

Data Link USB
Communication Protocol and Database

Design Guide

Specification Number: 1-S-XXXX-G

March 12, 2004
Timex Corporation

 ii

DOCUMENT REVISION HISTORY

REVISION: A DATE: 2/04/2004 AUTHOR: Brigham W. Thorp

AFFECTED PAGES DESCRIPTION

All Created document.

REVISION: B DATE: 2/10/2004 AUTHOR: Brigham W. Thorp

AFFECTED PAGES DESCRIPTION

7 Modified ACD and ACB sections
4 Added code on reading from the HID driver

REVISION: C DATE: 2/10/2004 AUTHOR: Brigham W. Thorp

AFFECTED PAGES DESCRIPTION

7 Modified ACD and ACB sections
4 Added code on reading from the HID driver

REVISION: D DATE: 2/12/2004 AUTHOR: Brigham W. Thorp

AFFECTED PAGES DESCRIPTION

Various Various edits

REVISION: E DATE: 2/23/2004 AUTHOR: Brigham W. Thorp

AFFECTED PAGES DESCRIPTION

2-4 Rearranged some of the sections so that they flow better
71 Added missing mode data to ICB table

REVISION: F DATE: 3/11/2004 AUTHOR: Brigham W. Thorp

AFFECTED PAGES DESCRIPTION

40 Fixed typos in Chrono section
42 Fixed incorrect arrangement of items in Chrono section
57 Fixed typos
Various Added sample code and more info for melodies

 iii

REVISION: G DATE: 3/12/2004 AUTHOR: Brigham W. Thorp

AFFECTED PAGES DESCRIPTION

18 Added some more info for melodies
Various Fixed some issues with some of the tables

 iv

TABLE OF CONTENTS
TU1. UT TUINTRODUCTIONUT .. 1

TU1.1. UT TU ScopeUT ... 1
TU1.2. UT TU System BackgroundUT ... 1
TU1.3. UT TU PurposeUT .. 1
TU1.4. UT TU System OperationUT .. 1

TU2. UT TUCOMMUNICATION SPECIFICS UT ... 2
TU2.1. UT TU Communications FlowUT... 2

TU3. UT TUHW MODULE UT ... 3
TU4. UT TUCORE MODULE UT ... 3
TU5. UT TUCOMM MODULEUT ... 3
TU6. UT TURECEIVED MESSAGE SUMMARYUT ... 4
TU7. UT TUHID (HUMAN INTERFACE DEVICE)UT .. 4

TU7.1. UT TU Vendor IDUT .. 4
TU7.2. UT TU Writing to the HID driverUT .. 4
TU7.3. UT TU Reading from the HID driverUT... 7
TU7.4. UT TU System MAP TableUT.. 8
TU7.5. UT TU Application Configuration Data (ACD)UT .. 9
TU7.6. UT TU Application Control Block (ACB)UT... 10

TU1. UT TUApplication ID (16 bit)UT ...10
TU2. UT TUApplication System Data Address (16-bit)UT ...11
TU3. UT TUApplication Database Data Address (16-bit)UT ..11
TU4. UT TUApplication Mode State Manager AddressUT ...12
TU5. UT TUApplication Refresh Handler AddressUT ..12
TU6. UT TUApplication Mode Banner Message Address (16-bit) UT ..12
TU7. UT TUAddress of Code Block in EEPROMUT..12

TU8. UT TUCOMMUNICATING WITH THE WATCHUT.. 12
TU8.1. UT TU Read OperationUT .. 12
TU8.2. UT TU Write OperationUT ... 13

TU9. UT TUSYSTEM SPECIFICSUT .. 14
TU9.1. UT TU System InteractionUT ... 14
TU9.2. UT TU TUCP Packets Transmitted Using the USB Interface UT ... 14
TU9.3. UT TU TUCP PacketUT ... 15

TU10. UT TU TRANSCIEVER NOTIFICATION MESSAGES UT ... 17
TU11. UT TU APPLICATION DOWNLOADUT... 17
TU12. UT TU DATABASE DOWNLOAD UT ... 17
TU13. UT TU MELODY DOWNLOADUT.. 18
TU14. UT TU OPTION DOWNLOADUT .. 20
TU15. UT TU UPLOAD AND DOWNLOAD EXAMPLES UT ... 21

TU15.1. UT TU Initialize ROM Based ApplicationUT .. 22
TU15.2. UT TU Download New Database to an Existing ApplicationUT.. 23
TU15.3. UT TU Download Melody Database to EEPROMUT .. 24
TU15.4. UT TU Upload Database from an Existing ApplicationUT .. 26

TU16. UT TU MESSAGE DETAILSUT ... 28
TU16.1. UT TU Transceiver Notification MessagesUT.. 28
TU16.2. UT TU Communication Session Protocol MessagesUT ... 30
TU16.3. UT TU System Session Protocol MessagesUT ... 31
TU16.4. UT TU Application Initialization Protocol MessagesUT .. 33
TU16.5. UT TU Single and Multiple Packet Transfer MessagesUT ... 36

TU17. UT TU APPLICATIONSUT... 38
TU18. UT TU APPLICATION DATABASE STRUCTURESUT .. 38

TU18.1. UT TUTime/Date ApplicationUT ... 38
TU18.2. UT TUChronograph ApplicationUT ... 41
TU18.3. UT TUCountdown Timer ApplicationUT ... 45
TU18.4. UT TUInterval Timer ApplicationUT ... 47
TU18.5. UT TUAlarm and Appointment ApplicationsUT .. 49

 v

TU8. UT TUAppt and Alarm Application Database StructureUT ...49
TU9. UT TURecord Data StructureUT ..49
TU10. UT TUADD (Application Database Data)UT ...52
TU11. UT TUDatabase Access TypeUT ..54

TU18.6. UT TUContacts ApplicationUT .. 54
TU1. UT TUData UT ..54
TU2. UT TUContact Database StructureUT ..55
TU3. UT TUContact Record StructureUT..57

TU18.7. UT TUNotes ApplicationUT ... 59
TU1. UT TUNote Record Data StructureUT..59
TU2. UT TUDatabase Structure (ADD)UT..60
TU3. UT TUApplication system data structure (ASD)UT ...60

TU18.8. UT TUOccasion ApplicationUT ... 61
TU1. UT TUApplication Database Data UT ...61
TU2. UT TUThe Entire Database structure.. a big pictureUT ..61
TU3. UT TUOccasions mode Record entry structure:UT ..63
TU4. UT TUOccasion’s Mode Database Header:UT ...63

TU18.9. UT TUSchedule ApplicationUT.. 64
TU1. UT TUApplication Database Data UT ...64
TU2. UT TUThe Entire Database structure.. a big pictureUT ..64
TU3. UT TUMain Database Record Structure:UT ...65
TU4. UT TUEntry Record Structure:UT ..65
TU5. UT TUDetails of the Main Database HeaderUT ...65
TU6. UT TUDetails of the Entry Database (Sub-database) Header:UT ..66

TU18.10. UT TUEEPROM UtilizationUT .. 67
TU18.11. UT TUInformation and Configuration Block (ICB)UT .. 68
TU18.12. UT TUEEPROM-Based Application Code StructureUT .. 73
TU18.13. UT TUPositioning Databases in the EEPROMUT.. 74

 1

1. INTRODUCTION

1.1. Scope

This document describes how to communicate with the Timex Data Link USB watch, as well as the
format of the data that is stored on the watch. This document may be used to create new application
software which may run on Linux, Apple Macintosh, or any other computer system that supports HID
USB devices.

1.2. System Background

The USB Data Link watch is a product developed by Timex Corporation that lets you store various
types of information on your wrist, including appointments, alarms, contacts, and notes as an
example. The watch connects to the PC using the supplied interface cable.

The standard software that comes with the watch communicates with the TUCP Packager DLL which
in turn handles communication to and from the watch. This DLL, the heart of the system, gives
developers an API set in order to add and remove data from the watch. When a send is performed,
the packager puts all of the data in the watch format and sends the information to the USB driver.

1.3. Purpose

The purpose of this document is to describe the Timex Universal Serial Bus (USB) Communications
Protocol (referred to as TUCP in future references), and how it is transmitted using the USB protocol.
The protocol is intended to provide a reliable communications link between the PC and the device.
The protocol has been implemented with the premise that the PC has intimate knowledge of the
device characteristics. This allows for a minimum number of protocol messages.

Some of the low level system details are outlined here, such as PC to device USB interaction, and
interaction between various microcontrollers within the device. This interaction is described in further
detail within the communications application software and hardware design description documents for
the various products.

1.4. System Operation

The TUCP protocol will support a 2-way communications link between a device and a PC. The
communication link utilizes the USB port that has become common on PCs. There will be a PC based
program used to configure various types of data that will be downloaded to the device from the PC.
There shall also be the capability to upload data from the device. This 2-way communications link
provides for a various methods of synchronizing data between the PC and the device. In order to
establish the communication link, a special USB cable designed for the device is used. Once all of
the data has been entered, the user will connect the device to an available USB port on the PC. The
connection is automatically detected on both the PC and device. The type of data transfer configured
by the user can then begin. When the transfer is complete, the user will be notified.

 2

2. COMMUNICATION SPECIFICS

2.1. Communications Flow

After the device has been connected to the PC, and the main microcontroller has indicated to the USB
microcontroller that USB communications can take place, the USB microcontroller can establish its
presence on the bus. The host PC then attempts to enumerate and configure the USB microcontroller
within the device. After this process is complete, the PC will transmit/receive all message packets
until:

� The "Communication Process Complete" protocol message is transmitted to the device.
� A receive/transmit timeout occurs during the download/upload process within the device.
� A non-recoverable error occurs during the download process.

Communications between the device and the PC will then stop. The device should be left in a
useable state regardless of the condition that caused communications to stop.

The start of the communications session will determine if the PC and device are allowed to
communicate. The protocol provides packets for this purpose. The packets that follow will determine
the flow of data relative to the PC. The PC originates the request, and will transfer data in the
appropriate direction with the device. The USB microcontroller will obtain the direction of data flow
from the PC, and will transfer data in the correct direction with the main microcontroller. The main
microcontroller, which has received the initial request, will setup a data transfer in the appropriate
direction based on this request. The data transfer source or destination within the device has also
been determined (RAM or EEPROM). The last packet sent should be the “Communication Process
Complete” packet, which indicates the end of communications.

 3

3. HW MODULE

The HW module within the main device microcontroller firmware contains the low-level interrupt
handlers used to transfer data with the USB microcontroller. Within these interrupt handlers a byte
will be transferred between the appropriate hardware register, and TUCP buffer. The buffer is
designed to hold one TUCP protocol command, and is be shared by both transmit and receive
operations. The synchronous serial transfer mechanism is used between the USB microcontroller and
main microcontroller.

4. CORE MODULE

The CORE module is responsible for getting each byte received by the HW module and forming it into
packets for a PC USB OUT transaction. It is also responsible for notifying the COMM module about
various events related to communications. Examples include TUCP packet availability, and when a
receive error occurs. When a PC USB IN transaction is taking place, the CORE is not involved in the
transaction. It only provides utility functions for forming the packet checksum. The COMM module is
responsible for starting the transmission, and HW module will continue the transmission.

5. COMM MODULE

The COMM module is responsible for reading the packet found in the TUCP buffer, and processing
the command called out in the packet for a PC USB OUT transaction. When a PC USB IN transaction
is taking place, it is responsible for storing a packet in the TUCP buffer, and informing the HW module
that a packet needs to be transmitted. The COMM module forms the device User Interface (UI). The
UI is used to notify the user of the communication status.

 4

6. RECEIVED MESSAGE SUMMARY

The following table summarizes the TUCP protocol messages that may be received by COMM mode.
These messages are broken down into various classes of messages as shown in the table, and may
be internally or externally generated. The implementation of the protocol messages requires an
intimate knowledge of the device by the PC SW. The command set has been optimized based on this
condition.

Class Name
CMD
Value Description

Internally Generated Messages (Main MCU)
Transceiver Notification Messages 0x00 Transmission Receive Error

Externally Generated Messages (PC)
Communication Session Protocol Messages 0x01 Device Information Request
 0x02 Communication Process Complete
System Session Protocol Messages 0x03 Delete All Applications
 0x04 Beep
 0x05 Idle
 0x06 Call an Absolute Address
 0x07 Write to TOD Time Zone Data
Application Initialization Protocol Messages 0x08 Application Initialization Internal
 0x09 Application Initialization External
Single and Multiple Packet Transfer
Messages

0x0A Multiple Packet Write Started

 0x0B Write to Absolute Address
 0x0C Read from Absolute Address

7. HID (HUMAN INTERFACE DEVICE)

The HID (Human Interface Device) is a standard driver that ships with Microsoft Windows that the
packager uses to communicate with the Data Link USB watch. For other operating systems, this driver
may or may not be available.

This document does not cover communicating with the HID driver. For more information on HID
Drivers, Timex recommends USB Complete (2 P

nd
P Edition) by Jan Axelson. Sample code for the book is

available at HTUhttp://www.lvr.com/hidpage.htmUTH.

The device uses a single HID input/output report structure consisting of 8 bytes. The
usages/collections/report-descriptor-in-general can be ignored.

7.1. Vendor ID

All USB devices have a vendor and product ID that is used to verify that the device is present in the
USB chain. The Timex Data Link USB vendor ID and product ID are defined as:

const UINT VendorID = 0x0cc2;
const UINT ProductID = 0xd700;

7.2. Writing to the HID driver

The packager that is used on the Windows platform links to the HID.LIB file created by Microsoft
Corporation. The following code shows how the packager sends 8 byte packets to the HID driver for

 5

download to the watch. Basically, a TUCP packet may be up to 255 bytes. However, writing to the
watch is done 8 bytes at a time as shown below.

DWORD CUSBComm::SendDLPacket(LPBYTE lpPacket)
{
 DWORD dwResult = TIMEX_SUCCESS;
 int nNumChars = MAX_USB_PACKET_SIZE-1; // MAX_USB_PACKET_SIZE = 9

 for (int i = 0; i < lpPacket[0]; i=i+nNumChars)
 {
 dwResult = SendUSBPacket(lpPacket+i, (BYTE)nNumChars);
 if (dwResult)
 break;
 }
 return dwResult;
}

DWORD SendUSBPacket(LPBYTE cPacket, BYTE bPacketLen)
{
 BYTE baReport[MAX_DL_PACKET_SIZE];
 DWORD dwResult = 0;
 DWORD dwNumBytesWritten;

 // initialize the outgoing buffer to zeros
 memset(baReport, 0, sizeof(baReport));
 // populate the contents of the USB packet
 // first byte (report type) must be 0
 memcpy(&baReport[1], cPacket, bPacketLen);

 // we will try to send the packet up to thrice if necessary
 char szCode[128];
 for (int i = 0; i < NUM_RETRIES; i++)
 {
 // Send a report to the device.
 CancelIo(m_hReadDevice);
 dwResult = WriteFile(m_hWriteDevice, baReport, bPacketLen+1, &dwNumBytesWritten,
 (LPOVERLAPPED)&m_HIDOverlapped);
 if (dwResult == 0) // there was a problem
 dwResult = GetLastError(); // error found - abort
 else
 {
 dwResult = TIMEX_SUCCESS;
 break;
 }
 }

 return dwResult;
}

#define TIMEX_SUCCESS 0 // No error
#define DL_851_MAX_PACKET_SIZE 255 // Max packet length
#define DL_851_COMM_ACK 0x0D
#define DL_851_COMM_NACK 0xFF

typedef struct _PACKETDATA
{
 struct _PACKETDATA *NextLink;
 HGLOBAL MemHandle;
 BYTE baPacket[DL_851_MAX_PACKET_SIZE]; // The packet data
} PACKETDATA, *LPPACKETDATA;

int SendAndReceivePacket(LPPACKETDATA lpDLPacket, LPPACKETDATA lpDLPacketUp)
{
 int nRC = TIMEX_SUCCESS;

 if (lpDLPacket)
 {
 // we will try to send the packet up to thrice if necessary
 int i;

 6

 for (i=0; i<3; i++)
 {

 nRC =SendDLPacket(baPacket);

 if (nRC != TIMEX_SUCCESS)
 break;

 // read the response packet from the device
 BYTE baReturnPacket[DL_851_MAX_PACKET_SIZE];
 memset(baReturnPacket, 0, sizeof(baReturnPacket));
 nRC = ReadDLPacket(baReturnPacket);

 // see if we got a good packet back
 if ((nRC == TIMEX_SUCCESS) &&
 // check the length of the packet
 //(baReturnPacket[0] >= 3 && baReturnPacket[0] <=
 DL_851_MAX_PACKET_SIZE) &&

