

ATT7028A 用户手册

Date: 2005-03-28

Rev: 1.04

目 录

第-	- 部	3分 芯片介绍	
		芯片特性4	
		功能简介5	
§ 1.	3	内部框图 · · · · · · · · 5	
		引脚定义6	
§ 1.	5	应用示意图	
第二	. 部	3分 系统功能	
§ 2.	1	电源监控电路 · · · · · · 9	
§ 2.		系统复位 ·····9	
§ 2.		000000000000000000000000000000000000000	
		有功功率测量 · · · · · · · 11	
§ 2.	5	有功能量测量11	
§ 2.	6	视在功率测量 · · · · · · · · · 11	
§ 2.	7	电压有效值测量 · · · · · · · · · · · · · · · · · · ·	
§ 2.	8	电流有效值测量 · · · · · · · · · · · · · · · · · · ·	
§ 2.	9	电压线频率测量 · · · · · · · · · · · · · · · · · · ·	
§ 2.	10) 功率因数测量·······1	2
§ 2.	11	L 电压电流相角测量············1	.3
§ 2.	12	2 电压相序检测············1	
§ 2.			
§ 2.	14	4 起动潜动设置··············1	.3
§ 2.	15	5 功率方向判断••••••••••••1	4
		6 失压检测··············1	
		⁷ 硬件端口检测····································	
		3 三相三线与三相四线应用 ······ 1	
		9 能量脉冲输出············1	
) 参数输出寄存器定义	
§ 2.	21	[参数输出寄存器说明 ······]	8.
第三	: 部	3分 校表方法	
§ 3.	1	硬件校表22)
		软件校表23	
§ 3.	3	校表寄存器定义24	ŀ
§ 3.	4	校表寄存器说明 · · · · · · · · · · · · 26	;
§ 3.	5	校表步骤及参数计算 · · · · · · 31	
第四	部	3分 SPI 通讯接口	
§ 4.	1	SPI 通讯接口介绍 ·······33	
§ 4.	2	SPI 读操作······34	
		SPI 写操作35	
§ 4.	4	SPI 写特殊命令操作36	

第五部分 电气特性	
§ 5.1 电气参数·······	38
§ 5.2 芯片封装······	35

第一部分 芯片介绍

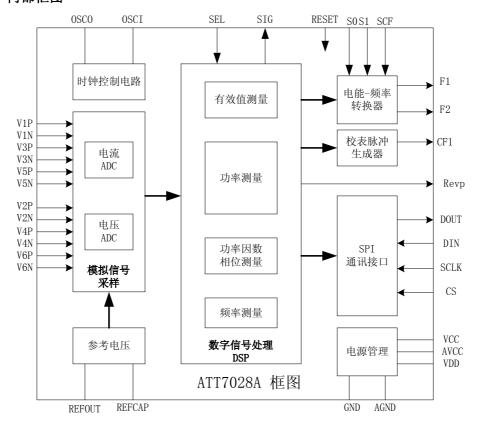
§ 1.1 芯片特性

- 高精度, 在输入动态工作范围(1000:1)内, 非线性测量误差小于 0.1%
- 有功测量满足 1 级、0.5S, 支持 IEC 687/1036, GB/T 17215-1998
- 适用于三相三线和三相四线模式
- 提供有功参数
- 提供功率因数、相角、线频率参数
- 提供电压和电流有效值参数, 有效值精度优于 0.5%
- 提供电压和电流相序检测功能
- 提供失压指示功能
- 提供反向功率指示
- 三相电流矢量和之有效值输出
- 三相电压矢量和之有效值输出
- 提供有功校表脉冲输出
- 提供驱动计度器的有功脉冲输出
- 合相能量绝对值相加与代数相加可选
- 电表常数可调
- 起动电流可调
- 可准确测量到含 21 次谐波的有功功率
- 支持增益和相位补偿, 小电流非线性补偿
- 具有 SPI 接口,方便与外部 MCU 通讯
- 支持电阻网络或者软件调试电表
- ATT7028A 采用 OFP44 封装。
- 单+5V 供电

§ 1.2 功能简介

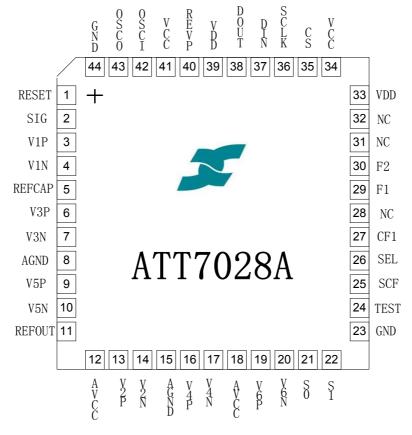
ATT7028A 是一颗高精度三相电能专用计量芯片,适用于三相三线和三相四线应用。

ATT7028A 集成了六路二阶 sigma-delta ADC、参考电压电路以及所有功率、能量、有效值、功率因数以及频率测量的数字信号处理等电路。


ATT7028A 能够测量各相以及合相的有功功率、有功能量,同时还能测量各相电流、电压有效值、功率因数、相角、频率等参数,充分满足三相复费率多功能电能表的需求。详细数据定义请参考 § 2.20 参数输出部分。

ATT7028A 支持电阻网络校表以及软件校表两种校表方式。电阻网络校表适用于电压通道采用电阻网络取样的系统应用,通过简单的调节电阻网络就可以将系统误差校正在1级表的要求以内。而软件校表是通过相关的校表寄存器对增益、相位进行补偿,可以将系统误差校正在0.5级表的要求以内。有功校验输出CF1提供瞬时有功功率信息,可以直接接到标准表,进行误差校正。详细校表方法请参考第三部分校表方法。

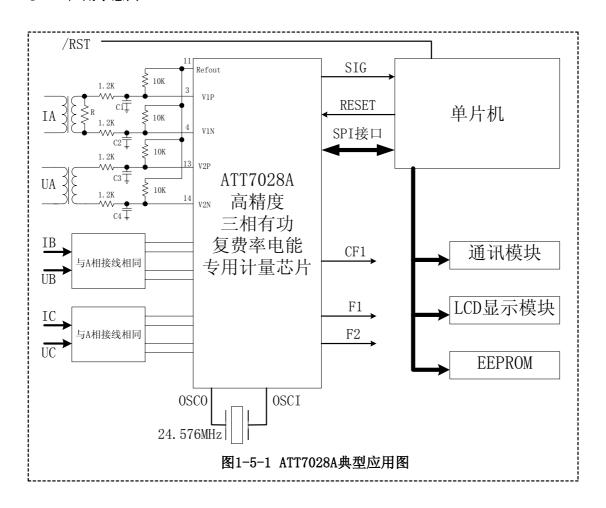
ATT7028A 提供一个 SPI 接口,方便与外部 MCU 之间进行计量参数以及校表参数的传递。 SPI 具体规格参见后面的详细说明。所有计量参数都可以通过 SPI 接口读出。


ATT7028A 内部的电压监测电路可以保证加电和断电时正常工作。

§ 1.3 内部框图

§1.4 引脚定义

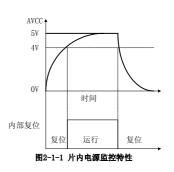
引脚	标识	特性	功能描述
1	RESET	输入	ATT7028A 复位管脚,低电平有效,内部有 47K 上拉
			电阻
2	SIG	输出	ATT7028A 上电复位或者异常原因重新启动时, SIG
			将变为低电平。当外部 MCU 通过 SPI 写入较表数据
			后,SIG 将立即变为高电平。
3, 4	V1P/V1N	输入	A 相电流信道正,负模拟输入引脚。完全差动输入
			方式,正常工作最大输入 Vpp 为 ±1.5V,两个引脚
			内部都有 ESD 保护电路,最大承受电压为±6V
5	REFCAP	输出	基准 2.4V, 可以外接;该引脚应使用 10 μ F 电容并
			联 0. 1uF 电容进行去耦
6, 7	V3P/V3N	输入	B 相电流信道正,负模拟输入引脚。完全差动输入
			方式,正常工作最大输入 Vpp 为 ±1.5V,两个引脚
			内部都有 ESD 保护电路,最大承受电压为±6V
8	AGND	电源	模拟电路(即 ADC 和基准源)的接地参考点
9, 10	V5P/V5N	输入	C 相电流信道正,负模拟输入引脚。完全差动输入
			方式,正常工作最大输入 Vpp 为 ±1.5V,两个引脚
			内部都有 ESD 保护电路,最大承受电压为±6V
11	REFOUT	输出	基准电压输出,用作外部信号的直流偏置
12	AVCC	电源	该引脚提供 ATT7028A 模拟电路的电源, 正常工作电
			源电压应保持在 5V±5%, 为使电源的纹波和噪声减
			小至最低程度,该引脚应使用 10μF 电容并联 0.1uF



