Please refer to the PCI 2.1 specification for details.

PCI Device (IDSEL)	PCI IRQ	REQ/ GNT	Comment
Ethernet (AD12)	INTB#	REQ3#/GNT3#	PC/104plus specification allows only 3 external masters: (REQ0, REQ1, REQ2)
USB Controller (AD13)	INTC#	REQ4#/GNT4#	PC/104plus specification allows only 3 external masters: (REQ0, REQ1, REQ2)

20. APPENDIX B: BIOS OPERATION

The MOPS/520 comes with Phoenix BIOS 4.0, Release 6.0, which is located in an onboard Flash EEPROM in compressed form. The device has 8-bit access. The shadow RAM feature provides faster access (16 bits). The onboard Flash EEPROM also holds some special Kontron BIOS extensions, which are loaded during boot up if the corresponding feature is enabled.

You can update the BIOS using a Flash utility.

20.1 Determining the BIOS Version

To determine the BIOS version of the MOPS/520, immediately press the **<Pause/Break>** key on your keyboard as soon as you see the following text display in the upper left corner of your screen:

PhoenixBIOS 4.0 Release 6.0 Copyright 1985-2001 Phoenix Technology Ltd. All Rights Reserved Kontron(R) BIOS Version <P489R113> (C)Copyright 2002 Kontron Embedded Modules GmbH

Whenever you contact technical support about BIOS issues, providing a BIOS version <P489R???> is especially helpful.

The system BIOS provides additional information about the board's serial number, CPU, and memory information by displaying information similar to the following:

S/N: XF1450065
CPU = AMD ELAN SC520 WB 133MHz
637K System RAM Passed
63M Extended RAM Passed
System BIOS shadowed
Video BIOS shadowed
UMB upper limit segment address: E8F6

The board's serial number has value to technical support. MOPS/520 serial numbers always start with XF and are followed by six or seven digits. The first digit represents the year of manufacturing, the next two digits stand for the lot number, and the last 3 or 4 digits are the number of the board in that lot.

In the example above, the board with the serial number XF1450065 was manufactured in year 2001, lot 45 of that year, and is board number 65 of that lot.

20.2 Setup Guide

The Phoenix BIOS Setup Utility changes system behavior by modifying the BIOS configuration. The setup program uses a number of menus to make changes and turn features on or off.

The BIOS setup menus documented in this section represent those found in most models of the MOPS/520. The BIOS setup for specific models can differ slightly.

Note: Selecting incorrect values may cause system boot failure. Load setup-default values to recover by pressing <F9>.

20.2.1. Start Phoenix BIOS Setup Utility

To start the Phoenix BIOS Setup Utility, press the $\langle F2 \rangle$ key when the following string appears during boot up.

Press <F2> to enter Setup

The Main Menu then appears.

20.2.2. General Information

The Setup Screen is composed of several sections:

Setup Screen	Location	Function
Menu Bar	Тор	Lists and selects all top-level menus.
Legend Bar	Bottom	Lists setup navigation keys.
Item Specific Help Window	Right	Help for selected item.
Menu Window	Left Center	Selection fields for current menu.
General Help Window	Overlay (center)	Help for selected menu.

Menu Bar

The menu bar at the top of the window lists different menus. Use the left/right arrow keys to make a selection.

Legend Bar

Use the keys listed in the legend bar on the bottom to make your selections or exit the current menu. The table below describes the legend keys and their alternates.

Κον	Function
Ney	
<f1> or <alt-h></alt-h></f1>	General Help window.
<esc></esc>	Exit menu.
\leftarrow or \rightarrow Arrow key	Select a menu.
\uparrow or \downarrow Arrow key	Select fields in current menu.
<tab> or <shift-tab></shift-tab></tab>	Cycle cursor up and down.
<home> or <end></end></home>	Move cursor to top or bottom of current window.
<pgup> or <pgdn></pgdn></pgup>	Move cursor to next or previous page.
<f5> or <-></f5>	Select previous value for the current field.
<f6> or <+> or <space></space></f6>	Select next value for the current field.
<f9></f9>	Load the default configuration values for this menu.
<f10></f10>	Save and exit.
<enter></enter>	Execute command or select submenu.
<alt-r></alt-r>	Refresh screen.

Selecting an Item

Use the \uparrow or \downarrow key to move the cursor to the field you want. Then use the + and - keys to select a value for that field. The **Save Value** commands in the **Exit** menu save the values displayed in all the menus.

Displaying Submenus

Use the \leftarrow or \rightarrow key to move the cursor to the submenu you want. Then press **<Enter>**. A pointer (\triangleright) marks all submenus.

Item Specific Help Window

The Help window on the right side of each menu displays the Help text for the selected item. It updates as you move the cursor to each field.

General Help Window

Pressing **<F1>** or **<Alt-F1>** on a menu brings up the General Help window that describes the legend keys and their alternates. Press **<Esc>** to exit the General Help window.

20.3 Main Menu

Feature	Option	Description
System Time	HH:MM:SS	Set system time. Press <enter> to move to MM or SS.</enter>
System Date	MM/DD/YYYY	Set system date. Press <enter> to move to DD or YYYY.</enter>
Legacy Diskette A	360 kB, 5 ¼" 1.2 MB, 5 ¼" 720 kB, 3 ½" 1.44/1.25 MB , 3 ½" 2.88 MB, 3 ½" Not installed Disabled	Select type of installed floppy disk drive.
Primary Master	Autodetected drive	Displays results of PM autotyping.
Primary Slave	Autodetected drive	Displays results of PS autotyping.
Memory Shadow	Submenu	Opens Memory Shadow submenu.
System Memory	N/A	Displays amount of conventional memory detected during bootup.
Extended Memory	N/A	Displays amount of extended memory detected during bootup.

20.3.1. Master or Slave Submenus

Foaturo	Ontion	Description
	Nama	Description
Туре	None	None = Autotyping is not able to supply the drive type or end user
	User	has selected None, disabling any drive that may be installed.
	Auto	User = End user supplies the hdd information.
	CD-ROM	Auto = Autotyping, the drive itself supplies the information.
		CD-ROM = CD-ROM drive.
Cylinders	1 to 65,536	Number of cylinders in CHS format.
Heads	1 to 256	Number of read/write heads in CHS format.
Sectors	1 to 63	Number of sectors per track in CHS format.
Maximum Capacity	N/A	Displays the calculated size of the drive using CHS format.
Total Sectors*	N/A	Total number of sectors in LBA mode as reported by the drive
		during autotyping.
Maximum Capacity	N/A	Displays the calculated size of the drive by using the LBA format.
Multi-Sector Transfers	Disabled	Any selection except Disabled determines the number of sectors
	Standard	transferred per block.
	2 sectors	The standard is 1 sector per block.
	4 sectors	
	8 sectors	
	16 sectors	
LBA Mode Control	Disabled	Enabling LBA uses Logical Block Addressing instead of CHS.
	Enabled	

Notes: In the Option column, bold shows default settings. (*) Only if LBA Mode Control is enabled.

