PCAN-USB

文档版本: 1.0.1 (2014.12.04)

www.njlike.com

产品选型

产品名称	产品编号	备注
PCAN-USB	IPEH-002022	500V 电隔离
	A RANGE	AREALS
南京来可电子科技有限公司	, Hed	
销售电话:025-83197120	5	
公司传真:025-83197121		

- 销售电话:025-83197120
- 公司传真:025-83197121
- 公司地址:南京市江宁区高湖路9号金聚龙大厦6楼
- 公司网址:www.njlike.com
- 邮 箱 scy@njlike.com

文档版本:1.0.1(2014.12.04)

目录

1.	简介		4
	1.1	特性	4
	1.2	系统要求	4
	1.3	供应清单	4
2.	软件	和适配器的安装	5
3.	连接	CAN 总线	6
	3.1	D-Sub 连接器	6
	3.2	通过 CAN 连接器给外部设备供电	6
	3.3	电缆连接	7
		3.3.1 终端电阻	7
		3.3.2 连接示例	7
		3.3.3 最大总线长度	7
4.	操作	×J	8
	4.1	LED 状态	8
	4.2	拔下 USB 连接	8
	4.3	区分不同的适配器	8
5.	软件	的使用	9
	5.1	PCAN-View	9
		5.1.1 接受和发送选项卡1	10
		5.1.2 跟踪选项卡1	11
		5.1.3 PCAN-USB 选项卡1	12
		5.1.4 状态栏1	12
		5.1.5 通过 PCAN-BASIC 链接自己的程序1	12
	X	5.1.6 PCAN-Basic 的特点1	13
	18	5.1.7 API 的原理说明1	14
6.	技术	规格1	15
附	录AC	CE 认证1	16
附	录B	尺寸图1	17
附	录C	快速参考1	18

88-15

PCAN-USB

1. 简介

PCAN-USB 接口卡使 CAN 网络更容易接入 PC, 它具有小巧紧凑的塑料外壳, 特别适合于随身携带。CAN 接口支持 500V 电隔离,提供测试软件 PCAN-View for Windows;提供多种操作系统的驱动和编程接口,用户可以很容易的编写自己的软件访问 CAN 总线。

1.1 特性

- └ USB 1.1 接口, 兼容 2.0
- └ 波特率最高 1M bit/s
- ー 时间戳分辨率大约 42 μs
- └ 符合 CAN 规范 2.0A (11-bit ID) 和 2.0B (29-bit ID)
- └ CAN 连接器规格 D-Sub, 9 针-引脚 (符合 CiA 102)
- CAN 接口支持 500V 电隔离
- CAN 连接器上 5V 电源输出(可通过连接内部焊桥启用)
- 느 工作温度范围 -40 to 85 ℃ (-40 to 185 平)

1.2 系统要求

- ー 电脑上一个空的 USB 接口(USB 1.1 or USB 2.0)
- 操作系统 Windows 8, 7, Vista, XP (32/64-bit) 或 Windows CE 6.x (x86 和 ARMv4 处理器) 或 Linux (32/64-bit)
- ▷ 注意:不要使用USB 延长线来连接电脑和 PCAN-USB 设备,使用 USB 延长线不符合 USB 规范,可能导 致适配器故障。

1.3 供应清单

- 一 塑料外壳的 PCAN-USB
- 一 用于 Windows 8, 7, Vista, XP (32/64-bit) 和 Linux (32/64-bit) 的设备驱动程序
- □ 用于 Windows CE 6.x 的设备驱动程序(支持 x86 和 ARMv4 处理器)
- ー 用于 Windows 8, 7, Vista, XP (32/64-bit) 的 PCAN-View CAN 测试软件
- └ 包括接口 DLL、头文件和例程的 PCAN-Basic 编程接口文件
- └ PDF 格式产品数据手册

2. 软件和适配器的安装

本章介绍了 PCAN-USB 适配器配套软件在 Windows 系统下的安装和适配器与 PC 的连接。如 是第一次使用,安装驱动之前,先将适配器连接到 PC 上。

- ▶ 执行以下操作来安装驱动程序:
- 1. 管理员权限用户身份登录电脑。
- 2. 插入 DVD 光盘, 稍等片刻, 出现安装引导程序; 如不出现, 则从 DVD 根目录中运行 Intro.exe 程序。
- 3. 在"English > Drivers"页面,点击"PCAN-USB"入口。
- 4. 点击安装,驱动程序的安装程序开始执行。
- 5. 按照安装程序的提示来操作。

