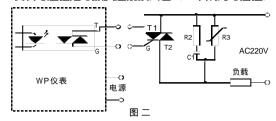


使用手册 OPERATING MANUAL

以我们多年的开发生产及系统成套经验, 为客户提供及推荐各种有效而可靠的测量方法、仪器仪表、传感器、执行机构及配套方案。我们一直专致于自动化控制并率先推出了多种国内领先的产品:

智能显示控制仪表、记录仪 智能电力仪表 智能隔离转换模块


隔离安全栅

压力、差压、液位、流量变送器 超声波、液位、距离传感器 自动化工程成套系统等等

承蒙惠购本产品不胜感激,敬请先详阅本"使用手册",以便于正确使用。所记载内容因改进将会不经预告予以变更,敬请谅解,本产品虽然经过严格的品质管理而出厂,但万一遇有发生不正常事项或意外之处,敬请通知本公司业务经办人、技术服务部或附近本公司代理商为感。

2、WP 仪表可控硅过零触发控制接线图(一个双向可控硅)

RC吸收回路:R3-400V压敏电阻 C1=0.01uF/400V, R2=39~100 /2W

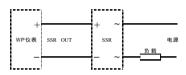
十四、随机文件及附件

- 1、智能自整定PID调节控制仪使用手册一份
- 2、仪表主机一台
- 3、产品检验合格证一份
- 4、上润产品服务卡一份

特别说明

- 1、在正常情况下,仪表不需要特别维护,请注意防潮、 防尘。
- 2、因产品质量引起的故障,在出厂三个月内可更换或 退货,在出厂18个月内实行免费保修,在18个月后 实行有偿服务,终身维修。
- 3、公司保留产品改进升级和接线更改的权利,若发现说明书与产品后壳接线图不符,以后壳所附接线图为准。若发现实物功能菜单与说明书不符,请与当地供货商或本部联系。

- 1、设定仪表二级参数与欲输入的分度号相符。
- 2、更改接线为相应的接线端子,改型即告完毕。


PID外给定控制仪的改型:同PID自整定控制仪的改型 PID外给定控制仪电流\电压输入的改型:

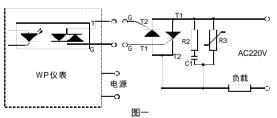
设定仪表二级参数与欲输入的分度号相符。

十三、仪表补充说明

(一)、WP仪表与外部SSP(固态继电器)接线说明

1、仪表与SSP的接线如下:

2. 说明


仪表的SSR控制输出端直接接外部SSR的控制输入端即可。 仪表SSR控制输出端严禁直接短路。

仪表控制SSR的电压为打""者。

5 V	6 V	9V	12V	24V	

(二)、WP伙表可控硅过零触发输出控制接线图

1、WP仪表可控硅过零触发控制接线图(两个单向可控硅);

目 录

一、主要技术性能1
二、操作方式
(一) 仪表面板
(二)控制参数及设定(一级参数)4
(三)返回工作状态6
(四)自动演算功能的实现6
(五)自动/手动无扰动切换方法
(六)手动/自动无扰动切换方法
(七)三种控制输出调节功能
三、PID控制算法8
四、PID控制调节方法
五、报警方式
六、校对方式10
七、控制输出及变送输出信号的更改10
八、安装与使用1 ²
九、二级参数设定15
十、仪表接线举例18
十一、PID调节控制仪型谱表20
十二、仪表改型22
十三、仪表补充说明23
十四、随机文件及附件24

上润WP系列智能自整定PID调节控制仪,采用先进的微处 理器进行智能控制,可根据被控对象自动演算出最佳调节参数。 且有多种输入信号切换功能和双屏数码。双屏数码+双光柱一种 显示型式。可选择多种串行通讯接口,并可实现多机通讯。可适 用干众多行业高精度的调节控制系统。各输入/输出回路间均采 用光电隔离,具有良好的抗干扰性和稳定性。

一、主要技术性能

输入信号 热电阻—Pt100、Pt100.1、Cu50、Cu100

热电偶—B.S.K.E.J.T.WRe

标准电流—0~10mA、(4~20)mA(输入电阻 250) 标准电压—0~5V、(1~5)V、mV(输入阻抗 250K)

远传压力电阻(30~350)

分 辦 率 数字显示:±1字 光柱显示:±1线

测量范围 数字: -1999~9999 光柱:0~100%

显示方式 四位高亮度LED数码显示 101线高分辨率光柱显示

发光二极管工作状态显示

双屏数码显示/双屏数码+双光柱显示

测量值/设定值显示

控制目标值/0~100%输出量显示

PID调节 输出方式

标准电流 DC 0~10mA(负载电阻 750)

DC (4~20)mA (负载电阻 500)

