
a

ADSP-219x/2191 DSP
Hardware Reference

 Revision 1.1, August 2003

Part Number
82-00390-06

Analog Devices, Inc.
Digital Signal Processor Division
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, and the VisualDSP logo are regis-
tered trademarks of Analog Devices, Inc.

CROSSCORE, the CROSSCORE logo, VisualDSP++ and the Visu-
alDSP++ logo are trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-219x/2191 -iii
DSP Hardware Reference

CONTENTS

PREFACE

Purpose of This Manual ... xxix

Intended Audience ... xxix

Manual Contents .. xxx

Additional Literature .. xxxi

What’s New in This Manual .. xxxii

Technical or Customer Support ... xxxii

Processor Family .. xxxiii

 Product Information ... xxxiii

DSP Product Information ... xxxiii

Product Related Documents ... xxxiv

Technical Publications Online or on the Web xxxv

Printed Manuals .. xxxv

VisualDSP++ and Tools Manuals xxxvi

Hardware Manuals ... xxxvi

Data Sheets .. xxxvi

Recommendations for Improving Our Documents xxxvii

Conventions ... xxxvii

CONTENTS

iv ADSP-219x/2191
DSP Hardware Reference

INTRODUCTION

Overview—Why Fixed-Point DSP? ... 1-1

ADSP-219x Design Advantages ... 1-2

ADSP-219x Architecture .. 1-6

Overview .. 1-6

DSP Core Architecture .. 1-8

DSP Peripherals Architecture ... 1-10

Memory Architecture .. 1-13

Internal (On-Chip) Memory ... 1-14

External (Off-Chip) Memory .. 1-16

Interrupts ... 1-17

DMA Controller ... 1-17

Host Port .. 1-18

DSP Serial Ports (SPORTs) ... 1-18

Serial Peripheral Interface (SPI) Ports 1-19

UART Port ... 1-20

Programmable Flag (PFx) Pins ... 1-20

Low-Power Operation ... 1-21

Clock Signals .. 1-21

Booting Modes ... 1-22

JTAG Port .. 1-22

Differences from Previous DSPs .. 1-23

Computational Units and Data Register File 1-25

Arithmetic Status (ASTAT) Register Latency 1-25

ADSP-219x/2191 v
DSP Hardware Reference

CONTENTS

NORM and EXP Instruction Execution 1-25

Shifter Result (SR) Register as Multiplier Dual Accumulator ... 1-25

Shifter Exponent (SE) Register is Not Memory Accessible 1-26

Software Condition (SWCOND) Register and
Condition Code (CCODE) Register 1-26

Unified Memory Space .. 1-28

Data Memory Page (DMPG1 and DMPG2) Registers 1-28

Data Address Generator (DAG) Addressing Modes 1-28

Base Registers for Circular Buffers .. 1-29

Program Sequencer, Instruction Pipeline, and Stacks 1-30

Conditional Execution (Difference in Flag Input Support) 1-30

Execution Latencies (Different for JUMP Instructions) 1-31

Development Tools ... 1-31

COMPUTATIONAL UNITS

Overview .. 2-1

Data Formats .. 2-5

Binary String ... 2-6

Unsigned ... 2-6

Signed Numbers: Twos Complement 2-7

Signed Fractional Representation: 1.15 2-7

ALU Data Types .. 2-7

Multiplier Data Types .. 2-8

Shifter Data Types ... 2-9

Arithmetic Formats Summary .. 2-9

CONTENTS

vi ADSP-219x/2191
DSP Hardware Reference

Setting Computational Modes .. 2-11

Latching ALU Result Overflow Status 2-12

Saturating ALU Results on Overflow 2-12

Using Multiplier Integer and Fractional Formats 2-13

Rounding Multiplier Results ... 2-15

Unbiased Rounding .. 2-15

Biased Rounding .. 2-17

Using Computational Status ... 2-18

Arithmetic Logic Unit (ALU) .. 2-18

ALU Operation ... 2-19

ALU Status Flags ... 2-19

ALU Instruction Summary .. 2-20

ALU Data Flow Details ... 2-23

ALU Division Support Features ... 2-25

Multiply/Accumulates (Multiplier) .. 2-30

Multiplier Operation ... 2-31

Placing Multiplier Results in the MR or SR Registers 2-32

Clearing, Rounding, or Saturating Multiplier Results 2-33

Multiplier Status Flags ... 2-34

Saturating Multiplier Results on Overflow 2-34

Multiplier Instruction Summary .. 2-36

Multiplier Data Flow Details ... 2-37

Barrel Shifter (Shifter) .. 2-39

Shifter Operations ... 2-40

ADSP-219x/2191 vii
DSP Hardware Reference

CONTENTS

Derive Block Exponent ... 2-42

Immediate Shifts ... 2-43

Denormalize ... 2-45

Normalize, Single-Precision Input 2-47

Normalize, ALU Result Overflow 2-48

Normalize, Double-Precision Input 2-51

Shifter Status Flags .. 2-54

Shifter Instruction Summary .. 2-55

Shifter Data Flow Details ... 2-56

Data Register File .. 2-61

Secondary (Alternate) Data Registers ... 2-63

Multifunction Computations .. 2-64

PROGRAM SEQUENCER

Overview .. 3-1

Instruction Pipeline .. 3-7

Instruction Cache ... 3-9

Using the Cache .. 3-12

Optimizing Cache Usage ... 3-12

Branches and Sequencing .. 3-13

Indirect Jump Page (IJPG) Register .. 3-16

Conditional Branches .. 3-16

Delayed Branches .. 3-17

Loops and Sequencing ... 3-20

Managing Loop Stacks ... 3-24

CONTENTS

viii ADSP-219x/2191
DSP Hardware Reference

Restrictions on Ending Loops .. 3-24

Interrupts and Sequencing .. 3-25

Overview .. 3-25

Sensing Interrupts ... 3-30

Masking Interrupts ... 3-31

Latching Interrupts ... 3-31

Interrupt Vector Table ... 3-32

Stacking Status During Interrupts .. 3-33

Nesting Interrupts ... 3-34

Interrupt Latency .. 3-35

Placing the DSP in Idle Mode ... 3-36

Stacks and Sequencing .. 3-36

Conditional Sequencing .. 3-41

Sequencer Instruction Summary .. 3-44

DATA ADDRESS GENERATORS (DAGS)

Overview .. 4-1

Setting DAG Modes ... 4-4

Secondary (Alternate) DAG Registers 4-4

Bit-Reverse Addressing Mode .. 4-6

Data Memory Page Registers (DMPGx) 4-7

Using DAG Status .. 4-8

DAG Operations .. 4-9

Addressing with DAGs .. 4-9

Addressing Circular Buffers ... 4-12

ADSP-219x/2191 ix
DSP Hardware Reference

CONTENTS

Addressing with Bit-Reversed Addresses 4-16

Modifying DAG Registers .. 4-20

DAG Register Transfer Restrictions ... 4-21

DAG Instruction Summary ... 4-23

MEMORY

Overview .. 5-1

Internal Address and Data Buses .. 5-4

External Address and Data Buses .. 5-6

Internal Data Bus Exchange ... 5-7

ADSP-2191 DSP Memory Map .. 5-9

Overview .. 5-11

Internal Memory Space .. 5-12

External Memory Space ... 5-13

System Control Registers ... 5-15

I/O Memory Space .. 5-16

Boot Memory Space .. 5-16

Shadow Write FIFO .. 5-17

Data Move Instruction Summary ... 5-18

I/O PROCESSOR

System Interrupt Controller .. 6-1

Configuring System Interrupts ... 6-4

Interrupt Setup Examples .. 6-4

Servicing System Interrupts ... 6-6

CONTENTS

x ADSP-219x/2191
DSP Hardware Reference

DMA Controller .. 6-7

Descriptor-Based DMA Transfers .. 6-11

Autobuffer-Based DMA Transfers .. 6-14

Interrupts from DMA Transfers ... 6-15

Setting Peripheral DMA Modes .. 6-17

DMA Channels ... 6-17

MemDMA DMA Settings ... 6-21

Host Port DMA Settings ... 6-22

Serial Port DMA Settings .. 6-23

SPI Port DMA Settings ... 6-23

UART Port DMA Settings .. 6-25

Working with Peripheral DMA Modes .. 6-26

Using MemDMA DMA .. 6-27

Using Host Port DMA .. 6-28

Using Serial Port (SPORT) DMA .. 6-30

Descriptor-Based SPORT DMA 6-30

Autobuffer-Based SPORT DMA 6-31

SPORT DMA Data Packed/Unpacked Enable 6-32

Using SPI Port DMA .. 6-33

SPI DMA in Master Mode .. 6-33

SPI DMA in Slave Mode ... 6-35

SPI DMA Errors ... 6-37

Using UART Port DMA .. 6-39

Boot Mode DMA Transfers ... 6-41

ADSP-219x/2191 xi
DSP Hardware Reference

CONTENTS

Code Example: Internal Memory DMA 6-42

EXTERNAL PORT

Overview .. 7-1

Setting External Port Modes .. 7-3

Memory Bank and Memory Space Settings 7-3

External Bus Settings ... 7-5

Bus Master Settings ... 7-7

Boot Memory Space Settings ... 7-7

Working with External Port Modes .. 7-9

Using Memory Bank/Space Waitstates Modes 7-9

Using Memory Bank/Space Clock Modes 7-10

Using External Memory Banks and Pages 7-11

Using Memory Access Status .. 7-12

Using Bus Master Modes ... 7-13

Using Boot Memory Space ... 7-14

Reading from Boot Memory .. 7-15

Writing to Boot Memory ... 7-15

Interfacing to External Memory ... 7-15

Data Alignment—Logical vs. Physical Address 7-16

Memory Interface Pins .. 7-21

Memory Interface Timing .. 7-24

Code Example: BMS Run-Time Access .. 7-28

CONTENTS

xii ADSP-219x/2191
DSP Hardware Reference

HOST PORT

Overview .. 8-1

Host Port Setup Parameters ... 8-5

Overview .. 8-5

Data Bus Width and Address Bus .. 8-6

Packing Parameters ... 8-7

Control Signals ... 8-9

Address Latch Enable/Address Cycle Control (HALE) 8-9

HRD and HWR Data Strobes ... 8-10

Read and Write Timing Diagrams ... 8-11

Acknowledge/Ready .. 8-11

Direct Access Mode Transactions .. 8-18

Direct Access Mode ... 8-18

Direct Access Read Modes ... 8-19

Direct Access Mode Timing Diagrams 8-20

Host Port DMA Mode Transactions .. 8-24

Host Port DMA Mode .. 8-25

Host Port DMA Controller ... 8-27

Bus Arbitration and Usage Restrictions 8-28

Using Semaphores ... 8-30

Host Port DMA Mode Timing Diagrams 8-30

Interrupt Interface .. 8-31

Setting Up the Host Port .. 8-32

ADSP-219x/2191 xiii
DSP Hardware Reference

CONTENTS

SERIAL PORTS (SPORTS)

Overview .. 9-1

SPORT Operation ... 9-5

SPORT Disable ... 9-7

Setting SPORT Modes .. 9-9

Overview .. 9-9

Transmit Configuration (SPx_TCR) Register and
Receive Configuration (SPx_RCR) Register 9-12

Register Writes and Effect Latency ... 9-18

Transmit (SPx_TX) Data Buffer and
Receive Data Buffer (SPx_RX) .. 9-19

Clock and Frame Sync Frequencies .. 9-20

Maximum Clock Rate Restrictions 9-22

Frame Sync and Clock Example ... 9-22

Data Word Formats ... 9-22

Word Length .. 9-23

Endian Format .. 9-23

Data Type ... 9-23

Companding ... 9-24

Clock Signal Options .. 9-25

Frame Sync Options .. 9-25

Framed vs. Unframed .. 9-26

Internal vs. External Frame Syncs 9-27

Active Low vs. Active High Frame Syncs 9-28

Sampling Edge for Data and Frame Syncs 9-28

CONTENTS

xiv ADSP-219x/2191
DSP Hardware Reference

Early vs. Late Frame Syncs (Normal and Alternate Timing) 9-29

Data-Independent Transmit Frame Sync 9-30

Multichannel Operation .. 9-32

Overview .. 9-32

Frame Syncs in Multichannel Mode 9-35

Multichannel Frame Delay .. 9-36

Window Size .. 9-36

Window Offset ... 9-36

Other Multichannel Fields in SPx_TCR and SPx_RCR 9-37

Channel Selection Registers .. 9-38

Multichannel Enable ... 9-39

Multichannel DMA Data Packing 9-39

Multichannel TX FIFO Prefetch 9-40

Multichannel Mode Example .. 9-41

Moving Data Between SPORTs and Memory 9-42

SPORT DMA Autobuffer Mode Example 9-42

SPORT Descriptor-Based DMA Example 9-44

Support for Standard Protocols ... 9-46

2X Clock Recovery Control ... 9-46

SPORT Pin/Line Terminations ... 9-47

Timing Examples .. 9-47

SERIAL PERIPHERAL INTERFACE (SPI) PORTS

Overview .. 10-2

Interface Signals ... 10-6

ADSP-219x/2191 xv
DSP Hardware Reference

CONTENTS

Serial Peripheral Interface Clock Signal (SCK) 10-6

Serial Peripheral Interface Slave Select Input Signal (SPISS) 10-6

Master Out Slave In (MOSI) ... 10-7

Master In Slave Out (MISO) ... 10-7

Interrupt Behavior ... 10-7

SPI Registers ... 10-8

SPI Baud Rate (SPIBAUDx) Registers 10-9

SPI Control (SPICTLx) Registers ... 10-10

SPI Flag (SPIFLGx) Register .. 10-12

Slave-Select Inputs .. 10-15

Using the SPIFLG Register’s FLS Bits
for Multiple-Slave SPI Systems 10-15

SPI Status (SPISTx) Registers .. 10-16

Transmit Data Buffer (TDBRx) Registers 10-18

Receive Data Buffer (RDBRx) Registers 10-19

Data Shift (SFDR) Register ... 10-19

Register Mapping .. 10-19

SPI Transfer Formats ... 10-21

SPI General Operation .. 10-23

Overview .. 10-24

Clock Signals .. 10-25

Master Mode Operation .. 10-25

Transfer Initiation from Master (Transfer Modes) 10-26

Slave Mode Operation ... 10-27

Slave Ready for a Transfer .. 10-28

CONTENTS

xvi ADSP-219x/2191
DSP Hardware Reference

Error Signals and Flags ... 10-29

Mode-Fault Error (MODF) ... 10-29

Transmission Error (TXE) Bit ... 10-30

Reception Error (RBSY) Bit .. 10-30

Transmit Collision Error (TXCOL) Bit 10-31

Beginning and Ending an SPI Transfer 10-31

DMA ... 10-32

SPI Example ... 10-33

UART PORT

Overview .. 11-1

Serial Communications ... 11-3

I/O Mode ... 11-5

DMA Mode ... 11-6

Descriptors ... 11-6

Autobuffer Mode .. 11-8

Mixing Modes ... 11-9

Code Examples ... 11-9

Initializing the UART ... 11-10

Polling the TX Channel .. 11-10

Interrupt Controlled Transmission 11-11

Using Descriptor DMA on the UART TX Channel 11-12

Setting Up Autobuffer DMA on the UART TX Channel 11-14

Auto-Baud Rate Detection Using Timer 0 11-15

ADSP-219x/2191 xvii
DSP Hardware Reference

CONTENTS

TIMER

Overview .. 12-1

Pulsewidth Modulation (PWMOUT) Mode 12-6

PWM Waveform Generation ... 12-8

Single-Pulse Generation .. 12-10

Pulsewidth Count and Capture (WDTH_CAP) Mode 12-11

Auto-Baud Mode .. 12-13

External Event Watchdog (EXT_CLK) Mode 12-14

Code Examples ... 12-14

Timer Example Steps ... 12-15

Timer0 Initialization Routine .. 12-18

Timer Interrupt Service Routine .. 12-20

JTAG TEST-EMULATION PORT

Overview .. 13-2

JTAG Test Access Port ... 13-2

Instruction Register ... 13-3

Bypass Register ... 13-4

Boundary Register ... 13-5

IDCODE Register .. 13-5

References ... 13-5

SYSTEM DESIGN

Pin Descriptions ... 14-2

Recommendations for Unused Pins .. 14-8

CONTENTS

xviii ADSP-219x/2191
DSP Hardware Reference

Pin States at Reset ... 14-8

Resetting the Processor (“Hard Reset”) 14-12

Resetting the Processor (“Soft Reset”) .. 14-15

Booting the Processor (“Boot Loading”) 14-16

Boot Modes .. 14-16

SPI Port and UART Port Booting .. 14-18

Host Port Booting ... 14-19

External Memory Interface Booting 14-20

Bootstream Format ... 14-21

Configuring and Servicing Interrupts .. 14-27

User-Mappable Interrupts ... 14-28

Managing DSP Clocks .. 14-29

Using the PLL Control (PLLCTL) Register 14-32

Designing for Multiplexed Clock Pins 14-36

Using Clock Modes ... 14-37

Using Programmable Flags .. 14-40

Flag Configuration Registers ... 14-41

Flag Direction (DIR) Register ... 14-42

Flag Control (FLAGC and FLAGS) Registers 14-42

Flag Interrupt Mask Registers
(MASKAC, MASKAS, MASKBC, and MASKBS) 14-43

Flag Interrupt Polarity (FSPR) Register 14-44

Flag Sensitivity (FSSR) Register and
Flag Sensitivity Both Edges (FSBER) Register 14-45

Power-Down Modes ... 14-45

ADSP-219x/2191 xix
DSP Hardware Reference

CONTENTS

Idle Mode ... 14-46

Power-Down Core Mode ... 14-46

Power-Down Core/Peripherals Mode ... 14-47

Power-Down All Mode .. 14-48

Working with External Bus Masters ... 14-49

Recommended Reading ... 14-52

Programmable Flags Example .. 14-53

ADSP-219X DSP CORE REGISTERS

Overview ... A-1

Core Registers Summary ... A-2

Register Load Latencies .. A-2

Core Status Registers .. A-8

Arithmetic Status (ASTAT) Register .. A-8

Mode Status (MSTAT) Register .. A-8

System Status (SSTAT) Register .. A-10

Computational Unit Registers .. A-11

Data Register File (Dreg) Registers .. A-12

ALU X Input (AX0, AX1) Registers and
ALU Y Input (AY0, AY1) Registers A-13

ALU Results (AR) Register .. A-13

ALU Feedback (AF) Register ... A-13

Multiplier X Input (MX0, MX1) Registers and
Multiplier Y Input (MY0, MY1) Registers A-13

Multiplier Results (MR2, MR1, MR0) Registers A-14

CONTENTS

xx ADSP-219x/2191
DSP Hardware Reference

Shifter Input (SI) Register ... A-14

Shifter Exponent (SE) Register and
Shifter Block Exponent (SB) Register A-14

Shifter Result (SR2, SR1, SR0) Registers A-14

Program Sequencer Registers ... A-15

Interrupt Mask (IMASK) Register and
Interrupt Latch (IRPTL) Register A-15

Interrupt Control (ICNTL) Register A-15

Indirect Jump Page (IJPG) Register A-17

PC Stack Page (STACKP) Register and
PC Stack Address (STACKA) Register A-17

Loop Stack Page (LPSTACKP) Register and
Loop Stack Address (LPSTACKA) Register A-17

Counter (CNTR) Register ... A-18

Condition Code (CCODE) Register A-18

Cache Control (CACTL) Register ... A-19

Data Address Generator Registers .. A-20

Index (Ix) Registers ... A-21

Modify (Mx) Registers .. A-21

Length (Lx) Registers and Base (Bx) Registers A-21

Data Memory Page (DMPGx) Registers A-21

Memory Interface Registers ... A-22

PM Bus Exchange (PX) Register .. A-22

I/O Memory Page (IOPG) Register A-22

Register and Bit #Defines File (def219x.h) A-22

ADSP-219x/2191 xxi
DSP Hardware Reference

CONTENTS

ADSP-2191 DSP I/O REGISTERS

I/O Processor Registers ... B-2

Clock and System Control Registers ... B-17

PLL Control (PLLCTL) Register .. B-17

PLL Lock Counter (LOCKCNT) Register B-19

 Software Reset (SWRST) Register .. B-19

Next System Configuration (NXTSCR) Register B-19

System Configuration (SYSCR) Register B-20

System Interrupt Controller Registers ... B-21

Interrupt Priority (IPRx) Registers .. B-22

Interrupt Source (INTRDx) Registers B-25

DMA Controller Registers .. B-27

MemDMA Channel Write Pointer
(DMACW_PTR) Register ... B-29

MemDMA Channel Write Configuration
(DMACW_CFG) Register ... B-29

MemDMA Channel Write Start Page
(DMACW_SRP) Register .. B-31

MemDMA Channel Write Start Address
(DMACW_SRA) Register .. B-31

MemDMA Channel Write Count
(DMACW_CNT) Register .. B-31

MemDMA Channel Write Chain Pointer
(DMACW_CP) Register .. B-32

MemDMA Channel Write Chain Pointer Ready
(DMACW_CPR) Register ... B-32

CONTENTS

xxii ADSP-219x/2191
DSP Hardware Reference

MemDMA Channel Write Interrupt
(DMACW_IRQ) Register .. B-32

MemDMA Channel Read Pointer
(DMACR_PTR) Register ... B-33

MemDMA Channel Read Configuration
(DMACR_CFG) Register ... B-33

MemDMA Channel Read Start Page
(DMACR_SRP) Register .. B-33

MemDMA Channel Read Start Address
(DMACR_SRA) Register .. B-34

MemDMA Channel Read Count
(DMACR_CNT) Register .. B-34

MemDMA Channel Read Chain Pointer
(DMACR_CP) Register .. B-34

MemDMA Channel Read Chain Pointer Ready
(DMACR_CPR) Register ... B-35

MemDMA Channel Read Interrupt
(DMACR_IRQ) Register .. B-35

SPORT Registers .. B-35

SPORT Transmit Configuration (SPx_TCR) Registers B-38

SPORT Receive Configuration (SPx_RCR) Registers B-38

SPORT Transmit Data (SPx_TX) Registers B-41

SPORT Receive Data (SPx_RX) Registers B-41

SPORT Transmit Serial Clock Divisor
(SPx_TSCKDIV) Registers and
SPORT Receive Serial Clock Divisor
(SPx_RSCKDIV) Registers ... B-42

ADSP-219x/2191 xxiii
DSP Hardware Reference

CONTENTS

SPORT Transmit Frame Sync Divisor
(SPx_TFSDIV) Registers and
SPORT Receive Frame Sync Divisor
(SPx_RFSDIV) Registers ... B-43

SPORT Status (SPx_STATR) Registers B-43

SPORT Multichannel Transmit Channel Select
(SPx_MTCSx) Registers ... B-44

SPORT Multichannel Receive Channel Select
(SPx_MRCSx) Registers ... B-46

SPORT Multichannel Mode Configuration
(SPx_MCMCx) Registers ... B-47

SPORT DMA Receive Pointer (SPxDR_PTR) Registers B-50

SPORT Receive DMA Configuration
(SPxDR_CFG) Registers .. B-50

SPORT Receive DMA Start Page (SPxDR_SRP) Registers B-52

SPORT Receive DMA Start Address (SPxDR_SRA) Registers B-53

SPORT Receive DMA Count (SPxDR_CNT) Registers B-53

SPORT Receive DMA Chain Pointer
(SPxDR_CP) Register .. B-53

SPORT Receive DMA Chain Pointer Ready
(SPxDR_CPR) Registers .. B-54

SPORT Receive DMA Interrupt (SPxDR_IRQ) Registers B-54

SPORT Transmit DMA Pointer (SPxDT_PTR) Registers B-55

SPORT Transmit DMA Configuration
(SPxDT_CFG) Registers .. B-56

SPORT Transmit DMA Start Address
(SPxDT_SRA) Registers .. B-56

SPORT Transmit DMA Start Page (SPxDT_SRP) Registers ... B-57

CONTENTS

xxiv ADSP-219x/2191
DSP Hardware Reference

SPORT Transmit DMA Count (SPxDT_CNT) Registers B-57

SPORT Transmit DMA Chain Pointer
(SPxDT_CP) Registers ... B-58

SPORT Transmit DMA Chain Pointer Ready
(SPxDT_CPR) Registers ... B-58

SPORT Transmit DMA Interrupt (SPxDT_IRQ) Registers B-59

Serial Peripheral Interface Registers ... B-60

SPI Control (SPICTLx) Registers .. B-61

SPI Flag (SPIFLGx) Registers .. B-63

SPI Status (SPISTx) Registers .. B-65

SPI Transmit Buffer (TDBRx) Registers B-65

Receive Data Buffer (RDBRx) Registers B-67

Receive Data Buffer Shadow, SPI (RDBRSx) Registers B-67

SPI Baud Rate (SPIBAUDx) Registers B-68

SPI DMA Current Pointer (SPIxD_PTR) Registers B-68

SPI DMA Configuration (SPIxD_CFG) Registers B-68

SPI DMA Start Page (SPIxD_SRP) Registers B-70

SPI DMA Start Address (SPIxD_SRA) Registers B-70

SPI DMA Word Count (SPIxD_CNT) Registers B-70

SPI DMA Next Chain Pointer (SPIxD_CP) Registers B-71

SPI DMA Chain Pointer Ready (SPIxD_CPR) Registers B-71

SPI DMA Interrupt (SPIxD_IRQ) Registers B-71

UART Registers .. B-72

UART Control Registers ... B-72

Transmit Hold (THR) Register ... B-74

ADSP-219x/2191 xxv
DSP Hardware Reference

CONTENTS

Receive Buffer (RBR) Register .. B-74

Interrupt Enable (IER) Register .. B-75

UART Divisor Latch Registers (DLL and DLH) B-76

Interrupt Identification (IIR) Register B-77

Line Control (LCR) Register .. B-77

Modem Control (MCR) Register B-77

Line Status (LSR) Register .. B-78

Modem Status (MSR) Register ... B-78

Scratch (SCR) Register ... B-80

UART RX DMA Registers .. B-80

UART DMA Receive Pointer (UARDR_PTR) Register B-81

UART Receive DMA Configuration (UARDR_CFG) Register B-81

UART Receive DMA Start Page
(UARDR_SRP) Register .. B-83

UART Receive DMA Start Address
(UARDR_SRA) Register ... B-83

UART Receive DMA Count (UARDR_CNT) Register B-83

UART Receive DMA Chain Pointer
(UARDR_CP) Register ... B-84

UART Receive DMA Chain Pointer Ready
(UARDR_CPR) Register ... B-84

UART Receive DMA Interrupt Register
(UARDR_IRQ) Register ... B-84

UART TX DMA Registers .. B-85

UART Transmit DMA Pointer (UARDT_PTR) Register ... B-85

CONTENTS

xxvi ADSP-219x/2191
DSP Hardware Reference

UART Transmit DMA Configuration
(UARDT_CFG) Register ... B-86

UART Transmit DMA Start Page
(UARDT_SRP) Register .. B-86

UART Transmit DMA Start Address
(UARDT_SRA) Register .. B-86

UART Transmit DMA Count (UARDT_CNT) Register ... B-87

UART Transmit DMA Chain Pointer
(UARDT_CP) Register .. B-87

UART Transmit DMA Chain Pointer Ready
(UARDT_CPR) Register ... B-87

UART Transmit DMA Interrupt
(UARDT_IRQ) Register .. B-87

Timer Registers .. B-88

Overview .. B-88

Timer Global Status and Control (T_GSRx) Registers B-89

Timer Configuration (T_CFGRx) Registers B-91

Timer Counter Low Word (T_CNTLx) and
Timer Counter High Word (T_CNTHx) Registers B-91

Timer Period Low Word (T_PRDLx) and
Timer Period High Word (T_PRDHx) Registers B-93

Timer Width Low Word (T_WLRx) Register and
TImer Width High Word (T_WHRx) Register B-94

Programmable Flag Registers ... B-96

Direction for Flags (DIR) Register ... B-96

Flag (PFx) Interrupt Registers:
Flag Clear (FLAGC) and Flag Set (FLAGS) B-97

ADSP-219x/2191 xxvii
DSP Hardware Reference

CONTENTS

Flag (PFx) Interrupt Mask Registers B-97

Flag Source Polarity (FSPR) Register B-98

Flag Source Sensitivity (FSSR) Register B-98

Flag Sensitivity Both Edges (FSBER) Register B-99

External Memory Interface Registers ... B-99

External Memory Interface Control/Status
(E_STAT) Register .. B-100

External Memory Interface Control (EMICTL) Register B-100

Boot Memory Select Control (BMSCTL) Register B-101

Memory Select Control (MSxCTL) Registers B-103

I/O Memory Select Control (IOMSCTL) Registers B-104

External Port Status (EMISTAT) Register B-105

Memory Page (MEMPGx) Registers B-106

Host Port Registers ... B-107

Host Port Configuration (HPCR) Register B-108

Host Port Direct Page (HPPR) Register B-110

Host Port DMA Error (HPDER) Register B-110

Host Port Semaphore (HPSMPHx) Registers B-111

Host Port DMA Pointer (HOSTD_PTR) Register B-111

Host Port DMA Configuration (HOSTD_CFG) Register B-112

Host Port DMA Start Page (HOSTD_SRP) Register B-112

Host Port DMA Start Address (HOSTD_SRA) Register B-112

Host Port DMA Word Count (HOSTD_CNT) Register B-114

Host Port DMA Chain Pointer (HOSTD_CP) Register B-114

-xxviii ADSP-219x/2191
DSP Hardware Reference

Host Port DMA Chain Pointer Ready
(HOSTD_CPR) Register ... B-114

Host Port DMA Interrupt (HOSTD_IRQ) Register B-115

Register and Bit #define File (def2191.h) B-115

NUMERIC FORMATS

Un/Signed: Twos Complement Format .. C-1

Integer or Fractional ... C-2

Binary Multiplication ... C-5

Fractional Mode and Integer Mode .. C-6

Block Floating-Point Format ... C-6

INDEX

ADSP-219x/2191 DSP Hardware Reference xxix

Preface

PREFACE

Thank you for purchasing and developing systems using ADSP-219x
DSPs from Analog Devices.

Purpose of This Manual
The ADSP-219x/2191 DSP Hardware Reference provides architectural
information on the ADSP-219x modified Harvard architecture Digital
Signal Processor (DSP) core and ADSP-2191 DSP products.

This functional description also describes the ADSP-2191 memory deriva-
tives, the ADSP-2195 and the ADSP-2196. Most of this manual refers to
the ADSP-2191 DSP; refer to the chip data sheets for differences.

The architectural descriptions cover functional blocks, buses, and ports,
including all the features and processes they support. For programming
information, refer to the ADSP-219x DSP Instruction Set Reference.

Intended Audience
This manual is intended for system designers and programmers who are
familiar with digital signal processing (DSP) concepts. Users should have a
working knowledge of microcomputer technology and DSP related
mathematics.

Manual Contents

xxx ADSP-219x/2191 DSP Hardware Reference

Manual Contents
This reference presents instruction information organized by the type of
the instruction. Instruction types relate to the machine language opcode
for the instruction. On this DSP, the opcodes categorize the instructions
by the portions of the DSP architecture that execute the instructions. The
following chapters cover the different types of instructions:

• “Introduction” on page 1-1—This chapter describes the DSP .

• “Computational Units” on page 2-1—This chapter describes the
arithmetic/logic unit (ALU), multiplier/accumulator (multiplier),
and shifter.

• “Program Sequencer” on page 3-1—This chapter describes pro-
gram flow.

• “Data Address Generators (DAGs)” on page 4-1—This chapter
describes the automatic generation of addresses for indirect
addressing.

• “Memory” on page 5-1—This chapter describes how to use inter-
nal memory.

• “I/O Processor” on page 6-1—This chapter describes Direct Mem-
ory Access (DMA) of DSP memory through the external, host,
serial, SPI, and UART ports.

• “External Port” on page 7-1—This chapter describes how to con-
figure, connect, and access external memory or memory-mapped
peripherals.

• “Host Port” on page 8-1—This chapter describes how to directly
access the DSP memory space, boot space, and I/O space.

• “Serial Ports (SPORTs)” on page 9-1—This chapter describes the
serial ports (SPORTS) available on the DSP.

ADSP-219x/2191 DSP Hardware Reference xxxi

Preface

• “Serial Peripheral Interface (SPI) Ports” on page 10-1—This chap-
ter describes the use of the DSP’s two SPI ports.

• “UART Port” on page 11-1—This chapter describes how to use its
UART port.

• “Timer” on page 12-1—This chapter describes how to use the
DSP’s three 32-bit timers.

• “JTAG Test-Emulation Port” on page 13-1—This chapter
describes the use of the DSP’s JTAG port.

• “System Design” on page 14-1—This chapter describes basic sys-
tem interface features of the ADSP-219x DSP family processors.

• “ADSP-219x DSP Core Registers” on page A-1—This chapter
describes the DSP core’s general-purpose.

• “ADSP-2191 DSP I/O Registers” on page B-1—This chapter
describes the DSP’s I/O processor registers.

• “Numeric Formats” on page C-1—This chapter describes various
aspects of the 16-bit data format and how to implement a block
floating-point format in software.

Additional Literature
For more information about Analog Devices DSPs and development
products, see the following documents:

• ADSP-2191 DSP Microcomputer Data Sheet

• ADSP-219x DSP Instruction Set Reference

All the manuals are available in PDF format from the software distribu-
tion CD-ROM. You can also access these manuals via VisualDSP++
online Help.

What’s New in This Manual

xxxii ADSP-219x/2191 DSP Hardware Reference

What’s New in This Manual
This revision of the ADSP-219x/2191 DSP Hardware Reference includes
fixes to defects logged on the Analog Devices Web site under documenta-
tion errata. In addition, the following changes were made:

• A preface was added

• Several block diagrams and descriptions of core DSP components
were updated in Chapter 1 “Introduction”, Chapter 2 “Computa-
tional Units”, Chapter 3 “Program Sequencer”, Chapter 4
“Memory”, and Chapter 12 “Timer”.

• Appendix C “Interrupts” was moved to Chapter 6 together with
new information.

Technical or Customer Support
You can reach our DSP Tools Customer Support in the following ways:

• E-mail development tools questions to
dsptools.support@analog.com

• E-mail processor questions to dsp.support@analog.com

• Phone questions to 1800-ANALOGD

• Visit our World Wide Web site at http://www.analog.com/dsp

• Telex questions to 924491, TWX:710/394-6577

• Cable questions to ANALOG NORWOODMASS

• Contact your local Analog Devices sales office or an authorized
Analog Devices distributor

ADSP-219x/2191 DSP Hardware Reference xxxiii

Preface

Processor Family
The name ADSP-219x refers to the family of Analog Devices 16-bit,
fixed-point processors. VisualDSP++™ currently supports these
processors:

• ADSP-2191

• ADSP-2192-12

• ADSP-2195

• ADSP-2196

• Mixed-signal processors (ADSP-21990, ADSP-21991, and
ADSP-21992)

 Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from printed documents/manuals.

Analog Devices is online at http://www.analog.com. Our Web site pro-
vides information about a broad range of products: analog integrated
circuits, amplifiers, converters, and digital signal processors.

DSP Product Information
For information on digital signal processors, visit our Web site at
http://www.analog.com/dsp. It provides access to technical information
and documentation, product overviews, and product announcements.

Product Information

xxxiv ADSP-219x/2191 DSP Hardware Reference

You may also obtain additional information about Analog Devices and its
products by:

• FAXing questions or requests for information:
1(781)461-3010 (North America) or
089/76 903-557 (Europe Headquarters)

• Accessing the FTP site:
ftp ftp.analog.com or ftp 137.71.23.21 or
ftp://ftp.analog.com

Product Related Documents
For information on product related development software and Analog
Devices processors, see these publications:

• VisualDSP++ Getting Started Guide for 16-Bit Processors

• VisualDSP++ User's Guide for 16-Bit Processors

• VisualDSP++ C/C++ Compiler and Library Manual for ADSP-219x
DSPs

• VisualDSP++ Assembler and Preprocessor Manual for ADSP-218x
and ADSP-219x DSPs

• VisualDSP++ Linker and Utilities Manual for 16-Bit Processors

• VisualDSP++ Loader and Utilities Manual for 16-Bit Processors

• VisualDSP++ Kernel (VDK) User’s Guide for 16-Bit Processors

• VisualDSP++ Component Software Engineering User’s Guide for
16-Bit Processors

ADSP-219x/2191 DSP Hardware Reference -xxxv

Preface

Technical Publications Online or on the Web
You can access DSP (or TigerSHARC processor) documentation in these
ways:

• Online Access using VisualDSP++ Installation CD-ROM

Your VisualDSP++™ software distribution CD-ROM includes all
of the listed VisualDSP++ software tool publications.

After you install VisualDSP++ software on your PC, select the
Help Topics command on the VisualDSP++ Help menu, click the
Reference book icon, and select Online Manuals. From this Help
topic, you can open any of the manuals, which are either in HTML
format or in Adobe Acrobat PDF format.

If you are not using VisualDSP++, you can manually access these
PDF files from the CD-ROM using Adobe Acrobat.

• Web Access

Use the Analog Devices technical publications Web site
http://www.analog.com/industry/dsp/tech_doc/
gen_purpose.html to access DSP publications, including data
sheets, hardware reference manuals, instruction set reference manu-
als, and VisualDSP++ software documentation. You can view,
download, or print in PDF format. Some publications are also
available in HTML format.

Printed Manuals
For all your general questions regarding literature ordering, call the Litera-
ture Center at 1-800-ANALOGD (1-800-262-5643) and follow the
prompts.

Product Information

-xxxvi ADSP-219x/2191 DSP Hardware Reference

VisualDSP++ and Tools Manuals

The VisualDSP++ and Tools manuals can be purchased through your
local Analog Devices sales office or an authorized Analog Devices distribu-
tor. These manuals can be purchased only as a kit.

Hardware Manuals

Hardware reference and instruction set reference manuals can be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643) or
downloaded from the Analog Devices Web site. The manuals can be
ordered by a title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) can be downloaded from the
Analog Devices Web site. As a general rule, only production (not prelimi-
nary) data sheets can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643). You can request data sheets using
part numbers.

If you want to have a data sheet faxed to you, use the Analog Devices Fax-
back system at 1-800-446-6212. Follow the prompts, and you can either
get a particular data sheet or a list of the data sheet code numbers faxed to
you. If the data sheet you request is not listed on Faxback, check for it on
the Web site.

ADSP-219x/2191 DSP Hardware Reference -xxxvii

Preface

Recommendations for Improving Our Documents
Please send us your comments and recommendation on how to improve
our manuals. Contact us at:

• Software/Development Tools manuals
dsptools.support@analog.com

• Data sheets, Hardware and Instruction Reference Set manuals
dsp.support@analog.com

Conventions
The following table identifies and describes text conventions used in this
manual.

Note that additional conventions, which apply only to specific
chapters, may appear throughout this document.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative items in syntax descriptions appear within curly brackets
and separated by vertical bars; read the example as this or that. One
or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Conventions

-xxxviii ADSP-219x/2191 DSP Hardware Reference

AX0, SR, PX Register names appear in UPPERCASE and keyword font

TMR0E, RESET Pin names appear in UPPERCASE and keyword font; active low sig-
nals appear with an OVERBAR.

DRx, MS3-0 Register and pin names in the text may refer to groups of registers or
pins. When a lowercase “x” appears in a register name (e.g., DRx), that
indicates a set of registers (e.g., DR0, DR1, and DR2). A range also may
be shown with a hyphen (e.g., MS3-0 indicates MS3, MS2, MS1, and
MS0).

IF, DO/UNTIL Assembler instructions (mnemonics) appear in UPPERCASE and in
keyword font

This symbol indicates a note that provides supplementary information
on a related topic. In the online Help version of this book, the word
Note appears instead of this symbol.

This symbol indicates a warning that advises on an inappropriate usage
of the product that could lead to undesirable results or product dam-
age. In the online Help version of this book, the word Warning appears
instead of this symbol.

Example Description

ADSP-219x/2191 DSP Hardware Reference 1-1

Introduction

1 INTRODUCTION

This description covers the ADSP-2191 and memory derivatives, the
ADSP-2195 and the ADSP-2196. Most of this manual refers to the
ADSP-2191 DSP; refer to the chip data sheets for differences.

This chapter provides the following sections:

• “Overview—Why Fixed-Point DSP?” on page 1-1

• “ADSP-219x Design Advantages” on page 1-2

• “ADSP-219x Architecture” on page 1-6

• “Differences from Previous DSPs” on page 1-23

• “Development Tools” on page 1-31

Overview—Why Fixed-Point DSP?
A digital signal processor’s (DSP’s) data format determines its ability to
handle signals of differing precision, dynamic range, and signal-to-noise
ratios. Because 16-bit, fixed-point DSP math is required for certain DSP
coding algorithms, using a 16-bit, fixed-point DSP can provide all the fea-
tures needed for certain algorithm and software development efforts. Also,
a narrower bus width (16-bit as opposed to 32- or 64-bit wide) leads to
reduced power consumption and other design savings. The extent to
which this is true depends on the fixed-point processor’s architecture.

ADSP-219x Design Advantages

1-2 ADSP-219x/2191 DSP Hardware Reference

High-level language programmability, large address spaces, and wide
dynamic range allow system development time to be spent on algorithms
and signal processing concerns, rather than assembly language coding,
code paging, and error handling. The ADSP-2191 DSP is a highly inte-
grated, 16-bit fixed-point DSP that provides many of these design
advantages.

ADSP-219x Design Advantages
The ADSP-219x family DSPs are high-performance 16-bit DSPs for com-
munications, instrumentation, industrial/control, voice/speech, medical,
military, and other applications. These DSPs provide a DSP core that is
compatible with previous ADSP-2100 family DSPs, but provides many
additional features. The ADSP-219x core combines with on-chip periph-
erals to form a complete system-on-a-chip. The off-core peripherals add
on-chip SRAM, integrated I/O peripherals, timer, and interrupt
controller.

The ADSP-219x architecture balances a high-performance processor core
with high performance buses (PM, DM, DMA). In the core, every compu-
tational instruction can execute in a single cycle. The buses and
instruction cache provide rapid, unimpeded data flow to the core to main-
tain the execution rate.

Figure 1-1 on page 1-4 shows a detailed block diagram of the processor,
illustrating the following architectural features:

• Computation units—multiplier, ALU, shifter, and data register file

• Program sequencer with related instruction cache, interval timer,
and Data Address Generators (DAG1 and DAG2)

• Dual-blocked SRAM

• External ports for interfacing to off-chip memory, peripherals, and
hosts

ADSP-219x/2191 DSP Hardware Reference 1-3

Introduction

• Input/Output (I/O) processor with integrated DMA controllers,
serial ports (SPORTs), serial peripheral interface (SPI) ports, and a
UART port

• JTAG Test Access Port for board test and emulation

Figure 1-1 on page 1-4 also shows the three on-chip buses of the
ADSP-219x: the PM bus, DM bus, and DMA bus. The PM bus provides
access to either instructions or data. During a single cycle, these buses let
the processor access two data operands (one from PM and one from DM),
and access an instruction (from the cache).

The buses connect to the ADSP-219x’s external port, which provides the
processor’s interface to external memory, I/O memory-mapped, and boot
memory. The external port performs bus arbitration and supplies control
signals to shared, global memory and I/O devices.

Further, the ADSP-219x addresses the five central requirements for DSPs:

• Fast, flexible arithmetic computation units

Fast, Flexible Arithmetic. The ADSP-219x family DSPs execute all
computational instructions in a single cycle. They provide both fast
cycle times and a complete set of arithmetic operations.

• Unconstrained data flow to and from the computation units

Unconstrained Data Flow. The ADSP-219x has a modified Har-
vard architecture combined with a data register file. In every cycle,
the DSP can:

• Read two values from memory or write one value to
memory

• Complete one computation

• Write up to three values back to the register file

• Extended precision and dynamic range in the computation units

ADSP-219x Design Advantages

1-4 ADSP-219x/2191 DSP Hardware Reference

40-Bit Extended Precision. The DSP handles 16-bit integer and
fractional formats (twos-complement and unsigned). The proces-
sors carry extended precision through result registers in their
computation units, limiting intermediate data truncation errors.

• Dual address generators with circular buffering support

Dual Address Generators. The DSP has two data address genera-
tors (DAGs) that provide immediate or indirect (pre- and
post-modify) addressing. Modulus and bit-reverse operations are
supported with memory page constraints on data buffer placement
only.

Figure 1-1. ADSP-219x/ADSP-2191 DSP Block Diagram

DATAADDRESS B
L

O
C

K
3

DATAADDRESS B
L

O
C

K
2

2

SYSTEM INTERRUPT CONTROLLER

I/O DATA

SERIAL PORTS
(3)

SPI PORTS
(2)

18

I/O REGISTERS
(MEMORY-MAPPED)

CONTROL
STATUS

BUFFERS

I/O PROCESSOR

CACHE
64 � 24-BIT

JTAG

TEST &
EMULATION

6

ADDR BUS
MUX

DATA BUS
MUX

16

22
PM ADDRESS BUS

DM ADDRESS BUS

PM DATA BUS

DM DATA BUS

PX
24

16

ADSP-219x
DSP CORE

PROGRAM
SEQUENCER

DATA
REGISTER

FILE

MULT
BARREL
SHIFTER

ALU

UART PORT
(1)

DMA
CONTROLLER 6

INPUT
REGISTERS

RESULT
REGISTERS

16 � 16-BIT

HOST PORT

24

DAG1
4 � 4 � 16

DAG2
4 � 4 � 16

INTERNAL MEMORY

24

24

ADDRESS B
L

O
C

K
1

DATA
DATAADDRESS B

L
O

C
K

0

24 BIT

16 BIT
16 BIT

FOUR INDEPENDENT BLOCKS

PROGRAMMABLE
FLAGS (16) TIMERS (3)

3

DMA
CONNECT

DMA ADDRESS

EXTERNAL PORT

24 BIT

18I/O ADDRESS

24

16

24 DMA DATA

ADSP-219x/2191 DSP Hardware Reference 1-5

Introduction

• Efficient program sequencing

Efficient Program Sequencing. In addition to zero-overhead loops,
the DSP supports quick setup and exit for loops. Loops are both
nestable (eight levels in hardware) and interruptable. The proces-
sors support both delayed and non-delayed branches.

ADSP-219x Architecture

1-6 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x Architecture
This section provides the following topics:

• “Overview” on page 1-6

• “DSP Core Architecture” on page 1-8

• “DSP Peripherals Architecture” on page 1-10

• “Memory Architecture” on page 1-13

• “Interrupts” on page 1-17

• “DMA Controller” on page 1-17

• “Host Port” on page 1-18

• “DSP Serial Ports (SPORTs)” on page 1-18

• “Serial Peripheral Interface (SPI) Ports” on page 1-19

• “UART Port” on page 1-20

• “Programmable Flag (PFx) Pins” on page 1-20

• “Low-Power Operation” on page 1-21

• “Clock Signals” on page 1-21

• “Booting Modes” on page 1-22

• “JTAG Port” on page 1-22

Overview
An ADSP-219x is a single-chip microcomputer optimized for digital sig-
nal processing (DSP) and other high speed numeric processing
applications. These DSPs provide a complete system-on-a-chip, integrat-

ADSP-219x/2191 DSP Hardware Reference 1-7

Introduction

ing a large, high-speed SRAM and I/O peripherals supported by a
dedicated DMA bus. The following sections summarize the features of
each functional block in the ADSP-219x architecture, which appears in
Figure 1-1 on page 1-4.

The ADSP-2191 combines the ADSP-219x family base architecture (three
computational units, two data address generators, and a program
sequencer) with three serial ports, two SPI-compatible ports, one UART
port, a DMA controller, three programmable timers, general-purpose Pro-
grammable Flag pins, extensive interrupt capabilities, and on-chip
program and data memory blocks.

The ADSP-2191 architecture is code compatible with ADSP-218x family
DSPs. Though the architectures are compatible, the ADSP-2191 architec-
ture has a number of enhancements over the ADSP-218x architecture.
The enhancements to computational units, data address generators, and
program sequencer make the ADSP-2191 more flexible and even easier to
program than the ADSP-218x DSPs.

Indirect addressing options provide addressing flexibility—pre-modify
with no update, pre- and post-modify by an immediate 8-bit, twos-com-
plement value and base address registers for easier implementation of
circular buffering.

The ADSP-2191 DSP integrates 64K words of on-chip memory config-
ured as 32K words 24-bit SRAM and 32K words of 16-bit SRAM. The
ADSP-2195 DSP features 16K of 24-bit SRAM and 16K words of 16-bit
SRAM, whereas the ADSP-2196 DSP provides 8K words of 24-bit SRAM
and 8K words of 16-bit SRAM.

The ADSP-2191’s flexible architecture and comprehensive instruction set
support multiple operations in parallel. For example, in one processor
cycle, the ADSP-2191 can:

• Generate an address for the next instruction fetch

• Fetch the next instruction

ADSP-219x Architecture

1-8 ADSP-219x/2191 DSP Hardware Reference

• Perform one or two data moves

• Update one or two data address pointers

• Perform a computational operation

These operations take place while the processor continues to:

• Receive and transmit data through two serial ports

• Receive and/or transmit data from a host

• Receive or transmit data through the UART

• Receive or transmit data over two SPI ports

• Access external memory through the external memory interface

• Decrement the timers

DSP Core Architecture
The ADSP-219x instruction set provides flexible data moves and multi-
function (one or two data moves with a computation) instructions. Every
single-word instruction can be executed in a single processor cycle. The
ADSP-219x assembly language uses an algebraic syntax for ease of coding
and readability. A comprehensive set of development tools supports pro-
gram development.

Figure 1-1 on page 1-4 shows the architecture of the ADSP-219x core. It
contains three independent computational units: the ALU, the multi-
plier/accumulator, and the shifter. The computational units process 16-bit
data from the register file and have provisions to support multiprecision
computations. The ALU performs a standard set of arithmetic and logic
operations; division primitives also are supported. The multiplier per-
forms single-cycle multiply, multiply/add, and multiply/subtract
operations. The multiplier has two 40-bit accumulators, which help with
overflow. The shifter performs logical and arithmetic shifts, normaliza-

ADSP-219x/2191 DSP Hardware Reference 1-9

Introduction

tion, denormalization, and derive exponent operations. The shifter can
efficiently implement numeric format control, including multiword and
block floating-point representations.

Register-usage rules influence placement of input and results within the
computational units. For most operations, the computational units’ data
registers act as a data register file, permitting any input or result register to
provide input to any unit for a computation. For feedback operations, the
computational units let the output (result) of any unit be input to any
unit on the next cycle. For conditional or multifunction instructions,
there are restrictions limiting which data registers may provide inputs or
receive results from each computational unit. For more information, see
“Multifunction Computations” on page 2-64.

A powerful program sequencer controls the flow of instruction execution.
The sequencer supports conditional jumps, subroutine calls, and low
interrupt overhead. With internal loop counters and loop stacks, the
ADSP-2191 executes looped code with zero overhead; no explicit jump
instructions are required to maintain loops.

Two data address generators (DAGs) provide addresses for simultaneous
dual operand fetches (from data memory and program memory). Each
DAG maintains and updates four 16-bit address pointers. Whenever the
pointer is used to access data (indirect addressing), it is pre- or post-modi-
fied by the value of one of four possible modify registers. A length value
and base address may be associated with each pointer to implement auto-
matic modulo addressing for circular buffers. Page registers in the DAGs
allow circular addressing within 64K word boundaries of each of the 256
memory pages, but these buffers may not cross page boundaries. Second-
ary registers duplicate all the primary registers in the DAGs; switching
between primary and secondary registers provides a fast context switch.

Efficient data transfer in the core is achieved by using internal buses:

• Program Memory Address (PMA) Bus

• Program Memory Data (PMD) Bus

ADSP-219x Architecture

1-10 ADSP-219x/2191 DSP Hardware Reference

• Data Memory Address (DMA) Bus

• Data Memory Data (DMD) Bus

• DMA Address Bus

• DMA Data Bus

The internal address buses share a single external address bus, allowing
memory to be expanded off-chip, and the data buses share a single external
data bus. Boot memory space and external I/O memory space also share
the external buses.

Program memory can store both instructions and data, permitting the
ADSP-219x to fetch two operands in a single cycle, one from program
memory and one from data memory. The DSP’s dual memory buses also
let the ADSP-219x core fetch an operand from data memory and the next
instruction from program memory in a single cycle.

DSP Peripherals Architecture
Figure 1-1 on page 1-4 shows the DSP’s on-chip peripherals, which
include the external memory interface, host port, serial ports, SPI compat-
ible ports, UART port, JTAG test and emulation port, timers, flags, and
interrupt controller. Figure 1-2 on page 1-11 illustrates a typical
ADSP-2191 system with peripheral connections.

The ADSP-2191 has a 16-bit host port with DMA capability that pro-
vides external hosts access to on-chip memory. This parallel port consists
of a multiplexed data/address bus and provides a low-service overhead data
move capability. Configurable for 8- or 16-bit data bus widths, this port
provides a glueless interface to a wide variety of 8- and 16-bit microcon-
trollers. Two chip-selects provide hosts access to the DSP’s entire memory
map. The DSP is bootable through this port.

ADSP-219x/2191 DSP Hardware Reference 1-11

Introduction

The ADSP-2191 also has an external memory interface that is shared by
the DSP’s core, the DMA controller, and DMA capable peripherals,
which include the UART port, serial ports, SPI ports, and the host port.

Figure 1-2. ADSP-219x/ADSP-2191 DSP Block Diagram

SERIAL
DEVICE

(OP T ION A L)

DATA15–8

IOMS

ADSP-2191M

BMS

MS3–0

BR

BG

ACK

WR

RD

ADDR21–0

DATA7–0

DATA15–
8

ADDR21–
0

DATA7–
0
CS

ACK

WE

OE

EXTERNAL
MEMORY

(O PT ION A L)

DATA15–
8

ADDR21–
0

DATA7–
0
CS

ACK

WE

OE

BOOT
MEMORY

(O PT ION A L)

DATA15–
8

ADDR21–
0

DATA7–
0
CS

ACK

WE

OE

EXTERNAL
I/O MEMORY

(O P TIO N AL)

A
D

D
R

E
S

S

C
O

N
T

R
O

L

D
A

T
A

ADDR16

ADDR15–0
/
DATA15–0

CS1

ACK

WR

RD

HOST
PROCESSOR

(O P TIO N AL)

CS0

ALE

HAD15–
0

HA16

HCMS

HCIOMS

HRD

HWR

HAC
K

HALE

HACK_
P

TCLK0

TFS0

DT0

RCLK0

RFS0

DR0

TCLK1

TFS1

DT1

RCLK1

RFS1

DR1

TCLK2/SCK0

TFS2/MOSI0

DT2/MISO0

RCLK2/SCK
1
RFS2/MOSI1

DR2/MISO1

RXD

TXD

RESET

JTAG

SPORT1

SPORT2

SPORT0

CLKIN

XTAL

MSEL6–0/PF6–0

DF/PF7

BYPASS

BMODE1–0

OPMODE

CLKOUT

TMR2–0

UART

SPI0

SPI1

SERIAL
DEVICE

(OP T ION A L)

SERIAL
DEVICE

(OP T ION A L)

UART
DEVICE

(OP T ION A L)

CLOCK
OR

CRYSTAL

TIMER
OUT OR

CAPTURE

CLOCK
MULTIPLY

AND
RANGE

BOOT
AND OP
MODE

6

BGH

ADSP-219x Architecture

1-12 ADSP-219x/2191 DSP Hardware Reference

The external port consists of an 8- or 16-bit data bus, a 22-bit address bus,
and control signals. The data bus is configurable to provide an 8- or 16-bit
interface to external memory. Support for word packing lets the DSP
access 16- or 24-bit words from external memory regardless of the external
data bus width. When configured for an 8-bit interface, the unused eight
lines provide eight programmable, bidirectional general purpose Program-
mable Flag lines, six of which can be mapped to software condition
signals.

The memory DMA controller lets the ADSP-2191 transfer data to and
from internal and external memory. On-chip peripherals also can use this
port for DMA transfers to and from memory.

The ADSP-2191 can respond to up to 16 interrupt sources at any given
time: three internal (stack, emulator kernel, and power-down), two exter-
nal (emulator and reset), and twelve user-defined (peripherals) interrupt
requests. Programmers assign a peripheral to one of the 12 user defined
interrupt requests. These assignments determine the priority of each
peripheral for interrupt service. Several peripherals can be combined on a
single interrupt request line.

There are three serial ports on the ADSP-2191 that provide a complete
synchronous, full-duplex serial interface. This interface includes optional
companding in hardware and a wide variety of framed or frameless data
transmit and receive modes of operation. Each serial port can transmit or
receive an internal or external, programmable serial clock and frame syncs.
Each serial port supports 128-channel time division multiplexing (TDM).

The ADSP-2191 provides up to sixteen general-purpose I/O pins, which
are programmable as either inputs or outputs. Eight of these pins are ded-
icated general purpose programmable flag pins. The other eight are
multifunctional pins, acting as general purpose I/O pins when the DSP
connects to an 8-bit external data bus and acting as the upper eight data
pins when the DSP connects to a 16-bit external data bus. These program-

ADSP-219x/2191 DSP Hardware Reference 1-13

Introduction

mable flag pins can implement edge- or level-sensitive interrupts. The
execution of conditional instructions can be based on some of the pro-
grammable flag pins.

Three programmable interval timers generate periodic interrupts. Each
timer can be independently set to operate in one of three modes:

• Pulse waveform generation mode

• Pulse width count/capture mode

• External event watchdog mode

Each timer has one bi-directional pin and four registers that implement its
mode of operation: a configuration register, a count register, a period reg-
ister, and a pulsewidth register. A single status register supports all three
timers. A bit in the mode status register globally enables or disables all
three timers, and a bit in each timer’s configuration register enables or dis-
ables the corresponding timer independently of the others.

Memory Architecture
The ADSP-2191 provides 64K words of on-chip memory. This memory
is divided into four 16K blocks located on memory page 0 in the DSP’s
memory map. The ADSP-2195 features only two 16K blocks, and the
ADSP-2196 has two 8K blocks. In addition to the internal and external
memory space, the ADSP-2191 can address two additional and separate
memory spaces: I/O space and boot space.

As shown in Figure 1-3 on page 1-14, the DSP’s two internal memory
blocks populate all of Page 0. The entire DSP memory map consists of
256 pages (pages 0-255), and each page is 64K words long. External mem-
ory space consists of four memory banks (banks 3–0) and supports a wide
variety of SRAM memory devices. Each bank is selectable using the mem-
ory select pins (MS3-0) and has configurable page boundaries, waitstates,
and waitstate modes. The 1K word of on-chip boot-ROM populates the

ADSP-219x Architecture

1-14 ADSP-219x/2191 DSP Hardware Reference

lower 1K addresses of page 255. Other than page 0 and page 255, the
remaining 254 pages are addressable off-chip. I/O memory pages differ
from external memory pages in that I/O pages are 1K word long, and the
external I/O pages have their own select pin (IOMS). Pages 0–7 of I/O
memory space reside on-chip and contain the configuration registers for
the peripherals. Both the DSP core and DMA-capable peripherals can
access the DSP’s entire memory map.

Internal (On-Chip) Memory

The ADSP-2191’s unified program and data memory space consists of
16M locations that are accessible through two 24-bit address buses, the
PMA and DMA buses. The DSP uses slightly different mechanisms to
generate a 24-bit address for each bus. The DSP has three functions that
support access to the full memory map.

Figure 1-3. ADSP-2191 Internal/External Memory, Boot Memory, and
I/O Memory Maps

BANK2
(MS2)

BANK1
(MS1)

BANK0
(MS0)

BLOCK0, 24-BIT

BLOCK2, 16-BIT

BLOCK1, 24-BIT

BLOCK3, 16-BIT

RESERVED

BOOT ROM, 24-BIT

0x00 4000

0x00 8000

0x01 0000

0x40 0000

0x80 0000

0xC0 0000

0xFF 0000

0xFF 0400
0xFF FFFF

LOGICAL
ADDRESS

64K WORD
MEMORY
PAGES

PAGE 0

PAGES 1–63

PAGES 64–127

PAGES 128–191

PAGES 192–254

PAGE 255INTERNAL
MEMORY

EXTERNAL
MEMORY

(16-BIT)

INTERNAL
MEMORY

MEMORY SELECTS (MS)
FOR PORTIONS OF THE
MEMORY MAP APPEAR
WITH THE SELECTED

MEMORY.

PAGES 1–254

0x01 0000

0xFE FFFF

I/O MEMORY
16-BIT

1K WORD
PAGES 8–255

1K WORD
PAGES 0–7

LOWER PAGE BOUNDARIES
ARE CONFIGURABLE FOR
BANKS OF EXTERNAL MEMORY.
BOUNDARIES SHOWN ARE
BANK SIZES AT RESET.

0x07 3FF
0x08 000

0xFF 3FF

INTERNAL

EXTERNAL
(IOMS)

0x00 0000

0x00 C000

0xFF 03FF

0x00 000

8-BIT 10-BIT

BOOT MEMORY
16-BIT
(BMS)

64K WORD
LOGICAL
ADDRESS

LOGICAL
ADDRESS

BANK3
(MS3)

ADSP-219x/2191 DSP Hardware Reference 1-15

Introduction

The DAGs generate 24-bit addresses for data fetches from the entire DSP
memory address range. Because DAG index (address) registers are 16 bits
wide and hold the lower 16-bits of the address, each of the DAGs has its
own 8-bit page register (DMPGx) to hold the most significant eight address
bits. Before a DAG generates an address, the program must set the DAG’s
DMPGx register to the appropriate memory page.

• The program sequencer generates the addresses for instruction
fetches. For relative addressing instructions, the program sequencer
bases addresses for relative jumps, calls, and loops on the 24-bit
Program Counter (PC) register. For direct addressing instructions
(two-word instructions), the instruction provides an immediate
24-bit address value. The PC allows linear addressing of the full 24
bit address range.

• The program sequencer relies on an 8-bit Indirect Jump Page
(IJPG) register to supply the most significant eight address bits for
indirect jumps and calls that use a 16-bit DAG address register for
part of the branch address. Before a cross page jump or call, the
program must set the program sequencer’s IJPG register to the
appropriate memory page.

The ADSP-2191 has 1K word of on-chip ROM that holds boot routines.
If peripheral booting is selected, the DSP starts executing instructions
from the on-chip boot ROM, which starts the boot process from the
selected peripheral. For more information, see “Booting Modes” on page
1-22. The on-chip boot ROM is located on Page 255 in the DSP’s mem-
ory map.

The ADSP-2191 has internal I/O memory for peripheral control and sta-
tus registers. For more information, see the I/O memory space discussion
on page 1-16.

ADSP-219x Architecture

1-16 ADSP-219x/2191 DSP Hardware Reference

External (Off-Chip) Memory

Each of the ADSP-2191’s off-chip memory spaces has a separate control
register, so applications can configure unique access parameters for each
space. The access parameters include read and write wait counts, waitstate
completion mode, I/O clock divide ratio, write hold time extension,
strobe polarity, and data bus width. The core clock and peripheral clock
ratios influence the external memory access strobe widths. For more infor-
mation, see “Clock Signals” on page 1-21. The off-chip memory spaces
are:

• External memory space (MS3-0 pins)

• I/O memory space (IOMS pin)

• Boot memory space (BMS pin)

All of these off-chip memory spaces are accessible through the external
port, which can be configured for 8-bit or 16-bit data widths.

External Memory Space.External memory space consists of four memory
banks. These banks can contain a configurable number of 64K word
pages. At reset, the page boundaries for external memory have Bank 0 con-
taining pages 1-63, Bank 1 containing pages 64-127, Bank 2 containing
pages 128-191, and Bank 3 containing pages 192-254. The MS3-0 mem-
ory bank pins select Bank 3-0, respectively. The external memory interface
decodes the eight MSBs of the DSP program address to select one of the
four banks. Both the DSP core and DMA-capable peripherals can access
the DSP’s external memory space.

I/O Memory Space. The ADSP-2191 supports an additional external
memory called I/O memory space. This space is designed to support sim-
ple connections to peripherals (such as data converters and external
registers) or to bus interface ASIC data registers. I/O space supports a total
of 256K locations. The first 8K addresses are reserved for on-chip periph-
erals. The upper 248K addresses are available for external peripheral
devices and are selected with the IOMS pin. The DSP’s instruction set pro-

ADSP-219x/2191 DSP Hardware Reference 1-17

Introduction

vides instructions for accessing I/O space. These instructions use an 18-bit
address that is assembled from an 8-bit I/O Memory Page (IOPG) register
and a 10-bit immediate value supplied in the instruction. Both the
ADSP-219x core and a host (through the host port) can access I/O mem-
ory space.

Boot Memory Space. Boot memory space consists of one off-chip bank
with 253 pages. The BMS pin selects boot memory space. Both the DSP
core and DMA-capable peripherals can access the DSP’s off-chip boot
memory space. If the DSP is configured to boot from boot memory space,
the DSP starts executing instructions from the on-chip boot ROM, which
starts booting the DSP from boot memory. For more information, see
“Booting Modes” on page 1-22.

Interrupts
The interrupt controller allows the DSP to respond to 17 interrupts with
minimal overhead. The controller implements an interrupt priority
scheme, allowing programs assign interrupt priorities to each peripheral.
For more information, see “System Interrupt Controller” on page 6-1.

DMA Controller
The ADSP-2191 has a DMA controller that supports automated data
transfers with minimal overhead for the DSP core. Cycle stealing DMA
transfers can occur between the ADSP-2191’s internal memory and any of
its DMA capable peripherals. Additionally, DMA transfers also can be
accomplished between any of the DMA capable peripherals and external
devices connected to the external memory interface. DMA capable periph-
erals include the host port, serial ports, SPI ports, UART port, and
memory-to-memory (memDMA) DMA channel. Each individual DMA
capable peripheral has one or more dedicated DMA channels. For a
description of each DMA sequence, the DMA controller uses a set of
parameters—called a DMA descriptor. When successive DMA sequences

ADSP-219x Architecture

1-18 ADSP-219x/2191 DSP Hardware Reference

are needed, these descriptors can be linked or chained together. When
chained, the completion of one DMA sequence auto-initiates and starts
the next sequence. DMA sequences do not contend for bus access with the
DSP core, instead DMAs “steal” cycles to access memory.

Host Port
The ADSP-2191’s host port functions as a slave on the external bus of an
external host. The host port interface lets a host read from or write to the
DSP’s memory space, boot space, or internal I/O space. Examples of hosts
include external microcontrollers, microprocessors, or ASICs.

The host port is a multiplexed address and data bus that provides an 8- or
16-bit data path and operates using an asynchronous transmission proto-
col. To access the DSP’s internal memory space, a host steals one cycle per
access from the DSP. A host access to the DSP’s external memory uses the
external port interface and does not stall (or steal cycles from) the DSP’s
core. Because a host can access internal I/O memory space, a host can con-
trol any of the DSP’s I/O mapped peripherals.

DSP Serial Ports (SPORTs)
The ADSP-2191 incorporates three complete synchronous serial ports
(SPORT0, SPORT1, and SPORT2) for serial and multiprocessor com-
munications. The SPORTs support the following features:

• Bidirectional operation—each SPORT has independent transmit
and receive pins.

• Buffered (eight-deep) transmit and receive ports—each port has a
data register for transferring data words to and from other DSP
components and shift registers for shifting data in and out of the
data registers.

ADSP-219x/2191 DSP Hardware Reference 1-19

Introduction

• Clocking—each transmit and receive port either can use an exter-
nal serial clock (�75 MHz) or generate its own, in frequencies
ranging from 1144 Hz to 75 MHz.

• Word length—each SPORT supports serial data words from 3- to
16-bits in length transferred in big endian (MSB) or little endian
(LSB) format.

• Framing—each transmit and receive port can run with or without
frame sync signals for each data word.

• Companding in hardware—each SPORT can perform A-law or
µ-law companding, according to ITU recommendation G.711.

• DMA operations with single-cycle overhead—each SPORT can
automatically receive and transmit multiple buffers of memory
data, one data word each DSP cycle.

• Interrupts—each transmit and receive port generates an interrupt
upon completing the transfer of a data word or after transferring an
entire data buffer or buffers through DMA.

• Multichannel capability—each SPORT supports the H.100
standard.

Serial Peripheral Interface (SPI) Ports
The DSP has two SPI-compatible ports, which enable the DSP to com-
municate with multiple SPI compatible devices. These ports are
multiplexed with SPORT2, so either SPORT2 or the SPI ports are active
depending on the state of the OPMODE pin or OPMODE bit. To change the
mode, the pin can be changed during hardware or software reset, or the bit
can be changed at runtime.

The SPI interface uses three pins for transferring data: two data pins (mas-
ter output-slave input, MOSIx, and master input-slave output, MISOx) and a
clock pin (serial clock, SCKx). Two SPI chip-select input pins (SPISSx) let

ADSP-219x Architecture

1-20 ADSP-219x/2191 DSP Hardware Reference

other SPI devices select the DSP, and fourteen SPI chip select output pins
(SPIxSEL7-1) let the DSP select other SPI devices. The SPI select pins are
re-configured programmable flag pins. Using these pins, the SPI ports
provide a full duplex, synchronous serial interface, which supports both
master and slave modes and multiple master environments.

Each SPI port’s baud rate and clock phase/polarities are programmable,
and each has an integrated DMA controller, configurable to support both
transmit and receive data streams. The SPI’s DMA controller can only ser-
vice uni-directional accesses at any given time.

During transfers, the SPI ports simultaneously transmit and receive by
serially shifting data in and out on their two serial data lines. The serial
clock line synchronizes the shifting and sampling of data on the two serial
data lines.

UART Port
The UART port provides a simplified UART interface to another periph-
eral or host. It performs full duplex, asynchronous transfers of serial data.
The UART port supports two modes of operation:

• PIO (programmed I/O)

• DMA (direct memory access)

Programmable Flag (PFx) Pins
The ADSP-2191 has sixteen bi-directional, general-purpose I/O, pro-
grammable flag (PF15-0) pins. The PF7-0 pins are dedicated to
general-purpose I/O. The PF15-8 pins serve either as general-purpose I/O
pins (if the DSP is connected to an 8-bit external data bus) or serve as
DATA15-8 lines (if the DSP is connected to a 16-bit external data bus). The
programmable flag pins have special functions for clock multiplier selec-
tion and for SPI port operation.

ADSP-219x/2191 DSP Hardware Reference 1-21

Introduction

Low-Power Operation
The ADSP-2191 has four low-power options that significantly reduce the
power dissipation when the device operates under standby conditions. To
enter any of these modes, the DSP executes an IDLE instruction. The
ADSP-2191 uses configuration of the bits in the PLLCTL register to select
between the low-power modes as the DSP executes the IDLE instruction.
Depending on the mode, an IDLE shuts off clocks to different parts of the
DSP in the different modes. The low-power modes are:

• Idle

• Powerdown core

• Powerdown core/peripherals

• Powerdown all

Clock Signals
The ADSP-2191 can be clocked by a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. If a crystal oscilla-
tor is used, the crystal should be connected across the CLKIN and XTAL pins,
with two capacitors connected. Capacitor values are dependent on crystal
type and should be specified by the crystal manufacturer. A parallel-reso-
nant, fundamental frequency, microprocessor-grade crystal should be used
for this configuration.

If a buffered, shaped clock is used, this external clock connects to the
DSP’s CLKIN pin. CLKIN input cannot be halted, changed, or operated
below the specified frequency during normal operation. This clock signal
should be a TTL-compatible signal. When an external clock is used, the
XTAL input must be left unconnected.

ADSP-219x Architecture

1-22 ADSP-219x/2191 DSP Hardware Reference

The DSP provides a user programmable 1x to 31x multiplication of the
input clock—including some fractional values—to support 128 exter-
nal-to-internal (DSP core) clock ratios.

Booting Modes
The ADSP-2191 has seven mechanisms for automatically loading internal
program memory after reset. The BMODE2-0 pins, sampled during hardware
reset, and three bits in the System Configuration (SYSCR) register imple-
ment these modes:

• Boot from 16-bit external memory

• Boot from 8-bit EPROM

• Boot from host

• Execute from 8-bit external memory (no boot)

• Boot from UART

• Boot from SPI 4 Kbits

• Boot from SPI 512 Kbits

JTAG Port
The JTAG port on the ADSP-2191 supports the IEEE standard 1149.1
Joint Test Action Group (JTAG) standard for system test. This standard
defines a method for serially scanning the I/O status of each component in
a system. Emulators use the JTAG port to monitor and control the DSP
during emulation. Emulators using this port provide full-speed emulation
with access to inspect and modify memory, registers, and processor stacks.
JTAG-based emulation is non-intrusive and does not affect target system
loading or timing.

ADSP-219x/2191 DSP Hardware Reference 1-23

Introduction

Differences from Previous DSPs
This section identifies differences between the ADSP-219x DSPs and pre-
vious ADSP-2100 family DSPs: ADSP-210x, ADSP-211x, ADSP-217x,
and ADSP-218x. The ADSP-219x preserves much of the core ADSP-2100
family architecture, while extending performance and functionality. For
background information on previous ADSP-2100 family DSPs, see the
ADSP-2100 Family User’s Manual.

Chip enhancements also lead to some differences in the instruction sets
between these DSPs. For more information, see the ADSP-219x DSP
Instruction Set Reference.

Differences from Previous DSPs

1-24 ADSP-219x/2191 DSP Hardware Reference

This section describes the following differences:

• “Computational Units and Data Register File” on page 1-25

• “Arithmetic Status (ASTAT) Register Latency” on page 1-25

• “NORM and EXP Instruction Execution” on page 1-25

• “Shifter Result (SR) Register as Multiplier Dual Accumulator” on
page 1-25

• “Shifter Exponent (SE) Register is Not Memory Accessible” on
page 1-26

• “Software Condition (SWCOND) Register and Condition Code
(CCODE) Register” on page 1-26

• “Unified Memory Space” on page 1-28

• “Data Memory Page (DMPG1 and DMPG2) Registers” on
page 1-28

• “Data Address Generator (DAG) Addressing Modes” on page 1-28

• “Base Registers for Circular Buffers” on page 1-29

• “Program Sequencer, Instruction Pipeline, and Stacks” on
page 1-30

• “Conditional Execution (Difference in Flag Input Support)” on
page 1-30

• “Execution Latencies (Different for JUMP Instructions)” on
page 1-31

ADSP-219x/2191 DSP Hardware Reference 1-25

Introduction

Computational Units and Data Register File
The ADSP-219x DSP computational units differ from those on the
ADSP-218x, because the ADSP-219x data registers act as a register file for
unconditional, single-function instructions. In these instructions, any data
register may be an input to any computational unit. For conditional
and/or multifunction instructions, the ADSP-219x and ADSP-218x DSP
families have the same data register usage restrictions — AX and AY for
ALU, MX and MY for the multiplier, and SI for shifter inputs. For more
information, see “Multifunction Computations” on page 2-64.

Arithmetic Status (ASTAT) Register Latency
The ADSP-219x ASTAT register has a one-cycle effect latency. This is dis-
cussed in “ALU Status Flags” on page 2-19.

NORM and EXP Instruction Execution
The ADSP-219x NORM and EXP instructions execute slightly differently
from previous ADSP-218x DSPs. This issue is discussed in “Normalize,
ALU Result Overflow” on page 2-48.

Shifter Result (SR) Register as Multiplier Dual
Accumulator

The ADSP-219x architecture introduces a new 16-bit register in addition
to the SR0 and SR1 registers, the combination of which comprise the
40-bit- wide SR register on ADSP-218x DSPs. This new register, called
SR2, can be used in multiplier or shift operations (lower 8 bits) and as a
full 16-bit-wide scratch register. As a result, the ADSP-219x DSP has two
40-bit-wide accumulators, MR and SR. The SR dual accumulator has
replaced the multiplier feedback register MF, as shown in the following
example:

Differences from Previous DSPs

1-26 ADSP-219x/2191 DSP Hardware Reference

Shifter Exponent (SE) Register is Not Memory
Accessible

The ADSP-218x DSPs use SE as a data or scratch register. The SE register
of the ADSP-219x architecture is not accessible from the data or program
memory buses. Therefore, the multifunction instructions of the
ADSP-218x that use SE as a data or scratch register should use one of the
data file registers (DREG) as a scratch register on the ADSP-219x DSP.

Software Condition (SWCOND) Register and
Condition Code (CCODE) Register

The ADSP-219x DSP changes support for the ALU signed (AS) condition
and supports additional arithmetic and status condition testing with the
Condition Code (CCODE) register and software condition (SWCOND) test.
The two conditions are SWCOND and NOT SWCOND. The usage of the
ADSP-219x’s and most ADSP-218x’s arithmetic conditions (EQ, NE, GE,
GT, LE, LT, AV, Not AV, AC, Not AC, MV, Not MV) are compatible.

The new shifter overflow (SV) condition of the ADSP-219x architecture is
a good example of how the CCODE register and SWCOND test work. The
ADSP-219x DSP’s Arithmetic Status (ASTAT) register contains a bit indi-

Table 1-1. SR2 Register

ADSP-218x Instruction ADSP-219x Instruction (Replacement)

MF=MR+MX0*MY1(UU);
IF NOT MV MR=AR*MF;

SR=MR+MX0*MY1(UU);
IF NOT MV MR=AR*SR2;

Table 1-2. SE is Not Memory Accessible

ADSP-218x Instruction ADSP-219x Instruction (Replacement)

SR=Lshift MR1(HI),
SE=DM(I6,M5);

SR=Lshift MR1(HI),
AX0=DM(I6,M5);

ADSP-219x/2191 DSP Hardware Reference 1-27

Introduction

cating the status of the shifter’s result. The shifter is a computational unit
that performs arithmetic or logical bitwise shifts on fields within a data
register. The result of the operation goes into the Shifter Result (SR2, SR1,
and SR0, which are combined into SR) register. If the result overflows the
SR register, the shifter overflow (SV) bit in the ASTAT register records this
overflow/underflow condition for the SR result register (0 = no overflow or
underflow, 1 = overflow or underflow).

For the most part, bits (status condition indicators) in the ASTAT register
correspond to condition codes that appear in conditional instructions. For
example, the ALU zero (AZ) bit in ASTAT corresponds to the ALU result
equals zero (EQ) condition and would be used in code like this:

IF EQ AR = AX0 + AY0;

/* if the ALU result (AR) register is zero, add AX0 and AY0 */

The SV status condition in the ASTAT bits does not correspond to a condi-
tion code that can be directly used in a conditional instruction. To test for
this status condition, software selects a condition to test by loading a value
into the Condition Code (CCODE) register and uses the software condition
(SWCOND) condition code in the conditional instruction. The DSP code
would look like this:

CCODE = 0x09; NOP; // set CCODE for SV condition

IF SWCOND SR = MR0 * SR1 (UU); // mult unsigned X and Y

The NOP instruction after loading the CCODE register accommodates the
one-cycle effect latency of the CCODE register.

The ADSP-218x DSP supports two conditions to detect the sign of the
ALU result. On the ADSP-219x, these two conditions (POS and NEG) are
supported as AS and NOT AS conditions in the CCODE register. For more
information on CCODE register values and SWCOND conditions, see “Condi-
tional Sequencing” on page 3-41.

Differences from Previous DSPs

1-28 ADSP-219x/2191 DSP Hardware Reference

Unified Memory Space
The ADSP-219x architecture has a unified memory space with separate
memory blocks to differentiate between 24- and 16-bit memory. In the
unified memory, the term program or data memory only has semantic sig-
nificance; the address determines the “PM” or “DM” functionality. It is best
to revise any code with non-symbolic addressing in order to use the new
tools.

Data Memory Page (DMPG1 and DMPG2) Registers
The ADSP-219x processor introduces a paged memory architecture that
uses 16-bit DAG registers to access 64K pages. The 16-bit DAG registers
correspond to the lower 16 bits of the DSP’s address buses, which are
24-bit wide. To store the upper 8 bits of the 24-bit address, the
ADSP-219x DSP architecture uses two additional registers, DMPG1 and
DMPG2. DMPG1 and DMPG2 work with the DAG registers I0-I3 and I4-I7,
respectively.

Data Address Generator (DAG) Addressing Modes
The ADSP-219x architecture provides additional flexibility over the
ADSP-218x DSP family in DAG addressing modes:

• Pre-modify without update addressing in addition to the
post-modify with update mode of the ADSP-218x instruction set:

DM(IO+M1) = AR; /* pre-modify syntax */

DM(IO+=M1) = AR; /* post-modify syntax */

• Pre-modify and post-modify with an 8-bit twos-complement
immediate modify value instead of an M register:

AX0=PM(I5+-4); /* pre-modify syntax (for modifier = -4)*/

AX0=PM(I5+=4); /* post-modify syntax (for modifier = 4) */

ADSP-219x/2191 DSP Hardware Reference 1-29

Introduction

• DAG modify with an 8-bit twos-complement immediate-modify
value:

MODIFY(I7+=0x24);

Base Registers for Circular Buffers
The ADSP-219x processor eliminates the existing hardware restriction of
the ADSP-218x DSP architecture on a circular buffer starting address.
ADSP-219x enables declaration of any number of circular buffers by des-
ignating B0-B7 as the base registers for addressing circular buffers; these
base registers are mapped to the “register” space on the core.

Differences from Previous DSPs

1-30 ADSP-219x/2191 DSP Hardware Reference

Program Sequencer, Instruction Pipeline, and
Stacks

The ADSP-219x DSP core and inputs to the sequencer differ for various
members of the ADSP-219x family DSPs. The main differences between
the ADSP-218x and ADSP-219x sequencers are that the ADSP-219x
sequencer has:

• A 6-stage instruction pipeline, which works with the sequencer’s
loop and PC stacks, conditional branching, interrupt processing,
and instruction caching.

• A wider branch execution range, supporting:

— 13-bit, non-delayed or delayed relative conditional JUMP

— 16-bit, non-delayed or delayed relative unconditional JUMP
or CALL

— Conditional non-delayed or delayed indirect JUMP or CALL
with address pointed to by a DAG register

— 24-bit conditional non-delayed absolute long JUMP or CALL

• A narrowing of the DO/UNTIL termination conditions to counter
expired (CE) and FOREVER.

Conditional Execution (Difference in Flag Input
Support)

Unlike the ADSP-218x DSP family, ADSP-219x DSPs do not directly
support a conditional JUMP/CALL based on flag input. Instead, the
ADSP-219x supports this type of conditional execution with the CCODE
register and SWCOND condition. For more information, see “Software Con-
dition (SWCOND) Register and Condition Code (CCODE) Register” on
page 1-26.

ADSP-219x/2191 DSP Hardware Reference 1-31

Introduction

The ADSP-219x architecture has 16 programmable flag pins that can be
configured as either inputs or outputs. The flags can be checked by read-
ing the FLAGS register, or by using a software condition flag.

Execution Latencies (Different for JUMP
Instructions)

The ADSP-219x processor has an instruction pipeline (unlike ADSP-218x
DSPs) and branches execution for immediate JUMP and CALL instructions
in four clock cycles if the branch is taken. To minimize branch latency,
ADSP-219x programs can use the delayed branch option on jumps and
calls, reducing branch latency by two cycles. This savings comes from exe-
cution of two instructions following the branch before the JUMP/CALL
occurs.

Development Tools
The ADSP-219x is supported by VisualDSP++®, an easy-to-use project
management environment, comprised of an Integrated Development
Environment (IDE) and Debugger. VisualDSP++ lets you manage
projects from start to finish from within a single, integrated interface.
Because the project development and debug environments are integrated,
you can move easily between editing, building, and debugging activities.

Table 1-3. Conditional Execution

ADSP-218x Instruction ADSP-219x Instruction (Replacement)

If Not FLAG_IN AR=MR0 And 8192; SWCOND=0x03;
If Not SWCOND AR=MR0 And 8192;

IOPG = 0x06;
AX0=IO(FLAGS);
AXO=Tstbit 11 OF AXO;
If EQ AR=MRO And 8192;

Development Tools

1-32 ADSP-219x/2191 DSP Hardware Reference

Flexible Project Management. The IDE provides flexible project manage-
ment for the development of DSP applications. The IDE includes access
to all the activities necessary to create and debug DSP projects. You can
create or modify source files or view listing or map files with the IDE edi-
tor. This powerful editor is part of the IDE and includes multiple
language syntax highlighting, OLE drag and drop, bookmarks, and stan-
dard editing operations such as undo/redo, find/replace, copy/paste/cut,
and go to.

Also, the IDE includes access to the DSP C/C++ compiler, C run-time
library, assembler, linker, loader, simulator, and splitter. You specify
options for these tools through dialog boxes. These dialog boxes are easy
to use and make configuring, changing, and managing your projects sim-
ple. The options you select control how the tools process inputs and
generate outputs, and the options have a one-to-one correspondence to
the tools’ command-line switches. You can define these options once or
modify them to meet changing development needs. You also can access
the Tools from the operating system command line if you choose.

Greatly Reduced Debugging Time. The debugger has an easy-to-use,
common interface for all processor simulators and emulators available
through Analog Devices and third parties or custom developments. The
debugger has many features that greatly reduce debugging time. You can
view C source interspersed with the resulting assembly code. You can pro-
file execution of a range of instructions in a program; set simulated
watchpoints on hardware and software registers, program and data mem-
ory; and trace instruction execution and memory accesses. These features
enable you to correct coding errors, identify bottlenecks, and examine
DSP performance. You can use the custom register option to select any
combination of registers to view in a single window. The debugger can
also generate inputs, outputs, and interrupts so you can simulate real
world application conditions.

ADSP-219x/2191 DSP Hardware Reference 1-33

Introduction

Software Development Tools. Software development tools, which sup-
port the ADSP-219x DSP family, let you develop applications that take
full advantage of the architecture, including shared memory and memory
overlays. Software development tools include C/C++ compiler, C
run-time library, DSP and math libraries, assembler, linker, loader, simu-
lator, and splitter.

C/C++ Compiler & Assembler. The C/C++ compiler generates efficient
code that is optimized for both code density and execution time. The
C/C++ compiler allows you to include assembly language statements
inline. Because of this, you can program in C and still use assembly for
time-critical loops. You can also use pretested math, DSP, and C run-time
library routines to help shorten your time to market. The ADSP-219x
DSP family assembly language is based on an algebraic syntax that is easy
to learn, program, and debug.

Linker & Loader. The linker provides flexible system definition through
Linker Description Files (.LDF). In a single LDF, you can define different
types of executables for a single or multiprocessor system. The linker
resolves symbols over multiple executables, maximizes memory use, and
easily shares common code among multiple processors. The loader sup-
ports creation of PROM, host, SPI, and UART boot images. The loader
allows multiprocessor system configuration with smaller code and faster
boot time.

3rd-Party Extensible. The VisualDSP++ environment enables third-party
companies to add value using Analog Devices’ published set of application
programming interfaces (API). Third-party products—real-time operating
systems, emulators, high-level language compilers, multiprocessor hard-
ware —can interface seamlessly with VisualDSP++ thereby simplifying the
tools integration task. VisualDSP++ follows the COM API format. Two
API tools, Target Wizard and API Tester, are also available for use with
the API set. These tools help speed the time-to-market for vendor prod-
ucts. Target Wizard builds the programming shell based on API features
the vendor requires. The API tester exercises the individual features inde-

Development Tools

1-34 ADSP-219x/2191 DSP Hardware Reference

pendently of VisualDSP++. Third parties can use a subset of these APIs
that meet their application needs. The interfaces are fully supported and
backward compatible.

Further details and ordering information are available in the VisualDSP++
development tools data sheet. This data sheet can be requested from any
Analog Devices sales office or distributor.

ADSP-219x/2191 DSP Hardware Reference 2-1

2 COMPUTATIONAL UNITS

This chapter provides the following topics:

• “Overview” on page 2-1

• “Data Formats” on page 2-5

• “Setting Computational Modes” on page 2-11

• “Using Computational Status” on page 2-18

• “Arithmetic Logic Unit (ALU)” on page 2-18

• “Multiply/Accumulates (Multiplier)” on page 2-30

• “Barrel Shifter (Shifter)” on page 2-39

• “Data Register File” on page 2-61

• “Secondary (Alternate) Data Registers” on page 2-63

• “Multifunction Computations” on page 2-64

Overview
The DSP’s computational units perform numeric processing for DSP
algorithms. The three computational units are the arithmetic/logic unit
(ALU), multiplier/accumulator (multiplier), and shifter. These units get
data from registers in the data register file. Computational instructions for
these units provide fixed-point operations, and each computational
instruction can execute in a single cycle.

Overview

2-2 ADSP-219x/2191 DSP Hardware Reference

The computational units handle different types of operations. The ALU
performs arithmetic and logic operations. The multiplier does multiplica-
tion and executes multiply/add and multiply/subtract operations. The
shifter executes logical shifts and arithmetic shifts. Also, the shifter can
derive exponents.

Data flow paths through the computational units are arranged in parallel,
as shown in Figure 2-1 on page 2-3. The output of any computational
unit may serve as the input of any computational unit on the next instruc-
tion cycle. Data moving in and out of the computational units goes
through a data register file, consisting of sixteen primary registers and six-
teen secondary registers. Two ports on the register file connect to the PM
and DM data buses, allowing data transfer between the computational
units and memory.

The DSP’s assembly language provides access to the data register file. The
syntax lets programs move data to and from these registers and specify a
computation’s data format at the same time. For information on the data
registers, see “Data Register File” on page 2-61.

Figure 2-1 on page 2-3 provides a graphical guide to the other topics in
this chapter. First, a description of the MSTAT register shows how to set
rounding, data format, and other modes for the computational units.
Next, an examination of each computational unit provides details on
operation and a summary of computational instructions. Looking at
inputs to the computational units, details on register files, and data buses
identify how to flow data for computations. Finally, details on the DSP’s
advanced parallelism reveal how to take advantage of conditional and mul-
tifunction instructions.

The diagrams in Figure 2-1 on page 2-3 describe the relationship between
the ADSP-219x data register file and computational units: multiplier,
ALU, and shifter.

ADSP-219x/2191 DSP Hardware Reference 2-3

Computational Units

The ALU stores the computation results either AR or in AF, where only AR
is part of the register file. The AF register is intended for intermediate ALU
data store and has a dedicated feedback path to the ALU. It cannot be
accessed by move instructions.

There are two 40-bit units, MR and SR, built by the 16-bit registers SR2,
SR1, SR0 and MR2, MR1, MR0. The individual register may input to any com-
putation unit, but grouped together they function as accumulators for the
MAC unit (multiply and accumulate). SR also functions as a shifter result
register.

Figure 2-1. Register Access—Unconditional, Single-Function Instructions

AR

SBSE SI

AX0 AX1 AY0 AY1

MX0 MY0 MX1 MY1

DM DATA BUS

PM DATA BUS

IO DATA BUS

SR2 SR1 SR0

MR2 MR1 MR0

REGISTER FILE

MSTAT

ASTAT

ALU

AFMAC

SHIFTER

EXPONENT STATUS

I

Y X
R

X

Y

E

R

R

Overview

2-4 ADSP-219x/2191 DSP Hardware Reference

Figure 2-1 on page 2-3 shows how unconditional, single-function multi-
plier, ALU, and shifter instructions have unrestricted access to the data
registers in the register file. Due to opcode limitations, conditional and
multi-function instructions provide ADSP-218x legacy register access
only. Details are located in the corresponding sections.

The MR2 and SR2 registers differ from the other results registers. As a data
register file register, MR2 and SR2 are 16-bit registers that may be X- or
Y-inputs to the multiplier, ALU, or shifter. As result registers (part of MR
or SR), only the lower 8-bits of MR2 or SR2 hold data (the upper 8-bits are
sign extended). This difference (16-bits as input, 8-bits as output) influ-
ences how code can use the MR2 and SR2 registers. This sign extension
appears in Figure 2-12 on page 2-32.

Using register-to-register move instructions, the data registers can load (or
be loaded from) the Shifter Block (SB) and Shifter Exponent (SE) registers,
but the SB and SE registers may not provide X- or Y-input to the computa-
tional units. The SB and SE registers serve as additional inputs to the
shifter.

The MR2 and SR2 registers differ from the other results registers. As a data
register file register, MR2 and SR2 are 16-bit registers that may be X- or
Y-inputs to the multiplier, ALU, or shifter. As result registers (part of MR
or SR), only the lower 8-bits of MR2 or SR2 hold data (the upper 8-bits are
sign extended). This difference (16-bits as input, 8-bits as output) influ-
ences how code can use the MR2 and SR2 registers. This sign extension
appears in Figure 2-12 on page 2-32.

Using register-to-register move instructions, the data registers can load (or
be loaded from) the Shifter Block (SB) and Shifter Exponent (SE) registers,
but the SB and SE registers may not provide X- or Y-input to the computa-
tional units. The SB and SE registers serve as additional inputs to the
shifter.

ADSP-219x/2191 DSP Hardware Reference 2-5

Computational Units

The shaded boxes behind the data register file and the SB, SE, and AF regis-
ters indicate that secondary registers are available for these registers. There
are two sets of data registers. Only one bank is accessible at a time. The
additional bank of registers can be activated (such as during an interrupt
service routine) for extremely fast context switching. A new task, like an
interrupt service routine, can be executed without transferring current
states to storage. For more information, see “Secondary (Alternate) Data
Registers” on page 2-63.

The Mode Status (MSTAT) register input sets arithmetic modes for the
computational units, and the Arithmetic Status (ASTAT) register records
status/conditions for the computation operations’ results.

Data Formats
ADSP-219x DSPs are 16-bit, fixed-point machines. Most operations
assume a twos complement number representation, while others assume
unsigned numbers or simple binary strings. Special features support multi-
word arithmetic and block floating-point. For detailed information on
each number format, see “Numeric Formats” on page C-1.

In ADSP-219x family arithmetic, signed numbers are always in twos com-
plement format. These DSPs do not use signed magnitude, ones
complement, BCD, or excess-n formats.

