
Preliminary

ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary Revision 0, 2003

Part Number:

82-000640-01

Analog Devices, Inc.
Digital Signal Processor Division
One Technology Way
Norwood, Mass. 02062-9106 



Preliminary

Copyright Information
© 03 Analog Devices, Inc., ALL RIGHTS RESERVED. This document 
may not be reproduced in any form without prior, express written consent 
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without 
prior notice. Information furnished by Analog Devices is believed to be 
accurate and reliable. However, no responsibility is assumed by Analog 
Devices for its use; nor for any infringement of patents or other rights of 
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, EZ-ICE, EZ-LAB, SHARC, the SHARC logo, 
TigerSHARC, the TigerSHARC logo, VisualDSP, and the VisualDSP 
logo are registered trademarks of Analog Devices, Inc.

Apex-ICE, Blackfin, the Blackfin logo, CROSSCORE, the CROSSCORE 
logo, EZ-KIT Lite, ICEPAC, Mountain-ICE, SHARCPAC, Sum-
mit-ICE, Trek-ICE, VisualDSP++ and the VisualDSP++ logo are 
trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of 
their respective owners.



ADSP-2199x Mixed Signal DSP Controller iii
Hardware Reference

CONTENTS

Preliminary

CONTENTS
PREFACE

Purpose ......................................................................................  xxxiii

Instruction Set Enhancements ...............................................  xxxiii

For more Information about Analog Products .............................  xxxiv

For Technical or Customer Support  ............................................  xxxv

What’s New in this Manual .........................................................  xxxv

Related Documents ....................................................................  xxxvi

Conventions .............................................................................  xxxvii

INTRODUCTION

Overview—Why Fixed-Point DSP? ...............................................  1-1

ADSP-2199x Design Advantages ...................................................  1-2

ADSP-2199x Architecture Overview ..............................................  1-6

DSP Core Architecture ............................................................  1-9

DSP Peripherals Architecture .................................................  1-11

Memory Architecture ............................................................  1-12

Internal (On-chip) Memory ..............................................  1-13



CONTENTS

iv ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

External (Off-chip) Memory .............................................  1-14

Interrupts .............................................................................  1-16

DMA Controller ...................................................................  1-16

DSP Serial Port (SPORT) .....................................................  1-17

Serial Peripheral Interface (SPI) Port ......................................  1-18

Controller Area Network (CAN) Module ...............................  1-18

Analog To Digital Conversion System ....................................  1-19

PWM Generation Unit .........................................................  1-20

Auxiliary PWM Generation Unit ...........................................  1-20

Encoder Interface Unit ..........................................................  1-21

Flag I/O (FIO) Peripheral Unit .............................................  1-22

Low-Power Operation ...........................................................  1-22

Clock Signals ........................................................................  1-23

Booting Modes .....................................................................  1-23

JTAG Port ............................................................................  1-24

Development Tools .....................................................................  1-24

Differences from Previous DSPs ..................................................  1-27

Computational Units and Data Register File ..........................  1-27

Arithmetic Status (ASTAT) Register Latency ..........................  1-27

Norm and Exp Instruction Execution ....................................  1-27

Shifter Result (SR) Register as Multiplier Dual Accumulator ..  1-28

Shifter Exponent (SE) Register is not Memory Accessible .......  1-28

Conditions (SWCOND) and Condition Code (CCODE) Register .  
1-29

Unified Memory Space ..........................................................  1-30



ADSP-2199x Mixed Signal DSP Controller v
Hardware Reference

CONTENTS

Preliminary

Data Memory Page (DMPG1 and DMPG2) Registers ............  1-30

Data Address Generator (DAG) Addressing Modes .................  1-31

Base Registers for Circular Buffers ..........................................  1-31

Program Sequencer, Instruction Pipeline, and Stacks ..............  1-32

Conditional Execution (Difference in Flag Input Support) ......  1-32

Execution Latencies (Different for JUMP Instructions) ...........  1-33

COMPUTATIONAL UNITS

Overview ......................................................................................  2-1

Using Data Formats ......................................................................  2-4

Binary String ...........................................................................  2-5

Unsigned .................................................................................  2-5

Signed Numbers: Two’s Complement .......................................  2-5

Signed Fractional Representation: 1.15 ....................................  2-5

ALU Data Types ......................................................................  2-6

Multiplier Data Types ..............................................................  2-7

Shifter Data Types ...................................................................  2-8

Arithmetic Formats Summary ..................................................  2-8

Setting Computational Modes .....................................................  2-10

Latching ALU Result Overflow Status ....................................  2-10

Saturating ALU Results on Overflow ......................................  2-11

Using Multiplier Integer and Fractional Formats ....................  2-11

Rounding Multiplier Results ..................................................  2-13

Unbiased Rounding ..........................................................  2-14

Biased Rounding ...............................................................  2-15



CONTENTS

vi ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Using Computational Status .......................................................  2-16

Arithmetic Logic Unit (ALU) ......................................................  2-17

ALU Operation .....................................................................  2-17

ALU Status Flags ...................................................................  2-18

ALU Instruction Summary ....................................................  2-19

ALU Data Flow Details .........................................................  2-21

ALU Division Support Features .............................................  2-24

Multiply—Accumulator (Multiplier) ...........................................  2-29

Multiplier Operation .............................................................  2-29

Placing Multiplier Results in MR or SR Registers ..............  2-31

Clearing, Rounding, or Saturating Multiplier Results .........  2-32

Multiplier Status Flags ...........................................................  2-33

Saturating Multiplier Results on Overflow .............................  2-33

Multiplier Instruction Summary ............................................  2-35

Multiplier Data Flow Details .................................................  2-37

Barrel-Shifter (Shifter) ................................................................  2-39

Shifter Operations .................................................................  2-39

Derive Block Exponent .....................................................  2-41

Immediate Shifts ..............................................................  2-42

Denormalize .....................................................................  2-45

Normalize, Single-Precision Input .....................................  2-47

Normalize, ALU Result Overflow ......................................  2-48

Normalize, Double-Precision Input ...................................  2-50

Shifter Status Flags ................................................................  2-53



ADSP-2199x Mixed Signal DSP Controller vii
Hardware Reference

CONTENTS

Preliminary

Shifter Instruction Summary ..................................................  2-54

Shifter Data Flow Details .......................................................  2-55

Data Register File ........................................................................  2-61

Secondary (Alternate) Data Registers ...........................................  2-63

Multifunction Computations ......................................................  2-64

PROGRAM SEQUENCER

Overview ......................................................................................  3-1

Instruction Pipeline ......................................................................  3-7

Instruction Cache .......................................................................  3-10

Using the Cache ....................................................................  3-13

Optimizing Cache Usage .......................................................  3-13

Branches and Sequencing ............................................................  3-15

Indirect Jump Page (IJPG) Register ........................................  3-18

Conditional Branches ............................................................  3-18

Delayed Branches ..................................................................  3-19

Loops and Sequencing .................................................................  3-23

Managing Loop Stacks ...........................................................  3-26

Restrictions on Ending Loops ................................................  3-26

Interrupts and Sequencing ...........................................................  3-26

Stacks and Sequencing ................................................................  3-32

Conditional Sequencing ..............................................................  3-37

Sequencer Instruction Summary ..................................................  3-40



CONTENTS

viii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

MEMORY

Overview ......................................................................................  4-1

Internal Address and Data Buses ..............................................  4-6

External Address and Data Buses .............................................  4-7

Internal Data Bus Exchange ....................................................  4-8

ADSP-2199x Memory Organization ...........................................  4-11

Shadow Write FIFO ..............................................................  4-16

Data Move Instruction Summary ................................................  4-17

DATA ADDRESS GENERATORS

Overview ......................................................................................  5-1

Setting DAG Modes .....................................................................  5-4

Secondary (Alternate) DAG Registers ......................................  5-4

Bit-Reverse Addressing Mode ..................................................  5-6

DAG Page Registers (DMPGx) ................................................  5-7

Using DAG Status ........................................................................  5-8

DAG Operations ..........................................................................  5-9

Addressing with DAGs ............................................................  5-9

Addressing Circular Buffers ...................................................  5-12

Addressing with Bit-Reversed Addresses .................................  5-16

Modifying DAG Registers .....................................................  5-20

DAG Register Transfer Restrictions .............................................  5-20

DAG Instruction Summary .........................................................  5-22



ADSP-2199x Mixed Signal DSP Controller ix
Hardware Reference

CONTENTS

Preliminary

I/O PROCESSOR

Overview ......................................................................................  6-1

Descriptor-Based DMA Transfers .............................................  6-5

Autobuffer-Based DMA Transfers ............................................  6-8

Interrupts from DMA Transfers ...............................................  6-9

Setting Peripheral DMA Modes ...................................................  6-10

MemDMA DMA Settings ......................................................  6-14

Serial Port DMA Settings .......................................................  6-15

SPI Port DMA Settings ..........................................................  6-16

Working with Peripheral DMA Modes .........................................  6-17

Using MemDMA DMA .........................................................  6-17

Using Serial Port (SPORT) DMA ..........................................  6-18

Descriptor-Based SPORT DMA ........................................  6-18

Autobuffer-Based SPORT DMA ........................................  6-19

SPORT DMA Data Packed/Unpacked Enable ...................  6-20

Using Serial Peripheral Interface (SPI) Port DMA ...................  6-21

SPI DMA in Master Mode ................................................  6-21

SPI DMA in Slave Mode ...................................................  6-23

SPI DMA Errors ...............................................................  6-25

Boot Mode DMA Transfers .........................................................  6-27

Code Example: Internal Memory DMA .......................................  6-28

EXTERNAL PORT

Overview ......................................................................................  7-1



CONTENTS

x ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Setting External Port Modes ..........................................................  7-3

Memory Bank and Memory Space Settings ..............................  7-3

External Bus Settings ...............................................................  7-5

Bus Master Settings .................................................................  7-7

Boot Memory Space Settings ...................................................  7-7

Working with External Port Modes ...............................................  7-8

Using Memory Bank/Space Waitstates Modes ..........................  7-9

Using Memory Bank/Space Clock Modes ..............................  7-10

Using External Memory Banks and Pages ...............................  7-11

Using Memory Access Status .................................................  7-11

Using Bus Master Modes .......................................................  7-12

Using Boot Memory Space ....................................................  7-14

Reading from Boot Memory .............................................  7-14

Writing to Boot Memory ..................................................  7-15

Interfacing to External Memory ..................................................  7-15

Data Alignment—Logical versus Physical Address ..................  7-15

Memory Interface Pins ..........................................................  7-20

Memory Interface Timing .....................................................  7-24

Code Example: BMS Runtime Access ..........................................  7-28

SERIAL PORT

Overview ......................................................................................  8-1

SPORT Operation ..................................................................  8-6

SPORT Disable ......................................................................  8-7

Setting SPORT Modes ..................................................................  8-8



ADSP-2199x Mixed Signal DSP Controller xi
Hardware Reference

CONTENTS

Preliminary

Transmit and Receive Configuration Registers (SP_TCR, SP_RCR)  
8-10

Register Writes and Effect Latency .........................................  8-16

Transmit and Receive Data Buffers (SP_TX, SP_RX) .............  8-17

Clock and Frame Sync Frequencies ........................................  8-18

Maximum Clock Rate Restrictions ....................................  8-20

Frame Sync and Clock Example .........................................  8-20

Data Word Formats ...............................................................  8-20

Word Length ....................................................................  8-21

Endian Format ..................................................................  8-21

Data Type .........................................................................  8-21

Companding .....................................................................  8-22

Clock Signal Options ............................................................  8-22

Frame Sync Options ..............................................................  8-23

Framed versus Unframed ...................................................  8-23

Internal versus External Frame Syncs .................................  8-25

Active Low versus Active High Frame Syncs .......................  8-26

Sampling Edge for Data and Frame Syncs ..........................  8-26

Early versus Late Frame Syncs (Normal and Alternate Timing)  8-27

Data-Independent Transmit Frame Sync ............................  8-29

Multichannel Operation ........................................................  8-29

Frame Syncs in Multichannel Mode ...................................  8-32

Multichannel Frame Delay ................................................  8-33

Window Size .....................................................................  8-33

Window Offset .................................................................  8-33



CONTENTS

xii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Other Multichannel Fields in SP_TCR, SP_RCR ..............  8-34

Channel Selection Registers ..............................................  8-35

Multichannel Enable .........................................................  8-36

Multichannel DMA Data Packing .....................................  8-36

Multichannel Mode Example ............................................  8-37

Moving Data Between SPORTS and Memory .............................  8-38

SPORT DMA Autobuffer Mode Example ..............................  8-39

SPORT Descriptor-Based DMA Example ..............................  8-40

Support for Standard Protocols ...................................................  8-42

2X Clock Recovery Control ...................................................  8-43

SPORT Pin/Line Terminations ...................................................  8-43

Timing Examples ........................................................................  8-43

SERIAL PERIPHERAL INTERFACE (SPI) PORT

Overview ......................................................................................  9-1

Interface Signals ...........................................................................  9-4

Serial Peripheral Interface Clock Signal (SCK) .........................  9-5

Serial Peripheral Interface Slave Select Input Signal (SPISS) .....  9-5

Master Out Slave In (MOSI) ...................................................  9-6

Master In Slave Out (MISO) ...................................................  9-6

Interrupt Behavior ..................................................................  9-7

SPI Registers ................................................................................  9-8

 SPI Baud Rate (SPIBAUD) Register .......................................  9-8

SPI Control (SPICTL) Register ...............................................  9-9

SPI Flag (SPIFLG) Register ...................................................  9-11



ADSP-2199x Mixed Signal DSP Controller xiii
Hardware Reference

CONTENTS

Preliminary

Slave-Select Inputs ............................................................  9-13

Use of FLS Bits in SPIFLG for Multiple-Slave SPI Systems  9-13

SPI Status (SPIST) Register ...................................................  9-15

Transmit Data Buffer (TDBR) Register ..................................  9-17

Receive Data Buffer (RDBR) Register ....................................  9-17

Data Shift (SFDR) Register ...................................................  9-18

Register Mapping ..................................................................  9-18

SPI Transfer Formats ...................................................................  9-19

SPI General Operation ................................................................  9-22

Clock Signals ........................................................................  9-23

Master Mode Operation ........................................................  9-24

Transfer Initiation from Master (Transfer Modes) ...................  9-26

Slave Mode Operation .......................................................  9-26

Slave Ready for a Transfer ..................................................  9-28

Error Signals and Flags ................................................................  9-28

Mode-Fault Error (MODF) ...................................................  9-28

Transmission Error (TXE) Bit ................................................  9-30

Reception Error (RBSY) Bit ...................................................  9-30

Transmit Collision Error (TXCOL) Bit ..................................  9-30

Beginning and Ending of an SPI Transfer ....................................  9-31

DMA ..........................................................................................  9-32

TIMER

Overview ....................................................................................  10-1

Pulsewidth Modulation (PWMOUT) Mode ...........................  10-7



CONTENTS

xiv ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

PWM Waveform Generation ............................................  10-8

Single-Pulse Generation ..................................................  10-11

Pulsewidth Count and Capture (WDTH_CAP) Mode .........  10-11

External Event Watchdog (EXT_CLK) Mode ......................  10-14

Code Examples .........................................................................  10-14

Timer Example Steps ..........................................................  10-15

Timer0 Initialization Routine ..............................................  10-18

Timer Interrupt Routine .....................................................  10-20

JTAG TEST-EMULATION PORT

Overview ....................................................................................  11-1

JTAG Test Access Port ................................................................  11-2

INSTRUCTION Register ...........................................................  11-3

BYPASS Register ........................................................................  11-4

BOUNDARY Register ................................................................  11-4

IDCODE Register ......................................................................  11-4

References ..................................................................................  11-5

SYSTEM DESIGN

Overview ....................................................................................  12-1

Pin Descriptions .........................................................................  12-1

Recommendations for Unused Pins .......................................  12-5

Pin States at Reset .......................................................................  12-6

Resetting the Processor (“Hard Reset”) ......................................  12-10

Resetting the Processor (“Soft Reset”) ........................................  12-11



ADSP-2199x Mixed Signal DSP Controller xv
Hardware Reference

CONTENTS

Preliminary

Booting the Processor (“Boot Loading”) ....................................  12-13

Booting Modes ....................................................................  12-13

Boot from External 8-Bit Memory (EPROM) over EMI ...  12-13

Execute from External 8-Bit Memory ..............................  12-14

Execute from External 16-Bit Memory ............................  12-14

Boot from SPI0 with < 4k bits .........................................  12-14

Boot from SPI0 with > 4k bits .........................................  12-15

Bootstream Format ..............................................................  12-15

Managing DSP Clocks ..............................................................  12-21

Phase Locked Loop (PLL) .........................................................  12-23

Clock Generation (CKGEN) Module ........................................  12-25

Overview of CKGEN Functionality .....................................  12-25

Hardware Reset Generation .................................................  12-26

Software Reset Logic ............................................................  12-27

Clock Generation & PLL Control ........................................  12-28

Lock Counter ......................................................................  12-31

Powerdown Control/Modes .......................................................  12-32

Idle Mode ...........................................................................  12-32

Powerdown Core Mode .......................................................  12-33

Powerdown Core/Peripherals Mode ......................................  12-33

Powerdown All Mode ..........................................................  12-34

Register Configurations .............................................................  12-35

Working with External Bus Masters ...........................................  12-36

Recommended Reading .............................................................  12-40



CONTENTS

xvi ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

PERIPHERAL INTERRUPT CONTROLLER

Overview ....................................................................................  13-1

ADSP-2199x PERIPHERAL INTERRUPT CONTROLLER ......  13-2

GENERAL OPERATION ..........................................................  13-3

REGISTERS ..............................................................................  13-5

WATCHDOG TIMER

Overview ....................................................................................  14-1

General Operation ......................................................................  14-1

Registers .....................................................................................  14-3

POWER ON RESET

Overview ....................................................................................  15-1

ENCODER INTERFACE UNIT

Overview ....................................................................................  16-1

Encoder Loop Timer ..................................................................  16-4

Encoder Interface Structure & Operation ....................................  16-5

Introduction .........................................................................  16-5

Programmable Input Noise Filtering of Encoder Signals .........  16-5

Encoder Counter Direction ...................................................  16-9

Alternative Frequency and Direction Inputs .........................  16-10

Encoder Counter Reset .......................................................  16-10

Registration Inputs & Software Zero Marker .......................  16-12

Single North Marker Mode .................................................  16-14



ADSP-2199x Mixed Signal DSP Controller xvii
Hardware Reference

CONTENTS

Preliminary

Encoder Error Checking ......................................................  16-14

EIU Input Pin Status ...........................................................  16-14

Interrupts ............................................................................  16-15

32-bit Register Accesses .......................................................  16-15

Encoder Event Timer ................................................................  16-17

Introduction & Overview ....................................................  16-17

Latching Data from the EET ...............................................  16-18

EET Status Register .............................................................  16-20

EIU/EET Registers ...................................................................  16-21

Inputs/Outputs .........................................................................  16-27

AUXILIARY PWM GENERATION UNIT

Overview ....................................................................................  17-1

Independent Mode ......................................................................  17-2

Offset Mode ...............................................................................  17-4

Operation Features ......................................................................  17-5

AUXTRIP Shutdown ..................................................................  17-6

AUXSYNC Operation .................................................................  17-7

Registers .....................................................................................  17-8

PWM GENERATION UNIT

OVERVIEW ...............................................................................  18-1

GENERAL OPERATION .....................................................  18-7

FUNCTIONAL DESCRIPTION ..........................................  18-8

Three-Phase Timing & Dead Time Insertion Unit .............  18-8



CONTENTS

xviii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

PWM Switching Frequency, PWMTM Register .................  18-8

PWM Switching Dead Time, PWMDT Register ...............  18-9

PWM Operating Mode, PWMCTRL & PWMSTAT Registers ..  
18-10

PWM Duty Cycles, PWMCHA, PWMCHB, PWMCHC Registers  
18-12

Special Consideration for PWM Operation in Over-Modulation  
18-16

PWM Timer Operation ..................................................  18-19

Effective PWM Accuracy ................................................  18-20

Switched Reluctance Mode .............................................  18-21

Output Control Unit ......................................................  18-21

Crossover Feature ...........................................................  18-22

Output Enable Function .................................................  18-22

Brushless DC Motor (Electronically Commutated Motor) Control  
18-23

GATE DRIVE UNIT .........................................................  18-25

High Frequency Chopping ..............................................  18-25

PWM Polarity Control, PWMPOL Pin ...........................  18-26

Output Control Feature Precedence ................................  18-27

Switched Reluctance Mode .............................................  18-27

PWMSYNC Operation ...................................................  18-31

Internal PWMSYNC generation .....................................  18-31

External PWMSYNC operation ......................................  18-31

PWM Shutdown & Interrupt Control Unit .....................  18-32



ADSP-2199x Mixed Signal DSP Controller xix
Hardware Reference

CONTENTS

Preliminary

Registers ...................................................................................  18-33

ANALOG TO DIGITAL CONVERTER SYSTEM

Overview ....................................................................................  19-1

ADC Inputs ................................................................................  19-2

Analog to Digital Converter and Input Structure .........................  19-2

ADC Control Module .................................................................  19-6

ADC Clock ...........................................................................  19-6

ADC Data Formats ...............................................................  19-7

Convert Start Trigger .............................................................  19-8

ADC Time Counters .............................................................  19-9

Conversion Modes ...............................................................  19-10

Simultaneous Sampling Mode .........................................  19-11

Latch Mode ....................................................................  19-12

Offset Calibration Mode .................................................  19-12

DMA Single Channel Acquisition Mode ..........................  19-13

DMA Dual Channel Acquisition Mode ...........................  19-14

DMA Quad Channel Acquisition Mode ..........................  19-14

DMA Octal Channel Acquisition Mode ...........................  19-15

DMA Operation Overview ..................................................  19-15

Voltage Reference ......................................................................  19-16

Registers ...................................................................................  19-17

FLAG I/O (FIO) PERIPHERAL UNIT

Overview ....................................................................................  20-1



CONTENTS

xx ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Operation of the FIO Block ........................................................  20-3

Flag Register .........................................................................  20-3

Flag as Output ......................................................................  20-3

Flag as Input .........................................................................  20-4

Interrupt Outputs .................................................................  20-4

Flag Wake-up output ............................................................  20-5

FIO Lines as PWM Shutdown Sources. .................................  20-5

FIO Lines as SPI Slave Select Lines ........................................  20-6

Configuration Registers .........................................................  20-6

Flag Configuration Registers .................................................  20-7

FIO Direction Control (DIR) Register ..............................  20-8

Flag Control (FLAGC and FLAGS) Registers ....................  20-8

Flag Interrupt Mask (MASKAC, MASKAS, MASKBC, and 
MASKBS) Registers .......................................................  20-8

FIO Polarity Control (POLAR) Register ...........................  20-9

FIO Edge/Level Sensitivity Control (EDGE and BOTH) Registers  
20-10

Power-Down Modes ............................................................  20-10

Idle Mode ......................................................................  20-11

Power-Down Core Mode ................................................  20-11

Power-Down Core/Peripherals Mode ...............................  20-12

Power-Down All Mode ...................................................  20-13

Reset State ..........................................................................  20-13

Registers ...................................................................................  20-14



ADSP-2199x Mixed Signal DSP Controller xxi
Hardware Reference

CONTENTS

Preliminary

CONTROLLER AREA NETWORK (CAN) MODULE

Overview ....................................................................................  21-1

CAN Module Registers ...............................................................  21-4

Master Control Register (CANMCR) .....................................  21-4

CCR CAN Configuration Mode Request ...........................  21-4

CSR CAN Suspend Mode Request ....................................  21-5

SMR Sleep Mode Request .................................................  21-6

WBA Wake Up on CAN Bus Activity ................................  21-6

TxPrio Transmit Priority by message identifier 
(if implemented) ............................................................  21-6

ABO Auto Bus On ............................................................  21-6

DNM Device Net Mode (if implemented) .........................  21-7

SRS Software Reset ...........................................................  21-7

Global Status Register (CANGSR) .........................................  21-8

Rec Receive Mode .............................................................  21-9

Trm Transmit Mode ..........................................................  21-9

MBptr Mail Box Pointer ...................................................  21-9

CCA CAN Configuration Mode Acknowledge ...................  21-9

CSA CAN Suspend Mode Acknowledge ............................  21-9

SMA Sleep Mode Acknowledge .......................................  21-10

EBO CAN Error Bus Off Mode ......................................  21-10

EP CAN Error Passive Mode ...........................................  21-10

WR CAN Receive Warning Flag ......................................  21-10

WT CAN Transmit Warning Flag ....................................  21-10



CONTENTS

xxii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

CAN Configuration Registers ...................................................  21-11

Bit Configuration Register 0 (CANBCR0) ...........................  21-12

Bit Configuration Register 1 (CANBCR1) ...........................  21-13

CAN Configuration Register (CANCNF) ............................  21-13

TEST Enable for the special functions ............................  21-14

MRB Mode Read Back ...................................................  21-14

MAA Mode Auto Acknowledge .......................................  21-15

DIL Disable CAN Internal Loop .....................................  21-15

DTO Disable CAN TX Output ......................................  21-15

DRI Disable CAN RX Input ...........................................  21-15

DEC Disable CAN Error Counter ..................................  21-15

Version Code Register (CANVERSION) .............................  21-16

CAN Error Counter Register (CANCEC) ............................  21-16

Interrupt Register (CANINTR) ...........................................  21-17

Rx Serial Input from CAN Bus Line (from Transceiver) ...  21-18

TX Serial Output to CAN Bus Line (to Transceiver) ........  21-18

SMACK Sleep Mode Acknowledge ..................................  21-19

GIRQ Global Interrupt Output ......................................  21-19

MBTIF Mailbox Transmit Interrupt Output ...................  21-19

MBRIF Mailbox Receive Interrupt Output .....................  21-19

Data Storage .............................................................................  21-20

Mailbox Layout ...................................................................  21-21

Mailbox Area ......................................................................  21-23

Mailbox Types ....................................................................  21-24



ADSP-2199x Mixed Signal DSP Controller xxiii
Hardware Reference

CONTENTS

Preliminary

Mailbox Control Logic ..............................................................  21-24

Mailbox Configuration (CANMC / CANMD) .....................  21-24

Receive Logic ......................................................................  21-26

Acceptance Filter / Data Acceptance Filter ............................  21-27

Acceptance Mask Register ....................................................  21-29

FDF Filtering on Data Field (if enabled) ..........................  21-30

FMD Full Mask Data Field .............................................  21-30

AMIDE Acceptance Mask Identifier Extension ................  21-31

BaseId Base Identifier ......................................................  21-31

ExtId Extended Identifier ................................................  21-31

DFM Data Field Mask ....................................................  21-31

Receive Control Registers ....................................................  21-31

Receive Message Pending Register (CANRMP) ................  21-31

Receive Message Lost Register (CANRML) ......................  21-32

Overwrite Protection / Single Shot Transmission Register 
(CANOPSS) ................................................................  21-32

Transmit Logic ................................................................  21-33

Retransmission ................................................................  21-34

Single Shot Transmission .................................................  21-35

Transmit Priority defined by Mailbox Number .................  21-35

Transmit Control Registers ..............................................  21-35

Transmission Request Set Register (CANTRS) .................  21-36

Transmission Request Reset Register (CANTRR) .............  21-36

Abort Acknowledge Register (CANAA) ............................  21-38

Transmission Acknowledge Register (CANTA) .................  21-39



CONTENTS

xxiv ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Temporary Mailbox Disable Feature (CANMBTD) .........  21-39

Remote Frame Handling Register (CANRFH) .................  21-41

Mailbox Interrupts ..............................................................  21-43

Mailbox Interrupt Mask Register (CANMBIM) ..............  21-43

Mailbox Transmit Interrupt Flag Register (CANMBTIF) .  21-44

Mailbox Receive Interrupt Flag Register (CANMBRIF) ...  21-45

Global Interrupt .................................................................  21-46

ADI Access Denied Interrupt ..........................................  21-46

EXTI External Trigger Output Interrupt .........................  21-46

UCE Universal Counter Event ........................................  21-47

RMLI Receive Message Lost Interrupt .............................  21-47

AAI Abort Acknowledge Interrupt ..................................  21-47

UIAI Access to Unimplemented Address Interrupt ...........  21-48

WUI Wake Up Interrupt ................................................  21-48

BOI Bus-Off Interrupt ...................................................  21-48

EPI Error-Passive Interrupt .............................................  21-48

EWRI Error Warning Receive Interrupt ..........................  21-49

EWTI Error Warning Transmit Interrupt ........................  21-49

Global Interrupt Logic ....................................................  21-49

Global Interrupt Mask Register (CANGIM) ....................  21-50

Global Interrupt Status Register (CANGIS) ....................  21-50

Global Interrupt Flag Register (CANGIF) .......................  21-51

Universal Counter Module ..............................................  21-53

UCEN Universal Counter Enable ...............................  21-53



ADSP-2199x Mixed Signal DSP Controller xxv
Hardware Reference

CONTENTS

Preliminary

UCCT Universal Counter CAN Trigger .......................  21-53

UCRC Universal Counter Reload / Clear .....................  21-54

UCCNF Universal Counter Mode ...............................  21-54

Event Counter Modes .................................................  21-55

Time Stamp Counter Mode .............................................  21-56

Error Status Register (CANESR) .....................................  21-57

FER Form Error Flag ......................................................  21-57

BEF Bit Error Flag ..........................................................  21-57

SA1 Stuck at dominant Error ..........................................  21-58

CRCE CRC Error ...........................................................  21-58

SER Stuff Error ...............................................................  21-58

ACKE Acknowledge Error ...............................................  21-58

Programmable Warning Limit for REC and TEC .............  21-58

ADSP-2199X DSP CORE REGISTERS

Overview ....................................................................................  22-1

Core Registers Summary ........................................................  22-2

Register Load Latencies .........................................................  22-4

Core Status Registers ...................................................................  22-7

Arithmetic Status (ASTAT) Register .......................................  22-7

Mode Status (MSTAT) Register .............................................  22-8

System Status (SSTAT) Register ...........................................  22-10

Computational Unit Registers ...................................................  22-11

Data Register File (Dreg) Registers .......................................  22-11

ALU X- & Y-Input (AX0, AX1, AY0, AY1) Registers ............  22-12



CONTENTS

xxvi ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

ALU Results (AR) Register ..................................................  22-12

ALU Feedback (AF) Register ...............................................  22-12

Multiplier X- & Y-Input (MX0, MX1, MY0, MY1) Registers  22-12

Multiplier Results (MR2, MR1, MR0) Registers ..................  22-13

Shifter Input (SI) Register ...................................................  22-13

Shifter Exponent (SE) & Block Exponent (SB) Registers ......  22-13

Shifter Results (SR2, SR1, SR0) Registers ............................  22-13

Program Sequencer Registers .....................................................  22-14

Interrupt Mask (IMASK) & Latch (IRPTL) Registers ..........  22-15

Interrupt Control (ICNTL) Register ....................................  22-16

Indirect Jump Page (IJPG) Register .....................................  22-16

PC Stack Page (STACKP) and 
PC Stack Address (STACKA) Registers .............................  22-17

Loop Stack Page (LPSTACKP) and 
Loop Stack Address (LPSTACKA) Register .......................  22-17

Counter (CNTR) Register ...................................................  22-18

Condition Code (CCODE) Register ....................................  22-18

Cache Control (CACTL) Register .......................................  22-20

Data Address Generator Registers ..............................................  22-20

Index (Ix) Registers .............................................................  22-21

Modify (Mx) Registers ........................................................  22-21

Length and Base (Lx,Bx) Register ........................................  22-21

Data Memory Page (DMPGx) Registers ...............................  22-22

Memory Interface Registers .......................................................  22-22

PM Bus Exchange (PX) Register ..........................................  22-22



ADSP-2199x Mixed Signal DSP Controller xxvii
Hardware Reference

CONTENTS

Preliminary

I/O Memory Page (IOPG) Register ......................................  22-22

Register & Bit #Defines File (def219x.h) ...................................  22-23

ADSP-2199X DSP I/O REGISTERS

Overview ....................................................................................  23-1

I/O Processor (Memory Mapped) Registers ..................................  23-2

Clock and System Control Registers ..........................................  23-11

PLL Control (PLLCTL) Register .........................................  23-11

PLL Lock Counter (LOCKCNT) Register ............................  23-12

 Software Reset (SWRST) Register  ......................................  23-13

Next System Configuration (NXTSCR) Register ..................  23-14

System Configuration (SYSCR) Register ..............................  23-15

DMA Controller Registers .........................................................  23-16

DMA, MemDMA Channel Write Pointer (DMACW_PTR) Register  
23-16

DMA, MemDMA Channel Write Configuration (DMACW_CFG) 
Register ............................................................................  23-17

DMA, MemDMA Channel Write Start Page (DMACW_SRP) Register  
23-19

DMA, MemDMA Channel Write Start Address (DMACW_SRA) 
Register ............................................................................  23-19

DMA, MemDMA Channel Write Count (DMACW_CNT) Register  
23-19

DMA, MemDMA Channel Write Chain Pointer (DMACW_CP) 
Register ............................................................................  23-20

DMA, MemDMA Channel Write Chain Pointer Ready 
(DMACW_CPR) Register ................................................  23-20



CONTENTS

xxviii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

DMA, MemDMA Channel Write Interrupt (DMACW_IRQ) Register  
23-20

DMA, MemDMA Channel Read Pointer (DMACR_PTR) Register  
23-21

DMA, MemDMA Channel Read Configuration (DMACR_CFG) 
Register ............................................................................  23-21

DMA, MemDMA Channel Read Start Page (DMACR_SRP) Register  
23-22

DMA, MemDMA Channel Read Start Address (DMACR_SRA) 
Register ............................................................................  23-22

DMA, MemDMA Channel Read Count (DMACR_CNT) Register  
23-22

DMA, MemDMA Channel Read Chain Pointer (DMACR_CP) Register 
 23-23

DMA, MemDMA Channel Read Chain Pointer Ready (DMACR_CPR) 
Register ............................................................................  23-23

DMA, MemDMA Channel Read Interrupt (DMACR_IRQ) Register  
23-23

SPORT Registers ......................................................................  23-24

SPORT Transmit Configuration (SP_TCR) Register ............  23-24

SPORT Receive Configuration (SP_RCR) Register ..............  23-28

SPORT Transmit Data (SP_TX) Register ............................  23-29

SPORT Receive Data (SP_RX) Register ...............................  23-29

SPORT Transmit (SP_TSCKDIV) and (SP_RSCKDIV) Serial Clock 
Divider Registers  .............................................................  23-30

SPORT Transmit (SP_TFSDIV) and Receive (SP_RFSDIV) Frame 
Sync Divider Registers ......................................................  23-31

SPORT Status (SP_STATR) Register ...................................  23-31



ADSP-2199x Mixed Signal DSP Controller xxix
Hardware Reference

CONTENTS

Preliminary

SPORT Multi-Channel Transmit Select (SP_MTCSx) Registers   23-33

SPORT Multi-Channel Receive Select (SP_MRCSx) Registers  23-34

SPORT Multi-Channel Configuration (SP_MCMCx) Registers  23-35

SPORT DMA Receive Pointer (SPDR_PTR) Register ..........  23-39

SPORT Receive DMA Configuration (SPDR_CFG) Register  23-39

SPORT Receive DMA Start Page (SPDR_SRP) Register .......  23-41

SPORT Receive DMA Start Address (SPDR_SRA) Register ..  23-41

SPORT Receive DMA Count (SPDR_CNT) Register ..........  23-42

SPORT Receive DMA Chain Pointer (SPDR_CP) Register ..  23-42

SPORT Receive DMA Chain Pointer Ready (SPDR_CPR) 
Register ............................................................................  23-43

SPORT Receive DMA Interrupt (SPxDR_IRQ) Register ......  23-43

SPORT Transmit DMA Pointer (SPDT_PTR) Register ........  23-44

SPORT Transmit DMA Configuration (SPDT_CFG) Register  23-44

SPORT Transmit DMA Start Address (SPDT_SRA) Register  23-45

SPORT Transmit DMA Start Page (SPDT_SRP) Register ....  23-45

SPORT Transmit DMA Count (SPDT_CNT) Register ........  23-46

SPORT Transmit DMA Chain Pointer (SPDT_CP) Register  23-46

SPORT Transmit DMA Chain Pointer Ready (SPDT_CPR) 
Register ............................................................................  23-47

SPORT Transmit DMA Interrupt (SPDT_IRQ) Register .....  23-47

Serial Peripheral Interface Registers ............................................  23-48

SPI Control (SPICTL) Register ............................................  23-48

SPI Flag (SPIFLG) Register .................................................  23-51

SPI Status (SPIST) Register .................................................  23-52



CONTENTS

xxx ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

SPI Transmit Buffer (TDBR) Register .................................  23-54

Receive Buffer, SPI (RDBR) Register ...................................  23-54

Receive Data Buffer Shadow, SPI (RDBRS) Register ............  23-55

SPI Baud Rate (SPIBAUD) Register ....................................  23-55

SPI DMA Current Pointer (SPID_PTR) Register .................  23-55

SPI DMA Configuration (SPID_CFG) Register ...................  23-56

SPI DMA Start Page (SPID_SRP) Register ..........................  23-58

SPI DMA Start Address (SPID_SRA) Register .....................  23-58

SPI DMA Word Count (SPID_CNT) Register ....................  23-58

SPI DMA Next Chain Pointer (SPID_CP) Register .............  23-58

SPI DMA Chain Pointer Ready (SPID_CPR) Register .........  23-59

SPI DMA Interrupt (SPID_IRQ) Register ...........................  23-59

Timer Registers ........................................................................  23-59

Timer Global Status and Control (T_GSRx) Registers .........  23-60

Timer Configuration (T_CFGRx) Registers .........................  23-62

Timer Counter, low word (T_CNTLx) and high word (T_CNTHx) 
Registers ..........................................................................  23-63

Timer Period, low word (T_PRDLx) and high word (T_PRDHx) 
Registers ..........................................................................  23-65

Timer Width, low word (T_WLRx) and high word (T_WHRx) Register 
 23-66

External Memory Interface Registers .........................................  23-68

External Memory Interface Control/Status (E_STAT) Register  23-68

External Memory Interface Control (EMICTL) Register ......  23-69

Boot Memory Select Control (BMSCTL) Register ...............  23-70



ADSP-2199x Mixed Signal DSP Controller xxxi
Hardware Reference

CONTENTS

Preliminary

Memory Select Control (MSxCTL) Registers .......................  23-72

I/O Memory Select Control (IOMSCTL) Register  ..............  23-73

External Port Status (EMISTAT) Register .............................  23-73

Memory Page (MEMPGx) Registers .....................................  23-75

NUMERIC FORMATS

Overview ....................................................................................  24-1

Un/Signed: Two’s-Complement Format .......................................  24-1

Integer or Fractional ....................................................................  24-2

Binary Multiplication ..................................................................  24-4

Fractional Mode and Integer Mode ........................................  24-5

Block Floating-Point Format .......................................................  24-6

INDEX



-xxxii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary



ADSP-2199x Mixed Signal DSP Controller xxxiii 
Hardware Reference

Preface

Preliminary

PREFACE

Purpose
The ADSP-2199x Mixed Signal DSP Controller Hardware Reference pro-
vides architectural information on the ADSP-2199x family of DSP 
products and the ADSP-219x modified Harvard architecture Digital Sig-
nal Processor (DSP) core. The architectural descriptions cover functional 
blocks, buses, and ports, including all the features and processes they 
support.

Instruction Set Enhancements
The ADSP-2199x provides near source code compatibility with the previ-
ous family members, easing the process of porting code. All computational 
instructions (but not all registers) from previous ADSP-2100 family DSPs 



For more Information about Analog Products

xxxiv ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

are available in the ADSP-2199x. New instructions, control registers, or 
other facilities, required to support the new feature set of the ADSP-219x 
core are: 

• Program flow control differences (pipeline execution and changes 
to looping)

• Memory accessing differences (DAG support and memory map)

• Peripheral I/O differences (additional ports and added DMA 
functionality)

For programming information, see the ADSP-219x DSP Instruction Set 
Reference.

For more Information about Analog 
Products

Analog Devices is online on the internet at http://www.analog.com. Our 
Web pages provide information on the company and products, including 
access to technical information and documentation, product overviews, 
and product announcements.

You may also obtain additional information about Analog Devices and its 
products in any of the following ways:

Visit our World Wide Web site at www.analog.com

• FAX questions or requests for information to 1(781)461-3010.

• Access the DSP Division File Transfer Protocol (FTP) site at ftp 
ftp.analog.com or ftp 137.71.23.21 or ftp://ftp.analog.com.



ADSP-2199x Mixed Signal DSP Controller xxxv 
Hardware Reference

Preface

Preliminary

For Technical or Customer Support 
You can reach our Customer Support group in the following ways:

E-mail questions to MixedSignalDSP@analog.com or 
dsp.europe@analog.com (European customer support)

• Telex questions to 924491, TWX:710/394-6577 

• Cable questions to ANALOG NORWOODMASS

• Contact your local ADI sales office or an authorized ADI 
distributor

• Send questions by mail to:

Analog Devices, Inc.

DSP Division

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

What’s New in this Manual
This is the first edition of the Mixed Signal DSP Controller Hardware Ref-
erence. Summaries of changes between editions will start with the next 
edition.



Related Documents

xxxvi ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Related Documents
For more information about Analog Devices DSPs and development 
products, see the following documents:

• ADSP-2199x Mixed Signal DSP Data Sheet

• ADSP-219x DSP Instruction Set Reference

• VisualDSP++ User’s Guide for ADSP-21xx Family DSPs

• C Compiler and Library Manual for ADSP-219x Family DSPs

• Assembler and Preprocessor Manual for ADSP-219x Family DSPs

• Linker and Utilities Manual for ADSP-219x Family DSPs

• Getting Started Guide for ADSP-219x Family DSPs

All the manuals are included in the software distribution CD-ROM. To 
access these manuals, use the Help Topics command in the VisualDSP++ 
environment’s Help menu and select the Online Manuals. From this Help 
topic, you can open any of the manuals, which are in Adobe Acrobat PDF 
format. 



ADSP-2199x Mixed Signal DSP Controller xxxvii 
Hardware Reference

Preface

Preliminary

Conventions
The following are conventions that apply to all chapters. Note that addi-
tional conventions, which apply only to specific chapters, appear 
throughout this document.

Table -1. Notation Conventions

Example Description

AX0, SR, PX Register names appear in UPPERCASE and keyword font

TMR0E, RESET Pin names appear in UPPERCASE and keyword font; active low signals 
appear with an OVERBAR.

DRx, MS3-0 Register and pin names in the text may refer to groups of registers or 
pins. When a lowercase “x” appears in a register name (e.g., DRx), that 
indicates a set of registers (e.g., DR0, DR1, and DR2). A range also may be 
shown with a hyphen (e.g., MS3-0 indicates MS3, MS2, MS1, and MS0).

If, Do/Until Assembler instructions (mnemonics) appear in Mixed-case and keyword 
font

[this, that]

|this, that|

Assembler instruction syntax summaries show optional items two ways. 
When the items are optional and none is required, the list is shown 
enclosed in square brackets, []. When the choices are optional, but one 
is required, the list is shown enclosed in vertical bars, ||.

0xabcd, b#1111 A 0x prefix indicates hexadecimal; a b# prefix indicates binary

A note, providing information of special interest or identifying a related 
DSP topic.

A caution, providing information on critical design or programming 
issues that influence operation of the DSP.

Click Here In the online version of this document, a cross reference acts as a hyper-
text link to the item being referenced. Click on blue references (Table, 
Figure, or section names) to jump to the location.



Conventions

xxxviii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-1 
 

Introduction

Preliminary

1 INTRODUCTION

Overview—Why Fixed-Point DSP?
A digital signal processor’s data format determines its ability to handle sig-
nals of differing precision, dynamic range, and signal-to-noise ratios. 
Because 16-bit, fixed-point DSP math is required for certain DSP coding 
algorithms, using a 16-bit, fixed-point DSP can provide all the features 
needed for certain algorithm and software development efforts. Also, a 
narrower bus width (16-bit as opposed to 32- or 64-bit wide) leads to 
reduced power consumption and other design savings. The extent to 
which this is true depends on the fixed-point processor’s architecture. 
High-level language programmability, large address spaces, and wide 
dynamic range allow system development time to be spent on algorithms 
and signal processing concerns, rather than assembly language coding, 
code paging, and error handling. The ADSP-2199x DSP is a highly inte-
grated, 16-bit fixed-point DSP that provides many of these design 
advantages.



ADSP-2199x Design Advantages

1-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

ADSP-2199x Design Advantages
The ADSP-2199x family DSPs are mixed-signal DSP controllers based on 
the ADSP-219x DSP core, suitable for a variety of high-performance 
industrial motor control and signal processing applications that require 
the combination of a high-performance DSP and the mixed-signal inte-
gration of embedded control peripherals such as analog to digital 
conversion with communications interfaces such as CAN and SPI.

The ADSP-2199x integrates the 160 MIPS, fixed point ADSP-219x fam-
ily base architecture with a serial port, an SPI compatible port, a DMA 
controller, three programmable timers, general purpose Programmable 
Flag pins, extensive interrupt capabilities, on-chip program and data 
memory spaces, and a complete set of embedded control peripherals that 
permits fast motor control and signal processing in a highly integrated 
environment.

The ADSP-219x architecture balances a high-performance processor core 
with high performance buses (PM, DM, DMA). In the core, every compu-
tational instruction can execute in a single cycle. The buses and 
instruction cache provide rapid, unimpeded data flow to the core to main-
tain the execution rate. 

Figure 1-2 on page 1-7 shows a detailed block diagram of the processor, 
illustrating the following architectural features:

• Computation units—multiplier, ALU, shifter, and data register file

• Program sequencer with related instruction cache, interval timer, 
and Data Address Generators (DAG1 and DAG2)

• Dual-blocked SRAM

• External ports for interfacing to off-chip memory, peripherals, and 
hosts



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-3 
 

Introduction

Preliminary

• Communications ports such as a serial port (SPORT), serial 
peripheral interface (SPI) port, and a CAN Module (ADSP-21992 
only)

• Mixed signal and embedded control peripherals such as analog to 
digital conversion, Encoder Interface Unit, PWM Generator, etc., 
that permit fast motor control and signal processing in a highly 
integrated environment.

• JTAG Test Access Port for board test and emulation

Figure 1-1 on page 1-4 also shows the three on-chip buses of the 
ADSP-2199x: the Program Memory (PM) bus, Data Memory (DM) bus, 
and Direct Memory Accessing (DMA) bus. The PM bus provides access to 
either instructions or data. During a single cycle, these buses let the pro-
cessor access two data operands (one from PM and one from DM), and 
access an instruction (from the cache).



ADSP-2199x Design Advantages

1-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The buses connect to the ADSP-2199x’s external port, which provides the 
processor’s interface to external memory, I/O memory-mapped, and boot 
memory. The external port performs bus arbitration and supplies control 
signals to shared, global memory and I/O devices.

Figure 1-1. ADSP-2199x DSP Block Diagram

ADC
CO NTROL

V RE F

PIPE LINE
FLAS H ADC

CLOCK
GENERATOR / PLL

PM ADDRES S/DATA

DM ADDRE SS/DATA

I/O
BUS

DMRAM
(BLOCK 1)

PM RAM
(BLO CK 0)

EXT ERNAL
ME MORY

INTE RFACE
(EMI)

TIME R 0

TIME R 1

TIME R 2

PMROM
(BLOCK 2)

160 MHZ

ADSP -219X

DS P

JTAG
TES T &

EMULATION

ADDRESS

DATA

CONTROL

I/O REGISTERS

PW M
GENERATION

UNIT

E NCO DE R
INTE RFACE

UNI T
(AND EE T)

AUX ILIARY
PW M
UNIT

FLAG
I/O

SP I SPO RT

W ATCHDO G

TIME R

INTERRUP T
CONTROLLER

(I CNTL)

P OR

MEMORY DMA
CO NTROLLE R

CO NTROLLER
AR EA

NE TW ORK
(CAN)

NO TE S:
1 . THE CON TROLLE R AREA NETW ORK (CAN) AP PLIES O NLY TO THE ADSP -21992.
2 . RE FE R TO THE MEMORY CHAPTE R FOR S IZES OF THE ME MORY BLOCKS.

(SEE NOTE 2) (SE E NOTE 2) (SEE NOTE 2)

(S EE NOTE 1)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-5 
 

Introduction

Preliminary

Further, the ADSP-2199x addresses the five central requirements for 
DSPs:

• Fast, flexible arithmetic computation units

Fast, Flexible Arithmetic. The ADSP-2199x family DSPs execute 
all computational instructions in a single cycle. They provide both 
fast cycle times and a complete set of arithmetic operations.

• Unconstrained data flow to and from the computation units

Unconstrained Data Flow. The ADSP-2199x has a modified Har-
vard architecture combined with a data register file. In every cycle, 
the DSP can:

— Read two values from memory or write one value to 
memory

— Complete one computation
— Write up to three values back to the register file

• Extended precision and dynamic range in the computation units

40-Bit Extended Precision. The DSP handles 16-bit integer and 
fractional formats (two’s-complement and unsigned). The proces-
sors carry extended precision through result registers in their 
computation units, limiting intermediate data truncation errors. 

• Dual address generators with circular buffering support

Dual Address Generators. The DSP has two data address genera-
tors (DAGs) that provide immediate or indirect (pre- and 
post-modify) addressing. Modulus and bit-reverse operations are 
supported with memory page constraints on data buffer placement 
only.



ADSP-2199x Architecture Overview

1-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Efficient program sequencing

Efficient Program Sequencing. In addition to zero-overhead loops, 
the DSP supports quick setup and exit for loops. Loops are both 
nestable (eight levels in hardware) and interruptable. The proces-
sors support both delayed and non-delayed branches.

ADSP-2199x Architecture Overview
The ADSP-2199x Family DSPs are mixed-signal DSP controllers based 
on the ADSP-219x DSP core, suitable for a variety of high-performance 
industrial motor control and signal processing applications that require 
the combination of a high-performance DSP and the mixed-signal inte-
gration of embedded control peripherals These DSPs provide a complete 
system-on-a-chip, integrating a large, high-speed SRAM and I/O periph-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-7 
 

Introduction

Preliminary

erals supported by a dedicated DMA bus. The following sections 
summarize the features of each functional block in the ADSP-2199x archi-
tecture, which appears in Figure 1-1 on page 1-4. 

The ADSP-2199x combines the ADSP-219x family base architecture 
(three computational units, two data address generators, and a program 
sequencer) with an Analog to Digital Converter, Encoder Interface Unit, 
PWM generator, a CAN Module (ADSP-21992 only) a serial port, an 
SPI-compatible port, a DMA controller, three programmable timers, gen-
eral-purpose Programmable Flag pins, extensive interrupt capabilities, and 
on-chip program and data memory blocks.

Figure 1-2. DSP Core

DATAADDRESS B
LO

C
K

3

DATAADDRESS B
L

O
C

K
2

SYSTEM INTERRUPT
CONTROLLER

I/O DATA

I/O REGISTERS
(MEMORY-MAPPED)

CONTROL
STATUS

BUFFERS

I/O PROCESSOR

CACHE
64 X 24-BIT

JTAG
TEST AND

EMULATION

6

ADDR BUS
MUX

DATA BUS
MUX

16

22

PM ADDRESS BUS

DM ADDRESS BUS

PM DATA BUS

DM DATA BUS

PX
24

16

ADSP-219X DSP CORE

PROGRAM
SEQUENCER

DATA
REGISTER

FILE

MULT BARREL
SHIFTER ALU

DMA CONTROLLER

INPUT
REGISTERS

RESULT
REGISTERS
16 X 16-BIT

DAG1
4 X 4 X 16

DAG2
4 X 4 X 16

INTERNAL MEMORY

24

24

ADDRESS B
L

O
C

K
1

DATA
DATAADDRESS B

L
O

C
K

0

24 BIT

16 BIT
16 BIT

FOUR INDEPENDENT BLOCKS

PROGRAMMABLE
FLAGS (16)

TIMERS
(3)

3

DMA CONNECT DMA ADDRESS

EXTERNAL PORT

24 BIT

18I/O ADDRESS

24

16

24DMA DATA

EMBEDDED
CONTROL

PERIPHERALS
AND

COMMUNICATIONS
PORTS



ADSP-2199x Architecture Overview

1-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The ADSP-2199x architecture is code compatible with ADSP-218x family 
DSPs. Though the architectures are compatible, the ADSP-2199x archi-
tecture has a number of enhancements over the ADSP-218x architecture. 
The enhancements to computational units, data address generators, and 
program sequencer make the ADSP-2199x more flexible and even easier 
to program than the ADSP-218x DSPs.

Indirect addressing options provide addressing flexibility—pre-modify 
with no update, pre- and post-modify by an immediate 8-bit, two’s-com-
plement value and base address registers for easier implementation of 
circular buffering.

The ADSP-2199x DSPs integrate various amounts of on-chip memory. 
Please refer to “ADSP-2199x Memory Organization” in Chapter 4, Mem-
ory for the memory configuration for each device in the ADSP-2199x 
family of DSPs. Power-down circuitry is also provided to meet the low 
power needs of battery operated portable equipment.

The ADSP-2199x’s flexible architecture and comprehensive instruction 
set support multiple operations in parallel. For example, in one processor 
cycle, the ADSP-2199x can:

• Generate an address for the next instruction fetch

• Fetch the next instruction

• Perform one or two data moves

• Update one or two data address pointers

• Perform a computational operation

These operations take place while the processor continues to:

• Receive and transmit data through the serial port

• Receive or transmit data over the SPI port

• Access external memory through the external memory interface



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-9 
 

Introduction

Preliminary

• Decrement the timers 

• Operate the embedded control peripherals (ADC, PWM, EIU, etc.

DSP Core Architecture
The ADSP-219x instruction set provides flexible data moves and multi-
function (one or two data moves with a computation) instructions. Every 
single-word instruction can be executed in a single processor cycle. The 
ADSP-219x assembly language uses an algebraic syntax for ease of coding 
and readability. A comprehensive set of development tools supports pro-
gram development.

Figure 1-2 on page 1-7 shows the architecture of the ADSP-219x core. It 
contains three independent computational units: the ALU, the multi-
plier/accumulator, and the shifter. The computational units process 16-bit 
data from the register file and have provisions to support multiprecision 
computations. The ALU performs a standard set of arithmetic and logic 
operations; division primitives also are supported. The multiplier per-
forms single-cycle multiply, multiply/add, and multiply/subtract 
operations. The multiplier has two 40-bit accumulators, which help with 
overflow. The shifter performs logical and arithmetic shifts, normaliza-
tion, denormalization, and derive exponent operations. The shifter can 
efficiently implement numeric format control, including multiword and 
block floating-point representations.

Register-usage rules influence placement of input and results within the 
computational units. For most operations, the computational units’ data 
registers act as a data register file, permitting any input or result register to 
provide input to any unit for a computation. For feedback operations, the 
computational units let the output (result) of any unit be input to any 
unit on the next cycle. For conditional or multifunction instructions, 
there are restrictions limiting which data registers may provide inputs or 
receive results from each computational unit. For more information, see 
“Multifunction Computations” on page 2-64.



ADSP-2199x Architecture Overview

1-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

A powerful program sequencer controls the flow of instruction execution. 
The sequencer supports conditional jumps, subroutine calls, and low 
interrupt overhead. With internal loop counters and loop stacks, the 
ADSP-2199x executes looped code with zero overhead; no explicit jump 
instructions are required to maintain loops.

Two data address generators (DAGs) provide addresses for simultaneous 
dual operand fetches (from data memory and program memory). Each 
DAG maintains and updates four 16-bit address pointers. Whenever the 
pointer is used to access data (indirect addressing), it is pre- or post-modi-
fied by the value of one of four possible modify registers. A length value 
and base address may be associated with each pointer to implement auto-
matic modulo addressing for circular buffers. Page registers in the DAGs 
allow circular addressing within 64K word boundaries of each of the 256 
memory pages, but these buffers may not cross page boundaries. Second-
ary registers duplicate all the primary registers in the DAGs; switching 
between primary and secondary registers provides a fast context switch. 

Efficient data transfer in the core is achieved by using internal buses:

• Program Memory Address (PMA) Bus

• Program Memory Data (PMD) Bus

• Data Memory Address (DMA) Bus

• Data Memory Data (DMD) Bus

• DMA Address Bus

• DMA Data Bus

The internal address buses share a single external address bus, allowing 
memory to be expanded off-chip, and the data buses share a single external 
data bus. Boot memory space and external I/O memory space also share 
the external buses.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-11 
 

Introduction

Preliminary

Program memory can store both instructions and data, permitting the 
DSP core to fetch two operands in a single cycle, one from program mem-
ory and one from data memory. The DSP’s dual memory buses also let the 
DSP core fetch an operand from data memory and the next instruction 
from program memory in a single cycle.

DSP Peripherals Architecture
Figure 1-1 on page 1-4 shows the DSP’s on-chip peripherals, which 
include the external memory interface, JTAG test and emulation port, 
communications ports, mixed signal peripherals, timers, flags, and inter-
rupt controller.

The ADSP-2199x also has an external memory interface that is shared by 
the DSP’s core, the DMA controller, and DMA capable peripherals, 
which include the serial port, SPI port, and the Analog to Digital Con-
verter. The external port consists of an 8- or 16-bit data bus, a 22-bit 
address bus, and control signals. The data bus is configurable to provide 
an 8- or 16-bit interface to external memory. Support for word packing 
lets the DSP access 16- or 24-bit words from external memory regardless 
of the external data bus width.

The memory DMA controller lets the ADSP-2199x transfer data to and 
from internal and external memory. On-chip peripherals also can use this 
port for DMA transfers to and from memory. 

The ADSP-2199x can respond to up to 17 interrupt sources at any given 
time: three internal (stack, emulator kernel, and power-down), two exter-
nal (emulator and reset), and twelve user-defined (peripherals) interrupt 
requests. Programmers assign a peripheral to one of the 12 user defined 
interrupt requests. These assignments determine the priority of each 
peripheral for interrupt service. Several peripherals can be combined on a 
single interrupt request line.



ADSP-2199x Architecture Overview

1-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

There is a serial port on the ADSP-2199x that provides a complete syn-
chronous, full-duplex serial interface. This interface includes optional 
companding in hardware and a wide variety of framed or frameless data 
transmit and receive modes of operation. Each serial port can transmit or 
receive an internal or external, programmable serial clock and frame syncs. 
Each serial port supports 128-channel Time Division Multiplexing.

Three programmable interval timers generate periodic interrupts. Each 
timer can be independently set to operate in one of three modes:

• Pulse Waveform Generation mode

• Pulse Width Count/Capture mode

• External Event Watchdog mode

Each timer has one bi-directional pin and four registers that implement its 
mode of operation: a configuration register, a count register, a period reg-
ister, and a pulsewidth register. A single status register supports all three 
timers. A bit in the mode status register globally enables or disables all 
three timers, and a bit in each timer’s configuration register enables or dis-
ables the corresponding timer independently of the others. 

Memory Architecture 
The ADSP-2199x DSPs integrate various amounts of on-chip memory. 
Please refer to “ADSP-2199x Memory Organization” in Chapter 4, Mem-
ory for the memory configuration for each device in the ADSP-2199x 
family of DSPs. This memory is located on memory Page 0 in the DSP’s 
memory map. In addition to the internal and external memory space, the 
ADSP-2199x can address two additional and separate memory spaces: I/O 
space and boot space. 

The DSP’s two internal memory blocks populate all of Page 0. The entire 
DSP memory map consists of 256 pages (pages 0-255), and each page is 
64K words long. External memory space consists of four memory banks 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-13 
 

Introduction

Preliminary

(banks 3:0) and supports a wide variety of SRAM memory devices. Each 
bank is selectable using the memory select pins (MS3-0) and has config-
urable page boundaries, waitstates, and waitstate modes. The 4K word of 
on-chip boot-ROM populates the lower 1K addresses of page 255. Other 
than page 0 and page 255, the remaining 254 pages are addressable 
off-chip. I/O memory pages differ from external memory pages in that 
I/O pages are 1K word long, and the external I/O pages have their own 
select pin (IOMS). Pages 0–7 of I/O memory space reside on-chip and con-
tain the configuration registers for the peripherals. Both the DSP core and 
DMA-capable peripherals can access the DSP’s entire memory map.

Internal (On-chip) Memory

The ADSP-2199x’s unified program and data memory space consists of 
16M locations that are accessible through two 24-bit address buses, the 
PMA and DMA buses. The DSP uses slightly different mechanisms to 
generate a 24-bit address for each bus. The DSP has three functions that 
support access to the full memory map.

• The DAGs generate 24-bit addresses for data fetches from the 
entire DSP memory address range. Because DAG index (address) 
registers are 16 bits wide and hold the lower 16-bits of the address, 
each of the DAGs has its own 8-bit page register (DMPGx) to hold 
the most significant eight address bits. Before a DAG generates an 
address, the program must set the DAG’s DMPGx register to the 
appropriate memory page.

• The program sequencer generates the addresses for instruction 
fetches. For relative addressing instructions, the program sequencer 
bases addresses for relative jumps, calls, and loops on the 24-bit 
Program Counter (PC). For direct addressing instructions 



ADSP-2199x Architecture Overview

1-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

(two-word instructions), the instruction provides an immediate 
24-bit address value. The PC allows linear addressing of the full 24 
bit address range.

• The program sequencer relies on an 8-bit Indirect Jump page 
(IJPG) register to supply the most significant eight address bits for 
indirect jumps and calls that use a 16-bit DAG address register for 
part of the branch address. Before a cross page jump or call, the 
program must set the program sequencer’s IJPG register to the 
appropriate memory page.

The ADSP-2199x has 4K word of on-chip ROM that holds boot routines. 
If peripheral booting is selected, the DSP starts executing instructions 
from the on-chip boot ROM, which starts the boot process from the 
selected peripheral. For more information, see “Booting Modes” on page 
1-23. The on-chip boot ROM is located on Page 255 in the DSP’s mem-
ory map.

The ADSP-2199x has internal I/O memory for peripheral control and sta-
tus registers. For more information, see the I/O memory space discussion 
on page 1-15.

External (Off-chip) Memory

Each of the ADSP-2199x’s off-chip memory spaces has a separate control 
register, so applications can configure unique access parameters for each 
space. The access parameters include read and write wait counts, waitstate 
completion mode, I/O clock divide ratio, write hold time extension, 
strobe polarity, and data bus width. The core clock and peripheral clock 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-15 
 

Introduction

Preliminary

ratios influence the external memory access strobe widths. For more infor-
mation, see “Clock Signals” on page 1-23. The off-chip memory spaces 
are:

• External memory space (MS3-0 pins)

• I/O memory space (IOMS pin)

• Boot memory space (BMS pin)

All of these off-chip memory spaces are accessible through the external 
port, which can be configured for 8-bit or 16-bit data widths.

External Memory Space.External memory space consists of four memory 
banks. These banks can contain a configurable number of 64K word 
pages. At reset, the page boundaries for external memory have Bank 0 con-
taining pages 1-63, Bank 1 containing pages 64-127, Bank 2 containing 
pages 128-191, and Bank 3 containing pages 192-254. The MS3-0 mem-
ory bank pins select Bank 3-0, respectively. The external memory interface 
decodes the eight MSBs of the DSP program address to select one of the 
four banks. Both the DSP core and DMA-capable peripherals can access 
the DSP’s external memory space.

I/O Memory Space. The ADSP-2199x supports an additional external 
memory called I/O memory space. This space is designed to support sim-
ple connections to peripherals (such as data converters and external 
registers) or to bus interface ASIC data registers. I/O space supports a total 
of 256K locations. The first 8K addresses are reserved for on-chip periph-
erals. The upper 248K addresses are available for external peripheral 
devices and are selected with the IOMS pin. The DSP’s instruction set pro-
vides instructions for accessing I/O space. These instructions use an 18-bit 
address that is assembled from an 8-bit I/O page (IOPG) register and a 
10-bit immediate value supplied in the instruction.

Boot Memory Space. Boot memory space consists of one off-chip bank 
with 253 pages. The BMS pin selects boot memory space. Both the DSP 
core and DMA-capable peripherals can access the DSP’s off-chip boot 



ADSP-2199x Architecture Overview

1-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

memory space. If the DSP is configured to boot from boot memory space, 
the DSP starts executing instructions from the on-chip boot ROM, which 
starts booting the DSP from boot memory. For more information, see 
“Booting Modes” on page 1-23.

Interrupts
The interrupt controller lets the DSP respond to seventeen interrupts with 
minimum overhead. The controller implements an interrupt priority 
scheme that lets programs assign interrupt priorities to each peripheral. 
For more information, see “Peripheral Interrupt Controller” on page 
13-1.

DMA Controller
The ADSP-2199x has a DMA controller that supports automated data 
transfers with minimal overhead for the DSP core. Cycle stealing DMA 
transfers can occur between the ADSP-2199x’s internal memory and any 
of its DMA capable peripherals. Additionally, DMA transfers also can be 
accomplished between any of the DMA capable peripherals and external 
devices connected to the external memory interface. DMA capable periph-
erals include the serial port, SPI port, ADC and memory-to-memory 
(memDMA) DMA channel. Each individual DMA capable peripheral has 
one or more dedicated DMA channels. For a description of each DMA 
sequence, the DMA controller uses a set of parameters—called a DMA 
descriptor. When successive DMA sequences are needed, these descriptors 
can be linked or chained together. When chained, the completion of one 
DMA sequence auto-initiates and starts the next sequence. DMA 
sequences do not contend for bus access with the DSP core, instead DMAs 
“steal” cycles to access memory. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-17 
 

Introduction

Preliminary

DSP Serial Port (SPORT)
The ADSP-2199x incorporates a complete synchronous serial port for 
serial and multiprocessor communications. The SPORT supports the fol-
lowing features:

• Bidirectional operation—the SPORT has independent transmit 
and receive pins.

• Buffered (eight-deep) transmit and receive ports—the SPORT has 
a data register for transferring data words to and from other DSP 
components and shift registers for shifting data in and out of the 
data registers.

• Clocking—each transmit and receive port either can use an exter-
nal serial clock (≤80 MHz) or generate its own, in frequencies 
ranging from 1144 Hz to 80 MHz.

• Word length—the SPORT supports serial data words from 3- to 
16-bits in length transferred in big endian (MSB) or little endian 
(LSB) format.

• Framing—each transmit and receive port can run with or without 
frame sync signals for each data word.

• Companding in hardware—the SPORT can perform A-law or 
µ-law companding, according to ITU recommendation G.711. 

• DMA operations with single-cycle overhead—the SPORT can 
automatically receive and transmit multiple buffers of memory 
data, one data word each DSP cycle.

• Interrupts—each transmit and receive port generates an interrupt 
upon completing the transfer of a data word or after transferring an 
entire data buffer or buffers through DMA.

• Multichannel capability—the SPORT supports the H.100 
standard.



ADSP-2199x Architecture Overview

1-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Serial Peripheral Interface (SPI) Port
The ADSP-2199x has one independent Serial Peripheral Interface (SPI) 
port, SPI, that provides an I/O interface to a wide variety of SPI-compati-
ble peripheral devices. The SPI port has its own set of control registers and 
data buffers. With a range of configurable options, the SPI port provides a 
glueless hardware interface with other SPI-compatible devices.

SPI is a 4-wire interface consisting of two data pins, a device-select pin, 
and a clock pin. SPI is a full-duplex synchronous serial interface, support-
ing master modes, slave modes, and multi-master environments. For a 
multi-slave environment, the ADSP-2199x can make use of 7 programma-
ble flags, PF1 - PF7, to be used as dedicated SPI slave-select signals for the 
SPI slave devices.

The SPI port’s baud rate and clock phase/polarities are programmable, 
and each has an integrated DMA controller, configurable to support both 
transmit and receive data streams. The SPI’s DMA controller can only ser-
vice uni-directional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by 
serially shifting data in and out on their two serial data lines. The serial 
clock line synchronizes the shifting and sampling of data on the two serial 
data lines.

Controller Area Network (CAN) Module
The ADSP-21992 contains a CAN Module designed to conform to the 
CAN V2.0B standard. The CAN Module is a low baud rate serial interface 
intended for use in applications where baud rates are typically under 1 
Mbit/ sec. The CAN protocol incorporates a data CRC check, message 
error tracking and fault node confinement as means to improve network 
reliability to the level required for control applications. The interface to 
the CAN bus is a simple two-wire line: an input pin Rx and an output pin 
Tx.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-19 
 

Introduction

Preliminary

The CAN module architecture is based around a 16-entry mailbox RAM. 
The mailbox is accessed sequentially by the CAN serial interface or the 
host CPU. Each mailbox consists of eight 16-bit data words. The data is 
divided into fields, which includes a message identifier, a time stamp, a 
byte count, up to 8 bytes of data, and several control bits. Each node mon-
itors the messages being passed on the network. If the identifier in the 
transmitted message matches an identifier in one of its mailboxes, then the 
module knows that the message was meant for it, passes the data into its 
appropriate mailbox, and signals the host of its arrival with an interrupt.

Analog To Digital Conversion System
The ADSP-2199x contains a fast, high accuracy, multiple input analog to 
digital conversion system with simultaneous sampling capabilities. This 
A/D conversion system permits the fast, accurate conversion of analog sig-
nals needed in high performance embedded systems.

The ADC system is based on a pipeline flash converter core, and contains 
dual input Sample and Hold amplifiers so that simultaneous sampling of 
two input signals is supported. The ADC system provides an analog input 
voltage range of 2.0Vpp and provides 14-bit performance with a clock rate 
of up to 20 MHz. The ADC system can be programmed to operate at a 
clock rate that is programmable from HCLK./4 to HCLK./30, to a maxi-
mum of 20 MHz.

The ADC input structure supports 8 independent analog inputs; 4 of 
which are multiplexed into one sample and hold amplifier (A_SHA) and 4 
of which are multiplexed into the other sample and hold amplifier 
(B_SHA). At the 20 MHz HCLK rate, the first data value is valid approx-
imately 375 ns after the Convert Start command. All 8 channels are 
converted in approximately 725 ns.



ADSP-2199x Architecture Overview

1-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

PWM Generation Unit
The ADSP-2199x integrates a flexible and programmable, three-phase 
PWM waveform generator that can be programmed to generate the 
required switching patterns to drive a three-phase voltage source inverter 
for ac induction (ACIM) or permanent magnet synchronous (PMSM) 
motor control. In addition, the PWM block contains special functions 
that considerably simplify the generation of the required PWM switching 
patterns for control of the electronically commutated motor (ECM) or 
brushless dc motor (BDCM). Tying a dedicated pin, PWMSR, to GND, 
enables a special mode, for switched reluctance motors (SRM).

The six PWM output signals consist of three high side drive pins (AH, BH 
and CH) and three low side drive signals pins (AL, BL and CL). The 
polarity of the generated PWM signals may be set via hardware by the 
PWMPOL input pin, so that either active HI or active LO PWM patterns 
can be produced. The switching frequency of the generated PWM pat-
terns is programmable using the 16-bit PWMTM register. The PWM 
generator is capable of operating in two distinct modes, single update 
mode or double update mode. In single update mode the duty cycle values 
are programmable only once per PWM period, so that the resultant PWM 
patterns are symmetrical about the midpoint of the PWM period. In the 
double update mode, a second updating of the PWM registers is imple-
mented at the midpoint of the PWM period. In this mode, it is possible to 
produce asymmetrical PWM patterns. that produce lower harmonic dis-
tortion in three phase PWM inverters.

Auxiliary PWM Generation Unit
The ADSP-2199x integrates a two channel, 16-bit, auxiliary PWM output 
unit that can be programmed with variable frequency, variable duty cycle 
values and may operate in two different modes, independent mode or off-
set mode. In independent mode, the two auxiliary PWM generators are 
completely independent and separate switching frequencies and duty 
cycles may be programmed for each auxiliary PWM output. In offset 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-21 
 

Introduction

Preliminary

mode the switching frequency of the two signals on the AUX0 and AUX1 
pins is identical. Bit 4 of the AUXCTRL register places the auxiliary 
PWM channel pair in independent or offset mode.

The Auxiliary PWM Generation unit provides two chip output pins, 
AUX0 and AUX1 (on which the switching signals appear) and one chip 
input pin, AUXTRIP, which can be used to shutdown the switching sig-
nals, for example in a fault condition.

Encoder Interface Unit
The ADSP-2199x incorporates a powerful encoder interface block to 
incremental shaft encoders that are often used for position feedback in 
high performance motion control systems.

The encoder interface unit (EIU) includes a 32-bit quadrature up/down 
counter, programmable input noise filtering of the encoder input signals 
and the zero markers, and has four dedicated chip pins. The quadrature 
encoder signals are applied at the EIA and EIB pins. Alternatively, a fre-
quency and direction set of inputs may be applied to the EIA and EIB 
pins. In addition, two north marker/strobe inputs are provided on pins 
EIZ and EIS. These inputs may be used to latch the contents of the 
encoder quadrature counter into dedicated registers, EIZLATCH and 
EISLATCH, on the occurrence of external events at the EIZ and EIS pins. 
These events may be programmed to be either rising edge only (latch 
event) or rising edge if the encoder is moving in the forward direction and 
falling edge if the encoder is moving in the reverse direction (software 
latched north marker functionality).

The encoder interface unit incorporates programmable noise filtering on 
the four encoder inputs to prevent spurious noise pulses from adversely 
affecting the operation of the quadrature counter. The encoder interface 
unit operates at a clock frequency equal to the HCLK rate. The encoder 
interface unit operates correctly with encoder signals at frequencies of up 



ADSP-2199x Architecture Overview

1-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

to 13.25 MHz, corresponding to a maximum quadrature frequency of 53 
MHz (assuming an ideal quadrature relationship between the input EIA 
and EIB signals).

Flag I/O (FIO) Peripheral Unit
The ADSP-2199x contains a programmable FIO module which is a 
generic parallel I/O interface that supports sixteen bidirectional multi-
function flags or general purpose digital I/O signals (PF15-PF0). All 
sixteen FLAG bits can be individually configured as an input or output 
based on the content of the direction (DIR) register, and can also be used 
as an interrupt source for one of two FIO interrupts.

Low-Power Operation
The ADSP-2199x has four low-power options that significantly reduce the 
power dissipation when the device operates under standby conditions. To 
enter any of these modes, the DSP executes an IDLE instruction. The 
ADSP-2199x uses configuration of the bits in the PLLCTL register to select 
between the low-power modes as the DSP executes the Idle. Depending 
on the mode, an Idle shuts off clocks to different parts of the DSP in the 
different modes. The low-power modes are:

• Idle

• Powerdown Core

• Powerdown Core/Peripherals

• Powerdown All



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-23 
 

Introduction

Preliminary

Clock Signals
The ADSP-2199x can be clocked by a crystal oscillator or a buffered, 
shaped clock derived from an external clock oscillator. If a crystal oscilla-
tor is used, the crystal should be connected across the CLKIN and XTAL pins, 
with two capacitors connected. Capacitor values are dependent on crystal 
type and should be specified by the crystal manufacturer. A parallel-reso-
nant, fundamental frequency, microprocessor-grade crystal should be used 
for this configuration.

If a buffered, shaped clock is used, this external clock connects to the 
DSP’s CLKIN pin. CLKIN input cannot be halted, changed, or operated 
below the specified frequency during normal operation. This clock signal 
should be a TTL-compatible signal. When an external clock is used, the 
XTAL input must be left unconnected.

The DSP provides a user programmable 1x to 32x multiplication of the 
input clock—including some fractional values—to support 128 exter-
nal-to-internal (DSP core) clock ratios.

Booting Modes
The ADSP-2199x supports a number of different boot modes that are 
controlled by the three dedicated hardware boot mode control pins 
(BMODE2, BMODE1 and BMODE0). The use of three boot mode control pins 
means that up to eight different boot modes are possible. Of these only 
five modes are valid on the ADSP-2199x. The ADSP-2199x exposes the 
boot mechanism to software control by providing a nonmaskable boot 
interrupt that vectors to the start of the on-chip ROM memory block (at 
address 0xFF0000). A boot interrupt is automatically initiated following 
either a hardware initiated reset, via the RESET pin, or a software initiated 
reset, via writing to the Software Reset register. Following either a hard-
ware or a software reset, execution always starts from the boot ROM at 



Development Tools

1-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

address 0xFF0000, irrespective of the settings of the BMODE2, BMODE1 and 
BMODE0 pins. The dedicated BMODE2, BMODE1 and BMODE0 pins are sampled 
during hardware reset.

JTAG Port
The JTAG port on the ADSP-2199x supports the IEEE standard 1149.1 
Joint Test Action Group (JTAG) standard for system test. This standard 
defines a method for serially scanning the I/O status of each component in 
a system. Emulators use the JTAG port to monitor and control the DSP 
during emulation. Emulators using this port provide full-speed emulation 
with access to inspect and modify memory, registers, and processor stacks. 
JTAG-based emulation is non-intrusive and does not affect target system 
loading or timing.

Development Tools
The ADSP-2199x is supported by VisualDSP®, an easy-to-use project 
management environment, comprised of an Integrated Development 
Environment (IDE) and Debugger. VisualDSP lets you manage projects 
from start to finish from within a single, integrated interface. Because the 
project development and debug environments are integrated, you can 
move easily between editing, building, and debugging activities.

Flexible Project Management. The IDE provides flexible project manage-
ment for the development of DSP applications. The IDE includes access 
to all the activities necessary to create and debug DSP projects. You can 
create or modify source files or view listing or map files with the IDE Edi-
tor. This powerful Editor is part of the IDE and includes multiple 
language syntax highlighting, OLE drag and drop, bookmarks, and stan-
dard editing operations such as undo/redo, find/replace, copy/paste/cut, 
and go to.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-25 
 

Introduction

Preliminary

Also, the IDE includes access to the DSP C Compiler, C Runtime 
Library, Assembler, Linker, Loader, Simulator, and Splitter. You specify 
options for these Tools through Property Page dialogs. Property Page dia-
logs are easy to use and make configuring, changing, and managing your 
projects simple. These options control how the tools process inputs and 
generate outputs, and the options have a one-to-one correspondence to 
the tools’ command line switches. You can define these options once or 
modify them to meet changing development needs. You also can access 
the Tools from the operating system command line if you choose.

Greatly Reduced Debugging Time. The Debugger has an easy-to-use, 
common interface for all processor simulators and emulators available 
through Analog Devices and third parties or custom developments. The 
Debugger has many features that greatly reduce debugging time. You can 
view C source interspersed with the resulting Assembly code. You can pro-
file execution of a range of instructions in a program; set simulated 
watchpoints on hardware and software registers, program and data mem-
ory; and trace instruction execution and memory accesses. These features 
enable you to correct coding errors, identify bottlenecks, and examine 
DSP performance. You can use the custom register option to select any 
combination of registers to view in a single window. The Debugger can 
also generate inputs, outputs, and interrupts so you can simulate real 
world application conditions.

Software Development Tools. Software Development Tools, which sup-
port the ADSP-2199x family, let you develop applications that take full 
advantage of the architecture, including shared memory and memory 
overlays. Software Development Tools include C Compiler, C Runtime 
Library, DSP and Math Libraries, Assembler, Linker, Loader, Simulator, 
and Splitter.

C/C++ Compiler & Assembler. The C/C++ Compiler generates efficient 
code that is optimized for both code density and execution time. The 
C/C++ Compiler allows you to include Assembly language statements 
inline. Because of this, you can program in C and still use Assembly for 



Development Tools

1-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

time-critical loops. You can also use pretested Math, DSP, and C Runtime 
Library routines to help shorten your time to market. The ADSP-219x 
family assembly language is based on an algebraic syntax that is easy to 
learn, program, and debug.

Linker & Loader. The Linker provides flexible system definition through 
Linker Description Files (.LDF). In a single LDF, you can define different 
types of executables for a single or multiprocessor system. The Linker 
resolves symbols over multiple executables, maximizes memory use, and 
easily shares common code among multiple processors. The Loader sup-
ports creation of PROM, and SPI boot images. The Loader allows 
multiprocessor system configuration with smaller code and faster boot 
time.

3rd-Party Extensible. The VisualDSP environment enables third-party 
companies to add value using Analog Devices’ published set of Applica-
tion Programming Interfaces (API). Third party products—realtime 
operating systems, emulators, high-level language compilers, multiproces-
sor hardware —can interface seamlessly with VisualDSP thereby 
simplifying the tools integration task. VisualDSP follows the COM API 
format. Two API tools, Target Wizard and API Tester, are also available 
for use with the API set. These tools help speed the time-to-market for 
vendor products. Target Wizard builds the programming shell based on 
API features the vendor requires. The API tester exercises the individual 
features independently of VisualDSP. Third parties can use a subset of 
these APIs that meet their application needs. The interfaces are fully sup-
ported and backward compatible.

Further details and ordering information are available in the VisualDSP 
Development Tools data sheet. This data sheet can be requested from any 
Analog Devices sales office or distributor.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-27 
 

Introduction

Preliminary

Differences from Previous DSPs
This section identifies differences between the ADSP-2199x DSPs and 
previous ADSP-2100 family DSPs: ADSP-210x, ADSP-211x, 
ADSP-217x, and ADSP-218x. The ADSP-219x preserves much of the 
core ADSP-2100 family architecture, while extending performance and 
functionality. For background information on previous ADSP-2100 fam-
ily DSPs, see the ADSP-2100 Family User’s Manual.

The following sections describe key differences and enhancements of the 
ADSP-219x over previous ADSP-2100 family DSPs. These enhancements 
also lead to some differences in the instruction sets between these DSPs. 
For more information, see the ADSP-219x DSP Instruction Set Reference.

Computational Units and Data Register File
The ADSP-2199x DSP’s computational units differ from the 
ADSP-218x’s, because the ADSP-2199x data registers act as a register file 
for unconditional, single-function instructions. In these instructions, any 
data register may be an input to any computational unit. For conditional 
and/or multifunction instructions, the ADSP-219x and ADSP-218x DSP 
families have the same data register usage restrictions — AX and AY for 
ALU, MX and MY for the multiplier, and SI for shifter inputs. For more 
information, see “Computational Units” on page 2-1.

Arithmetic Status (ASTAT) Register Latency
The ADSP-2199x ASTAT register has a one cycle effect latency. This issue 
is discussed on page 2-18.

Norm and Exp Instruction Execution
The ADSP-2199x Norm and Exp instructions execute slightly differently 
from previous ADSP-218x DSPs. This issue is discussed on page 2-49.



Differences from Previous DSPs

1-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Shifter Result (SR) Register as Multiplier Dual 
Accumulator

The ADSP-2199x architecture introduces a new 16-bit register in addition 
to the SR0 and SR1 registers, the combination of which comprise the 40-bit 
wide SR register on the ADSP-218x DSPs. This new register, called SR2, 
can be used in multiplier or shift operations (lower 8 bits) and as a full 
16-bit-wide scratch register. As a result, the ADSP-2199x DSP has two 
40-bit-wide accumulators, MR and SR. The SR dual accumulator has 
replaced the multiplier feedback register MF, as shown in the following 
example:

Shifter Exponent (SE) Register is not Memory 
Accessible

The ADSP-218x DSPs use SE as a data or scratch register. The SE register 
of the ADSP-2199x architecture is not accessible from the data or pro-
gram memory buses. Therefore, the multifunction instructions of the 
ADSP-218x that use SE as a data or scratch register, should use one of the 
data file registers (DREG) as a scratch register on the ADSP-2199x DSP. 

ADSP-218x Instruction ADSP-219x Instruction (Replacement)

MF=MR+MX0*MY1(UU);
IF NOT MV MR=AR*MF;

SR=MR+MX0*MY1(UU);
IF NOT MV MR=AR*SR2;

ADSP-218x Instruction ADSP-219x Instruction (Replacement) 

SR=Lshift MR1(HI), SE=DM(I6,M5); SR=Lshift MR1(HI),
AX0=DM(I6,M5);



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-29 
 

Introduction

Preliminary

Conditions (SWCOND) and Condition Code 
(CCODE) Register

The ADSP-2199x DSP changes support for the ALU Signed (AS) condi-
tion and supports additional arithmetic and status condition testing with 
the Condition Code (CCODE) register and Software Condition (SWCOND) 
test. The two conditions are SWCOND and Not SWCOND. The usage of the 
ADSP-2199x’s and most ADSP-218x’s arithmetic conditions (EQ, NE, GE, 
GT, LE, LT, AV, Not AV, AC, Not AC, MV, Not MV) are compatible.

The new Shifter Overflow (SV) condition of the ADSP-2199x architecture 
is a good example of how the CCODE register and SWCOND test work. The 
ADSP-2199x DSP’s Arithmetic Status (ASTAT) register contains a bit indi-
cating the status of the shifter’s result. The shifter is a computational unit 
that performs arithmetic or logical bitwise shifts on fields within a data 
register. The result of the operation goes into the Shifter Result (SR2, SR1, 
and SR0, which are combined into SR) register. If the result overflows the 
SR register, the Shifter Overflow (SV) bit in the ASTAT register records this 
overflow/underflow condition for the SR result register (0 = No overflow 
or underflow, 1 = Overflow or underflow).

For the most part, bits (status condition indicators) in the ASTAT register 
correspond to condition codes that appear in conditional instructions. For 
example, the AZ (ALU Zero) bit in ASTAT corresponds to the EQ (ALU 
result equals zero) condition and would be used in code like this:

IF EQ AR = AX0 + AY0; 

/* if the ALU result (AR) register is zero, add AX0 and AY0 */

The SV status condition in the ASTAT bits does not correspond to a condi-
tion code that can be directly used in a conditional instruction. To test for 
this status condition, software selects a condition to test by loading a value 



Differences from Previous DSPs

1-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

into the Condition Code (CCODE) register and uses the Software Condition 
(SWCOND) condition code in the conditional instruction. The DSP code 
would look like this:

CCODE = 0x09; Nop;              // set CCODE for SV condition

IF SWCOND SR = MR0 * SR1 (UU); // mult unsigned X and Y

The Nop after loading the CCODE register accommodates the one cycle effect 
latency of the CCODE register.

The ADSP-218x DSP supports two conditions to detect the sign of the 
ALU result. On the ADSP-2199x, these two conditions (Pos and Neg) are 
supported as AS and Not AS conditions in the CCODE register. For more 
information on CCODE register values and SWCOND conditions, see “Condi-
tional Sequencing” on page 3-37.

Unified Memory Space
The ADSP-2199x architecture has a unified memory space with separate 
memory blocks to differentiate between 24- and 16-bit memory. In the 
unified memory, the term program or data memory only has semantic sig-
nificance; the address determines the “PM” or “DM” functionality. It is best 
to revise any code with non-symbolic addressing in order to use the new 
tools. 

Data Memory Page (DMPG1 and DMPG2) Registers
The ADSP-2199x processor introduces a paged memory architecture that 
uses 16-bit DAG registers to access 64K pages. The 16-bit DAG registers 
correspond to the lower 16 bits of the DSP’s address buses, which are 
24-bit wide. To store the upper 8 bits of the 24-bit address, the 
ADSP-2199x DSP architecture uses two additional registers, DMPG1 and 
DMPG2. DMPG1 and DMPG2 work with the DAG registers I0-I3 and I4-I7, 
respectively.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-31 
 

Introduction

Preliminary

Data Address Generator (DAG) Addressing Modes
The ADSP-2199x architecture provides additional flexibility over the 
ADSP-218x DSP family in DAG addressing modes: 

• Pre-modify without update addressing in addition to the 
post-modify with update mode of the ADSP-218x instruction set:

DM(IO+M1) = AR;    /* pre-modify syntax */

DM(IO+=M1) = AR;   /* post-modify syntax */

• Pre-modify and post-modify with an 8-bit two’s-complement 
immediate modify value instead of an M register:

AX0 = PM(I5+-4); /* pre-modify syntax (for modifier = -4)*/

AX0 = PM(I5+=4); /* post-modify syntax (for modifier = 4) 

*/

• DAG modify with an 8-bit two’s-complement immediate-modify 
value:

Modify(I7+=0x24);

Base Registers for Circular Buffers
The ADSP-2199x processor eliminates the existing hardware restriction of 
the ADSP-218x DSP architecture on a circular buffer starting address. 
ADSP-2199x enables declaration of any number of circular buffers by des-
ignating B0-B7 as the base registers for addressing circular buffers; these 
base registers are mapped to the “register” space on the core.



Differences from Previous DSPs

1-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Program Sequencer, Instruction Pipeline, and 
Stacks

The ADSP-2199x DSP core and inputs to the sequencer differ for various 
members of the ADSP-219x family DSPs. The main differences between 
the ADSP-218x and ADSP-2199x sequencers are that the ADSP-2199x 
sequencer has:

• A 6-stage instruction pipeline, which works with the sequencer’s 
loop and PC stacks, conditional branching, interrupt processing, 
and instruction caching. 

• A wider branch execution range, supporting: 

— 13-bit, non-delayed or delayed relative conditional Jump
— 16-bit, non-delayed or delayed relative unconditional Jump 

or Call
— Conditional non-delayed or delayed indirect Jump or Call 

with address pointed to by a DAG register
— 24-bit conditional non-delayed absolute long Jump or Call

• A narrowing of the Do/Until termination conditions to Counter 
Expired (CE) and Forever.

Conditional Execution (Difference in Flag Input 
Support)

Unlike the ADSP-218x DSP family, ADSP-2199x processors do not 
directly support a conditional Jump/Call based on flag input. Instead, the 
ADSP-2199x supports this type of conditional execution with the CCODE 
register and SWCOND condition. For more information, see “Conditions 
(SWCOND) and Condition Code (CCODE) Register” on page 1-29.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 1-33 
 

Introduction

Preliminary

The ADSP-2199x architecture has 16 programmable flag pins that can be 
configured as either inputs or outputs. The flags can be checked either by 
reading the FLAGS register, or by using a software condition flag. 

Execution Latencies (Different for JUMP 
Instructions)

The ADSP-2199x processor has an instruction pipeline (unlike 
ADSP-218x DSPs) and branches execution for immediate Jump and Call 
instructions in four clock cycles if the branch is taken. To minimize 
branch latency, ADSP-2199x programs can use the delayed branch option 
on jumps and calls, reducing branch latency by two cycles. This savings 
comes from execution of two instructions following the branch before the 
Jump/Call occurs.

ADSP-218x Instruction ADSP-219x Instruction (Replacement)

If Not FLAG_IN AR=MR0 And 8192; SWCOND=0x03;
If Not SWCOND AR=MR0 And 8192;

IOPG = 0x06;
AX0=IO(FLAGS);
AXO=Tstbit 11 OF AXO;
If EQ AR=MRO And 8192;



Differences from Previous DSPs

1-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-1 
 

Computational Units

Preliminary

2 COMPUTATIONAL UNITS

Overview
The DSP’s computational units perform numeric processing for DSP 
algorithms. The three computational units are the arithmetic/logic unit 
(ALU), multiplier/accumulator (multiplier), and shifter. These units get 
data from registers in the data register file. Computational instructions for 
these units provide fixed-point operations, and each computational 
instruction can execute in a single cycle.

The computational units handle different types of operations. The ALU 
performs arithmetic and logic operations. The multiplier does multiplica-
tion and executes multiply/add and multiply/subtract operations. The 
shifter executes logical shifts and arithmetic shifts. Also, the shifter can 
derive exponents.

Data flow paths through the computational units are arranged in parallel, 
as shown in Figure 2-1 on page 2-3. The output of any computational 
unit may serve as the input of any computational unit on the next instruc-
tion cycle. Data moving in and out of the computational units goes 
through a data register file, consisting of sixteen primary registers and six-



Overview

2-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

teen secondary registers. Two ports on the register file connect to the PM 
and DM data buses, allowing data transfer between the computational 
units and memory.

The DSP’s assembly language provides access to the data register file. The 
syntax lets programs move data to and from these registers and specify a 
computation’s data format at the same time. For information on the data 
registers, see “Data Register File” on page 2-61.

Figure 2-1 on page 2-3 provides a graphical guide to the other topics in 
this chapter. First, a description of the MSTAT register shows how to set 
rounding, data format, and other modes for the computational units. 
Next, an examination of each computational unit provides details on 
operation and a summary of computational instructions. Looking at 
inputs to the computational units, details on register files, and data buses 
identify how to flow data for computations. Finally, details on the DSP’s 
advanced parallelism reveal how to take advantage of conditional and mul-
tifunction instructions.

The diagrams in Figure 2-1 on page 2-3 describes the relationship 
between the ADSP-219x data register file and computational units: multi-
plier, ALU, and shifter.

The ALU stores the computation results either in AR or in AF, where only 
AR is part of the register file. The AF register is intended for intermediate 
ALU data store and has a dedicated feedback path to the ALU. It cannot 
be accessed by move instructions.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-3 
 

Computational Units

Preliminary

There are two 40-bit units, MR and SR, built by the 16-bit registers SR2, 
SR1, SR0 and MR2, MR1, MR0. The individual register may input to 
any computation unit, but grouped together they function as accumula-
tors for the MAC unit (multiply and accumulate). SR also functions as a 
shifter result register.

Figure 2-1 on page 2-3 shows how unconditional, single-function multi-
plier, ALU, and shifter instructions have unrestricted access to the data 
registers in the register file. Due to opcode limitations, conditional and 
multi-function instructions provide ADSP-218x legacy register access 
only. Please find details in the corresponding sections.

The MR2 and SR2 registers differ from the other results registers. As a data 
register file register, MR2 and SR2 are 16-bit registers that may be X- or 
Y-inputs to the multiplier, ALU, or shifter. As result registers (part of MR 

Figure 2-1. Register Access—Unconditional, Single-Function Instructions

AR

SBSE SI

AX0 AX1 AY0 AY1

MX0 MY0 MX1 MY1

DM DATA BUS

PM DATA BUS

IO DATA BUS

SR2 SR1 SR0

MR2 MR1 MR0

REGISTER FILE

MSTAT

ASTAT

ALU

AFMAC

SHIFTER

EXPONENT STATUS

I

Y X
R

X

Y

E

R

R



Using Data Formats

2-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

or SR), only the lower 8-bits of MR2 or SR2 hold data (the upper 8-bits are 
sign extended). This difference (16-bits as input, 8-bits as output) influ-
ences how code can use the MR2 and SR2 registers. This sign extension 
appears in Figure 2-12 on page 2-31.

Using register-to-register move instructions, the data registers can load (or 
be loaded from) the Shifter Block (SB) and Shifter Exponent (SE) registers, 
but the SB and SE registers may not provide X- or Y-input to the computa-
tional units. The SB and SE registers serve as additional inputs to the 
shifter.

The shaded boxes behind the data register file and the SB, SE, and AF regis-
ters indicate that secondary registers are available for these registers. There 
are two sets of data registers. Only one bank is accessible at a time. The 
additional bank of registers can be activated (such as during an interrupt 
service routine) for extremely fast context switching. A new task, like an 
interrupt service routine, can be executed without transferring current 
states to storage. For more information, see “Secondary (Alternate) Data 
Registers” on page 2-63.

The Mode Status (MSTAT) register input sets arithmetic modes for the 
computational units, and the Arithmetic Status (ASTAT) register records 
status/conditions for the computation operations’ results.

Using Data Formats
ADSP-219x DSPs are 16-bit, fixed-point machines. Most operations 
assume a two’s complement number representation, while others assume 
unsigned numbers or simple binary strings. Special features support multi-
word arithmetic and block floating-point. For detailed information on 
each number format, see “Numeric Formats” on page 24-1.

In ADSP-219x family arithmetic, signed numbers are always in two’s 
complement format. These DSPs do not use signed magnitude, one’s 
complement, BCD, or excess-n formats. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-5 
 

Computational Units

Preliminary

Binary String
This format is the least complex binary notation; sixteen bits are treated as 
a bit pattern. Examples of computations using this format are the logical 
operations: NOT, AND, OR, XOR. These ALU operations treat their 
operands as binary strings with no provision for sign bit or binary point 
placement.

Unsigned
Unsigned binary numbers may be thought of as positive, having nearly 
twice the magnitude of a signed number of the same length. The DSP 
treats the least significant words of multiple precision numbers as 
unsigned numbers.

Signed Numbers: Two’s Complement
In ADSP-219x DSP arithmetic, the term “signed” refers to two’s comple-
ment. Most ADSP-219x family operations presume or support two’s 
complement arithmetic.

Signed Fractional Representation: 1.15
ADSP-219x DSP arithmetic is optimized for numerical values in a frac-
tional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15 
format, there is one sign bit (the MSB) and fifteen fractional bits repre-
senting values from –1 up to one LSB less than +1.



Using Data Formats

2-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 2-2 on page 2-6 shows the bit weighting for 1.15 numbers. These 
are examples of 1.15 numbers and their decimal equivalents.

ALU Data Types
All operations on the ALU treat operands and results as 16-bit binary 
strings, except the signed division primitive (Divs). ALU result status bits 
treat the results as signed, indicating status with the overflow (AV) condi-
tion code and the negative (AN) flag. 

The logic of the overflow bit (AV) is based on two’s complement arith-
metic. It is set if the MSB changes in a manner not predicted by the signs 
of the operands and the nature of the operation. For example, adding two 
positive numbers generates a positive result; a change in the sign bit signi-
fies an overflow and sets AV. Adding a negative and a positive may result in 
either a negative or positive result, but cannot overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude arithmetic. 
It is set if a carry is generated from bit 16 (the MSB). The (AC) bit is most 
useful for the lower word portions of a multiword operation.

ALU results generate status information. For more information on using 
ALU status, see “ALU Status Flags” on page 2-18.

Figure 2-2. Bit Weighting for 1.15 Numbers

–20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

1.15 NUMBER (HEXADECIMAL)
0X0001
0X7FFF
0XFFFF
0X8000

DECIMAL EQUIVALENT
0.000031
0.999969

–0.000031
–1.000000



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-7 
 

Computational Units

Preliminary

Note that, except for division, the ALU operations do not need to distin-
guish between signed or unsigned, integer or fractional formats. Formats 
are a matter of result interpretation only.

Multiplier Data Types
The multiplier produces results that are binary strings. The inputs are 
“interpreted” according to the information given in the instruction itself 
(signed times signed, unsigned times unsigned, a mixture, or a rounding 
operation). The 32-bit result from the multiplier is assumed to be signed, 
in that it is sign-extended across the full 40-bit width of the MR or SR regis-
ter set.

The ADSP-219x DSPs support two modes of format adjustment: frac-
tional mode for fractional operands (1.15 format with 1 signed bit and 15 
fractional bits) and integer mode for integer operands (16.0 format).

When the processor multiplies two 1.15 operands, the result is a 2.30        
(2 sign bits and 30 fractional bits) number. In fractional mode, the multi-
plier automatically shifts the multiplier product (P) left one bit before 
transferring the result to the multiplier result register (MR). This shift 
causes the multiplier result to be in 1.31 format, which can be rounded to 
1.15 format. This result format appears in Figure 2-3 on page 2-12.

In integer mode, the left shift does not occur. For example, if the operands 
are in the 16.0 format, the 32-bit multiplier result would be in 32.0 for-
mat. A left shift is not needed; it would change the numerical 
representation. This result format appears in Figure 2-4 on page 2-13.

Multiplier results generate status information. For more information on 
using multiplier status, see “Multiplier Status Flags” on page 2-33.



Using Data Formats

2-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (two’s com-
plement) or unsigned values: logical shifts assume unsigned-magnitude or 
binary string values, and arithmetic shifts assume two’s complement 
values. 

The exponent logic assumes two’s complement numbers. The exponent 
logic supports block floating-point, which is also based on two’s comple-
ment fractions.

Shifter results generate status information. For more information on using 
shifter status, see “Shifter Status Flags” on page 2-53.

Arithmetic Formats Summary
Table 2-1 on page 2-8, Table 2-2 on page 2-9, and Table 2-3 on 
page 2-12 summarize some of the arithmetic characteristics of computa-
tional operations.

Table 2-1. ALU Arithmetic Formats

Operation Operands Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Operations Binary string same as operands

Division Explicitly signed/unsigned same as operands 

ALU Overflow Signed same as operands

ALU Carry Bit 16-bit unsigned same as operands

ALU Saturation Signed same as operands



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-9 
 

Computational Units

Preliminary

Table 2-2. Multiplier Arithmetic Formats

Operation (by Mode) Operands Formats Result Formats

Multiplier, Fractional Mode

Multiplication (MR/SR) 1.15 Explicitly signed/unsigned 2.30 shifted to 1.31

Mult / Add 1.15 Explicitly signed/unsigned 2.30 shifted to 1.31

Mult / Subtract 1.15 Explicitly signed/unsigned 2.30 shifted to 1.31

Multiplier Saturation Signed same as operands

Multiplier, Integer Mode

Multiplication (MR/SR) 16.0 Explicitly signed/unsigned 32.0 no shift

Mult / Add 16.0 Explicitly signed/unsigned 32.0 no shift

Mult / Subtract 16.0 Explicitly signed/unsigned 32.0 no shift

Multiplier Saturation Signed same as operands

Table 2-3. Shifter Arithmetic Formats

Operation Operands Formats Result Formats

Logical Shift Unsigned / binary string same as operands

Arithmetic Shift Signed same as operands

Exponent Detection Signed same as operands



Setting Computational Modes

2-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Setting Computational Modes
The MSTAT and ICNTL registers control the operating mode of the computa-
tional units. Table 22-6 on page 22-6]>-9 lists all the bits in MSTAT, and 
Table 22-11 on page 22-11]>-16 lists all the bits in ICNTL. The following 
bits in MSTAT and ICNTL control computational modes:

• ALU overflow latch mode. MSTAT Bit 2 (AV_LATCH) determines how 
the ALU overflow flag, AV, gets cleared (0=AV is “not-sticky”, 1=AV 
is “sticky”).

• ALU saturation mode. MSTAT Bit 3 (AR_SAT) determines (for signed 
values) whether ALU AR results that overflowed or underflowed are 
saturated or not (0=unsaturated, 1=saturated).

• Multiplier result mode. MSTAT Bit 4 (M_MODE) selects fractional 1.15 
format (=0) or integer 16.0 format (=1) for all multiplier opera-
tions. The multiplier adjusts the format of the result according to 
the selected mode.

• Multiplier biased rounding mode. ICNTL Bit 7 (BIASRND) selects 
unbiased (=0) or biased (=1) rounding for multiplier results.

Latching ALU Result Overflow Status
The DSP supports an ALU overflow latch mode with the AV_LATCH bit in 
the MSTAT register. This bit determines how the ALU overflow flag, AV, 
gets cleared. 

If AV_LATCH is disabled (=0), the AV bit is “not-sticky”. When an ALU 
overflow sets the AV bit in the ASTAT register, the AV bit only remains set 
until cleared by a subsequent ALU operation that does not generate an 
overflow (or is explicitly cleared). 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-11 
 

Computational Units

Preliminary

If AV_LATCH is enabled (=1), the AV bit is “sticky”. When an ALU overflow 
sets the AV bit in the ASTAT register, the AV bit remains set until the appli-
cation explicitly clears it.

Saturating ALU Results on Overflow
The DSP supports an ALU saturation mode with the AR_SAT bit in the 
MSTAT register. This bit determines (for signed values) whether ALU AR 
results that overflowed or underflowed are saturated or not. This bit 
enables (if set, =1) or disables (if cleared, =0) saturation for all subsequent 
ALU operations. If AR_SAT is disabled, AR results remain unsaturated and is 
returned unchanged. If AR_SAT is enabled, AR results are saturated accord-
ing to the state of the AV and AC status flags in ASTAT shown in Table 2-4 
on page 2-11.

The AR_SAT bit in MSTAT only affects the AR register. Only the 
results written to the AR register are saturated. If results are written 
to the AF register, wraparound occurs, but the AV and AC flags 
reflect the saturated result.

Using Multiplier Integer and Fractional Formats
For multiply/accumulate functions, the DSP provides two modes: frac-
tional mode for fractional numbers (1.15), and integer mode for integers 
(16.0).

Table 2-4. ALU Result Saturation With AR_SAT Enabled

AV AC AR register

0 0 ALU output not saturated

0 1 ALU output not saturated

1 0 ALU output saturated, maximum positive 0x7FFF

1 1 ALU output saturated, maximum negative 0x8000



Setting Computational Modes

2-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

In the fractional mode, the 32-bit Product output is format adjusted—
sign-extended and shifted one bit to the left—before being added to MR. 
For example, bit 31 of the Product lines up with bit 32 of MR (which is bit 
0 of MR2) and bit 0 of the Product lines up with bit 1 of MR (which is bit 1 
of MR0). The LSB is zero-filled. The fractional multiplier result format 
appears in Figure 2-3 on page 2-12.

After adjustment the result of a 1.15 by 1.15 fractional multiplication is 
available in 1.31 format (MR1:MR0 or SR1:SR0). If 32-bit precision is 
not required MR1 or SR1 hold the result in 1.15 data representation. 
MR2 and SR2 don't contain multiplication results. They are needed for 
accumulation only.

Figure 2-3. Fractional Multiplier Results Format

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

P SIGN, 7 bits
MULTIPLIER P OUTPUT

MR2 MR1 MR0

shifted
out

zero filled



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-13 
 

Computational Units

Preliminary

In integer mode, the 32-bit Product register is not shifted before being 
added to MR. Figure 2-4 on page 2-13 shows the integer-mode result place-
ment. After a 16.0 by 16.0 multiplication MR1:MR0 (SR1:SR0) hold the 
32.0 result.

The mode is selected by the M_MODE bit in the Mode Status (MSTAT) regis-
ter. If M_MODE is set (=1), integer mode is selected. If M_MODE is cleared (=0), 
fractional mode is selected. In either mode, the multiplier output Product 
is fed into a 40-bit adder/subtracter, which adds or subtracts the new 
product with the current contents of the MR register to form the final 
40-bit result.

Rounding Multiplier Results
The DSP supports multiplier results rounding (Rnd option) on most mul-
tiplier operations. With the Biasrnd bit in the ICNTL register, programs 
select whether the Rnd option provides biased or unbiased rounding.

Figure 2-4. Integer Multiplier Results Format

31 31 31 31 31 31 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

P SIGN, 8 bits
MULTIPLIER P OUTPUT

MR2 MR1 MR0



Setting Computational Modes

2-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Unbiased Rounding

Unbiased rounding uses the multiplier’s capability for rounding the 40-bit 
result at the boundary between bit 15 and bit 16. Rounding can be speci-
fied as part of the instruction code. The rounded output is directed to 
either MR or SR. When rounding is selected, MR1/SR1 contains the rounded 
16-bit result; the rounding effect in MR1/SR1 affects MR2/SR2 as well. The 
MR2/MR1 and SR2/SR1 registers represent the rounded 24-bit result.

The accumulator uses an unbiased rounding scheme. The conventional 
method of biased rounding is to add a 1 into bit position 15 of the adder 
chain. This method causes a net positive bias, because the midway value 
(when MR0=0x8000) is always rounded upward. The accumulator elimi-
nates this bias by forcing bit 16 in the result output to zero when it detects 
this midway point. This has the effect of rounding odd MR1 values upward 
and even MR1 values downward, yielding a zero large-sample bias assuming 
uniformly distributed values.

Using x to represent any bit pattern (not all zeros), here are two examples 
of rounding. The example in Figure 2-5 on page 2-14 shows a typical 
rounding operation for MR; these also apply for SR.

Figure 2-5. Typical Unbiased Multiplier Rounding Operation

…MR2…………|………………MR1…………………|…………………MR0………………
xxxxxxxx|xxxxxxxx00100101|1xxxxxxxxxxxxxxx
……………………|…………………………………………|1………………………………………
xxxxxxxx|xxxxxxxx00100110|0xxxxxxxxxxxxxxx

Unrounded value:
Add 1 and carry:
Rounded value:



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-15 
 

Computational Units

Preliminary

The compensation to avoid net bias becomes visible when the lower 15 
bits are all zero and bit 15 is one (the midpoint value) as shown in 
Figure 2-6 on page 2-15.

In Figure 2-6 on page 2-15, MR bit 16 is forced to zero. This algorithm is 
employed on every rounding operation, but is only evident when the bit 
patterns shown in the lower 16 bits of the last example are present.

Biased Rounding

The Biasrnd bit in the ICNTL register enables biased rounding. When the 
Biasrnd bit is cleared (=0), the Rnd option in multiplier instructions uses 
the normal unbiased rounding operation (as discussed in “Unbiased 
Rounding” on page 2-14). When the Biasrnd bit is set to 1, the DSP uses 
biased rounding instead of unbiased rounding. When operating in biased 

Figure 2-6. Avoiding Net Bias in Unbiased Multiplier Rounding 
Operation

………MR2……|…………………MR1………………|…………………MR0………………
xxxxxxxx|xxxxxxxx01100110|1000000000000000
……………………|…………………………………………|1………………………………………
xxxxxxxx|xxxxxxxx01100111|0000000000000000

Unrounded value:
Add 1 and carry:
MR bit 16=1:

xxxxxxxx|xxxxxxxx01100110|0000000000000000Rounded value:



Using Computational Status

2-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

rounding mode, all rounding operations with MR0 set to 0x8000 round up, 
rather than only rounding odd MR1 values up. For an example, see 
Figure 2-7 on page 2-16.

This mode only has an effect when the MR0 register contains 0x8000; all 
other rounding operations work normally. This mode allows more effi-
cient implementation of bit-specified algorithms that use biased rounding, 
for example the GSM speech compression routines. Unbiased rounding is 
preferred for most algorithms. Note that the content of MR0 and SR0 is 
invalid after rounding.

Using Computational Status
The multiplier, ALU, and shifter update overflow and other status flags in 
the DSP’s arithmetic status (ASTAT) register. To use status conditions from 
computations in program sequencing, use conditional instructions to test 
the exception flags in the ASTAT register after the instruction executes. This 
method permits monitoring each instruction’s outcome.

Figure 2-7. Bias Rounding in Multiplier Operation

0x00  0000 8000 0x00 0001 0000 0x00 0000 0000
0x00  0001 8000 0x00 0002 0000 0x00 0002 0000
0x00  0000 8001 0x00 0001 0001 0x00 0001 0001
0x00  0001 8001 0x00 0002 0001 0x00 0002 0001
0x00  0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF
0x00  0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

MR before RND

Biased RND result

Unbiased RND result



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-17 
 

Computational Units

Preliminary

More information on ASTAT appears in the sections that describe the com-
putational units. For summaries relating instructions and status bits, see 
“ALU Status Flags” on page 2-18, “Multiplier Status Flags” on page 2-33, 
and “Shifter Status Flags” on page 2-53.

Arithmetic Logic Unit (ALU)
The ALU performs arithmetic and logical operations on fixed-point data. 
ALU fixed-point instructions operate on 16-bit fixed-point operands and 
output 16-bit fixed-point results. ALU instructions include:

• Fixed-point addition and subtraction

• Fixed-point add with carry, subtract with borrow, increment, 
decrement

• Logical And, Or, Xor, Not

• Functions: Abs, Pass, division primitives

ALU Operation
ALU instructions take one or two inputs: X input and Y input. For uncon-
ditional, single-function instructions, these inputs (also known as 
operands) can be any data registers in the register file. Most ALU opera-
tions return one result, but in NONE= operations the ALU operation returns 
no result (only status flags are updated). ALU results are written to the 
ALU Result (AR) or ALU Feedback (AF) register.

The DSP transfers input operands from the register file during the first 
half of the cycle and transfers results to the result register during the sec-
ond half of the cycle. With this arrangement, the ALU can read and write 
the AR register file location in a single cycle.



Arithmetic Logic Unit (ALU)

2-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

ALU Status Flags
ALU operations update status flags in the DSP’s Arithmetic Status (ASTAT) 
register. Table 22-5 on page 22-8 lists all the bits in this register. 
Table 2-5 on page 2-18 shows the bits in ASTAT that flag ALU status (a 1 
indicates the condition is true) for the most recent ALU operation.

Flag updates occur at the end of the cycle in which the status is generated 
and are available in the next cycle.

On previous 16-bit, fixed-point DSPs (ADSP-2100 family), the 
Pos (AS bit =1) and Neg (AS bit =0) conditions permit checking the 
ALU result’s sign. On ADSP-219x based DSPs, the CCODE register 
and SWCOND condition support this feature.

Unlike previous ADSP-218x DSPs, ASTAT writes on ADSP-219x 
based DSPs have a one cycle effect latency. Code being ported 
from ADSP-218x to ADSP-2199x based DSPs that checks ALU 
status during the instruction following an ASTAT clear (ASTAT=0) 
instruction may not function as intended. Re-arranging the order 
of instructions to accommodate the one cycle effect latency on the 
ADSP-219x based DSP ASTAT register corrects this issue. 

Table 2-5. ALU Status Bits in the ASTAT Register

Flag Name Definition

AZ Zero Logical NOR of all the bits in the ALU result register. True if ALU output 
equals zero.

AN Negative Sign bit of the ALU result. True if the ALU output is negative. 

AV Overflow Exclusive-OR of the carry outputs of the two most significant adder stages. 
True if the ALU overflows.

AC Carry Carry output from the most significant adder stage.

AS Sign Sign bit of the ALU X input port. Affected only by the ABS instruction.

AQ Quotient Quotient bit generated only by the DIVS and DIVQ instructions.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-19 
 

Computational Units

Preliminary

ALU Instruction Summary
Table 2-6 on page 2-19 lists the ALU instructions and describes how they 
relate to ASTAT flags. As indicated by the table, the ALU handles flags the 
same whether the result goes to the AR or AF registers. For more informa-
tion on assembly language syntax, see the ADSP-219x DSP Instruction Set 
Reference. In Table 2-6 on page 2-15, note the meaning of the following 
symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location

• Xop, Yop indicate any X- and Y-input registers, indicating a regis-
ter usage restriction for conditional and/or multifunction 
instructions. For more information, see “Multifunction Computa-
tions” on page 2-64.

• * indicates the flag may be set or cleared, depending on results of 
instruction

• 0 indicates the flag is cleared, regardless of the results of instruction

• – indicates no effect

Table 2-6. ALU Instruction Summary

Instruction ASTAT Status Flags

AZ AV AN AC AS AQ

|AR, AF| = Dreg1 + |Dreg2, Dreg2 + C, C |; * * * * – –

[IF Cond] |AR, AF| = Xop + |Yop, Yop + C, C, Const, Const + C|; * * * * – –

|AR, AF| = Dreg1 -|Dreg2, Dreg2 + C -1, +C -1|; * * * * – –

[IF Cond]|AR,AF| = Xop - |Yop,Yop+C-1,+C-1,Const,Const+C -1|; * * * * – –

|AR, AF| = Dreg2 -|Dreg1, Dreg1 + C -1|; * * * * – –

[IF Cond] |AR, AF| = Yop - |Xop, Xop+C-1|; * * * * – –

[IF Cond] |AR,AF| = - |Xop+C -1, Xop+Const, Xop+Const+C-1|; * * * * – –

|AR, AF| = Dreg1 |AND, OR, XOR| Dreg2; * 0 * 0 – –



Arithmetic Logic Unit (ALU)

2-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

[IF Cond] |AR, AF| = Xop |AND, OR, XOR| |Yop, Const|; * 0 * 0 – –

[IF Cond]|AR,AF| = |TSTBIT,SETBIT,CLRBIT,TGLBIT| n of Xop; * 0 * 0 – –

|AR, AF| = PASS |Dreg1, Dreg2, Const|; * 0 * 0 – –

|AR, AF| = PASS 0; 0 0 * 0 – –

[IF Cond] |AR, AF| = PASS |Xop, Yop, Const|; * 0 * 0 – –

|AR, AF| = NOT |Dreg|; * 0 * 0 – –

[IF Cond] |AR, AF| = NOT |Xop, Yop|; * 0 * 0 – –

|AR, AF| = ABS Dreg; * 0 0 0 * –

[IF Cond] |AR, AF| = ABS Xop; * 0 0 0 * –

|AR, AF| = Dreg +1; * * * * – –

[IF Cond] |AR, AF| = Yop +1; * * * * – –

|AR, AF| = Dreg -1; * * * * – –

[IF Cond] |AR, AF| = Yop -1; * * * * – –

DIVS Yop, Xop; – – – – – *

DIVQ Xop; – – – – – *

Table 2-6. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AV AN AC AS AQ



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-21 
 

Computational Units

Preliminary

ALU Data Flow Details
Figure 2-8 on page 2-22 shows a more detailed diagram of the ALU, 



Arithmetic Logic Unit (ALU)

2-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

which appears in Figure 2-1 on page 2-3.

Figure 2-8. ALU Block Diagram

AQ

AC

AV

AZ

AN

AS

AQ

AV_LATCH

AR_SAT

ALU

AF

X Y

R

AX0 AY0

AY1SR1 SR0

MR2 MR1 MR0

REGISTER FILE

AR AX1

SIMX0 MY0

MX1 MY1 SR2

CONSTANT

AR

16

16

16

16

AC



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-23 
 

Computational Units

Preliminary

The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one 
output port, R. The ALU accepts a carry-in signal (CI) which is the carry 
bit (AC) from the processor arithmetic status register (ASTAT). The ALU 
generates six status signals: the zero (AZ) status, the negative (AN) status, 
the carry (AC) status, the overflow (AV) status, the X-input sign (AS) status, 
and the quotient (AQ) status. All arithmetic status signals are latched into 
the arithmetic status register (ASTAT) at the end of the cycle. For informa-
tion on how each instruction affects the ALU flags, see Table 2-6 on 
page 2-19.

Unless a NONE= instruction is executed, the output of the ALU goes into 
either the ALU feedback (AF) register or the ALU result (AR) register, 
which is part of the register file. The AF register is an ALU internal 
register.

In unconditional and single-function instructions, both the X and the Y 
port may read any register of the register file including AR. Alternatively, 
the Y port may access the local feedback register AF.

For conditional and multi-function instructions only, a subset of registers 
can be used as input operands. For legacy support this register usage 
restriction mirrors the ADSP-218x instruction set. Then the X port can 
access the register AR, SR1, SR0, MR2, MR1, MR0, AX0 and AX1. The 
Y port accesses AY0, AY1 and AF.

If the X port accesses either AR, SR1, SR0, MR2, MR1, MR0, AX0 or 
AX1, the Y operator may be a constant coded in the instruction word.

For more information on register usage restrictions in conditional 
and multifunction instructions, see “Multifunction Computations” 
on page 2-64.

The ALU can read and write any of its associated registers in the same 
cycle. Registers are read at the beginning of the cycle and written at the 
end of the cycle. A register read gets the value loaded at the end of a previ-
ous cycle. A new value written to a register cannot be read out until a 
subsequent cycle. This read/write pattern lets an input register provide an 



Arithmetic Logic Unit (ALU)

2-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

operand to the ALU at the beginning of the cycle and be updated with the 
next operand from memory at the end of the same cycle. Also, this 
read/write pattern lets a result register be stored in memory and updated 
with a new result in the same cycle.

Multiprecision operations are supported in the ALU with the carry-in sig-
nal and ALU carry (AC) status bit. The carry-in signal is the AC status bit 
that was generated by a previous ALU operation. The “add with carry” 
(+C) operation is intended for adding the upper portions of multipreci-
sion numbers. The “subtract with borrow” (C–1 is effectively a “borrow”) 
operation is intended for subtracting the upper portions of multiprecision 
numbers. 

ALU Division Support Features
The ALU supports division with two special divide primitives. These 
instructions (Divs, Divq) let programs implement a non-restoring, condi-
tional (error checking), add-subtract division algorithm. The division can 
be either signed or unsigned, but the dividend and divisor must both be of 
the same type. More details on using division and programming examples 
are available in the ADSP-219x DSP Instruction Set Reference.

A single-precision divide, with a 32-bit dividend (numerator) and a 16-bit 
divisor (denominator), yielding a 16-bit quotient, executes in 16 cycles. 
Higher- and lower-precision quotients can also be calculated. The divisor 
can be stored in AX0, AX1, or any of the R registers. The upper half of a 
signed dividend can start in either AY1 or AF. The upper half of an 
unsigned dividend must be in AF. The lower half of any dividend must be 
in AY0. At the end of the divide operation, the quotient is in AY0.

The first of the two primitive instructions “divide-sign” (Divs) is executed 
at the beginning of the division when dividing signed numbers. This oper-
ation computes the sign bit of the quotient by performing an exclusive OR 
of the sign bits of the divisor and the dividend. The AY0 register is shifted 
one place so that the computed sign bit is moved into the LSB position. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-25 
 

Computational Units

Preliminary

The computed sign bit is also loaded into the AQ bit of the arithmetic sta-
tus register. The MSB of AY0 shifts into the LSB position of AF, and the 
upper 15 bits of AF are loaded with the lower 15 R bits from the ALU, 
which simply passes the Y input value straight through to the R output. 
The net effect is to left shift the AF-AY0 register pair and move the quotient 
sign bit into the LSB position. The operation of Divs is illustrated in 
Figure 2-9 on page 2-25.

Figure 2-9. DIVS Operation

MUX

AX1 AY1 AFAX0 AY0

LOWER
DIVIDEND

R-BUS

LEFT SHIFT

15

MUX

UPPER
DIVIDEND

MSB

DIVISOR MSB

AQ
X Y

ALU

R = PASS Y

15 LSBs

16

L
S

B



Arithmetic Logic Unit (ALU)

2-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

When dividing unsigned numbers, the Divs operation is not used. Instead, 
the AQ bit in the arithmetic status register (ASTAT) should be initialized to 
zero by manually clearing it. The AQ bit indicates to the following opera-
tions that the quotient should be assumed positive.

The second division primitive is the “divide-quotient” (Divq) instruction, 
which generates one bit of quotient at a time and is executed repeatedly to 
compute the remaining quotient bits. 

For unsigned single-precision divides, the Divq instruction is executed 16 
times to produce 16 quotient bits. For signed single-precision divides, the 
Divq instruction is executed 15 times after the sign bit is computed by the 
Divs operation. Divq instruction shifts the AY0 register left by one bit so 
that the new quotient bit can be moved into the LSB position. 

The status of the AQ bit generated from the previous operation determines 
the ALU operation to calculate the partial remainder. If AQ = 1, the ALU 
adds the divisor to the partial remainder in AF. If AQ = 0, the ALU sub-
tracts the divisor from the partial remainder in AF. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-27 
 

Computational Units

Preliminary

The ALU output R is offset loaded into AF just as with the Divs operation. 
The AQ bit is computed as the exclusive-OR of the divisor MSB and the 
ALU output MSB, and the quotient bit is this value inverted. The quo-
tient bit is loaded into the LSB of the AY0 register which is also shifted left 
by one bit. The Divq operation is illustrated in Figure 2-10 on page 2-27.

Figure 2-10. DIVQ Operation

MUX

AX1AX0

R-BUS

DIVISOR MSB

AQX Y
ALU

1 MSB

AF AY0

LOWER
DIVIDEND

LEFT SHIFT

15

PARTIAL
REMAINDER

16

R=Y+X IF AQ=1
R=Y-X IF AQ=0

15 LSBs

L
S

B



Arithmetic Logic Unit (ALU)

2-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The format of the quotient for any numeric representation can be deter-
mined by the format of the dividend and divisor as shown in Figure 2-11 
on page 2-28. Let NL represent the number of bits to the left of the binary 
point, let NR represent the number of bits to the right of the binary point 
of the dividend, let DL represent the number of bits to the left of the 
binary point, and let DR represent the number of bits to the right of the 
binary point of the divisor. Then, the quotient has NL–DL+1 bits to the 
left of the binary point and has NR–DR–1 bits to the right of the binary 
point.

Some format manipulation may be necessary to guarantee the validity of 
the quotient. For example, if both operands are signed and fully fractional 
(dividend in 1.31 format and divisor in 1.15 format) the result is fully 
fractional (in 1.15 format), and the dividend must be smaller than the 
divisor for a valid result.

To divide two integers (dividend in 32.0 format and divisor in 16.0 for-
mat) and produce an integer quotient (in 16.0 format), the program must 
shift the dividend one bit to the left (into 31.1 format) before dividing. 
Additional discussion and code examples can be found in the ADSP-219x 
DSP Instruction Set Reference.

Figure 2-11. Quotient Format

D iv idend BBBBB

NL b its

. B BBBBBBBBBBBBBBBBBBBBBBBBBB

NR b its

D iv iso r BB

DL b its

. B BBBBBBBBBBBBB

DR b its

Q uo t ien t

(N L –D L+1 ) b its

BBBB . BBBBBBBBBBBB

(NR –DR –1 ) b its



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-29 
 

Computational Units

Preliminary

The algorithm overflows if the result cannot be represented in the format 
of the quotient as calculated in Figure 2-11 on page 2-28 or when the 
divisor is zero or less than the dividend in magnitude. For additional 
information see the section "Divide Primitives: DIVS and DIVQ" in the 
ADSP-219x DSP Instruction Set Reference.

Multiply—Accumulator (Multiplier)
The multiplier performs fixed-point multiplication and multiply/accumu-
late operations. Multiply/accumulates are available with either cumulative 
addition or cumulative subtraction. Multiplier fixed-point instructions 
operate on 16-bit fixed-point data and produce 40-bit results. Inputs are 
treated as fractional or integer, unsigned or two’s complement. Multiplier 
instructions include:

• Multiplication

• Multiply/accumulate with addition, rounding optional

• Multiply/accumulate with subtraction, rounding optional

• Rounding, saturating, or clearing result register

Multiplier Operation
The multiplier takes two inputs: X input and Y input. For unconditional, 
single-function instructions, these inputs (also known as operands) can be 
any data registers in the register file. The multiplier accumulates results in 
either the Multiplier Result (MR) or Shifter Result (SR) register. The results 
can also be rounded or saturated.

On previous 16-bit, fixed-point DSPs (ADSP-2100 family), only 
the multiplier results (MR) register can accumulate results for the 
multiplier. On ADSP-219x DSPs, both MR and SR registers can 
accumulate multiplier results.



Multiply—Accumulator (Multiplier)

2-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The multiplier transfers input operands during the first half of the cycle 
and transfers results during the second half of the cycle. With this arrange-
ment, the multiplier can read and write the same result register in a single 
cycle.

Depending on the multiplier mode (M_MODE) setting, operands are either 
both in integer format or both in fractional format. The format of the 
result matches the format of the inputs. Each operand may be either an 
unsigned or a two’s complement value. If inputs are fractional, the multi-
plier automatically shifts the result left one bit to remove the redundant 
sign bit. Multiplier instruction options (required within the multiplier 
instruction) specify inputs’ data format(s)—SS for signed, UU for unsigned, 
SU for signed X-input and unsigned Y-input, and US for unsigned X-input 
and signed Y-input.

In fractional mode the multiplier expects data in 1.15 format (SS). The 
primary intention of the (UU), (SU) and (US) options is to enable multi-
precision multiplication such as 1.31 by 1.31. Therefore all multiplication 
types perform an implicit left shift in fractional mode.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-31 
 

Computational Units

Preliminary

Placing Multiplier Results in MR or SR Registers

As shown in Figure 2-12 on page 2-31, the MR register is divided into three 
sections: MR0 (bits 0-15), MR1 (bits 16-31), and MR2 (bits 32-39). Similarly, 
the SR register is divided into three sections: SR0 (bits 0-15), SR1 (bits 
16-31), and SR2 (bits 32-39). Each of these registers is part of the register 
file

When the multiplier writes to either of the result registers, the 40-bit 
result goes into the lower 40 bits of the combined register (MR2, MR1, and 
MR0 or SR2, SR1, and SR0), and the MSB is sign extended into the upper 
eight bits of the uppermost register (MR2 or SR2). When an instruction 
explicitly loads the middle result register (MR1 or SR1), the DSP also sign 
extends the MSB of the data into the related uppermost register (MR2 or 
SR2). These sign extension operations appear in Figure 2-12 on page 2-31.

To load the MR2 register with a value other than MR1’s sign extension, pro-
grams must load MR2 after MR1 has been loaded. Loading MR0 affects neither 
MR1 nor MR2; no sign extension occurs in MR0 loads. This technique also 
applies to SR2, SR1, and SR0.

Figure 2-12. Placing Multiplier Results

sR

39 0

sR1 sR0

7 15 15 000

sR2

815

Sign extension (when placing results)

mR

39 0

mR1 mR0

7 15 15 000

mR2

815

Sign extension (when placing results)

Sign extension (explict write)Sign extension (explict write)



Multiply—Accumulator (Multiplier)

2-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Clearing, Rounding, or Saturating Multiplier Results

Besides using the results registers to accumulate, the multiplier also can 
clear, round, or saturate result data in the results registers. These opera-
tions work as follows:

• The clear operation—[MR,SR]=0—clears the specified result regis-
ter to zero. All three 16-bit registers MR2 (SR2), MR1 (SR1) and 
MR0 (SR0) are cleared at once.

• The rounding operation—[MR,SR]=Rnd [MR,SR]—applies only to 
fractional results—integer results are not affected. This explicit 
rounding operation generates the same results as using the Rnd 
option in other multiplier instructions. For more information, see 
“Rounding Multiplier Results” on page 2-13.

• The saturate operation—Sat [MR,SR]—sets the specified result 
register to the maximum positive or negative value if an overflow or 
underflow has occurred. The saturation operation depends on the 
overflow status bit (MV or SV) and the MSB of the corresponding 
result register (MR2 or SR2). For more information, see “Saturating 
Multiplier Results on Overflow” on page 2-33.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-33 
 

Computational Units

Preliminary

Multiplier Status Flags
Multiplier operations update two status flags in the computational unit’s 
arithmetic status register (ASTAT). Table 22-5 on page 22-8 lists all the bits 
in these registers. The following bits in ASTAT flag multiplier status (a 1 
indicates the condition) for the most recent multiplier operation:

• Multiplier overflow. Bit 6 (MV) records an overflow/underflow con-
dition for MR result register. If cleared (=0), no overflow or 
underflow has occurred. If set (=1), an overflow or underflow has 
occurred.