标准电压 DC 0~5V(负载电阻 250K)

DC (1~5)V(负载电阻 250K)

开关量输出 继电器触点

触点容量AC220V/3A(阻性负载);

DC24V/5A(阻性负载)

可控硅调节信号—SCR(过零触发脉冲)输出 400V/0.5A.可触发可控硅400V/100A。

固态继电器调节信号—SSR输出(5~24)V/30mA。 其它特殊要求的控制输出。

报警方式 可选择继电器上限/下限报警输出,LED指示;

可选择继电器上上限报警输出, LED指示:

可选择继电器下下限报警输出,LED指示:

输入类型:

				-	
代码	输入类型	测量范围	代码	输入类型	测量范围
01	В	(400 ~ 1800)	11	Cu100	(-50.0~150.0)
02	S	0 ~ 1600	12	(4~20)mA	- 1999 ~ 9999d
03	K	0 ~ 1300	13	0~10mA	- 1999 ~ 9999d
04	Е	0 ~ 1000	14	(1~5)V	- 1999 ~ 9999d
05	Т	0 ~ 320.0	15	0~5 V	- 1999 ~ 9999d
06	J	0 ~ 1200	16	0~20mA	- 1999 ~ 9999d
07	WRe3 25	0 ~ 3200	17	(30~350)	- 1999 ~ 9999d
08	Pt100	(-200~650)	18	特殊规格	用户特定(注5)
09	Pt100.1	(-99.9~199.9)	23	可切换输入	
10	Cu50	(-50.0~150)			

注 1: 仪表显示方式为PV、SV双LED显示+双光柱显示

注 2:控制输出为PID控制,变送输出为测量值对应的变送输 出。D405及S405系列无变送输出。

注3: D405、S405系列均为开关电源供电,型号选型不须标明。

注4:外给定控制—可选择由内部设定控制目标值或由外部输 入设定控制目标值。

注5:切换输入只需设定仪表二级参数,即可切换输入多种分 度号, PID控制仪可输入分度号如下:

代码	输入类型	代码	输入类型	代码	输入类型	代码	输入类型
01	В	05	Т	09	Pt100.1	13	0~ 10mA
02	S	06	J	10	Cu50	14	(1~5)V
03	К	07	WRe3-25	11	Cu100	15	0~5V
04	Е	08	Pt100	12	(4~20)mA		

型号举例: WP-D805-822-08-HLP; WP-D405-020-12-HL; WP - T815 - 822 - 0812 : WP - D915 - 020 - 1212

十二、仪表改型

警告!非工程设计人员不得进行改型操作。否则,将造成仪 表控制错误!

本仪表采用最新技术,只需参照(二级参数的设定),按要 求修改二级参数和相应的输入接线端。仪表改型即告完毕。 PID自整定控制仪的改型:

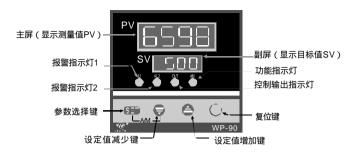
智能自整定PID调节控制仪 智能自整定PID调节控制仪

(二)智能阀位/外给定PID控制调节仪型谱表

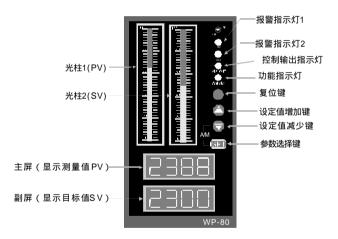
				型							-	说 明
				_		号						说 明
WP -		П	П	P		П			П		ш	
	D											双屏横式显示
外形特征	DS											双屏竖式显示
7171713 III.	Т											双屏双光柱竖式显示
	TX											双屏双光柱横式显示
		4										96×48mm(横式) 48×96mm(竖 式(注)
外形尺寸		8										160×80mm(横式)80×160mm(竖式)
		9										96×96mm(注)
控制作用			15									外给定控制
3± 103 1 F / T3			25									阀位控制(继电器输出正、反转)
				0								无通讯接口
通讯方式				2								RS-232C通讯接口
				8								RS - 485通讯接口
					0							无输出
					1							继电器控制或报警输出
					2							(4~20)mA输出
					3							(0~10)mA输出
控制输出					4							(1~5)V输出
					5							(0~5)V输出
					6							SCR可控硅过零触发脉冲输出
					7							SSR固态继电器输出
					8							特殊规格变送输出
						0						无输出
						2						(4~20)mA输出
变送输出						3						(0~10)mA输出
又达制山						4						(1~5)V输出
						5						(0~5)V输出
						8						特殊规格变送输出
PV输入类型							В					参见"输入类型表"
SV输入类型								Ц				无切换功能(输入类型表中12~16)
									Ν			无控制/报警(可省略)
第一报警									Ξ			第一报警为上限报警
									J			第一报警为下限报警
第二报警												同第一报警方式
馈电输出										Р		DC24V馈电输出
												AC220V线性电源(可省略)
供电方式											Τ	AC(90~265)V开关电源供电
											W	DC24V供电

