
ADSP-21065L SHARC® DSP
User’s Manual

Revision 2.0, July 2003

Part Number
82-001833-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by
implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, the SHARC logo, EZ-ICE, and SHARC are
registered trademarks of Analog Devices, Inc.

VisualDSP++ is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-21065L SHARC DSP User’s Manual iii

CONTENTS

PREFACE

For Additional Information About Analog Products -xix

For Technical or Customer Support ... -xx

What’s This Book About and Who’s It For? -xx

How to Use This Manual .. -xxii

Related Documents ... -xxiv

Conventions of Notation .. -xxv

INTRODUCTION

Features and Benefits ... 1-5

System-Level Enhancements .. 1-6

Why Floating-Point DSP? .. 1-8

ADSP-21065L Architecture ... 1-9

DSP Core .. 1-9

Dual-Ported Memory .. 1-16

External Port Interface ... 1-17

Host Interface ... 1-17

I/O Processor .. 1-18

Serial Ports .. 1-18

CONTENTS

iv ADSP-21065L SHARC DSP User’s Manual

DMA Controller ... 1-19

Booting .. 1-20

Development Tools ... 1-20

Summary of Features ... 1-22

Features and Benefits .. 1-22

Balanced Performance ... 1-24

Additional Literature ... 1-24

COMPUTATION UNITS

Data Formats .. 2-4

Single-Precision Floating-Point Format 2-4

Extended-Precision FLoating-Point .. 2-5

Short Word Floating-Point Format .. 2-5

Exception Handling for FLoating-Point Operations 2-6

Fixed-Point Format ... 2-7

Rounding Modes .. 2-7

Register File ... 2-9

Individual Data Registers .. 2-10

Alternate Registers .. 2-11

Arithmetic Logic Unit (ALU) .. 2-12

ALU Operations ... 2-13

ALU Operating Modes .. 2-14

ALU Status Flags ... 2-16

ALU Instruction Set Summary .. 2-21

ADSP-21065L SHARC DSP User’s Manual v

CONTENTS

Multiplier Unit ... 2-26

Multiplier Operations .. 2-27

Fixed-Point Results .. 2-28

Using the MR Registers ... 2-28

Fixed-Point MR Register Operations 2-30

Floating-Point Operating Modes .. 2-32

Multiplier Status Flags ... 2-34

Multiplier Instruction Set Summary 2-38

Shifter Unit .. 2-41

Shifter Operations ... 2-41

Bit Field Deposit and Extract Operations 2-42

Shifter Status Flags .. 2-45

Shifter Instruction Summary .. 2-47

Multifunction Operations ... 2-50

PROGRAM SEQUENCING

Instruction Cycle .. 3-4

Program Sequencer Architecture .. 3-6

Program Sequencer and System Registers 3-7

Program Sequencer Operation ... 3-10

Sequential Program Flow ... 3-10

Program Memory Data Accesses ... 3-10

Branches ... 3-11

Loops .. 3-11

CONTENTS

vi ADSP-21065L SHARC DSP User’s Manual

Executing Conditional Instructions ... 3-12

Branches (call, jump, rts, rti) ... 3-16

Delayed and Nondelayed Branches .. 3-18

PC Stack ... 3-24

Loops (DO UNTIL) ... 3-25

Restrictions and Short Loops ... 3-27

Loop Address Stack ... 3-32

Loop Counters and Stack .. 3-34

Interrupts ... 3-38

Interrupt Latency .. 3-40

Interrupt Vector Table ... 3-44

Interrupt Latch Register (IRPTL) .. 3-44

Interrupt Priority .. 3-45

Interrupt Masking and Control ... 3-46

Status Stack Save and Restore .. 3-48

Software Interrupts ... 3-49

Clearing the Current Interrupt for Reuse 3-49

External Interrupt Timing and Sensitivity 3-50

Programmable Timers ... 3-53

Stack Flags ... 3-54

Idle and Idle16 ... 3-56

Instruction Cache ... 3-58

Cache Architecture .. 3-58

Cache Efficiency ... 3-60

ADSP-21065L SHARC DSP User’s Manual vii

CONTENTS

Cache Disable and Cache Freeze .. 3-61

DATA ADDRESSING

DAG Registers .. 4-2

Alternate DAG Registers .. 4-3

DAG Operation .. 4-6

Address Output and Modification .. 4-6

Circular Buffer Addressing ... 4-9

Bit Reversal ... 4-13

DAG Register Transfers ... 4-15

MEMORY

Transferring Data In and Out of Memory 5-7

Dual Data Accesses .. 5-8

Using the Instruction Cache to Access PM Data 5-10

Generating Addresses for the PM and DM Buses 5-11

Transferring Data Between the PM and DM Buses 5-12

Memory Block Accesses and Conflicts 5-14

Memory Organization ... 5-16

Internal Memory Space .. 5-23

Multiprocessor Memory Space ... 5-24

External Memory Space ... 5-26

Memory Space Access Restrictions ... 5-27

Word Size and Memory Block Organization 5-28

Normal Versus Short Word Addressing 5-29

CONTENTS

viii ADSP-21065L SHARC DSP User’s Manual

Using 32- and 48-Bit Memory Words 5-30

Mixing 32- and 48-Bit Words in One Memory Block 5-32

Fine Tuning Mixed Word Accesses ... 5-35

Configuring Memory for 32- or 40-Bit Data 5-40

Using 16-Bit Short Word Accesses ... 5-41

Interfacing with External Memory .. 5-43

External Memory Banks .. 5-48

Executing Program from External Memory 5-49

Boot Memory Select (BSEL and BMS) 5-53

Wait States and Acknowledge .. 5-53

External SDRAM Memory .. 5-63

External Memory Access Timing ... 5-65

External Memory .. 5-65

Multiprocessor Memory .. 5-67

DMA

DMA Controller Operation .. 6-7

Setting Up DMA Transfers ... 6-9

DMA Control Registers .. 6-11

External Port DMA Registers .. 6-12

Serial Port DMA Control Registers .. 6-22

DMA Channel Status Register ... 6-24

DMA Controller Operation .. 6-27

DMA Channel Parameter Registers .. 6-28

Internal Request and Grant ... 6-35

ADSP-21065L SHARC DSP User’s Manual ix

CONTENTS

Setting DMA Channel Prioritization 6-35

DMA Chaining ... 6-39

Inserting a Chain ... 6-44

DMA Interrupts .. 6-45

Starting and Stopping DMA Sequences 6-48

External Port DMA ... 6-50

External Port FIFO Buffers (EPBx) .. 6-50

Generating Internal and External Addresses 6-55

External Port DMA Modes .. 6-55

System Configurations for Interprocessor DMA 6-70

Interfacing with DMA Hardware ... 6-72

Overall DMA Throughput .. 6-74

Concurrent Accesses to Internal Memory 6-74

Concurrent Accesses to External Memory 6-74

MULTIPROCESSING

Multiprocessing System Architecture ... 7-6

Data Flow Multiprocessing .. 7-6

Cluster Multiprocessing ... 7-7

Multiprocessor Bus Arbitration .. 7-10

Bus Arbitration Protocol .. 7-12

Bus Mastership Timeout .. 7-17

Core Priority Access ... 7-18

Bus Arbitration Synchronization After Reset 7-21

CONTENTS

x ADSP-21065L SHARC DSP User’s Manual

Data Transfers .. 7-25

Writing the IOP Registers ... 7-26

Reading the IOP Registers ... 7-27

Transfers Through the EPBx Buffers 7-27

Interacting with the Shadow Write FIFO 7-32

Bus Lock and Semaphores ... 7-34

Interprocessor Messages .. 7-36

Message Passing (MSGRx) .. 7-37

Vector Interrupts (VIRPT) .. 7-38

SYSTAT Register Status Bits ... 7-40

HOST INTERFACE

Host Control of the Processor ... 8-8

Acquiring the Bus ... 8-8

Host Transfers ... 8-11

Asynchronous Transfer Timing .. 8-11

Data Transfers .. 8-16

Writing to the IOP Registers ... 8-16

Reading the IOP Registers ... 8-17

Transfers Through the EPBx Buffers 8-18

Performing Broadcast Writes ... 8-23

Data Packing .. 8-24

Packing Control Bits in SYSCON ... 8-25

Packing Control Bits in DMACx ... 8-28

Data Bus Lines and Host Bus Width 8-30

ADSP-21065L SHARC DSP User’s Manual xi

CONTENTS

Interprocessor Messages ... 8-36

Message Passing (MSGRx) ... 8-37

Host Vector Interrupts (VIRPT) .. 8-38

SYSTAT Register Bits .. 8-40

Interfacing with the System Bus .. 8-44

Accessing the Cluster Bus and Slave Processors 8-44

Master Processor Accesses of the System Bus 8-46

Uniprocessor to Microprocessor Bus Interface 8-51

SERIAL PORTS

Serial Port Connections ... 9-4

SPORT Interrupts ... 9-6

SPORT RESET ... 9-7

Using the Hardware Reset Method ... 9-8

Using the Software Reset Method .. 9-8

SPORT Control Registers and Data Buffers 9-9

Register Writes and Effect Latency ... 9-13

Transmit and Receive Data Buffers (TX, RX) 9-13

Transmit and Receive Control Registers
(STCTL, SRCTL) .. 9-15

Control Register Status Bits ... 9-38

Clock and Frame Sync Frequencies
(TDIV, RDIV) ... 9-39

Data Word Formats ... 9-44

Data Type (DTYPE) .. 9-44

CONTENTS

xii ADSP-21065L SHARC DSP User’s Manual

Data Packing and Unpacking (PACK) 9-47

Endian Format (SENDN) ... 9-48

Word Length (SLEN) .. 9-48

Clock Signal Options .. 9-50

Internal vs. External Clocks ... 9-50

Frame Sync Options ... 9-52

Frame Sync Requirement (TFSR/RFSR) 9-52

Frame Sync Source (ITFS/RTFS) ... 9-54

Frame Sync Active State (LTFS/RTFS) 9-55

Frame Sync Clock Edge (CKRE) ... 9-55

Frame Sync Insert (LAFS) ... 9-56

Frame Sync Data Dependency (DITFS) 9-57

Standard Mode ... 9-59

Enabling Standard Mode (OPMODE, MCE) 9-59

Frame Sync Configuration (FS_BOTH) 9-59

Setting the Serial Clock Frequency (CLKDIV) 9-60

I2S Mode ... 9-61

Setting the Internal Serial Clock Rate 9-61

I2S Control Bits .. 9-62

Multichannel Mode .. 9-67

Frame Syncs in Multichannel Mode 9-69

Multichannel Control Bits ... 9-69

Channel Selection Registers
(MTCSx, MRCSx, MTCCSx, MRCCSx) 9-72

ADSP-21065L SHARC DSP User’s Manual xiii

CONTENTS

SPORT Receive Comparison Registers
(KEYWDx and IMASKx) ... 9-73

Moving Data Between SPORTs and Memory 9-77

DMA Block Transfers .. 9-77

Single-Word Transfers .. 9-86

SPORT Loopback ... 9-88

SPORT Pin Driver Considerations .. 9-88

SPORT Programming Examples .. 9-89

Single-Word Transfers Without Interrupts 9-89

Single-Word Transfers with Interrupts 9-91

DMA Transfers with Interrupts .. 9-93

SDRAM INTERFACE

SDRAM Control Register (IOCTL) .. 10-9

Configuring SDRAM Operation ... 10-13

Setting the Refresh Counter Value (SDRDIV) 10-14

Setting the SDRAM Clock Enables
(DSDCTL and DSDCK1) .. 10-15

Setting the Number of SDRAM Banks (SDBN) 10-16

Setting the External Memory Bank (SDBS) 10-16

Setting the SDRAM Buffering Option (SDBUF) 10-17

Selecting the CAS Latency Value (SDCL) 10-18

Selecting the SDRAM’s Page Size (SDPGS) 10-18

Setting the SDRAM Power-Up Mode (SDPM) 10-19

Starting the SDRAM Power-Up Sequence (SDPSS) 10-20

CONTENTS

xiv ADSP-21065L SHARC DSP User’s Manual

Starting Self-Refresh mode (SDSRF) 10-20

Selecting the Active Command Delay (SDTRAS) 10-21

Selecting the Precharge Delay (SDTRP) 10-21

SDRAM Controller Operation .. 10-23

DMA Operation ... 10-24

Multiprocessing Operation .. 10-25

Accessing SDRAM .. 10-26

DQM Operation .. 10-27

Executing a Parallel Refresh Command 10-27

Entering and Exiting Self-Refresh Mode 10-28

Powering Up After Reset ... 10-28

SDRAM Controller Commands .. 10-29

Act (Bank Activate) ... 10-30

Bstop (Burst Stop) .. 10-30

MRS (Mode Register Set) .. 10-31

Pre (Precharge) .. 10-32

Read/Write ... 10-33

Ref (Refresh) ... 10-38

Sref (Self-Refresh) ... 10-39

ADSP-21065L SHARC DSP User’s Manual xv

CONTENTS

SDRAM Timing Specifications .. 10-41

PROGRAMMABLE TIMERS AND I/O PORTS

PWMOUT Mode ... 11-3

WIDTH_CNT Mode ... 11-5

Timer Control Bits and the Interrupt Vectors 11-8

Timer Interrupts and the Status Stack 11-9

The STKY Register .. 11-11

Timer Registers and their Values at Reset 11-11

Programmable I/O Ports ... 11-13

SYSTEM DESIGN

Pin Definitions ... 12-3

Pin States After Reset .. 12-22

Pin Operation ... 12-26

XTAL and CLKIN .. 12-26

Input Synchronization Delay ... 12-27

External Interrupt and Timer Pins 12-28

Flag Pins ... 12-28

JTAG Interface Pins .. 12-34

EZ-ICE Emulator ... 12-36

Target Board Connector for EZ-ICE Probe 12-36

Input Signal Conditioning .. 12-41

High Frequency Design Issues ... 12-42

Clock Specifications and Jitter ... 12-42

CONTENTS

xvi ADSP-21065L SHARC DSP User’s Manual

Clock Distribution .. 12-43

Point-to-Point Connections on Serial Ports 12-45

Signal Integrity ... 12-45

Other Recommendations and Suggestions 12-45

Decoupling Capacitors and Ground Planes 12-46

Oscilloscope Probes ... 12-47

Recommended Reading ... 12-47

Booting .. 12-49

Selecting the Boot Mode ... 12-50

EPROM Booting .. 12-51

Booting From the Host ... 12-56

Multiprocessor Booting ... 12-58

No Boot Mode .. 12-60

Locating the Interrupt Vector Table 12-61

Data Delays, Latencies, and Throughput 12-62

Execution Stalls .. 12-66

PROGRAMMING CONSIDERATIONS

Extra Cycle Conditions ... 13-1

Nondelayed Branches .. 13-1

Program Memory Data Accesses with Cache Miss 13-2

Loop Accesses of Program Memory Data 13-2

Using One- and Two-Instruction Loops 13-4

Writing to a DAG Register .. 13-4

Programming Wait States .. 13-5

ADSP-21065L SHARC DSP User’s Manual xvii

Contents

Component Considerations ... 13-6

Computation Units ... 13-6

Data Address Generators .. 13-8

Memory .. 13-9

INDEX

xviii ADSP-21065L SHARC DSP User’s Manual

ADSP-21065L SHARC DSP User’s Manual xix

PREFACE
Listing 1-0.

Listing 1-0.

Figure 1-0.

Table 1-0.

Congratulations on your purchase of Analog Devices ADSP-21065L

SHARC® DSP, the high-performance Digital Signal Processor of choice!

The ADSP-21065L is a 32-bit DSP with 544K bits of on-chip memory
that is designed to support a wide variety of applications—audio, automo-
tive, communications, industrial, and instrumentation.

For Additional Information About Analog
Products

Analog Devices is online on the internet at http://www.analog.com. Our
Web pages provide information on the company and products, including
access to technical information and documentation, product overviews,
and product announcements. You may also obtain additional information
about Analog Devices and its products in any of the following ways:

• Visit our World Wide Web site at www.analog.com.

• FAX questions or requests for information to 1(617)461-3061.

• Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

For Technical or Customer Support

xx ADSP-21065L SHARC DSP User’s Manual

• Access the division’s File Transfer Protocol (FTP) site at ftp
ftp.analog.com or ftp 137.71.23.21 or ftp://ftp.anlog.com.
This site is a mirror of the BBS.

For Technical or Customer Support
You can reach our Customer Support group in the following ways:

• Visit our World Wide Web site at www.analog.com.

• Call the Analog Devices automated Customer Support Hot Line at
1(800)ANALOG-D.

• E-mail questions to dsp_application@analog.com or
dsp.europe@analog.com (European customer support).

What’s This Book About and Who’s It For?
The ADSP-21065L documentation set contains two manuals, the
ADSP-21065L SHARC DSP User’s Manual and the ADSP-21065L
SHARC DSP Technical Reference. These manuals are reference guides for
hardware and software engineers who want to develop applications using
the ADSP-21065L. These manuals assume the user has a working knowl-
edge of the ADSP-21065L’s Super Harvard Architecture.

The ADSP-21065L SHARC DSP User’s Manual describes the architecture
and operation of the ADSP-21065L’s individual components, intercom-
ponent connections and access, off-chip connections and access, and the
processor’s hardware/software interface. This information includes:

• Pin definitions and instructions for connecting the pins to external
devices and peripherals in single- and multiprocessor systems.

• Processor features and instructions for configuring the processor for
specific operation options.

ADSP-21065L SHARC DSP User’s Manual xxi

Preface

• Internal and external data paths and instructions for moving data
between internal components and between the processor and exter-
nal devices and peripherals.

• Timing, sequencing, and throughput of control signals and data
accesses.

The ADSP-21065L SHARC DSP Technical Reference provides detailed
technical information on programming the ADSP-21065L. This informa-
tion includes:

• A description of each instruction in the processor’s instruction set,
supported numeric formats, and the default bit definitions for all of
the processor’s control and status registers.

• A description of the pins and the control and data registers of the
JTAG test access port.

• A list of all vector interrupts and their addresses.

To supplement the information in these manuals, users can attend sched-
uled workshops sponsored by Analog Devices, Inc. (ADI) and access other
ADI documentation related specifically to this product. For details, see
“Related Documents” on page xxiv.

How to Use This Manual

xxii ADSP-21065L SHARC DSP User’s Manual

How to Use This Manual

For information on… See…

ALU operation Chapter 2, Computation Units; Appendix B,
Compute Operation Reference

Address generation Chapter 4, Data Addressing; Chapter 5, Mem-
ory; Chapter 6, DMA

Booting Chapter 5, Memory; Chapter 7, System Design

Clock generation Chapter 9, Serial Ports; Chapter 11, Pro-
grammable Timers and I/O Ports; Chapter 12,
System Design

Computation units Chapter 2, Computation Units; Appendix B,
Compute Operation Reference; Appendix C,
Numeric Formats

Data delays,
latencies,
throughput

Chapter 10, SDRAM Interface; Chapter 12,
System Design

Data packing Chapter 6, DMA; Chapter 8, Host Interface;
Chapter 9, Serial Ports

DMA Chapter 6, DMA; Chapter 7, Multiprocessing;
Chapter 8, Host Interface

External port Chapter 6, DMA; Chapter 7, Multiprocessing;
Chapter 8, Host Interface

High-frequency design
issues

Chapter 12, System Design

Host interface Chapter 8, Host Interface

Instruction cache Chapter 3, Program Sequencing; Chapter 5,
Memory

ADSP-21065L SHARC DSP User’s Manual xxiii

Preface

Instruction set Appendix A, Instruction Set Reference;
Appendix B, Compute Operation Reference;
Appendix C, Numeric Formats

Internal buses Chapter 5, Memory; Chapter 6, DMA; Chapter
8, Host Interface

Interrupts Chapter 3, Program Sequencing; Chapter 5,
Memory; Appendix F, Interrupt Vector
Addresses

JTAG test port Chapter 12, System Design; Appendix D, JTAG
Test Access Port

Memory Chapter 5, Memory

Multiplier operation Chapter2, Computation Units; Appendix B,
Compute Operation Reference

Multiprocessing Chapter 7, Multiprocessing

Pin definitions Chapter 12, System Design

Processor
architecture

Chapter 1, Introduction

Processor
configuration

Appendix E, Control and Status Registers

Program flow Chapter 3, Program Sequencing

Programmable I/O
ports

Chapter 11, Programmable Timers and I/O
Ports

Programmable timers Chapter 11, Programmable Timers and I/O
Ports

Programming
considerations

Chapter 13, Programming Considerations

For information on… See…

Related Documents

xxiv ADSP-21065L SHARC DSP User’s Manual

Related Documents
For information on related products, see the following documents avail-
able from Analog Devices, Inc.:

• ADSP-21065L SHARC DSP, 198 MFLOPS, 3.3v Data Sheet
(Rev. C, 6/03)

• VisualDSP++ Quick Installation Reference Card

• VisualDSP++ 3.0 User’s Guide for SHARC DSPs

• VisualDSP++ 3.0 Getting Started Guide for SHARC DSPs

Reset Chapter 7, Multiprocessing; Chapter 9,
Serial Ports; Chapter 12, System Design

SDRAM interface Chapter 10 SDRAM Interface

Serial ports Chapter 9, Serial Ports

Shifter operation Chapter 2, Computation Units; Appendix B,
Compute Operation Reference

System Design Chapter 12, System Design

Wait states Chapter 5, Memory; Chapter 12, System
Design; Appendix E, Control and Status Reg-
isters

Indexes Both manuals are cross-indexed. Pages with
an alphabetic prefix (as C-12) reference
information in ADSP-21065L SHARC DSP Techni-
cal Reference. Pages with a numeric prefix
(as 5-41) reference information in
ADSP-21065L SHARC DSP User’s Manual.

For information on… See…

ADSP-21065L SHARC DSP User’s Manual xxv

Preface

• VisualDSP++ 3.0 C/C++ Compiler and Library Manual for SHARC
DSPs

• VisualDSP++ 3.0 Linker and Utilities Manual for SHARC DSPs

• VisualDSP++ 3.0 Assembler and Preprocessor Manual for SHARC
DSPs

• VisualDSP++ 3.0 Kernel (VDK) User’s Guide

• VisualDSP++ 3.0 Component Software Engineering User’s Guide

Conventions of Notation
The following conventions apply to all chapters within this manual. Addi-
tional conventions that apply to specific chapters only are documented at
the beginning of the chapter in which they appear.

This notation… Denotes…

Letter Gothic
font

Code, software or command line options or key-
words; input you must enter from the keyboard.

Italics Special terminology; titles of books.

A hint or tip.

A warning or caution.

Conventions of Notation

xxvi ADSP-21065L SHARC DSP User’s Manual

ADSP-21065L SHARC DSP User’s Manual 1-1

1 INTRODUCTION
Figure 1-0.

Table 1-0.

Listing 1-0.

The ADSP-21065L SHARC DSP is a high-performance, 32-bit digital
signal processor for communications, digital audio, and industrial instru-
mentation applications.

Along with a high-performance, 198 MFLOPS core, the ADSP-21065L
has a dual-ported, on-chip SRAM and integrated I/O peripherals sup-
ported by a dedicated I/O processor. With its on-chip instruction cache,
the processor can execute every instruction in a single cycle. The
ADSP-21065L is code-compatible with other members of the SHARC
family.

Four independent buses for dual data, instructions, and I/O, and cross-
bar-switch memory connections implement the ADSP-21065L’s Super
Harvard Architecture.

The ADSP-21065L provides these features:

• 32-Bit IEEE floating-point computation units—Multiplier, ALU,
and Shifter—that support 198 MFLOPS or 198, 32-bit fixed-point
MOPS

• Data Register File

• Data Address Generators (DAG1, DAG2)

• Program Sequencer with Instruction Cache

• 544K bits of user-configurable, dual-ported SRAM

• External port for glueless interface to SDRAM and other off-chip
memory and peripherals

1-2 ADSP-21065L SHARC DSP User’s Manual

• Host port and multiprocessor interface

• DMA controller to support ten DMA channels

• Serial ports with two receivers and two transmitters that support

TDM and I2S

• Two programmable timers and twelve programmable, general-pur-
pose I/O ports

• JTAG test access port

Figure 1-1 shows the ADSP-21065L’s Super Harvard Architecture, which
consists of a crossbar bus switch connecting the DSP core’s numeric pro-
cessor to an independent I/O processor, dual-ported memory, and parallel
system bus port.

Figure 1-1. Super Harvard Architecture

Dual-Ported,
Multiaccess

Memory

Numeric
Processor

I/O Processor
&

DMA Controller

Parallel System
Bus Port

Crossbar Bus
Interconnect

ADSP-21065L SHARC DSP User’s Manual 1-3

Introduction

Figure 1-2, a detailed block diagram of the processor, shows its architec-
tural features.

Figure 1-2. ADSP-21065L block diagram

Figure 1-2 also shows the ADSP-21065L’s on-chip buses: the PM (Pro-
gram Memory) bus, made up of the PMA (Program Memory Address) and
PMD (Program Memory Data) buses; the DM (Data Memory) bus, made
up of the DMA (Data Memory Address) and DMD (Data Memory Data)
buses; and the I/O bus, made up of the IOA (I/O Address) and IOD (I/O
Data) buses.

The PM bus can access either instructions or data. During a single cycle,
the processor can access two data operands, one over the PM bus and one
over the DM bus, access an instruction from the cache, and perform a
DMA transfer.

DATAADDR DATAADDR

B
LO

C
K

1

TWO INDEPENDENT

DUAL-PORTED BLOCKS

PROCESSOR
PORT

I/O
PORT

ADDR DATA DATAADDR

B
LO

C
K

0

IOP
Registers

Control,
Status, Timer,

&
Data Buffers

DMA
Controller

SPORT 0

SPORT 1

SDRAM Interface

HOST Port

Addr Bus
Mux

Data Bus
Mux

4

Multiprocessor
Interface

DAG1
8x4x32

DAG2
8x4x24 Program

Sequencer

Instruction
cache

32x48b

Bus
Connect

(PX)

Multiplier Barrel
Shifter

ALU

Data
Register

File

16x40b

24

32

48

40

PM Address Bus

DM Data Bus

PM Data Bus

DM Address Bus

7
JTAG
Test &

Emulation

IOA
17

IOD
48

24

32

(2 Rx, 2 Tx)

(2 Rx, 2 Tx)

(I2S)

(I2S)

I/O Processor

DSP Core Dual-Ported SRAM

External Port

1-4 ADSP-21065L SHARC DSP User’s Manual

The ADSP-21065L’s external port provides the processor’s interface to
external memory, which is glueless to an SDRAM; memory-mapped I/O;
a host processor; and another multiprocessing ADSP-21065L. The exter-
nal port performs internal and external bus arbitration and supplies
control signals to shared, global memory and I/O devices.

The documentation set, ADSP-21065L SHARC DSP User’s Manual and
ADSP-21065L SHARC DSP Technical Reference, contain ADSP-21065L
architectural information and the processor’s instruction set, which devel-
opers need to design and program ADSP-21065L-based systems. For
timing, electrical, and package specifications, see the processor’s data
sheet.

ADSP-21065L SHARC DSP User’s Manual 1-5

Introduction

Features and Benefits
The ADSP-21065L possesses the five central requirements for DSPs estab-
lished in the ADSP-2106x SHARC DSP family of 32-bit floating-point
DSPs:

• Fast, flexible arithmetic computation units

• Unconstrained data flow to and from the computation units

• Extended precision and dynamic range in the computation units

• Dual address generators

• Efficient program sequencing

Fast, Flexible Arithmetic . The ADSP-21065L executes all instructions in
a single cycle. It provides fast cycle times, and, in addition to traditional
multiplication, addition, subtraction, and combined multiplication/addi-
tion, it also provides a complete set of arithmetic operations, including
Seed 1/X, Seed 1√X, Min, Max, Clip, Shift, and Rotate. The
ADSP-21065L is IEEE floating-point compatible and supports either
interrupt-on-arithmetic or latched-status exception handling.

Unconstrained Data Flow. The ADSP-21065L has an enhanced Super
Harvard architecture combined with a 10-port data register file. In every
cycle, the processor can:

• Read or write two operands to or from the Register File,

• Supply two operands to the ALU,

• Supply two operands to the multiplier, and

• Receive two results from the ALU and multiplier.

The processor’s 48-bit orthogonal instruction word supports fully parallel
data transfer and arithmetic operations in the same instruction.

Features and Benefits

1-6 ADSP-21065L SHARC DSP User’s Manual

40-Bit Extended Precision. The ADSP-21065L handles 32-bit IEEE
floating-point format, 32-bit integer and fractional formats (twos-comple-
ment and unsigned), and extended-precision, 40-bit IEEE floating-point
format. The processor carries extended precision throughout its computa-
tion units, limiting intermediate data truncation errors. When working
with data on-chip, the processor can transfer the extended-precision,
32-bit mantissa to and from all computation units. The fixed-point for-
mats have an 80-bit accumulator for true 32-bit fixed-point computations.

Dual Address Generators. The ADSP-21065L has two data address gener-
ators (DAGs) that provide immediate or indirect (pre and postmodify)
addressing. It supports modulus and bit-reverse operations with no con-
straints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
ADSP-21065L supports single-cycle setup and exit for loops. Loops are
both nestable (six levels in hardware) and interruptible. The processors
support both delayed and non-delayed branches.

System-Level Enhancements
The ADSP-21065L includes several enhancements that simplify system
development. The enhancements occur in three key areas:

• Architectural features supporting high-level languages and operat-
ing systems

• IEEE 1149.1 JTAG serial scan path and on-chip emulation features

• Support of IEEE floating-point formats

ADSP-21065L SHARC DSP User’s Manual 1-7

Introduction

High-Level Languages. The ADSP-21065L’s architecture has several fea-
tures that directly support high-level language compilers and operating
systems:

• General purpose data and address register files

• 32-bit native data types

• Large address space

• Pre- and postmodify addressing

• Unconstrained circular data buffer placement

• On-chip program, loop, and interrupt stacks

Additionally, the ADSP-21065L architecture is designed specifically to
support ANSI-standard Numerical C extensions—the first compiled lan-
guage to support vector data types and operators for numeric and signal
processing.

Serial Scan and Emulation Features. The ADSP-21065L supports the
IEEE standard P1149.1 Joint Test Action Group (JTAG) standard for
system test. This standard defines a method for serially scanning the I/O

status of each component in a system. The ADSP-21065L EZ-ICE®
in-circuit emulator also uses the JTAG serial port to access the processor’s
on-chip emulation features.

IEEE Formats. The ADSP-21065L supports IEEE floating-point data for-
mats. This means that algorithms developed on IEEE-compatible
processors and workstations are portable across processors without con-
cern for possible instability introduced by biased rounding or inconsistent
error handling.

Features and Benefits

1-8 ADSP-21065L SHARC DSP User’s Manual

Why Floating-Point DSP?
A digital signal processor’s data format determines its ability to handle sig-
nals of differing precision, dynamic range, and signal-to-noise ratios.
However, ease-of-use and time-to-market considerations are often equally
important.

Precision. The number of bits of precision of A/D converters has contin-
ued to increase, and the trend is for both precision and sampling rates to
increase.

Dynamic Range. Compression and decompression algorithms have tradi-
tionally operated on signals of known bandwidth. These algorithms were
developed to behave regularly, to keep costs down and implementations
easy. Increasingly, however, the trend in algorithm development is to
unconstrain the regularity and dynamic range of intermediate results.
Adaptive filtering and imaging are two applications that require a wide
dynamic range.

Signal-to-Noise Ratio. Audio, video, imaging, and speech recognition
require wide dynamic range to discern selected signals occurring in noisy
environments.

Ease-of-Use. In general, 32-bit, floating-point DSPs are easier to use and
enable a quicker time-to-market than 16-bit, fixed-point processors. The
extent to which this is true depends on the floating-point processor’s
architecture. Consistency with IEEE workstation simulations and the
elimination of scaling are two clear ease-of-use advantages. High-level lan-
guage programmability, large address spaces, and wide dynamic range
enable system development time to focus on algorithms and signal pro-
cessing concerns, rather than assembly language coding, code paging, and
error handling.

ADSP-21065L SHARC DSP User’s Manual 1-9

Introduction

ADSP-21065L Architecture
The rest of this chapter summarizes the architectural features of the
ADSP-21065L SHARC DSP:

• DSP core

• Dual-ported memory

• External port interface

• Host processor interface

• I/O Processor

• Serial ports

• DMA controller

• Booting

• Development tools

The remaining chapters of this manual describe these features in detail.

DSP Core
The ADSP-21065L’s DSP core consists of:

• Three computation units

• A data Register File

• A Program Sequencer and two Data Address Generators

• An Instruction Cache

• DSP core buses

ADSP-21065L Architecture

1-10 ADSP-21065L SHARC DSP User’s Manual

• Two programmable timers and 12 general-purpose
I/Os

• Four external hardware interrupts

These additional features support and enhance the DSP core’s
components:

• Context switching

• Comprehensive instruction set

Computation Units

The DSP core contains three independent computation units:

• ALU

Performs a standard set of arithmetic and logic operations in both
fixed-point and floating-point formats.

• Multiplier with a fixed-point accumulator

Performs floating-point and fixed-point multiplication, and
fixed-point multiply/add and multiply/subtract operations.

• Shifter

Performs logical and arithmetic shifts, bit manipulation, field
deposit and extraction, and exponent derivation operations on
32-bit operands.

For meeting a wide variety of processing needs, the computation units
process data in three formats:

• 32-bit, fixed-point

• 32-bit, floating-point

• 40-bit, floating-point

ADSP-21065L SHARC DSP User’s Manual 1-11

Introduction

The floating-point operations are single-precision, IEEE-compatible. The
32-bit floating-point format is the standard IEEE format, while the 40-bit
IEEE extended-precision format has eight additional LSBs of mantissa for
greater accuracy.

The computation units perform single-cycle operations—there is no com-
putation pipeline. The units connect in parallel rather than serially. On
the next cycle, the output of any unit can be the input of any other unit.
In a multifunction computation, the ALU and multiplier perform inde-
pendent, simultaneous operations.

Register File

Applications use a general-purpose data Register File to transfer data
between the computation units and the data buses and to store intermedi-
ate results.

For fast context switching, the Register File has two sets (primary and
alternate) of 16 registers. All of the registers are 40-bits wide. The Register
File, combined with the core’s Super Harvard Architecture, enables
unconstrained data flow between the computation units and internal
memory.

Program Sequencer and Data Address Generators

A Program Sequencer and two dedicated address generators supply
addresses for memory accesses. Together the Program Sequencer and Data
Address Generators (DAGs) enable computational operations to execute
with maximum efficiency since they free up the computation units to pro-
cess data exclusively.

Using its instruction cache, the ADSP-21065L can simultaneously fetch
an instruction (from the cache) and access two data operands (from
memory).

ADSP-21065L Architecture

1-12 ADSP-21065L SHARC DSP User’s Manual

The Data Address Generators implement circular data buffers in
hardware.

The Program Sequencer supplies instruction addresses to program mem-
ory. It controls loop iterations and evaluates conditional instructions.
Using an internal loop counter and loop stack, the processor executes
looped code with zero overhead. To loop or to decrement and test the
counter requires no explicit jump instructions.

The processor uses pipelined fetch, decode, and execute cycles to achieve its
fast execution rate. If an application uses external memories, the processor
provides more time to complete an access than accesses requiring no
decode cycle.

The DAGs generate memory addresses when data is transferred between
memory and registers. Dual data address generators enable the processor
to output simultaneous addresses for two operand reads or writes.

DAG1 supplies 32-bit addresses to data memory. DAG2 supplies 24-bit
addresses to program memory for program memory data accesses.

Each DAG keeps track of up to eight address pointers, eight modifiers,
and eight length values. You can modify a pointer used for indirect
addressing with a value in a specified register, either before (premodify) or
after (postmodify) the access. To perform automatic modulo addressing
for circular data buffers, you can associate a length value with each
pointer. And, you can locate circular buffers at arbitrary boundaries in
memory. Each DAG register has an alternate register that you can activate
for fast context switching.

Circular buffers enable efficient implementation of delay lines and other
data structures required in digital signal processing and commonly used in
digital filters and Fourier transforms. The DAG’s automatic handling of
address pointer wraparound reduces overhead, increases performance, and
simplifies implementation.

ADSP-21065L SHARC DSP User’s Manual 1-13

Introduction

Instruction Cache

The Program Sequencer includes a 32-word instruction cache that enables
three-bus operation for fetching an instruction and two data values. The
cache is selective—only instructions whose fetches conflict with program
memory data accesses are cached. This feature enables full-speed execution
of core looped operations, such as digital filter, multiply-accumulates, and
FFT butterfly processing.

DSP Core Buses

The DSP core has four buses:

• Program Memory Address

Transfers the addresses for instructions.

• Data Memory Address

Transfers the addresses for data.

• Program Memory Data

Transfers instructions.

Since the PM Data bus is 48 bits wide, it can accommodate the
48-bit instruction width. Fixed-point and single-precision float-
ing-point data is aligned to the upper 32 bits of this bus.

• Data Memory Data

Transfers data.

The DM Data bus is 40 bits wide and provides a path to transfer the
contents of any register in the processor to any other register or to
any data memory location in a single cycle. Fixed-point and sin-
gle-precision floating-point data is aligned to the upper 32 bits of
this bus.

ADSP-21065L Architecture

1-14 ADSP-21065L SHARC DSP User’s Manual

On the ADSP-21065L, data memory stores data operands, and program
memory stores both instructions and data (filter coefficients, for example).
This configuration enables the processor to perform dual data fetches
when the instruction cache supplies the instruction.

The data memory address comes from one of two sources—an absolute
value specified in the instruction code (direct addressing) or the output of
a data address generator (indirect addressing).

Nearly every register in the ADSP-21065L’s core is classified as a universal
register. Instructions are provided specifically for transferring data
between universal registers or between a universal register and memory
and for performing bitwise operations on their contents. Control registers,
status registers, and individual data registers in the Register File are all
universal registers.

The PX (bus connect) registers provide the path to pass data between the
48-bit PM Data bus and the 40-bit DM Data bus or between the 40-bit
Register File and the PM Data bus. The hardware that implements these
registers handles the 8-bit difference in width.

Programmable Timers and General-Purpose I/O Ports

The ADSP-21065L provides two independent programmable timer
blocks. Each block can function in one of two modes—Timer Counter
mode or Pulse Count and Capture mode.

In Timer Counter mode, the processor can generate a waveform with an
arbitrary pulse width within a maximum period of 71.5 seconds. In Pulse
Count and Capture mode, the processor can measure either the high or
the low pulse width and period of an input waveform.

The ADSP-21065L provides twelve programmable, general-purpose I/O
pins that can function as either input or output. As output, these pins can
signal peripheral devices; as input, they can provide the test for condi-
tional branching.

ADSP-21065L SHARC DSP User’s Manual 1-15

Introduction

Interrupts

The ADSP-21065L has four external hardware interrupts: three gen-
eral-purpose interrupts IRQ2-0, and a special interrupt for reset. The
processor also has internally generated interrupts for the timer, DMA con-
troller operations, circular buffer overflow, stack overflows, arithmetic
exceptions, multiprocessor vector interrupts, and user-defined software
interrupts.

For the general-purpose external interrupts and the internal timer inter-
rupt, the ADSP-21065L automatically stacks the arithmetic status and
mode (MODE1) registers in parallel with the interrupt servicing. This
enables four nesting levels of very fast service for these interrupts.

Context Switching

Many of the processor’s registers have alternate registers that applications
can activate and use during interrupt servicing to implement a fast context
switch.

Each of the data registers in the Register File, the DAG registers, and the
multiplier result register have alternates. Registers active at reset are called
primary registers, and the others are called alternate (or secondary) regis-
ters. Control bits in a mode control register determine which set of
registers is active at any particular time.

Comprehensive Instruction Set

The ADSP-21065L instruction set provides a wide variety of program-
ming capabilities. Multifunction instructions enable computations in
parallel with data transfers and as simultaneous multiplier and ALU
operations.

The addressing power of the ADSP-21065L provides flexibility in moving
data both internally and externally. Every instruction can be executed in a
single processor cycle. The ADSP-2106x SHARC DSP family assembly

ADSP-21065L Architecture

1-16 ADSP-21065L SHARC DSP User’s Manual

language uses an algebraic syntax for ease of coding and readability. A
comprehensive set of development tools supports program development.

Dual-Ported Memory
The ADSP-21065L contains 544K bits of on-chip SRAM, organized into
two banks: Bank 0 has 288K bits, and Bank 1 has 256K bits. Bank 0 is
configured with nine columns of 2Kx16 bits, and Bank 1 is configured
with eight columns of 2Kx16 bits. Each memory block is dual-ported for
single-cycle, independent accesses by the processor’s core and either its
I/O processor or DMA controller. The dual-ported memory and separate
on-chip buses allow two data transfers from the core and one from I/O, all
in a single cycle.

On the ADSP-21065L, the memory can be configured as a maximum of
16K words of 32-bit data, 34K words for 16-bit data, 10K words of 48-bit
instructions (and 40-bit data) or combinations of different word sizes up
to 544K bits. All the memory can be accessed as 16 bit, 32 bit, or 48 bit.

The ADSP-21065L supports a 16-bit floating-point storage format, which
effectively doubles the amount of data that it can store on-chip. Conver-
sion between the 32-bit floating-point and 16-bit floating-point formats is
done in a single instruction.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data, using the DM bus
for transfers, and the other block stores instructions and data, using the
PM bus for transfers. Using the DM and PM buses in this way, with one
dedicated to each memory block, assures single-cycle execution with two
data transfers, providing the instruction is available in the cache. Sin-
gle-cycle execution is also maintained when one of the data operands is
transferred to or from off-chip, through the ADSP-21065L’s external
port.

ADSP-21065L SHARC DSP User’s Manual 1-17

Introduction

External Port Interface
The ADSP-21065L’s external port provides the processor’s interface to
off-chip memory and peripherals. The 64M × 32-bit word, off-chip
address space is included in the ADSP-21065L’s unified address space.
The separate on-chip buses—for PM addresses, PM data, DM addresses,
DM data, I/O addresses, and I/O data—are multiplexed at the external
port to create an external system bus with a single 24-bit address bus and a
single 32-bit data bus.

The ADSP-21065L provides an on-chip SDRAM controller that supports
a glueless interface to standard 16Mb and 64Mb SDRAMs.

The on-chip decoding of high-order address lines to generate memory
bank select signals facilitates the addressing of external memory devices.

The ADSP-21065L provides programmable memory wait states and exter-
nal memory acknowledge controls to enable the processor to interface
with peripherals with variable access, hold, and disable time requirements.

Host Interface
The ADSP-21065L’s host interface provides a connection to standard 8-,
16-, or 32-bit microprocessor buses that is easy and requires little addi-
tional hardware.

The ADSP-21065L supports asynchronous transfers at speeds up to the
processor’s full clock rate. The ADSP-21065L’s external port provides
access to the processor’s host interface, which is memory mapped into the
processor’s unified address space.

Two channels of DMA are available for the host interface, and they per-
form code and data transfers with low software overhead. The host can
directly read and write the IOP registers of the ADSP-21065L and can
access the DMA channel setup and mailbox registers.

ADSP-21065L Architecture

1-18 ADSP-21065L SHARC DSP User’s Manual

Vector interrupt support provides efficient execution of host commands.

I/O Processor
The ADSP-21065L’s I/O Processor (IOP) includes two serial ports, each
with two transmitters and two receivers, and a DMA controller.

Serial Ports
The ADSP-21065L features two synchronous serial ports that provide an
inexpensive interface to a wide variety of digital and mixed-signal periph-
eral devices.

The serial ports can operate at the full clock rate of the processor, provid-
ing each with a maximum data rate of 30M bit/s. Each serial port has a
primary and a secondary set of Tx and Rx channels, as shown in
Figure 1-3.

Figure 1-3. Serial port input/output configuration

Independent transmit and receive functions provide greater flexibility for
serial communications. Serial port data can be automatically transferred to
and from on-chip memory through DMA. Each of the serial ports sup-

ports three operation modes: Standard mode, I2S mode (an interface

�����

�����

�����

�����

��	�

��	�

�
��

�
��

�����

�����

�����

�����

��	�

��	�

�
��

�
��

������

ADSP-21065L SHARC DSP User’s Manual 1-19

Introduction

commonly used by audio codecs), and TDM (Time Division Multiplex)
multichannel mode.

The serial ports can operate with little-endian or big-endian transmission
formats, with selectable word lengths of 3 to 32 bits. They offer selectable
synchronization and transmit modes and optional µ-law or A-law com-
panding. Serial port clocks and frame syncs can be internally or externally
generated. The serial ports also include keyword and keymask features to
enhance interprocessor communication.

DMA Controller
The ADSP-21065L’s on-chip DMA controller enables zero-overhead data
transfers without processor intervention. The DMA controller operates
independently and invisibly to the processor’s core, enabling DMA opera-
tions to occur while the core is simultaneously executing its program.
Applications can use DMA transfers to download both code and data to
the ADSP-21065L.

DMA transfers can occur between the ADSP-21065L’s internal memory
and external memory, the processor’s serial ports, external peripherals, or a
host processor. DMA transfers between external memory and external
peripheral devices are another option. During DMA transfers, the DMA
controller automatically packs and unpacks external bus words.

Ten channels of DMA are available on the ADSP-21065L—eight via the
serial ports and two via the processor’s external port (for either host pro-
cessor or other ADSP-21065L memory or I/O transfers).

Asynchronous off-chip peripherals can control the two external port DMA
channels using the DMA request and grant lines (DMAR1-2 and
DMAG1-2).

Other DMA features include interrupt generation upon completion of
DMA transfers and DMA chaining for automatically linked DMA
transfers.

ADSP-21065L Architecture

1-20 ADSP-21065L SHARC DSP User’s Manual

Booting
Applications can boot the internal memory of the ADSP-21065L at sys-
tem powerup from an 8-bit EPROM, a host processor, or external
memory. The BMS (Boot Memory Select) and BSEL (EPROM Boot) pins
select the boot source. Either 8-, 16-, or a 32-bit host processor can boot
the ADSP-21065L.

Development Tools
The ADSP-21065L is supported with a complete set of software and hard-
ware development tools, including the EZ-ICE In-Circuit Emulator and

VisualDSP++ and SHARC tools development software.

The same EZ-ICE hardware that you use for the ADSP-21060/62, also
fully emulates the ADSP-21065L, with the exception of displaying and
modifying the two new SPORTs registers. The emulator will not display
these two registers, but your code can still use them.

Both the SHARC DSP development tools family and the VisualDSP++
integrated project management and debugging environment support the
ADSP-21065L. The VisualDSP++ project management environment
enables you to develop and debug an application from within a single inte-
grated program.

The SHARC DSP development tools include an easy to use assembler
with instructions based on an algebraic syntax, a linker, a loader, a
cycle-accurate instruction-level simulator, a C compiler, and a C run-time
library that includes DSP and mathematical functions.

Debugging both C and assembly programs with the VisualDSP++ debug-
ger, you can:

• View mixed C and assembly code

• Insert breakpoints

ADSP-21065L SHARC DSP User’s Manual 1-21

Introduction

• Set watchpoints

• Trace program execution

• Profile program execution

• Fill and dump memory

• Create custom debugger windows

The VisualDSP++ Integrated Development Environment (IDE) enables
you to define and manage multiuser projects. Its dialog boxes and prop-
erty pages enable you to configure and manage all of the SHARC DSP
development tools. This capability enables you to:

• Control how the development tools process inputs and generate
outputs.

• Maintain a one-to-one correspondence with the tool’s
command-line switches.

The EZ-ICE emulator uses the IEEE 1149.1 JTAG test access port of the
ADSP-21065L processor to monitor and control the target board proces-
sor during emulation. The EZ-ICE provides full-speed emulation to
enable inspection and modification of memory, registers, and processor
stacks. Use of the processor’s JTAG interface assures nonintrusive in-cir-
cuit emulation—the emulator does not affect target system loading or
timing.

In addition to the software and hardware development tools available
from Analog Devices, third parties provide a wide range of tools support-
ing the SHARC processor family.

Summary of Features

1-22 ADSP-21065L SHARC DSP User’s Manual

Summary of Features
This section summarizes the functional features and benefits of the
ADSP-21065L, the design features that balance its DSP core with its I/O
components, and lists additional, related ADI literature.

Features and Benefits

Table 1-1. Summary of ADSP-21065L features and benefits

Feature Benefits

32-bit processing • More precise processing of 16-bit
signals.

• 32-bit words essential for pro-
cessing 20- and 24-bit input sig-
nals.

• Improved signal-to-noise ratio at
low levels.

• Faster processing due to compact
code.

• Wide dynamic range.

Fixed- and float-
ing-point on one chip

• Greater flexibility.

• Reduced development time because
need to rewrite standard floating-
or fixed-point algorithms is elim-
inated.

66 MIPS/198 MFLOPS • More processing implemented with a
single chip.

• Eliminates bus bottlenecks.

ADSP-21065L SHARC DSP User’s Manual 1-23

Introduction

16K × 32bit (544K bits)
of user-configurable
internal memory

• Reduces bottlenecks over accesses
of off-chip memory.

• Reduces overall system cost, size,
and power consumption.

• Provides freedom in allocating
data and program memory.

240M bit/sec. I/O

• 2 serial Tx and
2 serial Rx serial
ports

• I2S Interface

• Process more audio channels using
just one DSP.

• Multiple channels supported in
communication systems.

10 DMA channels Implement multifunction applications
on one chip.

TDM serial ports • Direct interface to T1 and E1
lines.

• Ability to communicate with other
ADSP-21065Ls.

Glueless SDRAM interface • Maximize synchronous data transfer
rate.

• Reduce overall system cost.

Table 1-1. Summary of ADSP-21065L features and benefits (Cont’d)

Feature Benefits

Summary of Features

1-24 ADSP-21065L SHARC DSP User’s Manual

Balanced Performance
Figure 1-4 shows how the ADSP-21065L’s design optimally balances its
high-performance DSP core with its high-speed I/Os.

Figure 1-4. Balanced performance between the DSP core and I/O

Additional Literature
The following publications can be ordered from any Analog Devices sales
office.

ADSP-21065L SHARC DSP, 198 MFLOPS, 3.3v Data Sheet
(Rev. C, 6/03)

VisualDSP++ 3.0 User’s Guide for SHARC DSPs
VisualDSP++ 3.0 Getting Started Guide for SHARC DSPs
VisualDSP++ 3.0 C/C++ Compiler and Library Manual for SHARC DSPs
VisualDSP++ 3.0 Linker and Utilities Manual for SHARC DSPs
VisualDSP++ 3.0 Assembler and Preprocessor Manual for SHARC DSPs
VisualDSP++ 3.0 Kernel (VDK) User’s Guide
VisualDSP++ 3.0 Component Software Engineering User’s Guide

�	��������
������

�	��������
������

����
�����

	��� 	���

��
������

�� �

��
��
!��
�"�

�#
��
�
!$
�
�"
� �����

!$� �"�

�����!$� �"�

�����!$� �"�

ADSP-21065L SHARC DSP User’s Manual 2-1

2 COMPUTATION UNITS
Figure 2-0.

Table 2-0.

Listing 2-0.

The processor’s computation units provide the numeric processing power
for performing DSP algorithms, performing operations on both
fixed-point and floating-point numbers. Each computation unit executes
instructions in a single cycle.

The processor contains three computation units:

• An arithmetic/logic unit (ALU)

Performs a standard set of arithmetic and logic operations in both
fixed-point and floating-point formats.

• A multiplier

Performs floating-point and fixed-point multiplication as well as
fixed-point dual multiply/add or multiply/subtract operations.

• A shifter

Performs logical and arithmetic shifts, bit manipulation, field
deposit and extraction operations on 32-bit operands and can derive
exponents as well.

2-2 ADSP-21065L SHARC DSP User’s Manual

Figure 2-1. Computation units block diagram

The computation units are architecturally arranged in parallel, as shown in
Figure 2-1. The output from any computation unit can be input to any
computation unit on the next cycle.

The computation units store input operands and results locally in a
ten-port register file. The Register File is accessible to the processor’s pro-
gram memory data (PMD) bus and its data memory data (DMD) bus.
Both of these buses transfer data between the computation units and
internal memory, external memory, or other parts of the processor.

This chapter covers these topics:

• Data formats

• Register File data storage and transfers

• ALU architecture and operations

Register
File

16 × 40-bit

Multiplier Shifter ALU

MR2 MR0MR1

DM Data Bus

PM Data Bus

ADSP-21065L SHARC DSP User’s Manual 2-3

Computation Units

• Multiplier architecture and operations

• Shifter architecture and operations

• Multifunction operations

Data Formats

2-4 ADSP-21065L SHARC DSP User’s Manual

Data Formats
The processor’s computation units operate on a variety of data formats
and support two rounding modes:

• IEEE 754/854 standard for single-precision floating-point format

• Extended-precision floating-point format

• Short word (16-bit) floating-point format

• 32-bit fixed-point format

• Round-toward-nearest and round-toward-zero rounding modes

The processor also provides exception handling for floating-point
operations.

Single-Precision Floating-Point Format
The processor’s Multiplier and ALU units support the single-precision,
floating-point format specified in the IEEE 754/854 standard, as
described in Appendix C, Numeric Formats. The processor is IEEE
754/854 compatible for single-precision, floating-point operations in all
respects, except that:

• The processor does not provide inexact flags.

• NAN (Not-A-Number) inputs generate an invalid exception and
return a quiet NAN (all 1s).

• The processor flushes denormal operands to 0 when they are input
to a computation unit and do not generate an underflow exception.

It flushes to 0 any denormal or underflow result from an arithmetic
operation and generates an underflow exception.

ADSP-21065L SHARC DSP User’s Manual 2-5

Computation Units

• The processor supports round-to-nearest and round-toward-zero
modes, but does not support rounding to +Infinity or to –Infinity.

The processor also supports a 40-bit extended precision, floating-point
mode, which includes eight additional LSBs of the mantissa and is compli-
ant with the 754/854 standards. However, results in this format are more
precise than the IEEE single-precision standard specifies.

Extended-Precision FLoating-Point
Floating-point data can be either 32- or 40-bits wide. The RND32 bit in
the MODE1 register determines the width:

RND32=0 Selects extended precision, floating-point format (eight bits
of exponent and thirty-two bits of mantissa).

RND32=1 Selects normal IEEE precision (eight bits of exponent and
twenty-four bits of mantissa).

The computation unit sets the eight LSBs of floating-point
inputs to 0s before performing the operation.

It rounds the mantissa of a result to twenty-three bits (not
including the hidden bit) and sets the eight LSBs of the
40-bit result to 0s to form a 32-bit number that is equivalent
to the IEEE standard result.

Short Word Floating-Point Format
The processor supports a 16-bit, floating-point data type and provides
conversion instructions for it. The short float data format has an 11-bit
mantissa with a 4-bit exponent and a sign bit. The 16-bit floating-point
numbers reside in the lower sixteen bits of the 32-bit floating-point field.

Two shifter instructions, FPACK and FUNPACK, perform the packing
and unpacking conversions between 32-bit and 16-bit floating-point

Data Formats

2-6 ADSP-21065L SHARC DSP User’s Manual

words. FPACK converts a 32-bit IEEE floating-point number to a 16-bit
floating-point number. FUNPACK converts the 16-bit floating-point
numbers back to 32-bit IEEE floating-point. Both instructions execute in
a single cycle.

The short float type supports gradual underflow. This type sacrifices pre-
cision for dynamic range. When packing a number that would have
underflowed, the Shifter sets the exponent to 0 and right-shifts the man-
tissa (including the hidden 1) the appropriate amount. The packed result
is a denormal, which applications can unpack into a normal IEEE float-
ing-point number.

Exception Handling for FLoating-Point Operations
Both the Multiplier and ALU provide exception information when execut-
ing floating-point operations. Each unit updates overflow, underflow, and
invalid operation flags in the arithmetic status (ASTAT) register and in
the sticky status (STKY) register. An underflow, overflow, or invalid oper-
ation from any computation unit also generates a maskable interrupt. So,
applications have three ways to handle floating-point exceptions:

• Interrupts

When your application must correct all exceptions as they occur, use
an interrupt service routine to handle the exception condition
immediately.

• ASTAT register

When your application needs to monitor a particular floating-point
operation, test the exception flags in the ASTAT register that per-
tain to a particular arithmetic operation after the processor has per-
formed the operation.

ADSP-21065L SHARC DSP User’s Manual 2-7

Computation Units

• STKY register

When exception handling is noncritical, examine the exception flags
in the STKY register at the end of a series of operations. If any flags
are set, some of the results are incorrect.

Fixed-Point Format
The processor always represents fixed-point numbers in 32-bit, left-justi-
fied (occupy the thirty-two MSBs) format in its 40-bit data fields. You can
treat these numbers as fractions or integers and as unsigned or
twos-complement.

Each computation unit has its own restrictions on how you can mix these
formats in a given operation.

The computation units read 32-bit operands from 40-bit registers, ignor-
ing the eight LSBs, and write 32-bit results, zero-filling the eight LSBs.

Rounding Modes
The processor supports two modes of rounding. Both modes follow the
IEEE 754 standard definitions.

• Round-Toward-Zero

If the processor cannot represent exactly the result before rounding
in the destination format, it rounds the result to the number that is
nearer to 0.

This method is equivalent to truncation.

Data Formats

2-8 ADSP-21065L SHARC DSP User’s Manual

• Round-Toward-Nearest

If the processor cannot represent exactly the result before rounding
in the destination format, it rounds the result to the number that is
nearer to the result before rounding.

If the result before rounding is exactly halfway between two num-
bers in the destination format (differing by an LSB), the processor
rounds the result to the number that has an LSB equal to 0.

Statistically, rounding up occurs as often as rounding down, so this
method has no large sample bias.

Because the maximum floating-point value is one LSB less than the
value that represents Infinity, in this mode, a result that is halfway
between the maximum floating-point value and Infinity rounds to
Infinity.

ADSP-21065L SHARC DSP User’s Manual 2-9

Computation Units

Register File
The Register File provides the interface between the processor’s internal
data buses and its computation units. It also provides local storage for
operands and results.

The Register File has these structural and functional characteristics:

• Consists of sixteen primary registers and sixteen alternate (second-
ary) registers.

• All of the individual data registers are forty bits wide.

• 32-bit data from the computation units is always left-justified.

• On register reads, the processor ignores the eight LSBs, and on reg-
ister writes, it writes the eight LSBs with zeros (0).

Accesses of the Register File have these characteristics:

• Program memory data accesses and data memory accesses occur on
the PM Data bus and DM Data bus, respectively.

• One PM Data bus and/or one DM Data bus access can occur in one
cycle.

• Transfers between the Register File and the 40-bit DM Data bus are
always forty bits wide.

• The Register File transfers data to and from the 48-bit PM Data bus
in the most significant forty bits, writing zeros (0) in the lower eight
bits on transfers to the PM Data bus.

Register File

2-10 ADSP-21065L SHARC DSP User’s Manual

• If the same location in the Register File is specified as both the
source of an operand and the destination of a result or memory
fetch, the read occurs in the first half of the cycle, and the write
occurs in the second half.

This enables the processor to use the old data as the operand before
it updates the location with the resulting new data.

• If writes to the same location take place in the same cycle, only the
write with higher precedence actually occurs. The source of the
write data determines the precedence.

In order of precedence, the sources for write data are:

• Data memory or universal register

• Program memory

• ALU

• Multiplier

• Shifter

Individual Data Registers
In assembly language source code, the individual registers of the Register
File carry a prefix. An F indicates floating-point computations, and an R
indicates fixed-point computations.

The following instructions, for example, use the same registers:

F0=F1 * F2;floating-point multiply

R0=R1 * R2;fixed-point multiply

The F and R prefixes do not affect the 32-bit (or 40-bit) data transfer; they
determine how the ALU, Multiplier, or Shifter treat the data only. You

ADSP-21065L SHARC DSP User’s Manual 2-11

Computation Units

can use either uppercase or lowercase letters for these prefixes since the
assembler is case-insensitive.

Alternate Registers
To implement fast context switching, the Register File has an a set of
alternate registers. Each half of the Register File—the lower half, R0
through R7, and the upper half, R8 through R15—can independently
activate its alternate register set.

Two bits in the MODE1 register select the active sets. To share data
between contexts, you place the data to share in one half of the Register
File and activate the alternate register set of the other half.

Note that one cycle of effect latency occurs from the time the instruction
sets the bit in MODE1 to when the alternate registers are accessible.

For example,

BIT SET MODE1 SRRFL;/* activate alternate registers */
NOP; /* wait until alternate registers

 activate */
R0=7;

Table 2-1. MODE1 bits that select the active register sets

Bit Name Definition

7 SRRFH Register file alternate select for R15-R8
(F15-F8)

10 SRRFL Register file alternate select for R7-R0 (F7-F0)

Arithmetic Logic Unit (ALU)

2-12 ADSP-21065L SHARC DSP User’s Manual

Arithmetic Logic Unit (ALU)
The ALU performs arithmetic operations on fixed-point and float-
ing-point data and logical operations on fixed-point data.

ALU fixed-point instructions operate on 32-bit, fixed-point operands and
output 32-bit, fixed-point results.

ALU floating-point instructions operate on 32- or 40-bit, floating-point
operands and output 32- or 40-bit, floating-point results.

ALU instructions include:

• Floating-point: addition, subtraction, dual addition/subtraction,
average.

• Fixed-point: addition, subtraction, dual addition/subtraction, aver-
age.

• Floating-point manipulation: binary log, scale, mantissa.

• Fixed-point: add with carry, subtract with borrow, increment, dec-
rement.

• Logical AND, OR, XOR, NOT.

• Functions: absolute value, pass, min, max, clip, compare.

• Format conversion.

• Reciprocal and reciprocal square root primitives.

For details on dual add/subtract and parallel ALU and multiplier opera-
tion, see “Multifunction Operations” on page 2-50.

ADSP-21065L SHARC DSP User’s Manual 2-13

Computation Units

ALU Operations
ALU operations take one or two input operands, the X input and the Y
input. These operands can be any data register in the Register File.

ALU operations usually return one result. The exceptions are:

• Dual add/subtract operations

These operations return two results.

• Compare operations

These operations return no result. They only update flags.

You can return ALU results to any location in the Register File.

The processor transfers input operands from the Register File during the
first half of the cycle. It transfers results to the Register File during the sec-
ond half of the cycle. This scheme enables the ALU to read and write the
same location in the Register File in a single cycle.

For fixed-point operations, the processor treats both X and Y inputs as
32-bit, fixed-point operands and transfers the upper thirty-two bits from
the source location in the Register File.

The results of fixed-point operations are always 32-bit, fixed-point values.
Some floating-point operations (LOGB, MANT and FIX) can also yield
fixed-point results. The processor transfers fixed-point results to the upper
thirty-two bits of a location in the Register File and clears the lower eight
bits of the location.

The format of fixed-point operands and results depends on the operation.
Most arithmetic operations do not need to distinguish between integer
and fraction formats. The processor treats fixed-point inputs to opera-
tions, such as scaling a floating-point value, as integers. For determining
status, such as overflow, the processor treats fixed-point arithmetic oper-
ands and results as twos-complement numbers.

Arithmetic Logic Unit (ALU)

2-14 ADSP-21065L SHARC DSP User’s Manual

ALU Operating Modes
Three bits in the MODE1 register affect the ALU:

• Saturation bit (ALUSAT)

This bit affects ALU operations that yield fixed-point results.

• Rounding mode bit (TRUNC)

• Rounding boundary bit (RND32)

Both rounding bits affect floating-point operations in both the ALU and
the Multiplier.

Fixed-Point Saturation Mode

In saturation mode, all positive, fixed-point overflows cause the processor
to return the maximum positive, fixed-point number (0x7FFF FFFF), and

Table 2-2. MODE1 ALU-related bits

Bit Name Description

13 ALUSAT Saturation mode.

0 = Disable ALU saturation

1 = Enable ALU saturation (full scale in
fixed-point)

15 TRUNC Rounding mode.

0 = Round-to-nearest

1 = Truncation

16 RND32 Rounding boundary.

0 = Round to 40 bits

1 = Round to 32 bits

ADSP-21065L SHARC DSP User’s Manual 2-15

Computation Units

all negative overflows cause the processor to return the maximum negative
number (0x8000 0000).

ALUSAT=0 Fixed-point results that overflow remain unsaturated; that
is, the upper thirty-two bits of the result return unaltered.

ALUSAT=1 Fixed-point results that overflow are saturated; that is, for
positive overflows, the processor returns 0x7FFF FFFF, and
for negative overflows, it returns 0x8000 0000.

The ALU overflow flag reflects the ALU result before saturation.

Floating-Point Rounding Modes

The ALU supports two IEEE rounding modes. The TRUNC bit in the
MODE1 register determines which rounding mode the processor uses for
all ALU operations:

TRUNC=0 Selects the round-to-nearest mode.

TRUNC=1 Selects the round-to-zero mode.

Floating-Point Rounding Boundary

The results of floating-point ALU operations can be either 32-or 40-bit,
floating-point data.

RND32=0 ALU inputs 40-bit operands unchanged and outputs 40-bit
results from floating-point operations. Writes all 40 bits to
the specified location in the Register File.

RND32=1 ALU flushes the eight LSBs of each input operand to 0s
before performing the operation (except for the RND oper-
ation) and outputs floating-point results in the 32-bit IEEE
format. It clears the lower eight bits of the result.

In fixed-point to floating-point conversion, the rounding boundary is
always forty bits, even if RND32=1.

Arithmetic Logic Unit (ALU)

2-16 ADSP-21065L SHARC DSP User’s Manual

ALU Status Flags
The ALU updates seven status flags in the ASTAT register at the end of
each operation. Table 2-3 lists and describes these ASTAT status flag bits.

The states of the seven flags reflect the result of the most recent ALU oper-
ation. The ALU updates the compare accumulation (CACC) bits in
ASTAT at the end of every compare operation.

The ALU also updates four sticky status flags in the STKY register, as
shown in Table 2-4. Once set, a sticky flag remains high until explicitly
cleared.

Table 2-3. ASTAT bit definitions for ALU status flags

Bit Name Description

0 AZ ALU result zero or floating-point underflow

1 AV ALU overflow

2 AN ALU result negative

3 AC ALU fixed-point carry

4 AS ALU X input sign (ABS, MANT operations)

5 AI ALU floating-point invalid operation

10 AF Last ALU operation was a floating-point opera-
tion

24-31 CACC Compare Accumulation register (results of last
eight compare operations)

ADSP-21065L SHARC DSP User’s Manual 2-17

Computation Units

The ALU updates a flag at the end of the cycle in which the status is gen-
erated, and the new value is available on the next cycle.

If an application explicitly writes the ASTAT register or the STKY register
in the same cycle that the ALU is performing an operation, the write to
ASTAT or STKY supersedes the flag update that the ALU operation
generates.

ALU Zero Flag (AZ)

The ALU determines the zero flag for all fixed-point and floating-point
ALU operations. It sets AZ whenever the result of an ALU operation is 0;
otherwise, the ALU clears this bit.

AZ also signifies floating-point underflow (see "ALU Underflow Flags
(AZ, AUS)").

ALU Underflow Flags (AZ, AUS)

The ALU determines underflow for all ALU operations that return a float-
ing-point result and for floating-point to fixed-point conversions.

Table 2-4. STKY bit definitions for ALU status flags

Bit Name Description

0 AUS ALU floating-point underflow

1 AVS ALU floating-point overflow

2 AOS ALU fixed-point overflow

5 AIS ALU floating-point invalid operation

Arithmetic Logic Unit (ALU)

2-18 ADSP-21065L SHARC DSP User’s Manual

The ALU sets AUS whenever the result of an ALU operation is smaller
than the smallest number the processor can represent in the output
format.

The ALU sets AZ whenever a floating-point result is smaller than the
smallest number the processor can represent in the output format.

ALU Negative Flag (AN)

The ALU determines the negative flag for all ALU operations. The ALU
sets AN whenever the result of an ALU operation is negative. Otherwise,
the ALU clears this bit.

ALU Overflow Flags (AV, AOS, AVS)

The ALU determines overflow for all fixed-point and floating-point ALU
operations. For fixed-point results, the ALU sets AV and AOS whenever
the XOR of the two most significant bits is 1. Otherwise, it clears AV.

For floating-point results, the ALU sets AV and AVS whenever the
post-rounded result overflows (unbiased exponent > 127). Otherwise, it
clears AV.

ALU Fixed-Point Carry Flag (AC)

The ALU determines the carry flag for all fixed-point ALU operations. For
fixed-point arithmetic operations, the ALU sets AC if a carry out of the
most significant bit of the result occurs. Otherwise, it clears AC.

The ALU clears AC for fixed-point logic, PASS, MIN, MAX, COMP,
ABS, and CLIP operations. The ALU reads the AC flag in fixed-point
addition with carry operations and in fixed-point subtraction with carry
operations.

ADSP-21065L SHARC DSP User’s Manual 2-19

Computation Units

ALU Sign Flag (AS)

The ALU determines the sign flag for the fixed-point and floating-point
ABS operations and the MANT operation only. The ALU sets AS if the
input operand is negative. Otherwise, it clears AS.

This functionality differs from that of other ADSP-2100 family proces-
sors, which do not update the AS flag on operations other than ABS.

ALU Invalid FLag (AI, AIS)

The ALU determines the invalid flag for all floating-point ALU
operations.

The ALU sets AI and AIS whenever:

• An input operand is a NAN.

• The processor attempts to add oppositely signed Infinities.

• The processor attempts to subtract identically signed Infinities.

• Saturation mode is disabled, and a floating-point to fixed-point
conversion results in an overflow or operates on an Infinity.

Otherwise, the ALU clears AI.

ALU Floating-Point Flag (AF)

The ALU determines AF for all fixed-point and floating-point ALU oper-
ations. The ALU sets AF if the last operation was a floating-point
operation. Otherwise, it clears AF.

ALU Compare Accumulation Operations

Bits 31:24 in the ASTAT register store the flag results of up to eight ALU
compare operations. These bits form a right-shift register.

Arithmetic Logic Unit (ALU)

2-20 ADSP-21065L SHARC DSP User’s Manual

When the processor executes an ALU compare operation, it shifts the
eight bits toward the LSB (bit 24 is lost). Then it writes the MSB, bit 31,
with the result of the compare operation. If the X operand is greater than
the Y operand in the compare instruction, the processor sets bit 31. Oth-
erwise, it clears bit 31.

Graphics applications can use the accumulated compare flags to imple-
ment two- and three-dimensional clipping operations.

ADSP-21065L SHARC DSP User’s Manual 2-21

Computation Units

ALU Instruction Set Summary

Table 2-5. Summary of ALU instructions

Instruction

ASTAT Status Flags STKY Status
Flags

A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Fixed-Point

Rn=Rx+Ry† * * * * 0 0 0 — — — ** —

Rn=Rx−RY† * * * * 0 0 0 — — — ** —

Rn=Rx+Ry+CI† * * * * 0 0 0 — — — ** —

Rn=Rx−Ry+CI−1† * * * * 0 0 0 — — — ** —

Rn=(Rx+Ry)/2 * 0 * * 0 0 0 — — — — —

COMP(Rx,Ry) * 0 * 0 0 0 0 * — — — —

Rn=Rx+CI * * * * 0 0 0 — — — ** —

Rn, Rx, Ry = Any location in the Register File; treated as
fixed-point

Fn, Fx, Fy = Any location in the Register File; treated as float-
ing-point

† = ADSP-21xx-compatible instruction

* = Set or cleared depending on results of instruction

** = Can be set, but not cleared, depending on results of instruc-
tion

— = Not affected

Arithmetic Logic Unit (ALU)

2-22 ADSP-21065L SHARC DSP User’s Manual

Rn=Rx+CI−1 * * * * 0 0 0 — — — ** —

Rn=Rx+1 * * * * 0 0 0 — — — ** —

Rn=Rx−1 * * * * 0 0 0 — — — ** —

Rn=−Rx† * * * * 0 0 0 — — — ** —

Rn=ABS Rx† * * 0 0 * 0 0 — — — ** —

Rn=PASS Rx * 0 * 0 0 0 0 — — — — —

Rn=Rx AND Ry† * 0 * 0 0 0 0 — — — — —

Rn=Rx OR Ry† * 0 * 0 0 0 0 — — — — —

Rn=Rx XOR Ry† * 0 * 0 0 0 0 — — — — —

Table 2-5. Summary of ALU instructions (Cont’d)

Instruction

ASTAT Status Flags STKY Status
Flags

A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Rn, Rx, Ry = Any location in the Register File; treated as
fixed-point

Fn, Fx, Fy = Any location in the Register File; treated as float-
ing-point

† = ADSP-21xx-compatible instruction

* = Set or cleared depending on results of instruction

** = Can be set, but not cleared, depending on results of instruc-
tion

— = Not affected

ADSP-21065L SHARC DSP User’s Manual 2-23

Computation Units

Rn=NOT Rx† * 0 * 0 0 0 0 — — — — —

Rn=MIN(Rx, Ry) * 0 * 0 0 0 0 — — — — —

Rn=MAX(Rx, Ry) * 0 * 0 0 0 0 — — — — —

Rn=CLIP Rx BY Ry * 0 * 0 0 0 0 — — — — —

Floating-Point

Fn=Fx+Fy * * * 0 0 * 1 — ** ** — **

Fn=Fx−Fy * * * 0 0 * 1 — ** ** — **

Fn=ABS(Fx+Fy) * * 0 0 0 * 1 — ** ** — **

Fn=ABS(Fx−Fy) * * 0 0 0 * 1 — ** ** — **

Fn=(Fx+Fy)/2 * 0 * 0 0 * 1 — ** — — **

Table 2-5. Summary of ALU instructions (Cont’d)

Instruction

ASTAT Status Flags STKY Status
Flags

A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Rn, Rx, Ry = Any location in the Register File; treated as
fixed-point

Fn, Fx, Fy = Any location in the Register File; treated as float-
ing-point

† = ADSP-21xx-compatible instruction

* = Set or cleared depending on results of instruction

** = Can be set, but not cleared, depending on results of instruc-
tion

— = Not affected

Arithmetic Logic Unit (ALU)

2-24 ADSP-21065L SHARC DSP User’s Manual

COMP(Fx, Fy) * 0 * 0 0 * 1 * — — — **

Fn=−Fx * * * 0 0 * 1 — — ** — **

Fn=ABS Fx * * 0 0 * * 1 — — ** — **

Fn=PASS Fx * 0 * 0 0 * 1 — — — — **

Fn=RND Fx * * * 0 0 * 1 — — ** — **

Fn=SCALB Fx BY Ry * * * 0 0 * 1 — ** ** — **

Rn=MANT Fx * * 0 0 * * 1 — — ** — **

Rn=LOGB Fx * * * 0 0 * 1 — — ** — **

Rn=FIX Fx BY Ry * * * 0 0 * 1 — ** ** — **

Rn=FIX Fx * * * 0 0 * 1 — ** ** — **

Table 2-5. Summary of ALU instructions (Cont’d)

Instruction

ASTAT Status Flags STKY Status
Flags

A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Rn, Rx, Ry = Any location in the Register File; treated as
fixed-point

Fn, Fx, Fy = Any location in the Register File; treated as float-
ing-point

† = ADSP-21xx-compatible instruction

* = Set or cleared depending on results of instruction

** = Can be set, but not cleared, depending on results of instruc-
tion

— = Not affected

ADSP-21065L SHARC DSP User’s Manual 2-25

Computation Units

For details on each of the ALU instructions, see “ALU Operations” on
page B-2, in ADSP-21065L SHARC DSP Technical Reference.

Fn=FLOAT Rx BY Ry * * * 0 0 0 1 — ** ** — —

Fn=FLOAT Rx * 0 * 0 0 0 1 — — — — —

Fn=RECIPS Fx * * * 0 0 * 1 — ** ** — **

Fn=RSQRTS Fx * * * 0 0 * 1 — — ** — **

Fn=Fx COPYSIGN Fy * 0 * 0 0 * 1 — — — — **

Fn=MIN(Fx, Fy) * 0 * 0 0 * 1 — — — — **

Fn=MAX(Fx, Fy) * 0 * 0 0 * 1 — — — — **

Fn=CLIP Fx BY Fy * 0 * 0 0 * 1 — — — — **

Table 2-5. Summary of ALU instructions (Cont’d)

Instruction

ASTAT Status Flags STKY Status
Flags

A
Z

A
V

A
N

A
C

A
S

A
I

A
F

C
A
C
C

A
U
S

A
V
S

A
O
S

A
I
S

Rn, Rx, Ry = Any location in the Register File; treated as
fixed-point

Fn, Fx, Fy = Any location in the Register File; treated as float-
ing-point

† = ADSP-21xx-compatible instruction

* = Set or cleared depending on results of instruction

** = Can be set, but not cleared, depending on results of instruc-
tion

— = Not affected

Multiplier Unit

2-26 ADSP-21065L SHARC DSP User’s Manual

Multiplier Unit
The Multiplier performs fixed-point or floating-point multiplication and
fixed-point, multiply and accumulate operations.

It can perform fixed-point, multiply and accumulates with either cumula-
tive addition or cumulative subtraction.

Through parallel operation of the ALU and Multiplier, using multifunc-
tion instructions, applications can perform floating-point, multiply and
accumulates. See “Multifunction Operations” on page 2-50.

Multiplier fixed-point instructions operate on 32-bit, fixed-point data and
produce 80-bit results. These instructions treat inputs as fractional or
integer, unsigned or twos-complement.

Multiplier floating-point instructions operate on 32- or 40-bit float-
ing-point operands and output 32- or 40-bit floating-point results.

Multiplier instructions include:

• 32-bit, fixed-point multiplication.

• Fixed-point multiply and accumulate to eighty bits (with addition),
with rounding optional.

• Fixed-point multiply and accumulate to eighty bits (with subtrac-
tion), rounding optional.

• Round result register.

• Saturate result register.

• Clear result register.

• Floating-point multiplication.

ADSP-21065L SHARC DSP User’s Manual 2-27

Computation Units

Multiplier Operations
The Multiplier takes two input operands, the X-input and the Y-input.
These operands can be any of the data registers in the Register File.

Fixed-point operations can accumulate fixed-point results in either of the
Multiplier’s two local result registers (MR) or write results back to the
Register File. The processor can round or saturate results stored in the MR
registers in separate operations.

Floating-point operations yield floating-point results, which the processor
always writes directly back to the Register File.

The processor transfers input operands during the first half of the cycle
and results during the second half of the cycle. This enables the Multiplier
to read and write the same location in the Register File within a single
cycle.

In fixed-point operations that use inputs from the Register File, the pro-
cessor reads from the upper thirty-two bits of the source location.

You can input fixed-point operands in either integer or fractional format,
but both operands must in the same format. The format of the result is the
same as the format of the inputs.

You can input each fixed-point operand as either an unsigned or a
twos-complement number. If both inputs are fractional and signed, the
Multiplier automatically shifts the result left one bit to remove the redun-
dant sign bit.

You specify the input data type within the multiplier instruction.

Multiplier Unit

2-28 ADSP-21065L SHARC DSP User’s Manual

Fixed-Point Results
Fixed-point operations yield 80-bit results in the MR register. The loca-
tion of a result in the 80-bit field depends on whether the result is in
fraction or integer format, as shown in Figure 2-2.

Figure 2-2. Placement of fixed-point results

If it sends the result directly to the Register File, the processor transfers
the thirty-two bits that have the same format as the input data; that is, bits
63:32 for a fraction result or bits 31:0 for an integer result. The processor
zero-fills the eight LSBs of the 40-bit location in the Register File.

For fraction results, you can specify rounding-to-nearest before the pro-
cessor transfers the results to the Register File (for details, see “Rounding
MR Register” on page 2-30 and “Rounding Mode” on page 2-33). Other-
wise, the processor truncates (rounds-to-zero) fraction results, discarding
bits 31:0.

Using the MR Registers
The processor can send an entire result to one of two dedicated, 80-bit
result registers (MR). Both MR registers are subdivided into three subreg-
isters, MR2, MR1, and MR0. You can access each of these subregisters
individually to read from or write to the Register File.

��� ��� ���

���	
���
	�������	����� ����	
���

���	
��� ���	
��� ������	�	�����

�� �� �� �

ADSP-21065L SHARC DSP User’s Manual 2-29

Computation Units

When reading data from MR2, the processor sign-extends the data to
thirty-two bits (see Figure 2-3). When reading data from MR2, MR1, or
MR0 and writing it to the Register File, the processor zero-fills the eight
LSBs of the 40-bit location in the Register File.

Figure 2-3. MR transfer formats

The processor writes into MR2, MR1, or MR0 data from the thirty-two
MSBs of a location in the Register File, ignoring the eight LSBs. It
sign-extends into MR2 the data it wrote into MR1; that is, the processor
repeats the MSB of MR1 in the sixteen bits of MR2. The processor does
not sign-extend the data it writes to MR0.

The two MR registers are designated MRF (foreground) and MRB (back-
ground). Foreground registers are those that the SRCU bit in the
MODE1 register is currently activating, and background registers are
those it is currently deactivating.

In the case where only one MR register is used at a time, the SRCU bit
activates one or the other to implement context switching. However,
unlike other registers for which alternate sets exist, both MR register sets
are accessible at the same time.

All (fixed-point) accumulation instructions can specify either result regis-
ter for accumulation, regardless of the state of the SRCU bit. So, instead
of using the MR registers as primary and alternate registers, you can use

Sign Extend MR2 Zeros

16 bits 16 bits 16 bits

8-bits32-bits

MR0 Zeros

MR1 Zeros

8 bits32 bits

Multiplier Unit

2-30 ADSP-21065L SHARC DSP User’s Manual

them as two parallel accumulators. This feature supports complex math
operations.

Transfers between MR registers and the Register File are considered com-
putation unit operations since they involve the Multiplier. So, although
the syntax for the transfer is the same as for any other transfer to or from
the Register File, you specify an MR transfer in an instruction where a
computation is normally specified. For example, the processor can per-
form a multiply and accumulate in parallel with a data memory read, as in:

MRF=MRF-R5*R0, R6=DM(I1,M2),

or it can perform an MR transfer instead of the computation, as in:

R5=MR1F, R6=DM(I1,M2)

Fixed-Point MR Register Operations
In addition to multiplication, fixed-point operations include accumula-
tion, rounding, and saturation of fixed-point data. The three MR register
operations are:

• Clear MR register

• Round MR register

• Saturate MR register

Clear MR Register

This operation resets the specified MR register to 0. Performed at the start
of a multiply and accumulate operation, it removes results left over from
the previous operation.

Rounding MR Register

Rounding of a fixed-point result occurs either as part of a multiply, a mul-
tiply and accumulate, or an explicit operation on the MR register.

ADSP-21065L SHARC DSP User’s Manual 2-31

Computation Units

This operation applies only to fraction results (integer results are not
affected) and rounds the 80-bit MR value to nearest at bit 32; that is, at
the MR1-MR0 boundary.

Applications can send the rounded result in MR1 either to the Register
File or back to the same MR register.

To round a fraction result to 0 (truncation) instead of to nearest, you sim-
ply transfer the unrounded result from MR1, discarding the lower
thirty-two bits in MR0.

Saturate MR Register

This operation sets MR to a maximum value if the MR value has over-
flowed. Overflow occurs when the MR value is greater than the maximum
value for the data format (unsigned or twos-complement and integer or
fractional) that is specified in the saturate instruction.

This operation has six possible maximum values (values are in hexadeci-
mal), as shown in Table 2-6.

Table 2-6. Valid MR maximum saturation values

Data Format MR2 MR1 MR0 Sign

Max. 2s-comp.,
Fractional

0000 7FFF FFFF FFFF FFFF +

FFFF 8000 0000 0000 0000 −

Max. 2s-comp.,
Integer

0000 0000 0000 7FFF FFFF +

FFFF FFFF FFFF 8000 0000 −

Max. unsigned,
Fractional

0000 FFFF FFFF FFFF FFFF

Max. unsigned,
Integer

0000 0000 0000 FFFF FFFF

Multiplier Unit

2-32 ADSP-21065L SHARC DSP User’s Manual

You can send the result from MR saturation to either the Register File or
back to the same MR register.

Floating-Point Operating Modes
Two mode status bits in the MODE1 register affect multiplier (and ALU)
operations:

• Rounding mode (TRUNC)

• Rounding boundary bits (RND32)

Although the processor supports these two rounding modes for
fixed-point multiplier operations on fraction data, the Multiplier performs
the round-to-nearest operation only. This is so because the Multiplier has
a local result register for fixed-point operations, and it reads only the
upper bits of the result and discards the lower bits, implicitly
rounding-to-zero.

Table 2-7. MODE1 ALU and Multiplier operation status bits

Bit Name Description

0 TRUNC Rounding mode.

0= Round-to-nearest

1= Truncate

1 RND32 Rounding boundary.

0= Round to 40 bits

1= Round to 32 bits

ADSP-21065L SHARC DSP User’s Manual 2-33

Computation Units

Rounding Mode

The Multiplier supports two IEEE rounding modes for floating-point
operations.

TRUNC=1 Rounds a floating-point result to 0 (truncation).

TRUNC=0 Rounds to nearest.

Rounding Boundary

Multiplier floating-point inputs and results can be either 32- or 40-bit
floating-point data.

RND32=1 The processor flushes the eight LSBs of each input operand
to 0s before multiplication and outputs floating-point
results in the 32-bit IEEE format, clearing the lower eight
bits of the 40-bit Register File location.

The processor rounds the mantissa of the result to
twenty-three bits (not including the hidden bit).

RND32=0 The Multiplier inputs full 40-bit values from the Register
File and outputs results in the 40-bit extended IEEE format,
rounding the mantissa to thirty-one bits (not including the
hidden bit).

Multiplier Unit

2-34 ADSP-21065L SHARC DSP User’s Manual

Multiplier Status Flags
The Multiplier updates four status flags at the end of each operation. All
of these flags appear in the ASTAT register. The states of these flags reflect
the result of the most recent multiplier operation, as shown in Table 2-8.

The Multiplier also updates four sticky status flags in the STKY register,
as shown in Table 2-9. Once set, a sticky flag remains high until it is
explicitly cleared.

The Multiplier updates flags at the end of the cycle in which the status is
generated, and results are available on the next cycle. If an application
writes the ASTAT register or STKY register explicitly in the same cycle

Table 2-8. ASTAT multiplier status flags

Bit Name Description

6 MN Multiplier result negative

7 MV Multiplier overflow

8 MU Multiplier underflow

9 MI Multiplier floating-point invalid operation

Table 2-9. STCKY multiplier status flags

Bit Name Description

6 MOS Multiplier fixed-point overflow

7 MVS Multiplier floating-point overflow

8 MUS Multiplier underflow

9 MIS Multiplier floating-point invalid operation

ADSP-21065L SHARC DSP User’s Manual 2-35

Computation Units

that the Multiplier is performing an operation, the explicit write to
ASTAT or STKY supersedes the update that the multiplier operation
generates.

Multiplier Negative Flag (MN)

The Multiplier determines the negative flag for all multiplier operations.
It sets MN whenever the result of a multiplier operation is negative. Oth-
erwise, it clears MN.

Multiplier Overflow Flags (MV, MVS, MOS)

The Multiplier determines the overflow flag for all fixed-point and float-
ing-point multiplier operations.

For floating-point results, the Multiplier sets MV and MVS whenever the
post-rounded result overflows (unbiased exponent > 127).

For fixed-point results, MV and MOS depend on the data format, and the
Multiplier sets them when upper bits in the MR register contain certain
values, as shown in Table 2-10.

Table 2-10. MR values that set the MV and MOS flags for fixed-point
results

Data Format MR Bits Value

Twos-Complement

Fractional Upper 17 bits of MR All 1s or not all 0s

Integer Upper 49 bits of MR All 1s or not all 0s

Unsigned

Fractional Upper 16 bits of MR Not all 0s

Integer Upper 48 bits of MR Not all 0s

Multiplier Unit

2-36 ADSP-21065L SHARC DSP User’s Manual

If the processor sends the fixed-point result to an MR register, the over-
flowed portion of the result is available in MR1 and MR2 for integer
results, or in MR2 only for fractional results.

Multiplier Invalid Operation Flag (MI)

The Multiplier determines the MI flag for floating-point multiplication. It
sets MI whenever:

• An input operand is a NAN.

• The inputs are Infinity and Zero (0)—treats denormal inputs as 0s

Otherwise, it clears MI.

Multiplier Underflow Flag (MU, MUS)

The Multiplier determines underflow for all fixed-point and float-
ing-point multiplier operations. It sets MU whenever the result of a
multiplier operation is smaller than the smallest number the processor can
represent in the output format. Otherwise, it clears MU.

For floating-point results, the Multiplier sets MU and MUS whenever the
post-rounded result underflows (unbiased exponent < – 126). Denormal
operands are treated as 0s, so they never cause underflows.

For fixed-point results, MU and MUS depend on the data format and the
Multiplier sets them when the upper bits of the result contain certain val-
ues, as shown in Table 2-11 on page 2-37.

ADSP-21065L SHARC DSP User’s Manual 2-37

Computation Units

If the processor sends the fixed-point result to an MR register, the under-
flowed portion of the result is available in MR0 (fractional result only).

Table 2-11. Results that set the MU and MUS flags for fixed-point results

Data Format Bits Value

Twos-Complement

Fractional Upper 48 bits of MR

Lower 32 bits

All 0s or all 1s

Not all 0s

Integer Not possible Not Applicable

Unsigned

Fractional Upper 48 bits

Lower 32 bits

All 0s

Not all 0s

Integer Not possible Not Applicable

Multiplier Unit

2-38 ADSP-21065L SHARC DSP User’s Manual

Multiplier Instruction Set Summary
Table 2-12 lists the optional modifiers used in Multiplier fixed-point
operations and shows where they appear in instruction syntax in the tables
that follow.

Table 2-13 lists the symbols that appear in the multiplier instruction set
summary tables that follow.

Table 2-12. Optional modifiers for Multiplier fixed-point instructions

(X
Input

Y
Input

Data
Format,
rounding

) S Signed input
U Unsigned input
I Integer input(s)
F Fractional input(s)
FR Fractional input(s), rounded

output
(SF) Default format for 1-input

operations
(SSF) Default format for 2-input

operations

Table 2-13. Table symbols for all Multiplier instructions

Symbol Meaning

* Set or cleared, depending on results

** Set, but not cleared, depending on results

— Not affected

Rn, Rx, Ry R15-R0 Register File locations, treated as
fixed-point

Fn, Fx, Fy F15-F0 Register File locations, treated as float-
ing-point

ADSP-21065L SHARC DSP User’s Manual 2-39

Computation Units

MRxF MR2F, MR1F, MR0F multiplier result accumulators,
foreground

MRxB MR2B, MR1B, MR0B multiplier result accumulators,
background

Table 2-14. Multiplier fixed-point instructions
ASTAT Flags STKY Flags
M
U

M
N

M
V

M
I

M
U
S

M
O
S

M
V
S

M
I
S

Rn = Rx × Ry (S S F) * * * 0 — ** — —
MRF U U I
MRB FR

Rn=MRF +Rx × Ry (S S F) * * * 0 — ** — —
Rn=MRB U U I
MRF=MR
B

FR

MRB=MR
B

Rn=MRF −Rx × Ry (S S F) * * * 0 — ** — —
Rn=MRB U U I
MRF=MR
B

FR

MRB=MR
B

Table 2-13. Table symbols for all Multiplier instructions

Symbol Meaning

Multiplier Unit

2-40 ADSP-21065L SHARC DSP User’s Manual

For details on each of the Multiplier instructions, see “Multiplier Opera-
tions” on page B-50, in ADSP-21065L SHARC DSP Technical Reference.

ASTAT Flags STKY Flags
M
U

M
N

M
V

M
I

M
U
S

M
O
S

M
V
S

M
I
S

Rn=SAT MRF (SI) * * * 0 — ** — —
RN=SAT MRB (UI)
MRF=SAT
MRB

(SF)

MRB=SAT
MRB

(UF)

Rn=RND MRF (SF) * * * 0 — ** — —
RN=RND MRB (UF)
MRF=RND
MRB
MRB=RND
MRB

MRF = 0 0 0 0 0 — — — —
MRB

MRxF = Rn 0 0 0 0 — — — —
MRxB

Rn = MRxF 0 0 0 0 — — — —
MRxB

Table 2-15. Multiplier floating-point instruction

Fn = Fx × Fy * * * 0 ** — ** **

ADSP-21065L SHARC DSP User’s Manual 2-41

Computation Units

Shifter Unit
The Shifter operates on 32-bit, fixed-point operands. It performs:

• Shifts and rotates from off-scale left to off-scale right.

• Bit manipulations bit set, clear, toggle, and test.

• Bit field manipulations extract and deposit.

• Support operations for conversions between fixed-point and float-
ing-point numbers (exponent extract, number of leading 1s or 0s).

Shifter Operations
The Shifter takes from one to three input operands:

• X-input

This input is operated on.

• Y-input

Specifies shift magnitudes, bit field lengths, or bit positions.

• Z-input

This operand is operated on and updated as, for example:

Rn = Rn OR LSHIFT Rx BY Ry

The Shifter returns one output to the Register File.

During the first half of the cycle, the Shifter fetches input operands from
the upper thirty-two bits of a location in the Register File (bits 39:8) or
from an immediate value in the instruction. During the second half of the
cycle, it transfers results to the upper thirty-two bits of a register, filling
the eight LSBs with zeros (0). This enables the Shifter to read and write
the same location in the Register File in a single cycle.

Shifter Unit

2-42 ADSP-21065L SHARC DSP User’s Manual

The X-input and Z-input are always 32-bit, fixed-point values. The
Y-input is either a 32-bit, fixed-point value or an 8-bit field (shf8) posi-
tioned in the Register File as shown in Figure 2-4.

Figure 2-4. Register File fields for Shifter instructions

Some Shifter operations produce 8-bit or 6-bit results. The Shifter places
these results in either the shf8 field or the bit6 field (see Figure 2-5 on
page 2-42) and sign-extends them to 32 bits. This procedure ensures that
the Shifter always returns a 32-bit result.

Bit Field Deposit and Extract Operations
The Shifter’s bit field deposit (FDEP) and bit field extract (FEXT)
instructions provide a way to manipulate groups of bits within a 32-bit,
fixed-point integer word.

The Y-input for these instructions specifies two 6-bit values, bit6 and
len6, positioned in the Ry register as shown in Figure 2-5.

Figure 2-5. Register File fields for FDEP and FEXT instructions

39 7 0

32-bit Y-input or result

39 15 7 0

shf8

8-bit Y-input or result

39 19 13 7 0

len6 bit6

12-bit Y-input

ADSP-21065L SHARC DSP User’s Manual 2-43

Computation Units

The Shifter interprets bit6 and len6 as positive integers. Bit6 is the start-
ing bit position for the deposit or extract. Len6 is the length, in number of
bits, of the field to deposit or extract.

The FDEP (field deposit) instructions take a group of bits from the input
register Rx (starting at the LSB of the 32-bit integer field) and deposit
them anywhere within the result register Rn (see Figure 2-6). The bit6
value specifies the starting bit position for the deposit.

Figure 2-6. Bit field of the FDEP instruction

The FEXT (field extract) instructions extract a group of bits from any-
where within the input register Rx and place them in the result register Rn
(aligned with the LSB of the 32-bit integer field). The bit6 value specifies
the starting bit position for the extract.

39 19 13 7 0

len6 bit6Ry

Rn

Rx

39 7 0

39 7 0

deposit field

bit6 Reference point

len6 = Number of bits to take from Rx, starting from LSB of 32-bit field

Ry determines length of bit field to take from Rx and starting position for deposit in Rn

bit6 = Starting bit position for deposit, referenced from LSB of 32-bit field

Shifter Unit

2-44 ADSP-21065L SHARC DSP User’s Manual

Figure 2-7 illustrates the following field deposit instruction example:

R0=FDEP R1 BY R2;

Figure 2-7. Bit field deposit example

Figure 2-8 on page 2-45 illustrates the following field extract instruction
example:

R3=FEXT R4 BY R5;

0 0 0 0 0 0 0 01 1 1 1 1 1 1 10 0 0 0 0 0 0 00 0 0 0 0 0 0 0

39 32 24 16

16

8

8

0

0

0x0000 00FF 00R1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 11 00 00 00 000 0 0 0 0 0 1 00 0 0 0 0 0 0 0

39 32 24 16 8 0

len6 bit6 len6 = 8
bit6 = 16

0x0000 0210 00R2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

39 32 24 16 8 0

16 8 0

Starting bit position
for deposit

Reference point

0x00FF 0000 00R0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

ADSP-21065L SHARC DSP User’s Manual 2-45

Computation Units

Figure 2-8. Bit field extract example

Shifter Status Flags
The Shifter returns three status flags at the end of the operation. All of
these flags appear in the ASTAT register.

The Shifter updates these flags at the end of the cycle in which their status
is generated, and the results are available on the next cycle. If an applica-
tion writes the ASTAT register explicitly in the same cycle that the Shifter

Table 2-16. ASTAT Shifter status bits

Bit Name Description

11 SV Shifter overflow of bits to left of MSB

12 SZ Shifter result 0

13 SS Shifter input sign (for exponent extract opera-
tions only)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 000 111 000 111 111 1110 0 0 0 0 0 1 00 0 0 0 0 0 0 0

39 32 24 16 8 0

len6 bit6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 1 10 0 0 0 0 0 0 00 0 0 0 0 0 0 0

39 32 24 16 8 0

16 8 0

1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 01 0 0 0 0 0 0 0

39 32 24 16

16

8

8

0

0

Starting bit position
for deposit

Reference point

0x0000 0217 00

0x8788 0000 00

0x0000 000F 00

len6 = 8
bit6 = 23

R5

R3

R4

Shifter Unit

2-46 ADSP-21065L SHARC DSP User’s Manual

is performing an operation, the explicit write to ASTAT supersedes the
update that the shift operation generates.

Shifter Overflow Flag (SV)

All shifter operations affect the SV flag. The Shifter sets SV whenever:

• It shifts significant bits to the left of the 32-bit, fixed-point field.

• It tests, sets, or clears a bit outside the 32-bit fixed-point field.

• It extracts a field that is partially or wholly to the left of the 32-bit,
fixed-point field.

• A LEFTZ or LEFTO operation returns a result of 32.

Otherwise, it clears SV.

Shifter Zero Flag (SZ)

All shifter operations affect SZ. The Shifter sets SZ whenever:

• The result of a shifter operation is 0.

• A bit test instruction specifies a bit outside the 32-bit, fixed-point
field.

Otherwise, it clears SZ.

Shifter Sign Flag (SS)

All shifter operations affect the SS flag.

For the two EXP (exponent extract) operations, the Shifter sets SS if the
fixed-point input operand is negative and clears it if the operand is
positive.

For all other shifter operations, the Shifter clears SS.

ADSP-21065L SHARC DSP User’s Manual 2-47

Computation Units

Shifter Instruction Summary

Table 2-17. Shifter instructions

Instruction

Flags

SZ SV SS

Rn = LSHIFT Rx BY Ry† * * 0

Rn = LSHIFT Rx BY <data8>† * * 0

Rn OR LSHIFT Rx BY Ry† * * 0

Rn OR LSHIFT Rx BY <data8>† * * 0

Rn = ASHIFT Rx BY Ry† * * 0

Rn = ASHIFT Rx BY <data8>† * * 0

Rn OR ASHIFT Rx BY Ry† * * 0

Rn OR ASHIFT Rx BY<data8>† * * 0

Rn = ROT Rx BY Ry * 0 0

Rn = ROT Rx BY<data8> * 0 0

Rn = BCLR Rx BY Ry * * 0

Rn = BCLR Rx BY<data8> * * 0

† = Compatible with ADSP-21xx instruction

* = Data-dependent

Rn, Rx, Ry = Any Register File location, bit fields used depend
on instruction

Fn, Fx = Any Register File location, floating-point word

Shifter Unit

2-48 ADSP-21065L SHARC DSP User’s Manual

Rn = BSET Rx BY Ry * * 0

Rn = BSET Rx BY<data8> * * 0

Rn = BTGL Rx BY Ry * * 0

Rn = BTGL Rx BY<data8> * * 0

BTST Rx By BY * * 0

BTST Rx BY<data8> * * 0

Rn = FDEP Rx BY Ry * * 0

Rn = FDEP Rx BY <bit6>:<len6> * * 0

Rn = Rn OR FDEP Rx BY Ry * * 0

Rn = Rn OR FDEP Rx BY <bit6>:<len6> * * 0

Rn = FDEP Rx BY Ry(SE) * * 0

Rn = FDEP Rx BY <bit6>:<len6>(SE) * * 0

Rn = Rn OR FDEP Rx BY Ry (SE) * * 0

Rn = Rn OR FDEP Rx BY <bit6>:<len6>(SE) * * 0

Table 2-17. Shifter instructions

Instruction

Flags

SZ SV SS

† = Compatible with ADSP-21xx instruction

* = Data-dependent

Rn, Rx, Ry = Any Register File location, bit fields used depend
on instruction

Fn, Fx = Any Register File location, floating-point word

ADSP-21065L SHARC DSP User’s Manual 2-49

Computation Units

For details on each of the Shifter instructions, see “Shifter Operations” on
page B-63, in ADSP-21065L SHARC DSP Technical Reference.

Rn = FEXT Rx BY Ry * * 0

Rn = FEXT Rx BY <bit6>:<len6> * * 0

Rn = FEXT Rx BY Ry(SE) * * 0

Rn = FEXT Rx BY <bit6>:<len6>(SE) * * 0

Rn = EXP Rx(EX)† * 0 *

Rn = EXP Rx† * 0 *

Rn = LEFTZ Rx * * 0

Rn = LEFTO Rx * * 0

Rn = FPACK Fx 0 * 0

Rn = FUNPACK Rx 0 0 0

Table 2-17. Shifter instructions

Instruction

Flags

SZ SV SS

† = Compatible with ADSP-21xx instruction

* = Data-dependent

Rn, Rx, Ry = Any Register File location, bit fields used depend
on instruction

Fn, Fx = Any Register File location, floating-point word

Multifunction Operations

2-50 ADSP-21065L SHARC DSP User’s Manual

Multifunction Operations
In addition to the computations performed by each computation unit, the
processor provides multifunction operations that combine parallel opera-
tion of the Multiplier and the ALU or dual operations in the ALU.

The processor performs multifunction operations the same way it per-
forms the two operations in corresponding single-function computations.
It also determines flags for multifunction operations the same way it does
for the same single-function computations, except that in the dual add
and subtract computation, it ORs together the ALU flags from the two
operations.

Each of the four input operands for computations that use both the ALU
and Multiplier are constrained to a different set of four locations in the
Register File, as summarized in Tables 2-18, 2-19, 2-20, and 2-21 and
shown in Figure 2-9 on page 2-52. For example, R8, R9, R10 and R11 are
the only valid X-inputs to the ALU. In all other operations, the input
operands can be any location in the Register File.

In Tables 2-18, 2-19, 2-20, and 2-21, Ra, Rm, Rs, Rx, and Ry are any
fixed-point location in the Register File, and Fa, Fm, Fs, Fx, and Fy are
any floating-point location in the Register File. SSF is any signed X or Y
fractional input, and SSFR is any signed X or Y fractional input,
rounded-to-nearest output.

Table 2-18. Dual add and subtract instructions

Ra=Rx+Ry, Rs=Rx−Ry
Fa=Fx+Fy, Fs=Fx−Fy

ADSP-21065L SHARC DSP User’s Manual 2-51

Computation Units

For details on each of the multifunction instructions, see “Multifunction
Computations” on page B-94, in ADSP-21065L SHARC DSP Technical
Reference.

Table 2-19. Fixed-point multiply and accumulate and add, subtract, or
average instructions

Rm = R3-0 * R7-4 (SSFR) , Ra = R11-8 + R15-12

MRF = MRF + R3-0 * R7-4 (SSF) , Ra = R11-8 −R15-12

Rm = MRF + R3-0 * R7-4 (SSFR) , Ra = (R11-8 + R15-12)/2

MRF = MRF −R3-0 * R7-4 (SSF) ,

Rm = MRF −R3-0 * R7-4 (SSFR) ,

Table 2-20. Floating-point multiplication and ALU instructions

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12

Fa = F11-8 − F15-12

Fa = FLOAT R11-8 by R15-12

Ra = FIX F11-8 by R15-12

Fa = (F11-8 + F15-12)/2
Fa = ABS F11-8

Fa = MAX (F11-8,F15-12)
Fa = MIN (F11-8,F15-12)

Table 2-21. Multiplication and dual add and subtract instructions

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12, Rs = R11-8 − R15-12

Fm = F3-0 * F7-4 , Fa = F11-8 + F15-12, Fs = F11-8 − F15-12

Multifunction Operations

2-52 ADSP-21065L SHARC DSP User’s Manual

Figure 2-9. Input registers for multifunction computations (ALU and
Multiplier)

R0—F0

R1—F1

R2—F2

R3—F3

R8—F8

R9—F9

R10—F10

R11—F11

R12—F12

R13—F13

R14—F14

R15—F15

R4—F4

R5—F5

R6—F6

R7—F7

Multiplier

ALU

Any Register

Any Register

ADSP-21065L SHARC DSP User’s Manual 3-1

3 PROGRAM SEQUENCING
Figure 3-0.

Table 3-0.

Listing 3-0.

The processor executes program instructions sequentially, in a linear flow,
unless otherwise directed by various program structures:

• Loops

Execute one sequence of instructions several times, incurring zero
overhead.

• Subroutines

Temporarily interrupt sequential flow to execute instructions from
another part of program memory.

• Jumps

Permanently transfer program flow to another part of program
memory.

• Interrupts

A special type of subroutine in which an event that happens at run
time, not a program instruction, triggers the execution of the rou-
tine.

• Idle

A special instruction that causes the processor to stop operations
and hold its current state. When an interrupt occurs, the processor
services the interrupt and continues normal execution.

3-2 ADSP-21065L SHARC DSP User’s Manual

Figure 3-1 on page 3-3 illustrates the variations in program flow that these
program structures invoke.

To manage these program structures and the sequence of program flow,
the core’s Program Sequencer:

• Selects the address of the next instruction, generating most of the
addresses itself.

• Increments the fetch address.

• Maintains stacks.

• Evaluates conditions.

• Decrements the loop counter.

• Calculates new addresses.

• Maintains an instruction cache.

• Handles interrupts.

ADSP-21065L SHARC DSP User’s Manual 3-3

Program Sequencing

Figure 3-1. Variations of program flow

������ !

 ���	������

 ���	������

 ���	������

 ���	������

 ���	������

����

����"��

 ���	������

 ���	������

 ���	������

��

 ���	������

 ���	������

 ���	������

��#

 ���	������

 ���	������

 ���	������

$%!!

 ���	������

 ���	������

 ���	������

 ���	������

 ���	������

 ���	������

 ���	������

 ���	������

%��	���&�

��'��

��'�(

��'�)

��'��

��'��

������	
���

*��+

 ���	������

 ���	������

 ���	������

 ���	������

 ���	������

���

���������� ��������� ����

 �!,

 ���	������

 ���	������

 ���	������

 ���	������

 ���	������

 ���		�-�

Instruction Cycle

3-4 ADSP-21065L SHARC DSP User’s Manual

Instruction Cycle
The ADSP-21065L processes instructions in three clock cycles:

• Fetch cycle

The processor reads the instruction from either the on-chip instruc-
tion cache or from program memory.

• Decode cycle

The processor decodes the instruction, which generates conditions
that control instruction execution.

• Execute cycle

The processor executes the instruction, completing the operations
the instruction specified.

These cycles are overlapping, or pipelined, as shown in Table 3-1 on
page 3-5. In sequential program flow, while the core is fetching one
instruction, it is decoding the instruction it fetched in the previous cycle

When processing instructions, the processor uses its core
clock, which runs at 2xCLKIN. Hereafter, in this chap-
ter, all clock cycle references are to 2xCLKIN, unless oth-
erwise noted.

ADSP-21065L SHARC DSP User’s Manual 3-5

Program Sequencing

and executing the instruction it fetched in the previous two cycles. Thus,
throughput is one instruction per cycle.

Any nonsequential program flow can potentially decrease the processor’s
instruction throughput. Nonsequential program operations include:

• Program memory data accesses that conflict with instruction fetches

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Table 3-1. Pipelined execution cycles

Time Instruction Sequence

(Cycles) Fetch Decode Execute

0 0x04

1 0x05 0x04

2 0x06 0x05 0x04

3 0x07 0x06 0x05

4 0x08 0x07 0x06

Program Sequencer Architecture

3-6 ADSP-21065L SHARC DSP User’s Manual

Program Sequencer Architecture
Figure 3-2 shows the architecture of the Program Sequencer.

Figure 3-2. Block diagram of the Program Sequencer

The Program Sequencer selects the value of the next fetch address from
several possible sources.

The fetch address register, decode address register, and program counter
(PC) contain the addresses of the instructions the processor’s core is cur-
rently fetching, decoding, and executing, respectively.

Applications use the PC stack in conjunction with the PC to store return
addresses and top-of-loop addresses.

Loop Address
Stack

Loop Count
Stack

Loop
Controller

Interrupt
Latch

Interrupt
Mask

Interrupt
Mask Pointer

Interrupt
Controller

Program
Counter

Decode
Address

Fetch
Address

Condition
Logic

Instruction
Cache

Status
Stack

ASTAT MODE1

Instruction Latch

+
DAG2

PC
Stack

+1

Next Address Multiplexer

Input
Flags

Interrupt
VectorReturn Address

 or
Top of Loop

Direct
Branch

PC-Relative
Address

Internal PMD Bus

Loop Logic

Indirect
Branch

Interrupts

Interrupt Logic

PMA Bus

ADSP-21065L SHARC DSP User’s Manual 3-7

Program Sequencing

The interrupt controller performs all functions related to interrupt pro-
cessing, such as determining whether an interrupt is masked and
generating the appropriate interrupt vector address.

The instruction cache enables the processor to access data in program
memory and fetch an instruction (from the cache) in the same cycle. The
DAG2 data address generator outputs program memory data addresses
(for details, see Chapter 4, Data Addressing).

Using information from the status registers, the Program Sequencer evalu-
ates conditional instructions and loop termination conditions.

The loop address stack and loop counter stack support nested loops.

The status stack stores status registers that provide support for implement-
ing nested interrupt routines.

Program Sequencer and System Registers
Table 3-2 on page 3-8 lists the registers located in the Program Sequencer.

All registers in the Program Sequencer are universal registers, so they are
accessible to other universal registers and to data memory. All registers and
the tops of stacks are readable. All registers, except the fetch address,
decode address, and PC, are writable.

Applications can write (and read) the PC stack pointer to push and pop
the PC stack. Applications must issue explicit instructions to push or pop
the loop address stack and the status stack.

Applications can use the System Register Bit Manipulation instruction to
set, clear, toggle, or test specific bits in the system registers. For details, see
Appendix A, Instruction Set Reference, in ADSP-21065L SHARC DSP
Technical Reference.

Program Sequencer Architecture

3-8 ADSP-21065L SHARC DSP User’s Manual

Due to pipelining, writes to some of these registers do not take effect on
the next cycle. For example, if you write the MODE1 register to enable
ALU saturation mode, the change occurs two cycles after the write.

Some registers are not updated on the cycle immediately following a write;
that is, an extra cycle occurs before a read of the register yields the new
value. Table 3-2 and Table 3-3 on page 3-9 summarize the number of
extra cycles that occur before a write takes effect (effect latency) and before
a new value appears in the register (read latency) for Program Sequencer
and system registers, respectively. A 0 indicates that the write takes effect
or appears in the register on the next cycle after the write instruction exe-
cutes. A 1 indicates one extra cycle.

Table 3-2. Program Sequencer registers read and effect latencies

Register Contents Bits Read
Latency

Effect
latency

FADDR fetch address 24 — —

DADDR decode address 24 — —

PC execute address 24 — —

PCSTK top of PC stack 24 0 0

PCSTKP PC stack pointer 5 1 1

LADDER top of loop address
stack

32 0 0

CURLCNTR top of loop count stack
(current loop count)

32 0 0

LCNTR loop count for next DO
UNTIL loop

32 0 0

ADSP-21065L SHARC DSP User’s Manual 3-9

Program Sequencing

Table 3-3. System registers read and effect latencies

Register Contents Bits Read
Latency

Effect
Latency

MODE1 mode control bits 32 0 1

MODE2 mode control bits 32 0 1

IRPTL interrupt latch 32 0 1

IMASK interrupt mask 32 0 1

IMASKP interrupt mask pointer
(for nesting)

32 1 1

ASTAT arithmetic status
flags

32 0 1

STKY sticky status flags 32 0 1

USTAT1 user-defined status
flags

32 0 0

USTAT2 user-defined status 32 0 0

Program Sequencer Operation

3-10 ADSP-21065L SHARC DSP User’s Manual

Program Sequencer Operation
This section describes how the Program Sequencer operates and defines
the various kinds of program flow it supports.

Sequential Program Flow
To determine the next instruction address, the Program Sequencer exam-
ines both the instruction currently executing and the current state of the
processor. Unless it encounters a program structure that alters program
flow, the Program Sequencer simply increments the fetch address to exe-
cute instructions from program memory in sequential order.

Program Memory Data Accesses
Usually, the processor’s core fetches an instruction from memory on each
cycle. When the processor executes an instruction that requires it to read
or write data to the same memory block that contains the instruction, the
fetch causes a conflict for access to the block. To reduce delays such con-
flicts cause, the processor uses its instruction cache.

The first time the processor encounters an instruction fetch that conflicts
with a program memory data access, it must wait to fetch the instruction
on the following cycle, causing a delay. To prevent the same delay from
reoccurring, the processor automatically writes the fetched instruction to
the instruction cache. The processor checks the instruction cache on every
program memory data access. If the needed instruction is in the cache, the
fetch from the cache occurs in parallel with the access to program memory
data, avoiding a delay.

ADSP-21065L SHARC DSP User’s Manual 3-11

Program Sequencing

Branches
A branch occurs when the current fetch address does not follow the previ-
ous fetch address sequentially. The processor supports jumps, calls, and
returns.

In the Program Sequencer, a jump differs from a call only in that:

• Calls branch to a new location, but upon execution, the Program
Sequencer pushes onto the PC stack a return address, which is avail-
able when the processor executes a return instruction later.

• Jumps branch to a new location permanently and do not provide for
a return.

Loops
The processor supports program loops with the DO UNTIL instruction.
The DO UNTIL instruction causes the processor to repeat a sequence of
instructions until a specified condition tests true.

Executing Conditional Instructions

3-12 ADSP-21065L SHARC DSP User’s Manual

Executing Conditional Instructions
The Program Sequencer evaluates conditions to determine whether to exe-
cute a conditional instruction and when to terminate a loop. The
conditions are based on information from the arithmetic status (ASTAT)
register, mode control 1 (MODE1) register, flag inputs, and loop counter.
See Chapter 2, Computation Units, for a description of the arithmetic
ASTAT bits.

