

INNOVATIVE ENVIORNMENTAL SOLUTIONS

P3

技术说明书

EMS6

在线烟尘排放总量/浓度电脑网络监测系统

系统特点:

- 1. **交流耦合(电荷感应技术)原理**--烟尘颗粒流经探头时产生静电电荷感应的现象。本系统根据探头接收电荷量 多少而确定烟气中的含尘量, 电荷的强弱与流经探头的粉尘含量成正比: Q/t = M/t (Q=电荷, M=粉尘含量, t=时间) 经过称重法对设备进行总量校定后: K*[%] ≅ [mg/s](%=排放显示值, mg/s=毫克/秒, K=校定系数) 本系统采用交流耦合原理达到监测烟尘排放总量的目的。
- 2. 浓度监测——如需用仪器监测排放浓度,换算方式为: [mg/s]÷[M³/s] = [mg/(M/s×M³)] 如果排放系统工况相 对稳定,烟气流速变化不大,([M/s]<±15%,M²是烟道截面积,常数),可直接利用称重法对仪器进行浓度校 定: K*[%] ≅ [mg/M³] (mg/M³=每立方毫克浓度值)。本系统可以直接校定成为一个排放浓度监测器。如果排放 流量变化较大,可在系统中另安装流速计对浓度值进行实时纠正。
- 维护方便一一烟尘颗粒不需直接碰撞探头。探头精度不受焦油尘埃颗粒粘结影响,用户不必经常清洗探头。
- J活性强--本系统可以在一千米信号线长度范围内连接多达 29 个探头,用户可根据需要随时 增加监测点。
- **安装方便**一一只需要在监测点上安装一个 1 英寸法兰即可安装探头。不必特为探头提供电源或压缩气管线。 5.
- 6. 准确性高一一本监测系统的最高精度为 0.002mg/M³, 乃现今世界上同类产品中具有最高精度的在 线工业排放测 量仪器。零点漂移<±0.3%每年,满量程漂移<±1%每年,线性漂移<±1%每年。
- 7. 符合标准——高原公司具有 IS09001 质量认证。本产品获得 CE, TÜV, MCERTS 等国际证书。本产品是目前在国 内唯一一家通过"中国国家环境保护总局环境监测仪器质量监督检验中心"考核认可的电荷感应技术监测设备。
- 8. 质量合格--中国国家环境保护总局环境监测仪器质量监督检验中心检定证书编号:(2000) 环质检(国)字 *(011)* 。
- 5. 适用性广一一本设备适用于冶金,水泥,食品加工,粉料生产,采矿,发电等等各种工业及民 用燃煤、燃油锅 炉烟尘的在线排放监测,同时也大量应用于各种收尘设备的排放浓度监测和设备效率鉴定。
- 10. 质量保证--厂家通过上海代表处直接向用户提供技术服务和售后质量保证。本设备的保修是 12 个月。探头的 设计寿命是 20 年。高原公司最早的第一批探头产品自 1992 年安装后至今仍然连续正常运行。
- 11. 价格适中--本监测系统的价格适中,专为中国国情而定,以满足中国市场的需要。
- 12. 遵守国家法规--1999年11月颁发的中国国家环境保护总局文件(环发[1999]246号)"污染源监督管理办法" 中明确指出: 由环保局重点控制的排放污染物单位应安装自动连续监测设备。所安装的监测设备必须经国家环境 保护总局质量检测机构的考核认可。

澳大利亚高原控制有限公司上海代表处

Tel 电话:86 21 52398810

GOYEN CONTROLS CO. PTY. LTD. • ABN 60000168098 www.cleanairsystems.com REPRESENTED IN

· AUSTRALIA · NEW ZEALAND · NORTH EAST ASIA · SOUTH EAST ASIA · USA · EUROPE

Fax 传真:86 21 52398812

INNOVATIVE ENVIORNMENTAL SOLUTIONS

概况:

澳大利亚高原司的EMS6型在线烟尘排放总 量/浓度电脑网络监测系统测量尘埃粒子经过 一个固定探头的静电荷感应量。尘埃粒子与探 头感应产生静电荷,通过探头进行信号放大并 传送进监测控制系统。静电荷的大小与尘埃粒 子的流量成比。本系统的高科技电子线路把这 部分电荷转换成为控制信号输出,启动烟尘超 标排放警报,同时用于连续记录粉尘颗粒的总 量或浓度。EMS6系统提供了目前世界最新交流 耦合技术。这是现代最精确和稳定的监测技术, 特别适合连续排放记录和数据累积。

本监测系统工作原理是运用尘埃颗粒流经 探头周围所产生的电荷感应来确认烟尘在线排 放量(单位=mg/sec 或 g/hr)。在燃烧工况相对 稳定的情况下(即在同一个排放点上,流速、 温度、压力、湿度和烟尘颗粒性质都没有很大 的变化,小于±30%的变动),本系统经直接校 定后也可用于在线监测排放浓度(单位= mg/M⁸)。

CONNECT 网络系统可以连接其他 4~20mA 或 0~10VDC 的标准模拟数据,利用 AXD1 信号 转换卡,直接当作另一个 EMS6 探头,在安装有 CONNECT 网络的电脑微机进行数据处理。还可以 从探头直接输出 MODBUS RTU 协议数字信号连接 用户单位现有的 DCS 系统,SCADA 或数字采集软 件。所以,EMS6 型已经广泛应用在工业环境中 连续监测废气的排放量,以符合政府公布的有 关大气环境保护法规指标。