注:无光柱显示:40系列PV输入信号不能全切换。

可选择继电器偏差内报警输出, LED指示: 可选择继电器偏差外报警输出,LED指示; 可选择继电器上/下偏差报警输出、LED指示 **杏送輸出** 标准电流 DC 0~10mA(负载电阻 750) DC (4~20)mA (负载电阻 500) 标准电压 DC 0~5V(负载电阻 250K) DC (1~5)V(负载电阻 250K) 其它特殊要求的变送输出 **请讯接□** 标准串行通讯接□:RS-232C,RS-485等 波 特 率 300~9600bps (可自由设定) **唐电电压** DC24V(负载 30mA) 参数设定 面板轻触式按键数字设定 参数设定值断电后永久保存 参数设定值密码锁定 保护方式 热电偶/热电阻输入断线报警 继电器输出状态LED指示 输入超/欠量程报警指示 电源欠压自动复位 工作异常自动复位 使用环境 环境温度0~50 湿度 85 RH 无凝露 避免强腐蚀气体 **供电电压** 常规型 AC 220V₋₁₅ %(50HZ±2HZ,线性电源) 特殊型 AC (90~265)V—开关电源 DC 24V ± 2V — 开关电源 IJΠ 蕪 5W(AC 220V线性电源) 4W(AC (90~265)V开关电源) 4W(DC 24V电源) 构 标准卡入式 结 ■ 420g(线性电源供电) 260g(开关电源供电)


二、操作方式

番


(一) 仪装面板

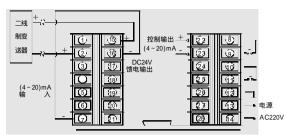
1. WP-D905面板

-21--2-

2、WP-T805面板:

3、仪表面板各部分说明

	名	称	内	容
显		量值PⅤ 显示器	显示实时测量值 在参数设定状态下,显示参数	效符号 。
示器		标值SV 显示器	显示控制目标值或输出量的百 外给定控制时显示外给定值 在参数设定状态下,显示设定	

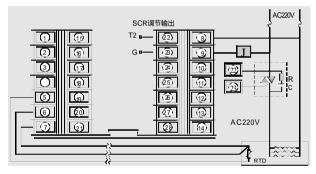

十一、PID调节控制仪型谱表

(一)智能自整定PID调节控制仪型谱表

				型	号	-						说 明
WP -				LΠ			-==	7		-0	-	
	D											双屏数码横式显示
外形特征	DS											双屏数码竖式显示
外形特征	Т											双屏双光柱竖式显示
	ΤX											双屏双光柱横式显示
		4										96×48mm横式48×96mm竖式(注)
外形尺寸		7										72×72mm (注)
ב אלמוניול		8										160×80mm横式80×160mm竖式
		9										96×96mm(注)
控制作用			0.5									内给定
				0								无通讯接口
通讯方式				2								RS - 232C通讯接口
				8								RS - 485通讯接口
					0							无输出
					1							继电器控制或报警输出
					2				ш			(4~20)mA输出
					3				ш			(0~10)mA输出
控制输出					4				ш			(1~5)V输出
					5							(0~5)V输出
					6 7							SCR可控硅过零触发脉冲输出
					8	Н			Н			SSR固态继电器控制输出
					ŏ	Н			Н			<u>特殊规格变送输出</u>
						2			Н			<u>无变送输出</u> (4~20)mA输出
						3			Н			(0~10)mA輸出
变送输出						4			Н			(1~5)V输出
						_						(0~5)V输出
						5 8						特殊规格变送输出
输入类型						0	П		Н			
								N	Н			参见"输入类型表" 无报警(可省略)
第一报警								H	П			第一报警为上限报警
								L	П			第一报警为下限报警
第二报警								•				同第一报警方式
馈电输出									_	Р		DC24V馈电输出
												AC220V线性电源(可省略)
供电方式											Т	AC(90~265)V开关电源供电
											W	DC24V供电

注:无光柱显示。

- 3 -



接线图例二

输入型号:热电阻Pt100

输出信号:SCR-可控硅过零触发脉冲,AL1上限报警输出

仪表型号: WP-D805-060-08-H

注:请确认SCR各脚极性后接线。否则,将造成元件损坏或控制错误。虚框内RC回路为杂波吸收回路,仅供参考。 R=39 ,电阻功率 2W;C=0.1 µ F;电容耐压 630V。