A B A

- 提示:如果你不想在安装驱动时安装 PCAN-View 软件,你可以选择以后直接从光盘安装。
- 请完成以下操作把适配器连接到 PC 和完成初始化:
- ▷ 注意:不要使用USB 延长线来连接电脑和 PCAN-USB 设备,使用 USB 延长线不符合 USB 规范,可能导 致适配器故障。
- 1. 把 PCAN-USB 适配器连接到电脑的 USB 口, 电脑给其供电。Windows 系统会通知侦测到新硬件。
- 2. 仅限于 Windows XP: 出现一个向导对话框,按照其说明,拒绝在 Windows 中搜寻驱动软件和选择自动软件安装。

所有的 Windows 操作系统中: 驱动会被发现和被安装在 Windows 上。

在初始化过程成功完成后,PCAN-USB 适配器的的红色 LED 指示灯被点亮。

3. 连接 CAN 总线

3.1 D-Sub 连接器

通过 9 针 D-Sub 连接器连接高速 CAN 总线(ISO 11898-2),连接器引脚分配遵循 CiA® 102 规范。

图 1 CAN 连接器的引脚分配

可以通过 CAN 连接器的 1 脚直接给低功耗设备供电,默认未被启用,在以下的 3.2 节你可以找 到启用该功能的详细说明。

● 提示:可以通过外部总线转换器连接一个不同总线规范的 CAN 总线。

3.2 通过 CAN 连接器给外部设备供电

在 PCAN-USB 电路板(外壳打开)上,5V 电源输出可以选择通过 D-Sub 连接器的1 脚输出。因此,低功耗设备(如外部总线转换器)可以直接通过 CAN 连接器供电。当使用该选项,5V 电源经由板上内置电源隔离模块隔离输出。

- ► 请完成以下操作激活 5V 电源输出:
- ▷ 注意:静电放电(ESD)会损害或破坏 PCAN-USB 电路板上元器件,操作时,请采取预防措施避免静电放电。
- 1. 使用一字起子工具, 谨慎的推外壳两侧的卡子, 打开 PCAN-USB 适配器的外壳, 从而取出 板子。
- 2. 根据所需的功能,设置 PCAN-USB 适配器板上的焊桥。操作过程中,特别要注意不要造成 板子错误的短路。
- 3. 图 2显示板上焊桥 JP3 的位置,下表包含了焊桥的设置选项。

图 2 PCAN-USB board JP3 焊桥位置

5-Volt supply →	None	Pin 1
PCAN-USB opto-decoupled,	1000	
solder field R11		

4. 合上外壳,注意 LED 指示灯对准壳体灯孔和电缆限位块放置正确。

3.3 电缆连接

3.3.1 终端电阻

一个高速 CAN 总线两端必要使用 120 欧姆电阻终止,否则,会生产干扰信号的反射,将造成 连接在 CAN 总线上 CAN 节点的 CAN 收发器无法正常工作。PCAN-USB 适配器未配备内置终 端电阻,使用时注意。

3.3.2 连接示例

图 3 连接示例

如图 3 所示, PCAN-USB 适配器通过一根两端内置终端电阻的电缆连接一个 CAN 节点。

3.3.3 最大总线长度

A B-

高速 CAN 网络波特率可高达 1Mbit/s,最大总线长度主要取决于通讯波特率。下面的表格显示了不同波特率下的理想最大总线长度。

	Bit rate	Bus length
ALCON ST.	1 Mbit/s	40 m
15	500 kbit/s	110 m
	250 kbit/s	240 m
	125 kbit/s	500 m
	50 kbit/s	1.3 km
	20 kbit/s	3.3 km
	10 kbit/s	6.6 km
	5 kbit/s	13.0 km

4. 操作

4.1 LED 状态

PCAN-USB 适配器有一个红色状态指示灯,状况指示如下表。

状态	描述	
点亮	建立一个与操作系统驱动的连接	
慢闪	打开连接这个适配器的一个软件应用	
快闪	与所连接的 CAN 总线交互数据	
▲2 坮下 USB 许均	2	JD

4.2 拔下 USB 连接

支持直接拔插 USB 接口。

4.3 区分不同的适配器

你可以在一台计算上同时运行多只 PCAN-USB 适配器,为了区分一个软件环境下运行的多个适 . if I 配器,提供的测试软件 PCAN-View 支持多个设备 ID 的分配。

5. 软件的使用

适配器提供软件 PCAN-View 和二次编程接口 PCAN-Basic。

5.1 PCAN-View

PCAN-View 是一个运行 Windows 操作系统上的查看、发送和记录 CAN 消息的监控软件。

图 4 PCAN-View

- 请完成以下操作开始和安装 PCAN-View:
- 如果已经安装 PCAN-View, 打开 Windows 开始菜单, 选择 Programs > PCAN-Hardware, 选择 PCAN-View 条目。