• Shifter overflow. Bit 8 (SV) records an overflow/underflow condi-
tion for SR result register. If cleared (=0) no overflow or underflow 
has occurred. If set (=1), an overflow or underflow has occurred.

Flag updates occur at the end of the cycle in which the status is generated 
and are available on the next cycle. The MV overflow flags are not 
updated if the individual 16-bit registers are loaded by move instructions. 
In such cases the proper update of MV can be forced with the pseudo 
instruction MR=MR;. The assembler translates that into 
MR=MR+MX0*0(SS); opcode. Similarly, use SR=SR; to update SV.

Saturating Multiplier Results on Overflow 
The adder/subtracter generates overflow status signal every time a multi-
plier operation is executed. When the accumulator result in MR or SR 
interpreted as a two’s complement number crosses the 32-bit (MR1/MR2) 
boundary (overflows), the multiplier sets the MV or SV bit in the ASTAT 
register.

The multiplier saturation instruction provides control over a multiplica-
tion result that has overflowed or underflowed. It saturates the value in the 
specified register only for the cycle in which it executes. It does not enable 
a mode that continuously saturates results until disabled like the ALU, 
because accumulation of saturated values mathematically returns errone-



Multiply—Accumulator (Multiplier)

2-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

ous results. Used at the end of a series of multiply and accumulate 
operations, the saturation instruction prevents the algorithm from post-
processing overflowed results, when reading MR1 (SR1) without caring 
about MR2 (SR2).

For every operation it performs, the multiplier generates an overflow sta-
tus signal MV (SV when SR is the specified result register), which is recorded 
in the ASTAT status register. The multiplier sets MV = 1 when the 
upper-nine bits in MR are anything other than all 0s or all 1s, setting MV 
when the accumulator result—interpreted as a signed, two’s complement 
number—crosses the 32-bit boundary and spills over from MR1 into MR2. 
Otherwise, the multiplier clears MV = 0.

The explicit saturation instructions SAT MR; and SAT SR; evaluate the con-
tent of the 40-bit MR and SR registers rather than just testing the 
overflow flags MV and SV. The instructions examine whether the 9 MSBs 
of MR/SR are all 0 or all 1. If no overflow occurred (all 9 MSBs either 
equal 0 or 1), the instructions do not alter the MR1/SR1 and MR0/SR0 
registers, but the 8 MSBs of MR2/SR2 are signed-extended.

If the SAT MR/SR; instructions detect an overflow (any of the 9 MSBs of 
the 40-bit accumulator differs from the others) bit 7 of MR2/SR2 is used 
to determine whether an overflow or an underflow occurred. If this bit is 
zero, MR2/SR2 is set to 0x0000, MR1/SR1 to 0x7FFF and MR0/SR0 to 
0xFFFF, representing the maximum positive 32-bit value. If this bit reads 
one, MR2/SR2 is set to 0xFFFF, MR1/SR1 to 0x8000 and MR0/SR0 to 
0x0000, representing the maximum negative 32-bit value.

Avoid result overflows beyond the MSB of the result register. In 
such a case, the true sign bit of the result is irretrievably lost, and 
saturation may not produce a correct result. It takes over 255 over-
flows to lose the sign.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-35 
 

Computational Units

Preliminary

Multiplier Instruction Summary
Table 2-7 on page 2-35 lists the multiplier instructions and how they 
relate to ASTAT flags. For more information on assembly language syntax, 
see the ADSP-219x DSP Instruction Set Reference. In Table 2-7 on 
page 2-35, note the meaning of the following symbols:

• Dreg1, Dreg2 indicate any register file location

• Xop, Yop indicate any X- and Y-input registers, indicating a regis-
ter usage restriction for conditional and/or multifunction 
instructions. For more information, see “Multifunction Computa-
tions” on page 2-64.

• * indicates the flag may be set or cleared, depending on results of 
instruction

• 0 indicates the flag is cleared, regardless of the results of instruction

• – indicates no effect

Table 2-7. Multiplier Instruction Summary

Instruction ASTAT Status Flags

MV SV

|MR, SR| = Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = Yop * Xop [(|RND, SS, SU, US, UU|)]; * *

|MR, SR| = |MR, SR| + Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond]|MR, SR| = |MR, SR| + Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| + Yop * Xop [(|RND, SS, SU, US, UU|)]; * *

|MR, SR| = |MR, SR| -Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| - Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| - Yop * Xop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = 0; 0 0



Multiply—Accumulator (Multiplier)

2-36 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

[IF Cond] MR = MR (RND); * –

[IF Cond] SR = SR[(RND); – *

SAT [MR,SR]; – –

Table 2-7. Multiplier Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

MV SV



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-37 
 

Computational Units

Preliminary

Multiplier Data Flow Details
Figure 2-13 on page 2-37 shows a more detailed diagram of the multi-
plier/accumulator, which appears in Figure 2-1 on page 2-3.

Figure 2-13. Multiplier Block Diagram

MV

SV
BIASRND

M_MODE
MULTIPLIER

X Y

R

MX0 MY0

MY1SR0

MR2 MR1 MR0

REGISTER FILE

AR MX1

SIAX0 AY0

AX1 AY1 SR2

0

SR1

ADD / SUB

32

40 40 40 40

SRMR

1616



Multiply—Accumulator (Multiplier)

2-38 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The multiplier has two 16-bit input ports X and Y, and a 32-bit product 
output port Product. The 32-bit product is stored in the multiplier result 
(MR or SR) register immediately, or passed to a 40-bit adder/subtracter, 
which adds or subtracts the new product to/from the previous content of 
the MR or SR registers. For accumulation, the MR and SR registers are 40 bits 
wide. These registers each consist of smaller 16-bit registers which are part 
of the register file: MR0, MR1, MR2, SR0, SR1, and SR2. For more information 
on these registers, see Figure 2-12 on page 2-31.

The adder/subtracters are greater than 32 bits to allow for intermediate 
overflow in a series of multiply/accumulate operations. A multiply over-
flow (MV or SV) status bit is set when an accumulator has overflowed 
beyond the 32-bit boundary—when there are significant (non-sign) bits in 
the top nine bits of the MR or SR registers (based on two’s complement 
arithmetic). 

Register usage restrictions apply only to conditional and multi-function 
instructions. Then the multiplier's X port can read the registers MX0, 
MX1, AR, MR2, MR1, MR0, SR1 and SR2, and the Y port can read 
MY0, MY1 and SR1 (due to a special pipe). The Y port can also be redi-
rected to the X port to square a single X operand.

On previous 16-bit, fixed-point DSPs (ADSP-2100 family), a ded-
icated multiplier feedback (MF) register is available. On ADSP-219x 
DSPs, there is no MF register, instead code should use SR1.

For more information on register usage restrictions in conditional 
and multifunction instructions, see “Multifunction Computations” 
on page 2-64.

The multiplier reads and writes any of its associated registers within the 
same cycle. Registers are read at the beginning of the cycle and written at 
the end of the cycle. A register read gets the value loaded at the end of a 
previous cycle. A new value written to a register cannot be read out until a 
subsequent cycle. This read/write pattern lets an input register provide an 
operand to the multiplier at the beginning of the cycle and be updated 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-39 
 

Computational Units

Preliminary

with the next operand from memory at the end of the same cycle. This 
pattern also lets a result register be stored in memory and updated with a 
new result in the same cycle.

Barrel-Shifter (Shifter)
The shifter provides bitwise shifting functions for 16-bit inputs, yielding a 
40-bit output (SR). These functions include arithmetic shift (Ashift), log-
ical shift (Lshift), and normalization (Norm). The shifter also performs 
derivation of exponent (Exp) and derivation of common exponent (Exp-
adj) for an entire block of numbers. These shift functions can be 
combined to implement numerical format control, including full float-
ing-point representation and multiprecision operations.

Shifter Operations
The shifter instructions (Ashift, Lshift, Norm, Exp, and Expadj) can be 
used in a variety of ways, depending on the underlying arithmetic require-
ments. The following sections present single- and multiple-precision 
examples for these functions:

• “Derive Block Exponent” on page 2-41

• “Immediate Shifts” on page 2-42

• “Denormalize” on page 2-45

• “Normalize, Single-Precision Input” on page 2-47

The shift functions (arithmetic shift, logical shift, and normalize) can be 
optionally specified with [SR Or] to facilitate multiprecision operations. 
[SR Or] logically ORs the shift result with the current contents of SR. This 
option is used to join 16-bit inputs with the 40-bit value in SR. When 
[SR Or] is not used, the shift value is passed through to SR directly. 



Barrel-Shifter (Shifter)

2-40 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Almost all shifter instructions have two or three options: (Hi), (Lo), and 
(Hix). Each option enables a different exponent detector mode that oper-
ates only while the instruction executes. The shifter interprets and handles 
the input data according to the selected mode.

For the derive exponent (Exp) and block exponent adjust (Expadj) opera-
tions, the shifter calculates the shift code—the direction and number of 
bits to shift—then stores the value in SE (for Exp) or SB (for Expadj). For 
the Ashift, Lshift, and Norm operations, a program can supply the value 
of the shift code directly to the SE register or use the result of a previous 
Exp or Expadj operation.

For the Ashift, Lshift, and Norm operations:

(Hi)Operation references the upper half of the output field.

(Lo)Operation references the lower half of the output field. 

For the exponent derive (Exp) operation:

• (Hix)Use this mode for shifts and normalization of results from 
ALU operations. 

Input data is the result of an add or subtract operation that may 
have overflowed. The shifter examines the ALU overflow bit AV. If 
AV=1, the effective exponent of the input is +1 (this value indicates 
that overflowed occurred before the Exp operation executed). If 
AV=0, no overflow occurred and the shifter performs the same oper-
ations as the (HI) mode. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-41 
 

Computational Units

Preliminary

• (Hi)Input data is a single-precision signed number or the upper 
half of a double-precision signed number. The number of leading 
sign bits in the input operand, which equals the number of sign 
bits minus one, determines the shift code. By default, the Expadj 
operation always operates in this mode.

• (Lo)Input data is the lower half of a double-precision signed num-
ber. To derive the exponent on a double-precision number, the 
program must perform the Exp operation twice, once on the upper 
half of the input, and once on the lower half. 

Derive Block Exponent

The Expadj instruction detects the exponent of the number largest in 
magnitude in an array of numbers. The steps for a typical block exponent 
derivation are as follows:

1. Load SB with –16. The SB register contains the exponent for the 
entire block. The possible values at the conclusion of a series of 
Expadj operations range from –15 to 0. The exponent compare 



Barrel-Shifter (Shifter)

2-42 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

logic updates the SB register if the new value is greater than the cur-
rent value. Loading the register with –16 initializes it to a value 
certain to be less than any actual exponents detected.

2. Process the first array element as follows:

Array(1) =11110101 10110001
Exponent =–3
–3 > SB (–16)
SB gets–3

3. Process next array element as follows:

Array(2)=00000001 01110110
Exponent =–6
–6 < –3
SB remains–3

4. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB, 
that value is loaded into SB. When all array elements have been processed, 
the SB register contains the exponent of the largest number in the entire 
block. No normalization is performed. Expadj is purely an inspection 
operation. The value in SB could be transferred to SE and used to normal-
ize the block on the next pass through the shifter. Or, SB could be 
associated with that data for subsequent interpretation.

Immediate Shifts

An immediate shift shifts the input bit pattern to the right (downshift) or 
left (upshift) by a given number of bits. Immediate shift instructions use 
the data value in the instruction itself to control the amount and direction 
of the shifting operation. For examples using this instruction, see the 
ADSP-219x DSP Instruction Set Reference. The data value controlling the 
shift is an 8-bit signed number. The SE register is not used or changed by 
an immediate shift.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-43 
 

Computational Units

Preliminary

The following example shows the input value downshifted relative to the 
upper half of SR (SR1). This is the (Hi) version of the shift:

SI = 0xB6A3;

SR = Lshift SI By –5 (Hi);

Input (SI):1011 0110 1010 0011
Shift value:–5

SR (shifted by):

0000 0000 0000 0101 1011 0101 0001 1000 0000 0000

---sr2---|--------sr1---------|--------sr0---------|

This next example uses the same input value, but shifts in the other direc-
tion, referenced to the lower half (Lo) of SR:

SI = 0xB6A3;

SR = Lshift SI By 5 (LO);

Input (SI):1011 0110 1010 0011
Shift value:+5

SR (shifted by):

0000 0000 0000 0000 0001 0110 1101 0100 0110 0000

---sr2-----|--------sr1---------|--------sr0---------

Note that a negative shift cannot place data (except a sign extension) into 
SR2, but a positive shift with value greater than 16 puts data into SR2. This 
next example also sets the SV bit (because the MSB of SR1 does not match 
the value in SR2):

SI = 0xB6A3;

SR = Lshift SI By 17 (Lo);

Input (SI):1011 0110 1010 0011

Shift value:+17



Barrel-Shifter (Shifter)

2-44 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SR (shifted by):

0000 0001 0110 1101 0100 0110 0000 0000 0000 0000

---sr2-----|--------sr1---------|--------sr0---------|

In addition to the direction of the shifting operation, the shift may be 
either arithmetic (Ashift) or logical (Lshift). For example, the following 
shows a logical shift, relative to the upper half of SR (Hi):

SI = 0xB6A3;

SR = Lshift SI By –5 (HI);

Input (SI):10110110 10100011
Shift value:-5

SR (shifted by):

0000 0000 0000 0101 1011 0101 0001 1000 0000 0000

---sr2-----|--------sr1---------|--------sr0----------

This next example uses the same input value, but performs an arithmetic 
shift:

SI = 0xB6A3;

SR = Ashift SI By –5 (HI);

Input (SI):10110110 10100011

Shift value:-5

SR (shifted by):

1111 1111 1111 1101 1011 0101 0001 1000 0000 0000

---sr2-----|--------sr1---------|--------sr0---------



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-45 
 

Computational Units

Preliminary

Denormalize

Denormalizing refers to shifting a number according to a predefined expo-
nent. The operation is effectively a floating-point to fixed-point 
conversion.

Denormalizing requires a sequence of operations. First, the SE register 
must contain the exponent value. This value may be explicitly loaded or 
may be the result of some previous operation. Next, the shift itself is per-
formed, taking its shift value from the SE register, not from an immediate 
data value.

Two examples of denormalizing a double-precision number follow. The 
first example shows a denormalization in which the upper half of the 
number is shifted first, followed by the lower half. Because computations 
may produce output in either order, the second example shows the same 
operation in the other order—lower half first.

This first de-normalization example processes the upper half first. Some 
important points here are: (1) always select the arithmetic shift for the 
higher half (Hi) of the two’s complement input (or logical for unsigned), 
and (2) the first half processed does not use the [SR Or] option.

SI = 0xB6A3;               {first input, upper half result}

SE = -3;                   {shifter exponent}

SR = Ashift SI By –3 (HI); {must use HI option}

First input (SI):1011011010100011

SR (shifted by):

1111 1111 1111 0110 1101 0100 0110 0000 0000 0000

---sr2----|--------sr1----------|--------sr0---------



Barrel-Shifter (Shifter)

2-46 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Continuing this example, next, the lower half is processed. Some impor-
tant points here are: (1) always select a logical shift for the lower half of 
the input, and (2) the second half processed must use the [SR Or] option 
to avoid overwriting the previous half of the output value.

SI = 0x765D;               {second input, lower half result}

                           {SE = -3 still}

SR = SR Or Lshift SI By –3 (Lo); {must use Lo option}

Second input (SI):0111 0110 0101 1101

SR (ORed, shifted):

1111 1111 1111 0110 1101 0100 0110 1110 1100 1011

---sr2-----|--------sr1---------|--------sr0---------

This second de-normalization example uses the same input, but processes 
it in the opposite (lower half first) order. The same important points from 
before apply: (1) the high half is always arithmetically shifted, (2) the low 
half is logically shifted, (3) the first input is passed straight through to SR, 
and (4) the second half is ORed, creating a double-precision value in SR.

SI = 0x765D;               {first input, lower half result}

SE = -3;                   {shifter exponent}

SR = Lshift SI By –3 (LO); {must use LO option}

SI = 0xB6A3;               {second input, upper half result}

SR = SR Or Ashift SI By –3 (Hi); {must use Hi option}

First input (SI):0111 0110 0101 1101

SR (shifted by):

0000 0000 0000 0000 0000 0000 0000 1110 1100 1011

---sr2-----|--------sr1---------|--------sr0---------



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-47 
 

Computational Units

Preliminary

Second input (SI):1011 0110 1010 0011

SR (ORed, shifted):

1111 1111 1111 0110 1101 0100 0110 1110 1100 1011

---sr2---|--------sr1--------|--------sr0--------

Normalize, Single-Precision Input

Numbers with redundant sign bits require normalizing. Normalizing a 
number is the process of shifting a two’s complement number within a 
field so that the rightmost sign bit lines up with the MSB position of the 
field and recording how many places the number was shifted. The opera-
tion can be thought of as a fixed-point to floating-point conversion, 
generating an exponent and a mantissa.

Normalizing is a two-stage process. The first stage derives the exponent. 
The second stage does the actual shifting. The first stage uses the Exp 
instruction, which detects the exponent value and loads it into the SE reg-
ister. The Exp instruction recognizes a (Hi) and (Lo) modifier. The 
second stage uses the Norm instruction. Norm recognizes (Hi) and (Lo) and 
also has the [SR Or] option. Norm uses the negated value of the SE register 
as its shift control code. The negated value is used so that the shift is made 
in the correct direction.

This is a normalization example for a single-precision input. First, the Exp 
instruction derives the exponent:

AR = 0xF6D4; {single-precision input}

SE = Exp AR (Hi); {Detects Exponent With Hi Modifier}

Input (AR):1111 0110 1101 0100

Exponent (SE):–3



Barrel-Shifter (Shifter)

2-48 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Next for this single-precision example, the Norm instruction normalizes the 
input using the derived exponent in SE:

SR = Norm AR (Hi);

Input (AR):1111 0110 1101 0100

SR (Normalized):

1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2-----|--------sr1---------|--------sr0----------

For a single-precision input, the normalize operation can use either the 
(Hi) or (Lo) modifier, depending on whether the result is needed in SR1 
or SR0.

Normalize, ALU Result Overflow

For single-precision data, there is a special normalization situation—nor-
malizing ALU results (AR) that may have overflowed—that requires the 
Hi-extended (Hix) modifier. When using this modifier, the shifter reads 
the arithmetic status word (ASTAT) overflow bit (AV) and the carry bit (AC) 
in conjunction with the value in AR. If AV is set (=1), an overflow has 
occurred. AC contains the true sign of the two’s complement value.

Given the following conditions, the normalize operation is as follows:

AR =1111 1010 0011 0010

AV =1 (indicating overflow)

AC =0 (the true sign bit of this value)

SE = Exp AR (HIX); SR = Norm AR (HI);

1. Detect Exponent, Modifier = Hix

SE gets set to:+1



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-49 
 

Computational Units

Preliminary

2. Normalize, Modifier = Hi, SE = 1

AR =1111 1010 0011 0010

SR (Normalized):

0000 0000 0111 1101 0001 1001 0000 0000 0000 0000

---sr2-----|--------sr1---------|--------sr0---------

The AC bit is supplied as the sign bit, MSB of SR above.

The Norm instruction differs slightly between the ADSP-2199x and 
previous 16-bit, fixed-point DSPs in the ADSP-2100 family. The 
difference only can be seen when performing overflow 
normalization.

• On the ADSP-2199x, the Norm instruction checks only that 
(SE == +1) for performing the shift in of the AC flag (over-
flow normalization).

• On previous ADSP-2100 family DSP’s, the Norm instruction 
checks both that (SE == +1) and (AV == 1) before shifting in 
the AC flag.

The Exp (HIX) instruction always sets (SE = +1) when the AV flag is 
set, so this execution difference only appears when Norm is used 
without a preceding Exp instruction.



Barrel-Shifter (Shifter)

2-50 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The Hix operation executes properly whether or not there has actually 
been an overflow as demonstrated by this second example:

AR 1110 0011 0101 1011

AV = 0 (indicating no overflow)

AC =0 (not meaningful if AV = 0)

1. Detect Exponent, Modifier = Hix

SE set to –2

2. Normalize, Modifier = Hi, SE = –2

AR =1110 0011 0101 1011

SR (Normalized):

1111 1111 1000 1101 0110 1000 0000 0000 0000 0000

---sr2----|--------sr1---------|--------sr0---------

The AC bit is not used as the sign bit. As Figure 2-15 on page 2-59 shows, 
the Hix mode is identical to the Hi mode when AV is not set. When the 
Norm, Lo operation is done, the extension bit is zero; when the Norm, Hi 
operation is done, the extension bit is AC.

Normalize, Double-Precision Input

For double-precision values, the normalization process follows the same 
general scheme as with single-precision values. The first stage detects the 
exponent and the second stage normalizes the two halves of the input. For 
normalizing double-precision values, there are two operations in each 
stage.

For the first stage, the upper half of the input must be operated on first. 
This first exponent derivation loads the exponent value into SE. The sec-
ond exponent derivation, operating on the lower half of the number does 
not alter the SE register unless SE = –15. This happens only when the first 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-51 
 

Computational Units

Preliminary

half contained all sign bits. In this case, the second operation loads a value 
into SE (see Figure 2-16 on page 2-62). This value is used to control both 
parts of the normalization that follows.

For the second stage, now that SE contains the correct exponent value, the 
order of operations is immaterial. The first half (whether Hi or Lo) is nor-
malized without the [SR Or] and the second half is normalized with 
[SR Or] to create one double-precision value in SR. The (Hi) and (Lo) 
modifiers identify which half is being processed.

The following example normalizes double-precision values:

1. Detect Exponent, Modifier = Hi

First Input:1111 0110 1101 0100 (upper half)
SE set to: -3

2. Detect Exponent, Modifier = Lo

Second Input:0110 1110 1100 1011
SE unchanged:-3

Normalize, Modifier = Hi, No [SR Or], SE = –3

First Input:1111 0110 1101 0100

SR (Normalized):
1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

3. Normalize, Modifier = Lo, [SR Or], SE = –3



Barrel-Shifter (Shifter)

2-52 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Second Input:0110 1110 1100 1011

SR (Normalized):
1111 1111 1011 0110 1010 0011 0111 0110 0101 1000

---sr2---|--------sr1--------|--------sr0--------

If the upper half of the double-precision input contains all sign bits, the SE 
register value is determined by the second derive exponent operation as 
shown in this second double-precision normalization example:

1. Detect Exponent, Modifier = Hi

First Input:1111 1111 1111 1111 (upper half)
SE set to: -15

2. Detect Exponent, Modifier = Lo

Second Input:1111 0110 1101 0100
SE now set to:-19

3. Normalize, Modifier = Hi, No [SR Or], SE = –19 (negated)

First Input:1111 1111 1111 1111

SR (Normalized):
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

Note that all values of SE less than –15 (resulting in a shift of +16 
or more) upshift the input completely off scale.

4. Normalize, Modifier = Lo, [SR Or], SE = –19 (negated)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-53 
 

Computational Units

Preliminary

Second Input:1111 0110 1101 0100

SR (Normalized):
1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

Shifter Status Flags
The shifter’s logical shift, arithmetic shift, normalize, and derive exponent 
operations update status flags in the computational unit’s arithmetic status 
register (ASTAT). Table 22-5 on page 22-8 lists all the bits in this register. 
The following bits in ASTAT flag shifter status (a 1 indicates the condition) 
for the most recent shifter derive exponent operation:

• Shifter result overflow. Bit 7 (SV) indicates overflow (if set, =1) 
when the MSB of SR1 does not match the eight LSBs of SR2 or 
indicates no overflow (if clear, =0). The SV is set by multiply/accu-
mulate and shift instructions.

• Shifter input sign for exponent extract only. Bit 8 (SS) The SS flag 
is updated if by derive exponent instructions with the (HI) or 
(HIX) options set and inputs to the subsequent (LO) instruction.

Flag updates occur at the end of the cycle in which the status is generated 
and are available on the next cycle.

On previous 16-bit, fixed-point DSPs (ADSP-2100 family), the 
Shifter Results (SR) register is 32 bits wide and has no overflow 
detection. On ADSP-2199x DSPs, the SR register is 40 bits wide, 
and overflow in SR is indicated with the SV flag.



Barrel-Shifter (Shifter)

2-54 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Shifter Instruction Summary
Table 2-8 on page 2-54 lists the shifter instructions and indicate how they 
relate to ASTAT flags. For more information on assembly language syntax, 
see the ADSP-219x DSP Instruction Set Reference. In Table 2-8 on 
page 2-54, note the meaning of the following symbols:

• Dreg indicates any register file location

• * indicates the flag may be set or cleared, depending on results of 
instruction

• – indicates no effect

Table 2-8. Shifter Instruction Summary

Instruction ASTAT Status Flags

SV SS

[IF Cond] SR = [SR OR] ASHIFT Dreg [(|HI, LO|)]; * –

SR = [SR OR] ASHIFT Dreg BY <Imm8> [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] LSHIFT Dreg [(|HI, LO|)]; * –

SR = [SR OR] LSHIFT Dreg BY <Imm8> [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] NORM Dreg [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] NORM Dreg BY<Imm8> [(|HI, 
LO|)];

* –

[IF Cond] SE = EXP Dreg [(|HIX, HI, LO|)]; – *1

1   The SS bit is the MSB of input for the HI option. For the HIX option, the SS bit 
is the MSB of input (for AV = 0) or inverted MSB of input (for AV = 1). There is 
no effect on SS flag for the LO option.

[IF Cond] SB = EXPADJ Dreg; – –



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-55 
 

Computational Units

Preliminary

Shifter Data Flow Details
Figure 2-14 on page 2-55 shows a more detailed diagram of the shifter, 
which appears in Figure 2-1 on page 2-3. The shifter has the following 
components: the shifter array, the OR/PASS logic, the exponent detector, 
and the exponent compare logic.

Figure 2-14. Shifter Block Diagram

SS

SV

I

O

MY0

MY1

REGISTER FILE

MX0 AX0 AY0

AX1 AY1MX0

OR / PASS

SR

40

40 40

HI / LO

SB

COMPARE

CONSTANT

SE

8 C

NEGATE

I

O

5

AV

SS

HIX / HI / LO

AC

1616

AR

SR0

MR2 MR1 MR0

SR2 SISR1

EXPONENT
DETECTOR

SHIFTER
ARRAY



Barrel-Shifter (Shifter)

2-56 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The shifter array is a 16x40 barrel shifter. It accepts a 16-bit input and can 
place it anywhere in the 40-bit output field, from off-scale right to 
off-scale left, in a single cycle. This spread gives 57 possible placements 
within the 40-bit field. The placement of the 16 input bits is determined 
by a shift control code (C) and a Hi/Lo option.

Most shifter instructions accept any register of the data register file as an 
input. This includes immediate shift instructions as well as conditional 
and multi-function instructions with register to register moves. Restric-
tions apply to multi-function instructions with parallel data load/store 
from/to memory. Then, the shifter still accepts SI, AR, MR2, MR1, MR0, SR2, 
SR1 and SR0.

For more information on register usage restrictions in conditional 
and multifunction instructions, see “Multifunction Computations” 
on page 2-64.

The shifter input provides input to the shifter array and the exponent 
detector. The shifter result (SR) register is 40 bits wide and is divided into 
three sections: SR0, SR1, and SR2. These individual 16-bit registers are part 
of the register file. The SR register is also fed back to the OR/PASS logic to 
allow double-precision shift operations.

The SE register ("shifter exponent") holds the exponent during normalize 
and denormalize operations. Although it is a 16-bit register for general 
purposes, shifter operations only use the 8 LSBs. Derive-exponent instruc-
tions sign-extend the results to 16 bit. SE is not part of the register file but 
may be accessed through the DM and the PM bus.

The SB register (“shifter block”) is important in block floating-point oper-
ations where it holds the block exponent value, which is the value by 
which the block values must be shifted to normalize the largest value. SB 
holds the most recent block exponent value. Although it is a 16-bit regis-
ter for general purposes, block exponent operations use the 5 LSBs only, 
but sign-extend to 16 bits. SB is not part of the register file but can be 
accessed through DM and PM bus.It is a two’s complement, 5.0 value.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-57 
 

Computational Units

Preliminary

Any of the SI, SE, or SR registers can be read and written in the same cycle. 
Registers are read at the beginning of the cycle and written at the end of 
the cycle. All register reads get values loaded at the end of a previous cycle. 
A new value written to a register cannot be read out until a subsequent 
cycle. This allows an input register to provide an operand to the shifter at 
the beginning of the cycle and be updated with the next operand at the 
end of the same cycle. It also allows a result register to be stored in mem-
ory and updated with a new result in the same cycle.

The shifting of the input is determined by a control code (C) and a Hi/Lo 
option. The control code is an 8-bit signed value which indicates the 
direction and number of places the input is to be shifted. Positive codes 
indicate a left shift (upshift) and negative codes indicate a right shift 
(downshift). The control code can come from three sources: the content 
of the shifter exponent (SE) register, the negated content of the SE register, 
or an immediate value from the instruction. The ASHIFT and LSHIFT 
instructions use SE directly, whereas the NORM instructions take the 
negated SE. 

The Hi/Lo option determines the reference point for the shifting. In the Hi 
state, all shifts are referenced to SR1 (the upper half of the output field), 
and in the Lo state, all shifts are referenced to SR0 (the lower half). The 
Hi/Lo feature is useful when shifting 32-bit values because it allows both 
halves of the number to be shifted with the same control code. Hi/Lo 
option is selectable each time the shifter is used.

The shifter fills any bits to the right of the input value in the output field 
with zeros, and bits to the left are filled with the extension bit. The exten-
sion bit can be fed by three possible sources depending on the instruction 
being performed. The three sources are the MSB of the input, the AC bit 
from the arithmetic status register (ASTAT), or a zero.



Barrel-Shifter (Shifter)

2-58 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 2-15 on page 2-59 shows the shifter array output as a function of 
the control code and Hi/Lo signal. In the figure, ABCDEFGHIJKLMNPR repre-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-59 
 

Computational Units

Preliminary

sents the 16-bit input pattern, and X stands for the extension bit.

Figure 2-15. Shifter Array Output Placement

HI Reference LO Reference Shifter Results
Shift Value Shift Value ---SR2--|-------SR1-------|-------SR0-------
+24 to +127 +40 to +127 00000000 00000000 00000000 00000000 00000000
+23 +39 R0000000 00000000 00000000 00000000 00000000
+22 +38 PR000000 00000000 00000000 00000000 00000000
+21 +37 NPR00000 00000000 00000000 00000000 00000000
+20 +36 MNPR0000 00000000 00000000 00000000 00000000
+19 +35 LMNPR000 00000000 00000000 00000000 00000000
+18 +34 KLMNPR00 00000000 00000000 00000000 00000000
+17 +33 JKLMNPR0 00000000 00000000 00000000 00000000
+16 +32 IJKLMNPR 00000000 00000000 00000000 00000000
+15 +31 HIJKLMNP R0000000 00000000 00000000 00000000
+14 +30 GHIJKLMN PR000000 00000000 00000000 00000000
+13 +29 FGHIJKLM NPR00000 00000000 00000000 00000000
+12 +28 EFGHIJKL MNPR0000 00000000 00000000 00000000
+11 +27 DEFGHIJK LMNPR000 00000000 00000000 00000000
+10 +26 CDEFGHIJ KLMNPR00 00000000 00000000 00000000
+ 9 +25 BCDEFGHI JKLMNPR0 00000000 00000000 00000000
+ 8 +24 ABCDEFGH IJKLMNPR 00000000 00000000 00000000
+ 7 +23 XABCDEFG HIJKLMNP R0000000 00000000 00000000
+ 6 +22 XXABCDEF GHIJKLMN PR000000 00000000 00000000
+ 5 +21 XXXABCDE FGHIJKLM NPR00000 00000000 00000000
+ 4 +20 XXXXABCD EFGHIJKL MNPR0000 00000000 00000000
+ 3 +19 XXXXXABC DEFGHIJK LMNPR000 00000000 00000000
+ 2 +18 XXXXXXAB CDEFGHIJ KLMNPR00 00000000 00000000
+ 1 +17 XXXXXXXA BCDEFGHI JKLMNPR0 00000000 00000000

0 +16 XXXXXXXX ABCDEFGH IJKLMNPR 00000000 00000000
- 1 +15 XXXXXXXX XABCDEFG HIJKLMNP R0000000 00000000
- 2 +14 XXXXXXXX XXABCDEF GHIJKLMN PR000000 00000000
- 3 +13 XXXXXXXX XXXABCDE FGHIJKLM NPR00000 00000000
- 4 +12 XXXXXXXX XXXXABCD EFGHIJKL MNPR0000 00000000
- 5 +11 XXXXXXXX XXXXXABC DEFGHIJK LMNPR000 00000000
- 6 +10 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPR00 00000000
- 7 + 9 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPR0 00000000
- 8 + 8 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR 00000000
- 9 + 7 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP R0000000
-10 + 6 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN PR000000
-11 + 5 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM NPR00000
-12 + 4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL MNPR0000
-13 + 3 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK LMNPR000
-14 + 2 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPR00
-15 + 1 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPR0
-16 0 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
-17 - 1 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP
-18 - 2 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN
-19 - 3 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM
-20 - 4 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL
-21 - 5 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK
-22 - 6 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ
-23 - 7 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI
-24 - 8 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH
-25 - 9 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD
-29 -13 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB
-31 -15 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA
-32 to -128 -16 to -128 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX



Barrel-Shifter (Shifter)

2-60 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The OR/PASS logic allows the shifted sections of a multiprecision num-
ber to be combined into a single quantity. In some shifter instructions, the 
shifted output may be logically ORed with the contents of the SR register; 
the shifter array is bitwise ORed with the current contents of the SR regis-
ter before being loaded there. When the [SR Or] option is not used in the 
instruction, the shifter array output is passed through and loaded into the 
shifter result (SR) register unmodified. 

The exponent detector derives an exponent for the shifter input value. 
The exponent detector operates in one of three ways, which determine 
how the input value is interpreted. In the Hi state, the input is interpreted 
as a single-precision number or the upper half of a double-precision num-
ber. The exponent detector determines the number of leading sign bits 
and produces a code, which indicates how many places the input must be 
up-shifted to eliminate all but one of the sign bits. The code is negative so 
that it can become the effective exponent for the mantissa formed by 
removing the redundant sign bits. 

In the Hi-extend state (Hix), the input is interpreted as the result of an add 
or subtract performed in the ALU which may have overflowed. So, the 
exponent detector takes the arithmetic overflow (AV) status into consider-
ation. If AV is set, a +1 exponent is output to indicate an extra bit is needed 
in the normalized mantissa (the ALU carry bit); if AV is not set, Hi-extend 
functions exactly like the Hi state. When performing a derive exponent 
function in Hi or Hi-extend modes, the exponent detector also outputs a 
shifter sign (SS) bit which is loaded into the arithmetic status register 
(ASTAT). The sign bit is the same as the MSB of the shifter input except 
when AV is set; when AV is set in Hi-extend state, the MSB is inverted to 
restore the sign bit of the overflowed value. 

In the Lo state, the input is interpreted as the lower half of a double-preci-
sion number. In the Lo state, the exponent detector interprets the SS bit in 
the arithmetic status register (ASTAT) as the sign bit of the number. The SE 
register is loaded with the output of the exponent detector only if SE con-
tains –15. This occurs only when the upper half–which must be processed 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-61 
 

Computational Units

Preliminary

first–contained all sign bits. The exponent detector output is also offset by 
–16, because the input is actually the lower 16 bits of a 40-bit value. 
Figure 2-16 on page 2-62 gives the exponent detector characteristics for 
all three modes.

The exponent compare logic is used to find the largest exponent value in 
an array of shifter input values. The exponent compare logic in conjunc-
tion with the exponent detector derives a block exponent. The comparator 
compares the exponent value derived by the exponent detector with the 
value stored in the shifter block exponent (SB) register and updates the SB 
register only when the derived exponent value is larger than the value in SB 
register.

Data Register File
The DSP’s computational units have a data register file: a set of data regis-
ters that transfer data between the data buses and the computation units. 
DSP programs use these registers for local storage of operands and results.

The register file appears in Figure 2-1 on page 2-3. The register file con-
sists of 16 primary registers and 16 secondary (alternate) registers. All of 
the data registers are 16 bits wide.

Program memory data accesses and data memory accesses to/from the reg-
ister file occur on the PM data bus and DM data bus, respectively. One 
PM data bus access and/or one DM data bus access can occur in one cycle. 
Transfers between the register files and the DM or PM data buses can 
move up to 16-bits of valid data on each bus.

If an operation specifies the same register file location as both an input 
and output, the read occurs in the first half of the cycle and the write in 
the second half. With this arrangement, the DSP uses the old data as the 
operand, before updating the location with the new result data. If writes 
to the same location take place in the same cycle, only the write with 



Data Register File

2-62 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 2-16. Exponent Detector Characteristics

S = Sign bit
N = Non-sign bit
D = Don’t care bit

HI Mode HIX Mode

Shifter Array Input Output AV Shifter Array Input Output

1 DDDDDDDD DDDDDDDD +1
SNDDDDDD DDDDDDDD 0 0 SNDDDDDD DDDDDDDD 0
SSNDDDDD DDDDDDDD -1 0 SSNDDDDD DDDDDDDD -1
SSSNDDDD DDDDDDDD -2 0 SSSNDDDD DDDDDDDD -2
SSSSNDDD DDDDDDDD -3 0 SSSSNDDD DDDDDDDD -3
SSSSSNDD DDDDDDDD -4 0 SSSSSNDD DDDDDDDD -4
SSSSSSND DDDDDDDD -5 0 SSSSSSND DDDDDDDD -5
SSSSSSSN DDDDDDDD -6 0 SSSSSSSN DDDDDDDD -6
SSSSSSSS NDDDDDDD -7 0 SSSSSSSS NDDDDDDD -7
SSSSSSSS SNDDDDDD -8 0 SSSSSSSS SNDDDDDD -8
SSSSSSSS SSNDDDDD -9 0 SSSSSSSS SSNDDDDD -9
SSSSSSSS SSSNDDDD -10 0 SSSSSSSS SSSNDDDD -10
SSSSSSSS SSSSNDDD -11 0 SSSSSSSS SSSSNDDD -11
SSSSSSSS SSSSSNDD -12 0 SSSSSSSS SSSSSNDD -12
SSSSSSSS SSSSSSND -13 0 SSSSSSSS SSSSSSND -13
SSSSSSSS SSSSSSSN -14 0 SSSSSSSS SSSSSSSN -14
SSSSSSSS SSSSSSSS -15 0 SSSSSSSS SSSSSSSS -15

LO Mode

SS Shifter Array Input Output

S NDDDDDDD DDDDDDDD -15
S SNDDDDDD DDDDDDDD -16
S SSNDDDDD DDDDDDDD -17
S SSSNDDDD DDDDDDDD -18
S SSSSNDDD DDDDDDDD -19
S SSSSSNDD DDDDDDDD -20
S SSSSSSND DDDDDDDD -21
S SSSSSSSN DDDDDDDD -22
S SSSSSSSS NDDDDDDD -23
S SSSSSSSS SNDDDDDD -24
S SSSSSSSS SSNDDDDD -25
S SSSSSSSS SSSNDDDD -26
S SSSSSSSS SSSSNDDD -27
S SSSSSSSS SSSSSNDD -28
S SSSSSSSS SSSSSSND -29
S SSSSSSSS SSSSSSSN -30
S SSSSSSSS SSSSSSSS -31



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-63 
 

Computational Units

Preliminary

higher precedence actually occurs. The DSP determines precedence for 
the write from the type of the operation; from highest to lowest, the prece-
dence is:

1. Move operations: register-to-register, register-to-memory, or 
memory-to-register

2. Compute operations: ALU, multiplier, or shifter

Secondary (Alternate) Data Registers
Computational units have a secondary register set. To facilitate fast con-
text switching, the DSP includes secondary register sets for data, results, 
and data address generator registers. Bits in the MSTAT register control 
when secondary registers become accessible. While inaccessible, the con-
tents of secondary registers are not affected by DSP operations. The 
secondary register sets for data and results are described in this section.

There is a one-cycle latency between writing to MSTAT and being 
able to access an secondary register set. 

For more information on secondary data address generator regis-
ters, see the “Secondary (Alternate) DAG Registers” on page 5-4.

The MSTAT register controls access to the secondary registers. Table 22-6 
on page 22-9 lists all the bits in MSTAT. The SEC_REG bit in MSTAT controls 
secondary registers (a 1 enables the secondary set). When set (=1), second-
ary registers are enabled for the AX0, AX1, AY0, AY1, MX0, MX1, MY0, MY1, SI, 
SB, SE, AR, AF, MR0, MR1, MR2, SR0, SR1 and SR2 registers.

The following example demonstrates how code should handle the one 
cycle of latency from the instruction, setting the bit in MSTAT to when the 
secondary registers may be accessed.

AR = MSTAT;

AR = Setbit SEC_REG Of AR;



Multifunction Computations

2-64 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

MSTAT=AR;/* activate secondary reg. file */

Nop;/* wait for access to secondaries */

AX0 = 7;

It is more efficient (no latency) to use the mode enable instruction to 
select secondary registers. In the following example, note that the swap to 
secondary registers is immediate:

Ena SEC_REG;/* activate secondary reg. file */

AX0 = 7;/* now use the secondaries */

Multifunction Computations
Using the many parallel data paths within its computational units, the 
DSP supports multiple-parallel (multifunction) computations. These 
instructions complete in a single cycle, and they combine parallel opera-
tion of the multiplier, ALU, or shifter with data move operations. The 
multiple operations perform the same as if they were in corresponding sin-
gle-function computations. Multifunction computations also handle flags 
in the same way as the single-function computations.

To work with the available data paths, the computation units constrain 
which data registers may hold the input operands for multifunction com-
putations. These constraints limit which registers may hold the X-input 
and Y-input for the ALU, multiplier, and shifter. For details, refer to the 
ALU, multiplier and shifter sections of this manual and to the ADSP-219x 
DSP Instruction Set Reference.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 2-65 
 

Computational Units

Preliminary

For unconditional, single-function instructions, any of the registers within 
the register file may serve as X- or Y-inputs (see Figure 2-1 on page 2-3). 
The following code example shows the differences between conditional 
versus unconditional instructions and single-function versus multifunc-
tion instructions.

/* Conditional computation instructions begin with an IF clause. 

The DSP tests whether the condition is true before executing the 

instruction. */

AR = AX0 + AY0; /*unconditional: add X and Y ops*/

If EQ AR = AX0 + AY0; /*conditional: if AR=0, add X and Y ops*/

/* Multifunction instructions are sets of instruction that exe-

cute in a single cycle. The instructions are delimited with 

commas, and the combined multifunction instruction is terminated 

with a semicolon. */

AR = AX0-AY0;   /* single function ALU subtract */

AX0 = MR1;       /* single function register-to-register move */

AR = AX0-AY0, AX0 = MR1; /* multifunction, both in 1 cycle */

The upper part of the Shifter Results register may not serve as feedback to 
ALU and multiplier. For information on the SR2, SB, SE, MSTAT, and ASTAT 
registers see the discussion on page 2-3.

Only the ALU and multiplier X- and Y-operand registers (MX0, MX1, MY0, 
MY1, AX0, AY1) have memory data bus access in dual-memory read multi-
function instructions.



Multifunction Computations

2-66 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Table 2-9 on page 2-66 lists the multifunction instructions. For more 
information on assembly language syntax, see the ADSP-219x DSP 
Instruction Set Reference. In these tables, note the meaning of the following 
symbols:

• ALU, MAC, SHIFT indicate any ALU, multiplier, or shifter 
instruction

• Dreg indicates any register file location

• Xop, Yop indicate any X- and Y-input registers, indicating a regis-
ter usage restriction for conditional and/or multifunction 
instructions.

Table 2-9. ADSP-219x Multifunction Instruction Summary

Instruction1

1   Multifunction instructions are sets of instruction that execute in a sin-
gle cycle. 

The instructions are delimited with commas, and the combined multifunc-
tion instruction is terminated with a semicolon.

|<ALU>, <MAC>|, Xop = DM(Ia += Mb), Yop = PM(Ic += Md);

Xop = DM(Ia += Mb), Yop = PM(Ic += Md);

|<ALU>, <MAC>,<SHIFT> |, Dreg = |DM(Ia += Mb), PM(Ic += Md)|;

|<ALU>, <MAC>, <SHIFT>|, |DM(Ia += Mb), PM(Ic += Md)| = Dreg;

|<ALU>, <MAC>, <SHIFT>|, Dreg = Dreg;



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-1 
 

Program Sequencer

Preliminary

3 PROGRAM SEQUENCER

Overview
The DSP’s program sequencer controls program flow, constantly provid-
ing the address of the next instruction to be executed by other parts of the 
DSP. Program flow in the DSP is mostly linear with the processor execut-
ing program instructions sequentially. This linear flow varies occasionally 
when the program uses non-sequential program structures, such as those 
illustrated in Figure 3-1 on page 3-2. Non-sequential structures direct the 
DSP to execute an instruction that is not at the next sequential address. 
These structures include: 

• Loops. One sequence of instructions executes several times with 
near-zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow 
to execute instructions from another part of program memory.

• Jumps. Program flow transfers permanently to another part of pro-
gram memory.



Overview

3-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Interrupts. Subroutines in which a runtime event triggers the exe-
cution of the routine.

• Idle. An instruction that causes the processor to cease operations, 
holding its current state until an interrupt occurs. Then, the pro-
cessor services the interrupt and continues normal execution.

Figure 3-1. Program Flow Variations

N

N +1

N +2

N +3

N +4

N +5

ADDRES S:

INS TRUCTION

INS TRUCTION

INS TRUCTION

INS TRUCTION

INS TRUCTION

INS TRUCTION

LINEAR FLOW

INS TRUCTION

INS TRUCTION

INS TRUCTION

INS TRUCTION

INS TRUCTION

DO UN TIL

LOOP

N TIMES

INS TRUC TION

INS TRUC TION

INS TRUC TION

INS TRUC TION

INS TRUC TION

JUM P

JUMP

INS TRUCTION

INS TRUCTION

…

INS TRUCTION

CAL L

SUBROUTINE

INS TRUCTION

RTS

INS TRUCTION

INS TRUCTION

…

INS TRUCTION

INS TRUCTION

INS TRUCTION

R TI

INS TRUCTION

INTERRUPT

IRQ

VE CTOR

INS TRUCTION

INS TRUC TION

INS TRUC TION

INS TRUC TION

ID LE

INS TRUC TION

INS TRUC TION

IDLE

W AITING
FOR IRQ

INS TRUC TION

INS TRUC TION



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-3 
 

Program Sequencer

Preliminary

The sequencer manages execution of these program structures by selecting 
the address of the next instruction to execute. As part of this process, the 
sequencer handles the following tasks:

• Increments the fetch address

• Maintains stacks

• Evaluates conditions

• Decrements the loop counter

• Calculates new addresses

• Maintains an instruction cache

• Handles interrupts 

To accomplish these tasks, the sequencer uses the blocks shown in 
Figure 3-2 on page 3-4. The sequencer’s address multiplexer selects the 
value of the next fetch address from several possible sources. The fetched 
address enters the instruction pipeline, ending with the program counter 
(PC). The pipeline contains the 24-bit addresses of the instructions cur-
rently being fetched, decoded, and executed. The PC couples with the PC 
stack, which stores return addresses. All addresses generated by the 
sequencer are 24-bit program memory instruction addresses.

Figure 3-2 on page 3-4 uses the following abbreviations: 
ADDR=address, BRAN=branch, IND=indirect, DIR=direct, 
RT=return, RB=rollback, INCR=increment, PC-REL=PC relative, 
PC=program counter.

The diagram in Figure 3-2 on page 3-4 also describes the relation-
ship between the program sequencer in the ADSP-219x DSP core 
and inputs to that sequencer that differ for various members of the 
ADSP-219x family DSPs.



Overview

3-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 3-2. Program Sequencer Block Diagram

IN TER RUP T C ONTRO LLE R

IN TERR UPT S

P RE FE TC H ADDRE S S ( PA )

F E TCH ADDRE S S (FA )

ADD RES S DE CO DE (A D)

INS TRUCT IO N DE CO DE (ID )

E XE CUT E (P C)

INSTR U CTION PIPEL INE

RB
A DD R

INC R
ADD R

PC- REL
B RAN

DIR
BR AN

IND
B RAN

LOOP
ADD R

RT
A DDR

PC STA CKLOOP S TACK

LO O K AHE AD A DDRE SS (LA )

+1

+

INS TR CA CHE

I NSTR LATCH

ST ATU S &
CO ND I TI ON

LOOP S TAT US

A R I TH M ETIC STA TUS

C OUN TER E XPI R ED (C E)

LOOP & B RAN CH
CONT ROL

ADSP-2199X
DSP SPECIFIC

ADSP-2199X DSP CORE
(C OM MON T O AD SP-219X F AMIL Y)

DM A CON TR OLLER

DMA REQU ESTS

PROGRA MM ABL E
FLAGS

P M DA TA BUS

PM ADD R ESS B US

VEC TOR
AD D R

P C STA TU S

STA C K
A DD R ES S

AD DR ESS
FROM D AGS



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-5 
 

Program Sequencer

Preliminary

To manage events, the sequencer’s interrupt controller handles interrupt 
processing, determines whether an interrupt is masked, and generates the 
appropriate interrupt vector address.

With selective caching, the instruction cache lets the DSP access data in 
memory and fetch an instruction (from the cache) in the same cycle. The 
program sequencer uses the cache if there is a data access which uses the 
PM bus (called a PM data access) or if a data access over the DM bus uses 
the same block of memory as the current instruction fetch (a block 
conflict).

In addition to providing data addresses, the Data Address Generators 
(DAGs) provide instruction addresses for the sequencer’s indirect 
branches.

The sequencer evaluates conditional instructions and loop termination 
conditions using information from the status registers. The loop stacks 
support nested loops. The status stack stores status registers for imple-
menting interrupt service routines.

Table 3-1 on page 3-6 and Table 3-2 on page 3-6 list the registers within 
and related to the program sequencer. All registers in the program 
sequencer are Register Group 1 (Reg1), 2 (Reg2), or 3 (Reg3) registers, so 
they are accessible to other data (Dreg) registers and to memory. All the 
sequencer’s registers are directly readable and writable, except for the PC. 
Manual pushing or popping the PC stack is done using explicit instructions 
and the PC stack page (STACKP) and address (STACKA) registers, which are 
readable and writable. Pushing or popping the loop stacks and status stack 
also requires explicit instructions. For information on using these stacks, 
see “Stacks and Sequencing” on page 3-32.

A set of system control registers configures or provides input to the 
sequencer. These registers include ASTAT, MSTAT, CCODE, IMASK, IRPTL, and 
ICNTL. Writes to some of these registers do not take effect on the next 
cycle. For example, after a write to the MSTAT register to enable ALU satu-
ration mode, the change does not take effect until one cycles after the 



Overview

3-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

write. With the lists of sequencer and system registers, Table 3-1 on 
page 3-6 and Table 3-2 on page 3-6 summarize the number of extra cycles 
(latency) for a write to take effect (effect latency) and for a new value to 
appear in the register (read latency). A “0” indicates that the write takes 
effect or appears in the register on the next cycle after the write instruction 
is executed, and a “1” indicates one extra cycle. 

Table 3-1. Program Sequencer Register Effect Latencies  

Register Contents Bits Effect Latency

CNTR loop count loaded on next Do/Until loop 16 11

1   CNTR has a one-cycle latency before an If Not CE instruction, but has zero latency otherwise.

IJPG Jump Page (upper eight bits of address) 8 1

IOPG I/O Page (upper eight bits of address) 8 1

DMPG1 DAG1 Page (upper eight bits of address) 8 1

DMPG2 DAG2 Page (upper eight bits of address) 8 1

Table 3-2. System Register Effect Latencies 

Register Contents Bits Effect Latency

ASTAT Arithmetic status 9 1

MSTAT Mode status 7 01

1   Changing MSTAT bits with the Ena or Dis mode instruction has a 0 effect latency; when writing to 
MSTAT or performing a Pop Sts, the effect latencies vary based on the altered bits.

SSTAT System status 8 n/a

CCODE Condition Code 16 1

IRPTL Interrupt latch 16 1

IMASK Interrupt mask 16 1

ICNTL Interrupt control 16 1

CACTL Cache control 3 52

2   Except for the CFZ bit, which has an effect latency of four cycles.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-7 
 

Program Sequencer

Preliminary

The following sections in this chapter explain how to use each of the func-
tional blocks in Figure 3-2 on page 3-4:

• “Instruction Pipeline” on page 3-7

• “Instruction Cache” on page 3-10

• “Branches and Sequencing” on page 3-15

• “Loops and Sequencing” on page 3-23

• “Interrupts and Sequencing” on page 3-26

• “Stacks and Sequencing” on page 3-32

• “Conditional Sequencing” on page 3-37

• “Sequencer Instruction Summary” on page 3-40

Instruction Pipeline
The instruction pipeline takes account for memory read latencies. Once 
an address emits to on-chip memory it takes two cycles until the data is 
available to the core. That is why the LA stage generates the address for 
the instruction fetched in the FA stage, and the AD stage outputs the 
address(es) for the data read in the PC cycle.

The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of 
the processor. If no conditions require otherwise, the DSP executes 



Instruction Pipeline

3-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

instructions from program memory in sequential order by incrementing 
the look-ahead address. Using its instruction pipeline, the DSP processes 
instructions in six clock cycles:

• Look-Ahead Address (LA). The DSP determines the source for the 
instruction from inputs to the look-ahead address multiplexer.

• Prefetch Address (PA) and Fetch Address (FA). The DSP reads the 
instruction from either the on-chip instruction cache or from pro-
gram memory.

• Address Decode (AD) and Instruction Decode (ID). The DSP 
decodes the instruction, generating conditions that control instruc-
tion execution.

• Execute (PC). The DSP executes the instruction; the operations 
specified by the instruction complete in a single cycle.

These cycles overlap in the pipeline, as shown in Table 3-3 on page 3-9. 
In sequential program flow, when one instruction is being fetched, the 
instruction fetched three cycles previously is being executed. With few 
exceptions, sequential program flow has a throughput of one instruction 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-9 
 

Program Sequencer

Preliminary

per cycle. The exceptions are the two-cycle instructions: 16- or 24-bit 
immediate data write to memory with indirect addressing, long jump 
(Ljump), and long call (Lcall).

Table 3-3. Pipelined Execution Cycles

Cycles LA PA FA AD ID PC

1 0x08 >>

2 0x09 >> 0x08 >>

3 0x0A >> 0x09 >> 0x08 >>

4 0x0B >> 0x0A >> 0x09 >> 0x08 >>

5 0x0C >> 0x0B >> 0x0A >> 0x09 >> 0x08 >>

6 0x0D >> 0x0C >> 0x0B >> 0x0A >> 0x09 >> 0x08

7 0x0E >> 0x0D >> 0x0C >> 0x0B >> 0x0A >> 0x09

8 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A

Look Ahead Address (LA). Prefetch Address (PA). Fetch Address (FA). 
Address Decode (AD). Instruction Decode (ID). Execute (PC).



Instruction Cache

3-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Any non-sequential program flow can potentially decrease the DSP’s 
instruction throughput. Non-sequential program operations include:

• Data accesses that conflict with instruction fetches

• Jumps

• Subroutine calls and returns

• Interrupts and return

• Loops (of less than five instructions)

Instruction Cache
Usually, the sequencer fetches an instruction from memory on each cycle. 
Occasionally, bus constraints prevent some of the data and instructions 
from being fetched in a single cycle. To alleviate these data flow con-
straints, the DSP has an instruction cache, which appears in Figure 3-3 on 
page 3-12. 

When the DSP executes an instruction that requires data access over the 
PM data bus, there is a bus conflict because the sequencer uses the PM data 
bus for fetching instructions. 

When a data transfer over the DM bus accesses the same memory block 
from which the DSP is fetching an instruction, there is a block conflict 
because only one bus can access a block at a time.

To avoid bus and block conflicts, the DSP caches these instructions, 
reducing delays. Except for enabling or disabling the cache, its operation 
requires no intervention. For more information, see “Using the Cache” on 
page 3-13 and “Optimizing Cache Usage” on page 3-13.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-11 
 

Program Sequencer

Preliminary

The first time the DSP encounters a fetch conflict, the DSP must wait to 
fetch the instruction on the following cycle, causing a delay. The DSP 
automatically writes the fetched instruction to the cache to prevent the 
same delay from happening again. 

The sequencer checks the instruction cache on every PM data access or 
block conflict. If the needed instruction is in the cache, the instruction 
fetch from the cache happens in parallel with the program memory data 
access, without incurring a delay.

Because of the six-stage instruction pipeline, as the DSP executes an 
instruction (at address n) that requires a PM data access or block conflict, 
this execution creates a conflict with the instruction fetch (at address 
n+3), assuming sequential execution. The cache stores the fetched instruc-
tion (n+3), not the instruction requiring the data access.

If the instruction needed to avoid a conflict is in the cache, the cache pro-
vides the instruction while the data access is performed. If the needed 
instruction is not in the cache, the instruction fetch from memory takes 
place in the cycle following the data access, incurring one cycle of over-
head. If the cache is enabled and not frozen, the fetched instruction is 
loaded into the cache, so that it is available the next time the same conflict 
occurs.

Figure 3-3 on page 3-12 shows a block diagram of the instruction cache. 
The cache holds 64 instruction-address pairs. These pairs (or cache 
entries) are arranged into 32 (31-0) cache sets according to the instruction 
address’ five least significant bits (4-0). The two entries in each set (entry 



Instruction Cache

3-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

0 and entry 1) have a valid bit, indicating whether the entry contains a 
valid instruction. The least recently used (LRU) bit for each set indicates 
which entry was not used last (0=entry 0, and 1=entry 1).

The cache places instructions in entries according to the five LSBs of the 
instruction’s address. When the sequencer checks for an instruction to 
fetch from the cache, it uses the five address LSBs as an index to a cache 
set. Within that set, the sequencer checks the addresses and valid bits of 
the two entries, looking for the needed instruction. If the cache contains 
the instruction, the sequencer uses the entry and updates the LRU bit to 
indicate the entry did not contain the needed instruction.

When the cache does not contain a needed instruction, the cache loads a 
new instruction and its address, placing these in the least recently used 
entry of the appropriate cache set and toggling the LRU bit.

Figure 3-3. Instruction Cache Architecture

INSTRUCT ION S

SET 0

SET 1

SET 2

SET 29

SET 30

SET 31

ADDR ESSES
B ITS (23-5)

L RU
BIT

VALID
B IT

ENT RY 0

ENT RY 0

ENT RY 0

ENT RY 1

ENT RY 1

ENT RY 1

ENT RY 0

ENT RY 0

ENT RY 0

ENT RY 1

ENT RY 1

ENT RY 1

ADDRESSES
BIT S (4-0)

00000

00001

00010

11101

11110

11111



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-13 
 

Program Sequencer

Preliminary

Using the Cache
After a DSP reset, the cache starts cleared (containing no instructions), 
unfrozen, and enabled. From then on, the CACTL register controls the 
operating mode of the instruction cache. As an system control register, 
CACTL can be accessed by "reg(CACTL)=dreg;" and 
"dereg=reg(CACTL);" instructions. Table 22-13 on page 22-20 lists all the 
bits in CACTL. The following bits in CACTL control cache modes:

• Cache DM bus access Enable. Bit 5 (CDE) directs the sequencer to 
cache conflicting DM bus accesses (if 1) or not to cache conflicting 
DM bus accesses (if 0).

• Cache Freeze. Bit 6 (CFZ) directs the sequencer to freeze the con-
tents of the cache (if 1) or let new entries displace the entries in the 
cache (if 0).

• Cache PM bus access Enable. Bit 7 (CPE) directs the sequencer to 
cache conflicting PM bus accesses (if 1) or not to cache conflicting 
PM bus accesses (if 0).

After reset CDE and CPE are set and CFZ is cleared.

When program memory changes, programs need to resynchronize 
the instruction cache with program memory using the Flush Cache 
instruction. This instruction flushes the instruction cache, invali-
dating all instructions currently cached, so the next instruction 
fetch results in a memory access.

Optimizing Cache Usage
Usually, cache operation is efficient and requires no intervention, but cer-
tain ordering of instructions can work against the cache’s architecture and 
can degrade cache efficiency. When the order of PM bus data accesses or 



Instruction Cache

3-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

block conflicts and instruction fetches continuously displaces cache entries 
and loads new entries, the cache is not being efficient. Rearranging the 
order of these instructions remedies this inefficiency.

An example of code that works against cache efficiency appears in 
Table 3-4 on page 3-15. The program memory data access at address 
0x0100 in the loop, Outer, causes the cache to load the instruction at 
0x0103 (into set 19). Each time the program calls the subroutine, Inner, 
the program memory data accesses at 0x0300 and 0x500 displace the 
instruction at 0x0103 by loading the instructions at 0x0303 and 0x0503 
(also into set 19). If the program only calls the Inner subroutine rarely 
during the Outer loop execution, the repeated cache loads do not greatly 
influence performance. If the program frequently calls the subroutine 
while in the loop, the cache inefficiency has a noticeable effect on perfor-
mance. To improve cache efficiency on this code (if for instance, 
execution of the Outer loop is time-critical), it would be good to rearrange 
the order of some instructions. Moving the subroutine call up one loca-
tion (starting at 0x02FE) would work here, because with that order the 
two cached instructions end up in cache set 18 instead of set 19.

Because the least significant five address bits determine which 
cache set stores an instruction, instructions in the same cache set 
are multiples of 64 address locations apart. As demonstrated in the 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-15 
 

Program Sequencer

Preliminary

optimization example, it is a rare combination of instruction 
sequences that can lead to “cache thrashing”—iterative swapping of 
cache entries.

Branches and Sequencing
One of the types of non-sequential program flow that the sequencer sup-
ports is branching. A branch occurs when a Jump or Call/return 
instruction begins execution at a new location, other than the next 

Table 3-4. Cache-Inefficient Code

Address Instruction

0x00FE CNTR=1024;

0x00FF Do Outer Until CE;

0x0100 AX0=DM(I0+=M0), PM(I4+=M4)=AY0;

...

0x0103 If EQ Call Inner;

0x0104 AR=AX1 + AY1;

0x0105 MR=MX0*MY0 (SS);

0x0106 Outer: SR=MX1*MY1(SS);

0x0107 PM(I7+=M7)=SR1;

...

0x02FF Inner: SR0=AY0;

0x0300 AY0=PM(I5+=M5);

...

0x0500 PM(I5+=M5)=AY1;

...

0x05FF Rts;



Branches and Sequencing

3-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

sequential address. For descriptions on how to use the Jump and 
Call/return instructions, see the ADSP-219x DSP Instruction Set Refer-
ence. Briefly, these instructions operate as follows:

• A Jump or a Call/return instruction transfers program flow to 
another memory location. The difference between a Jump and a 
Call is that a Call automatically pushes the return address (the 
next sequential address after the Call instruction) onto the PC 
stack. This push makes the address available for the Call instruc-
tion’s matching return instruction, allowing easy return from the 
subroutine.

• A return instruction causes the sequencer to fetch the instruction at 
the return address, which is stored at the top of the PC stack. The 
two types of return instructions are return from subroutine (Rts) 
and return from interrupt (Rti). While the return from subroutine 
(Rts) only pops the return address off the PC stack, the return from 
interrupt (Rti) pops the return address and pops the status stack.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-17 
 

Program Sequencer

Preliminary

There are a number of parameters that programs can specify for branches:

• Jump and Call/return instructions can be conditional. The program 
sequencer can evaluate status conditions to decide whether to exe-
cute a branch. If no condition is specified, the branch is always 
taken. For more information on these conditions, see “Conditional 
Sequencing” on page 3-37.

• Jump and Call/return instructions can be immediate or delayed. 
Because of the instructions pipeline, an immediate branch incurs 
four lost (overhead) cycles. A delayed branch incurs two cycles of 
overhead. For more information, see “Delayed Branches” on page 
3-19.

• Jump and Call/return instructions can be used within Do/Until 
counter (CE) or infinite (Forever) loops, but a Jump or Call instruc-
tion may not be the last instruction in the loop. For information, 
see “Restrictions on Ending Loops” on page 3-26.

The sequencer block diagram in Figure 3-2 on page 3-4 shows that 
branches can be direct or indirect. The difference is that the sequencer 
generates the address for a direct branch, and the PM data address genera-
tor (DAG2) produces the address for an indirect branch.

Direct branches are Jump or Call/return instructions that use an abso-
lute—not changing at runtime—address (such as a program label) or use a 
PC-relative 16-bit address. To branch farther, the Ljump or Lcall instruc-
tions use a 24-bit address. Some instruction examples that cause a direct 
branch are:

Jump fft1024; {where fft1024 is an address label}

Call 10; {where 10 a PC-relative address}



Branches and Sequencing

3-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Indirect branches are Jump or Call/return instructions that use a 
dynamic—changes at runtime—address that comes from the PM data 
address generator. For more information on the data address generator, 
see “DAG Operations” on page 5-9. Some instruction examples that cause 
an indirect branch are:

Jump (I6); {where (i6) is a DAG2 register}

Call (I7); {where (i7) is a DAG2 register}

Indirect Jump Page (IJPG) Register
The IJPG register provides the upper eight address bits for indirect Jump 
and Call instructions. When performing an indirect branch, the 
sequencer gets the lower 16 bits of the branch address from the I register 
specified in the Jump or Call instruction and uses the IJPG register to com-
plete the address.

At power up, the DSP initializes the IJPG register to 0x0. Initializing the 
page register only is necessary when the instruction is located on a page 
other than the current page.

Changing the contents of the sequencer page register is not auto-
matic and requires explicit programming.

Conditional Branches
The sequencer supports conditional branches. These are Jump or 
Call/return instructions whose execution is based on testing an If condi-
tion. For more information on condition types in If condition 
instructions, see “Conditional Sequencing” on page 3-37.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-19 
 

Program Sequencer

Preliminary

Delayed Branches
The instruction pipeline influences how the sequencer handles branches. 
For immediate branches—Jump and Call/return instructions not specified 
as delayed branches (DB), four instruction cycles are lost (Nops) as the pipe-
line empties and refills with instructions from the new branch. 

As shown in Table 3-5 on page 3-19 and Table 3-6 on page 3-20, the 
DSP does not execute the four instructions after the branch, which are in 
the fetch and decode stages. For a Call, the next instruction (the instruc-
tion after the Call) is the return address. During the four lost 
(no-operation) cycles, the pipeline fetches and decodes the first instruc-
tion at the branch address.

Table 3-5. Pipelined Execution Cycles for Immediate Branch (Jump/Call)

Cycles LA PA FA AD ID PC

1 j n+4>nop1

1   n+1, n+2, n+3, and n+4 are suppressed.

n+3>nop1 n+2>nop1 n+1>nop1 n

2 j+1 j n+4>nop1 n+3>nop1 n+2>nop1 Nop2

2   For call, return address (n+1) is pushed on the PC stack.

3 j+2 j+1 j n+4>nop1 n+3>nop1 Nop

4 j+3 j+2 j+1 j n+4>nop1 Nop

5 j+4 j+3 j+2 j+1 j Nop

6 j+5 j+4 j+3 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address.



Branches and Sequencing

3-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

For delayed branches—Jump and Call/return instructions with the delayed 
branches (DB) modifier, only two instruction cycles are lost in the pipeline, 
because the DSP executes the two instructions after the branch while the 
pipeline fills with instructions from the new branch. 

As shown in Table 3-7 on page 3-21 and Table 3-8 on page 3-21, the 
DSP executes the two instructions after the branch, while the instruction 
at the branch address is fetched and decoded. In the case of a Call, the 
return address is the third instruction after the branch instruction. While 
delayed branches use the instruction pipeline more efficiently than imme-

Table 3-6. Pipelined Execution Cycles for Immediate Branch (Return)

Cycles LA PA FA AD ID PC

1 r n+4>nop1 n+3>nop1 n+2>nop1 n+1>nop1 n

2 r+1 r n+4>nop1 n+3>nop1 n+2>nop1 Nop2

3 r+2 r+1 r n+4>nop1 n+3>nop1 Nop

4 r+3 r+2 r+1 r n+4>nop1 Nop

5 r+4 r+3 r+2 r+1 r Nop

6 r+5 r+4 r+3 r+2 r+1 r

Note that n is the branching instruction, and r is the instruction branch address. 

1   n+1, n+2, n+3, and n+4 are suppressed.
2   r (n+1 in Table 3-5 on page 3-19) the return address is popped from PC stack.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-21 
 

Program Sequencer

Preliminary

diate branches, it is important to note that delayed branch code can be 
harder to understand because of the instructions between the branch 
instruction and the actual branch.

Table 3-7. Pipelined Execution Cycles for Delayed Branch (Jump/Call)

Cycles LA PA FA AD ID PC

1 j n+4>nop11

1   n+3 and n+4 are suppressed.

n+3>nop1 n+2 n+1 n

2 j+1 j n+4>nop1 n+3>nop1 n+2 n+12

2   Delayed branch slots.

3 j+2 j+1 j n+4>nop1 n+3>nop1 n+22

4 j+3 j+2 j+1 j n+4>nop1 Nop3

3   For call, return address (n+3) is pushed on the PC stack.

5 j+4 j+3 j+2 j+1 j Nop

6 j+5 j+4 j+3 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address.

Table 3-8. Pipelined Execution Cycles for Delayed Branch (Return)

Cycles LA PA FA AD ID PC

1 r1

1   r (n+1 in Table 3-7 on page 3-21) the return address is popped from PC.

n+4>nop2

2   stackn+3 and n+4 are suppressed.

n+3>nop2 n+2 n+1 n

2 r+1 r n+4>nop2 n+3>nop2 n+2 n+13

3 r+2 r+1 r n+4>nop2 n+3>nop2 n+23

4 r+3 r+2 r+1 r n+4>nop2 Nop

5 r+4 r+3 r+2 r+1 r Nop

6 r+5 r+4 r+3 r+2 r+1 r

Note that n is the branching instruction, and r is the instruction branch address.



Branches and Sequencing

3-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Besides being somewhat more challenging to code, there are also some 
limitations on delayed branches that stem from the instruction pipeline 
architecture. Because the delayed branch instruction and the two instruc-
tions that follow it must execute sequentially, the instructions in the two 
locations (delayed branch slots) that follow a delayed branch instruction 
may not be any of the following:

• Other branches (no Jump, Call, or Rti/Rts instructions)

• Any stack manipulations (no Push or Pop instructions or writes to 
the PC stack)

• Any loops or other breaks in sequential operation (no Do/Until or 
Idle instructions)

• Two-cycle instructions may not appear in the second delay branch 
slot; these instructions may appear in the first delay branch slot.

Development software for the DSP flags these types of instructions 
in the two locations after a delayed branch instruction as code 
errors.

Interrupt processing is also influenced by delayed branches and the 
instruction pipeline. Because the delayed branch instruction and the two 
instructions that follow it must execute sequentially, the DSP does not 
immediately process an interrupt that occurs in between a delayed branch 
instruction and either of the two instructions that follow. Any interrupt 
that occurs during these instructions is latched, but not processed until 
the branch is complete.

3   Delayed branch slots.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-23 
 

Program Sequencer

Preliminary

Loops and Sequencing
Another type of non-sequential program flow that the sequencer supports 
is looping. A loop occurs when a Do/Until instruction causes the DSP to 
repeat a sequence of instructions infinitely (Forever) or until the counter 
expires (CE). 

The condition for terminating a loop with the Do/Until logic is loop 
Counter Expired (CE). This condition tests whether the loop has com-
pleted the number of iterations loaded from the CNTR register. Loops that 
exit with conditions other than CE (using a conditional Jump) have some 
additional restrictions. For more information, see “Restrictions on Ending 
Loops” on page 3-26. For more information on condition types in 
Do/Until instructions, see “Conditional Sequencing” on page 3-37. 

The Do/Until instruction uses the sequencer’s loop and condition features, 
which appear in Figure 3-2 on page 3-4. These features provide efficient 
software loops, without the overhead of additional instructions to branch, 
test a condition, or decrement a counter. The following code example 
shows a Do/Until loop that contains three instructions and iterates 30 
times.

CNTR=30; Do the_end Until CE; {loop iterates 30 times}

AX0=DM(I0+=M0), AY0=PM(I4+=M4);

AR=AX0-AY0;

the_end: DM(I1+=M0)=AR;       {last instruction in loop}

When executing a Do/Until instruction, the program sequencer pushes the 
address of the loop’s last instruction and loop’s termination condition 
onto the loop-end stack. The sequencer also pushes the loop-begin 
address—address of the instruction following the Do/Until instruction—
onto the loop-begin stack.



Loops and Sequencing

3-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The sequencer’s instruction pipeline architecture influences loop termina-
tion. Because instructions are pipelined, the sequencer must test the 
termination condition and decrement the counter at the end of the loop. 
Based on the test’s outcome, the next fetch either exits the loop or returns 
to the beginning of the loop.

The Do/Until instruction supports infinite loops, using the For-
ever condition instead of CE. Software can use a conditional Jump 
instruction to exit such an infinite loop.

When using a conditional Jump to exit any Do/Until loop, software 
must perform some loop stack maintenance (Pop Loop). For more 
information, see “Stacks and Sequencing” on page 3-32.

The condition test occurs when the DSP is executing the last instruction 
in the loop (at location e, where e is the end-of-loop address). If the condi-
tion tests false, the sequencer repeats the loop, fetching the instruction 
from the loop-begin address, which is stored on the loop-begin stack. If 
the condition tests true, the sequencer terminates the loop, fetching the 
next instruction after the end of the loop and popping the loop stacks. For 
more information, see “Stacks and Sequencing” on page 3-32.

Table 3-9 on page 3-24 and Table 3-10 on page 3-25 show the pipeline 
states for loop iteration and termination.

Table 3-9. Pipelined Execution Cycles for Loop Back (Iteration)

Cycles LA PA FA AD ID PC

1 e1 e–1 e–2 e–3 e–4 e–5

2 b2 e e–1 e–2 e–3 e–4

3 b+1 b e e–1 e–2 e–3

4 b+2 b+1 b e e–1 e–2

Note that e is the loop end instruction, and b is the loop begin instruction.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-25 
 

Program Sequencer

Preliminary

5 b+3 b+2 b+1 b e e–1

6 b+43 b+33 b+23 b+13 b3 e3

7 b+5 b+4 b+3 b+2 b+1 b

1   Termination condition tests false.
2   Loop start address is top of loop-begin stack.
3   For loops of less than six instructions (shorter than the pipeline), the pipeline retains the instructions 

in the loop (e through b+4). On the first iteration of such a short loop, there is a branch penalty of 
four Nops while the pipeline sets up for the short loop.

Table 3-10. Pipelined Execution Cycles for Loop Termination

Cycles LA PA FA AD ID PC

1 e1 e–1 e–2 e–3 e–4 e–5

2 e+1 e e–1 e–2 e–3 e–4

3 e+2 e+1 e e–1 e–2 e–3

4 e+3 e+2 e+1 e e–1 e–2

5 e+4 e+3 e+2 e+1 e e–1

6 e+5 e+4 e+3 e+2 e+1 e

7 e+6 e+5 e+4 e+3 e+2 e+12

Note that e is the loop end instruction.

1   Termination condition tests true.
2   Loop aborts and loop stacks pop.

Table 3-9. Pipelined Execution Cycles for Loop Back (Iteration)

Cycles LA PA FA AD ID PC

Note that e is the loop end instruction, and b is the loop begin instruction.



Interrupts and Sequencing

3-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Managing Loop Stacks
To support low overhead looping, the DSP stores information for loop 
processing in three stacks: loop-begin stack, loop-end stack, and counter 
stack. The sequencer manages these stacks for loops that terminate when 
the counter expires (Do/Until CE), but does not manage these stacks for 
loops that terminate with a conditional Jump. For information on manag-
ing loop stacks, see “Stacks and Sequencing” on page 3-32.

Restrictions on Ending Loops
The sequencer’s loop features (which optimize performance in many ways) 
limit the types of instructions that may appear at or near the end of the 
loop. The only absolute restriction is that the last instruction in a loop (at 
the loop end label) may not be a Call/return, a Jump (DB), or a two cycle 
instruction.

There are restrictions on placing nested loops. For example, nested loops 
may not use the same end-of-loop instruction address.

Use care if using Push Loop or Pop Loop instruction inside loops. It 
is best to perform any stack maintenance outside of loops.

Interrupts and Sequencing
Another type of non-sequential program flow that the sequencer supports 
is interrupt processing. Interrupts may stem from a variety of conditions, 
both internal and external to the processor. In response to an interrupt, 
the sequencer processes a subroutine call to a predefined address, the 
interrupt vector. The DSP assigns a unique vector to each interrupt. The 
DSP core supports five fixed interrupts sources (specifically the Emulator, 
Reset, Powerdown, Loop and PC Stack and Emulation Kernel Interrupts). 
The Emulator Interrupt in non-maskable (i.e. it can not be masked either 
via the IMASK register or the global interrupt enable/disable bit, GIE, of the 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-27 
 

Program Sequencer

Preliminary

ICNTL register via the DIS INTS instruction). The Powerdown interrupt is 
maskable only via the GIE bit of the ICNTL register (i.e. global interrupt 
disable).

In addition, the DSP core permits up to 12 user assignable interrupts to be 
connected to the core. The user assignable interrupts are generated by the 
peripheral units of the particular device, such as the ADSP-2199x, and 
their connection and prioritization is managed by the Peripheral Interrupt 
Control Unit that is described in “Peripheral Interrupt Controller” on 
page 13-1.

The masking of the various interrupts is controlled by the IMASK processor 
register (i.e. not an IO mapped register) and the latching of pending inter-
rupts is controlled by the IRPTL processor register. There are dedicated bits 
of these registers that are associated with the various fixed and user 
assign-able interrupt sources. In addition each interrupt has a dedicated 
32-word allocation in the interrupt vector table. The Powerdown inter-
rupt's vector table entry starts at address 0x000020. The address at 
0x000000 is reserved for the RESET starting of the user program. The 
assignment of bits and the associated interrupt vector address for the vari-
ous interrupts is tabulated in Table 3-11 on page 3-27.

Table 3-11. ADSP-2199x Interrupt Mask

Interrupt Source IRPTL/IMASK 
Bit

Vector Address

Emulator (non-maskable)     highest priority N/A N/A

Reset (non-maskable) 0 0x000000

Powerdown (non-maskable) 1 0x000020

Loop and PC Stack 2 0x000040

Emulation Kernel 3 0x000060

USR0 - user assignable 4 0x000080

USR1 - user assignable 5 0x0000A0



Interrupts and Sequencing

3-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

There is an additional boot interrupt that is somewhat different in so far 
as it is non-maskable and causes execution to jump to the start of the 
internal program memory ROM (at address 0xFF0000) where the boot 
code is stored. Boot loading and the starting of execution of the user code 
is controlled by the ROM code at address 0xFF0000. Following a success-
ful boot-load, the first instruction of the user code is fetched from address 
0x00000, unless one of the no-boot options is selected. For the no-boot 
options, the first instruction of the user code is fetched from address 
0x010000 at the start of memory page 1. Further details of the 
ADSP-2199x boot loading operation are described in “Booting the Pro-
cessor (“Boot Loading”)” on page 12-13.

USR2 - user assignable 6 0x0000C0

USR3 - user assignable 7 0x0000E0

USR4 - user assignable 8 0x000100

USR5 - user assignable 9 0x000120

USR6 - user assignable 10 0x000140

USR7 - user assignable 11 0x000160

USR8 - user assignable 12 0x000180

USR9 - user assignable 13 0x0001A0

USR10 - user assignable 14 0x0001C0

USR11 - user assignable         lowest priority 15 0x00 01E0

Table 3-11. ADSP-2199x Interrupt Mask (Cont’d)

Interrupt Source IRPTL/IMASK 
Bit

Vector Address



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-29 
 

Program Sequencer

Preliminary

An internal interrupt can stem from stack overflows or a program writing 
to the interrupt's bit in the IRPTL register. Several factors control the 
DSP's response to an interrupt. The DSP responds to an interrupt request 
if:

• The DSP is executing instructions or is in an Idle state

• The interrupt is not masked

• Interrupts are globally enabled

• A higher priority request is not pending

When the DSP responds to an interrupt, the sequencer branches program 
execution with a call to the corresponding interrupt vector address. To 
process an interrupt, the DSP's program sequencer does the following:

1. Outputs the appropriate interrupt vector address

2. Pushes the next PC value (the return address) on to the PC stack

3. Pushes the current value of the ASTAT and MSTAT registers onto the 
status stack

4. Clears the appropriate bit in the interrupt latch register (IRPTL)

At the end of the interrupt service routine, the sequencer processes the 
return from interrupt (RTI) instruction and does following:

1. Returns to the address stored at the top of the PC stack

2. Pops this value off of the PC stack

3. Pops the status stack

All interrupt service routines should end with a return-from-interrupt 
(RTI) instruction.



Interrupts and Sequencing

3-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The sequencer supports interrupt masking-latching an interrupt, but not 
responding to it. Except for the Emulation, Reset and Powerdown inter-
rupts, all interrupts are maskable. If a masked interrupt is latched, the 
DSP responds to the latched interrupt if it is later unmasked. Interrupts 
can be masked globally or selectively. Bits in the ICNTL and IMASK reg-
isters control interrupt masking. These bits control interrupt masking as 
follows:

• Global interrupt enable ICNTL Bit 5 (GIE) directs the DSP to 
enable (if 1) or disable (if 0) all interrupts

• Selective interrupt enable IMASK Bits 15-0, direct the DSP to 
enable (if 1) or disable/mask (if 0) the corresponding interrupt

Except for the non-maskable interrupts and boot interrupt, all interrupts 
are masked at reset. For booting, the DSP automatically unmasks and uses 
either the selected peripheral as the source for boot data.

When the DSP recognizes an interrupt, the DSP's interrupt latch (IRPTL) 
register latches the interrupts-set a bit to record that the interrupt 
occurred. The bits in this register indicates all interrupts that are currently 
being serviced or are pending. Because these registers are readable and 
write-able, any interrupt can be set or cleared in software. When respond-
ing to an interrupt, the sequencer clears the corresponding bit in IRPTL. 
During execution of the interrupt's service routine, the DSP can latch the 
same interrupt again while the service routine is executing. The interrupt 
latch bits in IRPTL correspond to interrupt mask bits in the IMASK register. 
In both registers, the interrupt bits are arranged in order of priority. The 
interrupt priority is from 0 (highest) to 15 (lowest). Interrupt priority 
determines which interrupt is serviced first when more than one occurs in 
the same cycle. Priority also determines which interrupts are nested when 
the DSP has interrupt nesting enabled. Depending on the assignment of 
interrupts to peripherals, one event can cause multiple interrupts, and 
multiple events can trigger the same interrupt.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-31 
 

Program Sequencer

Preliminary

The sequencer supports interrupt nesting-responding to another interrupt 
while a previous interrupt is being serviced. Bits in the ICNTL, IMASK, and 
IRPTL registers control interrupt nesting. These bits control interrupt nest-
ing as follows:

• Interrupt nesting enable ICNTL Bit 4 (INE) directs the DSP to 
enable (if 1) or disable (if 0) interrupt nesting.

• Interrupt Mask IMASK 16 Bits selectively mask the interrupts. For 
each bit's corresponding interrupt, these bits direct the DSP to 
unmask (enable, if 1) or mask (disable, if 0) the matching 
interrupt.

• Interrupt Latch IRPTL 16 Bits latch interrupts. For each bit's corre-
sponding interrupt, these bits indicate that the DSP has latched 
(pending, if 1) or not latched (not pending, if 0) the matching 
interrupt.

When interrupt nesting is disabled, a higher priority interrupt can not 
interrupt a lower priority interrupt's service routine. Other interrupts are 
latched as they occur, but the DSP processes them after the active routine 
finishes. When interrupt nesting is enabled, a higher priority interrupt can 
interrupt a lower priority interrupt's service routine. Lower interrupts are 
latched as they occur, but the DSP processes them after the nested rou-
tines finish.

Programs should only change the interrupt nesting enable (INE) bit while 
outside of an interrupt service routine. If nesting is enabled and a higher 
priority interrupt occurs immediately after a lower priority interrupt, the 
service routine of the higher priority interrupt is delayed by up to several 
cycles. This delay allows the first instruction of the lower priority inter-
rupt routine to be executed, before it is interrupted. If an interrupt 
re-occurs while its service routine is running and nesting is enabled, the 
DSP does not latch the re-occurrence in IRPTL. The DSP waits until the 
return from interrupt (RTI) completes, before permitting the interrupt to 
latch again.



Stacks and Sequencing

3-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Stacks and Sequencing
The sequencer includes five stacks: PC stack, loop-begin stack, loop-end 
stack, counter stack, and status stack. These stacks preserve information 
about program flow during execution branches. Figure 3-4 on page 3-33 
shows how these stacks relate to each other and to the registers that load 
(push) or are loaded from (pop) these stacks. Besides showing the opera-
tions that occur during explicit push and pop instructions, Figure 3-4 on 
page 3-33 also indicates which stacks the DSP automatically pushes and 
pops when processing different types of branches: loops (Do/Until), calls 
(Call/return), and interrupts.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-33 
 

Program Sequencer

Preliminary

Figure 3-4. Program Sequencer Stacks

8 BITS 16 BITS 8 BITS 16 BITS 16 BITS

CNTRLPSTACKP LPSTACKA:STACKP STACKA:

LOOP BEGIN STACK

(8 ENTRIES)

LOOP END STACK

(8 ENTRIES)

COUNTER STACK

(8 ENTRIES)

PC STACK

(33 ENTRIES)

9 BITS

ASTAT

7 BITS

MSTAT

STATUS STACK

(16 ENTRIES)

THE DSP USES THESE STACKS FOR:

• DO/UNTIL LOOPS

• CALL/RETURN INSTRUCTIONS

• INTERRUPT SERVICE ROUNTINES

24 BITS

PC

DO/UNTIL,
CALL,

OR

INTERRUPT
(IM PL ICIT PUSH)

PUSH PC
OR

LOOP
(EXPLICIT

PUSH)

LOOP
ITERATE

OR

RETURN
(IMPL ICIT PO P)

POP PC
O R

LOOP
(EXPL ICIT

PO P )

PUSH
LOOP

(EXP LIC IT
PUS H)

POP
LOOP

(E XPL ICIT
PO P)

DO
UNTIL
(IMPL ICIT

PUSH)
OR

PUSH LOOP
(EXPLICIT

PUSH)

POP
LOOP

(EXPL IC IT
POP)

24 BITS

LOOP-END-ADDRESSDO/UNTIL
(IMPLICIT PUSH)

INTERRUPT
(IM PLIC IT PUSH)

OR

PUSH STS
(EXPL IC IT PUSH )

RETURN
(IMPL ICIT PO P)

OR

POP STS
(EXPL ICIT POP)



Stacks and Sequencing

3-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

These stacks have differing depths. The PC stack is 33 locations deep; the 
status stack is 16 locations deep; and the loop begin, loop end, and 
counter stacks are eight locations deep. A stack is full when all entries are 
occupied. Bits in the SSTAT register indicate the stack status. Table 22-7 
on page 22-10 lists the bits in the SSTAT register. The SSTAT bits that indi-
cate stack status are:

• PC stack empty. Bit 0 (PCSTKEMPTY) indicates that the PC stack 
contains at least one pushed address (if 0) or PC stack is empty (if 
1).

• PC stack full. Bit 1 (PCSTKFULL) indicates that the PC stack con-
tains at least one empty location (if 0) or PC stack is full (if 1).

• PC stack level. Bit 2 (PCSTKLVL) indicates that the PC stack con-
tains between 3 and 28 pushed addresses (if 0) or PC stack is at or 
above the high-water mark—28 pushed addresses, or it is at or 
below the low-water mark—3 pushed addresses (if 1). 

• Loop stack empty. Bit 4 (LPSTKEMPTY) indicates that the loop stack 
contains at least one pushed address (if 0) or Loop stack is empty 
(if 1).

• Loop stack full. Bit 5 (LPSTKFULL) indicates that the loop stack 
contains at least one empty location (if 0) or Loop stack is full (if 
1).

• Status stack empty. Bit 6 (STSSTKEMPTY) indicates that the status 
stack contains at least one pushed status (if 0) or status stack is 
empty (if 1).

• Stacks overflowed. Bit 7 (STKOVERFLOW) indicates that an over-
flow/underflow has not occurred (if 0) or indicates that at least one 
of the stacks (PC, loop, counter, status) has overflowed, or the PC 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-35 
 

Program Sequencer

Preliminary

or status stack has underflowed (if 1). Note that STKOVERFLOW is 
only cleared on reset. Loop stack underflow is not detected because 
it occurs only as a result of a Pop Loop operation. 

Stack status conditions can cause a STACK interrupt. The stack interrupt 
always is generated by a stack overflow condition, but also can be gener-
ated by ORing together the stack overflow status (STKOVERFLOW) bit and 
stack high/low level status (PCSTKLVL) bit. The level bit is set when:

• The PC stack is pushed and the resulting level is at or above the 
high water-mark.

• The PC stack is popped and the resulting level is at or below the 
low water-mark.

This spill-fill mode (using the stack’s status to generate a stack interrupt) 
is disabled on reset. Bits in the ICNTL register control whether the DSP 
generates this interrupt based on stack status. Table 22-11 on page 22-16 
lists the bits in the ICNTL register. The bits in ICNTL that enable the STACK 
interrupt are:

• Global interrupt enable. Bit 5 (GIE) globally disables (if 0) or 
enables (if 1) unmasked interrupts

• PC stack interrupt enable. Bit 10 (PCSTKE) directs the DSP to dis-
able (if 0) or enable (if 1) spill-fill mode—ORing of stack status—
to generate the STACK interrupt.

When switching on spill-fill mode, a spurious (low) stack level 
interrupt may occur (depending on the level of the stack). In this 
case, the interrupt handler should push some values on the stack to 
raise the level above the low-level threshold.

Values move on (push) or off (pop) the stacks through implicit and 
explicit operations. Implicit stack operations are stack accesses that the 
DSP performs while executing a branch instruction (Call/return, 



Stacks and Sequencing

3-36 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Do/Until) or while responding to an interrupt. Explicit stack operations 
are stack accesses that the DSP performs while executing the stack instruc-
tions (Push, Pop).

As shown in Figure 3-4 on page 3-33, the source for the pushed values and 
destination for the pop value differs depending on whether the stack oper-
ations is implicit or explicit.

In implicit stack operations, the DSP places values on the stacks from reg-
isters (PC, CNTR, ASTAT, MSTAT) and from calculated addresses (end-of-loop, 
PC+1). For example, a Call/return instruction directs the DSP to branch 
execution to the called subroutine and push the return address (PC+1) onto 
the PC stack. The matching return from subroutine instruction (Rts) 
causes the DSP to pop the return address off of the PC stack and branch 
execution to the address following the Call.

A second instruction that makes the DSP perform implicit stack opera-
tions is the Do/Until instruction. It takes the following steps to set up a 
Do/Until loop:

Load the loop count into the CNTR register

• Initiate the loop with a Do/Until instruction

• Terminate the loop with an end-of-loop label

When executing a Do/Until instruction, the DSP performs the following 
implicit stack operations:

• Pushes the loop count from the CNTR register onto the counter stack

• Pushes the start-of-loop address from the PC onto the loop start 
stack

• Pushes the end-of-loop address from the end-of-loop label onto the 
loop-end stack



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-37 
 

Program Sequencer

Preliminary

When the count in the top location of the counter stack expires, the loop 
terminates, and the DSP pops the three loop stacks, resuming execution at 
the address after the end of the loop. The count is decremented on the 
stack, not in the CNTR register.

A third condition/instruction that makes the DSP perform implicit stack 
operations is an interrupt/return instruction. When interrupted, the DSP 
pushes the PC onto the PC stack, pushes the ASTAT and MSTAT registers onto 
the status stack, and branches execution to the interrupt service routine’s 
location (vector). At the end of the routine, the return from interrupt 
instruction directs the DSP to pop these stacks and branch execution to 
the instruction after the interrupt (PC+1).

In explicit stack operations, a program’s access to the stacks goes through a 
set of registers: STACKP, STACKA, LPSTACKP, LPSTACKA, CNTR, ASTAT, and 
MSTAT. A Pop instruction retrieves the value or address from the corre-
sponding stack (PC, Loop, or Sts) and places that value in the 
corresponding register (as shown in Figure 3-4 on page 3-33). A Push 
instruction takes the value or address from the register and puts it on the 
corresponding stack. Programs should use explicit stack operations for 
stack maintenance, such as managing the stacks when exiting a Do/Until 
loop with a conditional Jump.

Conditional Sequencing
The sequencer supports conditional execution with conditional logic that 
appears in Figure 3-4 on page 3-33. This logic evaluates conditions for 
conditional (If) instructions and loop (Do/Until) terminations. The con-
ditions are based on information from the arithmetic status registers 
(ASTAT), the condition code register (CCODE), the flag inputs, and the loop 
counter. For more information on arithmetic status, see “Using Computa-
tional Status” on page 2-16.



Conditional Sequencing

3-38 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Each condition that the DSP evaluates has an assembler mnemonic. The 
condition mnemonics for conditional instructions appear in Table 3-12 
on page 3-38. For most conditions, the sequencer can test both true and 
false states. For example, the sequencer can evaluate ALU equal-to-zero 
(EQ) and ALU not-equal-to-zero (NE).

To test conditions that do not appear in Table 3-12 on page 3-38, a pro-
gram can use the Test Bit (Tstbit) instruction to test bit values loaded 
from status registers. For more information, see the ADSP-219x DSP 
Instruction Set Reference.

Table 3-12. If Condition and Do/Until Termination Logic 

Syntax Status Condition True If: Do/Until If cond

EQ Equal Zero AZ = 1 x v

NE Not Equal Zero AZ = 0 x v

LT Less Than Zero AN.XOR. AV = 1 x v

GE Greater Than or Equal 
Zero

AN.XOR. AV = 0 x v

LE Less Than or Equal Zero (AN.XOR. AV)
.OR. AZ = 1

x v

GT Greater Than Zero (AN.XOR. AV)
.OR. AZ = 0

x v

AC ALU Carry AC = 1 x v

Not AC Not ALU Carry AC = 0 x v

AV ALU Overflow AV = 1 x v

Not AV Not ALU Overflow AV = 0 x v

MV MAC Overflow MV = 1 x v

Not MV Not MAC Overflow MV = 0 x v



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-39 
 

Program Sequencer

Preliminary

The two conditions that do not have complements are CE/Not CE (loop 
counter expired/not expired) and True/Forever. The context of these con-
dition codes determines their interpretation. Programs should use True 
and Not CE in conditional (If) instructions. Programs should use Forever 
and CE to specify loop (Do/Until) termination. A Do Forever instruction 
executes a loop indefinitely, until an interrupt, jump, or reset intervenes.

There are some restrictions on how programs may use conditions in 
Do/Until loops. For more information, see “Restrictions on Ending 
Loops” on page 3-26. 

SWCOND Compares value in 
CCODE register with 
following DSP condi-
tions: PF0-13 inputs Hi, 
AS, SV

CCODE=SWCOND x v

Not SWCOND Compares value in 
CCODE register with 
following DSP condi-
tions: PF0-13 inputs Lo, 
Not AS, Not SV

CCODE= Not SWCOND x v

CE Counter Expired loop counter = 0 v x

Not CE Counter Not Expired loop counter = Not 0 x v

Forever Always (Do) v x

True Always (If) x v

Table 3-12. If Condition and Do/Until Termination Logic  (Cont’d)

Syntax Status Condition True If: Do/Until If cond



Sequencer Instruction Summary

3-40 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Sequencer Instruction Summary
Table 3-13 on page 3-41 lists the program sequencer instructions and how 
they relate to SSTAT flags. For more information on assembly language 
syntax, see the ADSP-219x DSP Instruction Set Reference. In Table 3-13 
on page 3-41, note the meaning of the following symbols:

• Reladdr# indicates a PC-relative address of #number of bits

• Addr24 indicates an absolute 24-bit address

• Ireg indicates an Index (I) register in either DAG

• Imm4 indicates an immediate 4-bit value

• Addr24 indicates an absolute 24-bit address

• * indicates the flag may be set or cleared, depending on results of 
instruction

• – indicates no effect



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 3-41 
 

Program Sequencer

Preliminary

Table 3-13. Sequencer Instruction Summary

Instruction SSTAT Status Flags

LE LF PE PF PL SE SO

Do <Reladdr12> Until [CE, Forever]; * * – – – – *

[If Cond] Jump <Reladdr13> [(DB)]; – – – – – – –

Call <Reladdr16> [(DB)]; – – * * * – *

Jump <Reladdr16> [(DB)]; – – – – – – –

[If Cond] Lcall <Addr24>; – – * * * – *

[If Cond] Ljump <Addr24>; – – – – – – –

[If Cond] Call <Ireg> [(DB)]; – – * * * – *

[If Cond] Jump <Ireg> [(DB)]; – – – – – – –

[If Cond] Rti [(DB)]; – – * * * * –

[If Cond] Rts [(DB)]; – – * * * – –

Push |PC, Loop, Sts|; * * * * * * *

Pop |PC, Loop, Sts|; * * * * * * *

Flush Cache; – – – – – – –

Setint <Imm4>; – – * * * * *

Clrint <Imm4>; – – – – – – –

Nop; – – – – – – –

Idle; – – – – – – –

Ena | MM, AS, OL, BR, SR, SD, INT |; – – – – – – –

Dis | MM, AS, OL, BR, SR, SD, INT |; – – – – – – –

Abbreviations for SSTAT Flags: 
LE = LPSTKEMPTY 
LF = LPSTKFULL 
PE = PCSTKEMPTY 
PF = PCSTKFULL 
PL = PCSTKLVL 
SE = STSSTKEMPTY 
SO = STKOVERFLOW



Sequencer Instruction Summary

3-42 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-1 
 

Memory

Preliminary

4 MEMORY

Overview
The ADSP-2199x contains internal memory and provides access to exter-
nal memory through the DSP’s external port. This chapter describes the 
internal memory and how to use it. For information on configuring, con-
necting, and timing accesses to external memory, see “Interfacing to 
External Memory” on page 7-15.

There are 8K words of internal SRAM memory on the ADSP-21990. This 
space is divided into two 4K-word blocks: Block 0 (24-bit) and Block 1 
(16-bit).

There are 40K words of internal SRAM memory on the ADSP-21991. 
This space is divided into three blocks: two 24-bit wide 16k Blocks (Block 
0 and Block 1) and one 16-bit wide 8K word (Block2).

There are 48K words of internal SRAM memory on the ADSP-21992. 
This space is divided into three blocks: two 24-bit wide 16k Blocks (Block 
0 and Block 1) and one 16-bit wide 16K word (Block2).

In addition, the ADSP-2199x DSPs provide a 4k x 24-bit block of pro-
gram memory ROM (that s reserved by ADI for routines that control boot 
loading).



Overview

4-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Including internal and external memory, the DSP core can address 16M 
words of memory space. The physical external memory addresses are lim-
ited by 20 address lines, and are determined by the external data width 
and packing of the external memory space. The Strobe signals (MS3-0) can 
be programmed to allow the user to change starting page addresses at run 
time. External memory connects to the DSP’s external port, which 
extends the DSP’s address and data buses off the DSP. The DSP can make 
16- or 24-bit accesses to external memory for data or instructions. The 
DSP’s external port automatically packs external data into the appropriate 
word width during data transfer. Table 4-1 on page 4-2 shows the access 
types and words for DSP external memory accesses.

Most microprocessors use a single address and data bus for memory access. 
This type of memory architecture is called Von Neumann architecture. 
But, DSPs require greater data throughput than Von Neumann architec-
ture provides, so many DSPs use memory architectures that have separate 
buses for program and data storage. The two buses let the DSP get a data 
word and an instruction simultaneously. This type of memory architecture 
is called Harvard architecture.

The ADSP-2199x family of DSPs goes a step farther by using a modified 
Harvard architecture. This architecture has program and data buses, but 
provides a single, unified address space for program and data storage. 
While the Data Memory (DM) bus only carries data, the Program Mem-
ory (PM) bus handles instructions or data, allowing dual-data accesses.

Table 4-1. Internal-to-External Memory Word Transfers

Word Type Transfer Type

Instruction 24-bit word transfer1

1   Each packed 24-bit word requires two transfers over 16-bit bus.

Data 16-bit word transfer



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-3 
 

Memory

Preliminary

DSP core and DMA-capable peripherals share accesses to internal mem-
ory. Each block of memory can be accessed by the DSP core and 
DMA-capable peripherals in every cycle, but a DMA transfer is held off if 
contending with the DSP core for access. 

A memory access conflict can occur when the processor core attempts two 
accesses to the same internal memory block in the same cycle. When this 
conflict happens, an extra cycle is incurred. The DM bus access completes 
first and the PM bus access completes in the following (extra) cycle.



Overview

4-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-5 
 

Memory

Preliminary

Figure 4-1. Memory and Internal Buses Block Diagram

DATAADDRESS

PX BUS EXCHANGE REGISTER

PM ADDRESS BUS

PM DATA BUS

DM ADDRESS BUS

DM DATA BUS

(DMA CONTROLLERS AND
DMA CHANNEL ARBITRATION)

(SEE NOTE)

NOTE:

· EITHER THE MEMORY BUSES OR A DMA CHANNEL
MAY ACCESS MEMORY, BUT NOT BOTH SIMULTANEOUSLY

· THE MEMORY BUSES MAY USE ANY TWO PATHS
SIMULTANEOUSLY

· ADDRESSES AND DATA FOLLOW PARALLEL PATHS

DMA
ADDR

DMA
DATA

ADDR DATA

EXTERNAL PORT

ADDRESS DATA

BLOCK 0
(0X0000 - 0X7FFF, 24-BIT WORDS)

BLOCK 1
(0X8000 - 0XFFFF, 16-BIT WORDS)

INTERNAL MEMORY
(PAGE 0)

EXTERNAL MEMORY
(PAGES 1-254)

I/O PROCESSOR

(STARTING AT 0X01 0000)

24 1624 16
8

16 1624 24

8

DATAADDRESS

24 24 24 24

8/1622

I/O
ADDR

I/O
DATA (FOR DMA

OR EXT.
I /O MEM.)



Overview

4-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

During a single-cycle, dual-data access, the processor core uses the inde-
pendent PM and DM buses to simultaneously access data from both 
memory blocks. Though dual-data accesses provide greater data through-
put, there are some limitations on how programs may use them. The 
limitations on single-cycle, dual-data accesses are:

• The two pieces of data must come from different memory blocks. 
If the core tries to access two words from the same memory block 
(over the same bus) for a single instruction, an extra cycle is 
needed. For more information on how the buses access these 
blocks, see Figure 4-1 on page 4-5.

• The data access execution may not conflict with an instruction 
fetch operation.

• If the cache contains the conflicting instruction, the data access 
completes in a single-cycle and the sequencer uses the cached 
instruction. If the conflicting instruction is not in the cache, an 
extra cycle is needed to complete the data access and cache the con-
flicting instruction. For more information, see “Instruction Cache” 
on page 3-10.

Efficient memory usage relies on how the program and data are arranged 
in memory and varies with how the program accesses the data. For the 
most efficient (single-cycle) accesses, use the above guidelines for arrang-
ing data in memory.

Internal Address and Data Buses
As shown in Figure 4-1 on page 4-5, the DSP has two internal buses con-
nected to its internal memory, the Program Memory (PM) bus and Data 
Memory (DM) bus. The I/O processor—which is the global term for the 
DMA controllers, DMA channel arbitration, and peripheral-to-bus connec-
tions—also is connected to the internal memory and external port. The 
PM bus, DM bus, and I/O processor (for DMAs) share two memory 
ports; one for each block. Memory accesses from the DSP’s core (compu-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-7 
 

Memory

Preliminary

tational units, data address generators, or program sequencer) use the PM 
or DM buses. The I/O processor also uses the DM bus for non-DMA 
memory accesses, but uses a separate connection to the memory’s ports for 
DMA transfers. Using this separate connection and cycle-stealing DMA, 
the I/O processor can provide data transfers between internal memory and 
the DSP’s communication ports (external port, serial port, and SPI port) 
without hindering the DSP core’s access to memory. While the DSP’s 
internal memory is divided into blocks, the DSP’s external memory spaces 
is divided into banks. External memory banks have associated memory 
select (MS3-0) pins and may be configured for size, clock ratio, and access 
waitstates.

The DSP core’s PM bus and DM bus and I/O processor can try to access 
internal memory space or external memory space in the same cycle. The 
DSP has an arbitration system to handle this conflicting access. Arbitra-
tion is fixed at the following priority: (highest priority) DM bus, PM bus, 
and (lowest priority) I/O processor. Also, I/O processor accesses may not 
be sequential (beyond each burst access), so the DSP core’s buses are never 
held off for more than four cycles.

External Address and Data Buses
Figure 4-1 on page 4-5 also shows that the PM buses, DM buses, and I/O 
processor have access to the external bus (pins DATA15–0, ADDR21–0) 
through the DSP’s external port. The external port provides access to sys-
tem (off-chip) memory and peripherals. This port also lets the DSP access 
shared memory if connected in a multi-DSP system. Addresses for the PM 
and DM buses come from the DSP’s program sequencer and Data Address 
Generators (DAGs). The program sequencer and DAGs supply 24-bit 
addresses for locations throughout the DSP’s memory spaces. The DAGs 
supply addresses for data reads and writes on both the PM and DM 
address buses, while the program sequencer uses only the PM address bus 
for sequencing execution. 



Overview

4-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The external address bus is 22 bits wide on the, so the upper two bits of 
address do not get generated off-chip.

For memory accesses by different functional blocks of the DSP, the upper 
eight bits of the address—the page number—come from different page 
registers. The Data Address Generators—DAG1 and DAG2—each are 
associated with a DAG page (DMPG1, DMPG2) register, the program 
sequencer has a page register (IJPG) for indirect jumps, and I/O memory 
uses the I/O page (IOPG) register. For more information on address gener-
ation, see “Program Sequencer” on page 3-1 or “Data Address 
Generators” on page 5-1.

Because the DSP’s blocks of internal memory are differing widths, placing 
16-bit data in block 0 leaves some space unused.

The PM data bus is 24 bits wide, and the DM data bus is 16 bits wide. 
Both data buses can handle data words (16-bit), but only the PM data bus 
carries instruction words (24-bit).

At the processor’s external port, the DSP multiplexes the three memory 
buses—PM, DM, and I/O—to create a single off-chip data bus (DATA15–
0) and address bus (ADDR21–0).

Internal Data Bus Exchange
The internal data buses let programs transfer the contents of one register 
to another or to any internal memory location in a single cycle. As shown 
in Figure 4-2 on page 4-9, the PM Bus Exchange (PX) register permits data 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-9 
 

Memory

Preliminary

to flow between the PM and DM data buses. The PX register holds the 
lower eight bits during transfers between the PM and DM buses. The 
alignment of PX register to the buses appears in Figure 4-2 on page 4-9.

The PX register is a Register Group 3 (REG3) register and is accessible for 
register-to-register transfers.

When reading data from program memory and data memory 
simultaneously, there is a dedicated path from the upper 16 bits of 
the PMD bus to the Y registers of the computational units. This 
read-only path does not use the bus exchange circuit.

Figure 4-2.  PM Bus Exchange (PX) Registers

PX Register

0

015

23

DM Data Bus (16-bit)

PM Data Bus (24-bit)

(lower 8 bits)(upper 16 bits)



Overview

4-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

For transferring data from the PMD bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read 
from program memory to any register. For example:

AX0 = PM(I4,M4);

In this example, the upper 16 bits of a 24-bit program memory 
word are loaded into AX0 and the lower eight bits are automatically 
loaded into PX.

2. Read out automatically as the lower eight bits when data is written 
to program memory. For example:

PM(I4,M4) = AX0;

In this example, the 16 bits of AX0 are stored into the upper 16 bits 
of a 24-bit program memory word. The eight bits of PX are auto-
matically stored to the eight lower bits of the memory word.

For transferring data from the DMD bus, the PX register may be:

• Loaded with a data move instruction, explicitly specifying the PX 
register as the destination. The lower eight bits of the data value are 
used and the upper eight are discarded.

PX = AX0;

• Read with a data move instruction, explicitly specifying the PX reg-
ister as a source. The upper eight bits of the value read from the 
register are all zeroes.

AX0 = PX;

Whenever any register is written out to program memory, the source regis-
ter supplies the upper 16 bits. The contents of the PX register are 
automatically added as the lower eight bits. If these lower eight bits of data 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-11 
 

Memory

Preliminary

to be transferred to program memory (through the PMD bus) are impor-
tant, programs should load the PX register from DMD bus before the 
program memory write operation.

ADSP-2199x Memory Organization
There are 8K words of internal SRAM memory on the ADSP-21990. This 
space is divided into three blocks: two 24-bit wide 16k Blocks (Block 0 
and Block 1) and one 16-bit wide 8K word (Block2).

There are 40K words of internal SRAM memory on the ADSP-21991. 
This space is divided into two blocks: a 32K word Block 0 (24-bit) and an 
8K word Block 1 (16-bit).

There are 48K words of internal SRAM memory on the ADSP-21992. 
This space is divided into three blocks: two 24-bit wide 16k Blocks (Block 
0 and Block 1) and one 16-bit wide 16K word (Block2).

In addition, the ADSP-2199x DSPs provide a 4k x 24-bit block of pro-
gram memory ROM (that is reserved by ADI for routines that control 
boot loading).



ADSP-2199x Memory Organization

4-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The memory map of the ADSP-21990 is illustrated in Figure 4-3 on 
page 4-12. The memory Map of the ADSP-21991 is illustrated in 
Figure 4-4 on page 4-13, while the memory Map of the ADSP-21992 is 
illustrated in Figure 4-5 on page 4-14.

Figure 4-3. ADSP-21990 Memory Map

BLOCK 0: 4K X 24-BIT RAM

BLOCK 1: 4K X 16-BIT RAM

BLOCK 2: 4K X 24-BIT PM ROM

RESERVED (28K)

EXTERNAL MEMORY (4M - 64K)

RESERVED (28K)

EXTERNAL MEMORY (4M)

EXTERNAL MEMORY (4M)

EXTERNAL MEMORY (4M - 64K)

UNUSED ON-CHIP MEMORY (60K)

0x00 0000

0x00 0FFF
0x00 1000

0x00 7FFF
0x00 8000
0x00 8FFF
0x00 9000

0x00 FFFF

0x40 0000

0x80 0000

0xC0 0000

0x01 0000

0xFF 0000

0xFF 0FFF
0xFF1000

0xFF FFFF

PAGE 0 (64K) ON-CHIP
(O WAIT STATE)

PAGES 1 TO 63 BANK 0
(OFF-CHIP) MS0

PAGES 64 TO 127 BANK 1
(OFF-CHIP) MS1

PAGES 128 TO 191 BANK 2
(OFF-CHIP) MS2

PAGES 192 TO 254 BANK 3
(OFF-CHIP MS3)

PAGE 255
(ON-CHIP)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-13 
 

Memory

Preliminary

Figure 4-4. ADSP-21991 Memory Map

BLOCK 0: 16K X 24-BIT PM RAM

BLOCK 2: 8K X 16-BIT DM RAM

BLOCK 3: 4K X 24-BIT PM ROM

EXTERNAL MEMORY (4M - 64K)

RESERVED (24K)

EXTERNAL MEMORY (4M)

EXTERNAL MEMORY (4M)

EXTERNAL MEMORY (4M - 64K)

UNUSED ON-CHIP MEMORY (60K)

0x00 0000

0x00 3FFF
0x00 4000

0x00 7FFF
0x00 8000
0x00 9FFF
0x00 A000

0x00 FFFF

0x40 0000

0x80 0000

0xC0 0000

0x01 0000

0xFF 0000

0xFF 0FFF
0xFF1000

0xFF FFFF

PAGE 0 (64K) ON-CHIP
(O WAIT STATE)

PAGES 1 TO 63 BANK 0
(OFF-CHIP) MS0

PAGES 64 TO 127 BANK 1
(OFF-CHIP) MS1

PAGES 128 TO 191 BANK 2
(OFF-CHIP) MS2

PAGES 192 TO 254 BANK 3
(OFF-CHIP MS3)

PAGE 255
(INCLUDES ON-CHIP BOOT ROM)

BLOCK 1: 16K X 24-BIT PM RAM



ADSP-2199x Memory Organization

4-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

As shown in Figure 4-3 on page 4-12, Figure 4-4 on page 4-13, and 
Figure 4-5 on page 4-14, the two internal memory RAM blocks reside in 
memory page 0. The entire DSP memory map consists of 256 pages (pages 
0 to 255), and each page is 64 kWords long. External memory space con-
sists of four memory banks. These banks can contain a configurable 
number of 64 k-word pages. At reset, the page boundaries for external 
memory have Bank0 containing pages 1 to 63, Bank1 containing pages 64 
to 127, Bank2 containing pages 128 to 191, and Bank3 containing pages 
192 to 254. The MS3-0 memory bank pins select Banks 3-0, respectively. 
Both the DSP core and DMA-capable peripherals can access the DSP’s 
external memory space. The 4 kWords of on-chip boot-ROM populates 
the top of page 255. All accesses to external memory are managed by the 
External Memory Interface Unit (EMI) that is described in “Interfacing to 
External Memory” on page 7-15.

Figure 4-5. ADSP-21992 Memory Map

BLOCK 0: 16K X 24-BIT PM RAM

BLOCK 2: 16K X 16-BIT DM RAM

BLOCK 3: 4K X 24-BIT PM ROM

EXTERNAL MEMORY (4M - 64K)

RESERVED (16K)

EXTERNAL MEMORY (4M)

EXTERNAL MEMORY (4M)

EXTERNAL MEMORY (4M - 64K)

UNUSED ON-CHIP MEMORY (60K)

0x00 0000

0x00 3FFF
0x00 4000

0x00 7FFF
0x00 8000
0x00 BFFF
0x00 C000

0x00 FFFF

0x40 0000

0x80 0000

0xC0 0000

0x01 0000

0xFF 0000

0xFF 0FFF
0xFF1000

0xFF FFFF

PAGE 0 (64K) ON-CHIP
(O WAIT STATE)

PAGES 1 TO 63 BANK 0
(OFF-CHIP) MS0

PAGES 64 TO 127 BANK 1
(OFF-CHIP) MS1

PAGES 128 TO 191 BANK 2
(OFF-CHIP) MS2

PAGES 192 TO 254 BANK 3
(OFF-CHIP MS3)

PAGE 255
(INCLUDES ON-CHIP BOOT ROM)

BLOCK 1: 16K X 24-BIT PM RAM



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-15 
 

Memory

Preliminary

The ADSP-2199x supports an additional external memory called I/O 
memory space. The IO space consists of 256 pages, each containing 1024 
addresses. This space is designed to support simple connections to periph-
erals (such as data converters and external registers) or to bus interface 
ASIC data registers. I/O space supports a total of 256K locations. The first 
32K addresses (IO pages 0 to 31) are reserved for on-chip peripherals. The 
upper 224k addresses (IO pages 32 to 255) are available for external 
peripheral devices. External I/O pages have their own select pin (IOMS). 
The DSP’s instruction set provides instructions for accessing I/O space. 
These instructions use an 18-bit address that is assembled from the 8-bit 
I/O page (IOPG) register and a 10-bit immediate value supplied in the 
instruction. Both the DSP core and DMA-capable peripherals can access 
the DSP’s entire memory map.

Boot memory space consists of one off-chip bank with 253 pages. The BMS 
memory bank pin selects boot memory space. Both the DSP core and 
DMA-capable peripherals can access the DSP’s off-chip boot memory 
space. If the DSP is configured to boot from boot memory space, the DSP 
starts executing instructions from the on-chip boot ROM, which starts 
booting the DSP from boot memory.



ADSP-2199x Memory Organization

4-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The IO and Boot memory maps of the ADSP-2199x are illustrated in 
Figure 4-6 on page 4-16.

Shadow Write FIFO
Because the DSP’s internal memory must operate at high speeds, writes to 
the memory do not go directly into the internal memory. Instead, writes 
go to a two-deep FIFO called the shadow write FIFO.

Figure 4-6. I/O and Boot Memory Maps of the ADSP-2199x.

ON-CHIP
PERIPHERALS

16-BITS

OFF-CHIP
PERIPHERALS

16-BITS

IOMS

OFF-CHIP
BOOT MEMORY

16-BITS

BMS

0x00::0x000

0x1F::0x3FF

0x20::0x000

0xFF::0x3FF

0x01 0000

0xFE 0000

PAGES 0 TO 31
1024 WORDS/PAGE
2 PERIPHERALS/PAGE

PAGES 32 TO 255
1024 WORDS/PAGE
2 PERIPHERALS/PAGE

PAGES 1 TO 254
64 WORDS/PAGE

I/O MEMORY BOOT MEMORY



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 4-17 
 

Memory

Preliminary

When an internal memory write cycle occurs, the DSP loads the data in 
the FIFO from the previous write into memory, and the new data goes 
into the FIFO. This operation is transparent, because any reads of the last 
two locations written are intercepted and routed to the FIFO. 

Because the ADSP-2199x’s shadow write FIFO automatically 
pushes the write to internal memory as soon as the write does not 
compete with a read, this FIFO’s operation is completely transpar-
ent to programs, except in software reset/restart situations. To 
ensure correct operation after a software reset, software must per-
form two “dummy” writes (repeat last write per block) to internal 
memory before writing the software reset bit.

Data Move Instruction Summary
Table 4-2 on page 4-18 lists the data move instructions. For more infor-
mation on assembly language syntax, see the ADSP-219x DSP Instruction 
Set Reference. In Table 4-2 on page 4-18, note the meaning of the follow-
ing symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location (Register 
Group)

• Reg1, Reg2, Reg3, or Reg indicate Register Group 1, 2, 3 or any 
register

• Ia and Mb indicate DAG1 I and M registers

• Ic and Md indicate DAG2 I and M registers



Data Move Instruction Summary

4-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Ireg and Mreg indicate I and M registers in either DAG

• Imm# and Data# indicate immediate values or data of the # of bits

Table 4-2. Data/Register Move Instruction Summary 

Instruction

Reg = Reg;

|DM(<Addr16>), PM(<Addr16>)| = |Dreg, Ireg, Mreg|; 

|Dreg, Ireg, Mreg| = |DM(<Addr16>), PM(<Addr16>)|; 

|<Dreg>, <Reg1>, <Reg2>| = <Data16>;

Reg3 = <Data12>;

Io(<Addr10>) = Dreg; 

Dreg = Io (<Addr10>);

Reg(<Addr8>) = Dreg;

Dreg = Reg(<Addr8>);



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-1 
 

Data Address Generators

Preliminary

5 DATA ADDRESS 
GENERATORS

Overview
The DSP’s Data Address Generators (DAGs) generate addresses for data 
moves to and from Data Memory (DM) and Program Memory (PM). By 
generating addresses, the DAGs let programs refer to addresses indirectly, 
using a DAG register instead of an absolute address. The DAG architec-
ture, which appears in Figure 5-1 on page 5-3, supports several functions 
that minimize overhead in data access routines. These functions include:

• Supply address and post-modify—provides an address during a 
data move and auto-increments the stored address for the next 
move.

• Supply pre-modified address—provides a modified address during 
a data move without incrementing the stored address.



Overview

5-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Modify address—increments the stored address without perform-
ing a data move.

• Bit-reverse address—provides a bit-reversed address during a data 
move without reversing the stored address.

The ADSP-2199x has a unified memory, so Program Memory and 
Data Memory distinction differ from previous ADSP-218x DSPs. 
For information on the unified memory, see “Overview” on 
page 4-1.

As shown in Figure 5-1 on page 5-3, each DAG has five types of registers. 
These registers hold the values that the DAG uses for generating addresses. 
The types of registers are:

• Index registers (I0-I3 for DAG1 and I4-I7 for DAG2). An index 
register holds an address and acts as a pointer to memory. For 
example, the DAG interprets DM(I0) and PM(I4) syntax in an 
instruction as addresses.

• Modify registers (M0-M3 for DAG1 and M4-M7 for DAG2). A 
modify register provides the increment or step size by which an 
index register is pre- or post-modified during a register move. For 
example, the dm(I0+=M1) instruction directs the DAG to output the 
address in register I0 then modify the contents of I0 using the M1 
register.

• Length and Base registers (L0-L3 and B0-B3 for DAG1 and 
L4-L7 and B4-B7 for DAG2). Length and base registers setup the 
range of addresses and the starting address for a circular buffer. 
For more information on circular buffers, see “Addressing Circu-
lar Buffers” on page 5-12.

• DAG Memory Page registers (DMPG1 for DAG1 and DMPG2 
for DAG2). Page registers set the upper eight bits address for DAG 
memory accesses; the 16-bit Index and Base registers hold the 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-3 
 

Data Address Generators

Preliminary

lower 16 bits. For more information on about DAG page registers 
and addresses from the DAGs, see “DAG Page Registers 
(DMPGx)” on page 5-7.

Do not assume that the L registers are automatically initialized to 
zero for linear addressing. The I, M, L, and B registers contain ran-
dom values following DSP reset. For each I register used, programs 

Figure 5-1. Data Address Generator (DAG) Block Diagram

MSTAT

MUX

MUX

ADD

I
REGISTERS

4 X 16

16

16

16

1616

IMMEDIATE VALUE
FROM

INSTRUCTION

DAG PAGE (DMPG1 OR DMPG2) PROVIDES
UPPER 8 BITS OF ADDRESS

(OPTIONAL BIT-REVERSE DOES NOT APPLY TO PAGE)

M
REGISTERS

4 X 16

DM ADDRESS BUS (EITHER DAG1 OR DAG2)

PM ADDRESS BUS (EITHER DAG1 OR DAG2 )

24 24

DM OR PM DATA BUS

L
REGISTERS

4 X 16

B
REGISTERS

4 X 16

MODULUS
LOGIC

1616

UPDATE16

PRE-MODIFY
ADDRESSING

POST-MODIFY
ADDRESSING



Setting DAG Modes

5-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

must initialize the corresponding L registers to the appropriate 
value—either 0 for linear addressing or the buffer length for circu-
lar buffer addressing.

On previous 16-bit, fixed-point DSPs (ADSP-218x family), the 
DAG registers are 14-bits wide, instead of 16-bits wide as on the 
ADSP-2199x DSPs. Because the ADSP-2199x DAG registers are 
16-bits wide, the DAGs do not need to perform the zero padding 
on I and L register writes to memory or the sign extension on M 
register writes to memory that is required for previous ADSP-218x 
family DSPs.

Setting DAG Modes
The MSTAT register controls the operating mode of the DAGs. Table 22-6 
on page 22-9 lists all the bits in MSTAT. The following bits in MSTAT control 
Data Address Generator modes:

• Bit-reverse addressing enable. Bit 1 (BIT_REV) enables bit-reversed 
addressing (if 1) or disables bit-reversed addressing (if 0) for DAG1 
Index (I0-I3) registers.

• Secondary registers for DAG. Bit 6 (SEC_DAG) selects the corre-
sponding secondary register set (if 1) or selects the corresponding 
primary register set—the set that is available at reset—(if 0).

Secondary (Alternate) DAG Registers
Each DAG has an secondary register set. To facilitate fast context switch-
ing, the DSP includes secondary register sets for data, results, and data 
address generator registers. The SEC_DAG bit in the MSTAT register controls 
when secondary DAG registers become accessible. While inaccessible, the 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-5 
 

Data Address Generators

Preliminary

contents of secondary registers are not affected by DSP operations. 
Figure 5-2 on page 5-5 shows the DAG’s primary and secondary register 
sets.

The secondary register sets for the DAGs are described in this section. For 
more information on secondary data and results registers, see “Secondary 
(Alternate) Data Registers” on page 2-63.

There are no secondary DMPGx registers. Changing between primary 
and secondary DAG registers does not affect the DMPGx register 
settings.

System power-up and reset enable the primary set of DAG address regis-
ters. To enable or disable the secondary address registers, programs set or 
clear the SEC_DAG bit in MSTAT. The instruction set provides three methods 
for swapping the active set. Each method incurs a latency, which is the 
delay between the time the instruction affecting the change executes until 
the time the change takes effect and is available to other instructions. 
Table 22-3 on page 22-5 shows the latencies associated with each method.

Figure 5-2. Data Address Generator Primary and Alternate Registers

I0

I1

I2

I3

M0

M1

M2

M3

L0

L1

L2

L3

B0

B1

B2

B3

SEC_DA G

I4

I5

I6

I7

M4

M5

M6

M7

L4

L5

L6

L7

B4

B5

B6

B7

MSTAT SELECT BIT DAG1 REGISTERS

DAG2 REGISTERS



Setting DAG Modes

5-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

When switching between primary and secondary DAG registers, the pro-
gram needs to account for the latency associated with the method used. 
For example, after the MSTAT = data12; instruction, a minimum of three 
cycles of latency occur before the mode change takes effect. For this 
method, the program must issue at least three instructions after 
MSTAT = 0x20; before attempting to use the other set of DAG registers.

The Ena/Dis mode instructions are more efficient for enabling and dis-
abling DSP modes because these instructions incur no cycles of effect 
latency. For example:

CCODE = 0x9; Nop;

If SWCOND Jump do_data;/* Jump to do_data */

do_data:

   Ena SEC_REG;/* Switch to 2nd Dregs */

   Ena SEC_DAG;/* Switch to 2nd DAGs */

   AX0 = DM(buffer);/* if buffer empty, go */

   AR = Pass AX0;/* right to fill and */

   If EQ Jump fill;/* get new data */

   Rti;

fill:/* fill routine */

   Nop;

buffer:/* buffer data */

   Nop;

On previous 16-bit, fixed-point DSPs (ADSP-218x family), there 
are no secondary DAG registers.

Bit-Reverse Addressing Mode
The BIT_REV bit in the MSTAT register enables bit-reverse addressing 
mode—outputting addresses in bit-reversed order. When BIT_REV is set 
(1), the DAG bit-reverses 16-bit addresses output from DAG1 index regis-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-7 
 

Data Address Generators

Preliminary

ters—I0, I1, I2, and I3. Bit-reverse addressing mode affects post-modify 
operations. For more information, see “Addressing with Bit-Reversed 
Addresses” on page 5-16.

DAG Page Registers (DMPGx)
The DAGs and their associated page registers generate 24-bit addresses for 
accessing the data needed by instructions. For data accesses, the DSP’s 
unified memory space is organized into 256 pages, with 64K locations per 
page. The page registers provide the eight MSBs of the 24-bit address, 
specifying the page on which the data is located. The DAGs provide the 
sixteen LSBs of the 24-bit address, specifying the exact location of the data 
on the page.

• The DMPG1 page register is associated with DAG1 (registers I0—I3) 
indirect memory accesses and immediate addressing. 

• The DMPG2 page register is associated with DAG2 (registers I4—I7) 
indirect memory accesses.

At power up, the DSP initializes both page registers to 0x0. Initializing 
page registers only is necessary when the data is located on a page other 
than the current page. Programs should set the corresponding page regis-
ter when initializing a DAG index register to set up a data buffer. 

For example, 

DMPG1 = 0x12; /* set page register */

/* or the syntax:DMPG1 = page(data_buffer); for relative address-

ing */

I2 = 0x3456; /* init data buffer; 24b addr=0x123456 */

L2 = 0;       /* define linear buffer */

M2 = 1;       /* increment address by one */



Using DAG Status

5-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

              /* two stall cycles inserted here */

DM(I2 += M2) = AX0; /* write data to buffer and update I2 */

DAG register (DMPGx, Ix, Mx, Lx, Bx) loads can incur up to two stall 
cycles when a memory access based on the initialized register 
immediately follows the initialization.

To avoid stall cycles, programs could perform the memory access sequence 
as follows: 

I2 = 0x3456;   /* init data buffer; 24b addr=0x123456 */

L2 = 0;        /* define linear buffer */

M2 = 1;        /* increment address by one */

DMPG1 = 0x12; /* set page register */

/* or use the syntax: DMPG1 = page(data_buffer); for relative 
addressing */
AX0 = 0xAAAA;

AR = AX0 - 1;

DM(I2 += M2) = AR; /* write data to buffer and update I2 */

Typically, programs load both page registers with the same page value 
(0-255), but programs can increase memory flexibility by loading each 
with a different page value. For example, by loading the page registers 
with different page values, programs could perform high-speed data trans-
fers between pages.

Changing the contents of the DAG page registers is not automatic 
and requires explicit programming.

Using DAG Status
As described in “Addressing Circular Buffers” on page 5-12, the DAGs 
can provide addressing for a constrained range of addresses, repeatedly 
cycling through this data (or buffer). A buffer overflow (or wrap around) 
occurs each time the DAG circles past the buffer’s base address.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-9 
 

Data Address Generators

Preliminary

Unlike the computational units and program sequencer, the DAGs do not 
generate status information. So, the DAGs do not provide buffer overflow 
information when executing circular buffer addressing. If a program 
requires status information for the circular buffer overflow condition, the 
program should implement an address range checking routine to trap this 
condition.