20.3.2. Memory Shadow Submenu

Feature	Option	Description
Video Shadow	Disabled Enabled	Enables/disables shadowing of video ROM.
C8000 – CFFFF	Disabled Enabled	Accesses to this upper memory region go to the ISA bus if Disabled or to local memory if Enabled. This option does not display if VGA BIOS exceeds 32KB. In that case, the region is shadowed automatically.
D0000 – D7FFF	Disabled Enabled	Accesses to this upper memory region go to the ISA bus if Disabled or to local memory if Enabled.
D8000 – DFFFF	Disabled Enabled	Accesses to this upper memory region go to the ISA bus if Disabled or to local memory if Enabled.

20.4 Advanced Menu

All entries in this part of the BIOS setup utility are very vital to your system. Only change settings when you are sure, what you are doing. Some changes may not be suitable for your complete system and may lead to unwanted system behavior.

Feature	Option	Description
Advanced Chipset Control	Submenu	Opens Advanced Chipset Control submenu.
PCI Configuration	Submenu	Opens PCI Configuration submenu.
PNP OS installed	Yes	If your system has a PNP OS (such as Win98)
	No	select Yes to let the OS configure PNP devices
		not required for boot. No makes the BIOS
		configure them.
Reset Configuration Data	No	Yes erases all configuration data in ESCD,
	Yes	which stores the configuration settings for plug-
		in devices. Select Yes when required to restore
		the manufacturer's defaults.
PS/2 Mouse	Disabled	Disables or enables PS/2 mouse.
	Enabled	Auto Detect enables PS/2 mouse if BIOS
	Auto Detect	detects one.
Keyboard Features	Submenu	Opens Keyboard Features submenu.
I/O Device Configuration	Submenu	Opens I/O Device Configuration submenu.
Large Disk Access Mode	DOS	Select DOS if you have DOS. Select Other if
	Other	you have another OS such as UNIX.
		A large disk is one that has more than 1024
		cylinders, more than 16 heads or more than 63
		sectors per track.
Halt On Errors	Yes	Determines if post errors cause system to halt.
	No	

20.4.1. Advanced Chipset Control Submenu

Feature	Option	Description
CPU Speed	100 MHz	Select internal CPU frequency. 100MHz slows
	133 MHz	performance and also decreases power consumption.
Cache Mode	Write Back	Select SC520 L1 cache mode.
	Write Through	
CAS latency	3Т	Select CAS latency. Lower value speeds up SDRAM
	2T	accesses.
RAS to CAS delay	2T	Select RAS to CAS delay. Lower values speed up
	3Т	SDRAM accesses.
	4T	
RAS Precharge time	2T	Select RAS precharge time. Lower values speed up
	3Т	SDRAM accesses.
	4T	
	6T	
Refresh cycle time	7.8 us	Select SDRAM refresh cycle time. Higher values
	15.6 us	speed up SDRAM accesses.
	31.2 us	
	62.5 us	
SDRAM buffer	Disabled	The integrated SDRAM read/write buffer increases
	Enabled	overall system performance.
ISA bus cycle duration:	400ns	Set duration of complete ISA bus cycle. The onboard
	800NS	components function with all values, but ISA add-on
	1.2us	cards as well as IDE hard disks may require slower or
	2us	faster ISA accesses.

20.4.2. PCI Configuration Submenu

Feature	Option	Description
PCI concurrent mode	Disabled	In concurrent mode, direct PCI-to-PCI transfers do not
	Enabled	require gaining ownership of the CPU-memory host bus. Thus PCI transfers are accelerated. If you have a
		transfers set to disabled
Park PCI on CPU*	Enabled	Enabled: The PCI bus is parked on the CPU after a
	Disabled	PCI transaction.
CPU PCI master	123	The CPU is granted the PCI bus after the selected
priority*	1, 2, 3	number of external PCI master cycles.
Delay Transaction*	Disabled	Enabled maximizes PCI bus efficiency by freeing up
	Enabled	the bus while initial SDRAM read is issued.
Host-PCI Write Buffer*	Disabled Enabled	Maximizes host-write accesses to PCI.
PCI Device, Slot #1	Submenu	Opens submenu to configure slot 1 PCI device.
PCI Device, Slot #2	Submenu	Opens submenu to configure slot 2 PCI device.
PCI Device, Slot #3	Submenu	Opens submenu to configure slot 3 PCI device.
PCI Device, Slot #4	Submenu	Opens submenu to configure slot 4 PCI device.
PCI IRQ line 1	Disabled	Select IRQ for PIC interrupt INTA.
	Auto Select	Select 'Auto' to allow BIOS to assign the IRQ.
	IRQ3, 4, 5, 7, 9,	
	10, 11, 12,	
	14,15	
PCI IRQ line 2	Disabled	Select IRQ for PIC interrupt INTB.
	Auto Select	Select Auto to let the BIOS assign the IRQ.
	IRQ3, 4, 5, 7, 9,	
	10, 11, 12,	
PCLIPO line 3	Disabled	Select IPO for PIC interrunt INTC
		Select Auto to let the BIOS assign the IRO
	IRO3 4 5 7 9	
	10, 11, 12,	
	14,15	
PCI IRQ line 4	Disabled	Select IRQ for PIC interrupt INTD.
	Auto Select	Select Auto to let the BIOS assign the IRQ.
	IRQ3, 4, 5, 7, 9,	
	10, 11, 12,	
	14,15	
 PCI/PNP ISA UMB Region Exclusion 	Submenu	Opens UMB Region Exclusion submenu.
 PCI/PNP ISA IRQ Resource Exclusion 	Submenu	Opens IRQ Exclusion submenu.
Assign IRQ to PCI VGA	Yes No	Most graphic cards do not need an IRQ assigned. However, Win98 2 nd Edition does not work properly if an IRQ is not assigned.

Note: In the Option column, bold shows default settings.

(*) This setting is only visible if the PCI concurrent mode is set to Enabled.

20.4.3. PCI Device, Slot #X Submenu

Feature	Option	Description
Option ROM Scan	Disabled Enabled	Initialize device expansion ROM.
Enable Master	Disabled Enabled	Enables device in slot as a PCI bus master. Not every device can function as a master. Check your device documentation.
Latency Timer	20h, 40h , 60h, 80h, A0h, C0h, E0h	Minimum guaranteed time slice allocated for bus master in units of PCI bus clocks. A high-priority, high-throughput device may benefit from a greater value.

Note: In the Option column, bold shows default settings.

20.4.4. PCI/PNP ISA UMB Region Exclusion Submenu

Feature	Option	Description
C800 - CBFF	Available	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.
CC00 - CFFF	Available Reserved	Reserves the specified block of upper memory for use by legacy ISA devices.
D000 – D3FF	Available Reserved	Reserves the specified block of upper memory for use by legacy ISA devices.
D400 – D7FF	Available Reserved	Reserves the specified block of upper memory for use by legacy ISA devices.
D800 - DBFF	Available	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.
DC00 - DFFF	Available	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.