Each condition that the Program Sequencer evaluates has an assembler
mnemonic and a unique code, used in a conditional instruction’s opcode.
For most conditions, the Program Sequencer can test both true and false
states (=0 and ≠0). Table 3-4 on page 3-13 defines the processor’s
thirty-two condition and termination codes.

After it is set, applications can use the bit test flag (BTF), bit 18 of the
ASTAT register, as the condition in a conditional instruction (with the
mnemonic TF, see Table 3-4). The results of the BIT TST and BIT XOR
forms of the System Register Bit Manipulation instruction, which applica-
tions can use to test the contents of the processor’s system registers, set
and clear this flag. For details, see Appendix A, Instruction Set Reference,
in ADSP-21065L SHARC DSP Technical Reference.

The two conditions that lack complements are LCE/NOT LCE (loop
counter expired/not expired) and TRUE/FOREVER. Context determines
the interpretation of these condition codes. You use TRUE and NOT
LCE in conditional instructions and FOREVER and LCE in loop termi-
nation instructions.

The IF TRUE construct creates an unconditional instruction (the same
effect as leaving out the condition entirely). A DO FOREVER instruction
executes a loop indefinitely, until an interrupt or reset intervenes.

Applications typically use the LCE condition (loop counter expired) in
DO UNTIL instructions. Because the LCE condition checks the value of
the loop counter (CURLCNTR), avoid following a write from memory to

ADSP-21065L SHARC DSP User’s Manual 3-13

Program Sequencing

CURLCNTR with an IF NOT LCE conditional instruction. Otherwise,
because the write occurs after the NOT LCE test, the condition is based
on the old CURLCNTR value.

The bus master condition (BM) indicates whether the processor is cur-
rently bus master in a multiprocessor system. To enable this condition, set
both bit 17 and bit 18 of the MODE1 register to 0. Otherwise the condi-
tion always evaluates as false.

Table 3-4. Condition and loop termination codes

Number Mnemonic Description True if…

0 EQ ALU = 0 AZ = 1

1 LT ALU < zero footnote1

2 LE ALU ≤ 0 footnote2

3 AC ALU carry AC = 1

4 AV ALU overflow AV = 1

5 MV Multiplier overflow MV = 1

6 MS Multiplier sign MN = 1

7 SV Shifter overflow SV = 1

8 SZ Shifter zero SZ = 1

9 FLAG0_IN flag 0 input FI0 = 1

10 FLAG1_IN flag 1 input FI1 = 1

11 FLAG2_IN flag 2 input FI2 = 1

12 FLAG3_IN flag 3 input FI3 = 1

Executing Conditional Instructions

3-14 ADSP-21065L SHARC DSP User’s Manual

13 TF bit test flag BTF = 1

14 BM bus master

15 LCE loop counter expired
(DO UNTIL term)

CURLCNTR = 1

15 NOT LCE loop counter not
expired (IF condition)

CURLCNTR ≠ 1

Numbers 16 through 30 are the compliments of numbers 0 through 14.

16 NE ALU ≠ 0 AZ = 0

17 GE ALU ≥ 0 footnote3

18 GT ALU > 0 footnote4

19 NOT AC not ALU carry AC = 0

20 NOT AV not ALU overflow AV = 0

21 NOT MV not multiplier overflow MV= 0

22 NOT MS not multiplier sign MN = 0

23 NOT SV not shifter overflow SV = 0

24 NOT SZ not shifter zero SZ = 0

25 NOT FLAG0_IN not flag 0 input FI0 = 0

26 NOT FLAG1_IN not flag 1 input FI1 = 0

27 NOT FLAG2_IN not flag 2 input FI2 = 0

28 NOT FLAG3_IN not flag 3 input FI3 = 0

Table 3-4. Condition and loop termination codes (Cont’d)

Number Mnemonic Description True if…

ADSP-21065L SHARC DSP User’s Manual 3-15

Program Sequencing

29 NOT TF not bit test flag BTF = 0

30 NOT BM not bus master

31 FOREVER always false (DO UNTIL) always

31 TRUE always true (IF) always

1 [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1
2 [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 1
3 [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 0
4 [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 0

Table 3-4. Condition and loop termination codes (Cont’d)

Number Mnemonic Description True if…

Branches (call, jump, rts, rti)

3-16 ADSP-21065L SHARC DSP User’s Manual

Branches (call, jump, rts, rti)
The CALL instruction initiates a subroutine. Both jumps and calls trans-
fer program flow to another memory location, but a call also pushes a
return address onto the PC stack, so it is available when a return from sub-
routine instruction is later executed. Jumps branch to a new location, with
no provision for return.

A return causes the processor to branch to the address stored at the top of
the PC stack.

Returns are of two types:

• Return from subroutine (RTS)

• Return from interrupt (RTI)

Both instructions pop the return address off the PC stack, but the RTI
instruction also:

• Pops the status stack if the ASTAT and MODE1 status registers
have been pushed (if the interrupt was IRQ2-0, the timer interrupt,
or the VIRPT vector interrupt).

• Clears the appropriate bit in the interrupt latch register (IRPTL)
and the interrupt mask pointer (IMASKP).

You can specify a number of parameters for branches:

• Jumps, calls and returns can be conditional.

The Program Sequencer can evaluate any one of several status con-
ditions to determine whether to take the branch. If no condition is
specified, it always takes the branch.

ADSP-21065L SHARC DSP User’s Manual 3-17

Program Sequencing

• Jumps and calls can be indirect, direct, or PC-relative.

An indirect branch goes to an address that DAG2, one of the data
address generators, supplies.

Direct branches jump to the 24-bit address that an immediate field
in the branch instruction specifies.

PC-relative branches also use a value that the instruction specifies,
but the Program Sequencer adds this value to the current PC value
to compute the destination address.

• Jumps, calls and returns can be delayed or nondelayed.

In a delayed branch, the processor executes the two instructions that
immediately follow the branch instruction.

In a nondelayed branch, the Program Sequencer suppresses the exe-
cution of the two immediately following instructions, so the proces-
sor executes NOPs instead.

• If it occurs inside a loop, the JUMP (LA) instruction causes an auto-
matic loop abort.

When the loop aborts, the Program Sequencer pops the PC and
loop address stacks once, so if the aborted loop was nested, the
stacks still contain the correct values for the outer loop.

JUMP (LA) is similar to the C programming language’s break
instruction, which prematurely terminates execution of a loop.

You cannot use JUMP (LA) in the last three instructions
of a loop.

Branches (call, jump, rts, rti)

3-18 ADSP-21065L SHARC DSP User’s Manual

Delayed and Nondelayed Branches
An instruction modifier DB indicates that a branch is delayed; otherwise,
it is nondelayed.

If the branch is nondelayed, the processor does not execute the two
instructions after the branch, which are in the fetch and decode stages (see
Table 3-5 and Table 3-6). For a call, the decode address (the address of
the instruction after the call) is the return address. During the two NOP
cycles, the processor fetches and decodes the first instruction at the branch
address.

Table 3-5. Nondelayed jump or call

Pipeline CLK1 CLK2 CLK3 CLK4

Execute n NOP NOP j

Decode n+1→nop n+2→nop j j+1

Fetch n+2 j j+1 j+2

n+1 suppressed n+2 suppressed; for
call, n+1 pushed on PC
stack

n = Branch instruction; j = Instruction at jump or call address

ADSP-21065L SHARC DSP User’s Manual 3-19

Program Sequencing

In a delayed branch, the processor continues to execute two more instruc-
tions while the instruction at the branch address is fetched and decoded
(see Table 3-7 and Table 3-8). In the case of a call, the return address is
the third address after the branch instruction. A delayed branch is more
efficient, but it makes the code harder to understand because instructions
execute between the branch instruction and the actual branch.

Table 3-6. Nondelayed return

Pipeline CLK1 CLK2 CLK3 CLK4

Execute n NOP NOP r

Decode n+1→nop n+2→nop r r+1

Fetch n+2 r r+1 r+2

n+1 suppressed n+2 suppressed; r
popped from PC stack

n = Branch instruction; r= Instruction at return address

Table 3-7. Delayed jump or call

Pipeline CLK1 CLK2 CLK3 CLK4

Execute n n+1 n+2 j

Decode n+1 n+2 j j+1

Fetch n+2 j j+1 j+2

For call, n+3 pushed on PC
stack

n = Branch instruction; j= Instruction at jump or call address

Branches (call, jump, rts, rti)

3-20 ADSP-21065L SHARC DSP User’s Manual

Because of the instruction pipeline, the processor must execute sequen-
tially a delayed branch instruction and the two instructions that follow it.
None of the following instructions can occupy the two locations immedi-
ately following a delayed branch instruction.

• PUSH and POP of the PC STACK: Push of the PC stack in the delayed
branch should be followed by a pop. A value that is pushed in the delay
branch of the call should be popped first in the called subroutine. The
pop should then be followed by a return to subroutine “rts.” Consider
the following example.

20119 call foo (db);
2011A push PCSTK;
2011B nop;
2011C foo;

PCSTK 2011B - 2nd push due to PCSTK.
2011C -1st push due to call.

This example shows that when you push the PCSTK during a delay
slot, the PC stack pointer is pushed onto the PCSTK.

Table 3-8. Delayed return

Pipeline CLK1 CLK2 CLK3 CLK4

Execute n n+1 n+2 r

Decode n+1 n+2 r r+1

Fetch n+2 r r+1 r+2

r popped from PC stack

n = Branch instruction; r= Instruction at return address

ADSP-21065L SHARC DSP User’s Manual 3-21

Program Sequencing

Now you have to execute the following instruction before doing an
“rts.”

pop PCSTK;
rts(db);
nop;
nop;

If you do a push of a PC stack, you have to do a pop first and then
an “rts.” If a value is popped inside the delay branch, the return
address of the pushed subroutine is popped back and is, therefore,
restricted.

• DO UNTIL: A loop that is inside the delay branch does a sequential
operation after executing the loop and does not jump to the label.
The reason is because running a loop in a delay branch flushes the
destination address of the jump address out of the pipeline. Instead
of the fetch, decode and execute stages in the pipeline, the loop
instructions are in the pipeline and the operation is sequential
thereafter. Look at the following example.

20118 LCNTR =10;
20119 jump my(db); 2012C my:
2011A do myl until LCE;
2011B myl:r0 =r0 +r1;

2011C r2=r2+r3;
2011D r1 =r1 +r2;

This example shows a loop inside a delay branch. Since the loop exe-
cutes the instructions inside the loop 10 times, the address of the
jump (2012C) destination is flushed. Therefore, instead of going to
label “my” (2012C), the processor executes the next sequential
instruction at address 2011C and then continues the sequential exe-
cution. For this reason, the loop is restricted inside the delay branch.

Branches (call, jump, rts, rti)

3-22 ADSP-21065L SHARC DSP User’s Manual

• Regarding the jump, call, or return: You cannot have a jump, call,
or return after a jump in a delay branch. The reason for this restric-
tion is demonstrated in this example of a jump instruction:

Jump foo(db);
Jump my(db);
R0 =R0+R1;
R1 =R1+R2;

In this case the delay branch instruction R0 =R0+R1; is executed, but
the instruction R1 = R1+R2 is not executed. Also, the control jumps
to “my” instead of “foo” because Jump foo is a delay branch instruc-
tion.

The exception is for a jump done for mutually exclusive conditions
(EQ, NE). If the first EQ condition works, the NE conditional
jump does not have any meaning and is like a NOP. Code for the
exceptional case is shown below:

if eq jump label1 (db);
if ne jump label2 (db);
nop;
nop;

• IDLE: To come out of the idle instruction, you need an interrupt.
If you put an IDLE instruction inside the delayed branch, the pro-
cessor will be in the idle state infinitely unless an interrupt is gener-
ated. Hence, this action is restricted.

• Writes to PC stack or PC stack Pointer: You can write to a PC stack
inside the delay branch by writing to a PC stack inside either a jump
or a call.

The two instances of writing to a PC stack inside a jump are
described as follows.

ADSP-21065L SHARC DSP User’s Manual 3-23

Program Sequencing

a. The PC stack has a value – When the PC stack already has a value
and you write a value onto the PC stack, the value already in the PC
stack is overwritten by the value written onto the PC stack. Since the
value in the PC stack is corrupted, this action is restricted.

b. The PC stack is empty – When you write a value onto an empty PC
stack, the PC stack will be empty even after you write the value onto
the PC stack.

If you write to a PC stack inside a call, the value that is pushed onto the
PC stack because of the call is overwritten by the value written onto the
PC stack. Hence, when you do an “rts,” you return to the address that
you had written onto the PC stack, not the address that you had pushed
while branching to the subroutine. The explanation is shown in this
example:

20111 call foo3(db);
20112 PCSTK=0x2011C;
20113 nop;
20114

The value 20114 is pushed onto the PC stack. Since you are also writing
the value 2011C to the PC stack, the value 20114 is overwritten by
2011C in the PC stack. When you come back by doing a “rts,” you
return to the address 2011C, not to 20114. Therefore, this action is
restricted.

The ADSP-21000 Family assembler checks for these exceptions.

Since the processor must execute a delayed branch instruction and the two
following instructions sequentially, it does not process interrupts between
execution of these instructions. The processor latches any interrupt that
occurs during these instructions but does not process them until it exe-
cutes the branch.

Branches (call, jump, rts, rti)

3-24 ADSP-21065L SHARC DSP User’s Manual

You can read the PC stack or PC stack pointer immediately after a delayed
call or return, but the result will indicate that the return address on the PC
stack has been pushed or popped, even though the branch has not actually
occurred.

PC Stack
The PC stack holds return addresses for subroutines, interrupt service rou-
tines, and top-of-loop addresses for loops. The PC stack is thirty locations
deep by 24-bits wide.

The Program Sequencer pops the PC stack during returns from interrupts
(RTI), returns from subroutines (RTS), and terminations of loops. The
stack is full when all entries are occupied; empty when no entries are occu-
pied; and has overflowed if a call occurs when the stack is already full.

The sticky status register (STKY) stores the full and empty flags. The full
flag causes a maskable interrupt.

A PC stack interrupt occurs when twenty-nine locations in the PC stack
are filled (the almost full state). Entering the interrupt service routine then
immediately causes a push on the PC stack, making it full. So, the inter-
rupt is a stack full interrupt, even though the condition that triggers it is
the almost full condition. The other stacks in the Program Sequencer, the
loop address stack, loop counter stack, and status stack, are provided with
overflow interrupts that are activated when a push occurs while the stack is
in a full state.

The program counter stack pointer (PCSTKP) is a readable and writable
register that contains the address of the top of the PC stack. The value of
PCSTKP is 0 when the PC stack is empty; 1, 2,..., 30 when the stack con-
tains data; and 31 when the stack has overflowed. A write to PCSTKP
takes effect after a one-cycle delay. If the PC stack has overflowed, a write
to PCSTKP has no effect.

ADSP-21065L SHARC DSP User’s Manual 3-25

Program Sequencing

Loops (DO UNTIL)
The DO UNTIL instruction provides for efficient software loops, without
the overhead of additional instructions to branch, test a condition, or dec-
rement a counter.

A simple example of a loop looks like this:

LCNTR=30, DO label UNTIL LCE;
R0=DM(I0,M0), F2=PM(I8,M8);
R1=R0-R15;

label: F4=F2+F3;

When the processor executes a DO UNTIL instruction, the Program
Sequencer pushes the address of the last loop instruction and the termina-
tion condition for exiting the loop (both specified in the instruction) onto
the loop address stack. It also pushes the top-of-loop address, which is the
address of the instruction following the DO UNTIL instruction, onto the
PC stack.

Because of the instruction pipeline—the fetch, decode, and execute
cycles—the processor tests the termination condition before the end of the
loop, so the next fetch either exits the loop or returns to the top. (If the
loop is counter-based, the Program Sequencer decrements the counter.)
Specifically, the Program Sequencer tests the condition when the instruc-
tion two locations before the last instruction in the loop executes. (The
last instruction resides at location e −2, where e is the end-of-loop
address.) If the termination condition is false, the processor fetches the
instruction from the top-of-loop address stored on the top of the PC
stack. If the termination condition is true, the processor fetches the next

Loops (DO UNTIL)

3-26 ADSP-21065L SHARC DSP User’s Manual

instruction after the end of the loop and pops the loop stack and PC stack.
Table 3-9 and Table 3-10 show these loop operations.

Table 3-9. Loop-Back

Pipeline CLK1 CLK2 CLK3 CLK4

Execute e −2 e −1 e b

Decode e −1 e b b+1

Fetch e b b+1 b+2

Termination con-
dition tests
false

Loop start address
is top of PC stack

e = Loop end instruction; b = Loop start instruction

Table 3-10. Loop termination

Pipeline CLK1 CLK2 CLK3 CLK4

Execute e −2 e −1 e e+1

Decode e −1 e e+1 e+2

Fetch e e+1 e+2 e+3

Termination con-
dition tests true

Loopback aborts;
PC and loop stacks
popped

e = Loop end instruction; b = Loop start instruction

ADSP-21065L SHARC DSP User’s Manual 3-27

Program Sequencing

Restrictions and Short Loops
This section describes several programming restrictions placed on loops,
and it explains restrictions that result from the three-instruction,
fetch-decode-execute pipeline and restrictions that apply specifically to
short loops of one and two instructions.

General Restrictions

• Nested loops cannot terminate on the same instruction.

• The last three instructions of a loop cannot be a branch (jump, call,
or return).

This restriction also applies to one-instruction loops and
two-instruction loops with only one iteration.

This rule has one exception—a nondelayed CALL (no DB modifier)
paired with an RTS (LR) return from subroutine with loop reentry
modifier. You can use the nondelayed CALL as one of the last three
instructions of a loop (except in a one-instruction loop or a
two-instruction, single-iteration loop.)

The RTS (LR) instruction ensures proper reentry into a loop. In
counter-based loops, for example, to check the termination condi-
tion, you decrement the current loop counter (CURLCNTR) while
the instruction two locations before the end of the loop is executing.
You can then use a nondelayed CALL in one of the last two loca-
tions, providing you use an RTS (LR) instruction to return from the
subroutine.

The loop reentry (LR) modifier assures proper reentry into the loop
by preventing the loop counter from being decremented again (that
is, twice for the same loop iteration).

Loops (DO UNTIL)

3-28 ADSP-21065L SHARC DSP User’s Manual

Counter-Based Loops

You cannot issue a write to the counter from memory in the third-to-last
instruction of a counter-based loop (at e −2, where e is the end-of-loop
address).

Short loops terminate in a special way because of the instruction
(fetch-decode-execute) pipeline. So, counter-based loops of one or two
instructions are not long enough for the Program Sequencer to check the
termination condition two instructions from the end of the loop. In these
short loops, the Program Sequencer has already looped back when the ter-
mination condition is tested. The Program Sequencer provides special
handling to avoid overhead (NOP) cycles if the loop is iterated a mini-
mum number of times. Table 3-11 and Table 3-12 show the details of this
operation.

In both tables, n=DO UNTIL instruction and n+2=instruction after the
loop.

Table 3-11. One-instruction loop, three iterations

Pipeline CLK1 CLK2 CLK3 CLK4 CLK5

Execute n n+1
(pass 1)

n+1
(pass 2)

n+1
(pass 3)

n+2

Decode n+1 n+1 n+1 n+2 n+3

Fetch n+2 n+1 n+2 n+3 n+4

LCNTR←3 No opcode
latch or
fetch addr
update; count
expired tests
true

loop-back
aborts;
PC & loop
stacks
popped

ADSP-21065L SHARC DSP User’s Manual 3-29

Program Sequencing

For no overhead, the processor must execute a loop of length one at least
three times and a loop of length two at least twice.

Loops of length one that iterate only once or twice and loops of length
two that iterate only once incur two cycles of overhead because of the two
aborted instructions after the last iteration to clear the instruction
pipeline.

Processing of an interrupt that occurs during the last iteration of a
one-instruction loop that executes once or twice, a two-instruction loop
that executes once, or the cycle following one of these loops (which is a
NOP) is delayed one cycle. Similarly, in a one-instruction loop that exe-
cutes at least three times (three nitrations), processing is delayed one cycle
if the interrupt occurs during the third-to-last iteration.

Noncounter-Based Loops

A noncounter-based loop is one in which the loop termination condition
is something other than LCE. When a noncounter-based loop is the outer

Table 3-12. One-instruction loop, two iterations (overhead = 2 cycles)

Pipeline CLK1 CLK2 CLK3 CLK4 CLK5 CLK6

Execute n n+1
(pass 1)

n+1
(pass 2)

NOP NOP n+2

Decode n+1 n+1 n+1→nop n+1→nop n+2 n+3

Fetch n+2 n+1 n+1 n+2 n+3 n+4

LCNTR←2 No
opcode
latch or
fetch
addr
update

Count
expired
tests
true

loop-back
aborts;
PC & loop
stacks
popped

Loops (DO UNTIL)

3-30 ADSP-21065L SHARC DSP User’s Manual

loop in a series of nested loops, the end address of the outer loop must be
located at least two addresses after the end address of the inner loop.

To abort execution of a loop prematurely, use the JUMP (LA) instruction.
When this instruction is located in the inner loop of a series of nested
loops, and the outer loop is noncounter-based, the address the program
jumps to cannot be the outer loop’s last instruction. It can, however, be
the next-to-last instruction (or any earlier instruction).

Noncounter-based short loops terminate in a special way because of the
instruction pipeline (fetch-decode-execute):

• In a three-instruction loop, the Program Sequencer tests the termi-
nation condition when the processor executes the top-of-loop
instruction.

When the condition becomes true, the Program Sequencer com-
pletes one full pass of the loop before exiting it.

• In a two-instruction loop, the termination condition is checked dur-
ing the last (second) instruction. See Table 3-13 and Table 3-14 on
page 3-31 and page 3-32, respectively.

If the condition becomes true when the first instruction is executed,
it tests true during the second, and the Program Sequencer com-
pletes one more full pass before exiting the loop.

If the condition becomes true during the second instruction, how-
ever, the Program Sequencer completes two more full passes before
exiting the loop.

In a one-instruction loop, the termination condition is checked every
cycle. When the condition becomes true, the Program Sequencer executes
the loop three more times before exiting it.

ADSP-21065L SHARC DSP User’s Manual 3-31

Program Sequencing

In both examples, n=DO UNTIL instruction and n+3=instruction after
the loop.

Table 3-13. Two-instruction loop, two iterations

Pipeline CLK1 CLK2 CLK3 CLK4 CLK5 CLK6

Execute n n+1
(pass1)

n+2
(pass1)

n+1
(pass2)

n+2
(pass2)

n+3

Decode n+1 n+2 n+1 n+2 n+3 n+4

Fetch n+2 n+1 n+2 n+3 n+4 n+5

LCNTR←2 PC
stack
sup-
plies
loop
start
addr

last
fetch
causes
cond.
test;
tests
true

Loop-
back-
aborts;
PC &
loop
stacks
popped

Loops (DO UNTIL)

3-32 ADSP-21065L SHARC DSP User’s Manual

Loop Address Stack
The loop address stack is six levels deep by 32-bits wide. The 32-bit word
of each level consists of a 24-bit loop termination address, a 5-bit termina-
tion code, and a 2-bit loop type code.

Table 3-14. Two-instruction loop, one iteration (overhead = 2 cycles)

Pipeline CLK1 CLK2 CLK3 CLK4 CLK5 CLK6

Execute n n+1
(pass1)

n+2
(pass1)

NOP NOP n+3

Decode n+1 n+2 n+1→nop n+2→nop n+3 n+4

Fetch n+2 n+1 n+2 n+3 n+4 n +5

LCNTR←1 PC stack
sup-
plies
loop
start
addr

last
fetched
instruc-
tion
causes
cond.
test;
tests
true

loop-
back
aborts;
PC &
loop
stacks
popped

Table 3-15. Layout of the Loop Address Stack

Bits Value

0-23 loop termination address

24-28 termination code

ADSP-21065L SHARC DSP User’s Manual 3-33

Program Sequencing

The processor stacks the loop termination address, termination code, and
loop type code when it executes a DO UNTIL or a PUSH LOOP instruc-
tion. It pops the stack two instructions before the end of the last loop
iteration or when it executes a POP LOOP instruction. A stack overflows
if a push occurs when all entries in the loop stack are occupied. The stack
is empty when no entries are occupied. The sticky status register (STKY)
contains the overflow and empty flags. Overflow causes a maskable
interrupt.

The LADDR register contains the top of the loop address stack. It is read-
able and writable over the DM Data bus. Reading and writing LADDR
does not move the loop address stack pointer, but a stack push or pop,
performed with explicit instructions, does move the stack pointer.
LADDR contains the value 0xFFFF FFFF when the loop address stack is
empty.

Because the Program Sequencer checks the termination condition two
instructions before the end of the loop, it pops the loop stack before the
end of the loop on the final iteration. If LADDR is read at either of these
instructions, the value will no longer be the termination address for the
loop.

29 reserved (always reads 0)

30-31 loop type code

00 = arithmetic condition-based (not LCE)

01 = counter-based, length 1

10 = counter-based, length 2

11 = counter-based, length > 2

Table 3-15. Layout of the Loop Address Stack (Cont’d)

Bits Value

Loops (DO UNTIL)

3-34 ADSP-21065L SHARC DSP User’s Manual

A jump out of a loop pops the loop address stack (and the loop count
stack if the loop is counter-based) if the Loop Abort (LA) modifier is spec-
ified for the jump. This action enables the loop mechanism to continue
functioning correctly. Only one pop is performed, however, so you cannot
use the loop abort to jump more than one level of nesting.

Loop Counters and Stack
The loop counter stack is six levels deep by 32-bits wide. The loop counter
stack works in synchronization with the loop address stack—both stacks
always have the same number of locations occupied. So, the same empty
and overflow status flags apply to both stacks.

The processor’s Program Sequencer operates two separate loop counters:

• The current loop counter (CURLCNTR)

Tracks iterations for an executing loop.

• The loop counter (LCNTR)

Holds the initial count value of the loop before it is executed. While
setting up the count for an inner loop, two counters are needed to
maintain the count for the outer loop.

The Current Loop Counter (CURLCNTR)

The top entry in the loop counter stack always contains the loop count
currently in effect. This entry is the CURLCNTR register, which is read-
able and writable over the DM Data bus. A read of CURLCNTR when
the loop counter stack is empty gives the value 0xFFFF FFFF.

The Program Sequencer decrements the value of CURLCNTR for each
loop iteration. Because it checks the termination condition two instruc-
tion cycles before the end of the loop, the Program Sequencer also
decrements the loop counter before the end of the loop. So, if you read

ADSP-21065L SHARC DSP User’s Manual 3-35

Program Sequencing

CURLCNTR at either of the last two loop instructions, the value read is
the count for the next iteration.

The processor pops the loop counter stack two instructions before the end
of the last loop iteration. When it does so, the new top entry of the stack
becomes the CURLCNTR value, the count in effect for the executing
loop. If no loop is executing, the value of CURLCNTR is 0xFFFF FFFF
after the pop.

Writing CURLCNTR does not cause a stack push. So, if you write a new
value to CURLCNTR, you change the count value of the loop currently
executing. A write to CURLCNTR when no DO UNTIL LCE loop is
executing has no effect.

Because the processor must use CURLCNTR to perform counter-based
loops, some restrictions exist that determine when you can write CURL-
CNTR. As mentioned earlier, you cannot issue a write to CURLCNTR
from memory in the third-to-last instruction of a DO UNTIL LCE loop.
You also cannot issue a write to CURLCNTR from memory in the
instruction that follows an IF NOT LCE instruction.

The Loop Counter (LCNTR)

LCNTR is the value of the top of the loop counter stack plus one; that is,
it is the location on the stack that takes effect on the next push of the loop
stack. To set up a count value for a nested loop, without affecting the
count value of the loop currently executing, you write the count value to

LCNTR. A value of 0 in LCNTR causes a loop to execute 232 times.

The DO UNTIL LCE instruction pushes the value of LCNTR on the
loop count stack, so it becomes the new CURLCNTR value. Figure 3-3
on page 3-36 shows this process. The previous CURLCNTR value is pre-
served one location down in the stack.

Loops (DO UNTIL)

3-36 ADSP-21065L SHARC DSP User’s Manual

Figure 3-3. Pushing the loop counter stack for nested loops

1. The processor is not executing a loop, and the loop counter stack is
empty. The Program Sequencer loads LCNTR with aaaa aaaa.

2. The processor is executing a single loop. The Program Sequencer
loads LCNTR with the value bbbb bbbb.

1

aaaa aaaa

0xFFFF FFFF

aaaa aaaa

LCNTR

CURLCNTR

LCNTR

CURLCNTR

LCNTR

3

aaaa aaaa

bbbb bbbb

cccc cccc

CURLCNTR

7

aaaa aaaa

bbbb bbbb

cccc cccc

dddd dddd

eeee eeee

ffff ffff

CURLCNTR

LCNTR

2

aaaa aaaa

bbbb bbbb

CURLCNTR

LCNTR

5

aaaa aaaa

bbbb bbbb

cccc cccc

dddd dddd

eeee eeee

CURLCNTR

LCNTR

CURLCNTR

LCNTR

6

aaaa aaaa

bbbb bbbb

cccc cccc

dddd dddd

eeee eeee

ffff ffff

4

aaaa aaaa

bbbb bbbb

cccc cccc

dddd dddd

ADSP-21065L SHARC DSP User’s Manual 3-37

Program Sequencing

3. The processor is executing two nested loops. The Program
Sequencer loads LCNTR with the value cccc cccc.

4. The processor is executing three nested loops. The Program
Sequencer loads LCNTR with the value dddd dddd.

5. The processor is executing four nested loops. The Program
Sequencer loads LCNTR with the value eeee eeee.

6. The processor is executing five nested loops. The Program
Sequencer loads LCNTR with the value ffff ffff.

7. The processor is executing six nested loops. The loop counter stack
(LCNTR) is full.

A read of LCNTR when the loop counter stack is full results in invalid
data. When the loop counter stack is full, the processor discards any data
written to LCNTR.

If you read LCNTR during the last two instructions of a terminating loop,
its value is the last CURLCNTR value for the loop.

Interrupts

3-38 ADSP-21065L SHARC DSP User’s Manual

Interrupts
A variety of conditions, both internal and external to the processor, cause
interrupts. An interrupt forces a subroutine call to a predefined address,
the interrupt vector. The processor assigns a unique vector to each type of
interrupt.

Externally, the processor supports three prioritized, individually maskable
interrupts, each of which can be either level- or edge-triggered (MODE2
register). An external device asserting one of the processor’s interrupt
inputs (IRQ2-0) causes these interrupts.

Arithmetic exceptions, stack overflows, and circular data buffer overflows
are some of the internally-generated interrupts.

The processor deems an interrupt request valid if all of the following con-
ditions are true:

• The request is not masked;

• Interrupts are globally enabled (IRPTEN=1);

• No higher-priority request is pending.

Valid requests invoke an interrupt service sequence that branches to the
address reserved for that interrupt. Interrupt vectors are spaced at intervals
of four instructions, but applications can branch to another region of
memory to accommodate longer service routines. Program execution
returns to normal sequencing when the processor executes an RTI (return
from interrupt) instruction.

The processor cannot service an interrupt unless its core is executing
instructions or is in the IDLE state. IDLE and IDLE16 are a special
instructions that halt the processor’s core until an external interrupt or a
timer interrupt occurs.

ADSP-21065L SHARC DSP User’s Manual 3-39

Program Sequencing

To process an interrupt, the processor’s Program Sequencer performs
these actions:

1. Outputs the appropriate interrupt vector address.

2. Pushes the current PC value (the return address) on the PC stack.

If the interrupt is an external interrupt (IRQ2-0), the internal timer
interrupt, or the VIRPT multiprocessor vector interrupt, the Pro-
gram Sequencer pushes the current value of the ASTAT and
MODE1 registers onto the status stack.

3. Sets the appropriate bit in the interrupt latch register (IRPTL).

4. Updates the interrupt mask pointer (IMASKP) to reflect the cur-
rent interrupt nesting state.

The nesting mode (NESTM) bit in the MODE1 register deter-
mines whether all interrupts or only lower priority interrupts are
masked during the service routine.

At the end of the interrupt service routine, the RTI instruction causes the
Program Sequencer to perform these actions:

1. Returns to the address stored at the top of the PC stack.

2. Pops this value off of the PC stack.

3. Pops the status stack if the ASTAT and MODE1 status registers
were pushed (for the IRQ2-0 external interrupts, timer interrupt, or
VIRPT vector interrupt).

4. Clears the appropriate bit in the interrupt latch register (IRPTL)
and interrupt mask pointer (IMASKP).

Make sure your interrupt service routines, except for reset, end with a
return-from-interrupt (RTI) instruction. After reset, the PC stack is
empty and no return address exists, so make sure the last instruction of
your reset service routine is a jump to the start of your program.

Interrupts

3-40 ADSP-21065L SHARC DSP User’s Manual

Interrupt Latency
The processor responds to interrupts in three stages:

• Synchronization and latching (1 cycle).

• Recognition (1 cycle).

• Branching to the interrupt vector (2 cycles).

In Table 3-16, n = a single instruction cycle, and v = instruction at the
interrupt vector.

If software writes to a bit in IRPTL forcing an interrupt, the processor rec-
ognizes the interrupt in the following cycle, and two cycles of branching
to the interrupt vector follow the recognition cycle.

Table 3-16. Interrupt, single-cycle instruction

Pipeline CLK1 CLK2 CLK3 CLK4 CLK5

Execute n−1 n NOP NOP v

Decode n n+1→NOP n+2→NOP v v+1

Fetch n+1 n+2 v v+1 v+2

Interrupt
occurs

Interrupt
recognized

n+1 pushed on
PC stack;
interrupt
vector output

ADSP-21065L SHARC DSP User’s Manual 3-41

Program Sequencing

In Table 3-17, n = an instruction coinciding with a cache miss of a data
access of program memory, and v = instruction at the interrupt vector.

In Table 3-18, n = a delayed branch instruction, v = instruction at the
interrupt vector, and j = instruction at the branch address.

Table 3-17. Interrupt, program memory data access with cache miss

Pipeline CLK1 CLK2 CLK3 CLK4 CLK5 CLK6

Execute n−1 n NOP NOP NOP v

Decode n n+1→NOP n+1→NOP n+2→NOP v v+1

Fetch n+1 — n+2 v v+1 v+2

Inter-
rupt
occurs

Inter-
rupt rec-
ognized,
but not
pro-
cessed;
program
memory
data
access

Inter-
rupt
pro-
cessed

n+1
pushed
onto PC
stack;
inter-
rupt
vector
output

Interrupts

3-42 ADSP-21065L SHARC DSP User’s Manual

For most interrupts, internal and external, the core executes only one
instruction after the interrupt occurs (and before the two instructions
abort), while the processor fetches and decodes the first instruction of the
service routine. After an arithmetic exception, however, two cycles occur
before the processor starts processing an interrupt because of the one-cycle
delay between an arithmetic exception and the update of the STKY
register.

Table 3-19 on page 3-43 lists and the standard latency associated with the
IRQ2-0 interrupts and the multiprocessor vector interrupt.

Table 3-18. Interrupt, delayed branch

Pipeline CLK
1

CLK
2

CLK
3

CLK|
4

CLK
5

CLK
6

CLK
7

Execute n−1 n n+1 n+2 NOP NOP v

Decode n n+1 n+2 j→NOP j+1→NOP v v+1

Fetch n+1 n+2 j j+1 v v+1 v+2

Inter-
rupt
occurs

Inter-
rupt
recog-
nized,
but not
pro-
cessed

For
call,
n+3
pushed
on PC
stack;
inter-
rupt
pro-
cessed

j
pushed
on PC
stack;
inter-
rupt
vector
output

ADSP-21065L SHARC DSP User’s Manual 3-43

Program Sequencing

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed one additional cycle. (See “Interrupt Nesting and
IMASKP” on page 3-46.) This delay enables execution of the first instruc-
tion of the lower priority interrupt routine before that routine is
interrupted.

Certain processor operations that span more than one cycle hold off inter-
rupt processing. If an interrupt occurs during one of these operations, the
processor synchronizes and latches it, but delays processing it. The opera-
tions that delay interrupt processing this way are:

• A branch (call, jump, or return) and the following cycle, whether it
is an instruction (in a delayed branch) or a NOP (in a nondelayed
branch)

• The first of the two cycles needed to perform a program memory
data access and an instruction fetch (when an instruction cache miss
occurs).

• The third-to-last iteration of a one-instruction loop.

• The last iteration of a one-instruction loop executed once or twice,
or the last iteration of a two-instruction loop executed once and the
following cycle (which is a NOP).

Table 3-19. Minimum latency of the IRQ2-0 and VIRPT interrupts

Interrupt Minimum Latency

IRQ2-0 3 cycles

VIRPT 6 cycles

Interrupts

3-44 ADSP-21065L SHARC DSP User’s Manual

• The first of the two cycles needed to fetch and decode the first
instruction of an interrupt service routine.

• Wait states for external memory accesses.

• An external memory access when the processor does not have con-
trol of the external bus (during a host bus grant or when the proces-
sor is a bus slave in a multiprocessing system).

Interrupt Vector Table
The IRPTL and IMASK registers contain all processor interrupts. For a
complete list and detailed information, see Appendix F, Interrupt Vector
Addresses, in ADSP-21065L SHARC DSP Technical Reference.

Interrupt Latch Register (IRPTL)
The interrupt latch (IRPTL) register is a 32-bit register that latches inter-
rupts. It indicates all interrupts the processor is currently servicing and
those that are pending. Because this register is readable and writable, soft-
ware can set or clear any interrupt, except reset. Writing to the reset bit
(bit 1) in IRPTL places the processor in an illegal state.

When an interrupt occurs, it sets the corresponding bit in IRPTL. During
execution of the interrupt’s service routine, this bit remains cleared—the
processor clears it during each cycle. This scheme prevents the processor
from latching the same interrupt while it executes the interrupt’s service
routine.

A special method, however, enables applications to reuse an interrupt
while the processor is servicing it. The clear interrupt (CI) modifier of the
JUMP instruction provides this capability. See “Clearing the Current
Interrupt for Reuse” on page 3-49.

IRPTL is cleared by a processor reset. The bits in the IMASK register cor-
respond exactly to those in IRPTL.

ADSP-21065L SHARC DSP User’s Manual 3-45

Program Sequencing

Interrupt Priority
The interrupt bits in IRPTL are ordered by priority. The interrupt prior-
ity ranks from 0 (highest) to 31 (lowest).

Interrupt priority determines which interrupt the processor services first
when more than one occurs in the same cycle and which interrupts are
nested when nesting is enabled (see “Interrupt Nesting and IMASKP” on
page 3-46).

The arithmetic interrupts—fixed-point overflow and floating-point over-
flow, underflow, and invalid operation—are determined from flags in the
sticky status register (STKY). Reading these flags, the service routine for
one of these interrupts determines which condition caused the interrupt.
The service routine must clear the appropriate STKY bit, to prevent the
interrupt from remaining active after the service routine has finished.

When enabled, both of the programmable timers generate interrupts
according to the operation mode in which they are set. You use the
INT_HIx bits in the MODE2 register to configure each timer to either bit
4, TMZHI, or to bit 23, TMZLI of the IRPTL register. You can mask
both of these interrupts in the IMASK register. (For details on configuring
and using the programmable timers, see Chapter 11, Programmable Tim-
ers and I/O Ports.)

The programmable timer feature enables you to choose the priority of the
timer interrupt. You can configure both timers to latch to the same loca-
tion or each timer to latch to a separate location. But, only the timer
interrupt on the TMZHI bit pushes the status stack.

When both timers latch to the same location, the processor logically ORs
both inputs and latches the value in the appropriate bit in the IRPTL reg-
ister. To determine its source and service the interrupt, you must check its
CNT_EXPx or PULSE_CAPx status bit in the STKY register.

Interrupts

3-46 ADSP-21065L SHARC DSP User’s Manual

Interrupt Masking and Control
To enable and disable all interrupts, except reset, you set the global inter-
rupt enable bit, IRPTEN, bit 12 in the MODE1 register. The processor
clears this bit at reset. You must set this bit to enable interrupts.

Interrupt Mask Register (IMASK)

You can mask all interrupts, except reset. Masked means disable. Since the
processor still latches (in IRPTL) interrupts that are masked, it processes
interrupts that later become unmasked.

The IMASK register controls interrupt masking. The bits in IMASK cor-
respond exactly to the bits in the IRPTL register.

For example, bit 10 in IMASK masks or unmasks the same interrupt that
bit 10 in IRPTL latches.

• If a bit in IMASK is set (1), its interrupt is unmasked (enabled).

• If the bit is cleared (0), the interrupt is masked (disabled).

After reset, all interrupts except for reset and the EP0I interrupt for exter-
nal port DMA channel 8 (bit 16 of IMASK) are masked. The reset
interrupt is always nonmaskable. The processor automatically unmasks the
EP0I interrupt after reset if an EPROM or a host is booting the processor.

Interrupt Nesting and IMASKP

The processor supports nesting of one interrupt service routine inside
another. That is, a higher priority interrupt can interrupt a service routine.
The nesting mode bit (NESTM) in the MODE1 register controls this
feature.

ADSP-21065L SHARC DSP User’s Manual 3-47

Program Sequencing

NESTM=0 Disable interrupt service routine nesting.

The processor services any interrupt that occurs, but only
after the routine finishes.

NESTM=1 Enable interrupt service routine nesting.

Higher priority interrupts can interrupt if they are not
masked, but lower or equal priority interrupts cannot inter-
rupt.

Make sure to change the NESTM bit outside of an interrupt service rou-
tine or during the reset service routine only. Otherwise, interrupt nesting
may not work correctly.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed one cycle. This enables execution of the first instruc-
tion of the lower priority interrupt routine before the routine is
interrupted.

In nesting mode, the processor uses the interrupt mask pointer (IMASKP)
to create a temporary interrupt mask for each level of interrupt nesting—
the IMASK value is not affected. The bits in IMASKP correspond to the
same bits in IRPTL and IMASK and in the same order of priority. When
an interrupt occurs, it sets its corresponding bit in IMASKP. The proces-
sor changes IMASKP each time a higher priority interrupt interrupts a
lower priority service routine. So, the bit in IMASKP that has the highest
priority always corresponds to the interrupt the processor is servicing.

To generate a new temporary interrupt mask when nesting is enabled, the
Program Sequencer masks all interrupts of equal or lower priority to the
highest priority bit set in IMASKP and keeps higher priority interrupts
the same as in IMASK. When it executes a return from an interrupt ser-
vice routine (RTI), the Program Sequencer clears the highest priority bit
set in IMASKP and masks all interrupts of equal or lower priority to the
new highest priority bit set in IMASKP.

Interrupts

3-48 ADSP-21065L SHARC DSP User’s Manual

If nesting is disabled, the Program Sequencer masks out all interrupts and
does not use IMASKP, although it still updates IMASKP to create a tem-
porary interrupt mask.

The Program Sequencer updates IRPTL, but the processor does not vector
to an interrupt that occurs while the processor is executing the interrupt’s
service routine. The processor waits until the RTI finishes before vector-
ing to the service routine again.

Status Stack Save and Restore
For low-overhead interrupt servicing, the processor automatically saves
and restores the status and mode contexts of the interrupted program. The
three external interrupts (IRQ2-0), the timer interrupt, and the VIRPT
vector interrupt cause an automatic push of ASTAT and MODE1 onto
the status stack, which is five levels deep. The return from interrupt
instruction RTI (and the JUMP (CI) instruction automatically pops these
registers from the status stack. (See “Clearing the Current Interrupt for
Reuse” on page 3-49.)

Pushing ASTAT and MODE1 preserves the status and control bit set-
tings, so if the service routine alters these bits, the return from interrupt,
RTI, automatically restores the original settings.

Only IRQ2-0, timer, and VIRPT interrupts push the status stack.
All other interrupts require an explicit save and restore of the
appropriate registers to memory.

Pushes and pops of the status stack do not affect the FLAG3-0 bits
in ASTAT. The values of these bits carry over from the main pro-
gram to the service routine and from the service routine back to
the main program.

ADSP-21065L SHARC DSP User’s Manual 3-49

Program Sequencing

The top of the status stack contains the current values of ASTAT and
MODE1. Reading and writing these registers does not move the stack
pointer. Explicit PUSH and POP instructions, however, do move the
stack pointer.

Software Interrupts
The processor provides software interrupts that emulate interrupt behav-
ior but are activated through software instead of hardware.

Setting one of bits 28-31 in IRPTL with either a BIT SET instruction or a
write to IRPTL activates a software interrupt. The processor branches to
the corresponding interrupt routine if that interrupt is unmasked and
interrupts are enabled.

Clearing the Current Interrupt for Reuse
Normally, the processor ignores and does not latch an interrupt that reoc-
curs while its service routine is executing. When the interrupt initially
occurs, it sets its corresponding bit in IRPTL. During execution of the ser-
vice routine, this bit remains cleared—the processor clears the bit during
each cycle, preventing the processor from latching the same interrupt
while it is executing the interrupt’s service routine.

The clear interrupt (CI) modifier of the JUMP instruction, however,
enables an application to reuse an interrupt while it is undergoing servic-
ing. This capability is useful in systems that require fast interrupt response
and low interrupt latency. Be sure to place the JUMP (CI) instruction
within the interrupt service routine. JUMP (CI) clears the status of the
current interrupt without leaving the interrupt service routine. This
reduces the interrupt routine to a normal subroutine and enables the
interrupt to occur again, as a result of a different event or task in the
system.

Interrupts

3-50 ADSP-21065L SHARC DSP User’s Manual

To reduce an interrupt service routine to a normal subroutine, the JUMP
(CI) instruction clears the appropriate bit in the interrupt latch register
(IRPTL) and interrupt mask pointer (IMASKP) and pops the status stack.
This prevents the processor from clearing the interrupt’s latch bit (in
IRPTL) in every cycle automatically, so the interrupt can occur again.

When returning from such a subroutine, the application must use the
(LR) modifier of the RTS instruction (in case the interrupt occurred dur-
ing the last two instructions of a loop). For details, see “General
Restrictions” on page 3-27.

The following example shows how to use the (CI) modifier to reduce an
interrupt service routine to a subroutine:

instr1; {interrupt entry from main program}
JUMP(PC,3)(DB,CI); {clear interrupt status}
instr3;
instr4;
instr5;
RTS (LR); {use LR modifier w/return from subrtn}

The JUMP(PC,3)(DB,CI) instruction continues linear execution flow
only by jumping to the location PC + 3 (instr5), with the processor exe-
cuting the two intervening instructions (instr3, instr4) because of the
delayed branch (DB). This JUMP instruction is only an example—a
JUMP (CI) can jump to any location.

External Interrupt Timing and Sensitivity
Each of the processor’s three external interrupts, IRQ2-0, can be either
level- or edge-triggered.

The processor samples interrupts twice every CLKIN cycle. Level-sensitive
interrupts are considered valid if sampled active (low). A level-sensitive
interrupt must go inactive (high) before the processor returns from the
interrupt service routine. If a level-sensitive interrupt is still active when
the processor samples it, the processor treats it as a new request, repeating

ADSP-21065L SHARC DSP User’s Manual 3-51

Program Sequencing

the same interrupt routine without returning to the main program
(assuming no higher priority interrupts are active).

Edge-triggered interrupt requests are considered valid if sampled high in
one cycle and low in the next. The interrupt can stay active indefinitely.
To request another interrupt, the signal must go high, then low again.

Since they never a need to negate the request, edge-triggered interrupts
require less external hardware than level-sensitive requests. However, mul-
tiple interrupting devices can share a single level-sensitive request line on a
wired-OR basis, which provides for easily expanded systems.

A bit for each interrupt in the MODE2 register indicates the sensitivity
mode of each interrupt.

The processor accepts interrupts that are asynchronous to its clock; that is,
an interrupt signal may change at any time. An asynchronous interrupt
must be held low at least one CLKIN cycle to guarantee its sampling. Syn-
chronous interrupts need only meet the setup and hold time requirements
relative to the rising edge of CLKIN, as specified in the processor’s data
sheet.

Asynchronous External Interrupts

Vector interrupts are used for interprocessor commands in multiprocessor
systems. When an external processor, either another ADSP-21065L or a
host, writes an address to the VIRPT register, it causes a vector interrupt.

Table 3-20. MODE2 interrupt mode bits

Bit Name Definition

0 IRQ0E 1 = edge-sensitive; 0 = level-sensitive

1 IRQ1E 1 = edge-sensitive; 0 = level-sensitive

2 IRQ2E 1 = edge-sensitive; 0 = level-sensitive

Interrupts

3-52 ADSP-21065L SHARC DSP User’s Manual

Multiprocessor Vector Interrupts (VIRPT)

When it services the vector interrupt, the processor automatically pushes
the status stack and begins executing the service routine located at the
address specified in VIRPT. The lower twenty-four bits of VIRPT contain
the address, and applications can use the upper eight bits as data for the
interrupt service routine. At reset, the processor initializes VIRPT to the
standard address in the its interrupt vector table.

The minimum latency for vector interrupts is six cycles, five of which are
NOPs. When the RTI (return from interrupt) instruction is reached in
the service routine, the processor automatically pops the status stack.

The VIPD bit in SYSTAT reflects the status of the VIRPT register. If
VIRPT is written while a previous vector interrupt is pending, the new
vector address replaces the pending one. If VIRPT is written while a previ-
ous vector interrupt is undergoing servicing, the processor ignores the new
vector address, so no new interrupt is triggered. If the processor writes to
its own VIRPT register, the write is ignored.

To use the processor’s vector interrupt feature, external processors per-
form these actions:

1. Poll the VIRPT register until it reads a certain token value (0).

2. Write the vector interrupt service routine address to VIRPT.

When the service routine has finished, it writes the token back to
VIRPT to indicate that it is done and that the processor can ini-
tiate another vector interrupt.

ADSP-21065L SHARC DSP User’s Manual 3-53

Program Sequencing

Programmable Timers
The processor includes two programmable timers that your application
can configure and use in either timer counter mode or in pulse
counter/capture mode.

Each timer has one input/output pin—PWM_EVENTx. In timer counter
mode (PMWOUT), this pin functions as an output pin, and in pulse
counter/capture mode (WIDTH_CNT), this pin functions as an input
pin.

Each timer has three registers—TPERIODx, TPWIDTHx, and
TCOUNTx—that support timer functions. All timer registers are
thirty-two bits wide, and the counters (TCOUNTx) use the system clock

(2x CLKIN), which evaluates to a maximum period of 71.5 sec ((232 -1)×
16.67ns system clock cycles) for the timer count.

For more details, see Chapter 11, Programmable Timers and I/O Ports.

Stack Flags

3-54 ADSP-21065L SHARC DSP User’s Manual

Stack Flags
As shown in Table 3-21, the STKY status register maintains stack full and
stack empty flags for the PC stack as well as overflow and empty flags for
the status stack and loop stack. Unlike other bits in STKY, several of these
flag bits are not “sticky.” They are set by the occurrence of the corre-
sponding condition and are cleared when the condition is changed (by a
push, pop, or processor reset).

The status stack flags are read-only. Writes to the STKY register have no
effect on these bits.

The overflow and full flags are provided for diagnostic aid only and are
not intended to enable recovery from overflow. Status stack or loop stack
overflow or PC stack full causes an interrupt.

Table 3-21. STKY status register flags

Bit Name Definition State Set/Cleared by…

21 PCFL PC stack full Not sticky Pop

22 PCEM PC stack empty Not sticky Push

23 SSOV Status stack over-
flow

Sticky RESET

24 SSEM Status stack empty Not sticky Push

25 LSOV Loop stacks1 over-
flow

1 Loop address stack and loop counter stack.

Sticky RESET

26 LSEM Loop stacks1 empty Not sticky Push

ADSP-21065L SHARC DSP User’s Manual 3-55

Program Sequencing

The empty flags facilitate stack saves to memory. You monitor the empty
flag when saving a stack to memory to know when all values have been
transferred. The empty flags do not cause interrupts because an empty
stack is an acceptable condition.

Idle and Idle16

3-56 ADSP-21065L SHARC DSP User’s Manual

Idle and Idle16
IDLE and IDLE16 are special instructions that halt the processor’s core in
a low-power state until an external interrupt (IRQ2-0), timer interrupt,
DMA interrupt, or VIRPT vector interrupt occurs.

When it executes an IDLE instruction, the processor fetches one more
instruction at the current fetch address before suspending operation. The
IDLE instruction does not affect the processor’s I/O processor, so any
DMA transfers to or from internal memory continue uninterrupted.

Both the processor’s internal clock and the timer (if enabled) continue to
run during IDLE. When an external interrupt (IRQ2-0), timer interrupt,
DMA interrupt, or VIRPT vector interrupt occurs, the processor responds
normally. After two cycles incurred in fetching and decoding the first
instruction of the interrupt service routine, the processor continues exe-
cuting instructions normally.

The IDLE16 instruction is a lower power version of the IDLE instruction.
It executes a NOP and puts the processor in a low power state. Like the
IDLE instruction, IDLE16 halts the processor, but the internal clock con-
tinues to run at 1/16th the rate of CLKIN.

The processor remains in the low power state until an interrupt occurs.

To exit IDLE16, your application software can:

• Assert the external IRQx pin.

• Generate a timer interrupt.

After returning from the interrupt, execution continues at the instruction
following the IDLE16 instruction.

While the processor is in IDLE16 mode, do not perform DMA
transfers, SPORT transfers, or host transfers.

ADSP-21065L SHARC DSP User’s Manual 3-57

Program Sequencing

During IDLE16, the processor does not support:

• Host accesses

Make sure your application software does not assert HBR.

• Multiprocessor bus arbitration (synchronous accesses)

• External port DMA

• SDRAM accesses

• Serial port transfers

Instruction Cache

3-58 ADSP-21065L SHARC DSP User’s Manual

Instruction Cache
The processor’s on-chip instruction cache is a two-way, set-associative
cache with entries for thirty-two instructions. This cache operates trans-
parently to the programmer.

The processor caches only instructions that conflict with program memory
data accesses (over the PMD bus with DAG2 generating the address on
the PMA bus). This feature increases the efficiency of the cache consider-
ably, surpassing performance of a cache that loads every instruction since,
typically, only a few instructions must access data from a block of program
memory.

Because of the three-stage instruction pipeline, if the instruction at
address n requires a data access of program memory, it creates a conflict
with the instruction fetch at address n+2, assuming sequential execution.
The processor stores the fetched instruction (n+2) in the instruction cache,
not the instruction that requires the data access of program memory.

If the instruction the processor needs is in the cache, a cache hit occurs—
the cache provides the instruction while the processor performs a data
access of program memory.

If the instruction the processor needs is not in the cache, a cache miss
occurs, and the instruction fetch (from memory) takes place in the cycle
following the data access of program memory and incurs one cycle of over-
head. The Program Sequencer loads this instruction into the cache if the
cache is enabled and not frozen, so the instruction (requiring program
memory data) is available the next time the processor executes it.

Cache Architecture
Figure 3-4 on page 3-59 shows a block diagram of the instruction cache.
The cache contains thirty-two entries. An entry consists of a register pair

ADSP-21065L SHARC DSP User’s Manual 3-59

Program Sequencing

that contains an instruction and its address. Each entry has a valid bit,
which is set if the entry contains a valid instruction.

The entries are divided into sixteen sets (numbered 15-0) of two entries
each, entry 0 and entry 1. Each set has an LRU (Least Recently Used) bit
whose value indicates which of the two entries contains the least recently
used instruction (1=entry 1, 0=entry 0).

Each possible instruction address is mapped to a set in the cache by its
four LSBs. When the processor needs to fetch an instruction from the
cache, it uses the four address LSBs as an index to a particular set. Within
that set, it checks the addresses of the two entries to see whether either
contains the needed instruction. A cache hit occurs if the instruction is
found, and the LRU bit is updated, if necessary, to indicate the entry that
did not contain the needed instruction.

Figure 3-4. Instruction Cache architecture

A cache miss occurs if neither entry in the set contains the needed instruc-
tion. If so, the processor loads a new instruction and its address into the
least recently used entry of the set that matches the four LSBs of the
address. It toggles the LRU bit to indicate that the other entry in the set is
now the least recently used entry.

Set 0

Set 1

Set 2

Set 13

Set 14

Set 15

Instruction Address
LRU
Bit

Valid
Bit

Instruction Cache

3-60 ADSP-21065L SHARC DSP User’s Manual

Because the processor uses the four address LSBs of instructions to map
them to sets, it doesn’t need to store these bits in the cache. The set in
which the instruction has been stored implies the four address LSBs. A
cache entry actually stores only bits 23:4.

Cache Efficiency
Usually, cache operation and its efficiency is not a concern. However,
some situations can degrade cache efficiency, but your application can eas-
ily remedy them.

When a cache miss occurs, the Program Sequencer loads the needed
instruction into the cache, so if the same instruction is needed again, it is
already there (causing a cache hit). However, if another instruction whose
address is mapped to the same set displaces this instruction, a cache miss
occurs. The LRU bits reduce cache misses since it takes fetches of at least
two other instructions mapped to the same set to displace an instruction.
If the processor repeatedly needs all three instructions mapped to the same
set, cache efficiency (hit rate) can fall to zero (0). To avoid this, move one
or more of the instructions to a new address, one that is mapped to a dif-
ferent set.

Listing 3-1 is an example of cache-inefficient code:

Listing 3-1. Cache-inefficient code example

Address
0x0100 lcntr=1024, do tight until lce;
0x0101 r0=dm(i0,m0), pm(i8,m8)=f3;
0x0102 r1=r0-r15;
0x0103 if eq call (sub);
0x0104 f2=float r1;
0x0105 f3=f2*f2;
0x0106 tight: f3=f3+f4;
0x0107 pm(i8,m8)=f3;

ADSP-21065L SHARC DSP User’s Manual 3-61

Program Sequencing

•
•
•
0x0200 sub: r1=R13;
0x0201 r14=pm(i9,m9);
•
•
•
0x0211 pm(i9,m9)=r12;
•
•
•
0x021F rts;

The data access of program memory at address 0x101 in the tight loop
causes the Program Sequencer to cache the instruction at 0x103 (in set 3).

Each time the application calls the subroutine sub, the program memory
data accesses at 0x201 and 0x211 load the instructions at 0x203 and
0x213 into set 3 and displace this instruction. If the subroutine is called
only rarely during the loop execution, the impact will be minimal. If the
subroutine is called frequently, the effect will be noticeable.

If the execution of the loop is time-critical, moving the subroutine up one
location (starting at 0x201) is advisable, so the two cached instructions
end up in set 4 instead of in set 3.

Cache Disable and Cache Freeze
Freezing the cache prevents any changes to its contents—a cache miss does
not result in storage of a new instruction in the cache.

Disabling the cache stops its operation completely. The access delays all
instruction fetches that conflict with data accesses of program memory.

Instruction Cache

3-62 ADSP-21065L SHARC DSP User’s Manual

The CADIS (cache enable/disable) and CAFRZ (cache freeze) bits in the
MODE2 register select the functions shown in Table 3-22.

After reset, the cache is cleared, so it contains no instructions, but is
unfrozen and enabled.

Do not place an instruction that contains a data access of program mem-
ory directly after a cache enable or a cache disable instruction—the
processor must wait at least one cycle before executing the PM data access.
You can insert a NOP instruction to provide this delay.

Bit 4 (CADIS) directs the sequencer to disable the
cache (if 1) or enable the cache (if 0). Disabling the
cache does not mark the current content of the
cache as invalid. If the cache is enabled again, the
existing content is used again. To clear the cache,
use the FLUSH CACHE instruction.

If you are using self-modifying code (for example,
software loader kernel) or software overlays, execute
a FLUSH CACHE instruction followed by a NOP
before executing the new code. Otherwise, old con-
tent from the cache could still be used, even though
the code has changed.

Table 3-22. MODE2 CADIS and CAFRZ bits

Bit Name Function

4 CADIS Cache Disable

19 CAFRZ Cache Freeze

ADSP-21065L SHARC DSP User’s Manual 4-1

4 DATA ADDRESSING
Figure 4-0.

Table 4-0.

Listing 4-0.

Maintaining pointers into memory, the processor’s two data address gen-
erators (DAGs) simplify the task of organizing data. The DAGs enable the
processor to address memory indirectly; that is, an instruction specifies a
DAG register that contains the address of a value instead of the value.

Data address generator 1 (DAG1) generates 32-bit addresses on the DM
Address Bus. Data address generator 2 (DAG2) generates 24-bit addresses
on the PM Address Bus. Figure 4-1 on page 4-3 shows the basic architec-
ture of both DAGs. For details, see “Generating Addresses for the PM and
DM Buses” on page 5-11.

The DAGs provide hardware support for some functions commonly used
in digital signal processing algorithms. Both DAGs support circular data
buffers, which require software to advance a pointer repetitively through a
range of memory locations. Both DAGs can also perform a bit-reversing
operation, which outputs the bits of an address in reversed order.

DAG Registers

4-2 ADSP-21065L SHARC DSP User’s Manual

DAG Registers
Each DAG has four types of registers: Index (I), Modify (M), Base (B),
and Length (L).

An I register acts as a pointer to memory, and an M register contains the
value to increment the pointer. To vary the increment as needed, you
modify an I register with different M values.

B and L registers work with circular data buffers only. These buffers oper-
ate in pairs: B0 with L0, B4 with L4, B12 with L12, and so on. The B
register holds the base address (first address) of a circular buffer. The cor-
responding L register contains the number of locations in the circular
buffer, defining its length.

Each DAG contains eight of each register type, as shown in Table 4-1.

Table 4-1. DAG registers

DAG1 (32-bit) DAG2 (24-bit)

B0-B7 B8-B15

I0-I7 I8-I15

M0-M7 M8-M15

L0-L7 L8-L15

ADSP-21065L SHARC DSP User’s Manual 4-3

Data Addressing

Figure 4-1. Architecture of the data address generators (DAGs)

Alternate DAG Registers
To implement context switching, each DAG register has an alternate reg-
ister. Figure 4-2 on page 4-4 shows how each DAG is organized into
upper and lower halves for activating its alternate registers.

������.��

!

�������	�

/0�

.

�������	�

/0�

�

�������	�

/0�

��1

%��

�������	�

/0�

��1

.��2����	��
 ��3�%4�5�6� /�3�%4�5����7

3�-�����5

+��%��	����.���3�%4�5

���%��	����.���3�%4�5

�-���

.��2����	��
3�-�����5

�������

!����

�%4�&��8��

�%4�&��8�) �)
��

�

�

�

�

����
	�"

����	������

DAG Registers

4-4 ADSP-21065L SHARC DSP User’s Manual

Figure 4-2. Alternate DAG registers

The upper half of DAG1 contains I, M, B and L registers 4 through 7, and
the lower half contains I, M, B and L registers 0 through 3.

Likewise, the upper half of DAG2 contains I, M, B and L registers 12
through 15, and the lower half contains I, M, B and L registers 8
through 11.

 �

 �

 �

 �

��

��

��

��

!�

!�

!�

!�

.�

.�

.�

.�

)

 (

 �

 �

�)

�(

��

��

!)

!(

!�

!�

.)

.(

.�

.�

 /

 �

 ��

 ��

�/

��

���

���

!/

!�

!��

!��

./

.�

.��

.��

 ��

 ��

 �)

 �(

���

���

��)

��(

!��

!��

!�)

!�(

.��

.��

.�)

.�(

���,��#������.��

#���!

#���9

#���!

#���9

�%4���������	��3�����"�	75

�%4���������	��3+	��	"���"�	75

ADSP-21065L SHARC DSP User’s Manual 4-5

Data Addressing

Table 4-2 shows the control bits in the MODE1 register that determine,
for each half, whether the DAG’s primary or alternate registers are active.

This grouping of alternate registers enables you to pass pointers between
contexts in each DAG.

Table 4-2. MODE1 DAG control bits for

Bit Name Definition

3 SRD1H DAG1 alternate register select (7-4)

4 SRD1L DAG1 alternate register select (3-0)

5 SRD2H DAG2 alternate register select (15-12)

6 SRD2L DAG2 alternate register select (11-8)

0 = primary registers; 1 = alternate registers

DAG Operation

4-6 ADSP-21065L SHARC DSP User’s Manual

DAG Operation
DAG operations include:

• Address output with premodify or postmodify.

• Modulo addressing (for circular buffers).

• Bit-reversed addressing.

The DAGs right-shift short word addresses (16-bit data) by one bit before
outputting them on the DM Address Bus. This enables internal memory
to use the address directly. (For details, see “Using 16-Bit Short Word
Accesses” on page 5-41.)

Address Output and Modification
The processor can generate addresses in one of two ways:

• Premodify operation

The processor adds an offset (modifier), either an M register or an
immediate value, to an I register and outputs the resulting address.

This operation does not update the value of the I register.

Neither the L register nor modulo logic affect a premodified address.
Premodify addressing is always linear, never circular.

Restrictions on the use of premodify addressing operations may
apply to some older silicon revisions. For details, see “Memory
Organization” on page 5-16.

• Postmodify operation

The processor outputs the I register value as is and adds an M regis-
ter or immediate value to form a new I register value.

ADSP-21065L SHARC DSP User’s Manual 4-7

Data Addressing

The width of an immediate modifier depends on the instruction. It can be
as large as the width of the I register.

Figure 4-3 shows a comparison of the pre- and postmodify operations.

Figure 4-3. Comparison of premodify and postmodify operations

DAG Modify Instructions

In the processor’s assembly language, the positions of the index and modi-
fier (M register or immediate value) in the instruction distinguishes the
premodify and postmodify operations.

The I register coming before the modifier identifies the postmodify opera-
tion. Conversely, the modifier coming before the I register identifies the
premodify with no update operation. For example, the following instruc-
tion accesses the program memory location with an address equal to the

If you use postmodify addressing without implementing a circu-
lar buffer, make sure you set the corresponding L register to 0.

Uninitialized L registers cause unpredictable postmodify behav-
ior.

�

'

���-�� '�

�:����-��

�

 '�

'

�:��-���

+�,��� ;<

��� �	������	��-���

+�#���� ;<

 �	������	��-���

+�3 0=��05

��3 0=��05

+�3�0=� 05

��3�0=� 05

DAG Operation

4-8 ADSP-21065L SHARC DSP User’s Manual

value stored in I15, and the processor writes back the value I15 + M12 to
the I15 register:

R6 = PM(I15,M12); Indirect addressing with postmodify

If the order in which the I and M registers appear in the instruction is
reversed, the instruction accesses the location in program memory with an
address equal to I15 + M12, but without changing the value of I15:

R6 = PM(M12,I15); Indirect addressing with premodify

Any M register can modify any I register within the same DAG (DAG1 or
DAG2). So,

DM(M0,I2) = R0; valid instruction
DM(M0,I14) = R0; invalid instruction

Immediate Modifiers

The magnitude of an immediate value that can modify an I register
depends on the instruction type and whether the I register is in DAG1 or
in DAG2.

DAG1 modify values can be up to 32-bits wide. DAG2 modify values can
be up to 24-bits wide. Some instructions with parallel operations support
modify values up to 6-bits wide only. For example:

• 32-bit modifier

R1=DM(0x00400000,I1); DM address = I1 + 0x0040 0000

• 6-bit modifier:

F6=F1+F2,PM(I8,0x0B)=ASTAT; PM address = I8, I8 = I8 + 0x0B

ADSP-21065L SHARC DSP User’s Manual 4-9

Data Addressing

Circular Buffer Addressing
The DAGs provide addressing of locations within a circular data buffer.

A circular buffer consists of a set of memory locations that stores data and
an index pointer that steps through the buffer. For each step, the processor
postmodifies and updates the buffer’s I register by adding the value (posi-
tive or negative) specified in the M register to the value in the I register.

If the modified address pointer (M) falls outside the circular buffer, the
processor either subtracts or adds, accordingly, the length of the buffer to
the value to wrap the index pointer back to the start of the buffer (see
Figure 4-4). The value of the base address of a circular buffer carries no
restrictions.

Figure 4-4. Circular data buffers

For circular buffer addressing, you must use M registers to postmodify I
registers, not to premodify them.

�

�

�

�

)

(

�

�

/

�

��

�

�

�

�

�

�

�

)

(

�

�

/

�

��

)

(

�

�

�

�

�

)

(

�

�

/

�

��

�

/

�

�

�

�

�

)

(

�

�

/

�

��

��

��

#�>����������	��	��
������������������������-��:

#�>������	�-���������?��>�����-����:

!����@�8���

.�����	����8��

����
��	�8�)

DAG Operation

4-10 ADSP-21065L SHARC DSP User’s Manual

For example:

F1=DM(I0,M0);Use a postmodify operation to
modify circular buffers, not a premodify
operation.

Circular Buffer Operation

To set up a circular buffer in assembly language, initialize an L register
with a positive, nonzero value and load the corresponding B register with
the base (starting) address of the buffer. The processor automatically loads
the corresponding I register with this same starting address.

On the first postmodify access using the I register, the DAG outputs the I
register value on the address bus and then modifies it by adding to it the
value specified in the M register or an immediate value.

If the modified value is within the buffer’s range, the DAG writes it back
to the I register. If the value is outside the buffer’s range, the DAG sub-
tracts (or adds if the modify value is negative) the L register value to the
modified value before writing the modified value back to the I register.

• If M is positive

Inew=Iold + M If Iold+M < Buffer base + length
(end of buffer)

Inew=Iold + M–L If Iold+M ≥ Buffer base + length
 (end of buffer)

• If M is negative

Inew=Iold + M If Iold+M ≥ Buffer base
(start of buffer)

Inew=Iold + M + L If Iold+M < Buffer base
(start of buffer)

ADSP-21065L SHARC DSP User’s Manual 4-11

Data Addressing

Circular Buffer Registers

A circular buffer uses all four types of DAG registers:

• The I register contains the value the processor outputs on the
address bus.

• The M register contains the postmodify value (positive or negative)
that the processor adds to the I register at the end of each memory
access.

You can use any M register providing it is located in the same DAG
as the I register. And you can use noncorresponding M and I register
combinations; for example, registers M2 and I4.

You can use an immediate value or an M register value for the mod-
ifier. The magnitude of the modify value, whether from an M reg-
ister or an immediate value, must be less than the length (L register)
of the circular buffer.

• The L register sets the size of the circular buffer, defining the address
range that the I register steps through.

The value of the L register must be positive and cannot have a value

greater than 231−1 (for L0 through L7) or 223 −1 (for L8 through
L15). A value of 0 in an L register disables the circular buffer.

• After each access, the processor compares the modified I value to the
B register value, or the sum of the B and L registers.

When the processor loads the B register, it also loads the corre-
sponding I register with the same value. When it loads the I register,

If you use postmodify addressing without implementing
a circular buffer, make sure you set the corresponding L
register to 0.

DAG Operation

4-12 ADSP-21065L SHARC DSP User’s Manual

it does not change the value in the B register. You can read the B
and I registers independently.

Circular Buffer Overflow Interrupts

Circular buffer overflow interrupts are useful in implementing, for exam-
ple, a ping-pong routine that swaps I/O buffer pointers.

One set of registers in each DAG can generate an interrupt when a circular
buffer overflows (address wraparound occurs). In DAG1, the registers are
B7, I7, and L7, and in DAG2, they are B15, I15, and L15.

A circular buffer addressing operation that uses these registers and causes
the processor to increment or decrement the address in the I register past
the end or start of the circular buffer generates an interrupt. Which inter-
rupt is generated depends on the register set the operation used, as shown
in Table 4-3.

Specifically, an instruction generates an interrupt during its address post-
modify when:

(for M<0) I + M < B
(for M≥0) I + M ≥ B + L

Table 4-3. Circular buffer overflow interrupts

Interrupt Use DAG… Vector Addr Symbolic
Name1

1 These symbols are defined in the #include file def21065L.h. For details, see Appendix E, Control and
Status Registers, in ADSP-21065L SHARC DSP Technical Reference.

DAG1 circular buffer 7
overflow

B7, I7, L7 0x54 CB7I

DAG2 circular buffer 15
overflow

B15, I15, L15 0x58 CB15I

ADSP-21065L SHARC DSP User’s Manual 4-13

Data Addressing

To mask these interrupts, clear the appropriate bit in the IMASK register.

In certain situations, you may want to use I7 or I15 without circular buff-
ering, but with the circular buffer overflow interrupts unmasked. To
disable generation of these interrupts, set the B7 and B15 registers in
DAG1 and the L7 and L15 registers in DAG2 to values that ensure the
conditions that generate interrupts never occur. For example, when access-
ing the address range 0x1000 to 0x2000, set B=0x0000 and L=0xFFFF.
(Setting the L register to zero (0) will not disable circular buffer
interrupts.)

If you are using either of the circular buffer overflow interrupts, avoid
using the corresponding I register(s) (I7 and I15) in the rest of your appli-
cation software, or make sure your software sets the B and L registers
accordingly to prevent spurious interrupt branching.

The STKY status register contains two bits that the processor sets when a
circular buffer overflow occurs—bit 17 (DAG1 circular buffer 7 overflow)
and bit 18 (DAG2 circular buffer 15 overflow). These bits are “sticky” and
remain set until explicitly cleared.

Bit Reversal
You can bit-reverse memory addresses two ways:

• Enabling bit-reverse mode on DAG1 or DAG2 and using a specific
I register (I0 or I8).

• Using the explicit bit-reverse instruction BITREV.

Using Bit-Reverse Mode

In bit reverse mode, DAG1 bit-reverses 32-bit address values output from
I0, and DAG2 bit-reverses 24-bit address values output from I8.

The processor bit reverses the address values from the I0 and I8 registers
only.

DAG Operation

4-14 ADSP-21065L SHARC DSP User’s Manual

This mode affects both premodify and postmodify operations.

The BR0 and BR8 bits in the MODE1 register enable these modes.

Bit reversal occurs at the output of the DAG and does not affect the value
in I0 or I8. In postmodify operations, the processor does not bit reverse
the update value.

For example:

I0=0x80400000;
R1=DM(I0,3); DM address=0x201, I0=0x80400003

Using the Bit Reverse Instruction

The BITREV instruction modifies and bit reverses addresses in any DAG
index register (I0-I15), without actually accessing memory. This instruc-
tion operates independently of bit-reverse mode.

The BITREV instruction:

• Adds a 32-bit immediate value to a DAG1 index register. For a
DAG2 index register, you can specify a zero immediate value only.

• Bit-reverses the result.

• Writes the result back to the same index register.

For example:

BITREV(I9,0); I9 = Bit-reverse of (I9+0)

Table 4-4. MODE1 bit reversal mode bits

Bit Name Description

0 BR8 Bit reverse mode for I8 (DAG2)

1 BR0 Bit reverse mode for I0 (DAG1)

ADSP-21065L SHARC DSP User’s Manual 4-15

Data Addressing

DAG Register Transfers
DAG registers are part of the universal register set. You can write to them
from memory, from another universal register, or from an immediate field
in an instruction. Conversely, you can write DAG register contents to
memory or to a universal register.

As shown in Figure 4-5, transfers between 32-bit DAG1 registers and the
40-bit Data Memory Data (DMD) bus are aligned to bits 39:8 of the
DMD bus.

Figure 4-5. DAG register transfers

When the processor reads 24-bit DAG2 registers over the 40-bit DMD
bus, it sign-extends M register values to 32 bits and zero-fills I, L, and B
register values to 32 bits. The results are aligned to bits 39:8 of the DMD
Bus.

When the processor writes the DAG2 registers from the DMD bus, it
transfers bits 31:8 and ignores the rest.

�� � ���

/�A�	�� /�A�	��

�� � �

�� � ���

�%4�����������	�3�(2/5/������?���

/�A�	��

/�A�	��

�%4���������	�3�2�5

�� � ���

�%4�����������	�3�(2/5

�%4�� =�!=��	�.����:�3�(2/5

DAG Register Transfers

4-16 ADSP-21065L SHARC DSP User’s Manual

For certain instruction sequences that involve transfers to and from DAG
registers, the processor inserts a NOP cycle automatically.

Certain other sequences, which the assembler does not support, cause
incorrect results:

• Instructions that generate an extra NOP cycle

The processor automatically inserts a NOP cycle between two con-
secutive instructions if the first instruction loads a DAG register and
the second instruction uses any register in the same DAG for data
addressing, modify instructions, or indirect jumps.

The processor inserts the NOP instruction to delay the second oper-
ation since both operations need the same bus in the same cycle.

For example:

L2=8;
DM(I0,M1)=R1;

Because L2 is in the same DAG as I0 (and M1), the processor inserts
an extra cycle after the write to L2.

• Illegal instructions that generate incorrect results

You can execute the following types of instructions on the proces-
sor, but they generate incorrect results and are unsupported:

• An instruction that uses indirect addressing from a DAG to store
the same DAG register in memory, with or without updating the
index register.

This instruction writes the wrong data to memory or updates the
wrong index register.

For example: DM(M2,I1)=I0;orDM(I1,M2)=I0;

ADSP-21065L SHARC DSP User’s Manual 4-17

Data Addressing

• An instruction that uses indirect addressing from a DAG to load
the same DAG register from memory and updates the index reg-
ister.

This instruction either loads the DAG register or updates the
index register, but not both.

For example: L2=DM(I1,M0);

DAG Register Transfers

4-18 ADSP-21065L SHARC DSP User’s Manual

ADSP-21065L SHARC DSP User’s Manual 5-1

5 MEMORY
Figure 5-0.

Table 5-0.

Listing 5-0.

The processor’s dual-ported SRAM provides 544K bits of on-chip storage
for program instructions and data.

The processor’s internal bus architecture provides a total memory band-
width of 900M bytes/sec., enabling the core to access 660M bytes/sec. and
the I/O processor to access 264M bytes/sec. of memory

The processor’s flexible memory structure enables:

• The processor’s core and I/O processor or DMA controller to inde-
pendently access memory in the same cycle.

• The processor’s core to access both memory blocks in parallel using
its PM and DM buses.

• Applications to configure memory to store 16-, 32-, 40-, or 48-bit
words or combinations of these.

The processor uses 32-bit memory words for single-precision IEEE
floating-point data and 48-bit words for instructions. It supports
16-bit short word format for integer or fractional data values.

5-2 ADSP-21065L SHARC DSP User’s Manual

Figure 5-1. ADSP-21065L block diagram

The following terms are used throughout this chapter:

DAGs Data Address Generators.

Generate indirect addresses for data reads and writes over the PM
and DM buses. The DAGs generate addresses simultaneously for
dual operand reads and writes if the instruction is available in the
Instruction Cache. See also, Instruction Cache.

DAG1 generates 32-bit addresses for data transfers over the DM
bus. DAG2 generates 24-bit addresses for data transfers over the
PM bus.

For more information see, Chapter 4, Data Addressing.

DATAADDR DATAADDR

B
LO

C
K

1

TWO INDEPENDENT

DUAL-PORTED BLOCKS

PROCESSOR
PORT

I/O
PORT

ADDR DATA DATAADDR

B
LO

C
K

0

IOP
Registers

DMA
Controller

Program
Sequencer

Instruction
cache

32x48b

24

32

48

40

PM Address Bus

DM Data Bus

PM Data Bus

DM Address Bus

IOA
17

IOD
48

I/O Processor

Dual-Ported SRAM

SDRAM
Interface

Multiprocessor
Interface

DATA
Bus Mux

PMD

DMD

EPD

ADDR
Bus Mux

PMA

DMA

EPA

IO
D

E
P

D

D
M

D

P
M

D

E
P

A

IO
A

External Port
DAG1
8x4x32

DAG2
8x4x24

Bus
Connect

(PX)

DSP Core

Data
Register

File

ADSP-21065L SHARC DSP User’s Manual 5-3

Memory

DM bus
Data Memory bus.

Consists of the 32-bit Data Memory Address (DMA) bus and the
40-bit Data Memory Data (DMD) bus.

Controlled by the processor’s core, the DM bus provides a connec-
tion between SRAM, core (DAGs, PX bus connect, Register File,
Programs Sequencer, and Instruction Cache), I/O processor’s IOP
registers, and the external port.

Used to transfer data between registers and between registers and
external memory. Transfers are done within one clock cycle.

See also, PM bus.

External memory space
Memory map area that corresponds to external memory.

See also, Internal memory space, Multiprocessor memory space.

External port
Provides addressing of up to 64M words of additional, off-chip
memory and access to other peripherals, a host processor, and the
IOP registers of the other ADSP-21065L in a multiprocessing
system.

Instruction Cache
One of two sources (PM bus and Instruction Cache) for tempo-
rarily storing the next instruction that the processor needs to fetch.

When the Instruction Cache provides instructions, it eliminates
PM bus conflicts that can occur when the core uses the PM bus to
execute a dual-data access. This way, data accesses over the PM bus
incur no extra cycles.

5-4 ADSP-21065L SHARC DSP User’s Manual

The Instruction Cache stores only those instructions that conflict
with data accesses over the PM bus.

Internal memory space
Memory map area that corresponds to the processor’s internal
memory.

See also, External memory space, Multiprocessor memory space.

I/O bus
The input/output bus connecting SRAM with the I/O processor.

Controlled by the I/O processor, the I/O bus enables concurrent
data transfers between either memory block and the processor’s
communications ports (the external port and serial ports).

See also, Memory blocks, External port.

IOP registers
The I/O processor’s I/O registers that provide the interface for:

• Accesses into the processor’s internal memory made by a
host, another ADSP-21065L in a multiprocessor system, or
any other peripheral device.

• Accesses into the processor’s configuration and status infor-
mation made by the processor’s DMA controller.

For more information, see Chapter 8, Host Interface.

Memory blocks
The two partitions of the processor’s on-chip SRAM.

Block 0’s 288K bits of 6K x 48 memory is organized into nine col-
umns of 16 x 2k. Block 1’s 256K bits of 8K x 32 memory is
organized into eight columns of 16 x 2k.

ADSP-21065L SHARC DSP User’s Manual 5-5

Memory

The processor’s core and the I/O processor can access each block in
every cycle. When both access the same block, the accesses incur no
extra cycles.

Multiprocessor memory space
Memory map area that corresponds to the IOP registers of another
ADSP-21065L in a multiprocessor system.

See also, External memory space, Internal memory space.

PM bus
Program Memory bus.

Consists of the Program Memory Address (PMA) bus, a 24-bit
transmission path, and the Program Memory Data (PMD) bus, a
48-bit transmission path.

Controlled by the processor’s core, the PM bus provides a connec-
tion between SRAM, core (DAGs, PX bus connect, Register File,
Program Sequencer, and Instruction Cache), I/O processor’s IOP
registers, and the external port.

Used to transfer instructions and data.

See also, DM bus.

Program Sequencer
Generates 24-bit PM bus addresses for instruction fetches from
memory.

See Chapter 3, Program Sequencing.

PX bus connection
Provides the internal exchange mechanism for passing data
between the 48-bit PM bus and the 40-bit DM bus or the 40-bit
Register File.

5-6 ADSP-21065L SHARC DSP User’s Manual

Consists of two subregisters, PX1 and PX2, which the processor’s
core can access as one 48-bit register or as two separate registers,
one 16-bit register (PX1) and one 32-bit register (PX2).

Register File
A set of 40-bit, universal registers located in the processor’s core in
which the processor stores data to feed to or retrieve from the com-
putation units.

See Chapter 2, Computation Units.

SDRAM interface
Part of the external port, the SDRAM interface enables the proces-
sor to transfer data to and from off-chip synchronous DRAM at 2x
CLKIN.

See Chapter 10, SDRAM Interface.

ADSP-21065L SHARC DSP User’s Manual 5-7

Memory

Transferring Data In and Out of Memory
The processor has three internal buses connected to its dual-ported mem-
ory—the PM bus, the DM bus, and the I/O bus. The PM and the DM
buses connect to the memory’s processor port, and the I/O bus connects
to the memory’s I/O port as shown in Figure 5-2.

Figure 5-2. Bus connections to on-chip SRAM memory

The processor’s core controls the PM and DM buses, and the I/O proces-
sor controls the I/O bus. The I/O bus enables concurrent data transfers
between either memory block and the processor’s communication ports
(external and serial ports).

PROCESSOR
PORT

I/O
PORT

ADDR

ADDR

ADDR

ADDR DATA

DATADATA

DATA

Two Independent
Dual-Ported Blocks

Block 0 (6K x 48)

B
lo

ck
 1

 (8
K

 x
 3

2)

IOAIOD

PM One IOP Access
Per Cycle

(240 MBytes/s)Two Core Accesses
Per Cycle

(660 MBytes/s)

DM DMPM

Transferring Data In and Out of Memory

5-8 ADSP-21065L SHARC DSP User’s Manual

Dual Data Accesses
Figure 5-3 shows addresses that the processor generates for DM bus and
PM bus accesses. (See page 5-20 for the processor’s address decoding
table.) DAG1 generates DM bus addresses, and either the program
sequencer or DAG2 generates PM bus addresses for instructions or data,
respectively.

Figure 5-3. Memory address bits on the DM and PM buses

Although the processor has two separate internal buses, the Program
Memory bus (PM) and the Data Memory bus (DM), memory itself
remains undefined as either PM or DM, and applications can store data
within program memory space. The processors’ modified Harvard archi-
tecture enables applications to configure memory to store different
combinations of code and data.

The independent PM and DM buses enable the core to simultaneously
access instructions and data from the memory blocks. For single instruc-
tions, however, core accesses of two words from the same memory block
over the same bus incur an extra cycle. The core fetches instructions over
the PM bus or from the instruction cache and data over both the DM bus
using DAG1 and the PM bus using DAG2. Figure 5-2 on page 5-7 shows
the memory bus connections on the processor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

% & 	� �	� �Reserved

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

& 	� 	� � �

���!'�
(��� �� �

��!'�
(��� �� �

V = Virtual address
E = Memory address
S = IOP register address
M = IOP register space
P = IOP register space
 address

ADSP-21065L SHARC DSP User’s Manual 5-9

Memory

Applications can configure the processor’s two memory blocks to store
different combinations of 48-bit instruction words and 32-bit data words.
However, configuring one block to contain a mix of instructions and PM
bus data and the other block to contain DM bus data only achieves maxi-
mum efficiency; that is, single-cycle execution of dual-data-access
instructions.

This means for instructions that require two data accesses, the processor’s
core uses the PM bus with DAG2 to access data from the mixed block and
the DM bus with DAG1 to access data from the data-only block. The
instruction for the core to fetch must be available in the instruction cache.
As an alternative, the application can store one operand in external mem-
ory space and the other in either block of internal memory space.

Typically, DSP applications, such as digital filters and FFTs, must access
two data operands for some instructions. In a digital filter, for example,
the filter can store coefficients in 32-bit words in the same memory block
that contains the 48-bit instructions and store 32-bit data samples in the
other block. This configuration facilitates single-cycle execution of
dual-data-access instructions when the core uses DAG2 to access the filter
coefficients over the PM bus, and the instruction is available in the
instruction cache.

To ensure single-cycle, parallel accesses of two on-chip memory locations,
the application must meet these conditions:

• The location of each address must be in a different internal memory
block.

• DAG1 must generate one address, and DAG2 the other.

• The DAG1 address must point to a different memory block than the
one from which the processor’s core is fetching the instructions.

Transferring Data In and Out of Memory

5-10 ADSP-21065L SHARC DSP User’s Manual

• The instruction takes the form:

compute, Rx=DM(I0 -I7,M0 -M7), Ry=PM(I8 -I15,M8 -M15);

Using the Instruction Cache to Access PM Data
Normally, the processor fetches instructions over the 48-bit PM Data bus.
Executing a dual-data-access instruction that requires reading or writing
data over the PM bus, however, causes a bus conflict. By providing the
instruction, the processor’s on-chip instruction cache can resolve this con-
flict. The first time the instruction executes, the instruction cache stores
it, making it available on the next fetch.

By providing the instruction, the cache enables the core to access data over
the PM bus—the core fetches the instruction from the cache instead of
from memory so that it can simultaneously transfer data over the PM bus.
The instruction cache stores only those instructions whose fetches conflict
with PM bus data accesses.

When the instruction to fetch is already cached—the instruction is exe-
cuted within a loop—core data accesses over the PM bus incur no extra
cycles. However, a cache miss always incurs an extra cycle when the core
uses the PM bus to access both instruction and data, even if they are in
different memory blocks.

In these instructions, reads and writes may be intermixed.
A cache miss occurs whenever the fetched instruction is
invalid during any DAG2 transfer. See “Instruction
Cycle” on page 3-4.

ADSP-21065L SHARC DSP User’s Manual 5-11

Memory

Generating Addresses for the PM and DM Buses
The processor’s three internal buses—PM, DM, and I/O—connect to its
dual-ported memory, with the PM and DM buses sharing one memory
port, and the I/O bus connecting to the other.

The processor’s Program Sequencer and data address generators (DAGs)
supply memory addresses. The Program Sequencer supplies 24-bit PM bus
addresses for instruction fetches, and the DAGs supply addresses for data
reads and writes. (See Figure 5-1 on page 5-2.)

Both data address generators enable indirect addressing of data. DAG1
supplies 32-bit addresses over the DM bus. DAG2 supplies 24-bit
addresses for data accesses over the PM bus. If the instruction to fetch is
available in the instruction cache, the DAGs can generate simultaneous
addresses—over the PM bus and DM bus—for dual operand reads and
writes.

The 48-bit PM Data bus transfers instructions (and data), and the 40-bit
DM Data bus transfers data only. The PM Data bus is 48-bits wide to
accommodate the 48-bit instruction width. When this bus transfers 32-bit
data (floating- or fixed-point), the data is aligned to the upper 32 bits of
the bus.

The 40-bit DM Data bus provides a path for transferring, in a single cycle,
the contents of any register in the Register File to any other register or to
any external memory location. Data addresses come from either an abso-
lute value specified in the instruction (direct or immediate addressing) or
from the output of a DAG (indirect addressing). Thirty-two-bit
fixed-point and 32-bit single-precision floating-point data is aligned to the
upper 32 bits of the DM Data bus.

The PX bus connect registers pass data between the 48-bit PM Data bus
and the 40-bit DM Data bus or the 40-bit Register File. The PX registers
contain hardware to handle the 8-bit difference in width.

Transferring Data In and Out of Memory

5-12 ADSP-21065L SHARC DSP User’s Manual

The three memory buses—PM, DM, and I/O—are multiplexed at the
processor’s external port to create a single off-chip data bus (DATA31-0)
and address bus (ADDR23-0).

Transferring Data Between the PM and DM Buses
The PX register provides an internal bus exchange path for transferring
data between the 48-bit PM Data Bus and the 40-bit DM Data Bus. The
48-bit PX register consists of two subregisters, the PX1 and PX2 registers.
PX1 is 16-bits wide and PX2 is 32-bits wide. Instructions can use the
entire PX register or use PX1 and PX2 separately. Figure 5-4 shows the
alignment of PX1 and PX2 within PX.

Figure 5-4. PX register

Instructions use the PX register(s) in universal register-to-register transfers
or in memory-to-register (and vice versa) transfers. These transfers use
either the PM Data Bus or the DM Data Bus. Instructions can read or
write the PX register(s) from or to the PM Data Bus, the DM Data Bus, or
the Register File.

Figure 5-5 shows the data alignment in PX register transfers. Transfers
between PX2 and the PM Data Bus use the upper 32 bits of the PM Data
Bus. On transfers from PX2, the sixteen LSBs of the PM Data Bus are
filled with zeros. Transfers between PX1 and the PM Data Bus use the
middle sixteen bits of the PM Data Bus. On transfers from PX1, bits
PM15-0 and PM47-32 are filled with zeros (0).

47 15 0

PX2 PX1

PX Register

ADSP-21065L SHARC DSP User’s Manual 5-13

Memory

Figure 5-5. PX register transfers

16 zeros

PX2

47 15 0

PX1

16 zeros16 zeros

47 15 031

47 15 0

PX2 PX1

PX2

8 zeros

39 7 0

8 zeros

PX1

16 zeros

39 7 023

39 0

PX Register

Register File

47 7 0

PX Register

39 0

PX Register

To Internal Memory

47 7 0

8 zeros

PM Data Bus Transfers DM Data Bus or Register File Transfers

31

1516

0

47 0

To External Memory

PX1PX2

Can write PX2 or PX1, but not the entire PX register,
to external memory

Transferring Data In and Out of Memory

5-14 ADSP-21065L SHARC DSP User’s Manual

When the combined PX register is used for PM Data Bus transfers,
instructions can read or write the entire 48 bits to program memory. PX2
contains the thirty-two MSBs of the 48-bit word, and PX1 contains the
sixteen LSBs. (PM Bus data is left-justified in the 48-bit word.)

For example, to write a 48-bit word to the memory location Port1 over
the PM Data Bus, the instruction could use this syntax:

R0=0x9A00; /* load R0 with 16 LSBs */
R1=0x12345678; /* load R1 with 32 MSBs */
PX1=R0;
PX2=R1;
PM(Port1)=PX; /* write 16 LSBs on PM bus 15-0 and 32 MSBs

on PM bus 47-16 */

Data transfers between PX2 and the DM Data Bus or Register File use the
upper thirty-two bits of the DM Data Bus or Register File. On transfers
from PX2, the eight LSBs are filled with zeros (0). (See Figure 5-5 on page
5-13.) Data transfers between PX1 and the DM Data Bus or Register File
use bits DM23-8 of the DM Data Bus are used. On transfers from PX1,
bits DM7-0 and DM39-24 are filled with zeros (0).

When using the combined PX register for DM Data Bus transfers, instruc-
tions can read or write the upper forty bits of PX. For transfers to or from
internal memory, the lower eight bits are filled with zeros. For transfers to
or from external memory, the entire forty-eight bits are transferred.

Memory Block Accesses and Conflicts
At any given time, any of the processor’s three internal buses, PM, DM,
and I/O, may need to access one of the memory blocks. Both the proces-
sor’s core (over either the PM or DM bus) and the I/O processor (over the
I/O bus) can access each block of dual-ported memory in every cycle,
without incurring extra cycles when they both access the same block.

ADSP-21065L SHARC DSP User’s Manual 5-15

Memory

A conflict occurs, however, when the core attempts two accesses in the
same cycle to a single block; for example, an access by DAG1 over the DM
bus and either the Program Sequencer or DAG2 over the PM bus. This
access incurs an extra cycle—the DM bus access finishes first, and the PM
bus access finishes in the following (extra) cycle.

Memory Organization

5-16 ADSP-21065L SHARC DSP User’s Manual

Memory Organization
The processor’s SRAM memory is partitioned into two blocks of unequal
size, as shown in Figure 5-6.

Figure 5-6. Memory block organization

• Block 0

Contains 288K bits (6K x 48) and is physically organized into nine
columns of 16 bits x 2K.

• Block 1

Contains 256K bits (8K x 32) and is physically organized into eight
columns of 16 bits x 2K.

2K x 32

2K x 48 (Total 6K x 48)

(Total 8K x 32)

1 2 3 4 50 6 7 8 9 10 11 12 13 14 15

2K

16-bit wide columns

BLOCK 1

2K x 32

2K x 48 (Total 4K x 48)

(Total 8K x 32)

1 2 3 4 5 6 7 8

BLOCK 0

2K 1 2 3 4 5 6 7 98

ADSP-21065L SHARC DSP User’s Manual 5-17

Memory

You can individually configure each memory block to store different com-
binations of code and data. The physical organization of each memory
block determines its storage capacity, as shown in Table 5-1.

Each memory block is dual-ported to support single-cycle accesses by the
core, I/O processor, and DMA controller. This memory structure coupled
with the internal buses, enable execution of three data transfers, two by
the core and one by the I/O processor or DMA controller, in a single
cycle.

The processor has a total address space of 64M words. Table 5-2 details
the processor’s memory map, which defines this address space.

Table 5-1. SRAM storage capacity in x-bit words

Block Size/Kbits 48b words 32b words 16b words

0 288 6K 8K 18K

1 256 4K 8K 16K

Table 5-2. Internal memory map

Start
Address

End
Address

Contents

0x0000 0000 0x0000 00FF IOP registers

0x0000 0100 0x0000 01FF IOP registers of processor ID 001

0x0000 0200 0x0000 02FF IOP registers of processor ID 002

0x0000 0300 0x0000 7FFF Reserved (unusable)

0x0000 8000 0x0000 9FFF Block 0 normal word address space
(48- and 32-bit words)

0x0000 A000 0x0000 BFFF Reserved

Memory Organization

5-18 ADSP-21065L SHARC DSP User’s Manual

0x0000 C000 0x0000 DFFF Block 1 normal word address space
(48- and 32-bit words)

0x0000 E000 0x0000 FFFF Reserved

0x0001 0000 0x0001 3FFF Block 0 short word address space
(16-bit words)1

0x0001 4000 0x0001 7FFF Reserved

0x0001 8000 0x0001 BFFF Block 1 short word address space
(16-bit words)

0x0001 C000 0x0001 FFFF Reserved

0x0002 0000 0x00FF FFFF External memory bank 0

0x0100 0000 0x01FF FFFF External memory bank 1

0x0200 0000 0x02FF FFFF External memory bank 2

0x0300 0000 0x03FF FFFF External memory bank 3

1 The structure of Block 0 imposes some restrictions on accessing the addresses within the ninth
column. For details, see “Normal Versus Short Word Addressing” on page 5-29.

Table 5-2. Internal memory map (Cont’d)

Start
Address

End
Address

Contents

ADSP-21065L SHARC DSP User’s Manual 5-19

Memory

The processor’s memory map is divided into three sections:

• Internal memory space

Corresponds to the processor’s IOP registers and normal word and
short word addressing space.

The address boundaries for this space are:

0x0000 0000 to 0x0000 00FF IOP registers
0x0000 8000 to 0x0000 9FFF Block 0 normal
0x0000 C000 to 0x0000 DFFF Block 1 normal
0x0001 0000 to 0x0001 3FFF Block 0 short
0x0001 8000 to 0x0001 BFFF Block 1 short

and, with reserved space interspersed between block segments at:

0x0000 A000 to 0x000 BFFF

0x0000 E000 to 0x000 FFFF

0x0001 4000 to 0x001 7FFF

0x0001 C000 to 0x001 FFFF

• Multiprocessor memory space

Corresponds to the IOP registers of the other processor in a multi-
processor system.

The address boundary for this space is:

0x0000 0100 to 0x0000 02FF

• External memory space

Corresponds to off-chip memory and memory-mapped I/O devices.

The address boundary for this space is:

0x0002 0000 to 0x03FF FFFF

Memory Organization

5-20 ADSP-21065L SHARC DSP User’s Manual

Table 5-3 shows how the processor decodes and routes memory addresses
over the DM and PM buses.

Table 5-3. Address decoding table for memory accesses

DM bit PM Bit Field Description

31-26 NA NA Reserved

25-24 NA V Virtual address.

00= Depends on E, S1-0, and M bits;
address corresponds to local’s
internal or external (Bank 0)
memory or to remote processor’s
IOP space.

01= External memory Bank 1, local
processor

10= External memory Bank 2, local
processor

11= External memory Bank 3, local
processor

23-17 23-17 E Memory address.

00000[00] =
Address in local or remote pro-
cessor’s internal memory space.

xxxxx[xx] =
Based on V bits; address in one
of local’s four external memory
banks.

ADSP-21065L SHARC DSP User’s Manual 5-21

Memory

16-15 16-15 S1 IOP register address (high order
bits).

00= Based on M bits; address in local
or remote processor’s IOP regis-
ter

01= Normal word address in local’s
internal memory

1x= Short word address in local’s
internal memory

14-10 14-10 S0 IOP register address (low order
bits).

00000 =
Based on M bits; address in local
or remote processor’s IOP regis-
ter

xxxxx =
Invalid if E or S bits =0s; oth-
erwise, address in internal or
external memory space (based on
V, E, and S1 bits)

Table 5-3. Address decoding table for memory accesses (Cont’d)

DM bit PM Bit Field Description

Memory Organization

5-22 ADSP-21065L SHARC DSP User’s Manual

9-8 9-8 M IOP register space.

00= Address in local’s IOP register
space

01= Address in IOP space of processor
w/ID1

10= Address in IOP space of processor
w/ID2

11= Invalid if E or S bits =0s; oth-
erwise, address in internal or
external memory space (based on
V, E, and S1 bits)

7-0 7-0 P IOP register space address.

Table 5-3. Address decoding table for memory accesses (Cont’d)

DM bit PM Bit Field Description

ADSP-21065L SHARC DSP User’s Manual 5-23

Memory

Internal Memory Space

Figure 5-7. Internal memory space

As shown in Figure 5-7, internal memory has three address regions:

• I/O Processor (IOP) Registers

0x0000 0000 to 0x0000 02FF

Short Word
Addressing

(16-bit words)

0001 0000

0001 FFFF

Normal Word
Addressing

(32- or 48-bit words)

0000 8000

0000 FFFF

0000 0000

0000 00FF
IOP Registers

0000 0000

0000 00FF
IOP Registers

Blk1 Normal Word

Blk0 Normal Word

Reserved

Reserved

0000 8000

0000 A000

0000 BFFF

0000 9FFF

0000 C000

0000 DFFF

0000 E000

0000 FFFF

Reserved

Blk0 Short Word

ReservedBlk1 Normal WordReserved

Blk1 Short Word

0001 0000

0001 4000

0001 7FFF

0001 3FFF

0001 8000

0001 BFFF

0001 C000

0001 FFFF

Memory Organization

5-24 ADSP-21065L SHARC DSP User’s Manual

The I/O Processor’s IOP registers are 256 memory-mapped regis-
ters that control system configuration and various I/O operations.
The address space between the IOP registers and normal word
addresses—locations 0x0000 0300 to 0x0000 7FFF—is unusable
memory, and applications should not write to it.

• Normal Word Addresses

Block 0 0x0000 8000 to 0x0000 9FFF

Block 1 0x0000 C000 to 0x0000 DFFF

The Interrupt Vector Table is located at the beginning of normal
word addresses at:

0x0000 8000 to 0x0000 807F

• Short Word Addresses

Block 0 0x0001 0000 to 0x0001 3FFF

Block 1 0x0001 8000 to 0x0001 BFFF

Multiprocessor Memory Space

Figure 5-8. Multiprocessor memory space

Multiprocessor memory space maps to the IOP registers of the other
ADSP-21065L in a multiprocessor system, enabling both processors to
access the other’s memory-mapped IOP registers. On both processors, the

0000 0100

0000 01FF

0000 0100

0000 02FF 0000 0200

0000 02FF

Multiprocessor
Memory Space

ID2 IOP Regs.

ID1 IOP Regs.

ADSP-21065L SHARC DSP User’s Manual 5-25

Memory

address range of the processor with ID1 is 0000 0100 to 0000 01FF, and
the address range of the processor with ID2 is 0000 0200 to 0000 02FF.

As shown in Table 5-3 on page 5-20, when the E field of an address is zero
and the M field is nonzero, the address falls within multiprocessor memory
space. The value of M specifies the processor ID1-0 of the processor to
access, and only that processor responds to the read or write cycle.

Instead of directly accessing its own internal memory, using its own ID, a
processor can also access its memory through multiprocessor memory
space. In this case, the core reads or writes to its own internal memory
without accessing the external system bus. Only the processor’s core, not
its DMA controller, can generate addresses for accessing its internal mem-
ory through multiprocessor memory space.

If the processor attempts to access an invalid address in multiprocessor
memory space, the other processor ignores written data and returns
invalid data on a read.

For details on multiprocessor memory accesses, see Chapter 7, Multipro-
cessing. For details on asynchronous accesses of multiple processors, see
Chapter 8, Host Interface.

Memory Organization

5-26 ADSP-21065L SHARC DSP User’s Manual

External Memory Space

Figure 5-9. External memory space

The processor’s I/O processor monitors the addresses of all memory
accesses and routes accesses to the appropriate memory space. The I/O
processor decodes the V, E, M, and S fields as shown in Table 5-3 on
page 5-20. If the V and E bit fields contain all zeros, the M and S fields
become active, and the I/O processor decodes them.

The processor’s core and DMA controller can access external memory over
the DM bus, PM bus, and EP (external port) bus, all through the external
port. The processor’s DAG1, Program Sequencer (and DAG2), and I/O
processor control these respective buses.

Generating 32-bit addresses over the DM address bus and the I/O address
bus, respectively, DAG1 and the I/O processor provide addressing for the
total 16-megaword memory map, 0002 0000 to 03FF FFFF. The Program
Sequencer and DAG2 generate 24-bit addresses over the PM address bus,
limiting addressing to the low 63.875 megawords.

0002 0000

0100 0000

01FF FFFFExternal Memory
Banks 0-3

0002 0000

03FF FFFF

00FF FFFF

0200 0000

02FF FFFF

0300 0000

03FF FFFF

Bank 0

Bank 3

Bank 2

Bank 1

ADSP-21065L SHARC DSP User’s Manual 5-27

Memory

Memory Space Access Restrictions
Following some basic rules, applications can use the processor’s three
internal buses, PM, DM, and I/O, to access the processor’s memory map:

• The DM bus can access all memory spaces.

• The PM bus can access internal memory space and the lowest
63.875 megawords of external memory space only.

• The I/O bus can access all memory spaces except for the mem-
ory-mapped IOP registers in internal memory space.

Word Size and Memory Block Organization

5-28 ADSP-21065L SHARC DSP User’s Manual

Word Size and Memory Block
Organization

The processor’s internal memory accommodates the following word types:

• 48-bit instructions

• 40-bit extended precision, floating-point

These data are accessed in 48-bit words, with the 40 bits left-justi-
fied in the 48-bit word (bits 47:8).

• 32-bit floating-point data

• 16-bit short word data

When the processor’s core accesses its internal memory, these rules deter-
mine the word width of the access:

• Instruction fetches always read 48-bit words.

• Reads and writes using normal word addressing are either 32-or
48-bit words, depending on the memory block’s configuration in
the SYSCON register.

• Reads and writes using short word addressing are always 16-bit
words.

• PM bus (DAG2) reads and writes of the PX register are always
48-bit words, unless they use short word addressing.

• DM bus (DAG1) reads and writes of the PX register are always
40-bit words, unless they use short word addressing.

ADSP-21065L SHARC DSP User’s Manual 5-29

Memory

Normal Versus Short Word Addressing
Applications can access the processor’s 544K bits of on-chip memory with
either normal or short word addressing or with combinations of both.

When each word is 32 bits wide, the range of normal word addresses on
each block is 8K words (16K words combined). In this configuration,
however, some physical locations at the end of Block 0 become nonexist-
ent. When each word is 48 bits wide, the range of normal word addresses
on Block 0 is 6K words and on Block 1, 4K words (10K words combined).
In this configuration, however, some physical locations at the end of
Block 1 become nonexistent. For details on the physical mapping of
48-and 32-bit words, see “Mixing 32- and 48-Bit Words in One Memory
Block” on page 5-32.

When each word is 16 bits wide, the range of short word addresses on
Block 0 is 18K words and on Block 1, 16K words (34K words combined).
On Block 0, however, the address range of the ninth column is noncontig-
uous with the address range of the other eight columns. To address the
ninth column for short word accesses, you must use the odd addresses
between 0x14001 and 0x14FFF only. Even addresses between 0x14001 and
0x14FFF are undefined.

The PM and DM buses support both normal and short word addressing.
Short word addressing increases the amount of 16-bit data that internal
memory can store, and it enables MSW (most significant word) and LSW
(least significant word) addressing format for 32-bit data words. Short
word addressing of 16-bit data words is useful in array signal processing

Use caution when accessing the same physical location in mem-
ory with both 32-and 48-bit words. For details, see “Interacting
with the Shadow Write FIFO” on page 5-39.

Word Size and Memory Block Organization

5-30 ADSP-21065L SHARC DSP User’s Manual

systems. When it reads them from memory, depending on the SSE (short
word sign-extension enable) bit in the MODE1 register, the processor
either sign- extends or zero-fills 16-bit short words to 32-bit integers.

When configured for booting, the processor’s interrupt vector table is
located at the start of normal word addressing, 0x0000 8000 –

0x0000 807F. When configured for “no boot” mode, the interrupt vector
table is located in external memory, 0x0002 0000 to 0x0002 007F. If the
IIVT (internal interrupt vector table) bit of the SYSCON register is set,
the interrupt table resides in internal memory, regardless of the booting
mode.

Using 32- and 48-Bit Memory Words
Because each memory block is divided into columns that are 16-bits wide,
48-bit instruction words require three columns of contiguous memory,
and 32-bit data words require two columns of contiguous memory. Six-
teen-bit data words require one column.

Accordingly , the word width of an access determines how columns are
grouped and how they are addressed for memory reads and writes.

For 48-bit instruction words, the access selects columns in groups of three.
So, depending on the memory block accessed, a memory block consisting
entirely of 48-bit instruction words has either three or two groups from
which to select:

9 columns ÷ 3 columns per group = 3 groups (Block 0)

or

8 columns ÷ 3 columns per group = 2 groups (Block 1)

ADSP-21065L SHARC DSP User’s Manual 5-31

Memory

For Block 1, the last two columns are unused. So, a memory block that
consists entirely of 48-bit words provides instruction storage for:

2K × 3 groups = 6K words (Block 0)

or

2K × 2 groups = 4K words (Block 1)

For 32-bit data words, the access selects columns in groups of two. So, a
memory block consisting entirely of 32-bit data words has four groups to
select from:

9 columns ÷ 2 columns per group = 4 groups (Block 0)

or

8 columns ÷ 2 columns per group = 4 groups (Block 1)

For Block 0, the last column is unused. So, a memory block that consists
entirely of 32-bit data words provides instruction storage for:

2K × 4 groups = 8K words (Block 0 or Block 1)

Figure 5-11 on page 5-33 shows memory block configuration for four
basic combinations of 32-bit data and 48-bit instructions.

Because the memory on the processor is arranged in eight and nine 16-bit
columns, a similar set of calculations for 16-bit short words yields:

2K × 9 groups = 18K words of instruction storage

2K × 8 groups = 16K words of data storage

Figure 5-10 shows the ordering of 16-bit words within both 48-and 32-bit
words and the initial addresses for each column of processor memory. All
addresses indicate the first location of each column.

Word Size and Memory Block Organization

5-32 ADSP-21065L SHARC DSP User’s Manual

Figure 5-10. Memory organization vs. address

Mixing 32- and 48-Bit Words in One Memory Block
Following a few rules, you can store 32-bit data words and 48-bit instruc-
tion words in the same memory block. The rules are simplified if you store
x32 and x48 words in separate columns. This storage configuration is
called column-level granularity.

The rules for using column-level granularity are:

• Storage of instructions must start at the lowest address in the block.

• Storage of data must start on an even-numbered column.

• All data must reside at addresses higher than all instruction
addresses.

• Instructions require three contiguous 16-bit columns.

• Data words require two contiguous 16-bit columns.

For using a finer granularity, see “Fine Tuning Mixed Word Accesses” on
page 5-35.

Each block of memory is physically organized in columns of 16 bits × 2K.
Figure 5-11 on page 5-33 shows, for both memory blocks, four basic com-
binations of 48-bit instructions and 32-bit data within a single block.

H M L H ML H M L
0x08000 0x090000x08800

H HHL H L LL

0x08800
0x08000 0x09000

0x09800

32-/16-bit
words

32-/16-bit
words

Block0 Block1
48-bit
words H M L H ML NA

0x0C000 0x0C800

H HHL H L LL

0x0C800
0x0C000 0x0D000

0x0D800

48-bit
words NA

NA

ADSP-21065L SHARC DSP User’s Manual 5-33

Memory

Figure 5-11. Example using words of mixed-length

A Three columns for instructions, four columns for data, and two
unused columns, one between the 48-bit instructions and the
32-bit data and one at the end of the 32-bit data.

This configuration provides 2K of instruction storage and 4K of
data storage. Column three is unused because the 32-bit data words
must start on an even-numbered column, and column eight is
unused because 32-bit data requires two columns.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

32-bit data48-bit instructions

2x2 columns
4K

32-bit data48-bit instructions

2 columns
2K

3 columns
2K

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

32-bit data48-bit instructions

32-bit data48-bit instructions

3 columns
2K

2x2 columns
4K

2 columns
2K

2x3 columns
4K

2x3 columns
4K

BLOCK 1

BLOCK 0

A

B

C

D

Word Size and Memory Block Organization

5-34 ADSP-21065L SHARC DSP User’s Manual

B Six columns for instructions and two columns for data.

This configuration provides 4K of instruction storage and 2K of
data storage.

C Three columns for instructions, four columns for data, and one
unused column between the 48-bit instructions and the 32-bit
data.

This configuration provides 2K of instruction storage and 4K of
data storage. Column three is unused because the 32-bit data words
must start on an even column number.

D Six columns for instructions and two columns for data.

This configuration provides 4K of instruction storage and 2K of
data storage.

Table 5-4 shows the addressing in Block 0 (beginning address =
0x0000 8000) and in Block 1 (beginning address = 0x0000 C000) for each
of the instruction and data combinations of Figure 5-11 on page 5-33.

Table 5-4. Address ranges for instructions and data

48-Bit Instructions 32-Bit Data

Start End Start End

A 0x0000 8000 0x0000 87FF 0x0000 9000 0x0000 9FFF

B 0x0000 8000 0x0000 8FFF 0x0000 9800 0x0000 9FFF

C 0x0000 C000 0x0000 C7FF 0x0000 D000 0x0000 DFFF

D 0x0000 C000 0x0000 CFFF 0x0000 D800 0x0000 DFFF

ADSP-21065L SHARC DSP User’s Manual 5-35

Memory

To determine the starting address of the 32-bit data, use the equations in
Table 5-5.

Fine Tuning Mixed Word Accesses
If you must mix 48-bit instructions and 32-bit data words with finer gran-
ularity than previously described, you need an in-depth understanding of
the processor’s internal memory. This section details the low-level organi-
zation and addressing of the internal memory blocks.

Low-Level Physical Mapping of Memory Blocks

Each block of memory is organized into columns that are 16-bits wide and
2K high, enabling each column to contain 2K 16-bit words. Block 0 con-
tains nine columns, and Block 1 contains eight columns.

For reads or writes of 48-bit and 32-bit words, the thirteen LSBs of the
address select a row from each column. The MSBs of the address control
which columns are selected. For reads or writes of 16-bit short words, the
address is right-shifted one place before it’s applied to memory (see
Figure 5-12 on page 5-36). This frees bit 0 of the address to select between
the MSW and LSW format of 32-bit data.

Table 5-5. Equation for determining the starting address of 32-bit data

Starting Address

B + m + 2048 + (2048 * i) + 1

B =beginning address of memory block
n =number of 48-bit instruction word locations
i =integer portion of [(n − 1) ÷ 2048]
m =(n − 1) mod 2048

Word Size and Memory Block Organization

5-36 ADSP-21065L SHARC DSP User’s Manual

For any access, the word width of the access determines which columns
are selected. For 48-bit words, the columns are selected in groups of three,
and address bits 13:15 select the group. For 32-bit words, the columns are
selected in groups of two, and address bits 13:15 select the group.

