Tutorial

Pengoperasian dan Pemrograman Mesin Bubut CNC GSK 928 TE

Oleh :

B.Sentot Wijanarka,MT

Fakultas Teknik

Universitas Negeri Yogyakarta

Draft Tutorial Lathe CNC 928TE, B.Sentot Wijanarka

DAFTAR ISI

	halaman
Halaman Judul	1
DAFTAR ISI	2
Tujuan/Kompetensi	3
Materi 1. Prinsip Kerja dan Pengoperasian	4
 A. Prinsip kerja dan tata nama sumbu koordinat B. Panel kontrol Mesin CNC GSK 928 TE C. Menghidupkan mesin D. Pengoperasian mesin pada mode manual (JOG) 	4 5 6 7
E. Seting titik nol benda kerjaF. Mode <i>offset seting</i> pahat (OFT)	9 11
G. Mode Parameter H. Soal Latihan I. Tugas	12 14 14
Materi 2 . Dasar Pemrograman Mesin Bubut CNC dengan	
GSK 928 TE	17
Materi 3. Membuka, Menulis, dan Mengedit Program CNC	28
Materi 4. Mode Automatic	36

Tujuan/Kompetensi

Setelah mempelajari materi ajar ini peserta dapat:

- 1. Menjelaskan sistem kordinat yang digunakan pada mesin bubut CNC
- 2. Menjelaskan sistem kontrol CNC GSK 928 TE
- 3. Mengoperasikan mesin bubut CNC
- 4. Menseting mesin bubut CNC
- 5. Membuka, menulis, dan mengedit program CNC
- 6. Membuat benda kerja dengan menggunakan mesin bubut CNC

MATERI 1. Prinsip Kerja dan Pengoperasian

A. Prinsip kerja dan tata nama sumbu koordinat

Mesin perkakas CNC adalah mesin perkakas yang dalam pengoperasian proses penyayatan benda kerja oleh pahat dibantu dengan kontrol numerik komputer atau CNC (*Computer Numerical Control*). Untuk menggerakkan pahat pada mesin perkakas CNC disepakati menggunakan sistem koordinat. Sistem koordinat pada mesin bubut CNC (Gambar 1) adalah sistem koordinat kartesian dengan dua sumbu yaitu sumbu X , dan sumbu Z. Sistem koordinat mesin (MCS=*Machine Coordinate System*) tersebut bisa dipindah-pindah titik nolnya untuk kepentingan pelaksanaan seting, pembuatan program CNC dan gerakan pahat. Titik- titik nol yang ada pada mesin bubut CNC adalah titik nol Mesin (M), dan titik nol benda kerja (W).

Draft Tutorial Lathe CNC 928TE, B.Sentot Wijanarka

Sumbu X didefinisikan sebagi sumbu yang tegak lurus terhadap sumbu spindel mesin bubut. Arah positif sumbu X adalah arah yang menjauhi sumbu spindel. Sumbu Z adalah sumbu yang sejajar dengan

sumbu spindel dan arah positif adalah arah yang menjauhi kepala tetap mesin bubut. Untuk kepentingan pembuatan program CNC digunakan sistem kordinat benda kerja (*Workpiece Coordinate System*= WCS)

Pemrograman dapat dilakukan menggunakan sistem koordinat absolut dengan nama sumbu (X,Z) atau sistem koordinat inkremental dengan nama sumbu (U,W), atau campuran antara absolut dan inkremental (X/U, U/Z). Pada waktu membuat program dengan sistem koordinat absolut harap diingat bahwa sumbu X adalah harga diameter.

B. Panel kontrol Mesin CNC GSK 928 TE

Panel kontrol untuk sistem kontrol 928TE adalah seperti Gambar 2 di bawah. Untuk memahami fungsi tombol-tombol tersebut dilakukan dengan cara mengikuti prosedur pengoperasian mesin pada subab berikutnya.

Gambar 2. Panel kontrol CNC GSK 928TC/TE terdiri dari layar, papan ketik, dan panel pengendali mesin

C. Menghidupkan Mesin/ mematikan mesin CNC

Tombol-tombol yang digunakan untuk mengoperasikan mesin adalah seperti Gambar 3 di bawah.

Gambar 3. Panel pengendali mesin bubut CNC GSK 928 TE

Langkah-langkah untuk menghidupkan mesin CNC adalah :

- 1. Pastikan arus listrik 3 phase telah terhubung
- 2. Pastikan tekanan angin kompresor telah tersambung
- 3. Bebaskan tombol Emergency Stop
- 4. Pastikan saklar utama (kunci) pada posisi ON (kunci diputar ke kanan)
- 5. Tunggu sampai logo sistem kontrol dan versi perangkat lunak muncul muncul
- 6. Tekan tombol START (hijau)
- 7. Tekan tombol JOG
- 8. Geser pahat arah X dan atau arah Z (posisikan pahat pada daerah yang aman untuk bergerak ke arah referensi)
- 9. Tekan tombol ref point X (eretan menuju referensi X)
- 10. Tekan tombol ref point Z (eretan menuju referensi Z)

Untuk mematikan mesin, langkahnya:

- 1. Pastikan tidak ada alarm (kalau ada alarm hendaknya dibetulkan dahulu kesalahan yang terjadi atau tekan reset)
- 2. Tekan tombol STOP
- 3. Putar kunci POWER ke OFF, tutup aliran angin kompresor
- 4. Tekan tombol Emergency Stop.

D. Pengoperasian mesin pada mode manual (JOG)

Apabila kita ingin menggerakkan pahat secara manual, maka mesin harus pada mode manual (JOG), sehingga tombol JOG ditekan dahulu sebelum menggerakkan pahat. Tombol- tombol yang berfungsi pada mode manual (JOG) adalah seperti Gambar 4.

Gambar 4. Tombol-tombol yang digunakan untuk mode JOG (Manual)

Arah gerakan pahat adalah arah sumbu X dan sumbu Z seperti gambar di bawah. Tombol +X adalah tombol untuk gerakan pahat menjauhi sumbu benda kerja, Tombol –X gerakan sebaliknya. Tombol –Z adalah tombol untuk gerakan pahat mendekati benda kerja, dan tombol +Z sebaliknya.