			
			电容进行去耦
13, 14	V2P/V2N	输入	A 相电压信道的正、负模拟输入引脚。完全差动输
			入方式,正常工作最大输入 Vpp 为±1.5V,两个引
			脚内部都有 ESD 保护电路,最大承受电压为±6V
15	AGND	电源	模拟电路(即 ADC 和基准源)的接地参考点
16, 17	V4P/V4N	输入	B 相电压信道的正、负模拟输入引脚。完全差动输
			入方式,正常工作最大输入 Vpp 为±1.5V,两个引
			脚内部都有 ESD 保护电路,最大承受电压为±6V
18	AVCC	电源	该引脚提供 ATT7028A 模拟电路的电源, 正常工作电
			源电压应保持在 5V±5%, 为使电源的纹波和噪声减
			小至最低程度,该引脚应使用 10 μ F 电容并联 0. 1uF
			电容进行去耦
19, 20	V6P/V6N	输入	C 相电压信道的正、负模拟输入引脚。完全差动输
			入方式,正常工作最大输入 Vpp 为±1.5V,两个引
			脚内部都有 ESD 保护电路, 最大承受电压为±6V
21, 22	S0/S1	输入	这两个逻辑输入用来选择输出频率的系数。内部
			300K 上拉电阻。
23	GND	电源	数字地引脚
24	TEST	输入	测试管脚,正常应用接地。
			内有 47K 下拉电阻
25	SCF	输入	逻辑输入用来选择输出频率的系数,与 S0/S1 配合
			使用,内部 300K 上拉电阻。
26	SEL	输入	三相三线低电平,三相四线高电平选择。
			内部 300K 上拉电阻
27	CF1	输出	有功电能脉冲输出,其频率反映合相平均有功功率
			的大小,常用于仪表有功功率的校验,也可以用作
			有功电能计量
28	NC		不连接
29, 30	F1/F2	输出	低频有功电能脉冲输出,其输出反映三相平均有功
			功率的大小。可直接驱动机电式计度器。
31, 32	NC/NC		不连接
33	VDD	电源	内核电源 输 出 3.0V。外接 10μF 电容并联 0.1uF
			电容进行去耦
34	VCC	电源	数字电源引脚; 正常工作电源电压应保持在 5V±
			5%,该引脚应使用 10 μ F 电容并联 0. 1 uF 电容进行
			去耦
35	CS	输入	SPI 片选信号, 低电平有效, 内部上拉 200K 电阻
36	SCLK	输入	SPI 串行时钟输入(施密特)
			注意: 上升沿放数据,下降沿取数据
37	DIN	输入	SPI 串行数据输入(施密特),内部下拉 200K 电阻
38	DOUT	输出	SPI 串行数据输出, CS 为高时高阻输出
39	VDD	电源	内核电源 输 出 3.0V。外接 10μF 电容并联 0.1uF
			电容进行去耦
-	•		

			* / 13 * 1 * 1 * 2 / 1 * 1 * 1 * 1 * 1
40	REVP	输出	当检测到任意一相的有功功率为负时,输出高电平;
			当检测到各相有功功率都为正时,该引脚的输出又
			将复位到低电平
41	VCC	电源	数字电源引脚;正常工作电源电压应保持在 5V±
			5%,该引脚应使用 10μF 电容并联 0.1uF 电容进行
			去耦
42	OSCI	输入	系统晶振的输入端,或是外灌系统时钟输入。
			晶振频率为 24.576MHz
43	0SC0	输出	晶振的输出端
44	GND	电源	数字地引脚

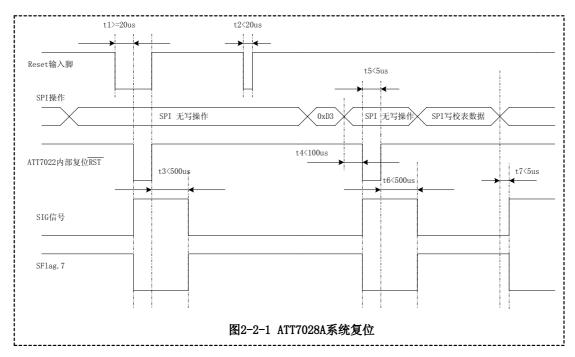
§1.5 应用示意图



第二部分 系统功能

§ 2.1 电源监控电路

ATT7028A 片内包含一个电源监控电路,连续对模拟电源 (AVcc)进行监控。当电源电压低于 4V±5%时,芯片将被复位。这有利于电路上电和掉电时芯片的正确启动和正常工作。电源监控电路被安排在延时和滤波环节中,这在最大程度上防止了由电源噪声引发的错误。如图 2-1 所示。为保证芯片正常工作应对电源去耦,使 AVcc 的波动不超过 5V±5%。

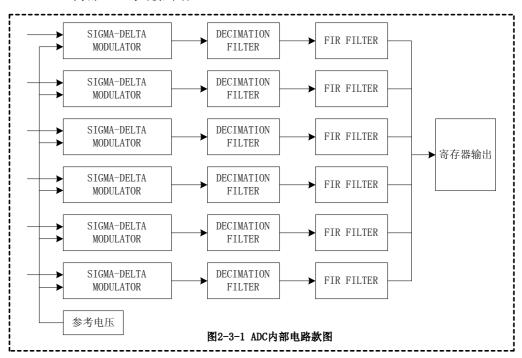

§ 2.2 系统复位

ATT7028A 提供两种复位方式: 硬件复位和软件复位。

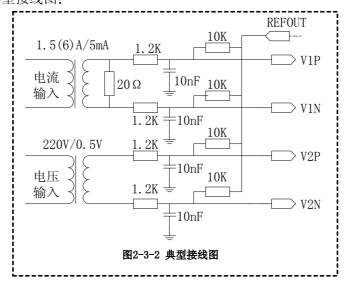
硬件复位通过外部引脚 RESET 完成, RESET 引脚内部有 47K 电阻上拉, 所以正常工作时为高电平, 当 RESET 出现大于 20us 的低电平时, ATT7028A 进入复位状态, 当 RESET 变为高电平时 ATT7028A 将从复位状态进入正常工作状态。

软件复位通过 SPI 口完成,当往 SPI 口写入 0xD3 命令后,系统进行一次复位,复位之后 ATT7028A 从初始状态开始运行。

ATT7028A 在复位状态下 SIG 为高电平,当 ATT7028A 从复位到工作状态之后,大约经过 500us 左右,SIG 将从高电平变为低电平,此时芯片开始进入正常工作状态,方可写入校表数据,一旦写入校表数据之后,SIG 又会立刻变为高电平。



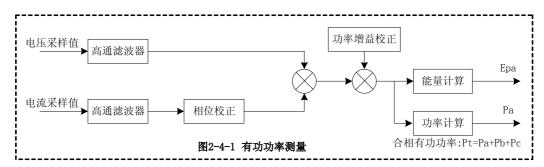
§ 2.3 模数转换


ATT7028A 片内集成了 6 路 16 位的 ADC,采用双端差分信号输入。输入最大的正弦信号有效值是 1v。建议将电压通道 Un 对应到 ADC 的输入选在 0.5v 左右,而电流通道 Ib 时的 ADC 输入选在 0.1v 左右。

参考电压 Refcap 与 Refout 典型值是 2.4v。

ATT7028A 内部 ADC 系统框图:

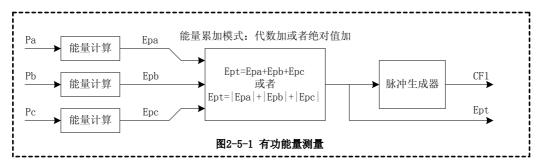
ADC 前端典型接线图:



§ 2.4 有功功率测量

各相的有功功率是通过对去直流分量后的电流、电压信号进行乘法、加法、数字滤波等一系列数字信号处理后得到的。电流、电压采样数据中包含高达 21 次的谐波信息,所以依据公式 $\mathbf{P}=\frac{1}{N}\sum_{n=1}^{N}U(n)\bullet I(n)$ 计算得到的有功功率也至少包含 21 次谐波信息。有功功率的测量原

理图如下图所示,合相有功功率 Pt=Pa+Pb+Pc。

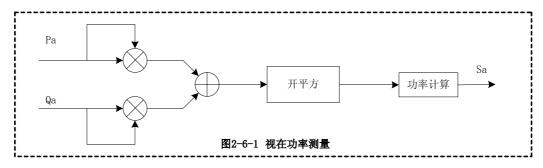


§ 2.5 有功能量测量

有功能量通过瞬时有功功率对时间的积分得到。

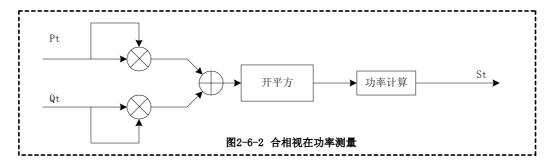
单相有功能量的计算公式为: $Ep = \int p(t)dt$

合相有功能量可以根据设置按照代数或者绝对值的模式进行累加。代数加模式Ept=Epa+Epb+Epc, 而绝对值加模式Ept=[Epa]+[Epb]+[Epc]。如图所示。

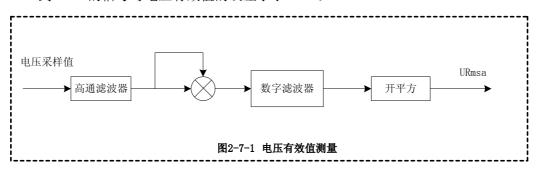

§ 2.6 视在功率测量

视在功率有两类计算公式:

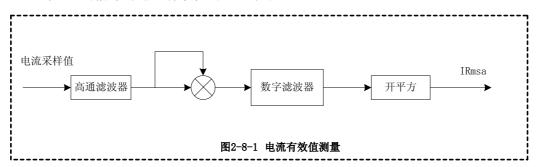
PQS 视在功率公式一: $S = \sqrt{P^2 + Q^2}$


RMS 视在功率公式二: S=Urms*Irms

由于 ATT7028A 可以直接提供电流和电压的有效值,RMS 视在功率公式二可以在外部 MCU 很方便地实现,所以 ATT7028A 仅提供采用 PQS 视在功率公式一实现的视在功率值,如下图所示。



对于合相视在功率,ATT7028A 按照公式一,根据合相有功功率和合相无功功率计算得到,如下图所示。


§ 2.7 电压有效值测量

通过对电压采样值进行平方、开方以及数字滤波等一系列运算得到。电压通道输入 1000mv 到 10mv 的信号时电压有效值的误差小于 0.5%。

§ 2.8 电流有效值测量

通过对电流采样值进行平方、开方以及数字滤波等一系列运算得到。电流通道输入 1000mv 到 2mv 的信号时电流有效值的误差小于 0.5%。

§ 2.9 电压线频率测量

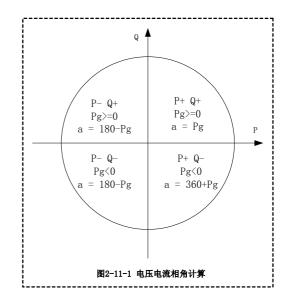
ATT7028A 可以直接输出电压频率参数,ATT7028A 可以自动选择 A/B/C 三相中的任意一相电压为电压频率测量的基准。可测量的电压线频率范围为 10Hz~500Hz。

§ 2.10 功率因数测量

功率因数计算公式:
$$Pf=sign(Q) \times \frac{abs(P)}{abs(S)}$$

功率因数的符号由无功功率的符号来确定。

§ 2.11 电压电流相角测量


根据电工原理,功率因数 Pf=cos(Pg),其中 Pg 为电压与电流的相角。在 ATT7028A中定义电压与电流的相角。在 ATT7028A中定义电压与电流的相角为 Pg=sign(Q)*acos(|Pf|)。根据这一方法, ATT7028A同时可以提供由合相功率因数折算为合相相角参数,也就是 Pgt=sign(Q)*acos(|Pft|)。

ATT7028A 相角 Pg 只能表示为±90°,符号与功率因数一致。如果要用 0°~360°表示在不同的象限相角,需要做如下转换即可:

当有功功率为正时,无功功率为正,实际相角就是是 Pg:

当有功功率为正时,无功功率为负,实际相角是 360°+Pg;

当有功功率为负时,实际角度是 180°-Pg。

§ 2.12 电压相序检测

ATT7028A 可以对电压的相序进行检测,三相四线与三相三线模式的电压相序检测依据不完全一样。

三相四线模式下电压相序检测按照 A/B/C 三相电压的过零点顺序进行判断,电压相序正确的依据是当 A 相电压过零之后,B 相电压过零,然后才是 C 相电压过零。否则电压错序。另外只要当 A/B/C 三相电压中任何一相没有电压输入时,ATT7028A 也认为是电压错序。

三相三线模式下电压相序检测按照 A 相电压与 C 相电压的夹角进行判断, 当 A 相电压与 C 相电压的夹角在 300 度左右时, 才认为电压相序正常, 否则判断电压出现错序。

电压相序的标志存放于状态标志寄存器 SFlag 中,SFlag 的 Bit3 为 1 表示 A/B/C 电压出现错序,SFlag 的 Bit3 为 0 表示 A/B/C 电压相序正确。

§ 2.13 电流相序检测

ATT7028A 可以对电流的相序进行检测,电流相序检测按照 A/B/C 三相电流的过零点顺序进行判断,电流相序正确的依据是当 A 相电流过零之后,B 相电流过零,然后才是 C 相电流过零。否则电流错序。另外只要当 A/B/C 三相电流中任何一相电流丢失,ATT7028A 也认为是电流错序。

电流相序的标志存放于状态标志寄存器 SFlag 中,SFlag 的 Bit4 为 1 表示 A/B/C 电流出现错序,SFlag 的 Bit4 为 0 表示 A/B/C 电流相序正确。

特别提示: 电流相序检测功能需要通过相序检测使能控制寄存器 EnDtIorder 将其开启, 否则不能对电流相序进行检测。建议客户在需要对电流相序进行检测时才将这个功能开启, 在不检测电流相序时请尽量将其关闭。

§ 2.14 起动潜动设置

ATT7028A 通过判断电流是否小于起动阈值实现能量计量的起动和潜动的。当ATT7028A 检测到某相电流大于起动阈值时,该相能量就开始计量,也就是可以起动;而测到某相电流小于起动阈值时,该相能量停止计量,也就是处于潜动状态。

ATT7028A 起动电流阈值寄存器 Istartup 在上电复位后默认为 0x000280,表示在额定电流 Ib 输入时采样信号为 100mv 左右的输入时,ATT7028A 可以在 0.1%实现起动,低于 0.08%时实现潜动。

§ 2.15 功率方向判断

ATT7028A 实时提供功率的方向指示,方便实现四象限功率计量。

负功率指示 REVP: 当检测到三相中任意一相的有功功率为负,则 REVP 输出高电平,直到下次检测到所有相的有功功率都为正时,REVP 才恢复为低电平。

功率方向指示寄存器 PFlag: 用于指示 A/B/C/合相的有功功率的方向。

Bit0-3:分别表示 A、B、C 以及合相的有功功率的方向,0表示为正,1表示为负。

§ 2.16 失压检测

ATT7028A 可以根据设定的阈值电压对 A/B/C 三相电压是否失压进行判断。

阈值电压可以通过失压阈值设置寄存器 FailVoltage 进行设定。ATT7028A 上电复位后失压阈值设置会根据当前选择的工作模式(三相三线/三相四线)默认设置为不同的参数。在不对电压有效值进行校正时三相四线模式的失压阈值在电压通道输入 50mv 左右,而三相三线模式的失压阈值在电压通道输入 300mv 左右。如果对电压有效值进行了校正,则必须重新设定失压阈值设置寄存器 FailVoltage,设置方法参考失压阈值设定部分。

失压状态可以通过状态标志寄存器 Sflag 进行表示。

状态标志寄存器 SFlag 的 Bit0/1/2=1 时分别表示 A/B/C 三相电压低于设定的阈值电压; 当 A/B/C 三相电压高于设定的阈值电压时 Bit0/1/2=0。

§ 2.17 硬件端口检测

ATT7028A 可以自动检测硬件端口,当硬件端口改变时系统将自动复位重新起动。 ATT7028A 外部端口输入主要有 S0/S1/SCF、SEL。

§ 2.18 三相三线与三相四线应用

ATT7028A 三相四线模式下采用三元件测量方法, 合相功率计算公式为:

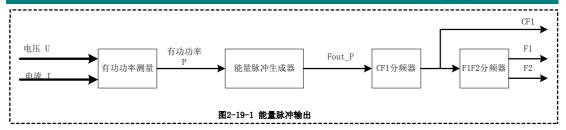
$$P_{4} = U_{A} I_{A} + U_{B} I_{B} + U_{C} I_{C}$$

$$Q_{4} = \dot{U}_{A} \dot{I}_{A} \angle 90^{\circ} + \dot{U}_{B} \dot{I}_{B} \angle 90^{\circ} + \dot{U}_{C} \dot{I}_{C} \angle 90^{\circ}$$

$$S_{4} = \sqrt{P_{4}^{2} + Q_{4}^{2}}$$

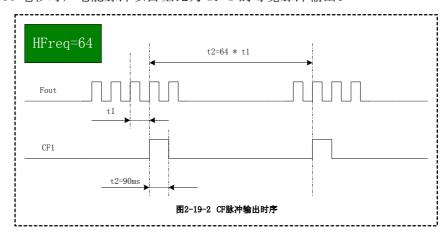
而 ATT7028A 在三相三线模式下采用两元件测量方法, 合相功率计算公式为:

$$P_{3} = \dot{U}_{AB} \dot{I}_{A} + \dot{U}_{CB} \dot{I}_{C}$$

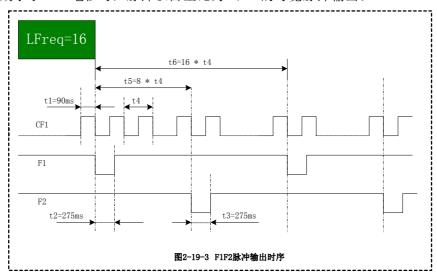

$$Q_{3} = \dot{U}_{AB} \dot{I}_{A} \angle 90^{\circ} + \dot{U}_{CB} \dot{I}_{C} \angle 90^{\circ}$$

$$S_{3} = \sqrt{P_{3}^{2} + Q_{3}^{2}}$$

在三相三线模式下 ATT7028A 的 B 相通道不参加功率计量的,只有 A 相和 C 相通道参与三相三线的测量。


§ 2.19 能量脉冲输出

ATT7028A 提供两类脉冲输出: 高频脉冲输出 CF1 以及低频脉冲输出 F1/2。 下面是电能脉冲信号生成的过程框图:



电压、电流信号经变换后在功率测量信号处理电路中相乘得到瞬时功率,对时间积分后成为电能信号,根据设置将 A/B/C 三相电能做绝对值相加或代数值相加运算,并将结果变换为频率信号,然后按照用户设定的分频系数进行分频,得到可用于校表的电能脉冲输出信号,在此基础上,再次分频可得到用于驱动步进电机的低频脉冲信号。