16-bit short word accesses are handled differently to provide easy access to
the MSW and LSW of 32-bit data. In the processor’s DAGs, a single
arithmetic right shift of the short word address provides the physical
address of the destination 32-bit word. If the value of the bit shifted out is
zero (0), the access is to the LSW, otherwise it is to the MSW. To imple-
ment this, first you select columns in groups of two with address bits
13:15 and then select between the two columns in the group with the
short word address bit shifted out.

Figure 5-12. Preprocessing 16-bit short word addresses

Restrictions on Storing Mixed Words

Although they are grouped differently within a memory block, 48-bit and
32-bit words attempt to use the same address area. This can cause errors
when an application mixes 48-bit instructions and 32-bit data within the
same block. (Since 32-bit and 16-bit words use the same grouping struc-
ture but different addresses, an application can freely mix them within the

15 01213

1110 0001

31 24 17 16 15 0

Block
Select

Column
Address

Row Address

Shift Right

High/Low
Word (16-bit) Select

Short Word
Address

Physical Address
Applied to
Memory Block

ADSP-21065L SHARC DSP User’s Manual 5-37

Memory

same memory block.) Remember that storing all 48-bit instructions at
addresses lower than all 32-bit data prevents one overlapping the other.

Figure 5-13 on page 5-38 shows how 48-bit words fill a memory block
and exactly where you can place 32-bit words. If the number of 48-bit
word locations to allocate is n and the beginning address of the block is B,
Table 5-6 shows the address where contiguous 32-bit data can begin.

Figure 5-13 on page 5-38 also shows that when 48-bit and 32-bit data are
mixed in the same block with finer than column-level granularity, usable
but discontiguous blocks of 32-bit memory are created.

Table 5-6. Starting address for contiguous 32-bit data

(n–1) ÷ 2048 Contiguous 32b Data
Start Address

0 B + 2K m + 1

1 B + 4K m + 1

B = Beginning address of memory block
n = Number of 32b data word locations
m = (n – 1) mod 2048

Word Size and Memory Block Organization

5-38 ADSP-21065L SHARC DSP User’s Manual

Figure 5-13. Mixing 48- and 32-bit words in a memory block

0

2K

Addr 0

Addr 2047 Addr 6K

Addr 2048

Addr 1

.

.

.

Addr 2047Addr 2047 Addr 6K

Addr 3K Addr 3KAddr 3K
Addr 4K+1K Addr 4K+1K

Addr 6K+1 Addr 6K+1Addr 2048Addr 2048Addr 0Addr 0

Addr 1 Addr 1

.

.

.
.
.
. .

.

.

.

.

.
.
.
.

.

.

.

Block 1

Block 0

0

Addr 2047
2K

.

.

.

Addr 501

Addr 500
Addr 499

Addr 1

Addr 0

.

.

.

Addr 2047

.

.

.

Addr 501

Addr 500
Addr 499

Addr 1

Addr 0

.

.

.

Addr 4095

.

.

.

Addr
(2K+501)

Addr
(2K+500)
Addr 499

Addr 1

Addr 0

.

.

.

Addr 4095

.

.

.

Addr
(2K+501)

Addr
(2K+500)

Addr 6143 Addr 6143 Addr 8191Addr 8191

Addr 4096 Addr 4096 Addr 6144 Addr 6144

.

.

.
.
.
.

.

.

.
.
.
.

Block 0

Usable but
Nonconti guous

Block 1

32-bit
words

48-bit
words

Accessible from short
word address space only

Odd Numbered 48-bit Column Groups

Even Numbered 48-bit Column Groups

(500 48-bit words)

(3K 48-bit words)

Columns
of 16-bit
words 2K
in height

Columns
of 16-bit
words 2K
in height

ADSP-21065L SHARC DSP User’s Manual 5-39

Memory

To use all of the memory block, allocate 48-bit words in 4K word incre-
ments (six columns). Even when all memory is used, a range of addresses
that does not access any valid word exists between the 48-bit word region
and the contiguous 32-bit word region.

To mix 16-bit words with 48-bit words, map the 16-bit words into 32-bit
word space, and allocate memory for 32-bit words using the same method
described here.

Interacting with the Shadow Write FIFO

Because the processor’s internal memory must operate at high speeds,
writes to the memory do not go directly into the memory array, but
instead into the Shadow Write FIFO.

The Shadow Write FIFO is a cache that temporarily stores the I/O proces-
sor’s or core’s last two data writes before transferring them into internal
memory. It stores the data and an address tag that corresponds to the
data’s location in internal memory. Caching increases the speed at which
internal memory operates.

When an internal memory write cycle occurs, the Shadow Write FIFO
loads the data at the top (data from the first of two previous reads) into
memory and loads the new data into the bottom. This operation is nor-
mally transparent since the Shadow Write FIFO intercepts and
temporarily stores any reads of the last two locations written. You need be
aware of the Shadow Write FIFO only when you mix 48-bit and 32-bit
word accesses to the same locations in memory.

The Shadow Write FIFO cannot differentiate between the mapping of
48-bit words and the mapping of 32-bit words. (See Figure 5-10 on page
5-32.) So, if you write a 48-bit word to memory and then try to read the
data with a 32-bit word access, the Shadow Write FIFO will not intercept
the read and will return incorrect data.

Word Size and Memory Block Organization

5-40 ADSP-21065L SHARC DSP User’s Manual

If you must mix 48-bit accesses and 32-bit accesses to the same locations
this way, flush the Shadow Write FIFO with two dummy writes before
you attempt to read the data.

Configuring Memory for 32- or 40-Bit Data
You can configure each block of internal memory to store either sin-
gle-precision 32-bit data or extended-precision 40-bit data. To configure
data storage, set the IMDWx bits, IMDW0 and IMDW1, in the
SYSCON register. If IMDWx = 0, the processor performs 32-bit data
accesses. If IMDWx = 1, the processor performs 40-bit data accesses.

If an application attempts to write 40-bit data from a 48-bit word to a
memory block configured for 32-bit data, the processor truncates the
lower sixteen bits of the 48-bit word. Similarly, on an attempt to read
40-bit data, the processor fills the lower eight bits of the data with zeros.
The only exception to these rules occurs in transfers involving the PX
register.

For all reads and writes of the PX register, the processor performs 48-bit
accesses. If you must store any 40-bit data in a memory block configured
for 32-bit words, use the PX register to access the 40-bit data in 48-bit
words. For 48-bit writes of 40-bit data from the PX register to 32-bit
memory, make sure that the physical memory space of the 48-bit destina-
tion does not corrupt any 32-bit data.

You can change the value of the IMDWx bits during system operation,
but doing so affects all types of memory access, including processor–to–
processor reads and writes, host–to–processor reads and writes, DMA
transfers, and interrupt data areas.

ADSP-21065L SHARC DSP User’s Manual 5-41

Memory

Because the processor’s memory blocks must store either 32-bit or 40-bit
data, DMA transfers automatically read or write the proper word width.
This simplifies setting up DMA channels for a system. DMA transfers
between serial ports and memory are limited to a maximum 32-bit word
width.

Using 16-Bit Short Word Accesses
Both 32-bit data accesses and 48-bit instruction fetches must use normal
word addressing. But 16-bit data accesses can use short word addressing.

Short word addressing increases the amount of 16-bit data that the proces-
sor can store in internal memory, and it enables MSW (most significant
word) and LSW (least significant word) addressing of 32-bit words. Bit 0
of the address selects between MSW and LSW addressing of 32-bit words.

Applications can access a single location in memory (that is, the lower 16
bits of a 32-bit word) using normal word addressing or short word
addressing. The short word address is a left shift of the corresponding nor-
mal word address. This enables easy conversion between short word
addresses and normal word addresses for the same physical location.

The word width of data accesses and the value of the arithmetic
precision mode bit RND32 are unrelated. This enables occa-
sional use of 32-bit data in extended-precision, 40-bit systems,
without having to toggle the value of RND32.

You can mix 32-bit words and 16-bit short words in the same
memory block with no restrictions.

Word Size and Memory Block Organization

5-42 ADSP-21065L SHARC DSP User’s Manual

Figure 5-14 shows how short word addresses relate to normal word
addresses for 32-bit words. Figure 5-10 on page 5-32 and Figure 5-11 on
page 5-33 show how these addresses relate to normal word addresses for
48-bit words.

Arithmetically shifting a short word address to the right by one bit pro-
duces the corresponding normal word address. Arithmetically shifting a
normal word address to the left produces the short word address of the
LSW of the 32-bit normal word. To generate the short word address of
the MSW, first perform a left shift and then set bit 0 to 1.

Figure 5-14. Short word addresses

The processor automatically extends into 32-bit integers 16-bit short
words read into universal registers. Depending on the value of the SSE bit
in MODE1 (0=zero-fill, 1=sign-extend), the processor either zero-fills or
sign-extends the upper sixteen bits. When reading a short word into the
PX register, the processor always zero-fills the upper sixteen bits, regard-
less of the value of the SSE bit.

ADDR 5

ADDR 3

ADDR 1

ADDR 4

ADDR 2

ADDR 0

ADDR 2

ADDR 1

ADDR 0

.

.

.

.

.

.

DATA31-16

16

16-bit
Short
Words

16-bit
Short
Words

32-bit Normal Words

ADSP-21065L SHARC DSP User’s Manual 5-43

Memory

Interfacing with External Memory
The processor provides addressing of up to 16-megawords of off-chip
memory through its external port. This external address space includes
multiprocessor memory space, the on-chip IOP registers of another
ADSP-21065L connected in a multiprocessor system, and external mem-
ory space, the region for standard addressing of off-chip memory.

Table 5-7 on page 5-44 defines the processor pins that interface to exter-
nal memory. Memory control signals enable direct connection to fast
static RAM devices and SDRAMs. A user-defined combination of pro-
grammable wait states and hardware acknowledge signals provide support
for memory-mapped peripherals and slower memories. You can use the
suspend bus three-state pin (SBTS) with SDRAM memory.

External memory space can hold both instructions and data. To transfer
32-bit single-precision, floating-point data, the external bus must be
32-bits wide (DATA31-0). To transfer instructions, the external bus must
be 32-bits wide (DATA31-0) and you must follow a precise procedure for
packing 32-bit words into 48-bit instructions (see “Executing Program
from External Memory” on page 5-49).

If external memory space contains only data or packed instructions for
DMA transfer, the external data bus width can be either 8, 16, or 32 bits.
In this type of system, the processor’s on-chip I/O processor handles
unpacking operations on incoming data and packing operations on outgo-
ing data. Figure 5-15 on page 5-44 shows how the external port handles
transfers of different data word sizes.

Interfacing with External Memory

5-44 ADSP-21065L SHARC DSP User’s Manual

Figure 5-15. Alignment of external port data

The internal 32-bit DMA bus, PMA bus, and the I/O processor can access
the entire 63.875-megaword external memory space.

Table 5-7. External memory interface signals

Pin Type Function

ADDR 23-0 I/O/Z External Bus Address.

Processor outputs addresses for external mem-
ory and peripherals on these pins.

In a multiprocessor system, the bus master
outputs addresses for read/writes on IOP reg-
isters of other ADSP-21065L. Processor inputs
addresses when a host processor or multi pro-
cessing bus master is reading or writing its
IOP registers.

I = Input; O = Output; S = Synchronous; Z = Hi-Z (when SBTS or
HBR is asserted, or when processor is a bus slave)

32-bit Float or Fixed
D31-D0

32-bit Packed

16-bit Packed

8-bit Packed

EPROM
Boot

31 24 16 8 0

ADSP-21065L SHARC DSP User’s Manual 5-45

Memory

DATA 31-0 I/O/Z External Bus Data.

Processor inputs and outputs data and
instructions on these pins. Thirty-two bit,
single-precision, floating point data is
transferred over bits 31-0 of the bus. Six-
teen-bit short word data is transferred over
bits 15-0 of the bus.

Pull-up resistors on unused DATA pins are
unnecessary.

MS3-0 O/Z Memory Select Lines.

These lines are asserted as chip selects for
the corresponding banks of external memory.
These lines are decoded memory address lines
that change at the same time as the other
address lines. These lines remain inactive as
long as no attempt to access external memory
occurs. They are active, however, whenever a
conditional memory access instruction exe-
cutes, whether or not the condition is true.

In a multiprocessing system, the bus master
outputs the MS3-0 lines.

RD I/O/Z Memory Read Strobe.

Asserted when the processor reads from exter-
nal memory devices or from the IOP registers
of another ADSP-21065L. External devices
(including another ADSP-21065L) must assert
RD to read from the processor’s IOP registers.

In a multiprocessor system, the bus master
outputs RD, and the other ADSP-21065L inputs
RD.

Table 5-7. External memory interface signals (Cont’d)

Pin Type Function

I = Input; O = Output; S = Synchronous; Z = Hi-Z (when SBTS or
HBR is asserted, or when processor is a bus slave)

Interfacing with External Memory

5-46 ADSP-21065L SHARC DSP User’s Manual

WR I/O/Z Memory Write Strobe.

Asserted when processor writes to external
memory devices or to the IOP registers of
another ADSP-21065L. External devices must
assert WR to write to the processor’s IOP reg-
ister.

In a multiprocessing system, the bus master
outputs WR, and the other ADSP-21065L inputs
WR.

SW I/O/Z Synchronous Write Select.

Provides the interface to synchronous memory
devices (including another ADSP-21065L). Pro-
cessor asserts SW to provide an early indica-
tion of an impending write cycle, which can be
aborted if WR is not asserted later in a con-
ditional write instruction.

In a multiprocessing system, the bus master
outputs SW, and the other ADSP-21065L inputs
SW to determine whether the access to multi-
processor memory is a read or a write. SW
assertion and address output occur at the same
time.

Table 5-7. External memory interface signals (Cont’d)

Pin Type Function

I = Input; O = Output; S = Synchronous; Z = Hi-Z (when SBTS or
HBR is asserted, or when processor is a bus slave)

ADSP-21065L SHARC DSP User’s Manual 5-47

Memory

ACK I/O/S Memory Acknowledge.

External devices can deassert ACK to add wait
states to an external memory access. I/O
devices, memory controllers, or other periph-
erals use ACK to hold off completion of an
access to external memory.

In a multiprocessing system, the slave pro-
cessor deasserts the bus master’s ACK input to
add wait states to an access of its internal
memory. The bus master has a keeper latch on
its ACK pin, which maintains the input at the
level it was driven to last.

Table 5-7. External memory interface signals (Cont’d)

Pin Type Function

I = Input; O = Output; S = Synchronous; Z = Hi-Z (when SBTS or
HBR is asserted, or when processor is a bus slave)

Interfacing with External Memory

5-48 ADSP-21065L SHARC DSP User’s Manual

External Memory Banks
External memory is divided into four banks of fixed size. All banks, except
bank 0, can address all 16M words of external memory. Because part of
the first 16M words of external memory is in internal memory, bank 0 is
limited to 15.875M words of address space.

Because of its size, bank 0 imposes limitations on some applications but
not on others. For example, you wouldn’t want to use a 16M x 32 mem-
ory in bank 0 because part of that address space is inaccessible. However,
if you want to run code from external memory, you must do so from
bank 0.

External memory’s extremely flexible architecture enables you to use any
kind of memory in any bank. If you use SDRAM, you can map it to only
one bank.

Because the size of the external memory banks is fixed, any address gener-
ated within any external memory bank address space causes assertion of
the corresponding MSx line. So, code your application to avoid generating
addresses that do not map to physical devices.

Since all external memory space is banked, when you configure the blocks
with bus idle, only transitions from reading one bank to reading another
or to writing to the same bank generates an inactive bus cycle. Therefore,
if you use several external devices, we recommend that you map each one
to a different bank.

Each bank is associated with its own wait-state generator, enabling you to
memory map slower peripheral devices into a bank that you have config-
ured with a specific number of wait states. By mapping peripherals into
different banks, you can accommodate I/O devices with different timing
requirements. When you map SDRAM to a bank, make sure you program
that bank with zero (0) wait states, so the SDRAM device operates
properly.

ADSP-21065L SHARC DSP User’s Manual 5-49

Memory

Bank 0 starts at address 0x0002 0000 in external memory, followed by
bank 1 at 0x0100 0000, bank 2 at 0x0200 0000, and bank 3 at
0x0300 0000. Whenever the processor generates an address located within
one of the four banks, it asserts the corresponding memory select line,
MS3-0.

You can use the MS3-0 outputs as chip selects for memories or for other
external devices and eliminate the need for external decoding logic.

The MS3-0 lines are decoded memory address lines that change at the same
time as the other address lines. While no external memory access is occur-
ring, the MS3-0 lines are inactive. However, they are active during
execution of a conditional memory access instruction, whether or not the
condition is true. To ensure proper operation on systems that use the SW
signal but are unable to abort such accesses, avoid using conditional mem-
ory write instructions.

Executing Program from External Memory
To execute 48-bit instructions from external memory, the processor packs
32-bit words in external memory into internal 48-bit instructions and vice
versa. This kind of packing differs from the packing modes DMA control-
ler accesses or host accesses use, and it is performed in these two cases
only:

• The Program Sequencer initiates an external access to fetch an
instruction.

• The processor loads data from external memory into the PX register.

The processor’s internal memory is divided into two blocks, but
the external memory space is divided into four banks.

Interfacing with External Memory

5-50 ADSP-21065L SHARC DSP User’s Manual

Table 5-8 shows an example of the packing scheme the processor uses to
store 48-bit instructions in external memory.

The processor stores an instruction in two consecutive internal memory
locations, with the first sixteen of the forty-eight bit instruction in an even
address, and the remaining thirty-two bits in the next location.

To generate a corresponding address in external memory for the first part
of the instruction, the processor left-shifts bits 15:0 to generate bits 16:1
(ADDR16-0) in external memory. The processor leaves bits 23:17 unal-
tered. Each access of external memory to fetch an instruction or to load
the PX register translates into two accesses to successive locations. ADDR0
is 0 for the first access and 1 for the second. In this way, internal address
0x20000 on the PMA bus aligns with the beginning of external memory at
0x20000.

The processor supports program execution from external mem-
ory bank 0 only.

Table 5-8. Example addresses for external program execution

Address/bits 31 bits 16 15 bits 0

0x20010 INSTR0[15:0]

0x20011 INSTR0[47:16]

0x20012 INSTR1[15:0]

0x20013 INSTR1[47:16]

ADSP-21065L SHARC DSP User’s Manual 5-51

Memory

To generate a corresponding address in external memory for the second
part of the instruction, the processor increments the address of the previ-
ous access by one.

Table 5-9 shows the address generation scheme. This scheme limits the
size of the internal contiguous program segments to 64K.

On the PMA bus, 64K memory space maps to 128K memory space in x32
external memory. A program segment can start on any 128K boundary of
external memory. Although the PMA bus provides only 64K of contigu-
ous program memory space, to use multiple segments, programs can
incorporate JUMP instructions towards the end of individual 64K
segments.

As shown in Table 5-9, ranges of segmented addresses on the PMA bus
give rise to continuous addresses in external memory. It is possible to
entirely use up bank 0 (0x20000-0xFFFFFF) storing program.

Table 5-9. External memory address generation scheme

Segment PMA ADDR

1 0x20000

0x20001

↕

0x2FFFF

6

4

K

0x20000/1

0x20002/3

↕

0x3FFFE/F

1

2

8

K

2 0x40000

↕

0x4FFFF

6

4

K

0x40000/1

↕

0x5FFFE/F

1

2

8

K

Interfacing with External Memory

5-52 ADSP-21065L SHARC DSP User’s Manual

Program addresses in certain ranges are unavailable for program segments
(for example, 0x30000-0x3FFFF), and some of these address regions may be
unavailable for data segments too. This is so because any data access to a
location (for example, 0x30000) occurs to a physical location where part of
an instruction (0x28000 in this case) may be stored. Make sure you select
data segments carefully to avoid corrupting program memory in external
memory.

The processor drives the address for any data access as is on the ADDR
pins, performing no packing. It does not support 40-bit data accesses from
external memory. Programs must store 40-bit data in internal memory
only.

3 0x60000

↕

0x6FFFF

6

4

K

0x60000/1

↕

0x7FFFE/F

1

2

8

K

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The value in the bit position that corresponds to PM19-16 must
be an even number. An odd numbered value in this position
conflicts with valid segments.

Table 5-9. External memory address generation scheme (Cont’d)

Segment PMA ADDR

ADSP-21065L SHARC DSP User’s Manual 5-53

Memory

Boot Memory Select (BSEL and BMS)
When BSEL is connected to VDD, BMS becomes an output pin, and the
processor starts up in EPROM boot mode. The processor assumes that the
EPROM’s data bus is 8-bits wide. For EPROM booting, make sure you
connect BMS to the EPROM’s chip select pin and the EPROM and pro-
cessor data buses together LSB to LSB. This configuration enables
applications to access a separate external memory space for booting.

In EPROM boot mode, when the processor generates EPROM addresses,
it:

• Uses the EBxWM and EBxWS bits in the WAIT register to config-
ure wait states.

• Drives the MSx pins high.

Only the master processor drives BMS output. For details on EPROM
booting, see Chapter 12, System Design.

Wait States and Acknowledge
You use the processor’s WAIT register, an IOP control register, to config-
ure external memory wait states and the processor’s response to the ACK
signal.

To simplify the interface between the processor and slow external memo-
ries and peripherals, the processor provides a variety of methods for
extending off-chip memory accesses:

• External

The processor samples its acknowledge input (ACK) during each
clock cycle.

Interfacing with External Memory

5-54 ADSP-21065L SHARC DSP User’s Manual

If it latches a low value, the processor inserts a wait state by holding
the address and strobes valid for an additional cycle. If the value of
ACK is high, the processor completes the cycle.

• Internal

The processor ignores the ACK input.

Control bits in the WAIT register specify the number of wait states
for the access. You can specify a different number of wait states for
each bank of external memory. The processor uses the 1x CLKIN to
count the number of wait state cycles.

• Both

The processor samples its ACK input in each clock cycle.

If it latches a low value, the processor inserts a wait state. If the value
of ACK is high, the processor completes the cycle only if the number
of wait states (specified in WAIT) have expired.

In this mode, the WAIT-programmed wait states specify a mini-
mum number of cycles per access, and an external device can use the
ACK pin to extend the access as necessary. The ACK signal may be
transitioning (be undefined) until the internally programmed wait
states have finished; that is, the processor does not sample ACK
until the programmed wait states have finished. No metastability
problems will occur.

• Either

The processor completes the cycle as soon as it samples the ACK
input as high or when the WAIT-programmed number of wait
states have expired, whichever occurs first.

In this mode, a system with two different types of peripherals could
use ACK to shorten the access for the faster peripheral and use the
programmed wait states for the slower peripheral.

ADSP-21065L SHARC DSP User’s Manual 5-55

Memory

The method selected for one memory bank is independent of the method
selected for any other bank. So, you can map devices of different speeds
into different memory banks to maintain the appropriate wait state
control.

The WAIT Register

The bits in the WAIT register enable you to configure:

• For each bank of external memory, the wait state mode.

• For each bank of external memory, the number of wait states.

• A single wait state for multiprocessor memory space.

• A single idle cycle for DMA Handshaking.

The WAIT register initializes to 0x21AD 6B5A after processor reset. This
configures the processor for:

• Six internal wait states.

• Dependence on both software-programmed wait states and external
acknowledge for all memory banks.

• Multiprocessor memory space wait state enabled. (For details, see
“Multiprocessor Memory Space Wait States and Acknowledge” on
page 5-61).

For proper SDRAM operation, make sure your application pro-
grams a zero (EBxWS=000) wait state for the external memory
bank to which it maps.

Interfacing with External Memory

5-56 ADSP-21065L SHARC DSP User’s Manual

Table 5-10 and Figure 5-16 on page 5-58 show the architecture of the
WAIT register.

Table 5-10. WAIT register bit definitions

Bit Name Function

0-1 EB0WM External bank 0 wait state mode. See
Table 5-12 on page 5-61 for mode definitions.

2-4 EB0WS External bank 0 number of wait states. See
Table 5-11 on page 5-60 for number of wait
states.

5-6 EB1WM External bank 1 wait state mode. See
Table 5-12 on page 5-61 for mode definitions.

7-9 EB1WS External bank 1 number of wait states. See
Table 5-11 on page 5-60 for number of wait
states.

10-11 EB2WM External bank 2 wait state mode. See
Table 5-12 on page 5-61 for mode definitions.

12-14 EB2WS External bank 2 number of wait states. See
Table 5-11 on page 5-60 for number of wait
states.

15-16 EB3WM External bank 3 wait state mode. See
Table 5-12 on page 5-61 for mode definitions.

17-19 EB3WS External bank 3 number of wait states. See
Table 5-11 on page 5-60 for number of wait
states.

20-21 RBWM ROM boot wait mode. See Table 5-11 on
page 5-60 for number of wait states. Use the
same values given for EBxWS.

ADSP-21065L SHARC DSP User’s Manual 5-57

Memory

Figure 5-16 on page 5-58 shows the default bit values at initialization,
after a processor reset.

22-24 RBWS ROM boot wait state. See Table 5-12 on
page 5-61 for mode definitions. Use the same
values given for EBxWM.

25-28 Reserved

29 MMSWS Single wait state for multiprocessor memory
space access

30 HIDMA Single idle cycle for DMA handshake1

31 Reserved

1 Setting the HIDMA bit to 1 also inserts an idle cycle after every read
(with DMAGx asserted) from an external DMA latch. This enables a
device with a slow Hi-Z time to get off the bus before another
ADSP-21065L begins the next access. An idle cycle is inserted after
every read from the DMA latch, not just for a change over. For details,
see Chapter 6, DMA.

Table 5-10. WAIT register bit definitions (Cont’d)

Bit Name Function

Interfacing with External Memory

5-58 ADSP-21065L SHARC DSP User’s Manual

Figure 5-16. Wait register bit values

A bus idle cycle is an inactive bus cycle that the processor automatically
generates to avoid bus driver conflicts. Such conflicts can occur when, in
the following cycle after it deasserts RD, a device with a long output dis-
able time continues to drive the bus when another device begins to drive
it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00001 01101011 1

EB3WS
Ext. Mem. Bnk 3
of Wait States

EB3WM (high bit)
Ext. Mem. Bnk 3
Wait State Mode

HIDMA
Handshake
Idle Cycle
for DMA

MMSWS
Multiprocessor
Mem. Space
Wait State

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 10101 10110101 0

EB3WM (low bit)
Ext. Mem. Bnk 3
Wait State Mode

EB2WS
Ext. Mem. Bnk 2
of Wait States

EB2WM
Ext. Mem. Bnk 2
Wait State Mode

EB1WS
Ext. Mem. Bnk 1
of Wait States

EB1WM
Ext. Mem. Bnk 1
Wait State Mode

EB0WM
Ext. Mem. Bnk 0
Wait State Mode

EB0WS
Ext. Mem. Bnk 0
of Wait States

RBWS
ROM Boot
Wait State

RBWM
ROM Boot
Wait Mode

ADSP-21065L SHARC DSP User’s Manual 5-59

Memory

To avoid this conflict, the processor generates bus idle cycle only on tran-
sitions from reading one bank to reading another or to writing to the same
bank. In other words, a bus idle cycle is generated after a read, except in
the case of consecutive reads of the same bank. Normally, the processor’s
bus idle cycle period is one full CLKIN cycle. When an SDRAM access
occurs after an access that causes a bus idle cycle, however, the bus idle
cycle period is only half of one CLKIN cycle.

Figure 5-17 shows the effects of the bus idle cycle option.

Figure 5-17. Bus idle cycle

For a device with a slow disable time, make sure your application enables
bus idle cycle for the bank it uses. To do so, in the WAIT register, set the
EBxWS bits for the particular bank as shown in Table 5-11 on page 5-60.

1xCLK

ADDR
SW
MS3-0

RD

WR

Access Bus Idle Cycle Read from different bank or write

Address changes

Interfacing with External Memory

5-60 ADSP-21065L SHARC DSP User’s Manual

A bus hold time cycle is an inactive bus cycle that the processor automati-
cally generates at the end of a read or write to provide a longer hold time
for address and data. The address and data remains unchanged and driven
for ½ the CLKIN cycle after the device deasserts the read or write strobes.

Figure 5-18 shows the effects of the bus hold time cycle option.

Table 5-11. EBxWS bit values for bus idle cycles

Wait States EBxWS Bus Idle Cycle? Hold Time Cycle?

0 000 No No

1 001 Yes No

2 010 Yes No

3 011 Yes No

4 100 No Yes

5 101 No Yes

6 110 No Yes

0 111 Yes No

Bus idle cycles and hold time cycles occur if programmed,
regardless of the wait state mode.

ADSP-21065L SHARC DSP User’s Manual 5-61

Memory

Figure 5-18. Bus hold time cycle

Multiprocessor Memory Space Wait States and Acknowledge

Completion of reads and writes to multiprocessor memory space depends
on the ACK signal only.

You can use the SW signal to obtain an early indication of whether the
access is a write or a read (see Figure 5-20 on page 5-68) and if the auto-

Table 5-12. Wait state modes

EBxWM Mode

00 External acknowledge only (ACK)

01 Internal wait states only

10 Requires both internal and external acknowledge

11 Requires either internal or external acknowledge

1xCLK

ADDR
SW
MS3-0

RD WR

Access Hold Cycle Time

Address changes

DATA
(for WR)

Interfacing with External Memory

5-62 ADSP-21065L SHARC DSP User’s Manual

matic wait state option is enabled, adding a single wait state to all accesses
of multiprocessor memory space.

To use the automatic wait state option, you set the MMSWS (multipro-
cessor memory space wait state) bit in the WAIT register.

Use the automatic wait state option whenever the external system bus is
heavily loaded—under conditions that prevent the system from meeting
the synchronous timing requirements for interprocessor communications.
See the processor’s data sheet for these specifications.

In this mode, the processors follow this procedure:

1. The master processor inserts the wait state.

2. In response, the slave processor drives ACK low in the first cycle,
even if it has MMSWS=1.

If the master processor has MMSWS=1, it ignores ACK in the first cycle and
responds to it in the second cycle. This setting provides longer set up
times for the slave’s signals ADDR, RD, WR, and DATA (written to the
slave). And it provides a longer set up time for the bus master’s ACK
signal.

MMSWS=1 does not affect other set up and hold times. For example, it does
not change hold times for the slave’s RD, WR, or DATA (written to the
slave) or set up and hold times for the bus master’s DATA (read from the
slave).

In a multiprocessor system, the value of the MMSWS bit must be the
same on both processors.

ADSP-21065L SHARC DSP User’s Manual 5-63

Memory

External SDRAM Memory
Applications with large amounts of data can use off-chip SDRAM mem-
ory for bulk storage. The processor’s SDRAM controller provides a
glueless interface to standard 16M, 64M, and 128M SDRAMs. For
details, see Chapter 10, SDRAM Interface.

Suspending Bus Three-state (SBTS)

External devices can assert the processor’s SBTS input to place the external
bus address, data, selects, and strobes in a high-impedance state for the
following cycle.

If the processor attempts to access external memory while SBTS is
asserted, the processor halts, and the access to memory is delayed until the
external device deasserts SBTS.

Use SBTS only to recover from deadlock with a host processor. (For
details, see Chapter 8, Host Interface.)

SBTS causes the processor to place these pins in a high-impedance state.

Normal SBTS Operation: HBR not Asserted

Asserting SBTS places the external bus address, data, selects, and strobes in
a high-impedance state for the following cycle.

If SBTS is asserted while an external access is in progress, the processor
aborts the access (as if ACK were deasserted) and restarts the access after
SBTS is deasserted.

• ADDR23-0 • BMS • DATA31-0

• DMAG2-1 • MS3-0 • RD

• SW • WR

Interfacing with External Memory

5-64 ADSP-21065L SHARC DSP User’s Manual

If SBTS is asserted while no external access is in progress, the processor
puts the external bus pins in a high impedance state and continues run-
ning until it initiates an external access (at which time the processor halts).
In this case, the memory access begins in the cycle after the deassertion of
SBTS.

When SBTS is deasserted, the processor reasserts the RD, WR, and
DMAGx strobes (if they were asserted before) after the external address
becomes valid (at normal timing within the cycle). The processor also
resets the wait state counter, even if the processor is held in reset (RESET
asserted).

SBTS differs from HBR since it takes effect in the next cycle, even if an
external access is in progress (but not finished). Use SBTS only when
accessing an external device, such as an SDRAM or cache memory, where
the access must be held off to prepare for it. Using SBTS at other times—
such as during ADSP-21065L-to-ADSP-21065L accesses or during asser-
tion of DMAGx—results in incorrect operation.

ADSP-21065L SHARC DSP User’s Manual 5-65

Memory

External Memory Access Timing
This section describes memory access timing for both the external and
multiprocessor memory spaces. For exact timing specifications, see the
processor’s data sheet.

External Memory
The processor can interface asynchronously, without reference to CLKIN,
to external memories and to memory-mapped peripherals. In a multipro-
cessing system, to access external memory, the processor must be bus
master.

Figure 5-19 shows representative timing for an asynchronous read or write
of external memory. The clock signal is shown only to indicate that the
access occurs within a single cycle.

Figure 5-19. External memory access timing

CLKIN

ADDRESS

ACK

RD or WR

MSx, SW

Data

Read Address/Write Address

Read Data/Write Data

External Memory Access Timing

5-66 ADSP-21065L SHARC DSP User’s Manual

Bus Master Reads of External Memory

External memory reads follow this sequence (see Figure 5-19):

1. The processor drives the read address and asserts a memory select
signal (MS3-0) to indicate the selected bank.

The processor does not deassert the memory select signal between
successive accesses of the same memory bank.

2. The processor asserts the read strobe (unless the access is aborted
due to a conditional instruction).

3. The processor determines whether it needs to insert wait states.

If so, the memory select and read strobe remain active for one or
more additional cycles. The state of the external acknowledge sig-
nal (ACK), the internally programmed wait state count, or a
combination of the two determine the wait states.

4. The processor latches in the data.

5. The processor deasserts the read strobe.

6. If initiating another memory access, the processor drives the
address and memory select lines for the next cycle.

If a memory read is part of a conditional instruction that remains unexe-
cuted because the condition is false, the processor still drives the address
and memory select lines for the read, but it does not assert the read strobe
or read any data.

ADSP-21065L SHARC DSP User’s Manual 5-67

Memory

Bus Master Writes of External Memory

External memory writes follow this sequence (see Figure 5-19 on page
5-65):

1. The processor drives the write address and asserts a memory select
signal to indicate the selected bank.

The processor does not deassert the memory select signal between
successive accesses of the same memory bank.

2. The processor asserts the write strobe and drives the data (unless
the memory access is aborted due to a conditional instruction).

3. The processor determines whether it needs to insert wait states.

If so, the memory select and write strobe remain active for one or
more additional cycles. The state of the external acknowledge sig-
nal, the internally programmed wait state count, or a combination
of the two determine the wait states.

4. The processor deasserts the write strobe near the end of the cycle.

5. The processor puts its data outputs in a high impedance state.

6. If initiating another memory access, the processor drives the
address and memory select lines for the next cycle.

If a memory write is part of a conditional instruction that remains unexe-
cuted because the condition is false, the processor still drives the address
and memory select lines for the write, but it does not assert the write
strobe or drive any data.

Multiprocessor Memory
Figure 5-20 on page 5-68 shows timing for multiprocessor memory
accesses. For details on multiprocessor memory accesses, see Chapter 7,
Multiprocessing.

External Memory Access Timing

5-68 ADSP-21065L SHARC DSP User’s Manual

Figure 5-20. Multiprocessor memory access timing

ADDRESS Write
Addr

ACK

WR

SW

Data Write Data

RD

Read Data

Read AddrWrite Addr

Write Data

ADSP-21065L SHARC DSP User’s Manual 6-1

6 DMA
Figure 6-0.

Listing 6-0.

Table 6-0.

Table 6-0.

Direct Memory Access (DMA) provides a mechanism for transferring an
entire block of data.

The processor’s on-chip DMA controller relieves the core processor of
moving data between internal memory and an external data source or
external memory. Fully integrated, the DMA controller enables the pro-
cessor’s core or an external device to specify data transfer operations and
return to normal processing while the DMA controller carries out data
transfers independently and transparently.

The DMA controller can transfer blocks of data between:

• Internal memory and external memory or memory-mapped periph-
erals

• Internal memory and the IOP registers of another ADSP-21065L

• Internal memory and a host

• Internal memory and serial port I/O

• External memory and external peripherals

To ensure compatibility between its internal 32- and 48-bit structure and
16- and 32-bit peripheral devices, the processor packs and unpacks exter-
nal bus words.

6-2 ADSP-21065L SHARC DSP User’s Manual

Each of the processor’s two external port DMA control regis-
ters (DMAC1-0) provide control for external word packing.

Figure 6-1. ADSP-21065L block diagram

�%�%%��� �%�%%���

.
!

�
$

B
��

�C�� ��,+,��,��

��%!2+���,��.!�$B#

+��$,##��
+���

 6�
+���

%��� �%�% �%�%%���

.
!

�
$

B
��

��������	
�����

��������
����

�)

��

)/

)�

���
�����
����
#��%�
 ���	
��

9���
 ���	
��

�%�%
.�����0

+��

���

,+�

%���
.�����0

+�%

��%

,+%

��	
��������	

#�	��
+�	��

 �+
�������	�

��%
$���	����	

+��%��	����.��

���%��	����.��

+�����.��

������.��

)/��
 �� �%

�%�%��2�

%�����2�

��

�)

 �
%

,
+

�

�
�

�

+
�

�

,
+

%

 �
�

ADSP-21065L SHARC DSP User’s Manual 6-3

DMA

Figure 6-2. DMA control and data paths

As shown in Figure 6-2, the processor’s DMA request inputs DMAR2-1
and DMA grant outputs DMAG2-1 respond to external DMA requests to
transfer blocks of data to and from external asynchronous peripheral
devices.

To transfer data to the processor’s internal or external memory, I/O
devices simply pull a DMARx line low and wait for the processor to return
the appropriate DMAGx signal.

I/O Processor

Intern. DMA
Address

Generators

Grnts Reqs.

Intern. DMA
Prioritzer

Reqs.
Grnts

DMA
Controller

Ext. Port
DMA FIFOs

EPBx

Serial Port
FIFOs

RXx_z/TXx_z

Other IOP
Registers

Extern. DMA
Address

Generators

GrntsReqs.

Extern. DMA
Prioritzer

Reqs.
Grnts

DMA
Controller

Serial Ports

4
4

ADDR

DATA DATA

ADDR

Internal Memory

ADDR DATA

17

I/O Address Bus
(IOA)

Core Processor

External Port

ADDR23-024

32 DATA31-0

PM Address

DM Address

PM Data
DM Data

Slave Write
FIFO

4 deep

Buffer

48

I/O Data Bus
(IOD)

48 32

PMA
DMA

DMD
PMD

IOA IODPMD DMD

Ext. Port
Data Bus

(EPD)

EPA
EPD

Ext. Port
Addr Bus
(EPA)

DMAR1
DMAG1

DMAR0
DMAG0

TX_A
RX_A

RX_B
TX_B

6-4 ADSP-21065L SHARC DSP User’s Manual

For each of the processor’s ten DMA channels, Table 6-1 shows the corre-
sponding data buffer.

Table 6-1. DMA channels and data buffers

Chn Data Buffer Description

0 Rx0A Serial port 0 receive; A data

1 Rx1A Serial port 1 receive; A data

2 Rx0B Serial port 0 receive; B data

3 Rx1B Serial port 1 receive; B data

4 Tx0A Serial port 0 transmit; A data

5 Tx1A Serial port 1 transmit; A data

6 Tx0B Serial port 0 transmit; B data

7 Tx1B Serial port 1 transmit; B data

81

1 DMAR2 and DMAG2 are handshake controls for DMA Channel 8

EPB0 External port FIFO buffer 0

92

2 DMAR1 and DMAG1 are handshake controls for DMA Channel 9

EPB1 External port FIFO buffer 1

ADSP-21065L SHARC DSP User’s Manual 6-5

DMA

The following terms are used throughout this chapter:

External port FIFO buffers
EPB1-0. The IOP registers used for external port DMA transfers
and single-word data transfers from another ADSP-21065L or
from a host. These buffers are 6-deep FIFOs.

DMACx control registers
The DMA control registers for the EPBx external port buffers
DMAC1-0. These correspond to EPB1-0, respectively.

DMA parameter registers
The registers used to set up a DMA transfer. These registers
include: address (IIx), modifier (IMx), count (Cx), chain pointer
(CPx), and so on.

SPORT
Serial port.

Transfer control block (TCB)
A set of DMA parameter register values stored in internal memory
that the processor’s DMA controller downloads for chained DMA
operations.

TCB chain loading
The process by which the processor’s DMA controller downloads a
transmit control block from memory and autoinitializes the DMA
parameter registers.

6-6 ADSP-21065L SHARC DSP User’s Manual

The following conventions of notation are used throughout this chapter:

In register names,

• x = SPORT number (0/1)

• y = transmit or receive (T/R)

• z = data channel (A/B).

For example, in the notation DMACx for a DMA control register, x =
SPORT number.

In the notation TXx_z for a DMA data buffer:

• TX = Transmit data buffer

• x = 0 or 1 (SPORT)

• z = A or B (data channel)

In the notation IIyx_z for a DMA parameter register:

• II = Index register

• y = R or T (Receive or Transmit)

• x = 0 or 1 (SPORT)

• z = A or B (data channel)

ADSP-21065L SHARC DSP User’s Manual 6-7

DMA

DMA Controller Operation
The processor’s DMA controller performs four basic types of DMA trans-
fer operations:

• External port block data transfers

This type of transfer moves data between the processor’s internal
memory and external memory, a host, another processor, or a mem-
ory-mapped device.

The application must program the DMA controller with the size
and address of the internal memory buffer, the address increment,
and the direction of transfer. The application may need to supply an
external address also.

Once programmed, the DMA controller automatically begins trans-
fers and continues until it has transferred the entire buffer to or
from internal memory.

The processor supports four external port DMA transfer modes:
master mode, handshake mode, external handshake mode, and
paced master mode. For details, see “External Port DMA Modes” on
page 6-55.

• Serial port I/O data transfers

This type of transfer handles data transmitted and received through
the processor’s serial ports.

As with external port transfers, the application must configure an
internal memory buffer, but the DMA controller accesses the Tx or
Rx serial port buffer instead of the EPBx buffer.

The direction of the serial port determines the direction of the data
transfer. When the port receives data, the DMA controller automat-
ically transfers it to internal memory. Likewise, when the port must

DMA Controller Operation

6-8 ADSP-21065L SHARC DSP User’s Manual

transmit a word, the DMA controller automatically fetches the
word from internal memory.

• Transfers between external devices and external memory.

The processor also supports data transfers between an external
device and external memory. This type of transfer does not interfere
with internal operations that do not use the external port.

External devices participate in DMA transfers in one of two ways:

• They read or write to one of the processor’s DMA buffers.

• They assert a DMA request input (DMARx) to request ser-
vice.

• DMA chaining

Applications can program one DMA transfer operation, upon fin-
ishing, to autoinitialize another one on the same channel.

ADSP-21065L SHARC DSP User’s Manual 6-9

DMA

Setting Up DMA Transfers
The master processor or a host can program DMA operations. To do so,
the application must write to the processor’s memory-mapped DMA con-
trol and parameter registers. This includes writing a set of memory buffer
parameters to the DMA parameter registers and loading:

• The IIyx_z register with the starting address of the buffer.

• The IMyx_z register with an address modifier.

• The Cyx_z register with a word count.

Each external port and each serial port has a DMA enable bit (DEN) in its
main control register (DMACx) that enables DMA operation. Once set up
and enabled, DMA channels automatically transfer data words they
receive to the buffer in internal memory. Likewise, when the processor is
ready to transmit data, DMA channels automatically transfer data from
internal memory to the DMA buffer register. Transfer continues until the
entire data buffer has been received or transmitted.

The processor generates a DMA interrupt when it completes the transfer
of an entire block of data. An interrupt occurs when the DMA channel’s
count register Cyx_z (and ECEPx register in master mode only) decre-
ments to zero (0). The processor latches and masks DMA interrupts in the
IRPTL and IMASK registers, respectively. These registers are located in
the processor’s core, not in its memory-mapped IOP register space.

To start a new DMA sequence after the current one finishes, applications
must follow these steps:

1. Clear the DEN bit;

2. Write new parameters to the II, IM, and C registers;

Setting Up DMA Transfers

6-10 ADSP-21065L SHARC DSP User’s Manual

3. Set the DEN bit to re-enable DMA.

For chained DMA operations, this is not necessary. For details, see
“DMA Chaining” on page 6-39.

ADSP-21065L SHARC DSP User’s Manual 6-11

DMA

DMA Control Registers
The registers that control and configure DMA operations are part of the
memory-mapped IOP register set. To access these registers, applications
write to or read from the appropriate address in memory.

This section describes the various operating modes of the DMA controller
and associated control registers and bits. For details on the IOP registers,
see Appendix E, Control and Status Registers, in ADSP-21065L SHARC
DSP Technical Reference.

Table 6-2 lists the DMA control registers and data buffer registers.
Because the serial port DMA control bits are located in the SPORT con-
trol registers, they do not appear in this table. For details, see “Serial Port
DMA Control Registers” on page 6-22.

Table 6-2. DMA control, buffer, and parameter registers

Register Width Description

EPB0 48 External port DMA FIFO buffer 0

EPB1 48 External port DMA FIFO buffer 1

DMAC0 16 DMA channel 8 control register for
Ext. port buffer 0 (EPB0)

DMAC1 16 DMA channel 9 control register for
Ext. port buffer 1 (EPB1)

DMASTAT 32 DMA channel status register

IIR0A, IMR0A, CR0A,
CPR0A, GPR0A

16-18 DMA channel 0 parameter registers
(SPORT0 receive, A data)

IIR0B, IMR0B, CR0B,
CPR0B, GPR0B

16-18 DMA channel 1 parameter registers
(SPORT0 receive, B data)

DMA Control Registers

6-12 ADSP-21065L SHARC DSP User’s Manual

External Port DMA Registers
Each external port DMA channel has its own control register, DMACx
(see Figure 6-3), that corresponds to either DMA channel 8 or 9.

All bits are active high unless otherwise noted.

IIR1A, IMR1A, CR1A,
CPR1A, GPR1A

16-18 DMA channel 2 parameter registers
(SPORT1 receive, A data)

IIR1B, IMR1B, CR1B,
CPR1B, GPR1B

16-18 DMA channel 3 parameter registers
(SPORT1 receive, B data)

IIT0A, IMT0A, CT0A,
CPT0A, GPT0A

16-18 DMA channel 4 parameter registers
(SPORT0 transmit, A data)

IIT0B, IMT0B, CT0B,
CPT0B, GPT0B

16-18 DMA channel 5 parameter registers
(SPORT0 transmit, B data)

IIT1A, IMT1A, CT1A,
CPT1A, GPT1A

16-32 DMA channel 6 parameter registers
(SPORT1 transmit, A data)

IIT1B, IMT1B, CT1B,
CPT1B, GPT1B

16-32 DMA channel 7 parameter registers
(SPORT1 transmit, B data)

IIEP0, IMEP0, CEP0,
CPEP0, GPEP0, EIEP0,
EMEP0, ECEP0

16-32 DMA channel 8 parameter registers
(External port FIFO buffer 0)

IIEP1, IMEP1, CEP1,
CPEP1, GPEP1, EIEP1,
EMEP1, ECEP1

16-32 DMA channel 9 parameter registers
(External port FIFO buffer 1)

Table 6-2. DMA control, buffer, and parameter registers (Cont’d)

Register Width Description

ADSP-21065L SHARC DSP User’s Manual 6-13

DMA

Figure 6-3. DMACx registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

FLSH
Flush Ext. Port FIFO
1=flush

EXTEN
Ext. Devices to
Ext. Mem. DMA
1=ext. mode

INTIO
Single-word
 Interrupts - ext.
 port FIFO
0=disable
1=enable

MASTER
DMA
Master
mode
0=disable
1=enable

DEN
DMA Enable
 for ext. port
0=disable
1=enable

CHEN
DMA Chaining Enable
 for ext. port
0=disable
1=enable

TRAN
DMA chn. direction
0=read from ext. mem.
1=write to ext. mem.

FS
Ext. Port FIFO Status
00=empty
10=partially full
11=full

PS
Packing Status
 read-only
00=packing done
01=1st stage
 all modes
10=2nd stage
 16 to 48 mode
 or 32 to 48 mode

DTYPE
Data Type
0=data
1=instructions

PMODE
Packing Mode
00=no packing
01=16/32
10=16/48
11=32/48

MSWF
Most Significant Word First packing order
0=disable
1=enable

HSHAKE
DMA
Handshake
0=disable
1=enable

DMA Control Registers

6-14 ADSP-21065L SHARC DSP User’s Manual

Table 6-3 lists the contents of the DMACx registers. All control bits in the
DMACx registers, except FLSH, take effect during the second cycle after
the write to the register has finished. The FLSH bit takes effect in the
third cycle after the write.

Table 6-3. External port control registers (DMACx)

Bits Register Description

0 DEN DMA enable for external ports.

1 CHEN DMA chaining enable for external ports.

2 TRAN Transmit/receive.

3-4 PS Pack status (read-only).

5 DTYPE Data type.

6-7 PMODE Packing mode.

8 MSWF Most significant word first during packing.

9 MASTER Master mode enable.

10 HSHAKE Hand shake mode enable (DMARx, DMAGx).

11 INTIO Single-word interrupt enable for external
port buffers.

12 EXTERN External handshake mode enable.

13 FLSH Flush DMA buffers and status.

14-15 FS External port buffer status.

16-31 Reserved

ADSP-21065L SHARC DSP User’s Manual 6-15

DMA

DEN Enables DMA for the external port buffers.

CHEN
Enables chained DMA transfers.

Setting CHEN=1 and DEN=0 places the DMA channel in chain inser-
tion mode. In this mode, the application can insert a new DMA
chain into the current chain without affecting the current DMA
transfer. This mode is similar to setting CHEN=1 and DEN=1, except it
disables automatic chaining when the current DMA transfer ends.

Table 6-4 lists the modes selected by the CHEN and DEN bits.

TRANSpecifies the direction of data transfer.

TRAN = 1 Transmit; read from internal memory to EPBx (slave
mode) or to the external bus through the EPBx buffers
(master mode).

TRAN = 0 Receive; write to internal memory from the external bus
through the EPBx buffers.

Table 6-4. CHEN and DEN modes

CHEN DEN Mode

0 0 Chaining disabled, DMA disabled

0 1 Chaining disabled, DMA enabled

1 0 Chaining enabled, DMA enabled, autochain-
ing disabled (chain insertion mode)

1 1 Chaining enabled, DMA enabled, autochain-
ing enabled

DMA Control Registers

6-16 ADSP-21065L SHARC DSP User’s Manual

When set to 1, the direction of data transfer is internal-to-external.
When EXTERN=1, setting TRAN=1 specifies a read from external mem-
ory, and setting TRAN=0 specifies a write to external memory.

PS A two-bit status field that indicates whether the packing buffer is
on its first, second, or last pack, as shown in Table 6-5.

DTYPE
Specifies the type of data to transfer.

Internal memory uses this information to determine the word
width.

DTYPE=1 Overrides the IMDW bits and forces a 48-bit (3-col-
umn) memory transfer.

DTYPE=0 Uses the data word setting of the IMDW bits in the
SYSCON register.

The data word may be 32 or 40 bits, as determined by the IMDW
bits in the SYSCON register.

PMODE
A two-bit value that specifies the EPBx buffer packing mode.

Table 6-5. PS values for EPBx packing status

Value Status

00 Pack finished.

01 First stage of all pack and unpack modes.

10 Second stage of 16- to 48-bit pack or unpack
modes, or second stage of 32- to 48-bit pack or
unpack modes.

11 Reserved.

ADSP-21065L SHARC DSP User’s Manual 6-17

DMA

For host accesses of the EPBx buffers, the application must set the
HBW bits in the SYSCON register to correspond to the external
bus width specified by PMODE, as shown in Table 6-6.

MSWF
Specifies the packing order for 16-to-32 bit packing and 16-to-48
bit packing.

For 32-to-48 bit packing, the DMA controller ignores MSWF.

MSWF=1 Packing order is MSW (most significant 16-bit word
first)

MSWF=0 Packing order is LSW (least significant 16-bit word
first)

INTIO
Enables external port DMA interrupts to occur when the external
ports receive or transmit individual words.

Used only when DEN=0

Table 6-6. PMODE values for EPBx buffer packing modes

Value Mode

00 No packing or unpacking

01 Packing 16-bit external bus words to/from
32-bit internal words

10 Packing 16-bit external bus words to/from
48-bit internal words

11 Packing 32-bit external bus words to/from
48-bit internal words

DMA Control Registers

6-18 ADSP-21065L SHARC DSP User’s Manual

Generating DMA interrupts this way is useful for implementing
interrupt-driven, single-word transfers that are under control of the
processor’s core.

Setting INTIO=1 and:

TRAN=0 Causes the interrupts to occur when the EPBx input
buffer is “not empty.”

TRAN=1 Causes the interrupts to occur when an output buffer is
“not full.”

FLSH Reinitializes the state of the DMA channel, clearing the FS and PS
status bits (setting them to 0).

This procedure flushes the external port FIFO buffer, the DMA
request counter, and any partially packed data words. It also resets
any internal DMA states. The entire procedure has a two-cycle
latency.

FLSH is a self-clearing control bit, which is not latched and always
reads as 0.

To avoid unexpected results, use the FLSH bit to clear the DMA
channel only when the channel is inactive. To determine if the
channel is active, read the DMASTAT register. (For any channel,
the processor sets the channel active status bit in DMASTAT if
DMA is enabled for the channel and the current DMA sequence is
still in progress.)

Set the FLSH bit to 1 only when the DEN bit is 0 or at the same
time you clear the DEN bit. Do not set FLSH to 1 in the same
write that you set DEN to 1.

FS A two-bit status field that indicates whether data is present in the
EPBx FIFO buffer.

ADSP-21065L SHARC DSP User’s Manual 6-19

DMA

When the processor is transmitting data to an external device, these
status bits indicate whether the buffer has room for more data.

As shown in Table 6-7, when the processor is receiving data, these
status bits indicate whether the buffer has new (unread) data.

MASTER
Master Mode DMA Enable.

The MASTER, HSHAKE, and EXTERN bits are used in combina-
tion, as described Table 6-8.

HSHAKE
DMA Handshake Mode Enable.

The MASTER, HSHAKE, and EXTERN bits are used in combina-
tion, as described in Table 6-8.

EXTERN
Specifies an external memory to external device DMA transfer.

In this mode, HSHAKE must equal 1, and MASTER must equal 0.

Table 6-7. FS EPBx FIFO buffer status values

Value Status

00 Empty

01 Undefined

10 Partially full

11 Full

DMA Control Registers

6-20 ADSP-21065L SHARC DSP User’s Manual

The MASTER, HSHAKE, and EXTERN bits configure the DMA
mode this way.

Table 6-8. DMA mode configurations

M H E Mode

0 0 0 Slave Mode.

Data in the receive buffer or available
space in the transmit buffer generates an
internal DMA request.

Data transfer occurs between internal mem-
ory and EPBx.

If TRAN=1 (internal to external), the DMA
controller fills the EPBx buffer as soon
as the application sets DEN=1.

0 0 1 Reserved

0 1 0 Handshake Mode.

Asserting the DMARx line generates a DMA
request. The transfer occurs when DMAGx is
asserted*.

Applies to EPB0, EPB1 buffers, DMA chan-
nels 8 and 9 only.

0 1 1 External Handshake Mode.

Identical to Handshake Mode, but with data
transferred between external memory and an
external device

Applies to EPB0, EPB0 buffers, DMA chan-
nels 8 and 9 only.

ADSP-21065L SHARC DSP User’s Manual 6-21

DMA

1 0 0 Master Mode.

The DMA controller attempts a transfer
whenever the DMA counter is nonzero and
the receive buffer has data or the trans-
mit buffer has space.*

Data transfer occurs between internal mem-
ory and an external device.

Keep DMAR2 high if DMA channel 8 is in mas-
ter mode.

1 0 1 Reserved

1 1 0 Paced Master Mode.

In this mode, the DMARx signal paces trans-
fers. Applies to EPB0 and EPB1 buffers and
channels 8 and 9 only.

Asserting DMARx generates a DMA request.
DMARx requests operate the same as in hand-
shake mode, except that DMAGx isn’t used.

Bus transfer occurs when either RD or WR is
asserted. The address is driven as in nor-
mal master mode.

Since ORing the RD-DMAGx and WR-DMAGx pairs
requires no external gates, buffer access
can be zero-wait state with no idle
states.

Wait states and acknowledge (ACK) apply to
Paced Master Mode transfers; see “Wait
States and Acknowledge” on page 5-53.

1 1 1 Reserved

Table 6-8. DMA mode configurations (Cont’d)

M H E Mode

DMA Control Registers

6-22 ADSP-21065L SHARC DSP User’s Manual

Serial Port DMA Control Registers
The processor’s two serial ports, SPORT0 and SPORT1, can use DMA
transfers to handle transmit and receive data. As shown in Table 6-9,
DMA channels 0-7 are assigned to the serial ports.

The direction of SPORT DMA transfers is hardwired:

• Receive channels transfer data to internal memory.

• Transmit channels transfer data from internal memory.

The processor transmits 32-bit words internally between the RX and TX
buffers and memory. Using the SPORTs’ packing capability, you can con-
figure the processor to receive and transmit 16-bit serial words, two at a
time. For details, see Chapter 10, Serial Ports.

Table 6-9. Serial port DMA channel assignments

DMA
Chn

Data
Buffer

Description

0 RX0_A Serial port 0; receive A data

1 RX0_B Serial port 0; receive B data

2 RX1_A Serial port 1; receive A data

3 RX1_B Serial port 1; receive B data

4 TX0_A Serial port 0; transmit A data

5 TX0_B Serial port 0; transmit B data

6 TX1_A Serial port 1; transmit A data

7 TX1_B Serial port 1; transmit B data

ADSP-21065L SHARC DSP User’s Manual 6-23

DMA

You must set up serial port DMA transfers in the DMA parameter regis-
ters for channels 0 through 7. Table 6-2 on page 6-11 lists these registers.

The serial port DMA enable bits are located in the SPORT transmit and
receive control registers, STCTL0 and STCTL1. For details, see Chapter
10, Serial Ports.

Table 6-10 shows the control bits related to serial port DMA. These bits
are active high: 0=disabled, 1=enabled.

Each serial port has a transmit DMA interrupt and a receive DMA inter-
rupt, as shown in Table 6-11. When serial port DMA is disabled, a TX
interrupt occurs when the TX buffer is not full, and a RX interrupt occurs
when the RX buffer is not empty.

Table 6-10. STCTLx/SRTCTLx serial port DMA control bits

Bit Function

SDENz SPORT DMA enable

SCHENz SPORT DMA chaining enable

Table 6-11. SPORT DMA interrupts

Interrupt Description Priority

SPR0I DMA channels 0, 1; SPORT 0 receive Highest

SPR1I DMA channels 2, 3; SPORT 1 receive

SPT0I DMA channels 4, 5; SPORT 0 transmit

SPT1I DMA channels 6, 7; SPORT 1 transmit

EP0I DMA channel 8; Ext. port buffer 0

EP1I DMA channel 9; Ext. port buffer 1 Lowest

DMA Control Registers

6-24 ADSP-21065L SHARC DSP User’s Manual

DMA Channel Status Register
The DMA controller maintains a 32-bit, read-only status register,
DMASTAT, that provides information on the state of each of the proces-
sor’s DMA channels.

Table 6-12 lists the bits and their definitions. Bits 0 through 9 indicate
which DMA channels are active, with bit 0 corresponding to channel 0,
and so on. Bits 10 through 19 indicate the DMA chaining status for each
channel.

• Channel active status

1 = Active; transferring data or waiting to transfer the current
block, not transferring TCB.

0 = Inactive; DMA disabled, transfer complete or transferring
TCB.

• Channel chaining status

1 = Transferring TCB or waiting to transfer TCB.

Often, a DMA channel must wait to get control of the pro-
cessor’s internal I/O bus before it can transfer the TCB. The
length of the wait depends on the number of DMA channels
active at the same time.

0 = Chaining disabled or not transferring TCB

Table 6-12. Bit definitions of the DMASTATx registers

Bit DMA Channel Status for…

0 0 Rx0_A

1 2 Rx1_A

2 4 Tx0_A

ADSP-21065L SHARC DSP User’s Manual 6-25

DMA

3 6 Tx1_A

4 1 Rx0_B

5 3 Rx1_B

6 8 EPB0

7 9 EPB1

8 5 Tx0_B

9 7 Tx1_B

10 0 Chaining on Rx0_A

11 2 Chaining on Rx1_A

12 4 Chaining on Tx0_A

13 6 Chaining on Tx1_A

14 1 Chaining on Rx0_B

15 3 Chaining on Rx1_B

16 8 Chaining on EPB0

17 9 Chaining on EPB1

18 5 Chaining on Tx0_B

19 7 Chaining on Tx1_B

20-31 Reserved

Table 6-12. Bit definitions of the DMASTATx registers (Cont’d)

Bit DMA Channel Status for…

DMA Control Registers

6-26 ADSP-21065L SHARC DSP User’s Manual

For a particular channel, the processor sets the channel active status bit if
DMA is enabled and the current DMA transfer has not finished. It sets the
chaining status bit if the channel is currently loading a TCB or if it is pre-
paring to load a TCB. A single cycle of latency occurs between the time
the processor changes the internal status and the time it updates the
DMASTAT register.

As an alternative to interrupt-driven DMA, your application can poll
DMASTAT to determine when a single DMA transfer has finished. To do
so, the application reads DMASTAT to see if both status bits for the chan-
nel are inactive. If so, the DMA sequence has finished.

Polling DMASTAT while the DMA controller is transferring
data through an EPBx buffer may cause the processor to deassert
its BRx line for one cycle. During this cycle, the host or another
processor can take control of the bus, stalling the DMA transfer
until the processor regains bus mastership.

Do not use polling if chaining is enabled because the next DMA
sequence may have started by the time the processor returns the
polled status.

ADSP-21065L SHARC DSP User’s Manual 6-27

DMA

DMA Controller Operation
DMA controller operations occur over the internal I/O bus. The serial
ports and external port connect to internal memory over the I/O Data bus
(IOD), and the DMA controller generates internal memory addresses on
the I/O Address bus (IOA).

The DMA controller maintains two DMA channels used by the external
port and eight DMA channels used by the serial ports. Each DMA channel
consists of a set of parameter registers that specify a data buffer in internal
memory and hardware that an I/O port uses to request DMA service.

To transfer data, the DMA controller accepts internal requests from I/O
ports and sends back an internal grant when it services the ports. The
DMA controller contains priority logic that determines which channel can
drive the bus in any given cycle. Because internal memory has separate
ports for core and I/O accesses, DMA transfers never conflict with the
core over access of internal memory.

Each external port DMA channel has a control and a status register
(read-only) that set the channel’s operating mode and return its status
information, respectively. External devices have access to all of the DMA
control and parameter registers, which enables a host or other
ADSP-21065L to set up a DMA channel and initiate transfers, without
involving the local ADSP-21065L. To set up a DMA channel on itself, the
processor writes to its own DMA control and parameter registers.

You can configure the external port DMA channels to transmit or receive
data from internal memory, but since they are unidirectional, external
port DMA channels either transmit or receive data only.

DMA Controller Operation

6-28 ADSP-21065L SHARC DSP User’s Manual

DMA Channel Parameter Registers
The processor’s DMA channels and Data Address Generators (DAGs)
operate similarly. Each channel has a set of parameter registers that
includes an index register (IIyx_z), a modify register (IMyx_z), and a
count register (Cyx_z). (For a complete list of these parameter registers,
see Table 6-13 on page 6-31.) You use the index and modify registers to
set up a data buffer in internal memory. You use the count register to
determine when the processor generates an interrupt for the channel.

The application must initialize the index register with a starting address
for the data buffer. The processor drives the address in the index register
on its IOA (I/O Address) bus and applies it to internal memory during
each DMA cycle. A DMA cycle is a clock cycle in which a DMA transfer is
proceeding.

All addresses in the 17-bit index registers are offset by 0x0000 8000, the
first internal RAM location, before the DMA controller uses them. The
DMA controller cannot perform transfers to short word address space.
(Using the processor's external port and serial port packing capability,
however, you can transfer 16-bit short word data within 32-bit words.)

After transferring each data word to or from internal memory, the DMA
controller adds the modify value to the index register to generate the
address for the next DMA transfer. (It adds the modify value to the index
value and writes the new value back to the index register.)

To enable both incrementing and decrementing, the modify
value in the IM register is a signed integer. The modify value is
fixed to 1 for DMA channels 0 through 7.

ADSP-21065L SHARC DSP User’s Manual 6-29

DMA

Each DMA channel has a count register (Cyx_z), which the application
must initialize with the word count of the data to transfer. The count reg-
ister decrements at the end of each DMA transfer. When the count
register value reaches 0, the processor can generate an interrupt for the
channel.

To start a new DMA sequence after the current one has finished:

1. Clear the DEN enable bit DMA interrupts.

2. Write new parameters to the II, IM, and C registers.

3. Set the DEN bit to re-enable DMA.

For chained DMA operations, this step is unnecessary.

If the index register (II) is modified past its maximum 17-bit
value (the value falls outside the normal word address range of
internal memory), the register wraps around to the beginning
address of the particular block, where DMA transfers continue.

For block 0, the maximum bit value is x0000 9FFF, and the
starting address is x0000 8000. For block 1, the maximum bit
value is x0000 DFFF, and the starting address is x0000 C000. For
details, see “Memory Organization” on page 5-16.

Initializing a channel’s count register with 0 does not disable
DMA transfers on the channel. Instead, the channel performs

216 transfers because the first transfer starts before the controller
tests the count value.

To disable a DMA channel, you clear the DMA enable bit in the
channel’s control register.

DMA Controller Operation

6-30 ADSP-21065L SHARC DSP User’s Manual

Each DMA channel also has a chain pointer register (CPyx_z) and a gen-
eral-purpose register (GPyx_z). You use the CP register to set up chained
DMA operations and the GP register for any general purpose, such as stor-
ing the address of the previously used buffer.

The external port DMA channels (EPBx) each contain three additional
parameter registers:

• External index register (EIEPx)

• External modify register (EMEPx)

• External count register (ECEPx)

(Serial port DMA channels do not have these registers.)

You use the EIEP, EMEP, and ECEP registers to generate 32-bit addresses
that are driven out of the external port for master mode DMA transfers
between internal memory and external memory or devices.

The MASTER bit of each DMACx control register configures Master
Mode. In Master Mode only, you must load the ECEP register with the
number of external bus transfers to perform. (This count differs from the
number of words the DMA controller transfers when you use word pack-
ing.) EIEPx cannot index internal memory.

If the index register (EIEPx) is modified past its maximum
32-bit value (the value falls outside the external memory bank
address range of internal memory), the processor continues to
drive the ADDRx, RD, WR, and DATAx lines, but it does not
drive any of the MSx lines. So, when the index register over-
flows, the processor gives no indication that it has, and no mem-
ory reads or writes occur.

You can use the upper bits of ADDRx to generate addresses out-
side the external memory bank address range.

ADSP-21065L SHARC DSP User’s Manual 6-31

DMA

Table 6-13 defines the DMA parameter registers. The parameter registers
are uninitialized following a processor reset.

Table 6-13. DMA parameter registers

Register Width Function

II 17 Internal index.

Starting address for data buffer is
0x0000 8000.

(IIyx_z for SPORT DMA channels and IIEPx
for external port DMA channels)

IM 16 Internal modifier.

 Address increment.1

(IMyx_z for SPORT DMA channels and IMEPx
for external port DMA channels)

C 16 Internal count.

Number of words to transfer.

(Cyx_z for SPORT DMA channels and CEPx for
external port DMA channels)

CP 18 Chain pointer.

Address of next set of buffer parameters.2

(CPyx_z for SPORT DMA channels and CPEPx
for external port DMA channels)

GP 17 General purpose DMA.

(GPyx_z for SPORT DMA channels and GPEPx
for external port DMA channels)

EIEPx 32 External index.

External port DMA channels only.

DMA Controller Operation

6-32 ADSP-21065L SHARC DSP User’s Manual

Table 6-14 lists the parameter registers for each DMA channel.

EMEPx 32 External modifier.

External port DMA channels only.

ECEPx 32 External count.

External port DMA channels only.

1 The modify value of DMA channels 0-7 is fixed to 1.
2 Lower 17 bits (bits 16-0) contain the memory address of the next set of parameters for chained

DMA operations. Most significant bit (bit 17) is the PCI bit (Program-Controlled Interrupts),
which determines whether the DMA interrupts occur at the completion of each DMA sequence.

Table 6-14. Parameter registers of each DMA channel

DMA Chn Registers Description

0 IIR0A, IMR0A1, CR0A,
CPR0A, GPR0A

SPORT 0 receive; A data

1 IIR0B, IMR0B, CR0B,
CPR0B, GPR0B

SPORT 0 receive; B data

2 IIR1A, IMR1A, CR1A,
CPR1A, GPR0A

SPORT 1 receive; A data

3 IIR1B, IMR1B, CR1B,
CPR1B, GPR1B

SPORT 1 receive; B data

4 IIT0A, IMT0A, CT0A,
CTR0A, GPT0A

SPORT0 Transmit; A data

5 IIT0B, IMT0B, CT0B,
CPT0B, GPT0B

SPORT0 Transmit; B data

Table 6-13. DMA parameter registers (Cont’d)

Register Width Function

ADSP-21065L SHARC DSP User’s Manual 6-33

DMA

Figure 6-4 on page 6-34 shows a block diagram of the DMA controller’s
address generator.

6 IIT1A, IMT1A, CT1A,
CTR1A, GPT1A

SPORT 1 Transmit; A data

7 IIT1B, IMT1B, CT1B,
CPT1B, GPT1B

SPORT 1 Transmit; B data

8 IIEP0, IMEP0, CEP0,
CPEP0, GPEP0, EIEP0,
EMEP0, ECEP0

External Port Buffer 0

9 IIEP1, IMEP1, CEP1,
CPEP1, GPEP1, EIEP1,
EMEP1, ECEP1

External Port Buffer 1

1 The values in the IMyx_z registers are fixed to 1.

Table 6-14. Parameter registers of each DMA channel (Cont’d)

DMA Chn Registers Description

DMA Controller Operation

6-34 ADSP-21065L SHARC DSP User’s Manual

Figure 6-4. DMA address generation

DMA Word Counter

Cx
Count

CPx
Chain Pointer

MUX

+

Local Bus

GPx
General Purpose

working register
−1

IIx
Index (Address)

IMx
Modifier

MUX+

Local Bus

Internal
Memory
Address

Postmodify

DMA Address Generator

DMA Address Generator
(External Memory)

For External Port DMA Channels Only

EIx
Ext. Index (Addr)

EMx
Ext. Modifier

+

Local Bus

External
Memory
Address

Postmodify

ECx
Ext. Count

+−1

ADSP-21065L SHARC DSP User’s Manual 6-35

DMA

Internal Request and Grant
The processor’s I/O ports use internal DMA request and grant handshake
hardware and protocol to communicate with the DMA controller.

Each serial port and external port DMA channel has one request and one
grant line. When an I/O port needs to write data to internal memory, it
asserts its request line. The DMA controller prioritizes this request with
all other valid DMA requests. See Figure 6-2 on page 6-3.

When a channel’s request takes highest priority, the DMA controller
asserts that channel’s internal grant line and starts the transfer in the next
cycle. The DMA controller follows the same sequence when an I/O port
requests read data from internal memory.

If a DMA channel is disabled, the DMA controller does not assert the
channel’s grant line, even if the channel has data to transfer.

Setting DMA Channel Prioritization
Since more than one DMA channel can have a request active in any cycle,
the DMA controller uses a prioritization scheme to select which channel
to service.

Prioritization enables the DMA controller to determine which channel
can use the IOD bus to access memory. Except for the external port DMA
channels, the processor always uses a fixed prioritization scheme. For
external port DMA prioritization, see Table 6-15 on page 6-36, which
lists, in descending order, the prioritization of I/O bus accesses, including
DMA channels.

DMA Controller Operation

6-36 ADSP-21065L SHARC DSP User’s Manual

Between each individual data transfer, the DMA controller determines
which requesting channel has the highest priority during the next cycle.
Prioritization of bus requests between master and slave processors, how-
ever, occurs only when the master processor gives up control of the
external bus, which occurs only after the DMA controller has completed
the transfer of an entire DMA data block.

Table 6-15. Priority of internal memory I/O bus accesses

Priority

Core Access to I/O Registers

DMA Chn Port/Buffer

Highest 0 Serial port 0 receive; Rx0_A

1 Serial port 0 receive; Rx0_B

2 Serial port 1 receive; Rx1_A

3 Serial port 1 receive; Rx1_B

4 Serial port 0 transmit; Tx0_A

5 Serial port 0 transmit; Tx0_B

6 Serial port 1 transmit; Tx1_A

7 Serial port 1 transmit; Tx1_B

NA TCB loading requests1

1 Since TCB chain loading uses the I/O bus, these transfers require prioritization. See “DMA
Chaining” on page 6-39.

8 External port buffer 0

Lowest 9 External port buffer 1

ADSP-21065L SHARC DSP User’s Manual 6-37

DMA

Rotating Priority for External Port Channels

You can program the DMA controller to use a rotating priority scheme for
the two external port channels. To do so, you set the DCPR bit in the
SYSCON register.

The DCPR bit enables rotating priority for external port DMA channels 8
and 9.

DCPR = 0 disable

DCPR = 1 enable

When rotating priority is enabled, high priority shifts back and forth
between DMA channels 8 and 9 after each single-word transfer.

For example, rotation proceeds this way:

1. After reset, the default priority ordering, from high to low, is chan-
nel 8 to channel 9.

2. A single transfer is performed on channel 8.

The processor prioritizes external direct accesses of internal
memory and TCB chain loading with the DMA channels.

It does so to prevent contention over the internal I/O bus since
these accesses occur over it. TCB chain loading has higher prior-
ity than external port accesses to enable chaining of serial port
DMA transfers, which cannot be held off, even when the exter-
nal port is attempting an access in every cycle. (For details, see
“Transfer Control Blocks and Chain Loading” on page 6-41.)

DMA Controller Operation

6-38 ADSP-21065L SHARC DSP User’s Manual

3. With rotating priority enabled (DCPR=1), priority shifts to
channel 9.

The external port channel priorities do not change relative to the
serial port channel priorities. At reset, the processor clears the
DCPR bit, disabling rotating priority.

When using fixed priority for the external port DMA channels, the high-
est priority is assigned to channel 8, and the lowest priority is assigned to
channel 9. To redefine this priority, you assign channel 9 the highest
priority.

To do so:

1. Disable external port DMA channel 8 only.

2. Select rotating priority, set DCPR = 1.

3. Generate at least one transfer on channel 9.

4. Disable rotating priority (DCPR = 0), and re-enable both external
port DMA channels.

Table 6-16 illustrates this procedure.

Table 6-16. Example changing priority assignment

Priority @… Highest Lowest

Reset DMA 8 DMA 9

Follow steps 1-4 above to make DMA 8 lowest priority.

Reorder DMA 9 DMA 8

ADSP-21065L SHARC DSP User’s Manual 6-39

DMA

DMA Chaining
DMA chaining enables the processor’s DMA controller to autoinitialize
itself between multiple DMA transfers. Using chaining, you can set up
multiple DMA operations in which each operation has different
attributes.

In chained DMA operations, the processor automatically sets up another
DMA transfer when its DMA controller has transmitted or received the
entire contents of the current buffer. The processor supports DMA chain-
ing on the same channel only. It does not support cross-channel chaining.

You use the chain pointer register (CP) to point to the next set of DMA
parameters stored in internal memory. This new set of parameters is called
a transfer control block (TCB). To set up the next DMA sequence, the pro-
cessor’s DMA controller automatically reads the TCB from internal
memory and loads the parameter values into the channel parameter regis-
ters. This procedure is called TCB chain loading.

A DMA sequence is the sum of the DMA transfers for a single channel,
starting with the initialization of the parameter registers and ending with
the point at which the decrementing count register reaches zero (0).

Each DMA channel has a chaining enable bit (CHEN) in its correspond-
ing control register. To enable chaining, you set this bit to 1, and to
disable chaining, you write all zeros (0s) to the address field of the chain
pointer register (CP).

With chaining enabled, to initiate DMA transfers, you write a memory
address to the CP register. This is also an easy way to start a single DMA
sequence, which includes no subsequent chained DMA transfers. Since
you can load the CP register any time during the DMA sequence, you can
disable chaining on a DMA channel (CP register address field = 0x0000)
until an event occurs that loads the CP register with a non-zero value.

The lower seventeen bits of the 18-bit wide CP register is the memory
address field, which is offset by 0x0000 8000 before the DMA controller

DMA Controller Operation

6-40 ADSP-21065L SHARC DSP User’s Manual

uses it. Bit 17, the PCI (Program-Controlled Interrupts) bit, is a control
bit and the most significant bit of the CP register.

Used in conjunction with the interrupt’s mask bit in IMASK, the PCI bit
selects whether or not an interrupt occurs at the completion of the current
DMA sequence, but only on DMA channels with chaining enabled
(CHEN=1).

PCI=1 Enables the corresponding DMA channel interrupt, which
occurs when the count register reaches 0.

PCI=0 Disables the DMA channel’s interrupt.

For nonchained DMA operations, you must use the IMASK register to
disable the interrupt. But you can still mask out (disable), in the IMASK
register, interrupt requests enabled by the PCI bit. Figure 6-5 shows the
CP register and PCI bit.

Figure 6-5. Chain pointer register and PCI bit

Because the PCI bit is not part of the memory address in the CP
register, take care when writing and reading addresses to and
from the register. To prevent errors, mask out the PCI bit (bit
17) when you copy the address in CP to another address regis-
ter.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCI bit Memory Address field
(Address of next TCB)

ADSP-21065L SHARC DSP User’s Manual 6-41

DMA

The processor loads the general-purpose (GP) register from memory with
the other parameter registers. You can use it during chained DMA
sequences to point to the last DMA sequence that the DMA controller
finished transferring. This procedure enables an application to determine
the location of the last full (or empty) data buffer. Since a general-purpose
register has no dedicated functionality, you can use it for any purpose.

Transfer Control Blocks and Chain Loading

During TCB chain loading, the processor loads the DMA channel param-
eter registers with values retrieved from internal memory. The CP register
contains the chain pointer, which is the highest address of the TCB. The
TCB is stored in consecutive locations.

Table 6-17 shows the TCB-to-register loading sequence for the external
port and serial port DMA channels. The loading sequence is the order in
which the DMA controller reads and loads each word of the TCB into its
corresponding register.

Figure 6-6 on page 6-43 shows how to set up in memory the TCB for an
external port DMA chain, which is referenced to the address pointer con-
tained in the CP register of the previous DMA operation in the chain.

Table 6-17. TCB chain loading sequence

Address + Offset Ext. Port
Buffers

Serial
Ports

CPyx_z + 0x0000 8000 IIEPx IIyx_z

CPyx_z - 1 + 0x0000 8000 IMEPx IMyx_z

CPyx_z - 2 + 0x0000 8000 CEPx Cyx_z

CPyx_z - 3 + 0x0000 8000 CPEPx CPyx_z

DMA Controller Operation

6-42 ADSP-21065L SHARC DSP User’s Manual

TCB chain loading is requested the same way as all other DMA opera-
tions. The processor latches and holds a TCB loading request in the DMA
controller until the TCB becomes the request with highest priority. As in
normal DMA operation, the I/O Processor prioritizes and transfers the
TCB registers individually. If multiple chaining requests are present, the
DMA controller transfers the TCB registers for the highest priority DMA
channel first. A channel with higher priority cannot interrupt a channel
that is currently chain loading. See Table 6-15 on page 6-36 for DMA
channel request priorities.

CPyx_z - 4 + 0x0000 8000 GPEPx GPyx_z

CPyx_z - 5 + 0x0000 8000 EIEPx

CPyx_z - 6 + 0x0000 8000 EMEPx

CPyx_z - 7 + 0x0000 8000 ECEPx

CPyx_z - 8 + 0x0000 8000 —

Table 6-17. TCB chain loading sequence (Cont’d)

Address + Offset Ext. Port
Buffers

Serial
Ports

ADSP-21065L SHARC DSP User’s Manual 6-43

DMA

Figure 6-6. TCB memory setup for external port DMA channels

Setting Up and Starting a Chain

To setup and initiate a chain of DMA transfers:

1. Set up all TCBs in internal memory.

2. Write to the appropriate DMA control register, and set DEN=1 and
CHEN=1.

3. To start the chain, write to the channel’s CP register the last
address (the address of the II register value) of the first TCB.

Before starting the first transfer, the DMA controller autoinitializes itself
with the first TCB. On completion of this transfer, the DMA controller
starts the next transfer if the current chain pointer address is nonzero. The
DMA controller uses this address as the pointer to the next TCB.

ECx

EMx

EIx

GPx

CPx

Cx

IMx

IIx

Address

CPx −7

CPx −6

CPx −5

CPx −4

CPx −3

CPx −2

CPx −1

CPx

Address pointer
to next TCB

Lowest address

Highest address

DMA Controller Operation

6-44 ADSP-21065L SHARC DSP User’s Manual

Inserting a Chain
You can insert a high priority DMA operation or chain into an active
DMA chain.

Setting CHEN=1 and DEN=0 places the DMA channel in chain insertion
mode. In this mode, a new DMA chain inserted into the current chain
does not affect the current DMA operation. The processor’s core writes a
TCB into the channel parameter registers to insert the new chain.

In this mode, the DMA channel operates normally (as with CHEN=1 and
DEN=1), except that at the end of the current DMA transfer, automatic
chaining is disabled, and an interrupt request occurs. This interrupt
request is independent of the PCI bit state.

Use this sequence to insert a DMA subchain while another chain is active:

1. To enter chain insertion mode, set CHEN=1 and DEN=0 in the appro-
priate DMA control register.

The DMA interrupt occurs to indicate when the current DMA
sequence has finished.

2. Write the CP register value into the CP position of the last TCB in
the new chain.

The address field of the CP registers is only seventeen bits wide.
A symbolic address written directly to the CP register can cause
a conflict between bit 17 and the PCI bit. Be sure to clear the
upper bits of the address first, before you AND in the PCI bit
separately (if necessary).

ADSP-21065L SHARC DSP User’s Manual 6-45

DMA

3. Set DEN=1 and CHEN=1.

4. Write the start address of the first TCB of the new chain into the
appropriate CP register.

Do not use chain insertion for normal operations. Use it only to insert a
high priority operation when another DMA operation is active.

DMA Interrupts
When the count register (C) of an active DMA channel decrements to
zero (0), it generates an interrupt. For the external port DMA channels,
when the processor is in MASTER mode, both the C and ECEP (external
count) registers must equal zero (0) to generate the interrupt. Moreover,
to generate a DMA interrupt, the count registers must decrement to zero
(0) as a result of actual DMA transfers. Writing 0 to a count register does
not generate this interrupt.

Each DMA channel has its own interrupt, which is latched in the IRPTL
register and enabled in the IMASK register. Table 6-18 shows, in order of
priority, the IRPTL and IMASK bits of the ten DMA channel interrupts.
The interrupt priorities of all DMA channels are fixed.

Table 6-18. DMA interrupt vectors and priority

Bit Address1 Interrupt DMA
Chn

I/O port Priority

10 0x28 SPR0I 0/1 SPORT 0 rcv Highest

11 0x2C SPR1I 2/3 SPORT 1 rcv

12 0x30 SPT0I 4/5 SPORT 0 xmit

13 0x34 SPT1I 6/7 SPORT 1 xmit

14-15 0x38-0x3C Reserved

DMA Controller Operation

6-46 ADSP-21065L SHARC DSP User’s Manual

When DMA chaining is enabled, you can use the PCI bit in the CP regis-
ter, instead of IMASK, to enable and disable DMA interrupts for each
channel configured for chaining.

PCI=1 DMA interrupt requests occur when the count register reaches
zero (0).

PCI=0 DMA interrupts disabled.

The PCI bit is valid only when DMA chaining is enabled. If chaining is
disabled, you must use the IMASK register to disable interrupts. You can
still mask out (disable) interrupt requests enabled by PCI in the IMASK
register.

The processor’s I/O ports can generate DMA interrupts without using
DMA. In this case, two conditions generate an interrupt:

• The receive buffer contains data.

• The transmit buffer has space.

Generating DMA interrupts this way is useful for implementing inter-
rupt-driven I/O controlled by the processor’s core. Multiple interrupts can
occur if several I/O ports transmit or receive data in the same cycle. To
perform single-word, non-DMA interrupt-driven transfers on the external
port, you must set the INTIO bit in the appropriate DMACx control
register.

16 0x40 EP0I 8 EPB0

17 0x44 EP1I 9 EPB1 Lowest

1 Offset from base address: 0x0000 8000 for interrupt vector table in internal memory, 0x0002 0000
for interrupt vector table in external memory.

Table 6-18. DMA interrupt vectors and priority (Cont’d)

Bit Address1 Interrupt DMA
Chn

I/O port Priority

ADSP-21065L SHARC DSP User’s Manual 6-47

DMA

Table 6-19 lists the conditions for which a DMA channel or its corre-
sponding I/O port generate an interrupt.

When the interrupt mask is 1 (unmasked), the interrupt is enabled and
will be acknowledged.

Because it is a universal register located in the processor’s core, and not
memory-mapped like the IOP registers, external devices cannot directly
access the IMASK register over the external port. Applications can, how-
ever, use an interrupt vector to a routine that reads and writes IMASK
through the external port. To do so, you use the VIRPT vector interrupt
register.

Polling the DMASTAT register provides an alternative to interrupts for
determining when a single DMA sequence has finished. To do so, you
read the DMASTAT register, and, if both status bits for the channel are
inactive, you know that the DMA sequence has finished.

Table 6-19. Conditions that generate DMA and I/O interrupts

Condition Interrupt
Mask

Chaining disabled; current DMA sequence ends IMASK

Chaining enabled; current DMA sequence ends IMASK and PCI

Chain insertion mode; current DMA sequence ends IMASK

DMA disabled and I/O port accesses a buffer1

1 INTIO bit must be set in DMACx control register for external port.

IMASK

DMA Controller Operation

6-48 ADSP-21065L SHARC DSP User’s Manual

Starting and Stopping DMA Sequences
The way DMA sequences start depends on whether DMA chaining is
enabled. When chaining is disabled, only the DMA enable bit (DEN)
enables or disables DMA transfers.

A DMA sequence starts when one of the following occurs:

• Chaining is disabled, and the DMA enable bit (DEN) transitions
from low to high.

• Chaining is enabled, DMA is enabled (DEN=1), and the application
writes a nonzero value to the CP register address field.

In this case, TCB chain loading of the channel parameter registers
occurs first.

• Chaining is enabled, the CP register address field is nonzero, and
the current DMA sequence finishes.

In this case, TCB chain loading occurs.

Polling DMASTAT while the DMA controller is transferring
data through an EPBx buffer may cause the processor to deassert
its BRx line for one cycle. During this cycle, the host or another
processor can take control of the bus, stalling the DMA transfer
until the processor regains bus mastership.

Do not use polling if chaining is enabled because the next DMA
sequence may have started by the time the processor returns the
polled status.

ADSP-21065L SHARC DSP User’s Manual 6-49

DMA

A DMA sequence ends when one of the following occurs:

• The count register decrements to 0 (for external port channels, both
C and ECEP).

• Chaining is disabled, and the channel’s DEN bit transitions from
high to low.

If the DEN bit goes low and chaining is enabled, the channel enters
chain insertion mode, and the DMA sequence continues. (For
details, see “Inserting a Chain” on page 6-44.)

To start a new DMA sequence after the current one has finished:

1. Clear the DEN bit.

2. Write new parameters to the II, IM, and C registers.

3. Set the DEN bit to re-enable DMA.

(For chained DMA operations, however, this is not necessary. See
“DMA Chaining” on page 6-39.)

When the DEN bit goes high again, the DMA sequence
continues from where it stopped (for nonchained opera-
tions only).

External Port DMA

6-50 ADSP-21065L SHARC DSP User’s Manual

External Port DMA
Channels 8 and 9 are the external port DMA channels.

These DMA channels enable efficient data transfers between the proces-
sor’s internal memory and external memory or devices. DMA transfers
between the processor and any external device that lacks bus master capa-
bility use these channels.

External Port FIFO Buffers (EPBx)
DMA Channels 8 and 9 are associated with the external port FIFO data
buffers, EPB0 and EPB1.

Each buffer acts as a six-location FIFO, and each has two ports—a read
port and a write port. Each port can connect to either the EPD (External
Port Data) bus or to the IOD (I/O Data) bus, the PM Data bus, or the
DM Data bus. (See Figure 6-2 on page 6-3.)

The FIFO structure enables DMA transfers at full processor clock fre-
quency since reads and writes of the same data can occur at the same time
through the FIFO’s separate read and write ports.

You can use the external port FIFO buffers for non-DMA, single-word
data transfers too. For details, see Chapter 8‚ Host Interface.

To flush (clear) an external port buffer, write 1 to the FLSH bit in the
appropriate DMACx control register. Do so only when DMA for the
channel is disabled.

Do not attempt core reads or writes of an EPBx buffer when a
DMA operation using that buffer is in progress. Doing so cor-
rupts the DMA data.

ADSP-21065L SHARC DSP User’s Manual 6-51

DMA

The FLSH bit is not latched internally and always reads as 0. Status can
change in the following cycle.

Do not enable and flush an external port buffer in the same cycle.

External Port DMA Data Packing

Each external port buffer contains data packing logic to pack 8-, 16-, or
32-bit external bus words into 32- or 48-bit internal words. The packing
logic is reversible to unpack 32-bit or 48-bit internal data into 8-, 16-, or
32-bit external data.

The PMODE bits in the DMACx control registers determine the packing
mode for internal bus words, and the HBW bits in the SYSCON register
determine the packing mode for external bus words. The type of access,
host or processor-to-processor or processor-to-memory, determines which
packing bits you need to set to select a packing mode.

For processor accesses of another ADSP-21065L or of memory while
using master mode, paced master mode, or handshake mode DMA, to
pack and unpack individual data words, you must set the PMODE bits
only (HBW bits have no effect), as shown in Table 6-20.

Table 6-20. PMODE values for EPBx buffer packing modes

Value Mode

00 No packing or unpacking

01 Packing 16-bit external bus words to/from 32-bit
internal words

10 Packing 16-bit external bus words to/from 48-bit
internal words

11 Packing 32-bit external bus words to/from 48-bit
internal words

External Port DMA

6-52 ADSP-21065L SHARC DSP User’s Manual

For host accesses, to pack and unpack individual data words, you must set
both the PMODE bits in the appropriate DMACx control register and the
HBW bits in the SYSCON register, as shown in Table 6-21.

The external port buffer can pack data in most significant word first
(MSWF) order or in least significant word first (LSWF) order. Setting the
MSWF bit to 1 in the DMACx control register selects MSW mode for
both packing and unpacking operations. The MSWF bit has no effect
when PMODE=11 or PMODE=00.

The packing sequence for downloading processor instructions from a
32-bit bus (PMODE=11, HBW=00) takes three cycles for every two words, as
Table 6-22 shows.

Table 6-21. Packing modes using PMODE and HBW bits

DMA Packing Mode Host Bus Width

PMODE Internal bits 00 (32b) 01 (16b) 10 (8b)

00 Invalid for host DMA transfers through the EPBx buffers.
Valid only for nonhost-based DMA transfers.

01 32 No pack 16 ↔ 32 8 ↔ 32

10 48 32 ↔ 48 16 ↔ 48 8 ↔ 48

11 Identical to PMODE = 10

Table 6-22. Packing sequence for downloading instructions from a 32-bit
bus

Transfer Data bus lines 31-16 Data Bus Lines 15-0

First Word 1; bits 47-32 Word 1; bits 31-16

ADSP-21065L SHARC DSP User’s Manual 6-53

DMA

For host transfers to or from the EPBx buffers, you must set the HBW bits
in the SYSCON register to correspond to the external bus width. For
details, see Chapter 8‚ Host Interface.

The processor transfers 32-bit data on data bus lines 31-0. To transfer an
odd number of instruction words, you must write a dummy access to flush
the packing buffer and remove the unused word.

For 32- to 48-bit packing, the processor ignores the HMSWF bit in the
SYSCON register and the MSWF bit in the DMACx control register.

Table 6-23 shows the packing sequence for downloading processor
instructions from a 16-bit bus (PMODE=10, HBW=01).

Second Word 2; bits 15-0 Word 1; bits 15-0

Third Word 2; bits 47-32 Word 2; bits 31-16

Table 6-23. Packing sequence for downloading instructions from a 16-bit
bus

Transfer Data Bus Pins 15–0

First Word 1; bits 47-32

Second Word 1; bits 31-16

Third Word 1; bits 15-0

 HMSWF = 1 (packing order for host accesses is MSW)

Table 6-22. Packing sequence for downloading instructions from a 32-bit
bus (Cont’d)

Transfer Data bus lines 31-16 Data Bus Lines 15-0

External Port DMA

6-54 ADSP-21065L SHARC DSP User’s Manual

The HMSWF bit determines whether the I/O processor packs the most
significant 16-bit word or the least significant 16-bit word first. See Chap-
ter 5, Memory, for details on allocating memory for different word widths.

The packing sequence for downloading processor instructions from an
8-bit bus (PMODE=10, HBW=10) takes six cycles for each word, as Table 6-24
shows.

The HMSWF bit in SYSCON determines whether the I/O processor
packs the most significant or least significant 8-bit word first.

Packing Status

Each external port DMA control register contains a 2-bit PS field, which
indicates the number of short words currently packed in the EPBx buffer.
The PS status field behaves the same way during packing and unpacking
operations. All packing functions are available for all types of DMA
transfer.

Table 6-24. Host to processor, 8- to 48-bit word packing

Transfer Data Bus Pins 7-0

First Word 1; bits 47-40

Second Word 1; bits 39-32

Third Word 1; bits 31-24

Fourth Word 1; bits 23-16

Fifth Word 1; bits 15-8

Sixth Word 1; bits7-0

 HMSWF = 1 (packing order for host accesses is MSW)

ADSP-21065L SHARC DSP User’s Manual 6-55

DMA

Generating Internal and External Addresses
For DMA transfers between the processor’s internal memory and external
memory, the DMA controller must generate addresses in both memories.
The external port DMA channels contain both EIEP (External Index) and
EMEP (External Modifier) registers to generate external addresses. The
EIEP register provides the external port address for the current DMA
cycle, and it is updated with the modifier value in EMEP for the next
external memory access.

To support the wide range of data packing options provided for external
DMA transfers, the EIEP and EMEP registers can generate addresses at a
different rate than the internal address generating registers IIEP and
IMEP. For this reason, the internal and external address generators oper-
ate independently, and the ECEP (External Count) register serves as the
external DMA word counter.

When, for example, a 16-bit DMA device reads data from the processor’s
internal memory, two external 16-bit transfers occur for each 32-bit inter-
nal memory word, and the ECEP (external) word count is twice the value
of the CEP (internal) word count.

External Port DMA Modes
The MASTER, HSHAKE, and EXTERN bits of each DMACx control
register select the DMA operation mode for the channel. You can set up
each external port DMA channel to operate in one of five DMA modes as
shown in Table 6-25 on page 6-56.

Only master mode initiates transfers, and all other modes act as slave,
requiring an external device to initiate each transfer.

External Port DMA

6-56 ADSP-21065L SHARC DSP User’s Manual

Table 6-25 shows how the MASTER, HSHAKE, and EXTERN bits in
combination configure the DMA mode.

Table 6-25. DMACx register DMA mode configuration bit combinations

M H E Mode1

0 0 0 Slave Mode.

The DMA controller generates a DMA request whenever
an Rx buffer is not empty or a Tx buffer is not
full.2

0 0 1 Reserved.

0 1 0 Handshake Mode.

Applies to the EPBx buffers (channels 8 and 9) only.

The DMA controller generates a DMA request when the
DMARx line is asserted and begins transferring the
data when the processor asserts the DMAGx line.

0 1 1 External Handshake Mode.

Applies to the EPBx buffers (channels 8 and 9) only.

Identical to Handshake Mode, except the DMA con-
troller transfers the data between external memory
and an external device.

The processor does not support this mode on an
external memory bank mapped to SDRAM.

ADSP-21065L SHARC DSP User’s Manual 6-57

DMA

1 0 0 Master Mode.

The DMA controller attempts to transfer data when-
ever the DMA counter is nonzero and either the Rx
buffer is not empty or the Tx buffer is not full.

Keep DMAR2 high (inactive) if channel 8 is in master
mode.

Keep DMAR1 high (inactive) if channel 9 is in master
mode.

1 1 0 Paced Master Mode.

Applies to the EPBx buffers (channels 8 and 9) only.

The DMARx signal paces transfers. The DAM controller
generates a DMA request when the DMARx line is
asserted.

DMARx requests operate the same as in Handshake
Mode, and the DMA controller transfers the data when
RD or WR is asserted.

The address is driven as in normal master mode.

ORing the RD-DMAGx and WR-DMAGx pairs requires no
external gates, enabling buffer access with
zero-wait states and no idle states.

Wait states and Acknowledge (ACK) apply to paced
master mode transfers. For details, see Chapter 5,
Memory.

1 1 1 Reserved.

1 When an external port DMA channel is configured for output (TRAN=1), the EPBx buffer starts
to fill as soon as the DMA channel is enabled, even if no DMARx assertions or slave mode DMA
buffer reads have been made.

2 For data reads from the processor (TRAN=1), the EPBx buffer is filled as soon as the DEN enable
bit is set to 1.

Table 6-25. DMACx register DMA mode configuration bit combinations
(Cont’d)

M H E Mode1

External Port DMA

6-58 ADSP-21065L SHARC DSP User’s Manual

Master Mode

For a channel configured for master mode, the DMA controller generates
internal DMA requests for the channel until the DMA sequence has
finished.

While in master mode, the processor drives the external bus control
signals.

Setting DMACx bits,

MASTER=1

HANDSHAKE=0

EXTERN=0

places the corresponding DMA channel in master mode. You can specify
master mode independently for each external port DMA channel.

Examples of DMA master mode operations include:

• Transfers between internal memory and external memory.

• Transfers from internal memory to external devices.

In both cases, the data is set up in memory, so the processor can run the
complete sequence without having to interact with other devices.

Paced Master Mode

In paced master mode, DMARx requests operate the same way as in hand-
shake mode, but DMAGx is inactive. The slave processor asserts DMARx
to initiate each transfer.

Serial port DMA channels do not have the MASTER control bit
and do not operate in master mode.

ADSP-21065L SHARC DSP User’s Manual 6-59

DMA

The processor responds to requests with the RD or WR strobe only. This
method enables both the DMA controller and core I/O to share the same
buffer without external gating.

To extend paced master mode accesses, you can:

• Use the ACK pin.

• Use wait states programmed in the WAIT register.

• Hold the DMARx pin low.

Slave Mode

Clearing the DMACx bits MASTER, HANDSHAKE, and EXTERN con-
figures the corresponding DMA channel for slave mode. In slave mode,
the processor does not drive the external bus control signals.

In slave mode, the DMA channel cannot initiate external memory trans-
fers independently, regardless of the programmed direction of data
transfer. To initiate a DMA transfer to or from the processor configured
for slave mode, an external device must read or write to the appropriate
EPBx buffer.

The direction of date transfer through the EPBx buffers determines the
behavior of the DMA channels:

• Internal to external

Transfers occur between internal memory and the EPBx buffers.
The DMA channel automatically performs enough transfers to keep
the EPBx buffer full. (Each EPBx buffer is a six-location FIFO.)

• External to internal

Transfers occur between external devices and the EPBx buffers. The
DMA channel does not initiate any internal DMA transfers until
the EPBx buffer contains valid data.

External Port DMA

6-60 ADSP-21065L SHARC DSP User’s Manual

Slave mode does not use the EIEP, EMEP, or ECEP registers.

External to Internal. In slave mode, block transfers of data from an exter-
nal device into the processor’s internal memory follow this sequence:

1. To initialize the channel, the external device writes to the DMA
channel parameter registers, II, IM, and C, and to the DMACx
control register.

2. The external device begins writing data to the EPBx buffer.

3. When the EPBx buffer contains a valid data word, it signals the
DMA controller to request an internal DMA cycle.

Depending on the packing mode selected, the EPBx buffer may
require one or more external memory cycles to acquire a valid data
word.

4. When DMAGx is asserted, the DMA controller performs the inter-
nal transfer and empties the EPBx FIFO buffer.

Even if the internal DMA transfer is held off, the external device
can still write to the EPBx buffer again since the buffer is a six-deep
FIFO.

5. When the EPBx FIFO fills up, the processor deasserts the REDY
signal to hold off the external device.

6. The processor continues to deassert REDY until the internal DMA
transfer has finished, freeing space in the EPBx buffer. To config-
ure the buffer to operate this way, clear the BHD (Buffer Hang
Disable) bit in the SYSCON register.

ADSP-21065L SHARC DSP User’s Manual 6-61

DMA

Internal to External. In slave mode, block transfers of data from the pro-
cessor’s internal memory to an external device through the external port
follow this sequence:

1. Immediately after it is enabled, the DMA controller requests inter-
nal DMA transfers to fill up the EPBx FIFO buffer.

2. When the buffer fills up, the DMA controller deasserts the request.

3. The external device reads the buffer, causing the EPBx buffer to
become “partially empty.”

Depending on the packing mode selected, the external device may
require one or more external memory cycles to read the EPBx
buffer.

4. The DMA controller asserts the internal DMA request again.

5. If, because of internal bus conflicts, the internal DMA transfers do
not fill the EPBx FIFO buffer at the same rate the external device
empties it, the processor deasserts the REDY signal to hold off the
external device until the EPBx buffer contains valid data.

To configure the buffer to operate this way, clear the BHD (Buffer
Hang Disable) bit in the SYSCON register.

System-Level Considerations. Slave mode DMA is useful in systems with
a host processor because it enables the host to access any internal memory
location in the processor while limiting the address space the host must

The processor deasserts REDY during a write only when
the EPBx FIFO buffer is full. REDY remains asserted at
the end of a block transfer if the EPBx buffer is empty or
partially full. For reads, the buffer is empty at the end of
the block transfer, and the processor deasserts REDY if
an additional read is attempted.

External Port DMA

6-62 ADSP-21065L SHARC DSP User’s Manual

recognize—only the address space of the processor’s IOP registers. Slave
mode DMA is also useful for interprocessor DMA transfers.

Handshake Mode

Slave mode DMA has one drawback that occurs when the processor inter-
faces with a slow host. Regardless of who initiates the transfer, a slow host
holds up the external bus during a transfer and prevents any other transac-
tions from proceeding. To avoid this delay, use the DMA handshake
mode.

In handshake mode:

• The host can make a DMA request without mastering the bus.

• The processor in master mode can use the bus without waiting for
the transfer to finish.

In this scenario, the host asserts the DMARx pin. When the processor is
ready to do the transfer, it can complete it in one bus cycle.

DMA channels 8 and 9, for external port buffers EPB0 and EPB1, each
have a set of external handshake controls, DMARx and DMAGx. DMAR2
is the request signal, and DMAG2 is the grant signal for EPB0 and channel
8. Likewise, DMAR1 is the request signal, and DMAG1 is the grant signal
for EPB1 and channel 9.

These signals provide the hardware handshake for DMA transfers between
the processor and an external device that does not have bus mastership
capability.

If you enable an external port DMA channel, but do not intend
to use the handshake signals, be sure to keep the corresponding
DMARx signal high.

ADSP-21065L SHARC DSP User’s Manual 6-63

DMA

Setting the HSHAKE bit to 1 in a channel’s DMACx register enables
handshake mode DMA for the channel:

MASTER=0 The processor handshakes, returning the DMAGx signal.

MASTER=1 The DMA channel operates in paced master mode.

DMA handshaking occurs asynchronously up to the processor’s full clock
speed. For the source and destination of the data, you can select either the
processor’s internal memory or its external memory. Make sure your
application loads the ECEP external count register whenever it performs
external DMA transfers.

During DMA transfers between itself and an external device, the processor
keeps its MS3-0 memory select lines deasserted because the transfer does
not access external memory space. In external handshake mode, however,
the processor asserts its MS3-0 lines to provide the address and strobes for
transfers between an external DMA device and external memory.

The DMA handshake uses the rising and falling edges of DMARx. The
processor interprets a falling edge as “begin a DMA access,” and it inter-
prets the rising edge as “complete the DMA access.” See Figure 6-7 on
page 6-66.

To request access of the EPBx buffer, the external device pulls DMARx
low. The processor detects and synchronizes the falling edge of DMARx to
its system clock. For the processor to recognize the DMARx line’s transi-
tion to low in a particular cycle, the transition must meet the setup time
specified in the processor’s data sheet. Otherwise, the processor may not
recognize the transition until the following cycle.

When it recognizes the request, the processor, if it is not already bus mas-
ter or if the buffer is not blocked, begins arbitrating for the external bus.
When the processor becomes the bus master, it drives DMAGx low until it
detects DMARx deasserted. This enables the external device, until it is
ready to proceed, to hold off the processor. If no pipelined requests

External Port DMA

6-64 ADSP-21065L SHARC DSP User’s Manual

occurred, the processor deasserts DMAGx in the cycle after the external
device deasserts DMARx.

If the external device does not need to extend the grant cycle, it can deas-
sert DMARx immediately after asserting it, provided this procedure meets
the minimum pulse width timing requirements specified in the processor’s
data sheet. In this scenario, DMAGx is a short pulse, and the external bus
is used for one cycle only.

The DMA controller has a three-cycle pipeline similar to the Program
Sequencer’s fetch–decode–execute pipeline:

• DMA request and arbitration occur in the fetch cycle.

• DMA address generation and bus arbitration occur in the decode
cycle

• The data transfer occurs in the execute cycle.

Using the rising and falling edges of DMARx makes better use of the pipe-
line and, if appropriate, enables data transfers up to the processor’s full
clock rate.

The external device need not wait for the DMAGx grant signal before
making another request. The processor stores and maintains requests in an
internal working counter. The counter holds a maximum of six requests,
so the external device can make up to six requests before the processor ser-
vices the first one.

The processor asserts DMAGx in response to DMARx only for the num-
ber of transfers specified in the counter. DMAGx remains deasserted if
requests exceed this number. You use the flush bit (FLSH) in the DMACx
control register to clear any extra requests.

More than six requests without a grant can cause unpredictable
results.

ADSP-21065L SHARC DSP User’s Manual 6-65

DMA

When the DMAGx grant signal arrives, the external device must make
sure that:

• It is able to accept each word for a read.

• The data for each write request is immediately available.

To ensure immediate availability of data, place it in an external
FIFO.

When transferring DMA data at the processor’s full clock speed, you may
need a two- or three-deep data pipeline to handle the latency between
request and grant. For example, the external device might issue three con-
secutive requests rapidly and condition a fourth request on whether the
processor issued a grant in response to the requests. Baring this caveat,
DMA transfers can occur at up to the processor’s full clock rate for both
reads and writes. The processor clears the stored requests when the appli-
cation writes a 1 to the flush bit (FLSH) in the channel’s DMACx control
register.

Because the external device can control completion of a request, it does
not need data available before making a request. If, however, the data
remains unavailable for two cycles and DMARx remains low for that time,
the processor and the external bus may be held inactive. Each DMA trans-
fer occupies the external bus for only one cycle if the request is deasserted

External Port DMA

6-66 ADSP-21065L SHARC DSP User’s Manual

before the grant has been asserted. Otherwise, the external bus is held for
the time DMARx is asserted.

Figure 6-7. DMA handshake timing with asynchronous requests

For asynchronous DMA DMARx requests, as shown in Figure 6-7:

• The falling edge of DMARx initiates a DMA request on the proces-
sor. When writing, the device must provide data before the proces-
sor deasserts DMAGx. If the data is unavailable, the device can
continue to assert DMARx (hold it low) until the data becomes
available. When this occurs, the processor attempts to service the
request, but it is delayed until the rising edge of DMARx.

data valid
data valid data

data validvalid

CLK

DATA31-0

DMAGx

1st DMA
request

2nd DMA
request

Bus
Transition

Cycle
(not bus master)

DMA device must
place data in buffer
prior to DMAG falling
edge if no wait state

DMA device need not provide
data until this cycle if wait state

DMAR rising edge
enables 1st DMAG
to complete

DMAG has a wait state because DMAR
remained asserted in the cycle prior to
the DMAG assertion

DMARx

ADSP-21065L SHARC DSP User’s Manual 6-67

DMA

• After DMARx, a minimum delay of three cycles occurs before the
processor asserts DMAGx and the external DMA device transfers
the data to the processor or to external memory.

If, however, a higher priority DMA operation is requesting service
or another ADSP-21065L is currently using the bus, the processor
may not be able to issue a DMAGx grant for several cycles after a
DMA request. So, the external device must not assume that the
grant will arrive within two cycles, unless higher priority DMA
operations are disabled and the external bus is available.

• DMA requests are pipelined in the processor.

The processor keeps track of a maximum of six requests when it is
unable to service them immediately and services them based on pri-
ority. Tracking enables DMA transfers to occur at up to the proces-
sor’s full clock rate.

The external device is responsible for keeping track of requests,
monitoring grants, and pipelining the data when operation is at full
clock rate.

An EPBx buffer that is full during a write or empty during a read creates a
blocked condition and prevents the processor from beginning arbitration
for the external bus in response to DMARx. Arbitration begins again when
the DMA controller services the EPBx buffer, changing its state and clear-
ing the block.

Disabling an external port DMA channel disables its corresponding
DMARx and DMAGx pins. When re-enabling DMA, the processor
ignores DMARx assertions for a maximum of two cycles after the instruc-
tion that enables DMA (DEN=1) in handshake mode as shown in
Figure 6-8 on page 6-68. The processor holds DMAGx high.

External Port DMA

6-68 ADSP-21065L SHARC DSP User’s Manual

The application must keep the DMARx input high (not low or transition-
ing) during the instruction that enables DMA in handshake mode as
shown in Figure 6-8.

Figure 6-8. DMARx delay after enabling handshake DMA

Two processors in a multiprocessing system can share the same DMAGx
signal, but only the processor that is bus master drives DMAGx. The pro-
cessor disables DMAGx when it is bus slave or whenever the host asserts
HBG. This scheme eliminates the need for external gating when both pro-
cessors or the host needs to drive the DMA buffer.

DMAGx needs a pullup resistor when the pin does not connect to a host
that drives it to acquire the bus. DMAGx has the same timing and transi-
tions as the RD and WR strobes and responds to the SBTS and HBR
signals the same way as do RD and WR.

External Handshake Mode

External devices can also use the DMARx and DMAGx handshake signals
to control DMA transfers between an external device (except SDRAM)
and external memory. In this mode, the processor operates as an indepen-
dent DMA controller.

(DMARx ignored) (DMARx ignored)

DMARx input must be kept high during this instruction

CLK

DMARx

Instruction
executing

Enable DMA by setting
DEN=1 and HSHAKE=1
in DMAC8 or DMAC9
control register(s)

ADSP-21065L SHARC DSP User’s Manual 6-69

DMA

To configure a channel for external handshake mode, you set the follow-
ing bits in the DMACx control register:

EXTERN =1

HSHAKE =1

MASTER =0

These transfers are similar to standard DMA transfers, but with a few
differences:

• In external handshake mode, transfers require the DMA controller
to generate external memory access cycles.

• DMARx and DMAGx retain the same functionality, but instead of
simply generating DMAGx, the processor also outputs addresses,
MS3-0 memory selects, and the RD and WR strobes, and it responds
to ACK.

The processor holds DMAGx low until the ACK line is released or
any wait states finish.

• The access to external memory behaves exactly as if the processor’s
core requested it.

The processor’s EPBx buffers do not latch or drive any data, how-
ever, and the processor’s DMA controller performs no internal
memory DMA transfer.

• To generate the external memory addresses and word count, you
must preload the DMA channel’s EIEP, EMEP, and ECEP param-
eter registers.

• Since internal DMA transfers do not occur in this mode, you cannot
use the PCI bit of the CPEP register to disable the DMA interrupt.
Instead, you must use the IMASK register.

External Port DMA

6-70 ADSP-21065L SHARC DSP User’s Manual

Unless you mask it out in IMASK, the DMA interrupt remains
enabled and is always generated.

• Since data does not pass through the processor in external hand-
shake mode, you cannot pack or unpack it into different word
widths.

System Configurations for Interprocessor DMA
Table 6-26 shows the different ways you can set up external port DMA
transfers between two processors in a multiprocessor system. We recom-
mend that you consider the advantages and disadvantages of each
configuration when designing your system.

Table 6-26. Processor configurations for interprocessor DMA transfers

Source Destination Throughput Advantages/
Disadvantages

Bus Master

MASTER=1

TRAN=1

EIx=Addr. of
destination
EPBx buffer

EMx=0

Bus Slave

MASTER=0

TRAN=0

1 cycle/
transfer

Advantage

Destination automat-
ically generates
interrupt upon fin-
ishing.

Disadvantage

Must program DMA on
both source and des-
tination.

MMS = Multiprocessor Memory Space

Throughput rate assumes no MMS wait states configured in WAIT reg-
ister. For selection of a single MMS wait state, add 1 to value in
Throughput column.

ADSP-21065L SHARC DSP User’s Manual 6-71

DMA

Bus Slave

MASTER=0

TRAN=1

Bus Master

MASTER=1

TRAN=0

EIx=Addr. of
source EPBx
buffer

EMx=0

2 cycles/
transfer

Advantage

Source automati-
cally generates
interrupt upon fin-
ishing.

Disadvantage

Slower throughput.

Must program on both
source and destina-
tion.

Table 6-26. Processor configurations for interprocessor DMA transfers
 (Cont’d)

Source Destination Throughput Advantages/
Disadvantages

MMS = Multiprocessor Memory Space

Throughput rate assumes no MMS wait states configured in WAIT reg-
ister. For selection of a single MMS wait state, add 1 to value in
Throughput column.

External Port DMA

6-72 ADSP-21065L SHARC DSP User’s Manual

Interfacing with DMA Hardware
Figure 6-9 shows a typical DMA interface between two multiprocessing
ADSP-21065Ls and an external device.

Figure 6-9. Example DMA hardware interface

In this example, both processors are configured for handshake mode
operation.

