
a

W 4.0
Loader Manual

 Revision 1.0, January 2005

Part Number
82-000420-05

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a



Copyright Information
© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written 
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without 
prior notice. Information furnished by Analog Devices is believed to be 
accurate and reliable. However, no responsibility is assumed by Analog 
Devices for its use; nor for any infringement of patents or other rights of 
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP++, the VisualDSP logo, Blackfin, 
the Blackfin logo, SHARC, the SHARC logo, TigerSHARC, the Tiger-
SHARC logo, Crosscore, the Crosscore logo, and EZ-KIT Lite are 
registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of 
their respective owners.



VisualDSP++ 4.0 Loader Manual  iii 

 CONTENTS

PREFACE

Purpose of This Manual ................................................................  xiii

Intended Audience ........................................................................  xiii

Manual Contents ........................................................................... xiv

What’s New in This Manual ........................................................... xiv

Technical or Customer Support ....................................................... xv

Supported Processors ...................................................................... xvi

Product Information ..................................................................... xvii

MyAnalog.com ........................................................................ xvii

Processor Product Information ................................................ xviii

Related Documents ................................................................ xviii

Online Technical Documentation ............................................. xix

Accessing Documentation From VisualDSP++ ....................... xx

Accessing Documentation From Windows ............................. xx

Accessing Documentation From the Web .............................. xxi

Printed Manuals ....................................................................... xxi

VisualDSP++ Documentation Set ......................................... xxi

Hardware Tools Manuals ..................................................... xxii

Processor Manuals ............................................................... xxii



CONTENTS

iv VisualDSP++ 4.0 Loader Manual

Data Sheets ........................................................................  xxii

Notation Conventions .................................................................  xxiii

INTRODUCTION

Program Development Flow ..........................................................  1-2

Compiling and Assembling .....................................................  1-2

Linking ...................................................................................  1-3

Loading, Splitting, or Both ......................................................  1-3

Non-bootable Files Versus Boot-loadable Files .........................  1-4

Loader Operations ..............................................................  1-5

Splitter Operations .............................................................  1-6

Booting Modes .............................................................................  1-6

No-Boot Mode .......................................................................  1-7

PROM Boot Mode .................................................................  1-7

Host Boot Mode .....................................................................  1-8

Boot Kernels ................................................................................  1-8

Loader Tasks .................................................................................  1-9

Boot Streams ..............................................................................  1-10

File Searches .........................................................................  1-11

LOADER/SPLITTER FOR BLACKFIN PROCESSORS

Blackfin Processor Booting ............................................................  2-2

ADSP-BF535 Processor Booting ..............................................  2-2

ADSP-BF535 Processor On-Chip Boot ROM .....................  2-3

ADSP-BF535 Processor Second-Stage Loader ......................  2-5



VisualDSP++ 4.0 Loader Manual v

CONTENTS

ADSP-BF535 Processor Boot Streams ..................................  2-8

Loader Files Without a Second-Stage Loader ....................  2-9

Loader Files With a Second-Stage Loader .......................  2-11

Global Headers .............................................................  2-13

Blocks, Block Headers, and Flags ...................................  2-14

ADSP-BF535 Processor Memory Ranges ...........................  2-15

Second-Stage Loader Restrictions ...................................  2-16

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Booting ........................................  2-17

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor On-Chip Boot ROM ................  2-19

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Boot Streams ............................  2-21

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Blocks, Block Headers, and Flags .........  2-21

Initialization Blocks ......................................................  2-24

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor Memory Ranges ........................  2-28

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor SPI Slave Mode Boot via
Master Host (BMODE = 10) ..........................................  2-30

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/
BF538/BF539 Processor SPI Master Mode Boot via
SPI Memory (BMODE = 11) .........................................  2-32

SPI Memory Detection Routine ....................................  2-34

ADSP-BF534/BF536/BF537 Processor Booting .................  2-35

ADSP-BF561 and ADSP-BF566 Processor Booting ................  2-37



CONTENTS

vi VisualDSP++ 4.0 Loader Manual

ADSP-BF561 Processor Boot Streams ...............................  2-38

ADSP-BF561/BF566 Processor Memory Ranges ...............  2-43

ADSP-BF561/BF566 Processor Initialization Blocks ..........  2-44

ADSP-BF561/BF566 Multiple .DXE Booting ...............  2-45

ADSP-BF53x and ADSP-BF561/BF566 Multiple .DXE
Booting ..............................................................................  2-46

Blackfin Processor Loader Guide .................................................  2-49

Using the ADSP-BF5xx Blackfin Loader Command Line .......  2-49

File Searches .....................................................................  2-50

File Extensions .................................................................  2-51

Command-Line Switches ..................................................  2-51

Using the Base Loader ...........................................................  2-57

Using the Second-Stage Loader ..............................................  2-59

Using the ROM Splitter ........................................................  2-62

No-Boot Mode .................................................................  2-62

LOADER FOR ADSP-TSXXX TIGERSHARC PROCESSORS

ADSP-TSxxx TigerSHARC Processor Booting ...............................  3-2

Boot Type Selection ................................................................  3-3

Boot Kernels ...........................................................................  3-4

Boot Kernel Modification ...................................................  3-5

TigerSHARC Loader Guide ..........................................................  3-5

Using TigerSHARC Loader Command Line ............................  3-6

File Searches .......................................................................  3-8

File Extensions ...................................................................  3-8



VisualDSP++ 4.0 Loader Manual vii

CONTENTS

Command-Line Switches .....................................................  3-8

Using VisualDSP++ Interface (Load Page) ..............................  3-12

LOADER FOR ADSP-2106X/21160 SHARC PROCESSORS

ADSP-2106x/21160 Processor Booting ..........................................  4-2

Power-Up Booting Process .......................................................  4-3

Boot Mode Selection ...............................................................  4-5

Boot Types ..............................................................................  4-7

EPROM Booting ................................................................  4-7

Host Booting ....................................................................  4-11

Link Booting ....................................................................  4-15

No-Boot Mode .................................................................  4-16

Boot Kernels .........................................................................  4-16

Blocks and Block Headers .................................................  4-17

Boot Kernel Modification and Loader Issues ......................  4-19

Interrupt Vector Table ...........................................................  4-22

Multiprocessor EPROM Booting ...........................................  4-23

Processor ID Numbers ...........................................................  4-24

ADSP-2106x/21160 Processor Loader Guide ...............................  4-25

Using the ADSP-2106x/21160 Loader Command Line ..........  4-26

File Searches .....................................................................  4-27

File Extensions ..................................................................  4-27

Loader Command-Line Switches .......................................  4-28

Using the VisualDSP++ Interface (Load Page) ........................  4-31



CONTENTS

viii VisualDSP++ 4.0 Loader Manual

LOADER FOR ADSP-21161 SHARC PROCESSORS

ADSP-21161 Processor Booting ....................................................  5-2

Power-Up Booting Process .......................................................  5-3

Boot Mode Selection ...............................................................  5-3

Boot Types ..............................................................................  5-4

EPROM Booting ................................................................  5-5

Host Booting ......................................................................  5-9

Link Port Booting .............................................................  5-12

SPI Port Booting ..............................................................  5-14

No-Boot Mode .................................................................  5-16

Boot Kernels .........................................................................  5-16

Blocks and Block Headers .................................................  5-17

Boot Kernel Modification and Loader Issues ..........................  5-18

Rebuilding a Boot Kernel File ...........................................  5-18

Rebuilding a Boot Kernel Using Command Lines ..............  5-19

Loader File Issues ..............................................................  5-20

Interrupt Vector Table ...........................................................  5-21

Multiprocessor EPROM Booting ...........................................  5-21

Booting From a Single EPROM ........................................  5-22

Sequential EPROM Booting .............................................  5-22

Processor ID Numbers ......................................................  5-23

ADSP-21161 Processor Loader Guide .........................................  5-24

Using ADSP-21161 Loader Command Line ..........................  5-24

File Searches .....................................................................  5-26



VisualDSP++ 4.0 Loader Manual ix

CONTENTS

File Extensions ..................................................................  5-27

Loader Command-Line Switches .......................................  5-27

Using VisualDSP++ Interface (Load Page) ..............................  5-27

LOADER FOR ADSP-2126X/2136X SHARC PROCESSORS

ADSP-2126x/2136x Processor Booting ..........................................  6-2

Power-Up Booting Process .......................................................  6-3

Boot Type Selection .................................................................  6-4

Boot Types ..............................................................................  6-4

PROM Boot Mode .............................................................  6-5

Packing Options for External Memory .............................  6-6

Packing and Padding Details ............................................  6-7

SPI Port Boot Modes ...........................................................  6-8

SPI Slave Boot Mode .......................................................  6-9

SPI Master Boot Mode ..................................................  6-10

Booting From an SPI Flash ............................................  6-14

Booting From an SPI PROM (16-Bit Address) ...............  6-16

Booting From an SPI Host Processor .............................  6-16

Internal Boot Mode ..........................................................  6-17

Boot Kernels .........................................................................  6-18

Boot Kernel Modification and Loader Issues ......................  6-19

Rebuilding a Boot Kernel File ........................................  6-19

Rebuilding a Boot Kernel Using Command Lines ..........  6-20

Loader File Issues ..........................................................  6-20

Interrupt Vector Table ...........................................................  6-21



CONTENTS

x VisualDSP++ 4.0 Loader Manual

Loader File Section Header ....................................................  6-22

ADSP-2126x/2136x Data Tags .........................................  6-22

INIT_L48 Blocks .........................................................  6-24

INIT_L16 Blocks .........................................................  6-26

INIT_L64 Blocks .........................................................  6-26

FINAL_INIT Blocks ....................................................  6-27

ADSP-2126x/2136x Processor Loader Guide ...............................  6-32

Using the ADSP-2126x/2136x Loader Command Line ..........  6-32

File Searches .....................................................................  6-34

File Extensions .................................................................  6-34

Loader Command-Line Switches .......................................  6-34

Using the VisualDSP++ Interface (Load Page) ........................  6-34

SPLITTER FOR SHARC AND TIGERSHARC 
PROCESSORS

SHARC and TigerSHARC Splitter Command Line .......................  7-2

File Searches ...........................................................................  7-4

Output File Extensions ...........................................................  7-4

Command-Line Switches .........................................................  7-5

VisualDSP++ Interface (Split Page) ...............................................  7-8

FILE FORMATS

Source Files ..................................................................................  A-2

C/C++ Source Files .................................................................  A-2

Assembly Source Files ..............................................................  A-3



VisualDSP++ 4.0 Loader Manual xi

CONTENTS

Assembly Initialization Data Files ...........................................  A-3

Header Files ...........................................................................  A-4

Linker Description Files .........................................................  A-4

Linker Command-Line Files ...................................................  A-5

Build Files ...................................................................................  A-5

Assembler Object Files ............................................................  A-6

Library Files ...........................................................................  A-6

Linker Output Files ................................................................  A-6

Memory Map Files .................................................................  A-7

Loader Output Files in Intel Hex-32 Format ...........................  A-7

HEXUTIL Utility ..............................................................  A-9

Loader Output Files in Include Format .................................  A-10

Loader Output Files in Binary Format ...................................  A-11

Splitter Output Files in Motorola S-Record Format ...............  A-11

Splitter Output Files in Intel Hex-32 Format ........................  A-13

Splitter Output Files in Byte Stacked Format .........................  A-13

Splitter Output Files in ASCII Format ..................................  A-15

Debugger Files ...........................................................................  A-15

Format References ......................................................................  A-17

INDEX



CONTENTS

xii VisualDSP++ 4.0 Loader Manual



VisualDSP++ 4.0 Loader Manual  xiii 

PREFACE

Thank you for purchasing VisualDSP++® 4.0, Analog Devices, Inc. devel-
opment software for digital signal processing (DSP) applications.

Purpose of This Manual
The VisualDSP++ 4.0 Loader Manual  contains information about the 
loader/splitter program for the following Analog Devices, Inc. proces-
sors—SHARC® (ADSP-21xxx), TigerSHARC® (ADSP-TSxxx), and 
Blackfin® (ADSP-BFxxx). 

The manual describes the loader/splitter operations for these processors 
and references information about related development software. It also 
provides information about the loader and splitter command-line 
interfaces.

Intended Audience
The primary audience for this manual is a programmer who is familiar 
with Analog Devices processors. This manual assumes that the audience 
has a working knowledge of the appropriate processor architecture and 
instruction set. Programmers who are unfamiliar with Analog Devices 
processors can use this manual, but should supplement it with other texts 
(such as the appropriate hardware reference and programming reference 
manuals) that describe your target architecture.



Manual Contents

 xiv VisualDSP++ 4.0 Loader Manual

Manual Contents
The manual contains:

• Chapter 1, “Introduction” 

• Chapter 2, “Loader/Splitter for Blackfin Processors” 

• Chapter 3, “Loader for ADSP-TSxxx TigerSHARC Processors” 

• Chapter 4, “Loader for ADSP-2106x/21160 SHARC Processors” 

• Chapter 5, “Loader for ADSP-21161 SHARC Processors” 

• Chapter 6, “Loader for ADSP-2126x/2136x SHARC Processors” 

• Chapter 7, “Splitter for SHARC and TigerSHARC Processors” 

• Appendix A, “File Formats” 

What’s New in This Manual 
Information in this VisualDSP++ 4.0 Loader Manual applies to all Analog 
Devices, Inc. processors listed in “Supported Processors”. 

Refer to VisualDSP++ 4.0 Product Release Bulletin for information on new 
and updated VisualDSP++ 4.0 features and other product release 
information.



VisualDSP++ 4.0 Loader Manual  xv 

Preface

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following 
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
dsptools.support@analog.com

• E-mail processor questions to
dsp.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized 
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA



Supported Processors

 xvi VisualDSP++ 4.0 Loader Manual

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in 
VisualDSP++ 4.0.

Blackfin (ADSP-BFxxx) Processors

The name “Blackfin” refers to a family of 16-bit, embedded processors. 
VisualDSP++ currently supports the following Blackfin processors.

SHARC (ADSP-21xxx) Processors

The name “SHARC” refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and 
imaging applications. VisualDSP++ currently supports the following 
SHARC processors.

ADSP-BF531 ADSP-BF532 (formerly ADSP-21532)

ADSP-BF533 ADSP-BF534

ADSP-BF535 (formerly ADSP-21535) ADSP-BF536

ADSP-BF537 ADSP-BF538

ADSP-BF539 ADSP-BF561

ADSP-BF566 AD6532

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062

ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261

ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21363

ADSP-21364 ADSP-21365 ADSP-21366 ADSP-21367

ADSP-21368 ADSP-21369



VisualDSP++ 4.0 Loader Manual  xvii 

Preface

TigerSHARC (ADSP-TSxxx) Processors

The name “TigerSHARC” refers to a family of floating-point and 
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently 
supports the following TigerSHARC processors.

Product Information
You can obtain product information from the Analog Devices Web site, 
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits, 
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows 
customization of a Web page to display only the latest information on 
products you are interested in. You can also choose to receive weekly 
e-mail notifications containing updates to the Web pages that meet your 
interests. MyAnalog.com provides access to books, application notes, data 
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com. 
Registration takes about five minutes and serves as a means to select the 
information you want to receive.

If you are already a registered user, just log on. Your user name is your 
e-mail address. 

ADSP-TS101 ADSP-TS201 ADSP-TS202 ADSP-TS203



Product Information

 xviii VisualDSP++ 4.0 Loader Manual

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at 
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product 
announcements. 

You may also obtain additional information about Analog Devices and its 
products in any of the following ways.

• E-mail questions or requests for information to 
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

Related Documents 
For information on product related development software, see these 
publications:

• VisualDSP++ 4.0 User’s Guide

• VisualDSP++ 4.0 Getting Started Guide

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for SHARC 
Processors 

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for 
TigerSHARC Processors 

• VisualDSP++ 4.0 C/C++ Compiler and Library Manual for Blackfin 
Processors 



VisualDSP++ 4.0 Loader Manual  xix 

Preface

• VisualDSP++ 4.0 Linker and Utilities Manual

• VisualDSP++ 4.0 Assembler and Preprocessor Manual

• VisualDSP++ 4.0 Product Release Bulletin

• VisualDSP++ 4.0 Kernel (VDK) User’s Guide 

• VisualDSP++ 4.0 Quick Installation Reference Card

For hardware information, refer to your processors’s hardware reference, 
programming reference, or data sheet. All documentation is available 
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:

http://www.analog.com/processors/resources/technicalLibrary 

Online Technical Documentation 
Online documentation comprises the VisualDSP++ Help system, software 
tools manuals, hardware tools manuals, processor manuals, the Dinkum 
Abridged C++ library, and Flexible License Manager (FlexLM) network 
license manager software documentation. You can easily search across the 
entire VisualDSP++ documentation set for any topic of interest. For easy 
printing, supplementary .PDF files of most manuals are also provided. 



Product Information

 xx VisualDSP++ 4.0 Loader Manual

Each documentation file type is described as follows.

If documentation is not installed on your system as part of the software 
installation, you can add it from the VisualDSP++ CD-ROM at any time 
by running the Tools installation. Access the online documentation from 
the VisualDSP++ environment, Windows® Explorer, or the Analog 
Devices Web site.

Accessing Documentation From VisualDSP++ 

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents, 
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows). 

Accessing Documentation From Windows 

In addition to any shortcuts you may have constructed, there are many 
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

File Description

.CHM Help system files and manuals in Help format 

.HTM or 

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as 
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF). 
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat 
Reader (4.0 or higher).



VisualDSP++ 4.0 Loader Manual  xxi 

Preface

Help system files (.CHM) are located in the Help folder, and .PDF files are 
located in the Docs folder of your VisualDSP++ installation CD-ROM. 
The Docs folder also contains the Dinkum Abridged C++ library and the 
FlexLM network license manager software documentation. 

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files. 

• Double-click any file that is part of the VisualDSP++ documenta-
tion set. 

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and 
choosing Programs, Analog Devices, VisualDSP++, and 
VisualDSP++ Documentation.

Accessing Documentation From the Web

Download manuals at the following Web site: 
http://www.analog.com/processors/resources/technicalLibrary/manuals

Select a processor family and book title. Download archive (.ZIP) files, one 
for each manual. Use any archive management software, such as WinZip, 
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature 
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts. 

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals 
may be purchased only as a kit.   



Product Information

 xxii VisualDSP++ 4.0 Loader Manual

If you do not have an account with Analog Devices, you are referred to 
Analog Devices distributors. For information on our distributors, log onto 
http://www.analog.com/salesdir/continent.asp. 

Hardware Tools Manuals

To purchase EZ-KIT Lite™ and In-Circuit Emulator (ICE) manuals, call 
1-603-883-2430. The manuals may be ordered by title or by product 
number located on the back cover of each manual.   

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered 
through the Literature Center at 1-800-ANALOGD (1-800-262-5643), 
or downloaded from the Analog Devices Web site. Manuals may be 
ordered by title or by product number located on the back cover of each 
manual.   

Data Sheets

All data sheets (preliminary and production) may be downloaded from the 
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A, 
B, C, and so on) can be obtained from the Literature Center at 
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from 
the Web site. 

To have a data sheet faxed to you, call the Analog Devices Faxback System 
at 1-800-446-6212. Follow the prompts and a list of data sheet code 
numbers will be faxed to you. If the data sheet you want is not listed, 
check for it on the Web site.



VisualDSP++ 4.0 Loader Manual  xxiii 

Preface

Notation Conventions
Text conventions used in this manual are identified and described as 
follows. 

Example Description

Close command 
(File menu)

Titles in reference sections indicate the location of an item within the 
VisualDSP++ environment’s menu system (for example, the Close 
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly 
brackets and separated by vertical bars; read the example as this or 
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets 
delimited by commas and terminated with an ellipse; read the example 
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with 
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the 
online version of this book, the word Note appears instead of this 
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ... 
A Caution identifies conditions or inappropriate usage of the product 
that could lead to undesirable results or product damage. In the online 
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ... 
A Warning identifies conditions or inappropriate usage of the product 
that could lead to conditions that are potentially hazardous for devices 
users. In the online version of this book, the word Warning appears 
instead of this symbol.



Notation Conventions

 xxiv VisualDSP++ 4.0 Loader Manual

Additional conventions, which apply only to specific chapters, may 
appear throughout this document. 



VisualDSP++ 4.0 Loader Manual 1-1 

1 INTRODUCTION 

The majority of this manual describes the loader program (or loader util-
ity) as well as the process of loading and splitting, the final phase of an 
application program’s development flow. 

Most of this chapter applies to all 8-, 16-, and 32-bit data processors. 
Information applicable to a particular target processor, or to a particular 
processor family, is provided in the following chapters.

• Chapter 2, “Loader/Splitter for Blackfin Processors”

• Chapter 3, “Loader for ADSP-TSxxx TigerSHARC Processors”

• Chapter 4, “Loader for ADSP-2106x/21160 SHARC Processors”

• Chapter 5, “Loader for ADSP-21161 SHARC Processors”

• Chapter 6, “Loader for ADSP-2126x/2136x SHARC Processors”

• Chapter 7, “Splitter for SHARC and TigerSHARC Processors”

The code examples in this manual have been compiled using 
VisualDSP++ 4.0. The examples compiled with another version of 
VisualDSP++ may result in build errors or different output; 
although, the highlighted algorithms stand and should continue to 
stand in future releases of VisualDSP++.



Program Development Flow

1-2 VisualDSP++ 4.0 Loader Manual

Program Development Flow
Figure 1-1 is a simplified view of the application development flow. 

The development flow can be split into three phases:

1. “Compiling and Assembling”

2. “Linking”

3. “Loading, Splitting, or Both”

A brief description of each phase follows.

Compiling and Assembling
Input source files are compiled and assembled to yield object files. Source 
files are text files containing C/C++ code, compiler directives, possibly a 
mixture of assembly code and directives, and, typically, preprocessor com-
mands. Refer to the VisualDSP++ 4.0 Assembler and Preprocessor Manual 

Figure 1-1. Program Development Flow and Booting Sequence



VisualDSP++ 4.0 Loader Manual 1-3 

Introduction

or the VisualDSP++ 4.0 C/C++ Compiler and Library Manual for your 
processor, and online help for information about the assembler and 
compiler.

Linking
Under the direction of the Linker Description File (LDF) and linker set-
tings, the linker consumes separately-assembled object and library files to 
yield an executable file. If specified, the linker also produces the shared 
memory files and overlay files. The linker output (.DXE files) conforms to 
the Executable and Linkable Format (ELF), an industry-standard format 
for executable files. The linker also produces map files and other embed-
ded information (DWARF-2) used by the debugger. 

These executable files are not readable by the processor hardware directly. 
They are neither supposed to be burned onto an EPROM or flash memory 
device. Executable files are intended for VisualDSP++ debugging targets, 
such as the simulator or emulator. Refer to the VisualDSP++ 4.0 Linker 
and Utilities Manual and online Help for information about linking and 
debugging. 

Loading, Splitting, or Both
Upon completing the debug cycle, the processor hardware needs to run on 
its own, without any debugging tools connected. After power-up, the 
processor’s on-chip and off-chip memories need to be initialized. The pro-
cess of initializing memories is often referred to as booting. Therefore, the 
linker output must be transformed to a format readable by the processor. 
This process is handled by the loader/splitter program. The loader/splitter 
uses the debugged and tested executable files as well as shared memory and 
overlay files as inputs to yield a processor-loadable file.



Program Development Flow

1-4 VisualDSP++ 4.0 Loader Manual

VisualDSP++ 4.0 includes these loader/splitter programs:

• elfloader.exe (loader) for Blackfin, TigerSHARC, and SHARC 
processors. The loader for Blackfin processors acts also as a ROM 
splitter when invoked with the corresponding option settings or 
switches.

• elfspl21k.exe (splitter) for TigerSHARC and SHARC processors.

The loader/splitter output is either a boot-loadable or non-bootable file. 
The output is meant to be loaded onto the target. There are several ways 
to use the output: 

• Download the loadable file into the processor PROM space on an 
EZ-KIT Lite® board via the Flash Programmer plug-in. Refer to 
VisualDSP++ Help for information on the Flash Programmer.

• Use VisualDSP++ to simulate booting in a simulator session (where 
supported). Load the loader file and then reset the processor to 
debug the booting routines. No hardware is required: just point to 
the location of the loader file, letting the simulator to do the rest. 
You can step through the boot kernel code as it brings the rest of 
the code into memory.

• Store the loader file in an array on a multiprocessor system. A mas-
ter (host) processor has the array in its memory, allowing a full 
control to reset and load the file into the memory of a slave 
processor.

Non-bootable Files Versus Boot-loadable Files 
A non-bootable file executes from an external memory of the processor, 
while a boot-loadable file is transported into and executes from an internal 
memory of the processor. The boot-loadable file is then programmed 
(burned into EPROM) into an external memory device within your target 
system. The loader outputs loadable files in formats readable by most 



VisualDSP++ 4.0 Loader Manual 1-5 

Introduction

EPROM burners, such as Intel hex-32 and Motorola S formats. For 
advanced usage, other file formats and boot modes are supported. (See 
“File Formats” on page A-1.)

A non-bootable EPROM image file executes from an external memory of 
the processor, bypassing the built-in boot mechanisms. Preparing a 
non-bootable EPROM image is called splitting. In most cases (except for 
Blackfin processors), developers working with floating- and fixed-point 
processors use the splitter instead of the loader to produce a non-bootable 
memory image file.

A booting sequence of the processor and application program design dic-
tate the way loader/splitter program is called to consume and transform 
executable files:

• For Blackfin processors, splitter and loader operations are handled 
by the loader program, elfloader.exe. The splitter is invoked by a 
different set of command-line switches than the loader. 

• For TigerSHARC and SHARC processors, splitter operations are 
handled by the splitter program, elfspl21k.exe. 

Loader Operations

You can run the loader from the IDDE. In order to do so, change the 
project type from DSP Executable to DSP Loader File.

Loader operations depend on loader options, which control how the 
loader processes executable files into boot-loadable files, letting you select 
features such as kernels, boot modes, and output file formats. These 
options are set on the Load page of the Project Options dialog box in the 
VisualDSP++ Integrated Development and Development Environment 
(IDDE) or on the loader command line. Option settings on the Load page 
correspond to switches typed on the elfloader.exe command line.



Booting Modes

1-6 VisualDSP++ 4.0 Loader Manual

Splitter Operations

Splitter operations depend on splitter options, which control how the 
splitter processes executable files into non-bootable files:

• For Blackfin processor, the loader program includes the ROM 
splitter capabilities invoked through the Load page, the ROM 
splitter options category of the Project Options dialog box. Refer 
to “Using the ROM Splitter” on page 2-62. Option settings on the 
Load page correspond to switches typed on the elfloader.exe 
command line. 

• For ADSP-21xxx SHARC and ADSP-TSxxx TigerSHARC proces-
sors, change the project type to DSP splitter file. The splitter 
options are set via the Split page of the Project Options dialog box. 
Refer to “Splitter for SHARC and TigerSHARC Processors” on 
page 7-1. Option settings on the Splitter page correspond to 
switches typed on the elfspl21k.exe command line. 

Booting Modes
Once an executable file is fully debugged, the loader is ready to convert 
the executable file into a processor-loadable (or boot-loadable) file. The 
loadable file can be automatically downloaded (booted) to the processor 
after power-up or after a software reset. The way the loader creates a 
boot-loadable file depends upon how the loadable file is booted into the 
processor.

The boot mode of the processor is determined by sampling one or more of 
the input flag pins. Booting sequences, highly processor-specific, are 
detailed in the following chapters.



VisualDSP++ 4.0 Loader Manual 1-7 

Introduction

Analog Devices processors support different boot mechanisms. In general, 
the following schemes can be used to provide program instructions to the 
processors after reset.

• “No-Boot Mode”

• “PROM Boot Mode”

• “Host Boot Mode” 

No-Boot Mode
After reset, the processor starts fetching and executing instructions from 
EPROM/flash memory devices directly. This scheme does not require any 
loader mechanism. It is up to the user program to initialize volatile 
memories. 

The splitter utility generates a file that can be burned into the PROM 
memory.

PROM Boot Mode
After reset, the processor starts reading data from a parallel or serial 
PROM device. The PROM stores a formatted boot stream rather than raw 
instruction code. Beside application data, the boot stream contains addi-
tional data, such as destination addresses and word counts. A small 
program called kernel, loader kernel, or boot kernel (described on page 1-8) 
parses the boot stream and initializes memories accordingly. The loader 
kernel runs on the target processor. Depending on the architecture, the 
loader kernel may execute from on-chip boot RAM or may be preloaded 
from the PROM device into on-chip SRAM and execute from there.

The loader utility generates the boot stream from the linker output (an 
executable file) and stores it to file format that can be burned into the 
PROM.



Boot Kernels

1-8 VisualDSP++ 4.0 Loader Manual

Host Boot Mode
In this scheme, the target processor is a slave to a host system. After reset, 
the processor delays program execution until the slave gets signalled by the 
host system that the boot process has completed. Depending on hardware 
capabilities, there are two different methods of host booting. In the first 
case, the host system has full control over all target memories. The host 
halts the target while initializing all memories as required. In the second 
case, the host communicates by a certain handshake with the loader kernel 
running on the target processor. This kernel may execute from on-chip 
ROM or may be preloaded by the host devices into the processor’s SRAM 
by any bootstrapping scheme.

The loader/splitter utility generates a file that can be consumed by the 
host device. It depends on the intelligence of the host device and on the 
target architecture whether the host expects raw application data or a for-
matted boot stream.

In this context, a boot-loadable file differs from a non-bootable file in that 
it stores instruction code in a formatted manner in order to be processed 
by a boot kernel. A non-bootable file stores raw instruction code.

Boot Kernels
A boot kernel (or loader kernel) refers to the resident program in the boot 
ROM space responsible for booting the processor. Alternatively (or in 
absence of the boot ROM), the boot kernel can be preloaded from the 
boot source by a bootstrapping scheme.

When a reset signal is sent to the processor, the processor starts booting 
from a PROM, host device, or through a communication port. For exam-
ple, an ADSP-2106x/2116x processor brings a 256-word program into 
internal memory for execution. This small program is a boot kernel. 



VisualDSP++ 4.0 Loader Manual 1-9 

Introduction

The boot kernel then brings the rest of the application code into the pro-
cessor’s memory. Finally, the boot kernel overwrites itself with the final 
block of application code and jumps to the beginning of the application 
program. 

Some of the newer Blackfin processors (ADSP-BF531, ADSP-BF532, 
ADSP-BF533, ADSP-BF534, ADSP-BF535, ADSP-BF536, 
ADSP-BF537, ADSP-BF538, and ADSP-BF539) do not require a boot 
kernel—the on-chip boot ROM allows the entire application program’s 
body to be booted into the internal memory of the processor. The on-chip 
boot ROM for the former Blackfin processors behaves similar to the 
second-stage loader of the ADSP-BF535 processors. The boot ROM has 
the capability to parse address and count information for each bootable 
block.

Loader Tasks
Common tasks performed by the loader include:

• Processing loader option settings or command-line switches.

• Formatting the output .LDR file according to user specifications. 
Supported formats are binary, ASCII, hex-32, and more. Valid file 
formats are described in “File Formats” on page A-1.

• Packing the code for a particular data format: 8-, 16- or 32-bit for 
some processors.

• Adding the code and data from a specified initialization executable 
file to the loader file, if applicable.

• Adding a boot kernel on top of the user code. 



Boot Streams

1-10 VisualDSP++ 4.0 Loader Manual

• If specified, preprogramming the location of the .LDR file in a 
specified PROM space. 

• Specifying processor IDs for multiple input .DXE files for a 
multiprocessor system, if applicable.

Boot Streams 
The loader output (.LDR file) is essentially the same executable code as in 
the input .DXE file; the loader simply repackages the executable as shown 
in Figure 1-2). 

Processor code and data in a loader file (also called a boot stream) is split 
into blocks. Each code block is marked with a tag that contains informa-
tion about the block, such as the number of words or destination in the 
processor’s memory. Depending on the processor family, there may be 

Figure 1-2. A .DXE File Versus an .LDR File

.LDR FILE

CODE

DATA

SYMBOLS

D EBUG
INFORMATION

.DXE FILE

CODE

DATA

SYMBOLS

DEB UG
INFORMATION

A .DXE file includes:
- D SP instructions (code and data)
- Sym bol table and section inform ation
- Target processor mem ory layout
- D ebug inform ation

An .LDR file includes:
- DSP instructions (code and data)
- Rudimentary formatting

(all debug information has
been taken out)



VisualDSP++ 4.0 Loader Manual 1-11 

Introduction

additional information in the tag. Common block types are “zero” (mem-
ory is filled with 0s); nonzero (code or data); and final (code or data). 
Depending on the processor family, there may be other block types. 

Refer to the following chapters to learn more about boot streams.

File Searches
File searches are important in the loader operation. The loader supports 
relative and absolute directory names and default directories. File searches 
occur as follows.

• Specified path—If relative or absolute path information is included 
in a file name, the loader searches only in that location for the file.

• Default directory—If path information is not included in the file 
name, the loader searches for the file in the current working 
directory.

• Overlay and shared memory files—The loader recognizes overlay 
and shared memory files but does not expect these files on the 
command line. Place the files in the directory that contains the 
executable file that refers to them, or place them in the current 
working directory. The loader can locate them when processing the 
executable file.

When providing an input or output file name as a loader/splitter com-
mand-line parameter, use these guidelines:

• Enclose long file names within straight quotes, “long file name”.

• Append the appropriate file extension to each file.



Boot Streams

1-12 VisualDSP++ 4.0 Loader Manual



VisualDSP++ 4.0 Loader Manual 2-1 

2 LOADER/SPLITTER FOR 
BLACKFIN PROCESSORS

This chapter explains how the loader/splitter program (elfloader.exe) is 
used to convert executable (.DXE) files into boot-loadable or non-bootable 
files for the ADSP-BF5xx Blackfin processors. 

Refer to “Introduction” on page 1-1 for the loader overview; the introduc-
tory material applies to all processor families. Loader operations specific to 
ADSP-BF5xx Blackfin processors are detailed in the following sections. 

• “Blackfin Processor Booting” on page 2-2 

Provides general information on various booting modes, including 
information on second-stage kernels:

• “ADSP-BF535 Processor Booting” on page 2-2

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ 
BF538/BF539 Processor Booting” on page 2-17

• “ADSP-BF561 and ADSP-BF566 Processor Booting” on 
page 2-37

• “Blackfin Processor Loader Guide” on page 2-49

Provides reference information on the loader’s command-line 
syntax and switches.



Blackfin Processor Booting

2-2 VisualDSP++ 4.0 Loader Manual 

Blackfin Processor Booting
A Blackfin processor can be booted from an 8- or 16-bit flash/PROM 
memory or an 8-,16-, or 24-bit addressable SPI memory. (Only the 
ADSP-BF531/BF532/BF533/BF534/BF535/BF536/BF537/BF538/ 
BF539 processors support 24-bit addressable SPI memory booting.) There 
is also a no-boot option (bypass mode) in which execution occurs from a 
16-bit external memory.

At power-up, after the reset, the processor transitions into a boot mode 
sequence configured by the BMODE pins. These pins can be read through 
bits in the System Reset Configuration Register (SYSCR). The BMODE pins 
are dedicated mode-control pins; that is, no other functions are shared 
with these pins.

Refer to the processor’s Data Sheet and Hardware Reference for 
more information on system configuration, peripherals, registers, 
and operating modes. 

ADSP-BF535 Processor Booting
Upon reset, an ADSP-BF535 processor jumps to an external 16-bit mem-
ory for execution (if BMODE = 000) or to the on-chip boot ROM (if 
BMODE = 001, 010, 011). Table 2-1 summarizes booting modes and code 
execution start addresses for ADSP-BF535 processors.

Table 2-1. ADSP-BF535 Processor Boot Mode Selections

Boot Source BMODE[2:0] Execution Start Address

Execute from a 16-bit external memory (Async Bank 
0); no-boot mode (bypass on-chip boot ROM)    

000 0x2000 0000

Boot from an 8-bit/16-bit flash memory 001 0xF000 00001

Boot from an 8-bit address SPI0 serial EEPROM 010 0xF000 00001



VisualDSP++ 4.0 Loader Manual 2-3 

Loader/Splitter for Blackfin Processors

A description of each boot mode is as follows.

• “ADSP-BF535 Processor On-Chip Boot ROM” on page 2-3

• “ADSP-BF535 Processor Second-Stage Loader” on page 2-5

• “ADSP-BF535 Processor Boot Streams” on page 2-8

• “ADSP-BF535 Processor Memory Ranges” on page 2-15

ADSP-BF535 Processor On-Chip Boot ROM

The on-chip boot ROM for the ADSP-BF535 processor does the follow-
ing (Figure 2-1).

1. Sets up Supervisor mode by exiting the RESET interrupt service rou-
tine and jumping into the lowest priority interrupt (IVG15).

2. Checks whether the RESET was a software reset and if so, whether to 
skip the entire boot sequence and jump to the start of L2 memory 
(0xF000 0000) for execution. The on-chip boot ROM does this by 
checking bit 4 of the System Reset Configuration Register (SYSCR). 
If bit 4 is not set, the on-chip boot ROM performs the full boot 
sequence. If bit 4 is set, the on-chip boot ROM bypasses the full 
boot sequence and jumps to 0xF000 0000. The register settings are 
shown in Figure 2-2. 

Boot from a 16-bit address SPI0 serial EEPROM 011 0xF000 00001

Reserved 111—100 N/A

1   The processor jumps to this location after the booting is complete.

Table 2-1. ADSP-BF535 Processor Boot Mode Selections (Cont’d)

Boot Source BMODE[2:0] Execution Start Address



Blackfin Processor Booting

2-4 VisualDSP++ 4.0 Loader Manual 

Figure 2-1. ADSP-BF535 Processors: On-Chip Boot ROM

Figure 2-2. ADSP-BF535 Processors: System Reset Configuration Register

ADSP-BF535 Processor

4-Byte Header (N)

N
Bytes

0x0

2nd Stage Loader
or

Application
Code

PROM/Flash or SPI Device

2nd Stage
Loader

or
Application

L2 Memory
(0xF000 0000)

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader
or

Application
Code

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

BMODE 2-0 - RO
 000 - Bypass boot ROM,
          execute from 16-bit-wide
          external memory.
 001 - Use boot ROM to load
          from 8-bit/16-bit flash.
 010 - Use boot ROM to configure
          and load boot code from
          SPI0 serial ROM
          (8-bit address range).
 011 - Use boot ROM to configure
          and load boot code from
          SPI0 serial ROM
          (16-bit address range).
 100-111 - Reserved 

0 0 0 0 0 0 0 0 0 0 0 0 X X X Reset = dependent on pin values

System Reset Configuration Register (SYSCR)

X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
 0 - Use BMODE to determine
      boot source.
 1 - Start executing from the
      beginning of on-chip L2 memory
      (or the beginning of ASYNC Bank 0
      when BMODE[2:0] = b#000). 



VisualDSP++ 4.0 Loader Manual 2-5 

Loader/Splitter for Blackfin Processors

3. Finally, if bit 4 of the SYSCR register is not set, performs the full 
boot sequence. The full boot sequence includes:

Checking the boot source (either flash/PROM or SPI mem-
ory) by reading BMODE[2:0] from the SYSCR register.

Reading the first four bytes from location 0x0 of the exter-
nal memory device. These four bytes contain the byte 
count (N), which specifies the number of bytes to boot in. 

Booting in N bytes into internal L2 memory starting at loca-
tion 0xF000 0000.

Jumping to the start of L2 memory for execution.

The on-chip boot ROM boots in N bytes from the external memory. These 
N bytes can define the size of the actual application code or a second-stage 
loader (called a boot kernel) that boots in the application code.

ADSP-BF535 Processor Second-Stage Loader

The only situation where a second-stage loader is unnecessary is when the 
application code contains only one section starting at the beginning of L2 
memory (0xF000 0000). 

A second-stage loader must be used in applications in which multiple seg-
ments reside in L2 memory or in L1 memory and/or SDRAM. In 
addition, a second-stage loader must be used to change the wait states or 
hold time cycles for a flash/PROM booting or to change the baud rate for 
an SPI boot (see “Command-Line Switches” on page 2-51 for more infor-
mation on these features). 



Blackfin Processor Booting

2-6 VisualDSP++ 4.0 Loader Manual 

When a second-stage loader is used for booting, the following sequence 
occurs.

1. Upon RESET, the on-chip boot ROM downloads N bytes (the 
second-stage loader) from external memory to address 0xF000 0000 
in L2 memory (Figure 2-3).

Figure 2-3. ADSP-BF535 Processors: Booting With Second-Stage Loader

ADSP-BF535 Processor

4-Byte Header (N)

2nd Stage Loader N
Bytes

0x0

Application
Code/Data

PROM/Flash or SPI Device

L2 Memory
(0xF000 0000)

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader



VisualDSP++ 4.0 Loader Manual 2-7 

Loader/Splitter for Blackfin Processors

2. The second-stage loader copies itself to the bottom of L2 memory.

3. The second-stage loader boots in the application code/data into the 
various memories of the Blackfin processor (Figure 2-5).

Figure 2-4. ADSP-BF535 Processors: Copying Second-Stage Loader 

Figure 2-5. ADSP-BF535 Processors: Booting Application Code

4-Byte Header (N)

2nd Stage Loader

PROM/Flash or SPI Device

0x0

Application
Code/Data

ADSP-BF535 Processor

2nd Stage Loader
or

Application
Code

L2 Memory
(0xF000 0000)

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader

2nd Stage Loader

ADSP-BF535 Processor

2nd Stage Loader
or

Application
Code

0xEF00 0000

On-Chip
Boot ROM 2nd Stage Loader

2nd Stage Loader

A

B

L1 Memory

L2 Memory
(0xF000 0000)

4-By te Header (N)

2nd Stage Loader

0x0

Application
Code/ Data

A

B

C

PROM/Flash or SPI Device

C

SDRAM



Blackfin Processor Booting

2-8 VisualDSP++ 4.0 Loader Manual 

4. Finally, after booting, the second-stage loader jumps to the start of 
L2 memory (0xF000 0000) for application code execution 
(Figure 2-6).

ADSP-BF535 Processor Boot Streams

The loader generates the boot stream and places the boot stream in the 
output loader (.LDR) file. The loader prepares the boot stream in a way that 
enables the on-chip boot ROM and the second-stage loader to load the 
application code and data to the processor memory correctly. Therefore, 
the boot stream contains not only the user application code but also 
header and flag information that is used by the on-chip boot ROM and 
the second-stage loader. 