Untuk memutar spindel tekan tombol putar spindel kanan atau kiri dan memetikannya dengan menekan tombol OFF spindel. Mengganti pahat atau memutar tool turret secara manual dilakukan dengan menekan tombol ganti pahat (tekanan angin dari kompresor harus mencukupi).

Untuk menggerakan pahat pada mode manual ini bisa juga dilakukan dengan menggunakan *handwheel*. Untuk mengaktifkan *handwheel* dilakukan dengan cara menekan tombol mode JOG, kemudian tombol arah gerakannya. Tombol arah gerakan tersebut adalah :

gerakan handwheel (MPG) arah sumbu sumbu X

gerakan handwheel (MPG) arah Z sumbu Z.

Gerakan pahat dengan menggunakan tombol arah gerakan maupun *handwheel* bisa dilakukan dengan gerakan cepat (*rapid*), lambat (*feed*), atau bertahap (*step*). Jika akan bergerak dengan cepat, maka tekan tombol gerakan cepat terlebih dahulu,

,kemudian menggeser pahat. Apabila tombol gerakan cepat tidak aktif (lampu tidak menyala), maka gerakan pahat adalah lambat.

Gerakan dengan langkah tertentu (*Step/increment*) dilakukan ketika melakukan seting, tiap menekan tombol satu kali pahat bergerak sejauh langkah tertentu. Pada mode JOG, tekan tombol STEP, kemudian tekan tombol

, maka di layar akan tertulis langkah gerakan dalam jarak 50; 10; 1; 0,1; 0,01; dan 0,001 mm.

E. Seting titik nol benda kerja

Setelah kita bisa menggerakkan pahat, maka berikutnya melakukan seting titik nol benda kerja sebagai dasar untuk memulai membuat program. Maksud proses seting ini adalah menempatkan titik nol benda kerja (W) pada ujung kanan di sumbu benda kerja (lihat gambar di atas).

Langkah-langkah seting titik nol:

- 1. Pasang benda kerja (diketahui diameternya, misalnya diameter 50 mm)
- Pilih pahat (pasang pahat) untuk melakukan seting (misalnya pahat rata kiri sebagai T1)
- 3. Tekan tombol JOG
- 4. Putar spindel dengan menekan tombol putaran spindel (pilih putaran yang sesuai posisi pahat putar kanan atau putar kiri)

5. Geser pahat sehingga menyentuh bagian diameter benda kerja, kemudian tekan: INPUT, X, tulis diameter benda kerja yang disentuh (misal 50), ENTER.

Pada layar akan tertulis posisi X 0050.000, yang artinya pahat pada diameter 50 mm.

6. Geser pahat pada bidang di ujung benda kerja, dan sentuhkan pahat pada permukaan rata, kemudian tekan: INPUT, Z, 0, ENTER. Kemudian pada layar akan tertera Z 0000.000, yang berarti pada posisi pahat tersebut harga sumbu Z nol.

- 7. Jauhkan pahat dari benda kerja, dan matikan putaran spindel.
- Apabila kita ingin menjauhkan pahat pada koordinat tertentu, misalnya X60 dan Z5, maka pada mode operasi JOG, ditulis X60, ENTER, CYCLE STRAT, maka pahat bergerak menuju X60 Ketik Z5, ENTER, CYCLE START, maka pahat akan bergerak menuju Z5

 Posisi ini kita catat, nanti untuk memulai menulis program CNC ditulis G50X60Z5.

F. Mode offset seting pahat (OFT)

Biasanya beberapa pahat digunakan dalam proses pemesinan suatu benda kerja. Karena proses pemasangan pahat dan selisih posisi ujung pahat maka setiap pahat tidak pada posisi yang sama. Untuk menghindari pergeseran pahat pada pemrograman, sistem CNC dapat melakukan langkah-langkah perhitungan selisih posisi pahat. Pengguna mesin tidak usah memikirkan selisih panjang pahat, sehinggfa program CNC yang dibuat tetap berdasarkan gambar kerja dan data teknologi pahat yang bersangkutan, dan memanggil harga kompensasi pahat dengan kode pergantian pahat.

Sistem CNC dapat mendefinisikan 8 kelompok harga offset pahat (T1 sampai T8). Setiap kelompok offset memiliki dua data yaitu arah X dan Z. Pengisian data offset dilakukan dengan cara manual sama dengan menggunakan pahat satu. Data offset yang lain diisikan melalui *keyboard*. Offset nomer 9 adalah harga koordinat seting sesudah mengaktifkan titik nol mesin (*machine home return*). Jangan menggunakan T*9 pada kode pemanggilan pahat, karena akan muncul alarm "PARAMETER ERROR".

Maksud dari offset adalah data selisih jarak posisi ujung pahat dengan pahat referensi. Apabila pahat yang dijadikan referensi adalah pahat satu (T1), maka harga offset T1X dan T1Z adalah nol, sedangkan pahat yang lain diukur selisih posisinya terhadap pahat satu (T1).

untuk masuk mode seting offset

Di layar akan muncul tabel mode offset.

Tabel 1. Tabel data offset

GSK	OFFSET		
T1Z	0000.000		
T1X	0000.000		
T2Z	0000. 000		— Harga offset
T2X	0000.000		untuk pahat
T3Z	0000. 000		T2
T3X	0000.000		
T4Z	0000.000		
T4X	0000.000		
T5Z	0000.000		
No. 1	OFFSET Z		
EDIT MA	NUAL AUTO PARA	OFFT DIAG	

Untuk menggeser kursor bisa dilakukan dengan menekan panah ke bawah atau ke atas. Untuk berpindah halaman dilakukan dengan menekan tombol ganti halaman naik atau turun. Harga offset bisa diganti dengan cara menempatkan kursor pada baris offset yang akan diganti, misalnya T2Z kemudian tekan tombol INPUT, isikan harga/angka melalui keyboard, INPUT, ENTER.