20.4.5. PCI/PNP ISA IRQ Exclusion Submenu

Feature	Option	Description
C800 - CBFF	Available	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.
CC00 - CFFF	Available	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.
D000 – D3FF	Available	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.
D400 – D7FF	Available	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.
D800 - DBFF	Avai lable	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.
DC00 - DFFF	Available	Reserves the specified block of upper memory for use
	Reserved	by legacy ISA devices.

Note: In the Option column, bold shows default settings.

20.4.6. PCI/PNP ISA IRQ Exclusion Submenu

Feature	Option	Description
IRQ3	Available	Reserves specified IRQ for use by legacy ISA devices.
	Reserved	
IRQ4	Available	Reserves specified IRQ for use by legacy ISA devices.
	Reserved	
IRQ5	Available	Reserves specified IRQ for use by legacy ISA devices.
	Reserved	
IRQ7	Available	Reserves specified IRQ for use by legacy ISA devices.
	Reserved	
IRQ9	Available	Reserves specified IRQ for use by legacy ISA devices.
	Reserved	
IRQ10	Available	Reserves specified IRQ for use by legacy ISA devices.
	Reserved	
IRQ11	Available	Reserves specified IRQ for use by legacy ISA devices.
	Reserved	
IRQ15	Available	Reserves specified IRQ for use by legacy ISA devices.
	Reserved	

20.4.7. Keyboard I	Features Submenu
--------------------	------------------

Auto	'On' or 'Off' turns NumLock on or off at bootup. Auto
On	
<u>UII</u>	turns NumLock on if it finds a numeric keypad.
Off	
Disabled	Turns audible key click on.
Enabled	
/sec, 26.7/sec,	Sets the number of times to repeat a keystroke per
3/sec 10/sec	second if you note the key down.
6/sec, 2/sec	
sec, 1⁄2 sec , 3⁄4	Sets the delay time before auto-repeat will start.
sec, 1 sec	
	Off Disabled Enabled /sec, 26.7/sec, 8/sec, 18,5/sec, 3.3/sec, 10/sec, 6/sec, 2/sec sec, 1/2 sec, 3/4 sec, 1 sec

Note: In the Option column, bold shows default settings.

20.4.8. I/O Device Configuration Submenu

Feature	Option	Description
Local Bus IDE Adapter:	Disabled Enabled	Enables onboard IDE controller.
Floppy disk controller	Disabled Enabled Auto	Enables onboard FDC controller. Auto lets the BIOS choose configuration and Base I/O address entry disappears
Base I/O address	Primary Secondary	Selects base address of onboard FDC controller. (Primary = 3F0h, Secondary = 370)
Serial Port A Serial Port B	Disabled Enabled Auto	Disabled turns off the port. Enabled requires end user to enter the base I/O address and the IRQ. Auto makes the BIOS configure the port.
Base I/O address	3F8h , 2F8h , 3E8h, 2E8h	Select I/O base of Port A and B. Enabling Port C and D requires configuration change here.
IRQ	IRQ 3 , IRQ 4 , IRQ 10,IRQ 11	Select IRQ of Port A and B. Enabling Port C and D requires configuration change here.
Serial Port C Serial Port D	Disabled Enabled	Disabled turns off the port. Enabled sets Port C to IRQ 4, address 3F8h and Port D to IRQ3, address 2F8.
Parallel Port	Disabled Enabled Auto	Disabled turns off port. Enabled requires end user to enter base I/O address and IRQ. Auto makes BIOS configure the port.
Mode	Output only Bi-directional ECP EPP	Sets mode for the parallel port.
Base I/O address	378h 278h 3BCh	Select I/O base of port.

Feature	Option	Description	
IRQ	IRQ 5	Select IRQ of parallel port.	
	IRQ 7		
DMA	DMA 1	Select DMA channel of port if in ECP mode.	
	DMA 3	Only visible if parallel port mode is set to ECP.	
Watchdog Settings	Submenu	Opens Watchdog Settings submenu.	
Onboard CAN	Disabled	Disabled turns off onboard CAN controller.	
controller*	Enabled	Enabled requires end user to enter base I/O	
	Auto	address and IRQ.	
		Auto makes BIOS configure controller.	
Base I/O address	400	Set the base I/O address of the onboard CAN	
	1000	controller (range = 256 Byte).	
	1600		
	2000		
IRQ	5	Select the interrupt for the onboard CAN controller.	
	9		
Onboard Ethernet	Disabled	Enable /disable the onboard PCI Ethernet controller.	
controller	Enabled		
Additional ISA I/O area	Disabled	Enables up to three additional I/O areas above of	
1,2,3*	Enabled	400hex to be mapped to the ISA bus. The user has	
		to configure base address and range size. PNP-ISA	
		cards will not work if this feature is enabled.	
Base address	Up to 4 digits of	The user can enter the base address of his I/O area	
	base address	to be mapped to the ISA bus.	
Range (bytes)	1 to 512 bytes	The user can enter the range size of his I/O area	
		between 1 and 512 bytes.	
ISA memory gap*	Disabled	Enables an ISA memory gap	
	Enabled		
ISA memory gap base	8 to 15	The user can enter the base address of his memory	
(MB)		gap for the ISA bus between 8MB and 15MB	
ISA memory gap size	1 to 8	The user can enter the size of his memory gap for	
(MB)		the ISA bus here. Base + Size may not exceed the	
		16MB ISA bus memory limit.	

Note: In the Option column, bold shows default settings.

(*) These settings are controlled by the chipset's Programmable Address Registers (PARs). The amount of PARs is limited, which excludes the use of all features in parallel. The CAN controller and ISA I/O Area 3 exclude each other. ISA I/O Area 2 and ISA memory gap also exclude each other.

20.4.9. Watchdog Settings Submenu

Feature	Option	Description
Mode	Disabled Reset NMI	Select watchdog operation mode. When enabled Delay and Timeout entries appear.
Delay	No Delay 0.5s, 1s, 2s , 4s, 8s, 16s, 32s	The time until the watchdog counter starts counting. Use this to handle longer boot times.
Timeout	0.5s, 1s, 2s, 4s , 8s, 16s, 32s	Max. trigger period.