如果你没有与设备驱动一起安装 PCAN-View 软件,你可已从产品光盘中打开这个程序。 在引导程序中 (Intro.exe),选择 English> Tools,在 PCAN-View for Windows 下,选 择链接 "Start"。

这时,出现选择 CAN 硬件和 CAN 参数的对话框,如图 5 所示。

图 5 选择 CAN 硬件和参数

- 2. 从"Available CAN hardware"列表中选择要使用的 CAN 通道。
- 3. 从波特率下拉列表中选择 CAN 总线上所有节点使用的波特率。
- 4. 通过设置过滤功能,你可以限制所接收 CAN 消息 CAN ID 的范围,可选标准帧或扩展帧。
- 5. 最后点击 OK 确认对话框中的设置。PCAN-View 的主窗口如图 6 所示。
- 5.1.1 接受和发送选项卡

/*	🖛 Receive / Trans	mit 🖭 Trac	e 😪 PCAN-USB				
	Message	DLC	Data	Cycle Time	Count		
	100h	6	8F 51 DB AD 14 02	100	2593		
	110h	1	12	1000	264		
Q	120h	8	56 54 00 54 00 06 54 04	33	60		
>	120b	4	12 56 45 45	33	74		
Recei	1301			122			
D Recei	Message	DLC	Data	Cycle Time	Count	Trigger	Comment
D Recei	Message 500h	DLC 2	Data 0A 00	Cycle Time Wait	Count 15	Trigger Manual	Comment Error Simulation
D Recei	Message 500h 501h	DLC 2 2	Data 0A 00 00 00	Cycle Time Wait Wait	Count 15 1	Trigger Manual Manual	Comment Error Simulation Error - Engine
nit D Recei	Message 500h 501h 00FFAA66h	DLC 2 2 4	Data 0A 00 04 00 AA 00 BB 00	Cycle Time Wait Wait	Count 15 1 2022	Trigger Manual Manual Time	Comment Error Simulation Error - Engine

图 6 接收和发送选项卡

接收和发送选项卡是 PCAN-View 的主要组成部分,它包含两个列表,一个用于接收消息,一个用于发送消息,CAN 数据以 16 进制的形式显示。

- 请按照以下操作用 PCAN-View 发送一个 CAN 消息:
- 1. 选择菜单命令 Transmit > New Message, New Transmit Message 对话框如下图所示。

PCAN-USB

Edit Transmit Message	
ID (Hex): DLC:	Data: (Hex) 12 44 25 12 44 25 AB 0C
<u>C</u> ycle Time: 125 ms	Message Type
✓ Paused	🔲 <u>R</u> emote Request
C <u>o</u> mment: Wake U	o Message
	OK Cancel 🔋 Help

图 7 New Transmit Message 对话框

- 2. 为新 CAN 消息输入数据和 ID。
- 3. Cycle Time 填写项表示选择手动或定期发送消息。如果你想定期发送消息,请输入一个大于 0 的数值;如果你想手动发送消息,请输入 0。
- 4. 点击 OK 确认。在 Receive/Transmit 选项卡上显示创建的发送消息。
- 5. 通过菜单命令 Transmit > Send (或空格键) 手动触发发送消息。
- 提示:使用菜单命令 File > Save,当前的发送消息会被保存到一个列表中,以后可被加载重用。

AN

T.