下图是高频输出常数为64时的分频示意图,电能脉冲输出的脉宽为90毫秒,当脉冲周期小于180毫秒时,电能脉冲以占空比为1:1的等宽脉冲输出。

下面是低频输出常数为 16 时的分频示意图,驱动步进电机的输出脉冲宽度为 275 毫秒, 当脉冲周期小于 550 毫秒时,脉冲以占空比为 1:1 的等宽脉冲输出。

§ 2.20 参数输出寄存器定义

计量参数输出寄存器列表:

11 == 2	(1 ± 2 × m = (1 t m / 1 × t					
地址	名称	复位值	功能描述			
0x00	RESERVED		Reserved.			
0x01	r_Pa		A 相有功功率			
0x02	r_Pb		B相有功功率			

			マ用り 単心月 AII / UZOA
0x03	r_Pc		C相有功功率
0x04	r_Pt		合相有功功率
0x05	RESERVED		Reserved.
0x06	RESERVED		Reserved.
0x07	RESERVED		Reserved.
0x08	RESERVED		Reserved.
0x09	r_Sa		A 相视在功率
0x0A	r_Sb		B相视在功率
0x0B	r_Sc		C相视在功率
0x0C	r_St		合相视在功率
0x0D	r_URmsa	0x000000	A 相电压有效值
0x0E	r_URmsb	0x000000	B相电压有效值
0x0F	r_URmsc	0x000000	C 相电压有效值
0x10	r_IRmsa		A 相电流有效值
0x11	r_IRmsb		B相电流有效值
0x12	r_IRmsc		C相电流有效值
0x13	r_IRmst		ABC 相电流矢量和的有效值
			计算公式: $I_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T (ia + ib + ic)^2 dt}$
0x14	r_Pfa		A 相功率因数
0x15	r_Pfb		B相功率因数
0x16	r_Pfc		C相功率因数
0x17	r_Pft		合相功率因数
0x18	r_Pga		A 相电流与电压相角
0x19	r_Pgb		B相电流与电压相角
0x1A	r_Pgc		C 相电流与电压相角
0x1B	r_Pgt		合相相角,与合相功率因数相对应
0x1C	r_Freq	0x000000	线频率
0x1D	RESERVED		Reserved.
0x1E	r_Epa	0x000000	A 相有功电能
0x1F	r_Epb	0x000000	B相有功电能
0x20	r_Epc	0x000000	C相有功电能
0x21	r_Eqt	0x000000	合相有功电能
0x22	RESERVED		Reserved.
0x23	RESERVED		Reserved.
0x24	RESERVED		Reserved.
0x25	RESERVED		Reserved.
0x26	RESERVED		Reserved.
0x27	RESERVED		Reserved.
0x28	r_RSPIData		上一次 SPI 读出的数据
0x29	RESERVED		Reserved.
0x2A	RESERVED		Reserved.
-	· · ·		

			マ用け軍心斤 AII 7028A
0x2B	r_URmst	0x000000	ABC 电压矢量和的有效值
			计算公式: $U_{rms} = \sqrt{\frac{1}{T} \int_0^T (ua + ub + uc)^2 dt}$
0x2C	r_SFlag		存放断相、相序、SIG 等标志状态
0x2D	r_WSPIData1		上一次 SPI 写入的数据
0x2E	r_WSPIData2		同 0x2D, 也是上一次 SPI 写入的数据
0x2F	RESERVED		Reserved.
0x30	r_EFlag	0x010000	电能寄存器的工作状态
0x31	r_Epa2	0x000000	A 相有功电能,同 Epa, 但是读后清零
0x32	r_Epb2	0x000000	B 相有功电能,同 Epb, 但是读后清零
0x33	r_Epc2	0x000000	C 相有功电能,同 Epc, 但是读后清零
0x34	r_Ept2	0x000000	合相有功电能,同 Ept,但是读后清零
0x35	RESERVED		Reserved.
0x36	RESERVED		Reserved.
0x37	RESERVED		Reserved.
0x38	RESERVED		Reserved.
0x39	RESERVED		Reserved.
0x3A	RESERVED		Reserved.
0x3B	RESERVED		Reserved.
0x3C	RESERVED		Reserved.
0x3D	r_PFlag		有功功率方向,正向为0,负向为1
0x3E	r_ChkSum1	0x043D03	校表数据校验寄存器(三相四线模式下)
		0x16BD03	校表数据校验寄存器(三相三线模式下)
0x3F	RESERVED		Reserved.

§ 2.21 参数输出寄存器说明

2.21.1 功率寄存器(地址: 0x01~0x0C)

寄存器列表: (更新时间 1/3 秒左右,第一次上电要 650ms 才能有正确值)

Addr	0x01	0x02	0x03	0x04	0x09	0x0A	0x0B	0x0C
Reg	Pa	Pb	Pc	Pt	Sa	Sb	Sc	St

ATT7028A 功率寄存器采用补码形式给出,最高位是符号位。视在功率总是大于或者等于 0, 所以视在功率的符号位始终为 0。

功率寄存器格式定义:

A/B/C 分相功率参数: X

X: 24 位数据,补码形式 如果大于 2^23,则 XX=X-2^24 否则 XX=X

实际的 A/B/C 分相功率参数为: XXX=XX*2^15/2^23

A/B/C 合相功率参数: T

T: 24 位数据,补码形式 如果大于 2^23,则 TT=T-2^24 否则 TT=T

实际的 A/B/C 合相功率参数为: TTT=TT*2^17/2^23

单位:

功率单位是瓦(w),与脉冲常数有关系。按照上述公式算得的功率值是基于3200imp/kwh,如果设置脉冲常数为 EC,则实际功率值等于计算值再乘于3200/EC 的系数。

2.21.2 有效值寄存器(地址: 0x0D~0x13、0x2B)

寄存器列表: (更新时间 1/3 秒左右,第一次上电要 650ms 才能有正确值)

Addr	0x0D	0x0E	0x0F	0x10	0x11	0x12
Reg	URmsa	URmsb	URmsc	IRmsa	IRmsb	IRmsc
Addr	0x13		0x2B			
Reg	IRmst		URmst			

有效值寄存器采用补码形式给出,最高位为符号位,有效值总是大于等于 0,所以最高符号位始终等于 0。

Vrms: 24 位数据,补码形式

实际电压有效值为: Urms=Vrms*2^10/2^23

单位为: 伏特(V)或者安培(A)

2.21.3 功率因数寄存器(地址: 0x14~0x17)

寄存器列表: (更新时间 1/3 秒左右,第一次上电要 650ms 才能有正确值)

Addr	0x14	0x15	0x16	0x17
Reg	Pfa	Pfb	Pfc	Pft

功率因数寄存器采用补码形式给出,最高位为符号位,功率因数的符号位由无功功率的符号位决定,参考 2.13 功率因数测量部分说明。

PF: 24 位数据,补码形式

如果大于 2^23, 则 PFF=PF-2^24

否则 PFF=PF

实际功率因数为: pf=PFF/2^23

2.21.4 电压与电流相角寄存器(地址: 0x18~0x1B)

寄存器列表: (更新时间 1/3 秒左右,第一次上电要 650ms 才能有正确值)

Addr	0x18	0x19	0x1A	0x1B
Reg	Pga	Pgb	Pgc	Pgt

相角寄存器采用补码形式给出,最高位为符号位,表示-90°~+90°之间的角度。

θ: 24 位数据,补码形式

如果大于 2^2 3,则 α = θ - 2^2 4

否则 $\alpha = \theta$

实际相角为:

Pg=(α/2^23)*2*180/pi 度 或者 Pg=(α/2^23)*2 弧度

2.21.5 线频率寄存器(地址: 0x1C)

电压线频率寄存器采用 24 位补码形式给出,最高位为符号位,符号位总是为 0。

Freq: 24 位数据,补码形式

实际频率为: f=Freq*2^10/2^23

单位: 赫兹(Hz)

2.21.6 能量寄存器(地址: 0x1E~0x21、0x31~0x34)

寄存器列表:

Addr	0x1E	0x1F	0x20	0x21
Reg	Epa	Epb	Epc	Ept
Addr	0x31	0x32	0x33	0x34
Reg	Epa2	Epb2	Epc2	Ept2

ATT7028A 提供两类能量寄存器,一类是累加型能量寄存器,另一类是清零型能量寄存器,清零型能量寄存器标有 2 的符号。读取累加型能量寄存器对清零型能量寄存器不产生任何影响,但是<u>读取清零型能量寄存器之后,在下一次能量更新时会将累加型能量寄存器也进行清零</u>。累加型能量寄存器可以从 0x0000000 到 0xFFFFFF,继续累加,又回到 0x000000 开始累加,在 0xFFFFFF 溢出到 0x000000 时,会产生溢出标志,参考 2.27.9 电能寄存器工作状态寄存器部分说明。

能量寄存器: 24 位寄存器, 无符号数

该参数与设定的脉冲常数有关。

如我们设定脉冲常数为 3200imp/kwh

则这些能量寄存器的单位为 1/3200kwh。

2.21.7 标志状态寄存器(地址: 0x2C)

SFlag 位定义:

	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Def								
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit09	Bit08
Def					Cstart	Bstart	Astart	
	Bit07	Bit06	Bit05	Bit04	Bit03	Bit02	Bit01	Bit00
	DITO /	Ditto	Ditto	DIW	Ditos	DITOZ	Ditoi	Ditto

该寄存器用于指示 ATT7028A 内部状态, 定义参考上表。

Bit00: =1 表示 A 相失压 Bit01: =1 表示 B 相失压

Bit02: =1 表示 C 相失压 Bit03: =1 表示电压相序错

Bit04: =1 表示电流相序错

Bit07: 上电复位后, SIG 自动变低,同时将 SFlag.7 置高; 然后当 SPI 写入数据之后, SIG 自动变高的同时 SFlag.7 自动变低。这样 SFlag 的 Bit07 SIG 标志位与硬件 SIG 信号是完全同步的。

Bit09: =1 表示 A 相处在潜动状态 Bit10: =1 表示 B 相处在潜动状态 Bit11: =1 表示 C 相处在潜动状态

2.21.8 电能寄存器工作状态寄存器(地址: 0x30)

该寄存器读后自动进行清零操作。

Bit0~2: 第 A/B/C 相正向有功电能溢出。

Bit3: 三相正向有功电能溢出:

Bit8~10: 第 A/B/C 相反向有功电能溢出。

Bit11: 三相反向有功电能溢出; Bit16: 系统上电时校表数据请求

每次系统上电后, Bit16 将会被置位, 读后自动清零。

2.21.9 有功功率方向寄存器(地址: 0x3D)

功率方向指示寄存器 PFlag: 用于指示 A/B/C/合相的有功功率的方向。

Bit0-3: 分别表示 A、B、C、合相的有功功率的方向,0表示为正,1表示为负。

2.21.10 校表数据校验和寄存器(地址: 0x3E)

ATT7028A 专门提供寄存器 ChkSum1,用于存放 ATT7028A 内部所有校表数据的校验和,外部 MCU 可以检测这两个寄存器的值来监控 ATT7028A 的校表数据是否错乱。注意,校验和是从地址 0x01 到 0x3F 的所有校表数据之和。

外部 MCU 写入校表数据后, 1/3 秒的时间内 ATT7028A 才能完成对校验和计算和更新。

2.21.11 SPI 读校验寄存器(地址: 0x28)

这个寄存器保存有前次 SPI 读出的数据,可用于 SPI 读出数据时的校验。

2.21.12 SPI 写校验寄存器(地址: 0x2D、0x2E)

这两个寄存器同时保存有前次 SPI 写入的数据,可用于 SPI 写入数据的校验。注意: WSPIData1 与 WSPIData2 是两个定义完全相同的独立寄存器。

第三部分 校表方法

§ 3.1 硬件校表

ATT7028A 支持电阻网络校表,通过简单地调节电压取样的电阻大小,可以对仪表进行校正,校正之后有功精度可高达 1s。在这种应用模式下 SCF、S0、S1 不能全部接高电平或者全部悬空不接。

起动与潜动:

在电流通道输入 Ib 电流时 ATT7028A 的取样电压为 0.1v,电流默认在 0.1%Ib ATT7028A 可以正常起动,低于 0.08%Ib ATT7028A 处于潜动状态。

单相高频输出 CF 频率公式:

电压通道输入 Vu

电流通道输入 Vi

ATT7028A 的 ADC 增益系数 G 恒定为 0.648

单相高频输出频率为 CF=1600*Vu*Vi*G²/HFreq

单相低频输出频率为 LF=CF/Lfreq

HFreq 由 SCF/S1/S0 决定(参照下表)

表 3-1

SCF	S1	S0	Hfreq	LFreq
0	0	0	256	16
0	0	1	128	16
0	1	0	128	8
0	1	1	128	4
1	0	0	64	16
1	0	1	64	8
1	1	0	64	4
1	1	1	软件校表模式	

在 Vu=0.5v Vi=0.1v 时,单相高频输出 CF 频率与 SCF、S1、S0 的关系 表 3-2

-						
	SCF	S1	S0	HFreq	LFreq	CF (Hz)
	0	0	0	256	16	0. 1312
	0	0	1	128	16	0. 2624
	0	1	0	128	8	0. 2624
	0	1	1	128	4	0. 2624
	1	0	0	64	16	0. 5249
	1	0	1	64	8	0. 5249
	1	1	0	64	4	0. 5249
	1	1	1	软件校表模式		

设计思路:

①根据额定电压值 Un(单位:伏特)和额定电流值 Ib(单位:安培)以及所选择的校表常数 EC(单位:imp/kWh)按照公式计算 CF 的输出频率,根据 CF 输出频率在表 3-2 选择适当的 HFreq 参数。

CF 计算公式: CF=EC*Un*Ib/3600000

- ②根据选定的计度器变比为 N(即变比为 N:1), 按照公式计算出 LFreq。 LFreq 计算公式: LFreq=EC*2/N
- ③依据 HFreq 和 LFreq,参考表格 3-2 选择适当的 SCF、S1、S0 的状态。

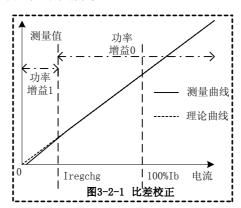
设计实例:

例如,设计一款额定电压 220V,额定电流 5A,校表常数 1600imp/kWh,计度器变比为 400:1 的三相电能表。

根据上面公式算得 CF=EC*Un*Ib/3600000=1600*220*5/3600000=0.4889Hz。

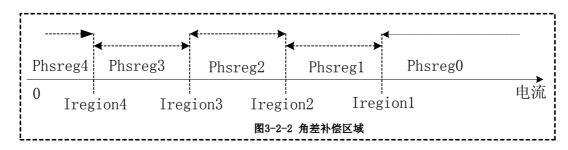
电流、电压额定输入时对应的 ADC 通道输入电压分别选在 0.1V 以及 0.5V 左右,根据算得的 CF 频率查表 3-2 寻找到一个最为接近的频率是 0.5249Hz。所以选择 HFreq=64。

根据计度器变比为 400:1 的要求, 推算 LFreg=EC*2/N=1600*2/400=8。


根据 HFreq=64 以及 LFreq=8 的参数查表 3-2, 选择 SCF/S1/S0=101 可以满足要求。

§ 3.2 软件校表

ATT7028A 支持全数字校表,即软件校表。经过校正的仪表,有功精度可高达 0.5s。如果选择软件校表,那么 SCF、S0、S1 全部接高电平或者全部悬空不接。


功率校正主要分比差校正和角差校正两部分。

比差校正主要是对互感器的比差进行修正。互感器比差的非线性在高精度计量时也是不可忽视的。ATT7028A 可以将比差进行分段补偿。ATT7028A 提供寄存器 Iregchg,可以根据电流大小设置补偿分段区域。如下图所示。

根据需要设置 Iregchg 寄存器。当 Iregchg 设定之后,需要对这两个区域分别进行比差校正。如果将 Iregchg 设为 0,则说明在整个电流区域内使用一次比差补偿,这时只需根据误差对功率增益 0 进行设置即可。

同比差修正类似,角差修正也采用分段修正。ATT7028A 最多可以提供五个角差补偿区域,如下图所示。

当然,实际应用中角差的补偿并不需要将电流区域分得这么多段,在 1s 或者 0.5s 表应

用时只需要分成两段补偿即可达到要求,在设计 0.2 级或者更高精度的电能表时才可能需要用到多于 2 段的补偿方法。

完成比差修正之后,再做角差校正,比差校正在功率因数 1.0 时进行,而角差校正在 0.5L 时完成。

ATT7028A 还可以通过寄存器对电流、电压有效值进行修正,相关计算公式参考后面更为详细的说明。

ATT7028A 高频脉冲输出频率可以通过 HFConst 寄存器进行设定,低频脉冲输出频率则通过 LFConst 寄存器进行设定。

ATT7028A 启动电流通过寄存器 Istartup 进行设置。

§ 3.3 校表寄存器定义

§ 3. 3	校表寄存器定义		
地址	名称	复位值	功能描述
0x00	RESERVED		Reserved.
0x01	RESERVED	0x000000	Reserved.
0x02	w_Iregion1	0x000000	相位补偿区域设置 1
0x03	w_Iregion2	0x000000	相位补偿区域设置 2
0x04	w_Iregion3	0x000000	相位补偿区域设置 3
0x05	w_Iregion4	0x000000	相位补偿区域设置 4
0x06	w_PgainA0	0x000000	A 相功率增益 0
0x07	w_PgainB0	0x000000	B 相功率增益 0
0x08	w_PgainC0	0x000000	C 相功率增益 0
0x09	w_PgainA1	0x000000	A 相功率增益 1
0x0A	w_PgainB1	0x000000	B 相功率增益 1
0x0B	w_PgainC1	0x000000	C 相功率增益 1
0x0C	w_PhsregA0	0x000000	A 相区域 0 相位校正
0x0D	w_PhsregA1	0x000000	A 相区域 1 相位校正
0x0E	w_PhsregA2	0x000000	A 相区域 2 相位校正
0x0F	w_PhsregA3	0x000000	A 相区域 3 相位校正
0x10	w_PhsregA4	0x000000	A 相区域 4 相位校正
0x11	w_PhsregB0	0x000000	B相区域 0相位校正
0x12	w_PhsregB1	0x000000	B 相区域 1 相位校正
0x13	w_PhsregB2	0x000000	B 相区域 2 相位校正
0x14	w_PhsregB3	0x000000	B 相区域 3 相位校正
0x15	w_PhsregB4	0x000000	B 相区域 4 相位校正
0x16	w_PhsregC0	0x000000	C 相区域 0 相位校正
0x17	w_PhsregC1	0x000000	C 相区域 1 相位校正
0x18	w_PhsregC2	0x000000	C 相区域 2 相位校正
0x19	w_PhsregC3	0x000000	C 相区域 3 相位校正
0x1A	w_PhsregC4	0x000000	C 相区域 4 相位校正
0x1B	w_UgainA	0x000000	A 相电压校正
0x1C	w_UgainB	0x000000	B相电压校正
0x1D	w_UgainC	0x000000	C相电压校正