DAG Operations
The DSP’s DAGs perform several types of operations to generate data 
addresses. As shown in Figure 5-1 on page 5-3, the DAG registers and the 
MSTAT register control DAG operations. The following sections provide 
details on DAG operations:

• “Addressing with DAGs” on page 5-9

• “Addressing Circular Buffers” on page 5-12

• “Modifying DAG Registers” on page 5-20

An important item to note from Figure 5-1 on page 5-3 is that each DAG 
automatically uses its DAG memory page (DMPGx) register to include the 
page number as part of the output address. By including the page, DAGs 
can generate addresses for the DSP’s entire memory map. For details on 
these address adjustments, see “DAG Page Registers (DMPGx)” on 
page 5-7. 

Addressing with DAGs
The DAGs support two types of modified addressing—generating an 
address that is incremented by a value or a register. In pre-modify address-
ing, the DAG adds an offset (modifier), either an M register or an 
immediate value, to an I register and outputs the resulting address. 
Pre-modify addressing does not change (or update) the I register. The 
other type of modified addressing is post-modify addressing. In post-mod-



DAG Operations

5-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

ify addressing, the DAG outputs the I register value unchanged, then the 
DAG adds an M register or immediate value, updating the I register value. 
Figure 5-3 on page 5-10 compares pre- and post-modify addressing.

The difference between pre-modify and post-modify instructions in the 
DSP’s assembly syntax is the operator that appears between the index and 
modify registers in the instruction. If the operator between the I and M 
registers is += (plus-equals), the instruction is a post-modify operation. If 
the operator between the I and M registers is + (plus), the instruction is a 

Figure 5-3. Pre-Modify and Post-Modify Operations

I

M

+

OU TPUT I+M

PRE-MODIFY
NO I REGISTER UPDATE

SYNTAX: PM(Ix+Mx)
DM(Ix+Mx)

1. OUTPU T I

M

I+M

+

2. UPDATE

POST-MODIFY
I REGISTER UPDATE

SYNTAX: PM(Ix+=Mx)
DM(Ix+=Mx)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-11 
 

Data Address Generators

Preliminary

pre-modify without update operation. The following instruction accesses 
the program memory location indicated by the value in I7 and writes the 
value I7 plus M6 to the I7 register:

AX0 = PM(I7+=M6); /* Post-modify addressing with update */

By comparison, the following instruction accesses the program memory 
location indicated by the value I7 plus M6 and does not change the value in 
I7:

AX0 = PM(I7+M6); /* Pre-modify addressing without update */

Modify (M) registers can work with any index (I) register in the same 
DAG (DAG1 or DAG2). For a list of I and M registers and their DAGs, 
see Figure 5-2 on page 5-5.

On previous 16-bit, fixed-point DSPs (ADSP-2180 family), the 
assembly syntax uses a comma between the DAG registers (I,M 
indicates post-modify) to select the DAG operation. While the leg-
acy support in the ADSP-219x assembler permits this syntax, 
updating ported code to use the ADSP-219x syntax (I+M for pre-
modify and I+=M for post-modify) is advised.



DAG Operations

5-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Instructions can use a signed 8-bit number (immediate value), instead of 
an M register, as the modifier. For all single data access operations, modify 
values can be from an M register or an 8-bit immediate value. The follow-
ing example instruction accepts up to 8-bit modifiers:

AX0=DM(I1+0x40);    /* DM address = I1+0x40 */

Instructions that combine DAG addressing with computations do not 
accept immediate values for the modifier. In these instructions (multi-
function computations), the modify value must come from an M register:

AR=AX0+AY0,PM(I4+=m5)=AR; /* PM address = I4, I4=I4+M5 */

Note that pre- and post-modify addressing operations do not 
change the memory page of the address. For more information, see 
“DAG Page Registers (DMPGx)” on page 5-7.

Addressing Circular Buffers
The DAGs support addressing circular buffers—a range of addresses con-
taining data that the DAG steps through repeatedly, “wrapping around” 
to repeat stepping through the range of addresses in a circular pattern. To 
address a circular buffer, the DAG steps the index pointer (I register) 
through the buffer, post-modifying and updating the index on each access 
with a positive or negative modify value (M register or immediate value). 
If the index pointer falls outside the buffer, the DAG subtracts or adds the 
length of the buffer from or to the value, wrapping the index pointer back 
to the start of the buffer. The DAG’s support for circular buffer address-
ing appears in Figure 5-1 on page 5-3, and an example of circular buffer 
addressing appears in Figure 5-4 on page 5-14.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-13 
 

Data Address Generators

Preliminary

The starting address that the DAG wraps around is called the buffer’s base 
address (B register). There are no restrictions on the value of the base 
address for a circular buffer.

Circular buffering may only use post-modify addressing. The 
DAG’s architecture, as shown in Figure 5-1 on page 5-3, cannot 
support pre-modify addressing for circular buffering, because cir-
cular buffering requires that the index be updated on each access.

Do not place the index pointer for a circular buffer such that it 
crosses a memory page boundary during post-modify addressing. 
All memory locations in a circular buffer must reside on the same 
memory page. For more information on the DSP’s memory map, 
see “Memory” on page 4-1.

As shown in Figure 5-4 on page 5-14, programs use the following steps to 
set up a circular buffer:

1. Load the memory page address into the selected DAG’s DMPGx reg-
ister. This operation is needed only once per page change in a 
program.

2. Load the starting address within the buffer into an I register in the 
selected DAG.

3. Load the modify value (step size) into an M register in the corre-
sponding DAG as the I register. For corresponding registers list, see 
Figure 5-2 on page 5-5.

4. Load the buffer’s length into the L register that corresponds to the 
I register. For example, L0 corresponds to I0.

5. Load the buffer’s base address into the B register that corresponds 
to the I register. For example, B0 corresponds to I0.

The DAG B registers are system control registers. To load these 
registers, use the Reg( ) instruction.



DAG Operations

5-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 5-4. Circular Data Buffers

0

1

2

3

4

5

6

7

8

9

10

1

2

3

0

1

2

3

4

5

6

7

8

9

10

4

5

6

0

1

2

3

4

5

6

7

8

9

10

7

8

9

0

1

2

3

4

5

6

7

8

9

10

10

11

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
NOTE THAT "0" ABOVE IS ADDRESS DM(0X1000). THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

.Section/DM seg_data;

.VAR coeff_buffer[11] = 0,1,2,3,4,5,6,7,8,9,10;

.Section/PM seg_code;
DMPG1 = Page(coeff_buffer);/* Set the memory page */
I0 = coeff_buffer; /* Set the current addr */
M1 = 4; /* Set the modify value */
L0 = Length(coeff_buffer); /* If L = 0 buffer is linear */
AX0 = I0; /* Copy the base addr into AX0 */
Reg(B0) = AX0; /* Set the buffer’s base addr */
AR = AX1 And AY0;
AR = DM(I0 += M1); /* Read 1st buffer location */

CNTR = 11; Do my_cir_buffer Until CE;
/* sets up a loop accessing the buffer */

AX0 = DM(I0,M1); /* access using post modify addressing */
Nop; /* other instructions in the loop */
my_cir_buffer: Nop; /* end of my_cir_buffer loop */



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-15 
 

Data Address Generators

Preliminary

After this setup, the DAGs use the modulus logic in Figure 5-1 on 
page 5-3 to process circular buffer addressing.

On the first post-modify access to the buffer, the DAG outputs the I regis-
ter value on the address bus then modifies the address by adding the 
modify value. If the updated index value is within the buffer length, the 
DAG writes the value to the I register. If the updated value is outside the 
buffer length, the DAG subtracts (positive) or adds (negative) the L regis-
ter value before writing the updated index value to the I register. 

In equation form, these post-modify and wrap around operations work as 
follows:

If M is positive:

Inew = Iold + M if Iold + M < Buffer base + length (end of buffer)

Inew = Iold + M-L if Iold + M ≥ Buffer base + length (end of buffer)

If M is negative:

Inew = Iold + M if Iold + M ≥ Buffer base (start of buffer)

Inew = Iold + M+L if Iold + M < Buffer base (start of buffer)

The DAGs use all types of DAG registers for addressing circular buffers. 
These registers operate as follows for circular buffering:

The index (I) register contains the value that the DAG outputs on the 
address bus.

• The modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I register at the end of 
each memory access. The M register can be any M register in the 
same DAG as the I register. The modify value also can be an imme-



DAG Operations

5-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

diate value instead of an M register. The size of the modify value, 
whether from an M register or immediate, must be less than the 
length (L register) of the circular buffer.

• The length (L) register sets the size of the circular buffer and the 
address range that the DAG circulates the I register through. L is 
positive and cannot have a value greater than 216 – 1. If an L regis-
ter’s value is zero, its circular buffer operation is disabled.

• The base (B) register, or the B register plus the L register, is the 
value that the DAG compares the modified I value with after each 
access.

On previous 16-bit, fixed-point DSPs (ADSP-218x family), the 
DAGs do not have B registers. When porting code that uses circu-
lar buffer addressing, add the instructions needed for loading the 
ADSP-219x B register that is associated with the corresponding cir-
cular buffer.

Addressing with Bit-Reversed Addresses
Programs need bit-reversed addressing for some algorithms (particularly 
FFT calculations) to obtain results in sequential order. To meet the needs 
of these algorithms, the DAG’s bit-reverse addressing feature permits 
repeatedly subdividing data sequences and storing this data in bit-reversed 
order.

Bit-reversed address output is available on DAG1, while DAG2 always 
outputs its address bits in normal, Big Endian format. Because the two 
DAGs operate independently, programs can use them in tandem, with one 
generating sequentially ordered addresses and the other generating 
bit-reversed addresses, to perform memory reads and writes of the same 
data.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-17 
 

Data Address Generators

Preliminary

To use bit-reversed addressing, programs set the BIT_REV bit in MSTAT 
(Ena BIT_REV). When enabled, DAG1 outputs all addresses generated by 
its index registers (I0–I3) in bit-reversed order. The reversal applies only 
to the address value DAG1 outputs, not to the address value stored in the 
index register, so the address value is stored in Big Endian format. 
Bit-reversed mode remains in effect until disabled (Dis BIT_REV).

Bit reversal operates on the binary number that represents the position of 
a sample within an array of samples. Using 3-bit addresses, Table 5-1 on 
page 5-17 shows the position of each sample within an array before and 
after the bit-reverse operation. Sample 0x4 occupies position b#100 in 
sequential order and position b#001 in bit-reversed order. Bit reversing 
transposes the bits of a binary number about its midpoint, so b#001 
becomes b#100, b#011 becomes b#110, and so on. Some numbers, like 
b#000, b#111, and b#101, remain unchanged and retain their original posi-
tion within the array. 

Table 5-1. 8-point array sequence before and after bit reversal 

Sequential Order Bit Reversed Order

Sample (hexadecimal) Binary Binary Sample (hexadecimal)

0x0 b#000 b#000 0x0

0x1 b#001 b#100 0x4

0x2 b#010 b#010 0x2

0x3 b#011 b#110 0x6

0x4 b#100 b#001 0x1

0x5 b#101 b#101 0x5

0x6 b#110 b#011 0x3

0x7 b#111 b#111 0x7



DAG Operations

5-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Bit-reversing the samples in a sequentially ordered array scrambles their 
positions within the array. Bit-reversing the samples in a scrambled array 
restores their sequential order within the array. 

In full 16-bit reversed addressing, bits 7 and 8 of the 16-bit address are the 
pivot points for the reversal: 

The Fast Fourier Transform (FFT) algorithm is a special case for bit-rever-
sal. FFT operations often need only a few address bits reversed. For 
example, a 16-point sequence requires four reversed bits, and a 1024-bit 
sequence requires ten reversed bits. Programs can bit-reverse address val-
ues less than 16-bits—which reverses a specified number of LSBs only. 
Bit-reversing less than the full 16-bit index register value requires that the 
program adds the correct modify value to the index pointer after each 
memory access to generate the correct bit-reversed addresses. 

To set up bit-reversed addressing for address values < 16 bits, determine:

1. The number of bits to reverse (N)—permits calculating the modify 
value

2. The starting address of the linear data buffer—this address must 
be zero or an integer multiple of the number of bits to reverse 
(starting address = 0, N, 2N, …)

3. The initialization value for the index register—the bit-reversed 
value of the first bit-reversed address the DAG outputs

4. The modify register value for updating (correcting) the index 
pointer after each memory access—calculated from the formula: 
Mreg = 2(16-N)

Table 5-2. 

Normal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit-reversed 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-19 
 

Data Address Generators

Preliminary

The following example, sets up bit-reversed addressing that reverses the 
eight address LSBs (N = 8) of a data buffer with a starting address of 
0x0020 (4N). Following the described steps, the factors to determine are:

1. The number of bits to reverse (N)—eight bits (from description)

2. The starting address of the linear data buffer—0x0020 (4N) (from 
description)

3. The initialization value for the index register—this is the first 
bit-reversed address DAG1 outputs (0x0004) with bits 15–0 
reversed: 0x2000. 

4. The modify register value for updating (correcting) the index 
pointer after each memory access—this is 216-N, which evaluates to 
28 or 0x0100.

Listing 5-1 implements this example in assembly code.

Listing 5-1. Bit-reversed addressing, 8 LSBs

br_adds: I4=read_in;/* DAG2 pointer to input samples */
   I0=0x0200;/* Base addr of bit_rev output */
   M4=1;/* DAG2 increment by 1 */
   M0=0x0100;/* DAG1 increment for 8-bit rev. */
   L4=0;/* Linear data buffer */
   L0=0;/* Linear data buffer */
   CNTR=8;/* 8 samples */
   Ena BIT_REV;/* Enable DAG1 bit reverse mode */
   Do brev Until CE;
      AY1=DM(I4+=M4);/* Read sequentially */

Table 5-3. 

0x0004 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0x2000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0



DAG Register Transfer Restrictions

5-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

      brev: DM(I0+=M0)=AY1;/* Write nonsequentially */
   Dis BIT_REV;/* Disable DAG1 bit reverse mode */
   Rts;/* Return to calling routine */
read_in:/* input buf, could be.extern */
Nop;

Modifying DAG Registers
The DAGs support an operation that modifies an address value in an 
index register without outputting an address. The operation, address mod-
ify, is useful for maintaining pointers.

The Modify instruction modifies addresses in any DAG index register 
(I0-I7) without accessing memory. If the I register’s corresponding B and 
L registers are set up for circular buffering, a Modify instruction performs 
the specified buffer wrap around (if needed). The syntax for Modify is sim-
ilar to post-modify addressing (index+=modifier). Modify accepts either a 
signed 8-bit immediate values or an M register as the modifier. The fol-
lowing example adds 4 to I1 and updates I1 with the new value:

Modify(I1+=4);

DAG Register Transfer Restrictions
DAG I, M, and L registers are part of the DSP’s Register Group 1 (Reg1), 
2 (Reg2), and 3 (Reg3) register sets; the B registers are in register memory 
space. Programs may load the DAG registers from memory, from another 
data register, or with an immediate value. Programs may store DAG regis-
ters’ contents to memory or to another data register.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-21 
 

Data Address Generators

Preliminary

While instructions to load and use DAG registers may be sequential, the 
DAGs insert stall cycles for sequences of instructions that cause instruc-
tion pipeline conflicts. The two types of conflicts are:

• Using an I register (or its corresponding L or B registers) within 
two cycles of loading the I register (or its corresponding L or B 
registers)

• Using an M register within two cycles of loading the M register

The following code examples and comments demonstrate the conditions 
under which the DAG inserts stall cycles. These examples also show how 
to avoid these stall conditions.

/* The following sequence of loading and using the DAG

   registers does NOT force the DAG to insert stall cycles. */

I0=0x1000;

M0=1;

L0=0xF;

Reg(B0)=AX0;

AR = AX0 +AY0;

MR = MX0 * MY0 (SS);

AX1=DM(I0+=M0);

/* This sequence of loading and using the DAG registers 

   FORCES the DAG to insert two stall cycles. */

M0=1;

L0=0xF;

Reg(b0)=ax0;

I0=0x1000;

AX1=DM(I0+=M0); /* DAG inserts two stall cycles here 

                    until i0 can be used */

/* This sequence of loading and using the DAG registers 

   FORCES the DAG to insert two stall cycles. */

I0=0x1000;

L0=0xF;

Reg(B0)=AX0;



DAG Instruction Summary

5-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

M0=1;

AX1=DM(I0+=M0); /* DAG inserts two stall cycles here 

                    until m0 can be used */

/* This sequence of loading and using the DAG registers 

   FORCES the DAG to insert one stall cycle. */

M0=1;

L0=0xF;

I0=0x1000;

Reg(B0)=AX0;

AR = AX0 + AY0;

AX1=DM(I0+=M0); /* DAG inserts one stall cycle here 

                    until i0 (corresponds to b0) can be used */

DAG Instruction Summary
Table 5-2 on page 5-18 lists the DAG instructions. For more information 
on assembly language syntax, see the ADSP-219x DSP Instruction Set Ref-
erence. In Table 5-2 on page 5-18, note the meaning of the following 
symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location (Register 
Group)

• Reg1, Reg2, Reg3, or Reg indicate Register Group 1, 2, 3 or any 
register

• Ia and Mb indicate DAG1 I and M registers

• Ic and Md indicate DAG2 I and M registers

• Ireg and Mreg indicate I and M registers in either DAG

• Imm# and Data# indicate immediate values or data of the # of bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 5-23 
 

Data Address Generators

Preliminary

Table 5-4. DAG Instruction Summary 

Instruction

|DM(Ia += Mb), DM(Ic += Md)| = Reg;

Reg = |DM(Ia += Mb), DM(Ic += Md)|;

|DM(Ia + Mb), DM(Ic + Md)| = Reg;

Reg = |DM (Ia + Mb), DM (Ic + Md)|;

|PM(Ia += Mb), PM(Ic += Md)| = Reg;

Reg = |PM(Ia += Mb), PM(Ic += Md)|;

|PM(Ia + Mb), PM(Ic + Md)| = Reg;

Reg = |PM(Ia + Mb), PM(Ic + Md)|;

DM(Ireg1 += Mreg1) = |Ireg2, Mreg2, Lreg2|, |Ireg2, Mreg2, Lreg2| = Ireg1;

Dreg = DM(Ireg += <Imm8>);

DM(Ireg += <Imm8>) = Dreg;

Dreg = DM(Ireg + <Imm8>);

DM(Ireg + <Imm8>) = Dreg;

|DM(Ia += Mb), DM (Ic += Md)| = <Data16>;

|PM (Ia += Mb), PM (Ic += Md)| = <Data24>:24;

|Modify (Ia += Mb), Modify (Ic += Md)|;

Modify (Ireg += <Imm8>);



DAG Instruction Summary

5-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-1 
 

I/O Processor

Preliminary

6 I/O PROCESSOR

Overview
The DSP’s I/O processor manages Direct Memory Access (DMA) of DSP 
memory through the external, serial, and SPI ports. Each DMA operation 
transfers an entire block of data. By managing DMA, the I/O processor 
lets programs move data as a background task while using the processor 
core for other DSP operations. The I/O processor’s architecture, which 
appears in Figure 6-1 on page 6-3, supports a number of DMA opera-
tions. These operations include the following transfer types:

• Memory<>Memory or memory-mapped peripherals

• Memory<>Serial port I/O

• Memory<>Serial Peripheral Interface (SPI) port I/O

• Memory<>ADC

This chapter describes the I/O processor and how the I/O proces-
sor controls external, serial, and SPI port DMA operations. For 
information on connecting external devices to these ports, see 
“External Port” on page 7-1, “Serial Port” on page 8-1, or “Serial 
Peripheral Interface (SPI) Port” on page 9-1.



Overview

6-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The ADSP-2199x’s I/O processor uses a distributed DMA control archi-
tecture. Each DMA channel on the chip has a controller to handle its 
transfers. Each of these channel controllers is similar, but each has some 
minor difference to accommodate the peripheral port being served by the 
channel.

The common features of all DMA channels are that they use a linked list 
of “descriptors” to define each DMA transfer, and the DMA transactions 
take place across an internal DMA bus. DMA-capable peripherals arbi-
trate for access to the DMA bus, so they can move data to and from 
memory.

Each channel’s DMA controller moves 16-bit or 24-bit data without 
DSP-core processor intervention. When data is ready to be moved, the 
DMA channel requests the DMA bus and conducts the desired 
transaction.

To further minimize loading on the processor core, the I/O processor sup-
ports chained DMA operations. When using chained DMA, a program 
can set up a DMA transfer to automatically set up and start the next DMA 
transfer after the current one completes.

Figure 6-1 on page 6-3 shows the DSP’s I/O processor, related ports, and 
buses. Software accesses the registers shown in this figure using an I/O 
memory read or write (Io()) instruction. The port, buffer, and DMA sta-
tus registers configure the ports and show port status. The DMA 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-3 
 

I/O Processor

Preliminary

descriptor registers configure and control DMA transfers.The data buffer 
registers hold data passing to and from each port. These data buffer regis-
ters include:

Figure 6-1. I/O Processor Block Diagram

SPI
PORT
1–0

SERIAL
PORT
2–0

EXTERNAL
PORT
ADDR

EXTERNAL
PORT
DATA

TDBRX,
RDBRX

SPTX,
SPRX

DMA DATA

SPXDT/R_CFG, SPXDT/R_SRP,
SPXDT/R_SRA, SPXDT/R_CNT,
SPXDT/R_CP, SPXDT/R_CPR

DMA ADDRESS

SPX_TCR, SPX_RCR,
SPXDT/R_PTR,
SPXDT/R_IRQ

DMA DESCRIPTOR
REGISTERS

PORT, BUFFER,
AND DMA STATUS

REGISTERS

DATA BUFFER
REGISTERS

INTERNAL
MEMORY

DATA

INTERNAL
MEMORY
ADDRESS

IRPTL, IMASK

SPIXD_CFG, SPIXD_SRP,
SPIXD_SRA, SPIXD_CNT,
SPIXD_CP, SPIXD_CPR

SPICTLX, SPIFLGX,
SPISTX, SPIXD_PTR,

SPIXD_IRQ

EMICTL, BMSCTL,
MSXCTL, IOMSCTL,
EMISTAT, MEMPGX,

DMACT/R_PTR,
DMACT/R_IRQ

DMACT/R_CFG, DMACT/R_SRP,
DMACT/R_SRA, DMACT/R_CNT,
DMACT/R_CP, DMACT/R_CPR

(N/A AS
REGISTERS)

DM DATA BUS

DM ADDRESS BUS

I/O MEMORY
DATA

I/O MEMORY
ADDRESS



Overview

6-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Serial Port Receive Buffer register (SPRX). This receive buffer for 
the serial port has FIFOs for receiving data when connected to 
another serial device. For I/O data, the FIFO is two-levels deep. 
For DMA data, the FIFO is eight-levels deep. 

• Serial Port Transmit Buffer register (SPTX). This transmit buffer 
for the serial port has FIFOs for transmitting data when connected 
to another serial device. For I/O data, the FIFOs are two-level 
deep. For DMA data, the FIFOs are eight-levels deep.

• Serial Peripheral Interface (SPI) Port Receive Buffer registers 
(RDBRx). These receive buffers for the SPI port have four-level deep 
FIFOs for receiving data when connected to another SPI device.

• Serial Peripheral Interface (SPI) Port Transmit Buffer registers 
(TDBRx). These transmit buffers for the SPI port have four-level 
deep FIFOs for transmitting data when connected to another SPI 
device.

The DMA channels for the external port (memDMA) each have four-level 
deep FIFOs, but these FIFOs are not visible as registers. The transmit and 
receive channels share the port’s FIFOs.

The Port, Buffer, and DMA Status Registers column in Figure 6-1 on 
page 6-3 shows the control registers for the ports and DMA channels. For 
more information on these registers, see the corresponding chapter of this 
text or “ADSP-2199x DSP I/O Registers” on page 23-1.

The DMA Descriptor Registers column in Figure 6-1 on page 6-3 shows 
the descriptor registers for each DMA channel. These configure DMA 
channels and setup DMA transfers. For detailed information on descriptor 
registers, see “Setting Peripheral DMA Modes” on page 6-10.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-5 
 

I/O Processor

Preliminary

Descriptor-Based DMA Transfers
DMA transfers on the ADSP-2199x can be descriptor-based or auto-
buffer-based—autobuffering only is available on serial port, SPI port and 
ADC DMA channels. Descriptor-based DMA has many more features, 
which requires more setup overhead, but descriptor-based DMA permits 
chaining varied DMA transfers together. Autobuffer-based DMA is much 
simpler, requiring minimal initial setup. Autobuffering also has the advan-
tage of not requiring added setup overhead for repeated transfers.

Descriptor-based DMA is the default method for describing DMA trans-
fers on the ADSP-2199x. Each descriptor contains all the information on 
a particular data transfer operation and contains the pointer to the next 
descriptor. When a transfer is complete, the DMA channel fetches the 
next descriptor’s information then begins that transfer. The structure of a 
DMA descriptor appears in the Order of DMA Descriptor column of 
Table 6-2 on page 6-11 and consists of five register positions HEAD 
through HEAD+4 

DMA descriptors either are active—have been loaded by the peripheral’s 
DMA controller into registers on Pages 0–7 of internal I/O memory and 
are being used for an active DMA transfer—or are inactive—have not yet 
been loaded by a DMA controller.

Inactive DMA descriptors are stored in internal data memory (Page 0). For 
address information on descriptor registers, see “ADSP-2199x DSP I/O 
Registers” on page 23-1. While descriptors are inactive, the DSP or host 
sets up descriptors as needed.

DMA descriptors become active as each DMA controller fetches its 
descriptor information from internal I/O memory before beginning a 
DMA transfer. The dynamic fetching of a descriptor is controlled by the 
DMA ownership (DOWN) bit in the descriptor. Before loading the descrip-
tor from I/O memory, the DMA controller checks the DOWN bit to 
determine if the descriptor is configured and ready. If DOWN is set, the 
DMA controller loads the remaining words of the descriptor. If the 



Overview

6-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

descriptor is not ready then the DMA controller waits until the DOWN bit is 
set. Setting Descriptor Ready (DR) bit triggers the DMA controller to load 
the descriptor from the descriptor registers. Then, the DMA controller 
uses the descriptor information to carry out the required DMA transfer.

The following steps illustrate the typical process for software setting up a 
DMA descriptor for descriptor-based DMA. Note that steps 2 and 4 only 
apply for standalone transfers or the first descriptor in a series of chained 
descriptors.

1. Software writes the descriptor’s HEAD+1 (Start Page), HEAD+2 
(Start Address), HEAD+3 (DMA Count), HEAD+4 (Next 
Descriptor Pointer), and HEAD (DMA Configuration) to consec-
utive locations in data memory.

For this write, the descriptor’s DOWN bit (in HEAD) must be set 
(=1), indicating that the DMA controller “owns” the descriptor. 
After completing the transfer, the DMA controller clears (=0) the 
DOWN bit, returning descriptor ownership to the DSP or host.

If a standalone transfer, note that the HEAD+4 (Next Descriptor 
Pointer) pointer must point to a memory location containing the 
data 0x0—this pointer should not point to address 0x0.

2. Software writes the address of HEAD to the DMA channel’s Next 
Descriptor Pointer register I/O memory.

This step only is needed if this descriptor is a standalone transfer or 
the first in a chained series of transfers.

3. Software sets (=1) the DMA channel’s Descriptor Ready (DR) bit in 
the channel’s Descriptor Ready register in I/O memory, directing 
the channel’s DMA controller to load the descriptor.

The channel’s DMA controller responds by loading the descriptor 
from data memory into the channel’s DMA control registers in I/O 
memory.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-7 
 

I/O Processor

Preliminary

4. Software sets (=1) the DMA channel’s DMA Enable (DEN) bit in 
the channel’s DMA Configuration register in I/O memory. 

This final write to the descriptor is only needed if this descriptor is 
a standalone transfer or the first in a chained series of transfers.

After loading the descriptor and detecting that the DMA transfer is 
enabled, the channel’s DMA controller sets to work on the data transfer. 
The DMA channel arbitrates for the internal DMA bus as required and 
(when it gets bus access) performs the transfer. On each peripheral clock 
cycle, the DMA channel updates the status of the DMA transfer in the 
channel’s DMA status registers.

When the DMA transfer is completed (DMA count has decremented to 
zero), the DMA controller writes the descriptor’s HEAD value (now with 
count of 0 and ownership of 0) to the descriptor’s HEAD location in data 
memory to indicate the final status of the transfer. If enabled in the 
descriptor’s configuration, the channel also generates a DMA transfer 
complete interrupt; for more information, see “Interrupts from DMA 
Transfers” on page 6-9. Next, the channel’s DMA controller fetches the 
next descriptor HEAD from the location indicated by the channel’s Next 
Descriptor Pointer register. If the location contains a descriptor HEAD 
and the channel is configured for chained DMA, the process repeats. If the 
location contains 0x0, the process stops, because this value disables the 
DMA channel’s DEN bit.

It is important to note that each descriptor-based transfer requires 
the overhead of five additional reads and one write transaction to 
load the descriptor and start the transfer. This overhead is ineffi-
cient for very small transfer sizes. This overhead also occurs 
between chained transfers (loading the next descriptor) and creates 
a possibility for overflow situations.



Overview

6-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Autobuffer-Based DMA Transfers
DMA transfers on the ADSP-2199x can be autobuffer-based or descrip-
tor-based—autobuffering not available on the memDMA DMA channels. 
Autobuffering has the same setup overhead for the first transfer as descrip-
tor-based DMA. But unlike descriptor-based DMA, autobuffer does not 
require loading descriptors from internal data memory for each repeated 
transfer. The DMA setup occurs once, and the transfer (once started) iter-
ates repeatedly without re-loading DMA descriptors.

The steps for using autobuffering and the response from the DMA con-
troller in autobuffering are the same as in descriptor-based DMA, except 
that on completing the transfer the DMA controller re-uses the setup val-
ues instead of fetching the next descriptor. This effectively creates a 
circular buffer that continues to transfer data until disabled by clearing 
(=0) the DMA channel’s DEN bit.

When autobuffering, some bits in the DMA Configuration register in I/O 
memory become read/write, instead of their read-only state when in 
descriptor-base DMA mode.

If enabled, the DMA controller generates interrupts at the halfway and 
completion points in the transfer. For more information, see “Interrupts 
from DMA Transfers” on page 6-9. Note that the corresponding bit in the 
IMASK register must be set to unmask the interrupt.

The following steps illustrate the typical process for software setting up a 
DMA descriptor for autobuffer-based DMA. Do not set the channel’s DEN 
bit until the last step.

1. Software writes the descriptor’s HEAD register in I/O memory, 
only setting (=1) the DMA channel’s DAUTO bit.

2. Software writes the descriptor’s HEAD+1, HEAD+2, and 
HEAD+3 registers in I/O memory.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-9 
 

I/O Processor

Preliminary

3. Software writes the descriptor’s HEAD register in I/O memory, 
configuring the DMA transfer and setting the DEN bit.

This final write to the descriptor starts the autobuffering transfer.

Interrupts from DMA Transfers
The ADSP-2191’s DMA channels can produce two types of interrupts: a 
completion interrupt and a port-specific DMA error interrupt.

DMA interrupt status is distributed because the DMA channels’ operation 
is recorded in two ways. The status is recorded in the channel’s DMA 
Configuration (xxxx_CFG) register and in the channel’s DMA Interrupt 
Status (xxxx_IRQ) register when an interrupt occurs; these registers are in 
I/O memory.

The channel’s xxxx_IRQ register is a sticky two-bit register that records 
that a DMA interrupt has occurred. These bits stay set until cleared 
(W1C) through a software write to them. This software write is required 
to clear the interrupt.

The channel’s xxxx_CFG register records a more dynamic status of the 
DMA interrupts. Because DMA operation typically continues after an 
interrupt, the status available in the xxxx_CFG register must be used care-
fully. At the end of a transfer, the DMA controller writes the channel’s 
xxxx_CFG register in I/O memory, then loads the next descriptor. If the 
transfer ends between the interrupt occurrence and the software polling 
the xxxx_CFG register, the software reads the status for the previous trans-
fer as the status for the current transfer.

To avoid mismatched status, the software must conduct a full descriptor 
cleanup after most interrupts. This cleanup implies both checking the sta-
tus of the current xxxx_CFG register and checking the status of recently 
completed descriptors in memory to determine the transfer with the error.



Setting Peripheral DMA Modes

6-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The channel’s DMA controller generates a DMA complete interrupt at 
the end of a transfer. When a transfer completes, the DMA controller 
clears (=0) the DOWN bit in the descriptor’s HEAD in data memory 
(returning descriptor ownership to the DSP or host) and sets (=1) the DS 
bit (indicating DMA status as complete).

The channel’s DMA controller generates a port specific DMA error inter-
rupt for errors such as receive overrun, framing errors, and others. For 
these port specific errors, the DMA controller logs the status in bits 11–9 
of the channel’s xxxx_CFG register. For more information on these bits, 
see “SPI Port DMA Settings” on page 6-16.

These port specific bits are sticky and are only cleared at the start of the 
next transfer. These bits only can indicate that a port DMA error has 
occurred in the transfer, but cannot identify the exact word.

For information on enabling DMA interrupts, see “Setting Peripheral 
DMA Modes” on page 6-10.

Setting Peripheral DMA Modes
Each of the ADSP-2199x’s I/O ports has one or more DMA channels. 
The DMA controller setup and operation for each channel is almost iden-
tical. This section describes the settings that are common to all channels. 
For more information on settings that are unique to a particular DMA 
channel, see the following sections:

• “MemDMA DMA Settings” on page 6-14

• “Serial Port DMA Settings” on page 6-15

• “SPI Port DMA Settings” on page 6-16



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-11 
 

I/O Processor

Preliminary

The ADSP-2199x’s DMA channels are listed in order of arbitration prior-
ity in Table 6-1 on page 6-11. This table also indicates the channel 
abbreviation that prefixes each channel’s register names. 

Each DMA channel listed in Table 6-1 on page 6-11 has the registers 
listed in Table 6-2 on page 6-11. The xxxx in the Table 6-2 on page 6-11 
register names are place holders for the DMA channel abbreviations. The 
following registers control the operating mode of a peripheral’s DMA 
controller.

Table 6-1. I/O Bus Arbitration Priority 

DMA Bus Master Arbitration Priority

SPORT Receive DMA 0—Highest

SPORT Transmit DMA 1

ADC Control DMA 2

SPI0 Receive/Transmit DMA 3

Memory DMA 4—Lowest

Table 6-2. DMA Register Descriptions 

DMA Register 
Name (in 
I/O Memory)

DMA Register Description Order of 
DMA 
Descriptor (in 
Data 
Memory)

xxxx_PTR Current Pointer. Contains the 16-bit address of the memory loca-
tion that the DMA controller is reading (for transmit) or writing 
(for receive)

xxxx_CFG DMA Configuration. Contains the DMA configuration for the 
transfer (see bit descriptions on page 6-12)

HEAD

xxxx_SRP Start Page. Contains the Memory Space (MS) bit (bit 8, 0=mem-
ory, 1=boot) and transfer memory page (MP) bits (bits 7–0); 

HEAD+1

The xxxx in the register name corresponds to the DMA channels that are listed in Table 6-1 on 
page 6-11.
The empty descriptor positions indicate registers that are not loaded from the DMA descriptor.



Setting Peripheral DMA Modes

6-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Each DMA channel’s xxxx_CFG register contains the following bits. Note 
that some bits are read-only in registers and only can be loaded when the 
DMA controller loads the xxxx_CFG register on descriptor load from data 
memory (see “Descriptor-Based DMA Transfers” on page 6-5). Also, a 
number of bits are read-only on channels where they are not supported 
(e.g., the DAUTO bit on the memDMA channel):

• DMA Enable. xxxx_CFG bit 0 (DEN). This bit directs the channel’s 
DMA controller to start (if set, =1) or stop (if cleared, =0) the 
DMA transfer defined by the DMA descriptor. (read/write)

• DMA Transfer Direction Select. xxxx_CFG bit 1 (TRAN). This bit 
selects the transfer direction as memory write (if set, =1) or mem-
ory read (if cleared, =0). (read-only; applies on all I/O channels)

xxxx_SRA Start Address. Contains the 16-bit starting memory address of 
transfer

HEAD+2

xxxx_CNT DMA Count. Contains the 16-bit number of words in the transfer HEAD+3

xxxx_CP Next Descriptor Pointer. Contains the 16-bit memory address of 
the Head of the next DMA descriptor

HEAD+4

xxxx_CPR Descriptor Ready. Contains the Descriptor Ready (DR) bit (bit 0)

xxxx_IRQ DMA Interrupt Status. Contains the DMA Complete Interrupt 
Pending (DCOMI) bit (bit 0) and DMA Error Interrupt Pending 
(DERI) bit (bit 1); 1=pending interrupt, 0=no interrupt

Table 6-2. DMA Register Descriptions  (Cont’d)

DMA Register 
Name (in 
I/O Memory)

DMA Register Description Order of 
DMA 
Descriptor (in 
Data 
Memory)

The xxxx in the register name corresponds to the DMA channels that are listed in Table 6-1 on 
page 6-11.
The empty descriptor positions indicate registers that are not loaded from the DMA descriptor.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-13 
 

I/O Processor

Preliminary

On the MemDMA channel, a memory write (transmit) uses the 
start address as the destination, and a memory read (receive) uses 
the start address as the source. 

• DMA Interrupt on Completion Enable. xxxx_CFG bit 2 (DCOME). 
This bit enables (if set, =1) or disables (if cleared, =0) the channel’s 
DMA complete interrupt. (read-only for descriptor-based DMAs)

• DMA Data Type Select. xxxx_CFG bit 3 (DTYPE). This bit—on par-
allel I/O channels—selects the data format as 24-bit (if set, =1) or 
16-bit (if cleared, =0). (read-only; only applies on parallel I/O 
channels)

• DMA Autobuffer/Descriptor Mode Select. xxxx_CFG bit 4 
(DAUTO). This bit—on channels that support autobuffer mode—
selects autobuffer mode DMA (if set, =1) or descriptor-based DMA 
(if cleared, =0). (read-only; only applies on autobuffer mode 
channels)

• DMA Buffer & Status Flush. xxxx_CFG bit 7 (FLSH). Setting (writ-
ing 1) this bit flushes the channel’s DMA buffer and clears (=0) the 
channel’s FS and FLSH bits. This bit must be explicitly cleared 
(W1C); writing 0 to this bit has no effect. (read/write; only write 
when DEN=0)

• DMA Interrupt on Error Enable. xxxx_CFG bit 8 (DERE). This bit 
enables (if set, =1) or disables (if cleared, =0) the channel’s DMA 
error interrupt. (read-only)

• DMA FIFO Buffer Status. xxxx_CFG bits 13-12 (FS). These bits 
indicate the status of the channel’s buffer as: 00=empty, 01=par-
tially full, 10=partially empty, or 11=full. (read-only)



Setting Peripheral DMA Modes

6-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• DMA Completion Status. xxxx_CFG bit 14 (DS). This bit indicates 
whether the DMA transfer completed successfully (=1) or with an 
error (=0). (read-only)

• DMA Ownership Status. xxxx_CFG bits 15 (DOWN). This bit indi-
cates the current “owner” of the DMA descriptor as: 1=DMA 
controller or 0=DSP. (read-only)

Although some channels have preset directions for transmit or 
receive, the TRAN bit must be set or cleared appropriately to match 
the direction of the DMA transfer.

Some bus master settings can lock out DMA requests. For more 
information, see “Bus Master Settings” on page 7-7.

MemDMA DMA Settings
There are two MemDMA channels—one for transmit and one for receive. 
These channels handle memory-to-memory DMA transfers. The transmit 
channel provides internal memory to external memory transfers, and the 
receive channel provides external memory to internal memory transfers. 
These channels have the following DMA configuration differences from 
other DMA channels:

• These DMA channels support Descriptor mode DMA (do not sup-
port Autobuffer mode), so this channel’s DAUTO bit is ignored. 

• Even though each of these DMA channels has a preset direction 
(transmit or receive), the channels’ TRAN bits must be set or cleared 
appropriately.

• These DMA channels serve a parallel I/O port, so these channels’ 
DTYPE bits are used.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-15 
 

I/O Processor

Preliminary

For information on these channels’ other settings, see Table 6-1 on 
page 6-11, Table 6-2 on page 6-11, and the xxxx_CFG register discussion 
on page 6-12. For information on using these DMA channels, see “Using 
MemDMA DMA” on page 6-17.

Serial Port DMA Settings
There are two serial port channels—one for transmit and one for receive. 
The transmit channels provide memory to SPORT transfers, and the 
receive channels provide SPORT memory transfers. These channels have 
the following DMA configuration differences from other DMA channels:

• These DMA channels support Descriptor mode DMA and Auto-
buffer mode, so these channels’ DAUTO bit is used.

• Even though each of these DMA channels has a preset direction 
(transmit or receive), the channels’ TRAN bits must be set or cleared 
appropriately. 

• These DMA channels serve a serial I/O port, so these channels’ 
DTYPE bits are ignored.

For information on these channels’ other settings, see Table 6-1 on 
page 6-11, Table 6-2 on page 6-11, and the xxxx_CFG register discussion 
on page 6-12. For information on using these DMA channels, see “Using 
Serial Port (SPORT) DMA” on page 6-18.



Setting Peripheral DMA Modes

6-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPI Port DMA Settings
There is one Serial Peripheral Interface (SPI) port channel. This channel 
can be set to transmit or receive. A transmit channel provides memory to 
SPI port transfers, and a receive channel provides SPI port to memory 
transfers. These channels have the following DMA configuration differ-
ences from other DMA channels:

• These DMA channels support Descriptor mode DMA and Auto-
buffer mode, so these channels’ DAUTO bits are used.

• These DMA channels serve a serial I/O port, so these channels’ 
DTYPE bits are ignored.

• The SPI ports’ DMA channels’ configuration (SPID_CFG) register 
have bits that differ from the other channel’s configuration 
registers:

DMA SPI Receive Busy (Overflow Error) Status. SPID_CFG bit 9 
(RBSY) This bit—only on an SPI port DMA channel with TRAN=1—
indicates that the SPI port buffer has overflowed (if set, =1) or has 
not overflowed (if cleared, =0). (read-only)

DMA SPI Transmit (Underflow) Error Status. SPID_CFG bit 10 
(TXE) This bit—only on an SPI port DMA channel with TRAN=0—
indicates that the SPI port buffer has underflowed (if set, =1) or 
has not underflowed (if cleared, =0). (read-only)

DMA SPI Mode Fault (Multi-master Error) Status. SPID_CFG 
bit 11 (MODF) This bit indicates that another SPI master has aborted 
(if set, =1) or has not aborted (if cleared, =0) the current DMA 
transfer. (read-only)

For information on these channels other settings, see Table 6-1 on 
page 6-11, Table 6-2 on page 6-11, and the xxxx_CFG register discussion 
on page 6-12. For information on using these DMA channels, see “Using 
Serial Peripheral Interface (SPI) Port DMA” on page 6-21.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-17 
 

I/O Processor

Preliminary

Working with Peripheral DMA Modes
With some minor differences, the DMA control for all ADSP-2199x 
DMA channels is identical. For a discussion of the DMA process and how 
to set it up, see “Descriptor-Based DMA Transfers” on page 6-5 and “Set-
ting Peripheral DMA Modes” on page 6-10. This section provides 
detailed information on using each DMA-capable port. 

Using MemDMA DMA
The MemDMA channels move 16- or 24-bit data between memory loca-
tions. These transfers include internal-to-external, external-to-internal, 
internal-to-internal, and external-to-external memory transfers. Mem-
DMA can perform DMA transfers between internal, external, or boot 
memory spaces, but cannot DMA to or from I/O memory space.

There are two “halves” to the MemDMA (memory DMA) port: a dedi-
cated “read” channel and a dedicated “write” channel. MemDMA first 
reads and stores data in an internal four-level deep FIFO, then (when the 
FIFO is full) MemDMA writes the FIFO’s contents to the memory desti-
nation. When the remaining words of a transfer are less than four, the 
FIFO effectively becomes a single word buffer, which the MemDMA 
channels alternatively read and write.

Because the halves of MemDMA share their FIFO buffer, the read 
and write MemDMA channels must be configured for the same 
DMA transfer count. Failure to follow this restriction causes the 
MemDMA transfer to hang. When hung this way, the MemDMA 
channel releases the internal DMA bus, but does not complete the 
DMA transfer. Disabling the DMA and performing a buffer clear 
operation is required to clear this hang condition.



Working with Peripheral DMA Modes

6-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Using Serial Port (SPORT) DMA
The SPORT DMA channels move data between the serial port and mem-
ory locations. Although the SPORT DMA transfers to and from memory 
are always performed with 16-bit words, the serial ports can handle word 
sizes from 3 to 16 bits. No packing of smaller words into the 16-bit DMA 
transfer word are performed by the SPORT.The SPORT has one channel 
for receiving data and one for transmitting data.

The SPORT DMA channels are assigned higher priority than all other 
DMA channels (e.g., higher than SPI ports and MemDMA), because the 
SPORT has a relatively low service rate and is unable to hold off incoming 
data. Having higher priority causes the SPORT DMA transfers to be per-
formed first when multiple DMA requests occur in the same cycle.

Descriptor-Based SPORT DMA

Once a DMA descriptor block has been properly generated, the SPORT 
DMA controller set up, and the DMA enabled (for details, see “Descrip-
tor-Based DMA Transfers” on page 6-5), the SPORT loads the first 
descriptor block and begins to perform the first DMA transfer. 

During the DMA transfer, data words received in the receive DMA FIFO 
are automatically transferred to the data buffer in internal memory. When 
the serial port is ready to transmit data, a word is automatically transferred 
from memory to the transmit DMA FIFO. 

Note that the SPORT DMA controller extends the depth of the receive 
buffer when receive DMA is enabled from two words to eight words. This 
buffer extension lets the receive DMA controller correctly operate with 
long memory arbitration latencies in systems where many DMA peripher-
als are functioning at once. Similarly, the SPORT DMA controller 
extends the depth of the transmit buffer when transmit DMA is enabled 
from two words to eight words.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-19 
 

I/O Processor

Preliminary

DMA operation continues until the entire transfer is complete—when the 
word count register reaches zero. When the word count register of an 
active DMA channel reaches zero, the DMA controller generates the 
DMA complete interrupt (if enabled in the DCOME bit of the descriptor).

Also on completion of the DMA, the DMA controller writes status and 
returns ownership of the descriptor of the just completed DMA operation 
to the DSP by writing the DMA configuration location of the descriptor. 
The DMA controller then continues to load the next descriptor in the 
linked list if the DMA configuration location of the next descriptor has 
the DOWN bit set and DEN bit set.

If a DMA overflow or underflow error occurs during a transfer, the DMA 
channel’s controller sets the corresponding error status bit. Errors do not 
terminate the transfer. Error status is summarized in the SPORT Status 
Register (the TUVF and ROVF bits). Based on this information, software can 
make a decision to terminate the transfer by clearing (=0) the channel’s 
DEN bit. If enabled with the DERE bit, this error also can generate an inter-
rupt, setting the DERI bit.

If an error occurs, software should flush the channel’s FIFO by setting 
(=1) the channel’s FLSH bit. This bit should be set following any DMA ter-
mination due to an error condition. This bit has write-one-to-clear 
characteristic. This bit may also be used by a descriptor block load to ini-
tialize a DMA FIFO to a cleared condition prior to starting a DMA 
transfer. The DMA extended buffer not only is cleared, but the SPORT 
transmit double buffer and receive double buffers also are cleared.

Autobuffer-Based SPORT DMA

Autobuffering mode is used to remove the overhead of the descriptor 
based method when only simply circular buffer type transfers are required. 
This mode provides compatibility with previous ADSP-218x SPORT 
autobuffering mode. For more information, see “Autobuffer-Based DMA 
Transfers” on page 6-8.



Working with Peripheral DMA Modes

6-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPORT DMA Data Packed/Unpacked Enable

SPORT DMA supports packed and unpacked data. If in packed mode, 
the SPORT expects that the data contained by the DMA buffers corre-
sponds only to the enabled SPORT channels. If a MCM Frame contains 
ten enabled channels, the SPORT expects that the DMA buffer contains 
ten consecutive words for each of the frames. The DMA buffer size only 
can be as small as the number of the enabled channels, hence reducing the 
DMA traffic.

Note that one can not change the total number of the enabled 
channels without changing DMA buffer size. No mid-frame recon-
figuration is allowed. DMA data packed mode is the only type of 
SPORT operation supported in non-DMA mode

If in unpacked mode, the DMA data is assumed to be unpacked. The 
DMA buffer is expected to have a word for each of the channels in the 
window (whether enabled or not). The DMA buffer size must be equal to 
the size of the window. If Channels 1 and 10 are enabled and the window 
size is 16, the DMA buffer size would have to be 16 words with the data to 
be transmitted/received placed at address 1 and 10 of the buffer. The con-
tent of the rest of the DMA buffer is ignored. The data is considered 
“unpacked” because the DMA buffer contains “extra” words. The purpose 
of this mode is to simplify the programming model of the SPORT MCM. 
For instance, this mode has no restrictions in terms of changing the num-
ber of enabled channels mid-frame (unlike in Data Packed mode above). 

Software should setup the MCM Channel Select registers prior to 
enabling TX/RX DMA operation, because SPORT FIFO operation begins 
immediately after TX/RX DMA is enabled and depends on the values of 
the MCM Channel Select registers.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-21 
 

I/O Processor

Preliminary

Using Serial Peripheral Interface (SPI) Port DMA
The SPI has a single DMA controller, which supports either an SPI trans-
mit channel or a receive channel, but not both simultaneously. When 
configured as a transmit channel, the received data is ignored. When con-
figured as a receive channel, what is transmitted is irrelevant. A four-level 
deep FIFO is included to improve throughput of the DMA data.

When changing the direction for SPI port DMA (from TX to RX 
or vice versa), the program must conclude the DMA in one direc-
tion, disable the channel, then start the next DMA in the other 
direction. TX and RX SPI DMA sequences cannot be chained with 
descriptors.

SPI DMA in Master Mode

When enabled as a master and the DMA controller is used to transmit or 
receive data, the SPI interface operates as follows:

1. The core writes to the SPICTL and SPIBAUD registers, enabling the 
device as a master and configuring the SPI system by selecting the 
appropriate word length, transfer format, baud rate, etc. The TIMOD 
field is configured to select “Transmit or Receive with DMA” 
mode. 

2. The core selects the desired SPI slave(s) by setting one or more of 
the SPI flag select bits.

3. The core defines one or more DMA transfers by generating one or 
more DMA descriptors in data memory.

4. The core writes to the SPI DMA Configuration register, enabling 
the SPI DMA controller and configuring access direction. 



Working with Peripheral DMA Modes

6-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

5. The DMA controller writes the Head of the descriptor to the SPI 
DMA Next Descriptor register. To enable a receive operation, it is 
necessary to set the TRAN bit. In order to be able to set TRAN, it is 
first necessary to temporarily set the DAUTO bit. This is only neces-
sary for master mode DMA operation.

6. If configured for transmit, as the DMA controller reads data from 
memory into the SPI DMA buffer, it initiates the transfer on the 
SPI port. If configured for receive, as the DMA controller reads 
data from SPI DMA buffer and writes to memory, it initiates the 
receive transfer.

7. The SPI then generates the programmed clock pulses on SCK and 
simultaneously shifts data out of MOSI and shifts data in from MISO. 
For transmit transfers, before starting to shift, the value in the 
DMA buffer is loaded into the shift register. For receive transfers, 
at the end of the transfer, the value in the shift register is loaded 
into the DMA buffer.

8. The SPI keeps sending or receiving words until the SPI DMA 
Word Count register transitions from 1 to 0.

For transmit DMA operations, if the DMA controller is unable to keep up 
with the transmit stream, perhaps because another DMA controller has 
been granted access to memory, the transmit port operates according to 
the state of the SZ bit. If SZ=1 and the DMA buffer is empty, the device 
repeatedly transmits 0s on the MOSI pin. If SZ=0 and the DMA buffer is 
empty, it repeatedly transmits the last word it transmitted before the 
DMA buffer became empty. All aspects of SPI receive operation should be 
ignored. The data in RDBR is not intended to be used, and the RXS and RBSY 
bits should be ignored. The RBSY overrun condition can not generate an 
error interrupt in this mode.

For receive DMA operations, if the DMA controller is unable to keep up 
with the receive data stream, the receive buffer operates according to the 
state of the GM bit. If GM=1 and the DMA buffer is full, the device contin-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-23 
 

I/O Processor

Preliminary

ues to receive new data from the MISO pin, overwriting the older data in 
the DMA buffer. If GM=0 and the DMA buffer is full, the incoming data is 
discarded, and the RDBR register is not updated. While performing a 
receive DMA, the transmit buffer is assumed to be empty (and TXE is set). 
If SZ=1, the device repeatedly transmits 0s on the MOSI pin. If SZ=0, it 
repeatedly transmits the contents of the TDBR register. The TXE underflow 
condition cannot generate an error interrupt in this mode.

Writes to the TDBR register during an active SPI transmit DMA operation 
should not occur because DMA data is overwritten. Writes to the TDBR 
register during an active SPI receive DMA operation are allowed. Reads 
from the RBDR register are allowed at any time. Interrupts are generated 
based on DMA events and are configured in the SPI DMA Configuration 
Word of the DMA descriptor.

For a transmit DMA operation to start, the transmit buffer must initially 
be empty (TXS=0). This is normally the case, but means that the TDBR reg-
ister should not be used for any purpose other than SPI transfers. TDBR 
should not be used as a “scratch” register for temporary data storage. Writ-
ing to TDBR sets the TXS bit.

SPI DMA in Slave Mode

When enabled as a slave and the DMA controller is used to transmit or 
receive data, the start of a transfer is triggered by a transition of the SPISS 
signal to the active-low state or by the first active edge of SCK. The follow-
ing steps illustrate the SPI receive DMA sequence in an SPI slave:

1. The core writes to the SPICTL register to define the mode of the 
serial link to be the same as the mode set-up in the SPI master. The 
TIMOD field is configured to select “Transmit or Receive with 
DMA” mode.

2. The core defines a DMA receive transfer by generating a receive 
DMA descriptor in data memory.



Working with Peripheral DMA Modes

6-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

3. The core writes to the SPI DMA Configuration register, enabling 
the SPI DMA controller and configuring a receive access. The head 
of the descriptor is written to the SPI DMA Next Descriptor 
register.

4. Once the slave-select input is active, the slave starts receiving data 
on active SCK edges.

5. Reception continues until SPI DMA Word Count register transi-
tions from 1 to 0.

6. The core could continue by queuing up the next DMA descriptor.

For receive DMA operations, if the DMA controller is unable to keep up 
with the receive data stream, the receive buffer operates according to the 
state of the GM bit. If GM=1 and the DMA buffer is full, the device contin-
ues to receive new data from the MOSI pin, overwriting the older data in 
the DMA buffer. If GM=0 and the DMA buffer is full, the incoming data is 
discarded. While performing receive DMA, the transmit buffer is assumed 
to be empty. If SZ=1, the device repeatedly transmits 0s on the MISO pin. If 
SZ=0, it repeatedly transmits the contents of the TDBR register. The follow-
ing steps illustrate the SPI transmit DMA sequence in an SPI slave:

1. The core writes to the SPICTL register to define the mode of the 
serial link to be the same as the mode set-up in the SPI master. The 
TIMOD field is configured to select “Transmit or Receive with 
DMA” mode.

2. The core defines a DMA receive work unit by generating a receive 
DMA descriptor in data memory.

3. The core writes to the SPI DMA Configuration register, enabling 
the SPI DMA controller and configuring a transmit operation. The 
head of the DMA descriptor is written to the SPI DMA Next 
Descriptor register.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-25 
 

I/O Processor

Preliminary

4. Once the slave-select input is active, the slave starts transmitting 
data on active SCK edges.

5. Transmission continues until the SPI DMA Word Count register 
transitions to 0.

6. The core could continue by queuing up the next DMA descriptor.

For transmit DMA operations, if the DMA controller is unable to keep up 
with the transmit stream, the transmit port operates according to the state 
of the SZ bit. If SZ=1 and the DMA buffer is empty, the device repeatedly 
transmits 0s on the MISO pin. If SZ=0 and the DMA buffer is empty, it 
repeatedly transmits the last word it transmitted before the DMA buffer 
became empty. All aspects of SPI receive operation should be ignored. The 
data in RDBR is not intended to be used, and the RXS and RBSY bits should 
be ignored. The RBSY overrun condition can not generate an error inter-
rupt in this mode.

Writes to the TDBR register during an active SPI transmit DMA operation 
should not occur. Writes to the TDBR register during an active SPI receive 
DMA operation are allowed.   Reads from the RBDR register are allowed at 
any time. Interrupts are generated based on DMA events and are config-
ured in the SPI DMA Configuration Word of the DMA descriptor.

In order for a transmit DMA operation to execute properly, it is necessary 
for the transmit buffer to initially be empty (TXS=0). This is normally the 
case, but means that the TDBR register should not be used for any purpose 
other than SPI transfers. TDBR should not be used as a “scratch” register for 
temporary data storage. Writing to TDBR sets the TXS bit.

SPI DMA Errors

SPI DMA provides SPI-specific DMA error modes.

Mode-Fault Error (MODF). The MODF bit is set in the SPIST register when 
the SPISSx input pin of a device enabled as a master is driven low by some 
other device in the system. This occurs in multiple master systems when 



Working with Peripheral DMA Modes

6-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

another device is also trying to be the master. This contention between 
two drivers can potentially cause damage to the driving pins. To enable 
this feature, the PSSE bit in SPICTL must be set. As soon as this error is 
detected, the following actions take place:

1. The MSTR control bit in SPICTL is cleared, configuring the SPI 
interface as a slave.

2. The SPE control bit in SPICTL is cleared, disabling the SPI system.

3. The MODF status bit in SPIST is set.

4. An SPI interrupt is generated.

These conditions persist until the MODF bit is cleared, which is accom-
plished by a write-1 (W1C) software operation. Until the MODF bit is 
cleared, the SPI can not be re-enabled, even as a slave. Hardware prevents 
the user from setting either SPE or MSTR while MODF is set. When MODF is 
cleared, the interrupt is deactivated. Before attempting to re-enable the 
SPI as a master, the state of the SPISS input pin should be checked to 
make sure the pin is high; otherwise, once SPE and MSTR are set, another 
mode-fault condition occurs again immediately.

As a result of SPE and MSTR being cleared, the SPI data and clock pin driv-
ers are disabled (MOSI, MISO, and SCK), but the slave-select output pins 
revert to being controlled by the Programmable Flag registers. This 
change could lead to contention on the slave-select lines if these lines are 
still being driven by the DSP.

To assure that the slave-select output drivers are disabled once a MODF error 
occurs, configure the Programmable Flag registers appropriately. When 
enabling the MODF feature, configure all the PFx pins that serve as 
slave-selects as inputs. Accomplish this configuration by writing to the DIR 
register prior to configuring the SPI port. If configured this way, when the 
MODF error occurs, the slave-selects are automatically reconfigured as PFx 
pins, disabling the slave-select output drivers.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-27 
 

I/O Processor

Preliminary

Transmission Error (TXE). This error bit is set in the SPIST register 
when all the conditions of transmission are met and there is no new data 
in TDBR (TDBR is empty). In this case, what is transmitted depends on 
the state of the SZ bit in the SPICTL register. The TXE bit is cleared by a 
write-1 (W1C) software operation. 

Reception Error (RBSY). The RBSY flag is set in the SPIST register when a 
new transfer has completed before the previous data could be read from 
the RDBR register. This bit indicates that a new word was received while the 
receive buffer was full. The RBSY bit is cleared by a software write-1 
(W1C) operation. The state of the GM bit in the SPICTL register determines 
whether or not the RDBR register is updated with the newly received data.

Transmit Collision Error (TXCOL). The TXCOL flag is set in the SPIST 
register when a write to the TDBR register coincides with the load of the 
shift register. The write to TDBR could be direct or through DMA. This bit 
indicates that corrupt data may have been loaded into the shift register 
and transmitted; in this case, the data which is in TDBR may not match 
what was transmitted. It is important to note that this bit is never set 
when the SPI is configured as a slave with CPHA=0; the collision error 
may occur, but it can not be detected. In any case, this error can easily be 
avoided by proper software control. The TXCOL bit is cleared by a software 
write-1 (W1C) operation. 

Boot Mode DMA Transfers
The ADSP-2199x uses DMA for external port booting only. This section 
provides a brief description of the DMA processes involved in booting. 
For a description of the booting process for all peripherals, see “Booting 
the Processor (“Boot Loading”)” on page 12-13.

After reading the header for external port booting, the loader kernel polls 
the DMA ownership bit within the configuration word to determine com-
pletion of DMA. The loader kernel parses the header and sets up another 



Code Example: Internal Memory DMA

6-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

DMA descriptor to load in the actual data following this header. While 
this DMA is in progress, the Boot ROM routine polls the DMA owner-
ship bit to determine whether the DMA has completed or not.

This process repeats for all the blocks that need to be transferred. The last 
block to be read/initialized is the “final DM” block. This final block does 
not use a DMA descriptor, rather it is a direct core accesses. The interrupt 
service routine performs some housecleaning, transfers program control to 
location 0x0000, and begins running. 

Code Example: Internal Memory DMA
This example demonstrates multiple internal to internal DMA transfers 
within the memory of the ADSP-2199x. The example uses two methods 
to check for DMA completion:

• Interrupts—at the end of the first transfer a DMA completion 
interrupt is generated.

• Ownership bit of the Configuration word—the second DMA polls 
this bit in memory to see if it is cleared. At the end of the transfer, 
the DMA engine writes a 0 (zero) to this bit in memory in order to 
transfer the control of DMA descriptor block to the DSP. 

#include "def2199x.h"

#define N 20

.section/dm data1;

.var SOURCE[N] =   

          0x1111, 0x2222, 0x3333, 0x4444, 0x5555, 

          0x6666, 0x7777, 0x8888, 0x9999, 0xaaaa,

          0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff,

          0xbade, 0xdeed, 0xfeed, 0xbead, 0xcafe;

.VAR DESTINATION2[N/2];



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-29 
 

I/O Processor

Preliminary

/*   Config    Start   start   DMA   Next descriptor

       word    page   address   count   pointer 

     ------   ------   ------   -----   ------  */   

.var WR_DMA_WORD_CONFIG[5]  =

     0x8007, 0x0000, 0x0000,    N,    0x0000; 

.var RD_DMA_WORD_CONFIG[5]  =   

     0x8001, 0x0000, 0x0000,    N,    0x0000; 

.var WR_DMA_WORD_CONFIG2[5] =   

     0x0003, 0x0000, 0x0000,    N/2,    0x0000;

.var RD_DMA_WORD_CONFIG2[5]  =   

     0x0001, 0x0000, 0x0000,    N/2,    0x0000; 

.var end_dma = 0x0;

/* to stop the DMA Next Address Pointer needs to point to a 

buffer which contains ZERO */

.section/pm data2;       

.var DESTINATION[N];  

.var SOURCE2[N/2] =

             0x1111, 0x2222, 0x3333, 0x4444, 0x5555, 

             0x6666, 0x7777, 0x8888, 0x9999, 0xaaaa;

.section/pm IVreset;

JUMP start;

/*

INTERRUPT SERVICE ROUTINE

*/

.section/pm IVint4;



Code Example: Internal Memory DMA

6-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

iopg = Memory_DMA_Controller_Page;

ax0 = 0x1;

io(DMACW_IRQ) = ax0;

/* writing a 1 to this register clears the interrupt */

/* write the Configuration words for the 2nd transfer, setting 

the Ownership and DMA enable bits **/ 

ax0 = 0x8003;

ax1 = 0x8001;

dm(WR_DMA_WORD_CONFIG2) = ax0;

dm(RD_DMA_WORD_CONFIG2) = ax1;

ax0 = 0x1;

io(DMACW_CPR) = ax0;

/* Set the descriptor ready bit in both Write and Read chans */

io(DMACR_CPR) = ax0;

/* to signal to the DMA engine that the down bit has been set */

rti;  /*  Return from interrupt */

/*

MAIN PROGRAM

*/

.section/pm   program;

start:

/*

Interrupt Priority Configuration

*/

iopg = Interrupt_Controller_Page;

ax0 = 0xB0BB;   



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-31 
 

I/O Processor

Preliminary

io(IPR3) = ax0;

/* assign DSP's interrupt priority 4 to the Memory DMA port */

ax0 = 0xBBBB;

io(IPR0) = ax0;

/* set all other interrupts to the lowest priority */

io(IPR1) = ax0;                  

io(IPR2) = ax0;

ICNTL = 0X0;    /* Disable nesting */

IRPTL = 0X0;    /* Clear pending interrupts */

imask = 0x0010; /* unmask interrupt 4 */

/*

Setting up the 1st set of descriptor blocks in memory

*/

/*

Write channel

*/

ax0 = WR_DMA_WORD_CONFIG2; 

ax1 = DESTINATION;

dm(WR_DMA_WORD_CONFIG + 2) = ax1;  /* write start address word 

(start of buffer) */   

dm(WR_DMA_WORD_CONFIG + 4) = ax0;  /* write next descriptor 

pointer word */

/*

Read channel

*/

ax1 = SOURCE;                 

ar  = RD_DMA_WORD_CONFIG2;           



Code Example: Internal Memory DMA

6-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

dm(RD_DMA_WORD_CONFIG + 2) = ax1;  

/* write start address word (start of buffer) */                           

dm(RD_DMA_WORD_CONFIG + 4) = ar;

/* write next descriptor pointer word */

/*

Setting up the 2nd  set of descriptor blocks in memory

*/

/*

Write channel

*/

ax0 = end_dma;

ax1 = DESTINATION2;

dm(WR_DMA_WORD_CONFIG2 + 2) = AX1; /* start address word */   

dm(WR_DMA_WORD_CONFIG2 + 4) = ax0; /* nxt descriptor ptr word*/

/*

Read channel

*/

ax1 = SOURCE2;            

dm(RD_DMA_WORD_CONFIG2 + 2) = ax1;  /* start address word */                          

dm(RD_DMA_WORD_CONFIG2 + 4) = ax0;  /* next descriptor pointer 

word */

/*

Write to the DMA engine

*/



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 6-33 
 

I/O Processor

Preliminary

/*   The following IO writes are necessary to kick off the DMA 

engine for the first transfer. Subsequent chained DMA transfers 

will only need to have the Ownership and DMA Enable bits set in 

their respective configuration words in memory. Note that for 

subsequent transfers if the ownership bit is not set the Descrip-

tor Ready bits will need to be set again once the ownership bit 

is set */

iopg =  Memory_DMA_Controller_Page;

ax0 = WR_DMA_WORD_CONFIG;     

io(DMACW_CP) = ax0;

/* Load the address of the First Write Channel work unit */ 

ax1 = RD_DMA_WORD_CONFIG;     

io(DMACR_CP) = ax1;

/* Load the address of the Read Channel work unit */ 

ax0 = 0x1;

io(DMACW_CPR) = ax0;

/* Set the descriptor ready bit in both Write and Read chans */

io(DMACR_CPR)  = ax0;

io(DMACW_CFG) = ax0;      

/* enable DMA in both channels, this enable plus the setting of 

the descriptor ready bits will cause the DMA engine to fetch the 

descriptor words from memory to its space in IO and begin the 

transfer */

io(DMACR_CFG)  = ax0;

ena int;    /* enable global interrupts */

idle;     

/* wait for the DMA interrupt which will be generated once the 

1st transfer completes */



Code Example: Internal Memory DMA

6-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

/* loop here to check bit 15 (ownership bit) of the config regis-

ter in DM to see if DMA completed, On completion the DMA engine 

will write a 0 to this bit */

do test_ownership until forever;

   ar=dm(WR_DMA_WORD_CONFIG2);

    ar = tstbit 15 of ar;

test_ownership:   if EQ jump dma_done; /* the explicit jump ends 

the infinite loop */

dma_done: 

pop loop; 

/* this instruction is necessary to recover the loop stack after 

exiting an infinite loop if the label DMA_DONE is not the next 

sequential instruction, after popping the loop stack another jump 

to the next instruction after the loop may be needed   */

nop;

idle;

 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-1 
 

External Port

Preliminary

7 EXTERNAL PORT

Overview
The DSP’s external port extends the DSP’s address and data buses 
off-chip. Using these buses and external control lines, systems can inter-
face the DSP with external memory or memory-mapped peripherals. This 
chapter describes configuring, connecting, and timing accesses to external 
memory or memory-mapped peripherals. For information describing the 
DSP’s memory and how to use it, see “Memory” on page 4-1. 

The external port connections appear in Figure 7-1 on page 7-2.

The main sections of this chapter describe how to use the interfaces that 
are available through the external port. These sections include:

• “Setting External Port Modes” on page 7-3

• “Working with External Port Modes” on page 7-8

• “Interfacing to External Memory” on page 7-15

There is a 4:1 conflict resolution ratio at the external port interface 
(three internal buses to one external bus), a 2:1 clock ratio between 
the DSP’s internal clock and the peripheral clock (when 
HCLK=½ CCLK), and a packing delay of one cycle per word to 



Overview

7-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

unpack instructions. Systems that fetch instructions or data 
through the external port must tolerate latency on these accesses. 
For more information, see “Memory Interface Timing” on page 
7-24.

Figure 7-1. ADSP-2199x System—External Port Interfaces

DATA15–8

IOMS

ADSP-2199X

BMS

MS3–0

BR

BG

ACK

WR

RD

ADDR21–0

DATA7–0

DATA15–8

ADDR21–0

DATA7–0

CS

ACK

WE

OE

EXTERNAL
MEMORY

(O P T IO N A L )

DATA15–8

ADDR21–0

DATA7–0

CS

ACK

WE

OE

BOOT
MEMORY

(O P T IO N A L )

DATA15–8

ADDR18–0

DATA7–0

CS

ACK

WE

OE

EXTERNAL
I/O MEMORY

(O P T ION A L )

A
D

D
R

E
S

S

C
O

N
T

R
O

L

D
A

T
A

CLKOUT

BGH



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-3 
 

External Port

Preliminary

Setting External Port Modes
The E_STAT, EMICTL, MSxCTL, BMSCTL, IOMSCTL, and MEMPGx registers con-
trol the operating mode of the DSP’s memory. The settings for these 
modes are covered in the following sections:

• “Memory Bank and Memory Space Settings” on page 7-3

• “External Bus Settings” on page 7-5

• “Bus Master Settings” on page 7-7

• “Boot Memory Space Settings” on page 7-7

Memory Bank and Memory Space Settings
Each bank of external memory has a configurable setting for read waitstate 
count, write waitstate count, waitstate mode select, clock divider, and 
write hold cycle. Boot memory space and I/O memory space also have 
these settings. These features come from the following bits in the MSxCTL, 
BMSCTL, and IOMSCTL registers:

• Read Waitstate Count. MSxCTL, BMSCTL, IOMSCTL bits 2-0 (E_RWC) 
Write Waitstate Count. MSxCTL, BMSCTL, IOMSCTL bits 5-3 (E_WWC). 
These bits direct the DSP to apply 0 to 7 waitstates (EMICLK clock 
cycles), before completing the read or write access to the corre-
sponding memory bank or memory space.

• Waitstate Mode Select. MSxCTL, BMSCTL, IOMSCTL bits 7-6 (E_WMS). 
These bits direct the DSP to use the following waitstate mode for 
the corresponding memory bank or memory space: external ACK 
only (if 00), internal waitstates only (if 01), both ACK and waitstates 
(if 10), either ACK or waitstates (if 11).



Setting External Port Modes

7-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Clock Divider Select. MSxCTL, BMSCTL, IOMSCTL bits 10-8 (E_CDS). 
These bits set the memory bank or space clock rate (EMICLK) at a 
ratio of the peripheral clock rate (HCLK) for accesses to the corre-
sponding memory bank or memory space. The possible 
EMICLK:HCLK ratios are as follows: 1:1 (if 000), 1:2 (if 001), 1:4 (if 
010), 1:8 (if 011), 1:16 (if 100), or 1:32 (if 101)

• Write Hold Enable. MSxCTL, BMSCTL, IOMSCTL bit 11 (E_WHE). This 
bit directs (if 1) the DSP to extend the write data hold time by one 
cycle following de-asserting of the WR strobe for the corresponding 
memory bank or memory space, providing more data hold time for 
slow devices. When disabled (if 0), the write data hold time is not 
extended.

The size of each bank of external memory is configurable. As shown in the 
ADSP-2199x memory maps in  Chapter 4, Memory, the default settings 
for bank size place 64 memory pages on each bank. The configurable 
number of pages per bank is set in the following registers/bits:

Bank 0 Lower Page Boundary. MEMPG10 bits 7-0 (E_MS0_PG)
Bank 1 Lower Page Boundary. MEMPG10 bits 15-8 (E_MS1_PG)
Bank 2 Lower Page Boundary. MEMPG32 bits 7-0 (E_MS2_PG)
Bank 3 Lower Page Boundary. MEMPG32 bits 15-8 (E_MS3_PG).
These bits select external memory bank sizes by selecting the starting page 
boundary for each memory bank. Each register holds the 8-bit page num-
ber of the lowest page on the bank.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-5 
 

External Port

Preliminary

External Bus Settings
The external port configuration includes settings for RD/WR strobe polarity, 
external memory format, and external bus master access. The features 
come from the following bits in the EMICTL and E_STAT registers:

• External Bus Width Select. EMICTL bit 3 (E_BWS) selects the bus 
width for the external bus as 16 bits (if 1) or 8 bits (if 0). The 
external port bases packing operations on the data format selection 
and external bus width. This bus width applies to external memory 
space, boot memory space.

• Write Strobe Sense Logic Select. EMICTL bit 4 (E_WLS) 
Read Strobe Sense Logic Select. EMICTL bit 5 (E_RLS) 
These bits direct the DSP to use active low (negative logic, if 1) or 
active high (positive logic, if 0) for the RD and WR pins for accesses 
to external memory.

• PM and DM Data Format Select. E_STAT bit 3 (E_DFS) selects 
whether user PM and DM data requests from the core are treated 
as 24 bit or 16 bit when they are forwarded to the external interface 
for external memory transfers. The E_DFS bit effectively normalizes 
the word size and allows programs to use the same program address 
for accessing data regardless of whether it is in PM (24 bit) or DM 
(16 bit). The external interface packs the 16 or 24 bit data in exter-
nal memory, depending on whether it is configured for 8 or 16 bit 
external memories. Instruction fetches are not affected by the 
E_DFS bit. 

• Access Split Enable. EMICTL bit 6 (E_ASE) enables (if 1) splitting 
DMA transfers to or from external memory. If split is enabled, 
other DMA capable peripherals (e.g., from or to SPORT or SPI) 
can perform DMA of internal memory while the external port is 
waiting to read or write DMA data in external memory. When dis-



Setting External Port Modes

7-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

abled (if 0), other peripherals must wait for external port DMA 
transfers to complete (releasing its hold on DMA mastership), 
before getting access to internal memory for DMA.

• CMS Output Enable. MSxCTL, BMSCTL, IOMSCTL bit 15 (E_COE) 
enables (if 1) ORing of the corresponding memory bank’s or mem-
ory space’s select line with other (also enabled) selects, producing a 
composite memory select output. When disabled (if 0), the mem-
ory bank’s or memory space’s select line is not used to generate a 
CMS output. 

The E_COE bit is a reserved bit on the ADSP-2199x (144-lead 
LQFP or mini-BGA packages), because the CMS pin is not available 
on this DSP.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-7 
 

External Port

Preliminary

Bus Master Settings
The external port permits external processors to gain control of the exter-
nal bus using the BR, BG, and BGH pins. The configurable features for these 
pins come from the following bits in the EMICTL register:

• Bus Lock. EMICTL bit 0 (E_BL) locks out (if 1) response to external 
bus request (BR) signals, locking the DSP as bus master. When dis-
abled (if 0), the DSP responds to bus requests. This bit also locks 
out bus requests for DMA.

• External Bus and DMA Request Hold Off Enable. EMICTL bit 1 
(E_BHE) holds off (if 1) response to external bus request (BR) signals 
and DMA requests for 16 I/O clock cycles, delaying loss of bus 
mastership. When disabled (if 0), the DSP responds to bus requests 
without delay.

• Access Control Registers Lock. EMICTL bit 2 (E_CRL) locks out (if 
1) write access to the MSxCTL, BMSCTL, and IOMSCTL registers, mak-
ing their E_RWC, E_WWC, E_WMS, E_CDS, E_WHE, and E_COE settings 
read only. When disabled (if 0), the DSP can read or write the MSx-
CTL, BMSCTL, and IOMSCTL registers.

Boot Memory Space Settings
The external port permits accessing boot memory space at runtime (after 
the DSP boots). When any of these modes are enabled, the DSP uses the 
BMS pin (instead of the MSx pins) for off-chip memory accesses, selecting 



Working with External Port Modes

7-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

boot memory space (instead of an external memory bank). The config-
urable features for boot memory format come from the following bits in 
the E_STAT register:

• PM Instruction from Boot Space Enable. E_STAT bit 0 (E_PI_BE) 
enables (if 1) access to boot memory space with the BMS select line 
for fetching instructions or disables (if 0) boot memory space 
access. If disabled, the DSP applies normal usage of MSx chip select 
lines for fetching instruction from external memory.

• PM Data from Boot Space Enable. E_STAT bit 1 (E_PD_BE) enables 
(if 1) access to boot memory space with the BMS select line for 
accessing data over the PM bus or disables (if 0) boot memory 
space access. If disabled, the DSP applies normal usage of MSx chip 
select lines for accessing data over the PM bus from external 
memory.

• DM Data from Boot Space Enable. E_STAT bit 2 (E_DD_BE) enables 
(if 1) access to boot memory space with the BMS select line for 
accessing data over the DM bus or disables (if 0) boot memory 
space access. If disabled, the DSP applies normal usage of MSx chip 
select lines for accessing data over the DM bus from external 
memory.

Working with External Port Modes
The external port provides many operating modes for using the DSP’s 
external memory space, boot memory space, and I/O memory space. 
Techniques for using these modes are described in the following sections.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-9 
 

External Port

Preliminary

Using Memory Bank/Space Waitstates Modes
The DSP has a number of modes for accessing external memory space. 
The External Waitstate Mode Select (E_WMS) fields in the MSxCTL, BMSCTL, 
and IOMSCTL registers select how the DSP uses waitstates and the acknowl-
edge (ACK) pin to access each external memory bank, boot memory, and 
I/O memory. The waitstate modes appear in Table 7-1 on page 7-9. 

The DSP applies waitstates to each external memory access depending on 
the bank’s and/or spaces’s external waitstate mode (E_WMS). The External 
Read/Write Waitstates Count (E_R/WWC) fields in the MSxCTL, BMSCTL, and 
IOMSCTL registers set the number of waitstates for each bank and/or space 
as 000 = 0 waitstates to 111 = 7 waitstates.

Table 7-1. External Memory Interface Waitstate Modes 

E_WMS External Memory Interface Waitstate Mode

00 ACK mode—DSP RD and WR strobes change before CLKOUT’s edge—
accesses require external acknowledge (ACK), allowing a de-asserted ACK 
to extend the access time. Note that there are two waitstates (at minimum) 
when using ACK mode.

01 Wait mode—DSP RD and WR strobes change before CLKOUT’s edge—
reads use the waitstate count setting from E_RWC (for reads) and writes 
use the waitstate count setting from E_WWC (for writes).

10 Both mode—DSP RD and WR strobes change before CLKOUT’s edge—
reads use the waitstate count setting from E_RWC (for reads) and writes 
use the waitstate count setting from E_WWC (for writes) and require 
external acknowledge (ACK), allowing both the waitstate count and a 
de-asserted ACK to extend the access time.

11 Either mode—DSP RD and WR strobes change before CLKOUT’s edge—
reads use the waitstate count setting from E_RWC (for reads) and 
E_WWC (for writes) or respond to external acknowledge (ACK), allowing 
either completion of the waitstate count or a de-asserted ACK to limit the 
access time.



Working with External Port Modes

7-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

For additional hold time on write data, systems can enable the Write Hold 
Enable (E_WHE) bit. Enabling E_WHE causes the DSP to leave the address 
and data unchanged for one additional cycle after the write strobe is 
de-asserted. This hold cycle provides additional address and data hold 
times for slow devices. For more information, see the Write Hold Enable 
(E_WHE) description on page 7-4.

The DSP applies hold time cycles regardless of the waitstate mode 
(E_WMS). For example, the Both mode (ACK plus waitstate mode) 
also could have an associated hold cycle.

Using Memory Bank/Space Clock Modes
The DSP provides additional clock ratio selections for each external mem-
ory bank, boot memory space, and external I/O memory space. These 
clock ratios let system designers accommodate access to slow devices with-
out slowing the DSP core or other memory banks/spaces. Both address 
setup and strobe delay may be controlled by adjusting EMICLK. The 
clock ratio selections appear in Table 7-2 on page 7-10. 

Table 7-2. External Memory Interface Clock Ratio Selections 

E_CDS Clock Divider Select Ratio (HCLK-to-EMICLK for Bank/Space)

000 1:1

001 1:2

010 1:4

011 1:8

100 1:16

101 1:32



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-11 
 

External Port

Preliminary

Using External Memory Banks and Pages
At reset, the DSP’s external memory space is configured with four banks 
of memory, each with 63 or 64 pages. After reset, systems should program 
the correct lower page boundary into each bank’s E_MSx_PG bits, unless the 
default settings are appropriate for the system. Mapping peripherals into 
different banks lets systems accommodate I/O devices with different tim-
ing requirements, because each bank has an associated waitstate mode and 
clock mode setting. For more information, see “Using Memory 
Bank/Space Waitstates Modes” on page 7-9 and Figure  on page 7-10.

As shown in Figure 4-3 on page 4-12, Bank 0 starts at address 0x1,0000 in 
external memory, and the Banks 1, 2, and 3 follow. Whenever the DSP 
generates an address that is located within one of the four banks, the DSP 
asserts the corresponding memory select line (MS3-0).

Using Memory Access Status
The E_STAT and EP_STAT registers indicate the status of external port 
accesses to external memory. The following bits in the E_STAT and EP_STAT 
registers indicate memory access status:

• Write Pending Flag. E_STAT bit 8 (E_WPF) is a read-only bit that 
indicates whether a write is pending (if 1) or no write is pending (if 
0) on the external port.

• External Bus Busy. EP_STAT bits 1–0 (E_BSY) are read-only bits that 
indicate the external bus status as: 00 = not busy, 01 = off-chip 
master, 10 = on-chip master, or 11 = reserved.



Working with External Port Modes

7-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Last Master ID. EP_STAT bits 6-2 (E_MID) are read-only bits that 
indicate the ID code for current or last master of the external port 
interface. A list of these ID codes appears in Table 23-6 on 
page 23-75.

• Word Packer Status. EP_STAT bits 8-7 (E_WPS) are read-only bits 
that indicate the packing status for the external port interface as the 
packer contains: no bytes (empty if 00), one byte (if 01), two bytes 
(if 10), or three bytes (if 11).

Because the external memory interface does not hold up the DSP core 
while waiting for a write complete acknowledge, it’s important for systems 
to check the write pending flag when using slow external memories. For 
more information, see “Memory Interface Timing” on page 7-24.

Using Bus Master Modes
An ADSP-2199x DSP can relinquish control of its data and address buses 
to an external device. The external device requests the bus by asserting 
(low) the bus request (BR) pin. BR is an asynchronous input. If the 
ADSP-2199x is not performing an external access, it responds to the 
active BR input in the following processor cycle by:

1. Three-stating the data and address buses and the MSx, RD, WR pins

2. Asserting the bus grant (BG) signal

3. Continuing program execution (until the DSP core requires an 
external memory access)

In systems that make the DSP a bus slave (active BR input), 10 kΩ 
pullup resisters should be placed on the DSP’s MSx, BMS, IOMS, RD, 
and WR pins.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-13 
 

External Port

Preliminary

The ADSP-2199x continues to execute instructions from its internal 
memory while the external bus is granted. The DSP does not halt program 
execution, until it encounters an instruction that requires an external 
access. An external access may be either an external memory, external I/O 
memory, or boot memory access.

Even when the ADSP-2199x halts because the DSP core is held off, the 
DSP’s internal state is not affected by granting the bus. The other periph-
eral (serial port and SPI port) remain active during a bus grant even when 
DSP core halts.

If the ADSP-2199x is performing an external access when the BR signal is 
asserted, the DSP does not grant the buses until the cycle after the access 
completes. The entire instruction does not need to be completed when the 
bus is granted. If a single instruction requires two external accesses, the 
bus is granted between the two accesses. The second access is performed 
after BR is removed.

When the BR input is released, the ADSP-2199x releases the BG signal, 
re-enables the output drivers and continues program execution from the 
point where it stopped. BG is always deasserted in the same cycle that the 
removal of BR is recognized. Refer to the relevant ADSP-2199x Datasheet 
for exact timing relationships.

The bus request feature operates at all times, including when the processor 
is booting and when RESET is active. During RESET, BG is asserted in the 
same cycle that BR is recognized. During booting, the bus is granted after 
completion of loading of the current byte (including any waitstates). 
Using bus request during booting is one way to bring the booting opera-
tion under control of a host computer.

The ADSP-2199x DSPs also have a Bus Grant Hung (BGH) pin, which lets 
them operate in a multiprocessor system with a minimum number of 
wasted cycles. The BGH pin asserts when the ADSP-2199x is ready to per-
form an external memory access but is stopped because the external bus is 



Working with External Port Modes

7-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

granted to another device. The other device can release the bus by 
de-asserting bus request. Once the bus is released, the ADSP-2199x deas-
serts BG and BGH and executes the external access.

Using Boot Memory Space
As shown in Figure 7-1 on page 7-2, the DSP supports an external boot 
EPROM mapped to external memory and selected with the BMS pin. The 
boot EPROM provides one of the methods for automatically loading a 
program into the internal memory of the DSP after power-up or after a 
software reset. This process is called booting. For information on boot 
options and the booting process, see “Boot Mode DMA Transfers” on 
page 6-27.

Boot memory space also is available at runtime, after booting. For infor-
mation on this runtime access, see “Reading from Boot Memory” on 
page 7-14 and “Writing to Boot Memory” on page 7-15. For a program-
ming example of this access, see “Code Example: BMS Runtime Access” 
on page 7-28.

Reading from Boot Memory

When the DSP boots from an EPROM, the DSP uses the code in the boot 
ROM kernel to load the program from boot memory space. If further 
access to boot memory space is needed, the DSP may gain access to the 
boot memory space after the automatic boot process. To request access to 
boot memory, the DSP uses the PM instructions from boot memory 
(E_PI_BE), PM data from boot memory (E_PD_BE), or DM data from boot 
memory (E_DD_BE) bits in the E_STAT register.

Setting (=1) one of these bits overrides the external memory selects and 
asserts the DSP’s BMS pin for an external memory transfer of the type cor-
responding to the bit.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-15 
 

External Port

Preliminary

Writing to Boot Memory

In systems using write-able EEPROM or FLASH memory for boot mem-
ory, programs can write new data to the DSP’s boot memory using the 
same technique as “Reading from Boot Memory” on page 7-14, setting 
(=1) one of the E_PI_BE, E_PD_BE, or E_DD_BE bits to override the external 
memory selects and asserts the DSP’s BMS pin for an external memory 
transfer. 

Interfacing to External Memory
In addition to its on-chip SRAM, the DSP provides addressing of up to 
4M words per bank of off-chip memory through its external port. This 
external address space includes external memory space—the region for 
standard addressing of off-chip memory.

Data Alignment—Logical versus Physical Address
Data alignment through the external port depends on whether the system 
uses an 8- or 16-bit data bus. Figure 7-2 on page 7-16 shows the external 
port’s data alignment. Each address in external, boot, and I/O memory 
corresponds to a 16- or 24-bit location, depending on the interface's con-
figuration. A 16-bit data word occupies two bytes, and a 24-bit 
instruction word occupies four bytes (with an empty byte). When the sys-
tem uses an 8-bit bus, two accesses are required for external 16-bit data, 
and three accesses are required for external instruction fetches or 24-bit 
data. When the system uses a 16-bit bus, one access is required for exter-
nal 16-bit data, and two accesses are required for external instruction 
fetches or 24-bit data. For more information, see “External Bus Settings” 
on page 7-5.



Interfacing to External Memory

7-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

To make it easier for programs to work with data alignment in external 
memory that varies with the external data format (16- or 24-bit), data size 
(16- or 24-bit) and the bus width (8- or 16-bit), the DSP supports logical 
addressing for programs and physical addressing for connecting devices to 
the external address bus.

Logical addressing normalizes addresses for 16- and 24-bit data in memory, 
creating a contiguous address map. The address map does not have a mul-
titude of “holes” when addressing 24-bit data (e.g., an instruction fetch) 
in external memory.

Physical addressing makes every location in external memory space avail-
able for addressing external devices using the external address bus. 
Whether using an 8- or 16-bit bus, the DSP can access each memory with 
the same granularity as the bus size.

The equation in Figure 7-3 on page 7-17 permits calculating the correla-
tion between physical and logical addresses. The Format and Size factors 
for this equation appear in Table 7-3 on page 7-17 and Table 7-4 on 
page 7-17. This is a useful calculation when identifying the physical loca-

Figure 7-2. External Port Word Alignment

BYTE 0

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 0

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 0BYTE 1

BYTE 2BYTE 3

BYTE 4BYTE 5

BYTE 6BYTE 7

BYTE 0BYTE 1

BYTE 2BYTE 3

BYTE 4BYTE 5

BYTE 6BYTE 7

BIT 0BIT 7 BIT 0BIT 7 BIT 0BIT 15 BIT 0BIT 15

8-BIT BUS 8-BIT BUS 16-BIT BUS 16-BIT BUS

16-BIT
WORD

16-BIT
WORD

16-BIT
WORD

16-BIT
WORD

24-BIT
INST

24-BIT
INST

16-BIT WORDS
(BYTE PAIRS)

24-BIT INSTRUCTIONS
(BYTE QUADS)

16-BIT WORDS
(BYTE PAIRS)

24-BIT INSTRUCTIONS
(BYTE QUADS)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-17 
 

External Port

Preliminary

tion for connecting an external device (e.g., a memory mapped I/O 
device) and identifying the logical location for addressing that device (e.g., 
the device’s buffer address). 

Figure 7-3. Physical Address Calculation

Table 7-3. Format Factor Address Multipliers

External Memory 
Data Format

16-bit 24-bit 16-bit 24-bit 16-bit 24-bit

E_DFS Bit  =0  =1  =0  =1  =0  =1

Transfer Type 24-bit 
Instr.

24-bit 
Instr.

24-bit 
Data

24-bit 
Data

16-bit 
Data

16-bit 
Data

Word Size 24-bit  24-bit  24-bit  24-bit  16-bit  16-bit

Transfer Size 24-bit  24-bit  16-bit1

1   Note that the transfer size is smaller than the words size, because the external memory format (E_DFS 
bit) and the transfer type do not match (16- versus 24-bit). In this case, the data is truncated, losing 
the lower 8 bits.

 24-bit  16-bit  16-bit2

2   Note that this case has an address multiplier factor of x2, because the external memory format (E_DFS 
bit) and the transfer type do not match (24- versus 16-bit).

Address Multiplier x1  x1  x1  x1  x1  x2

Table 7-4. Size Factor Address Multipliers

External Port Bus Size 16-bit 8-bit 16-bit 8-bit

E_BWS Bit =1      =0  =1    =0

Transfer Size  24-bit 24-bit  16-bit 16-bit

Address Multiplier  x2     x4    x1     x2

Physical Address Format Factor Size Factor× Logical Address×=



Interfacing to External Memory

7-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

For example, take the following programming and system design task of 
logically and physically addressing the following data:

A 24-bit instruction fetch

• At logical address 0x2 0000

• An 24-bit external memory format (E_STAT register, E_DFS bit = 1)

• An 8-bit wide external bus (EMICTL register, E_BWS bit = 0)

• What is the physical address that the address lines in the sys-
tem use for accessing this data?

For these parameters, use the physical address calculation as follows: 

Four useful combinations of external data format, data size, and bus size 
that cover the most common applications (where data format equals data 
size) are: 24-bit data over an 8-bit bus, 16-bit data over an 8-bit bus, 
24-bit data over a 16-bit bus, and 16-bit data over a 16-bit bus. Table 7-5 
on page 7-19, Table 7-6 on page 7-19, Table 7-7 on page 7-19, and 
Table 7-8 on page 7-20 show how logical and physical addressing com-
pare for these cases. 

 

Figure 7-4. Example Physical Address Calculation

Physical Address Format Factor Size Factor× Logical Address×=

1 4× 0x20000×= 0x80000=



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-19 
 

External Port

Preliminary

Table 7-5. Example 24-bit Format, 24-bit Data, and 8-bit External Bus

Logical Address 24-Bit Data Word Physical Address 24-Bit Data Word 

0x20000 0x123456 0x80000 unused

0x80001 0x56

0x80002 0x34

0x80003 0x12

0x20001 0x789abc 0x80004 unused

0x80005 0xbc

0x80006 0x9a

0x80007 0x78

Table 7-6. Example 24-bit Format, 24-bit Data, and 16-bit External Bus

Logical Address 24-Bit Data Word Physical Address 24-Bit Data Word 

0x20000 0x123456 0x40000 0x5600

0x40001 0x1234

0x20001 0x789abc 0x40002 0xbc00

0x40003 0x789a

Table 7-7. Example 16-bit Format, 16-bit Data, and 8-bit External Bus

Logical Address 16-Bit Data Word Physical Address 16-Bit Data Word 

0x20000 0x1234 0x40000 0x34

0x40001 0x12

0x20001 0x5678 0x40002 0x78

0x40003 0x56



Interfacing to External Memory

7-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Because boot memory space (like external memory space) also can contain 
16- or 24-bit data and is accessible using the external address bus (with 
BMS), the logical and physical addressing scheme also applies to external 
boot memory space accesses. 

Boot memory space on the ADSP-2199x’s memory map starts at 
logical address 0x1 0000. For easy physical mapping when booting 
from an external EPROM, the ADSP-2199x’s boot kernel accesses 
data in the EPROM starting at physical address 0x0 0000.

The boot kernel accomplishes this by accessing logical address 
0x80 0000, which (because the ADSP-2199x has 22 address lines) 
produces a physical address 0x0 0000.

Because I/O memory space can contain 16-bit data and is accessible using 
the external address bus (with IOMS), the logical and physical addressing 
scheme also applies to external I/O memory space accesses.

Memory Interface Pins
Figure 7-1 on page 7-2 shows how the buses and control signals extend 
off-chip, connecting to external memory. Table 7-9 on page 7-22 defines 
the DSP pins used for interfacing to external memory. The DSP’s memory 
control signals permit direct connection to fast static RAM devices. Mem-
ory mapped peripherals and slower memories also can connect to the DSP 
using a user-defined combination of programmable waitstates and hard-
ware acknowledge signals.

Table 7-8. Example 16-bit Format, 16-bit Data, and 16-bit External Bus

Logical Address 16-Bit Data Word Physical Address 16-Bit Data Word 

0x20000 0x1234 0x20000 0x1234

0x20001 0x5678 0x20001 0x5678



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-21 
 

External Port

Preliminary

External memory can hold instructions and data. The external data bus 
(DATA15-0) must be 16 bits wide to transfer 16-bit data without data pack-
ing. In an 8- or 16-bit bus system, the DSP’s on-chip external port 
unpacks incoming data and packs outgoing data. Figure 7-2 on page 7-16 
shows how the DSP transfers different data word sizes over the external 
port.

The ADSP-2199x external memory interface differs from previous 
ADSP-218x DSPs. Compared to previous ADSP-218x DSPs, the 
interface uses a unified address space (no program and data mem-
ory separation) and supports configurable banks of external 



Interfacing to External Memory

7-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

memory. The external interface provides glue-less support for 
many asynchronous and/or synchronous devices, including other 
DSPs.

Table 7-9. External Memory Interface Signals

Pin Type Function

ADDR 21-0 O/T External Bus Address. The DSP outputs addresses for external memory 
and peripherals on these pins.

DATA 15-0 I/O/T External Bus Data. The DSP inputs and outputs data and instructions 
on these pins. Pull-up resistors on unused DATA pins are not necessary. 
Read and write data is sampled by the rising edge of the strobe (RD or 
WR). In systems using an 8-bit data bus, the upper data pins (DATA 
15-8) may serve as additional programmable flag (PF15-8) pins

MS3-0
BMS
IOMS

O/T Memory Bank/Space Select Lines. These lines are asserted (low) as chip 
selects for the corresponding banks of external memory. Memory bank 
size may be defined in the DSP’s page boundary registers (MEMPGx). 
The select lines are asserted for the whole access.

CLKOUT O/T Clock output. Output clock signal at core clock rate (CCLK) or half the 
core clock rate, depending on the core:peripheral clock ratio.

RD O/T Read strobe. RD indicates that a read of the data bus (DATA15-0) is in 
progress. As a master, the DSP asserts the strobe after the ADDR21-0 
and MS3-0/BMS/IOMS assert.

WR O/T Write strobe. WR indicates that a write of the data bus (DATA15-0) is in 
progress. As a master, the DSP asserts the strobe after the ADDR21-0 
and MS3-0/BMS/IOMS assert.

ACK I Memory Acknowledge. External devices can de-assert ACK (low) to add 
waitstates to an external memory access when the waitstate mode is ACK 
mode, Both mode, or Either mode. ACK is used by I/O devices, memory 
controllers, or other peripherals to hold off completion of an external 
memory access. As a bus master, the DSP samples.

BR I Bus Request. An external host or other DSP asserts this pin to request 
bus mastership from the DSP.

I (Input), O (Output), T (Three-state, when the DSP is a bus slave)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-23 
 

External Port

Preliminary

On the ADSP-2199x, Bank 0 starts at address 0x10000 in external 
memory and is followed in order by Banks 1, 2, and 3. When the 
DSP generates an address located within one of the four banks, the 
DSP asserts the corresponding memory select line, MS3-0.

The MS3-0 outputs serve as chip selects for memories or other external 
devices, eliminating the need for external decoding logic.

The MS3-0 lines are decoded memory address lines that change at the same 
time as the other address lines. When no external memory access is occur-
ring, the MS3-0 lines are inactive.

Most often, the DSP only asserts the BMS memory select line when the 
DSP is reading from a boot EPROM. This line allows access to a separate 
external memory space for booting. For more information on booting 
from boot memory, see “Boot Mode DMA Transfers” on page 6-27. It is 
also possible to write to boot memory using BMS. For more information, 
see “Using Boot Memory Space” on page 7-14.

BG O Bus Grant. The DSP asserts this pin to grant bus mastership to an exter-
nal host or other DSP.

BGH O Bus Grant Hung. The DSP asserts this pin to signal an external host or 
other DSP that the DSP core is being held off, waiting for bus master-
ship.

Table 7-9. External Memory Interface Signals (Cont’d)

Pin Type Function

I (Input), O (Output), T (Three-state, when the DSP is a bus slave)



Interfacing to External Memory

7-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Memory Interface Timing
Memory access timing for external memory space, boot memory space, 
and I/O memory space is the same. This section describes timing relation-
ships for different types of external port transfers, but does not provide 
specific timing data. Refer to the relevant ADSP-2199x Datasheet for 
exact timing relationships.

This section mentions the DSP’s core (CCLK) and peripheral 
(HCLK) clocks. For information on using these clocks, see “Man-
aging DSP Clocks” on page 12-21.

The DSP can interface to external memories and memory-mapped periph-
erals that operate asynchronously with respect to the peripheral clock 
(HCLK). In this interface there are latencies—lost core clock cycles—that 
occur when the DSP accesses external memory. These latencies occur as 
the external memory interface manages its two-level-deep pipeline and 
performs synchronization between the core and peripheral clock domains.

The number of latent cycles for an external memory access is influenced 
by several factors. These factors include the core:peripheral clock ratio, the 
data transfer size, the external bus size, the access type, the access pattern 
(single access or sustained accesses), and contention for internal bus 
access. These factors have the following influence on external memory 
interface performance:

• Core clock (CCLK)-to-peripheral clock (HCLK) ratio. The choice is 
between optimizing core speed or peripheral transfer speed. At the 
2:1 ratio, the core can operate at up to 160 MHz, but the peripher-
als are limited to 80 MHz. At the 1:1 ratio, the core and 
peripherals can operate at up to 100 MHz.

• Core clock (CCLK)-to-memory bank clock (EMICLK) ratio. Each 
memory bank may apply an additional clock divisor to slow mem-
ory access and accommodate slow external devices.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-25 
 

External Port

Preliminary

• Data transfer size and external bus size. The DSP supports an 8- or 
16-bit bus for transferring 16-bit data or 24-bit instructions. The 
best throughput is 16-bit data over a 16-bit bus, because in this 
case no packing is required.

• Access type (read and write accesses differ) and access pattern (sin-
gle access or sustained accesses). These latencies have two sources: 
synchronization across core and peripheral clock domains and 
operation of the external memory interface pipeline.

Assessing these factors, there are two types of high performance systems. 
For a high performance system that requires minimal external memory 
access, use the 2:1 clock ratio, a 16-bit bus, and do most external memory 
access as DMA. For a high performance system that requires substantial 
external memory access, use the 1:1 clock ratio, a 16-bit bus, do as much 
external memory access as possible using DMA, and minimize single or 
dual (nonsustained) access. 

If a high-performance external memory interface is required, the 
system to avoid (because it does not use the strengths of the part) 
combines a 2:1 clock ratio, an 8-bit external bus, instruction 
fetches from external memory (with lots of cache misses), and uses 
minimal DMA for external memory accesses. This type of system 
causes unnecessary latency in external memory accesses.

Table 7-10 on page 7-26 shows external memory interface throughput 
estimates for the DSP operating at maximum core clock versus maximum 
peripheral clock. Some important conditions to note about the data in 
Table 7-10 on page 7-26 include:

• Assumes that the core is idle except for the transfers under test.

• Assumes there is no contention for the internal DSP core interface 
buses.

• Assumes the EMI clock divide is set to 1X and the Read/Write wait 
count = 0.



Interfacing to External Memory

7-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Measures single access times beginning when the request is issued 
by the hard core and ending when the data is ready in the target 
memory.

• Includes the cycles to program the DMA descriptors and the cycles 
for the I/O processor to fetch the descriptors in the DMA single 
access times.

• Does not include the cycles to program the DMA descriptors or the 
cycles for the I/O processor to fetch the descriptors in the DMA 
sustained access times.

Table 7-10. External Memory Interface Performance at Maximum Core 
and Peripheral Clocks 

Maximum Core Speed1 Maximum Peripherals Speed2

DSP 
Word 

Size3

EMI 
Bus 

Size4

Single Access5 Sustained 

Accesses6
Single Access Sustained 

Accesses

Cycles
7

Words
8

Cycles
7

Words
8

Cycles
7

Words
8

Cycles
7

Words
8

Direct Access

Fetch 24 16 16 10 9 11.11

Fetch 24 8 20 8 11 9.09

Write 24 16 19 8.42 8 20 11 9.09 4 25.00

Write 24 8 23 6.95 12 13.33 13 7.69 6 16.66

Write 16 16 15 10.66 6 26.66 9 11.11 4 25.00

Write 16 8 19 8.42 8 20 11 9.09 4 25.00

Read 24 16 18 8.88 18 8.88 10 10.00 10 10.00

Read 24 8 22 7.27 22 7.27 12 8.33 12 8.33

Read 16 16 14 11.43 12 13.33 9 11.11 7 14.28

Read 16 8 18 8.88 16 10 11 9.09 9 11.11



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-27 
 

External Port

Preliminary

DMA Access

Write 24 16 156 1.02 11.6 13.79 119 0.84 6.55 15.27

Write 24 8 160 1 13.6 11.76 121 0.82 7.55 13.25

Write 16 16 151 1.05 9.6 16.66 117 0.85 5.55 18.01

Write 16 8 155 1.03 11.6 13.79 119 0.84 6.55 15.27

Read 24 16 156 1.02 15.5 10.32 120 0.83 8.50 11.76

Read 24 8 160 1 19.5 8.20 122 0.82 10.50 9.52

Read 16 16 151 1.05 12.5 12.8 118 0.84 7.0 14.28

Read 16 8 156 1.02 15.5 10.32 120 0.83 8.5 11.76

Register Access

Write 16 16 14 11.43 6 26.66 7 14.20 4 25.00

Write 16 8 18 8.88 8 20 9 11.11 4 25.00

Read 16 16 17 9.41 14 11.43 10 10.00 9 11.11

Read 16 8 21 7.62 18 8.88 12 8.33 11 9.09

1   Maximum Core Speed puts the peripheral:core clock ratio at HCLK = ½ CCLK and puts the core clock 
at CCLK= 1600 Mhz

2   Maximum Peripherals Speed puts the peripheral:core clock ratio at HCLK = CCLK and puts the core 
clock at CCLK= 100 Mhz

3   DSP Word Size column is bits
4   EMI Bus Size column is bits
5   Single Access column refers to a single external memory read or write separated from the next external 

memory access by two or three instructions that do not access external memory.
6   Sustained Accesses column refers to repeated external memory access instructions
7   Cycles column is DSP core clock cycles
8   Words column is 1M words per second

Table 7-10. External Memory Interface Performance at Maximum Core 
and Peripheral Clocks  (Cont’d)

Maximum Core Speed1 Maximum Peripherals Speed2

DSP 
Word 

Size3

EMI 
Bus 

Size4

Single Access5 Sustained 

Accesses6
Single Access Sustained 

Accesses

Cycles
7

Words
8

Cycles
7

Words
8

Cycles
7

Words
8

Cycles
7

Words
8



Code Example: BMS Runtime Access

7-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Code Example: BMS Runtime Access
The example in this section shows how to setup the external port on the 
ADSP-2199x for boot memory space accesses.

The ADSP-2199x features an external boot memory space that can be 
accessed during runtime. When boot space is enabled, the ADSP-2199x 
uses the BMS pin for off chip memory access, selecting boot memory space.

The ADSP-2199x external port supports instruction and data transfers 
from the core to external memory space and boot space through the exter-
nal port. The external port also provides access to external DSP memory 
and boot memory for ADSP-219x peripherals, which support DMA trans-
fers. The external port is configurable for 8- or 16-bit data to provide 
convenient interfaces to 8- and 16-bit memory devices. Address transla-
tion and data packing is provided in hardware to allow easy translation 
between the core memory types (16- or 24-bit, word addressing) and 
address space and the external memory configuration (8/16-bit, Byte 
addressing).

The following listing shows how to set up a program for accessing 24-bit 
data from an external 8-bit memory device mapped to the ADSP-2199x’s 
boot space. After the external interface is configured, a single read is 
executed.

The External Memory Interface Control register (EMICTL) is used to con-
figure the external port for an 8 or 16-bit external data bus. Beside that, 
the register provides a lock bit to disable write accesses to the external port 
memory access control registers. Separate register bits are also provided to 
set the read and write strobe sense for positive logic (bit=0) or negative 
logic (bit=1). These sense bits are common to all memory spaces. The data 
bus size and R/W sense bits are not written when the control register is 
written if the lock bit is set to 1 or an external access is in progress. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-29 
 

External Port

Preliminary

In this example, an 8-bit external device is mapped to boot space. The 
EMICTL register is setup for an 8-bit external bus and read/write strobes 
with negative logic.

IOPG = External_Memory_Interface_Page;

AR = 0x0070;

IO(EMICTL) = AR;

Because the device is mapped to Boot space, controlled by one of the 
memory access control registers (MSxCTL, BMSCTL, or IOMSCTL), the code 
configures the Boot Space Access Control Register (BMSCTL). Within the 
BMSCTL are six parameters that can be programmed to customize accesses 
to Boot memory space. These parameters are read waitstate count, write 
waitstate count, waitstate mode, base clock divider, write hold mode, and 
CMS output enable. To allow maximum flexibility, the BMSCTL is initial-
ized with maximum waitstates, and base clock divisor.

AR = 0x0DFF; 

IO(BMSCTL) = AR;

With EMICTL and BMSCTL configured, what remains is to configure the 
external port for 24-bit data and enable PM data boot space. This results 
in BMS being asserted any time DAG2 is used to access external memory.

IOPG = External_Access_Bridge_Page;

AR = 0x000A;

IO(E_STAT) = AR;

After the EMICTL, BMSCTL, and E_STAT have been initialized accordingly, it 
is now possible to use the PM data bus to perform accesses to external 
boot space. 

The following is an example read from 0x80 0009 in external boot mem-
ory space.

DMPG2= 0x80; /* Init DAG2 Page Register */ 

AX0 = 0;



Code Example: BMS Runtime Access

7-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

I4= 0x0009;  /* Initialize DAG2 Pointer */

M4= 1;   /* Initialize DAG2 Modifier */

REG(B4) = ax0;

L4= 0;   /* Linear Addressing */

/* Perform External Boot Access */

MR0=PM(I4, M4); 

Figure 7-5 on page 7-30 is an illustration of an example access: 

Following the access, the PM Bus Exchange (PX) register contains the LSB 
of the 24-bit data word, while MR0 contains bits 8-24 of the data word.

The following listing shows code for boot memory space initialization and 
operation in an ADSP-2199x system.

/**********************************************************

Purpose: This routine contains initialization code and accesses a 

24-bit word from 8-bit External Boot memory space.

***********************************************************/

#include    <def2199x.h>

Figure 7-5. Example 8-to-24 Bit Word Packing

8 -b it d a ta B y te a dd re ss 24 -b it (PM ) ad d re ss

0 x0 0

0 x11

0 x2 2

0 x3 3

0

1

2

3

0

E xam p le : M R 0 -PM (I4 , M 4 );

B e fo re a cce ss A fte r a cce ss

M R 0 -0
PX -0

M R 0 -0 x3 322
P X -0 x11



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 7-31 
 

External Port

Preliminary

/*

PM Reset interrupt vector code

*/

.SECTION /pm IVreset; 

     jump Start;

     nop; nop; nop;

/*

Program memory code

*/

.SECTION /pm program;

Start:

_main:   

   call Boot_Mem_Init;   /* Call Boot Memory Init Routine */

   call Boot_Mem_Access;  /* Read from External Boot memory */

   nop;

Loop_forever:

   jump Loop_forever;     /* Loop forever */

   

.SECTION /pm program;

Boot_Mem_Init:

/* Configure External Memory Interface */

   IOPG = External_Memory_Interface_Page;

   AR = 0x0070;

   IO(EMICTL) = AR;

      /* EMI control Register - Sets up for 8 bit external bus,

         WS = Neg Logic, RS = Neg Logic, Split Enable */

   AR = 0x0DFF; 

   IO(BMSCTL) = AR;   



Code Example: BMS Runtime Access

7-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

      /* Boot Space Access Control Register  - max waitstates

         incase slow EPROM */

/* Configure External Access Bridge */   

   IOPG = External_Access_Bridge_Page;

   AR = 0x000A;

   IO(E_STAT) = AR;   /* EAB Config/Status Register - P 

                         data Boot Space, 24 bit data */

   RTS;

.SECTION /pm program;

Boot_Mem_Access:

   DMPG2= 0x80;      /* Initialize DAG2 Page Register */ 

   AX0 = 0;

   I4= 0x0009;       /* Initialize DAG2 Pointer */

   M4= 1;            /* Initialize DAG2 Modifier */

   REG(B4) = ax0;      

   L4= 0;            /* Configure for Linear Addressing */

/* Perform External Boot Access */

   MR0=PM(I4, M4);   /* Reading from address 0x800009 

                        in the Boot memory */

   RTS;



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-1 
 

Serial Port

Preliminary

8 SERIAL PORT

Overview
This chapter describes the serial port (SPORT) available on the 
ADSP-2199x.

The ADSP-2199x has one independent, synchronous serial port (SPORT) 
that provides an I/O interface to a wide variety of peripheral serial devices. 
The SPORT is a full duplex device, capable of simultaneous data transfer 
in both directions. The SPORT has one group of pins (data, clock, and 
frame sync) for transmit and a second set of pins for receive. The receive 
and transmit functions are programmed separately. The SPORT can be 
programmed for bit rate, frame sync, and bits per word by writing to reg-
isters in I/O space.

The SPORT uses frame sync pulses to indicate the beginning of each word 
or packet, and the bit clock marks the beginning of each data bit. External 
bit clock and frame sync are available for the TX and RX buffers.

With a range of clock and frame synchronization options, the SPORT 
allows a variety of serial communication protocols including H.100, and 
provides a glueless hardware interface to many industry-standard data 
converters and Codecs.



Overview

8-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The SPORT can operate at up to 1/2 the full clock rate of HCLK, providing 
each with a maximum data rate of CCLK/2 Mbit/s in 1:1 (CCLK:HCLK) clock 
mode (where CCLK is the DSP core clock, and HCLK is the peripheral clock). 
Independent transmit and receive functions provide greater flexibility for 
serial communications. SPORT data can be automatically transferred to 
and from on-chip memory using DMA block transfers.

Additionally, the SPORT offers a TDM (time division multiplexed) mul-
tichannel mode.

SPORT clocks and frame syncs can be internally generated by the DSP or 
received from an external source. The SPORT can operate with lit-
tle-endian or big-endian transmission formats, with word lengths 
selectable from 3 to 16 bits. The SPORT offers selectable transmit modes 
and optional m-law or A-law companding in hardware. 

The SPORT offers the following features and capabilities:

• Provides independent transmit and receive functions

• Transfers serial data words from three to sixteen bits in length, 
either MSB-first or LSB-first

• Double-buffers data (both receive and transmit functions have a 
data buffer register and a shift register), providing additional time 
to service the SPORT

• Compands—can perform A-law and m-law hardware companding 
on transmitted and received words (see “Companding” on 
page 8-22 for more information)

• Internally generates serial clock and frame sync signals—in a wide 
range of frequencies—or accepts clock and frame sync input from 
an external source

• Performs interrupt-driven, single-word transfers to and from 
on-chip memory under DSP core control



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-3 
 

Serial Port

Preliminary

• Provides Direct Memory Access transfer to and from memory 
under I/O processor control. DMA can be autobuffer-based (a 
repeated, identical range of transfers) or descriptor-based (individ-
ual or repeated ranges of transfers with differing DMA parameters).

• Executes DMA transfers to and from on-chip memory—the 
SPORT can automatically receive and transmit an entire block of 
data

• Permits chaining of DMA operations for multiple data blocks

• Has a multichannel mode for TDM interfaces—the SPORT can 
receive and transmit data selectively from channels of a time-divi-
sion-multiplexed serial bitstream multiplexed into up to 128 
channels—this mode can be useful as a network communication 
scheme for multiple processors

• Can operate with or without frame synchronization signals for each 
data word; with internally-generated or externally-generated frame 
signals; with active high or active low frame signals; and with either 
of two configurable pulse widths and frame signal timing

Table 8-1 on page 8-3 shows the pins for the SPORT. 

Table 8-1. Serial Port (SPORT) Pins 

Pin Description

DT Transmit Data

DR Receive Data

TCLK Transmit Clock

RCLK Receive Clock

TFS Transmit Frame Sync

RFS Receive Frame Sync



Overview

8-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The SPORT receives serial data on its DR input and transmits serial data 
on its DT output. It can receive and transmit simultaneously for full duplex 
operation. For both transmit and receive data, the data bits (DR or DT) are 
synchronous to the serial clocks (RCLK or TCLK); this is an output if the 
processor generates this clock or an input if the clock is externally-gener-
ated. Frame synchronization signals RFS and TFS are used to indicate the 
start of a serial data word or stream of serial words.

In addition to the serial clock signal, data must be signalled by a frame 
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 8-1 on page 8-5 shows a simplified block diagram of the SPORT. 
Data to be transmitted is written from an internal processor register to the 
SPORT’s IO space-mapped SP_TX register via the peripheral bus. This 
data is optionally compressed by the hardware, then automatically trans-
ferred to the transmit shift register. The bits in the shift register are shifted 
out on the SPORT’s DT pin, MSB first or LSB first, synchronous to the 
serial clock on the TCLK pin. The receive portion of the SPORT accepts 
data from the DR pin, synchronous to the serial clock. When an entire 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-5 
 

Serial Port

Preliminary

word is received, the data is optionally expanded, then automatically 
transferred to the SPORT’s IO space-mapped SP_RX register, where it is 
available to the processor.

Figure 8-1. SPORT Block Diagram

Companding
Hardware

DM Bus for DMA Access

DMA Interface (Master)

RXn
Receive Data

Register

TXn
Transmit Data

Register

Transmit Shift
Register

Receive Shift
Register

Serial
Control

Internal
SCLK

Generator

16

DT TFS SCLK RFS DR

16 16

1616

Companding
Hardware



Overview

8-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 8-2 on page 8-6 shows the port connections for the SPORT of the 
ADSP-2199x. 

SPORT Operation
This section provides an example of SPORT operation, illustrating the 
most common use of the SPORT. Since the SPORT functionality is con-
figurable, this example represents just one of many possible 
configurations. See “Pin Descriptions” on page 12-1 for a table of all 
ADSP-2199x pins, including those used for the SPORT.

Writing to a SPORT’s SP_TX register readies the SPORT for transmission. 
The TFS signal initiates the transmission of serial data. Once transmission 
has begun, each value written to the SP_TX register is transferred to the 
internal transmit shift register. The bits are then sent, beginning with 
either the MSB or the LSB as specified. Each bit is shifted out on the ris-
ing edge of SCK. After the first bit of a word has been transferred, the 

Figure 8-2. SPORT Connections   

ADSP-2199X

TCLK

TFS

DT

RCLK

RFS

DR

SPORT

SERIAL
DEVICE

(OPTIONAL)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-7 
 

Serial Port

Preliminary

SPORT generates the transmit interrupt. The SP_TX register is then avail-
able for the next data word, even though the transmission of the first word 
continues.

As the SPORT receives bits, they accumulate in an internal receive regis-
ter. When a complete word has been received, it is written to the SP_RX 
register, and the receive interrupt for the SPORT is generated. Interrupts 
are generated differently if DMA block transfers are performed; see “I/O 
Processor” on page 6-1 for general information about DMA and details on 
how to configure and use DMA with the SPORT.

SPORT Disable
The SPORTs are automatically disabled by a DSP hardware or software 
reset. A SPORT can also be disabled directly, by clearing the SPORT’s 
transmit or receive enable bits (in the SP_TCR control register and RSPEN in 
the SP_RCR control register). Each method has a different effect on the 
SPORT.

A DSP reset disables the SPORT by clearing the SP_TCR and SP_RCR con-
trol registers (including the TSPEN and RSPEN enable bits) and the TDIVx, 
RDIVx, SP_TFSDIVx, and SP_RFSDIVx clock and frame sync divisor registers. 
Any ongoing operations are aborted.

Disabling the TSPEN and RSPEN enable bit(s) disables the SPORT and 
aborts any ongoing operations. Status bits are also cleared. Configuration 
bits remain unaffected and can be read by the software in order to be 
altered or overwritten. To disable the SPORT output clock (after the 
SPORT has been enabled), set the SPORT to receive an external clock. 

The SPORT is ready to start transmitting or receiving data three SCK 
cycles after it is enabled (in the SP_TCR or SP_RCR control register). No 
serial clocks are lost from this point on.



Setting SPORT Modes

8-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in 
configuration registers. The SPORT must be configured prior to being 
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for the xSCLKDIV and MxCS 
registers, which can be modified while the SPORT is enabled). To change 
values in all other SPORT configuration registers, disable the SPORT by 
clearing TSPEN in SP_TCR and/or RSPEN in SP_RCR.

The SPORT has its own set of control registers and data buffers, as shown 
in the following table. These control registers are described in detail in 
“ADSP-2199x DSP I/O Registers” on page 23-1. 

Table 8-2. SPORT Registers 

Register Name Function

SP_TCR SPORT Transmit Configuration Register

SP_RCR SPORT Receive Configuration Register

SP_TX Transmit Data Buffer

SP_RX* Receive Data Buffer

SP_TSCKDIV Transmit Clock Divide Modulus Register

SP_RSCKDIV Receive Clock Divide Modulus Register

SP_TFSDIV Transmit Frame Sync Divisor Register

SP_RFSDIV Receive Frame Sync Divisor Register

SP_STATR* SPORT Status Register

SP_MTCS[0:7] Multichannel Transmit Select Registers

SP_MRCS[0:7] Multichannel Receive Select Registers

SP_MCMC1 Multichannel Mode Configuration Register 1

SP_MCMC2 Multichannel Mode Configuration Register 2

An asterisk (*) indicates a read-only register.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-9 
 

Serial Port

Preliminary

The symbolic names of the registers and individual control bits can be 
used in DSP programs—the #define definitions for these symbols are con-
tained in the relevant def-2199x.h file which is provided in the 
INCLUDE directory of the ADSP-2199x DSP development software.

SPDR_PTR DMA Current Pointer (receive)

SPDR_CFG DMA Configuration (receive)

SPDR_SRP DMA Start Page (receive)

SPDR_SRA DMA Start Address (receive)

SPDR_CNT DMA Count (receive)

SPDR_CP DMA Next Descriptor Pointer (receive)

SPDR_CPR DMA Descriptor Ready (receive)

SPDR_IRQ DMA Interrupt Register (receive)

SPDT_PTR DMA Current Pointer (transmit)

SPDT_CFG DMA Configuration    (transmit)

SPDT_SRP DMA Start Page (transmit)

SPDT_SRA DMA Start Address (transmit)

SPDT_CNT DMA Count (transmit)

SPDT_CP DMA Next Descriptor Pointer (transmit)

SPDT_CPR DMA Descriptor Ready (transmit)

SPDT_IRQ DMA Interrupt Register (transmit)

Table 8-2. SPORT Registers  (Cont’d)

Register Name Function

An asterisk (*) indicates a read-only register.



Setting SPORT Modes

8-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Because the SPORT control registers are IO-mapped, programs read or 
write them using the IO( ) register read/write instructions. The SPORT 
control registers also can be written or read by external devices (a host pro-
cessor) to set up a SPORT DMA operation, for example.

Most configuration registers only can be changed while the 
SPORT is disabled (TSPEN/RSPEN=0). Changes take effect after the 
SPORT is re-enabled. The only exceptions to this rule are the 
TCLKDIV/SCLKDIV registers and multichannel configuration 
registers.

Transmit and Receive Configuration Registers 
(SP_TCR, SP_RCR)

The main control registers for the SPORT are the transmit configuration 
register, SP_TCR, and the receive configuration register, SP_RCR. These reg-
isters are defined in Figure 23-6 on page 23-27 and Figure 23-7 on 
page 23-28.

The SPORT is enabled for transmit if Bit 0 (TSPEN) of the transmit con-
figuration register is set to 1; it is enabled to receive if Bit 0 (RSPEN) of the 
receive configuration register is set to 1. Both of these bits are cleared at 
reset (during either a hard reset or a soft reset), disabling all SPORT 
channels.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set), 
corresponding SPORT configuration register writes are disabled (except 
for SP_RSCKDIV, SP_TSCKDIV, and multichannel mode channel enable regis-
ters). Writes are always enabled to the SP_TX buffer. SP_RX is a read-only 
register.

After a write to a SPORT register, any changes to the control and mode 
bits generally take effect when the SPORT is re-enabled.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-11 
 

Serial Port

Preliminary

When changing operating modes, a SPORT control register should be 
cleared (written with all zeros) before the new mode is written to the 
register.

The TXS status bit in the SPORT status register indicates whether the 
SP_TX buffer is full (1) or empty (0).

The Transmit Underflow Status bit (TUVF) in the SPORT status register is 
set whenever the TFS signal occurs (from either an external or internal 
source) while the SP_TX buffer is empty. The internally-generated TFS may 
be suppressed whenever SP_TX is empty by clearing the DITFS control bit 
in the SPORT configuration register (DITFS=0).

When DITFS=0 (the default), the internal transmit frame sync signal (TFS) 
is dependent upon new data being present in the SP_TX buffer; the TFS sig-
nal only is generated for new data. Setting DITFS to 1 selects 
data-independent frame syncs. This causes the TFS signal to be generated 
whether or not new data is present, transmitting the contents of the SP_TX 
buffer regardless. SPORT DMA typically keeps the SP_TX buffer full, and 
when the DMA operation is complete, the last word in SP_TX is continu-
ously transmitted.

The SP_TCR and SP_RCR transmit and receive configuration registers con-
trol the SPORT operating modes for the I/O processor. Figure 23-7 on 
page 23-28 lists all the bits in SP_RCR, and Figure 23-6 on page 23-27 lists 
all the bits in SP_TCR.

The following bits control SPORT modes. See “Setting Peripheral DMA 
Modes” on page 6-10 for information about configuring DMA with 
SPORTs.

Bits for the SP_TCR transmit configuration register:

• Transmit Enable SP_TCR Bit 0 (TSPEN). This bit selects whether the 
SPORT is enabled to transmit (if set, =1) or disabled (if cleared, 
=0).



Setting SPORT Modes

8-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be 
filled. This is normally desirable, because it allows centralization of 
the TD write code in the TX interrupt service routine. For this rea-
son, the code should initialize the interrupt service routine and be 
ready to service TX interrupts before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data and frame 
sync pins; it also shuts down the internal SPORT circuitry. In low 
power applications, battery life can be extended by clearing TSPEN 
whenever the SPORT is not in use. 

• Internal Transmit Clock Select SP_TCR Bit 1 (ICLK). This bit selects 
the internal transmit clock (if set, =1) or the external transmit clock 
on the TCLK or RCLK pin (if cleared, =0).

• Data Formatting Type Select SP_TCR Bits 3-2 (DTYPE). The DTYPE, 
SENDN, and SLEN bits configure the formats of the data words trans-
mitted over the SPORT. The two DTYPE bits specify one of four 
data formats (00=right-justify and zero-fill unused MSBs, 
01=right-justify and sign-extend into unused MSBs, 10=compand 
using m-law, 11=compand using A-law) to be used for single- and 
multichannel operation.

• Endian Format Select SP_TCR Bit 4 (SENDN). The DTYPE, SENDN, and 
SLEN bits configure the formats of the data words transmitted over 
the SPORT. The SENDN bit selects the endian format (0=serial 
words are transmitted MSB bit first, 1=serial words are transmitted 
LSB bit first).

• Serial Word Length Select SP_TCR Bit 8-5 (SLEN). The DTYPE, SENDN, 
and SLEN bits configure the formats of the data words transmitted 
over the SPORT (shifted out via the TXDATA pin). The serial word 
length (the number of bits in each word transmitted over the 
SPORT) is calculated by adding 1 to the value of the SLEN bit: 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-13 
 

Serial Port

Preliminary

Serial Word = SLEN + 1;

The SLEN bit can be set to a value of 2 to 15; 0 and 1 are illegal val-
ues for this bit. Two common settings for the SLEN bits are 15 (to 
transmit a full 16-bit word) and 7 (to transmit an 8-bit byte). The 
ADSP-2199x is a 16-bit DSP, so program instruction or DMA 
engine loads of the TX data register always move 16 bits into the 
register; the SLEN bits tell the SPORT how many of those 16 bits to 
shift out of the register over the serial link.

Note: The frame sync signal is controlled by the Frame Sync 
Divider register, not by SLEN. To produce a frame sync pulse on 
each byte or word transmitted, the proper frame sync divider must 
be programmed into the Frame Sync Divider register; setting SLEN 
to 7 does not produce a frame sync pulse on each byte transmitted.

• Internal Transmit Frame Sync Select SP_TCR Bit 9 (ITFS). This bit 
selects whether the SPORT uses an internal TFS (if set, =1) or uses 
an external TFS (if cleared, =0).

• Transmit Frame Sync Required Select SP_TCR Bit 10 (TFSR). This bit 
selects whether the SPORT requires (if set, =1) or does not require 
(if cleared, =0) a transfer frame sync for every data word.

The TFSR bit is normally set (=1). A frame sync pulse is used to 
mark the beginning of each word or data packet, and most systems 
need frame sync to function properly.

• Data Independent Transmit Frame Sync Select SP_TCR Bit 11 
(DITFS). This bit selects whether the SPORT uses a data-indepen-
dent TFS (sync at selected interval, if set, =1) or uses a 
data-dependent TFS (sync when data in SP_TX, if cleared, =0).

The frame sync pulse marks the beginning of the data word. If 
DITFS is set (=1), the frame sync pulse is issued on time, whether 
the TX register has been loaded or not; if DITFS is cleared (=0), the 



Setting SPORT Modes

8-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

frame sync pulse is only generated if the TX data register has been 
loaded. If the receiver demands regular frame sync pulses, DITFS 
should be set (=1), and the DSP should keep loading the TDATA reg-
ister on time. If the receiver will tolerate occasional late frame sync 
pulses, DITFS should be cleared (=0) to prevent the SPORT from 
transmitting old data twice or transmitting garbled data if the DSP 
is late in loading the TX register.

• Low Transmit Frame Sync Select SP_TCR Bit 12 (LTFS). This bit 
selects an active low TFS (if set, =1) or active high TFS (if cleared, 
=0).

• Late Transmit Frame Sync SP_TCR Bit 13 (LATFS). This bit config-
ures late frame syncs (if set, =1) or early frame syncs (if cleared, 
=0).

• Clock Rising Edge Select SP_TCR Bit 14 (CKRE). This bit selects 
whether the SPORT uses the rising edge (if cleared, =0) or falling 
edge (if set, =1) of the TCLK clock signal for sampling data and the 
frame sync.

• Internal Clock Disable SP_TCR Bit 15. This bit, when set (=1), dis-
ables the TCLK clock. By default this bit is cleared (=0), enabling 
TCLK.