Both external latches act as a mailbox between the external device and the
processors. The latches enable DMA transfers to take only one processor

001

010

RD

WR

ACK

MS3-0

HBR

HBG

ID2-0

BR1

BR2
ADDR23-0

DATA31-0

DMAR1

DMAG1

DMAR2

DMAG2

ADSP-21065

D Q

OE

Latch

RD

WR

ACK

MS3-0

HBR

HBG

ID2-0

BR1

BR2

ADDR23-0

DATA31-0

DMAR1

DMAG1

DMAR2

DMAG2

ADSP-21065

D Q

OE

Latch

ADDR

DATA

OE

WE

ACK

CS

External
Memory

16, 32, or 48

16, 32, or 48 DMA Data Bus

DMA Data Bus

DMA Read Req.

DMA Read Grant

DMA Write Req.

DMA Write Grant

C
om

m
on

 R
eq

. L
in

e

C
om

m
on

 G
ra

nt
 L

in
e

5

3

5

3

ADSP-21065L SHARC DSP User’s Manual 6-73

DMA

bus cycle, even when the external device is slow. The DMARx and
DMAGx signals control the latches directly.

When the external device is writing data to a latch, it uses the DMAGx
signal as the output enable signal for the latch. When the external device is
reading from a latch, it uses the DMAGx signal to clock the data on its ris-
ing edge.

Figure 6-10 shows the timing relationships between DMARx, DMAGx,
and the data transfer. See the processor’s data sheet for exact
specifications.

Figure 6-10. DMARx and DMAGx timing

�����

���	

����

������� �����

���	
���	���	�	�����	�	�������

������

� �
�
�
�

������

�����

��������

Overall DMA Throughput

6-74 ADSP-21065L SHARC DSP User’s Manual

Overall DMA Throughput
This section describes the overall DMA throughput when several DMA
channels try to access internal or external memory at the same time.

Concurrent Accesses to Internal Memory
The DMA channels arbitrate for access to the processor’s internal
memory.

The DMA controller determines, on a cycle-by-cycle basis, which channel
gains access to the internal I/O bus and, consequently, which channel gets
to read or write to internal memory. Table 6-15 on page 6-36 shows the
priority of the DMA channels.

Each DMA transfer takes only one clock cycle, even when the DMA con-
troller grants different DMA channels access on sequential cycles. That is,
switching between channels incurs no loss in overall throughput. So, four
serial port DMA channels, each transferring one byte per cycle, would
have the same I/O transfer rate as one external port DMA channel trans-
ferring data to internal memory on every cycle. Any combination of serial
port and external port transfers has the same maximum transfer rate.

Concurrent Accesses to External Memory
When the DMA transfer is between the processor’s internal and external
memory, the transfer to external memory may incur one or more wait
states.

External memory wait states, however, do not reduce the overall internal
DMA transfer rate if other channels have data available to transfer. That
is, uncompleted external transfers do not hold up the processor’s internal
I/O data bus.

ADSP-21065L SHARC DSP User’s Manual 6-75

DMA

For data transfers from internal memory to external memory, the DMA
controller places the data in the external port’s EPBx buffer first and then
begins the access to external memory independently. (Likewise, for exter-
nal-to-internal DMA, the DMA controller does not make the internal
DMA request until the data from external memory is in the EPBx buffer.)

In both cases, the external DMA address generator—the EIEP and EMEP
parameter registers—maintains the external address until the data transfer
has finished. The internal and external address generators of each DMA
channel operate independently.

Since EXTERN mode DMA transfers between an external device and
external memory do not use the processor’s internal resources, they do not
affect internal DMA throughput.

Overall DMA Throughput

6-76 ADSP-21065L SHARC DSP User’s Manual

ASDP-21065L SHARC DSP User’s Manual 7-1

7 MULTIPROCESSING
Figure 7-0.

Table 7-0.

Listing 7-0.

The processor includes functionality and features that enable users to
design multiprocessing DSP systems. These features include

• Distributed on-chip bus arbitration logic for bus mastership.

This feature enables the processor to access external memory and the
IOP registers of another ADSP-21065L in the system.

• Bus locking capability.

This feature enables the processor to perform indivisible
read-modify-write sequences for semaphores.

In a multiprocessor system with two processors sharing the external bus
(see Figure 7-1 on page 7-2), either of the processors can become the bus
master. Unless it relinquishes control to the host, the bus master controls
the external bus, which consists of the DATA31-0, ADDR23-0, and associ-
ated control lines. The bus master always retains control of the SDRAM
control pins—CAS, DQM, MSx, RAS, SDA10, SDCKE, SDCLKx, and
SDWE.

7-2 ASDP-21065L SHARC DSP User’s Manual

Figure 7-1. A basic multiprocessing system

ADDR23-0

DATA31-0

ADSP-21065L
#1

CLKIN

RESET

ID1-0

CPA

BR1

BR2

RD

WR

ACK

MS3-0

BMS

SBTS

SW

CS

HBR

HBG

REDY

RAS

CAS

DQM

SDWE

SDCLK1-0
SDKE

SDA10

C
O
N
T
R
O
L

ADDR23-0

DATA31-0

CLKIN

RESET

ID1-0

CPA

BR1

BR2

ADSP-21065L
#2

RAS

CAS

DQM

WE

CLK

CKE

A10

SDRAM
(Optional)

ADDR
DATA
CS

ADDR

DATA

Boot
EPROM

(Optional)

CS

RESET

Clock

01

10

ADDR

DATA

Host Processor
(Optional)

C
O

N
T

R
O

L

D
A

T
A

A
D

D
R

E
S

S

CS

S
P
O
R
T
0

S
P
O
R
T
1

C
O
N
T
R
O
L

S
P
O
R
T
0

S
P
O
R
T
1

ASDP-21065L SHARC DSP User’s Manual 7-3

Multiprocessing

Table 7-1 shows how to connect the IDx pins on both processors in a
multiprocessing system.

Connecting both IDx pins to VDD is illegal. In a uniprocessor system,
you connect both IDx pins to ground.

The two bus request pins (BRx) on each processor become an input and
output pair. The BRx input pin on one processor connects to the BRx out-
put pin on the other. To make these connections, you short the BR1 pins
on both processors together and the BR2 pins on both processors together.

Table 7-2 shows which pins you must connect between two processors for
particular environments.

Table 7-1. IDx pin connections

ID1 ID0 BR1 BR2 Status

GND GND Input Input Uniprocessor configuration

GND VDD Output Input Processor ID #1

VDD GND Input Output Processor ID #2

VDD VDD Illegal

Table 7-2. Pin connections between two processors

Connect… Pins…

Always ADDR23-0, DATA31-0, MS3-0, RD,WR, ACK,
SBTS, SW, BMS, BR2-1, RESET, CLKIN

For Host Interface REDY, HBG, HBR

7-4 ASDP-21065L SHARC DSP User’s Manual

The IOP registers of the system’s processors collectively are called multi-
processor memory space. Multiprocessor memory space is mapped into
the unified address space of each processor. For details, see Chapter 5‚
Memory.

Once a processor becomes the bus master, it can directly read and write
any of the slave’s IOP registers, including its external port FIFO data buff-
ers. For example, the master processor can write to a slave’s IOP registers
to set up DMA transfers or to send a vector interrupt.

The following terms are used throughout this chapter:

DMACx control registers
The DMA control registers for the EPBx external port buffers
DMAC0-1, which correspond to EPB0-1, respectively. For details,
see Chapter 6‚ DMA and Appendix E‚ Control and Status Registers
in ADSP-21065L SHARC DSP Technical Reference.

External bus
ACK, ADDR23-0, BMS, CAS DATA31-0, DQM, MS3-0, RAS, RD,
SDA10, SBTS, SDCKE, SDCLK1-0, SDWE, SW, and WR signals.

External port FIFO buffers
EPB1-0, the IOP registers used for external port DMA transfers and
single-word data transfers from another processor or from a host.
The EPBx buffers are 6-deep FIFOs.

For SDRAM systems CAS, DQM,RAS, SDA10, SDCKE, SDCLK0-1,
SDWE

For Core Priority
Access Functions

CPA

Table 7-2. Pin connections between two processors (Cont’d)

Connect… Pins…

ASDP-21065L SHARC DSP User’s Manual 7-5

Multiprocessing

IOP register
One of the control, status, or data buffer registers of the processor’s
on-chip I/O processor.

Master processor
The processor that has gained control of the bus from the other
ADSP-21065L or from a host.

Multiprocessor memory space
Memory map area that corresponds to the IOP registers of the
other processor in a multiprocessing system. This address space is
mapped into the processor’s unified address space.

Multiprocessor system
A system with two processors and with or without a host. The
external bus connects both processors.

Single-word data transfers
Reads and writes to the EPBx external port buffers, performed
externally by the master processor or internally by the slave proces-
sor’s core. These accesses occur only when DMA has been disabled
in the DMACx control register.

Slave processor
The processor that has relinquished control of the bus to the other
ADSP-21065L or to a host.

For multiprocessing operations, the processor uses the sys-
tem clock which runs at 1xCLKIN. Hereafter, in this
chapter, all clock cycle references are to 1xCLKIN, unless
otherwise noted.

For details on clock cycles and data throughput, see
Table 12-11 on page 12-30.

Multiprocessing System Architecture

7-6 ASDP-21065L SHARC DSP User’s Manual

Multiprocessing System Architecture
The nodes in a multiprocessor system communicate through a single,
shared global memory over a parallel bus.

Multiprocessing systems must overcome two problems—interprocessor
communication overhead and data bandwidth bottlenecks. The proces-
sor’s architecture supports two basic multiprocessing topologies that
address these problems:

• Data flow multiprocessing

• Cluster multiprocessing

Data Flow Multiprocessing
For applications that require high computational bandwidth, but only
limited flexibility, data flow multiprocessing is the best solution.

In this scenario, you partition your algorithm sequentially across both
processors and pass data linearly across them, as shown in Figure 7-2.

Figure 7-2. Data flow multiprocessing

The processor is ideally suited for data flow multiprocessing applications
because it eliminates the need to use interprocessor data FIFOs and exter-
nal memory. For most applications using this topology, the processor’s
internal memory is usually sufficient to contain both code and data.

%�#+2����(!

D�

%�#+2����(!

D�

#�	��

+�	�
#�	��

+�	�

#�	��

+�	�

#�	��

+�	�

ASDP-21065L SHARC DSP User’s Manual 7-7

Multiprocessing

A data flow system requires only two processors with connected
point-to-point signals. This configuration yields a substantial savings in
complexity, board real estate, and system cost.

Cluster Multiprocessing
For applications that require a fair amount of flexibility, cluster multipro-
cessing (Figure 7-3) is the best solution. This is especially true when a
system must support a variety of different tasks, some of which may run
concurrently.

Figure 7-3. Cluster multiprocessing

The processor also has an on-chip host interface that provides an interface
between the cluster and a host.

Cluster multiprocessing systems include two processors connected by a
parallel bus that enables interprocessor access of multiprocessor memory
space and to shared global memory.

%�#+2����(!

D�

%�#+2����(!

D�

,0��	���+�	�,0��	���+�	�

.��E

��"�	7

Multiprocessing System Architecture

7-8 ASDP-21065L SHARC DSP User’s Manual

In a typical cluster, two processors and a host can arbitrate for the bus.
The on-chip bus arbitration logic enables these processors to share the par-
allel bus. The processor’s on-chip features help reduce the need for extra
hardware in the cluster configuration. This configuration often eliminates
the need for external memory, both local and global.

The processor supports a fixed priority scheme, bus locking, timed release,
and core access preemption of background DMA transfers. The on-chip
bus arbitration logic ensures that bus mastership transitions incur only
one cycle of overhead. Processor accesses of an external address automati-
cally generate a bus request. These extensive bus sharing features free
designers from the time and risk involved in developing their own
shared-bus logic and timing.

Once a processor gains bus mastership, it can access external memory or
the IOP registers of the other processor. To transfer data to the other pro-
cessor, the bus master sets up a DMA channel for the transfer.

Both processors are mapped into a common memory map. Each has a
unique ID, which identifies its address space within the unified memory
map of the system cluster. Both processor’s IOP registers and external
memory are part of this unified address space. Memory mapping elimi-
nates the need for external memory to pass messages between processors,
and it simplifies software communications. Since processors can write
directly into each other’s IOP registers, it saves an extra transfer step.

The processor’s on-chip SRAM helps to eliminate the need for local mem-
ory. Larger applications, however, may require storing blocks of data and
code in shared bulk memory and swapping them in and out of a proces-
sor’s internal memory transparently.

The cluster configuration enables a very fast node-to-node data transfer
rate. It also enables a simple and efficient software communications
model. For example, one processor can perform all of the required setup
operations for a DMA transfer, insuring that the other processor com-
pletes the DMA transfer uninterrupted.

ASDP-21065L SHARC DSP User’s Manual 7-9

Multiprocessing

The architecture of the processor’s internal memory supports the I/O
needs of multiprocessor systems (for details, see Chapter 5‚ Memory). The
on-chip, dual-ported RAM enables full-speed interprocessor transfers con-
current with dual accesses by the processor’s computational core. These
transfers steal no cycles from the core, and the processor continues to exe-
cute at 2xCLKIN.

Multiprocessor Bus Arbitration

7-10 ASDP-21065L SHARC DSP User’s Manual

Multiprocessor Bus Arbitration
Two processors share the external bus with no additional arbitration cir-
cuitry. The processor’s on-chip bus arbitration logic enables connection of
two processors and a host.

The BR2-1, HBR, and HBG signals provide bus arbitration. BR2-1 arbi-
trate between the processors, and HBR and HBG pass control of the bus
between the master processor and the host. Table 7-3 lists and describes
the pins the processor uses in a multiprocessing system.

Table 7-3. Multiprocessing signals

Signal Type Definition

BR2-1 I/O/S Multiprocessing Bus Requests.

Used by multiprocessing processors to arbi-
trate for bus mastership. A processor drives
its own BRx line only (corresponding to the
value of its ID1-0 inputs) and monitors all
others.

ID1-0 I Multiprocessing ID.

Determines which multiprocessing bus request
(BR2-1) the processor uses. ID=01 corre-
sponds to BR1, ID=10 corresponds to BR2.
ID=00 used in single-processor systems.

These lines are a system configuration
selection and are hardwired or changed at
reset only.

ASDP-21065L SHARC DSP User’s Manual 7-11

Multiprocessing

The ID1-0 pins provide a unique identity for each processor in a multipro-
cessing system. Assign one processor ID= 01 and the other ID=10. (For
the bus synchronization scheme to function properly, you must assign one
processor ID= 01.) Processor 01 holds the external bus control lines stable
during reset.

When the ID1-0 inputs of a processor are equal to 01 or 10, the processor
configures itself for a multiprocessor system and maps its internal memory
and IOP registers into the multiprocessor memory space. ID=00 config-
ures the processor for a single-processor system. ID=11 is reserved, so do
not use it.

Reading the CRBM (2:0) bits of the SYSTAT register, both processors in
a multiprocessor system can determine which processor is the current bus
master. These bits contain the value of the ID1-0 inputs of the current bus
master.

CPA (o/d) I/O Core Priority Access.

Asserting its CPA pin enables the slave’s
core to interrupt background DMA transfers
of the other processor and access the exter-
nal bus.

CPA is an open drain output that connects to
both processors in the system. The CPA pin
has an internal 5 KΩ pull-up resistor.

If not required in the system, leave the CPA
pin unconnected.

A=Asynchronous;(a/d)=Active Drives; I=Input; O=Output;
(o/d)=Open Drain; S = synchronous

Table 7-3. Multiprocessing signals (Cont’d)

Signal Type Definition

Multiprocessor Bus Arbitration

7-12 ASDP-21065L SHARC DSP User’s Manual

You can write conditional instructions that are based on whether the pro-
cessor is the current bus master in a multiprocessor system. The assembly
language mnemonic for this condition code is BM (Bus Master), and its
complement is NOT BM (Not Bus Master). To enable the bus master
condition, set bits 17 and 18 of the MODE1 register to zero (0); otherwise
the processor always evaluates the condition to false. For a complete list of
condition codes, see Chapter 3‚ Program Sequencing.

Bus Arbitration Protocol
You connect the BR2-1 pins between the two processors in a multiprocess-
ing system. Each processor drives the BRx pin that corresponds to its
ID1-0 inputs and monitors the other.

When the slave processor requires bus mastership, it asserts its BRx line at
the beginning of the cycle to automatically initiate the bus arbitration pro-
cess. Later in the same cycle, it samples the value of the other BRx line.

The cycle in which mastership of the bus passes from one processor to
another is called a bus transition cycle. A bus transition cycle occurs only
when these two events occur in the same cycle:

• The current bus master deasserts its BRx pin

• The slave processor asserts its BRx pin

By keeping its BRx pin asserted, the master processor retains bus master-
ship. The master processor does not lose bus cycles when both processors
deassert their BRx lines at the same time.

By monitoring the BRx lines, each processor can detect when a bus transi-
tion cycle occurs and which processor has become the new bus master.
Transference of bus mastership occurs only during a bus transition cycle.

Figure 7-4 on page 7-13 shows typical timing for bus arbitration.

ASDP-21065L SHARC DSP User’s Manual 7-13

Multiprocessing

Figure 7-4. Bus arbitration timing

The actual transfer occurs when the current bus master places the external
bus—DATA31-0, ADDR23-0, RD, WR, MS3-0, HBG, and DMAG2-1—in
a high impedance state at the end of the bus transition cycle, and the new
bus master begins driving these signals at the beginning of the next cycle.

Before placing the external bus in a high impedance state at the beginning
of the transfer, the bus master drives high MSx (except for the SDRAM
bank select line), inactivating it as shown in Figure 7-5 on page 7-15.

�������

�	�

�	
�������������������� �

�!�
�"� �����
�#$��

%
�$!���
&��'

�	(

��(����)!�������"

�!�
�"� �����
�#$��

������
)!�

�����"

������
)!�

�����"

� ��" ��
���"����

������������	

�������������	

�������������	

�!�
�$��*��#

%
�$!���
&��'

�!�
�$��*��#

� ��" ��
���"����

� ��" ��
���"����

� ��" ��
���"����

� ��" ��
���"����

%
��" ����$$���

+�",�"�
�$$���

- �"�*� .����$�"����/ �������)��

� ��" ��
���"����

%
��" ����$$���
� ��" ��
���"����

%
��" ��
�$$���

%
��" ��
�$$���

� ��" ��
���"����

� ��" ��
���"����

- �"�*�
+�",�"�
�$$���

+�",�"�
�$$���

+�",�"�
�$$���

- �"�*�
.���

��/ ���
���)��

.���
��/ ���
���)��

Multiprocessor Bus Arbitration

7-14 ASDP-21065L SHARC DSP User’s Manual

Execution of external accesses are delayed during bus transition cycles. For
example, when the slave processor needs to perform an external read or
write, and it asserts its BRx line to automatically initiate the bus arbitra-
tion process, the read or write is delayed until the processor receives bus
mastership.

If the processor’s core, not the DMA controller, generates the read or
write, program execution stops until the instruction finishes.

ASDP-21065L SHARC DSP User’s Manual 7-15

Multiprocessing

Figure 7-5. Bus request and Read/Write timing. (The processor continues
to drive the MSx line connected to SDRAM.)

���

�	

���"������������� ����*�

0���� ��
1 ���$$���
� ������$#$��2

��������,
$!""� �������"

��������

���	

���*��'������'�#��������"�
�����!"� /�"����$#$��

�!���"� �����
�#$���1���2

���

3	

	�

���� *���� *����

3"������������$�����
���*��� �3	�"��� /

	������������$����� ������"4
����*���������"�*� /

+"�*��!��������"��"�*��
1�"��"�������2

��������
 ����$$!"��,
 ������"��	�
����"�����
�����$#$��

�������	�� ������	��

	�53	���"�)��
��������� ����*�

�3

��

��
�����"�*� ���/��1� �$��*�2�)�,�"���"������ /

.�/�����"��"��#�"�6!����"�)�$�����)!�������"

*���� *����

Multiprocessor Bus Arbitration

7-16 ASDP-21065L SHARC DSP User’s Manual

To acquire bus mastership and perform an external read or write over the
bus, the slave processor:

1. Determines if the instruction that it is executing requires an
off-chip access.

2. Asserts its BRx line at the beginning of the cycle.

Until the slave acquires bus mastership, the processor’s core or
DMA controller generates extra cycles.

3. Waits for the current bus master to deassert its BRx line and ini-
tiate a bus transition cycle.

At the end of the bus transition cycle, the current bus master
releases the bus, and the new bus master starts driving it.

Whenever the bus master stops using the bus, it deasserts its BRx line,
enabling the other processor to gain mastership if needed. If the slave pro-
cessor does not assert its BRx line when the master deasserts its, the master
processor retains control of the bus and continues to drive the memory
control signals until:

• It needs to use the bus again.

or

• The slave processor asserts its BRx line.

Whenever it executes a conditional external access, the processor
attempts to become bus master, even if the access aborts.

ASDP-21065L SHARC DSP User’s Manual 7-17

Multiprocessing

While waiting to acquire bus mastership and perform a DMA transfer, the
slave processor asserts its BRx line. If the slave’s core accesses the DMA
address (DA) group of IOP registers, the processor deasserts its BRx line
until the core completes its access. For a list of the registers in the DA
group, see Table E-11 on page E-33, and, for a list of all IOP register
groups, see Table E-15 on page E-43, in ADSP-21065L SHARC DSP
Technical Reference.

Bus Mastership Timeout
You may want to limit how long a bus master can own the bus. To do so,
you force the bus master to deassert its BRx line after a specified number
of cycles, giving the slave processor a chance to acquire bus mastership.

To set up a bus master timeout, load the BMAX register as follows.

BMAX = (2 * maximum # of CLKIN cycles) – 2

As an example to ensure that any processor retains the bus for a maximum of
10 CLKIN cycles when another slave is requesting the bus, BMAX can be cal-
culated as follows.

BMAX = (2 * 10) - 2 = 18

In SDRAM systems, the current master processor asserts its BRx
line if the SDRAM controller needs to perform a refresh opera-
tion, or the application sets the self-refresh bit in the IOCTL reg-
ister. It continues to assert its BRx line until the SDRAM device
enters into self-refresh mode.

For SDRAM accesses, the current master processor continues to
assert its BRx line if the SDRAM device is still bursting data. In
this case, the current master processor deasserts its BRx line such
that the SDRAM device stops its data burst before the end of the
bus transition cycle.

Multiprocessor Bus Arbitration

7-18 ASDP-21065L SHARC DSP User’s Manual

The minimum value for BMAX is 2, which enables the processor to retain
bus mastership for 4 CLKIN cycles.

Each time the processor acquires bus mastership, it loads the value in
BMAX into its BCNT register. The processor decrements BCNT each
2xCLKIN cycle in which it performs a read or write over the bus and the
slave processor requests the bus. Any time the master processor deasserts
its BRx line, it reloads BCNT from BMAX.

When BCNT decrements to zero (0), the bus master:

1. Completes its off-chip read or write.

2. Deasserts its own BRx line, delaying any new off-chip accesses.

This procedure initiates the transfer of bus mastership. If the slave proces-
sor is deasserting its BRx request line when the master’s BCNT reaches 0,
the master processor keeps asserting its BRx line and does not reload
BNCT from BMAX. If the ACK signal is holding off an access when
BCNT reaches 0, the master processor retains bus mastership until that
access finishes.

If BCNT reaches 0 while bus lock is active, the master processor deasserts
its BRx line only after the bus lock is removed. (The BUSLK bit in the
MODE2 register enables bus lock. See “Bus Lock and Semaphores” on
page 7-34.)

While the master processor is servicing HBR, it stops decrementing
BCNT until the host deasserts HBR.

Core Priority Access
As shown in Figure 7-6 on page 7-19, the Core Priority Access signal,
CPA, enables the slave’s core to access the external bus and take priority
over ongoing DMA transfers.

ASDP-21065L SHARC DSP User’s Manual 7-19

Multiprocessing

Figure 7-6. Core priority access timing

Normally, during external port DMA transfers, the slave’s core cannot use
the external bus until the DMA transfer has finished. By asserting its CPA
pin, however, the slave processor’s core can acquire the bus without wait-
ing for the DMA operation to finish.

If the CPA signal isn’t used in a multiprocessor system, the master proces-
sor relinquishes the bus to the slave processor only when one of the
following occurs:

• A cycle in which the master processor does not perform an external
bus access

• A bus timeout

If a slave processor needs to send a high priority message or perform an
important data transfer, usually, it must wait until any DMA operation
finishes. But the CPA signal enables the slave to perform its higher priority
bus access with less delay.

�	

����"�6!����

� �#

�+�

��"���$$����"�6!������)#
� ���,������"�$����"�

��"���$$����"�6!������ �#

1���2��!�
�"� �����
�#$��
1! �����)!�
�����"����
��$�"�
�$$���2

�!�������"
��",�"��
$�"���$$���

��'�)!�������"
�/ �"����+����
,�"�,�"���(�$#$���

�+�
����$���
��/���
�����$#$��

�+��"������*�
�!���!�

� #
�"�$����"
'����!���
$�"�
�$$���
�� �� /
������"��
�����	

Multiprocessor Bus Arbitration

7-20 ASDP-21065L SHARC DSP User’s Manual

When the slave processor has a pending core access of the bus, it asserts
both its CPA pin and its bus request (BRx) pin. CPA is an open-drain out-
put and connects both processors in a system. Both processors have a 5
KΩ pull-up resistor on this pin, enabling them to share it. Either proces-
sor can assert CPA, and the internal resistors (or an additional external
resistor for quicker pull-up) pull it high when it’s released. Both proces-
sors can assert this line at the same time.

When CPA is active, the current master processor deasserts its BRx line
and relinquishes the bus, providing its core does not have an external
access pending. The current bus master never asserts CPA because it
already has control of the bus.

In the cycle (≥1 cycle for SDRAM systems, see page 7-19) after the slave
asserts CPA, only the processor’s core with a pending external access
asserts its bus request. Bus arbitration now proceeds as usual when the pre-
vious bus master releases its BRx line.

The processor that becomes bus master releases CPA immediately, the
pull-up resistors pull the CPA signal high, and arbitration proceeds nor-
mally. The previous bus master, having deasserted its BRx line in response
to CPA, reasserts BRx in the cycle after it samples CPA high.

In summary, when a slave processor uses its CPA signal, the following
sequence occurs: (see Figure 7-6 on page 7-19)

1. The slave processor asserts both its CPA pin and its BRx pin when
its core has an external bus access pending.

2. When the common CPA line is asserted, the master processor, if its
core has no external accesses pending, deasserts its BRx line in the
next cycle and relinquishes the bus after completing its current
access. (≥1 cycle for SDRAM systems, see page 7-19)

ASDP-21065L SHARC DSP User’s Manual 7-21

Multiprocessing

3. In the cycle after the slave asserts CPA, arbitration occurs normally
between the processors when both assert their respective BRx lines.

4. The new master processor releases CPA immediately after acquiring
the bus.

Both processors arbitrate as usual while CPA is asserted, but each asserts
its BRx line only if its core needs to make an access over the external bus.

When CPA is released, both processors resume normal BRx operation one
cycle after sampling CPA high. After releasing its CPA, the new bus master
ignores the CPA pin for two cycles. This reduces the possibility of losing
bus mastership unnecessarily while the common pull-up resistors pull the
CPA signal high. Because a resistor, which may have a time constant
greater than one cycle, pulls up CPA, both processors may not detect CPA
high in the same cycle.

In systems that do not require core access priority, leave the CPA pin
unconnected. The processors will arbitrate normally.

Bus Arbitration Synchronization After Reset
When you use the RESET pin to reset a multiprocessing system, the bus
arbitration logic on each processor must resynchronize to insure that only
one processor drives the external bus.

During synchronization, one processor becomes the bus master, and the
other processor acknowledges it. Synchronization must occur before the
processors can actively arbitrate for the bus. The bus synchronization
scheme also enables the system to safely bring each processor in and out of
reset.

A soft reset (SRST) also resynchronizes the processor.

For the bus synchronization scheme to function properly, you must assign
one processor in the system ID=01. The processor with ID1 holds the
external bus control lines stable during reset. When the processor is

Multiprocessor Bus Arbitration

7-22 ASDP-21065L SHARC DSP User’s Manual

assigned ID=00 (single-processor mode), it disables bus arbitration
synchronization.

After reset, both processors follow this procedure to resynchronize their
bus arbitration logic and define the bus master:

1. The processor with ID=10 deasserts its BR2 line during reset and
for at least two cycles after, until its bus arbitration logic is
synchronized.

After reset, a processor considers itself synchronized in the cycle in
which it detects only one BRx line asserted.

The BRx line that is asserted identifies the bus master, and both
processors update their internal records (CRBM bits in the SYS-
TAT register) accordingly.

2. The processor with ID= 01 asserts its BR1 line during and at least
one cycle after reset.

If its BR1 line remains the only one asserted during reset and the
following cycle, this processor drives the memory control lines to
prevent glitches in their signals. (This processor does not perform
reads or writes over the bus.)

If this processor is synchronized by the end of the two cycles fol-
lowing reset, it becomes the bus master. If not, it deasserts BR1 and
waits until it is.

When a processor has synchronized itself, it sets the BSYN bit in the
SYSTAT register.

The processor with ID=01 maintains correct logic levels on the RD, WR,
MS3-0, HBG, and the SDRAM signals—CAS, DQM, RAS, SDA10,
SCCLK, SDCKE, and SDWE—during reset.

ASDP-21065L SHARC DSP User’s Manual 7-23

Multiprocessing

Because an erroneous write to the soft reset bit (SRST) in the SYSCON
register can reset the processor with ID=01, that processor behaves this
way during reset:

1. It asserts BR1 to gain control of the bus.

2. It drives the RD, WR, MS3-0, DMAG1, DMAG2, HBG, and the
SDRAM signals—CAS, DQM, RAS, SDA10, SCCLK, SDCKE,
and SDWE—only if it determines it has control of the bus.

Two conditions determine whether the processor has control of the
bus:

• In the previous cycle, BR1 was asserted and BR2 was deasserted,

and

• In the previous cycle, HBG was deasserted.

The processor with ID=01 continues to drive the RD, WR, MS3-0,
DMAG1, DMAG2, and HBG and the SDRAM signals—CAS, DQM,
RAS, SDA10, SCCLK, SDCKE, and SDWE—for two cycles after reset, as
long as neither HBG nor BR2 are asserted. At the end of the second cycle,
the processor assumes bus mastership if it is synchronized, and normal bus
arbitration begins in the following cycle. If it remains unsynchronized, the
processor deasserts BR1, stops driving the memory control signals, and
does not arbitrate for the bus until it becomes synchronized.

Although the bus synchronization scheme supports reset of individual
processors, the processor with ID=01 may fail to drive the memory control
signals if it is in reset while the processor with ID=10 asserts its BR2 line.

If the processor with ID= 01 has asserted HBG while it is in reset, it
becomes synchronized when the host or external RESET circuitry deas-
serts RESET. This protocol enables the host to use the bus while the
processors are in reset.

Multiprocessor Bus Arbitration

7-24 ASDP-21065L SHARC DSP User’s Manual

If a host attempts to reset the master processor (which is driving the HBG
output), the host immediately loses control of the bus.

During reset, the master processor pulls the ACK line high with an inter-
nal 2 kΩ equivalent resistor.

ASDP-21065L SHARC DSP User’s Manual 7-25

Multiprocessing

Data Transfers
The master processor can read and write all of the slave processor’s IOP
registers to:

• Control and configure the slave’s operation (SYSCON and SYS-
TAT registers).

• Communicate with the slave’s core (MSGRx).

• Send a vector interrupt (VIRPT).

• Set up DMA transfers (DMACx).

• Transfer data.

To do so, the master processor reads or writes the address of the appropri-
ate IOP register in multiprocessor memory space.

The slave processor monitors the address lines driven on the external bus
and responds to any address that falls within its region of multiprocessor
memory space.

These accesses are invisible to the slave’s core because they are performed
through the external port, over the on-chip I/O bus—not the DM bus or
PM bus. This is an important distinction, because it enables the slave’s
core to continue executing program uninterrupted. (See Figure 8-1 on
page 8-2.)

For heavily loaded buses, or when using external data buffers, you can add
a single wait state to all multiprocessor memory accesses. To do so, you set
the MMSWS bit in the WAIT register. (For details, see “Multiprocessor
Memory Space Wait States and Acknowledge” on page 5-61.)

Data Transfers

7-26 ASDP-21065L SHARC DSP User’s Manual

Writing the IOP Registers

When the master processor writes to a slave processor, the slave’s I/O pro-
cessor latches the address and data on-chip, buffering the address and data
in a special set of FIFO buffers, the slave write FIFO, at the external port
pins (see Figure 8-1 on page 8-2). If the master processor attempts addi-
tional writes when this FIFO buffer is full, the slave processor deasserts
ACK until the buffer is no longer full.

In the next cycle after the slave’s I/O processor latches the address and
data, the slave write FIFO attempts to complete the write internally to the
target IOP register. This enables the master processor to perform writes at
the full clock rate.

Writes to the IOP registers usually occur in the following one or two
cycles. Writes take more than two cycles only when a full buffer delayed a
write in the previous cycle.

If the EPBx buffer and the slave write FIFO are full when the master pro-
cessor attempts a write, the slave deasserts ACK until buffer space is
available. The EPBx buffer usually empties within one cycle, creating a
write latency, unless higher priority, on-chip DMA transfers are in
progress.

Data in the slave write FIFO delays a master processor read. This delay
prevents the master processor from reading invalid data and from per-
forming operations out of sequence.

Because the external port buffers (EPBx), which are also IOP reg-
isters, are six-deep FIFO buffers, writes to them execute slightly
differently than writes to the other IOP registers. And, the mas-
ter processor uses them to perform DMA transfers. For details,
see “Transfers Through the EPBx Buffers” on page 7-27.

ASDP-21065L SHARC DSP User’s Manual 7-27

Multiprocessing

Reading the IOP Registers
When the master processor reads a slave processor, the slave’s I/O proces-
sor latches the address on-chip, and the slave asserts ACK. When the slave
processor reads the corresponding IOP register location, it drives the data
off-chip and asserts ACK. Unlike writes, the processor cannot pipeline
reads. Reads occur one at a time only.

Writes have a maximum pipelined throughput of one per cycle, and reads
have a maximum throughput of one every one 1xCLKIN cycle. See
Chapter 12‚ System Design. Because of this low bandwidth, direct reads
are not the most efficient method of transferring data out of a slave
processor.

Transfers Through the EPBx Buffers
In addition to reads and writes of the other IOP registers, the master pro-
cessor can transfer data to and from the slave processor’s internal memory
space through its external port FIFO buffers, EPB0 and EPB1.

Through the EPBx buffers, the master processor can perform:

• Single-word transfers

The processor’s core handles internal single-word transfers.

• DMA block transfers

The processor’s DMA controller handles internal DMA transfers.

Each EPBx buffer has a read port and a write port. Both ports can connect
internally to the EPD (External Port Data) bus, the IOD (I/O Data) bus,
the PM Data bus, or the DM Data bus as shown in Figure 7-1 on page
7-2.

When the master processor writes to the slave processor’s EPBx buffers,
the slave’s I/O processor latches and buffers the address and data on-chip,

Data Transfers

7-28 ASDP-21065L SHARC DSP User’s Manual

just as it does for writes to the other IOP registers. And, if additional
writes occur when the slave write FIFO buffer is full, the slave deasserts
ACK and waits for space to become available in the buffer.

But, because both of the EPBx buffers, which are part of the IOP register
set, are six-location FIFOs, the master processor can perform up to six
writes before encountering a delay, or write latency. (The external port
FIFO buffers can be delayed up to four cycles if all of the serial port DMA
channels are active or up to nine cycles per chain during a DMA chaining
operation.)

Single-Word Transfers

When the master processor writes a single data word to a slave’s EPBx
buffers, the slave’s core must read the data. Conversely, when the slave’s
core writes a single piece of data to one of its EPBx buffers, the master
processor must perform an external bus read cycle to obtain it. Because the
EPBx buffers are six-deep, bidirectional FIFOs, the cores of both proces-
sors have extra time to read the data. This functionality enables efficient,
continuous, single-word transfers to occur in real-time, with low latency
and no DMA.

If the master processor attempts to read from an empty EPBx buffer on
the slave, the slave holds off the access with the ACK signal until the
buffer receives data from the core. If the slave’s core attempts to write to a
full EPBx buffer, the slave processor delays the access, and its core hangs
until the master processor reads the buffer. To prevent the slave’s core
from hanging, set the Buffer Hang Disable bit (BHD=1) in the SYSCON
register. To determine the status of a particular EPBx buffer, read the
appropriate DMACx register.

Similarly, if the master processor attempts to write to a full EPBx buffer
on the slave processor, the slave delays the access with ACK until its core
reads the buffer. If the slave’s core attempts to read from an empty buffer,
the slave processor delays the access, and its core hangs until the master

ASDP-21065L SHARC DSP User’s Manual 7-29

Multiprocessing

processor writes the buffer. To prevent this hang condition, set BHD=1 in
the SYSCON register.

To flush (clear) either EPBx buffer, write 1 to the FLSH bit in the corre-
sponding DMACx control register. The processor does not latch this bit
internally, and this bit always reads as 0.

Status can change in the following cycle.

Do not enable and flush an EPBx buffer in the same cycle.

Interrupts for Single-Word Transfers. You can use the interrupts for the
two external port DMA channels to control single-word data transfers
between the master processor and the slave.

To do so, set two bits in the DMACx control register:

DEN=0 Disables DMA

INTIO=1 Enables interrupt-driven I/O DMA interrupts

For details, see Chapter 6‚ DMA and Appendix E‚ Control and Status
Registers in ADSP-21065L SHARC DSP Technical Reference.

With this configuration, the interrupt is generated whenever data becomes
available in the read port of the EPBx buffer or whenever the write port
has no new data to transmit. Then, either the slave’s core or an external
device, such as the master processor or host, can read or write the EPBx
buffer. Generating interrupts this way is useful for implementing inter-
rupt-driven I/O that the slave’s core controls.

You can mask out (disable) this interrupt in the IMASK register. If you
re-enable it later in IMASK, make sure you clear the corresponding

To perform single-word, non-DMA transfers through the EPBx
buffers, you must clear the DMA enable bit (DEN) in the appro-
priate DMACx control register.

Data Transfers

7-30 ASDP-21065L SHARC DSP User’s Manual

IRPTL latch bit to clear any interrupt request that might have occurred in
the interim, before you re-enabled the interrupt.

DMA Transfers

The master processor can also set up DMA transfers to and from a slave’s
internal memory space. The master processor writes to the slave’s DMA
control and parameter registers to set up an external port DMA operation.
This is the most efficient way to transfer blocks of data between two
processors.

• DMA transfers to internal memory space .

The master processor sets up external port DMA channels to trans-
fer data to and from the slave’s internal memory space, or it can use
the DMA request and grant lines (DMARx and DMAGx) to transfer
data directly to or from the slave’s internal memory space.

• DMA transfers to external memory space.

Using the DMA request and grant lines (DMARx and DMAGx), the
master processor sets up an external port DMA channel to transfer
data directly to the slave’s external memory space.

See Chapter 6‚ DMA for details on setting up DMA operations.

Transfers to Internal Memory Space. To set up DMA channels to transfer
data to and from the slave’s internal memory space, the master processor
initializes the slave’s DMA control and parameter registers for the particu-
lar channel. Once the DMA channel is set up, the master processor reads
from or writes to the corresponding EPBx buffer on the slave.

If the slave’s EPBx buffer is empty (or full), the access is extended until
data is available (or stored). This method enables fast and efficient data
transfers.

ASDP-21065L SHARC DSP User’s Manual 7-31

Multiprocessing

The master processor sets up a channel for either slave mode DMA or for
handshake mode DMA. To do so, the it sets the MASTER, HSHAKE,
and EXTRERN bits in the channel’s DMACx register appropriately.

For slave mode DMA, it sets:

MASTER = 0

HSHAKE = 0

EXTERN = 0

In slave mode DMA, if the buffer is empty (or full), the slave’s DMA con-
troller extends the access until data is available (or stored). This method
enables fast and efficient data transfers.

To pack and unpack DMA data, you select the packing mode in the
PMODE bits of the external port DMA control registers (DMAC0 and
DMAC1).You can select 16-bit to 32- or 48-bit and 32-to-48-bit packing
and unpacking. For details, see “External Port DMA Data Packing” on
page 6-51.

For handshake mode DMA, it sets:

MASTER = 0

HSHAKE = 1

EXTERN = 0

In handshake mode DMA, the master processor can also use the DMARx
and DMAGx handshake signals for a DMA transfer.

DMA Transfers to External Memory Space. To use the slave’s DMA con-
troller to transfer data directly to external memory space, you must use the
external handshake mode for external port DMA channel 8 or 9.

Data Transfers

7-32 ASDP-21065L SHARC DSP User’s Manual

For external handshake mode DMA, set:

MASTER =0

HSHAKE = 1

EXTERN = 1

This mode provides the DMARx and DMAGx handshaking for this type
of transfer.

Since the data passes through the DMA controller and not the processor,
you cannot pack the data.

For details on using DMA, see Chapter 6‚ DMA.

Interacting with the Shadow Write FIFO
Because the processor’s internal memory must operate at high speeds,
writes to the memory do not go directly into the memory array, but into a
two-deep FIFO called the Shadow Write FIFO.

When an internal memory write cycle occurs, the processor loads into
memory the data in the Shadow Write FIFO and loads the new data into
the Shadow Write FIFO. Normally, this operation is transparent since the
processor intercepts and routes to the FIFO any reads of the last two loca-
tions written. You need be aware of the Shadow Write FIFO only when
you mix 48- and 32-bit word accesses to the same locations in memory.

The Shadow Write FIFO cannot differentiate between the mapping of
48-bit words and the mapping of 32-bit words. (See Figure 5-10 on page
5-32.) So, if you write a 48-bit word to memory and try to read the data
with a 32-bit word access, the Shadow Write FIFO will not intercept the
read, and the processor will return incorrect data.

ASDP-21065L SHARC DSP User’s Manual 7-33

Multiprocessing

If you must mix 48- and 32-bit accesses to the same locations, flush out
the Shadow Write FIFO with two dummy writes before you attempt to
read the data.

Bus Lock and Semaphores

7-34 ASDP-21065L SHARC DSP User’s Manual

Bus Lock and Semaphores
You can use semaphores in multiprocessor systems to enable both proces-
sors to share resources, such as memory or I/O.

A semaphore is a flag that either processor sharing the resource can read
and write. The value of the semaphore indicates when the processor can
access the resource. Semaphores are also useful for synchronizing the tasks
each processor is performing separately.

The bus lock feature enables the processor to read and modify a sema-
phore in a single indivisible operation—a key requirement of
multiprocessing systems.

Semaphores can reside in external memory or in an IOP register, such as a
message register (MSGRx). When attempting a read-modify-write opera-
tion on a semaphore, a processor must have bus mastership for the
duration of the operation. If both processors obey this rule, both can per-
form read-modify-write operations on semaphores.

A processor adheres to this rule when it uses its bus lock feature to lock in
its mastership of the bus. Doing so, it prevents the other processor from
simultaneously accessing the semaphore.

To request bus lock, you set the BUSLK bit in the MODE2 register.
Then, the processor initiates the bus arbitration process, asserting its BRx
line. When it becomes bus master, the processor locks the bus, keeping its
BRx line asserted, even when not performing an external read or write, to
maintain its bus mastership. The processor ignores HBR during a bus
lock. When the BUSLK bit is cleared, the processor deasserts its BRx line
to relinquish control of the bus.

While the BUSLK bit is set, the processor can execute a conditional
instruction using the BM or NOT BM condition codes to determine who
is current bus master. For example:

IF NOT BM JUMP(PC,0);/* wait for bus mastership */

ASDP-21065L SHARC DSP User’s Manual 7-35

Multiprocessing

If it is not the current bus master, the processor can either wait until it
gains control of the bus, or it can clear its BUSLK bit and try again later.
If it is the current bus master and the semaphore resides in external mem-
ory space, the processor can proceed with reading or writing the
semaphore. If it is the current bus master and the semaphore resides in
IOP register space, the processor must test the status of the SWPD bit
(SYSTAT register) before proceeding to read or write the semaphore.

In summary, to perform a read-modify-write operation, write code that
follows these steps:

1. Set the BUSLK bit in MODE2 to request a bus lock.

2. Wait to acquire bus mastership.

If the semaphore resides in IOP register space, wait until SWPD=0.

3. Read the semaphore, test it, then write to it.

Interprocessor Messages

7-36 ASDP-21065L SHARC DSP User’s Manual

Interprocessor Messages
To communicate with the slave processor, the master processor writes
messages to the slave’s IOP registers.

The MSGR7-0 registers are general-purpose registers, which applications
can use to pass messages or to implement semaphores and resource sharing
between two processors.

You can use the MSGRx and VIRPT registers for interprocessor commu-
nications in the following ways:

• Message Passing

The master processor can read or write any of the slave’s eight mes-
sage registers, MSGR7-0, to pass messages.

• Vector Interrupts

The master processor can write the address of an interrupt service
routine to the slave’s VIRPT register to generate a vector interrupt.

Doing so causes an immediate, high-priority interrupt on the slave
that, when serviced, causes the slave processor to branch to the spec-
ified service routine.

The MSGRx and VIRPT registers also support the host interface. Since
these registers can be shared resources within a single processor, conflicts
can occur. Your system software is responsible for preventing such con-
flicts. For details, see Appendix E‚ Control and Status Registers, in
ADSP-21065L SHARC DSP Technical Reference.

ASDP-21065L SHARC DSP User’s Manual 7-37

Multiprocessing

Message Passing (MSGRx)
The master processor has three software protocols available to it for com-
municating with a slave through the slave’s MSGRx message registers:

• Vector-interrupt-driven

The master fills predetermined MSGRx registers on the slave with
data and writes the address of the service routine to the slave’s
VIRPT register to trigger a vector interrupt.

After the slave’s service routine reads the data from the MSGRx reg-
isters, it must write 0 to VIRPT to tell the master it has completed
the read.

• Register handshake

You designate four of the MSGRx registers as follows:

• A receive register (R)

• A receive handshake register (RH)

• A transmit register (T)

• A transmit handshake register (TH).

Register handshaking follows this sequence:

1. To pass data to the slave processor, the master processor writes
data into T and then writes 1 into TH.

2. When the slave processor sees 1 in TH, it reads the data from T
and then writes 0 back into TH.

The service routine can also use one of the slave’s
FLAG11-0 pins to tell the master it has finished.

Interprocessor Messages

7-38 ASDP-21065L SHARC DSP User’s Manual

3. When the master processor sees 0 in TH, it knows that the trans-
fer has finished.

4. The slave processor follows a similar sequence when it passes
data to the master processor through R and RH.

• Register write-back

This method is similar to the register handshake method, but uses
only the T and R data registers.

Register write-back follows this sequence:

1. The master processor writes data to T.

2. When the slave processor sees a nonzero value in T, it retrieves
it and writes 0 back into T.

3. The master processor uses a similar sequence to receive data.

This method is simpler and works well as long as the data to pass
does not include 0.

Vector Interrupts (VIRPT)
The processor uses vector interrupts to respond to interprocessor com-
mands from the other processor or from a host. When the other processor
or an external device writes an address to the processor’s VIRPT register,
it generates a vector interrupt.

Servicing a Vector Interrupt

When it services a vector interrupt, the processor automatically pushes the
status stack and begins executing the service routine located at the address
specified in VIRPT. The lower twenty-four bits of VIRPT contain the
address. Optionally, you can use the upper eight bits to pass data for the

ASDP-21065L SHARC DSP User’s Manual 7-39

Multiprocessing

interrupt service routine to read. At reset, the processor reinitializes
VIRPT to its standard address in the interrupt vector table.

The minimum latency for vector interrupts is six cycles, five of which are
NOPs. When the interrupt service routine reaches the RTI (return from
interrupt) instruction, the processor automatically pops the status stack.

Make sure your interrupt service routine checks the VIPD bit in the SYS-
TAT register. This bit indicates the status of the VIRPT register:

• If the master processor writes the slave’s VIRPT while a previous
vector interrupt is pending, the new vector address replaces the
pending one.

• If the master processor writes the slave’s VIRPT while the slave is
servicing a previous occurrence of the vector interrupt, the slave
ignores the new vector address, so the write doesn’t generate a new
interrupt.

• If the processor writes to its own VIRPT register, the write doesn’t
generate an interrupt.

To use the slave processor’s vector interrupt feature, the master processor
performs this procedure:

1. Polls the slave’s VIRPT register until it reads a certain token value
(for example, 0).

2. Writes the vector interrupt service routine address to VIRPT.

When the service routine is finished, the slave processor writes the
token back into VIRPT to indicate that it has finished and that it is
ready to accept another vector interrupt.

SYSTAT Register Status Bits

7-40 ASDP-21065L SHARC DSP User’s Manual

SYSTAT Register Status Bits
The SYSTAT register provides status information, primarily for multipro-
cessor systems. Table 7.4 shows the status bits in this register, and
Figure 7-7 on page 7-41 shows the default bit values.

Table 7-4. SYSTAT status bits

Bit Name Definition

0 HSTM Host mastership

1 BYSN Bus synchronization

2-3 Reserved

4-5 CRBM Current bus master (ID1-0 of processor bus mas-
ter)

6-7 Reserved

8-9 IDC ID code (ID1-0 of this processor)

10-11 Reserved

12 SWPD Slave write data pending (at slave write FIFO)

13 VIPD Vector interrupt pending

14 HPS Host packing status

15-31 Reserved

ASDP-21065L SHARC DSP User’s Manual 7-41

Multiprocessing

Figure 7-7. SYSTAT register

HSTM
Host Mastership.

Indicates whether the host has been granted control of the bus.

1=Host is bus master

0=Host is not bus master

���������������/������������(���)�������������������������/����������

� � ����� �������� �

�(����)��������������������������/����������������(���)�����������������������

� � ���� ����� �

���

9��������	�@�-

���

.���#7��@	���A����

���

 ��$���

����

$�		����.�������	

����

F����	� ���		�-��+������

��

9����+�E����#����

�8�
���7�-�E��

�8�-	����7�-�E��

 ��

���+����������#����C	����; ;�

SYSTAT Register Status Bits

7-42 ASDP-21065L SHARC DSP User’s Manual

BSYN Bus Synchronization.

Indicates when the processor’s bus arbitration logic is synchronized
after reset. (See “Bus Arbitration Synchronization After Reset” on
page 7-21.)

1=Synchronized

0=Not synchronized

CRBM
Current Bus Master.

Indicates the ID code of the processor that is the current bus mas-
ter. If CRBM is equal to the ID of this processor then it is the
current bus master. CRBM is only valid for ID2-0 > 0 (greater than
zero). When ID2-0=00, CRBM is always 1.

IDC ID Code.

Indicates the ID2-0 inputs of this processor.

SWPD
Slave write pending data.

Indicates valid data is pending in the slave write FIFO.

1=Data pending

0=No data pending

VIPD Vector Interrupt Pending.

Indicates that a pending vector interrupt has not yet been serviced.

The VIPD bit is set when the VIRPT register is written to and is
cleared upon return from the interrupt service routine.

ASDP-21065L SHARC DSP User’s Manual 7-43

Multiprocessing

The master processor (or host) that issued the vector interrupt
should monitor this bit to determine when the service routine has
finished, and when a new vector interrupt can be issued.

1=Vector interrupt pending

0=No vector interrupt pending

HPS Host Packing Status.

Indicates when host word packing is completed or, if not, what
stage of the process is taking place.

0=Partially packed

1=Fully packed

SYSTAT Register Status Bits

7-44 ASDP-21065L SHARC DSP User’s Manual

ADSP-21065L SHARC DSP User’s Manual 8-1

8 HOST INTERFACE
Figure 8-0.

Table 8-0.

Listing 8-0.

The host interface provides an asynchronous connection to standard 8-,
16-, and 32-bit microprocessor buses and supports asynchronous transfers
at speeds up to 1xCLKIN.

The host interface enables a host to:

• Gain control of the processor and its external bus.

Once in control the host can access any of the processor’s resources.

• Read and write any of the processor’s IOP registers, including the
EPBx FIFO buffers.

All of the internal IOP registers and resources of any processor’s I/O
processor are available to the host. The host uses specific IOP con-
trol and status registers to control and configure the processor and
to set up DMA transfers. Once set up, the processor’s on-chip DMA
controller controls DMA transfers.

• Transfer code and data to and from the processor over the two exter-
nal port DMA channels.

DMA transfers incur low software overhead.

• Pack and unpack 8-, 16-, and 32- bit host data to and from 32- or
48-bit internal data.

• Use interprocessor messages and vector interrupts to ensure host
commands execute efficiently.

8-2 ADSP-21065L SHARC DSP User’s Manual

• Control and monitor the operation of the processor.

• In a multiprocessor system, access both the slave and master proces-
sors.

Figure 8-1. External port and Host Interface

The host accesses the processor through its external port, over the external
bus (DATA31-0 and ADDR23-0). The host interface is memory-mapped
into the unified address space of the processor. Figure 8-1 shows the
on-chip data paths for host-driven transfers.

Physical connection to the host interface is easy, requiring little additional
hardware. Any host with a standard memory interface can easily connect
to the processor bus through buffers.

I/O Processor

Intern. DMA
Address

Generators

Grnts Reqs.

Intern. DMA
Prioritzer

Reqs.
Grnts

DMA
Controller

Ext. Port
DMA FIFOs

EPBx

Serial Port
FIFOs

RXx_z/TXx_z

Other IOP
Registers

Extern. DMA
Address

Generators

GrntsReqs.

Extern. DMA
Prioritzer

Reqs.
Grnts

DMA
Controller

Serial Ports

4
4

ADDR

DATA DATA

ADDR

Internal Memory

ADDR DATA

17

I/O Address Bus
(IOA)

Core Processor

External Port

Slave Write
FIFO

2 deep (sync.)
4 deep (async.)

Buffer

ADDR23-024

32 DATA31-0

PM Address

DM Address

PM Data
DM Data

4 deep

48

I/O Data Bus
(IOD)

48 32

PMA
DMA

DMD
PMD

IOA IODPMD DMD

Ext. Port
Data Bus

(EPD)

EPA
EPD

Ext. Port
Addr Bus
(EPA)

DMAR1
DMAG1

DMAR0
DMAG0

TX_A
RX_A

RX_B
TX_B

10
10

ADSP-21065L SHARC DSP User’s Manual 8-3

Host Interface

Table 8-1 lists and describes the pins used to interface with a host.

Table 8-1. Host interface pins

Pin Type Definition

HBR I/A Host Bus Request.

Host must assert this pin to request control
of the processor’s external bus.

In a multiprocessing system, when the host
asserts HBR, the processor that is bus mas-
ter relinquishes the bus and asserts HBG.

To relinquish the bus, the processor places
the address, data select, and strobe lines
in a high-impedance state.

HBR has priority over all processor bus
requests, BRx, in a multiprocessing system.

HBG I/O Host Bus Grant.

The processor asserts HBG to acknowledge an
HBR bus request and indicate that the host
can take control of the external bus. The
processor holds HBG low until the host
releases HBR.

In a multiprocessing system, only the master
processor outputs HBG.

CS I/A Chip Select.

Host asserts to select a processor.

 A = Asynchronous; (a/d) = Active Drive; I=Input; O = Output;
(o/d) = Open Drain; S = Synchronous

8-4 ADSP-21065L SHARC DSP User’s Manual

The following terms are used throughout this chapter:

Bus slave or slave mode
When a processor does not control the external bus, it is bus slave
(to another processor or to a host). The processor becomes a “host
bus slave” when it asserts its HBG signal.

REDY O Host Bus Acknowledge.

The processor deasserts REDY to add wait
states to an access of its IOP registers by
a host.

Open-drain output (o/d) is the default, but
you can program the ADREDY bit in the SYSCON
register for active drive (a/d).

The processor outputs REDY only if the host
(or other processor) asserts the CS and HBR
inputs.

SBTS I/S Suspend Bus Tristate.

External devices can assert SBTS to place
the external bus address, data selects, and
strobes in a high-impedance state for the
following cycle.

If the processor attempts to access external
memory while SBTS is asserted, the processor
halts, and the memory access does not finish
until SBTS is deasserted.

Use SBTS only to recover from deadlock
between a host and the processor.

Table 8-1. Host interface pins (Cont’d)

Pin Type Definition

 A = Asynchronous; (a/d) = Active Drive; I=Input; O = Output;
(o/d) = Open Drain; S = Synchronous

ADSP-21065L SHARC DSP User’s Manual 8-5

Host Interface

Bus transition cycle (BTC)
In a multiprocessor system, a cycle in which control of the external
bus passes from one processor to another.

Cluster bus
In a multiprocessor system, the path connecting one processor’s
external bus to the other’s. See also, External bus.

DMACx control registers
DMA control registers for the EPBx external port buffers: DMAC0
and DMAC1 correspond to EPB0 and EPB1, respectively (see
Chapter 6, DMA, and Appendix E, Control and Status Registers,
in ADSP-21065L SHARC DSP Technical Reference).

DMA transfers
Internal transfers of data blocks that the processor’s DMA control-
ler, not its core, handles.

External bus
The processor’s ACK, ADDR23-0, BMS, CAS, DATA31-0, DQM,
MS3-0, RAS, RD, SDA10, SBTS, SDCKE, SDCLK0-1, SDWE,
SW, and WR, signals.

External port FIFO buffers
EPBx buffers. A host or another processor uses these IOP registers
for external port DMA transfers and single-word data transfers.
These buffers are six-deep FIFOs.

Host A host microprocessor.

Host transfers
Asynchronous accesses of the processor by the host. After acquiring
control of the processor’s external bus, the host must assert the CS
pin of the processor it wants to access.

8-6 ADSP-21065L SHARC DSP User’s Manual

Host transition cycle (HTC)
A cycle in which control of the external bus passes from the proces-
sor to the host. During this cycle, the processor stops driving the
RD, WR, ADDR23-0, MS3-0 (except the MSx line connected to an
SDRAM device), SW, and DMAGx signals, which the host must
then drive.

IOP register
One of the control, status, or data buffer registers of the processor’s
on-chip I/O processor.

Local bus
In a multiprocessor system, the path connecting one processor’s
external bus to local memory or to a system bus buffer. See also,
External bus, Cluster bus.

Master processor
The ADSP-21065L that is bus master.

Multiprocessor system
A system with two processors, with or without a host. The proces-
sors connect directly over the external bus.

Multiprocessor memory space
Portion of the processor’s memory map that includes the IOP reg-
isters of the other processor in a multiprocessing system. This
address space is mapped into the processor’s unified address space.

Processor
An ADSP-21065L.

Single-word data transfers
Reads and writes of the EPBx external port buffers, performed
externally by a host or internally by the core. DMA must be dis-
abled in the processor’s DMACx control register.

ADSP-21065L SHARC DSP User’s Manual 8-7

Host Interface

Slave processor
An ADSP-21065L that is not bus master.

For operations that involve the host interface, the processor uses
the system clock, which runs at 1xCLKIN. Hereafter, in this
chapter, all clock cycle references are to 1xCLKIN, unless other-
wise noted.

For details on clock cycles and data throughput, see Table 12-19
on page 12-62.

Host Control of the Processor

8-8 ADSP-21065L SHARC DSP User’s Manual

Host Control of the Processor
The HBR, HBG, and REDY signals enable a host to gain control of a pro-
cessor and its external bus. Once granted control, the host can transfer 8-,
16-, or 32-bit data asynchronously to and from the processor.

Acquiring the Bus
To gain access to the processor,

1. The host asserts HBR, the host bus request signal.

HBR has priority over all BRx multiprocessor bus requests. When
asserted, HBR causes the current master processor to relinquish the
bus to the host as soon as the current bus cycle finishes.

2. The current master processor asserts HBG as soon as the current
bus operation finishes to signal that it is transferring control of the
bus.

The cycle in which control of the bus transfers is called a host tran-
sition cycle (HTC).

Figure 8-2 on page 8-10 shows the timing for bus acquisition by
the host.

3. The current master processor continues to assert HBG during the
bus transition cycle (BTC), until the host deasserts HBR.

HBG freezes processor/multiprocessor bus arbitration while the
host owns the bus. While HBG is asserted, the other processor con-
tinues to assert and deassert its BRx line as in normal operation,
but no BTCs occur.

The current master processor holds its BRx line low the entire time
the host controls the bus.

ADSP-21065L SHARC DSP User’s Manual 8-9

Host Interface

The host should use HBG to enable its signal buffers (see
Figure 8-8 on page 8-45.)

Once it has gained control of the bus, the host can initiate asynchronous
transfers. To do so, the host:

1. Asserts the CS pin of the processor that it wants to access and per-
forms the asynchronous read or write.

2. Drives the ADDR7-0 and either the M address field bits as 0 or any
E address field bits as 1 (for details, see Table 5-3 on page 5-20),
RD, WR, and SW signals during the HTC in which it gains control
of the bus (see Figure 8-3 on page 8-13).

The host must continue to drive these signals for the entire time it
owns the bus. In addition, it must either drive the MS3-0 lines
(except the MSx line connected to an SDRAM device) and the
DMAG1 and DMAG2 grant lines, or these lines must be pulled
weakly up or down. (You need pull the DMAGx lines up or down
weakly only if they connect externally.) The master processor
places these lines in a high impedance state to enable the host to
use them.

Host Control of the Processor

8-10 ADSP-21065L SHARC DSP User’s Manual

Figure 8-2. Example timing for bus acquisition

During read-modify-write operations, to avoid temporary loss of bus mas-
tership, the host must continue asserting HBR until it completes the last
data transfer.

The following restrictions apply to host acquisitions of the bus:

• If the host asserts HBR while the processor is in reset, the processor
responds with HBG only after multiprocessor synchronization has
finished. If the processor is ID0 (single-processor system), it
responds with HBG immediately.

���

���

���

��

�	
�

�
��

�

�

���

���

��������	
�������

��������	
�

����

�������

������

����

���������	
�

������������

����������������

 ������!!��

����

���"�#$���%

&#'������!!���������

����������&#$������

��������!��� ��

 ������!!��������

 ������!!��������

��������	
�

����

��������	
�

����

��������	
�

����

%����!����&#'(

)�(�����$�����*$

&#'������!!����������

&���

+���������

)������&+)�

%����

������

 ���

��������	
�������

%���������

&���

+���������

)������&+)�

ADSP-21065L SHARC DSP User’s Manual 8-11

Host Interface

For details, see “Bus Arbitration Synchronization After Reset” on
page 7-21.

• The host must not deassert HBR during a host access.

• If SBTS is asserted after HBR, the processor may enter slave mode
and suspend any unfinished access to the external bus.

(For details, see “Resolving Bus Access Deadlock” on page 8-49.)

Once the it has finished its task, the host can deassert HBR to relinquish
control of the bus. The master processor deasserts HBG in response.

In the next cycle, the master processor regains control of the bus, and nor-
mal multiprocessor arbitration resumes. The host must not deassert HBR
until after it has completed its last data transfer with the processor.

Host Transfers
After acquiring control of the processor’s external bus, the host must assert
the CS pin of the processor it wants to access. Doing so informs the pro-
cessor that it will be transferring data asynchronously with the host. The
host must then drive the offset address of the IOP register it wants to
access. To simplify hardware requirements for the external interface logic,
the host need drive ADDR7-0 only and either the M address field bits as 0
or the appropriate E address field bits as 1 (for M and E address field defi-
nitions, see Table 5-3 on page 5-20).

Asynchronous Transfer Timing
When a host asserts a processor’s CS chip select, the selected processor
deasserts the REDY signal with a delay of approximately 10 ns. For exact
timing specifications, see the processor’s data sheet.

Host Control of the Processor

8-12 ADSP-21065L SHARC DSP User’s Manual

At this time, CS, not RD or WR, causes the processor to deassert REDY
because the host interface buffers for RD and WR may not be enabled if
the bus master has not asserted HBG.

The host can assert CS before or after it asserts HBR, but the processor
will not reassert REDY until after the bus master has asserted HBG and
the host has applied a RD or WR strobe. This is true only if a RD or WR
strobe is active when the processor asserts HBG; otherwise, the tTRDYHG
switching characteristic determines the timing. (See the timing section of
the processor’s data sheet.)

The processor asserts REDY before a RD or WR and deasserts REDY only
if it is not ready to complete the read or write. The only exception occurs
when the host first asserts CS. The REDY pin defaults to open-drain out-
put to facilitate interfacing to common buses. To change it to an
active-drive output, set ADREDY=1 in the SYSCON register.

ADSP-21065L SHARC DSP User’s Manual 8-13

Host Interface

Figure 8-3. Example timing for host read and write cycles

Figure 8-3 shows the timing of a host write cycle. This timing is based on
the example host interface hardware shown in Figure 8-8 on page 8-45.

HBR

Host
Address

CS

Host
buffers
turn on

valid address valid

HBG

Driven by
Host

Driven by
 master

 processor

DATA

BRx

ACK

REDY
data setup

valid

Bus
Transition

Cycle
(BTC)

Host
Transition

Cycle
(HTC)

REDY deasserted for a min of 1 cycle

valid data from
processor

Data from host
is latched into

 processor
on WR rising edge

Host tristates before
asserting RD

Driven by
selected

processor

Data is latched in host
on RD rising edge

Host
Write

Host
Read

RD
WR
MSx Driven inactive

before trisate

address setup

Host Control of the Processor

8-14 ADSP-21065L SHARC DSP User’s Manual

A host write cycle follows this sequence:

1. The host asserts the address.

Since the system bus interface address comparator decodes HBR
and CS, the host need not supply them directly. The selected pro-
cessor deasserts REDY immediately.

2. The host asserts WR and drives data (according to the timing
requirements specified in the data sheet).

3. The selected processor asserts REDY when it is ready to accept the
data.

This occurs after the current bus master has completed its current
transfer and has asserted HBG. HBG enables the host interface
buffers to drive onto the processor’s bus.

4. The host deasserts WR when REDY is high and stops driving data.

5. The selected processor latches data on the rising edge of WR.

After the first word, the write sequence is:

6. The host asserts WR and drives data (according to the timing
requirements specified in the processor’s data sheet).

7. The processor deasserts REDY if it is not ready to accept data.

8. The host deasserts WR when REDY is high and stops driving data.

9. The selected processor latches data on the rising edge of WR.

In a multiprocessor system, if the ADREDY bit is cleared (0) on both pro-
cessors, the host can assert both processor’s CS pins at the same time
during a write, but not during a read because of bus conflict.

ADSP-21065L SHARC DSP User’s Manual 8-15

Host Interface

To enable full speed asynchronous writes, the processor latches data at the
I/O pins in a four-level FIFO buffer, the slave write FIFO (see Figure 8-1
on page 8-2). This buffering enables the processor to resynchronize previ-
ously written words while a host is writing a new word, and it enables
asynchronous writes to occur at speeds up to 1xCLKIN.

Figure 8-3 on page 8-13 also shows the timing of a host read cycle. This
timing is based on the example host interface hardware shown in
Figure 8-8 on page 8-45.

A host read cycle follows this sequence:

1. The host asserts the address.

The system bus interface address comparator decodes HBR and the
appropriate CS line again. The selected processor deasserts REDY
immediately and asserts HBG.

2. The host asserts RD.

3. The selected processor drives data onto the bus and asserts REDY
when the data is available.

4. The host latches the data and deasserts RD.

After the first word, the read sequence is:

5. The host asserts RD.

6. The selected processor deasserts REDY then asserts REDY, driving
data when it becomes available.

7. The host deasserts RD when REDY is high and latches the data.

The maximum throughput for reads is one every two CLKIN cycles.

Data Transfers

8-16 ADSP-21065L SHARC DSP User’s Manual

Data Transfers
The host or the bus master can read and write all of the I/O processor’s
IOP registers to:

• Control and configure the processor’s operation (SYSCON and
SYSTAT).

• Communicate with the processor’s core (MSGRx).

• Set up DMA transfers (DMACx).

• Transfer data.

To do so, the host asserts the processor’s CS line and writes the offset
address of the IOP register it wants to access in the lower eight bits of the
external address bus and writes either 0 to the M address field bits or 1 to
the appropriate E address field bits (see Table 5-3 on page 5-20).

These accesses are invisible to the processor’s core because they use the
external port and the on-chip I/O bus—not the DM bus or the PM bus
(see Figure 8-1 on page 8-2). This is an important distinction because it
enables the processor’s core to continue executing program uninterrupted.

Writing to the IOP Registers

When the host writes to a slave processor, the slave’s I/O processor latches
the address and data on-chip, buffering the address and data in a special
set of FIFO buffers, the slave write FIFO, at the external port pins (see

Because the external port buffers (EPBx), which are also IOP reg-
isters, are six-deep FIFO buffers, writes to them execute slightly
differently than writes to the other IOP registers. And, the host
uses them to perform DMA transfers. For details, see “Transfers
Through the EPBx Buffers” on page 8-18.

ADSP-21065L SHARC DSP User’s Manual 8-17

Host Interface

Figure 8-1 on page 8-2). If the host attempts additional writes when this
FIFO buffer is full, the processor deasserts REDY until the buffer is no
longer full.

In the next cycle after the I/O processor latches the write data, the slave
write FIFO attempts to complete the write internally to the target IOP
register. This enables the host or master processor to perform writes at the
full clock rate.

Writes to the IOP registers usually occur in the following one or two
cycles. Writes take more than two cycles only if a full EPBx buffer delayed
a write in the previous cycle.

If the EPBx buffer and slave write FIFO are full when the host attempts a
write, the processor deasserts REDY until buffer space is available. The
EPBx buffer usually empties out within one cycle, creating a write latency,
unless higher priority, on-chip DMA transfers are in progress.

Data in the slave write FIFO delays a host read. This delay prevents the
host from reading invalid data and from performing operations out of
sequence.

Reading the IOP Registers
When the host or master processor reads a slave processor, the slave’s I/O
processor latches the address on-chip and deasserts REDY. When the slave
processor reads the corresponding IOP register location, it drives the data
off-chip and asserts REDY. Unlike writes, reads cannot be pipelined; they
occur one at a time only.

Writes have a maximum pipelined throughput of one per CLKIN cycle,
and reads have a maximum throughput of one every two CLKIN cycles.
For details, see Chapter 12, System Design. Because of this low band-
width, reads are not the most efficient method of transferring data out of a
slave processor.

Data Transfers

8-18 ADSP-21065L SHARC DSP User’s Manual

Transfers Through the EPBx Buffers
In addition to reads and writes of the other IOP registers, the host can
transfer data to and from the processor’s internal memory space through
its external port FIFO buffers, EPB0 and EPB1.

Through the EPBx buffers, the host can perform:

• Single-word transfers

The processor’s core handles internal single-word transfers.

• DMA block transfers

The processor’s DMA controller handles internal DMA transfers.

Each EPBx buffer has a read port and a write port. Both ports can connect
internally to either the EPD (External Port Data) bus, the IOD (I/O
Data) bus, the PM Data bus, or the DM Data bus as shown in Figure 8-1
on page 8-2.

When the host writes to a slave processor’s EPBx buffers, the slave’s pro-
cessor latches and buffers the address and data on-chip, just as it does for
writes to the other IOP registers. And, if additional writes occur when the
slave write FIFO buffer is full, the processor deasserts REDY and waits for
room in the buffer.

But because both of the EPBx buffers, which are part of the IOP register
set, are six-location FIFOs, the host can perform up to six writes before
encountering a delay, a write latency. (The external port FIFO buffers can
be delayed for up to four CLKIN cycles if all of the serial port DMA chan-
nels are active or for up to four CLKIN cycles per chain during a DMA
chaining operation.)

ADSP-21065L SHARC DSP User’s Manual 8-19

Host Interface

Single-Word Transfers

When the host writes a single data word to the EPBx buffers, the proces-
sor’s core must read the data. Conversely, when the processor’s core writes
a single piece of data to one of the EPBx buffers, the host must perform an
external read cycle to obtain it. Because the EPBx buffers are six-deep,
bidirectional FIFOs, the host and the processor’s core have extra time to
read the data. This functionality enables efficient, continuous, single-word
transfers to occur in real-time, with low latency and no DMA.

If the host attempts a read from an empty EPBx buffer, the processor
holds off the access with the REDY signal until the buffer receives data
from the core. If the processor’s core attempts to write to a full EPBx
buffer, the processor delays the access, and the core hangs until the host
reads the buffer. To prevent the core from hanging, set the Buffer Hang
Disable bit (BHD=1) in the SYSCON register. To determine the status of a
particular EPBx buffer, read the appropriate DMACx register.

Similarly, if the host attempts a write to a full EPBx buffer, the processor
holds off the access with REDY until the processor’s core reads the buffer.
If the core attempts to read from an empty buffer, the processor delays the
access, and the core hangs until the host writes to the buffer. To prevent
this hang condition, set BHD=1 in the SYSCON register. With BHD=1, how-
ever, reads may access invalid data, and writes may not finish.

To flush (clear) either EPBx buffer, write a 1 to the FLSH bit in the corre-
sponding DMACx control register. The processor does not latch this bit
internally, and it always read as 0. Status can change in the following
cycle. Do not enable and flush an EPBx buffer in the same cycle.

To pack and unpack individual data words, you must set both the
PMODE bits in the appropriate DMACx control register and the HBW
bits in the SYSCON register. For details, see Table 8-2 on page 8-24.

Data Transfers

8-20 ADSP-21065L SHARC DSP User’s Manual

For single-word transfers, you must also set the TRAN bit in the EPBx
DMACx control register appropriately:

TRAN=1 For host reads of the EPBx register

TRAN=0 For host writes to the EPBx register

Interrupts for Single-Word Transfers. You can use the interrupts for the
two external port DMA channels to control single-word data transfers
between the host and the processor’s core. To do so, set the DEN and
INTIO bits in the DMACx control register:

DEN=0 Disable DMA

INTIO=1 Enable interrupt-driven I/O

For details, see Chapter 6, DMA, and Appendix E, Control and Status
Registers, in ADSP-21065L SHARC DSP Technical Reference.

With this configuration, the interrupt is generated whenever data becomes
available in the read port of the EPBx buffer or whenever the write port
does not have new data to transmit. Then, either the processor’s core or an
external device, such as the host, can read or write the EPBx buffer. Gen-
erating interrupts this way is useful for implementing interrupt-driven I/O
that the processor’s core controls.

You can mask out (disable) this interrupt in the IMASK register. Before
you re-enable it in IMASK, make sure you clear the corresponding IRPTL
latch bit to clear any interrupt request that might have occurred in the
interim.

To perform single-word, non-DMA transfers through the EPBx
buffers, you must clear the DMA enable bit (DEN=0) in the
appropriate DMACx control register.

ADSP-21065L SHARC DSP User’s Manual 8-21

Host Interface

DMA Transfers

The host can also set up DMA transfers to and from the processor’s inter-
nal or external memory space. Once the host has gained control of the
processor, it can access the on-chip DMA control and parameter registers
to set up an external port DMA operation. This is the most efficient way
to transfer blocks of data.

• DMA transfers to internal memory space.

The host can set up external port DMA channels to transfer data to
and from the processor’s internal memory space, or it can use the
DMA request and grant lines (DMARx, DMAGx) to transfer data
directly to or from the processor’s internal memory space.

• DMA transfers to external memory space.

Using the DMA request and grant lines (DMARx, DMAGx), the
host can set up an external port DMA channel to transfer data
directly to or from the processor’s external memory space.

Transfers to Internal Memory Space. To set up DMA channels to transfer
data to and from internal memory space, the host must initialize the pro-
cessor’s control and parameter registers for the particular channel. Once
the DMA channel is set up, the host simply reads from or writes to the
corresponding EPBx buffer.

The hosts sets up a channel for either slave mode DMA or handshake
mode DMA. To do so, the host sets the MASTER, HSHAKE, and
EXTERN bits in the channel’s DMACx register appropriately.

For slave mode DMA, set:

MASTER = 0

HSHAKE = 0

EXTERN = 0

Data Transfers

8-22 ADSP-21065L SHARC DSP User’s Manual

In slave mode DMA, if the buffer is empty (or full), the processor’s DMA
controller extends the access until data is available (or stored). This
method enables fast and efficient data transfers.

To pack and unpack DMA data, you select the packing mode in the
PMODE bits of the external port DMA control registers (DMAC0 and
DMAC1) and the HBW bits in the SYSCON register. See Table 8-2 on
page 8-24 for the available packing modes.

For handshake mode DMA, set:

MASTER = 0

HSHAKE = 1

EXTERN = 0

In handshake mode DMA, the host can also use the DMARx and DMAGx
handshake signals for a DMA transfer, but not when it has asserted HBR
to gain control of the bus.

DMA Transfers to External Memory Space. To use the processor’s DMA
controller to transfer data directly from the host to external memory
space, you must use the external handshake mode for external port DMA
channel 8 or 9.

For external handshake mode DMA, set:

MASTER =0

HSHAKE = 1

EXTERN = 1

This mode provides the DMARx and DMAGx handshaking for this type
of transfer.

ADSP-21065L SHARC DSP User’s Manual 8-23

Host Interface

These transfers have the following restrictions:

• The host cannot use HBR to gain control of the bus.

• Since the data passes through the DMA controller and not the pro-
cessor, you cannot pack the data.

For details on using DMA, see Chapter 6, DMA.

Performing Broadcast Writes
Broadcast writes enable simultaneous transmission of data to both proces-
sors in a multiprocessing system. The host can perform broadcast writes to
the same IOP register on both processors. You can use broadcast writes to
implement semaphores in a multiprocessing system and to simultaneously
download code or data to both processors. For details, see “Bus Lock and
Semaphores” on page 7-34.

To implement broadcast writes, the host must assert CS on both
processors.

During a broadcast write, both processors:

• Accept the write as if either is the only device addressed.

• Use REDY to add wait states to the host’s broadcast write if neces-
sary.

The host must wire-OR both processors’ REDY lines together and
configure ADREDY in SYSCON for open-drain output.

In this configuration, REDY appears asserted only when both pro-
cessors are ready. (This is true only if REDY is not actively pulled
up.)

Data Packing

8-24 ADSP-21065L SHARC DSP User’s Manual

Data Packing
For accesses to all IOP registers, except the EPBx buffers, the processor
packs and unpacks host data to and from 32-bit internal words. To specify
the host’s bus width, you set the HBW bits in the SYSCON register (see
Table 8-3 on page 8-26).

For accesses to the EPBx buffers, the host interface has data packing logic
to pack 8-, 16-, or 32-bit external host bus words into 32- or 48-bit inter-
nal words. The packing logic is reversible to unpack 32-bit or 48-bit
internal data into 8-, 16-, or 32-bit external data. Bits in both the
DMACx control registers and the SYSCON register determine the data
packing mode for EPBx transfers.

To pack and unpack individual data words, you set both the PMODE bits
in the appropriate DMACx control register and the HBW bits in the
SYSCON register. The PMODE bits determine the width of internal
words, and the HBW bits determine the width of external words.
Table 8-2 shows the packing modes available with various combinations
of the PMODE and HBW bits.

Table 8-2. Packing mode bits for EPBx transfers

DMA Packing Mode Host Bus Width

PMODE Internal bits 00 (32b) 01 (16b) 10 (8b)

00 Invalid for host DMA transfers using the EPBx buffers.
Use only with nonhost DMA transfers.

01 32 No pack 16 ↔ 32 8 ↔ 32

10 48 32 ↔ 48 16 ↔ 48 8 ↔ 48

11 Identical to PMODE = 10

ADSP-21065L SHARC DSP User’s Manual 8-25

Host Interface

Packing Control Bits in SYSCON
Figure 8-4 shows the SYSCON register bits that affect host data packing
and memory width and Table 8-3 on page 8-26 describes them.

Figure 8-4. SYSCON register bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00001000 0

EBPR
Ext. Bus Priority
00=even
01=core processor
10=I/O processor

DCPR
DMA Chn. 8–9 Priority
1=rotating
0=sequential

BHD
Buffer Hang Disable

0=enable
1=disable

ADREDY
Active Drive REDY
0=open drain (o/p)

1=active drive (a/d)

IMDW1
Int. Mem. Blk1

Data Width
0=32-bit data
1=40-bit data

IMDW0
Int. Mem. Blk0

Data Width
0=32-bit data
1=40-bit data

SRST
Software Reset

BSO
Boot Select Override

HBW
Host Bus Width
00=32 bits
01=16 bits
10=8 bits
11=reserved

IIVT
Int. Interrupt Vector
Table
(no boot mode)

HMSWF
Host Packing Order-
MSW First
0=LSW
1=MSW

HPFLSH
Host Packing
Status Flush

Data Packing

8-26 ADSP-21065L SHARC DSP User’s Manual

After reset, the SYSCON register initializes to 0x0000 0020, which causes
the processor to assume an 8-bit bus for the host. To change this selection,
you must write four 8-bit words to SYSCON (in the HBW bits), even if
the host bus is 16- or 32-bits wide.

Table 8-3. SYSCON control bits

Bit Name Description

4-5 HBW Host packing mode.

Specifies the external word width of the host
bus for host accesses to the processor’s IOP
registers.

00= 32-bit host bus

01= 16-bit host bus

10= 8-bit host bus

All IOP registers share one 16-bit write
latch. The write latch transfers data to the
appropriate channel only after it accumu-
lates 16-bits. So, to prevent data corrup-
tion, the host must write to the processor’s
IOP registers in 8-bit word pairs, maintain-
ing control of the bus through both writes
of a word pair.

11= reserved; invalid value

If the host access is a read or write of any IOP
register other than the external port FIFO buff-
ers (EPB0 or EPB1), the internal word width is
always 32 bits, regardless of the width of the
host bus.

ADSP-21065L SHARC DSP User’s Manual 8-27

Host Interface

6 HMSWF Host packing order.

Specifies the packing order of host-accessed
words. The I/O processor ignores HMSWF for
32-to-48 bit packing.

0= LSW first

1= MSW first

7 HPFLSH Host packing status flush.

Resets the host packing status. Host accesses
must not occur while the processor’s core is
writing the HPFLSH bit.

A two cycle latency always occurs before the
flush takes effect and the host can resume nor-
mal operations.

HPFLSH always reads as 0.

8 IMDW01 Internal memory block 0 data width.

Selects the data word width for block 0 of
internal memory.

0= 32-bit data

1= 40-bit data

9 IMDW11 Internal memory block 1 data width.

Selects the data word width for block 1 of
internal memory.

0= 32-bit data

1= 40-bit data

1 This bit has no affect on fetches of 48-bit instructions in a memory block. For details, see
Chapter 5, Memory.)

Table 8-3. SYSCON control bits (Cont’d)

Bit Name Description

Data Packing

8-28 ADSP-21065L SHARC DSP User’s Manual

Packing Control Bits in DMACx
The PMODE and TRAN bits in the DMACx control register of each
external port buffer (DMAC0-1), which correspond to the EPB0-1 buffers,
also affect the packing mode, as shown in Table 8-4.

Table 8-4. DMACx control bits

Bit Name Description

0 DEN DMA enable for external port DMACx.

0= disable DMA.

1= enable DMA

Must clear to perform single-word, non-DMA trans-
fers through the EPBx buffers.

2 TRAN DMA transfer direction for external port DMACx.

0= internal to external (transmit)

1= external to internal (receive)

For single-word transfers, must set to 1 for host
reads from an EPBx buffers or to 0 for host
writes to an EPBx buffer.

6-7 PMODE DMA packing mode for external port DMACx.

Selects the DMA packing mode and specifies the
word width of the processor’s internal data bus.

00= Invalid for host transfers through the EPBx
buffers

01= 32-bit internal words

1X= 48-bit internal words

When using any of the valid PMODE packing modes
for non-DMA, single-word transfers to or from an
EPBx buffer, you must also set the TRAN bit
appropriately.

ADSP-21065L SHARC DSP User’s Manual 8-29

Host Interface

See Table 8-2 on page 8-24 for details on how the PMODE bits and
HBW bits combine to affect the packing mode when using the EPBx
buffers.

To change the host packing mode, follow these steps:

1. Write to the SYSCON register and change the value of HBW.

2. Read SYSCON to ensure that the write was successful.

Since this read functions as an interlock only, ignore the read data.

3. Repeat step 1 to flush the read since it might have occurred in the
previous packing mode.

4. Wait four cycles.

During packed transfers with a slow host, the host can relinquish the bus
before the I/O processor has finished packing the current word. That is,
the host can release the bus after writing the first part of the word and
reassert HBR later to write the second part of the word. You could imple-
ment this scheme to enable another processor to write to this processor
without the write affecting the host packing operation.

Data Packing

8-30 ADSP-21065L SHARC DSP User’s Manual

Data Bus Lines and Host Bus Width
Table 8-5 shows which data bus lines the processor uses for different host
bus widths and packing modes.

If the host bus width is 32 bits and no packing (HBW = 00) is selected for
an access, the processor inputs whatever data is on the external bus and
drives DATA31-0 with whatever data is in the corresponding memory bits.

If the host bus width is 16 bits and 32 or 48-bit packing (HBW=1x) is
selected, the processor ignores the upper 16 bits of the 32-bit external data
bus when inputting data, and it drives these bits as 0s when outputting
data.

If the host bus width is 8 bits and 32 or 48-bit packing (HBW=1x) is
selected, the processor ignores the upper 24 bits of the 32-bit external data
bus when inputting data, and it drives these bits as 0s when outputting
data.

Table 8-5. Host bus width and data bus lines

HBW Data In Data Out

32 bits Processor inputs and outputs 32-bit data over the
external bus (DATA31-0) as is.

16 bits Processor ignores upper
16 bits of the external
bus (DATA31-16).

Processor outputs 0s in the
upper 16 bits of the exter-
nal bus (DATA31-16).

 8 bits Processor ignores upper
24 bits of the external
bus (DATA31-8).

Processor outputs 0s on the
upper 24 bits of the exter-
nal bus (DATA31-8).

ADSP-21065L SHARC DSP User’s Manual 8-31

Host Interface

Figure 8-5 shows how the processor transfers different data word sizes
over the external port.

Figure 8-5. External port data alignment

32-Bit Data Packing and Unpacking

Using typical bus interface hardware as shown in Figure 8-8 on page 8-45,
when a host reads a 32-bit word with 16-bit unpacking, the host performs
the following sequence. (See Figure 8-6 on page 8-32 for an example tim-
ing diagram of this host read sequence.)

1. The host drives an address, asserting CS, and asserts RD to initiate
a read cycle.

2. The selected processor deasserts REDY, latches the address, and
performs an internal read to get the data.

3. When the processor has the data, it asserts REDY and drives the
first 16-bit word.

4. The host latches the data and deasserts RD.

32-bit Float or Fixed
D31-D0

32-bit Packed

16-bit Packed

8-bit Packed

EPROM
Boot

31 24 16 8 0

Data Packing

8-32 ADSP-21065L SHARC DSP User’s Manual

Figure 8-6. Example timing for Host Interface data packing

Word1
Write

Address

1st
Word

Word1

REDY

32/48 Bit Packing

ADDR7-0

DATA31-0

Word1
Write

Address

Word2
Write

Address

Word1
Read

Address

Word2
Read

Address

Word2
Read

Address

Write 1st
Long Word

into processor

Write 2nd
Long Word

into processor

Read 1st
Long Word

into processor

Read 2nd
Long Word

into processor

2nd
Word

3rd
Word

Word 2 Word 3

Host Write With 32/48 Bit Packing Host ReadWith32/48 Bit Packing

WR

RD

Write Address (Same) Write Address Read Address (Same) Read Address

REDY

write 1st word
into processor

write 2nd word
into processor

read 1st word
from processor

read 2nd word
from processor

valid valid valid valid

16/32 Bit Packing

DATA15-0

Host Write With 16/32 Bit Packing HostRead With16/32Bit Packing

WR

RD

andM=0orany
E=1

ADDR7-0
andM=0orany
E=1

ADSP-21065L SHARC DSP User’s Manual 8-33

Host Interface

5. The host initiates another read access, driving the address of the
data to access and then asserting RD.

6. The processor transmits the second 16-bit word.

Using typical bus interface hardware as shown in Figure 8-8 on page 8-45,
when a the host writes a 32-bit word with 16-bit packing, the host per-
forms the following sequence. (See Figure 8-6 on page 8-32 for an
example timing diagram of this host write sequence.)

1. The host drives the write address, asserting CS, and asserts WR to
initiate a write cycle.

2. The processor asserts REDY when it is ready to accept data.

3. The host drives the address and the first 16-bit word and deasserts
WR (high).

4. The processor latches the first 16-bit word.

5. The host drives the same address and asserts WR again to initiate
another write cycle for the second 16-bit word.

6. After the processor accepts the second word, it performs an internal
write to its IOP register.

If it has not completed the internal write by the time the host tries
another access and the slave write FIFO has no space, the processor
delays that access with REDY.

While the processor is waiting for another word from the host to
complete the packed word, the HPS bits in the SYSTAT register
are nonzero. (See “SYSTAT Register Bits” on page 8-40.) Because
the Host Interface has only one packing buffer, the host must com-
plete each packed read or write before beginning another.

Data Packing

8-34 ADSP-21065L SHARC DSP User’s Manual

For 8-bit hosts, reads and writes follow these same sequences, except that
8-bit hosts must perform four reads or four writes to transfer a 32-bit
word.

48-Bit Instruction Packing

Using the EPBx buffers, a host can also download and upload 48-bit
instructions over its 8-, 16- or 32-bit bus.

A 32-bit host transfers 32-bit data on DATA31-0. To transfer an odd num-
ber of instruction words, you must flush the packing buffer with a dummy
access to remove the unused word.

The packing sequence for downloading instructions from a 32-bit host
bus takes three cycles for every two words as shown in Table 8-6.

For 32-to-48-bit packing, the processor ignores the HMSWF bit in the
SYSCON register.

The packing sequence for downloading or uploading instructions over a
16-bit host bus takes three cycles for every word (see Table 8-7). The

Table 8-6. Host to processor, 32- to 48-bit word packing

Transfer Data bus lines 31-16 Data Bus Lines 15-0

First Word 1; bits 47-32 Word 1; bits 31-16

Second Word 2; bits 15-0 Word 1; bits 15-0

Third Word 2; bits 47-32 Word 2; bits 31-16

ADSP-21065L SHARC DSP User’s Manual 8-35

Host Interface

HMSWF bit in SYSCON determines whether the I/O processor packs the
most significant or least significant 16-bit word first.

The packing sequence for downloading or uploading instructions over a
8-bit host bus takes six cycles for every word (see Table 8-8). The
HMSWF bit in SYSCON determines whether the I/O processor packs the
most significant or least significant 8-bit word first.

Table 8-7. Host to processor, 16- to 48-bit word packing

Transfer Data Bus Pins 15-0

First Word 1; bits 47-32

Second Word 1; bits 31-16

Third Word 1; bits 15-0

 HMSWF = 1 (host packing order is MSW)

Table 8-8. Host to processor, 8- to 48-bit word packing

Transfer Data Bus Pins 7-0

First Word 1; bits 47-40

Second Word 1; bits 39-32

Third Word 1; bits 31-24

Fourth Word 1; bits 23-16

Fifth Word 1; bits 15-8

Sixth Word 1; bits 7-0

 HMSWF = 1 (host packing order is MSW)

Interprocessor Messages

8-36 ADSP-21065L SHARC DSP User’s Manual

Interprocessor Messages
Once granted control of the processor, the host can communicate with it
by writing messages to its memory-mapped IOP registers. In a multipro-
cessor system, the host can access the IOP registers of both processors.

The MSGR7-0 registers are general-purpose registers that you can use to
pass messages between the host and the processor or to implement sema-
phores and resource sharing between both processors.

You can use the MSGRx and VIRPT registers for message passing in the
following ways:

• Message passing

The host can use any of the eight message registers, MSGR7-0, to
communicate with the processor.

• Vector interrupts

The host can write the address of an interrupt service routine to the
VIRPT register to issue a vector interrupt to the processor. This
causes an immediate high-priority interrupt on the processor that,
when serviced, causes the processor to branch to the specified service
routine.

Since resources within a single processor can share these registers, conflicts
can occur. Your system software is responsible for preventing such con-
flicts. For details, see Appendix E, Control and Status Registers, in
ADSP-21065L SHARC DSP Technical Reference.

The MSGRx and VIRPT registers also support shared-bus
multiprocessing through the external port.

ADSP-21065L SHARC DSP User’s Manual 8-37

Host Interface

Message Passing (MSGRx)
The host has three software protocols available to it for communicating
with the processor through the processor’s MSGRx message registers:

• Vector-interrupt-driven

The host fills predetermined MSGRx registers with data and writes
the address of the service routine to VIRPT to trigger a vector inter-
rupt.

The service routine reads the data from the MSGRx registers and
writes 0 to VIRPT to tell the host it is done. Alternatively, the
service routine could signal the host using one of the processor’s
FLAG3-0 pins.

• Register handshake

You designate four of the MSGRx registers as follows:

• A receive register (R)

• A receive handshake register (RH)

• A transmit register (T)

• A transmit handshake register (TH)

To pass data to the processor, the host writes data into T and then
writes 1 into TH. When the processor sees 1 in TH, it reads the data
from T and then writes 0 back to TH. When the host sees 0 in TH,
it knows that the transfer has finished.

The processor follows the same sequence to pass data to the host
through R and RH.

Interprocessor Messages

8-38 ADSP-21065L SHARC DSP User’s Manual

• Register write-back.

This method is similar to the register handshake method, but uses
the T and R data registers only.

The host writes data to T. When the processor sees a non-zero value
in T, it retrieves the value and writes 0 back to T.

The host uses a similar sequence to receive data.

This method works well only if the data to pass does not include 0.

Host Vector Interrupts (VIRPT)
The processor uses vector interrupts to respond to interprocessor com-
mands from the host or from another ADSP-21065L. When the host
writes an address to the processor’s VIRPT register, it generates a vector
interrupt.

When it services a vector interrupt, the processor automatically pushes the
status stack and begins executing the service routine located at the address
specified in VIRPT. The lower twenty-four bits of VIRPT contain the
address. Optionally, you can use the upper eight bits as data for the inter-
rupt service routine to read. At reset, the processor reinitializes VIRPT to
its standard address in the interrupt vector table.

The minimum latency for vector interrupts is six cycles, five of which are
NOPs. When the interrupt service routine reaches the RTI (return from
interrupt) instruction, the processor automatically pops the status stack.

Make sure your system software checks the VIPD bit in the SYSTAT reg-
ister. This bit reflects the status of the VIRPT register:

• If the host writes the VIRPT while a previous vector interrupt is
pending, the new vector address replaces the pending one.

ADSP-21065L SHARC DSP User’s Manual 8-39

Host Interface

• If the host writes VIRPT while the processor is servicing an inter-
rupt, the processor ignores the new vector address, so the host’s
write doesn’t generate a new interrupt.

• A processor write to its own VIRPT register doesn’t generate an
interrupt.

Using the processor’s vector interrupt feature, the host could perform the
following procedure:

1. Poll the VIRPT register until it reads a certain token value (for
example, 0).

2. Write the vector interrupt service routine address to VIRPT.

When the service routine is finished, the processor would write the
token back to VIRPT to tell the host that it is finished.

3. Initiate another vector interrupt if necessary.

SYSTAT Register Bits

8-40 ADSP-21065L SHARC DSP User’s Manual

SYSTAT Register Bits
The SYSTAT register provides multiprocessing status information prima-
rily. Figure 8-7 on page 8-43 shows the status bits in this register, and
Table 8-9 describes them.

Table 8-9. SYSTAT status bits

Bit Name Description

0 HSTM Host mastership.

Indicates whether the host has been granted
control of the bus.

0= Host is not bus master

1= Host is bus master

1 BSYN Bus synchronization.

Indicates when the processor’s bus arbitration
logic is synchronized after reset. (See “Bus
Arbitration Synchronization After Reset” on
page 7-21 for detailed information.)

0= Bus arbitration logic is not synchronized

1= Bus arbitration logic is synchronized

2-3 Reserved

4-5 CRBM Current bus master.

ID2-0 of the current bus master.

If CRBM = ID of this processor, this processor
is the current bus master.

CRBM is valid only for ID2-0> 0.

When ID2-0 = 000, CRBM is always 1.

ADSP-21065L SHARC DSP User’s Manual 8-41

Host Interface

6-7 Reserved

8-9 IDC ID code.

ID1-0 pinouts of the processor.

00= reserved for single-processor systems only

01= ID1

10= ID2

11= reserved

10-11 Reserved

12 SWPD Slave write pending data.

Indicates whether valid data is pending in the
slave write FIFO.

0= No data pending

Cleared after processor transfers data in
slave write FIFO to target IOP register.

1= Data pending

Set when the slave write FIFO receives new
data.

Table 8-9. SYSTAT status bits (Cont’d)

Bit Name Description

SYSTAT Register Bits

8-42 ADSP-21065L SHARC DSP User’s Manual

13 VIPD Vector interrupt pending.

Indicates that a pending vector interrupt has
not yet been serviced.

0= No vector interrupt pending

Cleared on return from interrupt service
routine.

1= Vector interrupt pending

Set when the VIRPT register has been writ-
ten.

The host or other processor that issued the
vector interrupt monitors this bit to determine
when the service routine has finished and when
it can issue a new vector interrupt.

14 HPS Host packing status.

Indicates whether host word packing has fin-
ished or the stage packing is in. (For details,
see “Data Packing” on page 8-24.)

0= Fully packed

1= Partially packed

15-31 Reserved

Table 8-9. SYSTAT status bits (Cont’d)

Bit Name Description

ADSP-21065L SHARC DSP User’s Manual 8-43

Host Interface

Figure 8-7. SYSTAT register bits

���������������/������������(���)�������������������������/����������

� � ����� �������� �

�(����)��������������������������/����������������(���)�����������������������

� � ���� ����� �

���

9��������	�@�-

���

.���#7��@	���A����

���

 ��$���

����

$�		����.�������	

����

F����	� ���		�-��+������

��

9����+�E����#����

�8�
���7�-�E��

�8�-	����7�-�E��

 ��

���+����������#����C	����; ;�

Interfacing with the System Bus

8-44 ADSP-21065L SHARC DSP User’s Manual

Interfacing with the System Bus
Consider a multiprocessor subsystem, consisting of two processors with
local memory, as one of several processing elements connected together
over a system bus. The ISA bus and the PCI bus are examples of such
systems.

In these subsystems, the processing elements arbitrate through an arbitra-
tion unit for control of the system bus. To arbitrate and become bus
master, a device must be able to drive a bus request signal and respond to
a bus grant signal. The arbitration unit, a device external to the processor,
determines which request to grant in any given cycle.

Accessing the Cluster Bus and Slave Processors
Figure 8-8 on page 8-45 shows an example of a basic interface to a system
bus that isolates the processor cluster bus from the system bus. The cluster
bus connects two processors and an external memory device together.

ADSP-21065L SHARC DSP User’s Manual 8-45

Host Interface

Figure 8-8. Basic system bus interface with cluster bus

When the system is not accessing the processors, the cluster bus supports
transfers between both processors and between the processors and the
external memory device.

ADSP-xxxx
#1

ADDR23-0

DATA31-0

ID2-0

ADSP-xxxx
#2

ADDR23-0

DATA31-0

ID2-0

WR

RD

ACK

MS3-0

HBR

HBG

BR2

BR1

001

010

5

3

3

5

HBR

HBG

WR

RD

ACK

MS3-0

ADDR

DATA

EXTERNAL
MEMORY

CS

ACK
OE

WE

System Data Bus

REDY

REDY

Write

Read

System Address Bus

Address
Comparator

CS1

HBG

HBR

CS2

CS2
CS1

REDYHBG
REDY
HBR

System Bus Interface

OE T/R

CLUSTER BUS SYSTEM BUS

BR1

BR2

"Address Valid"

Interfacing with the System Bus

8-46 ADSP-21065L SHARC DSP User’s Manual

System accesses of the processors follow this procedure:

1. When the system wants to access a processor, it executes a read or
write to the address range of the subsystem’s IOP registers.

2. The address comparator in the system bus interface detects a local
access and asserts HBR and the CS line of the appropriate
processor.

3. The selected processor holds off the system bus with REDY until it
is ready to accept the data.

4. The master processor asserts the HBG signal.

HBG enables the system bus buffers, while the read and write sig-
nals control the buffers’ direction for data.

To avoid glitches on the HBR line when addresses are changing, an
address latch enable signal from the system or the system read or write sig-
nals can qualify the address comparator. These methods cause the address
comparator to deassert HBR each time the system deasserts a read or write
or the address changes. Because these techniques deassert HBR with each
access, the overhead of an HTC (Host Transition Cycle) occurs as part of
each access. To avoid this type of overhead, latch HBG during long
sequences of bus accesses.

Master Processor Accesses of the System Bus
Figure 8-9 on page 8-47 shows a more complex, bidirectional system
interface in which a processor becomes bus master to access the system
bus.

ADSP-21065L SHARC DSP User’s Manual 8-47

Host Interface

Figure 8-9. Bidirectional system bus interface

Before it begins the access, the processor generates the system bus request
signal to request permission to become bus master. The system bus arbi-
tration unit determines when to respond with the system bus grant signal
on pin FLAG0.

The method a processor uses to arbitrate for the system bus depends on
whether its core or its DMA controller initiates the access.

ADSP-xxxx
#1

ADDR23-0

DATA23-0

ID2-0

ADSP-xxxx
#2

ADDR23-0

DATA31-0

ID2-0

WR

RD
ACK

MS3-0

HBR

HBG

BR1

001

010

5

3

3

BR2
5

HBR

HBG

WR

RD

ACK

MS3-0

ADDR

DATA

EXTERNAL
MEMORY

CS

ACK

OE

WE

System Data Bus

REDY

REDY

Host Write

Host Read

System Address Bus

FLAG0

FLAG0

System Bus Grant

Address
Comparator

CS1

SBTS

HBG

HBR

CS2

SBTS

CS2

CS1

REDYHBG
REDY
HBR

ACK

MS3-0

System Bus Request

System Bus Interface

WR

RD

HBG

"Address Valid"

BR1

BR2

CLUSTER BUS SYSTEM BUS

Interfacing with the System Bus

8-48 ADSP-21065L SHARC DSP User’s Manual

Core Accesses of the System Bus

The processor’s core uses one of two methods to access the system bus:

• The core sets a flag (FLAGx) and waits for the system bus grant sig-
nal through another FLAG.

This method avoids tying up the local bus during the wait. Tying
the system bus grant signal to an interrupt pin enables the proces-
sor’s core to continue doing useful work while it waits.

• The processor’s core assumes that the system bus is available, and if
it isn’t, the core either waits or aborts the access.

The processor asserts one of its memory select lines MS3-0 to begin
the access. Doing so also asserts the system bus request signal. If the
system bus is unavailable (FLAG0 is deasserted), the system bus
interface asserts ACK to hold off the processor. Although this
approach is simple, accesses to a busy system bus tie up both the
processor and the cluster bus. To resolve this, you can use the Type
10 instruction (see page A-52, in ADSP-21065L SHARC DSP Tech-
nical Reference):

IF condition JUMP(addr), ELSE compute, DM(addr) = dreg;

In this example, the Type 10 instruction aborts the bus access if the
condition, the system bus grant signal (FLAG0), is false and causes
a branch to a try again later routine. This method works well if the
system bus grant signal (FLAG0) is asserted most of the time.

If you don’t use the Type 10 instruction and the processor’s core
attempts an access before the bus has been granted, the access can
cause a deadlock condition.

ADSP-21065L SHARC DSP User’s Manual 8-49

Host Interface

Resolving Bus Access Deadlock

It’s rare but possible for both the system and the processor to try to access
each other’s bus in the same cycle, causing a deadlock in which ACK
remains deasserted, so neither access can finish.

Normally, the master processor, in response to an HBR request, asserts
HBG after the completion of the current access. If it is accessing the sys-
tem bus at the same time, however, the master processor does not assert
HBG because the current access cannot finish.

To break this type of deadlock, once your software detects it (both sides
have enabled a system bus to cluster bus buffer), assert the SBTS (Suspend
Bus Three-state pin) input for one or more cycles. (For details, see
page 8-50.)

When the host asserts both SBTS and HBR, the processor enters slave
mode and suspends its external access. This enables the system’s access to
the cluster bus to proceed after the processor asserts HBG.

Apply the SBTS and HBR combination only when a processor’s access to
the system bus causes a deadlock. Do not apply it during a cluster bus
transfer because doing so causes two assertions of the WR signal, once
before SBTS is asserted and once after the access resumes. With transfers
between two processors over the cluster bus, this procedure violates the
slave’s timing requirements.

Results of using the SBTS/HBR combination depend on the conditions
under which it was applied:

• When the host asserts both SBTS and HBR in the same cycle that
the processor is performing an external access, the external access is
suspended until the host deasserts both SBTS and HBR.

• When the host asserts SBTS and HBR during an external DMA
access, the processor does not assert HBG until the access has fin-
ished.

Interfacing with the System Bus

8-50 ADSP-21065L SHARC DSP User’s Manual

• When the host asserts SBTS and HBR while bus lock is set, the pro-
cessor places its bus signals in a high impedance state, but does not
enter slave mode.

The host can suspend a processor’s access in progress and gain access to
the processor’s internal resources, if:

• The access originates from the processor’s core, not its DMA con-
troller;

• Bus lock is disabled.

To do so, the host performs this procedure:

1. After it asserts HBR, the host asserts SBTS for one or more cycles.

If SBTS is asserted one or more cycles after the processor recognizes
HBR, the processor is guaranteed to assert HBG in the next cycle.
The host must deassert SBTS between the time it receives HBG
and the time it deasserts HBR.

2. The host drives both RD and WR strobes to their correct value
(within the setup time specified in the processor’s data sheet) after
the processor asserts HBG.

The host can then perform as many accesses as needed.

The host has full control of the bus and can access the other the
processor or other peripherals on the bus.

3. The host deasserts HBR.

4. One cycle after deasserting HBG, the processor restarts its sus-
pended access.

DMA Controller Accesses of the System Bus

Unlike with core accesses, with DMA controller accesses, you cannot use
the SBTS and HBR combination to resolve a system bus deadlock because

ADSP-21065L SHARC DSP User’s Manual 8-51

Host Interface

once a DMA word transfer has begun in the processor, it must finish (the
DMA controller must receive the ACK signal). If the host asserts SBTS
and HBR during a DMA access, the master processor does not assert HBG
until the access cycle has finished. Preventing the single DMA access from
finishing can create a deadlock condition.

To prevent system bus deadlock when using DMA, your software must
make sure that the system bus arbitration unit has asserted the system bus
grant signal before it initiates the DMA sequence. If a higher priority
access needs attention, to hold off the DMA sequence, the host can assert
HBR at any time after a word has been transferred.

To prevent another deadlock, make sure the system bus arbitration unit
asserts the system bus grant signal before the host deasserts HBR. When
the DMA sequence finishes, make sure the DMA interrupt service routine
clears the external system bus request flag.

Because the system bus is likely to be substantially slower than the proces-
sor’s cluster bus, using DMA handshake mode may improve performance
on the cluster bus. In this case, you tie the system bus grant signal to the
DMA request line, DMARx. Then the DMA controller initiates access to
the cluster bus and the system bus only when the system bus is available.

Using a FIFO in the system bus interface to post DMA data from the clus-
ter bus may also increase performance on the cluster bus, offsetting a slow
system bus.

Uniprocessor to Microprocessor Bus Interface
One processor without external memory can connect more or less directly
to a host’s bus, requiring few or no buffers. This type of connection
assumes that the processor can execute its application from internal mem-
ory most of the time, with only occasional need to request an external
access.

Interfacing with the System Bus

8-52 ADSP-21065L SHARC DSP User’s Manual

In this configuration, the host continuously asserts HBR, unless it detects
BR1 (the BRx line of the processor with ID1). Then, when the host is
ready to give up its bus, it deasserts HBR to enable the processor to per-
form an external access.

Most of the time, however, the host can read or write to the processor at
will. To do so, the host asserts CS and initiates handshaking with REDY.
In this scenario, the processor need not respond with HBG.

ADSP-21065L SHARC DSP User’s Manual 9-1

9 SERIAL PORTS
Figure 9-0.

Table 9-0.

Listing 9-0.

The processor has two independent, synchronous serial ports, SPORT0
and SPORT1, that provide an I/O interface to peripheral devices.

Each serial port has a set of control registers and data buffers. With a range
of clock and frame synchronization options, the SPORTs support a variety
of serial communication protocols and provide a glueless hardware inter-
face to industry-standard data converters and CODECs.

The processor’s serial ports provide these features and capabilities:

• Two transmit and two receive channels per serial port.

Each serial port can transmit and receive data simultaneously for full
duplex operation.

• Inexpensive eight- or six-line connection to peripheral devices for
two-way communication.

• Independent transmit and receive functions.

Independent functioning provides greater flexibility for serial com-
munications.

• Double buffering of data.

• Integral hardware for µ-law and A-law companding.

• Operation at processor’s full clock rate.

This capability provides each with a maximum data rate of
nM bit/s, where n equals the processor’s input clock frequency.

9-2 ADSP-21065L SHARC DSP User’s Manual

• Core controlled interrupt-driven, single-word transfers to and from
on-chip memory.

• DMA controller controlled block transfers to and from on-chip
memory, including chained DMA operations of multiple data
blocks.

• Three operation modes: standard, I2S, and multichannel.

In standard mode, one or both transmit channels can transmit, and
one or both receive channels can receive.

In I2S mode, one or both transmit channels can transmit, and one
or both receive channels can receive. Each channel either transmits
or receives L and R channels.

In both standard and I2S modes, when both A and B channels are
used, they transmit or receive data simultaneously, sending or
receiving bit 0 on the same edge of the serial clock, bit 1 on the next
edge of the serial clock, and so on.

In multichannel mode, each SPORT can receive and transmit data
selectively from channels of a time-division-multiplexed serial bit-
stream—a useful option for T1 interfaces.

• Support for internally or externally generated serial clock and frame
sync signals in a wide range of frequencies.

• Support for data words of 3- to 32-bits and MSB or LSB formats.

ADSP-21065L SHARC DSP User’s Manual 9-3

Serial Ports

Figure 9-1. Serial port block diagram

Hardware
Companding

(compression)

DM Data bus
PM Data bus
I/O Data bus

32

32 32

32 32

32 32

32 32

Tx0_A
Transmit Data Buffer

Tx0_B
Transmit Data Buffer

Rx0_A
Receive Data Buffer

Rx0_B
Receive Data Buffer

Hardware
Companding
(expansion)

Transmit Shift
Register

Transmit Shift
Register

Receive Shift
Register

Receive Shift
Register

Serial Port
Control

DT0A DR0ADT0B DR0B

TCLKn RCLKnTFSn

TFSn

RFSn

RFSn

Serial Port Connections

9-4 ADSP-21065L SHARC DSP User’s Manual

Serial Port Connections
Figure 9-1 on page 9-3 shows the architecture of each serial port and
Table 9-1 lists and describes the pins.

A serial port receives serial data on its DR input and transmits serial data
on its DT output. It can receive and transmit simultaneously for full
duplex operation.

Serial communications are synchronized to a clock signal—a clock pulse
must accompany every data bit. Each serial port can generate or receive its

Table 9-1. Serial port pins

Function

SPORT0 SPORT1

A Chn B Chn A Chn B Chn

Transmit data DT0A DT0B DT1A DT1B

Transmit clock TCLK0 TCLK1

Transmit frame sync/
word select

TFS0 TFS1

Receive data DR0A DR0B DR1A DR1B

Receive clock RCLK0 RCLK1

Receive frame sync RFS0 RFS1

For non-multichannel mode the processor drives the DT pins only
when actively transmitting data, (that is, a frame sync has been rec-
ognized and data has not finished transmitting). Otherwise, they are
three-stated. In multichannel mode, DT is driven if the transmitter
is active in that time slot. Otherwise, it is in a high impedance state
(if it is in an inactive slot).

ADSP-21065L SHARC DSP User’s Manual 9-5

Serial Ports

own transmit clock signal (TCLK) and receive clock signal (RCLK). You
configure internally-generated serial clock frequencies in a serial port’s
TDIVx and RDIVx registers.

You can use frame synchronization to signal data, signaling either at the
beginning of an individual word or at the beginning of a block of words.
Configuration of the frame sync signals depends on the type of serial
device connected to the processor. Each serial port can generate or receive
its own transmit frame sync (TFS) signal and receive frame sync (RFS) sig-
nal. You configure internally-generated frame sync frequencies in a serial
port’s TDIVx and RDIVx registers.

Figure 9-1 on page 9-3 shows the components of a serial port. The proces-
sor’s core writes data for transmission to the TX buffer. Serial port
hardware compresses (optional) the data, then automatically transfers it to
the transmit shift register. The transmit shift register shifts the data out on
the SPORT’s DT pin synchronously to the TCLK transmit clock. When
using framing signals, the TFS signal indicates the beginning of the serial
word transmission. With serial port enabled (SPEN=1), the processor always
drives the DT pin, unless the channel is operating in multichannel mode
and an inactive time slot occurs. (For details, see “Multichannel Mode” on
page 9-67.)

Likewise, the receive shift register shifts in data from the SPORT’s DR pin
synchronously to the RCLK receive clock. When using framing signals,
the RFS signal indicates the beginning of the serial word reception. When
the receive shift register shifts in an entire word, serial port hardware
expands (optional) the data, then automatically transfers it to the RX
buffer.

Because the processor’s SPORTs are not UARTs, they cannot
communicate with an RS-232 device or with any other asyn-
chronous communications protocol.

Serial Port Connections

9-6 ADSP-21065L SHARC DSP User’s Manual

SPORT Interrupts
Each serial port has a transmit DMA interrupt and a receive DMA inter-
rupt. With serial port DMA disabled, interrupts occur for each data word
the serial port transmits and receives. Table 9-2 shows the priority of the
serial port interrupts.

SPORT interrupts occur on the second system clock (CLKIN) after the
serial port latches or drives out the last bit of the serial word.

(Cont’d)

You can, however, implement RS-232-compatible communi-
cations with the processor. To do so, use two of the FLAG11-

0 pins as asynchronous data receive and transmit signals. For
details, see the appropriate chapter in Digital Signal Process-
ing Applications Using The ADSP-2100 Family, Volume 2.
Although these examples are 16-bit, fixed-point applications,
you can easily modify the code to run on the ADSP-21065L.

Table 9-2. SPORT interrupts

Interrupt1

1 Interrupt names are defined in the def21065L.h include file supplied with the ADSP-21000
Family Development Software.

Function Priority

SPR0I SPORT0 receive DMA channels 0 and 1 Highest

SPR1I SPORT1 receive DMA channels 2 and 3

SPT0I SPORT0 transmit DMA channels 4 and 5

SPT1I SPORT1 transmit DMA channels 6 and 7

EP0I Ext. port buffer 0 DMA channel 8

EP1II Ext. port buffer 1 DMA channel 9 Lowest

ADSP-21065L SHARC DSP User’s Manual 9-7

Serial Ports

SPORT RESET
You can reset the serial ports using either the hardware or the software
method. Each method affects the serial ports differently.