仪表10,11端最大耐压400V/AC,可触发可控硅最大工作电流 100A。仪表供电电源和加热器电源尽量不要设计在同一相线上。

	名 称	内容			
显	光柱1显示器(PV)	显示实时测量值对应的百分比			
器	光柱 2显示器(SV)	显示控制目标值或输出量的百分比 外给定控制时显示外给定值百分比			
操	⑤ET 参数设定选择键	可以记录已变更的设定值 可以按序变换参数设定模式 配合 ▼ 键可以实现自动/手动控制输出的切换 配合 ▲ 键可进入仪表二级参数设定			
作	设定值减少键	变更设定时,用于减少数值 连续按压,将自动快速减1 配合 ② 键可实现自动/手动控制输出的切换			
键	设定值增加键	变更设定时,用于增加数值 连续按压,将自动快速加1 配合≲€↑ 键可进入仪表二级参数设定			
	复位(RESET)键 (面板不标出)	用于程序清零(自检)			
	(AL1) (红) 报警指示灯1	第一报警ON时灯 亮			
指	(AL2) (绿) 报警指示灯2	第二报警ON时灯亮			
灯	(OUT)(绿) 输出指示灯	继电器(或SSR.SCR)为控制输出时, 在输出时灯亮,无输出时灯灭。			
	(A / M)(红) 功能指示灯	开始自动演算时,将连续闪烁;自动演算完毕时灯灭。 以协至手动控制输出时灯亮。			

(二)控制参数设定(一级参数)

在仪表测量值(PV)显示状态下,按压SET键,仪表转入控制参数设定状态。每按SET键即照下列顺序变换参数(一次巡回后随即回至最初项目)。

(1) 参数设定状态各参数列示如下:

符号	名 称	设定范围 (字)	说明	出厂
CLK	设定参数禁锁	CLK=00 CLK ≠00 132 CLK=132	无禁锁(设定参数可修改) 禁锁(设定参数不可修改) 进入二级参数设定	00
AL1	第一控制 或报警值	- 1999 ~ 9999	显示第一控制或报警的报警设定值 请参照仪表型谱表,订货时提出。	50
AL2	第二控制 或报警值	- 1999 ~ 9999	显示第二控制或报警的报警设定值 请参照仪表型谱表,订货时提出。	50
AH1	第一报警 回差或偏差	0 ~ 255	显示第一报警的回差值。	2
AH2	第二报警 回差或偏差	0 ~ 255	显示第二报警的回差值。	2
CON	内部参数	CON=0	控制输出为PID控制	0
Р	比例带	全量程	显示程序比例带的设定值 当设P=l=1、D=0时,仪表成位式控制	50.0
ı	积分时间 0~ 1999秒		显示程序积分时间的设定值 消除比例控制所产生的静差 设定为(1)时,积分作用则成OFF	200.0
D	微分时间	0~1999秒	显示程序微分时间的设定值 预测输出的变化,防止扰动,提高 控制的稳定性 设定为(0)时,微分作用则成OFF	10.0
АТ	积分 分离区	全量程	可有效的防止积分饱和	200
Т0	逻辑 运算周期	1~200秒 精度:10ms	显示PID参数逻辑运算的周期 继电器或可控硅输出时有此参数	1.0
T1	输出周期	1~200秒 精度:10ms	显示控制输出的周期 继电器或可控硅输出时有此参数	2.0
AUT	自动演算 (自整定)	AUT=0-关 AUT=1-开	关 - 手动设定PID参数值 开 - 自动演算(自整定) 注:自动演算完毕后,可手动修改设定参数	0
АН	逻辑 回差值	全量程	显示自动演算输出时的逻辑回差值 继电器或可控硅输出时有此参数	2

(2) 控制目标值(SV)的设定:

在PV显示测量值,SV显示控制目标值的状态下,按住SET键不放,4秒钟后,即进入控制目标值SV的设定状态。

参数由干仪表规格不同有不予显示的参数,尚请注意。

参数修改完毕后,再次按压SET键,即将修改后的参数保存。 如修改后未按压SET键,则仪表不保存修改后的数值。 例:一直流电流(4~20)mA输入仪表,测量量程为

(-200~1000)KPa, 现作校对时发现输入4mA时

显示 - 202, 输入20mA时显示1008。(原Pb1=0,原KK1=1)

根据公式:KK1=预定量程÷显示量程×原KK1

 $=[1000 - (-200)] \div (1008 - (-202) \times 1$

 $=1200 \div 1210 \times 1 \quad 0.992$

Pb1=预定量程下限-显示量程下限×KK1+原Pb1=-200-(-202×0.992)+0=0.384

设定:Pb1=0.384,KK1=0.992

注4: Pb3、KK3及Pb4、KK4的计算公式:

仪表变送及控制输出以0~20mA或0~5V校对,如欲更改输出量程,可利用以下公式实现:

KKx=预定输出上限÷实际输出上限×原KKx

Pbx=预定输出下限÷满量程×100%

例: 变送电流0~20mA输出,现欲改为(4~20)mA输出。测量时,输入零点值输出为0mA,输入满量程时输出为20.8mA。(原Pb3=0.原KK3=1)

根据公式: KK3 =预定输出上限÷实际输出上限×原KK3

 $=20 \div 20...8 \times 1 = 0.962$

Pb1 = 预定输出下限÷满量程×100% = 4÷20×100% = 20%

设定: Pb3= 2 0,KK3 = 0.962

注 5:关于应用SVL、SVH, FUL、FUH的例:

一直流电流输入仪表,原量程为0~500Pa,现欲改为量程

为(-100.0~500.0)Pa。

`设定:SL1=1(小数点),SLL=-1000,SLH=5000。量程更改完毕。

本 机显示是以字数为单位。

按键操作请注意:

.因仪表型号不同,有不予显示的参数,敬请注意。

.若该参数值无效时,修改时均不出现。

例: SL3=0, 即第二报警无效,则在一级参数修改时,无AL2, AH2 参数出现。

.当CLK 值不为 " 0 " 或 " 132 " 时, 修改参数无效。

.参数设定完毕后,请设定CLK 0或132,以确保已设定参数的安全。

十、仪表接线举例(接线图例一):

输入信号:(4~20)mA(接二线制变送器)

输出信号: DC24V馈电(配二线制变送器)AL1(上限)报警

仪表型号: WP-D805-020-12-HLP

符号	名 称	设定范围	说明
OUH	变送输出 量程上限	全量程	设定变送输出的上限量程
PVL	闪烁报警 下 限	全量程	设定闪烁报警下限量程(测量值低于设定值时,显示测量值并闪烁,SL5=1时有此功能)
PVH	闪烁报警 上 限	全量程	设定闪烁报警上限量程(测量值高于设定值时,显示测量值并闪烁,SL5=1时有此功能)
SVL	测量量程 下 限	-1999 ~9999	测量量程的下限值(注5)
SVH	测量量程 上 限	-1999 ~9999	测量量程的上限值(注5)
FU0	SV输入分度号		可选择12,13,14,15其中1条有效,定货时注明
		FU1=0	无小数点(显示XXXX)
FU1	SV显示	FU1=1	小数点在十位 (显示XXX.X)
101	小数点	FU1=2	小数点在百位 (显示XX.XX)
		FU1=3	小数点在千位 (显示X.XXX)
FPb	SV显示输入 零点迁移	全量程	SV显示输入零点迁移量(注2)
FKK	SV显示输入 放大比例	0.000~ 1.9999倍	SV显示输入量程放大比例(注2)
FUL	SV测量 量程下限	- 1999 ~ 9999	SV测量量程下限值(注5)
FUH	SV测量 量程上限	- 1999 ~ 9999	SV测量量程上限值(注5)

因仪表型号不同,有不予显示的参数

注1:分度号设定参数表

设定	0	1	2	3	4	5	6
分度号	В	S	K	Е	Т	J	WR e
设定	7	8	9	10	11	12	13
分度号	Cu50	Pt100	Pt100.1	用户参数	0~10mA线性	(4~20)mA线性	0~5V线性
设定	14	15	16	17	18	19	20
分度号	(1~5)V线性	用户参数	0~10mA开方	(4~20)mA开方	0~ 5V开方	(1~5)V开方	保留参数

注2: PIDL、PIDH的定义: PIDL、PIDH等干仪表调节输出 的上下限幅值。

如:设定PIDL=10%,则仪表调节输出量最小值为10%。 设定PIDH=90%,则仪表调节输出量最大值为90%。

注3:Pb1、KK1及Pb2、KK2的计算公式:

KKx=预定量程÷显示量程×原KKx

Pbx=预定量程下限 - 显示量程下限 x KKx+原Pbx

(3) 参数设定方式

以下以WP-D905为例,说明参数设定方式过程。

(设定控制目标值为100)

参数设定状态.屏幕显示

控制目标参数符号SV及 出厂预定值。

在SV设定状态下,按住 设定值增加键,程序自 动快速加1。调整参数值 等于100.0。

按压SET键,确认参数 设定值正确,再次按压 SET键不松,5秒后即退 出参数设定。

用以上方法,分别设定AL1.AL2.P.I.D.T等参数及设定参 数的锁定CLK。

修改参数前,请先确认CLK=00,否则参数将无法修改。 操作时注意:

设定参数改变后,按SET键该值才被保存。

如参数的设定值不能修改,则系设定参数正被禁锁,请将 CLK的参数设定值改为00即可开锁。

要使设定值为负数,可按设定值减少键使设定值减小至零 后,继续按住该键,显示即出现负值。

参数一旦设定,断电后将永远保存。

(三)返回工作状态

1、手动返回:

在仪表参数设定模式下,按住SET键5秒后,仪表即自动回 到测量值显示状态。

2、自动返回:

在仪表参数设定模式下,不按任一键,30秒后,仪表将自动 回到测量值显示状态。

3、复位返回:

在仪表参数设定模式下,按压复位键,仪表再次自检后进入 测量值显示状态。

(四) 自动演算功能的实现

在仪表测量状态下,进入参数设定,修改参数ATU=1,退 出参数设定,仪表即开始自动演算。

自动演算时, 仪表自动演算指示灯A/M将闪烁, 表示正在

进行自动演算。

自动演算时,如遇断电或复位,恢复正常时,仪表将以自动 演算前的设定值为准进行控制。

当自动演算指示灯熄灭,则表示自动演算完毕。仪表将自动演算结果写入EPROM永久保存。

自动演算完毕后,可手动修改自动演算后的参数设定值。

(五) 自动/手动无抗动切换方法

仪表在自动控制输出模式下,同时按压SET键和 键,仪表将自动跟踪输出量,A/M指示灯(红)亮,即已完成自动/手动无扰切换,此时可按 键或 键手动改变仪表输出量的百分比(范围:PIDL~PIDH)

手动状态下, 仪表显示为:

XXXX

………… 实时测量值

XXXX

••••••••••• 仪表输出量的百分比

(六) 手动/自动无扰动切换方法

仪表在手动控制输出模式下,同时按压(SET)键和键, 仪表将自动跟踪输出量,A/M指示灯(红)灭,即已完成手动/ 自动无扰切换,仪表显示为:

XXXX

XXXX

************ 控制目标值

- (七) 仪表有二种控制输出调节功能(定货时注明)。 1、内给定控制调节功能。(05系列)
- (1) 自动调节状态(模拟量输出);

仪表上电后自动处于调节状态。输出模拟控制信号(如 (4~20)mA、(1~5)V等),根据测量值(PV)与目标值(SV)的 差值,计算PID输出量。并将PVin输入值显示于PV显示器上,控制目标值(或输出量的百分比)显示于SV显示器上。

(2) 手动操作状态(模拟量输出)。

当需要进行手动操作控制时,在自动调节状态下,同时按压SET键和 键,仪表将跟随当前输出量,自动转入手动控制状态,仪表自动/手动(A/M)指示灯亮,即可实现自动手动无扰切换。

		\n							
符号	名 称	设定范围	说明						
		bT=0	通讯波特率为300bps						
		bT=1	通讯波特率为600bps						
	通讯	bT=2	通讯波特率为1200bps						
bT	波特率	bT=3	通讯波特率为2400bps						
	<i>113</i> -	bT=4	通讯波特率为4800bps						
		bT=5	通讯波特率为9600bps						
T 1	保留参数								
b1	保留参数								
	5:5 / - 173	F1=0	正作用						
F1	PID作用方式	F1=1	反作用						
F2	PID输出类型	F2=0	继电器、SSR(固态继电器控制输出)、 SCR - 可控硅过零触发。						
		F2=1	电流、电压控制输出						
		F3=0	SV显示控制目标值						
F3	SV、(PV2)	F3=1	SV显示PID输出量的百分比						
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	显示方式	F3=2	显示阀位反馈值						
		F3 = 3	SV光柱显示PID输出量的百分比						
	77 — D2 +A \	IN2=0	内给定PID调节仪(05系列)						
IN2	第二路输入	IN2=1	阀位PID调节仪(25系列)						
	, ,	IN2=2	外给定PID调节仪(15系列)						
ОН	保留参数								
PIDL	PID控制输出下限	0 ~ 100%	PID输出下限限幅 (注2)						
PIDH	PID控制 输出上限	0 ~ 100%	PID输出上限限幅 (注2)						
Pb1	零点迁移	全量程	显示输入的零点迁移量 (注3)						
KK1	放大比例	0.000~ 1.999倍	显示输入量程的放大比例 (注3)						
Pb2	冷端补偿	全量程	显示冷端补偿的零点迁移量(注3)						
KK2	冷端补偿 增 益	0.000~ 1.999倍	显示冷端补偿的增益值 (注3)						
Pb3	变送输出 零点迁移	全量程	显示变送输出的零点迁移量(注4)						
KK3	变送输出 放大比例	0.000~ 1.999倍	显示变送输出的放大比例 (注4)						
Pb4	控制输出 零点迁移	全量程	显示调节输出的零点迁移量(注3)						
KK4	控制输出 放大比例	0.000~ 1.9999倍	显示调节输出的放大比例 (注4)						
OUL	变送输出 量程下限	全量程	设定变送输出的下限量程						

- 7 -

力。 一级参数设定

警告!非工程设计人员不得进入修改二级参数。否则,将 造成仪表控制错误!