 (baReturnPacket[0] >= 3 && baReturnPacket[0] <=
 DL_851_MAX_READ_PACKET_SIZE) &&

 // check the checksum
 (TUDLVerifyChecksum(baReturnPacket, (WORD)baReturnPacket[0])) &&
 // is it an ACK
 (baReturnPacket[1] == DL_851_COMM_ACK) &&
 // is it a response to the command we sent out
 (baReturnPacket[2] == baPacket[1]))
 {
 // process the packet here
 // if it is the ICB then store it in the ICB array
 if (baReturnPacket[2] == DL_851_COMM_DEV_INFO_REQ)
 {
 memcpy(baICB, &baReturnPacket[3], DL_851_EE_ICB_SIZE);
 // get the EEPROM size from the ICB
 //m_dwAddressBottom = MAKELONG(MAKEWORD(baICB[16],
 baICB[17]), 0) - m_dwPeriodicTaskSize;
 // if it is the binary upload, store it in the binary
 // upload list
 }
 // see if we got a good nack packet
 else if ((nRC == TIMEX_SUCCESS) &&
 // check the length of the packet
 (baReturnPacket[0] >= 3 && baReturnPacket[0] <=
 DL_851_MAX_PACKET_SIZE) &&
 // check the checksum
 (TUDLVerifyChecksum(baReturnPacket, (WORD)baReturnPacket[0])) &&
 // is it a NACK
 (baReturnPacket[1] == DL_851_COMM_NACK))
 {
 // check the error type
 if (baReturnPacket[2] == 0x00 || baReturnPacket[2] == 0x01
 || baReturnPacket[2] == 0x04)
 {
 // retry
 if (i == 2) // this was the last try; return with an error
 {
 if (baReturnPacket[2] == 0x00)
 nRC = TIMEX_ERR_COMM_CHECKSUM;
 else if (baReturnPacket[2] == 0x01)
 nRC = TIMEX_ERR_COMM_PACKET_LEN;
 else if (baReturnPacket[2] == 0x04)
 nRC = TIMEX_ERR_COMM_TIMEOUT;
 else
 nRC = TIMEX_ERR_COMM;
 break;
 }
 }
 else
 {
 // non-recoverable error, don't retry
 if (baReturnPacket[2] == 0x02)
 nRC = TIMEX_ERR_COMM_DEV_INFO;

 7

 else if (baReturnPacket[2] == 0x03)
 nRC = TIMEX_ERR_COMM_DEV_MISMATCH;
 else
 nRC = TIMEX_ERR_COMM;
 break;
 }
 }
 else // invalid response packet, non-recoverable error, don't retry
 {
 nRC = TIMEX_ERR_COMM;
 break;
 }
 }
 }

 // close handle to the device
 if (nRC)
 CloseDevHandle();

 return nRC;
}

7.3. Reading from the HID driver

Reading from the HID driver works similalrly to writing. Packets are received 8 bytes at a time. Please
see the sample code below:

DWORD ReadDLPacket(LPBYTE lpReturnPacket)
{
 DWORD dwResult;
 BYTE baInReport[MAX_USB_PACKET_SIZE];

 // initialize the receiving buffer to zeros
 memset(baInReport, 0, sizeof(baInReport));
 // set the report number
 //baInReport[0] = 5;
 // get the first packet from the device
 dwResult = ReadUSBPacket(baInReport, MAX_USB_PACKET_SIZE);
 if (dwResult == TIMEX_READ_FILE_TIMEOUT)
 {
 baInReport[1] = 0x04;
 baInReport[2] = 0xFF;
 baInReport[3] = 0x04;
 baInReport[4] = 0xF9;
 dwResult = TIMEX_SUCCESS;
 }
 else
 {
 // copy the result to the buffer passed from the calling function
 memcpy(&lpReturnPacket[0], &baInReport[1], MAX_USB_PACKET_SIZE-1);

 // see how many more packets we need to get
 int nNumPackets = (baInReport[1]-1) / (MAX_USB_PACKET_SIZE-1);
 for (int i = 1; (i <= nNumPackets) && (dwResult == 0); i++)
 {
 // initialize the receiving buffer to zeros
 memset(baInReport, 0, sizeof(baInReport));
 // get the next packet from the device
 dwResult = ReadUSBPacket(baInReport, MAX_USB_PACKET_SIZE);
 if (dwResult == TIMEX_READ_FILE_TIMEOUT)
 {
 baInReport[1] = 0x04;
 baInReport[2] = 0xFF;
 baInReport[3] = 0x04;
 baInReport[4] = 0xF9;
 i = nNumPackets + 1;
 dwResult = TIMEX_SUCCESS;

 8

 }
 else
 {
 // copy the result to the buffer passed from the calling function
 int nPos = i*(MAX_USB_PACKET_SIZE-1);
 memcpy(&lpReturnPacket[nPos], &baInReport[1], MAX_USB_PACKET_SIZE-1);
 }
 }
 }

 return dwResult;
}

//===

DWORD ReadUSBPacket(LPBYTE lpPacket, BYTE bPacketLen)
{
 DWORD dwResult;
 DWORD dwTimeout;
 DWORD NumberOfBytesRead;

 // read a report from the device
 dwResult = ReadFile(m_hReadDevice, lpPacket, bPacketLen, &NumberOfBytesRead,
 (LPOVERLAPPED)&m_HIDOverlapped);

 dwTimeout = WaitForSingleObject(m_hEventObject, COMM_READ_TIMEOUT_PERIOD);
 if (dwTimeout == WAIT_TIMEOUT)
 {
 lpPacket[0] = 0x00;
 lpPacket[1] = 0x04;
 lpPacket[2] = 0xFF;
 lpPacket[3] = 0x04;
 lpPacket[4] = 0xF9;
 CancelIo(m_hReadDevice);
 dwResult = TIMEX_READ_FILE_TIMEOUT;
 }
 else
 {
 if (!dwResult && GetLastError() != ERROR_IO_PENDING) // there was a problem
 {
 dwResult = GetLastError();
 }
 else // readfile completed ok
 {
 dwResult = TIMEX_SUCCESS;
 }
 }

 return dwResult;
}

7.4. System MAP Table

The watch has a table in ROM that is called the System Map Table. The Map Table should be read
first before any other communication takes place. The Map Table is read from ROM at address 0x028
(40 decimal) and contains 13 words of information. The following information is read from the Map
Table:

� Heap Top Address – Location of where the top of the internal heap is stored
� Heap Top Address (After Reset) – Location of where the top of the internal heap is stored

after reset
� Heap Bottom Address (After Reset) – Location of where the bottom of the internal heap is

stored after reset
� Overlay – size of the overlay area
� Mode List – Base address of the mode list
� *Application Configuration Data – Address of the Application Configuration Data

 9

� *Application Control Block – Address of the application control block
� *Option Data Address – System option data structure
� Periodic Task Control – Base address of periodic task
� *Melody Address Table – Base address of the melody table
� *Melody Init – Location of the melody audio init routine
� *Popup Custom Melody – Location of overlay area for user melody
� Melody Table – Default ROM based melody table

Note – Only those Items shown with an asterisk are read by the Timex Packager. Other fields are
ignored on the PC

7.5. Application Configuration Data (ACD)

The application configuration data block (as defined in the previous section) consists of 16 bytes of
data. Each item refers to a mode in the watch. Sixteen modes are supported in the watch, but one is
COMM mode and the other is Time of Day, which are always present.

Displayed below are the bit definitions for each byte of the application configuration data structure:

Bit Bit Name Description
0 Reserved
1 Reserved
2 Reserved
3 Reserved
4 Database Modified 0 = Database not modified

1 = Database modified by user
5 Reserved
6 Password Required 0 = Password not required

1 = Password required for access
7 User Specified Mode Name 0 = use default mode name

1 = Mode name located in EEPROM

 10

7.6. Application Control Block (ACB)

The Application Control Block (ACB) is composed of 16 data structures with each structure having 14 bytes.
Along with the Application Configuration Data, the ACB provides information on the location of the critical
components of an application. These components are the following:

• Application ID (16-bytes)
• Application System Data Address (16-bit)
• Application Database Data Address (16-bit)
• Application Mode State Manager Address (16-bit)
• Application Refresh Handler Address (16-bit)
• Application Mode Banner Message Address (16-bit)
• Address of Code Block in EEPROM (16-bit)

1. Application ID (16 bit)
The Application ID has two parameters:

• Application Type (Byte 0)
• Application Instance (Byte 1)

The Application Type is used by the core to identify the application currently active in the system. It is used to
search for the active application list to match the criteria for the following operations:

• Peek at Appointment Type Application
• Peek at Occasion Type Application
• Day Update occurred for appointment and occasion type application
• Hour update occurred for appointment and occasion type application
• Update primary mode LCD icon for occasion type application
• Etc.

By default, the first application type instantiated by the system will have an Application Instance of 0. If
another application of the same type and instance number is instantiated by the system, the system will generate
an error.

It is critical to properly assign the appropriate Application Type to an application. The following table shows
the predefined Application Types supported by the system.

Code Application Type
0x00 System
0x01 Communication
0x02 Option
0x10 TOD
0x11 Date
0x20 Chrono
0x21 Timer
0x22 Synchro Timer
0x23 Counter
0x40 Contact
0x50 Task
0x60 Notes
0x70 Schedule
0x80 Tide
0x90 Demo
0xA0 Game

 11

0xE0 Alarm
0xE1 Appointment
0xE2 Occasion

Codes with values from 0xE0 to 0xFF are reserved for application types that are dependent on the primary time
zone. If the primary time zone is modified by the user, the application’s background handler will be called to
update its variables and resources to reflect the new time.

2. Application System Data Address (16-bit)

The Application System Data (ASD) of all applications are located in the internal heap. The ASD address is a
16-bit absolute address in internal memory. If there is insufficient space on the heap for the heap requirements
for a new application, then the core will not install the application.

The ASD stores all the application specific data that is used for the lifetime of the application.

The application state handler can access the base address of the ASD from the Application Control Block by
using the following macro call:

CORE_SET_HL_TO_ASD_ADDRESS;

When an application becomes the forground application, the core will copy the ASD Address in the control
block in the variable CORECurrentASDAddress.

Prior to executing the Refresh Handler of an application, the core will copy the ASD Address in the control
block in the variable COREBackgroundASDAddress.

3. Application Database Data Address (16-bit)

The Application Database Data (ADD) is where an application stores its database. It can be located in either
internal or external heap by setting the correct status for the flag bCOREACDDatabaseDataLocation in the
Application Configuration Byte.

If located in internal heap, the ADD address is the absolute address in internal memory. It is recommended that
the ADD data located in internal memory have minimal memory requirements and not subject to size changes
during the entire application life. The flag bCOREACDDatabaseDataLocation is set to 0.

For database that have big memory requirements and changes size during PC-COMM session, the database
should be located in external memory. The flag bCOREACDDatabaseDataLocation is set to 1. The data
stored in the Application Database Data Address of the ACB is the absolute address in EEPROM where the
application database is stored.

The application state handler can access the base address of the ASD from the Application Control Block by
using the following macro call:

CORE_SET_HL_TO_ADD_ADDRESS;

When an application becomes the forground application, the core will copy the ASD Address in the control
block in the variable CORECurrentADDAddress.

Prior to executing the Refresh Handler of an application, the core will copy the ASD Address in the control
block in the variable COREBackgroundADDAddress.

 12

4. Application Mode State Manager Address

The Application Mode State Manager Address tells the core the location in internal heap where the code for the
state manager is located. The State Manager is usually a table that uses the data in CORECurrentState to
jump and execute the correct state handler.

For EEPROM based applications, where only one state is loaded from EEPROM for processing, there is no need
for a State Manager. The address in the ACB is the base address of the state handler.

5. Application Refresh Handler Address

The Application Refresh Handler Address tells the core the location in internal heap where the code for the
refresh handler is located.

For EEPROM based applications, this is the address in the overlay area where the refresh handler routine is
located. The refresh handler is part of the common code block of an application.

Background events or task are passed to the refresh handler for processing. It will use the following variables to
complete its tasks:

• COREBackgroundEvent
• COREBackgroundAppIndex
• COREBackgroundASDAddress
• COREBackgroundADDAddress

6. Application Mode Banner Message Address (16-bit)

This data structure indicates the absolute address in internal memory where the mode banner message of the
application is stored. The message follows a specified format for mode banner messages.

If the Application Configuration Data flag bCOREACDUserSpecifiedModeName is a 1, then the mode
banner name is located in the Mode Banner Message Database.

7. Address of Code Block in EEPROM

If the Application Configuration Data flag bCOREACDCodeLocation is 1, then this address in the ACB
indicates the absolute address in EEPROM where the application code block is located. The core will use this
info during mode and state change operations.

8. COMMUNICATING WITH THE WATCH

The following pseudo-code shows how the typical operation of reading or writing data to and from the
watch would occur.

8.1. Read Operation

Create Device Information Request Packet
Send the packet
Receive packet

Read the last session ID
Read the System Map Table

Read Application Configuration Data

 13

Read Application Control Block

For each mode in the watch that is readable
 Check Application Control Block – See if modified
 Read database at location specified in ACB

Create Transmission complete packet
Send the packet

8.2. Write Operation

Create Device Information Request Packet
Send the packet
Receive packet

Read the last session ID
Read the System Map Table

Read Application Configuration Data
Read Application Control Block

Create Time of Day packet
Send the packet

Create Option packet
Send the packet

Create the Sound packet
Send the packet

Create Multi Write Start packet
Send the packet

Create the Delete All Apps packet
Send the packet

For each application
 Package the database
 Send the packet
 If app is a WristApp, package the code
 Send the packet
 Create the Application internal intiailzation packet
 Send the packet

Write the session ID to the watch

Create Transmission complete packet
Send the packet

 14

9. SYSTEM SPECIFICS

9.1. System Interaction

Effective data transmission occurs at approximately 3500 bits-per-second (baud) between the PC
Host and the main device microcontroller using an unloaded USB link. The measurement was taken
during an actual download. This included overhead due to the protocol, initialization of applications,
and the data for the applications. The physical transmission speed across the USB bus and the
synchronous serial bus is faster than indicated, but due to overhead the effective data rate will be less
than the actual speeds.

There are two levels of data flow. The low level contains the USB protocol with it’s inherent flow of
data between the PC USB driver, and USB microcontroller within the device. The top level contains
the TUCP protocol with flow of data between the PC application software, and the main device
microcontroller. The USB level is provided to get an external 2-way interface between the PC and the
device by using a standard protocol. The TUCP level is provided to perform some action within the
device by the PC application software.

Data is transferred bi-directionally on the USB bus by using the flow control mechanisms in place for
this protocol. The USB protocol provides for handshaking between the PC and the device, error
checking, and the capability for retransmission of errored data. The USB protocol will be used as the
low-level transport mechanism. The TUCP protocol packets will be embedded within the USB
protocol packets as data. The TUCP protocol is designed to service a request originating on the PC
at the application level. The TUCP protocol has some error checking built in, but is provided just to
check for the integrity of the data transfer between the device’s USB microcontroller and its main
microcontroller. The integrity of the transfer will be reported back to the PC application level after a
transaction request has completed. The short physical link within the device has flow control, which is
used to control data flow within the device. Since the physical link is short, error checking does not
need to be as stringent as that for the USB link. Using all of these components data can be
transferred reliably.

The USB microcontroller within the device is unpowered when the USB cable is detached. Once the
cable is attached between the PC and device, the USB microcontroller derives its power from the USB
bus power. The USB microcontroller initializes, and waits for an indication from the main
microcontroller that PC communications can be perfomed. Once this indication is received the USB
microntroller can interact with the PC (enumeration, device configuration, etc.). The interaction with
the PC will also include a read/and or write of various items in the device. This is handled by
embedding TUCP protocol commands packets within the USB protocol packets.
The first packet transmitted by the PC is a request for device information. The device information is
used by the PC to determine if communication is allowed. The decision to communicate is made
strictly on the PC side. In addition, the PC upon receiving the device information will adjust its
communication with the device. The reasons for disallowal can be mismatches in the PC SW versus
device firmware, an unsupported device, or a database mismatch. Subsequent packets will be as
defined later in this document. If the data transfer is error free on the USB and within the internal
transfers it may be used by the PC or device as specified by the protocol.

9.2. TUCP Packets Transmitted Using the USB Interface

The following diagrams outline some of the mechanisms that are used to transfer a TUCP packet
between the PC application SW and the main device microcontroller. The SW and firmware
interactions and the USB transport are not specified in detail, just the overall mechanisms.

 15

9.3. TUCP Packet

The TUCP packet contains hexadecimal data that instructs the COMM module running within the
device to perform some action within the device. Some of the main actions are transferring
application code/data, the ability to start internal code, or loading system melody data. The packet
contents may ultimately be stored in device memory for subsequent use by the system code within the
device. The device memory may be RAM or EEPROM based. The packet may also contain status
information passed back to the PC by the device. Certain packets are internally generated, and are
used to inform the COMM module that an error has been detected with the communications transfer.
These error notification packets utilize the error checking capability built into the packets.