20.5 Security Menu

Feature	Option	Description
Set User Password	Up to seven	Pressing Enter displays the dialog box for entering
	alphanumeric	the user password. In related systems, this
	characters	password gives restricted access to setup. Only
		available if supervisor password is set.
Set Supervisor	Up to seven	Pressing Enter displays the dialog box for entering
Password	alphanumeric	the user password. In related systems, this
	characters	password gives full access to setup.
Password on boot	Disabled	Enabled requires a password on boot. Requires
	Enabled	prior setting of the supervisor password.
		If supervisor password is set and this option is
		Disabled, BIOS assumes user is booting.
Fixed disk boot sector	Normal	Write protect enables virus protection of the boot
Dist all a second	vvrite Protect	sector on hard disk.
Diskette access	User	Requires password on boot enabled. Supervisor
	Supervisor	does not allow user to access floppy disk.
Virus check reminder	Disabled	Displays a message during bootup asking whether
	Daily	you backed up the system or scanned for viruses
	Weekly	(Y/N).
	wontniy	with "Y".
		Daily displays the message on the first boot of the
		day, Weekly on the first boot after Sunday, and
		Monthly on the first boot of the month.
System backup	Disabled	Displays a message during bootup asking whether
reminder	Daily Weekly	you backed up the system or scanned for viruses (Y/N).
	Monthly	Message returns on each boot until you respond with "Y".
		Daily displays the message on the first boot of the
		day, Weekly on the first boot after Sunday, and
		Monthly on the first boot of the month.

Notes: Enabling "Set Supervisor Password" requires a password for entering Setup. Passwords are not case sensitive.

User and Supervisor passwords are related. You cannot have a User password without first creating a Supervisor password.

20.6 *Boot Menu*

Feature	Option	Description
Floppy Check	Disabled	Enabled verifies floppy type on boot.
	Enabled	Disabled speeds boot.
Summary Screen	Disabled	If Enabled, a summary screen is displayed just before
	Enabled	booting the OS to let the end user see the system configuration.
QuickBoot Mode	Disabled	Allows the system to skip certain tests while booting.
	Enabled	This will decrease the time needed to boot the system.
Dark Boot	Disabled	If Enabled, system comes up with a blank screen
	Enabled	instead of the diagnostic screen during bootup.
Boot Device Priority	Submenu	Opens boot device priority submenu
Onboard LAN RPL ROM	Disabled	Enables Remote Program Load ROM of the onboard
	Enabled	LAN controller.
		Supports Intel PXE.

Note: In the Option column, bold shows default settings.

20.6.1. Dark Boot

After you turn on or reset the computer, Dark Boot displays a graphical logo (default is a blank screen) instead of the text based POST screen, which displays a number of PC diagnostic messages.

The graphical logo stays up until just before the OS loads unless:

- > You press **Esc** to display the POST screen
- > You press **F2** to enter Setup
- > POST issues an error message
- > The BIOS or an option ROM requests keyboard input

20.6.2. Boot Device Priority Submenu

Feature	Option	Description
Removable Devices	Boot priority and submenu.	Sets boot priority of Removable Devices as
		described in the respective submenu.
Hard Drive	Boot priority and submenu.	Sets boot priority of Hard Disks as
		described in the respective submenu.
CD-ROM Drive	Boot priority	Sets boot priority of ATAPI CD ROM
		Drives.
Network Boot	Boot priority and submenu.	Sets boot priority of Network Adapters as
		described in the respective submenu.

This menu allows you to select the order of the devices from which BIOS attempts to boot the OS. If BIOS is unsuccessful at booting from one device, during POST it will try the next one on the list.

The items on this menu each may represent the first of a class of items. For example, if you have more than one hard-disk drive, Hard Drive represents the first of such drives as specified in the Hard-Drive menu described below.

To change the order, select the device you want to change and press <-> to decrease or <+> to increase priority.

Removable Devices Priority Subentries

If you have more than one Removable Media drive, select **Removable Devices** and press **<Enter>** to display the Removable Media devices and choose which drive is represented in bootorder menu.

Note: The standard 1.44MB floppy drive is referenced as "Legacy Floppy Drives."

Hard Drive Priority Subentries

If you have more than one bootable hard drive, select **Hard Drive** and press **<Enter>** to display the Fixed Disk Menu and choose the boot priority.

Network Boot Priority Subentries

If you have more than one bootable network adapter in the system, select **Network Boot** and press **<Enter>** to display the available network adapters and choose boot priority. Normally there is only one bootable network adapter in the system and no submenu is available.

20.7 MultiBoot

MultiBoot expands your boot options by letting you choose your boot device such as:

- Hard disk
- Floppy disk
- CD-ROM
- Network card

You can select your boot device in the Setup as described above, or you can choose a different device each time you boot by selecting your boot device in the **Boot First Menu**.

20.7.1. Boot First Menu

Display the **Boot First Menu** by pressing **<Esc>** during POST. In response, the BIOS first displays the message "Entering Boot Menu..." and then displays the **Boot Menu** at the end of POST.

Use the menu to select any of these options:

- Override the existing boot sequence (for this boot only) by selecting another boot device. If the specified device does not load the OS, BIOS reverts to the previous boot sequence.
- Enter Setup
- > Press **<Esc**> to continue with the existing boot sequence.

20.8 Exit Menu

Feature	Option	Description
Exit Saving Changes	Saves selections and exits setup. The next time the system boots, the BIOS configures the system according to the Setup selection stored in CMOS.	Exit saving changes.
Exit Discarding Changes	Exits Setup without storing in CMOS any new selections you may have made. The selections previously in effect remain in effect.	Exit discarding changes.
Load Setup Defaults	Displays default values for all the Setup menus.	Load setup defaults.
Discard Changes	If, during a Setup session, you change your mind about changes you have made and have not yet saved the values to CMOS, you can restore the values you saved to CMOS.	Discard changes.
Save Changes	Saves all the selection without exiting Setup. You can return to the other menus to review and change your selection.	Save changes.

20.9 Kontron BIOS Extensions

Besides the Phoenix System BIOS, the MOPS/520 comes with a few BIOS extensions that support special features. All extensions are located in the onboard flash EEPROM. Some extensions are permanently available; some are loaded if required during boot up. Supported features include:

- > JIDA standard
- Remote Control feature (JRC)
- Onboard LAN RPL ROM
- > DOT-matrix LCD

All enabled BIOS extensions require shadow RAM. They will be loaded into the same 32K shadowed memory block, if possible. However, if the system memory cannot find free memory space because all the memory is already used for add-on peripherals, the BIOS extensions do not load.

20.9.1. JIDA BIOS extension

The JUMPtec Intelligent Device Architecture (JIDA) BIOS extension is not a true extension BIOS. It is part of the system BIOS and is located in the system BIOS segments after boot up. It is permanently available and supports the JIDA 16-bit standard. It is a software interrupt 15hex driven programmers interface and offers lots of board information functions. For detailed information about programming, refer to the JIDA specification and a source code example (JIDAI???.ZIP), which you can find at the Kontron Web site. The three question marks represent the revision number of the file. You also can contact technical support for this file.

For other operating systems, special drivers (JIDAIA??.ZIP) are available. You can download the zip file from the Kontron Web site.