Both methods disable the serial ports and clear the data buffer status bits.
Re-enabling a serial port does not affect its data buffer status bits. But,
regardless of whether a serial port is enabled or disabled, a write or read of
its TX or RX buffers changes the corresponding data buffer status bits,
incrementing or decrementing them, respectively. This is so, even when
you write the RX buffer (increments the RXS status bits) or read the TX
buffer (decrements the TXS status bits).

Table 9-3 shows the results of writing and reading full and empty TX and
RX data buffers. Some results depend on the value of the BHD bit in the
SYSCON register (see page 9-15 and page 9-86).

Table 9-3. Results of TX and RX writes and reads

Operation Full TX Empty TX Full RX Empty RX

Write Depends on
BHD bit:

• Hangs pro-
cessor

• Overwrites
current
contents of
TX buffer

Increments
status bits

Depends on
BHD bit:

• Hangs pro-
cessor

• Overwrites
current
contents of
RX buffer

Increments
status bits

SPORT RESET

9-8 ADSP-21065L SHARC DSP User’s Manual

When re-enabled (in the STCTLx or SRCTLx control register) after reset,
a serial port configured for external clock and frame sync can start trans-
mitting or receiving data two CLKIN cycles after becoming enabled.

Using the Hardware Reset Method
To perform a hardware reset, you use the processor’s RESET pin.

A hardware reset clears the STCTLx and SRCTLx control registers
(including the SPEN enable bits) and the TDIVx and RDIVx frame sync
divisor registers to disable the serial port.

This method aborts any ongoing operations.

Using the Software Reset Method
To perform a software reset, you clear the serial port’s enable bit (SPEN)
in the STCTLx and SRCTLx control registers.

A software reset disables the serial port and clears all data buffer status
bits.

This method aborts any ongoing operations.

Read Decrements
status bits

Depends on
BHD bit:

• Hangs pro-
cessor

• Reads
invalid
data

Decrements
status bits

Depends on
BHD bit:

• Hangs pro-
cessor

• Reads
invalid
data

Table 9-3. Results of TX and RX writes and reads (Cont’d)

Operation Full TX Empty TX Full RX Empty RX

ADSP-21065L SHARC DSP User’s Manual 9-9

Serial Ports

SPORT Control Registers and Data Buffers
Each SPORT has a set of control and configuration registers and data
buffers, as shown in Table 9-4. These registers and buffers are part of the
IOP register set.

Table 9-4. SPORT control and data registers

Register Function

STCTLx SPORT transmit control register

TXx_z1

1 x = Serial port 0 or 1; z = Channel A or B

Transmit data buffer

TDIVx Transmit clock and frame sync divisors

MTCSx Multichannel transmit select

MTCCSx Multichannel transmit compand select

SRCTLx SPORT receive control register

RXx_z1 Receive data buffer

RDIVx Receive clock and frame sync divisors

MRCSx Multichannel receive select

MRCCSx Multichannel receive companding select

KEYWDx SPORT receive comparison register

IMASKx SPORT receive comparison mask

SPORT Control Registers and Data Buffers

9-10 ADSP-21065L SHARC DSP User’s Manual

Table 9-5 shows the memory-mapped address and reset initialization value
of each SPORT register. All of these registers are 32 bits wide.

Table 9-5. SPORT registers memory-mapped addresses and reset values

Register Address Reset Description

STCTL0 0x00E0 0x0000 0000 SPORT0 transmit control reg-
ister

SRCTL0 0x00E1 0x0000 0000 SPORT0 receive control reg-
ister

TX0_A 0x00E2 None SPORT0 transmit data buffer;
A data

RX0_A 0x00E3 None SPORT0 receive data buffer;
A data

TDIV0 0x00E4 None SPORT0 transmit divisor

Reserved 0x00E5

RDIV0 0x00E6 None SPORT0 receive divisor

Reserved 0x00E7

MTCS0 0x00E8 None SPORT0 multichannel transmit
select

MRCS0 0x00E9 None SPORT0 multichannel receive
select

MTCCS0 0x00EA None SPORT0 multichannel transmit
compand select

MRCCS0 0x00EB None SPORT0 multichannel receive
compand select

KEYWD0 0x00EC None SPORT0 receive comparison
register

ADSP-21065L SHARC DSP User’s Manual 9-11

Serial Ports

IMASK0 0x00ED None SPORT0 receive comparison
mask register

TX0_B 0x00EE None SPORT0 transmit data buffer;
B data

RX0_B 0x00EF None SPORT0 receive data buffer;
B data

STCTL1 0x00F0 0x0000 0000 SPORT1 transmit control reg-
ister

SRCTL1 0x00F1 0x0000 0000 SPORT1 receive control reg-
ister

TX1_A 0x00F2 None SPORT1 transmit data buffer;
A data

RX1_A 0x00F3 None SPORT1 receive data buffer;
A data

TDIV1 0x00F4 None SPORT1 transmit divisor

Reserved 0x00F5

RDIV1 0x00F6 None SPORT1 receive divisor

Reserved 0x00F7

MTCS1 0x00F8 None SPORT1 multichannel transmit
select

MRCS1 0x00F9 None SPORT1 multichannel receive
select

MTCCS1 0x00FA None SPORT1 multichannel transmit
compand select

Table 9-5. SPORT registers memory-mapped addresses and reset values

Register Address Reset Description

SPORT Control Registers and Data Buffers

9-12 ADSP-21065L SHARC DSP User’s Manual

To program the SPORT control registers, you write to the appropriate
address in memory. Applications can use the symbolic names of the regis-
ters and individual control bits. The file def21065L.h, provided in the
INCLUDE directory of the ADSP-21000 Family Development Software, con-
tains the #define definitions for these symbols. See Appendix E, Control
and Status Registers, in ADSP-21065L SHARC DSP Technical Reference,
for a listing of the file’s contents.

All control and status bits in the SPORT registers are active high unless
otherwise noted.

Because the SPORT registers are memory-mapped, you cannot write them
with data coming directly from memory. Instead, you must write or read
them from or to the processor’s core registers, usually one of the Register
File’s general-purpose universal registers (R15–R0).

External devices, such as another ADSP-21065L or a host, can write and
read the SPORT control registers to set up a serial port DMA operation,
for example.

MRCCS1 0x00FB None SPORT1 multichannel receive
compand select

KEYWD1 0x00FC None SPORT1 receive comparison
register

IMASK1 0x00FD None SPORT1 receive comparison
mask register

TX1_B 0x00FE None SPORT1 transmit data buffer;
B data

RX1_B 0x00FF None SPORT1 receive data buffer;
B data

Table 9-5. SPORT registers memory-mapped addresses and reset values

Register Address Reset Description

ADSP-21065L SHARC DSP User’s Manual 9-13

Serial Ports

When changing operating modes, write the serial port’s control register,
STCTLx or SRCTLx, with all 0s to clear it before you write the new mode
to the register.

Register Writes and Effect Latency
The processor completes internal writes to SPORT registers at the end of
the same CLKIN cycle in which they begin. So the newly written value is
available in the register on the next cycle. But when a write to one of the
STCTLx or SRCTLx control registers immediately follows a read of the
same register, the write takes at least two cycles to finish.

After a write to a SPORT register, control and mode bit changes take
effect by the end of the second CLKIN cycle after the write has finished.
Two CLKIN cycles after they are enabled (in the STCTLx or SRCTLx reg-
ister), the serial ports can start transmitting or receiving, losing no serial
clock cycles from that point on.

Transmit and Receive Data Buffers (TX, RX)
TX0_A and TX0_B are the transmit data buffers for SPORT0, and
TX1_A and TX1_B are the transmit data buffers for SPORT1. Either the
DMA controller or the processor’s core program must load these 32-bit
buffers with the data to transmit.

RX0_A and RX0_B are the receive data buffers for SPORT0, and RX1_A
and RX1_B are the receive data buffers for SPORT1. The receive shift reg-
ister automatically loads these 32-bit buffers when the serial port has
received an entire word. The receive and transmit buffers right-justify
words containing less than thirty-two bits.

TX Buffer Operation

Because they have a data register and an output shift register, the TX buff-
ers behave like two-location FIFOs (see Figure 9-1 on page 9-3).

SPORT Control Registers and Data Buffers

9-14 ADSP-21065L SHARC DSP User’s Manual

You can store only two 32-bit words in a TX buffer at a time. When the
TX buffer is loaded and the serial port has transmitted the previous word,
the TX buffer automatically loads its contents into the transmit shift regis-
ter. This transfer generates an interrupt, signaling that the TX buffer is not
full and ready to accept the next word. When serial port DMA is enabled
or the corresponding mask bit in the IMASK register is set, this interrupt
does not occur.

When a transmit frame synch occurs and the TX buffer contains no new
data, the processor sets the transmit underflow status bit (TUVF) in the
transmit control register. The TUVF status bit is sticky (the application
must explicitly clear the bit), and you must disable the serial port to clear
it.

RX Buffer Operation

Because they have two data register and an input shift register, the RX
buffers behave like three-location FIFOs (see Figure 9-1 on page 9-3).

You can store two 32-bit words in an RX buffer while the receive shift reg-
ister is shifting in a third word. The third word overwrites the second if
the processor’s core or the DMA controller has not read the first word.
When this occurs, the processor sets the receive overflow status bit
(ROVF) in the receive control register. The RX buffer can receive almost
three entire words without an internal read before overflow occurs. The
processor generates the overflow status on the last bit of third word. The
ROVF status bit is sticky, and you must disable the serial port to clear it.

When the RX buffer has received a word (the buffer is not empty), it gener-
ates an interrupt. When serial port DMA is enabled or the corresponding
bit in the IMASK register is set, the processor masks this interrupt.

Reading and Writing RX, TX

If the processor’s core attempts to read from an empty RX buffer or to
write to a full TX buffer, the processor delays the access until the external

ADSP-21065L SHARC DSP User’s Manual 9-15

Serial Ports

I/O device accesses the buffer. This delay is called a core processor hang.
To avoid hanging the processor’s core, read the buffer’s full or empty status
(in STCTLx or SRCTLx) before accessing a TX or RX buffer. To prevent
this type of hang condition globally, set the BHD (Buffer Hang Disable)
bit in the SYSCON register (see Table 9-3 on page 9-7).

The processor updates the status bits in STCTLx and SRCTLx during
core reads and writes, even when the serial port is disabled. For details, see
page 9-7.

Make sure your application disables a serial port when it writes to the
serial port’s RX buffer or reads from the serial port’s TX buffer; for exam-
ple, if it tests the results of companding.

Transmit and Receive Control Registers
(STCTL, SRCTL)

The main control registers for each serial port are the transmit control reg-
ister, STCTLx, and the receive control register, SRCTLx. See Table 9-6
and Table 9-7 on page 9-21 for the bit definitions of these registers. For
default bit values, see Figure 9-2 on page 9-18, Figure 9-3 on page 9-19,
Figure 9-4 on page 9-20, Figure 9-5 on page 9-23, Figure 9-6 on page
9-24, and Figure 9-7 on page 9-25. Some bit definitions depend on the
mode of operation for which the serial port is configured.

Table 9-6. STCTLx transmit control bits

Bit I2S Mode Standard Mode Multichannel Mode

0 SPEN_A SPEN_A Reserved

1 Reserved DTYPE DTYPE

2 Reserved DTYPE DTYPE

3 Reserved SENDN SENDN

SPORT Control Registers and Data Buffers

9-16 ADSP-21065L SHARC DSP User’s Manual

4 SLEN0 SLEN0 SLEN0

5 SLEN1 SLEN1 SLEN1

6 SLEN2 SLEN2 SLEN2

7 SLEN3 SLEN3 SLEN3

8 SLEN4 SLEN4 SLEN4

9 PACK PACK PACK

10 MSTR ICLK Reserved

11 OPMODE OPMODE OPMODE

12 Reserved CKRE CKRE

13 Reserved TFSR Reserved

14 Reserved ITFS Reserved

15 DITFS DITFS DITFS

16 L_FIRST LTFS LTFS

17 Reserved LAFS Reserved

18 SDEN_A SDEN_A SDEN_A

19 SCHEN_A SCHEN_A SCHEN_A

20 SDEN_B SDEN_B MFD

21 SCHEN_B SCHEN_B MFD

Table 9-6. STCTLx transmit control bits (Cont’d)

Bit I2S Mode Standard Mode Multichannel Mode

ADSP-21065L SHARC DSP User’s Manual 9-17

Serial Ports

22 FS_BOTH FS_BOTH MFD

23 Reserved Reserved MFD

24 SPEN_B SPEN_B CHNL

25 Reserved Reserved CHNL

26 TUVF_B TUVF_B CHNL

27 TXS_B TXS_B CHNL

28 TXS_B TXS_B CHNL

29 TUVF_A TUVF_A TUVF_A

30 TXS_A TXS_A TXS_A

31 TXS_A TXS_A TXS_A

Table 9-6. STCTLx transmit control bits (Cont’d)

Bit I2S Mode Standard Mode Multichannel Mode

SPORT Control Registers and Data Buffers

9-18 ADSP-21065L SHARC DSP User’s Manual

Figure 9-2. STCTLx transmit control register—Standard mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

OPMODE
Operation Mode

0=non-I2S mode
1=I2S mode

DITFS
TFS Data

 Dependency
0=depend.

1=independ.

SLEN
Serial Word Length -1

SPEN_A
SPORT Enable A
0=disable
1=enable

PACK
16/32-bit pack
0=no pack
1=pack

ITFS
TFS Source

0=external
1=internal

LTFS
Active Low TFS
0=active high
1=active low

SDEN_A
SPORT xmit DMA
 enable A
0=disable
1=enable

TXS_A
Status *

TX A Data Buffer
00=empty

10=partially full
11=full

TUVF_A
Status * (sticky)
TX A Underflow

SCHEN_A
SPORT xmit DMA
 chaining enable A
0=disable
1=enable
SDEN_B

SCHEN_B

FS_BOTH
Word Select

0=issue if data in
 either Tx

1=issue only if data
 in both Tx

TXS_B *

TUVF_B *

SPEN_B
SPORT Enable B

0=disable
1=enable

* Status is read-only

LAFS
Late TFS
0=early
1=late

TFSR
TFS Requirement

0=no TFS required
1=TFS required CKRE

Active Clock Edge
0=falling edge
1=rising edge

ICLK
Xmit Clk Source
0=external
1=internal

SENDN
Endian word format
0=MSB first
1=LSB first

DTYPE
Data Type
00=r-justify; fill MSB w/0s
01=r-justify; sign-ext MSB
10=compand µ-law
11=compand A-law

ADSP-21065L SHARC DSP User’s Manual 9-19

Serial Ports

Figure 9-3. STCTLx transmit control register—I2S mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

OPMODE
Operation Mode

0=non-I2S mode
1=I2S mode

DITFS
Data Dependency TFS
0=data dependent
1=data independent

SLEN
Serial Word Length -1

SPEN_A
SPORT Enable A
0=disable
1=enable

PACK
16/32-bit packing
0=no pack
1=pack

MSTR
Master/Slave mode
0=TX is slave
1=TX is master

L_FIRST
Xmit left chn. first
0=right chn. first
1=left chn. first

SDEN_A
SPORT DMA
 enable A
0=disable
1=enable

TXS_A
Status *
TX A Data Buffer
00=empty
10=partially full
11=full

TUVF_A
Status * (sticky)
TX A Underflow

SCHEN_A
SPORT xmit DMA
 chaining enable A
0=disable
1=enable

SDEN_B

SCHEN_B

FS_BOTH
Word Select
0=issue if data in
 either Tx
1=issue only if data
 in both Tx

TXS_B *

TUVF_B *

SPEN_B
SPORT Enable B
0=disable
1=enable

* Status is read-only

SPORT Control Registers and Data Buffers

9-20 ADSP-21065L SHARC DSP User’s Manual

Figure 9-4. STCTLx transmit control register—multichannel mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

SDEN_A
SPORT xmit DMA
 enable A
0=disable
1=enable

TXS_A
Status *
TX A Data Buffer
00=empty
10=partially full
11=full

TUVF_A
Status * (sticky)
TX A Underflow

SCHEN_A
SPORT xmit DMA
 chaining enable A
0=disable
1=enable

MFD
Multichn Frame Delay

CHNL*
Currently Selected Chn

* Status is read-only

LTFS
Active State TFS
0=active high
1=active low

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

OPMODE
Operation Mode

0=non-I2S mode
1=I2S mode

DITFS
TFS Data
 Dependency
0=depend.
1=independ.

SLEN
Serial Word Length -1

PACK
16/32-bit pack
0=no pack
1=pack

CKRE
Active Clock Edge
0=falling edge
1=rising edge

SENDN
Endian word format
0=MSB first
1=LSB first

DTYPE
Data Type
x0=r-justify; fill MSB w/0s
x1=r-justify; sign-ext MSB
0x=compand µ-law
1x=compand A-law

ADSP-21065L SHARC DSP User’s Manual 9-21

Serial Ports

Table 9-7. SRCTLx transmit control bits

Bit I2S Mode Standard Mode Multichannel Mode

0 SPEN_A SPEN_A Reserved

1 Reserved DTYPE DTYPE

2 Reserved DTYPE DTYPE

3 Reserved SENDN SENDN

4 SLEN0 SLEN0 SLEN0

5 SLEN1 SLEN1 SLEN1

6 SLEN2 SLEN2 SLEN2

7 SLEN3 SLEN3 SLEN3

8 SLEN4 SLEN4 SLEN4

9 PACK PACK PACK

10 MSTR ICLK ICLK

11 OPMODE OPMODE OPMODE

12 Reserved CKRE CKRE

13 Reserved RFSR Reserved

14 Reserved IRFS IRFS

15 Reserved Reserved IMODE

16 L_FIRST LRFS LRFS

SPORT Control Registers and Data Buffers

9-22 ADSP-21065L SHARC DSP User’s Manual

17 Reserved LAFS Reserved

18 SDEN_A SDEN_A SDEN_A

19 SCHEN_A SCHEN_A SCHEN_A

20 SDEN_B SDEN_B IMAT

21 SCHEN_B SCHEN_B Reserved

22 SPL SPL Reserved

23 Reserved MCE MCE

24 SPEN_B SPEN_B NCH

25 Reserved Reserved NCH

26 ROVF_B ROVF_B NCH

27 RXS_B RXS_B NCH

28 RXS_B RXS_B NCH

29 ROVF_A ROVF_A ROVF_A

30 RXS_A RXS_A RXS_A

31 RXS_A RXS_A RXS_A

Table 9-7. SRCTLx transmit control bits (Cont’d)

Bit I2S Mode Standard Mode Multichannel Mode

ADSP-21065L SHARC DSP User’s Manual 9-23

Serial Ports

Figure 9-5. SRCTLx receive control registers—Standard mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

OPMODE
Operation Mode

0=non-I2S mode
1=I2S mode

SLEN
Serial Word Length -1

SPEN_A
SPORT Enable A
0=disable
1=enable

PACK
16/32-bit pack
0=no pack
1=pack

IRFS
RFS Source

0=external
1=internal

LRFS
Active Low RFS
0=active high
1=active low

SDEN_A
SPORT Rcv
 DMA enable A
0=disable
1=enable

RXS_A
Status *

RX A Data Buffer
00=empty

10=partially full
11=full

ROVF_A
Status * (sticky)
RX A Overflow

SCHEN_A
SPORT Rcv DMA
 chaining enable A
0=disable
1=enable
SDEN_B

SCHEN_B

SPL
SPORT Loopback

0=disable
1=enable

RXS_B *

ROVF_B *

SPEN_B
SPORT Enable B

0=disable
1=enable

* Status is read-only

LAFS
Late RFS
0=early
1=late

RFSR
RFS Requirement

0=no RFS required
1=RFS required

CKRE
Active Clock Edge

0=falling edge
1=rising edge

ICLK
Rcv Clk Source
0=external
1=internal

SENDN
Endian word format
0=MSB first
1=LSB first

DTYPE
Data Type
00=r-justify; fill MSB w/0s
01=r-justify; sign-ext MSB
10=compand µ-law
11=compand A-law

MCE
SPORT Mode

0=DSP SPORT mode
1=Multichn mode

SPORT Control Registers and Data Buffers

9-24 ADSP-21065L SHARC DSP User’s Manual

Figure 9-6. SRCTLx receive control registers—I2S mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

OPMODE
Operation Mode

0=non-I2S mode
1=I2S mode

SLEN
Serial Word Length -1

SPEN_A
SPORT Enable A
0=disable
1=enable

PACK
16/32-bit packing
0=no pack
1=pack

MSTR
Master/Slave mode
0=RX is slave
1=RX is master

L_FIRST
Rcv left chn. first
0=right chn. first
1=left chn. first

SDEN_A
SPORT Rcv
 DMA enable A
0=disable
1=enable

RXS_A
Status *
RX A Data Buffer
00=empty
10=partially full
11=full

ROVF_A
Status * (sticky)
RX A Overflow

SCHEN_A
SPORT Rcv DMA
 chaining enable A
0=disable
1=enable

SDEN_B

SCHEN_B

SPL
SPORT Loopback
0=disable
1=enable

RXS_B *

ROVF_B *

SPEN_B
SPORT Enable B
0=disable
1=enable

* Status is read-only

ADSP-21065L SHARC DSP User’s Manual 9-25

Serial Ports

Figure 9-7. SRCTLx receive control registers—multichannel mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

SDEN_A
SPORT rcv DMA
 enable A
0=disable
1=enable

RXS_A
Status *

RX A Data Buffer
00=empty

10=partially full
11=full

ROVF_A
Status * (sticky)
RX A Underflow

SCHEN_A
SPORT rcv DMA
 chaining enable A
0=disable
1=enable

MCE
SPORT Mode

0=DSP SPORT mode
1=Multichn Mode

NCH
Number of Chns -1

* Status is read-only

LRFS
Active State
RFS
0=active high
1=active low

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

OPMODE
Operation Mode

0=non-I2S mode
1=I2S mode

IMODE
Rcv Compare

0=disable
1=enable

SLEN
Serial Word Length -1

PACK
16/32-bit pack
0=no pack
1=pack

CKRE
Active Clock Edge

0=falling edge
1=rising edge

SENDN
Endian word format
0=MSB first
1=LSB first

DTYPE
Data Type
x0=r-justify; fill MSB w/0s
x1=r-justify; sign-ext MSB
0x=compand µ-law
1x=compand A-lawICLK

Rcv Clk Source
0=external
1=internal

IMAT
Rcv Compare Data

0=accept if false
1=accept if true

IRFS
RFS Source

0=external
1=internal

SPORT Control Registers and Data Buffers

9-26 ADSP-21065L SHARC DSP User’s Manual

Bit definitions of the STCTLx and SRCTLx control register parameters
are:

CHNL
Current channel selected.

Multichannel mode only. STCTLx register.

Read-only, sticky status bits.

Identifies the currently selected transmit channel slot (0 to 31).

CKRE
Frame sync clock edge.

Standard and multichannel modes only. STCTLx and SRCTLx
registers.

Selects the active edge of the serial port clock on which to sample
or drive data and frame syncs.

In standard mode only, you can set this parameter separately for
transmit and receive channels.

0 = Falling edge

1 = Rising edge

(Frame sync is level-sensitive, not edge-sensitive.)

DITFS
Data independent TFS.

All operation modes. STCTLx register.

Selects when the processor generates the transmit frame sync signal.

ADSP-21065L SHARC DSP User’s Manual 9-27

Serial Ports

0 = Data dependent TFS.

TFS signal generated only when new data is in SPORT chan-
nel’s transmit data buffer and TDIV period occurs as
programmed in the TDIV register.

1 = Data independent TFS.

TFS signal generated regardless of the validity of the data
present in SPORT channel’s transmit data buffer. The proces-
sor generates the TFS signal at the frequency specified by the
value you load in the TDIV register.

DTYPE
Data type.

Standard and multichannel modes only. STCTLx and SRCTLx
registers.

Selects the companding and MSB format of serial words loaded
into the TX and RX buffers. (The transmit shift register does not
0-fill or sign-extend TX data words.)

Selection differs between modes.

For standard mode, selection of companding mode and MSB for-
mat are exclusive:

00 =Right justify; fill unused MSBs with 0s.

01 =Right justify; sign-extend into unused MSBs.

10 =Compand using µ_law. (Primary channels only)

11 =Compand using A_law. (Primary channels only)

For multichannel mode, selection of companding mode and MSB
format are independent:

SPORT Control Registers and Data Buffers

9-28 ADSP-21065L SHARC DSP User’s Manual

x0 =Right justify; fill unused MSBs with 0s.

x1 =Right justify; sign-extend into unused MSBs.

0x =Compand using µ_law.

1x =Compand using A_law.

FS_BOTH
Frame sync both.

I2S and standard modes only. STCTLx register.

Selects when during transmission to issue the word select.

0 = Issue word select if data in either transmit channel.

1 = Issue word select only if data in both transmit channels.

ICLK Transmit and receive clock sources.

Standard and multichannel modes only. STCTLx and SRCTLx
registers.

Selects the clock source to use to transmit and to receive data. In
standard mode only, you can set this parameter separately for trans-
mit and receive channels.

0 = Use an external clock.

1 = Use processor’s internal clock.

IMAT Receive comparison accept data.

Multichannel mode only. SRCTLx register.

Selects the method to use for evaluating whether to accept received
data.

ADSP-21065L SHARC DSP User’s Manual 9-29

Serial Ports

0 = Accept the received data if the KEYWD compares false.

1 = Accept the received data if the KEYWD compares true.

IMODE
Receive comparison enable.

Multichannel mode only. SRCTLx register.

Enables and disables the receive comparison option.

0 = Disable receive comparison.

1 = Enable receive comparison.

IRFS RFS source.

Standard and multichannel modes only. SRCTLx register.

Selects the source to generate frame sync signals for received data.

0 = Use external source.

1 = Use processor’s internal serial clock.

ITFS TFS source.

Standard mode only. STCTLx register.

Selects the source to generate frame sync signals for transmit data.

0 = Use external source.

1 = Use processor’s internal serial clock.

LAFS Late TFS/RFS.

Standard mode only. STCTLx and SRCTLx registers.

SPORT Control Registers and Data Buffers

9-30 ADSP-21065L SHARC DSP User’s Manual

Selects when to generate the receive frame sync signal.

0 = Generate early, during the serial clock cycle immediately pre-
ceding the first data bit.

1 = Generate late, during the first bit of each data word.

L_FIRST
Left/right channel transmit/receive first.

I2S mode only. STCTLx and SRCTLx registers.

Selects which I2S channel to transmit or receive first.

0 = Right channel first.

1 = Left channel first.

LRFS Active state RFS.

Standard and multichannel modes only. SRCTLx register.

Selects the logic level of the received frame sync signals. Active high
(0) is the default.

0 = Active high.

1 = Active low (inverted).

LTFS Active state TFS.

Standard and multichannel modes only. STCTLx register.

Selects the logic level of the transmit frame sync signals. Active
high (0) is the default.

ADSP-21065L SHARC DSP User’s Manual 9-31

Serial Ports

0 = Active high.

1 = Active low (inverted).

MCE Multichannel mode enable.

Standard and multichannel modes only. SRCTLx register.

One of two configuration bits that enable and disable multichannel
mode on receive serial port channels. See also, OPMODE.

0 = Disable multichannel operation.

1 = Enable multichannel operation if OPMODE=0.

MFD Multichannel frame delay.

Multichannel mode only. STCTLx register.

Sets the interval, in number of serial clock cycles, between the
transmit frame sync pulse and the first data bit. Provides support
for different types of T1 interface devices.

Valid values range from 0 to 15.

0 = No delay; frame sync pulse concurrent with first data bit.

1:15 =
Corresponding number of intervening serial clock cycles.

MSTR
SPORT transmit and receive master mode.

I2S mode only. STCTLx and SRCTLx registers.

Selects the clock and word-select source for transmitting or for
receiving.

SPORT Control Registers and Data Buffers

9-32 ADSP-21065L SHARC DSP User’s Manual

0 = Use external clock and word-select source; transmitter or
receiver is slave.

1 = Use internal clock and word-select source; transmitter or
receiver is master.

NCH Number of channel slots.

Multichannel mode only. SRCTLx register.

Selects the number of channel slots (maximum of 32) to use for
multichannel operation.

Use this formula to calculate the value for NCH:

NCH = Actual number of channel slots -1.

Valid values for actual number of channel slots range from 1 to 32.

OPMODE
SPORT operation mode.

All operation modes. STCTLx and SRCTLx registers.

Enables and disables I2S operation mode. When this bit is set, the
processor ignores the MCE bit.

0 = Disable I2S mode.

Depending on the MCE bit, sets the channel in either standard
mode or multichannel mode.

1 = Enable I2S mode.

PACKPacking 16/32 bit.

All operation modes. STCTLx and SRCTLx registers.

ADSP-21065L SHARC DSP User’s Manual 9-33

Serial Ports

Selects whether the serial port packs external words of 16 bits or
less into internal 32-bit words and vice versa.

0 = Disable packing.

1 = Enable packing.

RFSR RFS requirement.

Standard mode only. SRCTLx register.

Selects whether receive serial port communications require frame
sync signals.

0 = Not required.

(Only a single frame sync signal required to initiate communi-
cations; ignored after first bit received.)

1 = Every data word requires a frame sync signal.

ROVFReceive overflow status.

All operation modes. SRCTLx register.

Read-only, sticky status bit.

Indicates when the channel has received new data while the RXS
buffer is full. New data overwites existing data.

0 = No new data.

1 = New data.

RXS Receive data buffer status.

All operation modes. SRCTLx register.

SPORT Control Registers and Data Buffers

9-34 ADSP-21065L SHARC DSP User’s Manual

Read-only, sticky status bit.

Indicates the status of the channel’s receive buffer contents.

00 =Buffer empty.

01 =Reserved.

10 =Buffer partially full.

11 =Buffer full.

SCHEN
SPORT DMA chaining.

All operation modes for primary (A) SPORT channels. I2S and
standard modes only for secondary (B) SPORT channels. STCTLx
and SRCTLx registers.

Enables and disables SPORT DMA chaining.

0 = Disable DMA chaining.

1 = Enable DMA chaining.

SDENSPORT DMA enable.

All operation modes for primary (A) SPORT channels. I2S and
standard modes only for secondary (B) SPORT channels. STCTLx
and SRCTLx registers.

Enables and disables SPORT DMA.

0 = Disable DMA.

1 = Enable DMA.

ADSP-21065L SHARC DSP User’s Manual 9-35

Serial Ports

SENDN
Endian data word format.

Standard and multichannel modes only. STCTLx and SRCTLx
registers.

Selects whether the serial word is transmitted or received MSB or
LSB first.

0 = MSB first.

1 = LSB first.

SLEN Serial word length.

All operation modes. STCTLx and SRCTLx registers.

Selects the number of bits the serial word contains. The SPORTs
handle serial words containing from 3 to 32 bits.

Use this formula to calculate the value for SLEN:

SLEN = Actual serial word length -1

SPEN SPORT enable.

I2S and standard modes only. STCTLx and SRCTLx registers.

Enables and disables the SPORT. Performs a software reset.

SLEN ≠ 0 or 1

SPORT Control Registers and Data Buffers

9-36 ADSP-21065L SHARC DSP User’s Manual

0 = Disable SPORT.

Aborts any ongoing operation and clears the status bits.

1 = Enable SPORT.

SPORTS ready to transmit or receive two cycles after enabling.

SPL SPORT loopback mode.

I2S and standard modes only. SRCTLx register.

Sets the channel in or out of loopback mode. Loopback mode
enables developers to run internal tests and to debug applications.

0 = Disable loopback mode.

1 = Enable loopback mode.

TFSR Transmit frame sync requirement.

Standard mode only. STCTLx register.

Selects whether transmit serial port communications require frame
sync signals.

0 = Not required.

(Only a single frame sync signal required to initiate communi-
cations; ignored after first bit transmitted.)

1 = Every data word requires a frame sync signal.

TUVFTransmit underflow status.

All operation modes. STCTLx register.

Read-only, sticky status bit.

ADSP-21065L SHARC DSP User’s Manual 9-37

Serial Ports

Indicates whether the TFS signal (from internal or external source)
occurred while the TXS buffer was empty. The SPORTs transmit
data whenever they detect a TFS signal.

0 = No TFS signal occurred.

1 = TFS signal occurred.

TXS Transmit data buffer status.

All operation modes. STCTLx register.

Read-only, sticky status bit.

Indicates the status of the channel’s transmit buffer contents.

00 =Buffer empty.

01 =Reserved.

10 =Buffer partially full.

11 =Buffer full.

Hereafter in this chapter, unless referring to a specific case, reg-
isters and control parameters are referred to by the descriptive
part of their symbolic names only or with x or _z included to
indicate serial port and/or channel specification, respectively.
(For example, SRCTLx, SPEN, or SCHEN_Z.)

However to use the symbolic names in your application, you
must write the correct symbolic name in its entirety. For exam-
ple, SPEN_A or SPEN_B, not SPEN or SPEN_Z; STCTL1 or
STCTL0, not STCTLx or STCTl.

SPORT Control Registers and Data Buffers

9-38 ADSP-21065L SHARC DSP User’s Manual

Control Register Status Bits
The STCTLx and SRCTLx status bits are read-only, sticky bits that pro-
vide information about the status of a particular SPORT channel.

The STCTLx and SRCTLx status bits are:

• CHNL Current Channel Selected status bits

• ROVF Receive Overflow status bit

• RXS Receive Data Buffer status bits

• TUVF Transmit Underflow status bit

• TXS Transmit Data Buffer status bits

Current Channel Selected Status Bits (CHNL)

During multichannel operation, the CHNL status bits indicate which of
the thirty-two channel slots (CHNL31-0) the serial port is currently
selected.

Receive Overflow Status Bit (ROVF)

The processor sets the ROVF bit whenever the serial port receives new
data while the RX buffer is full. In this case, the new data overwrites the
existing data.

Receive Data Buffer Status Bits (RXS)

The RXS status bits indicate whether the RX buffer is full (11), empty
(00), or partially full (10).

You can test the RXS status bits to determine if the RX data buffer has free
space or if it contains data. To test for space, test for RXS0=0. To test for
data, test for RXS1=1.

ADSP-21065L SHARC DSP User’s Manual 9-39

Serial Ports

Transmit Underflow Status Bit (TUVF)

The processor sets the TUVF bit whenever the TFS signal occurs (gener-
ated either internally or by an external source) while the TX buffer is
empty.

You can suppress this behavior when using internally generated TFS. To
do so, you clear the DITFS control bit (DITFS=0). Setting DITFS to 0
selects data-dependent frame syncs. In this mode, the processor generates
the transmit frame sync signal (TFS) only when the TX buffer contains
new data, so the serial port transmits new data only.

Setting DITFS to 1 selects data-independent frame syncs. In this mode,
the processor generates the TFS signal whether or not the TX buffer con-
tains new data, and the serial port transmits the contents of the TX buffer
regardless. Typically, serial port DMA keeps the TX buffer full, and when
the DMA operation finishes, the serial port continuously transmits the last
word in the TX buffer.

Transmit Data Buffer Status Bits (TXS)

The TXS status bits indicate whether the TX data buffer is full (11),
empty (00), or partially full (10).

You can test the TXS status bits to determine if the TX data buffer has free
space or if it contains data. To test for space, test for TXS0=0. To test for
data, test for TXS1=1.

Clock and Frame Sync Frequencies
(TDIV, RDIV)

The TDIV and RDIV registers contain divisor values, which determine the
frequencies at which internally generated clocks and frame syncs operate.

SPORT Control Registers and Data Buffers

9-40 ADSP-21065L SHARC DSP User’s Manual

Figure 9-8 shows and Table 9-8 lists and defines the contents of
theTDIV0 and TDIV1 registers.

Figure 9-8. TDIVx transmit divisor registers

Table 9-8. Transmit divisor register bit fields

Bits Name Definition

15-0 TCLKDIV Transmit clock divisor

31-16 TFSDIV Transmit frame sync divisor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TFSDIV

TCLKDIV

Transmit Frame Sync Divisor

Transmit Clock Divisor

ADSP-21065L SHARC DSP User’s Manual 9-41

Serial Ports

Figure 9-9 shows and Table 9-9 lists and defines the contents of the
RDIV0 and RDIV1 registers.

Figure 9-9. RDIVx receive divisor registers

The TCLKDIV and RCLKDIV bit fields specify the number of times to
divide the processor’s system clock (CLKIN) to generate the transmit and
receive clocks. The divisor is a 16-bit value, which provides a wide range
of serial clock rates.

Table 9-9. Receive divisor register bit fields

Bits Name Definition

15-0 RCLKDIV Receive clock divisor

31-16 RFSDIV Receive frame sync divisor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFSDIV

RCLKDIV

Receive Frame Sync Divisor

Receive Clock Divisor

SPORT Control Registers and Data Buffers

9-42 ADSP-21065L SHARC DSP User’s Manual

Use this equation to calculate the serial clock frequency:

fCLKIN is the 1x frequency for the processor, and xCLKDIV is at least equal
to 1.

Use this equation to calculate the value of xCLKDIV, given the CLKIN
frequency and target serial clock frequency:

When frame sync is internally generated, TFSDIV and RFSDIV specify
the number of transmit or receive clock cycles the processor counts before
it generates a TFS or RFS pulse. You can use a frame sync this way to ini-
tiate periodic transfers. The processor counts serial clock cycles whatever
the clock source, internal or external.

Use this equation to calculate the number of serial clock cycles between
frame synch pulses:

No. cycles between frame sync assertions = xFSDIV + 1

Use this equation to determine the value of xFSDIV, given the serial clock
frequency and target frame sync frequency:

serial clock frequency 2xfCLKIN
xCLKDIV 1+()

--=

xCLKDIV 2 f× CLKIN
serial clock frequency
--- 1–=

xFSDIV serial clock frequency
frame sync frequency
--- 1 –=

ADSP-21065L SHARC DSP User’s Manual 9-43

Serial Ports

The frame sync is continuously active if xFSDIV=0. However, to avoid
causing an external device to abort the current operation or causing other
unpredictable results, use a value for xFSDIV such that

FSDIV ≥ SLEN = serial word length −1

(Use the value of the SLEN field in the transmit or receive control
register.)

If not using the serial port, you can use the xFSDIV divisor as a counter
for dividing an external clock or for generating a periodic pulse or periodic
interrupt. For this function, the serial port must be enabled.

Restrictions on Using Maximum Clock Rate

A delay occurs between the arrival of the transmit clock signal at the
TCLKx pin and the output of serial data. This delay may limit the operat-
ing speed of the receiver. For exact timing specifications, see the data
sheet.

For reliable operation, we recommend that you use full-speed, serial clocks
only when receiving with an externally generated clock and externally gen-
erated frame sync (ICLK=0, IRFS=0).

Externally-generated, late transmit frame syncs (LAFS) experience a simi-
lar delay between their arrival and data output, which can also limit the
maximum speed of serial clocks. For exact timing specifications, see the
data sheet.

Although the serial ports handle words with lengths of three to thirty-two
bits, transmitting or receiving words smaller than four bits at the proces-
sor’s full serial clock rate may cause loss of data when DMA chaining is
enabled. Chaining takes over the processor’s internal I/O bus for several
cycles while the DMA controller loads new TCB parameters. During this
period, receive data in the RX buffer may be overwritten.

Data Word Formats

9-44 ADSP-21065L SHARC DSP User’s Manual

Data Word Formats
The DTYPE, PACK, SENDN, and SLEN bits of the STCTLx and
SRCTLx control registers format data words transmitted through the
serial ports.

Data Type (DTYPE)
The DTYPE field of the STCTLx and SRCTLx control registers, shown in
Table 9-10, specifies the justification format and the companding format
of the data when the serial port is configured for standard or multichannel
operation.

For standard operation, the DTYPE field specifies one of four data for-
mats. Data justification and companding formats are separate and
exclusive options.

The RX and TX shifter registers apply these formats to serial data words
when they are loaded into the RX and TX buffers. (Since only the signifi-
cant bits of the serial data word are transmitted, the TX shift register does
not actually zero-fill or sign-extend TX data words.)

For multichannel operation, the DTYPE field specifies one of four data
types, as shown in Table 9-11. Because the justification and companding

Table 9-10. Data formats for nonmultichannel operation

DTYPE Data Formatting

00 Right justify; fill unused MSBs with zeros (0)

01 Right justify; extend sign into unused MSBs

10 Compand using µ -law

11 Compand using A-law

ADSP-21065L SHARC DSP User’s Manual 9-45

Serial Ports

format options function independently, the low bit specifies the justifica-
tion format, and the high bit specifies the companding format.

The multichannel compand select registers, MTCCSx and MRCCSx,
enable companding on specific transmit and receive channel slots. (For
details, see “Channel Selection Registers (MTCSx, MRCSx, MTCCSx,
MRCCSx)” on page 9-72.) Linear transfers occur on a channel slot that is
active and has companding disabled. Companded transfers occur on a
channel slot that is active and has companding enabled.

In STCTLx, bit 0 of DTYPE selects transmit sign extension for all trans-
mit channels. In SRCTLx, bit 0 of DTYPE selects receive sign extension
for all receive channels. With bit 0 set, sign extension occurs on selected
channels that have companding disabled. If this bit is cleared, the data
word contains 0s in its MSBs.

Companding

Companding (compressing and expanding) is the process of logarithmi-
cally encoding and decoding data to minimize the number of bits that
must be transmitted.

The processor’s serial ports support the two most widely used companding
algorithms—A-law and µ-law—according to ITU G.711 specification. In
standard and multichannel modes, you can select a companding algorithm

Table 9-11. Data formats for multichannel operation

DTYPE Data Formatting

x0 Right justify; fill unused MSBs with zeros (0)

x1 Right justify; extend sign into unused MSBs

0x Compand using µ -law

1x Compand using A-law

Data Word Formats

9-46 ADSP-21065L SHARC DSP User’s Manual

independently for each SPORT. (In standard mode, only the primary
channels support companding.)The DTYPE field in the STCTLx and
SRCTLx control registers selects the companding algorithm.

 With companding enabled, the data in the Rx0_A or Rx1_A buffer is the
right-justified, sign-extended expanded value of the eight LSBs received.
Likewise, a write to Tx0_A and Tx1_A compresses the 32-bit value into
eight LSBs (sign-extended to the width of the transmit word) before trans-
mission. If the 32-bit value is greater than the13-bit A-law or 14-bit µ-law
maximum, the TX buffer automatically compresses it to the maximum
value.

Because the values in the TX and RX buffers are companded in place, you
can use the companding hardware without transmitting (or receiving)
data, for example, during testing or debugging. This operation requires a
single cycle of overhead. For companding to execute properly, program the
SPORT registers prior to loading data values into the SPORT buffers.

To compand data in place:

1. Enable companding.

Set the DTYPE field of the STCTLx transmit control register
appropriately.

2. Write a 32-bit data word to TX.

(Companding is calculated in this cycle.)

3. Wait one cycle.

You can either insert a NOP instruction or not. Either way, the
processor’s core is held off for one cycle. (This delay enables the
serial port companding hardware to reload TX with the com-
panded value.)

4. Read the 8-bit companded value from TX.

ADSP-21065L SHARC DSP User’s Manual 9-47

Serial Ports

To expand data in place, use the same procedure, but replace TX with RX.
When performing this procedure, make sure to set the serial word length
(SLEN) in the SRCTLx control register appropriately.

With companding enabled, interfacing the processor’s serial ports to a
code requires little additional programming effort. With companding dis-
abled, two formats for received data words of fewer than 32 bits are
available (for details, see “Data Type (DTYPE)” on page 9-44).

Data Packing and Unpacking (PACK)
You can pack received data words of sixteen bits or less into 32-bit internal
data words, and unpack 32-bit internal data words into 16-bit data words
for transmission.

The PACK bit in the SRCTLx and STCTLx control registers enable word
packing and unpacking.

In SRCTLx:

PACK=1 Pack two words received successively into a single 32-bit
word.

In STCTLx:

PACK=1 Unpack each 32-bit word into two 16-bit words and trans-
mit.

Packing right-justifies the first 16-bit (or smaller) data word in bits 15-0
of the packed word and right-justifies the second 16-bit (or smaller) word
in bits 31-16. This procedure reverses during transmit (unpacking)
operations.

You can compand and pack/unpack data concurrently.

Data Word Formats

9-48 ADSP-21065L SHARC DSP User’s Manual

With packing enabled, 32-bit packed words, not each 16-bit data word,
generates the transmit and receive interrupts.

Endian Format (SENDN)
Endian format determines whether the processor transmits the serial word
MSB-first or LSB-first.

The SENDN bit in the STCTLx and SRCTLx control registers select
endian format.

SENDN_z=0 Transmit or receive serial words MSB-first.

SENDN_z=1 Transmit or receive serial words LSB-first.

Word Length (SLEN)
The serial ports handle word lengths that range from three to thirty-two
bits.

The five-bit SLEN field in the STCTLx and SRCTLx control registers
configures the word length. The processor uses this value to determine
how many bits to shift into or out of the shift register.

Using short word space addresses, you can read and write 16-bit
data words that have been packed into 32-bit words and stored
in normal word space in internal memory.

ADSP-21065L SHARC DSP User’s Manual 9-49

Serial Ports

The value of SLEN is equal to the word length minus one:

SLEN = Serial Word Length -1

The RX and TX buffers right-justify words smaller than thirty-two bits, so
they occupy the least significant bit positions.

Transmitting or receiving words smaller than four bits at the processor’s
full clock rate can cause loss of data when DMA chaining is enabled.
Because chaining takes over the processor’s internal I/O bus for several
cycles while the DMA controller loads new TCB chain parameters,
received data in the RX buffer may be overwritten during this period.

SLEN ≠ 0 or 1

Clock Signal Options

9-50 ADSP-21065L SHARC DSP User’s Manual

Clock Signal Options
Each serial port has a transmit clock signal TCLKx and a receive clock sig-
nal RCLKx.

The ICLK and CKRE bits of the STCTLx and SRCTLx control registers
configure the clock signals for standard and multichannel operation
modes only.

The ICLK bits select the source of the transmit and receive clock signals.
The CKRE bits select which clock edge (rising or falling) to use for syn-
chronizing transmit and receive frames and for sampling data.

You configure the serial clock frequency in the TDIVx and RDIVx
registers.

To use a single clock for both input and output, tie the receive clock pin to
the transmit clock pin.

Internal vs. External Clocks
You can configure an internal or external clock source for the transmit and
receive operations independently. The ICLK bit in the STCTLx and
SRCTLx control registers selects the clock source.

When ICLK=1, the processor generates the clock signal, and the TCLKx or
RCLKx pins are output pins.

The value of the serial clock divisor TCLKDIV or RCLKDIV in the
TDIVx or RDIVx register, sets the clock frequency.

ADSP-21065L SHARC DSP User’s Manual 9-51

Serial Ports

When ICLK=0, the processor accepts the clock signal as an input on the
TCLKx or RCLKx pins.

The processor does not require synchronization between an externally gen-
erated serial clock and its system clock.

In this mode, the processor ignores the serial clock divisors in
the TDIVx and RDIVx registers.

Frame Sync Options

9-52 ADSP-21065L SHARC DSP User’s Manual

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. For
frame sync operation, the processor supports a variety of framing options.
Framing options on transmit and receive serial port channels are indepen-
dent and configured separately in the STCTRLx and SRCTLx control
registers.

The processor supports these frame sync options:

• Frame sync requirement (TFSR/RFSR)

• Frame sync source (ITFS/IRFS)

• Frame sync active state (LTFS/LRFS)

• Frame sync clock edge (CKRE)

• Frame sync insert (LAFS)

• Frame sync data dependency (DITFS)

Frame Sync Requirement (TFSR/RFSR)
Using frame sync signals is optional in serial port communications. In
standard mode only, the TFSR (transmit frame sync required) and RFSR
(receive frame sync required) control bits determine whether frame sync
signals are required.

When TFSR=1 or RFSR=1, every data word requires a frame sync signal. To
enable continuous transmissions from the ADSP-21065L, the processor
must load each new data word into the TX buffer before shifting out and
transmitting the last bit of the previous word. (See “Frame Sync Data
Dependency (DITFS)” on page 9-57.)

ADSP-21065L SHARC DSP User’s Manual 9-53

Serial Ports

When TFSR=0 or RFSR=0, data words do not require the corresponding
frame sync signal, but initiating communications requires a single frame
sync. After the processor transfers the first bit, it ignores the frame sync
signal and continuously transmits data words unframed.

Figure 9-10 on page 9-54 shows framed serial transfers, which have the
following characteristics:

• TFSR and RFSR bits in STCTLx, SRCTLx control registers deter-
mine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores the framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active-low or active-high frame syncs selected with LTFS and LRFS
bits of STCTLx, SRCTLx control registers.

When DMA is enabled with frame syncs not required, chaining
may hold off DMA requests or the DMA controller may not ser-
vice requests frequently enough to guarantee continuous,
unframed data flow.

Frame Sync Options

9-54 ADSP-21065L SHARC DSP User’s Manual

Figure 9-10. Framed vs. unframed data

Frame Sync Source (ITFS/RTFS)
In standard mode and multichannel mode (receive only), you can config-
ure an internal or external frame sync source for transmit and receive
operations independently.

When ITFS=1 or IRFS=1, the processor generates the corresponding frame
sync signal internally, and the TFSx pin or RFSx pin becomes an output
pin. The value of the frame sync divisor TFSDIV or RFSDIV in the
TDIVx or RDIVx registers determines the frequency of the frame sync
signal.

When ITFS=0 or IRFS=0, the processor accepts the corresponding frame
sync signal as an input on the TFSx pin or RFSx pin and ignores the frame
sync divisors in the TDIVx or RDIVx register.

B
1

B
1

B
1

B
2

B
2

B
2

B
2

B
1

B
3

B
3

B
3

B
3

B
3

B
0

B
0

B
0

B
0

xCLK

Framed
Data

Unframed
Data

ADSP-21065L SHARC DSP User’s Manual 9-55

Serial Ports

All of the various frame sync options are available whether the signal is
generated internally or externally.

Frame Sync Active State (LTFS/RTFS)
In standard mode and multichannel mode, you can configure the logic
level of frame sync signals for active high operation or for active low
(inverted) operation.

When LTFS=0 or LRFS=0, the corresponding frame sync signal is active
high. This value is the default configuration, and a processor reset initial-
izes the LTFS and LRFS bits to 0.

When LTFS=1 or LRFS=1, the corresponding frame sync signal is active low.

Frame Sync Clock Edge (CKRE)
In standard mode and multichannel mode, you can configure on which
edge of serial port clock signals the processor samples data and frame
syncs—either on the rising edge or on the falling edge.

For transmit data and frame syncs, setting CKRE=1 selects the rising edge of
TCLKx. CKRE=0 selects the falling edge of TCLKx. Data and frame sync
signals change state on whatever clock edge is not selected.

For receive data and frame syncs, setting CKRE=1 causes the processor to
clock data in on the rising edge of RCLKx. CKRE=0 causes the processor to
clock data in on the falling edge of RCLKx.

If you connect the transmit and receive functions of two serial ports
together, make sure you configure the connections with the same value for
CKRE, so the processor drives internally generated signals on one edge
and samples received signals on the opposite edge.

Frame Sync Options

9-56 ADSP-21065L SHARC DSP User’s Manual

Frame Sync Insert (LAFS)
In standard mode, you can configure when the processor generates frame
sync signals (for multichannel mode, MFD=1, see page 9-67). Frame sync
signals can occur during the first bit of each data word (late) or during the
serial clock cycle immediately preceding the first bit (early).

Setting LAFS=0 selects early frame sync mode (normal operation). In this
mode, the first bit of the transmit data word is available (and the first bit
of the receive data word is latched) in the serial clock cycle after the frame
sync is asserted, and the frame sync is not checked again until the entire
word has been transmitted (or received). (In multichannel operation, this
occurs when frame delay is 1.)

In early frame sync mode, if data transmission is continuous (the first bit
of the next word immediately follows the last bit of each word), the frame
sync signal occurs during the last bit of each word. In early frame sync
mode, the processor asserts internally generated frame syncs for one clock
cycle.

Setting LAFS=1 selects late frame sync mode. In this mode, the first bit of
the transmit data word is available (and the first bit of the receive data
word is latched) in the same serial clock cycle that the frame sync is
asserted. (In multichannel operation, this occurs when frame delay is 0.)

Serial clock edges latch receive data bits, but the frame sync signal is
checked during the first bit of each word only. In late frame sync mode,
the processor continues to assert internally generated frame syncs for the
entire length of the data word. Externally generated frame syncs are
checked during the first bit only.

ADSP-21065L SHARC DSP User’s Manual 9-57

Serial Ports

Figure 9-11 illustrates the two modes of frame signal timing:

• LAFS bits of STCTLx, SRCTLx control registers. LAFS=0 for early
frame syncs, LAFS=1 for late frame syncs.

• Early framing: frame sync precedes data by one cycle. Late framing:
frame sync checked on first bit only.

• Data transmitted MSB-first (SENDN=0) or LSB-first (SENDN=1).

• Frame sync and clock generated internally or externally.

Figure 9-11. Normal vs. alternate frame

Frame Sync Data Dependency (DITFS)
In all operation modes, you can configure the conditions that govern
when the processor outputs internally-generated transmit frame sync
(TFS) signal.

B
3

B
1

B
2

B
0

xCLK

Late
Frame
Sync

Data

Early
Frame
Sync

Frame Sync Options

9-58 ADSP-21065L SHARC DSP User’s Manual

Normally, the processor outputs a TFS only when the TX buffer has data
ready to transmit (data-dependent transmit frame sync). DITFS (data-
independent transmit frame sync) mode enables the processor to continu-
ously generate the TFS signal, with or without new data.

When DITFS=0, the processor outputs TFS only when the TX buffer con-
tains a new data word. Once loaded into the TX buffer, a new data word is
transmitted two cycles after the processor generates the next TFS. Data-
dependent mode provides the method to transmit data at specific times
only.

When DITFS=1, the processor outputs TFS at its programmed interval,
regardless of whether new data is available in the TX buffer. In data-inde-
pendent mode, with each assertion of TFS, the processor transmits
whatever data is present in the TX buffer. When old data is retransmitted,
the processor sets the transmit underflow status bit (TUVF) in the
STCTLx control register. The processor also sets the TUVF status bit if
the TX buffer does not have new data when an externally generated TFS
occurs. In data-independent mode, the first internally generated TFS is
delayed until data has been loaded into the TX buffer.

With DITFS=1, initiating a transfer requires a single write to the TX data
register.

ADSP-21065L SHARC DSP User’s Manual 9-59

Serial Ports

Standard Mode
In standard mode, you can enable either one or both of the SPORTs’
transmit channels. The frame sync source determines their transmit
configuration.

When using both transmitters simultaneously, both TX buffers must con-
tain data. For continuous transmission, both TX buffers must contain new
data.

The receiving SPORT receives on both Rx_A and Rx_B. But only a
SPORT with DMA enabled generates DMA requests or DMA interrupts
upon receiving data.

Each SPORT transmit and receive channel has its own channel enable,
DMA enable, and chaining enable bits in its STCTLx and SRCTLx con-
trol register.

The SPORTs support companding on the primary channels, Tx_A and
Rx_A, only.

Enabling Standard Mode (OPMODE, MCE)
You enable standard mode with the OPMODE and MCE bits (STCTLx
and SRCTLx). To do so, set both bits to 0.

Frame Sync Configuration (FS_BOTH)
In standard mode, FS_BOTH (STCTLx) specifies when the processor
generates the transmit frame sync signal.

FS_BOTH=0 Generate frame sync when data is available in either trans-
mit channel.

FS_BOTH=1 Generate frame sync only when data is available in both
transmit channels.

Standard Mode

9-60 ADSP-21065L SHARC DSP User’s Manual

When both transmitters are transmitting simultaneously (FS_BOTH=1),
the processor generates frame syncs only when both transmitters contain
data. For continuous transmission when using both transmitters simulta-
neously, both transmitters must contain new data.

To implement this mode, you must also configure the processor for
data-dependent TFS and as TFS source:

DITFS=0

ITFS=1

Setting the Serial Clock Frequency (CLKDIV)
You can set the serial clock frequency for the processors internal clocks.
For details see, “Clock and Frame Sync Frequencies (TDIV, RDIV)” on
page 9-39.

ADSP-21065L SHARC DSP User’s Manual 9-61

Serial Ports

I2S Mode
I2S mode supports the Inter-IC sound bus protocol developed for
exchanging audio data between digital audio processors over a serial link.

The I2S bus transmits audio data and control signals over separate lines.
The data line carries two multiplexed data channels, the left channel and
the right channel.

In I2S mode:

• Both SPORT transmit channels (Tx_A and Tx_B) always transmit

simultaneously, each transmitting left and right I2S channels.

• Both SPORT receive channels (Rx_A and Rx_B) always receive

simultaneously, each receiving left and right I2S channels.

• Data always transmits in MSB format.

• You can select either DMA-driven or interrupt-drive data transfers.

• TFS and RFS are the transmit and receive word select signals.

• Multichannel operation and companding are not supported.

Each SPORT transmit and receive channel has its own channel enable,
DMA enable, and chaining enable bits in its STCTLx and SRCTLx con-
trol register.

Setting the Internal Serial Clock Rate
You can program the serial clock rate (xCLKDIV value) for internal clocks
in the CLKDIV registers. For details, see “Clock and Frame Sync Fre-
quencies (TDIV, RDIV)” on page 9-39.

I2S Mode

9-62 ADSP-21065L SHARC DSP User’s Manual

In I2S mode, you must load both the TDIV register and the RDIV register
with the same value as SLEN. For example, for 8-bit data words (SLEN=7),
you must set TFSDIV = 7 and RFSDIV = 7.

I2S Control Bits
Several bits in the STCTLx and SRCTLx control registers enable and con-

figure I2S operation:

• Operation mode (OPMODE)

• Multichannel enable (MCE)

• Word length (SLEN)

• I2S channel transfer order (L_FIRST)

• Frame sync (word select) generation (FS_BOTH)

• Master mode enable (MSTR)

• DMA enable (SDEN)

• DMA chaining enable (SCHEN)

Enabling I2S mode (OPMODE, MCE)

You enable I2S mode with the OPMODE and MCE bits (STCTLx and
SRCTLx). With SPENx=1, set

OPMODE=1 Enable I2S mode

MCE=0 Disable multichannel mode

ADSP-21065L SHARC DSP User’s Manual 9-63

Serial Ports

Setting the Word Length (SLEN)

The SPORTs handle data words containing from 3 to 32 bits. You can set
the number of bits transmit and receive data words contain. For details,
see “Word Length (SLEN)” on page 9-48.

The transmitter always sends the MSB of the next word one clock cycle
after the word select (TFS) signal changes.

In I2S mode, you must load the FSDIV register with the same value as
SLEN. For example, for 8-bit data words (SLEN=7), you must set FSDIV= 7.
For details, see “Clock and Frame Sync Frequencies (TDIV, RDIV)” on
page 9-39.

Selecting the I2S Transmit and Receive Channel Order
(L_FIRST)

You can configure which I2S channel each SPORT channel transmits or
receives first. By default, the SPORT channels transmit and receive on the

right I2S channel first. The left and right I2S channels are time-duplexed
data channels.

To select the channel order, set the L_FIRST bit:

L_FIRST=0 Transmit or receive on right channel first.

L_FIRST=1 Transmit or receive on left channel first.

Selecting the Frame Sync options (FS_BOTH)

The processor uses TFS and RFS as transmit and receive word select sig-
nals. You can configure when the processor generates the transmit word
select signal based on the data in the transmit channels.

I2S Mode

9-64 ADSP-21065L SHARC DSP User’s Manual

FS_BOTH=0 Generate word select signal if either transmit channel con-
tains data.

FS_BOTH=1 Generate word select signal only if both transmit channels
contain data.

The word select signal changes one clock cycle before the MSB of the data
word transmits, enabling the slave transmitter to derive synchronous tim-
ing of the serial data and enabling the receiver to store the previous data
word and clear its input for the next one.

When using both transmitters (FS_BOTH=1) and MSTR=1 and DITFS=0, the
processor generates a frame sync signal only when both transmit buffers
contain data because both transmitters share the same CLKDIV and TFS.
So, for continuous transmission, both transmit buffers must contain new
data. To enable continuous transmission when only one transmit buffer
contains new data, set FS_BOTH=0.

When using both transmitters and MSTR=1 and DITFS=1, the processor gen-
erates a frame sync signal at the frequency set by FSDIV=x whether or not
the transmit buffers contain new data. In this case, the processor ignores
the FS_BOTH bit. The DMA controller or the application is responsible
for filling the transmit buffers with data.

Enabling SPORT Master Mode (MSTR)

You can configure the SPORTs transmit and receive channels for master or
slave mode. In master mode, the processor generates the word select and
serial clock signals for the transmitter or receiver internally. In slave mode,
an external source generates the word select and serial clock signals for the
transmitter or receiver.

MSTR=0 Use external word select and clock source; transmitter or
receiver is slave.

MSTR=1 Use processor’s internal clock for word select and clock
source; transmitter or receiver is master.

ADSP-21065L SHARC DSP User’s Manual 9-65

Serial Ports

Enabling SPORT DMA (SDEN)

You can enable or disable DMA independently on any of the SPORT’s
transmit and receive channels.

SDEN_z=0 Disables DMA and set channel in interrupt-driven data
transfer mode.

SDEN_z=1 Enable DMA and set channel in DMA-driven data transfer
mode.

Interrupt-Driven Data Transfer Mode. In this mode, both transmit-
ters share a common interrupt vector and both receivers share a common
interrupt vector.

The SPORT generates an interrupt whenever the transmit buffer has a
vacancy or whenever the receive buffer has data. To determine the source
of an interrupt, applications must check the TXSx or RXSx data buffer
status bits, respectively.

DMA-Driven Data Transfer Mode. Each transmitter and receiver has
its own set of DMA registers. (For details, see Chapter 6, DMA.) The

same DMA channel drives both the left and right I2S channels for the
transmitter or for the receiver. The software application must demultiplex
the left and right channel data received by the RX buffer.

Both transmitters share a common interrupt vector and both receivers
share a common interrupt vector. The DMA controller generates an inter-
rupt at the end of DMA transfer only.

I2S Mode

9-66 ADSP-21065L SHARC DSP User’s Manual

Figure 9-12 shows the relationship between FS (word select), serial clock,

and I2S data. Timing for word select is the same as for frame sync. (Note
that this example uses early frame sync.)

Figure 9-12. Word select timing in I2S mode

A
1

A
2

A
3

B
1

B
2

B
3

xCLK

FS/WS

I2S
Data

Left Channel Right Channel

ADSP-21065L SHARC DSP User’s Manual 9-67

Serial Ports

Multichannel Mode
The processor’s serial ports support multichannel operation, which enables
a SPORT to communicate in a time-division-multiplexed (TDM) serial
system.

In multichannel communications, each data word in the serial bit stream
occupies one channel slot. Data word 0 occupies channel slot 0, data word
1 occupies channel slot 1, …, and data word n occupies channel slot n. In
this way, each data word in the stream belongs to the next consecutive
channel slot so that, for example, a 24-word block of data contains one
word for each of 24 channel slots.

A SPORT can automatically select words for particular channel slots while
ignoring others. The processor supports up to thirty-two channel slots for
transmitting or receiving—each SPORT can receive and transmit data
selectively from any of the thirty-two channel slots.

On each channel slot, a SPORT can:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Multichannel mode also supports data companding and DMA transfers.

In this mode only, if the SPORT is enabled, the processor puts the DT pin
in a high-impedance state when an inactive channel slot occurs.

In multichannel mode, the TCLKx pin is always an input and
must connect to its corresponding RCLKx pin.

Multichannel Mode

9-68 ADSP-21065L SHARC DSP User’s Manual

Figure 9-13 shows example timing for a multichannel transfer, which has
the following characteristics:

• Uses TDM method, where serial data is sent or received on different
channel slots sharing the same serial bus.

• The number of channel slots is selected with the NCH bits of
SRCTLx: NCH=(# of channels) – 1.

• Can independently select transmit and receive channels.

• RFS signals start of frame.

• TFS is used as “Transmit Data Valid” for external logic; active only
during transmit channels.

• Example: Receive on channels 0 and 2 and transmit on channels 1
and 2.

Figure 9-13. Multichannel operation

B2

SCLK

DR

RFS

B3 B2 B1 B0 B3 B2

IGNOREDB0 B3

TFS

DT

B1B2B3

WORD 0 WORD 1 WORD 2

ADSP-21065L SHARC DSP User’s Manual 9-69

Serial Ports

Frame Syncs in Multichannel Mode
All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFS signal provides this reference, indicat-
ing the start of a block (or frame) of multichannel data words.

With multichannel mode enabled, the SPORT’s transmitter and receiver
both use RFS as a frame sync, whether RFS is internally or externally gen-
erated. The RFS signal synchronizes the channel slots and restarts each
multichannel sequence. RFS assertion occurs at the beginning of the chan-
nel 0 data word.

TFS functions as a transmit data valid signal, which is active during trans-
mission of an enabled word. Since the processor puts the serial port’s DTx
pin in a high-impedance state when the time slot is inactive, the TFS sig-
nal specifies whether or not the processor is driving the DTx pin. The
processor drives TFS in multichannel mode, whether or not ITFS=0
(external TFS source).

Transmission begins after the TX transmit buffer is loaded and the proces-
sor generates the TFS signal. With serial port DMA enabled, transmission
can occur several cycles after the multichannel transmission is enabled. If
your application requires a deterministic start time, have it preload the TX
buffer.

In multichannel mode, TFS remains unconnected normally, and the serial
ports’ RFS pins connect together.

Multichannel Control Bits
Several bits in the STCTLx and SRCTLx control registers enable and con-
figure multichannel operation:

• Operation mode (OPMODE)

• Multichannel enable (MCE)

Multichannel Mode

9-70 ADSP-21065L SHARC DSP User’s Manual

• Number of channel slots (NCH)

• Current channel slot indicator (CHNL)

• Multichannel frame delay (MFD)

• Channel slot transmit/receive select (MTCS/MRCS)

• Channel slot transmit/receive compand select (MTCCS/MRCCS)

Operation Mode (OPMODE)

The operation mode bit enables and disables I2S mode and redefines the
SPORT control bits accordingly. The multichannel enable (MCE) bit

affects SPORT operation only when I2S mode is disabled.

Multichannel Enable (MCE)

Setting the MCE bit enables multichannel mode only when
OPMODE=0.

MCE=1 Enable multichannel operation.

MCE=0 Disable all multichannel operations.

Multichannel operation activates three cycles after MCE is set. Internally
generated frame sync signals activate four cycles after MCE is set.

Setting the MCE bit enables multichannel operation for the SPORTs pri-
mary set of transmit and receive channels. Therefore, if the receiving
SPORT is in multichannel mode, the transmitting SPORT is too.

ADSP-21065L SHARC DSP User’s Manual 9-71

Serial Ports

Number of Channel Slots

The five-bit NCH field (SRCTLx) sets the number of channel slots to use
in multichannel operation. Set NCH to the actual number of channels
minus one:

NCH = Number of Channels −1

The SPORTs support up to thirty-two channel slots.

Current Channel Selected

The five-bit CHNL field (STCTLx) indicates which channel slot is cur-
rently selected during multichannel operation. This field is a read-only
status indicator. CHNL(4:0) increments modulo NCH(4:0) as the
SPORT services each channel slot.

Multichannel Frame Delay

The four-bit MFD field (STCTLx) specifies a delay, in number of serial
clock cycles, between the frame sync pulse and the first data bit in multi-
channel mode. Multichannel frame delay enables the processor to work
with different types of T1 interface devices.

MFD=0 No delay; frame sync concurrent with the first data bit.

MFD=x Frame sync delayed x clock cycles.

The maximum is 15 clock cycles. Because blocks of data
occur back to back, new frame sync may occur before data
from the last frame has been received.

When the processor is RFS source in a multiprocessor system and the sys-
tem’s serial clock is equal to CLKIN (processor clock), use an MFD ≥ 1.
Otherwise, the system’s master processor will not recognize the first frame
sync after multichannel operation has been enabled. (It will, however, rec-
ognize all succeeding frame syncs.)

Multichannel Mode

9-72 ADSP-21065L SHARC DSP User’s Manual

Channel Selection Registers
(MTCSx, MRCSx, MTCCSx, MRCCSx)

You can enable and disable specific channel slots individually to select
which words are received and transmitted during multichannel
communications.

The processor transmits and receives only data words from enabled chan-
nel slots and ignores data words on disabled channel slots. The SPORTs
support a maximum of thirty-two channel slots for transmitting and for
receiving.

The multichannel selection registers enable and disable (activate and deac-
tivate) individual transmit and receive channel slots and enable and
disable companding on them. Table 9-12 lists the registers for each serial
port.

Each register has thirty-two bits that correspond to the thirty-two channel
slots. Setting a bit activates the corresponding channel slot, so the SPORT

Table 9-12. Multichannel selection register definitions

Register Selects…

MTCSx Multichannel transmit select.

Specifies the active transmit channels.

MRCSx Multichannel receive select.

Specifies the active receive channels.

MTCCSx Multichannel transmit compand select.

Specifies which active channels are companded.

MRCCSx Multichannel receive compand select.

Specifies which active receive channels are com-
panded.

ADSP-21065L SHARC DSP User’s Manual 9-73

Serial Ports

selects the data word it contains from the multiple-word data block. For
example, setting bit 0 selects data word 0, setting bit 12 selects data word
12, and so on.

Setting a particular bit to 1 in the MTCSx register causes the SPORT to
transmit the data word in that channel slot’s position in the data stream.
Clearing the bit to 0 puts the SPORT’s DT (data transmit) pin into Hi-Z
during the time of that channel slot.

Setting a particular bit to 1 in the MRCSx register causes the SPORT to
receive the data word in that channel slot’s position in the data stream.
The processor loads the received word into the RX buffer. Clearing the bit
to 0 causes the SPORT to ignore the data.

You can also select companding on a per channel basis. The MTCCSx and
MRCCSx registers specify companding for any active channel slots. Set-
ting a bit to 1 in these registers causes the SPORT to compand the data
word using either the A-law or µ-law companding algorithm. All channels
configured for companding must use the same companding algorithm. (To
select the companding algorithm, see “Data Type (DTYPE)” on page
9-44).

SPORT Receive Comparison Registers
(KEYWDx and IMASKx)

In SPORT multichannel mode (MCE=1), the 32-bit receive comparison
(KEYWDx) and receive comparison mask (IMASKx) registers aid multi-
processor communications.

The KEYWDx register stores the pattern against which to match the
incoming data. The corresponding IMASKx register specifies which bits in
the received data to compare. Setting a bit in IMASKx to 1 masks the cor-
responding bit in the KEYWDx register, removing it from comparison.

The receiving processor compares the received data with the data pattern
in its KEYWDx register. Depending on the results, the processor accepts

Multichannel Mode

9-74 ADSP-21065L SHARC DSP User’s Manual

the received data or ignores it. On acceptance, depending on the SDENx
setting in SRCTLx, the receiver either requests a DMA transfer to internal
memory or generates an interrupt.

These bits (SRCTL) control the operation of the receive comparison in
multichannel mode, as shown in Table 9-13.

With receive comparison enabled, companding is disabled on both trans-
mitter and receiver.

The MTCCSx register, which selects multichannel companding when
receive comparison is disabled, determines whether the DSP performs a
KEYWD comparison for the enabled received channel slots.

MTCCSx=0 On channel slot x, disable receive comparison and always
accept received data.

MTCCSx=1 On channel slot x, enable comparison and accept or reject
received data based on comparison results and IMAT value
(SRCTLx).

The receive comparison feature enables the SPORT to determine whether
to generate either a DMA request or an interrupt when received data
matches a specified condition on a specified channel. Otherwise, every
time it received data the SPORT would have to interrupt the processor,

Table 9-13. SRCTL control bits for receive comparison

IMODE IMAT Selects…

0 x Receive comparison disabled.

1 0 Accept receive data if the KEYWD compares
false.

1 1 Accept receive data if the KEYWD compares
true.

ADSP-21065L SHARC DSP User’s Manual 9-75

Serial Ports

which would have to determine whether the data was meant for it. And
SPORT data is often in transit to other than the processor. With the
receive comparison feature, you can program a SPORT on a particular
processor to interrupt only on messages meant for its processor.

For example, consider two ADSP-21065s (A and B) which use SPORT0
in multichannel mode for interprocessor communications. Processors A
and B use channel slots 0 and 1, respectively, to transmit control
information between them. To transmit data, processor A uses channel
slots 2 through 16, and processor B uses channel slots 17 through 31.

Because channel slots 0 and 1 carry control information between the pro-
cessors, receive comparison on incoming data is enabled only on these
channel slots. Initially, receive may be disabled on channel slots 2 through
31. In this example, the programmed key word for processor B to compare
against is START TRANSMIT TO B.

To check for this keyword, processor B:

1. Sets the KEYWDx register to START TRANSMIT TO B.

2. In IMASKx, sets bits 31:16 to 0 and sets bits 15:0 to 1

This step enables receive comparison on bits 31:16 only. Assume
that the code for START TRANSMIT TO B uses bits 31:16 only and
that bits 15:0 indicate the transmission source and data channel
slots.

3. Sets the IMODE and IMAT (SRCTLx) bits to 1.

This step enables the SPORT to generate either an interrupt or
DMA request only if the incoming data matches the KEYWDx.

4. Sets bits 0 and 1 of MTCCSx to 1 and clears the remaining bits
31:2.

This step enables comparison only on channel slots 0 and 1.

Multichannel Mode

9-76 ADSP-21065L SHARC DSP User’s Manual

Communication between the two processors follows this sequence:

1. Until it receives the START TRANSMIT TO B keyword, processor B
ignores all transmissions that it receives.

2. To initiate transmission to B, processor A sends the START TRANS-
MIT TO B keyword on channel slot 0.

3. When processor B’s receive comparison logic recognizes the START
TRANSMIT TO B keyword, the SPORT interrupts its processor.

4. Processor B analyzes the remaining 16-bits and determines that the
transmit source is processor A and that the data is on channel slots
2:16.

5. Because processor A is using channel slots 2 through 16 to transmit
data, processor B enables receive channel slots 2 through 16 and
sends a READY TO RECEIVE DATA message to processor A on channel
slot 1.

6. After receiving this message, processor A sends the data on channel
slots 2 through 16.

If the transfer protocol uses a fixed number of bytes in each mes-
sage, to confirm that the data transferred accurately, processor B
can return a checksum message to processor A after receiving A's
message.

ADSP-21065L SHARC DSP User’s Manual 9-77

Serial Ports

Moving Data Between SPORTs and
Memory

You can transfer transmit and receive data between the SPORTs and on-
chip memory in one of two ways: with single-word, core transfers or with
DMA block transfers. Both methods are interrupt-driven and use the same
internally generated interrupts.

When serial port DMA is disabled (STCTLx or SRCTLx), the SPORT
generates an interrupt every time it receives a data word or starts to trans-
mit a data word.

SPORT DMA provides a mechanism for receiving or transmitting an
entire block of serial data before the SPORT generates the interrupt. The
processor’s on-chip DMA controller handles the DMA transfer, enabling
the core to continue executing program until the entire block of data has
been transmitted or received. Service routines that operate on blocks of
data instead of single words significantly reduce overhead.

DMA Block Transfers
The processor’s on-chip DMA controller enables automatic DMA trans-
fers between internal memory and the two serial ports.

Eight DMA channels support serial port operations—each SPORT has
two channels for receiving data and two channels for transmitting data.
Table 9-14 on page 9-78 lists each serial port DMA channels and its data
buffer.

Moving Data Between SPORTs and Memory

9-78 ADSP-21065L SHARC DSP User’s Manual

Because of their relatively low service rate and their inability to hold off
incoming data, the SPORT DMA channels have higher priority than
external port DMA channels. Because they have higher priority, the DMA
controller performs SPORT DMA transfers first when it receives multiple
DMA requests in the same cycle.

Although DMA transfers always use 32-bit words, the serial ports can han-
dle word sizes from 3 to 32 bits. If serial words are 16 bits or smaller, the
SPORTs can pack them into 32-bit words for each DMA transfer. You
configure packing with the PACK bit in the STCTLx and SRCTLx con-
trol registers.

Table 9-14. DMA serial port channels

Channel Data
Buffer

Description Priority

1 Rx0_A SPORT0 Receive, A data Highest

2 Rx0_B SPORT0 Receive, B data

3 Rx1_A SPORT1 Receive, A data

4 Rx1_B SPORT1 Receive, B data

5 Tx0_A SPORT0 Transmit, A data

6 Tx0_B SPORT0 Transmit, B data

7 Tx1_A SPORT1 Transmit, A data

8 Tx1_B SPORT1 Transmit, B data

9 EPB0 External port FIFO buffer 0

10 EPB1 External port FIFO buffer 1 Lowest

ADSP-21065L SHARC DSP User’s Manual 9-79

Serial Ports

With packing enabled (PACK=1), the SPORT generates the transmit and
receive interrupts for the 32-bit packed words, not for each 16-bit serial
word.

The following sections describe serial port DMA operations. For details on
other DMA operations, see Chapter 6, DMA.

Setting Up DMA on SPORT Channels

Each SPORT DMA channel has an enable bit SDEN in its STCTLx and
SRCTLx control registers.

When DMA is disabled for a particular channel, the SPORT generates an
interrupt every time it receives a data word or starts transmitting a data
word (see “Single-Word Transfers” on page 9-86).

Each channel also has a DMA chaining enable bit SCHEN in its STCTLx
and SRCTLx control registers. For details, see “SPORT DMA Chaining”
on page 9-85.

To set up a serial port DMA channel, you write a set of memory buffer
parameters to the SPORT DMA parameter registers shown in Table 9-15
on page 9-80. Note that xy in the register names in the Register column
indicates four registers, and each corresponds to a different DMA channel.
For example, IIRxy represents IIR0A – DMA channel 0, IIR0B – DMA
channel 1, IIR1A – DMA channel 2, and IIR1B – DMA channel 3. For a
complete list of these registers, see the Symbol Definitions File
(def21065L.h) in the ADSP-21065L SHARC DSP Technical Reference.

Moving Data Between SPORTs and Memory

9-80 ADSP-21065L SHARC DSP User’s Manual

You must load the II, IM, and C registers with a starting address for the
buffer, an address modifier, and a word count, respectively. You can pro-
gram these registers from the processor or from an external processor.

Once you set up and enable serial port DMA, the processor’s DMA con-
troller automatically transfers received data words in the RX buffer to the
buffer in internal memory. Likewise, when the serial port is ready to trans-
mit data, the DMA controller automatically transfers a word from internal
memory to the TX buffer. The controller continues these transfers until

Table 9-15. SPORT DMA parameter registers

Register Description

SPORT Rxy Channels

IIRxy DMA chn. index; Start address for data buffer

IMRxy DMA chn. modify; Address increment

CRxy DMA chn. count; Number of words to transmit

CPRxy DMA chn. chain pointer; Address next set of data
buffer parameters

GPRxy DMA channel general purpose

SPORT Txy Channels

IITxy DMA channel index; Start address for data buffer

IMTxy DMA channel modify; Address increment

CTxy DMA channel count; Number of words to transmit

CPTxy DMA channel chain pointer; Address next set of data
buffer parameter

GPTxy DMA channel general purpose

ADSP-21065L SHARC DSP User’s Manual 9-81

Serial Ports

the entire data buffer is received or transmitted—when the count register
reaches zero.

When the count register of an active DMA channel reaches zero (0), the
SPORT generates the corresponding interrupt.

SPORT DMA Parameter Registers

A DMA channel consists of a set of parameter registers that implement a
data buffer in internal memory and the hardware that the serial port uses
to request DMA service.

The parameter registers for each SPORT DMA channel are shown in
Table 9-15 on page 9-80. These registers are part of the processor’s mem-
ory-mapped IOP register set, and their addresses are shown in Table 9-16
on page 9-82.

The DMA channels operate similarly to the processor’s data address gener-
ators (DAGs). Each channel has an index register (II) and a modify
register (IM) for setting up a data buffer in internal memory. You must
initialize the index register with the starting address of the data buffer.
After it transfers each serial I/O word to or from the SPORT, to generate
the address for the next DMA transfer, the DMA controller adds the mod-
ify value to the index register. The modify value in the IM register is a
signed integer, which provides capability for both incrementing and decre-
menting the buffer pointer.

Each DMA channel has a count register C, which you must initialize with
a word count that specifies the number of words to transfer. The count
register decrements after each DMA transfer on the channel. When the
word count reaches zero, the SPORT generates the interrupt for the chan-
nel and automatically disables the DMA channel. The DEN bit in the
SxCTLx register is not cleared and should be cleared before a new DMA is
started.

Moving Data Between SPORTs and Memory

9-82 ADSP-21065L SHARC DSP User’s Manual

Each SPORT DMA channel also has a chain pointer register CP and a
general-purpose register GP. The CP register functions in chained DMA
operations (see “SPORT DMA Chaining” on page 9-85), and you can use
the GP register for any purpose.

Table 9-16. Addresses of DMA parameter registers

Register Address DMA Chn. SPORT Chn.

IIR0B 0x0030 1 Rx0_B

IMR0B 0x0031 1 Rx0_B

CR0B 0x0032 1 Rx0_B

CPR0B 0x0033 1 Rx0_B

GPR0B 0x0034 1 Rx0_B

Reserved 0x0035 - 0x0036

DMASTAT 0x0037 DMA channel status register

IIR1B 0x0038 3 Rx1_B

IMR1B 0x0039 3 Rx1_B

CR1B 0x003A 3 Rx1_B

CPR1B 0x003B 3 Rx1_B

GPR1B 0x003C 3 Rx1_B

Reserved 0x003D - 0x003F

IIEP0 0x0040 8 EPB0

IMEP0 0x0041 8 EPB0

ADSP-21065L SHARC DSP User’s Manual 9-83

Serial Ports

CEP0 0x0042 8 EPB0

CPEP0 0x0043 8 EPB0

GPEP0 0x0044 8 EPB0

EIEP0 0x0045 8 EPB0

EMEP0 0x0046 8 EPB0

ECEP0 0x0047 8 EPB0

IIEP1 0x0048 9 EPB1

IMEP1 0x0049 9 EPB1

CEP1 0x004A 9 EPB1

CPEP1 0x004B 9 EPB1

GPEP1 0x004C 9 EPB1

EIEP1 0x004D 9 EPB1

EMEP1 0x004E 9 EPB1

ECEP1 0x004F 9 EPB1

IIT0B 0x0050 5 Tx0_B

IMT0B 0x0051 5 Tx0_B

CT0B 0x0052 5 Tx0_B

CPT0B 0x0053 5 Tx0_B

GPT0B 0x0054 5 Tx0_B

Table 9-16. Addresses of DMA parameter registers (Cont’d)

Register Address DMA Chn. SPORT Chn.

Moving Data Between SPORTs and Memory

9-84 ADSP-21065L SHARC DSP User’s Manual

Reserved 0x0055 - 0x0057

IIT1B 0x0058 7 Tx1_B

IMT1B 0x0059 7 Tx1_B

CT1B 0x005A 7 Tx1_B

CPT1B 0x005B 7 Tx1_B

GPT1B 0x005C 7 Tx1_B

Reserved 0x005D - 0x005F

IIR0A 0x0060 0 Rx0_A

IMR0A 0x0061 0 Rx0_A

CR0A 0x0062 0 Rx0_A

CPR0A 0x0063 0 Rx0_A

GPR0A 0x0064 0 Rx0_A

Reserved 0x0065 - 0x0067

IIR1A 0x0068 2 Rx1_A

IMR1A 0x0069 2 Rx1_A

CR1A 0x006A 2 Rx1_A

CPR1A 0x006B 2 Rx1_A

GPR1A 0x006C 2 Rx1_A

Reserved 0x006D - 0x006F

Table 9-16. Addresses of DMA parameter registers (Cont’d)

Register Address DMA Chn. SPORT Chn.

ADSP-21065L SHARC DSP User’s Manual 9-85

Serial Ports

SPORT DMA Chaining

In chained DMA operations, the processor’s DMA controller automati-
cally sets up another DMA transfer when the contents of the current
buffer have been transmitted (or received). The chain pointer register
(CP) functions as a pointer to the next set of buffer parameters stored in
memory. The DMA controller automatically downloads these buffer
parameters to set up the next DMA sequence. For details, see Chapter 6,
DMA.

DMA chaining occurs independently for the transmit and receive channels
of each serial port. Each SPORT DMA channel has a chaining enable bit
SCHEN (STCTLx and SRCTLx).

IIT0A 0x0070 4 Tx0_A

IMT0A 0x0071 4 Tx0_A

CT0A 0x0072 4 Tx0_A

CPT0A 0x0073 4 Tx0_A

GPT0A 0x0074 4 Tx0_A

Reserved 0x0075 - 0x0077

IIT1A 0x0078 6 Tx1_A

IMT1A 0x0079 6 Tx1_A

CT1A 0x007A 6 Tx1_A

CPT1A 0x007B 6 Tx1_A

GPT1A 0x007C 6 Tx1_A

Table 9-16. Addresses of DMA parameter registers (Cont’d)

Register Address DMA Chn. SPORT Chn.

Moving Data Between SPORTs and Memory

9-86 ADSP-21065L SHARC DSP User’s Manual

SCHEN_z=0 Disable DMA chaining

SCHEN_z=1 Enable DMA chaining

(You can also write all 0s to the address field of the chain
pointer register (CP) to disable chaining.)

Single-Word Transfers
The SPORTs can also transfer individual data words, generating interrupts
for each 32-bit word transfer.

When a serial port is enabled and DMA is disabled (STCTLx or
SRCTLx), the SPORT generates DMA interrupts whenever:

• The RX buffer has received an entire word.

• The TX buffer is not full.

This behavior enables you to use single-word interrupts to implement
interrupt-driven I/O on the serial ports.

Whenever the processor’s core program reads a word from a serial port’s
RX buffer or writes a word to its TX buffer, make sure it checks the
buffer’s full/empty status first to avoid hanging the core. (This can happen
to an external device too, such as a host processor, when it is reading or
writing a serial port buffer.) To check buffer status, read the RXS bits or
the TXS bits in the SRCTLx or STCTLx control register.

Reading from an empty RX buffer or writing to a full TX buffer causes the
processor (or external device) to hang, waiting for the status to change. To
prevent this hang condition, in the SYSCON register, set the BHD
(Buffer Hang Disable) bit to 1.

The processor updates the status bits in STCTLx and SRCTLx during
core reads and writes, even when the serial port is disabled. For details, see
page 9-7.

ADSP-21065L SHARC DSP User’s Manual 9-87

Serial Ports

Multiple interrupts can occur if both SPORTs transmit or receive data in
the same cycle. You can mask out any interrupt in the IMASK register. If
you re-enable the interrupt in IMASK later, clear the corresponding inter-
rupt latch bit in IRPTL in case the interrupt occurred while it was
masked.

With serial port data packing enabled (PACK=1), the SPORT generates the
transmit and receive interrupts for the 32-bit packed words, not for each
16-bit serial word.

SPORT Loopback

9-88 ADSP-21065L SHARC DSP User’s Manual

SPORT Loopback
In standard and I2S modes, the SPL bit (SPORT loopback mode) in the
SRCTLx control register configures the serial port for internal loopback
connection. SPORT loopback mode enables you to test the serial port’s
internal operation.

SPL=0 Disable SPORT loopback mode.

SPL=1 Enable SPORT loopback mode.

With loopback enabled, the DRx, RCLKx, and RFSx signals of the
SPORT’s receive section internally connect to the DTx, TCLKx, and
TFSx signals of the transmit section. The DTx, TCLKx, and TFSx signals
are active and available at their respective pins, while the processor ignores
the DRx, RCLKx, and RFSx pins.

In loopback mode, you can use only the transmit clock and transmit frame
sync options, and you must make sure that you set up the serial port cor-
rectly in the STCTLx and SRCTLx control registers.

Loopback mode does not support multichannel operation.

SPORT Pin Driver Considerations
The processor has very fast drivers on all output pins, including the serial
ports. If connections on the data, clock, or frame sync lines are longer
than six inches, we recommend that you use a series termination for strip
lines on point-to-point connections. Because of the edge rates, this hard-
ware may be necessary even for low-speed serial clocks.

ADSP-21065L SHARC DSP User’s Manual 9-89

Serial Ports

SPORT Programming Examples
The processor provides three ways to control serial port communications
and memory-to-SPORT data transfers:

• Single-word transfers under core processor control with no inter-
rupts.

• Single-word transfers under core processor control with interrupts.

• DMA transfers with interrupts.

The three examples presented next illustrate each of these methods. Each
example uses SPORT0 to transmit eight 32-bit words from a data buffer
in internal memory.

Each of the three control schemes also operates in multichannel mode and
with any of the serial clock and frame sync options.

Single-Word Transfers Without Interrupts
The processor’s core will stall (i.e. hang) when it attempts to write data to
a full TX buffer or read data from an empty RX buffer. This provides a
very simple method of controlling the SPORT—placing the instruction
that writes data to TX or reads data from RX in a loop. Program execution
will stall at this instruction, until the SPORT is ready to transmit new
data or has received new data.

Listing 9-1 on page 9-90 shows the code for this example, which sets up a
loop to transmit data out of SPORT0. Although this technique provides a
very simple programming solution, it prevents the processor’s core from
handling any other tasks while waiting for the serial port. The interrupt-
driven technique described in the following section alleviates this.

SPORT Programming Examples

9-90 ADSP-21065L SHARC DSP User’s Manual

Listing 9-1. SPORT transmit example code

/* */
SPORT Transmit Example: Uses the feature that the processor core will
stall when attempting to write to a full TX register. This example
sets up a loop to transmit the data in the memory buffer source.
/* */

#define N 8
#include “def21065L.h” /* Use symbolic register name */

.segment/dm dm32_b1; /* Data segment name described in ldf file */

.var source[N]= 0x11111111, 0x22222222, 0x33333333, 0x44444444
 0x55555555, 0x66666666, 0x77777777, 0x88888888;

.endseg;

.segment/pm rst_svc; /* Reset vector from ldf file */
nop; /* First location is used for booting */
jumpstart;

.endseg;

/* Main Routine */

.segment/pm pm48_1b0; /* Main code segment from ldf file. */

start:r0=0x00270007; /* TDIV0 register: TCLKDIV=7,TFSDIV=39 */
dm(TDIV0)=r0; /* sclock=CLKIN/8, framerate=sclock/20 */

r0=0x000064f1; /* STCTL0 register */
dm(STCTL0)=r0; /* SPEN=1, (SPORT enabled) */

/* SLEN=15, (16-bit word) */
/* ICLK=1, (internal tx clock) */
/* TFSR=1, (require TFS) */
/* ITFS=1, (internal TFS) */
/* DITFS=0, (data-depedent FS) */

b0=source; /* Pointer to source; i0=b0 automatically */
10=@source;

ADSP-21065L SHARC DSP User’s Manual 9-91

Serial Ports

lcntr=N, do tx_loop until lce;
r0=dm(i0,1); /* Get data from source buffer. */

tx_loop: dm(TX0_A)=r0; /* Write transmit register, core */
/* will wait until SPORT output */
/* buffer is not full */

idle;
.endseg;
/* */

Single-Word Transfers with Interrupts
While the non-interrupt-driven solution of the previous example provides
a very simple control scheme, it prevents the processor’s core from han-
dling any additional tasks while it is stalled. In most real-time
applications, the DSP must process data while new data is being received.
It may also need to perform background tasks between data transfers.

In most systems, therefore, the DSP processor must be able to continue
executing its program at all times. Using the serial port receive and trans-
mit interrupts allows this to happen, by interrupting the core processor
only when a new data word has been received or when a new data word
can be transmitted. The interrupt service routine then performs the data
transfer between internal memory and the serial port’s TX or RX buffer.

Listing 9-2 shows the code for this example. Note that the interrupt used
is the SPORT0 Transmit DMA Channel interrupt (SPT0I)—when serial
port DMA is disabled, this interrupt becomes a single-word transmit
interrupt.

Listing 9-2. SPORT interrupt-driven transmit example

/* */
2106x Interrupt Driven SPORT Transmit Example
This example uses interrupts to notify the core when new data is
required. The buffer “source” is transmitted.

/* */
#define N 8
#include “def21065L.h” /*Use symbolic register names */
.segment/dm dm32_b1; /* Data segment name described in ldf file */

SPORT Programming Examples

9-92 ADSP-21065L SHARC DSP User’s Manual

.var source[N]= 0x11111111, 0x22222222, 0x33333333, ox44444444
 0x55555555, 0x66666666, 0x77777777, 0x88888888

.endseg;

.segment/pm rst_svc; /* Reset vector from ldf file. */
nop; /* First location is used for booting */
jump start;

.endseg;

.segment/pm spt0_svc; /* SPORT0 TX interrupt vector. */
jump s0tx;

.endseg;
/* Main routine *
.segment/pm pm48_1b0; /*Main code segment from ldf file */

start:r0=0x00270007; /* TDIV0 register: TCLKDIV=7,TFSDIV=39 */
dm(TDIV0)=r0; /* sclock=2CLKIN/8, framerate=sclock/20 */

r0=0x000064f1; /* STCTL0 register */
dm((STCTL0)=r0 /* SPEN=1, (SPORT enabled) */

/* SLEN=15, (16-bit word) */
/* ICLK=1, (internal tx clock) */
/* TFSR=1, (require TFS) */
/* ITFS=1, (internal TFS) */
/* DITFS=0, (data dependent FS) */

b0=source; /* Pointer to source; i0=b0 automatically. */
l0=@source;

bit set imask SPT0I;/* Enable SPORT0 TX interrupt */
bit set model IRPTN;

r0=dm(i0,1; /* Write first value to TX0 to kick off SPORT
*/

dm(TX0_A)=r0;

wait: idle; /* Wait for SPORT0 TX interrupts. */
jump wait;

/* SPORT0 Transmit Interrupt Routine */
s0tx: rti (db);

r0=dm(i0,1); /* Get data from source buffer */
dm(TX0_A)=ro; /* Write transmit register */

.endseg;
/* */

ADSP-21065L SHARC DSP User’s Manual 9-93

Serial Ports

DMA Transfers with Interrupts
This example shows how to use the processor’s on-chip DMA controller to
handle serial port I/O. The DMA controller performs the data transfers
between internal memory and the SPORTs, providing the most efficient
way to handle input and output of multiple-word blocks of data. Once it
has been set up, the DMA controller operates independently from the pro-
cessor’s core. It interrupts core execution only when an entire block of data
has been received (or transmitted). This frees the core to continue with
other tasks.

Listing 9-3 shows the code for this example, which uses the serial port’s
loopback mode. The program first sets up the SPORT1 DMA channels by
loading values into the DMA parameter registers, then writes to the
SRCTL1 and STCTL1 registers and waits to be interrupted.

Listing 9-3. SPORT DMA-driven loopback example

/*
*/
ADSP-21065L DMA-Driven SPORT Loopback Example:

This example sets up a SPORT DMA transfer and receive for serial port
1 in the loopback mode. The buffer "source" is DMAed out of the sport.
The loopback DMA programming mode internally attaches DT1, TFS1, and
TCLK1 to DR1, RFS1, and RCLK1. The receive DMA places the data in the
buffer "destination".
/ */

#define N 8
#include "def21065L.h" /* Use symbolic register names */

.segment/dm dm32_b1; /* Data segment name described in ldf. file.*/

.var source[N]= 0x11111111, 0x22222222, 0x33333333, 0x44444444,
 0x55555555, 0x66666666, 0x77777777, 0x88888888;
.var destination[N];
.endseg;

SPORT Programming Examples

9-94 ADSP-21065L SHARC DSP User’s Manual

.segment/pm rst_svc; /* Reset vector from ldf. file.*/
 nop; /* First location is used for booting.*/
 jump start;
.endseg;

.segment/pm spr1_svc; /* SPORT1 rx interrupt vector.*/
 jump s1rx;
.endseg;

/* main routine */

.segment/pm pm48_1b0;/* Main code segment from ldf. file */

start:r0=source;
dm(IIT1A)=r0; /* Set DMA tx index to start of source buffer */
r0=destination;
dm(IIR1A)=r0; /* Set DMA rx index to start of dest. buffer */
r0=1;
dm(IMT1A)=r0; /* Set DMA modify (stride) to 1.*/
dm(IIR1A)=r0;
r0=@source;
dm(CT1A)=r0; /* Set DMA count to length of data buffer */
dm(CR1A)=r0;

r0=0x004421f1; /* SRCTL1 Register: */
dm(SRCTL1)=r0; /* SPEN=1, (SPORT1 enabled) */

/* SLEN=31, (32-bit word) */
/* RFSR=1, (require RFS) */
/* SDEN=1, (rx DMA enable) */
/* SPL=1, (loop back DT to DR & TFS to RFS) */

r0=0x00270007; /* TDIV0 Register: TCLKDIV=7, TFSDIV=39 */
dm(TDIV1)=r0; /* sclock=2CLKIN/8, framerate=sclock/2 0 */

r0=0x000465f1; /* STCTL1 Register: */
dm(STCTL1)=r0; /* SPEN=1, (SPORT1 enabled) */

/* SLEN=31,(32-bit word) */
/* ICLK=1, (internal tx clock) */
/* TFSR=1, (require TFS) */
/* ITFS=1, (internal TFS) */
/* DITFS=0,(data dependent FS),all other bits=0 */
/* SDEN=1, (tx dma enable), this kicks it off */

ADSP-21065L SHARC DSP User’s Manual 9-95

Serial Ports

bit set imask SPR1I; /* Enable SPORT1 rx interrupt */
bit set mode1 IRPTEN;/* Global interrupt enable */

wait:idle; /* Wait for SPORT1 rx interrupt */
jump wait; /* Ends up here after entire DMA complete */

/* SPORT1 Receive Interrupt Routine */

s1rx:rti; /* This interrupt will occur only once */

.endseg;
/* */

SPORT Programming Examples

9-96 ADSP-21065L SHARC DSP User’s Manual

ADSP-21065L SHARC DSP User’s Manual 10-1

10 SDRAM INTERFACE
Figure 10-0.

Listing 10-0.

Table 10-0.

The processor’s SDRAM interface enables it to transfer data to and from
synchronous DRAM (SDRAM) at 2xCLKIN. The synchronous approach
coupled with 2xCLKIN frequency supports data transfer at a high
throughput—up to 264M bytes/sec. All inputs are sampled and all out-
puts are valid at the rising edge of the clock SDCLK.

The processor’s SDRAM controller provides a glueless interface with stan-
dard SDRAMs and supports:

• 16M, 64M, and 128M SDRAMs and x4, x8, x16, or x32 configu-
rations.

You can connect up to eight x4 (excluding 128M devices), four x8,
two x16, or one x32 SDRAM to the processor’s external port,
ADDR23-0 bus.

• Up to 16 Mwords of SDRAM in external memory.

• Zero wait state, 66 Mwords/sec. with some access types.

• Full page burst length only for page read and write operations.

• SDRAM page sizes of 1024, 512, and 256 words.

• A programmable refresh counter to coordinate between varying
clock frequencies and the SDRAM’s required refresh rate.

• Buffering for multiple SDRAMs connected in parallel.

• Shared SDRAM devices in a multiprocessing system.

10-2 ADSP-21065L SHARC DSP User’s Manual

• A separate A10 pin that enables applications to precharge SDRAM
before issuing a refresh command.

• Connection to any one of the processor’s external memory banks.

• Self-refresh, low-power mode.

• Two power-up options.

Figure 10-1 shows a block diagram of the processor’s SDRAM interface.
In this uniprocessor example, the SDRAM interface connects to four
1M×8×2 SDRAM devices to provide applications, in effect, use of 2M of
32-bit words. The same address and control bus feeds all four SDRAM
devices.

Figure 10-1. The processor’s SDRAM interface

DATA[31-0]

ADSP-21065L

MSx

RAS

CAS

DQM

SDWE

SDCLK0
SDCKE

C
O
N
T
R
O
L

A[9:0]

A[13]

SDA10

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #1
1M x 8 x 2

A11[BS]
DQ [7:0]

A[9:0]

CS

A[10]

DATA [31:0]

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #3
1M x 8 x 2

A11[BS]

DQ [7:0]

A[9:0]

CS

A[10]

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #2
1M x 8 x 2

A11[BS]

DQ [7:0]

A[9:0]

CS

A[10]

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #4
1M x 8 x 2

A11[BS]

DQ [7:0]

A[9:0]

CS

A[10]

D
A

T
A

[1
5:

8]
D

A
T

A
[3

1:
24

]

D
A

T
A

[7
:0

]
D

A
T

A
[2

3:
16

]

ADSP-21065L SHARC DSP User’s Manual 10-3

SDRAM Interface

Figure 10-2 shows another uniprocessor example in which the SDRAM
interface connects to multiple banks of SDRAM to provide 512M of
SDRAM in ×4 I/O configuration, which results in 16M × 32-bit words.
In this example, OxA and OxB output from the registered buffers are the
same signal, but buffered separately. In the registered buffers, a delay of
one clock cycle occurs between input (Ix) and its corresponding output
(OxA or OxB).

Figure 10-2. Uniprocessor system with multiple SDRAM devices

DATA[31-0]

ADSP-21065L

MS3

RAS

CAS

DQM

SDWE

SDCLK0

SDCKE

C
O
N
T
R
O
L

A[13:11]

A[9:0]

SDA10

SDCLK1

Registered
Buffers

I0

I5

I4

I3

I2

I1

O0A

O5A

O4A

O3A

O2A

O1A

O0B

O5B

O4B

O3B

O2B

O1B

Ix[13:0] Oxa[13:0]

Oxb[13:0]

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #1
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #3
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #2
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #4
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #8
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK

CKE

SDRAM #6
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #7
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK

CKE

SDRAM #5
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

Ab[13:0]

Aa[13:0]

[23:20]

[27:24]

[31:28]

[7:4]

[15:12]

[11:8]

[19:16][3:0]

Ab[13:0]

D Q

D Q

Addr [14]

Ctrl [6]

20

20 SDRAM Bank 1
Addr & Ctrl

SDRAM Bank 2
Addr & Ctrl

10-4 ADSP-21065L SHARC DSP User’s Manual

Table 10-1 lists and describes the processor’s SDRAM pins and their
connections.

Table 10-1. SDRAM pin connections

Pin Type Description

CAS I/O/Z SDRAM Column Address Select pin. Connect to
SDRAM’s CAS buffer pin.

DQM O/Z SDRAM Data Mask pin. Connect to SDRAM’s DQM
buffer pin.

The processor drives this pin high during
reset, until SDRAM is started.

MSx O/Z Memory select lines of external memory bank
configured for SDRAM. Connect to SDRAM’s CS
(chip select) pin.

RAS I/O/Z SDRAM Row Address Select pin. Connect to
SDRAM’s RAS pin.

SDA10 O/Z SDRAM A10 pin. SDRAM interface uses this pin to
retain control of the SDRAM device during host
bus requests. Connect to SDRAM’s A10 pin

SDCKE I/O/Z SDRAM Clock Enable pin. Connect to SDRAM’s CKE
pin.

SDCLK0 O/S/Z SDRAM SDCLK0 output pin. Connect to the SDRAM’s
CLK pin.

SDCLK1 O/S/Z SDRAM SDCLK1 output pin. Connect to the SDRAM’s
CLK pin.

SDWE I/O/Z SDRAM Write Enable pin. Connect to SDRAM’s WE
or W buffer pin.

I = Input; O = Output; S = Synchronous; Z = Hi-Z

ADSP-21065L SHARC DSP User’s Manual 10-5

SDRAM Interface

The following terms are used throughout this chapter:

Bank Activate command
Activates the selected bank and latches in a new row address. It
must be applied before a read or write command.

Burst length
Determines the number of words the SDRAM inputs or outputs
after detecting a write or read command, respectively.

The processor supports full-page mode only.

During a full-page burst cycle, the SDRAM generates all subse-
quent addresses internally by incrementing the column address
sequentially.

See also, page size.

Burst Stop command
One of several ways to terminate a burst read or write operation.

Terminates the current burst operation, but leaves the bank open
for future reads or writes to the same page of the active bank.

Burst type
Determines the order in which the SDRAM delivers or stores burst
data after detecting a read or write command, respectively.

The processor supports sequential accesses only.

CAS latency (also tAA, tCAC, CL)
The delay, in clock cycles, between when the SDRAM detects the
read command and when it provides the data at its output pins.

The speed grade of the device and the application’s clock frequency
determine the value of the CAS latency.

10-6 ADSP-21065L SHARC DSP User’s Manual

The application must program the CAS latency value into the
IOCTL register after power up.

CBR Automatic refresh (CAS before RAS) mode.

In this mode, the SDRAM drives its own refresh cycle with no
external control input. At cycle end, all SDRAM banks are pre-
charged (idle).

DQM Data I/O Mask function.

Asserted during a precharge command or when a burst stop com-
mand interrupts a burst write.

When asserted during a write cycle, this signal interrupts and dis-
ables the write operation immediately.

IOCTL register
IOP register that contains programmable SDRAM control and
configuration parameters that support different vendor’s timing
and power-up sequence requirements.

Mode register
The SDRAM’s configuration register that contains user-defined
parameters (corresponds to the processor’s IOCTL register). After
initial power-up and before executing a read or write command,
the application must program the Mode register.

Page size
The size, in words, of the SDRAM’s page. The processor supports
1024-, 512-, and 256-word page sizes.

For 128M SDRAM devices with 2K page size, the SDRAM con-
troller stops the burst after the first 1K words.

Programmable option in the IOCTL register.

ADSP-21065L SHARC DSP User’s Manual 10-7

SDRAM Interface

Precharge command
Precharges (closes) an active bank.

SDRDIV
Programmable Refresh Counter.

An IOP register containing a refresh counter value.

Clock supplied to the SDRAM can vary between 20 and 60MHz.
This counter enables applications to coordinate CLK rate with the
SDRAM’s required refresh rate.

Self-Refresh
The SDRAM’s internal timer initiates automatic refresh cycles
periodically, without external control input. Places the SDRAM
device in a low-power mode.

Programmable option in the IOCTL register.

tRAS Active Command time.

Required delay between issuing an activate command and issuing a
precharge command. A vendor-specific value.

Programmable option in the IOCTL register.

tRC Bank Cycle time.

Required delay between successive Bank Activate commands to the
same bank. A vendor-specific value. Equal to tRP+tRAS.

The processor fixes the value of this parameter, so it is a nonpro-
grammable option.

10-8 ADSP-21065L SHARC DSP User’s Manual

tRCD RAS to CAS delay.

Required delay between a Bank Activate command and the start of
the first read or write operation. A vendor-specific value. Equal to
CAS latency.

The processor fixes the value of this parameter, so it is a nonpro-
grammable option.

tRP Precharge time.

Required delay between issuing a precharge command and issuing
an activate command. A vendor-specific value.

Programmable option in the IOCTL register.

ADSP-21065L SHARC DSP User’s Manual 10-9

SDRAM Interface

SDRAM Control Register (IOCTL)
SDRAMs are available from several vendors—IBM, Micron Electronics,
Texas Instruments, and others. Each vendor has different requirements for
the power-up sequence and timing parameters—tRAS (Active to Precharge
command delay) and tRP (Precharge to Active command delay)—for their
SDRAM product.

To support multiple vendors, the processor’s IOCTL register, shown in
Figure 10-3 on page 10-12, contains programmable SDRAM control bits.
The IOCTL register is an I/O processor register, which does not support
bitwise operations.

To meet your SDRAM’s particular requirements, set the corresponding
IOCTL control bits accordingly, as shown in Table 10-2. The IOP
address of the IOCTL register is 0x2E.

Table 10-2. IOCTL control bits

Bit Name Description

10 DSDCTL Disable SDCLK0, RAS, CAS, SDWE, DQM, SDCKE.

Disables all SDRAM signals.

0= enable

1= disable

11 DSDCK1 Disable SDCLK1.

Disables SDCLK1 signal only.

0= enable

1= disable

SDRAM Control Register (IOCTL)

10-10 ADSP-21065L SHARC DSP User’s Manual

12-14 SDPGS SDRAM page size.

000=1024 words

001=512 words

010=256 words

others = reserved

15 SDSRF SDRAM self-refresh mode.

0= disable

1= enable

This control bit always reads zero (0).

16-17 SDCL SDRAM CAS latency.

Sets the delay, in number of clock cycles,
between the time the SDRAM detects the
read command and the time the data is
available at its outputs.

01= 1 cycle

10= 2 cycles

11= 3 cycles

18-20 SDTRAS SDRAM tRAS spec in number of clock cycles.

21-23 SDTRP SDRAM, tRP spec in number of clock cycles.

24 SDPM SDRAM power-up option.

Specifies the sequence of commands in the
SDRAM power-up cycle.

0= precharge, 8 CBR ref, mode reg set

1= precharge, mode reg set, 8 CBR ref

Table 10-2. IOCTL control bits (Cont’d)

Bit Name Description

ADSP-21065L SHARC DSP User’s Manual 10-11

SDRAM Interface

25-27 SDBS SDRAM Bank select.

Specifies the processor’s external memory
bank to which the SDRAM connects.

000=no SDRAM

100=bank0

101=bank1

110=bank2

111=bank3

28 SDBUF SDRAM Buffer.

Enables/disables pipelining of address and
control signals when using external buff-
ering between the processor and SDRAM.
Supports multiple SDRAMs connected in par-
allel.

0= disable

1= enable

29-30 SDBN SDRAM number of banks.

Specifies the number of banks the SDRAM
contains.

00= 2 banks

01= 4 banks

1x= reserved

31 SDPSS Start SDRAM power up sequence.

Write 1 to initiate power up sequence.
SDPSS always reads as 0.

Table 10-2. IOCTL control bits (Cont’d)

Bit Name Description

SDRAM Control Register (IOCTL)

10-12 ADSP-21065L SHARC DSP User’s Manual

See Chapter 11‚ Programmable Timers and I/O Ports, for the definition
of bits 7:0.

Figure 10-3. IOCTL Register Definition

0 0 00000 00000000 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SDCL
SDRAM
CAS Latency
01=1 clk cycle
10=2 clk cycles
11=3 clk cycles

SDTRP
SDRAM tRP Spec.
(# clk cycles)

SDTRAS
SDRAM tRAS Spec.
(# clk cycles)

SDPM
SDRAM
Power Up Mode
0=prechg, 8 CBR refs.,
 mode reg set
1=prechg, mode reg. set,
 8 CBR refs.

SDPSS
SDRAM

Power Up Seq.
Write 1 to start

SDBN
SDRAM

of banks
00=2 banks
01=4 banks

1x=reserved

SDBUF
Ext. SDRAM

ctrl/addr Buffer
0=No buffer

1=With buffer

SDBS
SDRAM Ext.
Bank Select

000=None
100=Bank 0
101=Bank 1
110=Bank 2
111=Bank 3

0 0 00000 00000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SDSFR
SDRAM

Self-Refresh
0=disable
1=enable

SDPGS
SDRAM Page Size

000=1024 words
001=512 words
010=256 words

others=reserved

FLG6O

DSDCK1
SDCLK1 Disable

0=enable
1=disable

DSDCTL
SDCLK0 Disable
0=enable
1=disable

FLG7O

FLG4O
Gen. Purpose I/O
User-defined
0=input
1=output

FLG8O

FLG5O

FLG11O

FLG10O

FLG9O

ADSP-21065L SHARC DSP User’s Manual 10-13

SDRAM Interface

Configuring SDRAM Operation
The processor’s IOCTL register stores the configuration of the SDRAM
interface. Writing some configuration parameters initiates commands that
take effect immediately.

Before starting the SDRAM power-up sequence, your application must
write all of the SDRAM configuration parameter values to the IOCTL
register, and, at initial power-up, set the SDRDIV register.

In the SDRDIV register, a memory-mapped IOP register, you set the
value for the SDRAM refresh counter.

In the IOCTL register, you program the parameter bits to:

• Set the SDRAM clock enables (DSDCTL and DSDCK1).

• Select the number of banks the SDRAM contains (SDBN).

• Select the external memory bank configured for and connected to
the SDRAM (SDBS).

• Set the SDRAM buffering option (SDBUF).

• Select the CAS latency value (SDCL).

• Select the SDRAM page size (SDPGS).

• Select the SDRAM power-up mode (SDPM).

• Start the SDRAM power-up sequence (SDPSS).

• Start SDRAM self-refresh mode (SDSRF).

• Set the Active Command delay (SDTRAS).

• Set the Precharge delay (SDTRP).

Configuring SDRAM Operation

10-14 ADSP-21065L SHARC DSP User’s Manual

Setting the Refresh Counter Value (SDRDIV)
Since the clock supplied to the SDRAM can vary between 20MHz and
60MHz, the processor provides a programmable refresh counter,
SDRDIV, to coordinate the supplied clock rate with the SDRAM device’s
required refresh rate.

Your application must write to SDRDIV the delay, in number of clock
cycles, that must occur between consecutive refresh commands.

To calculate the value of the refresh counter for which to program the
SDRDIV register, use this equation:

Where:

CL= CAS latency programmed in the IOCTL register.

tRP= tRP spec programmed in the IOCTL register.

For example, for an IBM SDRAM with:

Ref. rate= 4096 cycles/64ms.

CLKIN= 33 MHz

CL= 2

tRP= 2

Write this value to the SDRDIV register before writing the
SDRAM parameter values to the IOCTL register.

SDRDIV= [(2 x fCLKIN)/(SDRAM refresh rate)] −CL −tRP −4

ADSP-21065L SHARC DSP User’s Manual 10-15

SDRAM Interface

The equation yields:

[(2x30x(106))/(4096/64x(10−3))]−2−2−4 = 930 (decimal)

Setting the SDRAM Clock Enables
(DSDCTL and DSDCK1)

Systems with several SDRAM devices connected in parallel that require
buffering between the processor and multiple SDRAM devices may also
generate increased clock loads.

To meet higher clock load requirements, the processor provides two
SDRAM clock control pins, SDCLK0 and SDCLK1. These pins eliminate
the need for off-chip clock buffers.

The DSDCTL and DSDCK1 bits in the IOCTL register provide control
for the SDRAM clock control pins.

The DSDCTL bit enables you to Hi-Z all of the SDRAM control pins
DQM, CAS, RAS, SDWE, and SDCKE and the SDCLK0 pin:

DSDCTL=0 Enable all SDRAM control pins.

DSDCTL=1 Disable all SDRAM control pins.

The DSDCK1 bit enables you to Hi-Z the SDCLK1 pin only:

DSDCK1=0 Enable SDCLK1.

DSDCK1=1 Disable SDCLK1.

If your system does not use SDRAM, set both DSDCTL and DSDCK1
to 1.