Bits for the SP_RCR receive configuration register:

• Receive Enable. SP_RCR Bit 0 (RSPEN). This bit selects whether 
the SPORT is enabled to receive (if set, =1) or disabled (if cleared, 
=0).
Setting the RSPEN bit turns on the SPORT and causes it to 

drive the DRx pin (and the RX bit clock and receive frame sync 
pins if so programmed). All SPORT control registers should be 
programmed before RSPEN is set. Typical SPORT initializa-
tion code first writes SP_RCR with everything except TSPEN, 
then the last step in the code is to rewrite SP_RCR with all of the 
necessary bits including RSPEN.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-15 
 

Serial Port

Preliminary

Setting RSPEN enables the SPORT RX interrupt. For this rea-

son, the code should initialize the interrupt service 

routine and be ready to service RX interrupts before set-

ting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it 

also shuts down the internal SPORT circuitry. In low power 

applications, battery life can be extended by clearing 

RSPEN whenever the SPORT is not in use. 

• Internal Receive Clock Select. SP_RCR Bit 1 (ICLK). This bit selects 
the internal receive clock (if set, =1) or external receive clock (if 
cleared, =0).

• Data Formatting Type Select. SP_RCR Bits 3-2 (DTYPE). The DTYPE, 
SENDN, and SLEN bits configure the formats of the data words 
received over the SPORT. The two DTYPE bits specify one of four 
data formats (00=right-justify and zero-fill unused MSBs, 
01=right-justify and sign-extend into unused MSBs, 10=compand 
using m-law, 11=compand using A-law) to be used for single- and 
multichannel operation.

• Endian Format Select. SP_RCR Bit 4 (SENDN). The DTYPE, SENDN, and 
SLEN bits configure the formats of the data words received over the 
SPORT. The SENDN bit selects the endian format (0=serial words 
are received MSB bit first, 1=serial words are received LSB bit 
first).

• Serial Word Length Select. SP_RCR Bit 8-5 (SLEN). The DTYPE, 
SENDN, and SLEN bits configure the formats of the data words 
received over the SPORT. The serial word length (the number of 
bits in each word received over the SPORT) is calculated by adding 
1 to the value of the SLEN bit. The SLEN bit can be set to a value of 
2 to 15; 0 and 1 are illegal values for this bit.



Setting SPORT Modes

8-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Internal Receive Frame Sync Select. SP_RCR Bit 9 (IRFS). This bit 
selects whether the SPORT uses an internal RFS (if set, =1) or uses 
an external RFS (if cleared, =0).

• Receive Frame Sync Required Select. SP_RCR Bit 10 (RFSR). This bit 
selects whether the SPORT requires (if set, =1) or does not require 
(if cleared, =0) a receive frame sync for every data word.

• Low Receive Frame Sync Select. SP_RCR Bit 12 (LRFS). This bit 
selects an active low RFS (if set, =1) or active high RFS (if cleared, 
=0).

• Late Receive Frame Sync. SP_RCR Bit 13 (LARFS). This bit config-
ures late frame syncs (if set, =1) or early frame syncs (if cleared, 
=0).

• Clock Rising Edge Select. SP_RCR Bit 14 (CKRE). This bit selects 
whether the SPORT uses the rising edge (if set, =1) or falling edge 
(if cleared, =0) of the RCLK clock signal for sampling data and the 
frame sync.

• Internal Clock Disable. SP_RCR Bit 15 (ICLKD). This bit, when set 
(=1), disables the RCLK clock. By default this bit is cleared (=0), 
enabling RCLK.

Register Writes and Effect Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register 
writes are internally completed at the end of the next CLKIN cycle after 
which they occurred, and the register reads back the newly-written value 
on the next cycle after that.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set), 
corresponding SPORT configuration register writes are disabled (except 
for SP_RSCKDIV, SP_TSCKDIV, and multichannel mode channel registers). 
SP_TX register writes are always enabled; SP_RX is a read-only register.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-17 
 

Serial Port

Preliminary

After a write to a SPORT register, any changes to the control and mode 
bits generally take effect when the SPORT is re-enabled.

Transmit and Receive Data Buffers (SP_TX, SP_RX)
SP_TX is the transmit data buffer for the SPORT. It is a 16-bit buffer 
which must be loaded with the data to be transmitted; the data is loaded 
either by the DMA controller or by the program running on the DSP 
core. SP_RX is the receive data buffer for the SPORT. It is a 16-bit buffer 
which is automatically loaded from the receive shifter when a complete 
word has been received. Word lengths of less than 16 bits are right-justi-
fied in the receive and transmit buffers.

The SP_TX buffers act like a two-location FIFO because they have a data 
register plus an output shift register as shown in Figure 8-1 on page 8-5. 
Two 16-bit words may be stored in the TX buffers at any one time. When 
the SP_TX buffer is loaded and any previous word has been transmitted, 
the buffer contents are automatically loaded into the output shifter. An 
interrupt is generated when the output shifter has been loaded, signifying 
that the SP_TX buffer is ready to accept the next word (the SP_TX buffer is 
“not full”). This interrupt does not occur if SPORT DMA is enabled.

The transmit underflow status bit (TUVF) is set in the SPORT status regis-
ter when a transmit frame sync occurs and no new data has been loaded 
into the serial shift register. In multichannel mode, TUVF is set whenever 
the serial shift register is not loaded, when that transmission should begin 
on an enabled channel. The TUVF status bit is “sticky” and is only cleared 
by disabling the SPORT.

The SP_RX buffers act like a two-location FIFO because they have a data 
register plus an input shift register. Two 16-bit words can be stored in the 
SP_RX buffer. The third word overwrites the second if the first word has 
not been read out (by the DSP core or the DMA controller). When this 
happens, the receive overflow status bit (ROVF) is set in the SPORT status 



Setting SPORT Modes

8-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

register. The overflow status is generated on the last bit of the second 
word. The overflow status is generated on the last bit of the third word. 
The ROVF status bit is “sticky” and is only cleared by disabling the SPORT.

An interrupt is generated when the SP_RX buffer has been loaded with a 
received word (the SP_RX buffer is “not empty”). This interrupt is masked 
out if SPORT DMA is enabled.

If the program causes the core processor to attempt a read from an empty 
SP_RX buffer, any old data is read. If the program causes the core processor 
to attempt a write to a full SP_TX buffer, the new data overwrites the SP_TX 
register. If it is not known whether the core processor can access the SP_RX 
or SP_TX buffer without causing such an error, the buffer’s full or empty 
status should be read first (in the SPORT status register) to determine if 
the access can be made.

The RXS and TXS status bits in the SPORT status register are updated upon 
reads and writes from the core processor, even when the SPORT is dis-
abled. The SP_RX register is read-only. The SP_TX register can be read 
whether or not the SPORT is enabled.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an 
external source) is HCLK/2. The frequency of an internally-generated clock 
is a function of the processor clock frequency (as seen at the CLKOUT pin) 
and the value of the 16-bit serial clock divide modulus registers, 
SP_TSCKDIV and SP_RSCKDIV.

SP_TCLK SP_RCLK frequency⁄ HCLK frequency
2 SP_TSCKDIV SPRSCKDIV 1+⁄×
-------------------------------------------------------------------------------------------=



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-19 
 

Serial Port

Preliminary

If the value of SP_TRSKDIV/SP_RSCKDIV is changed while the internal serial 
clock is enabled, the change in TCLK/RCLK frequency takes effect at the 
start of the rising edge of TCLK/RCLK that follows the next leading edge of 
TFS/RFS.

The SP_TFSDIV and SP_RFSDIV registers specify the number of transmit or 
receive clock cycles that are counted before generating a TFS or RFS pulse 
(when the frame sync is internally-generated). This enables a frame sync to 
initiate periodic transfers. The counting of serial clock cycles applies to 
either internally- or externally-generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

# of serial clocks between frame sync assertions = xFSDIV + 1

Use the following equation to determine the correct value of xFSDIV, given 
the serial clock frequency and desired frame sync frequency:

The frame sync would thus be continuously active if xFSDIV=0. However, 
the value of xFSDIV should not be less than the serial word length minus 
one (the value of the SLEN field in the transmit or receive control register); 
a smaller value of xFSDIV could cause an external device to abort the cur-
rent operation or have other unpredictable results. If the SPORT is not 
being used, the xFSDIV divisor can be used as a counter for dividing an 
external clock or for generating a periodic pulse or periodic interrupt. The 
SPORT must be enabled for this mode of operation to work.

SP_TFSCLK SP_RFSCLK frequency⁄ CLKOUT frequency
SP_TSCKDIV SPRSCKDIV 1+⁄
----------------------------------------------------------------------------------=



Setting SPORT Modes

8-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Maximum Clock Rate Restrictions

Externally-generated late transmit frame syncs also experience a delay 
from arrival to data output, and this can also limit the maximum serial 
clock speed. See the ADSP-2199x Mixed Signal DSP Datasheet for exact 
timing specifications.

Be careful when operating with externally-generated clocks near 
the frequency of HCLK/2. There is a delay between the clock signal’s 
arrival at the TCLK pin and the output of the data, and this delay 
may limit the receiver’s speed of operation. See the ADSP-2199x 
Mixed Signal DSP Datasheet for exact timing specifications. At full 
speed serial clock rate, the safest practice is to use an exter-
nally-generated clock and externally-generated frame sync (ICLK=0 
and IRFS=0).

Frame Sync and Clock Example

The following code fragment is a brief example of setting up the clocks 
and frame sync.

/* Set SPORT frame sync divisor */ 

ar = 0x00FF; 

io(SP0_RFSDIV) = ar; 

io(SP0_TFSDIV) = ar; 

 

/* Set SPORT Internal Clock Divider */ 

ar = 0x0002; 

io(SP0_RSCLKDIV) = ar; 

Data Word Formats
The format of the data words transferred over the SPORT is configured 
by the DTYPE, SENDN, and SLEN bits of the SP_TCR and SP_RCR transmit and 
receive configuration registers.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-21 
 

Serial Port

Preliminary

Word Length

The SPORT channel (transmit and receive) independently handles words 
with lengths of 3 to 16 bits. The data is right-justified in the SPORT data 
registers if it is fewer than 16 bits long, residing in the LSB positions. The 
value of the serial word length (SLEN) field in the SP_TCR and SP_RCR regis-
ters of the SPORT determines the word length according to this formula:

Serial Word Length = SLEN + 1

The SLEN value should not be set to zero or one; values from 2 to 
15 are allowed. Continuous operation (when the last bit of the cur-
rent word is immediately followed by the first bit of the next word) 
is restricted to word sizes of 4 or longer (so SLEN >= 3).

Endian Format

Endian format determines whether the serial word is transmitted Most 
Significant Bit (MSB) first or Least Significant Bit (LSB) first. Endian for-
mat is selected by the SENDN bit in the SP_TCR and SP_RCR transmit and 
receive configuration registers. When SENDN=0, serial words are transmit-
ted (or received) MSB-first. When SENDN=1, serial words are transmitted 
(or received) LSB-first.

Data Type

The DTYPE field of the SP_TCR and SP_RCR transmit and receive configura-
tion registers specifies one of four data formats for both single and 
multichannel operation, as shown in the following table:

Table 8-3. DTYPE and Data Formatting 

DTYPE Data Formatting

00 Right-justify, zero-fill unused MSBs

01 Right-justify, sign-extend into unused MSBs



Setting SPORT Modes

8-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

These formats are applied to serial data words loaded into the SP_RX and 
SP_TX buffers. SP_TX data words are not actually zero-filled or 
sign-extended, because only the significant bits are transmitted.

Companding

Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the 
number of bits that must be sent. The ADSP-2199x SPORT supports the 
two most widely used companding algorithms, A-law and m-law. The pro-
cessor compands data according to the CCITT G.711 specification.

When companding is enabled, valid data in the SP_RX register is the 
right-justified, expanded value of the eight LSBs received and 
sign-extended. A write to SP_TX causes the 16-bit value to be compressed 
to eight LSBs (sign-extended to the width of the transmit word) and writ-
ten to the internal transmit register. If the magnitude of the 16-bit value is 
greater than the 13-bit A-law or 14-bit m-law maximum, the value is auto-
matically compressed to the maximum positive or negative value.

Clock Signal Options
The SPORT has a transmit clock signal (TCLK) and a receive clock signal 
(RCLK). The clock signals are configured by the ICLK and CKRE bits of the 
SP_TCR and SP_RCR transmit and receive configuration registers. Serial 
clock frequency is configured in the SP_TSCKDIV and SP_RSCKDIV registers.

The receive clock pin may be tied to the transmit clock if a single 
clock is desired for both input and output.

10 Compand using m-law

11 Compand using A-law

Table 8-3. DTYPE and Data Formatting  (Cont’d)

DTYPE Data Formatting



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-23 
 

Serial Port

Preliminary

Both transmit and receive clocks can be independently-generated inter-
nally or input from an external source. The ICLK bit of the SP_TCR and 
SP_RCR configuration registers determines the clock source.

When ICLK=1, the clock signal is generated internally by the DSP and the 
TCLK or RCLK pin is an output, the clock frequency is determined by the 
value of the serial clock divisor in the SP_TSCKDIV or SP_RSCKDIV registers.

When ICLK=0, the clock signal is accepted as an input on the TCLK or RCLK 
pins and the serial clock divisors in the SP_TSCKDIV/SP_RSCKDIV registers 
are ignored, the externally-generated serial clock need not be synchronous 
with the DSP system clock.

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The 
framing signals for the SPORT are TFS (transmit frame synchronization) 
and RFS (receive frame synchronization). A variety of framing options are 
available; these options are configured in the SPORT control registers. 
The TFS and RFS signals of the SPORT are independent and are separately 
configured in the control registers.

Framed versus Unframed

The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required) and RFSR (receive frame 
sync required) control bits determine whether frame sync signals are 
required. These bits are located in the SP_TCR and SP_RCR transmit and 
receive configuration registers.

When TFSR=1 or RFSR=1, a frame sync signal is required for every data 
word. To allow continuous transmitting by the SPORT, each new data 
word must be loaded into the SP_TX buffer before the previous word is 
shifted out and transmitted. For more information, see “Data-Indepen-
dent Transmit Frame Sync” on page 8-29.



Setting SPORT Modes

8-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

When TFSR=0 or RFSR=0, the corresponding frame sync signal is not 
required. A single frame sync is needed to initiate communications but is 
ignored after the first bit is transferred. Data words are then transferred 
continuously, unframed. 

When DMA is enabled in this mode, with frame syncs not 
required, DMA requests may be held off by chaining or may not be 
serviced frequently enough to guarantee continuous unframed data 
flow.

Figure 8-3 on page 8-25 illustrates framed serial transfers, which have the 
following characteristics:

• TFSR and RFSR bits in the SP_TCR and SP_RCR transmit and receive 
configuration registers determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed 
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active-low or active-high frame syncs are selected with the LTFS 
and LRFS bits of the SP_TCR and SP_RCR configuration registers.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-25 
 

Serial Port

Preliminary

See “Timing Examples” on page 8-43 for more timing examples.

Internal versus External Frame Syncs

Both transmit and receive frame syncs can be independently-generated 
internally or input from an external source. The ITFS and IRFS bits of the 
SP_TCR and SP_RCR transmit and receive configuration registers determine 
the frame sync source.

When ITFS=1 or IRFS=1, the corresponding frame sync signal is generated 
internally by the SPORT, and the TFS pin or RFS pin is an output. The 
frequency of the frame sync signal is determined by the value of the frame 
sync divisor in the SP_TFSDIV or SP_RFSDIV registers.

When ITFS=0 or IRFS=0, the corresponding frame sync signal is accepted 
as an input on the TFS pin or RFS pins, and the frame sync divisors in the 
SP_TFSDIV/SP_RFSDIV registers are ignored.

Figure 8-3. Framed versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

xCLK

FRAMED
DATA

UNFRAMED
DATA



Setting SPORT Modes

8-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

All of the frame sync options are available whether the signal is generated 
internally or externally.

Active Low versus Active High Frame Syncs

Frame sync signals may be either active high or active low (in other words, 
inverted). The LTFS and LRFS bits of the SP_TCR and SP_RCR transmit and 
receive configuration registers determine the frame syncs’ logic level, as 
follows:

• When LTFS=0 or LRFS=0, the corresponding frame sync signal is 
active high.

• When LTFS=1 or LRFS=1, the corresponding frame sync signal is 
active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs

Data and frame syncs can be sampled on either the rising or falling edges 
of the SPORT clock signals. The CKRE bit of the SP_TCR and SP_RCR trans-
mit and receive configuration registers selects the sampling edge of the 
serial data. Setting CKRE=0 in the SP_TCR transmit configuration register 
selects the rising edge of TCLKx. CKRE=1 selects the falling edge. 

Data and frame sync signals change state on the clock edge that is 
not selected (as an example, for data to be sampled on the rising 
edge of a clock, it must be transmitted on the falling edge of the 
clock).

For receive data and frame syncs, setting CKRE=1 in the SP_RCR receive con-
figuration register selects the rising edge of RCLK as the sampling point for 
the transmission. CKRE=0 selects the falling edge.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-27 
 

Serial Port

Preliminary

For transmit data and frame syncs, setting CKRE=1 in the SP_TCR transmit 
configuration register selects the falling edge of the TCLK for the transmis-
sion (so the rising edge of TCLK could be used as the sampling edge by the 
receiver). CKRE=0 selects the rising edge for the transmission.

Early versus Late Frame Syncs (Normal and Alternate Timing)

Frame sync signals can occur during the first bit of each data word (“late”) 
or during the serial clock cycle immediately preceding the first bit 
(“early”). The LATFS and LARFS bits of the SP_TCR and SP_RCR transmit and 
receive configuration registers configure this option.

When LATFS=0 or LARFS=0, early frame syncs are configured; this is the 
“normal” mode of operation. In this mode, the first bit of the transmit 
data word is available (and the first bit of the receive data word is sampled) 
in the serial clock cycle after the frame sync is asserted, and the frame sync 
is not checked again until the entire word has been transmitted (or 
received). (In multichannel operation, this is the case when frame delay 
is 1.)

If data transmission is continuous in early framing mode (in other words, 
the last bit of each word is immediately followed by the first bit of the next 
word), then the frame sync signal occurs during the last bit of each word. 
Internally-generated frame syncs are asserted for one clock cycle in early 
framing mode. Continuous operation is restricted to word sizes of 4 of 
longer (so SLEN >= 3).

When LATFS=1 or LARFS=1, late frame syncs are configured; this is the 
alternate mode of operation. In this mode, the first bit of the transmit data 
word is available (and the first bit of the receive data word is sampled) in 
the same serial clock cycle that the frame sync is asserted. (In multichannel 
operation, this is the case when frame delay is zero.) Receive data bits are 
sampled by serial clock edges, but the frame sync signal is only checked 
during the first bit of each word. Internally-generated frame syncs remain 
asserted for the entire length of the data word in late framing mode. Exter-
nally-generated frame syncs only are checked during the first bit.



Setting SPORT Modes

8-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 8-4 on page 8-28 illustrates the two modes of frame signal timing:

• LATFS or LARFS bits of the SP_TCR and SP_RCR transmit and receive 
configuration registers. LATFS=0 or LARFS=0 for early frame syncs. 
LATFS=1 or LARFS=1 for late frame syncs.

• Early framing: frame sync precedes data by one cycle. Late framing: 
frame sync checked on first bit only.

• Data transmitted MSB-first (SENDN=0) or LSB-first (SENDN=1).

• Frame sync and clock generated internally or externally.

See “Timing Examples” on page 8-43 for more timing examples. 

Figure 8-4. Normal versus Alternate Framing

B3 B2 B1 B0
...

xCLK

LATE
FRAME
SYNC

DATA

EARLY
FRAME
SYNC



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-29 
 

Serial Port

Preliminary

Data-Independent Transmit Frame Sync

Normally, the internally-generated transmit frame sync signal (TFS) is out-
put only when the SP_TX buffer has data ready to transmit. The DITFS 
mode (data-independent transmit frame sync) bit allows the continuous 
generation of the TFS signal, with or without new data. The DITFS bit of 
the SP_TCR transmit configuration register configures this option.

When DITFS=0, the internally-generated TFS is only output when a new 
data word has been loaded into the SP_TX buffer. The next TFS is gener-
ated once data is loaded into SP_TX. This mode of operation allows data to 
be transmitted only when it is available.

When DITFS=1, the internally-generated TFS is output at its programmed 
interval regardless of whether new data is available in the SP_TX buffer. 
Whatever data is present in SP_TX is re-transmitted with each assertion of 
TFS. The TUVF transmit underflow status bit (in the SPSTATR status regis-
ter) is set when this occurs and old data is retransmitted. The TUVF status 
bit is also set if the SP_TX buffer does not have new data when an exter-
nally-generated TFS occurs. In this mode of operation, data is transmitted 
only at specified times.

If the internally-generated TFS is used, a single write to the SP_TX data reg-
ister is required to start the transfer.

Multichannel Operation
The DSP SPORT offers a multichannel mode of operation, which allows 
the SPORT to communicate in a time-division-multiplexed (TDM) serial 
system. In multichannel communications, each data word of the serial bit 
stream occupies a separate channel. Each word belongs to the next consec-
utive channel so that, for example, a 24-word block of data contains one 
word for each of 24 channels.



Setting SPORT Modes

8-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The SPORT can automatically select words for particular channels while 
ignoring the others. Up to 128 channels are available for transmitting or 
receiving; the SPORT can receive and transmit data selectively from any 
of the 128 channels. In other words, the SPORT can do any of the follow-
ing on each channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel 
mode.

The DT pin is always driven (not three-stated) if the SPORT is enabled 
(TSPEN=1 in the SP_TCR transmit configuration register), unless it is in 
multichannel mode and an inactive time slot occurs.

In multichannel mode the TCLK pin is always an input and must be con-
nected to its corresponding RCLK pin. RCLK can either be provided 
externally or generated internally by the SPORT.

The MCM channel select registers must be programmed before 
enabling SP_TX/SP_RX operation. This is especially important in 
DMA data unpacked mode, since SPORT FIFO operation begins 
immediately after SP_TX/SP_RX is enabled and depends on the val-
ues of the MCM channel select registers. MCM_EN should also be 
enabled prior to enabling SP_TX and/or SP_RX operation.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-31 
 

Serial Port

Preliminary

Figure 8-5 on page 8-31 shows example timing for a multichannel trans-
fer, which has the following characteristics:

• Uses TDM method where serial data is sent or received on differ-
ent channels sharing the same serial bus.

• Can independently select transmit and receive channels.

• RFS signals start of frame.

• TFS is used as “Transmit Data Valid” for external logic, true only 
during transmit channels.

• Example: Receive on channels 0 and 2. Transmit on channels 1 
and 2.

See “Timing Examples” on page 8-43 for more timing examples.

Figure 8-5. Multichannel Operation

SCLK

B3 B2 B1 B2DR

RFS

B0 IGNORED B3

DT
B2B3 B0 B3 B2B1

WORD 0 WORD 1 WORD 2

TFS



Setting SPORT Modes

8-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have 
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block (or frame) of multichannel data words.

When multichannel mode is enabled on the SPORT, both the transmitter 
and the receiver use RFS as a frame sync. This is true whether RFS is gener-
ated internally or externally. The RFS signal is used to synchronize the 
channels and restart each multichannel sequence. RFS assertion occurs at 
the beginning of the channel 0 data word.

Since RFS is used by both the SP_TX and SP_RX channels of the SPORT in 
MCM configuration, both SP_RX configuration registers should always be 
programmed the same way as the SP_TX configuration register, even if 
SP_RX operation is not enabled.

In multichannel mode, late (alternative) frame mode is entered automati-
cally; the first bit of the transmit data word is available (and the first bit of 
the receive data word is sampled) in the same serial clock cycle that the 
frame sync is asserted (provided that MFD is set to 0).

TFS is used as a transmit data valid signal which is active during transmis-
sion of an enabled word. The SPORT’s DT pin is three-stated when the 
time slot is not active, and the TFS signal serves as an output enabled signal 
for the DT pin. The SPORT drives TFS in multichannel mode whether or 
not ITFS is cleared.

Once the initial FS is received and a frame transfer has started, all other FS 
signals are ignored by the SPORT until the complete frame has been 
transferred.

In multichannel mode, the RFS signal is used for the block (frame) start 
reference, after which the transfers are performed continuously with no FS 
required. Therefore, internally-generated frame syncs are always 
data-independent.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-33 
 

Serial Port

Preliminary

Multichannel Frame Delay

The 4-bit MFD field in the multichannel configuration control register 
specifies a delay between the frame sync pulse and the first data bit in mul-
tichannel mode. The value of MFD is the number of serial clock cycles of 
the delay. Multichannel frame delay allows the processor to work with dif-
ferent types of interface devices.

A value of zero for MFD causes the frame sync to be concurrent with the 
first data bit. The maximum value allowed for MFD is 15. A new frame sync 
may occur before data from the last frame has been received, because 
blocks of data occur back-to-back.

Window Size

The window size defines the range of the channels that can be enabled/dis-
abled in the current configuration. It can be any value in the range of 8 to 
128 (in increments of 8); the default value of 0 corresponds to a minimum 
window size of 8 channels. Since the DMA buffer size is always fixed, it’s 
possible to define a smaller window size (for example, 32 bits), resulting in 
a smaller DMA buffer size (in this example, 32 bits instead of 128 bits) to 
save DMA bandwidth. The window size cannot be changed while the 
SPORT is enabled.

Window Offset

The window offset specifies where (in the 127 channel range) to place the 
start of the window. A value of 0 specifies no offset and permits using all 
128 channels. As an example, a program could define a window with a 
window size of 5 and an offset of 93; this 5-channel window would reside 
in the range from 93 to 97. The window offset cannot be changed while 
the SPORT is enabled.



Setting SPORT Modes

8-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

If the combination of the window size and the window offset would place 
the window outside of the range of the channel enable registers, none of 
the channels in the frame will be enabled, since this combination is 
invalid.

Other Multichannel Fields in SP_TCR, SP_RCR

A multichannel frame contains more than one channel, as specified by the 
window size and window offset; the multichannel frame is a combined 
sequence of the window offset and the channels contained in the window. 
The total number of channels in the frame is calculated by adding the 
window size to the window offset.

The channel select offset mode is bit 4 in the MCM configuration register 2. 
When this mode is selected, the first bit of the SP_MTCSx or SP_MRCSx reg-
ister is linked to the first bit directly following the offset of the window. If 
the channel select offset mode is not enabled, the first bit of the SP_MTCSx 
or SP_MRCSx register is placed at offset 0.

The 7-bit CHNL field in the SP_STATR status register indicates which chan-
nel is currently selected during multichannel operation. This field is a 
read-only status indicator. CHNL(6:0) increments by one as each channel is 
serviced, and in channel select offset mode the value of CHNL is reset to 0 
after the offset has been completed. So, as an example, for a window of 8 
and an offset of 21, the counter displays a value between 0 and 28 in the 
regular mode, but in channel select offset mode the counter resets to 0 
after counting up to 21 and the frame completes when the CHNL reaches a 
value of 7 (indicating the eighth channel).

The FSDR bit in the MCM configuration register 2 changes the timing rela-
tionship between the frame sync and the clock received. This change 
enables the SPORT to comply with the H.100 protocol. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-35 
 

Serial Port

Preliminary

Normally (FSDR=0), the data is transmitted on the same edge that the TFS 
is generated. For example, a positive edge TFS causes data to be transmit-
ted on the positive edge of the SCK. This is either the same edge of the 
following one, depending on when LATFS is set.

When frame synch/data relationship is used (FSDR=1), the frame synch is 
expected to change on the falling edge of the clock and is sampled on the 
rising edge of the clock. This is true even though data received is sampled 
on the negative edge of the receive clock

Channel Selection Registers

A channel is a multi-bit word (from 3 to 16 bits in length) that belongs to 
one of the TDM channels. Specific channels can be individually enabled 
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are 
received or transmitted, while disabled channel words are ignored. Up to 
128 channels are available. The SP_MRCSx and SP_MTCSx multichannel 
selection registers are used to enable and disable individual channels; the 
SP_MRCSx Multichannel Receive Select receive registers specify the active 
receive channels, and the SP_MTCSx Multichannel Transmit Select registers 
specify the active transmit channels. 

Each register has 16 bits, corresponding to the 16 channels. Setting a bit 
enables that channel, so the SPORT selects its word from the multi-
ple-word block of data (for either receive or transmit). For example, 
setting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit to 1 in the SP_MTCSx register causes the SPORT to 
transmit the word in that channel’s position of the data stream. Clearing 
the bit to 0 in the SP_MTCSx register causes the SPORT’s DT (data transmit) 
pin to three-state during the time slot of that channel.



Setting SPORT Modes

8-36 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Setting a particular bit to 1 in the SP_MRCSx register causes the SPORT to 
receive the word in that channel’s position of the data stream; the received 
word is loaded into the SP_RX buffer. Clearing the bit to 0 in the SP_MRCSx 
register causes the SPORT to ignore the data.

Companding may be selected on all-or-none channel basis. A-law or 
m-law companding is selected with the DTYPE bit 1 in the SP_TCR and 
SP_RCR transmit and receive configuration registers, and applies to all 
active channels. (See “Companding” on page 8-22 for more information 
about companding.)

Multichannel Enable

Setting the MCM bit in the multichannel mode configuration control regis-
ter 1 enables multichannel mode. When MCM=1, multichannel operation is 
enabled; when MCM=0, all multichannel operations are disabled.

Setting the MCM bit enables multichannel operation for both the receive 
and transmit sides of the SPORT. Therefore, if a receiving SPORT is in 
multichannel mode, the transmitting SPORT must also be in multichan-
nel mode.

Multichannel DMA Data Packing

Multichannel DMA data packing/unpacking are specified with the DMA 
data packed/unpacked enable bits for the SP_RX and SP_TX multichannel 
configuration registers. 

If the bits are set (indicating that data is packed), the SPORT expects that 
the data contained by the DMA buffer corresponds only to the enabled 
SPORT channels (for example, if an MCM frame contains 10 enabled 
channels, the SPORT expects the DMA buffer to contain 10 consecutive 
words for each of the frames). It’s not possible to change the total number 
of enabled channels without changing the DMA buffer size, and reconfig-
uring is not allowed while the SPORT is enabled.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-37 
 

Serial Port

Preliminary

If the bits are cleared (the default, indicating that data is not packed), the 
SPORT expects the DMA buffer to have a word for each of the channels 
in the window (whether enabled or not), so the DMA buffer size must be 
equal to the size of the window (for example, if channels 1 and 10 are 
enabled, and the window size is 16, the DMA buffer size would have to be 
16 words; the data to be transmitted/received would be placed at addresses 
1 and 10 of the buffer, and the rest of the words in the DMA buffer would 
be ignored). This mode has no restrictions on changing the number of 
enabled channels while the SPORT is enabled.

Multichannel Mode Example

The following code fragment is an example of setting up multichannel 
mode for SPORT use.

/* Set MCM Transmit and Receive Channel Selection Reg */ 

ar = 0x001F; /* Enable Channels 0-4 for Tx */ 

io(SP0_MTCS0) = ar; 

ar = 0x0000; /*... Disable remaining 123-Channels */ 

io(SP0_MTCS1) = ar; 

io(SP0_MTCS2) = ar; 

io(SP0_MTCS3) = ar; 

io(SP0_MTCS4) = ar; 

io(SP0_MTCS5) = ar; 

io(SP0_MTCS6) = ar; 

io(SP0_MTCS7) = ar; 

 

ar = 0x001F; /* Enable Channels 0-4 for Rx */ 

io(SP0_MRCS0) = ar; 

ar = 0x0000; /*... Disable remaining 123-Channels */ 

io(SP0_MRCS1) = ar; 

io(SP0_MRCS2) = ar; 

io(SP0_MRCS3) = ar; 

io(SP0_MRCS4) = ar; 

io(SP0_MRCS5) = ar; 



Moving Data Between SPORTS and Memory

8-38 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

io(SP0_MRCS6) = ar; 

io(SP0_MRCS7) = ar; 

 

/* Set SPORT MCM Configuration Reg 1 - MCM enabled, 1 Frame Delay 

*/ 

ar = 0x0003; 

io(SP0_MCMC1) = ar; 

 

/* Set SPORT MCM Configuration Reg 2 - Tx and Rx Packing */ 

ar = 0x000C; 

io(SP0_MCMC2) = ar; 

 

Moving Data Between SPORTS and 
Memory

Transmit and receive data can be transferred between the DSP SPORTs 
and on-chip memory in one of two ways: with single-word transfers or 
with DMA block transfers. Both methods are interrupt-driven, using the 
same internally generated interrupts.

When SPORT DMA is not enabled in the SP_TCR or SP_RCR transmit or 
receive configuration registers, the SPORT generates an interrupt every 
time it has received a data word or has started to transmit a data word. 
SPORT DMA provides a mechanism for receiving or transmitting an 
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing 
the processor core to continue running until the entire block of data is 
transmitted or received. Service routines can then operate on the block of 
data rather than on single words, significantly reducing overhead. The 
ADSP-2199x DMA engines cycle steal from the core, resulting in one 
cycle of overhead imposed on the core for each DMA word transferred.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-39 
 

Serial Port

Preliminary

See “I/O Processor” on page 6-1 for more information about configuring 
and using DMA with the SPORTs.

SPORT DMA Autobuffer Mode Example
The following code fragments show an example of DMA autobuffer mode 
for SPORT use.

The DMA autobuffer mode is set up in this code fragment.

/* SPORT DMA AUTOBUFFER XMIT */ 

ar= 0x0010; /* Set Autobuffer, Direction, and Clear_Buffer */ 

io(SP0_CONFIG_DMA_TX) = ar;   

 

ar = 0; /* SPORT TX DMA Internal Memory Page */ 

io(SP0_START_PG_TX) = ar;   

 

ar = tx_buf; /* SPORT TX DMA Internal Memory Address */ 

io(SP0_START_ADDR_TX) = ar; 

 

ar = LENGTH(tx_buf); /* SPORT TX DMA Internal Memory Count */ 

io(SP0_COUNT_TX) = ar; 

 

/* SPORT DMA AUTOBUFFER RCV */ 

ar= 0x0010; /* Set Autobuffer, Direction, and Clear_Buffer */ 

io(SP0_CONFIG_DMA_RX) = ar;   

 

ar = 0; /* SPORT RX DMA Internal Memory Page */ 

io(SP0_START_PG_RX) = ar;   

 

ar = rx_buf; /* SPORT RX DMA Internal Memory Address */ 

io(SP0_START_ADDR_RX) = ar; 

 

ar = LENGTH(rx_buf); /* SPORT RX DMA Internal Memory Count */ 

io(SP0_COUNT_RX) = ar; 



Moving Data Between SPORTS and Memory

8-40 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

 

 

/* ENABLE SPORT DMA and DIRECTION IN DMA CONFIGURATION REGISTER 

*/

ar = 0x1015; /* Enable TX Interrupts */ 

io(SP0_CONFIG_DMA_TX) = ar; 

 

ar = 0x1017; /* Enable RX Interrupts */ 

io(SP0_CONFIG_DMA_RX) = ar;   

 

The SPORT is enabled in the following code fragment. 

ax0 = io(SP0_RX_CONFIG); /* Enable SPORT RX */ 

ar = setbit 0 of ax0; 

io(SP0_RX_CONFIG) = ar; 

 

ax0 = io(SP0_TX_CONFIG); /* Enable SPORT TX */ 

ar = setbit 0 of ax0; 

io(SP0_TX_CONFIG) = ar; 

SPORT Descriptor-Based DMA Example
The following code fragment is an example of setting up descriptor-based 
DMA mode for SPORT use.

/* SPORT DMA DESCRIPTOR BLOCK TX */ 

ar= 0x0080; /* Set Direction, and Clear_Buffer */ 

io(SP0_CONFIG_DMA_TX) = ar;   

 

ar = xmit_ddb; /* SPORT xmit DMA Next Descriptor Pntr Reg */ 

dm(xmit_ddb + 4) = ar; 

 

ar = LENGTH(tx_buf); /* SPORT xmit DMA Internal Memory Count */

dm(xmit_ddb + 3) = ar; 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-41 
 

Serial Port

Preliminary

 

ar = tx_buf; /* SPORT xmit DMA Internal Memory Address */ 

dm(xmit_ddb + 2) = ar;  

 

ar = 0; /* SPORT xmit DMA Internal Memory Page */ 

dm(xmit_ddb + 1) = ar; 

 

ar = 0x8005; /* Enable DMA, interrupt on completion, software 

control */

dm(xmit_ddb) = ar; 

 

 

/* SPORT DMA DESCRIPTOR BLOCK RX */ 

ar= 0x0082; /* Set Direction, and Clear_Buffer */ 

io(SP0_CONFIG_DMA_RX) = ar;   

 

ar = rcv_ddb; /* SPORT rcv DMA Next Descriptor Pntr Reg */ 

dm(rcv_ddb + 4) = ar; 

 

ar = LENGTH(rx_buf); /* SPORT rcv DMA Internal Memory Count */ 

dm(rcv_ddb + 3) = ar; 

 

ar = rx_buf; /* SPORT rcv DMA Internal Memory Address */ 

dm(rcv_ddb + 2) = ar;  

 

ar = 0; /* SPORT rcv DMA Internal Memory Page */ 

dm(rcv_ddb + 1) = ar; 

 

ar = 0x8007; /* Enable DMA, interrupt on completion, software 

control */ 

dm(rcv_ddb) = ar; 

 

/* DMA CONFIG */ 

ar = xmit_ddb; /* Load TX DMA NEXT Descriptor Pointer */ 



Support for Standard Protocols

8-42 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

io(SP0_NEXT_DESCR_TX)=ar; 

 

ar = rcv_ddb; /* Load RX DMA NEXT Descriptor Pointer */ 

io(SP0_NEXT_DESCR_RX)=ar; 

 

/* Signify DMA Descriptor Ready */ 

ar=0x0001; 

io(SP0_DESCR_RDY_TX) = ar; /* DMA Descriptor Ready */ 

io(SP0_DESCR_RDY_RX) = ar; 

 

ar = 0x0001; 

io(SP0_CONFIG_DMA_TX) = ar; 

ar = 0x0003; 

io(SP0_CONFIG_DMA_RX) = ar;   

Support for Standard Protocols
The ADSP-2199x supports the H.100 standard protocol. The following 
SPORT parameters must be set to support this standard.

• SP_TFSDIVx = SP_RFSDIVx = 0x03FF (1024 clock cycles per frame, 
122ns wide, 125ms period frame sync)

• TFSR/RFSR set (FS required)

• LTFS/LRFS set (active-low FS)

• TSCLKDIV = RSCLKDIV = 8 (for 8.192 MHz (+/- 2%) bit clock)

• MCM set (multi-channel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-43 
 

Serial Port

Preliminary

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half clock cycle 
early frame sync)

2X Clock Recovery Control
The SPORTs can recover the data rate clock (SCK) from a provided 2X 
input clock. This enables the implementation of H.100 compatibility 
modes for MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recov-
ering the 2 MHz or 8 MHz clock from the incoming 4 MHz or 16 MHz 
clock, with the proper phase relationship. A 2-bit mode signal chooses the 
applicable clock mode, which includes a non-divide/bypass mode for nor-
mal operation.

SPORT Pin/Line Terminations
The ADSP-2199x has very fast drivers on all output pins including the 
SPORT. If connections on the data, clock, or frame sync lines are longer 
than six inches, consider using a series termination for strip lines on 
point-to-point connections. This may be necessary even when using 
low-speed serial clocks, because of the edge rates.

Timing Examples
Several timing examples are included within the text of this chapter (in the 
sections “Framed versus Unframed” on page 8-23, “Early versus Late 
Frame Syncs (Normal and Alternate Timing)” on page 8-27, and “Frame 
Syncs in Multichannel Mode” on page 8-32). This section contains addi-
tional examples to illustrate more possible combinations of the framing 
options.



Timing Examples

8-44 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

These timing examples show the relationships between the signals but are 
not scaled to show the actual timing parameters of the processor. Consult 
the data sheet for the ADSP-2199x for actual timing parameters and 
values.

These examples assume a word length of four bits (SLEN=3). Framing sig-
nals are active high (LRFS=0 and LTFS=0).

Figure 8-6 on page 8-45 through Figure 8-11 on page 8-47 show framing 
for receiving data.

In Figure 8-6 on page 8-45 and Figure 8-7 on page 8-45, the normal 
framing mode is shown for non-continuous data (any number of SCK 
cycles between words) and continuous data (no SCK cycles between words). 
Figure 8-8 on page 8-46 and Figure 8-9 on page 8-46 show non-continu-
ous and continuous receiving in the alternate framing mode. These four 
figures show the input timing requirement for an externally-generated 
frame sync and also the output timing characteristic of an internally-gen-
erated frame sync.

Figure 8-10 on page 8-46 and Figure 8-11 on page 8-47 show the receive 
operation with normal framing and alternate framing, respectively, in the 
unframed mode. A single frame sync signal occurs only at the start of the 
first word, either one SCK before the first bit (in normal mode) or at the 
same time as the first bit (in alternate mode). This mode is appropriate for 
multi-word bursts (continuous reception).

Figure 8-12 on page 8-47 through Figure 8-17 on page 8-49 show fram-
ing for transmitting data and are very similar to Figure 8-6 on page 8-45 
through Figure 8-11 on page 8-47.

In Figure 8-12 on page 8-47 and Figure 8-13 on page 8-47, the normal 
framing mode is shown for non-continuous data (any number of SCK 
cycles between words) and continuous data (no SCK cycles between words). 
Figure 8-14 on page 8-48 and Figure 8-15 on page 8-48 show non-con-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-45 
 

Serial Port

Preliminary

tinuous and continuous transmission in the alternate framing mode. As 
noted previously for the receive timing diagrams, the TFS output meets the 
TFS input timing requirement.

Figure 8-16 on page 8-49 and Figure 8-17 on page 8-49 show the trans-
mit operation with normal framing and alternate framing, respectively, in 
the unframed mode. A single frame sync signal occurs only at the start of 
the first word, either one SCK before the first bit (in normal mode) or at 
the same time as the first bit (in alternate mode). 

Figure 8-6. SPORT Receive, Normal Framing

Figure 8-7. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SCLK

OUTPUT
RFS

DR

RFS
INPUT

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown



Timing Examples

8-46 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 8-8. SPORT Receive, Alternate Framing

Figure 8-9. SPORT Continuous Receive, Alternate Framing

Figure 8-10. SPORT Receive, Unframed Mode, Normal Framing

SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCLK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B2B3



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-47 
 

Serial Port

Preliminary

Figure 8-11. SPORT Receive, Unframed Mode, Alternate Framing

Figure 8-12. SPORT Transmit, Normal Framing

Figure 8-13. SPORT Continuous Transmit, Normal Framing

SCLK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B2B3

B2 B1 B0

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B3 B2 B1 B0B3

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

B2 B1 B0

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B3 B2 B1 B0B3 B3 B2

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown



Timing Examples

8-48 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 8-14. SPORT Transmit, Alternate Framing

Figure 8-15. SPORT Continuous Transmit, Alternate Framing

SCLK

TFS

DT
B2 B1 B0B3 B2 B1 B0B3

TFS

OUTPUT

INPUT

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
data sheet for specifications.

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B2 B1 B0B3 B0B3 B2 B1

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
data sheet for specifications.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 8-49 
 

Serial Port

Preliminary

Figure 8-16. SPORT Transmit, Unframed Mode, Normal Framing

Figure 8-17. SPORT Transmit, Unframed Mode, Alternate Framing

SCLK

TFS

DT
B3 B3B0B1B2 B1 B0 B3B2 B2

SCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
data sheet for specifications.



Timing Examples

8-50 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-1 
 

Serial Peripheral Interface (SPI) Port

Preliminary

9 SERIAL PERIPHERAL 
INTERFACE (SPI) PORT

Overview
The ADSP-2199x has one independent Serial Peripheral Interface (SPI) 
port, SPI, that provides an I/O interface to a wide variety of SPI-compati-
ble peripheral devices. The SPI port has its own set of control registers and 
data buffers.

With a range of configurable options, the SPI port provides a glueless 
hardware interface with other SPI-compatible devices. SPI is a 4-wire 
interface consisting of two data pins, a device-select pin, and a clock pin. 
SPI is a full-duplex synchronous serial interface, supporting master modes, 
slave modes, and multi-master environments. The ADSP-2199x SPI-com-
patible peripheral implementation also supports programmable baud rate 
and clock phase/polarities. The SPI features the use of open drain drivers 
to support the multi-master scenario and to avoid data contention.



Overview

9-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Typical SPI-compatible peripheral devices that can be used to interface to 
the ADSP-2199x SPI-compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

• Shift registers

• FPGAs with SPI emulation

The ADSP-2199x SPI supports the following features:

• Full-duplex operation 

• Master-slave mode multimaster environment 

• Open drain outputs 

• Programmable baud rates, clock polarities and phases 

• Slave booting from another master SPI device

The ADSP-2199x Serial Peripheral Interface is an industry standard syn-
chronous serial link that helps the DSP communicate with multiple 
SPI-compatible devices. The SPI peripheral is a synchronous, 4-wire inter-
face consisting of two data pins, MOSI and MISO; one device select pin, 
SPISS; and a gated clock pin, SCK. With the two data pins, it allows for 
full-duplex operation to other SPI-compatible devices. The SPI also 
includes programmable baud rates, clock phase, and clock polarity. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-3 
 

Serial Peripheral Interface (SPI) Port

Preliminary

The SPI can operate in a multi-master environment by interfacing with 
several other devices, acting as either a master device or a slave device. In a 
multi-master environment, the SPI interface uses open drain data pad 
driver outputs to avoid data bus contention.

Figure 9-1 on page 9-3 provides a block diagram of the ADSP-2199x SPI 
Interface. The interface is essentially a shift register that serially transmits 
and receives data bits, one bit a time at the SCK rate, to/from other SPI 
devices. SPI data is transmitted and received at the same time through the 
use of a shift register. When an SPI transfer occurs, data is simultaneously 
transmitted, or shifted out serially via the shift-register, as new data is 
received, or shifted in serially at the other end of the same shift register. 
The SCK synchronizes the shifting and sampling of the data on the two 
serial data pins, MOSI and MISO. 

Figure 9-1. ADSP-2199x SPI Block Diagram

SPI INTERFACE LOGIC

MOSI MISO SCK SPISS

RDBR RECEIVE
REGISTER

SPI
INTERNAL

CLOCK
GENERATOR

32

DM DATA BUS
PM DATA BUS
I/O DATA BUS

M MSS SPICTL
SPIST

TDBR TRANSMIT
REGISTER

SPI IRQ
OR

DM A
R EQUEST

SHIFT REGISTER



Interface Signals

9-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

 See “Pin Descriptions” on page 12-1 for a table of all ADSP-2199x pins, 
including those used for SPI.

During SPI data transfers, one SPI device acts as the SPI link master, 
where it controls the data flow by generating the SPI serial clock and 
asserting the SPI device select signal. The other SPI device acts as the slave 
and accepts new data from the master into its shift register, while it trans-
mits requested data out of the shift register through its SPI transmit data 
pin. Multiple ADSP-2199xs can take turns being the master device, as can 
other microcontrollers or microprocessors. One master device can also 
simultaneously shift data into multiple slaves (known as a Broadcast 
Mode). However, only one slave may drive its output to write data back to 
the master at any given time. This must be enforced in Broadcast mode, 
where several slaves can be selected to receive data from the master, but 
only one slave can be enabled to send data back to the master.

In a multi-master or multi-device ADSP-2199x environment where multi-
ple ADSP-2199xs are connected via their SPI port, all MOSI pins are 
connected together, all MISO pins are connected together, and all SCK pins 
are connected together.

For a multi-slave environment, the ADSP-2199x can make use of 7 pro-
grammable flags, PF1 - PF7, to be used as dedicated SPI slave-select signals 
for the SPI slave devices.

At reset, the SPI is disabled and configured as a slave.

Interface Signals 
This section describes the SPI interface signals.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-5 
 

Serial Peripheral Interface (SPI) Port

Preliminary

Serial Peripheral Interface Clock Signal (SCK) 
SCK is the Serial Peripheral Interface clock signal. This control signal is 
driven by the master and controls the rate at which data is transferred. The 
master may transmit data at a variety of baud rates. SCK cycles once for 
each bit transmitted. It is an output signal if the device is configured as a 
master, and an input signal if the device is configured as a slave.

SCK is a gated clock that is active during data transfers, only for the length 
of the transferred word. The number of active clock edges is equal to the 
number of bits driven on the data lines. Slave devices ignore the serial 
clock if the slave select input is driven inactive (high). 

SCK is used to shift out and shift in the data driven on the MISO and MOSI 
lines. The data is always shifted out on one edge of the clock and sampled 
on the opposite edge of the clock. Clock polarity and clock phase relative 
to data are programmable into the SPICTL control register and define the 
transfer format.

Serial Peripheral Interface Slave Select Input 
Signal (SPISS)

SPISS is the Serial Peripheral Interface Slave Select input signal. This is an 
active low signal used to enable a ADSP-2199x configured as a slave 
device. This input-only pin behaves like a chip select, and is provided by 
the master device for the slave devices. For a master device it can act as an 
error signal input in case of the multi-master environment. In multi-mas-
ter mode, if the SPISS input signal of a master is asserted (driven low), an 
error has occurred. This means that another device is also trying to be the 
master device.



Interface Signals

9-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Master Out Slave In (MOSI)
MOSI is the Master Out Slave In pin, which is one of the bidirectional I/O 
data pins. If the ADSP-2199x is configured as a master, the MOSI pin 
becomes a data transmit (output) pin, transmitting output data. If the 
ADSP-2199x is configured as a slave, the MOSI pin becomes a data receive 
(input) pin, receiving input data. In a ADSP-2199x SPI interconnection, 
the data is shifted out from the MOSI output pin of the master and shifted 
into the MOSI input(s) of the slave(s).

Master In Slave Out (MISO)
MISO is the Master In Slave Out pin, one of the bidirectional I/O data 
pins. If the ADSP-2199x is configured as a master, the MISO pin becomes a 
data receive (input) pin, receiving input data. If the ADSP-2199x is con-
figured as a slave, the MISO pin becomes a data transmit (output) pin, 
transmitting output data. In a ADSP-2199x SPI interconnection, the data 
is shifted out from the MISO output pin of the slave and shifted into the 
MISO input pin of the master. 

Only one slave is allowed to transmit data at any given time.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-7 
 

Serial Peripheral Interface (SPI) Port

Preliminary

An SPI configuration example, shown in Figure 9-2 on page 9-7, illus-
trates how the ADSP-2199x can be used as the slave SPI device. The 8-bit 
host microcontroller is the SPI master. The ADSP-2199x can be booted 
via its SPI interface to allow user application code and data to be down-
loaded prior to runtime.

Interrupt Behavior
The behavior of the SPI interrupt signal depends on the transfer initiation 
and interrupt mode, TIMOD. In DMA mode, the interrupt can be generated 
upon completion of a DMA multi-word transfer or upon an SPI error 
condition (MODF, TXE when TRAN=0, or RBSY when TRAN=1). When not using 
DMA mode, an interrupt is generated when the SPI is ready to accept new 
data for a transfer; the TXE and RBSY error conditions do not generate 
interrupts in these modes. An interrupt is also generated in a master when 
the mode-fault error occurs. 

For more information about this interrupt output, see the discussion of 
the TIMOD bits in “SPI Control (SPICTL) Register” on page 9-9.

Figure 9-2. ADSP-2199x as Slave SPI Device

8-bit Host
Microcontroller

ADSP-21990

SCLK

S_SEL

MOSI

MISO

SCK

SPISS

MOSI

MISO

Slave SPI Device



SPI Registers

9-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPI Registers
The SPI peripheral in the ADSP-2199x includes a number of user-accessi-
ble registers; some of these registers are also accessible through the DMA 
bus. Four registers contain control and status information: SPIBAUD, 
SPICTL, SPIFLG, and SPIST. Two registers are used for buffering receive 
and transmit data: RDBR and TDBR. Eight registers are related to DMA 
functionality. The shift register, SFDR, is internal to the SPI module and is 
not directly accessible.

Also see “Error Signals and Flags” on page 9-28 for more information 
about how the bits in these registers are used to signal errors and other 
conditions, and “Register Mapping” on page 9-18 for a table showing the 
mapping of all SPI registers.

 SPI Baud Rate (SPIBAUD) Register
The SPI Baud Rate Register (SPIBAUD) is used to set the bit transfer rate 
for a master device. When configured as a slave, the value written to this 
register is ignored. The serial clock frequency is determined by the follow-
ing formula:

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the peripheral clock rate 
(HCLK).

The following table provides the bit descriptions for the SPIBAUD register.

Table 9-1. SPIBAUD Register Bits

Bit(s) Function Default

15:0 Baud Rate: Peripheral clock (HCLK) divided by 2*(Baud) 0

SCK frequency Peripheral clock frequency
2 SPIBAUD×

----------------------------------------------------------------=



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-9 
 

Serial Peripheral Interface (SPI) Port

Preliminary

The following table lists several possible baud rate values for the SPIBAUD 
register.

SPI Control (SPICTL) Register
The SPI Control Register (SPICTL) is used to configure and enable the SPI 
system. This register is used to enable the SPI interface, select the device as 
a master or slave, and determine the data transfer format and word size.

The following table provides the bit descriptions for the SPICTL register.

Table 9-2. SPI Master Baud Rate Example

SPIBAUD Decimal Value SPI Clock Divide Factor Baud Rate for HCLK @ 80 MHz

0 N/A N/A

1 N/A N/A

2 4 20 MHz

3 6 13.3 MHz

4 8 10 MHz

65,535 (0xFFFF) 131,070 610 Hz

Table 9-3. SPICTL Register Bits

Bit(s) Name Function Default

1:0 TIMOD Defines transfer initiation mode and interrupt generation.
00 - Initiate transfer by read of receive buffer. Interrupt active when 
receive buffer is full
01 - Initiate transfer by write to transmit buffer. Interrupt active 
when transmit buffer is empty
10 - Enable DMA transfer mode. Interrupt configured by DMA
11 - Reserved

00

2 SZ Send Zero or last word when TDBR empty.
0 = send last word
1 = send zeroes

0



SPI Registers

9-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

3 GM When RDBR full, get data or discard incoming data.
0 = discard incoming data
1 = get more data (overwrites the previous data)

0

4 PSSE Enables Slave-Select (SPISS) input for master. When not used, 
SPISS can be disabled, freeing up a chip pin as general purpose 
I/O.
0 = disable
1 = enable

0

5 EMISO Enable MISO pin as an output.
This is needed when master wishes to transmit to various slaves at 
one time (broadcast). Only one slave is allowed to transmit data 
back to the master. All slaves (except for the one from whom the 
master wishes to receive) should have this bit set.
0 = MISO disabled
1 = MISO enabled

0

7:6 Reserved 00

8 SIZE Word length.
0 = 8 bits 
1 = 16 bits

0

9 LSBF Data format.
0 = MSB sent/received first
1 = LSB sent/received first

0

10 CPHA Clock phase (selects the transfer format).
0 = SCK starts toggling at the middle of first data bit; SPISELx 
automatically by hardware
1 = SCK starts toggling at the beginning of first data bit; SPISELx 
must be set by software

1

11 CPOL Clock polarity.
0 = active-high SCK (SCK low is the idle state)
1 = active-low SCK (SCK high is the idle state)

0

12 MSTR Configures SPI module as master or slave.
0 = device is a slave device
1 = device is a master device

0

Table 9-3. SPICTL Register Bits (Cont’d)

Bit(s) Name Function Default



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-11 
 

Serial Peripheral Interface (SPI) Port

Preliminary

SPI Flag (SPIFLG) Register
The SPI Flag Register (SPIFLG) is a read/write register used to enable indi-
vidual SPI slave-select lines when the SPI is enabled as a master. The 
SPIFLG register has 7 bits to select the outputs to be driven as slave-select 
lines (FLS) and 7 bits to activate the selected slave-selects (FLG).

If the SPI is enabled and configured as a master, up to 7 of the chip’s gen-
eral-purpose Programmable Flag pins may be used as slave-select outputs. 
For each FLS bit which is set in the SPIFLG register, the corresponding PFx 
pin will be configured as a slave-select output. For example, if bit FLS1 is 
set in SPIFLG, the PF1 pin will be driven as a slave-select (SPISEL1).

Refer to the following tables for the mapping of SPIFLG register bits to PFx 
pins. For those FLS bits which are not set, the corresponding PFx pins will 
be configured and controlled by the chip’s general-purpose PFx registers 
(DIR and others).

13 WOM Open drain data output enable (for MOSI and MISO).
0 = Normal
1 = Open Drain

0

14 SPE SPI module enable
0 = SPI Module is disabled
1 = SPI Module is enabled

0

15 Reserved 0

Table 9-4. SPIFLG Register Bits

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPISEL1 Enable PF1 0

2 FLS2 SPISEL2 Enable PF2 0

Table 9-3. SPICTL Register Bits (Cont’d)

Bit(s) Name Function Default



SPI Registers

9-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

In order for the SPISELx pins to be configured as SPI slave-select outputs, 
SPI must be enabled as a master (i.e., the SPE and MSTR bits in the SPICTL 
register must be set). Otherwise, none of the bits in the SPIFLG register 
have any effect.

Table 9-4 on page 9-11 provides the bit mappings for the SPIFLG 
register.

When the PFx pins are configured as slave-select outputs, the value which 
is driven onto these outputs depends on the value of the CPHA bit in the 
SPICTL register. If CPHA=1, the value is set by software control of the FLG 
bits. If CPHA=0, the value is determined by the SPI hardware, and the FLG 
bits are ignored.

3 FLS3 SPISEL3 Enable PF3 0

4 FLS4 SPISEL4 Enable PF4 0

5 FLS5 SPISEL5 Enable PF5 0

6 FLS6 SPISEL6 Enable PF6 0

7 FLS7 SPISEL7 Enable PF7 0

8 Reserved 1

9 FLG1 SPISEL1 Value PF1 1

10 FLG2 SPISEL2 Value PF2 1

11 FLG3 SPISEL3 Value PF3 1

12 FLG4 SPISEL4 Value PF4 1

13 FLG5 SPISEL5 Value PF5 1

14 FLG6 SPISEL6 Value PF6 1

15 FLG7 SPISEL7 Value PF7 1

Table 9-4. SPIFLG Register Bits (Cont’d)

Bit Name Function PFx Pin Default



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-13 
 

Serial Peripheral Interface (SPI) Port

Preliminary

When CPHA=1, the SPI protocol permits the slave-select line to either 
remain asserted (low) or be de-asserted between transferred words. This 
requires the user to write to the SPIFLG register, setting or clearing the 
appropriate FLG bits as needed. For example, to drive PF3 as a slave-select, 
FLS3 in SPIFLG must be set. Clearing FLG3 in SPIFLG will drive PF3 low; 
setting FLG3 will drive PF3 high. If needed, PF3 can be cycled high and low 
between transfers by setting FLG3 and then clearing FLG3; otherwise, PF3 
will remain active (low) between transfers.

When CPHA=0, the SPI protocol requires that the slave-select be de-asserted 
between transferred words. In this case, the SPI hardware controls the 
pins. For example, to use PF3 as a slave-select pin, it is only necessary to set 
the FLS3 bit in the SPIFLG register. Writing to the FLG3 bit is not required, 
because the SPI hardware automatically drives the PF3 pin.

Slave-Select Inputs

The behavior of the SPISS input depends on the configuration of the SPI. 
If the SPI is a slave, SPISS acts as the slave-select input. When enabled as a 
master, SPISS can serve as an error-detection input for the SPI in a 
multi-master environment. The PSSE bit in the SPICTL register enables this 
feature. When PSSE=1, the SPISS input is the master mode error input; 
otherwise, SPISS is ignored. The state of these input pins can be observed 
in the Programmable Flag data register (FLAGS).

Use of FLS Bits in SPIFLG for Multiple-Slave SPI Systems

The FLS bits in the SPIFLG register are used in a multiple-slave SPI envi-
ronment. For example, if there are eight SPI devices in the system with a 
ADSP-2199x master, then the master ADSP-2199x can support the SPI 
mode transactions across all seven other devices. This configuration 
requires that only one ADSP-2199x be a master within this multi-slave 
environment. The seven flag pins (PF1, PF2, PF3, PF4, PF5, PF6, and PF7) 



SPI Registers

9-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

on the ADSP-2199x master can be connected to each of the slave SPI 
device's SPISS pin. In this configuration, the FLS bits in the SPIFLG regis-
ter can be used in three ways.

In cases 1 and 2, the ADSP-2199x is the master, and the seven microcon-
trollers/peripherals having SPI interfaces are used as slaves. In this setup, 
the ADSP-2199x can:

1. Transmit to all seven SPI devices at the same time in a broadcast 
mode. Here all the FLS bits are set.

2. Receive and transmit from one SPI device by enabling only one 
slave SPI device at a time.

In case 3, all eight devices connected via SPI ports can be ADSP-2199xs:

3. If all the slaves are also ADSP-2199xs, then the requestor can 
receive data from only one ADSP-2199x (enable this by setting the 
EMIS bit in the six other slave processors) at a time and transmit 
broadcast data to all seven at the same time. This EMISO feature 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-15 
 

Serial Peripheral Interface (SPI) Port

Preliminary

may be available in some other microcontrollers. Therefore, it 
would be possible to use the EMISO feature with any other SPI 
device which includes this functionality.

Figure 9-3 on page 9-15 shows one ADSP-2199x as a master with three 
ADSP-2199xs (or other SPI-compatible devices) as slaves.

SPI Status (SPIST) Register
The SPI Status Register (SPIST) is used to detect when an SPI transfer is 
complete or if transmission/reception errors occur. The SPIST register can 
be read at any time.

Some of the bits in the SPIST register are read-only (RO), and others can 
be cleared by a write-one-to-clear (W1C) operation. Bits that just provide 
information about the SPI are read-only; these bits are set and cleared by 
the hardware. Bits which are W1C are set when an error condition occurs; 
these bits are set by hardware, and must be cleared by software. (To clear a 

Figure 9-3. Single-Master, Multiple-Slave Configuration 
(All ADSP-2199xs)



SPI Registers

9-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

W1C bit, the user must write a 1 to the desired bit position of the SPIST 
register. For example, if the TXE bit is set, the user must write a 1 to bit 2 
of SPIST to clear the TXE error condition. This allows the user to read the 
status register without changing its value.)

Write-one-to-clear (W1C) bits only can be cleared by writing one 
to them. Writing zero does not clear (or have any effect on) a W1C 
bit.

The following table provides the bit descriptions for the SPIST register. 

The transmit buffer becomes full after it is written to; it becomes empty 
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift 
register value is loaded into the receive buffer; it becomes empty when the 
receive buffer is read.

Table 9-5. SPIST Register Bits

Bit Name Function Type Default

0 SPIF This bit is set when an SPI single-word transfer is complete. RO 1

1 MODF Mode-fault error. This bit is set in a master device when some 
other device tries to become the master.

W1C 0

2 TXE Transmission error. This bit is set when a transmission 
occurred with no new data in the TDBR register.

W1C 0

3 TXS TDBR data buffer status.
0 = empty
1 = full

RO 0

4 RBSY Receive error. This bit is set when data is received and the 
receive buffer is full.

W1C 0

5 RXS RX data buffer status.
0 = empty
1 = full

RO 0

6 TXCOL Transmit collision error. When this bit is set, corrupt data may 
have been transmitted.

W1C 0



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-17 
 

Serial Peripheral Interface (SPI) Port

Preliminary

Transmit Data Buffer (TDBR) Register
The Transmit Data Buffer Register (TDBR) is a 16-bit read-write (RW) reg-
ister. Data is loaded into this register before being transmitted. Just prior 
to the beginning of a data transfer, the data in TDBR is loaded into the Shift 
Data (SFDR) register. A normal core read of TDBR can be done at any time 
and does not interfere with, or initiate, SPI transfers.

When the DMA is enabled for transmit operation, data is loaded into this 
register before being transmitted and then loaded into the shift register 
just prior to the beginning of a data transfer. A normal core write to TDBR 
should not occur in this mode because this data will overwrite the DMA 
data to be transmitted.

When the DMA is enabled for receive operation, the contents of TDBR will 
be repeatedly transmitted. A normal core write to TDBR is permitted in this 
mode, and this data will be transmitted. If the “send zeroes” control bit 
(SZ) is set, TDBR may be reset to 0 in certain circumstances.

If multiple writes to TDBR occur while a transfer is already in progress, only 
the last data written will be transmitted; none of the intermediate values 
written to TDBR will be transmitted. Multiple writes to TDBR are possible 
but not recommended.

Receive Data Buffer (RDBR) Register
The Receive Data Buffer Register (RDBR) is a 16-bit read-only (RO) regis-
ter. At the end of a data transfer, the data in the shift register is loaded 
into RDBR. During a DMA receive operation, the data in RDBR is automati-
cally read by the DMA. A shadow register for the receive data buffer, RDBR, 
has been provided for use in debugging software. This register, RDBRSx, is 
at a different address from RDBR, but its contents are identical to that of 
RDBR. When a software read of RDBR occurs, the RXS bit is cleared and an 



SPI Registers

9-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPI transfer may be initiated (if TIMOD=00). No such hardware action 
occurs when the shadow register is read. RDBRS is a read-only (RO) 
register.

Data Shift (SFDR) Register
The Data Shift Register (SFDR) is the 16-bit data shift register; it is not 
accessible by either the software or the DMA. The SFDR is buffered so a 
write to TDBR will not overwrite the shift register during an active transfer.

Register Mapping
Table 9-6 on page 9-19 illustrates the mapping of all SPI registers. See the 
notes following the table for more information about this data.

Some items to note about Table 9-6 on page 9-19 include:

• SPICTL: The SPE and MSTR bits can also be modified by hardware 
(when MODF is set).

• SPIST: The SPIF bit can be set by clearing SPE in SPICTL.

• TDBR: The register contents can also be modified by hardware (by 
DMA and/or when SZ=1).

• RDBR: When this register is read, hardware events are triggered.

• RDBRS0: This register has the same contents as RDBR, but no action 
is taken when it is read.

• SPID_SRP, SPID_SRA, and SPID_CNT only can be written to via soft-
ware when the DAUTO DMA configuration bit is set.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-19 
 

Serial Peripheral Interface (SPI) Port

Preliminary

• SPID_CFG: Three of the control bits (TRAN, DCOME, and DERE) only 
can be written to via software when the DAUTO DMA bit is set.

• SPID_CFG: The MODF, TXE, and RBSY bits are sticky; these bits remain 
set even if the corresponding SPIST bits are cleared.

SPI Transfer Formats
The ADSP-2199x SPI supports four different combinations of serial clock 
phase and polarity. The user application code can select any of these com-
binations using the CPOL and CPHA bits in the control register.

Table 9-6. SPI Register Mapping

Register Name Function

SPICTL SPI port control

SPIFLG SPI port flag

SPIST SPI port status

TDBR SPI port transmit data buffer

RDBR SPI port receive data buffer

SPIBAUD SPI port baud control

RDBRS0 SPI port data

SPID_PTR SPI port DMA current pointer

SPID_CFG SPI port DMA configuration

SPID_SRP SPI port DMA start page

SPID_SRA SPI port DMA start address

SPID_CNT SPI port DMA count

SPID_CP SPI port DMA next descriptor pointer

SPID_CPR SPI port DMA descriptor ready

SPID_IRQ SPI port interrupt status



SPI Transfer Formats

9-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The following figures, Figure 9-4 on page 9-21 and Figure 9-5 on 
page 9-22, demonstrate the two basic transfer formats as defined by the 
CPHA bit; one diagram is for CPHA=0, and the other is for CPHA=1. Two 
waveforms are shown for SCK: one for CPOL=0 and the other for CPOL=1. 
The diagrams may be interpreted as master or slave timing diagrams since 
the SCK, MISO, and MOSI pins are directly connected between the master 
and the slave. The MISO signal is the output from the slave (slave transmis-
sion), and the MOSI signal is the output from the master (master 
transmission). The SCK signal is generated by the master, and the SPISS 
signal is the slave device select input to the slave from the master. The dia-
grams represent an 8-bit transfer (SIZE=0) with MSB first (LSBF=0). Any 
combination of the SIZE and LSBF bits of the SPICTL register is allowed. 
For example, a 16-bit transfer with LSB first is another possible 
configuration.

The clock polarity and the clock phase should be identical for the master 
device and the slave device involved in the communication link. The 
transfer format from the master may be changed between transfers to 
adjust to various requirements of a slave device.

When CPHA=0, the slave select line, SPISS, must be inactive (HIGH) 
between each serial transfer. This is controlled automatically by the SPI 
hardware logic. When CPHA=1, SPISS may either remain active (LOW) 
between successive transfers or be inactive (HIGH). This must be con-
trolled by the software.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-21 
 

Serial Peripheral Interface (SPI) Port

Preliminary

The following figure shows the SPI transfer protocol for CPHA=0. Note that 
SCK starts toggling in the middle of the data transfer, SIZE=0, and LSBF=0.

Figure 9-4. SPI transfer protocol for CPHA=0

CLOCK CYCLE NUMBER

SCK (CPOL=0)

SCK (CPOL=1)

MOSI (FROM MASTER)

MISO (FROM SLAVE)

SPISS (TO SLAVE)

1 2 3 4 5 6 7 8

MSB LSB

MSB

(*=UNDEFINED)

*

*

*

6 5 4 3 2 1

6 5 4 3 2 1

LSB



SPI General Operation

9-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The following figure shows the SPI transfer protocol for CPHA=1. Note that 
SCK starts toggling at the beginning of the data transfer, SIZE=0, and 
LSBF=0. 

SPI General Operation
The SPI in ADSP-2199x can be used in a single-master as well as 
multi-master environment. The MOSI, MISO, and the SCK signals are all tied 
together in both configurations. SPI transmission and reception are always 
enabled simultaneously, unless the broadcast mode has been selected. In 
broadcast mode, several slaves can be enabled to receive, but only one of 
the slaves must be in transmit mode driving the MISO line. If the trans-
mit or receive is not needed, it can simply be ignored. This section 
describes the clock signals, SPI operation as a master and as a slave, and 
the error generation.

Figure 9-5. SPI Transfer Protocol for CPHA=1

CLOCK CYCLE NUMBER

SCK (CPOL=0)

SCK (CPOL=1)

MOSI (FROMMASTER)

MISO (FROM SLAVE)

SPISS (TO SLAVE)

1 2 3 4 5 6 7 8

MSB LSB

MSB

*

*

*

6 5 4 3 2 1

6 5 4 3 2 1

LSB

(*=UNDEFINED)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-23 
 

Serial Peripheral Interface (SPI) Port

Preliminary

Precautions must be taken when changing the SPI module configuration, 
in order to avoid data corruption. The configuration must not be changed 
during a data transfer. The clock polarity should only be changed when no 
slaves are selected (except when an SPI communication link consists of a 
single master and a single slave, CPHA=1, and the slave’s slave-select input is 
always tied LOW; in this case the slave is always selected, and data corrup-
tion can be avoided by enabling the slave only after both the master and 
slave devices have been configured).

In a multi-master or multi-slave SPI system, the data output pins (MOSI 
and MISO) can be configured to behave as open-drain drivers, which pre-
vents contention and possible damage to pin drivers. An external pullup 
resistor is required on both the MOSI and MISO pins when this option is 
selected.

The WOM bit controls this feature. When WOM is set and the ADSP-2199x 
SPI is configured as a master, the MOSI pin will be three-stated when the 
data driven out on MOSI is a logic-high. The MOSI pin will not be 
three-stated when the driven data is a logic-low. Similarly, when WOM is set 
and the ADSP-2199x SPI is configured as a slave, the MISO pin will be 
three-stated if the data driven out on MISO is a logic-high.

Clock Signals 
The SCK signal is a gated clock that only is active during data transfers, and 
only for the duration of the transferred word. The number of active edges 
is equal to the number of bits driven on the data lines. The clock rate can 
be as high as one-fourth of the peripheral clock rate. For master devices, 
the clock rate is determined by the 16-bit value of the baud rate register 
(SPIBAUD); for slave devices, the value in the SPIBAUD register is ignored. 
When the SPI device is a master, SCK is an output signal; when the SPI is a 
slave, SCK is an input signal. Slave devices ignore the serial clock if the 
slave-select input is driven inactive (HIGH).



SPI General Operation

9-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SCK is used to shift out and shift in the data driven onto the MISO and MOSI 
lines. The data is always shifted out on one edge of the clock (referred to 
as the active edge) and sampled on the opposite edge of the clock (referred 
to as the sampling edge). Clock polarity and clock phase relative to data 
are programmable into the SPICTL control register and define the transfer 
format.

Master Mode Operation
When SPI is configured as a master (and DMA mode is not selected), the 
interface operates in the following manner:

1. The core writes to the SPIFLG register, setting one or more of the 
SPI flag select bits (FLS). This ensures that the desired slaves are 
properly de-selected while the master is configured.

2. The core writes to the SPICTL and SPIBAUD registers, enabling the 
device as a master and configuring the SPI system by specifying the 
appropriate word length, transfer format, baud rate, and other nec-
essary information.

3. If CPHA=1, the core activates the desired slaves by clearing one or 
more of the SPI flag bits (FLG) of SPIFLG.

4. The TIMOD bits in the SPICTL register determine the SPI transfer 
initiate mode. The transfer on the SPI link begins upon either a 
data write by the core to the transmit data buffer register (TDBR) or 
a data read of the receive data buffer (RDBR).



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-25 
 

Serial Peripheral Interface (SPI) Port

Preliminary

5. The SPI then generates the programmed clock pulses on SCK and 
simultaneously shifts data out of MOSI and shifts data in from MISO. 
Before starting to shift, the shift register is loaded with the contents 
of the TDBR register. At the end of the transfer, the contents of the 
shift register are loaded into RDBR.

6. With each new transfer initiate command, the SPI continues to 
send and receive words, according to the SPI transfer initialize 
mode.

If the transmit buffer remains empty, or the receive buffer remains full, 
the device operates according to the states of the SZ and GM bits in the 
SPICTL register. If SZ=1 and the transmit buffer is empty, the device 
repeatedly transmits 0’s on the MOSI pin; one word is transmitted for each 
new transfer initiate command. If SZ=0 and the transmit buffer is empty, 
the device repeatedly transmits the last word it transmitted before the 
transmit buffer became empty. If GM=1 and the receive buffer is full, the 
device continues to receive new data from the MISO pin, overwriting the 
older data in the RDBR buffer. If GM=0 and the receive buffer is full, the 
incoming data is discarded, and the RDBR register is not updated.



SPI General Operation

9-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Transfer Initiation from Master (Transfer Modes)
When a device is enabled as a Master, the initiation of a transfer is defined 
by the two TIMOD bits of the SPICTL register. Based on those two bits and 
the status of the interface, a new transfer is started upon either a read of 
RDBR or a write to TDBR. This is summarized in the following table.

Slave Mode Operation

When a device is enabled as a slave (and DMA mode is not selected), the 
start of a transfer is triggered by a transition of the SPISS select signal to 
the active state (LOW) or by the first active edge of the clock (SCK), 
depending on the state of CPHA.

Table 9-7. Transfer Initiation

TIMOD Function Transfer initiated upon Action, Interrupt

00 Transmit 
and Receive

Initiate new single-word trans-
fer upon read of RDBR and pre-
vious transfer completed.

Interrupt active when receive buffer 
is full.
Read of RDBR clears interrupt.

01 Transmit 
and Receive

Initiate new single-word trans-
fer upon write to TDBR and pre-
vious transfer completed.

Interrupt active when transmit 
buffer is empty.
Writing to TDBR clears interrupt.

10 Transmit or 
Receive 
with DMA

Initiate new multi-word transfer 
upon write to DMA enable bit. 
Individual word transfers begin 
with either a DMA write to 
TDBR or a DMA read of RDBR 
(depending on TRAN bit), and 
last transfer complete.

Interrupt active upon DMA error 
or multi-word transfer complete.
Write-1 to DMA Interrupt register 
clears interrupt.

11 Reserved N/A N/A



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-27 
 

Serial Peripheral Interface (SPI) Port

Preliminary

The following steps illustrate SPI operation in the slave mode:

1. The core writes to the SPICTL register to define the mode of the 
serial link to be the same as the mode setup in the SPI master.

2. To prepare for the data transfer, the core writes data to be trans-
mitted into the TDBR register.

3. Once the SPISS falling edge is detected, the slave starts sending and 
receiving data on active SCK edges.

4. Reception/transmission continues until SPISS is released or until 
the slave has received the proper number of clock cycles.

5. The slave device continues to receive/transmit with each new fall-
ing-edge transition on SPISS and/or active SCK clock edge.

If the transmit buffer remains empty, or the receive buffer remains full, 
the devices operates according to the states of the SZ and GM bits in the 
SPICTL register. If SZ=1 and the transmit buffer is empty, the device 
repeatedly transmits 0’s on the MISO pin. If SZ=0 and the transmit buffer is 
empty, it repeatedly transmits the last word it transmitted before the 
transmit buffer became empty. If GM=1 and the receive buffer is full, the 
device continues to receive new data from the MOSI pin, overwriting the 
older data in the RDBR buffer. If GM=0 and the receive buffer is full, the 
incoming data is discarded, and the RDBR register is not updated.



Error Signals and Flags

9-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Slave Ready for a Transfer

When a device is enabled as a slave, the following actions are necessary to 
prepare the device for a new transfer.

Error Signals and Flags
The status of a device is indicated by the SPIST register. See “SPI Status 
(SPIST) Register” on page 9-15 for more information about the SPIST 
register.

Mode-Fault Error (MODF)
The MODF bit is set in the SPIST register when the SPISS input pin of a 
device enabled as a master is driven low by some other device in the sys-
tem. This occurs in multi-master systems when another device is also 
trying to be the master. To enable this feature, the PSSE bit in SPICTL must 

Table 9-8. Transfer Preparation 

TIMOD Function Action, Interrupt

00 Transmit and 
Receive

Interrupt active when receive buffer is full.
Read of RDBR clears interrupt.

01 Transmit and 
Receive

Interrupt active when transmit buffer is empty.
Writing to TDBR clears interrupt.

10 Transmit or 
Receive with 
DMA

Interrupt configured in SPI DMA Configuration Register.
Interrupt active upon DMA error or multi-word transfer complete.
Write-1 to DMA Interrupt register clears interrupt.

11 Reserved N/A



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-29 
 

Serial Peripheral Interface (SPI) Port

Preliminary

be set. This contention between two drivers can potentially damage the 
driving pins. As soon as this error is detected, the following actions are 
taken:

1. The MSTR control bit in SPICTL is cleared, configuring the SPI 
interface as a slave.

2. The SPE control bit in SPICTL is cleared, disabling the SPI system.

3. The MODF status bit in SPIST is set.

4. An SPI interrupt is generated.

These four conditions persist until the MODF bit is cleared by a write-1 
(W1C) software operation. Until the MODF bit is cleared, the SPI cannot be 
re-enabled, even as a slave. Hardware prevents the user from setting either 
SPE or MSTR while MODF is set.

When MODF is cleared, the interrupt is deactivated. Before attempting to 
re-enable the SPI as a master, the state of the SPISS input pin should be 
checked to make sure the pin is high; otherwise, once SPE and MSTR are set, 
another mode-fault error condition will immediately occur. The state of 
the input pin is observable in the Programmable Flag data register (FLAGC 
or FLAGS).

As a result of SPE and MSTR being cleared, the SPI data and clock pin driv-
ers (MOSI, MISO, and SCK) will be disabled. However, the slave-select output 
pins will revert to being controlled by the Programmable Flag registers. 
This could lead to contention on the slave-select lines if these lines are still 
being driven by the ADSP-2199x. In order to ensure that the slave-select 
output drivers are disabled once a MODF error occurs, the program must 
configure the Programmable Flag registers appropriately.



Error Signals and Flags

9-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

When enabling the MODF feature, the program must configure as inputs all 
of the PFx pins which will be used as slave-selects; programs can do this by 
writing to the DIR register prior to configuring the SPI. This ensures that, 
once the MODF error occurs and the slave-selects are automatically reconfig-
ured as PFx pins, the slave-select output drivers will be disabled.

Transmission Error (TXE) Bit
The TXE bit is set in the SPIST register when all of the conditions of trans-
mission are met but there is no new data in TDBR (TDBR is empty). In this 
case, the contents of the transmission depend on the state of the SZ bit in 
the SPICTL register. The TXE bit is cleared by a write-1 (W1C) software 
operation.

Reception Error (RBSY) Bit
The RBSY flag is set in the SPIST register when a new transfer has com-
pleted before the previous data could be read from the RDBR register. This 
bit indicates that a new word was received while the receive buffer was 
full. The RBSY flag is cleared by a write-1 (W1C) software operation. The 
state of the GM bit in the SPICTL register determines whether the RDBR reg-
ister is updated with the newly-received data.

Transmit Collision Error (TXCOL) Bit
The TXCOL flag is set in the SPIST register when a write to the TDBR register 
coincides with the load of the shift register. The write to TDBR could be via 
the software or the DMA. This bit indicates that corrupt data may have 
been loaded into the shift register and transmitted; in this case, the data in 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 9-31 
 

Serial Peripheral Interface (SPI) Port

Preliminary

TDBR may not match what was transmitted. This error can easily be 
avoided by proper software control. The TXCOL bit is cleared by a write-1 
(W1C) software operation.

This bit is never set when the SPI is configured as a slave with 
CPHA=0; the collision may occur, but it cannot be detected.

Beginning and Ending of an SPI Transfer
An SPI transfer’s defined start and end depend on whether the device is 
configured as a master or a slave, the CPHA mode selected, and the transfer 
initiation mode (TIMOD) selected. For a master SPI with CPHA=0, a transfer 
starts when either the TDBR register is written or the RDBR register is read, 
depending on TIMOD. At the start of the transfer, the enabled slave-select 
outputs are driven active (LOW). However, the SCK signal remains inac-
tive for the first half of the first cycle of SCK. For a slave with CPHA=0, the 
transfer starts as soon as the SPISS input goes low.

For CPHA=1, a transfer starts with the first active edge of SCK for both slave 
and master devices. For a master device, a transfer is considered finished 
after it sends the last data and simultaneously receives the last data bit. A 
transfer for a slave device ends after the last sampling edge of SCK.

The RXS bit defines when the receive buffer can be read; the TXS bit defines 
when the transmit buffer can be filled. The end of a single-word transfer 
occurs when the RXS bit is set, indicating that a new word has just been 
received and latched into the receive buffer, RDBR. RXS is set shortly after 
the last sampling edge of SCK. The latency is typically a few HCLK cycles 
and is independent of CPHA, TIMOD, and the baud rate. If configured to 
generate an interrupt when RDBR is full (TIMOD=00), the interrupt goes 
active 1 HCLK cycle after RXS is set. When not relying on this interrupt, 
the end of a transfer can be detected by polling the RXS bit.



DMA

9-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

To maintain software compatibility with other SPI devices, the SPIF bit is 
also available for polling. This bit may have a slightly different behavior 
from that of other commercially available devices. For a slave device, SPIF 
is set at the same time as RXS; for a master device, SPIF will be set one-half 
SCK period after the last SCK edge, regardless of CPHA or CPOL.

Thus, the time at which SPIF is set depends on the baud rate. In general, 
SPIF will be set after RXS, but at the lowest baud rate settings (SPIBAUD<4). 
SPIF will be set before RXS is set, and consequently before new data has 
been latched into RDBR, because of the latency. Therefore, for SPIBAUD=2 
or SPIBAUD=3, it is necessary to wait for RXS to be set (after SPIF is set) 
before reading RDBR. For larger SPIBAUD settings, RXS is guaranteed to be 
set before SPIF is set.

DMA
The SPI port also can use Direct Memory Accessing (DMA). For more 
information on DMA, see “I/O Processor” on page 6-1. For more infor-
mation specifically on SPI DMA, see the following sections:

• “SPI Port DMA Settings” on page 6-16

• “Using Serial Peripheral Interface (SPI) Port DMA” on page 6-21

• “SPI DMA in Master Mode” on page 6-21

• “SPI DMA in Slave Mode” on page 6-23

• “SPI DMA Errors” on page 6-25



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-1 
 

Timer

Preliminary

10 TIMER

Overview
The ADSP-2199x features three identical 32-bit timers; each timer can be 
individually configured in any of three modes:

• Pulsewidth Modulation (PWMOUT) mode

• Pulsewidth Count and Capture (WDTH_CAP) mode

• External Event Watchdog (EXT_CLK) mode

Each timer has one dedicated bi-directional chip pin, TMRx. This pin func-
tions as an output pin in the PWMOUT mode and as an input pin in the 
WDTH_CAP and EXT_CLK modes. To provide these functions, each timer has 



Overview

10-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

seven, 16-bit registers. For range and precision, six of these registers can be 
paired (High/Low) to allow for 32-bit values and appear in Figure 10-1 on 
page 10-2. 

The registers for each timer are:

• Timer x Configuration (T_CFGRx) registers

• Timer x High Word Count (T_CNTHx) registers

Figure 10-1. Timer Block Diagram

SUB

Period
(High word/Low word)

Count
(High word/Low word)

Pulsewidth
(High word/Low word)

Period Buffer Pulsewidth Buffer

16 (Read Only)

1616

–

Expire

I/O Memory Data Bus



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-3 
 

Timer

Preliminary

• Timer x Low Word Count (T_CNTLx) registers

• Timer x High Word Period (T_PRDHx) registers

• Timer x Low Word Period (T_PRDLx) registers

• Timer x High Word Pulsewidth (T_WHRx) registers

• Timer x Low Word Pulsewidth (T_WLRx) registers

Because the paired “counter” registers operate as a single value, the timer 
counters are 32-bits wide. When clocked internally, the clock source is the 
ADSP-2199x’s peripheral clock (HCLK). Assuming the peripheral clock is 
running at 80 MHz, the maximum period for the timer count is 
((232-1) * 12.5 ns) = 53.69 seconds.

Timer Global Status and Control (T_GSRx) registers indicate status of all 
three timers, requiring a single read to check the status of all three timers. 
Each T_GSRx register contains timer enable bits that enable the corre-
sponding timer (T_GSR0 enables TIMER0, etc.). Within T_GSRx, each timer 
has a pair of “sticky” status bits, that require a “write-one-to-set” (TIMENx) 
or “write-one-to-clear” (TIMDISx) —see Table 10-1 on page 10-5— to 
either enable or disable the timer. Writing a one to both bits of a pair dis-
ables that timer.

After the timer has been enabled, both its TIMENx and TIMDISx bits are set 
(=1). The timer starts counting three peripheral clock cycles after the 
TIMENx bit is set. Setting (writing 1 to) the timer’s TIMDISx bit stops the 
timer without waiting for any additional event.

Each T_GSRx register also contains an Interrupt Latch bit (TIMILx) and an 
Overflow/Error Indicator bit (OVF_ERRx) for each timer. These “sticky” 
bits are set by the timer hardware and may be watched by software. They 
need to be cleared in each timer’s corresponding T_GSRx register by soft-
ware explicitly. To clear, write a “one” to the corresponding bit.

Interrupt and overflow bits may be cleared simultaneously with 
timer enable or disable.



Overview

10-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

To enable a timer’s interrupts, set the IRQ_ENA bit in the timer’s Configu-
ration (T_CFGRx) register and unmask the timer’s interrupt by setting the 
corresponding bit of the IMASK register. With the IRQ_ENA bit cleared, the 
timer does not set its Interrupt Latch (TIMILx) bits. To poll the TIMILx 
bits without permitting a timer interrupt, programs can set the IRQ_ENA 
bit while leaving the timer’s interrupt masked.

With interrupts enabled, make sure that the interrupt service routine 
clears the TIMILx latch before the Rti instruction to assure that the inter-
rupt is not re-issued. In external clock (EXT_CLK) mode, the latch should 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-5 
 

Timer

Preliminary

be reset at the very beginning of the interrupt routine to not miss any 
timer event. To enable timer interrupts, set the IRQ_ENA bit in the proper 
Timer Configuration (T_CFGRx) register. 

To enable an individual timer, set the timer’s TIMEN bit in the correspond-
ing T_GSRx register. To disable an individual timer, set the timer’s TIMDIS 
bit in the corresponding T_GSRx register.

Table 10-1. Timer Global Status and Control (T_GSRx) Register Bits

Bit(s) Name Definition

0 TIMIL0 Timer 0 Interrupt Latch Write one to clear (also an output)

1 TIMIL1 Timer 1 Interrupt Latch Write one to clear (also an output)

2 TIMIL2 Timer 2 Interrupt Latch Write one to clear (also an output)

3 Reserved

4 OVF_ERR0 Timer 0 Overflow/Error Write one to clear (also an output)

5 OVF_ERR1 Timer 1 Overflow/Error Write one to clear (also an output)

6 OVF_ERR2 Timer 2 Overflow/Error Write one to clear (also an output)

7 Reserved

8 TIMEN0 Timer 0 Enable Write one to enable Timer 0

9 TIMDIS0 Timer 0 Disable Write one to disable Timer 0

10 TIMEN1 Timer 1 Enable Write one to enable Timer 1

11 TIMDIS1 Timer 1 Disable Write one to disable Timer 1

12 TIMEN2 Timer 2 Enable Write one to enable Timer 2

13 TIMDIS2 Timer 2 Disable Write one to disable Timer 2

14 - 15 Reserved



Overview

10-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Before enabling a timer, always program the corresponding timer’s Con-
figuration (T_CFGRx) register. This register defines the timer’s operating 
mode, the polarity of the TMRx pin, and the timer’s interrupt behavior. Do 
not alter the operating mode while the timer is running. For more infor-
mation on the T_CFGRx register, see Figure 23-22 on page 23-63.

Timer enable/disable timing appears in Figure 10-2 on page 10-6.

Because the timers are 32-bit, hardware support guarantees that high and 
low-words are always coherent whenever the DSP accesses the period or 
the pulsewidth registers. There is no similar support for DSP reads of the 
counter register itself. When a coherent read of the counter register’s high- 
and low-words is needed, software should stop (disable) the timer before 
reading the 32-bit counter value. 

Figure 10-2. Timer Enable and Disable Timing

HCLK

PWMOUT

HCLK
T COU NT

=M
T COU NT

= M+1
TC OUN T

=M +1
TC OUN T

=M +1

Timer Enable
Set

T IM EN
T im er

En abled

TPER IOD = 0x4
TPWID TH = 0x2
TCO UNT = 1

T COUN T
=xx

TC OUN T
=x x

TCO UNT
=1

T COU NT
=2

T C OU N T
=4

TC OUN T
=3

C le ar
TIMEN

T im er
Disab led

Timer Disable



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-7 
 

Timer

Preliminary

When the timer is disabled, the counter registers retain their state; when 
the timer is re-enabled, the counter is re-initialized based on the operating 
mode. The counter registers are read only. The software cannot overwrite 
or preset the counter value directly.

Any of the timers can be used to implement a watchdog functionality, 
which might be controlled by either an internal or an external clock 
source. 

For software to service the watchdog, disable the timer and re-enable it 
again. This resets the timer value. Servicing the watchdog periodically pre-
vents the count register from reaching the period value and prevents the 
timer interrupt from being generated. Assign a very high interrupt priority 
to this watchdog timer. When the timer reaches the period value and gen-
erates the interrupt, reset the DSP within the corresponding watchdog’s 
interrupt service routine.

Pulsewidth Modulation (PWMOUT) Mode
Setting the TMODE field to 01 in the timer’s configuration (T_CFGRx) regis-
ter enables the PWMOUT mode. In PWMOUT mode, the timer’s TMRx pin is an 
output. It is actively driven as long as the TMODE field remains 01.

The timer is clocked internally by HCLK. Depending on the PERIOD_CNT 
bit, the PWMOUT mode either generates pulsewidth modulation waveforms 
or generates a single pulse on the TMRx pin.

After setting TMODE to 01 but before enabling the timer, set the width and 
period registers to proper values. Note there are shadow registers for the 
T_PRDHx, T_PRDLx and T_WHRx registers. A write to the T_WLRx register trig-
gers these shadow registers to update the T_PRDHx, T_PRDLx and T_WHRx 
values. This guarantees coherency between all four registers.



Overview

10-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

When the timer gets enabled, the timer checks the period and width val-
ues for plausibility (independent of PERIOD_CNT) and does not start to 
count when any of the following conditions is true:

• Width equals to zero

• Period value is lower than width value

• Width equals to period

The timer module tests these conditions on writes to the T_WLRx register. 
Before writing to T_WLRx make sure that T_WHRx and the period registers 
are set accordingly.

On invalid conditions, the timer sets both the TIMOVFx and the TIMIRQx 
bit after two HCLK cycles. The count register is not altered, then. Note 
that after reset, the timer registers are all zero.

If period and width values are valid after enabling, the count register is 
loaded with the value 0xFFFF FFFF – width. The timer counts upward to 
0xFFFF FFFE. Instead incrementing to 0xFFFF FFFF, the timer then 
reloads the counter with 0xFFFF FFFF – (period – width) and repeats.

In PWM_OUT mode, the TMRx pin is always driven low when the timer is 
disabled, regardless of the state of the PULSE_HI bit. When the timer is 
running, however, the TMRx pin polarity corresponds to the PULSE_HI bit 
setting.

PWM Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well defined period and duty cycle. This mode also 
generates periodic interrupts for real-time DSP processing. 

The 32-bit Period (T_PRDHx / T_PRDLx) and Width (T_WHRx / T_WLRx) regis-
ters are programmed with the values of the timer count period and 
pulsewidth modulated output pulsewidth.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-9 
 

Timer

Preliminary

When the timer is enabled in this mode, the TMRx pin is pulled to a 
de-asserted state each time the pulsewidth expires, and the pin is asserted 
again when the period expires (or when the timer gets started).

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the cor-
responding T_CFGRx register is either cleared or set (cleared causes a low 
assertion level, set causes a high assertion level).

If enabled, a timer interrupt is generated at the end of each period. An 
interrupt service routine must clear the interrupt latch bit TIMIRQx and 
might alter period and/or width values. In pulsewidth modulation applica-
tions, the software needs to update period and pulsewidth value while the 
timer is running. To guarantee coherency between not only the high and 
low-words but also between period and pulsewidth registers, a double 
buffer mechanism is in place. 

DSP core writes to the T_PRDHx, T_PRDLx, and T_WHRx registers do not 
become active until the DSP core writes to the T_WLRx register. If the soft-
ware would like to update only one of these three registers, it must rewrite 
the T_WLRx register afterward. When the T_WLRx value is not subject to 
change, the interrupt service routine might just read back the current 
value of the T_WLRx register and rewrite it again. On the next counter 
reload, all four registers are available to the timer. 

In this mode, the counter is reloaded at the end of every period as well as 
at the end of every pulse. The generated waveform depends on whether 
T_WLRx is updated before or after the pulse width expires, due to the reload 
sequence described in the previous paragraph.

If the pulse width needs to be altered on-the-fly while the timer is run-
ning, typically accomplished by an interrupt service routine writes new 
values to the width registers. As illustrated in Figure 10-3 on page 10-10 



Overview

10-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

this causes the generation of one erroneous period if the write to the 
TIMERx_WIDTH_LO register occurs before the on-going pulse width expires. 
This is very likely because the interrupt is requested at the end of a period.

If an application forbids single mis-aligned PWM patterns the procedure 
illustrated in picture [PWM Picture 2] can be used. It alters the Period 
value temporary and restores the original period value the very next PWM 
cycle in order to obtain constant PWM periods.

Note that the period settings can be altered without similar impacts.

Figure 10-3. Possible Period Failure Due to On-the-fly Width Update

Figure 10-4. Recommended On-the-fly Width Update Procedure

WIDTH OLD PERIOD
WIDTH OLD

WIDTH OLD

WIDTH = WIDTH NEW

PERIOD WRONG PERIOD

PERIOD
WIIDTH NEW

WIDTH NEW PERIOD
WIIDTH NEW

WIDTH NEW

PERIOD

WIDTH OLD PERIOD
WIDTH OLD

WIDTH OLD

WIDTH = WIDTH NEW

PERIOD

PERIOD
WIIDTH OLD

+ WIDTH NEW
- WIDTH NEW

WIDTH NEW PERIOD
WIIDTH

PERIODPERIOD

PERIOD = PERIOD OLD - WIDTH OLD + WIDTH NEW
PERIOD = PERIOD OLD



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-11 
 

Timer

Preliminary

To generate the maximum frequency on the TMRx output pin, set the 
period value to 2 and the pulsewidth to 1. This makes TMRx toggle each 
HCLK clock producing a duty cycle of 50%.

Single-Pulse Generation

If the PERIOD_CNT bit is cleared, the PWMOUT mode generates a single pulse 
on the TMRx pin. This mode also can be used to implement well-defined 
software delay often required by state-machines etc. The pulse width is 
defined by the width register and the period register is not used.

At the end of the pulse the interrupt latch bit TIMIRQx gets set and the 
timer is stopped automatically. Always set the PULSE_HI bit in single-pulse 
mode in order to generate an active-high pulse. Active-low pulses are not 
recommended in this mode, because the TMRx pin drives low when the 
timer is not running.

Pulsewidth Count and Capture (WDTH_CAP) Mode
In WDTH_CAP mode, the TMRx pin is an input pin. The internally clocked 
timer is used to determine period and pulsewidth of externally applied 
rectangular waveforms. Setting the TMODE field to 10 in the T_CFGRx 
enables this mode. The period and width registers are read-only in 
WIDTH_CNT mode.



Overview

10-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

When enabled in this mode, the timer resets words of the count in the 
T_CNTHx and T_CNTLx registers value to 0x0000 0001 and does not start 
counting until it detects the leading edge on the TMRx pin.

When the timer detects a first leading edge, it starts incrementing. When 
it detects the trailing edge of a waveform, the timer captures the current 
32-bit value of the T_CNTHx and T_CNTLx count registers into the T_WHRx 
and T_WLRx width registers. At the next leading edge, the timer transfers 
the current 32-bit value of the T_CNTHx and T_CNTLx count registers into 

Figure 10-5. Timer Flow Diagram - WDTH_CAP Mode

TIMER
PERIOD

TIMER
COUNTER

TIMER
WIDTH

INTERRUPT
LOGIC

TRAILING
EDGE

DETECT

LOAD
CONTROL

LEADING
EDGE

DETECT

HCLK

LOAD RESET OVF_ERRx LOAD

TIMILx

PERIOD_CNT

IRQ_ENA

PULSE_HI

TMRx

DATA BUS16

32 32

TIMILx

IRQ_ENA



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-13 
 

Timer

Preliminary

the T_PRDHx and T_PRDLx period register. The count registers are reset to 
0x0000 0001 again, and the timer continues counting until it is either dis-
abled or the count value reaches 0xFFFF FFFF.

In this mode, software can measure both the pulsewidth and the pulse 
period of a waveform. To control the definition of “leading edge” and 
“trailing edge” of the TMRx pin, the PULSE_HI bit in the T_CFGRx register is 
set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated 
by a falling edge, the count register is captured to the width register on the 
rising edge, and the period is captured on the next falling edge.

The PERIOD_CNT bit in the T_CFGRx register controls whether an enabled 
interrupt is generated when the pulsewidth or pulse period is captured. If 
the PERIOD_CNT bit is set, the interrupt latch bit (TIMILx) gets set when the 
pulse period value is captured. If the PERIOD_CNT bit is cleared, the TIMILx 
bit gets set when the pulse width value is captured.

If the PERIOD_CNT bit is cleared, the first period value has not yet been 
measured when the first interrupt is generated, so the period value is not 
valid. If the interrupt service routine reads the period value anyway, the 
timer returns a period zero value in this case.

With IRQ_ENA set, the width registers become sticky in WDTH_CAP mode. 
Once a Pulse Width event (trailing edge) has been detected and properly 
latched the width registers do not update anymore unless the IRQx bit is 
cleared by software. The Period registers still update every time a leading 
edge is detected.

A timer interrupt (if enabled) is also generated if the count register reaches 
a value of 0xFFFF FFFF. At that point, the timer gets disabled automati-
cally, and the TIMOVFx status bit is set, indicating a count overflow. 
TIMIRQx and TIMOVFx are sticky bits, and software has to explicitly clear 
them. 



Code Examples

10-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The first width value captured in WDTH_CAP mode is erroneous due to syn-
chronizer latency. To avert this error, software must issue two NOP 
instructions between setting WDTH_CAP mode and setting TIMEN. TIMEN is 
set subsequently without NOPs.

External Event Watchdog (EXT_CLK) Mode
In EXT_CLK mode, the TMRx pin is an input. The timer works as a counter 
clocked by any external source, which can also be asynchronous to the 
DSP clock. Setting the TMODE field to 11 in the T_CFGRx register enables 
this mode. Both the T_PRDHx and T_PRDLx period registers are programmed 
with the value of the maximum timer external count.

After the timer has been enabled it waits for the first rising edge on the 
TMRx pin. This edge forces the count register to be loaded by the value 
0xFFFF FFFF – Period. Every subsequent rising edge increments the 
count register. After reaching the count value 0xFFFF FFFE the TIMIRQx 
bit is set and an interrupt is generated. The next rising edge reloads the 
count register again by 0xFFFF FFFF – Period.

The configuration bits TIN_SEL, PULSE_HI, and PERIOD_CNT have no effect 
in this mode. Also, TIMOVFx is never set. The width register is unused.

In this mode, an external clock source can use the timer to wake up the 
DSP from the sleeping mode even if HCLK has been stopped.

Code Examples
This section describes how to setup the timer. In PWMOUT mode, when 
Timer0 width expires, counter is loaded with (period – width) and contin-
ues counting. When period expires, counter is loaded the width value 
again and the cycle repeats. TMRx pin is alternately driven high/low, deter-
mined by PULSE_HI, at each zero. When the width or period expires, 
TIMIL0 (if enabled) is set depending on PERIOD_CNT bit in T_CFGR0. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-15 
 

Timer

Preliminary

Timer Example Steps
TIMER0 is setup in PWMOUT mode. It is intended to toggle General Purpose 
I/O’s (GPIO) ON/OFF inside Timer0 Interrupt Service Routine at a 1Hz 
rate. This is done assuming a 160Mhz core clock (CCLK) and 80Mhz 
peripheral clock (HCLK).

Prior to initializing or re-configuring the Timer, it is best to reset TIMEN. 
Because the intended mode of operation in this example is PWMOUT, soft-
ware sets the TMODE field to 01 in the T_CFGR0 register to select PWM_OUT 
operation. As a result, this configures TMRx pin as an output pin with its 
polarity determined by PULSE_HI.

1 – Generates a positive active Width Pulse waveform at 
TMRx pin.
0 – Generates a negative active Width Pulse waveform at 
TMRx pin.

This polarity is dependent on the application, but in this example, it is set 
to be positive active Width Pulse. As well, we initialize to generate a 
PWMOUT output, and enable Timer0 interrupt requests.

ax0 = 0x001D;

/* PWM_OUT mode, Positive Active Pulse, Count to end of */

IO(T_CFGR0) = ax0;

/* period,Int Request Enable, Timer_pin select */

Next, Period and Width register values are initialized. The user updates 
the high-low Period values first. Once the Period value has been updated, 
the user must update the high-word Width value followed by the 
low-word Width value. Updating the low-word Width value is what actu-
ally transfers the Period and Width values to their respective Buffers. 
Note: Ensure that Period > Width value.

ax0 = 0x0262;

IO(T_PRDH0) = ax0;



Code Examples

10-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

/* Timer 0 Period register (high word) */

ax0 = 0x5A00;

IO(T_PRDL0) = ax0;

/* Timer 0 Period register (low word) */

ax0 = 0x0131;

IO(T_WHR0) = ax0;

/* Timer 0 Width register (high word) */

ax0 = 0x2D00;

IO(T_WLR0) = ax0;

/* Timer 0 Width register (low word) */

Because TIMEN0 is sticky, enabling the Timer0 requires a 1 to be written to 
bit 8 of the Timer 0 Global Status and Sticky register (T_GSR0). The Timer 
starts 3 cycles after software enables it. In those three seconds, the Timer 
performs boundary Exception checks on the Period and Width values:

• If (Width = 0 or Period < Width or Period = Width) both OVF_ERR 
and TIMILx are set.

• If there are no Exceptions, the Width value is loaded in Counter 
and it starts counting.

Writing bit 9 of T_GSR0 disables Timer0. When disabled, the Counter and 
other registers retain their state. When the timer is re-enabled, the Buffers 
and Counter are re-initialized from the Period/Width registers based on 
the TMODE field in the T_CFGR0 register. 

ax0 = 0x0100;

/* Enable Timer0 */

IO(T_GSR0) = ax0;

Lastly, global interrupts are enabled.

ENA INT;

/*Enable Interrupts */

RTS;



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-17 
 

Timer

Preliminary

The PFx pins are toggled on/off inside the Timer0 Interrupt Service Rou-
tine. The interrupt is generated when Period count expires:

AX0 = 0x000F;

AR = 0;

IOPG = General_Purpose_IO;

AX1 = DM(Timer__Flag_Polarity);

AR = TGLBIT 0x0 OF AX1;

/* Toggle Status flag */

if eq jump TURN_OFF;

/* Determine if GPIO was ON or OFF */

TURN_ON:

IO(FLAGS) = AX0;

/* Turn ON GPIOS 0, 1, 2, 3 */

DM(Timer__Flag_Polarity) = AR;

IOPG = ay1;

DIS SR;

RTI;

TURN_OFF: 

IO(FLAGC) = AX0;

* Turn OFF GPIOS 0, 1, 2, 3 */

DM(Timer__Flag_Polarity) = AR;

IOPG = ay1;

DIS SR;

RTI;

In the sections that follow, code illustrates the Timer0 initialization and 
operation for the ADSP-2199x.



Code Examples

10-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Timer0 Initialization Routine
This example shows initialization code for Timer0. This routine is 
intended for use with the ADSP-2199x EZ-Kit Lite Evaluation Platform.

#include <def-2199x.h>

/*GLOBAL DECLARATIONS*/

.GLOBAL      _main;

.GLOBAL    Start;

/*Program memory code*/

.SECTION /pm program;

Start:

_main:

   call Program_Timer_Interrupt;

   /* Initialize Interrupt Priorities */

   call General_Purpose_Intitialization;

   /* Initialize General Purpose I/O */

   call Timer_register_Initialization;

   /* Initialize Timer0 */

wait_forever:

   nop;

   nop;

   nop;

   nop;

   jump wait_forever;

/*INTERRUPT PRIORITY CONFIGURATION*/

.SECTION /pm program;

Program_Timer_Interrupt:

     IOPG = 0;



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-19 
 

Timer

Preliminary

     ar=io(SYSCR); /* Map Interrupt Vector Table to Page 0*/

     ar = setbit 4 of ar;

     io(SYSCR)=ar;

   DIS int;        /* Disable all interrupts */

     IRPTL = 0x0; /* Clear all interrupts */

     ICNTL = 0x0; /* Interrupt nesting disable */

     IMASK = 0;    /* Mask all interrupts */

      IOPG = Interrupt_Controller_Page;

   ar = 0xBBB1;    /* Assign Timer0 with priority of 1 */

     io(IPR5) = ar;

     ar = 0xBBBB; /* Assign remainder with lowest priority */

     io(IPR0) = ar;

     io(IPR1) = ar;

   io(IPR3) = ar;

   AY0=IMASK;

   AY1=0x0020;     /* Unmask Timer0 Interrupt */

   AR = AY0 or AY1;

   IMASK=AR;

   RTS;

/*INITIALIZE GENERAL PURPOSE FLAGS*/

.SECTION /pm program;

General_Purpose_Intitialization:

   IOPG = General_Purpose_IO;

   AY0 = IO(DIRS);

   AY0 = 0x000F; /* Configure FLAGS 0, 1, 2, and 3 as outputs */

   AR = AY0 OR AY0;

   IO(DIRS) = AR;

   AX1 = 0x000F; /* Turn OFF FLAGS 0, 1, 2, and 3 */

   IO(FLAGC) = AX1;

   AX1 = 0x000F; /* Turn ON FLAGS 0, 1, 2, and 3 */

   IO(FLAGS) = AX1;

   RTS;



Code Examples

10-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

/*TIMER REGISTER INTIALIZATION*/

.SECTION /pm program;

Timer_register_Initialization:

   IOPG = Timer_Page;

   ax0 = 0x001D;

   /* PWM_OUT mode, Positive Active Pulse, Count to end of */

   IO(T_CFGR0) = ax0;

   /* period ,Int Request Enable, Timer_pin select */

   ax0 = 0x0262;

   IO(T_PRDH0) = ax0;

   /* Timer 0 Period register (high word) */

   ax0 = 0x5A00;

   IO(T_PRDL0) = ax0;

   /* Timer 0 Period register (low word) */

   ax0 = 0x0131;

   IO(T_WHR0) = ax0;

   /* Timer 0 Width register (high word) */

   ax0 = 0x2D00;

   IO(T_WLR0) = ax0;

   /* Timer 0 Width register (low word) */

   ax0 = 0x0100;   /* Enable Timer0 */

   IO(T_GSR0) = ax0;

   ENA INT;        /* Globally Enable Interrupts */

   RTS;

Timer Interrupt Routine
This example shows a Timer interrupt service routine. This example is 
intended for use with the ADSP-2199x EZ-Kit Lite Evaluation Platform.

#include <ADSP-2199x.h>

/* EXTERNAL DECLARATIONS*/



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 10-21 
 

Timer

Preliminary

.EXTERN Start;

/* DM data */

.SECTION /dm data1;

.VAR    counter_int5 = 0;

.VAR    Timer__Flag_Polarity; 

/* PM Reset interrupt vector code */

.section/pm IVreset;

jump Start;

nop; nop; nop;

/* Timer ISR*/

.section/pm IVint5; 

ENA SR;

ay1 = IOPG;

IOPG = Timer_Page;

ax0 = 0x0001;

/* Clear Timer0 TIMIL0 */

IO(T_GSR0) = ax0;

ar = dm(counter_int5);

/* Interrupt counter */

ar = ar + 1;

dm(counter_int5) = ar;

Timer0_Interrupt_Handler:

AX0 = 0x000F;

AR = 0;

IOPG = General_Purpose_IO;

AX1 = DM(Timer__Flag_Polarity);



Code Examples

10-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

AR = TGLBIT 0x0 OF AX1;

/* Toggle Status flag */

if eq jump TURN_OFF;

/* Determine if GPIO was ON or OFF */

TURN_ON:

IO(FLAGS) = AX0;

/* Turn ON GPIOS 0, 1, 2, 3 */

DM(Timer__Flag_Polarity) = AR;

IOPG = ay1;

DIS SR;

RTI;

TURN_OFF:

IO(FLAGC) = AX0;

/* Turn OFF GPIOS 0, 1, 2, 3 */

DM(Timer__Flag_Polarity) = AR;

IOPG = ay1;

DIS SR;

RTI;



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 11-1 
 

JTAG Test-Emulation Port

Preliminary

11 JTAG TEST-EMULATION PORT

Overview
A boundary scan allows a system designer to test interconnections on a 
printed circuit board with minimal test-specific hardware. The scan is 
made possible by the ability to control and monitor each input and output 
pin on each chip through a set of serially scannable latches. Each input 
and output is connected to a latch, and the latches are connected as a long 
shift register so that data can be read from or written to them through a 
serial Test Access Port (TAP). The ADSP-2199x DSP contains a test 
access port compatible with the industry-standard IEEE 1149.1 (JTAG) 
specification. Only the IEEE 1149.1 features specific to the ADSP-2199x 
are described here. For more information, see the IEEE 1149.1 specifica-
tion and other documents listed in “References” on page 11-5.

The boundary scan allows a variety of functions to be performed on each 
input and output signal of the ADSP-2199x DSP. Each input has a latch 
that monitors the value of the incoming signal and can also drive data into 
the chip in place of the incoming value. Similarly, each output has a latch 
that monitors the outgoing signal and can also drive the output in place of 
the outgoing value. For bidirectional pins, the combination of input and 
output functions is available.



JTAG Test Access Port

11-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Every latch associated with a pin is part of a single serial shift register path. 
Each latch is a master/slave type latch with the controlling clock provided 
externally. This clock (TCK) is asynchronous to the ADSP-2199x system 
clock (CLKIN).

JTAG Test Access Port
The emulator uses JTAG boundary scan logic for ADSP-2199x communi-
cations and control. This JTAG logic consists of a state machine, a five 
pin Test Access Port (TAP), and shift registers. The state machine and 
pins conform to the IEEE 1149.1 specification. The TAP pins appear in 
Table 11-1 on page 11-2.

Refer to the IEEE 1149.1 JTAG specification for detailed information on 
the JTAG interface. The many sections of this chapter assume a working 
knowledge of the JTAG specification.

Table 11-1. JTAG Test Access Port (TAP) Pins

Pin Function

TCK (input) Test Clock: pin used to clock the TAP state machine.1

1   Asynchronous with CLKIN

TMS (input) Test Mode Select: pin used to control the TAP state machine sequence.1

TDI (input) Test Data In: serial shift data input pin.

TDO (output) Test Data Out: serial shift data output pin.

TRST (input) Test Logic Reset: resets the TAP state machine



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 11-3 
 

JTAG Test-Emulation Port

Preliminary

INSTRUCTION Register
The Instruction Register allows an instruction to be shifted into the pro-
cessor. This instruction selects the test to be performed and/or the test 
data register to be accessed. The Instruction Register is 5-bit long with no 
parity bit. A value of 10000 binary is loaded (LSB nearest TDO) into the 
instruction register whenever the TAP reset state is entered.

Table 11-2 on page 11-3 lists the binary code for each instruction. Bit 0 is 
nearest TDO and bit 4 is nearest TDI. No data registers are placed into test 
modes by any of the public instructions. The instructions affect the 
ADSP-2199x DSP as defined in the 1149.1 specification. The optional 
instructions RUNBIST and USERCODE are not supported by the ADSP-2199x.

The entry under “Register” is the serial scan path, enabled by the instruc-
tion. No special values need be written into any register prior to selection 
of any instruction. The ADSP-2199x DSPs do not support self-test 
functions. 

Table 11-2. JTAG Instruction Register Codes

Code Register Instruction Type

00000 BOUNDARY EXTEST1

1   Fixed IR value, can not be moved.

Public

00001 IDCODE IDCODE1 Public

00010 BOUNDARY SAMPLE/PRELOAD1 Public

11111 BYPASS BYPASS1 Public

01110 BYPASS CLAMP Public

01101 BOUNDARY Reserved (HIGHZ) Public



BYPASS Register

11-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The data registers are selected via the instruction register. Once a particu-
lar data register’s value is written into the Instruction Register, and the 
TAP state is changed to SHIFT-DR, the particular data going into or out of 
the processor is dependent on the definition of the Data Register selected. 
See the IEEE 1149.1 specification for more details.

When registers are scanned out of the device, the MSB is the first bit to be 
out of the processor. 

BYPASS Register
The 1-bit Bypass register is fully defined in the 1149.1 specification. 

BOUNDARY Register
The Boundary data register is used by multiple JTAG instructions. All 
four of the JTAG instructions that use the Boundary register are required 
by the 1149.1 specification.

IDCODE Register
The device identification register for the ADSP-2199x DSP is the 32-bit 
IDCODE register. This register includes three fields: the ADI identification 
code (0x0E5), the part identification code (0x278B), and the revision num-
ber (0x0) (Revision number changes with each silicon revision). 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 11-5 
 

JTAG Test-Emulation Port

Preliminary

References
• IEEE Standard 1149.1-1990. Standard Test Access Port and 

Boundary-Scan Architecture.

To order a copy, contact IEEE at 1-800-678-IEEE.

• Maunder, C.M. & R. Tulloss. Test Access Ports and Boundary 
Scan Architectures.

IEEE Computer Society Press, 1991.

• Parker, Kenneth. The Boundary Scan Handbook.

Kluwer Academic Press, 1992.

• Bleeker, Harry, P. van den Eijnden, & F. de Jong. Boundary-Scan 
Test—A Practical Approach.

Kluwer Academic Press, 1993.

• Hewlett-Packard Co. HP Boundary-Scan Tutorial and BSDL Ref-
erence Guide.

(HP part# E1017-90001.) 1992.



References

11-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-1 
 

System Design

Preliminary

12 SYSTEM DESIGN

Overview
This chapter describes the basic system interface features of the 
ADSP-2199x family processors. The system interface includes various 
hardware and software features used to control the DSP processor.

Processor control pins include a RESET signal, clock signals, and interrupt 
requests. This chapter describes only the logical relationships of control 
signals; see the ADSP-2199x Mixed Signal DSP Controller Datasheet for 
actual timing specifications.

Pin Descriptions
This section provides functional descriptions of the ADSP-2199x proces-
sor pins. Refer to the relevant ADSP-2199x data sheet for more 
information, including pin numbers for the 176-Lead LQFP and the 
196-Lead Mini-BGA packages.

ADSP-2199x pin definitions are listed in Table 12-1 on page 12-2. All of 
the ADSP-2199x pins are asynchronous.



Pin Descriptions

12-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Unused inputs should be tied or pulled to VDDEXT or GND, except for 
ADDR21–0, DATA15–0, PF7-0, and inputs that have internal pullup or pull-
down resistors (TRST, BMODE0, BMODE1, BMODE2, BYPASS, TCK, TMS, TDI, 
PWMPOL, PWMSR, and RESET)—these pins can be left floating. These pins 
have a logic level hold circuit that prevents input from floating internally. 
PWMTRIP has an internal pulldown, but should not be left floating to avoid 
unnecessary PWM shutdowns.

The following symbols appear in the Type column of Table 12-1: G = 
Ground, I = Input, O = Output, P = Power Supply, B = Bidirectional, T = 
Three-State, D = Digital, A = Analog, CKG = Clock Generation pin, PU = 
Internal Pull Up, PD = Internal Pull Down, and OD = Open Drain.

Table 12-1. ADSP-2199x Pin Descriptions

Signal Name Type Description

A19 - A0 D, OT External Port Address Bus

D15 - D0 D, BT External Port Data Bus

RD D, OT External Port Read Strobe

WR D, OT External Port Write Strobe

ACK D, I External Port Access Ready Acknowledge

BR D, I, PU External Port Bus Request

BG D, O External Port Bus Grant

BGH D, O External Port Bus Grant Hang

MS0 D, OT External Port Memory Select Strobe 0

MS1 D, OT External Port Memory Select Strobe 1

MS2 D, OT External Port Memory Select Strobe 2

MS3 D, OT External Port Memory Select Strobe 3

IOMS D, OT External Port IO Space Select Strobe

BMS D, OT External Port Boot Memory Select Strobe 

CLKIN D,I,CKG Clock Input/Oscillator Input/ Crystal Connection 0

XTAL D,O,CKG Oscillator Output/ Crystal Connection 1

CLKOUT D, OT Clock Output (HCLK)

BYPASS D, I, PU PLL Bypass Mode Select

RESET D, I, PU Processor Reset Input



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-3 
 

System Design

Preliminary

POR D, O Power on Reset Output 

BMODE2 D, I, PU Boot Mode Select Input 2

BMODE1 D, I, PD Boot Mode Select Input 1

BMODE0 D, I, PU Boot Mode Select Input 0

TCK D, I JTAG Test Clock

TMS D, I, PU JTAG Test Mode Select

TDI D, I, PU JTAG Test Data Input

TDO D, OT JTAG Test Data Output 

TRST D, I, PU JTAG Test Reset Input 

EMU D, OT, PU Emulation Status

VIN0 A, I ADC Input 0

VIN1 A, I ADC Input 1

VIN2 A, I ADC Input 2

VIN3 A, I ADC Input 3

VIN4 A, I ADC Input 4

VIN5 A, I ADC Input 5

VIN6 A, I ADC Input 6

VIN7 A, I ADC Input 7

ASHAN A, I Inverting SHA_A Input

BSHAN A, I Inverting SHA_B Input

CAPT A, O Noise Reduction Pin

CAPB A, O Noise Reduction Pin

VREF A, I, O Voltage Reference Pin (Mode Selected by State of 
SENSE)

SENSE A, I Voltage Reference Select Pin

CML A, O Common Mode Level Pin

CONVST D, I ADC Convert Start Input

CANRX (ADSP-21992 only) D, I Controller Area Network (CAN) Receive

CANTX (ADSP-21992 only) D, O, OD Controller Area Network (CAN) Transmit

PF15 D, BT, PD General Purpose IO15

PF14 D, BT, PD General Purpose IO14

PF13 D, BT, PD General Purpose IO13

Table 12-1. ADSP-2199x Pin Descriptions (Cont’d)

Signal Name Type Description



Pin Descriptions

12-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

PF12 D, BT, PD General Purpose IO12

PF11 D, BT, PD General Purpose IO11

PF10 D, BT, PD General Purpose IO10

PF9 D, BT, PD General Purpose IO9

PF8 D, BT, PD General Purpose IO8

PF7/SPISEL7 D, BT, PD General Purpose IO7 / SPI Slave Select Output 7

PF6/SPISEL6 D, BT, PD General Purpose IO6 / SPI Slave Select Output 6

PF5/SPISEL5 D, BT, PD General Purpose IO5 / SPI Slave Select Output 5

PF4/SPISEL4 D, BT, PD General Purpose IO4 / SPI Slave Select Output 4

PF3/SPISEL3 D, BT, PD General Purpose IO3 / SPI Slave Select Output 3

PF2/SPISEL2 D, BT, PD General Purpose IO2 / SPI Slave Select Output 2

PF1/SPISEL1 D, BT, PD General Purpose IO1 / SPI Slave Select Output 1

PF0/SPISS0 D, BT, PD General Purpose IO0 / SPI Slave Select Input 0

SCK D, BT SPI Clock

MISO D, BT SPI Master In Slave Out Data

MOSI D, BT SPI Master Out Slave In Data

DT D, OT SPORT Data Transmit

DR D, I SPORT Data Receive

RFS D, BT SPORT Receive Frame Sync

TFS D, BT SPORT Transmit Frame Sync

TCLK D, BT SPORT Transmit Clock

RCLK D, BT SPORT Receive Clock

EIA D, I Encoder A Channel Input

EIB D, I Encoder B Channel Input

EIZ D, I Encoder Z Channel Input

EIS D, I Encoder S Channel Input

AUX0 D, O Auxiliary PWM Channel 0 Output

AUX1 D, O Auxiliary PWM Channel 1 Output

AUXTRIP D, I, PD Auxiliary PWM Shutdown Pin

TMR2 D, BT Timer 0 Input/Output Pin

TMR1 D, BT Timer 1 Input/Output Pin

Table 12-1. ADSP-2199x Pin Descriptions (Cont’d)

Signal Name Type Description



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-5 
 

System Design

Preliminary

Recommendations for Unused Pins
The following is a list of recommendations for unused pins.

• If the CLKOUT pin is not used, turn it OFF, by clearing bit 6 
(CKOUTEN) of the PLL control register.

• If the Interrupt/Programmable Flag pins are not used, configure 
them as inputs at reset and function as interrupts and input flag 
pins, pull the pins to an inactive state, based on the POLARITY set-
ting of the flag pin.

TMR0 D, BT Timer 2 Input/Output Pin

AH D, O PWM Channel A HI PWM

AL D, O PWM Channel A LO PWM

BH D, O PWM Channel B HI PWM

BL D, O PWM Channel B LO PWM

CH D, O PWM Channel C HI PWM

CL D, O PWM Channel C LO PWM 

PWMSYNC D, BT PWM Synchronization

PWMPOL D, I, PU PWM Polarity

PWMTRIP D, I, PD PWM Trip 

PWMSR D, I, PU PWM SR Mode Select

AVDD A, P Analog Supply Voltage

AVSS A, G Analog Ground

VDDINT D, P Digital Internal Supply

VDDEXT D, P Digital External Supply

GND D, G Digital Ground

Table 12-1. ADSP-2199x Pin Descriptions (Cont’d)

Signal Name Type Description



Pin States at Reset

12-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• If a flag pin is not used, configure it as an output. If for some rea-
son, it cannot be configured as an output, configure it as an input. 
Use a 100 kΩ pull-up resistor to VDD (or, if this is not possible, use 
a 100 kΩ pull-down resistor to GND).

• If a SPORT is not used completely and if the SPORT pins do not 
have a second functionality, disable the SPORT and let the pins 
float.

• If the receiver on a SPORT is the only part being used, use resistors 
on the other pins. However, if the other pins are outputs, let them 
float.

Pin States at Reset
The following table shows the state of each pin during and after reset. See 
“Pin Descriptions” on page 12-1 for a description of each of these pins.

The following symbols appear in the Type column of Table 12-1 on 
page 12-2: G = Ground, I = Input, O = Output, P = Power Supply, B = 
Bidirectional, T = Three-State, D = Digital, A = Analog, CKG = Clock 
Generation pin, PU = Internal Pull Up, PD = Internal Pull Down, and 
OD = Open Drain.
Table 12-2. Pin States at Reset

Signal Name Type State at Reset

A19 - A0 D, OT High Impedance

D15 - D0 D, BT High Impedance

RD D, OT Driven High

WR D, OT Driven High

ACK D, I Input, Undefined

BR D, I, PU Driven High

BG D, O Driven High; responds to BR during reset

BGH D, O Driven High

MS0 D, OT Driven High



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-7 
 

System Design

Preliminary

MS1 D, OT Driven High

MS2 D, OT Driven High

MS3 D, OT Driven High

IOMS D, OT Driven High

BMS D, OT Driven High

CLKIN D,I,CKG Input

XTAL D,O,CKG Output

CLKOUT D, OT Driven Low

BYPASS D, I, PU Driven High

RESET D, I, PU Driven High

POR D, O Driven Low

BMODE2 D, I, PU Driven High

BMODE1 D, I, PD Driven Low

BMODE0 D, I, PU Driven High

TCK D, I Driven High

TMS D, I, PU Driven High

TDI D, I, PU Driven High

TDO D, OT High Impedance

TRST D, I, PU Driven High

EMU D, OT, PU Driven High

VIN0 A, I ADC Input

VIN1 A, I ADC Input

VIN2 A, I ADC Input

VIN3 A, I ADC Input

VIN4 A, I ADC Input

VIN5 A, I ADC Input

VIN6 A, I ADC Input

VIN7 A, I ADC Input

ASHAN A, I Inverting SHA_A Input

BSHAN A, I Inverting SHA_B Input

CAPT A, O Noise Reduction Pin

Table 12-2. Pin States at Reset (Cont’d)

Signal Name Type State at Reset



Pin States at Reset

12-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

CAPB A, O Noise Reduction Pin

VREF A, I, O Voltage Reference Pin (Mode Selected by State of SENSE)

SENSE A, I Voltage Reference Select Pin

CML A, O Common Mode Level Pin

CONVST D, I Input, Undefined

CANRX D, I Driven High

CANTX D, O, OD High Impedance

PF15 D, BT, PD Driven Low

PF14 D, BT, PD Driven Low

PF13 D, BT, PD Driven Low

PF12 D, BT, PD Driven Low

PF11 D, BT, PD Driven Low

PF10 D, BT, PD Driven Low

PF9 D, BT, PD Driven Low

PF8 D, BT, PD Driven Low

PF7/SPISEL7 D, BT, PD Driven Low

PF6/SPISEL6 D, BT, PD Driven Low

PF5/SPISEL5 D, BT, PD Driven Low

PF4/SPISEL4 D, BT, PD Driven Low

PF3/SPISEL3 D, BT, PD Driven Low

PF2/SPISEL2 D, BT, PD Driven Low

PF1/SPISEL1 D, BT, PD Driven Low

PF0/SPISS0 D, BT, PD Driven Low

SCK D, BT Input, Undefined

MISO D, BT Input, Undefined

MOSI D, BT Input, Undefined

DT D, OT High Impedance

DR D, I Input, Undefined

RFS D, BT Input, Undefined

TFS D, BT Input, Undefined

TCLK D, BT Input, Undefined

Table 12-2. Pin States at Reset (Cont’d)

Signal Name Type State at Reset



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-9 
 

System Design

Preliminary

RCLK D, BT Input, Undefined

EIA D, I Input, Undefined

EIB D, I Input, Undefined

EIZ D, I Input, Undefined

EIS D, I Input, Undefined

AUX0 D, O Driven Low

AUX1 D, O Driven Low

AUXTRIP D, I, PD Driven Low

TMR2 D, BT Input, Undefined

TMR1 D, BT Input, Undefined

TMR0 D, BT Input, Undefined

AH D, O Depends on state of PWMPOL pin

AL D, O Depends on state of PWMPOL pin

BH D, O Depends on state of PWMPOL pin

BL D, O Depends on state of PWMPOL pin

CH D, O Depends on state of PWMPOL pin

CL D, O Depends on state of PWMPOL pin

PWMSYNC D, BT Input, Undefined

PWMPOL D, I, PU Driven High

PWMTRIP D, I, PD Driven Low

PWMSR D, I, PU Driven High

AVDD A, P Analog Supply Voltage

AVSS A, G Analog Ground

VDDINT D, P Digital Internal Supply

VDDEXT D, P Digital External Supply

GND D, G Digital Ground

Table 12-2. Pin States at Reset (Cont’d)

Signal Name Type State at Reset



Resetting the Processor (“Hard Reset”)

12-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Resetting the Processor (“Hard Reset”)
The RESET signal halts execution and causes a hardware reset of the proces-
sor; the program control jumps to address 0xFF0000 and begins execution 
of the boot ROM code at that location.

The ADSP-2199x can be booted via the EPROM or SPI port. The DSP 
looks at the values of three pins (BMODE0, BMODE1, and BMODE2) to deter-
mine the boot mode, as shown in the following table.