PC
APPLICATION

SW

MAIN MCU
APPLICATION

FIRMWARE

PC USB
DRIVER SW

USB MCU
FIRMWARE
AND SERIAL
INTERFACE

ENGINE (SIE)

The PC will write a TUCP
packet in groups of 8 bytes
to a pipe associated with a
PC OUT transaction.

TX TUCP CMD PACKET

The PC USB driver will read
data from the pipe, and send
to an endpoint within the
USB MCU via the USB
interface.

The USB MCU firmware will
extract the TUCP packet
from the endpoint, and
generate the signals for the
main MCU synchronous RX
HW.

RX TUCP CMD PACKET

The main MCU performs RX
to store the TUCP packet in
an internal buffer. The CMD
will be interpreted an acted
upon.

USB PHYSICAL INTERFACE

EXAMPLE OF PC OUT TRANSACTION

PC
APPLICATION

SW

MAIN MCU
APPLICATION

FIRMWARE

PC USB
DRIVER SW

USB MCU
FIRMWARE
AND SERIAL
INTERFACE

ENGINE (SIE)

The PC will read a TUCP
packet in groups of 8 bytes
from a pipe associated with
a PC IN transaction.

RX TUCP DATA PACKET

The PC USB driver will get
data from an endpoint within
the USB MCU via the USB
interface, and write the pipe
to inform PC application SW
of available data.

The USB MCU firmware will
generate the signals for the
main MCU synchronous TX
HW to get the TUCP packet,
and send it from an endpoint
to the PC via the USB
interface.

TX TUCP DATA PACKET

The main MCU sets up
TUCP packet in internal
buffer based on send
request from TUCP
command, and starts TX.

USB PHYSICAL INTERFACE

EXAMPLE OF PC IN TRANSACTION

 16

The TUCP packets are transmitted using one or more USB packets. There may be one or more
TUCP packets required to perform an action. This will be outlined in the individual TUCP packet
descriptions. Below is an example of how a TUCP packet is broken down.

The TUCP packet size was chosen based on the size of an EEPROM block, plus any overhead to
transfer this block. The overhead may be the offset or address information, the application identifier,
and data type being transferred. The diagram below shows the TUCP packet, along with size
information for the various fields.

Data
Size Command Data Section CHKSUM

Data Download/Upload to/from Watch

Data
Size

Command
Data

Section

CHKSUM

Specifies the size of the packet in bytes.

Specifies the type of packet.

Depending on the type of packet, this is the associated information that will be processed by the
communications code within the device, and/or the data read/written from/to the device.
The sum of all bytes from the start of the packet until the checksum byte, then 2's complemented.
When checking this field, the sum of all bytes including the checksum should be zero for a valid
transmission.

1 byte 1 byte 0 - 67 bytes 1 byte

3 - 70
bytes

 17

10. TRANSCIEVER NOTIFICATION MESSAGES

At any point during the communications session COMM mode can receive a transceiver notification
message that contains the transmission receive error type. The device must be able to process the
errors. The internally generated transceiver notification messages can be classified as recoverable
errors provided that the communications link is still intact. Recoverable errors can be fixed by
subsequent retransmissions, which are requested from the PC based on a NACK response to a
packet.

Non-recoverable errors can’t be fixed by subsequent retransmission. The non-recoverable errors
should place the device in a known default state. The non-recoverable errors do not generate any
messages internal or external to the device. The detection of theses errors is accomplished by
utilizing the “Multiple Packet Write Started” packet in conjunction with error detection code within
COMM mode. An example of a non-recoverable error is when a multiple packet database download
is started, and the device is disconnected from the PC in the middle of this transaction.

11. APPLICATION DOWNLOAD

ROM/EEPROM based applications must be initialized in the device by doing a full download. This
insures that the heap is properly cleaned up, and all other system data are set to its initial conditions.
All applications previously present in the device will be deleted, and should be downloaded again if
the user wishes them to remain in the device. Only the TOD and COMM modes are not affected by a
full download.

If a full download is indicated, the PC must then send a TUCP command to clean up the heap, and
leave the TOD and COMM modes enabled. This is accomplished by sending the Delete All
Applications to make the heap ready for a full download. The PC will initialize an application in the
device by sending the Application Initialization External or Application Initialization Internal packet,
depending on whether the application is EEPROM or ROM based respectively. The PC may send the
program code and database data in any order, but must send the Multiple Packet Write Started before
the data is sent. This data is sent using the Write to Absolute Address packets with the appropriate
target memory specified. These packets may be sent many times to download all the data characters
comprising the code or data. The Communication Process Complete packet is sent after all
applications and data have been sent.

Every time an application is deleted or disabled from the mode list, a full download must also be done.
All other applications already present in the device are also deleted. If the user wishes to have these
applications remain in the device, they must be downloaded again just like when they are enabled for
the first time. Only the TOD and COMM mode data are not affected. To the device, deleting an
application is like registering new applications so the same process must be done.

For non-recoverable errors during full or incremental downloads, all the applications are brought back
into their POR default state, with COMM and TOD applications remaining unaffected. Any application
that is not part of the default set will no longer be present in the device. The user is informed of this
condition by the PC, and is given the option to attempt a retry. This will allow the device to be brought
back to the state prior to the non-recoverable error.

12. DATABASE DOWNLOAD

The PC will start a database session with an application already present in the device by sending the
Multiple Packet Write Started packet. This will indicate that the data that follows will need to be sent
to completion. The PC will then send the Write to Absolute Address packets with the appropriate
target memory specified. These packets may be sent many times to download all the data characters
for the application. The Communication Process Complete packet is sent after all applications have
had their databases modified.

 18

13. MELODY DOWNLOAD

The system melody table download process is similar to downloading a database. The melody is
considered as a special type of application with only a database that contains the actual melody data.
The Write to Absolute Address packet is used to download the melody database, and system
variables.

Prior to starting the melody database download, the system melodies are immediately changed to
point to the ROM based melodies. This way, when an error occurs, valid system melodies are used.
After the reception of the last Write to Absolute Address packet, the system melodies are pointed to
the downloaded melody tables. These new melodies can be used.

The max size of the whole melody table is 384 bytes. Each individual melody for each event can be
up to 36 bytes.

Some example code is shown below:

#define DL_851_EE_ADDR_MELODY 0x2c0
#define DL_851_COMM_CALL_ABS_ADR 0x06
#define DL_851_MAX_SOUNDS 9
#define DL_851_EE_MELODY_SIZE (0x440 – 0x2c0) //0x180
#define DL_851_COMM_WRITE_ABS_ADR 0x0B
#define DL_851_SOUND_DB_OVERHEAD 0x08

int CreateSoundPackets()
{
 BYTE baPacket[DL_851_MAX_PACKET_SIZE];
 BYTE bIndex;
 int i;

 // call audio init routine to initialize melody table to point to ROM table
 bIndex = 1;
 baPacket[bIndex++] = DL_851_COMM_CALL_ABS_ADR; // command
 WORD wAddress = m_waSystemMapTable[10];
 baPacket[bIndex++] = LOBYTE(wAddress); // abs address lo
 baPacket[bIndex++] = HIBYTE(wAddress); // abs address hi
 baPacket[0] = ++bIndex; // store the size of the packet - include checksum
 // Attach the CRC
 baPacket[bIndex-1] = TUDLCalculateChecksum(baPacket, (BYTE)(baPacket[0]-1));
 int nRC = AddPacket(baPacket);

 BOOL boolUseDefaultSounds = TRUE;
 for (i = 0; i < DL_851_MAX_SOUNDS; i++)
 {
 if (m_lpSound->baSounds[i][0] != 0xFF)
 {
 boolUseDefaultSounds = FALSE;
 break;
 }
 }

 if (!boolUseDefaultSounds)
 {
 // create the melody database and download it to the appropriate location
 BYTE baBuf[DL_851_EE_MELODY_SIZE];
 CreateDatabaseSounds(baBuf);
 DWORD dwSize = (DWORD)(MAKEWORD(baBuf[2], baBuf[3]));
 nRC = AddBinaryIntData(DL_851_EEPROM, DL_851_EE_ADDR_MELODY, dwSize, baBuf);
 CreateBinaryIntPackets();

 19

 // initialize the RAM melody table to point to a temporary RAM melody buffer
 for (i = 0; i < DL_851_MAX_SOUNDS; i++)
 {
 if (m_lpSound->baSounds[i][0] != 0xFF)
 {
 bIndex = 1;
 baPacket[bIndex++] = DL_851_COMM_WRITE_ABS_ADR; // command
 wAddress = (WORD)(m_waSystemMapTable[9]+(i*2));
 baPacket[bIndex++] = LOBYTE(wAddress); // abs address lo
 baPacket[bIndex++] = HIBYTE(wAddress); // abs address hi
 baPacket[bIndex++] = 0; // memory type - 0=RAM
 // write the melody table
 wAddress = m_waSystemMapTable[11];
 //for (i = 0; i < DL_851_MAX_SOUNDS; i++)
 {
 baPacket[bIndex++] = LOBYTE(wAddress); // abs address lo
 baPacket[bIndex++] = HIBYTE(wAddress); // abs address hi
 }

 baPacket[0] = ++bIndex; // store the size of the packet -
include checksum
 // Attach the CRC
 baPacket[bIndex-1] = TUDLCalculateChecksum(baPacket,
(BYTE)(baPacket[0]-1));
 nRC = AddPacket(baPacket);
 }
 }
 }
 return nRC;
}

int CreateDatabaseSounds(LPBYTE lpBuf)
{
 int i;
 int nMaxRecSize = 0;

 // zero out the memory space
 memset(lpBuf, 0x00, DL_851_EE_MELODY_SIZE);

 // determine the maximum size of the record
 for (i = 0; i < DL_851_MAX_SOUNDS; i++)
 nMaxRecSize = max(m_lpSound->baSoundLen[i], nMaxRecSize);

 // start writing the db from the first record
 // leave placeholders for the header to be filled in later
 WORD wIndex = DL_851_SOUND_DB_OVERHEAD;

 // Write the sounds data
 for (i = 0; i < DL_851_MAX_SOUNDS; i++)
 {
 memcpy(lpBuf+wIndex, m_lpSound->baSounds[i], nMaxRecSize);
 wIndex = (WORD)(wIndex + nMaxRecSize);
 }

 // set up the db header
 WORD wDBSize = wIndex;
 // calculate the allocation size
 WORD wAllocSize = (WORD)(((int)((wDBSize-1)/DL_851_EE_PAGE_SIZE + 1)) *
DL_851_EE_PAGE_SIZE);

 wIndex = 0;
 // write alloc size
 lpBuf[wIndex++] = LOBYTE(wAllocSize);

 20

 lpBuf[wIndex++] = HIBYTE(wAllocSize);
 // write db size
 lpBuf[wIndex++] = LOBYTE(wDBSize);
 lpBuf[wIndex++] = HIBYTE(wDBSize);
 // app specific header size
 lpBuf[wIndex++] = 3;
 // write total number of records
 lpBuf[wIndex++] = LOBYTE(DL_851_MAX_SOUNDS);
 lpBuf[wIndex++] = HIBYTE(DL_851_MAX_SOUNDS);
 // write timer record size
 lpBuf[wIndex++] = (BYTE)nMaxRecSize;

 // dump the db to a file here
 if (m_lpMain->m_szDatabasePath[0])
 {
 TCHAR szPath[MAX_PATH];
 sprintf(szPath, "%s\\sounds.bin", m_lpMain->m_szDatabasePath);
 m_lpMain->writeBinary(szPath, lpBuf, (DWORD)wAllocSize);
 }

 return 0;
}

14. OPTION DOWNLOAD

The Option packet is created by using a Write To Absolute Address packet. The code that is used to
packetize the information is shown below. The address passed is the 8 P

th
P index into the system map

table.

int CreateOptionPacket(WORD wAddress)
{
 BYTE baPacket[DL_851_MAX_PACKET_SIZE];
 BYTE bIndex = 1;

 baPacket[bIndex++] = DL_851_COMM_WRITE_ABS_ADR; // command
 baPacket[bIndex++] = LOBYTE(wAddress); // abs address lo
 baPacket[bIndex++] = HIBYTE(wAddress); // abs address hi
 baPacket[bIndex++] = 0; // memory type - 0=RAM
 // write the status byte
 baPacket[bIndex] = 0;
 // nightmode status bits
 if (boolNightModeEnabled)
 baPacket[bIndex] = (BYTE)(BitSet(baPacket[bIndex], 0));
 if (boolNightModeAuto)
 baPacket[bIndex] = (BYTE)(BitSet(baPacket[bIndex], 1));
 // hourly chime status bits
 if (boolHourlyChimeEnabled)
 baPacket[bIndex] = (BYTE)(BitSet(baPacket[bIndex], 4));
 if (boolChimeAuto)
 baPacket[bIndex] = (BYTE)(BitSet(baPacket[bIndex], 5));
 // button beep status
 if (boolButtonBeepEnabled)
 baPacket[bIndex] = (BYTE)(BitSet(baPacket[bIndex], 7));
 bIndex++;
 // write the nightmode data
 baPacket[bIndex++] = bNightModeOnMin;
 baPacket[bIndex++] = bNightModeOnHour;

 21

 baPacket[bIndex++] = bNightModeOffMin;
 baPacket[bIndex++] = bNightModeOffHour;
 // write the chime data
 baPacket[bIndex++] = 0;
 baPacket[bIndex++] = bChimeOnHour;
 baPacket[bIndex++] = 0;
 baPacket[bIndex++] = bChimeOffHour;
 // write the nightmode toggle duration
 baPacket[bIndex++] = bNightModeToggleDuration;
 // write the last editable character index
 baPacket[bIndex++] = bLastSetCharacter;
 // write the password
 baPacket[bIndex++] = baPassword[0];
 baPacket[bIndex++] = baPassword[1];
 // write the timeline status byte
 baPacket[bIndex] = 0;
 if (m_lpOption->boolApp1Timeline)
 baPacket[bIndex] = (BYTE)(BitSet(baPacket[bIndex], 7));
 if (m_lpOption->boolApp2Timeline)
 baPacket[bIndex] = (BYTE)(BitSet(baPacket[bIndex], 6));
 bIndex++;
 baPacket[bIndex++] = 8; // nightmode duration, always set to 8 hours

 baPacket[0] = ++bIndex; // store the size of the packet - include checksum
 // Attach the CRC
 baPacket[bIndex-1] = TUDLCalculateChecksum(baPacket, (BYTE)(baPacket[0]-1));

 return AddPacket(baPacket);
}

15. UPLOAD AND DOWNLOAD EXAMPLES

The following sections give some examples of transactions that the PC can perform. The first group
describes a download of application information. These include the initialization an instance of a ROM
based application, download of a new database to an existing application, and the download of a
melody table located in EEPROM. The second group describes an upload of application information.
This includes an upload of a database from an existing application.
The examples show the initial handshaking that is performed at the start of a communication session.
Some TUCP packets details are left out for the sake of clarity. These details are application specific
data contained in the packet. The transfers show PC OUT, and the corresponding PC IN response.
The PC IN response will be a simple TUCP ACK packet, or TUCP ACK packet with response data.

The examples show the format of the command/response packets. The format follows that which is
defined in the Message Details section. The examples contain a mix of text strings describing a
particular field or the data that is being transferred within that field, and actual hexadecimal values
(e.g. packet or data length).

 22

15.1. Initialize ROM Based Application

The following is an example of a communication session to initialize a single ROM based application,
in addition to TOD, with the following application specific information: EEPROM database allocation
size 128 bytes, first instance of this application, and application POR table offset is 10. The PC will
first issue a sequence of commands to characterize the device, and setup any system related data.
The application is then initialized, and the actual database is sent. The amount of data may be less
than that allocated. The PC ID is written to EEPROM, and the session is then completed.

0x03 <DEVICE INFORMATION REQUEST> <CHKSUM>
0x44 <ACK> <DEVICE INFORMATION REQUEST> <64 byte ICB in EEPROM> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE map table ROM address> 0x00 0x18 <CHKSUM>
0x1C <ACK> <READ FROM ABSOLUTE> <24 byte CORE map table > <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE Application Configuration Data (ACD) RAM address> 0x00
0x10 <CHKSUM>
0x14 <ACK> <READ FROM ABSOLUTE> <16 byte CORE ACD> <CHKSUM>

0x03 <MULTIPLE PACKET WRITE STARTED> <CHKSUM>
0x04 <ACK> <MULTIPLE PACKET WRITE STARTED> <CHKSUM>

0x03 <DELETE ALL APLLICATIONS> <CHKSUM>
0x04 <ACK> <DELETE ALL APLLICATIONS> <CHKSUM>

0x08 <APPLICATION INITIALIZATION INTERNAL> 0x80 0x00 0x00 0x01 0x0A <CHKSUM>
0x04 <ACK> <APPLICATION INITIALIZATION INTERNAL> <CHKSUM>

0x46 <WRITE TO ABSOLUTE> <Application database EEPROM address 1> 0x01 <64 byte Data
Block 1> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x16 <WRITE TO ABSOLUTE> <Application database EEPROM address 2> 0x01 <16 byte Residual
Data Block 2> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x14 <WRITE TO ABSOLUTE> <PC ID EEPROM address> 0x01 <14 byte PC ID> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x03 <COMMUNICATION PROCESS COMPLETE> <CHKSUM>
0x04 <ACK> <COMMUNICATION PROCESS COMPLETE> <CHKSUM>

 23

15.2. Download New Database to an Existing Application

The following is an example of a communication session to download a new database to an existing
application, without affecting other applications previously loaded. The PC will first issue a sequence
of commands to characterize the device, and setup any system related data. The application
database is then sent. The amount of data may be less than that allocated. The PC ID is written to
EEPROM, and the session is then completed.