20.9.2. Remote Control Client Extension

You can remotely control the MOPS/520 using software available from Kontron (JRC-1, Part Number 96047-0000-00-0). This software tool can communicate with the board via one of the serial ports. During boot up of the MOPS/520, the system BIOS scans the serial ports for an available JRC connection. If detected, it loads the JRC client BIOS extension into the memory. With the JRC client loaded into the first detected free memory location between C0000hex and D8000hex, a 32K block is shadowed.

For more information on the Remote Control usage, refer to the JRC-1 technical manual or Application Note JRCUsage_E???.PDF, which you can find on the Kontron Web site.

20.9.3. LAN RPL ROM

If the onboard LAN RPL ROM is enabled in the system BIOS setup, a special optional ROM for the Ethernet controller loads into memory during boot up. This optional ROM allows you to boot the MOPS/520 over an Ethernet connection. A server with Intel PXE/RPL boot support is required on the other side of the Ethernet connection. The setup and configuration of the server, including PXE/RPL support, is not the responsibility of Kontron.

The RPL ROM extension is loaded into the first free memory area between C0000hex and D8000hex and a 32K block of memory is shadowed.

20.9.4. DOT-Matrix LCD BIOS extension

The MOPS/520 is capable of driving a LCD DOT-matrix display on the parallel port. It can support character LCDs for up to 40 columns and four rows, which are equipped with a Hitachi HD44780 controller or a compatible one. A BIOS extension of the MOPS/520 controls the outputs to the display via software interrupt INT10hex. You can only use this feature with DOS.

If the DOT-matrix LCD interface is set up by using software tool ALCDINIT.EXE, the BIOS extension that supports this feature will load during boot up.

The BIOS extension for the DOT-matrix LCD loads into the first free memory area between C0000hex and D8000hex; a 32K block of memory is shadowed. However, if the system memory cannot find free memory space because all the memory is already used for add-on peripherals, the BIOS extension will not load.

The software tool ALCDINIT.EXE can be downloaded from the Kontron web pages. There is also an application note available for additional information about this feature. Especially programming and detailed configuration and connectivity information is available in Application Note DotMatrixPC104_E???.PDF. The three question marks represent the document revision number. You can download the application note from the Kontron Web site or request it from technical support

20.10 Updating or Restoring BIOS

If your MOPS/520 board requires a newer BIOS version or the BIOS is damaged, you may need to update or restore the BIOS.

Phoenix PHLASH allows you to update or restore the BIOS with a newer version or restore a corrupt BIOS by using a floppy disk without having to install a new ROM chip.

1) Download Phoenix Phlash as a compressed file, CRD3P489.ZIP, from the Kontron Web site. It contains the following files:

File	Purpose
MAKEBOOT.EXE	Creates the custom boot sector on the Crisis Recovery Diskette.
CRISBOOT.BIN	Serves as the Crisis Recovery boot sector code.
MINIDOS.SYS	Allows the system to boot in Crisis Recovery Mode.
PHLASH.EXE	Programs the Flash ROM.
WINCRISIS.EXE	Creates the Crisis Recovery Diskette from Windows.
WINCRISIS.HLP	Serves as the help file of WINCRISES.EXE.
PLATFORM.BIN	Performs platform-dependent functions.
BIOS.ROM	Serves as the actual BIOS image to be programmed into Flash ROM.

- 2) To install Phoenix Phlash on a hard disk, unzip the content of CRD3P489.ZIP into a local directory such as C:\PHLASH.
- 3) To create a Crisis Recovery Diskette, insert a blank diskette into Drive A: or B: and execute WINCRISIS.EXE. This copies four files onto the Crisis Recovery Diskette.

File	Purpose
MINIDOS.SYS	Allows the system to boot in Crisis Recovery Mode.
PHLASH.EXE	Programs the Flash ROM.
PLATFORM.BIN	Performs platform-dependent functions.
BIOS.ROM	Serves as the BIOS image to be programmed into Flash ROM.

- 4) If the BIOS image (BIOS.ROM) changes because of an update or bug fix, copy the new BIOS.ROM image onto the diskette.
- 5) Phlash can fail if the system uses memory managers. If this occurs, the utility displays the following message:

Cannot flash when memory managers are present.

If you see this message after you execute Phlash, disable the memory manager.
20.11 Preventing Problems When Updating or Restoring BIOS

Updating the BIOS represents a potential hazard. Power failures or fluctuations that can occur during updating the Flash ROM can damage the BIOS code, making the system unbootable.

To prevent this potential hazard, many systems come with a boot-block Flash ROM. The bootblock region contains a fail-safe recovery routine. If the boot-block code finds a corrupted BIOS (checksum fails), it boots into the crisis recovery mode and loads a BIOS image from a crisis diskette (see above).

Additionally, the end user can insert an update key into the parallel port (LPT1 only) to force initiating the recovery routine for the boot block.

For further information on the update key and the crisis diskette, see a special application note (PHLASH_SC_E??.PDF), which is available from the Kontron Web site. (The three question marks indicate the revision number of the document.)

Note: The file BIOS.ROM on the crisis recovery disk may not be the latest version of the ROM file. Contact Kontron technical support for the latest version. Do not flash a BIOS ROM file if you are not sure it matches your hardware because the system might become unbootable. Kontron is not obligated to recover your system free of charge if the board does not boot because flash tools were used incorrectly.

21. APPENDIX C: BLOCK DIAGRAM

22. APPENDIX D: MECHANICAL DIMENSIONS

All Dimensions in the tables below are relative to the origin location A.

Location	Horizontal (mm)	Vertical (mm)	Horizontal (mil)	Vertical (mil)			
	PCB Dimensions						
A (Origin)	0	0	0	0			
В	90.17	0	3550	0			
С	90.17	95.89	3550	3775			
D	0	95.89	0	3775			
	Mounting Holes						
E	5.08	5.08	200	200			
F	85.09	5.08	3350	200			
G	82.55	90.81	3250	3575			
Н	8.89	90.81	350	3575			
J	9.88	59.28	389	2333.84			

Location	Horizontal (mm)	Vertical (mm)	Horizontal (mil)	Vertical (mil)			
Interface Connectors							
а	11.43	5.08	450	200			
b	26.67	5.08	1050	200			
С	6.35	10.16	250	400			
d	72.39	18.03	2849.89	710			
е	76.59	16.49	3015.27	649.12			
f	83.54	29.24	3289	1151			
g	80.52	40.76	3170	1604.73			
h	80.52	48.00	3170	1889.73			
i	80.55	62.75	3171.16	2470.51			
k	83.54	67.34	3289	2651			
I	1.75	64.80	69	2551			
m	80.55	85.08	3171.16	3349.51			
n	4.04	85.12	159	3351			
0	10.69	84.99	421	3346			
р	16.51	84.81	650	3338.78			
q	83.54	85.12	3289	3351			
r	40.54	94.89	1596	3736			
S	49.77	93.60	1959.61	3684.89			
t	57.27	93.60	2254.61	3684.89			

Height	Dimension (mm)	Dimension (mil)
	13.00	512
11	10.67	420
	1.60	63
IV	9.35	368

23. APPENDIX E: CONNECTOR LAYOUT

23.1 Connector Locations

Pin 1 of any connector is marked with "1" in this drawing and with a rectangular pad at the bottom side of the board's PCB.