After the DSP has determined the boot mode, it loads the headers and 
data blocks. For some booting modes, the boot process uses DMA. For 
more information about DMA, see “I/O Processor” on page 6-1.

The RESET signal must be asserted (held low) when the processor is pow-
ered up to assure proper initialization.

The internal clock on the ADSP-2199x requires approximately 512 
clock cycles to stabilize. To maximize the speed of recovery from 
reset, CLKIN should run during the reset.

The power-up sequence is defined as the total time required for the crystal 
oscillator circuit to stabilize after a valid VDD is applied to the processor 
and for the internal PLL to lock onto the specific crystal frequency. A 

Table 12-3. Summary of Boot Modes for ADSP-2199x

Boot Mode BMODE2 BMODE1 BMODE0 Function

0 0 0 0 Illegal – Reserved

1 0 0 1 Boot from External 8-bit Memory over EMI

2 0 1 0 Execute from External 8-bit Memory

3 0 1 1 Execute from External 16-bit Memory

4 1 0 0 Boot from SPI0 ≤ 4k bits

5 1 0 1 Boot from SPI0 > 4k bits

6 1 1 0 Illegal – Reserved 

7 1 1 1 Illegal – Reserved 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-11 
 

System Design

Preliminary

minimum of 512 CLKIN cycles ensures that the PLL has locked, but it does 
not include the crystal oscillator start-up time. During the power-up 
sequence the RESET signal should be held low.

If a clock has not been supplied during RESET, the processor does 
not know it has been reset and the registers won’t be initialized to 
the proper values.

At powerup, if RESET is held low (asserted) without any input clock 
signal, the states of the internal transistors are unknown and 
uncontrolled. This condition could lead to processor damage.

“ADSP-2199x DSP Core Registers” on page 22-1 and “ADSP-2199x DSP 
I/O Registers” on page 23-1 contain tables showing the RESET states of 
various registers, including the processors’ on-chip memory-mapped sta-
tus/control registers. The values of any registers not listed are undefined at 
reset. The contents of on-chip memory are unchanged after RESET, except 
as shown in the tables for the I/O memory-mapped control/status regis-
ters. The CLKOUT signal continues to be generated by the processor during 
RESET, except when disabled.

The contents of the computation unit (ALU, MAC, Shifter) and data 
address generator (DAG1, DAG2) registers are undefined following RESET. 
When RESET is released, the processor’s booting operation takes place, 
depending on the states of the processor’s BMODEx and OPMODE pins. (Pro-
gram booting is described in “Boot Mode DMA Transfers” on page 6-27.) 

When the power supply and clock remain valid, the content of the 
on-chip memory is not changed by a software reset.

Resetting the Processor (“Soft Reset”)
A software reset is generated by writing ones to the Software Reset (SWR) 
bits in the Software Control register. Note that a software reset affects 
only the state of the core and the peripherals (as defined by the peripheral 



Resetting the Processor (“Soft Reset”)

12-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

registers documented in“ADSP-2199x DSP I/O Registers” on page 23-1). 
During a soft reset, the DSP does not sample the boot mode pins, rather it 
gets its boot information from the Next System Configuration (NXTSCR) 
register.

If the—No Boot on Software Reset—Run mode (RMODE) bit of the Next 
System Configuration Register has been set to 0, following a soft reset, 
program flow jumps to address 0xFF0000 and begins executing the boot 
ROM code at that location to reboot the DSP. A software reset can also be 
used to reset the boot mode without doing an actual reboot. If bit 4 of the 
Next System Configuration Register has been set to 1, following a soft 
reset, program flow jumps to address 0x000000 and completes reset with-
out rebooting the DSP.

The ADSP-2199x can be booted via the EPROM or SPI port. The DSP 
uses three bits of the System Configuration (SYSCR) register (loaded from 
NXTSCR on soft reset) to determine the boot mode, as shown in Figure 23-2 
on page 23-15. (Note that these three bits correspond to the BMODE0, 
BMODE1, and OPMODE pins used to determine the boot mode for a hard reset, 
as described in “Resetting the Processor (“Hard Reset”)” on page 12-10.)

“ADSP-2199x DSP Core Registers” on page 22-1 and “ADSP-2199x DSP 
I/O Registers” on page 23-1 contain tables showing the state of the pro-
cessor registers after a software reset that includes a DSP reboot. The 
values of any registers not listed are unchanged by a reboot.

Because the ADSP-2199x’s shadow write FIFO automatically 
pushes the write to internal memory as soon as the write does not 
compete with a read, this FIFO’s operation is completely transpar-
ent to programs, except in software reset/restart situations. To 
ensure correct operation after a software reset, software must per-
form two “dummy” writes to memory before writing the software 
reset bit. For more information, see “Shadow Write FIFO” on 
page 4-16



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-13 
 

System Design

Preliminary

Booting the Processor (“Boot Loading”)

Booting Modes
The ADSP-2199x supports a number of different boot modes that are 
controlled by the three dedicated hardware boot mode control pins 
(BMODE2, BMODE1 and BMODE0). The use of three boot mode control pins 
means that up to 8 different boot modes are possible. Of these only five 
modes are valid on the ADSP-2199x.

The ADSP-2199x exposes the boot mechanism to software control by pro-
viding a non maskable boot interrupt that vectors to the start of the on 
chip ROM memory block (at address 0xFF0000). A boot interrupt is 
automatically initiated following either a hardware initiated reset, via the 
RESET pin, or a software initiated reset, via writing to the Software Reset 
register Following either a hardware or a software reset, execution always 
starts from the boot ROM at address 0xFF0000, irrespective of the set-
tings of the BMODE2, BMODE1 and BMODE0 pins. The dedicated BMODE2, 
BMODE1 and BMODE0 pins are sampled during hardware reset.

The particular boot mode for the ADSP-2199x associated with the set-
tings of the BMODE2, BMODE1, and BMODE0 pins is defined in Table 12-3 on 
page 12-10.

Boot from External 8-Bit Memory (EPROM) over EMI

The EPROM boot routine located in boot ROM memory space executes a 
boot stream-formatted program located at address 0x010000 of boot 
memory space, packing 8-bit external data into 24-bit internal data. The 
External Port Interface is configured for the default clock multiplier (32) 
and read wait states (7). Following completion of this boot load mecha-
nism, program execution on the ADSP-2199x starts at address 0x000000.



Booting the Processor (“Boot Loading”)

12-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Execute from External 8-Bit Memory

Following reset (either hardware or software), the ROM code at address 
0xFF0000 configures the EMI interface for 8-bit accesses and jumps to 
address 0x010000. Execution of user code then starts from page 1 of exter-
nal memory space (at address 0x010000), packing 8-bit external data into 
24-bit internal data. The External Memory Interface is configured for the 
default clock multiplier (32) and read wait states (7).

Execute from External 16-Bit Memory

Following reset (either hardware or software), the ROM code at address 
0xFF0000 configures the EMI interface for 16-bit accesses and jumps to 
address 0x010000. Execution starts from page 1 of external memory space 
(at address 0x010000), packing 16-bit external data into 24-bit internal 
data. The External Memory Interface is configured for the default clock 
multiplier (32) and read wait states (7).

Boot from SPI0 with < 4k bits

 

The SPI port uses the SPISEL1 (re-configured PF1) output pin to select a 
single serial EPROM device, submits a read command at address 0x00, 
and begins clocking consecutive data into internal or external memory. 
Use only SPI-compatible EEPROMs of < 4k bits. During boot load, the 
SPIBAUD0 register is set to 60 so that the boot sequence occurs at an SPI 
communications rate of 625k bits/second (for a 80 MHz HCLK). The SPI 
boot routine located in internal ROM memory space executes a boot 
stream-formatted program, using the top 16 locations of page 0 program 
memory and the top 272 locations of page 0 data memory. Following 
completion of this boot load mechanism, program execution on the 
ADSP-2199x starts at address 0x000000. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-15 
 

System Design

Preliminary

Boot from SPI0 with > 4k bits

 The SPI0 port uses the SPI0SEL1 (re-configured PF1) output pin to select 
a single serial EPROM device, submits a read command at address 0x00, 
and begins clocking consecutive data into internal or external memory. 
Use only SPI-compatible EEPROMs of >4kbits. During boot load, the 
SPIBAUD0 register is set to 60 so that the boot sequence occurs at an SPI 
communications rate of 650kbits/second (for a 80 MHz HCLK). 

The SPI boot routine located in internal ROM memory space executes a 
boot stream-formatted program, using the top 16 locations of page 0 pro-
gram memory and the top 272 locations of page 0 data memory. 
Following completion of this boot load mechanism, program execution on 
the ADSP-2199x starts at address 0x000000.

The different SPI boot modes (<4k bits and >4kbits) relate to the different 
format for the header for the different SPI EEPROMs. 

Bootstream Format
The bootstream is comprised of a series of “headers” consisting of 4 words, 
followed by optional data blocks for non-zero data. Each header contains 
information on the type of data that immediately follows, the starting 
address and the word count. In case of booting via the SPI, after a header 
is read in (the Loader Kernel will use interrupts and a simple-counter 
based loop to determine the number of words to read in) the Loader Ker-
nel parses the header and sets up another counter-based loop to load in the 
actual data following this header. These transfers are interrupt-driven.

The first word in the boot-stream is a Control word that applies to all 
booting formats, with the exception of No-Boot. Individual bits within 
this word are set or cleared based on the method of booting and specific 
command line options specified by the user and loader utility. This is a 
16-bit field that contains among other things, information on the number 



Booting the Processor (“Boot Loading”)

12-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

of Wait States and the Width External port or serial EEPROM (8-bit or 
16-bit). The Control word appears in Figure 12-4 on page 12-16 and 
Figure 12-5 on page 12-16. 

 

7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1

Waitstate count
000 = 0 —to— 111 = 7
Clock divider select 
1:1 (if 000), 1:2 (if 001), 1:4 (if 010), 1:8 
(if 011), 1:16 (if 100), or 1:32 (if 101)
Operating mode
0 = SPORT2 enabled (SPI disabled)
1 = SPI enabled (SPORT2 disabled)
Reserved

Table 12-4. First Byte of Boot Control Word 

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

External Port Bus Width Select
0 = 8-bit
1 = 16-bit
Reserved

External EPROM Width Select
0 = 8-bit
1 = 16-bit
Reserved

Table 12-5. Second Byte of Boot Control Word 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-17 
 

System Design

Preliminary

Following the Control word is the regular bootstream, i.e., a series of 
“headers” and data payloads or “blocks”, with each header optionally fol-
lowed by a corresponding block of data. An example bootstream appears 
in Table 12-6 on page 12-17. 

Each header will consist of four 16-bit words: Flag, 24-bit Starting 
Address (uses two 16-bit words), and 16-bit Word Count.

The first word of a header is a 16-bit field consisting of a flag that indi-
cates whether the block of data to follow is either a 24-bit or 16-bit 
payload or zero-initialized data. The flag also uniquely identifies the last 

Table 12-6. Sample Bootstream

Word Type Description

Control Word 16-bit field (Wait State Information, EPROM/SPI Width)

Flag 16-bit field (PM/DM/Final PM/Final DM)

24-bit Starting Address 32-bit field (24-bit padded to yield 32-bits)

16-bit Word Count 16-bit field

 Data Word 16-bit field if 16-bit data
32-bit field if 24-bit EMI data
24-bit field if 24-bit SPI data 

Data Word (see above)

:

:

Flag (see above)

24-bit Starting Address (see above)

16-bit Word Count (see above)

Data Word (see above)

Data Word (see above)

:



Booting the Processor (“Boot Loading”)

12-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

block that needs to be transferred. Table 12-7 on page 12-18 lists the 
Flags with associated function. While data blocks always have to follow a 
header, data blocks do not follow headers indicate regions of memory that 
are to be “zero-filled”. 

The second word of a header (16-bit field) contains the lower 16 bits of 
the 24-bit start address to begin loading the data (destination). The first 
octet will be the 8 LSBs, followed by the next most significant bits (8-15), 
and so on.

The third word (16-bit field) contains the upper-most 8 bits of the 24-bit 
destination address, padded (suffixed) with a byte of zeros. 

The fourth word (16-bit field) contains the word count of the payload. As 
with the address, the first octet will be the 8 LSBs, the second octet will be 
the 8 MSBs. 

Table 12-7. Bootstream Flags

Flag Values Payload Type

0x00   24-bit data/PM

0x01   16-bit data/DM

0x02    Final PM

0x03    Final DM

0x04    zero-init PM

0x05     zero-init DM

0x06    zero-init Final PM

0x07 zero-init Final DM

0x08 through 0xFF Reserved



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-19 
 

System Design

Preliminary

These four words constitute the header. Following the header is the data 
block. 16-bit data is sent in a 16-bit field while 24-bit data is sent in a 
32-bit field. 

24-bit data is represented differently in the bootstream from 24-bit 
addresses. 32-bit data will be transmitted the following way – a 
byte of zeros, bits 0-7, followed by bits 8-15, and finally bits 16-24. 
Refer to Figure 5.1(a) for details.

Table 12-8 on page 12-19 and Table 12-9 on page 12-20 show example 
bootstreams when booting via the EMI, from an 8-bit device and a 16-bit 
device respectively. Since the DMA engine does not support 8-bit trans-
fers (internal packing has to be one of either 8-16, or 8-24, or 16-16, or 
16-24 bits), to load in the 4-word header, the word count needs to be set 
to 4 in either case.

Table 12-8. 8-bit Device External Memory Interface Bootstream Format 
in Little-Endian Style 

D15:D8 D7:D0

Not used Wait states

Not used Width

Not used LSB of Flag

Not used MSB of Flag

Not used LSB of Addr

Not used 8-15 of Addr

Not used MSB of Addr

Not used 00

Not used LSB of Word count

Not used MSB of Word count

Not used LSB of Word

Not used MSB of Word

: :

Not used 00

Not used LSB of Data Word



Booting the Processor (“Boot Loading”)

12-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Not used 8-15 of Data Word

Not used MSB of Data Word

Table 12-9. 16-bit Device External Memory Interface Bootstream Format 
in Little-Endian Style 

D15:D8 D7:D0

00 Wait states

00 Width

MSB of Flag LSB of Flag

15-8 of Addr LSB of Addr

00 MSB of Addr

MSB of Word count LSB of Word count

MSB of Word LSB of Word

: :

: :

MSB of Word LSB of Word

LSB of Data Word 00

MSB of Data Word 15-8 of Word

Table 12-8. 8-bit Device External Memory Interface Bootstream Format 
in Little-Endian Style  (Cont’d)

D15:D8 D7:D0



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-21 
 

System Design

Preliminary

Unlike EMI booting, 24-bit data is now represented as three bytes. 
Table 12-10 on page 12-21 shows the bootstream format when booting 
via the SPI. 

The last block to be read/initialized will be the “final DM” block. This 
final block is also read in with direct core accesses. Following the final 
transfer, the interrupt service routine performs some housecleaning and 
transfers program control to the first location of page 0. 

Managing DSP Clocks
The ADSP-2199x can be clocked by a crystal oscillator or a buffered, 
shaped clock derived from an external clock oscillator. If a crystal oscilla-
tor is used, the crystal should be connected across the CLKIN and XTAL 

Table 12-10. Bootstream Format for 8-bit SPI Port Booting 

D15:D8 D7:D0

Not used Wait states

Not used Width

Not used LSB of Flag

Not used MSB of Flag

Not used LSB of Addr

Not used 8-15 of Addr

Not used MSB of Addr

Not used 00

Not used LSB of Word count

Not used MSB of Word count

Not used LSB of Word

Not used MSB of Word

: :

Not used LSB of Data Word

Not used 8-15 of Data Word

Not used MSB of Data Word



Managing DSP Clocks

12-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

pins, with two capacitors connected as shown in Figure 12-1 on 
page 12-23. Capacitor values are dependent on crystal type and should be 
specified by the crystal manufacturer. A parallel resonant, fundamental 
frequency, microprocessor grade crystal should be used for this 
configuration.

If a buffered, shaped clock is used, this external clock connects to the 
DSP’s CLKIN pin. CLKIN input cannot be halted, changed, or operated 
below the specified frequency during normal operation. This clock signal 
should be a TTL compatible signal. When an external clock is used, the 
XTAL input must be left unconnected.

The DSP provides a user programmable 1 to 32 multiplication of the 
input clock, including some fractional values, to support 128 external to 
internal (DSP core) clock ratios. The BYPASS pin, and MSEL6–0 and DF 
bits, in the PLL configuration register, decide the PLL multiplication fac-
tor at reset. At runtime, the multiplication factor can be controlled in 
software. To support input clocks greater that 100 MHz, the PLL uses an 
additional bit (DF). If the input clock is greater than 100 MHz, DF must be 
set. If the input clock is less than 100 MHz, DF must be cleared.

The peripheral clock is supplied to the CLKOUT pin. All on-chip periph-
erals for the ADSP-2199x operate at the rate set by the peripheral clock. 
The peripheral clock (HCLK) is either equal to the core clock rate or one 
half the DSP core clock rate (CCLK). This selection is controlled by the 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-23 
 

System Design

Preliminary

IOSEL bit in the PLLCTL register. The maximum core clock is 160 MHz, 
and the maximum peripheral clock is 80 MHz—the combination of the 
input clock and core/peripheral clock ratios may not exceed these limits.

Phase Locked Loop (PLL)
The PLL design is intended to cover a wide range of applications. The 
focus is on embedded and portable applications as well as low cost general 
purpose DSP’s. The wide application range leads to a wide range of fre-
quencies for the clock generation circuitry. The connection and interface 
of the PLL in the ADSP-2199x is illustrated in Figure 12-2 on 
page 12-24. A large number of different ratios of output clock to input are 
supported by the PLL, achieving 1-32x multiplication of the input clock 
including some non-integer multiples. This is accomplished by a combi-
nation of programmable divider in the PLL feedback circuit and output 

Figure 12-1. External Crystal Connections

CLKIN CLKOUTXTAL

DSP



Phase Locked Loop (PLL)

12-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

configuration blocks. Configuration and control of the PLL operation is 
controlled by the IO mapped PLL Control Register (PLLCTL) in the Clock 
Generation Module.

The ADSP-2199x can be clocked by a crystal oscillator or a buffered, 
shaped clock derived from an external clock oscillator. If a crystal oscilla-
tor is used, the crystal should be connected across the CLKIN and XTAL pins, 
with two capacitors connected to GND. Capacitor values are dependent 
on crystal type and should be specified by the crystal manufacturer. A par-
allel-resonant, fundamental frequency, microprocessor-grade crystal 
should be used for this configuration. If a buffered, shaped clock is used, 
this external clock connects to the DSP’s CLKIN pin. CLKIN input cannot be 

Figure 12-2. Configuration and connection of Extended Core Peripherals

ADSP-219X EXTENDED CORE

C
C

L
K

H
C

L
K

R
S

T

CLKIN

XTAL PLL
CLOCK
GENERATION
MODULE

JTAG
CONTROLLER
MODULE

RESET
DF

MSEL[6:0]

CLKOUT
BYPASS
BMODE[2:0]

TCK, TMS, TDI, TDO, TRST, EMU

IO BUS



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-25 
 

System Design

Preliminary

halted, changed, or operated below the specified frequency during normal 
operation. This clock signal should be a TTL-compatible signal. When an 
external clock is used, the XTAL input must be left unconnected.

Clock Generation (CKGEN) Module

Overview of CKGEN Functionality
The clock generator module (CKGEN) includes Clock Control logic that 
allows selecting and changing main clock frequency as well as power-down 
modes. The module generates two output clocks; CCLK is used as the DSP 
core clock and HCLK is used as the peripheral clock. The module provides 
flexibility such that it is possible to change clock generation modes (fre-
quency multiplication ratio, low power modes) by executing software code 
on the DSP core. The module also includes reset logic and generates the 
reset signals for the rest of the chip. Linked with the reset logic is the reset 
configuration register as well as the means for software reset functionality. 

The clock generation module (CKGEN) includes and controls the main 
vital functions of the chip:

• Hardware Reset Generation

• Software Reset Generation

• Clock Generation and PLL Control

• Power-Down. 

The CKGEN module includes a counter that indicates when the PLL is 
locked. 



Clock Generation (CKGEN) Module

12-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Hardware Reset Generation
The Hardware Reset Generation section of the CKGEN Module provides 
the necessary interface between the external RESET pin of the ADSP-2199x 
and the reset signals for both the DSP core and the buses, peripherals and 
system hardware. The final reset to the peripherals will be the OR func-
tion between the hardware and the software reset. This is also true for the 
DSP final reset.

The RESET signal initiates a master reset of the ADSP-2199x. The RESET 
signal must be asserted during the power-up sequence to assure proper ini-
tialization. During initial power-up RESET must be held low long enough 
to allow the internal clock to stabilize. If RESET is activated any time after 
power up, the clock continues to run and does not require stabilization 
time. 

The power-up sequence is defined as the total time required for the crystal 
oscillator circuit to stabilize after a valid VDD is applied to the processor, 
and for the internal phase-locked loop (PLL) to lock onto the specific 
crystal frequency. A minimum of 512 HCLK cycles (for the PLL to stabi-
lize) ensures that the PLL has locked, but does not include the crystal 
oscillator start-up time. During this power-up sequence the RESET signal 
should be held low. On any subsequent resets, the RESET signal must meet 
the minimum pulse width specification, tRSP. The RESET input contains 
some hysteresis. If using an RC circuit to generate your RESET signal, the 
circuit should use an external Schmitt trigger. The master reset sets all 
internal stack pointers to the empty stack condition, masks all interrupts 
and clears the MSTAT register. When RESET is released, if there is no pend-
ing bus request and the chip is configured for booting, the boot-loading 
sequence is performed. Program control jumps to the location of the 
on-chip boot ROM (0xFF0000).

The internal Power On Reset (POR) generator of the ADSP-2199x pro-
duces a signal on the POR pin that may be connected directly to the RESET 
input in order to generate the reset signal for the chip. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-27 
 

System Design

Preliminary

During hardware reset, a number of signal ports can be sensed for voltage 
levels, to determine some of the chip configuration. If multifunction, 
those pins may be either strapped with weak resistors or driven, if dedi-
cated mode pins (BMODE2-0 as example) they may also be permanently 
strapped to VDD or GND. The resulting values are latched into the Sys-
tem Configuration Register (SYSCR) after the de-assertion of the RESET pin 
and made available for software access and modification following the 
hardware reset sequence. The chip’s pins that are registered into the Sys-
tem Configuration Register must be maintained some cycles after the 
de-assertion of the reset pin. These states may be modified under software 
control prior to initiating a software reset. 

On the ADSP-2199x, the BMODE2-0 pins are made available as dedicated 
external chip pins and define a 3-bit code that is latched into the SYSCR 
register following de-assertion of the RESET input and is used to configure 
the boot mode of the ADSP-2199x.

During normal chip operation, reset parameters may be written by the 
DSP core into the IO mapped Next System Configuration Register 
(NXTSCR). The state is latched/registered into the NXTSCR Register and held 
there until a software reset. Until a software reset is initiated the value 
written into the NXTSCR has no effect. A subsequent software reset will 
update the state of the SYSCR with the contents of the Next System Con-
figuration Register (NXTSCR). The configuration of both the System 
Configuration Master Register (NXTSCR) and the Next System Configura-
tion Register (SYSCR) are illustrated in Figure 12-4 on page 12-35 and 
Figure 12-5 on page 12-35.

Software Reset Logic
A DSP core software reset is initiated by the DSP core by writing 0x07 
into the Software Reset bits ([2:0] in the Software Reset Register. If bits 
[2:0] are set, the reset affects only the state of the core and most of the 
peripherals. It does not make use of the hardware reset timer and logic and 
does not reset the PLL and PLL control register. The System Configura-



Clock Generation (CKGEN) Module

12-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

tion Register is updated from the value previously stored into the Next 
System Configuration Register. Following the software reset, the DSP will 
transition into a boot mode sequence following the core reset and execu-
tion begins from address 0xFF 0000. The configuration of the Software 
Reset Register (SWRST) is shown in Figure 12-6 on page 12-35.

Clock Generation & PLL Control
The clock generation circuitry controls the generation of the DSP core 
clock, CCLK, and the peripheral clock, HCLK by appropriate manipulation of 
the configuration of the PLL block. In particular, this function controls 
the ratios of the input clock, CLKIN, frequency to both the CCLK and HCLK 
frequencies. In addition, the clock generation controls the various power-
down modes of the device and the frequency of the signal at the clock out, 
CLKOUT, pin. The operation of the clock generation circuitry is controlled 
by the IO mapped PLL Control Register (PLLCTL) which is illustrated in 
Figure 12-7 on page 12-36. The PLLCTL register is unchanged by a soft-
ware reset. On the ADSP-2199x device, the MSEL bits are tied off to the 
defined levels within the device and are not brought to chip-level pads. 
The BYPASS pin has an external pull-up, but the BYPS bit of the PLLCTL reg-
ister that represents this pad in unknown following a reset, since it 
depends on the state of the external pin.

The PLL may operate in one of two operating modes, BYPASS mode or 
MULTIPLICATION mode. At reset, the BYPASS pad is read. If BYPASS is 0, 
then the PLL is in MULTIPLICATION mode and the MSEL and DF bits are 
sensed and used to configure the various clock dividers of the PLL. DF 
enables the input divider, MSEL[6] enables the output divider and 
MSEL[5:0] control the feedback divider. The feedback divider is composed 
of two stages; ÷N (1:31) controlled by MSEL[4:0] and ÷1 or ÷2 controlled 
by MSEL[5]. When MSEL[5] = 1, DF must be set to 1 by the user. The con-
figuration of the PLL and the effect of the MSEL and DF bits is illustrated in 
Figure 12-3 on page 12-30. The VCOCLK output frequency as a function of 
the state of the DF and MSEL[5] bits is tabulated in Table 12-11 on 
page 12-29 where N is the value of MSEL[4:0]. MSEL[4:0] = 0 is treated as 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-29 
 

System Design

Preliminary

a special case and produces a value of N = 32. If MSEL[6] = 0, then the core 
clock CCLK = VCOCLK; if MSEL[6]=1, then the VCO clock is divided by two 
to produce the CCLK so that CCLK = VCOCLK÷2

Note that the same output clock frequency (CCLK) can be obtained with 
different combinations of the MSEL[6:0] and DF bits. One combination 
may work better in a given application either to run at lower power (DF=1) 
or to satisfy the VCO minimum frequency. Note that the VCO minimum 
frequency is 10 MHz, and therefore for any MSEL value, for which the VCO-
CLK frequency is going to be less than 10 MHz, the user needs to select the 
PLL BYPASS mode. For example, if CLKIN = 3.33 MHz and MSEL = 0x01 for 
a 1x operation, BYPASS mode should be selected. On the other hand if 

Table 12-11. Relationship between CLKIN and VCOCLK as function of DF 
and MSEL[5] bits.

DF MSEL[5] VCOCLK

0 0 N x CLKIN

0 1 Not Allowed

1 0 N x CLKIN/2

1 1 N x CLKIN



Clock Generation (CKGEN) Module

12-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

CLKIN = 3.33 MHz, and MSEL = 0x26, BYPASS mode is not required as the 
VCOCLK will be 6x (20 MHz). The maximum core frequency for 
ADSP-2199x is 150 MHz.

In BYPASS mode (BYPS bit of PLLCTL register is set), the on-chip PLL is 
effectively bypassed and the core clock, CCLK, is determined solely from 
the CLKIN frequency and the state of the DIV2 bit of PLLCTL. If DIV2 = 0, 
then CCLK = CLKIN. If DIV2=1, then CCLK = CLKIN/2. On the ADSP-2199x, 
the BYPASS pad is pulled-up, so that if the chip-level pin is left uncon-
nected, BYPASS mode is selected by default.

The clock generation circuitry also generates the peripheral clock, HCLK, 
that is used to clock all of the peripherals on the ADSP-2199x. Depending 
on the state of the IOSL bit of the PLLCTL register, the HCLK can be made 
equal to the CCLK or half of the CCLK frequency. If IOSL = 1, then HCLK = 
CCLK/2. When IOSL = 0, then HCLK = CCLK. The maximum value of the 
HCLK is 80 MHz.

Figure 12-3. PLL block diagram in Multiplication mode 
(Effect of MSEL and DF bits)

�1 OR �2CLKIN

DF

MSEL5

MSEL4-0

MSEL6

PLL

VCOCLK

CCLK

�N�1 OR �2

�1 OR �2



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-31 
 

System Design

Preliminary

The CLKOUT signal may be made equal to the HCLK signal by setting the 
CKOE bit of the PLLCTL register. If the CKOE bit is cleared, then the clock 
output signal on the CLKOUT pin is disabled. This does not effect the inter-
nal operation of the device and may be used to save power if the CLKOUT 
signal is not required in the application.

On the ADSP-2199x, unlike other ADSP-219x devices, the MSEL[6:0] 
ports are not brought to external chip pins. Instead, these ports are tied off 
internally on the device so that on power-up, an effective value of 
MSEL[6:0] = 0x03 is read (i.e. MSEL[6:2] = 0, MSEL[1:0] = 1). This gives 
an effective clock operating rate of CCLK =3xCLKIN. Following boot load at 
this rate, the user may subsequently write to the PLLCTL register to change 
the MSEL bits in order to change the PLL multiplication ratio. A software 
reset is not necessary for the new MSEL value to take effect. The burden is 
on the user application to wait for a sufficient time (monitored by the 
Lock Counter) in order to make sure that the PLL has correctly re-syn-
chronized with the new MSEL value.

Lock Counter
The process of changing the multiplication factor of the PLL takes a cer-
tain number of cycles, and therefore a Lock Counter is required in order 
to calculate when the PLL is locked to the new ratio. The value of the lock 
Counter depends on the frequency (the higher the capacitor must be 
charged, the longer is the time required to lock). At Power-up, the Lock 
Counter has to be initialized. Therefore, during reset, the lock signal is 
forced and set active indicating that the PLL is locked even though this 
may not be true. The reset pulse must be long enough to guarantee that 
the PLL is effectively locked at the end of the reset sequence or the soft-
ware must wait before switching the clock source to the PLL output. 

Under normal operation, when the PLL is operational and correctly syn-
chronized, the Lock Counter reads 0x200. Following either a turn on of 
the PLL (for example from the PLOF bit of the PLLCTL register), or from an 
asynchronous wake-up from deep sleep or after the MSEL bits have been 



Powerdown Control/Modes

12-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

changed, the Lock Counter is reset to 0x0000 and increments every HCLK 
cycle. Until the Lock Counter reaches 0x200, the correct operation of the 
PLL and clock generation circuitry can not be guaranteed. 

Powerdown Control/Modes
The ADSP-2199x has four low-power options that significantly reduce the 
power dissipation when the device operates under standby conditions. To 
enter any of these modes, the DSP executes an IDLE instruction. The 
ADSP-2199x uses configuration of the PD, STCK, and STAL bits in the 
PLLCTL register to select between the low-power modes as the DSP exe-
cutes the IDLE. Depending on the mode, an IDLE shuts off clocks to 
different parts of the DSP in the different modes. The low power modes 
are:

• Idle

• Powerdown Core

• Powerdown Core/Peripherals

• Powerdown All

Idle Mode
When the ADSP-2199x is in Idle mode, the DSP core stops executing 
instructions, retains the contents of the instruction pipeline, and waits for 
an interrupt. The core clock and peripheral clock continue running. To 
enter Idle mode, the DSP can execute the IDLE instruction anywhere in 
code. To exit Idle mode, the DSP responds to an interrupt and (after two 
cycles of latency) resumes executing instructions with the instruction after 
the IDLE. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-33 
 

System Design

Preliminary

Powerdown Core Mode
When the ADSP-2199x is in Powerdown Core mode, the DSP core clock 
is off, but the DSP retains the contents of the pipeline and keeps the PLL 
running. The peripheral bus keeps running, letting the peripherals receive 
data. To enter Powerdown Core mode, the DSP executes an IDLE instruc-
tion after performing the following tasks:

• Enter a powerdown interrupt service routine

• Check for pending interrupts and I/O service routines

• Clear (= 0) the PD bit in the PLLCTL register

• Clear (= 0) the STAL bit in the PLLCTL register

• Set (= 1) the STCK bit in the PLLCTL register

To exit Powerdown Core mode, the DSP responds to an interrupt and 
(after two cycles of latency) resumes executing instructions with the 
instruction after the IDLE.

Powerdown Core/Peripherals Mode
When the ADSP-2199x is in Powerdown Core/Peripherals mode, the 
DSP core clock and peripheral bus clock are off, but the DSP keeps the 
PLL running. The DSP does not retain the contents of the instruction 
pipeline. The peripheral bus is stopped, so the peripherals cannot receive 
data. To enter Powerdown Core/Peripherals mode, the DSP executes an 
IDLE instruction after performing the following tasks:

• Enter a powerdown interrupt service routine

• Check for pending interrupts and I/O service routines

• Clear (= 0) the PD bit in the PLLCTL register

• Set (= 1) the STAL bit in the PLLCTL register



Powerdown Control/Modes

12-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

To exit Powerdown Core/Peripherals mode, the DSP responds to an inter-
rupt and (after five to six cycles of latency) resumes executing instructions 
with the instruction after the IDLE.

Powerdown All Mode
When the ADSP-2199x is in Powerdown All mode, the DSP core clock, 
the peripheral clock, and the PLL are all stopped. The DSP does not 
retain the contents of the instruction pipeline. The peripheral bus is 
stopped, so the peripherals cannot receive data. To enter Powerdown All 
mode, the DSP executes an IDLE instruction after performing the follow-
ing tasks:

• Enter a powerdown interrupt service routine

• Check for pending interrupts and I/O service routines

• Set (= 1) the PD bit in the PLLCTL register

To exit Powerdown Core/Peripherals mode, the DSP responds to an inter-
rupt and (after 500 cycles to re-stabilize the PLL) resumes executing 
instructions with the instruction after the IDLE.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-35 
 

System Design

Preliminary

Register Configurations
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 NXTSCR      IO[0x00:0x0203]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

BMODE[2:0]1 (RW)

1   External BMODE2 and BMODE0 pins have pull-ups and the BMODE1 pin has a pull-down. This 
state can be altered by connecting the external pins to other levels.

 Reserved

Figure 12-4. Next System Configuration Register (NXTSCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SYSCR      IO[0x00:0x0204]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

BMODE[2:0]1 (RW)
 Reserved

Figure 12-5. System Configuration Register (SYSCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SWRST IO[0x00:0x0202]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

SWRST[2:0]   (WO)
 Reserved

Figure 12-6. Software Reset Register (SWRST)



Working with External Bus Masters

12-36 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Working with External Bus Masters
The ADSP-2199x processor can relinquish control of data and address 
buses to an external device. The external device requests the bus by assert-
ing (low) the bus request signal, BR. The BR signal is an asynchronous 
input, arbitrated with core and peripheral requests. External Bus requests 
have the lowest priority inside the DSP. If no other internal request is 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PLLCTL      IO[0x00:0x0200]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0650

DF Enable CLKIN Divider for 
CLKIN>100MHz (1=enable divider) 
(RW)

PLOF PLL shutoff (1=shut PLL clock off) 
(RW)

STAL Stop all clocks (1=stop CCLK and 
HCLK) (RW)

STCK Stop clock (1=stop CCLK) (RW)
IOSL IO clock select (1 is HCLK=CCLK/2, 

0 is HCLK=CCLK) (RW)
PD Powerdown (1=PLL in deep sleep, no 

clocks) (RW)
CKOE CLKOUT enable (1 is CLK-

OUT=HCLK, 0 is CLKOUT=0) (RW)
DIV2 Clock divider in BYPASS mode (1 is 

CCLK=CLKIN/2) (RW)
BYPS BYPASS mode enable (1=enable) 

(RW)
MSEL[4:0] PLL Feedback divide ratio/N 

(1:32, writing 0 gives effect of 32) 
(RW)

MSEL[5] PLL Feedback divide ratio 
(0=divide by 1, 1=divide by 2) (RW)

MSEL[6] PLL Output divider enable 
(0=divide by 1, 1=divide by 2) (RW)

Figure 12-7. PLL Control Register (PLLCTL)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-37 
 

System Design

Preliminary

pending, the external bus request is granted. Due to synchronizer and 
arbitration delays, bus grants are provided with a minimum of three 
peripheral clock delays. The ADSP-2199x responds to the bus grant by:

1. Three-stating the data and address buses and the MS3-0, BMS, IOMS, 
RD, and WR output drivers.

2. Asserting the bus grant (BG) signal.

Please make sure to include 10 kΩ pull-up resistors on the MSx, 
BMS, IOMS, RD, and WR signals, to ensure that they are held in a valid 
inactive state if these signals are used in the system’s design.

The ADSP-2199x halts program execution if the bus is granted to an 
external device and an instruction fetch or data read/write request is made 
to external general purpose or peripheral memory spaces. If an instruction 
requires two external memory read accesses, the bus is not granted 
between the two accesses. If an instruction requires an external memory 
read and an external memory write access, the bus may be granted between 
the two accesses. The external memory interface can be configured so that 
the core will have exclusive use of the interface. DMA and Bus Requests 
will be granted. When the external device releases BR, the DSP releases BG 
and continues program execution from the point at which it stopped.

The bus request feature operates at all times, including when the processor 
is booting and when RESET is active. During RESET, BG is asserted in the 
same cycle that BR is recognized. During booting, the bus is granted after 
completion of loading of the current byte (including any waitstates). 
Using bus request during booting is one way to bring the booting opera-
tion under control of a host.

The ADSP-2199x processor also has a Bus Grant Hung (BGH) output, 
which lets it operate in a multiprocessor system with a minimum number 
of wasted cycles. The BGH pin asserts when the ADSP-2199x processor is 
ready to execute an instruction but is stopped because the external bus is 



Working with External Bus Masters

12-38 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

granted to another device. The other device can release the bus by 
de-asserting bus request. Once the bus is released, the ADSP-2199x pro-
cessor de-asserts BG and BGH and executes the external access.

If the ADSP-2199x processor is performing an external access when the BR 
signal is asserted, it will not grant the buses until the cycle after the access 
completes. The entire instruction does not need to be completed when the 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 12-39 
 

System Design

Preliminary

bus is granted. If a single instruction requires two external accesses, the 
bus will be granted between the two accesses. The second access is per-
formed after BR is removed.

Figure 12-8. Bus Request (with or without External Access)

CLKOUT

BR

BG

BR

BG

IF NO MEMORY ACCESS IS IN PROGRESS, BG IS

ASSERTED IN THE CYCLE AFTER BR IS RECOGNIZED:

MSx

BMS

IOMS

RD

WR IF A MEMORY ACCESS IS IN PROGRESS, BG IS ASSERTED IN

THE CYCLE AFTER THE ACCESS IS COMPLETED:

MSx

BMS

IOMS

RD

WR



Recommended Reading

12-40 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

When the BR input is released, the ADSP-2199x processor releases the BG 
signal, reenables the output drivers and continues program execution from 
the point where it stopped. BG is always de-asserted in the same cycle that 
the removal of BR is recognized. Refer to the data sheet for exact timing 
relationships. 

Recommended Reading
The text High-Speed Digital Design: A Handbook of Black Magic is recom-
mended for further reading. This book is a technical reference that covers 
the problems encountered in state-of-the-art, high-frequency digital cir-
cuit design, and is an excellent source of information and practical ideas. 
Topics covered in the book include:

• High-Speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes and Layer Stacking

• Terminations

• Vias

• Power Systems

• Connectors

• Ribbon Cables

• Clock Distribution

• Clock Oscillators

Reference: Johnson & Graham, High-Speed Digital Design: A Handbook of 
Black Magic, Prentice Hall, Inc., ISBN 0-13-395724-1



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 13-1 
 

Peripheral Interrupt Controller

Preliminary

13 PERIPHERAL INTERRUPT 
CONTROLLER

Overview
As outlined in “Interrupts and Sequencing” on page 3-26, the 
ADSP-2199x DSP core supports up to 12 user interrupts that may be pro-
vided from any of the peripherals on the ADSP-2199x. The Peripheral 
Interrupt Controller is a dedicated peripheral unit of the ADSP-2199x 
(accessed via IO mapped registers). The function of the peripheral inter-
rupt controller is to manage the connection of up to 32 peripheral 
interrupts to the 12 DSP core interrupt inputs.



ADSP-2199x PERIPHERAL INTERRUPT CONTROLLER

13-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

ADSP-2199x PERIPHERAL INTERRUPT 
CONTROLLER

The ADSP-2199x has 18 individual peripheral interrupt sources that are 
tabulated and identified in Table 13-1 on page 13-2.

Table 13-1. Peripheral Interrupt Sources

Peripheral 
Interrupt 
Identifier

IPR Register 
Bits

Interrupt Name Interrupt Source and Description

0 IPR0[3:0] SPORT0_RX_IRQ SPORT Receive Interrupt

1 IPR0[7:4] SPORT0_TX_IRQ SPORT Transmit Interrupt

2 IPR0[11:8] SPI_IRQ SPI Receive/Transmit Interrupt

3 IPR0[15:12] Reserved

4 IPR1[3:0] Reserved

5 IPR1[7:4] Reserved

6 IPR1[11:8] Reserved

7 IPR1[15:12] Reserved

8 IPR2[3:0] PWMSYNC_IRQ PWM Synchronization Interrupt

9 IPR2[7:4] PWMTRIP_IRQ PWM Shutdown Interrupt

10 IPR2[11:8] Reserved

11 IPR2[15:12] Reserved

12 IPR3[3:0] EIU0TMR_IRQ EIU Loop Timer Interrupt

13 IPR3[7:4] EIU0LATCH_IRQ EIU Latch Interrupt

14 IPR3[11:8] EIU0ERR_IRQ EIU Error Interrupt

15 IPR3[15:12] ADC0_IRQ ADC End of Conversion Interrupt

16 IPR4[3:0] Reserved

17 IPR4[7:4] Reserved



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 13-3 
 

Peripheral Interrupt Controller

Preliminary

GENERAL OPERATION
The peripheral interrupt controller of the ADSP-2199x is designed to 
accommodate up to 32 individual peripheral interrupt sources. For each 
peripheral interrupt source, there is a unique 4-bit code that allows the 
user to assign the particular peripheral interrupt to any one of the 12 
user-assignable interrupts of the ADSP-2199x DSP. Therefore, the 
peripheral interrupt controller of the ADSP-2199x DSP contains 8, 16-bit 
Interrupt Priority Registers (Interrupt Priority Register 0 (IPR0) to Inter-
rupt Priority Register 7 (IPR7)).

18 IPR4[11:8] Reserved

19 IPR4[15:12] Reserved

20 IPR5[3:0] TMR0_IRQ General Purpose Timer 0 Interrupt

21 IPR5[7:4] TMR1_IRQ General Purpose Timer 1 Interrupt

22 IPR5[11:8] TMR2_IRQ General Purpose Timer 2 Interrupt

23 IPR5[15:12] MEMDMA_IRQ Memory DMA Interrupt

24 IPR6[3:0] FIOA_IRQ Flag IO Interrupt A

25 IPR6[7:4] FIOB_IRQ Flag IO Interrupt A

26 IPR6[11:8] AUXSYNC_IRQ Auxiliary PWM Synchronization Interrupt

27 IPR6[15:12] AUXTRIP_IRQ Auxiliary PWM Trip Interrupt

28 IPR7[3:0] Reserved

29 IPR7[7:4] Reserved

30 IPR7[11:8] Reserved

31 IPR7[15:12] Reserved

Table 13-1. Peripheral Interrupt Sources

Peripheral 
Interrupt 
Identifier

IPR Register 
Bits

Interrupt Name Interrupt Source and Description



GENERAL OPERATION

13-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Each Interrupt Priority Register contains a four 4-bit codes; one specifi-
cally assigned to each peripheral interrupt. For example, Interrupt Priority 
Register 0 contains codes for Interrupts 0 to 3 of Table 13-1 on 
page 13-5. The user may write a value between 0x0 and 0xB to each 4-bit 
location in order to effectively connect the particular interrupt source to 
the corresponding user assignable interrupt of the ADSP-2199x DSP. 
Writing a value of 0x0 connects the peripheral interrupt to the USR0 user 
assignable interrupt of the ADSP-2199x DSP while writing a value of 0xB 
connects the peripheral interrupt to the USR11 user assignable interrupt. 
The core interrupt USR0 is the highest priority user interrupt, while 
USR11 is the lowest priority. Writing a value between 0xC and 0xF effec-
tively disables the peripheral interrupt by not connecting it to any 
ADSP-2199x DSP interrupt input. The user may assign more than one 
peripheral interrupt to any given ADSP-2199x DSP interrupt. In that 
case, the onus is on the user software in the interrupt vector table to deter-
mine the exact interrupt source through reading status bits etc. 

This scheme permits the user to assign the number of specific interrupts 
that are unique to their application to the interrupt scheme of the 
ADSP-2199x DSP. The user can then use the existing interrupt priority 
control scheme to dynamically control the priorities of the 12 core inter-
rupts. Additionally masking and interrupt flagging are controlled by the 
core registers IMASK & IRPTL. There is no masking required for the 
peripheral interrupt sources since those not assigned to any of the 12 core 
interrupts will not generate an interrupt. 

The Peripheral Interrupt Controller does provide an additional 32-bit 
Mask Register (arranged as two 16-bit registers, PIMASKL and 
PIMASKH, that can be used to mask any of the interrupts. There is 
redundancy in this scheme because interrupts may be masked by either 
writing to the IMASK core register or by writing 0xF to the appropriate 
bits of the Interrupt Priority Register. However, the PIMASKL and 
PIMASKH interrupts may provide a convenient method of temporarily 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 13-5 
 

Peripheral Interrupt Controller

Preliminary

masking some interrupts during operation. Setting the bit (default value) 
leaves the interrupt unmasked, clearing the bit masks the corresponding 
interrupt.

The Peripheral Interrupt Controller provides an additional 12, 32-bit reg-
isters which are read-only source registers. There is one Source Interrupt 
Register for each of the 12 core interrupt lines. The registers are arranged 
as a low 16-bit word and a high 16-bit word, so that the Interrupt Source 
registers associated with the USR0 core interrupt are termed INTRD0L 
and INTRD0H, for the low and high words respectively. A bit is set in the 
appropriate source register if the corresponding input interrupt to the 
Peripheral Interrupt Controller is generating an interrupt to the associated 
DSP core user interrupt. In other words, if bit 0 of the INTRD0L register 
is set, then the interrupt signal 0 from Table 13-1 on page 13-5 is generat-
ing a USR0 core interrupt. These registers may be necessary to determine 
which interrupt is causing the particular core interrupt in the event that 
there are multiple user interrupts assigned to one core interrupt.

REGISTERS
The interrupts of the Peripheral Interrupt Controller are illustrated in 
Figure 13-1, Figure 13-2 and Figure 13-3.

IPR0 IO[0x01:0x0200]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IPR7 IO[0x01:0x0207]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Reset = 0x1111

Priority
Priority

Priority

Priority

Figure 13-1. Interrupt Priority Registers IPR0 to IPR7



REGISTERS

13-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

PIMASKL IO[0x01:0x0208]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PIMASKM IO[0x01:0x0209]

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Reset = 0x1111

1 = unmasked

0 = masked

Figure 13-2. Peripheral Interrupt Mask Registers PIMASKL to PIMASKM

INTRD0L IO[0x01:0x0210]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 INTRD11H IO[0x01:0x0227]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Read only

Figure 13-3. Peripheral Interrupt Source Registers INTRD0L to INTRD11H



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 14-1 
 

Watchdog Timer

Preliminary

14 WATCHDOG TIMER

Overview
The ADSP-2199x integrates a watchdog timer that can be used as a pro-
tection mechanism against unintentional software events causing the DSP 
to become stuck in infinite loops. It can be used to cause a complete DSP 
and peripheral reset in the event of such a software error. The watchdog 
timer consists of a 16-bit timer that is clocked at the external clock rate 
(CLKIN or crystal input frequency). The design of the watchdog timer 
incorporates special handshaking mechanisms to handle the different 
clock domains between the DSP core and the watchdog timer.

General Operation
By not writing the watchdog time-over value (WDTTOVAL), the Watch-
dog is disabled and no interrupt/time-out will occur. The disabled state is 
the default power-on state. Writing the WDTTOVAL register with a 
watchdog time-out value enables the watchdog logic. The Watchdog 
counter then loads the WDTTOVAL value and decrements the count 
every CLKIN period. The onus is placed upon the software to write any-
thing to the WDTTOVAL register to reload the watchdog count with the 
original WDTTOVAL value and start the count decremented from the 



General Operation

14-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

top again. During normal system operation, the watchdog count will be 
reloaded by software at a frequency quicker than it would take for the 
watchdog count to decrement form WDTTOVAL to 0. During abnormal 
system operation, the watchdog count will eventually decrement to 0 and 
a watchdog time-out will occur. In the system, the watchdog time-out will 
cause a full reset of the DSP core and peripherals.

After a watchdog time-out, which causes a DSP core reset, the WDT-
STAT register can be read to determine if a watchdog time-out had 
occurred and caused a watchdog time-out reset. Note that the watchdog 
itself is not reset in order for WDTSTAT to hold its proper value. Appro-
priate action at this point can be to not enable the watchdog again by not 
writing to WDTTOVAL or enable the watchdog again by writing a new 
watchdog count value to WDTTOVAL.

The WDTTOVAL register is a write-once register. The intermediate value 
of the watchdog counter is accessible from the read-only WDTCNT regis-
ter. Reading this register does not effect the operation of the watchdog 
circuit but can be used to determine how much time is left before a watch-
dog time-out will occur. The WDTCNT register only provides data in the 
bit fields 4-15. To allow for the uncertainty required to cross the different 
timing boundaries, the bits 3-0 are not provided and will always read a 0.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 14-3 
 

Watchdog Timer

Preliminary

Registers
The register bit definitions of the watchdog timer are illustrated in 
Figure 14-1 on page 14-3, Figure 14-2 on page 14-3, and Figure 14-3 on 
page 14-3.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO [0x0E:0x0201]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

WDT_TO Watchdog Time-out
(1=timeout occurred, 0=no time-out)

WDTSTAT Watchdog Status
(1=enabled, 0=disabled)

Reserved

Figure 14-1. Watchdog Status Register WDTSTAT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO [0x0E:0x0202]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Watchdog Timeout value

Figure 14-2. Watchdog Time Out Value Register WDTTOVAL
(Write Once to Start Watchdog, Write Again to Restart Watchdog) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO [0x0E:0x0203]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Read only

Figure 14-3. Watchdog Count Register WDTCNT



Registers

14-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 15-1 
 

Power On Reset

Preliminary

15 POWER ON RESET

 

Overview
The RESET pin initiates a complete hardware reset of the ADSP-2199x 
when pulled low. The RESET signal must be asserted when the device is 
powered up to assure proper initialization. The ADSP-2199x contains an 
integrated power-on reset (POR) circuit that provides an output reset sig-
nal, POR, from the ADSP-2199x on power up and if the power supply 
voltage falls below the threshold level. The ADSP-2199x may be reset 
from an external source using the RESET signal or alternatively the internal 
power on reset circuit may be used by connecting the POR pin to the RESET 
pin. During power up the RESET line must be activated for long enough to 
allow the DSP core’s internal clock to stabilize. The power-up sequence is 
defined as the total time required for the crystal oscillator to stabilize after 
a valid VDD is applied to the processor and for the internal phase locked 
loop (PLL) to lock onto the specific crystal frequency. A minimum of 
2000 cycles will ensure that the PLL has locked (this does not include the 
crystal oscillator start-up time).

The operation of the internal power on reset circuit is illustrated in 
Figure 15-1 on page 15-2. On power up, the circuit maintains the POR pin 
low until it detects that the VDD line has attained the threshold voltage, 
VRST, level. The specific minimum, typical, and maximum values for 



Overview

15-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

VRST for the ADSP-2199x may be found in the data sheet. As soon as the 
threshold voltage is attained the power on reset circuit enables a 16-bit 
counter that is clocked at the CLKOUT rate. While the counter is count-
ing the POR pin is held low. When the counter overflows, after a time:

the POR pin is brought high and if the POR and RESET pins are connected, 
the device is brought out of reset. The internal power on reset circuit also 
acts as a power supply monitor and puts the POR pin at a LO level if it 
detects a voltage less than VRST. (There is some hysteresis about the trip 
point to prevent the POR circuit from bouncing between modes. Please 
refer to the data sheet for the specifications of the hysteresis on the POR 
detection circuit.) The supply voltage must then exceed VRST to initiate 
another power on reset sequence. The operation of the POR circuit is 
illustrated in Figure 15-1 on page 15-2.

Figure 15-1. Operation of Power On Reset (POR) circuit of ADSP-2199x

tRST 216 6.25 10 9–×× 0.4096 ms= =

VDD

POR

VRST
VRST - VHYS T

tRS T tRST

VRST

VRST - VHYS T



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-1 
 

Encoder Interface Unit

Preliminary

16 ENCODER INTERFACE UNIT

Overview
The ADSP-2199x incorporates a powerful encoder interface block to 
incremental shaft encoders that are often used for position feedback in 
high performance motion control systems.

The encoder interface unit (EIU) includes a 32-bit quadrature up/down 
counter, programmable input noise filtering of the encoder input signals 
and the zero markers, and has four dedicated chip pins. The quadrature 
encoder signals are applied at the EIA and EIB pins. Alternatively, a fre-
quency and direction set of inputs may be applied to the EIA and EIB 
pins. In addition, two zero marker/strobe inputs are provided on pins EIZ 
and EIS. These inputs may be used to latch the contents of the encoder 
quadrature counter into dedicated registers, EIZLATCH and EIS-
LATCH, on the occurrence of external events at the EIZ and EIS pins. 
These events may be programmed to be either rising edge only (latch 
event) or rising edge if the encoder is moving in the forward direction and 
falling edge if the encoder is moving in the reverse direction (software 
latched zero marker functionality). The encoder interface unit incorpo-
rates programmable noise filtering on the four encoder inputs to prevent 
spurious noise pulses from adversely affecting the operation of the quadra-
ture counter. The encoder interface unit operates at a clock frequency 



Overview

16-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

equal to the HCLK rate. The encoder interface unit operates correctly 
with encoder signals at frequencies of up to HCLK divided by 6, corre-
sponding to a maximum quadrature frequency of HCLK divided by 2/3 
(assuming an ideal quadrature relationship between the input EIA and 
EIB signals).

The EIU may be programmed to use the zero marker on EIZ to reset the 
quadrature encoder in hardware, if required. Special logic built into the 
encoder interface unit ensures that the encoder quadrature counter is 
always reset by the same edges of either the EIA or EIB input signals. At 
the first occurrence of the zero marker, the EIU circuitry determines to 
which edge of the EIA or EIB signals the actual zero marker is aligned. On 
all subsequent occurrences of the EIZ pulse, the actual reset of the encoder 
quadrature counter is held off until the next occurrence of the appropriate 
EIA/EIB edge. This operation is further described in “Encoder Counter 
Reset” on page 10. 

Alternatively, the zero marker can be ignored, and the encoder quadrature 
counter is reset according to the contents of a maximum count register, 
EIUMAXCNT. There is also a “single north marker” mode available in 
which the encoder quadrature counter is reset only on the first zero 
marker pulse. Both modes are enabled by dedicated control bits in the 
EIU control register, EIUCTRL. A status bit is set in the EIUSTAT regis-
ter on the first occurrence of the zero marker. 

The encoder interface unit can also be made to implement some error 
checking functions. If the error checking mode is enabled, upon the 
occurrence of a zero pulse, the contents of the encoder counter register are 
compared with the expected value (0 or EIUMAXCNT depending on the 
direction of rotation). If an encoder count error is detected (say due to a 
disconnected encoder line), a status bit in the EIUSTAT register is set, 
and an EIU count error interrupt is generated. An additional status bit is 
provided in the EIUSTAT register that indicates the initialization state of 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-3 
 

Encoder Interface Unit

Preliminary

the EIU. Until the EIUMAXCNT register is written to, the EIU is not 
initialized. Status bits in the EIUSTAT register reflect the state of the four 
EIU pins: EIA, EIB, EIZ and EIS. 

The encoder interface unit of the ADSP-2199x contains a 16-bit loop 
timer that consists of a timer register, period register and scale register so 
that it can be programmed to time-out and reload at appropriate intervals. 
A control bit in the EIUCTRL register is used to enable/disable this loop 
timer. When this loop timer times out, an EIU loop timer time-out inter-
rupt is generated. This interrupt could be used to control the timing of 
speed and position control loops in high-performance drives. 

The encoder interface unit also includes a high-performance encoder 
event timer (EET) block that permits the accurate timing of successive 
events of the encoder inputs. The EET can be programmed to time the 
duration between up to 255 encoder pulses and can be used to enhance 
velocity estimation, particularly at low speeds of rotation. The informa-
tion from the registers of the EET block can be latched in two ways. In 
one mode, the contents of the EIU quadrature count register, EIUCNT 
and all relevant EET registers (EETT and EETDELTAT) are latched 
when the EIU timer times-out. In the second mode, the act of reading the 
EIUCNT register also simultaneously latches the EET registers. The EET 



Encoder Loop Timer

16-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

data latching mode is selected by a control bit in the EIUCTRL register. 
The functional block diagram of the entire encoder interface system is 
shown in Figure 16-1 on page 16-4.

Encoder Loop Timer
The EIU contains a 16-bit loop timer that consists of 16-bit EIUTIMER 
and EIUPERIOD registers and an 8-bit EIUSCALE register. The EIU 
loop timer is clocked at the HCLK rate. The EIU loop timer can be used 
to generate periodic interrupts based on multiples of the HCLK cycle 
time. The EIU loop timer is enabled by setting bit 5 of the EIUCTRL reg-
ister. When enabled, the 16-bit timer register (EIUTIMER) is 
decremented every N cycles, where N-1 is the scaling value stored in the 

Figure 16-1. Functional Block Diagram of EIU/EET System of 
ADSP-2199x

ENCODER LOOP TIMER

EIU SCALE

EIU TIMER

EIU PERIOD

TIME OUT

ENCODE EVENT TIMER BLOCK

CLOCK DIVIDER

ENCODER EVENT TIMER

PULSE DECIMATOR

EETDIV

EETSTAT

EETT

EETDELTAT

EETN

EETCNT(L/H)

EIUCNT(L/H)

EIUMAXCNT(L/H)

EIUCTRL

EIUSTAT

EISLATCH(L/H)

EIZLATCH(L/H)

EIUFILTER

QUADRATURE
SIGNAL

DIRECTION

32-BIT QUADRATURE
UP/DOWN COUNTER

ENCODER COUNTER
CONTROL

PROGRAMMABLE
NOISE

FILTERING

A

B

Z

S

ENCODER INTERFACE BLOCK

PAD_EIUA

PAD_EIUB

PAD_EIUZ

PAD_EIUS



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-5 
 

Encoder Interface Unit

Preliminary

8-bit EIUSCALE register. When the value of the EIUTIMER register 
reaches zero, the EIU loop timer time-out interrupt is generated, and the 
EIUTIMER register is reloaded with the 16-bit value in the EIUPERIOD 
register. The scaling feature of this timer, provided by the EIUSCALE reg-
ister, allows the 16-bit timer to generate periodic interrupts over a wide 
range of periods. For a maximum HCLK rate of 80 MHz (12.5ns period), 
the timer can generate interrupts with a period of 12.5ns up to 0.819 ms 
with a zero scale value (EIUSCALE=0). When scaling is used, time periods 
can range up to 208ms.

Encoder Interface Structure & Operation

Introduction
The encoder interface section consists of 32-bit quadrature up/down 
counter, and a 32-bit EIUCNT register that allows the up/down counter 
to be read. There is also a 32-bit EIUMAXCNT register that must be 
written to initialize the encoder system. Until the EIUMAXCNT register 
has been written to, the encoder interface unit is not initialized, and bit 2 
of the EIUSTAT register is set. The contents of the EIUMAXCNT regis-
ter are used in certain operating modes to reset the quadrature counter. 
The contents of the EIUMAXCNT register are also used for error check-
ing of the EIU. Operation of the encoder interface is controlled by the 
EIUCTRL register. 

Programmable Input Noise Filtering of Encoder 
Signals

A functional block diagram of the input stages of the encoder interface is 
shown in Figure 16-2 on page 16-6. The four encoder input signals (EIA, 
EIB, EIZ and EIS) are first synchronized to HCLK in input synchroniza-
tion buffers. This eliminates the asynchronous nature of real world 
encoder signals prior to use in the encoder interface unit logic. Subse-



Encoder Interface Structure & Operation

16-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

quently, all four synchronized signals (EIAS, EIBS, EIZS and EISS) are 
applied to programmable noise filtering circuits that can be programmed 
to reject pulses that are shorter than some suitable value. The outputs of 
the filter stage are applied to the quadrature counter stage.

Each of the four synchronized input signals (EIAS, EIBS, EIZS, & EISS) 
is applied to a three clock cycle delay filter such that the filtered output 
signals are not permitted to change until a stable value has been registered 
for three successive clock cycles. While the encoder signals are changing, 
the filter maintains the previous output value. The clock frequency used 
for the filter circuits is programmed by the EIUFILTER register. The 
8-bit quantity written to the EIUFILTER register is used to divide the 
HCLK frequency and provide the clock source for the encoder noise fil-
ters. If the value written to the EIUFILTER register is N, the period of the 

Figure 16-2. Functional Block Diagram of Encoder Interface Input Stage 
(Synchronization and Noise Filtering)

EIA

EIB

EIZ

EIS

HCLK

INPUT
SYNCHRONIZATION

STAGE

THREE
STAGE

DIGITAL
FILTER

EIU FILTER

CLOCK
DIVIDE

EIAS

EIBS

EIZS

EISS

A

B

Z

S



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-7 
 

Encoder Interface Unit

Preliminary

clock source used in the encoder filters is (N+1)*HCLK. This filter struc-
ture guarantees that encoder pulses of width less than 2*(N+1)*HCLK 
will always be rejected by the filter stage. Additionally, pulses greater than 
3*(N+1)*HCLK will always get through the filter stage and be passed to 
the internal quadrature counter. Encoder pulses of widths between 
2*(N+1)*HCLK and 3*(N+1)*HCLK may either pass through or be 
rejected by the encoder filter. Whether or not such pulses pass through the 
filter depends on the exact nature of the synchronization between the 
external asynchronous pulses and HCLK and is impossible to predict. 

For example, writing a value of 3 to the EIUFILTER register means that 
the clock frequency used in the encoder filters is 20 MHz (for an HCLK 
rate of 80 MHz). In order to register as a stable value, the encoder input 
signals must be stable for three of these 20 MHz cycles (or 150ns). Conse-
quently, the smallest period that will be registered on the synchronized 
encoder inputs is 300 ns, corresponding to a maximum encoder rate of 
3.33 MHz. In general, the maximum encoder rate that can be consistently 
recognized is given by:



Encoder Interface Structure & Operation

16-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Operation of both the input synchronization logic and the noise filters is 
shown in for the default case where EIUFILTER=0x00 and the noise fil-
ters are clocked at HCLK. 

Figure 16-3. Operation of input synchronization and noise filters of 
encoder interface with EIUFILTER=0x00, such that the filters are oper-
ated at HCLK

( )1N6
ff HCLK

ENCMAX +×
=

tHCLK

HCLK

EIA

EIB

EIAS

EIBS

A

B

NOISE PULSE

3tHCLK

3tHCLK



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-9 
 

Encoder Interface Unit

Preliminary

The default value for EIUFILTER following reset is 0x00 so that the EIU 
filters are clocked at the HCLK rate and minimal filtering is applied. 
There is a direct trade-off between the amount of filtering applied to the 
encoder inputs and the maximum possible encoder signal rate. In effect, 
the larger the value of EIUFILTER, the more filtering that is applied to 
the encoder signals so that, for a given number of encoder lines, the maxi-
mum speed of rotation is lower. 

The influence of the encoder filter on the zero marker signals (EIZ and 
EIS) can be somewhat different from that on the EIA and EIB signals, 
depending on the exact nature of the encoder. In common incremental 
encoders, the width of the zero marker can be equal to a quarter, a half or 
a full period of one of the quadrature signals (say EIA). Applying the 
three-stage delay filter to a zero marker whose width is either equal to half 
or a full quadrature pulse period does not change the achievable maximum 
encoder rate. However, the maximum possible encoder rate is changed if 
the three-stage filter is applied in the case where the width of the zero 
marker is equal to a quarter of the EIA or EIB period. In this case, the 
influence of the three-stage delay filter is to effectively halve the maximum 
encoder signal rate to that described above (or 6.67 MHz for an 80 MHz 
HCLK). 

Encoder Counter Direction
The direction of quadrature counting is determined by bit 0 (REV) of the 
EIUCTRL register.For example, if EIA signal leads EIB, clearing the REV 
bit will cause the counter to increment on each edge (defined as forward 
direction of motion) while setting the REV bit will cause the counter to 
decrement on each edge (defined as reverse direction of motion). Follow-
ing a reset, the REV bit is cleared.

The two encoder signals are used to derive a quadrature signal that is used, 
in conjunction with a direction bit, to increment or decrement the 
encoder counter and also the encoder event timer. The status of the direc-



Encoder Interface Structure & Operation

16-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

tion signal is indicated at bit 1 of the EIUSTAT register. While the 
encoder counter is incrementing, bit 1 is set. Alternatively, when the 
encoder counter is decremented, bit 1 of the EIUSTAT register is cleared.

Alternative Frequency and Direction Inputs
Instead of the quadrature EIA and EIB encoder inputs, the encoder inter-
face unit can also accept alternative Frequency and Direction Inputs. This 
mode is enabled by setting bit 6 of the EIUCTRL register. In this 
so-called FD Mode, the EIA input pin accepts a frequency signal and the 
EIB pin accepts the direction signal. The signals on these pins are subject 
to the same synchronization and filtering logic as described previously. 
However, in this mode, the quadrature counter is incremented or decre-
mented on both the falling and rising edges of the signal on the EIA pin. 
If the EIB pin is HI, forward operation is assumed and the counter is 
incremented on each edge of the frequency signal on the EIA input. On 
the other hand, if the EIB pin is LO, reverse rotation is assumed and the 
quadrature counter is decremented at each edge of the signal on the EIA 
pin. On reset, bit 6 of the EIUCTRL register is cleared so that this mode 
is disabled by default. The following modes are not supported when FD 
Mode is enabled: Encoder Counter Reset, Single North Marker mode, 
and Encoder Error Checking mode. In other words, when bit 6 of EIUC-
TRL is set, bits 1, 2, and 3 should be cleared.

Encoder Counter Reset
The ZERO bit (bit 1) of the EIUCTRL register determines if the encoder 
zero marker is used to hardware reset the up/down counter of the encoder 
interface. When bit 1 of the EIUCTRL register is set, the zero marker sig-
nal on the EIZ pin is used to reset the up/down counter to zero (if moving 
in the forward direction) or to the value in the EIUMAXCNT register (if 
moving in the reverse direction). The reset operation takes place on the 
next quadrature pulse after the zero marker has been recognized. In order 
to ensure correct encoder counting (no missing or spurious codes) the 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-11 
 

Encoder Interface Unit

Preliminary

logic in the encoder counter latches the conditions (appropriate encoder 
edge) at which the first reset is performed. Thereafter, irrespective of oper-
ating conditions, the encoder reset operation is always aligned with the 
same encoder edge. For example, if the first reset operation occurs on the 
rising edge of B and the encoder is moving in the forward direction, then 
all subsequent reset operations are aligned with the rising edge of the B 
signal (while moving in the forward direction) and on the falling edge of B 
for rotation in the reverse direction. 

This design ensures that the encoder quadrature counter is always reset 
coincident with the same edge of the EIA/EIB input signals, so that cor-
rect operation and reset of the EIU quadrature counter is guaranteed even 
if the phasing of the EIZ pulse changes with operating conditions relative 
to the EIA and EIB signals. For example, for movement of the encoder in 
the forward direction, if the EIA rising edge is the next edge encountered 
by the EIU following the occurrence of the first EIZ rising edge, the logic 
in the EIU remembers the EIA rising edge as the correct location of the 
zero marker. It is then only at the rising edge of the EIA signal that the 
quadrature counter is reset for all subsequent occurrences of the EIZ rising 
edge (when moving in the forward direction). Of course, it is the falling 
edge of the EIA signal that triggers the reset of the EIU quadrature 
counter when moving in the reverse direction. If, for example, due to 
phasing errors (associated with a particular encoder), the EIA rising edge 
should occur before the EIZ rising edge, the encoder reset action would 
then occur before the occurrence of the EIZ rising edge because the EIU 
logic would correctly recognize the EIA rising edge as the real zero marker. 
This intelligent reset function ensures the correct reset operation of the 
quadrature counter even if the physical location of the EIZ edge changes 
relative to the EIA/EIB edges in one quadrature period. Naturally, if the 
phasing errors of the EIZ pulse relative to the EIA/EIB edges exceeds one 
quadrature period, count errors will occur because the logic has no means 
of distinguishing one quadrature period from another. 



Encoder Interface Structure & Operation

16-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

 In order to account for zero marker signals of different widths, the zero 
marker will be recognized as the rising edge of the EIZ signal when mov-
ing in the forward direction. When moving in the reverse direction, the 
zero marker is recognized at the falling edge of the signal at the EIZ pin. 

When the ZERO bit of the EIUCTRL register is cleared, the zero marker 
is not used to reset the counter. In this mode, the contents of the EIU-
MAXCNT register are used as the reset value for the up/down counter. 
For example, for an N-line incremental encoder, the appropriate value to 
write to the EIUMAXCNT register is 4N-1. Therefore, for a 1024 line 
encoder, a value of 0x0000 0FFF (= 4095) would be written to the EIU-
MAXCNT register. However, since absolute position information is not 
available in this mode, due to the absence of the zero marker, the full 
32-bit range of the quadrature counter may be employed by writing a 
value of 0xFFFF FFFF to the EIUMAXCNT register. Following a reset, 
the ZERO bit is cleared. The value written to the EIUMAXCNT register 
must be in the form 4N - 1, where N is any integer. 

Registration Inputs & Software Zero Marker 
The encoder interface unit of the ADSP-2199x provides two marker sig-
nals, EIZ and EIS that are both filtered and synchronized in a manner 
identical to the other encoder signals to produce the Z and S signals. Z 
can be used as a hardware reset of the encoder counter, as described above. 
However, in many applications, a hardware reset of the counter may not 
be desirable because of disastrous effects that could occur due to incorrect 
resetting of the counter. Instead, the encoder counter can be programmed 
to operate in full 32-bit rollover mode, by clearing bit 1 of the EIUCTRL 
register and programming EIUMAXCNT to be 0xFFFF FFFF. In this 
case, the quadrature counter will use the full 32-bit range of the EIUCNT 
register.

The signals on Z and S can be configured to latch the contents of the 
EIUCNT register into dedicated memory mapped registers (EIZLATCH 
for the Z signal and EISLATCH for the S signal) on the occurrence of def-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-13 
 

Encoder Interface Unit

Preliminary

inite events on these pins. The exact nature of the events is determined by 
bit 7 of the EIUCTRL register for the Z input and bit 8 of the EIUCTRL 
register for the S signal.

If bit 7 of the EIUCTRL register is cleared, the contents of the EIUCNT 
register are latched to the EIZLATCH register on the occurrence of a ris-
ing edge on the Z signal. In this mode, the signals can be used to latch or 
freeze the EIUCNT contents on the occurrence of an external event such 
as that from limit switches or other triggers. If bit 7 of the EIUCTRL reg-
ister is set, then the EIUCNT contents are latched to the EIZLATCH 
register on the occurrence of the next quadrature pulse following the rising 
edge of the Z signal if the quadrature counter is incrementing (count up). 
If the quadrature counter is decremented, the EIUCNT contents are 
latched to the EIZLATCH register on the next quadrature pulse following 
the falling edge of the Z signal. In this mode, the action resembles that of 
a zero marker function. The advantage is that the EIUCNT register con-
tents are latched at the appropriate zero marker inputs but the contents of 
the quadrature counter are not affected. 

Bit 8 of the EIUCTRL register defines the S events that cause the 
EIUCNT register to be latched to the EISLATCH register. When bit 8 of 
the EIUCTRL register is cleared, the contents of the EIUCNT register are 
latched to the EISLATCH register on the occurrence of a rising edge on 
the S signal, in a manner identical to that for the Z input. If bit 8 of the 
EIUCTRL register is set, the operation is slightly different from that for 
the Z input. With the S input, the EIUCNT contents are latched to the 
EISLATCH register on the occurrence of a rising edge of the S signal if 
the quadrature counter is incrementing (count up). If the quadrature 
counter is decremented, the EIUCNT contents are latched to the EIS-
LATCH register on the occurrence of the falling edge of the S signal. The 
difference is that the latching occurs at the event on the S input and not at 
the next quadrature event (as with this case on the Z input). 

EIZLATCH and EISLATCH are 32-bit read-only registers. Following a 
reset, both bits 7 and 8 of the EIUCTRL register are cleared. 



Encoder Interface Structure & Operation

16-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Single North Marker Mode
Another reset mode, called Single North Marker Mode, is available in the 
encoder interface unit. This mode is enabled by setting bit 2 (SNM) of the 
EIUCTRL register. To enable this mode, the ZERO bit (bit1) of the 
EIUCTRL register must also be set. In this mode, the EIUCNT register is 
reset (to zero or EIUMAXCNT depending on direction) only on the first 
occurrence of the zero marker. Subsequently, the EIUCNT register is reset 
by the natural roll-over to zero or the value in the EIUMAXCNT register. 
Following a reset, this SNM bit is cleared. Bit 3 of the EIUSTAT register 
is used to signal the first occurrence of a zero marker. When the first zero 
marker has been recognized by the EIU, bit 3 of the EIUSTAT register is 
set.

Encoder Error Checking
Error checking in the EIU is enabled by setting bit 3 (MON) of the 
EIUCTRL register. The ZERO bit of the EIUCTRL register must also be 
set for error checking to be enabled. In this mode, the contents of the 
EIUCNT register are compared with the expected value (zero or EIU-
MAXCNT depending on direction) when the zero marker is detected. If a 
value other than the expected value is detected, an error condition is gen-
erated by setting bit 0 of the EIUSTAT register and triggering an EIU 
count error interrupt. The encoder continues to count encoder edges after 
an error has been detected. Bit 0 of the EIUSTAT register is cleared on the 
occurrence of the next zero marker, provided the error condition no 
longer exists and the EIUCNT register again matches the expected value. 
Following a reset, the MON bit is cleared.

EIU Input Pin Status
There are two sets of read-only status bits in EIUSTAT which provide 
information about the state of the four EIU input pins. Bits 8-11 are sim-
ply the synchronized and filtered versions of the EIU input pins. These 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-15 
 

Encoder Interface Unit

Preliminary

bits are updated whenever the input pins change. Bits 12-15 are only 
updated when EIUCNT_LO is read. This assures that the state of the EIA 
and EIB inputs which caused the most recent transition of EIUCNT (up 
or down) was captured. Typically, EIUSTAT would be read shortly after 
EIUCNT_LO in order to read the input state which corresponds to the 
latest EIUCNT value. The state of the EIZ and EIS inputs is also 
captured.

Interrupts
There are three interrupt outputs: the loop timer time-out interrupt, the 
EIU error interrupt, and the registration input (Z & S) interrupt. There 
are four status bits associated with the three interrupt outputs in the 
EIUSTAT register. Each of these four bits exhibits “sticky” behavior. 
When an interrupt goes active, the corresponding status bit will be set. 
Even when the hardware condition which generated the interrupt goes 
away, the status bit will remain set, and the interrupt output will remain 
high. A write-1 software operation is required to clear the interrupt (w1c). 
For example, when the EIU loop timer times out, the interrupt output 
goes high, and the EIU loop timer interrupt status bit in the EIUSTAT 
register (bit 5) is set. The status bit and the interrupt output remain high 
until a “1” is written to bit 5 of EIUSTAT.

The EIU includes a dedicated interrupt which is generated when either 
the EIZLATCH or EISLATCH register is updated. These two conditions 
are combined into a single interrupt output EIULATCH_IRQ; there are 
two bits in EIUSTAT to distinguish between the two events.

32-bit Register Accesses
Because the I/O data bus is 16 bits wide, accesses to 32-bit mem-
ory-mapped registers require two transactions. Each 32-bit register is 
organized as a pair of 16-bit registers located at adjacent addresses in the 
peripheral address space. The lower 16 bits (designated as LO) are at the 



Encoder Interface Structure & Operation

16-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

lower address; the higher 16 bits (HI) are at the higher address. There are 
six such register pairs: EIUCNT, EIUMAXCNT, EETCNT, 
EIZLATCH, EISLATCH, and EIUCNT_SHDW. The order in which 
the two 16-bit values are either written to or read from is important. To 
clarify the nomenclature used in this document, references to a register 
without the HI/LO suffix refers to the HI/LO pair, which is the full 
32-bit value. For example, EIUMAXCNT refers to the full 32-bit register.

If only 16-bit precision is required, only the LO registers need to be 
accessed. The HI registers never need to be written to because they will 
default to 0 upon reset.

If 32-bit precision is required, the HI register must be written to prior to 
the LO register, in order to assure HI/LO data coherence. This is applica-
ble only to the write-able registers, EIUCNT and EIUMAXCNT. The 
write to EIUMAXCNT is used to “initialize” the EIU. Only after 
EIUMAXCNT_LO has been written to will the EIU be initialized. The 
write to EIUCNT triggers a load of the internal quadrature up/down 
counter. Only a write to EIUCNT_LO will cause this load to occur. The 
following example of assembly pseudo-code illustrates one possible way to 
set the internal 32-bit EIUMAXCNT register to the value, 0x19990A05:

AX0 = 0x1999;
DM(EIUMAXCNT_HI) = AX0;
AX0 = 0x0A05;
DM(EIUMAXCNT_LO) = AX0;

{This loads the internal EIUMAXCNT register with}
{0x19990A05, and clears the EIU STATUS bit} {(EIUSTAT[2]), thereby 
initializing the EIU.}

In order to read a coherent 32-bit value, the LO register must be read 
prior to the HI register. The read of the LO register effectively latches the 
HI value. In other words, the HI value will only be updated when the LO 
value is read. This applies only to EIUCNT, EETCNT, EIZLATCH, 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-17 
 

Encoder Interface Unit

Preliminary

EISLATCH and EIUCNT_SHDW. Since EIUMAXCNT is not modified 
by hardware, its HI value need not be latched. The following example of 
pseudo-code illustrates one possible way to read from a 32-bit register:

AX0 = DM(EIZLATCH_LO); {This latches the HI value as well.}
DM(Var1) = AX0; {Store value into memory variable.}
AX1 = DM(EIZLATCH_HI);

Therefore, the burden is placed on software to correctly read and write 
32-bit values. 

Encoder Event Timer

Introduction & Overview
The encoder event timer block forms an integral part of the EIU of the 
ADSP-2199x, as shown in Figure 16-1 on page 16-4. The EET accurately 
times the duration between encoder events. The information provided by 
the EET may be used to make allowances for the asynchronous timing of 
encoder and register-reading events. As a result, more accurate computa-
tions of the position and velocity of the motor shaft may be performed. 

The EET consists of a 16-bit encoder event timer, an encoder pulse deci-
mator and a clock divider. The EET clock frequency is selected by the 
16-bit read/write EETDIV clock divide register, whose value divides the 
HCLK frequency. The contents of the encoder event timer are incre-
mented on each rising edge of the divided clock signal. An EETDIV value 
of zero gives the maximum divide value of 0x10000 (= 65,536), so that 
the clock frequency to the encoder event timer is at its minimum possible 
value. 

The quadrature signal from the encoder interface unit is decimated at a 
rate determined by the 8-bit read/write EETN register. For example, writ-
ing a value of 2 to EETN, produces a pulse decimator output train at half 



Encoder Event Timer

16-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

the quadrature signal frequency, as shown in Figure 16-4 on page 16-19. 
The rising edge of this decimated signal is termed a velocity event. There-
fore, for an EETN value of 2, a velocity event occurs every two encoder 
edges, or on each edge of one of the encoder signals. An EETN value of 0 
gives an effective pulse decimation value of 256. 

On the occurrence of a velocity event, the contents of the encoder event 
timer are stored in an intermediate Interval Time register. Under normal 
operation, this register stores the elapsed time between successive velocity 
events. After the timer value has been latched at the velocity event, the 
contents of the encoder event timer are reset to one. 

Latching Data from the EET
When using the data from the Encoder Event Timer, it is important to 
latch a triplet set of data at the same instant in time. The three pieces of 
data are the contents of the encoder quadrature up/down counter, the 
stored value in the Interval Time register (giving the precise measured 
time between the last two velocity events) and the present value of the 
encoder event timer (giving an indication of how much time has passed 
since the last velocity event). 

The data from the EET can be latched on the occurrence of two different 
events. The particular event is selected by bit 4 (EETLATCH) of the 
EIUCTRL register. Setting this EETLATCH bit causes the data to be 
latched on the time-out of the encoder loop timer (EIUTIMER). At that 
time, the contents of the encoder quadrature counter (EIUCNT) are 
latched to a 32-bit, read-only register EETCNT. In addition, the contents 
of the intermediate Interval Time register are latched to the EETT regis-
ter, and the contents of the encoder event timer are latched to the 
EETDELTAT register. The three registers, EETCNT, EETT and EET-
DELTAT, then contain the desired triplet of position/speed data required 
for the control algorithm. In addition, if the time-out of the EIUTIMER 
is used to generate an EIU loop timer interrupt, the required data is auto-
matically latched and waiting for execution of the interrupt service routine 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-19 
 

Encoder Interface Unit

Preliminary

(which may be some time after the time-out instant if there are multiple 
interrupts in the system). By latching the EIUCNT register to EETCNT, 
the user does not have to worry about changes in the EIUCNT register 
(due to additional encoder edges) prior to servicing of the EIU loop timer 
interrupt.

The other EET latch event is defined by clearing the EETLATCH bit of 
the EIUCTRL register. In this mode, whenever, the EIUCNT register is 
read, the current value of the intermediate Interval Time register is latched 
to the EETT register, and the contents of the encoder event timer are 
latched to the EETDELTAT register. The three registers, EIUCNT, 
EETT and EETDELTAT, now contain the desired triplet of posi-
tion/speed data required for the control algorithm. Note the difference 
from before in that the encoder count value is now available in the 
EIUCNT register, but not in the EETCNT register.

Figure 16-4. Operation of encoder interface unit and EET in the forward 
direction with EETN=2

A

B

QUADRATURE
SIGNAL

EIUCNT

VELOCITY
EVENTS

ENCODER EVENT
TIMER VALUE

EET LATCH
EVENT

EETT

EETDELTAT



Encoder Event Timer

16-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

It is important to realize that the EETT and EETDELTAT registers are 
only updated by either the time-out of the EIUTIMER register (if EET-
LATCH bit is set) or the act of reading the EIUCNT registers (if the 
EETLATCH bit is cleared). Therefore, if the EETLATCH bit is set, the 
act of reading the EIUCNT register will not update the EETT and EET-
DELTAT registers. Following a reset, bit 4 of the EIUCTRL is cleared.

EET Status Register
There is a 1-bit EETSTAT register that indicates whether or not an over-
flow of the EET has occurred. If the time between successive velocity 
events is sufficiently long, it is possible that the encoder event timer will 
overflow. When this condition is detected, bit 0 of the EETSTAT register 
is set, and the EETT register is fixed at 0xFFFF. Writing a 1 to bit 0 of the 
EETSTAT register clears the overflow bit and permits the EETT register 
to be updated at the next velocity event. If an encoder direction reversal is 
detected by the EIU, the encoder event timer is set to one and the EETT 
register is set to its maximum 0xFFFF value. Subsequent velocity events 
will cause the EETT register to be updated with the correct value. If a 
value of 0xFFFF is read from the EETT register, bit 0 of the EETSTAT 
register can be read to determine whether an overflow or direction reversal 
condition exists. 

On reset, the EETN, EETDIV, EETDELTAT and EETT registers are all 
cleared to zero. Whenever either the EETN or EETDIV registers are writ-
ten to, the encoder event timer is reset to zero, and the EETT register is 
set to zero following the next latch event.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-21 
 

Encoder Interface Unit

Preliminary

EIU/EET Registers
The EIU/EET registers are illustrated from Figure 16-5 on page 16-21 to 
Figure 16-27 on page 16-27.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EIUCTRL IO[0x0A:0x000]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro rw rw rw rw rw rw rw rw rw

DIR Direction Reverse (1=swap EIA & 
EIB, 0=do not swap EIA/EIB)

ZERO Zero Marker 
(1=use for reset, 0=do not use)

SNM Single North Marker Mode
(1=enable, 0=disable)

MON EIU Error Monitoring
 (1=enable, 0=disable)

EETLD EET Latch Definition (1= EIU 
timer time-out, 0=EIUCNT read)

LTEN Enable EIU Loop Timer 
(1=enable, 0=disable)

FDMD Frequency & Direction Mode
(1=enable, 0=disable)

EIZL EIZ Latch Definition 
(1=zero marker, 0=registration)

EISL EIS Latch Definition
(1=zero marker, 0=registration)

Reserved

Figure 16-5. EIU Control Register EIUCTRL



EIU/EET Registers

16-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EIUSTAT IO[0x0A:0x001]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = un-initialized
ro ro ro ro ro ro ro ro w1c w1c w1c w1c ro ro ro ro

ERR EIU Count Error 
(1=error, 0=no error)

DIR EIU Count Direction 
(1=up, 0=down)

INIT EIU State 
(1=not initialized, 0=initialized)

FZM First Zero Marker 
(1=received, 0=not received)

ERR IRQ EIU Error Interrupt
 (1=Active, 0=Inactive)

TO IRQ EIU Timer Interrupt
 (1= Active, 0=Inactive)

EIZ IRQ EIZLATCH Updated Interrupt 
(1= Active, 0=Inactive)

EIS IRQ EISLATCH Updated Interrupt 
(1= Active, 0=Inactive)

EIA State (1=HI, 0=LO)

EIB State (1=HI, 0=LO)

EIZ State (1=HI, 0=LO)

EIS State (1=HI, 0=LO)

EIA State – held (1=HI, 0=LO)

EIB State – held (1=HI, 0=LO)

EIZ State – held (1=HI, 0=LO)

EIS State – held (1=HI, 0=LO)

Figure 16-6. EIU Status Register EIUSTAT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0002]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

EIUCNT_LO Register

Figure 16-7. EIU Count Low Register EIUCNT_LO



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-23 
 

Encoder Interface Unit

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0003]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

EIUCNT_HI Register

Figure 16-8. EIU Count High Register EIUCNT_HI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x000A]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

EIUMAXCNT_LO Register

Figure 16-9. EIU Maximum Count Low Register EIUMAXCNT_LO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x000B]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

EIUMAXCNT_HI Register

Figure 16-10. EIU Maximum Count High Register EIUMAXCNT_HI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0004]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EETCNT_LO Register

Figure 16-11. Latched EIU Count Low Register EETCNT_LO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0005]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EETCNT_HI Register

Figure 16-12. Latched EIU Count High Register EETCNT_HI



EIU/EET Registers

16-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0010]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EIUCNT_SHDW_LO Register

Figure 16-13. Shadow EIU Count Low Register EIUCNT_SHDW_LO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0011]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EIUCNT_SHDW_HI Register

Figure 16-14. Shadow EIU Count High Register EIUCNT_SHDW_HI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0006]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EIZLATCH_LO Register

Figure 16-15. EIZ Latch Count Low Register EIZLATCH_LO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0007]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EIZLATCH_HI Register

Figure 16-16. EIZ Latch Count High Register EIZLATCH_HI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0008]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EISLATCH_LO Register

Figure 16-17. EIS Latch Count Low Register EISLATCH_LO



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-25 
 

Encoder Interface Unit

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0009]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EISLATCH_HI Register

Figure 16-18. EIS Latch Count High Register EISLATCH_HI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EIUFILTER IO[0x0A:0x00C]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro rw rw rw rw rw rw rw rw

EIU Filer Clock Divider

Reserved

Figure 16-19. EIU Filter Control Register EIUFILTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x000D]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

EIUPERIOD Register

Figure 16-20. EIU Loop Timer Period Register EIUPERIOD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x000F]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

EIUTIMER Register

Figure 16-21. EIU Loop Timer Register EIUTIMER



EIU/EET Registers

16-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EIUSCALE IO[0x0A:0x00E]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro rw rw rw rw rw rw rw rw

Scale clock Divider

Reserved

Figure 16-22. EIU Loop Timer Scale Register EIUSCALE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EETN IO[0x0A:0x020]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro rw rw rw rw rw rw rw rw

Pulse Decimator Value

Reserved

Figure 16-23. EET Pulse Decimator Register EETN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0021]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

EETDIV Register

Figure 16-24. EET Clock Divider Register EETDIV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0022]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EETDELTAT Register

Figure 16-25. EET Delta Timer Register EETDELTAT



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 16-27 
 

Encoder Interface Unit

Preliminary

Inputs/Outputs
There are 4 dedicated input pins associated with the Encoder Interface 
Unit; EIA, EIB, EIS and EIZ. The EIA and EIB inputs are the quadrature 
inputs to the 32-bit encoder up/down counter (following the input filter 
stage). The EIA and EIB inputs may also be programmed as the alternative 
Frequency (FRQ) and direction (DIR) inputs. The EIZ input is intended 
for the zero marker of the encoder input and may operate as a hardware or 
software reset of the EIUCNT register. The EIZ and EIS inputs may be 
configured as registration inputs to latch the EIUCNT register to the EIS-
LATCH and EIZLATCH registers and generate the associated interrupt. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0023]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

EETT Register

Figure 16-26. EET Timer Period Register EETT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0A:0x0024]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro w1c

OV EET overflow 
(1=overflow, 0=no overflow)

Reserved

Figure 16-27. EET Status Register EETSTAT



Inputs/Outputs

16-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 17-1 
 

Auxiliary PWM Generation Unit

Preliminary

17 AUXILIARY PWM 
GENERATION UNIT

Overview
The ADSP-2199x contains a two-channel, 16-bit, auxiliary PWM output 
unit that can be programmed with variable frequency, variable duty-cycle 
values and may operate in either an independent or offset operating mode. 
The Auxiliary PWM Generation unit provides two chip output pins, AUX0 
and AUX1 (on which the switching signals appear) and one chip input pin, 
AUXTRIP, which can be used to shutdown the switching signals, for exam-
ple in a fault condition. After reset, the Auxiliary PWM output channel 
duty on-time is 0 so the Auxiliary PWM outputs are always low. The 
appropriate Auxiliary PWM Channel Timer Registers, AUXTM0 and AUXTM1 
are written to define the auxiliary PWM period or offset. The duty Regis-
ters, u and u are written to set the duty of the on-time for the auxiliary 
PWM outputs.

To determine if any raw auxiliary PWM trip signal is asserted, bit 8 of the 
Auxiliary PWM Status Register, AUXSTAT, is read. The external trip signal 
must be negated, external to this module, for proper start-up operation. 
Pending interrupts can be cleared by setting bits 0 (for the auxiliary PWM 
synchronization interrupt) and bit 4 (for the auxiliary PWM trip inter-



Independent Mode

17-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

rupt), if interrupts are used. The Auxiliary PWM Control Register, 
AUXCTRL, is generally written to last, setting the Auxiliary PWM Synchro-
nization Enable bit, AS_EN, to enable generation of the auxiliary PWM 
synchronization signal, setting the Auxiliary PWM Enable bit, AUX_EN, to 
enable the Auxiliary PWM outputs and the Auxiliary PWM Mode bit, 
AUX_PH, to define each Auxiliary PWM output to operate in offset or inde-
pendent mode.

The AUXTRIP input can be asynchronously driven low with or without 
clocks when an abnormal external event requires Auxiliary PWM channel 
outputs to be shutdown. There is one AUXTRIP signal for the pair of auxil-
iary PWM outputs, which resets both output signals (AUX0 and AUX1) to a 
logic low (when AUXTRIP is driven low). The Auxiliary PWM Trip Inter-
rupt bit, AT_IRQ, in the AUXSTAT register must be cleared to clear this trip 
condition prior to enabling the auxiliary PWM outputs again. In general, 
if the mode in AUXCTRL is changed while the auxiliary channel output or 
sync is enabled, the transition is not specified and not recommended.

Independent Mode
The auxiliary PWM unit of the ADSP-2199x can operate in two different 
modes, independent mode or offset mode. Bit 4 (AUX_PH) of the AUXCTRL 
register controls the operating mode of the auxiliary PWM system. Setting 
bit 4 of the AUXCTRL register places the auxiliary PWM channel pair in the 
independent mode. In independent mode, the two auxiliary PWM genera-
tors are completely independent and separate switching frequencies and 
duty cycles may be programmed for each auxiliary PWM output. In this 
mode, the 16-bit AUXTM0 register sets the switching frequency of the signal 
at the AUX0 output pin. Similarly, the 16-bit AUXTM1 register sets the 
switching of the signal at the AUX1 output pin. The fundamental time 
increment for the auxiliary PWM outputs is the peripheral clock rate, 
HCLK (or tCK) so that the corresponding switching periods are given by:

TAUX0 = (AUXTM0 + 1) x tCK



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 17-3 
 

Auxiliary PWM Generation Unit

Preliminary

TAUX1 = (AUXTM1 + 1) x tCK

Since the values in both AUXTM0 and AUXTM1 can range from 0 to 0xFFFF, 
the achievable switching frequency of the auxiliary PWM signals may 
range from 1.14 kHz to 37.5 MHz for a 75 MHz peripheral clock rate. 
The on-time of the two auxiliary PWM signals are programmed by the 
two 16-bit AUXCH0 and AUXCH1 registers, according to:

TON,AUX0 = AUXCH0 x tCK

TON,AUX1 = AUXCH1 x tCK

so that output duty cycles from 0% to 100% are possible. Duty cycles of 
100% are produced if the on-time value exceeds the period value. Typical 
auxiliary PWM waveforms in independent mode are shown in Figure 17-1 
on page 17-3.

Figure 17-1. Typical auxiliary PWM signals in Independent mode

AUXSYNC

AUX0

AUX1

AUXCH1

AUXTM1+1

AUXTM0+1

AUXCH0



Offset Mode

17-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Offset Mode
When bit 4 of the AUXCTRL register is cleared the auxiliary PWM channels 
are placed in offset mode. In offset mode the switching frequency of the 
two signals on the AUX0 and AUX1 pins are identical and controlled by 
AUXTM0 in a manner similar to that previously described for independent 
mode. In addition, the AUXCH0 and AUXCH1 registers control the on-times of 
both the AUX0 and AUX1 signals as before. However, in this mode the 
AUXTM1 register defines the offset time from the rising edge of the signal on 
the AUX0 pin to that on the AUX1 pin, according to:

TOFFSET = (AUXTM1 + 1) x tCK

For correct operation in this mode, the value written to the AUXTM1 register 
must be less than the value written to the AUXTM0 register. Typical auxiliary 
PWM waveforms in offset mode are shown in Figure 17-2 on page 17-4. 
Again, duty cycles from 0% to 100% are possible in this mode.

Figure 17-2. Typical auxiliary PWM signals in Offset mode

AUXSYNC

AUX0

AUX1

AUXTM1+1

AUXCH1

AUXTM0+1

AUXTM0+1
AUXCH0



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 17-5 
 

Auxiliary PWM Generation Unit

Preliminary

Operation Features
In both operating modes, the resolution of the auxiliary PWM system is 
16-bit only at the minimum switching frequency (AUXTM0 = AUXTM1 = 
65535 in independent mode, AUXTM0 = 65535 in offset mode). Obviously 
as the switching frequency is increased the resolution is reduced.

Values written to the auxiliary PWM registers are double buffered and 
cause updates in the auxiliary PWM system at period boundaries. In inde-
pendent mode, the AUXTM0 and AUXCH0 values will be applied at the 
beginning of the next Auxiliary PWM period, defined as the rising edge of 
AUX0. Each auxiliary PWM output behaves independently in the same 
update manner. In offset mode, AUXTM0, AUXCH0, and AUXTM1 values will be 
applied at the beginning of the next AUX0 period, defined as the rising edge 
of AUX0. The AUXCH1 value is updated when the AUX1 output begins its 
period after the AUXTM1 defined offset. By default, following power on or a 
reset, bit 4 of the AUXCTRL register is cleared so that offset mode is enabled. 
In addition, the registers AUXTM0 and AUXTM1 default to 0xFFFF, corre-
sponding to minimum switching frequency and zero offset. In addition, 
the on-time registers AUXCH0 and AUXCH1 default to 0x0000. The state of 
the two auxiliary PWM output signals, AUX0 and AUX1, may be read in the 
AUXSTAT2 register and can be used for software observation of the PWM 



AUXTRIP Shutdown

17-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

process if desired. The startup of the two AUX output signals in both Inde-
pendent and Offset operating modes is illustrated in Figure 17-3 on 
page 17-6 following a write to the AUX_EN bit of the AUXCTRL register.

AUXTRIP Shutdown
There is an active low AUXTRIP input signal for the auxiliary PWM channel 
pair. The AUXTRIP input pin has an internal pull-down resistor that is used 
to assert the signal when an AUXTRIP input pin attachment failure occurs. 
Otherwise, external sensors may assert the pin asynchronously and possi-
bly without system clocks. The auxiliary PWM channel outputs, AUX0 and 
AUX1, will be forced low with or without a clock and the AUX_EN bit in the 

Figure 17-3. Output Enable Timing of Auxiliary PWM Outputs based on 
AUX_EN bit

AUXSYNC

AUX_EN

INDEPENDENT MODE

AUX0

AUX1

OFFSET MODE

AUX0

AUX1

AUXTM0+1

AUXCH1

AUXTM1+1

AUXTM1+1

2HCLK



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 17-7 
 

Auxiliary PWM Generation Unit

Preliminary

AUXCTRL register will be reset indicating the auxiliary PWM channel pair is 
disabled. The auxiliary PWM outputs will not be enabled until the auxil-
iary PWM channel pair is re-initialized. The AUXTRIP condition is 
independently latched and held in the AUXSTAT registers, bit 4, which will 
also initiate an AUXTRIP interrupt. The ISR for the AUXTRIP condition will 
have to write a 1 to bit 4 of the AUXSTAT register to clear the interrupt.

AUXSYNC Operation
There is an internal synchronization pulse generated for each auxiliary 
channel pair. This output signal may be used for ADC sample timing. 
This internal sync pulses is latched and held in the AUXSTAT register, bits 0. 
The setting of bit 0 of the AUXSTAT register creates an interrupt signal AUX-
SYNC, which is fed to the Peripheral Interrupt Controller. The ISR for the 
AUXSYNC condition will have to write a 1 to bit 0 of the AUXSTAT to clear 
the interrupt. The AUXSYNC signal is not brought to an external chip pin in 
the ADSP-2199x.



Registers

17-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Registers
The registers of the Auxiliary PWM Generation Unit are illustrated from 
Figure 17-4 on page 17-8 to Figure 17-8 on page 17-9.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AUXCTRL IO[0x0C:0x000]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

AUX_EN Auxiliary PWM Enable
(1 = enable, 0 = disable)

Reserved

AUX_PH Auxiliary PWM Mode
(1 = independent mode, 0 = offset 
mode)

Reserved

AS_EN Auxiliary PWM Synchronization 
Enable (1 = enable, 0 = disable)

Reserved

Figure 17-4. Auxiliary PWM Control Register AUXCTRL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AUXSTAT IO[0x0C:0x001]

u u u u u u u u u u u u u u u u Reset = un-initialized

AS_IRQ Auxiliary PWM Sychronization 
Interrupt
(1 = occurred, 0 = not occurred)

Reserved

AT_IRQ Auxiliary PWM Trip Interrupt
(1 = occurred, 0 = not occurred)

Reserved

AUXTRIP Raw Status
(1 = HI, 0 = LO, active trip)

Reserved

Figure 17-5. Auxiliary PWM Status Register AUXSTAT



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 17-9 
 

Auxiliary PWM Generation Unit

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AUXTM1 IO[0x0C:0x0004]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Read/Write

Figure 17-6. Auxiliary PWM Period Registers AUXTM0 and AUXTM1

AUXCH0 IO[0x0C:0x0003]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AUXCH1 IO[0x0C:0x0005]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Read/Write

Figure 17-7. Auxiliary PWM Duty Cycle Registers AUXCH0 and AUXCH1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AUXSTAT2 IO[0x0C:0x00E]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 u u Reset = un-initialized

Read only AUX0_ST
Read only AUX1_ST

Reserved

Figure 17-8.  Auxiliary PWM Status Register 2 AUXSTAT2



Registers

17-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-1 
 

PWM Generation Unit

Preliminary

18 PWM GENERATION UNIT

OVERVIEW
The PWM block is a flexible, programmable, three-phase PWM waveform 
generator that can be programmed to generate the required switching pat-
terns to drive a three-phase voltage source inverter for ac induction 
(ACIM) or permanent magnet synchronous (PMSM) motor control. In 
addition, the PWM block contains special functions that considerably 
simplify the generation of the required PWM switching patterns for con-
trol of the electronically commutated motor (ECM) or brushless dc motor 
(BDCM). Tying a dedicated pin, PWMSR to GND, enables a special mode, 
for switched reluctance motors (SRM). A block diagram representing the 
main functional blocks of the PWM Generation Units is shown in 
Figure 18-1 on page 18-2.

The PWM generator produces three pairs of PWM signals on the six 
PWM output pins (AH, AL, BH, BL, CH and CL). The six PWM output sig-
nals consist of three high-side drive signals (AH, BH and CH) and three 
low-side drive signals (AL, BL and CL). The polarity of the generated PWM 
signals is determined by the PWMPOL input pin, so that either active HI or 
active LO PWM patterns can be produced by tying the PWMPOL input pin 
high or low. The switching frequency and dead time of the generated 



OVERVIEW

18-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

PWM patterns are programmable using the PWMTM and PWMDT registers. In 
addition, three duty-cycle control registers (PWMCHA, PWMCHB and PWMCHC) 
directly control the duty cycles of the three-pairs of PWM signals.

Figure 18-1. Overview of the PWM Generation Unit

PWMLSI

PWMCTRL

PWMTM PWMCHCL

PWMCHBL

PWMCHAL

PWMCHB

PWMCHA PWMSTAT

HCLK

AH

AL

BH
BL

CH

CL

GATE
DRIVE UNIT

OUTPUT
CONTROL

UNIT

DEAD
TIME

CONTROL
UNIT

THREE-PHASE
PWM TIMING UNIT

SHUTDOWN

PWMSR

PWMPOL

PWMTRIP

FIOTRIP
(FROM FIO MODULE)

PWMSYNC

PWMSYNCT

PWMSYNC
CONTROL UNIT

PWMSYNC_IRQ

PWMTRIP_IRQ

PWM SHUTDOWN
AND CONTROL

UNIT

PWMSYNC

PWMCHC

PWMDT PWMSEG PWMGATE



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-3 
 

PWM Generation Unit

Preliminary

Each of the six PWM output signals can be enabled or disabled by sepa-
rate output enable bits of the PWMSEG register. In addition, three control 
bits of the PWMSEG register permit independent crossover of the two signals 
of a PWM pair for easy control of ECM or BDCM. In crossover mode, 
the PWM signal destined for the high-side switch is diverted to the com-
plementary low-side output and the PWM signal destined for the low-side 
switch is diverted to the corresponding high-side output signal for ECM 
or BDCM modes of operation. A typical configuration for this type of 
motors is shown in Figure 18-2 on page 18-3.

Figure 18-2. Active LOW PWM signals for ECM control

PWMTM PWMTM

PWMCHA
=PMWCHB

2*PWMDT
2*PWMDT

AH

AL

BL

BH

CH

CL

PWMCHA
=PMWCHB

2
PWMTM+

2
PWMTM–

0 0 2
PWMTM+

PWMCHA = PWMCHB, CROSSOVER B H/BL PA IR A ND DISABLE AL, B H, C H AND CL OUTPUTS



OVERVIEW

18-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

In the common three-phase inverters it is necessary to insert a so-called 
dead time between the turning off of one switch and the turning on of the 
other switch in the same leg, in order to prevent shoot-through. This dead 
time is inserted by hardware in the PWM generation unit and is program-
mable using the PWM switching dead time register (PWMDT).

In many applications, there is a need to provide an isolation barrier in the 
gate-drive circuits that turn on the power devices of the inverter. In gen-
eral, there are two common isolation techniques, optical isolation using 
opto-isolators and transformer isolation using pulse transformers. The 
PWM controller permits mixing of the output PWM signals with a 
high-frequency chopping signal to permit an easy interface to such pulse 
transformers. The features of this gate-drive-chopping mode can be con-
trolled by the PWMGATE register. There is an 8-bit value within the PWMGATE 
register that directly controls the chopping frequency. In addition, 
high-frequency chopping can be independently enabled for the high-side 
and the low-side outputs using separate control bits in the PWMGATE regis-
ter. In addition, all PWM outputs should have sufficient sink and source 
capability to directly drive most opto-isolators.

The PWM generator is capable of operating in two distinct modes, single 
update mode or double update mode. In single update mode the duty 
cycle values are programmable only once per PWM period, so that the 
resultant PWM patterns are symmetrical about the mid-point of the 
PWM period. In the double update mode, a second updating of the PWM 
registers is implemented at the mid-point of the PWM period. In this 
mode, it is possible to produce asymmetrical PWM patterns that produce 
lower harmonic distortion in three-phase PWM inverters. This technique 
also permits closed loop controllers to change the average voltage applied 
to the machine windings at a faster rate and so permits faster closed loop 
bandwidths to be achieved. The operating mode of the PWM block (sin-
gle or double update mode) is selected by a control bit in PWMCTRL register.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-5 
 

PWM Generation Unit

Preliminary

The PWM generator can also provide an internal synchronization pulse 
on the PWMSYNC pin that is synchronized to the PWM switching frequency. 
In single update mode a PWMSYNC pulse is produced at the start of each 
PWM period. In double update mode, an additional PWMSYNC pulse is also 
produced at the mid-point of each PWM period. The width of the PWM-
SYNC pulse is programmable through the PWMSYNCWT register.

The PWM generator can also accept an external synchronization pulse on 
the PWMSYNC pin. The selection of external synchronization or internal syn-
chronization is determined in the PWMCTRL register. The PWMSYNC input 
timing can be synchronized to the internal peripheral clock, which is 
selected in the PWMCTRL register. If the external synchronization pulse from 
the chip pin is asynchronous to the internal peripheral clock (typical case), 
the external PWMSYNC is considered asynchronous and should be synchro-
nized. The size of the sync pulse on PWMSYNC must be greater than two 
peripheral clock periods.

The PWM output signals can be shut-off in a number of different ways. 
Firstly, there is a dedicated asynchronous PWM shutdown pin, PWMTRIP, 
that, when brought LO, instantaneously places all six PWM outputs in the 
OFF state (as determined by the state of the PWMPOL pin). This hardware 
shutdown mechanism is asynchronous so that the associated PWM disable 
circuitry does not go through any clocked logic, thereby ensuring correct 
PWM shutdown even in the event of a loss of the DSP clock. The PWM_EN 
bit in PWMCTRL is reset by a trip shutdown in hardware but all the other 
programmable registers maintain current state.

The Programmable Flag Module (FIO) pins may also be used as PWM 
trip sources. The behavior of the FIO is described in the FIO module doc-
umentation. An FIO trip is handled by the PWM in the same way as the 
PWMTRIP input pin.

In addition to the hardware shutdown features, the PWM system may be 
shutdown in software by disabling the PWM_EN bit in the PWMCTRL register.



OVERVIEW

18-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Status information about the PWM system is available to the user in the 
PWMSTAT register. In particular, the state of PWMTRIP, PWMPOL and PWMSR pins 
is available, as well as status bits that indicate whether operation is in the 
first half or the second half of the PWM. The PWMSTAT register also con-
tains the module interrupt bits. PWMSTAT also contains PWMSYNCINT and 
PWMTRIPINT which are module interrupts that can be mapped to the dsp 
core user interrupts. The two interrupt bits are latched and held on the 
interrupt event and the software must write a 1 to clear the interrupt bit, 
usually during the Interrupt Service Routine.

A functional block diagram of the PWM controller is shown in 
Figure 18-1 on page 18-2. The generation of the six output PWM signals 
on pins AH to CL is controlled by six important blocks:

• The Three-Phase PWM Timing Unit, which is the core of the 
PWM controller, generates three pairs of complemented center 
based PWM signals and PWMSYNC coordination.

•  The Emergency DeadTime insertion is implemented after the 
"ideal" PWM output pair, including crossover, is generated.

• The Output Control Unit allows the redirection of the outputs of 
the Three-Phase Timing Unit for each channel to either the 
high-side or the low-side output. In addition, the Output Control 
Unit allows individual enabling/disabling of each of the six PWM 
output signals.

•  The Gate Drive Unit provides the correct polarity output PWM 
signals based on the state of the PWMPOL pin. The Gate Drive Unit 
also permits the generation of the high frequency chopping fre-
quency and its subsequent mixing with the PWM output signals.

•  The PWM Shutdown & Interrupt Controller takes care of the var-
ious PWM shutdown modes (via the PWMTRIP pin, FIO pins or the 
PWMCTRL register). This unit generates the correct reset signal for the 
Timing Unit and interrupt signals for the interrupt control unit.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-7 
 

PWM Generation Unit

Preliminary

•  The PWMSYNC Pulse control unit generates the internal PWMSYNC 
pulse and also controls whether the external PWMSYNC pulse is used 
or not.

The PWM controller is driven by a clock, with period tCK, and is capable 
of generating two interrupts to the DSP core. One interrupt is generated 
on the occurrence of rising edge on the PWMSYNC pulse, which is internally 
generated, and the other is generated on the occurrence of a PWMTRIP or 
FIO PWM shutdown action.

GENERAL OPERATION
Typically the PWMSYNC interrupt is used to periodically execute an interrupt 
service routine, ISR, to update the three PWM channel duties according 
to a control algorithm based on expected motor operation and sampled 
existing motor operation. The PWMSYNC also can trigger the ADC to sample 
data for use during the ISR. During processor boot the PWM is initialized 
and program flow enters a wait loop. When a PWMSYNC interrupt occurs, 
the ADC samples data, the data is algorithmically interpreted, and new 
PWM channel duty cycles are calculated and written to the PWM. More 
sophisticated implementations include different startup, runtime, and 
shutdown algorithms to determine PWM channel duties based on 
expected behavior and further features.

During initialization, the PWMTM is written to define the PWM period and 
PWMCHx register are written to define the initial channel pulse widths. The 
PWMSYNC interrupt is assigned to one of the dsp core's user interrupts and is 
unmasked in the dsp core and in an IO Space Interrupt Control module. 
The PWMSYNCWT, PWMGATE, PWMSEG, PWMCHAL, PWMCHBL, and PWMCHCL registers 
are also written to depending on the system configuration and modes. 
Since the FIO module is also a source of external trip conditions the FIO 
module must be initialized accordingly. The PWMSTAT register can be read 
to determine polarity, if the SR mode is enabled, and if there is an external 
trip situation that could prevent the correct startup of the PWM. An 



OVERVIEW

18-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

active external trip event must be resolved prior to PWM start. The PWMC-
TRL register is then written to define the major operating mode and to 
enable the PWM outputs and PWMSYNC pulse.

During the PWMSYNC interrupt driven control loop, only the PWMCHx duty 
cycle values are typically updated. The PWMSEG register may also be 
updated for other system implementations requiring output crossover.

During any external trip event, the PWM outputs will be placed in the 
OFF state, as determined by the state of the PWMPOL pin, and the PWMSYNC 
pulse will continue to operate if it is already enabled. A PWMTRIP interrupt 
will occur if unmasked to notify the software of this event. In the damaged 
clock case, an external trip will turn off the PWM outputs, with or with-
out clocks.

FUNCTIONAL DESCRIPTION

Three-Phase Timing & Dead Time Insertion Unit

The 16-bit three-phase timing unit is the core of the PWM controller and 
produces three pairs of pulsewidth-modulated signals with high resolution 
and minimal processor overhead. The outputs of this timing unit are 
active LO such that a low level is interpreted as a command to turn ON 
the associated power device. There are three main configuration registers 
(PWMCTRL, PWMTM and PMWDT) that determine the fundamental characteris-
tics of the PWM outputs. These registers in conjunction with the three 
16-bit duty cycle registers (PWMCHA, PWMCHB and PWMCHC) control the output 
of the three-phase timing unit.

PWM Switching Frequency, PWMTM Register

The 16-bit read/write PWM period register, PWMTM, controls the PWM 
switching frequency. The fundamental timing unit of the PWM controller 
is tCK. Therefore, for an 80MHz peripheral clock, HCLK, the fundamental 
time increment, tCK, is 12.5 ns. The value written to the PWMTM register is 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-9 
 

PWM Generation Unit

Preliminary

effectively the number of tCK clock increments in half a PWM period. 
The required PWMTM value as a function of the desired PWM switching fre-
quency (fPWM) is given by:

Therefore, the PWM switching period, Ts, can be written as:

For example, for an 80MHz HCLK and a desired PWM switching fre-
quency of 10 kHz (Ts = 100 ms), the correct value to load into the PWMTM 
register is:

The largest value that can be written to the 16-bit PWMTM register is 
0xFFFF = 65,535 which corresponds to a minimum PWM switching fre-
quency of:

Also note that PWMTM values of 0 and 1 are not defined and should not be 
used when the PWM outputs or PWMSYNC is enabled.

PWM Switching Dead Time, PWMDT Register

The second important parameter that must be set up in the initial config-
uration of the PWM block is the switching dead time. This is a short delay 
time introduced between turning off one PWM signal (say AH) and turn-
ing on the complementary signal, AL. This short time delay is introduced 
to permit the power switch being turned off (AH in this case) to completely 
recover its blocking capability before the complementary switch is turned 
on. This time delay prevents a potentially destructive short-circuit condi-
tion from developing across the dc link capacitor of a typical voltage 
source inverter.

PWMTM
fCK

2 fPWM×
----------------------=

TS 2 PWMTM tCK××=

PWMTM 80 106×
2 10 103××
------------------------------ 4000= =

fPWM min,
80 106×

2 65535×
------------------------ 610Hz= =



OVERVIEW

18-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The 10-bit, read/write PWMDT register controls the dead time. There is only 
one dead time register that controls the dead time inserted into the three 
pairs of PWM output signals. The dead time, Td, is related to the value in 
the PWMDT register by:

Therefore, a PWMDT value of 0x00A (= 10), introduces a 250 ns delay 
between the turn off on any PWM signal (say AH) and the turn on of its 
complementary signal (AL). The amount of the dead time can therefore be 
programmed in increments of 2tCK (or 25 ns for a 80 MHz peripheral 
clock). The PWMDT register is a 10-bit register so that its maximum value is 
0x3FF (= 1023) corresponding to a maximum programmed dead time of:

for a HCLK rate of 80 MHz. Obviously, the dead time can be programmed 
to be zero by writing 0 to the PWMDT register.

PWM Operating Mode, PWMCTRL & PWMSTAT Registers

The PWM controller can operate in two distinct modes; single update 
mode and double update mode. The operating mode of the PWM con-
troller is determined by the state of the PWM_DBL bit in the PWMCTRL register. 
If this bit is cleared the PWM operates in the single update mode. Setting 
the PWM_DBL bit places the PWM in the double update mode. By default, 
following either a peripheral reset or power on, the PWM_DBL bit of the PWM-
CTRL register is cleared so that the default operating mode is single update 
mode.

In single update mode, SUM, a single PWMSYNC pulse is produced in each 
PWM period. The rising edge of this signal marks the start of a new PWM 
cycle and is used to latch new values from the PWM configuration regis-
ters (PWMTM, PWMDT and PWMSYNCWT) and the PWM duty cycle registers 
(PWMCHA, PWMCHB, PWMCHC, PWMCHAL, PWMCHBL and PWMCHCL) into the 
three-phase timing unit. In addition, the PWMSEG register is also latched 

Td PWMDT 2 tCK××=

Td max, 1023 2 tCK×× 1023 2 12.5 10 9–××× 25.6µs= = =



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-11 
 

PWM Generation Unit

Preliminary

into the output control unit on the rising edge of the PWMSYNC pulse. In 
effect, this means that the characteristics and resultant duty cycles of the 
PWM signals can be updated only once per PWM period at the start of 
each cycle. The result is that PWM patterns that are symmetrical about 
the mid-point of the switching period are produced.

In double update mode, DUM, there is an additional PWMSYNC pulse pro-
duced at the mid-point of each PWM period. The rising edge of this new 
PWMSYNC pulse is again used to latch new values of the PWM configuration 
registers, duty cycle registers and the PWMSEG register. As a result it is possi-
ble to alter both the characteristics (switching frequency, dead time and 
PWMSYNC pulsewidth) as well as the output duty cycles at the mid-point of 
each PWM cycle. Consequently, it is possible to produce PWM switching 
patterns that are no longer symmetrical about the mid-point of the period 
(asymmetrical PWM patterns).

In the double update mode, it may be necessary to know whether opera-
tion at any point in time is in either the first half or the second half of the 
PWM cycle. This information is provided by the PWMPHASE bit of the PWM-
STAT register which is cleared during operation in the first half of each 
PWM period (between the rising edge of the original PWMSYNC pulse and 
the rising edge of the new PWMSYNC pulse introduced in double update 
mode). The PWMPHASE bit of the PWMSTAT register is set during operation in 
the second half of each PWM period. This status bit allows the user to 
make a determination of the particular half-cycle during implementation 
of the PWMSYNC interrupt service routine, if required.

The advantage of the double update mode is that the PWM process can 
produce lower harmonic voltages and faster control bandwidths are possi-
ble. However, for a given PWM switching frequency, the PWMSYNC pulses 
occur at twice the rate in the double update mode. Since, new duty cycle 
values must be computed in each PWMSYNC interrupt service routine, there 
is a larger computational burden on the DSP in the double update mode. 
Alternatively, the same PWM update rate may be maintained at half the 
switching frequency to give lower switching losses.



OVERVIEW

18-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

PWM Duty Cycles, PWMCHA, PWMCHB, PWMCHC Registers

The three 16-bit read/write duty cycle registers, PWMCHA, PWMCHB and PWM-
CHC control the duty cycles of the six PWM output signals on pins AH to CL 
when not in switch reluctance mode. The two's complement integer value 
in the register PWMCHA controls the duty cycle of the signals on AH and AL, 
in PWMCHB controls the duty cycle of the signals on BH and BL and in PWMCHC 
controls the duty cycle of the signals on CH and CL. The duty cycle registers 
are programmed in two's complement integer counts of the fundamental 
time unit, tCK, and define the desired on-time of the high-side PWM sig-
nal produced by the three-phase timing unit over half the PWM period. 
The duty cycle register range is from (-PWMTM/2 - PWMDT) to (+PWMTM/2 + 
PWMDT), which, by definition, is scaled such that a value of 0 represents a 
50% PWM duty cycle. The switching signals produced by the three-phase 
timing unit are also adjusted to incorporate the programmed dead time 
value in the PWMDT register. The three-phase timing unit produces active 
LO signals so that a LO level corresponds to a command to turn on the 
associated power device.l

A typical pair of PWM outputs (in this case for AH and AL) from the tim-
ing unit are shown in Figure 18-3 on page 18-13 for operation in single 
update mode. All illustrated time values indicate the integer value in the 
associated register and can be converted to time by simply multiplying by 
the fundamental time increment, tCK and comparing to the twos compli-
ment counter. First, it is noted that the switching patterns are perfectly 
symmetrical about the mid-point of the switching period in this single 
update mode since the same values of PWMCHA, PWMTM and PWMDT are used to 
define the signals in both half cycles of the period. It can be seen how the 
programmed duty cycles are adjusted to incorporate the desired dead time 
into the resultant pair of PWM signals. Clearly, the dead time is incorpo-
rated by moving the switching instants of both PWM signals (AH and AL) 
away from the instant set by the PWMCHA register. Both switching edges are 
moved by an equal amount (PWMDT*tCK) to preserve the symmetrical out-
put patterns. Also shown is the PWMSYNC pulse whose rising edge denotes 
the beginning of the switching period and whose width is set by the PWM-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-13 
 

PWM Generation Unit

Preliminary

SYNCWT register. Also shown is the PWMPHASE bit of the PWMSTAT register that 
indicates whether operation is in the first or second half cycle of the PWM 
period.

The resultant on-times (active low) of the PWM signals over the full 
PWM period (two half periods) produced by the PWM timing unit and 
illustrated in Figure 18-3 on page 18-13 may be written as:

Figure 18-3. Typical PWM outputs of Three-Phase Timing Unit in Single 
Update Mode (active LOW waveforms)

PWMTM PWMTM

PWMCHA PWMCHA

2*PWMDT2*PWMDT

AH

AL

PWMSYNC

PWMPHASE

PWMSYNCWT + 1

COUNT
2

PWMTM
+

2

PWMT M
+

2

PWMTM
–0 0

TAH PWMTM 2 PWMCHA PWMDT ) tCK×–( )+(=

Range of TAH is 0:2 PWMTM tCK××[ ]

TAL PWMTM 2 PWMCHA PWMDT ) ) tCK×+(+(=

Range of TAL is 0:2 PWMTM tCK××[ ]



OVERVIEW

18-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

and the corresponding duty cycles are:

Obviously negative values of TAH and TAL are not permitted and the min-
imum permissible value is zero, corresponding to a 0% duty cycle. In a 
similar fashion, the maximum value is Ts, the PWM switching period, 
corresponding to a 100% duty cycle.

The output signals from the timing unit for operation in double update 
mode are shown in Figure 18-4 on page 18-15 This illustrates a com-
pletely general case where the switching frequency, dead time and duty 
cycle are all changed in the second half of the PWM period. Of course, the 
same value for any or all of these quantities could be used in both halves of 
the PWM cycle. However, it can be seen that there is no guarantee that 

dAH
TAH
TS

--------- 1
2
--- PWMCHA PWMDT–

PWMTM
------------------------------------------------+= =

dAL
TAL
TS

--------- 1
2
--- PWMCHA PWMDT+

PWMTM
-------------------------------------------------–= =



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-15 
 

PWM Generation Unit

Preliminary

symmetrical PWM signal will be produced by the timing unit in this dou-
ble update mode. Additionally, it is seen that the dead time is inserted into 
the PWM signals in the same way as in the single update mode.

In general, the on-times (active low) of the PWM signals over the full 
PWM period in double update mode can be defined as:

Figure 18-4. Typical PWM outputs of Three-Phase Timing Unit in Dou-
ble Update Mode (active LO waveforms)

PWMTM1 PWMTM2

PWMCHA1 PWMCHA2

2*PWMDT2
2*PWMDT1

AH

AL

PWMSYNC PWMSYNCWT2 + 1

2
PWMTM1+

2
PWMTM2+2

PWMTM1– 02
PWMTM2–

PWMSYNCWT1 + 1

COUNT

PWMPHASE

0

TAH
PWMTM1

2
---------------------
 PWMTM2

2
---------------------+ PWMCHA1 PWMCHA2 PWMDT1– PWMDT2 ) tCK×–+ +=

TAL
PWMTM1

2
---------------------
 PWMTM2

2
--------------------- P– WMCHA1 P– WMCHA2 PWMDT1– PWMDT2 ) tCK×–+=

TS PWMTM1 PWMTM2+( ) tCK×=



OVERVIEW

18-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

where the subscript 1 refers to the value of that register during the first 
half cycle and the subscript 2 refers to the value during the second half 
cycle. The corresponding duty cycles are:

since for the completely general case in double update mode, the switch-
ing period is given by:

Again, the values of TAH and TAL are constrained to lie between zero and 
Ts. Similar PWM signals to those illustrated in Figure 18-3 on page 18-13 
and Figure 18-4 on page 18-15 can be produced on the BH, BL, CH and CL 
outputs by programming the PWMCHB and PWMCHC registers in a manner 
identical to that described for PWMCHA.

Special Consideration for PWM Operation in Over-Modulation

The PWM Timing Unit is capable of producing PWM signals with vari-
able duty cycle values at the PWM output pins. At the extremities of the 
modulation process, both 0% and 100% modulation are possible. These 
two modes are termed full OFF and full ON respectively. In between, for 
other duty cycle values, the operation is termed normal modulation.

• FULL ON: The PWM for any pair of PWM signals is said to oper-
ate in FULL ON when the desired HI side output of the 
three-phase Timing Unit is in the ON state (LO) between succes-

dAH
TAH
TS

--------- 1
2
---

PWMCHA1 PWMCHA2 P– WMDT1 PWMDT2–+( )
PWMTM1 PWMTM2+

--------------------------------------------------------------------------------------------------------------------+= =

dAL
TAL
TS

--------- 1
2
---

PWMCHA1 PWMCHA2 PWMDT1 PWMDT2+ + +( )
PWMTM1 PWMTM2+

-----------------------------------------------------------------------------------------------------------------------+= =

TS PWMTM1 PWMTM2+( ) tCK×=



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-17 
 

PWM Generation Unit

Preliminary

sive PWMSYNC rising edges. This state may be entered by virtue of the 
commanded duty cycle values (in conjunction with the PWMDT 
register).

• FULL OFF: The PWM for any pair of PWM signals is said to 
operate in FULL OFF when the desired HI side output of the 
three-phase Timing Unit is in the OFF state (HI) between succes-
sive PWMSYNC pulses. This state may be entered by virtue of the 
commanded duty cycle values (in conjunction with the PWMDT 
register).

• NORMAL MODULATION: The PWM for any pair of PWM sig-
nals is said to operate in normal modulation when the desired 
output duty cycle is other than 0% or 100% between successive 
PWMSYNC pulses.

There are certain situations when transitioning either into or out of either 
full ON or full OFF where it is necessary to insert additional "emergency 
dead time" delays to prevent potential shoot through conditions in the 
inverter. Crossover usage also can potentially cause outputs to violate 
shoot through condition criteria, discussed in a later section. These transi-
tions are detected automatically and, if appropriate and for safety, the 
emergency dead-time is inserted to prevent shoot through conditions.

The insertion of the additional emergency dead time into one of the 
PWM signals of a given pair during these transitions is only needed if oth-
erwise both PWM signals would be required to toggle within a dead time 
of each other. The additional emergency dead time delay is inserted into 
the PWM signal that is toggling into the ON state. In effect the turning 
ON, if turning ON during this dead time region, of this signal is delayed 
by an amount 2*PWMDT*tCK from the rising edge of the opposite output. 
After this delay, the PWM signal is allowed to turn ON, provided the 
desired output is still scheduled to be in the ON state after the emergency 
dead time delay.



OVERVIEW

18-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 18-5 on page 18-18 illustrates two examples of such transitions. In 
(A), when transitioning from normal modulation to full on at the half 
cycle boundary in double update mode, no special action is needed. How-
ever in (B) when transitioning into full off at the same boundary, an 
additional emergency dead time is necessary. Clearly, this inserted dead 
time is a little different from the normal dead time as it is impossible to 
move one of the switching events back in time to the previous modulation 
cycle. Therefore, the entire emergency dead time is inserted by delaying 
the turn on of the appropriate signal by the full amount. 

Figure 18-5. Examples of transitioning from normal modulation into 
either FULL ON or FULL OFF where it may be necessary to insert addi-
tional emergency dead times.

PWMCHA1
+PWMTM/2-PWMTM/2+PWMTM/2

2*PWMDT

PWMTM PWMTM

FULL ON

FULL OFF

2*PWMDT

A

B

AH

AL

AH

AL

0 0

DEAD TIME INSERTED

(A) TRANSITION FROM NORMAL MODULATION TO FULL-ON, AT HALF-CYCLE BOUNDARY IN DOUBLE UPDATE MODE,
WHERE NO ADDITIONAL DEAD TIME IS NEEDED.

(B) TRANSITION FROM NORMAL MODULATION TO FULL-OFF , AT HALF-CYCLE BOUNDARY IN DOUBLE UPDATE MODE,
WHERE ADDITIONAL DEAD TIME IS INSERTED BY THE PWM CONTROLL ER.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-19 
 

PWM Generation Unit

Preliminary

PWM Timer Operation

The internal operation of the PWM generation unit is controlled by the 
PWM timer which is clocked at the peripheral clock rate, with period tCK. 
The operation of the PWM timer over one full PWM period is illustrated 
in Figure 18-6 on page 18-20. It can be seen that during the first half 
cycle (PWMSTAT bit PWMPHASE is cleared), the PWM timer decrements from 
PWMTM/2 to -PWMTM/2 using a two's complement count. At this point, the 
count direction changes and the timer continues to increment from 
-PWMTM/2 to the PWMTM/2 value. Also shown in Figure 18-6 on page 18-20 
are the PWMSYNC pulses for operation in both single and double update 
modes. Clearly, an additional PWMSYNC pulse is generated at the mid-point 
of the PWM cycle in double update mode. Of course, the value of the 
PWMTM register could be altered at the mid-point in double update mode. 
In such a case, the duration of the second half period (PWMSTAT bit PWM-



OVERVIEW

18-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

PHASE is set) could be different to that of the first half cycle. The PWMTM is 
double buffered and a change in one half of the PWM switching period 
will only take effect in the next half period.