Figure 2-6. ADSP-BF535 Processors: Starting Application Code

ADSP-BF535 Processor

0xEF00 0000

On-Chip
Boot ROM

2nd Stage Loader

A

B

L1 Memory

L2 Memory
(0xF000 0000)

4-Byte Header (N)

2nd Stage Loader

0x0

Application
Code/Data

A

B

C

PROM/Flash or SPI Device

C

SDRAM



VisualDSP++ 4.0 Loader Manual 2-9 

Loader/Splitter for Blackfin Processors

Diagrams in this section illustrate boot streams utilized by the 
ADSP-BF535 processor’s boot kernel:

• “Loader Files Without a Second-Stage Loader” on page 2-9

• “Loader Files With a Second-Stage Loader” on page 2-11

• “Global Headers” on page 2-13

• “Blocks, Block Headers, and Flags” on page 2-14

Loader Files Without a Second-Stage Loader

Figure 2-7 is a graphical representation of an output loader file for 8-bit 
PROM/flash booting and 8-/16-bit addressable SPI booting without the 
second-stage loader (kernel).

Figure 2-7. Loader File for 8-/16-bit PROM/Flash Booting Without Kernel 

4-Byte Header for
Byte Count (N)

Byte 0

Byte 1

Byte 2

Byte 3

........

........

........

Output .LDR File

Application
Code
(N Words)

Byte Count for
Application Code

D7 D0



Blackfin Processor Booting

2-10 VisualDSP++ 4.0 Loader Manual 

Figure 2-8 is a graphical representation of an output loader file for 16-bit 
PROM/flash booting without the second-stage loader (kernel).

Figure 2-8. Loader File for 16-bit PROM/Flash Booting Without Kernel

4-ByteHeader for
ByteCount (N)

Byte0

Byte1

Byte2

Byte3

........

........

Output .LDRFile

Byte Count for
Application Code

0x00

0x00

0x00

0x00

0x00

D15 D8 D7 D0

Application
Code
(N Words)

........

0x00

0x00

0x00



VisualDSP++ 4.0 Loader Manual 2-11 

Loader/Splitter for Blackfin Processors

Loader Files With a Second-Stage Loader

Figure 2-9 is a graphical representation of an output loader file for 8-bit 
PROM/flash booting and 8- or 16-bit addressable SPI booting with the 
second-stage loader (kernel).

Figure 2-9. Loader File for 8-/16-bit PROM/Flash/SPI Booting With Kernel

4-Byte Header for
Byte Count (N)

Byte 0

Byte 1

Byte 2

Byte 0

Byte 1

Byte 2

........

Output .LDR File

2nd Stage Loader
(N Bytes)

Byte Count for
2nd Stage Loader

D7 D0

Application
Code
(in Blocks)

........

See also
Figure 2-12

See also
Figure 2-14



Blackfin Processor Booting

2-12 VisualDSP++ 4.0 Loader Manual 

An output loader file for 16-bit PROM/flash booting with the 
second-stage loader is illustrated in Figure 2-10.

Figure 2-10. Loader File for 16-bit PROM/Flash Booting With Kernel for 
ADSP-BF531/BF532/BF533 Silicon Revision 0.2 and Below

4-ByteHeader for
ByteCount (N)

Byte0

Byte1

Byte2

Byte0

........

Byte2

........

Output .LDRFile

2nd Stage
Loader

Byte Count for
2nd Stage Loader

0x00

0x00

0x00

0x00

0x00

Byte1

Byte3

Byte5

D15 D8 D7 D0

Byte4

........

Application
Code
(in Blocks)

See also
Figure 2-12

See also
Figure 2-14



VisualDSP++ 4.0 Loader Manual 2-13 

Loader/Splitter for Blackfin Processors

Global Headers 

Following the second-stage loader code and address in a loader file, there 
is a 4-byte global header. The header provides the global settings for a 
booting process (see Figure 2-11).

A global header for 8- and 16-bit PROM/flash booting is illustrated in 
Figure 2-12.

Figure 2-11. Global Header 

Figure 2-12. PROM/Flash Booting: Global Header Bits

ByteCount (N)

2nd Stage Loader

2ndStage Loader
Address

Global Header

Sizeof Application
Code (N1)

Application Code

Output .LDRFile

Address of the Bottom of L2 Memory
from which 2nd Stage Loader runs

Byte Count for
2nd Stage Loader

4Bytes

NBytes

4Bytes

4 Bytes

4Bytes

N1Bytes

See Figure 2-13

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Number of hold time cycles: 3 (default)
Number of wait states: 15 (default)
1 = 16-bit PROM/flash, 0 = 8-bit PROM/flash: 0 (default)



Blackfin Processor Booting

2-14 VisualDSP++ 4.0 Loader Manual 

A global header for 8- and 16-bit addressable SPI booting is illustrated in 
Figure 2-13. 

Blocks, Block Headers, and Flags

A block is the basic structure of the output .LDR file for application code 
when the second-stage loader is used. All the application code is grouped 
into blocks. A block always has a block header and a block body if it is a 
non-zero block. A block does not have a block body if it is a zero block. A 
block header is illustrated in Figure 2-14.

Figure 2-13. Addressable SPI Booting: Global Header Bits

Figure 2-14. Application Block

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Baud rate: 0 = 500 kHz (default), 1 = 1 MHz, 2 = 2 MHz 

Start Address
of Block 1

Sizeof Application
Code(N1)

Byte Count
of Block 1

Flag for Block 1

Body of Block 1

Start Address
of Block 2

Byte Count
of Block 2

......

4Bytes

4Bytes

2Bytes

ByteCount (N)

2nd StageLoader

2ndStageLoader
Address

Global Header

Sizeof Application
Code(N1)

Application Code

Output .LDRFile

4Bytes

NBytes

4Bytes

4Bytes

4Bytes

N1Bytes

Block
Header

Block



VisualDSP++ 4.0 Loader Manual 2-15 

Loader/Splitter for Blackfin Processors

A block header has three words: 4-byte clock start address, 4-byte block 
byte count, and 2-byte flag word.

The ADSP-BF535 block flag word’s bits are illustrated in Figure 2-15.

ADSP-BF535 Processor Memory Ranges

Second-stage loaders are available for ADSP-BF535 processors in 
VisualDSP++ 3.0 and higher. They allow booting to:

• L2 memory (0xF000 0000)

• L1 memory

Data Bank A SRAM (0xFF80 0000)

Data Bank B SRAM (0xFF90 0000)

Instruction SRAM (0xFFA0 0000)

Scratchpad SRAM (0xFFB0 0000)

• SDRAM 

Bank 0 (0x0000 0000)

Bank 1 (0x0800 0000)

Bank 2 (0x1000 0000)

Bank 3 (0x1800 0000)

SDRAM must be initialized by user code before any instructions or 
data are loaded into it.

Figure 2-15. Block Flag Word Bits

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit 15: 1 = Last Block, 0 = Not Last Block Bit 0: 1 = Zero-Fill, 0 = No Zero-Fill 



Blackfin Processor Booting

2-16 VisualDSP++ 4.0 Loader Manual 

For more information, see “Using the Second-Stage Loader” on 
page 2-59.

Second-Stage Loader Restrictions

Using the second-stage loader imposes the following restrictions.

• The bottom of L2 memory must be reserved during booting. These 
locations can be reallocated during runtime. The following loca-
tions pertain to the current second-stage loaders.

For 8- and 16-bit PROM/flash booting, reserve 
0xF003 FE00—0xF003 FFFF (last 512 bytes).

For 8- and 16-bit addressable SPI booting, reserve 
0xF003 FD00—0xF003 FFFF (last 768 bytes).

• If segments reside in SDRAM memory, configure the SDRAM reg-
isters accordingly in the second-stage loader kernels before booting.

Modify section of code called “SDRAM setup” in the 
second-stage loader and rebuild the second-stage loader.

• Any segments residing in L1 instruction memory 
(0xFFA0 0000–0xFFA0 3FFF) must be 8-byte aligned. 

Declare segments, within the .LDF file, that reside in L1 
instruction memory at starting locations that are 8-byte 
aligned (for example, 0xFFA0 0000, 0xFFA0 0008, 
0xFFA0 0010, and so on).

Use the .ALIGN 8; directives in the application code.



VisualDSP++ 4.0 Loader Manual 2-17 

Loader/Splitter for Blackfin Processors

The two reasons for these restrictions are:

• Core writes into L1 instruction memory are not allowed. 

• DMA from an 8-bit external memory is not possible since 
the minimum width of the External Bus Interface Unit 
(EBIU) is 16 bits.

Load bytes into L1 instruction memory by using the instruction test com-
mand and data registers, as described in the Memory chapter of the 
appropriate Hardware Reference manual. These registers transfer 8-byte 
sections of data from external memory to internal L1 instruction memory. 

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ 
BF538/BF539 Processor Booting

Upon reset, an ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ 
BF538/BF539 processor jumps to the on-chip boot ROM (if BMODE = 01, 
11) or jumps to 16-bit external memory for execution (if BMODE = 00) 
located at 0xEF00 0000. Table 2-2 shows booting modes and execution 
start addresses for ADSP-BF531, ADSP-BF532, ADSP-BF533, 
ADSP-BF534, ADSP-BF536, ADSP-BF537, ADSP-BF538, and 
ADSP-BF539 processors. 



Blackfin Processor Booting

2-18 VisualDSP++ 4.0 Loader Manual 

A description of each boot mode is as follows.

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Processor On-Chip Boot ROM” on page 2-19

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Processor Boot Streams” on page 2-21

Table 2-2. Processor Boot Mode Selections for ADSP-BF531/BF532/ 
BF533/BF534/BF536/BF537/BF538/BF539 Processors

Boot Source BMODE[1:0]
Execution Start Address 

ADSP-BF531 
ADSP-BF532
ADSP-BF538 

Processors

ADSP-BF533
ADSP-BF534
ADSP-BF536
ADSP-BF537
ADSP-BF539 

Processors

Execute from 16-bit External 
ASYNC Bank0 memory (no-boot 
mode or bypass on-chip boot ROM)    

00 0x2000 0000 0x2000 0000

Boot from 8- or 16-bit PROM/flash 01 0xFFA0 8000 0xFFA0 0000

Boot from SPI Host via SPI Slave 
Mode 

10 0xFFA0 8000 0xFFA0 0000

Boot from a 8-, 16-, or 24-bit 
addressable SPI memory 

11 0xFFA0 8000 0xFFA0 0000



VisualDSP++ 4.0 Loader Manual 2-19 

Loader/Splitter for Blackfin Processors

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Processor On-Chip Boot ROM

The on-chip boot ROM for ADSP-BF531/BF532/BF533/BF534/ 
BF536/BF537/BF538/BF539 processors does the following.

1. Sets up Supervisor mode by exiting the RESET interrupt service 
routine and jumping into the lowest priority interrupt (IVG15).

2. Checks whether the RESET was a software reset and, if so, whether 
to skip the entire sequence and jump to the start of L1 memory 
(0xFFA0 0000 for ADSP-BF533/BF534/BF536/BF537/BF539 
processors; 0xFFA0 8000 for ADSP-BF531/BF532/BF538) for 
execution. The on-chip boot ROM does this by checking bit 4 of 
the System Reset Configuration Register (SYSCR). See Figure 2-16. 
If bit 4 is not set, the on-chip boot ROM performs the full boot 
sequence. If bit 4 is set, the on-chip boot ROM bypasses the full 
boot sequence and jumps to the start of L1 memory.

Figure 2-16. ADSP-BF533 Processors: SYSCR Register

0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE[1:0] (Boot Mode) - RO
 00 - Bypass boot ROM,
        execute from 16-bit
        external memory.
 01 - Use boot ROM to load
        from 8-bit flash.
 10 - Use boot ROM to configure
        and load boot code from
        SPI serial ROM
        (8-bit address range).
 11 - Use boot ROM to configure
        and load boot code from
        SPI serial ROM
        (16-bit address range).

0 0 0 0 0 0 0 0 X X

Reset = dependent on pin 
values 

System Reset Configuration Register (SYSCR)
X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
 0 - Use BMODE to determine
      boot source.
 1 - Start executing from the
      beginning of on-chip L1 
      memory (or the beginning of
      ASYNC Bank 0 when 
      BMODE[1:0] = b#00).

0xFFC0 0104 0 0



Blackfin Processor Booting

2-20 VisualDSP++ 4.0 Loader Manual 

3. Eventually, if bit 4 of the SYSCR register is not set, performs the full 
boot sequence (Figure 2-17).

The booting sequence for ADSP-BF531/BF532/BF533/BF534/BF536/ 
BF537/BF538/BF539 processors is quite different from that for 
ADSP-BF535 processors. The on-chip boot ROM for the former 
processors behaves similar to the second-stage loader of ADSP-BF535 
processors. The boot ROM has the capability to parse address and count 
information for each bootable block. This alleviates the need for a 
second-stage loader for ADSP-BF531/BF532/BF533/BF534/BF536/ 
BF537/BF538/BF539 processors because a full application can be booted 
to the various memories with just the on-chip boot ROM.

The loader converts the application code (.DXE) into the loadable file by 
parsing the code and creating a file that consists of different blocks. Each 
block is encapsulated within a 10-byte header, which is illustrated in 
Figure 2-17 and detailed in the following section. These headers, in turn, 
are read and parsed by the on-chip boot ROM during booting.

Figure 2-17. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/
BF539 Processors: Booting Sequence

ADSP-BF531/BF532/BF533 Processor

10-Byte Header for Block 1

App.
Code/
Data

Block 1

PROM/Flash or SPI Device

L1 Memory
Block 1

SDRAM

Block 2

0xEF00 0000

Block 3
10-Byte Header for Block 2

Block 2

10-Byte Header for Block 3

Block 3

Block n

........

10-Byte Header for Block n

........

On-Chip
Boot ROM



VisualDSP++ 4.0 Loader Manual 2-21 

Loader/Splitter for Blackfin Processors

The 10-byte header provides all the information the on-chip boot ROM 
requires—where to boot the block to, how many bytes to boot in, and 
what to do with the block.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Processor Boot Streams

The following sections describe the boot stream, header, and flag frame-
work for the ADSP-BF531, ADSP-BF532, ADSP-BF533, ADSP-BF534, 
ADSP-BF536, ADSP-BF537, ADSP-BF538, and ADSP-BF539 
processors.

• “ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Blocks, Block Headers, and Flags” on page 2-21

• “Initialization Blocks” on page 2-24

The ADSP-BF531/BF532/BF533 processor boot stream is similar to the 
boot stream that uses a second-stage kernel of ADSP-BF535 processors 
(detailed in “Loader Files With a Second-Stage Loader” on page 2-11). 
However, since the former processors do not employ a kernel, their boot 
streams do not include the kernel code and the associated 4-byte header 
on the top of the kernel code. There is also no 4-byte global header.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Blocks, 
Block Headers, and Flags

As the loader converts the code from an input .DXE file into blocks com-
prising the output loader file, each block is getting preceded by a 10-byte 
header (Figure 2-18), followed by a block body (if it is a nonzero block) or 
no block body (if it is a zero block). A description of the header structure 
can be found in Table 2-3.



Blackfin Processor Booting

2-22 VisualDSP++ 4.0 Loader Manual 

Table 2-3. ADSP-BF531/BF532/BF533 Block Header Structure

Bit Field Description

Address 4-byte address at which the block resides in memory.

Count 4-byte number of bytes to boot. 

Flag 2-byte flag containing information about the block; the following text 
describes the flag structure.

Figure 2-18. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ 
BF539 Processors: Boot Stream Structure

DXE1 Byte Count

Header of DXE1 Count

Header of Block 1

Header for Block 2

Body of Block 2

Header of DXE2 Count

......

......

......

......

DXE2 Byte Count

4-Byte Address

4-Byte Count

2-Byte Flag

10-Byte Header

See Flag Information

Block

Boot Stream of the
Second Executable (DXE2)

Boot Stream of the
First Executable (DXE1)

Body of Block 2



VisualDSP++ 4.0 Loader Manual 2-23 

Loader/Splitter for Blackfin Processors

Refer to Figure 2-19 and Table 2-4 for the flag’s bit descriptions.

Note that the ADSP-BF537 processor may have a special last block if the 
boot mode is TWI (Two Wire Interface). The loader will save all the data 
from 0xFF903F00 to 0xFF903FFF and will make the last block with the 
data. The loader, however, will create a regular last block if no data is in 
that memory range. The space of 0xFF903F00 to 0xFF903FFF is saved for 
the boot ROM to use as a data buffer during a booting process.

Table 2-4. Flag Structure

Bit Field Description

Zero-Fill Block Indicates that the block is for a buffer filled with zeros. Zero block is not 
included within the loader file. When the loader parses through the .DXE file 
and encounters a large buffer with zeros, it creates a zero-fill block to reduce 
.LDR file size and boot time. If this bit is set, there is no block body in the 
block.

Ignore Block Indicates that the block is not to be booted into memory; skips the block and 
moves on to the next one. Currently is not implemented for application code.

Initialization 
Block 

Indicates that the block is to be executed before booting. The initialization 
block indicator allows the on-chip boot ROM to execute a number of instruc-
tions before booting the actual application code. When the on-chip boot ROM 
detects an Init Block, it boots the block into internal memory and makes a 
CALL to it (initialization code must have an RTS at the end). 
This option allows the user to run initialization code (such as SDRAM initial-
ization) before the full boot sequence proceeds. Figure 2-20 and Figure 2-21 
illustrate the process. Initialization code can be included within the .LDR file 
by using the -init switch (see “-init filename” on page 2-52).

Processor Type Indicates the processor, either ADSP-BF531/BF532/BF538 or 
ADSP-BF533/BF534/BF536/BF537/BF539. After booting is complete, the 
on-chip boot ROM jumps to 0xFFA0 0000 for an 
ADSP-BF533/BF536/BF537/BF539 processor and to 0xFFA0 8000 for an 
ADSP-BF531/BF532/BF538 processor.

Last Block Indicates that the block is the last block to be booted into memory. After the 
last block, the processor jumps to the start of L1 memory for application code 
execution. When it jumps to L1 memory for code execution, the processor is 
still in Supervisor mode and in the lowest priority interrupt (IVG15).



Blackfin Processor Booting

2-24 VisualDSP++ 4.0 Loader Manual 

Initialization Blocks

The -init filename option directs the loader to produce the initialization 
block from the code of the initialization section of the named file. The ini-
tialization blocks are placed at the top of a loader file. They are executed 
before the rest of the code in the loader file is booted into the memory (see 
Figure 2-20).

Following execution of the initialization blocks, the booting process 
continues with the rest of data blocks until it encounters a final block (see 
Figure 2-21). The initialization code example follows in Listing 2-1.

Listing 2-1. Initialization Block Code Example

/* This file contains 3 sections: */

/* 1) A Pre-Init Section–this section saves off all the

processor registers onto the stack.

2) An Init Code Section–this section is the initialization

code which can be modified by the customer

As an example, an SDRAM initialization code is supplied. 

The example setups the SDRAM controller as required by

certain SDRAM types. Different SDRAMs may require 

different initialization procedure or values.

Figure 2-19. Flag Bit Assignments for the 2-Byte Block Flag Word

015 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Last Block: 
     1 = Last Block, 0 = Not Last Block
Programmable Flag: 
     0 = Default, Selectable from 0–15

Ignore Block: 1 = Ignore Block, 0 = Do Not Ignore Block
Initialization Block: 1 = Init Block, 0 = No Init Block
Processor Type: 1 = ADSP-BF533/534/536/537/538/539
                          0 = ADSP-BF531/BF532
Zero-Fill: 1 = Zero-Fill Block, 0 = No Zero-Fill Block
Bits 14–9 are reserved for future use



VisualDSP++ 4.0 Loader Manual 2-25 

Loader/Splitter for Blackfin Processors

Figure 2-20. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ 
BF539 Processors: Initialization Block Execution

Figure 2-21. ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ 
BF539 Processors: Booting Application Code

ADSP-BF531/BF532/BF533 Processor

Header for Init Block

App.
Code/
Data

Init Block

PROM/Flash or SPI Device

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Chip
Boot ROM

Header for L1 Block

L1 Block

Header for SDRAM Block

SDRAM Block

Block n

........

10-Byte Header for Block n

ADSP-BF531/BF532/BF533 Processor

Header for Init Blo ck

App
Code
Data

.
/

Init Block

PROM/Flash or SPI Device

A

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Ch p
Boot ROM

i

Header for L1 Block

L1 Block

Header for SDRAM Block

SDRAM Block

Block n

........

10-Byte Header for Block n

L1 Block

SDRAM Block



Blackfin Processor Booting

2-26 VisualDSP++ 4.0 Loader Manual 

3) A Post-Init Section–this section restores all the register

from the stack. Customers should not modify the Pre-Init 
and Post-Init Sections. The Init Code Section can be

modified for a particular application.*/

#include <defBF532.h>

.SECTION program;

/**********************Pre-Init Section************************/

[--SP] = ASTAT; /* Stack Pointer (SP) is set to the end of */

[--SP] = RETS; /* scratchpad memory (0xFFB00FFC) */ 

[--SP] = (r7:0); /* by the on-chip boot ROM */

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;

[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/*******************Init Code Section**************************/

/*******Please insert Initialization code in this section******/

/***********************SDRAM Setup****************************/

Setup_SDRAM:

P0.L = EBIU_SDRRC & 0xFFFF;

/* SDRAM Refresh Rate Control Register */

P0.H = (EBIU_SDRRC >> 16) & 0xFFFF;

R0 = 0x074A(Z);

W[P0] = R0;

SSYNC;

P0.L = EBIU_SDBCTL & 0xFFFF;

/* SDRAM Memory Bank Control Register */

P0.H = (EBIU_SDBCTL >> 16) & 0xFFFF;

R0 = 0x0001(Z);

W[P0] = R0;

SSYNC;



VisualDSP++ 4.0 Loader Manual 2-27 

Loader/Splitter for Blackfin Processors

P0.L = EBIU_SDGCTL & 0xFFFF;

/* SDRAM Memory Global Control Register */

P0.H = (EBIU_SDGCTL >> 16) & 0xFFFF;//

R0.L = 0x998D;

R0.H = 0x0091;

[P0] = R0;

SSYNC;

/*********************Post-Init Section************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++]; 

(r7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/************************************************************/

RTS;



Blackfin Processor Booting

2-28 VisualDSP++ 4.0 Loader Manual 

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Processor Memory Ranges

The on-chip boot ROM on ADSP-BF531/BF532/BF533/BF534/BF536/ 
BF537/BF538/BF539 Blackfin processors allows booting to the following 
memory ranges.

• L1 memory

• ADSP-BF531 processor

Data Bank A SRAM (0xFF80 4000–0xFF80 7FFF)

Instruction SRAM (0xFFA0 8000–0xFFA0 BFFF)

• ADSP-BF532 processor

Data Bank A SRAM (0xFF80 4000–0xFF80 7FFF)

Data Bank B SRAM (0xFF90 4000–0xFF90 7FFF)

Instruction SRAM (0xFFA0 8000–0xFFA1 3FFF)

• ADSP-BF533 processor

Data Bank A SRAM (0xFF80 0000–0xFF80 7FFF)

Data Bank B SRAM (0xFF90 000–0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF534 processor

Data Bank A SRAM (0xFF80 0000–0xFF80 7FFF)

Data Bank B SRAM (0xFF90 0000–0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)



VisualDSP++ 4.0 Loader Manual 2-29 

Loader/Splitter for Blackfin Processors

• ADSP-BF535 processor

Data Bank A SRAM (0xFF80 0000–0xFF80 3FFF)

Data Bank B SRAM (0xFF90 0000–0xFF90 3FFF)

Instruction SRAM (0xFFA0 0000–0xFFA0 3FFF)

• ADSP-BF536 processor

Data Bank A SRAM (0xFF80 4000–0xFF80 7FFF)

Data Bank B SRAM (0xFF90 4000–0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF537 processor

Data Bank A SRAM (0xFF80 0000–0xFF80 7FFF)

Data Bank B SRAM (0xFF90 0000–0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)

• ADSP-BF538 processor

Data Bank A SRAM (0xFF80 4000–0xFF80 7FFF)

Data Bank B SRAM (0xFF90 4000–0xFF90 7FFF)

Instruction SRAM (0xFFA0 8000–0xFFA1 3FFF)

• ADSP-BF539 processor

Data Bank A SRAM (0xFF80 0000–0xFF80 3FFF)

Data Bank B SRAM (0xFF90 2000–0xFF90 7FFF)

Instruction SRAM (0xFFA0 0000–0xFFA1 3FFF)



Blackfin Processor Booting

2-30 VisualDSP++ 4.0 Loader Manual 

• SDRAM memory

Bank 0 (0x0000 0000–0x07FF FFFF)

Booting to scratchpad memory (0xFFB0 0000) is not supported.

SDRAM must be initialized by user code before any instructions or 
data are loaded into it.

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Processor SPI Slave Mode Boot via Master Host (BMODE = 10)

For SPI slave mode booting, the ADSP-BF531/BF532/BF533/BF534/ 
BF536/BF537/BF538/BF539 processor is configured as an SPI slave device 
and a host is used to boot the processor.

This boot mode is not supported in silicon revision 0.2 and earlier 
of the ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/ 
BF539 processors.

Figure 2-22 shows the pin-to-pin connections needed for SPI slave mode.

The host does not need any knowledge of the loader file stream to boot 
the Blackfin processor. It must be configured to send one byte at a time 
from the loader file (in ASCII format). In the above setup, PFx is the feed-
back strobe from the Blackfin processor to the master host device. This 
will be the signal used by the Blackfin processor to hold off the host dur-
ing certain times within the boot process (specifically during init code 
execution and zero-fill blocks). When PFx is asserted (high), the master 
host device must discontinue sending bytes to the Blackfin processor. 
When PFx is de-asserted (low), the master host device will resume sending 
bytes from where it left off. Since the PFx pin is not driven by the slave 
until the first block has been processed, consider using a resistor to pull 
down the feedback strobe.



VisualDSP++ 4.0 Loader Manual 2-31 

Loader/Splitter for Blackfin Processors

This PFx number is going to be user-defined and will be embedded within 
the loader file. The elfloader utility will embed this number in bits [8:5] of 
the FLAG field within every 10-byte header. It does this by using the 
-pflag number command-line switch where number is the intended PF 
flag used by the Blackfin slave and has a value between 1 and 15.

If the -pflag number switch is not used, the default value placed 
within bits 8:5 of the FLAG will be 0, indicating that PF0 will be 
assumed as the feedback signal to the host. Since PF0 is multiplexed 
with the /SPISS pin, which is mandatory for successful SPI slave 
boot, always use the -pflag switch and specify a value other than 0.

Figure 2-22. Pin-to-Pin Connections for ADSP-BF531/BF532/BF533 
Processor SPI Slave Mode 

SPICLK

S_SEL

MOSI

SPICLK

SPISS

MOSI

MISO

Host 
(Master SPI 

Device)

ADSP-BF533 
(Slave SPI) 

Device)

PFxFLAG / 
Interrupt

MISO



Blackfin Processor Booting

2-32 VisualDSP++ 4.0 Loader Manual 

ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Processor SPI Master Mode Boot via SPI Memory 
(BMODE = 11)

For SPI master mode booting, the ADSP-BF531/BF532/BF533/BF534/ 
BF536/BF537/BF538/BF539 processor is configured as a SPI master con-
nected to a SPI memory. The following shows the pin-to-pin connections 
needed for this mode.

Figure 2-23 shows the pin-to-pin connections needed for SPI master 
mode.

A pull-up resistor on MISO is required for this boot mode to work 
properly. For this reason, the ADSP-BF531/BF532/BF533/BF534/ 
BF536/BF537/BF538/ BF539 processor reads a 0xFF on the MISO 
pin if the SPI memory is not responding (that is, no data written 
on the MISO pin by the SPI memory).

Although the pull-up resistor on the MISO line is mandatory, additional 
pull-up resistors might also be worthwhile as well. Pull up the PF2 signal 
to ensure the SPI memory is not activated while the Blackfin processor is 
in reset. 

On silicon revision 0.2 and earlier, the CPHA and CPOL bits within 
the SPI Control (SPICTL) register were both set to 1. (Refer to the 
ADSP-BF533 Blackfin Processor Hardware Reference for informa-
tion on these bits.) For this reason, the SPI memory may detect an 
erroneous rising edge on the clock signal when it recovers from 
three-state. If the boot process fails because of this situation, a 
pull-up resistor on the SPICLK signal will alleviate the problem. On 
silicon revision 0.3, this was fixed by setting CPHA = CPOL = 0 within 
the SPI Control register.

The SPI memories supported by this interface are standard 8/16/24-bit 
addressable SPI memories (the read sequence is explained below) and the 
following Atmel SPI DataFlash devices: AT45DB041B, AT45DB081B, 
AT45DB161B.



VisualDSP++ 4.0 Loader Manual 2-33 

Loader/Splitter for Blackfin Processors

Standard 8/16/24-bit addressable SPI memories take in a read command 
byte of 0x03, followed by one address byte (for 8-bit addressable SPI 
memories), two address bytes (for 16-bit addressable SPI memories), or 
three address bytes (for 24-bit addressable SPI memories). After the cor-
rect read command and address are sent, the data stored in the memory at 
the selected address is shifted out on the MISO pin. Data is sent out sequen-
tially from that address with continuing clock pulses. Analog Devices has 
tested the following standard SPI memory devices.

• 8-bit addressable SPI memory: 25LC040 from Microchip

• 16-bit addressable SPI memory: 25LC640 from Microchip

• 24-bit addressable SPI memory: M25P80 from STMicroelectronics

Figure 2-23. Pin-to-pin connections for ADSP-BF531/BF532/BF533 Pro-
cessor SPI Master Mode 

SPICLK

PF2

MOSI

SPICLK

CS

MOSI

MISO MISO

ADSP-BF533 
(Master SPI 

Device)

10KΩ 

SPI Memory
(Slave SPI 

Device)

VDDEXT



Blackfin Processor Booting

2-34 VisualDSP++ 4.0 Loader Manual 

SPI Memory Detection Routine

Since BMODE = 11 supports booting from various SPI memories, the 
on-chip boot ROM will detect what type of memory is connected. To 
determine the type of memory (8-, 16-, or 24-bit addressable) connected 
to the processor, the on-chip boot ROM sends the following sequence of 
bytes to the SPI memory until the memory responds back. The SPI mem-
ory does not respond back until it is properly addressed. The on-chip boot 
ROM does the following.

1. Sends the read command, 0x03, on the MOSI pin then does a 
dummy read of the MISO pin.

2. Sends an address byte, 0x00, on the MOSI pin then does a dummy 
read of the MISO pin.

3. Sends another byte, 0x00, on the MOSI pin and checks whether the 
incoming byte on the MISO pin is anything other than 0xFF (This is 
the value from the pull-up resistor. For more information, refer to 
the following note.) An incoming byte that is not 0xFF means that 
the SPI memory has responded back after one address byte and an 
8-bit addressable SPI memory device is assumed to be connected.

4. If the incoming byte is 0xFF, the on-chip boot ROM sends another 
byte, 0x00, on the MOSI pin and checks whether the incoming byte 
on the MISO pin is anything other than 0xFF. An incoming byte 
other than 0xFF means that the SPI memory has responded back 
after two address bytes and a 16-bit addressable SPI memory device 
is assumed to be connected.

5. If the incoming byte is 0xFF, the on-chip boot ROM sends another 
byte, 0x00, on the MOSI pin and checks whether the incoming byte 
on the MISO pin is anything other than 0xFF. An incoming byte 
other than 0xFF means that the SPI memory has responded back 
after three address bytes and a 24-bit addressable SPI memory 
device is assumed to be connected.



VisualDSP++ 4.0 Loader Manual 2-35 

Loader/Splitter for Blackfin Processors

6. If an incoming byte is 0xFF (meaning no devices have responded 
back), the on-chip boot ROM assumes that one of the following 
Atmel DataFlash devices are connected: AT45DB041B, 
AT45DB081B, or AT45DB161B. These DataFlash devices have a 
different read sequence than the one described above for standard 
SPI memories. The on-chip boot ROM determines which of the 
above Atmel DataFlash memories are connected by reading the sta-
tus register.

For the SPI memory detection routine explained above, the 
on-chip boot ROM in silicon revision 0.2 and earlier checks 
whether the incoming data on the MISO pin is 0x00 (first byte of the 
loader file). The on-chip boot ROM in silicon revision 0.3 checks 
whether the incoming data on the MISO pin is anything other than 
0xFF. For this reason, SPI loader files built for silicon revision 0.2 
and earlier must have the first byte as 0x00. For silicon revision 0.3, 
the first byte of the loader file is set to 0x40.

The SPI baud rate register is set to 133, which, when based on a 54 MHz 
system clock, results in a 54 MHz/(2*133) = 203 kHz baud rate. On the 
ADSP-BF533 EZ-KIT Lite board, the default system clock frequency is 
54 MHz.

ADSP-BF534/BF536/BF537 Processor Booting

The ADSP-BF534/BF536/BF537 processors support the boot modes 
listed in Table 2-5. They include all the boot modes supported in the 
ADSP-BF531/BF532/BF533 processors in addition to booting from a 
TWI (Two Wire Interface) serial device, a TWI host, and a UART host.



Blackfin Processor Booting

2-36 VisualDSP++ 4.0 Loader Manual 

Table 2-5. ADSP-BF534/BF536/BF537 Processor Boot Modes

BMODE[2:0] Description

000 Executes from external 16-bit memory connected to ASYNC Bank0 (bypass 
boot ROM)

001 Boots from 8/16-bit flash/PROM

010 Reserved

011 Boots from a 8/16/24-bit addressable SPI memory in SPI Master mode with 
support for Atmel AT45DB041B, AT45DB081B, and AT45DB161B 
DataFlash® devices

100 Boots from a SPI host in SPI Slave mode

101 Boots from an TWI serial device

110 Boots from an TWI Host

111 Boots from a UART Host



VisualDSP++ 4.0 Loader Manual 2-37 

Loader/Splitter for Blackfin Processors

ADSP-BF561 and ADSP-BF566 Processor Booting
The booting sequence for the ADSP-BF561 and ADSP-BF566 dual-core 
processors is similar to the ADSP-BF531/BF532/BF533 processor booting 
sequence (described on page 2-17). Differences occur because the 
ADSP-BF561 processor has two cores: core A and core B. After reset, 
core B remains idle, but core A executes the on-chip boot ROM located at 
address 0xEF00 0000. 

Please refer to Chapter 3 of the ADSP-BF561 Blackfin Processor 
Hardware Reference manual for information about the processor’s 
operating modes and states. Please refer to the “System Reset and 
Power-up Configuration” section for background information on 
reset and booting.

The boot ROM loads an application program from an external memory 
device and starts executing that program by jumping to the start of 
core A’s L1 instruction SRAM, at address 0xFFA0 0000.

Table 2-6 summarizes the boot modes and execution start addresses for 
ADSP-BF561 processors. 

Just like the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561 
boot ROM uses the interrupt vectors to stay in Supervisor mode.

Table 2-6. ADSP-BF561 Processor Boot Mode Selections

Boot Source BMODE [2:0] Execution Start Address

Reserved 000 Not applicable

Boot from 8-bit/16-bit PROM/flash memory 001 0xFFA0 0000

Boot from 8-bit addressable SPI0 serial EEPROM 010 0xFFA0 0000

Boot from 16-bit addressable SPI0 serial EEPROM 011 0xFFA0 0000

Reserved 111–100 Not applicable



Blackfin Processor Booting

2-38 VisualDSP++ 4.0 Loader Manual 

The boot ROM code transitions from the RESET interrupt service routine 
into the lowest priority user interrupt service routine (Int 15) and remains 
in the Interrupt Service Routine. The boot ROM then checks to see if it 
has been invoked by a software reset by examining bit 4 of the System 
Reset Configuration Register (SYSCR). 

If bit 4 is not set, the boot ROM presumes that a hard reset has occurred 
and performs the full boot sequence. If bit 4 is set, the boot ROM under-
stands that the user code has invoked a software reset and restarts the user 
program by jumping to the beginning of core A’s L1 memory 
(0xFFA0 0000), bypassing the entire boot sequence.

When developing an ADSP-BF561 processor application, you start with 
compiling and linking your application code into an executable file 
(.DXE). The debugger loads the.DXE into the processor’s memory and exe-
cutes it. With two cores, two.DXE files can be loaded at once. In the 
real-time environment, there is no debugger, which allows the boot ROM 
to load the executables into memory. 

ADSP-BF561 Processor Boot Streams

The loader converts the.DXE into a boot stream file (.LDR) by parsing the 
executable and creating blocks. Each block is encapsulated within a 
10-byte header. The .LDR file is burned into the external memory device 
(flash, PROM, or EEPROM). The boot ROM reads the external memory 
device, parsing the headers and copying the blocks to the addresses where 
they reside during program execution. After all the blocks are loaded, the 
boot ROM jumps to address 0xFFA0 0000 to execute the core A program. 

When code is run on both cores, the core A program is responsi-
ble for releasing core B from the idle state by clearing bit 5 in 
core A’s System Configuration Register. Then core B begins execu-
tion at address 0xFF60 0000. 

Multiple .DXE files are often combined into a single boot stream. 



VisualDSP++ 4.0 Loader Manual 2-39 

Loader/Splitter for Blackfin Processors

Unlike the ADSP-BF531/BF532/BF533 processor, the ADSP-BF561 
boot stream begins with a 4-byte global header, which contains informa-
tion about the external memory device. A bit-by-bit description of the 
global header is presented in Table 2-7. The global header also contains a 
signature in the upper 4 bits that prevents the boot ROM from trying to 
read a boot stream from a blank device. 

Following the global header is a .DXE count block, which contains a 32-bit 
byte count for the first .DXE in the boot stream. Though this block con-
tains only a byte count, it is encapsulated by a 10-byte block header, just 
like the other blocks. 

The 10-byte header tells the boot ROM where in memory to place each 
block, how many bytes to copy, and whether the block needs any special 
processing. The block header structure is the same as that of the 
ADSP-BF531/BF532/BF533 processors (described in 
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Blocks, Block Headers, and Flags” on page 2-21). Each header contains a 
4-byte start address for the data block, a 4-byte count for the data block, 
and a 2-byte flag word, indicating whether the data block is a “zero-fill” 
block or a “final block” (the last block in the boot stream).

Table 2-7. ADSP-BF561 Global Header Structure

Bit Field Description

0 1 = 16-bit flash, 0 = 8-bit flash; default is 0

1–4 Number of wait states; default is 15

5 Unused bit

6–7 Number of hold time cycles for flash; default is 3

8–10 Baud rate for SPI boot: 00 = 500k, 01 = 1M, 10 = 2M

11–27 Reserved for future use

28–31 Signature that indicates valid boot stream



Blackfin Processor Booting

2-40 VisualDSP++ 4.0 Loader Manual 

For the .DXE count block, the address field is irrelevant since the block is 
not going to be copied to memory. The “ignore bit” is set in the flag word 
of this header, so the boot loader does not try to load the .DXE count but 
skips the count. For more details, see 
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Blocks, Block Headers, and Flags” on page 2-21.

Following the .DXE count block are the rest of the blocks of the first .DXE. 

A bit-by-bit description of the boot steam is presented in Table 2-8. 
When learning about the ADSPP-BF561 boot stream structure, keep in 
mind that the count byte for each .DXE is, itself, a block encapsulated by a 
block header.

Table 2-8. ADSP-BF561 Processor Boot Stream Structure

Bit Field Description

0–7 LSB of the Global Header

8–15 8–15 of the Global Header

16–23 16–23 of the Global Header

24–31 MSB of the Global Header

32–39 LSB of the address field of 1st .DXE count block (no care)

40–47 8–15 of the address field of 1st .DXE count block (no care)

48–55 16–23 of the address field of 1st .DXE count block (no care)

56–63 MSB of the address field of 1st .DXE count block (no care)

64–71 LSB (4) of the byte count field of 1st .DXE count block 

72–79 8–15 (0) of the byte count field of 1st .DXE count block

80–87 16–23 (0) of the byte count field of 1st .DXE count block

88–95 MSB (0) of the byte count field of 1st .DXE count block

96–103 LSB of the flag word of 1st .DXE count block – ignore bit set

104–111 MSB of the flag word of 1st .DXE count block



VisualDSP++ 4.0 Loader Manual 2-41 

Loader/Splitter for Blackfin Processors

112–119 LSB of the first 1st .DXE byte count

120–127 8–15 of the first 1st .DXE byte count

128–135 16–23 of the first 1st .DXE byte count

136–143 24–31 of the first 1st .DXE byte count

144–151 LSB of the address field of the 1st data block in 1st .DXE

152–159 8–15 of the address field of the 1st data block in 1st .DXE

160–167 16–23 of the address field of the 1st data block in 1st .DXE

168–175 MSB of the address field of the 1st data block in 1st .DXE

176–183 LSB of the byte count of the 1st data block in 1st .DXE

184–191 8–15 of the byte count of the 1st data block in 1st .DXE

192–199 16–23 of the byte count of the 1st data block in 1st .DXE

200–207 MSB of the byte count of the 1st data block in 1st .DXE

208–215 LSB of the flag word of the 1st block in 1st .DXE

216–223 MSB of the flag word of the 1st block in 1st .DXE

224–231 Byte 3 of the 1st block of 1st .DXE

232–239 Byte 2 of the 1st block of 1st .DXE

240–247 Byte 1 of the 1st block of 1st .DXE

248–255 Byte 0 of the 1st block of 1st .DXE

256–263 Byte 7 of the 1st block of 1st .DXE

… And so on …

… LSB of the address field of the nth data block of 1st .DXE

… 8–15 of the address field of the nth data block of 1st .DXE

… 16–23 of the address field of the nth data block of 1st .DXE

… MSB of the address field of the nth data block of 1st .DXE

Table 2-8. ADSP-BF561 Processor Boot Stream Structure (Cont’d)

Bit Field Description



Blackfin Processor Booting

2-42 VisualDSP++ 4.0 Loader Manual 

… LSB of the byte count field of the nth block of 1st .DXE

… 8–15 of the byte count field of the nth block of 1st .DXE

… 16–23 of the byte count field of the nth block of 1st .DXE

… MSB of the byte count field of the nth block of 1st .DXE

… LSB of the flag word of the nth block of 1st .DXE

… MSB of the flag word of the nth block of 1st .DXE

… And so on …

… Byte 1 of the nth block of 1st .DXE

… Byte 0 of the nth block of 1st .DXE

… LSB of the address field of 2nd .DXE count block (no care)

… 8–15 of the address field of 2nd .DXE count block (no care)

… And so on…

Table 2-8. ADSP-BF561 Processor Boot Stream Structure (Cont’d)

Bit Field Description



VisualDSP++ 4.0 Loader Manual 2-43 

Loader/Splitter for Blackfin Processors

ADSP-BF561/BF566 Processor Memory Ranges

The on-chip boot ROM of the ADSP-BF561/BF566 processor can load a 
full application to the various memories of both cores. Booting is allowed 
to the following memory ranges. The boot ROM clears these memory 
ranges before booting in a new application.