0x03 <DEVICE INFORMATION REQUEST> <CHKSUM>
0x44 <ACK> <DEVICE INFORMATION REQUEST> <64 byte ICB in EEPROM> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE map table ROM address> 0x00 0x18 <CHKSUM>
0x1C <ACK> <READ FROM ABSOLUTE> <24 byte CORE map table > <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE Application Configuration Data (ACD) RAM address> 0x00
0x10 <CHKSUM>
0x14 <ACK> <READ FROM ABSOLUTE> <16 byte CORE ACD> <CHKSUM>

0x03 <MULTIPLE PACKET WRITE STARTED> <CHKSUM>
0x04 <ACK> <MULTIPLE PACKET WRITE STARTED> <CHKSUM>

0x46 <WRITE TO ABSOLUTE> <Application database EEPROM address 1> 0x01 <64 byte Data
Block 1> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x16 <WRITE TO ABSOLUTE> <Application database EEPROM address 2> 0x01 <16 byte Residual
Data Block 2> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x14 <WRITE TO ABSOLUTE> <PC ID EEPROM address> 0x01 <14 byte PC ID> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x03 <COMMUNICATION PROCESS COMPLETE> <CHKSUM>
0x04 <ACK> <COMMUNICATION PROCESS COMPLETE> <CHKSUM>

 24

15.3. Download Melody Database to EEPROM

The following is an example of a communication session to download a melody database to
EEPROM. For simplicity sake all ROM based application are deleted as part of the session, except
for TOD. The PC will first issue a sequence of commands to characterize the device, and setup any
system related data. The audio is initialized to the defaults prior to the database download, and then
the actual database is sent. The AUDIO EEPROM data is first sent, and then the AUDIO melody
address table is written to point to the actual melody. The PC ID is written to EEPROM, and the
session is then completed.

0x03 <DEVICE INFORMATION REQUEST> <CHKSUM>
0x44 <ACK> <DEVICE INFORMATION REQUEST> <64 byte ICB in EEPROM> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE map table ROM address> 0x00 0x18 <CHKSUM>
0x1C <ACK> <READ FROM ABSOLUTE> <24 byte CORE map table > <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE Application Configuration Data (ACD) RAM address> 0x00
0x10 <CHKSUM>
0x14 <ACK> <READ FROM ABSOLUTE> <16 byte CORE ACD> <CHKSUM>

0x05 <CALL AN ABSOLUTE ADDRESS> <Audio initialization function call> <CHKSUM>
0x04 <ACK> <CALL AN ABSOLUTE ADDRESS> <CHKSUM>

0x46 <WRITE TO ABSOLUTE> <Sound Database EEPROM address> 0x01 <64 byte Data Block 1>
<CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x16 <WRITE TO ABSOLUTE> <Sound Database EEPROM address> 0x01 <16 byte Residual Data
Block 2> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x08 <WRITE TO ABSOLUTE> <AUDIO switch beep melody RAM address> 0x00 <Melody address
data> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x08 <WRITE TO ABSOLUTE> <AUDIO hour chime melody RAM address> 0x00 <Melody address
data> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x08 <WRITE TO ABSOLUTE> <AUDIO alarm melody RAM address> 0x00 <Melody address data>
<CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x08 <WRITE TO ABSOLUTE> <AUDIO timer melody RAM address> 0x00 <Melody address data>
<CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x08 <WRITE TO ABSOLUTE> <AUDIO interval timer melody RAM address> 0x00 <Melody address
data> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x08 <WRITE TO ABSOLUTE> <AUDIO half timer melody RAM address> 0x00 <Melody address
data> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

 25

0x08 <WRITE TO ABSOLUTE> <AUDIO communication error melody RAM address> 0x00 <Melody
address data> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x08 <WRITE TO ABSOLUTE> <AUDIO custom melody RAM address> 0x00 <Melody address
data> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x03 <MULTIPLE PACKET WRITE STARTED> <CHKSUM>
0x04 <ACK> <MULTIPLE PACKET WRITE STARTED> <CHKSUM>

0x03 <DELETE ALL APLLICATIONS> <CHKSUM>
0x04 <ACK> <DELETE ALL APLLICATIONS> <CHKSUM>

0x14 <WRITE TO ABSOLUTE> <PC ID EEPROM address> 0x01 <14 byte PC ID> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x03 <COMMUNICATION PROCESS COMPLETE> <CHKSUM>
0x04 <ACK> <COMMUNICATION PROCESS COMPLETE> <CHKSUM>

 26

15.4. Upload Database from an Existing Application

The following is an example of a communication session to upload a database from an existing
application. The PC will first issue a sequence of commands to characterize both the device, and the
application database being read. The application database is then read from EEPROM. The amount
of data being read will be determined during the application database characterization phase. The PC
ID is written to EEPROM, and the session is then completed.

0x03 <DEVICE INFORMATION REQUEST> <CHKSUM>
0x44 <ACK> <DEVICE INFORMATION REQUEST> <64 byte ICB in EEPROM> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE map table ROM address> 0x00 0x18 <CHKSUM>
0x1C <ACK> <READ FROM ABSOLUTE> <24 byte CORE map table > <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE Application Configuration Data (ACD) RAM address> 0x00
0x10 <CHKSUM>
0x14 <ACK> <READ FROM ABSOLUTE> <16 byte CORE ACD> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE Application Control Block (ACB) RAM address 1> 0x00
0x40 <CHKSUM>
0x44<ACK> <READ FROM ABSOLUTE> <64 byte CORE ACB group 1> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE Application Control Block (ACB) RAM address 2> 0x00
0x40 <CHKSUM>
0x44<ACK> <READ FROM ABSOLUTE> <64 byte CORE ACB group 2> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE Application Control Block (ACB) RAM address 3> 0x00
0x40 <CHKSUM>
0x44<ACK> <READ FROM ABSOLUTE> <64 byte CORE ACB group 3> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <CORE Application Control Block (ACB) RAM address 4> 0x00
0x04 <CHKSUM>
0x08<ACK> <READ FROM ABSOLUTE> <4 byte CORE ACB group 4> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <Application database size EEPROM address> 0x01 0x02
<CHKSUM>
0x06<ACK> <READ FROM ABSOLUTE> <2 byte Application database size> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <Application database EEPROM address 1> 0x01 0x40
<CHKSUM>
0x44<ACK> <READ FROM ABSOLUTE> <64 byte Application database group 1> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <Application database EEPROM address 2> 0x01 0x40
<CHKSUM>
0x44<ACK> <READ FROM ABSOLUTE> <64 byte Application database group 2> <CHKSUM>
…
0x07 <READ FROM ABSOLUTE> <Application database EEPROM address N-1> 0x01 0x40
<CHKSUM>
0x44<ACK> <READ FROM ABSOLUTE> <64 byte Application database group N-1> <CHKSUM>

0x07 <READ FROM ABSOLUTE> <Application database EEPROM address N> 0x01 0x3E
<CHKSUM>
0x42<ACK> <READ FROM ABSOLUTE> <62 byte Application database group N – residual bytes>
<CHKSUM>

 27

0x14 <WRITE TO ABSOLUTE> <PC ID EEPROM address> 0x01 <14 byte PC ID> <CHKSUM>
0x04 <ACK> <WRITE TO ABSOLUTE> <CHKSUM>

0x03 <COMMUNICATION PROCESS COMPLETE> <CHKSUM>
0x04 <ACK> <COMMUNICATION PROCESS COMPLETE> <CHKSUM>

 28

16. MESSAGE DETAILS

Each of the messages sent by the PC will be listed by class, and the details of the message will be
described in the sections that follow. The protocol was designed to require that a response is sent
back to the PC by the device. The response allows for retransmission of errored packets. The
response format will be indicated in the message details.
The command value for each protocol message is defined in the Message Summary table. Refer to
this table for the specific number.

The ACK/NACK characters used in the message response, and are derived from the standard ASCII
characters, ACK – 0x0D and NACK – 0xFF. The NACK is sent along with an error code to indicate
what condition caused the packet to fail. This could be that a portion of the protocol message
contents was not correct or that the protocol message arrived with a transmission receive error.

16.1. Transceiver Notification Messages

The messages generated in this section are two categories external and internal. The internal
messages are generated for use within the main MCU. The external messages are responses to
commands, and are sent from the main MCU to the PC.

The external messages are broken down into two types of messages, ACK type and NACK type. The
ACK type provides an acknowledgement for a particular command with no response data, or an
acknowledgement with response data. The NACK type is used to report error conditions back to the
PC.

The internally generated messages do not need to have a checksum appended to the message. The
length field takes this into account. These messages are for inter module communication purposes on
the main MCU. For example, after an entire packet is received a checksum error is detected. The
transceiver notification message indicating “Transmission Receive Error” with the “Incorrect
CHKSUM” error type is generated. This message is sent from the HW/CORE modules to the COMM
module.

The table below shows the various types of errors that have been identified for the protocol. In
addition, the table shows where the error is detected, and if it is passed to the PC.

 29

The following Error Types are detected by the CORE before passing the packet to the
communications:
Error
Type

Description Passed
To PC

0x00 Incorrect CHECKSUM - This error indicates that checksum calculation does
not match the checksum in the packet.

Yes

0x01 Invalid Message Length - Indicates that the message length word was
received but its value is smaller than expected, or larger than the TUCP buffer
size. There is a minimum length of three bytes for a packet.

Yes

The following Error Types are detected by COMM mode after a valid packet has been
received and is being processed:
Error
Type

Description Passed
To PC

0x02 Device Information Request Not Received- This error indicates that the
protocol revision number protocol message was expected but not received.

Yes

0x03 PC and Device Mismatch - The proposed architecture should not produce
this error condition. However, processing is added to detect this error
condition.

Yes

0x04 Timeout Expired - This error indicates that a character has not been detected
before the timeout period expired.

Yes

Transmission Receive Error

UDescription U: This is an internal message that is used to notify COMM mode that a receive error
occurred during the download process. The protocol provides for retransmission of corrupted
commands. The current data transmission is assumed to be in error, and any additional bytes present
in the incoming data stream will need to be purged. The lists of error types detected by the CORE are
included in a table shown above. The message is internally generated in the main MCU, and will be
formatted as follows:
<0x03> <Transmission Receive Error> <Error Type>
This is an example buffer after a checksum error is detected during a receive operation:
<0x03><CMD NUM><0x00>
UResponse U: This message requires a NACK response to be sent to the PC, which is sent after a
timeout expires. Prior to the timeout, the incoming stream is purged. See the next message for the
details of the NACK response.

Transmission Receive Status

UDescription U: This is a message sent to the PC in response to the message just received. The
message sent to the PC contains either an ACK/NACK. There are two types of ACK messages. The
simple ACK message is sent along with the command that is being acknowledged, but does not
contain response data. When a command requires response data, in addition to the ACK, the
message contains the command that is being acknowledged and response data. The NACK
message is transmitted for receive errors, or for messages that contain unexpected data. The error
type from the table above is included along with the NACK. The various types of messages will be
formatted as follows:
USimple ACK
<0x04> <ACK> <CMD NUM> <CHECKSUM>
UACK with response data
<Packet Length Varies> <ACK> <CMD NUM> <Response Data> <CHECKSUM>
UNACK
The command number is not sent for NACK responses since it may be corrupted, and does not
provide any useful data. The PC is aware of the command it just sent.
<0x04> <NACK> <Error Type> <CHECKSUM>

 30

16.2. Communication Session Protocol Messages

Device Information Request

UDescription U: Protocol message to request data contained in the Information and Configuration
Block within EEPROM. This message is required before any other messages are sent by the PC.
This message is used by the PC to determine if it has ever communicated with the device. The
message will be formatted as follows:
<Packet Length> <Command> <CHECKSUM>
Where: Packet Length = 3
This is an example buffer to request device information:
<0x03><CMD NUM><CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “ACK with response data”. The device
sends data from the Information and Configuration Block contained in EEPROM. The ACK response
is sent based on an error free transmission. See the “Transmission Receive Status” message for the
NACK requirements. The number of bytes within the Information and Configuration Block is specified
to be 64. If additional bytes are required from EEPROM they will need to be read with an absolute
read command. The message will be formatted as follows:
<0x44> <ACK> <CMD NUM> <Information and Configuration Block Data Bytes> <CHECKSUM>

Communication Process Complete

UDescription U: Protocol message indicating the communication process is complete. The message
will be formatted as follows:
<Packet Length> <Command> <CHECKSUM>
Where: Packet Length = 3
This is an example buffer after the transmission is completed:
<0x03><CMD NUM><CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the
response only after any background initialization is finished based on the new applications or data
stored in the device. The ACK response is sent based on an error free transmission and the
background initialization completed. See the “Transmission Receive Status” message for the NACK
requirements. The message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

 31

16.3. System Session Protocol Messages

Delete All Applications

UDescription U: Protocol message to delete all applications except TOD and COMM, and ready the
heap/EEPROM for a full download. The message will be formatted as follows:
<Packet Length> <Command> <CHECKSUM>
Where: Packet Length = 3
This is an example buffer after the delete all applications command is received:
<0x03><CMD NUM><CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the ACK
response after performing the operation specified, and there were no errors detected in the receive
message. See the “Transmission Receive Status” message for the NACK requirements. The
message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

Beep

UDescription U: Protocol message to make the device beep. The message will be formatted as
follows:
<Packet Length> <Command> <Beep Status> <CHECKSUM>
Where: Packet Length = 4
The following are the different Beep Status:
00 Automatic – makes the device beep on every packet afterwards
01 Controlled – makes the device beep only after the beep packet
This is an example buffer to make the device beep after every packet.
<0x04><CMD NUM><0x00><CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the ACK
response after performing the operation specified, and there were no errors detected in the receive
message. See the “Transmission Receive Status” message for the NACK requirements. The
message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

Idle

UDescription U: Protocol message to do nothing. The message will be formatted as follows:
<Packet Length> <Command> <CHECKSUM>
Where: Packet Length = 3
This is an example buffer to make the device do nothing.
<0x03><CMD NUM><CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the ACK
response after performing the operation specified, and there were no errors detected in the receive
message. See the “Transmission Receive Status” message for the NACK requirements. The
message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

Call an Absolute Address

UDescription U: Calls a routine which starts at a specified absolute address in RAM or ROM. The
message will be formatted as follows:
<Packet Length> <Command> <Absolute Address Lo> <Absolute Address Hi> <CHECKSUM>
Where: Packet Length = 5

 32

This is an example buffer to call a routine located at address 067F.
<0x05><CMD NUM><0x7F><0x06><CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the
response only after system returns from the call. The ACK response is sent based on an error free
transmission and the call completed. Functions that may be called include CORE or other embedded
functions, and specialized user written functions. In either case the functions called must insure that
the system watchdog timer does not expire. See the “Transmission Receive Status” message for the
NACK requirements. The message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

Write to TOD Time Zone Data

UDescription U: Changes the setting of the TOD time zones data. The message will be formatted as
follows:
<Packet Length> <Command> <Data> <CHECKSUM>
Where: Packet Length = 3 + <Data> size.
See the Application Database Structures section for the size and format of the TOD data.
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the ACK
response after performing the operation specified, and there were no errors detected in the receive
message. See the “Transmission Receive Status” message for the NACK requirements. The
message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

 33

16.4. Application Initialization Protocol Messages

Application Initialization Internal

UDescription U: Initializes the next instance of a ROM based application during a full download. The
message will be formatted as follows:
<Packet Length> <Command> <Data> <CHECKSUM>
Where: Packet Length = 8 or 35.

The packet length will increase from 8 to 35 if the data for the application contains a mode banner
string. The presence of this mode banner string is indicated by a bit in the <Application Configuration
Data> field defined below. The format for this string is as defined in the Application Design Guide for
the device.