Pengisian data offset di atas dilakukan dengan ketentuan bahwa pahat T1 sebagai pahat referensi, sehingga harga T1X dan T1Z=0. Nilai offset untuk pahat T2X, T2Z, T3X, dan seterusnya dilakukan dengan cara mengukur selisih posisi pahat terhadap pahat T1 dalam arah X dan Z. Pengukuran bisa dilakukan dengan menggunakan benda kerja yang telah diketahui diameternya, kemudian dihitung selisih posisi pahat dengan cara menyentuhkan pahat seperti seting titik

nol di atas pada titik tertentu yang diketahui posisinya. Langkah-langkahnya adalah sebagai berikut:

1. Cara pertama: mengisi data offset dengan titik tetap yang diketahui

- a. Pasang semua pahat yang akan diukur harga selisih panjang (offsetnya). Biasanya pahat yang dipasang adalah T1 pahat rata pengasaran, T2 pahat rata untuk finishing, T3 pahat alur, dan T4 pahat ulir. Dari semua pahat tersebut pahat T1 digunakan sebagai pahat referensi (T1X=0 dan T1Z=0). Posisikan pahat T1 untuk penyayatan
- b. Pasang benda kerja dan putar spindel dengan kecepatan yang sesuai (misal 800 rpm)
- c. Pilih gerak makan yang tepat, kemudian geser pahat pada titik/posisi tertentu pada benda kerja dan hentikan gerakan ketika pahat berada pada titik seting tersebut
- d. Tekan ENTER, sehingga pada layar muncul nomer pahat (T1) dan nomer offset, kemudian tekan tombol RUNNING dua kali. Sistem akan mencatat posisi koordinat sebagai titik referensi untuk seting pahat
- e. Tekan ENTER , kemudian INPUT, sehingga sistem CNC mencatat harga offset pahat T1
- f. Geser pahat (pada mode JOG) pada posisi yang aman untuk melakukan ganti pahat, kemudian lakukan ganti pahat untuk pahat T2
- g. Ulangi langkah b,c, dan e. Lakukan lagi langkah tersebut untuk pahat
 T3, dan T4.

Catatan:

- Apabila menggunakan alat optik untuk melakukannya, spindel tidak usah diputar
- Data offset pahat akan dicatat secara otomatis oleh sistem.
 Tekan mode OFFSET untuk melihatnya
- Hasil pengukuran offset pahat harus dicek satu persatu secara teliti, dengan cara memerintah pahat menuju koordinat tertentu (lihat subab E nomer 8 di atas)

2. Cara ke dua: mengisi data offset dengan penyayatan benda coba

Cara ke dua ini sama dengan langkah-langkah pada subab E nomer 1 sampai nomer 8. Akan tetapi pada langkah nomer 5 dan 6 dilakukan juga pengukuran offset pahat sehingga untuk langkah nomer 5 dan 6 dilakukan sebagai berikut:

- a. Pada saat pahat T1 menyentuh diameter tertentu tekan INPUT, I kemudian masukkan harga diameter benda kerja dan tekan ENTER, muncul T1X tekan ENTER.
- b. Pada saat T1 menyentuh permukaan rata untuk seting Z, tekan INPUT K kemudian masukkan 0 dan tekan ENTER, muncul T1Z tekan ENTER.

Langkah tersebut diulangi untuk pahat yang selanjutnya. Hasil pengukuran selisih posisi pahat dapat dilihat di mode OFFSET.

G. Mode Parameter

Parameter yang dijadikan acuan mesin CNC diatur terlebih dahulu atau diukur sebelum mesin CNC dioperasikan. Biasanya produsen mesin telah mengisi data parameter dengan benar sesuai dengan dimensi mesin yang dibuatnya. Harga parameter ini hanya boleh diubah oleh pemrogram atau operator yang berpengalaman, karena kalau isinya salah maka mesin tidak akan beroperasi. Arti harga parameter tersebut seperti Tabel 2 di bawah.

No.	Definition	Unit	Initial value	Range
P01	Z positive overtravel	mm	8000.000	0~8000.000
P02	Z negative overtravel	mm	-8000.000	-8000.000~0
P03	X positive overtravel	mm	8000.000	0~8000.000
P04	X negative overtravel	mm	-8000.000	-8000.000~0
P05	Z max. rapid traverse rate	mm	6000	8~15000
P06	X max. rapid traverse rate	mm	6000	8~15000
P07	Z backlash	mm	00.000	0~10.000
P08	X backlash	mm	00.000	0~10.000
P09	Low gear speed of spindle	r/min	1500	0~9999
P10	High gear speed of spindle	r/min	3000	0~9999
P11	Bit parameter 1		0000000	0~1111111
P12	Bit parameter 2		0000000	0~1111111
P13	Most tool		4	1~8
P14	Toolpost reversing time	0.1s	10	1~254
P15	M code time	0.1s	10	1~254
P16	Brake time of spindle	0.1s	10	1~254
P17	Z lowest initial speed	mm/min	50/150	8~9999
P18	X lowest initial speed	mm/min	50/150	8~9999
P19	Z acceleration/deceleration time	millisecond	600/300	8~9999
P20	X acceleration/deceleration time	millisecond	600/300	8~9999
P21	Initial feedrate	mm/min	50/100	8~9999

Tabel 2. Parameter, definisi, satuan dan harganya

P22	Feed acceleration/deceleration time	Millisecond	600/400	8~9999
P23	Increment of block numbers		10	1~254
P24	Medium gear speed	R/min	2000	0~9999
P25	Bit parameter 3		0000000	0~1111111

H. Soal Latihan

- 1. Jelaskan bagian-bagian mesin bubut CNC dan sistem kordinatnya!
- 2. Gambarlah panel kontrol CNC dari mesin bubut CNC GSK 928 TE!
- 3. Bagaimanakah langkah-langkah untuk menggerakkan pahat pada mode JOG?
- 4. Bagaimanakah langkah-langkah untuk melakukan seting titik nol benda kerja?
- 5. Apakah yang dimaksud dengan data offset pahat?