• Core A

L1 Instruction SRAM (0xFFA0 0000 – 0xFFA0 3FFF)

L1 Instruction Cache/SRAM (0xFFA1 0000 – 0xFFA1 3FFF)

L1 Data Bank A SRAM (0xFF80 0000 – 0xFF80 3FFF)

L1 Data Bank A Cache/SRAM (0xFF80 4000 –
0xFF80 7FFF)

L1 Data Bank B SRAM (0xFF90 0000 – 0xFF90 3FFF) 

L1 Data Bank B Cache/SRAM (0xFF90 4000 – 0xFF90 7FFF)

• Core B

L1 Instruction SRAM (0xFF60 0000 – 0xFF6 03FFF)

L1 Instruction Cache/SRAM (0xFF61 0000 – 0xFF61 3FFF)

L1 Data Bank A SRAM (0xFF40 0000 – 0xFF40 3FFF)

L1 Data Bank A Cache/SRAM (0xFF40 4000 – 0xFF40 7FFF)

L1 Data Bank B SRAM (0xFF50 0000 – 0xFF50 3FFF)

L1 Data Bank B Cache/SRAM (0xFF50 4000 – 0xFF50 7FFF)

• 128K of Shared L2 Memory (FEB0 0000 – FEB1 FFFF)

• Four Banks of Configurable Synchronous DRAM 
(0x0000 0000 – (up to) 0x1FFF FFFF)



Blackfin Processor Booting

2-44 VisualDSP++ 4.0 Loader Manual 

The boot ROM does not support booting to core A scratch mem-
ory (0xFFB0 0000 – 0xFFB0 0FFF) and to core B scratch memory 
(0xFF70 0000 – 0xFF70 0FFF). Data that needs to be initialized 
prior to runtime should not be placed in scratch memory.

ADSP-BF561/BF566 Processor Initialization Blocks

The initialization block or a second-stage loader must be used to initialize 
the SDRAM memory of the ADSP-BF561/BF566 processor before any 
instructions or data are loaded into it. 

The initialization blocks are identified by a bit in the flag word of the 
10-byte block header. When the boot ROM encounters the initialization 
blocks in the boot stream, it loads the blocks and executes them immedi-
ately. The initialization blocks must save and restore registers and return 
to the boot ROM, so the boot ROM can load the rest of the blocks. For 
more details, see 
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Blocks, Block Headers, and Flags” on page 2-21.

Both the initialization block and second-stage loader can be used to force 
the boot ROM to load a specific .DXE from the external memory device if 
the boot ROM stores multiple executable files. The initialization block 
can manipulate the R0 or R3 register, which the boot ROM uses as external 
memory pointers for flash/PROM or SPI memory boot, respectively. 

After the processor returns from the execution of the initialization blocks, 
the boot ROM continues to load blocks from the location specified in the 
R0 or R3 register, which can be any .DXE in the boot stream. This option 
requires the starting locations of specific executables within external mem-
ory. The R0 or R3 register must point to the 10-byte count header, as 
illustrated in “ADSP-BF53x and ADSP-BF561/BF566 Multiple .DXE 
Booting” on page 2-46.



VisualDSP++ 4.0 Loader Manual 2-45 

Loader/Splitter for Blackfin Processors

ADSP-BF561/BF566 Multiple .DXE Booting

A typical dual-core application is separated into two executable files; one 
for each core. The default linker description file (LDF) for the 
ADSP-BF561/BF566 processor creates two separate executable files 
(p0.dxe and p1.dxe) and some shared memory files (sml2.sm and 
sml3.sm). By modifying the LDF, it is possible to create a dual-core 
application that combines both cores into a single .DXE file. This is not 
recommended unless the application is a simple assembly language pro-
gram which does not link any C run-time libraries. When using shared 
memory and/or C run-time routines on both cores, it is best to generate a 
separate .DXE file for each core. The loader combines the contents of the 
shared memory files (sml2.sm, sml3.sm) into the .DXE file for core A 
(p0.dxe).

The boot ROM only loads one single executable before the ROM jumps 
to the start of core A instruction SRAM (0xFFA0 0000). When two .DXE 
files are loaded, a second-stage loader is used. The second-stage boot 
loader must start at 0xFFA0 0000. The boot ROM loads and executes the 
second-stage loader. A default second-stage loader is provided for each 
boot mode and can be customized by the user.

Unlike the initialization blocks, the second-stage loader takes full control 
over the boot process and never returns to the boot ROM.

The second-stage loader can use the .DXE byte count blocks to find spe-
cific .DXE files in external memory. 

The default second-stage loader uses the last 1024 bytes of L2 
memory. The area must be reserved during booting but can be 
reallocated at runtime.



Blackfin Processor Booting

2-46 VisualDSP++ 4.0 Loader Manual 

ADSP-BF53x and ADSP-BF561/BF566 Multiple .DXE 
Booting

This section describes how to boot more than one .DXE file into an 
ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539 and 
ADSP-BF561/BF566 processor. The information presented in this section 
applies to all of the named processors. For additional information on the 
ADSP-BF561/BF566 processor, refer to “ADSP-BF561/BF566 Multiple 
.DXE Booting” on page 2-45. 

The ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538/BF539 
and ADSP-BF561/BF566 loader file structure and the silicon revision of 
0.1 and higher allow the booting of multiple .DXE files into a single 
processor from external memory. As illustrated in Figure 2-24, each exe-
cutable file is preceded by a 4-byte count header, which is the number of 
bytes within the executable, including headers. This information can be 
used to boot a specific .DXE into the processor. The 4-byte .DXE count 
block is encapsulated within a 10-byte header to be compatible with the 
silicon revision 0.0. For more information, see 
“ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 
Blocks, Block Headers, and Flags” on page 2-21.

Booting multiple executables can be accomplished by one of the following 
methods.

• Use the second-stage loader switch, “-l userkernel”. This option 
allows the use of your own second-stage loader or kernel.

After the second-stage loader gets booted into internal memory via 
the on-chip boot ROM, it has full control over the boot process. 
Now the second-stage loader can use the .DXE byte counts to boot 
in one or more .DXE files from external memory.   



VisualDSP++ 4.0 Loader Manual 2-47 

Loader/Splitter for Blackfin Processors

• Use the initialization block switch, “-init filename”, where 
“filename” is the name of the executable file containing the initial-
ization code. This option allows you to change the external 
memory pointer and boot a specific .DXE file via the on-chip boot 
ROM. 

A sample initialization code is included in Listing 2-2. The R0 and 
R3 registers are used as external memory pointers by the on-chip 
boot ROM. The R0 register is for flash/PROM boot, and R3 is for 
SPI memory boot. Within the initialization block code, change the 
value of R0 or R3 to point to the external memory location at which 
the specific application code starts. After the processor returns 
from the initialization block code to the on-chip boot ROM, the 
on-chip boot ROM continues to boot in bytes from the location 
specified in the R0 or R3 register.

Figure 2-24. ADSP-BF531/BF32/BF33/BF534/ BF536/BF537/BF538/ 
BF539/BF561/BF566: Multi-Application Booting

-

10-Byte Header for Count

4-Byte Count for 1st DXE

1st DXE Application

10-Byte Header for Count

4-Byte Count for 2nd DXE

2nd DXE Application

10-Byte Header for Count

4-Byte Count for 3rd DXE

3rd DXE Application

10-Byte Header for Count

4-Byte Count for 4th DXE

.......................

.......................

10-Byte Header for Block 1

Block 1

10-Byte Header for Block 2

10-Byte Header for Block 3

Block 2

Block 3
........................



Blackfin Processor Booting

2-48 VisualDSP++ 4.0 Loader Manual 

Listing 2-2. Initialization Block Code Example for Multiple .DXE Boot

#include <defBF532.h>

.SECTION program;

/*******Pre-Init Section***************************************/

[--SP] = ASTAT; 

[--SP] = RETS; 

[--SP] = (r7:0);

[--SP] = (p5:0);

[--SP] = I0;[--SP] = I1;[--SP] = I2;[--SP] = I3;

[--SP] = B0;[--SP] = B1;[--SP] = B2;[--SP] = B3;

[--SP] = M0;[--SP] = M1;[--SP] = M2;[--SP] = M3;
[--SP] = L0;[--SP] = L1;[--SP] = L2;[--SP] = L3;

/**************************************************************/

/*******Init Code Section**************************************

R0.H = High Address of DXE Location (R0 for flash/PROM boot,

R3 for SPI boot)

R0.L = Low Address of DXE Location. (R0 for flash/PROM boot,

R3 for SPI boot)

***************************************************************/

/*******Post-Init Section**************************************/

L3 = [SP++]; L2 = [SP++]; L1 = [SP++]; L0 = [SP++];

M3 = [SP++]; M2 = [SP++]; M1 = [SP++]; M0 = [SP++];

B3 = [SP++]; B2 = [SP++]; B1 = [SP++]; B0 = [SP++];

I3 = [SP++]; I2 = [SP++]; I1 = [SP++]; I0 = [SP++];

(p5:0) = [SP++]; 

/* MAKE SURE NOT TO RESTORE

R0 for flash/PROM Boot, R3 for SPI Boot */

(r7:0) = [SP++]; 

RETS = [SP++];

ASTAT = [SP++];

/**************************************************************/

RTS; 



VisualDSP++ 4.0 Loader Manual 2-49 

Loader/Splitter for Blackfin Processors

Blackfin Processor Loader Guide
Loader operations depend on the loader options, which control how the 
loader processes executable files. You select features such as boot mode, 
boot kernel, and output file format via the loader options. These options 
are specified on the loader’s command line or via the Load page of the 
Project Options dialog box in the VisualDSP++ environment. The Load 
page consists of multiple panes and is the same for all Blackfin processors. 
When you open the Load page, the default loader settings for the selected 
processor are already set. 

Option settings on the Load page correspond to switches displayed 
on the command line.

These sections describe how to produce a bootable or non-bootable loader 
file (.LDR):

• “Using the ADSP-BF5xx Blackfin Loader Command Line” on 
page 2-49

• “Using the Base Loader” on page 2-57

• “Using the Second-Stage Loader” on page 2-59

• “Using the ROM Splitter” on page 2-62

Using the ADSP-BF5xx Blackfin Loader Command 
Line

The ADSP-BF5xx Blackfin loader uses the following command-line 
syntax.

For a single input file:

elfloader inputfile -proc processor [-switch …]



Blackfin Processor Loader Guide

2-50 VisualDSP++ 4.0 Loader Manual 

For multiple input files:

elfloader inputfile1 inputfile2 … -proc processor [-switch …]

where:

• inputfile—Name of the executable file (.DXE) to be processed 
into a single boot-loadable or non-bootable file. An input file name 
can include the drive and directory. For multiprocessor or 
multi-input systems, specify multiple input .DXE files. Put the 
input file names in the order in which you want the loader to pro-
cess the files. Enclose long file names within straight quotes, “long 
file name”.

• -proc processor—Part number of the processor (for example, 
ADSP-BF531) for which the loadable file is built. Provide a processor 
part number for every input .DXE if designing multiprocessor 
systems.

• -switch …—One or more optional switches to process. Switches 
select operations and modes for the loader.

Command-line switches may be placed on the command line in 
any order, except the order of input files for a multi-input system. 
For a multi-input system, the loader processes the input files in the 
order presented on the command line.

File Searches

File searches are important in loader processing. The loader supports rela-
tive and absolute directory names, default directories, and user-selected 
directories for file search paths. File searches occur as described 
on page 1-11.



VisualDSP++ 4.0 Loader Manual 2-51 

Loader/Splitter for Blackfin Processors

File Extensions

Some loader switches take a file name as an optional parameter. Table 2-9 
lists the expected file types, names, and extensions.

In some cases the loader expects the overlay input files with the file exten-
sion of .OVL, shared memory input files with the extension of .SM, or both, 
but does not expect those files to appear in a command line or on the 
Load property page. The loader will find them in the directory of the 
associated .DXE files, in the current working directory, or in the directory 
specified in the .LDF file.

Command-Line Switches

A summary of the loader command-line switches appears in Table 2-10.

Table 2-9. File Extensions

Extension File Description

.DXE Loader input files, boot kernel files, and initialization files 

.LDR Loader output file

.KNL Loader output files containing kernel code only when two output files are selected

Table 2-10. Blackfin Loader Command-Line Switches

Switch Description

-b prom
-b flash
-b spi
-b spislave
-b UART
-b TWI

Specifies the boot mode. The -b switch directs the loader to prepare a 
boot-loadable file for the specified boot mode. Valid boot modes 
include PROM, Flash, SPI, SPI Slave, UART, and TWI. SPI Slave, 
UART, and TWI are for the ADSP-BF531/BF532/BF533/BF534/ 
BF536/BF537/BF538/BF539/ processors only. 
If -b does not appear on the command line, the default is -b flash.



Blackfin Processor Loader Guide

2-52 VisualDSP++ 4.0 Loader Manual 

-baudrate # Accepts a baud rate for SPI booting only.
Note: Currently supports only ADSP-BF535 processors.
Valid baud rates and corresponding values (#) are:
• 500K – 500 kHz, the default
• 1M – 1 MHz
• 2M – 2 MHz
Boot kernel loading supports an SPI baud rate up to 2 MHz.

-enc dll_filename Encrypts the data stream from the application input .DXE files with 
the encryption algorithms in the dynamic library file dll_filename. 
If the dll_filename parameter does not appear on the command 
line, the encryption algorithm from the default ADI’s file is used.

-f hex
-f ASCII
-f binary

Specifies the format of a boot-loadable file (Intel hex-32, ASCII, 
binary). If the -f switch does not appear on the command line, the 
default boot mode format is hex for flash/PROM and ASCII for SPI, 
SPI Slave, UART, and TWI. 

-ghc # Specifies a 4-bit value (global header cookie) for bits 31–28 of the 
global header. This switch is for ADSP-BF561/BF566 processors 
only.

-h
   or
-help

Invokes the command-line help, outputs a list of command-line 
switches to standard output, and exits. By default, the -h switch alone 
provides help for the loader driver. To obtain a help screen for your 
target Blackfin processor, add the -proc switch to the command 
line. For example: type elfloader -proc ADSP-BF535 -h to 
obtain help for the ADSP-BF535 processor. 

-HoldTime # Allows the loader to specify a number of hold time cycles for 
PROM/flash boot. The valid values (#) are from 0 through 3. The 
default value is 3. 
Note: Currently supports only ADSP-BF535 processors.

-init filename Directs the loader to include the initialization code from the named 
file. The loader places the code from the initialization section of the 
specified .DXE file in the boot stream. The kernel loads the code and 
then calls it. It is the responsibility of the code to save/restore 
state/registers and then perform a RTS back to the kernel. 
Note: This switch cannot be applied to ADSP-BF535 processors.

Table 2-10. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description



VisualDSP++ 4.0 Loader Manual 2-53 

Loader/Splitter for Blackfin Processors

-kb prom
-kb flash
-kb spi
-kb spislave
-kb UART
-kb TWI 

Specifies the boot mode (PROM, Flash, SPI, SPI Slave, UART, or 
TWI) for the boot kernel output file if you generate two output files 
from the loader: one for boot kernel and another for user application 
code. SPI Slave, UART, and TWI are for the ADSP-BF531/BF532/ 
BF533/BF534/ BF536/BF537/BF538/BF539/ processors only. 
This switch must be used in conjunction with the -o2 switch.
If the -kb switch is absent on a command line, the loader generates 
the file for the boot kernel in the same boot mode as used to output 
the user application program.

-kf hex
-kf ascii
-kf binary

Specifies the output file format (hex, ASCII, or binary) for the boot 
kernel if you output two files from the loader: one for boot kernel 
and one for user application code. 
This switch must be used in conjunction with the -o2 switch. If the 
-kf switch is absent from the command line, the loader generates the 
file for the boot kernel in the same format as for the user application 
program.

-kenc dll_filename Specifies the user encryption dynamic library file for the encryption 
of the data stream from the kernel file. If the filename parameter 
does not appear on the command line, the encryption algorithm from 
the default ADI’s file is used.

-kp # Specifies a hex PROM/flash output start address for kernel code. A 
valid value is between [0x0, 0xFFFFFFFF]. The specified value is not 
used if no kernel or/and initialization code is included in the loader 
file.

-kWidth # Specifies the width of the boot kernel output file when there are two 
output files: one for boot kernel and one for user application code.
Valid values are:
• 8 or 16 for PROM or flash boot kernel
• 8 for SPI boot kernel
If this switch is absent from the command line, the default file width 
is:
• the -width parameter when booting from PROM/flash
• 8 when booting from SPI
This switch is used in conjunction with the -o2 switch.

Table 2-10. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description



Blackfin Processor Loader Guide

2-54 VisualDSP++ 4.0 Loader Manual 

-l userkernel Specifies the user’s boot kernel. The loader utilizes the user-specified 
kernel and ignores the default boot kernel if there is one. 
Note: Currently, only ADSP-BF535 processors have default kernels. 

-M Generates make dependencies only, no output file is generated.

-maskaddr # Masks all EPROM address bits above or equal to #. 
For example, -maskaddr 29 (default) masks all the bits above and 
including A29 (ANDed by 0x1FFF FFFF). For example, 
0x2000 0000 becomes 0x0000 0000. The valid #s are integers 0 
through 32, but based on your specific input file, the value can be 
within a subset of [0,32].
This switch requires -romsplitter and affects the ROM section 
address only. 

-MaxBlockSize # Specifies the maximum block byte count, which must be a multiple 
of 16.

-MM Generates make dependencies while producing the output files.

-Mo filename Writes make dependencies to the named file. 
The -Mo option is for use with either the -M or -MM option. If -Mo is 
not present, the default is a <stdout> display.

-Mt filename Specifies the make dependencies target output file. 
The -Mt option is for use with either the -M or -MM option. If -Mt is 
not present, the default is the name of the input file with the .LDR 
extension. 

-no2kernel Produces the output file without the boot kernel but uses the 
boot-strap code from the internal boot ROM. The boot stream gener-
ated by the loader is different from the one generated by the boot ker-
nel. 
Note: Currently supports only ADSP-BF535 processors.

-o filename Directs the loader to use the specified filename as the name of the 
loader output file. If the filename is absent, the default name is the 
name of the input file with an  .LDR extension.

Table 2-10. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description



VisualDSP++ 4.0 Loader Manual 2-55 

Loader/Splitter for Blackfin Processors

-o2 Produces two output files: one for the Init block (if present) and boot 
kernel and one for user application code. 
To have a different format, boot mode, or output width from the 
application code output file, use the -kb -kf -kwidth switches to 
specify the boot mode, the boot format, and the boot width for the 
output kernel file.
If you intend use the -o2 switch, do not combine it with:

-nokernel on ADSP-BF535 processors
You must combine it with:

-l filename and/or -init filename on 
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ 
BF538/BF539/BF561/BF566 processors

-p # Specifies a hex PROM/flash output start address for the application 
code. A valid value is between [0x0, 0xFFFFFFFF]. A specified value 
must be greater than that specified by -kp if both kernel and/or ini-
tialization and application code are in the same output file (a single 
output file).

-pFlag # Specifies a 4-bit hex value for strobe (programmable flag). The 
default value is zero (0). This switch is for ADSP-BF531/BF532/ 
BF533/BF534/BF536/BF537/BF538/BF539/ BF561/BF566 
processors only.

-proc processor Specifies the target processor.
The processor can be one of the following: ADSP-BF531, 
ADSP-BF532, ADSP-BF533, ADSP-BF534, ADSP-BF535, 
ADSP-BF536, ADSP-BF537, ADSP-BF538, ADSP-BF539, ADSP-BF561 
and ADSP-BF566.

-romsplitter Creates a non-bootable image only. This switch overwrites the -b 
switch and any other switch bounded by the boot modes. 
Note: In the .LDF file, declare memory segments to be ‘split’ as type 
“ROM”. The splitter skips “RAM” segments, resulting in an empty file if 
all segments are declared as “RAM”.
The -romsplitter switch supports hex and ASCII formats. 

-ShowEncryptionMessage Displays a message returned from the encryption function.

Table 2-10. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description



Blackfin Processor Loader Guide

2-56 VisualDSP++ 4.0 Loader Manual 

-si-revision #|none Provides a silicon revision of the specified processor.
The switch parameter represents a silicon revision of the processor 
specified by the -proc switch. The parameter takes one of two forms:

• The none value indicates that the VDSP++ tool should 
ignore silicon errata. 

• The # value indicates one or more decimal digits, followed 
by a point, followed by one or two decimal digits. Examples 
of revisions are: 0.0; 1.12; 23.1. Revision 0.1 is distinct 
from and “lower” than revision 0.10. The digits to the left 
of the point specify the chip tapeout number; the digits to 
the right of the point identify the metal mask revision num-
ber. The number to the right of the point cannot exceed 
decimal 255.

This switch either generates a warning about any potential anomalous 
conditions or generates an error if any anomalous conditions occur.
Note: In the absence of the silicon revision switch, the loader selects 
the greatest silicon revision it is aware of, if any.
Note: In the absence of the switch parameter (a valid revision 
value)—-si-revision alone or with an invalid value—the loader 
generates an error.

-v Outputs verbose loader messages and status information as the loader 
processes files.

-waits # Specifies the number of wait states for external access. Valid inputs 
are 0 through 15. Default is 15. Wait states apply to the flash/PROM 
boot mode only.
Note: Currently supports only ADSP-BF535 processors.

-width # Specifies the loader output file’s width in bits. Valid values are 8 and 
16, depending on the boot mode. The default is 8.
The switch has no effect on boot kernel code processing on 
ADSP-BF535 processors. The loader processes the kernel in 8-bit 
widths regardless of selection of the output data width.
• For flash/PROM booting, the size of the output file depends on 

the -width # switch.
• For SPI booting, the size of the output .LDR file is the same for 

both -width 8 and -width 16. The only difference is the 
header information.

Table 2-10. Blackfin Loader Command-Line Switches (Cont’d)

Switch Description



VisualDSP++ 4.0 Loader Manual 2-57 

Loader/Splitter for Blackfin Processors

Using the Base Loader
The Load page of the Project Options dialog consists of multiple panes 
and is shared with all Blackfin processors. When you open the Load page, 
the default loader settings (Loader options) for the selected processor are 
already set. As an example, Figure 2-25 shows the ADSP-BF532 proces-
sor’s default Load settings for PROM booting. Command-line switches 
equivalent to the dialog box options are also identified. Refer to “Com-
mand-Line Switches” on page 2-51 for more information on the switches. 

Using the page controls, select or modify the loader settings. Table 2-11 
describes each loader control and corresponding setting. When satisfied 
with default settings, click OK to complete the loader setup.

Figure 2-25. Loader File Options Page for Blackfin Processors

 
 

 

 



Blackfin Processor Loader Guide

2-58 VisualDSP++ 4.0 Loader Manual 

Table 2-11. Base Loader Page Settings

Setting Description

Load Selections for the loader. The options are:
• Options – default booting options (this section)

• Kernel – specification for a second-stage loader (see on page 2-59) 

• Splitter – specification for the no-boot mode (see on page 2-62)
If you do not use the boot kernel for ADSP-BF535 processors, the Kernel page 
appears with all kernel option fields grayed out. The loader does not search for 
the boot kernel if you boot from the on-chip ROM by setting the -no2kernel 
command-line switch as described on page 2-54.
For 
ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539/BF561/ 
BF566 processors, which do not have software boot kernels by default, select 
the boot kernel to use one. 

Boot mode Specifies PROM, Flash, SPI, SPI Slave, UART, or TWI as a boot source.

Boot format Specifies Intel hex, ASCII, or binary formats.

Output width Specifies 8 or 16 bits. 
If BMODE = 01 or 001 and flash/PROM is 16-bit wide, the 16-bit option must 
be selected.

Start address Specifies a PROM/flash output start address in hex format for the application 
code.

Verbose Generates status information as the loader processes the files.

Wait state Specifies the number of wait states for external access (0–15). 
The selection is active for ADSP-BF535 processors. For ADSP-BF531/BF532/ 
BF533/BF534/BF536/BF537/BF538/BF539/BF561/BF566 processors, the 
field is grayed out.

Hold time Specifies the number of the hold time cycles for PROM/flash boot (0–3). 
The selection is active for ADSP-BF535 processors. For ADSP-BF531/BF532/ 
BF533/BF534/BF536/BF537/BF538/BF539/BF561/BF566 processors, the 
field is grayed out.

Baud rate Specifies a baud rate for SPI booting (500 kHz, 1 MHz, and 2 MHz). 
The selection is active for ADSP-BF535 processors. For ADSP-BF531/BF532/ 
BF533/BF534/BF536/BF537/BF538/BF539/BF561/BF566 processors, the 
field is grayed out.



VisualDSP++ 4.0 Loader Manual 2-59 

Loader/Splitter for Blackfin Processors

Using the Second-Stage Loader 
If you use a second-stage loader, select Kernel (under Load in the Project 
Options tree control). The page shows how to configure the loader for 
boot loading and to output file generation using the boot kernel.

Figure 2-26 shows a sample Kernel page, with boot options for a Blackfin 
processor. 

Programmable 
flag

Selects a programmable flag number (from 0 to 15) as strobe. This box is active 
if SPI Slave is selected for ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ 
BF538/BF539 processors.

Initialization 
file

Directs the loader to include the initialization file (Init code). The Initialization 
file selection is active for ADSP-BF531/BF532/BF533, and ADSP-BF561 
processors. For ADSP-BF535 processors, the field is grayed out.

Kernel file Specifies the boot kernel file. Can be used to override the default boot kernel if 
there is one by default, as on ADSP-BF535 processors.

Output file Names the loader’s output file. 

Additional 
options

Specifies additional loader switches. You can specify additional input files for a 
multi-input system. Type the file names with the paths (they are not in the 
current working directory) separated with a space between two names, and the 
loader will retrieve these input files. 
Note: The loader processes the input files in the order in which the files appear 
on the command line generated form the property page.

Table 2-11. Base Loader Page Settings (Cont’d)

Setting Description



Blackfin Processor Loader Guide

2-60 VisualDSP++ 4.0 Loader Manual 

To create a loader file which includes a second-stage loader:

1. Select Options (under Load) to set up base booting options (see 
“Using the Base Loader” on page 2-57).

2. Select Kernel (under Load) to open the Kernel page for the 
second-stage loader settings, shown in Figure 2-26.

3. Select Use boot kernel. By default, this option is selected for 
ADSP-BF535 and grayed out for ADSP-BF531/BF532/BF533/ 
BF534/ BF536/BF537/BF538/BF539/BF561/BF566 processors.

Figure 2-26. Kernel Page – Boot Options for an ADSP-BF53x Blackfin 
Processor

 

 



VisualDSP++ 4.0 Loader Manual 2-61 

Loader/Splitter for Blackfin Processors

4. To produce two output files (Init code and/or boot kernel file and 
application code file), select the Output kernel in separate file 
check box. This option boots the second-stage loader from one 
source and the application code from another source. If the Output 
kernel in separate file box is selected, you can specify the kernel 
output file options such as the Boot mode (source), Boot format, 
and Output width. 

5. Enter the Kernel file (.DXE). You must either use the default kernel 
(in case of an ADSP-BF535 processor) or enter a kernel’s file name 
if Use boot kernel in step 3 is selected. 

The following second-stage loaders are currently available for the 
ADSP-BF535 processor. 

For ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/BF538 
/BF539/BF561/BF566 processors, no second-stage loaders are 
required; hence, no default kernel files are provided. Users can 
supply their own second-stage loader file, if so desired.

6. Specify the Start address (flash/PROM output address in hexadeci-
mal format) for the kernel code. This option allows you to place 
the kernel file at a specific location within the flash/PROM in the 
loader file.

7. For ADSP-BF535 processors only, modify the Wait states and 
Hold time cycles for flash/PROM booting or the Baud rate for SPI 
booting.

8. Click OK to complete the loader setup. 

Boot Source Second -Stage Loader File (or Boot Kernel File)

8-bit flash/PROM 535_prom8.dxe,

16-bit flash/PROM 535_prom16.dxe

SPI 535_spi.dxe



Blackfin Processor Loader Guide

2-62 VisualDSP++ 4.0 Loader Manual 

Using the ROM Splitter
Unlike the loader utility, the splitter does not format the application data 
when transforming an .DXE file to an .LDR file. It emits raw data only. 
Whether data and/or instruction segments are processed by the loader or 
by the splitter utility depends upon the LDF’s TYPE() command. Seg-
ments declared with TYPE(RAM) are consumed by the loader utility, and 
segments declared by TYPE(ROM) are consumed by the splitter. 

Figure 2-27 shows a sample Splitter page, with ROM splitter options. 
With the Enable ROM splitter box unchecked, only TYPE(RAM) segments 
are processed and all TYPE(ROM) segments are ignored by the elfloader util-
ity. If the box is checked, TYPE(RAM) segments are ignored, and TYPE(ROM) 
segments are processed by the splitter utility.

The Mask Address field masks all EPROM address bits above or equal to 
the number specified. For example, Mask Address = 29 (default) masks all 
the bits above and including A29 (ANDed by 0x1FFF FFFF). Thus, 
0x2000 0000 becomes 0x0000 0000. The valid numbers are integers 0 
through 32 but, based on your specific input file, the value can be within a 
subset of [0, 32].

No-Boot Mode

The hardware settings of BMODE = 000 for ADSP-BF535 processors or 
BMODE = 00 for ADSP-BF531/BF532/BF533/BF534/ BF536/BF537/ 
BF538/BF539 processors select the no-boot option. In this mode of opera-
tion, the on-chip boot kernel is bypassed after reset, and the processor 
starts fetching and executing instructions from address 0x2000 0000 in the 
Asynchronous Memory Bank 0. The processor assumes 16-bit memory 
with valid instructions at that location.



VisualDSP++ 4.0 Loader Manual 2-63 

Loader/Splitter for Blackfin Processors

To create a proper .LDR file that can be burned into either a parallel flash 
or EPROM device, you must modify the standard LDF file in order for 
the reset vector to be located accordingly. The following code fragments 
(Listing 2-3 and Listing 2-4) illustrate the required modifications in case 
of an ADSP-BF533 processor.

Listing 2-3. Section Assignment (LDF File)

MEMORY

{

/* Off-chip Instruction ROM in Async Bank 0 */

Figure 2-27. Splitter Page – ROM Splitter Options for Blackfin Processors



Blackfin Processor Loader Guide

2-64 VisualDSP++ 4.0 Loader Manual 

MEM_PROGRAM_ROM { TYPE(ROM) START(0x20000000) END(0x2009FFFF) 

WIDTH(8) }

/* Off-chip constant data in Async Bank 0   */

MEM_DATA_ROM { TYPE(ROM) START(0x200A0000) END(0x200FFFFF) 

WIDTH(8) }

/* On-chip SRAM data, is not booted automatically */

MEM_DATA_RAM { TYPE(RAM) START(0xFF903000) END(0xFF907FFF) 

WIDTH(8) }

Listing 2-4. ROM Segment Definitions (LDF File)

PROCESSOR p0

{

OUTPUT( $COMMAND_LINE_OUTPUT_FILE )

SECTIONS

{

program_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS( $OBJECTS(rom_code) )

} >MEM_PROGRAM_ROM

data_rom

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(rom_data) )

} >MEM_DATA_ROM

data_sram

{

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS($OBJECTS(ram_data) )

} >MEM_DATA_RAM

With the LDF file modified this way, the source files can now take advan-
tage of the newly-introduced sections, as in Listing 2-5.



VisualDSP++ 4.0 Loader Manual 2-65 

Loader/Splitter for Blackfin Processors

Listing 2-5. Section Handling (Source Files)

.SECTION rom_code;

_reset_vector: l0 = 0;

1 = 0;

l2 = 0;

l3 = 0;

/* continue with setup and application code */

/* . . . */

.SECTION rom_data;

.VAR myconst x = 0xdeadbeef;

/* . . . */

.SECTION ram_data;

.VAR myvar y; /* note that y cannot be initialized automatically */



Blackfin Processor Loader Guide

2-66 VisualDSP++ 4.0 Loader Manual 



VisualDSP++ 4.0 Loader Manual 3-1 

3 LOADER FOR ADSP-TSXXX 
TIGERSHARC PROCESSORS 

This chapter explains how the loader/splitter program (elfloader.exe) is 
used to convert executable (.DXE) files into boot-loadable or non-bootable 
files for ADSP-TSxxx TigerSHARC processors. 

Refer to “Introduction” on page 1-1 for the loader overview; the introduc-
tory material applies to all processor families. Loader operations specific to 
ADSP-TSxxx TigerSHARC processors are detailed in the following 
sections. 

• “ADSP-TSxxx TigerSHARC Processor Booting” on page 3-2 
Provides general information on various booting modes, including 
information on boot kernels.

• “TigerSHARC Loader Guide” on page 3-5
Provides reference information on the loader’s command-line syn-
tax and switches.

Refer to the processor’s Data Sheet and Hardware Reference for more 
information on system configuration, peripherals, registers, and operating 
modes. 



ADSP-TSxxx TigerSHARC Processor Booting

3-2 VisualDSP++ 4.0 Loader Manual

ADSP-TSxxx TigerSHARC Processor 
Booting

At chip reset, a TigerSHARC processor loads (bootstraps) a 256-instruc-
tion program (called boot kernel or loader kernel) into the processor’s 
internal memory. The boot kernel program may be stored on an external 
PROM, a host processor, or another TigerSHARC processor. The boot 
type is selected via the processor’s Boot Mode Select (BMS) pin as described 
in “Boot Type Selection” on page 3-3. After the boot kernel loads, it exe-
cutes itself and then loads the rest of the application program and data 
into the processor. The combination of the boot kernel and the applica-
tion program comprises a boot-loadable file.

TigerSHARC processors support three booting modes: EPROM/flash, 
host, and link. The boot-loadable files for each of these modes pack the 
boot data into 32-bit instructions and use a DMA channel of the proces-
sor’s DMA controller to boot-load the instructions.

Additionally, there are several no-boot modes, which do not require 
kernels.

• In EPROM/flash boot mode, the loader generates a PROM image 
that contains all project data and loader code. The project data is 
then stored in an 8-bit wide external EPROM. After reset, the pro-
cessor performs a special booting scenario, reading the EPROM 
content through the processor’s external port and initializing 
on-chip and off-chip memories.

• In host boot mode, the processor accepts boot data from a 32- or 
64-bit synchronous microprocessor (host). The host writes a 
boot-loadable file to the processor’s AUTODMA register through the 
processor’s external port, one 32-bit word at a time. Once the last 
word is written, the processor takes over and runs the user code.



VisualDSP++ 4.0 Loader Manual 3-3 

Loader for ADSP-TSxxx TigerSHARC Processors

• In link port boot mode, the processor receives boot data via its link 
port from another TigerSHARC processor.

EE-174: ADSP-TS101S TigerSHARC Processor Boot Loader Kernels 
Operation and E-200: ADSP-TS20x TigerSHARC Processor Boot 
Loader Kernels Operation provide additional information about the 
loader. These EE notes are available from the Analog Devices Web 
site:

http://www.analog.com/processors/processors/tigersharc/ 

technicalLibrary/index.html.

Boot Type Selection
To determine the boot mode, a TigerSHARC processor samples its Boot 
Mode Select (BMS) pin. While the processor is held in reset, the BMS pin is 
an active input.

If BMS is sampled low a certain number of clock cycles after reset, 
EPROM/flash boot is selected and, after RESET goes high, BMS becomes an 
output, acting as EPROM chip select.

If BMS is sampled high after reset, the TigerSHARC processor is at an 
IDLE state, waiting for a host or link boot. 

The 100K Ohm internal pull-down on BMS may not suffice, depending on 
the line loading. Thus, an additional external pull-down resistor may be 
necessary for the EPROM boot mode. If host or link boot is desired, BMS 
must be high and may be tied directly to the system power bus.



ADSP-TSxxx TigerSHARC Processor Booting

3-4 VisualDSP++ 4.0 Loader Manual

Boot Kernels
Upon completion of the DMA, in all boot modes, the boot-loading pro-
cess continues by downloading the boot kernel into the processor 
memory. The boot kernel sets up and initializes the processor’s memory. 
After initializing the rest of the system, the boot kernel overwrites itself.

You can build an .LDR file that includes or does not include a ker-
nel. Use the -NoKernel command-line switch or the No Kernel 
option on the Load page to build without a kernel.

VisualDSP++ includes distinct kernel programs for each TigerSHARC 
processor. A boot kernel is loaded at reset into a memory segment, 
seg_ldr, which is defined in the ADSP-TSxxx_Loader.ldf file. The 
provided files are located in the ...\VisualDSP\TS\ldr directory. 

Table 3-1. TigerSHARC Boot Kernel Source Files

PROM Boot Kernel Host Boot Kernel Link Boot Kernel

Ts101_prom.asm Ts101_host.asm Ts101_link.asm

Ts201_prom.asm Ts201_host.asm Ts201_link.asm

Ts202_prom.asm Ts202_host.asm Ts202_link.asm

Ts203_prom.asm Ts203_host.asm Ts203_link.asm



VisualDSP++ 4.0 Loader Manual 3-5 

Loader for ADSP-TSxxx TigerSHARC Processors

Boot Kernel Modification

For most systems, some customization of the boot kernel is required. The 
operation of other tools (notably the C/C++ compiler) is influenced by 
loader usage.

For more information on boot kernel operations, refer to the comments in 
the corresponding boot kernel source files and application notes EE-174: 
ADSP-TS101S TigerSHARC® Processor Boot Loader Kernels Operation and  
EE-200: ADSP-TS20x TigerSHARC Processor Boot Loader Kernels 
Operation. The notes are at:

http://www.analog.com/processors/processors/tigersharc/

technicalLibrary/index.html

TigerSHARC Loader Guide
Loader operations depend on the loader options, which control how the 
loader processes executable files. You select features such as boot mode, 
boot kernel, and output file format via the loader options. These options 
are specified on the loader’s command line or via the Load page of the 
Project Options dialog box in the VisualDSP++ environment. When you 
open the Load page, the default loader settings for the selected processor 
are already set. 

Option settings on the Load page correspond to switches displayed 
on the command line.

These sections describe how to produce a bootable or non-bootable loader 
file (.LDR):

• “Using TigerSHARC Loader Command Line” on page 3-6

• “Using VisualDSP++ Interface (Load Page)” on page 3-12



TigerSHARC Loader Guide

3-6 VisualDSP++ 4.0 Loader Manual

Using TigerSHARC Loader Command Line
The TigerSHARC loader uses the following command-line syntax.

For a single input file:

elfloader inputfile -proc processor [-switch …]

For multiple input files:

elfloader id2exe=inputfile1 id2exe=inputfile2 … -proc processor 
[-switch …]

where:

• inputfile—Name of the executable file (.DXE) to be processed 
into a single boot-loadable file. An input file name can include the 
drive and directory.

For multiprocessor or multi-input systems, specify multiple input 
.DXE files. Use the id#exe= switch, where # is the ID number (from 
0 to 7) of the processor. Enclose long file names within straight 
quotes, “long file name”.

• -proc processor—Part number of the processor (for example, 
ADSP-TS101) for which the loadable file is built.

• -switch …—One or more optional switches to process. Switches 
select operations and modes for the loader.

Command-line switches may be placed on the command line in 
any order. For a multi-input system, the loader processes the input 
files in the ascending order of the executable files from the -exe#= 
switch presented on the command line.



VisualDSP++ 4.0 Loader Manual 3-7 

Loader for ADSP-TSxxx TigerSHARC Processors

elfloader p0.dxe -proc ADSP-TS101 -bprom -fhex -l Ts101_prom.dxe

In the above example, the command line runs the loader with:

• p0.dxe – Identifies the executable file to process into a boot-load-
able file. Note the absence of the -o switch causes the output file 
name to default to p0.ldr. 

• -proc ADSP-TS101 – Specifies ADSP-TS101 as the processor type.

• -bprom – Specifies EPROM booting as the boot type for the 
boot-loadable file.

• -fhex – Specifies Intel Hex-32 format for the boot-loadable file.

• -l Ts101_prom.exe – Specifies the boot kernel file to be used for 
the boot-loadable file.

elfloader id2exe=p0.dxe id2exe=p1.dxe -proc ADSP-TS101 -bprom

-fhex -l Ts101_prom.dxe

In the above example, the command line runs the loader with:

• p0.dxe – Identifies the executable file for the processor with ID 0 
to process into a boot-loadable file. Note the absence of the -o 
switch causes the output file name to default to p0.ldr.

• p1.dxe – Identifies the executable file for the processor with ID 1 
to process into a boot-loadable file.

• -proc ADSP-TS101 – Specifies ADSP-TS101 as the processor type.

• -bprom – Specifies EPROM booting as the boot type for the 
boot-loadable file.

• -fhex – Specifies Intel Hex-32 format for the boot-loadable file.

• -l Ts101_prom.exe – Specifies the boot kernel file to be used for 
the boot-loadable file.



TigerSHARC Loader Guide

3-8 VisualDSP++ 4.0 Loader Manual

File Searches

File searches are important in loader processing. The loader supports rela-
tive and absolute directory names, default directories, and user-selected 
directories for file search paths. File searches occur as described 
on page 1-11.

File Extensions

Some loader switches take a file name as an optional parameter. Table 3-2 
lists the expected file types, names, and extensions. The loader takes files 
with extensions of .DXE, .OVL, and .SM but expects only those with exten-
sion .DXE in a command line on the Load page. The loader finds files with 
extensions of .OVL and .SM as it processes the associated .DXE file. The 
loader searches for .OVL and .SM files in the directory holding the .DXE 
files, in the directory specified in the .LDF file, or in the current directory. 
The .OVL extension is for overlaying files, and the .SM extension is for 
shared memory files. 

Command-Line Switches

A summary of the loader command-line switches appears in Table 3-3.