The following bytes comprise the <Data> area:
<Database Data Heap/EEPROM Size Requirements Lo> <Database Data Heap/EEPROM Size
Requirements Hi> - database heap size or EEPROM size requirements (2 bytes)
<Application Configuration Data> - bits that indicate an application’s configuration. NOTE: Only bits 6
and 7 are used here. The state of these bits will be copied into the corresponding ACD bits in the
device. Refer to the WristApp Design Guide for more details.
Bit 7 – set if there is a user specified mode name. The mode banner string is the last field defined for
the data within this packet.
Bit 6 – set if the mode requires a password
Bit 5 – not used by PC, set to 0
Bit 4 – not used by PC, set to 0
Bit 3 – not used by PC, set to 0
Bit 2 – not used by PC, set to 0
Bit 1 – not used by PC, set to 0
Bit 0 – not used by PC, set to 0
<Application Instance> - application instance (1 byte)
<POR Application Offset> - offset into the POR address table for the application (1 byte)
<Mode Banner String> - application mode banner string (27 bytes)

All the <Data> bytes are provided by the application, except the Application Instance which is
provided by the PC. The PC software has to use the data provided to it by the application in the same
order.
The PC has to insure that the Application Instance is unique for each instance of a particular
application type. The PC will application SW will determine how to form the instance number for each
new application.
This is an example buffer when spawning an application without a mode banner string defined within
the data.
<0x08><CMD NUM><Data><CHECKSUM>

UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the ACK
response after performing the operation specified, and there were no errors detected in the receive
message. If the request can’t be granted, due to an error other than a transmission error, then the
“PC and Device Mismatch” error is sent with the NACK. See the “Transmission Receive Status”
message for the NACK requirements. The message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

Application Initialization External

UDescription U: Initializes the first or next instance of an EEPROM based application during a full
download. The message will be formatted as follows:

 34

<Packet Length> <Command> <Data> <CHECKSUM>
Where: Packet Length = 31 or 58.
The packet length will increase from 31 to 58 if the data for the application contains a mode banner
string. The presence of this mode banner string is indicated by a bit in the <Application Configuration
Data> field defined below. The format for this string is as defined in the Application Design Guide for
the device.
The following bytes comprise the <Data> area:
<ACB Offset Mask> - bits that indicate whether the specified address is an absolute or an offset
address. These bits are set to indicate offset address.
Bit 0 – Application system data
Bit 1 – Application database data
Bit 2 – Application state manager
Bit 3 – Application background handler
Bit 4 – Application mode name
<TOD Resource Requirements> - number of tod resources required. Total available across all
applications is 4.
<Backup Timer Resource Requirements> - number of backup timer resources required. Total
available across all applications is 2.
<Time Zone Check Resource Requirements> - number of time zone check resources required. Total
available across all applications is 5.
<Timer Resource Requirements> - number of timer resources required. Total available across all
applications is 3.
<Stopwatch Resource Requirements> - number of stopwatch resources required. Total available
across all applications is 2.
<Synchro Timer Resource Requirements> - number of synchro timer resources required. Total
available across all applications is 1.
<Flag Ownership 1> <Flag Ownership 2> - lcd flags requirements (2 bytes)
<Code Heap/EEPROM Size Requirements Lo> <Code Heap/EEPROM Size Requirements Hi> - code
heap size or EEPROM size requirements (2 bytes)
<System Data Heap Size Requirements Lo> <System Data Heap Size Requirements Hi> - system
data heap size requirements (2 bytes)
<Database Data Heap/EEPROM Size Requirements Lo> <Database Data Heap/EEPROM Size
Requirements Hi> - database heap size or EEPROM size requirements (2 bytes)
<Application Configuration Data> - bits that indicate an application’s configuration
Bit 7 – set if there is a user specified mode name. The mode banner string is the last field defined for
the data within this packet.
Bit 6 – set if the mode requires a password
Bit 5 – set if database is invalid
Bit 4 – set if database is modified
Bit 3 – set if code is invalid
Bit 2 – set if database is in external memory
Bit 1 – set if code is in external memory
Bit 0 – set if application index is reserved
<Application Type> <Application Instance> - unique application ID. (2 bytes)
<Application System Data Address Lo> <Application System Data Address Hi> - absolute or offset
application system data address (2 bytes)
<Database Address Lo> <Database Address Hi> - absolute or offset database data address (2 bytes)
<State Manager Address Lo> <State Manager Address Hi> - absolute or offset state manager
address (2 bytes)
<Background Handler Address Lo> <Background Handler Address Hi> - absolute or offset
background handler address (2 bytes)
<Mode Name Address Lo> <Mode Name Address Hi> - absolute or offset mode name address (2
bytes)
<Mode Banner String> - Application mode banner string (27 bytes)

 35

All the <Data> bytes are provided by the application, except the Application Instance which is
provided by the PC. The PC software has to use the data provided to it by the application in the same
order.
The PC has to insure that the Application Instance is unique for each instance of a particular
application type. The PC will application SW will determine how to form the instance number for each
new application.
This is an example buffer when spawning an application without a mode banner string defined within
the data.
<0x1F><CMD NUM>…<Data>…<CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the ACK
response after performing the operation specified, and there were no errors detected in the receive
message. If the request can’t be granted, due to an error other than a transmission error, then the
“PC and Device Mismatch” error is sent with the NACK. See the “Transmission Receive Status”
message for the NACK requirements. The message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

 36

16.5. Single and Multiple Packet Transfer Messages

Multiple Packet Write Started

UDescription U: Protocol message to indicate that multiple packet writes have been started. This is
used when the entire block of data being written will need to be sent before being used. This allows
for preventing this data from being used in the event of a communication disruption. This can be used
for application or database downloads to RAM/EEPROM. The PC is responsible for setting the
code/database invalid flags at the start of the download to prevent the memory from being used until
the entire block is transmitted. The message will be formatted as follows:
<Packet Length> <Command> <CHECKSUM>
Where: Packet Length = 3
This is an example buffer to start a multiple packet database download:
<0x03><CMD NUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the ACK
response after performing the operation specified, and there were no errors detected in the receive
message. See the “Transmission Receive Status” message for the NACK requirements. The
message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

Write to Absolute Address

UDescription U: Writes the data in the packet into consecutive memory addresses starting from the
absolute memory address specified in the packet. The memory being written to is either internal or
external. Internal memory is restricted to RAM due to obvious limitations. The packet length depends
on the number of data bytes that will be written into memory. The message will be formatted as
follows:
<Packet Length> <Command> <Absolute Address Lo> <Absolute Address Hi> <Memory Type>
<Data> <CHECKSUM>
Where: Packet Length = 7 - 70
The following are the different Memory Types:
00 Internal – internal RAM memory
01 External – external EEPROM memory
This is an example buffer to write these data, 08, 45, 7A into consecutive RAM memory addresses
starting at address F36B.
<0x08><CMD NUM><0x6B><0xF3><0x00><0x08><0x45><0x7A><CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “Simple ACK”. The device sends the ACK
response after performing the operation specified, and there were no errors detected in the receive
message. See the “Transmission Receive Status” message for the NACK requirements. The
message will be formatted as follows:
<0x04> <ACK> <CMD NUM> <CHECKSUM>

Read from Absolute Address

UDescription U: Protocol message to read data from consecutive memory starting at the absolute
address specified in the packet. The memory being read from is either internal or external. Internal
memory is not restricted to RAM. The packet length depends on the number of data bytes that will be
read from memory. The message will be formatted as follows:
<Packet Length> <Command> <Absolute Address Lo> <Absolute Address Hi> <Memory Type>
<Number of Bytes> <CHECKSUM>
Where: Packet Length = 7
The number of bytes is limited by page size of external memory, and is currently 64.
The following are the different Memory Types:

 37

00 Internal – internal memory
01 External – external memory
This is an example buffer to read 64 bytes from consecutive RAM memory addresses starting at
address F36B.
<0x07><CMD NUM><0x6B><0xF3><0x00><0x40><CHECKSUM>
UResponse U: The device is required to provide a response to the PC. The response follows the
“Transmission Receive Status” format with a message type “ACK with response data”. The device
sends data read from the specified memory address in RAM or EEPROM. The ACK response is sent
based on an error free transmission. See the “Transmission Receive Status” message for the NACK
requirements. The packet length depends on the number of bytes requested. The maximum number
of bytes sent is limited to 64. If more bytes are required, then additional read requests will need to be
issued. The message will be formatted as follows:
<Packet Length Varies> <ACK> <CMD NUM> <Data> <CHECKSUM>

 38

17. APPLICATIONS

The Timex Data Link USB contains the following applications in ROM which have database structures
that can be accessed via the USB port using the COMM Protocol.

• Time/Date
• Chronograph
• Countdown Timer
• Interval Timer
• Alarm
• Appointment
• Contacts
• Notes
• Occasion
• Schedule

The following sections describe the database structures of these ROM-based applications.

18. APPLICATION DATABASE STRUCTURES

18.1. Time/Date Application

The following section describes the database structure for the Time and Date applications.

TOD
Update
Type

Display
Format TZ Name Second Minute Hour Day Month YearLo YearHi

TZ 1 Data TZ 2 Data TZ 3 Data

Figure 1 - TOD Data Section Of TUCP Packet

Figure 2 - TOD Single TZ Data Section

TZ ID

Figure 1 – TOD Data Section Of TUCP Packet

• Holds the new data and setting of the 3 time zones.

Figure 2 – TOD Single TZ Data Section

The first data section should refer to time zone 1, followed by TZ 2 then TZ 3.

The Day Of Week and Week Number will automatically be computed when the date is written
to the resource.

• Update Type

 39

¾ Bit 0 - Make this TZ as Primary/Secondary TZ

Only 1 TZ should have its bit being set. If there are more than 1 TZ that has this bit
set, the last TZ data section that has its bit set will be the primary TZ. If none of the
TZ has its bit set, then the primary TZ will be the same as prior to PC download.

Make This TZ As.. Value

Primary TRUE
Secondary FALSE

¾ Bit 1 – Update TZ ID

Description Value
Update TZ ID TRUE

Don’t update TZ ID FALSE
¾ Bit 2 – Update display format flags

Description Value

Update Display Format Flags TRUE
Don’t update display format flags FALSE

¾ Bit 3 – Update TZ name

Description Value
Update TZ name TRUE

Don’t update TZ name FALSE

¾ Bit 4 – Update HMS data

Description Value
Update HMS data TRUE

Don’t update HMS data FALSE

¾ Bit 5 – Update MDY data

Description Value
Update MDY data TRUE

Don’t update MDY data FALSE

¾ Bit 6 – Don’t care
¾ Bit 7 – Don’t care

• Display Format Flags

¾ Bit 0 & 1 – Date Format

Bit 1 Bit 0 Date Format

 40

0 0 DMY
0 1 YMD
1 0 MDY

¾ Bit 2 – Hour Format

Description Value
24-Hour Format TRUE
12-Hour Format FALSE

¾ Bit 3 – Display DOW or Week Number

Description Value
Display Week Number TRUE
Display Day Of Week FALSE

¾ Bit 4 – TZ in DST

State/Description Value
TZ is in DST TRUE

TZ is not in DST FALSE

¾ Bit 5 – US or EURO Format

Description Value
EURO Format TRUE

US Format FALSE

¾ Bit 6 – TZ observes DST

Description Value
TZ observes DST TRUE

TZ doesn’t observe DST FALSE

¾ Bit 7 – TZ Entered Set State

This bit must be set if the update MDY bit (bit 5) of update type is set. The means
that current TZ has entered set state.

When this bit is set on TZ2 and TZ3 and manually changes the TZ1 in set state, TZ1
will not be copied anymore to either TZ2 or TZ3.

Description Value

TZ Entered Set State TRUE
TZ Hasn’t Entered Set State FALSE

• TZ Name

 41

¾ 3-character TZ name. If the TZ name is less than 3 characters, pad the remaining
with space characters.

¾ Displays the name using 5-row dot matrix character.
¾ Valid characters are from the first character defined in the LCD up to the last setting

character. (Editable character set)

• TZ ID

¾ Used for world time wristapp.

• Second

¾ BCD data from 00 – 59.

• Minute

¾ BCD data from 00 – 59.

• Hour

¾ BCD data from 00 – 23.

• Day

¾ BCD data from 1 to the maximum number of days in the specified month.
¾ The PC should send a correct data for last day of February for leap years and non-

leap years.

• Month

¾ BCD data from 1 – 12.

• YearLo

¾ BCD data from 00 – 99.

• YearHi

¾ Fixed BCD data of 20 since year boundary is from 2000 – 2009.

18.2. Chronograph Application

The following section describes the database structure for the Chronograph application.

Application Database Data

The structure of the Chrono application database data is tailored to the Data Link USB
Database Design description Random-Fix database structure. This database structure was
carefully chosen based from the collective analysis of a number of possible database
structure implementation of the chrono mode. Please refer to the Data Link USB Chrono
mode database design analysis document for further historical details.

 42

There are two types of records for the chrono database, the workout record and the split
record. The following describes these record structures

Workout Record Structure

Workout
day

Workout
Month /

Dow

Workout
Year

Best
Lap Rec

No.

No. Of
Laps

No. Of
Bytes Field Name Description

1 Workout Day Storage for the Days field

1 Workout Month
and DOW

This is a stuffed information for the month and the DOW. This is done to reduce
the number of database bytes that the chrono would have for the workout record.
The lower nibble of this byte holds the information for the workout month and the
upper nibble holds the workout’s DOW

1 Workout Year Storage for the Years field (low byte only)

1
Workout Best
Lap Rec. No. Storage for the Workouts Best Lap Record Number.

1
Workout No of

Laps Storage for the Workout's number of laps

Split Record Structure

hundredths Seconds Minutes Hours Lap
Number

No. Of
Bytes Field Name Description

1 Hundredths Split's Hundredths information
1 Seconds Split's Seconds information
1 Minutes Split's Minutes information
1 Hours Split's Hours information
1 Lap Number Split's Lap Number information

Chrono Database Structure

Below is a layout of how the Chrono database structure looks like. This is a Random Access with Fix
number of field size database structures. Database API to access each and every location or record
are available.

 43

Allocation Size : 2 Bytes

Random Access Database Structure

Chrono Rec 0: Workout 1 .

Chrono Rec 1: Lap 1 Split Data

Chrono Rec 2: Lap 2 Split Data

Chrono Rec 3: Workout 2 .

Chrono Rec 4: Lap 1 Split Data

Chrono Rec 5: Lap 2 Split Data

Chrono Rec 6: Lap 3 Split Data

Chrono Rec 7: Lap 4 Split Data

Chrono Rec 8: Lap 5 Split Data

Chrono Rec 9: Workout 3 .

Chrono Rec 10: Lap 1 Split Data

Chrono Rec 11: Lap 2 Split Data

FREE MEMORY

Database Size : 2 Bytes

Chrono Specific Header Size : 1 Byte

Number of records : 2 Bytes

Record Size : 1 Byte

Remaining application specific header (252 max size)

The chrono database has a fixed number of byte fields in each record, where it consists of 5 bytes. A
record may store workouts or split information, with both structures of the same number of fields. A
set of workout may consist of the workout date stamp information, and series of laps. In a workout,
information is organized and arranged in the manner that the Workout record resides in the top most
record, followed by the lap’s split records, depending on the number of laps taken in a workout.

Chrono Database Header Details

Offse
t

Offset Name Description

0 CHRALLOCATIONSIZEOFFSET Stores the allocation size for the entire chrono
database.
2-bytes

2 CHRDATABASESIZEOFFSET Stores the size of the entire database
2-bytes

4 CHRSPECIFICHEADERSIZEOFFSET Stores the size of the chrono specific header
information. The value should be 12.
1-byte

5 CHRNUMBEROFRECORDSOFFSET Stores the no of records for the chrono
database. This determines the amount of

 44

storage workout/lap capacity can be achieved.
MaxNumLaps+1.
2 – bytes

7 CHRRECORDSIZEOFFSET Stores the record size. The value should be 5.
1 – byte

8 CHRDISPLAYFORMATOFFSET Stores the display format information.
1-byte
Lap (top) / Split (bottom) = 0
Split (bottom) / Lap (top) = 1
Time (top) / Split (bottom) = 2
Time (top) / Lap (bottom) = 3

9 CHRSYSTEMFLAGOFFSET Stores the system flag information. Bit 2, which
is bCHRMemoryFull, should be set when the
number of downloaded free records is less than
two.
1-byte

10 CHRLAPCOUNTOFFSET Stores the current lap count information. Initially
this should be 1. Candidate for removal from
ADD.
1-byte

11 CHRLAPSFREECOUNTOFFSET Stores the no of laps free information. Laps free
count should be the total number of records
minus the no of used records, minus one (to
account for the workout storage record in the
future). Candidate for removal, see offset 14.
1-byte

12 CHRMAXLAPCOUNTCONFIGOFFSET Store the maximum no of laps that can be
stored. Maximum Lap count should be the total
number of records minus one.
1-byte

13 CHRFREEMEMRECNOOFFSET Stores the free memory record no information.
The free memory record number is the total
number of record minus the number of used
records.
1-byte

14 CHRLASTWORKOUTRECNOOFFSET Stores the last workout record number. This
should be the record number of the last stored
workout.
1-byte

15 CHRUNSTOREWORKOUTRECNOOFFSET Stores the unstored workout record information.
This record number should be the same as the
free memory record number when database
download occurs.
1-byte

Notice that header information that holds the record numbers allocates only one byte since the chrono
never has more than 250 records.