23.2 Connector Functions and Interface Cables

The table notes connector functions, as well as mating connectors and available cables.

Connector	Function	Mating Connector	Available Cable	Cable Description
P800A	PC/104 Bus (XT-Bus part)	2.54mm 64 pos. (EPT 962-60323-12 or compatible for board to board connection)		
P800B	PC/104 Bus (AT-Bus part)	2.54mm 40 pos. (EPT 962-60203-12 or compatible for board to board connection)		
P800C	Power Connector	2.54mm 8 pos. (EPT 962-60043-12 or compatible for board to board connection)		
P400, P401	Serial Interfaces COM A and COM B Connectors	2.54mm 10 pos. (AMP 1-215882-0 or compatible)	KAB-DSUB9-2 (PN 96017-0000-00-0)	For DSUB 9 adaptation.
P402	Keyboard and Feature Connector	2.54mm 10 pos. (AMP 1-215882-0 or compatible)	KAB-KB-1 (PN 96023-0000-00-0) or KAB-KB-PS2 (PN 96060-0000-00-0)	For AT- keyboard or PS/2 keyboard.
P403,P404	Serial Interfaces COM C and COM D Connectors	1.25mm 10 pos. (Molex 51021-1000 or compatible)	KAB-DSUB9-3 (PN 96061-0000-00-0)	For DSUB 9 adaptation.
P1000, P1001	USB interface connector	1.25mm 4 pos. (Molex 51021-0400 or compatible)	KAB-USB-1 (PN 96054-0000-00-0)	For standard USB adoption
J300	IDE Hard Disk Interface Connector	2mm 44 pos. (Berg 89361-144 or compatible)	KAB-IDE-25 (PN 96020-0000-00-0) or KAB-IDE-2MM (PN 96021-0000-00-0)	For 3.5" HDD Or 2.5" HDD
J401	Floppy Drive Interface Connector		ADA-FLOPPY-2 (PN 96001-0000-00-0) or KAB-FLOPPY/MOPS-1 (PN 96019-0000-00-0)	For 3.5" floppy or Slim-line floppy.
J400	Parallel Interface LPT Connector	2.54mm 26 pos. (AMP 2-215882-6 or compatible)	KAB-DSUB25-1 (PN 96015-0000-00-0)	For DSUB 25 adaptation.
U406	PS/2 Mouse Interface Connector	1.25mm 4 pos. (Molex 51021-0400 or compatible)	KAB-MOUSE-PS2 (PN 96062-0000-00-0)	For PS/2 Mouse
U1200	CAN bus connector	1.25mm 4 pos. (Molex 51021-0400 or compatible)		
X700	Ethernet Interface Connector	2mm 8 pos. (Berg 90311-008 or compatible)	KAB-MOPS-ETN1 (PN 96048-0000-00-0)	For RJ45 adaptation.
X1300	PC/104-Plus Bus (PCI part)	2mm 120pos. (EPT 264-60303-12)		

23.3 **Pinout Table**

Pin	PC104 (A)	PC104 (B)	PC104 (C)	PC104 (D)	PC/104 Plus (A)	PC/104 Plus (B)	PC/104 Plus (C)	PC/104 Plus (D)
0			GND	GND				
1	/IOCHCK	GND	/SBHE	/MEMCS16	GND	Reserved	VCC (***)	AD00
2	SD7	RESETDRV	LA23	/IOCS16	VCC (***)	AD02	AD01	AD03
3	SD6	VCC (***)	LA22	IRQ10	AD05	GND	AD04	AD03
4	SD5	IRQ9	LA21	IRQ11	C/BE0	AD07	GND	AD06
5	SD4	-5V	LA20	IRQ12	GND	AD09	AD08	GND
6	SD3	DRQ2	LA19	IRQ15 (**)	AD11	VCC (***)	AD10	GND
7	SD2	-12V	LA18	IRQ14	AD14	AD13	GND	AD12
8	SD1	/0WS	LA17	/DACK0 (**)	VCC3 (**)	C/BE1	AD15	VCC3 (**)
9	SD0	+12V	/MEMR	DRQ0 (**)	SERR	GND	SB0	PAR
10	IOCHRDY	GND (*)	/MEMW	/DACK5	GND	PERR	VCC3 (**)	SDONE
11	AEN	/SMEMW	SD8	DRQ5	STOP	VCC3 (**)	LOCK	GND
12	SA19	/SMEMR	SD9	/DACK6 (**)	VCC3 (**)	TRDY	GND	DEVSEL
13	SA18	/IOW	SD10	DRQ6 (**)	FRAME	GND	IRDY	VCC3 (**)
14	SA17	/IOR	SD11	/DACK7 (**)	GND	AD16	VCC3 (**)	C/BE2
15	SA16	/DACK3	SD12	DRQ7 (**)	AD18	VCC3 (**)	AD17	GND
16	SA15	DRQ3	SD13	VCC (***)	AD21	AD20	GND	AD19
17	SA14	/DACK1	SD14	/MASTER (**)	VCC3 (**)	AD23	AD22	VCC3 (**)
18	SA13	DRQ1	SD15	GND	IS0 (AD20)	GND	IS1 (AD21)	IS2 (AD22)
19	SA12	/REFRESH (**)	GND	GND	AD24	C/BE3	VI/O	IS3 (AD23)
20	SA11	SYSCLK			GND	AD26	AD25	GND
21	SA10	IRQ7			AD29	VCC (***)	AD28	AD27
22	SA9	IRQ6			VCC (***)	AD30	GND	AD31
23	SA8	IRQ5			REQ0	GND	REQ1	VI/O
24	SA7	IRQ4			GND	REQ2	VCC (***)	GNT0
25	SA6	IRQ3			GNT1	VI/O	GNT2	GND
26	SA5	/DACK2			VCC (***)	CLK0	GND	CLK1
27	SA4	T/C			CLK2	VCC (***)	CLK3	GND
28	SA3	BALE			GND	INTD	VCC (***)	RST
29	SA2	VCC (***)			+12V	INTA	INTB	INTC
30	SA1	OSC			-12V	Reserved	Reserved	Reserved
31	SA0	GND						
32	GND	GND						

Notes: (*) (**) (***)

Key pin for PC/104; GND for PC/104+ specification

Not supported on MOPS/520 boards.

To protect the external power lines of peripheral devices, make sure that:

the wires have the right diameter to withstand the maximum available current
the enclosure of the peripheral device fulfils the fire protecting requirements of - IEC/EN 60950.