Effective PWM Accuracy

The PWM has 16-bit resolution but accuracy is dependent on the PWM 
period. In single update mode, the same value of PWMCHA, PWMCHB and PWM-
CHC are used to define the on-times in both half cycles of the PWM period. 
As a result the effective accuracy of the PWM generation process is 2tCK 
(or 25 ns for a 80 MHz, tck). Incrementing one of the duty cycle registers 
by 1 changes the resultant on-time of the associated PWM signals by tCK 
in each half period (or 2tCK for the full period). In double update mode, 

Figure 18-6. Operation of Internal PWM Timer

1

tCK

TIMER DECREMENTS FROM
+PWMTM/2 TO -PWMTM/2

TIMER INCREMENTS FROM
-PWMTM/2 TO +PWMTM/2

+PWMTM/2

PWMSYNC
(SUM)

PWMPHASE

-PWMTM/2

PWMSYNC
(DUM)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-21 
 

PWM Generation Unit

Preliminary

improved accuracy is possible since different values of the duty cycles reg-
isters are used to define the on-times in both the first and second halves of 
the PWM period. As a result, it is possible to adjust the on-time over the 
whole period in increments of tCK. This corresponds to an effective PWM 
accuracy of tCK in double update mode (or 12.5 ns for a 80 MHz, tck). 
The achievable PWM switching frequency at a given PWM accuracy is 
tabulated in Table 18-1.

Switched Reluctance Mode

A general purpose mode utilizing independent edge placement of upper 
and lower signals of each of the three PWM channels is incorporated into 
the three-phase timing unit. This mode is utilized for SR motor operation 
and is detailed in a separate section in this document.

Output Control Unit

The operation of the Output Control Unit is controlled by the 9-bit 
read/write PWMSEG register that controls two distinct features that are 
directly useful in the control of ECM or BDCM. 

Table 18-1. Achievable PWM accuracy in single and double update modes 
(HCLK = 80 MHz)

Resolution 
(bits)

Single Update Mode
PWM Frequency (kHz)

Double Update Mode
PWM Frequency (kHz)

8 156.25 312.5

9 78.125 156.25

10 39.06 78.125

11 19.53 39.06

12 9.765 19.53

13 4.88 9.765

14 2.44 4.88



OVERVIEW

18-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Crossover Feature

The PWMSEG register contains three crossover bits; one for each pair of 
PWM outputs. Setting bit AHAL_XOVR of the PWMSEG register enables the 
crossover mode for the AH/AL pair of PWM signals, setting bit BHBL_XOVR 
enables crossover on the BH/BL pair of PWM signals and setting bit 
CHCL_XOVR enables crossover on the CH/CL pair of PWM signals. If cross-
over mode is enabled for any pair of PWM signals, the high-side PWM 
signal from the timing unit (AH say) is diverted to the associated low-side 
output of the Output Control Unit so that the signal will ultimately 
appear at the AL pin. Of course, the corresponding low-side output of the 
Timing Unit is also diverted to the complementary high-side output of 
the Output Control Unit so that the signal appears at the AH pin. Follow-
ing a reset, the three crossover bits are cleared so that the crossover mode 
is disabled on all three pairs of PWM signals. Even though Crossover is 
considered an output control feature, Dead time insertion occurs after 
crossover transitions as necessary to eliminate shoot through safety issues.

Output Enable Function

The PWMSEG register also contains six bits (bits 0 to 5) that can be used to 
individually enable or disable each of the six PWM outputs. The PWM 
signal of the AL pin is enabled by setting bit AL_EN of the PWMSEG register 
while bit AH_EN controls AH, bit BL_EN controls BL, bit BH_EN controls BH, 
bit CL_EN controls CL and bit CH_EN controls the CH output. If the associ-
ated bit of the PWMSEG register is set, then the corresponding PWM output 
is disabled irrespective of the value of the corresponding duty cycle regis-
ter. This PWM output signal will remain in the OFF state as long as the 
corresponding enable/disable bit of the PWMSEG register is set. This output 
enable function is implemented after the crossover function. Following a 
reset, all six enable bits of the PWMSEG register are cleared so that all PWM 
outputs are enabled by default. In a manner identical to the duty cycle 
registers, the PWMSEG is latched on the rising edge of the PWMSYNC signal so 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-23 
 

PWM Generation Unit

Preliminary

that changes to this register only become effective at the start of each 
PWM cycle in single update mode. In double update mode, the PWMSEG 
register can also be updated at the mid-point of the PWM cycle.

Brushless DC Motor (Electronically Commutated Motor) Con-
trol

In the control of an ECM only two inverter legs are switched at any time 
and often the high-side device in one leg must be switched ON at the 
same time as the low-side driver in a second leg. Therefore, by program-
ming identical duty cycles values for two PWM channels (say PWMCHA = 
PWMCHB) and setting bit BHBL_XOVR of the PWMSEG register to crossover the 
BH/BL pair if PWM signals, it is possible to turn ON the high-side switch 
of phase A and the low-side switch of phase B at the same time. In the 
control of ECM, it is usual that the third inverter leg (phase C in this 
example) be disabled for a number of PWM cycles. This function is imple-
mented by disabling both the CH and CL PWM outputs by setting bits 
CH_EN and CL_EN of the PWMSEG register. This situation is illustrated 
Figure 18-7 on page 18-24, where it can be seen that both the AH and BL 
signals are identical, since PWMCHA=PWMCHB and the crossover bit for phase B 
is set. In addition, the other four signals (AL, BH, CH and CL) have been dis-
abled by setting the appropriate enable/disable bits of the PWMSEG register. 
For the situation illustrated in Figure 18-7 on page 18-24, the appropriate 
value for the PWMSEG register is 0x00A7. In normal ECM operation, each 



OVERVIEW

18-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

inverter leg is disabled for certain periods of time, so that the PWMSEG regis-
ter is changed based on the position of the rotor shaft (motor 
commutation).

Figure 18-7. Example of active LO PWM signals suitable for ECM con-
trol.

PWMCHA=PWMCHB

+PWMTM/2-PWMTM/2+PWMTM/2

2*PWMDT

PWMTM PWMTM

AH

AL

CH

BL

0

PWMCHA=PWMCHB
CROSSOVER BH/BL PAIR AND DISABLE AL, BH, CH AND CL OUTPUTS.
OPERATION IS IN SINGLE UPDATE MODE.

CL

BH

0

PWMCHA=PWMCHB

2*PWMDT



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-25 
 

PWM Generation Unit

Preliminary

GATE DRIVE UNIT

High Frequency Chopping

The Gate Drive Unit of the PWM controller adds features that simplify 
the design of isolated gate drive circuits for PWM inverters. If a trans-
former coupled power device gate drive amplifier is used then the active 
PWM signal must be chopped at a high frequency. The 10-bit read/write 
PWMGATE register allows the programming of this high frequency chopping 
mode. The chopped active PWM signals may be required for the high-side 
drivers only, for the low-side drivers only or for both the high-side and 
low-side switches. Therefore, independent control of this mode for both 
high and low-side switches is included with two separate control bits in 
the PWMGATE register. 

Typical PWM output signals with high-frequency chopping enabled on 
both high-side and low-side signals are shown in Figure 18-8 on 
page 18-26. Chopping of the high-side PWM outputs (AH, BH and CH) is 
enabled by setting bit 8 of the PWMGATE register. Chopping of the low-side 
PWM outputs (AL, BL and CL) is enabled by setting bit 9 of the PWMGATE 
register. The high frequency chopping frequency is controlled by the 8-bit 
word (GDCLK) placed in bits 0 to 7 of the PWMGATE register. The period of 
this high frequency carrier is:

and the chopping frequency is therefore an integral subdivision of the 
peripheral clock frequency:

Tchop 4 GDCLK 1+( )×[ ] tCK×=

fchop
fCK

4 GDCLK 1+( )×[ ]
-----------------------------------------------=



OVERVIEW

18-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The GDCLK value may range from 0 to 255, corresponding to a program-
mable chopping frequency rate from 78.13 kHz to 20 MHz for a 80 MHz, 
HCLK rate. The gate drive features must be programmed before operation 
of the PWM controller and typically are not changed during normal oper-
ation of the PWM controller. Following a reset, all bits of the PWMGATE 
register are cleared so that high frequency chopping is disabled, by default.

PWM Polarity Control, PWMPOL Pin 

The polarity of the PWM signals produced at the output pins AH to CL 
may be selected in hardware by the PWMPOL pin. Connecting the PWMPOL 
pin to GND selects active LO PWM outputs, such that a LO level is inter-
preted as a command to turn on the associated power device. Conversely, 
connecting VDD to PWMPOL pin selects active HI PWM and a HI level at 
the PWM outputs turns ON the associated power devices. There is an 

Figure 18-8. Typical active LO PWM signals with high-frequency gate 
chopping enabled on both high-side and low-side switches

PWMTM PWMT M

PWMCHA PWMCHA

2*PWMDT2*PWMDT

AH

AL

4*(GDCLK+1)

2

PWMTM
+

2

PWMTM
–0 0

2

PWMTM
+

GDCLK IS INTEGER EQUIVALENT OF VALUE IN BITS 0 TO 7 OF PWMGATE REGISTER.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-27 
 

PWM Generation Unit

Preliminary

internal pull-up on the PWMPOL pin, so that if this pin becomes discon-
nected (or is not connected), active HI PWM will be produced. The level 
on the PWMPOL pin may be read from bit PWMPOL of the PWMSTAT register, 
where a zero indicated a measured LO level at the PWMPOL pin.

Output Control Feature Precedence

The order in which output control features are applied to the PWM signal 
is important and significant. The following lists the order in which the 
signal features are applied to the PWM output signal.

1. Channel Duty Generation

2. Channel Crossover

3. Output Enable

4. Emergency Dead Time Insertion

5. Active signal Chopping

6. Polarity

Switched Reluctance Mode

The PWM block contains a switched reluctance mode that is enabled by 
the state of the PWMSR pin. Connecting the PWMSR pin to GND enables the 
switched reluctance (SR) mode. The SR mode can only be enabled by con-
necting the PWMSR pin low. There is no software means by which this mode 
can be enabled. There is an internal pull-up resistor on the PWMSR pin so 
that if this pin is left unconnected or becomes disconnected, the SR mode 
is disabled. Of course, the SR mode is disabled when the PWMSR pin is tied 
high. The state of this switched reluctance mode may be read from the 
PWMSR bit of the PWMSTAT register. If the PWMSR pin is HI (such that the SR 
mode is disabled) the PWMSR bit of the PWMSTAT register is set (indicating 
that the mode is disabled). Conversely, if the PWMSR pin is LO and SR 
mode is enabled, the PWMSR bit of PWMSTAT is cleared.



OVERVIEW

18-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

In the typical power converter configuration for switched or variable 
reluctance motors, the motor winding is connected between the two 
power switches of a given inverter leg. Therefore, to allow for a complete 
circuit in the motor winding, it is necessary to turn on both switches at 
the same time.

Four modes are possible with the new SR mode definition, Hard Chop, 
Alternate Chop, Soft Chop-Bottom On, and Soft Chop-Top On. Three 
new registers PWMCHAL, PWMCHBL, and PWMCHCL are used to define edge place-
ment of the low side of the channel. PWMDT is not useful and is internally 
forced to 0 by hardware when PWMSR is low. Three bits, PWM_SR_LSI_A 
through PWM_SR_LSI_C in PWMLSI, full on, and full off are used to create 
the four SR chop modes.

The PWMCHA and PWMCHAL are programmed independently with PWMCHA 
defining edge placement for the high side of the channel and PWMCHAL for 
the low side of the channel. Similarly with the PWMCHB and PWMCHBL pair, 
and the PWMCHC and PWMCHCL pair.

Figure 18-9 on page 18-30 shows the four SR mode types as active high 
PWM output signals. 

Hard Chop mode contains independently programmed rising edges of a 
channel's high and low signals in the same PWM half cycle and both con-
tain independently programmed falling edges in the next PWM half cycle. 
The PWMCHA duty register is used for the high channel and PWMCHAL 
duty register is used for the low channel. Similarly with the B and C 
channels.

Alternate Chop mode is similar to normal PWM operation but the PWM 
channel high and low signal edges are always opposite and are indepen-
dently programmed. The PWMCHA duty register is used for the high channel 
and PWMCHAL duty register is used for the low channel. Similarly with the B 
and C channels. The PWMCTRL bits PWM_SR_LSI_A to PWM_SR_LSI_C are used 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-29 
 

PWM Generation Unit

Preliminary

to independently invert the low side of each PWM channel. The Low Side 
Invert is the only difference between Hard Chop mode and Alternate 
Chop mode.

Soft Chop-Bottom On utilizes a 100% duty on the low side of the channel 
and Soft Chop-Top On utilizes a 100% duty on the high side of the chan-
nel. Similar to Hard Chop mode the PWMCHA duty register is used for the 
high channel and PWMCHAL duty register is used for the low channel. Simi-
larly with the B and C channels.



OVERVIEW

18-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 18-9. Possible SR mode outputs: Hard Chop, Alternate Chop, Soft 
Chop-Bottom On, Soft Chop-Top On.

PWMTM1 PWMT M2

PWMCHA1 PWMCHA2

AH

AL

COUNT
2

PWMTM1
+

2

PWMTM2
+

2

PWMTM1
–

0 0
2

PWMTM2
–

PWMSYNC PWMSYNCWT1+1

PWMCHAL 2PWMCHAL1

HARD
CHOP

PWMCHA1 PWMCHA2

AH

AL

PWMCHAL2

ALTERNATE
CHOP

PWMCHA1 PWMCHA2

AH

AL

SOFT CHOP,
BOTTOM ON

AH

AL

PWMCHAL2PWMCHAL1

SOFT CHOP,
TOP ON

PWMSYNCWT2+1

PWMCHAL1



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-31 
 

PWM Generation Unit

Preliminary

PWMSYNC Operation

The PWMSYNC signal can be internally generated as a function of the PWMTM 
and PWMSYNCWT register values or the PWMSYNC can be input externally. Mul-
tiple PWM configurations can be established with each PWM operating 
with its own independent PWMSYNC or from its shared external PWMSYNC sig-
nal. The external PWMSYNC can be asynchronous to the internal clock as is 
typically the case of an off-chip PWMSYNC signal used to drive each PWM's 
PWMSYNC pin.

Internal PWMSYNC generation

The PWM controller produces an output PWMSYNC synchronization pulse 
at a rate equal to the PWM switching frequency in single update mode 
and at twice the PWM frequency in the double update mode. This pulse is 
available for external use at the PWMSYNC pin. The width of this PWMSYNC 
pulse is programmable by the 10-bit read/write PWMSYNCWT register. The 
width of the PWMSYNC pulse, TPWMSYNC, is given by:

so that the width of the pulse is programmable from tCK to 1024tCK (cor-
responding to 12.5 ns to 12.8 µs for a HCLK rate of 80 MHz). Following a 
reset, the PWMSYNCWT register contains 0x3FF (1023 decimal) so that the 
default PWMSYNC width is 12.8 µs, again for an 80 MHz HCLK.

External PWMSYNC operation

By setting PWMCTRL bit PWM_EXTSYNC, the PWM is set up in a mode to 
expect an external sync signal on the PWMSYNC pin. The external sync 
should be synchronized by setting bit PWM_SYNCSEL of PWMCTRL to a 0, 
which assumes the external PWMSYNC selected is asynchronous.

TPWMSYNC tCK PWMSYNCWT 1+( )×=



OVERVIEW

18-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The external PWMSYNC period is expected to be an integer multiple of the 
internal PWMSYNC period. When the rising edge of the external PWMSYNC is 
detected, the PWM is restarted at the beginning of the PWM cycle. If the 
external PWMSYNC period is not exactly an integer multiple of the internal 
PWMSYNC, the behavior of the PWM channel outputs will be clipping. Note 
that there is a small amount of jitter inherent in synchronization logic 
when the external PWMSYNC is synchronized that can not be avoided.

The latency from PWMSYNC to the effect in PWMSTAT's PHASE bit and pwm 
outputs is 3 HCLK cycles in synchronous mode, and 5 HCLK when in asyn-
chronous mode.

PWM Shutdown & Interrupt Control Unit

In the event of external fault conditions, it is essential that the PWM sys-
tem be instantaneously shutdown in a safe fashion. A falling edge on the 
PWMTRIP pin provides an instantaneous, asynchronous (independent of the 
DSP clock) shutdown of the PWM controller. All six PWM outputs are 
placed in the OFF state (as defined by the PWMPOL pin). However, the PWM-
SYNC pulse occurs if it was previously enabled and the associated interrupt 
is, also, not stopped. The PWMTRIP source pin and FIO pins have an inter-
nal pull-down resistor on the chip pin, so that if the pin becomes 
unconnected the PWM will be disabled. The state of the PWMTRIP pin can 
be read from the PWMTRIP bit of the PWMSTAT register.

On the occurrence of a PWM shutdown command (either from the 
PWMTRIP pin or the FIO inputs), a PWMTRIP interrupt will be generated. In 
addition, if PWM_SYNC_EN is enabled, the PWMSYNC pulse will continue to 
appear at the output pin. Following a PWM shutdown, the PWM can be 
re-enabled (in a PWMTRIP interrupt service routine, for example) by writing 
to bit PWM_EN in the PWMCTRL register. Provided that the external fault has 
been cleared and the PWMTRIP or appropriate FIO lines have returned to a 
HI level for FIO trip, the PWM controller will restart in a manner identi-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-33 
 

PWM Generation Unit

Preliminary

cal to that prior to the PWM shutdown. That is, except for the PWM_EN bit 
in PWMCTRL, the PWM registers retain their values during the PWM 
shutdown.

Registers
The registers of the PWM Generation Unit are illustrated in Figure 18-10 
on page 18-33 to Figure 18-18 on page 18-36.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWMCTRL IO[0x08:0x000]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset =0x0000

PWM_EN Enable PWM Generation and 

PWMSYNC Signal (1=enable)1

1   The PWM_EN Bit is Hardware Modifiable – following a PWM shutdown event

SYNC_EN PWMSYNC Operation after Trip
(1=continue interrupts)

PWMDBL PWM Operating Mode
(1=double update, 0=single update)

EXTSYNC Internal/External Synchroniza-
tion Select (1=external)

SYNCSEL External Synchronization Signal 
Type
(1=Synchronous, 0=Asynchronous)

Reserved

Figure 18-10. PWM Control Register PWMCTRL



Registers

18-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWMSTAT IO[0x08:0x001]

u u u u u u u u u u u u u u u u Reset = un-initialized

PWMPHSE PWM PHASE/Half Cycle of 

Operation (0=1st half, 1=2nd half)
PWMPOL State of PWMPOL Pin 

(0 = LO, 1=HI)
PWMSR State of PWMSR Pin (0=LO, 1=HI)
PWMTRIP State of PWMTRIP Pin 

(0=LO, 1=HI)
Reserved

TRIPIRQ PWM Trip Interrupt 
(1=interrupt occurred)

SYNCIRQ PWM Synchronization Interrupt 
(1=interrupt occurred)

Reserved

Figure 18-11. PWM Status Register PWMSTAT [State of PWMTRIP, PWMSR and 
PWMPOL bits determined by the state of chip-level pins]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWMTM IO[0x08:0x002]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure 18-12. PWM Period Register PWMTM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x08:0x005 - 0x007]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure 18-13. PWM Duty Cycle Registers PWMCHA PWMCHB PWMCHC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x08:0x00A - 0x00C]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure 18-14. PWM Low Side Duty Cycle Registers PWMCHAL PWMCHBL PWM-
CHCL



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-35 
 

PWM Generation Unit

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x08:0x003]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

PWMDT PWM Dead Time Register
Reserved

Figure 18-15. PWM Dead Time Register PWMDT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWMGATE IO[0x08:0x004]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

GDCLK PWM Gate Drive Chopping Fre-
quency Divider
fchop = HCLK/[4x(GDCLK+1)]

CHOPHI Enable High Side Chopping 
(1=enable)

CHOPLO Enable Low Side Chopping 
(1=enable)

Reserved

Figure 18-16. PWM Gate Register PWMGATE



Registers

18-36 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWMSEG IO[0x08:0x008]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

CHEN Disable CH PWM Output 
(1=disable)

CLEN Disable CL PWM Output 
(1=disable)

BHEN Disable BH PWM Output 
(1=disable)

BLEN Disable BL PWM Output 
(1=disable)

AHEN Disable AH PWM Output 
(1=disable)

ALEN Disable AL PWM Output 
(1=disable)

CHCLXOVR Enable Channel C Crossover 
(1=crossover)

BHBLXOVR Enable Channel B Crossover 
(1=crossover)

AHALXOVR Enable Channel A Crossover 
(1=crossover)

Reserved

Figure 18-17. PWM Segment Register PWMSEG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWMSYNCWT IO[0x08:0x009]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

PWMSYNCWT PWM Synchronization Signal 
Width

Figure 18-18. PWM Synchronization Signal Width Register PWMSYNCWT



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 18-37 
 

PWM Generation Unit

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWMLSI IO[0x08:0x00D]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

LSIA PWM Channel A Low Side Invert 
(1=invert)

LSIB PWM Channel B Low Side Invert 
(1=invert))

LSIC PWM Channel C Low Side Invert 
(1=invert)

Reserved

Figure 18-19. PWM Low Side Invert Register PWMLSI



Registers

18-38 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-1 
 

Analog to Digital Converter System

Preliminary

19 ANALOG TO DIGITAL 
CONVERTER SYSTEM

Overview
The ADSP-2199x contains a fast, high accuracy, multiple input analog to 
digital conversion system that is based on a pipeline flash converter. The 
ADC is based on a 6-stage pipeline Flash architecture that contains dual 
input Sample & Hold amplifiers so that simultaneous sampling of two 
input signals is supported. A full conversion of a single channel occurs in 
approximately 7.5 ADC clock cycles. The ADC core provides an analog 
input voltage range of 2.0Vpp and provides 14-bit performance with a 
clock rate of up to 20 MHz. The ADC input structure supports 8 inde-
pendent analog inputs; 4 of which are multiplexed into one sample and 
hold amplifier (ASHAN) and 4 of which are multiplexed into the other 
sample and hold amplifier (BSHAN). At the 20 MHz rate, the first data 
value is valid approximately 375 ns after the convert start command, or 
just over 7.5 ADC clock cycles. All 8 channels are converted in approxi-
mately 725 ns (i.e. one additional new value stored every 50 ns). Other 
operating modes, such as precise latching of ADC data values relative at 



ADC Inputs

19-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

delayed times from convert start and DMA capability have been added to 
the ADC controller of the ADSP-2199x. The ADC System also contains a 
precision 1.0V voltage reference.

ADC Inputs
The ADC system of the ADSP-2199x contains 10 dedicated analog inputs 
to the sample and hold amplifier (VIN0 - VIN7, AHSAN and BSHAN), 5 
dedicated pins for the correct operation and configuration of the voltage 
reference (CAPT, CAPB, VREF, SENSE, CML) as well as a digital input 
for convert start, CONVST. The ADC system also has 4 dedicated power 
supply chip pins, 2 for AVDD (analog VDD) and 2 for AVSS (analog 
ground). 

Analog to Digital Converter and Input 
Structure

The ADSP-2199x contains a multiple-input analog to digital conversion 
system with simultaneous sampling capabilities. A functional block dia-
gram of the entire ADC system is shown in Figure 19-1 on page 19-5

The ADC system permits up to 8 analog inputs to be converted in approx-
imately 725 ns through a single 14-bit pipeline flash ADC. There are 12 
stages in the pipeline architecture of the ADC. The entire ADC system 
(including multiplexing and the sample and hold amplifiers) operates at a 
programmable clock rate up to 20 MHz. Analog input voltages of up to 
2.0Vpp can be converted. The input signals are divided into two banks of 
four signals each, with VIN0-VIN3 making up one bank and VIN4-VIN7 
making up the second bank. There are also two dedicated inputs (ASHAN 
and BSHAN) to the inverting terminal of the two sample and hold ampli-
fiers so that external signals can be correctly biased about the nominal 
operating range of the ADC. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-3 
 

Analog to Digital Converter System

Preliminary

Figure 19-2 on page 19-4 is a simplified model of the ADC input struc-
ture for one channel (VIN0) of the ADC system of the ADSP-2199x. The 
internal multiplexers are used to switch the various analog inputs to the 
A/D converter. For analog inputs VIN0 to VIN3, there is a single com-
mon terminal (ASHAN) that is the inverting input to the internal 
differential sample and hold amplifier. For the input signals, VIN4 to 
VIN7, the equivalent input is BSHAN. The value VREF (internally gen-
erated voltage reference or externally applied voltage reference on the 
VREF pin) defines the maximum input voltage to the A/D core. The min-
imum input voltage to the A/D core is automatically defined as -VREF.

The dc voltage on the VREF pin sets the common-mode voltage of the 
A/D converter of the ADSP-2199x. For example, when using the internal 
1.0 V reference, the input level will also be centered about 1.0 V. The 
ADC inputs of the ADSP-2199x can be configured for single ended oper-
ation where the inverting terminals (ASHAN and BSHAN) are connected 
directly to the reference voltage level and the analog input (VIN0 to 
VIN7) is fed with the analog signal with 2.0Vpp range. The VIN0 to 
VIN7 inputs are unipolar so that when operating from the internal 1.0V 
reference, these signals can range from 0V to 2V. The recommended sin-
gle-ended input configuration for a single analog input channel of the 
ADSP-2199x is shown in Figure 19-3 on page 19-4 where it is shown that 
the input to the A/D converter must be fed from an operational amplifier 
with sufficient drive strength so that the A/D performance is not 
degraded. In Figure 19-3, this is shown as a simple non-inverting input 



Analog to Digital Converter and Input Structure

19-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

buffering of the input signal. Of course, the operational amplifier stage 
could also be used to implement any necessary level shifting and/or filter-
ing of the input signal. 

The optimum noise and dc linearity performance is achieved with the 
largest input signal voltage span (i.e. 2 V input span) and with matched 
input impedance for the VIN0 and ASHAN inputs. Additionally, the 
operational amplifier must exhibit a source impedance that is both low 
and resistive up to and beyond the sampling frequency. When a capacitive 
load is switched onto the output of the operational amplifier, the output 

Figure 19-2. Equivalent Functional Input Circuit of ADC System

Figure 19-3. Single-Ended Input Configuration for ADSP-2199x

VIN0

ASHAN

+VREF

-VREF

A/D CORE

+

-

12

2V

0V Rs

+V

-V

ADSP-21990

VIN0

ASHAN

VREF

SENSE

+

-

Rs

10 �F 0.1 �F



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-5 
 

Analog to Digital Converter System

Preliminary

will momentarily drop due to its effective output impedance. As the out-
put recovers, ringing may occur. To remedy this situation, a series resistor 
can be inserted between the op amp output and the ADC input (Rs as 
shown in Figure 19-3 on page 19-4). In most applications, a 20Ω to 100Ω 
resistor is sufficient. The source impedance driving VIN0 and ASHAN 
should be matched so as not to degrade the ADC performance.   For 
noise-sensitive applications, it may also be beneficial to add some addi-
tional shunt capacitance between the inputs (VIN0 and ASHAN) and 
analog ground. Since this additional capacitance combines with the equiv-
alent input capacitance of the analog inputs, a lower series resistance may 
be possible. The input RC combination also provides some anti-aliasing 

Figure 19-1. Functional block diagram of the ADC system of the 
ADSP-2199x

C AP T
CA PB
VR E F

RE F CO M

SE NS E

CM L

A SH A N

VI N0
VI N1
VI N2
VI N3

VI N4
VI N5

VI N6
VI N7

B SH SA N

C O N VS T

V O L T A G E R EF E RE NC E A D C DM A
R EG IS T ER S

A D C D AT A
R EG I ST ER S

AD C C O N T R O L
R EG IST ER S

D M A
CO N T R O L L ER

D MA U N IT

V O L T A G E
R EF ER E NC E

G E N ER AT I O N
A N D C O N TR O L

AD C IN P UT C O N F IG U R A T IO N
A N D DA T A R EG IST ER S

A DC T IM IN G
CO N TR O L

M UL T IP LE XER , SH A A ND A D C
T IM IN G /C L O C K C O N T RO L

H C L K

R EF ER EN C E
VO L T A G ES

14 -B IT
PI PEL IN E

F L A SH A D C

O U T O F
RA N G E

EN D O F C O N VE R SIO N

M U X
C O N T R O L

S H A
C O N T R O L

A D C
C L O C K

O N-C HI P C O N VE R T
ST A R T SO U R CE S

D AT A

S H A

S HA

M U X +

-

-

+
M U X

M U X



ADC Control Module

19-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

filtering of the analog inputs. To optimize performance when noise is the 
primary consideration, increase the shunt capacitance as much as the tran-
sient response of the input signal will allow. Increasing the capacitance too 
much may adversely affect the op amp's settling time, frequency response 
and distortion performance. From Figure 19-2 on page 19-4, it is clear 
that the input to the A/D core is simply given by:

which must satisfy the condition:

where VREF is the voltage at the VREF pin of the ADSP-2199x (either 
internally generated or externally supplied). There is an additional limit 
placed on the valid operating range for the VIN0 and ASHAN inputs that 
is limited by the power supply bounds of the ADSP-2199x:

where AVSS is nominally at 0V and AVDD is nominally at +2.5V. 

ADC Control Module

ADC Clock
The ADC of the ADSP-2199x is clocked at a rate that is divided down 
from the peripheral clock, HCLK, of the ADSP-2199x. The ADCCLK is 
programmable by the user via the 4-bit field ADCCLKSEL in register 
ADCCTRL[11:8]. It is related to the peripheral clock by:

ASHANVIN0VCORE −=

VREFV -VREF CORE ≤≤

0.3VAVDDASHAN0.3VAVSS

0.3VAVDDVIN00.3VAVSS

+≤≤−

+≤≤−

]15,2[;
2

∈
⋅

= ADCCLKSEL
ADCCLKSEL
HCLKADCCLOCK



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-7 
 

Analog to Digital Converter System

Preliminary

The values 0 and 1 in ADCCLKSEL are not allowed and the default value 
is 2, corresponding to an ADC clock rate that is ¼ of the HCLK fre-
quency (or 20 MHz at the maximum HCLK of 80 MHz). Writing a1/0 to 
the ADCCLKSEL bits in the ADCCTRL register will disable the ADC 
clock. In addition, there is a separate DMA clock that determines the rate 
of transfer of samples into the DMA engine's FIFO buffer. It is set to a 
rate of ADCCLOCK/8 so that one ADC value is placed in the DMA 
FIFO for every 8 ADC clock cycles.

ADC Data Formats
There are a number of 16-bit ADC data registers (ADC0 to ADC7, 
ADCXTRA0 and ADCXTRA4, ADCLATCHA and ADCLATCHB) in 
the ADC control module of the ADSP-2199x. The data format is left 
aligned 2's complement 14-bit word in the 16-bit data field of the data 
registers. Bit 0 of the data registers may contain an OTR (Out of Range) 
bit depending on the state of the DATASEL (Data Format Select) bit of 
the ADCCTRL register. If DATASEL=1, the OTR output of the ADC is 
ignored and bit 0 of the data registers is always 0; if DATASEL=0, then 
the OTR bit from the ADC is written to bit 0 of the ADC data register. 
The output data format for normal operation in the single-ended configu-
ration of Figure 19-3 on page 19-4 is given in Table 19-1 for one analog 
input (VIN0 and ASHAN). Naturally, identical conditions apply for all 
other analog inputs. 

Table 19-1. Data Register Format for ADC of ADSP-2199x

VIN0(V) ASHAN(V) VCORE(V) Digital Data
(Hex)

Digital Data (Binary) OTR
(Bit 0)

+2 x VREF VREF +VREF 0x7FFC/D 0111 1111 1111 110x 1

2xVREF - 1LSB VREF VREF - 1LSB 0x7FFC 0111 1111 1111 110x 0

VREF VREF 0 0x0000 0000 0000 0000 000x 0

≥ ≥



ADC Control Module

19-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

There is a single bit, OTR, associated with each data word produced by 
the ADC pipeline that indicates if the analog input signal has exceeded the 
permissible input range. If this bit is zero, the signal that produced that 
data value has not exceeded the input range. If the OTR bit for a given 
analog input is set, it is possible to determine if the signal has over-ranged 
(exceeded 2xVREF) or under-ranged (exceeded 0V) by monitoring the 
MSB of the data word and the OTR bit, as outlined in Table 19-2 on 
page 19-8.

Convert Start Trigger
The ADC conversion process may be started by a number of different 
sources on the ADSP-2199x. Convert start may be initiated by either of 
the following Trigger Events:

• Rising Edge of the Internally derived PWM Synchronization pulse, 
PWMSYNC

• Rising Edge on the external CONVST pin

0 VREF -VREF 0x8000 1000 0000 0000 000x 0

< 0 VREF < -VREF 0x8000/1 1000 0000 0000 000x 1

Table 19-2. Out-of-Range Truth Table

OTR MSB Condition

0 0
In Range:          

0 1
In Range:                   

1 0
Over-Range:                          

1 1
Under-Range:                                    

Table 19-1. Data Register Format for ADC of ADSP-2199x

LSBVREFVINVREF 120 −×≤≤

LSBVREFVIN 100 −×≤<

VREFVIN ×≥ 20

00 <VIN



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-9 
 

Analog to Digital Converter System

Preliminary

• Writing to the SOFTCONVST register

• Rising Edge of the Internally derived Auxiliary PWM Synchroniza-
tion pulse, AUXSYNC

The Bit field, TRIGSRC, in register ADCCTRL[2:0] is used to select one 
of the above sources. The SOFTCONVST register is a one-bit register, 
which causes an event when written to with a value of 1 (one) by software. 
The register will then reset itself after one ADCCLK cycle.

ADC Time Counters
The ADC control unit contains two dedicated down counters that may be 
used to provide latching signals to latch the contents of the ADCXTRA0 
and/or ADCXTRA4 registers at precise time delays from the trigger event. 
At the appropriate time delays from the convert start trigger, the 
ADCLATCHA and ADCLATCHB registers are latched with the contents 
of either the ADCXTRA0 or ADCXTRA4 registers. Two independent 
dedicated 16-bit registers allow the user to assign two separate times at 
which the latching occurs. The user has the flexibility to choose which 
analog input, VIN0 or VIN4, is latched first. Two bits in the ADCCTRL 
register - LATCHASEL and LATCHBSEL - are used to make this assign-
ment. It is also possible to latch two values of the same input channel at 
two different times after the trigger event.

The user defines the latch times by writing the desired values to the ADC-
COUNTA and ADCCOUNTB registers. The values written are in 
increments of the HCLK period. The trigger event resets an internal timer 
to 0. The timer then increments every HCLK cycle until the next trigger 
event occurs. When the timer reaches ADCCOUNTA, the 
ADCLATCHA register is loaded with either the current value of the 
ADCXTRA0 register (if LATCHASEL = 0), or with the current value of 
the ADCXTRA4 register (if LATCHASEL = 1). Similarly, when the timer 
reaches ADCCOUNTB, the ADCLATCHB register is loaded with either 
the current value of the ADCXTRA0 register (if LATCHBSEL = 0), or 



ADC Control Module

19-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

with the current value of the ADCXTRA4 register (if LATCHBSEL = 1). 
The instantaneous value of the timer, ADCTIMER can be read at any 
time through the ADCTIMER register.

There are two status bits in the ADCSTAT register that are set when the 
latch event occurs: one bit is set when the ADCLATCHA register is 
updated and the other is set when the ADCLATCHB register is updated. 
Both status bits are cleared by the trigger event. No interrupt is generated 
for either latching event.

Conversion Modes
The ADC may operate in two basic conversion modes, Timed Conversion 
and DMA-assisted Data Sampling Mode. Within each of the two modes, 
there are a number of different configurations possible.

Within the Timed Conversion modes, there are 3 different operating 
modes:

• Simultaneous Sampling Mode (default mode).

• Latch Mode

• Offset Calibration Mode

Within the DMA assisted modes there are a possible 4 further operating 
modes:

• DMA Single Channel Acquisition

• DMA Dual Channel Acquisition

• DMA Quad Channel Acquisition

• DMA All Channel Acquisition

The operating mode is selected by the MODSEL bits of the ADCCTRL 
register.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-11 
 

Analog to Digital Converter System

Preliminary

Simultaneous Sampling Mode

This is the default operating mode and is selected by setting MODSEL = 
000 in the ADCCTRL register. In the simultaneous sampling mode, two 
analog inputs (one from each bank) are sampled simultaneously so that 
VIN0 and VIN4, VIN1 and VIN5, VIN2 and VIN6, VIN3 and VIN7 
represent four pairs of simultaneously sampled inputs. In this mode, there 
is a two-cycle delay (of the ADCCLOCK) between the sampling of one 
pair of analog inputs and the next. The internal control logic simulta-
neously samples the first pair of input signals (VIN0 and VIN4) following 
the convert start command. Subsequently, these inputs are multiplexed 
into the 14-bit Analog to Digital Converter. After a delay of two ADC 
clock cycles, the second pair of analog inputs (VIN1 and VIN5) are sam-
pled simultaneously and then multiplexed into the ADC. This process 
continues until all fours pairs of analog inputs have been sampled and 
converted. As the conversion for a given analog input channel is com-
pleted, the corresponding digital number is written to a dedicated 16-bit, 
2's complement, left-aligned register that is memory mapped to the data 
memory space of the DSP core. The ADC data register ADC0 stores the 
conversion result for the signal on VIN0, etc. 

Following the end of conversion of each pair of analog inputs, a dedicated 
bit is set in the ADCSTAT register. The result of this highly efficient 
pipelined structure is that all 8 ADC data registers will contain valid con-
version results only 725 ns after the convert start command (assuming an 
ADCCLOCK frequency of 20 MHz). After all of the data has been writ-
ten to ADC0 to ADC7, a dedicated ADC interrupt may be generated. 
Alternatively, if data is required at a faster rate, the ADCSTAT register 
can be polled to detect when a given pair of analog inputs have been suc-
cessfully converted. 

Once the conversion sequence has been completed and all 8 ADC data 
registers have been updated, the ADC structure automatically begins to 
convert the analog inputs on both the VIN0 and VIN4 pins. Basically, 
during this period, the ADC samples the VIN0 and VIN4 inputs on alter-



ADC Control Module

19-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

nate ADC clock cycles and places the results of these conversions in the 
additional ADCXTRA0 and ADCXTRA4 registers. The data in these reg-
isters is then effectively updated every other ADC clock cycle and could be 
used to continuously monitor the analog inputs on the VIN0 and VIN4 
analog inputs. 

In addition, in this mode, latched values of the ADCXTRA0 and 
ADCXTRA4 may be acquired in the ADCLATCHA and ADCLATCHB 
registers, using the ADC time counters, described in Section “ADC Time 
Counters” on page 19-9. 

Latch Mode

This operating mode is selected by setting MODSEL = 001 in the ADC-
CTRL register. In this mode, the trigger signal does not start a full 
sequence. In this mode, the ADC controller simultaneously samples only 
the VIN0 and VIN4 analog inputs every other ADC clock cycle. This 
means that new conversion results for the VIN0 and VIN4 channels are 
effectively available every other ADC clock cycle. The data is available in 
the ADCXTRA0 and ADCXTRA4 registers. The two ADC down 
counters are reloaded and started, identically to the previous mode. Also 
the latching of up to 2 signals is done in the same manner as above. This 
mode overcomes the lower bound restriction on the permissible counter 
values: the counters can now specify any value between 0 and (period-1) 
of the periodic trigger event.

Offset Calibration Mode 

This operating mode is selected by setting MODSEL = 010 in the ADC-
CTRL register. In the Offset Calibration Mode, all analog inputs (VIN0 
to VIN7, ASHAN and BSHAN) are disconnected from the inputs to the 
sample and hold amplifiers. Instead both terminals of each sample and 
hold amplifiers are connected together and to the voltage reference. Fol-
lowing the end of conversion, the data in the ADC0 to ADC3 registers 
may be taken as four separate measurements of the offset of the first sam-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-13 
 

Analog to Digital Converter System

Preliminary

ple and hold amplifier. Similarly, the data in the ADC4 to ADC7 registers 
may be taken as measurements of the offset associated with the second 
sample and hold amplifier. These data values could be averaged to obtain 
an offset value for each sample and hold amplifier that could be stored and 
used to compensate all future measurements. The end of conversion status 
bits are updated and the interrupt is generated in a manner identical to the 
simultaneous sampling mode.

DMA Single Channel Acquisition Mode

There are 4 DMA modes of operation that differ only in the number of 
ADC input channels that are converted. Conversion of the ADC inputs is 
started in each of the 4 DMA modes by a trigger event (select-able with 
the TRIGSRC bit field of the ADCCTRL register, as before). The ADC 
control module of the ADSP-2199x contains a dedicated 16-word DMA 
FIFO that buffers ADC data prior to attempting DMA transfers. The 
DMA timing is adjusted in each of the 4 DMA modes to ensure that only 
1 value is stored in the DMA FIFO every 8 ADC clock cycles, correspond-
ing to a maximum effective sample rate of ADCCLOCK/8 MSPS in 
DMA operating mode. The DMA transfers to internal or external memory 
are managed by a DMA Descriptor block and associated control circuitry 
as described in “Memory” on page 4-1.

DMA Single Channel Acquisition mode is selected by setting MODSEL = 
100 in the ADCCTRL register. In this mode, the trigger signal initiates 
the continuous sampling of VIN0 at a constant ADCCLOCK rate. A new 
converted value is then fed into the DMA FIFO every 8 ADCCLOCK 
cycles so that one channel can be acquired at a maximum rate of 2.5 
MSPS (@ 20 MHz ADCCLOCK). This is a trade-off between acquiring 
an excessive amount of ADC data and over-burdening the DMA channel 
of the ADSP-2199x with obtaining a reasonable sampling rate of the ADC 
channel. 



ADC Control Module

19-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

This process continues indefinitely until either the DMA engine is dis-
abled or the ADC Control Module (ACM) mode is changed by software. 
If the sampling needs to be re-synchronized to the trigger event, the user 
must change the ACM mode to one of the timed conversion modes and 
then back to data acquisition mode. This will restart the acquisition at the 
following trigger event. Interrupts are generated only when the DMA 
Engine completes tasks. 

DMA Dual Channel Acquisition Mode

DMA Dual Channel Acquisition mode is selected by setting MODSEL = 
101 in the ADCCTRL register. This mode works in a manner similar to 
the DMA Single Channel Acquisition Mode, except now the sampling 
alternates between the VIN0 and VIN4 input channels. These two inputs 
are simultaneous sampled, converted and fed to the DMA FIFO once 
every 16 ADCCLOCK cycles so that each input channel is sampled at an 
effective rate of ADCCLOCK/16 (= 1.25 MSPS at ADCCLOCK = 20 
MHz). (Again, the DMA buffer is filled at an effective rate of 1 sample per 
8 ADCCLOCK cycles). 

DMA Quad Channel Acquisition Mode

DMA Quad Channel Acquisition mode is selected by setting MODSEL = 
110 in the ADCCTRL register. This mode works in a manner similar to 
the DMA Single Channel Acquisition Mode, except now the sampling 
alternates between the VIN0 and VIN4, and the VIN1 and VIN5 input 
channels. These four inputs are simultaneous sampled as two pairs (i.e. 
VIN0 and VIN4 are sampled simultaneously and VIN1 and VIN5 are 
sampled simultaneously), converted and fed to the DMA FIFO once every 
32 ADCCLOCK cycles so that each input channel is sampled at an effec-
tive rate of ADCCLOCK/32 (= 0.625 MSPS at ADCCLOCK = 20 
MHz). (Again, the DMA buffer is filled at an effective rate of 1 sample per 
8 ADCCLOCK cycles). 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-15 
 

Analog to Digital Converter System

Preliminary

DMA Octal Channel Acquisition Mode

DMA Octal Channel Acquisition mode is selected by setting MODSEL = 
111 in the ADCCTRL register. This mode works in a manner similar to 
the DMA Single Channel Acquisition Mode, except now all 8 analog 
inputs are sampled (with VIN0 & VIN4 being continuously sampled, 
etc.), converted and fed to the DMA FIFO once every 64 ADCCLOCK 
cycles so that each input channel is sampled at an effective rate of ADC-
CLOCK/64. (Again, the DMA buffer is filled at an effective rate of 1 
sample per 8 ADCCLOCK cycles). 

DMA Operation Overview
The DMA engine is used to move converted samples from the FIFO into 
memory. Therefore the direction is always from the ADC Control Module 
(ACM) to Memory. Bit DMA_DIR in the ACM DMA Configuration 
register is thus set to Memory Write and cannot be modified. In order to 
set up the DMA channel, the core defines one or more DMA work units 
by generating one or more Descriptor Blocks in page 0 memory space. 
Then the ACM DMA Configuration register is set, enabling the ACM 
DMA engine. The Head of Descriptor List is written to the ACM DMA 
Next Descriptor register. The engine will initiate the receive transfer with 
data reads from ACM DMA buffer and writes to memory. If the DMA 
engine is unable to keep up with the data stream (because the DMA bus is 
granted to other masters), the receive buffer will discard new sample data. 
If DMA Overflow Interrupt Generation is enabled (DMA configuration 
register), this interrupt will occur. After successful completion of all 
descriptor blocks, an interrupt is generated if enabled.

The two possible interrupts may be enabled/disabled in the ACM DMA 
Configuration register; since these interrupts replace the ACM interrupt 
in timed mode, the source can be determined by reading the ACM DMA 
Interrupt register. The DMA engine provides also the possibility of using 
one block of memory instead of the linked list of blocks. This is enabled 
by the AUTOBUF bit in the Configuration register.



Voltage Reference

19-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Voltage Reference
The ADSP-2199x contains an on board band-gap reference that can be 
used to provide a precise 1.0V output for use by the A/D system and 
externally on the VREF pin for biasing and level–shifting functions. Addi-
tionally, the ADSP-2199x may be configured to operate with an external 
reference applied to the VREF pin, if required. The SENSE pin is used to 
select between internal and external references. For correct operation of 
the internal voltage reference generation circuitry, either with internal or 
external reference, it is necessary to add a capacitor network between the 
CAPT and CAPB pins, as shown in Figure 19-4 on page 19-17. A 10 µF 
tantalum capacitor in parallel with a 0.1 µF ceramic is recommended as 
well as two 0.1 µF capacitors to analog ground. The turn on time of the 
reference voltage appearing between CAPT and CAPB is approximately 
15 ms and should be evaluated on startup. Additionally, a 0.1 µF ceramic 
capacitor should be connected between the CML pin and analog ground. 
Finally, the VREF pin should be de-coupled to analog ground by a 10 µF 
tantalum capacitor in parallel with a 0.1 µF ceramic capacitor. 

The SENSE pin controls whether the A/D system operates with an inter-
nal or an external reference. For operation with the internal reference, the 
SENSE pin should be tied to the AVSS pin. In this mode, the internally 
derived 1V voltage reference appears at the VREF pin. To operate with an 
external voltage reference, the SENSE pin must be tied to the AVDD pin 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-17 
 

Analog to Digital Converter System

Preliminary

and the external voltage reference may be applied at the VREF pin. When 
using an external voltage reference the VREF pin should be de-coupled to 
analog ground by a 0.1 µF ceramic capacitor.

Registers
The configurations of the ADC registers are illustrated from Figure 19-5 
on page 19-18 to Figure 19-21 on page 19-23.

Figure 19-4. Recommended Capacitor De-coupling Networks for the 
ADSP-2199x

ADSP-21990

CAPT

CAPB

VREF

AVSS

CML

SENSE

0.1�F10�F

10�F 0.1�F

0.1�F

0.1�F

0.1�F



Registers

19-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCCTRL IO[0x0D:0x000]

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Reset = 0x0200
rw ro rw rw rw rw rw rw ro rw rw rw ro rw rw rw

TRIGSRC ADC Trigger Event Select 
(000=PWMSYNC, 010=AUXSYNC, 
101=CONVST, 
111=SOFTCONVST).
All others reserved.

Reserved
MODSEL ADC Operating Mode Select
(000=Simultaneous Sampling, 

001=Latch Mode, 010=Offset Cali-
bration, 011=Reserved, 100=DMA 
Single Channel, 101=DMA Dual 
Channel, 110=DMA Quad Channel, 
111=DMA Octal Channel)

Reserved

ADCCLKSEL ADC Clock Select (0000, 
0001 = disable ADC clock, 0010 = 
HCLK/4, 0011 = HCLK/6, 0100 = 
HCLK/8, 0101 = HCLK/10, 0110 = 
HCLK/12, 0111 = HCLK/14, 1000 = 
HCLK/16, 1001 to 1111 = 
Reserved.

LCHA LATCHASEL, Latch A Select (1= 
latch ADCXTRA4 when timer 
reaches ADCCOUNTA, 0 = latch 
ADCXTRA0 when timer reaches 
ADCCOUNTA)

LCHB LATCHBSEL, Latch B Select (1= 
latch ADCXTRA4 when timer 
reaches ADCCOUNTB, 0 = latch 
ADCXTRA0 when timer reaches 
ADCCOUNTB)

Reserved

DATSEL ADCDATSEL:ADC Data For-
mat Select (0=bit of data registers 
is OTR bit, 1= bit 0 of data register 
always 0 & ignore OTR bits

Figure 19-5. ADC Control Register ADCCTRL



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-19 
 

Analog to Digital Converter System

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCSTAT IO[0x0D:0x002]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro w1c ro ro ro ro ro ro ro ro

UPD04 ADC0 & ADC4 Data Registers 
Updated (1=updated)

UPD15 ADC1 & ADC5 Data Registers 
Updated (1=updated)

UPD26 ADC2 & ADC6 Data Registers 
Updated (1=updated)

UPD37 ADC3 & ADC7 Data Registers 
Updated (1=updated)

UPDLA ADCLATCHA Data Registers 
Updated (1=updated)

UPDLB ADCLATCHB Data Registers 
Updated (1=updated)

Reserved

ADC_IRQ ADC Interrupt Pending 
(1=interrupt pending, 0 = no inter-
rupt)

Reserved

Figure 19-6. ADC Status Register ADCSTAT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x0D:0x003]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

SWCVST Register

Figure 19-7. ADC Software Convert Start Register SOFTCONVST



Registers

19-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  ADC0 to ADC7 
IO[0x0D:0x004 - 0x00B]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

OTR (Depends on setting of ADCDATSEL 
bit of ADCCTRL)

Reserved
14-bit ADC Data

Figure 19-8. ADC Data Registers ADC0 to ADC7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  ADCLATCHA to ADCLATCHB 
IO[0x0D:0x00E - 0x00F]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

OTR (Depends on setting of ADCDATSEL 
bit of ADCCTRL)

Reserved
14-bit ADC Data

Figure 19-10. ADC Latched Data Registers ADCLATCHA and ADCLATCHB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCCOUNTA IO[0x0D:0x0010]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Latch Counter Value

Figure 19-11. ADC Counter A Register ADCCOUNTA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCCOUNTB IO[0x0D:0x0011]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Latch Counter Value

Figure 19-12. ADC Counter B Register ADCCOUNTB



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-21 
 

Analog to Digital Converter System

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCTIMER IO[0x0D:0x0012]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

ADC Timer Value

Figure 19-13. ADC Timer Register ADCTIMER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCD_PTR IO[0xD:0x0100]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

ADC DMA Descriptor Address

Figure 19-14. ADC DMA Current Pointer Register ADCD_PTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCD_CFG IO[0x0D:0x0101]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Reset = 0x0002
ro ro ro ro ro ro ro ro1 rw ro ro rw ro ro2 ro3 rw

DMA_EN
DMA_DIR
IOC
Reserved
AUTOBUF
Reserved
BUFCLR
IOE
ACMOV
Reserved
BUFSTAT
DMACOMP
DMAOWN

Figure 19-15. ADC DMA Configuration Register ADCD_CFG
1   IOE bit becomes rw when the AUTOBUF bit is set.
2   IOC bit becomes rw when the AUTOBUF bit is set.
3   DMA_DIR bit is always 1 and ro.



Registers

19-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCD_SRP IO[0x0D:0x0102]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro Register becomes rw when the AUTO-

BUF bit of ADCD_CFG Register is set

Start Page
Space
Reserved

Figure 19-16. ADC DMA Start Page Register ADCD_SRP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCD_SRA IO[0x0D:0x0103]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro Register becomes rw when the AUTO-

BUF bit of ADCD_CFG Register is set

ADC DMA Start Address

Figure 19-17. ADC DMA Start Address Register ADCD_SRA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCD_CP IO[0x0d:0x0105]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

ADC DMA Descriptor Address Pointer

Figure 19-19. ADC DMA Next Descriptor Pointer Register ADCD_CP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCD_CPR IO[0x0D:0x0106]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro rw

RDY
Reserved

Figure 19-20. ADC DMA Descriptor Ready Register ADCD_CPR



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 19-23 
 

Analog to Digital Converter System

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCD_IRQ IO[0x0D:0x0107]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro w1c w1c

IRQCMP = DMA Complete Inter-
rupt
(1 = interrupt request, 
 0 = no interrupt)

IRQERR = DMA Error Interrupt
Reserved

Figure 19-21. ADC DMA Interrupt Register ADCD_IRQ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  ADCXTRA0 to ADCXTRA4 
IO[0x0D:0x00C - 0x00D]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

OTR (Depends on setting of ADCDATSEL 
bit of ADCCTRL)

Reserved
14-bit ADC Data

Figure 19-9. ADC Extra Data Registers ADCXTRA0 and ADCXTRA4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADCD_CNT IO[0x0D:0x0104]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro Register becomes rw when the AUTO-

BUF bit of ADCD_CFG Register is set

ADC DMA Word Count

Figure 19-18. ADC DMA Word Count Register ADCD_CNT



Registers

19-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 20-1 
 

Flag I/O (FIO) Peripheral Unit

Preliminary

20 FLAG I/O (FIO) PERIPHERAL 
UNIT

Overview
The FIO is a generic parallel I/O interface that supports sixteen bi-direc-
tional multi-function flags or general-purpose I/O signals (PF15-PF0). 
This module includes the Peripheral FLAG Register (FLAG), and six 
16-bit configuration registers that define the functionality of each of the 
I/O lines. The seven registers are: DIR, MASKA, MASKB, POLAR, 
EDGE, BOTH, and FIOPWM. Each register is memory-mapped into the 
address space of the peripheral bus. 

All sixteen FLAG bits can be individually configured as input or output 
based on the content of the direction (DIR) register. They can also be 
used as interrupt source for one of two FIO interrupts (FIO_IRQA or 
FIO_IRQB) when enabled by one of the mask registers (MASKA or 
MASKB). 

When configured as input, the input signal can be programmed to set the 
FLAG on either a level (level sensitive input/interrupt) or an edge (edge 
sensitive input/interrupt). The polarity of the input signal is selectively 
defined in the POLAR register; the sensitivity is defined in the EDGE reg-



Overview

20-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

ister. Precaution must be taken when changing module configuration in 
order to avoid unwanted interrupts. Changing the sensitivity mode should 
be done only when interrupt is masked; changing the polarity must be 
done with sensitivity set to “level” (EDGE bit set to zero) and the inter-
rupt masked.

The module generates two interrupt lines (FIO_IRQA and FIO_IRQB), 
each one is a logical OR function of enabled FLAG bits. FLAG bits are 
individually enabled for FIO_IRQA interrupt source by the MASKA reg-
ister, and enabled for FIO_IRQB source by the MASKB register. 
FIO_IRQA and FIO_IRQB can be connected to two DSP interrupt 
inputs by the Peripheral Interrupt Controller which can be different prior-
ity levels.

The module generates an asynchronous unregistered wake-up signal 
FIO_WAKEUP for DSP core wake-up after powered down. This signal is 
a logical OR function of enabled flags inputs. To be enabled, the corre-
sponding flag must be configured as input and be unmasked by MASKA.

The FIO Lines can be configured to act as a PWM shutdown source for 
the three-phase PWM generation unit of the ADSP-2199x. The configu-
ration registers FIOPWM enables this functionality.

The FIO lines PF7 to PF0 can also be configured to act as Slave Select 
lines for the SPI port on the ADSP-2199x.

Each of the IO registers can be accessed at two contiguous peripheral 
addresses. Both addresses can be read. The bits in the FLAG, MASKA and 
MASKB registers have a sticky behavior: only writing “one” to a bit can 
modify it. Writing a 1 to a bit of the register at the even address clears the 
associated bit, writing a 1 to the register at the odd address sets the bit. 
For example, writing a 1 to bit 0 of the FLAG register at address 0x002 
(FLAGC), clears the FLAG bit. Writing a 1 to bit 0 of the FLAG register 
at address 0x003 (FLAGS), sets the FLAG bit. Writing a zero to either 
FLAGC or FLAGS has no effect.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 20-3 
 

Flag I/O (FIO) Peripheral Unit

Preliminary

Operation of the FIO Block
The FIO module individually controls up to 16 bi-directional pads at the 
chip level. These pads will be individually configured as inputs or outputs 
using the DIR register. When the pad is defined as an output, the pad out-
put value is driven from the FLAG register. When the pad is defined as an 
input, several other configurations registers can be individually applied per 
pad, including POLAR, EDGE, and BOTH. The inputs can be config-
ured to invert the input value, latch a level or detect an edge (either rising, 
or falling, or both) on the input signal. The active level or active edge(s) 
can be observed in the FLAG register. The value of POLAR, EDGE and 
BOTH will affect the FLAG register contents. The active level only can be 
observed in the DATA_IN register. Only the value of POLAR affects the 
DATA_IN register. After configuration, the S/W can assert FIO outputs 
by writing the particular bits in the FLAG register and can poll the FIO 
inputs by reading the FLAG register. When an input in the FLAG register 
is configured for edge detection, the FLAG register will hold a logic 1 
when an edge is detected until S/W performs a w1c to clear the bit. If the 
FIO input has multiple edges between the 1st FIO input edge and when 
the FLAG bit is cleared by S/W, only the first FIO edge will be detected. 

Flag Register
The Flag register (FLAG) is a 16 bit peripheral memory mapped register 
that is accessible for read and write accesses. The behavior of each register 
bit is selectively defined by the content of the configuration register bits.

Flag as Output
DIR[n] ==1 configures FLAG[n] and it's associated I/O pin as an output. 
In this mode the flag can be modified only by software (write access) or by 
a peripheral reset. The bit is modified by a write access only when writing 



Operation of the FIO Block

20-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

a "one"; using the even address will clear the bit, using odd address will set 
the bit. Writing zero does not change the bit. The register content is 
observable doing a read access at either address.

Flag as Input
DIR[n] ==0 configures the FLAG[n] bit and it's associated I/O pin as 
input. In this mode, POLAR[n] selects the polarity of the input. 
POLAR[n]==1 inverts the input signal before it goes to the detection cell 
DETECT[n]. DETECT[n] stretches a narrow input pulse to the next 
clock. EDGE[n] determines edge/level sensitivity. 

EDGE[n]==0 means level sensitive. In this case the flag register bit follows 
the input signal (inverted if POLAR[n]==1) with the exception of syn-
chronization delay. When in level sensitive mode, the bit cannot be 
modified by a write access. EDGE[n]==1 means edge sensitive. In this 
case, the flag register is being set on a rising edge of the input signal (fall-
ing edge if POLAR[n]==1). The bit can be cleared only by writing a 1 to 
the even address of FLAG or by a peripheral reset. In case of collision 
between a rising edge set and a write access, the priority is given to the ris-
ing edge set. Note that in this mode, it is possible to set the bit by 
software, writing a one at the odd address of FLAG. BOTH[n]==1 means 
edge sensitive on “both” edges. 

Interrupt Outputs
There are two interrupting output ports. FIO_IRQA and/or FIO_IRQB 
can be connected to the dsp core (via the Peripheral Interrupt Controller) 
user interrupts. MASKA register individually enables FLAG bit to be 
OR-ed together for FIO_IRQA. Similarly MASKB masks the interrupts 
for the FIO_IRQB interrupt line to the Peripheral Interrupt Controller.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 20-5 
 

Flag I/O (FIO) Peripheral Unit

Preliminary

Flag Wake-up output
The wake-up output signal, FIO_WAKEUP, is asynchronous. It is gener-
ated from an OR function of enabled input signals. To be enabled, the 
corresponding flag must be configured as input and be unmasked by 
MASKA. The POLAR setting will modify the active level of the inputs. 
When POLAR=0 then non-inverted (active high) input will cause 
FIO_WAKEUP. Similarly when POLAR=1 then an inverted (active low) 
input will cause FIO_WAKEUP.

FIO Lines as PWM Shutdown Sources.
The FIO Lines can be configured to act as a PWM shutdown sources for 
the three-phase PWM generation unit of the ADSP-2199x. Therefore, the 
Flag IO block on the ADSP-2199x is augmented by additional registers, 
that mimic the operation of the other Flag IO Registers such that the bits 
have a sticky behavior (only writing a ‘1’ can modify the register, writing a 
zero has no effect). The FIOPWM register is used to enable any one of the 
sixteen FIO lines as PWM shutdown sources for the PWM Generation 
block. 

Much like the configuration registers of the Flag IO block, each register 
actually occupies two contiguous peripheral registers. Writing a “1” at the 
even address sets the bit, writing a “1” at the odd address clears the bit. 
Setting a bit in the FIOPWM register enables the corresponding FIO line 
as a PWM shutdown source for the PWM block. The corresponding FIO 
line must be configured as input for the PWM shutdown mode to operate. 
Clearing the bit disables the PWM shutdown source and the correspond-
ing pin may be used for another purpose. 

When configured as a PWM shutdown source for either PWM generation 
block, a LO level (a HI level if the corresponding POLAR[n] bit of the 
Flag IO block is set so that the input signal is effectively inverted before 
being applied to the Flag IO logic) on the corresponding FIO pin causes 
an asynchronous shutdown of the PWM generation unit in a manner sim-



Operation of the FIO Block

20-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

ilar to the dedicated PWMTRIP pins. In other words, a low level (a high level 
if the POLAR[n] bit is set) on the FIO line in this mode, asynchronously 
disables all six PWM outputs of the associated PWM generation unit (i.e. 
AH-CL for PWM block) by placing them in the off-state (as defined by 
the associated PWMPOL pin) and generates a PWMTRIP interrupt to the 
DSP core. Following a PWM shutdown event, the PWM outputs can only 
be re-enabled after the FIO line has gone high (low if the POLAR[n] bit is 
set) and the PWM block is re-enabled by writing to the main configura-
tion registers. 

Following power-on or reset, all FIO lines are configured as inputs and 
FIO lines are configured to NOT act as PWM shutdown sources for any 
PWM generation blocks (i.e. all bits of the FIOPWM register are cleared). 
All interrupts from the FIO block are masked.

FIO Lines as SPI Slave Select Lines
The FIO lines PF7 to PF0 can be configured to act as Slave Select lines for 
the SPI port on the ADSP-2199x. The PFO line can be configured as a 
slave select input for the ADSP-2199x, while the PF7-PF0 lines can be 
configured as slave select outputs. The control register for these alternate 
functions are located in the SPI peripheral.

Please refer to “Serial Peripheral Interface (SPI) Port” on page 9-1 for 
more information on the SPI port and the use of the FIO lines, PF7-PF0, 
as SPI slave select lines. 

Configuration Registers
There are the FLAG registers and seven configuration registers, 16 bits 
each, DIR, MASKA, MASKB, POLAR, EDGE, BOTH and FIOPWM. 
Those registers can be accessed at two contiguous peripheral addresses 
(half-word, 16 bits addresses). Both addresses can be read. The bits in 
three of the registers, FLAG, MASKA, and MASKB have a sticky behav-



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 20-7 
 

Flag I/O (FIO) Peripheral Unit

Preliminary

ior: only writing "one" into a bit can modify it. Writing "one" at the even 
address allows clearing the bit, writing a one at the odd address allows set-
ting the bit. 

Flag Configuration Registers
The PFx flags on the ADSP-2199x are programmed with a group of flag 
configuration registers: the Flag Direction register (DIR), the Flag Control 
registers (FLAGC and FLAGS), the Flag Interrupt Mask Registers (MASKAC, 
MASKAS, MASKBC, and MASKBS), the Flag Interrupt Polarity register (FSPR), 
and the Flag Sensitivity registers (FSSR and FSBER). These registers are 
described in the following sections.

Several precautions should be observed when programming these flag con-
figuration registers:

• To avoid unwanted interrupts, software should only change a 
FLAGx[n] bit while its respective interrupt bit, MASKx[n], is masked.

• Five NOPs or instructions must follow an FSPRx[n] bit change, and 
the respective FLAG[n] bit must be cleared before its interrupt bit is 
unmasked.

• At reset, all flag configuration registers are initialized to zero; all 
flag pins are configured as level-sensitive inputs with no inversion, 
all flag interrupts are masked, and all interrupts are disabled.

• Narrow positive active input [n] pulses are only detectable if 
FSPRx[n]=0; narrow negative active input [n] pulses are only detect-
able if FSPRx[n]=1.

For more information about the programmable flag registers, see 
“ADSP-2199x DSP I/O Registers” on page 1.



Operation of the FIO Block

20-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

FIO Direction Control (DIR) Register

The Flag Direction register configures a flag pin as an input or output. 
The DIR register is located at I/O memory page 0x06, I/O address 0x000. 
(The DIR register is also aliased to I/O memory page 0x06, I/O address 
0x001.) Writing a “1” to a bit of the DIR register (at either I/O address) 
configures the corresponding flag pin as an output; writing a “0” config-
ures the corresponding flag pin as an input. Each bit of the DIR register 
corresponds with each of the 16 available flag pins of the ADSP-2199x.

Flag Control (FLAGC and FLAGS) Registers

The Flag Control registers set or clear a flag pin.

The Flag Clear register (FLAGC) is used to clear the flag pin when it is con-
figured as either an input or an output. FLAGC is located at I/O memory 
page 0x06, I/O address 0x0002. Writing a “1” to the FLAGC register clears 
the corresponding flag pin; writing a “0” has no effect on the value of the 
flag pin. The 16 bits of the FLAGC register correspond to the 16 available 
flag pins of the ADSP-2199x.

The Flag Set register (FLAGS) is used to set the flag pin when it is config-
ured as either an input or an output. Setting a flag pin that is configured 
as an input allows for software configurable interrupts. FLAGS is located at 
I/O memory page 0x06, I/O address 0x0003. Writing a “1” to the FLAGS 
register sets the corresponding flag pin; writing a “0” has no effect on the 
value of the flag pin. The 16 bits of the FLAGS register correspond to the 
16 available flag pins of the ADSP-2199x.

Flag Interrupt Mask (MASKAC, MASKAS, MASKBC, and 
MASKBS) Registers

The Flag Interrupt Mask registers enable a flag pin as an interrupt source. 
The flag pin can be configured as either an input or an output signal. The 
MASKA and MASKB registers allow for two different Programmable Flag 0 
and 1 interrupt priority levels for all of the flag pins.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 20-9 
 

Flag I/O (FIO) Peripheral Unit

Preliminary

The Flag Interrupt MASKA and MASKB Set registers (MASKAS and MASKBS, 
respectively) are used to “unmask” or enable the servicing of the flag inter-
rupt. The MASKAS register is located at I/O memory page 0x06, I/O address 
0x005. The MASKBS register is located at I/O memory page 0x06, I/O 
address 0x007. Writing a “1” to the MASKAS or MASKBS register unmasks the 
interrupt capability of the corresponding flag pin; writing a “0” has no 
effect on the masking of the flag pin. The 16 bits of the MASKAS and 
MASKBS registers correspond to the 16 available flag pins of the 
ADSP-2199x.

The Flag Interrupt MASKA and MASKB Clear registers (MASKAC and MASKBC, 
respectively) are used to “mask” or disable the servicing of the flag inter-
rupt. The MASKAC register is located at I/O memory page 0x06, I/O address 
0x004. The MASKBC register is located at I/O memory page 0x06, I/O 
address 0x006. Writing a “1” to the MASKAC or MASKBC register masks the 
interrupt capability of the corresponding flag pin; writing a “0” has no 
effect on the masking of the flag pin. The 16 bits of the MASKAC and 
MASKBC registers correspond to the 16 available flag pins of the 
ADSP-2199x.

FIO Polarity Control (POLAR) Register

The FIO Polarity Control (POLAR) register selects either a high or low 
polarity of an interrupt signal. Note that the flag polarity applies for input 
flag pins only (DIR[n]=0).

The FIO Polarity Control (POLAR) register is located at I/O memory page 
0x06, I/O address 0x008. (The POLAR register is also aliased to I/O memory 
page 0x06, I/O address 0x009.) Writing a “0” to a bit of the POLAR register 
configures the corresponding flag pin as an active high input signal; writ-
ing a “1” configures the corresponding flag pin as an active low input 
signal. The 16 bits of the POLAR register correspond to the 16 available flag 
pins of the ADSP-2199x.



Operation of the FIO Block

20-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

FIO Edge/Level Sensitivity Control (EDGE and BOTH) Registers

The FIO Edge/Level Sensitivity Control registers determine edge- or 
level-sensitivity when the flag pin is configured as an input (DIR[n]=0). If 
the flag pin is configured for edge-sensitivity, the EDGE register also speci-
fies the flag pin’s sensitivity for rising edge, falling edge, or both edges.

EDGE is located at I/O memory page 0x06, I/O address 0x00A. (The EDGE 
register is also aliased to I/O memory page 0x06, I/O address 0x00B.) 
Writing a “0” to a bit of the EDGE register configures the corresponding 
flag pin as a level sensitive input; writing a “1” configures the correspond-
ing flag pin as an edge sensitive input. The 16 bits of the EDGE register 
correspond to the 16 available flag pins of the ADSP-2199x.

The Flag Both Edges Sensitivity register (BOTH) is used to configure the 
sensitivity of the flag pin for either rising- or falling-edge sensitivity 
(depending on the value of the POLAR[n] bit) or for both-edge sensitivity.

BOTH is located at I/O memory page 0x06, I/O address 0x00C. (The BOTH 
register is also aliased to I/O memory page 0x06, I/O address 0x00D.) 
Writing a “0” to a bit of the BOTH register configures the corresponding 
flag pin for either rising-edge or falling-edge sensitivity (as determined by 
the value of the corresponding bit of the POLAR register); writing a “1” 
configures the corresponding flag pin for both-edges sensitivity. The 16 
bits of the BOTH register correspond to the 16 available flag pins of the 
ADSP-2199x. 

Power-Down Modes
The ADSP-2199x has four low power options that significantly reduce the 
power dissipation. To enter any of these modes, the DSP executes an IDLE 
instruction. The ADSP-2199x uses configuration of the PDWN, STOPCK, and 
STOPALL bits in the PLLCTL register to select between the low-power modes 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 20-11 
 

Flag I/O (FIO) Peripheral Unit

Preliminary

as the DSP executes the IDLE. Depending on the mode, an IDLE shuts off 
clocks to different parts of the DSP in the different modes. The low power 
modes are:

• Idle

• Power-Down Core

• Power-Down Core/Peripherals

• Power-Down All

Idle Mode

When the ADSP-2199x is in Idle mode, the DSP core stops executing 
instructions, retains the contents of the instruction pipeline, and waits for 
an interrupt. The core clock and peripheral clock continue running. 

To enter Idle mode, the DSP can execute the Idle instruction anywhere in 
code. To exit Idle mode, the DSP responds to an interrupt and upon Rti, 
resumes executing the instruction after the Idle.

Power-Down Core Mode

When the ADSP-2199x is in Power-Down Core mode, the DSP core 
clock (CCLK) is off, but the PLL is running. The peripheral clock 
(HCLK) keeps running, letting the peripherals receive data. The peripher-
als cannot do DMA, because the on-chip memory is controlled by the 
CCLK. The peripherals can issue an interrupt to exit power-down.

To enter Power-Down Core mode, the DSP executes an Idle instruction 
after performing the following tasks:

• Check for pending interrupts and I/O service routines

• Clear (= 0) the PDWN bit in the PLLCTL register

• Clear (= 0) the STOPALL bit in the PLLCTL register



Operation of the FIO Block

20-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

• Set (= 1) the STOPCK bit in the PLLCTL register

• The PLL will issue a power-down interrupt

• ADSP-2199x enters power-down upon encountering an Idle 
instruction in the ISR

To exit Power-Down Core mode, the DSP responds to an interrupt and 
resumes executing instructions with the instruction after the Idle.

Power-Down Core/Peripherals Mode

When the ADSP-2199x is in Power-Down Core/Peripherals mode, the 
DSP core clock and peripheral clock are off, but the DSP keeps the PLL 
running. The peripheral clock is stopped, so the peripherals cannot receive 
data.

To enter Power-Down Core/Peripherals mode, the DSP executes an Idle 
instruction after performing the following tasks:

• Check for pending interrupts and I/O service routines

• Clear (= 0) the PDWN bit in the PLLCTL register

• Set (= 1) the STOPALL bit in the PLLCTL register

• The PLL will issue a power-down interrupt

• ADSP-2199x enters power-down upon encountering an Idle 
instruction in the ISR

To exit Power-Down Core/Peripherals mode, the DSP responds to an 
interrupt and (after five to six cycles of latency) resumes executing instruc-
tions with the instruction after the Idle.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 20-13 
 

Flag I/O (FIO) Peripheral Unit

Preliminary

Power-Down All Mode

When the ADSP-2199x is in Power-Down All mode, the DSP core clock, 
the peripheral clock, and the PLL are all stopped. The peripheral clock is 
stopped, so the peripherals cannot receive data.

To enter Power-Down All mode, the DSP executes an Idle instruction 
after performing the following tasks:

• Check for pending interrupts and I/O service routines

• Set (= 1) the PDWN bit in the PLLCTL register

• The PLL will issue a power-down interrupt

• ADSP-2199x enters power-down upon encountering an Idle 
instruction in the ISR

To exit Power-Down Core/Peripherals mode, the DSP responds to an 
interrupt and (after 500 cycles to re-stabilize the PLL) resumes executing 
instructions with the instruction after the Idle.

Reset State
At reset, the FIO lines are configured as level sensitive inputs with no 
inversion. The flags are initialized masked, therefore interrupts are dis-
abled. All configuration registers are initialized with "zero".



Registers

20-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Registers
The FIO registers are illustrated in Figure 20-1 through Figure 20-13 on 
page 20-16.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0000/0
x0001]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure 20-1. FIO Direction Control Register DIR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0002]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Figure 20-2. FIO FLAG Clear Register FLAGC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0003]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s

Figure 20-3. FIO FLAG Set Register FLAGS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0004]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Figure 20-4. FIO MASKA Clear Register MASKAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0005]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s

Figure 20-5. FIO MASKA Set Register MASKAS



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 20-15 
 

Flag I/O (FIO) Peripheral Unit

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0006]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Figure 20-6. FIO MASKB Clear Register MASKBC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0007]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s

Figure 20-7. FIO MASKB Set Register MASKBS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0008/0
x0009]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure 20-8. FIO Polarity Control Register POLAR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x000A/
0x000B]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure 20-9. FIO Edge/Level Sensitivity Control Register EDGE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x000C/
0x000D]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure 20-10. FIO Both Edge Sensitivity Control Register BOTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x000E]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Figure 20-11. FIO PWM Trip Select Register (Clear) FIOPWMC



Registers

20-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x000F]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s w1s

Figure 20-12. FIO PWM Trip Select Register (Set) FIOPWMS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IO[0x06:0x0013]

u u u u u u u u u u u u u u u u Reset = 0x0000
ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

Figure 20-13. FIO Data In Register DATA_IN



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-1 
 

Controller Area Network (CAN) Module

Preliminary

21 CONTROLLER AREA 
NETWORK (CAN) MODULE

This feature applies to the ADSP-21992 only.

Overview
Key features of the CAN Module are:

• Conforms to the CAN V2.0B standard.

• Supports both standard (11-bit) and extended (29-bit) Identifiers

• Supports Data Rates of up to 1Mbit/second (and higher)

• 16 Configurable Mailboxes (All receive or transmit)

• Dedicated Acceptance Mask for each Mailbox

• Data Filtering (first 2 bytes) can be used for Acceptance Filtering

• Error Status and Warning registers

• Transmit Priority by Identifier

• Universal Counter Module

• Readable Receive and Transmit pin values



Overview

21-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The CAN Module is a low baud rate serial interface intended for use in 
applications where baud rates are typically under 1 Mbit/ sec. The CAN 
protocol incorporates a data CRC check, message error tracking and fault 
node confinement as means to improve network reliability to the level 
required for control applications.

The interface to the CAN bus is a simple two-wire line. This means there 
is an input pin Rx and an output pin Tx. Both pins operate with TTL lev-
els and are appropriate for operation with CAN bus transceivers according 
to ISO/DIS 11898 or with a modified RS-485 interface.

The CAN module architecture is based around a 16-entry mailbox RAM. 
The mailbox is accessed sequentially by the CAN serial interface or the 
host CPU. Each mailbox consists of eight 16-bit data words. The data is 
divided into fields, which includes a message identifier, a time stamp, a 
byte count, up to 8 bytes of data, and several control bits. Each node mon-
itors the messages being passed on the network. If the identifier in the 
transmitted message matches an identifier in one of it's mailboxes, then 
the module knows that the message was meant for it, passes the data into 
it's appropriate mailbox, and signals the host of its arrival with an 
interrupt.

The CAN network itself is a single, differential pair line. All nodes contin-
uously monitor this line. There is no clock wire. Messages are passed in 
one of 4 standard message types or frames. Synchronization is achieved by 
an elaborate sync scheme performed in each CAN receiver. Message arbi-

Input / Output values for Rx and TX

Pin Value at Pin Value on CAN Bus Line

RX low (GND) Dominant

high (VCC) Recessive

TX low (GND) Dominant

high (VCC) Recessive



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-3 
 

Controller Area Network (CAN) Module

Preliminary

tration is accomplished 1 bit at a time. A dominant polarity is established 
for the network. All nodes are allowed to start transmitting at the same 
time following a frame sync pulse.

As each node transmits a bit, it checks to see if the bus is the same state 
that it transmitted. If it is, it continues to transmit. If not, then another 
node has transmitted a dominant bit so the first node knows it has lost the 
arbitration and it stops transmitting. The arbitration continues, bit by bit 
until only 1 node is left transmitting.

The electrical characteristics of each network connection are very stringent 
so the CAN interface is typically divided into 2 parts: a controller and a 
transceiver. This allows a single controller to support different drivers and 
CAN networks. The ADSP-21992 CAN module represents only the con-
troller part of the interface. This module's network I/O is a single transmit 
line and a single receive line, which communicate to a line transceiver.

The CAN Protocol, standards and recommendations are not repeated in 
this chapter. This chapter covers only those sections, which are of immedi-
ate need to understand the implementation.



CAN Module Registers

21-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

CAN Module Registers

Master Control Register (CANMCR)
Some global command bits are implemented in the Master Control Regis-
ter. After a power-up reset or software reset all bits are cleared but CCR is 
set. During write access all reserved bits must be ‘0’.

CCR CAN Configuration Mode Request

The module will not leave the configuration mode if the time segment 1 
of the bit timing parameters is programmed to ‘0’.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMCR IO[0x01–0x050]

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Reset Value:   0x0080

SRS Software Reset
(1=reset, 0=no effect)

DNM Device Net Mode
(1=enable, 0=disable)

ABO Auto Bus On
(1=enable, 0=configuration mode)

TxPrio Transmit Priority by Message 
Identifier
 (1=highest priority first, 
0=highest mailbox first)

WBA Wake Up on CAN Bus Activity
(1=can leave sleep mode,
 0=stays in sleep mode)

SMR Sleep Mode Request
(1=enters sleep mode, 0=not 
requested)

CSR CAN Suspend Mode Request
(1=requested, 0=cancelled)

CCR CAN Configuration Mode Request
(1=requested, 0=cancelled)

Reserved (write access denied)

Figure 21-1. Master Control Register (CANMCR)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-5 
 

Controller Area Network (CAN) Module

Preliminary

During the bus off recovery sequence the configuration mode request bit 
is set by the internal logic (CCR = 1) thus the CAN Core Module will not 
automatically go bus on. The configuration mode request bit CCR cannot 
be reset until the bus off recovery sequence is finished.

The configuration mode request bit CCR cannot be reset before the config-
uration mode acknowledge CCA is set.

[1] The Configuration Mode is requested. After power-up this mode is 
active (CCR = set and CCA = set). The bit timing parameters must be defined 
before this mode is left. The write access to the bit timing parameter is 
locked in normal operating mode (CCA is inactive low, exception: TEST 
mode). If the CAN Core Module is currently processing a message on the 
CAN bus line, this operation is finished before the configuration mode is 
acknowledged (CCA is active high). Thus the user must wait until CCA is set 
before the access to the bit timing parameters (BCR0 and BCR1) is allowed. 
During Configuration Mode the module is not active on the CAN bus 
line. The Tx output pin remains recessive and the module does not 
receive/transmit messages or error frames. After leaving the configuration 
mode, all CAN Core internal registers and the CAN error counters are set 
to their initial values.

[0] The Configuration Mode Request is cancelled.

CSR CAN Suspend Mode Request

The suspend mode request bit CSR cannot be reset before the suspend 
mode acknowledge CSA is set.

[1] The Suspend Mode is requested. If the CAN Core Module is currently 
processing a message on the CAN bus line, this operation is finished 
before the suspend mode is acknowledged (CSA is active high). Thus the 
user must wait until CSA is set. During Suspend Mode the module is not 
active on the CAN bus line. The Tx output pins remains recessive, the 
module does not receive/transmit messages or error frames. The content of 
the CAN error counters remain unchanged.



CAN Module Registers

21-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

[0] The Suspend Mode Request is cancelled.

SMR Sleep Mode Request

[1] The module enters the sleep mode after the current operation of the 
CAN bus is finished.

[0] No sleep mode requested.

WBA Wake Up on CAN Bus Activity

[1] The sleep mode is left automatically if there is any activity on the CAN 
bus line detected.

[0] The module stays in sleep mode independent of the CAN bus line sta-
tus until SMR is reset.

TxPrio Transmit Priority by message identifier 
(if implemented)

Write only allowed if the Configuration Mode or the Suspend Mode is 
entered. The register is not write protected in normal operation mode.

[1] Always the highest prior transmit message is sent first

[0] Always the transmit message of the highest numbered mailbox is sent 
first

ABO Auto Bus On

[1] After completing the BusOff recovery procedure, the node is entering 
automatically bus active state

[0] After completing the BusOff recovery procedure, the node is entering 
the configuration mode



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-7 
 

Controller Area Network (CAN) Module

Preliminary

DNM Device Net Mode (if implemented)

If enabled, the Acceptance Filtering Run will start after reception of the 
first CRC bit, else after first received DLC bit.

[1] Device Net Mode (Acceptance Filtering on first two Data Bytes) is 
enabled. If DNM is set to one and a Acceptance Mask is set to Data Byte Fil-
tering (FDF bit in Mask) the filtering on Standard ID and first two Data 
Bytes is performed.

[0] Only Standard Acceptance Filtering on Identifier will be used.

SRS Software Reset

This register bit is always read as ‘0’.

[1] A write access to this register with the data bit ‘0’ set (DB[0] = ‘1’) ini-
tiates a software reset. All relevant register bits will be set to their initial 
values unless otherwise stated in the corresponding register description.

[0] Writing a ‘0’ to this bit location has no effect.



CAN Module Registers

21-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Global Status Register (CANGSR)
The global status register represents a set of internal status signals. This 
register is read only. A write access to the CANGSR has no effect.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANGSR IO[0x10–0x046

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Reset Value:   0x0000

WT CAN Transmit Warning Flag
(1=TEC at limit, 0=TEC<limit)

WR CAN Receive Warning Flag
(1=REC at limit, 0=REC<limit)

EP CAN Error Passive Mode
(1=TEC or REC > error passive level, 
both TEC and REC <128)

EBO CAN Error Bus Off Mode
 (1=TEC>bus off limit, 
0=TEC<256)

Reserved 
SMA Sleep Mode Acknowledge

(1=in sleep mode,
 0=not in sleep mode)

CSA CAN Suspend Mode Acknowledge
(1=in suspend mode, 
0=not in suspend mode)

CCA CAN Configuration Mode Acknowl-
edge
(1=in configuration mode, 
0=not in configuration mode)

MBptr Mailbox Pointer
(see description below

Reserved 
Trm Transmit Mode

(1=in transmit mode, 
0=not in transmit mode)

Rec Receive Mode
(1=in receive mode, 
0=not in receive mode)

Figure 21-2. Global Status Register (CANGSR)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-9 
 

Controller Area Network (CAN) Module

Preliminary

Rec Receive Mode

[1] CAN Protocol Kernel is in receive mode

[0] CAN Protocol Kernel is not in receive mode

Trm Transmit Mode

[1] CAN Protocol Kernel is in transmit mode

[0] CAN Protocol Kernel is not in transmit mode

MBptr Mail Box Pointer

The content of these 5 bits represents the mailbox number of the current 
transmit message. After a successful transmission these bits remain 
unchanged.

[01111] The message of mailbox 15 is currently processed.

…

…

…

[00000] The message of mailbox 0 is currently processed

CCA CAN Configuration Mode Acknowledge

[1] CAN Protocol Kernel is in configuration mode

[0] CAN Protocol Kernel is not in configuration mode

CSA CAN Suspend Mode Acknowledge

[1] CAN Protocol Kernel is in suspend mode

[0] CAN Protocol Kernel is not in suspend mode



CAN Module Registers

21-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SMA Sleep Mode Acknowledge

[1] The module is in sleep mode. All clocks are switched off

[0] The module is not in sleep mode.

EBO CAN Error Bus Off Mode

[1] The transmit error counter has reached the bus off limit

[0] The value of the transmit error counter TEC is below 256

EP CAN Error Passive Mode

[1] At least one error counter has reached the error passive level

[0] the values of both error counters (REC and TEC) are below 128

WR CAN Receive Warning Flag

If the programmable warning level feature for the CAN error counters is 
not implemented, both flags WR and WT are active high if one of the error 
counters has reached the standard warning level of 96.

[1] The value of the receive error counter has reached the warning limit

[0] The value of the receive counter REC is below the warning limit

WT CAN Transmit Warning Flag

[1] The value of the transmit error counter has reached the warning limit

[0] The value of the transmit counter TEC is below the warning limit



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-11 
 

Controller Area Network (CAN) Module

Preliminary

CAN Configuration Registers
The CAN bit timing parameter and the special modes of the CAN Mod-
ule are defined in the three registers CANBCR0, CANBCR1 and CANCNF.

All bit timing values can only be changed, if the CAN Core Module is in 
its configuration mode. If the module is in its TEST mode, the write pro-
tection of the bit timing registers CANBCR0 and CANBCR1 is disabled even if 
the configuration mode is inactive (CCA = reset). The software reset will 
not change the values of CANBCR0 and CANBCR1. Thus an ongoing transfer 
via the CAN bus cannot be corrupted by changing the bit timing parame-
ter or initiating the software reset SRS bit in CANMCR.

The values of the bit timing registers can be changed only when the CAN 
Module is in its configuration mode. The registers CANBCR0 and CANBCR1 
are locked if the CCA bit in CANGSR is ‘0’ and the module is not in TEST 
mode.

If the module is in TEST mode the write access to BCR0 and BCR1 is 
enabled. If the values of BCR0 or BCR1 are changed during normal opera-
tion (e.g. CCA is ‘0’), this may lead to an erroneous behavior. If the CAN 
module has reached the BusOff state because of an erroneous bit timing 
programming, this state may not be finished in the expected time in case 
of a high bus load (baud rate of the module is lower than the baud rate on 
the CAN bus). Then the bit timing can be reprogrammed by changing to 
the TEST mode.



CAN Configuration Registers

21-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Bit Configuration Register 0 (CANBCR0)
The upper 6 bits of this register are read only. A write access to these bits 
has no effect. The upper 6 bits are always read as ‘0’. These bits must be 
‘0’ during write access.

Mode Read/Write only in CAN Configuration mode enabled. If the CAN 
protocol kernel is not in configuration mode a write access has no effect 
(exception: TEST mode).

The software reset has no effect on this register (all values are unchanged).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANBCR0 IO[0x10–0x040

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

BRP Baud Rate Prescaler Register
(read/write)

Reserved 

Figure 21-3. Bit Configuration Register 0 (CANBCR0)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-13 
 

Controller Area Network (CAN) Module

Preliminary

Bit Configuration Register 1 (CANBCR1)

Mode Read/Write only in CAN Configuration mode enabled. If the CAN 
protocol kernel is not in configuration mode a write access has no effect 
(exception: TEST mode).

The software reset SRES has no effect to this register (all values are 
unchanged).

The upper 6 bits of this register are read only. A write access to these bits 
has no effect. The upper 6 bits are always read as ‘0’. These bits must be 
‘0’ during write access.

CAN Configuration Register (CANCNF)
This register is used to enable/disable the special functions of the CAN 
Module. The lower 6 bits of this register can only be used in the TEST 
mode (bit 15 is set). These functions are partly not compliant with the 
specification of the CAN protocol. The values of the special function 
mode bits should only be changed if the configuration mode or the sus-
pend mode is entered (CCA is set or CSA is set in the CANGSR register). 
The value of the lower 6 bits of this register cannot be changed if the 
TEST bit in the CANCNF register is ‘0’. Thus the TEST bit must be set 
before the special function bits are changed. The values of the TEST bit 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANBCR1 IO[0x10–0x042

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

TSEG1 Time Segment 1

TSEG2 Time Segment 2

SAM Sampling

SJW Synchronization Jump Width

Reserved 

Figure 21-4. Bit Configuration Register 1 (CANBCR1)



CAN Configuration Registers

21-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

and the special function bits cannot be changed with one 16 bit write 
access to the register CANCNF. If the TEST bit is reset the special functions 
are disabled, independent of the content of CANCNF5–0].

TEST Enable for the special functions

[1] The use of the special mode is enabled

[0] All special modes are disabled

MRB Mode Read Back

[1] Mode Read Back is enabled (each transmit message is also handled like 
a receive message)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANCNF IO[0x10–0x044]

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Reset Value:   0x0000

DEC Disable CAN Error Counter
(1=error counters disabled, 
0=normal operation)

DRI Disable CAN RX Input
(1=serial input disabled, 
0=normal input)

DTO Disable CAN TX Output
(1=serial output disabled, 
0=normal output))

DIL Disable CAN Internal Loop
 (1=internal loop disabled, 
0=internal loop enabled)

MAA Mode Auto Acknowledge
(1=auto acknowledge enabled,
 0=normal acknowledge)

MRB Mode Read Back
(1=enabled, 0=disabled)

Reserved (write access denied)
TEST Enable special functions of the 

sci-worx Can Core DesignObject®
(1=enable, 0=disable)

Figure 21-5. CAN Configuration Register (CANCNF)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-15 
 

Controller Area Network (CAN) Module

Preliminary

[0 ]Mode Read Back is disabled

MAA Mode Auto Acknowledge

[1 ]The automatically CAN acknowledge generation (in transmit mode) is 
enabled. (Only available if TEST is programmed to ‘1’)

[0] normal acknowledge generation

DIL Disable CAN Internal Loop

[1] The internal serial data loop from Tx output to Rx input is disabled.

[0] The internal loop is enabled (the value seen on the Rx input is a wired 
or of the external Rx pin and the internal Tx pin). (Only available if TEST 
is programmed to ‘1’)

DTO Disable CAN TX Output

[1] The serial output to the CAN bus line is disabled (TX remains reces-
sive). (Only available if TEST is programmed to ‘1’)

[0] normal output to CAN bus line

DRI Disable CAN RX Input

[1] The serial input from the CAN bus line is disabled (CAN bus is seen 
recessive). (Only available if TEST is programmed to ‘1’)

[0] normal input from CAN bus line

DEC Disable CAN Error Counter

[1] CAN Error Counters are disabled (REC/TEC remains unchanged)

[0] normal operation of CAN Error Counters. (only available if TEST is 
programmed to ‘1’)



CAN Configuration Registers

21-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Mode Read/Write only allowed if the Configuration Mode or the Suspend

Mode is entered and the TEST bit is active high. The register is not write 
protected in normal operation mode.

The software reset SRES has no effect to this register (all values are 
unchanged)

If the global enable signal for the special modes (TEST) is ‘0’ the special 
modes of the CAN Core Module are disabled independent of the pro-
grammed values for MAA, DIL, DTO, DRI and DEC.

The bits 14 to 8 of this register are read only. A write access to these bits 
has no effect. These bits are always read as ‘0’. Thus these bits must be ‘0’ 
during write access.

Version Code Register (CANVERSION)
The Version Code Register is read-only and it is always read as 0x7DC0.

CAN Error Counter Register (CANCEC)

The Receive Error Counter (REC) is mapped to the low byte of CEC and the 
Transmit Error Counter (TEC) is mapped to the high byte of CEC. The val-
ues of these counters cannot be changed in normal operation mode. The 
write access to the CAN Error Counters is enabled only in Test Mode. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-17 
 

Controller Area Network (CAN) Module

Preliminary

Thus the CAN Error Counters can be written for test purposes. The value 
of CEC is held during read access. After power-up reset, all bits are cleared. 
The software reset SRS bit in CANMCR has no direct influence.

The value of CEC is undefined if the CAN module is in its Bus Off mode.

After leaving the Bus Off mode or the configuration mode the CAN error 
counters are reset.

The software reset has no direct influence to the values of the CAN error 
counters. But the software reset will set the CAN Configuration mode 
request bit (bit CCR in register MCR) and the module will change to the 
requested mode after all currently performed activities (transmis-
sion/reception of a CAN message) are finished.

Interrupt Register (CANINTR)
The CAN Module provides three independent interrupts: the two mailbox 
interrupts (mailbox receive interrupt MBRIRQ, mailbox transmit interrupt 
MBTIRQ) and the global interrupt GIRQ. The values of these three interrupts 
can also be read back in the interrupt status registers.

The interrupt status bits line is 1 as long as the interrupt output line is 
active. All bits in CANINTR are read only. Write access to this register has no 
effect. (Exception: Wake up, if sleep mode is entered). After power-up 
reset or software reset all interrupts are cleared. The unused bits of this 
register are reserved and must be ‘0’ during write access.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANCEC IO[0x10–0x048]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

REC Receive Error Counter
TEC Transmit Error Counter

Figure 21-6. CAN Error Counter Register (CANCEC)



CAN Configuration Registers

21-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

For test or debugging purposes the values of the CAN serial-in CANRX and 
the CAN serial-out CANTX can be read too. These two bits exactly reflect 
the corresponding pins.

Rx Serial Input from CAN Bus Line (from Transceiver)

[1] The current value of the CAN bus is recessive

[0] The current value of the CAN bus is dominant

TX Serial Output to CAN Bus Line (to Transceiver)

[1 ]The output to the CAN bus line is recessive

[0] The output to the CAN bus line is dominant

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANINTR IO[0x10–0x052]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

MBRIF Mailbox Receive Interrupt 
Output (1=one or more receive flags 
set, 0=no receive flags set)

MBTIF Mailbox Transmit Interrupt 
Output (1=one or more transmit flags 
set, 0=no transmit flags set)

GIRQ Global Interrupt Output
(1=one or more global flags set, 
0=no global flags set)

SMACK Sleep Mode Acknowledge
(1=Full-CAN module in sleep mode, 
0=not in sleep mode)

Reserved

Tx Serial Input from CAN Bus Line (to 
Transceiver) (1=value is recessive, 
0=value is dominant)

Rx Serial Input from CAN Bus Line (from 
Transceiver) (1=value is recessive, 
0=value is dominant)

Reserved

Figure 21-7. Interrupt Register (CANINTR)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-19 
 

Controller Area Network (CAN) Module

Preliminary

SMACK Sleep Mode Acknowledge

[1] The Full-CAN module is in its sleep mode

[0] The sleep mode is not entered

GIRQ Global Interrupt Output

[1] At least one global interrupt flag in the global interrupt flag register 
GIF is set.

[0] No global interrupt flag is set

MBTIF Mailbox Transmit Interrupt Output

[1] At least one transmit interrupt flag in the transmit interrupt flag regis-
ter MBTIF is set.

[0] No transmit interrupt flag bit in MBTIF is set

MBRIF Mailbox Receive Interrupt Output

[1] At least one receive interrupt flag in the receive interrupt flag register 
MBRIF is set.

[0] No transmit interrupt flag bit in MBRIF is set



Data Storage

21-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Data Storage
All CAN relevant data are stored in a so-called mailbox RAM. There are 8 
words of 16 bits for each of the 16 mailboxes.

The values of the Identifier (base part and extended part), the Identifier 
Extension Bit (IDE) the Remote Transmission Request bit (RTR), the Data 
Length Code (DLC) and the Data Field of each message can be pro-
grammed in the mailbox area. The Substitute Remote Request (SRR always 
sent as recessive) bit and the reserved bits r0 and r1 (always sent as domi-
nant) are generated automatically by the internal logic.

Table 21-1. CAN Message Formats

R
T

R

B
A

S
E

ID
E

N
T

IF
IE

R
11

B
IT

S

ID
E

R
0

D
L

C
4

B
IT

S

D
A

TA
FI

E
LD

0-
8

B
IT

S

C
R

C
F

IE
L

D
15

B
IT

C
R

C
D

E
L

IM
IT

E
R

A
C

K
S

L
O

T
A

C
K

D
E

L
IM

IT
E

R

E
N

D
O

F
F

R
A

M
E

7
B

IT
S

S
O

F

B
U

S
ID

L
E

IN
T

3
B

IT
S

ID
E

R
TR

E
X

T
E

N
D

E
D

ID
E

N
T

IF
IE

R
15

B
IT

S

R
1

R
0

D
LC

4
B

IT
S

D
A

TA
F

IE
L

D
0-

8
B

IT
S

C
R

C
FI

E
LD

15
B

IT

C
R

C
D

E
L

IM
IT

E
R

A
C

K
S

L
O

T
A

C
K

D
E

L
IM

IT
E

R

E
N

D
O

F
F

R
A

M
E

7
B

IT
S

S
O

F

B
U

S
ID

L
E

S
R

R

B
A

S
E

ID
E

N
T

IF
IE

R
11

B
IT

S

IN
T

3
B

IT
S

ARBITRATION FIELD CONTROL
FIELD

DATA
FIELD

CRC
FIELD

ACK
FIELD

END OF
FRAME

INTERFRAME
SPACE



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-21 
 

Controller Area Network (CAN) Module

Preliminary

Mailbox Layout
Each mailbox consists of 8 words and includes the following data:

• The 29 bit identifier (base part plus extended part)

• The acceptance mask enable bit AME

• The remote frame transmission request bit (RTR)

• The identifier extension bit (IDE)

• The data length code (DLC)

• Up to eight bytes for the data field

• Two bytes for the time stamp value (TSV)

The upper 12 bits of word 4 of each mailbox are marked as reserved. Thus 
data may not be written to these locations because these bits may be used 
in future versions.

If the Filtering on Data Field Option is implemented and enabled (DNM of 
MCR = ‘1’ and FDF of corresponding Acceptance Mask = ‘1’), the bits [15:0] 
of word 6 (ExtId) are reused as acceptance code (DFC) for the Data Field 
Filtering.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBxx_ID1 IO1

1   IO[0x10: 0x10E: 0x11E: 0x12E: 0x13E: 0x14E: 0x15E: 0x16E: 0x17E: 0x18E: 0x19E: 0x1AE: 0x1BE: 
0x1CE: 0x1DE: 0x1EE: 0x1FE:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 EXID
 BASEID
 IDE
 RTR
 AME

Figure 21-8. Mailbox Identifier (Word 7) (CANMBxx_ID1)



Data Storage

21-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBxx_ID0 IO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 EXID/DFC

Figure 21-9. Mailbox Identifier (Word 6) (CANMBxx_ID0)
1   IO[0x10: 0x10C: 0x11C: 0x12C: 0x13C: 0x14C: 0x15C: 0x16C: 0x17C: 0x18C: 0x19C: 0x1AC: 

0x1BC: 0x1CC: 0x1DC: 0x1EC: 0x1FC: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBxx_TIMESTAMP IO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 TSV

Figure 21-10. Mailbox Identifier (Word 5) (CANMBxx_TIMESTAMP)
1   IO[0x10: 0x10A: 0x11A: 0x12A: 0x13A: 0x14A: 0x15A: 0x16A: 0x17A: 0x18A: 0x19A: 0x1AA: 

0x1BA: 0x1CA: 0x1DA: 0x1EA: 0x1FA: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBxx_LENGTH IO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 DLC
 reserved

Figure 21-11. Mailbox Identifier (Word 4) (CANMBxx_LENGTH)
1   IO[0x10: 0x108: 0x118: 0x128: 0x138: 0x148: 0x158: 0x168: 0x178: 0x188: 0x198: 0x1A8: 0x1B8: 

0x1C8: 0x1D8: 0x1E8: 0x1F8:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBxx_DATA3 IO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 Data Field

Figure 21-12. Mailbox Data Field (Word 3) (CANMBxx_DATA3)
1   IO[0x10: 0x106: 0x116: 0x126: 0x136: 0x146: 0x156: 0x166: 0x176: 0x186: 0x196: 0x1A6: 0x1B6: 

0x1C6: 0x1D6: 0x1E6: 0x1F6: 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-23 
 

Controller Area Network (CAN) Module

Preliminary

Mailbox Area
Every CAN mailbox may be configured as a transmit or receive mailbox 
and has an acceptance mask.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBxx_DATA2 IO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 Data Field

Figure 21-13. Mailbox Data Field (Word 2) (CANMBxx_DATA2)
1   IO[0x10: 0x104: 0x114: 0x124: 0x134: 0x144: 0x154: 0x164: 0x174: 0x184: 0x194: 0x1A4: 0x1B4: 

0x1C4: 0x1D4: 0x1E4: 0x1F4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBxx_DATA1 IO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 Data Field

Figure 21-14. Mailbox Data Field (Word 1) (CANMBxx_DATA1)
1   IO[0x10: 0x102: 0x112: 0x122: 0x132: 0x142: 0x152: 0x162: 0x172: 0x182: 0x192: 0x1A2: 0x1B2: 

0x1C2: 0x1D2: 0x1E2: 0x1F2: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBxx_DATA0 IO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 Data Field

Figure 21-15. Mailbox Data Field (Word 0) (CANMBxx_DATA0)
1   IO[0x10: 0x100: 0x110: 0x120: 0x130: 0x140: 0x150: 0x160: 0x170: 0x180: 0x190: 0x1A0: 0x1B0: 

0x1C0: 0x1D0: 0x1E0: 0x1F0:



Mailbox Control Logic

21-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Mailbox Types
All mailboxes are used for receive and/or transmit mode. This mailbox 
type supports the automatic remote frame-handling feature. The mailbox 
control register area consists of:

• TA (Transmit Acknowledge register),

• AA (Abort Acknowledge register),

• TRS (Transmit Request Set register),

• TRR (Transmit Request Reset register)

• RMP (Receive Message Pending register),

• RML (Receive Message Lost register),

• RFH (Remote Frame Handling register)

• OP/SS (Overwrite Protection / Single Shot Transmission register)

• MBIM (Mailbox Interrupt Mask register),

• MBTIF (Mailbox Transmit Interrupt Flag register) and

• MBRIF (Mailbox Receive Interrupt Flag register.

Mailbox Control Logic

Mailbox Configuration (CANMC / CANMD)
Each mailbox can be enabled or disabled separately. If the bit MCn in the 
CANMC register is zero, the corresponding mailbox MBn is disabled. The 
mailbox must be disabled before writing to any identifier field.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-25 
 

Controller Area Network (CAN) Module

Preliminary

The write access to the identifier of a message object is denied and the 
mailbox is enabled for the CAN module if the corresponding bit in CANMC 
is set. Mailboxes that are disabled may be used as additional memory for 
the CPU.

If a mailbox CANMBn is used for transmission, the corresponding bit in the 
configuration register MCn and in the direction register MDn must be set 
before TRSn is set.

If a mailbox MBn is disabled, the corresponding bits in CANTRR and CANTRS 
must be reset by the internal logic before. If TRRn of CANTRR register and 
TRSn of CANTRS register are set in a disabled mailbox this may lead to an 
undefined behavior of the CAN module.

If a mailbox CANMBn is configured as "receive" (MDn in CANMD register = set) 
and is disabled, a receive message for this mailbox which is currently pro-
cessed is definitely lost even if a second mailbox is configured to receive 
this identifier. This happens if the mailbox is disabled (MCn in CANMC 
register = reset) after the internal acceptance filtering run is finished and 
before the reception of this message is completed.

The mailboxes can be configured for receive (MDn = 1) or transmit mode 
(MDn = 0). After reset, all mailboxes are configured as transmit mail-
boxes. A mailbox CANMBn can be configured as receive mailbox by 
writing a '1' to the mailbox direction register MDn. The mailbox CAN-
MBn can be reconfigured as transmit mailbox by writing a '0' to MDn. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMC IO[0x10–0x000]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 MCn
 MCn
 MCn
 MCn

Figure 21-16. Mailbox Configuration Register (CANMC)



Mailbox Control Logic

21-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Write access to MDn is denied if the mailbox is enabled i.e. the corre-
sponding bit in the configuration register MCn is set. Thus the mailbox 
must be disabled before MDn is changed.

After software reset the bits in CANMD are cleared.

Changing a bit in the mailbox direction register (MDn) may lead to 
erroneous behavior if the corresponding mailbox is enabled 
(MCn=1).

Receive Logic
If a message is received from the CAN bus and a matching mailbox is 
detected by the internal compare logic, the content of the received mes-
sage is stored in the matching message center. The complete received 
identifier, the remote transmission request bit RTR and the corresponding 
identifier extension bit IDE is stored in the first two words of the destina-
tion mailbox. The configuration bit AME (Acceptance Mask Enable) of this 
mailbox is unchanged. If a base message is received, than the extended 
part of the identifier in the mailbox is also unchanged. The data length 
code DLC and the value of the time stamp counter (if implemented) are 
stored in the next two words and the received data field is stored in the 
words 3 to 0 of this mailbox. Independent of the value of DLC of the 
received message, the complete content of the temporary receive buffer is 
stored in the mailbox. Only the data bytes defined by the DLC contain 
valid data, the rest of the mailbox data field is undefined.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMD IO[0x10–0x002]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 MDn
 MDn
 MDn
 MDn

Figure 21-17. Mailbox Direction Register (CANMD)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-27 
 

Controller Area Network (CAN) Module

Preliminary

After a message is stored in a mailbox CANMBn, the corresponding Receive 
Message Pending bit RMPn in CANRMP register is set, and a Mailbox Receive 
Interrupt is generated (if enabled).

Acceptance Filter / Data Acceptance Filter
Each incoming data frame is compared to all identifiers stored in active 
mailboxes (mailbox is enabled, MCn = 1) configured as receive mailboxes 
(MDn = 1) and active mailboxes configured as transmit mailbox and enabled 
Remote Frame Handling feature. If the acceptance filter signs a matching 
identifier, the content of the received data frame is stored in this mailbox 
and the corresponding bit in the Receive Message Pending register is set. 
If the current identifier does not match, the message is not stored. The 
RMPn bit has to be reset.

If a second message was received for this mailbox and the RMPn bit is 
already set and the OPCn is not set, the corresponding message lost bit RMLn 
is set. If the OPCn bit is set, the next mailboxes are checked

If an acceptance mask is enabled, each bit of the received identifier is 
ignored by the compare logic if the corresponding bit in the acceptance 
mask is set to one.

The acceptance mask registers CANAMxH and CANAMxL are used for accep-
tance filtering. The use of this mask can be enabled/disabled for each 
mailbox separately.

Table 21-2. Mailbox Used for Acceptance Mask Filtering

Mailbox used for Acceptance Filtering

MCn MDn RFHn MBn Comment

0 x x Ignored MBn disabled

1 0 0 Ignored MBn enabled
MBn configured for transmit
Remote Frame Handling disabled



Mailbox Control Logic

21-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

1 0 1 Used MBn enabled
MBn configured for transmit
Remote Frame Handling enabled

1 1 x Used MBn enabled
MBn configured for receive

Table 21-2. Mailbox Used for Acceptance Mask Filtering

Mailbox used for Acceptance Filtering

MCn MDn RFHn MBn Comment



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-29 
 

Controller Area Network (CAN) Module

Preliminary

Acceptance Mask Register

Figure 21-18 andFigure 21-19 show the layout for every implemented 
Acceptance Mask register AM.

The acceptance filtering is done to allow groups of messages to be stored 
in a message center.

An incoming message is stored in the highest numbered mailbox with a 
matching identifier. If this mailbox already contains data (RMPn in CAN-
RMP register is set) the further behavior depends on the content of the 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANAMxH IO1

1   IO[0x10: 0x082: 0x086: 0x08A: 0x08E: 0x092: 0x096: 0x09A: 0x0AE: 0x0A2: 0x0A6: 0x0AA: 0x0BE: 
0x0B2: 0x0B6: 0x0BA: 0x0BE: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 EXID
 BASEID
 AMIDE
 FMD
 FDF

Figure 21-18. Acceptance Mask Register (CANAMxH)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANAMxL IO1

1   IO[0x10: 0x080: 0x084: 0x088: 0x08C: 0x090: 0x094: 0x098: 0x0AC: 0x0A0: 0x0A4: 0x0A8: 0x0BC: 
0x0B0: 0x0B4: 0x0B8: 0x0BC:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 EXID
 BASEID
 AMIDE
 FMD
 FDF

Figure 21-19. Acceptance Mask Register (L)



Mailbox Control Logic

21-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

corresponding Overwrite Protection bit OPn. The incoming identifier is 
compared to the those stored in the RAM and the bits that should not be 
compared are masked out. A ‘1’ in the acceptance mask means “don’t 
care” and a ‘0’ demands an identical match of the bit. The mask bits for 
the base identifier are stored in bits 12 to 2 of the acceptance mask regis-
ters CANMBxH and bits for the extended identifier in 1, 0 of CANMBxH and 15 
to 0 of CANMBxL. Bit number 29 is the mask bit for the Identifier Extension 
bit AMIDE.

After power-up reset all bits are cleared.

The Acceptance Mask area is implemented as a separate Acceptance Mask 
for every Mailbox, so the reset value for software reset and power-up reset 
will be unchanged. If the Acceptance mask is enabled (AME of corre-
sponding mailbox is set), it has to be initialized.

The content of the acceptance mask registers should only be changed if 
the CAN Core module is in its configuration mode. The content of the 
acceptance mask register may be changed only if the CAN module is in 
configuration mode and if the related mailboxes are disabled.

FDF Filtering on Data Field (if enabled)

If the Filtering is performed, the Device Net Mode (DNM bit of CANMCR reg-
ister) must be enabled.

[1] Filtering of Data Field will be performed. The Acceptance Mask Regis-
ter (L) will hold the Data Field Mask (DFM).

[0] Normal Acceptance Filtering is in use. The Acceptance Mask Register 
(L) will hold the Extended Identifier Mask (ExtId).

FMD Full Mask Data Field

[1] Filtering of Data Field will be performed for the first two Data Bytes.

[0] Filtering of Data Field will be performed only for the first Data Byte.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-31 
 

Controller Area Network (CAN) Module

Preliminary

AMIDE Acceptance Mask Identifier Extension

[1 ]The type of the message to be received is defined by the Identifier 
Extension Bit of the incoming message (RECIDE).

[0] The type of the message to be received is defined by the Identifier 
Extension Bit (MBIDE) stored in the corresponding mailbox.

BaseId Base Identifier

ExtId Extended Identifier

DFM Data Field Mask

Receive Control Registers

Receive Message Pending Register (CANRMP)

These bits can only be reset and set by the internal logic. The bits RMPn 
and RMLn of CANRML register are cleared by writing a '1' to the RMPn bit at 
the corresponding bit location. The RMPn bit may set the mailbox interrupt 



Mailbox Control Logic

21-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

flag (MBRIFn) bit in the Mailbox Interrupt Flag Register (CANMBRIF) if the 
corresponding interrupt mask bit in the MBIMn Mailbox Interrupt Mask 
register (CANMBIM is set. The MBRIFn flag initiates a mailbox interrupt.

Receive Message Lost Register (CANRML)

These bits can only be reset by the device and can be set by the internal 
logic. The bits can be cleared by writing a ‘1’ to RMPn in the CANRMP regis-
ter. A write access to the CANRML register has no effect.

If one or more bits in the CANRML register are set, the Receive Message Lost 
Interrupt Status bit in the global interrupt status register CANGIS is also set. 
If the corresponding interrupt enable bit in CANGIM is set, the Receive Mes-
sage Lost Flag RMLIF in the Global Interrupt Flag CANGIF register is also 
set.

Overwrite Protection / Single Shot Transmission Register (CAN-
OPSS)

If a message is received for a mailbox MBn and this mailbox still contains 
unread data (RMPn is set), the user has to decide whether this old message 
should be overwritten or not. If the corresponding overwrite protection 
bit OPn is reset (OPn = 0), the Receive Message Lost bit RMLn is set and the 
stored message will be overwritten.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANRMP IO[0x10–0x00C]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 RMPn
 RMPn
 RMPn
 RMPn

Figure 21-20. Receive Message Lost Register (CANRMP)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-33 
 

Controller Area Network (CAN) Module

Preliminary

If a message is received for a mailbox MBn and this mailbox still contains 
unread data (RMPn is set, OPn is set), the next mailboxes are checked for 
another matching identifier.

The meaning of the bits in the Overwrite Protection / Single Shot Trans-
mission mode register (OP/SS) depends on the corresponding mailbox 
configuration. If a mailbox is configured as receive mailbox, the content of 
OPSSn is interpreted as Overwrite Protection Bit (OPn). If a mailbox is con-
figured as transmit mailbox, OPSSn is interpreted as Single Shot 
Transmission Mode Bit (SSn).These bits can only be set/reset by the 
device. After Power-Up reset or software reset all bits are cleared.

If the mailbox configuration is changed (receive mode <-> transmit mode) 
the content of the OP/SS register must be adapted by the user.

The content of a bit CANOPSSn must not be changed if the corresponding 
mailbox MBn is enabled.

The overwrite protection cannot be used if automatic remote frame han-
dling is enabled. In this case the content of a mailbox is always overwritten 
by an incoming message.

Transmit Logic

The transmit data are stored in a mailbox configured as transmit mailbox. 
After writing the data and the identifier into the RAM, the message will be 
sent if the corresponding Transmit Request Bit is set and the mailbox is 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANOPSS IO[0x10–0x018]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 OPSSn

Figure 21-21. Overwrite Protection / Single Shot Transmission Register 
(CANOPSS)



Mailbox Control Logic

21-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

enabled. The transmit control register is divided in two registers. The 
Transmit Request Set register (CANTRS) and the Transmit Request Reset 
register (CANTRR).

If there are more than one pending transmit requests, the message objects 
will be sent as defined in the Transmit Priority Logic.

In case of a successfully transmission the corresponding bits in the Trans-
mit Request Set register and in the Transmit Request Reset register are 
cleared and the corresponding bit in the Transmit Acknowledge register is 
set

The control bits to set or reset a transmission request (TRS and TRR, respec-
tively) can be written independently. In this way, a write access to these 
registers does not set bits, which meanwhile were reset because of a com-
plete transmission.

Retransmission

Normally the current message object is resent in case of a lost arbitration 
or an error frame on the CAN bus line. If there are more than one trans-
mit message objects pending, the message object with the highest priority 
will be sent first. The priority is defined by the Transmit Priority Logic. 
The currently aborted transmission will be restarted after the message with 
the higher priority is sent.

A message which is currently under preparation is not replaced by another 
message which is written into the mailbox. The message under preparation 
is one that is copied into the temporary transmit buffer when the internal 
transmit request TxRqst for the CAN core module is set. The message will 
not be replaced until it is sent successfully, the arbitration on the CAN 
bus line is lost, or there is an error frame on the CAN bus line.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-35 
 

Controller Area Network (CAN) Module

Preliminary

Single Shot Transmission

If the Single Shot Transmission feature is used (SSn is set, the transmission 
request set bit TRSn in the CANTRS register is cleared after the message is 
successfully sent. The transmission request set bit TRSn is also cleared if the 
transmission is aborted due to a lost arbitration or an error frame on the 
CAN bus line. Thus the transmission of this message is not repeated in 
case of a lost arbitration or an error on the CAN bus line.

After a successful transmission the corresponding bit TAn in CANTA regis-
ter is set and after an aborted transmission the corresponding bit AAn is set.

Transmit Priority defined by Mailbox Number

If there are more than one pending transmit requests, the sequence is 
started with the highest enabled mailbox down to the lowest enabled mail-
box. The pointer to the next pending transmit message is generated from 
the content of the CANTRS, CANTRR and CANMC registers. This pointer is 
available one cycle after a change of one of the registers. Thus the new 
pointer is generated shortly before the content of the message to be sent is 
copied into the temporary transmit buffer. This normally happens during 
the intermission field of a CAN message. After this pointer is generated, 
all further changes in the mailbox area are ignored until the next pointer 
generation event.

Transmit Control Registers

If a message is sent, the corresponding mailbox has to be configured as 
transmit mailbox first. After the data is stored in the mailbox, the trans-
mission can be initiated by setting the corresponding bit in the transmit 
request set register. A requested transmission can be aborted by setting the 
corresponding bit in CANTRR.



Mailbox Control Logic

21-36 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Transmission Request Set Register (CANTRS)

The CANTRS bits can be set by the device and reset/set by the internal logic. 
The CANTRS bits are set by writing a '1'. Writing a '0' has no effect. They 
are set by the CAN module in case of a Remote Frame Request (or in Auto 
Transmit mode if implemented). This is only possible for the 
receive/transmit mailboxes if the automatic remote frame handling is 
enabled (RFHn = ‘1’). If TRSn is set, the write access to the corresponding 
mailbox is denied (but not locked) and the message n will be transmitted. 
Several CANTRS bits can be set simultaneously.

They are reset in case of a successful or an aborted transmission After 
power-up reset or software reset all bits in CANTRS are cleared. The CANTRS 
bits are only implemented for transmit mailboxes and standard mailboxes. 
The value of TRSn for a receive mailbox is always read as ‘0’.

Write access to a mailbox is possible even if the corresponding TRSn bit is 
set. But changing data in such a mailbox may lead to inconsistent data 
during transmission.

TRSn must not be set if the corresponding mailbox is disabled (MCn = '0'), 
otherwise setting of TRSn may lead to an erroneous behavior.

A mailbox CANMBn must not be disabled before the corresponding bit TRSn 
is reset by the internal logic, this may lead to an erroneous behavior.

The corresponding mailbox CANMBn must contain valid transmit data 
before TRSn is set.

Transmission Request Reset Register (CANTRR)

The CANTRR bits can only be set by the device and reset by the internal 
logic. The CANTRR bits are set by writing an '1'. Writing a '0' has no effect. 
After power-up reset or software reset all bits are cleared.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-37 
 

Controller Area Network (CAN) Module

Preliminary

If TRRn is set, the write access to the corresponding mailbox is denied but 
not locked. If TRRn is set and the transmission which was initiated by TRSn 
is not currently processed, the corresponding transmission request will be 
cancelled immediately. If the corresponding message is currently pro-
cessed, the corresponding bits in CANTRS and CANTRR remain set until the 
transmission is aborted or successfully finished. The Abort Acknowledge 
AAn or the Transmit Acknowledge bit TAn is not set until:

• successful transmission or

• abortion due to a lost arbitration or

• error condition detected on the CAN bus line.

If the transmission was successful, the status bit TAn is set. If the transmis-
sion was aborted, the corresponding status bit AAn is set. In both cases 
TRSn and TRRn are reset.

The status of the TRR bits can be read from the CANTRS bits. If CANTRS is set 
and a transmission is taking place, CANTRR can only be reset by the actions 
described above. If the CANTRS bit is reset and the CANTRR bit is set, there is 
no effect since the CANTRR bit will be immediately reset by internal logic.

After power-up reset or software reset all bits in CANTRR are cleared. The 
CANTRR bits are only implemented for transmit mailboxes and standard 
mailboxes. The value of TRRn for a receive mailbox is always read as ‘0’.

TRRn must not be set if the corresponding mailbox is disabled (MCn = '0').

TRRn must not be set if the corresponding bit in TRS is not set.

A currently processed message continues to transmit if the corresponding 
bits in TRSn and TRRn are set because of an abort request by the user. The 
current transmit operation is finished if TAn of the CANTA register or AAn 
of the CANAA register is set.



Mailbox Control Logic

21-38 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The transmission of a message is immediately aborted if the corresponding 
mailbox is temporary disabled and the TRRn bit for this message is set 
(TRSn, TRRn are reset and AAn is set).

Abort Acknowledge Register (CANAA)

If the transmission of the message in mailbox CANMBn was aborted, bit AAn 
is set. Bits AAn are reset by writing an ‘1’. Writing a ‘0’ has no effect. The 
Abort Acknowledge bit AAn is reset if TRSn is set again. If a mailbox CANMBn 
is disabled (MCn is reset) and the corresponding bit in the transmit abort 
register AAn is set, this bit remains set until it is cleared.

Setting a bit in AA sets a flag AAIS in the global interrupt status register 
CANGIS. If the interrupt mask bit AAIM is set (AAIM = 1 => interrupt is 
enabled). the corresponding bit AAIF in the global interrupt flag register 
CANGIF is also set and a Global Interrupt is asserted.

After power-up reset or software reset all bits in AA are cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANTRR IO[0x10–0x006]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 TRRn
 TRRn
 TRRn
 TRRn

Figure 21-22. Transmission Request Reset Register (CANTRR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANAA IO[0x10–0x00A]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 AAn
 AAn
 AAn
 AAn

Figure 21-23. Abort Acknowledge Register (CANAA)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-39 
 

Controller Area Network (CAN) Module

Preliminary

Bit AAn is not reset if the corresponding bit TRSn is set by internal logic. 
AAn is only reset if TRSn is set.

Transmission Acknowledge Register (CANTA)

If the message in mailbox MBn was sent successfully, bit TAn is set. Bits TAn 
are reset by writing a ‘1’. Writing a ‘0’ has no effect. The Transmit 
Acknowledge bit TAn is also reset if TRSn is set again. If a mailbox MBn is 
disabled (MCn is reset) and the corresponding bit in the transmit acknowl-
edge register TAn is set, this bit remains set until it is cleared.

Setting a bit in CANTA sets a mailbox transmit interrupt flag MBTIFn if the 
corresponding interrupt mask bit MBIMn in the CANMBIM register is set 
(MBIMn = 1 => interrupt is enabled).

After power-up reset or software reset all bits in CANTA are cleared.

Bit TAn is not reset if the corresponding bit TRSn is set by internal logic. 
TAn is only reset if TRSn is set or by writing a ‘1’ to the corresponding bit 
location.

Temporary Mailbox Disable Feature (CANMBTD)

If a mailbox is enabled and configured as "transmit", the write access to 
the data field is denied. If this mailbox CANMBn is used for automatic 
remote frame handling, the Data Field must be updated without losing an 
incoming remote request frame or sending inconsistent data.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANTA IO[0x10–0x008]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 TAn
 TAn
 TAn
 TAn

Figure 21-24. Transmission Acknowledge Register (CANTA)



Mailbox Control Logic

21-40 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

In this case the Mailbox Temporary Disable feature can be used by pro-
gramming the Mailbox Temporary Disable register CANMBTD. The pointer 
to the requested mailbox CANMBn must be written to bits 4 to 0 of CANMBTD 
and the Mailbox Temporary Disable Request bit MBTD7 must be set. The 
corresponding Mailbox Temporary Disable Flag MBTD6 is set by the inter-
nal FSM.

If mailbox CANMBn is configured as "transmit" (MDn = ‘0’) and the Tempo-
rary Disable Flag is set by the FSM, the content of the data field of CANMBn 
can be updated. If there is an incoming Remote Request Frame while the 
mailbox CANMBn is temporary disabled, the corresponding Transmit 
Request Set bit TRSn is set by the FSM and the Data Length Code of the 
incoming message is written to the corresponding mailbox. But the mes-
sage is not sent until the temporary disable request is reset.

If the mailbox CANMBn is configured as "receive" (MDn = set), the Temporary 
Disable Flag is set by the FSM and the mailbox CANMBn is not currently pro-
cessed. If there is an incoming message for the requested mailbox CANMBn 
(the number of the mailbox CANMBn is identical to the number of the tem-
porary disabled mailbox), the internal logic will wait until the reception is 
complete or there is an error on the CAN bus or until the Temporary Dis-
able Flag MBTD6 is set. If the Temporary Disable Flag is set, the mailbox 
can be completely disabled (MCn = reset) without the risk of losing an 
incoming frame. The Temporary Disable Request MBTD7 must be reset as 
soon as possible.

If the Temporary Disable Flag for mailbox CANMBn is set by the internal 
logic, only the Data Field of this mailbox can be updated (last 8 bytes of 
the mailbox). The access to the control bits and the Identifier is denied.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-41 
 

Controller Area Network (CAN) Module

Preliminary

The Temporary Disabled mailbox is ignored for transmission as long as 
the corresponding request bit is set.

All unused bits in the Mailbox Temporary Disable Register are reserved. 
Thus these bits must be ‘0’ during write access. They are always read as 
‘0’.

Remote Frame Handling Register (CANRFH)

Remote frames are data frames without a data field when the RTR bit set. 
The Data Length Code of the data frame is equal to the DLC of the corre-
sponding remote frame. The data length code can be programmed with 
values in the range of 0 to 15. The data length code value greater than 8 is 
considered as 8. A remote frame contains the following information:

• the identifier bits

• the control bits, i.e. the Data Length Code

• the remote transmission request (RTR) bit.

Automatic remote frame handling can be done with all mailboxes.

All the message centers can receive and transmit remote frame requests. 
They are capable of sending a remote frame request to another node and 
answering incoming remote frame requests automatically.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBTD IO[0x10–0x056]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 TDPTR
 Reserved
 TDA
 TDR
 Reserved

Figure 21-25. Temporary Mailbox Disable Feature (CANMBTD)



Mailbox Control Logic

21-42 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Note that a mailbox is only enabled for transmission or reception if its MCn 
bit in the mailbox configuration register is set. A mailbox which is not 
enabled does not transmit or receive any messages.

The automatic handling of remote frames can be enabled/disabled by set-
ting/resetting the corresponding bit in the Remote Frame Handling 
register (CANRFH).

Write access to a Remote Frame Handling bit RFHn is denied (but not 
locked) if the corresponding mailbox MBn is enabled. The CANRFH register 
can only be read and written by the device. If bit RFHn is set, the automatic 
remote frame handling feature for the corresponding mailbox MBn is 
enabled.

After power-up reset or software reset all bits are cleared.

If the Remote Frame Handling bit RFHn is changed and the corresponding 
mailbox is currently processed, this may lead to an erroneous behavior.

The length of a data frame is defined by the Data Length Code (DLC) of 
the corresponding Remote Frame. If a remote frame is received, the DLC of 
the corresponding mailbox is overwritten with the received value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANRFH IO[0x10–0x016]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 RFHn
 RFHn
 RFHn
 RFHn

Figure 21-26. Remote Frame Handling Register (CANRFH)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-43 
 

Controller Area Network (CAN) Module

Preliminary

Mailbox Interrupts
Each of the 16 mailboxes in the CAN module may initiate an interrupt on 
one of the two mailbox interrupts. These interrupts can be receive or 
transmit interrupts depending on the mailbox configuration.

A mailbox transmit interrupt flag (MBTIFn) as well as a mailbox receive 
interrupt flag (MBRIFn) is only set if the corresponding bit in the mailbox 
interrupt mask register (MBIMn) is set.

If a mailbox CANMBn is configured as receive mailbox, only the correspond-
ing receive interrupt flag (MBRIFn) is set after a received message is stored 
in this mailbox. If the automatic remote frame handling feature is used, 
the receive interrupt flag is set after the requested data frame is stored in 
the mailbox. The mailbox receive interrupt MBRIFn is always asserted if a 
new receive message is written to the corresponding mailbox CANMBn and 
MBIM is set.

If a mailbox CANMBn is configured as transmit mailbox, the corresponding 
transmit interrupt flag (MBTIFn) is set after the message in mailbox CANMBn 
is sent correctly. If the automatic remote frame handling feature is used 
the transmit interrupt flag is set after the requested data frame is sent from 
the mailbox.

Mailbox Interrupt Mask Register (CANMBIM)

There is one interrupt flag available for each mailbox. This may be a 
receive or a transmit interrupt depending on the configuration register. If 
bit MBIMn is '1', an interrupt is generated if a message has been transmitted 
successfully (in case of a transmit mailbox) or a message has been received 



Mailbox Control Logic

21-44 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

without any error (in case of a receive mailbox). After power-up or soft-
ware reset all interrupt mask bits are cleared and the interrupts are 
disabled.

Mailbox Transmit Interrupt Flag Register (CANMBTIF)

A transmit interrupt flag bit MBTIFn is set if a message is sent correctly 
from MBn, the corresponding bit MBIMn is set and the mailbox is config-
ured as a transmit mailbox. If the mailbox MBn is configured as a receive 
mailbox (MDn = set) or the mailbox is disabled (MCn = reset) the correspond-
ing bit in the transmit mailbox interrupt flag register MBTIFn remains set.

A transmit interrupt flag bit MBTIFn can be reset by writing a '1' to the cor-
responding bit location. Writing a '0' has no effect. The bit MBTIFn is also 
reset if the mailbox configuration register MCn is reset or the corresponding 
bit in the mailbox interrupt mask register MBIMn is reset.

The mailbox interrupt output MBTRIQ is active as long as at least one bit in 
MBTIF is set.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBIM IO[0x10–0x014]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 MBIM
 MBIM
 MBIM
 MBIM

Figure 21-27. Mailbox Interrupt Mask Register (CANMBIM)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-45 
 

Controller Area Network (CAN) Module

Preliminary

If the mailbox direction MDn for MBn is changed after the MBTIFn has been 
set, the value of MBTIFn is reset and the corresponding bit in MBRIFn is set.