Data Formats

2-6 ADSP-219x/2191 DSP Hardware Reference

This section provides the following topics:

• “Binary String” on page 2-6

• “Unsigned” on page 2-6

• “Signed Numbers: Twos Complement” on page 2-7

• “Signed Fractional Representation: 1.15” on page 2-7

• “ALU Data Types” on page 2-7

• “Multiplier Data Types” on page 2-8

• “Shifter Data Types” on page 2-9

• “Arithmetic Formats Summary” on page 2-9

Binary String
This format is the least complex binary notation; sixteen bits are treated as
a bit pattern. Examples of computations using this format are the logical
operations: NOT, AND, OR, and XOR. These ALU operations treat their oper-
ands as binary strings with no provision for sign bit or binary point
placement.

Unsigned
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The DSP
treats the least significant words of multiple precision numbers as
unsigned numbers.

ADSP-219x/2191 DSP Hardware Reference 2-7

Computational Units

Signed Numbers: Twos Complement
In ADSP-219x DSP arithmetic, the term “signed” refers to twos comple-
ment. Most ADSP-219x family operations presume or support twos
complement arithmetic.

Signed Fractional Representation: 1.15
ADSP-219x DSP arithmetic is optimized for numerical values in a frac-
tional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, there is one sign bit (the MSB) and fifteen fractional bits repre-
senting values from –1 up to one LSB less than +1.

Figure 2-2 on page 2-7 shows the bit weighting for 1.15 numbers. These
are examples of 1.15 numbers and their decimal equivalents.

ALU Data Types
All operations on the ALU treat operands and results as 16-bit binary
strings, except the signed division primitive (DIVS). ALU result status bits
treat the results as signed, indicating status with the overflow (AV) condi-
tion code and the negative (AN) flag.

Figure 2-2. Bit Weighting for 1.15 Numbers

–20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

1.15 NUMBER (HEXADECIMAL)
0X0001
0X7FFF
0XFFFF
0X8000

DECIMAL EQUIVALENT
0.000031
0.999969

–0.000031
–1.000000

Data Formats

2-8 ADSP-219x/2191 DSP Hardware Reference

The logic of the overflow bit (AV) is based on twos complement arith-
metic. It is set if the MSB changes in a manner not predicted by the signs
of the operands and the nature of the operation. For example, adding two
positive numbers generates a positive result; a change in the sign bit signi-
fies an overflow and sets AV. Adding a negative and a positive may result in
either a negative or positive result, but cannot overflow.

The logic of the carry bit (AC) is based on unsigned-magnitude arithmetic.
It is set if a carry is generated from bit 16 (the MSB). The (AC) bit is most
useful for the lower word portions of a multiword operation.

ALU results generate status information. For more information on using
ALU status, see “ALU Status Flags” on page 2-19.

Except for division, the ALU operations do not need to distinguish
between signed or unsigned, integer or fractional formats. Formats
are a matter of result interpretation only.

Multiplier Data Types
The multiplier produces results that are binary strings. The inputs are
“interpreted” according to the information given in the instruction itself
(signed times signed, unsigned times unsigned, a mixture, or a rounding
operation). The 32-bit result from the multiplier is assumed to be signed,
in that it is sign-extended across the full 40-bit width of the MR or SR regis-
ter set.

The ADSP-219x DSPs support two modes of format adjustment: frac-
tional mode for fractional operands (1.15 format with 1 signed bit and 15
fractional bits) and integer mode for integer operands (16.0 format).

When the processor multiplies two 1.15 operands, the result is a 2.30
(two sign bits and 30 fractional bits) number. In fractional mode, the mul-
tiplier automatically shifts the multiplier product (P) left one bit before

ADSP-219x/2191 DSP Hardware Reference 2-9

Computational Units

transferring the result to the multiplier result register (MR). This shift
causes the multiplier result to be in 1.31 format, which can be rounded to
1.15 format. This result format appears in Figure 2-3 on page 2-14.

In integer mode, the left shift does not occur. For example, if the operands
are in the 16.0 format, the 32-bit multiplier result would be in 32.0 for-
mat. A left shift is not needed; it would change the numerical
representation. This result format appears in Figure 2-4 on page 2-15.

Multiplier results generate status information. For more information on
using multiplier status, see “Multiplier Status Flags” on page 2-34.

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (twos com-
plement) or unsigned values: logical shifts assume unsigned-magnitude or
binary string values, and arithmetic shifts assume twos complement
values.

The exponent logic assumes twos complement numbers. The exponent
logic supports block floating-point, which is also based on twos comple-
ment fractions.

Shifter results generate status information. For more information on using
shifter status, see “Shifter Status Flags” on page 2-54.

Arithmetic Formats Summary
Table 2-1 on page 2-10, Table 2-2 on page 2-10, and Table 2-3 on
page 2-11 summarize some of the arithmetic characteristics of computa-
tional operations.

Data Formats

2-10 ADSP-219x/2191 DSP Hardware Reference

Table 2-1. ALU Arithmetic Formats

Operation Operands Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Operations Binary string same as operands

Division Explicitly signed/unsigned same as operands

ALU Overflow Signed same as operands

ALU Carry Bit 16-bit unsigned same as operands

ALU Saturation Signed same as operands

Table 2-2. Multiplier Arithmetic Formats

Operation (by Mode) Operands Formats Result Formats

Multiplier, Fractional Mode

Multiplication (MR/SR) 1.15 Explicitly signed/unsigned 2.30 shifted to 1.31

Mult / Add 1.15 Explicitly signed/unsigned 2.30 shifted to 1.31

Mult / Subtract 1.15 Explicitly signed/unsigned 2.30 shifted to 1.31

Multiplier Saturation Signed same as operands

Multiplier, Integer Mode

Multiplication (MR/SR) 16.0 Explicitly signed/unsigned 32.0 no shift

Mult / Add 16.0 Explicitly signed/unsigned 32.0 no shift

Mult / Subtract 16.0 Explicitly signed/unsigned 32.0 no shift

Multiplier Saturation Signed same as operands

ADSP-219x/2191 DSP Hardware Reference 2-11

Computational Units

Setting Computational Modes
The MSTAT and ICNTL registers control the operating mode of the computa-
tional units. Figure A-2 on page A-10 lists all the bits in MSTAT, and
Figure A-5 on page A-16 lists all the bits in ICNTL. The following bits in
MSTAT and ICNTL control computational modes:

• ALU overflow latch mode. MSTAT Bit 2 (AV_LATCH) determines how
the ALU overflow flag, AV, gets cleared (0=AV is “not-sticky”, 1=AV
is “sticky”).

• ALU saturation mode. MSTAT Bit 3 (AR_SAT) determines (for signed
values) whether ALU AR results that overflowed or underflowed are
saturated or not (0=unsaturated, 1=saturated).

• Multiplier result mode. MSTAT Bit 4 (M_MODE) selects fractional 1.15
format (=0) or integer 16.0 format (=1) for all multiplier opera-
tions. The multiplier adjusts the format of the result according to
the selected mode.

• Multiplier biased rounding mode. ICNTL Bit 7 (BIASRND) selects
unbiased (=0) or biased (=1) rounding for multiplier results.

Table 2-3. Shifter Arithmetic Formats

Operation Operands Formats Result Formats

Logical Shift Unsigned / binary string same as operands

Arithmetic Shift Signed same as operands

Exponent Detection Signed same as operands

Setting Computational Modes

2-12 ADSP-219x/2191 DSP Hardware Reference

This section provides the following topics:

• “Latching ALU Result Overflow Status” on page 2-12

• “Saturating ALU Results on Overflow” on page 2-12

• “Using Multiplier Integer and Fractional Formats” on page 2-13

• “Rounding Multiplier Results” on page 2-15

Latching ALU Result Overflow Status
The DSP supports an ALU overflow latch mode with the AV_LATCH bit in
the MSTAT register. This bit determines how the ALU overflow flag, AV,
gets cleared.

If AV_LATCH is disabled (=0), the AV bit is “not-sticky”. When an ALU
overflow sets the AV bit in the ASTAT register, the AV bit only remains set
until cleared by a subsequent ALU operation that does not generate an
overflow (or is explicitly cleared).

If AV_LATCH is enabled (=1), the AV bit is “sticky”. When an ALU overflow
sets the AV bit in the ASTAT register, the AV bit remains set until the appli-
cation explicitly clears it.

Saturating ALU Results on Overflow
The DSP supports an ALU saturation mode with the AR_SAT bit in the
MSTAT register. This bit determines (for signed values) whether ALU AR
results that overflowed or underflowed are saturated or not. This bit
enables (if set, =1) or disables (if cleared, =0) saturation for all subsequent
ALU operations. If AR_SAT is disabled, AR results remain unsaturated and is

ADSP-219x/2191 DSP Hardware Reference 2-13

Computational Units

returned unchanged. If AR_SAT is enabled, AR results are saturated accord-
ing to the state of the AV and AC status flags in ASTAT shown in Table 2-4
on page 2-13.

The AR_SAT bit in MSTAT only affects the AR register. Only the
results written to the AR register are saturated. If results are written
to the AF register, wraparound occurs, but the AV and AC flags
reflect the saturated result.

Using Multiplier Integer and Fractional Formats
For multiply/accumulate functions, the DSP provides two modes: frac-
tional mode for fractional numbers (1.15), and integer mode for integers
(16.0).

In the fractional mode, the 32-bit product output is format adjusted—
sign-extended and shifted one bit to the left—before being added to MR.
For example, bit 31 of the product lines up with bit 32 of MR (which is bit
0 of MR2) and bit 0 of the product lines up with bit 1 of MR (which is bit 1
of MR0). The LSB is zero-filled. The fractional multiplier result format
appears in Figure 2-3 on page 2-14.

Table 2-4. ALU Result Saturation With AR_SAT Enabled

AV AC AR register

0 0 ALU output not saturated

0 1 ALU output not saturated

1 0 ALU output saturated, maximum positive 0x7FFF

1 1 ALU output saturated, maximum negative 0x8000

Setting Computational Modes

2-14 ADSP-219x/2191 DSP Hardware Reference

After adjustment the result of a 1.15 by 1.15 fractional multiplication is
available in 1.31 format (MR1:MR0 or SR1:SR0). If 32-bit precision is not
required MR1 or SR1 hold the result in 1.15 data representation. MR2
and SR2 do not contain multiplication results. They are needed for accu-
mulation only.

In integer mode, the 32-bit Product register is not shifted before being
added to MR. Figure 2-4 on page 2-15 shows the integer-mode result place-
ment. After a 16.0 by 16.0 multiplication MR1:MR0 (SR1:SR0) hold the
32.0 result.

The mode is selected by the M_MODE bit in the Mode Status (MSTAT) regis-
ter. If M_MODE is set (=1), integer mode is selected. If M_MODE is cleared (=0),
fractional mode is selected. In either mode, the multiplier output Product
is fed into a 40-bit adder/subtracter, which adds or subtracts the new
product with the current contents of the MR register to form the final
40-bit result.

Figure 2-3. Fractional Multiplier Results Format

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 03
1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

P SIGN, 7
BITS MULTIPLIER P OUTPUT

MR2 MR1 MR0

SHIFTED
OUT

ZERO
FILLED

ADSP-219x/2191 DSP Hardware Reference 2-15

Computational Units

Rounding Multiplier Results
The DSP supports multiplier results rounding (RND option) on most mul-
tiplier operations. With the BIASRND bit in the ICNTL register, programs
select whether the Rnd option provides biased or unbiased rounding.

Unbiased Rounding

Unbiased rounding uses the multiplier’s capability for rounding the 40-bit
result at the boundary between bit 15 and bit 16. Rounding can be speci-
fied as part of the instruction code. The rounded output is directed to
either MR or SR. When rounding is selected, MR1/SR1 contains the rounded
16-bit result; the rounding effect in MR1/SR1 affects MR2/SR2 as well. The
MR2/MR1 and SR2/SR1 registers represent the rounded 24-bit result.

Figure 2-4. Integer Multiplier Results Format

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 03
1

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 01
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

P SIGN, 8
BITS MULTIPLIER P OUTPUT

MR2 MR1 MR0

Setting Computational Modes

2-16 ADSP-219x/2191 DSP Hardware Reference

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding is to add a 1 into bit position 15 of the adder
chain. This method causes a net positive bias, because the midway value
(when MR0=0x8000) is always rounded upward. The accumulator elimi-
nates this bias by forcing bit 16 in the result output to zero when it detects
this midway point. This has the effect of rounding odd MR1 values upward
and even MR1 values downward, yielding a zero large-sample bias assuming
uniformly distributed values.

Using x to represent any bit pattern (not all zeros), here are two examples
of rounding. The example in Figure 2-5 on page 2-16 shows a typical
rounding operation for MR; these also apply for SR.

The compensation to avoid net bias becomes visible when the lower 15
bits are all zero and bit 15 is one (the midpoint value) as shown in
Figure 2-6 on page 2-16.

Figure 2-5. Typical Unbiased Multiplier Rounding Operation

Figure 2-6. Avoiding Net Bias in Unbiased Multiplier Rounding
Operation

...MR2..|.......MR1......|.......MR0......
xxxxxxxx|xxxxxxxx00100101|1xxxxxxxxxxxxxxx
........|................|1...............
xxxxxxxx|xxxxxxxx00100110|0xxxxxxxxxxxxxxx

Unrounded value:
Add 1 and carry:
Rounded value:

...MR2..|.......MR1......|.......MR0......
xxxxxxxx|xxxxxxxx01100110|1000000000000000
........|................|1...............
xxxxxxxx|xxxxxxxx01100111|0000000000000000

Unrounded value:
Add 1 and carry:
MR bit 16=1:

xxxxxxxx|xxxxxxxx01100110|0000000000000000Rounded value:

ADSP-219x/2191 DSP Hardware Reference 2-17

Computational Units

In Figure 2-6 on page 2-16, MR bit 16 is forced to zero. This algorithm is
employed on every rounding operation, but is only evident when the bit
patterns shown in the lower 16 bits of the last example are present.

Biased Rounding

The BIASRND bit in the ICNTL register enables biased rounding. When the
BIASRND bit is cleared (=0), the RND option in multiplier instructions uses
the normal unbiased rounding operation (as discussed in “Unbiased
Rounding” on page 2-15). When the BIASRND bit is set to 1, the DSP uses
biased rounding instead of unbiased rounding. When operating in biased
rounding mode, all rounding operations with MR0 set to 0x8000 round up,
rather than only rounding odd MR1 values up. For an example, see
Figure 2-7 on page 2-17.

This mode only has an effect when the MR0 register contains 0x8000; all
other rounding operations work normally. This mode allows more effi-
cient implementation of bit-specified algorithms that use biased rounding,
for example the GSM speech compression routines. Unbiased rounding is
preferred for most algorithms. Note that the content of MR0 and SR0 is
invalid after rounding.

Figure 2-7. Bias Rounding in Multiplier Operation

0x00 0000 8000 0x00 0001 0000 0x00 0000 0000
0x00 0001 8000 0x00 0002 0000 0x00 0002 0000
0x00 0000 8001 0x00 0001 0001 0x00 0001 0001
0x00 0001 8001 0x00 0002 0001 0x00 0002 0001
0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF
0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

MR before RND

Biased RND result

Unbiased RND result

Using Computational Status

2-18 ADSP-219x/2191 DSP Hardware Reference

Using Computational Status
The multiplier, ALU, and shifter update overflow and other status flags in
the DSP’s Arithmetic Status (ASTAT) register. To use status conditions
from computations in program sequencing, use conditional instructions to
test the exception flags in the ASTAT register after the instruction executes.
This method permits monitoring each instruction’s outcome.

More information on ASTAT appears in the sections that describe the com-
putational units. For summaries relating instructions and status bits, see
“ALU Status Flags” on page 2-19, “Multiplier Status Flags” on page 2-34,
and “Shifter Status Flags” on page 2-54.

Arithmetic Logic Unit (ALU)
The ALU performs arithmetic and logical operations on fixed-point data.
ALU fixed-point instructions operate on 16-bit fixed-point operands and
output 16-bit fixed-point results. ALU instructions include:

• Fixed-point addition and subtraction

• Fixed-point add with carry, subtract with borrow, increment,
decrement

• Logical AND, OR, XOR, or NOT

• Functions: ABS, PASS, division primitives

ADSP-219x/2191 DSP Hardware Reference 2-19

Computational Units

This section provides the following topics:

• “ALU Operation” on page 2-19

• “ALU Status Flags” on page 2-19

• “ALU Instruction Summary” on page 2-20

• “ALU Data Flow Details” on page 2-23

• “ALU Division Support Features” on page 2-25

ALU Operation
ALU instructions take one or two inputs: X input and Y input. For uncon-
ditional, single-function instructions, these inputs (also known as
operands) can be any data registers in the register file. Most ALU opera-
tions return one result, but in PASS operations the ALU operation returns
no result (only status flags are updated). ALU results are written to the
ALU Result (AR) register or ALU Feedback (AF) register.

The DSP transfers input operands from the register file during the first
half of the cycle and transfers results to the result register during the sec-
ond half of the cycle. With this arrangement, the ALU can read and write
the AR register file location in a single cycle.

ALU Status Flags
ALU operations update status flags in the DSP’s Arithmetic Status (ASTAT)
register. Table A-1 on page A-9 lists all the bits in this register. Table 2-5
on page 2-20 shows the bits in ASTAT that flag ALU status (a 1 indicates
the condition is true) for the most recent ALU operation.

Arithmetic Logic Unit (ALU)

2-20 ADSP-219x/2191 DSP Hardware Reference

Flag updates occur at the end of the cycle in which the status is generated
and are available in the next cycle.

On previous 16-bit, fixed-point DSPs (ADSP-2100 family), the
POS (AS bit =1) and NEG (AS bit =0) conditions permit checking the
ALU result’s sign. On ADSP-219x-based DSPs, the CCODE register
and SWCOND condition support this feature.

Unlike previous ADSP-218x DSPs, ASTAT writes on
ADSP-219x-based DSPs have a one cycle effect latency. Code
being ported from ADSP-218x to ADSP-219x-based DSPs that
check ALU status during the instruction following an ASTAT clear
(ASTAT=0) instruction may not function as intended. Re-arranging
the order of instructions to accommodate the one cycle effect
latency on the ADSP-219x-based ASTAT register corrects this issue.

ALU Instruction Summary
Table 2-6 on page 2-21 lists the ALU instructions and describes how they
relate to ASTAT flags. As indicated by the table, the ALU handles flags the
same whether the result goes to the AR or AF registers. For more informa-

Table 2-5. ALU Status Bits in the ASTAT Register

Flag Name Definition

AZ Zero Logical NOR of all the bits in the ALU result register. True if ALU out-
put equals zero.

AN Negative Sign bit of the ALU result. True if the ALU output is negative.

AV Overflow Exclusive-OR of the carry outputs of the two most significant adder
stages. True if the ALU overflows.

AC Carry Carry output from the most significant adder stage.

AS Sign Sign bit of the ALU X input port. Affected only by the ABS instruction.

AQ Quotient Quotient bit generated only by the DIVS and DIVQ instructions.

ADSP-219x/2191 DSP Hardware Reference 2-21

Computational Units

tion on assembly language syntax, see the ADSP-219x DSP Instruction Set
Reference. In Table 2-6 on page 2-21, note the meaning of the following
symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location

• XOP, YOP indicate any X- and Y-input registers, indicating a reg-
ister usage restriction for conditional and/or multifunction
instructions. For more information, see “Multifunction Computa-
tions” on page 2-64.

• * indicates the flag may be set or cleared, depending on results of
instruction

• ** indicates the flag is cleared, regardless of the results of
instruction

• – indicates no effect

Table 2-6. ALU Instruction Summary

Instruction ASTAT Status Flags

AZ AV AN AC AS AQ

|AR, AF| = Dreg1 + |Dreg2, Dreg2 + C, C |; * * * * – –

[IF Cond] |AR, AF| = Xop + |Yop, Yop + C, C, Const, Const + C|; * * * * – –

|AR, AF| = Dreg1 - |Dreg2, Dreg2 + C 1, +C -1|; * * * * – –

[IF Cond]|AR,AF| = Xop - |Yop,Yop+C-1,+C-1,Const,Const+C -1|; * * * * – –

|AR, AF| = Dreg2 - |Dreg1, Dreg1 + C -1|; * * * * – –

[IF Cond] |AR, AF| = Yop - |Xop, Xop+C-1|; * * * * – –

[IF Cond] |AR,AF| = - |Xop+C -1, Xop+Const, Xop+Const+C-1|; * * * * – –

|AR, AF| = Dreg1 |AND, OR, XOR| Dreg2; * ** * ** – –

[IF Cond] |AR, AF| = Xop |AND, OR, XOR| |Yop, Const|; * ** * ** – –

[IF Cond]|AR,AF| = |TSTBIT,SETBIT,CLRBIT,TGLBIT| n of Xop; * ** * ** – –

|AR, AF| = PASS |Dreg1, Dreg2, Const|; * ** * ** – –

|AR, AF| = PASS 0; ** ** * ** – –

Arithmetic Logic Unit (ALU)

2-22 ADSP-219x/2191 DSP Hardware Reference

[IF Cond] |AR, AF| = PASS |Xop, Yop, Const|; * ** * ** – –

|AR, AF| = NOT |Dreg|; * ** * ** – –

[IF Cond] |AR, AF| = NOT |Xop, Yop|; * ** * ** – –

|AR, AF| = ABS Dreg; * ** ** ** * –

[IF Cond] |AR, AF| = ABS Xop; * ** ** ** * –

|AR, AF| = Dreg +1; * * * * – –

[IF Cond] |AR, AF| = Yop +1; * * * * – –

|AR, AF| = Dreg -1; * * * * – –

[IF Cond] |AR, AF| = Yop -1; * * * * – –

DIVS Yop, Xop; – – – – – *

DIVQ Xop; – – – – – *

Table 2-6. ALU Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AV AN AC AS AQ

ADSP-219x/2191 DSP Hardware Reference 2-23

Computational Units

ALU Data Flow Details
Figure 2-8 shows a more detailed diagram of the ALU, which appears in
Figure 2-1 on page 2-3.

Figure 2-8. ALU Block Diagram

AQ

AC

AV

AZ

AN

AS

AQ

AV_LATCH

AR_SAT

ALU

AF

X Y

R

AX0 AY0

AY1SR1 SR0

MR2 MR1 MR0

REGISTER FILE

AR AX1

SIMX0 MY0

MX1 MY1 SR2

CONSTANT

AR

16

16

16

16

AC

Arithmetic Logic Unit (ALU)

2-24 ADSP-219x/2191 DSP Hardware Reference

The ALU is 16 bits wide with two 16-bit input ports, X and Y, and one
output port, R. The ALU accepts a carry-in signal (CI) which is the carry
bit (AC) from the processor arithmetic status register (ASTAT). The ALU
generates six status signals:

• Zero (AZ)

• Negative (AN)

• Carry (AC)

• Overflow (AV)

• X-input sign (AS)

• Quotient (AQ)

All arithmetic status signals are latched into the Arithmetic Status (ASTAT)
register at the end of the cycle. For information on how each instruction
affects the ALU flags, see Table 2-6 on page 2-21.

Unless a NONE= instruction is executed, the output of the ALU goes into
the ALU Feedback (AF) register or the ALU Result (AR) register, which is
part of the register file. The AF register is an ALU internal register.

In unconditional and single-function instructions, both the X and the Y
port may read any register of the register file including AR. Alternatively,
the Y port may access the ALU Feedback (AF) register.

For conditional and multi-function instructions only, a subset of registers
can be used as input operands. For legacy support this register usage
restriction mirrors the ADSP-218x instruction set. Then the X port can
access the AR, SR1, SR0, MR2, MR1, MR0, AX0, and AX1 registers. The Y port
accesses AY0, AY1, and AF.

ADSP-219x/2191 DSP Hardware Reference 2-25

Computational Units

If the X port accesses AR, SR1, SR0, MR2, MR1, MR0, AX0, or AX1, the Y opera-
tor may be a constant coded in the instruction word.

For more information on register usage restrictions in conditional
and multifunction instructions, see “Multifunction Computations”
on page 2-64.

The ALU can read and write any of its associated registers in the same
cycle. Registers are read at the beginning of the cycle and written at the
end of the cycle. A register read gets the value loaded at the end of a previ-
ous cycle. A new value written to a register cannot be read out until a
subsequent cycle. This read/write pattern lets an input register provide an
operand to the ALU at the beginning of the cycle and be updated with the
next operand from memory at the end of the same cycle. Also, this
read/write pattern lets a result register be stored in memory and updated
with a new result in the same cycle.

Multiprecision operations are supported in the ALU with the carry-in sig-
nal and ALU carry (AC) status bit. The carry-in signal is the AC status bit
that was generated by a previous ALU operation. The “add with carry”
(+C) operation is intended for adding the upper portions of multipreci-
sion numbers. The “subtract with borrow” (C–1 is effectively a “borrow”)
operation is intended for subtracting the upper portions of multiprecision
numbers.

ALU Division Support Features
The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), add-subtract division algorithm. The division can
be either signed or unsigned, but the dividend and divisor must both be of
the same type. More details on using division and programming examples
are available in the ADSP-219x DSP Instruction Set Reference.

Arithmetic Logic Unit (ALU)

2-26 ADSP-219x/2191 DSP Hardware Reference

A single-precision divide, with a 32-bit dividend (numerator) and a 16-bit
divisor (denominator), yielding a 16-bit quotient, executes in 16 cycles.
Higher- and lower-precision quotients can also be calculated. The divisor
can be stored in AX0, AX1, or any of the R registers. The upper half of a
signed dividend can start in either AY1 or AF. The upper half of an
unsigned dividend must be in AF. The lower half of any dividend must be
in AY0. At the end of the divide operation, the quotient is in AY0.

The first of the two primitive instructions “divide-sign” (DIVS) is executed
at the beginning of the division when dividing signed numbers. This oper-
ation computes the sign bit of the quotient by performing an exclusive OR
of the sign bits of the divisor and the dividend. The AY0 register is shifted
one place so that the computed sign bit is moved into the LSB position.
The computed sign bit is also loaded into the AQ bit of the arithmetic sta-
tus register. The MSB of AY0 shifts into the LSB position of AF, and the
upper 15 bits of AF are loaded with the lower 15 R bits from the ALU,
which simply passes the Y input value straight through to the R output.
The net effect is to left shift the AF-AY0 register pair and move the quotient
sign bit into the LSB position. The operation of Divs is illustrated in
Figure 2-9 on page 2-27.

When dividing unsigned numbers, the DIVS operation is not used. Instead,
the AQ bit in the arithmetic status register (ASTAT) should be initialized to
zero by manually clearing it. The AQ bit indicates to the following opera-
tions that the quotient should be assumed positive.

The second division primitive is the “divide-quotient” (DIVQ) instruction,
which generates one bit of quotient at a time and is executed repeatedly to
compute the remaining quotient bits.

For unsigned single-precision divides, the Divq instruction is executed 16
times to produce 16 quotient bits. For signed single-precision divides, the
DIVQ instruction is executed 15 times after the sign bit is computed by the
DIVS operation. DIVQ instruction shifts the AY0 register left by one bit so
that the new quotient bit can be moved into the LSB position.

ADSP-219x/2191 DSP Hardware Reference 2-27

Computational Units

The status of the AQ bit generated from the previous operation determines
the ALU operation to calculate the partial remainder. If AQ = 1, the ALU
adds the divisor to the partial remainder in AF. If AQ = 0, the ALU sub-
tracts the divisor from the partial remainder in AF.

The ALU output R is offset loaded into AF just as with the Divs operation.
The AQ bit is computed as the exclusive-OR of the divisor MSB and the
ALU output MSB, and the quotient bit is this value inverted. The quo-
tient bit is loaded into the LSB of the AY0 register which is also shifted left
by one bit. The DIVQ operation is illustrated in Figure 2-10 on page 2-28.

Figure 2-9. DIVS Operation

MUX

L

S
B

AX1 AY1 A FAX0 AY0

LOWER
DIVIDEND

R-BUS

LEFT SHIFT

15

MUX

UPPER

DIVIDEND
MSB

DIVISOR MSB

AQ
X Y

ALU

R = PASS Y

15 LSBS

16

Arithmetic Logic Unit (ALU)

2-28 ADSP-219x/2191 DSP Hardware Reference

The format of the quotient for any numeric representation can be deter-
mined by the format of the dividend and divisor as shown in Figure 2-11
on page 2-29. Let NL represent the number of bits to the left of the binary
point, let NR represent the number of bits to the right of the binary point
of the dividend, let DL represent the number of bits to the left of the
binary point, and let DR represent the number of bits to the right of the

Figure 2-10. DIVQ Operation

MUX

AX1AX0

R-BUS

DIVISOR MSB

AQX Y

ALU

1 MSB

L

S

B
AF AY0

LOWER

DIVIDEND

LEFT SHIFT

15

PARTIAL

REMAINDER

16

R=Y+X IF AQ=1

R=Y-X IF AQ=0

15 LSBS

ADSP-219x/2191 DSP Hardware Reference 2-29

Computational Units

binary point of the divisor. Then, the quotient has NL–DL+1 bits to the
left of the binary point and has NR–DR–1 bits to the right of the binary
point.

Some format manipulation may be necessary to guarantee the validity of
the quotient. For example, if both operands are signed and fully fractional
(dividend in 1.31 format and divisor in 1.15 format) the result is fully
fractional (in 1.15 format), and the dividend must be smaller than the
divisor for a valid result.

To divide two integers (dividend in 32.0 format and divisor in 16.0 for-
mat) and produce an integer quotient (in 16.0 format), the program must
shift the dividend one bit to the left (into 31.1 format) before dividing.
Additional discussion and code examples can be found in the ADSP-219x
DSP Instruction Set Reference.

The algorithm overflows if the result cannot be represented in the format
of the quotient as calculated in Figure 2-11 on page 2-29 or when the
divisor is zero or less than the dividend in magnitude. For additional
information see the section "Divide Primitives: DIVS and DIVQ" in the
ADSP-219x DSP Instruction Set Reference.

Figure 2-11. Quotient Format

D iv idend BBBBB

NL b its

. B BBBBBBBBBBBBBBBBBBBBBBBBBB

NR b its

D iv iso r BB

DL b its

. B BBBBBBBBBBBBB

DR b its

Q uo t ien t

(N L –D L+1) b its

BBBB . BBBBBBBBBBBB

(NR –DR –1) b its

Multiply/Accumulates (Multiplier)

2-30 ADSP-219x/2191 DSP Hardware Reference

Multiply/Accumulates (Multiplier)
The multiplier performs fixed-point multiplication and multiply/accumu-
late operations. Multiply/accumulates are available with either cumulative
addition or cumulative subtraction. Multiplier fixed-point instructions
operate on 16-bit fixed-point data and produce 40-bit results. Inputs are
treated as fractional or integer, unsigned or twos complement. Multiplier
instructions include:

• Multiplication

• Multiply/accumulate with addition, rounding optional

• Multiply/accumulate with subtraction, rounding optional

• Rounding, saturating, or clearing result register

ADSP-219x/2191 DSP Hardware Reference 2-31

Computational Units

This section provides the following topics:

• “Multiplier Operation” on page 2-31

• “Multiplier Status Flags” on page 2-34

• “Saturating Multiplier Results on Overflow” on page 2-34

• “Multiplier Instruction Summary” on page 2-36

• “Multiplier Data Flow Details” on page 2-37

Multiplier Operation
The multiplier takes two inputs: X input and Y input. For unconditional,
single-function instructions, these inputs (also known as operands) can be
any data registers in the register file. The multiplier accumulates results in
either the Multiplier Result (MR) register or Shifter Result (SR) register.
The results can also be rounded or saturated.

On previous 16-bit, fixed-point DSPs (ADSP-2100 family), only
the Multiplier Result (MR) register can accumulate results for the
multiplier. On ADSP-219x DSPs, both MR and SR registers can
accumulate multiplier results.

The multiplier transfers input operands during the first half of the cycle
and transfers results during the second half of the cycle. With this arrange-
ment, the multiplier can read and write the same result register in a single
cycle.

Depending on the multiplier mode (M_MODE) setting, operands are either
both in integer format or both in fractional format. The format of the
result matches the format of the inputs. Each operand may be either an
unsigned or a twos complement value. If inputs are fractional, the multi-
plier automatically shifts the result left one bit to remove the redundant
sign bit. Multiplier instruction options (required within the multiplier

Multiply/Accumulates (Multiplier)

2-32 ADSP-219x/2191 DSP Hardware Reference

instruction) specify inputs’ data format(s)—SS for signed, UU for unsigned,
SU for signed X-input and unsigned Y-input, and US for unsigned X-input
and signed Y-input.

In fractional mode the multiplier expects data in 1.15 format (SS). The
primary intention of the (UU), (SU), and (US) options is to enable multi-
precision multiplication such as 1.31 by 1.31. Therefore all multiplication
types perform an implicit left shift in fractional mode.

Placing Multiplier Results in the MR or SR Registers

As shown in Figure 2-12 on page 2-32, the MR register is divided into three
sections: MR0 (bits 0-15), MR1 (bits 16-31), and MR2 (bits 32-39). Similarly,
the SR register is divided into three sections: SR0 (bits 0-15), SR1 (bits
16-31), and SR2 (bits 32-39). Each of these registers is part of the register
file

When the multiplier writes to either of the result registers, the 40-bit
result goes into the lower 40 bits of the combined register (MR2, MR1, and
MR0 or SR2, SR1, and SR0), and the MSB is sign-extended into the upper
eight bits of the uppermost register (MR2 or SR2). When an instruction

Figure 2-12. Placing Multiplier Results

S R

39 0

S R 1 S R 0

7 15 15 000

S R 2

815

S IGN E XT E NS ION (WHE N PL ACING R E S UL T S)

MR

39 0

MR 1 MR 0

7 15 15 000

MR 2

815

S IGN E XT ENS ION (WHE N PL ACING R ES UL T S)

S IGN EXT E NS ION (EXPL ICT WR IT E)S IGN E XT ENS ION (E XPL ICT WR IT E)

ADSP-219x/2191 DSP Hardware Reference 2-33

Computational Units

explicitly loads the middle result register (MR1 or SR1), the DSP also
sign-extends the MSB of the data into the related uppermost register (MR2
or SR2). These sign extension operations appear in Figure 2-12 on
page 2-32.

To load the MR2 register with a value other than MR1’s sign extension, pro-
grams must load MR2 after MR1 has been loaded. Loading MR0 affects neither
MR1 nor MR2; no sign extension occurs in MR0 loads. This technique also
applies to SR2, SR1, and SR0.

Clearing, Rounding, or Saturating Multiplier Results

Besides using the results registers to accumulate, the multiplier also can
clear, round, or saturate result data in the results registers. These opera-
tions work as follows:

• The clear operation—[MR,SR]=0—clears the specified result regis-
ter to zero.

• The rounding operation—[MR,SR]=RND [MR,SR]—applies only to
fractional results—integer results are not affected. This explicit
rounding operation generates the same results as using the Rnd
option in other multiplier instructions. For more information, see
“Rounding Multiplier Results” on page 2-15.

• The saturate operation—SAT [MR,SR]—sets the specified result
register to the maximum positive or negative value if an overflow or
underflow has occurred. The saturation operation depends on the
overflow status bit (MV or SV) and the MSB of the corresponding
result register (MR2 or SR2). For more information, see “Saturating
Multiplier Results on Overflow” on page 2-34.

Multiply/Accumulates (Multiplier)

2-34 ADSP-219x/2191 DSP Hardware Reference

Multiplier Status Flags
Multiplier operations update two status flags in the computational unit’s
arithmetic status register (ASTAT). Table A-1 on page A-9 lists all the bits
in these registers. The following bits in ASTAT flag multiplier status (a 1
indicates the condition) for the most recent multiplier operation:

• Multiplier overflow. Bit 6 (MV) records an overflow/underflow con-
dition for MR result register. If cleared (=0), no overflow or
underflow has occurred. If set (=1), an overflow or underflow has
occurred.

• Shifter overflow. Bit 8 (SV) records an overflow/underflow condi-
tion for SR result register. If cleared (=0) no overflow or underflow
has occurred. If set (=1), an overflow or underflow has occurred.

Flag updates occur at the end of the cycle in which the status is generated
and are available on the next cycle. The MV overflow flags are not updated
if the individual 16-bit registers are loaded by move instructions. In such
cases the proper update of MV can be forced with the pseudo instruction
MR=MR;. The assembler translates that into MR=MR+MX0*0(SS); opcode.
Similarly, use SR=SR; to update SV.

Saturating Multiplier Results on Overflow
The adder/subtracter generates overflow status signal every time a multi-
plier operation is executed. When the accumulator result in MR or SR
interpreted as a twos complement number crosses the 32-bit (MR1/MR2)
boundary (overflows), the multiplier sets the MV or SV bit in the ASTAT
register.

The multiplier saturation instruction provides control over a multiplica-
tion result that has overflowed or underflowed. It saturates the value in the
specified register only for the cycle in which it executes. It does not enable
a mode that continuously saturates results until disabled like the ALU,
because accumulation of saturated values mathematically returns errone-

ADSP-219x/2191 DSP Hardware Reference 2-35

Computational Units

ous results. Used at the end of a series of multiply and accumulate
operations, the saturation instruction prevents the algorithm from post-
processing overflowed results, when reading MR1 (SR1) without caring
about MR2 (SR2).

For every operation it performs, the multiplier generates an overflow sta-
tus signal MV (SV when SR is the specified result register), which is recorded
in the ASTAT status register. The multiplier sets MV = 1 when the
upper-nine bits in MR are anything other than all 0s or all 1s, setting MV
when the accumulator result—interpreted as a signed, twos complement
number—crosses the 32-bit boundary and spills over from MR1 into MR2.
Otherwise, the multiplier clears MV = 0.

The explicit saturation instructions SAT MR; and SAT SR; evaluate the con-
tent of the 40-bit MR and SR registers rather than just testing the
overflow flags MV and SV. The instructions examine whether the nine
MSBs of MR/SR are all 0 or all 1. If no overflow occurred (all nine MSBs
equal 0 or 1), the instructions do not alter the MR1/SR1 and MR0/SR0 regis-
ters, but the eight MSBs of MR2/SR2 are signed-extended.

If the SAT MR/SR; instructions detect an overflow (any of the nine MSBs
of the 40-bit accumulator differs from the others) bit 7 of MR2/SR2 is used
to determine whether an overflow or an underflow occurred. If this bit is
zero, MR2/SR2 is set to 0x0000, MR1/SR1 to 0x7FFF and MR0/SR0 to 0xFFFF,
representing the maximum positive 32-bit value. If this bit reads one,
MR2/SR2 is set to 0xFFFF, MR1/SR1 to 0x8000 and MR0/SR0 to 0x0000, repre-
senting the maximum negative 32-bit value.

Avoid result overflows beyond the MSB of the result register. In
such a case, the true sign bit of the result is irretrievably lost, and
saturation may not produce a correct result. It takes over 255 over-
flows to lose the sign.

Multiply/Accumulates (Multiplier)

2-36 ADSP-219x/2191 DSP Hardware Reference

Multiplier Instruction Summary
Table 2-7 on page 2-36 lists the multiplier instructions and how they
relate to ASTAT flags. For more information on assembly language syntax,
see the ADSP-219x DSP Instruction Set Reference. In Table 2-7 on
page 2-36, note the meaning of the following symbols:

• Dreg1, Dreg2 indicate any register file location

• XOP, YOP indicate any X- and Y-input registers, indicating a reg-
ister usage restriction for conditional and/or multifunction
instructions. For more information, see “Multifunction Computa-
tions” on page 2-64.

• * indicates the flag may be set or cleared, depending on results of
instruction

• ** indicates the flag is cleared, regardless of the results of
instruction

• – indicates no effect

Table 2-7. Multiplier Instruction Summary

Instruction ASTAT Status Flags

MV SV

|MR, SR| = Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = Yop * Xop [(|RND, SS, SU, US, UU|)]; * *

|MR, SR| = |MR, SR| + Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond]|MR, SR| = |MR, SR| + Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| + Yop * Xop [(|RND, SS, SU, US, UU|)]; * *

|MR, SR| = |MR, SR| - Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| - Xop * Yop [(|RND, SS, SU, US, UU|)]; * *

[IF Cond] |MR, SR| = |MR, SR| - Yop * Xop [(|RND, SS, SU, US, UU|)]; * *

ADSP-219x/2191 DSP Hardware Reference 2-37

Computational Units

Multiplier Data Flow Details
Figure 2-13 shows a more detailed diagram of the multiplier/accumulator,
which appears in Figure 2-1 on page 2-3.

The multiplier has two 16-bit input ports X and Y, and a 32-bit product
output port Product. The 32-bit product is stored in the multiplier result
(MR or SR) register immediately, or passed to a 40-bit adder/subtracter,
which adds or subtracts the new product to/from the previous content of
the MR or SR registers. For accumulation, the MR and SR registers are 40 bits
wide. These registers each consist of smaller 16-bit registers which are part
of the register file: MR0, MR1, MR2, SR0, SR1, and SR2. For more information
on these registers, see Figure 2-12 on page 2-32.

The adder/subtracters are greater than 32 bits to allow for intermediate
overflow in a series of multiply/accumulate operations. A multiply over-
flow (MV or SV) status bit is set when an accumulator has overflowed
beyond the 32-bit boundary—when there are significant (non-sign) bits in
the top nine bits of the MR or SR registers (based on twos complement
arithmetic).

[IF Cond] |MR, SR| = 0; ** **

[IF Cond] MR = MR [(RND)]; * –

[IF Cond] SR = SR [(RND)]; – *

SAT [MR,SR]; – –

Table 2-7. Multiplier Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

MV SV

Multiply/Accumulates (Multiplier)

2-38 ADSP-219x/2191 DSP Hardware Reference

Figure 2-13. Multiplier Block Diagram

MV

SV
BIASRND

M_MODE
MULTIPLIER

X Y

R

MX0 MY0

MY1SR0

MR2 MR1 MR0

REGISTER FILE

AR MX1

SIAX0 AY0

AX1 AY1 SR2

0

SR1

ADD / SUB

32

40 40 40 40

SRMR

1616

ADSP-219x/2191 DSP Hardware Reference 2-39

Computational Units

Register usage restrictions apply only to conditional and multi-function
instructions. Then the multiplier's X port can read the MX0, MX1, AR, MR2,
MR1, MR0, SR1, and SR2 registers, and the Y port can read MY0, MY1, and SR1
(due to a special pipe). The Y port can also be redirected to the X port to
square a single X operand.

On previous 16-bit, fixed-point DSPs (ADSP-2100 family), a ded-
icated Multiplier Feedback (MF) register is available. On
ADSP-219x DSPs, there is no MF register, instead code should use
SR1.

For more information on register usage restrictions in conditional
and multifunction instructions, see “Multifunction Computations”
on page 2-64.

The multiplier reads and writes any of its associated registers within the
same cycle. Registers are read at the beginning of the cycle and written at
the end of the cycle. A register read gets the value loaded at the end of a
previous cycle. A new value written to a register cannot be read out until a
subsequent cycle. This read/write pattern lets an input register provide an
operand to the multiplier at the beginning of the cycle and be updated
with the next operand from memory at the end of the same cycle. This
pattern also lets a result register be stored in memory and updated with a
new result in the same cycle.

Barrel Shifter (Shifter)
The shifter provides bitwise shifting functions for 16-bit inputs, yielding a
40-bit output (SR). These functions include arithmetic shift (ASHIFT), log-
ical shift (LSHIFT), and normalization (NORM). The shifter also performs
derivation of exponent (EXP) and derivation of common exponent (EXP-
ADJ) for an entire block of numbers. These shift functions can be
combined to implement numerical format control, including full float-
ing-point representation and multiprecision operations.

Barrel Shifter (Shifter)

2-40 ADSP-219x/2191 DSP Hardware Reference

This section provides the following topics:

• “Shifter Operations” on page 2-40

• “Shifter Status Flags” on page 2-54

• “Shifter Instruction Summary” on page 2-55

• “Shifter Data Flow Details” on page 2-56

Shifter Operations
The shifter instructions (ASHIFT, LSHIFT, NORM, EXP, and EXPADJ) can be
used in a variety of ways, depending on the underlying arithmetic require-
ments. The following sections present single- and multiple-precision
examples for these functions:

• “Derive Block Exponent” on page 2-42

• “Immediate Shifts” on page 2-43

• “Denormalize” on page 2-45

• “Normalize, Single-Precision Input” on page 2-47

• “Normalize, ALU Result Overflow” on page 2-48

• “Normalize, Double-Precision Input” on page 2-51

The shift functions (arithmetic shift, logical shift, and normalize) can be
optionally specified with [SR OR] to facilitate multiprecision operations.
[SR OR] logically ORs the shift result with the current contents of SR. This
option is used to join 16-bit inputs with the 40-bit value in SR. When
[SR OR] is not used, the shift value is passed through to SR directly.

Almost all shifter instructions have two or three options: (HI), (LO), and
(HIX). Each option enables a different exponent detector mode that oper-
ates only while the instruction executes. The shifter interprets and handles
the input data according to the selected mode.

ADSP-219x/2191 DSP Hardware Reference 2-41

Computational Units

For the derive exponent (Exp) and block exponent adjust (EXPADJ) opera-
tions, the shifter calculates the shift code—the direction and number of
bits to shift—then stores the value in SE (for EXP) or SB (for EXPADJ). For
the ASHIFT, LSHIFT, and NORM operations, a program can supply the value
of the shift code directly to the SE register or use the result of a previous
EXP or EXPADJ operation.

For the ASHIFT, LSHIFT, and NORM operations:

• (HI) Operation references the upper half of the output field.

• (LO) Operation references the lower half of the output field.

For the exponent derive (EXP) operation:

• (HIX) Use this mode for shifts and normalization of results from
ALU operations.

Input data is the result of an add or subtract operation that may
have overflowed. The shifter examines the ALU overflow bit (AV).
If AV=1, the effective exponent of the input is +1 (this value indi-
cates that overflowed occurred before the EXP operation executed).
If AV=0, no overflow occurred and the shifter performs the same
operations as the (HI) mode.

• (HI) Input data is a single-precision signed number or the upper
half of a double-precision signed number. The number of leading
sign bits in the input operand, which equals the number of sign
bits minus one, determines the shift code. By default, the EXPADJ
operation always operates in this mode.

• (LO) Input data is the lower half of a double-precision signed
number. To derive the exponent on a double-precision number,
the program must perform the EXP operation twice, once on the
upper half of the input, and once on the lower half.

Barrel Shifter (Shifter)

2-42 ADSP-219x/2191 DSP Hardware Reference

Derive Block Exponent

The EXPADJ instruction detects the exponent of the number largest in
magnitude in an array of numbers. The steps for a typical block exponent
derivation are as follows:

1. Load SB with –16. The SB register contains the exponent for the
entire block. The possible values at the conclusion of a series of
EXPADJ operations range from –15 to 0. The exponent compare
logic updates the SB register if the new value is greater than the cur-
rent value. Loading the register with –16 initializes it to a value
certain to be less than any actual exponents detected.

2. Process the first array element as follows:

Array(1) = 11110101 10110001
Exponent = –3
–3 > SB (–16)
SB gets –3

3. Process next array element as follows:

Array(2) = 00000001 01110110
Exponent = –6
–6 < –3
SB remains –3

4. Continue processing array elements.

When and if an array element is found whose exponent is greater than SB,
that value is loaded into SB. When all array elements have been processed,
the SB register contains the exponent of the largest number in the entire
block. No normalization is performed. Expadj is purely an inspection
operation. The value in SB could be transferred to SE and used to normal-
ize the block on the next pass through the shifter. Or, SB could be
associated with that data for subsequent interpretation.

ADSP-219x/2191 DSP Hardware Reference 2-43

Computational Units

Immediate Shifts

An immediate shift shifts the input bit pattern to the right (downshift) or
left (upshift) by a given number of bits. Immediate shift instructions use
the data value in the instruction itself to control the amount and direction
of the shifting operation. For examples using this instruction, see the
ADSP-219x DSP Instruction Set Reference. The data value controlling the
shift is an 8-bit signed number. The SE register is not used or changed by
an immediate shift.

The following example shows the input value downshifted relative to the
upper half of SR (SR1). This is the (HI) version of the shift:

SI = 0xB6A3;

SR = LSHIFT SI BY –5 (HI);

Input (SI) is: 1011 0110 1010 0011

Shift value is: –5

SR (shifted by):

0000 0000 0000 0101 1011 0101 0001 1000 0000 0000

---sr2---|-------sr1---------|-------sr0---------|

The next example uses the same input value, but shifts in the other direc-
tion, referenced to the lower half (LO) of SR:

SI = 0xB6A3;

SR = LSHIFT SI BY 5 (LO);

Input (SI) is: 1011 0110 1010 0011

Shift value: is: +5

Barrel Shifter (Shifter)

2-44 ADSP-219x/2191 DSP Hardware Reference

SR is shifted by:

0000 0000 0000 0000 0001 0110 1101 0100 0110 0000

---sr2---|-------sr1---------|-------sr0---------|

Note that a negative shift cannot place data (except a sign extension) into
SR2, but a positive shift with value greater than 16 puts data into SR2. This
next example also sets the SV bit (because the MSB of SR1 does not match
the value in SR2):

SI = 0xB6A3;

SR = LSHIFT SI BY 17 (LO);

Input (SI) is: 1011 0110 1010 0011

Shift value: +17

SR (shifted by):

0000 0001 0110 1101 0100 0110 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------|

In addition to the direction of the shifting operation, the shift may be
arithmetic (ASHIFT) or logical (LSHIFT).

The following example shows a logical shift, relative to the upper half of
SR (HI):

SI = 0xB6A3;

SR = LSHIFT SI BY –5 (HI);

Input (SI): 10110110 10100011

Shift value: -5

ADSP-219x/2191 DSP Hardware Reference 2-45

Computational Units

SR (shifted by):

0000 0000 0000 0101 1011 0101 0001 1000 0000 0000

---sr2---|-------sr1---------|------sr0----------

The next example uses the same input value, but performs an arithmetic
shift:

SI = 0xB6A3;

SR = ASHIFT SI BY –5 (HI);

Input (SI): 10110110 10100011

Shift value:-5

SR (shifted by):

1111 1111 1111 1101 1011 0101 0001 1000 0000 0000

---sr2---|-------sr1---------|-------sr0---------

Denormalize

Denormalizing refers to shifting a number according to a predefined expo-
nent. In effect, the operation performs a floating-point to fixed-point
conversion.

Denormalizing requires a sequence of operations. First, the SE register
must contain the exponent value. This value may be explicitly loaded or
may be the result of a previous operation. Next, the shift itself is per-
formed, taking its shift value from the SE register, not from an immediate
data value.

Two examples of denormalizing a double-precision number follow. The
first example shows a denormalization in which the upper half of the
number is shifted first, followed by the lower half. Because computations
may produce output in either order, the second example shows the same
operation in the other order—lower half first.

Barrel Shifter (Shifter)

2-46 ADSP-219x/2191 DSP Hardware Reference

The following de-normalization example processes the upper half first.
Some important points here are: (1) always select the arithmetic shift for
the higher half (HI) of the twos complement input (or logical for
unsigned), and (2) the first half processed does not use the [SR OR] option.

SI = 0xB6A3; /* first input, upper half result */

SE = -3; /* shifter exponent */

SR = ASHIFT SI BY –3 (HI); /* must use HI option */

First input (SI): is1011011010100011

SR (shifted by):

1111 1111 1111 0110 1101 0100 0110 0000 0000 0000

--sr2----|------sr1----------|-------sr0---------

Continuing this example, next, the lower half is processed. Some impor-
tant points here are: (1) always select a logical shift for the lower half of
the input, and (2) the second half processed must use the [SR OR] option
to avoid overwriting the previous half of the output value.

SI = 0x765D; /* second input, lower half result} */

/* SE = -3 still */

SR = SR OR LSHIFT SI BY –3 (Lo); /* must use LO option */

Second input (SI): is 0111 0110 0101 1101

SR ORed, shifted:

1111 1111 1111 0110 1101 0100 0110 1110 1100 1011

---sr2---|--------sr1--------|-------sr0---------

The following de-normalization example uses the same input, but pro-
cesses it in the opposite (lower half first) order. The same important
points from before apply: (1) the high half is always arithmetically shifted,

ADSP-219x/2191 DSP Hardware Reference 2-47

Computational Units

(2) the low half is logically shifted, (3) the first input is passed straight
through to SR, and (4) the second half is ORed, creating a double-preci-
sion value in SR.

SI = 0x765D; /* first input, lower half result */

SE = -3; /* shifter exponent */

SR = LSHIFT SI BY –3 (LO); /* must use the LO option */

SI = 0xB6A3; /* second input, upper half result */

SR = SR OR ASHIFT SI BY –3 (Hi); /* must use HI option */

The first input (SI) is: 0111 0110 0101 1101

SR is shifted by:

0000 0000 0000 0000 0000 0000 0000 1110 1100 1011

---sr2---|-------sr1---------|--------sr0--------

The second input (SI) is: 1011 0110 1010 0011

SR is ORed, shifted by:

1111 1111 1111 0110 1101 0100 0110 1110 1100 1011

---sr2---|--------sr1--------|--------sr0--------

Normalize, Single-Precision Input

Numbers with redundant sign bits require normalizing. Normalizing a
number is the process of shifting a twos complement number within a
field so that the rightmost sign bit lines up with the MSB position of the
field and recording how many places the number was shifted. The opera-
tion can be thought of as a fixed-point to floating-point conversion,
generating an exponent and a mantissa.

Normalizing is a two-stage process. The first stage derives the exponent.
The second stage does the actual shifting. The first stage uses the EXP
instruction, which detects the exponent value and loads it into the SE reg-
ister. The EXP instruction recognizes a (HI) and (LO) modifier. The

Barrel Shifter (Shifter)

2-48 ADSP-219x/2191 DSP Hardware Reference

second stage uses the Norm instruction. Norm recognizes (HI) and (LO) and
also has the [SR OR] option. NORM uses the negated value of the SE register
as its shift control code. The negated value is used so that the shift is made
in the correct direction.

This is a normalization example for a single-precision input. First, the EXP
instruction derives the exponent:

AR = 0xF6D4; /* single-precision input */

SE = EXP AR (HI); /* Detects exponent with Hi modifier */

Input (AR) is: 1111 0110 1101 0100

Exponent (SE) is -3

Next for this single-precision example, the NORM instruction normalizes the
input using the derived exponent in SE:

SR = NORM AR (HI);

Input (AR) is: 1111 0110 1101 0100

SR (normalized):

1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2---|-------sr1---------|-------sr0---------

For a single-precision input, the normalize operation can use the (HI) or
(LO) modifier, depending on whether the result is needed in SR1 or SR0.

Normalize, ALU Result Overflow

For single-precision data, there is a special normalization situation—nor-
malizing ALU results (AR) that may have overflowed—that requires the
HI-extended (HIX) modifier. When using this modifier, the shifter reads
the arithmetic status word (ASTAT) overflow bit (AV) and the carry bit (AC)
in conjunction with the value in AR. If AV is set (=1), an overflow has
occurred. AC contains the true sign of the twos complement value.

ADSP-219x/2191 DSP Hardware Reference 2-49

Computational Units

Given the following conditions,

AR= 1111 1010 0011 0010

AV= 1 (indicating overflow)

AC= 0 (the true sign bit of this value)

SE = EXP AR (HIX); SR = NORM AR (HI);

The normalize operation is as follows:

1. Detect Exponent, Modifier = HIX

SE is set to +1.

2. Normalize, Modifier = HI, SE = 1

AR = 1111 1010 0011 0010

SR (normalized):

0000 0000 0111 1101 0001 1001 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

Barrel Shifter (Shifter)

2-50 ADSP-219x/2191 DSP Hardware Reference

The AC bit is supplied as the sign bit, MSB of SR above.

The Norm instruction differs slightly between the ADSP-2191 and
previous 16-bit, fixed-point DSPs in the ADSP-2100 family. The
difference only can be seen when performing overflow
normalization.

• On the ADSP-2191, the NORM instruction checks only that
(SE == +1) for performing the shift in of the AC flag (over-
flow normalization).

• On previous ADSP-2100 family DSPs, the NORM instruction
checks both that (SE == +1) and (AV == 1) before shifting in
the AC flag.

The Exp (HIX) instruction always sets (SE = +1) when the AV flag is
set, so this execution difference only appears when NORM is used
without a preceding EXP instruction.

The HIX operation executes properly whether or not there has actually
been an overflow as demonstrated by this second example:

AR is: 1110 0011 0101 1011

AV = 0 (indicating no overflow)

AC = 0 (not meaningful when AV = 0)

1. Detect Exponent, Modifier = HIX

SE is set to: –2

2. Normalize, Modifier = HI, SE = –2

AR = 1110 0011 0101 1011

ADSP-219x/2191 DSP Hardware Reference 2-51

Computational Units

SR (normalized):

1111 1111 1000 1101 0110 1000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

The AC bit is not used as the sign bit. As Figure 2-15 on page 2-59 shows,
the HIX mode is identical to the HI mode when AV is not set. When the
NORM, LO operation is done, the extension bit is zero; when the NORM, HI
operation is done, the extension bit is AC.

Normalize, Double-Precision Input

For double-precision values, the normalization process follows the same
general scheme as with single-precision values. The first stage detects the
exponent and the second stage normalizes the two halves of the input. For
normalizing double-precision values, there are two operations in each
stage.

For the first stage, the upper half of the input must be operated on first.
This first exponent derivation loads the exponent value into SE. The sec-
ond exponent derivation, operating on the lower half of the number does
not alter the SE register unless SE = –15. This happens only when the first
half contained all sign bits. In this case, the second operation loads a value
into SE (see Figure 2-16 on page 2-62). This value is used to control both
parts of the normalization that follows.

For the second stage, now that SE contains the correct exponent value, the
order of operations is immaterial. The first half (whether HI or LO) is nor-
malized without the [SR OR] and the second half is normalized with
[SR OR] to create one double-precision value in SR. The (HI) and (LO)
modifiers identify which half is being processed.

Barrel Shifter (Shifter)

2-52 ADSP-219x/2191 DSP Hardware Reference

The following example normalizes double-precision values:

1. Detect Exponent, Modifier = HI

First input: 1111 0110 1101 0100 (upper half)
SE set to: -3

2. Detect Exponent, Modifier = LO

Second input: 0110 1110 1100 1011
SE unchanged: -3

Normalize, Modifier = HI, [SR OR], SE = –3

First input: 1111 0110 1101 0100

SR (normalized):

1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

3. Normalize, Modifier = Lo, [SR OR], SE = –3

Second input: 0110 1110 1100 1011

SR (normalized):

1111 1111 1011 0110 1010 0011 0111 0110 0101 1000

---sr2---|--------sr1--------|--------sr0--------

If the upper half of the double-precision input contains all sign bits, the SE
register value is determined by the second derive exponent operation as
shown in this second double-precision normalization example:

1. Detect Exponent, Modifier = HI

First input: 1111 1111 1111 1111 (upper half)
SE set to: -15

ADSP-219x/2191 DSP Hardware Reference 2-53

Computational Units

2. Detect Exponent, Modifier = LO

Second input: 1111 0110 1101 0100
SE now set to: -19

3. Normalize, Modifier=Hi, No [SR OR], SE = –19 (negated)

First input: 1111 1111 1111 1111

SR (normalized):

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

Note that all values of SE less than –15 (resulting in a shift of +16
or more) upshift the input completely off scale.

4. Normalize, Modifier=Lo, [SR OR], SE = –19 (negated)

Second input: 1111 0110 1101 0100

SR (normalized):

1111 1111 1011 0110 1010 0000 0000 0000 0000 0000

---sr2---|--------sr1--------|--------sr0--------

Barrel Shifter (Shifter)

2-54 ADSP-219x/2191 DSP Hardware Reference

Shifter Status Flags
The shifter’s logical shift, arithmetic shift, normalize, and derive exponent
operations update status flags in the computational unit’s Arithmetic Sta-
tus register (ASTAT). Table A-1 on page A-9 lists all the bits in this register.
The following bits in ASTAT flag shifter status (a “1” indicates the condi-
tion) for the most recent shifter derive exponent operation:

• Shifter result overflow. Bit 7 (SV) indicates overflow (if set, =1)
when the MSB of SR1 does not match the eight LSBs of SR2 or
indicates no overflow (if clear, =0) The SV is set by multiply/accu-
mulate and shift instructions.

• Shifter input sign for exponent extract only. Bit 8 (SS) The SS flag
is updated if by derive exponent instructions with the (HI) or (HIX)
options set and inputs to the subsequent (LO) instruction.

Flag updates occur at the end of the cycle in which the status is generated
and are available on the next cycle.

On previous 16-bit, fixed-point DSPs (ADSP-2100 family), the
Shifter Results (SR) register is 32 bits wide and has no overflow
detection. On ADSP-219x DSPs, the SR register is 40 bits wide,
and overflow in SR is indicated with the SV flag.

ADSP-219x/2191 DSP Hardware Reference 2-55

Computational Units

Shifter Instruction Summary
Table 2-8 on page 2-55 lists the shifter instructions and indicate how they
relate to ASTAT flags. For more information on assembly language syntax,
see the ADSP-219x DSP Instruction Set Reference. In Table 2-8 on
page 2-55, note the meaning of the following symbols:

• Dreg indicates any register file location

• * indicates the flag may be set or cleared, depending on results of
instruction

• – indicates no effect

Table 2-8. Shifter Instruction Summary

Instruction ASTAT Status Flags

SV SS

[IF Cond] SR = [SR OR] ASHIFT Dreg [(|HI, LO|)]; * –

SR = [SR OR] ASHIFT Dreg BY <Imm8> [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] LSHIFT Dreg [(|HI, LO|)]; * –

SR = [SR OR] LSHIFT Dreg BY <Imm8> [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] NORM Dreg [(|HI, LO|)]; * –

[IF Cond] SR = [SR OR] NORM Dreg BY<Imm8> [(|HI, LO|)]; * –

[IF Cond] SE = EXP Dreg [(|HIX, HI, LO|)]; – *1

1 The SS bit is the MSB of input for the HI option. For the HIX option, the SS bit is the MSB of input
(for AV = 0) or inverted MSB of input (for AV = 1). There is no effect on SS flag for the LO option.

[IF Cond] SB = EXPADJ Dreg; – –

Barrel Shifter (Shifter)

2-56 ADSP-219x/2191 DSP Hardware Reference

Shifter Data Flow Details
Figure 2-14 on page 2-56 shows a more detailed diagram of the shifter,
which appears in Figure 2-1. The shifter has the following components:
the shifter array, the OR/PASS logic, the exponent detector, and the expo-
nent compare logic.

The shifter array is a 16x40 barrel shifter. It accepts a 16-bit input and can
place it anywhere in the 40-bit output field, from off-scale right to
off-scale left, in a single cycle. This spread gives 57 possible placements
within the 40-bit field. The placement of the 16 input bits is determined
by a shift control code (C) and a HI/LO option.

Figure 2-14. Shifter Block Diagram

SS

SV

I

O

MY0

MY1

REGISTER FILE

MX0 AX0 AY0

AX1 AY1MX0

OR / PASS

SR

40

40 40

HI / LO

SB

COMPARE

CONSTANT

SE

8 C

NEGATE

I

O

5

AV

SS

HIX / HI / LO

AC

1616

AR

SR0

MR2 MR1 MR0

SR2 SISR1

EXPONENT
DETECTOR

SHIFTER
ARRAY

ADSP-219x/2191 DSP Hardware Reference 2-57

Computational Units

Most shifter instructions accept any register of the data register file as an
input. This includes immediate shift instructions as well as conditional
and multi-function instructions with register to register moves. Restric-
tions apply to multi-function instructions with parallel data load/store
from/to memory. Then, the shifter still accepts SI, AR, MR2, MR1, MR0, SR2,
SR1, and SR0.

For more information on register usage restrictions in conditional
and multifunction instructions, see “Multifunction Computations”
on page 2-64.

The shifter input provides input to the shifter array and the exponent
detector. The shifter result (SR) register is 40 bits wide and is divided into
three sections: SR0, SR1, and SR2. These individual 16-bit registers are part
of the register file. The SR register is also fed back to the OR/PASS logic to
allow double-precision shift operations.

The SE register (shifter exponent) holds the exponent during normalize
and denormalize operations. Although it is a 16-bit register for general
purposes, shifter operations only use the 8 LSBs. Derive-exponent instruc-
tions sign-extend the results to 16 bit. SE is not part of the register file but
may be accessed through the DM and the PM bus.

The SB register (shifter block) is important in block floating-point opera-
tions where it holds the block exponent value, which is the value by which
the block values must be shifted to normalize the largest value. SB holds
the most recent block exponent value. Although it is a 16-bit register for
general purposes, block exponent operations use the five LSBs only, but
sign-extend to 16 bits. SB is not part of the register file but can be accessed
through DM and PM bus.It is a twos complement, 5.0 value.

Any of the SI, SE, or SR registers can be read and written in the same cycle.
Registers are read at the beginning of the cycle and written at the end of
the cycle. All register reads get values loaded at the end of a previous cycle.
A new value written to a register cannot be read out until a subsequent
cycle. This allows an input register to provide an operand to the shifter at

Barrel Shifter (Shifter)

2-58 ADSP-219x/2191 DSP Hardware Reference

the beginning of the cycle and be updated with the next operand at the
end of the same cycle. It also allows a result register to be stored in mem-
ory and updated with a new result in the same cycle.

The shifting of the input is determined by a control code (C) and a HI/LO
option. The control code is an 8-bit signed value which indicates the
direction and number of places the input is to be shifted. Positive codes
indicate a left shift (upshift) and negative codes indicate a right shift
(downshift). The control code can come from three sources: the content
of the shifter exponent (SE) register, the negated content of the SE register,
or an immediate value from the instruction. The ASHIFT and LSHIFT
instructions use SE directly, whereas the NORM instructions take the negated
SE.

The HI/LO option determines the reference point for the shifting. In the HI
state, all shifts are referenced to SR1 (the upper half of the output field),
and in the LO state, all shifts are referenced to SR0 (the lower half). The
HI/LO feature is useful when shifting 32-bit values because it allows both
halves of the number to be shifted with the same control code. HI/LO
option is selectable each time the shifter is used.

The shifter fills any bits to the right of the input value in the output field
with zeros, and bits to the left are filled with the extension bit. The exten-
sion bit can be fed by three possible sources depending on the instruction
being performed. The three sources are the MSB of the input, the AC bit
from the arithmetic status register (ASTAT), or a zero.

Figure 2-15 on page 2-59 shows the shifter array output as a function of
the control code and Hi/Lo signal. In the figure, ABCDEFGHIJKLMNPR repre-
sents the 16-bit input pattern, and X stands for the extension bit.

The OR/PASS logic allows the shifted sections of a multiprecision num-
ber to be combined into a single quantity. In some shifter instructions, the
shifted output may be logically ORed with the contents of the SR register;
the shifter array is bitwise ORed with the current contents of the SR regis-

ADSP-219x/2191 DSP Hardware Reference 2-59

Computational Units

Figure 2-15. Shifter Array Output Placement

HI Reference LO Reference Shifter Results
Shift Value Shift Value ---SR2--|-------SR1-------|-------SR0-------
+24 to +127 +40 to +127 00000000 00000000 00000000 00000000 00000000
+23 +39 R0000000 00000000 00000000 00000000 00000000
+22 +38 PR000000 00000000 00000000 00000000 00000000
+21 +37 NPR00000 00000000 00000000 00000000 00000000
+20 +36 MNPR0000 00000000 00000000 00000000 00000000
+19 +35 LMNPR000 00000000 00000000 00000000 00000000
+18 +34 KLMNPR00 00000000 00000000 00000000 00000000
+17 +33 JKLMNPR0 00000000 00000000 00000000 00000000
+16 +32 IJKLMNPR 00000000 00000000 00000000 00000000
+15 +31 HIJKLMNP R0000000 00000000 00000000 00000000
+14 +30 GHIJKLMN PR000000 00000000 00000000 00000000
+13 +29 FGHIJKLM NPR00000 00000000 00000000 00000000
+12 +28 EFGHIJKL MNPR0000 00000000 00000000 00000000
+11 +27 DEFGHIJK LMNPR000 00000000 00000000 00000000
+10 +26 CDEFGHIJ KLMNPR00 00000000 00000000 00000000
+ 9 +25 BCDEFGHI JKLMNPR0 00000000 00000000 00000000
+ 8 +24 ABCDEFGH IJKLMNPR 00000000 00000000 00000000
+ 7 +23 XABCDEFG HIJKLMNP R0000000 00000000 00000000
+ 6 +22 XXABCDEF GHIJKLMN PR000000 00000000 00000000
+ 5 +21 XXXABCDE FGHIJKLM NPR00000 00000000 00000000
+ 4 +20 XXXXABCD EFGHIJKL MNPR0000 00000000 00000000
+ 3 +19 XXXXXABC DEFGHIJK LMNPR000 00000000 00000000
+ 2 +18 XXXXXXAB CDEFGHIJ KLMNPR00 00000000 00000000
+ 1 +17 XXXXXXXA BCDEFGHI JKLMNPR0 00000000 00000000

0 +16 XXXXXXXX ABCDEFGH IJKLMNPR 00000000 00000000
- 1 +15 XXXXXXXX XABCDEFG HIJKLMNP R0000000 00000000
- 2 +14 XXXXXXXX XXABCDEF GHIJKLMN PR000000 00000000
- 3 +13 XXXXXXXX XXXABCDE FGHIJKLM NPR00000 00000000
- 4 +12 XXXXXXXX XXXXABCD EFGHIJKL MNPR0000 00000000
- 5 +11 XXXXXXXX XXXXXABC DEFGHIJK LMNPR000 00000000
- 6 +10 XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPR00 00000000
- 7 + 9 XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPR0 00000000
- 8 + 8 XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR 00000000
- 9 + 7 XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP R0000000
-10 + 6 XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN PR000000
-11 + 5 XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM NPR00000
-12 + 4 XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL MNPR0000
-13 + 3 XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK LMNPR000
-14 + 2 XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ KLMNPR00
-15 + 1 XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI JKLMNPR0
-16 0 XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH IJKLMNPR
-17 - 1 XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG HIJKLMNP
-18 - 2 XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF GHIJKLMN
-19 - 3 XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE FGHIJKLM
-20 - 4 XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD EFGHIJKL
-21 - 5 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC DEFGHIJK
-22 - 6 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB CDEFGHIJ
-23 - 7 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA BCDEFGHI
-24 - 8 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX ABCDEFGH
-25 - 9 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XABCDEFG
-26 -10 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXABCDEF
-27 -11 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXABCDE
-28 -12 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXABCD
-29 -13 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXABC
-30 -14 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXAB
-31 -15 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXA
-32 to -128 -16 to -128 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

Barrel Shifter (Shifter)

2-60 ADSP-219x/2191 DSP Hardware Reference

ter before being loaded there. When the [SR OR] option is not used in the
instruction, the shifter array output is passed through and loaded into the
shifter result (SR) register unmodified.

The exponent detector derives an exponent for the shifter input value.
The exponent detector operates in one of three ways, which determine
how the input value is interpreted. In the HI state, the input is interpreted
as a single-precision number or the upper half of a double-precision num-
ber. The exponent detector determines the number of leading sign bits
and produces a code, which indicates how many places the input must be
up-shifted to eliminate all but one of the sign bits. The code is negative so
that it can become the effective exponent for the mantissa formed by
removing the redundant sign bits.

In the HI-extend state (HIX), the input is interpreted as the result of an add
or subtract performed in the ALU which may have overflowed. So, the
exponent detector takes the arithmetic overflow (AV) status into consider-
ation. If AV is set, a +1 exponent is output to indicate an extra bit is needed
in the normalized mantissa (the ALU carry bit); if AV is not set, HI-extend
functions exactly like the Hi state. When performing a derive exponent
function in HI or HI-extend modes, the exponent detector also outputs a
shifter sign (SS) bit which is loaded into the arithmetic status register
(ASTAT). The sign bit is the same as the MSB of the shifter input except
when AV is set; when AV is set in HI-extend state, the MSB is inverted to
restore the sign bit of the overflowed value.

In the LO state, the input is interpreted as the lower half of a double-preci-
sion number. In the Lo state, the exponent detector interprets the SS bit in
the arithmetic status register (ASTAT) as the sign bit of the number. The SE
register is loaded with the output of the exponent detector only if SE con-
tains –15. This occurs only when the upper half–which must be processed
first–contained all sign bits. The exponent detector output is also offset by
–16, because the input is actually the lower 16 bits of a 40-bit value.
Figure 2-16 on page 2-62 gives the exponent detector characteristics for
all three modes.

ADSP-219x/2191 DSP Hardware Reference 2-61

Computational Units

The exponent compare logic is used to find the largest exponent value in
an array of shifter input values. The exponent compare logic in conjunc-
tion with the exponent detector derives a block exponent. The comparator
compares the exponent value derived by the exponent detector with the
value stored in the Shifter Block Exponent (SB) register and updates the SB
register only when the derived exponent value is larger than the value in SB
register.

Data Register File
The DSP’s computational units have a data register file: a set of data regis-
ters that transfer data between the data buses and the computation units.
DSP programs use these registers for local storage of operands and results.

The register file appears in Figure 2-1 on page 2-3. The register file con-
sists of 16 primary registers and 16 secondary (alternate) registers. All of
the data registers are 16 bits wide.

Program memory data accesses and data memory accesses to/from the reg-
ister file occur on the PM data bus and DM data bus, respectively. One
PM data bus access and/or one DM data bus access can occur in one cycle.
Transfers between the register files and the DM or PM data buses can
move up to 16-bits of valid data on each bus.

If an operation specifies the same register file location as both an input
and output, the read occurs in the first half of the cycle and the write in
the second half. With this arrangement, the DSP uses the old data as the
operand, before updating the location with the new result data. If writes
to the same location take place in the same cycle, only the write with

Data Register File

2-62 ADSP-219x/2191 DSP Hardware Reference

Figure 2-16. Exponent Detector Characteristics

S = Sign bit
N = Non-sign bit
D = Don’t care bit

HI Mode HIX Mode

Shifter Array Input Output AV Shifter Array Input Output

1 DDDDDDDD DDDDDDDD +1
SNDDDDDD DDDDDDDD 0 0 SNDDDDDD DDDDDDDD 0
SSNDDDDD DDDDDDDD -1 0 SSNDDDDD DDDDDDDD -1
SSSNDDDD DDDDDDDD -2 0 SSSNDDDD DDDDDDDD -2
SSSSNDDD DDDDDDDD -3 0 SSSSNDDD DDDDDDDD -3
SSSSSNDD DDDDDDDD -4 0 SSSSSNDD DDDDDDDD -4
SSSSSSND DDDDDDDD -5 0 SSSSSSND DDDDDDDD -5
SSSSSSSN DDDDDDDD -6 0 SSSSSSSN DDDDDDDD -6
SSSSSSSS NDDDDDDD -7 0 SSSSSSSS NDDDDDDD -7
SSSSSSSS SNDDDDDD -8 0 SSSSSSSS SNDDDDDD -8
SSSSSSSS SSNDDDDD -9 0 SSSSSSSS SSNDDDDD -9
SSSSSSSS SSSNDDDD -10 0 SSSSSSSS SSSNDDDD -10
SSSSSSSS SSSSNDDD -11 0 SSSSSSSS SSSSNDDD -11
SSSSSSSS SSSSSNDD -12 0 SSSSSSSS SSSSSNDD -12
SSSSSSSS SSSSSSND -13 0 SSSSSSSS SSSSSSND -13
SSSSSSSS SSSSSSSN -14 0 SSSSSSSS SSSSSSSN -14
SSSSSSSS SSSSSSSS -15 0 SSSSSSSS SSSSSSSS -15

LO Mode

SS Shifter Array Input Output

S NDDDDDDD DDDDDDDD -15
S SNDDDDDD DDDDDDDD -16
S SSNDDDDD DDDDDDDD -17
S SSSNDDDD DDDDDDDD -18
S SSSSNDDD DDDDDDDD -19
S SSSSSNDD DDDDDDDD -20
S SSSSSSND DDDDDDDD -21
S SSSSSSSN DDDDDDDD -22
S SSSSSSSS NDDDDDDD -23
S SSSSSSSS SNDDDDDD -24
S SSSSSSSS SSNDDDDD -25
S SSSSSSSS SSSNDDDD -26
S SSSSSSSS SSSSNDDD -27
S SSSSSSSS SSSSSNDD -28
S SSSSSSSS SSSSSSND -29
S SSSSSSSS SSSSSSSN -30
S SSSSSSSS SSSSSSSS -31

ADSP-219x/2191 DSP Hardware Reference 2-63

Computational Units

higher precedence actually occurs. The DSP determines precedence for
the write from the type of the operation; from highest to lowest, the prece-
dence is:

1. Move operations: register-to-register, register-to-memory, or
memory-to-register

2. Compute operations: ALU, multiplier, or shifter

Secondary (Alternate) Data Registers
Computational units have a secondary register set. To facilitate fast con-
text switching, the DSP includes secondary register sets for data, results,
and data address generator registers. Bits in the MSTAT register control
when secondary registers become accessible. While inaccessible, the con-
tents of secondary registers are not affected by DSP operations. The
secondary register sets for data and results are described in this section.

There is a one-cycle latency between writing to MSTAT and being
able to access an secondary register set.

For more information on secondary data address generator regis-
ters, see the “Secondary (Alternate) DAG Registers” on page 4-4.

The MSTAT register controls access to the secondary registers. Table A-2 on
page A-10 lists all the bits in MSTAT. The SEC_REG bit in MSTAT controls sec-
ondary registers (a “1” enables the secondary set). When set (=1),
secondary registers are enabled for the AX0, AX1, AY0, AY1, MX0, MX1, MY0,
MY1, SI, SB, SE, AR, MR, and SR registers.

The following example demonstrates how code should handle the one
cycle of latency from the instruction, setting the bit in MSTAT to when the
secondary registers may be accessed.

AR = MSTAT;

AR = SETBIT SEC_REG OF AR;

Multifunction Computations

2-64 ADSP-219x/2191 DSP Hardware Reference

MSTAT=AR; /* activate secondary reg. file */

NOP; /* wait for access to secondaries */

AX0 = 7;

It is more efficient (no latency) to use the mode enable instruction to
select secondary registers. In the following example, note that the swap to
secondary registers is immediate:

ENA SEC_REG; /* activate secondary reg. file */

AX0 = 7; /* now use the secondaries */

Multifunction Computations
Using the many parallel data paths within its computational units, the
DSP supports multiple-parallel (multifunction) computations. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the multiplier, ALU, or shifter with data move operations. The
multiple operations perform the same as if they were in corresponding sin-
gle-function computations. Multifunction computations also handle flags
in the same way as the single-function computations.

To work with the available data paths, the computation units constrain
which data registers may hold the input operands for multifunction com-
putations. These constraints limit which registers may hold the X-input
and Y-input for the ALU, multiplier, and shifter. For details, refer to the
ALU, multiplier and shifter sections of this manual and to the ADSP-219x
DSP Instruction Set Reference.

ADSP-219x/2191 DSP Hardware Reference 2-65

Computational Units

For unconditional, single-function instructions, any of the registers within
the register file may serve as X- or Y-inputs (see Figure 2-1 on page 2-3).
The following code example shows the differences between conditional
versus unconditional instructions and single-function versus multifunc-
tion instructions.

/* Conditional computation instructions begin with an IF clause.

The DSP tests whether the condition is true before executing the

instruction. */

AR = AX0 + AY0; /* unconditional: add X and Y ops*/

If EQ AR = AX0 + AY0; /* conditional: if AR=0, add X and Y ops*/

/* Multifunction instructions are sets of instruction that exe-

cute in a single cycle. The instructions are delimited with

commas, and the combined multifunction instruction is terminated

with a semicolon. */

AR = AX0-AY0; /* single function ALU subtract */

AX0 = MR1; /* single function */

/* register-to-register move */

AR = AX0-AY0, AX0 = MR1; /* multifunction, both in 1 cycle */

The upper part of the Shifter Result (SR) register may not serve as feed-
back to ALU and multiplier. For information on the SR2, SB, SE, MSTAT,
and ASTAT registers see the discussion on page 2-4.

Only the ALU and multiplier X- and Y-operand registers (MX0, MX1, MY0,
MY1, AX0, AY1) have memory data bus access in dual-memory read multi-
function instructions.

Multifunction Computations

2-66 ADSP-219x/2191 DSP Hardware Reference

Table 2-9 lists the multifunction instructions. For more information on
assembly language syntax, see the ADSP-219x DSP Instruction Set Refer-
ence. In these tables, note the meaning of the following symbols:

• ALU, MAC, SHIFT indicate any ALU, multiplier, or shifter
instruction

• Dreg indicates any register file location

• XOP, YOP indicate any X- and Y-input registers, indicating a reg-
ister usage restriction for conditional and/or multifunction
instructions.

Table 2-9. ADSP-219x Multifunction Instruction Summary

Instruction1

1 Multifunction instructions are sets of instruction that execute in a single cycle. The instructions
are delimited with commas, and the combined multifunction instruction is terminated with a
semicolon.

|<ALU>, <MAC>|, Xop = DM(Ia += Mb), Yop = PM(Ic += Md);

Xop = DM(Ia += Mb), Yop = PM(Ic += Md);

|<ALU>, <MAC>,<SHIFT> |, Dreg = |DM(Ia += Mb), PM(Ic += Md)|;

|<ALU>, <MAC>, <SHIFT>|, |DM(Ia += Mb), PM(Ic += Md)| = Dreg;

|<ALU>, <MAC>, <SHIFT>|, Dreg = Dreg;

ADSP-219x/2191 DSP Hardware Reference 3-1

3 PROGRAM SEQUENCER

This chapter provides the following topics:

• “Overview” on page 3-1

• “Instruction Pipeline” on page 3-7

• “Instruction Cache” on page 3-9

• “Branches and Sequencing” on page 3-13

• “Loops and Sequencing” on page 3-20

• “Interrupts and Sequencing” on page 3-25

• “Stacks and Sequencing” on page 3-36

• “Conditional Sequencing” on page 3-41

• “Sequencer Instruction Summary” on page 3-44

Overview
The DSP’s program sequencer controls program flow, constantly provid-
ing the address of the next instruction to be executed by other parts of the
DSP. Program flow in the DSP is mostly linear with the processor execut-
ing program instructions sequentially. This linear flow varies occasionally
when the program uses non-sequential program structures, such as those
illustrated in Figure 3-1 on page 3-2. Non-sequential structures direct the
DSP to execute an instruction that is not at the next sequential address.
These structures include:

Overview

3-2 ADSP-219x/2191 DSP Hardware Reference

Loops. One sequence of instructions executes several times with near-zero
overhead.

• Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of program memory.

• Jumps. Program flow transfers permanently to another part of pro-
gram memory.

Figure 3-1. Program Flow Variations

N

N +1

N +2

N +3

N +4

N +5

AD DR ES S:

INS TRU C TIO N

INS TRU C TIO N

INS TRU C TIO N

INS TRU C TIO N

INS TRU C TIO N

INS TRU C TIO N

LINEAR FLOW

I NS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

D O U N TIL

LOOP

N TI MES

I NS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

JUMP

JUMP

INS TRU C TIO N

INS TRU C TIO N

…

INS TRU C TIO N

C ALL

SUBROUTINE

INS TRU C TIO N

RT S

I NS TRU C TIO N

I NS TRU C TIO N

…

I NS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

R TI

I NS TRU C TIO N

INTERRUPT

IR Q

VE C-
TO R

INS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

I NS TRU C TIO N

ID LE

I NS TRU C TIO N

I NS TRU C TIO N

IDLE

W AI TIN G
FO R

IR Q

I NS TRU C TIO N

I NS TRU C TIO N

ADSP-219x/2191 DSP Hardware Reference 3-3

Program Sequencer

• Interrupts. Subroutines in which a runtime event triggers the exe-
cution of the routine.

• Idle. An instruction that causes the processor to cease operations,
holding its current state until an interrupt occurs. Then, the pro-
cessor services the interrupt and continues normal execution.

The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute. As part of this process, the
sequencer handles the following tasks:

• Increments the fetch address

• Maintains stacks

• Evaluates conditions

• Decrements the loop counter

• Calculates new addresses

• Maintains an instruction cache

• Handles interrupts

To accomplish these tasks, the sequencer uses the blocks shown in
Figure 3-2 on page 3-5. The sequencer’s address multiplexer selects the
value of the next fetch address from several possible sources. The fetched
address enters the instruction pipeline, ending with the program counter
(PC). The pipeline contains the 24-bit addresses of the instructions cur-

Overview

3-4 ADSP-219x/2191 DSP Hardware Reference

rently being fetched, decoded, and executed. The PC couples with the PC
stack, which stores return addresses. All addresses generated by the
sequencer are 24-bit program memory instruction addresses.

Figure 3-2 on page 3-5 uses the following abbreviations:
ADDR=address, BRAN=branch, IND=indirect, DIR=direct,
RT=return, RB=rollback, INCR=increment, PC-REL=PC relative,
PC=program counter.

The diagram in Figure 3-2 on page 3-5 also describes the relation-
ship between the program sequencer in the ADSP-219x DSP core
and inputs to that sequencer that differ for various members of the
ADSP-219x family DSPs.

To manage events, the sequencer’s interrupt controller handles interrupt
processing, determines whether an interrupt is masked, and generates the
appropriate interrupt vector address.

With selective caching, the instruction cache lets the DSP access data in
memory and fetch an instruction (from the cache) in the same cycle. The
program sequencer uses the cache if there is a data access which uses the
PM bus (called a PM data access) or if a data access over the DM bus uses
the same block of memory as the current instruction fetch (a block
conflict).

In addition to providing data addresses, the Data Address Generators
(DAGs) provide instruction addresses for the sequencer’s indirect
branches.

The sequencer evaluates conditional instructions and loop termination
conditions using information from the status registers. The loop stacks
support nested loops. The status stack stores status registers for imple-
menting interrupt service routines.

Table 3-1 on page 3-6 and Table 3-2 on page 3-7 list the registers within
and related to the program sequencer. All registers in the program
sequencer are register group 1 (Reg1), register group 2 (Reg2), or register

ADSP-219x/2191 DSP Hardware Reference 3-5

Program Sequencer

Figure 3-2. Program Sequencer Block Diagram

I NTE R RUPT C ONTR OLLE R

IN TERR UPT S

P RE FE TCH ADDRE S S (P A)

F E TCH ADDRE S S (FA)

ADDRE S S DE COD E (AD)

I NS TRUCT IO N DE COD E (ID)

E XE CUT E (P C)

INSTR U CTION PIPEL INE

RB
A DD R

INC R
ADD R

PC- REL
B RAN

DIR
BR AN

IND
B RAN

LOOP
ADD R

RT
A DDR

PC STA CKLOOP S TAC K

LO O K AHE AD A DDRE SS (LA)

+1

+

INS TR CA CHE

I NSTR LATCH

ST ATU S &
CO NDI TI ON

LOOP S TATU S

A RITHM ETIC STATUS

C OU NTER E XPI RE D (C E)

L OOP & BR ANC H
C ON T ROL

ADSP-219X
DSP SPECIFIC

ADSP-219X DSP CORE
(C OMMON TO AD SP-219 X FAM ILY)

D MA CONT ROLLER

DMA REQU ESTS

PROGRA MM ABL E
FLAGS

PM D ATA BU S

PM ADD R ESS B US

VEC TOR
AD D R

P C STA TU S

STA C K
A DD RES S

AD D RESS
FRO M DA GS

Overview

3-6 ADSP-219x/2191 DSP Hardware Reference

group 3 (Reg3) registers, so they are accessible to other data (Dreg) regis-
ters and to memory. All the sequencer’s registers are directly readable and
writable, except for the PC. Manual pushing or popping the PC stack is
done using explicit instructions and the PC Stack Page (STACKP) register
and PC Stack Address (STACKA) register, which are readable and writable.
Pushing or popping the loop stacks and status stack also requires explicit
instructions. For information on using these stacks, see “Stacks and
Sequencing” on page 3-36.

A set of system control registers configures or provides input to the
sequencer. These registers include ASTAT, MSTAT, CCODE, IMASK, IRPTL, and
ICNTL. Writes to some of these registers do not take effect on the next
cycle. For example, after a write to the MSTAT register to enable ALU satu-
ration mode, the change does not take effect until one cycles after the
write. With the lists of sequencer and system registers, Table 3-1 on
page 3-6 and Table 3-2 on page 3-7 summarize the number of extra cycles
(latency) for a write to take effect (effect latency) and for a new value to
appear in the register (read latency). A “0” indicates that the write takes
effect or appears in the register on the next cycle after the write instruction
is executed, and a “1” indicates one extra cycle.

Table 3-1. Program Sequencer Register Effect Latencies

Register Contents Bits Effect Latency

CNTR loop count loaded on next Do/Until loop 16 11

1 CNTR has a one-cycle latency before an If Not CE instruction, but has zero latency otherwise.

IJPG Jump Page (upper eight bits of address) 8 1

IOPG I/O Page (upper eight bits of address) 8 1

DMPG1 DAG1 Page (upper eight bits of address) 8 1

DMPG2 DAG2 Page (upper eight bits of address) 8 1

ADSP-219x/2191 DSP Hardware Reference 3-7

Program Sequencer

Instruction Pipeline
The instruction pipeline takes account for memory read latencies. Once
an address emits to on-chip memory it takes two cycles until the data is
available to the core. That is why the LA stage generates the address for
the instruction fetched in the FA stage, and the AD stage outputs the
address(es) for the data read in the PC cycle.

The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the DSP executes

Table 3-2. System Register Effect Latencies

Register Contents Bits Effect Latency

ASTAT Arithmetic status 9 1

MSTAT Mode status 7 01

SSTAT System status 8 n/a

CCODE Condition Code 16 1

IRPTL Interrupt latch 16 1

IMASK Interrupt mask 16 1

ICNTL Interrupt control 16 1

CACTL Cache control 3 52

1 Changing MSTAT bits with the Ena or Dis mode instruction has a 0 effect latency; when writing
to MSTAT or performing a Pop Sts, the effect latencies vary based on the altered bits.

2 Except for the CFZ bit, which has an effect latency of four cycles.

Instruction Pipeline

3-8 ADSP-219x/2191 DSP Hardware Reference

instructions from program memory in sequential order by incrementing
the look-ahead address. Using its instruction pipeline, the DSP processes
instructions in six clock cycles:

• Look-Ahead Address (LA). The DSP determines the source for the
instruction from inputs to the look-ahead address multiplexer.

• Prefetch Address (PA) and Fetch Address (FA). The DSP reads the
instruction from either the on-chip instruction cache or from pro-
gram memory.

• Address Decode (AD) and Instruction Decode (ID). The DSP
decodes the instruction, generating conditions that control instruc-
tion execution.

• Execute (PC). The DSP executes the instruction; the operations
specified by the instruction complete in a single cycle.

These cycles overlap in the pipeline, as shown in Table 3-3 on page 3-9.
In sequential program flow, when one instruction is being fetched, the
instruction fetched three cycles previously is being executed. With few
exceptions, sequential program flow has a throughput of one instruction
per cycle. The exceptions are the two-cycle instructions: 16- or 24-bit
immediate data write to memory with indirect addressing, long jump
(LJUMP), and long call (LCALL).

Any non-sequential program flow can potentially decrease the DSP’s
instruction throughput. Non-sequential program operations include:

• Data accesses that conflict with instruction fetches

• Jumps

• Subroutine calls and returns

• Interrupts and return

• Loops (of less than five instructions)

ADSP-219x/2191 DSP Hardware Reference 3-9

Program Sequencer

Instruction Cache
Usually, the sequencer fetches an instruction from memory on each cycle.
Occasionally, bus constraints prevent some of the data and instructions
from being fetched in a single cycle. To alleviate these data flow con-
straints, the DSP has an instruction cache, which appears in Figure 3-3 on
page 3-11.

When the DSP executes an instruction that requires data access over the
PM data bus, there is a bus conflict because the sequencer uses the PM data
bus for fetching instructions.

Table 3-3. Pipelined Execution Cycles

Cycles LA PA FA AD ID PC

1
0x08

2
0x09 0x08

3
0x0A 0x09 0x08

4
0x0B 0x0A 0x09 0x08

5
0x0C 0x0B 0x0A 0x09 0x08

6
0x0D 0x0C 0x0B 0x0A 0x09

0x08

7
0x0E 0x0D 0x0C 0x0B 0x0A

0x09

8 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A

Look Ahead Address (LA). Prefetch Address (PA). Fetch Address (FA).
Address Decode (AD). Instruction Decode (ID). Execute (PC).

�

� �

� � �

� � � �

� � � � �

� � � � �

� � � � �

Instruction Cache

3-10 ADSP-219x/2191 DSP Hardware Reference

When a data transfer over the DM bus accesses the same memory block
from which the DSP is fetching an instruction, there is a block conflict
because only one bus can access a block at a time.

To avoid bus and block conflicts, the DSP caches these instructions,
reducing delays. Except for enabling or disabling the cache, its operation
requires no intervention. For more information, see “Using the Cache” on
page 3-12 and “Optimizing Cache Usage” on page 3-12.

The first time the DSP encounters a fetch conflict, the DSP must wait to
fetch the instruction on the following cycle, causing a delay. The DSP
automatically writes the fetched instruction to the cache to prevent the
same delay from happening again.

The sequencer checks the instruction cache on every PM data access or
block conflict. If the needed instruction is in the cache, the instruction
fetch from the cache happens in parallel with the program memory data
access, without incurring a delay.

Because of the six-stage instruction pipeline, as the DSP executes an
instruction (at address n) that requires a PM data access or block conflict,
this execution creates a conflict with the instruction fetch (at address
n+3), assuming sequential execution. The cache stores the fetched instruc-
tion (n+3), not the instruction requiring the data access.

If the instruction needed to avoid a conflict is in the cache, the cache pro-
vides the instruction while the data access is performed. If the needed
instruction is not in the cache, the instruction fetch from memory takes
place in the cycle following the data access, incurring one cycle of over-
head. If the cache is enabled and not frozen, the fetched instruction is
loaded into the cache, so that it is available the next time the same conflict
occurs.

Figure 3-3 on page 3-11 shows a block diagram of the instruction cache.
The cache holds 64 instruction-address pairs. These pairs (or cache
entries) are arranged into 32 (31-0) cache sets according to the instruction
address’ five least significant bits (4-0). The two entries in each set (entry

ADSP-219x/2191 DSP Hardware Reference 3-11

Program Sequencer

0 and entry 1) have a valid bit, indicating whether the entry contains a
valid instruction. The least recently used (LRU) bit for each set indicates
which entry was not used last (0=entry 0, and 1=entry 1).