If your system uses SDRAM, but the clock load is minimal, set DSDCTL
to 0 and DSDCK1 to 1 This setting enables the SDCLK0 pin and all
related SDRAM control pins, but disables (puts in Hi-Z) the second clock
pin SDCLK1.

Configuring SDRAM Operation

10-16 ADSP-21065L SHARC DSP User’s Manual

If your system uses SDRAM and the clock load is heavy—such as a system
using registered buffers and eight ×4 SDRAMs to get ×32-bit data—set
both DSDCTL and DSDCK1 to 0. This setting enables SDCLK0,
SDCLK1, and all SDRAM control pins. In this configuration, SDCLK0
and SDCLK1 can each share half of the clock load. See Figure 10-2 on
page 10-3.

Setting the Number of SDRAM Banks (SDBN)
The SDBN bit defines for the processor’s SDRAM controller the number
of banks your SDRAM device contains.

The SDRAM controller uses this value and the value you assign to the
SDPGS (page size) bit to map the address bits on the processor’s internal
32-bit address (DMA/PMA/EPA) bus into SDRAM column address, row
address, and bank select address.

The SDBN bits in the IOCTL register select the number of banks the
SDRAM contains:

SDBN=00 2 banks.

SDBN=01 4 banks.

SDBN=1x Reserved.

Setting the External Memory Bank (SDBS)
When you use SDRAM, you must connect its CS line to one of the pro-
cessor’s external memory banks MS3-0 and, in the IOCTL register,
configure that bank for SDRAM operation.

ADSP-21065L SHARC DSP User’s Manual 10-17

SDRAM Interface

The SDBS bits in the IOCTL register configure one of the processor’s
external memory banks for SDRAM operation:

SDBS=000 No SDRAM.

SDBS=100 Bank 0.

SDBS=101 Bank 1.

SDBS=110 Bank 2.

SDBS=111 Bank 3.

Setting the SDRAM Buffering Option (SDBUF)
To meet overall system timing requirements, systems that employ several
SDRAM devices connected in parallel may require buffering between the
processor and multiple SDRAM devices.

To meet such timing requirements and enable intermediary buffering, the
processor supports pipelining of SDRAM address and control signals.

The pipeline bit SDBUF in the IOCTL register enables this mode:

SDBUF=0 Disable pipelining.

SDBUF=1 Enable pipelining.

Make sure your application programs a zero (0) wait state for the
external memory bank to which the SDRAM device maps. That
is, set EBxWS=000 in the WAIT register.

You cannot use external handshake and paced master mode
DMA on the external memory bank to which you map an
SDRAM device.

Configuring SDRAM Operation

10-18 ADSP-21065L SHARC DSP User’s Manual

When SDBUF=1, the SDRAM controller delays the data in write accesses
one cycle, enabling the processor to latch the address and controls exter-
nally. In read accesses, the SDRAM controller samples data one cycle
later.

Selecting the CAS Latency Value (SDCL)
The CAS latency value defines the delay, in number of clock cycles,
between the time the SDRAM detects the read command and provides the
data at its output pins. This parameter enables your application to match
SDRAM operation with the processor’s ability to latch the data output.

CAS latency does not apply to write cycles.

The SDCL bits in the IOCTL register select the CAS latency value:

SDCL=01 1 clock cycle.

SDCL=10 2 clock cycles.

SDCL=11 3 clock cycles.

Generally, the frequency of the operation determines the value of the CAS
latency. For more details, see the documentation that accompanied your
SDRAM device.

Selecting the SDRAM’s Page Size (SDPGS)
The processor supports full-page burst length only. The SDPGS bit
defines for the processor’s SDRAM controller the page size, in number of
words, of the SDRAM’s banks.

The SDRAM controller uses this value and the value you assign to the
SDBN (number of banks) bit to map the address bits on the processor’s
internal 32-bit address (DMA/PMA/EPA) bus into SDRAM column
address, row address, and bank select address.

ADSP-21065L SHARC DSP User’s Manual 10-19

SDRAM Interface

Page length depends on the I/O organization and column addressing of
the SDRAM’s internal banks. For example, a 16Mb SDRAM organized as
2 M × 4 I/O × 2 Banks has a page size of 1024 words.

The SDPGS bits in the IOCTL register select the SDRAM page length:

SDPGS=000 1024 words.

SDPGS=001 512 words.

SDPGS=010 256 words.

All other values are reserved.

Setting the SDRAM Power-Up Mode (SDPM)
To avoid unpredictable start-up modes, SDRAM devices must follow a
specific initialization sequence during power up. The processor provides
two commonly used power-up options. This parameter enables your
application to accommodate power-up requirements of your SDRAM.

The SDPM bit in the IOCTL register selects the SDRAM power-up
mode:

SDPM=0 The SDRAM controller issues, in this order:
A precharge command
Eight CBR refresh cycles
An MRS (Mode Register Set) command

SDPM=1 The SDRAM controller issues, in this order:
A precharge command
An MRS (Mode Register Set) command
Eight CBR refresh cycles

For details, see the documentation that accompanied your SDRAM
device.

Configuring SDRAM Operation

10-20 ADSP-21065L SHARC DSP User’s Manual

Starting the SDRAM Power-Up Sequence (SDPSS)
Before starting the power-up sequence, your application must write the
IOCTL register to configure the SDRAM parameters. Whenever it does,
your application must write to all of the register bits, regardless of the
number of parameter values that will not change.

To start the SDRAM power-up sequence, you write a 1 to the SDPSS bit
in the IOCTL register. The initialization sequence executed during
power-up depends on the value of the SDPM bit (page 10-19).

The SDPSS bit always reads as zero (0).

For more details, see the documentation that accompanied your SDRAM
device.

Starting Self-Refresh mode (SDSRF)
The processor supports SDRAM self-refresh mode. In self-refresh mode,
the SDRAM performs refresh operations internally, without external con-
trol, reducing the SDRAM’s power consumption

The SDSRF bit in the IOCTL register enables and disables the self-refresh
option:

SDSRF=0 Disable self-refresh mode.

SDSRF=1 Enable self-refresh mode.

Make sure your application initializes the SDRDIV register
before it starts the power-up sequence. After power up, make
sure it waits one cycle before it writes the IOCTL register to
issue another SDRAM command.

ADSP-21065L SHARC DSP User’s Manual 10-21

SDRAM Interface

When SDSRF=1, the processor’s SDRAM controller issues a Sref command
to the SDRAM device or devices, putting them into self-refresh mode
immediately. For details, see “Sref (Self-Refresh)” on page 10-39.

Selecting the Active Command Delay (SDTRAS)
The tRAS value (Active Command delay) defines the required delay, in
number of clock cycles, between the time the SDRAM controller issues a
Bank Activate command and the time it issues a Precharge command.

This parameter enables your application to accommodate your SDRAM’s
timing requirements.

The SDTRAS bits in the IOCTL register select the tRAS value. For
example:

SDTRAS=001 1 clock cycle.

SDTRAS=010 2 clock cycles.

SDTRAS=111 7 clock cycles.

For more details, see the documentation that accompanied your SDRAM
device.

Selecting the Precharge Delay (SDTRP)
The tRP value (Precharge delay) defines the required delay, in number of
clock cycles, between the time the SDRAM controller issues a Precharge
command and the time it issues a Bank Activate command.

This parameter enables your application to accommodate your SDRAM’s
timing requirements.

Configuring SDRAM Operation

10-22 ADSP-21065L SHARC DSP User’s Manual

The SDTRP bits in the IOCTL register select the tRP value. For example:

SDTRP=001 1 clock cycle.

SDTRP=010 2 clock cycles.

SDTRP=111 7 clock cycles.

ADSP-21065L SHARC DSP User’s Manual 10-23

SDRAM Interface

SDRAM Controller Operation
For page read and write operations, the processor’s SDRAM controller
programs the SDRAM device for full page burst length. Since all SDRAM
devices can terminate an active burst sequence and start a new one, the
SDRAM controller issues all commands to support this operation.

For page read and write operations, the SDRAM starts the access at the
column address defined at the beginning of the cycle in the ADDR bits.

Table 10-3 lists the data throughput rates for the processor’s core or DMA
read/write accesses to SDRAM. All clock cycles are 2xCLKIN and these
data assume:

• CAS latency = 2 cycles (SDCL=2)

• No SDRAM buffering (SDBUF=0)

• RAS precharge (tRP) = 2 cycles (SDTRP=2)

• Active command time (tRAS) = 3 cycles (SDTRP=3).

Table 10-3. Throughput for core or DMA read/write operations

Accesses Operations Page Throughput per 2xCLKIN
(32-bit words)1, 2

Sequential,
uninterrupted

Read Same 1 word/1 cycle

Sequential,
uninterrupted

Write Same 1 word/1 cycle

Nonsequential,
uninterrupted

Read Same 1 word/4 cycles
(CL+2)

tRAS = Active to precharge time; tRP = Precharge time; CL = CAS
latency

SDRAM Controller Operation

10-24 ADSP-21065L SHARC DSP User’s Manual

DMA Operation
For DMA mode data transfers to or from SDRAM, one full page can be
accessed at full throughput if the external address incrementor = 1. If the
external address incrementor is >1, one full page can be written at full
throughput, but reads incur overhead.

Nonsequential,
uninterrupted

Write Same 1 word/1 cycle

Both Alternating

read/write

Same Average rate = 2.5
cycles per word (reads =
4 cycles; writes = 1
cycle)

Nonsequential Reads Different 1 word/8 cycles

(tRP +2CL+2)

Nonsequential Writes Different 1 word/5 cycles

(tRP +CL+1)

Autorefresh
before read

Reads Different 1 word/13 cycles

(2tRP +tRAS +2CL+2)

Autorefresh
before write

Writes Different 1 word/10 cycles

(2tRP +tRAS +CL+1)

1 For 48-bit words, add one clock cycle to the throughput value or to the average access rate.
2 With SDRAM buffering enabled (SDBUF=1), replace any instance of (CL) with (CL+1)..

Table 10-3. Throughput for core or DMA read/write operations

Accesses Operations Page Throughput per 2xCLKIN
(32-bit words)1, 2

tRAS = Active to precharge time; tRP = Precharge time; CL = CAS
latency

ADSP-21065L SHARC DSP User’s Manual 10-25

SDRAM Interface

When a page miss occurs, before executing the read/write command, the
SDRAM controller executes a Burst Stop command followed by a Pre-
charge and a Bank Activate command.

For an SDRAM read, a latency (equal to CAS latency) exists from the start
of the read command until data is available from the SDRAM. For the
first read in a sequence of reads, the latency will always exist. Subsequent
reads will not have a latency if the address is sequential and uninterrupted.

Multiprocessing Operation
In a multiprocessing environment, both processors share the SDRAM.
While the bus master always drives SDRAM input signals (including
clock), the slave processor tracks the commands the master processor
issues to the SDRAM. This tracking helps to synchronize the SDRAM
refresh counters and to avoid needless refreshing operations.

When one processor receives bus mastership from the other, it executes a
Precharge command before its first access to SDRAM only if the previous
master had accessed SDRAM. The application must initialize the relevant
bits in the IOCTL and SDRDIV registers of both processors to the same
values.

If the system uses no SDRAM (as indicated in IOCTL), bus transition
proceeds normally (see Chapter 7, Multiprocessing).

SDRAM Controller Operation

10-26 ADSP-21065L SHARC DSP User’s Manual

Accessing SDRAM
To access SDRAM, the SDRAM controller multiplexes the internal 32-bit
nonmultiplexed address into a row address, a column address, and a bank
select address for the SDRAM device, as shown in Figure 10-4.

Figure 10-4. Multiplexed 32-bit SDRAM address

Based on the values you program into the IOCTL register for page size
and number of SDRAM banks, the SDRAM controller maps the lower
ADDR bits into the column address, the next bit or bits into the bank
select address, and the remaining higher order bits into the row address.

Table 10-4 shows how the SDRAM controller maps the SDRAM address
bits on the processor’s internal address bus to its external address pins that
connect to SDRAM.

Table 10-4. SDRAM address mapping

SDRAM
(pg ×
banks)

Column
Address
(Page Access)

Bank Select Row Address
(Bank Activate)

256×2 IA[7:0]→EA[7:0] IA[8]→EA[13] IA[21:9]→EA[12:0]

512×2 IA[8:0]→EA[8:0] IA[9]→EA[13] IA[22:10]→EA[12:0]

1K×2 IA[9:0]→EA[9:0] IA[10]→EA[13] IA[23:11]→EA[12:0]

EA = External address pins; IA = Internal address bus.

23

Column AddrRow Addr

025 24

SDRAM
Bank Select

Ext. Memory
Bank Select

00 = MS0
01 = MS1
10 = MS2
11 = MS3

ADSP-21065L SHARC DSP User’s Manual 10-27

SDRAM Interface

DQM Operation
The processor’s DQM (Data I/O Mask) pin enables the SDRAM control-
ler to interrupt a burst write operation.

For write cycles, DQM has a latency of zero (0) cycles and operates like a
word mask, permitting data writes when sampled low and blocking data
writes when sampled high.

Executing a Parallel Refresh Command
The processor provides a separate A10 pin (SDA10) to enable applications
to execute a parallel refresh command with any non-SDRAM access. This
pin enables an application to precharge the SDRAM before it issues a
refresh command.

256×4 IA[7:0]→EA[7:0] IA[9:8]→EA[13:12] IA[21:10]→EA[11:0]

512×4 IA[8:0]→EA[8:0] IA[10:9]→EA[13:12] IA[22:11]→EA[11:0]

1K×4 IA[9:0]→EA[9:0] IA[11:10]→EA[13:12] IA[23:12]→EA[11:0]

For 2 banked memories, connect A13 with the SDRAM’s bank
select pin. For 4 banked memories, connect A13:12 with the
SDRAM’s bank select pins.

Table 10-4. SDRAM address mapping (Cont’d)

SDRAM
(pg ×
banks)

Column
Address
(Page Access)

Bank Select Row Address
(Bank Activate)

EA = External address pins; IA = Internal address bus.

SDRAM Controller Operation

10-28 ADSP-21065L SHARC DSP User’s Manual

Connecting this pin to the SDRAM’s A10 line and using it, instead of
ADDR10, to precharge the SDRAM device enables the processor to retain
control of the SDRAM device while a host requests and controls the exter-
nal ADDR23-0 bus.

Entering and Exiting Self-Refresh Mode
Writing 1 to the SDSRF bit in the IOCTL register causes the SDRAM
controller to issue a Sref command to the SDRAM device. When the Sref
command is issued depends on whether or not the processor’s core or
DMA controller is engaged in an external SDRAM access.

If no external SDRAM access is in progress, the SDRAM controller issues
the Sref command immediately. Otherwise, it delays issuing the Sref com-
mand until the processor’s core or DMA controller completes its current
SDRAM access and any subsequent access requests.

Once the SDRAM device enters into self-refresh mode, the SDRAM con-
troller resets the SDSRF bit in the IOCTL register. The SDSRF bit always
reads as 0, regardless of a pending request. The SDRAM controller ignores
another self-refresh request (SDSRF=1) when the SDRAM device is already
in self-refresh mode.

The application cannot clear the SDSRF bit (SDSRF=0) to cancel
self-refresh mode. The SDRAM device exits self-refresh mode only when
it receives a core or DMA access request from the SDRAM controller.

Powering Up After Reset
After reset, once the application has written the IOCTL register, the con-
troller initiates the power-up sequence. The SDPM bit of the IOCTL
register determines the exact sequence. In a multiprocessing environment,
either processor initiates the power-up sequence. A software reset does not
reset the controller and will not reinitiate a power-up sequence.

ADSP-21065L SHARC DSP User’s Manual 10-29

SDRAM Interface

SDRAM Controller Commands
This section provides a description of each of the commands the proces-
sor’s on-chip SDRAM controller uses to manage the SDRAM interface.
These commands are transparent to applications.

The SDRAM commands are:

• Act (bank activate)

Activates a page in the required bank.

• Bstop (burst stop)

Terminates the currently executing burst read or write operation.

• MRS (mode register self-refresh)

Initializes the SDRAM operation parameters during the power-up
sequence.

• Pre (precharge)

Precharges the active bank.

• Read/write

• Ref (refresh)

Causes the SDRAM to enter refresh mode and generate all addresses
internally.

• Sref (self-refresh)

Places the SDRAM in self-refresh mode, in which it controls its
refresh operations internally.

SDRAM Controller Commands

10-30 ADSP-21065L SHARC DSP User’s Manual

• NOP (no operation)

If a read or write is followed by a NOP, the SDRAM will start the
full page burst.

Act (Bank Activate)
A Bank Activate command is required if the next data access is in a differ-
ent page.

The SDRAM controller executes a Pre command followed by an Act com-
mand to activate the page in the required bank. Only one bank at a time
can be active.

The SDRAM pin state during the Act command is:

Bstop (Burst Stop)
A Burst Stop command terminates the currently executing burst read or
burst write operation prematurely, but leaves the bank open for future
reads or writes to the same page of the active bank.

Pin State

MSx
1

1 X = One of the processor’s external mem-
ory banks configured for SDRAM.

Low

CAS High

RAS Low

SDWE High

SDCKE High

ADSP-21065L SHARC DSP User’s Manual 10-31

SDRAM Interface

The SDRAM pin state during the Bstop command is:

MRS (Mode Register Set)
Part of the power-up sequence. Initializes the SDRAM operation
parameters.

MRS uses SDRAM address bits A0-A13 as data input.

To start the power-up sequence, you write 1 to the SDPSS bit in the
IOCTL register. The SDPM bit specifies the exact sequence of commands
The SDRAM controller uses in the power-up procedure.

MRS initializes the following parameters:

• Burst length Full page; bits 2:0; fixed in processor.

• Burst type Sequential; bit 3; fixed in processor.

Pin State

MSx
1

1 X = One of the processor’s external mem-
ory banks configured for SDRAM.

Low

CAS High

DQM High (write only)

RAS High

SDWE Low

SDCKE High

SDRAM Controller Commands

10-32 ADSP-21065L SHARC DSP User’s Manual

• Ltmode CAS latency mode; bits 6:4; programmable in
the IOCTL register.

• Bits(13:7) Always 0; fixed in processor.

While executing the MRS command, the SDRAM controller sets the
unused address pins to zero (0). During the two clock cycles following
MRS, the processor does not issue any other command.

The SDRAM pin state during the MRS command is:

Pre (Precharge)
Precharges the active bank.

The SDRAM controller executes this command if the data to access falls
in a different bank or in a different page within the same bank.

After power-up, the SDRAM controller issues a Pre command to all
banks.

Pin State

MSx
1

1 X = One of the processor’s external mem-
ory banks configured for SDRAM.

Low

CAS Low

RAS Low

SDWE Low

SDCKE High

ADSP-21065L SHARC DSP User’s Manual 10-33

SDRAM Interface

The SDRAM pin state during the Pre command is:

Read/Write
The SDRAM controller executes a Read/Write command if the next
read/write data falls in the currently active page.

Read Commands

For the Read command, the SDRAM controller asserts the CAS, MSx,
and SDA10 pins to enable the SDRAM to latch the column address. The
column address determines the burst start address.

Figure 10-5 shows an example timing of a read command that reads four
sequential addresses and terminates with a burst stop (Bstop) command.
The tRCD parameter determines the delay between Act and Read com-
mands. Data is available after the tRCD and CAS latency requirements are
met.

Pin State

MSx
1

1 X = One of the processor’s external mem-
ory banks configured for SDRAM.

Low

CAS High

RAS Low

SDWE Low

SDCKE High

SDA10 High

SDRAM Controller Commands

10-34 ADSP-21065L SHARC DSP User’s Manual

Figure 10-5. Example timing of a read command

The SDRAM pin state during the Read command is:

Pin State

MSx
1 Low

CAS Low

RAS High

SDWE High

SDCKE High

SDA10 Low

+	� %�� ��� .���-��+ ��+ ��+ ��+ ��+ ��+ ��+

�� ��
%� %� %� %�

�� ��

�� �� �� ��
%� %� %� %�

�� �� �� ��
%� %� %� %�

�0$!B �

$"�

$%#������7�8��

�$B,�=��G�

$%#������7�8��

�$B,�=��G�

$%#������7�8��

�$B,�=��G�

�� �� �� �� �) �(�� �� �/ �� ��� ���

��$�

?�	��������
��	�����7�8�$%#������7
H

H

��+

��+

ADSP-21065L SHARC DSP User’s Manual 10-35

SDRAM Interface

Write Commands

For the Write command, CAS, MSx, SDWE, and SDA10 are asserted low
to enable the SDRAM to latch the column address. Data is also asserted in
the same cycle. The burst start address is set according to the column
address.

Figure 10-6 shows an example timing of a write command interrupted by
another write command that writes to a nonsequential address then to two
sequential addresses.

Figure 10-6. Example timing of a write interrupted by another write

1 X = One of the processor’s external mem-
ory banks configured for SDRAM.

+	� %�� C	����% .���-��+ ��+ ��+C	����. ��+ ��+ ��+ ��+

��
%� .� .�

���� ��
.�

"�E��

��

�0$!B �

$"�

$%#������7�8��=��=��

�G�

�G�

�� �� �� �� �) �(�� �� �/ �� ��� ���

��$���+

SDRAM Controller Commands

10-36 ADSP-21065L SHARC DSP User’s Manual

The SDRAM pin state during the Write command is:

DMA Transfers

While a DMA channel is performing reads from SDRAM, the SDRAM
controller issues a Read command if at least one location is available in the
external port DMA buffer FIFO (EPBx). The SDRAM controller permits
the burst to continue if the next access is to a sequential address.

While a DMA channel is performing writes to SDRAM, the SDRAM con-
troller issues a Write command if at least one word is available in the
EPBx buffer. Whenever data is unavailable to write, the SDRAM control-
ler asserts a Burst Stop command.

Interrupting a Burst Read or Write

In general, a Read interrupts a previous Read when the next access is a
nonsequential address, but a page miss does not occur. When a page miss
does occur, the SDRAM controller issues the command sequence—Bstop,
Pre, and Act—to the SDRAM before it issues a Read or Write command.

Pin State

MSx
1

1 X = One of the processor’s external mem-
ory banks configured for SDRAM.

Low

CAS Low

RAS High

SDWE Low

SDCKE High

SDA10 Low

ADSP-21065L SHARC DSP User’s Manual 10-37

SDRAM Interface

If a Write (on page) interrupts a burst Read in progress, the SDRAM con-
troller asserts a Burst Stop command and waits until the external data bus
is three-stated before it issues a Write command.

Either a Read or another Write (if it is nonsequential) or a Bstop inter-
rupts a burst Write in progress. If the internal refresh counter asserts a
refresh request, it delays any new access until the SDRAM controller exe-
cutes a Ref command.

A special situation occurs when the CAS latency = 1 and the processor
must perform this sequence of operations:

1. Page write to location xyz.

2. No SDRAM operation by the core or DMA controller.

3. Page read from location abc.

Normally, to perform this sequence, the SDRAM controller issues these
commands:

4. Write

5. Bstop

6. Read

The burst stop command asserts DQM to mask write data within the
burst stop cycle. But since the DQM standard is always DQM latency = 2,
with CAS latency = 1 (SDCL=1), no data is available at the SDRAM output
pins for the read.

To avoid this situation, the SDRAM controller inserts a NOP between a
Burst Stop command and a Read command only when the CAS latency is
1 (SDCL=1):

1. Write

2. Bstop

SDRAM Controller Commands

10-38 ADSP-21065L SHARC DSP User’s Manual

3. NOP

4. Read

Ref (Refresh)
Requests the SDRAM to perform a CBR (CAS before RAS) transaction.
Ref causes the SDRAM to generate all addresses internally.

Before executing the Ref command, the SDRAM controller executes a Pre
command to the active bank (after tRAS min). It executes the next Act
command only after a minimum delay equal to tRC.

The SDRAM pin state during the Ref command is:

The IOP address of the SDRDIV register maps to 0x20.

Setting the Delay Between Ref Commands

You use the processor’s SDRDIV register to set the number of clock cycles
between two Ref commands. Your application must program the
SDRDIV register before it writes to the IOCTL register. The SDRAM

Pin State

MSx
1

1 X = One of the processor’s external mem-
ory bank s configured for SDRAM.

Low

CAS Low

RAS Low

SDWE High

SDCKE High

ADSP-21065L SHARC DSP User’s Manual 10-39

SDRAM Interface

controller makes an internal CBR Ref request to the SDRAM based on
this value. Before servicing a refresh request, the SDRAM controller com-
pletes a current burst. The master processor always executes a refresh
command.

Multiprocessing Operation

In a multiprocessing environment, both processors share the SDRAM.
While the bus master always drives SDRAM input signals (including
clock), the slave processor tracks the commands the master processor
issues to the SDRAM. This tracking helps to synchronize the SDRAM
refresh counters and to avoid needless refreshing operations.

When one ADSP-21065L receives bus mastership from the other, it exe-
cutes a Precharge command before its first access to SDRAM only if the
previous master accessed SDRAM.

If the Ref request arrives from the refresh counter during a bus transition
cycle, the new bus master immediately issues a Ref command. The new
bus master is aware of the Ref request because the refresh counter runs on
both processors. The refresh counters on both processors reload synchro-
nously because the slave watches the external SDRAM control pins to see
when the master has executed the refresh command.

The master processor retains mastership of the SDRAM control pins
(RAS, CAS, SDWE, SDCKE, SDCLK, DQM, MSx, SDA10) when the
host assumes control of the system bus—HBG is asserted. This enables the
master processor to issue Ref commands as necessary.

Sref (Self-Refresh)
The Sref command causes the SDRAM to perform refresh operations
internally, without any external control. Before executing the Sref com-
mand, the SDRAM precharges the active bank.

Writing a 1 to the SDSRF bit of the IOCTL register enables Sref mode.

SDRAM Controller Commands

10-40 ADSP-21065L SHARC DSP User’s Manual

The SDRAM controller automatically asserts an Sref exit cycle if an
SDRAM access occurs during the Sref period. After executing a Sref exit
command, the SDRAM controller waits for 2 + tRC cycles to execute a
CBR (CAS before RAS) refresh cycle. After the CBR refresh command,
the SDRAM controller waits for tRC number of cycles before executing a
bank activate command.

To reduce system power demand, three cycles after entering SREF, the
SDRAM controller holds SDCLKx low, and two cycles before exiting
SREF, it restores SDCLKx.

The SDRAM pin state during the Sref command is:

For details on SDRAM controller operation on entry and exit from
self-refresh mode, see “Entering and Exiting Self-Refresh Mode” on page
10-28.

Pin State

MSx
1

1 X = One of the processor’s external mem-
ory bank s configured for SDRAM.

Low2

2 The processor asserts MSx high for two
cycles when exiting self-refresh mode.

CAS Low

RAS Low

SDWE High

SDCKE Low

ADSP-21065L SHARC DSP User’s Manual 10-41

SDRAM Interface

SDRAM Timing Specifications
To support key timing requirements and power-up sequences for different
SDRAM vendors, the processor provides programmability for tRAS and tRP
and a power-up sequence mode (see the IOCTL register bit definitions).

Your application must set, in the IOCTL register, the CAS latency based
on the frequency of the operation. (For details, see your SDRAM vendor’s
data sheet.)

For other parameters, the SDRAM controller assumes:

• Bank cycle time tRC = tRAS + tRP

• RAS to CAS delay tRCD = CAS latency

Bit definitions for the SYSCON register are shown in Figure 10-4 on page
10-26.

SDRAM Timing Specifications

10-42 ADSP-21065L SHARC DSP User’s Manual

ADSP-21065L SHARC DSP User’s Manual 11-1

11 PROGRAMMABLE TIMERS
AND I/O PORTS

Figure 11-0.

Table 11-0.

Listing 11-0.

The processor has two identical timer blocks, each of which has two basic
functions:

• Pulse Width Waveform Generation/ PWMOUT (PWMOUT
mode)

• Pulse Width Count/Capture. (WIDTH_CNT mode)

You can configure the timer in either mode. The timer has one input/out-
put pin—PWM_EVENTx. This pin functions as an output pin in the
PWMOUT mode and as an input pin in the WIDTH_CNT mode. To
implement these functions, each timer has three registers—TPERIODx,
TPWIDTHx, and TCOUNTx.

All timer counters are 32-bits wide and use the processor’s 2xCLKIN
internal clock, which evaluates to a maximum period of 71.5 sec

((232-1) * 16.67 ns internal clock cycles) for the timer count.

To enable or disable the timer, you set or clear the TIMENx bit in the
MODE2 register. Figure 11-1 on page 11-2 shows the timer’s enable and
disable timing.

11-2 ADSP-21065L SHARC DSP User’s Manual

Figure 11-1. Timer enable and disable timing

2xCLK

PWMOUT

2xCLK
TCOUNT=M TCOUNT=

M+1
TCOUNT=

M+1
TCOUNT=

M+1

Timer Enable

Set TIMEN
(MODE2)

Timer
Enabled

TPERIOD = 0x4
TPWIDTH = 0x2
TCOUNT = 1

TCOUNT=xx TCOUNT=xx TCOUNT=1 TCOUNT=2 TCOUNT=4TCOUNT=3

Clear TIMEN
(MODE2)

Timer
Disabled

Timer Disable

ADSP-21065L SHARC DSP User’s Manual 11-3

Programmable Timers and I/O Ports

PWMOUT Mode
In PWMOUT mode, the PWM_EVENTx is an output pin. To select it,
you set the PWMOUTx bit high in the MODE2 register. The registers
TPERIODx and TPWIDTHx contain the values of the timer count
period and PWM output pulse width respectively.

To avoid unpredictable results of the PWM_EVENTx signal:

• Initialize TPWIDTHx and TPERIODx before enabling the timer.

• Do not alter TPWIDTHx and TPERIODx while the timer is
enabled.

• Make sure the value of TPWIDTHx is less than the value of
TPERIODx.

When the timer is enabled in this mode, the PWM_EVENTx is pulled
low each time the TCOUNTx (up counter) value equals the TPERIODx
value, and it is pulled high when the TCOUNTx value equals the
TPWIDTHx value. TCOUNTx is reset once to 0x0000 0001 when the
timer is enabled and each time TCOUNTx reaches the TPERIODx value.
See Figure 11-1 on page 11-2.

When TCOUNTx equals TPERIODx, a timer interrupt (if enabled) is
generated, and the CNT_EXPx/CNT_OVFx bit in the STKY register is
set. The CNT_EXPx/CNT_OVFx bit is a sticky bit, and software must
reset it explicitly. At reset, its value is 0. Figure 11-2 shows the timer flow.

PWMOUT Mode

11-4 ADSP-21065L SHARC DSP User’s Manual

Figure 11-2. Timer Flow Diagram–PWMOUT Mode

Data Bus

RESET

TIMER_ENABLE

Set CNT_EXP bit

TPERIODx TPWIDTx

CLOCK

Yes

Interrupt

Set PWMOUNT High

Set PWMOUNT Low

PWM_EVENTx

Equal?

TCOUNTx

Yes

PWMOUT
Logic

1

1

Equal?

ADSP-21065L SHARC DSP User’s Manual 11-5

Programmable Timers and I/O Ports

WIDTH_CNT Mode
In the WIDTH_CNT mode, the PWM_EVENTx is an input pin. To
select this mode, you set the PWMOUTx bit low in the MODE2 register.

When enabled in this mode, the timer resets TCOUNTx to 0x0000 0001
when it detects the leading edge of the PWM_EVENTx pin and starts
counting (increments).

When it detects the trailing edge, the timer captures the current value of
the TCOUNTx into the TPWIDTHx register. At the leading edge, the
timer transfers the current value of the TCOUNTx into the TPERIODx
register. This timing, shown in Figure 11-3, assumes the leading edge is
set as 0 → 1.

Figure 11-3. WIDTH_CNT mode timing

In this case, your software application can measure both the pulse width
and the pulse period values, which are available in the TPWIDTHx and
the TPERIODx registers, respectively.

0x00000001 0x00000002 0x00000003 0x00000001

2xCLK

PWM_EVENT

1st Leading
Edge

Detected

Framing
Edge

Detected

TCOUNT

2nd Leading
Edge

Detected

Transfered
to

TPERIOD

Transfered
to

TPWIDTH

WIDTH_CNT Mode

11-6 ADSP-21065L SHARC DSP User’s Manual

To control the definition of leading edge and trailing edge of the
PWM_EVENTx, you set the PULSE_HIx bit in the MODE2 register.

A timer interrupt (if enabled) is generated when the timer captures either
the pulse width or the pulse period value, which depends on the value of
the PERIOD_CNTx bit in the MODE2 register.

If the PERIOD_CNTx is set high, the interrupt and the PULSE_CAPx
bits (in the STKY register) get set when the pulse period value is captured.
If the PERIOD_CNTx is set low, then the interrupt and the
PULSE_CAPx are set when the pulse width value is captured.

A timer interrupt (if enabled) is also generated if the counter TCOUNTx
reaches a value of 0xFFFF FFFF:

• Before the edge for the pulse period is detected if PERIOD_CNTx
is high

• Before the edge for the pulse width is detected if the
PERIOD_CNTx is low.

In addition, the status bit CNT_EXPx/CNT_OVFx in the STKY register
is set, indicating that TCOUNTx overflowed before the timer counted the

maximum (232−2) intervening clock cycles.

PULSE_CAPx and CNT_EXPx/CNT_OVFx are sticky bits, and software
has to explicitly clear them.

Note that the TPERIODx, TPWIDTHx and TCOUNTx (x=0,1) are all
IOP memory mapped registers, not universal registers. Figure 11-4 on
page 11-7 shows the timer flow.

TPERIODx and TPWIDTHx are read-only registers when the
timer is enabled in WIDTH_CNT mode.

ADSP-21065L SHARC DSP User’s Manual 11-7

Programmable Timers and I/O Ports

Figure 11-4. Timer Flow Diagram–WIDTH_CNT Mode

Data Bus

RESET
Set COUNT_OVF bit

TPERIODx TPWIDTx

CLOCK

Interrupt

Set PULSE_CAP bit

PERIOD_CNT

PWM_EVENTx

TCOUNTx

1

1

2

Leading
Edge
Detect

2

COUNT_OVF

PWM_EVENTx
222

Trailing
Edge
Detect

Interrupt
Logic

1

2

PERIOD_CNT

0

1

Timer Control Bits and the Interrupt Vectors

11-8 ADSP-21065L SHARC DSP User’s Manual

Timer Control Bits and the Interrupt
Vectors

This section describes the timer control bit definitions and the MODE2
register definitions.

TIMENx
Timer enable (x=0,1)

0 = Disable

1 = Enable

PWMOUTx
PWMOUT/WIDTH_CNT control (x=0,1)

1 = PWM_EVENT is a PWMOUT output.

0 = PWM_EVENT is an WIDTH_CNT input. (default)

PULSE_HIx (x=0,1)
Applies to the WIDTH_CNT mode only

0 = 0 to 1 transition is leading edge in the WIDTH_CNT mode.

1 = 1 to 0 transition is leading edge in the WIDTH_CNT mode.

PERIOD_CNTx
Enable period count (applicable only to the WIDTH_CNT mode)

0 = Enable width count.

Interrupt and the PULSE_CAPx bits are set when pulse width
is captured.

1 = Enable period count.

ADSP-21065L SHARC DSP User’s Manual 11-9

Programmable Timers and I/O Ports

Interrupt and the PULSE_CAPx bits are set when pulse period
is captured.

INT_HIx
Interrupt vector location. (x=0,1)

The two timers generate interrupts, and these can be latched either at bit 4
(TMZHI) or at bit 23 (TMZLI) of the IRPTL register, as shown in
Table 11-1. In addition, these interrupts can be masked using the IMASK
register.

Timer Interrupts and the Status Stack
Only the timer interrupt on the TMZHI bit pushes the status stack, so, in
the above combinations, 00 will not push the status stack, but both 01 and
10 will push the status stack, depending on which timer is programmed to
cause the TMZHI interrupt. When using the 11 combination, interrupts
generated by either timer push the status stack.

When using the 00 and 11 combinations, the processor latches a logical
OR function of the two timer interrupts into the interrupt latch register.
The software checks the CNT_EXPx and the EDGE_CAPx bits, deter-
mines the source of the interrupt, and takes appropriate action.

Figure 11-5 on page 11-10 shows the mapping of the MODE2 register.

Table 11-1. Timer status

INT_HI1 INT_HI0 Status

0 0 Both timers latch to TMZLI

0 1 timer1 => TMZLI, timer0 => TMZHI

1 0 timer1 => TMZHI, timer0 => TMZLI

1 1 Both timers latch to TMZHI

Timer Control Bits and the Interrupt Vectors

11-10 ADSP-21065L SHARC DSP User’s Manual

Figure 11-5. MODE2 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 00000 00000000 0

FLG1O
0=input
1=output

Processor ID

CAFRZ
0=cache updates
1=cache freeze

Silicon Rev. #

FLG3O

FLG2O

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

IRQOE
0=level-sensitive
1=edge-sensitive

PERIOD_CNT0
0=enable width count
1=enable period count

TIMEN0
0=disable timer
1=enable timer

CADIS
0=enable cache
1=disable cache

INT_HI0
Intrpt vector location

BUSLK
0=no ext. bus lock
1=ext. bus lock

PWMOUT0
0=WIDTH_CNT input

1=PWMOUT output

PERIOD_CNT1

TIMEN1

PWMOUT1

INT_HI1

PULSE_HI1
Leading edge trans.

(WIDTH_CNT mode)
0=0-1 transition
1=1-0 transition

PULSE_HI0

FLG0O

IRQ1E

IRQ2E

ADSP-21065L SHARC DSP User’s Manual 11-11

Programmable Timers and I/O Ports

The STKY Register
Table 11-2 shows the CNT_EXPx and the PULSE_CAPx status bits in
the STKY register.

Timer Registers and their Values at Reset
The TCOUNTx, TPWIDTHx, and TPERIODx registers are memory
mapped. While TPERIODx and TPWIDTHx are read/write registers,
TCOUNTx is read-only.

The timer enable signal gates the timer clock, interrupts, and the edge
detect logic. In PWMOUT mode, TPWIDTHx and TPERIODx must be
initialized before the timer is enabled. The timer is disabled at reset, and,
at that time, TPERIODx, TCOUNTx and TPWIDTHx are unknown.

Table 11-2. Timer status bits in the STKY register

Bit Name Description

12 PULSE_CAP0 Pulse captured bit for timer 0.

13 CNT_EXP0/CNT_OVF0 Counter expired/counter over-
flowed bit for timer 0.

14 PULSE_CAP1 Pulse captured bit for timer 1.

15 CNT_EXP1/CNT_OVF1 Counter expired/counter over-
flowed bit for timer 1.

Timer Control Bits and the Interrupt Vectors

11-12 ADSP-21065L SHARC DSP User’s Manual

Table 11-3 summarizes the IOP register addresses for the timer registers.

Table 11-3. IOP register addresses

Register Address

TPERIOD0 0x28

TPWIDTH0 0x29

TCOUNT0 0x2a

TPERIOD1 0x2b

TPWIDTH1 0x2c

TCOUNT1 0x2d

ADSP-21065L SHARC DSP User’s Manual 11-13

Programmable Timers and I/O Ports

Programmable I/O Ports
The processor has twelve flag pins FLAG11-0, which are programmable,
general-purpose I/O ports.

The MODE2 register configures the functionality, or direction, of the
pins FLAG3-0, and the ASTAT register reflects the value of these flag bits.

The functionality of the FLAG11-4 pins is similar to that of the FLAG3-0,
but the IOP registers IOCTL and IOSTAT contain their control and sta-
tus bits.

You cannot execute the bitwise operations, such as BIT TST, BIT CLR,
and so on, directly on the IOP registers. To perform these operations on
the FLAG4-11 pins, you must first transfer the contents of the IOSTAT
register (shown in Figure 11-6) to the Register File or to another universal
register.

Figure 11-6. IOSTAT register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 00000 00000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 00000 00000000 0

FLG4

FLG11
FLG10
FLG9
FLG8

FLG7
FLG6
FLG5

FLGx = FLAGx pin value

Programmable I/O Ports

11-14 ADSP-21065L SHARC DSP User’s Manual

ASTAT is a universal register, so the status on FLAG3-0 can be checked
and manipulated using the bitwise operations directly. This is the differ-
ence between the FLAG3-0 and the rest of the FLAG pins.

For detailed description of the IOCTL register, where the directions on
the I/O ports are set, see Chapter 10, SDRAM Interface.

For a description of the IOSTAT register, see Figure 11-6.

The IOP address locations for the IOCTL and the IOSTAT registers are
0x2e and 0x2f respectively.

ADSP-21065L SHARC DSP User’s Manual 12-1

12 SYSTEM DESIGN
Figure 12-0.

Table 12-0.

Listing 12-0.

This chapter provides hardware, software, and system design information
to aid users in developing systems built on the ADSP-21065L Digital Sig-
nal Processor.

This chapter describes the processor’s pins and shows how to use these sig-
nals in your system. This information includes:

• Pin definitions, connections, and states during and after reset.

• Operation of XTAL and CLKIN pins

• Operation of the interrupt and timer pins

• Operation of the FLAG11-0 pins

• Operation of the JTAG interface pins

• Operation of the EZ-ICE Emulator pins

• Input signal conditioning

• High frequency design considerations

• Booting procedures

Figure 12-1 shows example pin connections in a single-processor system.
Figure 7-1 on page 7-2 shows example pin connections in a multiproces-
sor system.

12-2 ADSP-21065L SHARC DSP User’s Manual

Figure 12-1. Basic single-processor system

%�����2�

�%�%��2�

����!"#$%&

'"

$!B �

�,#,�

 ��2�

$+%

.��

.��

��

C�

%$B

�#�2�

.�#

#.�#

#C

$#

9.�

9.4

�,�<

�%#

$%#

�G�

#�C,

#�$!B�2�

#�B,

#�%��

�

�

�

�

�

�

&

�%#

$%#

�G�

C,

$!B

$B,

%��

����

3�-�����5

%���

�%�%

$#

%���

�%�%

���	

�����

3�-�����5

$#

�,#,�

$���E

��

%���

�%�%

���	�����
����

3�-�����5
$#

�
%

�
%

$
�

�
�

�
�

!

%
�

�
�

,
#

#

�1�I%

�1�I.

�1�I%

�1�I.

�1�I%

�1�I.

�1�I%
�1�I.

����#

����"

1�%!

;!%4��2�

*�%4

+C�I,F,��0

 �G�2�

��

�

�

�

ADSP-21065L SHARC DSP User’s Manual 12-3

System Design

Pin Definitions
This section lists and describes the processor’s pins. Synchronous inputs
(S) must meet timing requirements with respect to CLKIN (or to TCK for
TMS and TDI). Asynchronous inputs (A) can be asserted asynchronously
to CLKIN (or to TCK for TRST).

The following tables list and describe the processor’s pins:

• External port pins Table 12-1 on page 12-4

• Host interface pins Table 12-2 on page 12-7

• SDRAM interface pins Table 12-3 on page 12-10

• Serial port pins Table 12-4 on page 12-11

• System control pins Table 12-5 on page 12-13

• JTAG and emulator pins Table 12-6 on page 12-19

• Miscellaneous pins Table 12-7 on page 12-20

Tie or pull up unused inputs to VDD or GND, except for

• ADDR23-0

• DATA31-0

• FLAG11-0

• SW

• Inputs that have internal pull-up or pull-down resistors (CPA, ACK,
DTxX, DRxX, TCLKx, RCLKx, TMS, and TDI)

Leave these pins floating. These pins have a logic-level hold circuit that
prevents their input from floating internally.

Pin Definitions

12-4 ADSP-21065L SHARC DSP User’s Manual

Table 12-1. External port pin definitions

Pins Type Function

ADDR23-0 I/O/Z External bus address.

Output addresses for external memory and
peripherals.

In multiprocessor systems, the bus master
outputs addresses for reads and writes of
the IOP registers of the other processor.

The processor inputs addresses while a host
or multiprocessing bus master reads or
writes its internal IOP registers.

DATA31-0 I/O/Z External bus data.

Input and output data and instructions.

• Bits 31:0 of the bus transfer 32-bit
floating- or fixed-point data or 32-bit
packed data.

• Bits 15:0 of the bus transfer 16-bit
packed data.

• Bits 7:0 of the bus transfer 8-bit
packed data.

• In EPROM boot mode, bits 7:0 of the bus
transfer 8-bit data.

Pull-up resistors on unused DATAx pins are
unnecessary.

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-5

System Design

DMAG1 O/Z DMA grant 1.

DMA channel 9.

DMAG2 O/Z DMA grant 2.

DMA channel 8.

DMAR1 I/A DMA request1.

DMA channel9.

DMAR2 I/A DMA request 2.

DMA channel 8.

MS3-0 O/Z Memory select lines.

Asserted as chip selects for the corre-
sponding banks of external memory. You must
define the memory banks in the SYSCON reg-
ister.

These lines are decoded memory address
lines that change at the same time as the
other address lines. These lines remain
inactive while no access to external memory
occurs. They are active, however, during
execution of a conditional memory access
instruction, whether or not the condition
is true.

In multiprocessing systems, the master pro-
cessor outputs the MS3-0 lines.

Table 12-1. External port pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Pin Definitions

12-6 ADSP-21065L SHARC DSP User’s Manual

SBTS I/S Suspend bus three-state.

External devices can assert this pin to
place the external bus address, data,
selects, and strobes—but not the SDRAM con-
trol pins—in a high-impedance state for the
following cycle.

Any attempt to access external memory while
SBTS is asserted stops the processor and
suspends the memory access. The processor
completes the memory access when SBTS is
deasserted.

Use SBTS to recover from deadlock between a
host and processor only.

SW I/O/Z Synchronous write select.

Interfaces with synchronous memory devices,
including another processor, to provide
early indication of an impending write
cycle.

The processor asserts this pin when a write
cycle is pending. If WR is not asserted
later in the write cycle (for example, in a
conditional write instruction), the appli-
cation can abort the cycle.

In multiprocessing systems, the master pro-
cessor outputs SW, and the slave inputs SW
to determine if the multiprocessor memory
access is a read or write.

Table 12-1. External port pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-7

System Design

The processor asserts SW at the same time
as the address output.

A host using synchronous writes must assert
SW when writing to the processor.

Table 12-2. Host interface pin definitions

Pins Type Function

ACK I/O/Z Memory acknowledge.

External devices can deassert ACK to add
wait states to an external memory access.
This enables I/O devices, memory control-
lers, and other peripherals to delay com-
pleting the access.

The processor deasserts ACK as an output to
add wait states to a synchronous access of
its IOP registers.

In multiprocessing systems, the slave deas-
serts the master processor’s ACK input to
add wait states to an access of the master
processor’s IOP registers. The keeper latch
on the master processor’s ACK pin maintains
the input at the level to which it was
driven.

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Table 12-1. External port pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Pin Definitions

12-8 ADSP-21065L SHARC DSP User’s Manual

In multiprocessor systems, the ACK signal
is an input to the master processor and
does not float while not driven because the
master’s keeper latch on this pin is weak.
During reset, the master processor pulls
the ACK pin high with an internal 2 kΩ
equivalent resistor and holds it high with
its internal keeper latch. This eliminates
need for an external pull-up resistor on
the ACK line.

CS I/A Chip select.

The host asserts this line to select the
processor.

HBG I/O Host bus grant.

Acknowledges an HBR bus request and gives
the host permission to take control of the
processor’s external bus.

The processor holds HBG low until the host
releases HBR.

In multiprocessing systems, the master pro-
cessor outputs HBG.

Table 12-2. Host interface pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-9

System Design

HBR I/A Host bus request.

The host processor must assert this line to
request control of the processor’s external
bus.

In multiprocessing systems, the master pro-
cessor relinquishes the bus and asserts HBG
in response to this request.

To relinquish the bus, the master processor
places the address, data, select, and
strobe lines in a high-impedance state, but
continues to drive the SDRAM control pins.

In multiprocessing systems, HBR has prior-
ity over all processor bus requests (BRx).

REDY(o/d) O Host bus acknowledge.

the processor deasserts this line to add
wait states to an asynchronous access of
its IOP registers made by the host proces-
sor.

By default, the output is open drain (o/d).
To change output to active drive (a/d), set
the ADREDY bit in the SYSCON register.

Table 12-2. Host interface pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Pin Definitions

12-10 ADSP-21065L SHARC DSP User’s Manual

Table 12-3. SDRAM interface pin definitions

Pins Type Function

CAS I/O/Z SDRAM column address strobe.

Used in conjunction with MSx, RAS, SDCLKx,
SDWE, and sometimes SDA10, defines the
operation for the SDRAM to perform.

DQM O/Z SDRAM data mask.

In write mode, this signal has a latency of
zero and is used to block write operations.

RAS I/O/Z SDRAM row address strobe.

Used in conjunction with CAS, MSx, SDCLKx,
SDWE, and sometimes SDA10, defines the
operation for the SDRAM to perform.

SDA10 O/Z SDRAM A10 pin.

Enables applications to refresh an SDRAM in
parallel with a host access.

SDCLKx O/S/Z SDRAM 2x clock output.

In systems with multiple SDRAM devices con-
nected in parallel, supports the corre-
sponding increase in clock load
requirements, eliminating need of off-chip
clock buffers.

Applications can disable either SDCLK1 or
both SDCLKx pins.

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-11

System Design

SDCKE I/O/Z SDRAM clock enable.

Enables and disables the CLK signal.

Used to enter self-refresh.

SDWE I/O/Z SDRAM write enable.

Used in conjunction with CAS, MSx, RAS,
SDCLKx, and sometimes SDA10, defines the
operation for the SDRAM to perform.

Table 12-4. Serial port pin definitions

Pins Type Function

DRx_X I Data receive.

SPORTs 0/1, channels A /B.

Each DRxX pin has a 50 kΩ internal pull-up
resistor.

DTx_X O Data transmit.

SPORTs 0/1, channels A /B.

Each DTxX pin has a 50 kΩ internal pull-up
resistor.

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Table 12-3. SDRAM interface pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Pin Definitions

12-12 ADSP-21065L SHARC DSP User’s Manual

RCLKx I/O Receive clock for SPORTs 0 and 1.

Each RCLK pin has a 50 kΩ internal pull-up
resistor.

RFSx I/O Receive frame sync for SPORTs 0 and 1.

TCLKx I/O Transmit clock for SPORTs 0 and 1.

Each TCLK pin has a 50 kΩ internal pull-up
resistor.

TFSx I/O Transmit frame sync for SPORTs 0 and 1.

Table 12-4. Serial port pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-13

System Design

Table 12-5. System control pin definitions

Pins Type Function

BMS I/O/Z Boot memory select.

This is a system configuration selection
that you need to hard wire.

• Output

Used as chip select for boot EPROM
devices when BSEL=1.

In multiprocessor systems, the master
processor outputs BMS.

• Input

When asserted, indicates no booting will
occur.

The processor will begin executing
instructions from external memory.

When an output, this pin is three-statable
in EPROM boot mode only. For details, see
“Booting” on page 12-49.

BMSTR O Bus master output.

Used in multiprocessor systems only.

Indicates whether the processor is current
bus master of the shared external bus.

The processor asserts this pin high only
while it is bus master. Do not connect to
BMSTR on another ADSP-21065L.

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Pin Definitions

12-14 ADSP-21065L SHARC DSP User’s Manual

BR2-0 I/O/S Multiprocessing bus requests.

In multiprocessing systems, each processor
uses this line to arbitrate for bus mas-
tership.

Each processor drives its own BRx line only
according to the value of its ID2-0 inputs
and monitors the other BRx line. For
details, see Chapter 7‚ Multiprocessing.

In single-processor systems, tie both BRx
pins to VDD.

BSEL I EPROM boot select.

When BSEL is high, the processor is con-
figured for booting from an 8-bit EPROM.

When BSEL is low, both BSEL and BMS inputs
determine the booting mode. For details,
see the BMS pin description.

CLKIN I Clock in.

Used in conjunction with XTALx, configures
the processor to use either its internal
clock generator or an external clock
source. (Use an external clock crystal
rated at 1x frequency.)

Table 12-5. System control pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-15

System Design

CLKIN
(Cont’d)

I • Internal clock generator

Connecting the necessary components to
CLKIN and XTALx enables the internal
clock generator.

The processor’s internal clock generator
multiplies the 1x clock to generate 2x
clock for its core and SDRAM interface.

• The processor drives 2x clock out on
the SDCLKx pins for the SDRAM interface
to use.

• External clock source

Connecting the 1x external clock to
CLKIN while leaving XTALx unconnected
configures the processor to use the
external clock source.

The instruction cycle rate is equal to 2x
CLKIN.

You cannot halt, change, or operate
CLKIN below the specified frequency.

Table 12-5. System control pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Pin Definitions

12-16 ADSP-21065L SHARC DSP User’s Manual

CPA (o/d) I/O Core priority access.

Enables the slave processor’s core to
interrupt background DMA transfers and
gain access to the external bus.

CPA is an open drain output that connects
to both processors in a multiprocessor
system. It has a 5 KΩ pull-up resistor.

If your system doesn’t require core access
priority, leave the CPA pin unconnected.

FLAG11-0 I/O/A Flag pins.

Provide twelve additional general-purpose,
programmable I/O ports.

Each is configured through control bits as
either an input or output port:

• As an input, you can use a flag to test
a condition.

• As an output, you can use a flag to
signal external peripherals.

ID1-0 I Multiprocessing ID.

Determines which multiprocessor bus
request (BRx) pin the processor uses:

01= BR1

10= BR2

Since these lines are a system configura-
tion selection, hard wire them or change
them at reset only.

Table 12-5. System control pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-17

System Design

IRQ2-0 I/A Interrupt request lines.

Either edge-triggered or level-sensitive.

PWM_EVENT1-0 I/O/A PWM output/event capture.

IN PMWOUT mode, this pin is an output that
functions as a timer counter.

In WIDTH_CNT mode, this pin is an input
that functions as a pulse counter/event
capture.

RD I/O/Z Memory read strobe.

Asserted when the processor reads from
external memory devices or from the other
processor in a multiprocessor system.

External devices, including another pro-
cessor, must assert RD to read from the
processor’s IOP register.

In multiprocessing systems, the master
processor outputs RD, and the slave inputs
RD.

Except during a host transition cycle
(HTC), do not deassert the RD strobe
(low-to-high transition) while ACK or REDY
are deasserted. Doing so causes the pro-
cessor to hang.

Operation of the RD signal changes when a
host asserts CS. For details, see “Host
Transfers” on page 8-11.

Table 12-5. System control pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Pin Definitions

12-18 ADSP-21065L SHARC DSP User’s Manual

RESET I/A Processor reset.

Resets the processor to a known state and
begins execution at the program memory
location specified by the hardware reset
vector address.

In single-processor systems, the processor
owns the external bus during reset and
does not arbitrate for control of the bus
afterwards.

Applications must assert this input at
power-up.

WR I/O/Z Memory write strobe.

Asserted when the processor writes to
external memory devices or to the other
processor.

External devices, including another pro-
cessor, must assert WR to write to the pro-
cessor’s IOP registers.

In multiprocessing systems, the master
processor outputs WR, and the slave inputs
WR.

Except during a Host Transition Cycle
(HTC), do not deassert the WR strobe
(low-to-high transition) while ACK or REDY
are deasserted (low). Doing so causes the
processor to hang.

Operation of the WR signal changes when a
host asserts CS. For details, see “Host
Transfers” on page 8-11.

Table 12-5. System control pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-19

System Design

XTAL O Crystal oscillator terminal.

Used in conjunction with CLKIN to enable
the processors internal clock generator or
to disable it to use an external clock
source.

Table 12-6. JTAG and emulator pin definitions

Pins Type Function

EMU (O/D) O Emulation status.

Connect to the ADSP-21065L EZ-ICE target
only.

TCK I Test clock (JTAG).

Provides an asynchronous clock for the JTAG
boundary scan.

TDI I/S Test data input (JTAG).

Serial data input to the boundary scan
path.

This pin has an internal 20 kΩ pull-up
resistor.

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Table 12-5. System control pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Pin Definitions

12-20 ADSP-21065L SHARC DSP User’s Manual

TDO O Test data output (JTAG).

Serial scan output from the boundary scan
path.

TMS I/S Test mode select (JTAG).

Controls the test state machine.

This pin has an internal 20 kΩ pull-up
resistor.

TRST I/A Test reset (JTAG).

Resets the test state machine.

After power-up, applications must assert
(pulse) or hold this pin low. Do not leave
this pin unconnected.

This pin has an internal 20 kΩ pull-up
resistor.

Table 12-7. Miscellaneous pin definitions

Pins Type Function

GND G Power supply return

NC — Do not connect

VDD P Power supply

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

Table 12-6. JTAG and emulator pin definitions (Cont’d)

Pins Type Function

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Syn; Z=Hi-Z (when
SBTS is asserted or when the processor is bus slave)

ADSP-21065L SHARC DSP User’s Manual 12-21

System Design

Figure 12-2 shows how the processor transfers different data word sizes
over the external port.

Figure 12-2. External port alignment

32-bit Float or Fixed
D31-D0

32-bit Packed

16-bit Packed

8-bit Packed

EPROM
Boot

31 24 16 8 0

Pin States After Reset

12-22 ADSP-21065L SHARC DSP User’s Manual

Pin States After Reset
Table 12-8 shows the state of each pin during and immediately after pro-
cessor reset.

Table 12-8. Pin states during and after RESET

Pin Type State

Driven only by the processor that is bus master; otherwise put
in a high-impedance state.

ACK I/O/S If bus master, pulled high with 2kΩ
pull-up resistor

ADDR23-0 I/O/Z Driven

BMSTR O If bus master, driven high; otherwise,
driven low

BR2-1 I/O If bus master, BR1 driven low; otherwise,
driven high

CAS I/O/Z Driven high

DMAG2-1 O/Z Driven high

DQM O/Z Driven high until SDRAM power-up sequence
started

HBG I/O/Z Driven high

MS3-0 O/Z Driven high

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Synchronous;
Z=Hi-Z (when SBTS is asserted or when the processor is bus
slave)

ADSP-21065L SHARC DSP User’s Manual 12-23

System Design

RAS I/O/Z Driven high

RD I/O/Z Driven high

SDA10 O/Z Driven

SDCKE I/O/Z Driven high

SDCLKx O/S/Z Driven

SDWE I/O/Z Driven high

SW I/O/Z Driven high

WR I/O/Z Driven high

Independent of bus master

BMS I/O/Z Input if BSEL =0;output if BSEL=1

BSEL I Input

CLKIN I Input

CPA (o/d) I/O/Z Hi-Z

CS I Input

DATA31-0 I/O/Z Hi-Z

DMAR2-1 I Inputs

Table 12-8. Pin states during and after RESET (Cont’d)

Pin Type State

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Synchronous;
Z=Hi-Z (when SBTS is asserted or when the processor is bus
slave)

Pin States After Reset

12-24 ADSP-21065L SHARC DSP User’s Manual

FLAG11-0 I/O/A Inputs

HBR I/A Inputs

ID1-0 I Inputs

IRQ2-0 I/A Inputs

PWM_EVENT1-0 I/O/A Inputs at RESET

REDY (o/d) O/Z Hi-Z

RESET I/A Input

SBTS I/S Input; Puts the master processor in
high-impedance state during reset.

XTAL O Output

Serial Ports

DRx_X I Input

DTx_X O Hi-Z (for multichannel)

RCLKx I/O Hi-Z

TCLKx I/O Hi-Z

RFSx I/O Hi-Z

TFSx I/O Hi-Z

Table 12-8. Pin states during and after RESET (Cont’d)

Pin Type State

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Synchronous;
Z=Hi-Z (when SBTS is asserted or when the processor is bus
slave)

ADSP-21065L SHARC DSP User’s Manual 12-25

System Design

JTAG and Emulator

EMU O Hi-Z

TCK I Input

TDI I/S Input

TDO O Hi-Z

TMS I/S Input

TRST I/A Input

Table 12-8. Pin states during and after RESET (Cont’d)

Pin Type State

(a/d)=Active drain; A=Asynchronous; G=Ground; I=Input;
(o/d)=Open drain; O=Output; P=Power supply; S=Synchronous;
Z=Hi-Z (when SBTS is asserted or when the processor is bus
slave)

Pin Operation

12-26 ADSP-21065L SHARC DSP User’s Manual

Pin Operation
This section describes the operation of and interactions between particular
pins.

XTAL and CLKIN
The processor receives its 1x clock input, which can be up to 30MHz, on
the CLKIN pin. It has an on-chip clock generator that uses an on-chip
phase-locked loop to generate its internal clock. The generator multiplies
the 1x CLKIN signal to generate 2x clock for core operations. The proces-
sor drives out the 2x clock over its SDCLKx pins for SDRAM to use.

You can use either an external clock oscillator or a crystal and the internal
oscillator to generate internal clock. For multiprocessor systems, you must
use an external clock oscillator.

Table 12-9 defines the CLKIN frequency of various operations when the
processor is configured to use a crystal and the internal clock oscillator to
generate its internal clock. The CLKIN frequency, in turn, defines the
cycle frequency (1x or 2x) of these operations.

Table 12-9. CLKIN frequencies for processor operations

Operation CLKIN Frequency

FLAGx 2X

Host (asynchronous) 1X

IRQx 2X

Master processor 1X

Multiprocessing 1X

SDRAM 2X

ADSP-21065L SHARC DSP User’s Manual 12-27

System Design

To enable the on-chip generator, connect CLKIN and XTAL to the neces-
sary external components (for details, see the processor’s data sheet). To
use 1x clock, connect CLKIN to an external clock oscillator, and leave
XTAL unconnected.

Because the on-chip generator’s phase-locked loop requires some time to
achieve phase lock, CLKIN must be valid for a minimum time period dur-
ing reset before the application deasserts the RESET signal. For details, see
the processor’s data sheet.

Input Synchronization Delay
The processor has several asynchronous inputs—RESET, TRST, HBR,
CS, DMAR2-1, and IRQ2-0, and, when configured as inputs,
PWM_EVENTx and FLAG11-0. Applications can assert these inputs in
arbitrary phase to the processor clock, CLKIN. The processor synchro-
nizes the inputs before it recognizes them. The delay associated with
recognition is called synchronization delay.

For the processor to recognize any asynchronous input in a particular
cycle, the input must be valid before the recognition phase. If an input
does not meet the setup time on a given cycle, the processor may recognize
it in the current cycle or during the next cycle (see Table 12-9 for cycle
definitions).

So, to ensure recognition of an asynchronous input, make sure your appli-
cation asserts the input for at least one full processor cycle in addition to

Serial ports 1X

Wait states (external memory) 1X

Table 12-9. CLKIN frequencies for processor operations (Cont’d)

Operation CLKIN Frequency

Pin Operation

12-28 ADSP-21065L SHARC DSP User’s Manual

the setup and hold time, except for RESET, which you must assert for at
least four processor cycles. For details, see the processor’s data sheet.

External Interrupt and Timer Pins
You can use the processor’s external interrupt (IRQx) pins, FLAGx pins,
and PWM_EVENT pins to send and receive control signals to and from
other devices in the system.

The IRQ2-0 pins receive hardware interrupt signals. Devices that require
the processor to perform some task on demand can generate interrupts. A
memory-mapped peripheral, for example, can generate an interrupt to
alert the processor that it has data available. For details, see Chapter 3‚
Program Sequencing.

The PWM_EVENT1-0 timer pins are programmable and function inde-
pendently in either pulse width generation mode or in pulse count and
capture mode. In pulse width generation mode, the timer pins output a
modulated waveform with an arbitrary pulse width, and in pulse count
and capture mode, they measure the high or low pulse width or period of
an input waveform.

Both modes generate timer INT_HIx interrupts, which indicate to other
devices that the programmed time period has expired. For details see,
Chapter 11‚ Programmable Timers and I/O Ports.

Flag Pins
The FLAG11-0 pins enable single-bit signaling between the processor and
other devices. For example, the processor can raise an output flag to inter-
rupt a host

Each flag pin is programmable as either an input or output port. You can
condition many processor instructions on a flag’s input value to facilitate

ADSP-21065L SHARC DSP User’s Manual 12-29

System Design

efficient communication and synchronization between dual processors or
with other interfaces.

All flag pins are bidirectional and have the same functionality. But the
control and status bits for FLAG3-0 and FLAG11-4 are located in different
registers.

The control and status bits for FLAG3-0 are in the MODE2 register and
ASTAT register, respectively. Because both of these registers are universal
registers, you can execute the bit wise operations, BIT, BIT TST, CLR,
and so on, directly on them.

To program the direction of the FLAG3-0 pins, set or clear the control bits
in the MODE2 register, as shown in Table 12-10.

Table 12-10. MODE2 control bits for the FLAG3-0 pins

Bit Name Description

15 FLG0O FLG0O direction select.

0 = input

1 = output

16 FLG1O FLG1O direction select.

0 = input

1 = output

17 FLG2O FLG2O direction select.

0 = input

1 = output

18 FLG3O FLG3O direction select.

0 = input

1 = output

Pin Operation

12-30 ADSP-21065L SHARC DSP User’s Manual

At reset, the processor clears the MODE2 register, configuring all flags as
inputs.

The control and status pins for FLAG11-4 are in the IOCTL register and
IOSTAT register, respectively. Because both of these registers are IOP reg-
isters, you cannot execute the bitwise operations—BIT TST, BIT, CLR,
and so on—directly on them. To execute these operations on the
FLAG11-4 pins, first you must transfer the contents of the flag’s status bit
in the IOSTAT register to the Register File or to another universal regis-
ter. (For IOSTAT register bit descriptions, see Appendix E‚ Control and
Status Registers, in ADSP-21065L SHARC DSP Technical Reference.)

To program the direction of the FLAG11-4 pins, set or clear the control
bits in the IOCTL register, as shown in Table 12-11.

Table 12-11. IOCTL control bits for the FLAG11-4 pins

Bit Name Description

0 FLG4O FLAG4O direction set.

0 = input

1 = output

1 FLG5O FLAG5O direction set.

0 = input

1 = output

2 FLG6O FLAG6O direction set.

0 = input

1 = output

3 FLG7O FLAG7O direction set.

0 = input

1 = output

ADSP-21065L SHARC DSP User’s Manual 12-31

System Design

At reset, the processor clears the IOCTL register, configuring all flags as
inputs.

Flag Inputs

When a flag is programmed as an input, the processor stores its value in a
bit in either the ASTAT register or the IOSTAT register, depending on
the particular flag (FLAG3-0 or FLAG11-4).

Each cycle, the processor updates the flag’s status bit with the input value
of its pin. Since flag inputs can be asynchronous to the processor clock, if
the rising edge of the input misses the setup requirement for the cycle, a

4 FLG8O FLAG8O direction set.

0 = input

1 = output

5 FLG9O FLAG9O direction set.

0 = input

1 = output

6 FLG10O FLAG10O direction set.

0 = input

1 = output

7 FLG11O FLAG11O direction set.

0 = input

1 = output

Table 12-11. IOCTL control bits for the FLAG11-4 pins (Cont’d)

Bit Name Description

Pin Operation

12-32 ADSP-21065L SHARC DSP User’s Manual

one-cycle delay occurs before a change on the pin appears in either
ASTAT or IOSTAT, as shown in Table 12-12.

When a flag pin is configured as an input, its status bit in ASTAT or
IOSTAT is read-only. Otherwise, you can read and write the status bit.
You can specify the bit states of the ASTAT and IOSTAT flags as condi-
tions in conditional instructions. For details, see “Flag Pins” on page
12-28.

Table 12-12. FLAGxO status bits

Register Bit Name Description

ASTAT 19 FLG0O FLAG0 value

20 FLG1O FLAG1 value

21 FLG2O FLAG2 value

22 FLG3O FLAG3 value

IOSTAT 0 FLG4O FLAG4 value

1 FLG5O FLAG5 value

2 FLG6O FLAG6 value

3 FLG7O FLAG7 value

4 FLG8O FLAG8 value

5 FLG9O FLAG9 value

6 FLG10O FLAG10 value

7 FLG11O FLAG11 value

ADSP-21065L SHARC DSP User’s Manual 12-33

System Design

Flag Outputs

When a flag is configured as an output, the state of the pin corresponds to
the value of the flag’s status bit in either the ASTAT or the IOSTAT
register.

Your application can set or clear the ASTAT or IOSTAT flag bits to pro-
vide a signal to the other processor or to a peripheral. Figure 12-3 on page
12-34 shows the timing of a flag output.

When an interrupt service routine pushes ASTAT or IOSTAT
onto the status stack, the flag bits in ASTAT and IOSTAT are
not affected.

The values of these bits carry over from the main program to the
service routine and from the service routine back to the main
program (in a pop of the status stack). For details, see “Status
Stack Save and Restore” on page 3-48.

Pin Operation

12-34 ADSP-21065L SHARC DSP User’s Manual

Figure 12-3. Flag output timing

Pushing or popping the ASTAT or IOSTAT register on and off the Status
Stack does not change the value of the ASTAT or IOSTAT flag bits.

JTAG Interface Pins
The JTAG test access port consists of the TCK, TMS, TDI, TDO, and
TRST pins. For testing purposes, you can connect the JTAG port to a
controller that performs a boundary scan. The processor’s EZ-ICE Emula-
tor uses this port to access on-chip emulation features. To enable the use
of the emulator, you must include a connector for its in-circuit probe in
your target system. For details, see the “EZ-ICE Emulator” on page
12-36.

�����

����	

	������

����������

��� ���!���"�#"�

��$%�&���'%���

��� ���(����

�������'%����

��� ���!����#"���

$%�&���'%���
����� ���(����

�������'%����

'����"	����	����������

�� ���!��#"�

�����	

����

 ���!
�)
 ���!��*

%"�#"����(��� %"�#"�+���� %"�#"�+����

%"�#"�����(���,

��#"����(���

ADSP-21065L SHARC DSP User’s Manual 12-35

System Design

For proper processor operation, your application must assert (pulse or
hold low) the JTAG TRST input after power-up. Otherwise, the JTAG
port enters an undefined state, which can cause the processor to drive out
on the I/O pins rather than put them in a high-impedance state at reset as
normal.

You can use a jumper to ground on the EZ-ICE target board connector to
hold TRST low. (See Figure 12-4 on page 12-38.)

Do not leave this pin unconnected!

EZ-ICE Emulator

12-36 ADSP-21065L SHARC DSP User’s Manual

EZ-ICE Emulator
The processor’s EZ-ICE Emulator is a development tool for debugging
programs running in real time on your ADSP-21065L target system
hardware.

By connecting directly to the target processor through its JTAG interface,
the EZ-ICE Emulator provides a controlled environment for observing,
debugging, and testing activities in a target system.

The EZ-ICE emulator can monitor system behavior while running at full
speed. It enables you to examine and alter memory locations and processor
registers and stacks.

Controlling the target system’s processor through the processor’s IEEE
1149.1 JTAG Test Access Port, the EZ-ICE ensures non-intrusive in-cir-
cuit emulation. The EZ-ICE emulator does not impact target loading or
timing, and its in-circuit probe connects to an IBM PC host computer
equipped with an ISA bus plug-in board.

Target systems must have a 14-pin, male connector that accepts the
EZ-ICE emulator’s in-circuit probe, a 14-pin, female plug.

Target Board Connector for EZ-ICE Probe
The EZ-ICE Emulator uses the processor’s IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.

The EZ-ICE probe uses a 14-pin connector (a pin strip header) such as
that shown in Figure 12-4 on page 12-38 to provide the target system
access to the processor’s CLKIN, TMS, TCK, TRST, TDI, TDO, EMU,
and GND signals. The EZ-ICE probe plugs directly into this connector
for chip-on-board emulation.

ADSP-21065L SHARC DSP User’s Manual 12-37

System Design

If you intend to use the processor’s EZ-ICE Emulator, you must add this
connector to your target board design. Be sure to provide enough room in
your system to plug the EZ-ICE probe into the 14-pin connector. Make
the length of the traces between the connector and the processor’s JTAG
pins as short as possible.

The 14-pin, two-row pin strip header is keyed at the pin 3 location—you
must remove pin 3 from the header. Table 12-13 provides the pin dimen-
sion and spacing requirements for the pin strip header used to connect to
the EZ-ICE probe.

Pin strip headers are available from several vendors, such as 3M, McKen-
zie, and Samtec.

Table 12-13. Pin specifications for pin strip header

Dimension Specification

Diameter 0.025 inches

Length 0.20 inches

Spacing between pins 0.1 x 0.1 inches

Clearance above tallest component under probe 0.10 inches

EZ-ICE Emulator

12-38 ADSP-21065L SHARC DSP User’s Manual

Figure 12-4. Target board connector for EZ-ICE Emulator (jumpers in
place)

The BTMS, BTCK, BTRST, and BTDI signals enable you to use the test
access port for board-level testing. When not using the connector for emu-
lation, place jumpers between the BXXX pins and their counterpart pins
as shown in Figure 12-4.

If you do not intend to use the test access port for board testing, tie
BTRST to GND and tie or pull up BTCK to VDD. For proper operation
of the processor, your application must assert or hold the TRST pin low
after power-up (through BTRST on the connector). None of the BXXX
pins (pins 5, 7, 9, 11) are connected on the EZ-ICE probe.

Table 12-14 shows the termination of the JTAG signals on the EZ-ICE
probe.

� �

� �

� �

� �

	 �

�� ��

�� ��

��

����

��

�����������

����

�����

���

���������������	

���

���

���

����

��

��

��������

�

ADSP-21065L SHARC DSP User’s Manual 12-39

System Design

Figure 12-5 on page 12-40 shows JTAG scan path connections for systems
that contain two processors.

Table 12-14. Termination of EZ-ICE signals

Signal Termination

TMS Driven through 22Ω resistor (16 mA driver)

TCK Driven at 10 MHz through 22Ω resistor (16 mA driver)

TRST Driven through 22Ω resistor (16 mA driver) (pulled
up by an on-chip 20kΩ resistor)

Driven low until the EZ-ICE software turns on the
EZ-ICE probe. After software start-up, TRST is
driven high.

TDI Driven through 22Ω resistor (16 mA driver)

TDO One TTL load, split termination (160/220)

CLKIN One TTL load, split termination (160/220)

EMU Active low. 4.7 kΩ pull-up resistor, one TTL load
(open drain output from the processor)

EZ-ICE Emulator

12-40 ADSP-21065L SHARC DSP User’s Manual

Figure 12-5. JTAG scan path connections for multiprocessor systems

Connecting CLKIN to pin 4 of the EZ-ICE header is optional. The emu-
lator uses CLKIN only when performing synchronous multiprocessor
operations, such as starting, stopping, and single-stepping two processors.
If you do not need these operations to execute synchronously on both pro-
cessors, tie pin 4 on the EZ-ICE header to ground.

If you need to execute synchronous multiprocessor operations, and
CLKIN is connected, clock skew between both processors and the CLKIN
pin on the EZ-ICE header must be minimal. A clock skew that is too large
can hold off synchronous operations between processors by one cycle.
Since, in this configuration, TCK, TMS, CLKIN (optional), and EMU
are critical signals in terms of clock skew, make sure to lay them out as
short as possible on your board.

If you do not need to execute synchronous multiprocessor operations, and
CLKIN is not connected, use appropriate parallel termination on TCK
and TMS. In this configuration, TDI, TDO, and TRST are not critical
signals in terms of clock skew.

���

����

���

���

��	

��������

��

��������

�

��
��������

������� !"

�#�	$

%&�	�%

��
�

��������'

��(�'

��
�

����'�!!�'

������� !"

%�)

�
�
�
�

�����	

�
�
�

�����	 �����	

�
�
�

�
�
�

%
�
)

%
�
)

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

ADSP-21065L SHARC DSP User’s Manual 12-41

System Design

Input Signal Conditioning
The processor is a CMOS device. It has input conditioning circuits that
filter or latch input signals to reduce susceptibility to reflections. This sec-
tion describes why these circuits are necessary and how they affect input
signals.

A typical CMOS input consists of an inverter with specific N and P device
sizes that cause a switching point of approximately 1.4V. This level is the
selected midpoint of the standard TTL interface specification of VIL=0.8V
and VIH=2.0V.

Because the input inverter has a fast response to input signals and external
glitches wider than approximately 1 ns, filter circuits and hysteresis are
added after the input inverter on some processor inputs.

Hysteresis is used only on the RESET input signal. Hysteresis raises the
switching point of the input inverter to slightly above 1.4V for a rising
edge and lowers it to slightly below 1.4V for a falling edge. The value of
the hysteresis is approximately ± 0.1V.

Hysteresis is intended to prevent the multiple triggering of signals, which
are allowed to rise slowly, as might be expected on a reset line with a delay
implemented by an RC input circuit. Hysteresis is not intended to reduce
the affect of ringing on input signals with fast edges since the amount of
hysteresis allowed on a CMOS chip is too small to make much difference.
The tolerance of the VIL and VIH TTL input levels under worst case con-
ditions limits the amount of hysteresis. For exact specifications, see the
processor’s data sheet.

High Frequency Design Issues

12-42 ADSP-21065L SHARC DSP User’s Manual

High Frequency Design Issues
Because the processor can operate at very fast clock frequencies, designers
must consider signal integrity and noise problems when designing and lay-
ing out a circuit board. The following sections discuss these topics and
suggest various techniques to use when designing and debugging systems.

Clock Specifications and Jitter
The clock signal must be free of ringing and jitter. Clock jitter is easily
introduced into a system in which more than one clock frequency exists
(Figure 12-6). Since high frequency jitter on the clock to the processor
can result in abbreviated internal cycles, make sure to keep the jitter to less
than 0.5 ns for a ≤33 MHz clock.

Figure 12-6. Clock with two frequency inputs

Keep system components that operate at different frequencies separated
physically at distances as far as possible.

The clock supplied to the processor must have a rise time of ≤3 ns and
meet or exceed a high and low voltage of 2.0V and 0.4V, respectively.

Never share a clock buffer IC with a signal of a different clock
frequency. Doing so introduces excessive jitter.

���-"��	�.

���-"��	��

	��	/

ADSP-21065L SHARC DSP User’s Manual 12-43

System Design

Clock Distribution
Multiprocessor systems must maintain low clock skew between both pro-
cessors when they are communicating synchronously over the external
bus. Make sure you route the clock in a controlled-impedance transmis-
sion line that is properly terminated either at the end of the line (see
Figure 12-7) or at the source (see Figure 12-8 on page 12-44).

• End-of-line termination is appropriate only when the distance
between the processors is very small. This is so because devices that
are at a different wire distance from each other on a printed circuit
board (PCB) transmission line will receive a skewed clock. This con-
dition is called the propagation delay. The typical propagation delay
of a PCB transmission line is 5 to 6 inches/ns.

Figure 12-7. End-of-line termination clock distribution method

• For source termination, Figure 12-8 on page 12-44 shows an example
of series-terminated transmission lines for clock distribution. This
configuration enables identical delays in each path.

ADSP-21065L ADSP-21065L

50 Ω transmission line

1.4V

3.3V

Clock

High Frequency Design Issues

12-44 ADSP-21065L SHARC DSP User’s Manual

Figure 12-8. Source termination clock distribution method

When using source termination, make sure you follow these guidelines:

• Connect each device at the end of the transmission line.

The end of the line is the only point where the signal has a single
transition.

• Route the traces so that the delay through each matches the others.

• When using a line impedance higher than 50Ω, keep clock signal
traces in the PCB layer closest to the ground plane, so delays remain
stable and crosstalk low.

• When placing more than one device at the end of the line, keep the
wire length between them short and their impedance (capacitance)
high.

• Place the matched inverters in the same IC and specify them for a
low skew (<1 ns) with respect to each other.

Specify this skew as small as possible since it subtracts from the mar-
gin on most specifications.

ADSP-21065L

ADSP-21065L
50 ? transmission line

40 ?

Clock

40 ?

50 ? transmission line

bu
ffe

r
dr

iv
e

im
pe

da
nc

e
=

10
?

ADSP-21065L SHARC DSP User’s Manual 12-45

System Design

Point-to-Point Connections on Serial Ports
Although you can operate the processor’s serial ports at a slow rate, the
output drivers still have fast edge rates and, for longer distances, might
require source termination.

You can add a series termination resistor near the pin for point-to-point
connections. Typically, serial port applications use this termination
method when distances are greater than six inches. For details, see the pro-
cessor’s data sheet. For more information on transmission line
termination, see “Recommended Reading” on page 12-47.

Signal Integrity
We recommend that you try to reduce the capacitive loading on
high-speed signals as much as possible. Using a buffer for devices that
operate with wait states, you can reduce the load on buses. This in turn
reduces the capacitance on signals tied to zero-wait-state devices, allowing
these signals to switch faster with fewer noise-producing current spikes.

To reduce ringing, minimize the signal run length (inductance). Take
extra care with certain signals, such as the read and write strobes (RD,
WR) and acknowledge (ACK). In a multiprocessor system, since each pro-
cessor can drive the read or write strobes, we recommend that you add
some damping resistance in the signal path if the line length is greater
than six inches. Doing so, however, will incur additional signal delay.
Make sure you carefully analyze the time budget for these signals.

Other Recommendations and Suggestions
• Use more than one ground plane on the PCB to reduce crosstalk.

Be sure to use lots of vias between the ground planes. One VDD
plane is sufficient. Place these planes in the center of the PCB.

High Frequency Design Issues

12-46 ADSP-21065L SHARC DSP User’s Manual

• To reduce crosstalk, keep critical signals such as clocks, strobes, and
bus requests on a signal layer next to a ground plane and away from
or perpendicular to other non-critical signals.

For example, data outputs switch at the same time that the processor
samples BRx inputs. If your layout permits crosstalk between them,
your system could have problems with bus arbitration.

• If possible, position the processors on both sides of the board to
reduce area and distances.

• Lower transmission line impedances reduce crosstalk and provide
better control of impedance and delay.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues.

To do so, drive a signal wire from a pulse generator and study the
reflections while other components and signals are passive.

Decoupling Capacitors and Ground Planes
Use planes for the ground and power supplies.

We recommend that you use a minimum of eight bypass capacitors (0.02
µF ceramic), placed very close to the VDD pins of the package (see
Figure 12-9 on page 12-47). Use short and fat traces for this. Tie the
ground end of the capacitors directly to the ground plane. Tie the positive
(+) end of each capacitor directly to the power plane, as near as possible to
the processor’s VDD pins. We recommend a surface-mount capacitor
because of its lower series inductance.

Connect the power plane to the power supply pins directly, with mini-
mum trace length. To avoid reducing their effectiveness, make sure the

ADSP-21065L SHARC DSP User’s Manual 12-47

System Design

ground planes are not densely perforated with vias or traces. In addition,
populate the board with several large tantalum capacitors.

Figure 12-9. Bypass capacitor placement

Oscilloscope Probes
When making high-speed measurements, use a “bayonet” or similarly
short (< 0.5 inch) ground clip attached to the tip of the oscilloscope
probe. Use a low-capacitance active probe with 3 pF or less of loading. If
you use a standard ground clip with four inches of ground lead, you will
see ringing on the displayed trace and the signal will appear to have exces-
sive overshoot and undershoot. To see signals accurately, you need a
1 GHz or better sampling oscilloscope.

Recommended Reading
For further reading, we recommend the following books. These books are
technical references that cover the problems encountered in
state-of-the-art, high-frequency digital circuit design, and are excellent
sources of practical ideas for problem solving.

Buchanan, James E. Signal and Power Integrity in Digital Systems; TTL,
CMOS, & BICMOS. McGraw-Hill. ISBN 0-07-008734-2

Johnson and Graham. High-Speed Digital Design: A Handbook of Black
Magic. Prentice Hall, Inc. ISBN 0-13-395724-1

ADSP-21065L

High Frequency Design Issues

12-48 ADSP-21065L SHARC DSP User’s Manual

These books cover these topics:

• High-Speed properties of logic gates

• Measurement techniques

• Transmission lines

• Ground planes and layer stacking

• Terminations

• Vias

• Power systems

• Connectors

• Ribbon cables

• Clock Distribution

• Clock Oscillators

ADSP-21065L SHARC DSP User’s Manual 12-49

System Design

Booting
You can automatically download programs to the processor’s internal
memory after power-up or after a software reset. This process is called
booting.

The processor supports these boot modes:

• EPROM boot mode

The processor reads data from an 8-bit external EPROM through
the external port.

• Host boot mode

The processor accepts data from an 8-, 16-, or 32-bit host micropro-
cessor or other external device.

Each boot mode packs boot data into 48-bit instructions and uses DMA
channel 8 to transfer the instructions to internal memory.

You use the primary configuration of DMA channel 8 (and EPB0) for
EPROM and host booting. The DMAC0 control register is specially ini-
tialized for booting in each case.

With either boot method, after the boot process loads 256 words into
memory locations 0x8000 through 0x80FF, the processor begins executing
instructions. Because most applications require more than 256 words of
instructions and initialization data, these 256 words typically serve as a
loading routine for the application. Analog Devices supplies a loading rou-
tine (Loader Kernel) that can load an entire program. This routine comes
with the development tools. For details, see the documentation for the
development tools.

The processor also has a no boot mode. In this mode, the proces-
sor starts executing instructions from address 0x0002 0004 in
external memory.

Booting

12-50 ADSP-21065L SHARC DSP User’s Manual

Selecting the Boot Mode
Used in conjunction, the BMS and BSEL pins select the processor’s boot
mode as shown in Table 12-15 and Table 12-16.

Table 12-15. Boot mode pins

Pin Type Description

BMS I/O/Z1

1 Hi-Z only in EPROM boot mode, when pin is an output.

Boot Memory Select mode.

• When BSEL is low, BMS is an input pin, and it
selects between Host boot mode and Nonboot mode
(the processor executes from external memory).

For No boot mode, connect BMS to ground.

For Host boot mode, connect BMS to VDD.

• When BSEL is high, BMS is an output pin, and the
processor starts up in EPROM boot mode.

Connect BMS to the EPROM’s chip select.

BSEL I EPROM Boot Select mode.

Because this signal is a system configuration
selection, we recommend that you hardwire it.

• When BSEL is high, the processor starts up in
EPROM boot mode.

The processor assumes the EPROM’s data bus is
8-bits wide.

Connect BSEL to the processor’s data bus in LSB
alignment.

• When BSEL is low, BMS determines the booting
mode.

Connect BSEL to ground.

ADSP-21065L SHARC DSP User’s Manual 12-51

System Design

For either of the power-up boot modes, the processor does not execute the
instruction at address 0x0000 8004 during the boot sequence. So, make
sure your application does not use that address for loading the kernel.

EPROM Booting
Setting the BSEL input high and the BMS input low selects EPROM
booting through the external port.

You must connect the byte-wide boot EPROM to DATA7-0. Connect the
lowest address pins of the processor to the EPROM’s address lines. Con-
nect the EPROM’s chip select to BMS and its output enable to RD.

In a multiprocessor system, only the master processor drives the BMS out-
put. This enables you to wire-OR both BMS signals for a single, common
boot EPROM.

You can boot both processor's from a single EPROM, using the same code
or different code for each processor.

Table 12-16. Boot mode pin configurations

BSEL BMS Description

0 0 No boot mode.

The processor executes from external memory at
location 0x20004.

0 1 Host boot mode.

The processor defaults to an 8-bit host bus
width.

1 output EPROM boot mode.

The processor assumes an 8-bit EPROM data bus
width.

Connect to the data bus in LSB alignment.

Booting

12-52 ADSP-21065L SHARC DSP User’s Manual

During reset, a 2 kΩ equivalent resistor pulls the processor’s ACK line
high internally, and an internal keeper latch holds it high. So, you do not
need to use an external pull-up resistor on the ACK line at any time.

Bootstraping (256 instructions)

In EPROM boot mode, the external port DMA channel 8 (DMAC0)
becomes active following reset.

DMAC0 initializes to 0x02A1 to:

• Enable external port DMA.

• Select DTYPE for instruction words.

• Ignore packing mode bits (PMODE) and force 8-to-48 bit packing
with least-significant-word first.

The RBWS and RBWM fields of the WAIT register initialize to generate
six wait states (seven cycles total) for the EPROM access in external mem-
ory. (Wait states defined for external memory banks are applied to
BMS-asserted accesses.)

The RBWM field's initial value selects internal wait and external acknowl-
edge. Initially, the processor asserts ACK (high), but if another device
drives ACK low during EPROM boot, the processor could latch ACK low.
The processor responds to the deasserted (low) ACK as a hold off from the
EPROM, inserting wait states continually and preventing completion of
the EPROM boot. To avoid this type of boot hold off, set the value of
RBWM in the WAIT register to internal wait mode (01) early in the 256
word boot process.

Table 12-17 on page 12-53 shows how the parameter registers for
DMAC0 initialize at reset for EPROM booting. The count register
(CEP0) initializes to 0x0100 for transferring 256 words to internal mem-
ory. The external count register (ECEP0), which the DMA controller uses

ADSP-21065L SHARC DSP User’s Manual 12-53

System Design

to generate external addresses, initializes to 0x0600 (that is, 0x0100 words
with six bytes per word).

At system start-up, when the processor’s RESET input goes inactive, the
following sequence occurs:

1. The processor goes into an idle state identical to that initiated by
the IDLE instruction.

The processor sets the program counter (PC) to address
0x0000 8004.

2. The DMA parameter registers for DMA channel 8 initialize to the
values in Table 12-17).

3. BMS becomes the boot EPROM chip select.

4. Eight-bit master mode DMA transfers from EPROM to internal
memory begin on the external port data (EPD) lines 7:0.

Table 12-17. DMAC0 parameter register initialization

Register Initialization Value

IIEP0 0x0000 8000

IMEP0 Uninitialized. Value increments +1 automatically

CEP0 0x0100 (256 instruction words)

CPEP0 Unintialized

GPEP0 Unintialized

EIEP0 0x8000 0000

EMEP0 Uninitialized. Value increments +1 automatically

ECEP0 0x0600 (256 words × 6 bytes/word)

Booting

12-54 ADSP-21065L SHARC DSP User’s Manual

5. The external address lines (ADDR23-0) start at 0x000000 and incre-
ment after each access.

6. The RD strobe asserts the same as in normal memory accesses, with
six wait states (seven cycles).

The processor’s DMA controller continues to read the 8-bit EPROM
words, pack them into 48-bit instruction words, and transfer them to
internal memory, until it has loaded 256 words. The BMS pin automati-
cally selects the EPROM, and the processor disables the other memory
select pins. The DMA external count register (ECEP0) decrements after
each EPROM transfer.

When ECEP0 reaches zero (0), the processor:

1. Stops DMA transfers.

2. Activates the external port DMA channel 8 interrupt (EP0I).

3. Deactivates BMS and activates normal external memory selects.

4. Vectors to the EP0I interrupt vector at 0x0000 8040.

At this point, the processor has completed its boot sequence and is execut-
ing instructions normally.

Make sure the first instruction at the EP0I interrupt vector location,
address 0x0000 8040, is an RTI (Return from Interrupt). This instruction
returns execution to the reset routine at location 0x0000 8005, where nor-
mal program execution can resume. After this, your application can write
a different service routine at the EP0I vector location 0x0000 8040.

Remember, for either of the power-up boot modes, the processor does not
execute the instruction at address 0x0000 8004 during the boot sequence.
So, make sure your application does not use that address for loading the
kernel.

ADSP-21065L SHARC DSP User’s Manual 12-55

System Design

Loading the Remaining EPROM Data

The EPROM boot mode only loads 256 instructions during bootstraping.
If you must load your entire application into internal memory from the
EPROM, the processor must access the boot EPROM after bootstraping
has finished. To do so, you use the BSO (Boot Select Override) bit in the
SYSCON register.

Setting BSO=1 overrides the external memory selects and asserts the BMS
pin for an external port DMA transfer. Code your bootstrap program to
set the BSO bit in SYSCON first and then set up an external port DMA
channel to read the rest of the EPROM’s contents.

Setting BSO=1 disables the PMODE packing mode bits in the DMAC0
(DMA channel 8) control register and forces 8-to-48 bit packing for reads.
(Except for host transfers, eight-bit packing is available only during
EPROM booting or on DMA reads when BSO=1.) While one external port
DMA channel is operating with BSO=1, you cannot use the other external
port DMA channel for non-BMS accesses.

When BSO=1, only a DMA transfer, not an access by the processor’s core,
asserts BMS. So, your bootstrap program, if it is running on the proces-
sor’s core, can perform other external accesses to nonboot memory.

With BSO=1, you can also use external port DMA channel 9 for
DMA reads or writes. With DMA channel 9, you can use any of
the PMODE bit modes, but not 8-bit packing. DMA channel 9
provides a way to boot from a wider (16- or 32-bit) ROM for a
faster boot, but this requires a custom loader kernel.

Booting

12-56 ADSP-21065L SHARC DSP User’s Manual

Writing to BMS Memory Space

You can also write to processor’s BMS space using the boot select override
(BSO mode). The BSO bit in the SYSCON register enables software to
assert the BMS pin. In many systems, applications may need to update or
modify the boot data. In such systems, a writable EEPROM or FLASH
memory may substitute for the EPROM.

To write to memory with the BMS line asserted, use DMA channel 9, not
DMA channel 8. With BSO=1, use DMA channel 8 only for reads. This
access limitation occurs because DMA channel 8 is hardwired for a special
8-bit boot read mode. When BSO=1, a write with DMA channel 8 results
in illegal chip operation.

When BSO=1, you can use DMA channel 9 with any of the modes available
in the DMACx register for reads or writes, with any packing mode, and
with any data or instructions. Because BMS space is 8-bits wide and no
8-bit packing mode is available for these writes, you must use the Shifter
to place data in the correct location for each write.

Booting From the Host
Booting the processor from a 8-bit host occurs over the external port’s
data and address buses. The processor’s BSEL and BMS pin select between
EPROM booting and host booting. For host booting, BSEL must be low
and BMS high.

Configured for host booting, the processor enters slave mode after reset
and waits for the host to download the boot program.

After reset, the processor goes into an idle state identical to that initiated
by the IDLE instruction, with the program counter (PC) set to address
0x0000 8004. The parameter registers for external port DMA channel 8
initialize as shown in Table 12-18 on page 12-57, but no DMA transfers
start.

ADSP-21065L SHARC DSP User’s Manual 12-57

System Design

DMAC0 initializes to 0x00A1, to:

• Enable external port DMA.

• Select DTYPE for instruction words.

• Set PMODE for 8-to-48 bit word packing.

• Select least-significant-word first format.

Because the host is accessing the EPB0 external port buffer, you must set
the HBW (host bus width) bits in the SYSCON register and the PMODE
bits in the DMAC0 control register (for details see, “Data Packing” on
page 8-24). To change the packing mode, the host must write to DMAC0
to change the PMODE bit. It must write four 8-bit words to the
SYSCON register to change the HBW bit values.

Table 12-18. Initialization values of DMAC0 parameter registers for host
booting

Register Initialization Value

IIEP0 0x0000 8000

IMEP0 Uninitialized. Value incremented +1 automatically

CEP0 0x0100 (256 instruction words)

CPEP0 Unintialized

GPEP0 Unintialized

EIEP0 Unintialized

EMEP0 Uninitialized

ECEP0 Uninitialized

Booting

12-58 ADSP-21065L SHARC DSP User’s Manual

The host asserts the processor’s HBR input to initiate the boot operation.
After the host receives the HBG signal from the processor, it can perform
one of two actions:

• Write directly to EPB0, the external port DMA buffer 0 (which cor-
responds to DMA channel 8) to start downloading instructions.

• Write to any of the IOP control registers to change the processor’s
reset initialization conditions. To do so, the host must use DATA7-0
or, if HBW is configured for a 16-bit host, DATA15-0.

When the processor’s DMA controller has downloaded 256 instructions,
the processor:

1. Stops DMA transfers.

2. Activates the external port DMA channel 8 interrupt (EP0I).

3. Vectors to the EP0I interrupt vector at 0x0000 8040.

Make sure the first instruction at the EP0I interrupt vector location,
address 0x0000 8040, is an RTI (Return from Interrupt). RTI returns exe-
cution to the reset routine at location 0x0000 8005 to resume normal
program execution. After that, your application can write a different ser-
vice routine at the EP0I vector location 0x0000 8040. These 256
instructions must load the rest of your program.

Because only external port DMA channel 8 has its IMASK bit set to
enable a DMA done interrupt, you must use this channel for the initial
instruction download.

Multiprocessor Booting
You can boot multiprocessor systems from a host or from an external
EPROM.

ADSP-21065L SHARC DSP User’s Manual 12-59

System Design

Multiprocessor Host Booting

To boot two processors from a host, you must configure each processor’s
BSEL and BMS pins for host booting: BSEL = 0 and BMS = 1

After system power-up, each processor is in the idle state, and the BRx bus
request lines are high. To boot each processor, the host must assert the
HBR input, assert each processor’s CS pin, and download instructions as
described in “Booting From the Host” on page 12-56.

Multiprocessor EPROM Booting

In a multiprocessor system, to boot sequentially from one EPROM, both
processors:

• Arbitrate for the bus.

• DMA transfer the 256 word boot stream after becoming bus master.

• Release the bus.

• Execute the loaded instructions.

To drive the chip select pin of the EPROM, you can wire-OR together the
BMS signals from both processors. The processors can boot in turn,
according to their priority. The last one to finish booting must inform the
other (which may be in the idle state) that program execution can begin (if
both processors intend to start executing instructions simultaneously).

Booting

12-60 ADSP-21065L SHARC DSP User’s Manual

Figure 12-10 shows an example system that uses this processors-take-turns
technique.

Figure 12-10. Two processors booting from one EPROM

When two processors boot from one EPROM, they can boot with either
identical code or with different code. If the processors load different code,
your application can use a jump table (based on processor ID) to select the
code for each processor.

No Boot Mode
In no boot mode, the processor starts fetching and executing instructions
at address 0x0002 0004 in external memory space.

For no boot mode, set BSEL=0, BMS=0, and all DMA control and parameter
registers to their default initialization values. For details on data packing,
see “Data Packing” on page 8-24.

0�&� �����123

����4.23

��

0$�

�����������

0�&� �����123

����4.23

��

0$�

�����������

����

����

��

��

4�4�

4�4�

�
�
�
�

�
�
�
�
&
�
�

�
%
5
�
�
%
�

����623

ADSP-21065L SHARC DSP User’s Manual 12-61

System Design

Locating the Interrupt Vector Table
If the processor boots externally from an EPROM or from the host, the
interrupt vector table is located in internal memory space. If the processor
does not boot, but executes from external memory, the vector table must
be located in the external memory space.

You can use the IIVT bit in the SYSCON register to override the location
of the interrupt vector table when the processor is configured for no boot
mode:

IIVT=0 Located in external memory at 0x0002 0000

IIVT=1 Located in internal memory at 0x0000 8000

If the processor boots from an external source (any mode other than no
boot mode), IIVT has no effect.

IIVT defaults to zero (0).

Data Delays, Latencies, and Throughput

12-62 ADSP-21065L SHARC DSP User’s Manual

Data Delays, Latencies, and Throughput
Table 12-19 specifies, in number of 2xCLKIN cycles, data delays and
throughput for the processor, excluding SDRAM operations. Table 12-20
on page 12-64 specifies, in number of 2xCLKIN cycles, data delays and
throughput for SDRAM operations. Table 12-21 on page 12-65 specifies,
in number of 2xCLKIN cycles, latencies and throughputs for the
processor.

Data delay and latency are the number of 2xCLKIN cycles (after the first
cycle) required to complete an operation. So, a zero-wait-state memory
has a data delay of zero (0) cycles, and a single-wait-state memory has a
data delay of one (1) cycle.

Throughput is the maximum rate in 2xCLKIN cycles at which the proces-
sor performs an operation. Data delay and throughput are the same
whether the access is from a host or from another processor.

Table 12-19. Data delays and throughputs

Operation Min.
Delay

Max.
Throughput

Core accesses to external memory space 0 2

Syn. accesses to slave’s IOP registers1

Read (transfer out)

Write (transfer in)

0

42,3

4

2

Slave mode DMA transfers

Read (transfer out)

Write (transfer in)

—

—

44

2

ADSP-21065L SHARC DSP User’s Manual 12-63

System Design

For a CAS latency of 2 cycles (SDCL=2), no SDRAM buffering (SDBUF=0), a
RAS precharge (tRP) of 2 cycles (SDTRP=2), and an active command time
(tRAS) of 3 cycles (SDTRP=3), Table 12-20 on page 12-64 shows the
throughput for SDRAM operations.

Master mode DMA transfers

Read (transfer out)

Write (transfer in)

—

—

2

2

Handshake mode DMA transfers5in/out 6 2

Ext. handshake mode DMA transfers6

in/out
6 2

1 If MSWS (multiprocessor memory space wait states) is enabled, add 2 cycles to the throughput
of synchronous writes to multiprocessor memory space.

2 Delay is between data in the IOP register and at the external port (the write to the IOP register
occurs in the 2nd cycle after the write to the eternal port finished).

3 For asynchronous accesses, add 2 cycles.
4 The speed of these transfers is limited by the read of the slave’s DMA FIFO buffer.
5 Delay is between DMA data and DMARx.
6 Delay is between DMARx and the external transfer.

Table 12-19. Data delays and throughputs (Cont’d)

Operation Min.
Delay

Max.
Throughput

Data Delays, Latencies, and Throughput

12-64 ADSP-21065L SHARC DSP User’s Manual

Table 12-20. SDRAM throughput for core and DMA read/write
operations

Accesses Operations Page Throughput per 2xCLKIN
(32-bit words)1,2

Sequential,
uninterrupted

Read Same 1 word/1 cycle

Sequential,
uninterrupted

Write Same 1 word/1 cycle

Nonsequential,
uninterrupted

Read Same 1 word/4 cycles
(CL+2)

Nonsequential,
uninterrupted

Write Same 1 word/1 cycle

Both Alternating

read/write

Same Average rate = 2.5 cycles
per word (reads = 4
cycles; writes = 1 cycle)

Nonsequential Reads Different 1 word/8 cycles

(tRP +2CL+2)

Nonsequential Writes Different 1 word/5 cycles

(tRP +CL+1)

Autorefresh
before read

Reads Different 1 word/13 cycles

(2tRP +tRAS +2CL+2)

Autorefresh
before write

Writes Different 1 word/10 cycles

(2tRP +tRAS +CL+1)

CL = CAS latency; tRAS = Active to precharge time; tRP = Precharge
time

1 For 48-bit words, add one clock cycle to the throughput value or the average access rate.
2 For SDRAM buffering enabled (SDBUF=1), replace any instance of (CL) with (CL+1)..

ADSP-21065L SHARC DSP User’s Manual 12-65

System Design

Table 12-21. Latencies and throughputs

Operation Min.
Latency

Max.
Throughput

Interrupts (IRQ2-0) 3 NA

Multiprocessor bus requests (BR2-1) 2 NA

Host bus request (HBR) 2 NA

SYSCON effect latency 1 NA

Host packing status update (SYSTAT) 0 NA

DMA packing status update (DMACx) 1 NA

DMA chain initialization 7-11 NA

Vector interrupt (VIRPT) 6 NA

Serial ports1 70 64

1 32-bit words, processor core to processor core.

Execution Stalls

12-66 ADSP-21065L SHARC DSP User’s Manual

Execution Stalls
Table 12-22 lists the events that can stall program execution in the proces-
sor’s core and the length of the stall in number of 2xCLKIN cycles.

Table 12-22. Events that cause core components to stall

Component Cycles Cause

DAGs 1 Register conflict

DMA 1 Accessing a DMA parameter register dur-
ing DMA address generation. For example,
writing to the register during a regis-
ter update, or reading

1 Accessing a DMA parameter register dur-
ing DMA chaining.

n Writing/reading a DMA buffer that is
full/empty.

IOP
Registers

n Both PM and DM buses accessing IOP reg-
isters. Both must complete their access.

n Conflict with slave access.

ADSP-21065L SHARC DSP User’s Manual 12-67

System Design

Memory 1 Both the PM and DM data buses accessing
the same block of internal memory.

n Conflicting accesses of external memory.
Stalls until the PM and DM buses com-
plete their accesses.

n Accesses to external memory. Stalls
until the I/O buffers are cleared.

n External accesses when the processor
does not own the external bus.

n External accesses. Stalls until access
finishes (wait states, idle cycles, …)

Program
Sequencer

1 Accesses of program data memory with
cache miss.

2 Nondelayed branches.

2 Normal interrupts.

5 Vector interrupt (VIRPT)

1 Short loops with small iterations.

n IDLE instruction.

Table 12-22. Events that cause core components to stall (Cont’d)

Component Cycles Cause

Execution Stalls

12-68 ADSP-21065L SHARC DSP User’s Manual

ADSP-21065L SHARC DSP User’s Manual 13-1

13 PROGRAMMING
CONSIDERATIONS

Figure 13-0.

Listing 13-0.

Table 13-0.

This chapter summarizes important information to keep in mind when
you write application software for the ADSP-21065L.

Extra Cycle Conditions
All instructions can execute in a single cycle but may take longer under
certain conditions:

• Nondelayed branches

• Accesses of program memory data with cache miss

• Loop accesses of program memory data

• Execution of one- and two-instruction loops

• Writes to DAG registers

• Wait state programming

Nondelayed Branches
A nondelayed branch instruction (JUMP, CALL, RTS or RTI) fetches but
does not execute the next two instructions. The processor aborts execution
of the next two instructions and executes two NOPs instead.

To avoid this two-cycle delay, your application can use a delayed branch,
which executes the next two instructions after it before the branch opera-
tion actually occurs. In this case, because the processor executes the two

Extra Cycle Conditions

13-2 ADSP-21065L SHARC DSP User’s Manual

extra instructions before taking the branch, program flow deviates from
the apparent order of operations.

For details, see Chapter 3‚ Program Sequencing.

Program Memory Data Accesses with Cache Miss
The processor checks the instruction cache on every program memory
data access. If the needed instruction is in the cache, the fetch from the
cache occurs in parallel with the PM bus data access, and the instruction
executes in a single cycle. However, if the Program Sequencer does not
cache the instruction, the processor must wait for the PM bus data access
to finish before it can fetch the next instruction. This results in a mini-
mum delay of one cycle. However, a PM bus data access that uses external
memory with wait states can increase this delay. This delay occurs even if
the PM bus data access is based on a conditional that evaluates to false.

For details, see Chapter 3‚ Program Sequencing.

Loop Accesses of Program Memory Data
During the execution of a PM bus data access, the processor caches an
instruction that it needs to fetch. Because of the execution pipeline, this
instruction is usually two memory locations after the PM bus data access.
If the PM bus data access is in a loop, a cache miss usually occurs on the
first iteration of the loop, and cache hits occur on subsequent iterations.
This results in one extra cycle during execution of the loop.

However, certain cases require fetching different instructions from the
cache during different iterations. In these cases, the number of cache
misses, and therefore the number of extra cycles, increases. Table 13-1 on
page 13-3 lists these special cases. The values listed in this table are based
on the worst-case scenario, so actual performance of the cache for a given
application may be higher.

ADSP-21065L SHARC DSP User’s Manual 13-3

Programming Considerations

Two Misses. If the program memory data access occurs in the last two
instructions of a loop, a cache miss always occurs on the first and last iter-
ations of the loop to add two extra cycles.

On the first iteration, the processor needs to fetch the first or second
instruction from the top of the loop.

On the last iteration, the processor needs to fetch one of the two instruc-
tions following the loop.

At each of these points, a cache miss occurs the first time the code con-
taining the loop executes.

Three Misses. If a loop contains only one instruction, and that instruction
requires a PM bus data access, three cache misses can occur.

On the first iteration, if the loop iterates three times or more, the proces-
sor needs to fetch the loop instruction again.

On the next-to-last iteration, the processor needs to fetch the next instruc-
tion after the loop.

On the last instruction, the processor needs to fetch the second instruction
after the loop.

In each case, a cache miss occurs the first time the code containing the
loop executes.

Table 13-1. Cases that increase cache misses and extra cycles

Misses # Instructions Address of PM Data Access

0 >2 Not at e or (e −1)

1 ≥2 At e or (e −1)

2 1 At the single loop location

e = loop end address

Extra Cycle Conditions

13-4 ADSP-21065L SHARC DSP User’s Manual

For details, see Chapter 3‚ Program Sequencing.

Using One- and Two-Instruction Loops
Counter-based loops that have only one or two instructions can cause
delays if they do not execute a minimum number of times. The processor
checks the termination condition two cycles before it exits the loop. In
short loops, the processor has already looped back when it tests the termi-
nation condition. So, if the termination condition tests true, the processor
must abort the two instructions in the pipeline and execute NOPs instead.

Specifically, executing a one-instruction loop one or two times or execut-
ing a two-instruction loop only once incurs two cycles of overhead because
both loops result in two aborted instructions after the last iteration. These
overhead cycles are additional to extra cycles that a PM bus data access
inside the loop generates. To avoid this kind of overhead, use straight-line
code instead of loops.

For details, see Chapter 3‚ Program Sequencing.

Writing to a DAG Register
When an instruction that uses any register in a DAG for data addressing,
modifying instructions, or indirectly jumping follows an instruction that
writes to the same DAG register, the processor inserts a NOP cycle
between the two instructions. It does so because both operations need the
same bus in the same cycle, and it must delay the second operation. For
example:

L2=8;
DM(I0,M1)=R1;

Because L2 is in the same DAG as I0 (and M1), the processor inserts an
extra cycle after the write to L2.

For details, see Chapter 4‚ Data Addressing.

ADSP-21065L SHARC DSP User’s Manual 13-5

Programming Considerations

Programming Wait States
You can program an external memory access to include a specific number
of wait states and bus idle cycles and to wait for an external ACK signal
before completing the access.

If you program internal wait states and bus idle cycles only, the length of
the delay is exactly the number of wait states and bus idle cycles (1 wait
state = 1 cycle).

If you program the external ACK signal, either alone or in combination
with programmed wait states, the length of the delay varies depending on
the external system.

For details, see Chapter 5‚ Memory.

Component Considerations

13-6 ADSP-21065L SHARC DSP User’s Manual

Component Considerations
Other programming considerations include operations that interact with
specific processor components:

• Computation units

• Data Address Generators

• Memory

Computation Units
For detailed information on the processor’s computation units, see
Chapter 2‚ Computation Units. Programming considerations include:

• Compute operations

• Restrictions on delayed branching

• Writing twice to the same location in the Register File

Compute Operations

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits even if the RND32 bit is set.

The ALU Zero flag (AZ) signifies floating-point underflow as well as a
zero result.

Transfers between MR registers and the Register File are considered mul-
tiplier operations. For details, see Appendix E‚ Control and Status
Registers, in ADSP-21065L SHARC DSP Technical Reference.

ADSP-21065L SHARC DSP User’s Manual 13-7

Programming Considerations

Restrictions on Delayed Branching

The processor executes sequentially a delayed branch instruction and the
next two consecutive instructions. The processor delays servicing any
interrupt that occurs between a delayed branch instruction and either of
the next two consecutive instructions until it completes the branch.

You can use delayed branching with the JUMP, CALL, RTS, and RTI
instructions with some restrictions.

For delayed JUMPs, you cannot use these instructions in the two locations
immediately following the jump:

• Other JUMP, CALL, RTS, or RTI instructions

• DO UNTIL

For delayed CALL, RTS, or RTI operations, you cannot use these instruc-
tions in the two locations immediately following the CALL, RTS, or RTI
instruction:

• Other JUMP, CALL, RTS, or RTI instructions

• DO UNTIL

• Pushes and pops of the PC stack

• Writes to the PC stack or PC stack pointer

Writing Twice to the Same Location in the Register File

If two writes to the same Register File location take place in the same
cycle, only the write with higher precedence actually occurs. The source of
the write data determines the precedence of the writer operation.

Component Considerations

13-8 ADSP-21065L SHARC DSP User’s Manual

From highest to lowest, the order of precedence is:

• Data memory (DM bus) or universal register

• Program memory (PM bus)

• ALU

• Multiplier

• Shifter

Data Address Generators
For detailed information on the processor’s data address generators
(DAGs), see Chapter 4‚ Data Addressing. Programming considerations
include:

• Illegal DAG register transfers

• Initializing circular buffers

Illegal DAG Register Transfers

The following instructions execute, but cause incorrect results. The assem-
bler does not support these instructions:

• An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without updating the index
register (I).

In this case, the instruction writes the wrong data to memory or
updates the wrong index register.

DM(M2,I1)=I0; or DM(I1,M2)=I0;

ADSP-21065L SHARC DSP User’s Manual 13-9

Programming Considerations

• An instruction that loads a DAG register from memory using indi-
rect addressing from the same DAG and updates the I index register.

In this case, the instruction either loads the DAG register or updates
the index register, but not both.

L2=DM(I1,M0);

Initializing Circular Buffers

To set up a circular buffer, you initialize an L register with a positive, non-
zero value and load the corresponding (same-numbered) B register with
the base address of the buffer.

The base address, or starting address, is the lowest address of the buffer.

The processor automatically loads the corresponding I (index) register
with the same starting address.

Memory
For detailed information on the processor’s on-chip SRAM memory, see
Chapter 5‚ Memory. Programming considerations include:

• Mixing 32- and 48-bit words in one memory block

• Performing dual data accesses

• Reading 16-bit short words

• Restrictions on memory access space

Performing Dual Data Accesses

The processor’s PM and DM buses enable the processor’s core to simulta-
neously access instructions and data from both memory blocks. The
processor’s core fetches instructions over the PM bus or from the instruc-

Component Considerations

13-10 ADSP-21065L SHARC DSP User’s Manual

tion cache. The core can access data over both the DM bus (using DAG1)
and the PM bus (using DAG2).

You can configure the processor’s two memory blocks to store different
combinations of 48-bit instruction words and 32-bit data words. To
achieve maximum efficiency (single-cycle execution of dual-data-access
instructions), however, configure one block to contain a mix of instruc-
tions and PM bus data and configure the other block to contain DM bus
data only.

Reading 16-Bit Short Words

The processor automatically extends short words read into universal regis-
ters into 32-bit integers. Depending on the value of the SSE bit in the
MODE1 register, the processor either zero-fills or sign-extends the upper
sixteen bits of the 32-bit integer.

Restrictions on Memory Access Space

With a few limitations, you can use the processor’s three internal buses,
PM, DM, and I/O to access the processor’s memory map:

• The DM bus can access all memory spaces.

• The PM bus can access internal memory space and the lowest 15.75
megawords of external memory space only.

• The I/O bus can access all memory spaces except the mem-
ory-mapped IOP registers in internal memory space.