Table 3-2. TigerSHARC File Extensions

Extension File Description

.DXE Loader input files, boot kernel files, and initialization files 

.LDR Loader output file

.OVL Overlay files. The loader does not expect them on a command line.

.SM Shared memory files. The loader does not expect them on a command line.



VisualDSP++ 4.0 Loader Manual 3-9 

Loader for ADSP-TSxxx TigerSHARC Processors

Table 3-3. TigerSHARC Loader Command-Line Switches

Switch Description

-bprom
-bhost
-blink

Prepares a boot-loadable file for the specified boot mode. Valid boot 
types include PROM, host, and link. If the -b switch does not 
appear on the command line, the default setting is -bprom. To use a 
custom kernel, the boot type selected with the -b switch must corre-
spond to the boot kernel selected with the -l switch.

-fhex
-fASCII
-fbinary
-fS1
-fS2
-fS3

 Prepares a boot-loadable file in the specified format. Available for-
mat selections are: hex (Intel Hex-32), S1, S2, S3 (Motorola 
S-records), include, ASCII, and binary. Valid formats depend on the 
-b switch boot type selection.

• For a PROM boot type, use a hex, S1, S2, S3, include, 
binary, or ASCII format. 

• For host or link booting, use ASCII or binary formats. 
If the -f switch does not appear on the command line, the default 
boot type format is hex for PROM, and ASCII for host or link.

-h
or
-help

Invokes the command-line help, outputs a list of command-line 
switches to standard output, and exits. By default, the -h switch 
alone provides help for the loader driver. To obtain a help screen for 
the target TigerSHARC processor, add the -proc switch to the com-
mand line. For example, type elfloader-proc ADSP-TS101 -h to 
obtain help for the ADSP-TS101S processor. 

-id#exe=filename Directs the loader to use the processor ID number for the corre-
sponding executable file when producing a boot-loadable file for a 
EPROM- or host-boot multiprocessor system.
Use this switch only to produce a boot-loadable file that boots mul-
tiple processors from a single EPROM. Valid # are 0, 1, 2, 3, 4, 5, 6, 
and 7.
Do not use this switch for single-processor systems. For single-pro-
cessor systems, use the executable file name as a parameter without a 
switch.

-l userkernele Directs the loader to use the specified userkernel and to ignore the 
default boot kernel for the boot-loading routine in the output 
boot-loadable file. 
Note: The boot kernel file selected with this switch must correspond 
to the boot type selected with the -b switch). 
If the -l switch does not appear on the command line, the loader 
searches for a default boot kernel file in the installation directory 
(see “Boot Kernels” on page 3-4).



TigerSHARC Loader Guide

3-10 VisualDSP++ 4.0 Loader Manual

-nokernel Supports internal boot mode. The -nokernel switch directs the 
loader not to include the boot kernel code into the loader (.LDR) 
file.

-o filename Directs the loader to use the specified filename as the name of the 
loader output file. If the filename is absent, the default name is the 
name of the input file with an .LDR extension.

-p # Specifies the EPROM start address (hex format) for the 
boot-loadable file. If the -p switch does not appear on the command 
line, the loader starts the EPROM file at address 0x0 in the 
EPROM; this EPROM address corresponds to address 0x4000000 
in a TigerSHARC processor.

-proc processor Specifies the target processor. The processor can be one of the 
following: ADSP-TS101, ADSP-TS201, ADSP-TS202, or 
ADSP-TS203. 

-t # Sets the number of timeout cycles (#) as a maximum number of 
cycles the processor spends initializing external memory. Valid values 
range from 3 to 32765 cycles; 32765 is the default value. The time-
out value is directly related to the number of cycles the processor 
locks the bus for boot-loading, instructing the processor to lock the 
bus for no more than 2X timeout number of cycles. When working 
with a fast host that cannot tolerate being locked out of the bus, use 
a relatively small timeout value.

-v Outputs verbose loader messages and status information as the 
loader processes files.

Table 3-3. TigerSHARC Loader Command-Line Switches (Cont’d)

Switch Description



VisualDSP++ 4.0 Loader Manual 3-11 

Loader for ADSP-TSxxx TigerSHARC Processors

-version Directs the loader to display its version information. Type elf-
loader -version to display the version of the loader drive. Add 
the -proc switch, such as in elfloader -proc ADSP-TS201 
-version to display version information for the loader drive and 
TigerSHARC loader.

-si-revision #|none Provides a silicon revision of the specified processor.
The switch parameter represents a silicon revision of the processor 
specified by the -proc switch. The parameter takes one of two 
forms:

• One or more decimal digits, followed by a point, followed 
by one or two decimal digits. Examples of revisions are: 
0.0; 1.12; 23.1. Revision 0.1 is distinct from and 
“lower” than revision 0.10. The digits to the left of the 
point specify the chip tapeout number; the digits to the 
right of the point identify the metal mask revision number. 
The number to the right of the point cannot exceed deci-
mal 255.

• A none value is also supported, indicating that the 
VDSP++ tool should ignore silicon errata. 

This switch either generates a warning about any potential anoma-
lous conditions or generates an error if any anomalous conditions 
occur.
Note: In the absence of the silicon revision switch, the loader selects 
the greatest silicon revision it is aware of, if any.
Note: In the absence of the switch parameter (a valid revision 
value)—-si-revision alone or with an invalid value—the loader 
generates an error.

Table 3-3. TigerSHARC Loader Command-Line Switches (Cont’d)

Switch Description



TigerSHARC Loader Guide

3-12 VisualDSP++ 4.0 Loader Manual

Using VisualDSP++ Interface (Load Page)
When developing a DSP loader file project in VisualDSP++, modify the 
default option settings on the Load page of the Projects Options dialog 
box. For information specific to your target processor, refer to the 
VisualDSP++ online help for that processor.

VisualDSP++ invokes the elfloader utility to build the output file. 
Dialog box buttons and fields correspond to command-line switches and 
parameters (see Table 3-3 on page 3-9). Use the Additional Options box 
to enter options that have no dialog box equivalent. 



VisualDSP++ 4.0 Loader Manual 4-1 

4 LOADER FOR 
ADSP-2106X/21160 SHARC 
PROCESSORS

This chapter explains how the loader program (elfloader.exe) is used to 
convert executable (.DXE) files into boot-loadable files for ADSP-21060, 
ADSP-21061, ADSP-21062, ADSP-21065L, and ADSP-21160 SHARC 
processors. 

Refer to “Introduction” on page 1-1 for the loader overview; the introduc-
tory material applies to all processor families. Refer to “Loader for 
ADSP-21161 SHARC Processors” on page 5-1 for information about 
ADSP-21161 processors. Refer to “Loader for ADSP-2126x/2136x 
SHARC Processors” on page 6-1 for information about ADSP-2126x and 
ADSP-2136x processors.

Loader operations specific to ADSP-2106x/21160 SHARC processors are 
detailed in the following sections. 

• “ADSP-2106x/21160 Processor Booting” on page 4-2
Provides general information about various booting modes, 
including information about boot kernels.

• “ADSP-2106x/21160 Processor Loader Guide” on page 4-25
Provides reference information about the loader graphical user 
interface, command-line syntax, and switches.



ADSP-2106x/21160 Processor Booting

4-2 VisualDSP++ 4.0 Loader Manual

ADSP-2106x/21160 Processor Booting
ADSP-2106x/21160 processors support four boot types (modes): 
EPROM, host, link port, and no-boot, described in Table 4-3 and 
Table 4-4 on page 4-5. Boot-loadable files for these modes pack boot data 
into 48-bit instructions and use an appropriate DMA channel of the 
processor’s DMA controller to boot-load the instructions. 

ADSP-2106x processors use DMA channel 6 (DMAC6) for booting. 
ADSP-21160 processors use DMAC8 for link port booting and 
DMAC10 for the host and EPROM booting.

• When booting from an EPROM through the external port, the 
ADSP-2106x/21160 processor reads boot data from an 8-bit 
external EPROM. 

• When booting from a host processor through the external port, the 
ADSP-2106x/21160 processor accepts boot data from a 8- or 
16-bit host microprocessor. 

• When booting through the link port, the ADSP-2106x/21160 
processor receives boot data as 4-bit wide data in link buffer 4. 

• In no-boot mode, the ADSP-2106x/21160 processor begins 
executing instructions from external memory.

Software developers who use the loader should be familiar with the 
following operations.

• “Power-Up Booting Process” on page 4-3

• “Boot Mode Selection” on page 4-5

• “Boot Types” on page 4-7

• “Boot Kernels” on page 4-16

• “Interrupt Vector Table” on page 4-22



VisualDSP++ 4.0 Loader Manual 4-3 

Loader for ADSP-2106x/21160 SHARC Processors

• “Multiprocessor EPROM Booting” on page 4-23

• “Processor ID Numbers” on page 4-24

Power-Up Booting Process
ADSP-2106x and ADSP-21160 processors include a hardware feature that 
boot-loads a small, 256-instruction program into the processor’s internal 
memory after power-up or after the chip reset. These instructions come 
from a program called the boot kernel or the loader kernel. When exe-
cuted, the boot kernel facilitates booting of user application code. The 
combination of the boot kernel and application code comprise the 
boot-loadable (.LDR) file.

At power-up, after the chip reset, the booting process includes the 
following steps.

1. Based on the boot type, an appropriate DMA channel is automati-
cally configured for a 256-instruction (48-bit) transfer. This 
transfer boot-loads the boot kernel program into the processor 
memory. 

DMA channels used by the various processor models are shown in 
Table 4-1.

Table 4-1. ADSP-2106x/21160 Processor DMA Channels

Processor Model PROM Booting Host Booting Link Booting

ADSP-21060
6 (See Table 4-8.) 6 (See Table 4-8.)

6

ADSP-21061 Not supported

ADSP-21062 6

ADSP-21065L 8 (DMAC0 programs DMA 
channel 8; see Table 4-8)

8 (DMAC0 programs DMA 
channel 8; see Table 4-8)

Not supported

ADSP-21160 10 (See Table 4-9.) 10 (See Table 4-9.) 8



ADSP-2106x/21160 Processor Booting

4-4 VisualDSP++ 4.0 Loader Manual

2. The boot kernel runs and loads the application executable code and 
data. 

3. The boot kernel overwrites itself with the first 256 words of the 
application at the end of the booting process. After that, the appli-
cation executable code begins to execute the user application code 
from locations 0x20000 (ADSP-21060/61/62), 0x8000 
(ADSP-21065L), and 0x40000 (ADSP-21160). 

The start addresses and reset vector addresses are summarized in 
Table 4-2.

The boot type selection directs the system to prepare the appropriate boot 
kernel.

Table 4-2. ADSP-2106x/21160 Processor Start Addresses

Processor Model Block 0 Start Address Reset Vector Address1

1   The reset vector address must not contain a valid instruction since it is not executed during the 
booting sequence. Place a NOP or IDLE instruction at this location.

ADSP-21060 0x20000 0x20004

ADSP-21061 0x20000 0x20004

ADSP-21062 0x20000 0x20004

ADSP-21065L 0x8000 0x8004

ADSP-21160 0x40000 0x40004



VisualDSP++ 4.0 Loader Manual 4-5 

Loader for ADSP-2106x/21160 SHARC Processors

Boot Mode Selection
The state of various pins selects the processor boot mode (boot type). For 
ADSP-21060, ADSP-21061, ADSP-21062, and ADSP-21160 processors, 
refer to Table 4-3 and Table 4-4. For ADSP-21065L processors, refer to 
Table 4-5 and Table 4-6.

Table 4-3. ADSP-21060/061/062, and ADSP-21160 Boot Mode Pins

Pin Type Description

EBOOT I EPROM Boot. When EBOOT is high, the processor boot-loads from an 8-bit 
EPROM through the processor’s external port. When EBOOT is low, the 
LBOOT and BMS pins determine the booting mode. 

LBOOT I Link Boot. When LBOOT is high and EBOOT is low, the processor boots from 
another SHARC through the link port. When LBOOT is low and EBOOT is low, 
the processor boots from a host processor through the processor’s external 
port. 

BMS I/O/T1

1   Three-statable in EPROM boot mode (when BMS is an output).

Boot Memory Select. When boot-loading from an EPROM (EBOOT=1 and 
LBOOT=0), this pin is an output and serves as the chip select for the EPROM. 
In a multiprocessor system, BMS is output by the bus master. When 
host-booting or link-booting (EBOOT=0), BMS is an input and must be high.

Table 4-4. ADSP-21060/061/062 and ADSP-21160 Boot Modes

EBOOT LBOOT BMS Boot Mode

0 0 0 (Input) No boot (processor executes from external memory)

0 0 1 (Input) Host processor 

0 1 0 (Input) Reserved

0 1 1 (Input) Link port

1 0 Output EPROM (BMS is chip select)

1 1 x (Input) Reserved



ADSP-2106x/21160 Processor Booting

4-6 VisualDSP++ 4.0 Loader Manual

Table 4-5. ADSP-21065L Boot Mode Pins

Pin Type Description

BMS I/O/T1 Boot Memory Select 
When BSEL is low, BMS is an input pin and selects between host boot mode 
and no boot mode. In no boot mode, the processor executes from external 
memory. For no boot mode, connect BMS to ground. For host boot mode, 
connect BMS to VDD.
When BSEL is high, BMS is an output pin and the processor starts up in 
EPROM boot mode. Connect BMS to the EPROM’s chip select.

BSEL I EPROM Boot Select
Hardwire this signal; it is used for system configuration.
When BSEL is high, the processor starts up in EPROM boot mode. 
The processor assumes the EPROM data bus is 8 bits wide. Connect BSEL to 
the processor data bus in LSB alignment.
When BSEL is low, BMS determines the booting mode. Connect BSEL to 
ground. 

1   Three-statable in EPROM boot mode (when BMS is an output).

Table 4-6. ADSP-21065L Boot Modes

BSEL BMS Description

0 1 No boot mode.
The processor executes from external memory at location 0x20004.

0 1 Host boot mode.
The processor defaults to an 8-bit host bus width.

1 Output EPROM boot mode.
The processor assumes an 8-bit EPROM data bus width. Connect to the 
data bus in LSB alignment.



VisualDSP++ 4.0 Loader Manual 4-7 

Loader for ADSP-2106x/21160 SHARC Processors

Boot Types
ADSP-2106x/21160 processors support these booting modes: EPROM, 
host, and link. The following sections describe each of the booting modes.   

• “EPROM Booting” on page 4-7

• “Host Booting” on page 4-11

• “Link Booting” on page 4-15

• “No-Boot Mode” on page 4-16

For multiprocessor booting, refer to “Multiprocessor EPROM Booting” 
on page 4-23.

EPROM Booting

The ADSP-2106x/21160 processor is configured for EPROM booting 
through the external port when the EBOOT pin is high and the LBOOT pin is 
low. These settings cause the BMS pin to become an output, serving as chip 
select for the EPROM. Table 4-7 lists all PROM-to-processor 
connections. 

Table 4-7. PROM Connections to ADSP-2106x/21160 Processors

Processor Model Connection

ADSP-21060/61/62 PROM/EPROM connected to DATA23—16 pins

ADSP-21065L PROM/EPROM connected to DATA0—7 pins

ADSP-21160 PROM/EPROM connected to DATA32—39 pins

ADSP-21xxx Address pins of PROM connect to lowest address pins of any proces-
sor

ADSP-21xxx Chip select connect to the BMS pin

ADSP-21060/61/62/65L Output enable connect to the RD pin

ADSP-21160 Output enable connect to RDH pin



ADSP-2106x/21160 Processor Booting

4-8 VisualDSP++ 4.0 Loader Manual

During reset, the ACK line is pulled high internally with a 2K ohm 
equivalent resistor and is held high with an internal keeper latch. It is not 
necessary to use an external pull-up resistor on the ACK line during booting 
or at any other time.

The DMA channel parameter registers are initialized at reset for EPROM 
booting as shown in Table 4-8 and Table 4-9. The count is initialized to 
0x0100 to transfer 256 words to internal memory. The external count 
register (ECx), which is used when external addresses (BMS space) are 
generated by the DMA controller, is initialized to 0x0600 (0x100 words at 
six bytes per word).

Table 4-8. DMA Settings for ADSP-2106x EPROM Booting

DMA Setting Processor Model

ADSP-21060/61/62 ADSP-21065L

BMS space 4M x 8-bit 8M x 8-bit

DMA Channel DMAC6 = 0x2A1 DMAC0 = 0x2A1

II6 IIEP0 0x20000 0x8000

IM6 IMEP0 0x1 (Implied) 0x1 (Implied)

C6 CEP0 0x100 0x100

EI6 EIEP0 0x80 0000 0x40 0000

EM6 EMEP0 0x1 (Implied) 0x1 (Implied)

EC6 ECEP0 0x600 0x600

IRQ Vector 0x20040 0x8040

Table 4-9. DMA Settings for ADSP-21160EPROM Booting

DMA Setting ADSP-21160 Processor 

BMS space 8M x 8-bit

DMA Channel DMAC10 = 0x4A1



VisualDSP++ 4.0 Loader Manual 4-9 

Loader for ADSP-2106x/21160 SHARC Processors

After the processor’s RESET pin goes inactive on start-up, a SHARC system 
configured for EPROM booting undergoes the following boot-loading 
sequence.

1. The processor BMS pin becomes the boot EPROM chip select. 

2. The processor goes into an idle state, identical to that caused by the 
IDLE instruction. The program counter (PC) is set to the processor 
reset vector address (refer to Table 4-2 on page 4-4).

3. The DMA controller reads 8-bit EPROM words, packs them into 
48-bit instruction words, and transfers them into internal memory 
(low-to-high byte packing order) until the 256 words are loaded.

4. The DMA parameter registers for appropriate DMA channels are 
initialized, as shown in Table 4-8 and Table 4-9. The external port 
DMA channel (6 or 10) becomes active following reset; it is 
initialized to set external port DMA enable and selects DTYPE for 
instruction words. The packing mode bits (PMODE) are ignored, 
and 48- to 8-bit packing is forced with least significant word first. 
The UBWS and UBWM fields of the WAIT register are initialized to gen-
erate six wait states for the EPROM access in unbanked external 
memory space.

II10 0x40000

IM10 0x1 (Implied)

C10 0x100

EI10 0x800000

EM10 0x1 (Implied)

EC10 0x600

IRQ Vector 0x40050

Table 4-9. DMA Settings for ADSP-21160EPROM Booting (Cont’d)

DMA Setting ADSP-21160 Processor 



ADSP-2106x/21160 Processor Booting

4-10 VisualDSP++ 4.0 Loader Manual

5. The processor begins 8-bit DMA transfers from the EPROM to 
internal memory using the following external port data bus lines: 

D23—D16 for ADSP-21060/61/62 processors

D0—D7 for ADSP-21065L processors

D32—D39 for ADSP-21160 processors

6. Data transfers begin and increment after each access. The external 
address lines (ADDR 31—0), start at: 

0x40 0000 for ADSP-21060/61/62 processors

0x00 0000 for ADSP-21065L processors

0x80 0000 for ADSP-21160 processors

7. The processor RD pin asserts as in a normal memory access, with six 
wait states (seven cycles).

8. After finishing DMA transfers to load the boot kernel into the pro-
cessor, the BSO bit is cleared in the SYSCON register, deactivating BMS 
and activating normal external memory select.

The boot kernel uses three copies of SYSCON—one that contains the 
original value of SYSCON, a second that contains SYSCON with the 
BSO bit set (allowing the processor to gain access to the boot 
EPROM), and a third with the BSO bit cleared.

When BSO=1, the EPROM packing mode bits in the DMACx control 
register are ignored and 8- to 48-bit packing is forced. (8-bit pack-
ing is available only during EPROM booting or when BSO is set.) 
When an external port DMA channel is being used in conjunction 
with the BSO bit, none of the other three channels may be used. In 
this mode, BMS is not asserted by a core processor access but only by 
a DMA transfer. This allows the boot kernel to perform other 
external accesses to non-boot memory.



VisualDSP++ 4.0 Loader Manual 4-11 

Loader for ADSP-2106x/21160 SHARC Processors

The EPROM is automatically selected by the BMS pin after reset, and other 
memory select pins are disabled. The processor’s DMA controller reads 
the 8-bit EPROM words, packs them into 48-bit instruction words, and 
transfers them to internal memory until 256 words have been loaded. The 
Master DMA internal and external count registers (CX and ECX) decrement 
after each EPROM transfer. When both counters reach zero, DMA trans-
fer has stopped and RTI returns the program counter to the address where 
kernel begins.

To EPROM boot a single-processor system, include the executable 
on the command-line without a switch. Do not use the -id#exe 
switch with ID=0 (see “Processor ID Numbers” on page 4-24).

The WAIT register UBWM (used for EPROM booting) is initialized at reset to 
both internal wait and external acknowledge required. The internal 
keeper-latch on the ACK pin initially holds acknowledge high (asserted). If 
acknowledge is driven low by another device during an EPROM boot, the 
keeper latch may latch acknowledge low. 

The processor views the deasserted (low) acknowledge as a hold off from 
the EPROM. In this condition, wait states are continually inserted, pre-
venting completion of the EPROM boot. When writing a custom boot 
kernel, change the WAIT register early within the boot kernel so UBWM is set 
to internal wait mode (01).

Host Booting

ADSP-2106x/21160 processors accept data from a 8- and 16-bit host 
microprocessor (or other external device) through the external port EPB0 
and pack boot data into 48-bit instructions using an appropriate DMA 
channel. The host is selected when the EBOOT and LBOOT inputs are low and 
BMS is high. Configured for host booting, the processor enters the slave 
mode after reset and waits for the host to download the boot program. 
Table 4-10 lists host connections to processors. 



ADSP-2106x/21160 Processor Booting

4-12 VisualDSP++ 4.0 Loader Manual

After reset, the processor goes into an idle stage with:

• PC set to address 0x20004 (ADSP-21060/61/62 processors)

• PC set to address 0x8004 (ADSP-21065L processors)

• PC set to address 0x40004 (ADSP-21160 processors)

The parameter registers for the external port DMA channel (0, 8, or 10) 
are initialized as shown in Table 4-8 and Table 4-9, except that registers 
EIx, EMx and ECx are not initialized and no DMA transfers start.

The DMA Channel Control register (DMAC6 for ADSP-21060/61/62 pro-
cessors, DMAC0 for ADSP-21065L processors, or DMAC10 for ADSP-21160 
processors) is initialized, which allows external port DMA enable and 
selects DTYPE for instruction words, PMODE for 16- to 48-bit word packing 
(8- to 48-bit for ADSP-21065L processors), and least significant word 
first.           

Because the host processor is accessing the EPB0 external port buffer, the 
HPM host packing mode bits of the SYSCON register must correspond to the 
external bus width specified by the PMODE bits of DMACx control register. 

Table 4-10. Host Connections to ADSP-2106x/21160 Processors

Processor Connection/Data Bus Pins

ADSP-21060/61/62 Host connected to DATA47—16 or DATA31—16 pins (based on HPM 
bits)

ADSP-21065L Host connected to DATA31—0 or DATA15—0 or DATA7—0 pins (based 
on HBW-bits)

ADSP-21160 Host connected to DATA63—32 or DATA47—31 pins (based on 
HPM-bits)

ADSP-21060/61/62/65L ADSP-21065L host address to IOP registers only

ADSP-21160 ADSP-21160 host address to IOP registers and internal memory



VisualDSP++ 4.0 Loader Manual 4-13 

Loader for ADSP-2106x/21160 SHARC Processors

For a different packing mode, the host must write to DMACx and SYSCON to 
change the PMODE and HBW (HPW for ADSP-21065L processors) setting. The 
host boot file created by the loader requires the host processor to perform 
the following sequence of actions. 

1. The host initiates the synchronous booting operation (synchronous 
not valid for ADSP-21065L processors) by asserting the processor 
HBR input pin, informing the processor that the default 8-/16-bit 
bus width is used. The host may optionally assert the CS chip select 
input to allow asynchronous transfers. 

2. After the host receives the HBG signal (and ACK for synchronous 
operation or READY for asynchronous operation) from the proces-
sor, the host can start downloading instructions by writing directly 
to the external port DMA buffer 0 or the host can change the reset 
initialization conditions of the processor by writing to any of the 
IOP control registers. The host must use data bus pins as shown in 
Table 4-10.

3. The host continues to write 16-bit words (8-bit for ADSP-21065L) 
to EPB0 until the entire program is boot-loaded. The host must 
wait between each host write to external port DMA buffer 0.

After the host boot-loads the first 256 instructions (boot kernel), the ini-
tial DMA transfers stop, and the boot kernel:

1. Activates external port DMA channel interrupt (EP0I), stores the 
DMACx control setting in R2 for later restore, clears DMACx for new 
setting, and sets the BUSLCK bit in the MODE2 register to lock out the 
host.

2. Stores the SYSCON register value in R12 for restore.

3. Enables interrupts and nesting for DMA transfer, sets up the IMASK 
register to allow DMA interrupts, and sets up the MODE1 register to 
enable interrupts and allow nesting.



ADSP-2106x/21160 Processor Booting

4-14 VisualDSP++ 4.0 Loader Manual

4. Loads the DMA Control register with 0x00A1 and sets up its 
parameters to read the data word by word from external buffer 0. 

Each word is read into the reset vector address (refer to Table 4-2 
on page 4-4) for dispatching. The data through this buffer has a 
structure of boot section which could include more than one ini-
tialization block. 

5. Clears the BUSLCK bit in the MODE2 register to let the host write in 
the external buffer 0 right after the appropriate DMA channel is 
activated. 

For information on the data structure of the boot section and ini-
tialization, see “Blocks and Block Headers” on page 4-17.

6. Loads the first 256 words of target the executable file during the 
final initialization stage, and then the kernel overwrites itself.

The final initialization works the same way as with EPROM booting, 
except that the BUSLCK bit in the MODE2 register is cleared to allow the host 
to write to the external port buffer. 

The default boot kernel for host booting assumes IMDW is set to 0 during 
boot-loading, except during the final initialization stage. When using any 
power-up booting mode, the reset vector address (refer to Table 4-2 on 
page 4-4) must not contain a valid instruction because it is not executed 
during the booting sequence. Place a NOP or IDLE instruction at this 
location.

If the boot kernel initializes external memory, create a custom boot kernel 
that sets appropriate values in the SYSCON and WAIT register. Be aware that 
the value in the DMA channel register is non-zero, and IMASK is set to 
allow DMA channel register interrupts. Because the DMA interrupt 
remains enabled in IMASK, this interrupt must be cleared before using the 
DMA channel again. Otherwise, unintended interrupts may occur.



VisualDSP++ 4.0 Loader Manual 4-15 

Loader for ADSP-2106x/21160 SHARC Processors

A master SHARC processor may boot a slave SHARC processor by writing 
to its DMACx control register and setting the packing mode (PMODE) to 00. 
This allows instructions to be downloaded directly without packing. The 
wait state setting of 6 on the slave processor does not affect the speed of 
the download since wait states affect bus master operation only.

Link Booting

Link booting is supported on all SHARC processors except 
ADSP-21061 and ADSP-21065L processors.

When you link-boot ADSP-2106x/21160 SHARC processors, the proces-
sor receives data from 4-bit link buffer 4 and packs boot data into 48-bit 
instructions using the appropriate DMA channels (DMA channel 6 for 
ADSP-2106x processors, DMA channel 8 for ADSP-21160 processors).          

Link mode is selected when the EBOOT is low and LBOOT and BMS are high. 
The external device must provide a clock signal to the link port assigned 
to link buffer 4. The clock can be any frequency, up to a maximum of the 
processor clock frequency. The clock falling edges strobe the data into the 
link port. The most significant 4-bit nibble of the 48-bit instruction must 
be downloaded first. The link port acknowledge signal generated by the 
processor can be ignored during booting since the link port cannot be pre-
empted by another DMA channel.

Link booting is similar to host booting—the parameter registers 
(IIx and Cx) for DMA channels are initialized to the same values. The 
DMA channel 6 control register (DMAC6) is initialized to 0x00A0, and the 
DMA channel 10 control register (DMAC10) is initialized to 0x100000. This 
disables external port DMA and selects DTYPE for instruction words. The 
LCTL and LCOM link port control registers are overridden during link boot-
ing to allow link buffer 4 to receive 48-bit data.

After booting completes, the IMASK remains set, allowing DMA channel 
interrupts. This interrupt must be cleared before link buffer 4 is again 
enabled; otherwise, unintended link interrupts may occur.



ADSP-2106x/21160 Processor Booting

4-16 VisualDSP++ 4.0 Loader Manual

Refer to “Host Booting” on page 4-11 for more information on booting 
process.

No-Boot Mode

No-boot mode causes the processor to start fetching and executing 
instructions at address 0x400004 (ADSP-2106x), 0x20004 
(ADSP-21065L), and 0x800004 (ADSP-21160) in external memory space. 
All DMA control and parameter registers are set to their default initializa-
tion values. The loader is not intended to support no-boot mode.

Boot Kernels
The boot-loading process starts with a transfer of the boot kernel program 
into the processor memory. The boot kernel sets up the processor and 
loads boot data. After the boot kernel finishes initializing the rest of the 
system, the boot kernel loads boot data over itself with a final DMA 
transfer. 

Boot kernels are loaded at reset into program segment seg_ldr, which is 
defined in 06x_ldr.ldf for ADSP-2106x processors, 065L_ldr.ldf for 
ADSP-21065L processors, or in 160_ldr.ldf for ADSP-21160 processors. 
This file is stored in the processor tools installation directory in 
...\21k\ldr for ADSP-2106x processors and ...\211xx\ldr for 
ADSP-21160 processors.

The default boot kernel files shipped with VisualDSP++ are listed in 
Table 4-11.

Table 4-11. ADSP-2106x/21160 Default Boot Kernel Files

Processor Model PROM Booting Link Booting Host Booting

ADSP-21060 060_prom.asm 060_link.asm 060_host.asm

ADSP-21065L 065L_prom.asm 065L_host.asm

ADSP-21160 160_prom.asm 160_link.asm 160_host.asm



VisualDSP++ 4.0 Loader Manual 4-17 

Loader for ADSP-2106x/21160 SHARC Processors

Once the kernel has been loaded successfully into the processor, the kernel 
follows the following sequence.

1. Each boot kernel begins with general initializations for the DAG reg-
isters, appropriate interrupts, processor ID information, and 
various SDRAM or WAIT state initializations.

2. Once the boot kernel has finished the task of initializing the pro-
cessor, the kernel initializes processor memory, both internal and 
external, with user application code.

Blocks and Block Headers

The structure of a loader file enables the boot kernel to load code and 
data, block by block. In the loader file, each block of code or data is pre-
ceded by a block header, which describes the block —length, placement, 
and data or instruction type. After the block header, the loader outputs 
the block body, which includes the actual data or instructions for place-
ment in the processor memory. The loader, however, does not output a 
block body if the actual data or instructions are all zeros in value. This 
type of block is called a zero block. Table 4-12 describes the block header 
and block body format.

The loader identifies the data type in the block header with a 16-bit tag. 
The tag precedes the block. Each type of initialization has a unique tag 
number (tag number—initialization type) as shown in Table 4-13. 

Table 4-12. Boot Block Format

Block Header
First word Bits 16–47 are not used.

Bits 0–15 define the type of data block (tag). 

Second word Bits 16–47 are the start address of the block.
Bits 0–15 are the word count for the block.

Block Body
(if not a zero block)

Word 1 (48 bits)
Word 2 (48 bits)



ADSP-2106x/21160 Processor Booting

4-18 VisualDSP++ 4.0 Loader Manual

The kernel enables the boot port (external or link) to read the block 
header. After reading information from the block header, the kernel places 
the body of the block in the appropriate place in memory if the block has 
a block body, or initializes in the appropriate place with zero values in the 
memory if it is a zero block.

The final section, which is identified by a tag of 0x0, is called the finial 
initialization section. This section has self-modifying code that, when 
executed, facilitates a DMA over the kernel, replacing it with the user 
application code that actually belongs in that space at run time. The final 
initialization code also takes care of interrupts and returns the processor 
registers, such as SYSCON and DMAC or LCTL, to their default values.

When the loader detects the final initialization tag, it reads the next 48-bit 
word. This word indicates the instruction to load into the 48-bit PX regis-
ter after the boot kernel finishes initializing memory.

Table 4-13. ADSP-2106x/21160 Processor Loader Block Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000A zero pm48

0x0001 zero dm16 0x000B init pm16

0x0002 zero dm32 0x000C init pm32

0x0003 zero dm40 0x000E init pm48

0x0004 init dm16 0x000F zero dm64 (21160 only)

0x0005 init dm32 0x0010 init dm64 (21160 only)

0x0007 zero pm16 0x0011 zero pm64 (21160 only)

0x0008 zero pm32 0x0012 init pm64 (21160 only)

0x0009 zero pm40



VisualDSP++ 4.0 Loader Manual 4-19 

Loader for ADSP-2106x/21160 SHARC Processors

The boot kernel requires that the interrupt, External Port (or Link Port 
address, depending on the boot type) contains an RTI instruction. This 
RTI is inserted automatically by the loader to guarantee that the kernel 
executes from the reset vector, once the DMA that overwrites the kernel, 
is complete. A last remnant of the kernel code is left at the reset vector 
location to replace the RTI with the user’s intended code. Because of this 
last kernel remnant, user application code should not use the first location 
of the reset vector. This first location should be a NOP or IDLE instruction. 
The kernel automatically completes, and the Program Controller begins 
sequencing the user application code at the second location in the proces-
sor reset vector space.

When the boot process is complete, the processor automatically executes 
the user application code. The only remaining evidence of the boot kernel 
is at the first location of the interrupt vector. Almost no memory is sacri-
ficed to the boot code.

Boot Kernel Modification and Loader Issues

Some systems require boot kernel customization. The operation of other 
tools (such as the C/C++ compiler) is influenced by whether the loader is 
used. 

When producing a boot-loadable file, the loader reads a processor execut-
able file and uses information in it to initialize the memory. However, the 
loader cannot determine how the processor SYSCON and WAIT registers are 
to be configured for external memory loading in the system. 

If you modify the boot kernel by inserting values for your system, you 
must rebuild it before generating the boot-loadable file. The boot kernel 
contains default values for SYSCON. The initialization code can be found in 
the comments in the boot kernel source file.



ADSP-2106x/21160 Processor Booting

4-20 VisualDSP++ 4.0 Loader Manual

After modifying the boot kernel source file, rebuild the boot kernel (.DXE) 
file. Do this from the VisualDSP++ IDDE (refer to VisualDSP++ online 
Help for details), or rebuild the boot kernel file from the command line.

When using VisualDSP++, specify the name of the modified kernel 
executable in the Kernel file box on the Load page of the Project 
Options dialog box.

If you modify the boot kernel for EPROM, host, or link booting     
modes, ensure that the seg_ldr memory segment is defined in the .LDF 
file. Refer to the source of this segment in the .LDF file located in the 
...\21k\ldr\ or (...\211xx\ldr\) directory. 

The loader generates a warning when vector address (0x20004 for 
ADSP-21060/61/62 processors, 0x40004 for ADSP-21160 processors, or 
0x8004 for ADSP-21065L processors) does not contain NOP or IDLE. 
Because the boot kernel uses this address for the first location of the reset 
vector during the boot-load process, avoid placing code at this address. 
When using any of the processor’s power-up booting modes, ensure that 
this address does not contain a critical instruction, because this address is 
not executed during the booting sequence. Place a NOP or IDLE instruction 
at this location. 

The boot kernel project can be rebuilt from the VisualDSP++ IDDE. The 
command-line can also be used to rebuild various default boot kernels for 
ADSP-2106x/21160 processors.



VisualDSP++ 4.0 Loader Manual 4-21 

Loader for ADSP-2106x/21160 SHARC Processors

EPROM Booting. The default boot kernel source file for the 
ADSP-2106x EPROM booting is 060_prom.asm. Copy this file to 
my_prom.asm and modify it to suit your system. Then, use the following 
commands to rebuild the boot kernel.

easm21k -21060 my_prom.asm

or

easm21k -proc ADSP-21060 my_prom.asm

linker -T 060_ldr.ldf my_prom.doj

Host Booting. The default boot kernel source file for the ADSP-2106x 
host booting is 060_host.asm. Copy this file to my_host.asm and modify it 
to suit your system. Then use the following commands to rebuild the boot 
kernel.

easm21k -21060 my_host.asm

or

easm21k -proc ADSP-21060 my_host.asm

linker -T 060_ldr.ldf my_host.doj

Link Port Booting. The default boot kernel source file for the 
ADSP-2106x link port booting is 060_link.asm. Copy this file to 
my_link.asm and modify it to suit your system. Then use the following 
commands to rebuild the boot kernel.

easm21k -21060 my_link.asm

or

easm21k -proc ADSP-21060 my_link.asm

linker -T 060_ldr.ldf my_link.doj



ADSP-2106x/21160 Processor Booting

4-22 VisualDSP++ 4.0 Loader Manual

Rebuilding Boot Kernels

To rebuild the PROM boot kernel for ADSP-21065L processors, use 
these commands:

easm21k -21065L my_prom.asm 

or

easm21k -proc ADSP-21065L my_prom.asm

linker -T 065L_ldr.ldf my_prom.doj

To rebuild the PROM boot kernel for ADSP-21160 processors, use these 
commands:

easm21k -21160 my_prom.asm

or

easm21k -proc ADSP-21160 my_prom.asm

linker -T 160_ldr.ldf my_prom.doj

Interrupt Vector Table
If a ADSP-2106x/21160 SHARC processor is booted from an external 
source (EPROM, host, or another SHARC processor), the interrupt 
vector table is located in internal memory. If, however, the processor is 
not booted and executes from external memory, the vector table must be 
located in external memory.

The IIVT bit of the SYSCON control register can be used to override the 
booting mode in determining where the interrupt vector table is located. 
If the processor is not booted (no-boot mode), setting IIVT to 1 selects an 
internal vector table, and setting IIVT to 0 selects an external vector table. 
If the processor is booted from an external source (any mode other than 
no-boot mode), IIVT has no effect. The IIVT default initialization value 
is 0.



VisualDSP++ 4.0 Loader Manual 4-23 

Loader for ADSP-2106x/21160 SHARC Processors

Refer to EE-56: Tips & Tricks on the ADSP-2106x EPROM and HOST 
bootloader, EE-189: Link Port Tips and Tricks for ADSP-2106x and 
ADSP-2116x, and EE-77: SHARC Link Port Booting on the Analog 
Devices Web site for more information. 

Multiprocessor EPROM Booting
Currently, the loader generates single-processor loader files for host 
and link port booting. As a result, the loader supports multiproces-
sor EPROM booting only. The application code must be modified 
to properly set up multiprocessor booting in host and link port 
booting modes. 

The loader can produce boot-loadable files that permit the 
ADSP-2106x/21160 SHARC processors in a multiprocessor system to 
boot from a single EPROM. In such a system, the BMS signals from each 
SHARC processor are OR’ed together to drive the chip select pin of the 
EPROM. Each processor boots in turn, according to its priority. When 
the last processor finishes booting, it must inform the processors to begin 
program execution. 

Besides taking turns when booting, EPROM booting of multiple proces-
sors is similar to single-processor EPROM booting. 

When booting a multiprocessor system through a single EPROM:

• Connect all BMS pins to EPROM.

• Processor with ID#1 boots first. The other processors follow.

• The EPROM boot kernel accepts multiple .DXE files and reads the 
ID field in SYSTAT to determine which area of EPROM to read.

• All processors require a software flag or hardware signal (FLAG pins) 
to indicate that booting is complete.



ADSP-2106x/21160 Processor Booting

4-24 VisualDSP++ 4.0 Loader Manual

When booting a multiprocessor system through an external port:

• The host can use the host interface.

• A SHARC processor that is EPROM-, host-, or link-booted can 
boot the other processors through the external port (host boot 
mode).

For multiprocessor EPROM booting, select the Multiprocessor check box 
on the Load page of the Project Options dialog box or specify the -id#exe 
switch on the loader command line. These options specify the executable 
file targeted for a specific processor. 

Do not use the -id#exe switch to EPROM-boot a single processor whose 
ID is 0. Instead, name the executable file on the command line without a 
switch. For a single processor with ID=1, use the -id1exe= switch.

Processor ID Numbers
A single-processor system requires only one input (.DXE) file without any 
prefix and suffix to the input file name, for example:
elfloader -proc ADSP-21060 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each 
input file on the command line. A processor ID is provided via the 
-id#exe=filename.dxe switch, where # is 1 to 6. 

In the following example, the loader processes the input file Input1.dxe 
for the processor with an ID of 1 and the input file Input2.dxe for the 
processor with an ID of 2.

elfloader -proc ADSP-21060 -bprom -id1exe=Input1.dxe

-id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N 
processor, the output loader file contains only one copy of the code from 
the input file.

elfloader -proc ADSP-21060 -bprom -id1exe=Input.dxe -id2exe=1



VisualDSP++ 4.0 Loader Manual 4-25 

Loader for ADSP-2106x/21160 SHARC Processors

The loader points the id(2)exe loader jump table entry to the id(1)exe 
image, effectively reducing the size of the loader file.

ADSP-2106x/21160 Processor Loader 
Guide

Loader operations depend on the loader options, which control how the 
loader processes executable files. You select features such as boot mode, 
boot kernel, and output file format via the loader options. These options 
are specified on the loader’s command line or via the Load page of the 
Project Options dialog box in the VisualDSP++ environment. 

For information specific to the ADSP-2106x/21160 processor, refer to the 
VisualDSP++ online help for that processor. When you open the Load 
page, the default loader settings for the selected processor are already set. 
Use the Additional Options box to enter options that have no dialog box 
equivalent.

Option settings on the Load page correspond to switches displayed 
on the command line. 

These sections describe how to produce a bootable loader (.LDR) file:

• “Using the ADSP-2106x/21160 Loader Command Line” on 
page 4-26

• “Using the VisualDSP++ Interface (Load Page)” on page 4-31



ADSP-2106x/21160 Processor Loader Guide

4-26 VisualDSP++ 4.0 Loader Manual

Using the ADSP-2106x/21160 Loader Command 
Line

Use the following syntax for the SHARC loader command line.

elfloader inputfile -proc processor -switch [-switch …]

where:

• inputfile – Name of the executable file (.DXE) to be processed 
into a single boot-loadable file. An input file name can include the 
drive and directory. Enclose long file names within straight quotes, 
“long file name”.

• -proc processor – Part number of the processor (for example, 
-proc ADSP-21062) for which the loadable file is built. The -proc 
switch is mandatory.