<u>利用静电荷感应方法来监测成分不明的烟(粉)</u> <u>尘排放量是国际上最普遍接受的技术</u>

适用范围:

高原公司的 EMS6 型在线烟尘排放总量/浓 度电脑网络监测系统广泛应用于各种工业用 途,包括:发电,建材加工,散装材料,食品 加工,采煤和采矿,水泥制造和包装等。典型 的用途包括用作破损滤袋的探测器,或粉状材 料回收、产品输送总量监测,或各种大小、各 种燃料的锅炉烟尘排放浓度监测,超标报警, 数据记录,排放趋势和定期报表总结。

产品介绍:

EMS6:多探头数字数据输出(RS485, MODBUS RTU 协议),具有微调放大和报警功能,可以经过 校定后监测排放总量和浓度。EMS6 探头接入厂家免费提供的 CONNECT 软件操作系统,在微机上 实时在线显示对应的排放浓度或总量。

设备部件与选型清单:

1. 系统配置

设备	厂家型号	技术规格
数字式探头	EMS6-3180	操作环境温度: -20℃ ~ 60℃;烟道内温度: < 80℃
数字式探头	EMS6-3200	操作环境温度:-20℃ ~ 60℃;烟道内温度:< 200℃
		探针出厂规格:长度 300 mm,直径 5 mm,加硬 316 不锈
		钢丝。客户可按实际安装需要向供货商索取合适探针长度
系统操作	CONNECT2. 15	澳大利亚高原公司向购买监测网络客户免费提供。
软件		
接线盒	ANJ1	每个盒可连接两支探头。
信号电缆	P2-45300	BREDEN9534 或者同等规格的 4 芯加屏蔽 RS485 信号电缆。
		可在国内采购,请向供货商查询。
		注意:信号线一般只适合室内安装。在室外布线,必须外
		套 PVC 管加以保护。
电源盒/信	ANP1	网络供电盒,交流电源 90 ~ 240 伏,50/60 赫兹
号转换器		RS485 / RS232 标准信号转换器。
	设备 数字式探头 数字式探头 系统操作 软件 接线盒 信号电缆 电源盒/信 号转换器	设备厂家型号数字式探头EMS6-3180数字式探头EMS6-3200家子式探牛CONNECT2.15软件CONNECT2.15接线盒ANJ1信号电缆P2-45300电源盒/信ANP1号转换器CONPARCIAL

2. 选购件

6	法兰式安装架	P2-60203	规格见 Q1 介绍
	焊接式安装架	P2-60202	
7	防尘保护套	P2-60290	规格见 Q1 介绍
8	防腐蚀探针	P2-90060-033	$\Phi5 \hspace{0.1 cm}$ mm $ imes$ 600 mm 实芯不锈钢棍,外镀特氟隆保护
	防磨损探针		层Φ5 mm×600 mm 实芯不锈钢棍,外镀 Inconnel
9	压缩气控制阀	RCA3D2-T-R	提供压缩气喷吹清洁探针的控制阀
10	压缩气自动喷	M2655	对压缩气控制阀通过单点控制信号的自动计时器
	吹计时器		
11	高温安装配件	P2-60210	适用于烟道内温度 200℃~600℃的高温安装。更
			高的安装点温度请向高原公司上海代表处查询
12	高温/高压安装	HPTM-350	适用于烟道内压力 100~200 kPa 的高压安装。更
	配件		高的安装点压力请向高原公司上海代表处查询
13	低浓度监测		可采用网型探头或"井"字型探头安装法监测超低
	探头		浓度排放(< 1 mg/M3),见 Q1 介绍
14	防爆隔离装置	P2-45700	规格见 Q3 介绍

技术规范:

符合标准	EN55011:1992, EN5082-2:1995, IEC801-4, IEC1000-4-3, IEC1000-4-2, IEC100-4-4; C.E. Marking (澳大利亚						
	欧洲); MERTS(英国); TÜV (德国);						
	中国国家环保总局环境监测仪器质量监督检验中心:质量检测合格报告						
操作环境温度	-20℃ ~ 60℃ (电子部件)						
操作环境湿度	不结露 0 [~] 90%						
操作环境震荡	最高连续震荡量,任何方向、任何频率:均方根值= 1G(10m/s²)						
操作环境电磁场	在 50 赫兹时最高值 = 60A/m(相等于一个 1 米×1 米正方形电磁线圈内有 50AT 的磁场)						
操作环境保护	保护等级: IP66/NEMA4 铝合金壳体,适合非腐蚀性环境内安装。探针材料一般是不锈钢。						
烟道气体压力	最高 100kPa(15 PSI);可选购特殊高压安装件,见 Q2 介绍						
烟道气体流速	一般在 5m/s $\stackrel{\sim}{}$ 30m/s 范围,但如果选用恰当安装方法则不受流速限制。						
烟道气体温度	标准探头型号是一20℃~ 80℃和一20℃~ 200℃两种范围。						
	更高烟道温度(<900 ℃)可选用附件进行安装。						
烟道外径	范围: 50 毫米 [~] 10 米外径(见 Q1 介绍,选用适当的探头安装方法)						
喷吹清洁探头压缩气	探头自带有 1/8″BSP 的压缩气连接口。						
喷吹气压	最高 400kPa(60 PSI)						
探头结构	探头带有 M8 螺纹可拆卸探针。标准探针是直径 5mm 的加硬不锈钢缆, 实际长度可按客户安装要求提供。						
探针特殊选型	厂家备有多种探针型号满足客户安装需要,包括:实芯棍,空心管,可伸缩型,带特氟隆或 Inconnel 保护层,带陶						
	瓷护套,超硬合金,多探针连接,不锈钢网等等。						
探头安装架	标准的 1 英寸英制 BSPT 螺纹。可选购原厂安装架配件。						
网络供电	通过网络信号线提供有限制的 8 ~ 15 伏 +/-15%直流电:电流 <10mA (普通), <100mA (信号传送)						
信号范围	运用 64 比 1 可编程接收范围和 14 位线性模拟对数字转换器: 100 分贝						
尘埃颗粒大小范围	标称 0.1µM ~ 1000µM , 在标称范围外仍然能够接收但信号特性有点不同。						
精度	在最高精度接收范围时,典型精度值: 0.002 mg/M ³						
零点漂移(时间)	每年低于量程的 0.3%。						
零点漂移(温度)	在指定的温度范围内,低于量程的 0.3%。						
满量程漂移(时间)	每年低于量程的 1%						
满量程漂移(温度)	在指定的温度范围内,低于量程的 1%。						
网络线性	低于量程的 1% 。						
线路稳定性	系统所有部件均选用高稳定性电子组装件。						
噪音抵抗性	所有 50 或 60 赫兹音频和谐波均在信号被接收之前全部滤掉。但在安装系统时必须采用正确的接地和屏蔽技术,防止						
	 由于电源频率的干扰而引致第一个信号放大器负荷超载。						
精度选择开关	根据烟尘的材质,流速和构造,标称值是: 高级精度范围= (0 [~] 20mg/ M³),						
	中级精度范围=(0~150mg/M³),低级精度范围=(0~1000mg/M³)						
	本系统可以采用特殊安装方法,监测高于 1000mg/M [®] 的排放浓度。请向高原 公司上海代表处查询详情。						
网络位置选择开关	十位数: (0-2),个位数: (0-9) (不准用 00 作为网络位置,软件将把 00 忽略)						
抽取信号间隙	最短 100 毫秒,没有最长限制(出厂设定 250 毫秒)。						
信号连接	4 芯加屏蔽信号线,其中两芯供电(电流+和一),两芯传送 RS485 信号,屏蔽接地保护						
网络特性	RS485 速度每秒 9600 位,1 位开始,2 位停止,最多 30 监测点。波束间隙≥3.5 字母。						
网络连接协议	Modbus RTU 或者相等(探测波束包括:网络位置,功能密码,地址,数据, CRC, 然后暂停 ≥3.5 字母间隙。						
网络功能密码	03h 读 4 x 记录,例:在 40006(0005)16 位排放;						
	04h 读 3 x 输入记录(必须是纯排放值 30001 (0000));						
	06h 写 4 x 记录;						
	10h 写多个 4 x 记录						
普通探测/反应	网络位置 03 00 05 00 01 CrcL CrcH						
	网络位置 03 02 DataH DataL CrcL CrcH						
自我检测	每次通电开机时 EMS6 进入自我检测状态,在网络中传送一个"电子尘埃信号"代替探头信号进入信号放大线路。这						
	电子信号将根据用户输入的 EDS 值传送若干遍,网络通过自检信号确认没有发生漂移数据和其他硬、软件的失误,然						
	后才开始传送探头信号进行数据处理。如果用其他可编程或 SCADA 软件控制网络,用户将能够随意编辑其他各种自我						
	检测信号。						

P3

INNOVATIVE ENVIORNMENTAL SOLUTIONS

EMS6 安装 CONNECT 网络系统:

ANJ1 面板布置图

EMS6 系统的安装只需要一根四芯加屏蔽保护信号线,其中两芯是电源线, 两芯是信号线。线长可达一千米,在一千米内可连接多达 29 个探头。信号线连 接网络电源盒,由供电盒提供网络中的 5 伏直流电压,并把 RS485 信号系统转换 成 RS232 信号然后直接把数据输送进电脑或 PLC。如果电脑已自带有 RS485 接口, 那么网络信号线可以直接插进此接口。

利用接线盒连接探头可缩短信号线的布线距离,并可在系统中最后一个探头 连接终端电阻防止外来信号干扰。探头与接线盒之间的距离宜尽量缩短,信号线 长度保持在 100 米以下。如果网络内监测点超过 12 个,探头信号线至接线盒长 度每增加一个探测点必须缩 5 米,可以不用接线盒直接把信号线连接进供电盒。 上图是接线盒 ANJ1 的面板布置图。上部有三个选择旋钮 从左至右分别是第一探头(关、开),第二探头(关、开)和 网络(终端、经过)。如果此接线盒是网络上最后一个,选择 网络终端。

下面从左到右四个接线口分别是:

- P1=连接网络电源盒 ANP1;
- P2=连接第一探头;
- P3=连接第二探头;

P4=电源输出至另外一个 ANJ1。

INNOVATIVE ENVIORNMENTAL SOLUTIONS

首次设定探头:

EMS6 网络部件安装完毕后,必须将网络中每个 EMS6 探头进行首次设定。设定步骤如下:

- 按照系统布置图把每根探头标上编号。最靠近电脑的是信号线接线盒 ANJ1 中连接的一号探头是(1)号,二号探头是(2)号,第二个接线盒 的一号探头是(3)号.....余此类推。
- 打开(1)号探头外壳后盖(卸下四根螺丝),探头背面除了信号线接线插头外,共有三个键。左边第一个 键是信号接收范围选择。出厂时设定为 Hi,乃最高精度,不需修改。如果需要改变信号接收范围,可以 从 CONNECT 软件上操作。
- 中间一个选择键有三个数位(0,1,和2),这是探头编号的十位数。例如: 探头编号是(1)号就选择 0, 探头编号是(20)就选择 2。
- 右边一个旋钮(0, 1, ... 9) 是探头编号的个位数。设定方法如上:探头编号是(1)号就选择 1, 探头 编号是(29) 就选择 9。
- 5. 把外壳后盖牢固组装上。不要忘记把地线连接好。
- 6. 重复步骤 2 至 5,把所有的探头编号都作好标记。
- 将供电盒 ANP1 连接电源,重新检查线路,确定每个接线盒 ANJ1 的旋钮位置都选择正确。面板上的一个红色电源显示灯(H1)在通电后必须 发亮。
- 在电脑微机没有打开之前,把供电盒的 RS232 信号输出线插上微机的串联口(例如: COM1)。打开电脑对高原公司提供的 CONNECT 软件进行 设置。

如果执行以上设定步骤时遇到不能解决的问题时,请立刻与供货商或 GOYEN 公司上海代表处联系。 技术支持热线电话 (021) 52398810

首次设定 CONNECT 软件:

CONNECT 软件简介

GOYEN 公司向每位购买 EMS6 的客户提供一套免费的最新 CONNECT (连接)软件。 目前的 CONNECT 软件版本是 2.14 版。GOYEN 代表处、经 销商或供货商将会及时向客户提供软件升级信息。

CONNECT 2.14 是一个利用电脑微机网络在线监测各种颗粒流动的系统。在软件的指令下,所有连接 在网络上的探测设备都定时向电脑系统 输出探测数据。软件把数据分析结果,根据操作者的指令,列成图表在电脑显示屏上即时显示同时记录进电脑资料档案保存。

- λ CONNECT 2.14 适用于安装有 Windows 操作平台的 IBM 或兼容电脑微机。软件包括以下主要功能:
- λ <u>网络支持</u>: CONNECT 可以运用 RS485 网络系统与多达 29 个探测仪器通信。所运用的网络协议是 MODBUS RTU。通信间隙由操作者设 定。
- λ 图表显示: 可以在软件上设置多达 8 个图表视窗。每个图表视窗可以显示多达 8 条来自 8 个不同探测点 的信号趋势线。每条趋线的 显示颜色可被任意选择,方便使用者区分、辨认。所记录下的探头输出信号 可以用图表模式重复显示。趋势平均值由操作者任意设定。
- λ <u>数据记录</u>: 网络上的所有探测设备输出的数据被记录在电脑内存记录盘中。数据平均值(即是记录时间间隙)由操作者设定,并独立 于即时图表显示的趋势平均值。
- λ 事故和警号记录:另外有一个独立档案即时记录软件被修改的时间和排放信号报警等事故的发生时间。
- λ <u>继电器信号输出卡(选购件)</u>本软件经过设置,可以操作一个继电器信号输出卡。发生报警事故时继电器信号输出卡能开启外置的报 警装置,或控制其他硬件。
- λ <u>动感交换信号 (DDE)</u> 本软件可以连续输出一系列的动感信号 (DDE),包含网络中探测点所记录下的一系列输出数据。此数据可以即 时输往其他软件 (例如 SCADA 或 EXCEL)进行分析和处理。
- λ <u>WINDOWS 平台下的 EXCEL 档案</u>: EXCEL 档案可以即时以图表和数据记录各个排放点的排放数据,中 文显示排放总量值和浓度计算值。 如果用户同时在 CONNECT 网络中安装有温度计、湿度计、流量计、二氧化硫等在线感应器(必须有 4-20mA 或 0-10V 连续输出), EXCEL 档案也能同时显示。请向供货商或高原公司上海代表处索取 EXCEL 样板档案。
- λ <u>演示方式</u>:本软件经过设置后,可以不需连接任何探头而进入演示方式。除了作为演示工具外,操作者能够利用本功能设置各种不同 的数据记录方式和信号趋势图表,直到效果满意后才处理现场数据。

CONNECT 软件安装和标定

GOYEN 经销商或代表处会向客户提供软盘,或者用电子邮件传送一个 Connect214. exe 的压缩档案。 用鼠标点击后会解压成若干个档案。在电脑桌面板上会有一个 CONNECT. EXE 的按钮, 如右图:

INNOVATIVE ENVIORNMENTAL SOLUTIONS

没有 Connect. ini 文件。已经建立一个始置文件。这文件显示一个 EMS6 探头 No Initialisation file found! X 以演示方式收集数据,显示在一个趋势图表上。您现在可以选择: No Connect initialisation file (Connect ini) was found. A default initialisation file has been created. This file configures Connect with one EMS6 probe running in Demonstration Mode and one Trend chart. 1. 点击"Run 🐤"开始以本设置运作软件 2. 点击 "Configure"检查或修改设置 You can: 1 Click "Run" to run Connect with this configuration. You can edit this configuration at any time. 3. 点击"Quit"关闭软件程序 2 Click "Configure" to view or edit this configuration 3 Click "Quit" to close Connect Quit Configue Run 🗭 Connect System Configuration General Nodes Trend Charts Network х 步骤一:点击"Configure"修改设置。 Computer Serial Port OUM1 Output Unit Address Sampling Period (ms) 1000
Heartbeat Rate None 出现右边图示。本设置视窗共有四页,分别是:主页,探测点,趋势图和网络。 E Log Data Averaging Heartbeat Output None DDE Data Averaging 注意: 在运行程序过程中,如果点击 "Configure"指 令进入右面设置视窗,则 Note : Polling of devices stops when the configuration Window is opened. 网络信号输入、数据记录和图表显示功能将全部停止。 Аррбуг ОК Неір