ADSP-21065L SHARC DSP User’s Manual I-1

I INDEX

Symbols
“Group I Instructions (Compute &

Move)” on page A-28 A-2

Numerics
32- and 48-bit memory words, using

5-30
32-bit data starting memory address

5-35

A
AC (ALU fixed-point carry) bit 2-16

described 2-18
fixed-point logic operations and 2-18
setting and clearing 2-18

AC condition 3-13
Access address fields for external

memory space 5-26
Access restrictions

for internal buses 5-27
memory space 5-27

Access timing
external memory space 5-65

bus master reads 5-66
bus master writes 5-67
diagram of 5-65
external bus control 5-65

multiprocessor memory space 5-65,
5-67
diagram of 5-68

Accessing data over the PM bus 5-10
ACK

EPROM booting 12-52
extending off-chip memory accesses

5-53
external memory space interface and

5-47
IOP register writes and 7-26
multiprocessing and 12-52
pin definition 12-7
single-word EPBx data transfers and

7-28
state after reset 12-22

Act command 10-30
Address boundaries

external memory space 5-19
internal memory space 5-19
multiprocessor memory space 5-19
reserved addresses 5-19

Address decoding table for memory
accesses 5-20

Address ranges for instructions and data
5-34

INDEX

I-2 ADSP-21065L SHARC DSP User’s Manual

Address regions of internal memory
space 5-23

Addressing
32-bit data starting memory

address 5-35
data accesses of external memory

space 5-52
direct 5-11
immediate 5-11
indirect 5-11

ADDRx
and host accesses 8-11
EPROM booting and 12-54
external memory space interface

and 5-44
generating addresses outside the

address range of external
memory space 6-30

parallel SDRAM refresh
command 10-28

pin definition 12-4
state after reset 12-22

ADI product information, sources
of -xix, -xiii

ADI product literature -xxiv, -xviii
ADREDY bit (active drive REDY)

switching between open and
active-drain output 8-12

ADSP-21065L block diagram 6-2
AF (ALU floating-point operation)

bit 2-16
described 2-19

AI (ALU floating-point invalid
operation) bit 2-16

described 2-19
setting 2-19

AIS (ALU floating-point invalid
operation) bit 2-17

described 2-19
setting 2-19

Alternate DAG registers 4-3
architecture 4-4
context switching and 4-3
described 4-3
diagram of 4-4
MODE1 control bits for 4-5
SRD1H (DAG1 alternate register

select 7-4) 4-5
SRD1L (DAG1 alternate register

select 3-0) 4-5
SRD2H (DAG2 alternate register

select 15-12) 4-5
SRD2L (DAG2 alternate register

select 11-8) 4-5
Alternate register file registers 2-11

context switching 2-11
control bits 2-11
described 2-11
effect latency of activation 2-11
selecting the active sets 2-11
SRRFH 2-11
SRRFL 2-11

ALU
data formats 2-12
described 2-1
instruction set summary 2-21
instruction types 2-12
operating modes 2-14

ADSP-21065L SHARC DSP User’s Manual I-3

INDEX

see ALU operating modes
status flags 2-16

see ALU status flags
ALU fixed-point saturation mode

2-14
ALU overflow flag and 2-15
described 2-14
negative overflows 2-15
positive overflows 2-14

ALU floating-point rounding
boundary 2-15

32-bit IEEE results 2-15
40-bit results 2-15
fixed- to floating-point conversion

2-15
floating-point results, format of

2-15
ALU floating-point rounding

modes 2-15
round-to-nearest 2-15
round-to-zero 2-15

ALU instruction set, summary of
2-21

ALU operating modes 2-14
ALUSAT (ALU saturation mode)

bit 2-14
fixed-point saturation mode 2-14

see ALU fixed-point saturation
mode

MODE1 control bits 2-14
RND32 (floating-point rounding

boundary) bit 2-14
TRUNC (floating-point

rounding mode) bit 2-14

ALU operation
CACC status flag updates 2-16
compare accumulate operations

2-19
fixed- to floating-point conversion

2-15
fixed-point results 2-13
floating-point rounding boundary

2-15
see ALU floating-point rounding

boundary
floating-point rounding modes

2-15
see ALU floating-point rounding

modes
status flag updating 2-17

ALU operations
and the register file 2-13
fixed-point inputs 2-13
fixed-point results, storing 2-13
instruction set summary 2-21
operands 2-13

ALU single-function compute
operations

COMP (Fx, Fy) B-31
COMP (Rx, Ry) B-11
described B-2
fixed-point, summary of B-3
floating-point, summary of B-4
Fn= -Fx B-32
Fn=(Fx+Fy)/2 B-30
Fn=ABS (Fx+Fy) B-28
Fn=ABS (Fx-Fy) B-29
Fn=ABS Fx B-33

INDEX

I-4 ADSP-21065L SHARC DSP User’s Manual

Fn=CLIP Fx BY Fy B-49
Fn=FLOAT Rx B-41
Fn=FLOAT Rx BY Ry B-41
Fn=Fx COPYSIGN Fy B-46
Fn=Fx+Fy B-26
Fn=Fx-Fy B-27
Fn=MAX (Fx, Fy) B-48
Fn=MIN (Fx, Fy) B-47
Fn=PASS Fx B-34
Fn=RECIPS Fx B-42
Fn=RND Fx B-35
Fn=RSQRTS Fx B-44
Fn=SCALB Fx BY Ry B-36
Rn= -Rx B-16
Rn=(Rx-Ry)/2 B-10
Rn=ABS Rx B-17
Rn=CLIP Rx BY Ry B-25
Rn=FIX Fx B-39
Rn=FIX Fx BY Ry B-39
Rn=LOGB Fx B-38
Rn=MANT Fx B-37
Rn=MAX (Rx, Ry) B-24
Rn=MIN (Rx, Ry) B-23
Rn=NOT Rx B-22
Rn=PASS Rx B-18
Rn=Rx AND Ry B-19
Rn=Rx OR Ry B-20
Rn=Rx XOR Ry B-21
Rn=Rx+1 B-14
Rn=Rx+Cl B-12
Rn=Rx+Cl-1 B-13
Rn=Rx+Ry B-6
Rn=Rx+Ry+Cl B-8
Rn=Rx-1 B-15

Rn=Rx-Ry B-7
Rn=Rx-Ry+Cl B-9
Rn=TRUNC Fx B-39
Rn=TRUNC Fx BY Ry B-39

ALU status flags 2-16
AC (ALU fixed-point carry) 2-16
AF (ALU floating-point

operation) 2-16
AI (ALU floating-point invalid

operation) 2-16
AIS (ALU floating-point invalid

operation) 2-17
AN (ALU result negative) 2-16
AOS (ALU fixed-point overflow)

2-17
AS (ALU x input sign) 2-16
ASTAT status bits, summary of

2-16
AUS (ALU floating-point

underflow) 2-17
AV (ALU overflow) 2-16
AVS (ALU floating-point

overflow) 2-17
AZ (ALU result 0 or

floating-point underflow) 2-16
CACC (compare accumulation

register) 2-16
CACC update timing 2-16
dual add/subtract (fixed-point)

B-96
dual add/subtract (floating-point)

B-98
fixed-point carry flag 2-18
floating- to fixed-point

ADSP-21065L SHARC DSP User’s Manual I-5

INDEX

conversions and 2-17
floating-point operation flag 2-19
invalid flag 2-19
negative flag 2-18
overflow flags 2-18
sign flag 2-19
state of 2-16
status register writes, priority of

2-17
sticky status flags 2-16
STKY status bits, summary of

2-17
underflow flags 2-17
updating 2-17
zero flag 2-17

ALUSAT (ALU saturation mode)
bit 2-14

AN (ALU result negative) bit 2-16
described 2-18

AOS (ALU fixed-point overflow)
bit 2-17

described 2-18
Arithmetic exceptions 3-38
Arithmetic logic (ALU) unit

see ALU
Arithmetic status register, see

ASTAT register
Array signal processing 5-29
AS (ALU x input sign) bit 2-16

ABS and MANT operations 2-19
described 2-19

Assembler instruction mnemonics
3-12

ASTAT register 2-16

AC 2-16
AF 2-16
AI 2-16
ALU status flags, summary of

2-16
AN 2-16
AS 2-16
AV 2-16
AZ 2-16
BFT E-6
bit definitions E-10
bitwise operations and 11-14
BTF 3-12
CACC 2-16
conditional instructions and 3-12
CRBM 7-11
default bit values, diagram of E-9
described E-8
flag status updates 12-31
FLAG3-0 11-14, 12-29
FLAG3-0 inputs 12-31
FLAG3-0 outputs 12-33
FLAGx status bits 12-32
FLAGxO status bits 12-32
initialization value E-8
MI 2-34
MN 2-34
MU 2-34
multiplier status bits, summary of

2-34
multiplier status flags 2-34
multiprocessing and 7-11
MV 2-34
preserved current values of 3-49

INDEX

I-6 ADSP-21065L SHARC DSP User’s Manual

RTI instruction and 3-16
Shifter status bits, summary of

2-45
signaling external devices with

FLAGx bits 12-33
SS 2-45
status stack pushes and pops

12-34
status stack save and restore

operations 3-48
SV 2-45
SZ 2-45

Asynchronous external interrupts
described 3-51
guarantee sampling 3-51

Asynchronous host transfers 8-9
and SDRAM 8-9
broadcast writes 8-23

see Broadcast writes
CS 8-9
host driven signals 8-9

Asynchronous inputs 12-3, 12-27
signal recognition phase 12-27
synchronization delay 12-27

Asynchronous transfer timing, see
Host asynchronous accesses

AUS (ALU floating-point
underflow) bit 2-17

described 2-17
floating- to fixed-point

conversions and 2-17
setting 2-18

Automatic wait state option 5-62
AV (ALU overflow) bit 2-16

ALU fixed-point saturation mode
and 2-15

described 2-18
AV condition 3-13
AVS (ALU floating-point overflow)

bit 2-17
described 2-18

AZ (ALU result 0 or floating-point
underflow) bit 2-16

described 2-17
floating- to fixed-point

conversions and 2-17
setting 2-17
underflow status 2-18

B
B (DAG base address) registers 4-2

circular data buffers and 4-11
Bank activate command (SDRAM),

see Act command
BCNT register

BTC and 7-18
bus lock and 7-18
bus mastership timeout counter

7-18
HBR and 7-18
master processor operation 7-18

BHD (buffer hang disable) bit 8-19,
9-86

single-word EPBx data transfers
7-29

SPORT data buffer read/write
results 9-7

SPORT data buffer reads/writes

ADSP-21065L SHARC DSP User’s Manual I-7

INDEX

and 9-15
Bit reversal

bit-reverse instruction 4-14
see Bit-reverse instruction

bit-reverse mode 4-13
see Bit-reverse mode

data addressing 4-13
BIT SET instruction

software interrupts, activating
3-49

Bit test flag bit, see BTF bit
Bit-reverse instruction

BITREV 4-14
described 4-14
index (I) registers and 4-14
operation sequence 4-14

Bit-reverse mode
control bits, summary of 4-14
DAG1 operation 4-13
DAG2 operation 4-13
described 4-13
effect timing 4-14
postmodify addressing operations

4-14
BM condition 3-13, 3-14
BMAX register

bus mastership timeout 7-17
maximum value of 7-17

BMS 5-53
boot mode 12-50
EPROM boot mode 5-53, 12-51
EPROM boot sequence after reset

12-53
EPROM chip select 12-53

host booting 12-56
multiprocessing 12-51
multiprocessor EPROM booting

12-59
multiprocessor host booting

12-59
pin connection 5-53
pin definition 12-13
state after reset 12-23

BMSTR
pin definition 12-13
state after reset 12-22

Boot hold off 12-52
Boot master output, see BMSTR
Boot memory select (BSEL, BMS)

described 5-53
EPROM boot mode 5-53
pin connections 5-53

Boot memory select, see BMS
Boot mode pins

BMS 12-50
BSEL 12-50
configurations 12-51

Boot modes
boot sequence and kernel loading

12-54
data packing 12-49
EPROM 5-53, 12-49, 12-51

see EPROM boot mode
host 12-49, 12-56

see Host boot mode
interrupt vector table address 5-30
no boot 5-30, 12-49, 12-60

see No boot mode

INDEX

I-8 ADSP-21065L SHARC DSP User’s Manual

pins, see Boot mode pins
selecting 12-50
when IIVT=1 5-30

Boot select override, see BSO (boot
select override)

Boot sequence and kernel loading
12-51

Booting 12-49
described 12-49
host boot sequence 12-58
loading an entire program 12-49
loading routine 12-49
modes, see Boot modes
multiprocessor systems 12-58
selecting 12-50

Branch instructions
call 3-16
delayed, see Delayed branches
described 3-16
jump 3-16
nondelayed, see Nondelayed

branches
parameters 3-16
program memory data accesses

3-11
RTI 3-16
RTS 3-16

Broadcast writes
CS 8-23
defined 8-23
implementing 8-23
REDY 8-23

BRx
BTC and 7-12, 8-8

connection in a multiprocessor
system 7-3

multiprocessor bus arbitration
7-10

pin definition 12-14
state after reset 12-22
system bus acquisition 7-12

BSEL 5-53
boot mode 12-50
EPROM boot mode 5-53
host booting 12-56
multiprocessor host booting

12-59
pin connection 5-53
pin definition 12-14
state after reset 12-23

BSO (boot select override)
accessing EPROM after bootstrap

12-55
overriding BMS 12-55
writing to BMS memory space

12-56
Bstop command 10-30

defined 10-5
BSYN (bus synchronization) bit

7-22, 7-42, 8-40
BTC

BRx and 7-12, 8-8
bus mastership timeout and 7-18
defined 8-5
external accesses and 7-14
external bus in 7-13
multiprocessing events that trigger

a 7-12

ADSP-21065L SHARC DSP User’s Manual I-9

INDEX

multiprocessing transfer sequence
7-13

multiprocessor bus arbitration
7-12

without CPA 7-19
BTF (bit test flag) bit

conditional instruction use E-7
system register bit manipulation

instruction E-6
test operation results E-6
XOR operation results E-7

BTST Rx BY 〈data8〉 operation
described B-73
shifter status flags B-73

BTST Rx BY Ry operation
described B-73
shifter status flags B-73

Buffer hang disable bit, see BHD
(buffer hang disable) bit

Burst stop command (SDRAM), see
Bstop command

burst type (SDRAM), defined 10-5
Bus arbitration synchronization

after reset 7-21
BSYN bit 7-22
bus synchronization scheme 7-21
described 7-21
individual processor reset 7-23
multiprocessor configuration 7-21
processor ID1 operation during

7-23
SRST 7-21
synchronization sequence 7-22

Bus arbitration, multiprocessing
7-10, 7-12

Bus connections
EPBx buffers 8-18
on-chip memory 5-7

Bus hold time cycle
described 5-60
diagram of 5-61

Bus idle cycle
described 5-58
diagram of 5-59
EBxWS bit values 5-60
with following SDRAM access

5-59
Bus lock and semaphores 7-34

bus lock feature 7-34
BUSLK (bus lock) bit, requesting

bus lock 7-34
current bus master, identifying

7-34
read-write-modify operations

7-35
read-write-modify operations on

semaphores 7-34
requesting bus lock 7-34
semaphore locations 7-34
semaphore, described 7-34
SWPD bit 7-35

Bus lock feature 7-18, 7-34
Bus master condition, see BM

condition
Bus mastership timeout

BCNT register 7-18
BMAX register 7-17

INDEX

I-10 ADSP-21065L SHARC DSP User’s Manual

BTC and 7-18
configuring 7-17

Bus slave, defined 8-4
Bus synchronization

multiprocessor systems 7-11
scheme 7-21

Bus transition cycle, see BTC
BUSLK bit and bus mastership

timeout 7-18

C
C (DMA count register) 6-31

DMA interrupts and 6-9
CACC (compare accumulation

register) bit 2-16
described 2-19
update timing 2-16

Cache hit
defined 3-58
LRU bit and 3-59
triggering 3-59

Cache miss
defined 3-58
LRU bit and 3-59
memory accesses over PM bus

5-10
triggering 3-59
with DAG2 transfers 5-10

Call instructions
conditional branching 3-16
delayed and nondelayed 3-17
described 3-16
indirect, direct, and PC-relative

3-17

program memory data accesses
3-11

CAS
pin definition 12-10
state after reset 12-22

CAS before RAS automatic refresh
mode, see CBR

CAS latency, defined 10-5
CBR, defined 10-6
Changing external port DMA

channel priority assignment,
example of 6-38

Channel selection registers
architecture 9-72
channel slot operation 9-72
channel slot/register bit

correspondence 9-72
companding 9-72
MRCCSx 9-72
MRCSx 9-72
MTCCSx 9-72
MTCSx 9-72
operation 9-72
summary of 9-72

Channel slots
capabilities, summary of 9-67
companding 9-72
described 9-67
individual slots,

enabling/disabling 9-72
number of 9-67
operation parameters 9-72
synchronization 9-69

ADSP-21065L SHARC DSP User’s Manual I-11

INDEX

CHEN (DMA chaining enable) bit
6-14, 6-39

described 6-15
Chip select, see CS
CHNL (current channel selected)

bits 9-17, 9-38
defined 9-26
described 9-38, 9-71

Circular buffer addressing
address wraparound 4-9
architecture of circular data

buffers 4-9
buffer overflow interrupts 4-12

see Circular buffer overflow inter-
rupts

circular buffer operation 4-10
see Circular buffer operation

circular buffer registers 4-11
see Circular buffer registers

index (I) registers and 4-9
modify (M) registers 4-9
postmodify addressing 4-9
premodify addressing 4-9
stepping through each buffer

location 4-9
Circular buffer operation 4-10

B register, loading 4-10
data overflows 3-38
first postmodify access 4-10
I (index) register value, updating

4-10
initializing buffer size (number of

locations) 4-10
initializing I (index) register value

4-10
L (locations) register initialization

4-10
loading base address of buffer

4-10
set up in assembly language 4-10

Circular buffer overflow interrupts
4-12

address wraparound 4-12
implementing routines that swap

I/O buffer pointers 4-12
instructions that generate 4-12
masking 4-13
source of 4-12
STKY register and 4-13
summary of 4-12

Circular buffer registers 4-11
B (DAG base address) registers

4-11
I (DAG index) registers 4-11
L (DAG locations) registers 4-11
M (DAG modify) registers 4-11

Circular data buffers 4-1
addressing 4-9

see Circular buffer addressing
architecture 4-9
assembly language set up 4-10
base address 4-2, 4-9
diagram of 4-9
number of locations in 4-2
operation 4-10

see Circular buffer operation
postmodify addressing operations

and 4-7

INDEX

I-12 ADSP-21065L SHARC DSP User’s Manual

registers 4-11
see Circular buffer registers

Cjump/Rframe (type 24)
instruction

described A-81
opcode (Rframe) A-82
opcode (with direct branch) A-82
opcode (with PC-relative branch)

A-82
operations, summary of A-81
syntax summary A-10

CKRE (frame sync clock edge) bit
9-16, 9-21

clock signal options 9-50
defined 9-26
described 9-55
receive data and frame syncs 9-55
transmit data and frame syncs

9-55
Clear interrupt (CI) modifier 3-44

clearing the current interrupt for
reuse 3-49

example code using 3-50
Clear MR register 2-30
Clearing extra DMA requests 6-64
CLKIN

and XTAL 12-26
enabling the internal clock

generator 12-27
frequencies and processor cycles

12-26
JTAG connection 12-40
phase lock, achieving 12-27
pin definition 12-14

SPORT clock and frame sync
frequencies 9-41

state after reset 12-23
CLKIN frequencies

FLAGx operations 12-26
host accesses 12-26
IRQx operations 12-26
multiprocessing operations 12-26
of master processor operations

12-26
processor cycles and 12-26
SDRAM operations 12-26
SPORT operations 12-27
wait state programming 12-27

Clock distribution 12-43
controlled impedance

transmission line 12-43
end-of-line termination 12-43
propagation delay 12-43
source termination

guidelines for using 12-44
source termination, see Source

termination
Clock in, see CLKIN
Clock jitter 12-42
Clock skew 12-40, 12-43
Cluster bus

defined 8-5
described 8-44

Cluster multiprocessing 7-6
application of 7-7
configuration 7-7
described 7-7
diagram of 7-7

ADSP-21065L SHARC DSP User’s Manual I-13

INDEX

CMOS input inverter 12-41
CNT_EXPx (timer counter

expired) bit 11-6
CNT_OVFx (timer counter

overflowed) bit 11-6
COMP (Fx, Fy) (floating-point)

operation
ALU status flags B-31
described B-31

COMP (Rx, Ry) (fixed-point)
operation

ALU status flags B-11
ASTAT register and B-11
described B-11

Companding 9-45
described 9-45
expanding in place 9-47
formats 9-44
in place 9-46
multichannel SPORT mode 9-67
operation 9-46
receive comparison enabled and

9-74
standard SPORT mode 9-59
supported algorithms 9-45

Computation units
alternate register file registers 2-11

see Alternate register file registers
ALU 2-12

see ALU
ALU data formats 2-12
ALU instruction types 2-12
ALU operating modes 2-14

see ALU operating modes

ALU operations, see ALU
operations

architecture 2-2
data formats 2-4
described 2-1
diagram of 2-2
extended-precision floating-point

operations 2-5
fixed-point format 2-7
floating-point exception handling

2-6
interface with internal data buses

2-9
multifunction operations 2-50

see Multifunction operations
multiplier 2-1, 2-26

see Multiplier unit
register file and 2-9
rounding modes 2-7
Shifter unit 2-1, 2-41

see Shifter unit
short word floating-point 2-5
single-precision floating-point

format 2-4
temporary data storage 2-2

Compute (type 2) instruction
described A-32
example A-32
opcode A-32
syntax summary A-4

Compute and move/modify
instructions

compute (type 2) instructions A-4
compute/dreg⇔DM|PM,

INDEX

I-14 ADSP-21065L SHARC DSP User’s Manual

immediate modify (type 4)
instructions A-5

compute/ureg⇔DM|PM, register
modify (type 3) instructions
A-4

compute/ureg⇔ureg (type 5)
instructions A-5

IF COND A-4
immediate Shift/dreg⇔DM|PM

(type 6) instructions A-5
summary of A-4

Compute operation reference
compute operations B-1
multifunction operations B-94

see Multifunction operations
multiplier operations B-50

see Multiplier operations
shifter operations B-63

see Shifter operations
single-function operations

see Single-function compute oper-
ations

compute operation reference
single-function operations B-2

Compute operations
described B-1
types B-1

Compute/dreg⇔DM/dreg⇔PM
(type 1) instruction

described A-30
example A-30
opcode A-30

Compute/dreg⇔DM|PM,
immediate modify (type 4)
instruction

described A-35
example A-35
opcode A-36
syntax summary A-5

Compute/modify (type 7)
instruction

example A-42
opcode A-42

Compute/ureg⇔DM|PM, register
modify (type 3) instruction

example A-33
opcode A-34
syntax summary A-4

Compute/ureg⇔ureg (type 5)
instruction

described A-37
example A-37
opcode A-37
syntax summary A-5

Concurrent DMA accesses of
external memory space 6-74

Concurrent DMA accesses of
internal memory space 6-74

Condition codes 3-12
AC 3-13
AV 3-13
BM 3-14
EQ 3-13
FLAG0_IN 3-13
FLAG1_IN 3-13
FLAG2_IN 3-13

ADSP-21065L SHARC DSP User’s Manual I-15

INDEX

FLAG3_IN 3-13
FOREVER 3-15
GE 3-14
GT 3-14
LCE 3-14
LE 3-13
LT 3-13
MN 3-13
MV 3-13
NE 3-14
NOT AC 3-14
NOT AV 3-14
NOT BM 3-15
NOT FLAG0_IN 3-14
NOT FLAG1_IN 3-14
NOT FLAG2_IN 3-14
NOT FLAG3_IN 3-14
NOT ICE 3-14
NOT MS 3-14
NOT MV 3-14
NOT SV 3-14
NOT SZ 3-14
NOT TF 3-15
summary of 3-13, A-13
SV 3-13
SZ 3-13
TF 3-14
TRUE 3-15

Conditional instructions
ASTAT register 3-12
bit test flag (BTF) 3-12
branches 3-16
condition codes 3-12
condition codes, summary of

3-13, A-13
conditions 3-12
CRBM in 7-12
executing 3-12
FLAGx bit states and 12-32
FOREVER condition 3-12
IF NOT LCE 3-13
instruction set syntax A-3
LCE condition 3-12
memory writes 5-49
memory writes and decoded

memory address lines 5-49
MODE1 register 3-12
NOT LCE condition 3-12
opcode components 3-12
termination codes 3-12
TRUE condition 3-12

Conditions that generate DMA and
I/O interrupts 6-47

Configuring SDRAM operation
10-13

Context switching 4-3
alternate register file registers and

2-11
MR registers and 2-29

Control and status registers
bit states E-1
described E-1
IOP registers E-1, E-31

see IOP registers
symbol definitions file

(def21065L.h) E-116
system registers E-1

see System registers

INDEX

I-16 ADSP-21065L SHARC DSP User’s Manual

Controlled impedance transmission
line 12-43

Conventions of notation, global
-xxv

Core accesses
FLAGx and system bus accesses

8-48
MSx and system bus accesses 8-48
of the system bus 8-48
over the PM bus 5-10
type 10 instruction and system

bus accesses 8-48
Core controlled interrupt-driven

I/O 6-46
implementing 8-20

Core hang
avoiding 9-15
BHD (buffer hang disable) bit

7-29, 8-19, 9-86
defined 8-19
reads/writes of RX/TX buffer and

9-86
single-word data transfers 7-29

Core priority access
described 7-18
pin 7-11, 12-16
slave processor external bus access

sequence 7-19, 7-20
timing diagram 7-19

Counter-based loops
CURLCNTR 3-35
interrupt processing in 3-29
overhead in 3-29
pipelined one-instruction

three-iteration 3-28
pipelined one-instruction

two-iteration (2 cycles of
overhead) 3-29

restrictions 3-28
CP (chain pointer) register

and PCI bit, diagram of 6-40
memory address field 6-39
PCI (program controlled

interrupts) bit 6-40
symbolic address restriction 6-44

CP (DMA chain pointer) register
6-31

disabling DMA on a channel 6-39
DMA chaining 6-39
memory address field 6-39
PCI (program controlled

interrupts) bit 6-40
PCI bit, diagram of 6-40
symbolic address restriction 6-44

CPA
core priority access timing,

diagram of 7-19
interrupting DMA transfers 7-18
multiprocessor bus arbitration

7-11
nonmultiprocessing system 7-19
pin definition 12-16
state after reset 12-23

CRBM (current bus master) bit
7-11, 7-42, 8-40

conditional instructions and 7-12
Crosstalk, reducing 12-45

ADSP-21065L SHARC DSP User’s Manual I-17

INDEX

Crystal oscillator terminal, see
XTAL

CS
accessing a processor 8-11
EPROM boot mode 12-51
implementing broadcast writes

8-23
multiprocessor booting 12-59
pin definition 12-8
state after reset 12-23

CURLCNTR 3-12, 3-34
decrementing 3-34
described 3-34
LCNTR and 3-35
reading the 3-34
value while no loop executing

3-35
write restrictions 3-35
writing to 3-35

Current loop count, see
CURLNCTR

Current loop counter, see
CURLCNTR

Cycles, CLKIN frequencies and
12-26

D
DAG address output and

modification 4-6
address offset modifier 4-6
immediate modifier value 4-6
immediate modifiers 4-8
M (DAG modify) registers 4-6
modify instructions 4-7

postmodify operations 4-6
premodify operations 4-6

DAG modify instructions 4-7
DAG operation 4-6

address output and modification
4-6
see DAG address output and

modification
bit reversal and 4-13
bit-reverse instruction 4-14

see Bit-reverse instruction
bit-reverse mode 4-13

see Bit-reverse mode
circular buffer addressing 4-9

see Circular buffer addressing
dual data accesses and PM and

DM bus addresses 5-8
generating internal bus addresses

5-26
generating memory addresses

5-11
indirect addressing 5-11
short word addresses and 4-6
summary of operations 4-6

DAG register transfers 4-15
between DAGs and DM data bus

4-15
data alignment with DM bus 4-15
described 4-15
diagram of 4-15
unsupported instruction

sequences 4-16
DAG registers 4-1

alternate registers 4-3

INDEX

I-18 ADSP-21065L SHARC DSP User’s Manual

see Alternate DAG registers
architecture 4-2
base address (B) registers 4-2
circular data buffers 4-1, 4-2
DAG1 4-1
DAG2 4-1
described 4-2
diagram of 4-3
index (I) registers 4-2
locations (L) registers 4-2
MODE1 control bits for alternate

register set 4-5
modify (M) registers 4-2
operation 4-6

see DAG operation
pointer increment value 4-2
pointer to memory 4-2
see also DAG1, DAG2
subregister types, summary of 4-2
transfers with 4-15

see DAG register transfers
DAG1

bit-reverse mode 4-13
described 4-1
immediate I (index) register

modifier values 4-8
indirect addressing and the DM

bus 5-11
transfers with the DM data bus

4-15
DAG2

bit-reverse mode 4-13
described 4-1
dual data accesses 5-8

immediate I (index) register
modifier values 4-8

indirect addressing and the PM
bus 5-11

program sequencing 3-7
transfers with the DM data bus

4-15
Data accesses

conversion between short and
normal words 5-41

MSW/LSW of 32-bit words 5-41
of 40-bit data with 48-bit word

5-40
short word 5-41
word width and RND32 5-41

Data address generators, see DAG
operation

Data addresses 5-11
direct 5-11
immediate 5-11
indirect 5-11

Data addressing
address output and modification,

see DAG address output and
modification

circular buffer operation 4-10
see Circular buffer operation

circular data buffers 4-9
see Circular buffer addressing

DAG register transfers 4-15
see DAG register transfers

data address generators, see DAG
registers 4-1

described 4-1

ADSP-21065L SHARC DSP User’s Manual I-19

INDEX

postmodify operations 4-6
see Postmodify addressing opera-

tions
premodify operations 4-6

see Premodify addressing opera-
tions

premodify vs. postmodify
addressing, diagram of 4-7

Data bandwidth bottlenecks 7-6
Data delays, latencies, and

throughput 12-62
cycles per 12-62
defined 12-62
summary of 12-62

Data flow multiprocessing 7-6
application of 7-6
described 7-6
diagram of 7-6

Data formats 9-44
ALU 2-12
computations 2-4
justification 9-44

Data memory data bus, see DM bus
Data receive (DRx_X) pins 9-4,

12-11
Data segments, invalid addresses

5-52
Data storage, capacity

mixed words 5-43
packed words 5-43

Data storage, configuration
32- and 40-bit data 5-40
changing word width 5-40
IMDWx bit (SYSCON) 5-40

Data throughput, defined 12-62
Data transfers

48-bit accesses of program
memory 5-14

address sources 5-11
between DM data bus and

external memory 5-14
between DM data bus and

internal memory 5-14
between memory and registers

5-12
between memory and SPORTS

9-77
between PX1 and PM data bus

5-12, 5-14
between PX2 and DM data bus

5-14
between PX2 and PM data bus

5-12
example code for 48-bit program

memory access 5-14
multiprocessing

see Multiprocessing data transfers
multiprocessing DMA 7-30
multiprocessing IOP register

reads, see IOP register reads
of 40-bit DM data bus 5-14
over DM bus 5-11
over PM bus 5-11
over the external bus 5-43
packed data 5-43
PM bus destinations 5-11
PX register data alignment 5-12
PX register transfers, diagram of

INDEX

I-20 ADSP-21065L SHARC DSP User’s Manual

5-13
single-cycle, number of 5-17
universal register-to-register 5-12
with memory 5-7

Data transmit (DTx_X) pins 9-4
DATAx

and host accesses 8-30
EPROM boot mode and 12-51
EPROM boot sequence after reset

12-54
external memory space interface

and 5-45
external port data alignment,

diagram of 8-31
host booting and 12-58
pin definition 12-4
state after reset 12-23

DB modifier 3-18
Decode address register 3-6
Decode cycle 3-4
Decoded memory address lines

(MSx) 5-49
Decoding table for memory

addresses 5-20
Decoupling capacitors and ground

planes 12-46
power plane 12-46
VDD pins 12-46

def21065L.h file 9-12
complete listing E-116

Delayed branches 3-18
call return address 3-19
DB modifier and 3-18
defined 3-19

instructions following, restriction
3-20

interrupt processing and 3-23
pipelined stages of jumps/calls

3-19
pipelined stages of returns 3-20
reading PC stack/PC stack pointer

and 3-24
DEN (DMA enable) bit 6-9, 6-14,

8-28
described 6-15
enabling/disabling DMA 8-20
single-word EPBx data transfer

control 7-29
single-word, non-DMA EPBx

transfers 7-29, 8-20
Denormal operands 2-36
Design recommendations 12-45

crosstalk, reducing 12-45
reflections, reducing 12-46

Design resource references 12-47
Direct addressing 5-11

absolute address A-18
PC-relative address A-18

Direct jump|call (type 8) instruction
described A-45
example A-46
opcode (with direct branch) A-46
opcode (with PC-relative branch)

A-47
syntax summary A-6

Direction of DMA data transfers
6-15

EXTERN 6-16

ADSP-21065L SHARC DSP User’s Manual I-21

INDEX

TRAN 6-16
Disable SDCLK0 bit, see DSDCTL

bit
Disable SDCLK1 bit, see DSDCK1

bit
DITFS (data-independent TFS) bit

9-16
continuous TFS and 9-58
defined 9-26
described 9-57

DM bus
address bits, diagram of 5-8
and EPBx buffers 8-18
data storage 5-8
data transfer destinations 5-11
data transfer types 5-11
data transfers 5-7
defined 5-3
generating addresses for 5-11,

5-26
memory accesses 5-27
memory connection 5-7
PX register accesses 5-28
transferring data to the PM bus

5-12
transfers with DAG registers 4-15

DMA
address generators 6-75
asynchronous requests and

DMARx 6-66
C (count) register initialization

6-29
chain insertion 6-44
channel active status 6-24, 6-26

channel chaining status 6-24
channel data buffers 6-28
channel parameter registers 6-28
channel status 6-24
channels 6-4
concurrent DMA accesses of

on-chip memory space 6-74
control and data paths, diagram of

6-3
control registers, see DMACx

registers
cycle, defined 6-28
data buffers 6-4
data packing through the EPBx

buffers 6-51
data transfers, see DMA data

transfers
disabling chaining 6-39
enabling 6-9
external port FIFO buffers

(EPBx), see EPBx buffers
flushing the request counter

(FLSH) 6-18
grant outputs 6-3, 6-64

see also DMAGx
II (index) register overflow 6-29
interrupts 6-45
maximum number of requests

without a grant 6-64
mode configurations, summary of

6-56
operation 6-27
operation modes 6-11
overall throughput of multiple

INDEX

I-22 ADSP-21065L SHARC DSP User’s Manual

DMA channel memory accesses
6-74

packing sequence for download of
processor instructions from a
16-bit bus 6-53

packing sequence for download of
processor instructions from a
32-bit bus 6-52

packing sequence for host to
processor (8- to 48-bit words)
6-54

parameter registers, see DMA
parameter registers

polling for DMA status,
restrictions on 6-26

request inputs 6-3
see also DMARx

sequence 6-29, 6-39, 6-48, 6-49
system configurations for

interprocessor operation 6-70
summary of 6-70

TCB chain loading, see TCB
chain loading

transfer control block (TCB), see
TCB

DMA chain insertion mode 6-15
described 6-44
restrictions 6-45
setting up 6-44

DMA chaining 6-8
active status E-65
and the CP (chain pointer)

register 6-39
automatic 6-15

chain insertion mode, see DMA
chain insertion mode

chain pointer register, see CP
(chain pointer) register

channel status 6-24
described 6-39
disabling 6-15, 6-39
disabling DMA interrupts 6-40
DMA general purpose register and

see GP (DMA general purpose)
register

enabling 6-15, 6-39
enabling and disabling DMA

interrupts 6-46
initiating data transfers 6-39
inserting a high priority chain in

an active DMA chain 6-44
location of last DMA sequence

transferred 6-41
pointing to the next set of DMA

parameters in internal memory
6-39

prioritizing external DMA
accesses 6-37

priority of TCB chain loading
6-37

restrictions on 6-39
serial port channels 9-85
setting up and starting DMA data

transfers 6-43
status update latency 6-26
stopping a DMA sequence 6-49
storing the address of the

previously used buffer 6-30

ADSP-21065L SHARC DSP User’s Manual I-23

INDEX

TCB chain loading, see TCB
chain loading

DMA channel parameter registers
C (count) 6-29
count register initialization 6-29
II (index) 6-28
IM (modify) 6-28
index register overflow 6-29
modify register value 6-28
offset before use 6-28
summary of 6-32

DMA channel status register, see
DMASTATx register

DMA channels
active status 6-24, E-65
chaining status 6-24
channel active status bit 6-26
channel parameter registers, see

DMA channel parameter registers
components of 6-27
control and status registers 6-27
data buffers 6-28
determining the state of 6-18
disabling 6-67
DMA interrupts 6-45
DMASTATx status register, see

DMASTATx register
external port 6-12, 6-27, 6-30
I/O bus access priority, summary

of 6-36
I/O transfer rate 6-74
inactive status E-65
index register, initializing 6-28
memory setup for EPBx DMA

channels 6-43
paced master mode DMA 6-58
parameter registers 6-28
priority of interprocessor I/O bus

accesses 6-36
re-enabling 6-67
reinitialization 6-18
setting priority of 6-35
setting up master mode DMA

6-58
slave mode DMA, see Slave mode

DMA
SPORT channel assignments

6-22
SPORT DMA channels 6-27
status of 6-24
TCB chain loading, see TCB

chain loading
DMA control registers, see DMACx

registers
DMA controller 6-7

address generator 6-33, 6-34
autoinitializing 6-39
channel priority logic 6-27
data packing order (MSWS) 6-17
data transfer rate 6-65
data transfer types 6-7
data transfers

external port block data, see Ex-
ternal port DMA

serial port data I/O, see SPORT
DMA

data transfers between external
devices and external memory

INDEX

I-24 ADSP-21065L SHARC DSP User’s Manual

6-8
DMA control parameters 6-11
DMACx register bits

see DMACx registers
EPROM booting 12-54
extending accesses until valid data

in EPBx buffers 8-22
external port DMA channels 6-27
external to internal transfer

sequence, slave mode 6-60
generating external memory access

cycles in external handshake
mode 6-69

generating memory addresses
6-28, 6-55

hardware interface example,
diagram of 6-72

host booting 12-58
host DMA transfers 8-18
I/O bus operations 6-27
incrementing and decrementing

the modify register 6-28
internal to external memory

transfers 6-75
internal to external transfer

sequence, slave mode 6-61
operating modes 6-11
operation 6-7, 6-27
prioritizing external direct accesses

to internal memory 6-37
prioritizing requests 6-35
prioritizing TCB chain loading

6-37
priority of I/O bus accesses 6-74

redefining priority for external
port channels 6-38

request and grant 6-35
request timing 6-65
rotating priority for external port

channels 6-37
SPORT DMA chaining 9-85
SPORT DMA channels 6-27,

9-77, 9-78
system bus access deadlock

resolution 8-50
system bus accesses 8-50
three-cycle pipeline 6-64

DMA data packing
48-bit internal words 6-53
DATAx lines used for 32-bit

DMA data 6-53
EPBx buffers DMA 6-51

LSWF packing format 6-52
MSWF packing format 6-52
PMODE and HBW combina-

tions, summary of 6-52
flushing partially packed data

6-18
HMSWF (host packing order) bit

6-54
host boot mode 12-57
host data transfers 8-22
in external handshake mode

DMA 6-70
multiprocessing DMA transfers

7-31
order of DMA transfers 6-17
packing sequence for download of

ADSP-21065L SHARC DSP User’s Manual I-25

INDEX

processor instructions from a
16-bit bus 6-53

packing sequence for download of
processor instructions from a
32-bit bus 6-52

packing sequence for host to
processor (8- to 48-bit words)
6-54

PMODE bit 6-17, 6-51, 7-31
SPORT DMA data transfers 6-22
status 6-54
status (PS) 6-16

DMA data transfers 6-7
address generation 6-28, 6-55
between external devices and

external memory 6-8
between host and on-chip

memory 8-21
between processors 7-30
blocked EPBx buffers 6-67
chaining 6-8
clock cycles per transfer 6-74
concurrent DMA accesses of

on-chip memory space 6-74
data packing, see DMA data

packing
data source and destination

selection in handshake mode
6-63

DATAx lines for 32-bit data 6-53
direction of 6-15

SPORT transfers 6-22
EPBx buffers DMA 8-22
external handshake mode, see

External handshake mode DMA
external port block data 6-7
external to internal transfer

sequence in slave mode DMA
6-60

external transfers and the ECEPx
register 6-63

external transfers and the MSx
lines 6-63

from internal to external memory
space 6-75

hardware handshake signals 6-62
host block data 8-18
host EPBx transfers 8-22
host interface and 8-5
host transfers and data packing

8-22
I/O transfer rate, see DMA I/O

transfer rate
initiating with chaining enabled

6-39
internal to external transfer

sequence in slave mode 6-61
multiprocessing 7-25, 7-27, 7-30
non-DMA, single-word through

the external port 6-50
overall throughput of multiple

DMA channel memory accesses
6-74

packing order (MSWF) 6-17
packing status 6-16
priority of DMA channel accesses

of the I/O bus 6-74
request timing 6-65

INDEX

I-26 ADSP-21065L SHARC DSP User’s Manual

request/grant latency, handling
6-65

responding to DMAGx 6-65
SDRAM controller commands

and 10-36
SDRAM operation 10-24
serial port transfers 6-22

see SPORT DMA
setting up 6-9
setting up host DMA transfers to

on-chip memory 8-21, 8-22
SPORT DMA block transfers

9-77
SPORT DMA channels 9-77
starting a DMA chain 6-43
through the host interface 8-5
transfer rate 6-65
types 6-7
word width of 6-16

DMA done interrupt 12-58
DMA grant x, see DMAGx
DMA handshake mode

asynchronous requests and 6-66
described 6-62
DMAGx 6-62
DMARx 6-62, 6-63
enabling 6-63
handshake timing 6-63
hardware handshake signals 6-62

DMA handshake single wait state
(HIDMA) 5-57

DMA hardware interface 6-72
DMA I/O transfer rate

and uncompleted external

transfers 6-74
external port DMA channels 6-74
serial port DMA channels 6-74

DMA interrupts 6-9, 8-20
and non-DMA I/O port transfers

6-46
C (count) register 6-45
C and ECEPx count registers and

6-9
causes 6-47
core controlled interrupt-driven

I/O 6-46
DEN (DMA enable) bit 6-17,

7-29
described 6-45
disabling 6-40
disabling in external handshake

mode DMA 6-69
ECEP (external count) register

6-45
enabling and disabling, with

chaining enabled 6-46
EPBx single-word transfers 6-17
generation 6-45, 7-29, 8-20
IMASK register 6-40, 6-45, 7-29
INTIO (DMA single-word

interrupt enable) bit 6-17, 7-29
IRPTL register 6-9, 6-45, 7-29
masking 8-20
master mode DMA 6-45
PCI bit 6-40
program controlled 6-40
single-word EPBx transfers 7-29,

8-20

ADSP-21065L SHARC DSP User’s Manual I-27

INDEX

DEN 8-20
generation 8-20
interrupt-driven I/O 8-20
INTIO 8-20
masking 8-20

single-word non-DMA transfers
6-46

SPORT receive (RX) 6-23
SPORT transmit (TX) 6-23
vectors and priority, summary of

6-45
DMA modes 6-7

chain insertion 6-44
chaining disabled, DMA disabled

6-15
chaining disabled, DMA enabled

6-15
configuration bit combinations,

summary of 6-56
configurations 6-20
DEN and CHEN bit

combinations 6-15
described 6-55
external handshake mode, see

External handshake mode DMA
external port 6-55
handshake mode 6-20, 7-31

see DMA handshake mode
initiating transfers 6-55
master mode 6-30

see also Master mode DMA
paced master mode 6-21

see Paced master mode DMA
slave mode 6-20, 7-31

see also Slave mode DMA
DMA most significant word first for

packing, see MSWF packing
format

DMA operation
ACK 6-69
address generation, diagram of

6-34
asynchronous requests and

DMARx 6-66
chaining, see DMA chaining
clearing extra requests 6-64
clock cycles per data transfer 6-74
concurrent DMA accesses of

on-chip memory space 6-74
CP register symbolic address

restriction 6-44
data packing, see DMA data

packing 6-70
data transfer rate 6-65
direction of data transfers 6-15
DMA address generators (EIEPx

and EMEPx registers) 6-75
DMA chain insertion mode, see

DMA chain insertion mode
DMA enable (DEN) bit 6-9
DMA interrupts, see DMA

interrupts
DMA request/grant latency,

handling 6-65
DMA transfer types 6-7
DMAGx grant outputs 6-64
DMARx 6-63, 6-68
DMARx and DMAGx

INDEX

I-28 ADSP-21065L SHARC DSP User’s Manual

in external handshake mode
6-69

timing, diagram of 6-73
external handshake mode, see

External handshake mode DMA
external transfers and the ECEPx

register 6-63
flushing the DMA request counter

(FLSH) 6-18
handshake mode DMA, see

Handshake mode DMA
handshake timing 6-63

with asynchronous requests
6-66

hardware handshake signals 6-62
hardware interface example,

diagram of 6-72
I/O transfer rate, see DMA I/O

transfer rate
input requests 6-63, 6-64
internal request and grant 6-35
master mode DMA, see Master

mode DMA
MSx lines and external DMA

transfers 6-63
multiprocessing system

configuration for interprocessor
DMA 6-70

overall throughput of multiple
DMA channel memory accesses
6-74

paced master mode DMA, see
Paced master mode DMA

prioritizing external direct accesses

to internal memory 6-37
prioritizing requests 6-35
prioritizing TCB chain loading

6-37
priority of I/O bus accesses 6-74

between processors 6-36
summary of 6-36

program controlled interrupts
6-40

redefining priority for external
port channels 6-38

REDY signal and DMA write
operations through the EPBx
buffers 6-61

request timing 6-65
rotating priority for external port

channels 6-37
setting DMA channel

prioritization 6-35
setting up DMA transfers 6-9
slave mode 6-59
starting a new sequence 6-9, 6-29
starting and stopping a sequence

6-48
three-cycle pipeline and DMARx

6-64
DMA packing order and EPBx

buffers 6-54
DMA parameter registers 6-5

C (count) 6-9, 6-31
channel parameter registers, see

DMA channel parameter registers
CP (chain pointer) 6-30, 6-31,

6-39, 6-40

ADSP-21065L SHARC DSP User’s Manual I-29

INDEX

symbolic address restriction
6-44

defined 6-5
ECEP (external count) 6-30, 6-32
EIEP (external index) 6-30, 6-31
EMEP (external modify) 6-30,

6-32
external index overflow 6-30
GP (general purpose) register

6-30, 6-31, 6-41
II (index) 6-9, 6-31
IM (modify) 6-9, 6-31
summary of 6-31

DMA programming 9-93
DMA registers

buffer 6-11
control 6-11
DMACx bit values, diagram of

6-13
external port (DMACx) 6-12
parameter 6-11
summary of 6-11

DMA request x, see DMARx
DMA sequence

defined 6-39
events that start a 6-48
events that stop a 6-49
starting a new 6-49
starting and stopping 6-48

with chaining disabled 6-48,
6-49

with chaining enabled 6-48,
6-49

DMA transfer modes, see DMA
modes

DMAC0 register
EPROM booting and 12-49
host booting and 12-49, 12-57
initialization after reset 12-52,

12-56
parameter registers initialization

12-53, 12-57
DMACx control registers, see

DMACx registers
DMACx registers 6-5, 6-12

accessing 6-11
address of E-54
bit definitions 6-14, E-56
CHEN 6-14, 6-15, 6-39
default bit values, diagram of

6-13, E-55
defined 6-5
DEN 6-14, 6-15, 7-29, 8-20,

8-28
described 6-11, E-54
DMA mode configuration bit

combinations 6-56
DTYPE 6-14, 6-16
EXTERN 6-14, 6-19, 6-55, 6-75,

8-21, 8-22
FLSH 6-14, 6-18, 7-29, 8-19
FS 6-14, 6-18
host data packing control bits

8-28
host data transfers and 8-16
host interface and 8-5
HSHAKE 6-14, 6-19, 6-55, 8-21,

INDEX

I-30 ADSP-21065L SHARC DSP User’s Manual

8-22
initialization value E-54
INTIO 6-14, 6-17, 6-46, 7-29,

8-20
MASTER 6-14, 6-19, 6-30, 6-55,

8-21, 8-22
MSWF 6-14, 6-17
multiprocessing 7-4
multiprocessing DMA transfers to

internal memory space 7-30
multiprocessing operation 7-25
PMODE 6-14, 6-16, 7-31, 8-22,

8-24, 8-28
PS 6-14, 6-16, 6-54
TRAN 6-14, 6-15, 8-20, 8-28

DMA-driven data transfer mode
9-65

described 9-65
interrupt vector 9-65

DMAGx 6-3, 8-21
DMA grant outputs 6-64
external handshake mode DMA

6-68
handshake for DMA transfers to

external memory space 7-32
handshake mode DMA 6-62,

7-31
host DMA transfers 8-21, 8-22
host DMA transfers through the

EPBx buffers 8-22
multiprocessing 6-68
multiprocessing DMA transfers

7-30
pin definition 12-5

responding to 6-65
state after reset 12-22

DMARx 6-3, 8-21
and external DMA requests 6-63
delay after enabling handshake

DMA 6-68
DMA handshake timing 6-63
extending the DMA grant cycle

6-63
external handshake mode DMA

6-68
handshake for DMA transfers to

external memory space 7-32
handshake mode DMA 6-62,

7-31
host DMA transfers 8-21, 8-22
multiprocessing DMA transfers

7-30
pin definition 12-5
setup time 6-63
state after reset 12-23
three-cycle pipeline 6-64

DMARx and DMAGx timing 6-73
DMASTATx register 6-24

address of E-64
bit definitions 6-24, E-66
default bit values, diagram of E-65
described E-64
DMA chaining status and chain

insertion mode E-64
DMA controller operation and

E-64
initialization value E-65
polling 6-26, 6-47

ADSP-21065L SHARC DSP User’s Manual I-31

INDEX

polling restrictions 6-26, 6-48
reinitializing DMA channels and

6-18
status changes on master processor

E-64
status write latency E-64

DO FOREVER instruction 3-12
Do until (type 13) instruction

described A-60
example A-60
opcode (relative addressing) A-60
syntax summary A-7

Do until counter expired (type 12)
instruction

described A-58
example A-58
opcode (with immediate loop

counter load) A-58
opcode (with loop counter load

from a UREG) A-58
syntax summary A-7

DO UNTIL instruction 3-25
described 3-25
execution sequence 3-25
Instruction pipeline and 3-25
LCE condition 3-12
LCNTR value and 3-35
loop address stack and 3-33
PC stack and 3-25
pipelined loop termination

operation 3-26
pipelined loopback operation

3-26
termination condition testing

3-25
DQM

defined 10-6
operation 10-27
pin definition 12-10
state after reset 12-22

DRx_X pins 9-4
pin definition 12-11
SPORT loopback mode 9-88
state after reset 12-24

DTx_X pins 9-4
high impedance state 9-67, 9-69
multichannel SPORT mode and

9-69
SPORT loopback mode 9-88
state after reset 12-24

DTYPE (data type) bits 6-14, 9-15,
9-21

and data word width 6-16
and the IMDW bit 6-16
companding format 9-44
data justification 9-44
defined 9-27
described 6-16, 9-44
multichannel operation data

formats 9-44
transmit and receive sign

extension 9-45
Dual add and subtract instructions,

summary of 2-50
Dual add/subtract (fixed-point)

ALU status flags B-96
compute field B-96
described B-96

INDEX

I-32 ADSP-21065L SHARC DSP User’s Manual

Dual add/subtract (floating-point)
ALU status flags B-98
compute field B-98
described B-98

Dual data accesses 5-8
cache miss 5-10
DAG1 5-8
DAG2 5-8
digital filters 5-9
DSP applications 5-9
FFTs 5-9
instruction cache 5-9
instruction fetches 5-8
modified Harvard architecture

5-8
PM and DM bus addresses 5-8
PM bus conflicts 5-10
single-cycle execution efficiency

5-9
single-cycle, parallel accesses 5-9

E
Early frame sync mode

described 9-56
ECEPx (DMA external count

register) 6-30, 6-32
and external transfers 6-63
DMA interrupts 6-9
EPROM booting and 12-54
MASTER mode 6-30

Effect latency
activation of alternate register file

register sets 2-11
defined E-4

SPORT control registers 9-13
system registers E-4

EIEPx (DMA external index
register) 6-30, 6-31

address generator 6-75
generating external addresses for

DMA transfers 6-55
overflow 6-30

EMEPx (DMA external modify
register) 6-30, 6-32

address generator 6-75
generating external addresses for

DMA transfers 6-55
EMU

pin definition 12-19
state after reset 12-25

Emulation status, see EMU
Enabling DMA operation 6-9
Enabling standard SPORT mode

9-59
End-of-line termination 12-43

diagram of 12-43
propagation delay 12-43

Entering and exiting self-refresh
mode 10-28

EP0I interrupt
function and priority 9-6
host booting 12-58

EP1I interrupt
function and priority 9-6

EPBx buffers 6-5
additional parameter registers

6-30
architecture 7-27

ADSP-21065L SHARC DSP User’s Manual I-33

INDEX

associated DMA channels 6-50
blocked condition in DMA reads

and writes 6-67
bus connections 6-50, 8-18
clearing 6-50, 7-29
core hang 7-29
core read/write restrictions 6-50
DATAx lines used for 32-bit

DMA data 6-53
defined 6-5, 8-5
DMA data packing 6-51

LSWF packing format 6-52
MSWF packing format 6-52
packing logic 6-51
status 6-54

DMA packing modes, summary
of 6-52

DMA transfer rate 6-50
DMA transfers to internal

memory space 7-30
ECEP (external count) register

6-30
EIEP (external index) register

6-30
overflow 6-30

EMEP (external modify) register
6-30

EPB0 and host booting 12-58
extending DMA access of internal

memory space 7-30
external port DMA 6-50
external port DMA channels and

DMA transfers to external
memory space 7-31

flushing (FLSH) 6-18, 6-51, 8-19
generating external addresses 6-55
handshake mode 6-62
host data transfers, see Host data

transfers
host DMA transfers

see Host DMA transfers
host interface 8-5
host IOP register writes 8-17
host reads of an empty buffer 8-19
host writes 8-16, 8-18
HSHAKE 8-21
internal bus connections 7-27
MASTER 8-21, 8-22
multiprocessing 7-4, 7-26, 7-30

see also Multiprocessing EPBx
transfers

non-DMA, single-word transfers
6-50

number of short words currently
packed in 6-54

packing 48-bit internal words
6-53

packing status of DMA data
transfers 6-16

packing/unpacking individual
data words
HBW 8-19

ports 6-50, 8-18
processor writes to a full buffer

8-19
PS (DMACx registers) DMA

packing
status 6-54

INDEX

I-34 ADSP-21065L SHARC DSP User’s Manual

reading from an empty buffer
7-28

REDY signal and DMA write
operations 6-61

setting up DMA transfers to
internal memory space 8-21

size of 6-50
slave mode DMA 8-21
write latency 8-17, 8-18
writing to a full buffer 7-28

EPBx data packing
16- to 48-bit packing 8-35
32- to 48-bit packing 8-34
32-bit data 8-31
48-bit instructions 8-34
8- to 48-bit packing 8-35
DMACx control bits 8-28

summary of 8-28
host reads of 32-bit data 8-31
host writes of 32-bit data 8-33
SYSCON control bits 8-25

EPROM boot mode
ADDRx 12-54
BMS 12-51, 12-53
boot sequence and kernel loading

12-51, 12-54
bootstrapping 256 word

instructions 12-52
BSEL 12-51
CS 12-51
data bus alignment 5-53
DATA7-0 12-51
described 12-51
DMAC0 register 12-49, 12-52,

12-53
EPROM chip select 12-53
external memory space address of

first instruction 12-49
external port data (EPD) lines

12-53
generating EPROM addresses

5-53
MSx chip select line 5-53
multiprocessing 12-51
pin configuration 12-51
pin connections 5-53, 12-51
program counter address at reset

12-53
reset start-up sequence 12-53
RTI instructions 12-54
see also Host booting
wait states and 12-52
wait states configuration 5-53

EPROM boot select, see BSEL
EPROM booting

accessing EPROM after bootstrap
12-55

ACK 12-52
ADDRx 12-54
BMS and 12-53
boot hold off 12-52
BSO bit 12-55
DATAx 12-54
DMA controller operation 12-54
DMA count register and 12-54
EPROM chip select 12-53
external port data (EPD) lines

12-53

ADSP-21065L SHARC DSP User’s Manual I-35

INDEX

interrupt vector table, locating
12-61

loading remaining EPROM data
12-55

multiprocessing 12-59
overriding BMS 12-55
program counter address at reset

12-53
reset start-up sequence 12-53
RTI instructions 12-54
writing to BMS memory space

12-56
EQ condition 3-13
Execute cycle 3-4
Executing program from external

memory space
40-bit data accesses 5-52
aligning internal addresses with

external memory space 5-50
data access addressing 5-52
data packing 5-49
described 5-49
example addresses for 5-50
external memory address

generation scheme 5-51
generating instruction addresses in

external memory space 5-50
invalid segment addresses 5-52
mapping 64K memory space to

128K memory space 5-51
multiple program segments, using

5-51
PM bus address restriction 5-52
program segment alignment in

external memory space 5-51
storing instructions in internal

memory space 5-50
Execution stalls 12-66
Extended-precision, floating-point

format
described C-4
diagram of C-4
significant, size of C-4
size of C-4

EXTERN (DMA external
handshake mode enable) bit
6-14, 6-75, 8-21, 8-22

and the direction of DMA
transfers 6-16

described 6-19
DMA transfers to on-chip

memory 7-31, 7-32
External (off-chip) memory

external memory space 5-43
external port and 5-43
interface pins 5-43
interfacing with 5-43

External bus
ADDRx and DATAx 8-2
defined 8-5
host interface and 8-2
multiprocessing and 7-4

External bus address, see ADDRx
External bus data, see DATAx
External handshake mode DMA

ACK 6-69
configuration 6-20, 6-69, 7-32
configuring DMA channels 6-69

INDEX

I-36 ADSP-21065L SHARC DSP User’s Manual

data packing 6-70
described 6-55, 6-68
disabling DMA interrupts 6-69
DMA transfers to external

memory space 7-32
DMARx and DMAGx 6-69

handshaking signals 6-68
EXTERN bit 7-32, 8-22
external memory access, behavior

of 6-69
generating external memory access

cycles 6-69
generating external memory

address and word count 6-69
host transfers to external memory

space 8-22
HSHAKE bit 7-32, 8-22
MASTER bit 7-32, 8-22
MSx, RD, and WR 6-69
multiprocessing DMA transfers to

external memory space 7-31
transfers between an external

device and external memory
space 6-75

External interrupts
asynchronous 3-51
edge-triggered 3-51
level-sensitive 3-50
programmable timer pins and

12-28
sample timing 3-50
sensitivity option, setting 3-51
validity of 3-50

External memory banks

address locations 5-49
address space 5-48
bank 0 address space limitation

5-48
bus hold time cycle, see Bus hold

time cycle
bus idle cycle, see Bus idle cycle
conditional memory write

instructions 5-49
decoded memory address lines

5-49
described 5-48
DMA handshake wait state 5-57
EBxWS bit values 5-60
MSx lines 5-48
multiprocessor memory space

wait state 5-57
number of wait states (EBxWS)

5-56
peripheral chip selects (MSx) 5-49
ROM boot wait mode 5-56
ROM boot wait state 5-57
running code from 5-48
SDRAM and wait states, see also

SDRAM interface
SDRAM mapping 5-48
WAIT register, see WAIT register
wait state configuration 5-55
wait state generator 5-48
wait state mode (EBxWM) bits

5-56, 5-61
wait state modes 5-61

external memory banks
vs. memory blocks 5-49

ADSP-21065L SHARC DSP User’s Manual I-37

INDEX

External memory space
access address fields 5-26
access timing 5-65

bus master reads 5-66
bus master writes 5-67
diagram of 5-65
external bus control 5-65

address boundaries 5-19
address of first instruction, no

boot mode 12-49
address space 5-44
banks, see External memory banks
bus idle cycle, see Bus idle cycle
bus master writes 5-67
concurrent DMA accesses and

wait states 6-74
defined 5-3
described 5-26
diagram of 5-26
DMA data transfers between

external devices and external
memory 6-8

DMA transfers 8-21
EPROM booting 12-49
host booting 12-49
host DMA transfers 8-21, 8-22
interface with external memory

devices 5-43
mixed word storage 5-43
multiprocessor DMA transfers to

7-31
off-chip memory access extension

5-53, 5-54
packed word storage 5-43

program execution, see Program
execution

response to ACK 5-53
running code from 5-48
SDRAM, see SDRAM interface
setting up host DMA transfers

8-22
wait states and acknowledge

see Wait states and acknowledge
external memory space

memory blocks vs. memory banks
5-49

suspending bus three-state (SBTS)
and SDRAMs 5-63

External memory space accesses
DM bus 5-26
EP bus 5-26
external port 5-26
internal buses 5-44
PM bus 5-26

External memory space interface
signals 5-44

ACK 5-47
ADDRx 5-44
DATAx 5-45
MSx 5-45
RD 5-45
SWx 5-46
WR 5-46

External memory wait state control
register, see WAIT register

External port 12-4
ADDRx 12-4
buses 8-18

INDEX

I-38 ADSP-21065L SHARC DSP User’s Manual

data alignment, diagram of 12-21
data lines (EPD) and EPROM

boot sequence after reset 12-53
DATAx 12-4
defined 5-3
DMA data transfers 7-30
DMAGx 12-5
DMARx 12-5
host interface and 8-2
MSx 12-5
multiprocessing data transfers

7-25, 7-27
pin definitions 12-4
SBTS 12-6
SW 12-6

External port buffer 0 interrupt 9-6
External port buffer 1 interrupt 9-6
External port DMA

block data transfers 6-7
buffer size 6-50
changing DMA channel priority

assignment, example of 6-38
channels 6-30, 6-50
clearing EPBx buffers 6-50
connection to internal memory

space 6-27
control bit definitions 6-14
core read/write of EPBx buffers,

restrictions 6-50
data packing 6-51

LSWF packing format 6-52
MSWF packing format 6-52
packing logic 6-51
PMODE and HBW combina-

tions, summary of 6-52
described 6-50
disabling 6-67
DMA registers 6-12
EPBx buffers 6-50
fixed channel priority 6-38
internal DMA request and grant

6-35
interrupts 6-45
master mode DMA interrupts, see

DMA interrupts 6-45
modes, see DMA modes 6-55
non-DMA, single-word transfers

6-50
priority of TCB chain loading, see

TCB chain loading
redefining DMA channel priority

6-38
re-enabling 6-67
rotating channel priority 6-37,

6-38
transfer rate 6-50

External port DMA control
registers, see DMACx registers

External port FIFO buffers, see
EPBx buffers

EZ-ICE emulator
board-level testing 12-38
CLKIN connection 12-40
connection requirements 12-36
described 12-36
executing synchronous

multiprocessor operations
12-40

ADSP-21065L SHARC DSP User’s Manual I-39

INDEX

JTAG interface and 12-36
pin connections in nontesting

environments 12-38
probe 12-36
scan path, diagram of 12-40
signal termination 12-39
target board connector 12-36

see EZ-ICE target board connec-
tor

EZ-ICE target board connector
diagram of 12-38
pin strip header 12-37
specifications 12-37

F
FDEP bit field deposit instruction

2-43
bit field, diagram of 2-43
example, diagram of 2-44

Fetch address register 3-6
Fetch cycle 3-4
FEXT bit field extract instruction

2-43
example, diagram of 2-45

FEXT Rx BY Ry operation
described B-82
example B-83
shifter status flags B-83

Fixed priority for external port
channels 6-38

Fixed-point formats 2-7
32-bit formats, diagram of C-8
64-bit signed products, diagram of

C-10

64-bit unsigned products,
diagram of C-9

ALU data and C-9
described C-8
fractional format C-8
multiplier data C-9
types C-8

Fixed-point MR register operations
clear MR register 2-30
described 2-30
rounding MR register 2-30
saturate MR register 2-31

Fixed-point multiplier results, see
Multiplier fixed-point results

Fixed-point multiply and
accumulate instructions,
summary of 2-51

Fixed-point operations
ALU inputs 2-13
ALU results 2-13
ALU single-function compute

operations, summary of B-3
operands and results, format of

2-13
results, format of 2-13

Fixed-point saturation 2-14
Fixed-point to floating-point

conversions 2-15
Flag inputs, see FLAGx 12-31
Flag outputs, see FLAGx 12-33
Flag pins, see FLAGx
FLAG0_IN condition 3-13
FLAG1_IN condition 3-13
FLAG2_IN condition 3-13

INDEX

I-40 ADSP-21065L SHARC DSP User’s Manual

FLAG3_IN condition 3-13
FLAGx

and core accesses of the system bus
8-48

bit states and conditional
instructions 12-32

control and status registers 12-29,
12-30

inputs 12-31
operation cycles 12-26
output timing, diagram of 12-34
outputs 12-33
pin definition 12-16
programming the direction of

FLAG11-4 12-30
programming the direction of

FLAG3-0 12-29
signaling external devices 12-33
single-bit signaling and 12-28
state after reset 12-24
status updates 12-31

Floating point DSP 1-8
dynamic range 1-8
ease-of-use 1-8
precision 1-8
signal-to-noise ratio 1-8

Floating-point data rounding bit,
see RND32 bit

Floating-point formats
exception handling 2-6
extended-precision 2-5
extended-precision width 2-5
IEEE 754/854 standard

compatibility exceptions 2-4

short word 2-5
short word conversions from

32-bit words 2-5
short word using gradual

underflow 2-6
single-precision 2-4
single-precision NAN inputs 2-4
single-precision rounding modes

2-5
single-precision, IEEE 754/854

standard 2-4
Floating-point multiply and ALU

instructions, summary of 2-51
Floating-point operation exception

handling
immediate corrections with

interrupts 2-6
monitoring a single operation

with ASTAT flags 2-6
monitoring results from multiple

operations with STKY flags 2-7
Floating-point operations

ALU single-function compute
operations, summary of B-4

exception handling 2-6
extended precision 2-5

FLSH (DMA flush buffers and
status) bit 6-14

clearing extra DMA requests 6-64
described 6-18
flushing the EPBx buffers 6-51,

7-29
restriction 8-19

Fn= -Fx (floating-point) operation

ADSP-21065L SHARC DSP User’s Manual I-41

INDEX

ALU status flags B-32
described B-32

Fn=(Fx+Fy)/2 (floating-point)
operation

ALU status flags B-30
described B-30

Fn=ABS (Fx+Fy) (floating-point)
operation

ALU status flags B-28
described B-28

Fn=ABS (Fx-Fy) (floating-point)
operation

ALU status flags B-29
described B-29

Fn=ABS Fx (floating-point)
operation

ALU status flags B-33
described B-33

Fn=CLIP Fx BY Fy operation
ALU status flags B-49
described B-49

Fn=FLOAT Rx BY Ry operation
ALU status flags B-41
described B-41

Fn=FLOAT Rx operation
ALU status flags B-41
described B-41

Fn=FUNPACK Rx operation
described B-92
gradual underflow B-92
results of B-92
shifter status flags B-93

Fn=Fx COPYSIGN Fy operation
ALU status flags B-46

described B-46
Fn=Fx*Fy operation

described B-62
multiplier status flags B-62

Fn=Fx+Fy (floating-point)
operation

ALU status flags B-26
described B-26

Fn=Fx-Fy (floating-point)
operation

ALU status flags B-27
described B-27

Fn=MAX (Fx, Fy) operation
ALU status flags B-48
described B-48

Fn=MIN (Fx, Fy) operation
ALU status flags B-47
described B-47

Fn=PASS Fx (floating-point)
operation

ALU status flags B-34
described B-34

Fn=RECIPS Fx operation
ALU status flags B-43
described B-42

Fn=RND Fx (floating-point)
operation

ALU status flags B-35
described B-35

Fn=RSQRTS Fx operation
ALU status flags B-45
described B-44

Fn=SCALB Fx BY Ry
(floating-point) operation

INDEX

I-42 ADSP-21065L SHARC DSP User’s Manual

ALU status flags B-36
described B-36

FOREVER condition 3-12, 3-15
FPACK instruction C-5

conversion results C-6
overflow condition, effects of C-7

Frame sync active level
operation with LTFS/RTFS

cleared 9-55
operation with LTFS/RTFS set

9-55
Frame sync active state 9-55
Frame sync clock edge 9-55
Frame sync configuration 9-59

both transmitters transmitting
simultaneously 9-60

continuous simultaneous
transmission 9-60

described 9-59
enabling simultaneous

transmission 9-60
FS_BOTH values 9-59

Frame sync data dependency 9-57
described 9-57
operation with DITFS cleared

9-58
operation with DITFS set 9-58
timing of internally-generated

TFS 9-57
Frame sync insert 9-56

early frame sync mode 9-56
frame signal timing modes,

example of 9-57
multichannel SPORT mode 9-56

normal vs. alternate frame,
diagram of 9-57

operation with LAFS cleared 9-56
Frame sync options 9-52

I2S SPORT mode 9-63
multichannel SPORT mode 9-69
word select signals 9-63

Frame sync requirement
continuous output and 9-52
described 9-52
DMA chaining and 9-53
framed serial transfers, example of

9-53
framed vs. unframed data,

diagram of 9-54
initiating communications and

9-53
operation with RFSR/TFSR

cleared 9-53
operation with RFSR/TFSR set

9-52
Frame sync source

described 9-54
frame sync divisors 9-54
operation with ITFS/RTFS

cleared 9-54
operation with ITFS/RTFS set

9-54
Frame synchronization 9-5
FS (DMA external port buffer

status) bits 6-14
described 6-18
status values 6-19

ADSP-21065L SHARC DSP User’s Manual I-43

INDEX

FS_BOTH (frame sync both) bit
9-17

defined 9-28
described 9-63
standard SPORT mode 9-59
word select signal 9-64

Full-page burst length (SDRAM)
10-18

FUNPACK instruction C-5
conversion results C-6

G
GE condition 3-14
General loop restrictions 3-27

last three instructions in 3-27
nested loops 3-27

Generating addresses for the PM
and DM buses 5-11

Generating addresses outside the
address range of external
memory space 6-30

Generating internal and external
addresses for DMA transfers
6-55

GND, pin definition 12-20
GP (DMA general purpose) register

6-31
and DMA sequences 6-41
loading 6-41

Gradual underflow C-7
Ground planes 12-46
Group I (compute and move)

instructions
compute (type 2) instruction A-32

compute (type 2) instructions
A-28

compute/dreg⇔DM/dreg⇔PM
(type 1) instruction A-30

compute/dreg⇔DM/dreg⇔PM
(type 1) instructions A-28

compute/dreg⇔DM|PM,
immediate modify (type 4)
instruction A-35

compute/dreg⇔DM|PM,
immediate modify (type 4)
instructions A-28

compute/modify (type 7)
instruction A-42

compute/modify (type 7)
instructions A-29

compute/ureg⇔DM|PM, register
modify (type 3) instruction
A-33

compute/ureg⇔DM|PM, register
modify (type 3) instructions
A-28

compute/ureg⇔ureg (type 5)
instruction A-37

compute/ureg⇔ureg (type 5)
instructions A-28

IF COND A-29
immediate Shift/dreg⇔DM|PM

(type 6) instruction A-39
immediate Shift/dreg⇔DM|PM

(type 6) instructions A-28
summary A-28

Group II (program flow control)
instructions

INDEX

I-44 ADSP-21065L SHARC DSP User’s Manual

direct jump|call (type 8)
instruction A-45

do until (type 13) instruction
A-60

do until counter expired (type 12)
instruction A-58

IF COND A-44
indirect jump or

compute/dreg⇔DM (type 10)
instruction A-52

indirect jump|call/compute (type
9) instruction A-48

return from
subroutine|interrupt/compute
(type 11) instruction A-55

summary A-44
Group III (immediate move)

instructions
immediate data⇒DM|PM (type

16) instruction A-67
immediate data⇒ureg (type 17)

instruction A-69
summary A-62
ureg⇔DM|PM (direct

addressing) (type 14)
instruction A-63

ureg⇔DM|PM (indirect
addressing) (type 15)
instruction A-65

Group IV (miscellaneous)
instructions

Cjump/Rframe (type 24)
instruction A-81

IDLE (type 22) instruction A-78

IDLE16 (type 23) instruction
A-79

NOP (type 21) instruction A-77
pop stacks/flush cache (type 20)

instruction A-75
register modify/bit-reverse (type

19) instruction A-73
summary A-70
system register bit manipulation

(type 18) instruction A-71
GT condition 3-14

H
Handshake mode DMA 6-20

configuration 7-31
data source and destination

selection 6-63
described 6-55, 6-62
DMAGx 6-62, 7-31, 8-22
DMARx 6-62, 7-31, 8-22
enabling 6-63
EXTERN bit 7-31, 8-22
external transfers and the ECEPx

register 6-63
hardware handshake signals 6-62
host data transfers to internal

memory space 8-22
HSHAKE bit 7-31, 8-22
MASTER bit 7-31, 8-22
multiprocessing DMA accesses of

internal memory 7-31
Hardware SPORT reset 9-8
HBG

and host signal buffers 8-9

ADSP-21065L SHARC DSP User’s Manual I-45

INDEX

host interface 8-8
multiprocessor bus arbitration

7-10
pin definition 12-8
state after reset 12-22

HBR
BCNT register and 7-18
host booting 12-58
host interface 8-8
maintaining host bus mastership

8-10
multiprocessor booting 12-59
multiprocessor bus arbitration

7-10
pin definition 12-9
relinquishing the bus 8-11
resolving system bus access

deadlock 8-49
signal glitches, avoiding 8-46
state after reset 12-24

HBW (host bus width) bits 8-22,
8-24, 8-26

changing the
initialization-after-reset value
8-26

changing the packing mode 12-57
EPBx packing modes 6-16
external port DMA packing mode

6-51
host boot mode 12-57
host data transfers 8-24
host EPBx packing modes 8-19
host EPBx transfers 8-24
packing individual data words

8-19
High frequency design issues 12-42

clock distribution 12-43
clock specifications and jitter

12-42
clock with two frequency inputs,

diagram of 12-42
controlled impedance

transmission line 12-43
crosstalk, reducing 12-45
decoupling capacitors and ground

planes, see Decoupling capacitors
and ground planes

end-of-line termination, see
End-of-line termination

oscilloscope probes, see
Oscilloscope probes

point-to-point connections on
serial ports, see Point-to-point
connections on serial ports

propagation delay 12-43
reflections, reducing 12-46
signal integrity, see Signal integrity
source termination, see Source

termination
HMSWF (host packing order) bit

6-54, 8-27
and 48-bit DMA words 6-53

Host asynchronous accesses
broadcast writes

see Broadcast writes
buses used for 8-16
CS 8-11
host interface buffers 8-12

INDEX

I-46 ADSP-21065L SHARC DSP User’s Manual

in multiprocessor systems 8-14
initiating 8-16
maximum throughput, reads 8-15
rate of 8-15
read cycle sequence 8-15
read/write example timing,

diagram of 8-13
REDY, see REDY
timing 8-11
tTRDYHG switching characteristic

and transfer timing 8-12
write cycle sequence 8-14

Host boot mode
boot sequence and kernel loading

12-51, 12-54
booting sequence 12-58
described 12-56
DMAC0 register 12-49, 12-57
external memory space address of

first instruction 12-49
HBR 12-58
pin configuration 12-51
see also Host booting

Host booting 12-56
BMS 12-56
boot sequence 12-58
BSEL 12-56
DATA15-0 12-58
DMA controller operation 12-58
DMA data packing 12-57
DMA done interrupt 12-58
DMAC0 initialization after reset

12-56
HBR 12-58

interrupt vector table, locating
12-61

multiprocessing 12-59
pin configuration 12-56
reset boot sequence 12-56
RTI instruction 12-58
slave processor mode 12-56
writing directly to EPB0 12-58
writing to the IOP registers 12-58

Host bus acknowledge, see REDY
Host bus acquisition 8-8

accessing the processor 8-8
BRx 8-8
example timing, diagram of 8-10
HBG 8-8
HBR 8-8
host signal buffers 8-9
HTC 8-8
restrictions 8-10
SBTS 8-11

Host bus grant, see HBG
Host bus mastership

avoiding temporary loss of 8-10
HBG 8-8
HBR 8-8, 8-10
REDY 8-8
relinquishing the bus 8-11

Host bus request, see HBR
Host control of processor

asynchronous transfers 8-9
and SDRAM 8-9
CS 8-9
host driven signals 8-9

relinquishing the bus 8-11

ADSP-21065L SHARC DSP User’s Manual I-47

INDEX

Host data packing 8-24
16- to 48-bit packing 8-35
32- to 48-bit packing 8-34
32-bit data 8-31
32-bit data reads 8-31
32-bit data writes 8-33
48-bit instructions 8-34
8- to 48-bit packing 8-35
changing the value of HBW 8-26
diagram of 8-32
for all IOP register accesses, except

the EPBx buffers 8-24
for EPBx accesses 8-24
for non-EPBx IOP registers 8-24
HBW 8-24
individual data words 8-24
packing/unpacking individual

data words 8-19
PMODE 8-19, 8-22, 8-24
specifying host bus width 8-24

Host data transfers 8-16
accessing the processor (CS) 8-11
addressing 8-16
addressing an IOP register 8-11
ADDRx bits host must drive 8-11
BHD (buffer hang disable) bit

8-19
communication with processor’s

core 8-16
control and configuration of

processor operation 8-16
core hang 8-19
CS 8-16
data packing, see Host data

packing
defined 8-5
DMA transfers, see Host DMA

transfers
DMA transfers, setting up 8-16
EPBx buffers, see EPBx buffers
EPBx writes 8-18
full speed asynchronous writes

8-15
functions 8-16
handshake mode DMA 8-22
HSHAKE 8-21, 8-22
initiating 8-16
IOP register reads 8-17
IOP register writes 8-16

cycles to complete 8-17
maximum throughput 8-17
slave write FIFO 8-16

MASTER 8-21, 8-22
maximum throughput, reads 8-15
rate of asynchronous writes 8-15
read cycle sequence 8-15
read/write cycle example timing,

diagram of 8-13
resynchronizing previously

written words 8-15
single-word 8-18, 8-19, 8-20
single-word, non-DMA 8-20
slave mode DMA 8-21
slave write FIFO 8-15
through the EPBx buffers, see

Host EPBx transfers
transferring data 8-16
types 8-18

INDEX

I-48 ADSP-21065L SHARC DSP User’s Manual

with on-chip memory 8-21
write cycle sequence 8-14

Host DMA transfers 8-21
block data 8-18
data packing and PMODE 8-22
DMAGx 8-21
DMARx 8-21
EXTERN 8-21
external memory space accesses

8-21, 8-22, 8-23
handshake mode DMA 8-22
HSHAKE 8-21, 8-22
internal memory space accesses

8-21, 8-22
MASTER 8-21, 8-22
setting up DMA transfers to

on-chip memory 8-21, 8-22
slave mode DMA 8-21

Host EPBx transfers 8-18
BHD (buffer hang disable) bit

8-19
broadcast writes 8-23

see Broadcast writes
core hang 8-19
data packing, see Host data

packing
DATAx and 8-30, 8-31
DMA data packing

see also Host data packing
DMA transfers

see also Host DMA transfers
DMACx packing control bits,

summary of 8-28
HBW bit values, changing 8-29

host reads of an empty buffer 8-19
packing mode

bit combinations, summary of
8-24

HBW 8-24
PMODE 8-24

processor writes to a full buffer
8-19

setting up DMA transfers to
internal memory space 8-21

single-word 8-18, 8-19, 8-20
single-word non-DMA 8-20
slave write FIFO 8-18
types 8-18
write latency 8-18

Host interface 8-1
accesses and operation cycles

12-26
accessing a processor 8-8, 8-11
accessing slave processors over the

cluster bus 8-44
ACK 12-7
arbitration for control of the

system bus 8-44
asynchronous transfer timing

see also Host asynchronous access-
es

asynchronous writes, rate of 8-15
basic system bus/cluster bus

interface, diagram of 8-45
bidirectional system bus interface,

diagram of 8-47
BRx and host bus acquisition 8-8
buffers 8-12

ADSP-21065L SHARC DSP User’s Manual I-49

INDEX

bus acquisition example timing,
diagram of 8-10

cluster bus 8-44
core accesses of the system bus

8-48
CS 12-8
data bus lines and host bus width

8-30
data packing, see Host data

packing
data transfers, see Host data

transfers
diagram of 8-2
DMA data transfers, see Host

DMA transfers
DMACx registers, see DMACx

registers
external bus accesses 8-2, 8-5
external port and 8-2
features 8-1
HBG signal 8-8, 12-8
HBR signal 8-8, 12-9
HBW bit values, changing 8-29
host control

see Host bus acquisition
see Host bus mastership

host transfers, see Host data
transfers, Host DMA transfers,
and Host EPBx transfers

HTC (host transition cycle) 8-6
immediate high-priority interrupt

8-36
interprocessor messages 8-36

see Interprocessor messages

interrupt service routine 8-36
IOP registers, see IOP registers
local bus, defined 8-6
maximum throughput, reads 8-15
memory mapping 8-2
message passing 8-36
multiprocessor memory space and

8-6
physical connection to 8-2
pin definitions 12-7
processor, defined 8-6
REDY 12-9
SBTS and 8-4
signal glitches on the HBR line,

avoiding 8-46
single-word data transfers, defined

8-6
slave processor, defined 8-7
suspending a processor’s active

access of the system bus 8-50
SYSCON, see SYSCON register
system access of slave processors

8-46
system bus access deadlock, see

System bus access deadlock
system clock cycle, references to

8-7
vector interrupts 8-36

Host interface pins
CS 8-3
HBG 8-3
HBR 8-3
REDY 8-4
summary of 8-3

INDEX

I-50 ADSP-21065L SHARC DSP User’s Manual

Host interface signals
chip select 8-3
host bus acknowledge 8-4
host bus grant 8-3
host bus request 8-3
summary of 8-3

Host to processor, 8- to 48-bit word
packing 6-54

Host transition cycle, see HTC
Host vector interrupts 8-38

generating 8-38
interrupt service routine 8-38
interrupt service routines 8-38
servicing 8-38

Host, defined 8-5
HPFLSH (host packing status flush)

bit 8-27
HPS (host packing status) bit 7-43,

8-42
HSHAKE (DMA handshake mode

enable) bit 6-14, 8-21, 8-22
described 6-19
DMA transfers to on-chip

memory 7-31, 7-32
HSTM (host mastership) bit 7-41,

8-40
HTC 8-8, 8-9

defined 8-6
Hysteresis

described 12-41
RESET 12-41

I
I (DAG index) registers 4-2

bit-reverse instruction and 4-14
circular buffer addressing and 4-9
circular data buffers and 4-11
immediate modifiers 4-8
postmodify addressing operations

4-7
using without a circular data

buffer but with circular buffer
overflow interrupts enabled
4-13

I/O bus
and DMA operations 6-27
and the EPBx buffers 8-18
data transfers with memory 5-7
defined 5-4
generating addresses for 32-bit

addresses 5-26
memory accesses 5-27

I/O interrupts, causes of 6-47
I/O processor 7-26

see IOP registers
I2S SPORT mode

control bits 9-62
data word length and the frame

sync divisor 9-63
data word length capability 9-63
default bit values, diagram of

9-19, 9-24
default channel order 9-63
described 9-61
DITFS 9-26
DTYPE 9-28
dual transmitter operation 9-64
enabling 9-62

ADSP-21065L SHARC DSP User’s Manual I-51

INDEX

frame sync data dependency in
9-57

I2S bus architecture 9-61
Inter-IC sound bus protocol 9-61
L_FIRST 9-30
loopback mode 9-88
MSTR 9-31
operation capabilities, summary of

9-61
OPMODE 9-32, 9-36
PACK 9-32
RCLKDIV 9-62
receive control bits 9-21
ROVF 9-33
RXS 9-33
SCHEN 9-34
SDEN 9-34
setting the frame sync options

9-63
see Frame sync options

setting the internal serial clock rate
9-61

setting the transmit and receive
channel order 9-63

setting the word length 9-63
SLEN 9-35
SPEN 9-35
SPL 9-36
SPORT DMA enabling 9-65

see also SPORT DMA
SPORT master mode, enabling

9-64
TCLKDIV 9-62
transmit control bits 9-15

TUVF 9-36
TXS 9-37
word select timing, diagram of

9-66
ICLK (transmit and receive clock

sources) bit 9-16, 9-21
clock signal options 9-50

IDC (ID code) bit 7-42, 8-41
IDLE (type 2) instruction 3-1

described 3-56
execution sequence 3-56
exiting 3-56
internal clock and timer operation

during 3-56
interrupt servicing and 3-38

IDLE (type 22) instruction
described A-78
opcode A-78

IDLE16 (type 23) instruction
application exits A-79
application software exits from

3-56
described 3-56, A-79
DMA transfers A-79
execution sequence 3-56
exiting 3-56
host accesses A-79
internal clock and timer operation

during 3-56
interrupt servicing and 3-38
multiprocessing A-79
nonsupported accesses A-80
opcode A-80
restrictions 3-56

INDEX

I-52 ADSP-21065L SHARC DSP User’s Manual

unsupported operations 3-57
IDx

bus synchronization and 7-11
connections in a multiprocessor

system 7-3
multiprocessor bus arbitration

7-10
pin definition 12-16
state after reset 12-24

IEEE rounding modes 2-15
IF NOT LCE instruction 3-13
IF TRUE instruction 3-12
II (DMA index register) 6-31
IIVT (internal interrupt vector

table) bit
boot modes 12-61
overriding the boot mode F-3

IM (DMA modify register) 6-31
IMASK register 3-46, 6-40, 9-9

accessing through the external
port 6-47

and the VIRPT register 6-47
bit definitions E-14
bit values after reset 3-46
default bit values, diagram of

E-13, F-5
described 9-73, E-12
disabling DMA interrupts 6-40,

6-69, 7-29
disabling interrupts 8-20
DMA interrupts 6-45
EP0I 3-46
host booting and 12-58
initialization value E-12

interrupt vectors and priorities
F-1

IRPTL register bits and 3-44
masking interrupts 3-46
memory-mapped address and

reset value 9-11, 9-12
multichannel receive comparison

mask 9-73
RESET restrictions 3-46

IMASKP register 3-46
bit definitions 3-47
generation of new temporary

interrupt masks 3-47
interrupt priority and 3-47
nesting interrupts 3-46
RTI instruction and 3-16
temporary masks for nested

interrupts 3-47
IMAT (receive comparison accept

data) bit 9-22
defined 9-28
receive comparisons and 9-74

IMDWx (internal memory block
data width) bit 8-27

and word width of DMA data
transfers 6-16

changing value of 5-40
RND32 and 5-41

Immediate addressing 5-11
Immediate DAG modifiers 4-8

instructions with parallel
operations 4-8

magnitude of values 4-8

ADSP-21065L SHARC DSP User’s Manual I-53

INDEX

Immediate data⇒DM|PM (type
16) instruction

described A-67
example A-67
opcode A-67
syntax summary A-8

Immediate data⇒ureg (type 17)
instruction

described A-69
example A-69
opcode A-69
syntax summary A-8

Immediate high-priority interrupt,
see Vector interrupts

Immediate modifier value
postmodify addressing operations

4-7
premodify addressing operations

4-6
width of 4-7

Immediate move instructions
immediate data⇒DM|PM (type

16) instructions A-8
immediate data⇒ureg (type 17)

instructions A-8
summary A-8
ureg⇔DM|PM (direct

addressing) (type 14)
instructions A-8

ureg⇔DM|PM (indirect
addressing) (type 15)
instructions A-8

Immediate Shift/dreg⇔DM|PM
(type 6) instruction

example A-39
opcode (with data access) A-40
opcode (without data access) A-40
syntax summary A-5

IMODE (receive comparison
enable) bit 9-21

defined 9-29
receive comparisons and 9-74

Indirect addressing 5-11
DAG1 and the DM bus 5-11
DAG2 and the PM bus 5-11
postmodify with immediate value

A-18
postmodify with M register,

update I register A-18
premodify with immediate value

A-18
premodify with M register, update

I register A-18
Indirect jump or

compute/dreg⇔DM (type 10)
instruction

described A-52
example A-53
IF COND A-52
opcode (with indirect jump) A-53
opcode (with PC-relative jump)

A-53
syntax summary A-6

Indirect jump|call/compute (type 9)
instruction

described A-48
example A-49
opcode (with indirect branch)

INDEX

I-54 ADSP-21065L SHARC DSP User’s Manual

A-50
opcode (with PC-relative branch)

A-50
Individual register file registers

assembly language prefix identifier
2-10

described 2-10
fixed-point computations 2-10
floating-point computations 2-10

Input signal conditioning 12-41
input inverter and 12-41

Input synchronization delay 12-27
Inserting a high priority DMA chain

in an active DMA chain 6-44
Instruction addresses 3-6
Instruction cache

architecture, see Instruction cache
architecture

cache hit 3-58
cache miss 3-58, 5-10
defined 5-3
described 3-58
disable and freeze 3-61

see, Instruction cache disable and
freeze

dual data accesses 5-9
efficiency 3-60

see Instruction cache efficiency
instruction fetches 5-10
operation 3-58, 5-10
operation after reset 3-62
PM bus conflict 5-10
PM data bus accesses 5-10
program memory data accesses

3-10
program sequencing 3-7
size of 3-58
three-instruction pipeline and

3-58
Instruction cache architecture

addressing entry sets 3-59
cache hit 3-59
cache miss 3-59
described 3-58
diagram of 3-59
entry 3-58
entry sets 3-59
entry valid bit 3-59
instruction address mapping 3-59,

3-60
LRU bit 3-59

see LRU (least recently used) bit
Instruction cache disable and freeze

3-61
CADIS 3-62
CAFRZ 3-62
disabling 3-61
freezing 3-61
program memory data access

restrictions and 3-62
Instruction cache efficiency 3-60

bit rate and 3-60
cache misses and 3-60
described 3-60
example of cache-inefficient code

3-60
Instruction cycle 3-4

clock rate 3-4

ADSP-21065L SHARC DSP User’s Manual I-55

INDEX

decode 3-4
execute 3-4
fetch 3-4
pipelined execution cycles 3-5
pipelining 3-4
processing rate 3-4

Instruction fetches 5-8, 5-10
dual data accesses 5-8
over the PM data bus 5-10
PM bus conflict 5-10
through the instruction cache

5-10
word width of 5-28

Instruction pipeline 3-19
DO UNTIL instruction and 3-25
instruction cache and 3-58
loop restrictions and 3-27
short loops and 3-28

Instruction set notation A-11
Instruction set reference

compute and move/modify A-4
see Compute and move/modify

instructions
condition and termination codes,

summary of A-13
conditional instructions A-3
group I instructions

see Group I (compute and move)
instructions A-28

group II (program flow control)
instructions
see also Group II (program flow

control) instructions
summary A-44

group III (immediate move)
instructions A-62, A-70
see Group III (immediate move)

instructions
see Group IV (miscellaneous) in-

structions
group IV instructions A-9
immediate move instructions A-8

see Immediate move instructions
instruction summary A-2
instruction types A-2
map 1 system registers A-25
map 1 universal register codes

A-26
map 1 universal registers A-24
map 2 universal register codes

A-25, A-27
memory addressing A-18

see Memory addressing
miscellaneous instructions A-9

see Miscellaneous instructions
notation summary A-11
opcode notation, summary of

A-19
program flow control A-6

see Program flow control instruc-
tions

register types, summary of A-15
universal register codes, summary

of A-24
Instructions

conditional 3-12
conditional and FLAGx bit states

12-32

INDEX

I-56 ADSP-21065L SHARC DSP User’s Manual

conditional memory writes 5-49
internal memory storage 5-50
pipeline 3-19

INT_HIx (timer interrupt vector
location) bit

described) 11-9
latching timer status bits 11-9
mapping programmable timer

interrupts 3-45
Interface with the system bus 8-44

accessing slave processors over the
cluster bus 8-44

arbitration for control of 8-44
basic system bus/cluster bus

interface, diagram of 8-45
bidirectional system bus interface,

diagram of 8-47
cluster bus 8-44
core accesses of 8-48
FLAGx 8-48
master processor accesses of 8-46
MSx 8-48
signal glitches on the HBR line

8-46
system access of slave processors

8-46
uniprocessor to microprocessor

interface 8-51
Inter-IC sound bus protocol 9-61
Internal buses

access restrictions 5-27
and the external ADDRx data bus

5-12
control of 5-7

DM bus 5-7, 5-12
I/O bus 5-7, 5-12, 7-25
memory, connection to 5-7
PM bus 5-7, 5-12

Internal clock generator 12-26
enabling 12-27
multiprocessing and 12-26
phase lock 12-27

Internal interrupt vector table
(IIVT) bit 5-30

Internal memory block data width,
see IMDWx (internal memory
block data width) bit

Internal memory map
IOP registers 5-23
normal word 5-24
short word 5-24

Internal memory space
address boundaries 5-19
address regions 5-23
concurrent DMA accesses of 6-74
defined 5-4
described 5-23
diagram of 5-23
DMA transfers

and DMAGx 8-21
and DMARx 8-21

extending DMA access to 7-30
external port connection 6-27
handshake mode DMA accesses

7-31
host data transfers through the

EPBx buffers 8-18
host DMA transfers 8-21

ADSP-21065L SHARC DSP User’s Manual I-57

INDEX

interrupt vector table, address of
5-24

low-level organization 5-35
map of 5-17
multiprocessor DMA transfers to

7-30
prioritizing external DMA

accesses 6-37
reserved addresses 5-19
setting up host DMA transfers

8-21
slave mode DMA accesses 7-31
SPORT connection 6-27
unusable locations 5-24

Interprocessor communications
overhead 7-6
see Interprocessor messages

Interprocessor messages 7-36, 7-37,
8-36

described 7-36
host vector interrupts, see Host

vector interrupts
immediate high-priority interrupt

8-36
interrupt service routines 7-38,

7-39, 8-36
IOP registers 8-36
message passing, see Message

passing
MSGRx registers 7-36, 8-36
types 8-36
vector interrupts 7-36, 7-38, 8-36
VIRPT register 7-36, 8-36

Interrupt controller 3-7

Interrupt latch register, see IRPTL
register

Interrupt latency 3-40
branch and following cycle 3-43
branching to the vector cycles

3-40
first cycle in fetch/decode of first

instruction in interrupt service
routine 3-44

first two cycles of a program
memory data access 3-43

interrupt priority and 3-43
IRQx and multiprocessor vector

standard 3-43
last iteration of one-instruction

loop 3-43
multicycle operations 3-43
pipelined delayed branch 3-42
pipelined program memory data

access with cache miss 3-41
pipelined single-cycle instruction

3-40
processor access of external

memory space during a host bus
grant or while bus slave 3-44

recognition cycle 3-40
synchronization and latching

cycle 3-40
third to last iteration of

one-instruction loop 3-43
wait states for external memory

space accesses 3-44
writes to IRPTL 3-40

INDEX

I-58 ADSP-21065L SHARC DSP User’s Manual

Interrupt mask and latch registers,
see IMASK register and IRPTL
register

Interrupt mask pointer register, see
IMASKP register

Interrupt masking and control 3-46
IMASK register 3-46

see also IMASK register
IMASKP register 3-46

see also IMASKP register
Interrupt priority 3-45

arithmetic interrupts 3-45
described 3-45
INT_HIx bit and programmable

timer interrupts 3-45
nested interrupts and 3-45
programmable timer interrupts

3-45
ranking 3-45
STKY flags and 3-45

Interrupt request lines, see IRQx
Interrupt service routine 7-39

pushing ASTAT on the status
stack 12-33, 12-34

pushing IOSTAT on the status
stack 12-33, 12-34

reducing to normal subroutine
3-50

RTI instruction 3-39
see also Vector interrupts
servicing vector interrupts 7-38
VIPD bit, checking 7-39

Interrupt servicing stages 3-40
branching to the vector 3-40

recognition 3-40
synchronization and latching 3-40

Interrupt vector addresses
described F-1
external EPROM booting and

location of interrupt vector
table F-3

external source booting and
location of interrupt vector
table F-3

IIVT bit and selecting the location
of the interrupt vector table F-3

IMASK register bit values,
diagram of F-5

IRPTL and IMASK interrupt
vectors and priorities F-1

IRPTL register bit values, diagram
of F-5

no boot mode and location of
interrupt vector table F-3

offsets from base addresses F-1
Interrupt vector table 3-44

address of 8-38
IRPTL 3-44
location for external EPROM

booting F-3
location for external source

booting F-3
location for no boot mode F-3
VIRPT 3-44

Interrupt vector table address
boot mode 5-30
internal memory space 5-24
locating 12-61

ADSP-21065L SHARC DSP User’s Manual I-59

INDEX

no boot mode 5-30
when IIVT=0 12-61
when IIVT=1 5-30, 12-61

Interrupt-driven data transfer mode
9-65

described 9-65
interrupts 9-65

Interrupting DMA transfers over
the external bus 7-18

Interrupts
circular buffer overflow 4-12
clearing the current one for reuse

3-49
I2S interrupt-driven data transfer

mode 9-65
IRPTL write timing 3-40
latency 3-40
loop address stack overflow 3-33
multiple SPORT single-word

transfers 9-87
nesting and IMASKP 3-46
packed serial data word transfers

9-48
PC stack interrupt 3-24
processing 3-42
processing and delayed branches

3-23
processing in counter-based loops

3-29
program sequencer, see Program

sequencer interrupts
program structures 3-1
programmable timer 3-45, 11-3,

11-6

serial port 9-6
see also SPORT interrupts

servicing restrictions 3-38
servicing sequence 3-39
servicing stages 3-40
software, see Software interrupts
SPORT packed-word transfers

9-87
SPORT single-word transfers

9-79, 9-86
stack overflow 3-24
timing and sensitivity of external

3-50
vector addresses F-1
vector table 3-44

INTIO (DMA single-word
interrupt enable) bit 6-14

described 6-17
enabling interrupt-driven I/O

8-20
single-word EPBx data transfer

control 7-29
IOCTL register 10-6

address of 11-14, E-68
bit definitions E-70
default bit values, diagram of

10-12, E-69
described E-68
DSDCK1 10-9, 10-15
DSDCTL 10-9, 10-15
FLAG11-4 12-30
FLAG11-4 control bits 12-30
FLAG11-4 direction 12-30
FLAG11-4 value after reset 12-31

INDEX

I-60 ADSP-21065L SHARC DSP User’s Manual

initialization value E-68
SDBN 10-11
SDBS 10-11
SDBUF 10-11, 10-17
SDCL 10-10
SDPGS 10-10, 10-18
SDPM 10-10
SDPSS 10-11
SDRAM configuration

parameters, summary of 10-13
SDRAM control bit definitions

10-9
SDRAM interface control 10-9
SDRAM power-up sequence and

10-20
SDRDIV register and 10-14
SDSRF 10-10, 10-20
SDTRAS 10-10
SDTRP 10-10

IOP register reads
described 7-27
maximum throughput 7-27

IOP register writes
ACK 7-26
described 7-26
maximum pipeline throughput

7-27
slave write FIFO 7-26
throughput 7-26
write latency 7-26

IOP registers
access restrictions E-40
address region 5-23
addresses, reset values, and groups

E-43
addressing for host transfers 8-11
bit wise operations and 12-30
defined 5-4, 7-5, 8-6, E-1
described E-31
DM bus accesses E-41
DMA registers, summary of E-33,

E-35
DMACx registers 6-11, 8-16,

E-54
DMASTATx register E-64
external memory space wait states

5-53
external port bus accesses E-41
group access contention E-41
host booting and 12-58
host data transfers and 8-16
host interface and 8-6
host reads of 8-17
host writes to 8-16
I/O bus accesses E-41
initialization values after reset,

summary of E-40
internal DMA transfers to E-41
internal memory address region

5-23
interprocessor messages and 8-36
IOCTL 11-14, E-68
IOSTAT 11-13, 11-14, E-75
mode and control bit write

latencies E-43
MSGRx 8-16, 8-36
multiprocessing and 7-25
multiprocessing writes to 7-26

ADSP-21065L SHARC DSP User’s Manual I-61

INDEX

PM bus accesses E-41
programmable timer registers,

addresses of 11-12
RDIVx E-78
resolving group access contention

E-42
SDRDIV register 10-13
serial port registers, summary of

E-35
SRCTLx E-81
STCTLx E-90
summary of E-31
SYSCON 8-16, E-99
SYSTAT 8-16, E-106
system control registers, summary

of E-32
TCOUNTx 11-6
TDIVx E-78
TPERIODx 11-6
TPWIDTHx 11-6
VIRPT 8-36
WAIT E-111
write latencies E-42

IOSTAT register
address of 11-14, E-75
bit definitions E-76
default bit values, diagram of

11-13, E-76
described E-75
flag status updates 12-31
FLAG11-4 12-30
FLAG11-4 inputs 12-31
FLAG11-4 outputs 12-33
FLAGx status bit permissions

12-32
FLAGxO status bits 12-32
initialization value E-75
programmable I/O ports and

11-13
signaling external devices with

FLAGx bits 12-33
status stack pushes and pops

12-34
IRFS (RFS source) bit 9-21

defined 9-29
described 9-54

IRPTEN (global interrupt enable)
bit

interrupt request validity and 3-38
IRPTL register

bit definitions E-14
BIT SET instruction and 3-49
bit values during interrupt service

routine execution 3-44
clearing 3-44
clearing current interrupt for reuse

3-49
default bit values, diagram of

E-13, F-5
described 3-44, E-12
disabling DMA interrupts and

7-29
DMA interrupts 6-9, 6-45
forced interrupt timing 3-40
IMASK register bits and 3-44,

3-46
initialization value E-12
interrupt priority 3-45

INDEX

I-62 ADSP-21065L SHARC DSP User’s Manual

interrupt vector table and 3-44
interrupt vectors and priorities

F-1
programmable timer interrupts

and 11-9
RESET 3-44
reusing an interrupt the processor

is processing 3-44
RTI instruction and 3-16
size of 3-44
software interrupts, activating

3-49
updating 3-48

IRQx
external interrupt and timer pins

12-28
operation cycles 12-26
pin definition 12-17
program sequencer interrupts

3-38
standard latency 3-43
state after reset 12-24
task-on-demand control 12-28
timing and sensitivity 3-50
validity of edge-triggered 3-51
validity of level-sensitive 3-50

IRQxE (external interrupt mode)
bits, configuration values 3-51

ITFS (TFS source) bit 9-16
defined 9-29
described 9-54

J
JTAG boundary register D-6

described D-6
scan path positions

definitions D-6
latch type and function D-6

size of D-6
JTAG instruction register D-3

Bypass register D-4
described D-3
instruction binary code D-3
loading D-3
serial scan paths D-4

diagram of D-5
size of D-3
test instructions, summary of D-3

JTAG test access port
additional references D-29
BIST (built-in self-test

instructions) D-28
boundary register D-6

see JTAG boundary register
boundary scan D-1
described D-1
device identification register D-28
instruction register D-3

see JTAG instruction register
latches D-1
private instructions D-29
serial test access port D-1
serial-shift register path D-1
TAP (test access port) D-2

see TAP (JTAG test access port)
JTAG test clock, see TCK
JTAG test data input, see TDI
JTAG test data output, see TDO

ADSP-21065L SHARC DSP User’s Manual I-63

INDEX

JTAG test mode select, see TMS
JTAG test reset, see TRST
JTAG/emulator

accessing on-chip emulation
features 12-34

boundary scans 12-34
CLKIN connection 12-40
clock skew 12-40
EMU 12-19
executing synchronous

multiprocessor operations
12-40

EZ-ICE emulator, see EZ-ICE
emulator

interface pins 12-34
pin definitions 12-19
pin states after reset 12-25
scan path, diagram of 12-40
signal termination 12-39
TCK 12-19
TDI 12-19
TDO 12-20
test access port 12-34
TMS 12-20
TRST 12-20, 12-35

JUMP (CI) instruction
clearing the current interrupt for

reuse 3-49
status stack restore of ASTAT

3-48
status stack restore of MODE1

3-48
JUMP (LA)

aborting noncounter-based loops

prematurely 3-30
automatic loop abort 3-17
restriction in loops 3-17

Jump instructions 3-1
automatic loop abort 3-17
CI modifier 3-44
conditional branching 3-16
delayed and nondelayed 3-17
described 3-16
indirect, direct, and PC-relative

3-17
program memory data accesses

3-11

K
KEYWDx register 9-9

described 9-73
memory-mapped address and

reset value 9-10, 9-12
multichannel receive comparison

9-73

L
L (DAG locations) registers 4-2

circular data buffers and 4-11
initialization and postmodify

behavior 4-7
values, restrictions on 4-11

L_FIRST (left/right channel
transmit/receive first) bit 9-16,
9-21

default setting 9-63
defined 9-30
described 9-63

INDEX

I-64 ADSP-21065L SHARC DSP User’s Manual

LADDR register
described 3-33
loop address stack pointer and

3-33
value when loop address stack

empty 3-33
LAFS (late TFS/RFS) bit 9-16, 9-22

defined 9-29
described 9-56
late frame sync mode 9-56

Late frame sync mode 9-56
described 9-56

Latencies and throughput
summary of 12-65
system registers effect and read

latencies E-4
Latency between DMA request and

DMA grant signals, handling
6-65

LCE condition 3-12, 3-14
CURLCNTR (current loop

count) and 3-12
DO UNTIL instruction 3-12
IF NOT LCE instruction and

3-13
LCNTR 3-25, 3-34

CURLCNTR and 3-35
described 3-35
last loop iteration 3-35
loop counter stack and 3-35
nested loops, setting up count

value for 3-35
reads of 3-37

LE condition 3-13

Least significant word (LSW)
format 5-29

Loading routine, see Booting
Local bus, host interface and 8-6
Loop abort (LA) modifier 3-34
Loop address stack 3-7

described 3-32
DO UNTIL instruction and 3-33
empty state 3-33
layout 3-32
loop abort (LA) modifier and 3-34
overflow 3-33
PUSH LOOP instruction and

3-33
pushing and popping 3-7
stack pointer and the LADDR

register 3-33
STKY register and 3-33

Loop counter stack 3-34
LCNTR value and 3-35
pushing for nested loops, diagram

of 3-36
see LCNTR

Loop counters and stack 3-34
current loop counter, see

CURLCNTR
loop counter stack 3-34
loop counter, see LCNTR

Loop instructions 3-1
counter-based loops 3-28
DO FOREVER 3-12
DO UNTIL 3-11

see DO UNTIL instruction 3-25
instruction pipeline 3-27

ADSP-21065L SHARC DSP User’s Manual I-65

INDEX

JUMP (LA) and automatic loop
abort 3-17

loop address stack, see Loop
address stack

loop counters and stack 3-34
noncounter-based loops 3-29
program memory data accesses

3-11
restrictions 3-27, 3-28, 3-29

see also General loop restrictions
3-27

short loops 3-27, 3-28
simple loop, example code 3-25
termination conditions 3-33

Loop stacks
empty flag 3-54
flags 3-54
overflow flag 3-54

Loop termination instructions 3-12
LRFS (active state RFS) bit 9-21

defined 9-30
LRU (least recently used) bit

described 3-59
values 3-59

LSEM bit 3-54
LSOV bit 3-54
LSWF packing format 6-52
LT condition 3-13
LTFS (active state TFS) bit 9-16

defined 9-30
described 9-55

M
M (DAG modify) registers 4-2

circular buffer addressing and 4-9
circular data buffers and 4-11
postmodify addressing operations

4-7
premodify addressing operations

4-6
MASTER (DMA master mode

enable) bit 6-14, 6-30, 8-21,
8-22

described 6-19
DMA memory transfers 7-31,

7-32
DMA transfers to on-chip

memory 7-31
Master mode DMA 6-21, 6-30,

6-55
described 6-55, 6-58
initiating transfers 6-55
operation examples 6-58
placing a channel in 6-58

Master processor
accesses and operation cycles

12-26
accesses of the system bus 8-46
data transfers with the slave

processor 7-25
defined 7-5, 8-6
external bus arbitration 7-16
host interface and 8-6

MCE (multichannel mode enable)
bit 9-22

defined 9-31
described 9-70
effect latency 9-70

INDEX

I-66 ADSP-21065L SHARC DSP User’s Manual

I2S SPORT mode, enabling 9-62
OPMODE and 9-70
standard SPORT mode, enabling

9-59
Memory

32- and 40-bit data, configuration
for 5-40

32- and 48-bit words, using 5-30
access restrictions 5-27
access timing of multiprocessor

memory space 5-67
ACK 5-47
address boundaries 5-19
address decoding table 5-20
ADDRx pin 5-44
architecture, diagram of 5-2
bandwidth 5-1
boot modes 5-53
bus idle cycle, see Bus idle cycle
bus master accesses of external

memory space 5-66, 5-67
cache miss 5-10
core accesses

internal memory space through
multiprocessor memory space
5-25

over the PM bus 5-10
DAG operation, see DAG

operation
data transfers 5-7

48-bit accesses of program
memory 5-14

address sources 5-11
between memory and registers

5-12
between universal registers 5-12
example code for 48-bit pro-

gram memory access 5-14
over DM bus 5-11
over PM bus 5-11
PX register transfers, diagram of

5-13
single-cycle, number of 5-17
with the Register File 5-11

DATAx 5-45
DM bus, see DM bus
dual data accesses, see Dual data

accesses
EPROM boot mode 5-53

see EPROM boot mode
executing program from external

memory space 5-49
extending off-chip memory

accesses 5-53
external memory address space

5-44
external memory banks and

SDRAM, see SDRAM interface
external memory banks, see

External memory banks
external memory space access

address fields 5-26
external memory space access

timing 5-65
external memory space, see

External memory space
external port access, see External

port

ADSP-21065L SHARC DSP User’s Manual I-67

INDEX

external SDRAM memory, see
SDRAM interface

features 5-1
fine tuning accesses 5-35
generating memory addresses

5-11
I/O bus, see I/O bus
indirect addressing 5-11
Instruction cache, see Instruction

cache
instruction fetches, see Instruction

fetches
interface signals for external

memory space 5-44
interface with off-chip devices

5-43
internal bus connections, see

Internal buses
internal bus control, see Internal

buses
internal memory space, see

Internal memory space
interrupt vector table address 5-30
invalid multiprocessor memory

space addresses 5-25
IOP registers, see IOP registers
low-level physical mapping 5-35
memory blocks, see Memory blocks
modified Harvard architecture

5-8
MSx 5-45
multiprocessor memory space

access address fields 5-25
multiprocessor memory space, see

Multiprocessor memory space
normal vs. short word addressing

5-29
off-chip devices and the external

port 5-43
off-chip interface pins 5-43
ordering of 16-bit short words

within 32- and 48-bit words
5-32

organization 5-16
organization vs. address, diagram

of 5-32
packing external memory

program data 5-49
PM and DM bus address bits,

diagram of 5-8
PM and DM bus addresses 5-8
PM bus accesses of external

memory space 5-26
PM bus, see PM bus
PM data accesses through the

instruction cache 5-10
Program sequencer, see Program

sequencer
PX registers, see PX registers
RD 5-45
Register File, see Register File
reserved addresses 5-19
same block, same cycle access

conflicts 5-15
SDRAM, see SDRAM interface
shadow write FIFO 5-39
short word accesses 5-41
short word addresses, diagram of

INDEX

I-68 ADSP-21065L SHARC DSP User’s Manual

5-42
single-cycle execution efficiency

5-9
SPORT data transfers 9-77
starting address for 32-bit data,

calculating 5-35
storage capacity 5-17
storing mixed words in the same

block 5-32, 5-33, 5-36
SWx 5-46
total address space 5-17
transferring data between the PM

and DM buses 5-12
WAIT register, diagram of default

bit values 5-58
wait state modes 5-61
wait states and acknowledge, see

Wait states and acknowledge
word size and memory block

organization 5-28
word types supported 5-28
WR 5-46

memory
blocks vs. banks 5-49

Memory accesses
IMDWx vs. RND32 5-41
of 40-bit data with 48-bit word

5-40
preprocessing 16-bit short word

addresses, diagram of 5-36
starting addresses for contiguous

32-bit data 5-37
word width, see Word width

Memory acknowledge, see ACK

Memory address bits on the DM
and PM buses 5-8

Memory addressing
direct A-18

absolute address A-18
PC-relative address A-18

indirect A-18
postmodify with immediate val-

ue A-18
postmodify with M register, up-

date I register A-18
premodify with immediate A-18
premodify with M register, up-

date I register A-18
summary of A-18

Memory block 0
accessing noncontiguous

addresses 5-29
invalid addresses 5-29
noncontiguous addresses 5-29
normal word addresses, range of

5-29
Memory block accesses

by 16-bit short words 5-36
column selection 5-36
conflicts 5-14, 5-15
fine tuning 5-35
MSW/LSW of 32-bit data 5-36
of 40-bit data with 48-bit word

5-40
preprocessing 16-bit short word

addresses, diagram of 5-36
row selection 5-35
word width and RND32 5-41

ADSP-21065L SHARC DSP User’s Manual I-69

INDEX

Memory block configuration
changing word width 5-40
for 16-bit short words 5-31
for 32-bit data words 5-31
for 48-bit instruction words 5-30
IMDWx bit and 5-40
starting address of 32-bit data

5-35
word width 5-30

Memory block organization 5-16
block 0 5-16
block 1 5-16
columns 5-32
diagram of 5-16
low-level 5-35
physical mapping 5-35

Memory block storage capacity
48-bit words 5-31
for 16-bit words 5-31
for 32-bit words 5-31

Memory blocks
32- and 40-bit data, configuration

for 5-40
32- and 48-bit words, configuring

5-30
block 0 address ranges for

instructions and data, example
of 5-34

block 1 invalid addresses 5-29
defined 5-4
described 5-16
invalid addresses 5-39
normal word addresses 5-29
ordering of 16-bit short words

within 32- and 48-bit words
5-32

reads and writes of the same block
3-10

short word addresses, see Short
word addressing

single-cycle transfers, number of
5-17

storage capacity 5-17
storing mixed words in the same

block, see Mixed word storage
word size and 5-28
word types 5-28

memory blocks
vs. memory banks 5-49

Memory map
external memory space 5-26
internal memory space 5-17
multiprocessor memory space

5-24
Memory organization 5-16
Memory read strobe, see RD
Memory select lines, see MSx
Memory write strobe, see WR
Message passing 7-36, 8-37

described 7-37
FLAGx pins and 7-37
host software protocols 8-37
host vector interrupts 8-38
interprocessor communication

8-36
MSGRx registers 8-37
register handshake protocol 7-37,

8-37

INDEX

I-70 ADSP-21065L SHARC DSP User’s Manual

register write-back protocol 7-38,
8-38

software protocols for 7-37
vector interrupt-driven protocol

7-37, 8-37
MFD (multichannel frame delay)

bits 9-16
defined 9-31
described 9-71

MI (multiplier floating-point
invalid operation) bit 2-34

floating-point multiplication and
2-36

MIS (multiplier floating-point
invalid operation) bit 2-34

Miscellaneous instructions
Cjump/Rframe (type 24)

instructions A-10
NOP (type 21) instructions A-9
push|pop stacks/flush cache (type

20) instructions A-9
summary A-9

Mixed word storage
diagram of 5-38
invalid addresses 5-39
rules for 5-32
same block 5-32
same block restrictions 5-36
same block, example of 5-33
starting addresses for contiguous

32-bit data 5-37
Mixed words

example, diagram of 5-33
fine tuning accesses 5-35

MMSWS (multiprocessor memory
space wait state) bit

automatic wait state option 5-62
MN (multiplier result negative) bit

2-34
described 2-35

MN condition 3-13
MOD1 multiplier operations

options
described B-52
summary of B-53

MOD2 multiplier operations
options

described B-51
summary of B-52

Mode register set command
(SDRAM), see MRS command

MODE1 register
alternate register file register

control bits 2-11
alternate register file registers,

activating 2-11
ALU operation bits 2-14
ALUSAT 2-14
bit definitions E-18
bit-reverse mode control bits 4-14
BM (bus master condition) 3-13
conditional instructions and 3-12
DAG register control bits,

summary of 4-5
default bit values, diagram of E-17
described E-16
effect latency of activation of

alternate register file register sets

ADSP-21065L SHARC DSP User’s Manual I-71

INDEX

2-11
floating-point operating mode

status bits, summary of 2-32
floating-point operation status

bits 2-32
initialization value E-16
IRPTEN 3-38
nested interrupts 3-46
NESTM 3-46
preserved current values of 3-49
program sequencing interrupts

and 3-38
RND32 2-14, 2-32, 5-41
RTI instruction and 3-16
sign extending short word

addresses 5-30
sign extension enable (SSE) bit

5-30, 5-42
SRCU 2-29
SRD1H 4-5
SRD1L 4-5
SRD2H 4-5
SRD2L 4-5
SRRFH 2-11
SRRFL 2-11
status stack save and restore

operations 3-48
TRUNC 2-14, 2-32
zero-filling short word addresses

5-30
MODE2 register

bit definitions E-23
BUSLK 7-34
CADIS and CAFRZ bit

definitions 3-62
default bit values, diagram of E-22
described E-21
diagram of 11-10
FLAG3-0 control bits 12-29
initialization value E-21
instruction cache

disabling/freezing 3-62
instruction cache mode bits, value

after reset 3-62
INT_HIx 3-45, 11-9
interrupt mode bits 3-51
interrupt sensitivity configuration

3-51
IRQxE 3-51
mapping programmable timer

interrupts 3-45
PERIOD_CNTx 11-6, 11-8
programmable I/O ports and

11-13
programmable timer enable 11-1
PULSE_HIx 11-6, 11-8
PWMOUTx 11-3, 11-5, 11-8
TIMENx 11-1, 11-8

Modified Harvard architecture 5-8
MOS (multiplier fixed-point

overflow) bit 2-34
described 2-35
MR register values and 2-35

Most significant word (MSW)
format 5-29

MR=Rn/Rn=MR operation
compute field B-60
described B-60

INDEX

I-72 ADSP-21065L SHARC DSP User’s Manual

multiplier status flags B-61
MRB=0 operation

described B-59
multiplier status flags B-59

MRB=MRB+Rx*Ry mod2
operation

described B-55
multiplier status flags B-55

MRB=MRB-Rx*Ry mod2
operation

described B-56
multiplier status flags B-56

MRB=RND MRB mod1 operation
described B-58
multiplier status flags B-58

MRB=Rx*Fy mod2 operation
described B-54
multiplier status flags B-54

MRB=SAT MRB mod1 operation
described B-57
multiplier status flags B-57

MRCCSx register 9-9, 9-72
defined 9-72
memory-mapped address and

reset value 9-10, 9-12
multichannel companding

formats 9-45
MRCSx register 9-9, 9-72

defined 9-72
memory-mapped address and

reset value 9-10, 9-11
MRF=0 operation

described B-59
multiplier status flags B-59

MRF=MRF+Rx*Ry mod2
operation

described B-55
multiplier status flags B-55

MRF=MRF-Rx*Ry mod2
operation

described B-56
multiplier status flags B-56

MRF=RND MRF mod1 operation
described B-58
multiplier status flags B-58

MRF=Rx*Ry mod2 operation
described B-54
multiplier status flags B-54

MRF=SAT MRF mod1 operation
described B-57
multiplier status flags B-57

MRS command 10-31
MSGRx registers 8-36

host data transfers and 8-16
host interface and 7-36
host software protocols and 8-37
interprocessor messages 7-36,

8-36
message passing 7-36, 8-37
multiprocessing data transfers

7-25
shared-bus multiprocessing 8-36

MSTR (SPORT transmit and
receive master mode) bit 9-16,
9-21

defined 9-31
described 9-64

MSWF packing format 6-14, 6-52

ADSP-21065L SHARC DSP User’s Manual I-73

INDEX

and 48-bit DMA words 6-53
described 6-17

MSx
and core accesses of the system bus

8-48
chip selects for peripheral devices

5-49
conditional memory write

instructions and 5-49
decoded memory address lines

5-49
external DMA data transfers 6-63
external memory bank addresses

and 5-48
external memory space interface

and 5-45
pin definition 12-5
state after reset 12-22

MTCCSx register 9-9, 9-72
defined 9-72
memory-mapped address and

reset value 9-10, 9-11
multichannel companding

formats 9-45
receive comparison disabled and

9-74
MTCSx register 9-9, 9-72

defined 9-72
memory-mapped address and

reset value 9-10, 9-11
MU (multiplier underflow) bit 2-34

described 2-36
Multichannel frame delay

described 9-71

MFD values in multiprocessor
system 9-71

T1 devices, interface with 9-71
Multichannel frame syncs 9-69

described 9-69
Multichannel receive comparison

feature 9-74
Multichannel receive comparison

mask registers
IMASK register 9-73

Multichannel receive comparison
registers

described 9-73
example application 9-75
IMAT and 9-74
IMODE and 9-74
KEYWDx register 9-73
operation 9-73
SDEN and 9-74
SRCTLx register control bits for

receive comparisons 9-74
Multichannel SPORT mode

channel selection registers 9-72
see Channel selection registers

channel slot capabilities 9-67
channel slot synchronization 9-69
channel slots 9-67
CHNL (current channel selected)

9-26
CKRE (frame sync clock edge)

9-26
companding 9-67
companding formats 9-45
control bits 9-69

INDEX

I-74 ADSP-21065L SHARC DSP User’s Manual

see Multichannel SPORT mode
control bits

current channel selected status
9-71

data justification 9-45
data word formats 9-44
data word selection 9-72
default bit values, diagram of

9-20, 9-25
described 9-67
DITFS 9-26
DMA operation and 9-69
DTYPE 9-27
early frame sync mode and 9-56
enable effect latency 9-70
enabling 9-70
frame sync data dependency in

9-57
frame sync logic level, configuring

9-55
frame sync source 9-69
frame syncs 9-69

see Multichannel frame syncs
IMAT 9-28
IMODE 9-29
late frame sync mode and 9-56
linear transfers 9-45
LRFS 9-30
LTFS 9-30
MCE 9-31
MFD 9-31
multichannel compand select

registers 9-45
multichannel frame delay 9-71

multichannel operation, diagram
of 9-68

NCH 9-32
number of channel slots, setting

9-71
OPMODE 9-32, 9-36
PACK 9-32
primary and secondary channels,

configuration of 9-70
receive comparison registers 9-73

see Multichannel receive compar-
ison registers

receive control bits 9-21
RFSx pin connections 9-69
ROVF 9-33
RXS 9-33
SCHEN 9-34
SDEN 9-34
SENDN 9-35
SLEN 9-35
TCLK 9-28
TCLKx and RCLKx pin

connections in 9-67
TFSx pin connections 9-69
timing reference 9-69
transfer timing characteristics,

example of 9-68
transmit control bits 9-15
transmit data valid signal 9-69
TUVF 9-36
TXS 9-37
TXx_z data buffer 9-69

Multichannel SPORT mode
control bits 9-69

ADSP-21065L SHARC DSP User’s Manual I-75

INDEX

CHNL 9-71
MCE 9-70
MFD 9-71
NCH 9-71
operation mode 9-70
summary of 9-69

Multifunction operations 2-50
described 2-50, B-94
dual add and subtract

instructions, summary of 2-50
dual add/subtract (fixed-point)

B-96
dual add/subtract (floating-point)

B-98
fixed-point multiply and

accumulate instructions,
summary of 2-51

floating-point multiply and ALU
instructions, summary of 2-51

input operand constraints B-94
input operand locations,

restrictions 2-50
input registers, diagram of 2-52
multiplication and dual add and

subtract instructions, summary
of 2-51

parallel multiplier and ALU
(fixed-point) B-100

parallel multiplier and ALU
(floating-point) B-101

parallel multiplier and dual
add/subtract B-104

Register File and B-94
single-operation functions vs.