I. Tugas

- 1. Hidupkan mesin bubut CNC sesuai dengan prosedur menghidupkan mesin CNC!
- 2. Pasang benda kerja dengan ukuran tertentu di chuck mesin bubut!
- 3. Laksanakan seting titik nol benda kerja!
- Lakukan pengukuran harga offset pahat yang diperlukan untuk membuat benda kerja dengan tiga buah pahat ! (T1 pahat rata, T2 pahat alur, dan T3 pahat ulir kanan)
- 5. Buatlah laporan tertulis jawaban 1,2, 3 di atas!

MATERI 2 . Dasar Pemrograman Mesin Bubut CNC dengan GSK 928 TE

A. Struktur Program

1. Karakter

Karakter adalah unit dasar untuk menyusun program CNC. Karakter termasuk huruf dan angka, dan tanda. Huruf yang digunakan ada 17 buah yaitu: D E F G I K L M N P R S T U W X Z. Angka yang digunakan adalah: 0,1,2,3,4,5,6,7,8,9. Tanda yang digunakan adalah: %, - (negatif), dan . (desimal).

Karakter alamat	Fungsi	Spesifikasi	Satuan	Jangkauan harga
%	Program number	Program workpiece number of machining		$00{\sim}99$ (integer)
N	Block number	Block number		0000~9999 (integer)
G	Preparatory function	Code run mode		$00{\sim}99$ (integer)
М	Auxiliary function	Auxiliary operation code		$00{\sim}99$ (integer)
Т	Tool function	Tool number number and compensation		00~89 (integer)
S	Spindle function speed	Spindle speed code		$0 \sim 4$ (multi-gear speed motor) $0 \sim 15 0 \sim$ P11/12 (frequency conversion control)
F	Feed function	Feedrate	mm/min	0~9999 (integer)
ХZ	Absolute coordinates	X, Z absolute coordinate value	mm	-8000.000~+8000.000
UW	Incremental coordinates	X, Z incremental coordinates value	mm	-8000.000~+8000.000
ιк	Coordinates of circle center	X, Z circle center coordinate relative to the starting point of arc	mm	-8000.000~+8000.000
	Arc radius or			
R	taper of canned cycle	Radius of arc or cycle taper	mm	Radius 0 \sim 4199.000
E	Thread lead	Inch thread lead	Tooth/in ch	100 \sim 0.25 tooth/inch
D	Dwell time	Dwell code	0.001 s	0.001~65.535
Р	Thread entrance block lead, of	Metric thread lead or calling the skip code		0.25~100(thread lead) 0000~9999(integer)
L	Compound address	Cycle amount, thread leads and contour blocks in cycle		1~99

Tabel 3. Definisi karakter dan jangkauannya

Contoh program CNC untuk mesin CNC dengan sistem kontrol GSK928TE:

%77 N0000G50X60Z5 N0010M3T10S1500M8F100 N0015G0X54Z2 N020G71X33I2K1L7F100 N030G1Z0 N040X33.5 N050W-33 N060X40.5 N070Z-75 N080X50.5 N090Z-80 N100G0X60Z22 N105T20 N120M3S2000F80 N122G0X29Z2 N120G1X29Z0 N130G2X33Z-2R2 N140G1Z-33 N150X36 N160G2X40Z-35R2 N170G1Z-75 N180X46 N190G2X50Z-77R2 N200G1Z-85 N210X60 N220G0Z5 N230X80 N240T50 N250G0X33Z5 N250G92X30Z-20P1.5I2K2R1 N130X29.5 N140X29 N140G0X60Z5 N140M5M2M30

2. Kata

Satu kata terdiri dari satu huruf karakter dan angka, misalnya N00, X25, dan Z-100. Tiap kata harus memiliki satu huruf karakter dan angka di belakangnya. Angka 0 (nol) bisa diabaikan kalau harganya tetap sama, misalnya M03 bisa ditulis M3. Tanda positif bisa diabaikan, tetapi tanda negatif harus ada.

3. Nomer blok

Nomer blok dimulai dengan huruf N dan diikuti empat digit angka integer (bilangan bulat).

4. Blok (baris)

Satu blok terdiri dari nomer blok dan beberapa kata, satu blok bisa terdiri dari 255 karakter. Nomer blok akan muncul secara otomatis, yang akan dapat diubah pada mode edit.

5. Struktur program CNC

Satu baris (blok) terdiri dari kode-kode yang terdiri dari satu atau lebih pengoperasian pemesinan secara berjajar. Sebuah program CNC terdiri dari beberapa baris program yang disusun sesuai dengan langkah-langkah proses pemesinan. Nomer baris digunakan untuk mengidentifikasi baris-baris program. Nama program (atau nama file) digunakan untuk mengidentifikasi program CNC. Setiap program CNC mempunyai satu nama dan terdiri dari beberapa baris.

B. Kode-kode pemrograman dan fungsinya

1. Kode G

Kode G didefinisikan sebagai kode gerakan dari mesin, yang terdiri dari huruf G diikuti dua angka seperti yang ditunjukkan pada Tabel 4 di bawah. Kode G untuk mesin dengan sistem kontrol GSK928TE CNC adalah sebagai beikut.