The cache places instructions in entries according to the five LSBs of the
instruction’s address. When the sequencer checks for an instruction to
fetch from the cache, it uses the five address LSBs as an index to a cache
set. Within that set, the sequencer checks the addresses and valid bits of
the two entries, looking for the needed instruction. If the cache contains
the instruction, the sequencer uses the entry and updates the LRU bit to
indicate the entry did not contain the needed instruction.

When the cache does not contain a needed instruction, the cache loads a
new instruction and its address, placing these in the least recently used
entry of the appropriate cache set and toggling the LRU bit.

Figure 3-3. Instruction Cache Architecture

INSTRUCTIONS

SET 0

SET 1

SET 2

SET 29

SET 30

SET 31

ADDRESSE
S

BITS (23-5)

LRU
BIT

VALID
BIT

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ADDRESSE
S

BITS (4-0)
0000

0

0000
1

0001
0

1110
1

1111
0

1111
1

Instruction Cache

3-12 ADSP-219x/2191 DSP Hardware Reference

Using the Cache
After a DSP reset, the cache is cleared (containing no instructions), unfro-
zen, and enabled. From then on, the CACTL register controls the operating
mode of the instruction cache. As a system control register, CACTL can be
accessed by reg(CACTL)=dreg; and dreg=reg(CACTL); instructions.
Table A-6 on page A-20 lists all the bits in CACTL. The following bits in
CACTL control cache modes:

Cache DM bus access Enable. Bit 5 (CDE) directs the sequencer to cache
conflicting DM bus accesses (if 1) or not to cache conflicting DM bus
accesses (if 0).

Cache Freeze. Bit 6 (CFZ) directs the sequencer to freeze the contents of
the cache (if 1) or let new entries displace the entries in the cache (if 0).

Cache PM bus access Enable. Bit 7 (CPE) directs the sequencer to cache
conflicting PM bus accesses (if 1) or not to cache conflicting PM bus
accesses (if 0).

After reset CDE and CPE are set and CFZ is cleared.

When program memory changes, programs need to resynchronize
the instruction cache with program memory using the FLUSH CACHE
instruction. This instruction flushes the instruction cache, invali-
dating all instructions currently cached, so the next instruction
fetch results in a memory access.

Optimizing Cache Usage
Usually, cache operation is efficient and requires no intervention, but cer-
tain ordering of instructions can work against the cache’s architecture and
can degrade cache efficiency. When the order of PM bus data accesses or
block conflicts and instruction fetches continuously displaces cache entries
and loads new entries, the cache is not being efficient. Rearranging the
order of these instructions remedies this inefficiency.

ADSP-219x/2191 DSP Hardware Reference 3-13

Program Sequencer

An example of code that works against cache efficiency appears in
Table 3-4 on page 3-14. The program memory data access at address
0x0100 in the loop, Outer, causes the cache to load the instruction at
0x0103 (into set 19). Each time the program calls the subroutine, Inner,
the program memory data accesses at 0x0300 and 0x500 displace the
instruction at 0x0103 by loading the instructions at 0x0303 and 0x0503
(also into set 19). If the program only calls the Inner subroutine rarely
during the Outer loop execution, the repeated cache loads do not greatly
influence performance. If the program frequently calls the subroutine
while in the loop, the cache inefficiency has a noticeable effect on perfor-
mance. To improve cache efficiency on this code (if for instance,
execution of the Outer loop is time-critical), it would be good to rearrange
the order of some instructions. Moving the subroutine call up one loca-
tion (starting at 0x02FE) would work here, because with that order the two
cached instructions end up in cache set 18 instead of set 19.

Because the least significant five address bits determine which
cache set stores an instruction, instructions in the same cache set
are multiples of 64 address locations apart. As demonstrated in the
optimization example, it is a rare combination of instruction
sequences that can lead to “cache thrashing”—iterative swapping of
cache entries.

Branches and Sequencing
One of the types of non-sequential program flow that the sequencer sup-
ports is branching. A branch occurs when a JUMP or CALL/return
instruction begins execution at a new location, other than the next
sequential address. For descriptions on how to use the JUMP and
CALL/return instructions, see the ADSP-219x DSP Instruction Set Refer-
ence. Briefly, these instructions operate as follows:

Branches and Sequencing

3-14 ADSP-219x/2191 DSP Hardware Reference

A JUMP or a CALL/return instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that a CALL
automatically pushes the return address (the next sequential address after
the CALL instruction) onto the PC stack. This push makes the address avail-
able for the CALL instruction’s matching return instruction, allowing easy
return from the subroutine.

• A return instruction causes the sequencer to fetch the instruction at
the return address, which is stored at the top of the PC stack. The
two types of return instructions are return from subroutine (RTS)

Table 3-4. Cache-Inefficient Code

Address Instruction

0x00FE CNTR=1024;

0x00FF Do Outer Until CE;

0x0100 AX0=DM(I0+=M0), PM(I4+=M4)=AY0;

...

0x0103 If EQ Call Inner;

0x0104 AR=AX1 + AY1;

0x0105 MR=MX0*MY0 (SS);

0x0106 Outer: SR=MX1*MY1(SS);

0x0107 PM(I7+=M7)=SR1;

...

0x02FF Inner: SR0=AY0;

0x0300 AY0=PM(I5+=M5);

...

0x0500 PM(I5+=M5)=AY1;

...

0x05FF Rts;

ADSP-219x/2191 DSP Hardware Reference 3-15

Program Sequencer

and return from interrupt (RTI). While the return from subroutine
(RTS) only pops the return address off the PC stack, the return from
interrupt (RTI) pops the return address and pops the status stack.

There are a number of parameters that programs can specify for branches:

JUMP and CALL/return instructions can be conditional. The program
sequencer can evaluate status conditions to decide whether to execute a
branch. If no condition is specified, the branch is always taken. For more
information on these conditions, see “Conditional Sequencing” on
page 3-41.

• JUMP and CALL/return instructions can be immediate or delayed.
Because of the instructions pipeline, an immediate branch incurs
four lost (overhead) cycles. A delayed branch incurs two cycles of
overhead. For more information, see “Delayed Branches” on page
3-17.

• JUMP and CALL/return instructions can be used within DO/UNTIL
counter (CE) or infinite (FOREVER) loops, but a JUMP or CALL instruc-
tion may not be the last instruction in the loop. For information,
see “Restrictions on Ending Loops” on page 3-24.

The sequencer block diagram in Figure 3-2 on page 3-5 shows that
branches can be direct or indirect. The difference is that the sequencer
generates the address for a direct branch, and the PM data address genera-
tor (DAG2) produces the address for an indirect branch.

Direct branches are JUMP or CALL/return instructions that use an abso-
lute—not changing at runtime—address (such as a program label) or use a
PC-relative 16-bit address. To branch farther, the LJUMP or LCALL instruc-
tions use a 24-bit address. Some instruction examples that cause a direct
branch are:

JUMP fft1024; /* fft1024 is an address label */

CALL 10; /* 10 is a PC-relative address */

Branches and Sequencing

3-16 ADSP-219x/2191 DSP Hardware Reference

Indirect branches are JUMP or CALL/return instructions that use a
dynamic—changes at runtime—address that comes from the PM data
address generator. For more information on the data address generator,
see “DAG Operations” on page 4-9. Some instruction examples that cause
an indirect branch are:

JUMP (I6); /* (i6) is a DAG2 register */

CALL (I7); /* (i7) is a DAG2 register */}

Indirect Jump Page (IJPG) Register
The IJPG register provides the upper eight address bits for indirect Jump
and Call instructions. When performing an indirect branch, the
sequencer gets the lower 16 bits of the branch address from the I register
specified in the JUMP or CALL instruction and uses the IJPG register to com-
plete the address.

At power up, the DSP initializes the IJPG register to 0x0. Initializing the
Indirect Jump Page (IJPG) register only is necessary when the instruction
is located on a page other than the current page.

Changing the contents of the sequencer page register is not auto-
matic and requires explicit programming.

Conditional Branches
The sequencer supports conditional branches. These are JUMP or
Call/return instructions whose execution is based on testing an IF condi-
tion. For more information on condition types in If condition
instructions, see “Conditional Sequencing” on page 3-41.

ADSP-219x/2191 DSP Hardware Reference 3-17

Program Sequencer

Delayed Branches
The instruction pipeline influences how the sequencer handles branches.
For immediate branches—JUMP and CALL/return instructions not specified
as delayed branches (DB), four instruction cycles are lost (NOPs) as the pipe-
line empties and refills with instructions from the new branch.

As shown in Table 3-5 on page 3-17 and Table 3-6 on page 3-18, the
DSP does not execute the four instructions after the branch, which are in
the fetch and decode stages. For a CALL, the next instruction (the instruc-
tion after the CALL) is the return address. During the four lost
(no-operation) cycles, the pipeline fetches and decodes the first instruc-
tion at the branch address.

For delayed branches—JUMP and CALL/return instructions with the delayed
branches (DB) modifier, only two instruction cycles are lost in the pipeline,
because the DSP executes the two instructions after the branch while the
pipeline fills with instructions from the new branch.

Table 3-5. Pipelined Execution Cycles for Immediate Branch
(JUMP/CALL)

Cycles LA PA FA AD ID PC

1 j n+4 nop1

1 n+1, n+2, n+3, and n+4 are suppressed.

n+3 nop1 n+2 nop1 n+1 nop1 n

2 j+1 j n+4 nop1 n+3 nop1 n+2 nop1 Nop2

2 For call, return address (n+1) is pushed on the PC stack.

3 j+2 j+1 j n+4 nop1 n+3 nop1 Nop

4 j+3 j+2 j+1 j n+4 nop1 Nop

5 j+4 j+3 j+2 j+1 j Nop

6 j+5 j+4 j+3 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address.

� � � �

� � �

� �

�

Branches and Sequencing

3-18 ADSP-219x/2191 DSP Hardware Reference

As shown in Table 3-7 on page 3-19 and Table 3-8 on page 3-19, the
DSP executes the two instructions after the branch, while the instruction
at the branch address is fetched and decoded. In the case of a CALL, the
return address is the third instruction after the branch instruction. While
delayed branches use the instruction pipeline more efficiently than imme-
diate branches, it is important to note that delayed branch code can be
harder to understand because of the instructions between the branch
instruction and the actual branch.

Besides being somewhat more challenging to code, there are also some
limitations on delayed branches that stem from the instruction pipeline
architecture. Because the delayed branch instruction and the two instruc-

Table 3-6. Pipelined Execution Cycles for Immediate Branch (Return)

Cycles LA PA FA AD ID PC

1 r n+4 nop1 n+3 nop1 n+2 nnop1 n+1 nop1 n

2 r+1 r n+4 nop1 n+3 nop1 n+2 nop1 Nop2

3 r+2 r+1 r n+4 nop1 n+3 nop1 Nop

4 r+3 r+2 r+1 r n+4 nop1 Nop

5 r+4 r+3 r+2 r+1 r Nop

6 r+5 r+4 r+3 r+2 r+1 r

Note that n is the branching instruction, and r is the instruction branch address.

1 n+1, n+2, n+3, and n+4 are suppressed.
2 r (n+1 in Table 3-5 on page 3-17) the return address is popped from PC stack.

� � � �

� � �

� �

�

ADSP-219x/2191 DSP Hardware Reference 3-19

Program Sequencer

Table 3-7. Pipelined Execution Cycles for Delayed Branch (Jump/Call)

Cycles LA PA FA AD ID PC

1 j n+4 nop11 n+3 nop1 n+2 n+1 n

2 j+1 j n+4 nop1 n+3 nop1 n+2 n+12

3 j+2 j+1 j n+4 nop1 n+3 nop1 n+22

4 j+3 j+2 j+1 j n+4 nop1 Nop3

5 j+4 j+3 j+2 j+1 j Nop

6 j+5 j+4 j+3 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address.

1 n+3 and n+4 are suppressed.
2 Delayed branch slots.
3 For call, return address (n+3) is pushed on the PC stack.

Table 3-8. Pipelined Execution Cycles for Delayed Branch (Return)

Cycles LA PA FA AD ID PC

1 r1 n+4 nop2 n+3 nop2 n+2 n+1 n

2 r+1 r n+4 nop2 n+3 nop2 n+2 n+13

3 r+2 r+1 r n+4 nop2 n+3 nop2 n+23

4 r+3 r+2 r+1 r n+4 nop2 Nop

5 r+4 r+3 r+2 r+1 r Nop

6 r+5 r+4 r+3 r+2 r+1 r

Note that n is the branching instruction, and r is the instruction branch address.

1 r (n+1 in Table 3-7 on page 3-19) the return address is popped from PC.
2 stackn+3 and n+4 are suppressed.
3 Delayed branch slots.

� �

� �

� �

�

� �

� �

� �

�

Loops and Sequencing

3-20 ADSP-219x/2191 DSP Hardware Reference

tions that follow it must execute sequentially, the instructions in the two
locations (delayed branch slots) that follow a delayed branch instruction
may not be any of the following:

• Other branches (no JUMP, CALL, or RTI/RTS instructions)

• Any stack manipulations (no PUSH or POP instructions or writes to
the PC stack)

• Any loops or other breaks in sequential operation (no DO/UNTIL or
IDLE instructions)

• Two-cycle instructions may not appear in the second delay branch
slot; these instructions may appear in the first delay branch slot.

Development software for the DSP flags these types of instructions
in the two locations after a delayed branch instruction as code
errors.

Interrupt processing is also influenced by delayed branches and the
instruction pipeline. Because the delayed branch instruction and the two
instructions that follow it must execute sequentially, the DSP does not
immediately process an interrupt that occurs in between a delayed branch
instruction and either of the two instructions that follow. Any interrupt
that occurs during these instructions is latched, but not processed until
the branch is complete.

Loops and Sequencing
Another type of non-sequential program flow that the sequencer supports
is looping. A loop occurs when a DO/UNTIL instruction causes the DSP to
repeat a sequence of instructions infinitely (FOREVER) or until the counter
expires (CE).

ADSP-219x/2191 DSP Hardware Reference 3-21

Program Sequencer

The condition for terminating a loop with the DO/UNTIL logic is loop
Counter Expired (CE). This condition tests whether the loop has com-
pleted the number of iterations loaded from the CNTR register. Loops that
exit with conditions other than CE (using a conditional JUMP) have some
additional restrictions. For more information, see “Restrictions on Ending
Loops” on page 3-24. For more information on condition types in
DO/UNTIL instructions, see “Conditional Sequencing” on page 3-41.

The DO/UNTIL instruction uses the sequencer’s loop and condition features,
which appear in Figure 3-2 on page 3-5. These features provide efficient
software loops, without the overhead of additional instructions to branch,
test a condition, or decrement a counter. The following code example
shows a DO/UNTIL loop that contains three instructions and iterates 30
times.

CNTR=30; DO the_end UNTIL CE; /* loop iterates 30 times */

AX0 = DM(I0+=M0), AY0 = PM(I4+=M4);

AR = AX0-AY0;

the_end: DM(I1+=M0) = AR; /* last instruction in loop */

When executing a DO/UNTIL instruction, the program sequencer pushes the
address of the loop’s last instruction and loop’s termination condition
onto the loop-end stack. The sequencer also pushes the loop-begin
address—address of the instruction following the DO/UNTIL instruction—
onto the loop-begin stack.

Loops and Sequencing

3-22 ADSP-219x/2191 DSP Hardware Reference

The sequencer’s instruction pipeline architecture influences loop termina-
tion. Because instructions are pipelined, the sequencer must test the
termination condition and decrement the counter at the end of the loop.
Based on the test’s outcome, the next fetch either exits the loop or returns
to the beginning of the loop.

The DO/UNTIL instruction supports infinite loops, using the FOR-
EVER condition instead of CE. Software can use a conditional JUMP
instruction to exit such an infinite loop.

When using a conditional JUMP to exit any DO/UNTIL loop, software
must perform some loop stack maintenance (POP LOOP). For more
information, see “Stacks and Sequencing” on page 3-36.

The condition test occurs when the DSP is executing the last instruction
in the loop (at location e, where e is the end-of-loop address). If the condi-
tion tests false, the sequencer repeats the loop, fetching the instruction
from the loop-begin address, which is stored on the loop-begin stack. If
the condition tests true, the sequencer terminates the loop, fetching the
next instruction after the end of the loop and popping the loop stacks. For
more information, see “Stacks and Sequencing” on page 3-36.

Table 3-9 on page 3-22 and Table 3-10 on page 3-23 show the pipeline
states for loop iteration and termination.

Table 3-9. Pipelined Execution Cycles for Loop Back (Iteration)

Cycles LA PA FA AD ID PC

1 e1 e–1 e–2 e–3 e–4 e–5

2 b2 e e–1 e–2 e–3 e–4

3 b+1 b e e–1 e–2 e–3

4 b+2 b+1 b e e–1 e–2

Note that e is the loop end instruction, and b is the loop begin instruction.

ADSP-219x/2191 DSP Hardware Reference 3-23

Program Sequencer

5 b+3 b+2 b+1 b e e–1

6 b+43 b+33 b+23 b+13 b3 e3

7 b+5 b+4 b+3 b+2 b+1 b

1 Termination condition tests false.
2 Loop start address is top of loop-begin stack.
3 For loops of less than six instructions (shorter than the pipeline), the pipeline retains the instructions

in the loop (e through b+4). On the first iteration of such a short loop, there is a branch penalty of
four Nops while the pipeline sets up for the short loop.

Table 3-10. Pipelined Execution Cycles for Loop Termination

Cycles LA PA FA AD ID PC

1 e1 e–1 e–2 e–3 e–4 e–5

2 e+1 e e–1 e–2 e–3 e–4

3 e+2 e+1 e e–1 e–2 e–3

4 e+3 e+2 e+1 e e–1 e–2

5 e+4 e+3 e+2 e+1 e e–1

6 e+5 e+4 e+3 e+2 e+1 e

7 e+6 e+5 e+4 e+3 e+2 e+12

Note that e is the loop end instruction.

1 Termination condition tests true.
2 Loop aborts and loop stacks pop.

Table 3-9. Pipelined Execution Cycles for Loop Back (Iteration)

Cycles LA PA FA AD ID PC

Note that e is the loop end instruction, and b is the loop begin instruction.

Loops and Sequencing

3-24 ADSP-219x/2191 DSP Hardware Reference

Managing Loop Stacks
To support low overhead looping, the DSP stores information for loop
processing in three stacks: loop-begin stack, loop-end stack, and counter
stack. The sequencer manages these stacks for loops that terminate when
the counter expires (DO/UNTIL CE), but does not manage these stacks for
loops that terminate with a conditional JUMP. For information on manag-
ing loop stacks, see “Stacks and Sequencing” on page 3-36.

Restrictions on Ending Loops
The sequencer’s loop features (which optimize performance in many ways)
limit the types of instructions that may appear at or near the end of the
loop. The only absolute restriction is that the last instruction in a loop (at
the loop end label) may not be a CALL/return, a JUMP (DB), or a two-cycle
instruction.

There are restrictions on placing nested loops. For example, nested loops
may not use the same end-of-loop instruction address.

Use care if using PUSH LOOP or POP LOOP instruction inside loops.
Perform any stack maintenance outside of loops.

ADSP-219x/2191 DSP Hardware Reference 3-25

Program Sequencer

Interrupts and Sequencing
This section provides the following topics:

• “Overview” on page 3-25

• “Sensing Interrupts” on page 3-30

• “Masking Interrupts” on page 3-31

• “Latching Interrupts” on page 3-31

• “Stacking Status During Interrupts” on page 3-33

• “Nesting Interrupts” on page 3-34

• “Placing the DSP in Idle Mode” on page 3-36

Overview
Another type of non-sequential program flow that the sequencer supports
is interrupt processing. Interrupts may stem from a variety of conditions,
both internal and external to the processor. In response to an interrupt,
the sequencer processes a subroutine call to a predefined address, the
interrupt vector. The DSP assigns a unique vector to each interrupt.

The ADSP-219x DSP core supports 16 prioritized interrupts. The four
highest-priority interrupts (reset, powerdown, stack, and kernel) are part
of the DSP core and are common to all ADSP-219x DSPs. The rest of the
interrupt levels are assignable to peripherals off the DSP core and vary
with the particular DSP. For information on working with peripheral
interrupts, see “System Interrupt Controller” on page 6-1 and “Configur-
ing and Servicing Interrupts” on page 14-27.

The DSP supports a number of prioritized, individually-maskable off-core
interrupts, some of which can be either level- or edge-sensitive. External
interrupts occur when an off-chip device asserts one of the DSP’s inter-

Interrupts and Sequencing

3-26 ADSP-219x/2191 DSP Hardware Reference

rupt inputs. The DSP also supports internal interrupts. An internal
interrupt can stem from stack overflows or a program writing to the inter-
rupt’s bit in the IRPTL register. Several factors control the DSP’s response
to an interrupt.

The DSP responds to an interrupt request when:

• The DSP is executing instructions or is in an IDLE state

• The interrupt is not masked

• Interrupts are globally enabled

• A higher-priority request is not pending

When the DSP responds to an interrupt, the sequencer branches program
execution with a call to the corresponding interrupt vector address.
Within the DSP’s program memory, the interrupt vectors are grouped in
an area called the interrupt vector table. The interrupt vectors in this table
are spaced at intervals that varies with the particular DSP; this spacing
permits placing most interrupt service routines at the vector location—
instead of branching to the actual interrupt service routine from the vector
location. For a list of interrupt vector addresses and their associated latch
and mask bits, see “System Interrupt Controller” on page 6-1. Each inter-
rupt vector has associated latch and mask bits. Table A-4 on page A-16
lists the latch and mask bits.

To process an interrupt, the DSP’s program sequencer:

1. Outputs the appropriate interrupt vector address

2. Pushes the next PC value (the return address) onto the PC stack

3. Pushes the current value of the ASTAT and MSTAT registers onto the
status stack

4. Clears the appropriate bit in the interrupt latch register (IRPTL)

ADSP-219x/2191 DSP Hardware Reference 3-27

Program Sequencer

At the end of the interrupt service routine, the sequencer processes the
return from interrupt (RTI) instruction and:

1. Returns to the address stored at the top of the PC stack

2. Pops this value off of the PC stack

3. Pops the status stack

All interrupt service routines should end with a return-from-interrupt
(RTI) instruction. Although the interrupt vector table holds space for a
reset service routine, it is important to note that DSP reset/startup rou-
tines do not operate the same as other interrupt service routines. After
reset, the PC stack is empty, so there is no return address. The last instruc-
tion of the reset service routine should be a JUMP to the start of the
program.

If software writes to a bit in IRPTL forcing an interrupt, the processor rec-
ognizes the interrupt in the following cycle, and four cycles of branching
to the interrupt vector follow the recognition cycle.

The DSP responds to interrupts in three stages: synchronization and
latching (1 cycle), recognition (1 cycle), and branching to the interrupt
vector (four cycles). Table 3-11 on page 3-28, Table 3-12 on page 3-29,
and Table 3-13 on page 3-29 show the pipelined execution cycles for
interrupt processing.

For all interrupts, on-core and off-core, only one instruction is executed
after the interrupt is recognized for service (and before the two instruc-
tions are aborted) while the processor fetches and decodes the first
instruction of the service routine. For more information on interrupt
latency, see “System Interrupt Controller” on page 6-1.

If nesting is enabled and a higher-priority interrupt occurs immediately
after a lower-priority interrupt, the service routine of the higher-priority
interrupt is delayed by at least three additional cycles. For more informa-
tion, see “Nesting Interrupts” on page 3-34.

Interrupts and Sequencing

3-28 ADSP-219x/2191 DSP Hardware Reference

Certain DSP operations that span more than one cycle hold off interrupt
processing. If an interrupt occurs during one of these operations, the DSP
latches the interrupt, but delays its processing. The operations that delay
interrupt processing are as follows:

• A branch (JUMP or CALL/return) instruction and the following cycle,
whether it is an instruction (in a delayed branch) or a NOP (in a
non-delayed branch)

• The first of the two cycles used to perform a PM bus data access
and an instruction fetch

• The set up cycles for loops shorter than the instruction pipeline
(fewer than five instructions).

Table 3-11. Pipelined Execution Cycles for Interrupt During Single-Cycle
Instruction

Cycles LA PA FA AD ID PC

1 n+4 n+3 n+2 n+1 n n–11

2 v n+4 nop2 n+3 nop2 n+2 nop2 n+1 nop2 n3

3 v+1 v n+4 nop2 n+3 nop2 n+2 nop2 Nop2

4 v+2 v+1 v n+4 nop2 n+3 nop2 Nop

5 v+3 v+2 v+1 v n+4 nop2 Nop

6 v+4 v+3 v+2 v+1 v Nop

7 v+5 v+4 v+3 v+2 v+1 v4

Note that n is the single-cycle instruction, and v is the interrupt vector instruction.

1 Interrupt occurs.
2 n+1 pushed on PC stack; ASTAT/MSTAT pushed onto status stack; n+1 suppressed.
3 Interrupt recognized.
4 Interrupt vector output.

� � � �

� � �

� �

�

ADSP-219x/2191 DSP Hardware Reference 3-29

Program Sequencer

Table 3-12. Pipelined Execution Cycles for Interrupt During Instruction
with Conflicting PM Data Access (Instruction not Cached)

Cycles LA PA FA AD ID PC

1 n+4 n+3 n+2 n+1 n n–11

2 — n+4 n+3 n+2 n+1 n2

3 v3 n+5 nop4 n+4 nop4 n+3 nop4 n+2 nop4 Nop4

4 v+1 v n+5 nop4 n+4 nop4 n+3 nop4 Nop4

5 v+2 v+1 v n+5 nop4 n+4 nop4 Nop

6 v+3 v+2 v+1 v n+5 nop4 Nop

7 v+4 v+3 v+2 v+1 v Nop

8 v+5 v+4 v+3 v+2 v+1 v5

Note that n is the single-cycle instruction, and v is the interrupt vector instruction.

1 Interrupt occurs.
2 Interrupt recognized, but not processed; PM data access.
3 Interrupt processed.
4 n+1 pushed on PC stack; ASTAT/MSTAT pushed onto status stack; n+1 suppressed.
5 Interrupt vector output.

Table 3-13. Pipelined Execution Cycles for Interrupt During Delayed
Branch Instruction

Cycles LA PA FA AD ID PC

1 n+4 n+3 n+2 n+1 n n–11

2 j n+4 nop n+3 nop n+2 n+1 n2

3 j+1 j n+4 nop n+3 nop n+2 n+1

4 v3 j+1 nop4 j nop4 n+4 nop4 n+3 nop4 n+2

Note that n is the delayed branch instruction, j is the instruction at the branch address, and v is the
interrupt vector instruction.

� � � �

� � �

� �

�

� �

� �

� � � �

Interrupts and Sequencing

3-30 ADSP-219x/2191 DSP Hardware Reference

• Any waitstates for external memory accesses

• Any external memory access that is required when the DSP does
not have control of the external bus or during a host bus grant

Sensing Interrupts
The DSP supports two types of interrupt sensitivity—the signal shape that
triggers the interrupt. On interrupt pins, either the input signal’s edge or
level can trigger an external interrupt. For more information on interrupt
sensitivity and timing, see “System Interrupt Controller” on page 6-1.

5 v+1 v j+1 nop4 j nop4 n+4 nop4 Nop3

6 v+2 v+1 v j+1 nop4 j nop4 Nop4

7 v+3 v+2 v+1 v j+1 nop4 Nop4

8 v+4 v+3 v+2 v+1 v Nop5

9 v+5 v+4 v+3 v+2 v+1 v6

1 Interrupt occurs.
2 Interrupt recognized, but not processed.
3 Interrupt processed.
4 ASTAT/MSTAT pushed onto status stack; n+3 suppressed.
5 j pushed on PC stack; j+1 suppressed.
6 Interrupt vector output.

Table 3-13. Pipelined Execution Cycles for Interrupt During Delayed
Branch Instruction (Cont’d)

Cycles LA PA FA AD ID PC

Note that n is the delayed branch instruction, j is the instruction at the branch address, and v is the
interrupt vector instruction.

� � �

� �

�

ADSP-219x/2191 DSP Hardware Reference 3-31

Program Sequencer

Masking Interrupts
The sequencer supports interrupt masking—latching an interrupt, but not
responding to it. Except for the emulator (EMU), reset (RESET), and power-
down interrupts, all interrupts are maskable. If a masked interrupt is
latched, the DSP responds to the latched interrupt if it is later unmasked.

Interrupts can be masked globally or selectively. Bits in the ICNTL and
IMASK registers control interrupt masking. Figure A-5 on page A-16 lists
the bits in ICNTL, and Table A-4 on page A-16 lists the bits in IMASK.
These bits control interrupt masking as follows:

• Global interrupt enable. ICNTL, Bit 5 (GIE) directs the DSP to
enable (if 1) or disable (if 0) all interrupts

• Interrupt mask. IMASK, Bits 15-0 direct the DSP to enable (if 1) or
disable/mask (if 0) the corresponding interrupt

At runtime, it is recommended to control the GIE bit through the
“ENA INT;” and “DIS INT;” instruction pair. All maskable interrupts are
disabled at reset. For booting, the DSP automatically unmasks associated
interrupts and uses the selected peripheral as the source for boot data.

Latching Interrupts
When the DSP recognizes an interrupt, the DSP’s Interrupt Latch (IRPTL)
register latches the interrupt—sets a bit to record that the interrupt
occurred. The bits in this register indicate all interrupts that are currently
being serviced or are pending. Because the IRPTL register is readable and
writable, interrupts can be set or cleared in software. For example,
“IRPTL = 0;” clears all interrupt requests.

Programs can use the SETINT and CLRINT instructions to set or clear
individual interrupts in IRPTL without the risk of affecting other
incoming interrupts.

Interrupts and Sequencing

3-32 ADSP-219x/2191 DSP Hardware Reference

When returning from an interrupt, the sequencer clears the corresponding
bit in IRPTL. During execution of the interrupt’s service routine, the DSP
core cannot latch the same interrupt again while the service routine is
executing.

The interrupt latch bits in IRPTL correspond to interrupt mask bits in the
IMASK register. In both registers, the interrupt bits are arranged in order of
priority. The interrupt priority is from 0 (highest) to 15 (lowest). Inter-
rupt priority determines which interrupt is serviced first when more than
one occurs in the same cycle. Priority also determines which interrupts are
nested when the DSP has interrupt nesting enabled. For more informa-
tion, see “Nesting Interrupts” on page 3-34.

Depending on the assignment of interrupts to peripherals, one event can
cause multiple interrupts, and multiple events can trigger the same inter-
rupt. For more information, see “System Interrupt Controller” on
page 6-1.

Interrupt Vector Table
If an interrupt is latched and granted, program execution jumps to the
interrupt’s vector address. Table 3-14 shows the interrupt vectors associ-
ated with the 16 core interrupt channels.

Table 3-14. Interrupt Priorities/Addresses

Interrupt
IMASK/
IRPTL

Vector

Address1

Emulator (NMI)—
Highest Priority

NA NA

Reset (NMI) 0 0x00 0000

Power-Down (NMI) 1 0x00 0020

Emulation Kernel 2 0x00 0040

Loop and PC Stack 3 0x00 0060

ADSP-219x/2191 DSP Hardware Reference 3-33

Program Sequencer

Every interrupt vector features 32 memory locations. If the interrupt ser-
vice routine takes less than 33 instructions, an additional jump can be
saved. The interrupt vector tables resides at on-chip address 0x000000
unless the RMODE bit of the System Configuration (SYSCR) register is set.
This can also be altered at runtime.

Stacking Status During Interrupts
To run in an interrupt-driven system, programs depend on the DSP being
restored to its pre-interrupt state after an interrupt is serviced. The
sequencer’s status stack eases the return from interrupt process by elimi-

User Assigned Interrupt 4 0x00 0080

User Assigned Interrupt 5 0x00 00A0

User Assigned Interrupt 6 0x00 00C0

User Assigned Interrupt 7 0x00 00E0

User Assigned Interrupt 8 0x00 0100

User Assigned Interrupt 9 0x00 0120

User Assigned Interrupt 10 0x00 0140

User Assigned Interrupt 11 0x00 0160

User Assigned Interrupt 12 0x00 0180

User Assigned Interrupt 13 0x00 01A0

User Assigned Interrupt 14 0x00 01C0

User Assigned Interrupt—Lowest Priority 15 0x00 01E0

1 These interrupt vectors start at address 0x10000 when the DSP is in “no-boot”, run-form-ex-
ternal memory mode.

Table 3-14. Interrupt Priorities/Addresses (Cont’d)

Interrupt
IMASK/
IRPTL

Vector

Address1

Interrupts and Sequencing

3-34 ADSP-219x/2191 DSP Hardware Reference

nating some interrupt service overhead—register saves and restores. For a
description of stack operations, see “Stacks and Sequencing” on
page 3-36.

Nesting Interrupts
The sequencer supports interrupt nesting—responding to another inter-
rupt while a previous interrupt is being serviced. Bits in the ICNTL, IMASK,
and IRPTL registers control interrupt nesting. Table A-5 on page A-16 lists
the bits in ICNTL, Table A-5 on page A-16 lists the bits in IMASK, and
IRPTL. These bits control interrupt nesting as follows:

• Interrupt nesting enable.ICNTL, Bit 4 (INE), directs the DSP to
enable (if 1) or disable (if 0) interrupt nesting.

• Interrupt Mask.IMASK, 16 Bits, selectively masks the interrupts.
For each bit’s corresponding interrupt, these bits direct the DSP to
unmask (enable, if 1) or mask (disable, if 0) the matching
interrupt.

• Interrupt Latch. IRPTL, 16 Bits, latch interrupts. For each bit’s cor-
responding interrupt, these bits indicate that the DSP has latched
(pending, if 1) or not latched (not pending, if 0) the matching
interrupt.

When interrupt nesting is disabled, a higher-priority interrupt cannot
interrupt a lower-priority interrupt’s service routine. Other interrupts are
latched as they occur, but the DSP processes them after the active routine
finishes.

When interrupt nesting is enabled, a higher-priority interrupt can inter-
rupt a lower-priority interrupt’s service routine. Lower interrupts are
latched as they occur, but the DSP processes them after the nested rou-
tines finish.

ADSP-219x/2191 DSP Hardware Reference 3-35

Program Sequencer

Programs should only change the interrupt nesting enable (INE) bit while
outside of an interrupt service routine.

If nesting is enabled and a higher-priority interrupt occurs immediately
after a lower-priority interrupt, the service routine of the higher-priority
interrupt is delayed by up to several cycles. This delay allows the first
instruction of the lower-priority interrupt routine to be executed, before it
is interrupted.

If an interrupt re-occurs while its service routine is running and nesting is
enabled, the DSP does not latch the re-occurrence in IRPTL. The DSP
waits until the return from interrupt (RTI) completes, before permitting
the interrupt to latch again.

Interrupt Latency
To service an interrupt, the DSP requires one core cycle for synchroniza-
tion, another cycle for recognition, and four cycles to branch to the
interrupt vector. Additionally servicing can be delayed by the following
conditions:

• Higher or even priority interrupt is running

• Lower priority interrupt is running, but nesting is disabled

• Interrupted code executes a delayed branch

• Interrupted code enters a hardware loop

• Interrupted code causes a cache miss

• External memory waitstates

• Host bus grant situations

Stacks and Sequencing

3-36 ADSP-219x/2191 DSP Hardware Reference

Placing the DSP in Idle Mode
The sequencer supports placing the DSP in IDLE—a special instruction
that halts the processor core—until an interrupt occurs. When executing
an Idle instruction, the sequencer fetches one more instruction at the cur-
rent fetch address and then suspends operation. The DSP’s I/O processor
is not affected by the IDLE instruction—DMA transfers to or from internal
memory continue uninterrupted—depending on the IDLE mode.

The processor’s on-chip peripherals continue to run during IDLE. When
an interrupt occurs, the processor responds normally. After two cycles
used to fetch and decode the first instruction of the interrupt service rou-
tine, the processor resumes execution with the service routine.

For information on using IDLE with power-down modes, see
“Using Clock Modes” on page 14-37.

Stacks and Sequencing
The sequencer includes five stacks: PC stack, loop-begin stack, loop-end
stack, counter stack, and status stack. These stacks preserve information
about program flow during execution branches. Figure 3-4 on page 3-37
shows how these stacks relate to each other and to the registers that load
(PUSH) or are loaded from (POP) these stacks. Besides showing the opera-
tions that occur during explicit push and pop instructions, Figure 3-4 on
page 3-37 also indicates which stacks the DSP automatically pushes and
pops when processing different types of branches: loops (DO/UNTIL), calls
(CALL/return), and interrupts.

These stacks have differing depths. The PC stack is 33 locations deep; the
status stack is 16 locations deep; and the loop begin, loop end, and
counter stacks are eight locations deep. A stack is full when all entries are

ADSP-219x/2191 DSP Hardware Reference 3-37

Program Sequencer

Figure 3-4. Program Sequencer Stacks

8 BITS 16 BITS 8 BITS 16 BITS 16 BITS

CNTRLPSTACKP LPSTACKA:STACKP STACK A:

LOOP BEGIN STACK

(8 ENTRIES)

LOOP END STACK

(8 ENTRIES)

COUNTER STACK

(8 ENTRIES)

PC STACK

(33 ENTRIES)

9 BITS

ASTAT

7 BITS

MSTAT

STATUS STACK

(16 ENTRIES)

THE DSP USES THESE STACKS FOR:

• DO/UNTIL LOOPS

• CALL/RETURN INSTRUCTIONS

• INTERRUPT SERVICE ROUNTINES

24 BITS

PC

DO/UNTIL,
CALL,

OR

INTERRUPT
(IM PL IC IT P U S H)

PUSH PC
O R

LOOP
(E X P L IC IT

P U S H)

LOOP
ITERATE

OR

RETURN
(IMP L IC IT P O P)

POP PC
OR

LOOP
(E X P L IC IT

POP)

PUSH
LOOP

(E X PLIC IT
P U S H)

POP
LOOP

(E X P L IC IT
P O P)

DO
UNTIL
(IMP L IC IT

P U S H)
OR

PUSH
LOOP

(E X PL IC IT
P U S H)

POP
LOOP

(E X P L IC IT
P OP)

24 BITS

LOOP-END-ADDRESSDO/UNTIL
(IMPLICIT

PUSH)

INTERRUPT
(IM P L IC IT P U SH)

OR

PUSH STS
(E X P L IC IT PU S H)

RETURN
(IMP L IC IT P O P)

OR

POP STS
(E X P L IC IT P OP)

Stacks and Sequencing

3-38 ADSP-219x/2191 DSP Hardware Reference

occupied. Bits in the SSTAT register indicate the stack status. Figure A-3 on
page A-11 lists the bits in the SSTAT register. The SSTAT bits that indicate
stack status are:

• PC stack empty. Bit 0 (PCSTKEMPTY) indicates that the PC stack
contains at least one pushed address (if 0) or PC stack is empty
(if 1).

• PC stack full. Bit 1 (PCSTKFULL) indicates that the PC stack con-
tains at least one empty location (if 0) or PC stack is full (if 1).

• PC stack level. Bit 2 (PCSTKLVL) indicates that the PC stack con-
tains between 3 and 28 pushed addresses (if 0) or PC stack is at or
above the high-watermark—28 pushed addresses, or it is at or
below the low-watermark—3 pushed addresses (if 1).

• Loop stack empty. Bit 4 (LPSTKEMPTY) indicates that the loop stack
contains at least one pushed address (if 0) or the loop stack is
empty (if 1).

• Loop stack full. Bit 5 (LPSTKFULL) indicates that the loop stack
contains at least one empty location (if 0) or the loop stack is full
(if 1).

• Status stack empty. Bit 6 (STSSTKEMPTY) indicates that the status
stack contains at least one pushed status (if 0) or status stack is
empty (if 1).

• Stacks overflowed. Bit 7 (STKOVERFLOW) indicates that an over-
flow/underflow has not occurred (if 0) or indicates that at least one
of the stacks (PC, loop, counter, status) has overflowed, or the PC
or status stack has underflowed (if 1). Note that STKOVERFLOW is
only cleared on reset. Loop stack underflow is not detected because
it occurs only as a result of a POP LOOP operation.

ADSP-219x/2191 DSP Hardware Reference 3-39

Program Sequencer

Stack status conditions can cause a STACK interrupt. The stack interrupt
always is generated by a stack overflow condition, but also can be gener-
ated by ORing together the stack overflow status (STKOVERFLOW) bit and
stack high/low level status (PCSTKLVL) bit. The level bit is set when:

• The PC stack is pushed and the resulting level is at or above the
high watermark.

• The PC stack is popped and the resulting level is at or below the
low watermark.

This spill-fill mode (using the stack’s status to generate a stack interrupt)
is disabled on reset. Bits in the ICNTL register control whether the DSP
generates this interrupt based on stack status. Table A-5 on page A-16 lists
the bits in the ICNTL register. The bits in ICNTL that enable the STACK
interrupt are:

• Global interrupt enable. Bit 5 (GIE) globally disables (if 0) or
enables (if 1) unmasked interrupts

• PC stack interrupt enable. Bit 10 (PCSTKE) directs the DSP to dis-
able (if 0) or enable (if 1) spill-fill mode—ORing of stack status—
to generate the STACK interrupt.

When switching on spill-fill mode, a spurious (low) stack level
interrupt may occur (depending on the level of the stack). In this
case, the interrupt handler should push some values on the stack to
raise the level above the low-level threshold.

Values move onto (PUSH) or off (POP) the stacks through implicit and
explicit operations. Implicit stack operations are stack accesses that the
DSP performs while executing a branch instruction (CALL/return,
DO/UNTIL) or while responding to an interrupt. Explicit stack operations
are stack accesses that the DSP performs while executing the stack instruc-
tions (PUSH, POP).

Stacks and Sequencing

3-40 ADSP-219x/2191 DSP Hardware Reference

As shown in Figure 3-4 on page 3-37, the source for the pushed values and
destination for the pop value differs depending on whether the stack oper-
ations is implicit or explicit.

In implicit stack operations, the DSP places values on the stacks from reg-
isters (PC, CNTR, ASTAT, MSTAT) and from calculated addresses (end-of-loop,
PC+1). For example, a CALL/return instruction directs the DSP to branch
execution to the called subroutine and push the return address (PC+1) onto
the PC stack. The matching return from subroutine instruction (RTS)
causes the DSP to pop the return address off of the PC stack and branch
execution to the address following the CALL.

A second instruction that makes the DSP perform implicit stack opera-
tions is the Do/Until instruction. It takes the following steps to set up a
DO/UNTIL loop:

• Load the loop count into the CNTR register

• Initiate the loop with a DO/UNTIL instruction

• Terminate the loop with an end-of-loop label

When executing a DO/UNTIL instruction, the DSP performs the following
implicit stack operations:

• Pushes the loop count from the CNTR register onto the counter stack

• Pushes the start-of-loop address from the PC onto the loop start
stack

• Pushes the end-of-loop address from the end-of-loop label onto the
loop-end stack

When the count in the top location of the counter stack expires, the loop
terminates, and the DSP pops the three loop stacks, resuming execution at
the address after the end of the loop. The count is decremented on the
stack, not in the CNTR register.

ADSP-219x/2191 DSP Hardware Reference 3-41

Program Sequencer

A third condition/instruction that makes the DSP perform implicit stack
operations is an interrupt/return instruction. When interrupted, the DSP
pushes the PC onto the PC stack, pushes the ASTAT and MSTAT registers onto
the status stack, and branches execution to the interrupt service routine’s
location (vector). At the end of the routine, the return from interrupt
instruction directs the DSP to pop these stacks and branch execution to
the instruction after the interrupt (PC+1).

In explicit stack operations, a program’s access to the stacks goes through a
set of registers: STACKP, STACKA, LPSTACKP, LPSTACKA, CNTR, ASTAT, and
MSTAT. A POP instruction retrieves the value or address from the corre-
sponding stack (PC, Loop, or Sts) and places that value in the
corresponding register (as shown in Figure 3-4 on page 3-37). A PUSH
instruction takes the value or address from the register and puts it on the
corresponding stack. Programs should use explicit stack operations for
stack maintenance, such as managing the stacks when exiting a DO/UNTIL
loop with a conditional JUMP.

Conditional Sequencing
The sequencer supports conditional execution with conditional logic that
appears in Figure 3-4 on page 3-37. This logic evaluates conditions for
conditional (IF) instructions and loop (DO/UNTIL) terminations. The con-
ditions are based on information from the arithmetic status (ASTAT)
register, the condition code (CCODE) register, the flag inputs, and the loop
counter. For more information on arithmetic status, see “Using Computa-
tional Status” on page 2-18.

Each condition that the DSP evaluates has an assembler mnemonic. The
condition mnemonics for conditional instructions appear in Table 3-15
on page 3-42. For most conditions, the sequencer can test both true and
false states. For example, the sequencer can evaluate ALU equal-to-zero
(EQ) and ALU not-equal-to-zero (NE).

Conditional Sequencing

3-42 ADSP-219x/2191 DSP Hardware Reference

To test conditions that do not appear in Table 3-15 on page 3-42, a pro-
gram can use the test bit (TSTBIT) instruction to test bit values loaded
from status registers. For more information, see the ADSP-219x DSP
Instruction Set Reference.

Table 3-15. IF Condition and DO/UNTIL Termination Logic

Syntax Status Condition True If: Do/Until If cond

EQ Equal Zero AZ = 1

NE Not Equal Zero AZ = 0

LT Less Than Zero AN .XOR. AV = 1

GE Greater Than or Equal
Zero

AN .XOR. AV = 0

LE Less Than or Equal Zero (AN .XOR. AV)
.OR. AZ = 1

GT Greater Than Zero (AN .XOR. AV)
.OR. AZ = 0

AC ALU Carry AC = 1

Not AC Not ALU Carry AC = 0

AV ALU Overflow AV = 1

Not AV Not ALU Overflow AV = 0

MV MAC Overflow MV = 1

Not MV Not MAC Overflow MV = 0

SWCOND Compares value in
CCODE register with
following DSP condi-
tions: PF0-13 inputs Hi,
AS, SV

CCODE=SWCOND

ADSP-219x/2191 DSP Hardware Reference 3-43

Program Sequencer

The two conditions that do not have complements are CE/NOT CE (loop
counter expired/not expired) and TRUE/FOREVER. The context of these con-
dition codes determines their interpretation. Programs should use TRUE
and NOT CE in conditional (IF) instructions. Programs should use FOREVER
and CE to specify loop (DO/UNTIL) termination. A DO FOREVER instruction
executes a loop indefinitely, until an interrupt, jump, or reset intervenes.

There are some restrictions on how programs may use conditions in
DO/UNTIL loops. For more information, see “Restrictions on Ending
Loops” on page 3-24.

Not SWCOND Compares value in
CCODE register with
following DSP condi-
tions: PF0-13 inputs Lo,
Not AS, Not SV

CCODE= Not SWCOND

CE Counter Expired loop counter = 0

Not CE Counter Not Expired loop counter = Not 0

Forever Always (Do)

True Always (If)

Table 3-15. IF Condition and DO/UNTIL Termination Logic (Cont’d)

Syntax Status Condition True If: Do/Until If cond

Sequencer Instruction Summary

3-44 ADSP-219x/2191 DSP Hardware Reference

Sequencer Instruction Summary
Table 3-16 on page 3-45 lists the program sequencer instructions and how
they relate to SSTAT flags. For more information on assembly language
syntax, see the ADSP-219x DSP Instruction Set Reference. In Table 3-16
on page 3-45, note the meaning of the following symbols:

• Reladdr# indicates a PC-relative address of #number of bits

• Addr24 indicates an absolute 24-bit address

• Ireg indicates an Index (I) register in either DAG

• Imm4 indicates an immediate 4-bit value

• Addr24 indicates an absolute 24-bit address

• * indicates the flag may be set or cleared, depending on results of
instruction

• – indicates no effect

ADSP-219x/2191 DSP Hardware Reference 3-45

Program Sequencer

Table 3-16. Sequencer Instruction Summary

Instruction SSTAT Status Flags

LE LF PE PF PL SE SO

Do <Reladdr12> Until [CE, Forever]; * * – – – – *

[If Cond] Jump <Reladdr13> [(DB)]; – – – – – – –

Call <Reladdr16> [(DB)]; – – * * * – *

Jump <Reladdr16> [(DB)]; – – – – – – –

[If Cond] Lcall <Addr24>; – – * * * – *

[If Cond] Ljump <Addr24>; – – – – – – –

[If Cond] Call <Ireg> [(DB)]; – – * * * – *

[If Cond] Jump <Ireg> [(DB)]; – – – – – – –

[If Cond] Rti [(DB)]; – – * * * * –

[If Cond] Rts [(DB)]; – – * * * – –

Push |PC, Loop, Sts|; * * * * * * *

Pop |PC, Loop, Sts|; * * * * * * *

Flush Cache; – – – – – – –

Setint <Imm4>; – – * * * * *

Clrint <Imm4>; – – – – – – –

Nop; – – – – – – –

Idle; – – – – – – –

Ena | MM, AS, OL, BR, SR, BSR, INT | ; – – – – – – –

Dis | MM, AS, OL, BR, SR, BSR, INT | ; – – – – – – –

Abbreviations for SSTAT Flags:
LE = LPSTKEMPTY
LF = LPSTKFULL
PE = PCSTKEMPTY
PF = PCSTKFULL
PL = PCSTKLVL
SE = STSSTKEMPTY
SO = STKOVERFLOW

Sequencer Instruction Summary

3-46 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x/2191 DSP Hardware Reference 4-1

4 DATA ADDRESS
GENERATORS (DAGS)

This chapter provides the following sections:

• “Overview” on page 4-1

• “Setting DAG Modes” on page 4-4

• “Using DAG Status” on page 4-8

• “DAG Operations” on page 4-9

• “DAG Register Transfer Restrictions” on page 4-21

• “DAG Instruction Summary” on page 4-23

Overview
The DSP’s Data Address Generators (DAGs) generate addresses for data
moves to and from Data Memory (DM) and Program Memory (PM). By
generating addresses, the DAGs let programs refer to addresses indirectly,
using a DAG register instead of an absolute address. The DAG architec-
ture, which appears in Figure 4-1 on page 4-3, supports several functions
that minimize overhead in data access routines. These functions include:

• Supply address and post-modify—provides an address during a
data move and auto-increments the stored address for the next
move.

• Supply pre-modified address—provides a modified address during
a data move without incrementing the stored address.

Overview

4-2 ADSP-219x/2191 DSP Hardware Reference

• Modify address—increments the stored address without perform-
ing a data move.

• Bit-reverse address—provides a bit-reversed address during a data
move without reversing the stored address.

The ADSP-2191 has a unified memory, so Program Memory and
Data Memory distinction differ from previous ADSP-218x DSPs.
For information on the unified memory, see “Overview” on
page 5-1.

As shown in Figure 4-1 on page 4-3, each DAG has five types of registers.
These registers hold the values that the DAG uses for generating addresses.
The types of registers are:

• Index registers (I0-I3 for DAG1 and I4-I7 for DAG2). An Index
register holds an address and acts as a pointer to memory. For
example, the DAG interprets DM(I0) and PM(I4) syntax in an
instruction as addresses.

• Modify registers (M0-M3 for DAG1 and M4-M7 for DAG2).
A Modify register provides the increment or step size by which an
index register is pre- or post-modified during a register move. For
example, the dm(I0+=M1) instruction directs the DAG to output the
address in register I0 then modify the contents of I0 using the M1
register.

• Length and Base registers (L0-L3 and B0-B3 for DAG1 and
L4-L7 and B4-B7 for DAG2). Length registers and Base registers
set up the range of addresses and the starting address for a circular
buffer. For more information on circular buffers, see “Addressing
Circular Buffers” on page 4-12.

• DAG Memory Page registers (DMPG1 for DAG1 and DMPG2
for DAG2). Page registers set the upper eight bits address for DAG
memory accesses; the 16-bit Index registers and Base registers hold

ADSP-219x/2191 DSP Hardware Reference 4-3

Data Address Generators (DAGs)

the lower 16 bits. For more information on about DAG page regis-
ters and addresses from the DAGs, see “Data Memory Page
Registers (DMPGx)” on page 4-7.

Do not assume that the L registers are automatically initialized to
zero for linear addressing. The I, M, L, and B registers contain ran-
dom values following DSP reset. For each I register used, programs

Figure 4-1. Data Address Generator (DAG) Block Diagram

MSTAT

MUX

MUX

ADD

I
REGISTERS

4 X 16

16

16

16

1616

IMMEDIATE
VALUE FROM
INSTRUCTION

DAG PAGE (DMPG1 OR DMPG2) PROVIDES
UPPER 8 BITS OF ADDRESS

(OPTIONAL BIT-REVERSE DOES NOT APPLY TO PAGE)

M
REGISTERS

4 X 16

DM ADDRESS BUS (EITHER DAG1 OR DAG2)

PM ADDRESS BUS (EITHER DAG1 OR DAG2)

24 24

DM OR PM DATA BUS

L
REGISTERS

4 X 16

B
REGISTERS

4 X 16

MODULUS
LOGIC

1616

UPDATE16

PRE-MODIFY
ADDRESSING

POST-MODIFY
ADDRESSING

Setting DAG Modes

4-4 ADSP-219x/2191 DSP Hardware Reference

must initialize the corresponding L registers to the appropriate
value—either 0 for linear addressing or the buffer length for circu-
lar buffer addressing.

On previous 16-bit, fixed-point DSPs (ADSP-218x family), the
DAG registers are 14-bits wide, instead of 16-bits wide as on the
ADSP-219x DSPs. Because the ADSP-219x DAG registers are
16-bits wide, the DAGs do not need to perform the zero padding
on I and L register writes to memory or the sign extension on M
register writes to memory that is required for previous ADSP-218x
family DSPs.

Setting DAG Modes
The MSTAT register controls the operating mode of the DAGs. Figure A-2
on page A-10 lists all the bits in MSTAT. The following bits in Mode Status
(MSTAT) register control Data Address Generator modes:

• Bit-reverse addressing enable. Bit 1 (BIT_REV) enables bit-reversed
addressing (if 1) or disables bit-reversed addressing (if 0) for DAG1
Index (I0-I3) registers.

• Secondary registers for DAG. Bit 6 (SEC_DAG) selects the corre-
sponding secondary register set (if 1) or selects the corresponding
primary register set—the set that is available at reset—(if 0).

Secondary (Alternate) DAG Registers
Each DAG has an secondary register set. To facilitate fast context switch-
ing, the DSP includes secondary register sets for data, results, and data
address generator registers. The SEC_DAG bit in the MSTAT register controls
when secondary DAG registers become accessible. While inaccessible, the

ADSP-219x/2191 DSP Hardware Reference 4-5

Data Address Generators (DAGs)

contents of secondary registers are not affected by DSP operations.
Figure 4-2 on page 4-5 shows the DAG’s primary and secondary register
sets.

The secondary register sets for the DAGs are described in this section. For
more information on secondary data and results registers, see “Secondary
(Alternate) Data Registers” on page 2-63.

There are no secondary Data Memory Page (DMPGx) registers.
Changing between primary and secondary DAG registers does not
affect DMPGx register settings.

System power-up and reset enable the primary set of DAG address regis-
ters. To enable or disable the secondary address registers, programs set or
clear the SEC_DAG bit in MSTAT. The instruction set provides three methods
for swapping the active set. Each method incurs a latency, which is the
delay between the time the instruction affecting the change executes until
the time the change takes effect and is available to other instructions.
Table A-3 on page A-6 shows the latencies associated with each method.

Figure 4-2. Data Address Generator Primary and Alternate Registers

I0

I1

I2

I3

M0

M1

M2

M3

L0

L1

L2

L3

B0

B1

B2

B3

SEC_DAG

I4

I5

I6

I7

M4

M5

M6

M7

L4

L5

L6

L7

B4

B5

B6

B7

MSTAT SELECT
BIT

DAG1 REGISTERS

DAG2 REGISTERS

Setting DAG Modes

4-6 ADSP-219x/2191 DSP Hardware Reference

When switching between primary and secondary DAG registers, the pro-
gram needs to account for the latency associated with the method used.
For example, after the MSTAT = data12; instruction, a minimum of three
cycles of latency occur before the mode change takes effect. For this
method, the program must issue at least three instructions after
MSTAT = 0x20; before attempting to use the other set of DAG registers.

The ENA/DIS mode instructions are more efficient for enabling and dis-
abling DSP modes because these instructions incur no cycles of effect
latency. For example:

CCODE = 0x9; NOP;

IF SWCOND JUMP do_data; /* Jump to do_data */

do_data:

ENA SEC_REG; /* Switch to 2nd Dregs */

ENA SEC_DAG; /* Switch to 2nd DAGs */

AX0 = DM(buffer); /* if buffer empty, */

AR = PASS AX0; /* go right to fill */

IF EQ JUMP fill; /* and get new data */

RTI;

fill: /* fill routine */

NOP;

buffer: /* buffer data */

NOP;

On previous 16-bit, fixed-point DSPs (ADSP-218x family), there
are no secondary DAG registers.

Bit-Reverse Addressing Mode
The BIT_REV bit in the MSTAT register enables bit-reverse addressing
mode—outputting addresses in bit-reversed order. When BIT_REV is set
(1), the DAG bit-reverses 16-bit addresses output from DAG1 Index reg-

ADSP-219x/2191 DSP Hardware Reference 4-7

Data Address Generators (DAGs)

isters—I0, I1, I2, and I3. Bit-reverse addressing mode affects post-modify
operations. For more information, see “Addressing with Bit-Reversed
Addresses” on page 4-16.

Data Memory Page Registers (DMPGx)
The DAGs and their associated page registers generate 24-bit addresses for
accessing the data needed by instructions. For data accesses, the DSP’s
unified memory space is organized into 256 pages, with 64K locations per
page. The page registers provide the eight MSBs of the 24-bit address,
specifying the page on which the data is located. The DAGs provide the
sixteen LSBs of the 24-bit address, specifying the exact location of the data
on the page.

• The Data Memory Page (DMPG1) register is associated with DAG1
(registers I0—I3) indirect memory accesses and immediate
addressing.

• The DMPG2 page register is associated with DAG2 (registers I4—I7)
indirect memory accesses.

At power up, the DSP initializes both page registers to 0x0. Initializing
page registers only is necessary when the data is located on a page other
than the current page. Programs should set the corresponding page regis-
ter when initializing a DAG index register to set up a data buffer.

For example,

DMPG1 = 0x12; /* set page register or the syntax */

/* “DMPG1 = page(data_buffer); */

/* for relative addressing */

I2 = 0x3456; /* init data buffer; 24b addr=0x123456 */

L2 = 0; /* define linear buffer */

M2 = 1; /* increment address by one */

Using DAG Status

4-8 ADSP-219x/2191 DSP Hardware Reference

/* two stall cycles inserted here */

DM(I2 += M2) = AX0; /* write data to buffer and update I2 */

DAG register (DMPGx, Ix, Mx, Lx, Bx) loads can incur up to two stall
cycles when a memory access based on the initialized register
immediately follows the initialization.

To avoid stall cycles, programs could perform the memory access sequence
as follows:

I2 = 0x3456; /* init data buffer; 24b addr=0x123456 */

L2 = 0; /* define linear buffer */

M2 = 1; /* increment address by one */

DMPG1 = 0x12; /* set page register or use the syntax: */

/* ”DMPG1 = page(data_buffer);” */

/* for relative addressing */AX0 = 0xAAAA; */

AR = AX0 - 1;

DM(I2 += M2) = AR; /* write data to buffer and update I2 */

Typically, programs load both page registers with the same page value
(0-255), but programs can increase memory flexibility by loading each
with a different page value. For example, by loading the page registers
with different page values, programs could perform high-speed data trans-
fers between pages.

Changing the contents of the DAG page registers is not automatic
and requires explicit programming.

Using DAG Status
As described in “Addressing Circular Buffers” on page 4-12, the DAGs
can provide addressing for a constrained range of addresses, repeatedly
cycling through this data (or buffer). A buffer overflow (or wrap around)
occurs each time the DAG circles past the buffer’s base address.

ADSP-219x/2191 DSP Hardware Reference 4-9

Data Address Generators (DAGs)

Unlike the computational units and program sequencer, the DAGs do not
generate status information. So, the DAGs do not provide buffer overflow
information when executing circular buffer addressing. If a program
requires status information for the circular buffer overflow condition, the
program should implement an address range checking routine to trap this
condition.

DAG Operations
The DSP’s DAGs perform several types of operations to generate data
addresses. As shown in Figure 4-1 on page 4-3, the DAG registers and the
MSTAT register control DAG operations. The following sections provide
details on DAG operations:

• “Addressing with DAGs” on page 4-9

• “Addressing Circular Buffers” on page 4-12

• “Addressing with Bit-Reversed Addresses” on page 4-16

• “Modifying DAG Registers” on page 4-20

An important item to note from Figure 4-1 on page 4-3 is that each DAG
automatically uses its Data Memory Page (DMPGx) register to include the
page number as part of the output address. By including the page, DAGs
can generate addresses for the DSP’s entire memory map. For details on
these address adjustments, see “Data Memory Page Registers (DMPGx)”
on page 4-7.

Addressing with DAGs
The DAGs support two types of modified addressing—generating an
address that is incremented by a value or a register. In pre-modify address-
ing, the DAG adds an offset (modifier), either an M register or an
immediate value, to an I register and outputs the resulting address.

DAG Operations

4-10 ADSP-219x/2191 DSP Hardware Reference

Pre-modify addressing does not change (or update) the I register. The
other type of modified addressing is post-modify addressing. In post-mod-
ify addressing, the DAG outputs the I register value unchanged, then the
DAG adds an M register or immediate value, updating the I register value.
Figure 4-3 on page 4-10 compares pre- and post-modify addressing.

The difference between pre-modify and post-modify instructions in the
DSP’s assembly syntax is the operator that appears between the index and
modify registers in the instruction. If the operator between the I and M
registers is += (plus-equals), the instruction is a post-modify operation. If
the operator between the I and M registers is + (plus), the instruction is a

Figure 4-3. Pre-Modify and Post-Modify Operations

I

M

+

OU TPUT I+M

PRE-MODIFY
NO I REGISTER UPDATE

SYNTAX: PM(Ix+Mx)
DM(Ix+Mx)

1. OUTPUT I

M

I+M

+

2. UPDATE

POST-MODIFY
I REGISTER UPDATE

SYNTAX: PM(Ix+=Mx)
DM(Ix+=Mx)

ADSP-219x/2191 DSP Hardware Reference 4-11

Data Address Generators (DAGs)

pre-modify without update operation. The following instruction accesses
the program memory location indicated by the value in I7 and writes the
value I7 plus M6 to the I7 register:

AX0 = PM(I7+=M6); /* Post-modify addressing with update */

By comparison, the following instruction accesses the program memory
location indicated by the value I7 plus M6 and does not change the value in
I7:

AX0 = PM(I7+M6); /* Pre-modify addressing without update */

Modify (M) registers can work with any index (I) register in the same
DAG (DAG1 or DAG2). For a list of I and M registers and their DAGs,
see Figure 4-2 on page 4-5.

On previous 16-bit, fixed-point DSPs (ADSP-2180 family), the
assembly syntax uses a comma between the DAG registers (I,M
indicates post-modify) to select the DAG operation. While the leg-
acy support in the ADSP-219x assembler permits this syntax,
updating ported code to use the ADSP-219x syntax (I+M for pre-
modify and I+=M for post-modify) is advised.

DAG Operations

4-12 ADSP-219x/2191 DSP Hardware Reference

Instructions can use a signed 8-bit number (immediate value), instead of
an M register, as the modifier. For all single data access operations, modify
values can be from an M register or an 8-bit immediate value. The follow-
ing example instruction accepts up to 8-bit modifiers:

AX0 = DM(I1+0x40; /* DM address = I1+0x40 */

Instructions that combine DAG addressing with computations do not
accept immediate values for the modifier. In these instructions (multi-
function computations), the modify value must come from an M register:

AR = AX0+AY0,PM(I4+=m5) = AR; /* PM address = I4, I4=I4+M5 */

Note that pre- and post-modify addressing operations do not
change the memory page of the address. For more information, see
“Data Memory Page Registers (DMPGx)” on page 4-7.

Addressing Circular Buffers
The DAGs support addressing circular buffers—a range of addresses con-
taining data that the DAG steps through repeatedly, “wrapping around”
to repeat stepping through the range of addresses in a circular pattern. To
address a circular buffer, the DAG steps the index pointer (I register)
through the buffer, post-modifying and updating the index on each access
with a positive or negative modify value (M register or immediate value).
If the index pointer falls outside the buffer, the DAG subtracts or adds the
length of the buffer from or to the value, wrapping the index pointer back
to the start of the buffer. The DAG’s support for circular buffer address-
ing appears in Figure 4-1 on page 4-3, and an example of circular buffer
addressing appears in Figure 4-4 on page 4-14.

ADSP-219x/2191 DSP Hardware Reference 4-13

Data Address Generators (DAGs)

The starting address that the DAG wraps around is called the buffer’s base
address (B register). There are no restrictions on the value of the base
address for a circular buffer.

Circular buffering may only use post-modify addressing. The
DAG’s architecture, as shown in Figure 4-1 on page 4-3, cannot
support pre-modify addressing for circular buffering, because cir-
cular buffering requires that the index be updated on each access.

Do not place the index pointer for a circular buffer such that it
crosses a memory page boundary during post-modify addressing.
All memory locations in a circular buffer must reside on the same
memory page. For more information on the DSP’s memory map,
see “Memory” on page 5-1.

As shown in Figure 4-4 on page 4-14, programs use the following steps to
set up a circular buffer:

1. Load the memory page address into the selected DAG’s DMPGx reg-
ister. This operation is needed only once per page change in a
program.

2. Load the starting address within the buffer into an I register in the
selected DAG.

3. Load the modify value (step size) into an M register in the corre-
sponding DAG as the I register. For corresponding registers list, see
Figure 4-2 on page 4-5.

4. Load the buffer’s length into the L register that corresponds to the
I register. For example, L0 corresponds to I0.

5. Load the buffer’s base address into the B register that corresponds
to the I register. For example, B0 corresponds to I0.

The DAG B registers are system control registers. To load these
registers, use the Reg() instruction.

DAG Operations

4-14 ADSP-219x/2191 DSP Hardware Reference

Figure 4-4. Circular Data Buffers

0

1

2

3

4

5

6

7

8

9

10

1

2

3

0

1

2

3

4

5

6

7

8

9

10

4

5

6

0

1

2

3

4

5

6

7

8

9

10

7

8

9

0

1

2

3

4

5

6

7

8

9

10

10

11

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
NOTE THAT "0" ABOVE IS ADDRESS DM(0X1000). THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

.Section/DM seg_data;

.VAR coeff_buffer[11] = 0,1,2,3,4,5,6,7,8,9,10;

.Section/PM seg_code;
DMPG1 = Page(coeff_buffer);/* Set the memory page */
I0 = coeff_buffer; /* Set the current addr */
M1 = 4; /* Set the modify value */
L0 = Length(coeff_buffer); /* If L = 0 buffer is linear */
AX0 = I0; /* Copy the base addr into AX0 */
Reg(B0) = AX0; /* Set the buffer’s base addr */
AR = AX1 And AY0;
AR = DM(I0 += M1); /* Read 1st buffer location */

CNTR = 11; Do my_cir_buffer Until CE;
/* sets up a loop accessing the buffer */

AX0 = DM(I0,M1); /* access using post modify addressing */
Nop; /* other instructions in the loop */
my_cir_buffer: Nop; /* end of my_cir_buffer loop */

ADSP-219x/2191 DSP Hardware Reference 4-15

Data Address Generators (DAGs)

After this setup, the DAGs use the modulus logic in Figure 4-1 on
page 4-3 to process circular buffer addressing.

On the first post-modify access to the buffer, the DAG outputs the I regis-
ter value on the address bus then modifies the address by adding the
modify value. If the updated index value is within the buffer length, the
DAG writes the value to the I register. If the updated value is outside the
buffer length, the DAG subtracts (positive) or adds (negative) the L regis-
ter value before writing the updated index value to the I register.

In equation form, these post-modify and wrap around operations work as
follows:

If M is positive:

Inew = Iold + M if Iold + M < Buffer base + length (end of buffer)

Inew = Iold + M – L if Iold + M Š Buffer base + length (end of
buffer)

If M is negative:

Inew = Iold + M if Iold + M Š Buffer base (start of buffer)

Inew = Iold + M + L if Iold + M < Buffer base (start of buffer)

The DAGs use all types of DAG registers for addressing circular buffers.
These registers operate as follows for circular buffering:

• The index (I) register contains the value that the DAG outputs on
the address bus.

• The modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I register at the end of
each memory access. The M register can be any M register in the
same DAG as the I register. The modify value also can be an imme-

DAG Operations

4-16 ADSP-219x/2191 DSP Hardware Reference

diate value instead of an M register. The size of the modify value,
whether from an M register or immediate, must be less than the
length (L register) of the circular buffer.

• The length (L) register sets the size of the circular buffer and the
address range that the DAG circulates the I register through. L is
positive and cannot have a value greater than 216 – 1. If an L regis-
ter’s value is zero, its circular buffer operation is disabled.

• The base (B) register, or the B register plus the L register, is the
value that the DAG compares the modified I value with after each
access.

On previous 16-bit, fixed-point DSPs (ADSP-218x family), the
DAGs do not have B registers. When porting code that uses circu-
lar buffer addressing, add the instructions needed for loading the
ADSP-219x B register that is associated with the corresponding cir-
cular buffer.

Addressing with Bit-Reversed Addresses
Programs need bit-reversed addressing for some algorithms (particularly
FFT calculations) to obtain results in sequential order. To meet the needs
of these algorithms, the DAG’s bit-reverse addressing feature permits
repeatedly subdividing data sequences and storing this data in bit-reversed
order.

Bit-reversed address output is available on DAG1, while DAG2 always
outputs its address bits in normal, big endian format. Because the two
DAGs operate independently, programs can use them in tandem, with one
generating sequentially ordered addresses and the other generating
bit-reversed addresses, to perform memory reads and writes of the same
data.

ADSP-219x/2191 DSP Hardware Reference 4-17

Data Address Generators (DAGs)

To use bit-reversed addressing, programs set the BIT_REV bit in MSTAT
(ENA BIT_REV). When enabled, DAG1 outputs all addresses generated by
its index registers (I0–I3) in bit-reversed order. The reversal applies only
to the address value DAG1 outputs, not to the address value stored in the
index register, so the address value is stored in big endian format.
Bit-reversed mode remains in effect until disabled (DIS BIT_REV).

Bit reversal operates on the binary number that represents the position of
a sample within an array of samples. Using 3-bit addresses, Table 4-1 on
page 4-17 shows the position of each sample within an array before and
after the bit-reverse operation. Sample 0x4 occupies position b#100 in
sequential order and position b#001 in bit-reversed order. Bit reversing
transposes the bits of a binary number about its midpoint, so b#001
becomes b#100, b#011 becomes b#110, and so on. Some numbers, like
b#000, b#111, and b#101, remain unchanged and retain their original posi-
tion within the array.

Table 4-1. 8-Point Array Sequence Before and After Bit Reversal

Sequential Order Bit Reversed Order

Sample (hexadecimal) Binary Binary Sample (hexadecimal)

0x0 b#000 b#000 0x0

0x1 b#001 b#100 0x4

0x2 b#010 b#010 0x2

0x3 b#011 b#110 0x6

0x4 b#100 b#001 0x1

0x5 b#101 b#101 0x5

0x6 b#110 b#011 0x3

0x7 b#111 b#111 0x7

DAG Operations

4-18 ADSP-219x/2191 DSP Hardware Reference

Bit-reversing the samples in a sequentially ordered array scrambles their
positions within the array. Bit-reversing the samples in a scrambled array
restores their sequential order within the array.

In full 16-bit reversed addressing, bits 7 and 8 of the 16-bit address are the
pivot points for the reversal. (Table 4-2)

The Fast Fourier Transform (FFT) algorithm is a special case for bit-rever-
sal. FFT operations often need only a few address bits reversed. For
example, a 16-point sequence requires four reversed bits, and a 1024-bit
sequence requires ten reversed bits. Programs can bit-reverse address val-
ues less than 16-bits—which reverses a specified number of LSBs only.
Bit-reversing less than the full 16-bit index register value requires that the
program adds the correct modify value to the index pointer after each
memory access to generate the correct bit-reversed addresses.

To set up bit-reversed addressing for address values fewer than 16 bits,
determine:

1. The number of bits to reverse (N)—permits calculating the modify
value

2. The starting address of the linear data buffer—this address must
be zero or an integer multiple of the number of bits to reverse
(starting address = 0, N, 2N, …)

Table 4-2. 16-Bit Reversed Addressing

Normal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit-reversed 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADSP-219x/2191 DSP Hardware Reference 4-19

Data Address Generators (DAGs)

3. The initialization value for the index register—the bit-reversed
value of the first bit-reversed address the DAG outputs

4. The modify register value for updating (correcting) the index
pointer after each memory access—calculated from the formula:
Mreg = 2(16-N)

The following example, sets up bit-reversed addressing that reverses the
eight address LSBs (N = 8) of a data buffer with a starting address of
0x0020 (4N). Following the described steps, the factors to determine are:

1. The number of bits to reverse (N)—eight bits (from description)

2. The starting address of the linear data buffer—0x0020 (4N) (from
description)

3. The initialization value for the index register—this is the first
bit-reversed address DAG1 outputs (0x0004) with bits 15–0
reversed: 0x2000. (Table 4-3)

4. The modify register value for updating (correcting) the index
pointer after each memory access—this is 216-N, which evaluates to
28 or 0x0100.

Listing 4-1 implements this example in assembly code.

Listing 4-1. Bit-reversed addressing, 8 LSBs

br_adds: I4=read_in; /* DAG2 pointer to input samples */

I0=0x0200; /* Base addr of bit_rev output */

M4=1; /* DAG2 increment by 1 */

Table 4-3. Index Register Initialization Value

0x0004 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0x2000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

DAG Operations

4-20 ADSP-219x/2191 DSP Hardware Reference

M0=0x0100; /* DAG1 increment for 8-bit rev. */

L4=0; /* Linear data buffer */

L0=0; /* Linear data buffer */

CNTR=8; /* 8 samples */

ENA BIT_REV; /* Enable DAG1 bit reverse mode */

DO brev UNTIL CE;

AY1=DM(I4+=M4); /* Read sequentially */

brev: DM(I0+=M0)=AY1; /* Write nonsequentially */

DIS BIT_REV; /* Disable DAG1 bit reverse mode */

RTS; /* Return to calling routine */

read_in: /* input buf, could be .extern */

NOP;

Modifying DAG Registers
The DAGs support an operation that modifies an address value in an
index register without outputting an address. The operation, address mod-
ify, is useful for maintaining pointers.

The MODIFY instruction modifies addresses in any DAG index register
(I0-I7) without accessing memory. If the I register’s corresponding B and
L registers are set up for circular buffering, a MODIFY instruction performs
the specified buffer wrap around (if needed). The syntax for MODIFY is sim-
ilar to post-modify addressing (index+=modifier). MODIFY accepts a signed
8-bit immediate values or an M register as the modifier.

ADSP-219x/2191 DSP Hardware Reference 4-21

Data Address Generators (DAGs)

The following example adds 4 to I1 and updates I1 with the new value:

MODIFY(I1+=4);

DAG Register Transfer Restrictions
DAG I, M, and L registers are part of the DSP’s register group 1 (Reg1),
register group 2 (Reg2), and register group 3 (Reg3) register sets; the B reg-
isters are in register memory space. Programs may load the DAG registers
from memory, from another data register, or with an immediate value.
Programs may store DAG registers’ contents to memory or to another data
register.

While instructions to load and use DAG registers may be sequential, the
DAGs insert stall cycles for sequences of instructions that cause instruc-
tion pipeline conflicts. The two types of conflicts are:

• Using an I register (or its corresponding L or B registers) within
two cycles of loading the I register (or its corresponding L or B
registers)

• Using an M register within two cycles of loading the M register

The following code examples and comments demonstrate the conditions
under which the DAG inserts stall cycles. These examples also show how
to avoid these stall conditions.

/* The following sequence of loading and using the DAG */

/* registers does NOT force the DAG to insert stall cycles. */

I0 = 0x1000;

M0 = 1;

L0 = 0xF;

REG(B0) = AX0;

AR = AX0 +AY0;

MR = MX0 * MY0 (SS);

AX1 = DM(I0+=M0);

DAG Register Transfer Restrictions

4-22 ADSP-219x/2191 DSP Hardware Reference

/* This sequence of loading and using the DAG registers */

/* FORCES the DAG to insert two stall cycles. */

M0 = 1;

L0 = 0xF;

REG(B0) = AX0;

I0 = 0x1000;

AX1 = DM(I0+=M0); /* DAG inserts two stall cycles here

/* until I0 can be used */

/* This sequence of loading and using the DAG registers */

/* FORCES the DAG to insert two stall cycles. */

I0 = 0x1000;

L0 = 0xF;

REG(B0) = AX0;

M0 = 1;

AX1 = DM(I0+=M0); /* DAG inserts two stall cycles here

/* until M0 can be used */

/* This sequence of loading and using the DAG registers */

/* FORCES the DAG to insert one stall cycle. */

M0 = 1;

L0 = 0xF;

I0 = 0x1000;

REG(B0) = AX0;

AR = AX0 + AY0;

AX1 = DM(I0+=M0); /* DAG inserts one stall cycle here

/* until I0 (corresponds to B0) can be used

*/

ADSP-219x/2191 DSP Hardware Reference 4-23

Data Address Generators (DAGs)

DAG Instruction Summary
Table 4-4 on page 4-23 lists the DAG instructions. For more information
on assembly language syntax, see the ADSP-219x DSP Instruction Set Ref-
erence. In Table 4-4 on page 4-23, note the meaning of the following
symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location (register
group)

• Reg1, Reg2, Reg3, or Reg indicate register group 1, 2, 3, or any
register

• Ia and Mb indicate DAG1 I and M registers

• Ic and Md indicate DAG2 I and M registers

• Ireg and Mreg indicate I and M registers in either DAG

• Imm# and Data# indicate immediate values or data of the # of bits

Table 4-4. DAG Instruction Summary

Instruction

|DM(Ia += Mb), DM(Ic += Md)| = Reg;

Reg = |DM(Ia += Mb), DM(Ic += Md)|;

|DM(Ia + Mb), DM(Ic + Md)| = Reg;

Reg = |DM (Ia + Mb), DM (Ic + Md)|;

|PM(Ia += Mb), PM(Ic += Md)| = Reg;

Reg = |PM(Ia += Mb), PM(Ic += Md)|;

|PM(Ia + Mb), PM(Ic + Md)| = Reg;

Reg = |PM(Ia + Mb), PM(Ic + Md)|;

DM(Ireg1 += Mreg1) = |Ireg2, Mreg2, Lreg2|, |Ireg2, Mreg2, Lreg2| = Ireg1;

Dreg = DM(Ireg += <Imm8>);

DAG Instruction Summary

4-24 ADSP-219x/2191 DSP Hardware Reference

DM(Ireg += <Imm8>) = Dreg;

Dreg = DM(Ireg + <Imm8>);

DM(Ireg + <Imm8>) = Dreg;

|DM(Ia += Mb), DM (Ic += Md)| = <Data16>;

|PM (Ia += Mb), PM (Ic += Md)| = <Data24>:24;

|Modify (Ia += Mb), Modify (Ic += Md)|;

Modify (Ireg += <Imm8>);

Table 4-4. DAG Instruction Summary (Cont’d)

Instruction

ADSP-219x/2191 DSP Hardware Reference 5-1

5 MEMORY

This chapter provides the following sections:

• “Overview” on page 5-1

• “ADSP-2191 DSP Memory Map” on page 5-9

• “Data Move Instruction Summary” on page 5-18

Overview
The ADSP-2191 contains a large internal memory and provides access to
external memory through the DSP’s external port. This chapter describes
the internal memory and how to use it. For information on configuring,
connecting, and timing accesses to external memory, see “Interfacing to
External Memory” on page 7-15. There are 64K words of internal SRAM
memory on the ADSP-2191, 32K words on the ADSP-2195 and 16K
words on the ADSP-2196. Memory is divided into 16-bit blocks for data
storage and 24-bit blocks for data and instruction storage. The
ADSP-2191 features two 24-bit blocks and two 16-bit blocks, each 16K.
The ADSP-2195 features one 24-bit block and one 16-bit block. The
ADSP-2196 has one 24-bit block and one 14-bit block, 8K in size. Addi-
tionally, there is a 1K word ROM for boot routines.

Including internal and external memory, the DSP can address 16M words
of memory space. External memory connects to the DSP’s external port,
which extends the DSP’s address and data buses off the DSP. The DSP
can make 16- or 24-bit accesses to external memory for data or instruc-

Overview

5-2 ADSP-219x/2191 DSP Hardware Reference

tions. The DSP’s external port automatically packs external data into the
appropriate word width during data transfer. Table 5-1 on page 5-2 shows
the access types and words for DSP external memory accesses.

Most microprocessors use a single address and data bus for memory access.
This type of memory architecture is called Von Neumann architecture.
But, DSPs require greater data throughput than Von Neumann architec-
ture provides, so many DSPs use memory architectures that have separate
buses for program and data storage. The two buses let the DSP get a data
word and an instruction simultaneously. This type of memory architecture
is called Harvard architecture.

Figure 5-1. On-Chip Memory Layout of ADSP-219x Derivatives

Table 5-1. Internal-to-External Memory Word Transfers

Word Type Transfer Type

Instruction 24-bit word transfer1

1 Each packed 24-bit word requires two transfers over 16-bit bus.

Data 16-bit word transfer

16k x 24 bit

16k x 24 bit

16k x 16 bit

16k x 16 bit

16k x 24 bit

16k x 16 bit

8k x 24 bit

8k x 16 bit

ADSP-2191 ADSP-2195 ADSP-2196

003FFF

000000

007FFF

004000

00BFFF

008000

00FFFF

00C000

000000

003FFF

008000

00BFFF

000000
001FFF

008000
009FFF

ADSP-219x/2191 DSP Hardware Reference 5-3

Memory

ADSP-219x family DSPs go a step farther by using a modified Harvard
architecture. This architecture has program and data buses, but provides a
single, unified address space for program and data storage. Although the
16-bit DM bus carries data only, the 24-bit PM bus handles instructions
or data, allowing dual-data access.

Unlike ADSP-218x DSPs, ADSP-219x DSPs have unified memory
address space. 24-bit and 16-bit memories can be accessed by both
the PM and the DM bus system. Although it is not meaningful to
talk about “Program Memory (PM)” and “Data Memory (DM)” in
this architecture, the terms PM and DM are still used to distin-
guish between the two bus systems.

DSP core and DMA-capable peripherals share accesses to internal mem-
ory. Each block of memory can be accessed by the DSP core and
DMA-capable peripherals in every cycle, but a DMA transfer is held off if
contending with the DSP core for access.

A memory access conflict can occur when the processor core attempts two
accesses to the same internal memory block in the same cycle. When this
conflict happens, an extra cycle is incurred. The DM bus access completes
first and the PM bus access completes in the following (extra) cycle.

During a single-cycle, dual-data access, the processor core uses the inde-
pendent PM and DM buses to simultaneously access data from both
memory blocks. Though dual-data accesses provide greater data through-
put, there are some limitations on how programs may use them. The
limitations on single-cycle, dual-data accesses are:

• The two pieces of data must come from different memory blocks.

If the core tries to access two words from the same memory block
(over the same bus) for a single instruction, an extra cycle is
needed. For more information on how the buses access these
blocks, see Figure 5-2 on page 5-5.

Overview

5-4 ADSP-219x/2191 DSP Hardware Reference

• The data access execution may not conflict with an instruction
fetch operation.

• If the cache contains the conflicting instruction, the data access
completes in a single-cycle and the sequencer uses the cached
instruction. If the conflicting instruction is not in the cache, an
extra cycle is needed to complete the data access and cache the con-
flicting instruction. For more information, see “Instruction Cache”
on page 3-9.

Efficient memory usage relies on how the program and data are arranged
in memory and varies with how the program accesses the data. For the
most efficient (single-cycle) accesses, use the above guidelines for arrang-
ing data in memory.

Internal Address and Data Buses
As shown in Figure 5-2 on page 5-5, the DSP has two internal buses con-
nected to its internal memory, the PM bus and DM bus. The I/O
processor—which is the global term for the DMA controllers, DMA channel
arbitration, and peripheral-to-bus connections—also is connected to the
internal memory and external port. The PM bus, DM bus, and I/O pro-
cessor (for DMAs) share two memory ports; one for each block. Memory
accesses from the DSP’s core (computational units, data address genera-
tors, or program sequencer) use the PM or DM buses. The I/O processor
also uses the DM bus for non-DMA memory accesses, such as host port
direct reads and writes, but uses a separate connection to the memory’s
ports for DMA transfers. Using this separate connection and cycle-stealing
DMA, the I/O processor can provide data transfers between internal
memory and the DSP’s communication ports (external port, host port,
serial ports, SPI ports, and UART port) without hindering the DSP core’s
access to memory.

ADSP-219x/2191 DSP Hardware Reference 5-5

Memory

Figure 5-2. ADSP-2191 Memory and Internal Buses Block Diagram

24

24 24

16

PX BUS EXCHANGE REGISTER

PM ADDRESS BUS

PM DATA BUS

DM ADDRESS BUS

DM DATA BUS

(DMA CONTROLLERS AND
DMA CHANNEL ARBITRATION)

(SEE NOTE)

NOTE:

· THE MEMORY BUSES MAY USE ANY TWO PATHS
SIMULTANEOUSLY

· ADDRESSES AND DATA FOLLOW PARALLEL PATHS

DMA
ADDR

DMA
DATA

ADDR DATA

EXTERNAL PORT

ADDRESS DATA

BLOCK 0
(0X0000 - 0X3FFF, 24-BIT WORDS)

BLOCK 3
(0XC000 - 0XFFFF, 16-BIT WORDS)

INTERNAL MEMORY
(PAGE 0)

EXTERNAL
MEMORY

(PAGES 1-254)

I/O PROCESSOR

(STARTING AT 0X01 0000)

24 16
8

16 1624 24

8

DATAADDRESS

24 24

8/1622

I/O
ADDR

I/O
DATA (FO R DMA

OR EXT .
I /O MEM .)

BLOCK 2
(0X8000 - 0XBFFF, 16-BIT WORDS)

BLOCK 1
(0X4000 - 0X7FFF, 24-BIT WORDS)

Overview

5-6 ADSP-219x/2191 DSP Hardware Reference

While the DSP’s internal memory is divided into blocks, the DSP’s exter-
nal memory spaces is divided into banks. External memory banks have
associated memory select (MSx) pins and may be configured for size, clock
ratio, and access waitstates. For more information, see “External Memory
Space” on page 5-13.

The DSP core’s PM bus and DM bus and I/O processor can try to access
internal memory space or external memory space in the same cycle. The
DSP has an arbitration system to handle this conflicting access. Arbitra-
tion is fixed at the following priority: (highest priority) DM bus, PM bus,
and (lowest priority) I/O processor. Also, I/O processor accesses may not
be sequential (beyond each burst access), so the DSP core’s buses are never
held off for more than four cycles.

External Address and Data Buses
Figure 5-2 on page 5-5 also shows that the PM buses, DM buses, and I/O
processor have access to the external bus (pins DATA15–0, ADDR21–0)
through the DSP’s external port. The external port provides access to sys-
tem (off-chip) memory and peripherals. This port also lets the DSP access
shared memory if connected in a multi-DSP system.

Addresses for the PM and DM buses come from the DSP’s program
sequencer and Data Address Generators (DAGs). The program sequencer
and DAGs supply 24-bit addresses for locations throughout the DSP’s
memory spaces. The DAGs supply addresses for data reads and writes on
both the PM and DM address buses, while the program sequencer uses
only the PM address bus for sequencing execution.

The external address bus is 22 bits wide on the ADSP-2191(LQFP
or PBGA 144-lead packages), so the upper two bits of address do
not get generated off-chip.

For memory accesses by different functional blocks of the DSP, the upper
eight bits of the address—the page number—come from different page
registers. The Data Address Generators—DAG1 and DAG2—each are

ADSP-219x/2191 DSP Hardware Reference 5-7

Memory

associated with a Data Memory Page (DMPG1, DMPG2) register, the program
sequencer has an Indirect Jump Page register (IJPG) for indirect jumps,
and I/O memory uses the I/O Memory Page (IOPG) register. For more
information on address generation, see “Program Sequencer” on page 3-1
or “Data Address Generators (DAGs)” on page 4-1.

Because the DSP’s blocks of internal memory are of differing widths, plac-
ing 16-bit data in 24-bit blocks leaves some space unchanged. On-chip
16-bit memory blocks cannot store instructions. For more information on
how the DSP works with memory words, see “Internal Memory Space” on
page 5-12.

The PM data bus is 24 bits wide, and the DM data bus is 16 bits wide.
Both data buses can handle data words (16-bit), but only the PM data bus
carries instruction words (24-bit).

At the processor’s external port, the DSP multiplexes the three memory
buses (PM, DM, and I/O) to create a single off-chip data bus (DATA15–0)
and address bus (ADDR21–0).

The external port interface supports 8-bit and 16-bit memories. Both
types may store data and instructions.

Internal Data Bus Exchange
The internal data buses let programs transfer the contents of one register
to another or to any internal memory location in a single cycle. As shown
in Figure 5-3 on page 5-8, the PM Bus Exchange (PX) register permits data
to flow between the PM and DM data buses. The PX register holds the
lower eight bits during transfers between the PM and DM buses. The
alignment of PX register to the buses appears in Figure 5-3 on page 5-8.

The PX register is a register group 3 (REG3) register and is accessible for
register-to-register transfers.

Overview

5-8 ADSP-219x/2191 DSP Hardware Reference

For transferring data from the PMD bus, the PX register is:

1. Loaded automatically whenever data (not an instruction) is read
from program memory to any register. For example:

AX0 = PM(I4,M4);

In this example, the upper 16 bits of a 24-bit program memory
word are loaded into AX0 and the lower eight bits are automatically
loaded into PX.

2. Read out automatically as the lower eight bits when data is written
to program memory. For example:

PM(I4,M4) = AX0;

In this example, the 16 bits of AX0 are stored into the upper 16 bits
of a 24-bit program memory word. The eight bits of PX are auto-
matically stored to the eight lower bits of the memory word.

Figure 5-3. PM Bus Exchange (PX) Registers

PX Register

0

015

23

DM Data Bus (16-bit)

PM Data Bus (24-bit)

(lower 8 bits)(upper 16 bits)

ADSP-219x/2191 DSP Hardware Reference 5-9

Memory

For transferring data from the DMD bus, the PX register may be:

• Loaded with a data move instruction, explicitly specifying the PX
register as the destination. The lower eight bits of the data value are
used and the upper eight are discarded.

PX = AX0;

• Read with a data move instruction, explicitly specifying the PX reg-
ister as a source. The upper eight bits of the value read from the
register are all zeroes.

AX0 = PX;

If the PM bus is used to read from 16-bit memory, the PX register is filled
with zeros. Whenever any register is written out to program memory, the
source register supplies the upper 16 bits. The contents of the PX register
are automatically added as the lower eight bits. If these lower eight bits of
data to be transferred to program memory (through the PMD bus) are
important, programs should load the PX register from DMD bus before
the program memory write operation. PM bus reads from 16-bit memo-
ries clear the PX register; this includes PM reads of off-chip address space if
the E_DFS bit is cleared. DM bus transfers never use the PX register.

ADSP-2191 DSP Memory Map
The ADSP-2191 memory map appears in Figure 5-4 and has multiple
memory spaces: internal memory space, external memory space, system
control register memory space, I/O memory space, and boot memory
space. register to the buses appears in This section provides the following
topics:

ADSP-2191 DSP Memory Map

5-10 ADSP-219x/2191 DSP Hardware Reference

This section provides the following topics:

• “Overview” on page 5-11

• “Internal Memory Space” on page 5-12

• “External Memory Space” on page 5-13

• “System Control Registers” on page 5-15

• “I/O Memory Space” on page 5-16

• “Boot Memory Space” on page 5-16

• “Shadow Write FIFO” on page 5-17

Figure 5-4. ADSP-2191 Memory Map

BANK2
(MS2)

BANK1
(MS1)

BANK0
(MS0)

BLOCK0, 24-BIT

BLOCK2, 16-BIT

BLOCK1, 24-BIT

BLOCK3, 16-BIT

RESERVED

BOOT ROM, 24-BIT

0x00 4000

0x00 8000

0x01 0000

0x40 0000

0x80 0000

0xC0 0000

0xFF 0000

0xFF 0400
0xFF FFFF

LOGICAL
ADDRESS

64K WORD
MEMORY
PAGES

PAGE 0

PAGES 1–63

PAGES 64–127

PAGES 128–191

PAGES 192–254

PAGE 255INTERNAL
MEMORY

EXTERNAL
MEMORY

(16-BIT)

INTERNAL
MEMORY

MEMORY SELECTS (MS)
FOR PORTIONS OF THE
MEMORY MAP APPEAR
WITH THE SELECTED

MEMORY.

PAGES 1–254

0x01 0000

0xFE FFFF

I/O MEMORY
16-BIT

1K WORD
PAGES 8–255

1K WORD
PAGES 0–7

LOWER PAGE BOUNDARIES
ARE CONFIGURABLE FOR
BANKS OF EXTERNAL MEMORY.
BOUNDARIES SHOWN ARE
BANK SIZES AT RESET.

0x07 3FF
0x08 000

0xFF 3FF

INTERNAL

EXTERNAL
(IOMS)

0x00 0000

0x00 C000

0xFF 03FF

0x00 000

8-BIT 10-BIT

BOOT MEMORY
16-BIT
(BMS)

64K WORD
LOGICAL
ADDRESS

LOGICAL
ADDRESS

BANK3
(MS3)

ADSP-219x/2191 DSP Hardware Reference 5-11

Memory

Overview
These spaces have the following definitions:

• Internal memory space. The internal RAM space ranges from
address 0x00 0000 through 0x00 FFFF. The internal (boot kernel)
ROM space ranges from address 0xFF 0000 through 0xFF 0400.
Internal memory space refers to the DSP’s on-chip SRAM.