 45

18.3. Countdown Timer Application

The following section describes the database structure for the Countdown Timer application.

DataRecord
0

DataRecord
1

........

........Record
n-1

DataRecord
n

Allocation Size
(2 bytes)

Database Size
(2 bytes)

Application Specific Header Size
(1 byte)

Number of Records
(2 bytes)

Record Size
(1 byte)

Data

Flags Second Minute Hour Name (9 characters)

Figure 1 - Countdown Timer Database Structure

Figure 2 - Countdown Timer Record Data

Figure 1 – Countdown Timer Database Structure

• The DB and app specific header is a standard header for a fixed-sized random database
structure. (From allocation size down to record size)

 46

Figure 2 – Countdown Timer Record Data

• Flags

¾ Bit 0 & 1 – Action at end.

Bit 1 Bit 0 Action At End
0 0 Stop At End
0 1 Repeat At End
1 0 Chrono At End

¾ Bit 2 – Enable/Disable halfway reminder.

State Value

Enable TRUE
Disable FALSE

¾ Bit 3 – Timer data is 0.

Description Value
Data is zero TRUE

Data is non-zero FALSE

¾ Bit 4 – Timer data is less than 15 seconds.

Description Value
Data is less 15 sec TRUE

Data is not less 15 sec FALSE

¾ Bit 5 – Timer data is less than 1 minute.

Description Value
Data is less 1 min TRUE

Data is not less 1 min FALSE

¾ Bit 6 – Don’t care.
¾ Bit 7 – Don’t care.

• Second

¾ BCD data from 00 – 59.

• Minute

¾ BCD data from 00 – 59.

• Hour

¾ BCD data from 00 – 23.

 47

• Name

¾ 9-character entry name. If the entry name is less than 9 characters, pad the
remaining with space characters.

¾ Displays the name using 5-row dot matrix character.
¾ Valid characters are from the first character defined in the LCD up to the last setting

character. (Editable character set)

18.4. Interval Timer Application

The following section describes the database structure for the Interval Timer application.

DataRecord
0

DataRecord
1

........

........Record
n-1

DataRecord
n

Allocation Size
(2 bytes)

Database Size
(2 bytes)

Application Specific Header Size
(1 byte)

Number of Records
(2 bytes)

Record Size
(1 byte)

Data

Flags Second Minute Hour Name (9 characters)

Action At End
(1 byte)

Figure 1.1 - Interval Timer Database Structure

Figure 1.2 - Interval Timer Record Data

 48

Figure 1 – Interval Timer Database Structure

• The DB and app specific header is a standard header for a fixed-sized random database
structure. (From allocation size down to record size)

• Action at end.

Bit 1 Bit 0 Action At End

0 0 Stop At End
0 1 Repeat At End
1 0 Chrono At End

Figure 2 – Interval Timer Record Data

• Flags

¾ Bit 0 – Don’t care.
¾ Bit 1 – Don’t care.

¾ Bit 2 – Enable/Disable halfway reminder.

State Value

Enable TRUE
Disable FALSE

¾ Bit 3 – Timer data is 0.

Description Value
Data is zero TRUE

Data is non-zero FALSE

¾ Bit 4 – Timer data is less than 15 seconds.

Description Value
Data is less 15 sec TRUE

Data is not less 15 sec FALSE

¾ Bit 5 – Timer data is less than 1 minute.

Description Value
Data is less 1 min TRUE

Data is not less 1 min FALSE

¾ Bit 6 – Don’t care.
¾ Bit 7 – Don’t care.

• Second

¾ BCD data from 00 – 59.

 49

• Minute

¾ BCD data from 00 – 59.

• Hour

¾ BCD data from 00 – 23.

• Name

¾ 9-character entry name. If the entry name is less than 9 characters, pad the
remaining with space characters.

¾ Displays the name using 5-row dot matrix character.
¾ Valid characters are from the first character defined in the LCD up to the last setting

character. (Editable character set)

18.5. Alarm and Appointment Applications

The following section describes the database structure for the Alarm and Appointment applications.

8. Appt and Alarm Application Database Structure

This section introduces and discusses the Data structures used in the implementation of the
Appointment and Alarm Applications. The Data Record structure is introduced along with how it is
utilized in the ADD (Application Database Data) and ASD (Application System Data). Details of the
ADD are provided in a section below. The details of the ASD are found in each application’s SDD
(Software Design Document).

In general, long-term storage (EEPROM) of appointment record data is provided for in the ADD.
Short-term storage (RAM) for easy access (display and editing) is provided for in the common RAM
area. Displaying and editing a record is performed with record data in the common foreground RAM
area while searching algorithms utilize the common background RAM area.

For ROM efficiency both the alarm and appointment applications use identical Record Data structures
as well as an identical ADD. The ASD is identical up to the SEARCHRECORDOFFSET Field. The
PEEKRECORDPTROFFSET, TZCHECKRESOURCEPEEKRECORDOFFSET and TIMELINE fields
are applicable only to the appointment application. Refer to the specific applications SDD for further
details.

9. Record Data Structure

The record data structure below will be used in both the ASD and the ADD. A description of each
element in the record is provided.

(Data Structure Rev 7)

Num
Bytes

Field Name Description

2 UTLTEMPNEXTRECORDPTROFFSET Next Record Address in EEPROM.
2 UTLTEMPPREVRECORDPTROFFSET Previous Record Address in EEPROM
1 UTLTEMPRECORDLENGTHOFMESSA

GEOFFSET
The length of the LCDScrollMessage for
this record. The total number of bytes for

 50

the record equals the number of header
record header bytes plus the message
length. The total number of bytes possible
in the structure is variable based on the
length of the LCDScrollMessage. For a
maximum length Message of 100 character
plus 1 sentinel character the total number
of bytes possible in the structure will be 117
bytes.

1 UTLTEMPSTATUSOFFSET A byte of Status information. Used by
Watch and PC. Bit 0 is LSB (Right most
bit).

Bit 0 - 1=Used, 0=Unused. Indicates
whether an appointment is Used (on the
Used List) or Unused (on the Unused List).
Configured by the PC prior to dload and by
the watch when record are edited or
deleted.

Bit 1 - 1=Armed (Enabled), 0=Unarmed
(Disabled). If Armed = 1 then the alert has
been armed to cause a popup and the Icon
is displayed when viewed in the default
state. Only Used records (see bit 1) can be
armed. Set by PC and Watch.

Bit 2 - 1=Modified by the User via watch UI,
0=Unmodified. Set to 0 by the PC prior to
dload. Set to 1 by watch when user edits
the record.

Bit 3 - 1=Deleted by the User via watch UI,
0=Undeleted. If the record was Used to
start then deleted via the watch UI then it
becomes Unused and the Deleted Bit gets
set = 1. If the same record then gets Used
again, the Deleted bit remains set = 1. Set
to 0 by the PC prior to dload. Set to 1 by
watch when user deletes the record.

Bit 4 – 1=Appt Record type, 0=Alm record
type. Used by the background search
routines to distinguish between which
application has called the proc in order to
provide special processing for each
application. Set or cleared by the PC prior
to dload. Never edited by the watch.

Bit 5 – 1=EndofList “Record” is displayed,
Set to 0 by the PC prior to dload. Set = 1 by
watch whenever it creates a temporary
end-of-list record in RAM. Set = 0 by watch
when temporary end-of-list record is
overwritten.

1 UTLTEMPFREQOFFSET Freq - Occurrence Frequency of the Alarms

 51

and Appointments. Displayed in the Upper
section of the LCD in the Segment area.
For One-Day, Weekly, Monthly, and Yearly
Appointments the calculated day of the
week for the first occurrence, if armed, is
displayed in the Upper section of the LCD
in the Small Dot. The frequencies Daily
through WklySA are used by the alarm
application. The Appointment application
uses One_Day through Yearly, but does
not use WklySU through WklySA. This is a
hex value after upper nibble is masked off.
Set by the PC prior to dload and set by the
watch when a record is edited.
One_Day = 0
Daily = 1
WkDay = 2
WkEnd = 3
WklySU = 4
WklyMO = 5
WklyTU = 6
WklyWE = 7
WklyTH = 8
WklyFR = 9
WklySA = 10
Weekly = 11
Monthly = 12
Yearly = 13

1 UTLTEMPPRENOTIFICATIONOFFSET The Hex value is an index into a lookup
table. The lookup table returns the BCD of
minute or hour interval that needs to be
subtracted from the Appointment schedule
time in order to calculate the actual
appointment alert time. Set by the PC prior
to dload and set by the watch when a
record is edited.
UIndex(Hex) Æ Return Value (BCD)
0 Æ 0 Mins
1 Æ 5 Mins
2 Æ 10 Mins
3 Æ 15 Mins
4 Æ 30 Mins
5 Æ 60 Mins
6 Æ 2 Hrs
7 Æ 3 Hrs
8 Æ 4 Hrs
9 Æ 5 Hrs
10 Æ 6 Hrs
11 Æ 8 Hrs
12 Æ 10 Hrs
13 Æ 12 Hrs
14 Æ 24 Hrs
15 Æ 48 Hrs

1 UTLTEMPMINOFFSET Minute at which the record is set to expire,
if armed, Range 0-59. Displayed in the
middle section of the LCD in the Lower Dot

 52

matrix. BCD format. Set by the PC prior to
dload and set by the watch when a record
is edited.

1 UTLTEMPHROFFSET Hour at which the record is set to expire, if
armed. Range 0-23. Displayed in the
middle section of the LCD in the Lower Dot
matrix. BCD format. Set by the PC prior to
dload and set by the watch when a record
is edited.

1 UTLTEMPDATEOFFSET The Date of the month in which the first
Appt \ alm occurs. BCD format. Range 1–
31. Set by the PC prior to dload and set by
the watch when a record is edited. ALARM
record DMY should be set to 01-01-2000 at
these times.

1 UTLTEMPMONTHOFFSET The Month in which the first Appointment
occurs. BCD Format. Range 1–12. Set by
the PC prior to dload and set by the watch
when a record is edited. ALARM record
DMY should be set to 01-01-2000 at these
times.

1 UTLTEMPYRLOOFFSET Lo byte of Year. BCD Format. “01” for year
‘2001’. Set by the PC prior to dload and set
by the watch when a record is edited.
ALARM record DMY should be set to 01-
01-2000 at these times.

1 UTLTEMPYRHIOFFSET Hi byte of Year. BCD Format. “20” for year
‘2001’. Set by the PC prior to dload and set
by the watch when a record is edited.
ALARM record DMY should be set to 01-
01-2000 at these times.

2 UTLTEMPPCRECORDIDOFFSET Used by the PC for the PC. Never used by
the watch. This OFFSET is defined but the
watch never reads these two bytes into
RAM.

101 UTLTEMPLCDSCROLLMSGOFFSET A variable length message. It is defined by
the user at the PC prior to download to the
watch. The Max number of characters is
100 plus 1 byte for a sentinel character.
The default character length for records
stored in the watch prior to download is the
maximum. The message is displayed in the
lower section of the LCD on the Lower Dot
matrix.

Header of 16 bytes.
Max LCDMessage 101 bytes
Max Record Size 117 bytes.

10. ADD (Application Database Data)

The ADD (Application Database Data) is located in EEPROM. The following diagram illustrates the
information included within the ADD. The ADD is also referred to as the database or dbase for short.
These terms are used interchangeably throughout this document.

 53

Total Number of Records (16-bit)

Application Specific (EEPROM copy of some ASD data) Data Size (8-bit) = 10-bytes

Appointment ADD - Double Linked-List Database Structure Rev 2

Number of Unused Records (16-bit)

Display (Used) List Head Ptr (Ptr to Offset of Record from ADD Start) (16-bit)

Unused List Head Ptr (Ptr to Offset of Record from ADD Start) (16-bit)

Address Offset of
Next Record

16-bit

Address Offset of
Prev Record

16-bit

Address Offset of
Next Record

16-bit

Address Offset of
Prev Record

16-bit

Address Offset of
Next Record

16-bit

Address Offset of
Prev Record

16-bit

...

Address Offset of
Next Record

16-bit

Address Offset of
Prev Record

16-bit

LCD MessageLength of Message
8-bit

LCD MessageLength of Message
8-bit

LCD
Message

Length of Message
8-bit

LCD MessageLength of Message
8-bit

Allocation Size (16-bit)

Size of Database (16-bit)

Display (Used) List Tail Ptr (Ptr to Offset of Record from ADD Start) (16-bit)

CORECurrentADDAddress

Copy of some
ASD data

Total Allocation Size (in bytes) of the ADD at Default = 512 = [(485 / 64) + 1] * 64,
 where 64 is the EEPROM page byte size.

Total DBase Size (in bytes) of the ADD at Default = 485
Default Appt Record Size = 47

Default Number of Records = 10

Remainder of Record
Header

11-bytes

Remainder of Record
Header

11-bytes

Remainder of Record
Header

11-bytes

Remainder of Record
Header

11-bytes

OR
COREBackgroundADDAddress

Record Data
Structure

The Record Data is used to store an Appointment entry. The Appointment Database stored in
EEPROM will consist of a number of Header bytes and one or more Data Structures, also referred to
an Appointment Record or record or entry. Details on the record can be found in the Record Data
Section of this document.

NOTE: The fields “address of next record”, “address of prev record” and “Length of Message” are
included as part of the record data. The diagram below gives the incorrect impression that they are
not. See the section on “Record Data Structure” for details.

 54

Notice that when this application is running in foreground the CORE variable
CORECurrentADDAddress contains the value of the EEPROM start address for the ADD. When
called in background the CORE variable COREBackgroundADDAddress contains the value of the
EEPROM start address for the ADD.

Also notice the duplication of some of the ASD specific data. The ADD field “Application Specific Data
Size” indicated by the definition ADDAPPLICATIONSPECIFICSIZE indicates the number of ASD
specific data bytes that are maintained in EEPROM. This data is maintained in ASD RAM and copied
to the ADD EEPROM when the PC requests a data read from the watch. On application refresh after
a PC-download this data needs to be read from the ADD into the ASD.

Records in the ADD are connected using a double linked-list Database structure. Refer to the section
on the Database list for details of this data structure for this application.

The maximum number of records that could possibly be stored in the ADD is limited only by the size
of the EEPROM. Note that as the number of record in the dbase increases the time to search the
dbase for the next alert occurrence also increases. See the table that follows for access times given
various numbers of records in the dbase.

Number of (13 byte)
records in Database 10 20 50 100 250 500 1000

Access time for
complete Query of
Database (Secs) 0.0773 0.1546 0.3865 0.773 1.9325 3.865 7.73

As a result of this limitation the search for the next appointment to popup is performed by a
background task. Refer to the section on “Searching for the Next Occurrence” and “TZ Change
Resource” for more details. A side effect of this background search is that a search may be in
progress when the user tries to perform a PEEK operation. If this occurs an the search is in progress
then a message “SORTING TRY LATER” message will be displayed on the LCD.

The initial default conditions for the database will be 10 record, each unused and each containing an
editable 30 character LCDScrollMessage. Downloading more or less records from the PC software
will change this configuration.

11. Database Access Type

Since each record in the database needs to be an element of a linked list and is variable in length the
database access type would need to be of type Double Linked-List. A database type Random Variable
could be used, but the Linked-List is more straightforward with respect to deleting records. Refer to
the Database design document for details on these database types.

18.6. Contacts Application

The following section describes the database structure for the Contacts application.

1. Data
The section introduces and discusses the data structures used in the implementation of the Contact
Application. The Contact data record structure is introduced along with how it is utilized in the
Application Database Data (ADD) and Application System Data (ASD). Details of both the ADD and
the ASD for this mode are provided in separate sections.
Application Database Data (ADD)

 55

The ADD for this application, also referred to as the Contact Database is located in EEPROM. The
diagram in this section illustrates the information included within the ADD. Details of this diagram can
be found in the sub-sections that follow.

The application can handle a database with no contact record or a maximum of 65534 records. Data
Link USB database design restricts the total accessible memory size of a database should be less
than or equal 65536 bytes or dependent upon actual physical external memory size fitted into the
system.

The application does not provide a delete or edit operation. With the simple database requirements,
the records in the database are accessed using a random variable size access type.

A record stores only one phone number and a message field. A message can be as long as 100
characters. To maximize external memory usage for contact information with multiple phone
numbers, the message field can be removed, replaced with a record pointer field to indicate which
record contains the message to display. With this setup, one contact message can have a maximum
of 256 phone numbers.

Ordering of the records within the database is as received by the watch during PC download and
usually sorted in ascending order sorted off the message field.

2. Contact Database Structure

The contact database follows the database format specified for random access for variable sized
records. This type of database access is used due to the simple read operations required by the
application UI since there is no delete function; record size varies.