Pin	IDE	Floppy	ГРТ	Power	COMA	COMB	COMC	COM D (TTL)
1	/RESET	VCC (***)	/STB	GND	/DCD1	/DCD2	/DCD3	/DCD4
2	GND	/IDX	/AFD	VCC (***)	/DSR1	/DSR2	/DSR3	/DSR4
3	HDD7	VCC (***)	PD0	VBATT	RXD1	RXD2	RXD3	RXD4
4	HDD8	/DS0	/ERR	+12V	/RTS1	/RTS2	/RTS3	/RTS4
5	HDD6	VCC (***)	PD1	-5V	TXD1	TXD2	TXD3	TXD4
6	HDD9	/DCHNG	/INIT	-12V	/CTS1	/CTS2	/CTS3	/CTS4
7	HDD5	VCC (***)	PD2	GND	/DTR1	/DTR2	/DTR3	/DTR4
8	HDD10	NC	/SLIN	VCC (***)	/RI1	/RI2	/RI3	/RI4
9	HDD4	RPM	PD3		GND	GND	GND	GND
10	HDD11	/MTR0	GND		VCC (***)	VCC (***)	VCC (***)	VCC (***)
11	HDD3	NC	PD4					
12	HDD12	/DIR	GND					
13	HDD2	NC	PD5					
14	HDD13	/STEP	GND					
15	HDD1	GND	PD6					
16	HDD14	/WDATA	GND					
17	HDD0	GND	PD7					
18	HDD15	/WGATE	GND					
19	GND	GND	/ACK					
20	KEY (NC)	/TRK0	GND					
21	NC	GND	/BUSY					
22	GND	/WRPRT	GND					
23	/IOW	GND	PE					
24	GND	/RDATA	GND					
25	/IOR	GND	/SLCT					
26	GND	/CHDSEL	VCC (***)					
27	IOCHRDY							
28	Reserved							
29	NC							
30	GND							
31	IRQ14							
32	/IOCS16							
33	SA1							
34	NC							
35	SA0							
36	SA2							
37	/CS0							
38	/CS1							
39	NC							
40	GND							
41	VCC (***)							
42	VCC (***)							
43	GND							
44	NC							

Notes: (***)

To protect the external power lines of peripheral devices, make sure that:

- the wires have the right diameter to withstand the maximum available current

- the enclosure of the peripheral device fulfils the fire protecting requirements of

- IEC/EN 60950.

Pin	KBD	LAN	PS/2 Mouse	USB 1	USB 2	CAN
1	SPKR	TXD+	MSDAT	VCC (***)	VCC (***)	CAN_L
2	GND	TXD-	VCC (***)	USB00	USB10	CAN_H
3	/RESIN	RXD+	GND	USB01	USB11	VCC (***)
4	/KBLOCK	SHLDGND	MSCLK	GND	GND	GND
5	KBDAT	SHLDGND				
6	KBCLK	RXD-				
7	GND	SHLDGND				
8	VCC (***)	SHLDGND				
9	BATT					
10	PWRGOOD					

Notes: (***) To protect the external power lines of peripheral devices, make sure that:

- the wires have the right diameter to withstand the maximum available current

- the enclosure of the peripheral device fulfils the fire protecting requirements of - IEC/EN 60950.

24. APPENDIX F: LIMITATIONS AND HINTS

24.1 **ISA Bus**

24.1.1. Available ISA Signals

Due to the AMD Elan SC520 microcontroller architecture, the following signals are not available on the PC/104 bus (ISA):

IRQ15, /DACK0, DRQ0, /DACK6, DRQ6, /DACK7, DRQ7, /MASTER, /REFRESH

24.1.2. I/O Address Mapping

I/O addresses below 400h are mapped to the external ISA bus. Higher I/O addresses are directed to PCI in the BIOS default configuration. You can map additional ISA I/O areas to the ISA bus if required in the BIOS Setup. This is especially useful, if you have an ISA graphic adapter in the system that also uses I/O addresses above 400hex. However, the typical I/O range of the ISA bus will not be available.

24.1.3. ISA SCSI Support

Because of limitations concerning 16Bit DMA transfers in conjunction with asynchronous ISA bus timing, you cannot use most ISA SCSI cards with the MOPS/520.

24.2 **PCI Bus**

The MOPS/520 comes with a 5V PCI-Bus. Therefore the 3.3V required by some add-on PCI devices are not generated onboard.

24.3 Serial Ports

The SC520 integrated serial ports (Serial Port C and D on the MOPS/520) show two deviations from the standard UART behavior:

- > The delta ring-indicator bit in the modem-status register (bit 2) is only set when the ring-indicator signal has changed from an "active" to "inactive" state since the last time the modem status register was read. Respectively, this bit is set for RI changes from "inactive" to "active."
- In the 16550-compatible mode, a received data interrupt is generated when the very first data byte of a continuous data stream is placed in FIFO. This error only occurs for the first character of a continuous data stream received by the UART. Following the FIFO time-out interrupt for the first character received, the remainder of the data stream will be indicated according to the trigger value set in the RFRT bits of the UART FIFO control registers.

24.4 Parallel Port

Because of chipset limitations, parallel-port mode ECP, as well as parallel-port base address 3BCh (any mode), cannot be used if a PCI video adapter is installed on the system. With ISA video adapters these restrictions do not apply.

24.5 USB Port

The power contacts for USB devices on Pin 1 and Pin 4 are not protected. They are suitable to supply connected USB devices with a maximum of 500mA power dissipation. Do not supply external USB devices with a higher power dissipation through this pins. Always use a fuse for power on external USB connectors, otherwise a defective USB device may damage the MOPS/520.

24.6 System-Clock Deviation

In PC/AT compatible systems, system boot code usually programs the Programmable Interval Timer Channel 0 Count (PIT0CNT) register (port 0040h) to a value of FFFFh. If the timer is based on the PC/AT standard clock of 1.19318 MHz, this results in a periodic IRQ0 generation every 54.93 ms, which is used to keep accurate time of day.

However, as the internal timer clock source of the SC520 is only 1.1892 MHz, setting the standard counter value results in a slower IRQ0 generation rate and inaccurate time of day.

The MOPS/520 BIOS takes care of the deviating clock rate of the SC520 by setting the PIT0CNT to a value of FF25h. However, this only guarantees an accurate system clock for operating systems, such as DOS, which do not change the value set by the BIOS. If an operating system such as Windows® 98 reinitializes the PIT0CNT with the standard PC value of FFFFh, it will result in significant system-clock deviation.

To solve this problem, set the PIT0CNT to the MOPS/520 value of FF25h again after the operating system starts.

24.7 Windows[®] 2000 Support

Windows® 2000 (at least an unmodified standard version) does not run on systems with ISA IDE controllers. During installation or start of a preinstalled system, Windows 2000 fails and displays the error message INACCESSIBLE_BOOT_DEVICE. Because the MOPS/520 uses an ISA IDE interface, you cannot install or run a standard Windows 2000 version on the MOPS/520.