			マ/III 単記/ HIII VEON
0x1E	w_Irechg	0x000000	比差补偿区域设置
0x1F	w_Istartup	0x000280	起动电流阈值设置
0x20	w_HFConst	0x000010	高频脉冲输出设置
0x21	w_LFConst	0x000010	低频脉冲输出设置
0x22	RESERVED	0x000000	Reserved.
0x23	RESERVED	0x000003	Reserved.
0x24	RESERVED	0x000000	Reserved.
0x25	RESERVED	0x000000	Reserved.
0x26	w_IgainA	0x000000	A 相电流校正
0x27	w_IgainB	0x000000	B相电流校正
0x28	w_IgainC	0x000000	C相电流校正
0x29	w_FailVoltage	0x068000	失压阈值设置(三相四线模式)
		0x190000	失压阈值设置(三相三线模式)
0x2A	w_EAddMode	0x000000	合相能量累加模式选择
0x2B	RESERVED	0x000000	Reserved.
0x2C	RESERVED	0x000003	Reserved.
0x2D	RESERVED	0x000000	Reserved.
0x2E	RESERVED	0x000000	Reserved.
0x2F	RESERVED	0x000000	Reserved.
0x30	w_EnDtIorder	0x000000	电流相序检测使能控制
0x31	RESERVED	0x0020C4	Reserved.
0x32	RESERVED	0x040000	Reserved.
0x33	RESERVED	0x000000	Reserved.
0x34	RESERVED	0x000000	Reserved.
0x35	RESERVED	0x000000	Reserved.
0x36	RESERVED	0x000000	Reserved.
0x37	RESERVED	0x000000	Reserved.
0x38	RESERVED	0x000000	Reserved.
0x39	RESERVED	0x000000	Reserved.
0x3A	RESERVED	0x000000	Reserved.
0x3B	RESERVED	0xF99999	Reserved.
0x3C	RESERVED	0x000000	Reserved.
0x3D	RESERVED	0x000000	Reserved.
0x3E	w_HFDouble	0x000000	脉冲常数加倍选择
0x3F	w_UADCPga	0x000000	电压通道 ADC 增益选择

§3.4 校表寄存器说明

3.4.1 高频脉冲输出设置寄存器 HFConst (Addr: 0x20)

参数 HFConst 决定校表用的高频脉冲输出 CF 的频率。HFConst 不能写入大于 0x000D00 的参数值。

己知:

高频脉冲常数 EC 额定输入电压 Un 额输入电流 Ib 电压输入通道取样电压 Vu 电流输入通道取样电压 Vi ATT7028A 增益 G HFConst 计算公式:

HFConst=
$$INT$$
 5760000000 × $\frac{G \times G \times V_u \times V_i}{U_n \times I_b \times EC}$

注: 上式中 INT[]是取整操作,如: INT[2.28]=2。

3.4.2 低频脉冲输出设置寄存器 LFConst (Addr: 0x21)

根据选定的计度器变比为 N(即变比为 N:1), 按照公式计算出 LFConst。 LFConst 计算公式: LFConst=EC*2/N

3.4.3 比差补偿区域设置寄存器 Irechg (Addr: 0x1E)

通常情况下,对于 0.5S 和 1S 的要求,不需要对比差进行分段。

在设置比差补偿区域时,分段点的电流所对应的信号输入电压值应确保小于 35 毫伏, 否则会产生溢出错误。

已知:

比差分段补偿区域 Ig (Ig<0.035) 增益 G

计算公式:

Irechg=INT[G*Ig*2²³]

3.4.4 功率增益补偿寄存器 Pgain (Addr: 0x06~0x0B)

在功率因数 cos(Φ)=1 时进行功率增益校正。

如果设定寄存器 Iregchg 不为 0,则必须分别在 I>Irechg 以及 I<Irechg 处进行校正。其中 I>Irechg 处校正的为 Pgain 0,而 I<Irechg 处校正的为 Pgain 1。

如果设定寄存器 Iregchg 为 0,即比差补偿不分区域进行,则只需要在 100%Ib 处进行一次校正即可,然后将校正系数同时写到 Pgain0 和 Pgain1 中。

己知:

标准表上读出误差: err

计算公式:

$$Pgain = \frac{-err}{1 + err}$$

如果 Pgain>=0,则 Pgain=INT[Pgain*2²³]

否则 Pgain<0,则 Pgain=INT[2²⁴+Pgain*2²³]

注:误差 err 可以从标准表上直接读到,也可以计算得到,err 按照以下公式定义:

$$err = \frac{ATT7022 测量能量 - 真实能量}{真实能量} \times 100\%$$

3.4.5 相位补偿区域设置寄存器 Iregion (Addr: 0x02~0x05)

ATT7028A 最多可以划分 5 个电流区域进行相位补偿。

己知:

电流区域 Is

增益 G

计算公式:

Iregion=INT[G*Is*2²³]

在精度要求不高时(如 0.5S 或者 1.0S),通常只需设置 2 个相位补偿区域,即只需将 Iregion1/2/3 均设为 0,根据需要设置 Iregion4。

如果设置 2 个相位补偿区域,就必须在 I>=Iregion4 以及 I<Iregion4 处分别进行一次相位补偿。将 I>=Iregion4 的相位补偿同时写到 Phsreg0/1/2/3 中,而 I<Iregion4 的相位补偿写到 Phsreg4 中。

3.4.6 相位校正寄存器 Phsreg (Addr: 0x0C~0x1A)

PhsregA0、PhsregA1、PhsregA2、PhsregA3、PhsregA4

PhsregB0、PhsregB1、PhsregB2、PhsregB3、PhsregB4

PhsregC0, PhsregC1, PhsregC2, PhsregC3, PhsregC4

分别对应区间 Reg0、Reg1、Reg2、Reg3、Reg4

在 $\cos(\Phi)=1$ 时功率增益已经校正好之后,再进行相位补偿。

在 cos(Φ)=0.5L 处进行校正。

已知:

0.5L 处标准表误差读数 err

相位补偿公式:

 $\theta = a\cos((1+err)*0.5) - \pi/3$

如果 $\theta >=0$,Phsreg=INT[$\theta *2^{23}$]

否则 $\theta < 0$, Phsreg=INT[$2^{24} + \theta * 2^{23}$]

3.4.7 电压校正寄存器 Ugain(Addr: 0x1B~0x1D)

在 Ugain=0 时,标准表上读出实际输入电压有效值 Ur,通过 SPI 口读出测量电压

有效值寄存器的值为 DataU

已知:

实际输入电压有效值 Ur 测量电压有效值 Urms=DataU*2¹⁰/2²³

计算公式:

Ugain=Ur/Urms-1 如果 Ugain>=0,则 Ugain=INT[Ugain*2²³] 否则 Ugain<0,则 Ugain=INT[2²⁴+Ugain*2²³]

3.4.8 电流校正寄存器 Igain (Addr: 0x26~0x28)

在 Igain=0 时,标准表上读出实际输入电流有效值 Ir,通过 SPI 口读出测量电流有效值寄存器的值为 DataI

己知:

实际输入电流有效值 Ir 测量电流有效值 $Irms=DataI*2^{10}/2^{23}$

计算公式:

Igain=Ir/Irms-1

如果 Igain>=0,则 Igain=INT[Igain*2²³]

否则 Igain<0,则 Igain=INT[2²⁴+Igain*2²³]

特别提示:

ATT7028A 可以提供 A/B/C 三相电流矢量和有效值参数 IRmst, 为了确保 IRmst 的精度,推荐按下面的方法进行电流有效值的校正。

在额定电流 Ib 输入时电流通道取样电压为 100mv 左右, Igain=0 时从电流有效值寄存器读出的参数为 60A 左右,建议将 ATT7028A 的电流有效值校正到 N*Ib 左右,外部 MCU 从 ATT7028A 读取到电流有效值后只需要将其除于 N 即为真值。N 的确定方法是将 N*Ib 尽量接近 60A。

例如,额定电流 Ib=1.5A,则 N=40;额定电流 Ib=5A,则 N=12。

3.4.9 起动电流设置寄存器 Istartup (Addr: 0x1F)

已知:

启动电流选择 Io 处

增益 G

计算公式:

Istartup=INT[G*Io*2²³]

3.4.10 失压阈值设置寄存器 FailVoltage (Addr: 0x29)