Kode	Fungsi	Modal	format program	Catatan
		Status		
G00	Gerak cepat	awal	G00 X(U)Z(W)	
	Interpolasi (gerak)			F:5-6000 mm
G01	lurus	*	G01 X(U) Z(W) F	/min
	Interpolasi melingkar		G02 X(U) Z(W) R F	F:5-3000 mm
G02	searah jarum jam (CW)	*	G02 X(U) Z(W)I K F	/min
	Interpolasi melingkar			
	berlawanan arah		G03 X(U) Z(W)R F	F:5-3000 mm
G03	jarum jam (CCW)	*	G03 X(U) Z(W)I K F	/min
G33	Penyayatan ulir	*	G33 X(U) Z(W) P(E) I K	
G32	Siklus pengetapan		G32 Z P(E)	
	Siklus pembubutan			
G90	muka	*	G90 X(U) Z(W) R F	
			G92 X(U) Z(W) P(E) L I	
G92	Siklus penguliran	*	KR	
	Siklus pembubutan			
G94	muka tirus	*	G94 X(U) Z(W) R F	
	Siklus pembuatan			
G74	lubang dalam		G74 X(U) Z(W) I K E F	
G75	Siklus pengaluran		G75 X(U) Z(W) I K E F	
	Siklus pembubutan			
G71	pengasaran (roughing)		G71 X I K F L	

Tabel 4. Kode G, fungsi, dan format program

Kode	Fungsi	Fungsi Modal format program		Catatan
	luar			
	Siklus pembubutan			
	muka pengasaran			
G72	(roughing)		G72 Z I K F L	
G22	Part cycle start		G22 L	
G80	Part cycle end		G80	
	Sistem koordinat			
G50	benda kerja absolut		G50 X Z	
	Gerak menuju titik			Bergerak
G26	referensi pada arah X,Z		G26	dengan G00
	Gerak menuju titik			Bergerak
G27	referensi pada arah X		G27	dengan G00
	Gerak menuju titik			Bergerak
G29	referensi pada arah Z		G29	dengan G00
G04	Berhenti sebentar		G04 D	
G93	System offset			
	Gerak makan per			
G98	menit	*	G98 F	
	Gerak makan per			
G99	putaran		G99 F	

Maksud istilah modal adalah kode yang ditulis akan tetap aktif sampai dengan dibatalkan oleh kode program yang lain pada satu kelompok. Misalnya G0 yang ditulis pada satu baris program akan tetap aktif sampai dengan nomer baris berikutnya, sampai ada kode program yang membatalkan pada baris berikutnya, misalnya G1, G2, atau G3.

Penjelasan untuk masing-masing kode pada tabel di atas (bagian yang diblok) tersebut di atas akan dijelaskan pada subab berikut.

a. G50, membuat sistem koordinat benda kerja

Format :

G50 X... Z....

X= posisi diameter pahat dari titik nol benda kerja pada awal program

Z= posisi jarak pahat dari titik nol benda kerja pada awal program.

Contoh :

Fig. 12Workpiece coordinate system createFig. 12 a : G 5 0X 1 0 0Z 8 0 ; Z coordinate is positive in machining.Fig. 12 b : G 5 0X 1 0 0Z 3 0 ; Z coordinate is negative in machining.

Koordinat titik nol benda kerja arah Z bisa digunakan arah positif, maupun arah negatif. Untuk keamanan proses pemesinan disarankan untuk menggunakan koordinat Z negatif untuk proses pemesinannya.

b. G0, gerak cepat atau gerak memposisikan pahat

Format :

N... G00 X...Z...

atau

N...G00 U...V...

Gerak cepat digunakan untuk memposisikan pahat pada koordinat tertentu (X,Z). X berarti diameter dan Z berarti panjang. Apabila gerakan pahat diinginkan dengan koordinat *incremental*, maka ditulis G00U...V....

Pada gambar di atas misalnya bahan memiliki diameter 50, pahat dari A (posisi diameter 90 mm, jarak dari ujung benda kerja 30 mm) menuju ke B (diameter 54 mm, jarak 2 mm dari ujung benda kerja), maka programnya adalah :

G0 X54 Z2. Atau bila menggunakan koordinat incremental G0 U-18 W-28. Bila menggunakan koordinat campuran: G0 U-18 Z2.

c. G01, interpolasi lurus

Format:

- G01 X...Z...F... ,atau
- G01 U.... W..... F... , atau
- G01 U.... Z.... F...., atau
- G01 X... W... F...

Gerak interpolasi lurus adalah gerak lurus dengan gerak makan tertentu yang ditulis pada F. Satuan F adalah mm/menit, dengan jangkauan harga F antara 5 sampai dengan 6000 mm/menit. Satuan F bisa dengan mm/menit apabila sebelumnya ditulis G98 atau mm/putaran bila sebelumnya ditulis G99.

Contoh gambar di atas, gerak menuju B adalah :

- G01 X45 Z-35 F100, atau
- G01 U-12.5 W-35 F100, atau
- G01 U-12.5 Z-35 F100, atau
- G01 X45 W-35 F100.

d. G02, gerak interpolasi melingkar searah jarum jam

Format:

```
G02 X...Z...R...F...
Atau
G02 X...Z...I...K...F...
```


Fig. 7 Circle center coordinates

Maksud I dan K ialah koordinat dari titik awal pemrograman ke pusat lingkaran. Parameter tersebut bisa juga ditulis R atau radius lingkaran.

e. G03, gerak interpolasi melingkar berlawanan arah jarum jam Format:

G03 X...Z...R...F... Atau G03 X...Z...I...K...F...

Programming example:

Absolute programming: N0000 GO X18 ZO ; N0010 GO3 X30 Z-15 R20 F100 ;

Incremental programming: N0000 G0 X18 Z0 ; N0010 G03 U12 W-15 R20 F100 ;

Selain kode G yang berlaku untuk semua mesin bubut CNC di atas, pada mesin bubut CNC ini juga terdapat beberapa kode G untuk siklus pemotongan/penyayatan. Kode G siklus yang sering digunakan antara lain siklus pembubutan pengasaran (G71), siklus pengaluran (G75) dan siklus penguliran (G92). Masing- masing siklus tersebut akan dijelaskan pada paparan berikut.

f. G71, siklus pembubutan pengasaran memanjang

Maksud dari siklus pembubutan pengasaran memanjang yaitu proses penyayatan *roughing* untuk bentuk kontur tertentu. Harga kedalaman pemotongan, jarak kembali, koordinat awal, dan jumlah baris bentuk kontur ditentukan pada G71. Bentuk kontur yang akan dibuat diprogram pada beberapa baris sesuai dengan L yang diperintahkan.