Mailbox Receive Interrupt Flag Register (CANMBRIF)

A receive interrupt flag bit MBRIFn is set if a message is received and stored 
correctly in CANMBn, the corresponding bit MBIMn is set and the mailbox is 
configured as a receive mailbox. If the mailbox CANMBn is configured as a 
transmit mailbox (MDn = reset) or the mailbox is disabled (MCn = reset), the 
corresponding bit in the receive mailbox interrupt flag register MBRIFn 
remains set.

A receive interrupt flag bit MBRIFn can be reset by writing a '1' to the cor-
responding bit location. Writing a '0' has no effect. The bit MBRIFn is also 
reset if the mailbox configuration register MCn is reset or the corresponding 
bit in the mailbox interrupt mask register MBIMn is reset.

The mailbox interrupt output MBRIRQ is active as long as at least on bit in 
MBTIF is set.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBTIF IO[0x10–0x010]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 MBTIFn
 MBTIFn
 MBTIFn
 MBTIFn

Figure 21-28. Mailbox Transmit Interrupt Flag Register (CANMBTIF)



Mailbox Control Logic

21-46 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

If the mailbox direction MDn for MBn is changed after the MBRIFn has been 
set, the value of MBRIFn is reset and the corresponding bit in MBTIFn is set.

Global Interrupt
In addition to the mailbox interrupts, the CAN module provides a global 
interrupt. There are several interrupt events to activate this interrupt. Glo-
bal interrupts are generated if there is a change of some status bits in the 
CAN controller module. Each interrupt can be masked separately. All bits 
in the interrupt status and in the interrupt flag register bits remain set 
until they are cleared or a software reset has occurred. The interrupt 
sources are:

ADI Access Denied Interrupt

[1] At least one access to the mailbox RAM has occurred during data 
update of internal logic.

[0] All accesses to the mailbox RAM are valid

EXTI External Trigger Output Interrupt

The external trigger output was asserted. If the Universal Counter Option 
is not implemented this bit is always read as’0’ (in CANGIF, CANGIS and 
CANGIM)

[1] The external trigger event has occurred

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANMBRIF IO[0x10–0x012]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 MBRIFn
 MBRIFn
 MBRIFn
 MBRIFn

Figure 21-29. Mailbox Receive Interrupt Flag Register (CANMBRIF)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-47 
 

Controller Area Network (CAN) Module

Preliminary

[0] There was no external trigger event.

UCE Universal Counter Event

There was an overflow of the universal counter (in time stamp mode or 
event counter mode) or the counter has reached the value 0x0000 (in 
watchdog mode).

[1] The universal counter event has occurred

[0] There was no universal counter event

RMLI Receive Message Lost Interrupt

A message has been received for a mailbox, which already contains unread 
data. At least one bit in the Receive Message Lost register CANRML is set. If 
the bit in CANGIS (and CANGIF) is reset and there is at least one bit in RML 
still set, the bit in CANGIS (and CANGIF) is not set again. The internal inter-
rupt source signal is only active if a new bit in CANRML is set. Note that this 
interrupt source is also active if bit RMLn is set and the RML bit is still set.

[1] At least one message has been lost.

[0] No message lost event detected

AAI Abort Acknowledge Interrupt

A requested transmission abort of a message was successful. At least one 
bit in the Abort Acknowledge register CANAA is set. If the bit in CANGIS 
(and CANGIF) is reset and there is at least one bit in CANAA still set, the bit 
in CANGIS (and CANGIF) is not set again. The internal interrupt source sig-
nal is only active if a new bit in CANAA is set.

[1] At least one transmit request is successfully aborted

[0] No transmission aborted



Mailbox Control Logic

21-48 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

UIAI Access to Unimplemented Address Interrupt

There was a CPU access to an address which is not implemented in the 
controller module.

[1] Access to unimplemented address detected

[0] No access to unimplemented address detected

WUI Wake Up Interrupt

[1] The CAN Module has left the sleep mode because of detected activity 
on the CAN bus line.

[0] The Wake Up Event was not active

BOI Bus-Off Interrupt

The CAN Module has entered the bus-off state. This interrupt source is 
active if the status of the CAN core changes from normal operation mode 
to the bus-off mode. If the bit in CANGIS (and CANGIF) is reset and the 
bus-off mode is still active this bit is not set again. If the module leaves the 
bus-off mode the bit in CANGIS (and CANGIF) remains set.

[1] The CAN Module has entered its bus-off mode

[0] The CAN Module has not entered the bus-off mode

EPI Error-Passive Interrupt

The CAN Module has entered the error-passive state. This interrupt 
source is active if the status of the CAN Module changes from error-active 
mode to the error-passive mode. If the bit in CANGIS (and CANGIF) is reset 
and the error-passive mode is still active this bit is not set again. If the 
module leaves the error-passive mode the bit in CANGIS (and CANGIF) 
remains set.

[1] The CAN Module is in its error-passive mode



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-49 
 

Controller Area Network (CAN) Module

Preliminary

[0] The CAN module has not entered the error-passive mode

EWRI Error Warning Receive Interrupt

The CAN receive error counter CANREC has reached the warning limit. If 
the bit in CANGIS (and CANGIF) is reset and the error warning mode is still 
active this bit is not set again. If the module leaves the error warning mode 
the bit in CANGIS (and CANGIF) remains set.

[1] The warning level for the CAN receive error counter was exceeded

[0] The warning level for the CAN receive error counter was not exceeded

EWTI Error Warning Transmit Interrupt

The CAN transmit error counter TEC has reached the warning limit. If the 
bit in CANGIS (and CANGIF) is reset and the error warning mode is still 
active this bit is not set again. If the module leaves the error warning mode 
the bit in CANGIS (and CANGIF) remains set.

After software reset all bits in CANGIF, CANGIS and CANGIM are cleared.

[1] The warning level for the CAN transmit error counter was exceeded.

[0] The warning level for the CAN receive error counter was not exceeded

Global Interrupt Logic

The global interrupt logic is implemented with three registers: the Global 
Interrupt Mask register CANGIM where each interrupt source can be enabled 
or disabled separately, the Global Interrupt Status register CANGIS and the 
Global Interrupt Flag register CANGIF. The interrupt mask bits only affect 
the content of the Global Interrupt Flag register CANGIF. The interrupt 
status bits in the global interrupt status register are always set if the corre-
sponding interrupt event occurs, independent of the mask bits. Thus the 
interrupt status bits can be used for polling of interrupt events. An inter-



Mailbox Control Logic

21-50 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

rupt on the global status interrupt is only asserted if a bit in the GIF 
register is set. The global interrupt remains active as long as at least one bit 
in the interrupt flag register CANGIF is set.

Global Interrupt Mask Register (CANGIM)

Each source for the global status interrupt GIRQ can be enabled or disabled 
separately. If a bit GIMn is set, the corresponding interrupt source for GIRQ 
is enabled. The upper bits 15 to 11 are not implemented and always read 
as '0'. After power-up reset or software reset all bits are cleared thus all 
global status interrupts are disabled.

Global Interrupt Status Register (CANGIS)

If a global interrupt event occurs the corresponding bit in the Global 
Interrupt Status register is set, independent of the content of the Global 
Interrupt Mask register CANGIM. If a bit GISn is cleared and the correspond-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANGIM IO[0x10–04C]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 EWTIM
 EWRIM
 EPIM
 BOIM
 WUIM
 UIAM
 AAIM
 RMLIM
 UCEIM
 EXTIM
 ADIM
 Reserved

Figure 21-30. Global Interrupt Mask Register (CANGIM)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-51 
 

Controller Area Network (CAN) Module

Preliminary

ing interrupt event is still active, this bit is not set again. If a bit in CANGIS 
is cleared the corresponding bit in CANGIF will also be cleared (if it was set 
before).

A bit GISn can be cleared by writing a '1' to the corresponding bit loca-
tion. Writing a '0' has no effect. The upper bits 15 to 10 are not 
implemented and always read as '0'. After power-up reset or software reset 
all bits are cleared.

Global Interrupt Flag Register (CANGIF)

If a global interrupt event occurs the corresponding bit in the Global 
Interrupt Flag register GIFn is set only if the corresponding bit in the Glo-
bal Interrupt Mask register CANGIM is set. If a bit GIFn is cleared and the 
corresponding interrupt event is still active, this bit is not set again.

If at least one bit is set in the Global Interrupt Flag register, the interrupt 
is active. The interrupt remains active until all bits in CANGIF are cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANGIS IO[0x10–0x04A]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 EWTIS
 EWRIS
 EPIS
 BOIS
 WUIS
 UIAS
 AAIS
 RMLIS
 UCEIS
 EXTIS
 ADS
 Reserved

Figure 21-31. Global Interrupt Status Register (CANGIS)



Mailbox Control Logic

21-52 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The interrupt flag bits in CANGIF can be cleared separately by writing a ‘1’ 
to the corresponding bit location in the Global Interrupt Status register 
CANGIS. A write access to CANGIF has no effect The upper bits 15 to 11 are 
not implemented and always read s '0'. After power-up reset or software 
reset all bits are cleared.

If an interrupt source is active and the corresponding bit GIFn is still set, 
this bit GIFn remains unchanged. If a bit GIFn is set and a new bit GIFm is 
set, the interrupt remains active (only the new bit in GIF is set). If a bit 
GIFn is reset and another bit GIFm is still set, the interrupt remains active.

If an interrupt status bit in GIF is set and the corresponding interrupt 
mask bit in GIM is set/reset after the interrupt status bit has been set, the 
interrupt flag bit in GIF will also be set/reset. If no further bit in GIF is set, 
the interrupt output line GIRQ will behave according to the programming 
of GIM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANGIF IO[0x10–0x04E]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 EWTIF
 EWRIF
 EPIF
 BOIF
 WUIF
 UIAF
 AAIF
 RMLIF
 UCEIF
 EXTIF
 ADIF
 Reserved

Figure 21-32. Global Interrupt Flag Register (CANGIF)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-53 
 

Controller Area Network (CAN) Module

Preliminary

Universal Counter Module

The universal 16-bit counter prescaler module generates a clock with the 
same frequency as the bit clock of the CAN Core Module. The prescaler 
uses the same parameters as used for the baud rate prescaler (BRP, TSEG1 
and TSEG2). The time stamp counter can be used in several alternative 
modes.

UCEN Universal Counter Enable

[1] The counter is enabled and incremented/decremented with the pro-
grammed clock (bit clock of CAN Module)

[0] The counter is disabled

UCCT Universal Counter CAN Trigger

[1 ]Watchdog Mode: The counter is reloaded if a message for the dedi-
cated mailbox is received.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANUCRC IO[0x10–0x064]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 UCRC

Figure 21-33. Universal Counter Reload/Capture Register (CANUCRC)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANUCCNF IO[0x10–0x066]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 UCCNF
 Reserved
 UCCR
 TSCCT
 UGEN
 Reserved

Figure 21-34. Temporary Mailbox Disable Feature (CANUCCNF)



Mailbox Control Logic

21-54 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Time Stamp Mode: The counter is cleared if a message for the dedicated 
mailbox is received (synchronization of all time stamp counters in the 
system)

All Other Modes: NA

[0] No effect on CAN message reception

UCRC Universal Counter Reload / Clear

[1 ]Watchdog Mode: Writing a ‘1’ to this bit will reload the counter with 
the value of the reload/capture register.

Time Stamp Mode: Writing a ‘1’ to this bit will reset the counter to zero

All Other Modes: Writing a ‘1’ to this bit will reset the counter

Note that this register bit is always read as ‘0’

[0] writing a ‘0’ has no effect

UCCNF Universal Counter Mode

[0] reserved for future use

[1 ]Time Stamp Mode

The content of the capture register is written to the current mailbox if 
there was a reception for this mailbox or a successfully transmission from 
this mailbox.

[2] Watchdog Mode

The universal counter is reloaded with the value of the reload register 
UCCR if there was a valid reception of a message for mailbox number 4 
(default)

[3] Timer Mode



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-55 
 

Controller Area Network (CAN) Module

Preliminary

The universal counter is always reloaded with the value of the reload regis-
ter if the counter (down counter) has reached the value of 0x0000. On a 
reload the Transmit Request Set bit TRS11 (default) is set automatically 
by the internal logic and the corresponding message in mailbox number 
11 is sent.

Event Counter Modes

[4] reserved for future use

[5] reserved for future use

[6] Increment: CAN error frame counter is incremented if there is an error 
frame on the CAN bus line.

[7] Increment: CAN overload frame counter is incremented if there is an 
overload frame on the CAN bus line.

[8] Increment: Arbitration on CAN line lost during transmission

[9] Increment: Transmission is aborted (AAn is set)

[A] Increment: Successful transmission of message without detected errors 
(TAn is set)

[B] Increment: Receive message rejected (A message is received without 
detected errors but not stored in a mailbox because there is no matching 
identifier found.)

[C] Increment: Receive message lost (A message is received without 
detected errors but not stored in a mailbox because this mailbox contains 
unread data (RMLn is set))

[D] Increment: Successful reception of a message without detected errors. 
The counter is incremented if the received message is rejected or stored in 
a mailbox



Mailbox Control Logic

21-56 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

[E] Increment: Successful reception and matching Identifier. A message 
for one of the configured mailboxes is received. The counter is incre-
mented if the message is stored on the corresponding mailbox (RMPn is 
set)

[F] Increment: A correct message on the CAN bus line is detected. This 
may be a reception or a transmission.

The counter can be cleared or reloaded (depending on the mode) by the 
reception of a CAN message.

In Auto Transmit Mode a message from a predefined mailbox is sent if the 
universal down counter has reached the value 0x0000.

Time Stamp Counter Mode

To get an indication of the time of reception or the time of transmission 
for each message, the value of the free-running 16-bit timer is written into 
the time stamp registers of the corresponding mailbox (TSV) when a 
received message has been stored or a message has been transmitted. The 
counter can be cleared and/or disabled by CPU access. It is also possible to 
clear the counter by reception of a message in mailbox number (synchro-
nization of all time stamp counters in the system). There is a time stamp 
counter overflow interrupt available.

If the mailbox is configured for automatic remote frame handling, the 
time stamp value is written for transmission of a data frame (mailbox con-
figured as transmit) or the reception of the requested data frame (mailbox 
configured as receive).



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-57 
 

Controller Area Network (CAN) Module

Preliminary

Error Status Register (CANESR)

The Error Status Register is used to display errors that came up during 
operation. Only the first error is stored, all following errors will not 
change the status of the register. These registers are cleared by writing a ‘1’ 
to them except for the SA1 flag, which is cleared by any recessive bit on the 
bus.

FER Form Error Flag

[1] A Form Error occurred on the bus. This means that one or more of the 
fixed-form bit fields had the wrong level on the bus.

[0] The CAN module was able to send and receive correctly.

BEF Bit Error Flag

[1 ]The received bit does not match the transmitted bit outside of the 
arbitration field; or during transmission of the arbitration field, a domi-
nant bit was sent but a recessive bit was received.

[0] The CAN module was able to send and receive correctly.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANESR IO[0x10–0x05A]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

 Reserved
 ACKE
 SER
 CRCE
 SA1
 BEF
 FER
 Reserved

Figure 21-35. Error Status Register (CANESR)



Mailbox Control Logic

21-58 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SA1 Stuck at dominant Error

[1]The SA1 bit is set if the CAN Module is in its configuration mode or 
the Module enters the BusOff mode. The bit is reset if the Module sam-
ples a recessive bit on the Rx input line.

[0] The CAN module detected a recessive bit.

CRCE CRC Error

[1] The CAN module received a incorrect CRC.

[0 ]The CAN module never received a incorrect CRC.

SER Stuff Error

[1] The stuff bit rule was violated.

[0] No stuff bit error occurred.

ACKE Acknowledge Error

[1] The CAN module received no acknowledge.

[0] The CAN module received a correct acknowledge.

Programmable Warning Limit for REC and TEC

It is possible to program the warning level for EWTIS (error warning trans-
mit interrupt status) and EWRIS (error warning receive interrupt status) 
separately.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 21-59 
 

Controller Area Network (CAN) Module

Preliminary

After power-up reset the register is set to the default warning level of 96 
for both error counters. After software reset the content of this register 
remains unchanged.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CANEWR IO[0xzzzz]

0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 Reset Value:   0x0000

 EWLREC
 EWLTEC

Figure 21-36. CAN Error Counter Warning Level Register (CANEWR)



Mailbox Control Logic

21-60 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-1 
 

ADSP-2199x DSP Core Registers

Preliminary

22 ADSP-2199X DSP CORE 
REGISTERS

Overview
The DSP core has general purpose and dedicated registers in each of its 
functional blocks. The register reference information for each functional 
block includes bit definitions, initialization values, and (for system control 
registers) memory mapped addresses. Information on each type of register 
is available at the following locations:

• “Core Status Registers” on page 22-7

• “Computational Unit Registers” on page 22-11

• “Program Sequencer Registers” on page 22-14

• “Data Address Generator Registers” on page 22-20

• “Memory Interface Registers” on page 22-22

Outside of the DSP core, a set of registers control the I/O peripherals. For 
information on these product specific registers, see “ADSP-2199x DSP 
I/O Registers” on page 23-1.



Overview

22-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

When writing DSP programs, it is often necessary to set, clear, or test bits 
in the DSP’s registers. While these bit operations can all be done by refer-
ring to the bit’s location within a register or (for some operations) the 
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the bit’s or register’s name. For convenience and 
consistency, Analog Devices provides a header file that provides these bit 
and registers definitions. For core register definitions, see the “Register & 
Bit #Defines File (def219x.h)” on page 22-23.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) the register’s reserved bits.

Core Registers Summary
The DSP has three categories of registers: core registers, system control 
registers, and I/O registers. Table 22-1 on page 22-2 lists and describes 
the DSP’s core registers and system control registers. Also, the DSP core 
registers divide into register group (Dreg, Reg1, Reg2, and Reg3) based on 
their opcode identifiers and functions as shown in Table 22-2 on 
page 22-3. For more information on how registers may be used within 
instructions, see the ADSP-219x DSP Instruction Set Reference.

Table 22-1. Core Registers 

Type Registers Function

Status ASTAT
MSTAT
SSTAT (read-only)

Arithmetic status flags
Mode control and status flags
System status 

Computational 
Units

AX0, AX1, AY0, AY1, 
AR, AF, MX0, MX1, 
MY0, MY1, MR0, 
MR1, MR2, SI, SE, 
SB, SR0, SR1, SR2

Data register file registers provide Xop and Yop 
inputs for computations. AR, SR, and MR receive 
results. In this text, the word Dreg denotes unre-
stricted use of data registers as a data register file, 
while the words XOP and YOP denote restricted 
use. The data registers (except AF, SE, and SB) serve 
as a register file, for unconditional, single-function 
instructions. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-3 
 

ADSP-2199x DSP Core Registers

Preliminary

Shifter SE
SB

Shifter exponent register
Shifter block exponent register

Program flow CCODE
LPSTACKA
LPSTACKP
STACKA
STACKP 

Software condition register
Loop stack address register, 16 address LSBs
Loop stack page register, 8 address MSBs
PC stack address register, 16 address LSBs
PC stack page register, 8 address MSBs

Interrupt ICNTL
IMASK
IRPTL

Interrupt control register
Interrupt mask register
Interrupt latch register

DAG address I0, I1, I2, I3
I4, I5, I6, I7

DAG1 index registers 
DAG2 index registers

M0, M1, M2, M3
M4, M5, M6, M7

DAG1 modify registers
DAG2 modify registers

L0, L1, L2, L3
L4, L5, L6, L7

DAG1 length registers
DAG2 length registers

System control B0, B1, B2, B3, B4, 
B5, B6, B7, CACTL

DAG1 base address registers (B0-3), DAG2 base 
address registers (B4-7), Cache control

Page DMPG1
DMPG2
IJPG
IOPG

DAG1 page register, 8 address MSBs
DAG2 page register, 8 address MSBs
Indirect jump page register, 8 address MSBs
I/O page register, 8 address MSBs

Bus exchange PX Holds eight LSBs of 24-bit memory data for trans-
fers between memory and data registers only.

Table 22-2. ADSP-219x DSP Core Registers 

RGP/Address Register Groups (RGP)

Address 00 (DREG) 01 (REG1) 10 (REG2) 11 (REG3)

0000 AX0 I0 I4 ASTAT

0001 AX1 I1 I5 MSTAT

Table 22-1. Core Registers  (Cont’d)

Type Registers Function



Overview

22-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Register Load Latencies
An effect latency occurs when some instructions write or load a value into 
a register, which changes the value of one or more bits in the register. 
Effect latency refers to the time it takes after the write or load instruction 
for the effect of the new value to become available for other instructions to 
use.

Effect latency values are given in terms of instruction cycles. A 0 latency 
means that the effect of the new value is available on the next instruction 
following the write or load instruction. For register changes that have an 
effect latency greater than 0, do not try to use the register right after writ-

0010 MX0 I2 I6 SSTAT

0011 MX1 I3 I7 LPSTACKP

0100 AY0 M0 M4 CCODE

0101 AY1 M1 M5 SE

0110 MY0 M2 M6 SB

0111 MY1 M3 M7 PX

1000 MR2 L0 L4 DMPG1

1001 SR2 L1 L5 DMPG2

1010 AR L2 L6 IOPG

1011 SI L3 L7 IJPG

1100 MR1 IMASK Reserved Reserved

1101 SR1 IRPTL Reserved Reserved

1110 MR0 ICNTL CNTR Reserved

1111 SR0 STACKA LPCSTACKA STACKP

Table 22-2. ADSP-219x DSP Core Registers  (Cont’d)

RGP/Address Register Groups (RGP)

Address 00 (DREG) 01 (REG1) 10 (REG2) 11 (REG3)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-5 
 

ADSP-2199x DSP Core Registers

Preliminary

ing or loading a new value to avoid using the old value. Table 22-3 on 
page 22-5 gives the effect latencies for writes or loads of various interrupt 
and status registers.

A PUSH or POP PC has one cycle of latency for all SSTAT register bits, 
but a PUSH or POP LOOP or STS has one cycle of latency only for the 
STKOVERFLOW bit in the SSTAT register.

When loading some Group 2 and 3 registers (see Table 22-3 on 
page 22-5), the effect of the new value is not immediately available to sub-
sequent instructions that might use it. For interlocked registers (DAG 

Table 22-3. Effect latencies for Register Changes 

Register Bits REG = value ENA/DIS mode POP STS SET/CLR INT

ASTAT All 1 cycle NA 0 cycles NA

CCODE All 1 cycle NA NA NA

CNTR All 1 cycle1

1   This latency applies only to IF COND instructions, not to the DO UNTIL instruction. Loading the 
CNTR register has 0 effect latency for the DO UNTIL instruction.

NA NA NA

ICNTL All 1 cycle NA NA 0 cycles 

IMASK All 1 cycle NA 0 cycles NA

MSTAT SEC_REG 1 cycle 0 cycles 1 cycle NA

BIT_REV 3 cycles 0 cycles 3 cycles NA

AV_LATCH 0 cycles 0 cycles 0 cycles NA

AR_SAT 1 cycle 0 cycles 1 cycle NA

M_MODE 1 cycle 0 cycles 1 cycle NA

SEC_DAG 3 cycles 0 cycles 3 cycles NA

CACTL CPE 5 cycles NA NA NA

CDE 5 cycles NA NA NA

CFZ 4 cycles NA NA NA



Overview

22-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

address and page registers, IOPG, IJPG), the DSP automatically inserts stall 
cycles as needed, but for noninterlocked registers (to accommodate the 
required latency) programs must insert either the necessary number of NOP 
instructions or other instructions that are not dependent upon the effect 
of the new value. 

The noninterlocked registers are:

• Status registers ASTAT and MSTAT 

• Condition code register CCODE 

• Interrupt control register ICNTL 

The number of NOP instructions to insert is specific to the register and the 
load instruction as shown in Table 22-3 on page 22-5. A zero (0) latency 
indicates that the new value is effective on the next cycle after the load 
instruction executes. An n latency indicates that the effect of the new value 
is available up to n cycles after the load instruction executes. When using a 
modified register before the required latency, the DSP provides the regis-
ter’s old value. 

Since unscheduled or unexpected events (interrupts, DMA operations, 
etc.) often interrupt normal program flow, do not rely on these load laten-
cies when structuring program flow. A delay in executing a subsequent 
instruction based on a newly loaded register could result in erroneous 
results—whether the subsequent instruction is based on the effect of the 
register’s new or old value. 

Load latency applies only to the time it takes the loaded value to 
affect the change in operation, not to the number of cycles required 
to load the new value. A loaded value is always available to a read 
access on the next instruction cycle.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-7 
 

ADSP-2199x DSP Core Registers

Preliminary

Core Status Registers
The DSP’s control and status system registers configure how the processor 
core operates and indicate the status of many processor core operations. 
Table 22-4 on page 22-7 lists the processor core’s control and status regis-
ters with their initialization values. Descriptions of each register follow.

Arithmetic Status (ASTAT) Register
Figure 22-5 on page 22-8 shows this is a non-memory mapped, register 
group 3 register (REG3). The DSP updates the status bits in ASTAT, 
indicating the status of the most recent ALU, multiplier, or shifter 
operation.

Table 22-4. Core Status Registers 

Register Name & Page Reference Initialization After Reset

“Arithmetic Status (ASTAT) Register” on page 22-7 b#0 0000 0000

“Mode Status (MSTAT) Register” on page 22-8 b#000 000

“System Status (SSTAT) Register” on page 22-10 b#0000 0000



Core Status Registers

22-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Mode Status (MSTAT) Register
Figure 22-6 on page 22-9 shows this is a non-memory mapped, register 
group 3 register (REG3). For more information on using bits in this regis-
ter, see “Secondary (Alternate) Data Registers” on page 2-63, “Addressing 
with Bit-Reversed Addresses” on page 5-16, “Latching ALU Result Over-

8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 Reset = b#0 0000 0000

AZ (ALU result zero)
0 = ALU output ¼ 0
1 = ALU output = 0
AN (ALU result negative)
0 = ALU output positive (+)
1 = ALU output negative (-)
AV (ALU result overflow)
0 = No overflow
1 = Overflow
AC (ALU result carry)
0 = No carry
1 = Carry
AS (ALU x input sign)
0 = Positive (+)
1 = Negative (-)
AQ (ALU quotient)
0 = Positive (+)
1 = Negative (-)
MV (Multiplier overflow)
0 = No overflow or underflow
1 = Overflow or underflow
SS (Shifter input sign)
0 = Positive (+)
1 = Negative (-)
SV (Shifter overflow)
0 = No overflow or underflow
1 = Overflow or underflow

Table 22-5. ASTAT Register 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-9 
 

ADSP-2199x DSP Core Registers

Preliminary

flow Status” on page 2-10,“Saturating ALU Results on Overflow” on 
page 2-11 “Numeric Formats” on page 24-1, and “Secondary (Alternate) 
DAG Registers” on page 5-4. 

6 5 4 3 2 1 0

0 0 0 0 0 0 0 Reset = b#000 0000

SEC_REG (Secondary data registers)
0 = primary registers (default).
1 = secondary registers
BIT_REV (Bit-reversed address output)
0 = Disable
1 = Enable
AV_LATCH (ALU overflow latch mode)
0 = Disable (update AV on each 
ALU operation)
1 = Enable (latch AV until explicitly 
cleared)
AR_SAT (ALU saturation mode)
0 = Disable (AR results unsatur-
ated)
1 = Enable (AR results saturated)
M_MODE (MAC result mode)
0 = Fractional mode, 1.15 format
1 = Integer mode, 16.0 format
Reserved

SEC_DAG (Secondary DAG registers)
0 = Primary registers
1 = Secondary registers

Table 22-6. MSTAT Register 



Core Status Registers

22-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

System Status (SSTAT) Register
Figure 22-7 on page 22-10 shows this is a non-memory mapped, register 
group 3 register (REG3).

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 Reset = b#0000 0000

PCE (PC stack empty)
0 = PC stack has a pushed address
1 = PC stack is empty
PCF (PC stack full) 
0 = PC stack has an empty location
1 = PC stack is full
PCL (PC stack level)
0 = PC stack has 3–28 pushed 
addresses
1 = PC stack has hit high/low water-
mark
Reserved

LSE (Loop stack empty)
0 = Loop stack has a pushed 
address
1 = Loop stack is empty
LSF (Loop stack full)
0 = Loop stack has an empty loca-
tion
1 = Loop stack is full
SSE (Status stack empty)
0 = Status stack has a pushed sta-
tus
1 = Status stack is empty
SOV (Stacks overflowed)
0 = No stack overflow or underflow
1 = Stack overflow (PC, loop, 
counter, or status) or stack underflow (PC 
or status)

Table 22-7. SSTAT Register 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-11 
 

ADSP-2199x DSP Core Registers

Preliminary

Computational Unit Registers
The DSP’s computational registers store data and results for the ALU, 
multiplier, and shifter. The inputs and outputs for processing element 
operations go through these registers. 

The PX register lets programs transfer data between the data buses, 
but cannot be an input or output in a calculation. 

Data Register File (Dreg) Registers
These are non-memory mapped, register group 0 registers (DREG). For 
unconditional, single-function instructions, the DSP has a data register 
file—a set of 16-bit data registers that transfer data between the data buses 
and the computation units. These registers also provides local storage for 
operands and results. For more information on how to use these registers, 

Table 22-8. Computational Unit Registers 

Register Initialization After Reset

“Data Register File (Dreg) Registers” on page 22-11 Undefined

“ALU X- & Y-Input (AX0, AX1, AY0, AY1) Registers” on 
page 22-12

Undefined

“ALU Results (AR) Register” on page 22-12 Undefined

“ALU Feedback (AF) Register” on page 22-12 Undefined

“Multiplier X- & Y-Input (MX0, MX1, MY0, MY1) Registers” on 
page 22-12

Undefined

“Multiplier Results (MR2, MR1, MR0) Registers” on page 22-13 Undefined

“Shifter Input (SI) Register” on page 22-13 Undefined

“Shifter Exponent (SE) & Block Exponent (SB) Registers” on 
page 22-13

Undefined

“Shifter Results (SR2, SR1, SR0) Registers” on page 22-13 Undefined



Computational Unit Registers

22-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

see “Data Register File” on page 2-61. The registers in the data register file 
include: AX0, AX1, MX0, MX1, AY0, AY1, MY0, MY1, MR2, SR2, AR, SI, MR1, SR1, 
MR0, and SR0. 

ALU X- & Y-Input (AX0, AX1, AY0, AY1) Registers
These are non-memory mapped, register group 0 registers. For conditional 
and/or multifunction instructions, some restrictions apply to data register 
usage. The registers that may provide Xop and Yop input to the ALU for 
conditional and/or multifunction instructions include: AX0, AX1, AY0, and 
AY1. For more information on how to use these registers, see “Multifunc-
tion Computations” on page 2-64.

ALU Results (AR) Register
This is a non-memory mapped, register group 0 register.The ALU places 
its results in the 16-bit AR register. For more information on how to use 
this register, see “Arithmetic Logic Unit (ALU)” on page 2-17.

ALU Feedback (AF) Register
This is a non-memory mapped, register group 0 register.The ALU can 
place its results in the 16-bit AF register. For more information on how to 
use this register, see “Arithmetic Logic Unit (ALU)” on page 2-17.

Multiplier X- & Y-Input (MX0, MX1, MY0, MY1) 
Registers

These are non-memory mapped, register group 0 registers. For conditional 
and/or multifunction instructions, some restrictions apply to data register 
usage. The registers that may provide Xop and Yop input to the multiplier 
for conditional and/or multifunction instructions include: MX0, MX1, MY0, 
and MY1. For more information on how to use these registers, see “Multi-
function Computations” on page 2-64.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-13 
 

ADSP-2199x DSP Core Registers

Preliminary

Multiplier Results (MR2, MR1, MR0) Registers
These are non-memory mapped, register group 0 registers. The multiplier 
places results in the combined multiplier result register, MR. For more 
information on result register fields, see “Multiply—Accumulator (Multi-
plier)” on page 2-29.

Shifter Input (SI) Register
This is a non-memory mapped, register group 0 register. For conditional 
and/or multifunction instructions, some restrictions apply to data register 
usage. SI is the only registers that may provide input to the shifter for con-
ditional and/or multifunction instructions. For more information on how 
to use this register, see “Multifunction Computations” on page 2-64.

Shifter Exponent (SE) & Block Exponent (SB) 
Registers

These are non-memory mapped, register group 3 registers. These register 
hold exponent information for the shifter. For more information on how 
to use these registers, see “Barrel-Shifter (Shifter)” on page 2-39.

The SB and SE registers are 16 bits in length, but all shifter instructions 
that use these registers as operands or update these registers with result 
values do not use the full width of these registers. Shifter instructions treat 
SB as being a 5 bit two’s complement register and treat SE as being an 8 bit 
two’s complement register.

Shifter Results (SR2, SR1, SR0) Registers
These are non-memory mapped, register group 0 registers. The Shifter 
places results in the shift result register, SR. Optionally, the multiplier can 
use SR as a second (dual) accumulator. For more information on how to 
use this registers, see “Barrel-Shifter (Shifter)” on page 2-39.



Program Sequencer Registers

22-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Program Sequencer Registers
The DSP’s Program Sequencer registers hold page addresses, stack 
addresses, and other information for determining program execution.

Table 22-9. Program Sequencer Registers 

Register Initialization After Reset

“Interrupt Mask (IMASK) & Latch (IRPTL) Registers” on 
page 22-15

0x0000

“Interrupt Control (ICNTL) Register” on page 22-16 0x0000

“Indirect Jump Page (IJPG) Register” on page 22-16 0x00

“PC Stack Page (STACKP) and PC Stack Address (STACKA) Regis-
ters” on page 22-17

Undefined

“Loop Stack Page (LPSTACKP) and Loop Stack Address 
(LPSTACKA) Register” on page 22-17

Undefined

“Counter (CNTR) Register” on page 22-18 Undefined

“Condition Code (CCODE) Register” on page 22-18 Undefined

“Cache Control (CACTL) Register” on page 22-20 b#101n nnnn



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-15 
 

ADSP-2199x DSP Core Registers

Preliminary

Interrupt Mask (IMASK) & Latch (IRPTL) Registers
Figure 22-10 on page 22-15 shows the bits for these are a non-memory 
mapped, register group 1 registers (REG1).

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

EMU (Emulator–NMI) Highest priority
PWDN (Powerdown–GIE maskable)
KERNEL (emulator kernel)
STACK (Stack interrupt) From PC stack 
push/pop, PC stack watermark, PC or 
status stacks underflow, or any stack 
overflows
UDI (User Defined Interrupts) one inter-
rupt per bit; bit 15 has lowest priority 

Table 22-10. IMASK and IRPTL Registers 



Program Sequencer Registers

22-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Interrupt Control (ICNTL) Register
Figure 22-11 on page 22-16 shows this is a non-memory mapped, register 
group 1 register (REG1). The reset value for this register is 0x0000.

Indirect Jump Page (IJPG) Register
This is a non-memory mapped, register group 3 register (REG3). The 
reset value for this register is 0x00. For information on using this register, 
see “Indirect Jump Page (IJPG) Register” on page 3-18.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

reserved (write 0)
INE (Interrupt nesting mode enable)
0 = Disabled
1 = Enabled
GIE (Global interrupt enable)
0 = Disabled
1 = Enabled
reserved (write 0)
BIASRND (MAC biased rounding mode)
0 = Disabled
1 = Enabled
reserved
PCSTKE (PC stack interrupt enable)
0 = Disabled
1 = Enabled
EMUCNTE (Emu. cycle counter enable)
0 = Disabled
1 = Enabled
reserved (write 0)

Table 22-11. ICNTL Register 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-17 
 

ADSP-2199x DSP Core Registers

Preliminary

PC Stack Page (STACKP) and 
PC Stack Address (STACKA) Registers

These are non-memory mapped, register group 1 and 3 registers (REG1, 
REG3). The PC Stack Page (STACKP) and PC Stack Address (STACKA) reg-
isters hold the top entry in the Program Counter (PC) address stack. The 
upper 8 bits of the address go into STACKP, and the lower 16 bits go into 
STACKA. The PC stack is 33 levels deep.

On JUMP, CALL, DO…UNTIL (loop), and PUSH PC instructions, the DSP 
pushes the PC address onto this stack, loading the STACKP and STACKA regis-
ters. On RTS/I (return) and POP PC instructions, the DSP pops the 
STACKP:STACKA address off of this stack, loading the PC register. 

For information on using these registers, see “Stacks and Sequencing” on 
page 3-32.

Loop Stack Page (LPSTACKP) and 
Loop Stack Address (LPSTACKA) Register

These are non-memory mapped, register group 2 and 3 registers (REG2, 
REG3). The Loop Stack Page (LPSTACKP) and Loop Stack Address 
(LPSTACKA) registers hold the top entry in the loop stack. The upper 8 bits 
of the address go into LPSTACKP, and the lower 16 bits go into LPSTACKA. 
The loop stack is 8 levels deep.

On DO…UNTIL (loop) instructions, the DSP pushes the end of loop address 
onto this stack, loading the LPSTACKP and LPSTACKA registers. On 
PUSH LOOP instructions, the DSP pushes the (explicitly loaded) contents of 
the LPSTACKP and LPSTACKA registers onto this stack. 



Program Sequencer Registers

22-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

At the end of a loop (counter decrements to zero), the DSP pops the 
LPSTACKP:LPSTACKA address off of this stack, loading the PC register with 
the next address after the end of the loop. On POP LOOP instructions, the 
DSP pops the contents of the LPSTACKP and LPSTACKA registers off of this 
stack. 

At the start of a loop the PC (start of loop address) is pushed onto the loop 
begin stack (STACKP:STACKA registers) and the end of loop address is 
pushed onto the loop end stack (LPSTACKP:LPSTACKA registers). If it is a 
counter-based loop (DO…UNTIL CE), the loop count (CNTR register) is 
pushed onto the counter stack. 

For information on using these registers, see “Stacks and Sequencing” on 
page 3-32.

Counter (CNTR) Register
This is a non-memory mapped, register group 2 register (REG2). 

The DSP loads the loop counter stack from CNTR on Do/Until or 

Push Loop instructions. For information on using this register, see “Loops 
and Sequencing” on page 3-23 and “Stacks and Sequencing” on 
page 3-32.

Condition Code (CCODE) Register
This is a non-memory mapped, register group 3 register (REG3). Using 
the CCODE register, conditional instructions may base execution on a com-
parison of the CCODE value (user-selected) and the SWCOND condition (DSP 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-19 
 

ADSP-2199x DSP Core Registers

Preliminary

status). The CCODE register holds a value between 0x0 and 0xF, which the 
instruction tests against when the conditional instruction uses SWCOND or 
NOT SWCOND. Note that the CCODE register has a one cycle effect latency. 

Table 22-12. CCODE Register 

CCODE Software Condition

Value SWCOND (1010) NOT SWCOND (1011)

0x00 PF0 pin high PF0 pin low

0x01 PF1 pin high PF1 pin low

0x02 PF2 pin high PF2 pin low

0x03 PF3 pin high PF3 pin low

0x04 PF4 pin high PF4 pin low

0x05 PF5 pin high PF5 pin low

0x06 PF6 pin high PF6 pin low

0x07 PF7 pin high PF7 pin low

0x08 AS (ALU result signed) NOT AS (ALU result not signed)

0x09 SV (SR result overflow) NOT SV (SR result not overflow)

0x0A PF8 pin high PF8 pin low

0x0B PF9 pin high PF9 pin low

0x0C PF10 pin high PF10 pin low

0x0D PF11 pin high PF11 pin low

0x0E PF12 pin high PF12 pin low

0x0F PF13 pin high PF13 pin low



Data Address Generator Registers

22-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Cache Control (CACTL) Register
Figure 22-13 on page 22-20 shows this is a register-memory mapped reg-
ister at address Reg(0x0F).

Data Address Generator Registers
The DSP’s Data Address Generator (DAG) registers hold data addresses, 
modify values, and circular buffer configurations. Using these registers, 
the DAGs can automatically increment addressing for ranges of data loca-
tions (a buffer). 

7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0 Reset = b#101n nnnn

Reserved
CDE (Cache fetches with memory block 
accesses conflicting DMDAs enable)
0 = Disable
1 = Enable
CFZ (Cache freeze)
0 = Thaw (allows cache to update)
1 = Freeze
CPE (Cache fetches with memory block 
accesses conflicting with PMDAs enable)
0 = Thaw (allows cache to update)
1 = Freeze

Table 22-13. CACTL Register 

Table 22-14. Data Address Generator Registers 

Register Initialization After Reset

“Index (Ix) Registers” on page 22-21 Undefined

“Modify (Mx) Registers” on page 22-21 Undefined



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-21 
 

ADSP-2199x DSP Core Registers

Preliminary

Index (Ix) Registers
These are non-memory mapped, Register Group 1 and 2 registers (REG1 
and REG2). The Data Address Generators store addresses in Index regis-
ters (I0-I3 for DAG1 and I4-I7 for DAG2). An index register holds an 
address and acts as a pointer to memory. For more information, see “DAG 
Operations” on page 5-9.

Modify (Mx) Registers
These are non-memory mapped, Register Group 1 and 2 registers (REG1 
and REG2). The Data Address Generators update stored addresses using 
Modify registers (M0-M3 for DAG1 and M4-M7 for DAG2). A modify regis-
ter provides the increment or step size by which an index register is pre- or 
post-modified during a register move. For more information, see “DAG 
Operations” on page 5-9.

Length and Base (Lx,Bx) Register
The Length registers are non-memory mapped, Register Group 1 and 2 
registers (REG1 and REG2). The Base registers are memory mapped in 
register-memory at addresses: B0=Reg(0x00) through B7=Reg(0x07).

The Data Address Generators control circular buffering operations with 
Length and Base registers (L0-L3 and B0-B3 for DAG1 and L4-L7 and B4-B7 
for DAG2). Length and base registers setup the range of addresses and the 
starting address for a circular buffer. For more information, see “DAG 
Operations” on page 5-9.

“Length and Base (Lx,Bx) Register” on page 22-21 Undefined

“Data Memory Page (DMPGx) Registers” on page 22-22 0x00

Table 22-14. Data Address Generator Registers  (Cont’d)

Register Initialization After Reset



Memory Interface Registers

22-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Data Memory Page (DMPGx) Registers
This is a non-memory mapped, register group 3 register (REG3). The 
reset value for this register is 0x00. For information on using this register, 
see “DAG Page Registers (DMPGx)” on page 5-7.

Memory Interface Registers
The DSP’s memory interface registers set up page access to I/O memory 
and provide an interface between the 24-bit and 16-bit data buses. 

PM Bus Exchange (PX) Register
This is a non-memory mapped, register group 3 register (REG3). The PM 
Bus Exchange (PX) register permits data to flow between the PM and DM 
data buses. For more information on PX register usage, see “Internal Data 
Bus Exchange” on page 5-6.

I/O Memory Page (IOPG) Register
This is a non-memory mapped, register group 3 register (REG3). The 
reset value for this register is 0x00. 

Table 22-15. Memory Interface Registers 

Register Initialization After Reset

“PM Bus Exchange (PX) Register” on page 22-22 Undefined

“I/O Memory Page (IOPG) Register” on page 22-22 0x00



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-23 
 

ADSP-2199x DSP Core Registers

Preliminary

Register & Bit #Defines File (def219x.h)
The following example definitions file is for the items that are common to 
all ADSP-219x DSPs. For the most current definitions file, programs 
should use the version of this file that comes with the software develop-
ment tools. The version of the file that appears here is included as a guide 
only.

/* 

----------------------------------------------------------------

-------------

def219x.h - SYSTEM REGISTER BIT & ADDRESS DEFINITIONS FOR 

ADSP-219x DSPs

Created May 11, 2000. Copyright Analog Devices, Inc.

Updated May 30, 2000.

   Changes: Added ADSP-219x common items to def219x.h file (moved 

from def2191.h 

               file) 

            Corrected bit definition values for System Register. 

The def219x.h file defines ADSP-219x DSP family common symbolic 

names; for 

names that are unique to particular ADSP-219x family DSPs, see 

that DSP’s 

definitions file (such as the def2191.h file) instead. This 

include file 

(def219x.h) contains a list of macro “defines” that let programs 

use symbolic 

names for the following ADSP-219x facilities:

- system register bit definitions

- system register map



Register & Bit #Defines File (def219x.h)

22-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Here are some example uses:

ax0 = 0x0000;

ar = setbit bit_AR_SAT of ax0;    >>> this uses the define of 

AR_SAT bit

ar = setbit bit_M_MODE of ar;     >>> this uses the define of 

M_MODE bit

mstat = ar;

ccode = cond_SV;                  >>> this uses the define of SV 

condition

ax0 = 0; 

ar = 0;

ar = setbit bit_SV of ax0;        >>> this uses the define of SV 

bit

astat = ar;

if swcond ar = ax0 xor 0x1000;

AR = setbit bit_CFZ of AX0;       >>> this uses the define of 

bit_CFZ bit

REG(CACTL) = AR;                  >>> this uses the define for the 

CACTL register’s address

ax0 = 0x0800;

REG(B0) = ax0;                    >>> this uses the define for the 

B0 register’s address

----------------------------------------------------------------

-------------*/

#ifndef __DEF219x_H_

#define __DEF219x_H_

/*--------------------------------------------------------------

-------------*/



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-25 
 

ADSP-2199x DSP Core Registers

Preliminary

/*                System Register bit defini-

tions                            */

/*--------------------------------------------------------------

-------------*/

/* ASTAT register */

#define bit_AZ      0 /* Bit 0: ALU result zero */

#define bit_AN      1 /* Bit 1: ALU result negative */

#define bit_AV      2 /* Bit 2: ALU overflow */

#define bit_AC      3 /* Bit 3: ALU carry */

#define bit_AS      4 /* Bit 4: ALU X input sign (ABS ops) */

#define bit_AQ      5 /* Bit 5: ALU quotient (DIV ops) */

#define bit_MV      6 /* Bit 6: Multiplier overflow */

#define bit_SS      7 /* Bit 7: Shifter input sign */

#define bit_SV      8 /* Bit 8: Shifter overflow */

/* MSTAT register */

#define bit_SEC_REG 0 /* Bit 0: Secondary data registers enable; 

Ena SR */

#define bit_BIT_REV 1 /* Bit 1: Bit-reversed address output 

enable; Ena BR */

#define bit_AV_LATCH 2 /* Bit 2: ALU overflow latch mode select; 

Ena OL */

#define bit_AR_SAT   3 /* Bit 3: ALU saturation mode select; Ena 

AS */

#define bit_M_MODE   4 /* Bit 4: MAC result mode select; Ena MM */

#define bit_SEC_DAG 6 /* Bit 6: Secondary DAG registers enable; 

Ena BSR */

/* SSTAT register, long names */

#define PCSTKEMPTY   0 /* Bit 0: PC stack empty */



Register & Bit #Defines File (def219x.h)

22-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

#define PCSTKFULL    1 /* Bit 1: PC stack full */

#define PCSTKLVL     2 /* Bit 2: PC stack level */

#define LPSTKEMPTY   4 /* Bit 4: Loop stack empty */

#define LPSTKFULL    5 /* Bit 5: Loop stack full */

#define STSSTKEMPTY 6 /* Bit 6: Status stack empty */

#define STKOVERFLOW 7 /* Bit 7: Stacks overflowed */

/* SSTAT register, short names */

#define PCE          0 /* Bit 0: PC stack empty */

#define PCF          1 /* Bit 1: PC stack full */

#define PCL          2 /* Bit 2: PC stack level */

#define LSE          4 /* Bit 4: Loop stack empty */

#define LSF          5 /* Bit 5: Loop stack full */

#define SSE          6 /* Bit 6: Status stack empty */

#define SOV          7 /* Bit 7: Stacks overflowed */

/* CCODE register */

#define cond_PF0 0x00 /* if PF0 pin high, SWCOND true */

#define cond_PF1 0x01 /* if PF1 pin high, SWCOND true */

#define cond_PF2 0x02 /* if PF2 pin high, SWCOND true */

#define cond_PF3 0x03 /* if PF3 pin high, SWCOND true */

#define cond_PF4 0x04 /* if PF4 pin high, SWCOND true */

#define cond_PF5 0x05 /* if PF5 pin high, SWCOND true */

#define cond_PF6 0x06 /* if PF6 pin high, SWCOND true */

#define cond_PF7 0x07 /* if PF7 pin high, SWCOND true */

#define cond_AS   0x08 /* if AS, SWCOND true */

#define cond_SV   0x09 /* if SV, SWCOND true */

#define cond_PF8 0x0A /* if PF8 pin high, SWCOND true */

#define cond_PF9 0x0B /* if PF9 pin high, SWCOND true */

#define cond_PF10 0x0C /* if PF10 pin high, SWCOND true */

#define cond_PF11 0x0D /* if PF11 pin high, SWCOND true */

#define cond_PF12 0x0E /* if PF12 pin high, SWCOND true */



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 22-27 
 

ADSP-2199x DSP Core Registers

Preliminary

#define cond_PF13 0x0F /* if PF13 pin high, SWCOND true */

/* ICNTL register */

#define INE     4 /* Bit 4: Interrupt nesting mode enable */

#define GIE     5 /* Bit 5: Global interrupt enable */

#define BIASRND 7 /* Bit 7: MAC biased rounding mode */

#define PCSTKE 10 /* Bit 10: PC stack interrupt enable */

#define EMUCNTE 11 /* Bit 11: Emulator cycle counter enable */

/* IRPTL and IMASK registers */

#define EMU     0 /* Bit 0: Offset: 00: Emulator interrupt */

#define PWDN    1 /* Bit 1: Offset: 04: Powerdown interrupt */

#define SSTEP   2 /* Bit 2: Offset: 08: Single-Step interrupt */

#define STACK   3 /* Bit 3: Offset: 0c: Stack interrupt */

/* CACTL register */

#define bit_CDE      5 /* Bit 5: Cache conflicting DM access 

enable */

#define bit_CFZ      6 /* Bit 6: Cache freeze */

#define bit_CPE      7 /* Bit 7: Cache conflicting PM access 

enable */

/*--------------------------------------------------------------

-------------*/

/*                System Register address defini-

tions                        */

/*--------------------------------------------------------------

-------------*/

#define B0     0x00 /* DAG Base register 0 (for circular buffering 

only) */



Register & Bit #Defines File (def219x.h)

22-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

#define B1     0x01 /* DAG Base register 1 (for circular buffering 

only) */

#define B2     0x02 /* DAG Base register 2 (for circular buffering 

only) */

#define B3     0x03 /* DAG Base register 3 (for circular buffering 

only) */

#define B4     0x04 /* DAG Base register 4 (for circular buffering 

only) */

#define B5     0x05 /* DAG Base register 5 (for circular buffering 

only) */

#define B6     0x06 /* DAG Base register 6 (for circular buffering 

only) */

#define B7     0x07 /* DAG Base register 7 (for circular buffering 

only) */

#define CACTL 0x0F /* Cache control register */

#define DBGCTRL 0x60 /* Emulation Debug Control Register */

#define DBGSTAT 0x61 /* Emulation Debug Status Register */

#define CNT0   0x62 /* Cycle Counter Register 0 (LSB) */

#define CNT1   0x63 /* Cycle Counter Register 1 */

#define CNT2   0x64 /* Cycle Counter Register 2 */

#define CNT3   0x65 /* Cycle Counter Register 3 (MSB) */

#endif



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-1 
 

ADSP-2199x DSP I/O Registers

Preliminary

23 ADSP-2199X DSP I/O 
REGISTERS

Overview
The DSP has general-purpose and dedicated registers in each of its func-
tional blocks. The register reference information for each functional block 
includes bit definitions, initialization values, and (for I/O processor regis-
ters) memory mapped address. Information on each type of register is 
available at the following locations:

• “Core Status Registers” on page 22-7

• “Computational Unit Registers” on page 22-11

• “Program Sequencer Registers” on page 22-14

• “Data Address Generator Registers” on page 22-20

• “I/O Processor (Memory Mapped) Registers” on page 23-2

When writing DSP programs, it is often necessary to set, clear, or test bits 
in the DSP’s registers. While these bit operations can all be done by refer-
ring to the bit’s location within a register or (for some operations) the 
register’s address with a hexadecimal number, it is much easier to use sym-



I/O Processor (Memory Mapped) Registers

23-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

bols that correspond to the bit’s or register’s name. For convenience and 
consistency, Analog Devices provides a header file that provides these bit 
and register definitions. For more information, see the “Register & Bit 
#Defines File (def219x.h)” on page 22-23.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) a register’s reserved bits.

I/O Processor (Memory Mapped) 
Registers

The DSP’s memory map includes the following groups of I/O processor 
registers:

• “Clock and System Control Registers” on page 23-11

• “DMA Controller Registers” on page 23-16

• “SPORT Registers” on page 23-24

• “Serial Peripheral Interface Registers” on page 23-48

• “Timer Registers” on page 23-59

• “External Memory Interface Registers” on page 23-68



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-3 
 

ADSP-2199x DSP I/O Registers

Preliminary

The I/O processor registers are accessible as part of the DSP’s memory 
map. Table 23-1 on page 23-4 lists the I/O processor’s memory mapped 
registers in address order and provides a cross reference to a description of 
each register. These registers occupy addresses 0x00 through 0xFF of the 
memory map and control I/O operations, including:

• External port DMA

• Link port DMA

• Serial port DMA

I/O processor registers have a one cycle effect latency (changes take 
effect on the second cycle after the change).

Because the I/O processor’s registers are part of the DSP’s I/O memory 
map, buses access these registers as locations in I/O memory. While these 
registers act as memory mapped locations, they are separate from the 
DSP’s internal memory. 

To read or write I/O processor registers, programs must use the Io( ) 
instruction. The following example code shows a value being transferred 
from the AX0 register to the DMACW_CP register in I/O memory. The IOPG 
register is loaded to select the correct page in I/O memory. Because the 
page and address are necessary for accessing any I/O memory register, the 
I/O memory map in Table 23-1 on page 23-4 shows these as 
IOPG:Address.

iopg = Memory_DMA_Controller_Page; /* set the I/O mem page */

ax0 = WR_DMA_WORD_CONFIG;      /* loads ax0 with the cfg word */

io(DMACW_CP) = ax0;     /* loads DMACW_CP with the cfg word */



I/O Processor (Memory Mapped) Registers

23-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The register names for I/O processor registers are not part of the DSP’s 
assembly syntax. To ease access to these registers, programs should use the 
#include command to incorporate a file containing the registers’ symbolic 
names and addresses.

Table 23-1. I/O Processor Registers Memory Map

DSP I/O Address
(IOPG:Address)

Register Name Initialization
After Reset

Page Cross 
Reference

“Clock and System Control Registers” on page 23-11

0x00:0x200 PLLCTL 0x0010 page 23-11

0x00:0x201 LOCKCNT ni page 23-12

0x00:0x202 SWRST ni page 23-13

0x00:0x203 NXTSCR 0x0000 page 23-14

0x00:0x204 SYSCR 0x0000 page 23-15

“Interrupt Controller Registers”

0x01:0x200 IPR0 Per interrupt request page 13-5

0x01:0x201 IPR1 Per interrupt request page 13-5

0x01:0x202 IPR2 Per interrupt request page 13-5

0x01:0x203 IPR3 Per interrupt request page 13-5

0x01:0x204 IPR4 Per interrupt request page 13-5

0x01:0x205 IPR5 Per interrupt request page 13-5

0x01:0x206 IPR6 Per interrupt request page 13-5

0x01:0x207 IPR7 Per interrupt request page 13-5

0x01:0x208 PIMASKL 0xFFFF page 13-6

0x01:0x209 PIMASKH 0xFFFF page 13-6

0x01:0x210 INTRD0L 0x0000 page 13-6

0x01:0x211 INTRD0H 0x0000 page 13-6

0x01:0x212 INTRD1L 0x0000 page 13-6

0x01:0x213 INTRD1H 0x0000 page 13-6



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-5 
 

ADSP-2199x DSP I/O Registers

Preliminary

0x01:0x214 INTRD2L 0x0000 page 13-6

0x01:0x215 INTRD2H 0x0000 page 13-6

0x01:0x216 INTRD3L 0x0000 page 13-6

0x01:0x217 INTRD3H 0x0000 page 13-6

0x01:0x218 INTRD4L 0x0000 page 13-6

0x01:0x219 INTRD4H 0x0000 page 13-6

0x01:0x21A INTRD5L 0x0000 page 13-6

0x01:0x21B INTRD5H 0x0000 page 13-6

0x01:0x21C INTRD6L 0x0000 page 13-6

0x01:0x21D INTRD6H 0x0000 page 13-6

0x01:0x21E INTRD7L 0x0000 page 13-6

0x01:0x21F INTRD7H 0x0000 page 13-6

0x01:0x220 INTRD8L 0x0000 page 13-6

0x01:0x221 INTRD8H 0x0000 page 13-6

0x01:0x222 INTRD9L 0x0000 page 13-6

0x01:0x223 INTRD9H 0x0000 page 13-6

0x01:0x224 INTRD10L 0x0000 page 13-6

0x01:0x225 INTRD10H 0x0000 page 13-6

0x01:0x226 INTRD11L 0x0000 page 13-6

0x01:0x227 INTRD11H 0x0000 page 13-6

“DMA Controller Registers” on page 23-16

0x02:0x100 DMACW_PTR 0x0000 page 23-16

0x02:0x101 DMACW_CFG 0x0000 page 23-17

0x02:0x102 DMACW_SRP 0x0000 page 23-19

0x02:0x103 DMACW_SRA 0x0000 page 23-19

Table 23-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Register Name Initialization
After Reset

Page Cross 
Reference



I/O Processor (Memory Mapped) Registers

23-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

0x02:0x104 DMACW_CNT 0x0000 page 23-19

0x02:0x105 DMACW_CP 0x0000 page 23-20

0x02:0x106 DMACW_CPR 0x0000 page 23-20

0x02:0x107 DMACW_IRQ 0x0000 page 23-20

0x02:0x180 DMACR_PTR 0x0000 page 23-21

0x02:0x181 DMACR_CFG 0x0000 page 23-21

0x02:0x182 DMACR_SRP 0x0000 page 23-22

0x02:0x183 DMACR_SRA 0x0000 page 23-22

0x02:0x184 DMACR_CNT 0x0000 page 23-22

0x02:0x185 DMACR_CP 0x0000 page 23-23

0x02:0x186 DMACR_CPR 0x0000 page 23-23

0x02:0x00187 DMACR_IRQ 0x0000 page 23-23

“SPORT Registers” on page 23-24

0x02:0x200 SP_TCR 0x0000 page 23-24

0x02:0x201 SP_RCR 0x0000 page 23-28

0x02:0x202 SP_TX 0x0000 page 23-29

0x02:0x203 SP_RX 0x0000 page 23-29

0x02:0x204 SP_TSCKDIV 0x0000 page 23-30

0x02:0x205 SP_RSCKDIV 0x0000 page 23-30

0x02:0x206 SP_TFSDIV 0x0000 page 23-31

0x02:0x207 SP_RFSDIV 0x0000 page 23-30

0x02:0x208 SP_STATR 0x0000 page 23-31

0x02:0x209 SP_MTCS0 0x0000 page 23-33

0x02:0x20A SP_MTCS1 0x0000 page 23-33

0x02:0x20B SP_MTCS2 0x0000 page 23-33

Table 23-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Register Name Initialization
After Reset

Page Cross 
Reference



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-7 
 

ADSP-2199x DSP I/O Registers

Preliminary

0x02:0x20C SP_MTCS3 0x0000 page 23-33

0x02:0x20D SP_MTCS4 0x0000 page 23-33

0x02:0x20E SP_MTCS5 0x0000 page 23-33

0x02:0x20F SP_MTCS6 0x0000 page 23-33

0x02:0x210 SP_MTCS7 0x0000 page 23-33

0x02:0x211 SP_MRCS0 0x0000 page 23-34

0x02:0x212 SP_MRCS1 0x0000 page 23-34

0x02:0x213 SP_MRCS2 0x0000 page 23-34

0x02:0x214 SP_MRCS3 0x0000 page 23-34

0x02:0x215 SP_MRCS4 0x0000 page 23-34

0x02:0x216 SP_MRCS5 0x0000 page 23-34

0x02:0x217 SP_MRCS6 0x0000 page 23-34

0x02:0x218 SP_MRCS7 0x0000 page 23-34

0x02:0x219 SP_MCMC1 0x0000 page 23-35

0x02:0x21A SP_MCMC2 0x0000 page 23-35

0x02:0x300 SPDR_PTR 0x0000 page 23-39

0x02:0x301 SPDR_CFG 0x0000 page 23-39

0x02:0x302 SPDR_SRP 0x0000 page 23-39

0x02:0x303 SPDR_SRA 0x0000 page 23-41

0x02:0x304 SPDR_CNT 0x0000 page 23-42

0x02:0x305 SPDR_CP 0x0000 page 23-42

0x02:0x306 SPDR_CPR 0x0000 page 23-43

0x02:0x307 SPDR_IRQ 0x0000 page 23-43

0x02:0x380 SPDT_PTR 0x0000 page 23-44

0x02:0x381 SPDT_CFG 0x0000 page 23-44

Table 23-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Register Name Initialization
After Reset

Page Cross 
Reference



I/O Processor (Memory Mapped) Registers

23-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

0x02:0x382 SPDT_SRP 0x0000 page 23-45

0x02:0x383 SPDT_SRA 0x0000 page 23-45

0x02:0x384 SPDT_CNT 0x0000 page 23-45

0x02:0x385 SPDT_CP 0x0000 page 23-46

0x02:0x386 SPDT_CPR 0x0000 page 23-47

0x02:0x387 SPDT_IRQ 0x0000 page 23-47

“Serial Peripheral Interface Registers” on page 23-48

0x04:0x000 SPICTL 0x0400 page 23-48

0x04:0x001 SPIFLG 0xFF00 page 23-51

0x04:0x002 SPIST 0x01 page 23-52

0x04:0x003 TDBR 0x0000 page 23-54

0x04:0x004 RDBR 0x0000 page 23-54

0x04:0x005 SPIBAUD 0x0000 page 23-55

0x04:0x006 RDBRS0 0x0000 page 23-55

0x04:0x100 SPID_PTR 0x0000 page 23-55

0x04:0x101 SPID_CFG 0x0000 page 23-56

0x04:0x102 SPID_SRP 0x0000 page 23-58

0x04:0x103 SPID_SRA 0x0000 page 23-58

0x04:0x104 SPID_CNT 0x0000 page 23-58

0x04:0x105 SPID_CP 0x0000 page 23-58

0x04:0x106 SPID_CPR 0x0000 page 23-59

0x04:0x107 SPID_IRQ 0x0000 page 23-59

0x04:0x200 SPICTL1 0x0400 page 23-48

0x04:0x201 SPIFLG1 0xFF00 page 23-51

0x04:0x202 SPIST1 0x01 page 23-52

Table 23-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Register Name Initialization
After Reset

Page Cross 
Reference



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-9 
 

ADSP-2199x DSP I/O Registers

Preliminary

0x04:0x203 TDBR1 0x0000 page 23-54

0x04:0x204 RDBR1 0x0000 page 23-54

0x04:0x205 SPIBAUD1 0x0000 page 23-55

0x04:0x206 RDBRS1 0x0000 page 23-55

0x04:0x300 SPID_PTR 0x0000 page 23-55

0x04:0x301 SPID_CFG 0x0000 page 23-56

0x04:0x302 SPID_SRP 0x0000 page 23-58

0x04:0x303 SPID_SRA 0x0000 page 23-58

0x04:0x304 SPID_CNT 0x0000 page 23-58

0x04:0x305 SPID_CP 0x0000 page 23-58

0x04:0x306 SPID_CPR 0x0000 page 23-59

0x04:0x307 SPID_IRQ 0x0000 page 23-59

“Timer Registers” on page 23-59

0x05:0x200 T_GSR0 0x0000 page 23-60

0x05:0x201 T_CFGR0 0x0000 page 23-62

0x05:0x202 T_CNTL0 0x0000 page 23-63

0x05:0x203 T_CNTH0 0x0000 page 23-63

0x05:0x204 T_PRDL0 0x0000 page 23-65

0x05:0x205 T_PRDH0 0x0000 page 23-65

0x05:0x206 T_WLR0 0x0000 page 23-66

0x05:0x207 T_WHR0 0x0000 page 23-66

0x05:0x208 T_GSR1 0x0000 page 23-60

0x05:0x209 T_CFGR1 0x0000 page 23-62

0x05:0x20A T_CNTL1 0x0000 page 23-63

0x05:0x20B T_CNTH1 0x0000 page 23-63

Table 23-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Register Name Initialization
After Reset

Page Cross 
Reference



I/O Processor (Memory Mapped) Registers

23-10 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

0x05:0x20C T_PRDL1 0x0000 page 23-65

0x05:0x20D T_PRDH1 0x0000 page 23-65

0x05:0x20E T_WLR1 0x0000 page 23-66

0x05:0x20F T_WHR1 0x0000 page 23-66

0x05:0x210 T_GSR2 0x0000 page 23-60

0x05:0x211 T_CFGR2 0x0000 page 23-62

0x05:0x212 T_CNTL2 0x0000 page 23-63

0x05:0x213 T_CNTH2 0x0000 page 23-63

0x05:0x214 T_PRDL2 0x0000 page 23-65

0x05:0x215 T_PRDH2 0x0000 page 23-65

0x05:0x216 T_WLR2 0x0000 page 23-66

0x05:0x217 T_WHR2 0x0000 page 23-66

“External Memory Interface Registers” on page 23-68

0x00:0x080 E_STAT 0x0300 page 23-68

0x06:0x201 E_CTL 0x0300 page 23-69

0x06:0x202 BMSCTL 0x0000 page 23-70

0x06:0x203 MS0CTL 0x0000 page 23-72

0x06:0x204 MS1CTL 0x0000 page 23-72

0x06:0x205 MS2CTL 0x0000 page 23-72

0x06:0x206 MS3CTL 0x0000 page 23-72

0x06:0x207 IOMSCTL 0x0000 page 23-73

0x06:0x208 EMISTAT 0x0000 page 23-73

0x06:0x209 MSPG10 0x0000 page 23-75

0x06:0x20A MSPG32 0x0000 page 23-75

Table 23-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Register Name Initialization
After Reset

Page Cross 
Reference



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-11 
 

ADSP-2199x DSP I/O Registers

Preliminary

Clock and System Control Registers
Clock and System Control group of I/P registers include:

• “PLL Control (PLLCTL) Register” on page 23-11

• “PLL Lock Counter (LOCKCNT) Register” on page 23-12

• “Software Reset (SWRST) Register” on page 23-13

• “Next System Configuration (NXTSCR) Register” on page 23-14

• “System Configuration (SYSCR) Register” on page 23-15

PLL Control (PLLCTL) Register
The PLL Control (PLLCTL) register lets systems select and change the 
DSP’s core clock (CCLK) frequency and select powerdown modes. The 
PLL multiplies the clock frequency of the input clock with a programma-
ble ratio. The PLL Control register address is 0x00:0x200.



Clock and System Control Registers

23-12 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

At reset, the PLL starts in BYPASS mode, running the CCLK clock 
directly from CLKIN. The reset must be active at least four clock cycle to 
allow full initialization of the synchronizer chain. After the PLL is locked, 
software can switch to a clock multiplier mode.

Figure 23-1 on page 23-12 provides bit descriptions for the register. 

PLL Lock Counter (LOCKCNT) Register
The Lock Counter is a 10-bit register. The register address is 0x00:0x201.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PLLCTL      IO[0x00:0x0200]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0650

DF Enable CLKIN Divider for 
CLKIN>100MHz (1=enable divider) 
(RW)

PLOF PLL shutoff (1=shut PLL clock off) 
(RW)

STAL Stop all clocks (1=stop CCLK and 
HCLK) (RW)

STCK Stop clock (1=stop CCLK) (RW)
IOSL IO clock select (1 is HCLK=CCLK/2, 

0 is HCLK=CCLK) (RW)
PD Powerdown (1=PLL in deep sleep, no 

clocks) (RW)
CKOE CLKOUT enable (1 is CLK-

OUT=HCLK, 0 is CLKOUT=0) (RW)
DIV2 Clock divider in BYPASS mode (1 is 

CCLK=CLKIN/2) (RW)
BYPS BYPASS mode enable (1=enable) 

(RW)
MSEL[4:0] PLL Feedback divide ratio/N 

(1:32, writing 0 gives effect of 32) 
(RW)

MSEL[5] PLL Feedback divide ratio 
(0=divide by 1, 1=divide by 2) (RW)

MSEL[6] PLL Output divider enable 
(0=divide by 1, 1=divide by 2) (RW)

Figure 23-1. PLL Control Register (PLLCTL)



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-13 
 

ADSP-2199x DSP I/O Registers

Preliminary

The process of changing the multiplication factor of the PLL takes a cer-
tain number of cycles, and therefore a Lock Counter is required in order 
to calculate when the PLL is locked to the new ratio. The value of the 
Lock Counter depends on the frequency (the higher the capacitor must be 
charged, the longer is the time required to lock). At power-up, the Lock 
Counter has to be initialized. Therefore, during reset, the lock signal is 
forced and set active indicating that the PLL is locked even though this 
may not be true. The reset pulse must be long enough to guarantee that 
the PLL is effectively locked at the end of the reset sequence or the soft-
ware must wait before switching the clock source to the PLL output.

 Software Reset (SWRST) Register 
The Software Reset Register is write-only. Its address is 0x00:0x202. The 
DSP core software reset is initiated by the DSP core by writing 0x07 into 
the Software Reset (SWR) bits 2:0 in the Software Control Register. Thus, 
value “7” triggers A DMA channel is capable of producing 2 types of 
interrupts: a completion interrupt and a peripheral specific error inter-
rupt. The first two types are generated inside the DMA Master itself with 
the latter generated by the peripheral logic. DMA interrupt status is some-
what unique because of the DMA's operation and is actually recorded in 2 
ways. The status is recorded in the DMA Configuration Register (of the 
particular peripheral) and the DMA Interrupt Register (of the particular 
peripheral) upon an interrupt condition. The DMA Interrupt Register is a 
sticky 2-bit register that records the fact any interrupt has occurred. These 
will stay set until a 1 is written to the appropriate register bit. This action 
must be taken by software to actually clear the interrupt. The DMA Con-
figuration Register records a more dynamic status of the interrupts. 
Because DMA operation typically continues after an interrupt, the status 
available here must be read with care. At the end of a work block, the 
DMA Configuration Register is written to descriptor (page 0) memory 
and then reloaded. This means that if a work block ends between the time 
the interrupt was generated and the software actually read the DMA Con-
figuration Register, the software will actually read the status from the next 



Clock and System Control Registers

23-14 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

work block. To get around this problem, the software must conduct a full 
descriptor cleanup after most interrupts. This would imply checking not 
only the status of the current DMA Configuration Register, but the status 
of recently completed descriptors in memory as well to determine the 
exact location of the error.

The completion interrupt is generated at the end of a work block. When a 
work block completes bit 15 of the DMA Configuration Register is set 
low (returning ownership to the processor). In addition, bit 14 of the 
DMA Configuration Register is set if the block completed without errors. 
The interrupt is cleared by writing a "1" to bit 0 of the DMA Interrupt 
Register. 

The final type of interrupt is peripheral specific. These can include things 
like RX Overrun errors, framing errors, etc. In the case of a peripheral spe-
cific error, the status will be logged in the Peripheral Status (PER_STAT) 
field of the DMA Configuration Register while the DMA engine contin-
ues on. These registers are sticky and are only reset upon the loading of 
the next work block. They can only be used to tell that a peripheral error 
has occurred in the work block but cannot be used to identify the exact 
word. The completion interrupt is enabled by bit 2 of the DMA Configu-
ration Register. The error types of interrupts are enabled by bit 8.

 Reset, values 0–6 specify no software reset. Bits 3 through 15 are set to 0.

If bits 2:0 are set, the reset affects only the state of the core and most of 
the peripherals. It does not make use of the hardware reset timer and logic 
and does not reset the PLL and PLL control register.

A software reset of the peripheral will cause loss of state and immediate 
termination of DMA processing. 

Next System Configuration (NXTSCR) Register
This register address is 0x00:0x203. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-15 
 

ADSP-2199x DSP I/O Registers

Preliminary

During normal chip operation, reset parameters may be written by the 
DSP core into the IO-mapped Next System Configuration register. The 
state is latched/registered into this register and held there until a software 
reset. A subsequent software reset updates the state of the System Config-
uration register with the contents of the Next System Configuration 
register, and will then be allowed to propagate through to the register out-
put drivers and distributed to DSP core and peripherals. For bit 
descriptions, see Figure 23-2 on page 23-15.

The reset state is initialized during hardware reset from boot mode 
pins. These bits are read-write during normal chip operation.

System Configuration (SYSCR) Register 
The System Configuration register is a read-write register. Its address is 
0x00:0x204. 

A software reset will update the state of the System Configuration register 
with the contents of the Next System Configuration register, and will then 
be allowed to propagate through to the register output drivers and distrib-
uted to the DSP core and peripherals. For information on the bits in 
this register (which are the same as the NXTSCR register), refer to 
Figure 23-2 on page 23-15.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 NXTSCR      IO[0x00:0x0203]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset Value:   0x0000

BMODE[2:0]1 (RW)

1   External BMODE2 and BMODE0 pins have pull-ups and the BMODE1 pin has a pull-down. This 
state can be altered by connecting the external pins to other levels.

 Reserved

Figure 23-2. Next System Configuration Register (NXTSCR)



DMA Controller Registers

23-16 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The OPMODE pin is a dedicated mode control pin, it is typically used to 
select between the serial port or the SPI port. During boot, the OPMODE pin 
serves as the BMODE2 pin.

The BMODE1:0 pins are the dedicated mode control pins. The pins and the 
corresponding bits in the System Configuration register configure the 
boot mode that is employed following hardware reset or software reset.

DMA Controller Registers
The Memory DMA peripheral (MemDMA) is responsible for moving 
data and instructions between internal and off-chip memory. This is per-
formed over the DMA bus. 

The MemDMA is made up of two DMA channels: a dedicated “read” 
channel and a dedicated “write” channel. Data is first read and stored in 
an internal 4-word FIFO buffer. Once full, the FIFO’s contents are writ-
ten to their destination. This process is repeated for the desired number of 
the transfers. Upon completion an interrupt is generated to the processor. 
It should be noted that this scheme is free from overrun errors because of 
the interlocking nature of a read followed by a write.

DMA, MemDMA Channel Write Pointer 
(DMACW_PTR) Register

The register address is 0x02:0x100. This is a Read-Only register that holds 
the pointer to the current descriptor block for the DMA Write operation. 
The reset value is 0x0000.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-17 
 

ADSP-2199x DSP I/O Registers

Preliminary

DMA, MemDMA Channel Write Configuration 
(DMACW_CFG) Register

The register address is 0x02:0x101. The DMACW_CFG register should only be 
written when starting DMA operation. Figure 23-3 describes this register 
bits. Additional information on bits (not covered in the Figure 23-3) 
include:

• Direction: Bit 1 (TRAN) must be set (=1) for the Write operation

• DMA Buffer Clear: Bit 7 (FLSH) should be set (=1) only if a DMA 
transfer has completed unsuccessfully.

• Descriptor Ownership: Bit 15 (DOWN) is checked before a full 
descriptor block download is begun to determine if the descriptor 
block is configured and ready for use.

For more information on using DMA processes, see “I/O Processor” on 
page 6-1. 



DMA Controller Registers

23-18 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DEN (DMA Enable – Read-Write)
0 = Disabled
1 = Enabled

TRAN (Transfer Direction – Read-Only)
0 = Read
      (DMACx_SRA is source)
1 = Write
      (DMACx_SRA is destination)

DCOME (Interrupt on Complete–
Read-Only)

DTYPE (Data Type– Read-Only)
0 = 16-bit
1 = 24-bit

Reserved

FLSH (DMA Buffer Clear – Read-Write)
1 = Flush (reset the FIFO buffer)

DERE (Interrupt On Error – Read-Only)

Reserved

FS (DMA Buffer Status)
00 = empty
11 = 1-4

DS (DMA Completion Status)
0 = Successful
1 = Error

DOWN (Descriptor Ownership)
0 = DSP
1 = DMA

Figure 23-3. DMA, MemDMA Channel Write Configuration 
(DMACW_CFG) Register Bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-19 
 

ADSP-2199x DSP I/O Registers

Preliminary

DMA, MemDMA Channel Write Start Page 
(DMACW_SRP) Register

The register address is 0x02:0x102. The 16-bit DMA Write Start Page reg-
ister holds a running pointer to the DMA address that is being accessed 
and the memory space being used for a Write transfer. The reset value is 
0x0000.

DMA, MemDMA Channel Write Start Address 
(DMACW_SRA) Register

The register address is 0x02:0x103. This 16-bit read-only register holds 
the Write transfer start address. The reset value is 0x0000.

DMA, MemDMA Channel Write Count 
(DMACW_CNT) Register

The register address is 0x02:0x104. The 16-bit Write Count read-only reg-
ister holds the number of words in the transfer. The reset value is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)
Bits 7:0 hold the Write Start Page 
address 

MS (Memory Space)
00 = Memory Space
01 = Boot Space
10 = IO Space
11 = reserved

Reserved

Figure 23-4. DMA, MemDMA Channel Write Start Page 
(DMACW_SRP) Register Bits



DMA Controller Registers

23-20 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

DMA, MemDMA Channel Write Chain Pointer 
(DMACW_CP) Register

The register address is 0x02:0x105. The 16-bit DMACW_CP register 
holds the pointer to address of next descriptor for a Write transfer. The 
reset value is 0x0000.

DMA, MemDMA Channel Write Chain Pointer 
Ready (DMACW_CPR) Register

The register address is 0x02:0x106. Bit 0 in the 16-bit Read-Write register 
sets the status of the descriptor write operation. If bit = 1, the status is 
Descriptor Ready; 0 = Wait. Bits 15:1 are not used.

This register should be set in the software after each descriptor is written 
to the internal memory. This lets the DMA know that a new descriptor 
block has been written in case the state machine has stalled because the 
descriptor block was not ready. This bit is cleared by the hardware upon 
beginning the data transfers of the described work block or after a reading 
a descriptor block with the ownership bit not set. Failure of the software 
to set this bit could potentially cause the DMA engine to permanently 
stall waiting for this bit. 

DMA, MemDMA Channel Write Interrupt 
(DMACW_IRQ) Register

The register address is 0x02:0x107. The DMA, MemDMA Channel can 
generate an interrupt upon a completion of a transfer. The interrupt 
occurs after the last write of the transfer is executed. Writing a one to bit 0 
of the DMACW_IRQ register clears the DMA interrupt. Bits 15:1 are not used. 
The reset value is 0x0000. Because this bit is sticky, it needs to be cleared 
in the interrupt service routine to prevent the interrupt from occurring 
repeatedly.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-21 
 

ADSP-2199x DSP I/O Registers

Preliminary

DMA, MemDMA Channel Read Pointer 
(DMACR_PTR) Register

The register address is 0x02:0x180. This is a Read-Only register that holds 
the pointer to the current descriptor block for the DMA Read operation. 
The reset value is 0x0000.

DMA, MemDMA Channel Read Configuration 
(DMACR_CFG) Register

The register address is 0x02:0x181. The DMACR_CFG register should only be 
written when starting DMA operation. The reset value is 0x0000. The first 
descriptor’s address should be written to the DMACR_CP Chain Pointer reg-
ister followed by writing a “1” to the configuration register setting the DEN 
(DMA Enable) bit 0. This will enable the DMA process and the first 
descriptor block will be fetched from internal memory. The dynamic allo-
cation of descriptors is controlled by the “ownership” bit (bit 15) of each 
descriptor block.

Bit 1 (Direction) is set to 0 for the Read operation. 

The DMA, MemDMA Channel generates an interrupt if the “Interrupt 
on Error” bit 8 is set and the corresponding DMA channel is disabled dur-
ing operation. For bit descriptions for this register (which are the same as 
the DMACW_CFG register), see Figure 23-3 on page 23-18.



DMA Controller Registers

23-22 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

DMA, MemDMA Channel Read Start Page 
(DMACR_SRP) Register

The register address is 0x02:0x182. The 16-bit DMA Read Start Page reg-
ister holds a running pointer to the DMA address that is being accessed 
and the memory space being used for a Read operation.

DMA, MemDMA Channel Read Start Address 
(DMACR_SRA) Register

The register address is 0x02:0x183. This 16-bit read-only register holds 
the Read transfer start address. The reset value is 0x0000.

DMA, MemDMA Channel Read Count 
(DMACR_CNT) Register

The register address is 0x02:0x184. The 16-bit Read Count read-only reg-
ister holds the number of words in the transfer. The reset value is 0x0000. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)
Bits 7:0 hold the Read Start Page 
address

MS (Memory Space)
0 = Memory Space
1 = Boot Space

Reserved

Figure 23-5. DMA, MemDMA Channel Read Start Page (DMACR_SRP) 
Register Bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-23 
 

ADSP-2199x DSP I/O Registers

Preliminary

DMA, MemDMA Channel Read Chain Pointer 
(DMACR_CP) Register

The register address is 0x02:0x185. The 16-bit DMACR_CP register holds the 
pointer to the address of the next descriptor for a Read transfer. The reset 
value is 0x0000.

DMA, MemDMA Channel Read Chain Pointer 
Ready (DMACR_CPR) Register

The register address is 0x02:0x186. Bit 0 in the 16-bit Read-Write regis-
ter sets the status of the descriptor write operation. If bit = 1, the status is 
Descriptor Ready; 0 = Wait. Bits 15:1 are not used.

This register should be set in the software after each descriptor is written 
to the internal memory. This lets the DMA know that a new descriptor 
block has been written in case the state machine has stalled because the 
descriptor block was not ready. This bit is cleared by the hardware upon 
beginning the data transfers of the described work block or after a reading 
a descriptor block with the ownership bit not set. Failure of the software 
to set this bit could potentially cause the DMA engine to permanently 
stall waiting for this bit. The reset value is 0x0000. 

DMA, MemDMA Channel Read Interrupt 
(DMACR_IRQ) Register

The register address is 0x02:0x187. The DMA, MemDMA Channel can 
generate an interrupt upon a completion of a transfer. The interrupt 
occurs after the last write of the transfer is executed. Writing a one to bit 0 
of the DMACR_IRQ register clears the DMA interrupt. Bits 15:1 are not used.



SPORT Registers

23-24 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPORT Registers
The General Purpose Programmable Serial Port (SPORT) Controller is 
designed to be used as an on-chip peripheral of a Digital Signal Processor. 
It supports a variety of serial data communications protocols and can pro-
vide a direct interconnection between processors in a multiprocessor 
system.

The SPORT can be viewed as two functional sections. The configuration 
section is a block of control registers (mapped to IO Space memory) that 
the program must initialize before using the SPORT. The data section is a 
register file used to transmit and receive values through the SPORT.

SPORT Transmit Configuration (SP_TCR) Register
The SPORT is enabled through bits in the Transmit and Receive Config-
uration Registers. The transmit registers’ IO address is: 

SP_TCR 0x02:0x200

Refer to Figure 23-6 on page 23-27 for bit descriptions.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-25 
 

ADSP-2199x DSP I/O Registers

Preliminary

Bit 0 (TSPEN) enables a SPORT for transmit if it is set to 1. When this bit 
is set, it locks further changes to the SPORT from occurring—for more 
information, see the discussion on on page 8-11. This bit is cleared at 



SPORT Registers

23-26 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

reset, disabling all SPORT channels. The reset value is 0x0000.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-27 
 

ADSP-2199x DSP I/O Registers

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

TSPEN (Transmit SPORT Enable)
0 =Disable
1 = Enable

ICLK (Input CLK)
0 = external TCLK
1 = internal TCLK

DTYPE (Data Type)
00 = zero fill, 01 = sign-extend
10 = µ-law, 11 = A-law

SENDN (SPORT Endian Format)
0 = MSB-first, 1 = LSB-first

SLEN (SPORT Word Length)
0 to 1 = illegal, 2 to 15 = legal

ITFS (Internal Frame Sync)
0 = external TFS, 1 = internal TFS

TFSR (Frame Sync Required)
0 = TFS not required
1 = TFS required

DITFS (Data Independent Frame Sync)
0 = data dependent
1 = data independent

LTFS (Hi/Low Frame Sync)
0 = active high TFS
1 = active low TFS

LATFS (Early/Late Frame Sync Select)
0 = early TFS
1 = late TFS

CKRE (Clock Rising Edge Enable)
0 = Sample data and FS w/ rising

 edge of SCLK
1 = Sample data and FS w/ falling

edge of SCLK

ICLKD (Internal Clock Disable)
0 = Default, enabling the applicable

 clock.
1 = TCLK disable

Figure 23-6. SPORT Transmit Configuration (SP_TCR) Register Bits



SPORT Registers

23-28 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPORT Receive Configuration (SP_RCR) Register
The SPORT is enabled through bits in the Receive (and Transmit) Con-
figuration Registers. The Receive registers’ I/O address is: 

SP_RCR 0x02:0x201

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

RSPEN (Receive SPORT Enable)
0=Disable, 1=Enable (locks out other 
changes to SPx_RCR)

ICLK (Input CLK)
0 = external RCLK, 1 = internal RCLK

DTYPE (Data Type)
00 = zero fill, 01= sign-extend
10 = µ-law, 11 = A-law

SENDN (SPORT Endian Format)
0 = MSB-first, 1 = LSB-first

SLEN (SPORT Word Length)
0 to 1 = illegal, 2 to 15 = legal

IRFS (Internal Frame Sync)
0 = external RFS, 1 = internal RFS

RFSR (Frame Sync Required)
0 = RFS not required, 1 = RFS required

Reserved

LRFS (Hi/Low Frame Sync)
0 = active high RFS, 1 = active low RFS

LATFS (Early/Late Frame Sync Select)
0 = early RFS, 1 = late RFS

CKRE (Clock Rising Edge)
0 = Sample data and FS w/rising edge of 
SCLK
1 = Sample data and FS w/falling edge of 
SCLK

ICLKD (Internal Clock Disable)
0 = Default, enabling the applicable clock.
1 = RCLK disable

Figure 23-7. SPORT Receive Configuration (SP_RCR) Register Bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-29 
 

ADSP-2199x DSP I/O Registers

Preliminary

SPORT Transmit Data (SP_TX) Register
The address is: 

SP_TX 0x02:0x202

This register can be accessed at any time during program execution using 
an IO Space access with immediate address. For example, the following 
instruction would ready SPORT to transmit a serial value, assuming 
SPORT is configured and enabled: 

IOPG = 0x02;       /* selects I/O memory page 0x02 */

IO(0x202) = AX0; /* loads TX from AX0, transmitting data */

The TX register acts like a two-location FIFO buffers because it has a data 
register plus an output shift register; two 16-bit words may be stored in 
the TX buffers at any one time. When the TX buffer is loaded and any pre-
vious word has been transmitted, the buffer contents are automatically 
loaded into the output shifter. An interrupt is generated when the output 
shifter has been loaded, signifying that the TX buffer is ready to accept the 
next word (i.e. the TX buffer is “not full”). This interrupt will not occur if 
serial port DMA is enabled. The reset value is 0x0000.

SPORT Receive Data (SP_RX) Register
The address is: 

SP_RX 0x02:0x203

These registers can be accessed at any time during program execution 
using an IO Space access with immediate address. 

For example, the following instruction would access a serial value received 
on SPORT:

IOPG = 0x02;     /* selects I/O memory page 0x02 */

AY0 = IO(0x203); /* loads AY0 from RX, received data */



SPORT Registers

23-30 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The RX registers act like a two-location FIFO buffer because they have a 
data register plus an input shift register. They are read-only and their reset 
values are undefined.

Two 16-bit words can be stored in RX at any one time. The third word will 
overwrite the second if the first word has not been read out (by the Master 
core or the DMA controller). When this happens, the receive overflow sta-
tus bit (ROVF) will be set in SPORT Status Register. The overflow status is 
generated on the last bit of the second word. The ROVF status bit is “sticky” 
and is only cleared by disabling the serial port.

An interrupt is generated when the RX buffer has been loaded with a 
received word (i.e., the RX buffer is “not empty”). This interrupt will be 
masked out if serial port DMA is enabled. 

SPORT Transmit (SP_TSCKDIV) and (SP_RSCKDIV) 
Serial Clock Divider Registers 

The frequency of an internally generated clock is a function of the proces-
sor clock frequency (as seen at the HCLK pin) and the value of the 16-bit 
serial clock divide modulus registers: TSCLKDIV and RSCLKDIV. The reset 
value is 0x0000.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-31 
 

ADSP-2199x DSP I/O Registers

Preliminary

The transmit TSCKDIV register address is:

SP_TSCKDIV 0x02:0x204

The receive TSCKDIV register address is:

SP_RSCKDIV 0x02:0x205

SPORT Transmit (SP_TFSDIV) and Receive 
(SP_RFSDIV) Frame Sync Divider Registers

These 16-bit registers specify how many transmit or receive clock cycles 
are counted before generating a TFS or RFS pulse (when the frame synch is 
internally generated). In this way, a frame sync can be used to initiate peri-
odic transfers. The counting of serial clock cycles applies to either 
internally or externally generated serial clocks. The reset value is 0x0000.

The transmit TFSDIV register address is:

SP_TFSDIV 0x02:0x206

The receive RFSDIV register address is:

SP_RFSDIV 0x02:0x207

SPORT Status (SP_STATR) Register
The address is: 

SP_STATR 0x02:0x208

Figure 23-8 on page 23-33 provides bit descriptions.



SPORT Registers

23-32 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The RXS and TXS status bits in the SPORT Status Register are updated 
upon reads and writes from the core processor even when the serial port is 
disabled. The SPORT Status Register is used to determine if the access to 
a SPORT RX or TX buffer can be made via determining their full or empty 
status. It is a read-only register -- its reset value is undefined.

The transmit underflow status bit (TUVF) is set in the SPORT Status Reg-
ister when a transmit frame synch occurs and no new data has been loaded 
into the SPORT TX register. The TUVF status bit is “sticky” and is only 
cleared by disabling the serial port.

When the SPORT RX buffer is full, the receive overflow status bit (ROVF) is 
set in SPORT Status Register. The overflow status is generated on the last 
bit of the second word. The ROVF status bit is “sticky” and is only cleared 
by disabling the serial port.

The 7-bit CHNL field is the read-only status indicator that shows which 
channel is currently selected during multi-channel operation. CHNL6:0 
increments by one as each channel is serviced. Note that in Channel Select 
Offset Mode, the CHNL value is reset to 0 after the offset has been com-
pleted. For example, with offset equals to 21 and a window of 8, in the 
regular mode the counter will display a value between 0 and 28, while in 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-33 
 

ADSP-2199x DSP I/O Registers

Preliminary

Channel Select Offset Mode, the counter will reset to 0 after counting up 
to 21, and then the frame will complete when the CHNL reaches 8th 
channel (value of 7).   

SPORT Multi-Channel Transmit Select (SP_MTCSx) 
Registers 

The multi-channel selection registers are used to enable and disable indi-
vidual channels. The MTCSx register specifies the active transmit channels. 
Each register has 16 bits, corresponding to the 16 channels. Setting a bit 
enables that channel so that the serial port will select its word from the 
multiple-word block of data (for either receive or transmit). For example, 
setting bit 0 selects word 0, setting bit 12 selects word 12, and so on. 

Setting a particular bit to 1 in a MTCSx register causes the serial port to 
transmit the word in that channel’s position of the data stream. Clearing 
the bit to 0 in the MTCSx register causes the serial port’s DT (data transmit) 
pin to three-state during the time slot of that channel. The reset value is 
0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

ROVF (Sticky receive overflow status)
0 = disabled, 1 = enabled

RXS (Receive Status)
0 = empty, 1 = full

TXS (Transmit Status)
0 = empty. 1 = full

TUVF (Sticky transmit underflow status)
0 = disabled, 1 = enabled

CHNL (Current Channel Indicator)

Reserved.

Figure 23-8. SPORT Status (SP_STATR) Registers’ Bits



SPORT Registers

23-34 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Register addresses are listed in Table 23-1.

SPORT Multi-Channel Receive Select (SP_MRCSx) 
Registers

The multi-channel selection registers are used to enable and disable indi-
vidual channels. The MRCSx register specifies the active receive channels. 
Each register has 16 bits, corresponding to the 16 channels. Setting a bit 
enables that channel so that the serial port will select its word from the 
multiple-word block of data (for either receive or transmit). For example, 
setting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit to 1 in the MRCSx register causes the serial port to 
receive the word in that channel’s position of the data stream; the received 
word is loaded into the RX buffer. Clearing the bit to 0 in the MRCSx regis-
ter causes the serial port to ignore the data. The reset value is 0x0000.

Table 23-2. SP_MTCSx Register Addresses 

Register Address

SP0_MTCS0 0x02:0x209

SP0_MTCS1 0x02:0x20A

SP0_MTCS2 0x02:0x20B

SP0_MTCS3 0x02:0x20C

SP0_MTCS4 0x02:0x20D

SP0_MTCS5 0x02:0x20E

SP0_MTCS6 0x02:0x20F

SP0_MTCS7 0x02:0x210



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-35 
 

ADSP-2199x DSP I/O Registers

Preliminary

Register addresses are listed in Table 23-1.

SPORT Multi-Channel Configuration (SP_MCMCx) 
Registers

There are two SP_MCMCx registers for the SPORT. Their addresses are in 
Table 23-3.

Refer to Figure 23-9 on page 23-37 and Figure 23-10 on page 23-38 for 
SP_MCMCx Registers’ bit descriptions. 

Table 23-3. SP_MRCSx Register Addresses 

Register Address

SP0_MRCS0 0x02:0x211

SP0_MRCS1 0x02:0x212

SP0_MRCS2 0x02:0x213

SP0_MRCS3 0x02:0x214

SP0_MRCS4 0x02:0x215

SP0_MRCS5 0x02:0x216

SP0_MRCS6 0x02:0x217

SP0_MRCS7 0x02:0x218

Table 23-4. SP_MCMCx Register Addresses 

Register Address

SP0_MCMC1 0x02:0x219

SP0_MCMC2 0x02:0x21A



SPORT Registers

23-36 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The SP_MCMCx registers are used to enable multi-channel mode. Setting the 
MCM bit enables multi-channel operation for both receive and transmit 
sides of the SPORT. A transmitting SPORT must therefore be in 
multi-channel mode if the receiving SPORT is in multi-channel mode.

The value of MFD is the number of serial clock cycles of the delay. 
Multi-channel frame delay allows the processor to work with different 
types of T1 interface devices.

A value of zero for MFD causes the frame sync to be concurrent with the 
first data bit. The maximum value allowed for MFD is 15.

The reset value for both SP_MCMCx registers is 0x0000. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-37 
 

ADSP-2199x DSP I/O Registers

Preliminary

 A new frame sync may occur before data from the last frame has been 
received, because blocks of data occur back-to-back.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MCM (Multi-Channel Mode) 
Setting the MCM bit in the MCM Con-
trol Register 1 enables multi-channel 
mode.
When MCM =1, multi-channel opera-
tion is enabled.
When MCM = 0, all multi-channel 
operations are disabled.

MFD (Multi-Channel Frame Delay):
The 4-bit MFD field specifies a delay 
between the frame sync pulse and 
the first data bit in multi-channel 
mode.

WSIZE (Window Size)
Window Size can be any value in the 
range of 8-128 in increments of 8. 
Default value of 0 corresponds to a 
minimum window size of 8 channels.

WOFF (Window Offset)
Window Offset places the start of the 
Window anywhere in the 127.
0 means no offset, 127 means offset 
of 127) channel range. 
For example, one could have a 5 
channel window (Window size is 5) in 
the range from 93 to 97 (offset is 93). 
If one wants to utilize all 128 chan-
nels, the offset is set to 0.

Figure 23-9. SPORT Multi-Channel Configuration (SP_MCMC1) 
Register Bits



SPORT Registers

23-38 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MCCRM (2x Clock Recovery Mode):
0x = bypass mode
10 =Recover 2MHz clock from 4MHz
11 = Recover 8MHz clock from 
16MHz

MCDTXPE (Multi-Channel DMA Trans-
mit Packing Enabled)
0 = enabled
1 = disabled

MCDRXPE (Multi-Channel DMA Receive 
Packing Enabled)
0 = enabled
1 = disabled

MCOM (Channel Select Offset Mode)
0 = enabled
1 = disabled

MCFF (TX FIFO Prefetch MAX Dis-
tance)
00 = 2 Channels
01 = 4 Channels
10 = 8 Channels
11 =16 Channels

FSDR (Frame Sync–Data Relation-
ship)
0 = normal
1 = reversed (H.100 mode)

Reserved

Figure 23-10. SPORT Multi-Channel Configuration (SP_MCMC2) 
Register Bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-39 
 

ADSP-2199x DSP I/O Registers

Preliminary

SPORT DMA Receive Pointer (SPDR_PTR) Register
The address is: 

SPDR_PTR 0x02:0x300

This 16-bit Read-Only register holds the pointer to the current descriptor 
block for the SPORT DMA operation. The reset value is 0x0000.

SPORT Receive DMA Configuration (SPDR_CFG) 
Register

The address is: 

SPDR_CFG 0x02:0x301

During SPORT initialization, the program can write the head address of 
the first DMA descriptor block to the Receive DMA Descriptor Pointer 
register and then set the DMA enable bit in the Receive DMA Configura-
tion Register. The DMA Configuration Register maintains real-time 
DMA buffer status. 

The SPORT DMA channel has an enable bit (DMA Enable) in this regis-
ter for the serial port. When DMA is not enabled for a particular channel, 
the SPORT generates an interrupt every time it has received a data word. 
The reset value is 0x0000. Refer to Figure 23-11 on page 23-40 for bit 
descriptions.

The DCOME bit will result in an interrupt of the core DSP once the last 
word of the DMA transfer has completed transmission (for a SPORT 
transmit), or has been written to memory (for a SPORT receive).

The FLSH (DMA Buffer Clear) bit has write-one-to-clear characteristics. 
It may also be used by a descriptor block load to initialize a DMA FIFO to 
a cleared condition prior starting a DMA transfer. Not only is the DMA 
extended buffer cleared, but the SPORT transmit double buffer and 
receive triple buffers are also cleared.



SPORT Registers

23-40 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DEN (DMA Enable) 
Bit 0 can be Read-Write in register:
0 = disabled, 1 = enabled

TRAN (Transfer Direction – Read-Only)
Sets whether the DMA access is SPORT 
Receive or Transmit DMA transfer 
0 = memory read
1 = memory write: set to 1 for Receive 
DMA Transfer.

DCOME (Interrupt on Complete–Read-Only)
This bit always reads as 0 in the Receive 
DMA transfer mode. 

Reserved 

DAUTO (AutoBuffer/Descriptor Mode)
0 = Descriptor Mode enabled
1 = Autobuffer Mode enabled

Reserved 

FLSH (DMA Buffer Clear) 
Bit 7 can be Read-Write in register. It 
should be set following a DMA termina-
tion due to an error condition.

DERE (Interrupt on Error - Read-only)

Reserved 

FS (DMA Buffer Status)
This bit is actively updated in register:
00 = buffer empty, 01 = one word present
10 = two words present, 11 = three words 
present

DS (DMA Completion Status - Read-only)
0 = Successful Completion
1 = Error: bit contains valid state only in a 
halted (not enabled) DMA controller.

DOWN (Descriptor Owner (Read-Only)
0 = Processor, 1 = DMA Engine

Figure 23-11. SPORT Receive DMA Configuration (SPDR_CFG) 
Register Bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-41 
 

ADSP-2199x DSP I/O Registers

Preliminary

SPORT Receive DMA Start Page (SPDR_SRP) 
Register

The address is: 

SPDR_SRP 0x02:0x302

This register holds a running pointer to the DMA address that is being 
accessed and the type of memory space being used. It is a Read-only regis-
ter (can be written in the Autobuffer Mode).

SPORT Receive DMA Start Address (SPDR_SRA) 
Register

The address is: 

SPDR_SRA 0x02:0x303

The DMA Start Address register maintains a running pointer to the DMA 
address that is being accessed. It is a Read-only (can be written in the 
Autobuffer Mode). The reset value is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)

MS (Memory Space)
00 = Memory Space
01 = Boot Space
10 = IO Space
11 = reserved

Reserved

Figure 23-12. SPORT Receive DMA Start (SPDR_SRP) Registers’ Bits



SPORT Registers

23-42 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPORT Receive DMA Count (SPDR_CNT) Register
The address is: 

SPDR_CNT 0x02:0x304

Bits 12:0 in the SPORT DMA Word Count register holds the number of 
remaining words in the transfer. It is a Read-Only registers (can be written 
in the Autobuffer Mode). The reset value is 0x0000.

SPORT Receive DMA Chain Pointer (SPDR_CP) 
Register

The address is: 

SPDR_CP 0x02:0x305

The 16-bit DMA Chain (Next Descriptor) Pointer register maintains the 
head address of the next DMA descriptor block. During SPORT initial-
ization, the programmer will write the head address of the first DMA 
descriptor block to the Receive (or Transmit) DMA Chain Pointer register 
and then set the DMA Enable bit in the Transmit or Receive DMA Con-
figuration Registers. 

Once a DMA process has started, no further control of the SPORT con-
troller or the DMA process should be performed by write accesses to the 
SPORT DMA control registers. Performing IO Space writes to these reg-
isters during operation will have no effect on DMA transfers since these 
registers are read-only. The reset value is 0x0000. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-43 
 

ADSP-2199x DSP I/O Registers

Preliminary

SPORT Receive DMA Chain Pointer Ready 
(SPDR_CPR) 
Register

The address is: 

SPDR_CPR 0x02:0x306

This register is used to show the Descriptor’s status. A DMA Chain 
Pointer Ready Register is needed for the Descriptor Ownership setup. It is 
a write-only registers (always read as zero). The reset value is 0x0000.

SPORT Receive DMA Interrupt (SPxDR_IRQ) Register
The address is: 

SPDR_IRQ 0x02:0x307

The SPORT DMA unit generates an interrupt upon a completion of a 
data transfer. Writing a one to bit 0 clears the DMA interrupt. Writing a 
one to bit 1 clears the Error Interrupt condition. 

Refer to Figure 23-13 on page 23-43 for bit descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DCOMI (DMA Interrupt on Completion)
1 = completed, 0 = inactive 
Type - W1C

DERI (DMA Interrupt on Error)
1 = error, 0 = inactive
Type - W1C

Reserved

Figure 23-13. SPORT Receive DMA Interrupt (SPDR_IRQ) Registers’ 
Bits



SPORT Registers

23-44 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPORT Transmit DMA Pointer (SPDT_PTR) Register
The address is: 

SPDT_PTR 0x02:0x380

This register holds the address for the current transmit control block 
(descriptor) in a chained DMA operation. The reset value is 0x0000.

SPORT Transmit DMA Configuration (SPDT_CFG) 
Register

The address is: 

SPDT_CFG 0x02:0x381

During SPORT initialization, the program can write the head address of 
the first DMA descriptor block to the Transmit DMA Descriptor Pointer 
register and then set the DMA enable bit in the Transmit DMA Configu-
ration Register. The DMA Configuration Register maintains real-time 
DMA buffer status. The reset value is 0x0000.

The SPORT DMA channel has an enable bit (DMA Enable) in this regis-
ter for the serial port. When DMA is not enabled for a particular channel, 
the SPORT generates an interrupt every time it has started to transmit a 
data word. 

For information on the bits in this register (which are the same 

as the SPxDR_CFG register), see Figure 23-11 on page 23-40.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-45 
 

ADSP-2199x DSP I/O Registers

Preliminary

SPORT Transmit DMA Start Address (SPDT_SRA) 
Register

The address is: 

SPDT_SRA 0x02:0x383

The DMA Start Address register holds a running pointer to the DMA 
address that is being accessed. This is a Read-only register (can be written 
in the Autobuffer Mode). The reset value is 0x0000.

SPORT Transmit DMA Start Page (SPDT_SRP) Register
The address is: 

SPDT_SRP 0x02:0x382

The SPORT DMA Start Page register (as well as the SPORT DMA Start 
Address and DMA Word Count registers) maintain a running pointer to 
the DMA address that is being accessed and the number of remaining 
words in the transfer. These are Read-only registers (can be written in the 
Autobuffer Mode).    

Refer to Figure 23-15 on page 23-47 for bit descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)

MS (Memory Space)
00 = Memory Space
01 = Boot Space
10 = IO Space
11 = Reserved

Reserved

Figure 23-14. SPORT Transmit DMA Start Page (SPDT_SRP) Register 
Bits



SPORT Registers

23-46 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPORT Transmit DMA Count (SPDT_CNT) Register
The address is:

SPDT_CNT 0x02:0x384

The DMA Word Count register holds the DMA Block Word Count (the 
number of remaining words in the transfer). This is a Read-only register 
(can be written in the Autobuffer Mode). The reset value is 0x0000.

SPORT Transmit DMA Chain Pointer (SPDT_CP) 
Register

The address is: 

SPDT_CP 0x02:0x385

The DMA Chain (Descriptor) Pointer register holds the head address of 
the next DMA descriptor block. During SPORT initialization, the pro-
grammer will write the head address of the first DMA descriptor block to 
the Transmit (or Receive) DMA Chain Pointer register and then set the 
DMA enable bit in the Transmit or Receive DMA Configuration Regis-
ters. Once a DMA process has started, no further control of the SPORT 
controller or the DMA process should be performed by write accesses to 
the SPORT DMA control registers. 

Performing IO Space Writes to these registers during operation will have 
no effect on DMA transfers since these registers are read-only. The reset 
value is 0x0000.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-47 
 

ADSP-2199x DSP I/O Registers

Preliminary

SPORT Transmit DMA Chain Pointer Ready 
(SPDT_CPR) 
Register

The address is: 

SPDT_CPR 0x02:0x386

This register is used to show the Descriptor’s status. A DMA Chain 
Pointer Ready Register is needed for the Descriptor Ownership setup. 
They are write-only registers (always read as zero). The reset value is 
0x0000.

SPORT Transmit DMA Interrupt (SPDT_IRQ) Register
The address is: 

SPDT_IRQ 0x02:0x387

The SPORT DMA unit generates an interrupt upon a completion of a 
data transfer. Writing a one to bit 0 clears the DMA interrupt. Writing a 
one to bit 1 clears the Error Interrupt condition. 

Refer to Figure 23-14 on page 23-45 for bit descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DCOMI (DMA Interrupt on Completion)
1 = completed, 0 = inactive 
Type - W1C

DERI (DMA Interrupt on Error)
1 = error, 0 = inactive
Type - W1C

Reserved

Figure 23-15. SPORT Transmit DMA Interrupt (SPxDT_IRQ) Register 
Bits



Serial Peripheral Interface Registers

23-48 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Serial Peripheral Interface Registers
The Serial Peripheral Interface module (SPI) provides functionality for a 
generic configurable serial port interface based on the SPI standard.

The Serial Peripheral Interface is essentially a shift register that serially 
transmits and receives data bits to/from other SPI-compatible devices. 
During an SPI transfer, data is simultaneously transmitted (shifted out 
serially) and received (shifted in serially). A serial clock line synchronizes 
shifting and sampling of the information on the two serial data lines.

SPI Control (SPICTL) Register
The address is: SPICTL 0x04:0x000.

The SPI control register (SPICTL) is used to configure the SPI system. The 
term “word” refers to a single data transfer of either 8 bits or 16 bits, 
depending on the word length (SIZE) bit in SPICTL. There are two special 
bits which can also be modified by the hardware: SPE and MSTR. 

The SPI control register bit descriptions are as shown in Figure 23-16 on 
page 23-50.

Note: Bit default is 0 unless marked otherwise. 

Bits 1:0 are used to initiate transfers to/from the receive/transmit buffers. 
When set to 00, the Interrupt is active when the receive buffer is full. 
When set to 01, the Interrupt is active when the transmit buffer is empty.

Bit 4 is used to enable the SPISS input for Master. When not used, SPISS 
can be disabled, freeing up a chip pin as general purpose I/O. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-49 
 

ADSP-2199x DSP I/O Registers

Preliminary

Bit 5 allows to enable the MISO pin as an output. This is needed in an 
environment where master wishes to transmit to various slaves at one time 
(broadcast). Only one slave is allowed to transmit data back to the master. 
Except for the slave from whom the master wishes to receive, all other 
slaves should have this bit set.



Serial Peripheral Interface Registers

23-50 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Reset = 0x0400

TIMOD (Transfer Initiation Mode)
00 = set tran from read of receive buffer, 
01 = set tran from write to transmit buffer, 
10 = DMA tran mode—IRQ config from 
DMA, 11 = Reserved.

SZ (Send Zero) Sends 0 or last word when 
TDBR empty)
0 = Send Last Word, 1 = Send Zeros

GM (Get More Data) When RDBR full, 
0 = Discard incoming data
1 = Get data, overwrites previous data

PSSE (Slave-Select Enable) 
0 = Disable, 1 = Enable

EMISO (Enable MISO) 
0 = MISO disabled, 1 = MISO enabled

Reserved 

SIZE (Size of Words)
0 = 8 bits, 1 = 16 bits

LSBF (LSB first)
0 = MSB sent/received first 
1 = LSB sent/received first

CPHA (Clock Phase) Selects the trans-
fer format). 0 = SPICLK toggles 
from middle of transfer, 
1 = SPICLK toggles from start of 
transfer.

CPOL (Clock Polarity)
0 = active-high SPICLK, 
1 = active-low SPICLK

MSTR (Master) Sets the SPI module as master 
or slave 0 = slave, 1 = master

WOM Write Open drain Master)
0 = Normal, 1 = Open Drain

SPE (SPI Enable)
0 = disabled, 1 = enabled

Reserved 

Figure 23-16. SPI Control (SPICTL) Register Bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-51 
 

ADSP-2199x DSP I/O Registers

Preliminary

SPI Flag (SPIFLG) Register
The address is: SPIFLG 0x04:0x001 and SPIFLG1 0x04:0x200.

The SPI Flag register is a read/write register that is used to enable individ-
ual SPI slave-select lines when the SPI is enabled as a master. There are 7 
bits which select the outputs to be driven as slave-select lines (FLS) and 7 
bits which can activate the selected slave-selects (FLG). 

The following table provides the bit mappings for the SPIFLG register.

Table 23-5. SPIFLG Register Bits 

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPISEL1 Enable PF2 0

2 FLS2 SPISEL2 Enable PF3 0

3 FLS3 SPISEL3 Enable PF4 0

4 FLS4 SPISEL4 Enable PF5 0

5 FLS5 SPISEL5 Enable PF6 0

6 FLS6 SPISEL6 Enable PF7 0

7 FLS7 SPISEL7 Enable PF8 0

8 Reserved 1

9 FLG1 SPISEL1 Value PF2 1

10 FLG2 SPISEL2 Value PF3 1

11 FLG3 SPISEL3 Value PF4 1

12 FLG4 SPISEL4 Value PF5 1

13 FLG5 SPISEL5 Value PF6 1

14 FLG6 SPISEL6 Value PF7 1

15 FLG7 SPISEL7 Value PF8 1



Serial Peripheral Interface Registers

23-52 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

If the SPI is enabled and configured as a master, up to 7 of the chip’s gen-
eral-purpose flag I/O pins may be used as slave-select outputs.

SPI Status (SPIST) Register
The address is: SPIST 0x04:0x002. 

Note: Bit default is 0 unless marked otherwise.

The SPI Status register can be read at any time. Some of the bits are 
read-only (RO), and others can be cleared by a write-1 (W1C) operation. 
Bits which merely provide information about the SPI are read-only; these 
bits are set and cleared by the hardware. Bits which are W1C are set when 
an error condition occurs; these bits are set by hardware, and must be 
cleared by software. To clear a W1C bit, write a 1 to the desired bit posi-
tion of the SPIST register. 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-53 
 

ADSP-2199x DSP I/O Registers

Preliminary

The transmit buffer becomes full after it is written to; it becomes empty 
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift 
register value is loaded into the receive buffer; it becomes empty when the 
receive buffer is read.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIF (SPI Finished)
Set when an SPI single-word trans-
fer is complete. Type - RO. Default 
=1.

MODF (Mode Fault)
Set in a master device when some 
other device tries to become the 
master. 
Type - W1C.

TXE (Transmission Error)
Set when transmission occurred with 
no new data in TDBR register. Type - 
W1C.

TXS (TDBR Data Buffer Status) 
Type - RO.
0 = empty, 1 = full 

RBSY (Receive Error)
Set when data is received with 
receive buffer full. Type - W1C.

RXS (RX Data Buffer Status)
Type - RO. 
0 = empty, 1 = full.

TXCOL (Transmit Collision Error)
When this bit is set, it is possible that 
corrupt data was transmitted. Type - 
W1C.

Reserved.

Figure 23-17. SPI Status (SPIST) Register Bits



Serial Peripheral Interface Registers

23-54 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPI Transmit Buffer (TDBR) Register
These are 16-bit read-write (RW) registers. Data is loaded into this regis-
ter before being transmitted. Just prior to the beginning of a data transfer, 
the data in TDBR is loaded into the shift register (SFDR). A normal core 
read of TDBR can be done at any time and does not interfere with, or ini-
tiate, SPI transfers.

When the DMA is enabled for transmit operation (described later in this 
document), the DMA automatically loads TDBR with the data to be trans-
mitted. Just prior to the beginning of a data transfer, the data in TDBR is 
loaded into the shift register. A normal core write to TDBR should not 
occur in this mode because this data will overwrite the DMA data to be 
transmitted.

When the DMA is enabled for receive operation, whatever is in TDBR will 
repeatedly be transmitted. A normal core write to TDBR is permitted, and 
this data will be transmitted.

If the “send zeros” control bit (SZ) is set, TDBR may be reset to 0 under cer-
tain circumstances. If multiple writes to TDBR occur while a transfer is 
already in progress, only the last data which was written will be transmit-
ted; all intermediate values written to TDBR will not be transmitted. 
Multiple writes to TDBR are possible, but not recommended.

The address is: TDBR 0x04:0x003. The reset value is 0x0000.

Receive Buffer, SPI (RDBR) Register
This is a 16-bit read-only (RO) register. At the end of a data transfer, the 
data in the shift register is loaded into RDBR. During a DMA receive opera-
tion, the data in RDBR is automatically read by the DMA. When RDBR is 
read via software, the RXS bit is cleared and an SPI transfer may be initi-
ated (if TIMOD=00).

The address is: RDBR 0x04:0x004. The reset value is 0x0000.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-55 
 

ADSP-2199x DSP I/O Registers

Preliminary

Receive Data Buffer Shadow, SPI (RDBRS) Register
This is a 16-bit read-only shadow register (for the Receive Data Buffer 
Register) provided for use with debugging software. The RDBRS register is 
at a different address from RDBR, but its contents are identical to that of 
RDBR. When RDBR is read via software, the RXS bit is cleared and an SPI 
transfer may be initiated (if TIMOD=00). No such hardware action occurs 
when the shadow register is read.

The address is: RDBRS0 0x04:0x006 and RDBRS1 0x04:0x206. The reset 
value is 0x0000.

SPI Baud Rate (SPIBAUD) Register
The SPI baud rate register (SPIBAUD) is used to set the bit transfer rate for 
a master device. The address is: SPIBAUD 0x04:0x005. When configured as 
a slave, the value written to this register is ignored. The serial clock fre-
quency is determined by the following formula:

SCK Frequency = (Peripheral clock frequency)/(2*SPIBAUD)

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the peripheral clock rate 
(HCLK). The reset value is 0x0000.

SPI DMA Current Pointer (SPID_PTR) Register
A Current Chain Pointer register holds the address for the current transfer 
control block in a chained DMA operation. The address is: SPID_PTR 
0x04:0x100. The reset value is 0x0000.



Serial Peripheral Interface Registers

23-56 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPI DMA Configuration (SPID_CFG) Register
There are five registers which make up the descriptor block for a DMA 
transfer. The SPI DMA Configuration register is one of these registers. 
They are accessible through the DMA bus. The address is: SPID_CFG 
0x04:0x101.

Note: Bit default is 0 unless marked otherwise.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-57 
 

ADSP-2199x DSP I/O Registers

Preliminary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DEN (DMA Enable)
0 = disabled, 1 = enabled

TRAN (Transfer Direction)
0 = Memory Read (SPI transmit)
1 = Memory Write (SPI receive)

DCOME (Interrupt on Complete) 
Read-only. This bit always reads as 
0.

Reserved 

DAUTO (AutoBuffer/Descriptor Mode)
DMA link mode enable:
0 = Descriptor link mode
1 = Circular buffer (autobuffer) mode

Reserved 

FLSH (DMA Buffer Clear) 
Bit 7 can be Read-Write in register. 
It is set following a DMA termination 
due to an error condition.

DERE (Interrupt on Error - Read-only)

RBSY (Receive Overflow Error) 
Set = 0 only if TRAN = 1. 

TXE (Transmit Underrun Error)
Set = 0 only if TRAN = 0.

MODF (Mode Fault Error) - Status 
(Multi-master) 

FS (DMA FIFO status)
00 = FIFO empty, 11 = FIFO full
10 = FIFO partially full, 01 = 
Reserved

DS (DMA Completion Status)
0 = successful completion
1 = error

DOWN (Descriptor Ownership) 
0 = DSP, 1 = DMA 

Figure 23-18. SPI DMA Configuration (SPID_CFG) Register Bits



Serial Peripheral Interface Registers

23-58 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

SPI DMA Start Page (SPID_SRP) Register
The 16-bit SPI DMA Start Page register holds a running pointer to the 
DMA address that is being accessed and the type of memory space being 
used. The address is: SPID_SRP 0x04:0x102. 

SPI DMA Start Address (SPID_SRA) Register
The 16-bit SPI DMA Start Address register holds a running pointer to the 
DMA address that is being accessed. The address is: SPID_SRA 
0x04:0x103. The reset value is 0x0000.

SPI DMA Word Count (SPID_CNT) Register
The 16-bit SPI DMA Word Count register holds the Block Word Count 
(the number of remaining words in the transfer). The address is: SPID_CNT 
0x04:0x104. The reset value is 0x0000.

SPI DMA Next Chain Pointer (SPID_CP) Register
The SPI DMA Next Chain Pointer Descriptor register is used to write the 
Head of Descriptor List. The address is: SPID_CP 0x04:0x105. A CPx regis-
ter holds the address for the next transfer control block in a chained DMA 
operation. The reset value is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)

MS (Memory Space)
0 = Memory Space
1 = Boot Space

Reserved

Figure 23-19. SPI DMA Start Page (SPID_SRP) Register Bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-59 
 

ADSP-2199x DSP I/O Registers

Preliminary

SPI DMA Chain Pointer Ready (SPID_CPR) Register
This 1-bit register is used to show the Descriptor’s status. The address is: 
SPID_CPR 0x04:0x106. If Bit 0 is set to 0, the Descriptor Block is ready 
(set). The reset value is 0x0000.

SPI DMA Interrupt (SPID_IRQ) Register
This register is used to indicate the SPI DMA interrupt status. The 
address is: SPID_IRQ 0x04:0x107. 

Timer Registers
The Timer peripheral module provides general-purpose timer functional-
ity. It consists of three identical Timer units. 

To provide the required functionality, each Timer has seven 16-bit mem-
ory-mapped registers. Six of these registers are paired to achieve 32-bit 
precision and appropriate range. Entity pair values are not accessed con-
currently over the 16-bit peripheral bus, requiring a mechanism to insure 
coherency of the register pair values. For example, the user must disable 
the Timer to ensure high-low register pair coherency for the Timer 
Counter.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DCOMI (DMA Interrupt on Completion)
1 = completed, 0 = inactive 
Type - W1C

DERI (DMA Interrupt on Error)
1 = error, 0 = inactive
Type - W1C

Reserved

Figure 23-20. SPI DMA Interrupt (SPID_IRQ) Register Bits



Timer Registers

23-60 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Each Timer provides four Registers:

• Config 15:0 – Configuration Register

• Width 31:0 – Pulse Width Register

• Period 31:0 – Pulse Period Register

• Counter 31:0 – Timer Counter

One common status register, Global Status 15:0 is also provided, requir-
ing only a single read to determine the status. Status bits are “sticky” and 
require a “write-one” to clear operation.

Timer Global Status and Control (T_GSRx) Registers
The three Global Status registers’ addresses are: 

T_GSR0 0x05:0x200

T_GSR1 0x05:0x208

T_GSR2 0x05:0x210



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-61 
 

ADSP-2199x DSP I/O Registers

Preliminary

Each Timer has a common status register, Status 15:0, requiring only a 
single read to determine the status. Status bits are “sticky” and require a 
“write-one” to clear operation. During a Status Register read access, all 
reserved or unused bits will return a zero. The reset state is 0x0000.   

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

TIMIL0 (Timer0 interrupt)
Write a one to clear (also an output)

TIMIL1 (Timer1 interrupt)
Write a one to clear (also an output)

TIMIL2 (Timer2 interrupt)
Write a one to clear (also an output)

Reserved - Timer3 (reserved)

OVF_ERR0 (Timer0 Counter overflow

OVF_ERR1 (Timer1 Counter overflow 

OVF_ERR2 (Timer2 Counter overflow

Reserved - Timer3 (reserved)

TIMEN0 (Timer0 Enable) -- Write a 
one to enable

TIMDIS0 (Timer0 Disable) -- Write 
a one to disable

TIMEN1 (Timer1 Enable) -- Write a 
one to enable

TIMDIS1 (Timer1 Disable) -- Write 
a one to disable

TIMEN2 (Timer2 Enable) -- Write a 
one to enable

TIMDIS2 (Timer2 Disable) -- Write 
a one to disable

Reserved - Timer3 (reserved)

Figure 23-21. Timer Global Status and Sticky (T_GSRx) Register Bits



Timer Registers

23-62 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Each Timer generates a unique DSP Interrupt Request signal, TMR_IRQ. 
A common Status Register latches these interrupts so that the user can 
determine the interrupt source without reference to the unique interrupt 
signal. Interrupt bits are “sticky” and must be cleared to assure that the 
interrupt is not re-issued. 

Each Timer is provided with its own “sticky” Status Register TIMENx bit. 
To enable or disable an individual timer, the TIMEN bit is set or cleared. 
For example, writing a one to bit-8 sets the TIMEN0 bit; writing a one to 
bit-9 clears it. Writing a one to both bit-8 and bit-9 clears TIMEN0. Read-
ing the Status Register returns the TIMEN0 State on both bit-8 and bit-9. 
The remaining TIMENx bits operate similarly using bit-10 and bit-11 for 
Timer1, and bit-12 and bit-13 for Timer2. 

Timer Configuration (T_CFGRx) Registers
The three T_CFGR registers’ addresses are: 

T_CFGR0 0x05:0x201

T_CFGR1 0x05:0x209

T_CFGR2 0x05:0x211



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-63 
 

ADSP-2199x DSP I/O Registers

Preliminary

All Timer clocks are gated “OFF” when the specific Timer’s Configura-
tion Register is set to zero at System Reset or subsequently reset by the 
user. Figure 23-22 on page 23-63 provides bit descriptions.     

Timer Counter, low word (T_CNTLx) and high word 
(T_CNTHx) Registers

The T_CNTLx Low Word registers’ addresses are: 

T_CNTL0 0x05:0x202

T_CNTL1 0x05:0x20A

T_CNTL2 0x05:0x212

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

TMODE (Timer Mode)
00 = Reset State - unused
01 = PWM_OUT Mode
10 = WDTH_CAP Mode
11 = EXT_CLK Mode

PULSE_HI 
1 = Positive Active Pulse
0 = Negative Active Pulse 

PERIOD_CNT (Period Count)
1 = Count to end of Period
0 = Count to end of Width 

IRQ_ENA (Interrupt Request Enable)
1 = Interrupt Request Enable
0 = Interrupt Request Disable 

TIN_SEL (Timer Input Select)
1 = Sample RXD select
0 = Sample TMRx select 

Reserved

Figure 23-22.  Timer Configuration (T_CFGRx) Register Bits 



Timer Registers

23-64 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The T_CNTHx High Word registers’ addresses are: 

T_CNTH0 0x05:0x203

T_CNTH1 0x05:0x20B

T_CNTH2 0x05:0x213

These 16-bit memory-mapped registers are paired (15:0 as low and 31:16 
as high) to achieve 32-bit precision and appropriate range.

When disabled, the Timer Counter retains its state. When enabled again, 
the Timer Counter is re-initialized from the Period/Width Registers based 
on Configuration and Mode.

The Timer Counter value cannot be set directly by the software. It can be 
set indirectly by initializing the Period or Width values in the appropriate 
mode. The Counter should only be read when the respective Timer is dis-
abled. This prevents erroneous data from being returned.

In the EXT_CLK Mode, the TMRx (or RXD in Auto-baud mode) pin is used to 
clock the Timer Counter. The Counter is initialized with the Period value 
and counts until the Period expires. In the EXT_CLK Mode, the Timer 
Counter can operate at a Maximum frequency of 25 MHz. This limitation 
results from a synchronization/latency trade off in the Counter control 
logic. 

If the 32-bit Counter were clocked by a 10 MHz external clock, it is possi-
ble to achieve a Maximum Timer Counter Period of (232–1) * 100ns.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-65 
 

ADSP-2199x DSP I/O Registers

Preliminary

Timer Period, low word (T_PRDLx) and high word 
(T_PRDHx) 
Registers

The T_PRDLx Low Word registers’ addresses are: 

T_PRDL0 0x05:0x204

T_PRDL1 0x05:0x20C

T_PRDL2 0x05:0x214

The T_PRDHx High Word registers’ addresses are: 

T_PRDH0 0x05:0x205

T_PRDH1 0x05:0x20D

T_PRDH2 0x05:0x215

These 16-bit memory-mapped registers are paired (15:0 as low and 31:16 
as high) to achieve 32-bit precision and appropriate range. 

Once a timer is enabled and running, when the DSP writes new values to 
the Timer Period and Timer Pulse Width registers, the writes are buffered 
and do not update the registers until the end of the current period (when 
the Timer Counter Register equals the Timer Period Register).

• During the Pulse Width Modulation (PWM_OUT), the Period value is 
written into the Timer Period registers. Both Period and Width 
Register values must be updated “on the fly” since the Period and 
Width (duty cycle) change simultaneously. To insure the Period 
and Width value concurrency, a 32-bit Period Buffer and a 32-bit 
Width Buffer are used.

The high-low Period values are updated first if necessary. Once the 
Period value has been updated, it is necessary to update the 
high-word Width value followed by the low-word Width value. 
Updating the low-word Width value is what actually transfers the 



Timer Registers

23-66 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Period and Width values to their respective Buffers. This permits 
low-only Width value updates for low-resolution situations while 
maintaining high-low value coherency.

If the Period value is updated, the low-word Width value must be 
updated as well. This mechanism permits Width-Only updates 
while maintaining Period and Width value coherency. When the 
low-word Width value is updated, the Timer simultaneously 
updates the Period and Width Buffers on the next clock cycle.

• During the Pulse Width and Period Capture (WDTH_CAP) Mode, the 
Period values are captured at the appropriate time. Since both the 
Period and Width Registers are Read-Only in this mode, the exist-
ing 32-bit Period and Width Buffers are used.

• During the EXT_CLK mode, the Period Register is Write-Only. 
Therefore, the Period Buffer is used in this mode to insure 
high/low Period value coherency. 

Timer Width, low word (T_WLRx) and high word 
(T_WHRx) Register

The T_WLRx Low Word registers’ addresses are: 

T_WLR0 0x05:0x206

T_WLR1 0x05:0x20E

T_WLR2 0x05:0x216

The T_WHRx High Word registers’ addresses are: 

T_WHR0 0x05:0x207

T_WHR1 0x05:0x20F

T_WHR2 0x05:0x217



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-67 
 

ADSP-2199x DSP I/O Registers

Preliminary

These 16-bit memory-mapped registers are paired (15:0 as low and 31:16 
as high) to achieve 32-bit precision and appropriate range. 

• During the Pulse Width Modulation (PWM_OUT), the Width value is 
written into the Timer Width registers. Both Width and Period 
Register values must be updated “on the fly” since the Period and 
Width (duty cycle) change simultaneously. To insure Period and 
Width value concurrency, a 32-bit Period Buffer and a 32-bit 
Width Buffer are used.

The high-low Period values are updated first if necessary. Once the 
Period value has been updated, it is necessary to update the 
high-word Width value followed by the low-word Width value. 
Updating the low-word Width value is what actually transfers the 
Period and Width values to their respective Buffers. This permits 
low-only Width value updates for low-resolution situations while 
maintaining high-low value coherency.

If the Period value is updated, the low-word Width value must be 
updated as well. This mechanism permits Width-Only updates 
while maintaining Period and Width value coherency. When the 
low-word Width value is updated, the Timer simultaneously 
updates the Period and Width Buffers on the next clock cycle.

• During the Pulse Width and Period Capture (WDTH_CAP) Mode, both 
the Period and Width values are captured at the appropriate time. 
Since both the Width and Period Registers are Read-Only in this 
mode, the existing 32-bit Period and Width Buffers are used.

• During the EXT_CLK mode, the Width Register is unused. 



External Memory Interface Registers

23-68 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

External Memory Interface Registers
The External Memory Interface (EMI) peripheral provides an asynchro-
nous parallel data interface to the outside world for ADSP-2199x core 
based devices. The EMI supports instruction and data transfers from the 
core to external memory space and boot space. The EMI function is to 
move 8, 16, or 24 bit data between the core and its peripherals and 
off-chip memory devices.