失压阈值是根据校正后的电压值进行设定的。

具体公式为: 失压阈值 FailVoltage=Un*2¹³*D

Un: 表示校正后的电压值

D: 表示失压电压值, 是一个百分数

例如,①三相四线制,校正后的额定电压值 Un 为 220v,失压电压值 D 为 10%,则失压阈值寄存器的参数为 220*2¹³*10%= 0x02C000。也就是说将 0x02C000 设定到失压阈值寄存器之后,当输入电压低于 Un 的 10%,即 22v 时将给出失压指示。②三相三线制,校正后的额定电压值 Un 为 100v,失压电压值 D 为 60%,则失压阈值寄存器的参数为 100*2¹³*60%=0x078000。这样设置失压阈值寄存器之后,当电压低于 Un 的 60%,即 60v 时将给出失压指示信号。

3.4.11 合相能量累加模式选择寄存器 EAddMode (Addr: 0x2A)

合相能量累加模式 EAddMode 的 Bit0 默认=0,三相四线默认为绝对值相加,三相三线默认为代数相加。

当 EAddMode 的 Bit0=1 时,三相四线合相能量采用代数相加,三相三线合相能量采用绝对值相加。

3.4.12 电流相序检测使能控制寄存器 EnDtIorder (Addr: 0x30)

只有当电流相序检测使能寄存器 EnDtIorder=0x005678 时,ATT7028A 才能将电流逆相序检测功能开启;当 EnDtIorder 寄存器的内容不等于 0x005678 的其他值时都不能对电流逆相序进行检测。

建议: 仅在需要对电流相序进行检测时才将这个功能开启,在不检测电流相序时请尽量 将其关闭,不推荐长期将该功能开启。

3.4.13 电压通道 ADC 增益选择寄存器 UADCPga (Addr: 0x3F)

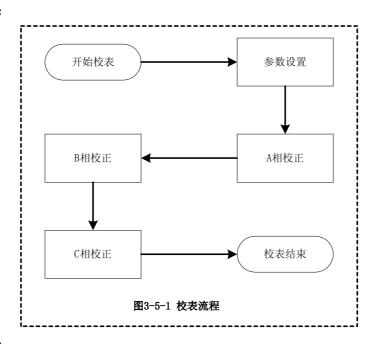
ATT7028A 提供电压通道 ADC 增益选择寄存器 UADCPga 用于控制电压通道的 ADC 放大倍数。推荐电压额定 Un 时的取样信号 Vu*放大倍数 UADCPgain 等于 0.5v 左右。

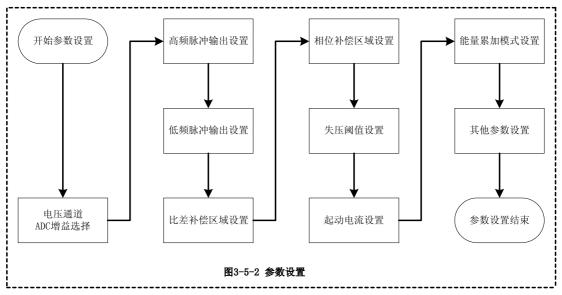
UADCPga 寄存器内容	电压通道 ADC 倍数
0x465500	2
0x465501	4
0x465502	8
0x465503	16
0xA5xxxx	禁止写入
其他任何值	1

3. 4. 14 脉冲常数加倍选择寄存器 HFDouble (Addr: 0x3E)

ATT7028A 提供脉冲常数加倍选择寄存器 HFDouble 用于控制小电流时的脉冲常数加倍,也就是在小电流时通过 HFDouble 寄存器可以将脉冲常数放大,从而使得小电流时的校表速度加快。

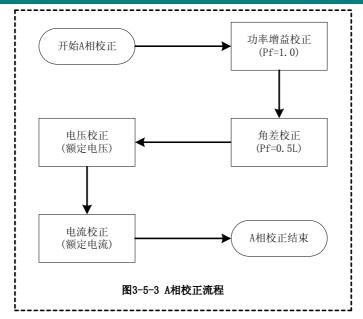
注意:脉冲常数加倍是通过将功率值进行放大实现的,所以仅推荐在小电流时使用该功能。建议在大信号时不使用脉冲常数加倍选择寄存器,因为大信号时将功率信号放大可能会导致内部功率寄存器溢出而产生未知错误。


HFDouble 寄存器内容	脉冲常数放大倍率
0x5533CC	脉冲常数放大 2 倍
0x5533CD	脉冲常数放大 4 倍
0x5533CE	脉冲常数放大 8 倍
0x5533CF	脉冲常数放大 16 倍
其他任何值	脉冲常数不变


§ 3.5 软件校表步骤及参数计算

在对 ATT7028A 设计的电表进行校正时,必须提供标准电能表。利用标准电能表校表时,有功能量脉冲 CF1 可以直接连到标准表上去,然后根据标准电能表的误差读数对 ATT7028A 进行校正, ATT7028A 只需要对有功功率进行校正即可。

校表流程:



参数设置:

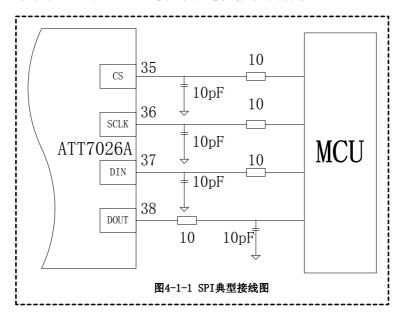
分相校正:

分相校正时,分相电流的校正可能会影响 A/B/C 三相电流矢量和寄存器 IRmst 的精度, 所以对于电流有效值的校正请详细参考 3.4.8 电流校正寄存器部分的说明。

第四部分 SPI 通讯接口

§ 4.1 SPI 通讯接口介绍

ATT7028A 内部集成了一个 SPI 串行通讯接口。ATT7028A 的 SPI 接口采用从属方式工作,使用 2 条控制线和 2 条数据线: CS、SCLK、DIN 和 DOUT。

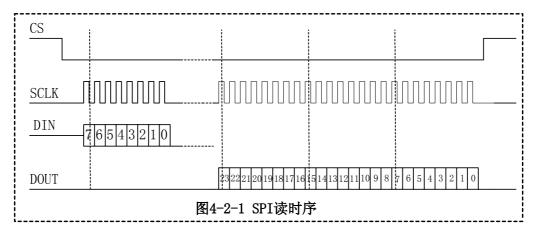

CS: 片选(输入脚),允许访问串口的控制线。CS 由高电平变为低电平时表示 SPI 操作开始,CS 由低电平变为高电平时表示 SPI 操作结束。所以每次操作 SPI 时 CS 必须出现下降沿↓, CS 出现上升沿↑时表示 SPI 操作结束。

DIN: 串行数据输入(输入脚),用于把用户的数据(如数据/命令/地址等)传输到ATT7028A。

DOUT: 串行数据输出(输出脚),用于从ATT7028A寄存器读出数据。

SCLK: 串行时钟(输入脚),控制数据移出或移入串行口的传输率。上升沿放数据,下降沿取数据。SCLK下降沿↓时将DIN上的数据采样到ATT7028A中,SCLK上升沿↑时将ATT7028A的数据放置于DOUT上输出。

ATT7028A 与外部 MCU 的 SPI 通讯接口典型接线图如图所示。


考虑 SPI 传输信号线有可能受到干扰或者出现抖动,可以在 SPI 信号线上串联一个小电阻。这个电阻与 IC 输入端的寄生电容 C 结合起来可构成一个低通滤波器,可以消除 SPI 接口信号上的任何振荡,一般推荐使用 $10-100\,\Omega$ 的电阻。如果数字输入端的内部电容不够大,还可在这个输入端加一个外接电容,可选 10pF 左右的电容。对于这两个电阻、电容参数选择,要根据 SPI 通讯速率以及外部 MCU 的型号进行分析,并需要作些相关的实验,以确定电阻、电容值是否合适。

§ 4.2 SPI 读操作

ATT7028A的计量参数以及校表参数寄存器是通过SPI提供给外部MCU。

SPI 读时序图:

命令格式说明:

7 6 5	4	3	2	1	0
-------	---	---	---	---	---

Bit7: 0 表示读命令,用于外部 MCU 读取 ATT7028A 的计量及校表寄存器

Bit7: 1 表示写命令,用于更新校表数据(可参考 SPI 写操作部分)

Bit6...0: 表示数据地址,参照参数输出寄存器定义部分

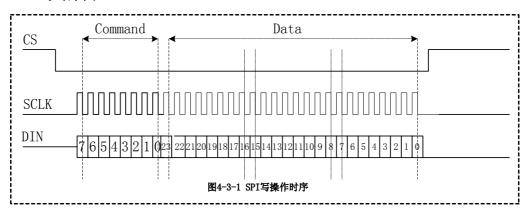
SPI 读工作过程:

通过 SPI 写入 $1 \land 8$ Bits 的命令字之后,可能需要一个等待时间,然后才能通过 SPI 读取 24 Bits 的数据。在 SCLK 低于 200 KHz 时,可以不需要等待,即等待时间为 0μ s;当 SCLK 频率高于 200 KHz 时,则需要等待大约 3us。数据格式参见参数输出寄存器说明部分。

注意事项:

发送命令时 MSB 在前, LSB 在后。接收数据时也是 MSB 在前, LSB 在后。 SCLK 为高时更新 DIN 或 DOUT 上的数据。每个寄存器的读或写需操作一次 CS。