Format :

G71 X (U) ... I ... K......F

Keterangan:

X (U) = koordinat arah sumbu X

I = kedalaman setiap pemotongan (tanpa tanda)

K= jarak pengembalian (retract)

L= jumlah baris untuk bentuk kontur akhir (ditulis L baris sesudah G71)

F= gerak makan

Fig. 25 Inner/outer roughing compound cycle

Contoh :

g. G75, Siklus pengaluran

Format :

G75 X(U)..... Z(W)..... I... K... E.... F.... Keterangan :

- I = kedalaman tiap penyayatan arah X
- K = gerak balik (*retract*)
- E= pergeseran pahat arah Z
- F= gerak makan

Penjelasan gerakan pahat pada gambar berikut.

N0030 G0 X125Z-30 N0040 G75x80Z-100I1K0.5E3F30

.....

h. G92, Siklus penguliran

Format :

G92 X(U).... Z(W)... P(E).... I... K... R... L...

Keterangan :

X,Z adalah koordinat akhir dari ulir

P=kisar ulir metrik (0,25 – 100 mm)

E=lead ulir inchi (100- 0,25 gang/inchi)

I= lead out (gerak keluar) arah X, harga positif

K=lead out (gerak keluar) arah Z, harga positif

R= selisih diameter antara titik awal dan titik akhir untuk ulir tirus, jika ulir lurus

tidak usah ditulis

L=ulir ganda (jika ulir tunggal, maka abaikan L)

Contoh :

Membuat ulir M30 panjang 15 mm, kisar 1,5 mm, lead out X 2 mm, led out Z 2 mm.

N240T50 N250G0X33Z5 N250G92X30Z-20P1.5I2K2 N130X29.5 N140X29 N140G0X60Z5

2. Kode M

Kode M adalah kode fungsi bantu. Kode M biasanya berfungsi seperti sakelar atau untuk ON/OFF spindel, coolant, atau menghentikan program. Fungsi kode M dapat dilihat pada tabel di bawah.

Tabel 5. Kode M, fungsi dan format

CODE	FUNGSI	FORMAT
M00/M01	Optional stop	M00 , M01
M02/M30	Program selasai	M02 , M30
M03	Spindle putar CW	M03 or M3
M04	Spindle putar CCW	M04 or M4
M05	Spindle stop	M05
M08	Coolant star	M08 or M8
M09	Coolant stop	M09 or M9

Untuk mengakhiri program bisa digunakan M2 atau M30. Kode M2 berarti program selesai. Kode M30 berarti program selesai, spindel mati (OFF), dan *coolant* mati(OFF).

3. Kode S dan T

Kode S adalah kode untuk menentukan jumlah putaran spindel per menit (rpm) dengan format S..... Misal S2000, maka spindel berputar 2000 rpm. Atau apabila perpindahan putaran menggunakan kode posisi gigi, maka harga S adalah 1 sampai 4. Untuk keperluan ini harap dicek pada manual mesin yang dibuat oleh produsen mesin.

Kode T adalah kode untuk memanggil pahat. Pahat yang digunakan diberi nama dengan T diikuti angka posisi pahat pada *tool turret* dan nomer kompensasinya. Misalnya : T11, T22, T33, dsb.

C. Soal Latihan

Petunjuk:

Kerjakan soal berikut pada lembar kertas tersendiri. Dalam mengerjakan soal ini boleh membuka buku, mengoperasikan mesin bubut virtual/ simulator di komputer, atau melihat mesin CNC.

- 1. Apa yang dimaksud dengan program CNC?
- 2. Sebutkan Kode G dan artinya yang digunakan pada mesin bubut CNC GSK TE!
- 3. Apa yang dimaksud dengan kode M?
- 4. Apa yang dimaksud dengan pemrograman dengan sisitem oordinat absolut dan inkremental?
- 5. Jelaskan mengenai kode G siklus !

D. Tugas

- 1. Jelaskan mengenai kelebihan kode G siklus dibandingkan dengan kode G yang lain (G0,G1,G2,G3)!
- 2. Buatlah kode siklus untuk pembuatan ulir dengan panjang 50 mm, diameter nominal 20 mm dan kisar 2 mm!

Materi 3. Membuka, Menulis, dan Mengedit Program CNC

Membuka program, menulis, mengubah, dan menghapus program CNC dilakukan pada mode EDIT.

A. Membuka program yang tersimpan di memori

Pada mesin CNC sudah terdapat beberapa program CNC yang tersimpan di dalam memori. Untuk memanggil atau membuka program CNC tersebut dengan langkah-langkah:

- 1. Tekan tombol EDIT
- 2. Tekan INP
- 3. Tulis no program yang akan dipanggil, misal 35
- 4. Tekan tombol ENTER, maka pada layar akan tampil program dengan nama %35.

B. Menulis program baru

Program CNC yang direncanakan untuk diisikan pada mesin, sebelum ditulis diberi nama terlebih dahulu. Misal kita akan menulis program dengan nama %77, maka langkah-langkahnya:

- 1. Tekan tomol EDIT
- 2. Tulis no program baru yang akan ditulis
- 3. Tekan tombol ENTER, sehingga di layar tampil nama program, dan N0000
- 4. Mulai menulis program di sebelah kanan N0000 dengan menggunakan papan ketik yang tersedia di panel kontrol mesin

Arti tombol untuk mengetik adalah sebagai berikut :

- Tombol yang tertulis satu huruf atau satu angka berfungsi sesuai dengan huruf atau angka yang tertera, misalnya: G,M,X,Z,S,T,F, 0-9, (.), dan (-).
- Tombol yang tertulis dua huruf, misalnya U/, WE, IP,KN, DL, berfungsi untuk menulis kedua huruf tersebut. Apabila tombol ditekan satu kali yang muncul huruf yang pertama, apabila ditekan dua kali maka huruf yang kedua yang muncul.
- Spasi untuk menulisan antar kata bisa diberi atau tidak(_), lihat contoh program di atas.