The database structure is shown below:

 56

CONTACT DATABASE
Allocation Size (16-bits)

Database Size (16-bits)

Application Specific Header Size (8-bits)
0x02

Number of Records (16-bits)

Record #0 Offset (16-bits)

Record #1 Offset (16-bits)

. . .

Record #n Offset (16-bits)

Record #0

Record #1

Record #2

Record #n

. . .

UAllocation Size
The allocation size specifies the total number of bytes (in 64-byte increments) allocated in the
EEPROM for the contact database. This allows the database size to grow within the specified
allocation size to support partial download.
UDatabase Size
The database size indicates the actual database usage. This will be used by the PC to determine
how many bytes to request from the watch for upload.
UApplication Specific Header Size
This specifies the number of bytes in the database header section that is used by the application. In
the contact database, this header size is always 2. This is the number of records in the database (16-
bit value).

 57

URecord Offset Pointers
The record offset pointer section is used by the database drivers to access any records in the
database.

URecords
The record section stores all the contact information accessed by the application.

3. Contact Record Structure

The record structure is shown below:

Contact Type
(2 bytes)

Packed Phone Number
(7 bytes)

Message Record
Offset

(1 byte)

Message
(0 to 101 bytes)

Message Length
(1 byte)

CONTACT RECORD

UContact Type
This 2-byte field specifies the following:

1. the characters that will be displayed in the upper dot matrix region;
2. left arrow should be displayed in the leftmost position of the line 1 in the main dot matrix

region;
3. right arrow should be displayed in the rightmode character position of line 1 in the main dot

matrix region.

The type has the following format:

Type Character 1
(7 bits)

Left Arrow
Display
(1 bit)

Type Character 2
(7 bits)

Right Arrow
Display
(1 bit)

The left arrow and right arrow bits are setup by the PC during database creation to indicate that the
phone number extends to the next or previous record.

The allowed values for Type Character 1 and Type Character 2 is any two characters from the LCD
dot matrix character set to be displayed. Possible character combinations are:

Phone Type Possible Display
HOME ‘HM’ or ‘H’
WORK1 ‘W1’
WORK2 ‘W2’
FAX ‘FX’
PAGER ‘PG’ or ‘P’
CELL ‘C’

NOTE: A new contact application UI will not make use of the Left-Arrow display bit. It will now specify
Type Character 1 to store a LEFT-ARROW character with Type Character 2 to be a SPACE to signify
previous record. It will still utilize Right-Arrow display bit to indicate continuation on the next record.
Only 2 records are allocated for long phone numbers.

UPacked Phone Number

 58

This field stores 14 character indexes (4-bits per index) in a 7-byte field structure. The character
position indicates where in the display area the indexed character is to be displayed. The display
regions are indicated below:

• For Segmented Display (6 characters)
• For Dot-matrix Display (8 characters)

For the first 6 character indexes, it will use the following table to determine the actual character to
display:

Index Character Equate Character Value
0 SEG_0 0x00
1 SEG_1 0x01
2 SEG_2 0x02
3 SEG_3 0x03
4 SEG_4 0x04
5 SEG_5 0x05
6 SEG_6 0x06
7 SEG_7 0x07
8 SEG_8 0x08
9 SEG_9 0x09
10 SEG_SPACE 0x0A
11 SEG_DASH 0x21
12 SEG_DASH 0x21
13 SEG_PLUS 0x22
14 SEG_OPENPAR 0x0D
15 SEG_CLOSEPAR 0x23

The next 8 character indexes will use the following table to determine the actual character to display:

Index Character Equate Character Value
0 DM5_0 0x00
1 DM5_1 0x01
2 DM5_2 0x02
3 DM5_3 0x03
4 DM5_4 0x04
5 DM5_5 0x05
6 DM5_6 0x06
7 DM5_7 0x07
8 DM5_8 0x08
9 DM5_9 0x09
10 DM5_SPACE 0x0A
11 DM5_DASH 0x31
12 DM5_PERIOD 0x32
13 DM5_PLUS 0x2F
14 DM5_ASTERISK 0x2E
15 DM5_NUMBER 0x27

UMessage Record Offset
The 1-byte field indicates the negative offset from the current record number where the message is to
be read from. This allows one message entry to have 256 phone numbers. This maximizes external
memory usage for contact information with multiple phone numbers, the message field can be
removed, replaced with a record pointer field to indicate which record contains the message to
display.

 59

The figure below shows a typical contact info with 4 phone numbers:

Contact Type
‘W1‘

Packed Phone Number
(7 bytes)

Message
Record
Offset

0

Message
“NINO SARMIENTO” + sentinel

Message
Length

15

Contact Type
‘W2 ‘

Packed Phone Number
(7 bytes)

Contact Type
‘C ‘

Packed Phone Number
(7 bytes)

Contact Type
‘F ‘

Packed Phone Number
(7 bytes)

Message
Record
Offset

1

Message
Length

15
Message
Record
Offset

2

Message
Length

15
Message
Record
Offset

3

Message
Length

15

Record
n+0

Record
n+1

Record
n+2

Record
n+3

UMessage Length
The message length specifies the size in bytes of the message field. It is required for all records
(even those without the message field) to eliminate a separate read access to determine the size of
the message prior to reading the actual message itself.

UMessage
The message field can be 0 bytes to 101 bytes long. The last character should be DM_SENTINEL.
Valid values for this are specified in the Data Link USB Dot Matrix Character Set. Values range from
0x00 to 0x69.

NOTE: If this field is empty, make sure that the ‘Message Record Offset’ field is not 0.

18.7. Notes Application

The following section describes the database structure for the Note application.

1. Note Record Data Structure

The data structure below is that which will be used to store a Note Record in EEPROM. A description
of each field in the record is provided.

The record data structure will be used in the ADD and portions will be used in the ASD. Refer to each
section for details.

Number
of Bytes

Field Name Description

2 NextRecordAddress The address of the next record in the database.
2 PreviousRecordAddress The address of the previous Record in the database.
1 RecordSize The total number of bytes in the message + 1 (to account for the

sentinel character). The total number of bytes possible in the
structure is variable based on the length of the LCDScrollMessage.
For a maximum length Message the total number of bytes possible in
the structure will be 106 bytes.

1 Record Status Bit0, 0 = record is unused, 1 = record is used. Set to 0 by the watch
when record is deleted.
Bit1, 0 = record is unmodified, 1 = record is modified by the watch.

2 PC Record ID Used by the PC. Never used by the watch. The watch doesn’t need
to load it into RAM.

 60

101 LCDScrollMessage A variable length message. The user defines the message content at
the PC prior to download to the watch or by editing the message. The
Max number of characters is 100 plus 1 byte for a sentinel character.
The default LCDScrollMessage length for records stored in the watch
prior to download is 30 with blanks for all the characters. The
message is displayed in the lower section of the LCD on the Lower
Dot matrix.

2. Database Structure (ADD)

The table below shows the structure of the database table in the EEPROM:

Application Specific Header Data Size (8-bit) = 10 bytes

NOTE ADD
Double-Linked List Access Database Structure

Total Number of NOTE Records: 16-bit

Number of Unused NOTE Records: 16-bit

Allocation Size of EEPROM reserved for Application (32-byte boundaries) : 16-bit

Database Size (subset of Allocation Size): 16-bit

Next
Record
Address
2-byte

Previous
Record
Address
2-byte

LCDScrollMessage
Record

Size
1-byte

Next
Record
Address
2-byte

Previous
Record
Address
2-byte

LCDScrollMessage
Record

Size
1-byte

Next
Record
Address
2-byte

Previous
Record
Address
2-byte

LCDScrollMessage
Record

Size
1-byte

Next
Record
Address
2-byte

Previous
Record
Address
2-byte

LCDScrollMessage
Record

Size
1-byte

.....

Record
Status
1 byte

Record
Status
1 byte

Record
Status
1 byte

Record
Status
1 byte

Display (Used) List Head Ptr (Ptr to Offset of Record from ADD Start) (16-bit)

Unused List Head Ptr (Ptr to Offset of Record from ADD Start) (16-bit)

Display (Used) List Tail Ptr (Ptr to Offset of Record from ADD Start) (16-bit)

PC Record ID
2 bytes

PC Record ID
2 bytes

PC Record ID
2 bytes

PC Record ID
2 bytes

3. Application system data structure (ASD)
The table below shows the structure of the application system data used by the note mode:

 61

NOTE ASD Flags: 8-bit
Bit 0: 1=Scrolling has stopped, 0=Scrolling in Progress.

Bit 1: 1=Unused entry is beening displayed, 0=unused entry is not displayed.
Bit 2: 1=End-Of-List is being displayed, 0=EOL is not displyed.

NOTE Mode Application System Data (ASD) REV 2

Display (Used) List Head Ptr (Offset of Record from ADD Start) (16-bit)

Display (Used) List Tail Ptr (Offset of Record from ADD Start) (16-bit)

Unused List Head Ptr (Offset of Record from ADD Start) (16-bit)

Total Number of Records (16-bit)

Number of Unused Records (16-bit)

Currently Viewed Next Record Address Ptr (Ptr to Offset of Record from ADD Start) (16-bit)

Currently ViewedPrevious Record Address Ptr (Offset of Record from ADD Start) (16-bit)

Currently Viewed SizeOfRecord (8-bit)

Ptr to Currently Viewed Record (Offset of Record from ADD Start) (16-bit)

Total 19 bytes

Current Record Status (8-bit)

18.8. Occasion Application

The following section describes the database structure for the Occasion application.

1. Application Database Data

The structure of the Schedule Mode application database data is tailored to the Data Link USB
Database Design description Random-Variable database structure. One unique implementation that
the was done was to have a nested Random-variable database structure. This is done to serve a
database of different schedule groups and a database of entries in each group.

2. The Entire Database structure.. a big picture

The occasions mode uses a random variable size database structure as shown.

 62

Occasions Mode Size of Database: 16-bit

Random Access with Variable-Sized Record
Structure

Occasion's Mode Specific Variables for
Database Access

Occ Mode Rec 0 Offset: 16-bit

Occasions Mode Allocation Size: 16 Bit

Occasions Mode Specific Header Size: 8-bit

Number of Records: 16-bit

Occ Mode Rec 1 Offset: 16-bit

Occ Mode Rec 2 Offset: 16-bit

Occasions Mode Record 1

Occasions Mode Record 2

Occasions Mode Record 3

OCCASIONS MODE
DATABASE

Occasions Mode Record 0

No. Of Records for Yearly
Occasions (16 bit)

No. Of Records for 1-day
Occasions (16 bit)

OTHERS .. TDs

Occ Mode Rec 3 Offset: 16-bit

Occ Mode Rec Nth Offset: 16-bit

.......

Occasions Mode Record Mth

Occasions Mode Record Mth +2

Occasions Mode Record Mth+1

....
.....
.....

Occasions Mode Record Nth

Record Bank for Yearly
Occasions

Record Bank for 1-Day
Occasions

The single database may be divided into two banks. The first bank should hold all recurring entries,
sorted in an ascending order with respect to the entry’s DAY and MONTH ONLY. The second bank
contains all non-recurring occasion entries, sorted accoriding to their respective date: DAY, MONTH
and YEAR. Splitting up the entries into two different banks is manageable and easy to manipulate
and fast from the standpoint of the search routines, traverse forward and traverse backward routines.

 63

3. Occasions mode Record entry structure:

Date (4 Bytes) Record's message to be scrolledMessage
Length 1 byte

Day info
(1 byte)

Month info
(1 byte)

Year info Low
byte

(1 byte)

Year info High
byte

(1 byte)

Occassion
Type

(1 byte)

Above is a layout of what the occasion’s mode record entry structure should consist of. Each entry
has a fixed sized Occasion Type (1 byte), fixed sized Date field (day, month Year Low byte and Year
High Byte consisting of 1 byte each), fixed sized entry’s message length (1 byte) and a variable sized
Entry message. Due to the variability of the record entry’s message made the reason why we must
use a variable sized random access database structure. It is also assumed that the mode’s UI states
that entries would never be edited nor deleted.

4. Occasion’s Mode Database Header:

All offsets with respect to the base address of the occasions mode database:

Offse
t

Offset Name Description

0 Allocation Size Allocation size info.
2-bytes

2 Database Size Database Size Info
2-bytes

4 Occasions Mode Specific Header Info Size Occasion Specific Header Info Size. This
should have a value of 10.
1-Byte

5 Total Number of Records Number of Records in the database. This is the
total number of records (Recurring + Non
Recurring)
2-Byte

7 Number of records in the non-recurring bank. Total number of records for non-recurring
entries.
2-Byte

9 Number of records in the recurring bank Total number of records for recurring entries.
2-Byte

11 Non-recurring entry last record number Last Record number for a non-recurring entry.
2-Byte

13 Recurring entry last record number Last Record number for a recurring entry.
2-Byte

 64

18.9. Schedule Application

The following section describes the database structure for the Schedule application.

1. Application Database Data

The structure of the Schedule Mode application database data is tailored to the Data Link USB
Database Design description Random-Variable database structure. One unique implementation that
was done was to have a nested Random-variable database structure. This is done to serve a
database of different schedule groups and a database of entries in each group.

2. The Entire Database structure.. a big picture

There is two-database structure that we should be dealing with in this mode. The Main Database
structure, which consist of records pointing to the group schedules, and the Sub Database, which
consist of records of each individual entries in a group. The graphical representation of these two
databases is shown, the sub database is expanded as an image inside a record from the main
database.

Size of Database: 16-bit

Random Access with Variable-Sized Record
Structure

Application Specific Variables for Database
Access

Rec 0 Offset: 16-bit

Allocation Size: 16 Bit

App Specific Header Size: 8-bit

Number of Records: 16-bit

Rec 1 Offset: 16-bit

Rec 2 Offset: 16-bit

Record 1 Database

Record 2 Database

Record n Database

Record N Size of Database: 16-bit

Random Access with Variable-Sized Record
Structure

Schedule Name (Length + Message)

Record Entry 0 Offset: 16-bit

Record Entry k Offset: 16-bit

Record Entry 0

Record N Allocation Size: 16 Bit

Sub-database specific header infor Size :
8-bit

Number of Records: 16-bit

Record Entry 1 Offset: 16-bit

Record Entry 2 Offset: 16-bit

Record Entry 1

Record Entry 2

Record Entry K

MAIN DATABASE SUB DATABASE
(ENTRY DATABASE)

Rec n Offset: 16-bit

Record 0 Database

 65

3. Main Database Record Structure:

Each record in the main database contains a sub-database with a random variable sized database
structure.

4. Entry Record Structure:

TIME
2 bytes

Date
4 bytes Entry MessageMessage

Length 1 byte

Above is a layout of what the Entry’s record structure should consist of. Each entry has a fixed sized
Time field; Fixed sized Date Field, the entry’s message length and a variable sized Entry message.
Due to the variability of the entry’s message made the reason why we must use a variable sized
random access database structure.

Time structure (2-bytes) should be in BCD where the lower byte address contains the minutes and
the upper byte address contains the hour’s information.

Date structure (4-bytes) should be in BCD with the day information on the lower byte and the DOW in
the highest byte as shown below:

Day
1 byte

Month
1 byte

Year -Lo
1 byte

DOW
1 byte

The DOW should start as Sunday as the first day with a value of “0” and Saturday as the last day with
a value of “6”.

Message length varies between 1 to 101, which accounts for the sentinel character and the Entry’s
message should contain the sentinel character as the last character in the message.

5. Details of the Main Database Header

Offset Offset Name Description
0 SCHRALLOCATIONSIZEOFFSET Stores the allocation size for the entire schedule

mode database.
2-bytes

2 SCHRDATABASESIZEOFFSET Stores the size of the entire database
2-bytes

4 SCHSPECIFICHEADERSIZEOFFSET Stores the size of the schedule mode specific
header information. The value should be 22.
1-byte

5 SCHTOTALGROUPRECORDSOFFSET Stores the no of group records (number of
group member description which means
number of sub database) for the schedule
mode database. This determines the amount of
groups (or sub-database) the mode has. This is
limited up to 250 group records only.
2 – bytes

7 SCHGROUPTYPEOFFSET Stores the group type classification that the
schedule mode should have which is used to
identify which of the following fields are needed
to compare/compute for the next occurring

 66

schedule in a group:

1 – DATE only
2 – DOW and Time only
3 – DATE and Time

1 - Byte

8 SCHSELECTMESSAGEPOSITIONLINE1 Start display position in the Line1 dot matrix for
the select description message. (Refer to the
LCD equates position).
Value should be 0xF900 + starting column
address in the LCD.
2-bytes

10 SCHSELECTMESSAGEPOSITIONLINE2 Start display position in the Line2 dot matrix for
the select description message. (Refer to the
LCD equates position).
Value should be 0xFA00 + starting column
address in the LCD.