步骤二:设置主页

程序自动显示电脑主机上的所有串联接口供用户选择,查看主机接口,然后选择	Computer Serial Port COM2
网络信号插入口例如:COM1,COM2 等等。 <i>如果 COM1 是对应接口,点击 COM1</i>	COM2
数据收集时间间隙,以毫秒(ms)为单位,选择范围是从 100 ms 到 32767 ms。	Sampling Period
一般在实况应用环境中,如果网络上只连接1至2个探测点,可选择250ms,即	250
每秒向每个探头收集 4个数据。如果探测点 越多,间隙就必须越长,以减低微机	500 1000
的瞬时数据处理工作量。	2000
数据记录进入档案时间间隙,以多少次数据收集为单位。比如用 250 ms 的数据	Log Date Averaging
收集间隙 (每秒 4 次), 填入 240, 即每分钟(60 秒) 把 240 个信号的平均值成	Log Data Averaging
为一个数据记录进档案。如果填入 0,即没有把数据记录进档案。	填入 240
动感交换信号平均值,以多少次数据收集为单位。比如用 250 ms 的数据收集间	DDE Data Averaging
隙 (每秒 4 次), 填入 240, 即每分钟(60 秒) 把 240 个信号的平均值成为一个	
动感交换信号向其他软件输送。如果填入 0,即没有动感交换信号。	填入 0
继电器信号输出卡的输出插口,即电脑主机的并联口位置选择。如果系统配备有	Output Link Address 378
此选购件,请参照输出卡说明书进行设置。如果 CONNECT 软件探测到主机没有连	Output Unit Address 370
接输出卡,本视窗显示空白。	空白
如果系统带有继电器信号输出卡,可以设定继电器输出的"心跳"。此空挡以多少	Hoarthoat Pata
次数据收集为单位。比如用 250 ms 的数据收集间 隙 (每秒 4 次), 填入 240,	None
会把继电器设置成每 60 秒 "开",每 60 秒 "关" 的一种 "心跳"。	Heartbeat Output 1 2
如果没有连接继电器信号输出卡,软件不会显示此空挡。	4 10
	es stops when the 50
如果已经设置好上面的继电器信号输出卡"心跳",必须从1至8号中选择一个输	Heartbeat Output None 💌
出位置。	None 1
请参照输出卡说明书进行设置。	2 esistons when the 13
如果没有连接继电器信号输出卡,软件不会显示此空挡。	indow is opened.
	6
	8

P3

			P3
完成以上所有设置后, 点击	Apply 以定。 再点击	OK 存档和关闭设置指令。	

步骤三: 设置探测点

探测点设置页面用于对网络中每一个探测点进行单独设定。	Connect System Configuration X General Nodes Trend Charts Network Current Node NODE1 (North Stack) Y TagName North Stack Net Id Node Type EMS5 Alarm Delay 0 Node Serial No. Alarm Value Log Sound Output Polling Mode Demo High High Logging Mode Enabled High Eng. Scale High 100.00 Icw Low None Eng. Scale Low 0.00 Low Low 5.00 Image: None Image: Cadd X Delete Apply OK
当前进行设定的探测点选择。菜单上列出所有探测点的编号和标签名 字。选择其中一个探测点。	Current Node NODE1 (North Stack) 例:选择 NODE1
	TagName North Stack 给 NODE1 起一个标签名字
探测点类型。高原公司出产的所有硬件都列在这菜单上,其中: EMS6 =EMS6 探头, 16 位数据输出 EMS6-32= EMS6 探头, 32 位数据输出 AXD1010 = AXD1 信号转换卡,选择直流 0-10 伏输入信号 AXD1420 = AXD1 卡,选择 4-20 毫安输入信号	Node TypeEMS6-32Node Serial No.EMS6EMS6-32Polling ModeAXD1010AXD1420
软件自动探测到的产品序号。不能人为输入。	例:选择 EMS6 Node Serial No.
网络中的每个探测点可以设置成以下三种方式的任何一种:离线一选 择离线,如果不想向这个探测点收集信号。用于检查线路时,人为隔 离这个探测点。在线一探头在网络中正常运作时,选择在线。演示一 利用内部自我产生的信号进行软件功能演示。可以模拟演示趋势图表, 数据记录,事故记录和设定报警。	Polling Mode Online Logging Mode Offline Demo Demo 选择 Online (在线)
选择要不要把这个探测点的信号数据存档。 选择 Enabled (存档)	Logging Mode Enabled Disabled Eng. Scale High Enabled
信号数据最高比例值。例如设置未经过比重法校定的 EMS6 探头,用百 分比(%)为单位, 设置比例值—100	Eng. Scale High 100.00
信号数据最低比例值。例如设置未经过比重法校定的 EMS6 探头,用百 分比(%)为单位, <i>设置比例值=0.00</i>	Eng. Scale Low 0.00
软件自动探测并显示网络中的探头总数。 不能人为输入。	Total Nodes 5
软件自动探测到的当前探测点网络地址。 不能人为输入。	Net Id 1
在设定超标报警时可以加上报警时间延迟功能。如果设有报警时间延迟,报警事故的持续时间必须长于延迟时间才能引起报警。时间单位 是数据收集次数(本设定是 250 ms / 次)。	Alarm Delay 0 在一般工业排放监测,可设定延迟时间=8 次(2 秒)