- Sesudah menulis satu baris (blok) diakhiri dengan menekan tombol ENTER, maka akan muncul N berikutnya dengan jarak nomer biasanya 10.
- Program CNC diakhiri dengan M2 atau M30, dan program yang telah ditulis akan tersimpan di memori mesin.

Untuk berlatih menulis program, program contoh di materi sebelumnya bisa ditulis di mesin CNC.

C. Menghapus program CNC

Program CNC yang tidak digunakan bisa dihapus dari memori mesin dengan langkah:

- 1. Tekan tombol EDIT
- 2. Tekan tombol INPUT
- 3. Tulis nomer program yang dihapus (misal 01)
- 4. Tekan DEL
- 5. Tekan ENTER

Contoh Benda kerja dan program :

1. Bubut bertingkat

Fig. 33 Outer cylindrical surface machining

Ketentuan :

- Bahan asal dari Alluminium diameter 64 mm, panjang 150 mm
- Pahat yang digunakan pahat rata kanan
- Posisi awal pahat pada diameter 74 dan jarak 5 mm dari
- Kedalaman potong 1 mm
- Gerak makan 0,1mm/putaran
- Program diberi nama 64

Contoh :

%64

N0000 G50 X74 Z5 N0010 M3S1000 F100 T01 N0020 G0 X64 Z2 N0030 G71 X30 I2 K1 L7 F100 N0040 G1 X30 Z0 N0050 Z-38 N0060 X45 Z-38 N0070 Z-68 N0080 X60 N0090 Z-103 N0100 X64 (dilanjutkan dengan proses *finishing*) Dan seterusnya, pada akhir program diakhiri dengan M5, M2 atau M30.

D. Menghubungan mesin CNC dengan komputer (PC) untuk mentransfer program CNC

Program CNC yang ditulis di mesin CNC bisa dikirim ke mesin CNC yang lain atau ke komputer. Sebaliknya program CNC yang dibuat di komputer (PC) dengan menggunakan program CAM (*Computer Aided Machining*) dapat dikirim ke mesin CNC melalui kabel data RS 232. Perangkat lunak yang digunakan pada komputer adalah GSKTR.EXE, GSKTR.TXT, dan QE.EXE. Perangkat lunak dan kabel komunikasi ini disertakan oleh produsen mesin pada waktu mesin dikirim.

		/	Da	asar Pemro	graman untu	uk Mesin Bubut Cl	NC dengan GSK 928
ayout	References	Mailings	Review	View	Acrobat		
ayout U -	References • 11 abe ×, ×' A Font * * GSK928* * Mile * Mile * GSK928* * Mile * Mile	Mailings ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ 1/991/25T Series 354 T100 K250.0000 Z5. 696 S-295 M03 K86.2925 Z2.200 301 X86.2925 Z2.200 301 X86.2925 Z2.200 3851 Z-50.8 K82.5851 Z-50.8 4135 Z-49.3858 K85.4135 Z2.200 3776 K78.8776 Z-37.6 3403 Z-40.5575 80.4000 Z-40.8 82.484 Z-49.3858 83.2284 Z2.200 1701	Da Review	view i = i = i unications K 2425	graman untu Acrobat	uk Mesin Bubut Cl	AaBbCcDo Normal
	N138 GO1 1 N140 X78.8 N142 X81.7 N144 GO0 2 N146 X71.4 N148 GO1 2 N150 X75.1	K75.1701 Z-30.2 3776 Z-37.6321 7060 Z-36.2179 K81.7060 Z2.200 4627 K71.4627 Z-22.8 1701 Z-30.2172	172 0 023		Ŧ	Null V Data Number: 8bit V Stop Number: 1bit V	
	•				Þ	Hsrdware :	
	Speed: Schedule:		50%		10	<pre>% Null Protocol: Send: (16) 11000000 Receive: (16) 12000000</pre>	

1. Mentransfer program CNC dari mesin CNC ke komputer

Langkah-langkahnya adalah. Sambungkan kabel komunikasi (data) antara sistem CNC dengan komputer pada kondisi mesin OFF. Sesudah mesin CNC dihidupkan, pilih mode EDIT. Buka program yang akan ditransfer, tekan W sehingga pada sistem CNC muncul tulisan READY TO SEND. Posisikan perangkat lunak di komputer pada posisi menerima (RECEIVING). Sesudah komputer siap, kemudian tekan tombol ENTER pada mesin CNC, maka program akan dikirim ke komputer. Sesudah proses mengirim selesai akan tampin tulisan DONE. Kemudian tekan sebarang tombol untuk kembali ke mode EDIT.

2. Mentransfer program CNC dari komputer ke mesin CNC

Sambungkan kabel komunikasi pada posisi mesin OFF. Sesudah mesin dihidupkan, pilih mode EDIT. Tekan tombol R, sehingga pada mesin CNC akan muncul tulisan **READY TO RECEIVE**.Posisikan perangkat lunak di komputer pada posisi output, dan memasukkan nama programnya. Sesudah sistem siap tekan tombol ENTER. Sehingga program yang dipilih akan terkirim, sesudah program selesai terkirim akan muncul tulisan DONE!. Sesudah selesai mesin pada mode EDIT lagi.

Catatan:

- (1) Ketika menerima program CNC dari komputer, sistem CNC akan membaca"%XX" pada blok awal program sebagai nama program yang kan disimpan. Apabila nama program sama dengan yang ada pada mesin, maka sebaiknya nama program yang ada di mesin CNC dihapus dahulu.
- (2) Mengirim dan menerima program antara dua buah mesin CNC GSK 928 dilakukan dengan cara tersebut di atas.
- (3) Program yang dikirim dari komputer (PC) ke mesin CNC harus memiliki nomer blok, jika tidak ada maka akan terjadi kesalahan.

- E. Soal Latihan menulis dan membuat Program CNC untuk mesin bubut CNC GSK
 - 1. Tulislah contoh program CNC untuk gambar berikut. Buatlah program CNC untuk gambar di bawah bila menggunakan kode siklus!.