2-50
types B-94
valid input registers, diagram of

B-95
Multiplication and dual add and

subtract instructions, summary
of 2-51

Multiplier fixed-point results 2-28
fractions 2-28
MR registers 2-28

see Multiplier MR registers
overflow status flags 2-35
placement, diagram of 2-28
Register File transfers 2-28
underflow status flags 2-37

Multiplier floating-point operating
modes 2-32

described 2-32
fixed-point rounding restriction

2-32
MODE1 status bits 2-32
RND32 (floating-point rounding

boundary) 2-32
rounding boundary 2-33
rounding mode 2-33
TRUNC (floating-point

rounding) 2-32
Multiplier instruction set summary

2-38
Multiplier MR register operations

valid maximum saturation values
2-31

Multiplier MR registers 2-28
activation of 2-29

INDEX

I-76 ADSP-21065L SHARC DSP User’s Manual

architecture 2-28
context switching 2-29
data alignment 2-29
data transfers and 2-29
described 2-28
fixed-point accumulation

instructions and 2-29
fixed-point integer and fraction

results 2-36
MR transfer formats, diagram of

2-29
overflow status flags for

fixed-point results 2-35
parallel accumulators, use as 2-29
Register File transfers 2-30

Multiplier operations 2-27, B-50
denormal operands 2-36
described 2-27, B-50
fixed-point 2-27
fixed-point operand format 2-27
fixed-point results 2-28

see Multiplier fixed-point results
floating-point 2-27
floating-point operating modes

2-32
see Multiplier floating-point op-

erating modes
Fn=Fx*Fy B-62
input/output rate 2-27
MOD1 options

described B-52
summary of B-53

MOD2 options
described B-51

summary of B-52
MR registers and fixed-point

results 2-28
MR=Rn/Rn=MR B-60
MRB=0 B-59
MRB=MRB+Rx*Ry mod2 B-55
MRB=MRB-Rx*Ry mod2 B-56
MRB=RND MRB mod1 B-58
MRB=Rx*Fy mod2 B-54
MRB=SAT MRB mod1 B-57
MRF=0 B-59
MRF=MRF+Rx*Ry mod2 B-55
MRF=MRF-Rx*Ry mod2 B-56
MRF=RND MRF mod1 B-58
MRF=Rx*Ry mod2 B-54
MRF=SAT MRF mod1 B-57
Register File 2-27
Rn=MRB+Rx*Ry mod2 B-55
Rn=MRB-Rx*Ry mod2 B-56
Rn=MRF+Rx*Ry mod2 B-55
Rn=MRF-Rx*Ry mod2 B-56
Rn=RND MRB mod1 B-58
Rn=RND MRF mod1 B-58
Rn=Rx*Ry mod2 B-54
Rn=SAT MRB mod1 B-57
Rn=SAT MRF mod1 B-57
status flag update 2-34
status of most recent 2-34
summary of B-50

Multiplier registers
summary of A-17

Multiplier status flags 2-34
ASTAT status bits, summary of

2-34

ADSP-21065L SHARC DSP User’s Manual I-77

INDEX

described 2-34
fixed-point underflow results 2-37
floating-point invalid operation

2-36
MI floating-point invalid

operation 2-34
MIS floating-point invalid

operation 2-34
MN result negative 2-34
MOS fixed-point overflow 2-34
MR register values and 2-35
MU underflow 2-34
MUS underflow 2-34
MV overflow 2-34
MVS floating-point overflow

2-34
negative flag 2-35
overflow flags 2-35
STKY status bits, summary of

2-34
underflow flags 2-36
updating 2-34

Multiplier unit 2-26
described 2-1, 2-26
fixed-point instructions 2-26
floating-point instructions 2-26
instruction set summary 2-38
instruction types, summary of

2-26
multifunction computations and

2-26
operations 2-26
operations, see Multiplier

operations

status flags, see Multiplier status
flags

Multiprocessing 7-1
ACK 12-52
basic system, diagram of 7-2
BM condition and 3-13
BMS and 12-51
booting, see Multiprocessor booting
broadcast writes

see Broadcast writes
BRx pins 7-3
bus arbitration, see Multiprocessor

bus arbitration
bus lock and semaphores, see Bus

lock and semaphores
bus master 7-1
clock skew 12-43
configurations for interprocessor

DMA, summary of 6-70
data transfers, see Multiprocessing

data transfers
DMACx registers 7-4
emulating synchronous

operations with CLKIN 12-40
EPBx buffers 7-4
EPROM boot mode and 12-51
external bus 7-1, 7-4
features 7-1
host accesses of both processors

8-14
host interface 8-6
host interface with the system bus

8-44
IDx pin connections 7-3

INDEX

I-78 ADSP-21065L SHARC DSP User’s Manual

immediate high-priority interrupt
8-36

internal clock generation and
12-26

interprocessor messages 7-36,
8-36

interrupt service routine 8-36
IOP registers 7-4, 7-5
master processor 7-5
multichannel SPORT mode and

9-71
multiprocessor memory space 7-4,

7-5
multiprocessor system 7-5
operation cycles 12-26
pin connections between two

processors 7-3
SDRAM accesses and bus

arbitration 7-17
SDRAM operation 10-25
shared-bus 8-36
sharing a common boot EPROM

12-51
sharing the DMAGx signal 6-68
single-word data transfers 7-5
slave processor 7-5
SYSTAT register status bits 7-40

see also SYSTAT register
system architecture, see

Multiprocessing system
architecture

system clock rate 7-5
system configuration for

interprocessor DMA 6-70

Multiprocessing bus requests 7-10,
12-14

Multiprocessing data transfers 7-25
ACK 7-26
addressing 7-25
communication with slave

processor’s core 7-25
data 7-25
DMA operations 7-25
DMA transfers, see

Multiprocessing DMA transfers
DMACx registers 7-25
EPBx buffer writes, see EPBx

buffers
EPBx transfers, see Multiprocessing

EPBx transfers
external port 7-25
internal I/O bus 7-25
IOP register reads, see IOP register

reads
IOP register writes, see IOP

register writes
IOP registers 7-25
MSGRx registers 7-25
multiprocessor memory space

accesses and wait states 7-25
shadow write FIFO 7-32
slave processor configuration 7-25
slave write FIFO 7-26
SYSCON register 7-25
SYSTAT register 7-25
types 7-25
vector interrupts and 7-25
VIRPT register 7-25

ADSP-21065L SHARC DSP User’s Manual I-79

INDEX

Multiprocessing DMA transfers
7-30

described 7-30
DMA packing 7-31
DMAGx 7-30
DMARx 7-30
extending internal memory space

access 7-30
external handshake mode DMA

configuration 7-32
external port DMA channels and

7-30
handshake mode DMA

configuration 7-31
slave mode DMA configuration

7-31
to on-chip memory 7-30, 7-31
types 7-30

Multiprocessing EPBx transfers
7-27

core hang 7-29
DEN (DMA enable) bit 7-29
DMA block transfers 7-27
external port buffers 7-27
FLSH (DMA flush buffers and

status) bit 7-29
flushing the EPBx buffers 7-29
interrupts 7-29
single-word transfers 7-27, 7-28
single-word, non-DMA transfers

7-29
types 7-27
writing to a full buffer 7-28

Multiprocessing ID, see IDx

Multiprocessing system architecture
cluster multiprocessing, see

Cluster multiprocessing
data bandwidth bottlenecks 7-6
data flow multiprocessing, see

Data flow multiprocessing
interprocessor communication

overhead 7-6
nodes 7-6
shared global memory 7-6

Multiprocessor booting 12-58
BEL 12-59
BMS 12-59
CS 12-59
EPROM boot sequence 12-59
from one EPROM, diagram of

12-60
HBR 12-59
host boot pin configuration 12-59
host boot sequence 12-59

Multiprocessor bus arbitration 7-10
acquiring the bus 7-12
BRx 7-10
BTC 7-12
bus request and read/write timing,

diagram of 7-15
bus synchronization operation

7-11
core priority access, see Core

priority access
CPA 7-11
described 7-10
DMA transfers and 7-17
HBG 7-10

INDEX

I-80 ADSP-21065L SHARC DSP User’s Manual

HBR 7-10
IDx 7-10
pin definitions 7-10
protocol 7-12
SDRAM and 7-17
timing diagram 7-13

Multiprocessor memory space 7-4
access address fields 5-25
access timing 5-67, 5-68
address boundaries 5-19
address range of IDx processor

5-24
automatic wait state option 5-62
core accesses of internal memory

space through 5-25
defined 5-5, 7-5
described 5-24
diagram of 5-24
host interface and 8-6
invalid addresses 5-25
map of 5-24
multiprocessing data transfers

7-25
single wait state (MMSWS) 5-57
wait states and acknowledge 5-61

Multiprocessor system 7-1
BRx pins 7-3
bus arbitration, see Multiprocessor

bus arbitration
data transfers, see Multiprocessing

data transfers
defined 7-5
determining the current bus

master 7-11

diagram of 7-2
IDx pin connections 7-3
pin connections between two

processors 7-3
processor self-configuration 7-11

Multiprocessor vector interrupts
3-52

described 3-52
minimum latency 3-52
VIPD bit 3-52
VIRPT 3-52

MUS (multiplier underflow) bit
2-34

described 2-36
MV (multiplier overflow) bit 2-34

described 2-35
MR register values and 2-35

MV condition 3-13
MVS (multiplier floating-point

overflow) bit 2-34

N
NC, pin definition 12-20
NCH (number of channel slots) bit

9-22
defined 9-32
described 9-71

NE condition 3-14
Nested interrupt routines 3-7
Nested interrupts

enabling and disabling 3-47
IMASKP register and 3-46
IMASKP register and temporary

interrupt masks 3-47

ADSP-21065L SHARC DSP User’s Manual I-81

INDEX

interrupt priority and latency 3-43
MODE1 register and 3-46
NESTM bit 3-47
RTI instruction and 3-47

Nested loops 3-7
noncounterbased loops and 3-30
setting up a count value for 3-35

NESTM (nesting mode) bit
described 3-46

No boot mode
address of initial instruction fetch

12-60
described 12-60
external memory address of first

instruction 12-49
interrupt vector table, address of

5-30
pin configuration 12-51

Noncounter-based loops
aborting executing prematurely

3-30
described 3-29
instruction pipeline and 3-30
nested loops and 3-30
pipelined two-instruction

one-iteration (2 cycles of
overhead) 3-32

pipelined two-instruction
two-iteration 3-31

restrictions 3-29
termination condition 3-30, 3-33

Nondelayed branches 3-18
call decode address 3-18
call return address 3-18

DB modifier and 3-18
defined 3-18
pipelined stages of jumps/calls

3-18
pipelined stages of returns 3-19

Nonsequential program operations
3-5

NOP (type 21) instruction
described A-77
opcode A-77
syntax summary A-9

Normal SBTS operation (HBR
deasserted) 5-63

Normal word addresses
block 0 invalid addresses 5-29
block 0, range of 5-29
block 1 invalid addresses 5-29
block 1, range of 5-29
internal memory address region

5-24
interrupt vector table, address of

5-24
range of 5-29
vs. short word addresses 5-29
word width of 5-28

Normalized numbers C-2
fields C-2
hidden bit C-2
unsigned exponent value range

C-2
NOT AC condition 3-14
NOT AV condition 3-14
NOT BM condition 3-15
NOT FLAG0_IN condition 3-14

INDEX

I-82 ADSP-21065L SHARC DSP User’s Manual

NOT FLAG1_IN condition 3-14
NOT FLAG2_IN condition 3-14
NOT FLAG3_IN condition 3-14
NOT ICE condition 3-14
NOT LCE condition 3-12
NOT MS condition 3-14
NOT MV condition 3-14
NOT SV condition 3-14
NOT SZ condition 3-14
NOT TF condition 3-15
Notation conventions for Chapter

6, DMA 6-6
Number of external DMA bus

transfers, specifying the 6-30
Numeric formats

described C-1
extended-precision, floating-point

C-4
see Extended-precision, float-

ing-point format
fixed-point C-8

see Fixed-point formats
short word, floating-point C-5

see Short word, floating-point for-
mat

single-precision, floating-point
C-2
see Single-precision, float-

ing-point format

O
Off-chip memory access extension

5-53

Off-chip memory access extension
method

either (ACK or WAIT register)
method 5-54

external (ACK and WAIT
register) method 5-54

external (ACK) method 5-53
internal (WAIT register) method

5-54
Opcode notation summary A-19
OPMODE (SPORT operation

mode) bit 9-16, 9-21
defined 9-32
I2S SPORT mode, enabling 9-62
multichannel SPORT mode 9-70
standard mode, enabling 9-59

Oscilloscope probes 12-47
ground clip type 12-47
loading 12-47
recommended 12-47
standard ground clips 12-47

Overriding BMS 12-55

P
Paced master mode DMA 6-21

described 6-58
extending accesses 6-59

PACK (packing) bit 9-16, 9-21
defined 9-32
packing and unpacking serial data

9-47
SPORT DMA block transfers and

9-78

ADSP-21065L SHARC DSP User’s Manual I-83

INDEX

Packing sequence for downloading
instructions from a 16-bit bus
6-53

Parallel multiplier and ALU
syntax and opcodes, summary of

B-102
Parallel multiplier and ALU

(fixed-point)
compute field B-100
described B-100

Parallel multiplier and ALU
(floating-point)

compute field B-101
described B-101
valid sources of input operands,

summary of B-101
Parallel multiplier and dual

add/subtract operations
compute field B-104
described B-104
valid sources of input operands,

summary of B-105
PC stack 3-6

almost full state 3-24
described 3-24
DO UNTIL instruction and 3-25
empty status 3-24
events that pop 3-24
flags 3-54
full state 3-24
full status 3-24
interrupt generation 3-24
interrupt service routine push of

3-24

overflow status 3-24
reading and delayed branches

3-24
size of 3-24
stack full interrupt 3-24
STKY register and 3-24

PC stack empty flag 3-54
PC stack full flag 3-54
PC stack pointer, see PCSTKP
PCEM (PC stack empty) bit 3-54
PCFL (PC stack full) bit 3-54
PCI (program controlled interrupts)

bit 6-40
CP (chain pointer) register and

6-40
described 6-40
disabling DMA interrupts 6-40
enabling and disabling DMA

interrupts 6-46
restrictions 6-40

PCSTKP
data values 3-24
described 3-24
empty value 3-24
overflow value 3-24
pushing and popping 3-7
reading and delayed branches

3-24
write latency 3-24

PERIOD_CNTx (timer period
count enable) bit 11-6

described 11-8
Pin definitions 12-3

ACK 12-7

INDEX

I-84 ADSP-21065L SHARC DSP User’s Manual

ADDRx 12-4
asynchronous inputs 12-3
BMS 12-13
BMSTR 12-13
BRx 7-10, 12-14
BSEL 12-14
CAS 12-10
CLKIN 12-14
CPA 7-11, 12-16
CS 12-8
DATAx 12-4
DMAGx 12-5
DMARx 12-5
DQM 12-10
DRx_X 12-11
DTx_X 12-11
EMU 12-19
external port 12-4
FLAGx 12-16
GND 12-20
HBG 12-8
HBR 12-9
host interface 12-7
IDx 7-10, 12-16
IRQx 12-17
JTAG/emulator 12-19
miscellaneous 12-20
MSx 12-5
multiprocessor bus arbitration

7-10
NC 12-20
PWM_EVENTx 12-17
RAS 12-10
RCLKx 12-12

RD 12-17
REDY 12-9
RESET 12-18
RFSx 12-12
SBTS 12-6
SDA10 12-10
SDCKE 12-11
SDCLKx 12-10
SDRAM interface 12-10
SDWE 12-11
serial port 12-11
SW 12-6
synchronous inputs 12-3
system control 12-13
TCK 12-19
TCLKx 12-12
TDI 12-19
TDO 12-20
TFSx 12-12
TMS 12-20
TRST 12-20
unused inputs 12-3
VDD 12-20
WR 12-18
XTAL 12-19

Pin operation 12-26
asynchronous inputs 12-27
CLKIN frequencies, see CLKIN

frequencies
external interrupt and timer pins

12-28
EZ-ICE emulator, see EZ-ICE

emulator
Flag inputs, see FLAGx 12-31

ADSP-21065L SHARC DSP User’s Manual I-85

INDEX

Flag outputs, see FLAGx 12-33
FLAGx 12-28
input synchronization delay

12-27
internal clock and phase lock

12-27
internal clock generation 12-26
JTAG interface pins, see

JTAG/emulator
signal recognition phase 12-27
single-bit signaling 12-28
synchronization delay 12-27
XTAL and CLKIN 12-26

Pin states after reset 12-22
ACK 12-22
ADDRx 12-22
BMS 12-23
BMSTR 12-22
BRx 12-22
BSEL 12-23
bus master driven pins 12-22
CAS 12-22
CLKIN 12-23
CPA 12-23
CS 12-23
DATAx 12-23
DMAGx 12-22
DMARx 12-23
DQM 12-22
DRx_X 12-24
DTx_X 12-24
EMU 12-25
FLAGx 12-24
HBG 12-22

HBR 12-24
IDx 12-24
IRQx 12-24
JTAG/emulator 12-25
MSx 12-22
PWM_EVENTx 12-24
RAS 12-23
RCLKx 12-24
RD 12-23
REDY 12-24
RESET 12-24
RFSx 12-24
SBTS 12-24
SDA10 12-23
SDCKE 12-23
SDCLKx 12-23
SDWE 12-23
serial port pins 12-24
SW 12-23
TCK 12-25
TCLKx 12-24
TDI 12-25
TDO 12-25
TFSx 12-24
TMS 12-25
TRST 12-25
WR 12-23
XTAL 12-24

Pipelining 3-19
described 3-4
execution cycles 3-5
system register writes and 3-8

Placing all SDRAM signals in a high
impedance state 10-9

INDEX

I-86 ADSP-21065L SHARC DSP User’s Manual

Placing the SDCLK1 signal only in
a high impedance state 10-9

PM bus
address bits, diagram of 5-8
and EPBx buffers 8-18
connection to memory 5-7
core memory accesses 5-10
data storage 5-8
data transfer destinations 5-11
data transfer types 5-11
data transfers with memory 5-7
defined 5-5
dual data access conflicts 5-10
generating 24-bit addresses 5-26
generating addresses for 5-11
instruction fetches 5-10
memory accesses 5-27
program segment address

restriction 5-52
PX register accesses 5-28
Register File transfers 5-11
transferring data to the DM bus

5-12
PMODE (DMA packing mode

enable) bit 6-14, 8-22, 8-24,
8-28

and HBW bit combinations 6-52
described 6-16
EPBx packing mode bit values

6-17, 6-51
EPBx packing modes 6-16
external port DMA packing mode

6-51
host EPBx packing modes 8-19

host EPBx transfers 8-22, 8-24
multiprocessing DMA transfers

7-31
packing individual data words

8-19
packing modes for EPBx buffers

6-17, 6-51
values for EPBx buffer packing

modes 6-17, 6-51
PMWOUT 3-53
Polling to determine the status of a

DMA transfer 6-26
Postmodify addressing operations

4-6
compared to premodify

addressing, diagram of 4-7
immediate modifier value 4-6
index (I) register value 4-6
modify (M) register value 4-6
uninitialized locations (L)

registers and 4-7
without circular data buffers 4-7

Power and ground
GND 12-20
NC 12-20
pin definitions 12-20
VDD 12-20

Power plane, decoupling capacitors
and 12-46

Power supply return, see GND
Power supply, see VDD
Powering up SDRAM after reset

10-28
Power-up procedures

ADSP-21065L SHARC DSP User’s Manual I-87

INDEX

TRST 12-35
Pre command 10-7, 10-32
Precharge command (SDRAM), see

Pre command
Premodify addressing operations

4-6
compared to postmodify

addressing, diagram of 4-7
immediate modifier value 4-6
index (I) registers and 4-6
locations (L) registers and 4-6
M (DAG modify) registers 4-6
modulo logic and 4-6
offset modifier 4-6
restrictions on using 4-6

Preprocessing 16-bit short word
addresses, diagram of 5-36

Processor
defined 8-6
host control of 8-8

Processor architecture 1-9
booting 1-20
comprehensive instruction set

1-15
computation units 1-10
context switching 1-15
data address generators 1-11
DMA controller 1-19
DSP core 1-9
DSP core buses 1-13
dual-ported memory 1-16
external port interface 1-17
general-purpose I/O ports 1-14
host interface 1-17

I/O processor 1-18
Instruction cache 1-13
interrupts 1-15
Program sequencer 1-11
programmable timers 1-14
Register File 1-11
serial ports 1-18
summary of features 1-9

Processor benefits 1-5
Processor features 1-1, 1-5

40-bit extended precision 1-6
additional Literature 1-24
arithmetic 1-5
balanced performance 1-24
data flow 1-5
development tools 1-20
dual address generators 1-6
processor layout, diagram of 1-3
program sequencing 1-6
summary of 1-22
super Harvard architecture,

diagram of 1-2
Processor reset, see RESET
Processor synchronization,

described 7-21
Processor system-level

enhancements 1-6
high-level languages 1-7
IEEE formats 1-7
serial scan and emulation 1-7

Program controlled DMA
interrupts 6-40

Program counter address after reset
12-53, 12-56

INDEX

I-88 ADSP-21065L SHARC DSP User’s Manual

Program counter stack pointer, see
PCSTKP

Program counter stack, see PC stack
Program counter, see PC stack
Program execution

40-bit data accesses 5-52
address generation scheme 5-51
aligning internal addresses with

external memory space 5-50
data access addressing 5-52
data packing 5-49
described 5-49
example addresses for 5-50
generating instruction addresses in

external memory space 5-50
invalid data segment addresses

5-52
invalid program segment

addresses 5-52
mapping 64K memory space to

128K memory space 5-51
multiple program segments, using

5-51
PM bus address restriction 5-52
program segment alignment in

external memory space 5-51
stalls 12-66
storing instructions in internal

memory space 5-50
Program flow control instructions

direct jump|call (type 8)
instructions A-6

do until (type 13) instructions A-7
do until counter expired (type 12)

instructions A-7
indirect jump or

compute/dreg⇔DM (type 10)
instructions A-6

summary of A-6
Program memory data accesses 3-10

branch instructions, see Branch
instructions

instruction cache 3-10
loop instructions, see Loop

instructions
Program segments

alignment in external memory
space 5-51

invalid external memory addresses
5-52

multiple, using 5-51
Program sequencer

architecture, see Program sequencer
architecture

conditional instructions and loop
termination conditions
evaluation 3-7

defined 5-5
generating 24-bit PM bus

addresses 5-26
generating 32-bit DM bus

addresses 5-26
generating memory addresses

5-11
operation, see Program sequencer

operation
sources of fetch addresses 3-6
summary of functions 3-2

ADSP-21065L SHARC DSP User’s Manual I-89

INDEX

Program sequencer architecture 3-6
decode address register 3-6
diagram of 3-6
fetch address register 3-6
instruction cache, see Instruction

cache
interrupt controller 3-7
loop address stack 3-7

see Loop address stack
PC stack 3-6

see also PC stack
program counter 3-6
status stack 3-7
system registers 3-7

see also Program sequencer regis-
ters

universal registers 3-7
Program sequencer interrupts 3-38

arithmetic exceptions 3-38
circular buffer data overflows 3-38
described 3-38
external 3-38
internal 3-38
interrupt servicing stages 3-40
IRQx, see IRQx
latency 3-40
MODE1 register and 3-38
RTI instruction and 3-38, 3-39
servicing 3-38
servicing sequence 3-39
stack overflows 3-38
valid status 3-38

Program sequencer operation 3-10
branch instructions, see Branch

instructions
condition codes, summary of 3-13
conditional instruction execution,

see Conditional instructions
CURLCNTR value and loop

iterations 3-34
evaluating conditions 3-12
IDLE and IDLE16 instructions

3-56
instruction cache 3-10

see Instruction cache
interrupt latency 3-40
interrupt servicing stages 3-40
interrupt vector table and 3-44
interrupts, see Program sequencer

interrupts
loop address stack, see Loop

address stack
loop instructions, see Loop

instructions
multiprocessor vector interrupts

3-52
nested interrupt servicing 3-48
program memory data accesses

3-10
reads and writes of the same

memory block 3-10
sequential program flow 3-10
software interrupts 3-49
status stack save and restore 3-48

Program sequencer registers 3-7
LADDR, see LADDR register
loop address stack 3-7

see also Loop address stack

INDEX

I-90 ADSP-21065L SHARC DSP User’s Manual

overflow interrupts 3-24
PC stack pointer 3-7
pipelining effects on writes to 3-8
program counter stack pointer, see

PCSTKP
read and effect latencies, summary

of 3-8
readable registers 3-7
stack flags 3-54
status stack 3-7
system register bit manipulation

instruction and 3-7
update timing 3-8
writable registers 3-7

Program sequencing 3-1
clearing current interrupt for reuse

3-49
clock rate 3-4
DAG2 3-7
external interrupt timing and

sensitivity 3-50
IDLE and IDLE16 instructions

3-56
IDLE instruction 3-1
instruction cache 3-7
instruction cycle, see Instruction

cycle
instruction processing rate 3-4
interrupt latency 3-40
interrupt masking and control

3-46
interrupt priority 3-45

see also Interrupt priority
interrupts 3-1

jump instructions 3-1
loop instructions 3-1
multiprocessor vector interrupts

3-52
nested interrupt routines 3-7
nested loops 3-7
nonsequential program operations

3-5
pipelining 3-4, 3-8
program sequencer, see Program

sequencer
program structures 3-1
programmable timers and 3-53
saving and restoring the status

stack 3-48
software interrupts 3-49
subroutines 3-1
variation in program flow,

diagram of 3-3
vector interrupt feature, using

3-52
Program structures 3-1

branches 3-11
IDLE 3-1
interrupts 3-1
jumps 3-1
loops 3-1, 3-11
subroutines 3-1

Programmable I/O and SDRAM
control register, see IOCTL
register

Programmable I/O ports
bitwise operations on 11-13
described 11-13

ADSP-21065L SHARC DSP User’s Manual I-91

INDEX

FLAG11-4 11-13
functionality 11-13
IOSTAT register and 11-13
MODE2 register and 11-13

Programmable I/O status register,
see IOSTAT register

Programmable timer pins, see
PWM_EVENTx

Programmable timers 3-53
control bits and interrupt vectors

11-8
see Timer control bits and inter-

rupt vectors
counters, maximum period of

3-53
enabling 11-1
features 3-53
functions 11-1
I/O pins 3-53
input/output pin 11-1
interrupts and the status stack

11-9
see Timer interrupts and the sta-

tus stack
pulse width count/capture 11-1

see WIDTH_CNT timer mode
pulse width waveform generation

11-1
see PWMOUT timer mode

PWM_EVENTx pins 3-53
registers 11-1
TCOUNTx register 3-53
timer counter mode, see

PMWOUT

timer counters, size of 11-1
timer register default values 11-11
timer/disable timing, diagram of

11-2
TPERIODx register 3-53
TPWIDTHx registers 3-53

Programming and memory 13-9
16-bit short words, reading 13-10
dual data accesses, performing

13-9
memory access space, restrictions

13-10
Programming and the computation

units 13-6
compute operations 13-6
restrictions on delayed branching

13-7
writing twice to the same Register

File location 13-7
Programming and the DAGs 13-8

illegal DAG register transfers 13-8
initializing circular buffers 13-9

Programming considerations
component-specific operations

13-6
computation units 13-6

see Programming and the compu-
tation units

DAG register writes 13-4
DAGs 13-8

see Programming and the DAGs
extra cycle conditions 13-1
loop accesses of program memory

data 13-2

INDEX

I-92 ADSP-21065L SHARC DSP User’s Manual

memory
see Programming and memory

nondelayed branches 13-1
one- and two-instruction loops,

using 13-4
program memory data accesses

with cache miss 13-2
summary of 13-1
wait state programming 13-5

PS (DMA pack status) bit 6-14
described 6-16
values for EPBx packing status

6-16
Pulse capture timer mode, see

WIDTH_CNT timer mode
PULSE_CAPx (timer pulse

captured) bit 11-6
PULSE_HIx (timer leading edge

select) bit
described 11-8
WIDTH_CNT timer mode 11-6

PUSH LOOP instruction
loop address stack and 3-33

Push|pop stacks/flush cache (type
20) instruction

described A-75
example A-75
opcode A-75
syntax summary A-9

PWM output/capture, see
PWM_EVENTx

PWM_EVENTx 11-1
external interrupt and timer pins

12-28

pin definition 12-17
programmable timer I/O 3-53
PWMOUT timer mode 11-3
state after reset 12-24
task-on-demand control 12-28
WIDTH_CNT timer mode 11-5

PWMOUT timer mode 11-1
avoiding unpredictable results

from the PWM_EVENTx
signal 11-3

described 11-3
PWM_EVENTx operation 11-3
PWM_EVENTx timer pin and

11-3
PWMOUTx (timer mode

control) bit 11-3
selecting 11-3
timer flow diagram 11-4
timer interrupts 11-3
TPERIODx register and 11-3
TPWIDTHx register and 11-3

PWMOUTx (timer mode control)
bit

described 11-8
PWMOUT timer mode 11-3
WIDTH_CNT timer mode 11-5

PX bus connection 5-5, 5-11
PX data transfers

40-bit DM data bus 5-14
48-bit accesses of program

memory 5-14
between DM data bus and

external memory 5-14
between DM data bus and

ADSP-21065L SHARC DSP User’s Manual I-93

INDEX

internal memory 5-14
between memory and registers

5-12
between PM and DM data buses

5-11
between PX1 and PM data bus

5-12, 5-14
between PX2 and DM data bus

5-14
between PX2 and PM data bus

5-12
data alignment 5-12
diagram of 5-13
example code for 48-bit program

memory access 5-14
universal register-to-register 5-12

PX registers
40-bit data accesses with 48-bit

words 5-40
architecture 5-12
bus connection 5-5
diagram of 5-12
PX1 alignment 5-12
PX2 alignment 5-12
subregister alignment 5-12
using 5-12
word width of internal bus

accesses 5-28

R
RAS

pin definition 12-10
state after reset 12-23

RAS to CAS delay 10-41

RBWM
avoiding boot hold off 12-52
EPROM booting 12-52

RBWS
EPROM booting 12-52

RCLKDIV receive clock divisor
9-41

described 9-41
I2S SPORT mode 9-62
SPORT clock source and 9-50

RCLKx 9-4, 9-5
clock signal options 9-50
connection in multichannel

SPORT mode 9-67
pin definition 12-12
SPORT loopback mode 9-88
state after reset 12-24

RD
external memory space interface

and 5-45
pin definition 12-17
state after reset 12-23

RDIVx register 9-5, 9-9
address of E-78
bit definitions E-80
clock and frame sync frequencies

9-39
default bit values, diagram of E-79
described E-78
divisor bit fields 9-41
memory-mapped address and

reset value 9-10, 9-11
RCLKDIV 9-41
reset and E-78

INDEX

I-94 ADSP-21065L SHARC DSP User’s Manual

RFS signal frequencies 9-5
RFSDIV 9-41

Read (SDRAM) command 10-33
Read and effect latencies of system

registers 3-8
Read latency

defined E-4
system registers E-4

Reading the IOP registers 7-27
Reads of a slave processor’s IOP

registers 8-17
Receive clock (RCLKx) pins 9-4
Receive frame sync (RFSx) pins 9-4
Receive overflow status bit, see

ROVF (receive overflow) status
bit

Receive shift register 9-5
Redefining priority for external port

DMA channels 6-38
REDY

assertion restrictions 8-12
changing to active-drain output

8-12
host interface 8-8
host IOP register reads 8-17
implementing broadcast writes

8-23
open-drain output 8-12
pin definition 12-9
response to CS, delay 8-11
state after reset 12-24
writes to a full slave write FIFO

buffer and 8-17
Ref command 10-38

Refresh command (SDRAM), see
Ref command

Register File 2-9
access characteristics 2-9
alternate registers 2-11

see Alternate register file registers
computation units and 2-9
data writes, sources of 2-10
defined 5-6
fields for Shifter bit field deposit

and extract operations, diagram
of 2-42

fields for Shifter instructions,
diagram of 2-42

individual data registers 2-10
see Individual register file registers

MR register transfers 2-30
multifunction operation operands

and 2-50
multifunction operations and

B-94
multiplier fixed-point results 2-28
PM data bus transfers and 5-11
shifter operations and B-63
shifter output 2-41
SPORT control registers and 9-12
structural and functional

characteristics 2-9
system register bit manipulation

instruction and E-6
register file

ALU operations and 2-13
Register handshake message passing

protocol 7-37, 8-37

ADSP-21065L SHARC DSP User’s Manual I-95

INDEX

Register modify/bit-reverse (type
19) instruction

described A-73
example A-73
opcode (with bit reverse) A-74
opcode (without bit-reverse) A-73

Register types
multiplier registers A-17
summary of A-15
universal registers A-15

Register write-back message passing
protocol 7-38, 8-38

Reinitializing DMA channels
(FLSH) 6-18

latency 6-18
restrictions 6-18

Requesting bus lock 7-34
RESET

bit write restriction 3-44
bus arbitration synchronization

after 7-21
input hysteresis
pin definition 12-18
programmable timer register

initialization values 11-11
state after reset 12-24

Reset initialization values of the
WAIT register 5-55

Resource sharing 7-34
Return from interrupt, see RTI

instruction 3-16
Return from subroutine, see RTS

instruction 3-16

Return from
subroutine|interrupt/compute
(type 11) instruction

described A-55
example A-56
opcode (return from interrupt)

A-57
opcode (return from subroutine)

A-56
Return instructions 3-16

conditional branching 3-16
return from interrupt (RTI), see

RTI instruction 3-16
return from subroutine (RTS), see

RTS instruction 3-16
Reusing the current interrupt 3-49
RFS signal 9-5
RFSDIV receive frame sync divisor

9-41
described 9-42
frame sync source and 9-54

RFSR (receive frame sync
requirement) bit 9-21

defined 9-33
described 9-52

RFSx 9-4
connection in multichannel

SPORT mode 9-69
I2S word select 9-63
multichannel SPORT mode

frame sync source 9-69
multichannel timing reference

9-69
pin definition 12-12

INDEX

I-96 ADSP-21065L SHARC DSP User’s Manual

SPORT loopback mode 9-88
state after reset 12-24

Rn= -Rx (fixed-point) operation
ALU status flags B-16
described B-16

Rn=(Rx-Ry)/2 (fixed-point)
operation

ALU status flags B-10
described B-10

Rn=ABS Rx (fixed-point) operation
ALU status flags B-17
described B-17

Rn=ASHIFT Rx BY 〈data8〉
operation

described B-67
shifter status flags B-67

Rn=ASHIFT Rx BY Ry operation
described B-67
shifter status flags B-67

Rn=BCLR Rx BY 〈data8〉 operation
described B-70
shifter status flags B-70

Rn=BCLR Rx BY Ry operation
described B-70
shifter status flags B-70

Rn=BSET Rx BY 〈data8〉 operation
described B-71
shifter status flags B-71

Rn=BSET Rx BY Ry operation
described B-71
shifter status flags B-71

Rn=BTGL Rx BY 〈data8〉 operation
described B-72
shifter status flags B-72

Rn=BTGL Rx BY Ry operation
described B-72
shifter status flags B-72

Rn=CLIP Rx BY Ry (fixed-point)
operation

ALU status flags B-25
described B-25

Rn=EXP Rx operation
described B-86
shifter status flags B-86

Rn=EXP Rx(EX) operation
described B-87
shifter status flags B-87

Rn=FDEP Rx BY 〈bit6〉:〈len6〉
operation

described B-74
example B-75
shifter status flags B-75

Rn=FDEP Rx BY 〈bit6〉:〈len6〉(SE)
operation

described B-78
example B-79
shifter status flags B-79

Rn=FDEP Rx BY Ry (SE) operation
described B-78
example B-79
shifter status flags B-79

Rn=FDEP Rx BY Ry operation
described B-74
example B-75
shifter status flags B-75

Rn=FEXT Rx BY 〈bit6〉:〈len6〉 (SE)
operation

described B-84

ADSP-21065L SHARC DSP User’s Manual I-97

INDEX

example B-84
shifter status flags B-85

Rn=FEXT Rx BY 〈bit6〉:〈len6〉
operation

described B-82
example B-83
shifter status flags B-83

Rn=FEXT Rx BY Ry (SE) operation
described B-84
example B-84
shifter status flags B-85

Rn=FIX Fx BY Ry operation
ALU status flags B-40
described B-39

Rn=FIX Fx operation
ALU status flags B-40
described B-39

Rn=FPACK Fx operation
described B-90
gradual underflow B-90
results of B-90
shifter status flags B-91
short float data format B-90

Rn=LEFT0 Rx operation
described B-89
shifter status flags B-89

Rn=LEFTZ Rx operation
described B-88
shifter status flags B-88

Rn=LOGB Fx operation
ALU status flags B-38
described B-38

Rn=LSHIFT Rx BY 〈data8〉
operation

described B-65
shifter status flags B-65

Rn=LSHIFT Rx BY Ry operation
described B-65
shifter status flags B-65

Rn=MANT Fx operation
ALU status flags B-37
described B-37

Rn=MAX (Rx, Ry) (fixed-point)
operation

ALU status flags B-24
described B-24

Rn=MIN (Rx, Ry) (fixed-point)
operation

ALU status flags B-23
described B-23

Rn=MRB+Rx*Rry mod2 operation
described B-55

Rn=MRB+Rx*Ry mod2 operation
multiplier status flags B-55

Rn=MRB-Rx*Ry mod2 operation
described B-56
multiplier status flags B-56

Rn=MRF+Rx*Ry mod2 operation
described B-55
multiplier status flags B-55

Rn=MRF-Rx*Ry mod2 operation
described B-56
multiplier status flags B-56

Rn=NOT Rx (fixed-point)
operation

ALU status flags B-22
described B-22

INDEX

I-98 ADSP-21065L SHARC DSP User’s Manual

Rn=PASS Rx (fixed-point)
operation

ALU status flags B-18
described B-18

Rn=Rn OR ASHIFT Rx BY 〈data8〉
operation

described B-68
shifter status flags B-68

Rn=RN OR ASHIFT Rx BY Ry
operation

described B-68
shifter status flags B-68

Rn=Rn OR FDEP Rx BY
〈bit6〉:〈len6〉 (SE) operation

described B-80
example B-80
shifter status flags B-81

Rn=Rn OR FDEP Rx BY
〈bit6〉:〈len6〉 operation

described B-76
example B-76
shifter status flags B-77

Rn=Rn OR FDEP Rx BY Ry (SE)
operation

described B-80
example B-80
shifter status flags B-81

Rn=Rn OR FDEP Rx BY Ry
operation

described B-76
example B-76
shifter status flags B-77

Rn=Rn OR LSHIFT Rx BY Ry
operation

described B-66
shifter status flags B-66

Rn=Rn OR LSHIFT Rx BY〈data8〉
operation

described B-66
shifter status flags B-66

Rn=RND MRB mod1 operation
described B-58
multiplier status flags B-58

Rn=RND MRF mod1 operation
described B-58
multiplier status flags B-58

Rn=ROT Rx BY 〈data8〉 operation
described B-69
shifter status flags B-69

Rn=ROT Rx BY Ry operation
described B-69
shifter status flags B-69

Rn=Rx AND Ry (fixed-point)
operation

ALU status flags B-19
described B-19

Rn=Rx OR Ry (fixed-point)
operation

ALU status flags B-20
described B-20

Rn=Rx XOR Ry (fixed-point)
operation

ALU status flags B-21
described B-21

Rn=Rx*Ry mod2 operation
multiplier status flags B-54

Rn=Rx*Ry mode2 operation
described B-54

ADSP-21065L SHARC DSP User’s Manual I-99

INDEX

Rn=Rx+1 (fixed-point) operation
ALU status flags B-14
described B-14

Rn=Rx+Cl (fixed-point) operation
ALU status flags B-12
described B-12
saturation mode B-12

Rn=Rx+Cl-1 (fixed-point)
operation

ALU status flags B-13
described B-13
saturation mode B-13

Rn=Rx+Ry (fixed-point) operation
ALU status flags B-6
described B-6
saturation mode B-6

Rn=Rx+Ry+Cl (fixed-point)
operation

ALU status flags B-8
described B-8
saturation mode B-8

Rn=Rx-1 (fixed-point) operation
ALU status flags B-15
described B-15

Rn=Rx-Ry (fixed-point) operation
ALU status flags B-7
described B-7
saturation mode B-7

Rn=Rx-Ry+Cl (fixed-point)
operation

ALU status flags B-9
described B-9
saturation mode B-9

Rn=SAT MRB mod1 operation

described B-57
multiplier status flags B-57

Rn=SAT MRF mod1 operation
described B-57
multiplier status flags B-57

Rn=TRUNC Fx BY Ry operation
ALU status flags B-40
described B-39

Rn=TRUNC Fx operation
ALU status flags B-40
described B-39

RND32 (floating-point rounding
boundary) bit 2-14

32-bit data in 40-bit systems,
using 5-41

32-bit IEEE results 2-15
40-bit results 2-15
multiplier floating-point

operation 2-32, 2-33
vs. IMDWx 5-41

ROM boot wait mode (RBWM)
5-56

ROM boot wait state (RBWS) 5-57
Rotating priority for external port

DMA channels 6-37
DCPR bit 6-37
described 6-37
vs. fixed priority 6-38
vs. SPORT channel priorities

6-38
Rounding modes

described 2-7
round-toward-zero 2-7

Rounding MR register 2-30

INDEX

I-100 ADSP-21065L SHARC DSP User’s Manual

Round-toward-zero rounding mode
2-7

ROVF (receive overflow status) bit
9-22, 9-38

defined 9-33
described 9-38

RTFS (active state RFS) bit
described 9-55

RTI instruction 8-38
ASTAT register and 3-16
described 3-16
EPROM booting 12-54
host booting 12-58
IMASKP register and 3-16
IRPTL register and 3-16
MODE1 register and 3-16
nested interrupts 3-47
program sequencing interrupts

and 3-38
status stack pop and 3-16
status stack restore of ASTAT

3-48
status stack restore of MODE1

3-48
RTS instruction

described 3-16
LR modifier and reusing the

current interrupt 3-50
RXS (receive data buffer status) bits

9-22, 9-38
defined 9-33
described 9-38
SPORT reset and 9-7

RXx_z data buffer 9-9

data formats and 9-44
described 9-13
interrupts 9-14
memory-mapped address and

reset value 9-10, 9-11, 9-12
operation, see RXx_z data buffer

operation
read/write restrictions 9-15
reading/writing 9-14
reads of an empty buffer 9-14
receive overflow condition

ROVF (receive overflow) status
bit 9-14

receive shift buffer 9-13, 9-44
size of 9-13
SPORT reset and 9-7

RXx_z data buffer operation 9-14
architecture 9-14
described 9-14
storage capacity 9-14

S
Saturate MR register 2-31

valid maximum saturation values
2-31

SBTS (suspend bus three-state)
host bus acquisition 8-11
pin definition 12-6
state after reset 12-24
system bus access deadlock,

resolving 8-49
SBTS and HBR combination

applying 8-49
restrictions 8-49

ADSP-21065L SHARC DSP User’s Manual I-101

INDEX

SCHEN (SPORT DMA chaining)
bit 6-23, 9-16, 9-22

defined 9-34
enabling chaining on a SPORT

DMA channel 9-85
setting up DMA on SPORT

channels 9-79
SDA10

pin definition 12-10
state after reset 12-23

SDCKE
pin definition 12-11
state after reset 12-23

SDCLKx
pin definition 12-10
state after reset 12-23

SDEN (SPORT DMA enable) bit
6-23, 9-16, 9-22

defined 9-34
I2S SPORT mode 9-65
multichannel receive comparisons

and 9-74
setting up DMA on SPORT

channels 9-79
SDRAM 2x clock output, see

SDCLKx
SDRAM A10 pin, see SDA10
SDRAM access 10-26

A11 pin and 16M devices 10-27
DQM pin operation 10-27
mapping ADDRx bits 10-26
multiplexed 32-bit SDRAM

address, diagram of 10-26

SDRAM bank select bit, see
SDRAM configuration

SDRAM burst stop command, see
Bstop command

SDRAM clock enable, see SDCKE
SDRAM column access strobe, see

CAS
SDRAM configuration 10-13

active command delay 10-21
buffering option 10-17
CAS latency value 10-18
clock enables and non-SDRAM

systems 10-15
clock enables for heavy clock loads

10-16
clock enables for minimal clock

loads 10-15
configuration parameters,

summary of 10-13
DSDCK1 10-9, 10-15
DSDCTL 10-9, 10-15
external memory bank mapping

10-16
IOCTL control bits 10-9
IOCTL register 10-9, 10-13
IOCTL register default bit values,

diagram of 10-12
mapping processor addresses to

SDRAM addresses 10-18
number of banks 10-16
page size 10-18
page size and device organization

10-19
page size and number of banks

INDEX

I-102 ADSP-21065L SHARC DSP User’s Manual

10-18
power-up mode 10-19
power-up sequence 10-9
power-up sequence and SDPM

bit 10-20
power-up sequence and SDRDIV

register 10-20
precharge delay 10-21
refresh counter equation variables

10-14
SDBN 10-11, 10-16
SDBS 10-11, 10-16
SDBUF 10-11, 10-17
SDCL 10-10, 10-18
SDPGS 10-10, 10-18
SDPM 10-10, 10-19
SDPSS 10-11, 10-20
SDRDIV register 10-13, 10-14
SDSRF 10-10, 10-20
SDTRAS 10-10, 10-21
SDTRP 10-10, 10-21
setting the clock enables 10-15
setting the refresh counter value

10-14
starting self-refresh mode 10-20
starting the power-up sequence

10-20
IOCTL register and 10-20

timing requirements 10-9
SDRAM control

controller commands, see SDRAM
controller commands

SDBN 10-16

SDRAM control register, see
IOCTL register

SDRAM controller commands
10-29

Act 10-30
Bstop 10-30
DMA transfers and 10-36
MRS 10-31
Pre 10-32
Read 10-33
Ref 10-38
Sref 10-28, 10-39
Write 10-35

SDRAM controller operation 10-18
accessing SDRAM devices, see

SDRAM access
ADDRx 10-28
data throughput rates 10-23
described 10-23
DMA accesses 10-24
entering and exiting self-refresh

mode 10-28
executing a parallel refresh

command 10-27
mapping processor addresses to

SDRAM addresses 10-18
multiprocessing accesses 10-25
powering up after reset 10-28
SDA10 10-27
SDSRF bit 10-28

SDRAM data mask, see DQM
SDRAM interface 5-6, 10-1

and asynchronous host transfers
with the processor 8-9

ADSP-21065L SHARC DSP User’s Manual I-103

INDEX

automatic refresh mode 10-6
bank active command 10-5
burst length 10-5
burst stop command 10-5
burst type 10-5
CAS 12-10
CAS latency 10-5
configuration parameters, see

SDRAM configuration
control register, see IOCTL

register
controller commands, see

SDRAM controller commands
controller operation, see SDRAM

controller operation
data mask I/O function 10-6
data transfer rate 10-1
diagram of 10-2
DQM 12-10
external memory devices 5-63
features 10-1
full-page burst length 10-18
IOCTL register 10-6
meeting multidevice timing

requirements 10-17
memory mapping 5-48
mode register 10-6
multiple SDRAM banks,

connection to 10-3
multiprocessor bus arbitration

and 7-17
normal SBTS operation (HBR

deasserted) 5-63
operation cycles 12-26

page size 10-6
pin definitions 12-10

see SDRAM interface pin defini-
tions

precharge command 10-7
RAS 12-10
SDA10 12-10
SDCKE 12-11
SDCLKx 12-10
SDRDIV register 10-7
SDWE 12-11
self-refresh 10-7
self-refresh mode 10-20
setting SDRAM page size 10-18
suspending bus three-state (SBTS)

5-63
system with multiple SDRAM

devices, diagram of 10-3
terminology 10-5
timing specifications, see SDRAM

timing specifications
tRAS active command time 10-7
tRC bank cycle time 10-7
tRCD RAS to CAS delay 10-8
tRP precharge time 10-8
wait states and 5-48

SDRAM interface pin definitions
10-4

CAS 10-4
DQM 10-4
MSx 10-4
RAS 10-4
SDA10 10-4
SDCKE 10-4

INDEX

I-104 ADSP-21065L SHARC DSP User’s Manual

SDCLK0 10-4
SDCLK1 10-4
SDWE 10-4

SDRAM parallel refresh command
10-27

SDRAM pins, see SDRAM interface
pin definitions

SDRAM refresh counter register,
see SDRDIV register

SDRAM row access strobe, see RAS
SDRAM timing requirements

10-17
SDRAM timing specifications

10-41
bank cycle time 10-41
RAS to CAS delay 10-41

SDRAM write enable, see SDWE
SDRDIV register 10-7, 10-13

refresh counter equation variables
10-14

SDRAM power-up sequence and
10-20

setting the refresh counter value
10-14

setting the value 10-14
SDWE

pin definition 12-11
state after reset 12-23

Self-refresh command (SDRAM),
see Sref command

Semaphore, described 7-34
SENDN (endian data word format)

bit 9-15, 9-21
defined 9-35

described 9-48
Sequential program flow 3-10
Serial communication

synchronization 9-4
Serial port connections

data receive (DRx_X) pins 9-4
data transmit (DTx_X) pins 9-4
pins, summary of 9-4
receive clock (RCLKx) pins 9-4
receive frame sync (RFSx) pins 9-4
transmit clock (TCLKx) pins 9-4
transmit frame sync (TFSx) pins

9-4
Serial ports 9-1

clock and frame sync frequencies
9-39

clock signal options, see SPORT
clock signal options

companding, see Companding
connections, see Serial port

connections
control register status bits 9-38
control registers 9-9

see also SPORT control registers
data buffers 9-9

see also SPORT data buffers
data packing and unpacking 9-47

see also SPORT data packing and
unpacking

data receive inputs 9-4
data transfer synchronization 9-4
data transfers between SPORTs

and memory
see SPORT memory transfers

ADSP-21065L SHARC DSP User’s Manual I-105

INDEX

data transmit outputs 9-4
data type and nonmultichannel

operation 9-44
data word formats 9-44
diagram of 9-3
DMA operation 9-79
driver considerations 9-88
DRx_X 12-11
DTx_X 12-11
features 9-1
frame sync logic level 9-55
frame sync options 9-52

see SPORT frame sync options
frame synchronization 9-5
I2S mode 9-61

see I2S SPORT mode
internally-generated clock

frequencies 9-5
interrupts, see SPORT interrupts
loopback mode 9-88
MSB/LSB data word format 9-48
multichannel mode 9-67

see Multichannel SPORT mode
operation cycles 12-27
operation summary 9-5
pin definitions 12-11
pin states after reset 12-24
point-to-point connections on

12-45
programming examples 9-89
RCLKx 12-12
RDIVx register 9-5
receive clock signal (RCLKx) 9-5
receive frame sync signal (RFS)

9-5
receive shift register 9-5
register and control parameter

symbolic names 9-37
reset, see SPORT RESET
RFSx 12-12
RS-232 devices and 9-5
serial data word length 9-48
SPORT data buffer read/write

results 9-7
standard mode, see Standard

SPORT mode
TCLKx 12-12
TDIVx register 9-5
TFSx 12-12
transmit clock signal (TCLKx)

9-5
transmit frame sync signal (TFS)

9-5
transmit shift register 9-5
TXx_z data buffer 9-5
UARTs and 9-5

Serial RESET, see SPORT RESET
Series termination resistors 12-45
Series-terminated transmission line

12-43
Setting DMA channel prioritization

6-35
Setting up DMA transfers 6-9

loading the C (count) register 6-9
see also DMA parameter registers

loading the II (index) register 6-9
see also DMA parameter registers

loading the IM (modify) register

INDEX

I-106 ADSP-21065L SHARC DSP User’s Manual

6-9
see also DMA parameter registers

writing the DMA control registers
6-9
see also DMACx registers

writing the DMA parameter
registers 6-9
see also DMA parameter registers

Setting up multiple DMA
operations 6-39

Setting up SPORT DMA transfers
6-23

see SPORT DMA
Shadow write FIFO 5-39, 7-32
Shared-bus multiprocessing 8-36
Shifter bit field deposit and extract

operations 2-42
bit field definitions 2-43
described 2-42
FDEP bit field deposit instruction

example, diagram of 2-44
FDEP instruction 2-43
FDEP instruction bit field,

diagram of 2-43
FEXT bit field extract instruction

2-43
example, diagram of 2-45

Register File fields for, diagram of
2-42

Y-input 2-42
Shifter instruction set summary

2-47
Shifter operations 2-41

bit field deposit and extract 2-42

see Shifter bit field deposit and ex-
tract operations

BTST Rx BY 〈data8〉 B-73
BTST Rx BY Ry B-73
data transfers 2-41
described B-63
FDEP field alignment, diagram of

B-78
FDEP, diagram of B-74
FEXT field alignment, diagram of

B-82
FEXT Rx BY Ry B-82
Fn=FUNPACK Rx B-92
instruction set summary 2-47
operands 2-41
output 2-41
Register File and 2-41, B-63
Register File fields for

instructions, diagram of 2-42
results 2-42
Rn=ASHIFT Rx BY 〈data8〉 B-67
Rn=ASHIFT Rx BY Ry B-67
Rn=BCLR Rx BY 〈data8〉 B-70
Rn=BCLR Rx BY Ry B-70
Rn=BSET Rx BY 〈data8〉 B-71
Rn=BSET Rx BY Ry B-71
Rn=BTGL Rx BY 〈data8〉 B-72
Rn=BTGL Rx BY Ry B-72
Rn=EXP Rx B-86
Rn=EXP Rx(EX) B-87
Rn=FDEP Rx BY 〈bit6〉:〈len6〉

B-74
Rn=FDEP Rx BY
〈bit6〉:〈len6〉(SE) B-78

ADSP-21065L SHARC DSP User’s Manual I-107

INDEX

Rn=FDEP Rx BY Ry B-74
Rn=FDEP Rx BY Ry (SE) B-78
Rn=FEXT Rx BY 〈bit6〉:〈len6〉

B-82
Rn=FEXT Rx BY 〈bit6〉:〈len6〉

(SE) B-84
Rn=FEXT Rx BY Ry (SE) B-84
Rn=FPACK Fx B-90
Rn=LEFT0 Rx B-89
Rn=LEFTZ Rx B-88
Rn=LSHIFT Rx BY 〈data8〉 B-65
Rn=LSHIFT Rx BY Ry B-65
Rn=Rn OR ASHIFT Rx BY
〈data8〉 B-68

Rn=RN OR ASHIFT Rx BY Ry
B-68

Rn=RN OR FDEP Rx BY
〈bit6〉:〈len6〉 B-76

Rn=Rn OR FDEP Rx BY
〈bit6〉:〈len6〉 (SE) B-80

Rn=Rn OR FDEP Rx BY Ry B-76
Rn=Rn OR FDEP Rx BY Ry (SE)

B-80
Rn=Rn OR LSHIFT Rx BY Ry

B-66
Rn=Rn OR LSHIFT Rx

BY〈data8〉 B-66
Rn=ROT Rx BY 〈data8〉 B-69
Rn=ROT Rx BY Ry B-69
single-function compute

operations B-2
summary of B-63

Shifter status flags 2-45
overflow flag 2-46

sign flag 2-46
SS input sign 2-45
summary of 2-45
SV overflow bits left of MSB 2-45
SZ result 0 2-45
zero flag 2-46

Shifter unit 2-41
conversion between 16- and

32-bit floating-point words C-5
described 2-1
instruction set summary 2-47
operations, see Shifter operations
status flags 2-45

see Shifter status flags
Short loops

described 3-28
instruction pipeline and 3-28

Short word accesses
addresses, diagram of 5-42
arithmetic shifting 5-42
SSE bit 5-42

Short word addresses
address region 5-24
DAG operation on 4-6
diagram of 5-42
internal memory address region

5-24
Short word addressing 5-41

and array signal processing 5-29
and sign extension 5-30
and zero-filling 5-30
arithmetic shifting 5-42
block 0 noncontiguous addresses

5-29

INDEX

I-108 ADSP-21065L SHARC DSP User’s Manual

block 1 address range 5-29
diagram of 5-42
MSW/LSW format 5-29
MSW/LSW of 32-bit words 5-41
normal word conversions 5-41
sign extending/zero-filling 5-42
SSE bit 5-42
vs. normal word addressing 5-29
word width of 5-28

Short word memory accesses 5-41
MSW/LSW of 32-bit words 5-41
normal word conversions 5-41

Short word, floating-point format
described C-5
diagram of C-5
fields C-5
gradual underflow C-7
results of FPACK and FUNPACK

conversion operations C-6
Shifter instructions and C-5

Sign extension of 16-bit short word
addresses 5-30, 5-42

Signal glitches 8-46
Signal integrity 12-45

reducing capacitance load 12-45
reducing ringing 12-45
signal paths, adding damping

resistance to 12-45
Signal recognition phase 12-27
Signal reflections

reducing 12-46
Signal ringing 12-42

reducing 12-45
Single-bit signaling 12-28

Single-cycle memory accesses,
number of 5-17

Single-cycle, parallel accesses 5-9
Single-function compute operations

ALU operations B-2
see ALU single-function compute

operations
compute field B-2
CU (computation unit) field B-2
described B-2
OPCODE field B-2
shifter operations B-2

Single-precision, floating-point
format C-2

data types, summary of C-3
diagram of C-2
fields C-2
hidden bit C-2
IEEE standard 754/854 C-2
infinity C-3
NAN C-3
normal C-3
normalized numbers C-2
unsigned exponent value range

C-2
zero C-3

Single-processor system, diagram of
12-2

Single-word data transfers
defined 7-5
host interface 8-6

Single-word EPBx data transfers
ACK 7-28
core hang 7-29

ADSP-21065L SHARC DSP User’s Manual I-109

INDEX

DEN (DMA enable) bit and 7-29
described 7-28
DMA interrupts 7-29
multiprocessing and 7-27
non-DMA transfers 7-29
reading from an empty buffer

7-28
writing to a full buffer 7-28

Single-word, non-DMA
interrupt-driven transfers

INTIO bit 6-46
performing 6-46

Slave mode DMA 6-20
configuration 6-59, 7-31
described 6-59
extended accesses of EPBx buffers

8-22
EXTERN bit 7-31, 8-21
external to internal transfer

sequence 6-60
HBW bit 8-22
host data transfers to internal

memory space 8-21
HSHAKE bit 7-31, 8-21
initiating transfers 6-59
internal to external transfer

sequence 6-61
MASTER bit 7-31, 8-21
multiprocessing DMA transfers

7-31
PMODE bit 8-22
restriction 6-62
system-level considerations 6-61

Slave processor

defined 7-5
external bus acquisition for

read/writes 7-16
host interface 8-7
host writes to 8-16
mode 12-56

Slave write FIFO 7-26, 8-15
host EPBx writes 8-18
host read delay 8-17
writes to a full 8-16

SLEN (serial word length) bits 9-16,
9-21

defined 9-35
described 9-48
I2S SPORT mode 9-63

Soft processor reset, see SRST
Software interrupts 3-49

activating 3-49
IRPTL register 3-49

Software SPORT reset 9-8
Source termination 12-43

diagram of 12-44
guidelines for using 12-44

SPEN (SPORT enable) bit 9-15,
9-21

defined 9-35
SPL (SPORT loopback mode) bit

9-22
defined 9-36
described 9-88

SPORT clock and frame sync
frequencies 9-39

CLKIN 9-41
clock divisor value, equation for

INDEX

I-110 ADSP-21065L SHARC DSP User’s Manual

calculating 9-42
frame sync divisor value,

limitation 9-43
maximum clock rate restrictions

9-43
number of serial clock cycles

between frame sync pulses,
equation for calculating 9-42

serial clock frequency equation
9-42

value of frame sync divisor,
equation for calculating 9-42

SPORT clock signal options 9-50
CKRE 9-50
clock edge 9-50
clock source 9-50
frequency 9-50
ICLK 9-50
internal vs. external clocks 9-50

see also SPORT clock source
RCLKx 9-50
single clock for input and output,

use of 9-50
TCLKx 9-50

SPORT clock source 9-50
external 9-51
ICLK 9-50
internal clock 9-50
RCLKx 9-50
serial clock divisor value 9-50
serial clock divisors and external

clock source 9-51
TCLKx 9-50

SPORT control registers 9-9

accesses by external devices 9-12
bit definitions 9-26
changing operation mode 9-13
control and status bit active state

9-12
core updates of status bits 9-15
IMASK 9-9, 9-11, 9-12
KEYWDx 9-9, 9-10, 9-12
memory-mapped addresses and

reset values, summary of 9-10
MRCCSx 9-9, 9-10, 9-12
MRCSx 9-9, 9-10, 9-11
MTCCSx 9-9, 9-10, 9-11
MTCSx 9-9, 9-10, 9-11
programming 9-12
RDIVx 9-9, 9-10, 9-11
reading/writing 9-12
SRCTLx 9-9, 9-10, 9-11
status bits 9-38
STCTLx 9-9, 9-10, 9-11
summary of 9-9
symbolic names 9-12
TDIVx 9-9, 9-10, 9-11
transmit and receive 9-15

see also STCTLx register and
SRCTLx register

write and effect latency 9-13
SPORT data buffers 9-9

core hang condition 9-15
described 9-13
memory-mapped addresses and

reset values, summary of 9-10
read/write restrictions 9-15
reads/write of 9-14

ADSP-21065L SHARC DSP User’s Manual I-111

INDEX

receive data buffer operation 9-14
receive shift register 9-13
RXx_z 9-9, 9-10, 9-11, 9-12
size of 9-13
summary of 9-9
transmit data buffer operation

9-13
TXx_z 9-9, 9-10, 9-11, 9-12

SPORT data packing and
unpacking 9-47

data justification 9-47
interrupts 9-48
short word space addresses and

9-48
SPORT data word formats 9-44

companding
see Companding

data type 9-44
see also DTYPE (data type) bits

SPORT divisor registers, see RDIVx
register and TDIVx register

SPORT DMA 9-65
channel assignments 6-22
channels 6-22
connection to internal memory

space 6-27
control bits 6-23
control registers 6-22
data transfers 6-7, 6-22

and the STCTLx and SRCTLx
registers 6-23

data packing 6-22
direction of 6-7, 6-22
SCHEN DMA control bit 6-23

setting up 6-23
DMA-driven data transfer mode

9-65
see DMA-driven data transfer

mode
enabling 9-65
internal DMA request and grant

6-35
interrupt-driven data transfer

mode 9-65
see Interrupt-driven data transfer

mode
interrupts 6-23
SDEN DMA control bit 6-23

SPORT DMA block transfers
channel priorities 9-78
described 9-77
DMA channels 9-77
DMA interrupts with packing

enabled 9-79
packing 9-78
word size 9-78

SPORT DMA chaining 9-85
chain pointer register and 9-85
described 9-85
see also DMA chaining

SPORT DMA channels 9-77
SPORT DMA interrupts

EP0I 6-23
EP1I 6-23
SPR0I 6-23
SPR1I 6-23
SPT0I 6-23
SPT1I 6-23

INDEX

I-112 ADSP-21065L SHARC DSP User’s Manual

SPORT DMA operation 9-79
count register and interrupts 9-81
DMA chaining, enabling 9-79
DMA parameter registers 9-79

see SPORT DMA parameter reg-
isters

enabling 9-79
RX buffer transfers 9-80
SCHEN 9-79
SDEN 9-79
TX buffer transfers 9-80

SPORT DMA parameter registers
9-79

architecture 9-81
chain pointer register 9-82
count register 9-81
CPRx_X 9-80
CPTx_X 9-80
CRx_X 9-80
CTx_X 9-80
described 9-81
GPRx_X 9-80
GPTx_X 9-80
IIRx_X 9-80
IITx_X 9-80
IMRx_X 9-80
IMTx_X 9-80
index register 9-81
internal memory data buffer and

9-81
interrupts 9-81
loading 9-80
modify register 9-81
register addresses, summary of

9-82
summary of 9-80

SPORT frame sync options 9-52
described 9-52
frame sync active state 9-55
frame sync clock edge 9-55
frame sync data dependency 9-57
frame sync insert 9-56
frame sync logic level 9-55
frame sync requirement 9-52
frame sync source 9-54
ITFS 9-54
RFSR 9-52
RTFS 9-54
summary of 9-52
TFSR 9-52

SPORT interrupts 9-6
described 9-6
EP0I 9-6
EP1I 9-6
receive DMA interrupt 9-6
SPR0I 9-6
SPR1I 9-6
SPT0I 9-6
SPT1I 9-6
summary of 9-6
timing 9-6
transmit DMA interrupt 9-6
with DMA disabled 9-6

SPORT loopback mode 9-88
described 9-88
SPL bit 9-88

SPORT master mode 9-64
SPORT memory transfers 9-77

ADSP-21065L SHARC DSP User’s Manual I-113

INDEX

DMA block transfers 9-77
see SPORT DMA block transfers

interrupts 9-77
single-word transfers, see SPORT

single-word transfers
transfer methods 9-77

SPORT MSB/LSB data word
format 9-48

SPORT multichannel receive
companding select register, see
MRCCSx register

SPORT multichannel receive select
register, see MRCSx register

SPORT multichannel transmit
compand select register, see
MTCCSx register

SPORT multichannel transmit
select register, see MTCSx
register

SPORT pin driver considerations
9-88

SPORT programming examples
9-89

DMA transfers with interrupts
9-93

single-word transfers with
interrupts 9-91

single-word transfers without
interrupts 9-89

SPORT receive clock and frame
sync divisors register, see RDIVx
register

SPORT receive comparison mask
register, see IMASK register

SPORT receive comparison register,
see KEYWDx register

SPORT receive control register, see
SRCTLx register

SPORT receive data buffer, see
RXx_z data buffer

SPORT RESET
data buffer read/write results 9-7
data buffer status bits and 9-7
described 9-7
hardware method 9-8
methods 9-7
RXS (receive data buffer status)

bits 9-7
RXx_z data buffer 9-7
software method 9-8
transmit/receive operability 9-8
TXS (transmit data buffer status)

bits 9-7
TXx_z data buffer 9-7

SPORT serial word length 9-48
described 9-48
DMA chaining and 9-49
RXx_z buffer operation 9-49
SLEN bit value 9-48
TXx_z buffer operation 9-49

SPORT single-word transfers
BHD (buffer hang disable) bit

9-86
core hang condition and 9-86
core updates of STCTLx and

SRCTLx register status bits
9-86

described 9-86

INDEX

I-114 ADSP-21065L SHARC DSP User’s Manual

interrupt-driven I/O,
implementing 9-86

interrupts 9-86
SPORT transmit clock and frame

sync divisors register, see
TDIVx register

SPORT transmit control register,
see STCTLx register

SPORT transmit data buffer, see
TXx_z data buffer

SPORT0 receive DMA channel 0/1
interrupt 9-6

SPORT0 transmit DMA channel
4/5 interrupt 9-6

SPORT1 receive DMA channel 2/3
interrupt 9-6

SPORT1 transmit DMA channel
6/7 interrupt 9-6

SPR0I interrupt
function and priority 9-6

SPR1I interrupt
function and priority 9-6

SPT0I interrupt
function and priority 9-6

SPT1I interrupt
function and priority 9-6

SRCTLx register 6-23, 9-9, 9-15
address of E-81
bit definitions E-85
CKRE 9-21, 9-26
control bit definitions 9-26
control bits, summary of 9-21
core updates of status bits 9-15
default bit values (I2S mode),

diagram of 9-24, E-83
default bit values (multichannel

mode), diagram of 9-25, E-84
default bit values (standard

mode), diagram of 9-23, E-82
described E-81
DTYPE 9-21, 9-27, 9-44
effect latency 9-13
I2S mode control bits 9-21, 9-62
ICLK 9-21
IMAT 9-22, 9-28, 9-74
IMODE 9-21, 9-29, 9-74
initialization value E-81
IRFS 9-21, 9-29
L_FIRST 9-21, 9-30
LAFS 9-22, 9-29
LRFS 9-21, 9-30
MCE 9-22, 9-31
memory-mapped address and

reset value 9-11
MSTR 9-21, 9-31
multichannel control bits 9-69
multichannel mode control bits

9-21
NCH 9-22, 9-32
OPMODE 9-21, 9-32
PACK 9-21, 9-32
receive comparison control bits

9-74
RFSR 9-21, 9-33
ROVF 9-22, 9-33
RXS 9-22, 9-33
SCHEN 9-22, 9-34
SDEN 9-22, 9-34

ADSP-21065L SHARC DSP User’s Manual I-115

INDEX

SENDN 9-21, 9-35
setting up SPORT DMA data

transfers 6-23
SLEN 9-21, 9-35
SPEN 9-21, 9-35
SPL 9-22, 9-36
SPORT DMA chaining enable

(SCHEN) bit 6-23
SPORT DMA control bits 6-23
SPORT DMA enable (SDEN) bit

6-23
SRCTL0 memory-mapped

address and reset value 9-10
standard mode control bits 9-21
status bits 9-38
TCLK 9-28
write latency 9-13

SRCU (alternate register select,
computation units) bit

context switching 2-29
MR registers 2-29

SRD1H (DAG1 alternate register
select 7-4) bit 4-5

SRD1L (DAG1 alternate register
select 3-0) bit 4-5

SRD2H (DAG2 alternate register
select 15-12) bit 4-5

SRD2L (DAG2 alternate register
select 11-8) bit 4-5

Sref command 10-39
entering and exiting self-refresh

mode 10-28
SRRFH (register file alternate select

R15-R8/F15-F8) bit 2-11

SRRFL (register file alternate select
R7-R0/F7-F0) bit 2-11

SRST (soft reset) bit 7-23
bus arbitration synchronization

after 7-21
SS (Shifter input sign) bit 2-45

described 2-46
SSE bit 5-30, 5-42
SSEM bit 3-54
SSOV bit 3-54
Stack overflows 3-38
Standard SPORT mode

channel configuration 9-59
CKRE (frame sync clock edge)

9-26
companding 9-59
companding formats 9-44
continuous simultaneous

transmissions 9-59
data justification 9-44
data reception 9-59
default bit values, diagram of

9-18, 9-23
described 9-59
DITFS 9-26
DMA requests and interrupts

9-59
DTYPE 9-27, 9-28, 9-44
enabling 9-59
frame sync clock edge 9-55
frame sync configuration 9-59

see Frame sync configuration
frame sync data dependency in

9-57

INDEX

I-116 ADSP-21065L SHARC DSP User’s Manual

frame sync insert and 9-56
frame sync logic level, configuring

9-55
IMODE 9-29
ITFS 9-29
LAFS 9-29
loopback mode 9-88
LRFS 9-30
MCE 9-31
OPMODE 9-32, 9-36
PACK 9-32
receive control bits 9-21
RFSR 9-33
ROVF 9-33
RXS 9-33
SCHEN 9-34
SDEN 9-34
SENDN 9-35
setting the serial clock frequency

9-60
SLEN 9-35
SPEN 9-35
SPL 9-36
TCLK 9-28
TFS 9-30
TFSR 9-36
transmit configuration 9-59
transmit control bits 9-15
TUVF 9-36
TXS 9-37
using both transmitters

simultaneously 9-59
Starting a new DMA sequence 6-9,

6-29

Starting address for contiguous
32-bit data 5-37

Starting address of 32-bit data,
equations for 5-35

Starting and stopping DMA
sequences 6-48

Status stack 3-7
current values of ASTAT and

MODE1 3-49
flags 3-54
programmable timer interrupts

and 11-9
pushing and popping 3-7
pushing and popping ASTAT

12-34
pushing and popping IOSTAT

12-34
RTI pop of 3-16
size of 3-48
stack pointer status 3-49

Status stack empty flag 3-54
Status stack flags 3-54

access of 3-54
empty 3-55
overflow and full 3-54
setting 3-54
summary of 3-54

Status stack overflow flag 3-54
Status stack pointer

moving 3-49
status stack, pushes and pops of

3-49
Status stack save and restore 3-48

ASTAT register 3-48

ADSP-21065L SHARC DSP User’s Manual I-117

INDEX

described 3-48
FLAG3-0 bit values 3-48
interrupts that automatically push

the status stack 3-48
JUMP (CI) instruction 3-48
MODE1 register 3-48
RTI instruction 3-48
status and control bit preservation

3-48
status and mode contexts 3-48

STCTLx register 6-23, 9-9, 9-15
address of E-90
bit definitions E-94
CHNL 9-17, 9-26
CKRE 9-16, 9-26
control bit definitions 9-26
control bits, summary of 9-15
core updates of status bits 9-15
default bit values (I2S mode),

diagram of 9-19, E-92
default bit values (multichannel

mode), diagram of 9-20, E-93
default bit values (standard

mode), diagram of 9-18, E-91
described E-90
DITFS 9-16, 9-26
DTYPE 9-15, 9-27, 9-44
effect latency 9-13
FS_BOTH 9-17, 9-28, 9-59
I2S mode control bits 9-15, 9-62
ICLK 9-16
initialization value E-90
ITFS 9-16, 9-29
L_FIRST 9-16, 9-30

LAFS 9-16, 9-29
LTFS 9-16, 9-30
memory-mapped address and

reset value 9-10, 9-11
MFD 9-16, 9-31, 9-71
MSTR 9-16, 9-31
multichannel mode control bits

9-15, 9-69
OPMODE 9-16, 9-32
PACK 9-16, 9-32
SCHEN 9-16, 9-34
SDEN 9-16, 9-34
SENDN 9-15, 9-35
setting up SPORT DMA transfers

6-23
SLEN 9-16, 9-35
SPEN 9-15, 9-35
SPORT DMA chaining enable

(SCHEN) bit 6-23
SPORT DMA control bits 6-23
SPORT DMA enable (SDEN) bit

6-23
standard mode control bits 9-15
status bits 9-38
TCLK 9-28
TFSR 9-16, 9-36
TUVF 9-17, 9-36
TXS 9-17, 9-37
write latency 9-13

Sticky bit
defined E-29

Sticky status register, see STKY
register

STKY register 2-16

INDEX

I-118 ADSP-21065L SHARC DSP User’s Manual

AIS 2-17
ALU status flags, summary of

2-17
AOS 2-17
arithmetic exception interrupts

and 3-42
arithmetic interrupts, priority of

3-45
AUS 2-17
AVS 2-17
bit definitions E-29
circular buffer overflow interrupts

and 4-13
CNT_EXPx 11-6
CNT_OVFx 11-6
default bit values, diagram of E-28
described E-27
initialization value E-27
loop address stack and 3-33
LSEM 3-54
LSOV 3-54
MIS 2-34
MOS 2-34
multiplier status bits, summary of

2-34
MUS 2-34
MVS 2-34
PC stack flags 3-54
PC stack status flags 3-24
PCEM 3-54
PCFL 3-54
programmable timer overflow

status 11-6
programmable timer status bits,

summary of 11-11
PULSE_CAPx 11-6
ROVF 9-14
SSEM 3-54
SSOV 3-54
status stack flags 3-54
sticky bit, defined E-29
TUVF 9-14

Storage capacity of on-chip memory
5-17

Subroutines 3-1
call instructions 3-16

Super Harvard architecture,
diagram of 1-2

Suspending bus three-state (SBTS)
12-6

see also SBTS
SV (Shifter overflow bits left of

MSB) bit 2-45
described 2-46

SV condition 3-13
SW

external memory space interface
and 5-46

pin definition 12-6
state after reset 12-23

SWPD (slave write pending data)
bit 7-42

semaphore read-write-modify
operations and 7-35

Symbol definitions file
(def21065L.h) E-116

Synchronization sequence 7-22
Synchronous inputs 12-3

ADSP-21065L SHARC DSP User’s Manual I-119

INDEX

Synchronous write select, see SW
SYSCON register

address of E-99
ADREDY 8-12
BHD 7-29, 8-19, 9-7, 9-15, 9-86
bit definitions E-101
data packing control bits,

summary of 8-26
default bit values, diagram of

8-25, E-100
described E-99
HBW 6-51, 8-22, 8-24, 8-26
HMSWF 6-54, 8-27
host data packing control bits

8-25
HPFLSH 8-27
IIVT F-3
IMDW1 8-27
INDW0 8-27
initialization value 8-26, E-99
internal interrupt vector table

(IIVT) bit 5-30
multiprocessing data transfers and

7-25
SRST 7-21, 7-23

SYSTAT register
address of E-106
bit definitions 8-40, E-108
BSYN 7-22, 7-42, 8-40
CRBM 7-42, 8-40
default bit values, diagram of

7-41, 8-43, E-107
described E-106
HPS 7-43, 8-42

HSTM 7-41, 8-40
IDC 7-42, 8-41
initialization value E-106
multiprocessing data transfers and

7-25
multiprocessing status

information 8-40
status bits 7-40
SWPD 7-35, 7-42
VIPD 3-52, 7-39, 7-42, 8-38,

8-42
System bus

arbitrating for control of 8-44
arbitration unit 8-44, 8-51
core accesses of 8-48
host interface with 8-44
ISA 8-44
master processor accesses of 8-46
PCI 8-44

System bus access deadlock
HBR 8-49
resolving
SBTS 8-49
SBTS and HBR combination

8-49
System clock

cycle reference for host interface
operations 8-7

frequencies of operations 12-26
System configuration register, see

SYSCON register
System configurations for

interprocessor DMA 6-70
System control

INDEX

I-120 ADSP-21065L SHARC DSP User’s Manual

BMS 12-13
BMSTR 12-13
BRx 12-14
BSEL 12-14
CLKIN 12-14
CPA 12-16
FLAGx 12-16
IDx 12-16
IRQx 12-17
pin definitions 12-13
PWM_EVENTx 12-17
RD 12-17
RESET 12-18
WR 12-18
XTAL 12-19

System design 12-1
accessing on-chip emulation

features 12-34
asynchronous inputs 12-3, 12-27
basic single-processor system,

diagram of 12-2
boot modes, see Boot modes
booting, see Booting
CLKIN frequencies 12-26
data delays and throughput

summary 12-62
data delays, latencies, and

throughput 12-62
decoupling capacitors and ground

planes 12-46
described 12-1
design recommendations 12-45
enabling the internal clock

generator 12-27

executing boundary scans 12-34
execution stalls 12-66
external interrupt and timer pins

12-28
external port data alignment,

diagram of 12-21
EZ-ICE emulator, see EZ-ICE

emulator
flag inputs 12-31
flag outputs 12-33
Flag pins and 12-28
FLAGx output timing, diagram of

12-34
FLAGxO status bits 12-32
high frequency design issues, see

High frequency design issues
input signal conditioning, see

Input signal conditioning
input synchronization delay

12-27
internal clock generation 12-26
JTAG interface pins 12-34
latencies and throughput,

summary of 12-65
oscilloscope probes 12-47
pin definitions 12-3, 12-4

host interface 12-7
JTAG/emulator 12-19
miscellaneous 12-20
SDRAM interface 12-10
serial port 12-11
system control 12-13

pin operation 12-26
pin states after reset 12-22

ADSP-21065L SHARC DSP User’s Manual I-121

INDEX

point-to-point connections on
serial ports 12-45

recommended reference literature
12-47

reducing capacitance load 12-45
reducing ringing 12-45
RESET input hysteresis 12-41

see also RESET
signal integrity 12-45
signal paths, adding damping

resistance to 12-45
synchronous inputs 12-3
task-on-demand controls 12-28
test access port 12-34
unused inputs 12-3
XTAL and CLKIN operation

12-26
System register bit manipulation

(type 18) instruction 3-7
BIT TST 3-12
BIT XOR 3-12
described A-71, E-5
example A-71
opcode A-72
operations E-6
restricted use E-6
result E-6

see also BTF (bit test flag) bit
System registers

application access of E-2
ASTAT E-8
bit test flag E-6
defined E-1
described E-2

effect and read latencies E-4
IMASK E-12
initialization values after reset E-3
IRPTL E-12
MODE1 E-16
MODE2 E-21
program sequencer 3-7
read and effect latencies, summary

of 3-8, E-5
STKY E-27
summary of E-2
system register bit manipulation

instruction
see System register bit manipula-

tion (type 18) instruction
System status register, see SYSTAT

register
SZ (Shifter result 0) bit 2-45

described 2-46
SZ condition 3-13

T
TAP (JTAG test access port)

ABSDL (boundary scan
description language) file D-3

described D-2
TCK input D-2
TDI input D-2
TDO output D-2
TMS input D-2
TRST input D-2

TCB 6-5
and chain loading 6-41
and the chain pointer 6-41

INDEX

I-122 ADSP-21065L SHARC DSP User’s Manual

defined 6-5, 6-39
memory setup for external port

DMA channels 6-43
storage locations 6-41

TCB chain loading 6-5, 6-26
defined 6-5, 6-39
described 6-41
prioritization of DMA channels

6-37
priority of external port DMA

channels 6-37
request prioritization 6-42
request procedure 6-42
see also TCB
sequence summary 6-41
TCB-to-register sequence 6-41

TCK
pin definition 12-19
state after reset 12-25

TCLK (transmit and receive clock
sources) bit

defined 9-28
TCLKDIV transmit clock divisor

9-40
described 9-41
I2S SPORT mode 9-62
SPORT clock source and 9-50

TCLKx 9-4, 9-5
clock signal options 9-50
connection in multichannel

SPORT mode 9-67
pin definition 12-12
SPORT loopback mode 9-88
state after reset 12-24

TCOUNTx register 11-1
reset values 11-11
size of 11-1

TDI
pin definition 12-19
state after reset 12-25

TDIVx register 9-5, 9-9
address of E-78
bit definitions E-80
clock and frame sync frequencies

9-39
default bit values, diagram of E-79
described E-78
divisor bit fields 9-40
memory-mapped address and

reset value 9-10, 9-11
reset and E-78
TCLKDIV 9-40
TFS signal frequencies 9-5
TFSDIV 9-40

TDO
pin definition 12-20
state after reset 12-25

Technical and customer support,
contacting -xx, -xiv

Termination
end-of-line 12-43
propagation delay 12-43
series-terminated transmission

line 12-43, 12-45
source 12-43, 12-44

Termination codes 3-12
see also Condition codes

ADSP-21065L SHARC DSP User’s Manual I-123

INDEX

Termination conditions for
noncounter-based loops 3-30

TF condition 3-12, 3-14
TFS signal 9-5
TFSDIV transmit frame sync

divisor 9-40
described 9-42
frame sync source and 9-54

TFSR (transmit frame sync
requirement) bit 9-16

defined 9-36
described 9-52

TFSx pins 9-4
connection in multichannel

SPORT mode 9-69
I2S word select 9-63
multichannel SPORT mode

transmit data valid signal 9-69
pin definition 12-12
SPORT loopback mode 9-88
state after reset 12-24

TIMENx (timer enable) bit 11-1
described) 11-8

Timer control bits and interrupt
vectors

INT_HIx (timer interrupt vector
location) 11-9

PERIOD_CNTx (timer period
count enable) 11-8

PULSE_HIx (timer leading edge
select) 11-8

PWMOUTx (timer mode
control) 11-8

TIMENx (timer enable) 11-8

Timer counter timer mode, see
PMWOUT

Timer interrupts and the status
stack 11-9

described 11-9
logical OR of both timer

interrupts 11-9
TMZHI and 11-9

Timer pins, see PWM_EVENTx
Timer registers

IOP register addresses of 11-12
TCOUNTx 11-11
TPERIODx 11-11
TPWIDTHx 11-11

TMS
pin definition 12-20
state after reset 12-25

TPERIODx register 11-1
PWMOUT timer mode 11-3
reset values 11-11
size of 11-1

TPWIDTHx register 11-1
PWMOUT timer mode 11-3
reset values 11-11
size of 11-1

TRAN (DMA transfer direction) bit
6-14, 8-28

described 6-15
direction of DMA transfers 6-15
single-word EPBx transfers 8-20

Transfer control block, see TCB
Transfer timing example

multichannel SPORT mode 9-68

INDEX

I-124 ADSP-21065L SHARC DSP User’s Manual

Transferring data between the PM
and DM buses 5-12

Transferring data to and from
memory 5-7

Transmit clock (TCLKx) pins 9-4
Transmit frame sync (TFSx) pins

9-4
Transmit shift register 9-5
Transmit underflow status, see

TUVF (transmit underflow
status) bit

tRAS active command time 10-7
bank cycle time and 10-41

tRC bank cycle time 10-7
tRCD RAS to CAS delay 10-8
tRP precharge time 10-8
TRST

pin definition 12-20
power-up procedures and 12-35
state after reset 12-25

TRUE condition 3-12, 3-15
TRUNC (floating-point rounding

mode) bit 2-14
multiplier floating-point

operation 2-32
multiplier floating-point

operations 2-33
round-to-nearest 2-15
round-to-zero 2-15

tTRDYHG switching characteristic 8-12
TUVF (transmit underflow status)

bit 9-14, 9-17, 9-38
defined 9-36
described 9-39

TXS (transmit data buffer status)
bits 9-17, 9-38

defined 9-37
described 9-39
SPORT reset and 9-7

TXx_z data buffer 9-5, 9-9
data formats and 9-44
described 9-13
memory-mapped address and

reset value 9-10, 9-11, 9-12
multichannel operation with

DMA enabled 9-69
multichannel TFS operation 9-69
operation, see TXx_z data buffer

operation
read/write restrictions 9-15
reading/writing 9-14
size of 9-13
SPORT reset and 9-7
transmit shift buffer 9-44
writes to a full buffer 9-14

TXx_z data buffer operation 9-13
architecture 9-13
described 9-13
interrupts 9-14
storage capacity 9-14
transmit underflow condition

9-14
Type 10 instruction 8-48

and core accesses of the system bus
8-48

U
Unconditional instructions

ADSP-21065L SHARC DSP User’s Manual I-125

INDEX

IF TRUE 3-12
Uniprocessor to microprocessor bus

interface 8-51
Universal registers A-15

and bit wise operations 12-29
and bitwise operations 11-13
ASTAT 11-14
DAG registers 4-15
data transfers, between 5-12
IMASK 6-47, F-1
IRPTL F-1
list of A-15
map 1 register codes A-26
map 1 registers A-24
map 1 system registers A-25
map 2 register codes A-27
map 2 registers A-25
program sequencer 3-7
summary of A-15
system registers and E-2

Unusable internal memory space
addresses 5-24

Unused inputs 12-3
Unused pins 12-20
Ureg⇔DM|PM (direct addressing)

(type 14) instruction
described A-63
example A-63
opcode A-63
syntax summary A-8

Ureg⇔DM|PM (indirect
addressing) (type 15)
instruction

described A-65

example A-65
opcode A-66
syntax summary A-8

V
VDD

decoupling capacitors and ground
planes 12-46

pin definition 12-20
Vector interrupt table

VIRPT 7-39
Vector interrupt-driven message

passing protocol 7-37, 8-37
Vector interrupts 7-38

addresses of F-1
DMA done interrupt 12-58
generating 8-38
host 8-38
host booting and 12-58
I2S DMA-driven data transfer

mode 9-65
immediate high-priority interrupt

8-36
interprocessor communication

8-36
interrupt service routines 7-39,

8-36, 8-38
address of 8-38
data for 8-38
RTI instruction and 8-38

interrupt vector table 3-44, 7-39,
8-38

minimum latency 3-52, 7-39,
8-38

INDEX

I-126 ADSP-21065L SHARC DSP User’s Manual

RTI (return from interrupt)
instruction 8-38

servicing 7-38, 8-38
using 3-52, 7-39
VIPD bit 3-52
VIRPT register 7-38

VIPD (vector interrupt pending) bit
7-42, 8-38, 8-42

interprocessor messages 7-39
multiprocessor vector interrupts

3-52
VIRPT register 6-47, 8-36

host booting and 12-58
host interface and 7-36
host interrupt service routines

8-38
host vector interrupts and 8-38

generating 8-38
servicing 8-38

initialization at reset 8-38
interprocessor messages 7-36,

7-39, 8-36
interrupt service routine 8-38
interrupt vector table and 3-44
minimum latency 3-43
multiprocessing data transfers

7-25
multiprocessor vector interrupts

3-52
shared-bus multiprocessing 8-36
status of 3-52, 8-38
vector interrupts 7-36, 7-38
VIPD 8-38

W
WAIT register

address of E-111
bit definitions 5-56, E-113
default bit values, diagram of

5-58, E-112
described E-111
EBxWM 5-56, 5-61
EBxWS 5-56, 5-60
extending access to off-chip

memory 5-54
HIDMA 5-57
initialization value 5-55, E-111
MMSWS 5-57, 5-62
RBWM 5-56, 12-52
RBWS 5-57, 12-52
wait state configuration features

5-55
Wait state modes 5-61
Wait states

DMA transfers between
processor’s internal and external
memory 6-74

EPROM booting 12-52
multiprocessing data transfers

7-25
programming clock cycles 12-27

Wait states and acknowledge
automatic wait state option 5-62
bus hold time cycle 5-60, 5-61
bus idle cycle 5-58, 5-59, 5-60
external memory banks and 5-48
external memory space 5-53
IOP control registers 5-53

ADSP-21065L SHARC DSP User’s Manual I-127

INDEX

multiprocessor memory space
5-61

off-chip memory access extension
5-53
both (ACK and WAIT register)

method 5-54
either (ACK or WAIT register)

method 5-54
internal (WAIT register) meth-

od 5-54
WAIT register, see WAIT register

WIDTH_CNT timer mode 3-53,
11-1

capture mode 11-6
defining the leading and trailing

edges of the PWM_EVENTx
signal 11-6

described 11-5
pulse period capture 11-6
pulse width capture 11-6
PWM_EVENTx timer pin

operation 11-5
PWMOUTx (timer mode

control) bit 11-5
selecting 11-5
timer flow diagram 11-7
timer interrupts 11-6
timer overflow 11-6
timing, diagram of 11-5
TPERIODx and TPWIDTHx

registers 11-6
Word select signal

described 9-64
FS_BOTH and 9-64

I2S SPORT mode 9-63
timing in I2S SPORT mode,

diagram of 9-66
Word size and memory block

organization 5-28
Word types, memory 5-28
Word width

and memory block organization
5-30

DMA data transfers 6-16
external words 6-52
HBW bits 6-52
instruction fetches 5-28
internal words 6-52
memory accesses 5-28
normal word addressing 5-28
PMODE bits 6-52
PX register over DM bus 5-28
PX register over PM bus 5-28
RND32 and 5-41
short word addressing 5-28

WR
external memory space interface

and 5-46
pin definition 12-18
state after reset 12-23

Write (SDRAM) command 10-35
Write latencies

IOP register mode and control
bits E-43

IOP registers 7-26, E-42
SPORT control registers 9-13

Writes to a slave processor’s EPBx
buffers 8-18

INDEX

I-128 ADSP-21065L SHARC DSP User’s Manual

Writes to a slave processor’s IOP
registers 8-16

Writing the IOP registers
multiprocessing data transfers

7-26
Writing to BMS memory space and

BSO 12-56

X
XTAL

and CLKIN 12-26
enabling the internal clock

generator 12-27
internal clock generation 12-26
pin definition 12-19
state after reset 12-24

Z
Zero-filling 16-bit short word

addresses 5-30, 5-42

	Contents
	Preface
	For Additional Information About Analog Products
	For Technical or Customer Support
	What’s This Book About and Who’s It For?
	How to Use This Manual
	Related Documents
	Conventions of Notation

	1 Introduction
	Features and Benefits
	System-Level Enhancements
	Why Floating-Point DSP?

	ADSP-21065L Architecture
	DSP Core
	Computation Units
	Register File
	Program Sequencer and Data Address Generators
	Instruction Cache
	DSP Core Buses
	Programmable Timers and General-Purpose I/O Ports
	Interrupts
	Context Switching
	Comprehensive Instruction Set

	Dual-Ported Memory
	External Port Interface
	Host Interface
	I/O Processor
	Serial Ports
	DMA Controller
	Booting
	Development Tools

	Summary of Features
	Features and Benefits
	Balanced Performance
	Additional Literature

	2 Computation Units
	Data Formats
	Single-Precision Floating-Point Format
	Extended-Precision FLoating-Point
	Short Word Floating-Point Format
	Exception Handling for FLoating-Point Operations
	Fixed-Point Format
	Rounding Modes

	Register File
	Individual Data Registers
	Alternate Registers

	Arithmetic Logic Unit (ALU)
	ALU Operations
	ALU Operating Modes
	Fixed-Point Saturation Mode
	Floating-Point Rounding Modes
	Floating-Point Rounding Boundary

	ALU Status Flags
	ALU Zero Flag (AZ)
	ALU Underflow Flags (AZ, AUS)
	ALU Negative Flag (AN)
	ALU Overflow Flags (AV, AOS, AVS)
	ALU Fixed-Point Carry Flag (AC)
	ALU Sign Flag (AS)
	ALU Invalid FLag (AI, AIS)
	ALU Floating-Point Flag (AF)
	ALU Compare Accumulation Operations

	ALU Instruction Set Summary

	Multiplier Unit
	Multiplier Operations
	Fixed-Point Results
	Using the MR Registers
	Fixed-Point MR Register Operations
	Clear MR Register
	Rounding MR Register
	Saturate MR Register

	Floating-Point Operating Modes
	Rounding Mode
	Rounding Boundary

	Multiplier Status Flags
	Multiplier Negative Flag (MN)
	Multiplier Overflow Flags (MV, MVS, MOS)
	Multiplier Invalid Operation Flag (MI)
	Multiplier Underflow Flag (MU, MUS)

	Multiplier Instruction Set Summary

	Shifter Unit
	Shifter Operations
	Bit Field Deposit and Extract Operations
	Shifter Status Flags
	Shifter Overflow Flag (SV)
	Shifter Zero Flag (SZ)
	Shifter Sign Flag (SS)

	Shifter Instruction Summary

	Multifunction Operations

	3 Program Sequencing
	Instruction Cycle
	Program Sequencer Architecture
	Program Sequencer and System Registers

	Program Sequencer Operation
	Sequential Program Flow
	Program Memory Data Accesses
	Branches
	Loops

	Executing Conditional Instructions
	Branches (call, jump, rts, rti)
	Delayed and Nondelayed Branches
	PC Stack

	Loops (DO UNTIL)
	Restrictions and Short Loops
	General Restrictions
	Counter-Based Loops
	Noncounter-Based Loops

	Loop Address Stack
	Loop Counters and Stack
	The Current Loop Counter (CURLCNTR)
	The Loop Counter (LCNTR)

	Interrupts
	Interrupt Latency
	Interrupt Vector Table
	Interrupt Latch Register (IRPTL)
	Interrupt Priority
	Interrupt Masking and Control
	Interrupt Mask Register (IMASK)
	Interrupt Nesting and IMASKP

	Status Stack Save and Restore
	Software Interrupts
	Clearing the Current Interrupt for Reuse
	External Interrupt Timing and Sensitivity
	Asynchronous External Interrupts
	Multiprocessor Vector Interrupts (VIRPT)

	Programmable Timers
	Stack Flags
	Idle and Idle16
	Instruction Cache
	Cache Architecture
	Cache Efficiency
	Cache Disable and Cache Freeze

	4 Data Addressing
	DAG Registers
	Alternate DAG Registers

	DAG Operation
	Address Output and Modification
	DAG Modify Instructions
	Immediate Modifiers

	Circular Buffer Addressing
	Circular Buffer Operation
	Circular Buffer Registers
	Circular Buffer Overflow Interrupts

	Bit Reversal
	Using Bit-Reverse Mode
	Using the Bit Reverse Instruction

	DAG Register Transfers

	5 Memory
	Transferring Data In and Out of Memory
	Dual Data Accesses
	Using the Instruction Cache to Access PM Data
	Generating Addresses for the PM and DM Buses
	Transferring Data Between the PM and DM Buses
	Memory Block Accesses and Conflicts

	Memory Organization
	Internal Memory Space
	Multiprocessor Memory Space
	External Memory Space
	Memory Space Access Restrictions

	Word Size and Memory Block Organization
	Normal Versus Short Word Addressing
	Using 32- and 48-Bit Memory Words
	Mixing 32- and 48-Bit Words in One Memory Block
	Fine Tuning Mixed Word Accesses
	Low-Level Physical Mapping of Memory Blocks
	Restrictions on Storing Mixed Words
	Interacting with the Shadow Write FIFO

	Configuring Memory for 32- or 40-Bit Data
	Using 16-Bit Short Word Accesses

	Interfacing with External Memory
	External Memory Banks
	Executing Program from External Memory
	Boot Memory Select (BSEL and BMS)
	Wait States and Acknowledge
	The WAIT Register
	Multiprocessor Memory Space Wait States and Acknowledge

	External SDRAM Memory
	Suspending Bus Three-state (SBTS)
	Normal SBTS Operation: HBR not Asserted

	External Memory Access Timing
	External Memory
	Bus Master Reads of External Memory
	Bus Master Writes of External Memory

	Multiprocessor Memory

	6 DMA
	DMA Controller Operation
	Setting Up DMA Transfers
	DMA Control Registers
	External Port DMA Registers
	Serial Port DMA Control Registers
	DMA Channel Status Register

	DMA Controller Operation
	DMA Channel Parameter Registers
	Internal Request and Grant
	Setting DMA Channel Prioritization
	Rotating Priority for External Port Channels

	DMA Chaining
	Transfer Control Blocks and Chain Loading
	Setting Up and Starting a Chain

	Inserting a Chain
	DMA Interrupts
	Starting and Stopping DMA Sequences

	External Port DMA
	External Port FIFO Buffers (EPBx)
	External Port DMA Data Packing
	Packing Status

	Generating Internal and External Addresses
	External Port DMA Modes
	Master Mode
	Paced Master Mode
	Slave Mode
	Handshake Mode
	External Handshake Mode

	System Configurations for Interprocessor DMA
	Interfacing with DMA Hardware

	Overall DMA Throughput
	Concurrent Accesses to Internal Memory
	Concurrent Accesses to External Memory

	7 Multiprocessing
	Multiprocessing System Architecture
	Data Flow Multiprocessing
	Cluster Multiprocessing

	Multiprocessor Bus Arbitration
	Bus Arbitration Protocol
	Bus Mastership Timeout
	Core Priority Access
	Bus Arbitration Synchronization After Reset

	Data Transfers
	Writing the IOP Registers
	Reading the IOP Registers
	Transfers Through the EPBx Buffers
	Single-Word Transfers
	DMA Transfers

	Interacting with the Shadow Write FIFO

	Bus Lock and Semaphores
	Interprocessor Messages
	Message Passing (MSGRx)
	Vector Interrupts (VIRPT)
	Servicing a Vector Interrupt

	SYSTAT Register Status Bits

	8 Host Interface
	Host Control of the Processor
	Acquiring the Bus
	Host Transfers
	Asynchronous Transfer Timing

	Data Transfers
	Writing to the IOP Registers
	Reading the IOP Registers
	Transfers Through the EPBx Buffers
	Single-Word Transfers
	DMA Transfers

	Performing Broadcast Writes

	Data Packing
	Packing Control Bits in SYSCON
	Packing Control Bits in DMACx
	Data Bus Lines and Host Bus Width
	32-Bit Data Packing and Unpacking
	48-Bit Instruction Packing

	Interprocessor Messages
	Message Passing (MSGRx)
	Host Vector Interrupts (VIRPT)

	SYSTAT Register Bits
	Interfacing with the System Bus
	Accessing the Cluster Bus and Slave Processors
	Master Processor Accesses of the System Bus
	Core Accesses of the System Bus
	Resolving Bus Access Deadlock
	DMA Controller Accesses of the System Bus

	Uniprocessor to Microprocessor Bus Interface

	9 Serial Ports
	Serial Port Connections
	SPORT Interrupts

	SPORT RESET
	Using the Hardware Reset Method
	Using the Software Reset Method

	SPORT Control Registers and Data Buffers
	Register Writes and Effect Latency
	Transmit and Receive Data Buffers (TX, RX)
	TX Buffer Operation
	RX Buffer Operation
	Reading and Writing RX, TX

	Transmit and Receive Control Registers (STCTL, SRCTL)
	Control Register Status Bits
	Current Channel Selected Status Bits (CHNL)
	Receive Overflow Status Bit (ROVF)
	Receive Data Buffer Status Bits (RXS)
	Transmit Underflow Status Bit (TUVF)
	Transmit Data Buffer Status Bits (TXS)

	Clock and Frame Sync Frequencies (TDIV, RDIV)
	Restrictions on Using Maximum Clock Rate

	Data Word Formats
	Data Type (DTYPE)
	Companding

	Data Packing and Unpacking (PACK)
	Endian Format (SENDN)
	Word Length (SLEN)

	Clock Signal Options
	Internal vs. External Clocks

	Frame Sync Options
	Frame Sync Requirement (TFSR/RFSR)
	Frame Sync Source (ITFS/RTFS)
	Frame Sync Active State (LTFS/RTFS)
	Frame Sync Clock Edge (CKRE)
	Frame Sync Insert (LAFS)
	Frame Sync Data Dependency (DITFS)

	Standard Mode
	Enabling Standard Mode (OPMODE, MCE)
	Frame Sync Configuration (FS_BOTH)
	Setting the Serial Clock Frequency (CLKDIV)

	I2S Mode
	Setting the Internal Serial Clock Rate
	I2S Control Bits
	Enabling I2S mode (OPMODE, MCE)
	Setting the Word Length (SLEN)
	Selecting the I2S Transmit and Receive Channel Order (L_FIRST)
	Selecting the Frame Sync options (FS_BOTH)
	Enabling SPORT Master Mode (MSTR)
	Enabling SPORT DMA (SDEN)

	Multichannel Mode
	Frame Syncs in Multichannel Mode
	Multichannel Control Bits
	Operation Mode (OPMODE)
	Multichannel Enable (MCE)
	Number of Channel Slots
	Current Channel Selected
	Multichannel Frame Delay

	Channel Selection Registers (MTCSx, MRCSx, MTCCSx, MRCCSx)
	SPORT Receive Comparison Registers (KEYWDx and IMASKx)

	Moving Data Between SPORTs and Memory
	DMA Block Transfers
	Setting Up DMA on SPORT Channels
	SPORT DMA Parameter Registers
	SPORT DMA Chaining

	Single-Word Transfers

	SPORT Loopback
	SPORT Pin Driver Considerations
	SPORT Programming Examples
	Single-Word Transfers Without Interrupts
	Single-Word Transfers with Interrupts
	DMA Transfers with Interrupts

	10 SDRAM Interface
	SDRAM Control Register (IOCTL)
	Configuring SDRAM Operation
	Setting the Refresh Counter Value (SDRDIV)
	Setting the SDRAM Clock Enables (DSDCTL and DSDCK1)
	Setting the Number of SDRAM Banks (SDBN)
	Setting the External Memory Bank (SDBS)
	Setting the SDRAM Buffering Option (SDBUF)
	Selecting the CAS Latency Value (SDCL)
	Selecting the SDRAM’s Page Size (SDPGS)
	Setting the SDRAM Power-Up Mode (SDPM)
	Starting the SDRAM Power-Up Sequence (SDPSS)
	Starting Self-Refresh mode (SDSRF)
	Selecting the Active Command Delay (SDTRAS)
	Selecting the Precharge Delay (SDTRP)

	SDRAM Controller Operation
	DMA Operation
	Multiprocessing Operation
	Accessing SDRAM
	DQM Operation
	Executing a Parallel Refresh Command
	Entering and Exiting Self-Refresh Mode
	Powering Up After Reset

	SDRAM Controller Commands
	Act (Bank Activate)
	Bstop (Burst Stop)
	MRS (Mode Register Set)
	Pre (Precharge)
	Read/Write
	Read Commands
	Write Commands
	DMA Transfers
	Interrupting a Burst Read or Write

	Ref (Refresh)
	Setting the Delay Between Ref Commands
	Multiprocessing Operation

	Sref (Self-Refresh)

	SDRAM Timing Specifications

	11 Programmable Timers and I/O Ports
	PWMOUT Mode
	WIDTH_CNT Mode
	Timer Control Bits and the Interrupt Vectors
	Timer Interrupts and the Status Stack
	The STKY Register
	Timer Registers and their Values at Reset

	Programmable I/O Ports

	12 System Design
	Pin Definitions
	Pin States After Reset
	Pin Operation
	XTAL and CLKIN
	Input Synchronization Delay
	External Interrupt and Timer Pins
	Flag Pins
	Flag Inputs
	Flag Outputs

	JTAG Interface Pins

	EZ-ICE Emulator
	Target Board Connector for EZ-ICE Probe

	Input Signal Conditioning
	High Frequency Design Issues
	Clock Specifications and Jitter
	Clock Distribution
	Point-to-Point Connections on Serial Ports
	Signal Integrity
	Other Recommendations and Suggestions
	Decoupling Capacitors and Ground Planes
	Oscilloscope Probes
	Recommended Reading

	Booting
	Selecting the Boot Mode
	EPROM Booting
	Bootstraping (256 instructions)
	Loading the Remaining EPROM Data
	Writing to BMS Memory Space

	Booting From the Host
	Multiprocessor Booting
	Multiprocessor Host Booting
	Multiprocessor EPROM Booting

	No Boot Mode
	Locating the Interrupt Vector Table

	Data Delays, Latencies, and Throughput
	Execution Stalls

	13 Programming Considerations
	Extra Cycle Conditions
	Nondelayed Branches
	Program Memory Data Accesses with Cache Miss
	Loop Accesses of Program Memory Data
	Using One- and Two-Instruction Loops
	Writing to a DAG Register
	Programming Wait States

	Component Considerations
	Computation Units
	Compute Operations
	Restrictions on Delayed Branching
	Writing Twice to the Same Location in the Register File

	Data Address Generators
	Illegal DAG Register Transfers
	Initializing Circular Buffers

	Memory
	Performing Dual Data Accesses
	Reading 16-Bit Short Words
	Restrictions on Memory Access Space

	I INDEX