• External memory space. This space ranges from address 0x01 0000
through 0xFE FFFF. External memory space refers to off-chip mem-
ory that is accessed through data move instructions and is attached
to the DSP’s external address (ADDR21–0) and data (DATA15–0)
buses. During accesses to external memory space, the DSP gener-
ates memory select (MS3–0) signals for the memory bank that
corresponds to the address.

• System control registers. This space is separate from other memory
spaces and does not appear in Figure 5-4. This space contains
ungrouped registers; not part of a register group. For more infor-
mation, see “System Control Registers” on page 5-15.

• I/O memory space. This space is separate from other memory
spaces and has an address range from address 0x00:0000 through
0xFF:03FF. During accesses to off-chip I/O memory space, the
DSP generates an I/O Memory Select (IOMS) signal. For more
information, see “I/O Memory Space” on page 5-16.

• Boot memory space. This space is separate from other memory
spaces and has an address range from address 0x01 0000 through
0xFE FFFF. During accesses to boot memory space, the DSP gener-
ates a Boot Memory Select (BMS) signal. For more information, see
“Boot Memory Space” on page 5-16.

ADSP-2191 DSP Memory Map

5-12 ADSP-219x/2191 DSP Hardware Reference

Internal Memory Space
The DSP’s internal memory space contains up to 64K words of memory,
which occupy Page 0 on the DSP’s memory map. The memory map is a
unified, continuous address range, but some features of the DSP’s archi-
tecture lead to these block and page distinctions within the map. These
distinctions include:

• Internal memory block width. 24-bit blocks can contain instruc-
tions and data. 16-bit blocks can contain data only.

• Internal bus width. The PM data bus is 24 bits wide, and the DM
data bus is 16 bits wide. While either bus can access either internal
memory block for data, only the PM bus can fetch instructions.

• Data Address Generators. DAG1 and DAG2 each are associated
with a DAG page (DMPG1, DMPG2) register and generate addresses for
Block 1 and Block 2. Both DAGs can generate external memory
addresses.

• Page size. Architectural constraints (which are described in the
Program Sequencer and Data Address Generators chapters) lead to
64K-word page segmentation of memory—a 16-bit address range
per page. To move beyond a page range requires changing a value
in a page register. These registers hold the upper eight bits of the
24-bit address. There are page registers associated with inter-
nal/external/boot memory space and I/O memory space. These
registers include: DMPGx, IJPG, and IOPG.

To execute programs and use data in internal memory, the
ADSP-2191 operates similarly to previous ADSP-218x DSPs. For
internal memory operations, paging is not required, and the page
registers remain at their reset values (Page 0).

ADSP-219x/2191 DSP Hardware Reference 5-13

Memory

The DSP’s memory architecture permits either bus to access either inter-
nal memory block and also permits dual accesses—a single cycle operation
where each bus accesses a block of memory. To arbitrate simultaneous
accesses, the memory interface:

• Processes a memory read before memory write

• Processes a DM bus access before a PM bus access

Because the internal PM and DM buses are multiplexed at the DSP’s
external port, external memory accesses differ slightly from internal mem-
ory accesses. For more information, see “External Memory Space” on
page 5-13.

Also on-chip, the DSP has an internal boot kernel ROM on memory
Page 255. Programs should treat this area as reserved and should not
access this area at runtime.

External Memory Space
The DSP’s external memory space can address four banks of memory,
which contain Page 1 through Page 254 on the DSP’s memory map. Pro-
grams can configure the number of 64K-word pages per bank, but the
addresses for each page are fixed and are part of the unified, continuous
address range. For more information on accessing pages through page reg-
isters, see “Internal Memory Space” on page 5-12.

ADSP-2191 DSP Memory Map

5-14 ADSP-219x/2191 DSP Hardware Reference

Though external memory is part of the same unified address and page reg-
ister system as internal memory, the DSP configures and controls access to
internal and external memory differently. Items that are unique to external
memory accesses include:

• Memory bank and space selects (MS3–0, BMS, IOMS). The DSP auto-
matically activates an external memory bank or space’s select line
for each access. For external memory accesses, the DSP activates
the bank’s select line (Bank 0=MS0 through Bank 3= MS3) based on
the memory page of the access.

• Waitstates. The DSP can apply a selectable number of waitstates
for accesses to each external memory bank or space and supports
several waitstate modes.

• Memory bank starting page (bank size). The DSP can select the
starting memory page for each external memory bank, allowing the
size of each bank to be configured.

• Bus arbitration. The DSP must be bus master to access external
memory. To grant bus mastership to other devices, the DSP has
bus request (BR) and bus grant (BG) pins. If the DSP is stalled, wait-
ing to regain bus mastership, the DSP signals this state with the
bus grant hung (BGH) pin.

• External memory access latencies. The DSP’s core and peripherals
pass data to each other over bus interfaces. Accesses over these
interfaces (for example, a core read or write access to external mem-
ory) involve some interface latencies. These latencies vary,
depending on the type of access. For a list of external memory
access latencies, see Table 7-10 on page 7-26.

To execute programs and use data in external memory, the
ADSP-2191 operates differently from previous ADSP-218x
DSPs—paging is required, the interface has more latencies, and

ADSP-219x/2191 DSP Hardware Reference 5-15

Memory

(depending on external bus configuration) packing may be
required. For more information on these latencies, see “Memory
Interface Timing” on page 7-24.

In the case of an external memory access, the core behaves differently dur-
ing a read or a write. During a read, the core stalls until the data is
returned from the PM or DM bus. During a write access, two contexts
should be considered (1) Any previous write access has been completed (2)
A previous write access is still pending in the external access bridge.

The second case is the consequence of the first. In context 1, the core is
stalled only one cycle (by the core memory controller when the external
access is detected), and then relaxed so that even if the external access did
not complete the transfer, the core can still run until another external
access is requested. This “posted write” may be a problem for the applica-
tion standpoint (the core is not aware that the write is not completed).

Thus, in the case of consecutive writes, a single write followed by a single
write, the first write is posted and the second write is held until the pend-
ing write completion, at which time it is posted.

To prevent consecutive external accesses from stalling the core, as a
workaround, the E_WPF bit of the internal I/O mapped register (E_STAT)
flags any pending write so that the core has the possibility to check the last
write transaction status.

System Control Registers
The DSP has a separate memory space for system control registers. These
registers support DSP core operations. The registers in this space include
the DAG Base (Bx) registers and the Cache Control (CACTL) register. For
more information, see “Length (Lx) Registers and Base (Bx) Registers” on
page A-21 and “Cache Control (CACTL) Register” on page A-19. To
access system control registers, programs use system control register
read/write instructions (Reg()).

ADSP-2191 DSP Memory Map

5-16 ADSP-219x/2191 DSP Hardware Reference

I/O Memory Space
The DSP has an I/O memory space for internal I/O memory-mapped reg-
isters and external I/O memory-mapped devices. Similar to—but entirely
separate from—internal and external memory, the addressing of I/O
memory is divided into 1K-word pages with Pages 0–7 on-chip and
Pages 8–255 off-chip. Programs select an I/O memory page with the IOPG
register. To access I/O memory, programs use the I/O memory read/write
instructions (IO()).

The on-chip I/O memory contains memory-mapped registers for control,
status, and data buffers of DSP peripherals (external port, host port, serial
ports, serial peripheral interface ports, and UART port) and peripheral
DMA.

The off-chip I/O memory is for external memory-mapped devices that use
the I/O memory interface to communicate with the DSP. If off-chip, the
peripherals are attached to the DSP’s external address (ADDR21–0) and data
(DATA15–0) buses. During accesses to off-chip I/O memory space, the DSP
generates an I/O Memory Select (IOMS) signal.

The I/O processor—which is the global term for the DMA control-
lers, DMA channel arbitration, and peripheral-to-bus connections—
and I/O memory—which contains the control, status, and buffer reg-
isters for the I/O processor—are very different things. The I/O
processor does not use the IOPG register for DMA, instead the I/O
processor uses DMA page information from a DMA’s descriptor.
Also, the I/O processor cannot perform DMA to I/O memory;
only the DSP core or a host may read or write I/O memory.

Boot Memory Space
The DSP has a separate external memory space for mapping a boot ROM
or FLASH and booting the DSP from this device. This space is separate
from other memory spaces and has an address range from address

ADSP-219x/2191 DSP Hardware Reference 5-17

Memory

0x01 0000 through 0xFE FFFF. Boot memory space refers to off-chip
ROM memory that is accessed when the DSP boots from ROM and is
attached to the DSP’s external address (ADDR21–0) and data (DATA15–0 or
DATA7–0) buses. During accesses to boot memory space, the DSP generates
a boot memory select (BMS) signal.

Although the most common usage for boot memory space is boot
loading at system restart, this memory space also can be accessed at
runtime. For more information, see “Using Boot Memory Space”
on page 7-14.

Shadow Write FIFO
Because the DSP’s internal memory must operate at high speeds, writes to
the memory do not go directly into the internal memory. Instead, writes
go to a two-deep FIFO called the shadow write FIFO.

When an internal memory write cycle occurs, the DSP loads the data in
the FIFO from the previous write into memory, and the new data goes
into the FIFO. This operation is transparent, because any reads of the last
two locations written are intercepted and routed to the FIFO.

Because the ADSP-2191’s shadow write FIFO automatically
pushes the write to internal memory as soon as the write does not
compete with a read, this FIFO’s operation is completely transpar-
ent to programs, except in software reset/restart situations. To
ensure correct operation after a software reset, software must per-
form two “dummy” writes (repeat last write per block) to internal
memory before writing the software reset bit.

Data Move Instruction Summary

5-18 ADSP-219x/2191 DSP Hardware Reference

Data Move Instruction Summary
Table 5-2 on page 5-18 lists the data move instructions. For more infor-
mation on assembly language syntax, see the ADSP-219x DSP Instruction
Set Reference. In Table 5-2 on page 5-18, note the meaning of the follow-
ing symbols:

• Dreg, Dreg1, Dreg2 indicate any register file location (register
group)

• Reg1, Reg2, Reg3, or Reg indicate register group 1, 2, 3, or any
register

• Ia and Mb indicate DAG1 I and M registers

• Ic and Md indicate DAG2 I and M registers

• Ireg and Mreg indicate I and M registers in either DAG

• Imm# and Data# indicate immediate values or data of the # of bits

Table 5-2. Data/Register Move Instruction Summary

Instruction

Reg = Reg;

|DM(<Addr16>), PM(<Addr16>)| = |Dreg, Ireg, Mreg|;

|Dreg, Ireg, Mreg| = |DM(<Addr16>), PM(<Addr16>)|;

|<Dreg>, <Reg1>, <Reg2>| = <Data16>;

Reg3 = <Data12>;

Io(<Addr10>) = Dreg;

Dreg = Io (<Addr10>);

Reg(<Addr8>) = Dreg;

Dreg = Reg(<Addr8>);

ADSP-219x/2191 DSP Hardware Reference 6-1

6 I/O PROCESSOR

The ADSP-2191 I/O processor manages interaction between the on-chip
peripherals and the DSP core. Direct Memory Access (DMA) enables high
data throughput between the memory and peripherals. An enhanced inter-
rupt controller guarantees fast signaling of interrupt events from the
peripherals to the core.

This chapter provides the following sections:

• “System Interrupt Controller” on page 6-1

• “DMA Controller” on page 6-7

• “Setting Peripheral DMA Modes” on page 6-17

• “Working with Peripheral DMA Modes” on page 6-26

• “Boot Mode DMA Transfers” on page 6-41

• “Code Example: Internal Memory DMA” on page 6-42

System Interrupt Controller
ADSP-2191 DSPs enhance the interrupt capabilities of the ADSP-219x
core with an additional system interrupt controller. For information on
core interrupt controller, see “Interrupts and Sequencing” on page 3-25.

Figure 6-1 illustrates how the system interrupt controller connects to the
core.

System Interrupt Controller

6-2 ADSP-219x/2191 DSP Hardware Reference

The ADSP-219x core provides 16 interrupt channels. The four channels
with the highest priority are dedicated to special core purposes. The other
12 channels can be used for software interrupt schemes. More likely, the
DSP peripherals utilize these channels.

The interrupt signals of the individual peripherals are not connected
directly to the core’s inputs; they are routed through a crossbar unit inside
the I/O processor. The crossbar is controlled by the four Interrupt Priority
(IPRx) registers. Each of the 15 peripheral interrupts owns four bits that

Figure 6-1. Interrupt Controller Overview

ADSP-219x/2191 DSP Hardware Reference 6-3

I/O Processor

map the interrupt source to one of the core channels. Since the core chan-
nels have fixed priorities, this crossbar enables free assignment of interrupt
priorities.

Figure 6-2 shows the default mapping of the IPRx registers after a reset.

Multiple peripheral interrupts may share a single core interrupt channel.
In this case, one interrupt routine services all the requests. The 12 Inter-
rupt Source (INTRDx) registers can be used by the service routine to
identify which interrupt sources are signaling. Refer to “System Interrupt
Controller Registers” on page B-21 for more information.

Figure 6-2. Default Mapping of IPRx Registers After Reset

System Interrupt Controller

6-4 ADSP-219x/2191 DSP Hardware Reference

Configuring System Interrupts
Most of the DSP peripherals have their own local interrupt enable and
latch bits. Therefore, every enabled interrupt must be set up in the periph-
eral in the I/O processor and in the core.

Usually, the following steps are recommended:

1. Clear pending interrupt requests

2. Configure and enable interrupt in peripheral

3. Optionally, configure the DMA’s interrupt behavior

4. Program the Interrupt Priority (IPRx) registers

5. Set the proper bits in the IMASK register to unmask core channels

6. Program the ICNTL register

7. Execute the ENA INT; instruction

Interrupt Setup Examples
The following brief examples illustrate how to set up interrupts.

The first example makes the Timer0 interrupt, which has an ID of 9, have
a priority of 1. This priority of 1 is bit 5 of the IMASK and IRPTL registers.

IOPG = Interrupt_Controller_Page;

AR = 0xBB1B;

IO(IPR2) = ar; /* assign Timer 0 int priority to 1 */

AR = 0xBBBB;

IO(IPR0) = AR; /* assign all other int priorities to 11 */

IO(IPR1) = AR;

IO(IPR3) = AR;

IMASK = 0x0020; /* unmask core channel 5 */

ADSP-219x/2191 DSP Hardware Reference 6-5

I/O Processor

The second example makes the Timer0 interrupt, which has an ID of 9,
have a priority of 5. This priority of 5 is bit 9 in the IMASK and IRPTL
registers.

IOPG = Interrupt_Controller_Page;

AR = 0xBB5B;

IO(IPR2) = AR;

AR = 0xBBBB;

IO(IPR0) = AR;

IO(IPR1) = AR;

IO(IPR3) = AR;

IMASK = 0x0200; /* unmask core channel 9 */

The final example sets up an SPI interrupt.

Program_SPI0_Interrupt:

IOPG = 0;

AR = IO(SYSCR); /* Map Interrupt Vector Table to Page 0*/

AR = SETBIT 4 OF AR;

IO(SYSCR) = AR;

DIS INT; /* Disable all interrupts */

IRPTL = 0x0; /* Clear all interrupts */

ICNTL = 0x0; /* Interrupt nesting disable */

IMASK = 0; /* Mask all interrupts */

/* Set up Interrupt Priorities */

IOPG = Interrupt_Controller_Page;

AR = 0xBB1B; /* Assign SPI0 priority of 1 */

IO(IPR1) = AR;

AR = 0xBBBB; /* Assign the remainder with lowest priority */

IO(IPR0) = AR;

IO(IPR2) = AR;

IO(IPR3) = AR;

System Interrupt Controller

6-6 ADSP-219x/2191 DSP Hardware Reference

AY0 = IMASK;

AY1 = 0x0020; /* Unmask SPI Interrupt */

AR = AY0 OR AY1;

IMASK = AR;

ENA INT; /* Globally Enable Interrupts */

Servicing System Interrupts
Core interrupts and software interrupts are fully controlled by the Inter-
rupt Latch (IRPTL) register. The individual interrupt latch bits are cleared
automatically when the service routine executes the RTI instruction.

In the case of system interrupts, the service routine must clear the inter-
rupt request explicitly, because there is no feedback path from the IRPTL
registers back to the signaling peripheral. Otherwise, the peripheral would
set the according bit in the IRPTL register again, as soon as the service rou-
tine terminates.

To prevent a subsequent event from being ignored, clear the peripheral’s
interrupt request at the very beginning of the service routine. Because of
potential system latencies, the interrupt request must be cleared several
cycles before the RTI instruction executes.

The following example illustrates a typical case of an interrupt routine
that services a request from Timer 0, assuming Timer 0 is assigned to the
core channel number 5.

.section / code IVint5;

ENA SR; /* enable secondary register file */

AY1 = iopg; /* save I/O page register */

IOPG = Timer_Page;

AX0 = 0x0001; /* Clear interrupt request */

IO(GSR0) = AX0;

/* do everything else here */

ADSP-219x/2191 DSP Hardware Reference 6-7

I/O Processor

IOPG = AY1; /* restore I/O page register */

RTI; /* return from interrupt */

/* and disable secondary registers */

DMA Controller
The DSP’s I/O processor manages Direct Memory Access (DMA) of DSP
memory through the external, host, serial, SPI, and UART ports. Each
DMA operation transfers an entire block of data. By managing DMA, the
I/O processor lets programs move data as a background task while using
the processor core for other DSP operations. The I/O processor’s architec-
ture, which appears in Figure 6-3 on page 6-9, supports a number of
DMA operations. These operations include the following transfer types:

• Memory ↔ Memory or memory-mapped peripherals

• Memory ↔ Host processor

• Memory ↔ Serial port I/O

• Memory ↔ Serial Peripheral Interface (SPI) port I/O

• Memory ↔ UART port I/O

This chapter describes the I/O processor and how the I/O proces-
sor controls external, host, serial, SPI, and UART port DMA
operations. For information on connecting external devices to
these ports, see “External Port” on page 7-1, “Host Port” on
page 8-1, “Serial Ports (SPORTs)” on page 9-1, “Serial Peripheral
Interface (SPI) Ports” on page 10-1, or “UART Port” on
page 11-1.

DMA Controller

6-8 ADSP-219x/2191 DSP Hardware Reference

The ADSP-2191’s I/O processor uses a distributed DMA control architec-
ture. Each DMA channel on the chip has a controller to handle its
transfers. Each of these channel controllers is similar, but each has some
minor difference to accommodate the peripheral port being served by the
channel.

The common features of all DMA channels are that they use a linked list
of “descriptors” to define each DMA transfer, and the DMA transactions
take place across an internal DMA bus. DMA-capable peripherals arbi-
trate for access to the DMA bus, so they can move data to and from
memory.

Each channel’s DMA controller moves 16-bit or 24-bit data without
DSP-core processor intervention. When data is ready to be moved, the
DMA channel requests the DMA bus and conducts the desired
transaction.

To further minimize loading on the processor core, the I/O processor sup-
ports chained DMA operations. When using chained DMA, a program
can set up a DMA transfer to automatically set up and start the next DMA
transfer after the current one completes.

Figure 6-3 on page 6-9 shows the DSP’s I/O processor, related ports, and
buses. Software accesses the registers shown in this figure using an I/O
memory read or write (Io()) instruction. The port, buffer, and DMA sta-
tus registers configure the ports and show port status. The DMA

ADSP-219x/2191 DSP Hardware Reference 6-9

I/O Processor

descriptor registers configure and control DMA transfers.The data buffer
registers hold data passing to and from each port. These data buffer regis-
ters include:

Figure 6-3. I/O Processor Block Diagram

SPI
PORTS

1–0

SERIAL
PORTS

2–0

EXT.
POR T
ADDR

EXT.
POR T
DATA

TDBRx,
RDB Rx

SPx_TX,
SPx_RX

DMA DATA

SPxDT/R _C FG, SPxDT/R_SRP,
SPxDT/R _SRA , SPxDT/R_CNT,

SPxDT/R_CP, SPxDT/R_CPR

DMA AD DRESS

SPx_TCR, SPx_RCR,
SPxDT/R_PTR,
SPxDT/R_IRQ

DMA
DESCRIPTOR
REGISTERS

PORT, BUFFER, &
DMA STATUS
REGISTERS

DATA
BUFFER

REGISTER
S

INTERNAL
MEMORY

DATA

INTERNAL
MEMORY
ADDRESS

IRPTL, IMASK

SPIxD_CFG, SPIxD_SRP,
SPIxD_SRA, SPIxD_CNT,
SPIxD_CP, SPIxD_CPR

SPICTLx, SPIFLGx,
SPISTx, SPIxD_PTR ,

SPIxD_IRQ

TH R,
RBR

UARDT/R_CFG, UARDT/R_SRP,
UARDT/R_SRA, UARDT/R_CNT,

UARDT/R _CP, UARDT/R_CPR

DLL, IER, DLH, I IR,
LC R, MCR, LSR, MSR,
SCR, U ARDT/R _PTR,

UARDT/R_IRQ

(N/A as
reg isters)

HOSTD_CFG, HOSTD_SRP,
HOSTD_SRA, HOSTD_CNT,

HOSTD_CP, HOSTD_CPR

HPCR, HPPR, HPDER,
HOSTD_PTR,
HOSTD_IRQ

UART
PORT

HOST
POR T

EMICTL, BMSCTL,
MSxCTL, IOMSCTL,
EMI STAT, MEMPGx,

D MA CT/R_PTR,
DMACT/R_IRQ

DMACT/R_CFG, DMACT/R_SRP,
DMACT/R_SRA, DMACT/R_CNT,

DMACT/R_CP, DMACT/R_CPR

(N /A as
registers)

DM DATA BUS

DM ADDRESS BUS

I/O MEMORY
DATA

I/O MEMORY
ADDRESS

DMA Controller

6-10 ADSP-219x/2191 DSP Hardware Reference

• Serial Port Receive Buffer registers (SPx_RX). These receive buffers
for the serial ports have FIFOs for receiving data when connected
to another serial device. For I/O data, the FIFOs are two-levels
deep. For DMA data, the FIFOs are eight-levels deep.

• Serial Port Transmit Buffer registers (SPx_TX). These transmit
buffers for the serial ports have FIFOs for transmitting data when
connected to another serial device. For I/O data, the FIFOs are
two-level deep. For DMA data, the FIFOs are eight-levels deep.

• SPI Port Receive Buffer registers (RDBRx). These receive buffers for
the SPI ports have four-level deep FIFOs for receiving data when
connected to another SPI device.

• SPI Port Transmit Buffer registers (TDBRx). These transmit buffers
for the SPI ports have four-level deep FIFOs for transmitting data
when connected to another SPI device.

• UART Port Receive Buffer registers (RBR). These receive buffers
for the UART ports have two-level deep FIFOs for receiving data
when connected to another UART device.

• UART Port Transmit Buffer registers (THR). These transmit buff-
ers for the UART ports have two-level deep FIFOs for transmitting
data when connected to another UART device.

The DMA channels for the external port (memDMA) and host port each
have four-level deep FIFOs, but these FIFOs are not visible as registers.
The transmit and receive channels of each port share the port’s FIFOs.

The Port, Buffer, and DMA Status Registers column in Figure 6-3 on
page 6-9 shows the control registers for the ports and DMA channels. For
more information on these registers, see the corresponding chapter of this
text or “ADSP-2191 DSP I/O Registers” on page B-1.

ADSP-219x/2191 DSP Hardware Reference 6-11

I/O Processor

The DMA Descriptor Registers column in Figure 6-3 on page 6-9 shows
the descriptor registers for each DMA channel. These configure DMA
channels and set up DMA transfers. For detailed information on descrip-
tor registers, see “Setting Peripheral DMA Modes” on page 6-17.

Descriptor-Based DMA Transfers
DMA transfers on the ADSP-2191 can be descriptor-based or auto-
buffer-based—autobuffering only is available on SPORT, SPI, and UART
DMA channels. Descriptor-based DMA has many more features, which
requires more setup overhead, but descriptor-based DMA permits chain-
ing varied DMA transfers together. Autobuffer-based DMA is much
simpler, requiring minimal initial setup. Autobuffering also has the advan-
tage of not requiring added setup overhead for repeated transfers.

Comparing DMA of the ADSP-2191 with the DMA of previous
ADSP-218x DSPs, host port channel DMA is similar to IDMA,
and memDMA channel DMA is similar to BDMA.

Descriptor-based DMA is the default method for describing DMA trans-
fers on the ADSP-2191. Each descriptor contains all the information on a
particular data transfer operation and contains the pointer to the next
descriptor. When a transfer is complete, the DMA channel fetches the
next descriptor’s information then begins that transfer. The structure of a
DMA descriptor appears in the Order of DMA Descriptor column of
Table 6-2 on page 6-18 and consists of five register positions HEAD
through HEAD+4

DMA descriptors either are active—have been loaded by the peripheral’s
DMA controller into registers on Pages 0–7 of internal I/O memory and
are being used for an active DMA transfer—or are inactive—have not yet
been loaded by a DMA controller.

DMA Controller

6-12 ADSP-219x/2191 DSP Hardware Reference

Inactive DMA descriptors are stored in internal data memory (Page 0). For
address information on descriptor registers, see “ADSP-2191 DSP I/O
Registers” on page B-1. While descriptors are inactive, the DSP or host
sets up descriptors as needed.

DMA descriptors become active as each DMA controller fetches its
descriptor information from internal I/O memory before beginning a
DMA transfer. The dynamic fetching of a descriptor is controlled by the
DMA ownership (DOWN) bit in the descriptor. Before loading the descrip-
tor from I/O memory, the DMA controller checks the DOWN bit to
determine if the descriptor is configured and ready. If DOWN is set, the
DMA controller loads the remaining words of the descriptor. If the
descriptor is not ready then the DMA controller waits until the DOWN bit is
set. Setting the descriptor ready (DR) bit triggers the DMA controller to
load the descriptor from the descriptor registers. Then, the DMA control-
ler uses the descriptor information to carry out the required DMA
transfer.

The following steps illustrate the typical process for software setting up a
DMA descriptor for descriptor-based DMA. Note that steps 2 and 4 only
apply for standalone transfers or the first descriptor in a series of chained
descriptors.

1. Software writes the descriptor’s HEAD+1 (Start Page), HEAD+2
(Start Address), HEAD+3 (DMA Count), HEAD+4 (Next
Descriptor Pointer), and HEAD (DMA Configuration) to consec-
utive locations in data memory.

For this write, the descriptor’s DOWN bit (in HEAD) must be set
(=1), indicating that the DMA controller “owns” the descriptor.
After completing the transfer, the DMA controller clears (=0) the
DOWN bit, returning descriptor ownership to the DSP or host.

If a standalone transfer, note that the HEAD+4 (Next Descriptor
Pointer) pointer must point to a memory location containing the
data 0x0—this pointer should not point to address 0x0.

ADSP-219x/2191 DSP Hardware Reference 6-13

I/O Processor

2. Software writes the address of HEAD to the DMA channel’s Next
Descriptor Pointer register I/O memory.

This step only is needed if this descriptor is a standalone transfer or
the first in a chained series of transfers.

3. Software sets (=1) the DMA channel’s descriptor ready (DR) bit in
the channel’s Descriptor Ready register in I/O memory, directing
the channel’s DMA controller to load the descriptor.

The channel’s DMA controller responds by loading the descriptor
from data memory into the channel’s DMA control registers in I/O
memory.

4. Software sets (=1) the DMA channel’s DMA enable (DEN) bit in the
channel’s DMA Configuration register in I/O memory.

This final write to the descriptor is only needed if this descriptor is
a standalone transfer or the first in a chained series of transfers.

After loading the descriptor and detecting that the DMA transfer is
enabled, the channel’s DMA controller sets to work on the data transfer.
The DMA channel arbitrates for the internal DMA bus as required and
(when it gets bus access) performs the transfer. On each peripheral clock
cycle, the DMA channel updates the status of the DMA transfer in the
channel’s DMA status registers.

When the DMA transfer is completed (DMA count has decremented to
zero), the DMA controller writes the descriptor’s HEAD value (now with
count of 0 and ownership of 0) to the descriptor’s HEAD location in data
memory to indicate the final status of the transfer. If enabled in the
descriptor’s configuration, the channel also generates a DMA transfer
complete interrupt; for more information, see “Interrupts from DMA
Transfers” on page 6-15. Next, the channel’s DMA controller fetches the
next descriptor HEAD from the location indicated by the channel’s Next
Descriptor Pointer register. If the location contains a descriptor HEAD

DMA Controller

6-14 ADSP-219x/2191 DSP Hardware Reference

and the channel is configured for chained DMA, the process repeats. If the
location contains 0x0, the process stops, because this value disables the
DMA channel’s DEN bit.

It is important to note that each descriptor-based transfer requires
the overhead of five additional reads and one write transaction to
load the descriptor and start the transfer. This overhead is ineffi-
cient for very small transfer sizes. This overhead also occurs
between chained transfers (loading the next descriptor) and creates
a possibility for overflow situations.

Autobuffer-Based DMA Transfers
ADSP-2191 DSP DMA transfers can be autobuffer-based or descrip-
tor-based—autobuffering not available on the memDMA DMA channels.
Autobuffering has the same setup overhead for the first transfer as descrip-
tor-based DMA. Unlike descriptor-based DMA, autobuffer does not
require loading descriptors from internal data memory for each repeated
transfer. The DMA setup occurs once, and the transfer (once started) iter-
ates repeatedly without re-loading DMA descriptors.

The steps for using autobuffering and the response from the DMA con-
troller in autobuffering are the same as in descriptor-based DMA, except
that on completing the transfer the DMA controller re-uses the setup val-
ues instead of fetching the next descriptor. This effectively creates a
circular buffer that continues to transfer data until disabled by clearing
(=0) the DMA channel’s DEN bit.

When autobuffering, some bits in the DMA Configuration register in I/O
memory become read/write, instead of their read-only state when in
descriptor-base DMA mode.

If enabled, the DMA controller generates interrupts at the halfway and
completion points in the transfer. For more information, see “Interrupts
from DMA Transfers” on page 6-15. Note that the corresponding bit in
the IMASK register must be set to unmask the interrupt.

ADSP-219x/2191 DSP Hardware Reference 6-15

I/O Processor

The following steps illustrate the typical process for software setting up a
DMA descriptor for autobuffer-based DMA. Do not set the channel’s DEN
bit until the last step.

1. Software writes the descriptor’s HEAD register in I/O memory,
only setting (=1) the DMA channel’s DAUTO bit.

2. Software writes the descriptor’s HEAD+1, HEAD+2, and
HEAD+3 registers in I/O memory.

3. Software writes the descriptor’s HEAD register in I/O memory,
configuring the DMA transfer and setting the DEN bit.

This final write to the descriptor starts the autobuffering transfer.

Interrupts from DMA Transfers
The ADSP-2191’s DMA channels can produce two types of interrupts: a
completion interrupt and a port-specific DMA error interrupt.

DMA interrupt status is distributed because the DMA channels’ operation
is recorded in two ways. The status is recorded in the channel’s DMA
Configuration (xxxx_CFG) register and in the channel’s DMA Interrupt
Status (xxxx_IRQ) register when an interrupt occurs; these registers are in
I/O memory.

The channel’s xxxx_IRQ register is a sticky two-bit register that records
that a DMA interrupt has occurred. These bits stay set until cleared
(W1C) through a software write to them. This software write is required
to clear the interrupt.

The channel’s xxxx_CFG register records a more dynamic status of the
DMA interrupts. Because DMA operation typically continues after an
interrupt, the status available in the xxxx_CFG register must be used care-
fully. At the end of a transfer, the DMA controller writes the channel’s
xxxx_CFG register in I/O memory, then loads the next descriptor. If the

DMA Controller

6-16 ADSP-219x/2191 DSP Hardware Reference

transfer ends between the interrupt occurrence and the software polling
the xxxx_CFG register, the software reads the status for the previous trans-
fer as the status for the current transfer.

To avoid mismatched status, the software must conduct a full descriptor
cleanup after most interrupts. This cleanup implies both checking the sta-
tus of the current xxxx_CFG register and checking the status of recently
completed descriptors in memory to determine the transfer with the error.

The channel’s DMA controller generates a DMA complete interrupt at
the end of a transfer. When a transfer completes, the DMA controller
clears (=0) the DOWN bit in the descriptor’s HEAD in data memory (return-
ing descriptor ownership to the DSP or host) and sets (=1) the DS bit
(indicating DMA status as complete).

The channel’s DMA controller generates a port specific DMA error inter-
rupt for errors such as receive overrun, framing errors, and others. For
these port specific errors, the DMA controller logs the status in bits 11–9
of the channel’s xxxx_CFG register. For more information on these bits,
see “Host Port DMA Settings” on page 6-22, “SPI Port DMA Settings”
on page 6-23, and “UART Port DMA Settings” on page 6-25.

These port specific bits are sticky and are only cleared at the start of the
next transfer. These bits only can indicate that a port DMA error has
occurred in the transfer, but cannot identify the exact word.

For information on enabling DMA interrupts, see “Setting Peripheral
DMA Modes” on page 6-17.

ADSP-219x/2191 DSP Hardware Reference 6-17

I/O Processor

Setting Peripheral DMA Modes
Each of the ADSP-2191’s I/O ports has one or more DMA channels. The
DMA controller setup and operation for each channel is almost identical.
This section describes the settings that are common to all channels. For
more information on settings that are unique to a particular DMA chan-
nel, see the following sections:

• “DMA Channels” on page 6-17

• “MemDMA DMA Settings” on page 6-21

• “Host Port DMA Settings” on page 6-22

• “Serial Port DMA Settings” on page 6-23

• “SPI Port DMA Settings” on page 6-23

• “UART Port DMA Settings” on page 6-25

DMA Channels
The ADSP-2191’s DMA channels are listed in order of arbitration prior-
ity in Table 6-1 on page 6-17. This table also indicates the channel
abbreviation that prefixes each channel’s register names.

Table 6-1. DMA Channel Descriptions

DMA Channel
Abbreviation

DMA Channel Description DMA Channel
Arbitration Priority

SP0DR Serial Port (SPORT) 0 Receive 0

SP1DR Serial Port (SPORT) 1 Receive 1

SP2DR Serial Port (SPORT) 2 Receive 2

SP0DT Serial Port (SPORT) 0 Transmit 3

SP1DT Serial Port (SPORT) 1 Transmit 4

Setting Peripheral DMA Modes

6-18 ADSP-219x/2191 DSP Hardware Reference

Each DMA channel listed in Table 6-1 on page 6-17 has the registers
listed in Table 6-2 on page 6-18. The xxxx in the Table 6-2 on page 6-18
register names are place holders for the DMA channel abbreviations. The
following registers control the operating mode of a peripheral’s DMA
controller.

SP2DT Serial Port (SPORT) 2 Transmit 5

SPI0D Serial Peripheral Interface (SPI) Port 0 (R/T) 6

SPI1D Serial Peripheral Interface (SPI) Port 1 (R/T) 7

UARDR UART Port Receive 8

UARDT UART Port Transmit 9

HOSTD Host Port (R/T) 10

DMACR MemDMA Receive 11

DMACW MemDMA Transmit 12

Table 6-2. DMA Register Descriptions

DMA Register
Name (in
I/O Memory)

DMA Register Description Order of
DMA
Descriptor (in
Data
Memory)

xxxx_PTR Current Pointer. Contains the 16-bit address of the memory loca-
tion that the DMA controller is reading (for transmit) or writing
(for receive)

xxxx_CFG DMA Configuration. Contains the DMA configuration for the
transfer (see bit descriptions on page 6-19)

HEAD

The xxxx in the register name corresponds to the DMA channels that are listed in Table 6-1 on
page 6-17.
The empty descriptor positions indicate registers that are not loaded from the DMA descriptor.

Table 6-1. DMA Channel Descriptions (Cont’d)

DMA Channel
Abbreviation

DMA Channel Description DMA Channel
Arbitration Priority

ADSP-219x/2191 DSP Hardware Reference 6-19

I/O Processor

Each DMA channel’s xxxx_CFG register contains the following bits. Note
that some bits are read-only in registers and only can be loaded when the
DMA controller loads the xxxx_CFG register on descriptor load from data
memory (see “Descriptor-Based DMA Transfers” on page 6-11). Also, a
number of bits are read-only on channels where they are not supported
(such as the DAUTO bit on the memDMA channel):

• DMA Enable. xxxx_CFG bit 0 (DEN). This bit directs the channel’s
DMA controller to start (if set, =1) or stop (if cleared, =0) the
DMA transfer defined by the DMA descriptor. (read/write)

• DMA Transfer Direction Select. xxxx_CFG bit 1 (TRAN). This bit
selects the transfer direction as memory write (if set, =1) or mem-
ory read (if cleared, =0). (read-only; applies on all I/O channels)

xxxx_SRP Start Page. Contains the Memory Space (MS) bit (bit 8, 0=mem-
ory, 1=boot) and transfer memory page (MP) bits (bits 7–0);

HEAD+1

xxxx_SRA Start Address. Contains the 16-bit starting memory address of
transfer

HEAD+2

xxxx_CNT DMA Count. Contains the 16-bit number of words in the transfer HEAD+3

xxxx_CP Next Descriptor Pointer. Contains the 16-bit memory address of
the Head of the next DMA descriptor

HEAD+4

xxxx_CPR Descriptor Ready. Contains the Descriptor Ready (DR) bit (bit 0)

xxxx_IRQ DMA Interrupt Status. Contains the DMA Complete Interrupt
Pending (DCOMI) bit (bit 0) and DMA Error Interrupt Pending
(DERI) bit (bit 1); 1=pending interrupt, 0=no interrupt

Table 6-2. DMA Register Descriptions (Cont’d)

DMA Register
Name (in
I/O Memory)

DMA Register Description Order of
DMA
Descriptor (in
Data
Memory)

The xxxx in the register name corresponds to the DMA channels that are listed in Table 6-1 on
page 6-17.
The empty descriptor positions indicate registers that are not loaded from the DMA descriptor.

Setting Peripheral DMA Modes

6-20 ADSP-219x/2191 DSP Hardware Reference

On the MemDMA channel, a memory write (transmit) uses the
start address as the destination, and a memory read (receive) uses
the start address as the source.

• DMA Interrupt on Completion Enable. xxxx_CFG bit 2 (DCOME).
This bit enables (if set, =1) or disables (if cleared, =0) the channel’s
DMA complete interrupt. (read-only for descriptor-based DMAs)

• DMA Data Type Select. xxxx_CFG bit 3 (DTYPE). This bit—on par-
allel I/O channels—selects the data format as 24-bit (if set, =1) or
16-bit (if cleared, =0). (read-only; only applies on parallel I/O
channels)

• DMA Autobuffer/Descriptor Mode Select. xxxx_CFG bit 4
(DAUTO). This bit—on channels that support autobuffer mode—
selects autobuffer mode DMA (if set, =1) or descriptor-based DMA
(if cleared, =0). (read-only; only applies on autobuffer mode
channels)

• DMA Buffer & Status Flush. xxxx_CFG bit 7 (FLSH). Setting (writ-
ing 1) this bit flushes the channel’s DMA buffer and clears (=0) the
channel’s FS and FLSH bits. This bit must be explicitly cleared
(W1C); writing 0 to this bit has no effect. (read/write; only write
when DEN=0)

• DMA Interrupt on Error Enable. xxxx_CFG bit 8 (DERE). This bit
enables (if set, =1) or disables (if cleared, =0) the channel’s DMA
error interrupt. (read-only)

• DMA FIFO Buffer Status. xxxx_CFG bits 13-12 (FS). These bits
indicate the status of the channel’s buffer as: 00=empty, 01=par-
tially full, 10=partially empty, or 11=full. (read-only)

ADSP-219x/2191 DSP Hardware Reference 6-21

I/O Processor

• DMA Completion Status. xxxx_CFG bit 14 (DS). This bit indicates
whether the DMA transfer completed successfully (=0) or with an
error (=1). (read-only)

• DMA Ownership Status. xxxx_CFG bits 15 (DOWN). This bit indi-
cates the current “owner” of the DMA descriptor as: 1=DMA
controller or 0=DSP/host. (read-only)

Although some channels have preset directions for transmit or
receive, the TRAN bit must be set or cleared appropriately to match
the direction of the DMA transfer.

Some bus master settings can lock out DMA requests. For more
information, see “Bus Master Settings” on page 7-7.

MemDMA DMA Settings
There are two MemDMA channels—one for transmit and one for receive.
These channels handle memory-to-memory DMA transfers. The transmit
channel provides internal memory to external memory transfers, and the
receive channel provides external memory to internal memory transfers.
These channels have the following DMA configuration differences from
other DMA channels:

• These DMA channels support descriptor mode DMA (they do not
support autobuffer mode), so this channel’s DAUTO bit is ignored.

• Even though each of these DMA channels has a preset direction
(transmit or receive), the channels’ TRAN bits must be set or cleared
appropriately.

• These DMA channels serve a parallel I/O port, so these channels’
DTYPE bits are used.

Setting Peripheral DMA Modes

6-22 ADSP-219x/2191 DSP Hardware Reference

For information on these channels’ other settings, see Table 6-1 on
page 6-17, Table 6-2 on page 6-18, and the xxxx_CFG register discussion
on page 6-19. For information on using these DMA channels, see “Using
MemDMA DMA” on page 6-27.

Host Port DMA Settings
There is one Host port DMA channel. It handles transmit or receive trans-
fers between the Host port and memory. This channel has the following
DMA configuration differences from other DMA channels:

• This DMA channel supports descriptor mode DMA and auto-
buffer mode, so this channel’s DAUTO bit is used.

• This DMA channel serves a parallel I/O port, so this channel’s
DTYPE bits are used.

• The Host Port DMA Configuration (HOSTD_CFG) register has a bit
that differs from the other channel’s configuration registers:

DMA Transfer Ready Status. HOSTD_CFG bit 9 (DRDY) This bit—
only on the host port DMA channel—indicates that the host port
DMA transfer is ready (if set, =1) or is not ready (if cleared, =0).
(read/write)

For information on this channel’s other settings, see Table 6-1 on
page 6-17, Table 6-2 on page 6-18, and the xxxx_CFG register discussion
on page 6-19. For information on using this DMA channels, see “Using
Host Port DMA” on page 6-28.

ADSP-219x/2191 DSP Hardware Reference 6-23

I/O Processor

Serial Port DMA Settings
There are six serial port channels—one per port for transmit and one per
port for receive. The transmit channels provide memory to SPORT trans-
fers, and the receive channels provide SPORT memory transfers. These
channels have the following DMA configuration differences from other
DMA channels:

• These DMA channels support descriptor mode DMA and auto-
buffer mode, so these channels’ DAUTO bit is used.

• Even though each of these DMA channels has a preset direction
(transmit or receive), the channels’ TRAN bits must be set or cleared
appropriately.

• These DMA channels serve a serial I/O port, so these channels’
DTYPE bits are ignored.

For information on these channels’ other settings, see Table 6-1 on
page 6-17, Table 6-2 on page 6-18, and the xxxx_CFG register discussion
on page 6-19. For information on using these DMA channels, see “Using
Serial Port (SPORT) DMA” on page 6-30.

SPI Port DMA Settings
There are two Serial Peripheral Interface (SPI) port channels—one per
port. These channels can be set to transmit or receive. A transmit channel
provides memory to SPI port transfers, and a receive channel provides SPI
port to memory transfers. These channels have the following DMA con-
figuration differences from other DMA channels:

• These DMA channels support descriptor mode DMA and auto-
buffer mode, so these channels’ DAUTO bits are used.

• These DMA channels serve a serial I/O port, so these channels’
DTYPE bits are ignored.

Setting Peripheral DMA Modes

6-24 ADSP-219x/2191 DSP Hardware Reference

• The SPI DMA Configuration (SPIxD_CFG) registers have bits that
differ from the other channel’s configuration registers:

DMA SPI Receive Busy (Overflow Error) Status.
SPIxD_CFG bit 9 (RBSY) This bit—only on an SPI port DMA
channel with TRAN=1—indicates that the SPI port buffer has
overflowed (if set, =1) or has not overflowed (if cleared, =0).
(read-only)

DMA SPI Transmit (Underflow) Error Status. SPIxD_CFG
bit 10 (TXE) This bit—only on an SPI port DMA channel
with TRAN=0—indicates that the SPI port buffer has under-
flowed (if set, =1) or has not underflowed (if cleared, =0).
(read-only)

DMA SPI Mode Fault (Multi-master Error) Status.
SPIxD_CFG bit 11 (MODF) This bit indicates that another SPI
master has aborted (if set, =1) or has not aborted (if cleared,
=0) the current DMA transfer. (read-only)

For information on these channels other settings, see Table 6-1 on
page 6-17, Table 6-2 on page 6-18, and the xxxx_CFG register discussion
on page 6-19. For information on using these DMA channels, see “Using
SPI Port DMA” on page 6-33.

ADSP-219x/2191 DSP Hardware Reference 6-25

I/O Processor

UART Port DMA Settings
There are two UART port channels—one for transmit and one for receive.
The transmit channel provides memory to UART transfers, and the
receive channel provides UART to memory transfers. These channels have
the following DMA configuration differences from other DMA channels:

• These DMA channels support descriptor mode DMA and auto-
buffer mode, so these channels’ DAUTO bits are used.

• Even though each of these DMA channels has a preset direction
(transmit or receive), the channel’s TRAN bit must be set or cleared
appropriately.

• These DMA channels serve a serial I/O port, so these channels’
DTYPE bits are ignored.

Working with Peripheral DMA Modes

6-26 ADSP-219x/2191 DSP Hardware Reference

• The UART port’s DMA channels’ configuration (UARD_CFG) regis-
ter have bits that differ from the other channel’s configuration
registers:

DMA UART Receive Overflow Error Status. UARD_CFG
bit 9 (UAROE). This bit—only on an UART port DMA chan-
nel with TRAN=0—indicates that the receive buffer has (if
set, =1) or has not (if cleared, =0) overflowed in the current
DMA transfer. (read-only)

DMA UART Receive Parity Error Status. UARD_CFG bit 10
(UARPE). This bit—only on an UART port DMA channel
with TRAN=0—indicates that a parity error has (if set, =1) or
has not (if cleared, =0) occurred in the current DMA trans-
fer. (read-only)

DMA UART Receive Framing Error Status. UARD_CFG
bit 11 (UARFE). This bit—only on an UART port DMA
channel with TRAN=0—indicates that a framing error has (if
set, =1) or has not (if cleared, =0) occurred in the current
DMA transfer. (read-only)

For information on these channels’ other settings, see Table 6-1 on
page 6-17, Table 6-2 on page 6-18, and the xxxx_CFG register discussion
on page 6-19. For information on using these DMA channels, see “Using
UART Port DMA” on page 6-39.

Working with Peripheral DMA Modes
With some minor differences, the DMA control for all ADSP-2191 DMA
channels is identical. For a discussion of the DMA process and how to set
it up, see “Descriptor-Based DMA Transfers” on page 6-11 and “Setting
Peripheral DMA Modes” on page 6-17. This section provides detailed
information on using each DMA-capable port.

ADSP-219x/2191 DSP Hardware Reference 6-27

I/O Processor

This section provides the following topics:

• “Using MemDMA DMA” on page 6-27

• “Using Host Port DMA” on page 6-28

• “Using Serial Port (SPORT) DMA” on page 6-30

• “Using SPI Port DMA” on page 6-33

• “Using UART Port DMA” on page 6-39

Using MemDMA DMA
The MemDMA channels move 16- or 24-bit data between memory loca-
tions. These transfers include internal-to-external, external-to-internal,
internal-to-internal, and external-to-external memory transfers. Mem-
DMA can perform DMA transfers between internal, external, or boot
memory spaces, but cannot DMA to or from I/O memory space.

There are two “halves” to the MemDMA (memory DMA) port: a dedi-
cated “read” channel and a dedicated “write” channel. MemDMA first
reads and stores data in an internal four-level deep FIFO, then (when the
FIFO is full) MemDMA writes the FIFO’s contents to the memory desti-
nation. When the remaining words of a transfer are less than four, the
FIFO effectively becomes a single word buffer, which the MemDMA
channels alternatively read and write.

Because the halves of MemDMA share their FIFO buffer, the read
and write MemDMA channels must be configured for the same
DMA transfer count. Failure to follow this restriction causes the
MemDMA transfer to hang. When hung this way, the MemDMA
channel releases the internal DMA bus, but does not complete the
DMA transfer. Disabling the DMA and performing a buffer clear
operation is required to clear this hang condition.

Working with Peripheral DMA Modes

6-28 ADSP-219x/2191 DSP Hardware Reference

Using Host Port DMA
The host port DMA channel moves 16- or 24-bit data between DSP and
host memory locations. This channel performs DMA transfers between
the host port and internal, external, or boot memory spaces.

When host port DMA is enabled, the host should not send any address
and should not initiate a memory or boot transfer with an address cycle
while the host port is active. If the host does an address cycle, the host
port ignores the address.

The data strobes sent by the host must be in line with the DMA direction
parameter set in the DMA configuration register. If the direction is “0”,
memory reads, the host must perform read cycles (read strobe); if the
direction is “1”, the host must perform write cycles (write strobes). If the
wrong strobe is used, it has no effect on the sequencing of the host port
and DMA logic.

Data strobes clock the advancement of the packing/unpacking logic. The
host port keeps track of the start and end of a packet from the start of a
DMA transfer.

Either the ADSP-2191 or host may configure the DMA descriptor in DSP
data memory and write the host port DMA control registers for starting,
monitoring, and controlling the transfer.

During a host port DMA access, the DMA controller loads the DMA
descriptor from data memory. The host is required to strobe out read data
or strobe in write data while the host port automatically increments the
DSP memory address.

ADSP-219x/2191 DSP Hardware Reference 6-29

I/O Processor

In the case where both DSP core and host processor attempt to access the
host port interface at the same time, there are some restrictions on host
port DMA channel and host port interface operations. These restrictions
include:

• If the external host attempts to latch a memory address (host port
active) on the host port bus while the host port DMA is enabled,
the address cycle is ignored and the address discarded.

• If a host port qualified data strobe is asserted, but does not corre-
spond to the current DMA setting (assert write strobe while the
DMA is enabled in read mode for example), the strobe is ignored.

• If the host makes a memory/boot access while DMA descriptors are
changing, the host port acknowledge (HACK) takes longer to be
asserted. To avoid this, use autobuffer-based DMA instead of
descriptor-based DMA.

• If the host makes an I/O memory access while DMA is enabled,
this access can be destructive in some cases. Destructive cases are:
I/O read with the DMA in read mode, I/O write outside of a
packet boundary of the host DMA data stream.

The DSP core should be held off from write-accessing the host port DMA
controller and host port interface I/O space while it is in use by the host.
To avoid a race condition, a high-level synchronization protocol should be
employed if both DSP and external host agent are likely to use the host
port DMA controller and host port interface at the same time. For this,
system software can implement a DMA ownership bit using one of the
semaphore registers. This technique lets the processors, host or DSP core
determine if another process is already using the DMA controller.

Working with Peripheral DMA Modes

6-30 ADSP-219x/2191 DSP Hardware Reference

Using Serial Port (SPORT) DMA
The SPORT DMA channels move data between the serial ports and mem-
ory locations. Although the SPORT DMA transfers to and from memory
are always performed with 16-bit words, the serial ports can handle word
sizes from 3 to 16 bits. No packing of smaller words into the 16-bit DMA
transfer word are performed by the SPORT. Each SPORT has one chan-
nel for receiving data and one for transmitting data.

The SPORT DMA channels are assigned higher priority than all other
DMA channels (e.g., higher than SPI ports, UART port, MemDMA, and
host port channels), because the SPORTS have a relatively low service rate
and are unable to hold off incoming data. Having higher priority causes
the SPORT DMA transfers to be performed first when multiple DMA
requests occur in the same cycle.

Descriptor-Based SPORT DMA

Once a DMA descriptor block has been properly generated, the SPORT
DMA controller set up, and the DMA enabled (for details, see “Descrip-
tor-Based DMA Transfers” on page 6-11), the SPORT loads the first
descriptor block and begins to perform the first DMA transfer.

During the DMA transfer, data words received in the receive DMA FIFO
are automatically transferred to the data buffer in internal memory. When
the serial port is ready to transmit data, a word is automatically transferred
from memory to the transmit DMA FIFO.

Note that the SPORT DMA controller extends the depth of the receive
buffer when receive DMA is enabled from two words to eight words. This
buffer extension lets the receive DMA controller correctly operate with
long memory arbitration latencies in systems where many DMA peripher-
als are functioning at once. Similarly, the SPORT DMA controller
extends the depth of the transmit buffer when transmit DMA is enabled
from two words to eight words.

ADSP-219x/2191 DSP Hardware Reference 6-31

I/O Processor

DMA operation continues until the entire transfer is complete—when the
word count register reaches zero. When the word count register of an
active DMA channel reaches zero, the DMA controller generates the
DMA complete interrupt (if enabled in the DCOME bit of the descriptor).

Also on completion of the DMA, the DMA controller writes status and
returns ownership of the descriptor of the just completed DMA operation
to the DSP or host processor by writing the DMA configuration location
of the descriptor. The DMA controller then continues to load the next
descriptor in the linked list if the DMA configuration location of the next
descriptor has the DOWN bit set and DEN bit set.

If a DMA overflow or underflow error occurs during a transfer, the DMA
channel’s controller sets the corresponding error status bit. Errors do not
terminate the transfer. Error status is summarized in the SPORT Status
Register (the TUVF and ROVF bits). Based on this information, software can
make a decision to terminate the transfer by clearing (=0) the channel’s
DEN bit. If enabled with the DERE bit, this error also can generate an inter-
rupt, setting the DERI bit.

If an error occurs, software should flush the channel’s FIFO by setting
(=1) the channel’s FLSH bit. This bit should be set following any DMA ter-
mination due to an error condition. This bit has write-one-to-clear
characteristic. This bit may also be used by a descriptor block load to ini-
tialize a DMA FIFO to a cleared condition prior to starting a DMA
transfer. The DMA extended buffer not only is cleared, but the SPORT
transmit double buffer and receive double buffers also are cleared.

Autobuffer-Based SPORT DMA

Autobuffer mode removes the overhead of the descriptor-based method
when simply circular buffer type transfers are required. This mode pro-
vides compatibility with previous ADSP-218x SPORT autobuffering
mode. For more information, see “Autobuffer-Based DMA Transfers” on
page 6-14.

Working with Peripheral DMA Modes

6-32 ADSP-219x/2191 DSP Hardware Reference

SPORT DMA Data Packed/Unpacked Enable

SPORT DMA supports packed and unpacked data. If in packed mode,
the SPORT expects that the data contained by the DMA buffers corre-
sponds only to the enabled SPORT channels. If an MCM frame contains
ten enabled channels, the SPORT expects that the DMA buffer contains
ten consecutive words for each of the frames. The DMA buffer size only
can be as small as the number of the enabled channels, hence reducing the
DMA traffic.

Note that one can not change the total number of the enabled
channels without changing DMA buffer size. No mid-frame recon-
figuration is allowed. DMA data packed mode is the only type of
SPORT operation supported in non-DMA mode

If in unpacked mode, the DMA data is assumed to be unpacked. The
DMA buffer is expected to have a word for each of the channels in the
window (whether enabled or not). The DMA buffer size must be equal to
the size of the window. If Channels 1 and 10 are enabled and the window
size is 16, the DMA buffer size would have to be 16 words with the data to
be transmitted/received placed at address 1 and 10 of the buffer. The con-
tent of the rest of the DMA buffer is ignored. The data is considered
“unpacked” because the DMA buffer contains “extra” words. The purpose
of this mode is to simplify the programming model of the SPORT MCM.
For instance, this mode has no restrictions in terms of changing the num-
ber of enabled channels mid-frame (unlike in Data Packed mode above).

Software should set up the MCM Channel Select registers prior to
enabling TX/RX DMA operation, because SPORT FIFO operation begins
immediately after TX/RX DMA is enabled and depends on the values of
the MCM Channel Select registers.

ADSP-219x/2191 DSP Hardware Reference 6-33

I/O Processor

Using SPI Port DMA
The SPI has a single DMA controller, which supports either an SPI trans-
mit channel or a receive channel, but not both simultaneously. When
configured as a transmit channel, the received data is ignored. When con-
figured as a receive channel, what is transmitted is irrelevant. A four-level
deep FIFO is included to improve throughput of the DMA data.

When changing the direction for SPI port DMA (from TX to RX
or vice versa), the program must conclude the DMA in one direc-
tion, disable the channel, then start the next DMA in the other
direction. TX and RX SPI DMA sequences cannot be chained with
descriptors.

SPI DMA in Master Mode

When enabled as a master and the DMA controller is used to transmit or
receive data, the SPI interface operates as follows:

1. The core writes to the SPICTL and SPIBAUD registers, enabling the
device as a master and configuring the SPI system by selecting the
appropriate word length, transfer format, baud rate, etc. The TIMOD
field is configured to select “Transmit or Receive with DMA”
mode.

2. The core selects the desired SPI slave(s) by setting one or more of
the SPI flag select bits.

3. The core defines one or more DMA transfers by generating one or
more DMA descriptors in data memory.

4. The core writes to the SPI DMA Configuration register, enabling
the SPI DMA controller and configuring access direction.

Working with Peripheral DMA Modes

6-34 ADSP-219x/2191 DSP Hardware Reference

5. The DMA controller writes the Head of the descriptor to the SPI
DMA Next Descriptor register. To enable a receive operation, it is
necessary to set the TRAN bit. In order to be able to set TRAN, it is
first necessary to temporarily set the DAUTO bit. This is only neces-
sary for master mode DMA operation.

6. If configured for transmit, as the DMA controller reads data from
memory into the SPI DMA buffer, it initiates the transfer on the
SPI port. If configured for receive, as the DMA controller reads
data from SPI DMA buffer and writes to memory, it initiates the
receive transfer.

7. The SPI then generates the programmed clock pulses on SPICLK
and simultaneously shifts data out of MOSI and shifts data in from
MISO. For transmit transfers, before starting to shift, the value in
the DMA buffer is loaded into the shift register. For receive trans-
fers, at the end of the transfer, the value in the shift register is
loaded into the DMA buffer.

8. The SPI keeps sending or receiving words until the SPI DMA
Word Count register transitions from 1 to 0.

For transmit DMA operations, if the DMA controller is unable to keep up
with the transmit stream, perhaps because another DMA controller has
been granted access to memory, the transmit port operates according to
the state of the SZ bit. If SZ=1 and the DMA buffer is empty, the device
repeatedly transmits 0s on the MOSI pin. If SZ=0 and the DMA buffer is
empty, it repeatedly transmits the last word it transmitted before the
DMA buffer became empty. All aspects of SPI receive operation should be
ignored. The data in RDBR is not intended to be used, and the RXS and RBSY
bits should be ignored. The RBSY overrun condition can not generate an
error interrupt in this mode.

For receive DMA operations, if the DMA controller is unable to keep up
with the receive data stream, the receive buffer operates according to the
state of the GM bit. If GM=1 and the DMA buffer is full, the device contin-

ADSP-219x/2191 DSP Hardware Reference 6-35

I/O Processor

ues to receive new data from the MISO pin, overwriting the older data in
the DMA buffer. If GM=0 and the DMA buffer is full, the incoming data is
discarded, and the RDBR register is not updated. While performing a
receive DMA, the transmit buffer is assumed to be empty (and TXE is set).
If SZ=1, the device repeatedly transmits 0s on the MOSI pin. If SZ=0, it
repeatedly transmits the contents of the TDBR register. The TXE underflow
condition cannot generate an error interrupt in this mode.

Writes to the TDBR register during an active SPI transmit DMA operation
should not occur because DMA data is overwritten. Writes to the TDBR
register during an active SPI receive DMA operation are allowed. Reads
from the RBDR register are allowed at any time. Interrupts are generated
based on DMA events and are configured in the SPI DMA Configuration
Word of the DMA descriptor.

For a transmit DMA operation to start, the transmit buffer must initially
be empty (TXS=0). This is normally the case, but means that the TDBR reg-
ister should not be used for any purpose other than SPI transfers. TDBR
should not be used as a “scratch” register for temporary data storage. Writ-
ing to TDBR sets the TXS bit.

SPI DMA in Slave Mode

When enabled as a slave and the DMA controller is used to transmit or
receive data, the start of a transfer is triggered by a transition of the SPISSx
signal to the active-low state or by the first active edge of SCKx. The fol-
lowing steps illustrate the SPI receive DMA sequence in an SPI slave:

1. The core writes to the SPICTL register to define the mode of the
serial link to be the same as the mode setup in the SPI master. The
TIMOD field is configured to select “Transmit or Receive with
DMA” mode.

2. The core defines a DMA receive transfer by generating a receive
DMA descriptor in data memory.

Working with Peripheral DMA Modes

6-36 ADSP-219x/2191 DSP Hardware Reference

3. The core writes to the SPI DMA Configuration register, enabling
the SPI DMA controller and configuring a receive access. The head
of the descriptor is written to the SPI DMA Next Descriptor
(SPIxD_CP) register.

4. Once the slave-select input is active, the slave starts receiving data
on active SCKx edges.

5. Reception continues until SPI DMA Word Count (SPIxD_CNT) reg-
ister transitions from 1 to 0.

6. The core could continue by queuing up the next DMA descriptor.

For receive DMA operations, if the DMA controller is unable to keep up
with the receive data stream, the receive buffer operates according to the
state of the GM bit. If GM=1 and the DMA buffer is full, the device contin-
ues to receive new data from the MOSI pin, overwriting the older data in
the DMA buffer. If GM=0 and the DMA buffer is full, the incoming data is
discarded. While performing receive DMA, the transmit buffer is assumed
to be empty. If SZ=1, the device repeatedly transmits 0s on the MISO pin. If
SZ=0, it repeatedly transmits the contents of the TDBR register. The follow-
ing steps illustrate the SPI transmit DMA sequence in an SPI slave:

1. The core writes to the SPICTL register to define the mode of the
serial link to be the same as the mode set-up in the SPI master. The
TIMOD field is configured to select “Transmit or Receive with
DMA” mode.

2. The core defines a DMA receive work unit by generating a receive
DMA descriptor in data memory.

3. The core writes to the SPI DMA Configuration (SPIxD_CFG) regis-
ter, enabling the SPI DMA controller and configuring a transmit
operation. The head of the DMA descriptor is written to the SPI
DMA Next Descriptor (SPIxD_CP) register.

ADSP-219x/2191 DSP Hardware Reference 6-37

I/O Processor

4. Once the slave-select input is active, the slave starts transmitting
data on active SCKx edges.

5. Transmission continues until the SPI DMA Word Count
(SPIxD_CNT) register transitions to 0.

6. The core could continue by queuing up the next DMA descriptor.

For transmit DMA operations, if the DMA controller is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the SZ bit. If SZ=1 and the DMA buffer is empty, the device repeatedly
transmits 0s on the MISO pin. If SZ=0 and the DMA buffer is empty, it
repeatedly transmits the last word it transmitted before the DMA buffer
became empty. All aspects of SPI receive operation should be ignored. The
data in RDBR is not intended to be used, and the RXS and RBSY bits should
be ignored. The RBSY overrun condition can not generate an error inter-
rupt in this mode.

Writes to the TDBR register during an active SPI transmit DMA operation
should not occur. Writes to the TDBR register during an active SPI receive
DMA operation are allowed. Reads from the RBDR register are allowed at
any time. Interrupts are generated based on DMA events and are config-
ured in the SPI DMA Configuration Word of the DMA descriptor.

In order for a transmit DMA operation to execute properly, it is necessary
for the transmit buffer to initially be empty (TXS=0). This is normally the
case, but means that the TDBR register should not be used for any purpose
other than SPI transfers. TDBR should not be used as a “scratch” register for
temporary data storage. Writing to TDBR sets the TXS bit.

SPI DMA Errors

SPI DMA provides SPI-specific DMA error modes.

Mode-Fault Error (MODF). The MODF bit is set in the SPIST register when
the SPISSx input pin of a device enabled as a master is driven low by
another device in the system. This occurs in multiple master systems when

Working with Peripheral DMA Modes

6-38 ADSP-219x/2191 DSP Hardware Reference

another device is also trying to be the master. This contention between
two drivers can potentially cause damage to the driving pins. To enable
this feature, the PSSE bit in SPICTL must be set. As soon as this error is
detected, the following actions take place:

1. The MSTR control bit in SPICTL is cleared, configuring the SPI
interface as a slave.

2. The SPE control bit in SPICTL is cleared, disabling the SPI system.

3. The MODF status bit in SPIST is set.

4. An SPI interrupt is generated.

These conditions persist until the MODF bit is cleared, which is accom-
plished by a write-1 (W1C) software operation. Until the MODF bit is
cleared, the SPI can not be re-enabled, even as a slave. Hardware prevents
the user from setting either SPE or MSTR while MODF is set. When MODF is
cleared, the interrupt is deactivated. Before attempting to re-enable the
SPI as a master, the state of the SPISSx input pin should be checked to
make sure the pin is high; otherwise, once SPE and MSTR are set, another
mode-fault condition occurs again immediately.

As a result of SPE and MSTR being cleared, the SPI data and clock pin driv-
ers (MOSI, MISO, and SCK) are disabled, but the slave-select output pins
revert to being controlled by the programmable flag registers. This change
could lead to contention on the slave-select lines if these lines are still
being driven by the DSP.

To assure that the slave-select output drivers are disabled once a MODF error
occurs, configure the programmable flag registers appropriately. When
enabling the MODF feature, configure all the PFx pins that serve as
slave-selects as inputs. Accomplish this configuration by writing to the DIR
register prior to configuring the SPI port. If configured this way, when the
MODF error occurs, the slave-selects are automatically reconfigured as PFx
pins, disabling the slave-select output drivers.

ADSP-219x/2191 DSP Hardware Reference 6-39

I/O Processor

Transmission Error (TXE). This error bit is set in the SPI Port Status
(SPISTx) register when all the conditions of transmission are met and there
is no new data in SPI Transmit Buffer (TDBRx) register. In this case, what
is transmitted depends on the state of the SZ bit in the SPICTL register.
The TXE bit is cleared by a write-1 (W1C) software operation.

Reception Error (RBSY). The RBSY flag is set in the SPI Port Status
(SPISTx) register when a new transfer has completed before the previous
data could be read from the SPI Receive Buffer (RDBRx) register. This bit
indicates that a new word was received while the receive buffer was full.
The RBSY bit is cleared by a software write-1 (W1C) operation. The state
of the GM bit in the SPICTL register determines whether the RDBRx register is
updated with the newly received data.

Transmit Collision Error (TXCOL). The TXCOL flag is set in the SPI Port
Status (SPISTx) register when a write to the TDBR register coincides with
the load of the shift register. The write to TDBR can be direct or through
DMA. The TXCOL bit indicates that corrupt data may have been loaded
into the shift register and transmitted; in this case, the data which is in
TDBRx may not match what was transmitted. Note that this bit is never set
when the SPI is configured as a slave with CPHA=0; the collision error may
occur, but it can not be detected. In any case, this error can easily be
avoided by proper software control. The TXCOL bit is cleared by a software
write-1 (W1C) operation.

Using UART Port DMA
The UART may be used in either a programmed I/O mode or in a DMA
mode of operation. The I/O mode requires software management of the
data flow using either interrupts or polling. The DMA method requires
minimal software intervention because the DMA controller moves the
data.

Working with Peripheral DMA Modes

6-40 ADSP-219x/2191 DSP Hardware Reference

Separate receive and transmit DMA channels move data between the
peripheral and memory in this mode. The processor is freed of the task of
moving data and just sets up the appropriate transfers through DMA
descriptors.

The UART has two interrupt outputs referred to as the receive (RX) and
transmit (TX) interrupts. This nomenclature is somewhat misleading
because in I/O mode all UART interrupts are grouped together as a single
interrupt (the RX). Also note that in DMA mode, the break and modem
status interrupts are not available.

In I/O mode, the RX interrupt is generated for all cases:

• RBR full

• Receive overrun error

• Receive parity error

• Receive framing error

• Break interrupt (RXSIN held low)

• Modem status interrupt (changes to DCD, RI, DSR, or CTS)

• THR empty

In DMA mode, the RX interrupt is generated when:

• RX work block complete

• Receive overrun error

• Receive parity error

• Receive framing error

• RX DEN bit error

ADSP-219x/2191 DSP Hardware Reference 6-41

I/O Processor

In DMA mode, the TX interrupt is generated when:

• TX work block complete

• TX DEN bit error

The DMA completion interrupt is enabled by the DCOME bit of the DMA
Configuration register. The error types of interrupts are enabled by the
DERE bit of this register.

Boot Mode DMA Transfers
The ADSP-2191 uses DMA for external port booting only. This section
provides a brief description of the DMA processes involved in booting.
For a description of the booting process for all peripherals, see “Booting
the Processor (“Boot Loading”)” on page 14-16.

After reading the header for external port booting, the loader kernel polls
the DMA ownership bit within the configuration word to determine com-
pletion of DMA. The loader kernel parses the header and sets up another
DMA descriptor to load in the actual data following this header. While
this DMA is in progress, the Boot ROM routine polls the DMA owner-
ship bit to determine whether the DMA has completed or not.

This process repeats for all the blocks that need to be transferred. The last
block to be read/initialized is the “final DM” block. This final block does
not use a DMA descriptor, rather it is a direct core accesses. The interrupt
service routine performs some housecleaning, transfers program control to
location 0x0000, and begins running.

Code Example: Internal Memory DMA

6-42 ADSP-219x/2191 DSP Hardware Reference

Code Example: Internal Memory DMA
This example demonstrates multiple internal to internal DMA transfers
within the memory of the ADSP-2191. The example uses two methods to
check for DMA completion:

• Interrupts—at the end of the first transfer a DMA completion
interrupt is generated.

• Ownership bit of the configuration word—the second DMA polls
this bit in memory to see if it is cleared. At the end of the transfer,
the DMA engine writes a 0 (zero) to this bit in memory in order to
transfer the control of DMA descriptor block to the DSP.

#include "def2191.h"

#define N 20

.section/dm data1;

.var SOURCE[N] = 0x1111, 0x2222, 0x3333, 0x4444, 0x5555,

0x6666, 0x7777, 0x8888, 0x9999, 0xaaaa,

0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff,

0xbade, 0xdeed, 0xfeed, 0xbead, 0xcafe;

.VAR DESTINATION2[N/2];

/* Config Start Start DMA Next descriptor */

word page address count pointer */

------ ----- ------- ----- --------------- */

.var WR_DMA_WORD_CONFIG[5] =

0x8007, 0x0000, 0x0000, N, 0x0000;

.var RD_DMA_WORD_CONFIG[5] =

0x8001, 0x0000, 0x0000, N, 0x0000;

.var WR_DMA_WORD_CONFIG2[5] =

ADSP-219x/2191 DSP Hardware Reference 6-43

I/O Processor

0x0003, 0x0000, 0x0000, N/2, 0x0000;

.var RD_DMA_WORD_CONFIG2[5] =

0x0001, 0x0000, 0x0000, N/2, 0x0000;

.var end_dma = 0x0;

/* to stop the DMA, point Next Address Pointer */

/* to a buffer that contains ZERO */

.section/pm data2;

.var DESTINATION[N];

.var SOURCE2[N/2] = 0x1111, 0x2222, 0x3333, 0x4444, 0x5555,

0x6666, 0x7777, 0x8888, 0x9999, 0xaaaa;

.section/pm IVreset;

JUMP start;

/* INTERRUPT SERVICE ROUTINE */

.section/pm IVint4;

iopg = Memory_DMA_Controller_Page;

AX0 = 0x1;

IO(DMACW_IRQ) = AX0;

/* writing a 1 to this register clears the interrupt */

/* write the Configuration words for the 2nd transfer, */

/* setting the Ownership and DMA enable bits */

AX0 = 0x8003;

AX1 = 0x8001;

DM(WR_DMA_WORD_CONFIG2) = AX0;

DM(RD_DMA_WORD_CONFIG2) = AX1;

AX0 = 0x1;

IO(DMACW_CPR) = AX0;

Code Example: Internal Memory DMA

6-44 ADSP-219x/2191 DSP Hardware Reference

/* Set the descriptor ready bit in both Write and Read chans

*/

IO(DMACR_CPR) = AX0;

/* signal to the DMA engine that the down bit has been set */

RTI; /* Return from interrupt */

/* MAIN PROGRAM */

.section/pm program;

start:

/* INTERRUPT PRIORITY CONFIGURATION */

IOPG = Interrupt_Controller_Page;

AX0 = 0xB0BB;

IO(IPR3) = AX0;

/* assign DSP's interrupt priority 4 to Memory DMA port */

AX0 = 0xBBBB;

IO(IPR0) = AX0;

/* set all other interrupts to the lowest priority */

IO(IPR1) = AX0;

IO(IPR2) = AX0;

ICNTL = 0X0; /* Disable nesting */

IRPTL = 0X0; /* Clear pending interrupts */

imask = 0x0010; /* unmask interrupt 4 */

/*

Setting up the 1st set of descriptor blocks in memory

*/

/*

ADSP-219x/2191 DSP Hardware Reference 6-45

I/O Processor

Write channel

*/

AX0 = WR_DMA_WORD_CONFIG2;

AX1 = DESTINATION;

DM(WR_DMA_WORD_CONFIG + 2) = AX1;

/* write start address word (start of buffer) */

DM(WR_DMA_WORD_CONFIG + 4) = AX0;

/* write next descriptor pointer word */

/*

Read channel

*/

AX1 = SOURCE;

AR = RD_DMA_WORD_CONFIG2;

DM(RD_DMA_WORD_CONFIG + 2) = AX1;

/* write start address word (start of buffer) */

DM(RD_DMA_WORD_CONFIG + 4) = AR;

/* write next descriptor pointer word */

/*

Set up the 2nd set of descriptor blocks in memory

*/

/*

Write channel

*/

AX0 = END_DMA;

AX1 = DESTINATION2;

DM(WR_DMA_WORD_CONFIG2 + 2) = AX1; /* start address word */

Code Example: Internal Memory DMA

6-46 ADSP-219x/2191 DSP Hardware Reference

DM(WR_DMA_WORD_CONFIG2 + 4) = ax0; /* nxt descriptor ptr word*/

/*

Read channel

*/

AX1 = SOURCE2;

DM(RD_DMA_WORD_CONFIG2 + 2) = AX1; /* start address word */

DM(RD_DMA_WORD_CONFIG2 + 4) = AX0; /* next desc ptr word */

/*

Write to the DMA engine

*/

/* The following IO writes are necessary to kick off the DMA

engine for the first transfer. Subsequent chained DMA transfers

will only need to have the Ownership and DMA Enable bits set in

their respective configuration words in memory. Note that for

subsequent transfers if the ownership bit is not set, the

Descriptor Ready bits will need to be set again once the owner-

ship bit is set. */

IOPG = Memory_DMA_Controller_Page;

AX0 = WR_DMA_WORD_CONFIG;

IO(DMACW_CP) = AX0;

/* Load the address of the First Write Channel work unit */

AX1 = RD_DMA_WORD_CONFIG;

IO(DMACR_CP) = AX1;

/* Load the address of the Read Channel work unit */

AX0 = 0x1;

IO(DMACW_CPR) = AX0;

/* Set the descriptor ready bit in both Write and Read chans

*/

ADSP-219x/2191 DSP Hardware Reference 6-47

I/O Processor

IO(DMACR_CPR) = AX0;

IO(DMACW_CFG) = AX0;

/* enable DMA in both channels, this enable plus the setting of

the descriptor ready bits will cause the DMA engine to fetch the

descriptor words from memory to its space in IO and begin the

transfer */

IO(DMACR_CFG) = AX0;

ENA INT; /* enable global interrupts */

IDLE;

/* wait for the DMA interrupt, which will be generated */

/* once the 1st transfer completes */

/* loop here to check bit 15 (ownership bit) of the config regis-

ter in DM to see if DMA completed, On completion the DMA engine

will write a 0 to this bit */

do test_ownership until forever;

AR = DM(WR_DMA_WORD_CONFIG2);

AR = TSTBIT 15 OF AR;

test_ownership: if EQ jump dma_done;

/* the explicit jump ends the infinite loop */

dma_done:

POP LOOP;

/* this instruction is necessary to recover the loop stack after

exiting an infinite loop if the label DMA_DONE is not the next

sequential instruction, after popping the loop stack another jump

to the next instruction after the loop may be needed.*/

NOP;

IDLE;

Code Example: Internal Memory DMA

6-48 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x/2191 DSP Hardware Reference 7-1

7 EXTERNAL PORT

This chapter provides the following sections:

• “Overview” on page 7-1

• “Setting External Port Modes” on page 7-3

• “Working with External Port Modes” on page 7-9

• “Interfacing to External Memory” on page 7-15

• “Code Example: BMS Run-Time Access” on page 7-28

Overview
The DSP’s external port extends the DSP’s address and data buses
off-chip. Using these buses and external control lines, systems can inter-
face the DSP with external memory or memory-mapped peripherals. This
chapter describes configuring, connecting, and timing accesses to external
memory or memory-mapped peripherals. For information describing the
DSP’s memory and how to use it, see “Memory” on page 5-1.

The external port connections appear in Figure 7-1 on page 7-2. The
main sections of this chapter describe how to use the interfaces that are
available through the external port.

There is a 4:1 conflict resolution ratio at the external port interface
(three internal buses to one external bus), a 2:1 clock ratio between
the DSP’s internal clock and the peripheral clock (when
HCLK=½ CCLK), and a packing delay of one cycle per word to

Overview

7-2 ADSP-219x/2191 DSP Hardware Reference

unpack instructions. Systems that fetch instructions or data
through the external port must tolerate latency on these accesses.
For more information, see “Memory Interface Timing” on
page 7-24.

Figure 7-1. ADSP-2191 System—External Port Interfaces

DATA15–8

IOMS

ADSP-2191M

BMS

MS3–0

BR

BG

ACK

WR

RD

ADDR21–0

DATA7–0

DATA15–
8

ADDR21–
0

DATA7–
0
CS

ACK

WE

OE

EXTERNAL
MEMORY

(OP T ION A L)

DATA15–
8

ADDR21–
0

DATA7–
0
CS

ACK

WE

OE

BOOT
MEMORY

(OP T ION A L)

DATA15–
8

ADDR18–
0

DATA7–
0
CS

ACK

WE

OE

EXTERNAL
I/O MEMORY

(OP T IO N A L)

A
D

D
R

E
S

S

C
O

N
T

R
O

L

D
A

T
A

CLKOUT

BGH

ADSP-219x/2191 DSP Hardware Reference 7-3

External Port

Setting External Port Modes
The E_STAT, EMICTL, MSxCTL, BMSCTL, IOMSCTL, and MEMPGx registers con-
trol the operating mode of the DSP’s memory. The settings for these
modes are covered in the following sections:

• “Memory Bank and Memory Space Settings” on page 7-3

• “External Bus Settings” on page 7-5

• “Bus Master Settings” on page 7-7

• “Boot Memory Space Settings” on page 7-7

Memory Bank and Memory Space Settings
Each bank of external memory has a configurable setting for read waitstate
count, write waitstate count, waitstate mode select, clock divider, and
write hold cycle. Boot memory space and I/O memory space also have
these settings. These features come from the following bits in the MSxCTL,
BMSCTL, and IOMSCTL registers:

Setting External Port Modes

7-4 ADSP-219x/2191 DSP Hardware Reference

Read Waitstate Count. MSxCTL, BMSCTL, IOMSCTL bits 2-0 (E_RWC)
Write Waitstate Count. MSxCTL, BMSCTL, IOMSCTL bits 5-3 (E_WWC).
These bits direct the DSP to apply 0 to 7 waitstates (EMICLK clock cycles),
before completing the read or write access to the corresponding memory
bank or memory space.

• Waitstate Mode Select. MSxCTL, BMSCTL, IOMSCTL bits 7-6 (E_WMS).
These bits direct the DSP to use the following waitstate mode for
the corresponding memory bank or memory space: external ACK
only (if 00), internal waitstates only (if 01), both ACK and waitstates
(if 10), either ACK or waitstates (if 11).

• Clock Divider Select. MSxCTL, BMSCTL, IOMSCTL bits 10-8 (E_CDS).
These bits set the memory bank or space clock rate (EMICLK) at a
ratio of the peripheral clock rate (HCLK) for accesses to the corre-
sponding memory bank or memory space. The possible
EMICLK:HCLK ratios are as follows: 1:1 (if 000), 1:2 (if 001), 1:4
(if 010), 1:8 (if 011), 1:16 (if 100), or 1:32 (if 101)

• Write Hold Enable. MSxCTL, BMSCTL, IOMSCTL bit 11 (E_WHE). This
bit directs (if 1) the DSP to extend the write data hold time by one
cycle following de-asserting of the WR strobe for the corresponding
memory bank or memory space, providing more data hold time for
slow devices. When disabled (if 0), the write data hold time is not
extended.

The size of each bank of external memory is configurable. As shown in the
ADSP-2191 memory map in Figure 5-4 on page 5-10, the default settings
for bank size place 64 memory pages on each bank. The configurable
number of pages per bank is set in the following registers/bits:

• Bank 0 Lower Page Boundary. MEMPG10 bits 7-0 (E_MS0_PG)
Bank 1 Lower Page Boundary. MEMPG10 bits 15-8 (E_MS1_PG)
Bank 2 Lower Page Boundary. MEMPG32 bits 7-0 (E_MS2_PG)
Bank 3 Lower Page Boundary. MEMPG32 bits 15-8 (E_MS3_PG).

ADSP-219x/2191 DSP Hardware Reference 7-5

External Port

These bits select external memory bank sizes by selecting the start-
ing page boundary for each memory bank. Each register holds the
8-bit page number of the lowest page on the bank.

External Bus Settings
The external port configuration includes settings for RD/WR strobe polarity,
external memory format, and external bus master access. The features
come from the following bits in the EMICTL and E_STAT registers:

• External Bus Width Select. EMICTL bit 3 (E_BWS) selects the bus
width for the external bus as 16 bits (if 1) or 8 bits (if 0). The
external port bases packing operations on the data format selection
and external bus width. This bus width applies to external memory
space, boot memory space, and external I/O memory space.

• Write Strobe Sense Logic Select. EMICTL bit 4 (E_WLS)
Read Strobe Sense Logic Select. EMICTL bit 5 (E_RLS)
These bits direct the DSP to use active low (negative logic, if 1) or
active high (positive logic, if 0) for the RD and WR pins for accesses
to external memory.

• PM and DM Data Format Select. E_STAT bit 3 (E_DFS) selects
whether user PM and DM data requests from the core are treated
as 24 bit or 16 bit when they are forwarded to the external interface
for external memory transfers. The E_DFS bit effectively normalizes
the word size and allows programs to use the same program address
for accessing data regardless of whether it is in PM (24 bit) or DM
(16 bit). The external interface packs the 16 or 24 bit data in exter-
nal memory, depending on whether it is configured for 8 or 16 bit
external memories. Instruction fetches are not affected by the
E_DFS bit.

• Access Split Enable. EMICTL bit 6 (E_ASE) enables (if 1) splitting
DMA transfers to or from external memory. If split is enabled,
other DMA capable peripherals (for example, from or to SPORT,

Setting External Port Modes

7-6 ADSP-219x/2191 DSP Hardware Reference

SPI, UART, or host) can perform DMA of internal memory while
the external port is waiting to read or write DMA data in external
memory. When disabled (if 0), other peripherals must wait for
external port DMA transfers to complete (releasing its hold on
DMA mastership), before getting access to internal memory for
DMA.

• CMS Output Enable. MSxCTL, BMSCTL, IOMSCTL bit 15 (E_COE)
enables (if 1) ORing of the corresponding memory bank’s or mem-
ory space’s select line with other (also enabled) selects, producing a
composite memory select output. When disabled (if 0), the mem-
ory bank’s or memory space’s select line is not used to generate a
CMS output.

The E_COE bit is a reserved bit on the ADSP-2191 (144-lead LQFP
or mini-BGA packages), because the CMS pin is not available on this
DSP.

ADSP-219x/2191 DSP Hardware Reference 7-7

External Port

Bus Master Settings
The external port permits external processors to gain control of the exter-
nal bus using the BR, BG, and BGH pins. The configurable features for these
pins come from the following bits in the EMICTL register:

• Bus Lock. EMICTL bit 0 (E_BL) locks out (if 1) response to external
bus request (BR) signals, locking the DSP as bus master. When dis-
abled (if 0), the DSP responds to bus requests. This bit also locks
out bus requests for DMA.

• External Bus and DMA Request Holdoff Enable. EMICTL bit 1
(E_BHE) holds off (if 1) response to external bus request (BR) signals
and DMA requests for 16 I/O clock cycles, delaying loss of bus
mastership. When disabled (if 0), the DSP responds to bus requests
without delay.

• Access Control Registers Lock. EMICTL bit 2 (E_CRL) locks out
(if 1) write access to the MSxCTL, BMSCTL, and IOMSCTL registers,
making their E_RWC, E_WWC, E_WMS, E_CDS, E_WHE, and E_COE settings
read only. When disabled (if 0), the DSP can read or write the MSx-
CTL, BMSCTL, and IOMSCTL registers.

Boot Memory Space Settings
The external port permits accessing boot memory space at runtime (after
the DSP boots). When any of these modes are enabled, the DSP uses the
BMS pin (instead of the MSx pins) for off-chip memory accesses, selecting

Setting External Port Modes

7-8 ADSP-219x/2191 DSP Hardware Reference

boot memory space (instead of an external memory bank). The config-
urable features for boot memory format come from the following bits in
the E_STAT register:

• PM Instruction from Boot Space Enable. E_STAT bit 0 (E_PI_BE)
enables (if 1) access to boot memory space with the BMS select line
for fetching instructions or disables (if 0) boot memory space
access. If disabled, the DSP applies normal usage of MSx chip select
lines for fetching instruction from external memory.

• PM Data from Boot Space Enable. E_STAT bit 1 (E_PD_BE) enables
(if 1) access to boot memory space with the BMS select line for
accessing data over the PM bus or disables (if 0) boot memory
space access. If disabled, the DSP applies normal usage of MSx chip
select lines for accessing data over the PM bus from external
memory.

• DM Data from Boot Space Enable. E_STAT bit 2 (E_DD_BE) enables
(if 1) access to boot memory space with the BMS select line for
accessing data over the DM bus or disables (if 0) boot memory
space access. If disabled, the DSP applies normal usage of MSx chip
select lines for accessing data over the DM bus from external
memory.

ADSP-219x/2191 DSP Hardware Reference 7-9

External Port

Working with External Port Modes
The external port provides many operating modes for using the DSP’s
external memory space, boot memory space, and I/O memory space.
Techniques for using these modes are described in the following sections.

• “Using Memory Bank/Space Waitstates Modes” on page 7-9

• “Using Memory Bank/Space Clock Modes” on page 7-10

• “Using External Memory Banks and Pages” on page 7-11

• “Using Memory Access Status” on page 7-12

• “Using Bus Master Modes” on page 7-13

• “Using Boot Memory Space” on page 7-14

Using Memory Bank/Space Waitstates Modes
The DSP has a number of modes for accessing external memory space.
The External Waitstate Mode Select (E_WMS) fields in the MSxCTL, BMSCTL,
and IOMSCTL registers select how the DSP uses waitstates and the acknowl-
edge (ACK) pin to access each external memory bank, boot memory, and
I/O memory. The waitstate modes appear in Table 7-1 on page 7-10.

The DSP applies waitstates to each external memory access depending on
the bank’s and/or spaces’s external waitstate mode (E_WMS). The External
Read/Write Waitstates Count (E_R/WWC) fields in the MSxCTL, BMSCTL, and
IOMSCTL registers set the number of waitstates for each bank and/or space
as 000 = 0 waitstates to 111 = 7 waitstates.

For additional hold time on write data, systems can enable the Write Hold
Enable (E_WHE) bit. Enabling E_WHE causes the DSP to leave the address
and data unchanged for one additional cycle after the write strobe is

Working with External Port Modes

7-10 ADSP-219x/2191 DSP Hardware Reference

de-asserted. This hold cycle provides additional address and data hold
times for slow devices. For more information, see the E_WHE description on
page 7-4.

The DSP applies hold time cycles regardless of the waitstate mode
(E_WMS). For example, the Both mode (ACK plus waitstate mode)
also could have an associated hold cycle.

Using Memory Bank/Space Clock Modes
The DSP provides additional clock ratio selections for each external mem-
ory bank, boot memory space, and external I/O memory space. These
clock ratios let system designers accommodate access to slow devices with-
out slowing the DSP core or other memory banks/spaces. Both address
setup and strobe delay may be controlled by adjusting EMICLK. The clock
ratio selections appear in Table 7-2 on page 7-11.

Table 7-1. External Memory Interface Waitstate Modes

E_WMS External Memory Interface Waitstate Mode

00 ACK mode—DSP RD and WR strobes change before CLKOUT’s edge—accesses
require external acknowledge (ACK), allowing a de-asserted ACK to extend the
access time. Note that there are two waitstates (at minimum) when using ACK
mode.

01 Wait mode—DSP RD and WR strobes change before CLKOUT’s edge—reads use
the waitstate count setting from E_RWC (for reads) and writes use the waitstate
count setting from E_WWC (for writes).

10 Both mode—DSP RD and WR strobes change before CLKOUT’s edge—reads use
the waitstate count setting from E_RWC (for reads) and writes use the waitstate
count setting from E_WWC (for writes) and require external acknowledge (ACK),
allowing both the waitstate count and a de-asserted ACK to extend the access time.

11 Either mode—DSP RD and WR strobes change before CLKOUT’s edge—reads use
the waitstate count setting from E_RWC (for reads) and E_WWC (for writes) or
respond to external acknowledge (ACK), allowing either completion of the wait-
state count or a de-asserted ACK to limit the access time.

ADSP-219x/2191 DSP Hardware Reference 7-11

External Port

Using External Memory Banks and Pages
At reset, the DSP’s external memory space is configured with four banks
of memory, each with 63 or 64 pages. After reset, systems should program
the correct lower page boundary into each bank’s E_MSx_PG bits, unless the
default settings are appropriate for the system. Mapping peripherals into
different banks lets systems accommodate I/O devices with different tim-
ing requirements, because each bank has an associated waitstate mode and
clock mode setting. For more information, see “Using Memory
Bank/Space Waitstates Modes” on page 7-9 and “Using Memory
Bank/Space Clock Modes” on page 7-10.

As shown in Figure 5-4 on page 5-10, Bank 0 starts at address 0x1,0000 in
external memory, and the Banks 1, 2, and 3 follow. Whenever the DSP
generates an address that is located within one of the four banks, the DSP
asserts the corresponding memory select line (MS3-0).

Table 7-2. External Memory Interface Clock Ratio Selections

E_CDS Clock Divider Select Ratio (HCLK-to-EMICLK for Bank/Space)

000 1:1

001 1:2

010 1:4

011 1:8

100 1:16

101 1:32

Working with External Port Modes

7-12 ADSP-219x/2191 DSP Hardware Reference

Using Memory Access Status
The E_STAT and EP_STAT registers indicate the status of external port
accesses to external memory. The following bits in the E_STAT and EP_STAT
registers indicate memory access status:

• External Write Pending Flag. E_STAT bit 8 (E_WPF) is a read-only
bit that indicates whether a write is pending (if 1) or no write is
pending (if 0) on the external port.

• External Bus Busy. EP_STAT bits 1–0 (E_BSY) are read-only bits that
indicate the external bus status as: 00 = not busy, 01 = off-chip
master, 10 = on-chip master, or 11 = reserved.

• External Last Master ID. EP_STAT bits 6-2 (E_MID) are read-only
bits that indicate the ID code for current or last master of the exter-
nal port interface. A list of these ID codes appears in Table B-14
on page B-107.

• External Word Packer Status. EP_STAT bits 8-7 (E_WPS) are
read-only bits that indicate the packing status for the external port
interface as the packer contains: no bytes (empty if 00), one byte (if
01), two bytes (if 10), or three bytes (if 11).

Because the external memory interface does not hold up the DSP core
while waiting for a write complete acknowledge, it’s important for systems
to check the write pending flag when using slow external memories. For
more information, see “Memory Interface Timing” on page 7-24.

ADSP-219x/2191 DSP Hardware Reference 7-13

External Port

Using Bus Master Modes
An ADSP-2191 DSP can relinquish control of its data and address buses
to an external device. The external device requests the bus by asserting
(low) the bus request (BR) pin. BR is an asynchronous input. If the
ADSP-2191 is not performing an external access, it responds to the active
BR input in the following processor cycle by:

1. Three-stating the data and address buses and the MSx, RD, WR pins

2. Asserting the bus grant (BG) signal

3. Continuing program execution (until the DSP core requires an
external memory access)

In systems that make the DSP a bus slave (active BR input), 10 kW
pull-up resisters should be placed on the DSP’s MSx, BMS, IOMS, RD,
and WR pins.

The ADSP-2191 continues to execute instructions from its internal mem-
ory while the external bus is granted. The DSP does not halt program
execution, until it encounters an instruction that requires an external
access. An external access may be either an external memory, external I/O
memory, or boot memory access.

Even when the ADSP-2191 halts because the DSP core is held off, the
DSP’s internal state is not affected by granting the bus. The other periph-
eral (host port, serial ports, SPI ports, and UART port) remain active
during a bus grant, even when DSP core halts.

If the ADSP-2191 is performing an external access when the BR signal is
asserted, the DSP does not grant the buses until the cycle after the access
completes. The entire instruction does not need to be completed when the
bus is granted. If a single instruction requires two external accesses, the
bus is granted between the two accesses. The second access is performed
after BR is removed.

Working with External Port Modes

7-14 ADSP-219x/2191 DSP Hardware Reference

When the BR input is released, the ADSP-2191 releases the BG signal,
re-enables the output drivers and continues program execution from the
point where it stopped. BG is always deasserted in the same cycle that the
removal of BR is recognized. Refer to the ADSP-2191 DSP Microcomputer
Data Sheet for exact timing relationships.