	P3
每个探测点最多可以设置 4 个报警线 (2 高和 2 低)。 如果信号数据	Alarm Value Log Sound Output
连续高于所设定的高数值并超过报警延迟时间(2 秒),软件启动报警	
功能。如果信号数据连续低于所设定的低数值并超过报警延迟时间(2	High High 95.00
秒),软件启动报警功能。 在 Value 分别填入各个高、低报警值。	High 85.00 🔽 🔽 None 🗸
如果要把这报警事故记录档案, 在 Log 选择 🗹 。	
如果要电脑发出报警声音, 在 Sound 选择 🔽 。	Low 5.45 M L 2
如果网络上接有报警输出硬件,在 Output 菜单上 选择输出地址。没	
<i>有输出设置</i> 。	
完成第一个探测点的设置后, 点击 Add 加入新的 探测点。 或者点击	
Delete 取消目前探测点。	
确认是否对网络增加新的探测点。	Add New Node Confirmation
点击 Yes.	Do you want to add new node to the network?
	<u>Yes</u> <u>N</u> o

从菜单上选择新的探测点。然后点击 OK。	Select A Node Select a new node from the list. Remember to set the new node's address accordingly!
	1
完成以上所有设置后, 点击 ————————————————————————————————————	存档和关闭设置指令。

步骤四:设置趋势图

趋势图设置页面用于设定八个趋势图中的每个图表显示。	Connect System Configuration × General Nodes Trend Charts Network Current Trend TREND1 Trace 1 Color TagName Trend1 Trace 2 Color South Stack × Total Trends 1 Trace 3 East Stack × Trend Averaging 1 Trace 4 Color West Stack × Vertical Axis Units Percent Trace 5 Color OFF × Vertical Axis High 100.00 Trace 8 Color OFF × Vertical Axis Low 0.00 Trace 8 Color OFF × D Add X2 Delete Apply OK X
当前进行设定的趋势图选择。	
选择 TREND1。	
给当前进行设定的趋势图取一个标签名字,最长 15 个英文字母。 给	TagName North Stack
TREND1 起一个标签名字。	
软件自动探测并显示已经设定好的趋势图总数。	Total Tranda
不能人为输入。	Total Hends
趋势图在线跳动显示的时间间隙。以多少次数据收集为单位。比如用 250	Trand Averaging 1
ms 的数据收集间隙 (每秒 4次), 如果填入 12, 即每 3 秒趋势图跳动一	Literia Averaging T
次,把 12个信号的 平均值成为一个数据显示在屏幕上。	填入 12

高	原	美	克	在	线	粉	尘	排	放	监	测	系	统
IN	NO	/AT	IVE		IVI	OR	NMI	ENT	TAL	SO	LU	тю	NS

= GOYENmecair

INOVATIVE	ENVIORNMENTAL	SOLUTIONS

	P3
八个趋势图的每个纵轴都可以独立设定数据单位,如果探头已经校定好,	Vertical Axis Unit
输入单位可以是每立方米毫克(mg/M ^s)或每秒毫克(mg/s)。未经设定,可用 	輸入 Percent (百分件)
超穷困幼猫的最高值。一般走用信亏奴据最高比例值。但用户可自由设定 比较小的数值把图表局部放大。	Vertical Axis High 100
	填入 100
趋势图纵轴的最低值。一般是 0。但用户可根据需要 自由设定。	Vertical Axis Low 0
	填入 0
每个趋势图可显示多达 8 条趋线,所有每条趋线都可以选择不同颜色。	
如果此趋线已经设置名字,菜单上会自动显示趋线的标签名字。	Trace 1 Color EMST
	选择颜色
完成第一个探测点的设置后, 点击 Add 加入新的 趋势图。或者点击	🖼 Add 🔰 🗶 Delete
Delete 取消目前趋势图。	
对于来自同一个探测点的信号,用户可以设定第二个,或者更多的趋势图 	
	Select a Trend
	Select a new Trend to be added
	TREND2
	OK Cancel
	选择新趋势图编号,然后点击
按以上步骤(步骤四),重复每个新监测点趋势图的设置。	每个新增加的趋势图,将在 Windows 的菜单上单独列出。
完成以上所有设置后, 点击 ————————————————————————————————————	存档和关闭设置指令。
步骤五: 设置网络视窗	
利用网络视窗,用户可以在电脑上对网络上的设备进行设置。另一个功能	Connect System Configuration X
是搜索网络中连接的所有硬件,并自动把探测到的硬件加入到网络设置系	Change Nodes Parameters Seach For : When Node Found :
统中。	NODE1 (North Stack) □ □ Offline Nodes □ Make NetId = Node# □ □ □ □ □ Make NetId = Node# □ □ □ □ □
	Device EMSe
	Network Id
	EDS Polls Start Confinue ViewList Abort
本菜单只显示网络中在线并且与软件通信的探测点。	
作修改的探测点。	
软件自动探测并显示探测点所安装的仪器。	Device EMS6
不能人为输入。	
软件自动探测到的当前探测点网络地址。	Network Id 5
软件自动探测到的当前探测点网络地址。 不能人为输入。	Network Id 5
软件自动探测到的当前探测点网络地址。 不能人为输入。 从这菜单可设定每个探头的信号接收范围选择:菜单上有:High一适合浓	Network Id 5 Gain Range High V