SPI 读操作示例:


```
01 ReadSpi (Byte Com)
                                         15
                                                 delay(3):
02 | {
                                         16
                                                  ; Read 24-bits Data From SPI
03
                                         17
                                                 for (n=23, Data=0; n>=0; n--)
        ; Enable SPI
04
       CS=1:
                                         18
05
        SCLK=0:
                                         19
                                                     SCLK=1:
       CS=0:
06
                                         20
                                                     Data. n=DOUT;
07
        ; Send 8-bits Command to SPI
                                         21 \, |
                                                     SCLK=0:
        for (n=7; n \ge 0; n--)
                                         22
08
09
                                         23 \mid
                                                 : Disable SPI
10
            SCLK=1:
                                         24
                                                 CS=1:
11
           DIN=Com. n;
                                         25
                                                  ; Return Data From SPI
12
            SCLK=0:
                                         26
                                                 return (Data):
13
                                         27 | }
                                         28
14
        ; waiting 3us
```


§ 4.3 SPI 写操作

外部 MCU 可以通过 SPI 对 ATT7028A 的校表寄存器进行写操作。

SPI 写时序图:

命令格式说明:

7 6 5 4 3 2 1 0

Bit7/6: 1 0 表示写命令,用于更新校表数据寄存器

Bit7/6: 11 表示写入特殊命令字,参考 SPI 写特殊命令操作

Bit7: 0 表示读命令,用于外部 MCU 读取 ATT7028A 的计量数据

Bit5...0: 表示数据地址,参见校表寄存器定义部分

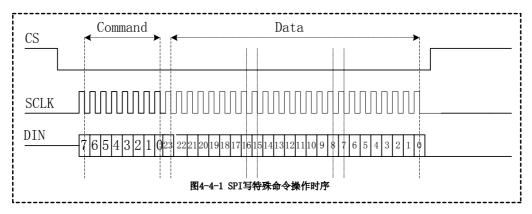
工作过程:

通过 SPI 写入 $1 \uparrow 8$ Bits 的命令字之后,不需等待继续通过 SPI 写入 24 Bits 的数据即可。

注意事项:

发送命令和数据时, MSB 在前, LSB 在后。

SPI 写操作示例:


```
01 | WriteSpi (Byte Com, UINT Data)
                                        13
02 | {
                                                ; Send 24-bits Data to SPI
                                        14
03
                                                for (n=23, Data=0; n>=0; n--)
        ; Enable SPI
                                        15
04
       CS=1:
                                        16
05
       SCLK=0;
                                        17
                                                    SCLK=1;
       CS=0:
06
                                        18
                                                   DIN=Data.n;
07
       ; Send 8-bits Command to SPI
                                        19
                                                   SCLK=0;
       for (n=7:n>=0:n--)
08
                                        20
09
                                        21 \, |
                                                ; Disable SPI
                                                CS=1:
10
                                        22
           SCLK=1;
                                        23 | }
11
           DIN=Com. n;
12
           SCLK=0;
                                        24
```


§ 4.4 SPI 写特殊命令操作

ATT7028A 提供一些特殊的命令字以配合软件校表之用, SPI 写特殊命令字的操作过程与 SPI 写操作时序基本一致。

SPI 写特殊命令字时序图:

命令格式说明:

1 0 5 4 3 2 1 0	7	6	5	4	3	2	1	0
-------------------------------	---	---	---	---	---	---	---	---

Bit7/6: 11 表示写入特殊命令字

Bit7/6: 10 表示写命令,用于更新校表数据

Bit7/6: 0 X 表示读命令,用于外部 MCU 读取 ATT7028A 的计量数据

Bit5...0: 表示特殊命令字的类型

工作过程:

先通过 SPI 写入 1 个 8 Bits 的命令字,接着通过 SPI 写入 24 Bits 的数据。

注意:

发送命令和数据时, MSB 在前, LSB 在后。

特殊命令使用说明:

ATT7028A 提供特殊命令主要有: 0xC3, 0xC6, 0xC9 和 0xD3。

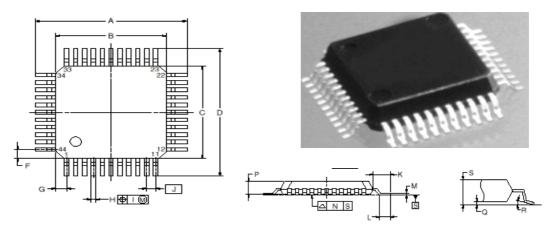
特殊命令	8 位命令	24 位数据	命令说明
	字		
清校表数据	0xC3	000000 h	发送命令字0xC3,数据位为0x000000
			可以将校表数据寄存器的内容恢复到
			上电初始值,然后重新进行校表。
校表数据读出	0xC6	00005A h	上电复位后默认读出计量数据寄存
			器的参数。
			发送命令 0xC6, 数据不等于
			0x00005A, 可以选择通过 SPI 读出
			00-7Fh 的计量数据寄存器的参数。
			发送命令 0xC6, 数据等于 0x00005A,
			可以选择SPI读出校表数据寄存器的参
			数,此时不可读出计量参数寄存器的
			值。
			选择读出校表数据寄存器的参数时
			从 0x00 地址读出的值固定为
			0xAAAAAA,否则不等于 0xAAAAAA。
校表数据写使	0xC9	000000 h	上电复位后默认使能SPI校表数据寄

能		或者	存器写操作。
		000001 h	发送命令 0xC9, 数据 0x000000, 可
			以使能 SPI 校表数据写操作,此时才能
			通过 SPI 口修改校表数据寄存器的参
			数;使能 SPI 写操作后从 SPI 校验寄存
			器 0x002D/0x002E 可以读出上一次通过
			SPI 口写入的数据。
			发送命令 0xC9,数据 0x000001,可
			以关闭 SPI 校表寄存器的写操作, 防止
			校表数据寄存器被 SPI 误写;关闭 SPI
			校表寄存器写操作后,如果进行 SPI 写
			操作,此时从 SPI 校验寄存器
			0x002D/0x002E 读出的数据固定为
			0x200361。
软件复位	0xD3	000000 h	发送该命令 0xD3,数据 0x000000 可以
			对 ATT7028A 进行复位操作。

第五部分 电气特性

§ 5.1 电气参数

30.1 记 炒奴	1	1	1	1	T
参数	最小	典型	最	单	测试条件及注释
			大	位	
电源电压 VCC	4. 75	5	5. 25	V	
电源电压 VDD		3. 0		V	
基准电源	2. 3	2.4	2.6	V	
基准电源 TC		30		ppm	
输入电压范围		± 1.5		V	差模输入 Vpp
VOH (F1, F2)	4. 5			V	IOH=10mA
VOL (F1, F2)			0.5	V	IOL=10mA
VOH (CF1, REVP)	4. 5			V	IOH=5mA
VOL (CF1, REVP)			0.5	V	IOL=5mA
逻辑高输入电压 1	2. 5			Vmin	
逻辑低输入电压 1			0.8	Vmax	
逻辑高输出电压 2	2. 5			Vmin	Ioh=2mA
逻辑低输出电压 2			0.8	Vmax	Io1=2mA
参考电压输出阻抗		130		Ω	
最小负载电阻	2			ΚΩ	
最大负载电容			100	pF	
电源电流		28		mA	VDD=3. OV; VCC=5V
ADC 位数		16		bit	
ADC 采样速率		3. 2		kHz	
ADC 动态范围		88		DB	
ADC 总谐波失真		-95		DB	
ADC 通道干扰		-92		DB	
晶体		24. 576		MHz	
温度范围	-40		85	$^{\circ}$	
)), a like on operation to the					


注1: 指CS, SCLK, DIN, SEL。

注 2: 指 DOUT。

§ 5.2 芯片封装

封装形式: 44Pin QFP (Quad Flat Package 10X10)

NOTE1. Controlling dimension ---millimeter.

2. Each lead centerline is located within $0.12\text{mm}\,(0.005\text{inch})$ of its true position (T.P.)at maximum material condition

ITEM	MILLIMETERS	INCHES
A	13.6±0.4	$0.535 \begin{array}{l} +0.017 \\ -0.016 \end{array}$
В	10.0 ± 0.2	$0.394^{\ +0.008}_{\ -0.009}$
С	10.0 ± 0.2	$0.394^{+0.008}_{-0.009}$
D	13.6 ± 0.4	$0.535 \begin{array}{l} +0.017 \\ -0.016 \end{array}$
F	1.0	0. 039
G	1.0	0.039
Н	$0.35^{+0.08}_{-0.07}$	0.014 ± 0.003
I	0. 15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8 ± 0.2	$0.071^{\ +0.008}_{\ -0.009}$
L	0.8±0.2	$0.031^{\ +0.009}_{\ -0.008}$
M	$0.17^{\ +0.08}_{\ -0.07}$	$0.007^{\ +0.003}_{\ -0.004}$
N	0.10	0.004
P	2.7 ± 0.1	$0.\ 106 \ ^{+0}.\ 005 \ _{-0}.\ 004$
Q	0.1 ± 0.1	0.004 ± 0.004
R	3° +7° -3°	3° ⁺⁷ ° -3°
S	3.0 MAX	0.019 MAX

NEC CODE	P44GB-80-3B4-4
EIAJ CODE	
Weight(Reference Value)	0.54g