The bus request feature operates at all times, including when the processor
is booting and when RESET is active. During RESET, BG is asserted in the
same cycle that BR is recognized. During booting, the bus is granted after
completion of loading of the current byte (including any waitstates).
Using bus request during booting is one way to bring the booting opera-
tion under control of a host computer.

The ADSP-2191 DSPs also have a Bus Grant Hung (BGH) pin, which lets
them operate in a multiprocessor system with a minimum number of
wasted cycles. The BGH pin asserts when the ADSP-2191 is ready to per-
form an external memory access but is stopped because the external bus is
granted to another device. The other device can release the bus by
de-asserting bus request. Once the bus is released, the ADSP-2191 deas-
serts BG and BGH and executes the external access.

Using Boot Memory Space
As shown in Figure 7-1 on page 7-2, the DSP supports an external boot
EPROM mapped to external memory and selected with the BMS pin. The
boot EPROM provides one of the methods for automatically loading a
program into the internal memory of the DSP after power-up or after a
software reset. This process is called booting. For information on boot
options and the booting process, see “Boot Mode DMA Transfers” on
page 6-41.

Boot memory space also is available at runtime, after booting. Depending
on the size of the connected EPROM, the EPROM content is aliased sev-
eral times in the memory map. Access the EPROM by using the addresses
starting from 0x80 0000. For information on this run-time access, see

ADSP-219x/2191 DSP Hardware Reference 7-15

External Port

“Reading from Boot Memory” on page 7-15 and “Writing to Boot Mem-
ory” on page 7-15. For a programming example of this access, see “Code
Example: BMS Run-Time Access” on page 7-28.

Reading from Boot Memory

When the DSP boots from an EPROM, the DSP uses the code in the boot
ROM kernel to load the program from boot memory space. If further
access to boot memory space is needed, the DSP may gain access to the
boot memory space after the automatic boot process. To request access to
boot memory, the DSP uses the PM instructions from boot memory
(E_PI_BE), PM data from boot memory (E_PD_BE), or DM data from boot
memory (E_DD_BE) bits in the E_STAT register.

Setting (=1) one of these bits overrides the external memory selects and
asserts the DSP’s BMS pin for an external memory transfer of the type cor-
responding to the bit.

Writing to Boot Memory

In systems using write-able EEPROM or FLASH memory for boot mem-
ory, programs can write new data to the DSP’s boot memory using the
same technique as “Reading from Boot Memory” on page 7-15, setting
(=1) one of the E_PI_BE, E_PD_BE, or E_DD_BE bits to override the external
memory selects and asserts the DSP’s BMS pin for an external memory
transfer.

Interfacing to External Memory
In addition to its on-chip SRAM, the DSP provides addressing of up to
4M words per bank of off-chip memory through its external port. This
external address space includes external memory space—the region for
standard addressing of off-chip memory.

Interfacing to External Memory

7-16 ADSP-219x/2191 DSP Hardware Reference

This section provides the following topics:

• “Data Alignment—Logical vs. Physical Address” on page 7-16

• “Memory Interface Pins” on page 7-21

• “Memory Interface Timing” on page 7-24

Data Alignment—Logical vs. Physical Address
Data alignment through the external port depends on whether the system
uses an 8- or 16-bit data bus. Figure 7-2 on page 7-17 shows the external
port’s data alignment. Each address in external, boot, and I/O memory
corresponds to a 16- or 24-bit location, depending on the interface's con-
figuration. A 16-bit data word occupies two bytes, and a 24-bit
instruction word occupies four bytes (with an empty byte). When the sys-
tem uses an 8-bit bus, two accesses are required for external 16-bit data,
and three accesses are required for external instruction fetches or 24-bit
data. When the system uses a 16-bit bus, one access is required for exter-
nal 16-bit data, and two accesses are required for external instruction
fetches or 24-bit data. For more information, see “External Bus Settings”
on page 7-5.

To make it easier for programs to work with data alignment in external
memory that varies with the external data format (16- or 24-bit), data size
(16- or 24-bit) and the bus width (8- or 16-bit), the DSP supports logical
addressing for programs and physical addressing for connecting devices to
the external address bus.

Logical addressing normalizes addresses for 16- and 24-bit data in memory,
creating a contiguous address map. The address map does not have a mul-
titude of “holes” when addressing 24-bit data (e.g., an instruction fetch)
in external memory.

ADSP-219x/2191 DSP Hardware Reference 7-17

External Port

Physical addressing makes every location in external memory space avail-
able for addressing external devices using the external address bus.
Whether using an 8- or 16-bit bus, the DSP can access each memory with
the same granularity as the bus size.

The equation in Figure 5-4 on page 5-10 permits calculating the correla-
tion between physical and logical addresses. The Format and Size factors
for this equation appear in Table 7-3 on page 7-18 and Table 7-4 on
page 7-18. This is a useful calculation when identifying the physical loca-
tion for connecting an external device (such as a memory mapped I/O
device) and identifying the logical location for addressing that device
(such as the device’s buffer address).

Figure 7-2. External Port Word Alignment

Figure 7-3. Physical Address Calculation

BYTE 0

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 0

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 0BYTE 1

BYTE 2BYTE 3

BYTE 4BYTE 5

BYTE 6BYTE 7

BYTE 0BYTE 1

BYTE 2BYTE 3

BYTE 4BYTE 5

BYTE 6BYTE 7

BIT 0BIT 7 BIT 0BIT 7 BIT 0BIT 15 BIT 0BIT 15

8-BIT BUS 8-BIT BUS 16-BIT BUS 16-BIT BUS

16-BIT
WORD

16-BIT
WORD

16-BIT
WORD

16-BIT
WORD

24-BIT
INST

24-BIT
INST

16-BIT WORDS
(BYTE PAIRS)

24-BIT INSTRUCTIONS
(BYTE QUADS)

16-BIT WORDS
(BYTE PAIRS)

24-BIT INSTRUCTIONS
(BYTE QUADS)

Physical Address Format Factor Size Factor× Logical Address×=

Interfacing to External Memory

7-18 ADSP-219x/2191 DSP Hardware Reference

For example, take the following programming and system design task of
logically and physically addressing the following data:

• A 24-bit instruction fetch

• At logical address 0x2 0000

• An 24-bit external memory format (E_STAT register, E_DFS bit = 1)

Table 7-3. Format Factor Address Multipliers

External Memory
Data Format

16-bit 24-bit 16-bit 24-bit 16-bit 24-bit

E_DFS Bit =0 =1 =0 =1 =0 =1

Transfer Type 24-bit
Instr.

24-bit
Instr.

24-bit
Data

24-bit
Data

16-bit
Data

16-bit
Data

Word Size 24-bit 24-bit 24-bit 24-bit 16-bit 16-bit

Transfer Size 24-bit 24-bit 16-bit1 24-bit 16-bit 16-bit2

Address Multiplier x1 x1 x1 x1 x1 x2

1 Note that the transfer size is smaller than the words size, because the external memory format (E_DFS
bit) and the transfer type do not match (16- versus 24-bit). In this case, the data is truncated, losing
the lower 8 bits.

2 Note that this case has an address multiplier factor of x2, because the external memory format (E_DFS
bit) and the transfer type do not match (24- versus 16-bit).

Table 7-4. Size Factor Address Multipliers

External Port Bus Size 16-bit 8-bit 16-bit 8-bit

E_BWS Bit =1 =0 =1 =0

Transfer Size 24-bit 24-bit 16-bit 16-bit

Address Multiplier x2 x4 x1 x2

ADSP-219x/2191 DSP Hardware Reference 7-19

External Port

• An 8-bit wide external bus (EMICTL register, E_BWS bit = 0)

• What is the physical address that the address lines in the system use
for accessing this data?

For these parameters, use the physical address calculation as follows:

Four useful combinations of external data format, data size, and bus size
that cover the most common applications (where data format equals data
size) are: 24-bit data over an 8-bit bus, 16-bit data over an 8-bit bus,
24-bit data over a 16-bit bus, and 16-bit data over a 16-bit bus. Table 7-5
on page 7-20, Table 7-6 on page 7-20, Table 7-7 on page 7-20, and
Table 7-8 on page 7-21 show how logical and physical addressing com-
pare for these cases.

Because boot memory space (like external memory space) also can contain
16- or 24-bit data and is accessible using the external address bus (with
BMS), the logical and physical addressing scheme also applies to external
boot memory space accesses.

Boot memory space on the ADSP-2191’s memory map starts at
logical address 0x1 0000. For easy physical mapping when booting
from an external EPROM, the ADSP-2191’s boot kernel accesses
data in the EPROM starting at physical address 0x0 0000.

The boot kernel accomplishes this by accessing logical address
0x80 0000, which (because the ADSP-2191 has 22 address lines)

Figure 7-4. Example: Physical Address Calculation

Physical Address Format Factor Size Factor× Logical Address×=

1 4× 0x20000×= 0x80000=

Interfacing to External Memory

7-20 ADSP-219x/2191 DSP Hardware Reference

Table 7-5. Example: 24-bit Format, 24-bit Data, and 8-bit External Bus

Logical Address 24-Bit Data Word Physical Address 24-Bit Data Word

0x20000 0x123456 0x80000 unused

0x80001 0x56

0x80002 0x34

0x80003 0x12

0x20001 0x789abc 0x80004 unused

0x80005 0xbc

0x80006 0x9a

0x80007 0x78

Table 7-6. Example: 24-bit Format, 24-bit Data, and 16-bit External Bus

Logical Address 24-Bit Data Word Physical Address 24-Bit Data Word

0x20000 0x123456 0x40000 0x5600

0x40001 0x1234

0x20001 0x789abc 0x40002 0xbc00

0x40003 0x789a

Table 7-7. Example: 16-bit Format, 16-bit Data, and 8-bit External Bus

Logical Address 16-Bit Data Word Physical Address 16-Bit Data Word

0x20000 0x1234 0x40000 0x34

0x40001 0x12

0x20001 0x5678 0x40002 0x78

0x40003 0x56

ADSP-219x/2191 DSP Hardware Reference 7-21

External Port

produces a physical address 0x0 0000. For more information on
booting from an EPROM, see “External Memory Interface Boot-
ing” on page 14-20.

Because I/O memory space can contain 16-bit data and is accessible using
the external address bus (with IOMS), the logical and physical addressing
scheme also applies to external I/O memory space accesses.

Memory Interface Pins
Figure 7-1 on page 7-2 shows how the buses and control signals extend
off-chip, connecting to external memory. Table 7-10 on page 7-26 defines
the DSP pins used for interfacing to external memory. The DSP’s memory
control signals permit direct connection to fast static RAM devices. Mem-
ory mapped peripherals and slower memories also can connect to the DSP
using a user-defined combination of programmable waitstates and hard-
ware acknowledge signals.

External memory can hold instructions and data. The external data bus
(DATA15-0) must be 16 bits wide to transfer 16-bit data without data pack-
ing. In an 8- or 16-bit bus system, the DSP’s on-chip external port
unpacks incoming data and packs outgoing data. Figure 7-2 on page 7-17
shows how the DSP transfers different data word sizes over the external
port.

The ADSP-2191 external memory interface differs from previous
ADSP-218x DSPs. Compared to previous ADSP-218x DSPs, the
interface uses a unified address space (no program and data mem-
ory separation) and supports configurable banks of external

Table 7-8. Example: 16-bit Format, 16-bit Data, and 16-bit External Bus

Logical Address 16-Bit Data Word Physical Address 16-Bit Data Word

0x20000 0x1234 0x20000 0x1234

0x20001 0x5678 0x20001 0x5678

Interfacing to External Memory

7-22 ADSP-219x/2191 DSP Hardware Reference

memory. The external interface provides glue-less support for
many asynchronous and/or synchronous devices, including other
DSPs.

Table 7-9. External Memory Interface Signals

Pin Type Function

ADDR 21-0 O/T External Bus Address. The DSP outputs addresses for external memory
and peripherals on these pins.

DATA 15-0 I/O/T External Bus Data. The DSP inputs and outputs data and instructions
on these pins. Pull-up resistors on unused DATA pins are not necessary.
Read and write data is sampled by the rising edge of the strobe (RD or
WR). In systems using an 8-bit data bus, the upper data pins (DATA
15-8) may serve as additional programmable flag (PF15-8) pins

MS3-0
BMS
IOMS

O/T Memory Bank/Space Select Lines. These lines are asserted (low) as chip
selects for the corresponding banks of external memory. Memory bank
size may be defined in the DSP’s page boundary registers (MEMPGx).
The select lines are asserted for the whole access.

CLKOUT O/T Clock output. Output clock signal at core clock rate (CCLK) or half the
core clock rate, depending on the core:peripheral clock ratio.

RD O/T Read strobe. RD indicates that a read of the data bus (DATA15-0) is in
progress. As a master, the DSP asserts the strobe after the ADDR21-0
and MS3-0/BMS/IOMS assert.

WR O/T Write strobe. WR indicates that a write of the data bus (DATA15-0) is in
progress. As a master, the DSP asserts the strobe after the ADDR21-0
and MS3-0/BMS/IOMS assert.

ACK I Memory Acknowledge. External devices can de-assert ACK (low) to add
waitstates to an external memory access when the waitstate mode is ACK
mode, Both mode, or Either mode. ACK is used by I/O devices, memory
controllers, or other peripherals to hold off completion of an external
memory access. As a bus master, the DSP samples.

BR I Bus Request. An external host or other DSP asserts this pin to request
bus mastership from the DSP.

I (Input), O (Output), T (Three-state, when the DSP is a bus slave)

ADSP-219x/2191 DSP Hardware Reference 7-23

External Port

On the ADSP-2191, Bank 0 starts at address 0x10000 in external
memory and is followed in order by Banks 1, 2, and 3. When the
DSP generates an address located within one of the four banks, the
DSP asserts the corresponding memory select line, MS3-0.

The MS3-0 outputs serve as chip selects for memories or other external
devices, eliminating the need for external decoding logic.

The MS3-0 lines are decoded memory address lines that change at the same
time as the other address lines. When no external memory access is occur-
ring, the MS3-0 lines are inactive.

Most often, the DSP only asserts the BMS memory select line when the
DSP is reading from a boot EPROM. This line allows access to a separate
external memory space for booting. For more information on booting
from boot memory, see “Boot Mode DMA Transfers” on page 6-41. It is
also possible to write to boot memory using BMS. For more information,
see “Using Boot Memory Space” on page 7-14.

BG O Bus Grant. The DSP asserts this pin to grant bus mastership to an exter-
nal host or other DSP.

BGH O Bus Grant Hung. The DSP asserts this pin to signal an external host or
other DSP that the DSP core is being held off, waiting for bus master-
ship.

Table 7-9. External Memory Interface Signals (Cont’d)

Pin Type Function

I (Input), O (Output), T (Three-state, when the DSP is a bus slave)

Interfacing to External Memory

7-24 ADSP-219x/2191 DSP Hardware Reference

Memory Interface Timing
Memory access timing for external memory space, boot memory space,
and I/O memory space is the same. This section describes timing relation-
ships for different types of external port transfers, but does not provide
specific timing data. For exact timing specifications, refer to the
ADSP-2191 DSP Microcomputer Datasheet.

This section mentions the DSP’s core (CCLK) and peripheral
(HCLK) clocks. For information on using these clocks, see “Man-
aging DSP Clocks” on page 14-29.

The DSP can interface to external memories and memory-mapped periph-
erals that operate asynchronously with respect to the peripheral clock
(HCLK). In this interface there are latencies—lost core clock cycles—that
occur when the DSP accesses external memory. These latencies occur as
the external memory interface manages its two-level-deep pipeline and
performs synchronization between the core and peripheral clock domains.

The number of latent cycles for an external memory access is influenced
by several factors. These factors include the core:peripheral clock ratio, the
data transfer size, the external bus size, the access type, the access pattern
(single access or sustained accesses), and contention for internal bus
access. These factors have the following influence on external memory
interface performance:

• Core clock (CCLK)-to-peripheral clock (HCLK) ratio. The choice is
between optimizing core speed or peripheral transfer speed. At the
2:1 ratio, the core can operate at up to 160 MHz, but the peripher-
als are limited to 80 MHz. At the 1:1 ratio, the core and
peripherals can operate at up to 100 MHz.

• Core clock (CCLK)-to-memory bank clock (EMICLK) ratio. Each
memory bank may apply an additional clock divisor to slow mem-
ory access and accommodate slow external devices.

ADSP-219x/2191 DSP Hardware Reference 7-25

External Port

• Data transfer size and external bus size. The DSP supports an 8- or
16-bit bus for transferring 16-bit data or 24-bit instructions. The
best throughput is 16-bit data over a 16-bit bus, because in this
case no packing is required.

• Access type (read and write accesses differ) and access pattern (sin-
gle access or sustained accesses). These latencies have two sources:
synchronization across core and peripheral clock domains and
operation of the external memory interface pipeline.

Assessing these factors, there are two types of high performance systems.
For a high performance system that requires minimal external memory
access, use the 2:1 clock ratio, a 16-bit bus, and do most external memory
access as DMA. For a high performance system that requires substantial
external memory access, use the 1:1 clock ratio, a 16-bit bus, do as much
external memory access as possible using DMA, and minimize single or
dual (nonsustained) access.

If a high-performance external memory interface is required, the
system to avoid (because it does not use the strengths of the part)
combines a 2:1 clock ratio, an 8-bit external bus, instruction
fetches from external memory (with lots of cache misses), and uses
minimal DMA for external memory accesses. This type of system
causes unnecessary latency in external memory accesses.

Table 7-10 on page 7-26 shows external memory interface throughput
estimates for the DSP operating at maximum core clock versus maximum
peripheral clock. Some important conditions to note about the data in
Table 7-10 on page 7-26 include:

• Assumes that the core is idle except for the transfers under test.

• Assumes there is no contention for the internal DSP core interface
buses.

• Assumes the EMI clock divide is set to 1X and the Read/Write wait
count = 0.

Interfacing to External Memory

7-26 ADSP-219x/2191 DSP Hardware Reference

• Measures single access times beginning when the request is issued
by the hard core and ending when the data is ready in the target
memory.

• Includes the cycles to program the DMA descriptors and the cycles
for the I/O processor to fetch the descriptors in the DMA single
access times.

• Does not include the cycles to program the DMA descriptors or the
cycles for the I/O processor to fetch the descriptors in the DMA
sustained access times.

Table 7-10. External Memory Interface Performance at Maximum Core
and Peripheral Clocks

HCLK = 1/2 CCLK 1 HCLK = CCLK 2

DSP
Word

Size3

EMI
Bus

Size4

Single Access5 Sustained

Accesses6
Single Access Sustained

Accesses

Cycles7 Words8 Cycles7 Words8 Cycles7 Words8 Cycles7 Words8

Direct Access

Fetch 24 16 16 10 9 8.89

Fetch 24 8 20 8 11 7.27

Write 24 16 19 8.42 8 20 11 7.27 4 20.00

Write 24 8 23 6.95 12 13.33 13 6.15 6 13.33

Write 16 16 15 10.66 6 26.66 9 8.89 4 20.00

Write 16 8 19 8.42 8 20 11 7.27 4 20.00

Read 24 16 18 8.88 18 8.88 10 8.00 10 8.00

Read 24 8 22 7.27 22 7.27 12 6.67 12 6.67

Read 16 16 14 11.43 12 13.33 9 8.89 7 11.43

Read 16 8 18 8.88 16 10 11 7.27 9 8.89

ADSP-219x/2191 DSP Hardware Reference 7-27

External Port

DMA Access

Write 24 16 156 1.02 11.6 13.79 119 0.67 6.55 12.21

Write 24 8 160 1 13.6 11.76 121 0.66 7.55 10.60

Write 16 16 151 1.05 9.6 16.66 117 0.68 5.55 14.41

Write 16 8 155 1.03 11.6 13.79 119 0.67 6.55 12.21

Read 24 16 156 1.02 15.5 10.32 120 0.67 8.50 9.41

Read 24 8 160 1 19.5 8.20 122 0.66 10.50 7.62

Read 16 16 151 1.05 12.5 12.8 118 0.68 7.0 11.43

Read 16 8 156 1.02 15.5 10.32 120 0.67 8.5 9.41

Register Access

Write 16 16 14 11.43 6 26.66 7 11.43 4 20.00

Write 16 8 18 8.88 8 20 9 8.89 4 20.00

Read 16 16 17 9.41 14 11.43 10 8.00 9 8.89

Read 16 8 21 7.62 18 8.88 12 6.67 11 7.27

1 Core clock CCLK = 160 MHz, Peripheral clock HCLK = 80 MHz
2 Core clock CCLK = 80 MHz, Peripheral clock HCLK = 80 MHz
3 DSP Word Size column is bits
4 EMI Bus Size column is bits
5 Single Access column refers to a single external memory read or write separated from the next external

memory access by two or three instructions that do not access external memory.
6 Sustained Accesses column refers to repeated external memory access instructions
7 Cycles column is DSP core clock cycles
8 Words column is 1M words per second

Table 7-10. External Memory Interface Performance at Maximum Core
and Peripheral Clocks (Cont’d)

HCLK = 1/2 CCLK 1 HCLK = CCLK 2

DSP
Word

Size3

EMI
Bus

Size4

Single Access5 Sustained

Accesses6
Single Access Sustained

Accesses

Cycles7 Words8 Cycles7 Words8 Cycles7 Words8 Cycles7 Words8

Code Example: BMS Run-Time Access

7-28 ADSP-219x/2191 DSP Hardware Reference

Code Example: BMS Run-Time Access
The example in this section shows how to set up the external port on the
ADSP-2191 for boot memory space (BMS) accesses.

The ADSP-2191 features an external boot memory space that can be
accessed during runtime. When boot space is enabled, the ADSP-2191
uses the BMS pin for off chip memory access, selecting boot memory space.

The ADSP-2191 external port supports instruction and data transfers
from the core to external memory space and boot space through the exter-
nal port. The external port also provides access to external DSP memory
and boot memory for ADSP-219x peripherals, which support DMA trans-
fers. The external port is configurable for 8- or 16-bit data to provide
convenient interfaces to 8- and 16-bit memory devices. Address transla-
tion and data packing is provided in hardware to allow easy translation
between the core memory types (16- or 24-bit, word addressing) and
address space and the external memory configuration (8/16-bit, Byte
addressing).

The following listing shows how to set up a program for accessing 24-bit
data from an external 8-bit memory device mapped to the ADSP-2191’s
boot space. After the external interface is configured, a single read is
executed.

The External Memory Interface Control register (EMICTL) is used to con-
figure the external port for an 8 or 16-bit external data bus. Beside that,
the register provides a lock bit to disable write accesses to the external port
memory access control registers. Separate register bits are also provided to
set the read and write strobe sense for positive logic (bit=0) or negative
logic (bit=1). These sense bits are common to all memory spaces. The data
bus size and R/W sense bits are not written when the control register is
written if the lock bit is set to 1 or an external access is in progress.

ADSP-219x/2191 DSP Hardware Reference 7-29

External Port

In this example, an 8-bit external device is mapped to boot space. The
EMICTL register is setup for an 8-bit external bus and read/write strobes
with negative logic.

IOPG = External_Memory_Interface_Page;

AR = 0x0070;

IO(EMICTL) = AR;

Because the device is mapped to Boot space, controlled by one of the
memory access control registers (MSxCTL, BMSCTL, or IOMSCTL), the code
configures the Boot Space Access Control Register (BMSCTL). Within the
BMSCTL are six parameters that can be programmed to customize accesses
to Boot memory space. These parameters are read waitstate count, write
waitstate count, waitstate mode, base clock divider, write hold mode, and
CMS output enable. To allow maximum flexibility, the BMSCTL is initial-
ized with maximum waitstates, and base clock divisor.

AR = 0x0DFF;

IO(BMSCTL) = AR;

With EMICTL and BMSCTL configured, what remains is to configure the
external port for 24-bit data and enable PM data boot space. This results
in BMS being asserted any time DAG2 is used to access external memory.

IOPG = External_Access_Bridge_Page;

AR = 0x000A;

IO(E_STAT) = AR;

After the EMICTL, BMSCTL, and E_STAT have been initialized accordingly, it
is now possible to use the PM data bus to perform accesses to external
boot space.

The following is an example read from 0x80 0009 in external boot mem-
ory space.

DMPG2= 0x80; /* Init DAG2 Page Register */

AX0 = 0;

Code Example: BMS Run-Time Access

7-30 ADSP-219x/2191 DSP Hardware Reference

I4= 0x0009; /* Initialize DAG2 Pointer */

M4= 1; /* Initialize DAG2 Modifier */

REG(B4) = ax0;

L4= 0; /* Linear Addressing */

/* Perform External Boot Access */

MR0=PM(I4, M4);

Figure 7-5 on page 7-30 is an illustration of an example access:

Following the access, the PM Bus Exchange (PX) register contains the LSB
of the 24-bit data word, while MR0 contains bits 8-24 of the data word.

The following listing shows code for boot memory space initialization and
operation in an ADSP-2191 system.

/ ***

Purpose: This routine contains initialization code and accesses a

24-bit word from 8-bit External Boot memory space.

*** */

#include <def2191.h>

Figure 7-5. Example 8-to-24 Bit Word Packing

8 -b it d a ta B y te a d d re ss 2 4 -b it (P M) a d d re s s

0 x0 0

0 x 11

0 x2 2

0 x3 3

0

1

2

3

0

E xa m p le : M R 0 -P M (I4 , M 4);

B e fo re a c ce s s A fte r a c ce s s

M R 0 -0
P X -0

M R 0 -0 x 3 3 2 2
P X -0 x11

ADSP-219x/2191 DSP Hardware Reference 7-31

External Port

/*

PM Reset interrupt vector code

*/

.SECTION /pm IVreset;

jump Start;

nop; nop; nop;

/*

Program memory code

*/

.SECTION /pm program;

Start:

_main:

call Boot_Mem_Init; /* Call Boot Memory Init Routine */

call Boot_Mem_Access; /* Read from External Boot memory */

nop;

Loop_forever:

jump Loop_forever; /* Loop forever */

.SECTION /pm program;

Boot_Mem_Init:

/* Configure External Memory Interface */

IOPG = External_Memory_Interface_Page;

AR = 0x0070;

IO(EMICTL) = AR;

/* EMI control Register - Sets up for 8-bit external bus, */

/* WS = Neg Logic, RS = Neg Logic, Split Enable */

AR = 0x0DFF;

IO(BMSCTL) = AR;

/* Boot Space Access Control Register */

/* max waitstates in case of slow EPROM */

Code Example: BMS Run-Time Access

7-32 ADSP-219x/2191 DSP Hardware Reference

/* Configure External Access Bridge */

IOPG = External_Access_Bridge_Page;

AR = 0x000A;

IO(E_STAT) = AR; /* EAB Config/Status Register - P */

/* data Boot Space, 24 bit data */

RTS;

.SECTION /pm program;

Boot_Mem_Access:

DMPG2= 0x80; /* Initialize DAG2 Page Register */

AX0 = 0;

I4= 0x0009; /* Initialize DAG2 Pointer */

M4= 1; /* Initialize DAG2 Modifier */

REG(B4) = ax0;

L4= 0; /* Configure for Linear Addressing */

/* Perform External Boot Access */

MR0=PM(I4, M4); /* Reading from address 0x800009 */

/* in the Boot memory */

RTS;

ADSP-219x/2191 DSP Hardware Reference 8-1

8 HOST PORT

This chapter provides the following sections:

• “Overview” on page 8-1

• “Host Port Setup Parameters” on page 8-5

• “Direct Access Mode Transactions” on page 8-18

• “Host Port DMA Mode Transactions” on page 8-24

• “Setting Up the Host Port” on page 8-32

Overview
The host port interface is an 8- or 16-bit asynchronous slave to the
off-chip host processor. The primary use of this interface is to provide an
external host with direct access to ADSP-2191 memory space, boot space,
and I/O space. The ADSP-2191 acts as a slave while supporting and
responding to accesses initiated by other host port masters. A host port
master can be a microcontroller, FGPA, or another DSP.

This interface includes a DMA controller that eases the transfer of blocks
of data between the ADSP-2191 memory/boot space and the external host
processor. A functional diagram of the host port is shown in Figure 8-1 on
page 8-2.

The host port signals are listed in Table 8-1 on page 8-2.

Overview

8-2 ADSP-219x/2191 DSP Hardware Reference

Figure 8-1. Host Port Functional Diagram

Table 8-1. Host Port Signals

Pin Name(s) Input/Output Function

HAD15:0 I/O/T Host port multiplexed address and data bus

HA16 I Host port MSB address bus

HACK_P I Host ACK polarity

HALE I Host port address latch strobe or address cycle control

HRD I Host port read strobe

HWR I Host port write strobe

HACK I/O Host port access ready acknowledge

HCIOMS I Host port I/O space select

 HCMS I Host port memory select

ADSP-2191M

ADDR16

ADDR15–0/DATA15–0

CS1

ACK

WR

RD

HOST
PROCESSOR

CS0

ALE

HAD15–
0

HA16

HCMS

HCIOMS

HRD

HWR

HACK

HALE

HACK_P ACK_P

ADSP-219x/2191 DSP Hardware Reference 8-3

Host Port

The external host or the DSP can configure these host port access
parameters:

• Memory/boot space map page number

• Memory/boot space data type (internal 16- or 24-bit data access)

• Data type

• External data bus size

The port logic provides address translation and packing/unpacking logic
to allow mapping of 8-bit and 16-bit external accesses into 16- or 24-bit
internal access data type.

The Host port can function in direct mode or host DMA mode.

• In direct mode, the host must provide an address before initiating
the data exchanges for the transaction. The host can access the
memory space, the boot space, and the I/O space.

• In host DMA mode, the host does not have to provide an address;
the address is supplied by the DMA controller embedded in the
host port logic. The host can access the memory and boot space but
cannot access the I/O space.

The protocol and use of control lines is configured at reset. Other param-
eters of the interface such as data type, byte endian-ness, or address page
can be programmed by software by the DSP core or the external host
processor.

The host may use this port to directly access the entire DSP memory space
map, the entire DSP boot space map, and one section of DSP I/O space
map (I/O page[1:63]). Since the off-chip host has access to the complete
ADSP-2191 on-chip peripheral I/O space (except page 0 space), the host
may take control of any of the I/O mapped peripherals from the DSP.

Overview

8-4 ADSP-219x/2191 DSP Hardware Reference

Host port activity may impact DSP performance. The DSP stalls for one
cycle when the host port accesses DSP internal memory. The DSP core
may also have to wait in case of access conflict through the same interface.
For example, if both the DSP and host port try to use the external port to
access external space (memory, boot, or I/O), a wait period for the DSP or
the host port may occur. Host port access to on-chip or off-chip I/O space
can sometimes be accomplished without DSP cycle penalty.

A transaction on the host port is completed when the total number of data
bytes, as defined by the data type, have been transferred to the
ADSP-2191 internal bus. Depending on the data bus size and the data
type, as described in Table 8-2 on page 8-4, a total of one to four host
data accesses may be needed to complete the transaction.

Note: The HPI expects 24-bit data to be left aligned.

Table 8-2. Access Cycles for One Host Transaction

Mode Data Bus
Size

Data Type Complete Transaction

Host Address Cycles Host Data Access Cycles

Direct 8 16 1 2

8 24 1 3 or (4)

16 16 1 1

16 24 1 2

Host DMA 8 16 0 2

8 24 0 3 or (4)

16 16 0 1

16 24 0 2

ADSP-219x/2191 DSP Hardware Reference 8-5

Host Port

Host Port Setup Parameters
This section provides the following topics:

• “Overview” on page 8-5

• “Data Bus Width and Address Bus” on page 8-6

• “Packing Parameters” on page 8-7

• “Control Signals” on page 8-9

• “Read and Write Timing Diagrams” on page 8-11

Overview
In direct mode, an internal data transaction is composed of an address
phase and a data phase, and is triggered by host access to the host port.
The data can be 16 bits or 24 bits and is mapped into a packet of one,
two, three, or four consecutive host accesses. Before performing a transac-
tion, the host should have a number of parameters configured in I/O
mapped registers. The parameters can be set up by the external host or by
the DSP core.

Set up the host port memory page register to contain the most significant
bits of the address that will be accessed (9 bits of memory page). The data
type (16 or 24 bits) is also set up in this register. Also configure the mem-
ory space (memory or boot) that will be accessed.

If desired, the bus data width should be modified as indicated in the next
section. The data type must be specified in the host port memory map reg-
ister. The data type configuration bit is used only for a memory/boot
transaction; it defines the size of the data entity to be transferred. The data
type for an I/O transaction is always fixed at 16 bits. Depending on the
data type and the bus data size, packing or unpacking and address transla-
tion operations may be involved. Packing logic assembles and disassembles

Host Port Setup Parameters

8-6 ADSP-219x/2191 DSP Hardware Reference

words between the external data path width (8-bit or 16-bit) and the
internal data types (16-bit or 24-bit). Table 8-3 on page 8-6 describes the
packet size and the number of data phases required to complete a
transaction.

Data Bus Width and Address Bus
The host port is set to an 8-bit data path width (default) after hardware
reset. The host can change the data path width to 16 bits by writing the
proper value to the I/O mapped host port configuration register.

The size of the internal data is defined by the data type: 16 or 24 bits.
Logic in the host port as well as the bus protocol handles moving, packing,
and unpacking information from/to the external host.

The address that the host provides to the port is always a byte address,
regardless of the data width configuration or the data type. HAD[0] deter-
mines whether odd or even byte. The address is 17 bits wide total: 16 bits
multiplexed on the data/address bus, and 1 bit (MSB) on a separate line
HA[16]. In the case of a data bus width of 16-bits, the value of the LSB
address bit is not used (“don't care” during an address cycle).

The address on the DSP address space is generated from the host address
bus according to Table 8-4.

Table 8-3. Packet Sizes

Internal Data
Type

External Data
Bus Width

Packet Size

16 8 2 bytes

16 16 1 16-bit word

24 8 3 or 4 bytes (the mode bit in the host port configuration reg-
ister enables a packet of 4 bytes.)

24 16 2 16-bit words

ADSP-219x/2191 DSP Hardware Reference 8-7

Host Port

For direct mode, bit 1 of the HPPR register sets the data type. For DMA
mode, bit 2 of the HOSTD-CFG register sets the data type.

Packing Parameters
Data organization and address translations performed within the host port
are defined by two packing parameters: data byte endian-ness and data
ordering.

Endian-ness:

• Little endian = 0

• Big endian = 1

Data ordering:

• LSB first = 0

• MSB first = 1

The host port logic maps one, two, three, or four consecutive host accesses
into a single ADSP-2191 I/O or DMA access. In this way, the host port
reads are pre-fetched (one value up to 24-bits is loaded into the pre-fetch
read buffer), and writes are posted (one value up to 24-bits is loaded into
the write buffer).

Table 8-4. DSP Address Generation

Space Data Type DSP Address DSP Address
Size

IO space 16 {0, 0, HA16, HAD[15:1]} 18 bits

Memory/Boot
Space

16 {MPAGE[8:1], HA16, HAD[15:1]} 24 bits

24 {MPAGE[8:0], HA16, HAD[15:2]} 24 bits

 MPAGE is 9 bits from the Direct Page Register (HPMMR[15:7])

Host Port Setup Parameters

8-8 ADSP-219x/2191 DSP Hardware Reference

Requests for internal access are made relative to the start of a transaction
or the end of a transaction. The start of a transaction (or start of a packet)
is defined by endian-ness, ordering bits, bus size, data type, and address
bits, as summarized in Table 8-5 on page 8-8. The end of the transaction
is given by the count of access strobes after the beginning of the packet.

A host port write triggers an internal write if the host access corresponds
to the last address associated with the data entity. This is the last access of
a data packet.

While assembling a larger word, the host port logic automatically asserts
ACK for each byte access that does not start a transaction, write or read. For
accesses that start a transaction, write or read, ACK is returned when the
host port is not busy. This occurs when the read data has been loaded into
the read buffer and previous write access (if any) has successfully com-
pleted to memory.

Table 8-5. Start of Transaction Determination

Data
Bus
Size

Data
Type

Start of a transaction if LSB of address HAD[1:0] =

Endian-ness = 0 (little endian) Endian-ness = 1 (big endian)

Ordering =1
(MSB first)

Ordering =0
(LSB first)

Ordering =1
(MSB first)

Ordering =0
(LSB first)

8 16 x1 x0 x0 x1

16 16 Every Host
Access

Every Host
Access

Every Host
Access

Every Host
Access

8 24 11 00 - 4 bytes
01 - 3 bytes

00 11 - 4 bytes
10 - 3 bytes

16 24 1x 0x 0x 1x

ADSP-219x/2191 DSP Hardware Reference 8-9

Host Port

Control Signals
The host port has two select pins: HCMS and HCIOMS, both active-low. With
HCMS asserted, an external host can directly access the full ADSP-2191
memory space and the full boot space. In the direct mode, assertion of the
HCIOMS pin allows access to all on-chip and off-chip I/O space. Only one
select pin can be driven active at a time. When a select is de-asserted, any
ongoing access is aborted (completed).

In addition to the two select signals, transactions on the host port are con-
trolled by four signals: HALE, HRD, HWR and HACK. The functionality of HALE
and HACK, and the polarity of the HRD and HWR signals, are configured at
reset by the chip hardware. Their values must be defined during the reset
sequence, and kept for ten peripheral cycles after the reset is de-asserted.
The values, sensed during the hardware reset sequence, are stored in the
host port configuration register as read-only bits.

HACK default mode is programmed by hardware at reset by sensing the val-
ues driven on the HACK and HACKP pins. During the rising edge of reset and
for ten cycles after the reset, the HACK pin is configured as an input. This
may require an external pull-up or pull-down resistor. The sensed value is
returned as a default value driven to the HACK pin after reset. This default
value is also used to define the HACK functional behavior as described in the
next section. The HACK functionality can be further modified by software,
either by the host or by the DSP. The HACK functional mode is latched
into configuration bits in the host port configuration register.

HACK polarity is defined by the level driven during reset on the HACK_P pin.
If high, the HACK is active-high; if the level is low, HACK is active-low.

Address Latch Enable/Address Cycle Control (HALE)

HALE is programmed during hardware reset to function in one of two
modes: address latch enable (ALEM) mode or address cycle control
(ACCM) mode.

Host Port Setup Parameters

8-10 ADSP-219x/2191 DSP Hardware Reference

ALEM
If the HALE pin is held low by an off-chip resistor or an external host dur-
ing the assertion of the RESET pin, the HALE pin functions as an address
latch enable. In this mode, HALE is active-high. The host port latches the
address from the HAD[16:0] bus at a falling edge transition of the HALE.
In ALEM mode, the HWR pin must be held high during address transfers.

Use ALEM when interfacing to micro-controllers with multiplexed
address and data pins (for example, the 8051 family). For this type
of system, ALEM works well with the micro-controller’s multi-
plexed bus hardware.

ACCM
If the HALE pin is held high during hardware reset, this pin functions as an
address cycle control pin. As an address cycle control pin, HALE is
active-low. A logic zero on the HALE pin causes a trailing edge transition of
the HWR pin to latch an address into the host port. During the address
cycle, the HACK is returned to the host in the same way as for a data write
cycle. In this mode, HALE can be used like an address or a select line. For
HALE to be active, one of the select signals (HCMS or HCIOMS) must be active.

The HALE sense bit is readable as part of the host port configuration regis-
ter. To be properly sampled at initialization, the default value of HALE
must be maintained for ten peripheral clock cycles after the reset has been
de-asserted.

Use ACCM when interfacing to controllers with separate address
and data buses. For this type of system, the address cycle and data
cycle can be controlled by software.

HRD and HWR Data Strobes

On a write access, the data bus is sampled by the host port on the trailing
edge of the HWR write strobe. On a read access, the host port provides the
data after the leading edge of the HRD read strobe. If the host port does not

ADSP-219x/2191 DSP Hardware Reference 8-11

Host Port

return the data acknowledge to the external host, the host should keep the
strobe signal in an active state waiting for the host port data access to
complete.

In the ACCM mode, with HALE low, the write strobe trailing edge samples
the address value on the HA/HAD bus.

The polarity of the strobes is defined by the default inactive state driven
on the pin when the ADSP-2191 is in reset. To be properly sampled at
initialization, the default value (inactive state) of strobes (HRD, HWR) must
be maintained for ten peripheral clock cycles after the reset has been
de-asserted.

Read and Write Timing Diagrams
Figure 8-2 on page 8-12 shows host port normal read timing. Figure 8-3
on page 8-13, Figure 8-4 on page 8-14, and Figure 8-5 on page 8-15 show
host port pre-fetch read timing.

Acknowledge/Ready

The HACK signal can be active-high or active-low, depending on the reset
sequence (based on the value driven on the HACK_P pin). HACK polarity is
stored in the host port configuration register as a read-only bit.

The HACK default value is based on the value sensed on the HACK pin during
the reset sequence.

HACK indicates to the host when to complete an access. For a read transac-
tion, a host can proceed and complete an access when a valid data is
present in the read buffer and the host port is not busy doing a write.
For a write transaction, a host can complete an access when the write
buffer is not full (the host port is not busy doing a write).

Host Port Setup Parameters

8-12 ADSP-219x/2191 DSP Hardware Reference

Two mode bits in the host port configuration register HPCR[7:6] define
the functionality of the HACK line. Those two bits are initialized at reset,
based on the values driven on the HACK and the HACK_P pins as presented in
Table 8-6 on page 8-15. They can be modified after reset by a write access
to the host port configuration register.

Figure 8-2. Normal Read Triggered from HRD Leading Edge (ALEM)

Internal Read Access

Read transaction--One address phase--Two byte readsRead transaction--One address phase--Two byte reads

Internal Read Access

HRDB

HALE

HAD0-
15

HCMSB

HACK (ACK mode)

HACK (Ready mode)

Address Data Address DataData Data

ADSP-219x/2191 DSP Hardware Reference 8-13

Host Port

Figure 8-3. Pre-Fetch Read Triggered from HALE Falling Edge (ALEM)

Internal Read Access

Read transaction--One address phase--Two byte readsRead transaction--One address phase--Two byte reads

Internal Read Access

HACK (Ready mode)

HCMSB

HAD0-15

HALE

HRDB

HACK (ACK mode)

Address Data Address DataData Data

Host Port Setup Parameters

8-14 ADSP-219x/2191 DSP Hardware Reference

Figure 8-4. Pre-Fetch Read Triggered from HWRB Trailing Edge (ACCM)

HACK (ACK
mode)

HACK (Ready mode)

Read transaction--One address phase--Three byte reads

Internal Read Access

HRDB

HWRB

HALE

HAD0-15

HCMSB

Address Data DataData

ADSP-219x/2191 DSP Hardware Reference 8-15

Host Port

Figure 8-5. Write Triggered from Last HWR Trailing Edge (ALEM)

Table 8-6. HACK Mode Bits

Values driven at Reset HPCR[7:6] Initial values Acknowledge Mode

HACK_P HACK HPCR[7] HPCR[6]

0 0 0 1 Ready Mode

0 1 0 0 ACK Mode

1 0 0 0 ACK Mode

1 1 0 1 Ready Mode

Internal Write Access

Write transaction--One address phase--Two byte readsWrite transaction--One address phase--Two byte reads

HWRB

HALE

HAD0-15

HCMSB

HACK (Ready mode)

HACK (ACK mode)

Internal Write Access

Address Data Data Address Data Data

Host Port Setup Parameters

8-16 ADSP-219x/2191 DSP Hardware Reference

The functional modes (assuming active-high signal) selected by HPCR[7:6]
are:

• 00 (ACK mode): Acknowledge is active on strobes; HACK goes high
from the leading edge of the strobe to indicate when the access can
complete. After the host samples the HACK active, it can complete
the access by removing the strobe. The host port then removes the
HACK.

• 01 (READY mode): Ready active on strobes, goes low to insert
waitstate during the access. If the host port can not complete the
access, it drives the HACK/READY line inactive. In this case, the
host must extend the access by keeping the strobe active. When the
host samples the HACK active, it can then proceed and complete the
access by removing the strobe.

• 10 Reserved

• 11 Reserved

In ACK or READY modes, the HACK is returned active for any address
cycle. Waveform diagrams presented below are with HACK_P high; HACK is
active-high.

ADSP-219x/2191 DSP Hardware Reference 8-17

Host Port

Figure 8-6. Waveforms for HACK Mode 00 (ACK Acknowledge)

Figure 8-7. Waveforms for HACK Mode 01 (Ready)

Address Cycle Data Cycle

HCxxSB

HAD0-15

HALE

HRDB

HACK

HCxxSB

HAD0-
15

HALE

HRDB

HACK

Address Cycle Data Cycle

Direct Access Mode Transactions

8-18 ADSP-219x/2191 DSP Hardware Reference

Direct Access Mode Transactions
This section provides the following topics:

• “Direct Access Mode” on page 8-18

• “Direct Access Read Modes” on page 8-19

• “Direct Access Mode Timing Diagrams” on page 8-20

Direct Access Mode
Due to the difference between the external data bus width and the internal
data type, several host accesses (a packet) may be required to complete the
transaction. It is possible to have the host send an address for every data
access or to send an address only for the first access of the transaction. The
host port provides direct single data access and direct burst access capabil-
ity. The burst size is 2, 3, or 4 words when the data bus width is 8 bits.
The burst size is 1 or 2 words when the data bus width is 16 bits.

In direct access mode, the host processor must execute an address cycle to
provide a packet address. This address cycle indicates the start of the read
or write transaction. The address must always be in line with the byte
endian-ness and ordering configuration bits: if ordering = 0, the address
corresponds to the LSB byte or the LSB word, if ordering = 1, the address
corresponds to the MSB byte or the MSB word. The two LSB bits deter-
mine whether the address is the first address of a packet.

Address cycles following the first address cycle of a packet are ignored,
except when the two LSB bits of the address indicate a new packet start as
defined in the previous table. Additional read or write strobes without
intervening address latch strobes, result in the auto-increment or
auto-decrement of the LSB bits of the address latched by the ADSP-2191.
This mechanism allows transfer of the data packet as a burst. However, in
direct access mode, a packet transfer transaction must always start with an
address cycle where the address is the first word of the packet.

ADSP-219x/2191 DSP Hardware Reference 8-19

Host Port

The host port is always ready to accept an address cycle without slowing
down the host. In the case of an address cycle, the acknowledge signal is
always returned (ACK or READY modes).

In the case of a data read cycle, the host port may have to wait for the data
to be available before returning the ACK or may have to wait for the host
port to complete a previous write. In the case of a write cycle, the host
port may have to wait for a previous write to complete before returning
the ACK.

Direct Access Read Modes
On a read transaction in direct access mode only, a host port can trigger
an internal read at three different points. Based on the configuration bits,
this can be done on the first data phase of a transaction (normal mode), on
the address phase (pre-fetch mode), or at the last data phase of a transac-

Direct Access Mode Transactions

8-20 ADSP-219x/2191 DSP Hardware Reference

tion (pipeline mode). In pipelined read mode, the read internal access is
triggered at the end of the packet, preparing the data for the next read
transaction.

• Normal read: HPCR[5:4]= 00
Read request generated at the beginning of the data packet, from
the first read strobe (leading edge).

• Pre-fetch read: HPCR[5:4]= 10
Read request generated at the beginning of the data packet at the
end of the address cycle (trailing edge of HALE or HWR).

• Pipelined read: HPCR[5:4]= 01
Read request generated at the end of the data packet read (from
trailing edge of the last read strobe).

Direct Access Mode Timing Diagrams
Figure 8-8 on page 8-21 shows host port ALE mode read timing,
Figure 8-9 on page 8-22 shows host port ACC mode read timing,
Figure 8-10 on page 8-23 shows host port ALE mode write timing, and
Figure 8-11 on page 8-23 shows host port ACC mode write timing.

Table 8-7. Direct Access Read Modes

HPCR[5]
Prefetch Read

HPCR[4]
Pipeline Read

Read mode

0 0 Normal read,
on first data read strobe

0 1 Pipelined read,
on last data read strobe

1 0 Prefetch read
on every address cycle

1 1 Reserved

ADSP-219x/2191 DSP Hardware Reference 8-21

Host Port

Figure 8-12 on page 8-24 shows host port ALE mode burst read timing,
Figure 8-13 on page 8-25 shows host port ACC mode burst read timing,
Figure 8-14 on page 8-26 shows host port ALE mode burst write timing,
and Figure 8-15 on page 8-27 shows host port ACC mode burst write
timing.

Figure 8-8. Direct Access Mode Read (ALEM)

HCxxSB

HAD0-15

HALE

HRDB

HACK

Address Cycle Data Cycle

Direct Access Mode Transactions

8-22 ADSP-219x/2191 DSP Hardware Reference

Figure 8-9. Direct Access Mode Read (ACCM)

HAD0-15

HALE

HWRB

HCxxS
B

HACK

HRD
B

Address Cycle Data Cycle

ADSP-219x/2191 DSP Hardware Reference 8-23

Host Port

Figure 8-10. Direct Access Mode Write (ALEM)

Figure 8-11. Direct Access Mode Write (ACCM)

HAD0-
15

HALE

HWRB

HCxxSB

HAC
K

Address Cycle Data Cycle

HAD0-
15

HALE

HWRB

HCxxSB

HACK

Address Cycle Data Cycle

Host Port DMA Mode Transactions

8-24 ADSP-219x/2191 DSP Hardware Reference

Host Port DMA Mode Transactions
This section provides the following topics:

• “Host Port DMA Mode” on page 8-25

• “Host Port DMA Controller” on page 8-27

• “Bus Arbitration and Usage Restrictions” on page 8-28

• “Bus Arbitration and Usage Restrictions” on page 8-28

• “Using Semaphores” on page 8-30

• “Host Port DMA Mode Timing Diagrams” on page 8-30

• “Interrupt Interface” on page 8-31

Figure 8-12. Direct Access Mode Burst Read (ALEM)
(3 Byte Read, 24-Bit Data Type)

HCxxSB

HAD0-15

HALE

HRDB

HACK

Address Cycle Data Cycle Data Cycle Data Cycle

ADSP-219x/2191 DSP Hardware Reference 8-25

Host Port

Host Port DMA Mode
The host port includes a DMA controller that, when enabled, allows
transfer of multiple blocks of data. A data block transfer is defined by
parameters loaded into the host port DMA parameter registers. In this
mode, the host action is only to send selects and data strobes to trigger the
progress of the data transfer. On every data strobe, the host samples the
data from the bus in the case of a read access (block transfer from
ADPS-2191 to host) or drives the data onto the bus in the case of a write
transfer (block transfer from the host to the ADSP-2191 memory).

Figure 8-13. Direct Access Mode Burst Read (ACCM)
(3 Byte Read, 24-Bit Data Type)

HCxxSB

HAD0-15

HALE

HWRB

HRDB

HACK

Address Cycle Data Cycle Data Cycle Data Cycle

Host Port DMA Mode Transactions

8-26 ADSP-219x/2191 DSP Hardware Reference

When host port DMA is enabled, the host should not send any address
and should not initiate a memory/boot transfer with an address cycle
while the HCMS is active. If the host does an address cycle, the host port
ignores the address.

The data strobes sent by the host must be in line with the DMA direction
parameter set in the DMA configuration register. If the direction is “0”,
the host must perform read cycles (read strobes); if the direction is “1”, the
host must perform write cycles (write strobes). If the wrong strobe is used,
the sequencing of the host port and DMA logic is not affected.

Data strobes clock the advancement of the packing/unpacking logic. The
host port tracks of the start and end of a packet from the start of a block
transfer.

Figure 8-14. Direct Access Mode Burst Write (ALEM)
(3 Byte Write, 24 Bit Data Type)

HAD0-15

HALE

HWRB

HCxxSB

HACK

Address Cycle Data Cycle Data Cycle Data Cycle

ADSP-219x/2191 DSP Hardware Reference 8-27

Host Port

In host port DMA mode, the reads are performed internal to the host port
in pipelined read mode only. The host port generates the first read request
as soon as the DMA is ready and configured in read mode. This data is
stored into the read buffer and can be read upon receiving read strobes
from the host. After the completion of a packet read, the host port sends
an internal DMA request to reload the read buffer with the next data.

For a write transfer, the host port generates a write DMA request at the
end of every packet, when the write buffer is full.

Host Port DMA Controller
The host port DMA controller provides the basic functionality for the
host port DMA mode. The host port DMA controller has a set of DMA
work unit definition registers. This set of registers describes a DMA work
unit whose source or destination can be anywhere in DSP memory space,

Figure 8-15. Direct Access Mode Burst Write (ACCM)
(3 Byte Write, 24-Bit Data Type)

HAD0-15

HALE

HWRB

HCxxSB

HACK

Address Cycle Data Cycle Data Cycle Data Cycle

Host Port DMA Mode Transactions

8-28 ADSP-219x/2191 DSP Hardware Reference

or in boot space. The DMA does not address I/O space. DMA parameters
(five register values) are grouped into a descriptor block that can be stored
in memory space page 0. The host port DMA controller downloads a
descriptor block before starting the DMA transfer. Multiple descriptor
blocks can reside in memory and can be linked together as a list of descrip-
tors describing a complete complex task of transfers.

The ADSP-2191 DSP core may configure the host port DMA controller,
or the off-chip host may use the host port to configure the host port DMA
controller to perform a DMA access through the port. During a host port
DMA access, the host port DMA controller loads the DMA address and
other parameters from an internal memory resident DMA descriptor
block. The host is required to strobe out read data or strobe in write data
while the host port automatically increments the address.

Bus Arbitration and Usage Restrictions
When the DSP core and the off-chip host attempt to use the host port at
the same time, there are some restrictions on the DMA controller opera-
tions. These include:

• The modification of the host port DMA parameters is limited in
the same way as for the DSP core. If the external host attempts to
latch a memory address (HCMS active) via the host port while the
host port DMA is enabled (host port DMA mode), the address
cycle is ignored and the address is discarded.

• If a HCMS qualified data strobe is asserted but does not correspond
to the current DMA setting (example: assert write strobe while the
DMA is enabled in read mode), the strobe is ignored.

ADSP-219x/2191 DSP Hardware Reference 8-29

Host Port

• If the host makes a memory/boot access while DMA descriptors are
changing, the acknowledge will take longer to be asserted. Use the
DMA auto-buffer mode to avoid this.

• Host port DMA mode is only for memory and boot space (HCMS).
It is possible to host accessing I/O mapped-register (HCIOMS) in
direct access mode while DMA is enabled. However, this can be
destructive with an I/O read when the DMA is in read mode, or
with an I/O write outside of a packet boundary of the host DMA
data stream.

For the first case, the data read back from both internal memory
location and I/O location will corrupt each other within HPI read
buffers; this should be avoided. But a host can do write accesses via
DMA auto mode while HPI does direct I/O read accesses, given
the conditions that (1) DMA is enabled and (2) the valid address is
presented in terms of access type (HPI external data type, and so
on). This kind of usage was never tested though.

For the second case, I/O write is not possible if DMA is enabled
since the DMA bus will not get a direct access request from HPI.
DMA must be disabled before any type of I/O write access. So the
second case does not stand.

The DSP core should be held off from write accessing the host port DMA
controller/host port I/O space while it is in use by the host. If both DSP
and external host are likely to use the host port DMA controller/host port
bus at the same time, employ a high-level synchronization protocol to
avoid a race condition, as described in “Using Semaphores” on page 8-30.

Host Port DMA Mode Transactions

8-30 ADSP-219x/2191 DSP Hardware Reference

Using Semaphores
The host port semaphore (HPSMPHx) registers ease development of token
passing and other host/DSP communication protocols. These protocols let
the DSP or host request that the other hold off access to I/O memory to
avoid contention for the same locations (and information).

To use an HPSMPHx register, the host or DSP reads it. This read sets (=1)
the register, indicating to the other (depending on how the protocol is
written) that the shared resource (for example, I/O memory) is being used.
When done with the resource, the host or DSP writes 1 to the register,
clearing (=0) it.

Host Port DMA Mode Timing Diagrams
Figure 8-16 shows timing for a host port DMA read, and shows timing
for a host port DMA write.

Figure 8-16. Host Port DMA Read

HAD0-
15

HALE

HRD
B

HCMSB

HAC
K

Data Cycle Data Cycle Data Cycle Data Cycle

ADSP-219x/2191 DSP Hardware Reference 8-31

Host Port

Interrupt Interface
If the interrupt on completion bit of the host port DMA descriptor is set
and the DMA enable bit is set, the host port DMA controller generates an
interrupt when the host port DMA word count register content transi-
tions from one to zero. Correct initial programming of the word count
registers is essential to assure that partial buffer contents are not allowed to
corrupt subsequent DMA transfers.

If the interrupt on completion bit of the host port DMA descriptor is set
and the DMA enable bit is cleared, the host port DMA controller gener-
ates an interrupt prior to shutting down.

If the interrupt on error bit of the host port DMA descriptor is set and the
DMA operation completes with an error, the host port DMA controller
generates an error interrupt prior to disabling the DMA engine and shut-
ting down.

Figure 8-17. Host Port DMA Write

HAD0-
15

HALE

HWRB

HCMSB

HAC
K

Data Cycle Data Cycle

Setting Up the Host Port

8-32 ADSP-219x/2191 DSP Hardware Reference

Host port initiated direct accesses do generate interrupts.

Setting Up the Host Port
This section describes a typical sequence that can be used by the host to
set up the host port and transfer data through the interface. First, the
ADSP-2191 is set to 16-bit mode using the configuration register. Then,
16- or 24-bit data is sent using the appropriate steps described later in this
section.

Because changing configuration register values affects several parameters,
the procedure below assumes that the ACK, byte order, endian-ness, and
modes are returned to the state as when the ADSP-2191 is powered up.
This procedure can be modified as appropriate.

To place the ADSP-2191 in 16-bit data mode (default at startup is 8-bit
data mode):

1. Send two bytes to I/O register address 0x1C01 (=HPI 0x3802).
The first byte is 0x0041; the second is 0x0000.

2. 0x00x1 sets the host port bus width to 16-bits. 0x004x sets the
acknowledge (ACK) mode to ready and clears byte endian-ness, data
ordering, packet size, and pipelined reads to zero. The remaining
bits can be read (reflecting the state of polarities at startup) but
cannot be written.

To read or write to 16-bit space:

1. Send the I/O register 0x1C02 (=HPI 0x3804).

2. Send the value 0x0000 to that register.

3. Send the memory address (word address as seen by the core*2).

4. Read or write the 16-bit value ABCD (where D0 is the right-most
bit).

ADSP-219x/2191 DSP Hardware Reference 8-33

Host Port

To read or write to 24-bit space:

1. Send the I/O register 0x1C02 (=HPI 0x3804).

2. Send the value 0x0002 to that register.

3. Send the memory address (word address as seen by the core*4).

4. Read or write the 16-bit value EFxx (where D0 is the right-most
bit).

5. Read or write the second 16-bit value ABCD.

6. The 24-bit value ABCDEF is the 24-bit value (where D0 is the
right-most bit).

Setting Up the Host Port

8-34 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x/2191 DSP Hardware Reference 9-1

9 SERIAL PORTS (SPORTS)

This chapter provides the following sections:

• “Overview” on page 9-1

• “Setting SPORT Modes” on page 9-9

• “Moving Data Between SPORTs and Memory” on page 9-42

• “Support for Standard Protocols” on page 9-46

• “SPORT Pin/Line Terminations” on page 9-47

• “Timing Examples” on page 9-47

Overview
This chapter describes the serial ports (SPORTs) available on the
ADSP-2191.

In this text, the naming conventions for registers and pins use a
lowercase x to represent a digit. For example, the name DTx indi-
cates the DT0, DT1, and DT2 pins (corresponding to SPORT0,
SPORT1, or SPORT2).

The ADSP-2191 has three independent, synchronous serial ports
(SPORT0, SPORT1, and SPORT2) that provide an I/O interface to a
wide variety of peripheral serial devices. (SPORTs provide synchronous
serial data transfer only; the ADSP-2191 provides asynchronous RS-232
data transfer via the UART.) Each SPORT is a full duplex device, capable

Overview

9-2 ADSP-219x/2191 DSP Hardware Reference

of simultaneous data transfer in both directions. Each SPORT has one
group of pins (data, clock, and frame sync) for transmission and a second
set of pins for reception. Reception and transmission functions are pro-
grammed separately. SPORTs can be programmed for bit rate, frame sync,
and bits per word by writing to registers in I/O space.

All three SPORTs have the same capabilities and are programmed in the
same way. Each SPORT has its own set of control registers and data
buffers.

SPORT2 shares I/O pins with the SPI interface (SPI0 and SPI1);
the SPI interface and the SPORT2 serial port cannot be enabled at
the same time.

SPORTs use frame sync pulses to indicate the beginning of each word or
packet, and the bit clock marks the beginning of each data bit. External
bit clock and frame sync are available for the TX and RX buffers.

With a range of clock and frame synchronization options, the SPORTs
allow a variety of serial communication protocols including H.100, and
provide a glueless hardware interface to many industry-standard data con-
verters and codecs.

SPORTs can operate at up to 1/2 the full clock rate of HCLK, providing
each with a maximum data rate of CCLK/2 Mbit/s in 1:1 (CCLK:HCLK) clock
mode (where CCLK is the DSP core clock, and HCLK is the peripheral clock).
Independent transmit and receive functions provide greater flexibility for
serial communications. SPORT data can be transferred automatically to
and from on-chip memory using DMA block transfers. Additionally, each
SPORT offers a TDM (time division multiplexed) multichannel mode.

SPORT clocks and frame syncs can be internally generated by the DSP or
received from an external source. The SPORTs can operate with lit-
tle-endian or big-endian transmission formats, with word lengths
selectable from three to 16 bits. They offer selectable transmit modes and
optional m-law or A-law companding in hardware.

ADSP-219x/2191 DSP Hardware Reference 9-3

Serial Ports (SPORTs)

Each SPORT offers the following features and capabilities:

• Independent transmit and receive functions

• Serial data word transfers from three to sixteen bits in length,
either MSB-first or LSB-first

• Data double-buffering (both receive and transmit functions have a
data buffer register and a shift register), providing additional time
to service the SPORT

• A-law and m-law hardware companding on transmitted and
received words (see “Companding” on page 9-24 for more
information)

• Internal generation of serial clock and frame sync signals—in a
wide range of frequencies—or acceptance of clock and frame sync
input from an external source

• Interrupt-driven, single-word transfers to and from on-chip mem-
ory under DSP core control

• Direct Memory Access transfer to and from memory under I/O
processor control. DMA can be autobuffer-based (a repeated, iden-
tical range of transfers) or descriptor-based (individual or repeated
ranges of transfers with differing DMA parameters).

• DMA transfers to and from on-chip memory—each SPORT can
automatically receive and transmit an entire block of data

• Chaining of DMA operations for multiple data blocks

Overview

9-4 ADSP-219x/2191 DSP Hardware Reference

• Multichannel mode for TDM interfaces—each SPORT can receive
and transmit data selectively from channels of a time-division-mul-
tiplexed serial bitstream multiplexed into up to 128 channels—this
mode can serve as a network communication scheme for multiple
processors

• Operation with or without frame synchronization signals for each
data word; with internally-generated or externally-generated frame
signals; with active high or active low frame signals; and with either
of two configurable pulse widths and frame signal timing

Table 9-1 shows the pins for each SPORT.

A SPORT receives serial data on its DR input and transmits serial data on
its DT output. It can receive and transmit simultaneously (full duplex oper-
ation). For both transmit and receive data, the data bits (DR or DT) are
synchronous to the serial clocks (RCLK or TCLK); this is an output when the
processor generates this clock or an input when the clock is externally-gen-
erated. Frame synchronization signals (RFS and TFS) indicate the start of a
serial data word or stream of serial words.

Table 9-1. Serial Port (SPORT) Pins

Pin1

1 A lowercase x at the end of a pin name represents a possible value of 0, 1, or 2 (corresponding
to SPORT0, SPORT1, or SPORT2).

Description

DTx Transmit Data

DRx Receive Data

TCLKx Transmit Clock

RCLKx Receive Clock

TFSx Transmit Frame Sync

RFSx Receive Frame Sync

ADSP-219x/2191 DSP Hardware Reference 9-5

Serial Ports (SPORTs)

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur at the beginning of
an individual word or at the beginning of a block of words.

Figure 9-1 shows a simplified block diagram of a single SPORT. Data to
be transmitted is written from an internal processor register to the
SPORT’s I/O space-mapped SPx_TX register via the peripheral bus. This
data is optionally compressed by the hardware, then automatically trans-
ferred to the transmit shift register. The bits in the shift register are shifted
out on the SPORT’s DT pin, MSB first or LSB first, synchronous to the
serial clock on the TCLK pin. The receive portion of the SPORT accepts
data from the DR pin, synchronous to the serial clock. When an entire
word is received, the data is optionally expanded, then automatically
transferred to the SPORT’s I/O space-mapped SPx_RX register, where it is
available to the processor.

Figure 9-2 on page 9-7 shows the port connections for the SPORTs of the
ADSP-2191.

SPORT Operation
This section provides an example of SPORT operation to illustrate the
most common use of a SPORT. Since SPORT functionality is config-
urable, this example represents one of many possible configurations. See
“Pin Descriptions” on page 14-2 for a table of all ADSP-2191 pins,
including those used for the SPORTs.

Writing to a SPORT’s SPx_TX register readies the SPORT for transmis-
sion. The TFS signal initiates the transmission of serial data. Once
transmission has begun, each value written to the SPx_TX register is trans-
ferred to the internal transmit shift register. The bits are then sent,
beginning with either the MSB or the LSB, as specified. Each bit is shifted
out on the rising edge of SCK. After the first bit of a word has been trans-

Overview

9-6 ADSP-219x/2191 DSP Hardware Reference

ferred, the SPORT generates the transmit interrupt. The SPx_TX register is
then available for the next data word, even though the transmission of the
first word continues.

As a SPORT receives bits, the bits accumulate in an internal receive regis-
ter. When a complete word has been received, it is written to the SPx_RX
register, and the receive interrupt for that SPORT is generated. Interrupts
are generated differently if DMA block transfers are performed; see “I/O
Processor” on page 6-1 for general information about DMA and details on
how to configure and use DMA with the SPORTs.

Figure 9-1. SPORT Block Diagram

Companding
Hardware

DM Bus for DMA Access

DMA Interface (Master)

RXn
Receive Data

Register

TXn
Transmit Data

Register

Transmit Shift
Register

Receive Shift
Register

Serial
Control

Internal
SCLK

Generator

16

DT TFS SCLK RFS DR

16 16

1616

Companding
Hardware

ADSP-219x/2191 DSP Hardware Reference 9-7

Serial Ports (SPORTs)

SPORT Disable
SPORTs are automatically disabled by a DSP hardware reset or software
reset. A SPORT can also be disabled directly, by clearing the SPORT’s
transmit or receive enable bits (TSPEN in the SPx_TCR control register and
RSPEN in the SPx_RCR control register). Each method affects the SPORT
differently.

Figure 9-2. SPORT Connections

SERIAL
DEVICE

(O P T IO N A L)

ADSP-2191M

T CLK0

T FS0

DT0

RC LK0

RFS0

DR 0

T CLK1

T FS1

DT1

RC LK1

RFS1

DR 1

T CLK2/SCK0

T FS2/MOSI0

DT2/MISO0

RC LK2/SCK
1
RFS2/MOSI1

DR 2/MISO1

SPORT1

SPORT2

SPORT0

SPI0

SPI1

SERIAL
DEVICE

(O P T IO N A L)

SERIAL
DEVICE

(O P T IO N A L)

Overview

9-8 ADSP-219x/2191 DSP Hardware Reference

A DSP reset disables the SPORTs by clearing the SPx_TCR and SPx_RCR
control registers (including the TSPEN and RSPEN enable bits) and the
TDIVx, RDIVx, SPx_TFSDIVx, and SPx_RFSDIVx clock and frame sync divisor
registers. Any ongoing operations are aborted.

Disabling the TSPEN and RSPEN enable bits disables the SPORT(s) and
aborts any ongoing operations. Status bits are also cleared. Configuration
bits remain unaffected and can be read by the software in order to be
altered or overwritten. To disable the SPORT output clock (after the
SPORT has been enabled), set the SPORT to receive an external clock.

SPORTs are ready to start transmitting or receiving data three SCK cycles
after they are enabled (in the SPx_TCR or SPx_RCR control register). No
serial clocks are lost from this point on.

ADSP-219x/2191 DSP Hardware Reference 9-9

Serial Ports (SPORTs)

Setting SPORT Modes
This section provides the following topics:

• “Overview” on page 9-9

• “Transmit Configuration (SPx_TCR) Register and Receive Con-
figuration (SPx_RCR) Register” on page 9-12

• “Register Writes and Effect Latency” on page 9-18

• “Transmit (SPx_TX) Data Buffer and Receive Data Buffer
(SPx_RX)” on page 9-19

• “Clock and Frame Sync Frequencies” on page 9-20

• “Data Word Formats” on page 9-22

• “Clock Signal Options” on page 9-25

• “Frame Sync Options” on page 9-25

• “Multichannel Operation” on page 9-32

Overview
SPORT configuration is accomplished by setting bit and field values in
configuration registers. Configure each SPORT prior to enabled it. Once
the SPORT is enabled, further writes to the SPORT configuration regis-
ters are disabled (except for the xSCLKDIV and MxCS registers, which can be
modified while the SPORT is enabled).

To change values in all other SPORT configuration registers, disable the
SPORT by clearing the TSPEN bit in SPx_TCR and/or the RSPEN bit in
SPx_RCR.

Setting SPORT Modes

9-10 ADSP-219x/2191 DSP Hardware Reference

Each SPORT has its own set of control registers and data buffers, as
shown in Table 9-2. These control registers are described in detail in
“ADSP-2191 DSP I/O Registers” on page B-1.

Table 9-2. SPORT Registers

Register Name Function

SPx_TCR SPORT Transmit Configuration Register

SPx_RCR SPORT Receive Configuration Register

SPx_TX Transmit Data Buffer

SPx_RX* Receive Data Buffer

SPx_TSCKDIV Transmit Clock Divide Modulus Register

SPx_RSCKDIV Receive Clock Divide Modulus Register

SPx_TFSDIV Transmit Frame Sync Divisor Register

SPx_RFSDIV Receive Frame Sync Divisor Register

SPx_STATR* SPORT Status Register

SPx_MTCS[0:7] Multichannel Transmit Channel Select Registers

SPx_MRCS[0:7] Multichannel Receive Channel Select Registers

SPx_MCMC1 Multichannel Mode Configuration Register 1

SPx_MCMC2 Multichannel Mode Configuration Register 2

SPxDR_PTR DMA Current Pointer (receive)

SPxDR_CFG DMA Configuration (receive)

SPxDR_SRP DMA Start Page (receive)

SPxDR_SRA DMA Start Address (receive)

SPxDR_CNT DMA Count (receive)

SPxDR_CP DMA Next Descriptor Pointer (receive)

An asterisk (*) indicates a read-only register. A lowercase x in a register name represents a
possible value of 0, 1, or 2 (corresponding to SPORT0, SPORT1, or SPORT2).

ADSP-219x/2191 DSP Hardware Reference 9-11

Serial Ports (SPORTs)

SPORT control registers are programmed by writing to the appropriate
address in memory. Symbolic names of the registers and individual con-
trol bits can be used in DSP programs—the #define definitions for these
symbols are contained in the def2191.h file, which is provided in the
INCLUDE directory of the ADSP-2191 DSP development software. The
def2191.h file is shown in “Register and Bit #define File (def2191.h)” on
page B-115. All control and status bits in the SPORT registers are active
high unless otherwise noted.

SPxDR_CPR DMA Descriptor Ready (receive)

SPxDR_IRQ DMA Interrupt Register (receive)

SPxDT_PTR DMA Current Pointer (transmit)

SPxDT_CFG DMA Configuration (transmit)

SPxDT_SRP DMA Start Page (transmit)

SPxDT_SRA DMA Start Address (transmit)

SPxDT_CNT DMA Count (transmit)

SPxDT_CP DMA Next Descriptor Pointer (transmit)

SPxDT_CPR DMA Descriptor Ready (transmit)

SPxDT_IRQ DMA Interrupt Register (transmit)

Table 9-2. SPORT Registers (Cont’d)

Register Name Function

An asterisk (*) indicates a read-only register. A lowercase x in a register name represents a
possible value of 0, 1, or 2 (corresponding to SPORT0, SPORT1, or SPORT2).

Setting SPORT Modes

9-12 ADSP-219x/2191 DSP Hardware Reference

Because the SPORT control registers are I/O-mapped, programs read or
write them using the IO() register read/write instructions. The SPORT
control registers can be written or read by external devices (for example,
a host processor) to set up a SPORT DMA operation.

Except for TCLKDIV/SCLKDIV registers and multichannel configura-
tion registers, most configuration registers can be changed only
while the SPORT is disabled (TSPEN/RSPEN=0). Changes take effect
after the SPORT is re-enabled.

Transmit Configuration (SPx_TCR) Register and
Receive Configuration (SPx_RCR) Register

The main control registers for each SPORT are the transmit configuration
register (SPx_TCR) and the receive configuration register (SPx_RCR), which
are defined in Figure B-10 on page B-39 and Figure B-11 on page B-40.

A SPORT is enabled for transmit when bit 0 (TSPEN) of the transmit con-
figuration register is set to 1; it is enabled to receive when bit 0 (RSPEN) of
the receive configuration register is set to 1. Both of these bits are cleared
at reset (during a hard reset or a soft reset), disabling all SPORT channels.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPx_RSCKDIV, SPx_TSCKDIV, and multichannel mode channel enable
registers). Writes are always enabled to the SPx_TX buffer. SPx_RX is a
read-only register.

After a write to a SPORT register, any changes to the control and mode
bits generally take effect when the SPORT is re-enabled.

When changing operating modes, clear a SPORT control register (written
with all zeros) before the new mode is written to the register.

The TXS status bit in the SPORT status register indicates whether the
SPx_TX buffer is full (1) or empty (0).

ADSP-219x/2191 DSP Hardware Reference 9-13

Serial Ports (SPORTs)

The transmit underflow status bit (TUVF) in the SPORT status register is
set whenever the TFS signal occurs (from an external or internal source)
while the SPx_TX buffer is empty. The internally-generated TFS may be
suppressed whenever SPx_TX is empty by clearing the DITFS control bit in
the SPORT Configuration Register (DITFS=0).

When DITFS=0 (the default), the internal transmit frame sync signal (TFS)
is dependent upon new data being present in the SPx_TX buffer; the TFS
signal is generated for new data only. Setting DITFS to 1 selects data-inde-
pendent frame syncs and causes the TFS signal to be generated regardless
whether new data is present, transmitting the contents of the SPx_TX
buffer regardless. SPORT DMA typically keeps the SPx_TX buffer full, and
when the DMA operation is complete, the last word in SPx_TX is continu-
ously transmitted.

The SPx_TCR and SPx_RCR transmit and receive configuration registers
control the SPORTs’ operating modes for the I/O processor. Figure B-11
on page B-40 lists the bits in SPx_RCR, and Figure B-10 on page B-39 lists
the bits in SPx_TCR.

The following bits control SPORT modes. See “Setting Peripheral DMA
Modes” on page 6-17 for information about configuring DMA with
SPORTs.

Bits for the SPI Transmit Configuration (SPx_TCR) register:

• Transmit Enable. SPx_TCR Bit 0 (TSPEN). This bit selects whether
the SPORT is enabled to transmit (if set, =1) or disabled (if
cleared, =0).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable, because it allows centralization of
the TD write code in the TX interrupt service routine. For this rea-
son, the code should initialize the interrupt service routine (ISR)
and be ready to service TX interrupts before setting TSPEN.

Setting SPORT Modes

9-14 ADSP-219x/2191 DSP Hardware Reference

Clearing TSPEN causes the SPORT to stop driving data and frame
sync pins; it also shuts down the internal SPORT circuitry. In
low-power applications, battery life can be extended by clearing
TSPEN whenever the SPORT is not in use.

• Internal Transmit Clock Select. SPx_TCR Bit 1 (ICLK). This bit
selects the internal transmit clock (if set, =1) or the external trans-
mit clock on the TCLK or RCLK pin (if cleared, =0).

• Data Formatting Type Select. SPx_TCR Bits 3-2 (DTYPE). The DTYPE,
SENDN, and SLEN bits configure the formats of the data words trans-
mitted over the SPORTs. The two DTYPE bits specify one of four
data formats (00=right-justify and zero-fill unused MSBs,
01=right-justify and sign-extend into unused MSBs, 10=compand
using m-law, 11=compand using A-law) used for single- and multi-
channel operation.

• Endian Format Select. SPx_TCR Bit 4 (SENDN). The DTYPE, SENDN,
and SLEN bits configure the formats of the data words transmitted
over the SPORTs. The SENDN bit selects the endian format (0=serial
words are transmitted MSB bit first, 1=serial words are transmitted
LSB bit first).

• Serial Word Length Select. SPx_TCR Bits 8-5 (SLEN). The DTYPE,
SENDN, and SLEN bits configure the formats of the data words trans-
mitted over the SPORTs (shifted out via the TXDATA pin). Calculate
serial word length (number of bits in each word transmitted over
the SPORTs) by adding 1 to the value of SLEN:

Serial Word = SLEN + 1;

SLEN can be set to a value of 2 to 15; 0 and 1 are illegal values bit.
Two common settings for SLEN are 15 (transmit a full 16-bit word)
and 7 (transmit an 8-bit byte). The ADSP-2191 is a 16-bit DSP, so
program instruction or DMA engine loads of the TX data register

ADSP-219x/2191 DSP Hardware Reference 9-15

Serial Ports (SPORTs)

always move 16 bits into the register; the SLEN bits informs the
SPORT how many of those 16 bits to shift out of the register over
the serial link.

The frame sync signal is controlled by the frame sync divider regis-
ters, not by SLEN. To produce a frame sync pulse on each byte or
transmitted word, the proper frame sync divider must be pro-
grammed into the proper frame sync divider register; setting SLEN
to 7 does not produce a frame sync pulse on each byte transmitted.

• Internal Transmit Frame Sync Select. SPx_TCR Bit 9 (ITFS). This
bit selects whether the SPORT uses an internal TFS (if set, =1) or
an external TFS (if cleared, =0).

• Transmit Frame Sync Required Select. SPx_TCR Bit 10 (TFSR). This
bit selects whether the SPORT requires (if set, =1) or does not
require (if cleared, =0) a transfer frame sync for every data word.

The TFSR bit is normally set (=1). A frame sync pulse marks the
beginning of each word or data packet. Most systems need frame
sync to function properly.

• Data Independent Transmit Frame Sync Select. SPx_TCR Bit 11
(DITFS). This bit selects whether the SPORT uses a data-indepen-
dent TFS (sync at selected interval, if set, =1) or a data-dependent
TFS (sync when data in SPx_TX, if cleared, =0).

The frame sync pulse marks the beginning of the data word. If
DITFS is set (=1), the frame sync pulse is issued on time, regardless
whether the TX register has been loaded; if DITFS is cleared (=0), the
frame sync pulse is generated only when the TX data register has
been loaded. If the receiver demands regular frame sync pulses,
DITFS should be set (=1), and the DSP should keep loading the
TDATA register on time. If the receiver will tolerate occasional late

Setting SPORT Modes

9-16 ADSP-219x/2191 DSP Hardware Reference

frame sync pulses, clear DITFS (=0) to prevent the SPORT from
transmitting old data twice or transmitting garbled data if the DSP
is late in loading the TX register.

• Low Transmit Frame Sync Select. SPx_TCR Bit 12 (LTFS). This bit
selects an active low TFS (if set, =1) or active high TFS (if cleared,
=0).

• Late Transmit Frame Sync. SPx_TCR Bit 13 (LATFS). This bit con-
figures late frame syncs (if set, =1) or early frame syncs (if cleared,
=0).

• Clock Rising Edge Select. SPx_TCR Bit 14 (CKRE). This bit selects
whether the SPORT uses the rising edge (if cleared, =0) or falling
edge (if set, =1) of the TCLK clock signal for sampling data and the
frame sync.

• Internal Clock Disable. SPx_TCR Bit 15. This bit, when set (=1),
disables the TCLK clock. By default, this bit is cleared (=0), enabling
TCLK.

Bits for the Receive Configuration (SPx_RCR) register:

• Receive Enable. SPx_RCRBit 0 (RSPEN). This bit selects whether the
SPORT is enabled to receive (if set, =1) or is disabled (if cleared,
=0).

Setting the RSPEN bit turns on the SPORT, causing it to
drive the DRx pin (and the RX bit clock and receive frame
sync pins if so programmed). Program all SPORT control
registers before RSPEN is set. Typical SPORT initialization

ADSP-219x/2191 DSP Hardware Reference 9-17

Serial Ports (SPORTs)

code first writes SPX_RCR with everything except TSPEN; the
last step in the code rewrites SPX_RCR with all of the neces-
sary bits including RSPEN.

Setting RSPEN enables the SPORT RX interrupt. For this rea-
son, the code should initialize the interrupt service routine
and be ready to service RX interrupts before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it
also shuts down the internal SPORT circuitry. In
low-power applications, extend battery life by clearing
RSPEN whenever the SPORT is not in use.

• Internal Receive Clock Select. SPx_RCR Bit 1 (ICLK). This bit selects
the internal receive clock (if set, =1) or external receive clock (if
cleared, =0).

• Data Formatting Type Select. SPx_RCR Bits 3-2 (DTYPE). The DTYPE,
SENDN, and SLEN bits configure the formats of the data words
received over the SPORTs. The two DTYPE bits specify one of four
data formats (00=right-justify and zero-fill unused MSBs,
01=right-justify and sign-extend into unused MSBs, 10=compand
using m-law, 11=compand using A-law) to be used for single- and
multichannel operation.

• Endian Format Select. SPx_RCR Bit 4 (SENDN). The DTYPE, SENDN,
and SLEN bits configure the formats of the data words received over
the SPORTs. The SENDN bit selects the endian format (0=serial
words are received MSB bit first, 1=serial words are received LSB
bit first).

• Serial Word Length Select. SPx_RCR Bit 8-5 (SLEN). The DTYPE,
SENDN, and SLEN bits configure the formats of the data words
received over the SPORTs. Calculate the serial word length (the
number of bits in each word received over the SPORTs) by adding
“1” to the value of the SLEN bit. The SLEN bit can be set to a value
of 2 to 15; note that 0 and 1 are illegal values for this bit.

Setting SPORT Modes

9-18 ADSP-219x/2191 DSP Hardware Reference

• Internal Receive Frame Sync Select. SPx_RCR Bit 9 (IRFS). This bit
selects whether the SPORT uses an internal RFS (if set, =1) or an
external RFS (if cleared, =0).

• Receive Frame Sync Required Select. SPx_RCR Bit 10 (RFSR). This
bit selects whether the SPORT requires (if set, =1) or does not
require (if cleared, =0) a receive frame sync for every data word.

• Low Receive Frame Sync Select. SPx_RCR Bit 12 (LRFS). This bit
selects an active low RFS (if set, =1) or active high RFS (if cleared,
=0).

• Late Receive Frame Sync. SPx_RCR Bit 13 (LARFS). This bit config-
ures late frame syncs (if set, =1) or early frame syncs (if cleared,
=0).

• Clock Rising Edge Select. SPx_RCR Bit 14 (CKRE). This bit selects
whether the SPORT uses the rising edge (if set, =1) or falling edge
(if cleared, =0) of the RCLK clock signal for sampling data and the
frame sync.

• Internal Clock Disable. SPx_RCR Bit 15 (ICLKD). This bit, when set
(=1), disables the RCLK clock. By default this bit is cleared (=0),
enabling RCLK.

Register Writes and Effect Latency
When the SPORT is disabled (TSPEN and RSPEN are cleared), SPORT reg-
ister writes are internally completed at the end of the next CLKIN cycle
after which they occurred, and the register reads back the newly written
value on the next cycle after that.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPx_RSCKDIV, SPx_TSCKDIV, and multichannel mode channel registers).
SPx_TX register writes are always enabled; SPx_RX is a read-only register.

ADSP-219x/2191 DSP Hardware Reference 9-19

Serial Ports (SPORTs)

After a write to a SPORT register, any changes to the control and mode
bits generally take effect when the SPORT is re-enabled.

Transmit (SPx_TX) Data Buffer and
Receive Data Buffer (SPx_RX)

SPx_TX is the transmit data buffer for the SPORT. It is a 16-bit buffer
which must be loaded with the data to be transmitted. The data is loaded
by the DMA controller or by the program running on the DSP core.
SPx_RX is the receive data buffer for the SPORT. It is a 16-bit buffer that
is automatically loaded from the receive shifter when a complete word has
been received. Word lengths of less than 16 bits are right-justified in the
receive and transmit buffers.

The SPx_TX buffers act like a two-location FIFO because they have a data
register plus an output shift register as shown in Figure 9-1 on page 9-4.
Two 16-bit words may be stored in the TX buffers at any one time. When
the SPx_TX buffer is loaded and a previous word has been transmitted, the
buffer contents are automatically loaded into the output shifter. An inter-
rupt is generated when the output shifter has been loaded, signifying that
the SPx_TX buffer is ready to accept the next word (the SPx_TX buffer is
“not full”). This interrupt does not occur if SPORT DMA is enabled.

The transmit underflow status bit (TUVF) is set in the SPORT status regis-
ter when a transmit frame sync occurs and no new data has been loaded
into the serial shift register. In multichannel mode, TUVF is set whenever
the serial shift register is not loaded, when that transmission should begin
on an enabled channel. The TUVF status bit is “sticky” and is cleared only
by disabling the SPORT.

The SPx_RX buffers act like a two-location FIFO because they have a data
register plus an input shift register. Two 16-bit words can be stored in the
SPx_RX buffer. The third word overwrites the second word when the first
word has not been read out (by the DSP core or the DMA controller).
Should this happen, the receive overflow status bit (ROVF) is set in the

Setting SPORT Modes

9-20 ADSP-219x/2191 DSP Hardware Reference

SPORT status register. The overflow status is generated on the last bit of
the second word. The ROVF status bit is “sticky” and is cleared only by dis-
abling the SPORT.

An interrupt is generated when the SPx_RX buffer has been loaded with a
received word (the SPx_RX buffer is “not empty”). This interrupt is masked
out if SPORT DMA is enabled.

If the program causes the core processor to attempt a read from an empty
SPx_RX buffer, any old data is read. If the program causes the core proces-
sor to attempt a write to a full SPx_TX buffer, the new data overwrites the
SPx_TX register. If it is not known whether the core processor can access
the SPx_RX or SPx_TX buffer without causing such an error, read the
buffer’s full or empty status first (in the SPORT status register) to deter-
mine whether the access can be made.

The RXS and TXS status bits in the SPORT status register are updated upon
reads and writes from the core processor, even when the SPORT is dis-
abled. The SPx_RX register is read-only. The SPx_TX register can be read
regardless whether the SPORT is enabled.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for an internal source or an external
source) is HCLK/2. The frequency of an internally-generated clock is a func-
tion of the processor clock frequency (as seen at the CLKOUT pin) and the
value of the 16-bit serial clock divide modulus registers, SPx_TSCKDIV and
SPx_RSCKDIV.

SPx_TCLK/SPx_RCLK frequency HCLK frequency
2 SPx_TSCKDIV/SPxRSCKDIV 1+()×
--=

ADSP-219x/2191 DSP Hardware Reference 9-21

Serial Ports (SPORTs)

If the value of SPx_TRSKDIV/SPx_RSCKDIV is changed while the internal
serial clock is enabled, the change in TCLK/RCLK frequency takes effect at
the start of the rising edge of TCLK/RCLK following the next leading edge of
TFS/RFS.

The SPx_TFSDIV and SPx_RFSDIV registers specify the number of transmit
or receive clock cycles that are counted before generating a TFS or RFS
pulse (when the frame sync is internally generated). This enables a frame
sync to initiate periodic transfers. The counting of serial clock cycles
applies to internally generated or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

of serial clocks between frame sync assertions = xFSDIV + 1

Use the following equation to determine the correct value of xFSDIV, given
the serial clock frequency and desired frame sync frequency:

The frame sync would thus be continuously active if xFSDIV=0. However,
the value of xFSDIV should not be less than the serial word length minus
one (the value of the SLEN field in the transmit or receive control register);
a smaller value of xFSDIV could cause an external device to abort the cur-
rent operation or have other unpredictable results. If the SPORT is not
being used, the xFSDIV divisor can be used as a counter for dividing an
external clock or for generating a periodic pulse or periodic interrupt. The
SPORT must be enabled for this mode of operation to work.

SPx_TFSCLK/SPx_RFSCLK frequency SCLK frequency
SPx_RFSDIV / SPx_TFSDIV 1+()

---=

Setting SPORT Modes

9-22 ADSP-219x/2191 DSP Hardware Reference

Maximum Clock Rate Restrictions

Externally generated late transmit frame syncs also experience a delay from
arrival to data output. This can also limit the maximum serial clock speed.
See the ADSP-2191 DSP Microcomputer Data Sheet for timing
specifications.

Be careful when operating with externally generated clocks near the
frequency of HCLK/2. A delay between the clock signal’s arrival at
the TCLK pin and the output of the data may limit the receiver’s
speed of operation. See the ADSP-2191 DSP Microcomputer Data
Sheet for exact timing specifications. At full speed serial clock rate,
the safest practice is to use an externally generated clock and exter-
nally generated frame sync (ICLK=0 and IRFS=0).

Frame Sync and Clock Example

The following code fragment is a brief example of setting up the clocks
and frame sync.

/* Set SPORT0 frame sync divisor */

AR = 0x00FF;

IO(SP0_RFSDIV) = AR;

IO(SP0_TFSDIV) = AR;

/* Set SPORT0 Internal Clock Divider */

AR = 0x0002;

IO(SP0_RSCLKDIV) = AR;

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the DTYPE, SENDN, and SLEN bits of the SPx_TCR and SPx_RCR transmit
and receive configuration registers.

ADSP-219x/2191 DSP Hardware Reference 9-23

Serial Ports (SPORTs)

Word Length

Each SPORT channel (transmit and receive) independently handles words
with lengths of three to 16 bits. The data is right-justified in the SPORT
data registers if it is fewer than 16 bits long, residing in the LSB positions.
The value of the serial word length (SLEN) field in the SPx_TCR and
SPx_RCR registers of each SPORT determines the word length according to
this formula:

Serial Word Length = SLEN + 1

Do not set SLEN to zero or one; values from 2 to 15 are allowed.
Continuous operation (when the last bit of the current word is
immediately followed by the first bit of the next word) is restricted
to word sizes of four or longer (so SLEN >= 3).

Endian Format

Endian format determines whether the serial word is transmitted most sig-
nificant bit (MSB) first or least significant bit (LSB) first. Endian format
is selected by the SENDN bit in the SPx_TCR and SPx_RCR transmit and
receive configuration registers. When SENDN=0, serial words are transmit-
ted (or received) MSB-first. When SENDN=1, serial words are transmitted
(or received) LSB-first.

Data Type

The DTYPE field of the SPx_TCR and SPx_RCR transmit and receive configu-
ration registers specifies one of the four data formats for both single and
multichannel operation, as shown in the following table:

Table 9-3. DTYPE and Data Formatting

DTYPE Data Formatting

00 Right-justify, zero-fill unused MSBs

01 Right-justify, sign-extend into unused MSBs

Setting SPORT Modes

9-24 ADSP-219x/2191 DSP Hardware Reference

These formats are applied to serial data words loaded into the SPx_RX and
SPx_TX buffers. SPx_TX data words are not actually zero-filled or
sign-extended, because only the significant bits are transmitted.

Companding

Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The ADSP-2191 SPORTs support the
two most widely used companding algorithms: A-law and m-law. The pro-
cessor compands data according to the CCITT G.711 specification. The
type of companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPx_RX register is the
right-justified, expanded value of the eight LSBs received and
sign-extended. A write to SPx_TX compresses the 16-bit value to eight
LSBs (sign-extended to the width of the transmit word) and written to the
internal transmit register. If the magnitude of the 16-bit value is greater
than the 13-bit A-law or 14-bit m-law maximum, the value is automati-
cally compressed to the maximum positive or negative value.

10 Compand using m-law

11 Compand using A-law

Table 9-3. DTYPE and Data Formatting (Cont’d)

DTYPE Data Formatting

ADSP-219x/2191 DSP Hardware Reference 9-25

Serial Ports (SPORTs)

Clock Signal Options
Each SPORT has a transmit clock signal (TCLK) and a receive clock signal
(RCLK). The clock signals are configured by the ICLK and CKRE bits of the
SPx_TCR and SPx_RCR transmit and receive configuration registers. Serial
clock frequency is configured in the SPx_TSCKDIV and SPx_RSCKDIV
registers.

The receive clock pin may be tied to the transmit clock if a single
clock is desired for both input and output.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ICLK bit of the SPx_TCR and
SPx_RCR configuration registers specifies the clock source.

When ICLK=1, the clock signal is generated internally by the DSP and the
TCLK or RCLK pin is an output; the clock frequency is determined by the
value of the serial clock divisor in the SPx_TSCKDIV or SPx_RSCKDIV
registers.

When ICLK=0, the clock signal is accepted as an input on the TCLK or RCLK
pins and the serial clock divisors in the SPx_TSCKDIV/SPx_RSCKDIV registers
are ignored; the externally generated serial clock need not be synchronous
with the DSP system clock.

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFS (transmit frame synchronization)
and RFS (receive frame synchronization). A variety of framing options are
available; these options are configured in the SPORT control registers.
The TFS and RFS signals of a SPORT are independent and are separately
configured in the control registers.

Setting SPORT Modes

9-26 ADSP-219x/2191 DSP Hardware Reference

Framed vs. Unframed

The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required) and RFSR (receive frame
sync required) control bits determine whether frame sync signals are
required. These bits are located in the SPx_TCR and SPx_RCR transmit and
receive configuration registers.

When TFSR=1 or RFSR=1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPx_TX buffer before the previous word is
shifted out and transmitted. For more information, see “Data-Indepen-
dent Transmit Frame Sync” on page 9-30.

When TFSR=0 or RFSR=0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

When DMA is enabled in this mode, with frame syncs not
required, DMA requests may be held off by chaining or may not be
serviced frequently enough to guarantee continuous unframed data
flow.