• -switch … – One or more optional switches to process. Switches 
select operations and boot modes for the loader. A list of all 
switches and their descriptions appear in Table 4-15 on page 4-28.

Command-line switches are not case-sensitive and can be placed on 
the command line in any order.

The following command line,

elfloader p0.dxe -bprom -fhex -l 060_prom.dxe -proc ADSP-21060 

runs the loader with:

• p0.dxe – Identifies the executable file to process into a boot-load-
able file. The absence of the -o switch causes the output file name 
to default to p0.ldr. 

• -bprom  – Specifies EPROM booting as the boot type for the 
boot-loadable file.

• -fhex – Specifies Intel hex-32 format for the boot-loadable file.



VisualDSP++ 4.0 Loader Manual 4-27 

Loader for ADSP-2106x/21160 SHARC Processors

• -l 060_prom.exe – Specifies 060_prom.exe as the boot kernel file 
to be used in the boot-loadable file.

• -proc ADSP-21060 – Identifies the processor model as 
ADSP-21060.

File Searches

File searches are important in loader processing. The loader supports rela-
tive and absolute directory names, default directories, and user-selected 
directories for file search paths. File searches occur as described 
on page 1-11.

File Extensions

Some loader switches take a file name as an optional parameter. 
Table 4-14 lists the expected file types, names, and extensions.

Table 4-14. File Extensions

Extension File Description

.DXE Input executable files and boot kernel files. The loader recognizes overlay memory 
files (.OVL) and shared memory files (.SM), but does not expect these files on the 
command line. Place .OVL and .SM files in the same directory as the .DXE file that 
refers to them. The loader finds the files when processing the .DXE file. The .OVL 
and .SM files may also be placed in the .OVL and .SM file output directory specified 
in the .LDF file or current working directory. 

.LDR Loader output file.



ADSP-2106x/21160 Processor Loader Guide

4-28 VisualDSP++ 4.0 Loader Manual

Loader Command-Line Switches

Table Table 4-15 is a summary of the ADSP-2106x and ADSP-21160 
loader switches.

Table 4-15. ADSP-2106x/21160 Loader Command-Line Switches

Switch Description

-bprom
-bhost
-blink
-bJTAG

Specifies the boot mode. The -b switch directs the loader to prepare a 
boot-loadable file for the specified boot mode. Valid boot modes (boot 
types) include PROM, host, and link. 
For ADSP-21020 processors, JTAG is the only permitted boot mode.
If -b does not appear on the command line, the default is -bprom. 
To use a custom boot kernel, the boot type selected with the -b switch 
must correspond to the boot kernel selected with the -l switch. Other-
wise, the loader automatically selects a default boot kernel based on the 
selected boot type (see “Boot Kernels” on page 4-16).

-caddress Custom option. This switch directs the loader to use the specified 
address. Valid addresses are:

• 20004 and 20040 for ADSP-2106x processors
• 8004 and 8040 for ADSP-21065L processors
• 40000 and 40050 for ADSP-21160 processors

The loader obtains the proper address even when this switch is absent 
from the command line. 

-e filename Except shared memory. The -e switch omits the specified shared mem-
ory (.SM) file from the output loader file. Use this option to omit the 
shared parts of the executable file from multiprocessor boot files. 
To omit multiple .SM files, repeat the switch and parameter multiple 
times on the command line. For example, to omit two files, use: 
-e fileA.SM -e fileB.SM. 

-fhex
-fASCII
-fbinary
-finclude
-fS1
-fS2
-fS3

Specifies the format of the boot-loadable file (Intel hex-32, ASCII, S1, 
S2, S3, binary, and include). If the -f switch does not appear on the 
command line, the default boot file format is Intel hex-32 for PROM, 
and ASCII for host or link.
Available formats depend on the boot type selection (-b switch): 

• For PROM boot type, select a hex, ASCII, S1, S2, S3, or 
include format. 

• For host or link boot type, select an ASCII, binary, or include 
format.



VisualDSP++ 4.0 Loader Manual 4-29 

Loader for ADSP-2106x/21160 SHARC Processors

-h
or
-help

Command line help. Outputs the list of command-line switches to stan-
dard output and exits. Type elfloader -proc ADSP-21xxx -h, where 
xxx is 060, 061, 062, 065L, or 160 to obtain help for SHARC proces-
sors. By default, the -h switch alone provides help for the loader driver.

-id#exe=filename Specifies the processor ID. The -id#exe switch directs the loader to use 
the processor ID (#) for the corresponding executable file (filename) 
when producing a boot-loadable file for EPROM booting of a multipro-
cessor system. This switch is used only to produce a boot-loadable file 
that boots multiple processors from a single EPROM. 
Valid values for # are 1, 2, 3, 4, 5, and 6. 
Do not use this switch for single-processor systems. For single-processor 
systems, use filename as a parameter without a switch. For more infor-
mation, refer to “Processor ID Numbers” on page 4-24.

-id#ref=N Points the processor ID (N) loader jump table entry to the ID (#) image. 
If the executable file for the (#) processor is identical to the executable 
of the (N) processor, the switch can be used to set the PROM start 
address of the processor with ID of # to be the same as for the processor 
with ID of N. This effectively reduces the size of the loader file by pro-
viding a single copy of an executable to two or more processors in a mul-
tiprocessor system. For more information, refer to “Processor ID 
Numbers” on page 4-24.

-l kernelfile Directs the loader to use the specified kernelfile as the boot-loading 
routine in the output boot-loadable file. The boot kernel selected with 
this switch must correspond to the boot type selected with the -b 
switch. 
If the -l switch does not appear on the command line, the loader 
searches for a default boot kernel file. Based on the boot type (-b 
switch), the loader searches in the processor-specific loader directory for 
the boot kernel file as described in “Boot Kernels” on page 4-16.

-o filename Directs the loader to use the specified filename as the name for the 
loader output file. If not specified, the default name is inputfile.ldr.

Table 4-15. ADSP-2106x/21160 Loader Command-Line Switches 

Switch Description



ADSP-2106x/21160 Processor Loader Guide

4-30 VisualDSP++ 4.0 Loader Manual

-paddress PROM start address. Places the boot-loadable file at the specified 
address in the EPROM. 
If the -p switch does not appear on the command line, the loader starts 
the EPROM file at address 0x0; this EPROM address corresponds to 
0x800000 on ADSP-21060/21061/21062 processors, 0x400000 on 
ADSP-21064 processors, and 0x800000 for ADSP-21160 processors.

-proc processor Specifies the processor. This a mandatory switch. The processor is one 
of the following:
ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L, ADSP-21160

-si-revision #|none Provides a silicon revision of the specified processor.
The switch parameter represents a silicon revision of the processor spec-
ified by the -proc switch. The parameter takes one of two forms:

• One or more decimal digits, followed by a point, followed by 
one or two decimal digits. Examples of revisions are: 0.0; 
1.12; 23.1. Revision 0.1 is distinct from and “lower” than 
revision 0.10. The digits to the left of the point specify the 
chip tapeout number; the digits to the right of the point iden-
tify the metal mask revision number. The number to the right 
of the point cannot exceed decimal 255.

• A none value is also supported, indicating that the VDSP++ 
tool should ignore silicon errata. 

This switch either generates a warning about any potential anomalous 
conditions or generates an error if any anomalous conditions occur.
Note: In the absence of the silicon revision switch, the loader selects the 
greatest silicon revision it is aware of, if any.
Note: In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader generates an 
error.

-t# (Host boot only) Specifies timeout cycles; for example, -t100. Limits 
the number of cycles that the processor spends initializing external 
memory with zeros. Valid timeout values # range from 3 to 32765 
cycles; 32765 is the default. The # is directly related to the number of 
cycles the processor locks the bus for boot-loading, instructing the pro-
cessor to lock the bus for no more than two times the timeout number 
of cycles. When working with a fast host that cannot tolerate being 
locked out of the bus, use a relatively small timeout value.

Table 4-15. ADSP-2106x/21160 Loader Command-Line Switches 

Switch Description



VisualDSP++ 4.0 Loader Manual 4-31 

Loader for ADSP-2106x/21160 SHARC Processors

Using the VisualDSP++ Interface (Load Page)
After selecting a Loader file as the target Type from the Project page in 
VisualDSP++, modify the default options from the Load page (also called 
Load property page) and then click OK to save your selections. Selecting 
Build Project from the Project menu generates a loader file. For informa-
tion relative to a specific processor, refer to the VisualDSP++ online help 
for that processor.

VisualDSP++ invokes the elfloader utility to build the output file. The 
Load page buttons and fields correspond to loader command line switches 
and parameters (see Table 4-15 on page 4-28). Use the Additional 
Options box to enter options that do not have dialog box equivalents. 

For ADSP-21020 DSPs, the only permitted boot mode is JTAG:
 -bJTAG is automatically entered in the Additional Options box.

-use32bit Tags for 
External Memory 
Block

Directs the loader to treat the external memory sections as 32-bit 
sections as specified in the .LDF file and does not pack them into 48-bit 
sections before processing. This option is useful if the external memory 
sections are packed by the linker and do not need the loader to pack 
them again. 

-v Outputs verbose loader messages and status information as the loader 
processes files. 

-version Directs the loader to show its version information. Type 
elfloader -version to display the version of the loader drive. Add 
the -proc switch, for example, 
elfloader -proc ADSP-21062 -version to display version infor-
mation of both loader drive and SHARC loader.

Table 4-15. ADSP-2106x/21160 Loader Command-Line Switches 

Switch Description



ADSP-2106x/21160 Processor Loader Guide

4-32 VisualDSP++ 4.0 Loader Manual



VisualDSP++ 4.0 Loader Manual 5-1 

5 LOADER FOR ADSP-21161 
SHARC PROCESSORS

This chapter explains how the loader program (elfloader.exe) is used to 
convert executable (.DXE) files into boot-loadable files for ADSP-21161 
SHARC processors. 

Refer to “Introduction” on page 1-1 for the loader overview; the introduc-
tory material applies to all processor families. Refer to “Loader for 
ADSP-2106x/21160 SHARC Processors” on page 4-1 for information 
about ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L, and 
ADSP-21160 processors. Refer to “Loader for ADSP-2126x/2136x 
SHARC Processors” on page 6-1 for information about ADSP-2126x and 
ADSP-2136x processors.

Loader operations specific to ADSP-21161 SHARC processors are 
detailed in the following sections. 

• “ADSP-21161 Processor Booting” on page 5-2
Provides general information about various booting modes, 
including information about boot kernels.

• “ADSP-21161 Processor Loader Guide” on page 5-24
Provides reference information about the loader graphical user 
interface, command-line syntax, and switches.

Refer to EE-177 SHARC SPI Booting, EE-199 Link Port Booting on the 
ADSP-21161 SHARC DSP, EE-209 Asynchronous Host Interface on the 
ADSP-21161 SHARC DSP on the Analog Devices Processor Web site for 
related information.



ADSP-21161 Processor Booting

5-2 VisualDSP++ 4.0 Loader Manual

ADSP-21161 Processor Booting
ADSP-21161 processors support five boot types (modes): EPROM, host, 
link port, SPI port, and no-boot, described in Table 5-8 and Table 5-3 on 
page 5-7. Boot-loadable files for these modes pack boot data into words of 
appropriate widths and use an appropriate DMA channel of the proces-
sor’s DMA controller to boot-load the words. 

• When booting from an EPROM through the external port, the 
ADSP-21161 processor reads boot data from an 8-bit external 
EPROM. 

• When booting from a host processor through the external port, the 
ADSP-21161 processor accepts boot data from 8- or 16-bit host 
microprocessor. 

• When booting through the link port, the ADSP-21161 processor 
receives boot data through the link port as 4-bit wide data in link 
buffer 4. 

• When booting through the SPI port, the ADSP-21161 processor 
uses DMA channel 8 of the IO processor to transfer instructions to 
internal memory. In this boot mode, the processor receives data in 
the SPIRX register. 

• In no-boot mode, ADSP-21161 processors begin executing 
instructions from external memory.

Software developers who use the loader should be familiar with the 
following operations.

• “Power-Up Booting Process” on page 5-3

• “Boot Mode Selection” on page 5-3

• “Boot Types” on page 5-4

• “Boot Kernels” on page 5-16



VisualDSP++ 4.0 Loader Manual 5-3 

Loader for ADSP-21161 SHARC Processors

• “Boot Kernel Modification and Loader Issues” on page 5-18

• “Interrupt Vector Table” on page 5-21

• “Multiprocessor EPROM Booting” on page 5-21

Power-Up Booting Process
ADSP-21161 processors include a hardware feature that boot-loads a 
small, 256-instruction program into the processor’s internal memory after 
power-up or after the chip reset. These instructions come from a program 
called the boot kernel or the loader kernel. When executed, the boot ker-
nel facilitates booting of user application code. The combination of the 
boot kernel and application code comprise the boot-loadable (.LDR) file.

At power-up, after the chip reset, the booting process includes the 
following steps.

1. Based on the boot type, an appropriate DMA channel is automati-
cally configured for a 256-instruction transfer. This transfer 
boot-loads the boot kernel program into the processor memory.

2. The boot kernel runs and loads the application executable code and 
data. 

3. The boot kernel overwrites itself with the first 256 words of the 
application at the end of the booting process. After that, the appli-
cation executable code starts running. 

The boot type selection directs the system to prepare the appropriate boot 
kernel.

Boot Mode Selection
The state of the LBOOT, EBOOT, and BMS pins selects the ADSP-21161 
processor’s boot mode (boot type). Table 5-1 and Table 5-2 show how the 
pin states correspond to the boot type. 



ADSP-21161 Processor Booting

5-4 VisualDSP++ 4.0 Loader Manual

Boot Types
ADSP-21161 processors support these booting types: EPROM, host, link, 
and SPI. The following section describe each of the booting types.

• “EPROM Booting” on page 5-5

• “Host Booting” on page 5-9

Table 5-1. ADSP-21161 Boot Mode Pins

Pin Type Description

EBOOT I EPROM Boot – When EBOOT is high, the processor boot-loads from an 8-bit 
EPROM through the processor’s external port. When EBOOT is low, the LBOOT 
and BMS pins determine booting mode. 

LBOOT I Link Boot – When LBOOT is high (and EBOOT is low), the processor boots from 
another SHARC processor through the processor’s link port. When LBOOT is 
low (and EBOOT is low), the processor boots from a host processor through the 
processor’s external port. 

BMS I/O/T1 Boot Memory Select – When boot-loading from EPROM (EBOOT=1 and 
LBOOT=0), this pin is an output and serves as the chip select for the EPROM. 
In a multiprocessor system, BMS is output by the bus master. When 
host-booting, link-booting, or SPI-booting, (EBOOT=0), BMS is an input and 
must be high.

1   Three-statable in EPROM boot mode (when BMS is an output).

Table 5-2. ADSP-21161 Boot Mode Pin States

EBOOT LBOOT BMS Booting Mode

1 0 Output EPROM (connect BMS to EPROM chip select)

0 0 1 (Input) Host processor 

0 1 1 (Input) Link port

0 1 0 (Input) Serial port (SPI)

0 0 0 (Input) No-boot (processor executes from external memory)



VisualDSP++ 4.0 Loader Manual 5-5 

Loader for ADSP-21161 SHARC Processors

• “Link Port Booting” on page 5-12

• “SPI Port Booting” on page 5-14

• “No-Boot Mode” on page 5-16

For multiprocessor booting, refer to “Multiprocessor EPROM 
Booting” on page 5-21.

EPROM Booting 

EPROM booting through the external port is selected when the EBOOT 
input is high and the LBOOT input is low. These settings cause the BMS pin 
to become an output, serving as chip select for the EPROM.

The DMAC10 control register is initialized for booting packing boot data 
into 48-bit instructions. EPROM boot mode uses channel 10 of the IO 
processor’s DMA controller to transfer the instructions to internal mem-
ory. For EPROM booting, the processor reads data from an 8-bit external 
EPROM. 

After the boot process loads 256 words into memory locations 0x40000 
through 0x400FF, the processor begins to execute instructions. Because 
most processor programs require more than 256 words of instructions and 
initialization data, the 256 words typically serve as a loading routine for 
the application. VisualDSP++ includes loading routines (loader kernels) 
that can load entire programs; see “Boot Kernels” on page 5-16 for more 
information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed 
information on DMA and system configurations.

Be aware that DMA channel differences between the ADSP-21161 
and previous SHARC processors (ADSP-2106x) account for boot-
ing differences. Even with these differences, the ADSP-21161 
processor supports the same boot capability and configuration as 
the ADSP-2106x processors. The DMAC register default values differ 



ADSP-21161 Processor Booting

5-6 VisualDSP++ 4.0 Loader Manual

because the ADSP-21161 processor has additional parameters and 
different DMA channel assignments. EPROM boot mode uses 
EPB0, DMA channel 10. Similar to ADSP-2106x processors, the 
ADSP-21161processor boots from DATA23—16.

The processor determines the booting mode at reset from the EBOOT, 
LBOOT, and BMS pin inputs. When EBOOT=1 and LBOOT=0, the processor 
boots from an EPROM through the external port and uses BMS as the 
memory select output. For information on boot mode selection, see the 
Boot Memory Select pin descriptions in Table 5-8 and Table 5-2 on 
page 5-4.

When any of the power-up booting modes is used, address 0x40004 
should not contain a valid instruction since it is not executed dur-
ing the booting sequence. Place a NOP or IDLE instruction at this 
location.

EPROM booting (boot space 8M x 8-bit) through the external port 
requires that an 8-bit wide boot EPROM be connected to the processor 
data bus pins 23–16 (DATA23—16). The processor’s lowest address pins 
should be connected to the EPROM address lines. The EPROM’s chip 
select should be connected to BMS, and its output enable should be con-
nected to RD.

In a multiprocessor system, the BMS output is driven by the ADSP-21161 
processor bus master only. This allows the wired OR of multiple BMS 
signals for a single common boot EPROM. 

Systems can boot up to six ADSP-21161 processors from a single 
EPROM using the same code for each processor or differing code 
for each processor.

During reset, the ACK line is internally pulled high with the equivalent of 
an internal 20K ohm resistor and is held high with an internal keeper 
latch. It is not necessary to use an external pull-up resistor on the ACK line 
during booting or at any other time.



VisualDSP++ 4.0 Loader Manual 5-7 

Loader for ADSP-21161 SHARC Processors

The RBWS and RBAM fields of the WAIT register are initialized to perform 
asynchronous access and generate seven wait states (eight cycles total) for 
the EPROM access in external memory space. Note that wait states 
defined for boot memory are applied to BMS asserted accesses.

Table 5-3 shows how DMA channel 10 parameter registers are initialized 
at reset. The count register (CEP0) is initialized to 0x0100 to transfer 256 
words to internal memory. The external count register (ECEP0), used when 
external addresses (BMS space) are generated by the DMA controller, is ini-
tialized to 0x0600 (0x0100 words at six bytes per word). The DMAC10 
control register is initialized to 0x00 0561.

The default value sets up external port transfers as follows.

• DEN = 1, external port enabled

• MSWF = 0, LSB first

• PMODE = 101, 8-bit to 48-bit packing, Master = 1 

• DTYPE = 1, three column data

Table 5-3. DMA Channel 10 Parameter Registers for EPROM Booting

Parameter Register Initialization Value

IIEP0 0x40000

IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x100 (256 instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 0x800000

EMEP0 Uninitialized (increment by 1 is automatic)

ECEP0 0x600 (256 words x 6 bytes/word)



ADSP-21161 Processor Booting

5-8 VisualDSP++ 4.0 Loader Manual

The following sequence occurs at system start-up, when the processor 
RESET input goes inactive.

1. The processor goes into an idle state, identical to that caused by the 
IDLE instruction. The program counter (PC) is set to address 
0x40004.

2. The DMA parameter registers for channel 10 are initialized as 
shown in Table 5-3.

3. BMS becomes the boot EPROM chip select.

4. 8-bit Master Mode DMA transfers from EPROM to the first inter-
nal memory address on the external port data bus lines 23–16.

5. The external address lines (ADDR23—0) start at 0x800000 and incre-
ment after each access.

6. The RD strobe asserts as in a normal memory access with seven wait 
states (eight cycles).

The processor’s DMA controller reads the 8-bit EPROM words, packs 
them into 48-bit instruction words, and transfers them to internal mem-
ory until 256 words have been loaded. The EPROM is automatically 
selected by the BMS pin; other memory select pins are disabled. 

The Master DMA internal and external count registers (ECEP0/CEP0) dec-
rements after each EPROM transfer. When both counters reach zero, the 
following wake-up sequence occurs.

1. DMA transfers stop.

2. External port DMA channel 10 interrupt (EP0I) is activated.

3. BMS is deactivated, and normal external memory selects are 
activated.

4. The processor vectors to the EP0I interrupt vector at 0x40050.



VisualDSP++ 4.0 Loader Manual 5-9 

Loader for ADSP-21161 SHARC Processors

At this point the processor has completed its booting mode and is execut-
ing instructions normally. The first instruction at the EP0I interrupt 
vector location, address 0x40050, should be an RTI (return from inter-
rupt). This process returns execution to the reset routine at location 
0x40005 where normal program execution can resume. After reaching this 
point, a program can write a different service routine at the EP0I vector 
location 0x40050.

Host Booting

The processor can boot from a host processor through the external port. 
Host booting is selected when the EBOOT and LBOOT inputs are low and BMS 
is high. Configured for host booting, the processor enters the slave mode 
after reset and waits for the host to download the boot program. 

The DMAC10 control register is initialized for booting, packing boot data 
into 48-bit instructions. Channel 10 of the IO processor’s DMA control-
ler is used to transfer instructions to internal memory. Processors accept 
data from 8- or 16-bit host microprocessor (or other external devices).    

After the boot process loads 256 words into memory locations 0x40000 
through 0x400FF, the processor begins executing instructions. Because 
most processor programs require more than 256 words of instructions and 
initialization data, the 256 words typically serve as a loading routine for 
the application. VisualDSP++ includes loading routines (loader kernels) 
that can load entire programs; refer to “Boot Kernels” on page 5-16 for 
more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed 
information on DMA and system configurations.

DMA channel differences between ADSP-21161 and previous 
SHARC family processors (ADSP-2106x) account for booting dif-
ferences. Even with these differences, ADSP-21161 processors 
support the same boot capability and configuration as 
ADSP-2106x processors. The DMAC10 register default values differ 



ADSP-21161 Processor Booting

5-10 VisualDSP++ 4.0 Loader Manual

because the ADSP-21161processor has additional parameters and 
different DMA channel assignments. Host boot mode uses EPB0, 
DMA channel 10. 

The processor determines the boot mode at reset from the EBOOT, LBOOT, 
and BMS pin inputs. When EBOOT=0, LBOOT=0, and BMS=1, the processor 
boots from a host through the external port. Refer to Table 5-1 and 
Table 5-2 on page 5-4 for boot mode selection. 

When any of the power-up booting modes is used, address 0x40004 should 
not contain a valid instruction since it is not executed during the booting 
sequence. Place a NOP or IDLE instruction at this location. 

During reset, the processor ACK line is internally pulled high with an 
equivalent 20K ohm resistor and is held high with an internal keeper 
latch. It is not necessary to use an external pull-up resistor on the ACK line 
during booting or at any other time.

Table 5-4 shows how the DMA channel 10 parameter registers are initial-
ized at reset for host booting. The internal count register (CEP0) is 
initialized to 0x0100 to transfer 256 words to internal memory. The 
DMAC10 control register is initialized to 0000 0161. 

The default value sets up external port transfers as follows.

• DEN = 1, external port enabled

• MSWF = 0, LSB first

• PMODE = 101, 8-bit to 48-bit packing

• DTYPE = 1, three column data



VisualDSP++ 4.0 Loader Manual 5-11 

Loader for ADSP-21161 SHARC Processors

At system start-up, when the processor RESET input goes inactive, the 
following sequence occurs.

1. The processor goes into an idle state, identical to that caused by the 
IDLE instruction. The program counter (PC) is set to address 
0x40004.

2. The DMA parameter registers for channel 10 are initialized as 
shown in Table 5-4.

3. The host uses HBR and CS to arbitrate for the bus.

4. The host can write to SYSCON (if HBG and READY are returned) to 
change boot width from default.

5. The host writes boot information to external port buffer 0.

Table 5-4. DMA Channel 10 Parameter Register for Host Booting

Parameter Register Initialization Value

IIEP0 0x0004 0000

IMEP0 Uninitialized (increment by 1 is automatic)

CEP0 0x0100 (256 instruction words)

CPEP0 Uninitialized

GPEP0 Uninitialized

EIEP0 Uninitialized

EMEP0 Uninitialized

ECEP0 Uninitialized



ADSP-21161 Processor Booting

5-12 VisualDSP++ 4.0 Loader Manual

The slave DMA internal count register (CEP0) decrements after each 
transfer. When CEP0 reaches zero, the following wake-up sequence occurs.

1. The DMA transfers stop.

2. The external port DMA channel 10 interrupt (EP0I) is activated.

3. The processor vectors to the EP0I interrupt vector at 0x40050.

At this point the processor has completed its booting mode and is execut-
ing instructions normally. The first instruction at the EP0I interrupt 
vector location, address 0x40050, should be an RTI (return from inter-
rupt). This process returns execution to the reset routine at location 
0x40005 where normal program execution can resume. After reaching this 
point, a program can write a different service routine at the EP0I vector 
location 0x40050.

Link Port Booting

Link port booting uses DMA channel 8 of the IO processor to transfer 
instructions to internal memory. In this boot mode, the processor receives 
4-bit wide data in link buffer 0.

After the boot process loads 256 words into memory locations 0x40000 
through 0x400FF, the processor begins to execute instructions. Because 
most processor programs require more than 256 words of instructions and 
initialization data, the 256 words typically serve as a loading routine for 
the application. VisualDSP++ includes loading routines (loader kernels) 
that load an entire program through the selected port; refer to “Boot Ker-
nels” on page 5-16 for more information.



VisualDSP++ 4.0 Loader Manual 5-13 

Loader for ADSP-21161 SHARC Processors

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed 
information on DMA and system configurations.

DMA channel differences between ADSP-21161 and previous 
SHARC family processors (ADSP-2106x) account for booting 
differences. Even with these differences, ADSP-21161 processors 
support the same boot capability and configuration as 
ADSP-2106x processors. 

The processor determines the booting mode at reset from the EBOOT, LBOOT 
and BMS pin inputs. When EBOOT=0, LBOOT=1, and BMS=1, the processor 
boots through the link port. For information on boot mode selection, see 
Table 5-1 and Table 5-2 on page 5-4.

When any of the power-up booting modes is used, address 0x40004 
should not contain a valid instruction since it is not executed dur-
ing the booting sequence. Place a NOP or IDLE instruction at this 
location.

In link port booting, the processor gets boot data from another processor 
link port or 4-bit wide external device after system power-up.

The external device must provide a clock signal to the link port assigned 
to link buffer 0. The clock can be any frequency up to the processor clock 
frequency. The clock falling edges strobe the data into the link port. The 
most significant 4-bit nibble of the 48-bit instruction must be down-
loaded first. 

Table 5-5 shows how the DMA channel 8 parameter registers are initial-
ized at reset. The count register (CLB0) is initialized to 0x0100 to transfer 
256 words to internal memory. The LCTL register is overridden during link 
port booting to allow link buffer 0 to receive 48-bit data.

In systems where multiple processors are not connected by the parallel 
external bus, booting can be accomplished from a single source through 
the link ports. To simultaneously boot all the processors, make a parallel 
common connection to link buffer 0 on each of the processors. If a daisy 



ADSP-21161 Processor Booting

5-14 VisualDSP++ 4.0 Loader Manual

chain connection exists between the processors’ link ports, each processor 
can boot the next processor in turn. Link buffer 0 must always be used for 
booting.

SPI Port Booting

Serial Peripheral Interface (SPI) port booting uses DMA channel 8 of the 
IO processor to transfer instructions to internal memory. In this boot 
mode, the processor receives 8-bit wide data in the SPIRX register.

During the booting process, the program loads 256 words into memory 
locations 0x40000 through 0x400FF. The processor subsequently begins 
executing instructions. Because most processor programs require more 
than 256 words of instructions and initialization data, the 256 words typ-
ically serve as a loading routine for the application. VisualDSP++ includes 
loading routines (loader kernels) that load an entire program through the 
selected port. See “Boot Kernels” on page 5-16 for more information.

Refer to the ADSP-21161 SHARC DSP Hardware Reference for detailed 
information on DMA and system configurations. For information about 
SPI slave booting, refer to EE-177: SHARC SPI Booting, located on the 
Analog Devices processor Web site. 

Table 5-5. DMA Channel 8 Parameter Register for Link Port Booting

Parameter Register Initialization Value

IILB0 0x0004 0000

IMLB0 Uninitialized (increment by 1 is automatic)

CLB0 0x0100 (256 instruction words)

CPLB0 Uninitialized

GPLB0 Uninitialized



VisualDSP++ 4.0 Loader Manual 5-15 

Loader for ADSP-21161 SHARC Processors

The processor determines the booting mode at reset from the EBOOT, 
LBOOT, and BMS pin inputs. When EBOOT=0, LBOOT=1, and BMS=0, the pro-
cessor boots through its SPI port. For information on the boot mode 
selection, see Table 5-1 and Table 5-2 on page 5-4.

When any of the power-up booting modes is used, address 0x40004 
should not contain a valid instruction because it is not executed 
during the booting sequence. Place a NOP or IDLE instruction placed 
at this location.

For SPI port booting, the processor gets boot data after system power-up 
from another processor’s SPI port or another SPI compatible device.

Table 5-6 shows how the DMA channel 8 parameter registers are initial-
ized at reset. The SPI Control Register (SPICTL) is configured to 
0x0A001F81 upon reset during SPI boot. 

This configuration sets up the SPIRX register for 32-bit serial transfers. 
The SPIRX DMA channel 8 parameter registers are configured to DMA in 
0x180 32-bit words into internal memory normal word address space start-
ing at 0x40000. Once the 32-bit DMA transfer completes, the data is 
accessed as 3 column, 48-bit instructions. The processor executes a 256 
word (0x100) loader kernel upon completion of the 32-bit, 0x180 word 
DMA.

For 16-bit SPI hosts, two words are shifted into the 32-bit receive shift 
register before a DMA transfer to internal memory occurs. For 8-bit SPI 
hosts, four words are shifted into the 32-bit receive shift register before a 
DMA transfer to internal memory occurs.

Table 5-6. DMA Channel 8 Parameter Register for SPI Port Booting

Parameter Register Initialization Value

IISRX 0x0004 0000

IMSRX Uninitialized (increment by 1 is automatic)



ADSP-21161 Processor Booting

5-16 VisualDSP++ 4.0 Loader Manual

No-Boot Mode

No-boot mode causes the processor to start fetching and executing 
instructions at address 0x200004 in external memory space. In no-boot 
mode, the processor does not boot-load and all DMA control and 
parameter registers are set to their default initialization values. The loader 
is not used to produce the code for no-boot execution.

Boot Kernels
The boot-loading process starts with a transfer of the boot kernel program 
into the processor memory. The boot kernel sets up the processor and 
loads boot data. After the boot kernel finishes initializing the rest of the 
system, the boot kernel loads boot data over itself with a final DMA 
transfer. 

Four boot kernels ship with VisualDSP++; refer to Table 5-7. 

Boot kernels are loaded at processor reset into the seg_ldr memory seg-
ment, which is defined in 161_ldr.ldf. The file is stored in the processor 
tools installation directory, ...\211xx\ldr.

CSRX 0x0180 (256 instruction words)

GPSRX Uninitialized

Table 5-7. ADSP-21161 Default Boot Kernel Files

PROM Booting Link Booting Host Booting SPI Booting

161_prom.asm 161_link.asm 161_host.asm 161_spi.asm

Table 5-6. DMA Channel 8 Parameter Register for SPI Port Booting 

Parameter Register Initialization Value



VisualDSP++ 4.0 Loader Manual 5-17 

Loader for ADSP-21161 SHARC Processors

Blocks and Block Headers

The loader produces the boot stream in blocks and inserts header words at 
the beginning of data blocks in the loader (.LDR) file. The boot kernel uses 
header words to properly place data and instruction blocks into processor 
memory. The header format for PROM, host, and link boot-loader files is 
as follows.

0x00000000DDDD

0xAAAAAAAALLLL

In the above example, D is a data block type tag, A is a block start address, 
and L is a block word length.

For single-processor systems, the data block header has three 32-bit words 
in SPI boot type, as follows.

The loader kernel examines the tag to determine the type of data or 
instruction being loaded. Table 5-8 lists ADSP-21161N processor data 
tags.

0x0000LLLL First word. Data word length or data word count of the data block.

0xAAAAAAAA Second word. Data block start address.

0x000000DD Third word. Tag of data block type.

Table 5-8. ADSP-21161 Data Tags

Tag Number Block Type Tag Number Block Type

0x0000 final init 0x000E init pm48

0x0001 zero dm16 0x000F zero dm64

0x0002 zero dm32 0x0010 init dm64

0x0003 zero dm40 0x0012 init pm64

0x0004 init dm16 0x0013 init pm8 ext



ADSP-21161 Processor Booting

5-18 VisualDSP++ 4.0 Loader Manual

Boot Kernel Modification and Loader Issues
Some systems require boot kernel customization. In addition, the opera-
tion of other tools (such as the C/C++ compiler) is influenced by whether 
the loader is used.

If you do not specify a boot kernel file via the Load page of the Project 
Options dialog box in VisualDSP++ (or via the -l command-line switch), 
the loader places a default boot kernel in the loader output file (see “Boot 
Kernels” on page 5-16) based on the specified boot type.

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.ASM) file by inserting correct values 
for your system, you must rebuild the boot kernel (.DXE) before generating 
the boot-loadable (.LDR) file. The boot kernel source file contains default 
values for the SYSCON register. The WAIT, SDCTL, and SDRDIV initialization 
code are in boot kernel file comments.

0x0005 init dm32 0x0014 init pm16 ext

0x0007 zero pm16 0x0015 init pm32 ext

0x0008 zero pm32 0x0016 init pm48 ext

0x0009 zero pm40 0x0017 zero pm8 ext

0x000A zero pm48 0x0018 zero pm16 ext

0x000B init pm16 0x0019 zero pm32 ext

0x000C init pm32 0x001A zero pm48 ext

0x0011 zero pm64

Table 5-8. ADSP-21161 Data Tags (Cont’d)

Tag Number Block Type Tag Number Block Type



VisualDSP++ 4.0 Loader Manual 5-19 

Loader for ADSP-21161 SHARC Processors

To modify a boot kernel source file:

1. Copy the applicable boot kernel source file (161_link.asm, 
161_host.asm, 161_prom.asm, or 161_spi.asm).

2. Apply the appropriate initializations of the SYSCON and WAIT 
registers.

After modifying the boot kernel source file, rebuild the boot kernel (.DXE) 
file. Do this from the VisualDSP++ IDDE (refer to VisualDSP++ online 
Help for details), or rebuild the boot kernel file from the command line.

Rebuilding a Boot Kernel Using Command Lines 

Rebuild a boot kernel by using command lines as follows.

EPROM Booting. The default boot kernel source file for EPROM 
booting is 161_prom.asm. After copying the default file to my_prom.asm 
and modifying it to suit your system, use the following command lines to 
rebuild the boot kernel.

easm21k -proc ADSP-21161 my_prom.asm

linker -T 161_ldr.ldf my_prom.doj

Host Booting. The default boot kernel source file for host booting is 
161_host.asm. After copying the default file to my_host.asm and modify-
ing it to suit your system, use the following command lines to rebuild the 
boot kernel.

easm21k -proc ADSP-21161 my_host.asm

linker -T 161_ldr.ldf my_host.doj



ADSP-21161 Processor Booting

5-20 VisualDSP++ 4.0 Loader Manual

Link Booting. The default boot kernel source file for link booting is 
161_link.asm. After copying the default file to my_link.asm and modify-
ing it to suit your system, use the following command lines to rebuild the 
boot kernel.

easm21k -proc ADSP-21161 my_link.asm

linker -T 161_ldr.ldf my_link.doj

SPI Booting. The default boot kernel source file for link booting is 
161_SPI.asm. After copying the default file to my_SPI.asm and modifying 
it to suit your system, use the following command lines to rebuild the 
boot kernel.

easm21k -proc ADSP-21161 my_SPI.asm

linker -T 161_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the EPROM, host, SPI, or link booting 
modes, ensure that the seg_ldr memory segment is defined in the .LDF 
file. Refer to the source of this memory segment in the .LDF file located in 
the ...\ldr\ installation directory of the target processor.

Because the loader uses this address for the first location of the reset vector 
during the boot-load process, avoid placing code at this address. When 
using any of the processor’s power-up booting modes, ensure that this 
address does not contain a critical instruction, because this address is not 
executed during the booting sequence. Place a NOP or IDLE in this location. 
The loader generates a warning if the vector address 0x40004 does not con-
tain NOP or IDLE.

When using VisualDSP++ to create the loader file, specify the 
name of the customized boot kernel executable in the Kernel file 
box on the Load page of the Project Options dialog box.



VisualDSP++ 4.0 Loader Manual 5-21 

Loader for ADSP-21161 SHARC Processors

Interrupt Vector Table
If the ADSP-21161 processor is booted from an external source (EPROM, 
host, link port, or SPI), the interrupt vector table is located in internal 
memory. If the processor is not booted and executes from external mem-
ory (no-boot mode), the vector table must be located in external memory.

The IIVT bit in the SYSCON control register can be used to override the 
booting mode in determining where the interrupt vector table is located. 
If the processor is not booted (no-boot mode), setting IIVT to 1 selects an 
internal vector table, and setting IIVT to zero selects an external vector 
table. If the processor is booted from an external source (any boot mode 
other than no-boot), IIVT has no effect. The default initialization value of 
IIVT is zero.

Multiprocessor EPROM Booting
Currently, the loader generates single-processor loader files for 
host, link, and SPI port booting, and supports multiprocessor 
EPROM booting only. The application code must be modified to 
properly set up multiprocessor booting in host, link, and SPI port 
booting modes. 

There are two methods by which a multiprocessor system can be booted:

• “Booting From a Single EPROM”

• “Sequential EPROM Booting”

Regardless of the method, processors perform the following steps.

1. Arbitrate for the bus.

2. Upon becoming bus master, DMA the 256 word boot stream.

3. Release the bus.

4. Execute the loaded instructions.



ADSP-21161 Processor Booting

5-22 VisualDSP++ 4.0 Loader Manual

Booting From a Single EPROM

The BMS signals from each processor may be wire ORed together to drive 
the EPROM’s chip select pin. Each processor can boot in turn, according 
to its priority. When the last processor has finished booting, it must 
inform the other processors (which may be in the idle state) that program 
execution can begin (if all processors are to begin executing instructions 
simultaneously). 

When multiple processors boot from a single EPROM, the processors can 
boot identical code or different code from the EPROM. If the processors 
load differing code, use a jump table in the loader file (based on processor 
ID) to select the code for each processor.

Sequential EPROM Booting

Set the EBOOT pin of the processor with ID of 1 high for EPROM booting. 
The other processors should be configured for host booting (EBOOT=0, 
LBOOT=0, and BMS=1), leaving them in the idle state at startup and allowing 
the processor with ID=1 to become bus master and boot itself. Connect the 
BMS pin of processor #1 only to the EPROM’s chip select pin. When 
processor #1 has finished booting, it can boot the remaining processors by 
writing to their external port DMA buffer 0 (EPB0) via the multiprocessor 
memory space.

The loader can produce boot-loadable files that permit SHARC processors 
in a multiprocessor system to boot from a single EPROM. In such a sys-
tem, the processors BMS signals are ORed together to drive the EPROM’s 
chip select pin. Each processor boots in turn, according to its priority. 
When the last processor has finished booting, it must inform the other 
processors to begin program execution.



VisualDSP++ 4.0 Loader Manual 5-23 

Loader for ADSP-21161 SHARC Processors

Processor ID Numbers

A single-processor system requires only one input (.DXE) file without any 
prefix and suffix to the input file name, for example:
elfloader -proc ADSP-21161 -bprom Input.dxe

A multiprocessor system requires a distinct processor ID number for each 
input file on the command line. A processor ID is provided via the 
-id#exe=filename.dxe switch, where # is 1 to 6. 

In the following example, the loader processes the input file Input1.dxe 
for the processor with an ID of 1 and the input file Input2.dxe for the 
processor with an ID of 2.

elfloader -proc ADSP-21261 -bprom -id1exe=Input1.dxe

-id2exe=Input2.dxe

If the executable for the # processor is identical to the executable of the N 
processor, the output loader file contains only one copy of the code from 
the input file, as the command-line switch -id#ref=N is used in the 
example
elfloader -proc ADSP-21161 -bprom -id1exe=Input.dxe -id2ref=1

where 2 is the processor ID and 1 is another processor ID referred to by 
processor 2.

The loader points the id(2)exe loader jump table entry to the id(1)exe 
image, effectively reducing the size of the loader file.



ADSP-21161 Processor Loader Guide

5-24 VisualDSP++ 4.0 Loader Manual

ADSP-21161 Processor Loader Guide
Loader operations depend on the loader options, which control how the 
loader processes executable files. You select features such as boot mode, 
boot kernel, and output file format via the loader options. These options 
are specified on the loader’s command line or via the Load page of the 
Project Options dialog box in the VisualDSP++ environment. 

The Load page consists of multiple panes. For information specific to the 
ADSP-21161 processor, refer to the VisualDSP++ online help for that 
processor. When you open the Load page, the default loader settings for 
the selected processor are already set. Use the Additional Options box to 
enter options that have no dialog box equivalent.

Option settings on the Load page correspond to switches displayed 
on the command line. 

These sections describe how to produce a bootable loader (.LDR) file:

• “Using ADSP-21161 Loader Command Line” on page 5-24

• “Using VisualDSP++ Interface (Load Page)” on page 5-27

Using ADSP-21161 Loader Command Line
Use the following syntax for the ADSP-21161 loader command line.

elfloader inputfile -proc ADSP-21161 -switch [-switch …]



VisualDSP++ 4.0 Loader Manual 5-25 

Loader for ADSP-21161 SHARC Processors

where:

• inputfile—Name of the executable file (.DXE) to be processed 
into a single boot-loadable file. An input file name can include the 
drive and directory. Enclose long file names within straight quotes, 
“long file name”.

• -proc ADSP-21161—Part number of the processor for which the 
loadable file is built. The -proc switch is mandatory.