5.1.2 跟踪选项卡

Eile <u>C</u> lie	ent <u>E</u> dit <u>T</u> ran	ismit <u>V</u> iew T <u>r</u>	ace <u>H</u> elp		
8 - P	1/2 🔸 🖂 🖾		• • • •		
🐨 Receiv	e / Transmit	🗄 Trace 🛯 🏀 PC/	AN-USB		
Paused	2,3679 s	0,25 % (达 Ring Buf	fer Rx: 254 Tx: 0	Errors: 0
Time	Туре	ID	DLC	Data	
2,1808	Data	18F00300	8	00 AF 00 00 00 00 00 00	
2,1811	Data	18FE6C00	8	02 10 00 00 00 00 04 6A	
2,1882	Data	18F00400	8	00 00 00 41 37 00 00 00	
2,2078	Data	18F00400	8	00 00 00 41 37 00 00 00	
2,2283	Data	18F00400	8	00 00 00 41 37 00 00 00	
2,2303	Data	18F00300	8	00 AF 00 00 00 00 00 00	
2,2306	Data	18FE6C00	8	02 10 00 00 00 00 04 6A	
2,2478	Data	18F00400	8	00 00 00 41 37 00 00 00	
2,2683	Data	18F00400	8	00 00 00 29 38 00 00 00	
2,2781	Data	18FEF100	8	00 04 6A 01 00 00 00 00	
2,2784	Data	18F00300	8	00 AF 00 00 00 00 00 00	
2,2787	Data	18FE6C00	8	02 10 00 00 00 00 04 6A	
2,2888	Data	18F00400	8	00 00 00 29 38 00 00 00	
2,3084	Data	18F00400	8	00 00 00 11 39 00 00 00	
2,3279	Data	18F00300	8	00 AF 00 00 00 00 00 00	
2,3282	Data	18FE6C00	8	02 10 00 00 00 00 04 6A	
2,3285	Data	18F00400	8	00 00 00 F9 39 00 00 00	
2,3484	Data	18F00400	8	00 00 00 F9 39 00 00 00	
2,3679	Data	18F00400	8	00 00 00 F9 39 00 00 00	

图 8 跟踪选项卡

在跟踪选项卡上, PCAN-View 的跟踪数据区用来记录一个 CAN 总线上通讯。在此过程中, 消息被缓存至 PC 缓冲区, 然后, 它们可以被保存到一个文件中。跟踪数据区可以被配置为线形或环形缓冲模式运行。在线形缓冲模式中, 如果缓冲区完全被充满, 则停止记录新的消息; 而在缓形缓冲模式下, 接收的新消息将覆盖最早接收的消息。

5.1.3 PCAN-USB 选项卡

🧭 • 🗐 🖗 • + 🖄		i 🖉 🔕	
s Receive / Hansmit	PCAN-USB		F
and the second	Firmware: 2.8 Device ID: Bh 0 - FFF	Set	
•••			

图 9 PCAN-USB 选项卡

在 PCAN-USB 选项卡上,一台适配器的驱动 ID 可以被指定。这样,当一台计算机上运行多张 PCAN-USB 适配器时,这个卡就可以被清楚的识别。此外,选项卡上显示所连接的适配器的当 前固件版本。

5.1.4 状态栏

🕽 🔘 Connected to PCAN-USB (500 kBit/s) 🕰	Overruns: 0	QXmtFull: 0	BUSHEAVY	
ILA	冬	10 状态栏的显示		

状态栏显示当前 CAN 连接、错误计数器(Overruns, QXmtFull)的信息,以及显示错误提示信息。

通过 PCAN-View 的帮助功能,你可以寻求到更多关于 PCAN-View 如何使用的信息。你可以通过 Help 菜单或 F1 键打开帮助软件的帮助功能。

5.1.5 通过 PCAN-BASIC 链接自己的程序

图 11 PCAN-BASIC

从提供的光盘中,你可以找到 PCAN-Basic 二次编程接口文件,这个 API 提供的基础函数帮助 用户自己编写用来访问 CAN 接口的程序,该 API 支持以下操作系统:

- Windows 8, 7, Vista, XP (32/64-bit)
- Windows CE 6.x (x86/ARMv4)

该 API 专为跨平台应用而设计,因此,软件工程可以轻松的在不同平台之间移植。另外,提供 支持 C++, C#, C++/CLR, Visual Basic, Delphi, Python, and Java 等编程语言二次开发的例子, 方便用户轻易上手。

5.1.6 PCAN-Basic 的特点

- └ 支持 Windows 8, 7, Vista, XP (32/64-bit) 和 Windows CE 6.x 操作系统
- 一 同一时间,多个应用同时操作一个物理 CAN 通道
- 一 一个 DLL 支持所有的硬件类型
- 一 支持单个硬件单元 8 个通道的使用(根据使用的 CAN 接口卡)
- └ 支持一张 CAN 卡上多个 CAN 通道的自由切换
- 一 每个 CAN 通道驱动内部缓冲高达 32,768 帧
- └ 接收 CAN 帧的时间戳分辨率达到 1 µs (根据使用的 CAN 接口卡)

- 支持一些特殊的硬件功能,例如只听模式
- └ 当接收到一个 CAN 帧时,通过 Windows 事件通知应用软件
- 用于调试操作的扩展系统
- 」 多语种调试输出
- 操作系统决定输出语言
- 调试信息可以被单独定义

头文件中包含 API 函数的概述,在 PCAN-Basic API 文件或帮助文件中(文件扩展名为.txt 和.chm),你可以找到关于 PCAN-Basic API 的详细说明。