2-bytes

11 SCHSELECTMESSAGELENGTHOFFSET Stores the length of the message select setting.
Maximum characters are 14. It should not
include the sentinel character.
1-Byte

12 SCHSELECTMESSAGEOFFSET Stores the selection message.
14-bytes (if the message is less than 14
characters, fill the other unused bytes with
zeros)

6. Details of the Entry Database (Sub-database) Header:

Offset Offset Name Description
0 SCHENTRYDBALLOCATIONSIZEOFFSET Stores the allocation size for the sub-database.

2-bytes

2 SCHENTRYDBDATABASESIZEOFFSET Stores the size of the sub-database
2-bytes

4 SCHENTRYDBSPECIFICHEADERSIZEOFFS
ET

Stores the size of the schedule mode specific
header information. The value should be:
 3 + ScheduleNameMessageLength
1-byte

5 SCHTOTALENTRYRECORDSOFFSET Stores the total no of entry records for the sub-
database. This determines the amount of
entries the group database has. This is limited
up to 250 entry records only.
2 – byte

7 SCHSCHEDULENAMEMESSAGELENGTHO
FFSET

Stores the group schedule name message
length. The value varies from 1 to 101. The
message ends with a sentinel character.
1-byte

8 SCHSCHEDULENAMEMESSAGEOFFSET Stores the schedule name message (should
include the sentinel character)

 67

18.10. EEPROM Utilization

The Data Link USB watch uses an EEPROM to mainly store application database and EEPROM
based applications. It also stores information and configuration data that determines default watch
operation during power up from reset.

The figure below shows the basic allocation of the EEPROM.

EEPROM
INFORMATION AND

CONFIGURATION BLOCK

Memory Storage
(31,424 bytes)

SYSTEM DATA BLOCK

Application data or code is stored in a contiguous manner. Any adjustment to the size of an
application data during run time will require a full reload of all the data blocks currently in the
EEPROM. This prevents any fragmentation of memory to occur in the EEPROM.

When an application requests EEPROM storage, the system will always allocate a contiguous section
that begins in a 64-byte page and the size will be multiple of 64. This minimizes the time it takes for
the watch to write the data in EEPROM should the PC download the database in 64-byte chunks
through the communications module (average write time of 5ms). If we do not force this restriction
using the EEPROM page size, it would take an average of 10ms to write the 64-byte data packet.

The figure below shows the relationship between the Application Control Block of the Kernel and the
external memory structure.

 68

EEPROM

INFORMATION AND CONFIGURATION BLOCK
AND SYSTEM DATA BLOCK

Allocated for App 1

MEMORY STORAGE

Allocated for App 2

Allocated for WristApp

Application Control Block

App 1 Control Block

EEPROM Base Address for DB

EEPROM Base Address for Code

App 2 Control Block

EEPROM Base Address for DB

EEPROM Base Address for Code

App 3 Control Block

EEPROM Base Address for DB

EEPROM Base Address for Code

App 4 Control Block

EEPROM Base Address for DB

EEPROM Base Address for Code

Allocated for App 3

Allocated for App 4

18.11. Information and Configuration Block (ICB)

This section shows the usage of the 64-byte EEPROM block that is used to store system information as well as
configuration that affects how the watch will operate.

When the watch powers up, it will check if the EEPROM has been programmed before by looking at the
information stored in a pre-determined EEPROM page block. The first three bytes should be “851” and the
checksum is correct for the entire block. If EEPROM is not programmed or the checksum is incorrect, it will
download default parameters into the information block and resets the watch.

If the EEPROM is already programmed after a reset condition, it will configure the watch software to operate
according the parameters set in this information and configuration block.

Some configuration data should be stored in the appropriate system variable. Model and Serial information
structures are used only by the PC.

The Information and Control Block stores the following information:

EEPROM PAGE 0 TP

1
PT

Offset Info or Control Name Description
0 SEG_8 Model and Version Number Byte 0
1 SEG_5 Model and Version Number Byte 1
2 SEG_1 Model and Version Number Byte 2
3 SEG_0 Model and Version Number Byte 3
4 SEG_0 Model and Version Number Byte 4
5 SEG_0 Model and Version Number Byte 5
6 0x00 Serial Number Byte 0, 1, 2
7 0x00 Serial Number Byte 1

TP

1
PT Values shown are not initial values.

 69

8 0x00 Serial Number Byte 2
9 0x00 Bit 0: reserved

Bit 1: 0 = CrownSet, 1 = RingSet
Bit 2: 0 = Reserved
Bit 3: 0 = Mask Part, 1 = Flash Part
Bit 4: reserved
Bit 5: reserved
Bit 6: reserved
Bit 7: reserved

10 0x77 Bit 7..4: Battery Detection Setting (0x0 – 0xF)
Bit 3..0: LCD Contrast Parameter (0x0 to 0xF)

11 0x?? Bit 7..0: Scroll Speed (put more info)
12 0x00 Password Byte 0
13 0x00 Password Byte 1
14 0x00 Maximum Setting Character
15 0x04 NightMode Activation/Deactivation Duration
16 0x00 EEPROM Size (low Byte of 16-bit number)
17 0x20 EEPROM Size (high Byte of 16-bit number)
18 0x00 Periodic Task Control Block

Bit 7: Daily Task Available in EEPROM
Bit 6: Hourly Task Available in EEPROM
Bit 5: Minute Task Available in EEPROM
Bit 4..0: Must be zero.

19 0x00 Periodic Task EEPROM Location (low-byte 16-Bit)
20 0x00 Periodic Task EEPROM Location (high-byte 16-Bit)
21 0x00 BG Config
22 0x00 POR Application Index Pointer 0 (for TOD)
23 0x00 POR Application Index Pointer 1 (for COMM)
24 0x00 POR Application Index Pointer 2 (0xFF if unused)
25 0x00 POR Application Index Pointer 3 (0xFF if unused)
26 0x00 POR Application Index Pointer 4 (0xFF if unused)
27 0x00 POR Application Index Pointer 5 (0xFF if unused)
28 0x00 POR Application Index Pointer 6 (0xFF if unused)
29 0x00 POR Application Index Pointer 7 (0xFF if unused)
30 0x00 POR Application Index Pointer 8 (0xFF if unused)
31 0x00 POR Application Index Pointer 9 (0xFF if unused)
32 0x00 POR Application Index Pointer 10 (0xFF if unused)
33 0x00 POR Application Index Pointer 11 (0xFF if unused)
34 0x00 POR Application Index Pointer 12 (0xFF if unused)
35 0x00 POR Application Index Pointer 13 (0xFF if unused)
36 0x00 POR Application Index Pointer 14 (0xFF if unused)
37 0x00 POR Application Index Pointer 15 (0xFF if unused)
38 0x00 Usage Tracking:

0x00: usage tracking data is invalid
non 0x00: usage tracking data is valid

39 0x00 LCD Contrast for Message Scrolling (0x0 to 0xF)
40 0x00 reserved
41 0x00 reserved
42 0x00 reserved
43 0x00 reserved
44 0x00 reserved
45 0x00 reserved
46 0x00 reserved

 70

47 0x00 Checksum (8-bit)
48 0x00 PC-Watch Synchronization ID (must be 0x00 during POR)
49 0x00 PC-Watch Synchronization ID
50 0x00 PC-Watch Synchronization ID
51 0x00 PC-Watch Synchronization ID
52 0x00 PC-Watch Synchronization ID
53 0x00 PC-Watch Synchronization ID
54 0x00 PC-Watch Synchronization ID
55 0x00 PC-Watch Synchronization ID
56 0x00 PC-Watch Synchronization ID
57 0x00 PC-Watch Synchronization ID
58 0x00 PC-Watch Synchronization ID
59 0x00 PC-Watch Synchronization ID
60 0x00 PC-Watch Synchronization ID
61 0x00 PC-Watch Synchronization ID
62 0x00 PC-Watch Synchronization ID
63 0x00 PC-Watch Synchronization ID (Write 0xFF)

Description

Offset Notes

0 Firmware Model Number (Offset 0 to 2).
Firmware Revision Level (Offset 3 to 5).
These bytes should match with the 6-byte firmware model and revision number located in
ROM. If a mismatch is detected, the firmware will program a default ICB into EEPROM.

6 Serial Number (3-Bytes)
Manufacturing option to provide a unique serial number for the watch.

Not used by firmware.

9 (i) Software Operation Bond Option
Specifies how the watch will operate based on the type of hardware the firmware is used on.

Offset 9:
• Bit 1: 0 = CrownSet, 1 = RingSet
• Bit 2: Reserved
• Bit 3: 0 = Mask Part, 1 = Flash Part

Offset 10:

• Bit 7..4: Battery Detection Setting (0x0 – 0xF)
• Bit 3..0: LCD Contrast Parameter (0x0 to 0xF)

11 (ii) Scroll Speed

A computed value that is used to setup a timing parameter to generate the required frequency
for message scrolling.

Formula:

TBD

12 (iii) Password

 71

Specifies the 2-byte character string required for verifying a valid password. The character
specified here must be less than the value specified in the Maximum Setting Character.

14 (iv) Maximum Setting Character

Specificies the maximum character index that can be used during a character edit operation.

Typical values are:

DM5_MACRON equ 86
DM5_TILDE equ 68

15 (v) NightMode Activation/Deactivation Duration
Time in seconds before manual activation or deactivation of the nightmode state is toggled.

16 EEPROM Size (16-bit)
Indicates the size of the external memory chip attached to the system. For a 32KB chip, the
value stored in this offset is 08000.

18 (vi) Periodic Task Control Block
Indicates that a valid periodic task code image is stored in EEPROM. On POR, the system
will map out the area used by the periodic task to be used by application as data storage.

It will use the flags set in this offset on what task to load and when to load the task into the
common code overlay area.

• Daily Task Available in EEPROM (bit 7). Load and execute daily task code every

12AM.

• Hourly Task Available in EEPROM (bit 6). Load and execute hour task code every
hour.

• Minute Task Available in EEPROM (bit 5). Load and execute minute task code every

minute.

19 Periodic Task EEPROM Location (16-bit)
Specifies the 16-bit location in EEPROM space where the periodic task code is stored. The
code image must be stored at the bottom of the external memory heap. The system will not
map out the area used by the periodic task code from being used as application database
memory.

This will be used only if the Periodic Task Control Block is not zero.

21 (vii) Business Group Watch Configuration

Reserved

22 Pointer offset to TOD Parameter Table.

Do not modify.

23 Pointer offset to COMM Parameter Table.
Do not modify.

24 Default POR Application List (offsets 24 to 38)

 72

Pointer offsets (16-bit) to a Parameter Pointer List to applications that will be
initialized/activated during POR. The application must support the event
COREEVENT_PORINIT to be included in this list.

The available applications are:

Time of Day = 0
Communications = 2,
Chrono = 4,
Timer = 6,
Interval Timer = 8,
Alarm = 10,
Appointment = 12,
Note = 14,
Option = 16,
Occasion = 18,
Contact = 20,
Schedule = 22,
Synchro Timer = 24,

Store only in the integer values in the ICB.

38 Usage Tracking.
By default, this is 0x00. When the TOD year is modified, this offset will be changed to a value
other than 0x00.

39 LCD Contrast for Message Scrolling.
Specifies the register setting for the LCD Contrast Control Byte.

47 ICB Checksum.
Negate the LSB of the sum of all the bytes from offset 0 to 46.

48 (viii) PC-Watch Synchronization ID
A value stored in both the PC and watch to indicate a unique communication session ID. This
section will be cleared to 0x00 during firmware POR.
A mismatch between the PC and the watch will indicate that the current watch data was
loaded from a different PC.

 73

18.12. EEPROM-Based Application Code Structure

The kernel will support multiple active EEPROM based application. The application will be executed
after the kernel loads the required code blocks into an overlay area located in internal memory.
Although they are EEPROM-based, the ASD section is required to be located in internal memory.
This prevents swapping back to EEPROM the current ASD session to make way for another
EEPROM-based application.

The Kernel will allocate an overlay area of about 900 bytes. All EEPROM based applications must be
designed with this limitation.

The structure is required to allow the Kernel to locate and load into the overlay area the required code
block.

Allocation Size (2-byte)

EEPROM-BASED APPLICATION STRUCTURE

Number of Records (2-byte)

Remaining App Specific Header
(variable size up to 253 bytes)

Record #0: COMMON CODE Block 16-Bit EEPROM Address

Record #1: STATE 0 CODE Block 16-Bit EEPROM Address

Record #2: STATE 1 CODE Block 16-Bit EEPROM Address

Record #3: STATE 2 CODE Block 16-Bit EEPROM Address

Record #4: STATE 3 CODE Block 16-Bit EEPROM Address

COMMON CODE BLOCK
16-Bit

Record
Size

STATE 0 CODE BLOCK
16-Bit

Record
Size

STATE 1 CODE
BLOCK

16-Bit
Record

Size

STATE 2 CODE BLOCK
16-Bit

Record
Size

STATE 3 CODE BLOCK
16-Bit

Record
Size

8-Bit
Reserved

8-Bit
Reserved

8-Bit
Reserved

8-Bit
Reserved

8-Bit
Reserved

Database Size (2-byte)

App Specific Header Size (1-byte)

 74

18.13. Positioning Databases in the EEPROM

Now that the database formats have been described for each application, there needs to be a
description of how this information sits in the watch’s EEPROM.

The standard Timex Data Link USB products contain 32768 Kb of EEPROM. The actual usable
amount is 31,424 Kb (the reason why will be explained later)

EEPROM Code and Data
Locations

Bottom Address
0x7F00 Hex

Top Address
0x440 Hex

WristApp
Code

Application
Data

The above diagram displays how the EEPROM is filled with data. The bottom (or left) address
(0x7F00 hexadecimal) is where code for WristApp applications is added. Conversely, the code for the
databases is added to the top (or right) address (0x0440). The two areas eventually converge thus
maxing out the memory.

The bottom 0x100 bytes (0x7F00 – 0x7FFF) are not usable because there are special routines
programmed at the factory within that area. These routines, located in that area of EEPROM, are
reserved for patch code.

The top 0x440 bytes are used for the watch to determine what modes are present in the watch, as
well as the watch’s configuration. Please refer to the ICB section for more information.

When setting up the allocation size for each database, in order to speed up download speed, it is
imperative that everything is placed on a 64 byte (page) boundary.

	INTRODUCTION
	Scope
	System Background
	Purpose
	System Operation

	COMMUNICATION SPECIFICS
	Communications Flow

	HW MODULE
	CORE MODULE
	COMM MODULE
	RECEIVED MESSAGE SUMMARY
	HID (HUMAN INTERFACE DEVICE)
	Vendor ID
	Writing to the HID driver
	Reading from the HID driver
	System MAP Table
	Application Configuration Data (ACD)
	Application Control Block (ACB)
	Application ID (16 bit)
	Application System Data Address (16-bit)
	Application Database Data Address (16-bit)
	Application Mode State Manager Address
	Application Refresh Handler Address
	Application Mode Banner Message Address (16-bit)
	Address of Code Block in EEPROM

	COMMUNICATING WITH THE WATCH
	Read Operation
	Write Operation

	SYSTEM SPECIFICS
	System Interaction
	TUCP Packets Transmitted Using the USB Interface
	TUCP Packet

	TRANSCIEVER NOTIFICATION MESSAGES
	APPLICATION DOWNLOAD
	DATABASE DOWNLOAD
	MELODY DOWNLOAD
	OPTION DOWNLOAD
	UPLOAD AND DOWNLOAD EXAMPLES
	Initialize ROM Based Application
	Download New Database to an Existing Application
	Download Melody Database to EEPROM
	Upload Database from an Existing Application

	MESSAGE DETAILS
	Transceiver Notification Messages
	Communication Session Protocol Messages
	System Session Protocol Messages
	Application Initialization Protocol Messages
	Single and Multiple Packet Transfer Messages

	APPLICATIONS
	APPLICATION DATABASE STRUCTURES
	Time/Date Application
	Chronograph Application
	Countdown Timer Application
	Interval Timer Application
	Alarm and Appointment Applications
	Appt and Alarm Application Database Structure
	Record Data Structure
	ADD (Application Database Data)
	Database Access Type

	Contacts Application
	Data
	Contact Database Structure
	Contact Record Structure

	Notes Application
	Note Record Data Structure
	Database Structure (ADD)
	Application system data structure (ASD)

	Occasion Application
	Application Database Data
	The Entire Database structure.. a big picture
	Occasions mode Record entry structure:
	Occasion’s Mode Database Header:

	Schedule Application
	Application Database Data
	The Entire Database structure.. a big picture
	Main Database Record Structure:
	Entry Record Structure:
	Details of the Main Database Header
	Details of the Entry Database (Sub-database) Header:

	EEPROM Utilization
	Information and Configuration Block (ICB)
	Software Operation Bond Option
	Scroll Speed
	Password
	Maximum Setting Character
	NightMode Activation/Deactivation Duration
	Periodic Task Control Block
	Business Group Watch Configuration
	PC-Watch Synchronization ID

	EEPROM-Based Application Code Structure
	Positioning Databases in the EEPROM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