Ketentuan : Bahan dari Alluminium diameter 50 mm panjang 120 mm. Pahat yang digunakan pahat rata kanan (satu pahat). Kedalaman potong 2 mm. Gunakan kode G50,G0 dan G1 sebagai kode G yang utama. Kompensasi pahat tidak dimasukkan sehingga harga T ditulis T1

Jawab :

N00 G50 X54 Z2 N10 M3S1500F50M8T1	N130 G0Z2 N140 X34
N20 G0X46Z2	N150 G1Z-29.8
N30 G1 Z-69.8	N160 X42
N40 X52	N170 G0Z2
N50 G0 Z2	N180 X30
N60 X42	N190 G1 Z-30
N70 G1Z-69.8	N200 X40
N80 X52	N210 Z-70
N90 G0Z2	N220 X54
N100 X38	N230 G26
N110 G1Z-29.8	N240 M5
N120 X42	N250 M2

Draft Tutorial Lathe CNC 928TE, B.Sentot Wijanarka

3. Buatlah program berikut dengan G0, G1, G2/G3, dan siklus G71

4. Buatlah program CNC untuk gambar berikut!

5. Buatlah program berikut dengan G0, G1, G2, siklus pembubutan memanjang, siklus pengaluran.

MATERI 4. MODE AUTOMATIC

A. Pengoperasian mesin pada mode Automatic

Setelah bisa mengoperasikan mesin untuk melakukan seting, memahami prmrograman CNC, dan membuat program CNC, maka materi yang akan dipelajari selanjutnya adalah menjalankan (RUN) program CNC pada mode AUTOMATIC.

GSK	AUTO RUN %00
X	0090. 000
Z	0125. 000
*N0000 G N0010 M3	50 X100 Z100 3 S2
F. OVERR	IDE 100% SPINDLE STOP
R. OVERR	IDE 100% SPEED 0000
COOLANT	OFF TOOL 1 OFFSET 0
EDIT MA	NUAL AUTO PARA OFFT DIAG

Pada mode AUTO ini sistem CNC mengeksekusi program CNC yang dipilih untuk benda kerja yang sesuai. Untuk mengaktifkan mode AUTO, tekan tombol AUTO. Pada mode ini ada pilihan: DRY RUN, SINGLE, dan pengerjaan benda kerja secara menerus.

Pada pilihan mode operasi DRY RUN, sistem CNC akan mengeksekusi program CNC di dalam memori mesin tanpa gerakan pahar dan spindel. Hal tersebut dilakukan untuk mengecek kebenaran program. Untuk menjalankan program pada mode operasi DRY RUN, dilakukan dengan cara:

- 1. Buka program CNC pada mode EDIT
- 2. Tekan tombol mode AUTO
- 3. Tekan tombol DRY RUN

° 🚺	
RUNNING	

4. Tekan tombul RUNNING

- 5. Perhatikan tampilan sumbu koordinat di layar
- 6. Apabila program yang dibuat ada yang salah, maka program akan terhenti dan program harus dibetulkan.
- 7. Untuk menghentikan program (feed hold/ pause) yang sedang berjalan,

- 8. Untuk melanjutkan program yang dihentikan tekan tombol RUNNING lagi
- 9. Untuk membatalkan program yang sedang berjalan tekan tombol RESET.

Menjalankan program pada mode operasi DRY RUN bisa juga dilaksanakan untuk tiap blok (SINGLE BLOCK), dengan cara menekan tombol SINGLE sebelum tombol RUNNING.

Pengerjaan benda kerja dilakukan dengan terlebih dahulu memasang benda kerja yang sesuai dengan program yang dibuat. Sebelum menjalankan program untuk mengerjakan benda kerja dilakukan seting titik nol benda kerja dahulu. Posisikan pahat sesuai dengan yang tertulis pada G50 X.... Z..... Untuk mengerjakan benda kerja pertama, lebih baik dilakukan dengan SINGLE, sehingga bisa diperkirakan jalannya pahat untuk tiap blok untuk menghindari kesalahan. Langkah untuk pengerjaan (pemotongan) benda kerja secara SINGLE yaitu:

- 1. Buka program yang akan dijalankan pada mode EDIT
- 2. Pasang benda kerja yang sesuai, pilih pahat yang sesuai, dan seting pahat sesuai dengan G50
- 3. Tekan tombol mode AUTO
- 4. Tekan tombol SINGLE

- 5. Tekan tombol
- 6. Untuk tiap blok, eksekusi program akan berhenti, untuk melanjutkan periksa nomer blok berikutnya pada layar

- 7. Apabila nomer blok berikutnya benar, tekan
- Demikian seterusnya untuk setiap blok dijalankan dengan menekan tombol RUNNING sampai selesai di blok M2 atau M30
- 9. Untuk mengembalikan kurson pada blok pertama tekan RESET.

Setelah selesai menjalankan program untuk mengerjakan benda kerja, periksa ukuran benda kerja sudah sesuai atau belum dengan gambar kerja. Apabila ukuran belum sesuai maka program dibetulkan atau seting pahat dibetulkan. Setelah itu proses RUNNING program dengan SINGLE dilaksanakan lagi sampai ukuran benda kerja benar.

Apabila sudah yakin bahwa program CNC, seting pahat, pemilihan pahat, dan ukuran benda kerja hasil yang diperoleh benar, maka pengerjaan benda kerja selanjutnya dilakukan pada mode AUTO secara menerus. Langkahnya sama dengan langkah di atas, akan tetapi tombol SINGLE tidak diaktifkan.

B. Soal latihan

- 1. Jelaskan langkah-langkah memeriksa kebenaran program CNC di mesin bubut CNC GSK 928 TE!
- 2. Apa yang dimaksud dengan mode operasi AUTO SINGLE?

C. Tugas

1. Buatlah semua benda kerja untuk program CNC yang telah dibuat pada latihan di materi 3 dengan menggunakan mesin bubut CNC 928TE!.

SELAMAT BELAJAR

Draft Tutorial Lathe CNC 928TE, B.Sentot Wijanarka