仪表在一级参数设定状态下,修改CLK=132后,在PV显示CLK,SV显示132状态下,先按下SET键不放,再按键 30秒,仪表即进入二级参数设定。在二级参数修改状态下,每按SET键即照下列顺序变换(一次巡回后随即回至最初参数)。仪表二级参数列示如下:

符号	名 称	设定范围	说明	
SL0	输入分度号	0~20	仪表输入分度号的参数符号 (注1)	
SL1	小数点	SL1=0	无小数点	
		SL1=1	小数点在十位(显示XXX.X)	
		SL1=2	小数点在百位(显示XX.XX)	
		SL1=3	小数点在千位(显示X.XXX)	
	第一控制或 报警方式	SL2=0	无控制或报警	
		SL2=1	报警方式为下限报警	
		SL2=2	报警方式为上限报警	
SL2		SL2=3	报警方式为偏差内报警	
		SL2=4	报警方式为偏差外报警	
		SL2=5	报警方式为上偏差报警	
		SL2=6	报警方式为下偏差报警	
		SL3=0	无控制或报警	
	第二控制或 报警方式	SL3=1	报警方式为下限报警	
		SL3=2	报警方式为上限报警	
SL3		SL3=3	报警方式为偏差内报警	
		SL3=4	报警方式为偏差外报警	
		SL3=5	报警方式为上偏差报警	
		SL3=6	报警方式为下偏差报警	
		SL4=0	冷端为内冷端补偿(采用仪表内接冷端 补偿电路进入补偿)	
SL4	冷端补偿	SL4=1	冷端为外冷端补偿(采用仪表外接冷端 补偿电路进入补偿)	
		SL5=0	无闪烁报警(当测量值小于PVL或大于 PVH时,PV显示测量值但不闪烁)	
SL5	闪烁功能	SL5=1	闪烁报警(当测量值小于PVL或大于 PVH时,PV显示测量值并闪烁)	
SL6	滤波系数	1~10次	设置仪表滤波系数防止显示值跳动	
SL7	内部保留参数			
dE	设备号	0~255	设定通讯时本仪表的设备号	

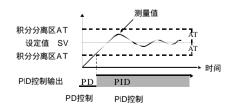
此时,SV显示输出量(0~100%),输出值大小可按压 键(增加输出量)或 键(减少输出量)来调节。调节范围在PIDL~PIDH之间,同时按压SET键和 键,仪表即返回自动控制状态,仪表手动/自动切换也为无扰切换。

2、外给定控制状态。(15系列)

仪表可接收双路的模拟输入信号,送往仪表的PVin和SVin接线端,PVin输入信号显示测量值,由PV显示器显示,SVin输入信号显示外给定值,由SV显示器显示,根据用户的具体要求,仪表可输出模拟量(如(4~24)mA、(1~5)V等)

(1) 自动调节状态(模拟量输出):

仪表上电后自动处于调节状态。输出模拟控制信号(如 (4~20)mA、(1~5)V等),根据测量值(PV)与外给定值(SV)的差值,计算PID输出量,并将PVin输入值显示于PV显示器上,SVin输入值显示于SV显示器上。

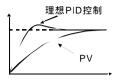

(2) 手动操作状态(模拟量输出)。

当需要进行手动操作控制时,在自动控制状态下,同时按压SET键和 键,仪表将跟随当前输出量,自动转入手动控制状态,仪表自动/手动(A/M)指示灯亮,即可实现自动/手动无扰切换。此时,SV显示输出量(0~100%),输出值大小可按压 键(增加输出量)或 键(减少输出量)来调节。调节范围在PIDL~PIDH之间,同时按压SET键和 键,仪表即返回自动控制状态。