Figure 9-2 on page 9-7 illustrates framed serial transfers, which have the
following characteristics:

• TFSR and RFSR bits in the SPx_TCR and SPx_RCR transmit and receive
configuration registers determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active-low or active-high frame syncs are selected with the LTFS
and LRFS bits of the SPx_TCR and SPx_RCR configuration registers.

ADSP-219x/2191 DSP Hardware Reference 9-27

Serial Ports (SPORTs)

See “Timing Examples” on page 9-47 for more timing examples.

Internal vs. External Frame Syncs

Transmit and receive frame syncs can be independently generated inter-
nally or input from an external source as determined by the ITFS and IRFS
bits of the SPx_TCR and SPx_RCR transmit and receive configuration
registers.

When ITFS=1 or IRFS=1, the corresponding frame sync signal is generated
internally by the SPORT, and the TFS pin or RFS pin is an output. The
frequency of the frame sync signal is determined by the value of the frame
sync divisor in the SPx_TFSDIV or SPx_RFSDIV registers.

When ITFS=0 or IRFS=0, the corresponding frame sync signal is accepted
as an input on the TFS pin or RFS pins, and the frame sync divisors in the
SPx_TFSDIV/SPx_RFSDIV registers are ignored.

Figure 9-3. Framed vs. Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

xCLK

FRAMED
DATA

UNFRAMED
DATA

Setting SPORT Modes

9-28 ADSP-219x/2191 DSP Hardware Reference

All of the frame sync options are available whether the signal is generated
internally or externally.

Active Low vs. Active High Frame Syncs

Frame sync signals may be active high or active low (inverted). The LTFS
and LRFS bits of the transmit (SPx_TCR) and receive (SPx_RCR) configura-
tion registers determine the frame syncs’ logic level, as follows:

• When LTFS=0 or LRFS=0, the corresponding frame sync signal is
active high.

• When LTFS=1 or LRFS=1, the corresponding frame sync signal is
active low.

Active-high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs

Data and frame syncs can be sampled on the rising or falling edges of the
SPORT clock signals. The CKRE bit of the SPx_TCR and SPx_RCR transmit
and receive configuration registers selects the sampling edge of the serial
data. Setting CKRE=0 in the SPx_TCR transmit configuration register selects
the rising edge of TCLKx. CKRE=1 selects the falling edge.

Data and frame sync signals change state on the clock edge not
selected. For example, for data to be sampled on the rising edge of
a clock, it must be transmitted on the falling edge of the clock.

For receive data and frame syncs, setting CKRE=1 in the SPx_RCR receive
configuration register selects the rising edge of RCLK as the sampling point
for the transmission. CKRE=0 selects the falling edge.

ADSP-219x/2191 DSP Hardware Reference 9-29

Serial Ports (SPORTs)

For transmit data and frame syncs, setting CKRE=1 in the SPx_TCR transmit
configuration register selects the falling edge of the TCLK for the transmis-
sion (so the rising edge of TCLK can be used as the sampling edge by the
receiver). CKRE=0 selects the rising edge for the transmission.

The transmit and receive functions of two SPORTs connected together,
for example, should always select the same value for CKRE so any internally
generated signals are driven on one edge and any received signals are sam-
pled on the opposite edge.

Early vs. Late Frame Syncs (Normal and Alternate Timing)

Frame sync signals can occur during the first bit of each data word (“late”)
or during the serial clock cycle immediately preceding the first bit
(“early”). The LATFS and LARFS bits of the transmit (SPx_TCR) and receive
(SPx_RCR) configuration registers configure this option.

When LATFS=0 or LARFS=0, early frame syncs are configured; this is the
“normal” mode of operation. In this mode, the first bit of the transmit
data word is available (and the first bit of the receive data word is sampled)
in the serial clock cycle after the frame sync is asserted, and the frame sync
is not checked again until the entire word has been transmitted
(or received). In multichannel operation, this is the case when frame delay
is 1.

If data transmission is continuous in early framing mode (the last bit of
each word is immediately followed by the first bit of the next word), the
frame sync signal occurs during the last bit of each word. Internally gener-
ated frame syncs are asserted for one clock cycle in early framing mode.
Continuous operation is restricted to word sizes of four of longer (so SLEN
>= 3).

When LATFS=1 or LARFS=1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available (and the first bit of the receive data word is sampled) in
the same serial clock cycle that the frame sync is asserted. (In multichannel

Setting SPORT Modes

9-30 ADSP-219x/2191 DSP Hardware Reference

operation, this is the case when frame delay is zero.) Receive data bits are
sampled by serial clock edges, but the frame sync signal is checked only
during the first bit of each word. Internally generated frame syncs remain
asserted for the entire length of the data word in late framing mode. Exter-
nally generated frame syncs only are checked during the first bit.

Figure 9-2 on page 9-7 illustrates the two modes of frame signal timing:

• LATFS or LARFS bits of the SPx_TCR and SPx_RCR transmit and
receive configuration registers. LATFS=0 or LARFS=0 for early frame
syncs. LATFS=1 or LARFS=1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on first bit only.

• Data transmitted MSB-first (SENDN=0) or LSB-first (SENDN=1).

• Frame sync and clock generated internally or externally.

See “Timing Examples” on page 9-47 for more timing examples.

Data-Independent Transmit Frame Sync

Normally, the internally generated transmit frame sync signal (TFS) is out-
put only when the SPx_TX buffer has data ready to transmit. The DITFS
mode (data-independent transmit frame sync) bit allows the continuous
generation of the TFS signal, with or without new data. The DITFS bit of
the SPx_TCR transmit configuration register configures this option.

When DITFS=0, the internally-generated TFS is output only when a new
data word has been loaded into the SPx_TX buffer. Once data is loaded
into SPx_TX, the next TFS is generated. This mode allows data to be trans-
mitted only when it is available.

When DITFS=1, the internally generated TFS is output at its programmed
interval regardless whether new data is available in the SPx_TX buffer.
Whatever data is present in SPx_TX is re-transmitted with each assertion of

ADSP-219x/2191 DSP Hardware Reference 9-31

Serial Ports (SPORTs)

TFS. The TUVF transmit underflow status bit (in the SPxSTATR status regis-
ter) is set when this occurs and old data is retransmitted. The TUVF status
bit is also set when the SPx_TX buffer does not have new data if an exter-
nally generated TFS occurs. In this mode, data is transmitted only at
specified times.

If the internally generated TFS is used, a single write to the SPx_TX data
register is required to start the transfer.

Figure 9-4. Normal vs. Alternate Framing

B3 B2 B1 B0
...

xCLK

LATE
FRAME
SYNC

DATA

EARLY
FRAME
SYNC

Setting SPORT Modes

9-32 ADSP-219x/2191 DSP Hardware Reference

Multichannel Operation
This section provides the following topics:

• “Overview” on page 9-32

• “Frame Syncs in Multichannel Mode” on page 9-35

• “Multichannel Frame Delay” on page 9-36

• “Window Size” on page 9-36

• “Window Offset” on page 9-36

• “Other Multichannel Fields in SPx_TCR and SPx_RCR” on
page 9-37

• “Channel Selection Registers” on page 9-38

• “Multichannel Enable” on page 9-39

• “Multichannel DMA Data Packing” on page 9-39

• “Multichannel TX FIFO Prefetch” on page 9-40

• “Multichannel Mode Example” on page 9-41

Overview

SPORTs offer a multichannel mode of operation, which allows a SPORT
to communicate in a time-division-multiplexed (TDM) serial system. In
multichannel communications, each data word of the serial bit stream
occupies a separate channel. Each word belongs to the next consecutive
channel so that, for example, a 24-word block of data contains one word
for each of 24 channels.

ADSP-219x/2191 DSP Hardware Reference 9-33

Serial Ports (SPORTs)

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmission or
reception; each SPORT can receive and transmit data selectively from any
of the 128 channels. The SPORT can do any of the following on each
channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DT pin is always driven (not three-stated) if the SPORT is enabled
(TSPEN=1 in the SPx_TCR transmit configuration register), unless it is in
multichannel mode and an inactive time slot occurs.

In multichannel mode, the TCLK pin is an input and must be connected to
its corresponding RCLK pin. RCLK can be provided externally or generated
internally by the SPORT.

The MCM channel select registers must be programmed before
enabling SPx_TX/SPx_RX operation. This is especially important in
DMA data unpacked mode, since SPORT FIFO operation begins
immediately after SPx_TX/SPx_RX is enabled and depends on the
values of the MCM channel select registers. Enable MCM_EN prior to
enabling SPx_TX and/or SPx_RX operation.

Setting SPORT Modes

9-34 ADSP-219x/2191 DSP Hardware Reference

Figure 9-1 on page 9-6 shows example timing for a multichannel transfer,
which has the following characteristics:

• Uses TDM method where serial data is sent or received on differ-
ent channels sharing the same serial bus.

• Can independently select transmit and receive channels.

• RFS signals start of frame.

• TFS is used as “transmit data valid” for external logic, true only dur-
ing transmit channels.

• Example: Receive on channels 0 and 2. Transmit on channels 1
and 2.

See “Timing Examples” on page 9-47 for more timing examples.

Figure 9-5. Multichannel Operation

SCLK

B3 B2 B1 B2DR

RFS

B0 IGNORED B3

DT
B2B3 B0 B3 B2B1

WORD 0 WORD 1 WORD 2

TFS

ADSP-219x/2191 DSP Hardware Reference 9-35

Serial Ports (SPORTs)

Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block (or frame) of multichannel data words.

When multichannel mode is enabled on a SPORT, the transmitter and
the receiver use RFS as a frame sync. This is true whether RFS is generated
internally or externally. The RFS signal synchronizes the channels and
restarts each multichannel sequence. RFS assertion occurs at the beginning
of the channel 0 data word.

Since RFS is used by both the SPx_TX and SPx_RX channels of the SPORT
in MCM configuration, both SPx_RX configuration registers should always
be programmed the same way as the SPx_TX configuration register, even if
SPx_RX operation is not enabled.

In multichannel mode, late (alternative) frame mode is entered automati-
cally; the first bit of the transmit data word is available (and the first bit of
the receive data word is sampled) in the same serial clock cycle that the
frame sync is asserted (provided that MFD is set to 0).

TFS serves as a transmit data valid signal, which is active during transmis-
sion of an enabled word. The SPORT’s DT pin is three-stated when the
time slot is not active, and the TFS signal serves as an output enabled signal
for the DT pin. The SPORT drives TFS in multichannel mode regardless
whether ITFS is cleared.

Once the initial FS is received and a frame transfer has started, the SPORT
ignores all other FS signals until the complete frame has been transferred.

In multichannel mode, the RFS signal is used for the block (frame) start
reference, after which the transfers are performed continuously with no FS
required. Thus, internally generated frame syncs are data-independent.

Setting SPORT Modes

9-36 ADSP-219x/2191 DSP Hardware Reference

Multichannel Frame Delay

The 4-bit MFD field in the SPxDR_CFG register specifies a delay between the
frame sync pulse and the first data bit in multichannel mode. The value of
MFD is the number of serial clock cycles of the delay. Multichannel frame
delay allows the processor to work with different types of interface devices.

A value of zero for MFD causes the frame sync to be concurrent with the
first data bit. The maximum value allowed for MFD is 15. A new frame sync
may occur before data from the last frame has been received, because
blocks of data occur back-to-back.

Window Size

Window size defines the range of the channels that can be enabled/dis-
abled in the current configuration. It can be any value (from 8 to 128) in
increments of 8); the default value (0) corresponds to 8 channels. Since
the DMA buffer size is always fixed, it is possible to define a smaller win-
dow size (for example, 32 bits), resulting in a smaller DMA buffer size (in
this example, 32 bits instead of 128 bits) to save DMA bandwidth. Win-
dow size cannot be changed while the SPORT is enabled.

Window Offset

The window offset specifies where (in the 127 channel range) to place the
start of the window. 0 specifies no offset and permits the use of all 128
channels. For example, a program can define a window size of 5 and an
offset of 93; this 5-channel window would reside in the range from 93 to
97. Window offset cannot be changed while the SPORT is enabled.

If the combination of the window size and the window offset places the
window outside of the range of the channel enable registers, none of the
channels in the frame are enabled, since this combination is invalid.

ADSP-219x/2191 DSP Hardware Reference 9-37

Serial Ports (SPORTs)

Other Multichannel Fields in SPx_TCR and SPx_RCR

A multichannel frame contains more than one channel, as specified by the
window size and window offset; the multichannel frame is a combined
sequence of the window offset and the channels contained in the window.
The total number of channels in the frame is calculated by adding the
window size to the window offset.

The channel select offset mode is bit 4 in the MCM configuration register 2.
When this mode is selected, the first bit of the SPx_MTCSx register or
SPx_MRCSx register is linked to the first bit directly following the offset of
the window. If the channel select offset mode is not enabled, the first bit
of the SPx_MTCSx or SPx_MRCSx register is placed at offset 0.

The 7-bit CHNL field in the SPx_STATR status register indicates the channel
currently selected during multichannel operation. This field is a read-only
status indicator. CHNL(6:0) increments by one as each channel is serviced,
and in channel select offset mode the value of CHNL is reset to 0 after the
offset has been completed. For example, for a window of 8 and an offset of
21, the counter displays a value between 0 and 28 in the regular mode, but
in channel select offset mode the counter resets to 0 after counting up to
21 and the frame completes when the CHNL reaches 7 (indicating the
eighth channel).

The FSDR bit in the MCM configuration register 2 changes the timing rela-
tionship between the frame sync and the clock received. This change
enables the SPORT to comply with the H.100 protocol.

Normally (FSDR=0) the data is transmitted on the same edge that the TFS is
generated. For example, a positive edge TFS transmits data on the positive
edge of the SCK. This is either the same edge of the following one, depend-
ing on when LATFS is set.

When frame synch/data relationship is used (FSDR=1), the frame synch is
expected to change on the falling edge of the clock and is sampled on the
rising edge of the clock. This is true even though data received is sampled
on the negative edge of the receive clock

Setting SPORT Modes

9-38 ADSP-219x/2191 DSP Hardware Reference

Channel Selection Registers

A channel is a multi-bit word (from 3 to 16 bits in length) that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select the words to be received and transmitted during mul-
tichannel communications. Data words from the enabled channels are
received or transmitted, and disabled channel words are ignored. Up to
128 channels are available. The SPx_MRCSx and SPx_MTCSx multichannel
selection registers enable and disable individual channels; the Multichan-
nel Receive Channel Select (SPx_MRCSx) registers specify the active receive
channels, and the Multichannel Transmit Channel Select (SPx_MTCSx) reg-
isters specify the active transmit channels.

Each register has 16 bits, corresponding to the 16 channels. Setting a bit
enables that channel, so the SPORT selects its word from the multi-
ple-word block of data (for either receive or transmit). For example,
setting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit to 1 in the SPx_MTCSx register causes the SPORT to
transmit the word in that channel’s position of the data stream. Clearing
the bit to 0 in the SPx_MTCSx register three-states the SPORT’s data trans-
mit (DT) pin during the time slot of that channel.

Setting a particular bit to 1 in the SPx_MRCSx register causes the SPORT to
receive the word in that channel’s position of the data stream; the received
word is loaded into the SPx_RX buffer. Clearing the bit to 0 in the
SPx_MRCSx register causes the SPORT to ignore the data.

Companding is selected on an all-or-none channel basis. A-law or m-law
companding is selected with the DTYPE bit 1 in the SPx_TCR and SPx_RCR
transmit and receive configuration registers, and applies to all active chan-
nels. (See “Companding” on page 9-24 for information about
companding.)

ADSP-219x/2191 DSP Hardware Reference 9-39

Serial Ports (SPORTs)

Multichannel Enable

Setting the MCM bit in the multichannel mode configuration control
register 1 enables multichannel mode. When MCM=1, multichannel opera-
tion is enabled; when MCM=0, all multichannel operations are disabled.

Setting the MCM bit enables multichannel operation for the receive and
transmit sides of the SPORT. If a receiving SPORT is in multichannel
mode, the transmitting SPORT must also be in multichannel mode.

Multichannel DMA Data Packing

Multichannel DMA data packing/unpacking are specified with the DMA
data packed/unpacked enable bits for the SPx_RX and SPx_TX multichannel
configuration registers.

If the bits are set (indicating that data is packed), the SPORT expects that
the data contained by the DMA buffer corresponds only to the enabled
SPORT channels (for example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each of the frames). It is not possible to change the total number
of enabled channels without changing the DMA buffer size, and reconfig-
uring is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the window (whether enabled or not), so the DMA buffer size must be
equal to the size of the window (for example, if channels 1 and 10 are
enabled, and the window size is 16, the DMA buffer size would have to be
16 words; the data to be transmitted/received would be placed at addresses
1 and 10 of the buffer, and the rest of the words in the DMA buffer would
be ignored). This mode has no restrictions on changing the number of
enabled channels while the SPORT is enabled.

Setting SPORT Modes

9-40 ADSP-219x/2191 DSP Hardware Reference

Multichannel TX FIFO Prefetch

The TX and RX channels have 8-word DMA FIFOs. Normally, the DMA
engine is capable of pre-fetching the TX words for up to seven channels
ahead of the one currently being transmitted.

In TX unpacked mode, matters are more complex since the disabled chan-
nels are ignored and the DMA data for these channels is skipped (not
placed into the TX FIFO). This leaves room for the prefetch logic to fill
the FIFO with words corresponding to the channels farther ahead of the
current one.

For example, suppose there is a window of 32 with no offset, with only
channels 5 and 25 enabled, TX unpacked. While the SPORT is preparing
to transmit channel 5, pre-fetch logic is capable of loading the data for
channel 25 of the current frame, plus for channels 5 and 25 of the next
three frames. The problem with this is that one of the goals of the
unpacked mode is to allow on-the-fly reconfiguration of the TX channel
selects, so that while channel 5 is being transmitted, the program can, for
example, enable channels 27-32. In the described scenario, this would
have been dangerous since pre-fetch logic could have been far past chan-
nels 27-32 of the current frame, and would fail to load the data for these
newly enabled registers into the FIFO.

To restrict this undesirable behavior, a 2-bit control field is introduced
(MCFF, the transmit FIFO pre-fetch max distance). MCFF can be pro-
grammed to restrict pre-fetch logic from fetching the data farther away
than the specified value ZZ (where ZZ can be 2, 4, 8, or 16 channels away
from the one currently being transmitted).

ADSP-219x/2191 DSP Hardware Reference 9-41

Serial Ports (SPORTs)

Multichannel Mode Example

The following code fragment is an example of setting up multichannel
mode for SPORT use.

/* Set MCM Transmit and Receive Channel Selection Reg */

AR = 0x001F; /* Enable Channels 0-4 for Tx */

IO(SP0_MTCS0) = AR;

AR = 0x0000; /* ... Disable remaining 123-Channels */

IO(SP0_MTCS1) = AR;

IO(SP0_MTCS2) = AR;

IO(SP0_MTCS3) = AR;

IO(SP0_MTCS4) = AR;

IO(SP0_MTCS5) = AR;

IO(SP0_MTCS6) = AR;

IO(SP0_MTCS7) = AR;

AR = 0x001F; /* Enable Channels 0-4 for Rx */

IO(SP0_MRCS0) = AR;

AR = 0x0000; /* ... Disable remaining 123-Channels */

IO(SP0_MRCS1) = AR;

IO(SP0_MRCS2) = AR;

IO(SP0_MRCS3) = AR;

IO(SP0_MRCS4) = AR;

IO(SP0_MRCS5) = AR;

IO(SP0_MRCS6) = AR;

IO(SP0_MRCS7) = AR;

/* Set SPORT0 MCM Configuration Reg 1 */

/* MCM enabled, 1 Frame Delay */

AR = 0x0003;

IO(SP0_MCMC1) = AR;

/* Set SPORT0 MCM Configuration Reg 2 */

/* Tx and Rx Packing */

Moving Data Between SPORTs and Memory

9-42 ADSP-219x/2191 DSP Hardware Reference

AR = 0x000C;

IO(SP0_MCMC2) = AR;

Moving Data Between SPORTs and
Memory

Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: single-word transfers or DMA block
transfers. Both methods are interrupt-driven, using the same internally
generated interrupts.

When SPORT DMA is not enabled in the SPx_TCR or SPx_RCR transmit or
receive configuration registers, the SPORT generates an interrupt every
time it has received a data word or has started to transmit a data word.
DMA provides a mechanism for receiving or transmitting an entire block
(or multiple blocks) of serial data before the interrupt is generated. The
SPORT’s DMA controller handles the DMA transfer, allowing the pro-
cessor core to continue running until the entire block of data is
transmitted or received. Service routines can then operate on the block of
data rather than on single words, significantly reducing overhead. The
ADSP-2191 DMA engines cycle steal from the core, resulting in one cycle
of overhead imposed on the core for each DMA word transferred.

See “I/O Processor” on page 6-1 for more information about configuring
and using DMA with the SPORTs.

SPORT DMA Autobuffer Mode Example
The following code fragments show an example of DMA autobuffer mode
for SPORT use.

ADSP-219x/2191 DSP Hardware Reference 9-43

Serial Ports (SPORTs)

The DMA autobuffer mode is set up in this code fragment.

/* SPORT0 DMA AUTOBUFFER XMIT */

AR = 0x0010; /* Set Autobuffer, Direction, and Clear_Buffer */

IO(SP0_CONFIG_DMA_TX) = AR;

AR = 0; /* SPORT0 TX DMA Internal Memory Page */

IO(SP0_START_PG_TX) = AR;

AR = tx_buf; /* SPORT0 TX DMA Internal Memory Address */

IO(SP0_START_ADDR_TX) = AR;

AR = LENGTH(tx_buf); /* SPORT0 TX DMA Internal Memory Count */

IO(SP0_COUNT_TX) = AR;

/* SPORT0 DMA AUTOBUFFER RCV */

AR = 0x0010; /* Set Autobuffer, Direction, and Clear_Buffer */

IO(SP0_CONFIG_DMA_RX) = AR;

AR = 0; /* SPORT0 RX DMA Internal Memory Page */

IO(SP0_START_PG_RX) = AR;

AR = rx_buf; /* SPORT0 RX DMA Internal Memory Address */

IO(SP0_START_ADDR_RX) = AR;

AR = LENGTH(rx_buf); /* SPORT0 RX DMA Internal Memory Count */

IO(SP0_COUNT_RX) = AR;

/* ENABLE SPORT0 DMA and DIRECTION */

/* IN DMA CONFIGURATION REGISTER */

AR = 0x1015; /* Enable TX Interrupts */

IO(SP0_CONFIG_DMA_TX) = AR;

AR = 0x1017; /* Enable RX Interrupts */

IO(SP0_CONFIG_DMA_RX) = AR;

Moving Data Between SPORTs and Memory

9-44 ADSP-219x/2191 DSP Hardware Reference

The SPORT is enabled in the following code fragment.

AX0 = IO(SP0_RX_CONFIG); /* Enable SPORT0 RX */

AR = SETBIT 0 OF AX0;

IO(SP0_RX_CONFIG) = AR;

AX0 = IO(SP0_TX_CONFIG); /* Enable SPORT0 TX */

AR = SETBIT 0 OF AX0;

IO(SP0_TX_CONFIG) = AR;

SPORT Descriptor-Based DMA Example
The following code fragment is an example of setting up descriptor-based
DMA mode for SPORT use.

/* SPORT0 DMA DESCRIPTOR BLOCK TX */

AR = 0x0080; /* Set Direction, and Clear_Buffer */

IO(SP0_CONFIG_DMA_TX) = AR;

AR = xmit_ddb; /* SPORT0 xmit DMA Next Descriptor Pntr Reg */

DM(xmit_ddb + 4) = AR;

AR = LENGTH(tx_buf); /* SPORT0 xmit DMA Internal Memory Count */

DM(xmit_ddb + 3) = AR;

AR = tx_buf; /* SPORT0 xmit DMA Internal Memory Address */

DM(xmit_ddb + 2) = AR;

AR = 0; /* SPORT0 xmit DMA Internal Memory Page */

DM(xmit_ddb + 1) = AR;

AR = 0x8005; /* Enable DMA, interrupt on completion, */

/* software control */

DM(xmit_ddb) = AR;

ADSP-219x/2191 DSP Hardware Reference 9-45

Serial Ports (SPORTs)

/* SPORT0 DMA DESCRIPTOR BLOCK RX */

AR= 0x0082; /* Set Direction, and Clear_Buffer */

IO(SP0_CONFIG_DMA_RX) = AR;

AR = rcv_ddb; /* SPORT0 rcv DMA Next Descriptor Pntr Reg */

DM(rcv_ddb + 4) = AR;

AR = LENGTH(rx_buf); /* SPORT0 rcv DMA Internal Memory Count */

DM(rcv_ddb + 3) = AR;

AR = rx_buf; /* SPORT0 rcv DMA Internal Memory Address */

DM(rcv_ddb + 2) = AR;

AR = 0; /* SPORT0 rcv DMA Internal Memory Page */

DM(rcv_ddb + 1) = AR;

AR = 0x8007; /* Enable DMA, interrupt on completion, */

/* software control */

DM(rcv_ddb) = AR;

/* DMA CONFIG */

AR = xmit_ddb; /* Load TX DMA NEXT Descriptor Pointer */

IO(SP0_NEXT_DESCR_TX) = AR;

AR = rcv_ddb; /* Load RX DMA NEXT Descriptor Pointer */

IO(SP0_NEXT_DESCR_RX) = AR;

/* Signify DMA Descriptor Ready */

AR = 0x0001;

IO(SP0_DESCR_RDY_TX) = AR; /* DMA Descriptor Ready */

IO(SP0_DESCR_RDY_RX) = AR;

AR = 0x0001;

IO(SP0_CONFIG_DMA_TX) = AR;

Support for Standard Protocols

9-46 ADSP-219x/2191 DSP Hardware Reference

AR = 0x0003;

IO(SP0_CONFIG_DMA_RX) = AR;

Support for Standard Protocols
The ADSP-2191 supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard:

• SPx_TFSDIVx = SPx_RFSDIVx = 0x03FF (1024 clock cycles per frame,
122ns wide, 125ms period frame sync)

• TFSR/RFSR set (FS required)

• LTFS/LRFS set (active-low FS)

• TSCLKDIV = RSCLKDIV = 8 (for 8.192 MHz (+/- 2%) bit clock)

• MCM set (multi-channel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half clock cycle
early frame sync)

2X Clock Recovery Control
SPORTs can recover the data rate clock (SCK) from a provided 2X input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data) by recovering the
2-MHz or 8-MHz clock from the incoming 4-MHz or 16-MHz clock,
with the proper phase relationship. A 2-bit mode signal chooses the appli-
cable clock mode, including a non-divide/bypass mode for normal
operation.

ADSP-219x/2191 DSP Hardware Reference 9-47

Serial Ports (SPORTs)

SPORT Pin/Line Terminations
The DSP has very fast drivers on all output pins including the SPORTs.
If connections on the data, clock, or frame sync lines are longer than six
inches, consider using a series termination for strip lines on point-to-point
connections. This may be necessary even when using low-speed serial
clocks, because of the edge rates.

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed vs. Unframed” on page 9-26, “Early vs. Late Frame
Syncs (Normal and Alternate Timing)” on page 9-29, and “Frame Syncs
in Multichannel Mode” on page 9-35). This section contains additional
examples to illustrate more possible combinations of the framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
the ADSP-2191 data sheet for actual timing parameters and values.

These examples assume a word length of four bits (SLEN=3). Framing sig-
nals are active high (LRFS=0 and LTFS=0).

Figure 9-6 on page 9-49 through Figure 9-11 on page 9-50 show framing
for receiving data.

In Figure 9-6 on page 9-49 and Figure 9-7 on page 9-49, the normal
framing mode is shown for non-continuous data (any number of SCK
cycles between words) and continuous data (no SCK cycles between words).
Figure 9-8 on page 9-49 and Figure 9-9 on page 9-50 show non-continu-
ous and continuous receiving in the alternate framing mode. These four
figures show the input timing requirement for an externally generated
frame sync and also the output timing characteristic of an internally gen-

Timing Examples

9-48 ADSP-219x/2191 DSP Hardware Reference

erated frame sync. Note that the output meets the input timing
requirement; therefore, with two SPORT channels, one SPORT channel
can provide RFS for the other SPORT channel.

Figure 9-10 on page 9-48 and Figure 9-11 on page 9-50 show the receive
operation with normal framing and alternate framing, respectively, in the
unframed mode. A single frame sync signal occurs only at the start of the
first word, either one SCK before the first bit (in normal mode) or at the
same time as the first bit (in alternate mode). This mode is appropriate for
multi-word bursts (continuous reception).

Figure 9-12 on page 9-51 through Figure 9-17 on page 9-53 show fram-
ing for transmitting data and are very similar to Figure 9-6 on page 9-49
through Figure 9-11 on page 9-50.

In Figure 9-12 on page 9-51 and Figure 9-13 on page 9-51, the normal
framing mode is shown for non-continuous data (any number of SCK
cycles between words) and continuous data (no SCK cycles between words).
Figure 9-14 on page 9-52 and Figure 9-15 on page 9-52 show non-con-
tinuous and continuous transmission in the alternate framing mode. As
noted previously for the receive timing diagrams, the TFS output meets the
TFS input timing requirement.

Figure 9-16 on page 9-53 and Figure 9-17 on page 9-53 show the trans-
mit operation with normal framing and alternate framing, respectively, in
the unframed mode. A single frame sync signal occurs only at the start of
the first word, either one SCK before the first bit (in normal mode) or at
the same time as the first bit (in alternate mode).

ADSP-219x/2191 DSP Hardware Reference 9-49

Serial Ports (SPORTs)

Figure 9-6. SPORT Receive, Normal Framing

Figure 9-7. SPORT Continuous Receive, Normal Framing

Figure 9-8. SPORT Receive, Alternate Framing

B3B3 B2 B1 B0 B2 B1 B0

SCLK

OUTPUT
RFS

DR

RFS
INPUT

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Timing Examples

9-50 ADSP-219x/2191 DSP Hardware Reference

Figure 9-9. SPORT Continuous Receive, Alternate Framing

Figure 9-10. SPORT Receive, Unframed Mode, Normal Framing

Figure 9-11. SPORT Receive, Unframed Mode, Alternate Framing

SCLK

OUTPUT
RFS

DR

RFS
INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCLK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B2B3

SCLK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B2B3

ADSP-219x/2191 DSP Hardware Reference 9-51

Serial Ports (SPORTs)

Figure 9-12. SPORT Transmit, Normal Framing

Figure 9-13. SPORT Continuous Transmit, Normal Framing

B2 B1 B0

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B3 B2 B1 B0B3

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

B2 B1 B0

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B3 B2 B1 B0B3 B3 B2

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Timing Examples

9-52 ADSP-219x/2191 DSP Hardware Reference

Figure 9-14. SPORT Transmit, Alternate Framing

Figure 9-15. SPORT Continuous Transmit, Alternate Framing

SCLK

TFS

DT
B2 B1 B0B3 B2 B1 B0B3

TFS

OUTPUT

INPUT

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
data sheet for specifications.

SCLK

OUTPUT
TFS

DT

TFS
INPUT

B2 B1 B0B3 B0B3 B2 B1

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appro-
priate data sheet for specifications.

ADSP-219x/2191 DSP Hardware Reference 9-53

Serial Ports (SPORTs)

Figure 9-16. SPORT Transmit, Unframed Mode, Normal Framing

Figure 9-17. SPORT Transmit, Unframed Mode, Alternate Framing

SCLK

TFS

DT
B3 B3B0B1B2 B1 B0 B3B2 B2

SCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
data sheet for specifications.

Timing Examples

9-54 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x/2191 DSP Hardware Reference 10-1

10 SERIAL PERIPHERAL
INTERFACE (SPI) PORTS

This chapter provides the following sections:

• “Overview” on page 10-2

• “Interface Signals” on page 10-6

• “SPI Registers” on page 10-8

• “SPI Transfer Formats” on page 10-21

• “SPI General Operation” on page 10-23

• “Error Signals and Flags” on page 10-29

• “Beginning and Ending an SPI Transfer” on page 10-31

• “DMA” on page 10-32

• “SPI Example” on page 10-33

Overview

10-2 ADSP-219x/2191 DSP Hardware Reference

Overview
The DSP has two independent Serial Peripheral Interface (SPI) ports
(SPI0 and SPI1) that provide an I/O interface to a wide variety of
SPI-compatible peripheral devices. Each SPI port employs a set of control
registers and data buffers.

The SPI interface shares I/O pins with the SPORT2 serial port;
SPORT2 and the SPI interface cannot be enabled at the same time.

In this text, the naming conventions for registers and pins use a
lowercase x to represent a digit. For example, MISOx indicates MISO0
and MISO1 pins (corresponding to SPI port 0 or SPI port 1).

With a range of configurable options, the SPI ports provide a glueless
hardware interface with other SPI-compatible devices. SPI is a 4-wire
interface consisting of two data pins, a device-select pin, and a clock pin.
SPI is a full-duplex synchronous serial interface, supporting master modes,
slave modes, and multi-master environments. The ADSP-2191 SPI-com-
patible peripheral implementation also supports programmable baud rate
and clock phase/polarities. The SPI features the use of open drain drivers
to support the multi-master scenario and to avoid data contention.

ADSP-219x/2191 DSP Hardware Reference 10-3

Serial Peripheral Interface (SPI) Ports

Typical SPI-compatible peripheral devices that can be used to interface to
the ADSP-2191 SPI-compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

• Shift registers

• FPGAs with SPI emulation

The ADSP-2191 SPI supports the following features:

• Full-duplex operation

• Master-slave mode multimaster environment

• Open drain outputs

• Programmable baud rates, clock polarities and phases

• Slave booting from another master SPI device

The ADSP-2191 Serial Peripheral Interface is an industry standard syn-
chronous serial link that helps the DSP communicate with multiple
SPI-compatible devices. The SPI peripheral is a synchronous, 4-wire inter-
face consisting of two data pins (MOSI and MISO); one device select pin

Overview

10-4 ADSP-219x/2191 DSP Hardware Reference

(SPISS); and a gated clock pin (SCK). The two data pins permit full-duplex
operation to other SPI-compatible devices. The SPI also includes pro-
grammable baud rates, clock phase, and clock polarity.

An SPI must be enabled via the System Configuration (SYSCR)
register.

The SPI can operate in a multi-master environment by interfacing with
several other devices, acting as a master device or a slave device. In a
multi-master environment, the SPI interface uses open drain data pad
driver outputs to avoid data bus contention.

Figure 10-1 is a block diagram of the ADSP-2191 SPI interface. The
interface is essentially a shift register that serially transmits and receives
data bits, one bit a time at the SCK rate, to/from other SPI devices. SPI
data is transmitted and received at the same time through the use of a shift
register. When an SPI transfer occurs, data is simultaneously transmitted,
or shifted out serially via the shift register as new data is received or shifted
in serially at the other end of the same shift register. The SCK synchronizes
the shifting and sampling of the data on the two serial data pins (MOSI and
MISO).

See “Pin Descriptions” on page 14-2 for a table of all ADSP-2191pins,
including those used for SPI.

During SPI data transfers, one SPI device acts as the SPI link master, con-
trolling the data flow by generating the SPI serial clock and asserting the
SPI device select signal. The other SPI device acts as the slave, accepting
new data from the master into its shift register, while transmitting
requested data out of the shift register through its SPI transmit data pin.
Multiple ADSP-2191 DSPs can take turns being the master device, as can
other microcontrollers or microprocessors. One master device can also
simultaneously shift data into multiple slaves (called broadcast mode).
However, only one slave may drive its output to write data back to the

ADSP-219x/2191 DSP Hardware Reference 10-5

Serial Peripheral Interface (SPI) Ports

master at any given time. This must be enforced in broadcast mode, where
several slaves can be selected to receive data from the master, but one slave
only can be enabled to send data back to the master.

In a multi-master or multi-device ADSP-2191 environment where multi-
ple ADSP-2191s are connected via their SPI ports, all MOSI pins are
connected together, all MISO pins are connected together, and all SCK pins
are connected together.

For a multi-slave environment, the ADSP-2191 can use 14 programmable
flags (PF2 - PF15) to be used as dedicated SPI slave-select signals for the
SPI slave devices.

At reset, the SPI is disabled and configured as a slave.

Figure 10-1. ADSP-2191 SPI Block Diagram

SPI INTERFACE LOGIC

MOSI MISO SCK SPISS

RDBR RECEIVE
REGISTER

SPI
INTERNAL

CLOCK
GENERATOR

32

DM DATA BUS
PM DATA BUS
I/O DATA BUS

M MSS SPICTL
SPIST

TDBR TRANSMIT
REGISTER SPI

I RQ
OR

DM A
RE QUE

ST

SHIFT REGISTER

Interface Signals

10-6 ADSP-219x/2191 DSP Hardware Reference

Interface Signals
This section describes the SPI’s interface signals.

Serial Peripheral Interface Clock Signal (SCK)
Serial Peripheral Interface clock signal (SCK) is driven by the master and
controls the rate at which data is transferred. The master may transmit
data at a variety of baud rates. SCK cycles once for each bit transmitted. It
is an output signal when the device is configured as a master, and an input
signal when the device is configured as a slave.

SCK is a gated clock that is active during data transfers, only for the length
of the transferred word. The number of active clock edges is equal to the
number of bits driven on the data lines. Slave devices ignore the serial
clock if the slave select input is driven inactive (high).

SCK is used to shift out and shift in data driven on the MISO and MOSI lines.
Data is always shifted out on one edge of the clock and sampled on the
opposite clock edge. The clock polarity and clock phase relative to data are
programmable into the SPI Control (SPICTLx) registers and define the
transfer format.

Serial Peripheral Interface Slave Select Input
Signal (SPISS)

Serial Peripheral Interface Slave Select input signal (SPISS) is an active low
signal used to enable a ADSP-2191 configured as a slave device. This
input-only pin behaves like a chip select, and is provided by the master
device for the slave devices. For a master device, it can act as an error sig-
nal input for multi-master environment. In multi-master mode, an error
occurred if the SPISS input signal of a master is asserted (driven low); this
means that another device is also trying to be the master device.

ADSP-219x/2191 DSP Hardware Reference 10-7

Serial Peripheral Interface (SPI) Ports

Master Out Slave In (MOSI)
Master Out Slave In pin (MOSI) is one of the bidirectional I/O data pins.
When the ADSP-2191 is configured as a master, MOSI becomes a data
transmit (output) pin, transmitting output data. When the ADSP-2191 is
configured as a slave, MOSI becomes a data receive (input) pin, receiving
input data. In a ADSP-2191 SPI interconnection, the data is shifted out
from the MOSI output pin of the master and shifted into the MOSI input(s)
of the slave(s).

Master In Slave Out (MISO)
Master In Slave Out pin (MISO) is one of the bidirectional I/O data pins.
When the ADSP-2191 is configured as a master, MISO becomes a data
receive (input) pin, receiving input data. When the ADSP-2191 is config-
ured as a slave, MISO becomes a data transmit (output) pin, transmitting
output data. In an ADSP-2191 SPI interconnection, the data is shifted
out from the MISO output pin of the slave and shifted into the MISO input
pin of the master.

One slave only is allowed to transmit data at any given time.

An SPI configuration example, shown in Figure 10-2, illustrates how an
ADSP-2191 can be used as a slave SPI device. The 8-bit host microcon-
troller is the SPI master. The ADSP-2191 can be booted via its SPI
interface, allowing the download of user application code and data prior
to runtime.

Interrupt Behavior
The behavior of the SPI interrupt signal depends on the transfer initiation
and interrupt mode (TIMOD). In DMA mode, the interrupt can be gener-
ated upon completion of a DMA multi-word transfer or upon an SPI error
condition (MODF, TXE when TRAN=0, or RBSY when TRAN=1). When not using
DMA mode, an interrupt is generated when the SPI is ready to accept new

SPI Registers

10-8 ADSP-219x/2191 DSP Hardware Reference

data for a transfer; the TXE and RBSY error conditions do not generate
interrupts in these modes. An interrupt is also generated in a master when
the mode-fault error occurs.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPI Control (SPICTLx) Registers” on page 10-10.

SPI Registers
The SPI peripheral in the ADSP-2191 includes a several user-accessible
registers; some of which are also accessible through the DMA bus. Four
registers (SPIBAUDx, SPICTLx, SPIFLGx, and SPISTx) contain control and
status information. Two registers (RDBRx and TDBRx) are used for buffering
receive and transmit data. Eight registers relate DMA functionality. The
shift register (SFDR), which is internal to the SPI module, is not directly
accessible.

Refer to “Error Signals and Flags” on page 10-29 for information about
how bits in these registers signal errors and other conditions, and “Regis-
ter Mapping” on page 10-19 for a table showing the mapping of all SPI
registers.

Figure 10-2. ADSP-2191 as Slave SPI Device

8-bit Host
Microcontroller

ADSP-2191

SCLK

S_SEL

MOSI

MISO

SCK

SPISS

MOSI

MISO

Slave SPI Device

ADSP-219x/2191 DSP Hardware Reference 10-9

Serial Peripheral Interface (SPI) Ports

This section provides the following topics:

• “SPI Baud Rate (SPIBAUDx) Registers” on page 10-9

• “SPI Control (SPICTLx) Registers” on page 10-10

• “SPI Flag (SPIFLGx) Register” on page 10-12

• “SPI Status (SPISTx) Registers” on page 10-16

• “Transmit Data Buffer (TDBRx) Registers” on page 10-18

• “Receive Data Buffer (RDBRx) Registers” on page 10-19

• “Data Shift (SFDR) Register” on page 10-19

• “Register Mapping” on page 10-19

SPI Baud Rate (SPIBAUDx) Registers
The SPI Baud Rate (SPIBAUDx) registers set the bit transfer rate for a mas-
ter device. When configured as a slave, the value written to this register is
ignored. The serial clock frequency is determined by the following
formula:

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the peripheral clock rate
(HCLK).

Table 10-1 provides bit descriptions for the SPIBAUDx register.

Table 10-1. SPIBAUDx Register Bits

Bit(s) Function Default

15:0 Baud Rate: Peripheral clock (HCLK) divided by 2*(Baud) 0

CKx frequency Perpheral clock frequenc
2 SPIBAUDx×

--=

SPI Registers

10-10 ADSP-219x/2191 DSP Hardware Reference

Table 10-2 lists several possible baud rate values for the SPIBAUDx register.

SPI Control (SPICTLx) Registers
The SPI Control (SPICTLx) registers configure and enable the SPI system.
These registers enable the SPI interface, select the device as a master or
slave, and determine data transfer format and word size.

Table 10-3 provides the bit descriptions for the SPICTLx register.

Table 10-2. SPI Master Baud Rate Example

SPIBAUD Decimal Value SPI Clock Divide Factor Baud Rate for HCLK @ 100MHz

0 N/A N/A

1 N/A N/A

2 4 25MHz

3 6 16.7MHz

4 8 12.5MHz

65,535 (0xFFFF) 131,070 763Hz

Table 10-3. SPICTLx Register Bits

Bit(s) Name Function Default

1:0 TIMOD Defines transfer initiation mode and interrupt generation.
00 - Initiate transfer by read of receive buffer. Interrupt active when
receive buffer is full
01 - Initiate transfer by write to transmit buffer. Interrupt active
when transmit buffer is empty
10 - Enable DMA transfer mode. Interrupt configured by DMA
11 - Reserved

00

2 SZ Send Zero or last word when TDBRx empty.
0 = send last word
1 = send zeroes

0

ADSP-219x/2191 DSP Hardware Reference 10-11

Serial Peripheral Interface (SPI) Ports

3 GM When RDBRx full, get data or discard incoming data.
0 = discard incoming data
1 = get more data (overwrites the previous data)

0

4 PSSE Enables Slave-Select (SPISS) input for master. When not used,
SPISS can be disabled, freeing up a chip pin as general purpose
I/O.
0 = disable
1 = enable

0

5 EMISO Enable MISO pin as an output.
This is needed when master wishes to transmit to various slaves at
one time (broadcast). Only one slave is allowed to transmit data
back to the master. All slaves (except for the one from whom the
master wishes to receive) should have this bit set.
0 = MISO disabled
1 = MISO enabled

0

7:6 Reserved 00

8 SIZE Word length.
0 = 8 bits
1 = 16 bits

0

9 LSBF Data format.
0 = MSB sent/received first
1 = LSB sent/received first

0

10 CPHA Clock phase (selects the transfer format).
0 = SPIOSELx is set automatically by hardware.
 SCK starts toggling at the middle of first data bit
1 = SPIOSELx has to be set by software.
 SCK starts toggling at the beginning of first data bit

1

11 CPOL Clock polarity.
0 = active-high SCK (SCK low is the idle state)
1 = active-low SCK (SCK high is the idle state)

0

12 MSTR Configures SPI module as master or slave.
0 = device is a slave device
1 = device is a master device

0

Table 10-3. SPICTLx Register Bits (Cont’d)

Bit(s) Name Function Default

SPI Registers

10-12 ADSP-219x/2191 DSP Hardware Reference

SPI Flag (SPIFLGx) Register
The SPI Flag (SPIFLGx) registers are read/write registers used to enable
individual SPI slave-select lines when the SPI is enabled as a master. Each
SPIFLG register has seven bits (FLS) to select the outputs to be driven as
slave-select lines and seven bits (FLG) to activate the selected slave-selects.

If the SPI is enabled and configured as a master, up to 14 of the chip’s
general-purpose programmable flag pins may be used as slave-select out-
puts. For each FLS bit set in the SPIFLGx register, the corresponding PFx
pin is configured as a slave-select output. For example, if bit FLS1 is set in
SPIFLG0, the PF2 pin will be driven as a slave-select (SPI0SEL1).

Refer to the following tables for the mapping of SPIFLGx register bits to
PFx pins. For FLS bits that are not set, the corresponding PFx pins are con-
figured and controlled by the chip’s general-purpose PFx registers (DIR and
others). When the chip is configured for 16-bit external data transfers
(as defined by the external bus width bit, E_BWS, in the EMICTRL register),
the SPIFLG0 and SPIFLG1 registers each lose the capability to control four
slave devices due to the EMI’s use of the PF15-8 pins. Because the EMI
uses these PFx pins, the MUXed SPI use of those pins no longer applies;
therefore, SPIxSEL7-4 are no longer available as slave select outputs.

13 WOM Open drain data output enable (for MOSI and MISO).
0 = Normal
1 = Open Drain

0

14 SPE SPI module enable
0 = SPI Module is disabled
1 = SPI Module is enabled

0

15 Reserved 0

Table 10-3. SPICTLx Register Bits (Cont’d)

Bit(s) Name Function Default

ADSP-219x/2191 DSP Hardware Reference 10-13

Serial Peripheral Interface (SPI) Ports

In order for the SPIxSELx pins to be configured as SPI slave-select outputs,
SPIx must be enabled as a master (that is, the SPE and MSTR bits in the
SPICTLx register must be set). Otherwise, none of the bits in the SPIFLGx
register have any effect. When the EMI is configured to be 16 bits, SPI-
FLGx bits 4-7 and bits 12-15 have no effect due to the EMI’s use of the
corresponding PFx pins."

Table 10-4 provides bit mappings for the SPIFLG0 register.

Table 10-5 provides bit mappings for the SPIFLG1 register.

Table 10-4. SPIFLG0 Register Bits

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPI0SEL1 Enable PF2 0

2 FLS2 SPI0SEL2 Enable PF4 0

3 FLS3 SPI0SEL3 Enable PF6 0

4 FLS4 SPI0SEL4 Enable PF8 0

5 FLS5 SPI0SEL5 Enable PF10 0

6 FLS6 SPI0SEL6 Enable PF12 0

7 FLS7 SPI0SEL7 Enable PF14 0

8 Reserved 1

9 FLG1 SPI0SEL1 Value PF2 1

10 FLG2 SPI0SEL2 Value PF4 1

11 FLG3 SPI0SEL3 Value PF6 1

12 FLG4 SPI0SEL4 Value PF8 1

13 FLG5 SPI0SEL5 Value PF10 1

14 FLG6 SPI0SEL6 Value PF12 1

15 FLG7 SPI0SEL7 Value PF14 1

SPI Registers

10-14 ADSP-219x/2191 DSP Hardware Reference

When the PFx pins are configured as slave-select outputs, the value driven
onto these outputs depends on the value of the CPHA bit in the SPICTLx
register. If CPHA=1, the value is set by software control of the FLG bits. If
CPHA=0, the value is determined by the SPI hardware, and the FLG bits are
ignored.

When CPHA=1, the SPI protocol permits the slave-select line to remain
asserted (low) or be de-asserted between transferred words. This requires
that you write to the SPIFLGx register, setting or clearing the appropriate
FLG bits as needed. For example, to drive PF3 as a slave-select, FLS1 in

Table 10-5. SPIFLG1 Register Bits

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPI1SEL1 Enable PF3 0

2 FLS2 SPI1SEL2 Enable PF5 0

3 FLS3 SPI1SEL3 Enable PF7 0

4 FLS4 SPI1SEL4 Enable PF9 0

5 FLS5 SPI1SEL5 Enable PF11 0

6 FLS6 SPI1SEL6 Enable PF13 0

7 FLS7 SPI1SEL7 Enable PF15 0

8 Reserved 1

9 FLG1 SPI1SEL1 Value PF3 1

10 FLG2 SPI1SEL2 Value PF5 1

11 FLG3 SPI1SEL3 Value PF7 1

12 FLG4 SPI1SEL4 Value PF9 1

13 FLG5 SPI1SEL5 Value PF11 1

14 FLG6 SPI1SEL6 Value PF13 1

15 FLG7 SPI1SEL7 Value PF15 1

ADSP-219x/2191 DSP Hardware Reference 10-15

Serial Peripheral Interface (SPI) Ports

SPIFLG1 must be set. Clearing FLG1 in SPIFLG1 drives PF3 low; setting FLG1
drives PF3 high. If needed, PF3 can be cycled high and low between trans-
fers by setting FLG1 and then clearing FLG1; otherwise, PF3 remains active
(low) between transfers.

When CPHA=0, the SPI protocol requires that the slave-select be de-asserted
between transferred words. In this case, the SPI hardware controls the
pins. For example, to use PF3 as a slave-select pin, it is only necessary to set
the FLS1 bit in the SPIFLG1 register. Writing to the FLG1 bit is not
required, because the SPI hardware automatically drives the PF3 pin.

Slave-Select Inputs

The behavior of the SPISSx inputs depend on the configuration of the
SPI. If the SPI is a slave, SPISS acts as the slave-select input. When
enabled as a master, SPISS can serve as an error-detection input for the SPI
in a multi-master environment. The PSSE bit in the SPICTLx register
enables this feature. When PSSE=1, the SPISS input is the master mode
error input; otherwise, SPISS is ignored. The state of these input pins can
be observed in the Programmable Flag Data register (FLAGC or FLAGS).

Using the SPIFLG Register’s FLS Bits
for Multiple-Slave SPI Systems

The FLS bits in the SPIFLG register are used in a multiple-slave SPI envi-
ronment. For example, if eight SPI devices are in a system with an
ADSP-2191 master, the master ADSP-2191 can support the SPI mode
transactions across all seven other devices. This configuration requires that
only one ADSP-2191 is a master within this multi-slave environment. For
example, assume that SPI0 is the master. The seven flag pins (PF2, PF4,
PF6, PF8, PF10, PF12, and PF14) on the ADSP-2191 master can be con-
nected to each of the slave SPI device's SPISS pin. In this configuration,
the FLS bits in the SPIFLG register can be used three ways.

SPI Registers

10-16 ADSP-219x/2191 DSP Hardware Reference

In cases 1 and 2, the ADSP-2191 is the master, and the seven microcon-
trollers/peripherals with SPI interfaces are used as slaves. In this setup, the
ADSP-2191 can:

1. Transmit to all seven SPI devices at the same time (broadcast
mode). All the FLS bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all eight devices connected via SPI ports can be ADSP-2191
DSPs:

3. If all the slaves are also ADSP-2191s, the requestor can receive data
from only one ADSP-2191 (enable this by setting the EMISO bit in
the other six slave processors) at a time and transmit broadcast data
to all seven at the same time. This EMISO feature may be available in
other microcontrollers. Therefore, it would be possible to use the
EMISO feature with any other SPI device that has this functionality.

Figure 10-3 shows one ADSP-2191 as a master with three ADSP-2191s
(or other SPI-compatible devices) as slaves.

SPI Status (SPISTx) Registers
Use the SPI Status (SPISTx) register to detect when an SPI transfer is com-
plete or if transmission/reception errors occur. The SPISTx registers can be
read at any time.

Some of the bits in SPISTx registers are read-only (RO), and others can be
cleared by a write-one-to-clear (W1C) operation. Bits that just provide
information about the SPI are read-only; these bits are set and cleared by
the hardware. W1C bits are set when an error condition occurs; these bits
are set by hardware, and must be cleared by software. (To clear a W1C bit,
write a 1 to the desired bit position of the SPISTx register. For example, if

ADSP-219x/2191 DSP Hardware Reference 10-17

Serial Peripheral Interface (SPI) Ports

the TXE bit is set, write a 1 to bit 2 of SPISTx to clear the TXE error condi-
tion. This allows you to read the status register without changing its
value.)

Write-one-to-clear (W1C) bits only can be cleared by writing one
to them. Writing zero does not clear (or affect) a W1C bit.

Table 10-6 provides bit descriptions for the SPISTx register.

Figure 10-3. Single-Master, Multiple-Slave Configuration
(All ADSP-2191s)

Table 10-6. SPI Status (SPISTx) Register Bits

Bit Name Function Type Default

0 SPIF This bit is set when an SPI single-word transfer is complete. RO 1

1 MODF Mode fault error. This bit is set in a master device when some
other device tries to become the master.

W1C 0

2 TXE Transmission error. This bit is set when a transmission
occurred with no new data in the TDBRx register.

W1C 0

SPI Registers

10-18 ADSP-219x/2191 DSP Hardware Reference

The transmit buffer becomes full after it is written to; it becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer; it becomes empty when the
receive buffer is read.

Transmit Data Buffer (TDBRx) Registers
The Transmit Data Buffer (TDBRx) registers are 16-bit read-write (RW)
registers. Data is loaded into this register before being transmitted. Just
prior to the beginning of a data transfer, the data in TDBR is loaded into the
Shift Data (SFDR) register. A normal core read of TDBRx may occur at any
time and does not interfere with, or initiate, SPI transfers.

When the DMA is enabled for transmit operation, data is loaded into this
register before being transmitted and then loaded into the shift register
just prior to the beginning of a data transfer.

A normal core write to TDBRx should not occur in this mode
because this data will overwrite the DMA data to be transmitted.

3 TXS TDBRx data buffer status.
0 = empty
1 = full

RO 0

4 RBSY Receive error. This bit is set when data is received and the
receive buffer is full.

W1C 0

5 RXS RX data buffer status.
0 = empty
1 = full

RO 0

6 TXCOL Transmit collision error. When this bit is set, corrupt data may
have been transmitted.

W1C 0

Table 10-6. SPI Status (SPISTx) Register Bits (Cont’d)

Bit Name Function Type Default

ADSP-219x/2191 DSP Hardware Reference 10-19

Serial Peripheral Interface (SPI) Ports

When the DMA is enabled for receive operation, the contents of TDBRx
will be transmitted repeatedly. A normal core write to TDBRx is permitted
in this mode, and this data will be transmitted. If the send zeroes control
bit (SZ) is set, TDBRx may be reset to 0 in certain circumstances.

If multiple writes to TDBRx occur while a transfer is in progress, only the
last data written will be transmitted; no intermediate values written to
TDBRx will be transmitted. Multiple writes to TDBRx, though possible, are
not recommended.

Receive Data Buffer (RDBRx) Registers
The Receive Data Buffer (RDBRx) registers are 16-bit read-only (RO) regis-
ters. At the end of a data transfer, the data in the shift register is loaded
into RDBRx. During a DMA receive operation, the data in RDBRx is auto-
matically read by the DMA. A shadow register (RDBRSx) for the receive
data buffer (RDBRx) is provided for use in debugging software. RDBRSx is at
a different address from RDBRx, but its contents are identical to that of
RDBRx. When a software read of RDBRx occurs, the RXS bit is cleared and an
SPI transfer may be initiated (if TIMOD=00). No such hardware action
occurs when the shadow register is read. RDBRSx is a read-only (RO)
register.

Data Shift (SFDR) Register
The Data Shift (SFDR) register is the 16-bit data shift register; it is not
accessible by the software or the DMA. The SFDR is buffered so a write to
TDBRx does not overwrite the shift register during an active transfer.

Register Mapping
Table 10-7 illustrates the mapping of all SPI registers. Refer to the notes
following the table for more information about this data.

SPI Registers

10-20 ADSP-219x/2191 DSP Hardware Reference

Some items to note about Table 10-7 include:

• SPICTLx: The SPE and MSTR bits can also be modified by hardware
(when MODF is set).

• SPISTx: The SPIF bit can be set by clearing SPE in SPICTLx.

• TDBRx: Register contents can also be modified by hardware (by
DMA and/or when SZ=1).

• RDBRx: When this register is read, hardware events are triggered.

Table 10-7. SPI Register Mapping

Register Name Function

SPICTLx SPI port control

SPIFLG SPI port flag

SPISTx SPI port status

TDBRx SPI port transmit data buffer

RDBRx SPI port receive data buffer

SPIBAUDx SPI port baud control

RDBRSx SPI port data

SPIxD_PTR SPI port DMA current pointer

SPIxD_CFG SPI port DMA configuration

SPIxD_SRP SPI port DMA start page

SPIxD_SRA SPI port DMA start address

SPIxD_CNT SPI port DMA count

SPIxD_CP SPI port DMA next descriptor pointer

SPIxD_CPR SPI port DMA descriptor ready

SPIxD_IRQ SPI port interrupt status

ADSP-219x/2191 DSP Hardware Reference 10-21

Serial Peripheral Interface (SPI) Ports

• RDBRSx: Although this register has the same contents as RDBRx, no
action is taken when it is read.

• SPIxD_SRP, SPIxD_SRA, and SPIxD_CNT can be written to only via
software when the DAUTO DMA configuration bit is set.

• SPIxD_CFG: Three of the control bits (TRAN, DCOME, and DERE) only
can be written to via software when the DAUTO DMA bit is set.

• SPIxD_CFG: The MODF, TXE, and RBSY bits are sticky; these bits
remain set even when the corresponding SPISTx bits are cleared.

SPI Transfer Formats
The ADSP-2191 SPI supports four different combinations of serial clock
phase and polarity. User application code can select any of these combina-
tions using the CPOL and CPHA bits in the SPI Control (SPICTLx) register.

Figure 10-4 on page 10-13 and Figure 10-5 on page 10-14 demonstrate
the two basic transfer formats as defined by the CPHA bit; one diagram is
for CPHA=0, and the other is for CPHA=1. Two waveforms are shown for SCK:
one for CPOL=0 and the other for CPOL=1. The diagrams may be interpreted
as master or slave timing diagrams since the SCK, MISO, and MOSI pins are
directly connected between the master and the slave. The MISO signal is the
output from the slave (slave transmission), and the MOSI signal is the out-
put from the master (master transmission). The SCK signal is generated by
the master, and the SPISS signal is the slave device select input to the slave
from the master. The diagrams represent an 8-bit transfer (SIZE=0) with
MSB first (LSBF=0). Any combination of the SIZE and LSBF bits of the
SPICTLx register is allowed. For example, a 16-bit transfer with the LSB
first is another possible configuration.

SPI Transfer Formats

10-22 ADSP-219x/2191 DSP Hardware Reference

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA=0, the slave select line, SPISS, must be inactive (high) between
each serial transfer. This is controlled automatically by the SPI hardware
logic. When CPHA=1, SPISS may remain active (low) between successive
transfers or be inactive (high). This must be controlled by the software.

Figure 10-4 shows the SPI transfer protocol for CPHA=0. Note that SCK
starts toggling in the middle of the data transfer, SIZE=0, and LSBF=0.

Figure 10-4. SPI transfer protocol for CPHA=0

ADSP-219x/2191 DSP Hardware Reference 10-23

Serial Peripheral Interface (SPI) Ports

Figure 10-5 shows the SPI transfer protocol for CPHA=1. Note that SCK
starts toggling at the beginning of the data transfer, SIZE=0, and LSBF=0.

SPI General Operation
This section provides the following topics:

• “Overview” on page 10-24

• “Clock Signals” on page 10-25

• “Master Mode Operation” on page 10-25

• “Transfer Initiation from Master (Transfer Modes)” on page 10-26

Figure 10-5. SPI Transfer Protocol for CPHA=1

SPI General Operation

10-24 ADSP-219x/2191 DSP Hardware Reference

Overview
The SPI in ADSP-2191 DSP can be used in a single-master or multi-mas-
ter environment. The MOSI, MISO, and the SCK signals are tied together in
both configurations. SPI transmission and reception are always enabled
simultaneously, unless the broadcast mode has been selected. In broadcast
mode, several slaves can be enabled to receive, but only one slave must be
in transmit mode driving the MISO line. If the transmit or receive is not
needed, it can be ignored. This section describes:

• Clock signals

• SPI operation as a master and as a slave

• Error generation

Precautions must be taken when changing the SPI module configu-
ration, in order to avoid data corruption. The configuration must
not be changed during a data transfer. Change clock polarity only
when no slaves are selected (except when an SPI communication
link consists of a single master and a single slave, CPHA=1, and the
slave’s slave-select input is always tied low; in this case the slave is
always selected, and data corruption can be avoided by enabling the
slave only after both the master and slave devices have been
configured).

In a multi-master or multi-slave SPI system, the data output pins (MOSI
and MISO) can be configured to behave as open-drain drivers, which pre-
vents contention and possible damage to pin drivers. An external pull-up
resistor is required on both pins (MOSI and MISO) when this option is
selected.

The WOM bit controls this feature. When WOM is set and the ADSP-2191 SPI
is configured as a master, the MOSI pin is three-stated when the data driven
out on MOSI is a logic-high. The MOSI pin is not three-stated when the

ADSP-219x/2191 DSP Hardware Reference 10-25

Serial Peripheral Interface (SPI) Ports

driven data is a logic-low. Similarly, when WOM is set and the ADSP-2191
SPI is configured as a slave, MISO is three-stated when the data driven out
on MISO is a logic-high.

Clock Signals
The SCK signal is a gated clock that is active only during data transfers, and
only for the duration of the transferred word. The number of active edges
is equal to the number of bits driven on the data lines. The clock rate can
be as high as one-fourth of the peripheral clock rate. For master devices,
the clock rate is determined by the 16-bit value of the Baud Rate
(SPIBAUDx) register; for slave devices, the value in SPIBAUDx is ignored.
When the SPI device is a master, SCK is an output signal; when the SPI is a
slave, SCK is an input signal. Slave devices ignore the serial clock if the
slave-select input is driven inactive (high).

SCK shifts out and shifts in the data driven onto the MISO and MOSI lines.
The data is always shifted out on one edge of the clock (the active edge)
and sampled on the opposite edge of the clock (the sampling edge). Clock
polarity and clock phase relative to data are programmable into the SPI
Control (SPICTLx) register and define the transfer format.

Master Mode Operation
When SPI is configured as a master (and DMA mode is not selected), the
interface operates as follows:

1. The core writes to the SPIFLG register, setting one or more SPI flag
select bits (FLS). This ensures that the desired slaves are properly
de-selected while the master is configured.

2. The core writes to the SPICTLx and SPIBAUDx registers, enabling the
device as a master and configuring the SPI system by specifying the
appropriate word length, transfer format, baud rate, and other nec-
essary information.

SPI General Operation

10-26 ADSP-219x/2191 DSP Hardware Reference

3. If CPHA=1, the core activates the desired slaves by clearing one or
more SPI flag bits (FLG) of SPIFLG.

4. The TIMOD bits in the SPICTLx register determine the SPI transfer
initiate mode. The transfer on the SPI link begins upon a data
write by the core to the transmit data buffer register (TDBRx) or a
data read of the receive data buffer (RDBRx).

5. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
Before starting to shift, the shift register is loaded with the contents
of the TDBRx register. At the end of the transfer, the contents of the
shift register are loaded into RDBRx.

6. With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initialize
mode.

If the transmit buffer remains empty (or the receive buffer remains full),
the device operates according to the states of the SZ and GM bits in the
SPICTLx register. If SZ=1 and the transmit buffer is empty, the device
repeatedly transmits 0’s on the MOSI pin; one word is transmitted for each
new transfer initiate command. If SZ=0 and the transmit buffer is empty,
the device repeatedly transmits the last word it transmitted before the
transmit buffer became empty. If GM=1 and the receive buffer is full, the
device continues to receive new data from the MISO pin, overwriting the
older data in the RDBRx buffer. If GM=0 and the receive buffer is full, the
incoming data is discarded, and the RDBRx register is not updated.

Transfer Initiation from Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of the SPICTL register. Based on those two bits and
the status of the interface, a new transfer is started upon either a read of
RDBR or a write to TDBR. This is summarized in Table 10-8.

ADSP-219x/2191 DSP Hardware Reference 10-27

Serial Peripheral Interface (SPI) Ports

Slave Mode Operation

When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPISS select signal to
the active state (low) or by the first active edge of the clock (SCK), depend-
ing on the state of CPHA.

The following steps illustrate SPI operation in the slave mode:

1. The core writes to the SPICTLx register to define the mode of the
serial link to be the same as the mode setup in the SPI master.

2. To prepare for the data transfer, the core writes data to be trans-
mitted into the TDBRx register.

3. Once the SPISS falling edge is detected, the slave starts sending and
receiving data on active SCK edges.

Table 10-8. Transfer Initiation

TIMOD Function Transfer initiated upon Action, Interrupt

00 Transmit
and Receive

Initiate new single-word trans-
fer upon read of RDBR and pre-
vious transfer completed.

Interrupt active when receive buffer
is full.
Read of RDBR clears interrupt.

01 Transmit
and Receive

Initiate new single-word trans-
fer upon write to TDBR and pre-
vious transfer completed.

Interrupt active when transmit
buffer is empty.
Writing to TDBR clears interrupt.

10 Transmit or
Receive
with DMA

Initiate new multi-word transfer
upon write to DMA enable bit.
Individual word transfers begin
with either a DMA write to
TDBR or a DMA read of RDBR
(depending on TRAN bit), and
last transfer complete.

Interrupt active upon DMA error
or multi-word transfer complete.
Write-1 to DMA Interrupt register
clears interrupt.

11 Reserved N/A N/A

SPI General Operation

10-28 ADSP-219x/2191 DSP Hardware Reference

4. Reception/transmission continues until SPISS is released or until
the slave has received the proper number of clock cycles.

5. The slave device continues to receive/transmit with each new fall-
ing-edge transition on SPISS and/or active SCK clock edge.

If the transmit buffer remains empty, or the receive buffer remains full,
the devices operates according to the states of the SZ and GM bits in the
SPICTLx register. If SZ=1 and the transmit buffer is empty, the device
repeatedly transmits 0’s on the MISO pin. If SZ=0 and the transmit buffer is
empty, it repeatedly transmits the last word it transmitted before the
transmit buffer became empty. If GM=1 and the receive buffer is full, the
device continues to receive new data from the MOSI pin, overwriting the
older data in the RDBRx buffer. If GM=0 and the receive buffer is full, the
incoming data is discarded, and the RDBRx register is not updated.

Slave Ready for a Transfer

When a device is enabled as a slave, Table 10-9 lists the actions necessary
to prepare the device for a new transfer.

Table 10-9. Transfer Preparation

TIMOD Function Action, Interrupt

00 Transmit and
Receive

Interrupt active when receive buffer is full.
Read of RDBR clears interrupt.

01 Transmit and
Receive

Interrupt active when transmit buffer is empty.
Writing to TDBR clears interrupt.

10 Transmit or
Receive with
DMA

Interrupt configured in SPI DMA Configuration Register.
Interrupt active upon DMA error or multi-word transfer complete.
Write-1 to DMA Interrupt register clears interrupt.

11 Reserved N/A

ADSP-219x/2191 DSP Hardware Reference 10-29

Serial Peripheral Interface (SPI) Ports

Error Signals and Flags
The status of a device is indicated by the SPISTx register. See “SPI Status
(SPISTx) Registers” on page 10-16 for information about the SPISTx
register.

Mode-Fault Error (MODF)
The MODF bit is set in the SPI Port Status (SPISTx) register when the SPISS
input pin of a device enabled as a master is driven low by another device in
the system. This occurs in multi-master systems when another device is
also trying to be the master. To enable this feature, set the PSSE bit in
SPICTLx. Contention between two drivers can potentially damage the driv-
ing pins. As soon as this error is detected, the following actions are taken:

1. The MSTR control bit in SPICTLx is cleared, configuring the SPI
interface as a slave.

2. The SPE control bit in SPICTLx is cleared, disabling the SPI system.

3. The MODF status bit in SPISTx is set.

4. An SPI interrupt is generated.

These four conditions persist until the MODF bit is cleared by a write-1
(W1C) software operation. Until the MODF bit is cleared, the SPI cannot be
re-enabled, even as a slave. Hardware prevents you from setting SPE or
MSTR while MODF is set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, check the state of the SPISS input pin to
ensure that the pin is high; otherwise, once SPE and MSTR are set, another
mode-fault error condition occurs immediately. The state of the input pin
is observable in the Programmable Flag Data (FLAGC or FLAGS) register.

Error Signals and Flags

10-30 ADSP-219x/2191 DSP Hardware Reference

Because SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSI,
MISO, and SCK) are disabled. However, the slave-select output pins will
revert to being controlled by the Programmable Flag registers. This can
lead to contention on the slave-select lines if these lines are still being
driven by the ADSP-2191. To ensure that the slave-select output drivers
are disabled once a MODF error occurs, the program must configure the Pro-
grammable Flag registers appropriately.

When enabling the MODF feature, the program must configure as inputs all
of the PFx pins used as slave-selects; programs can do this by writing to the
DIR register prior to configuring the SPI. This ensures that, once the MODF
error occurs and the slave-selects are automatically reconfigured as PFx
pins, the slave-select output drivers will be disabled.

Transmission Error (TXE) Bit
The TXE bit is set in the SPI Status (SPISTx) register when all of the condi-
tions of transmission are met but there is no new data in TDBRx (TDBRx is
empty). In this case, the contents of the transmission depend on the state
of the SZ bit in the SPI Control (SPICTLx) register. The TXE bit is cleared
by a write-1 (W1C) software operation.

Reception Error (RBSY) Bit
The RBSY flag is set in the SPISTx register when a new transfer has com-
pleted before the previous data is read from the SPI Receive Data (RDBRx)
register. This bit indicates that a new word was received while the receive
buffer was full. The RBSY flag is cleared by a write-1 (W1C) software oper-
ation. The state of the GM bit in the SPICTLx register determines whether
the RDBRx register is updated with the newly-received data.

ADSP-219x/2191 DSP Hardware Reference 10-31

Serial Peripheral Interface (SPI) Ports

Transmit Collision Error (TXCOL) Bit
The TXCOL flag is set in the SPI Status (SPISTx) register when a write to the
TDBRx register coincides with the load of the shift register. The write to
TDBRx can be via the software or the DMA. This bit indicates that corrupt
data may have been loaded into the shift register and transmitted; in this
case, the data in TDBRx may not match what was transmitted. This error
can easily be avoided by proper software control. The TXCOL bit is cleared
by a write-1 (W1C) software operation.

This bit is never set when the SPI is configured as a slave with
CPHA=0; the collision may occur, but it cannot be detected.

Beginning and Ending an SPI Transfer
An defined start and end of an SPI transfer depends on whether the device
is configured as a master or a slave, the CPHA mode selected, and the trans-
fer initiation mode (TIMOD) selected. For a master SPI with CPHA=0, a
transfer starts when the TDBRx register is written or the RDBRx register is
read, depending on TIMOD. At the start of the transfer, the enabled
slave-select outputs are driven active (low). However, the SCK signal
remains inactive for the first half of the first cycle of SCK. For a slave with
CPHA=0, the transfer starts as soon as the SPISS input goes low.

For CPHA=1, a transfer starts with the first active edge of SCK for both slave
and master devices. For a master device, a transfer is considered finished
after it sends the last data and simultaneously receives the last data bit. A
transfer for a slave device ends after the last sampling edge of SCK.

The RXS bit defines when the receive buffer can be read; the TXS bit defines
when the transmit buffer can be filled. The end of a single-word transfer
occurs when the RXS bit is set, indicating that a new word has just been
received and latched into the receive buffer (RDBRx). RXS is set shortly after
the last sampling edge of SCK. The latency is typically a few HCLK cycles
and is independent of CPHA, TIMOD, and the baud rate. If configured to

DMA

10-32 ADSP-219x/2191 DSP Hardware Reference

generate an interrupt when RDBRx is full (TIMOD=00), the interrupt goes
active one HCLK cycle after RXS is set. When not relying on this inter-
rupt, the end of a transfer can be detected by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is set at the same time as RXS; for a master device, SPIF is set one-half SCK
period after the last SCK edge, regardless of CPHA or CPOL.

Thus, the time at which SPIF is set depends on the baud rate. In general,
SPIF is set after RXS, but at the lowest baud rate settings (SPIBAUD<4). SPIF
is set before RXS is set, and consequently before new data has been latched
into RDBRx, because of the latency. Therefore, for SPIBAUD=2 or SPIBAUD=3,
wait for RXS to be set (after SPIF is set) before reading RDBRx. For larger
SPIBAUD settings, RXS is guaranteed to be set before SPIF is set.

DMA
The SPI port also can use Direct Memory Accessing (DMA). For more
information on DMA, see “I/O Processor” on page 6-1. For specific infor-
mation on SPI DMA, see the following sections:

• “SPI Port DMA Settings” on page 6-23

• “Using SPI Port DMA” on page 6-33

• “SPI DMA in Master Mode” on page 6-33

• “SPI DMA in Slave Mode” on page 6-35

• “SPI DMA Errors” on page 6-37

ADSP-219x/2191 DSP Hardware Reference 10-33

Serial Peripheral Interface (SPI) Ports

SPI Example
The following example illustrates how to set up the Serial Peripheral Inter-
face (SPI) on the ADSP-2191 DSP. The ADSP-2191 has two identical
Serial Peripheral Interfaces (SPI0 and SPI1), which can be independently
configured as master or slave devices.

In the following example, SPI0 is configured as a master. The sample code
demonstrates the configuration and initialization of SPI0 to transfer a
16-location buffer via SPI0 at a 9600 baud rate. This example can be dem-
onstrated in hardware with the ADSP-2191 by wiring SPI0’s MISO and
MOSI pins together in a simple loopback configuration.

Because it uses loopback mode, this example does not use a slave device;
however, a typical SPI system may have multiple slave devices for every
master. To distinguish between slaves, there are seven slave-select lines for
each master SPI on the ADSP-2191. To initialize the appropriate
slave-select lines, the core writes to the SPIFLGx register, setting one or
more of the SPI flag select bits (FLS). In a master-slave system, writing to
the SPIFLGx register first ensures that the desired slave is properly
de-selected while the master is being configured.

IOPG = SPI0_Controller_Page;

/* Set Up Device Select Over SPI0 Interface */

AR = 0xFF02; /* Enable Slave on Programmable Flag Pin 2 */

IO(SPIFLG0) = AR; /* Write to SPI0 Flag Register */

Next, the core writes to the SPIBAUD and SPICTLx registers, enabling SPI0
as a master and configuring the system with the appropriate word length
(16-bit), transfer format (MSB first), baud rate (9600), and any other nec-
essary configuration values:

/* Write to SPI0 Baud rate register */

AR = 0x1047;

IO(SPIBAUD0) = AR; /* SCLK0 ~= 9600 */

SPI Example

10-34 ADSP-219x/2191 DSP Hardware Reference

/* Set up SPI0 Configuration Register */

AR = 0x5D08;

IO(SPICTL0) = AR; /* Enable SPI0 as MASTER */

In a typical system, the core activates the desired slave by clearing the flag
bit (FLG) of the SPIFLGx register, depending on CPHA (bit 10 in the SPICTLx
register). In this example, CPHA=1.

The SPI0 transfer initiate mode (TIMOD bits in the SPICTLx register) is con-
figured to initiate a transfer upon a read of the receive data buffer (RDBRx).
In this mode, an interrupt is generated whenever RDBRx is full. With each
core read of RDBRx, SPI0 continues to send and receive words.

If the transmit buffer remains empty or the receive buffer remains full,
SPI0 operates according to the states of the SZ and GM bits in the SPICTLx
register. GM=1 in this example, so the device continues to receive new data
from the MISO pin, overwriting the older data in the RDBRx buffer.

Once SPI0 has been configured, interrupts are enabled, and a dummy read
of RDBRx is performed (due to the TIMOD configuration) to initiate the first
transfer:

ENA INT; /* Globally enable interrupts */

IOPG = SPI0_Controller_Page;

AR = IO(RDBR0); /* read from RDBR0 to start x-fer */

The following sample source code illustrates SPI0 setup for the
ADSP-2191. These included code modules were built using the
VisualDSP 2.0++ development tools for the ADSP-219x processor family
and the ADSP-2191 EZ-KIT Lite evaluation kit.

This part of the example sets up the SPI master.

#include <def2191.h>

/* GLOBAL & EXTERNAL DECLARATIONS */

ADSP-219x/2191 DSP Hardware Reference 10-35

Serial Peripheral Interface (SPI) Ports

.GLOBAL Start;

/* DM data */

.section/data data1;

.var TX_Buf_MASTER[16] = 0xA000, 0xAA10, 0xAA20, 0xAA30,

0xAA40, 0xAA50, 0xAA60, 0xAA70,

0xAA80, 0xAA90, 0xAAA0, 0xAAB0,

0xAAC0, 0xAAD0, 0xAAE0, 0xAAF0;

.var RX_Buf_MASTER[16]; /* Buffer For SPI0 Receive Data */

/* Program memory code */

.SECTION /pm program;

Start:

_main:

call Program_SPI0_Interrupt; /* Initialize Interrupt */

call Program_SPI0_Interrupt; /* Priorities */

call SPI0_Register_Initialization; /* Initialize SPI0 */

call Initiate_Transfers; /* Start Transfer */

wait_forever:

jump wait_forever;

/* INTERRUPT PRIORITY CONFIGURATION */

.section/code program; /* PROGRAM STARTS HERE */

Program_SPI0_Interrupt:

IOPG = 0;

ar=io(SYSCR); /* Map Interrupt Vector Table to Page 0*/

ar = setbit 4 of ar;

ar = setbit 0 of ar; /* select SPI's (Not SPORT2) */

io(SYSCR)=ar;

SPI Example

10-36 ADSP-219x/2191 DSP Hardware Reference

DIS int; /* Disable all interrupts */

IRPTL = 0x0; /* Clear all interrupts */

ICNTL = 0x0; /* Interrupt nesting disable */

IMASK = 0; /* Mask all interrupts */

/* Set up Interrupt Priorities */

IOPG = Interrupt_Controller_Page;

ar = 0xBB1B; /* Assign SPI0 priority of 1 */

io(IPR1) = ar;

ar = 0xBBBB; /* Assign the remainder with lowest priority */

io(IPR0) = ar;

io(IPR2) = ar;

io(IPR3) = ar;

AY0=IMASK;

AY1=0x0020; /* Unmask SPI Interrupt */

AR = AY0 or AY1;

IMASK=AR;

RTS;

/* SPI0 REGISTER INTIALIZATION - MASTER */

.SECTION /pm program;

SPI0_Register_Initialization:

IOPG = SPI0_Controller_Page;

/* Set Up Device Select Over SPI0 Interface */

AR = 0xFF02; /* Enable Slave On Programmable Flag Pin 2 */

IO(SPIFLG0) = AR; /* Write to SPI0 Flag Register */

/* Write to SPI0 Baud rate register */

AR = 0x1047;

IO(SPIBAUD0) = AR; /* SCLK0 ~= 9600 */

ADSP-219x/2191 DSP Hardware Reference 10-37

Serial Peripheral Interface (SPI) Ports

/* Set up SPI0 Configuration Register */

AR = 0x5D08;

IO(SPICTL0) = AR; /* Enable SPI0 as MASTER */

RTS;

/* INITIATE AND START TRANSFER */

.SECTION /pm program;

Initiate_Transfers:

/* Initialize DAG registers */

I0 = TX_Buf_MASTER; /* Pointer to TX SPI0 Buffer */

I1 = RX_Buf_MASTER; /* Pointer to RX SPI0 Buffer */

M1 = 1;

L0 = 0; /* Linear Addressing */

L1 = 0;

ENA INT; /* Globally enable interrupts */

IOPG = SPI0_Controller_Page;

AR = IO(RDBR0); /* read from RDBR0 to start x-fer */

CNTR = length(TX_Buf_MASTER); /* Set up loop to transmit*/

/* the entire TX buffer */

/* Loop until entire TX buffer has been received */

DO looping until ce;

AR = DM(I0, M1);

IO(TDBR0) = AR; /* Write to SPI0 Transmit Buffer */

looping:idle; /* Wait for SPI0 Receive Interrupt */

DIS INT; /* Globally disable Interrupts */

RTS;

SPI Example

10-38 ADSP-219x/2191 DSP Hardware Reference

This part of the example sets up the SPI interrupt service routine.

#include <def2191.h>

/* EXTERNAL DECLARATIONS */

.EXTERN Start;

/* DM data */

.SECTION /dm data1;

.VAR counter_int5 = 0;

/* PM Reset interrupt vector code */

.section/pm IVreset;

jump Start;

nop; nop; nop;

/* SPI0 ISR */

.section / code IVint5;

ENA SR;

AY1 = IOPG;

IOPG = SPI0_Controller_Page;

AR = IO(RDBR0); /* Interrupt counter */

/* for debug purposes */

DM(I1+= M1) = AR;

AR = DM(counter_int5); /* Read from SPI0 (Master) */

/* Receive Buffer Register */

AR = AR + 1;

DM(counter_int5) = AR;

ADSP-219x/2191 DSP Hardware Reference 10-39

Serial Peripheral Interface (SPI) Ports

IOPG = AY1;

RTI;

SPI Example

10-40 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x/2191 DSP Hardware Reference 11-1

11 UART PORT

This chapter provides the following sections:

• “Overview” on page 11-1

• “Serial Communications” on page 11-3

• “I/O Mode” on page 11-5

• “DMA Mode” on page 11-6

• “Code Examples” on page 11-9

Overview
The UART peripheral is a full-duplex, Universal Asynchronous Receiver /
Transmitter compatible with the industry-standard 16450. The UART
converts data between serial and parallel formats. The serial communica-
tion follows an asynchronous protocol that supports various word length,
stop bit, and parity generation options. The UART also contains modem
control and interrupt handling hardware although only the data signals
TxD and RxD are routed to pins on the ADSP-2191. Interrupts may be
generated from 12 unique events.

As the UART is ADSP-2191 DMA capable with support for separate TX
and RX DMA master channels, the UART may be used in a programmed
I/O mode or in a DMA mode of operation. I/O mode requires software
management of the data flow using interrupts or polling. DMA mode
requires minimal software intervention as the DMA engine itself moves
the data.

Overview

11-2 ADSP-219x/2191 DSP Hardware Reference

Access the UART and DMA Channel registers through I/O memory space
(registers). For a description of I/O memory space, see “ADSP-2191 DSP
I/O Registers” on page B-1.

The UART memory map is a 16450 legacy with byte-wide registers
(remapped as half words with MSByte zero-filled) and the packing of mul-
tiple registers into the same address location.

The UART’s two interrupt outputs are referred to as the RX and TX
interrupts. The TX interrupt is available in DMA mode only. In I/O
mode, all interrupts use the RX interrupt channel.

In DMA mode, the Break and Modem status interrupts are not
available.

In I/O mode, the RX interrupt is generated for the following cases:

• RBR full

• Receive overrun error

• Receive parity error

• Receive framing error

• Break interrupt (RXD held low)

• Modem status interrupt

• THR empty

For information on the DMA process, see “I/O Processor” on page 6-1.

ADSP-219x/2191 DSP Hardware Reference 11-3

UART Port

Serial Communications
An asynchronous serial communication protocol is followed with these
options:

• 5–8 data bits

• 1, 1½, or 2 stop bits

• None, even, or odd parity

• Baud rate = HCLK / (16 * DIVISOR), where DIVISOR = 1 to 65536

All data words require a start bit and at least one stop bit. This creates a
range of 7 to bits for each word. The format of a received and transmitted
character frame is controlled by the UART Line Control (LCR) register as
described in Figure B-26 on page B-78. Data is transmitted and received
least significant bit first.

Transmit operation is initiated by writing to the Transmit Hold (THR) reg-
ister. After a synchronization delay, the data is moved to the Transmit
Shift (TSR) register, where it is shifted out at a baud (bit) rate equal to HCLK
/ (16 * DIVISOR) with start, stop, and parity bits appended as required. All
data words begin with a low-going start bit. The transfer of the THR to the
TSR sets the transmit register’s empty status flag.

Figure 11-1 on page 11-4 shows the physical bit stream as it could be
measured on the TxD pin.

Receive operation uses the same data format as the transmit configuration
except that the number of stop bits is always one. Upon detection of the
start bit, the received word is shifted in the Receive Shift (RSR) register,
assuming again a bit rate of HCLK / (16 * DIVISOR). After receiving the
appropriate number of bits (including stop bits), the data and status are
updated, and the RSR is transferred to the Receive Buffer (RBR) register.

Serial Communications

11-4 ADSP-219x/2191 DSP Hardware Reference

The receive buffer register full status flag (Data Ready DR) is updated after
the appropriate synchronization delay and transfer of the received word to
the buffer.

A sampling clock equal to 16 times the baud rate is used to sample the
data as close to the midpoint of the bit as possible. Because the internal
sample clock may not exactly match the asynchronous receive data rate,
the sampling error (drift of sampling point from the center of each bit)
needs to be taken into account. The sampling point is re-synchronized
with each start bit so that the error only accumulates over the length of a
single word. A receive filter removes spurious pulses of less than twice the
sampling clock period.

The bit rate is characterized by the Peripheral Clock (HCLK) and 16-bit
DIVISOR. The DIVISOR is split into the low significant byte (DLL) and the
high significant byte (DLH). If DLL and DLH are equal to zero, a DIVISOR
value of 65536 is assumed. As on the 16450, the divisor latch registers
(DLL and DLH) are mapped to the same addresses as RBR, THR, and IER. The
DLAB bit in the LCR register must be set before these registers can be
accessed. Refer to “UART Registers” on page B-72 for details.

Figure 11-1. Bit Stream as Measured on TxD Pin

Start bit LSB Parity (optional, odd or even)

Data bits (5 to 8) Stop bits

0x53 = 'S'

D0 D1 D2 D3 D4 D5 D6 D7

ADSP-219x/2191 DSP Hardware Reference 11-5

UART Port

I/O Mode
In I/O mode, data is moved to and from the UART by the DSP’s core. To
transmit a character, load it into the Transmit Hold (THR) register.
Received data can be read from the Receive Buffer (RBR) register.

Since the DSP architecture does not provide send and receive FIFOs, the
core must write and read one character at time. To prevent data loss and
misalignments of the serial data stream, the Line Status (LSR) register pro-
vides two status flags for handshaking.

The THR empty (THRE) flag is set when the THR register is ready for new
data and cleared when the core loads new data in. Writing to THR when it
is not empty overwrites the register by the new value and the previous
character is never transmitted. The data ready (DR) flag signals when new
data is available in the RBR register. This flag is cleared automatically when
the core reads from RBR. Reading the RBR when it is not full means that the
previously received word will be read again.

With interrupts disabled, the program might poll these status flags to
determine when data is ready to move. Because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.

Alternatively, UART writes and reads may be accomplished by interrupt
services routines (ISRs). Both flag pins (THRE and DR) can generate an
interrupt request, when enabled in the Interrupt Enable (IER) register.
Interrupts may also be masked using the IMASK register and the global
interrupt enable bit in the INCTL register. In I/O mode, both interrupt
sources share the same interrupt request mentioned as “UART Receive
Interrupt” listed in Table B-4 on page B-26. The interrupt service routine
may evaluate the STATUS bit field within the Interrupt Identification
(IIR) register to determine the exact interrupt source.

Be aware that this single-character interrupt mode constrains the software
to respond within a guaranteed time to prevent overrun errors from occur-
ring in the receive channel.

DMA Mode

11-6 ADSP-219x/2191 DSP Hardware Reference

DMA Mode
In the DMA mode, separate and independent RX and TX DMA channels
move data between the peripheral and memory. The processor is relieved
of the task of moving data and simply sets up the appropriate transfers
through either the ADSP-2191 descriptor mechanism or the autobuffer
mode. In DMA mode RX and TX have separate interrupt channels. The
DMA interrupt mechanism works independent from the IER and IIR
registers.

No additional buffering is provided in the UART’s DMA channel, so the
same latency requirements exist as in I/O mode. Latency, however, is
determined by the bus activity and arbitration mechanism and not the
processor loading and interrupt priorities.

Descriptors
DMA functionality is most often controlled by the ADSP-2191 DMA
descriptor method. Each descriptor block contains all the information on
a particular data movement operation as well as the pointer to the next
descriptor block of information. When a descriptor block is complete,
work proceeds to the next descriptor block. The data structure for a single
descriptor block is illustrated in Table 11-1 on page 11-6 where HEAD
refers to the address of the current descriptor:

Table 11-1. Descriptor Block Data Structure

Address Location Name Description

HEAD+0 DMA Configuration Descriptor ownership and control info

HEAD+1 DMA Start Page Page info for transfer

HEAD+2 DMA Start Addr Address of transfer

HEAD+3 DMA Word Cnt Number of words in transfer

HEAD+4 Next Descriptor Pointer to address of next descriptor

ADSP-219x/2191 DSP Hardware Reference 11-7

UART Port

Since descriptors are contained in Page 0 of internal memory, each DMA
master unit must fetch this descriptor information from internal memory
and update the peripheral’s internal DMA registers. The dynamic alloca-
tion of descriptors is controlled by the “ownership” bit of each descriptor
block (bit 15 of the configuration). Before a full descriptor block down-
load begins, this bit is checked to determine whether the descriptor block
is configured and ready for use. If it is not ready, the DMA engine goes
into a wait mode until the bit is set. This “snoop” mode waits until a core
write occurs to the descriptor ready register. There must be a concluding
write to this register after a descriptor block is added to Page 0 to trigger
the DMA hardware to reread the configuration descriptor. Once the
“ownership” bit is read as a one, the remaining four words of the block are
loaded. The descriptor information is then used to carry out the required
data transactions.

The following illustrates the typical steps the software takes in setting up a
single descriptor.

1. Memory writes HEAD+1,+2,+3,+4 to memory Page 0.

2. Memory writes HEAD+0 to memory Page 0. Bit 15 (ownership)
must be set to 1.

3. I/O writes descriptor ready register of respective DMA channel
(if necessary).

4. I/O writes NXTPTR register of DMA channel.

5. I/O writes the Configuration register, setting DEN high (if not
already enabled)

The interrupt service routine must write a 0x01 to the UARDT_IRQ or
UARDR_IRQ register to clear the DMA interrupt request. The last instance
may reset the entire UARDT_CFG or UARDR_CFG register to disable the DMA.

DMA Mode

11-8 ADSP-219x/2191 DSP Hardware Reference

After a work unit is complete, the DMA writes the completion status
information back to the Page 0 and the descriptor’s HEAD address. It also
resets the ownership bit to 0, returning ownership to the processor. The
software is responsible for cleaning up or reusing descriptors as desired.
The management of the descriptor cleanup is typically initiated by a com-
pletion interrupt.

Autobuffer Mode
Autobuffer DMA mode can be used when simple linear or circular buffer
types of transfers are required. This mode is less flexible than descriptor
DMA mode but requires less software overhead and DMA bandwidth.

Most DMA registers are normally read-only, but become writable when
autobuffer DMA mode is enabled. (The register section indicates these
registers with an *). After configuring the DMA, the software enables the
DMA with the DMAEn control bit. DMA operation proceeds as described.
When the count reaches its endpoint, the start address and count are reset
to their original value, effectively creating a circular buffer. If enabled,
interrupts are generated at the halfway point (rounded down) and the
completion point of the transfer (for example: an 11 word transfer would
generate interrupts after the 6th and 11th transfers).

The following example illustrates typical autobuffer DMA mode use:

• I/O writes config register setting only the DAUTO bit high.

• I/O writes page, start, and count values.

• I/O writes config again, setting direction and sets DEN high.

Transfers can be aborted at any point by setting DEN low.

ADSP-219x/2191 DSP Hardware Reference 11-9

UART Port

Mixing Modes
The I/O mode and the DMA modes use different synchronization mecha-
nisms. This means that serial communication should be completed before
the program can switch from I/O mode to DMA mode or vice versa.
Before setting up a DMA transmission, ensure that the Transmit Hold
(THR) register and the Transmit Send (TSR) register are empty by polling
the THRE bit and the TEMT bit in the Line Status (LSR) register. In the oppo-
site case, wait until the two bits of the DMA buffer status in the
UARDT_CFG register are cleared.

Code Examples
The following sections provide code examples.

• “Initializing the UART” on page 11-10

• “Polling the TX Channel” on page 11-10

• “Interrupt Controlled Transmission” on page 11-11

• “Using Descriptor DMA on the UART TX Channel” on
page 11-12

• “Setting Up Autobuffer DMA on the UART TX Channel” on
page 11-14

• “Auto-Baud Rate Detection Using Timer 0” on page 11-15

Code Examples

11-10 ADSP-219x/2191 DSP Hardware Reference

Initializing the UART
The following code example initializes the UART assuming a HCLK clock
of 16 MHz. The serial format is 8 bits, 9600 bps, no parity, and one stop
bit.

#include <def2191.h>

#define DLAB 0x80 /* divisor latch access bit in LCR */

#define WLS8CHAR 0x03 /* Word length of 8 Bits */

/* UART registers are mapped to IO page 5 */

IOPG = UART_Controller_Page;

/* To access divisor latch registers set DLAB bit */

AR = DLAB; IO(LCR) = AR;

/* 16MHz / 16 / 9600 =104d =68h */

AR = 0x68; IO(DLL) = AR;

AR = 0x00; IO(DLH) = AR;

/* 8 bit, no parity, one stop bit, clear DLAB */

AR = WLS8CHAR; IO(LCR) = AR;

Polling the TX Channel
The following example code demonstrates how polling can be imple-
mented on the TX channel. A real-world implementation might require
additional time-out functionality.