= GOYENmecair

高原美克在线粉尘排放监测系统 INNOVATIVE ENVIORNMENTAL SOLUTIONS

	P3		
$(0-1000 \text{ mg/M}^3)$.	按排放浓度选择范围		
开机后自我检查。打开 CONNECT 程序后软件会自我输出信号检查每个网络	EDS Polls 10		
中每个探头是否都能正常运作。			
输入 20 就是网络用自发信号检查 10 次才开始运作, 需要 5 秒时间。	输入 20		
这是一个探测点搜索功能。包括在线(Online)、离线(Offline)、演示	Search Fur		
(Demo)和其他(Other)种类的探测点搜索。	Øeden i britter ₩ Online Nodes		
选择需要搜索的探测点种类,比如在线探测点,	☐ Offline Nodes		
(online Nodes, 即网络中已安装的在线探头)	🗖 Demo Nodes		
	Other Nodes		
对搜索到的探测点进行设置。有四个选择:Set Net Id一 从新设定网络地	When Node Found :		
址; Make Net Id = Node # 一 设定网络地址 = 探测点编号; Add as	🗖 Set Net Id		
Offline Node一把搜索到的新探测点加入系统设置,但设置为离线探测点;	Make Not Id - Node #		
Continue — 整理完一个探测点后继续 搜索。	Continue		
必须全部留空位,绝对不可以作任何选择。			
这是一个探测点搜索功能。包括在线(Online)、离线(Offline)、演示	Seach For :		
(Demo)和其他(Other)种类的探测点搜索。			
选择需要搜索的探测点种类。			
对搜索到的探测点进行设置。有四个选择:Set Net Id一 从新设定网络地	When Node Found		
址; Make Net Id = Node # 一 设定网络地址 = 探测点编号; Add as	Set Net Id		
Offline Node一把搜索到的新探测点加入系统设置,但设置为离线探测点;	Make Net Id = Node #		
Continue — 整理完一个探测点后继续搜索。 按需要选择 🗹。	Add as Offline Node		
搜索网络编号次序是 255,1,2,3254。	Search Network		
不需作任何修改。			
	from Net Id 255 to Net Id 254		
	tinue with the List we want to Abort up		
按 并始搜索; 当搜索到一个深测点后搜索切能智停,按	继续搜索;按		
授索结果将列成一个硬件清单如右:			
上面数字是网络中搜索到的硬件总数量。 Net Id Node (TagName) [Seri	al Number Device Type Version		
Net Id = 硬件网络位置 5 876	5 EMS6 176		
Node = 探头名称 Double Click for	Menu		
Serial = 出厂序号			
Device = 硬件种类			
Version = 版本			
用鼠标双点击蓝色区域,出现一个菜单,选择 NedId = Node#。 蓝色区域	中的白色字体将转变成黄色字体。 关闭搜索结果视窗。		
	- 她初半辺必要化人		
元队以上所有攻直后, 启立————————————————————————————————————			

INNOVATIVE ENVIORNMENTAL SOLUTIONS

CONNECT 程序界面和菜单:

每次完成设置,CONNECT 程序回复到一个界面如下,**这时程序已经在正常运作。**

档案(File)的选择只有一个,就是退出软件(Exit)。	Connect V2.10 [C:\Connect210\Data] File Configure Windows Help Exit Output2 Output3 Output4 Output5
点击设置(Configure)就回到 步骤一 的设置功能。	Eile Connect V2.10 [C:\Connect210\Data] Eile Configure Windows Help Output1 Output2 Output3 Output4 Output5
视窗(Windows)共有 4 个指令加图表指令:	Connect V2.10 [C:\Connect210\Data] File Configure Windows Help Output1 Outp Event Log Output5 Data Log as Chart Data Log as Text Iso Test Trend Chart 1 Trend Chart 1
Event Log: 打开或关闭事故记录档案。	Events Log ■ 26/03/1999 14:07:15 South Stack Cleared LoLo 26/03/1999 14:07:11 South Stack Cleared LoLo 26/03/1999 14:07:08 South Stack Cleared LoLo 26/03/1999 14:07:05 South Stack LoLo 26/03/1999 14:07:05 South Stack LoLo 26/03/1999 14:07:01 North Stack Lo 26/03/1999 14:07:01 North Stack Lo 26/03/1999 14:07:05 North Stack Cleared Lo 26/03/1999 14:06:56 North Stack Cleared Lo 26/03/1999 14:06:57 South Stack Cleared Lo 26/03/1999 14:06:50 South Stack Cleared Lo 26/03/1999 14:06:50 South Stack Lo 26/03/1999 14:06:50 South Stack Lo
Data Log as Chart: 用图表方式显示或关闭内存在电脑中的 数据档案。	C:\Connect210\Data\19990502015.CLD File Heb V Noth Stack V Notes V Node6 Node8 Node8 Node10 937 937 937 938