External Memory Interface Control/Status (E_STAT) 
Register

This register address is 0x00:0x080. 

The EMI Control/Status Register configures access to external or boot 
memory space, selects the external data format, and indicates pending sta-
tus for memory writes.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-69 
 

ADSP-2199x DSP I/O Registers

Preliminary

Figure 23-23 on page 23-69 provides bit descriptions. 

External Memory Interface Control (EMICTL) 
Register

This register address is 0x06:0x201. The EMI Control Register is a 7-bit 
register. It can be used to configure the interface for an 8- or 16-bit exter-
nal data bus. The register provides a lock bit to disable write accesses to 
the EMI Memory Access Control registers. Setting the lock bit in the EMI 
Control Register will cause the arbitration unit to provide grants only to 
direct access or peripheral register access requests.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

E_PI_BE (PM Instruction from Boot 
Space Enable)
0 = Use MSx for off-chip fetch
1 = Use BMS for off-chip fetch

E_PD_BE (PM Data from Boot Space 
Enable)
0 = Use MSx for off-chip PM 
data
1 = Use BMS for off-chip PM 
data

E_DD_BE (DM Data from Boot Space 
Enable)
0 = Use MSx for off-chip DM data
1 = Use BMS for off-chip DM data

E_DFS (PM and DM Data Format Select)
0 = 16-bit
1 = 24-bit

Reserved

E_WPF (Write Pending Flag)
0 = No pending write
1 = Write pending

Reserved

Figure 23-23.  EMI Control/Status (E_STAT) Register Bits 



External Memory Interface Registers

23-70 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Separate register bits are also provided to set the read and write strobe 
sense for positive logic (bit=0) or negative logic (bit=1). The sense bits are 
common to all memory spaces. Figure 23-24 on page 23-70 provides bit 
descriptions. 

Boot Memory Select Control (BMSCTL) Register
This register address is 0x06:0x202. The Boot Memory Select Control 
Register stores configuration data for the Boot memory space. The follow-
ing are six parameters that can be programmed to customize accesses for 
the selected memory space. Figure 23-25 on page 23-71 provides bit 
descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 Reset = 0x0060

E_BL (Bus Lock)

E_BHE (Bus Hold Off Enable)
0 = Disable Hold off, 1 = 
Enable Hold off

E_CRL (Access Control Reg Lock)

E_BWS (External Bus Width Select)
0 = 8-bit, 1 = 16-bit

E_WLS (Write Strobe Sense)
0 = Positive Logic
1 = Negative Logic

E_RLS (Read Strobe Sense)
0 = Positive Logic
1 = Negative Logic

E_ASE (Access Split Enable)
0 = Disable
1 = Enable

Reserved

Figure 23-24.  EMI Control (EMICTL) Register Bits 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-71 
 

ADSP-2199x DSP I/O Registers

Preliminary

The Read and Write Waitstate Counts indicate the number of I/O clock 
cycles that the EMI will wait before completing execution of an external 
transfer. The Wait Mode indicates how the waitstate counter and memory 
ACK line are used to determine the end of a transaction.These are the actual 
counts and are not encoded. 

The Base Clock Divider sets the I/O clock rate to be a sub-multiple of the 
peripheral clock rate. The Write Hold Mode bit is set to 1 to extend the 
write data by one cycle following de-asserting of the strobe in order to 
provide more data hold time for slow devices. 

The CMS Output Enable is set to 1 to enable the CMS signal to be asserted 
when the selected memory space is accessed. This bit has no effect on the 
ADSP-2199x, because the ADSP-2199x does not have a CMS pin.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

E_RWC (Read Waitstate Count)

E_WWC (Write Waitstate Count)

E_WMS (Wait Mode)
00 = External Acknowledge only
01 = Internal Wait only
10 = both internal and external
11 = either internal or external

E_CDS (Base Clock Divider)
000 = 1x core clock
001 = 2x core clock
010 = 4x core clock
011 = 8x core clock
100 = 16x core clock
101 = 32x core clock

E_WHC (Write Hold)
0 = no hold cycle insertion
1 = extend write data one cycle

Reserved.

E_COE (CMS Output)
0 = Disable, 1 = Enable

Figure 23-25.  Boot Memory Select Control (BMSCTL) Register Bits



External Memory Interface Registers

23-72 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Memory Select Control (MSxCTL) Registers
The ADSP-2199x supports selection of up to four memory banks (MS3-0). 
Each of these banks can also be configured to support either 8-bit wide 
memories or 16-bit wide memories on a bank basis.

These memory bank registers’ addresses are:

(Bank 0) MS_0_CTRL 0x06:0x203

(Bank 1) MS_1_CTRL 0x06:0x204

(Bank 2) MS_2_CTRL 0x06:0x205

(Bank 3) MS_3_CTRL 0x06:0x206

Each Memory Select Control Register stores configuration data for the 
memory space. The following are six parameters that can be programmed 
to customize accesses for the selected memory space. 

The Read and Write Waitstate Counts indicate the number of EMICLK 
clock cycles that the EMI will wait before completing execution of an 
external transfer. The Wait Mode indicates how the waitstate counter and 
memory ACK line are used to determine the end of a transaction. These 
are the actual counts and are not encoded. 

The Base Clock Divider sets the EMICLK clock rate to be a sub-multiple 
of the peripheral clock rate. The Write Hold Mode bit is set to 1 to extend 
the write data by one cycle following de-asserting of the strobe in order to 
provide more data hold time for slow devices. The CMS Output Enable is 
set to 1 to enable the CMS signal to be asserted when the selected memory 
space is accessed. 

For information on the bits in this register (which are the same as the 
BMSCTL register), see Figure 23-25 on page 23-71.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-73 
 

ADSP-2199x DSP I/O Registers

Preliminary

I/O Memory Select Control (IOMSCTL) Register 
This register address is 0x06:0x207. The I/O Memory Select Control Reg-
ister stores configuration data for the I/O memory space. The following 
are six parameters that can be programmed to customize accesses for the 
selected memory space.

The Read and Write Waitstate Counts indicate the number of I/O clock 
cycles that the EMI will wait before completing execution of an external 
transfer. The Wait Mode indicates how the waitstate counter and memory 
ACK line are used to determine the end of a transaction. These are the 
actual counts and are not encoded. 

The Base Clock Divider sets the I/O clock rate to be a sub-multiple of the 
peripheral clock rate. The Write Hold Mode bit is set to 1 to extend the 
write data by one cycle following de-asserting of the strobe in order to 
provide more data hold time for slow devices. The CMS Output Enable is 
set to 1 to enable the CMS signal to be asserted when the selected memory 
space is accessed. 

For information on the bits in this register (which are the same as the 
BMSCTL register), see Figure 23-25 on page 23-71.

External Port Status (EMISTAT) Register
The External Port Status Register address is 0x06:0x208. The reset value is 
undefined. This register is a read-only register which can be polled to 
return three types of status shown below.



External Memory Interface Registers

23-74 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 23-26 on page 23-74 provides bit descriptions. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

E_BSY (Ext Bus Busy)
The Busy Status bits indicate 
whether the bus is idle or is being 
used by an on-chip or off-chip mas-
ter device:
00 = not busy, 01 = off-chip master
10 = on-chip master, 11 = reserved

E_MID (Last Master ID) 
5-bit Last Master ID values are listed 
in Table 23-6 on page 23-75.

E_WPS (Packer Status - Read-Only)
The Packer status field indicates the 
number of bytes which are currently 
in the data packer in the external 
interface data path block:
00 – packer empty
01 – one byte in packer
10 – two bytes in packer
11 – three bytes in packer

Reserved

Figure 23-26.  External Port Status (EMISTAT) Register Bits



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 23-75 
 

ADSP-2199x DSP I/O Registers

Preliminary

Memory Page (MEMPGx) Registers
The EMI contains two registers which are used to program the lower page 
boundary addresses for the MS0, MS1, MS2 and MS3 memory spaces. 

 The Memory Page Registers’ addresses are: 

(Page 1/0) MEMPG10 0x06:0x209

(Page 3/2) MEMPG32 0x06:0x20A

The lower eight bits of Memory Page Register 1/0 contain the upper 8 bits 
of the lowest address in Bank 0 (MS0). The upper eight bits of Memory 
Page Register 1/0 contain the upper 8 bits of the lowest address in Bank 1 
(MS1). 

Table 23-6. Last Master ID Parameters in EMI Status Register

Bit(s) Name Definition

6:2 E_MID Last Master ID. 
The Last Master ID will return a 5-bit value which identifies the 
current or last device to use the interface:

BitsDMA Masters NonDMA Masters 
5432(bit 6=0)(bit 6=1)
0000SPORT0 RX DMADSP core I/O mem.
0010SPORT2 RX DMAreserved
0011SPORT0 TX DMAreserved
0100SPORT1 TX DMAreserved
0101SPORT2 TX DMAreserved
0110SPI RX/TX DMAreserved
0111SPI1 RX/TX DMAreserved
1011MemDMA RX DMAreserved
1100MemDMA TX DMAreserved
1101reservedreserved
1110reservedreserved
1111reservedDSP core ext. mem.



External Memory Interface Registers

23-76 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

The lower eight bits of Memory Page Register 3/2 contain the upper 8 bits 
of the lowest address in Bank 2 (MS2). The upper eight bits of Memory 
Page Register 3/2 contain the upper 8 bits of the lowest address in Bank 3 
(MS3). Memory bank address ranges are defined to include the lowest 
address in the bank and one less than the lowest address in the next high-
est bank.



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 24-1 
 

Numeric Formats

Preliminary

24 NUMERIC FORMATS

Overview
ADSP-2199x family processors support 16-bit fixed-point data in hard-
ware. Special features in the computation units allow programs to support 
other formats in software. This appendix describes various aspects of the 
16-bit data format. It also describes how to implement a block float-
ing-point format in software.

Un/Signed: Two’s-Complement Format
Unsigned binary numbers may be thought of as positive, having nearly 
twice the magnitude of a signed number of the same length. The least sig-
nificant words of multiple precision numbers are treated as unsigned 
numbers.

Signed numbers supported by the ADSP-2199x family are in two’s-com-
plement format. Signed-magnitude, ones-complement, BCD or excess-n 
formats are not supported.



Integer or Fractional

24-2 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Integer or Fractional
The ADSP-2199x family supports both fractional and integer data for-
mats. In an integer, the radix point is assumed to lie to the right of the 
LSB, so that all magnitude bits have a weight of 1 or greater. This format 
is shown in Figure 24-1 on page 24-2, which can be found on the follow-
ing page. Note that in two’s-complement format, the sign bit has a 
negative weight.

In a fractional format, the assumed radix point lies within the number, so 
that some or all of the magnitude bits have a weight of less than 1. In the 
format shown in Figure 24-2 on page 24-4, the assumed radix point lies to 
the left of the 3 LSBs, and the bits have the weights indicated.

Figure 24-1. Integer Format

15 14 13

• • •

2

SIGN

BIT

WEIGHT

BIT

SIGNED INTEGER

15 14 13

• • •

2

WEIGHT

BIT

UNSIGNED INTEGER

RADIX POINT

RADIX POINT

1 0

1 0

215 214 213 22 21 20

-215 214 213 22 21 20



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 24-3 
 

Numeric Formats

Preliminary

The notation used to describe a format consists two numbers separated by 
a period (.); the first number is the number of bits to the left of radix 
point, the second is the number of bits to the right of the radix point. For 
example, 16.0 format is an integer format; all bits lie to the left of the 
radix point. The format in Figure 24-2 on page 24-4 is 13.3.

Table 24-1 on page 24-3 shows the ranges of numbers representable in the 
fractional formats that are possible with 16 bits. 

Table 24-1. Fractional Formats and Their Ranges

Format # of 
Integer 
Bits

# of 
Fractional 
Bits

Max Positive Value 
(0x7FFF) In Decimal

Max Negative 
Value (0x8000) 
In Decimal

Value of 1 LSB     
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000



Binary Multiplication

24-4 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Binary Multiplication
In addition and subtraction, both operands must be in the same format 
(signed or unsigned, radix point in the same location) and the result for-
mat is the same as the input format. Addition and subtraction are 
performed the same way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the 
result depends on their formats. The ADSP-2199x family assembly lan-
guage allows programs to specify whether the inputs are both signed, both 
unsigned, or one of each (mixed-mode). The location of the radix point in 
the result can be derived from its location in each of the inputs. This is 
shown in Figure 24-3 on page 24-5. The product of two 16-bit numbers is 

Figure 24-2. Example of Fractional Format

15 14 13

• • •

2

SIGN

BIT

WEIGHT

BIT

SIGNED FRACTIONAL (13.3)

• • •WEIGHT

UNSIGNED FRACTIONAL (13.3)

4 3

RADIX POINT

RADIX POINT

1 0

15 14 13 2BIT 4 3 1 0

-212 211 210 21 20 2-1 2-2 2-3

212 211 210 21 20 2-1 2-2 2-3



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 24-5 
 

Numeric Formats

Preliminary

a 32-bit number. If the inputs’ formats are M.N and P.Q, the product has 
the format (M+P).(N+Q). For example, the product of two 13.3 numbers 
is a 26.6 number. The product of two 1.15 numbers is a 2.30 number.

Fractional Mode and Integer Mode
A product of 2 two’s-complement numbers has two sign bits. Since one of 
these bits is redundant, programs can shift the entire result left one bit. 
Additionally, if one of the inputs was a 1.15 number, the left shift causes 
the result to have the same format as the other input (with 16 bits of addi-
tional precision). For example, multiplying a 1.15 number by a 5.11 
number yields a 6.26 number. When shifted left one bit, the result is a 
5.27 number, or a 5.11 number plus 16 LSBs.

The ADSP-2199x family provides a mode (called the fractional mode) in 
which the multiplier result is always shifted left one bit before being writ-
ten to the result register. This left shift eliminates the extra sign bit when 
both operands are signed, yielding a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional 
bits). A left shift causes the multiplier result to be 1.31 which can be 
rounded to 1.15. If using a fractional data format, it is most convenient to 
use the 1.15 format.

Figure 24-3. Format of Multiplier Result

16-BIT EXAMPLES:

5.3

5.3

10.6

1.15

1.15

2.30

1.111

11.11

1.3 FORMAT

2.2 FORMAT

3.5 FORMAT = (1+2) . (2+3)

4-BIT EXAMPLE:

M.N

P.Q

(M+P) . (N+Q)

GENERAL RULE:

X X X

1111

1111

1111

1111

111.00001

X



Block Floating-Point Format

24-6 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

In the integer mode, the left shift does not occur. This is the mode to use 
if both operands are integers (in the 16.0 format). The 32-bit multiplier 
result is in 32.0 format, also an integer.

In all ADSP-2199x DSPs, fractional and integer modes are controlled by a 
bit in the MSTAT register. At reset, these processors default to the fractional 
mode.

Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some 
of the increased dynamic range of a floating-point format without the 
overhead needed to do floating-point arithmetic. Some additional pro-
gramming is required to maintain a block floating-point format, however.

A floating-point number has an exponent that indicates the position of the 
radix point in the actual value. In block floating-point format, a set 
(block) of data values share a common exponent. To convert a block of 
fixed-point values to block floating-point format, a program would shift 
each value left by the same amount and store the shift value as the block 
exponent. Typically, block floating-point format allows programs to shift 
out non-significant MSBs, increasing the precision available in each value. 
Programs can also use block floating-point format to eliminate the possi-
bility of a data value overflowing. Figure 24-4 on page 24-7 shows an 
example. The three data samples each have at least 2 non-significant, 
redundant sign bits. Each data value can grow by these two bits (two 
orders of magnitude) before overflowing; thus, these bits are called guard 
bits. If it is known that a process will not cause any value to grow by more 
than these two bits, then the process can be run without loss of data. 
Afterward, however, the block must be adjusted to replace the guard bits 
before the next process.

Figure 24-5 on page 24-8 shows the data after processing but before 
adjustment. The block floating-point adjustment is performed as follows. 
Initially, the value of SB is –2, corresponding to the 2 guard bits. During 



ADSP-2199x Mixed Signal DSP Controller Hardware Reference 24-7 
 

Numeric Formats

Preliminary

processing, each resulting data value is inspected by the EXPADJ instruc-
tion, which counts the number of redundant sign bits and adjusts SB is if 
the number of redundant sign bits is less than 2. In this example, SB=–1 
after processing, indicating that the block of data must be shifted right 
one bit to maintain the 2 guard bits. If SB were 0 after processing, the 
block would have to be shifted two bits right. In either case, the block 
exponent is updated to reflect the shift.

Figure 24-4. Data with Guard Bits

0X0FFF

0X1FFF

0X07FF

=

=

=

0 000

0 001

0 000

1111

1111

0111

1111

1111

1111

1111

1111

1111

2 GUARD BITS

SIGN BIT

TO DETECT BIT GROWTH INTO 2 GUARD BITS, SET SB=–2



Block Floating-Point Format

24-8 ADSP-2199x Mixed Signal DSP Controller Hardware Reference
 

Preliminary

Figure 24-5. Block Floating-Point Adjustment

0X1FFF

0X3FFF

0X07FF

1 GUARD BIT

SIGN BIT

EXPADJ INSTRUCTION CHECKS

EXPONENT, ADJUSTS SB

EXPONENT = –2

EXPONENT = –1

EXPONENT = –4

SB = –2

SB = –1

SB = –1

0X0FFF

0X1FFF

0X03FF

2 GUARD BITS

SIGN BIT

1. CHECK FOR BIT GROWTH

2. SHIFT RIGHT TO RESTORE GUARD BITS

= 0001 1111 1111 1111

= 0011 1111 1111 1111

= 0000 0111 1111 1111

= 0000 1111 1111 1111

= 0001 1111 1111 1111

= 0000 0011 1111 1111



ADSP-2199x Mixed Signal DSP Controller i
Hardware Reference

INDEX

Preliminary

INDEX
Symbols
µ-law companding, 8-2, 8-22, 8-36

Numerics
2X Clock Recovery Control, 8-43
32-bit Register Accesses, 16-15

A
AAI Abort Acknowledge Interrupt, 

21-47
ABO Auto Bus On, 21-6
Abort Acknowledge Register 

(CANAA), 21-38
Abs function, 2-17
absolute address, 3-17
absolute addressing

 See alsoDAGs and data move
ABU, autobuffering unit (See I/O 

processor and DMA)
Acceptance Filter / Data Acceptance 

Filter, 21-27
Acceptance Mask Register, 21-29
Access time, external interface, 7-9
Accumulator addressing (See DAGs 

and Data move)
Accumulators, dual, 1-28, 2-3
ACK mode, memory access, 7-9
ACKE Acknowledge Error, 21-58
Acknowledge, memory (ACK) pin, 

7-9, 7-22

Active DMA descriptors, 6-5
Active Low versus Active High 

Frame Syncs, 8-26
Active low/high frame syncs, serial 

port, 8-26
Active low/high strobes, 7-5
ADC Clock, 19-6
ADC Control Module, 19-6
ADC Data Formats, 19-7
ADC Inputs, 19-2
ADC Time Counters, 19-9
Add instructions, 2-17, 2-19
Address bus (ADDRx) pins, 7-22
Address buses, 1-3
Address decode (AD) stage, 3-9
Addressing

Logical vs. physical addressing, 
7-15

Addressing (See post-modify, 
pre-modify, modify, bit-reverse, 
or circular buffer)

Addressing Circular Buffers, 5-12
Addressing with Bit-Reversed 

Addresses, 5-16
Addressing with DAGs, 5-9
ADI Access Denied Interrupt, 

21-46
Adobe Acrobat, -xxxvi
ADSP-21xx Family DSPs (See 

Differences from previous DSPs 
and Porting from previous DSPs)

A-law companding, 8-2, 8-22, 8-36
Alternate frame sync signals, 

defined, 8-27



INDEX

ii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Alternate registers (See Secondary 
registers)

Alternate timing, serial port, 8-27
Alternative Frequency and 

Direction Inputs, 16-10
ALU, 2-1

Arithmetic, 2-6
Arithmetic formats, 2-8
Data registers, 22-2
Data types, 2-6, 24-1
Instructions, 2-17, 2-19
Operations, 2-17
Saturation, 2-11, 2-24
Status, 2-10, 2-16, 2-18

ALU carry (AC) bit, 2-6, 2-11, 
2-18, 2-19, 2-23, 2-24, 2-48, 
22-8

ALU carry (AC) condition, 1-29, 
3-38

ALU Data Flow Details, 2-21
ALU Data Types, 2-6
ALU Division Support Features, 

2-24
ALU Feedback (AF) Register, 22-12
ALU feedback (AF) register, 22-12

Saturated results, 2-11
ALU input (AX/AY) registers, 1-27, 

22-12
ALU Instruction Summary, 2-19
ALU negative (AN) bit, 2-6, 2-18, 

2-19, 2-23, 22-8
ALU negative result (Neg) 

condition, 1-30
ALU Operation, 2-17

ALU overflow (AV) bit, 2-6, 2-10, 
2-11, 2-18, 2-19, 2-23, 2-40, 
2-48, 2-54, 2-60, 22-8

ALU overflow (AV) condition, 
1-29, 3-38

ALU overflow latch enable 
(AV_LATCH) bit, 2-10, 22-5, 
22-9

ALU positive result (Pos) condition, 
1-30

ALU quotient (AQ) bit, 2-18, 2-19, 
2-23, 2-25, 2-26, 22-8

ALU result (AR) register, 2-11, 
2-48, 22-5, 22-12

ALU Results (AR) Register, 22-12
ALU saturation mode enable 

(AR_SAT) bit, 2-10, 2-11, 
22-5, 22-9

ALU sign (AS) bit, 2-18, 2-19, 2-23, 
22-8

ALU signed (AS) condition, 1-29
ALU Status Flags, 2-18
ALU X- & Y-Input (AX0, AX1, 

AY0, AY1) Registers, 22-12
ALU zero (AZ) bit, 2-18, 2-19, 

2-23, 22-8
AMIDE Acceptance Mask 

Identifier Extension, 21-31
Analog To Digital Conversion 

System, 1-19
Analog to Digital Converter and 

Input Structure, 19-2
AND operator, 2-17, 2-19



ADSP-2199x Mixed Signal DSP Controller iii
Hardware Reference

INDEX

Preliminary

AR saturation mode (AS) 
enable/disable, 3-41

Arithmetic
Formats, 2-8, 24-1
Operations, 2-17
Shifts, 2-1

Arithmetic Formats Summary, 2-8
Arithmetic Logic Unit (ALU), 2-17
Arithmetic Logic Unit (See ALU)
Arithmetic operations, 1-5
Arithmetic shift (Ashift) instruction, 

2-8, 2-39, 2-40, 2-44, 2-54
Arithmetic Status (ASTAT) 

Register, 22-7
Arithmetic status (ASTAT) register, 

1-29, 2-10, 2-11, 2-26, 2-33, 
2-48, 2-57, 2-60, 3-6, 22-5, 
22-6

Bit #defines, 22-25
Illustration, 22-7
Latency, 2-18

Arithmetic Status (ASTAT) Register 
Latency, 1-27

Arithmetic status bits, 22-8
Assembler, 1-25
Assembly language, 2-2
Autobuffer-Based DMA Transfers, 

6-8
Autobuffer-Based SPORT DMA, 

6-19
Auxiliary PWM Generation Unit, 

1-20
Auxiliary registers (See Index (Ix) 

registers)

AUXSYNC Operation, 17-7
AUXTRIP Shutdown, 17-6

B
Background registers (See Secondary 

registers)
Banks of memory, 7-11

Defined, 4-7
Size, 7-4

Barrel-shifter (See Shifter)
Barrel-Shifter (Shifter), 2-39
Base (Bx) registers, 5-2, 5-16, 22-3, 

22-21
Base Registers for Circular Buffers, 

1-31
BaseId Base Identifier, 21-31
BEF Bit Error Flag, 21-57
Begin loop address, 3-23
Beginning and Ending of an SPI 

Transfer, 9-31
Bias rounding enable (BIASRND) 

bit, 2-10, 22-16
Biased Rounding, 2-15
Biased rounding, 2-15
Binary coded decimal (BCD) 

format, 2-4
Binary Multiplication, 24-4
Binary String, 2-5
Binary string, 2-5
Bit Configuration Register 0 

(CANBCR0), 21-12
Bit Configuration Register 1 

(CANBCR1), 21-13
Bit manipulation, 2-1



INDEX

iv ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Bit-Reverse Addressing Mode, 5-6
Bit-reversed addressing, 5-2, 5-4, 

5-6, 5-16
Bit-reversed addressing (BIT_REV) 

bit, 5-4, 5-6, 5-17, 22-5, 22-9
Bit-reversed addressing mode (BR) 

enable/disable, 3-41
Block conflict, 3-10
Block exponent, 2-61
Block Floating-Point Format, 24-6
Block size register (See Length (Lx) 

registers)
Blocks of memory, 4-6, 4-7
BOI Bus-Off Interrupt, 21-48
Boot from External 8-Bit Memory 

(EPROM) over EMI, 12-13
Boot from SPI0 with > 4k bits, 

12-15
Boot memory select (BMS) pin, 

1-15, 7-14, 7-22
Boot Memory Select Control 

(BMSCTL) Register, 23-70
Boot memory space, 7-14

Read access, 7-14
Settings, 7-7
Usage, 7-14
Write access, 7-15

Boot Memory Space Control 
(BMSCTL) register, 23-70

Boot Memory Space Settings, 7-7
Boot mode (BMODEx) pins, 12-10
Boot Mode DMA Transfers, 6-27
Booting, 12-10 to 12-11
Booting Modes, 1-23, 12-13

Booting modes, 1-23
Booting the Processor (“Boot 

Loading”), 12-13
Bootstream Format, 12-15
Both mode, memory access, 7-9
BOUNDARY Register, 11-4
BOUNDARY register, 11-4
Boundary scan, 11-1, 11-5
Branches and Sequencing, 3-15
Branching execution, 3-15

Delayed branch, 3-17
Direct and indirect branches, 3-17
Immediate branches, 3-19, 3-20
Indirect branches, 3-17

Broadcast mode, SPI, 9-4
Brushless DC Motor (Electronically 

Commutated Motor) Control, 
18-23

BSDL Reference Guide, 11-5
Buffer overflow, circular, 5-12, 5-15
Buffered serial port (See Serial port)
Bus (See External port and External 

(E_x) bits)
Bus arbitration, 4-7
Bus conflict, 3-10
Bus exchange (See Program memory 

bus exchange (PX) register)
Bus grant (BG) pin, 7-13, 7-23, 

12-37, 12-40
Bus grant hung (BGH) pin, 7-13, 

7-23, 12-37, 12-38
Bus holdoff (See External bus/DMA 

request holdoff enable (E_BHE) 
bit)



ADSP-2199x Mixed Signal DSP Controller v
Hardware Reference

INDEX

Preliminary

Bus locking (See External bus lock 
(E_BL) bit)

Bus master, 12-36 to 12-38
Settings, 7-7
Usage, 7-12

Bus master identifying (See External 
last master ID (E_MID) bits)

Bus Master Settings, 7-7
Bus request (BR) pin, 7-12, 7-22, 

12-36, 12-37, 12-40
Bypass mode, 23-12
BYPASS Register, 11-4
BYPASS register, 11-4

C
Cache Control (CACTL) Register, 

22-20
Cache control (CACTL) register, 

3-6, 3-13, 22-5
Bit #defines, 22-27
Illustration, 22-20

Cache DM access enable (CDE) bit, 
3-13, 22-5, 22-20

Cache efficiency, 3-13
Cache freeze (CFZ) bit, 3-13, 22-5, 

22-20
Cache hit/miss (See Cache efficiency)
Cache PM access enable (CPE) bit, 

3-13, 22-5
Cache usage, optimizing, 3-13
Call instructions, 1-32, 3-16, 3-41

Conditional branch, 3-17
Delayed branch, 3-17
Restrictions, 3-22

CAN Configuration Register 
(CANCNF), 21-13

CAN Configuration Registers, 
21-11

CAN Error Counter Register 
(CANCEC), 21-16

CAN Module Registers, 21-4
Carry (See ALU carry (AC) bit)
Carry output, 2-18
CCA CAN Configuration Mode 

Acknowledge, 21-9
CCITT G.711 specification, 8-22
CCR CAN Configuration Mode 

Request, 21-4
Channel Selection Registers, 8-35
Channel, current serial (CHNL) bit, 

8-34
Channels

Defined, serial, 8-35
Serial port TDM, 8-35
Serial select offset, 8-34, 8-35

Circular buffer addressing, 5-12, 
22-21

Registers, 5-15
Restrictions, 5-13
Setup, 5-13
Wrap around, 5-15

Clear bit (Clrbit) instruction, 2-20
Clear interrupt (Clrint) instruction, 

3-41
Clearing results, 2-32
Clearing, Rounding, or Saturating 

Multiplier Results, 2-32
Clock



INDEX

vi ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Distribution, 12-40
Stabilization, 12-10

Clock and Frame Sync Frequencies, 
8-18

Clock and System Control 
Registers, 23-11

Clock dividing (See External clock 
divider select (E_CDS) bits)

Clock Generation & PLL Control, 
12-28

Clock Generation (CKGEN) 
Module, 12-25

Clock input (CLKIN) pin, 1-23
Clock output (CLKOUT) pin, 7-22
Clock phase (CPHA) bit, 9-10, 

9-20, 23-50
Clock polarity (CPOL) bit, 9-10, 

23-50
Clock rising edge (CKRE) bit, 8-14, 

8-16, 8-22, 8-26, 23-27, 23-28
Clock Signal Options, 8-22
Clock Signals, 1-23, 9-23
Code Example

BMS Runtime Access, 7-28
Internal Memory DMA, 6-28

Code Examples, 10-14
Code examples (See Examples)
COM port (See UART port)
Companding, 8-22, 8-30, 8-36

Defined, 8-22
Multichannel operations, 8-36

Compiler, 1-25
Computational

Instructions, 2-1

Mode, setting, 2-10
Status, using, 2-16

Computational Unit Registers, 
22-11

Computational units, 2-1
Computational Units and Data 

Register File, 1-27
Condition Code (CCODE) 

condition, 3-39
Condition Code (CCODE) 

Register, 22-18
Condition code (CCODE) register, 

1-29, 3-6, 22-5, 22-6, 22-19
Bit #defines, 22-26
Conditions list, 22-18

Conditional
Branches, 3-17, 3-18
Instructions, 1-32, 2-16, 3-5, 

3-37
Test in loops, 3-24

Conditional Branches, 3-18
Conditional Execution (Difference 

in Flag Input Support), 1-32
Conditional Sequencing, 3-37
Conditions (SWCOND) and 

Condition Code (CCODE) 
Register, 1-29

Configuration Registers, 20-6
Contact information, -xxxv
Context switching, 2-63
Continuous mode (See Serial port, 

Framed/unframed data)
Controller Area Network (CAN) 

Module, 1-18



ADSP-2199x Mixed Signal DSP Controller vii
Hardware Reference

INDEX

Preliminary

Conventions, -xxxvii
Conversion Modes, 19-10
Convert Start Trigger, 19-8
Core clock (CCLK), 7-24, 23-11
Core registers, 22-2, 22-3
Core Registers Summary, 22-2
Core Status Registers, 22-7
Counter (CNTR) Register, 22-18
Counter (CNTR) register, 3-6, 

3-23, 3-37, 22-5, 22-18
Counter expired (CE) condition, 

1-32, 3-23, 3-39
CPU, Central processing unit (See 

ALU, Multiplier, Shifter, 
Program sequencer, or DAGs)

CRCE CRC Error, 21-58
Crossover Feature, 18-22
Crystal output (XTAL) pin, 1-23
CSA CAN Suspend Mode 

Acknowledge, 21-9
CSR CAN Suspend Mode Request, 

21-5
Current channel indicator (CHNL) 

bits, 23-33
Customer support, -xxxv

D
DAG Instruction Summary, 5-22
DAG Operations, 5-9
DAG Page Registers (DMPGx), 5-7
DAG Register Transfer 

Restrictions, 5-20
DAG secondary registers mode 

(BSR) enable/disable, 3-41

DAGEN, Data address generation 
(See DAGs)

DAGs, 5-3
Addressing Modes, 1-31
Data move restrictions, 5-20
Data moves, 5-20
Features, 1-5
Instructions, 4-17, 5-22
Interlocked registers, 22-5
Operations, 5-9
Registers, 22-3
Setting modes, 5-4
Status, 5-8
Support for branches, 3-5, 3-17

DARAM, Dual access RAM (See 
Memory, Banks)

Data access
Conflicts, 4-7
Dual-data accesses, 4-6
(See also Data move)

Data Address Generator (DAG) 
Addressing Modes, 1-31

Data Address Generator Registers, 
22-20

Data Address Generators (See 
DAGs)

Data alignment, 4-9, 7-15
Data Alignment—Logical versus 

Physical Address, 7-15
Data bus (DATAx) pins, 7-21, 7-22
Data fetch, external port, 7-2
Data format, 2-2

External port data, 7-15
Numeric formats, 24-1



INDEX

viii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Serial data, 8-20, 8-21
Data format selecting (See External 

PM/DM data format select 
(E_DFS) bit), 7-5, 23-69

Data from BMS fetching (See 
External PM data from boot 
space enable (E_PD_BE) bit)

Data independent transmit frame 
sync (DITFS) bit, 8-11, 8-13, 
8-14, 8-29, 23-27

Data Memory (DM) bus, 1-3
Data Memory Page (DMPG1 and 

DMPG2) Registers, 1-30
Data Memory Page (DMPGx) 

Registers, 22-22
Data memory page (DMPGx) 

registers, 1-13, 1-30, 3-6, 5-2, 
5-7, 22-3, 22-22

Data move
Instructions, 4-17
Serial port operations, 8-38
SPI port data, 9-8

Data Move Instruction Summary, 
4-17

Data packing
External port, 7-21

Data receive, serial (DRx) pins, 8-3, 
8-4

Data Register File, 2-61
Data register file, 2-1, 2-61, 22-2, 

22-11
Data Register File (Dreg) Registers, 

22-11
Data registers, 2-61

Data sampling, serial, 8-26
Data Shift (SFDR) Register, 9-18
Data space (See Memory, Banks)
Data Storage, 21-20
Data transmit, serial (DTx) pins, 

8-3, 8-4, 8-30, 8-32
Data Type, 8-21
Data type, DMA (DTYPE) bit, 

6-13, 23-18, 23-27, 23-28
Data type, serial (DTYPE) bits, 

8-12, 8-15, 8-20, 8-21
Data Word Formats, 8-20
Data, serial framed and unframed, 

8-25
Data-Independent Transmit Frame 

Sync, 8-29
DEC Disable CAN Error Counter, 

21-15
Delayed branch (DB) Jump or Call, 

3-17, 3-19, 3-20, 3-21
DB operator, 3-19
Delayed branch slots, 3-21
Restrictions, 3-22

Delayed Branches, 3-19
Denormalize, 2-45
Denormalize operation, 2-45
Derive Block Exponent, 2-41
Derive block exponent, 2-39, 2-41, 

2-61
Descriptor

Active versus inactive, 6-5
Descriptor ownership (DOWN) 

bit, 23-18, 23-40, 23-57



ADSP-2199x Mixed Signal DSP Controller ix
Hardware Reference

INDEX

Preliminary

Descriptor-Based DMA Transfers, 
6-5

Descriptor-Based SPORT DMA, 
6-18

Development Tools, 1-24
Development tools, 1-24
DFM Data Field Mask, 21-31
Differences from Previous DSPs, 

1-27
Differences from previous DSPs, ?? 

to -xxxiv
DAG instruction syntax, 5-10
DAG page registers, 5-8
External memory interface, 7-21
Norm instruction execution, 2-49
Shifting data into SR2, 2-43
(See Porting from previous DSP’s)

Digital loopback mode (See Serial 
port, Loopback mode)

DIL Disable CAN Internal Loop, 
21-15

Direct addressing (See DAGs and 
Data move)

Direct branch, 3-17
Direct memory access, DMA (See 

DMA or I/O processor)
Direction for Flags (DIR) register, 

20-8
Disable mode (Dis) instruction (See 

Enable/Disable mode (Ena/Dis) 
instruction)

Divide primitive (Divs/Divq) 
instructions, 2-6, 2-20, 2-24, 
2-26

Division
Signed, 2-26
Unsigned, 2-26

DMA, 9-32
Active/inactive descriptors, 6-5
Autobuffer-based, 6-8
Buffer registers, 6-3
Buffer size, multichannel, 8-37
Descriptor-based, 6-6
Operations, 6-1
Overhead, 6-7
Serial port, 8-38
SPI slave mode, 9-26, 9-27
Split access, 7-5

DMA autobuffer/descriptor mode 
(DAUTO) bit, 6-8, 23-40, 
23-57

DMA complete interrupt 
(DCOMI) bit, 23-43, 23-47, 
23-59

DMA complete interrupt enable 
(DCOME) bit, 23-18, 23-40, 
23-57

DMA completion status (DS) bit, 
6-14, 23-18, 23-40, 23-57

DMA Controller, 1-16
DMA Controller Registers, 23-16
DMA Dual Channel Acquisition 

Mode, 19-14
DMA enable (DEN) bit, 6-8, 6-12, 

23-18, 23-40, 23-57
DMA error interrupt (DERI) bit, 

23-43, 23-47, 23-59



INDEX

x ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

DMA error interrupt enable 
(DERE) bit, 6-13, 23-18, 
23-40, 23-57

DMA interrupt on completion 
enable (DCOME) bit, 6-13

DMA Octal Channel Acquisition 
Mode, 19-15

DMA Operation Overview, 19-15
DMA Quad Channel Acquisition 

Mode, 19-14
DMA request holdoff (See External 

bus/DMA request holdoff enable 
(E_BHE) bit)

DMA Single Channel Acquisition 
Mode, 19-13

DMA transfer splitting (See External 
access split enable (E_ASE) bit)

DMA, MemDMA Channel Read 
Chain Pointer (DMACR_CP) 
Register, 23-23

DMA, MemDMA Channel Read 
Chain Pointer Ready 
(DMACR_CPR) Register, 
23-23

DMA, MemDMA Channel Read 
Configuration 
(DMACR_CFG) Register, 
23-21

DMA, MemDMA channel read 
configuration (DMACR_CFG) 
register, 23-21

DMA, MemDMA Channel Read 
Count (DMACR_CNT) 
Register, 23-22

DMA, MemDMA channel read 
count (DMACR_CNT) 
register, 23-22

DMA, MemDMA channel read 
descriptor ready 
(DMACR_CPR) register, 
23-23

DMA, MemDMA Channel Read 
Interrupt (DMACR_IRQ) 
Register, 23-23

DMA, MemDMA channel read 
interrupt (DMACR_IRQ) 
register, 23-23

DMA, MemDMA channel read 
next descriptor (DMACR_CP) 
register, 23-23

DMA, MemDMA Channel Read 
Pointer (DMACR_PTR) 
Register, 23-21

DMA, MemDMA channel read 
pointer (DMACR_PTR) 
register, 23-21

DMA, MemDMA Channel Read 
Start Address (DMACR_SRA) 
Register, 23-22

DMA, MemDMA channel read 
start address (DMACR_SRA) 
register, 23-22

DMA, MemDMA Channel Read 
Start Page (DMACR_SRP) 
Register, 23-22

DMA, MemDMA channel read 
start page (DMACR_SRP) 
register, 23-22



ADSP-2199x Mixed Signal DSP Controller xi
Hardware Reference

INDEX

Preliminary

DMA, MemDMA Channel Write 
Chain Pointer (DMACW_CP) 
Register, 23-20

DMA, MemDMA Channel Write 
Chain Pointer Ready 
(DMACW_CPR) Register, 
23-20

DMA, MemDMA Channel Write 
Configuration 
(DMACW_CFG) Register, 
23-17

DMA, MemDMA channel write 
configuration 
(DMACW_CFG) register, 
23-17

DMA, MemDMA Channel Write 
Count (DMACW_CNT) 
Register, 23-19

DMA, MemDMA channel write 
count (DMACW_CNT) 
register, 23-19

DMA, MemDMA channel write 
descriptor ready 
(DMACW_CPR) register, 
23-20

DMA, MemDMA Channel Write 
Interrupt (DMACW_IRQ) 
Register, 23-20

DMA, MemDMA channel write 
interrupt (DMACW_IRQ) 
register, 23-20

DMA, MemDMA channel write 
next descriptor 
(DMACW_CP) register, 23-20

DMA, MemDMA Channel Write 
Pointer (DMACW_PTR) 
Register, 23-16

DMA, MemDMA channel write 
pointer (DMACW_PTR) 
register, 23-16

DMA, MemDMA Channel Write 
Start Address (DMACW_SRA) 
Register, 23-19

DMA, MemDMA channel write 
start address (DMACW_SRA) 
register, 23-19

DMA, MemDMA Channel Write 
Start Page (DMACW_SRP) 
Register, 23-19

DMA, MemDMA channel write 
start page (DMACW_SRP) 
register, 23-19

DNM Device Net Mode (if 
implemented), 21-7

Do/Until instruction, 1-32, 3-24, 
3-25, 3-41

Latency, 22-5
Restrictions, 3-22
(See also Loop)

DRI Disable CAN RX Input, 21-15
DSP

Background information, 1-27
Core architecture, 1-9
Defined, -xxxiii
Peripherals architecture, 1-11
Why fixed-point?, 1-1
(See also Differences from previous 

DSPs and Porting from previous 



INDEX

xii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

DSPs)
DSP Core Architecture, 1-9
DSP Peripherals Architecture, 1-11
DSP Serial Port (SPORT), 1-17
DTO Disable CAN TX Output, 

21-15
Dual accumulators, 1-28, 2-3

E
Early frame sync (See Frame sync)
Early versus Late Frame Syncs 

(Normal and Alternate 
Timing), 8-27

EBO CAN Error Bus Off Mode, 
21-10

Edge-sensitive interrupts, 20-10
EET Status Register, 16-20
Effect latency (See Latency)
Effective PWM Accuracy, 18-20
Either mode, memory access, 7-9
EIU Input Pin Status, 16-14
EIU/EET Registers, 16-21
E-mail for information, -xxxv
Emulation, JTAG port, 1-3
Emulator cycle counter interrupt 

enable (EMUCNTE) bit, 
22-16

Emulator interrupt mask (EMU) 
bit, 22-15

Emulator kernel interrupt mask 
(KERNEL) bit, 22-15

Enable master input slave output 
(EMISO) bit, 9-10, 9-14, 
23-50

Enable/Disable mode (Ena/Dis) 
instruction, 2-64, 3-41, 5-6

Encoder Counter Direction, 16-9
Encoder Counter Reset, 16-10
Encoder Error Checking, 16-14
Encoder Event Timer, 16-17
Encoder Interface Structure & 

Operation, 16-5
Encoder Interface Unit, 1-21
Encoder Loop Timer, 16-4
Endian Format, 8-21
Endian format

Serial data, 8-21
SPI data, 9-10

End-of-loop, 3-26
EP CAN Error Passive Mode, 21-10
EPI Error-Passive Interrupt, 21-48
Equals zero (EQ) condition, 1-29, 

3-38
Error Signals and Flags, 9-28
Error Status Register (CANESR), 

21-57
Errors/flags (See DMA, External 

port, Host port, Serial port, SPI 
port, and UART port)

EWRI Error Warning Receive 
Interrupt, 21-49

EWTI Error Warning Transmit 
Interrupt, 21-49

Examples
BMS access code, 7-28
DMA code, 6-28
Timer code, 10-14

Excess-n formats, 2-4



ADSP-2199x Mixed Signal DSP Controller xiii
Hardware Reference

INDEX

Preliminary

Execute (PC) stage, 3-9
Execute from External 16-Bit 

Memory, 12-14
Execute from External 8-Bit 

Memory, 12-14
Execution Latencies (Different for 

JUMP Instructions), 1-33
Explicit stack operations, 3-37
Exponent adjust (EXPADJ) 

instruction, 2-40, 2-41, 2-42, 
2-54

Exponent compare logic, 2-55
Exponent derivation, 2-1

Double-precision number, 2-41
Exponent derive (EXP) instruction, 

2-40, 2-47, 2-54
Exponent detector, 2-60, 2-61
External (Off-chip) Memory, 1-14
External access control registers lock 

(E_CRL) bit, 7-7, 23-70
External access split enable (E_ASE) 

bit, 7-5, 23-70
External Address and Data Buses, 

4-7
External bank lower page boundary 

(E_MSx_PG) bits, 7-4
External base clock divider 

(E_CDS) bits, 23-71
External bus busy (E_BSY) bits, 

7-11, 23-74
External bus hold off enable 

(E_BHE) bit, 23-70
External bus lock (E_BL) bit, 7-7, 

23-70

External Bus Settings, 7-5
External bus width select (E_BWS) 

bit, 7-5, 23-70
External bus/DMA request holdoff 

enable (E_BHE) bit, 7-7
External clock divider select 

(E_CDS) bits, 7-4
External composite memory select 

output enable (E_COE) bit, 
7-6, 23-71

External DM from BMS enable 
(E_DD_BE) bit, 7-8, 7-14, 
23-69

External Event Watchdog 
(EXT_CLK) Mode, 10-14

External event watchdog 
(EXT_CLK) mode, 10-1, 
10-14

External last master ID (E_MID) 
bits, 7-12, 23-74

External memory
Access modes, 7-9
Access timing, 7-24
Interface description, 7-15
Interface performance, 7-24

External memory interface clock 
(EMICLK), 7-4, 7-10, 7-24

External Memory Interface Control 
(EMICTL) Register, 23-69

External memory interface control 
(EMICTL) register, 23-69

External Memory Interface 
Control/Status (E_STAT) 
Register, 23-68



INDEX

xiv ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

External memory interface 
control/status (E_STAT) 
register, 23-68

External Memory Interface 
Registers, 23-68

External packer status (E_WPS) 
bits, 23-74

External PM/DM data format select 
(E_DFS) bit, 7-5, 23-69

External port, 1-2, 4-7, 7-1
Handshaking, 7-20
Memory interface clock, 7-10
Settings, 7-5
Setup example, 7-28

External Port Status (EMISTAT) 
Register, 23-73

External port status (EP_STAT) 
register, 7-11, 23-73

External program memory data 
from boot memory enable 
(E_PD_BE) bit, 7-8, 7-14, 
23-69

External program memory 
instructions from boot memory 
enable (E_PI_BE) bit, 7-8, 
7-14, 23-69

External PWMSYNC operation, 
18-31

External read strobe logic sense 
(E_RLS) bit, 7-5, 23-70

External read waitstate count 
(E_RWC) bits, 7-3, 7-9, 23-71

External waitstate mode select 
(E_WMS) bits, 7-3, 7-9, 23-71

External word packer status 
(E_WPS) bit, 7-12

External write hold (E_WHC) bit, 
23-71

External write hold enable 
(E_WHE) bit, 7-4

External write pending flag 
(E_WPF) bit, 7-11, 23-69

External write strobe logic sense 
(E_WLS) bit, 7-5, 23-70

External write waitstate count 
(E_WWC) bits, 7-3, 7-9, 23-71

External/internal frame syncs (See 
Frame sync)

EXTI External Trigger Output 
Interrupt, 21-46

ExtId Extended Identifier, 21-31

F
FAX for information, -xxxiv
FDF Filtering on Data Field (if 

enabled), 21-30
FE, Format extension (See Serial 

port, Word length)
Feedback, input, 2-1
FER Form Error Flag, 21-57
Fetch address, 3-3
Fetch address (FA) stage, 3-9
FFT calculations, 5-16
FIFO buffer status (FS) bits, 6-13, 

23-18, 23-40, 23-57
FIG, Frame ignore (See Serial port, 

Framed/unframed data)



ADSP-2199x Mixed Signal DSP Controller xv
Hardware Reference

INDEX

Preliminary

File Transfer Protocol (FTP) site, 
-xxxiv

FIO Direction Control (DIR) 
Register, 20-8

FIO Edge/Level Sensitivity Control 
(EDGE and BOTH) Registers, 
20-10

FIO Lines as PWM Shutdown 
Sources., 20-5

FIO Lines as SPI Slave Select Lines, 
20-6

FIO Polarity Control (POLAR) 
Register, 20-9

Flag
Errors (See DMA, External port, 

Host port, Serial port, SPI port, 
and UART port)

Input, 1-32
Flag (PFx) control (FLAG) register, 

20-8
Flag (PFx) Interrupt 

(FLAGC/S)registers, 20-8
Flag (PFx) interrupt mask 

(MASKxC and MASKxS) 
registers, 20-8

Flag (PFx) sensitivity, polarity 
(FSPR) register, 20-9

Flag (PFx) set on both edges 
(FSBERC/FSBERS) registers, 
20-10

Flag (status) update, 2-18, 2-33, 
2-53

Flag as Input, 20-4
Flag as Output, 20-3

Flag Configuration Registers, 20-7
Flag Control (FLAGC and FLAGS) 

Registers, 20-8
Flag I/O (FIO) Peripheral Unit, 

1-22
Flag Interrupt Mask (MASKAC, 

MASKAS, MASKBC, and 
MASKBS) Registers, 20-8

Flag Register, 20-3
Flag slave (FLS) bits, 9-13, 9-14
Flag Wake-up output, 20-5
Flush Cache instruction, 3-13, 3-41
Flush DMA buffer (FLSH) bit, 

6-13, 23-18, 23-40, 23-57
FMD Full Mask Data Field, 21-30
For more Information about Analog 

Products, -xxxiv
For Technical or Customer 

Support, -xxxv
Forever condition, 3-39
Fractional mode, 2-5, 2-7, 2-10, 

22-9
Representation (1.15), 2-5
Results format, 2-12
(See also Integer mode and 

Multiplier mode, integer (MM) 
enable/disable)

Fractional Mode and Integer Mode, 
24-5

Frame sync
Active high/low, 8-26
Early/late, 8-27
External/internal, 8-25
Frequencies, 8-18



INDEX

xvi ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Internal/external, 8-25
Late, defined, 8-27
Multichannel mode, 8-32
Options, 8-23
Sampling, 8-26

Frame Sync and Clock Example, 
8-20

Frame Sync Options, 8-23
Frame sync to data relationship 

(FSDR) bit, 8-34, 23-38
Frame Syncs in Multichannel 

Mode, 8-32
Framed versus Unframed, 8-23
Framed/unframed data, 8-23
Frequencies, clock a frame sync, 

8-18
FSM, Frame synchronization mode 

(See Serial port, 
Framed/unframed data)

FSP, Frame synchronization 
polarity (See Serial port, 
Framed/unframed data)

FUNCTIONAL DESCRIPTION, 
18-8

G
GATE DRIVE UNIT, 18-25
GENERAL OPERATION, 13-3, 

18-7
General Operation, 14-1
General purpose input/output pins 

(See Programmable flag (PFx) 
pins and Flag (PFx) registers)

Get more data (GM) bit, 9-10, 
23-50

GIRQ Global Interrupt Output, 
21-19

Global Interrupt, 21-46
Global interrupt enable (GIE) bit, 

3-35, 22-16
Global Interrupt Flag Register 

(CANGIF), 21-51
Global Interrupt Logic, 21-49
Global Interrupt Mask Register 

(CANGIM), 21-50
Global Interrupt Status Register 

(CANGIS), 21-50
Global Status Register (CANGSR), 

21-8
Greater than or equal to zero (GE) 

condition, 1-29, 3-38
Greater than zero (GT) condition, 

1-29, 3-38
Ground planes, 12-40
GSM speech compression routines, 

2-16

H
H.100 protocol, 8-34, 8-42, 8-43
Handshaking (See External port, 

Host port, Serial port, SPI port, 
or UART port)

Hardware reset, 12-10 to 12-11
Hardware Reset Generation, 12-26
Harvard architecture, 4-2
High Frequency Chopping, 18-25



ADSP-2199x Mixed Signal DSP Controller xvii
Hardware Reference

INDEX

Preliminary

High shift (HI) option, 2-40, 2-41, 
2-56, 2-57

High shift, except overflow (HIX) 
option, 2-40, 2-48, 2-60

High watermark, stack, 3-34, 3-35
Hold time cycle, 7-4, 7-10
Hypertext links, -xxxvii

I
I/O memory, 6-2, 22-2, 23-3
I/O Memory Page (IOPG) Register, 

22-22
I/O memory page (IOPG) register, 

1-15, 3-6, 22-3, 22-6, 22-22
I/O memory read/write (Io( )) 

instruction, 4-18, 6-2, 23-3
I/O memory select (IOMS) pin, 

1-13, 1-15, 7-22
I/O Memory Select Control 

(IOMSCTL) Register, 23-73
I/O memory space control 

(IOMSCTL) register, 23-73
I/O processor, 6-1

Defined, 4-6
Registers and ports, 6-2

I/O Processor (Memory Mapped) 
Registers, 23-2

I/O space (See I/O memory)
IDCODE Register, 11-4
IDCODE register, 11-4
Idle instruction, 1-22, 3-41

Defined, 3-2
Restrictions, 3-22

Idle Mode, 12-32, 20-11

IEEE 1149.1 JTAG specification, 
1-24, 11-1, 11-2, 11-5

IF conditional operator, 2-19, 3-41
Immediate addressing

Memory page selection, 5-7
(See DAGs and Data move)

Immediate branch, 3-19, 3-20
Immediate Shifts, 2-42
Immediate shifts, 2-42
Implicit stack operations, 3-36
Inactive DMA descriptors, 6-5
Independent Mode, 17-2
Index (Ix) Registers, 22-21
Index (Ix) registers, 5-2, 5-7, 5-15, 

5-17, 22-3, 22-21
Indirect addressing (See DAGs and 

Data move)
Indirect branch, 3-17, 3-18
Indirect Jump Page (IJPG) Register, 

3-18, 22-16
Indirect jump page (IJPG) register, 

1-14, 3-6, 3-18, 22-3, 22-6, 
22-16

Infinite loops (Forever) condition, 
1-32, 3-23

Input clock (ICLK) bit, 23-27, 
23-28

Inputs/Outputs, 16-27
Instruction Cache, 3-10
Instruction cache, 3-10, 3-12, 4-6
Instruction decode (ID) stage, 3-9
Instruction fetch, external, 7-2
Instruction Pipeline, 3-7
Instruction pipeline, 3-3, 3-8, 3-19



INDEX

xviii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

INSTRUCTION Register, 11-3
INSTRUCTION register, 11-3
Instruction set, -xxxiv, -xxxvii

ALU instructions, 2-19
DAG instructions, 5-23
Data move instructions, 4-18
Enhancements, -xxxiii
Multifunction instructions, 2-66, 

5-23
Multiplier instructions, 2-35
Program sequencer instructions, 

3-41
Shifter instructions, 2-54

Instruction Set Enhancements, 
-xxxiii

Instructions from BMS fetching 
(See External PM instruction 
from boot space enable 
(E_PI_BE) bit)

Integer mode, 2-7, 2-10, 2-13, 22-9
(See also Multiplier mode, integer 

(MM) enable/disable and 
Fractional mode)

Integer or Fractional, 24-2
Interface Signals, 9-4
Interfacing to External Memory, 

7-15
Internal (On-chip) Memory, 1-13
Internal Address and Data Buses, 

4-6
Internal clock disable (ICLKD) bit, 

8-14, 8-16, 23-27, 23-28
Internal clock select (ICLK) bit, 

8-12, 8-15, 8-22, 8-23

Internal Data Bus Exchange, 4-8
Internal PWMSYNC generation, 

18-31
Internal receive frame sync (IRFS) 

bit, 8-16, 8-25, 23-28
Internal transmit frame sync (ITFS) 

bit, 8-13, 8-25, 8-32, 23-27
Internal versus External Frame 

Syncs, 8-25
Internal/external frame syncs (See 

Frame sync)
Interrupt Behavior, 9-7
Interrupt Control (ICNTL) 

Register, 22-16
Interrupt control (ICNTL) register, 

3-6, 22-5, 22-6
Bit #defines, 22-27
Illustration, 22-16

Interrupt controller, 3-5
Interrupt latch (IRPTL) register, 

3-6
Bit #defines, 22-27
Illustration, 22-15

Interrupt Mask (IMASK) & Latch 
(IRPTL) Registers, 22-15

Interrupt mask (IMASK) register, 
3-6, 6-8, 22-5

Bit #defines, 22-27
Illustration, 22-15

Interrupt mode (INT) 
enable/disable, 3-41

Interrupt nesting enable (INE) bit, 
22-16

Interrupt Outputs, 20-4



ADSP-2199x Mixed Signal DSP Controller xix
Hardware Reference

INDEX

Preliminary

Interrupt Register (CANINTR), 
21-17

Interrupt request enable 
(IRQ_ENA) bit, 23-63

Interrupts, 1-16, 3-2, 16-15
Delayed branch, 3-22
Masking and latching, 20-8
Polarity, 20-9
Powerdown, non-maskable, 

12-36
Registers, 22-3, 22-15, 22-16
Timer, 10-4

Interrupts and Sequencing, 3-26
Interrupts from DMA Transfers, 

6-9
Interrupts, global enable (GIE) bit, 

3-35, 22-16
Introduction, 16-5
Introduction & Overview, 16-17

J
JTAG instruction register codes , 

11-3
JTAG Port, 1-24
JTAG port, 1-3, 1-24, 11-1, 11-2, 

11-3
BOUNDARY register, 11-4
Boundary scan, 11-1
BYPASS register, 11-4
IDCODE register, 11-4
INSTRUCTION register, 11-3

JTAG Test Access Port, 11-2
Jump instructions, 1-32, 3-16, 3-41

Conditional, 3-17

Delayed branch, 3-17
Restrictions, 3-22

Jumps, defined, 3-1

L
Latch Mode, 19-12
Latching ALU Result Overflow 

Status, 2-10
Latching Data from the EET, 16-18
Late receive frame sync (LARFS) 

bit, 8-16
Late transmit frame sync (LATFS) 

bit, 8-14, 8-27, 23-27, 23-28
Latency, 2-18, 3-6

Effect
AR register, 22-5
ASTAT register, 22-5
AV_LATCH bit, 22-5
BIT_REV bit, 22-5
CACTL register, 22-5
CCODE register, 22-5
CDE bit, 22-5
CFZ bit, 22-5
CNTR register, 3-6, 22-5
CPE bit, 22-5
DMPGx registers, 3-6
ICNTL register, 22-5
IJPG register, 3-6
IMASK register, 22-5
IOPG register, 3-6
IRPTL register, 3-6
M_MODE bit, 22-5
MSTAT register, 22-5
SEC_DAG bit, 22-5



INDEX

xx ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

SEC_REG bit, 22-5
SSTAT register, 3-6

Effect vs. load latency, 22-6
Enabling modes, 2-63
I/O memory mapped registers, 

23-3
Jump instructions, 1-33
Program sequencer registers, 3-6
Register load, 22-4
Registers, 22-4, 22-5
Serial port registers, 8-16
System registers, 3-6

Layer stacking, 12-40
Length (Lx) registers, 5-2, 5-16, 

22-3, 22-21
Initialization requirements, 5-4

Length and Base (Lx,Bx) Register, 
22-21

Less than or equal zero (LE) 
condition, 1-29, 3-38

Less than zero (LT) condition, 1-29, 
3-38

Level, stack interrupt, 3-35
Linker, 1-26
Loader, 1-26
Lock Counter, 12-31
Logic gates, 12-40
Logical (AND, OR, XOR, NOT) 

operators, 2-19
Logical addressing, 7-16
Logical shift (Lshift) instruction, 

2-8, 2-39, 2-40, 2-44, 2-54
Long call (Lcall) instruction, 3-9, 

3-17, 3-41

Long jump (Ljump) instruction, 
3-9, 3-17, 3-41

Look ahead address (LA) stage, 3-9
Loop

Address stack, 3-5
Begin address, 3-23
Conditional loops, 3-23
Conditional test, 3-24
Defined, 3-1
Do/Until example, 3-23
End restrictions, 3-26
Infinite, 3-23, 3-39
Nesting restrictions, 3-26
Stack management, 3-26
Termination, 3-5, 3-25

Loop counter expired (CE) 
condition, 3-23

Loop stack address (LPSTACKA) 
register, 22-17

Loop stack empty (LPSTKEMPTY) 
condition, 3-41

Loop stack empty status 
(LPSTKEMPTY) bit, 3-34, 
22-10

Loop stack full (LPSTKFULL) 
condition, 3-41

Loop stack full status 
(LPSTKFULL) bit, 3-34, 22-10

Loop Stack Page (LPSTACKP) and 
Loop Stack Address 
(LPSTACKA) Register, 22-17

Loop stack page (LPSTACKP) 
register, 22-17

Loops and Sequencing, 3-23



ADSP-2199x Mixed Signal DSP Controller xxi
Hardware Reference

INDEX

Preliminary

Low active receive frame sync 
(LRFS) bit, 8-16, 8-24, 8-26, 
23-28

Low active transmit frame sync 
(LTFS) bit, 8-14, 8-24, 8-26, 
23-27

Low power operation, 1-22
Low shift (LO) option, 2-40, 2-41, 

2-56, 2-57
Low watermark, stack, 3-34, 3-35
Low-Power Operation, 1-22
LSB first (LSBF) bit, 9-10, 23-50

M
MAA Mode Auto Acknowledge, 

21-15
MAC overflow (MV) condition, 

3-38
Mailbox Area, 21-23
Mailbox Configuration (CANMC / 

CANMD), 21-24
Mailbox Control Logic, 21-24
Mailbox Interrupt Mask Register 

(CANMBIM), 21-43
Mailbox Interrupts, 21-43
Mailbox Layout, 21-21
Mailbox Receive Interrupt Flag 

Register (CANMBRIF), 21-45
Mailbox Transmit Interrupt Flag 

Register (CANMBTIF), 21-44
Mailbox Types, 21-24
Mailing address for information, 

-xxxv
Managing DSP Clocks, 12-21

Managing Loop Stacks, 3-26
Mask flag (PFx) interrupt 

(MASKA/B) registers, 20-8
Master (MSTR) bit, 23-50
Master Control Register 

(CANMCR), 21-4
Master enable, SPI (MSTR) bit, 

9-10
Master In Slave Out (MISO), 9-6
Master input slave output (MISOx) 

pins, 9-2, 9-3, 9-4, 9-5, 9-6, 
9-20, 9-22

Configuration, 9-6
Slave output, 9-20

Master Mode Operation, 9-24
Master Out Slave In (MOSI), 9-6
Master output slave input (MOSIx) 

pins, 9-2, 9-3, 9-4, 9-5, 9-6, 
9-20, 9-22

Maximum Clock Rate Restrictions, 
8-20

MBptr Mail Box Pointer, 21-9
MBRIF Mailbox Receive Interrupt 

Output, 21-19
MBTIF Mailbox Transmit 

Interrupt Output, 21-19
McBSP, Multichannel buffered 

serial port (See Serial port)
MCM, Multichannel mode (See 

Serial port, Multichannel 
operation)

Measurement techniques, 12-40
MemDMA DMA Settings, 6-14
Memory, 1-2, 1-30, 4-1



INDEX

xxii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Access status usage, 7-11
Access types, 8-38
ACK, wait, both, or either mode, 

7-9
Architecture, 1-12
Bank and space waitstates modes, 

7-9
Banks, 4-7, 7-3, 7-10, 7-11
Blocks, 4-6, 4-7
Boot memory access, 7-14, 7-15
External interface, 7-10, 7-15, 

7-20, 7-24
External memory (off-chip), 1-14
Internal memory (on-chip), 1-13
Shadow write FIFO, 4-16

Memory Architecture, 1-12
Memory Bank and Memory Space 

Settings, 7-3
Memory bank boundary setting (See 

External bank lower page 
boundary (E_MSx_PG) bits)

Memory bank select (MS3-0) pins, 
7-11, 7-22, 7-23

Memory Interface Pins, 7-20
Memory Interface Registers, 22-22
Memory Interface Timing, 7-24
Memory mapped registers, 23-3, 

23-4
Memory Page (MEMPGx) 

Registers, 23-75
Memory page (MEMPGx) registers, 

7-4, 23-75
Memory page (MP) bits, 23-19, 

23-22, 23-41, 23-45, 23-58

Memory page selection, 5-7
Memory select (MSx) pins, 1-13, 

1-15
Memory select compositing (See 

External composite memory select 
output enable (E_COE) bit)

Memory Select Control (MSxCTL) 
Registers, 23-72

Memory space (MS) bits, 23-19, 
23-22, 23-41, 23-45, 23-58

Memory space control (MSxCTL) 
registers, 23-72

Memory-mapped register 
addressing (See DAGs and Data 
move)

µ-law companding, 8-2, 8-22, 8-36
Mnemonics (See Instruction set)
Mode fault (multi-master error) SPI 

DMA status (MODF) bit, 
6-16, 6-25, 9-16, 9-28, 9-29, 
23-53, 23-57

Mode Status (MSTAT) Register, 
22-8

Mode status (MSTAT) register, 
2-13, 3-6, 5-5, 5-17, 22-5, 22-6

Bit #defines, 22-25
Illustration, 22-8

Mode-Fault Error (MODF), 9-28
Mode-fault error (MODF) bit, 

9-28, 9-29
Modes

ALU, 2-10
Biased rounding, 2-10
Clock, 7-10, 23-12



ADSP-2199x Mixed Signal DSP Controller xxiii
Hardware Reference

INDEX

Preliminary

External port, 7-3, 7-9, 7-10
Bus master, 7-12
Waitstate, 7-9

Powerdown, 23-11
Serial port, 8-8
SPI port

Broadcast, 9-4
Master, 9-1, 9-24, 9-25
Slave, 9-1
Transfer/interrupt, 9-7

SPI port master mode, 9-24
Timer, 23-63

Modified addressing, 5-9
Modify (Mx) Registers, 22-21
Modify (Mx) registers, 5-2, 5-15, 

22-3, 22-21
Modify address, 5-2
Modify instruction, 5-20, 5-23
Modifying DAG Registers, 5-20
Moving Data Between SPORTS 

and Memory, 8-38
Moving data, serial port, 8-38
MRB Mode Read Back, 21-14
Multi-channel clock recovery mode 

(MCCRM) bits, 23-38
Multichannel DMA Data Packing, 

8-36
Multi-channel DMA receive 

packing enabled (MCDRXPE) 
bit, 23-38

Multi-channel DMA transmit 
packing enabled (MCDTXPE) 
bit, 23-38

Multichannel Enable, 8-36

Multi-channel FIFO fetch (MCFF) 
bit, 23-38

Multichannel Frame Delay, 8-33
Multi-channel frame delay (MFD) 

bit, 8-33, 23-37
Multichannel frame sync delay 

(MFD) bits, 8-33
Multichannel mode, 8-29

DMA data packing, 8-36
Enable/disable, 8-36
Frame syncs, 8-32
Serial port, 8-32

Multi-channel mode (MCM) bit, 
8-36, 23-37

Multichannel Mode Example, 8-37
Multichannel Operation, 8-29
Multichannel operation, serial port, 

8-29
Multi-channel select offset mode 

(MCOM) bit, 23-38
Multifunction Computations, 2-64
Multifunction instructions, 2-64

DAG restrictions, 5-12
Delimiting and terminating, 2-65, 

2-66
Multiplier, 2-1, 2-38

Arithmetic formats, 2-9
Clear operation, 2-32
Data registers, 22-2
Data types, 2-7
Dual accumulator, 1-28
Input operators, 2-30, 2-35
Instructions, 2-35, 2-66
Operations, 2-29, 2-33



INDEX

xxiv ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Result (MR) register, 2-29
Result mode, 2-10
Results, 2-32
Rounding, 2-32
Saturation, 2-32
Status, 2-10, 2-16, 2-33, 22-8

Multiplier Data Flow Details, 2-37
Multiplier Data Types, 2-7
Multiplier feedback (MF) register, 

1-28, 2-38
Multiplier input (MX/MY) 

registers, 1-27
Multiplier Instruction Summary, 

2-35
Multiplier mode, integer (MM) 

enable/disable, 3-41
Multiplier Operation, 2-29
Multiplier overflow (MV) bit, 2-33, 

2-35, 2-38, 22-8
Multiplier overflow (MV) 

condition, 1-29
Multiplier result (MR) register, 

1-28, 2-3, 2-13, 2-14, 2-31, 
2-38, 22-13

Multiplier Results (MR2, MR1, 
MR0) Registers, 22-13

Multiplier results mode selection 
(M_MODE) bit, 2-10, 22-5, 
22-9

Multiplier Status Flags, 2-33
Multiplier X- & Y-Input (MX0, 

MX1, MY0, MY1) Registers, 
22-12

Multiplier x- and y-input (MX MY) 
registers, 22-12

Multiplier/adder unit (See 
Multiplier)

Multiply instruction, 2-35
Multiply—Accumulator 

(Multiplier), 2-29
Multiply—accumulator (See 

Multiplier)
Multiprecision operations, 2-24

N
Negative, ALU (AN) bit, 22-8
Next System Configuration 

(NXTSCR) Register, 23-14
Next System Configuration 

(NXTSCR) register, 23-14
No operation (Nop) instruction, 

3-41
Norm and Exp Instruction 

Execution, 1-27
Normal frame syncs, defined, 8-27
Normal timing, serial port, 8-27
Normalize

ALU result overflow, 2-48
Double precision input, 2-50
Operations, 2-39, 2-52
Single precision input, 2-47

Normalize (Norm) instruction, 
2-40, 2-54

Execution difference, 2-49
Normalize, ALU Result Overflow, 

2-48



ADSP-2199x Mixed Signal DSP Controller xxv
Hardware Reference

INDEX

Preliminary

Normalize, Double-Precision 
Input, 2-50

Normalize, Single-Precision Input, 
2-47

Not equal to zero (NE) condition, 
1-29, 3-38

NOT operator, 2-20

O
Offset Calibration Mode, 19-12
Offset Mode, 17-4
One’s complement, 2-4
Opcode, core register codes, 22-3
Operands, 2-17, 2-29, 2-61
Operating mode (OPMODE) pin, 

12-10
Operation Features, 17-5
Operation of the FIO Block, 20-3
Optimizing Cache Usage, 3-13
OR operator, 2-19
Or, shifter bitwise (Or) option, 2-60
Other Multichannel Fields in 

SP_TCR, SP_RCR, 8-34
Output Control Feature 

Precedence, 18-27
Output Control Unit, 18-21
Output Enable Function, 18-22
Overflow, 22-8, 22-9

ALU, 2-11
ALU latch mode, 2-10
Stack, 3-34
(See also ALU overflow (AV) bit, 

Multiplier overflow (MV) bit, 
and Shifter overflow (SV) bit)

Overflow latch mode (OL) 
enable/disable, 3-41

Overflow, stack, 3-35
OVERVIEW, 18-1
Overview, 2-1, 3-1, 4-1, 5-1, 6-1, 

7-1, 8-1, 9-1, 10-1, 11-1, 12-1, 
13-1, 14-1, 15-1, 16-1, 17-1, 
19-1, 20-1, 21-1, 22-1, 23-1, 
24-1

Overview of CKGEN 
Functionality, 12-25

Overview—Why Fixed-Point 
DSP?, 1-1

Overwrite Protection / Single Shot 
Transmission Register 
(CANOPSS), 21-32

P
Packing

External port, 7-5
Serial port, 8-21, 8-36

Packing data, multichannel DMA, 
8-36

PAGEN, Program address 
generation logic (See Program 
sequencer)

Parallel assembly code (See 
Multifunction computations and 
Multifunction instructions)

Parallel operations, 2-64
Pass instruction, 2-20
PC stack address (STACKA) 

register, 3-5



INDEX

xxvi ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

PC stack empty (PCSTKEMPTY) 
condition, 3-41

PC stack empty status 
(PCSTKEMPTY) bit, 3-34, 
22-10

PC stack full (PCSTKFULL) 
condition, 3-41

PC stack full status (PCSTKFULL) 
bit, 3-34, 22-10

PC stack interrupt enable 
(PCSTKE) bit, 3-35, 22-16

PC stack level (PCSTKLVL) 
condition, 3-41

PC stack level status (PCSTKLVL) 
bit, 3-34, 3-35, 22-10

PC Stack Page (STACKP) and PC 
Stack Address (STACKA) 
Registers, 22-17

PC stack page (STACKP) register, 
3-5

Period count (PERIOD_CNT) bit, 
23-63

Peripheral clock (HCLK), 7-4, 
7-10, 7-24

Peripherals, 4-7
Phase Locked Loop (PLL), 12-23
Physical addressing, 7-16
Pin Descriptions, 12-1
Pin names, -xxxvii
Pin States at Reset, 12-6
Pins

Descriptions, 12-1 to 12-6
States at reset, 12-6 to 12-10
Unused, recommendations, 12-5

Pipeline (See Instruction pipeline)
Placing Multiplier Results in MR or 

SR Registers, 2-31
PLL Control (PLLCTL) Register, 

23-11
PLL control (PLLCTL) register, 

1-22, 23-11
PLL Lock Counter (LOCKCNT) 

Register, 23-12
PLL lock counter (LOCKCNT) 

register, 23-12
PM Bus Exchange (PX) Register, 

22-22
PMST, Processor mode status 

register (See Mode status 
(MSTAT) register)

Polarity, interrupt, 20-9
Pop/Push instructions, 3-16, 3-22, 

3-41
Port slave select enable, SPI (PSSE) 

bit, 9-10
Porting from previous DSPs

ALU sign (AS) status, 2-18
Circular buffer addressing, 5-16
DAG instruction syntax, 5-11
DAG registers, 5-4
External memory interface, 7-21
Multiplier dual accumulators, 

2-29
Multiplier feedback support, 2-38
Normalize operation, 2-49
Secondary DAG registers, 5-6
Shifter results (SR) register, 2-53
(See also Differences from previous 



ADSP-2199x Mixed Signal DSP Controller xxvii
Hardware Reference

INDEX

Preliminary

DSPs)
Post-modify addressing, 5-1, 5-23

Instruction syntax, 5-9
Power systems, 12-40
Power-Down All Mode, 20-13
Powerdown All Mode, 12-34
Powerdown Control/Modes, 12-32
Power-Down Core Mode, 20-11
Powerdown Core Mode, 12-33
Power-Down Core/Peripherals 

Mode, 20-12
Powerdown Core/Peripherals 

Mode, 12-33
Powerdown interrupt mask 

(PWDN) bit, 22-15
Power-Down Modes, 20-10
Powerdown modes, 23-11
Powerdown, using as a 

non-maskable interrupt, 12-36
Precision, 1-5
Prefetch address (PA) stage, 3-9
Pre-modify addressing, 5-1, 5-23

Instruction syntax, 5-9
Primary registers, 2-61
Processor, resetting, 12-10 to ??
Program counter (PC) register, 

1-13, 3-3
Program counter (PC) relative 

address, 3-17
Program counter (PC) stack, 3-5
Program flow, 3-2, 3-8
Program Memory (PM) bus, 1-3
Program memory bus exchange 

(PX) register, 4-8, 4-9, 22-22

Program sequencer, 1-2, 1-6, 3-1
Instructions, 3-40
Latency, 3-6
Registers, 22-3
(See also Instruction cache and 

Instruction pipeline)
Program Sequencer Registers, 22-14
Program Sequencer, Instruction 

Pipeline, and Stacks, 1-32
Program space (See Memory, Banks)
Programmable flag (PFx) pins, 

9-13, 20-7
Programmable flags, ?? to 20-10
Programmable Input Noise 

Filtering of Encoder Signals, 
16-5

Programmable Warning Limit for 
REC and TEC, 21-58

Programming information, -xxxiv
Protocols, standard, support for, 

8-42, 8-43
Pulse, timer high (PULSE_HI) bit, 

23-63
Pulsewidth Count and Capture 

(WDTH_CAP) Mode, 10-11
Pulsewidth count and capture 

(WDTH_CAP) mode, 10-1, 
10-11

Pulsewidth Modulation 
(PWMOUT) Mode, 10-7

Pulsewidth modulation 
(PWMOUT) mode, 10-1, 10-7

Purpose, -xxxiii
Purpose (of text), -xxxiii



INDEX

xxviii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Push instructions (See Pop/Push 
instructions)

PWM Duty Cycles, PWMCHA, 
PWMCHB, PWMCHC 
Registers, 18-12

PWM Generation Unit, 1-20
PWM Operating Mode, 

PWMCTRL & PWMSTAT 
Registers, 18-10

PWM Polarity Control, PWMPOL 
Pin, 18-26

PWM Shutdown & Interrupt 
Control Unit, 18-32

PWM Switching Dead Time, 
PWMDT Register, 18-9

PWM Switching Frequency, 
PWMTM Register, 18-8

PWM Timer Operation, 18-19
PWM Waveform Generation, 10-8
PWMSYNC Operation, 18-31

Q
Quotient, ALU (AQ) bit, 2-18, 

22-8

R
Read strobe (RD) pin, 7-22
Reading from Boot Memory, 7-14
Reading, recommended, 12-40
Rebooting, 12-10 to 12-11
Rec Receive Mode, 21-9
Receive Buffer, SPI (RDBR) 

Register, 23-54

Receive busy (overflow error) SPI 
DMA status (RBSY) bit, 6-16, 
6-27, 9-16, 9-30, 23-53, 23-57

Receive clock, serial (RCLKx) pins, 
8-3, 8-4, 8-22

Receive Control Registers, 21-31
Receive Data Buffer (RDBR) 

Register, 9-17
Receive Data Buffer Shadow, SPI 

(RDBRS) Register, 23-55
Receive Data Buffer Shadow, SPI 

(RDBRSx) registers, 23-55
Receive data serial port status (RXS) 

bit, 23-33
Receive data SPI status (RXS) bit, 

9-16, 23-53
Receive data, SPI (RDBRx) register, 

6-4, 9-17, 9-18, 9-19, 23-54
Receive frame sync (RFSx) pins, 

8-3, 8-23, 8-32
Receive frame sync required (RFSR) 

bit, 8-16, 8-23, 23-28
Receive Logic, 21-26
Receive Message Lost Register 

(CANRML), 21-32
Receive Message Pending Register 

(CANRMP), 21-31
Receive overflow status (ROVF) bit, 

8-17, 23-33
Receive serial clock (RSCLKx) pins, 

8-22, 8-30
Receive serial port enable (RSPEN) 

bit, 8-7, 8-10, 8-14, 8-15, 
23-28



ADSP-2199x Mixed Signal DSP Controller xxix
Hardware Reference

INDEX

Preliminary

Reception Error (RBSY) Bit, 9-30
Recommendations for Unused Pins, 

12-5
Recommended Reading, 12-40
References, 11-5
Register & Bit #Defines File 

(def219x.h), 22-23
Register access locking (See External 

access control registers lock 
(E_CRL) bit)

Register codes, JTAG instruction, 
11-3

Register Configurations, 12-35
Register files (See Data register files)
Register groups (REGx), 22-3
Register Load Latencies, 22-4
Register Mapping, 9-18
Register read/write (Reg( )) 

instruction, 4-18
Register Writes and Effect Latency, 

8-16
REGISTERS, 13-5
Registers, 14-3, 17-8, 18-33, 19-17, 

20-14
DSP core, 22-2
DSP peripherals, 23-4
Interlocked, 22-5
Latency (See Latency)
Register names, -xxxvii

Registration Inputs & Software 
Zero Marker, 16-12

Related Documents, -xxxvi
Related documents, -xxxvi

Relative address (See Indirect 
addressing)

Remote Frame Handling Register 
(CANRFH), 21-41

Reserved bits, 22-2, 23-2
Reset, 12-10 to 12-12, 23-15

(See also System configuration 
(SYSCR) register)

Reset (RESET) pin, 12-10
Reset State, 20-13
Resetting the Processor (“Hard 

Reset”), 12-10
Resetting the Processor (“Soft 

Reset”), 12-11
Restrictions on Ending Loops, 3-26
Results

Clearing, rounding, and 
saturating, 2-32

Multiplier mode, 2-10
Placement, 2-31

Retransmission, 21-34
Return (Rti/Rts) instructions, 3-16, 

3-22, 3-41
Ribbon cables, 12-40
RMLI Receive Message Lost 

Interrupt, 21-47
Round (RND) operator, 2-35
Rounding mode, 2-2
Rounding Multiplier Results, 2-13
Rounding results, 2-32
RS-232 port (See UART port)
Run mode (RMODE) bit, 12-12
Rx Serial Input from CAN Bus Line 

(from Transceiver), 21-18



INDEX

xxx ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

S
SA1 Stuck at dominant Error, 

21-58
Sampling Edge for Data and Frame 

Syncs, 8-26
Sampling, serial port, 8-26
SARAM, Single access RAM (See 

Memory, Banks)
Saturate (SAT) instruction, 2-36
Saturating ALU Results on 

Overflow, 2-11
Saturating Multiplier Results on 

Overflow, 2-33
Saturation, 2-10, 2-11, 22-9

Results, 2-32
Secondary (Alternate) DAG 

Registers, 5-4
Secondary (Alternate) Data 

Registers, 2-63
Secondary DAG registers enable 

(SEC_DAG) bit, 5-4, 5-5, 
22-5, 22-9

Secondary registers, 2-63, 5-4, 5-5
Swapping to, 2-64

Secondary registers enable 
(SEC_REG) bit, 2-63, 22-5, 
22-9

Secondary registers for DAGs mode 
(BSR) enable/disable, 3-41

Secondary registers mode (SR) 
enable/disable, 3-41

Send zero (SZ) bit, 9-9, 23-50
Sensitivity, edge, 20-10
Sequencer (See Program sequencer)

Sequencer Instruction Summary, 
3-40

SER Stuff Error, 21-58
Serial endian format select 

(SENDN) bit, 8-12, 8-15, 
8-20, 8-21

Serial peripheral interface (See SPI 
port)

Serial Peripheral Interface (SPI) 
Port, 1-18

Serial Peripheral Interface Clock 
Signal (SCK), 9-5

Serial Peripheral Interface Registers, 
23-48

Serial Peripheral Interface Slave 
Select Input Signal (SPISS), 9-5

Serial port, 8-1, 8-6, 8-8, 8-16, 8-43
Channels, 8-30
Clock, 8-2, 8-18, 8-20, 8-22
Companding, 8-22
Connections (illustration), 8-6
Data buffering, 8-17
Data formats, 8-20, 8-21
Disabling RCLK, 8-16
Enable/disable, 8-7
Frame sync, 8-25, 8-27
Framed/unframed data, 8-25
Internal memory access, 8-38
Modes, setting, 8-8
Multichannel operation, 8-29 to 

8-37
Sampling, 8-26
Single-word transfers, 8-38
Termination, 8-43



ADSP-2199x Mixed Signal DSP Controller xxxi
Hardware Reference

INDEX

Preliminary

Window, 8-33
Word length, 8-21

Serial port DMA receive pointer 
(SPxDR_PTR) registers, 23-39

Serial Port DMA Settings, 6-15
Serial port endian format (SENDN) 

bit, 23-27, 23-28
Serial port frame sync divisor 

(SPx_R/TFSDIV) registers, 
8-8, 8-19

Serial port multi-channel 
configuration (SPx_MCMCx) 
registers, 8-8

Serial port multichannel 
configuration (SPx_MCMCx) 
registers, 8-8

Serial port multichannel mode 
configuration (SPx_MCMCx) 
registers, 8-8, 23-35

Serial port multichannel receive 
channel select (SPx_MRCSx) 
registers, 8-8, 8-35, 8-36, 23-34

Serial port multichannel transmit 
channel select (SPx_MTCSx) 
registers, 8-8, 8-35, 23-33

Serial port receive clock divisor 
(SPx_RSCKDIV) registers, 8-8, 
8-16, 8-18, 8-22, 23-30

Serial port receive configuration 
(SPx_RCR) registers, 8-8, 8-10, 
8-14, 23-28

Serial port receive data (SPx_RX) 
registers, 6-4, 8-8, 8-17, 8-18, 
8-22, 8-32, 23-29

Serial port receive DMA 
configuration (SPxDR_CFG) 
registers, 23-39

Serial port receive DMA count 
(SPxDR_CNT) registers, 23-42

Serial port receive DMA descriptor 
ready (SPxDR_CPR) registers, 
23-43

Serial port receive DMA interrupt 
(SPxDR_IRQ) registers, 23-43

Serial port receive DMA next 
descriptor (SPxDR_CP) 
register, 23-42

Serial port receive DMA start 
address (SPxDR_SRA) 
registers, 23-41

Serial port receive DMA start page 
(SPxDR_SRP) registers, 23-41

Serial port receive frame sync divisor 
(SPx_RFSDIV) registers, 8-8, 
8-19, 23-31

Serial port status (SPx_STATR) 
registers, 8-8, 23-31

Serial port transmit clock divisor 
(SPx_TSCKDIV) registers, 8-8, 
8-16, 8-18, 23-30

Serial port transmit configuration 
(SPx_TCR) registers, 8-8, 8-10, 
8-11, 23-24

Serial port transmit data (SPx_TX) 
registers, 6-4, 8-8, 8-11, 8-17, 
8-18, 8-22, 8-29, 8-32, 23-29



INDEX

xxxii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Serial port transmit DMA 
configuration (SPxDT_CFG) 
registers, 23-44

Serial port transmit DMA count 
(SPxDT_CNT) registers, 
23-46

Serial port transmit DMA 
descriptor ready 
(SPxDT_CPR) registers, 23-47

Serial port transmit DMA interrupt 
(SPxDT_IRQ) registers, 23-47

Serial port transmit DMA next 
descriptor (SPxDT_CP) 
registers, 23-46

Serial port transmit DMA pointer 
(SPxDT_PTR) registers, 23-44

Serial port transmit DMA start 
address (SPxDT_SRA) 
registers, 23-45

Serial port transmit DMA start page 
(SPxDT_SRP) registers, 23-45

Serial port transmit frame sync 
divisor (SPx_TFSDIV) 
registers, 8-8, 8-19, 8-22, 23-31

Serial port word length (SLEN) bits, 
8-12, 8-13, 8-15, 8-20, 23-27, 
23-28

Restrictions, 8-21
Word length formula, 8-21

Serial word length select (SLEN) 
bits, 8-13

Set bit (Setbit) instruction, 2-20
Set interrupt (Setint) instruction, 

3-41

Setting Computational Modes, 
2-10

Setting DAG Modes, 5-4
Setting External Port Modes, 7-3
Setting Peripheral DMA Modes, 

6-10
Setting SPORT Modes, 8-8
Shadow Write FIFO, 4-16
Shadow write FIFO, 4-16
Shift data, SPI (SFDR) register, 

9-18
Shift, immediate, 2-42
Shifter, 2-1, 2-39

Arithmetic formats, 2-9
Data registers, 22-3
Data types, 2-8
Instructions, 2-54
Operations, 2-53
Options, 2-40, 2-41
Status flags, 2-33, 2-53, 22-8

Shifter block exponent (SB) register, 
2-40, 2-42, 22-13

Shifter Data Flow Details, 2-55
Shifter Data Types, 2-8
Shifter Exponent (SE) & Block 

Exponent (SB) Registers, 22-13
Shifter exponent (SE) register, 1-28, 

2-40, 2-42, 2-45, 2-47, 2-50, 
2-57, 2-60, 22-13

Shifter Exponent (SE) Register is 
not Memory Accessible, 1-28

Shifter Input (SI) Register, 22-13
Shifter input (SI) register, 1-27, 

2-57, 22-13



ADSP-2199x Mixed Signal DSP Controller xxxiii
Hardware Reference

INDEX

Preliminary

Shifter Instruction Summary, 2-54
Shifter Operations, 2-39
Shifter overflow (SV) bit, 2-33, 

2-35, 2-53, 2-54, 22-8
Shifter result (SR) register, 1-28, 

2-3, 2-31, 2-56, 2-57, 22-13
SR2 usage, 2-43

Shifter Result (SR) Register as 
Multiplier Dual Accumulator, 
1-28

Shifter Results (SR2, SR1, SR0) 
Registers, 22-13

Shifter Status Flags, 2-53
Sign bit, 2-18

Loss through overflow, 2-34
Sign extension, 2-3, 2-7, 2-43, 2-57
Signed Fractional Representation

1.15, 2-5
Signed magnitude, 2-4
Signed multiplier inputs (SS) 

operator, 2-30, 2-35
Signed Numbers

Two’s Complement, 2-5
Signed numbers, 2-4, 2-5
Signed, ALU (AS) bit, 22-8
Signed, shifter (SS) bit, 2-54, 2-60, 

22-8
Signed/unsigned multiplier inputs 

(SU) operator, 2-30, 2-35
Simultaneous Sampling Mode, 

19-11
Single cycle operation, 2-23, 2-30, 

2-39, 2-57, 2-61, 4-6
Single North Marker Mode, 16-14

Single Shot Transmission, 21-35
Single-Pulse Generation, 10-11
Size, word (SIZE) bit, 9-10, 23-50
Slave Mode Operation, 9-26
Slave Ready for a Transfer, 9-28
Slave select enable (PSSE) bit, 23-50
Slave-Select Inputs, 9-13
SMA Sleep Mode Acknowledge, 

21-10
SMACK Sleep Mode Acknowledge, 

21-19
SMR Sleep Mode Request, 21-6
SMUL, Saturation on 

multiplication (See Multiplier, 
Saturation)

Software condition (SWCOND) 
condition, 1-29, 3-39, 22-19

Software reset, 12-11, 12-13, 23-15
Preparing internal memory, 4-17, 

12-12
(See also Reset)

Software reset (SWR) bits, 12-11, 
23-13

Software Reset (SWRST) Register, 
23-13

Software Reset Logic, 12-27
SP, Stack pointer (See Stack, 

Registers)
Special Consideration for PWM 

Operation in 
Over-Modulation, 18-16

SPI Baud Rate (SPIBAUD) 
Register, 9-8, 23-55



INDEX

xxxiv ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

SPI baud rate (SPIBAUDx) 
registers, 9-8, 9-9, 9-19, 23-55

SPI clock (SCKx) pins, 9-2, 9-3, 
9-4, 9-5, 9-20, 9-22, 9-23

SPI Control (SPICTL) Register, 
9-9, 23-48

SPI control (SPICTLx) registers, 
23-48

SPI DMA Chain Pointer Ready 
(SPID_CPR) Register, 23-59

SPI DMA Configuration 
(SPID_CFG) Register, 23-56

SPI DMA configuration 
(SPIxD_CFG) registers, 9-19, 
23-56

SPI DMA Current Pointer 
(SPID_PTR) Register, 23-55

SPI DMA current pointer 
(SPIxD_PTR) registers, 9-19, 
23-55

SPI DMA descriptor ready 
(SPIxD_CPR) registers, 9-19, 
23-59

SPI DMA Errors, 6-25
SPI DMA in Master Mode, 6-21
SPI DMA in Slave Mode, 6-23
SPI DMA Interrupt (SPID_IRQ) 

Register, 23-59
SPI DMA interrupt (SPIxD_IRQ) 

registers, 9-19, 23-59
SPI DMA Next Chain Pointer 

(SPID_CP) Register, 23-58

SPI DMA next descriptor 
(SPIxD_CP) registers, 9-19, 
23-58

SPI DMA Start Address 
(SPID_SRA) Register, 23-58

SPI DMA start address 
(SPIxD_SRA) registers, 9-18, 
9-19, 23-58

SPI DMA Start Page (SPID_SRP) 
Register, 23-58

SPI DMA start page (SPIxD_SRP) 
registers, 9-18, 9-19, 23-58

SPI DMA Word Count 
(SPID_CNT) Register, 23-58

SPI DMA word count 
(SPIxD_CNT) registers, 9-18, 
9-19, 23-58

SPI enable (SPE) bit, 23-50
SPI finished (SPIF) bit, 9-16, 23-53
SPI Flag (SPIFLG) Register, 9-11, 

23-51
SPI flag (SPIFLGx) registers, 9-11, 

9-13, 9-15, 9-19, 23-51
SPI General Operation, 9-22
SPI port, 1-18

Broadcast mode, 9-4
Clock, 9-23
Clock phase, 9-21, 9-22
Compatible devices, 9-2
Configuring/enabling system, 9-9
DMA, 6-16
Error signals and flags, 9-28
Formats, 9-19
Interface signals, 9-4, 9-7



ADSP-2199x Mixed Signal DSP Controller xxxv
Hardware Reference

INDEX

Preliminary

Master mode, 9-24, 9-25
Operations, 9-22, 9-24
Registers, 9-8, 9-19
Slave mode, 9-27
Transfers, 9-31

SPI port control (SPICTLx) 
register, 9-5, 9-9, 9-18, 9-19

SPI Port DMA Settings, 6-16
SPI port enable (SPE) bit, 9-11
SPI port slave select (SPISS) pin, 

9-2, 9-5, 9-14, 9-20
SPI port status (SPISTx) register, 

9-16
SPI port status (SPISTx) registers, 

9-15, 9-18, 9-19, 23-52
SPI Registers, 9-8
SPI Status (SPIST) Register, 9-15, 

23-52
SPI Transfer Formats, 9-19
SPI Transmit Buffer (TDBR) 

Register, 23-54
Spill-fill mode, 3-35
SPORT (See Serial port)
SPORT Descriptor-Based DMA 

Example, 8-40
SPORT Disable, 8-7
SPORT DMA Autobuffer Mode 

Example, 8-39
SPORT DMA Data 

Packed/Unpacked Enable, 6-20
SPORT DMA Receive Pointer 

(SPDR_PTR) Register, 23-39

SPORT Multi-Channel 
Configuration (SP_MCMCx) 
Registers, 23-35

SPORT Multi-Channel Receive 
Select (SP_MRCSx) Registers, 
23-34

SPORT Multi-Channel Transmit 
Select (SP_MTCSx) Registers, 
23-33

SPORT Operation, 8-6
SPORT Pin/Line Terminations, 

8-43
SPORT Receive Configuration 

(SP_RCR) Register, 23-28
SPORT Receive Data (SP_RX) 

Register, 23-29
SPORT Receive DMA Chain 

Pointer (SPDR_CP) Register, 
23-42

SPORT Receive DMA Chain 
Pointer Ready (SPDR_CPR) 
Register, 23-43

SPORT Receive DMA 
Configuration (SPDR_CFG) 
Register, 23-39

SPORT Receive DMA Count 
(SPDR_CNT) Register, 23-42

SPORT Receive DMA Interrupt 
(SPxDR_IRQ) Register, 23-43

SPORT Receive DMA Start 
Address (SPDR_SRA) Register, 
23-41

SPORT Receive DMA Start Page 
(SPDR_SRP) Register, 23-41



INDEX

xxxvi ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

SPORT Registers, 23-24
SPORT Status (SP_STATR) 

Register, 23-31
SPORT Transmit (SP_TFSDIV) 

and Receive (SP_RFSDIV) 
Frame Sync Divider Registers, 
23-31

SPORT Transmit (SP_TSCKDIV) 
and (SP_RSCKDIV) Serial 
Clock Divider Registers, 23-30

SPORT Transmit Configuration 
(SP_TCR) Register, 23-24

SPORT Transmit Data (SP_TX) 
Register, 23-29

SPORT Transmit DMA Chain 
Pointer (SPDT_CP) Register, 
23-46

SPORT Transmit DMA Chain 
Pointer Ready (SPDT_CPR) 
Register, 23-47

SPORT Transmit DMA 
Configuration (SPDT_CFG) 
Register, 23-44

SPORT Transmit DMA Count 
(SPDT_CNT) Register, 23-46

SPORT Transmit DMA Interrupt 
(SPDT_IRQ) Register, 23-47

SPORT Transmit DMA Pointer 
(SPDT_PTR) Register, 23-44

SPORT Transmit DMA Start 
Address (SPDT_SRA) Register, 
23-45

SPORT Transmit DMA Start Page 
(SPDT_SRP) Register, 23-45

SRAM (memory), 1-2
SRS Software Reset, 21-7
Stack

Explicit operations, 3-37
Implicit operations, 3-36
Interrupt, 3-35
Over/underflow status, 3-34
PC high/low-watermark, 3-34
Registers, 3-33

Stack address, PC (STACKA) 
register, 22-17

Stack addressing (See DAGs and 
Data move)

Stack interrupt mask (STACK) bit, 
22-15

Stack overflow status 
(STKOVERFLOW) bit, 3-34, 
3-35, 22-10

Stack page, PC (STACKP) register, 
22-17

Stack, PC interrupt enable 
(PCSTKE) bit, 3-35, 22-16

Stacking, layer, 12-40
Stacks and Sequencing, 3-32
Status stack empty 

(STSSTKEMPTY) condition, 
3-41

Status stack empty status 
(STSSTKEMPTY) bit, 3-34, 
22-10

Status stack overflow 
(STKOVERFLOW) condition, 
3-41

Status, conditional, 3-38



ADSP-2199x Mixed Signal DSP Controller xxxvii
Hardware Reference

INDEX

Preliminary

Subroutines, defined, 3-1
Subtract instruction, 2-17, 2-19, 

2-24
Support (technical or customer), 

-xxxv
Support for Standard Protocols, 

8-42
Support for standard protocols, 

8-42, 8-43
Switched Reluctance Mode, 18-21, 

18-27
System Configuration (SYSCR) 

Register, 23-15
System configuration (SYSCR) 

register, 12-12, 23-15
System control register read/write 

(Reg( )) instruction, 4-18
System control registers, 22-2, 22-3

Address #defines, 22-27
System interface, 12-1 to 12-40
System Status (SSTAT) Register, 

22-10
System status (SSTAT) register, 3-6, 

22-5
Bit #defines, 22-25
Illustration, 22-10
Latency, 22-5

T
TCLK, disabling, 8-14
TDBR data buffer status (TXS) bit, 

23-53
Technical support, -xxxv
Telex for information, -xxxv

Temporary Mailbox Disable 
Feature (CANMBTD), 21-39

Terminating a loop, 3-24
Termination values, serial port, 

8-43
Terminations, 12-40
Terminations, serial port pin/line, 

8-43
Test access port (TAP) (See JTAG 

port)
Test bit (Tstbit) instruction, 2-20, 

3-38
Test clock (TCK) pin, 11-2
Test data input (TDI) pin, 11-2
TEST Enable for the special 

functions, 21-14
Test logic reset (TRST) pin, 11-2
Test mode select (TMS) pin, 11-2
Three-Phase Timing & Dead Time 

Insertion Unit, 18-8
Time Stamp Counter Mode, 21-56
Time-Division-Multiplexed 

(TDM) mode, 8-29
(See also Serial port, Multichannel 

operation)
Timer

External event watchdog 
(EXT_CLK) mode, 10-14

Interrupts, 10-4
Modes, 10-1, 23-63
Pulsewidth count and capture 

(WDTH_CAP) mode, 10-11
Pulsewidth modulation 

(PWMOUT) mode, 10-7



INDEX

xxxviii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Registers, 10-1
Timer Configuration (T_CFGRx) 

Registers, 23-62
Timer counter overflow 

(OVF_ERRx) bits, 23-61
Timer Counter, low word 

(T_CNTLx) and high word 
(T_CNTHx) Registers, 23-63

Timer enable (TIMENx) bits, 
23-61

Timer Example Steps, 10-15
Timer external event (TMR_PIN) 

signal, 23-63
Timer Global Status and Control 

(T_GSRx) Registers, 23-60
Timer global status and control 

(T_GSRx) registers, 10-3, 
23-60

Timer input select (TIN_SEL) bit, 
23-63

Timer input/output (TMRx) pin, 
10-1, 23-64

Timer interrupt latch (TIMILx) 
bits, 23-61

Timer Interrupt Routine, 10-20
Timer mode (TMODE) bits, 23-63
Timer Period, low word 

(T_PRDLx) and high word 
(T_PRDHx) Registers, 23-65

Timer Registers, 23-59
Timer Width, low word (T_WLRx) 

and high word (T_WHRx) 
Register, 23-66

Timer x configuration (T_CFGRx) 
registers, 10-2, 23-62

Timer x high word count 
(T_CNTHx) registers, 10-2, 
23-63

Timer x high word period 
(T_PRDHx) registers, 10-3, 
23-65

Timer x high word pulse width 
(T_WHRx) registers, 10-3, 
23-66

Timer x low word count 
(T_CNTLx) registers, 10-3, 
23-63

Timer x low word period 
(T_PRDLx) registers, 10-3, 
23-65

Timer x low word pulse width 
(T_WLRx) registers, 10-3, 
23-66

Timer0 Initialization Routine, 
10-18

Timing Examples, 8-43
Timing examples, for serial ports, 

8-43
Toggle bit (Tglbit) instruction, 2-20
Top-of-loop address, 3-23
Transfer data SPI status (TXS) bit, 

9-16
Transfer direction (TRAN) bit, 

6-12, 23-18, 23-40, 23-57
Transfer Initiation from Master 

(Transfer Modes), 9-26



ADSP-2199x Mixed Signal DSP Controller xxxix
Hardware Reference

INDEX

Preliminary

Transfer initiation mode (TIMOD) 
bit, 9-7, 9-9, 23-50

Transmission Acknowledge Register 
(CANTA), 21-39

Transmission Error (TXE) Bit, 9-30
Transmission error (TXE) bit, 6-16, 

6-27, 9-16, 9-30, 23-53, 23-57
Transmission lines, 12-40
Transmission Request Reset 

Register (CANTRR), 21-36
Transmission Request Set Register 

(CANTRS), 21-36
Transmit and Receive 

Configuration Registers 
(SP_TCR, SP_RCR), 8-10

Transmit and Receive Data Buffers 
(SP_TX, SP_RX), 8-17

Transmit clock, serial (TCLKx) 
pins, 8-3, 8-4, 8-22, 8-30

Transmit Collision Error (TXCOL) 
Bit, 9-30

Transmit collision error (TXCOL) 
bit, 6-27, 9-16, 9-30, 9-31, 
23-53

Transmit Control Registers, 21-35
Transmit Data Buffer (TDBR) 

Register, 9-17
Transmit data buffer (TDBRx) 

register, 6-4, 9-17, 9-18, 9-19, 
23-54

Transmit frame sync (TFSx) pins, 
8-3, 8-11, 8-23, 8-29, 8-32

Transmit frame sync required 
(TFSR) bit, 8-13, 8-23, 23-27

Transmit Logic, 21-33
Transmit Priority defined by 

Mailbox Number, 21-35
Transmit serial data status (TXS) 

bits, 8-11, 23-33
Transmit serial port enable 

(TSPEN) bit, 8-10, 8-11, 8-12, 
23-27

Transmit underflow status (TUVF) 
bit, 8-11, 8-17, 8-29, 23-33

Trm Transmit Mode, 21-9
True (Forever) condition, 1-32
True condition, 3-39
Two’s complement, 2-5, 2-47
TX Serial Output to CAN Bus Line 

(to Transceiver), 21-18
TxPrio Transmit Priority by 

message identifier (if 
implemented), 21-6

U
UCE Universal Counter Event, 

21-47
UIAI Access to Unimplemented 

Address Interrupt, 21-48
Un/Signed

Two’s-Complement Format, 24-1
Unbiased Rounding, 2-14
Unbiased rounding, 2-14
Underflow

ALU, 2-11
Stack status, 3-34

Unframed/framed, serial data, 8-23
Unified Memory Space, 1-30



INDEX

xl ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary

Universal Counter Module, 21-53
Unpacking data, multichannel 

DMA, 8-36
Unsigned, 2-5
Unsigned multiplier inputs (UU) 

operator, 2-30, 2-35
Unsigned/signed multipler inputs 

(US) operator, 2-30, 2-35
Unused pins, recommendations for, 

12-5
Use of FLS Bits in SPIFLG for 

Multiple-Slave SPI Systems, 
9-13

Using Boot Memory Space, 7-14
Using Bus Master Modes, 7-12
Using Computational Status, 2-16
Using DAG Status, 5-8
Using Data Formats, 2-4
Using External Memory Banks and 

Pages, 7-11
Using MemDMA DMA, 6-17
Using Memory Access Status, 7-11
Using Memory Bank/Space Clock 

Modes, 7-10
Using Memory Bank/Space 

Waitstates Modes, 7-9
Using Multiplier Integer and 

Fractional Formats, 2-11
Using Serial Peripheral Interface 

(SPI) Port DMA, 6-21
Using Serial Port (SPORT) DMA, 

6-18
Using the Cache, 3-13

V
Version Code Register 

(CANVERSION), 21-16
Vias, 12-40
VisualDSP, 1-24
Voltage Reference, 19-16
Von Neumann architecture, 4-2

W
Waitstate count, 7-9
Waitstate mode, memory access, 

7-9
Waitstates, 7-9
Watchdog timer, 10-7
WBA Wake Up on CAN Bus 

Activity, 21-6
Web site, -xxxiv
What’s New in this Manual, -xxxv
Window Offset, 8-33
Window offset (WOFF) bits, 8-33, 

23-37
Window Size, 8-33
Window size (WSIZE) bits, 8-33, 

23-37
Word Length, 8-21
Word length select (WLS) bits, 8-2, 

8-21
Working with External Bus 

Masters, 12-36
Working with External Port Modes, 

7-8
Working with Peripheral DMA 

Modes, 6-17



ADSP-2199x Mixed Signal DSP Controller xli
Hardware Reference

INDEX

Preliminary

WR CAN Receive Warning Flag, 
21-10

Wrap around, buffer, 5-12, 5-15
Write open drain master (WOM) 

bit, 9-11, 9-23, 23-50
Write strobe (WR) pin, 7-22
Write-one-to-clear (W1C) 

operation, 9-15, 9-16
Writing to Boot Memory, 7-15

WT CAN Transmit Warning Flag, 
21-10

WUI Wake Up Interrupt, 21-48

X
XOR operator, 2-19

Z
Zero, ALU (AZ) bit, 22-8



INDEX

xlii ADSP-2199x Mixed Signal DSP Controller
Hardware Reference

Preliminary


	Contents
	Preface
	Purpose
	Instruction Set Enhancements

	For more Information about Analog Products
	For Technical or Customer Support
	What’s New in this Manual
	Related Documents
	Conventions

	1 Introduction
	Overview—Why Fixed-Point DSP?
	ADSP-2199x Design Advantages
	ADSP-2199x Architecture Overview
	DSP Core Architecture
	DSP Peripherals Architecture
	Memory Architecture
	Internal (On-chip) Memory
	External (Off-chip) Memory
	Interrupts
	DMA Controller
	DSP Serial Port (SPORT)
	Serial Peripheral Interface (SPI) Port
	Controller Area Network (CAN) Module
	Analog To Digital Conversion System
	PWM Generation Unit
	Auxiliary PWM Generation Unit
	Encoder Interface Unit
	Flag I/O (FIO) Peripheral Unit
	Low-Power Operation
	Clock Signals
	Booting Modes
	JTAG Port

	Development Tools
	Differences from Previous DSPs
	Computational Units and Data Register File
	Arithmetic Status (ASTAT) Register Latency
	Norm and Exp Instruction Execution
	Shifter Result (SR) Register as Multiplier Dual Accumulator
	Shifter Exponent (SE) Register is not Memory Accessible
	Conditions (SWCOND) and Condition Code (CCODE) Register
	Unified Memory Space
	Data Memory Page (DMPG1 and DMPG2) Registers
	Data Address Generator (DAG) Addressing Modes
	Base Registers for Circular Buffers
	Program Sequencer, Instruction Pipeline, and Stacks
	Conditional Execution (Difference in Flag Input Support)
	Execution Latencies (Different for JUMP Instructions)


	2 Computational Units
	Overview
	Using Data Formats
	Binary String
	Unsigned
	Signed Numbers: Two’s Complement
	Signed Fractional Representation: 1.15
	ALU Data Types
	Multiplier Data Types
	Shifter Data Types
	Arithmetic Formats Summary

	Setting Computational Modes
	Latching ALU Result Overflow Status
	Saturating ALU Results on Overflow
	Using Multiplier Integer and Fractional Formats
	Rounding Multiplier Results
	Unbiased Rounding
	Biased Rounding

	Using Computational Status
	Arithmetic Logic Unit (ALU)
	ALU Operation
	ALU Status Flags
	ALU Instruction Summary
	ALU Data Flow Details
	ALU Division Support Features

	Multiply—Accumulator (Multiplier)
	Multiplier Operation
	Placing Multiplier Results in MR or SR Registers
	Clearing, Rounding, or Saturating Multiplier Results
	Multiplier Status Flags
	Saturating Multiplier Results on Overflow
	Multiplier Instruction Summary
	Multiplier Data Flow Details

	Barrel�Shifter (Shifter)
	Shifter Operations
	Derive Block Exponent
	Immediate Shifts
	Denormalize
	Normalize, Single-Precision Input
	Normalize, ALU Result Overflow
	Normalize, Double-Precision Input
	Shifter Status Flags
	Shifter Instruction Summary
	Shifter Data Flow Details

	Data Register File
	Secondary (Alternate) Data Registers
	Multifunction Computations

	3 Program Sequencer
	Overview
	Instruction Pipeline
	Instruction Cache
	Using the Cache
	Optimizing Cache Usage

	Branches and Sequencing
	Indirect Jump Page (IJPG) Register
	Conditional Branches
	Delayed Branches

	Loops and Sequencing
	Managing Loop Stacks
	Restrictions on Ending Loops

	Interrupts and Sequencing
	Stacks and Sequencing
	Conditional Sequencing
	Sequencer Instruction Summary

	4 Memory
	Overview
	Internal Address and Data Buses
	External Address and Data Buses
	Internal Data Bus Exchange

	ADSP-2199x Memory Organization
	Shadow Write FIFO

	Data Move Instruction Summary

	5 Data Address Generators
	Overview
	Setting DAG Modes
	Secondary (Alternate) DAG Registers
	Bit-Reverse Addressing Mode
	DAG Page Registers (DMPGx)

	Using DAG Status
	DAG Operations
	Addressing with DAGs
	Addressing Circular Buffers
	Addressing with Bit-Reversed Addresses
	Modifying DAG Registers

	DAG Register Transfer Restrictions
	DAG Instruction Summary

	6 I/O Processor
	Overview
	Descriptor-Based DMA Transfers
	Autobuffer-Based DMA Transfers
	Interrupts from DMA Transfers

	Setting Peripheral DMA Modes
	MemDMA DMA Settings
	Serial Port DMA Settings
	SPI Port DMA Settings

	Working with Peripheral DMA Modes
	Using MemDMA DMA
	Using Serial Port (SPORT) DMA
	Descriptor-Based SPORT DMA
	Autobuffer-Based SPORT DMA
	SPORT DMA Data Packed/Unpacked Enable
	Using Serial Peripheral Interface (SPI) Port DMA
	SPI DMA in Master Mode
	SPI DMA in Slave Mode
	SPI DMA Errors

	Boot Mode DMA Transfers
	Code Example: Internal Memory DMA

	7 External Port
	Overview
	Setting External Port Modes
	Memory Bank and Memory Space Settings
	External Bus Settings
	Bus Master Settings
	Boot Memory Space Settings

	Working with External Port Modes
	Using Memory Bank/Space Waitstates Modes
	Using Memory Bank/Space Clock Modes
	Using External Memory Banks and Pages
	Using Memory Access Status
	Using Bus Master Modes
	Using Boot Memory Space
	Reading from Boot Memory
	Writing to Boot Memory

	Interfacing to External Memory
	Data Alignment—Logical versus Physical Address
	Memory Interface Pins
	Memory Interface Timing

	Code Example: BMS Runtime Access

	8 Serial Port
	Overview
	SPORT Operation
	SPORT Disable

	Setting SPORT Modes
	Transmit and Receive Configuration Registers (SP_TCR, SP_RCR)
	Register Writes and Effect Latency
	Transmit and Receive Data Buffers (SP_TX, SP_RX)
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions
	Frame Sync and Clock Example
	Data Word Formats
	Word Length
	Endian Format
	Data Type
	Companding
	Clock Signal Options
	Frame Sync Options
	Framed versus Unframed
	Internal versus External Frame Syncs
	Active Low versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early versus Late Frame Syncs (Normal and Alternate Timing)
	Data-Independent Transmit Frame Sync
	Multichannel Operation
	Frame Syncs in Multichannel Mode
	Multichannel Frame Delay
	Window Size
	Window Offset
	Other Multichannel Fields in SP_TCR, SP_RCR
	Channel Selection Registers
	Multichannel Enable
	Multichannel DMA Data Packing
	Multichannel Mode Example

	Moving Data Between SPORTS and Memory
	SPORT DMA Autobuffer Mode Example
	SPORT Descriptor-Based DMA Example

	Support for Standard Protocols
	2X Clock Recovery Control

	SPORT Pin/Line Terminations
	Timing Examples

	9 Serial Peripheral Interface (SPI) Port
	Overview
	Interface Signals
	Serial Peripheral Interface Clock Signal (SCK)
	Serial Peripheral Interface Slave Select Input Signal (SPISS)
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)
	Interrupt Behavior

	SPI Registers
	SPI Baud Rate (SPIBAUD) Register
	SPI Control (SPICTL) Register
	SPI Flag (SPIFLG) Register
	Slave-Select Inputs
	Use of FLS Bits in SPIFLG for Multiple-Slave SPI Systems
	SPI Status (SPIST) Register
	Transmit Data Buffer (TDBR) Register
	Receive Data Buffer (RDBR) Register
	Data Shift (SFDR) Register
	Register Mapping

	SPI Transfer Formats
	SPI General Operation
	Clock Signals
	Master Mode Operation
	Transfer Initiation from Master (Transfer Modes)
	Slave Mode Operation
	Slave Ready for a Transfer

	Error Signals and Flags
	Mode-Fault Error (MODF)
	Transmission Error (TXE) Bit
	Reception Error (RBSY) Bit
	Transmit Collision Error (TXCOL) Bit

	Beginning and Ending of an SPI Transfer
	DMA

	10 Timer
	Overview
	Pulsewidth Modulation (PWMOUT) Mode
	PWM Waveform Generation
	Single-Pulse Generation
	Pulsewidth Count and Capture (WDTH_CAP) Mode
	External Event Watchdog (EXT_CLK) Mode

	Code Examples
	Timer Example Steps
	Timer0 Initialization Routine
	Timer Interrupt Routine


	11 JTAG Test-Emulation Port
	Overview
	JTAG Test Access Port
	INSTRUCTION Register
	BYPASS Register
	BOUNDARY Register
	IDCODE Register
	References

	12 System Design
	Overview
	Pin Descriptions
	Recommendations for Unused Pins

	Pin States at Reset
	Resetting the Processor (“Hard Reset”)
	Resetting the Processor (“Soft Reset”)
	Booting the Processor (“Boot Loading”)
	Booting Modes
	Boot from External 8-Bit Memory (EPROM) over EMI
	Execute from External 8-Bit Memory
	Execute from External 16-Bit Memory
	Boot from SPI0 with < 4k bits
	Boot from SPI0 with > 4k bits
	Bootstream Format

	Managing DSP Clocks
	Phase Locked Loop (PLL)
	Clock Generation (CKGEN) Module
	Overview of CKGEN Functionality
	Hardware Reset Generation
	Software Reset Logic
	Clock Generation & PLL Control
	Lock Counter

	Powerdown Control/Modes
	Idle Mode
	Powerdown Core Mode
	Powerdown Core/Peripherals Mode
	Powerdown All Mode

	Register Configurations
	Working with External Bus Masters
	Recommended Reading

	13 Peripheral Interrupt Controller
	Overview
	ADSP-2199x PERIPHERAL INTERRUPT CONTROLLER
	GENERAL OPERATION
	REGISTERS

	14 Watchdog Timer
	Overview
	General Operation
	Registers

	15 Power On Reset
	Overview

	16 Encoder Interface Unit
	Overview
	Encoder Loop Timer
	Encoder Interface Structure & Operation
	Introduction
	Programmable Input Noise Filtering of Encoder Signals
	Encoder Counter Direction
	Alternative Frequency and Direction Inputs
	Encoder Counter Reset
	Registration Inputs & Software Zero Marker
	Single North Marker Mode
	Encoder Error Checking
	EIU Input Pin Status
	Interrupts
	32-bit Register Accesses

	Encoder Event Timer
	Introduction & Overview
	Latching Data from the EET
	EET Status Register

	EIU/EET Registers
	Inputs/Outputs

	17 Auxiliary PWM Generation Unit
	Overview
	Independent Mode
	Offset Mode
	Operation Features
	AUXTRIP Shutdown
	AUXSYNC Operation
	Registers

	18 PWM Generation Unit
	OVERVIEW
	GENERAL OPERATION
	FUNCTIONAL DESCRIPTION
	Three-Phase Timing & Dead Time Insertion Unit
	PWM Switching Frequency, PWMTM Register
	PWM Switching Dead Time, PWMDT Register
	PWM Operating Mode, PWMCTRL & PWMSTAT Registers
	PWM Duty Cycles, PWMCHA, PWMCHB, PWMCHC Registers
	Special Consideration for PWM Operation in Over-Modulation
	PWM Timer Operation
	Effective PWM Accuracy
	Switched Reluctance Mode
	Output Control Unit
	Crossover Feature
	Output Enable Function
	Brushless DC Motor (Electronically Commutated Motor) Control
	GATE DRIVE UNIT
	High Frequency Chopping
	PWM Polarity Control, PWMPOL Pin
	Output Control Feature Precedence
	Switched Reluctance Mode
	PWMSYNC Operation
	Internal PWMSYNC generation
	External PWMSYNC operation
	PWM Shutdown & Interrupt Control Unit

	Registers

	19 Analog to Digital Converter System
	Overview
	ADC Inputs
	Analog to Digital Converter and Input Structure
	ADC Control Module
	ADC Clock
	ADC Data Formats
	Convert Start Trigger
	ADC Time Counters
	Conversion Modes
	Simultaneous Sampling Mode
	Latch Mode
	Offset Calibration Mode
	DMA Single Channel Acquisition Mode
	DMA Dual Channel Acquisition Mode
	DMA Quad Channel Acquisition Mode
	DMA Octal Channel Acquisition Mode
	DMA Operation Overview

	Voltage Reference
	Registers

	20 Flag I/O (FIO) Peripheral Unit
	Overview
	Operation of the FIO Block
	Flag Register
	Flag as Output
	Flag as Input
	Interrupt Outputs
	Flag Wake-up output
	FIO Lines as PWM Shutdown Sources.
	FIO Lines as SPI Slave Select Lines
	Configuration Registers
	Flag Configuration Registers
	FIO Direction Control (DIR) Register
	Flag Control (FLAGC and FLAGS) Registers
	Flag Interrupt Mask (MASKAC, MASKAS, MASKBC, and MASKBS) Registers
	FIO Polarity Control (POLAR) Register
	FIO Edge/Level Sensitivity Control (EDGE and BOTH) Registers
	Power-Down Modes
	Idle Mode
	Power-Down Core Mode
	Power-Down Core/Peripherals Mode
	Power-Down All Mode
	Reset State

	Registers

	21 Controller Area Network (CAN) Module
	Overview
	CAN Module Registers
	Master Control Register (CANMCR)
	CCR CAN Configuration Mode Request
	CSR CAN Suspend Mode Request
	SMR Sleep Mode Request
	WBA Wake Up on CAN Bus Activity
	TxPrio Transmit Priority by message identifier (if implemented)
	ABO Auto Bus On
	DNM Device Net Mode (if implemented)
	SRS Software Reset
	Global Status Register (CANGSR)
	Rec Receive Mode
	Trm Transmit Mode
	MBptr Mail Box Pointer
	CCA CAN Configuration Mode Acknowledge
	CSA CAN Suspend Mode Acknowledge
	SMA Sleep Mode Acknowledge
	EBO CAN Error Bus Off Mode
	EP CAN Error Passive Mode
	WR CAN Receive Warning Flag
	WT CAN Transmit Warning Flag

	CAN Configuration Registers
	Bit Configuration Register 0 (CANBCR0)
	Bit Configuration Register 1 (CANBCR1)
	CAN Configuration Register (CANCNF)
	TEST Enable for the special functions
	MRB Mode Read Back
	MAA Mode Auto Acknowledge
	DIL Disable CAN Internal Loop
	DTO Disable CAN TX Output
	DRI Disable CAN RX Input
	DEC Disable CAN Error Counter
	Version Code Register (CANVERSION)
	CAN Error Counter Register (CANCEC)
	Interrupt Register (CANINTR)
	Rx Serial Input from CAN Bus Line (from Transceiver)
	TX Serial Output to CAN Bus Line (to Transceiver)
	SMACK Sleep Mode Acknowledge
	GIRQ Global Interrupt Output
	MBTIF Mailbox Transmit Interrupt Output
	MBRIF Mailbox Receive Interrupt Output

	Data Storage
	Mailbox Layout
	Mailbox Area
	Mailbox Types

	Mailbox Control Logic
	Mailbox Configuration (CANMC / CANMD)
	Receive Logic
	Acceptance Filter / Data Acceptance Filter
	Acceptance Mask Register
	FDF Filtering on Data Field (if enabled)
	FMD Full Mask Data Field
	AMIDE Acceptance Mask Identifier Extension
	BaseId Base Identifier
	ExtId Extended Identifier
	DFM Data Field Mask
	Receive Control Registers
	Receive Message Pending Register (CANRMP)
	Receive Message Lost Register (CANRML)
	Overwrite Protection / Single Shot Transmission Register (CANOPSS)
	Transmit Logic
	Retransmission
	Single Shot Transmission
	Transmit Priority defined by Mailbox Number
	Transmit Control Registers
	Transmission Request Set Register (CANTRS)
	Transmission Request Reset Register (CANTRR)
	Abort Acknowledge Register (CANAA)
	Transmission Acknowledge Register (CANTA)
	Temporary Mailbox Disable Feature (CANMBTD)
	Remote Frame Handling Register (CANRFH)
	Mailbox Interrupts
	Mailbox Interrupt Mask Register (CANMBIM)
	Mailbox Transmit Interrupt Flag Register (CANMBTIF)
	Mailbox Receive Interrupt Flag Register (CANMBRIF)
	Global Interrupt
	ADI Access Denied Interrupt
	EXTI External Trigger Output Interrupt
	UCE Universal Counter Event
	RMLI Receive Message Lost Interrupt
	AAI Abort Acknowledge Interrupt
	UIAI Access to Unimplemented Address Interrupt
	WUI Wake Up Interrupt
	BOI Bus-Off Interrupt
	EPI Error-Passive Interrupt
	EWRI Error Warning Receive Interrupt
	EWTI Error Warning Transmit Interrupt
	Global Interrupt Logic
	Global Interrupt Mask Register (CANGIM)
	Global Interrupt Status Register (CANGIS)
	Global Interrupt Flag Register (CANGIF)
	Universal Counter Module
	Time Stamp Counter Mode
	Error Status Register (CANESR)
	FER Form Error Flag
	BEF Bit Error Flag
	SA1 Stuck at dominant Error
	CRCE CRC Error
	SER Stuff Error
	ACKE Acknowledge Error
	Programmable Warning Limit for REC and TEC


	22 ADSP-2199x DSP Core Registers
	Overview
	Core Registers Summary
	Register Load Latencies

	Core Status Registers
	Arithmetic Status (ASTAT) Register
	Mode Status (MSTAT) Register
	System Status (SSTAT) Register

	Computational Unit Registers
	Data Register File (Dreg) Registers
	ALU X- & Y-Input (AX0, AX1, AY0, AY1) Registers
	ALU Results (AR) Register
	ALU Feedback (AF) Register
	Multiplier X- & Y-Input (MX0, MX1, MY0, MY1) Registers
	Multiplier Results (MR2, MR1, MR0) Registers
	Shifter Input (SI) Register
	Shifter Exponent (SE) & Block Exponent (SB) Registers
	Shifter Results (SR2, SR1, SR0) Registers

	Program Sequencer Registers
	Interrupt Mask (IMASK) & Latch (IRPTL) Registers
	Interrupt Control (ICNTL) Register
	Indirect Jump Page (IJPG) Register
	PC Stack Page (STACKP) and PC Stack Address (STACKA) Registers
	Loop Stack Page (LPSTACKP) and Loop Stack Address (LPSTACKA) Register
	Counter (CNTR) Register
	Condition Code (CCODE) Register
	Cache Control (CACTL) Register

	Data Address Generator Registers
	Index (Ix) Registers
	Modify (Mx) Registers
	Length and Base (Lx,Bx) Register
	Data Memory Page (DMPGx) Registers

	Memory Interface Registers
	PM Bus Exchange (PX) Register
	I/O Memory Page (IOPG) Register

	Register & Bit #Defines File (def219x.h)

	23 ADSP-2199x DSP I/O Registers
	Overview
	I/O Processor (Memory Mapped) Registers
	Clock and System Control Registers
	PLL Control (PLLCTL) Register
	PLL Lock Counter (LOCKCNT) Register
	Software Reset (SWRST) Register
	Next System Configuration (NXTSCR) Register
	System Configuration (SYSCR) Register

	DMA Controller Registers
	DMA, MemDMA Channel Write Pointer (DMACW_PTR) Register
	DMA, MemDMA Channel Write Configuration (DMACW_CFG) Register
	DMA, MemDMA Channel Write Start Page (DMACW_SRP) Register
	DMA, MemDMA Channel Write Start Address (DMACW_SRA) Register
	DMA, MemDMA Channel Write Count (DMACW_CNT) Register
	DMA, MemDMA Channel Write Chain Pointer (DMACW_CP) Register
	DMA, MemDMA Channel Write Chain Pointer Ready (DMACW_CPR) Register
	DMA, MemDMA Channel Write Interrupt (DMACW_IRQ) Register
	DMA, MemDMA Channel Read Pointer (DMACR_PTR) Register
	DMA, MemDMA Channel Read Configuration (DMACR_CFG) Register
	DMA, MemDMA Channel Read Start Page (DMACR_SRP) Register
	DMA, MemDMA Channel Read Start Address (DMACR_SRA) Register
	DMA, MemDMA Channel Read Count (DMACR_CNT) Register
	DMA, MemDMA Channel Read Chain Pointer (DMACR_CP) Register
	DMA, MemDMA Channel Read Chain Pointer Ready (DMACR_CPR) Register
	DMA, MemDMA Channel Read Interrupt (DMACR_IRQ) Register

	SPORT Registers
	SPORT Transmit Configuration (SP_TCR) Register
	SPORT Receive Configuration (SP_RCR) Register
	SPORT Transmit Data (SP_TX) Register
	SPORT Receive Data (SP_RX) Register
	SPORT Transmit (SP_TSCKDIV) and (SP_RSCKDIV) Serial Clock Divider Registers
	SPORT Transmit (SP_TFSDIV) and Receive (SP_RFSDIV) Frame Sync Divider Registers
	SPORT Status (SP_STATR) Register
	SPORT Multi-Channel Transmit Select (SP_MTCSx) Registers
	SPORT Multi-Channel Receive Select (SP_MRCSx) Registers
	SPORT Multi-Channel Configuration (SP_MCMCx) Registers
	SPORT DMA Receive Pointer (SPDR_PTR) Register
	SPORT Receive DMA Configuration (SPDR_CFG) Register
	SPORT Receive DMA Start Page (SPDR_SRP) Register
	SPORT Receive DMA Start Address (SPDR_SRA) Register
	SPORT Receive DMA Count (SPDR_CNT) Register
	SPORT Receive DMA Chain Pointer (SPDR_CP) Register
	SPORT Receive DMA Chain Pointer Ready (SPDR_CPR) Register
	SPORT Receive DMA Interrupt (SPxDR_IRQ) Register
	SPORT Transmit DMA Pointer (SPDT_PTR) Register
	SPORT Transmit DMA Configuration (SPDT_CFG) Register
	SPORT Transmit DMA Start Address (SPDT_SRA) Register
	SPORT Transmit DMA Start Page (SPDT_SRP) Register
	SPORT Transmit DMA Count (SPDT_CNT) Register
	SPORT Transmit DMA Chain Pointer (SPDT_CP) Register
	SPORT Transmit DMA Chain Pointer Ready (SPDT_CPR) Register
	SPORT Transmit DMA Interrupt (SPDT_IRQ) Register

	Serial Peripheral Interface Registers
	SPI Control (SPICTL) Register
	SPI Flag (SPIFLG) Register
	SPI Status (SPIST) Register
	SPI Transmit Buffer (TDBR) Register
	Receive Buffer, SPI (RDBR) Register
	Receive Data Buffer Shadow, SPI (RDBRS) Register
	SPI Baud Rate (SPIBAUD) Register
	SPI DMA Current Pointer (SPID_PTR) Register
	SPI DMA Configuration (SPID_CFG) Register
	SPI DMA Start Page (SPID_SRP) Register
	SPI DMA Start Address (SPID_SRA) Register
	SPI DMA Word Count (SPID_CNT) Register
	SPI DMA Next Chain Pointer (SPID_CP) Register
	SPI DMA Chain Pointer Ready (SPID_CPR) Register
	SPI DMA Interrupt (SPID_IRQ) Register

	Timer Registers
	Timer Global Status and Control (T_GSRx) Registers
	Timer Configuration (T_CFGRx) Registers
	Timer Counter, low word (T_CNTLx) and high word (T_CNTHx) Registers
	Timer Period, low word (T_PRDLx) and high word (T_PRDHx) Registers
	Timer Width, low word (T_WLRx) and high word (T_WHRx) Register

	External Memory Interface Registers
	External Memory Interface Control/Status (E_STAT) Register
	External Memory Interface Control (EMICTL) Register
	Boot Memory Select Control (BMSCTL) Register
	Memory Select Control (MSxCTL) Registers
	I/O Memory Select Control (IOMSCTL) Register
	External Port Status (EMISTAT) Register
	Memory Page (MEMPGx) Registers


	24 Numeric Formats
	Overview
	Un/Signed: Two’s-Complement Format
	Integer or Fractional
	Binary Multiplication
	Fractional Mode and Integer Mode

	Block Floating-Point Format

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z