#include <def2191.h>

#define THRE 0x20 /* THR empty */

/* AR holds the next value to transmit */

putc:

/* UART registers are mapped to IO page 5 */

ADSP-219x/2191 DSP Hardware Reference 11-11

UART Port

IOPG = UART_Controller_Page;

/* wait until Transmit Hold register is ready */

poll_thre:

AX0 = IO(LSR);

AF = AX0 AND THRE;

IF EQ JUMP poll_thre;

/* finally send next value */

IO(THR) = AR;

RTS;

Interrupt Controlled Transmission
To prepare interrupt controlled transmission, use the following lines.
In I/O mode, the TX channel signals interrupt requests to the RX inter-
rupt. By default, the RX interrupt uses IRQ 11 as assumed in this
example.

#include <def2191.h>

#define ETBEI 0x02 /* Enable TX Interrupt */

/* UART registers are mapped to IO page 5 */

IOPG = UART_Controller_Page;

/* load first value manually */

AR = DM(first_value);

CALL putc;

/* enable TX source on RX interrupt using IRQ 11 */

AR = ETBEI; IO(IER) = AR;

/* clear pending RX requests and enable IRQ 11*/

IRPTL = 0x0000;

NOP;

Code Examples

11-12 ADSP-219x/2191 DSP Hardware Reference

IMASK = 0x0800;

/* enable Interrupt globally */

ENA INT;

Using Descriptor DMA on the UART TX Channel
The following example illustrates a typical setup of a descriptor DMA on
the UART TX channel. Two strings will be sent out. Once the first one
has been completed, the descriptor block of the second is activated with-
out core activity. An interrupt is generated after the second (and last) has
been shifted out. Note that strings are usually null-terminated by conven-
tion (C-style). The trailing null character is not used in DMA mode.

#include <def2191.h>

.section /dm dmdata;

.var sText1 [] = 'Test String 1',13,10,0;

.var sText2 [] = 'Test String 2',13,10,0;

/* descriptor blocks must be placed in page 0 */

.var tcbTX1 [5] =

0x8001, /* ownership and enable */

PAGE(sText1), /* start page */

sText1, /* start address */

LENGTH(sText1)-1, /* number of bytes */

tcbTX2; /* next descriptor block */

.var tcbTX2 [5] =

0x8005, /* interrupt on completion */

PAGE(sText2), /* start page */

sText2, /* start address */

LENGTH(sText2)-1, /* number of bytes */

0; /* don 't care if ISR disables DMA */

ADSP-219x/2191 DSP Hardware Reference 11-13

UART Port

.section /pm program;

IOPG = UART_Controller_Page;

/* enable TX interrupt on IRQ 12 as assigned by default */

IRPTL = 0x0000;

NOP;

IMASK = 0x1000;

ENA INT;

/* first disable DMA and Autobuffer mode */

AR = 0x0000; DM(UARDT_CFG) = AR;

/* load address of first descriptor block */

AR = tcbTX1; IO(UARDT_CP) = AR;

/* signal Descriptor Block ready */

AR = 0x0001; IO(UARDT_CPR) = AR;

/* start DMA by setting Enable Bit */

AR = 0x0001; IO(UARDT_CFG) = AR;

This example assumes that the DMA is disabled by the interrupt service
routine invoked when the last character of sText2 has been loaded by the
DMA engine. Alternatively, the next descriptor pointer of the last descrip-
tor in the chain (tcbTX2 in this example) may point to any page 0 address
that contains a zero value. Then, the DMA is stopped automatically,
because the additional TCB load clears the DMA enable bit.

Note that the ownership bit in the descriptor is set. Doing so, the program
might poll the ownership bit within tcbTX2 in memory to determine the
completion of the DMA transfer without having interrupts enabled.

Code Examples

11-14 ADSP-219x/2191 DSP Hardware Reference

Setting Up Autobuffer DMA on the UART TX Channel
The following example illustrates a typical setup of an autobuffer DMA
on the UART TX channel. The TX interrupt is requested twice. Without
any additional software flag, the interrupt service routine cannot deter-
mine whether it was invoked by a halfway request or a completion request.

#include <def2191.h>

.section /dm dmdata;

.var sText [] = 'Hello World',13,10,0;

.section /pm program;

IOPG = UART_Controller_Page;

/* set to autobuffer mode -make DMA registers writeable */

AR = 0x0010; IO(UARDT_CFG) = AR;

/* set start page and address */

AR = PAGE(sText); IO(UARDT_SRP) = AR;

AR = sText; IO(UARDT_SRA) = AR;

/* set number of characters without terminating zero */

AR = LENGTH(sText)-1; IO(UARDT_CNT) = AR;

/* enable DMA, Autobuffer Mode, Interrupt on completion */

AR = 0x0015; IO(UARDT_CFG) = AR;

/* finally enable IRQ 12 -TX is assigned to by default */

IRPTL = 0x0000;

NOP;

IMASK = 0x1000;

ENA INT;

ADSP-219x/2191 DSP Hardware Reference 11-15

UART Port

Auto-Baud Rate Detection Using Timer 0
In WIDTH_CNT mode, the three general-purpose timers can disconnect their
input from the TMRx pin and connect it to the UART’s RXD pin. This
enables glueless auto-baud support.

In the following example, the DSP waits after reset until it detects a start
condition on the RXD pin. By convention, it assumes that the first received
data is an “@” character (ASCII 0x40) in an 8-bit format and the parity bit
is disabled. In this way, the DSP can measure the period from falling edge
to falling edge and divide this period by the number of contained bits.

Measuring periods is safer than measuring
pulses.

Use the following formula to determine the proper value for the divisor
latch registers:

Period count is composed of two 16-bit registers (T_PRDH0 and T_PRDL0).
Using the “@” character, the number of bits is eight. The divide operation
can be performed by a right shift. The two 8-bit registers (DLH and DLL)
form the divisor latch.

#include <def2191.h>

.section / code program;

_autobaud:

/* *** Config Timer 0 *** */

IOPG = Timer_Page;

/* Low-Pulse / Period Capture Mode on Auxiliary / Ena Int */

AR = 0x003A; IO(T_CFGR0) = AR;

Divisor Latch Period Count
16 Number of Bits×
--=

Code Examples

11-16 ADSP-219x/2191 DSP Hardware Reference

/* clear IRQ latch */

AR = 0x0001; IO(T_GSR0) = AR;

/* enable timer 0 */

AR = 0x0100; IO(T_GSR0) = AR;

AY0 = 0x1;

/* poll Timer 0 interrupt latch TIMIL0 bit */

xwait:

AX0 = IO(T_GSR0);

AX0 and AY0;

IF EQ JUMP xwait;

/* disable timer 0 */

AR = 0x0200; IO(T_GSR0) = AR;

/* expecting 0x40 @ character */

/* frame looks like 1111100000001011 */

AX1 = IO(T_PRDH0);

AX0 = IO(T_PRDL0);

/* need to divide by 8 bits and additionally by 16 */

/* equals right shift of 7 bit positions */

SR = LSHIFT AX0 BY -7 (LO);

SR = SR OR LSHIFT AX1 BY -7 (HI);

/* sr0 contains the 16-bit DL value now */

IOPG = UART_Controller_Page;

/* set DLAB bit */

AY0 = 0x83;

ADSP-219x/2191 DSP Hardware Reference 11-17

UART Port

IO(LCR) = AY0;

/* break down into bytes */

AY0 = 0xFF;

AR = SR0 AND AY0;

SR = LSHIFT SR0 BY -8 (LO);

IO(DLL) = AR;

IO(DLH) = SR0;

/* clear DLAB bit */

AR = 0x03;

IO(LCR) = AR;

Code Examples

11-18 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x/2191 DSP Hardware Reference 12-1

12 TIMER

This chapter includes these sections:

• “Overview” on page 12-1

• “Code Examples” on page 12-14

Overview
The ADSP-2191 features three identical 32-bit timers; each timer can be
individually configured in any of three modes:

• “Pulsewidth Modulation (PWMOUT) Mode” on page 12-6
(PWMOUT)

• “Pulsewidth Count and Capture (WDTH_CAP) Mode” on
page 12-11 (WDTH_CAP)

• “External Event Watchdog (EXT_CLK) Mode” on page 12-14
(EXT_CLK)

Each timer has one dedicated bi-directional pin (TMRx), which functions as
an output pin in PWMOUT mode and as an input pin in WDTH_CAP mode and
EXT_CLK mode. To provide these functions, each timer has seven, 16-bit
registers. For range and precision, six of these registers can be paired
(high/low) to allow for 32-bit values; see Figure 12-1 on page 12-2.

Overview

12-2 ADSP-219x/2191 DSP Hardware Reference

The registers for each timer are:

• Timer x Configuration (T_CFGRx)

• Timer x High Word Count (T_CNTHx)

• Timer x Low Word Count (T_CNTLx)

• Timer x High Word Period (T_PRDHx)

• Timer x Low Word Period (T_PRDLx)

Figure 12-1. Timer Block Diagram

SUB

Period
(High word/Low word)

Count
(High word/Low word)

Pulsewidth
(High word/Low word)

Period Buffer Pulsewidth Buffer

16 (Read Only)

1616

–

Expire

I/O Memory Data Bus

ADSP-219x/2191 DSP Hardware Reference 12-3

Timer

• Timer x High Word Pulsewidth (T_WHRx)

• Timer x Low Word Pulsewidth (T_WLRx)

Because the paired “counter” registers operate as a single value, the timer
counters are 32-bits wide. When clocked internally, the clock source is the
ADSP-2191’s peripheral clock (HCLK). Assuming the peripheral clock is
running at 80 MHz, the maximum period for the timer count is
((232-1) * 12.5 ns) = 53.69 seconds.

The Timer Global Status and Control (T_GSRx) registers indicate the sta-
tus of all three timers, requiring a single read to check the status of all
three timers. Each T_GSRx register contains timer enable bits (T_GSR0
enables TIMER0, and so on) to enable the corresponding timer. Within
T_GSRx, each timer has a pair of “sticky” status bits that require a
“write-one-to-set” (TIMENx) or “write-one-to-clear” (TIMDISx)—see
Table 12-1 on page 12-4—to enable or disable the timer. Writing a one to
both bits of a pair disables that timer.

After enabling a timer, its TIMENx and TIMDISx bits are set (=1). The timer
starts counting three peripheral clock cycles after the TIMENx bit is set. Set-
ting (writing 1 to) the timer’s TIMDISx bit stops the timer without waiting
for any additional event.

Each T_GSRx register also contains an interrupt latch bit (TIMILx) and an
overflow/error indicator bit (OVF_ERRx) for each timer. These “sticky” bits
are set by the timer hardware and may be watched by software. They need
to be cleared in each timer’s corresponding T_GSRx register by software
explicitly. To clear, write a “one” to the corresponding bit.

Interrupt and overflow bits may be cleared simultaneously with
timer enable or disable.

To enable a timer’s interrupts, set the IRQ_ENA bit in the Timer Configura-
tion (T_CFGRx) register and unmask the timer’s interrupt by setting the
corresponding bit of the IMASK register. With the IRQ_ENA bit cleared, the

Overview

12-4 ADSP-219x/2191 DSP Hardware Reference

timer does not set its interrupt latch (TIMILx) bits. To poll the TIMILx bits
without permitting a timer interrupt, programs can set the IRQ_ENA bit
while leaving the timer’s interrupt masked.

With interrupts enabled, ensure that the interrupt service routine clears
the TIMILx latch before the RTI instruction to assure that the interrupt is
not re-issued. In external clock (EXT_CLK) mode, reset the latch at the
beginning of the interrupt routine to not miss any timer event. To enable
timer interrupts, set the IRQ_ENA bit in the proper Timer Configuration
(T_CFGRx) register.

Table 12-1. Timer Global Status and Control (T_GSRx) Register Bits

Bit(s) Name Definition

0 TIMIL0 Timer 0 Interrupt Latch Write one to clear (also an output)

1 TIMIL1 Timer 1 Interrupt Latch Write one to clear (also an output)

2 TIMIL2 Timer 2 Interrupt Latch Write one to clear (also an output)

3 Reserved

4 OVF_ERR0 Timer 0 Overflow/Error Write one to clear (also an output)

5 OVF_ERR1 Timer 1 Overflow/Error Write one to clear (also an output)

6 OVF_ERR2 Timer 2 Overflow/Error Write one to clear (also an output)

7 Reserved

8 TIMEN0 Timer 0 Enable Write one to enable Timer 0

9 TIMDIS0 Timer 0 Disable Write one to disable Timer 0

10 TIMEN1 Timer 1 Enable Write one to enable Timer 1

11 TIMDIS1 Timer 1 Disable Write one to disable Timer 1

12 TIMEN2 Timer 2 Enable Write one to enable Timer 2

13 TIMDIS2 Timer 2 Disable Write one to disable Timer 2

14 - 15 Reserved

ADSP-219x/2191 DSP Hardware Reference 12-5

Timer

To enable an individual timer, set the timer’s TIMEN bit in the correspond-
ing T_GSRx register. To disable an individual timer, set the timer’s TIMDIS
bit in the corresponding T_GSRx register. To enable all three timers in par-
allel, set each TIMEN bit in each timer’s corresponding T_GSRx register.

Before enabling a timer, always program the corresponding timer’s Con-
figuration (T_CFGRx) register. This register defines the timer’s operating
mode, the polarity of the TMRx pin, and the timer’s interrupt behavior. Do
not alter the operating mode while the timer is running. For more infor-
mation on the T_CFGRx register, see Figure B-34 on page B-92.

Timer enable/disable timing appears in Figure 12-2 on page 12-5.

Because the timers are 32 bits, hardware support guarantees that high and
low words are always coherent whenever the DSP accesses period or pulse-
width registers. There is no similar support for DSP reads of the counter

Figure 12-2. Timer Enable and Disable Timing

HCLK

PWMOUT

HCLK
T COUN T

=M
TC OUNT

=M +1
TC OUNT

=M +1
T COUN T

= M+1

Timer Enable
Set

TIME N
T ime r

En abled

TPER IOD = 0x4
TPWID TH = 0x2
TCOU NT = 1

TC OUNT
=xx

T COUN T
=xx

TCOU NT
=1

T COUNT
= 2

T C OU NT
=4

T COU NT
=3

C lear
T IMEN

T imer
Disab led

Timer Disable

Overview

12-6 ADSP-219x/2191 DSP Hardware Reference

register itself. When a coherent read of the counter register’s high and low
words is needed, software should stop (disable) the timer before reading
the 32-bit counter value.

When the timer is disabled, the counter registers retain their state. When
the timer is re-enabled, the counter is re-initialized based on the operating
mode. The counter registers are read-only. The software cannot overwrite
or preset the counter value directly.

Any of the timers can be used to implement a watchdog functionality,
which might be controlled by an internal or an external clock source.

For software to service the watchdog, disable the timer and re-enable it
again. This resets the timer value. Servicing the watchdog periodically pre-
vents the count register from reaching the period value and prevents the
timer interrupt from being generated. Assign a very high interrupt priority
to this watchdog timer. When the timer reaches the period value and gen-
erates the interrupt, reset the DSP within the corresponding watchdog’s
interrupt service routine.

Pulsewidth Modulation (PWMOUT) Mode
Setting the TMODE field to 01 in the Timer’s Configuration (T_CFGRx) regis-
ter enables PWMOUT mode. In PWMOUT mode, the timer’s TMRx pin is an
output. It is actively driven as long as the TMODE field remains 01.

The timer is clocked internally by HCLK. Depending on the PERIOD_CNT
bit, PWMOUT mode generates pulsewidth modulation waveforms or gener-
ates a single pulse on the TMRx pin.

After setting TMODE to 01 but before enabling the timer, set the width and
period registers to proper values. There are shadow registers for the
T_PRDHx, T_PRDLx, and T_WHRx registers. A write to the T_WLRx register trig-
gers the shadow registers to update the T_PRDHx, T_PRDLx, and T_WHRx
values. This guarantees coherency between all four registers.

ADSP-219x/2191 DSP Hardware Reference 12-7

Timer

When the timer is enabled, the timer checks the period and width values
for plausibility (independent of PERIOD_CNT) and does not start to count
when any of the following conditions is true:

• Width equals to zero

• Period value is lower than width value

• Width equals period

The timer module tests these conditions on writes to the T_WLRx register.
Before writing to T_WLRx, ensure that T_WHRx and the period registers are
set accordingly.

Figure 12-3. Timer Flow Diagram - PWMOUT Mode

Data Bus

RESET

TIMER_ENABLE

TPERIODx TPWIDTHx

CLOCK

Yes

Interrupt

High

Low

TMRx

Equal?

TCOUNTx

Yes

PWMOUT
Logic

Equal?

Set PWMOUNT

Overview

12-8 ADSP-219x/2191 DSP Hardware Reference

On invalid conditions, the timer sets the OVF_ERRx bit and the TIMILx bit
after two HCLK cycles. The count register is not altered. Note that after
reset, the timer registers are all zero.

If period and width values are valid after enabling, the count register is
loaded with the value 0xFFFF FFFF – width. The timer counts upward to
0xFFFF FFFE. Instead of incrementing to 0xFFFF FFFF, the timer reloads
the counter with 0xFFFF FFFF – (period – width) and repeats.

In PWMOUT mode, the TMRx pin is driven low when the timer is dis-
abled, regardless of the state of the PULSE_HI bit. When the timer is
running, however, the TMRx pin polarity corresponds to the PULSE_HI bit
setting.

PWM Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with a well defined period and duty cycle. This mode also
generates periodic interrupts for real-time DSP processing.

The 32-bit Period (T_PRDHx / T_PRDLx) and Width (T_WHRx / T_WLRx) regis-
ters are programmed with the values of the timer count period and
pulsewidth modulated output pulsewidth.

When the timer is enabled in this mode, the TMRx pin is pulled to a
de-asserted state each time the pulsewidth expires, and the pin is asserted
again when the period expires (or when the timer is started).

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the cor-
responding T_CFGRx register is cleared or set (clearing causes a low
assertion level, setting causes a high assertion level).

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine must clear the interrupt latch bit (TIMILx) and
may alter the period and/or width values. In pulsewidth modulation appli-
cations, the software needs to update period and pulsewidth value while

ADSP-219x/2191 DSP Hardware Reference 12-9

Timer

the timer is running. To guarantee coherency between both the high and
low words and between period and pulsewidth registers, a double buffer
mechanism is in place.

DSP core writes to the T_PRDHx, T_PRDLx, and T_WHRx registers do not
become active until the DSP core writes to the T_WLRx register. If the soft-
ware would like to update one of these three registers only, it must rewrite
the T_WLRx register afterward. When the T_WLRx value is not subject to
change, the interrupt service routine may just read back the current value
of the T_WLRx register and rewrite it again. On the next counter reload, all
four registers are available to the timer.

In this mode, the counter is reloaded at the end of every period as well as
at the end of every pulse. The generated waveform depends on whether
T_WLRx is updated before or after the pulse width expires, due to the reload
sequence previously described.

You can alter the pulse width on-the-fly while the timer is running by hav-
ing an interrupt service routine write new values to the width registers. As
illustrated in Figure 12-4 on page 12-9, one erroneous period is generated
when the write to the TIMERx_WIDTH_LO register occurs before the on-going
pulse width expires. This is very likely because the interrupt is requested at
the end of a period.

Figure 12-4. Possible Period Failure Due to On-the-Fly Width Update

WIDTH OLD PERIOD
WIDTH OLD

WIDTH OLD

WIDTH = WIDTH NEW

PERIOD WRONG PERIOD

PERIOD
WIIDTH NEW

WIDTH NEW PERIOD
WIIDTH NEW

WIDTH NEW

PERIOD

Overview

12-10 ADSP-219x/2191 DSP Hardware Reference

If an application forbids single misaligned PWM patterns, use the proce-
dure in Figure 12-4, which alters the period value temporary and restores
the original period value at the very next PWM cycle to obtain constant
PWM periods.

Period settings can be altered without similar impacts.

To generate the maximum frequency on the TMRx output pin, set the
period value to 2 and set the pulsewidth to 1. This makes TMRx toggle each
HCLK clock, producing a 50% duty cycle.

Single-Pulse Generation

If the PERIOD_CNT bit is cleared, PWMOUT mode generates a single pulse on
the TMRx pin. This mode also can be used to implement a well-defined
software delay often required by state-machines and so on. The pulse-
width is defined by the width register, and the period register is not used.

At the end of the pulse, the interrupt latch bit (TIMIRQx) is set and the
timer is stopped automatically. Always set the PULSE_HI bit in single-pulse
mode to generate an active-high pulse. Active-low pulses are not recom-
mended in this mode because the TMRx pin drives low when the timer is
not running.

Figure 12-5. Recommended On-the-Fly Width Update Procedure

WIDTH OLD PERIOD
WIDTH OLD

WIDTH OLD

WIDTH = WIDTH NEW

PERIOD

PERIOD
WIIDTH OLD

+ WIDTH NEW
- WIDTH NEW

WIDTH NEW PERIOD
WIIDTH

PERIODPERIOD

PERIOD = PERIOD OLD - WIDTH OLD + WIDTH NEW
PERIOD = PERIOD OLD

ADSP-219x/2191 DSP Hardware Reference 12-11

Timer

Pulsewidth Count and Capture (WDTH_CAP) Mode
In WDTH_CAP mode, the TMRx pin is an input pin. The internally clocked
timer is used to determine period and pulsewidth of externally applied
rectangular waveforms. Setting the TMODE field to 10 in the T_CFGRx regis-
ter enables this mode. The period and width registers are read-only in
WIDTH_CNT mode.

When enabled in this mode, the timer resets words of the count in the
T_CNTHx and T_CNTLx registers to 0x0000 0001 and does not start counting
until detecting the leading edge on the TMRx pin.

When the timer detects a first leading edge, it starts incrementing. When
it detects the trailing edge of a waveform, the timer captures the current
32-bit value of the T_CNTHx and T_CNTLx count registers to the T_WHRx and
T_WLRx width registers. At the next leading edge, the timer transfers the
current 32-bit value of the T_CNTHx and T_CNTLx count registers to the
T_PRDHx and T_PRDLx period register. The count registers are reset to
0x0000 0001 again, and the timer continues counting until it is disabled or
the count value reaches 0xFFFF FFFF.

In this mode, software can measure the pulsewidth and the pulse period of
a waveform. To control the definition of “leading edge” and “trailing
edge” of the TMRx pin, the PULSE_HI bit in the T_CFGRx register is set or
cleared. When the PULSE_HI bit is cleared, the measurement is initiated by
a falling edge, the count register is captured to the width register on the
rising edge and the period is captured on the next falling edge.

The PERIOD_CNT bit in the T_CFGRx register controls whether an enabled
interrupt is generated when the pulsewidth or pulse period is captured.
When the PERIOD_CNT bit is set, the interrupt latch bit (TIMILx) gets set
when the pulse period value is captured. If the PERIOD_CNT bit is cleared,
the TIMILx bit gets set when the pulse width value is captured.

Overview

12-12 ADSP-219x/2191 DSP Hardware Reference

If the PERIOD_CNT bit is cleared, the first period value has not yet been
measured when the first interrupt is generated, so the period value is not
valid. If the interrupt service routine reads the period value anyway, the
timer returns a period zero value.

Figure 12-6. Timer Flow Diagram - WDTH_CAP Mode

TIMER
PERIOD

TIMER
COUNTER

TIMER
WIDTH

INTERRUPT
LOGIC

TRAILING
EDGE

DETECT

LOAD
CONTROL

LEADING
EDGE

DETECT

HCLK

LOAD RESET OVF_ERRx LOAD

TIMILx

PERIOD_CNT

IRQ_ENA

PULSE_HI

TMRx

DATA BUS16

32 32

TIMILx

IRQ_ENA

ADSP-219x/2191 DSP Hardware Reference 12-13

Timer

With the IRQ_ENA bit set, the width registers become sticky in WDTH_CAP
mode. Once a pulsewidth event (trailing edge) has been detected and
properly latched, the width registers do not update unless the IRQx bit is
cleared by software. The period registers still update every time a leading
edge is detected.

A timer interrupt (if enabled) is also generated when the count register
reaches a value of 0xFFFF FFFF. At that point, the timer is disabled auto-
matically, and the OVF_ERRx status bit is set, indicating a count overflow.
TIMILx and OVF_ERRx are sticky bits, and software has to explicitly clear
them.

The first width value captured in WDTH_CAP mode is erroneous due to syn-
chronizer latency. To avert this error, software must issue two NOP
instructions between setting WDTH_CAP mode and setting TIMEN. TIMEN is
set subsequently without NOP instructions.

Auto-Baud Mode

Any one of the three timers may provide auto-baud detection for the
UART port. The timer input select (TIN_SEL) bit in the T_CFGRx register
causes the timer to sample the UART port receive data (RXD) pin instead of
the TMRx pin while enabled for WDTH_CAP mode. A software routine can
detect the pulse widths of serial stream bit-cells. Because the sample base
of the timers are synchronous with the UART operation—all derived from
the PLL clock—the pulse widths can be used to calculate the baud rate
divider for the UART. If the pulsewidth of a single bit is captured, use the
following formula:

BAUDDIV = (width registers) / (16 X number of captured bits)

For an auto-baud example that captures the period rather than the pulse-
width, see “Auto-Baud Rate Detection Using Timer 0” on page 11-15.

Code Examples

12-14 ADSP-219x/2191 DSP Hardware Reference

External Event Watchdog (EXT_CLK) Mode
In EXT_CLK mode, the TMRx pin is an input. The timer works as a counter
clocked by any external source, which can also be asynchronous to the
DSP clock. Setting the TMODE field to 11 in the T_CFGRx register enables
this mode. The T_PRDHx and T_PRDLx period registers are programmed
with the value of the maximum timer external count.

After the timer has been enabled, it waits for the first rising edge on the
TMRx pin. This edge forces the count register to be loaded by the value
0xFFFF FFFF – Period. Every subsequent rising edge increments the count
register. After reaching the count value 0xFFFF FFFE, the TIMILx bit is set
and an interrupt is generated. The next rising edge reloads the count regis-
ter again by 0xFFFF FFFF – Period.

The TIN_SEL, PULSE_HI, and PERIOD_CNT configuration bits do not affect
this mode. Also, OVF_ERRx is never set. The width register is not used.

In this mode, an external clock source can use the timer to wake up the
DSP from the sleeping mode even if HCLK has been stopped.

Code Examples
This section shows how to set up the timer. In PWMOUT mode, when
Timer0 width expires, the counter is loaded with (period – width) and
continues counting. When period expires, the counter is loaded with the
width value again and the cycle repeats. The TMRx pin is alternately driven
high/low, determined by PULSE_HI, at each zero. When the width or
period expires, TIMIL0 (if enabled) is set depending on PERIOD_CNT bit in
T_CFGR0.

ADSP-219x/2191 DSP Hardware Reference 12-15

Timer

Timer Example Steps
TIMER0 is set up in PWMOUT mode. It is intended to toggle general-purpose
I/O’s (GPIO) ON/OFF inside Timer0 interrupt service routine at a 1-Hz
rate. This is done assuming a 160-MHz core clock (CCLK) and an
80-MHz peripheral clock (HCLK).

Prior to initializing or re-configuring the timer, it is best to reset TIMEN.
Because the intended mode of operation in this example is PWMOUT, soft-
ware sets the TMODE field to 01 in the T_CFGR0 register to select PWM_OUT
operation. As a result, this configures TMRx pin as an output pin with its
polarity determined by PULSE_HI.

• 1 generates a positive active width pulse waveform at the TMRx pin

• 0 generates a negative active width pulse waveform at the TMRx pin

This polarity is dependent on the application, but in this example, it is set
to be positive active width pulse. As well, initialize to generate a PWMOUT
output, and enable Timer0 interrupt requests.

AX0 = 0x001D;

/* PWM_OUT mode, Positive Active Pulse, Count to end of */

/* period, Int Request Enable, Timer_pin select */

IO(T_CFGR0) = AX0;

Next, initialize the period and width register values. Update the high-low
period values first. Once the period value has been updated, update the
high-word width value followed by the low-word width value. Updating
the low-word width value actually transfers the period and width values to
their respective Buffers.

Ensure that the period is greater than the width
value.

AX0 = 0x0262;

IO(T_PRDH0) = AX0;

Code Examples

12-16 ADSP-219x/2191 DSP Hardware Reference

/* Timer 0 Period register (high word) */

AX0 = 0x5A00;

IO(T_PRDL0) = AX0;

/* Timer 0 Period register (low word) */

AX0 = 0x0131;

IO(T_WHR0) = AX0;

/* Timer 0 Width register (high word) */

AX0 = 0x2D00;

IO(T_WLR0) = AX0;

/* Timer 0 Width register (low word) */

Because TIMEN0 is sticky, enabling Timer0 requires that a 1 be written to
bit 8 of the Timer 0 Global Status and Sticky (T_GSR0) register. The timer
starts three cycles after software enables it. During those three seconds, the
timer performs boundary exception checks for the following period and
width values:

• If (width = 0, or period < width, or period = width) both OVF_ERR
and TIMILx are set.

• If there are no exceptions, the width value is loaded in counter and
it starts counting.

Writing bit 9 of T_GSR0 disables Timer0. When disabled, the counter and
other registers retain their state. When the timer is re-enabled, the buffers
and counter are re-initialized from the period/width registers based on the
TMODE field in the T_CFGR0 register.

AX0 = 0x0100;

/* Enable Timer0 */

IO(T_GSR0) = AX0;

Lastly, enable global interrupts.

ENA INT;

/*Enable Interrupts */

RTS;

ADSP-219x/2191 DSP Hardware Reference 12-17

Timer

The PFx pins are toggled on/off inside the Timer0 interrupt service rou-
tine. The interrupt is generated when the period count expires.

AX0 = 0x000F;

AR = 0;

IOPG = General_Purpose_IO;

AX1 = DM(Timer__Flag_Polarity);

AR = TGLBIT 0x0 OF AX1;

/* Toggle Status flag */

IF EQ JUMP Turn_Off;

/* Determine whether GPIO was ON or OFF */

Turn_On:

IO(FLAGS) = AX0;

/* Turn ON GPIOS 0, 1, 2, and 3 */

DM(Timer__Flag_Polarity) = AR;

IOPG = AY1;

DIS SR;

RTI;

Turn_Off:

IO(FLAGC) = AX0;

/* Turn OFF GPIOS 0, 1, 2, and 3 */

DM(Timer__Flag_Polarity) = AR;

IOPG = AY1;

DIS SR;

RTI;

In the sections that follow, the code illustrates the Timer0 initialization
and operation for the ADSP-2191 DSP.

Code Examples

12-18 ADSP-219x/2191 DSP Hardware Reference

Timer0 Initialization Routine
This example shows the initialization code for Timer0. This routine is
intended for use with the ADSP-2191 EZ-KIT Lite evaluation system.

#include <def2191.h>

/* GLOBAL DECLARATIONS */

.GLOBAL _main;

.GLOBAL Start;

/* Program memory code */

.SECTION /pm program;

Start:

_main:

call Program_Timer_Interrupt;

/* Initialize Interrupt Priorities */

call General_Purpose_Intitialization;

/* Initialize General Purpose I/O */

call Timer_register_Initialization;

/* Initialize Timer0 */

wait_forever:

NOP;

NOP;

NOP;

NOP;

JUMP wait_forever;

/* INTERRUPT PRIORITY CONFIGURATION */

.SECTION /pm program;

Program_Timer_Interrupt:

IOPG = 0;

ADSP-219x/2191 DSP Hardware Reference 12-19

Timer

AR=IO(SYSCR); /* Map Interrupt Vector Table to Page 0*/

AR = SETBIT 4 OF AR;

IO(SYSCR) = AR;

DIS INT; /* Disable all interrupts */

IRPTL = 0x0; /* Clear all interrupts */

ICNTL = 0x0; /* Interrupt nesting disable */

IMASK = 0; /* Mask all interrupts */

IOPG = Interrupt_Controller_Page;

AR = 0xBB1B; /* Assign Timer0 with priority of 1 */

IO(IPR2) = AR;

AR = 0xBBBB; /* Assign remainder with lowest priority */

IO(IPR0) = AR;

IO(IPR1) = AR;

IO(IPR3) = AR;

AY0 = IMASK;

AY1 = 0x0020; /* Unmask Timer0 Interrupt */

AR = AY0 OR AY1;

IMASK = AR;

RTS;

/* INITIALIZE GENERAL PURPOSE FLAGS */

.SECTION /pm program;

General_Purpose_Intitialization:

IOPG = General_Purpose_IO;

AY0 = IO(DIRS);

AX0 = 0x000F; /* Configure FLAGS 0, 1, 2, & 3 as outputs */

AR = AX0 OR AY0;

IO(DIRS) = AR;

AX1 = 0x000F; /* Turn OFF FLAGS 0, 1, 2, and 3 */

IO(FLAGC) = AX1;

AX1 = 0x000F; /* Turn ON FLAGS 0, 1, 2, and 3 */

IO(FLAGS) = AX1;

RTS;

Code Examples

12-20 ADSP-219x/2191 DSP Hardware Reference

/* TIMER REGISTER INTIALIZATION */

.SECTION /pm program;

Timer_register_Initialization:

IOPG = Timer_Page;

AX0 = 0x001D;

/* PWM_OUT mode, Positive Active Pulse, Count to end of */

IO(T_CFGR0) = AX0;

/* period, Int Request Enable, Timer_pin select */

AX0 = 0x0262;

IO(T_PRDH0) = AX0;

/* Timer 0 Period register (high word) */

AX0 = 0x5A00;

IO(T_PRDL0) = AX0;

/* Timer 0 Period register (low word) */

AX0 = 0x0131;

IO(T_WHR0) = AX0;

/* Timer 0 Width register (high word) */

AX0 = 0x2D00;

IO(T_WLR0) = AX0;

/* Timer 0 Width register (low word) */

AX0 = 0x0100; /* Enable Timer0 */

IO(T_GSR0) = AX0;

ENA INT; /* Globally Enable Interrupts */

RTS;

Timer Interrupt Service Routine
This example shows a timer interrupt service routine. This example is
intended for use with the ADSP-2191 EZ-KIT Lite evaluation system.

#include <def2191.h>

/* EXTERNAL DECLARATIONS */

ADSP-219x/2191 DSP Hardware Reference 12-21

Timer

.EXTERN Start;

/* DM data */

.SECTION /dm data1;

.VAR counter_int5 = 0;

.VAR Timer__Flag_Polarity;

/* PM Reset interrupt vector code */

.section/pm IVreset;

JUMP Start;

NOP; NOP; NOP;

/* Timer ISR*/

.section/pm IVint5;

ENA SR;

AY1 = IOPG;

IOPG = Timer_Page;

AX0 = 0x0001;

/* Clear Timer0 TIMIL0 */

IO(T_GSR0) = AX0;

AR = DM(counter_int5);

/* Interrupt counter */

AR = AR + 1;

DM(counter_int5) = AR;

Timer0_Interrupt_Handler:

AX0 = 0x000F;

AR = 0;

IOPG = General_Purpose_IO;

AX1 = DM(Timer__Flag_Polarity);

Code Examples

12-22 ADSP-219x/2191 DSP Hardware Reference

AR = TGLBIT 0x0 OF AX1;

/* Toggle Status flag */

IF EQ JUMP Turn_Off;

/* Determine whether GPIO was ON or OFF */

Turn_On:

IO(FLAGS) = AX0;

/* Turn ON GPIOS 0, 1, 2, 3 */

DM(Timer__Flag_Polarity) = AR;

IOPG = ay1;

DIS SR;

RTI;

Turn_Off:

IO(FLAGC) = AX0;

/* Turn OFF GPIOS 0, 1, 2, and 3 */

DM(Timer__Flag_Polarity) = AR;

IOPG = AY1;

DIS SR;

RTI;

ADSP-219x/2191 DSP Hardware Reference 13-1

13 JTAG TEST-EMULATION PORT

A boundary scan allows a system designer to test interconnections on a
printed circuit board with minimal test-specific hardware. The scan is
made possible by the ability to control and monitor each input and output
pin on each chip through a set of serially scannable latches. Each input
and output is connected to a latch, and the latches are connected as a long
shift register so that data can be read from or written to them through a
serial Test Access Port (TAP).

This chapter provides the following topics:

• “Overview” on page 13-2

• “JTAG Test Access Port” on page 13-2

• “Instruction Register” on page 13-3

• “Bypass Register” on page 13-4

• “Boundary Register” on page 13-5

• “IDCODE Register” on page 13-5

• “References” on page 13-5

Overview

13-2 ADSP-219x/2191 DSP Hardware Reference

Overview
The ADSP-2191 DSP contains a test access port compatible with the
industry-standard IEEE 1149.1 (JTAG) specification. Only the IEEE
1149.1 features specific to the ADSP-2191 are described here. For more
information, see the IEEE 1149.1 specification and other documents
listed in “References” on page 13-5.

The boundary scan allows a variety of functions to be performed on each
input and output signal of the ADSP-2191 DSP. Each input has a latch
that monitors the value of the incoming signal and can also drive data into
the chip in place of the incoming value. Similarly, each output has a latch
that monitors the outgoing signal and can also drive the output in place of
the outgoing value. For bidirectional pins, the combination of input and
output functions is available.

Every latch associated with a pin is part of a single serial shift register path.
Each latch is a master/slave type latch with the controlling clock provided
externally. This clock (TCK) is asynchronous to the ADSP-2191 system
clock (CLKIN).

JTAG Test Access Port
The emulator uses JTAG boundary scan logic for ADSP-2191 communi-
cations and control. This JTAG logic consists of a state machine, a five
pin Test Access Port (TAP), and shift registers. The state machine and
pins conform to the IEEE 1149.1 specification. The TAP pins appear in
Table 13-1 on page 13-3.

ADSP-219x/2191 DSP Hardware Reference 13-3

JTAG Test-Emulation Port

A Boundary Scan Description Language (BSDL) file for the ADSP-2191
is available on Analog Devices’ Web site. Set your browser to:

http://www.analog.com/techsupt/documents/bsdl

Refer to the IEEE 1149.1 JTAG specification for detailed information on
the JTAG interface. The many sections of this chapter assume a working
knowledge of the JTAG specification.

Instruction Register
The Instruction register allows an instruction to be shifted into the pro-
cessor. This instruction selects the test to be performed and/or the test
data register to be accessed. The Instruction register is 5 bits long with no
parity bit. A value of 10000 binary is loaded (LSB nearest TDO) into the
instruction register whenever the TAP reset state is entered.

Table 13-2 on page 13-4 lists the binary code for each instruction. Bit 0 is
nearest TDO and bit 4 is nearest TDI. No data registers are placed into test
modes by any of the public instructions. The instructions affect the
ADSP-2191 DSP as defined in the 1149.1 specification. The optional
instructions RUNBIST and USERCODE are not supported by the ADSP-2191.

Table 13-1. JTAG Test Access Port (TAP) Pins

Pin Function

TCK (input) Test Clock: pin used to clock the TAP state machine.1

TMS (input) Test Mode Select: pin used to control the TAP state machine sequence.1

TDI (input) Test Data In: serial shift data input pin.

TDO (output) Test Data Out: serial shift data output pin.

TRST (input) Test Logic Reset: resets the TAP state machine

1 Asynchronous with CLKIN

Bypass Register

13-4 ADSP-219x/2191 DSP Hardware Reference

The entry under “Register” is the serial scan path, enabled by the instruc-
tion. No special values need be written into any register prior to selection
of any instruction. The ADSP-2191 DSP does not support self-test
functions.

The data registers are selected via the instruction register. Once a particu-
lar data register’s value is written into the Instruction Register, and the
TAP state is changed to SHIFT-DR, the particular data going into or out of
the processor is dependent on the definition of the Data Register selected.
See the IEEE 1149.1 specification for more details.

When registers are scanned out of the device, the MSB is the first bit to be
out of the processor.

Bypass Register
The 1-bit Bypass register is fully defined in the 1149.1 specification.

Table 13-2. JTAG Instruction Register Codes

Code Register Instruction Type

00000 BOUNDARY EXTEST1 Public

00001 IDCODE IDCODE1 Public

00010 BOUNDARY SAMPLE/PRELOAD1 Public

11111 BYPASS BYPASS1 Public

01110 BYPASS CLAMP Public

01101 BOUNDARY Reserved (HIGHZ) Public

1 Fixed IR value, can not be moved.

ADSP-219x/2191 DSP Hardware Reference 13-5

JTAG Test-Emulation Port

Boundary Register
The Boundary register is used by multiple JTAG instructions. All four of
the JTAG instructions that use the Boundary register are required by the
1149.1 specification.

IDCODE Register
The device identification register for the ADSP-2191 DSP is the 32-bit
IDCODE register. This register includes three fields: the ADI identification
code (0x0E5), the part identification code (0x278B), and the revision num-
ber (0x0) (Revision number changes with each silicon revision).

References
• IEEE Standard 1149.1-1990. Standard Test Access Port and

Boundary-Scan Architecture.

To order a copy, contact IEEE at 1-800-678-IEEE.

• Maunder, C.M. & R. Tulloss. Test Access Ports and Boundary
Scan Architectures.

IEEE Computer Society Press, 1991.

• Parker, Kenneth. The Boundary Scan Handbook.

Kluwer Academic Press, 1992.

• Bleeker, Harry, P. van den Eijnden, & F. de Jong. Boundary-Scan
Test—A Practical Approach.

Kluwer Academic Press, 1993.

References

13-6 ADSP-219x/2191 DSP Hardware Reference

• Hewlett-Packard Co. HP Boundary-Scan Tutorial and BSDL Ref-
erence Guide.

(HP part# E1017-90001.) 1992.

ADSP-219x/2191 DSP Hardware Reference 14-1

14 SYSTEM DESIGN

This chapter describes the basic system interface features of the
ADSP-2191 family processors. The system interface includes various hard-
ware and software features used to control the DSP processor.

Processor control pins include a RESET signal, clock signals, flag inputs and
outputs, and interrupt requests. This chapter describes only the logical
relationships of control signals; see the ADSP-2191 DSP Microcomputer
Data Sheet for actual timing specifications.

Pin Descriptions

14-2 ADSP-219x/2191 DSP Hardware Reference

This chapter provides the following topics:

• “Pin Descriptions” on page 14-2

• “Pin States at Reset” on page 14-8

• “Resetting the Processor (“Hard Reset”)” on page 14-12

• “Resetting the Processor (“Soft Reset”)” on page 14-15

• “Booting the Processor (“Boot Loading”)” on page 14-16

• “Configuring and Servicing Interrupts” on page 14-27

• “Managing DSP Clocks” on page 14-29

• “Using Programmable Flags” on page 14-40

• “Power-Down Modes” on page 14-45

• “Power-Down Modes” on page 14-45

• “Idle Mode” on page 14-46

• “Power-Down Core Mode” on page 14-46

• “Power-Down Core/Peripherals Mode” on page 14-47

• “Power-Down All Mode” on page 14-48

• “Working with External Bus Masters” on page 14-49

• “Recommended Reading” on page 14-52

• “Programmable Flags Example” on page 14-53

Pin Descriptions
This section provides functional descriptions of the ADSP-2191 processor
pins. Refer to the data sheet for the ADSP-2191 for more information,

ADSP-219x/2191 DSP Hardware Reference 14-3

System Design

including pin numbers for the 144-lead LQFP and the 144-lead
mini-BGA packages.

ADSP-2191 pin definitions are listed in Table 14-1 on page 14-3. All of
the ADSP-2191 pins are asynchronous.

Unused inputs should be tied or pulled to VDDEXT or GND, except for
ADDR21–0, DATA15–0, PF7-0, and inputs that have internal pull-up or
pull-down resistors (TRST, BMODE0, BMODE1, OPMODE, BYPASS, TCK, TMS, TDI,
and RESET); these pins can be left floating. These pins have a logic-level
hold circuit that prevents them from floating internally.

The following symbols appear in the Type column of Table 14-1 on
page 14-3: G = Ground, I = Input, O = Output, P = Power Supply, and
T = Three-State.

Table 14-1. Pin Descriptions

Pin Type Description

A21–0 O/T External Port Address Bus

D7–0 I/O/T External Port Data Bus, least significant 8 bits

D15
 /PF15
 /SPI1SEL7

I/O/T
I/O
O

Data 15 (if 16-bit external bus)/Programmable Flag 15 (if 8-bit
external bus)/SPI1 Slave Select output 7 (if 8-bit external bus,
when SPI1 enabled)

D14
 /PF14
 /SPI0SEL7

I/O/T
I/O
O

Data 14 (if 16-bit external bus)/Programmable Flag 14 (if 8-bit
external bus)/SPI0 Slave Select output 7 (if 8-bit external bus,
when SPI0 enabled)

D13
 /PF13
 /SPI1SEL6

I/O/T
I/O
O

Data 13 (if 16-bit external bus)/Programmable Flag 13 (if 8-bit
external bus)/SPI1 Slave Select output 6 (if 8-bit external bus,
when SPI1 enabled)

D12
 /PF12
 /SPI0SEL6

I/O/T
I/O
O

Data 12 (if 16-bit external bus)/Programmable Flag 12 (if 8-bit
external bus)/SPI0 Slave Select output 6 (if 8-bit external bus,
when SPI0 enabled)

D11
 /PF11
 /SPI1SEL5

I/O/T
I/O
O

Data 11 (if 16-bit external bus)/Programmable Flag 11 (if 8-bit
external bus)/SPI1 Slave Select output 5 (if 8-bit external bus,
when SPI1 enabled)

Pin Descriptions

14-4 ADSP-219x/2191 DSP Hardware Reference

D10
 /PF10
 /SPI0SEL5

I/O/T
I/O
O

Data 10 (if 16-bit external bus)/Programmable Flag 10 (if 8-bit
external bus)/SPI0 Slave Select output 5 (if 8-bit external bus,
when SPI0 enabled)

D9
 /PF9
 /SPI1SEL4

I/O/T
I/O
O

Data 9 (if 16-bit external bus)/Programmable Flag 9 (if 8-bit
external bus)/SPI1 Slave Select output 4 (if 8-bit external bus,
when SPI1 enabled)

D8
 /PF8
 /SPI0SEL4

I/O/T
I/O
O

Data 8 (if 16-bit external bus)/Programmable Flag 8 (if 8-bit
external bus)/SPI0 Slave Select output 4 (if 8-bit external bus,
when SPI0 enabled)

PF7
 /SPI1SEL3
 /DF

I/O
O
I

Programmable Flag 7/SPI1 Slave Select output 3 (when SPI0
enabled)/Divisor Frequency (divisor select for PLL input dur-
ing boot)

PF6
 /SPI0SEL3
 /MSEL6

I/O
O
I

Programmable Flag 6/SPI0 Slave Select output 3 (when SPI0
enabled)/Multiplier Select 6 (during boot)

PF5
 /SPI1SEL2
 /MSEL5

I/O
O
I

Programmable Flag 5/SPI1 Slave Select output 2 (when SPI0
enabled)/Multiplier Select 5 (during boot)

PF4
 /SPI0SEL2
 /MSEL4

I/O
O
I

Programmable Flag 4/SPI0 Slave Select output 2 (when SPI0
enabled)/Multiplier Select 4 (during boot)

PF3
 /SPI1SEL1
 /MSEL3

I/O
O
I

Programmable Flag 3/SPI1 Slave Select output 1 (when SPI1
enabled)/Multiplier Select 3 (during boot)

PF2
 /SPI0SEL1
 /MSEL2

I/O
O
I

Programmable Flag 2/SPI0 Slave Select output 1 (when SPI0
enabled)/Multiplier Select 2 (during boot)

PF1
 /SPISS1
 /MSEL1

I/O
I
I

Programmable Flag 1/SPI1 Slave Select input (when SPI1
enabled)/Multiplier Select 1 (during boot)

PF0
 /SPISS0
 /MSEL0

I/O
I
I

Programmable Flag 0/SPI0 Slave Select input (when SPI0
enabled)/Multiplier Select 0 (during boot)

Table 14-1. Pin Descriptions (Cont’d)

Pin Type Description

ADSP-219x/2191 DSP Hardware Reference 14-5

System Design

RD O/T External Port Read Strobe

WR O/T External Port Write Strobe

ACK I External Port Access Ready Acknowledge

BMS O/T External Port Boot Space Select

IOMS O/T External Port IO Space Select

MS3–0 O/T External Port Memory Space Selects

BR I External Port Bus Request

BG O External Port Bus Grant

BGH O External Port Bus Grant Hang

HAD15–0 I/O/T Host Port Multiplexed Address and Data Bus

HA16 I Host Port MSB of Address Bus

HACK_P I Host Port ACK Polarity

HRD I Host Port Read Strobe

HWR I Host Port Write Strobe

HACK O Host Port Access Ready Acknowledge

HALE I Host Port Address Latch Strobe or Address Cycle Control

HCMS I Host Port Internal Memory–Internal I/O Memory–Boot Mem-
ory Select

HCIOMS I Host Port Internal I/O Memory Select

CLKIN I Clock Input/Oscillator input 0

XTAL O Crystal output

BMODE1–0 I Boot Mode 1–0 (See “Resetting the Processor (“Hard Reset”)”
on page 14-12 for more information on how the BMODE1-0
pins are used.) The BMODE1 and BMODE0 pins have 85 kΩ
internal pull-up resistors.

Table 14-1. Pin Descriptions (Cont’d)

Pin Type Description

Pin Descriptions

14-6 ADSP-219x/2191 DSP Hardware Reference

OPMODE I Operating Mode (See “Resetting the Processor (“Hard Reset”)”
on page 14-12 for more information on how the OPMODE pin is
used.) The OPMODE pin has a 85 kΩ internal pull-up resis-
tor.

CLKOUT O Clock Output

BYPASS I Phase-Lock-Loop (PLL) Bypass mode. The BYPASS pin has a
85 kΩ internal pull-up resistor.

RCLK1–0 I/O/T SPORT1–0 Receive Clock

RCLK2/SCK1 I/O/T SPORT2 Receive Clock/SPI1 Serial Clock

RFS1–0 I/O/T SPORT1–0 Receive Frame Sync

RFS2/MOSI1 I/O/T SPORT2 Receive Frame Sync/SPI1 Master-Output,
Slave-Input data

TCLK1–0 I/O/T SPORT1–0 Transmit Clock

TCLK2/SCK0 I/O/T SPORT2 Transmit Clock/SPI0 Serial Clock

TFS1–0 I/O/T SPORT1–0 Transmit Frame Sync

TFS2/MOSI0 I/O/T SPORT2 Transmit Frame Sync/SPI0 Master-Output,
Slave-Input data

DR1–0 I/T SPORT1–0 Serial Data Receive

DR2/MISO1 I/O/T SPORT2 Serial Data Receive/SPI1 Master-Input, Slave-Output
data

DT1–0 O/T SPORT1–0 Serial Data Transmit

DT2/MISO0 I/O/T SPORT2 Serial Data Transmit/SPI0 Master-Input, Slave-Out-
put data

TMR2–0 I/O/T Timer output or capture

RXD I UART Serial Receive Data

TXD O UART Serial Transmit Data

Table 14-1. Pin Descriptions (Cont’d)

Pin Type Description

ADSP-219x/2191 DSP Hardware Reference 14-7

System Design

RESET I Processor Reset. Resets the ADSP-2191 to a known state and
begins execution at the program memory location specified by
the hardware reset vector address. The RESET input must be
asserted (low) at power-up. The RESET pin has a 85 kΩ internal
pull-up resistor.

TCK I Test Clock (JTAG). Provides a clock for JTAG boundary scan.
The TCK pin has a 85 kΩ internal pull-up resistor.

TMS I Test Mode Select (JTAG). Used to control the test state
machine. The TMS pin has a 85 kΩ internal pull-up resistor.

TDI I Test Data Input (JTAG). Provides serial data for the boundary
scan logic. The TDI pin has a 85 kΩ internal pull-up resistor.

TDO O Test Data Output (JTAG). Serial scan output of the boundary
scan path.

TRST I Test Reset (JTAG). Resets the test state machine. TRST must be
asserted (pulsed low) after power-up or held low for proper
operation of the ADSP-2191. The TRST pin has a 65 kΩ inter-
nal pull-down resistor.

EMU O Emulation Status (JTAG). Must be connected to the
ADSP-2191 emulator target board connector only.

VDDINT P Core Power Supply. Nominally 2.5 V dc and supplies the DSP’s
core processor. (four pins).

VDDEXT P I/O Power Supply; Nominally 3.3 V dc. (nine pins).

GND G Power Supply Return. (twelve pins).

NC Do Not Connect. Reserved pins that must be left open and
unconnected.

Table 14-1. Pin Descriptions (Cont’d)

Pin Type Description

Pin States at Reset

14-8 ADSP-219x/2191 DSP Hardware Reference

Recommendations for Unused Pins
The following is a list of recommendations for unused pins.

• If the CLKOUT pin is not used, turn it off, by clearing bit 6 (CKOUTEN)
of the PLL Control (PLLCTL) register.

• If the interrupt/programmable flag pins are not used, configure
them as inputs at reset and function as interrupts and input flag
pins, pull the pins to an inactive state, based on the POLARITY set-
ting of the flag pin.

• If a flag pin is not used, configure it as an output. If for some rea-
son, it cannot be configured as an output, configure it as an input.
Use a 100 kΩ pull-up resistor to VDD (or, if this is not possible, use
a 100 kΩ pull-down resistor to GND).

• If a SPORT is not used completely and if the SPORT pins do not
have a second functionality, disable the SPORT and let the pins
float.

• If the receiver on a SPORT is the only part being used, use resistors
on the other pins. However, if the other pins are outputs, let them
float.

Pin States at Reset
The following table shows the state of each pin during and after reset. See
“Pin Descriptions” on page 14-2 for a description of each of these pins.

The following symbols appear in the Type column of Table 14-2 on
page 14-9: G = Ground, I = Input, O = Output, P = Power Supply, and
T = Three-State.

ADSP-219x/2191 DSP Hardware Reference 14-9

System Design

Table 14-2. Pin States at Reset

Pin Type State at Reset

A21–0 O/T High Impedance

D7–0 I/O/T High Impedance

D15
 /PF15
 /SPI1SEL7

I/O/T
I/O
O

High Impedance

D14
 /PF14
 /SPI0SEL7

I/O/T
I/O
O

High Impedance

D13
 /PF12
 /SPI1SEL6

I/O/T
I/O
O

High Impedance

D12
 /PF12
 /SPI0SEL6

I/O/T
I/O
O

High Impedance

D11
 /PF11
 /SPI1SEL5

I/O/T
I/O
O

High Impedance

D10
 /PF10
 /SPI0SEL5

I/O/T
I/O
O

High Impedance

D9
 /PF9
 /SPI1SEL4

I/O/T
I/O
O

High Impedance

D8
 /PF8
 /SPI0SEL4

I/O/T
I/O
O

High Impedance

PF7
 /SPI1SEL3
 /DF

I/O
O
I

Input

PF6
 /SPI0SEL3
 /MSEL6

I/O
O
I

Input

Pin States at Reset

14-10 ADSP-219x/2191 DSP Hardware Reference

PF5
 /SPI1SEL2
 /MSEL5

I/O
O
I

Input

PF4
 /SPI0SEL2
 /MSEL4

I/O
O
I

Input

PF3
 /SPI1SEL1
 /MSEL3

I/O
O
I

Input

PF2
 /SPI0SEL1
 /MSEL2

I/O
O
I

Input

PF1
 /SPISS1
 /MSEL1

I/O
I
I

Input

PF0
 /SPISS0
 /MSEL0

I/O
I
I

Input

RD O/T Driven High1

WR O/T Driven High1

ACK I Input

BMS O/T Driven High1

IOMS O/T Driven High1

MS3–0 O/T Driven High1

BR I Input1

BG O Driven High1; Responds to BR during reset

BGH O Driven High1

HAD15–0 I/O/T Three-stated

Table 14-2. Pin States at Reset (Cont’d)

Pin Type State at Reset

ADSP-219x/2191 DSP Hardware Reference 14-11

System Design

HA16 I Three-stated

HACK_P I Input2

HRD I Input2

HWR I Input2

HACK O Driven

HALE I Input2

HCMS I Input2

HCIOMS I Input2

CLKIN I Input

BMODE1–0 I Input

OPMODE I Input

BYPASS I Input

RCLK1–0 I/O/T Three-stated3

RCLK2/SCK1 I/O/T Three-stated3

RFS1–0 I/O/T Three-stated3

RFS2/MOSI1 I/O/T Three-stated3

TCLK1–0 I/O/T Three-stated3

TCLK2/SCK0 I/O/T Three-stated3

TFS1–0 I/O/T Three-stated3

TFS2/MOSI0 I/O/T Three-stated3

DR1–0 I/T Three-stated3

DR2/MISO1 I/O/T Three-stated3

Table 14-2. Pin States at Reset (Cont’d)

Pin Type State at Reset

Resetting the Processor (“Hard Reset”)

14-12 ADSP-219x/2191 DSP Hardware Reference

Resetting the Processor (“Hard Reset”)
The RESET signal halts execution and causes a hardware reset of the proces-
sor; the program control jumps to address 0xFF0000 and begins execution
of the boot ROM code at that location. (If configured in “no boot” mode,
the DSP begins execution from PM 0x10000.)

DT1–0 O/T Three-stated3

DT2/MISO0 I/O/T Three-stated3

TMR2–0 I/O/T Three-stated3

RXD I Three-stated3

TXD O Not three-stated3

RESET I Input2

TCK I Input4

TMS I Input4

TDI I Input4

TDO O Three-stated4

TRST I Input4 (pulled low by resistor)

EMU O Three-stated4 ((open drain with internal pullup)

NC

1 Three-stated when the DSP is bus slave (held in BR).
2 Bus Master independent.
3 SPI, SPORT, UART.
4 JTAG.

Table 14-2. Pin States at Reset (Cont’d)

Pin Type State at Reset

ADSP-219x/2191 DSP Hardware Reference 14-13

System Design

The ADSP-2191 can be booted via the EPROM, UART, SPI, or Host
port. The DSP looks at the values of three pins (BMODE0, BMODE1, and
OPMODE) to determine the boot mode, as shown in the following table.

After the DSP has determined the boot mode, it loads the headers and
data blocks. For some booting modes, the boot process uses DMA. For
more information about DMA, see “I/O Processor” on page 6-1.

The RESET signal must be asserted (held low) when the processor is pow-
ered up to assure proper initialization.

The internal clock on the ADSP-2191 requires approximately 500
clock cycles to stabilize. To maximize the speed of recovery from
reset, CLKIN should run during the reset.

The power-up sequence is defined as the total time required for the crystal
oscillator circuit to stabilize after a valid VDD is applied to the processor
and for the internal PLL to lock onto the specific crystal frequency. A

Table 14-3. Hard Reset Boot Mode Pins

OPMODE BMODE1 BMODE0 Result

0 0 0 No boot; run from external 16-bit memory starting at
address 0x10000

0 0 1 Boot from EPROM

0 1 0 Boot from Host

0 1 1 Reserved

1 0 0 No boot; run from external 8-bit memory, bypass ROM,
starting at address 0x10000

1 0 1 Boot from UART

1 1 0 Boot from SPI, up to 4K bits

1 1 1 Boot from SPI, >4K bits up to 512K bits

Resetting the Processor (“Hard Reset”)

14-14 ADSP-219x/2191 DSP Hardware Reference

minimum of 500 CLKIN cycles ensures that the PLL has locked, but it does
not include the crystal oscillator start-up time. During the power-up
sequence the RESET signal should be held low.

If a clock has not been supplied during RESET, the processor does
not know it has been reset and the registers won’t be initialized to
the proper values.

At powerup, if RESET is held low (asserted) without any input clock
signal, the states of the internal transistors are unknown and
uncontrolled. This condition could lead to processor damage.

“ADSP-219x DSP Core Registers” on page A-1 and “ADSP-2191 DSP
I/O Registers” on page B-1 contain tables showing the RESET states of var-
ious registers, including the processors’ on-chip memory-mapped
status/control registers. The values of any registers not listed are undefined
at reset. The contents of on-chip memory are unchanged after RESET,
except as shown in the tables for the I/O memory-mapped control/status
registers. The CLKOUT signal continues to be generated by the processor
during RESET, except when disabled.

In clock multiplier mode (not bypass mode), the MSELx pins, which
define the clock multiplier ratios, are sampled during reset. For
information on managing these pins, see “Managing DSP Clocks”
on page 14-29.

The contents of the computation unit (ALU, MAC, shifter) and data
address generator (DAG1, DAG2) registers are undefined following RESET.
When RESET is released, the processor’s booting operation takes place,
depending on the states of the processor’s BMODEx and OPMODE pins. (Pro-
gram booting is described in “Boot Mode DMA Transfers” on page 6-41.)

When the power supply and clock remain valid, the content of the
on-chip memory is not changed by a software reset.

ADSP-219x/2191 DSP Hardware Reference 14-15

System Design

Resetting the Processor (“Soft Reset”)
A software reset is generated by writing ones to the software reset (SWR)
bits in the Software Reset (SWRST) register. A software reset affects only the
state of the core and the peripherals (as defined by the peripheral registers
documented in“ADSP-2191 DSP I/O Registers” on page B-1). During a
soft reset, the DSP does not sample the boot mode pins, rather it gets its
boot information from the Next System Configuration (NXTSCR) register.

In no-boot mode, the (RMODE) bit of the Next System Configuration Regis-
ter has been set to 0, following a soft reset, program flow jumps to address
0xFF0000 and begins executing the boot ROM code at that location to
reboot the DSP. A software reset can also be used to reset the boot mode
without doing an actual reboot. If bit 4 of the Next System Configuration
Register has been set to 1, following a soft reset, program flow jumps to
address 0x000000 and completes reset without rebooting the DSP.

The ADSP-2191 can be booted via the EPROM, UART, SPI, or Host
port. The DSP uses three bits of the System Configuration (SYSCR) register
(loaded from NXTSCR on soft reset) to determine the boot mode, as shown
in Figure B-2 on page B-21. (Note that these three bits correspond to the
BMODE0, BMODE1, and OPMODE pins used to determine the boot mode for a
hard reset, as described in “Resetting the Processor (“Hard Reset”)” on
page 14-12.)

“ADSP-219x DSP Core Registers” on page A-1 and “ADSP-2191 DSP
I/O Registers” on page B-1 contain tables showing the state of the proces-
sor registers after a software reset that includes a DSP reboot. The values
of any registers not listed are unchanged by a reboot.

The MSELx pins are not sampled during a software reset.

Because the ADSP-2191’s shadow write FIFO automatically
pushes the write to internal memory as soon as the write does not
compete with a read, this FIFO’s operation is completely transpar-
ent to programs, except in software reset/restart situations. To

Booting the Processor (“Boot Loading”)

14-16 ADSP-219x/2191 DSP Hardware Reference

ensure correct operation after a software reset, software must per-
form two “dummy” writes to memory before writing the software
reset bit. For more information, see “Shadow Write FIFO” on page
5-17.

Booting the Processor (“Boot Loading”)
The ADSP-2191 has a booting scheme that is different from previous
Analog Devices fixed-point DSP’s, such as the ADSP-218x. When the
ADSP-218x comes out of reset, it is configured to automatically boot in a
“Loader Kernel” using DMA. This Loader Kernel then loads in corre-
sponding “page loaders”. On the ADSP-2191, the boot Kernel is located
on-chip and stored in a 24-bit wide, 1K ROM. The starting address of
this boot ROM begins at 0xFF0000 (i.e., the first location of page 255).
For more information on the ADSP-2191 memory map, see Figure 5-4 on
page 5-10.

Whether the DSP is reset with hardware (RESET pin) or software (SWR bits
in the SWRST register), the boot kernel executes its process. For more infor-
mation on reset, see “Resetting the Processor (“Hard Reset”)” on
page 14-12 and “Resetting the Processor (“Soft Reset”)” on page 14-15.

Boot Modes
Figure 14-1 on page 14-17 shows the program flow for the boot kernel.
Following a reset, the first operation performed by the boot Kernel is to
read the System Configuration (SYSCR) register and determine the DSP
boot mode.

In the event that the DSP is configured to boot from a peripheral, the first
operation performed by the boot Kernel is to read in the first word of the
bootstream. This control word contains information on the rest of the
boot. The DSP performs this transfer using the modes that the DSP is

ADSP-219x/2191 DSP Hardware Reference 14-17

System Design

~RESET de-asserted: Program control jumps to
memory address 0xFF0000, the first location of

the BOOT ROM kernel

Host Boot? No Boot?

(Execute from
8-bit or 16-bit

EMI)

Jump to first location of
external memory

(0x10000) to begin
execution

Configure External
Memory Interface

per system requirements

EPROM Boot?SPI Boot?

Auto-baud
routine

UART Boot?

BOOT ROM routine reads RESET Configuration
Register to determine method of booting based

on MODE pins

Read “Control” word of
Boot stream to determine
8- or 16-bit EPROM, wait

states information

Set-up loop to poll
Semaphore A register,

waiting for Host
Processor to write it

Jump to first location of
internal memory

(0x00000) to begin
execution

Read Control
Word

Read Control
Word

Final setup and LJUMP to
0x000000

Setup Direct
Reads to load

data Block

Final DM
Read?

Setup Direct
Reads to load

data Block

Set up routine
to read in

first header

Parse headerInitialize
Accordingly

Setup DMA to
load data

block

No

Set up DMA
to load header

Parse header
Initialize

Accordingly

Block
larger than 32

words?

YesFinal
DM?

No

Zero_PM or
Zero_DM?

Yes

Yes

No

Final
DM?

No

Zero_PM or
Zero_DM?

Yes

Yes

No

Once DMA is
complete, set up

next header

NoYes

Booting the Processor (“Boot Loading”)

14-18 ADSP-219x/2191 DSP Hardware Reference

configure with at reset (e.g., 8-bit external to 16-bit internal packing
mode in case of the external memory interface, with maximum wait states
and base clock divisor).

If it is determined that the DSP is not going to boot in a program, but
instead run a program from 8-bit or 16-bit external memory, the boot
ROM routine sets up the External Memory Interface and the External
Access Bridge register for the desired packing mode (8-bit external to
24-bit internal or 16-bit-external-to-24-bit internal). Then, execution
jumps to the first location of external memory (0x10000), where the user
program is executed.

SPI Port and UART Port Booting
If booting via a peripheral such as the SPI or UART, the Loader Kernel
will set up the corresponding peripheral as follows:

• SPI: SPI0 is used, set up as master, and is set to receive 8-bit words
received MS-Bit first, SCLK = peripheral clock/60, with an
active-low serial clock to be compatible with commonly available
serial EEPROMS.

• UART: In the case of UART boot, the Loader Kernel begins by
first running an Auto-baud routine using a timer to determine the
baud-rate of the external UART device. Once the baud-rate has
been determined, the Loader Kernel will proceed with the rest of
boot.

If booting via the SPI or UART, the corresponding DMA engines associ-
ated with the peripheral are not used at all, but rather all the data is read
in through core reads a byte at a time and packed internally by the Boot
Kernel.

ADSP-219x/2191 DSP Hardware Reference 14-19

System Design

The external device transmits the word “0xaa” to allow the timer to cap-
ture the pulse width of the device. Once the baud rate has been
determined, the DSP UART will transmit the words 0x4F and 0x4B cor-
responding to “OK” in ASCII. The external device can now begin
transmitting the boot file.

Host Port Booting
If booting via a Host processor, the Loader Kernel will relocate the Inter-
rupt vector location to page 0 of memory. It will then sit in a loop polling
the Semaphore A register (IO:0x1CFC), waiting for a Host Processor to
write to it. The Host processor has the responsibility of loading the code
and data into the DSP.

The ADSP-2191 can be booted from either an 8-bit, 16-bit, or 32-bit
Host processor. In the case of booting from a 32-bit Host, the Host must
send data on the 16 least significant data lines (right-justified).

The Host boot is configured to always use little-endian format, as this is
the default that the Host port comes up in.

Example: If the representation of decimal number 1025 is 00000100
00000001, the Table 14-4 on page 14-19 describes big and little endian
representation of the number.

Table 14-4. Big and Little Endian Comparison

Address Big-Endian
Representation of 1025

Little-Endian
Representation of 1025

00 - 00000001

01 - 00000100

02 00000100 -

03 00000001 -

Booting the Processor (“Boot Loading”)

14-20 ADSP-219x/2191 DSP Hardware Reference

After the Host processor has finished loading the ADSP-2191, it indicates
this by writing a “1” to the Semaphore A Register (IO:0x1CFC). The
Boot Kernel will then exit the polling loop and transfers program control
to the first location of page 0.

External Memory Interface Booting
If booting via the EMI, the Loader Kernel sets up the corresponding sys-
tem and control registers and the wait state control register accordingly.
The Kernel will then set up a DMA transfer block to read in the first
header of the bootstream via DMA.

For BMS to MSx boot sequences, the EMI bus widths must match.
The DSP cannot boot 8-bit MSx space from a 16-bit BMS. Also,
the DSP cannot boot 16-bit MSx space from an 8-bit BMS.

After a header is read in, the Loader Kernel will parse the header and set
up another DMA transfer block to load in the actual data following this
header. While this DMA is in progress, the Boot Kernel will poll the
DMA ownership bit to determine whether the DMA has completed or
not.

To optimize booting speed, due to the overhead of setting up and
kicking off DMA sequence, if the size of a data block following the
header is less than 32 words, that block is read/initialized using
core-driven direct reads as opposed to using DMA.

Once a data block has been read/initialized, the next header is read in, and
the process is repeated. This process repeats for all the blocks that need to
be transferred.

The last block to be read/initialized will be the “final DM” block. This
final block will not be loaded with DMA (even if it is larger than 32
words), but will rather be direct core accesses. The purpose of the final
block is to clean up the “scratch area” used by the boot loader for storing
temporary DMA control blocks and variables. When it has completed

ADSP-219x/2191 DSP Hardware Reference 14-21

System Design

loading in the last piece of data, the interrupt service routine performs
some housecleaning and transfers program control to the first location of
page 0.

According to the DSP's memory map (Figure 5-4 on page 5-10),
Boot Memory Space starts at address 0x10000, but this is the runt-
ime map. During EPROM booting, the DSP starts Boot Memory
Space at address 0x00000. When designing a system to boot from
an EPROM, place the start address of the EPROM at address
0x00000 in Boot Memory Space.

Bootstream Format
The bootstream is comprised of a series of “headers” consisting of 4 words,
followed by optional data blocks for non-zero data. Each header contains
information on the type of data that immediately follows, the starting
address and the word count. In case of booting via the SPI or UART, after
a header is read in (the Loader Kernel will use interrupts and a sim-
ple-counter based loop to determine the number of words to read in) the
Loader Kernel parses the header and sets up another counter-based loop to
load in the actual data following this header. These transfers are
interrupt-driven.

The first word in the boot-stream is a Control word that applies to all
booting formats, with the exception of Host boot and No-Boot. Individ-
ual bits within this word are set or cleared based on the method of booting
and specific command line options specified by the user and loader utility.
This is a 16-bit field that contains among other things, information on the
number of waitstates and the Width External port or serial EEPROM
(8-bit or 16-bit). The control word appears in Figure 14-2 on page 14-22
and Figure 14-3 on page 14-22.

Booting the Processor (“Boot Loading”)

14-22 ADSP-219x/2191 DSP Hardware Reference

Following the control word is the regular bootstream, that is, a series of
“headers” and data payloads or “blocks”, with each header optionally fol-
lowed by a corresponding block of data. An example bootstream appears
in Table 14-5 on page 14-23.

Each header will consist of four 16-bit words: Flag, 24-bit starting address
(uses two 16-bit words), and 16-bit word count.

7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 1

Waitstate count
000 = 0 —to— 111 = 7

Clock divider select
1:1 (if 000), 1:2 (if 001), 1:4 (if 010), 1:8 (if
011), 1:16 (if 100), or 1:32 (if 101)

Operating mode
0 = SPORT2 enabled (SPI disabled)
1 = SPI enabled (SPORT2 disabled)

Reserved

Figure 14-2. First Byte of Boot Control Word

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

EMI Bus Width Select
0 = 8-bit
1 = 16-bit

Reserved

SPI EPROM Width Select
0 = 8-bit
1 = 16-bit

Reserved

Figure 14-3. Second Byte of Boot Control Word

ADSP-219x/2191 DSP Hardware Reference 14-23

System Design

The first word of a header is a 16-bit field consisting of a flag that indi-
cates whether the block of data to follow is either a 24-bit or 16-bit
payload or zero-initialized data. The flag also uniquely identifies the last
block that needs to be transferred. Table 14-6 on page 14-24 lists the
Flags with associated function. While data blocks always have to follow a
header, data blocks do not follow headers indicate regions of memory that
are to be “zero-filled”.

Table 14-5. Sample Bootstream

Word Type Description

Control Word 16-bit field (Wait State Information, EPROM/SPI Width)

Flag 16-bit field (PM/DM/Final PM/Final DM)

24-bit Starting Address 32-bit field (24-bit padded to yield 32-bits)

16-bit Word Count 16-bit field

 Data Word 16-bit field if 16-bit data
32-bit field if 24-bit EMI data
24-bit field if 24-bit SPI/UART data

Data Word (see above)

 :

 :

Flag (see above)

24-bit Starting Address (see above)

16-bit Word Count (see above)

Data Word (see above)

Data Word (see above)

 :

Booting the Processor (“Boot Loading”)

14-24 ADSP-219x/2191 DSP Hardware Reference

The second word of a header (16-bit field) contains the lower 16 bits of
the 24-bit start address to begin loading the data (destination). The first
octet will be the 8 LSBs, followed by the next most significant bits (8-15),
and so on.

The third word (16-bit field) contains the upper-most 8 bits of the 24-bit
destination address, padded (suffixed) with a byte of zeros.

The fourth word (16-bit field) contains the word count of the payload. As
with the address, the first octet will be the 8 LSBs, the second octet will be
the 8 MSBs.

These four words constitute the header. Following the header is the data
block. 16-bit data is sent in a 16-bit field while 24-bit data is sent in a
32-bit field.

24-bit data is represented differently in the bootstream from 24-bit
addresses. 32-bit data will be transmitted the following way – a
byte of zeros, bits 0-7, followed by bits 8-15, and finally bits 16-24.
Refer to Figure 5.1(a) for details.

Table 14-6. Bootstream Flags

Flag Values Payload Type

0x00 24-bit data/PM

0x01 16-bit data/DM

0x02 Final PM

0x03 Final DM

0x04 zero-init PM

0x05 zero-init DM

0x06 zero-init Final PM

0x07 zero-init Final DM

0x08 through 0xFF Reserved

ADSP-219x/2191 DSP Hardware Reference 14-25

System Design

Table 14-7 on page 14-25 and Table 14-8 on page 14-26 show example
bootstreams when booting via the EMI, from an 8-bit device and a 16-bit
device respectively. Since the DMA engine does not support 8-bit trans-
fers (internal packing has to be one of either 8-16, or 8-24, or 16-16, or
16-24 bits), to load in the 4-word header, the word count needs to be set
to 4 in either case.

Table 14-7. 8-bit Device External Memory Interface Bootstream Format
in Little-Endian Style

D15 – D8 D7 – D0

Not used Wait states

Not used Width

Not used LSB of Flag

Not used MSB of Flag

Not used LSB of Addr

Not used 8-15 of Addr

Not used MSB of Addr

Not used 00

Not used LSB of Word count

Not used MSB of Word count

Not used LSB of Word

Not used MSB of Word

: :

Not used 00

Not used LSB of Data Word

Not used 8-15 of Data Word

Not used MSB of Data Word

Booting the Processor (“Boot Loading”)

14-26 ADSP-219x/2191 DSP Hardware Reference

Unlike EMI booting, 24-bit data is now represented as three bytes.
Table 14-9 on page 14-26 shows the bootstream format when booting via
the SPI or UART.

Table 14-8. 16-bit Device External Memory Interface Bootstream Format
in Little-Endian Style

D15 – D8 D7 – D0

00 Wait states

00 Width

MSB of Flag LSB of Flag

15-8 of Addr LSB of Addr

00 MSB of Addr

MSB of Word count LSB of Word count

MSB of Word LSB of Word

: :

: :

MSB of Word LSB of Word

LSB of Data Word 00

MSB of Data Word 15-8 of Word

Table 14-9. Bootstream Format for 8-bit SPI Port and UART Port
Booting

D15 – D8 D7 – D0

Not used Wait states

Not used Width

ADSP-219x/2191 DSP Hardware Reference 14-27

System Design

The last block to be read/initialized will be the “final DM” block. This
final block is also read in with direct core accesses. Following the final
transfer, the interrupt service routine performs some housecleaning and
transfers program control to the first location of page 0.

Configuring and Servicing Interrupts
Internal interrupts, including serial port, timer, and DMA interrupts, are
discussed in other chapters and appendixes in this manual. For additional
information about interrupt masking, set up, and operation, see “Program
Sequencer” on page 3-1 and “I/O Processor” on page 6-1.

Not used LSB of Flag

Not used MSB of Flag

Not used LSB of Addr

Not used 8-15 of Addr

Not used MSB of Addr

Not used 00

Not used LSB of Word count

Not used MSB of Word count

Not used LSB of Word

Not used MSB of Word

: :

Not used LSB of Data Word

Not used 8-15 of Data Word

Not used MSB of Data Word

Table 14-9. Bootstream Format for 8-bit SPI Port and UART Port
Booting (Cont’d)

D15 – D8 D7 – D0

Configuring and Servicing Interrupts

14-28 ADSP-219x/2191 DSP Hardware Reference

A variety of interrupts are available on the ADSP-2191. They include core
interrupts, user-programmable interrupts, DMA interrupts, and interrupts
triggered from a programmable flag (PFx) pin.

User-Mappable Interrupts
The ADSP-2191 includes a set of 12 interrupt lines connecting peripher-
als to the DSP core. The interrupt lines have fixed priorities, but the
peripherals can be remapped to different interrupt lines as needed for a
DSP application. The 12 interrupt lines are named DSPIRQ[n] where n has
a value from 0 to 11. The peripherals can be mapped to these lines for
interrupt priorities from 0 (the highest priority) through 11 (the lowest
priority). By default the interrupt lines are mapped to peripherals in
numerical order matching the values of n (an interrupt priority of 0
assigned to DSPIRQ[0], an interrupt priority of 1 assigned to DSPIRQ[1],
and so on).

The DSP defines four Interrupt Priority (IPRx) registers. Each register
defines four of the 12 user-mappable interrupts, as shown in IPRx register
diagrams (Figure B-3 on page B-22, Figure B-4 on page B-23, Figure B-5
on page B-23, and Figure B-6 on page B-23). Table 14-10 on page 14-28
shows the relationship of IPRx registers to peripheral interrupts.

Table 14-10. Interrupt Priority (IPRx) Registers and Peripherals

Priority Register Priority Fields/Peripherals

Interrupt Priority Register 0 (IPR0) Bits 3–0, HOSTIP (Host interrupt priority)

Bits 7–4, SP0RXIP (SPORT0 RX interrupt priority)

Bits 11–8, SP0TXIP (SPORT0 TX interrupt priority)

Bits 15–12, SP1RXIP (SPORT1 RX interrupt priority)

ADSP-219x/2191 DSP Hardware Reference 14-29

System Design

To change the default interrupt priority for one of the remappable inter-
rupts, set the correct bits of its interrupt priority register to the desired
interrupt priority value.

Managing DSP Clocks
Systems can drive the ADSP-2191’s clock inputs with a crystal oscillator;
sine wave input; or a buffered, shaped clock derived from an external clock
oscillator. If the system uses a crystal oscillator, the crystal should be con-
nected across the CLKIN and XTAL pins, with two capacitors connected as
shown in Figure 14-4 on page 14-30. Capacitor values are dependent on
crystal type and should be specified by the crystal manufacturer. Use a
parallel-resonant, fundamental frequency, microprocessor-grade crystal for
this configuration.

Interrupt Priority Register 1 (IPR1) Bits 3–0, SP1TXIP (SPORT1 TX interrupt priority)

Bits 7–4, SP2RXIP (SPORT2 RX interrupt priority)

Bits 11–8, SP2TXIP (SPORT2 TX interrupt priority)

Bits 15:12, UARRXIP (UART RX interrupt priority)

Interrupt Priority Register 2 (IPR2) Bits 3–0, UARTXIP (UART TX interrupt priority)

Bits 7–4, TIMER0IP (Timer0 interrupt priority)

Bits 11–8, TIMER1IP (Timer1 interrupt priority)

Bits 15–12, TIMER2IP (Timer2 interrupt priority)

Interrupt Priority Register 3 (IPR3) Bits 3–0, FLAGAIP (Flag A interrupt priority)

Bits 7–4, FLAGBIP (Flag B interrupt priority)

Bits 11–8, MDMAIP (MemDMA interrupt priority)

Bits 15–12, Reserved—Must write 0

Table 14-10. Interrupt Priority (IPRx) Registers and Peripherals

Priority Register Priority Fields/Peripherals

Managing DSP Clocks

14-30 ADSP-219x/2191 DSP Hardware Reference

If a buffered, shaped clock is used, this external clock connects to the
DSP’s CLKIN pin. CLKIN input cannot be halted, changed, or operated
below the specified frequency during normal operation. This clock signal
should be a TTL-compatible signal. When an external clock is used, the
XTAL input must be left unconnected.

Unlike previous ADSP-218x DSPs, The ADSP-2191 processor
does not support the fixed 2x CLKIN clock mode. Instead, the
ADSP-2191 includes a clock multiplier which provides more flexi-
bility for multiple clock modes and permits changing the
core-to-peripheral clock ratio.

Figure 14-4. External Crystal Connections

CLKIN CLKOUTXTAL

ADSP-219x

MSEL5 (PF5)

MSEL4 (PF4)

MSEL3 (PF3)

MSEL2 (PF2)

MSEL1 (PF1)

MSEL0 (PF0)

RESET

25MHz

MSEL6 (PF6)

DF (PF7)

VDD

VDD

BYPASS

RESET
SOURCE

RUNTIME
PF PIN I/O

THE PULL-UP/PULL-
DOWN RESISTORS ON
THE MSEL, DF, AND
BYPASS PINS SELECT
THE CORE CLOCK
RATIO.

HERE, THE SELECTION
(6:1) AND 25MHz INPUT
CLOCK PRODUCE A
150MHz CORE CLOCK.

ADSP-219x/2191 DSP Hardware Reference 14-31

System Design

The DSP uses the clock input (CLKIN) to generate on chip clocks. These
on chip clocks include the core clock (CCLK), the peripheral clock
(HCLK), and external memory interface clocks (EMICLK, one per bank).

Depending on the clock multiplier mode (multiplier mode or bypass
mode), the DSP’s on chip phase lock loop (PLL) can apply a programma-
ble 1x to 32x multiplication factor to the clock input as the PLL generates
the on chip clocks. At reset, the MSEL6–0, BYPASS, and DF pins select the
PLL functionality. At runtime, the PLLCTL register permits controlling and
changing the clock modes (including the multiplication factor) in soft-
ware. The following code examples shows how to use the PLLCTL register.

/* Example PLL control code */

IOPG = 0x00; /* Init IOPG to Clk/Sys Control */

AX1 = 0x0352; /* Stop the PLL - In Bypass */

IO(0x200) = AX1; /* Write the PLLCTL register */

AX1 = 0x0552; /* Reprogram to 2x - In Bypass */

IO(0x200) = AX1; /* Write the PLLCTL register */

AX1 = 0x0550; /* Start the PLL - In Bypass */

IO(0x200) = AX1; /* Write the PLLCTL register */

AX1 = 0x0450; /* Exit Bypass- ~500 clkin cycles */

IO(0x200) = AX1; /* Write the PLLCTL register */

CNTR = 1100; /* Wait for a duration of time */

DO wt UNTIL CE;

wt: NOP;

The wait loop above is optional. As an alternative, poll the LOCKCNT regis-
ter. The DSP continues running in bypass mode until the lock counter
expires. Then, core and peripherals are connected back to the PLL
automatically.

To support input clocks greater than 100 MHz, the PLL uses an addi-
tional input: the divide frequency (DF) pin. Setting the DF pin divides
CLKIN/2 prior to the PLL; therefore, if the input clock is greater than
100 MHz, DF must be high. If the input clock is less than 100 MHz, DF
must be low.

Managing DSP Clocks

14-32 ADSP-219x/2191 DSP Hardware Reference

The combination of pull-up and pull-down resistors in Figure 14-4 on
page 14-30 put the DSP in clock multiplier mode (BYPASS=0), select an
input clock <100 MHz (DF=0), and select a 6x clock multiplier
(MSELx=core clock ratio of 6:1), producing a 150 MHz core clock from the
25 MHz input.

All on-chip peripherals for the ADSP-2191 operate at the rate set by the
peripheral clock. The peripheral clock is either equal to the core clock rate
or one-half the DSP core clock rate. This selection is controlled by the
IOSEL bit in the PLLCTL register. The maximum core clock is 160 MHz,
and the maximum peripheral clock is 80 MHz—the combination of the
input clock and core/peripheral clock ratios may not exceed these limits.

The clock on the ADSP-2191 requires approximately 500 clock
cycles to stabilize. To maximize the speed of recovery from reset,
CLKIN must run during the RESET.

Using the PLL Control (PLLCTL) Register
The PLL Control (PLLCTL) register selects the DSP’s core clock (CCLK) fre-
quency and select powerdown modes. The PLL multiplies the clock
frequency of the input clock with a programmable ratio.

At reset, the PLL starts in bypass mode, running CCLK directly from CLKIN.
The reset must be active for sufficient time to allow full initialization of
the synchronizer chain. For timing information, see the ADSP-2191 DSP
Microcomputer Data Sheet. After reset, software can switch to a clock mul-
tiplier mode as discussed in “Using Clock Modes” on page 14-37.

ADSP-219x/2191 DSP Hardware Reference 14-33

System Design

The bits in the PLLCTL register are illustrated in Figure B-1 on page B-18.
The bits in the PLLCTL register are as follows:

• Divide Frequency. Bit 0 (DF) is read/write. A value of 0 for the DF
bit disables the input divider; when the DF bit has a value of 1,
CLKIN is divided by 2. This bit lets the system configure the PLL to
use a high frequency clock input (80–160 MHz; PLL divides input
by 2) or low frequency clock input (1–80 MHz; no divide).

• PLL Off. Bit 1(PO) is read/write. PO lets software shut off the PLL.
A value of 0 for the PO bit turns the PLL on; a value of 1 turns it
off.

• Stop All PLL Output. Bit 2 (STOPALL) is read/write. A value of 0
for the STOPALL bit enables PLL output; a value of 1 sets the CCLK
and HCLK clocks high and disables their output.

• Stop Core Clock. Bit 3 (STOPCK) is read/write. A value of 0 for the
STOPCK bit enables CCLK output; a value of 1 sets CCLK high and dis-
ables its output.

• Core:Peripheral Clock Ratio. Bit 4 (IOSEL) is read/write. A value
of 0 for the IOSEL bit sets CCLK to the value of HCLK; a value of 1 for
the IOSEL bit sets HCLK to CCLK/2.

• Powerdown. Bit 5 (PDWN) is read/write. A value of 0 for the PDWN bit
means the PLL is running; a value of 1 puts the PLL into low
power mode, which shuts off the PLL circuitry and stops the input
clock to the PLL.

• CLKOUT Enable. Bit 6 (CKOUTEN) is read/write. A value of 0 for
the CKOUTEN bit sets CLKOUT to 0; a value of 1 for the CKOUTEN bit
sets CLKOUT to the value of HCLK.

• Divide CLKIN/2 in Bypass Enable. Bit 7 (DIV2) is read/write. A
value of 0 for the DIV2 bit specifies no divide; a value of 1 for the
DIV2 bit sets CCLK to CLKIN/2 in bypass mode.

Managing DSP Clocks

14-34 ADSP-219x/2191 DSP Hardware Reference

• Bypass PLL Multiplier. Bit 8 (BYPASS) is read/write. A value of 0
for the BYPASS bit puts the PLL into multiplier mode; a value of 1
puts the PLL into bypass mode.

• Multiplier Select. Bits 15–9 (MSEL6–0). These bits are latched from
the mode pins at hardware reset. These bits select the CLKIN multi-
plier as shown in Table 14-11 on page 14-34.

There are a number of restrictions on the relationship between the
input clock (CLKIN), the core clock (CCLK) and the phase lock
loop clock (PLLCK). These restrictions are identified in the notes
following Table 14-11 on page 14-34.

Table 14-11. CLKIN Multiplier Values (xCLKIN=CCLK)1,2,3,4,5,6

Pin name MSEL6:DF = 00 MSEL6:DF= 01 MSEL6:DF= 10 MSEL6:DF= 11

MSEL4:0 CCLK PLLCK CCLK PLLCK CCLK PLLCK CCLK PLLCK

0 32x 32x 16x 16x 16x 32x 8x 16x

1 1x 1x 0.5x 0.5x 0.5x 1x 0.25x 0.5x

2 2x 2x 1x 1x 1x 2x 0.5x 1x

3 3x 3x 1.5x 1.5x 1.5x 3x 0.75x 1.5x

4 4x 4x 2x 2x 2x 4x 1x 2x

5 5x 5x 2.5x 2.5x 2.5x 5x 1.25x 2.5x

6 6x 6x 3x 3x 3x 6x 1.5x 3x

7 7x 7x 3.5x 3.5x 3.5x 7x 1.75x 3.5x

8 8x 8x 4x 4x 4x 8x 2x 4x

9 9x 9x 4.5x 4.5x 4.5x 9x 2.25x 4.5x

10 10x 10x 5x 5x 5x 10x 2.5x 5x

11 11x 11x 5.5x 5.5x 5.5x 11x 2.75x 5.5x

12 12x 12x 6x 6x 6x 12x 3x 6x

13 13x 13x 6.5x 6.5x 6.5x 13x 3.25x 6.5x

14 14x 14x 7x 7x 7x 14x 3.5x 7x

15 15x 15x 7.5x 7.5x 7.5x 15x 3.75x 7.5x

16 16x 16x 8x 8x 8x 16x 4x 8x

17 17x 17x 8.5x 8.5x 8.5x 17x 4.25x 8.5x

ADSP-219x/2191 DSP Hardware Reference 14-35

System Design

18 18x 18x 9x 9x 9x 18x 4.5x 9x

19 19x 19x 9.5x 9.5x 9.5x 19x 4.75x 9.5x

20 20x 20x 10x 10x 10x 20x 5x 10x

21 21x 21x 10.5x 10.5x 10.5x 21x 5.25x 10.5x

22 22x 22x 11x 11x 11x 22x 5.5x 11x

23 23x 23x 11.5x 11.5x 11.5x 23x 5.75x 11.5x

24 24x 24x 12x 12x 12x 24x 6x 12x

25 25x 25x 12.5x 12.5x 12.5x 25x 6.25x 12.5x

26 26x 26x 13x 13x 13x 26x 6.5x 13x

27 27x 27x 13.5x 13.5x 13.5x 27x 6.75x 13.5x

28 28x 28x 14x 14x 14x 28x 7x 14x

29 29x 29x 14.5x 14.5x 14.5x 29x 7.25x 14.5x

30 30x 30x 15x 15x 15x 30x 7.5x 15x

31 31x 31x 15.5x 15.5x 15.5x 31x 7.75x 15.5x

1 The values in this table apply for MSEL5==0; For MSEL5==1, see note 6.
2 The same DSP core clock frequency (CCLK) can be obtained with different combinations of

MSEL[6:0]/DF; One combination may work better in a given application either to run at lower
power (DF=1) or to satisfy the PLLCK minimum frequency (10MHz).

3 The PLLCK minimum frequency is 10 MHz, and therefore for any MSEL value, for which the
PLLCK frequency is going to be less than 10 MHz, the user needs to select the PLL BYPASS
mode. For e.g., if CLKIN = 3.33 MHz and MSEL = 0x01(hex) for a 1x operation, BYPASS mode
should be selected. On the other hand if CLKIN = 3.33 MHz, and MSEL = 26(hex) for 3x op-
eration, BYPASS mode is not required as the PLLCK will be 6x (20 MHz).

4 The PLLCK maximum frequency is 400 MHz. If the system uses high values for the clock ratio,
then care should be taken that the PLLCK frequency doesn’t exceed 400 MHz. For example, if
50x is the PLLCK ratio to achieve a 25x CCLK/CLKIN ratio, then the CLKIN should not ex-
ceed 400/50 = 8MHz.

5 Although the PLLCK supports Core clocks (CCLK) up to 200 MHz, the output frequency for
a given ADSP-219x part is limited by the core speed.

6 Note that when MSEL[5]==1, DF must also be set to 1 by the user; in this case, output clock
frequency ratio on CCLK and PLLCK are the same as with MSEL[5]==0 and DF==0.

Table 14-11. CLKIN Multiplier Values (xCLKIN=CCLK)1,2,3,4,5,6

Pin name MSEL6:DF = 00 MSEL6:DF= 01 MSEL6:DF= 10 MSEL6:DF= 11

MSEL4:0 CCLK PLLCK CCLK PLLCK CCLK PLLCK CCLK PLLCK

Managing DSP Clocks

14-36 ADSP-219x/2191 DSP Hardware Reference

Designing for Multiplexed Clock Pins
The ADSP-2191’s MSEL6–0 pins and PF6–0 pins are multiplexed. During
reset, these pins act as multiplier selects (if in multiplier mode) and act as
programmable flags after reset. This multiplexing influences system design
as follows:

• For systems selecting bypass mode during reset, MSELx pin states do
not need to be managed during reset. The multiplexed nature of
these pins does not influence system design for the PFx pins when
using bypass mode during reset.

• For systems using multiplier mode during reset and not using PFx
pins at runtime, use pullup or pulldown resistors to select the
MSELx value. Do not leave these pins unconnected.

• For systems using multiplier mode during reset and using the PFx
pins at runtime, use pullup or pulldown resistors to select the
MSELx value during reset and ensure that the system permits the
MSELx pins to stabilize to a valid multiplier value in compliance
with the timing for RESET in the datasheet.

The timing for the MSELx, BYPASS, and DF pins during reset is identical and
has the following features (as showing in Figure 14-7 on page 14-25):

• tPFD—Delay from RESET asserted to PFx input or output is termi-
nated. From this point, the MSELx values begin stabilizing to a valid
state.