24.8 Watchdog Timer NMI Handling

Although set to NMI mode, the SC520 WDT only generates a NMI for the first WDT timeout. The next time the watchdog timer expires, a reset generates.

To avoid this, the WDT NMI interrupt service routine must clear bit 12 of the SC520 Watchdog Timer Control register by writing a 1 to the bit. The key sequence 3333h, followed by CCCCh, must be sent to the register (which is memory-mapped to address E400:0CB0) before it can be write accessed. The following code sequence illustrates the described procedure:

```
unsigned int wdstore;
volatile unsigned int far *WDTMCTRL;
WDTMCTRL = ((void far *) 0xE4000CB0;
.
.
void interrupt NmiIsr (void)
{
wdstore = *WDTMCTRL;
*WDTMCTRL = 0x3333;
*WDTMCTRL = 0xCCCC;
wdstore = wdstore | 0x1000;
*WDTMCTRL = wdstore
```

25. APPENDIX G: PC ARCHITECTURE INFORMATION

The following sources of information can help you better understand PC architecture.

25.1 **Buses**

25.1.1. ISA, Standard PS/2 - Connectors

- AT Bus Design: Eight and Sixteen-Bit ISA, E-ISA and EISA Design, Edward Solari, Annabooks, 1990, ISBN 0-929392-08-6
- > AT IBM Technical Reference Vol 1&2, 1985
- > ISA & EISA Theory and Operation, Edward Solari, Annabooks, 1992, ISBN 0929392159
- > ISA Bus Specifications and Application Notes, Jan. 30, 1990, Intel
- ISA System Architecture, Third Edition, Tom Shanley and Don Anderson, Addison-Wesley Publishing Company, 1995, ISBN 0-201-40996-8
- > Personal Computer Bus Standard P996, Draft D2.00, Jan. 18, 1990, IEEE Inc
- Technical Reference Guide, Extended Industry Standard Architecture Expansion Bus, Compaq 1989

25.1.2. PC/104, PCI - Information

- Embedded PC 104 Consortium The consortium provides information about PC/104 and PC/104-Plus technology. You can search for information about the consortium on the Web.
- PCI SIG The PCI-SIG provides a forum for its ~900 member companies, who develop PCI products based on the specifications that are created by the PCI-SIG. You can search for information about the SIG on the Web.
- PCI & PCI-X Hardware and Software Architecture & Design, Fifth Edition, Edward Solari and George Willse, Annabooks, 2001, ISBN 0-929392-63-9.
- PCI System Architecture, Tom Shanley and Don Anderson, Addison-Wesley, 2000, ISBN 0-201-30974-2.

25.2 General PC Architecture

- *Embedded PCs*, Markt&Technik GmbH, ISBN 3-8272-5314-4 (German)
- Hardware Bible, Winn L. Rosch, SAMS, 1997, 0-672-30954-8
- Interfacing to the IBM Personal Computer, Second Edition, Lewis C. Eggebrecht, SAMS, 1990, ISBN 0-672-22722-3
- The Indispensable PC Hardware Book, Hans-Peter Messmer, Addison-Wesley, 1994, ISBN 0-201-62424-9
- The PC Handbook: For Engineers, Programmers, and Other Serious PC Users, Sixth Edition, John P. Choisser and John O. Foster, Annabooks, 1997, ISBN 0-929392-36-1

25.3 **Ports**

25.3.1. RS-232 Serial

- EIA-232-E standard The EIA-232-E standard specifies the interface between (for example) a modem and a computer so that they can exchange data. The computer can then send data to the modem, which then sends the data over a telephone line. The data that the modem receives from the telephone line can then be sent to the computer. You can search for information about the standard on the Web.
- RS-232 Made Easy: Connecting Computers, Printers, Terminals, and Modems, Martin D. Seyer, Prentice Hall, 1991, ISBN 0-13-749854-3
- National Semiconductor The Interface Data Book includes application notes. Type "232" as a search criteria to obtain a list of application notes. You can search for information about the data book on National Semiconductor's Web site.

25.3.2. ATA

AT Attachment (ATA) Working Group

This X3T10 standard defines an integrated bus interface between disk drives and host processors. It provides a common point of attachment for systems manufacturers and the system. You can search for information about the working group on the Web.

We recommend you also search the Web for information on 4.2 I/O cable, if you use hard disks in a DMA3 or PIO4 mode.

25.3.3. USB

USB Specification

USB Implementers Forum, Inc. is a non-profit corporation founded by the group of companies that developed the Universal Serial Bus specification. The USB-IF was formed to provide a support organization and forum for the advancement and adoption of Universal Serial Bus technology. You can search for information about the standard on the Web.

25.4 **Programming**

- C Programmer's Guide to Serial Communications, Second Edition, Joe Campbell, SAMS, 1987, ISBN 0-672-22584-0
- Programmer's Guide to the EGA, VGA, and Super VGA Cards, Third Edition, Richard Ferraro, Addison-Wesley, 1990, ISBN 0-201-57025-4
- The Programmer's PC Sourcebook, Second Edition, Thom Hogan, Microsoft Press, 1991, ISBN 1-55615-321-X
- Undocumented PC, A Programmer's Guide to I/O, CPUs, and Fixed Memory Areas, Frank van Gilluwe, Second Edition, Addison-Wesley, 1997, ISBN 0-201-47950-8

26. APPENDIX H: DOCUMENT-REVISION HISTORY

Revision	Date	Edited by	Changes
P489M110	09.08.01	KFR	Created preliminary manual.
P489M111	28.08.01	GWE	Updated BIOS, added limitations chapter.
P489M112	26.08.01	KFR	Added SCSI and video limitations.
P489M113	24.09.01	KFR	Reformatted.
P489M114	26.09.01	KFR	Added drawing in Chapter 3. Added advanced temperature of D601 in Chapter 3.4. Added note about external power lines.
P489M115	28.09.01	KFR	Fixed URL syntax on contact page. Changed introduction (Chapter 2.)
P489M116	09.04.02	HB and JL	Added changes to CAN controller, PS/2 mouse, and specifications chapter. Edited and reformatted.
P489M117	17.06.02	JL	Added changes to CAN controller chapter.
P489M118	25.02.03	VGG	Added environment note.
P489M119	03.12.03	HB and JL	Updated manual throughout. Added new BIOS features. Changes for new layout. Reformatted manual.
P489M120	16.03.04	BHO	Added MTBF section, changed keyboard connection drawing, minor corrections
P489M121	09.09.04	BHO	Corrected footlines, corrected mounting hole H vertical position, corrected USB connector information, new support addresses
P489M122	16.03.05	BHO	Corrected format, corrected BIOS update key to parallel, added PCI devices section, updated I/O address map. Minor changes
P489M123	30.08.05	BHO	Added Ethernet note, new drawings for connectors
P489M124	15.09.05	BHO	Added "REFRESH" signal limitation at page 73 and 76, new Kontron Logo