三、PID控制算法

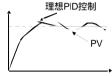
仪表采用最优化PID算法。

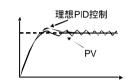
仪表控制输出示意图



智能自整定PID调节控制仪 智能自整定PID调节控制仪

四、PID控制调节方法


如有下图的情况,请减少P的设定值


如有下图的情况请增加P的设定值

理想PID控制

如有下图的情况,请增加I或P的设定值

如有下图的情况, 请减少D的设定值

P、I、D参数的设定值与调节速度的关系:P、I 参数越小, 调节越快,反之越慢:D参数越大,调节越快,反之越慢。

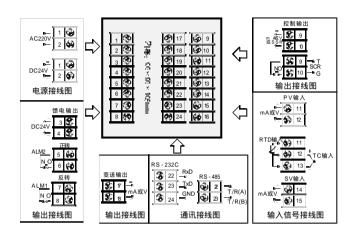
五、报警方式

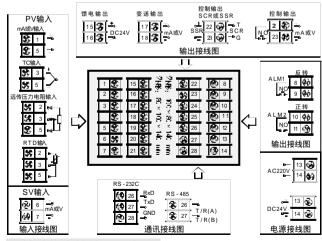
1、AL1、AL2的说明

符号	名 称	设定范围	说	明	输出状态
AL1	第一报警	全量程	可选择不报警	请参阅 (报警输 出状态)	
AL2	第二报警	全量程	可选择上限或下限报警 可选择偏差值内(或外)报警 可选择上偏差(或下偏差)报警		

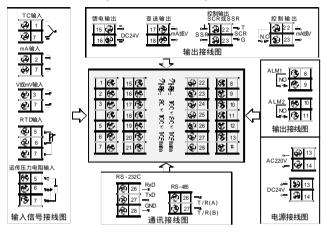
2、断偶与超量程指示及报警

断偶(输入回路断线) 仪表显示状态如下:





WP-90仪表接线图 (96×96)

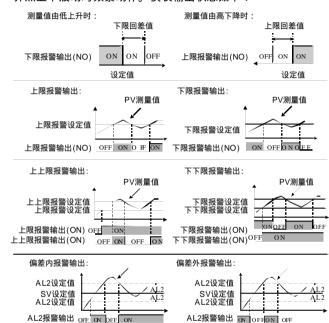

WP-80 仪表接线图(160×80, 80×160)

特殊仪表接线图见末页

智能自整定PID调节控制仪 智能自整定PID调节控制仪

WP-80仪表接线图(160×80、80×160)

(2) 智能阀位/外给定PID 控制调节仪接线图(15或25系列)


WP-40仪表接线图(96 x48、48 x96)

3、报警输出状态

关干回差:

本仪表采用控制输出带回差,以防止输出继电器在报警临界点上下波动时频繁动作。仪表输出状态如下:

NO:继电器常开触点

六、校对方式

本仪表采用智能化微机技术,提出了全新的数字式调试概念,整机无电位器,为轻触式面板按键操作,修改仪表内部参数即可进行校对及量程变更。

注:仪表出厂时已由精密仪器调至最佳状态,如无特殊情况,请不必进行校对。

七、控制输出及变送输出信号的更改

- 1、本仪表可带双路相互隔离的电流、电压输出:(定货时注明)
 - 一路为PID控制输出(输出量根据PID运算结果而定)
 - 一路为变送输出(输出量对应于实时测量值)

2、仪表可用修改二级参数的方式改变信号输出范围如下表:

	0 ~ 10m A	(4~20)mA (1~5)V	0~20mA 0~5 V
Pb3、Pb4	0.0	20.0	0.0
KK3、KK4	0.500	1.000	1.000

3、可用改变短路环A1的状态改变信号输出方式 - - 直流电流输出与直流电压输出的转换。(A1位于仪表变送输出板上)如下图:

	直流电流输出	直流电压输出
A1状态	1	#

-

----短路外短距

八、安装与使用

本仪表采用标准卡入式结构,请将仪表轻轻推入表盘即可:

1、仪表外形及开孔尺寸(单位: mm)

注:短路环状态: ----短路环开路

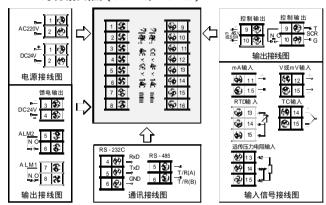
外形尺寸:96×48×105mm 开孔尺寸:92%7×45%7mm

外形尺寸: 160×80×140mm 开孔尺寸: 152 %×76% mm

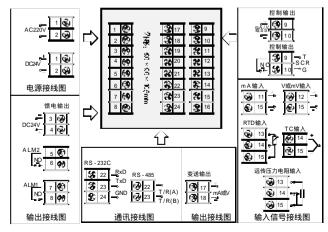
外形尺寸: 72×72×105mm 开孔尺寸: 68 % × 68 % mm

外形尺寸: 48×96×105mm 开孔尺寸: 45 g.7×92 g.7mm

外形尺寸:80×160×140mm 开孔尺寸:76 ⁸⁷×152 ^{%7} mm



外形尺寸:96×96×105mm 开孔尺寸:92 %7×92 %7 mm


2、 仪表的接线(以随机接线图为准)

(1) 智能自整定PID调节仪接线图(05系列)

WP-40仪表接线图(96×48, 48×96)

WP-90仪表接线图 (96×96)