• -switch …—One or more optional switches to process. Switches 
select operations and boot modes for the loader. A list of all 
switches and their descriptions appear in Table 5-10 on page 5-28.

Command-line switches are not case-sensitive and placed on the 
command line in any order.

Single-Processor Systems

The following command line, 

elfloader Input.dxe -bSPI -proc ADSP-21161

runs the loader with:

• Input.dxe—Identifies the executable file to process into a 
boot-loadable file for a single-processor system. Note that the 
absence of the -o switch causes the output file name to default to 
Input.ldr. 

• -bSPI—Specifies SPI port booting as the boot type for the 
boot-loadable file.

• -proc ADSP-21161—Specifies ADSP-21161 as the target processor.



ADSP-21161 Processor Loader Guide

5-26 VisualDSP++ 4.0 Loader Manual

Multiprocessor Systems

The following command line,

elfloader -proc ADSP-21161 -bprom -id1exe=Input1.dxe 

-id2exe=Input2.dxe

runs the loader with:

• -proc ADSP-21161—Specifies ADSP-21161 as the target processor.

• -bprom—Specifies EPROM booting as the boot type for the 
boot-loadable file.

• id1exe=Input1.dxe—Identifies Input1.dxe as the executable file to 
process into a boot-loadable file for a processor with ID #1 (see 
“Processor ID Numbers” on page 5-23).

• id2exe=Input2.dxe—Identifies Input2.dxe. as the executable file 
to process into a boot-loadable file for a processor with ID #2 (see 
“Processor ID Numbers” on page 5-23). 

File Searches

File searches are important in loader processing. The loader supports rela-
tive and absolute directory names, default directories, and user-selected 
directories for file search paths. File searches occur as described 
on page 1-11.



VisualDSP++ 4.0 Loader Manual 5-27 

Loader for ADSP-21161 SHARC Processors

File Extensions

Some loader switches take a file name as an optional parameter. Table 5-9 
lists the expected file types, names, and extensions.

Loader Command-Line Switches

Table 5-10 is a summary of the ADSP-21161 loader switches.

Using VisualDSP++ Interface (Load Page)
When developing a Loader file project from VisualDSP++, modify the 
default options from the Load page (also called Load property page) of the 
Projects Options dialog box. For information relative to a specific proces-
sor, refer to the VisualDSP++ online help for that processor.

VisualDSP++ invokes the elfloader utility to build the output file. The 
Load page buttons and fields correspond to loader command line switches 
and parameters (see Table 5-10 on page 5-28). Use the Additional 
Options box to enter options that do not have dialog box equivalents. 

Table 5-9. File Extensions

Extension File Description

.DXE Executable files and boot kernel files. The loader recognizes overlay memory files 
(.OVL) and shared memory files (.sm), but does not expect these files on the com-
mand line. Place .OVL and .SM files in the same directory as the .DXE file that refers 
to them so the loader can find them when processing the .LDR file. The .OVL and 
.SM files may also be placed in the .OVL and .SM file output directory specified in 
the .LDF file or the current working directory. 

.LDR Loader output file



ADSP-21161 Processor Loader Guide

5-28 VisualDSP++ 4.0 Loader Manual

Table 5-10. ADSP-21161 Loader Command-Line Switches  

Switch Description

-bprom
-bhost
-blink
-bspi

Specifies the boot mode. The -b switch directs the loader to pre-
pare a boot-loadable file for the specified boot mode. The valid 
modes (boot types) are PROM, host, link, and SPI. 
If -b does not appear on the command line, the default is 
-bprom. 
To use a custom boot kernel, the boot type selected with the -b 
switch must correspond with the boot kernel selected with the -l 
switch. Otherwise, the loader automatically selects a default boot 
kernel based on the selected boot type (see “Boot Kernels” on 
page 5-16).

-efilename Except shared memory. The -e switch omits the specified shared 
memory (.SM) file from the output loader file. Use this option to 
omit the shared parts of the executable file from multiprocessor 
boot files. 
To omit multiple .SM files, repeat the switch and parameter mul-
tiple times on the command line. For example, to omit two files, 
use: -efileA.SM -efileB.SM. 

-fhex
-fASCII
-fbinary
-finclude
-fS1
-fS2
-fS3

Species the format of the boot-loadable file (Intel hex-32, ASCII, 
include, binary, S1, S2, and S3 (Motorola S-records). If the -f 
switch does not appear on the command line, the default boot file 
format is hex for PROM, and ASCII for host, link, or SPI.
Available formats depend on the boot type selection (-b switch):

• For a PROM boot type, select a hex, S1, S2, S3, ASCII, 
or include format. 

• For host or link booting, select an ASCII, binary, or 
include format. 

• For SPI booting, select an ASCII or binary format.

-h
or
-help

Command line help. Outputs the list of command-line switches 
to standard output and exits. 
Combining the -h switch with -proc ADSP-21161; for example, 
elfloader -proc ADSP-21161 -h, yields the loader syntax and 
switches for ADSP-21161 processors. By default, the -h switch 
alone provides help for the loader driver.



VisualDSP++ 4.0 Loader Manual 5-29 

Loader for ADSP-21161 SHARC Processors

-hostwidth # Sets up the .LDR file word width. By default, the word width for 
PROM and host is 8, for link is 16, and for SPI is 32. The valid 
word widths for the various boot modes are: 

• PROM—8 for hex or ASCII format, 8 or 16 for include 
format

• host—8 or 16 for ASCII or binary format, 16 for 
include format

• link—16 for ASCII, binary, or include format
• SPI—8, 16, or 32 for Intel hex-32 or ASCII format

-id#exe=filename Specifies the processor ID. The -id#exe switch directs the loader 
to use the processor ID (#) for the corresponding executable file 
(filename) when producing a boot-loadable file for EPROM 
booting of a multiprocessor system. This switch is used only to 
produce a boot-loadable file that boots multiple processors from a 
single EPROM. 
Valid values for # are 1, 2, 3, 4, 5, and 6. 
Do not use this switch for single-processor systems. For sin-
gle-processor systems, use filename as a parameter without a 
switch. For more information, refer to “Processor ID Numbers” 
on page 5-23.

-id#ref=N Points the processor ID (N) loader jump table entry to the ID (#) 
image. If the executable file for the (#) processor is identical to the 
executable of the (N) processor, the switch can be used to set the 
PROM start address of the processor with ID of # to be the same 
as for the processor with ID of N. This effectively reduces the size 
of the loader file by providing a single copy of an executable to 
two or more processors in a multiprocessor system. For more 
information, refer to “Processor ID Numbers” on page 5-23.

-l kernelfile Directs the loader to use the specified kernelfile as the 
boot-loading routine in the output boot-loadable file. The boot 
kernel selected with this switch must correspond to the boot type 
selected with the -b switch. 
If the -l switch does not appear on the command line, the loader 
searches for a default boot kernel file. Based on the boot type (-b 
switch), the loader searches in the processor-specific loader direc-
tory for the boot kernel file as described in “Boot Kernels” on 
page 5-16.

Table 5-10. ADSP-21161 Loader Command-Line Switches (Cont’d) 

Switch Description



ADSP-21161 Processor Loader Guide

5-30 VisualDSP++ 4.0 Loader Manual

-o filename Directs the loader to use the specified filename as the name for 
the loader output file. If not specified, the default name 
is inputfile.ldr.

-paddress Directs the loader to start the boot-loadable file at the specified 
address in the EPROM. This EPROM address corresponds to 
0x8000000 on the ADSP-21161 processor. 
If the -p switch does not appear on the command line, the loader 
starts the EPROM file at address 0x0.

-proc ADSP-21161 Specifies the processor. This is a mandatory switch.

-si-revision #|none Provides a silicon revision of the specified processor.
The switch parameter represents a  silicon revision of the proces-
sor specified by the -proc switch. The parameter takes one of two 
forms:

• One or more decimal digits, followed by a point, fol-
lowed by one or two decimal digits. Examples of revi-
sions are: 0.0; 1.12; 23.1. Revision 0.1 is distinct from 
and “lower” than revision 0.10. The digits to the left of 
the point specify the chip tapeout number; the digits to 
the right of the point identify the metal mask revision 
number. The number to the right of the point cannot 
exceed decimal 255.

• A none value is also supported, indicating that the 
VDSP++ tool should ignore silicon errata. 

This switch either generates a warning about any potential anom-
alous conditions or generates an error if any anomalous condi-
tions occur.
Note: In the absence of the silicon revision switch, the loader 
selects the greatest silicon revision it is aware of, if any.
Note: In the absence of the switch parameter (a valid revision 
value)—-si-revision alone or with an invalid value—the 
loader generates an error.

Table 5-10. ADSP-21161 Loader Command-Line Switches (Cont’d) 

Switch Description



VisualDSP++ 4.0 Loader Manual 5-31 

Loader for ADSP-21161 SHARC Processors

-t# (Host boot type only) Specifies timeout cycles. The -t switch (for 
example, -t100) limits the number of cycles that the processor 
spends initializing external memory with zeros. 
Valid values range from 3 to 32765 cycles; 32765 is the default 
value.
The timeout value # is directly related to the number of cycles the 
processor locks the bus for boot-loading, instructing the processor 
to lock the bus for no more than two times the timeout number of 
cycles. When working with a fast host that cannot tolerate being 
locked out of the bus, use a relatively small timeout value.

-v Outputs verbose loader messages and status information as the 
loader processes files. 

-version Directs the loader to show its version information. Type 
elfloader -version to display the version of the loader drive. 
Add the -proc switch, for example, 
elfloader -proc ADSP-21161 -version to display version 
information of both loader drive and SHARC loader.

Table 5-10. ADSP-21161 Loader Command-Line Switches (Cont’d) 

Switch Description



ADSP-21161 Processor Loader Guide

5-32 VisualDSP++ 4.0 Loader Manual



VisualDSP++ 4.0 Loader Manual 6-1 

6 LOADER FOR 
ADSP-2126X/2136X SHARC 
PROCESSORS

This chapter explains how the loader program (elfloader.exe) is used to 
convert executable (.DXE) files into boot-loadable files for ADSP-2126x 
and ADSP-2136x SHARC processors. 

Refer to “Introduction” on page 1-1 for the loader overview; the introduc-
tory material applies to all processor families. Refer to “Loader for 
ADSP-2106x/21160 SHARC Processors” on page 4-1 for information 
about ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L, and 
ADSP-21160 processors. Refer to “Loader for ADSP-21161 SHARC Pro-
cessors” on page 5-1 for information about ADSP-21161 processors. 

Loader operations specific to ADSP-2126x/2136x SHARC processors are 
detailed in the following sections.

• “ADSP-2126x/2136x Processor Booting”
Provides general information about various booting modes, includ-
ing information about boot kernels.

• “ADSP-2126x/2136x Processor Loader Guide”
Provides reference information about the loader graphical user 
interface, command-line syntax, and switches.



ADSP-2126x/2136x Processor Booting

6-2 VisualDSP++ 4.0 Loader Manual

ADSP-2126x/2136x Processor Booting
ADSP-2126x and ADSP-2136x processors can be booted from an external 
PROM memory device via the parallel port (PROM mode) or via the 
Serial Peripheral Interface port (SPI slave, SPI flash, or SPI master mode). 
In no-boot mode, the processor is booted from the internal ROM (only 
available on some processors).

• In parallel port boot mode, the loader output file (.LDR) is stored in 
an 8-bit wide parallel PROM device and fetched by the processor. 

The ADSP-2126x/2136x processors do not support multiprocess-
ing. This means that in PROM boot mode, there should be no ID 
lookup table between the kernel and the rest of the application.

• In SPI slave boot mode, the loader file is transmitted to the proces-
sor by a host processor configured as an SPI master. 

• There are three cases for the SPI master boot mode: SPI master 
(no address), SPI PROM (16-bit address), and SPI flash (24-bit 
address). The difference between the these modes is the way the 
slave device sends the first word of the .LDR file. In SPI PROM and 
SPI flash boot modes, the .LDR file is stored in a passive memory 
device and fetched by the processor. In SPI master, the .LDR file is 
transmitted to the processor by a host processor configured as an 
SPI slave. 

• In no-boot mode, the processor fetches and executes instructions 
directly from the internal memory, bypassing the boot loader (boot 
kernel) entirely. The loader is not used to produce a file supporting 
no-boot mode.



VisualDSP++ 4.0 Loader Manual 6-3 

Loader for ADSP-2126x/2136x SHARC Processors

Software developers who use the loader should be familiar with the 
following operations.

• “Power-Up Booting Process” on page 6-3

• “Boot Type Selection” on page 6-4

• “Boot Types” on page 6-4

• “Boot Kernels” on page 6-18

• “Interrupt Vector Table” on page 6-21

• “Loader File Section Header” on page 6-22

Power-Up Booting Process
ADSP-2126x and ADSP-2136x processors include a hardware feature that 
boot-loads a small, 256-instruction, program into the processor’s internal 
memory after power-up or after the chip reset. These instructions come 
from a program called the boot kernel or the loader kernel. When exe-
cuted, the boot kernel facilitates booting of user application code. The 
combination of the boot kernel and application code comprise the 
boot-loadable (.LDR) file.

At power-up, after the chip reset, the booting process includes the follow-
ing steps.

1. Based on the boot type, an appropriate DMA channel is automati-
cally configured for a 384-word (32-bit) transfer. This transfer 
boot-loads the boot kernel program into the processor memory.

2. The boot kernel runs and loads the application executable code and 
data. 

3. The boot kernel overwrites itself with the first 256 words of the 
application at the end of the booting process. After that, the appli-
cation executable code starts running. 



ADSP-2126x/2136x Processor Booting

6-4 VisualDSP++ 4.0 Loader Manual

The boot type selection directs the system to prepare the appropriate boot 
kernel.

Boot Type Selection
Unlike previous SHARC processors, ADSP-2126x/2136x processors do 
not have a Boot Memory Select (BMS) pin. On the ADSP-2126x/2136x 
processor, the boot type is determined by sampling the state of the 
BOOTCFGx pins, as described in Table 6-1. A description of each boot type 
follows in “Boot Types”.

Boot Types
The following sections describe the ADSP-2126x/2136x processor boot 
types.

• “PROM Boot Mode” on page 6-5

• “SPI Port Boot Modes” on page 6-8

• “Internal Boot Mode” on page 6-17

Table 6-1. ADSP-2126x/2136x Boot Mode Pins

BOOT_CFG[1–0] Boot Type Boot Type Selection

00 SPI slave -bspislave

01 SPI master (SPI flash, SPI PROM, 
or a host processor via SPI master 
mode)

-bspiflash
-bspiprom
-bspimaster

10 EPROM boot via the parallel port -bprom

11 Internal boot. (Not available on all 
ADSP-2126x processors).

Does not use the loader



VisualDSP++ 4.0 Loader Manual 6-5 

Loader for ADSP-2126x/2136x SHARC Processors

PROM Boot Mode 

ADSP-2126x/2136x processors support an 8-bit boot mode through the 
parallel port. This mode is used to boot from external 8-bit-wide memory 
devices. The processor is configured for 8-bit boot mode when the 
BOOT_CFG1–0 pins = 10. When configured for parallel booting, the parallel 
port transfers occur with the default bit settings for the PPCTL register 
(shown in Table 6-2).

The parallel port DMA channel is used when downloading the boot kernel 
information to the processor. At reset, the DMA parameter registers are 
initialized to the values listed in Table 6-3.

Table 6-2. PPCTL Register Settings for PROM Boot Mode

Bit Setting

PPALEPL = 0; ALE is active high

PPEN = 1

PPDUR = 10111; (23 core clock cycles per data transfer cycle)

PPBHC = 1; insert a bus hold cycle on every access

PP16 = 0; external data width = 8 bits

PPDEN = 1; use DMA

PPTRAN = 0; receive (read) DMA

PPBHD = 0; buffer hang enabled

Table 6-3. Parameter Register Settings for PROM Boot Mode

Parameter Register Initialization Value Comment

PPCTL 0x0000 016F See Table 6-2.

IIPP 0 for ADSP-2126x processors
0x10000 for ADSP-2136x processors

This is the offset from internal 
memory normal word starting 
address of 0x80000.



ADSP-2126x/2136x Processor Booting

6-6 VisualDSP++ 4.0 Loader Manual

Packing Options for External Memory

For the ADSP-2126x/2136x processor, the external memory address 
ranges are 0x1000000–0x2FFFFFF. The parallel port automatically packs 
internal 32-bit words to either 8-bit or 16-bit words for external memory. 
These are the only widths supported. The WIDTH() command in the linker 
specifies which packing mode should be used to initialize the external 
memory: WIDTH(8) for 8-bit memory, and WIDTH(16) for 16-bit memory.

The linker packs the external memory data in the .DXE file according to 
the WIDTH() and PACKING() commands. This is the only valid way to spec-
ify external memory. The correct physical address is in the .DXE file 
(selected with WIDTH() and PACKING()) because each 8-bit or 16-bit word 
occupies one external address, and there is no logical addressing of exter-
nal memory. The loader unpacks the data from the .DXE file and packs the 
data again into 32-bit words in the loader file (see Table 6-4). In the 
loader file, tag INIT_EXT8 is used for 8-bit external packed sections, and 
tag INIT_EXT16 is used for 16-bit external packed sections.

ZERO_INIT sections are treated like 32-bit ZERO_INIT sections, 
meaning the count contains the number of 32-bit zeros.

ICPP 0x180 (384) This is the number of 32-bit words 
that are equivalent to 256 instruc-
tions (48-bit).

IMPP 0x01 

EIPP 0x00 

ECPP 0x600 This is the number of bytes in 
0x100 48-bit instructions.

EMPP 0x01

Table 6-3. Parameter Register Settings for PROM Boot Mode (Cont’d)

Parameter Register Initialization Value Comment



VisualDSP++ 4.0 Loader Manual 6-7 

Loader for ADSP-2126x/2136x SHARC Processors

Packing and Padding Details

For ZERO_INIT sections in a .DXE file, no data packing or padding in the 
.LDR file is required because only the header itself is included in the .LDR 
file. However, for other section types, additional data manipulation is 
required. It is important to note that in all cases, the word count placed 
into the block header in the loader file is the original number of words. 
That is, the word count does not include the padded word. 

Table 6-4. External Packed Sections in .DXE Files Vs. Repacked Blocks in 
.LDR Files

External 
Width

Address in .DXE Packed in .DXE Block Address 
in .LDR

Repacked to 32-bit
in .LDR

WIDTH(8) 0x01000000 0x0000001100

0x01000001 0x0000002200

0x01000002 0x0000003300

0x01000003 0x0000004400 0x01000000 0x44332211

0x01000004 0x0000005500

0x01000005 0x0000006600

0x01000006 0x0000007700

0x01000007 0x0000008800 0x01000004 0x88776655

WIDTH(16) 0x02000000 0x0000112200

0x02000001 0x0000334400 0x02000000 0x33441122

0x02000002 0x0000556600

0x02000003 0x0000778800 0x02000002 0x77885566



ADSP-2126x/2136x Processor Booting

6-8 VisualDSP++ 4.0 Loader Manual

SPI Port Boot Modes

The ADSP-2126x/2136x processor supports booting from a host proces-
sor via Serial Peripheral Interface slave mode (BOOT_CFG1–0 = 00), and 
booting from an SPI flash, SPI PROM, or a host processor via SPI master 
mode (BOOT_CFG1–0 = 01). SPI slave booting is discussed on page 6-9, and 
SPI master bootings are discussed on page 6-10.

Both SPI boot modes support booting from 8-, 16-, or 32-bit SPI devices. 
In all SPI boot types, the data word size in the Shift register is hardwired 
to 32 bits. Therefore, for 8 or 16-bit devices, data words are packed into 
the Shift register (RXSPI) to generate 32-bit words least significant bit 
(LSB) first, which are then shifted into internal memory.

For 16-bit SPI devices, two words shift into the 32-bit receive Shift regis-
ter (RXSR) before a DMA transfer to internal memory occurs. For 8-bit SPI 
devices, four words shift into the 32-bit receive Shift register before a 
DMA transfer to internal memory occurs.

When booting, the ADSP-2126x/2136x SHARC processor expects to 
receive words into the RXSPI register seamlessly. This means that bits are 
received continuously without breaks in the CS link. For different SPI host 
sizes, the processor expects to receive instructions and data packed in a 
least significant word (LSW) format.

See the manual for the target SHARC processor peripherals for informa-
tion on how data is packed into internal memory during SPI booting for 
SPI devices with widths of 32, 16, or 8 bits.



VisualDSP++ 4.0 Loader Manual 6-9 

Loader for ADSP-2126x/2136x SHARC Processors

SPI Slave Boot Mode

In SPI slave boot mode, the host processor initiates the booting operation 
by activating the SPICLK signal and asserting the SPIDS signal to the active 
low state. The 256-word boot kernel is loaded 32 bits at a time, via the 
SPI Receive Shift register. To receive 256 instructions (48-bit words) 
properly, the SPI DMA initially loads a DMA count of 384 32-bit words, 
which is equivalent to 256 48-bit words.

The processor’s SPIDS pin should not be tied low. When in SPI 
slave mode, including booting, the SPIDS signal is required to tran-
sition from high to low. SPI slave booting uses the default bit 
settings shown in Table 6-5.

Table 6-5. SPI Slave Boot Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI enabled

MS Cleared (= 0) Slave device

MSBF Cleared (= 0) LSB first

WL 10, 32-bit SPI Receive Shift register word length

DMISO Set (= 1) MISO MISO disabled

SENDZ Cleared (= 0) Send last word

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit



ADSP-2126x/2136x Processor Booting

6-10 VisualDSP++ 4.0 Loader Manual

The SPI DMA channel is used when downloading the boot kernel infor-
mation to the processor. At reset, the DMA parameter registers are 
initialized to the values listed in Table 6-6.

SPI Master Boot Mode

In SPI master boot mode, the ADSP-2126x/2136x initiates the booting 
operation by: 

1. Activating the SPICLK signal and asserting the FLG0 signal to the 
active low state.

2. Writing the read command 0x03 and address 0x00 to the slave 
device.

SPI master boot mode is used when the processor is booting from an SPI 
compatible serial PROM, serial flash, or slave host processor. The specifics 
of booting from these devices are discussed individually:

• “Booting From an SPI Flash” on page 6-14

• “Booting From an SPI PROM (16-Bit Address)” on page 6-16

• “Booting From an SPI Host Processor” on page 6-16

On reset, the interface starts up in SPI master mode performing a three 
hundred eighty-four 32-bit word DMA transfer.

Table 6-6. Parameter Register Settings for SPI Slave Boot  

Parameter Register Initialization Value Comment

SPICTL 0x0000 4D22

SPIDMAC 0x0000 0007 Enabled, RX, initialized on completion

IISPI 0x0008 0000 Start of Block 0 normal word memory

IMSPI 0x0000 0001 32-bit data transfers

CSPI 0x0000 0180



VisualDSP++ 4.0 Loader Manual 6-11 

Loader for ADSP-2126x/2136x SHARC Processors

SPI master booting uses the default bit settings shown in Table 6-7.

The SPI DMA channel is used when downloading the boot kernel infor-
mation to the processor. At reset, the DMA parameter registers are 
initialized to the values listed in Table 6-8.

Table 6-7. SPI Master Boot Mode Bit Settings

Bit Setting Comment

SPIEN Set (= 1) SPI Enabled

MS Set (= 1) Master device

MSBF Cleared (= 0) LSB first

WL 10 32-bit SPI Receive Shift register word length

DMISO Cleared (= 0) MISO enabled

SENDZ Set (= 1) Send zeros

SPIRCV Set (= 1) Receive DMA enabled

CLKPL Set (= 1) Active low SPI clock

CPHASE Set (= 1) Toggle SPICLK at the beginning of the first bit

Table 6-8. Parameter Registers Settings for SPI Master Boot  

Parameter Register Initialization Value Comment

SPICTL 0x0000 5D06 

SPIBAUD 0x0064 CCLK/400 =500 KHz@ 200 MHz

SPIFLG 0xfe01 FLG0 used as slave-select

SPIDMAC 0x0000 0007 Enable receive interrupt on completion

IISPI 0x0008 0000 Start of block 0 normal word memory

IMSPI 0x0000 0001 32-bit data transfers

CSPI 0x0000 0180 0x100 instructions = 0x180 32-bit words



ADSP-2126x/2136x Processor Booting

6-12 VisualDSP++ 4.0 Loader Manual

From the perspective of the processor, there is no difference between 
booting from the three types of SPI slave devices. Since SPI is a 
full-duplex protocol, the processor is receiving the same amount of bits 
that it sends as a read command. The read command comprises a full 
32-bit word (which is what the processor is initialized to send) comprised 
of a 24-bit address with an 8-bit opcode. The 32-bit word that is received 
while this read command is transmitted is thrown away in hardware and 
can never be recovered by the user. Consequently, special measures must 
be taken to guarantee that the boot stream is identical in all three cases.

The processor boots in Least Significant Bit First (LSB) format, while 
most serial memory devices operate in Most Significant Bit First (MSB) 
format. Therefore, it is necessary to program the device in a fashion that is 
compatible with the required LSBF format. See “Bit Reverse Option for 
SPI Port Boot Modes” on page 6-13 for details.

Also, because the processor always transmits 32 bits before it begins read-
ing boot data from the slave device, the loader must insert extra data into 
the byte stream (in the loader file) if using memory devices that do not use 
the LSB format. The loader includes an option for creating a boot stream 
compatible with both endian formats, and devices requiring 16-bit and 
24-bit addresses, as well as those requiring no read command at all. See 
“Initial Word Option for SPI Master Boot Modes” on page 6-14 for 
details. 

Figure 6-1 shows the initial 32-bit word sent out from the processor. As 
shown in the figure, the processor initiates the SPI master boot process by 
writing an 8-bit opcode (LSB first) to the slave device to specify a read 
operation. This read opcode is fixed to 0xC0 (0x03 in MSB first format). 
Following that, a 24-bit address (all zeros) is always driven by the proces-
sor. On the following SPICLK cycle (cycle 32), the processor expects the 
first bit of the first word of the boot stream. This transfer continues until 
the boot kernel has finished loading the user program into the processor.



VisualDSP++ 4.0 Loader Manual 6-13 

Loader for ADSP-2126x/2136x SHARC Processors

Bit Reverse Option for SPI Port Boot Modes

SPI PROM. For the SPI PROM boot type, the entirety of the SPI master 
.LDR file needs the option of bit-reversing when loading to SPI PROMs. 
This is because the default setting for the SPICTL register (see Table 6-8 on 
page 6-11) sets the bit order to be LSB first. SPI EPROMs are usually 
MSB first, so the .LDR file must be sent in bit-reversed order. 

SPI Master and SPI Slave. When loading to other slave devices, the SPI 
master and SPI slave boot types do not need bit reversing necessarily. For 
SPI slave and SPI master boots to non-PROM devices, the same default 
exists (bit reversed); however, the host (master or slave) can simply be 
configured to transmit LSB first.

Figure 6-1. SPI Master Mode Booting Using Various Serial Devices



ADSP-2126x/2136x Processor Booting

6-14 VisualDSP++ 4.0 Loader Manual

Initial Word Option for SPI Master Boot Modes

Before final formatting (binary, include, etc.) the loader must prepends 
the word 0xA5 to the beginning of the byte stream. During SPI master 
booting, the SPI port discards the first byte read from the SPI. 

SPI PROM. For the SPI PROM boot type, the word 0xA5 prepended to 
the stream is one byte in length. SPI PROMs receives a 24-bit read com-
mand before any data is sent to the processor, the processor then discards 
the first byte it receives after this 24-bit opcode is sent (totaling one 32-bit 
word). 

SPI Master. For the SPI master boot type, the word 0xA5000000 
prepended to the stream is 32 bits in length. An SPI host configured as a 
slave begins sending data to the processor while the processor is sending 
the 24-bit PROM read opcode. These 24-bits must be zero-filled because 
the processor discards the first 32-bit word that it receives from the slave.

The 0xA5 byte is only required for SPI master boot mode.

Figure 6-2 and Table 6-9 illustrates the first 32-bit word for both the SPI 
PROM and SPI master cases.

With bit reversing for SPI master boot mode, the 32-bit word is handled 
according to the host width. With bit reversing for SPI PROM boot, the 
8-bit word is reversed as a byte and prepended (see Table 6-10).

Booting From an SPI Flash

For SPI flash devices, the format of the boot stream is identical to that 
used in SPI slave mode, with the first byte of the boot stream being the 
first byte of the kernel. This is because SPI flash devices do not drive out 
data until they receive an 8-bit command and a 24-bit address.



VisualDSP++ 4.0 Loader Manual 6-15 

Loader for ADSP-2126x/2136x SHARC Processors

Figure 6-2. SPI Master Boot From a Slave Processor Versus a Slave PROM

Table 6-9. Initial Word for SPI Master and SPI PROM in .LDR File

Boot Type Additional Word -hostwidth

 32  16  8

SPI Master1 0xA5000000 A5000000 0000 00

A500 00

00

A5

SPI PROM2 0xA5 A5 A5 A5

1   Initial word for SPI master boot type is always 32 bits. See Figure 6-1 on page 6-13 for explana-
tion.

2   Initial word for SPI PROM boot type is always 8 bits. See Figure 6-1 on page 6-13 for explana-
tion



ADSP-2126x/2136x Processor Booting

6-16 VisualDSP++ 4.0 Loader Manual

Booting From an SPI PROM (16-Bit Address)

Figure 6-2 shows the initial 32-bit word sent out from the processor from 
the perspective of the serial PROM device.

As shown in Figure 6-2, SPI EEPROMs only require an 8-bit opcode and 
a 16-bit address. These devices begin transmitting on clock cycle 24. 
However, because the processor is not expecting data until clock cycle 32, 
it is necessary for the loader to pad an extra byte to the beginning of the 
boot stream when programming the PROM. In other words, the first byte 
of the boot kernel is the second byte of the boot stream. The VisualDSP++ 
tools automatically handles this in the loader file generation process for 
SPI PROM devices.

Booting From an SPI Host Processor

Typically, host processors in SPI slave mode transmit data on every 
SPICLK cycle. This means that the first four bytes that are sent by the host 
processor are part of the first 32-bit word that is thrown away by the pro-
cessor (see Figure 6-1). Therefore, it is necessary for the loader to pad an 
extra four bytes to the beginning of the boot stream when programming 
the host; for example, the first byte of the kernel is the fifth byte of the 
boot stream. VisualDSP++ automatically handles this in the loader file 
generation process.

Table 6-10. Default Settings for PROM and SPI Boot Modes

Boot Type 
Selection

Host 
Width

Output Format Bit Reverse Initial Word

-bPROM 8 Intel Hex No -

-bSPIslave 32 ASCII No -

-bSPIflash 32 ASCII No -

-bspimaster 32 ASCII No 0x000000a5

-bspiprom 8 Intel Hex Yes 0xa5



VisualDSP++ 4.0 Loader Manual 6-17 

Loader for ADSP-2126x/2136x SHARC Processors

Internal Boot Mode 

In internal boot mode, upon reset, the processor starts executing the appli-
cation stored in the internal ROM. 

To facilitate internal booting, the -nokernel command-line switch com-
mands the loader: 

• To omit a boot kernel.
The -nokernel switch denotes that a running on the processor 
(already booted) subroutine imports the .LDR file. The loader does 
not insert a boot kernel into the .LDR file—a similar subroutine is 
present already on the processor. Instead, the loader file begins 
with the first header of the first block of the boot stream. 

• To omit any interrupt vector table handling. 
In internal boot mode, the boot stream is not imported by a boot 
kernel executing from within the IVT; no self-modifying 
FINAL_INIT code (which overwrites itself with the IVT) is needed. 
Thus, the loader does not give any special handling to the 256 
instructions located in the IVT (0x80000–0x800FF for ADSP-2126x 
processors and 0x90000–0x900FF for ADSP-2136x processors). 
Instead, the IVT code or data are handled like any other range of 
memory.

• To omit an initial word of 0xa5.
When -nokernel is selected, the loader does not place an initial 
word (A5) in the boot stream as required for SPI master booting.

• To replace the FINAL_INIT block with a USER_MESG header.
The FINAL_INIT block (which typically contains the IVT code) 
should not be included in the .LDR file because the contents of the 
IVT (if any) is incorporated in the boot-stream. Instead, the loader 
appends one final bock header to terminate the loader file. 



ADSP-2126x/2136x Processor Booting

6-18 VisualDSP++ 4.0 Loader Manual

The final block header has a block tag of 0x0 (USER_MESG). The 
header indicates to a subroutine processing the boot-stream that 
this is the end of the stream. The header contains two 32-bit data 
words, instead of count and address information (unlike the other 
headers). The words can be used to provide version number, error 
checking, additional commands, return addresses, or a number of 
other messages to the importing subroutine on the processor. 

The two 32-bit values can be set on the command line as argu-
ments to the “-nokernel[message1, message2]” switch. The first 
optional argument is msg_word1, and the second optional argument 
is msg_word2, where the values are interpreted as 32-bit unsigned 
numbers. If only one argument is issued, that argument is 
msg_word1. It is not possible to specify msg_word2 without specify-
ing msg_word1.) If one or no arguments are issued at the command 
line, the default values for the arguments are 0x00000000. 

Listing 6-1 shows a sample format for the USER_MESG header.

Listing 6-1. Internal Booting: FINAL_INIT Block Header Format

0x00000000 /* USER_MESG tag */

0x00000000 /* msg_word1 (1st cmd-line parameter) */

0x00000000 /* msg_word2 (2nd cmd-line parameter) */

Boot Kernels
The boot-loading process starts with a transfer of the boot kernel program 
into the processor memory. The boot kernel sets up the processor and 
loads boot data. After the boot kernel finishes initializing the rest of the 
system, the boot kernel loads boot data over itself with a final DMA 
transfer. 

Table 6-11 lists ADSP-2126x/2136x boot kernels shipped with 
VisualDSP++. 



VisualDSP++ 4.0 Loader Manual 6-19 

Loader for ADSP-2126x/2136x SHARC Processors

At processor reset, a boot kernel is loaded into the seg_ldr memory seg-
ment as defined in the Linker Description File for the default loader 
kernel that corresponds to the target processor, for example, 
2126x_ldr.ldf, which is stored in the tools installation directory 
(...\2126x\ldr).

Boot Kernel Modification and Loader Issues

Boot kernel customization is required for some systems. In addition, the 
operation of other tools (such as the C/C++ compiler) is influenced by 
whether the loader is used.

If you do not specify a boot kernel file via the Load page of the Project 
Options dialog box in VisualDSP++ (or via the -l command-line switch), 
the loader places a default boot kernel (see Table 6-11) in the loader out-
put file based on the specified boot type.

If you do not want to use any boot kernel file, check the No kernel box (or 
specify the -nokernel command-line switch). The loader places no boot 
kernel in the loader output file.

Rebuilding a Boot Kernel File

If you modify the boot kernel source (.ASM) file by inserting correct values 
for your system, you must rebuild the boot kernel (.DXE) before generating 
the boot-loadable (.LDR) file. The boot kernel source file contains default 
values for the SYSCON register. The WAIT, SDCTL, and SDRDIV initialization 
code are in boot kernel file comments.

Table 6-11. ADSP-2126x/2136x Default Boot Kernel Files

PROM SPI Slave, SPI Flash, SPI Master, SPI PROM

26x_prom.dxe 26x_spi.dxe

36x_prom.dxe 36x_spi.dxe



ADSP-2126x/2136x Processor Booting

6-20 VisualDSP++ 4.0 Loader Manual

To modify a boot kernel source file:

1. Copy the applicable boot kernel source file (26x_prom.asm, 
26x_spi.asm, 36x_prom.asm, or 36x_spi.asm).

2. Apply the appropriate changes.

After modifying the boot kernel source file, rebuild the boot kernel (.DXE) 
file. Do this from within the VisualDSP++ IDDE (refer to VisualDSP++ 
online Help for details) or rebuild a boot kernel file from the command 
line.

Rebuilding a Boot Kernel Using Command Lines 

Rebuild a boot kernel using command lines as follows.

PROM Booting. The default boot kernel source file for PROM booting is 
26x_prom.asm for ADSP-2126x processors. After copying the default file 
to my_prom.asm and modifying it to suit your system, use the following 
command lines to rebuild the boot kernel.

easm21k -proc ADSP-21262 my_prom.asm

linker -T 2162x_ldr.ldf my_prom.doj

SPI Booting. The default boot kernel source file for link booting is 
2126x_SPI.asm for ADSP-2126x processors. After copying the default file 
to my_SPI.asm and modifying it to suit your system, use the following 
command lines to rebuild the boot kernel:

easm21k -proc ADSP-21262 my_SPI.asm

linker -T 2126x_ldr.ldf my_SPI.doj

Loader File Issues

If you modify the boot kernel for the PROM or SPI booting modes, 
ensure that the seg_ldr memory segment is defined in the .LDF file. Refer 
to the source of this memory segment in the .LDF file located in the 
...\ldr\ installation directory of the target processor.



VisualDSP++ 4.0 Loader Manual 6-21 

Loader for ADSP-2126x/2136x SHARC Processors

Because the loader uses this address for the first location of the reset vector 
during the boot-load process, avoid placing code at the address. When 
using any of the processor’s power-up booting modes, ensure that the 
address does not contain a critical instruction, because the address is not 
executed during the booting sequence. Place a NOP or IDLE in this location. 
The loader generates a warning if the vector address 0x80004 for 
ADSP-2126x processors (0x90004 for ADSP-2136x processors) does not 
contain NOP or IDLE.

When using VisualDSP++ to create the loader file, specify the 
name of the customized boot kernel executable in the Kernel file 
box on the Load page of the Project Options dialog box.

Interrupt Vector Table
If the ADSP-2126x or ADSP-2136x processor is booted from an external 
source (PROM or SPI boot modes), the interrupt vector table is located in 
internal memory (0x80000–0x800FF for ADSP-2126x processors, 0x90000–
0x900FF for ADSP-2136x processors). If the processor is not booted and 
executes from external memory (no-boot mode), the vector table must be 
located in external memory.

The IIVT bit in the SYSCTL control register can be used to override the 
booting mode when determining the location of the interrupt vector table. 
If the processor is not booted (no-boot mode), setting IIVT to 1 selects an 
internal vector table, and setting IIVT=0 selects an external vector table. 
If the processor is booted from an external source (any boot mode other 
than no-boot), IIVT has no effect. The default initialization value of IIVT 
is zero.



ADSP-2126x/2136x Processor Booting

6-22 VisualDSP++ 4.0 Loader Manual

Loader File Section Header
The loader generates and inserts a header at the beginning of a block of 
contiguous data and instructions in the loader file. The kernel uses head-
ers to properly place blocks into processor memory. The architecture of 
the header follows the convention used by other SHARC processors. 

For all of the ADSP-2126x/36x processor boot types, the structures of 
block header are the same. The header consists of three 32-bit words: the 
block tag, word count, and destination address. The order of these words 
is as follows. 

ADSP-2126x/2136x Data Tags

Table 6-12 details the ADSP-2126x/2136x processor data tags. 

0x000000TT First word. Tag of the data block (T).

0x0000CCCC Second word. Data word length or data word count (C) of the data block.

0xAAAAAAAA Third word. Start address (A) of the data block.

Table 6-12. ADSP-2126x/2136x Data Tag Descriptions

Tag Count1 Address Padding

0x0 
FINAL_INIT

None

0x1 
ZERO_LDATA

Number of 16-, 32-, 
or 64-bit words

Logical short, normal, 
or long word address

None

0x2 
ZERO_L482

Number of 48-bit 
words

Logical normal word 
address

None

0x3 
INIT_L16

Number of 16-bit 
words

Logical short word 
address

If count is odd, pad with 
16-bit zero word (See 
“INIT_L16 Blocks” on 
page 6-26 for details.)



VisualDSP++ 4.0 Loader Manual 6-23 

Loader for ADSP-2126x/2136x SHARC Processors

The ADSP-2126x/2136x processor uses eleven block tags, a lesser number 
of tags compared to other SHARC predecessors. There is only one initial-
ization tag per width because there is no need to draw distinction between 
pm and dm sections during initialization. The same tag is used for 16-bit 
(short word), 32-bit (normal word), and 64-bit (long word) blocks that 
contain only zeros. The 0x1 tag is used for ZERO_INIT blocks of 16-bit, 
32-bit, and 64-bit words. The 0x2 tag is used for ZERO_INIT blocks of 
40-bit data and 48-bit instructions.

0x4 
INIT_L32

Number of 32-bit 
words

Logical normal word 
address

None

0x5 
INIT_L48

Number of 48-bit 
words

Logical normal word 
address

If count is odd, pad with 
48-bit zero word. See 
“INIT_L48 Blocks” on 
page 6-24 for details.

0x6 
INIT_L64

Number of 64-bit 
words

Logical long word 
address

None. See “INIT_L64 
Blocks” on page 6-26 for 
details.

0x7 
ZERO_EXT8

Number of 32-bit 
words

Physical external 
address

None

0x8 
ZERO_EXT16

Number of 32-bit 
words

Physical external 
address

None

0x9 
INIT_EXT8

Number of 32-bit 
words

Physical external 
address

None

0xA 
INIT_EXT16

Number of 32-bit 
words

Physical external 
address

None

0x0 
USR_MESG

msg_word1 msg_word2 None. See “Internal Boot 
Mode” on page 6-17 for more 
info on msgword.

1   The count is the actual number of words and does NOT include padded words added by the 
loader.

2   40-bit data and 48-bit words are treated identically.

Table 6-12. ADSP-2126x/2136x Data Tag Descriptions (Cont’d)

Tag Count1 Address Padding



ADSP-2126x/2136x Processor Booting

6-24 VisualDSP++ 4.0 Loader Manual

For clarity, the letter L has been added to the names of the internal block 
tags. L indicates that the associated section header uses the logical word 
count and logical address. Previous SHARC boot kernels do not use logi-
cal values. For example, the count for a 16-bit block may be the number 
of 32-bit words rather than the actual number of 16-bit words. 

Only four tags are required to handle an external memory, two for each 
packing mode (see “Packing Options for External Memory” on page 6-6) 
because Parallel Port DMA is the only way to access the external memory. 
The external memory can be accessed only via the physical address of the 
memory. This means that each 32-bit word corresponds to either four (for 
8-bit) or two (for 16-bit) external addresses. The EXT appended to the 
name of the block tag indicates that the address is a physical external 
address. 

Two data tags, USER_MESG and FINAL_INIT, differ from the standard for-
mat for other SHARC data tags. The USER_MESG header is described 
on page 6-17 and the FINAL_INIT header on page 6-27.