5.1.7 API 的原理说明

PCAN-Basic API 是用户应用程序与设备驱动之间的接口,在Windows 操作系统中,就是一个 DLL (动态链接库)。

访问 CAN 接口的次序被分为三个阶段:

- 1. Initialization (初始化)
- 2. Interaction (相互作用)

3. Completion (完成)

Initialization(初始化)

一个CAN通道在使用前必须被初始化,这是通过调用CAN_Initialize函数来完成,取决于CAN硬件的类型,最多同一时间打开8个CAN通道,初始化完成后,CAN通道准备好与CAN硬件和CAN总线进行通讯。不要求进行进一步的配置。

Interaction(相互作用)

调用 CAN_Read 和 CAN_Write 函数来接收和发送 CAN 消息,可以进行其他设置,例如设置消息过滤限定接收特定 ID 范围的 CAN 消息,或者设定 CAN 控制器处于只听模式。

当收到一个 CAN 消息,通过 Windows 消息自动通知应用程序(客户端),这种方式有以下优点:

应用程序不再需要定期检查是否收到消息

一 前台响应时间减小

Completion (完成)

结束通讯的 CAN_Uninitialize 函数用来释放保留的 CAN 通道资源,另外,CAN 通道被标识为 "Free"和其它应用程序可用的。

6. 技术规格

连接器		
计算机	A型 USB 插头	
CAN	D-Sub (公), 9 pins, 引脚分配遵循 CiA® 102 规范	
USB		
类型	USB1.1,兼容 USB2.0	
CAN		P
规格	ISO 11898-2, High-speed CAN, 遵循 2.0A 和 2.0B 规范	
波特率	5 kbit/s - 1 Mbit/s	
隔离	500V	
给外部设备供电	D-Sub pin 1; 5 V, max. 50 mA. 交货未启用	
终端电阻	无	
供电		
供电电压	+5 V DC (通过 USB port)	
耗电量	最大 200mA	
环境		
操作温度	-40 - 85 °C (-40 - 185 °F)	
存储温度	-40 - 100 °C (-40 - 212 뚜)	
相对湿度	15-90 %,无冷凝	
EMC	EN 55024: 2011-09, EN 55022: 2011-12	
	EC directive 2004/108/EG	
防护等级(IEC 60529)	IP20	
度量		
尺寸	87 x 43 x 22 mm	
电缆长度	0.75 m	
重量(带电缆)	83 g	

X

附录A CE 认证

PCAN-USB IPEH-00 PEAK-System Tech	ו20121/22 – EC Declaration of Conformity אוא GmbH	PFAK	
Notes on the CE	Symbol CE	System	
The following applies to the "PCAN-USB" product with the item number(s) IPEH-0020121/22.			
EC Directive	This product fulfills the requirements 2004/108/EG (Electromagnetic Comp. for the following fields of application	s of EU EMC Directive atibility) and is designed as for the CE marking:	
Electromagnetic Immunity DIN EN 55024, publication date 2011-09 Information technology equipment – Immunity characteristics – Limits and methods of measurement (CISPR 24:2010); German version EN 55024:2010			
Electromagnetic Emission DIN EN 55022, publication date 2011-12 Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement (CISPR 22:2008, modified); German version EN 55022:2010			
Declarations of Conformity	In accordance with the above mentio declarations of conformity and the as are held at the disposal of the compe address below:	oned EU directives, the EC ssociated documentation etent authorities at the	
	PEAK-System Technik GmbH Mr. Wilhelm Otto-Roehm-Strasse 69 64293 Darmstadt Germany		
	Phone: +49 (0)6151 8173-20 Fax: +49 (0)6151 8173-29 E-mail: info@peak-system.com		
Vuel	Vith		
Signed this 22 nd	day of October 2013		

附录B 尺寸图

附录C 快速参考

Windows 系统下软硬件的安装

在把 PCAN-USB 设备连到电脑上之前,安装光盘上的相应软件包,然后,将 PCAN-USB 连接上 PC 的一个 USB 接口。适配器被 Windows 系统识别和安装。安装过程成功完成后,适配器 上的红色指示灯会亮起。

Windows 下使用入门

运行 PCAN-View,当做示例程序访问 PCAN-View 适配器,选择所需 CAN 卡和波特率,完成 适配器初始化。

状态	描述	15
点亮	建立一个与操作系统驱动的连接	
慢闪	打开连接这个适配器的一个软件应用	
快闪	通过连接的 CAN 总线交互数据	18

CAN 连接器 (D-SUB, 9pins)