INNOVATIVE ENVIORNMENTAL SOLUTIONS

	F3
按鼠标左键然后从右下角向左上角拉动鼠标。	
Data Log as Text: 用数字列表方式显示或关闭内存在电脑中的数据档案	Connect Editor Image: Connect Editor File Dptions Print Help Image: C:\connect205\Connect.i00 FileDate: 9/3/1999 9:38:23 P1 -> Node 1=1, random, 0, 16383, 0, 100 Time P1 9:38:23 4.60 9:38:24 1.00
lso Test: 打开或关闭比重法校定视窗(见第下一章)。	
Trend Chart 1: 打开或关闭趋势图视窗,共可以打开 8 个趋势图。	Image: Trend Chart 1 Trend Interval : 0.50 (sec) Dose Help South Stack 28.00 South Stack 28.00 West Stack 20.00 Topse 100 Topse 100 South Stack 20.00 Topse 100 Topse 100
帮助(Help): 本章是根据英文帮助档案的内容(Contents)编写而成,只供用户参考。 所有的帮助提示,全部以英文帮助档案内容为正确答案。由于翻译过程 中难免出现的错误,高原公司上海代表处与高原特约经销商一概不承担 任何责任。	Connect V2.10 [C:\Connect210\Data] File Configure Windows Help Output1 Output2 Outpu Contents F1 About Connect About Connect

用称重法进行设备校定(ISOKENETICTEST)设置总量/浓度单位:

本监测系统工作原理是运用尘埃颗粒流经探头周围所产生的电荷感应来确认烟尘在线排放量 (单位=mg/sec 或 g/hr)。 在燃烧工况相对稳定的情况下(即在同一个排放点上,流速、温度、压力、湿度和烟尘 颗粒性质都没有很大的变化,小于±15%的变动),本系统经直接校定后也可用于在线监测排放浓度 (单位=mg/M³)。

正如国内用户比较熟悉的光电法浓度监测设备一样,在应用前必须作出校定,获取烟尘透光率和排放浓度之间的关系值。在使用前本系统也 必须做校定,获取烟尘颗粒的电荷感应量与排放总量(或浓度)之间的关系值(K系数)。

在中国一般采用《抽样称重法》确认排放点的烟道截面积在某个时间范围内的总量或浓度。在相应时间内, CONNECT 程序可以自动把所有的探测数据计算成一个平均值。

★★★ 根据中国国家环保局监测总站的建议, 把烟尘连续排放监测仪取与参比方法同时间区间显示值的平均值与参比方法平均值组成一个数据对。
 重复抽样步骤获取 7~9 组数据对({IsoTest 平均值,重量法对应值}, {X₁, Y₁..... X₇, Y₇})。
 然后利用统计法将数据对进行处理并获得《一元线性方程》Y = KX + B。

***以上建议只是本公司对高原探头用户提出的一种参考方式,详细正确步骤应以国家环保局所公布的有关法规为标准。获取抽样平均值 (IsoKenetic Test)步骤如下:

1.	在准备好进行烟气抽样时,打开 CONNECT 程序,点击 Windows,点	Connect V2.10 [C:\Connect210\Data]	
	击 ISO lest:	Eile Configure Windows Help Output1 Output Event Log Output5	
		Data Log as <u>C</u> hart Data Log as <u>T</u> ext	
		Trend Uhart 1	

	GOYEN		
		INNOVATIVE E	NVIORNMENTAL SOLUTIONS
	这时将出现 Iso Tes	t 的视窗, 如右:	Sokinetic Test
	山苏柏上洪探索西进	行抽样的探测点。	Select the Node, time to Start and Durartion of the test
	Node to sample	North Stack	
	Last Isokinetic Tes	t F <mark>South Stack</mark>	Last Isokinetic Test Result
		West Stack	
	如果需要设定在多少	分钟后正式开始抽样,在这个档口填入一个数	Time untill test begins
	字,表示多少分钟:		(in minutes)
	Time untill test begin	ns 0	Duration of Test 🚺 💌
	(in minutes)	I	
		Start Finish	Start Finish Close
	如果上面填入 0,按		
	能。		
	出出我纪这代中国	Finish 6tart	
	当畑忤忹汿竡凩则,	凹凹 的 1女 [19] 时 1 \xrightarrow{ (19) 14} [10] I (1	
-	这时 Iso Test 视译	窗会提供一个平均值,如右:	
			Last Isokinetic Test Result on North Stack is 9.38
	记录下以上数值(X	〕,当获取相对应的抽样称重结果平均值(Y ₁),	Ⅰ 后,形成第一组数据(X1, Y1)
	重复步骤 2 到 8,	获取至少七组数据。以统计法获取 K 系数和 B 系	数。
).	比如以上所获得的最	具代表性的《一元线性方程》是: Y = 5X+10。	即 k= 5, B= 10, 表示当 EMS6 的显示排放信号是 9.38%
	时,对应排放量是 5	5 X 9.38 = 46.90 mg/s。而当 X=0, Y=10 mg/	s
	打开设置(Configue)),点击 Node,在	Connect V2.10 [C:\Connect210\Data]
	Eng. Scale Hig	h 100.00	<u>File Configure Windows H</u> elp Output1 Output2 Output3 Output4 Output5
	(Eng.Scale High x	K = 100 x 5 = 500, 当信号是 100%时 对应的	
	排放量是 500 mg/s)	٥	
,	Eng. Scale L	DW 0.00	f显示的实际排放量从 10 mg/e 开始。 甘豆云排动沈皮与立际
	上 抽样浓度成线性关系		
3.	点击 Trend Charts,	在单位上填入 mg/s (毫克/秒)	Vertical Axis Unit Units
	按照第四章——步骤	四,设置趋势图和各个报警值。	1
	以上例子是获取排放。	总量值 mg/s 单位,也可以换算其他总量单位如:	克/小时,或 公斤/天 等等。 如果 流速变化不大,也可采
	取同样步骤校定排放	浓度值 mg/M ^a 。	
:	利用《抽样称重法》又	讨设备进行校定时,必须符合中国国家环保局及 属	【下机构所认定的有关步骤以及使用经过认定的设备和工具。