INIT_L48 Blocks

The INIT_L48 block has one packing and one padding requirements. First, 
there must be an even number of 48-bit words in the block. If there is an 
odd number of instructions, then the loader must append one additional 
48-bit instruction that is all zeros. In all cases, the count placed into the 
header is the original logical number of words. That is, the count does not 
include the padded word. Once the number of words in the block is even, 
the data in this block is packed according to Table 6-13. The table also 
shows the case where one zero-word must be added.



VisualDSP++ 4.0 Loader Manual 6-25 

Loader for ADSP-2126x/2136x SHARC Processors

Table 6-13.  INIT_L48 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed Into an Even 
Number of 32-Bit Words

-hostwidth

 32  16  8

111122223333 22223333 22223333 3333 33

444455556666 66661111 55551111 2222 33

AAAABBBBCCCC 44445555 44445555 1111 22

BBBBCCCC BBBBCCCC 6666 22

0000AAAA 0000AAAA 5555 11

00000000 00000000 4444 11

CCCC 66

BBBB 66

AAAA 55

0000 55

0000 44

0000 44

CC

CC

BB

BB

AA

AA

00

00

00

00



ADSP-2126x/2136x Processor Booting

6-26 VisualDSP++ 4.0 Loader Manual

INIT_L16 Blocks

For 16-bit initialization blocks, the number of 16-bit words in the block 
must be even. If an odd number of 16-bit words is in the block, then the 
loader adds one additional word (all zeros) to the end of the block, as 
shown in Table 6-14. The count stored in the header is the actual number 
of 16-bit words. (The count does not include the padded word.)

INIT_L64 Blocks

For 64-bit initialization blocks, the data is packed as shown in Table 6-15. 

00

00

Table 6-14. INIT_L16 Block Packing and Zero-Padding (ASCII Format)

Original Data Packed into an Even 
Number of 32-bit Words

-hostwidth

 32  16  8

1122 33441122 33441122 1122 22

3344 00005566 00005566 3344 11

5566 5566 44

0000 33

66

55

00

00

Table 6-13.  INIT_L48 Block Packing and Zero-Padding (ASCII Format) 

Original Data Packed Into an Even 
Number of 32-Bit Words

-hostwidth

 32  16  8



VisualDSP++ 4.0 Loader Manual 6-27 

Loader for ADSP-2126x/2136x SHARC Processors

FINAL_INIT Blocks

The final 256-instructions of the .LDR file contain the instructions for the 
interrupt vector table (IVT). The instructions are initialized by a special 
self-modifying subroutine in the boot kernel (see Listing 6-3). To support 
the self-modifying code, the loader modifies the FINAL_INIT block as 
follows.

1. Places a multi-function instruction at the fifth instruction of the 
block.
The loader places the instruction R0=R0-R0, DM(I4,M5)=R9, 
PM(I12,M13)=R11; at 0x80004 for ADSP-2126x processors or 
0x90004 for ADSP-2136x processors. The instruction overwrites 
whatever instruction is at that address. The opcode for this instruc-
tion is 0x39732D802000.

2. Places an RTI instruction in the IVT.
The loader places an RTI instruction (opcode 0x0B3E00000000) at 
the first address in the IVT entry associated with the boot-source, 
either PROM or SPI. Unlike the multifunction instruction placed 

Table 6-15. INIT_L64 Block Packing (ASCII Format)

Original Data Packed into an Even 
Number of 32-bit Words

-hostwidth

 32  16  8

1111222233334444 33334444 33334444 4444 44

11112222 11112222 3333 44

2222 33

1111 33

22

22

11

11



ADSP-2126x/2136x Processor Booting

6-28 VisualDSP++ 4.0 Loader Manual

at 0x80004 (for ADSP-2126x processors) or 0x90004 (for 
ADSP-2136x processors), which overwrites the data, the loader 
preserves the user-specified instruction which the RTI replaces. 
This instruction is stored in the header for FINAL_INIT as shown in 
Listing 6-2.

• For PROM boot mode, the RTI is placed at address 
0x80050 for ADSP-2126x and at 0x90050 for ADSP-2136x 
processors.

• For all SPI boot modes, the RTI is placed at address 
0x80030 for ADSP-2126x and at 0x90030 for ADSP-2136x 
processors (high priority SPI interrupt).

3. Saves an IVT instruction in the FINAL_INIT block header.
The count and address of a FINAL_INIT block are constant; to avoid 
any redundancy, the count and address are not placed into the 
block header. Instead, the 32-bit count and address words are used 
to hold the instruction that overwrites the RTI inserted into the 
IVT. Listing 6-1 illustrates the block header for FINAL_INIT if, for 
example, the opcode 0xAABBCCDDEEFF is assumed to be the 
user-intended instruction for the IVT.

Listing 6-2. FINAL_INIT Block Header Format

0x00000000 /* FINAL_INIT tag = 0x0 */ 
0xEEFF0000 /* LSBs of instructions */

0xAABBCCDD /* 4 MSBs of instructions */

Listing 6-3. FINAL_INIT Section

/* ====================== FINAL_INIT ======================== */
/* The FINAL_INIT subroutine in the boot kernel program sets up a

DMA to overwrite itself. The code is the very last piece that   

runs in the kernel; it is self-modifying code, It uses a DMA



VisualDSP++ 4.0 Loader Manual 6-29 

Loader for ADSP-2126x/2136x SHARC Processors

to overwrite itself, initializing the 256 instructions that 

reside in the Interrupt Vector Table. */

/* ---------------------------------------------------------- */

final_init:

/* ----------- Setup for IVT instruction patch ------------- */

I8=0x80030; /* Point to SPI vector to patch from PX */

R9=0xb16b0000; /* Load opcode for “PM(0,I8)=PX” into R9 */

PX=pm(0x80002); /* User instruction destined for 0x80030

is passed in the section-header for 
FINAL_INIT. That instr. is initialized upon
completion of this DMA (see comments below)
using the PX register. */

R11=BSET R11 BY 9; /* Set IMDW to 1 for inst. write */

DM(SYSCTL)=R11; /* Set IMDW to 1 for inst. write */

/* ------ Setup loop for self-modifying instruction ------- */

I4=0x80004; /* Point to 0x080004 for self-modifying

code inserted by the loader at 0x80004

in bootstream */

R9=pass R9, R11=R12; /* Clear AZ, copy power-on value 

of SYSCTL to R11 */

DO 0x80004 UNTIL EQ; /* Set bottom-of-loop address (loopstack)

to 0x80004 and top-of-loop (PC Stack) 

to the address of the next
instruction. */

PCSTK=0x80004;  /* Change top-of-loop value from the

address of this instruction to

 0x80004. */

/* ------------- Setup final DMA parameters --------------- */

R1=0x80000;DM(IISX)=R1; /* Setup DMA to load over ldr */

R2=0x180; DM(CSX)=R2; /* Load internal count */



ADSP-2126x/2136x Processor Booting

6-30 VisualDSP++ 4.0 Loader Manual

DM(IMSX)=M6; /* Set to increment internal ptr */

/*----------------- Enable SPI interrupt -------------------*/

bit clr IRPTL SPIHI; /* Clear any pending SPI interr. latch */

bit set IMASK SPIHI; /* Enable SPI receive interrupt */

bit set MODE1 IRPTEN; /* Enable global interrupts */

FLUSH CACHE; /* Remove any kernel instr's from cache */

/*---------- Begin final DMA to overwrite this code -------- */

ustat1=dm(SPIDMAC);

bit set ustat1 SPIDEN;  

dm(SPIDMAC)=ustat1; /* Begin final DMA transfer */

/*------------ Initiate self-modifying sequence ----------- */

JUMP 0x80004 (DB); /* Causes 0x80004 to be the return

address when this DMA completes and
the RTI at 0x80030 is executed. */

IDLE; /* After IDLE, patch then start */

IMASK=0; /* Clear IMASK on way to 0x80004 */

/* ========================================================= */

/* When this final DMA completes, the high-priority SPI interrupt 

is latched, which triggers the following chain of events:

1) The IDLE in the delayed branch to completes

2) IMASK is cleared

3) The PC (now 0x80004 due to the "JUMP RESET (db)") is pushed

on the PC stack and the processor vectors to 0x80030 to 

service the interrupt. 

Meanwhile, the loader (anticipating this sequence) has auto-
matically inserted an "RTI" instruction at 0x80030. The user
instruction intended for that address is instead placed
in the FINAL_INIT section-header and has loaded into PX before



VisualDSP++ 4.0 Loader Manual 6-31 

Loader for ADSP-2126x/2136x SHARC Processors

the DMA was initiated.)

4) The processor executes the RTI at 0x80030 and vectors to the

address stored on the PC stack (0x80004). 

Again, the loader has inserted an instruction into the boot

stream and has placed it at 0x40005 (opcode x39732D802000):
R0=R0-R0,DM(I4,M5)=R9,PM(I12,M13)=R11; 

This instruction does the following.

A) Restores the power-up value of SYSCTL (held in R11).

B) Overwrites itself with the instruction "PM(0,I8)=PX;" 

The first instruction of FINAL_INIT places the opcode for

this new instruction, 0xB16B00000000, into R9.

C) R0=R0-R0 causes the AZ flag to be set.

This satisfies the termination-condition of the loop set up
in FINAL_INIT ("DO RESET UNTIL EQ;"). When a loop condition
is achieved within the last three instructions of a loop,

the processor branches to the top-of-loop address (PCSTK)
one final time.

5) We manually changed this top-of-loop address 0x80004, and so 

to conclude the kernel, the processor executes the instruction
at 0x80004 *again*. 

6) There’s a new instruction at 0x80004: "PM(0,I8)=PX;". This 

initializes the user-intended instruction at 0x80030 (the vec- 

tor for the High-Priority-SPI interrupt).

At this point, the kernel is finished, and execution continues

at 0x80005, with the only trace as if nothing happened! */

/* ========================================================== */



ADSP-2126x/2136x Processor Loader Guide

6-32 VisualDSP++ 4.0 Loader Manual

ADSP-2126x/2136x Processor Loader 
Guide

Loader operations depend on the loader options, which control how the 
loader processes executable files. You select features such as boot mode, 
boot kernel, and output file format via the loader options. These options 
are specified on the loader’s command line or via the Load page of the 
Project Options dialog box in the VisualDSP++ environment. 

The Load page consists of multiple panes. For information specific to the 
ADSP-2126x/2136x processor, refer to the VisualDSP++ online help for 
that processor. When you open the Load page, the default loader settings 
for the selected processor are already set. Use the Additional Options box 
to enter options that have no dialog box equivalent.

Option settings on the Load page correspond to switches displayed 
on the command line. 

These sections describe how to produce a bootable loader file (.LDR):

• “Using the ADSP-2126x/2136x Loader Command Line” on 
page 6-32

• “Using the VisualDSP++ Interface (Load Page)” on page 6-34

Using the ADSP-2126x/2136x Loader Command 
Line 

Use the following syntax for the ADSP-2126x/2136x SHARC loader 
command line.

elfloader inputfile -proc processor -switch [-switch …]



VisualDSP++ 4.0 Loader Manual 6-33 

Loader for ADSP-2126x/2136x SHARC Processors

where:

• inputfile—Name of the executable file (.DXE) to be processed 
into a single boot-loadable file. An input file name can include the 
drive and directory. Enclose long file names within straight quotes, 
“long file name”.

• -proc processor—Part number of the processor (for example, 
-proc ADSP-21262) for which the loadable file is built. The -proc 
switch is mandatory.

• -switch …—One or more optional switches to process. Switches 
select operations and boot modes for the loader. A list of all 
switches and their descriptions appear in Table 6-17 on page 6-35.

Command-line switches are not case-sensitive and may be placed 
on the command line in any order.

The following command line,

elfloader Input.dxe -bSPIflash -proc ADSP-21262

runs the loader with:

• Input.dxe—Identifies the executable file to process into a 
boot-loadable file. Note that the absence of the -o switch causes the 
output file name to default to Input.ldr. 

• -bspiflash—Specifies SPI flash port booting as the boot type for 
the boot-loadable file.

• -proc ADSP-21262 —Specifies ADSP-21262 as the target 
processor.



ADSP-2126x/2136x Processor Loader Guide

6-34 VisualDSP++ 4.0 Loader Manual

File Searches

File searches are important in loader processing. The loader supports rela-
tive and absolute directory names, default directories, and user-selected 
directories for file search paths. File searches occur as described 
on page 1-11.

File Extensions

Some loader switches take a file name as an optional parameter. 
Table 6-16 lists the expected file types, names, and extensions.

Loader Command-Line Switches

Table 6-17 is a summary of the ADSP-2126x and ADSP-2136x loader 
switches.

Using the VisualDSP++ Interface (Load Page)
When developing a DSP loader file project in VisualDSP++, modify the 
default option settings on the Load page of the Projects Options dialog 
box. For information specific to the ADSP-2126x/2136x processor, refer 
to the VisualDSP++ online help for that processor.

Table 6-16. File Extensions

Extension File Description

.DXE Executable files and boot kernel files. The loader recognizes overlay memory files 
(.OVL) and shared memory files (.SM), but does not expect these files on the com-
mand line. Place .OVL and .SM files in the same directory as the .DXE file that 
refers to them. The loader finds the files when processing the .DXE file. The .OVL 
and .SM files may also be placed in the .OVL and .SM file output directory specified 
in the .LDF file or the current working directory. 

.LDR Loader output file.



VisualDSP++ 4.0 Loader Manual 6-35 

Loader for ADSP-2126x/2136x SHARC Processors

Table 6-17. ADSP-2126x/2136x Loader Command-Line Switches

Switch Description

-bprom
-bspislave|-bspi
-bspimaster
-bspiprom
-bspiflash

Specifies the boot mode. The -b switch directs the loader to pre-
pare a boot-loadable file for the specified boot mode.
The valid modes (boot types) are PROM, SPI slave, SPI master, 
SPI PROM, and SPI flash. 
If -b does not appear on the command line, the default is 
-bprom. 
To use a custom boot kernel, the boot type selected with the -b 
switch must correspond with the boot kernel selected with the -l 
switch. Otherwise, the loader automatically selects a default boot 
kernel based on the selected boot type (see “Boot Kernels” on 
page 6-18). Do not use the -e switch with the -nokernel switch.

-fhex
-fASCII
-fbinary
-finclude
-fs1
-fs2
-fs3

Specifies the format of a boot-loadable file (Intel hex-32, ASCII, 
binary, include). If the -f switch does not appear on the com-
mand line, the default boot file format is
Intel hex-32 for PROM and SPI PROM, ASCII for SPI slave, SPI 
flash, and SPI master.
Available formats depend on the boot type selection (-b switch):
• For PROM and SPI PROM boot types, select a hex, ASCII, s1, 

s2, s3, or include format. 
• For other SPI boot types, select an ASCII or binary format.

-h
or
-help

Invokes the command-line help, outputs a list of command-line 
switches to standard output, and exits. 
By default, the -h switch alone provides help for the loader driver. 
To obtain a help screen for the target processor, add the -proc 
switch to the command line. For example: type elfloader 
-proc ADSP-21262 -h to obtain help for ADSP-2126x/2136x 
processors.

-hostwidth # Sets up the word width for the .LDR file. By default, the word 
width for PROM and SPI PROM boot modes is 8; for SPI slave, 
SPI flash, and SPI master boot modes is 32. The valid word 
widths are: 
• 8 for Intel hex-32 and Motorolla S-records formats; 
• 8, 16, or 32 for ASCII, binary, and include formats



ADSP-2126x/2136x Processor Loader Guide

6-36 VisualDSP++ 4.0 Loader Manual

-l userkernel Directs the loader to use the specified userkernel and to ignore 
the default boot kernel for the boot-loading routine in the output 
boot-loadable file. 
Note: The boot kernel file selected with this switch must corre-
spond to the boot type selected with the -b switch). 
If the -l switch does not appear on the command line, the loader 
searches for a default boot kernel file in the installation directory 
(see “Boot Kernels” on page 6-18). Note that the loader does not 
search for any kernel file if -nokernel is selected.

-nokernel[message1, 
message2]

Supports internal boot mode. The -nokernel switch directs the 
loader:
• Not to include the boot kernel code into the loader (.LDR) file.
• Not to perform any special handling for the 256 instructions 

located in the IVT. 
• To put two 32-bit hex messages in the final block header 

(optional).
• Not to include the initial word in the loader file.
For more information, see “Internal Boot Mode” on page 6-17).

-o filename Directs the loader to use the specified filename as the name for 
the loader’s output file. If the -o filename is absent, the default 
name is the root name of the input file with an  .LDR extension.

-paddress Specifies the PROM start address. This EPROM address corre-
sponds to 0x80000 (ADSP-2126x processors) or to 0x90000 
(ADSP-2136x processors). The -p switch starts the boot-loadable 
file at the specified address in the EPROM. 
If the -p switch does not appear on the command line, the loader 
starts the EPROM file at address 0x0.

-proc processor Specifies the processor. This is a mandatory switch. The 
processor argument is one of the following:
ADSP-21261 ADSP-21363 ADSP-21367
ADSP-21262 ADSP-21364 ADSP-21368
ADSP-21266 ADSP-21365 ADSP-21369
ADSP-21267 ADSP-21366

Table 6-17. ADSP-2126x/2136x Loader Command-Line Switches 

Switch Description



VisualDSP++ 4.0 Loader Manual 6-37 

Loader for ADSP-2126x/2136x SHARC Processors

VisualDSP++ invokes the elfloader utility to build the output file. 
Dialog box buttons and fields correspond to command-line switches and 
parameters (see Table 6-17 on page 6-35). Use the Additional Options 
box to enter options that have no dialog box equivalent. 

-si-revision #|none Provides a silicon revision of the specified processor.
The switch parameter represents a  silicon revision of the 
processor specified by the -proc switch. The parameter takes one 
of two forms:
• One or more decimal digits, followed by a point, followed by 

one or two decimal digits. Examples of revisions are: 0.0; 
1.12; 23.1. Revision 0.1 is distinct from and “lower” than 
revision 0.10. The digits to the left of the point specify the 
chip tapeout number; the digits to the right of the point 
identify the metal mask revision number. The number to the 
right of the point cannot exceed decimal 255.

• A none value is also supported, indicating that the VDSP++ 
tool should ignore silicon errata. 

This switch either generates a warning about any potential anom-
alous conditions or generates an error if any anomalous condi-
tions occur.
Note: In the absence of the silicon revision switch, the loader 
selects the greatest silicon revision it is aware of, if any.
Note: In the absence of the switch parameter (a valid revision 
value)—-si-revision alone or with an invalid value—the 
loader generates an error.

-v Outputs verbose loader messages and status information as the 
loader processes files. 

-version Directs the loader to show its version information. Type 
elfloader -version to display the version of the loader drive. 
Add the -proc switch, for example, 
elfloader -proc ADSP-21262 -version to display version 
information of both loader drive and SHARC loader.

Table 6-17. ADSP-2126x/2136x Loader Command-Line Switches 

Switch Description



ADSP-2126x/2136x Processor Loader Guide

6-38 VisualDSP++ 4.0 Loader Manual



VisualDSP++ 4.0 Loader Manual 7-1 

7 SPLITTER FOR SHARC AND 
TIGERSHARC PROCESSORS

This chapter explains how the splitter program (elfspl21k.exe) is used to 
convert executable (.DXE) files into non-bootable files for ADSP-21xxx 
SHARC and the ADSP-TSxxx TigerSHARC processors. Non-bootable 
PROM image files execute from external memory of a processor. For 
TigerSHARC processors, the splitter creates a 32-bit image file while for 
SHARC processor, the splitter creates a 64-/48-/40-/32-/16-bit image file.

In most instances, developers working with SHARC and TigerSHARC 
processor use the loader instead of the splitter. One of the exceptions is a 
SHARC system that must execute instructions from external memory. 
The non-bootable PROM image files are often used with ADSP-21065L 
processor systems, which have limited internal memory.

Refer to “Introduction” on page 1-1 for the splitter overview; the intro-
ductory material applies to both processor families. 

Splitter operations are detailed in the following sections. 

• “SHARC and TigerSHARC Splitter Command Line” on page 7-2
Provides reference information about the splitter command-line 
syntax and switches. 

• “VisualDSP++ Interface (Split Page)” on page 7-8
Provides reference information about the splitter graphical user 
interface.



SHARC and TigerSHARC Splitter Command Line

7-2 VisualDSP++ 4.0 Loader Manual

SHARC and TigerSHARC Splitter 
Command Line

Use the following syntax for the SHARC and TigerSHARC splitter 
command line. 

elfspl21k [-switch…] -pm &|-dm &|-64 &| -proc name inputfile

or

elfspl21k [-switch…] -s segment inputfile

where:

• inputfile—Specifies the name of the executable file (.DXE) to be 
processed into a non-bootable file for a single-processor system. 

The name of the inputfile.DXE file must appear at the end of the 
command. The name can include the drive, directory, file name, 
and file extension. Enclose long file names within straight quotes; 
for example, “long file name”.

• -switch…—One or more optional switches to process. Switches 
select operations and boot modes for the splitter. Switches may be 
used in any order. A list of the splitter switches and their descrip-
tions appear in Table 7-2 on page 7-5.

• -pm &| -dm &| -64—The &| symbol between these switches indi-
cates AND/OR. The splitter command line must include one or 
more of the -pm, -dm, and -64 switches (or the -s switch).



VisualDSP++ 4.0 Loader Manual 7-3 

Splitter for SHARC and TigerSHARC Processors

• -s segment—The -s switch can be used without the -pm, -dm, or 
-64 switch. The splitter command line must include one or more of 
the -pm, -dm, and, -64 switches or the -s switch. 

Most items in the splitter command line are not case sensitive; for 
example, -pm and -PM are interchangeable. However, the names of 
memory segment names must be identical, including case, to the 
names used in the executable.

TigerSHARC processors do not have -pm, -dm, or -64 switches.

Each of the following command lines, 

elfspl21k -pm -o pm_stuff my_proj.dxe -proc ADSP-21161

elfspl21k -dm -o dm_stuff my_proj.dxe -proc ADSP-21161

elfspl21k -64 -o 64_stuff my_proj.dxe -proc ADSP-21161

elfspl21k -s seg-code -o seg-code my_proj.dxe -proc ADSP-21161

runs the splitter for the ADSP-21161 processor. The first command pro-
duces a PROM file for program memory. The second command produces 
a PROM file for data memory. The third command produces a PROM 
file for DATA64 memory. The fourth command produces a PROM file 
for section seg-code. 

The switches on these command lines are as follows.

-pm
-dm
-64

Selects program memory (-pm), data memory (-dm), or DATA64 mem-
ory (-64) as sources in the executable for extraction and placement into 
the image. DATA64 memory does not apply to ADSP-2106x proces-
sors. The -pm, -dm, or -64 switches do not apply to ADSP-TSxxx 
processors.
Because these are the only switches used to identify the memory source, 
the specified sources are PM, DM, or DATA64 memory segments. 
Because no other content switches appear on these command lines, the 
output file format defaults to a Motorola 32-bit format (s3), and the 
PROM word width of the output defaults to 8 bits for all PROMs.



SHARC and TigerSHARC Splitter Command Line

7-4 VisualDSP++ 4.0 Loader Manual

File Searches
File searches are important in the splitter process. The splitter supports 
relative and absolute directory names, default directories, and 
user-selected directories for file search paths. File searches occur as 
described on page 1-11.

Output File Extensions
The splitter follows the conventions shown in Table 7-1 for output file 
extensions.

-o pm_stuff
-o dm_stuff
-o 64=stuff
-o seg-code

Specify names for the output files. Use different names so the output of 
a run does not overwrite the output of a previous run. The output 
names are pm_stuff.s_# and dm_stuff.s_#.

my_proj.dxe Specifies the name of the input (.DXE) file to be processed into 
non-bootable PROM image files.

Table 7-1. Output File Extensions

Extension File Description

.S_# Motorola S-record format file. The # indicates the position (0 = least significant, 
1 = next-to-least significant, and so on). For info about Motorola S-record file for-
mat, refer to “Splitter Output Files in Motorola S-Record Format” on page A-11.

.H_# Intel hex-32 format file. The # indicates the position (0 = least significant, 
1 = next-to-least significant, and so on). For information about Intel hex-32 file for 
mat, refer to “Splitter Output Files in Intel Hex-32 Format” on page A-13.

.STK Byte stacked format file. These files are intended for host transfer of data, not for 
PROMs. For more information about byte stacked file format, format files, refer to 
“Splitter Output Files in Byte Stacked Format” on page A-13.



VisualDSP++ 4.0 Loader Manual 7-5 

Splitter for SHARC and TigerSHARC Processors

Command-Line Switches
A list of the splitter command-line switches and their descriptions appears 
in Table 7-2.

Table 7-2. Splitter Command-Line Switches

Item Description

-64 The -64 (include DATA64 memory) switch directs the splitter to 
extract all sections declared as 64-bit memory segments from the input 
.DXE file. This switch influences the operation of the -ram and 
-norom switches, adding 64-bit data memory as their target.

-dm The -dm (include data memory) switch directs the splitter to extract 
memory sections declared as data memory ROM from the input .DXE 
file. The -dm switch influences the operation of the -ram and -norom 
switches, adding data memory as their target.

-o imagefile The -o (output file) switch directs the splitter to use imagefile as the 
name of the splitter output file(s). 
If not specified, the default name for the splitter output file 
is inputfile.ext, where ext depends on the output format.

-norom The -norom (no ROM in PROM) switch directs the splitter to ignore 
ROM memory sections in the inputfile when extracting informa-
tion for the output image. The -dm and -pm switches select data mem-
ory or program memory. The operation of the -s switch is not 
influenced by the -norom switch.

-pm The -pm (include program memory) switch directs the splitter to 
extract memory sections declared program memory ROM from the 
input.DXE file. The -pm switch influences the operation of the -ram 
and -norom switches, adding program memory as the target.



SHARC and TigerSHARC Splitter Command Line

7-6 VisualDSP++ 4.0 Loader Manual

-r # [# …] The -r (PROM widths) switch specifies the number of PROM files 
and their width in bits. The splitter can create PROM files for 8-, 16-, 
and 32-bit wide PROMs. The default width is 8 bits. 
Each # parameter specifies the width of one PROM file. 
Place # parameters in order from most significant to least significant. 
The sum of the # parameters must equal the bit width of the destina-
tion memory (40 bits for DM, 48 bits for PM, or 64 bits for 64-bit 
memory).
Example:
elfspl21k –dm –r 16 16 8 myfile.dxe -proc ADSP-21062
This command extracts data memory ROM from myfile.dxe and 
creates the following output PROM files.

• myfile.s_0—8 bits wide, contains bits 7–0
• myfile.s_1—16 bits wide, contains bits 23–8
• myfile.s_2—16 bits wide, contains bits 39–24

The width of the three output files is 40 bits.

-ram The -ram (include RAM in PROM) switch directs the splitter to 
extract RAM sections from the inputfile. The -dm, -pm, and -64 
switches select the memory. The -s switch is not influenced by the 
-ram switch.

-f h
-f s1
-f s2
-f s3
-f b 

The -f (PROM file format) switch directs the splitter to generate a 
non-bootable PROM image file in the specified format. 
Available selection include:

• h—Intel hex-32 format
• s1—Motorola EXORciser format
• s2—Motorola EXORMAX format
• s3—Motorola 32-bit format
• b—byte stacked format

If the -f switch does not appear on the command line, the default 
format for the PROM file is Motorola 32-bit (s3). 
For information on file formats, see “Build Files” on page A-5.

-s sectionname The -s (include memory section) switch directs the splitter to extract 
the contents of the specified memory section (sectionname). Use the 
-s sectionname switch as many times as needed. Each instance of the 
-s switch can specify only one sectionname. 
Do not use -s with (-pm, -dm, or -64).

Table 7-2. Splitter Command-Line Switches (Cont’d)

Item Description



VisualDSP++ 4.0 Loader Manual 7-7 

Splitter for SHARC and TigerSHARC Processors

-proc processor Specifies the processor type to the splitter. This is a mandatory switch. 
Valid processors are: 

• ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L 
• ADSP-21160, ADSP-21161
• ADSP-21261, ADSP-21262, ADSP-21266, ADSP-21267,
• ADSP-21363, ADSP-21364, ADSP-21365, ADSP-21366, 

ADSP-21367, ADSP-21368, ADSP-21369
• ADSP-TS101, ADSP-TS201, ADSP-TS202, and ADSP-TS203

-u # (Byte stacked format files only) The -u (user flags) switch, which may 
be used only in combination with the -f b switch, directs the splitter 
to use the number # in the user-flags field of a byte stacked format file. 
If the -u switch is not used, the default value for the number is 0. By 
default, # is decimal. If # is prefixed with 0x, the splitter interprets the 
number as hexadecimal. For more information, see “Splitter Output 
Files in Byte Stacked Format” on page A-13.

-si-revision #|none Provides a silicon revision of the specified processor.
The switch parameter represents a silicon revision of the processor 
specified by the -proc switch. The parameter takes one of two forms:

• One or more decimal digits, followed by a point, followed by 
one or two decimal digits. Examples of revisions are: 0.0; 
1.12; 23.1. Revision 0.1 is distinct from and “lower” than 
revision 0.10. The digits to the left of the point specify the 
chip tapeout number; the digits to the right of the point 
identify the metal mask revision number. The number to the 
right of the point cannot exceed decimal 255.

• A none value is also supported, indicating that the VDSP++ 
tool should ignore silicon errata. 

This switch either generates a warning about any potential anomalous 
conditions or generates an error if any anomalous conditions occur.
Note: In the absence of the silicon revision switch, the loader selects 
the greatest silicon revision it is aware of, if any.
Note: In the absence of the switch parameter (a valid revision value)—
-si-revision alone or with an invalid value—the loader generates an 
error.

-version Directs the splitter to show its version information.

Table 7-2. Splitter Command-Line Switches (Cont’d)

Item Description



VisualDSP++ Interface (Split Page)

7-8 VisualDSP++ 4.0 Loader Manual

VisualDSP++ Interface (Split Page)
VisualDSP++ invokes the splitter to build non-bootable PROM image 
files when you select Splitter file as the project output. 

Splitter operation relies on splitter options, which control the processing 
of the executable files into output files. Modify the default splitter options 
from the Split page (also called splitter property page) of the Project 
Options dialog box.

The page buttons and fields correspond to splitter command-line switches 
and parameters (see Table 7-2 on page 7-5). Use the Additional Options 
box to enter options that do not have dialog box equivalents. Refer to 
VisualDSP++ online Help for details. 



VisualDSP++ 4.0 Loader Manual A-1 

A FILE FORMATS

VisualDSP++ development tools support many file formats, in some cases 
several for each development tool. This appendix describes file formats 
that are prepared as inputs and produced as outputs. 

The appendix describes three types of files:

• “Source Files” on page A-2

• “Build Files” on page A-5

• “Debugger Files” on page A-15

Most of the development tools use industry-standard file formats. These 
formats are described in “Format References” on page A-17. 



Source Files

A-2 VisualDSP++ 4.0 Loader Manual

Source Files
This section describes the following source (input) file formats.

• “C/C++ Source Files” on page A-2

• “Assembly Source Files” on page A-3

• “Assembly Initialization Data Files” on page A-3

• “Header Files” on page A-4

• “Linker Description Files” on page A-4

• “Linker Command-Line Files” on page A-5

C/C++ Source Files
C/C++ source files are text files (.C, .CPP, .CXX, and so on) containing 
C/C++ code, compiler directives, possibly a mixture of assembly code and 
directives, and, typically, preprocessor commands.

Several dialects of C code are supported: pure (portable) ANSI C, and at 
least two subtypes1 of ANSI C with ADI extensions. These extensions 
include memory type designations for certain data objects, and segment 
directives used by the linker to structure and place executable files.

The C/C++ compiler, run-time library, as well as a definition of ADI 
extensions to ANSI C, are detailed in the VisualDSP++ 4.0 C/C++ 
Compiler and Library Manual for the target processor.

1 With and without built-in function support; a minimal differentiator. There are others.



VisualDSP++ 4.0 Loader Manual A-3 

File Formats

Assembly Source Files
Assembly source files (.ASM) are text files containing assembly instructions, 
assembler directives, and (optionally) preprocessor commands. For infor-
mation on assembly instructions, see the Programming Reference manual 
for your processor.

The processor’s instruction set is supplemented with assembly directives. 
Preprocessor commands control macro processing and conditional assem-
bly or compilation.

For information on the assembler and preprocessor, see the 
VisualDSP++ 4.0 Assembler and Preprocessor Manual. 

Assembly Initialization Data Files
Assembly initialization data files (.DAT) are text files that contain fixed- or 
floating-point data. These files provide initialization data for an assembler 
.VAR directive or serve in other tool operations. 

When a .VAR directive uses a .DAT file for data initialization, the assembler 
reads the data file and initializes the buffer in the output object file (.DOJ). 
Data files have one data value per line and may have any number of lines. 

The .DAT extension is explanatory or mnemonic. A directive to 
#include <filename> can take any file name and extension as an 
argument.

Fixed-point values (integers) in data files may be signed, and they may be 
decimal, hexadecimal, octal, or binary based values. The assembler uses 
the prefix conventions listed in Table A-1 to distinguish between numeric 
formats. 



Source Files

A-4 VisualDSP++ 4.0 Loader Manual

For all numeric bases, the assembler uses 16-bit words for data storage; 
24-bit data is for the program code only. The largest word in the buffer 
determines the size for all words in the buffer. If there is some 8-bit data 
in a 16-bit wide buffer, the assembler loads the equivalent 8-bit value into 
the most significant eight bits and zero-fills the lower eight bits.

Header Files
Header files (.H) are ASCII text files that contain macros or other prepro-
cessor commands which the preprocessor substitutes into source files. For 
information on macros and other preprocessor commands, see the Visu-
alDSP++ 4.0 Assembler and Preprocessor Manual.

Linker Description Files
Linker Description Files (.LDF) are ASCII text files that contain com-
mands for the linker in the linker scripting language. For information on 
the scripting language, see the VisualDSP++ 4.0 Linker and Utilities 
Manual.

Table A-1. Numeric Formats

Convention Description

0xnumber
H#number
h#number

Hexadecimal number

number
D#number
d#number

Decimal number

B#number
b#number

Binary number

O#number
o#number

Octal number



VisualDSP++ 4.0 Loader Manual A-5 

File Formats

Linker Command-Line Files
Linker command-line files (.TXT) are ASCII text files that contain 
command-line inputs for the linker. For more information on the linker 
command line, see the VisualDSP++ 4.0 Linker and Utilities Manual. 

Build Files
Build files are produced by VisualDSP++ development tools while build-
ing a project. This section describes the following build file formats.

• “Assembler Object Files” on page A-6

• “Library Files” on page A-6

• “Linker Output Files” on page A-6

• “Memory Map Files” on page A-7

• “Loader Output Files in Intel Hex-32 Format” on page A-7

• “Loader Output Files in Include Format” on page A-10

• “Loader Output Files in Binary Format” on page A-11

• “Splitter Output Files in Motorola S-Record Format” on 
page A-11

• “Splitter Output Files in Intel Hex-32 Format” on page A-13

• “Splitter Output Files in Byte Stacked Format” on page A-13

• “Splitter Output Files in ASCII Format” on page A-15



Build Files

A-6 VisualDSP++ 4.0 Loader Manual

Assembler Object Files
Assembler output object files (.DOJ) are binary executable and linkable 
files (ELF). Object files contain relocatable code and debugging informa-
tion for a DSP program’s memory segments. The linker processes object 
files into an executable file (.DXE). For information on the object file’s 
ELF format, see “Format References” on page A-17.

Library Files 
Library files (.DLB), the output of the archiver, are binary, executable and 
linkable files (ELF). Library files (called archive files in previous software 
releases) contain one or more object files (archive elements). 

The linker searches through library files for library members used by the 
code. For information on the ELF format used for executable files, refer to 
“Format References” on page A-17.

The archiver automatically converts legacy input objects from 
COFF to ELF format.

Linker Output Files
The linker’s output files (.DXE, .SM, .OVL) are binary, executable and link-
able files (ELF). The executable files contain program code and debugging 
information. The linker fully resolves addresses in executable files. For 
information on the ELF format used for executable files, see the TIS Com-
mittee texts cited in “Format References” on page A-17.

The loaders/splitters are used to convert executable files into boot-load-
able or non-bootable files. 

Executable files are converted into a boot-loadable file (.LDR) for the ADI 
processors using a loader program. Once an application program is fully 
debugged, it is ready to be converted into a boot-loadable file. 



VisualDSP++ 4.0 Loader Manual A-7 

File Formats

A boot-loadable file is transported into and run from a processor’s internal 
memory. This file is then programmed (burned) into an external memory 
device within your target system. 

A splitter generates non-bootable, PROM-image files by processing exe-
cutable files and producing an output PROM file. A non-bootable, 
PROM-image file executes from processor external memory. 

Memory Map Files
The linker can output memory map files (.XML), which are ASCII text files 
that contain memory and symbol information for the executable files. The 
.XML file contains a summary of memory defined with the MEMORY{} com-
mand in the .LDF file, and provides a list of the absolute addresses of all 
symbols.

Loader Output Files in Intel Hex-32 Format
The loader can output Intel hex-32 format files (.LDR). The files support 
8-bit-wide PROMs and are used with an industry-standard PROM pro-
grammer to program memory devices. One file contains data for the 
whole series of memory chips to be programmed.

The following example shows how the Intel hex-32 format appears in the 
loader’s output file. Each line in the Intel hex-32 file contains an extended 
linear address record, a data record, or the end-of-file record.

:020000040000FA Extended linear address record

:0402100000FE03F0F9 Data record

:00000001FF End-of-file record



Build Files

A-8 VisualDSP++ 4.0 Loader Manual

Extended linear address records are used because data records have a 
4-character (16-bit) address field, but in many cases, the required PROM 
size is greater than or equal to 0xFFFF bytes. Extended linear address 
records specify bits 31–16 for the data records that follow. 

Table A-2 shows an example of an extended linear address record.

Table A-3 shows the organization of an example data record.

Table A-2. Extended Linear Address Record Example

Field Purpose

:020000040000FA Example record

: Start character

02 Byte count (always 02)

0000 Address (always 0000)

04 Record type

0000 Offset address

FA Checksum

Table A-3. Data Record Example

Field Purpose

:0402100000FE03F0F9 Example record

: Start character

04 Byte count of this record

0210 Address

00 Record type

00 First data byte

F0 Last data byte

F9 Checksum



VisualDSP++ 4.0 Loader Manual A-9 

File Formats

Table A-4 shows an end-of-file record.

HEXUTIL Utility 

The hexutil utility program converts Intel hex-32 to Motorola S format 
or produces an unformatted data file. This example shows how to include 
this file in a program:

%hexutil input_file <switches>

where <switches> are:

-s1|s2|s3|StripHex

to specify the output format (s3 is the default, and StripHex generates 
unformatted data), and

-o

to specify the output file name in the form <input_root>.s.

Table A-4. End-of-File Record Example

Field Purpose

:00000001FF End-of-file record

: Start character

00 Byte count (zero for this record)

0000 Address of first byte

01 Record type

FF Checksum



Build Files

A-10 VisualDSP++ 4.0 Loader Manual

Loader Output Files in Include Format
The loader can output include format files (.LDR). These files permit the 
inclusion of the loader file in a C program. 

The word width (8-, 16-, or 32-bit) of the loader file depends on the 
specified boot type. Specify the width of the loader output with 
“-hostwidth #”. 

Similar to Intel hex-32 output, loader output files include format file have 
three basic parts in the following order.

1. Boot kernel

2. User application code

3. Saved user code in conflict with the kernel code

The kernel code is the first part. User application code is followed by the 
saved user code.

Files in include format are ASCII text files that consist of 48-bit 
instructions, one per line. Each instruction is presented as three 16-bit 
hexadecimal numbers. For each 48-bit instruction, the data order is lower, 
middle, and then upper 16 bits. Example lines from an include format file 
are:

0x005c, 0x0620, 0x0620,

0x0045, 0x1103, 0x1103,

0x00c2, 0x06be, 0x06be 

This example shows how to include this file in a C program:

const unsigned loader_file[] = 

{

#include “foo.ldr” 

}; 



VisualDSP++ 4.0 Loader Manual A-11 

File Formats

const unsigned loader_file_count = sizeof loader_file 

/ sizeof loader_file; 

loader_file_count reflects the actual number of elements in the array and 
cannot be used to process the data.

Loader Output Files in Binary Format
The loader can output binary format files (.LDR) to support a variety of 
PROM and microcontroller storage applications.

Binary format files use less space than the other loader file formats. Binary 
files have the same contents as the corresponding ASCII file, but in binary 
format.

Splitter Output Files in Motorola S-Record Format 
The splitter can output Motorola S-record format files (.S_#), which con-
form to the Intel standard. The three file formats supported by the PROM 
splitter differ only in the width of the address field: S1 (16 bits), S2 (24 
bits), or S3 (32 bits).

An S-record file begins with a header record and ends with a termination 
record. Between these two records are data records, one per line.

Table A-5 shows the organization of an example header record.

Table A-6 shows the organization of an S1 data record.

S00600004844521B Header record

S10D00043C4034343426142226084C Data record (S1)

S903000DEF Termination record (S1)



Build Files

A-12 VisualDSP++ 4.0 Loader Manual

The S2 data record has the same format, except that the start character is 
S2 and the address field is six characters wide. The S3 data record is the 
same as the S1 data record except that the start character is S3 and the 
address field is eight characters wide.

Termination records have an address field that is 16-, 24-, or 32 bits wide, 
whichever matches the format of the preceding records. Table A-7 shows 
the organization of an S1 termination record.

The S2 termination record has the same format, except that the start char-
acter is S8 and the address field is six characters wide. 

Table A-5. Example – Header Record

Field Purpose

S00600004844521B Example record

S0 Start character

  06 Byte count of this record

    0000 Address of first data byte

        484452 Identifies records that follow

              1B Checksum

Table A-6. Example – S1 Data Record

Field Purpose

S10D00043C4034343426142226084C Example record

S1 Record type

  0D Byte count of this record

    0004 Address of the first data byte

        3C First data byte

                          08 Last data byte

                            4C Checksum



VisualDSP++ 4.0 Loader Manual A-13 

File Formats

The S3 termination record is the same as the S1 format, except the start 
character is S7 and the address field is eight characters wide.

For more information, see “HEXUTIL Utility” on page A-9.

Splitter Output Files in Intel Hex-32 Format
The splitter can output Intel hex-32 format (.H_#) files. These ASCII files 
support a variety of PROM devices. For an example of how the Intel 
hex-32 format appears for an 8-bit wide PROM, see “Loader Output Files 
in Intel Hex-32 Format” on page A-7. 

The splitter prepares a set of PROM files. Each PROM holds a portion of 
each instruction or data. This configuration differs from the loader 
output.

Splitter Output Files in Byte Stacked Format
The splitter can output files in byte stacked (.STK) format. These files are 
not intended for PROMs, but are ideal for microcontroller data transfers. 

A file in byte stacked format comprises a series of one line headers, each 
followed by a block (one or more lines) of data. The last line in the file is a 
header that signals the end of the file.

Table A-7. Example – S1 Termination Record

Field Purpose

S903000DEF Example record

S9 Start character

  03 Byte count of this record

    000D Address

        EF Checksum



Build Files

A-14 VisualDSP++ 4.0 Loader Manual

Lines consist of ASCII text that represents hexadecimal digits. Two 
characters represent one byte. For example, F3 represents a byte whose 
decimal value is 243.

Table A-8 shows an example of a header record in byte stacked format.

In the above example, the start address and block length fields are 32 
(0x20) bits wide. The file contains program memory data (the MSB is the 
only flag currently used in the PROM splitter flags field). No user flags are 
set. The address of the first location in the block is 0x08. The block con-
tains 30 (1E) bytes (5 program memory code words). The number of bytes 
that follow (until next header record or termination record) must be 
nonzero.

A block of data records follows its header record, five bytes per line for 
data memory, and six byte per line for program memory. For example:

Program Memory Section (Code or Data)

3C4034343426

142226083C15

Table A-8. Example – Header Record in Byte Stacked Format

Field Purpose

20008000000000080000001E Example record

20 Width of address and length fields (in bits)

  00 Reserved

    80 PROM splitter flags (80 = PM, 00 = DM)

      00 User defined flags (loaded with -u switch)

        00000008 Start address of data block

                0000001E Number of bytes that follow



VisualDSP++ 4.0 Loader Manual A-15 

File Formats

Data Memory Section

3C40343434

2614222608

The bytes are ordered left to right, most significant to least.

The termination record has the same format as the header record, except 
for the rightmost field (number of records), which is all zeros.

Splitter Output Files in ASCII Format
When the Blackfin loader is invoked as a splitter, its output can be an 
ASCII-format file with the .LDR extension. ASCII format files are text rep-
resentations of ROM memory images that can be post-processed by users. 
For more information, refer to the chapter in this manual that is appropri-
ate for your target processor. 

Debugger Files
Debugger files provide input to the debugger to define support for simula-
tion or emulation of your program. The debugger consumes all the 
executable file types produced by the linker (.DXE, .SM, .OVL). To simulate 
IO, the debugger also consumes the assembler data file format (.DAT) and 
the loadable file formats (.LDR).



Debugger Files

A-16 VisualDSP++ 4.0 Loader Manual

The standard hexadecimal format for a SPORT data file is one integer 
value per line. Hexadecimal numbers do not require an 0x prefix. A value 
can have any number of digits but is read into the SPORT register as 
follows.

• The hexadecimal number is converted to binary.

• The number of binary bits read in matches the word size set for the 
SPORT register and starts reading from the LSB. The SPORT register 
then zero-fills bits shorter than the word size or conversely trun-
cates bits beyond the word size on the MSB end.

In the following example (Table A-9), a SPORT register is set for 20-bit 
words, and the data file contains hexadecimal numbers. The simulator 
converts the hex numbers to binary and then fills/truncates to match the 
SPORT word size. The A5A5 is filled and 123456 is truncated.

Table A-9. SPORT Data File Example

Hex Number Binary Number Truncated/Filled

A5A5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010

FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001

A5A5 1010 0101 1010 0101 0000 1010 0101 1010 0101

5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101

11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001

123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110



VisualDSP++ 4.0 Loader Manual A-17 

File Formats

Format References
The following texts define industry-standard file formats supported by 
VisualDSP++.

• Gircys, G.R. (1988) Understanding and Using COFF by O’Reilly & 
Associates, Newton, MA

• (1993) Executable and Linkable Format (ELF) V1.1 from the 
Portable Formats Specification V1.1, Tools Interface Standards 
(TIS) Committee.

Go to: http://developer.intel.com/vtune/tis.htm.

• (1993) Debugging Information Format (DWARF) V1.1 from the 
Portable Formats Specification V1.1, UNIX International, Inc.

Go to: http://developer.intel.com/vtune/tis.htm.



Format References

A-18 VisualDSP++ 4.0 Loader Manual



VisualDSP++ 4.0 Loader Manual I-1 

I INDEX

A
address records, linear, A-8
ADSP-21065L control registers, DMAC0, 

4-12
ADSP-2106x/21160

blocks and block headers, 4-17
boot kernels, 4-1, 4-16
boot mode selection, 4-5
boot types, 4-2, 4-7
command line, 4-25, 4-26
DMA channels, 4-3
host booting, 4-11
host connections, 4-12
interrupt vector table, 4-22
link booting, 4-15
load page, 4-31
no boot mode, 4-16
power-up booting process, 4-3
processor ID numbers, 4-24

ADSP-2106x/21160 boot modes
EPROM, 4-2, 5-2
host, 4-2, 5-2
link, 4-2, 5-2

ADSP-2106x/21160 control registers
DMAC10, 4-12, 5-7
DMAC6, 4-12, 4-15
DMAC8, 4-12, 4-15, 5-13, 5-15

ADSP-2106x/21160 loader switches
-bhost, 4-28
-bJTAG, 4-28
-blink, 4-28
-bprom, 4-28
-caddress, 4-28
-e filename, 4-28
-F, 4-28
-help, 4-29
-id#exe, 4-29
-o filename, 4-29
-paddress, 4-30
-si-revision #|none, 4-30
-t#, 4-30
-v, 4-31
-version, 4-31

ADSP-21161
blocks and block headers, 5-17
boot mode selection, 5-3
command line, 5-24
EPROM booting, 5-5
host booting, 5-9
interrupt vector table, 5-21
link port booting, 5-12
multiprocessor EPROM booting, 5-21
power-up booting, 5-3
processor booting, 5-2
processor ID numbers, 5-23
sequential EPROM booting, 5-22
SPI port booting, 5-14



INDEX

I-2 VisualDSP++ 4.0 Loader Manual

ADSP-21161 loader switches
-id#exe=filename, 5-29
-id#exe=N, 5-29
-LDR format width, 5-29
-l kernelfile, 5-29
-o filename, 5-30
-paddress, 5-30
-proc ADSP-21161, 5-30
-si-revision #|none, 5-30
-t# (timeout), 5-31
-version, 5-31
-v (verbose), 5-31

ADSP-21161N loader
header words, 5-17, 6-22

ADSP-2126x/2136x loader switches
-bprom, 6-35
-bspiflash, 6-35
-bspimaster, 6-35
-bspiprom, 6-35
-bspislave|-bspi, 6-35
-fASCII, 6-35
-fbinary, 6-35
-fhex, 6-35
-finclude, 6-35
-fs1, 6-35
-fs2, 6-35
-fs3, 6-35
-h, 6-35
-help, 6-35
-hostwidth #, 6-35
-l userkernel, 6-36
-nokernel, 6-36
-o filename, 6-36
-paddress, 6-36
-proc processor, 6-36
-si-revision #|none, 6-37
-v, 6-37
-version, 6-37

ADSP-2126x/2163x
boot kernels, 6-18
boot type selection, 6-4
command line, 6-32
FINAL_INIT blocks, 6-27
initial word option for SPI, 6-14
INIT_L16 blocks, 6-26
INIT_L48 blocks, 6-24
internal boot mode, 6-17
interrupt vector table, 6-21
power-up booting, 6-3
processor booting, 6-2
PROM boot mode, 6-5
SPI master boot mode, 6-10
SPI port boot modes, 6-8
SPI slave boot mode, 6-9

ADSP-BF531/BF532/BF533
boot streams, 2-21
memory ranges, 2-28
supervisor mode, 2-19

ADSP-BF533 EZ-KIT Lite board
default system clock frequency, 2-35

ADSP-BF535
boot streams, 2-8
memory ranges, 2-15

ADSP-BF561
boot stream global header, 2-39
boot streams, 2-38, 2-40
dual-core, 2-37, 2-38
initialization blocks, 2-44
memory ranges, 2-43
multi .DXE booting, 2-45
on-chip boot ROM, 2-37, 2-43

ADSP-TSxxx
boot modes, 3-3
see also TigerSHARC

.ALIGN directive, 2-16
application code, start address (Blackfin 

processors), 2-8
archive files (.DLB), see library files



VisualDSP++ 4.0 Loader Manual I-3

INDEX

archiver, A-6
ASCII text files, A-11, A-15
.ASM (assembly) source files, A-3
assembly

directives, A-3
initialization data files (.DAT), A-3
introduction, 1-2
object files (.DOJ), A-6
source files (.ASM), A-3

Asynchronous Memory Bank 0 (Blackfin 
processors), 2-62

AUTODMA register, 3-2

B
baud rate

Blackfin, 2-58
binary format files

.LDR files, A-11
Blackfin processor

see also second-stage loader
Blackfin application code

output start address, 2-55
start address, 2-58

Blackfin flag structure
initialization block, 2-23
last block, 2-23
processor type, 2-23
zero-fill blocks, 2-23

Blackfin loader
default settings, 2-49, 2-57, 5-24, 6-32
output file settings, 2-57

Blackfin loader switches
-baudrate #, 2-52
-b prom|flash|spi, 2-51
-enc dll_filename, 2-52
-f (file format), 2-52
-f hex|ascii|binary, 2-52
-ghc #, 2-52
-help, 2-52
-HoldTime #, 2-52

-init filename, 2-52
-kb prom|flash|spi, 2-53
-kenc dll_filename, 2-53
-kf hex|ascii|binary, 2-53
-kp #, 2-53
-kWidth #, 2-53
-l userkernel, 2-54
-M, 2-54
-maskaddr #, 2-54
-MaxBlockSize #, 2-54
-MM, 2-54
-Mo filename, 2-54
-Mt filename, 2-54
-no2kernel, 2-54
-o2, 2-55
-o filename, 2-54, 6-36
-p #, 2-55
-proc processor, 2-55
-romsplitter, 2-55
-ShowEncryptionMessage, 2-55
-si-revision #, 2-56, 3-11, 4-30, 5-30, 

6-37, 7-7
-si-revision #|none, 2-56
-si-revision version, 2-56, 3-11, 5-30, 

6-37, 7-7
-si-revision version0, 4-30
-v (verbose), 2-56
-waits #, 2-56
-width # (word width), 2-56

Blackfin processor
baud rate, 2-58
boot file formats, 2-58
boot modes, 2-58
boot sources, 2-2
full boot, 2-5, 2-19
hold time, 2-58
loader file formats, 2-8
multi-file booting 

(ADSP-BF531/32/33/61), 2-46
no-booting (bypass), 2-2, 2-55



INDEX

I-4 VisualDSP++ 4.0 Loader Manual

Blackfin processor (continued)
on-chip boot ROM, 2-19
specifying boot modes, 2-53
start addresses, 2-17
SYSCR register, 2-38

block basics (Blackfin processors)
flags, 2-15
headers, 2-14, 2-20
initialization block, 2-44
structure, 2-22

BMODE pin settings
ADSP-BF531/32/33, 2-17
ADSP-BF535, 2-2
ADSP-BF561, 2-37

BMS (Boot Mode Select) pin, 3-2
boot file format

available selections, 3-9
Blackfin, 2-58
specifying, 2-52, 6-35

booting, 3-2
ADSP-BF535, 2-2
ADSP-BF561, 2-37
ADSP-TSxxx, 3-3
DATA23-16 bits, 5-6
differences, Blackfin, 2-2
differences between Blackfin processors, 

2-37
differences between SHARC processors, 

5-5
EPROM mode selection, 3-2, 4-7, 5-6
host mode selection, 4-11, 5-9, 5-10
include format files, A-10
interrupt vector table, 4-22, 5-21, 6-21
link mode selection, 4-15, 5-12, 5-13
link port, 4-15
link port boot mode, 3-3
multiprocessor system, 4-23
NOP or IDLE instruction, 5-6, 5-10
PROM boot mode, 6-5
SPI mode selection, 5-15

wake-up sequence, 5-8, 5-12
booting sequence

ADSP-BF531/32/33, 2-20
ADSP-BF535, 2-20

boot kernel
changes and software issues, 4-19, 5-18, 

6-19
introduction to, 1-8
loading process, 4-16, 5-16, 6-18
modifying, 4-19, 5-18

boot kernel (Blackfin processors)
omitting in output, 2-54
setting second-stage loader, 2-59
specifying boot mode, 2-53
specifying hex address, 2-53
specifying kernel and app files, 2-61
specifying user kernel, 2-54

boot kernel (SHARC)
boot kernel program, 4-16
modifications, 4-19
rebuilding, 5-18, 6-19
use of default, 5-18

boot kernel source file
SYSCON register, 5-18

boot kernel (TigerSHARC)
omitting from .LDR files, 3-4
process explained, 3-2
source files, 3-4

boot-loadable file
ASCII format, 3-9
binary, 3-9
-b switch, 3-9
converted for output, A-6
default boot-type format, 3-9
difference with non-bootable file, 1-8
-f switch, 3-9
hex format, 3-9
host booting, 3-9
HOST type, 3-9
include format, 3-9



VisualDSP++ 4.0 Loader Manual I-5

INDEX

boot-loadable file (continued)
Intel Hex-32 format, 3-9
link booting, 3-9
LINK type, 3-9
PROM type, 3-9
S1 format, 3-9
S2 format, 3-9
S3 format, 3-9
TigerSHARC booting modes, 3-2

boot loading process, 4-17
boot-loading sequence

EPROM booting, 4-9
boot memory formats, 5-17
boot methods

communication port, 1-8
host device, 1-8
PROM, 1-8

boot mode
determining (TigerSHARC), 3-3
host, introduction, 1-8

boot mode pins
BMS, 4-5, 5-4
defined, 4-5
EBOOT, 4-5, 5-4
LBOOT, 4-5, 5-4

boot modes
ADSP-2106x/21160, 4-2, 4-7, 5-2
ADSP-BF531/32/33, 2-17
ADSP-BF535, 2-2
ADSP-BF561, 2-37
Blackfin, 2-58
boot sequence, 4-3, 5-3, 6-3
EPROM, 4-7, 5-5, 5-6
host, 4-7, 4-11, 6-2
host (ADSP-21161), 5-9
IIVT bit, 4-22, 5-21, 6-21
kernel loading, 4-4, 5-3, 6-3
link, ADSP-2106x/21160, 4-7
link, ADSP-2106x/21160 SHARC, 4-15

link, ADSP-21161, 5-12
no-boot, 4-2, 4-16, 5-2, 5-16, 5-21, 6-21
reset vector address, 4-5, 5-3, 6-4
specifying, Blackfin, 2-51
SPI, 5-14

Boot Mode Select (BMS) pin, 3-2, 3-3
boot ROM

ADSP-BF561, 2-45
operation with ADSP-BF561, 2-38

boot sequences
ADSP-BF531/32/33, 2-17
ADSP-BF535, 2-3
ADSP-BF561, 2-37
introduction, 1-5

bootstraps, 2-54, 3-2
boot stream block

final block, 2-39
flag word, 2-39

boot streams
ADSP-BF531/32/33, 2-21
ADSP-BF535, 2-8, 2-9
ADSP-BF561, 2-38
block headers, 2-21
blocks, 2-21
.DXE versus .LDR, 1-10
flags, 2-14
global headers, 2-13
graphic of ADSP-BF531/32/33, 2-22
headers, 2-13
initialization block, 2-44
PROM boot mode, 1-7

boot types, ADSP-TSxxx, 3-3
build file formats, A-5
build options, splitter, 7-8
bypass mode, see no-boot mode
byte-stacked format files

output file extension, 7-4
splitter output, A-13
with splitter, 7-7



INDEX

I-6 VisualDSP++ 4.0 Loader Manual

C
cache/SRAM memory, 2-43
C and C++ source files, A-2
C/C++ compiler, 3-5
C language dialects, A-2
code alignment, 2-16
COFF to ELF format conversion, A-6
command line switches

help, 3-9
command-line switches

placement rules, 2-50, 3-6
command line syntax

ADSP-21xxx loader, 6-32
Blackfin loader/splitter, 2-49
SHARC loader, 6-32
TigerSHARC loader/splitter, 3-6

communication ports, 1-8
compiler

directives in C/C++ source, A-2
introduction to, 1-2

control registers
DMAC0 (ADSP-21065), 4-8, 4-12
DMAC10 (ADSP-21160), 4-2, 4-12, 

4-15
DMAC6 (QADSP-2106x/21160, 4-2, 

4-8
DMAC6 (QADSP-2106x/21160), 4-12, 

4-15
DMAC8 (ADSP-21160), 4-2

core A (ADSP-BF561) ranges, 2-43
core B (ADSP-BF561) ranges, 2-43
count header

ADSP-BF53x and ADSP-BF561 
multiple booting, 2-46

C runtime routines, 2-45

D
data

banks, 2-43
files (.DAT), A-3
records, A-8
transfers, A-13

.DAT (data initialization) source files, A-3
debugger file formats, see DWARF format
development flow, program, 1-2
.DLB (library) files, A-6
DMAC0 control register

host booting, 4-12
DMAC10 control register

EPROM booting, 5-7
host booting, 4-12, 5-9, 5-10
initialization, 5-7, 5-10
purpose for, 5-5

DMAC6 control register
EPROM booting, 4-8
host booting, 4-12
link port booting, 4-15

DMAC8 control register
EPROM booting, 4-8
link port booting, 4-15, 5-13
SPI port booting, 5-15

DMA channel 10, ADSP-21161, 5-6, 5-10
DMA channels, ADSP-2106x/21160, 4-2
DMA transfer, 5-8
.DOJ (object) files, A-6
DSP Loader File, project type, 1-5
dual-core application, 2-45
DWARF format, references, A-17
.DXE input files

compared with .LDR output files, 1-10
.DXE linker output files, A-15
DXE linker output files, A-6



VisualDSP++ 4.0 Loader Manual I-7

INDEX

.DXE loader input files
Blackfin file extension, 2-51
count block, 2-39
count header, 2-44
loader switch file extension, 4-27
TigerSHARC file extension, 3-8

E
ECPP register, 6-6
EE-174 note, 3-5
EE-200 note, 3-5
EE notes

EE-174, 3-3
EE-200, 3-3

EEPROM memory
boot mode selection, 2-37

EIPPx registers, 6-6
ELF (executable and linkable file) dumper, 

references, A-17
elfloader.exe

ADSP-21161 loader, 2-1, 5-24
elfspl21k.exe, 7-2
SHARC loader, 4-26, 6-32
see also splitter

EMPP register, 6-6
end-of-file records, A-9
EPROM booting

ADDR 31-0, 4-10
ADSP-21161N loader, 5-5
BMS pin, 4-11
boot-loading sequence, 4-9
data packing, 4-9
DMAC6 control register, 4-8
DMAC8 control register, 4-8
DMA settings, 4-8, 5-5
external port data bus lines, 4-10
flash memory, 3-2
flash memory, no boot mode, 1-7
mode selections, 4-7, 5-5

multiprocessor systems, 4-23, 5-21
program counter settings, 4-9
single-processor systems, 4-11
transfer settings, 5-7
WAIT register, 4-11

executable and linkable files (ELF)
assembler output object files, A-6
library files, A-6
linker output, 1-3

executable files (.DXE), 1-5, A-6
EXORciser format files, 7-6
EXORMAX format files, 7-6
External Bus Interface Unit (EBIU), 2-17
external memory

boot sequence (Blackfin processors), 2-5
multiple booting (Blackfin processors), 

2-46
non-bootable EPROM image file, 1-5
non-bootable file execution, 1-4
second stage loader (Blackfin processors), 

2-17
second-stage loader (Blackfin 

processors), 2-6
-t timeout cycle switch, 3-10

external pull-down resistor, 3-3
EZ-KIT Lite boards, 1-4

F
file extensions, 2-51, 4-27, 6-34
file formats

Blackfin loader, 2-8, 2-58
build files, A-5
debugger input files, A-15
loader output, 1-5
selecting for output, 2-53

file searches, rules for loader, 1-11
final blocks, see last blocks
flag bit, structure of, 2-23



INDEX

I-8 VisualDSP++ 4.0 Loader Manual

flash memory
booting, 2-5, 2-9, 2-18
booting (ADSP-BF535), 2-2
hold-time cycle selection, 2-52

Flash Programmer plug-in, 1-4

G
global header

ADSP-BF561 boot stream, 2-39
graphical representation, 2-13
structure, 2-39

H
header files (.H)

defined, A-4
record, byte stacked format, A-14

header record, S-record file, A-11
headers, block headers, 2-15
hex-32 format files

.LDR, A-7
loader output, A-7
splitter output, A-13

HEXUTIL utility, A-9
.H (header) source files, A-4
.H_# (hex-32 format) files, A-13
host booting

BMS pin, 4-11, 5-9
boot-loading sequence, 4-13
BUSLCK bit, 4-14
DMAC10 control register, 4-12, 5-9, 

5-10
DMAC6 control register, 4-12
DMA interrupts, 4-14
host selection, 4-11, 5-9
IMASK register, 4-13, 4-14
IMDW register, 4-14
introduction, 1-8
no-boot mode (without kernel), 3-2
NOP or IDLE instruction, 4-14

program counter settings, 4-12
transfer settings, 5-10

host boot mode, defined, 1-8
host bus width

specifying, 5-29, 6-35

I
ICPP (DMA internal word count) register, 

6-6
-id#exe loader switch

processor ID, 5-23
ignore blocks, Blackfin flag structure

Blackfin flag structure, ignore blocks, 
2-23

image files
EXORciser format, 7-6
EXORMAX format, 7-6

IMPP parameter register setting, 6-6
include format files

.LDR files, A-10
initialization

block code example, 2-24
blocks, 2-23
code, 2-23, 2-52, 2-59
DMAC10 control register, 5-7, 5-10
sections, 2-24

initialization block
ADSP-BF561, 2-44
Blackfin flag structure, 2-23
flag word, 2-44

initialization type tags, 5-17
INIT_L64 blocks, 6-26
input file formats, see source file formats
input file name, guidelines, 1-11
inputfile switch

ADSP-2106x, 4-26
ADSP-21161, 5-25
ADSP-2126x, 6-33
Blackfin, 2-50
TigerSHARC, 3-6



VisualDSP++ 4.0 Loader Manual I-9

INDEX

input flag pins, 1-6
instruction set, assembly source files, A-3
Intel hex-32 output file

extension, 7-4
format, A-7

Intel to Motorola format conversion utility, 
A-9

interrupt vectors
supervisor mode, 2-37

interrupt vector table
location, 4-22, 5-21, 6-21
supervisor mode, 2-37

K
kernel file option, 2-59
kernels, see boot kernels

L
L1 memory

ADSP-BF531/BF532/BF533 memory 
ranges, 2-28

ADSP-BF535 memory ranges, 2-15
ADSP-BF535 second-stage loader, 2-5
ADSP-BF561 memory ranges, 2-43
boot mode sequence, 2-38
second-stage loader restrictions, 2-16

L2 memory
ADSP-BF535 memory ranges, 2-15
ADSP-BF535 second-stage loader, 2-5
ADSP-BF561 processor, 2-43
boot sequence, 2-3, 2-5
second-stage loader restrictions, 2-16

last block,Blackfin flag structure, 2-23
.LDF (linker description) files

boot kernels, 3-4
defined, A-4

.LDR (loader output) files
ADSP-BF535 boot streams, 2-8
ASCII format, A-15
binary format, A-11
boot kernel,omitting, 3-4
boot streams, 1-10
compared with .DXE input files, 1-10
file extension description, 2-51
hex-32 format, A-7
include format files, A-10
no-kernel command, 3-4
specifying host bus width, 5-29, 6-35
TigerSHARC file extensions, 3-8

library files (.DLB), A-6
link booting

ADSP-21161N, 5-12
BMS pin, 4-15, 5-13
boot-loadable file, 3-9
data packing, 4-15
DMA channel interrupts, 4-15
external clock signal, 4-15
IMASK register, 4-15
processors supported, 4-15

link buffers
buffer 0, 5-12
buffer 4, 4-15

linker
command-line files (.TXT), A-5
DWARF-2 debugging, 1-3
map files, 1-3
memory map files (.MAP), A-7
output files (.DXE, .SM, .OVL), A-6
settings, 1-3

linker description file (LDF) see .LDF files
linking phase, 1-3
link port booting

DMAC6 control register, 4-15
DMAC8 control register, 4-15, 5-13

link port booting,TigerSHARC, 3-3
loadable files, see boot-loadable files



INDEX

I-10 VisualDSP++ 4.0 Loader Manual

loader
common tasks performed by, 1-9
hex-32 format files, A-7
kernels, see boot kernels
output file formats, A-7, A-10, A-11
setting options, 3-12, 4-31, 5-27, 6-34

loader driver help, 3-9
loader file

global headers, 2-13
see also boot streams

loader kernel, 6-5
loader options

Load page (Blackfin), 2-57, 2-58
Load page (SHARC), 4-31, 5-27
Load page (TigerSHARC), 3-12
selection methods, 2-49, 3-5

loader output file name, 3-10
loader/splitter programs, 1-4

M
.MAP (memory map) files, A-7
masking EPROM address bits, 2-54
memory map, see .MAP (memory map) 

files
memory ranges

ADSP-BF535, 2-15
ADSP-BF561, 2-43

microcontroller data transfers, A-13
modes, see boot modes
modifying ldf example (ADSP-BF533), 

2-60
Motorola S-record format file, output file 

extension, 7-4
Motorola S-record format (.S_#), A-11
mple, 2-62
multi .DXE booting, 2-45, 2-46

ADSP-BF561, 2-45
multiple booting (Blackfin processors), 

external memory, 2-46

multiple DSPs from a single EPROM, 
booting, 3-9

multiprocessor EPROM booting, 4-24, 
5-22

multiprocessor ID, TigerSHARC, 3-9
multiprocessor system

processor IDs, 4-24, 5-23
storing loader file on, 1-4

multiprocessor systems
EPROM booting, 4-23, 5-21

MyAnalog.com,  -xvii

N
no-boot mode

ADSP-2106x/21160 processor, 4-2
ADSP-21161 processor, 5-2
ADSP-BF531/32/33, 2-18
ADSP-BF535, 2-2
ADSP-BF561, 2-38
Blackfin, 2-62
defined, 1-7, 4-16, 5-16
interrupt vector table, 5-21, 6-21
introduction, 1-7
selecting, 2-58, 2-62

No Kernel option, 3-4
non-bootable files

compared with boot-loadable file, 1-8
definition, 1-4
use with -romsplitter switch, 2-55

numeric formats, .DAT files, A-3

O
object files (.DOJ), A-6
on-chip boot ROM

ADSP-BF531/32/33, 2-17
ADSP-BF535 booting, 2-2, 2-3, 2-6
ADSP-BF561 memory ranges, 2-43
Blackfin memory ranges, 2-28



VisualDSP++ 4.0 Loader Manual I-11

INDEX

output file extension
byte stacked format file, 7-4
Intel hex-32 format file, 7-4
Motorola S-record format file, 7-4
splitter, 7-4

output file formats
code execution, 1-10
loader operations, 1-5
name, specifying, A-9
name guidelines, 1-11
-width switch, 2-56
see also build file formats

output loader file
graphic without second-stage loader, 2-9
graphic with second-stage loader, 2-11

output object files (.DOJ), A-3
overlay memory files (.OVL), A-6, A-15

P
parallel port

control (PPCTL) register, 6-5
DMA address (IMPP) register, 6-6
DMA external address (EIPPx) register, 

6-6
DMA external address (EMPP) register, 

6-6
DMA external word count (ECPP) 

register, 6-6
DMA internal word count (ICPP) 

register, 6-6
DMA start internal index address, 6-5

PFx feedback strobe, 2-30
PPCTL (parallel port control) register, 6-5
preprocessor commands, further 

information on, A-4
processor booting, 6-2
processor IDs, 4-24, 5-23
processor-loadable files, 1-6
processor type, Blackfin flag structure, 2-23

program development flow, 1-2
Project Options dialog box, 1-5, 2-57
PROM

ADSP-BF561 boot mode selections, 
2-37

booting with second-stage loader, 2-5
boot kernels, 1-8
boot mode process, 1-7
downloading the loader/splitter output 

file, 1-4
flash booting, 2-9
generating non-bootable image files, 7-1
graphic of global header, 2-13
loader generated image, 3-2
memory devices, A-7
sample ADSP-BF532 load settings, 2-57
second-stage loader restrictions, 2-16
start address, 3-10

R
R0 register (ADSP-BF561), 2-44
R3 register (ADSP-BF561), 2-44
references, file formats, A-17
RESET interrupt, 2-19, 2-38
reset vector address, 4-9
ROM

boot space, 1-8
memory images, A-15
setting splitter options (Blackfin 

processors), 2-62

S
S1 address field, data record organization, 

A-11
S1 termination record, A-13
S3 termination record, A-13
scratch memory, 2-44
SDCTL register, 5-18, 6-19



INDEX

I-12 VisualDSP++ 4.0 Loader Manual

SDRAM memory
ADSP-BF531/BF532/BF533 memory 

ranges, 2-30
ADSP-BF535 memory ranges, 2-15
ADSP-BF561 initialization blocks, 2-44
ADSP-BF561 memory ranges, 2-43
init code example, 2-26
initializing, 2-15, 2-23, 2-30
second-stage loader, 2-5
second-stage loader restrictions, 2-16

SDRDIV register, 5-18, 6-19
second-stage loader

ADSP-BF535, 1-9
ADSP-BF535 required applications, 2-5
ADSP-BF561 initialization blocks, 2-44
available for ADSP-BF535, 2-61
default settings, 2-59
restrictions, 2-16
selecting, 2-58
setting options, 2-60
use of L2 memory, 2-45

seg_ldr, 3-4
SHARC loader switches

-bhost, 4-28
-bJTAG, 4-28
-blink, 4-28
-bprom, 4-28
-caddress, 4-28
-e filename, 4-28
-fASCII, 4-28
-fbinary, 4-28
-f (format), 6-35
-fhex, 4-28
-finclude, 4-28
-fS1, 4-28
-fS2, 4-28
-fS3, 4-28
-h, 4-29
-help, 4-29
-hostwidth #, 6-35

-id#exe=filename, 4-29
-id#exe=N, 4-29
-o filename, 4-29
-paddress, 4-30
-proc processor, 4-30
-si-revision #|none, 4-30
-t# timeout, 4-30
-v (verbose), 4-31

SHARC processors
booting differences between, 5-5

shared L2 memory, 2-43
shared memory

ADSP-BF561 multiple .DXE booting, 
2-45

shared memory files (.SM), A-6
show version information, 3-11
silicon revision, setting

ADSP-2106x/21160 loader, 4-30
ADSP-21161 loader, 5-30
ADSP-2126x/2136x loader, 6-37
Blackfind loader, 2-56
splitter, 7-7
TigerSHARC loader, 3-11

simulators, for similating booting, 1-4
single-processor systems

EPROM booting, 4-11
id#exe switch, 3-9

slave processors
host boot mode, 1-8
loading file for multiprocessor system, 

1-4
.SM (shared memory) files

linker output files, A-6, A-15
omitting, 4-28

software reset, 1-6
source file formats

assembly source files, A-3
C and C++, A-2
defined, 1-2



VisualDSP++ 4.0 Loader Manual I-13

INDEX

SPI
Blackfin boot mode, 2-3
Blackfin boot mode selections, 2-37
booting from addressable memory, 2-18
control register (SPICTL), 5-15
global header for booting, 2-14
master mode, addressable memory, 2-33
master mode, boot, 2-32
master mode, pin-to-pin connections 

needed, 2-32
master mode, pull-up resistor, 2-32
memory detection routine, 2-34
memory devices tested, 2-33
output loader file graphic, 2-9
port booting, 5-14
port booting, DMAC8 control register, 

5-15
second-stage loader restrictions, 2-16
slave mode, pin-to-pin connections 

needed, 2-30
slave mode. booting, 2-30

SPICLK signal, pull-up resistor, 2-32
SPIRX register, 5-2, 5-14, 5-15
split page (splitter property page), 7-8
splitter

byte-stacked files, 7-7
command-line syntax, 7-2
defined, 1-5
operation on Blackfin, 1-6
operation on SHARC and TigerSHARC, 

1-6
output file extension, 7-4
output file formats, A-11, A-13, A-15
producing PROM files, 7-3
specifying options, 7-8
using, 7-8
using ROM splitter (Blackfin), 2-58
utility for no-boot mode, 1-7

splitter switches
-64, 7-5

-dm, 7-5
-dm (include DATA64 memory), 7-5
-f b, 7-6
-f h, 7-6
-f (PROM file format), 7-6
-f s, 7-6
-f s2, 7-6
-f s3, 7-6
-norom, 7-5
-norom (no ROM in PROM), 7-5
-o imagefile, 7-5
-o (output file), 7-5
-pm (include program memory), 7-5
-proc processor, 7-7
-r #, 7-6
-ram (include RAM in PROM), 7-6
-r (ROM widths), 7-6
-s (include memory segment), 7-6
-si-revision #|none, 7-7
-s segmentname, 7-6
-u #, 7-7
-u (user flags), 7-7
-version, 7-7

SPORT data files, A-16
SRAM

ADSP-BF531/BF532/BF533 memory 
ranges, 2-28

L1 memory ranges, 2-15
SRAM memory

ADSP-BF561 boot process, 2-37
ADSP-BF561 memory range, 2-43
host boot mode, 1-8

S-record file
header record, A-11
Motorola format, A-11

.S_# (S-record format) files, A-11
start addresses, Blackfin, 2-17
status information, 2-56, 2-58
.STK (byte stacked format) files, A-13
streams, see boot streams



INDEX

I-14 VisualDSP++ 4.0 Loader Manual

supervisor mode
ADSP-BF531/BF532/BF533, 2-19
interrupt vectors, 2-37

SYSCON register
boot kernel source file, 5-18, 6-19
DMA transfers, 4-10
external memory loading, 4-19
HPM host packing mode bits, 4-12
overriding booting mode, 4-22, 5-21, 

6-21
SYSCR register

ADSP-BF531/32/33, 2-19
ADSP-BF535, 2-2, 2-3
ADSP-BF561, 2-38
full boot sequence, 2-5

T
text files (.TXT), A-5
TigerSHARC booting modes, 

boot-loadable file, 3-2
TigerSHARC loader switches

-b, 3-9
-bboot, 3-9
default settings, 3-5
-fASCII, 3-9
-fbinary, 3-9
-fhex, 3-9
-fS1, 3-9
-fS2, 3-9
-fS3, 3-9
-h, 3-9
-help, 3-9
-id#exe=file, 3-9
-l, 3-9
-l kernelfile, 3-9
-o filename switch, 3-10
-p address switch, 3-10
-proc, 3-10
-si-revision #|none, 3-11
-t timeout, 3-10

-type, 3-9
-version, 3-11
-v (verbose), 3-10

TigerSHARC processor
boot kernels, 3-4
boot type selection, 3-3
command line use, 3-6
load page, 3-12

Tsxxx_host.asm, 3-4
Tsxxx_link.asm, 3-4
Tsxxx_prom.asm, 3-4
TWI host, booting from, 2-35
.TXT (ASCII text) files, A-5

U
UART host, booting from, 2-35
user interrupts, 2-38
utilities

elfloader.exe ADSP-21161 loader, 5-24
elfloader.exe SHARC loader, 4-26, 6-32
loader, 4-26, 5-24
SHARC loader, 6-32

V
VAR directives, A-3
VisualDSP++

splitter, 7-8

W
WAIT register, 5-18, 6-19
wait states, 2-56, 2-58
word width

setting for loader output file, 5-29, 6-35
specifying, A-10

Z
zero-fill blocks, Blackfin flag structure, 

2-23


	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets


	Notation Conventions

	1 Introduction
	Program Development Flow
	Compiling and Assembling
	Linking
	Loading, Splitting, or Both
	Non-bootable Files Versus Boot-loadable Files
	Loader Operations
	Splitter Operations


	Booting Modes
	No-Boot Mode
	PROM Boot Mode
	Host Boot Mode

	Boot Kernels
	Loader Tasks
	Boot Streams
	File Searches


	2 Loader/Splitter for Blackfin Processors
	Blackfin Processor Booting
	ADSP-BF535 Processor Booting
	ADSP-BF535 Processor On-Chip Boot ROM
	ADSP-BF535 Processor Second-Stage Loader
	ADSP-BF535 Processor Boot Streams
	Loader Files Without a Second-Stage Loader
	Loader Files With a Second-Stage Loader
	Global Headers
	Blocks, Block Headers, and Flags

	ADSP-BF535 Processor Memory Ranges
	Second-Stage Loader Restrictions


	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/ BF538/BF539 Processor Booting
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor On-Chip Boot ROM
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Boot Streams
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Blocks, Block Headers, and Flags
	Initialization Blocks
	Listing 2-1. Initialization Block Code Example


	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor Memory Ranges
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor SPI Slave Mode Boot via Master Hos...
	ADSP-BF531/BF532/BF533/BF534/BF536/BF537/BF538/BF539 Processor SPI Master Mode Boot via SPI Memor...
	SPI Memory Detection Routine

	ADSP-BF534/BF536/BF537 Processor Booting

	ADSP-BF561 and ADSP-BF566 Processor Booting
	ADSP-BF561 Processor Boot Streams
	ADSP-BF561/BF566 Processor Memory Ranges
	ADSP-BF561/BF566 Processor Initialization Blocks
	ADSP-BF561/BF566 Multiple .DXE Booting


	ADSP-BF53x and ADSP-BF561/BF566 Multiple .DXE Booting
	Listing 2-2. Initialization Block Code Example for Multiple .DXE Boot


	Blackfin Processor Loader Guide
	Using the ADSP-BF5xx Blackfin Loader Command Line
	File Searches
	File Extensions
	Command-Line Switches

	Using the Base Loader
	Using the Second-Stage Loader
	Using the ROM Splitter
	No-Boot Mode
	Listing 2-3. Section Assignment (LDF File)
	Listing 2-4. ROM Segment Definitions (LDF File)
	Listing 2-5. Section Handling (Source Files)




	3 Loader for ADSP-TSxxx TigerSHARC Processors
	ADSP-TSxxx TigerSHARC Processor Booting
	Boot Type Selection
	Boot Kernels
	Boot Kernel Modification


	TigerSHARC Loader Guide
	Using TigerSHARC Loader Command Line
	File Searches
	File Extensions
	Command-Line Switches

	Using VisualDSP++ Interface (Load Page)


	4 Loader for ADSP-2106x/21160 SHARC Processors
	ADSP-2106x/21160 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	Boot Types
	EPROM Booting
	Host Booting
	Link Booting
	No-Boot Mode

	Boot Kernels
	Blocks and Block Headers
	Boot Kernel Modification and Loader Issues

	Interrupt Vector Table
	Multiprocessor EPROM Booting
	Processor ID Numbers

	ADSP-2106x/21160 Processor Loader Guide
	Using the ADSP-2106x/21160 Loader Command Line
	File Searches
	File Extensions
	Loader Command-Line Switches

	Using the VisualDSP++ Interface (Load Page)


	5 Loader for ADSP-21161 SHARC Processors
	ADSP-21161 Processor Booting
	Power-Up Booting Process
	Boot Mode Selection
	Boot Types
	EPROM Booting
	Host Booting
	Link Port Booting
	SPI Port Booting
	No-Boot Mode

	Boot Kernels
	Blocks and Block Headers

	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues

	Interrupt Vector Table
	Multiprocessor EPROM Booting
	Booting From a Single EPROM
	Sequential EPROM Booting
	Processor ID Numbers


	ADSP-21161 Processor Loader Guide
	Using ADSP-21161 Loader Command Line
	File Searches
	File Extensions
	Loader Command-Line Switches

	Using VisualDSP++ Interface (Load Page)


	6 Loader for ADSP-2126x/2136x SHARC Processors
	ADSP-2126x/2136x Processor Booting
	Power-Up Booting Process
	Boot Type Selection
	Boot Types
	PROM Boot Mode
	Packing Options for External Memory
	Packing and Padding Details

	SPI Port Boot Modes
	SPI Slave Boot Mode
	SPI Master Boot Mode
	Bit Reverse Option for SPI Port Boot Modes
	Initial Word Option for SPI Master Boot Modes

	Booting From an SPI Flash
	Booting From an SPI PROM (16-Bit Address)
	Booting From an SPI Host Processor

	Internal Boot Mode
	Listing 6-1. Internal Booting: FINAL_INIT Block Header Format


	Boot Kernels
	Boot Kernel Modification and Loader Issues
	Rebuilding a Boot Kernel File
	Rebuilding a Boot Kernel Using Command Lines
	Loader File Issues


	Interrupt Vector Table
	Loader File Section Header
	ADSP-2126x/2136x Data Tags
	INIT_L48 Blocks
	INIT_L16 Blocks
	INIT_L64 Blocks
	FINAL_INIT Blocks
	Listing 6-2. FINAL_INIT Block Header Format
	Listing 6-3. FINAL_INIT Section




	ADSP-2126x/2136x Processor Loader Guide
	Using the ADSP-2126x/2136x Loader Command Line
	File Searches
	File Extensions
	Loader Command-Line Switches

	Using the VisualDSP++ Interface (Load Page)


	7 Splitter for SHARC and TigerSHARC Processors
	SHARC and TigerSHARC Splitter Command Line
	File Searches
	Output File Extensions
	Command-Line Switches

	VisualDSP++ Interface (Split Page)

	A File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files
	Assembly Initialization Data Files
	Header Files
	Linker Description Files
	Linker Command-Line Files

	Build Files
	Assembler Object Files
	Library Files
	Linker Output Files
	Memory Map Files
	Loader Output Files in Intel Hex-32 Format
	HEXUTIL Utility

	Loader Output Files in Include Format
	Loader Output Files in Binary Format
	Splitter Output Files in Motorola S-Record Format
	Splitter Output Files in Intel Hex-32 Format
	Splitter Output Files in Byte Stacked Format
	Splitter Output Files in ASCII Format

	Debugger Files
	Format References

	I Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z