• tMSD—Delay from RESET asserted to MSELx must have valid values.
The values can change from this point, but only from one valid
value to another.

• tMSS—Setup for MSELx value before RESET deasserted. The value
must be held from this point until hold time completes.

• tMSH—Hold for MSELx value after RESET deasserted.

ADSP-219x/2191 DSP Hardware Reference 14-37

System Design

Using Clock Modes
Figure 14-6 on page 14-38 shows a state diagram for the DSP’s clock
modes. Note the following key points that this diagram illustrates:

• The MSELx pins provide input for the reset configuration (at reset).

• The MSELx bits in the PLLCTL register provide input when the DSP
is in bypass or power-down PLL modes (at runtime).

• The PWDN, PLL_OFF, STOPCK, STOPALL, and BYPASS bits in the PLLCTL
register control movement between clock modes.

• The PLL determines the mode change from the bits and the bits’
priorities.

These modes are provided in the DSP in order to cutoff clock signals to
the core and/or to the peripherals. This is an important requirement for
the low-cost power sensitive applications.

In power-down all mode, BYPASS and PLL are off, and there are no out-
put clocks. An asynchronous wake-up (FIO_WAKEUP, TMR_WAKE0,
TMR_WAKE1 or TMR_WAKE2) is expected to trigger the wake-up
sequence.

Figure 14-5. MSELx, BYPASS, and DF Timing

MSEL6–0
BYPASS

DF

RESET

tMSHtPF D

tM SD
tMSS

Managing DSP Clocks

14-38 ADSP-219x/2191 DSP Hardware Reference

Figure 14-6. Clock PLL Modes Flowchart

3

Powerdown All
Mode

(CCLK=0, HCLK=0)

Powerdown PLL
Mode

(CCLK=CLKIN)

Bypass
Mode

(CCLK=CLKIN)

Clock Multiplier
Mode

(CCLK=NxCLKIN)

PDWN=1
STOPCK=1

STOPALL=1

STOPCK=1
or

STOPALL=1

BYPASS=1

BYPASS=0

STOPCK=1
or

STOPALL=1

PDWN=1

Idle
Mode

(STOPCK=1? CCLK=0)
(STOPALL=1? C/HCLK=0)

MSELx
Change

MSELx=new
PLL_OFF=0
BYPASS=1

MSELx=new
PLL_OFF=0
BYPASS=0

Reset Configuration

PLL_OFF=0PLL_OFF=1

3

Wake Up
Event

Wake Up
Event

22
11

Wake Up
Event

1

Wake Up
Event

PDWN=1

4

2

MSELx
Change

Notes:

1) A Wake Up Event is an interrrupt that prompts the DSP to return from Idle or Powerdown All Mode.

2) The PLL mode arbitration priority (number tags on outbound paths from each mode) determine
the mode change. If the DSP is in Bypass mode and both the PDWN and PLL_OFF bits where set in the
same cycle (for example), the PLL puts the DSP in Powerdown All mode because that mode change has
the higher priority (1).

ADSP-219x/2191 DSP Hardware Reference 14-39

System Design

In Idle mode the PLL is on, but CCLK is off and/or HCLK, too. An asyn-
chronous wake-up or in the case the HCLK is running, an interrupt
(IRQ_INT) can trigger the wake-up sequence.

The PLL can be in five different transition states, as specified by the bits
in the PLLCTL register.

• Clock Multiplier Mode. BYPASS is off and PLL is on. The output
clock is generated by the PLL with the desired frequency ratio.
While in clock multiplier mode, the PLLCTL register’s STOPCK, STO-
PALL, BYPASS, PDWN, DIV2, and IOSEL bits can be changed; the other
bits of the PLLCTL register cannot be changed in clock multiplier
mode. If more than one of these bits is updated, there is a pre-
defined order for the update, as shown in the state diagram. Any
change of these bits leads to a state transition.

• Bypass Mode. BYPASS and PLL are both on. The PLL is in BYPASS
mode, and the input clock is directly used to generate the clocks for
the core and the peripherals. In this mode the multiplication ratio
can be changed. The lock counter defines when the PLL is locked
to the new ratio and can get to clock multiplier mode. While in
Bypass mode, the PLLCTL register’s STOPCK, STOPALL, PLLOFF,
BYPASS, IOSEL, and PDWN bits can be written. The DIV2, MSEL, and
DF bits can also be written when BYPASS=1. If more than one of
these bits is updated, there is a predefined order for the update, as
shown in Figure 14-6 on page 14-38.

• Idle Mode. The PLL is on, and the core is in idle mode. The PLLCTL
register cannot be written when in Idle mode. An external event or
some peripheral activity is expected to generate the wake-up inter-
rupt. There are two configurations for this mode; only CCLK may be
turned off, or both CCLK and HCLK may be turned off. The PLLCTL
register’s BYPASS bit determines the next state of the PLL after
wake-up: BYPASS=1 means the next state will be Bypass mode, oth-
erwise the next state will be multiplier mode.

Using Programmable Flags

14-40 ADSP-219x/2191 DSP Hardware Reference

• Power-down PLL Mode. BYPASS is on and PLL is off. The DSP is in
bypass mode, and the input clock is directly used to generate the
clocks for the core and the peripherals. In this mode the multiplica-
tion ratio (MSEL) can be changed. The lock counter defines when
the PLL is locked to the new ratio and can transition to the bypass
mode before switching to multiplier mode. While in powerdown
PLL mode, the PLLCTL register’s PDWN, PLLOFF, DF, DIV2, and IOSEL
bits can be changed; the BYPASS bit cannot be changed. When the
STOPCK and STOPALL bits change, the next state will be power-down
all mode.

• Power-down All Mode. The PLL is off, and the output clocks CCLK
and HCLK are off. Because the clocks are off, the PLLCTL register
state cannot change in this mode. An asynchronous event is
expected to trigger the wake-up sequence for the DSP. The PLLOFF
bit of the PLLCTL register determines the next state of the PLL after
wake-up: PLLOFF=0 means the next state will be powerdown PLL
mode; otherwise the next state will be bypass mode. If the PLL was
in multiply mode before it went into power-down all mode, it will
wake up in bypass mode but will transition to multiplier mode as
soon as the PLL is locked.

Using Programmable Flags
This section includes a detailed example of how to set up the pro-
grammable flags; configure the flag interrupt sources, sensitivities,
and polarities; configure the interrupt priorities; and mask and
enable interrupts. See “Programmable Flags Example” on
page 14-53.

The ADSP-2191 DSP has 16 general-purpose flag pins (PF15-0) shown in
Table 14-1 on page 14-3. Eight of these flag pins are available when the
DSP is using an 8- or 16-bit bus. When the DSP is using an 8-bit bus,
eight additional general-purpose flag pins are also available. The lower

ADSP-219x/2191 DSP Hardware Reference 14-41

System Design

eight pins (the ones that are always available) can be used in three different
ways: as general-purpose flag pins (referred to as PFx or PF7-0), as clock
multiplier select pins (MSELx or MSEL6-0), or as select pins for external SPI
devices (SPInSELx and SPISSn).

As multiplier select (MSELx) pins, these pins define the clock multiplier
ratios. If the BYPASS pin is set (=1), the MSELx pins are bypassed and the
clock is passed straight through to the DSP. If the BYPASS pin is cleared
(=0), the values of the MSELx pins are used to determine the clock multi-
plier value. The DF pin (alternately named PF7) controls the input divider.
The input divider is disabled when DF is cleared (=0); when DF is set (=1),
CLKIN is divided by two before being used.

For information on working with the MSELx/PFx pins, see “Design-
ing for Multiplexed Clock Pins” on page 14-36.

Data being read from a pin configured as an input is synchronized to the
processor’s clock (HCLK). Pins configured as outputs drive the appropriate
output value.

Flag Configuration Registers
The PFx flags on the ADSP-2191 are programmed with a group of flag
configuration registers: the Flag Direction (DIR) register, the Flag Control
registers (FLAGC and FLAGS), the Flag Interrupt Mask registers (MASKAC,
MASKAS, MASKBC, and MASKBS), the Flag Interrupt Polarity (FSPR) register,
and the Flag Sensitivity registers (FSSR and FSBER). These registers are
described in the following sections.

Using Programmable Flags

14-42 ADSP-219x/2191 DSP Hardware Reference

Several precautions should be observed when programming these flag con-
figuration registers:

• To avoid unwanted interrupts, software should only change a
FLAGx[n] bit while its respective interrupt bit, MASKx[n], is masked.

• Five NOPs or instructions must follow an FSPRx[n] bit change, and
the respective FLAG[n] bit must be cleared before its interrupt bit is
unmasked.

• At reset, all flag configuration registers are initialized to zero; all
flag pins are configured as level-sensitive inputs with no inversion,
all flag interrupts are masked, and all interrupts are disabled.

• Narrow positive active input [n] pulses are only detectable if
FSPRx[n]=0; narrow negative active input [n] pulses are only detect-
able if FSPRx[n]=1.

For more information about the programmable flag registers, see
“ADSP-2191 DSP I/O Registers” on page B-1.

Flag Direction (DIR) Register

The Flag Direction (DIR) register configures a flag pin as an input or out-
put. The DIR register is located at I/O memory page 0x06, I/O address
0x000. (The DIR register is also aliased to I/O memory page 0x06, I/O
address 0x001.) Writing a “1” to a bit of the DIR register (at either I/O
address) configures the corresponding flag pin as an output; writing a “0”
configures the corresponding flag pin as an input. Each bit of the DIR reg-
ister corresponds with each of the 16 available flag pins of the
ADSP-2191.

Flag Control (FLAGC and FLAGS) Registers

The Flag Control registers set or clear a flag pin.

ADSP-219x/2191 DSP Hardware Reference 14-43

System Design

The Flag Clear (FLAGC) register is used to clear the flag pin when it is con-
figured as either an input or an output. FLAGC is located at I/O memory
page 0x06, I/O address 0x0002. Writing a “1” to the FLAGC register clears
the corresponding flag pin; writing a “0” has no effect on the value of the
flag pin. The 16 bits of the FLAGC register correspond to the 16 available
flag pins of the ADSP-2191.

The Flag Set (FLAGS) register is used to set the flag pin when it is config-
ured as either an input or an output. Setting a flag pin that is configured
as an input allows for software configurable interrupts. FLAGS is located at
I/O memory page 0x06, I/O address 0x0003. Writing a “1” to the FLAGS
register sets the corresponding flag pin; writing a “0” has no effect on the
value of the flag pin. The 16 bits of the FLAGS register correspond to the
16 available flag pins of the ADSP-2191.

The Flag Set (FLAGS) register is used to set the flag pin when it is config-
ured as an output. Software interrupts may be implemented this way.
Writes to FLAGS/FLAGC are ignored if the corresponding pin is configured
as an input.

When switching from input to output, the current value of the
FLAGS/FLAGC registers are applied to the corresponding output pin. While
a pin is configured as input, writes to FLAGS/FLAGC are not latched and the
content of FLAGS/FLAGC is controlled by the input signal and the polarity
register (FSPR). Assuming FSPR cleared, a pin change from input to output
initially outputs the same state as the input had before. This behavior
guarantees a clean transition in case an external pull-up or pull-down
resistor defines the state during start-up.

Flag Interrupt Mask Registers
(MASKAC, MASKAS, MASKBC, and MASKBS)

The Flag Interrupt Mask registers enable a flag pin as an interrupt source.
The flag pin can be configured as either an input or an output signal. The
MASKA and MASKB registers allow for two different programmable flag 0 and
1 interrupt priority levels for all of the flag pins.

Using Programmable Flags

14-44 ADSP-219x/2191 DSP Hardware Reference

The Flag Interrupt MASKA and MASKB Set registers (MASKAS and MASKBS,
respectively) are used to “unmask” or enable the servicing of the flag inter-
rupt. The MASKAS register is located at I/O memory page 0x06, I/O address
0x005. The MASKBS register is located at I/O memory page 0x06, I/O
address 0x007. Writing a “1” to the MASKAS or MASKBS register unmasks the
interrupt capability of the corresponding flag pin; writing a “0” has no
effect on the masking of the flag pin. The 16 bits of the MASKAS and
MASKBS registers correspond to the 16 available flag pins of the
ADSP-2191.

The Flag Interrupt MASKA and MASKB Clear registers (MASKAC and MASKBC,
respectively) are used to “mask” or disable the servicing of the flag inter-
rupt. The MASKAC register is located at I/O memory page 0x06, I/O address
0x004. The MASKBC register is located at I/O memory page 0x06, I/O
address 0x006. Writing a “1” to the MASKAC or MASKBC register masks the
interrupt capability of the corresponding flag pin; writing a “0” has no
effect on the masking of the flag pin. The 16 bits of the MASKAC and
MASKBC registers correspond to the 16 available flag pins of the
ADSP-2191.

Flag Interrupt Polarity (FSPR) Register

The Flag Interrupt Polarity (FSPR) register selects either a high or low
polarity of an interrupt signal. The flag polarity applies for input flag pins
only (DIR[n]=0).

The Flag Interrupt Polarity (FSPR) register is located at I/O memory page
0x06, I/O address 0x008. (The FSPR register is also aliased to I/O memory
page 0x06, I/O address 0x009.) Writing a “0” to a bit of the FSPR register
configures the corresponding flag pin as an active high input signal; writ-
ing a “1” configures the corresponding flag pin as an active low input
signal. The 16 bits of the FSPR register correspond to the 16 available flag
pins of the ADSP-2191.

ADSP-219x/2191 DSP Hardware Reference 14-45

System Design

Flag Sensitivity (FSSR) Register and
Flag Sensitivity Both Edges (FSBER) Register

The Flag Sensitivity (FSSR) register determines edge- or level-sensitivity
when the flag pin is configured as an input (DIR[n]=0). If the flag pin is
configured for edge-sensitivity, the FSSR register also specifies the flag
pin’s sensitivity for rising edge, falling edge, or both edges.

FSSR is located at I/O memory page 0x06, I/O address 0x00A. (The FSSR
register is also aliased to I/O memory page 0x06, I/O address 0x00B.)
Writing a “0” to a bit of the FSSR register configures the corresponding
flag pin as a level sensitive input; writing a “1” configures the correspond-
ing flag pin as an edge sensitive input. The 16 bits of the FSSR register
correspond to the 16 available flag pins of the ADSP-2191.

The Flag Sensitivity Both Edges (FSBER) register configures the sensitivity
of the flag pin for rising-edge, falling-edge, or both edges sensitivity
(depending on the value of the FSPR[n] bit).

FSBER is located at I/O memory page 0x06, I/O address 0x00C. (The FSBER
register is also aliased to I/O memory page 0x06, I/O address 0x00D.)
Writing a “0” to a bit of the FSBER register configures the corresponding
flag pin for rising-edge or falling-edge sensitivity (as determined by the
value of the corresponding bit of the FSPR register); writing a “1” config-
ures the corresponding flag pin for both-edges sensitivity. The 16 bits of
the FSBER register correspond to the 16 available flag pins of the
ADSP-2191.

For more information, see “Programmable Flags Example” on page 14-53.

Power-Down Modes
The ADSP-2191 has four low-power options that significantly reduce the
power dissipation. To enter any of these modes, the DSP executes an IDLE
instruction. The ADSP-2191 uses configuration of the PDWN, STOPCK, and

Idle Mode

14-46 ADSP-219x/2191 DSP Hardware Reference

STOPALL bits in the PLLCTL register to select between the low-power modes
as the DSP executes the IDLE. Depending on the mode, an IDLE shuts off
clocks to different parts of the DSP in the different modes. The low power
modes are:

• Idle

• Power-down core

• Power-down core/peripherals

• Power-down all

Idle Mode
When the ADSP-2191 is in idle mode, the DSP core stops executing
instructions, retains the contents of the instruction pipeline, and waits for
an interrupt. The core clock and peripheral clock continue running.

To enter IDLE mode, the DSP can execute the Idle instruction anywhere in
code. To exit IDLE mode, the DSP responds to an interrupt and upon RTI,
resumes executing the instruction after the IDLE.

Power-Down Core Mode
When the ADSP-2191 is in power-down core mode, the DSP core clock
(CCLK) is off, but the PLL is running. The peripheral clock (HCLK)
keeps running, letting the peripherals receive data. The peripherals cannot
do DMA, because the on-chip memory is controlled by the CCLK. The
peripherals can issue an interrupt to exit power-down.

ADSP-219x/2191 DSP Hardware Reference 14-47

System Design

To enter power-down core mode, the DSP executes an IDLE instruction
after performing the following tasks:

• Check for pending interrupts and I/O service routines

• Clear (= 0) the PDWN bit in the PLLCTL register

• Clear (= 0) the STOPALL bit in the PLLCTL register

• Set (= 1) the STOPCK bit in the PLLCTL register

• The PLL will issue a power-down interrupt

• ADSP-2191 enters power-down upon encountering an Idle
instruction in the ISR

To exit power-down core mode, the DSP responds to an interrupt and
resumes executing instructions with the instruction after the IDLE.

Power-Down Core/Peripherals Mode
When the ADSP-2191 is in power-down core/peripherals mode, the DSP
core clock and peripheral clock are off, but the DSP keeps the PLL run-
ning. The peripheral clock is stopped, so the peripherals cannot receive
data.

To enter power-down core/peripherals mode, the DSP executes an IDLE
instruction after performing the following tasks:

• Check for pending interrupts and I/O service routines

• Clear (= 0) the PDWN bit in the PLLCTL register

Power-Down All Mode

14-48 ADSP-219x/2191 DSP Hardware Reference

• Set (= 1) the STOPALL bit in the PLLCTL register

• The PLL will issue a power-down interrupt

• ADSP-2191 enters power-down upon encountering an Idle
instruction in the ISR

To exit power-down core/peripherals mode, the DSP responds to an inter-
rupt and (after five to six cycles of latency) resumes executing instructions
with the instruction after the IDLE.

Power-Down All Mode
When the ADSP-2191 is in power-down all mode, the DSP core clock,
the peripheral clock, and the PLL are all stopped. The peripheral clock is
stopped, so the peripherals cannot receive data.

To enter power-down all mode, the DSP executes an IDLE instruction
after performing the following tasks:

• Check for pending interrupts and I/O service routines

• Set (= 1) the PDWN bit in the PLLCTL register

• The PLL will issue a power-down interrupt

• ADSP-2191 enters power-down upon encountering an Idle
instruction in the ISR

To exit power-down core/peripherals mode, the DSP responds to an inter-
rupt and (after 500 cycles to re-stabilize the PLL) resumes executing
instructions with the instruction after the Idle.

ADSP-219x/2191 DSP Hardware Reference 14-49

System Design

Working with External Bus Masters
The ADSP-2191 processor can relinquish control of data and address
buses to an external device. The external device requests the bus by assert-
ing (low) the bus request signal, BR. The BR signal is an asynchronous
input, arbitrated with core and peripheral requests. External bus requests
have the lowest priority inside the DSP. If no other internal request is
pending, the external bus request is granted. Due to synchronizer and
arbitration delays, bus grants are provided with a minimum of three
peripheral clock delays. The ADSP-2191 responds to the bus grant by:

1. Three-stating the data and address buses and the MS3-0, BMS, IOMS,
RD, and WR output drivers.

2. Asserting the bus grant (BG) signal.

Please make sure to include 10 kΩ pull-up resistors on the MSx,
BMS, IOMS, RD, and WR signals, to ensure that they are held in a valid
inactive state if these signals are used in the system’s design.

The ADSP-2191 halts program execution if the bus is granted to an exter-
nal device and an instruction fetch or data read/write request is made to
external general-purpose or peripheral memory spaces. If an instruction
requires two external memory read accesses, the bus is not granted
between the two accesses. If an instruction requires an external memory
read and an external memory write access, the bus may be granted between
the two accesses. The external memory interface can be configured so that
the core will have exclusive use of the interface. DMA and bus requests
will be granted. When the external device releases BR, the DSP releases BG
and continues program execution from the point at which it stopped.

The bus request feature operates at all times, including when the processor
is booting and when RESET is active. During RESET, BG is asserted in the
same cycle that BR is recognized. During booting, the bus is granted after

Working with External Bus Masters

14-50 ADSP-219x/2191 DSP Hardware Reference

completion of loading of the current byte (including any waitstates).
Using bus request during booting is one way to bring the booting opera-
tion under control of a host.

The ADSP-2191 processor also has a Bus Grant Hung (BGH) output,
which lets it operate in a multiprocessor system with a minimum number
of wasted cycles. The BGH pin asserts when the ADSP-2191 processor is
ready to execute an instruction but is stopped because the external bus is
granted to another device. The other device can release the bus by
de-asserting bus request. Once the bus is released, the ADSP-2191 proces-
sor de-asserts BG and BGH and executes the external access.

If the ADSP-2191 processor is performing an external access when the BR
signal is asserted, it will not grant the buses until the cycle after the access
completes. The sequence of events is illustrated in Figure 14-5 on
page 14-37. The entire instruction does not need to be completed when
the bus is granted.

When the BR input is released, the ADSP-2191 processor releases the BG
signal, reenables the output drivers and continues program execution from
the point where it stopped. BG is always de-asserted in the same cycle that
the removal of BR is recognized. Refer to the data sheet for exact timing
relationships.

ADSP-219x/2191 DSP Hardware Reference 14-51

System Design

Figure 14-7. Bus Request (with or without External Access)

C LKO UT

BR

BG

BR

BG

I f n o m em o ry a cc e ss is i n pro gre s s , B G i s
a s se r te d i n the c y c le a f te r BR is re c og ni ze d :

MS x
BMS
IO MS
RD
W R I f a me m ory ac c es s i s in p rog re ss , BG is a s se r t ed i n

t he c y cl e a f te r t he a c ce s s is c o m ple ted :

MS x
BMS
IOMS
RD
WR

Recommended Reading

14-52 ADSP-219x/2191 DSP Hardware Reference

Recommended Reading
The text High-Speed Digital Design: A Handbook of Black Magic is recom-
mended for further reading. This book is a technical reference that covers
the problems encountered in state-of-the-art, high-frequency digital cir-
cuit design, and is an excellent source of information and practical ideas.
Topics covered in the book include:

• High-speed properties of logic gates

• Measurement techniques

• Transmission lines

• Ground planes and layer stacking

• Terminations

• Vias

• Power systems

• Connectors

• Ribbon cables

• Clock distribution

• Clock oscillators

Reference: Johnson & Graham, High-Speed Digital Design: A Handbook of
Black Magic, Prentice Hall, Inc., ISBN 0-13-395724-1

ADSP-219x/2191 DSP Hardware Reference 14-53

System Design

Programmable Flags Example
The following sample code shows how to set up the programmable flags;
configure the flag interrupt sources, sensitivities, and polarities; configure
the interrupt priorities; and mask and enable interrupts.

2191_GPIO.asm

#include <def2191.h>

/* GLOBAL & EXTERNAL DECLARATIONS */

.GLOBAL Start;

/* DM data */

.section/data data1;

/* Program memory code */

.SECTION /pm program;

Start:

_main:

CALL Initialize_GPI0; /* Initialize GPIO */

CALL Initialize_Interrupts; /* Initialize Interrupts */

wait_forever:

JUMP wait_forever;

/* INITIALIZE GENERAL PURPOSE FLAGS */

.SECTION /pm program;

Initialize_GPI0:

IOPG = General_Purpose_IO;

AR = 0x000F; /* Configure FLAGS 0, 1, 2, 3 as outputs, */

/* and 4, 5 as inputs */

Programmable Flags Example

14-54 ADSP-219x/2191 DSP Hardware Reference

IO(DIR) = AR;

AR = 0x0010;

IO(MASKAS) = AR; /* Unmask FLAG 4 */

 /* as GPIO interrupt source 0 */

AR = 0x0020;

IO(MASKBS) = AR; /* Unmask FLAG 5 */

/* as GPIO interrupt source 1 */

AR = 0x0000;

IO(FSPRC) = AR; /* Select FLAG polarity as active High - */

/* NOTE: Depends on hardware implementation */

AR = 0x0000;

IO(FSSRC) = AR; /* Select Flag input as level sensitive */

RTS;

/* INTERRUPT PRIORITY CONFIGURATION */

Initialize_Interrupts:

IOPG = 0;

AR = IO(SYSCR); /* Map Interrupt Vector Table to Page 0 */

AR = SETBIT 4 OF AR;

IO(SYSCR) = AR;

DIS INT; /* Disable all interrupts */

IRPTL = 0x0; /* Clear all interrupts */

ICNTL = 0x0; /* Interrupt nesting disable */

IMASK = 0; /* Mask all interrupts */

/* Set up Interrupt Priorities */

IOPG = Interrupt_Controller_Page;

ADSP-219x/2191 DSP Hardware Reference 14-55

System Design

ar = 0xBB21; /* Assign GPIO Interrupt 0 priority of 1, */

/* GPIO Interrupt 1 priority of 2 */

IO(IPR3) = AR;

AR = 0xBBBB; /* Assign the remainder with lowest priority */

IO(IPR0) = AR;

IO(IPR1) = AR;

IO(IPR2) = AR;

AY0 = IMASK;

AY1 = 0x0060; /* Unmask GPIO 0 and 1 Interrupts */

AR = AY0 OR AY1;

IMASK = AR;

ENA INT; /* Globally enable all interrupts */

RTS;

GPIO_ISR.asm

#include <def2191.h>

/* EXTERNAL DECLARATIONS */

.EXTERN Start;

/* DM data */

.SECTION /dm data1;

.VAR counter_int5 = 0;

.VAR counter_int6 = 0;

.VAR Int_0_Polarity;

.VAR Int_1_Polarity;

/* PM Reset interrupt vector code */

Programmable Flags Example

14-56 ADSP-219x/2191 DSP Hardware Reference

.section/pm IVreset;

JUMP Start;

NOP; NOP; NOP;

/* GPIO 0 ISR */

.section/pm IVint5;

ENA SR;

AY1 = IOPG;

AR = DM(counter_int5); /* Interrupt counter */

/* for debug purposes */

AR = AR + 1;

DM(counter_int5) = AR;

IOPG = General_Purpose_IO;

AY0 = 0x0010;

Wait_0_Depressed:

AX0 = IO(FLAGC);

AR =AX0 AND AY0;

IF NE JUMP Wait_0_Depressed;

AX0 = 0x0003;

AX1 = DM(Int_0_Polarity);

AR = TGLBIT 0x0 OF AX1; /* Toggle Status flag */

IF EQ JUMP TURN_0_OFF; /* Determine if GPIO was ON or OFF */

TURN_0_ON:

IO(FLAGS) = AX0; /* Turn ON GPIOS 0, 1 */

DM(Int_0_Polarity) = AR;

IOPG = AY1;

DIS SR;

RTI;

ADSP-219x/2191 DSP Hardware Reference 14-57

System Design

TURN_0_OFF:

IO(FLAGC) = AX0; /* Turn OFF GPIOS 0, 1 */

DM(Int_0_Polarity) = AR;

IOPG = AY1;

DIS SR;

RTI;

/* GPIO 1 ISR */

.section/pm IVint6;

ENA SR;

AY1 = IOPG;

AR = DM(counter_int6); /* Interrupt counter */

/* for debug purposes */

AR = AR + 1;

DM(counter_int6) = AR;

IOPG = General_Purpose_IO;

AY0 = 0x0020;

Wait_1_Depressed:

AX0 = IO(FLAGC);

AR = AX0 AND AY0;

IF NE JUMP Wait_1_Depressed;

AX0 = 0x000C;

AX1 = DM(Int_1_Polarity);

AR = TGLBIT 0x0 OF AX1; /* Toggle Status flag */

IF EQ JUMP TURN_1_OFF; /* Determine if GPIO was ON or OFF */

TURN_1_ON:

AX0 = 0x000C;

IO(FLAGS) = AX0; /* Turn ON GPIOS 2, 3 */

DM(Int_1_Polarity) = AR;

IOPG = AY1;

Programmable Flags Example

14-58 ADSP-219x/2191 DSP Hardware Reference

DIS SR;

RTI;

TURN_1_OFF:

IO(FLAGC) = AX0; /* Turn OFF GPIOS 2, 3 */

DM(Int_1_Polarity) = AR;

IOPG = AY1;

DIS SR;

RTI;

ADSP-219x/2191 DSP Hardware Reference A-1

A ADSP-219X DSP CORE
REGISTERS

The DSP core has general-purpose and dedicated registers in each of its
functional blocks. The register reference information for each functional
block includes bit definitions, initialization values, and (for system control
registers) memory-mapped addresses. The following information on each
type of register is provided:

• “Overview” on page A-1

• “Core Status Registers” on page A-8

• “Computational Unit Registers” on page A-11

• “Program Sequencer Registers” on page A-15

• “Data Address Generator Registers” on page A-20

• “Memory Interface Registers” on page A-22

Overview
Outside of the DSP core, a set of registers control the I/O peripherals. For
information on these product specific registers, see “ADSP-2191 DSP I/O
Registers” on page B-1.

When writing DSP programs, it is often necessary to set, clear, or test bits
in the DSP’s registers. While these bit operations can all be done by refer-
ring to the bit’s location within a register or (for some operations) the
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the bit’s or register’s name. For convenience and

Overview

A-2 ADSP-219x/2191 DSP Hardware Reference

consistency, Analog Devices provides a header file that provides these bit
and registers definitions. For core register definitions, see the “Register
and Bit #Defines File (def219x.h)” on page A-22. For off-core register
definitions, see the “Register and Bit #define File (def2191.h)” on
page B-115.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) the register’s reserved bits.

Core Registers Summary
The DSP has three categories of registers:

• Core registers

• System control registers

• I/O registers

Table A-1 on page A-3 lists and describes the DSP’s core registers and sys-
tem control registers. Also, the DSP core registers divide into register
group (Dreg, Reg1, Reg2, and Reg3) based on their opcode identifiers and
functions as shown in Table A-2 on page A-4. For more information on
how registers may be used within instructions, see the ADSP-219x DSP
Instruction Set Reference.

Register Load Latencies
An effect latency occurs when some instructions write or load a value into
a register, which changes the value of one or more bits in the register.
Effect latency refers to the time it takes after the write or load instruction
for the effect of the new value to become available for other instructions to
use.

ADSP-219x/2191 DSP Hardware Reference A-3

ADSP-219x DSP Core Registers

Table A-1. Core Registers

Type Registers Function

Status ASTAT
MSTAT
SSTAT (read-only)

Arithmetic status flags
Mode control and status flags
System status

Computational
Units

AX0, AX1, AY0, AY1,
AR, AF, MX0, MX1,
MY0, MY1, MR0,
MR1, MR2, SI, SE,
SB, SR0, SR1, SR2

Data register file registers provide Xop and Yop
inputs for computations. AR, SR, and MR receive
results. In this text, the word Dreg denotes unre-
stricted use of data registers as a data register file,
while the words XOP and YOP denote restricted
use. The data registers (except AF, SE, and SB) serve
as a register file, for unconditional, single-function
instructions.

Shifter SE
SB

Shifter exponent register
Shifter block exponent register

Program flow CCODE
LPSTACKA
LPSTACKP
STACKA
STACKP

Software condition register
Loop stack address register, 16 address LSBs
Loop stack page register, 8 address MSBs
PC stack address register, 16 address LSBs
PC stack page register, 8 address MSBs

Interrupt ICNTL
IMASK
IRPTL

Interrupt control register
Interrupt mask register
Interrupt latch register

DAG address I0, I1, I2, I3
I4, I5, I6, I7

DAG1 index registers
DAG2 index registers

M0, M1, M2, M3
M4, M5, M6, M7

DAG1 modify registers
DAG2 modify registers

L0, L1, L2, L3
L4, L5, L6, L7

DAG1 length registers
DAG2 length registers

System control B0, B1, B2, B3, B4,
B5, B6, B7, CACTL

DAG1 base address registers (B0-3), DAG2 base
address registers (B4-7), Cache control

Overview

A-4 ADSP-219x/2191 DSP Hardware Reference

Page DMPG1
DMPG2
IJPG
IOPG

DAG1 page register, 8 address MSBs
DAG2 page register, 8 address MSBs
Indirect jump page register, 8 address MSBs
I/O memory page register, 8 address MSBs

Bus exchange PX Holds eight LSBs of 24-bit memory data for trans-
fers between memory and data registers only.

Table A-2. ADSP-219x DSP Core Registers

RGP/Address Register Groups (RGP)

Address 00 (DREG) 01 (REG1) 10 (REG2) 11 (REG3)

0000 AX0 I0 I4 ASTAT

0001 AX1 I1 I5 MSTAT

0010 MX0 I2 I6 SSTAT

0011 MX1 I3 I7 LPSTACKP

0100 AY0 M0 M4 CCODE

0101 AY1 M1 M5 SE

0110 MY0 M2 M6 SB

0111 MY1 M3 M7 PX

1000 MR2 L0 L4 DMPG1

1001 SR2 L1 L5 DMPG2

1010 AR L2 L6 IOPG

1011 SI L3 L7 IJPG

1100 MR1 IMASK Reserved Reserved

1101 SR1 IRPTL Reserved Reserved

1110 MR0 ICNTL CNTR Reserved

1111 SR0 STACKA LPCSTACKA STACKP

Table A-1. Core Registers (Cont’d)

Type Registers Function

ADSP-219x/2191 DSP Hardware Reference A-5

ADSP-219x DSP Core Registers

Effect latency values are given in terms of instruction cycles. A 0 latency
means that the effect of the new value is available on the next instruction
following the write or load instruction. For register changes that have an
effect latency greater than 0, do not try to use the register right after writ-

Overview

A-6 ADSP-219x/2191 DSP Hardware Reference

ing or loading a new value to avoid using the old value. Table A-3 on
page A-6 gives the effect latencies for writes or loads of various interrupt
and status registers.

A PUSH or POP PC has one cycle of latency for all SSTAT register bits,
but a PUSH or POP LOOP or STS has one cycle of latency only for the
STKOVERFLOW bit in the SSTAT register.

When loading some group 2 and group 3 registers (see Table A-3 on
page A-6), the effect of the new value is not immediately available to sub-
sequent instructions that might use it. For interlocked registers (DAG

Table A-3. Effect Latencies for Register Changes

Register Bits REG = value ENA/DIS mode POP STS SET/CLR INT

ASTAT All 1 cycle NA 0 cycles NA

CCODE All 1 cycle NA NA NA

CNTR All 1 cycle1

1 This latency applies only to IF COND instructions, not to the DO UNTIL instruction. Loading the
CNTR register has 0 effect latency for the DO UNTIL instruction.

NA NA NA

ICNTL All 1 cycle NA NA 0 cycles

IMASK All 1 cycle NA 0 cycles NA

MSTAT SEC_REG 1 cycle 0 cycles 1 cycle NA

BIT_REV 3 cycles 0 cycles 3 cycles NA

AV_LATCH 0 cycles 0 cycles 0 cycles NA

AR_SAT 1 cycle 0 cycles 1 cycle NA

M_MODE 1 cycle 0 cycles 1 cycle NA

SEC_DAG 3 cycles 0 cycles 3 cycles NA

CACTL CPE 5 cycles NA NA NA

CDE 5 cycles NA NA NA

CFZ 4 cycles NA NA NA

ADSP-219x/2191 DSP Hardware Reference A-7

ADSP-219x DSP Core Registers

address and page registers, IOPG, IJPG), the DSP automatically inserts stall
cycles as needed, but for noninterlocked registers (to accommodate the
required latency) programs must insert either the necessary number of NOP
instructions or other instructions that are not dependent upon the effect
of the new value.

The noninterlocked registers are:

• Status registers ASTAT and MSTAT

• Condition code register CCODE

• Interrupt control register ICNTL

The number of NOP instructions to insert is specific to the register and the
load instruction as shown in Table A-3 on page A-6. A zero (0) latency
indicates that the new value is effective on the next cycle after the load
instruction executes. An n latency indicates that the effect of the new value
is available up to n cycles after the load instruction executes. When using a
modified register before the required latency, the DSP provides the regis-
ter’s old value.

Since unscheduled or unexpected events (such as interrupts and DMA
operations) often interrupt normal program flow, do not rely on these
load latencies when structuring program flow. A delay in executing a sub-
sequent instruction based on a newly loaded register could result in
erroneous results—whether the subsequent instruction is based on the
effect of the register’s new or old value.

Load latency applies only to the time it takes the loaded value to
affect the change in operation, not to the number of cycles required
to load the new value. A loaded value is always available to a read
access on the next instruction cycle.

Core Status Registers

A-8 ADSP-219x/2191 DSP Hardware Reference

Core Status Registers
The DSP’s control and status system registers configure how the processor
core operates and indicate the status of many processor core operations.
Table A-4 on page A-8 lists the processor core’s control and status regis-
ters with their initialization values. Descriptions of each register follow.

Arithmetic Status (ASTAT) Register
Figure A-1 on page A-9 shows this is a non-memory mapped, register
group 3 register (REG3). The DSP updates the status bits in ASTAT,
indicating the status of the most recent ALU, multiplier, or shifter
operation.

Mode Status (MSTAT) Register
Figure A-2 on page A-10 shows this is a non-memory mapped, register
group 3 register (REG3). For more information on using bits in this regis-
ter, see “Secondary (Alternate) Data Registers” on page 2-63, “Addressing
with Bit-Reversed Addresses” on page 4-16, “Latching ALU Result Over-
flow Status” on page 2-12,“Saturating ALU Results on Overflow” on
page 2-12 “Numeric Formats” on page C-1, and “Secondary (Alternate)
Data Registers” on page 2-63.

Table A-4. Core Status Registers

Register Name & Page Reference Initialization After Reset

“Arithmetic Status (ASTAT) Register” on page A-8 b#0 0000 0000

“Mode Status (MSTAT) Register” on page A-8 b#000 000

“System Status (SSTAT) Register” on page A-10 b#0000 0000

ADSP-219x/2191 DSP Hardware Reference A-9

ADSP-219x DSP Core Registers

8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 Reset = b#0 0000 0000

AZ (ALU result zero)
0 = ALU output

¼
 0

1 = ALU output = 0
AN (ALU result negative)

0 = ALU output positive (+)
1 = ALU output negative (

-
)
AV (ALU result overflow)

0 = No overflow
1 = Overflow

AC (ALU result carry)
0 = No carry
1 = Carry

AS (ALU x input sign)
0 = Positive (+)
1 = Negative (

-
)
AQ (ALU quotient)

0 = Positive (+)
1 = Negative (

-
)
MV (Multiplier overflow)

0 = No overflow or underflow
1 = Overflow or underflow

SS (Shifter input sign)
0 = Positive (+)
1 = Negative (

-
)

SV (Shifter overflow)
0 = No overflow or underflow
1 = Overflow or underflow

Figure A-1. ASTAT Register Bit Definitions

Core Status Registers

A-10 ADSP-219x/2191 DSP Hardware Reference

System Status (SSTAT) Register
Figure A-3 on page A-11 shows this is a non-memory mapped, register
group 3 register (REG3).

6 5 4 3 2 1 0

0 0 0 0 0 0 0 Reset = b#000 0000

SEC_REG (Secondary data registers)
0 = primary registers (default).
1 = secondary registers

BIT_REV (Bit-reversed address output)
0 = Disable
1 = Enable

AV_LATCH (ALU overflow latch mode)
0 = Disable (update AV on each ALU
op)
1 = Enable (latch AV until explicitly
cleared)

AR_SAT (ALU saturation mode)
0 = Disable (AR results unsaturated)
1 = Enable (AR results saturated)

M_MODE (MAC result mode)
0 = Fractional mode, 1.15 format
1 = Integer mode, 16.0 format

Reserved

SEC_DAG (Secondary DAG registers)
0 = Primary registers
1 = Secondary registers

Figure A-2. MSTAT Register Bit Definitions

ADSP-219x/2191 DSP Hardware Reference A-11

ADSP-219x DSP Core Registers

Computational Unit Registers
The DSP’s computational registers store data and results for the ALU,
multiplier, and shifter. The inputs and outputs for processing element
operations go through these registers.

The PX register lets programs transfer data between the data buses,
but cannot be an input or output in a calculation.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 Reset = b#0000 0000

PCE (PC stack empty)
0 = PC stack has a pushed address
1 = PC stack is empty

PCF (PC stack full)
0 = PC stack has an empty location
1 = PC stack is full

PCL (PC stack level)
0 = PC stack has 3–28 pushed
addresses
1 = PC stack has hit high/low watermark

Reserved

LSE (Loop stack empty)
0 = Loop stack has a pushed address
1 = Loop stack is empty

LSF (Loop stack full)
0 = Loop stack has an empty location
1 = Loop stack is full

SSE (Status stack empty)
0 = Status stack has a pushed status
1 = Status stack is empty

SOV (Stacks overflowed)
0 = No stack overflow or underflow
1 = Stack overflow (PC, loop, counter, or
status) or stack underflow (PC or status)

Figure A-3. SSTAT Register Bit Definitions

Computational Unit Registers

A-12 ADSP-219x/2191 DSP Hardware Reference

Data Register File (Dreg) Registers
These are non-memory mapped, register group 0 registers (DREG). For
unconditional, single-function instructions, the DSP has a data register
file—a set of 16-bit data registers that transfer data between the data buses
and the computation units. These registers also provides local storage for
operands and results. For more information on how to use these registers,
see “Data Register File” on page 2-61. The registers in the data register file
include: AX0, AX1, MX0, MX1, AY0, AY1, MY0, MY1, MR2, SR2, AR, SI, MR1, SR1,
MR0, and SR0.

Table A-5. Computational Unit Registers

Register Initialization After Reset

“Data Register File (Dreg) Registers” on page A-12 Undefined

“ALU X Input (AX0, AX1) Registers and ALU Y Input (AY0, AY1)
Registers” on page A-13

Undefined

“ALU Results (AR) Register” on page A-13 Undefined

“ALU Feedback (AF) Register” on page A-13 Undefined

“Multiplier X Input (MX0, MX1) Registers and Multiplier Y Input
(MY0, MY1) Registers” on page A-13

Undefined

“Multiplier Results (MR2, MR1, MR0) Registers” on page A-14 Undefined

“Shifter Input (SI) Register” on page A-14 Undefined

“Shifter Exponent (SE) Register and Shifter Block Exponent (SB)
Register” on page A-14

Undefined

“Shifter Result (SR2, SR1, SR0) Registers” on page A-14 Undefined

ADSP-219x/2191 DSP Hardware Reference A-13

ADSP-219x DSP Core Registers

ALU X Input (AX0, AX1) Registers and
ALU Y Input (AY0, AY1) Registers

These are non-memory mapped, register group 0 registers. For conditional
and/or multifunction instructions, some restrictions apply to data register
usage. The registers that may provide Xop and Yop input to the ALU for
conditional and/or multifunction instructions include: AX0, AX1, AY0, and
AY1. For more information on how to use these registers, see “Multifunc-
tion Computations” on page 2-64.

ALU Results (AR) Register
This is a non-memory mapped, register group 0 register.The ALU places
its results in the 16-bit AR register. For more information on how to use
this register, see “Arithmetic Logic Unit (ALU)” on page 2-18.

ALU Feedback (AF) Register
This is a non-memory mapped, register group 0 register.The ALU can
place its results in the 16-bit AF register. For more information on how to
use this register, see “Arithmetic Logic Unit (ALU)” on page 2-18.

Multiplier X Input (MX0, MX1) Registers and
Multiplier Y Input (MY0, MY1) Registers

These are non-memory mapped, register group 0 registers. For condi-
tional and/or multifunction instructions, some restrictions apply to data
register usage. The registers that may provide Xop and Yop input to the
multiplier for conditional and/or multifunction instructions include: MX0,
MX1, MY0, and MY1. For more information on how to use these registers, see
“Multifunction Computations” on page 2-64.

Computational Unit Registers

A-14 ADSP-219x/2191 DSP Hardware Reference

Multiplier Results (MR2, MR1, MR0) Registers
These are non-memory mapped, register group 0 registers. The multiplier
places results in the combined multiplier result register, MR. For more
information on result register fields, see “Multiply/Accumulates (Multi-
plier)” on page 2-30.

Shifter Input (SI) Register
This is a non-memory mapped, register group 0 register. For conditional
and/or multifunction instructions, some restrictions apply to data register
usage. SI is the only registers that may provide input to the shifter for con-
ditional and/or multifunction instructions. For more information on how
to use this register, see “Multifunction Computations” on page 2-64.

Shifter Exponent (SE) Register and
Shifter Block Exponent (SB) Register

These are non-memory mapped, register group 3 registers. These register
hold exponent information for the shifter. For more information on how
to use these registers, see “Barrel Shifter (Shifter)” on page 2-39.

The SB and SE registers are 16 bits in length, but all shifter instructions
that use these registers as operands or update these registers with result
values do not use the full width of these registers. Shifter instructions treat
SB as being a 5-bit twos complement register and treat SE as being an 8-bit
twos complement register.

Shifter Result (SR2, SR1, SR0) Registers
These are non-memory mapped, register group 0 registers. The Shifter
places results in the shift result register, SR. Optionally, the multiplier can
use SR as a second (dual) accumulator. For more information on how to
use this registers, see “Barrel Shifter (Shifter)” on page 2-39.

ADSP-219x/2191 DSP Hardware Reference A-15

ADSP-219x DSP Core Registers

Program Sequencer Registers
The DSP’s Program Sequencer registers hold page addresses, stack
addresses, and other information for determining program execution.

Refer to “System Interrupt Controller Registers” on page B-21 for addi-
tional information.

Interrupt Mask (IMASK) Register and
Interrupt Latch (IRPTL) Register

Figure A-4 on page A-16 shows the bits for these are a non-memory
mapped, register group 1 registers (REG1).

Interrupt Control (ICNTL) Register
Figure A-5 on page A-16 shows this is a non-memory mapped, register
group 1 register (REG1). The reset value for this register is 0x0000.

Table A-6. Program Sequencer Registers

Register Initialization After Reset

“Interrupt Mask (IMASK) Register and Interrupt Latch (IRPTL)
Register” on page A-15

0x0000

“Interrupt Control (ICNTL) Register” on page A-15 0x0000

“Indirect Jump Page (IJPG) Register” on page A-17 0x00

“PC Stack Page (STACKP) Register and PC Stack Address
(STACKA) Register” on page A-17

Undefined

“Loop Stack Page (LPSTACKP) Register and Loop Stack Address
(LPSTACKA) Register” on page A-17

Undefined

“Counter (CNTR) Register” on page A-18 Undefined

“Condition Code (CCODE) Register” on page A-18 Undefined

“Cache Control (CACTL) Register” on page A-19 b#101n nnnn

Program Sequencer Registers

A-16 ADSP-219x/2191 DSP Hardware Reference

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

EMU (Emulator–NMI) Highest priority

PWDN (Powerdown–GIE maskable)

KERNEL (emulator kernel)

STACK (Stack interrupt) From PC stack
push/pop, PC stack watermark, PC or
status stacks underflow, or any stack
overflows

UDI (User Defined Interrupts) one interrupt per
bit; bit 15 has lowest priority

Figure A-4. IMASK and IRPTL Registers Bit Definitions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x2000

reserved (write 0)

INE (Interrupt nesting mode enable)
0 = Disabled
1 = Enabled

GIE (Global interrupt enable)
0 = Disabled
1 = Enabled

reserved (write 0)

BIASRND (MAC biased rounding mode)
0 = Disabled
1 = Enabled

reserved

PCSTKE (PC stack interrupt enable)
0 = high-water mark interrupt disabled
1 = high-water mark interrupt enabled

EMUCNTE (Emu. cycle counter enable)
0 = Disabled
1 = Enabled

TRCBUFE (Trace Buffer Enable)
0 = Trace Buffer Disabled
1 = Trace Buffer Enabled
reserved (write 0)

Figure A-5. ICNTL Register Bit Definitions

ADSP-219x/2191 DSP Hardware Reference A-17

ADSP-219x DSP Core Registers

Indirect Jump Page (IJPG) Register
This is a non-memory mapped, register group 3 register (REG3). The
reset value for this register is 0x00. For information on using this register,
see “Indirect Jump Page (IJPG) Register” on page 3-16.

PC Stack Page (STACKP) Register and
PC Stack Address (STACKA) Register

These are non-memory mapped, register group 1 (REG1) and register
group 3 registers (REG3). The PC Stack Page (STACKP) and PC Stack
Address (STACKA) registers hold the top entry in the Program Counter (PC)
address stack. The upper 8 bits of the address go into STACKP, and the
lower 16 bits go into STACKA. The PC stack is 33 levels deep.

On JUMP, CALL, DO/UNTIL (loop), and PUSH PC instructions, the DSP
pushes the PC address onto this stack, loading the STACKP and STACKA regis-
ters. On RTS/RTI (return) and POP PC instructions, the DSP pops the
STACKP:STACKA address off of this stack, loading the PC register.

For information on using these registers, see “Stacks and Sequencing” on
page 3-36.

Loop Stack Page (LPSTACKP) Register and
Loop Stack Address (LPSTACKA) Register

These are non-memory mapped, register group 2 and 3 registers (REG2,
REG3). The Loop Stack Page (LPSTACKP) and Loop Stack Address
(LPSTACKA) registers hold the top entry in the loop stack. The upper 8 bits
of the address go into LPSTACKP, and the lower 16 bits go into LPSTACKA.
The loop stack is 8 levels deep.

Program Sequencer Registers

A-18 ADSP-219x/2191 DSP Hardware Reference

On DO/UNTIL (loop) instructions, the DSP pushes the end of loop address
onto this stack, loading the LPSTACKP and LPSTACKA registers. On
PUSH LOOP instructions, the DSP pushes the (explicitly loaded) contents of
the LPSTACKP and LPSTACKA registers onto this stack.

At the end of a loop (counter decrements to zero), the DSP pops the
LPSTACKP:LPSTACKA address off of this stack, loading the PC register with
the next address after the end of the loop. On POP LOOP instructions, the
DSP pops the contents of the LPSTACKP and LPSTACKA registers off of this
stack.

At the start of a loop the PC (start of loop address) is pushed onto the loop
begin stack (STACKP:STACKA registers) and the end of loop address is
pushed onto the loop end stack (LPSTACKP:LPSTACKA registers). If it is a
counter-based loop (DO/UNTIL CE), the loop count (CNTR register) is
pushed onto the counter stack.

For information on using these registers, see “Stacks and Sequencing” on
page 3-36.

Counter (CNTR) Register
This is a non-memory mapped, register group 2 register (REG2). The
DSP loads the loop counter stack from CNTR or DO/UNTIL or PUSH LOOP
instructions. For information on using this register, see “Loops and
Sequencing” on page 3-20 and “Stacks and Sequencing” on page 3-36.

Condition Code (CCODE) Register
This is a non-memory mapped, register group 3 register (REG3). Using
the CCODE register, conditional instructions may base execution on a com-
parison of the CCODE value (user-selected) and the SWCOND condition (DSP
status). The CCODE register holds a value between 0x0 and 0xF, which the
instruction tests against when the conditional instruction uses SWCOND or
NOT SWCOND. Note that the CCODE register has a one cycle effect latency.

ADSP-219x/2191 DSP Hardware Reference A-19

ADSP-219x DSP Core Registers

Cache Control (CACTL) Register
Figure A-6 on page A-20 shows this is a register-memory mapped register
at address Reg(0x0F).

Table A-7. CCODE Register Bit Definitions

CCODE Software Condition

Value SWCOND (1010) NOT SWCOND (1011)

0x00 PF0 pin high PF0 pin low

0x01 PF1 pin high PF1 pin low

0x02 PF2 pin high PF2 pin low

0x03 PF3 pin high PF3 pin low

0x04 PF4 pin high PF4 pin low

0x05 PF5 pin high PF5 pin low

0x06 PF6 pin high PF6 pin low

0x07 PF7 pin high PF7 pin low

0x08 AS (ALU result signed) NOT AS (ALU input not signed)

0x09 SV (SR result overflow) NOT SV (SR result not overflow)

0x0A PF8 pin high PF8 pin low

0x0B PF9 pin high PF9 pin low

0x0C PF10 pin high PF10 pin low

0x0D PF11 pin high PF11 pin low

0x0E PF12 pin high PF12 pin low

0x0F PF13 pin high PF13 pin low

Data Address Generator Registers

A-20 ADSP-219x/2191 DSP Hardware Reference

Data Address Generator Registers
The DSP’s Data Address Generator (DAG) registers hold data addresses,
modify values, and circular buffer configurations. Using these registers,
the DAGs can automatically increment addressing for ranges of data loca-
tions (a buffer).

7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0 Reset = b#101n nnnn

Reserved

CDE (Cache fetches with memory block
accesses conflicting DMDAs enable)
0 = Disable
1 = Enable

CFZ (Cache freeze)
0 = Thaw (allows cache to update)
1 = Freeze

CPE (Cache fetches with memory block
accesses conflicting with PMDAs enable)
0 = Disable
1 = Enable

Figure A-6. CACTL Register Bit Definitions

Table A-8. Data Address Generator Registers

Register Initialization After Reset

“Index (Ix) Registers” on page A-21 Undefined

“Modify (Mx) Registers” on page A-21 Undefined

“Length (Lx) Registers and Base (Bx) Registers” on page A-21 Undefined

“Data Memory Page (DMPGx) Registers” on page A-21 0x00

ADSP-219x/2191 DSP Hardware Reference A-21

ADSP-219x DSP Core Registers

Index (Ix) Registers
These are non-memory mapped, register group 1 and 2 registers (REG1
and REG2). The Data Address Generators store addresses in Index regis-
ters (I0-I3 for DAG1 and I4-I7 for DAG2). An index register holds an
address and acts as a pointer to memory. For more information, see “DAG
Operations” on page 4-9.

Modify (Mx) Registers
These are non-memory mapped, register group 1 and 2 registers (REG1
and REG2). The Data Address Generators update stored addresses using
Modify registers (M0-M3 for DAG1 and M4-M7 for DAG2). A modify regis-
ter provides the increment or step size by which an index register is pre- or
post-modified during a register move. For more information, see “DAG
Operations” on page 4-9.

Length (Lx) Registers and Base (Bx) Registers
The Length registers are non-memory mapped, register group 1 and 2 reg-
isters (REG1 and REG2). The Base registers are memory-mapped in
register-memory at addresses: B0=Reg(0x00) through B7=Reg(0x07).

The Data Address Generators control circular buffering operations with
Length and Base registers (L0-L3 and B0-B3 for DAG1 and L4-L7 and B4-B7
for DAG2). Length and base registers setup the range of addresses and the
starting address for a circular buffer. For more information, see “DAG
Operations” on page 4-9.

Data Memory Page (DMPGx) Registers
This is a non-memory mapped, register group 3 register (REG3). The
reset value for this register is 0x00. For information on using this register,
see “Data Memory Page Registers (DMPGx)” on page 4-7.

Memory Interface Registers

A-22 ADSP-219x/2191 DSP Hardware Reference

Memory Interface Registers
The DSP’s memory interface registers set up page access to I/O memory
and provide an interface between the 24-bit and 16-bit data buses.

PM Bus Exchange (PX) Register
This is a non-memory mapped, register group 3 register (REG3). The PM
Bus Exchange (PX) register permits data to flow between the PM and DM
data buses. For more information on PX register usage, see “Internal Data
Bus Exchange” on page 5-7.

I/O Memory Page (IOPG) Register
This is a non-memory mapped, register group 3 register (REG3). The
reset value for this register is 0x00.

Register and Bit #Defines File (def219x.h)
The following example definitions file is for items common to all
ADSP-219x DSPs. For the most current definitions file, use the version of
this file that comes with the software development tools.

The version that appears in this appendix is included as a guide only.

/***

 *

Table A-9. Memory Interface Registers

Register Initialization After Reset

“PM Bus Exchange (PX) Register” on page A-22 Undefined

“I/O Memory Page (IOPG) Register” on page A-22 0x00

ADSP-219x/2191 DSP Hardware Reference A-23

ADSP-219x DSP Core Registers

 * def219x.h : $Revision: 1.4.12.1 $

 *

 * (c) Copyright 2000-2002 Analog Devices, Inc.

 * All rights reserved.

 *

***/

/*

** System register bit and address defines to symbolic names

** for DSP-219x DSPs.

/*---

The def219x.h file defines ADSP-219x DSP family common symbolic

names; for names that are unique to particular ADSP-219x family

DSPs, see that DSP's definitions file (such as the def2192-12.h)

instead. This (def219x.h) contains a list of macro "defines" that

let programs use symbolic include file names for the following

ADSP-219x facilities:

- system register bit definitions

- system register map

Here are some example uses:

mstat = ASTAT_AR_SAT | ASTAT_M_MODE;

>> this ORs together the bitmask macros

-OR-

ax0 = 0x0000;

ar = setbit ASTAT_AR_SAT_P of ax0;

>> this uses the define of AR_SAT bit

ar = setbit ASTAT_M_MODE_P of ar;

>> this uses the define of M_MODE bit

mstat = ar;

Register and Bit #Defines File (def219x.h)

A-24 ADSP-219x/2191 DSP Hardware Reference

ccode = cond_SV; >> uses the define of SV condition

ax0 = 0;

ar = 0;

ar = setbit ASTAT_SV_P of ax0; >> uses the define of SV bit

astat = ar;

if swcond ar = ax0 xor 0x1000;

AR = setbit CACTL_CFZ_P of AX0;

>> this uses the define of CACTL_CFZ_P bit

REG(CACTL) = AR; >> uses def. for CACTL register's address

ax0 = 0x0800;

REG(B0) = ax0; >> uses the define for B0 register's address

--*/

#ifndef __DEF219x_H_

#define __DEF219x_H_

#define MK_BMSK_(x) (1<<x)

/* Make a bit mask from a bit position */

//---

// System Register bit definitions

//---

//**

// ASTAT register

//**

// Bit Positions

#define ASTAT_AZ_P 0 // Bit 0: ALU result zero

#define ASTAT_AN_P 1 // Bit 1: ALU result negative

ADSP-219x/2191 DSP Hardware Reference A-25

ADSP-219x DSP Core Registers

#define ASTAT_AV_P 2 // Bit 2: ALU overflow

#define ASTAT_AC_P 3 // Bit 3: ALU carry

#define ASTAT_AS_P 4 // Bit 4: ALU X input sign (ABS ops)

#define ASTAT_AQ_P 5 // Bit 5: ALU quotient (DIV ops)

#define ASTAT_MV_P 6 // Bit 6: Multiplier overflow

#define ASTAT_SS_P 7 // Bit 7: Shifter input sign

#define ASTAT_SV_P 8 // Bit 8: Shifter overflow

// Bit Masks

#define ASTAT_AZ MK_BMSK_(ASTAT_AZ_P) // ALU result zero

#define ASTAT_AN MK_BMSK_(ASTAT_AN_P) // ALU result negative

#define ASTAT_AV MK_BMSK_(ASTAT_AV_P) // ALU overflow

#define ASTAT_AC MK_BMSK_(ASTAT_AC_P) // ALU carry

#define ASTAT_AS MK_BMSK_(ASTAT_AS_P)

// ALU X input sign (ABS ops)

#define ASTAT_AQ MK_BMSK_(ASTAT_AQ_P) // ALU quotient (DIV ops)

#define ASTAT_MV MK_BMSK_(ASTAT_MV_P) // Multiplier overflow

#define ASTAT_SS MK_BMSK_(ASTAT_SS_P) // Shifter input sign

#define ASTAT_SV MK_BMSK_(ASTAT_SV_P) // Shifter overflow

//**

// MSTAT register

//**

// Bit Positions

#define MSTAT_SEC_REG_P 0 // Bit 0: Sec. data reg enable

#define MSTAT_BIT_REV_P 1

// Bit 1: Bit-reversed address output enable

#define MSTAT_AV_LATCH_P 2

// Bit 2: ALU overflow latch mode select

#define MSTAT_AR_SAT_P 3

// Bit 3: ALU saturation mode select

#define MSTAT_M_MODE_P 4

Register and Bit #Defines File (def219x.h)

A-26 ADSP-219x/2191 DSP Hardware Reference

// Bit 4: MAC result mode select

#define MSTAT_TIMER_P 5

// Bit 5: Timer enable

#define MSTAT_SEC_DAG_P 6

// Bit 6: Secondary DAG registers enable

// Bit Masks

#define MSTAT_SEC_REG MK_BMSK_(MSTAT_SEC_REG_P)

// Secondary data registers enable

#define MSTAT_BIT_REV MK_BMSK_(MSTAT_BIT_REV_P)

// Bit-reversed address output enable

#define MSTAT_AV_LATCH MK_BMSK_(MSTAT_AV_LATCH_P)

// ALU overflow latch mode select

#define MSTAT_AR_SAT MK_BMSK_(MSTAT_AR_SAT_P)

// ALU saturation mode select

#define MSTAT_M_MODE MK_BMSK_(MSTAT_M_MODE_P)

// MAC result mode select

#define MSTAT_TIMER MK_BMSK_(MSTAT_TIMER_P)

// Timer enable

#define MSTAT_SEC_DAG MK_BMSK_(MSTAT_SEC_DAG_P)

// Secondary DAG registers enable

//**

// SSTAT register

//**

// Bit Positions

#define SSTAT_PCEM_P 0 // Bit 0: PC stack empty

#define SSTAT_PCFL_P 1 // Bit 1: PC stack full

#define SSTAT_PCLV_P 2 // Bit 2: PC stack level

#define SSTAT_LSEM_P 4 // Bit 4: Loop stack empty

#define SSTAT_LSFL_P 5 // Bit 5: Loop stack full

#define SSTAT_SSEM_P 6 // Bit 6: Status stack empty

ADSP-219x/2191 DSP Hardware Reference A-27

ADSP-219x DSP Core Registers

#define SSTAT_SSOV_P 7 // Bit 7: Stacks overflowed

// Bit Masks

#define SSTAT_PCEM MK_BMSK_(SSTAT_PCEM_P) // PC stack empty

#define SSTAT_PCFL MK_BMSK_(SSTAT_PCFL_P) // PC stack full

#define SSTAT_PCLV MK_BMSK_(SSTAT_PCLV_P) // PC stack level

#define SSTAT_LSEM MK_BMSK_(SSTAT_LSEM_P) // Loop stack empty

#define SSTAT_LSFL MK_BMSK_(SSTAT_LSFL_P) // Loop stack full

#define SSTAT_SSEM MK_BMSK_(SSTAT_SSEM_P) // Status stack empty

#define SSTAT_SSOV MK_BMSK_(SSTAT_SSOV_P) // Stacks overflowed

//**

// ICNTL register

//**

// Bit Positions

#define ICNTL_INE_P 4 // Bit 4: Int nesting mode enable

#define ICNTL_GIE_P 5 // Bit 5: Global interrupt enable

#define ICNTL_BIASRND_P 7 // Bit 7: MAC biased rounding mode

#define ICNTL_PCSTKE_P 10 // Bit 10: PC stack interrupt enable

#define ICNTL_CCNTE_P 11 // Bit 11: Cycle counter enable

// Bit Masks

#define ICNTL_INE MK_BMSK_(ICNTL_INE_P)

// Interrupt nesting mode enable

#define ICNTL_GIE MK_BMSK_(ICNTL_GIE_P)

// Global interrupt enable

#define ICNTL_BIASRND MK_BMSK_(ICNTL_BIASRND_P)

// MAC biased rounding mode

#define ICNTL_PCSTKE MK_BMSK_(ICNTL_PCSTKE_P)

// PC stack interrupt enable

#define ICNTL_CCNTE MK_BMSK_(ICNTL_CCNTE_P)

// Cycle counter enable

Register and Bit #Defines File (def219x.h)

A-28 ADSP-219x/2191 DSP Hardware Reference

//**

// IRPTL and IMASK registers

//**

// Bit Positions

#define INT_EMU_P 0 // Bit 0: Offset: 00: Emulator int

#define INT_PWDN_P 1 // Bit 1: Offset: 04: Powerdown intpt

#define INT_KRNL_P 2 // Bit 2: Offset: 08: Kernel interrupt

#define INT_STKI_P 3 // Bit 3: Offset: 0c: Stack interrupt

#define INT_INT4_P 4 // Bit 4: Offset: 10: Off-Core

#define INT_INT5_P 5 // Bit 5: Offset: 14: Off-Core

#define INT_INT6_P 6 // Bit 6: Offset: 18: Off-Core

#define INT_INT7_P 7 // Bit 7: Offset: 1c: Off-Core

#define INT_INT8_P 8 // Bit 8: Offset: 20: Off-Core

#define INT_INT9_P 9 // Bit 9: Offset: 24: Off-Core

#define INT_INT10_P 10 // Bit 10: Offset: 28: Off-Core

#define INT_INT11_P 11 // Bit 11: Offset: 2c: Off-Core

#define INT_INT12_P 12 // Bit 12: Offset: 30: Off-Core

#define INT_INT13_P 13 // Bit 13: Offset: 34: Off-Core

#define INT_INT14_P 14 // Bit 14: Offset: 38: Off-Core

#define INT_INT15_P 15 // Bit 15: Offset: 3c: Off-Core

// Bit Masks

#define INT_EMU MK_BMSK_(INT_EMU_P)

// Offset: 00: Emulator interrupt

#define INT_PWDN MK_BMSK_(INT_PWDN_P)

// Offset: 04: Powerdown interrupt

#define INT_KRNL MK_BMSK_(INT_KRNL_P)

// Offset: 08: Kernel interrupt

#define INT_STKI MK_BMSK_(INT_STKI_P)

// Offset: 0c: Stack interrupt

#define INT_INT4 MK_BMSK_(INT_INT4_P)

ADSP-219x/2191 DSP Hardware Reference A-29

ADSP-219x DSP Core Registers

// Offset: 10: Off-Core

#define INT_INT5 MK_BMSK_(INT_INT5_P)

// Offset: 14: Off-Core

#define INT_INT6 MK_BMSK_(INT_INT6_P)

// Offset: 18: Off-Core

#define INT_INT7 MK_BMSK_(INT_INT7_P)

// Offset: 1c: Off-Core

#define INT_INT8 MK_BMSK_(INT_INT8_P)

// Offset: 20: Off-Core

#define INT_INT9 MK_BMSK_(INT_INT9_P)

// Offset: 24: Off-Core

#define INT_INT10 MK_BMSK_(INT_INT10_P)

// Offset: 28: Off-Core

#define INT_INT11 MK_BMSK_(INT_INT11_P)

// Offset: 2c: Off-Core

#define INT_INT12 MK_BMSK_(INT_INT12_P)

// Offset: 30: Off-Core

#define INT_INT13 MK_BMSK_(INT_INT13_P)

// Offset: 34: Off-Core

#define INT_INT14 MK_BMSK_(INT_INT14_P)

// Offset: 38: Off-Core

#define INT_INT15 MK_BMSK_(INT_INT15_P)

// Offset: 3c: Off-Core

//**

// CACTL register

//**

// Bit Positions

#define CACTL_CDE_P 5 // Bit 5 Cache conflict DM access enable

#define CACTL_CFZ_P 6 // Bit 6 Cache freeze

#define CACTL_CPE_P 7 // Bit 7 Cache conflict PM access enable

Register and Bit #Defines File (def219x.h)

A-30 ADSP-219x/2191 DSP Hardware Reference

// Bit Masks

#define CACTL_CDE MK_BMSK_(CACTL_CDE_P)

// Cache conflicting DM access enable

#define CACTL_CFZ MK_BMSK_(CACTL_CFZ_P)

// Cache freeze

#define CACTL_CPE MK_BMSK_(CACTL_CPE_P)

// Cache conflicting PM access enable

//**

// CCODE register

//**

#define cond_PF0 0x00 // if PF0 pin high, SWCOND true

#define cond_PF1 0x01 // if PF1 pin high, SWCOND true

#define cond_PF2 0x02 // if PF2 pin high, SWCOND true

#define cond_PF3 0x03 // if PF3 pin high, SWCOND true

#define cond_PF4 0x04 // if PF4 pin high, SWCOND true

#define cond_PF5 0x05 // if PF5 pin high, SWCOND true

#define cond_PF6 0x06 // if PF6 pin high, SWCOND true

#define cond_PF7 0x07 // if PF7 pin high, SWCOND true

#define cond_AS 0x08 // if AS, SWCOND true

#define cond_SV 0x09 // if SV, SWCOND true

#define cond_PF8 0x0A // if PF8 pin high, SWCOND true

#define cond_PF9 0x0B // if PF9 pin high, SWCOND true

#define cond_PF10 0x0C // if PF10 pin high, SWCOND true

#define cond_PF11 0x0D // if PF11 pin high, SWCOND true

#define cond_PF12 0x0E // if PF12 pin high, SWCOND true

#define cond_PF13 0x0F // if PF13 pin high, SWCOND true

//---

// System Register address definitions

//---

#define B0 0x00 // DAG Base register 0 (for circ buf only)

ADSP-219x/2191 DSP Hardware Reference A-31

ADSP-219x DSP Core Registers

#define B1 0x01 // DAG Base register 1 (for circ buff only)

#define B2 0x02 // DAG Base register 2 (for circ buff only)

#define B3 0x03 // DAG Base register 3 (for circ buff only)

#define B4 0x04 // DAG Base register 4 (for circ buff only)

#define B5 0x05 // DAG Base register 5 (for circ buff only)

#define B6 0x06 // DAG Base register 6 (for circ buff only)

#define B7 0x07 // DAG Base register 7 (for circ buff only)

#define CACTL 0x0F // Cache control register

#define DBGCTRL 0x60 // Emulation Debug Control Register

#define DBGSTAT 0x61 // Emulation Debug Status Register

#define CNT0 0x62 // Counter Register 0 (LSB) (read this 1st)

#define CNT1 0x63 // Counter Register 1

#define CNT2 0x64 // Cycle Counter Register 2

#define CNT3 0x65 // Cycle Counter Register 3 (MSB)

#endif

Register and Bit #Defines File (def219x.h)

A-32 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x/2191 DSP Hardware Reference B-1

B ADSP-2191 DSP I/O
REGISTERS

The DSP has general-purpose and dedicated registers in each of its func-
tional blocks. The register reference information for each functional block
includes bit definitions, initialization values, and (for I/O processor regis-
ters) memory-mapped address. Information on each type of register is
available at the following locations:

• “Core Status Registers” on page A-8

• “Computational Unit Registers” on page A-11

• “Program Sequencer Registers” on page A-15

• “Data Address Generator Registers” on page A-20

• “I/O Processor Registers” on page B-2

When writing DSP programs, it is often necessary to set, clear, or test bits
in the DSP’s registers. While these bit operations can all be done by refer-
ring to the bit’s location within a register or (for some operations) the
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the bit’s or register’s name. For convenience and
consistency, Analog Devices provides a header file that provides these bit
and register definitions. For more information, see the “Register and Bit
#define File (def2191.h)” on page B-115 and “Register and Bit #define
File (def2191.h)” on page B-115.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) a register’s reserved bits.

I/O Processor Registers

B-2 ADSP-219x/2191 DSP Hardware Reference

I/O Processor Registers
The DSP’s memory map includes the following groups of I/O processor
registers:

• “Clock and System Control Registers” on page B-17

• “System Interrupt Controller Registers” on page B-21

• “DMA Controller Registers” on page B-27

• “SPORT Registers” on page B-35

• “Serial Peripheral Interface Registers” on page B-60

• “UART Registers” on page B-72

• “Timer Registers” on page B-88

• “Programmable Flag Registers” on page B-96

• “External Memory Interface Registers” on page B-99

• “Host Port Registers” on page B-107

The I/O processor registers are accessible as part of the DSP’s memory
map. Table B-1 on page B-3 lists the I/O processor’s memory-mapped
registers in address order and provides a cross reference to a description of
each register. These registers occupy addresses 0x00 through 0xFF of the
memory map and control I/O operations, including:

• External port DMA

• Link port DMA

• Serial port DMA

I/O processor registers have a one-cycle effect latency (changes take
effect on the second cycle after the change).

ADSP-219x/2191 DSP Hardware Reference B-3

ADSP-2191 DSP I/O Registers

Because the I/O processor’s registers are part of the DSP’s I/O memory
map, buses access these registers as locations in I/O memory. While these
registers act as memory-mapped locations, they are separate from the
DSP’s internal memory.

To read or write I/O processor registers, programs must use the IO()
instruction. The following example code shows a value being transferred
from the AX0 register to the DMACW_CP register in I/O memory. The IOPG
register is loaded to select the correct page in I/O memory. Because the
page and address are necessary for accessing any I/O memory register, the
I/O memory map in Table B-1 on page B-3 shows these as IOPG:Address.

IOPG = Memory_DMA_Controller_Page; /* set the I/O mem page */

AX0 = WR_DMA_WORD_CONFIG; /* Load AX0 with the cfg word */

IO(DMACW_CP) = ax0; /* Load DMACW_CP with the cfg word */

The register names for I/O processor registers are not part of the DSP’s
assembly syntax. To ease access to these registers, programs should use the
#include command to incorporate a file containing the registers’ symbolic
names and addresses. An example #include file appears in the “Register
and Bit #define File (def2191.h)” on page B-115.

Table B-1. I/O Processor Registers Memory Map

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

“Clock and System Control Registers” on page B-17

0x00:0x200 0x0400 PLLCTL 0x0010 page B-17

0x00:0x201 0x0402 LOCKCNT ni page B-19

0x00:0x202 0x0404 SWRST ni page B-19

0x00:0x203 0x0406 NXTSCR 0x0000 page B-19

0x00:0x204 0x0408 SYSCR 0x0000 page B-20

I/O Processor Registers

B-4 ADSP-219x/2191 DSP Hardware Reference

“System Interrupt Controller Registers” on page B-21

0x01:0x200 0x0C00 IPR0 Per interrupt request page B-22

0x01:0x201 0x0C02 IPR1 Per interrupt request page B-22

0x01:0x202 0x0C04 IPR2 Per interrupt request page B-22

0x01:0x203 0x0C06 IPR3 Per interrupt request page B-22

0x01:0x204 0x0C08 INTRD0 Per interrupt request page B-25

0x01:0x205 0x0C0A INTRD1 Per interrupt request page B-25

0x01:0x206 0x0C0C INTRD2 Per interrupt request page B-25

0x01:0x207 0x0C0E INTRD3 Per interrupt request page B-25

0x01:0x208 0x0C0F INTRD4 Per interrupt request page B-25

0x01:0x209 0x0C12 INTRD5 Per interrupt request page B-25

0x01:0x20A 0x0C14 INTRD6 Per interrupt request page B-25

0x01:0x20B 0x0C16 INTRD7 Per interrupt request page B-25

0x01:0x20C 0x0C18 INTRD8 Per interrupt request page B-25

0x01:0x20D 0x0C1A INTRD9 Per interrupt request page B-25

0x01:0x20E 0x0C1C INTRD10 Per interrupt request page B-25

0x01:0x20F 0x0C1E INTRD11 Per interrupt request page B-25

“DMA Controller Registers” on page B-27

0x02:0x100 0x1200 DMACW_PTR 0x0000 page B-29

0x02:0x101 0x1202 DMACW_CFG 0x0000 page B-29

0x02:0x102 0x1204 DMACW_SRP 0x0000 page B-31

0x02:0x103 0x1206 DMACW_SRA 0x0000 page B-31

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

ADSP-219x/2191 DSP Hardware Reference B-5

ADSP-2191 DSP I/O Registers

0x02:0x104 0x1208 DMACW_CNT 0x0000 page B-31

0x02:0x105 0x120A DMACW_CP 0x0000 page B-32

0x02:0x106 0x120C DMACW_CPR 0x0000 page B-32

0x02:0x107 0x120E DMACW_IRQ 0x0000 page B-32

0x02:0x180 0x1300 DMACR_PTR 0x0000 page B-33

0x02:0x181 0x1302 DMACR_CFG 0x0000 page B-33

0x02:0x182 0x1304 DMACR_SRP 0x0000 page B-33

0x02:0x183 0x1306 DMACR_SRA 0x0000 page B-34

0x02:0x184 0x1308 DMACR_CNT 0x0000 page B-34

0x02:0x185 0x130A DMACR_CP 0x0000 page B-34

0x02:0x186 0x130C DMACR_CPR 0x0000 page B-35

0x02:0x00187 0x130E DMACR_IRQ 0x0000 page B-35

“SPORT Registers” on page B-35

0x02:0x200 0x1400 SP0_TCR 0x0000 page B-38

0x02:0x201 0x1402 SP0_RCR 0x0000 page B-38

0x02:0x202 0x1404 SP0_TX 0x0000 page B-41

0x02:0x203 0x1406 SP0_RX 0x0000 page B-41

0x02:0x204 0x1408 SP0_TSCKDIV 0x0000 page B-42

0x02:0x205 0x140A SP0_RSCKDIV 0x0000 page B-42

0x02:0x206 0x140C SP0_TFSDIV 0x0000 page B-43

0x02:0x207 0x140E SP0_RFSDIV 0x0000 page B-42

0x02:0x208 0x1410 SP0_STATR 0x0000 page B-43

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

I/O Processor Registers

B-6 ADSP-219x/2191 DSP Hardware Reference

0x02:0x209 0x1412 SP0_MTCS0 0x0000 page B-44

0x02:0x20A 0x1414 SP0_MTCS1 0x0000 page B-44

0x02:0x20B 0x1416 SP0_MTCS2 0x0000 page B-44

0x02:0x20C 0x1418 SP0_MTCS3 0x0000 page B-44

0x02:0x20D 0x141A SP0_MTCS4 0x0000 page B-44

0x02:0x20E 0x141C SP0_MTCS5 0x0000 page B-44

0x02:0x20F 0x141E SP0_MTCS6 0x0000 page B-44

0x02:0x210 0x1420 SP0_MTCS7 0x0000 page B-44

0x02:0x211 0x1422 SP0_MRCS0 0x0000 page B-46

0x02:0x212 0x1424 SP0_MRCS1 0x0000 page B-46

0x02:0x213 0x1426 SP0_MRCS2 0x0000 page B-46

0x02:0x214 0x1428 SP0_MRCS3 0x0000 page B-46

0x02:0x215 0x142A SP0_MRCS4 0x0000 page B-46

0x02:0x216 0x142C SP0_MRCS5 0x0000 page B-46

0x02:0x217 0x142E SP0_MRCS6 0x0000 page B-46

0x02:0x218 0x1430 SP0_MRCS7 0x0000 page B-46

0x02:0x219 0x1432 SP0_MCMC1 0x0000 page B-47

0x02:0x21A 0x1434 SP0_MCMC2 0x0000 page B-47

0x02:0x300 0x1600 SP0DR_PTR 0x0000 page B-48

0x02:0x301 0x1602 SP0DR_CFG 0x0000 page B-48

0x02:0x302 0x1604 SP0DR_SRP 0x0000 page B-50

0x02:0x303 0x1606 SP0DR_SRA 0x0000 page B-53

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

ADSP-219x/2191 DSP Hardware Reference B-7

ADSP-2191 DSP I/O Registers

0x02:0x304 0x1608 SP0DR_CNT 0x0000 page B-53

0x02:0x305 0x160A SP0DR_CP 0x0000 page B-53

0x02:0x306 0x160C SP0DR_CPR 0x0000 page B-54

0x02:0x307 0x160E SP0DR_IRQ 0x0000 page B-54

0x02:0x380 0x1700 SP0DT_PTR 0x0000 page B-55

0x02:0x381 0x1702 SP0DT_CFG 0x0000 page B-56

0x02:0x382 0x1704 SP0DT_SRP 0x0000 page B-57

0x02:0x383 0x1706 SP0DT_SRA 0x0000 page B-56

0x02:0x384 0x1708 SP0DT_CNT 0x0000 page B-57

0x02:0x385 0x170A SP0DT_CP 0x0000 page B-58

0x02:0x386 0x170C SP0DT_CPR 0x0000 page B-58

0x02:0x387 0x170E SP0DT_IRQ 0x0000 page B-59

0x03:0x000 0x1800 SP1_TCR 0x0000 page B-38

0x03:0x001 0x1802 SP1_RCR 0x0000 page B-38

0x03:0x002 0x1804 SP1_TX 0x0000 page B-41

0x03:0x003 0x1806 SP1_RX 0x0000 page B-41

0x03:0x004 0x1808 SP1_TSCKDIV 0x0000 page B-42

0x03:0x005 0x180A SP1_RSCKDIV 0x0000 page B-42

0x03:0x006 0x180C SP1_TFSDIV 0x0000 page B-43

0x03:0x007 0x180E SP1_RFSDIV 0x0000 page B-42

0x03:0x008 0x1810 SP1_STATR 0x0000 page B-43

0x03:0x009 0x1812 SP1_MTCS0 0x0000 page B-44

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

I/O Processor Registers

B-8 ADSP-219x/2191 DSP Hardware Reference

0x03:0x00A 0x1814 SP1_MTCS1 0x0000 page B-44

0x03:0x00B 0x1816 SP1_MTCS2 0x0000 page B-44

0x03:0x00C 0x1818 SP1_MTCS3 0x0000 page B-44

0x03:0x00D 0x181A SP1_MTCS4 0x0000 page B-44

0x03:0x00E 0x181C SP1_MTCS5 0x0000 page B-44

0x03:0x00F 0x181E SP1_MTCS6 0x0000 page B-44

0x03:0x010 0x1820 SP1_MTCS7 0x0000 page B-44

0x03:0x011 0x1822 SP1_MRCS0 0x0000 page B-46

0x03:0x012 0x1824 SP1_MRCS1 0x0000 page B-46

0x03:0x013 0x1826 SP1_MRCS2 0x0000 page B-46

0x03:0x014 0x1828 SP1_MRCS3 0x0000 page B-46

0x03:0x015 0x182A SP1_MRCS4 0x0000 page B-46

0x03:0x016 0x182C SP1_MRCS5 0x0000 page B-46

0x03:0x017 0x182E SP1_MRCS6 0x0000 page B-46

0x03:0x018 0x1830 SP1_MRCS7 0x0000 page B-46

0x03:0x019 0x1832 SP1_MCMC1 0x0000 page B-47

0x03:0x01A 0x1834 SP1_MCMC2 0x0000 page B-47

0x03:0x100 0x1A00 SP1DR_PTR 0x0000 page B-48

0x03:0x101 0x1A02 SP1DR_CFG 0x0000 page B-48

0x03:0x102 0x1A04 SP1DR_SRP 0x0000 page B-50

0x03:0x103 0x1A06 SP1DR_SRA 0x0000 page B-53

0x03:0x104 0x1A08 SP1DR_CNT 0x0000 page B-53

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

ADSP-219x/2191 DSP Hardware Reference B-9

ADSP-2191 DSP I/O Registers

0x03:0x105 0x1A0A SP1DR_CP 0x0000 page B-53

0x03:0x106 0x1A0C SP1DR_CPR 0x0000 page B-54

0x03:0x107 0x1A0E SP1DR_IRQ 0x0000 page B-54

0x03:0x180 0x1A10 SP1DT_PTR 0x0000 page B-55

0x03:0x181 0x1A12 SP1DT_CFG 0x0000 page B-56

0x03:0x182 0x1A14 SP1DT_SRP 0x0000 page B-57

0x03:0x183 0x1A16 SP1DT_SRA 0x0000 page B-56

0x03:0x184 0x1A18 SP1DT_CNT 0x0000 page B-57

0x03:0x185 0x1A1A SP1DT_CP 0x0000 page B-58

0x03:0x186 0x1A1C SP1DT_CPR 0x0000 page B-58

0x03:0x187 0x1A1E SP1DT_IRQ 0x0000 page B-59

0x03:0x200 0x1C00 SP2_TCR 0x0000 page B-38

0x03:0x201 0x1C02 SP2_RCR 0x0000 page B-38

0x03:0x202 0x1C04 SP2_TX 0x0000 page B-41

0x03:0x203 0x1C06 SP2_RX 0x0000 page B-41

0x03:0x204 0x1C08 SP2_TSCKDIV 0x0000 page B-42

0x03:0x205 0x1C0A SP2_RSCKDIV 0x0000 page B-42

0x03:0x206 0x1C0C SP2_TFSDIV 0x0000 page B-43

0x03:0x207 0x1C0E SP2_RFSDIV 0x0000 page B-42

0x03:0x208 0x1C10 SP2_STATR 0x0000 page B-43

0x03:0x209 0x1C12 SP2_MTCS0 0x0000 page B-44

0x03:0x20A 0x1C14 SP2_MTCS1 0x0000 page B-44

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

I/O Processor Registers

B-10 ADSP-219x/2191 DSP Hardware Reference

0x03:0x20B 0x1C16 SP2_MTCS2 0x0000 page B-44

0x03:0x20C 0x1C18 SP2_MTCS3 0x0000 page B-44

0x03:0x20D 0x1C1A SP2_MTCS4 0x0000 page B-44

0x03:0x20E 0x1C1C SP2_MTCS5 0x0000 page B-44

0x03:0x20F 0x1C1E SP2_MTCS6 0x0000 page B-44

0x03:0x210 0x1C20 SP2_MTCS7 0x0000 page B-44

0x03:0x211 0x1C22 SP2_MRCS0 0x0000 page B-46

0x03:0x212 0x1C24 SP2_MRCS1 0x0000 page B-46

0x03:0x213 0x1C26 SP2_MRCS2 0x0000 page B-46

0x03:0x214 0x1C28 SP2_MRCS3 0x0000 page B-46

0x03:0x215 0x1C2A SP2_MRCS4 0x0000 page B-46

0x03:0x216 0x1C2C SP2_MRCS5 0x0000 page B-46

0x03:0x217 0x1C2E SP2_MRCS6 0x0000 page B-46

0x03:0x218 0x1C30 SP2_MRCS7 0x0000 page B-46

0x03:0x219 0x1C32 SP2_MCMC1 0x0000 page B-47

0x03:0x21A 0x1C34 SP2_MCMC2 0x0000 page B-47

0x03:0x300 0x1E00 SP2DR_PTR 0x0000 page B-48

0x03:0x301 0x1E02 SP2DR_CFG 0x0000 page B-48

0x03:0x302 0x1E04 SP2DR_SRP 0x0000 page B-50

0x03:0x303 0x1E06 SP2DR_SRA 0x0000 page B-53

0x03:0x304 0x1E08 SP2DR_CNT 0x0000 page B-53

0x03:0x305 0x1E0A SP2DR_CP 0x0000 page B-53

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

ADSP-219x/2191 DSP Hardware Reference B-11

ADSP-2191 DSP I/O Registers

0x03:0x306 0x1E0C SP2DR_CPR 0x0000 page B-54

0x03:0x307 0x1E0E SP2DR_IRQ 0x0000 page B-54

0x03:0x380 0x1E10 SP2DT_PTR 0x0000 page B-55

0x03:0x381 0x1E12 SP2DT_CFG 0x0000 page B-56

0x03:0x382 0x1E14 SP2DT_SRP 0x0000 page B-57

0x03:0x383 0x1E16 SP2DT_SRA 0x0000 page B-56

0x03:0x384 0x1E18 SP2DT_CNT 0x0000 page B-57

0x03:0x385 0x1E1A SP2DT_CP 0x0000 page B-58

0x03:0x386 0x1E1C SP2DT_CPR 0x0000 page B-58

0x03:0x387 0x1E1E SP2DT_IRQ 0x0000 page B-59

“Serial Peripheral Interface Registers” on page B-60

0x04:0x000 0x2000 SPICTL0 0x0400 page B-61

0x04:0x001 0x2002 SPIFLG0 0xFF00 page B-63

0x04:0x002 0x20024 SPIST0 0x01 page B-65

0x04:0x003 0x2006 TDBR0 0x0000 page B-65

0x04:0x004 0x2008 RDBR0 0x0000 page B-67

0x04:0x005 0x200A SPIBAUD0 0x0000 page B-68

0x04:0x006 0x200C RDBRS0 0x0000 page B-67

0x04:0x100 0x2200 SPI0D_PTR 0x0000 page B-68

0x04:0x101 0x2202 SPI0D_CFG 0x0000 page B-68

0x04:0x102 0x2204 SPI0D_SRP 0x0000 page B-70

0x04:0x103 0x2206 SPI0D_SRA 0x0000 page B-70

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

I/O Processor Registers

B-12 ADSP-219x/2191 DSP Hardware Reference

0x04:0x104 0x2208 SPI0D_CNT 0x0000 page B-70

0x04:0x105 0x220A SPI0D_CP 0x0000 page B-71

0x04:0x106 0x220C SPI0D_CPR 0x0000 page B-71

0x04:0x107 0x220E SPI0D_IRQ 0x0000 page B-71

0x04:0x200 0x2400 SPICTL1 0x0400 page B-61

0x04:0x201 0x2402 SPIFLG1 0xFF00 page B-63

0x04:0x202 0x2404 SPIST1 0x01 page B-65

0x04:0x203 0x2406 TDBR1 0x0000 page B-65

0x04:0x204 0x2408 RDBR1 0x0000 page B-67

0x04:0x205 0x240A SPIBAUD1 0x0000 page B-68

0x04:0x206 0x240C RDBRS1 0x0000 page B-67

0x04:0x300 0x2600 SPI1D_PTR 0x0000 page B-68

0x04:0x301 0x2602 SPI1D_CFG 0x0000 page B-68

0x04:0x302 0x2604 SPI1D_SRP 0x0000 page B-70

0x04:0x303 0x2606 SPI1D_SRA 0x0000 page B-70

0x04:0x304 0x2608 SPI1D_CNT 0x0000 page B-70

0x04:0x305 0x260A SPI1D_CP 0x0000 page B-71

0x04:0x306 0x260C SPI1D_CPR 0x0000 page B-71

0x04:0x307 0x260E SPI1D_IRQ 0x0000 page B-71

“UART Registers” on page B-72

0x05:0x000 0x2800 THR 0x01 page B-74

0x05:0x000 0x2800 RBR 0x0000 page B-74

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

ADSP-219x/2191 DSP Hardware Reference B-13

ADSP-2191 DSP I/O Registers

0x05:0x000 0x2800 DLL 0x0000 page B-76

0x05:0x001 0x2802 IER 0x0000 page B-75

0x05:0x001 0x2802 DLH 0x0000 page B-76

0x05:0x002 0x2804 IIR 0x01 page B-77

0x05:0x003 0x2806 LCR 0x0000 page B-77

0x05:0x004 0x2808 MCR See register page B-77

0x05:0x005 0x280A LSR 0x0060 page B-78

0x05:0x006 0x280C MSR 0x0000 page B-78

0x05:0x007 0x280E SCR 0x0000 page B-80

0x05:0x100 0x2A00 UARDR_PTR 0x0000 page B-81

0x05:0x101 0x2A02 UARDR_CFG 0x0000 page B-81

0x05:0x102 0x2A04 UARDR_SRP 0x0000 page B-83

0x05:0x103 0x2A06 UARDR_SRA 0x0000 page B-83

0x05:0x104 0x2A08 UARDR_CNT 0x0000 page B-84

0x05:0x105 0x2A0A UARDR_CP 0x0000 page B-84

0x05:0x106 0x2A0C UARDR_CPR 0x0000 page B-84

0x05:0x107 0x2A0E UARDR_IRQ 0x0000 page B-84

0x05:0x180 0x2B00 UARDT_PTR 0x0000 page B-86

0x05:0x181 0x2B02 UARDT_CFG 0x0000 page B-86

0x05:0x182 0x2B04 UARDT_SRP 0x0000 page B-86

0x05:0x183 0x2B06 UARDT_SRA 0x0000 page B-87

0x05:0x184 0x2B08 UARDT_CNT 0x0000 page B-87

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

I/O Processor Registers

B-14 ADSP-219x/2191 DSP Hardware Reference

0x05:0x185 0x2B0A UARDT_CP 0x0000 page B-87

0x05:0x186 0x2B0C UARDT_CPR 0x0000 page B-87

0x05:0x187 0x2B0E UARDT_IRQ 0x0000 page B-88

“Timer Registers” on page B-88

0x05:0x200 0x2C00 T_GSR0 0x0000 page B-90

0x05:0x201 0x2C02 T_CFGR0 0x0000 page B-90

0x05:0x202 0x2C04 T_CNTL0 0x0000 page B-92

0x05:0x203 0x2C06 T_CNTH0 0x0000 page B-92

0x05:0x204 0x2C08 T_PRDL0 0x0000 page B-93

0x05:0x205 0x2C0A T_PRDH0 0x0000 page B-93

0x05:0x206 0x2C0C T_WLR0 0x0000 page B-95

0x05:0x207 0x2C0E T_WHR0 0x0000 page B-95

0x05:0x208 0x2C10 T_GSR1 0x0000 page B-90

0x05:0x209 0x2C12 T_CFGR1 0x0000 page B-90

0x05:0x20A 0x2C14 T_CNTL1 0x0000 page B-92

0x05:0x20B 0x2C16 T_CNTH1 0x0000 page B-92

0x05:0x20C 0x2C18 T_PRDL1 0x0000 page B-93

0x05:0x20D 0x2C1A T_PRDH1 0x0000 page B-93

0x05:0x20E 0x2C1C T_WLR1 0x0000 page B-95

0x05:0x20F 0x2C1E T_WHR1 0x0000 page B-95

0x05:0x210 0x2C20 T_GSR2 0x0000 page B-90

0x05:0x211 0x2C22 T_CFGR2 0x0000 page B-90

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

ADSP-219x/2191 DSP Hardware Reference B-15

ADSP-2191 DSP I/O Registers

0x05:0x212 0x2C24 T_CNTL2 0x0000 page B-92

0x05:0x213 0x2C26 T_CNTH2 0x0000 page B-92

0x05:0x214 0x2C28 T_PRDL2 0x0000 page B-93

0x05:0x215 0x2C2A T_PRDH2 0x0000 page B-93

0x05:0x216 0x2C2C T_WLR2 0x0000 page B-95

0x05:0x217 0x2C2E T_WHR2 0x0000 page B-95

“Programmable Flag Registers” on page B-96

0x06:0x000 0x3000 DIR 0x0000 page B-97

0x06:0x002 0x3004 FLAGC Input page B-97

0x06:0x003 0x3006 FLAGS Input page B-97

0x06:0x004 0x3008 MASKAC 0x0000 page B-97

0x06:0x005 0x300A MASKAS 0x0000 page B-97

0x06:0x006 0x300C MASKBC 0x0000 page B-97

0x06:0x007 0x300E MASKBS 0x0000 page B-97

0x06:0x008 0x3010 FSPRC 0x0000 page B-98

0x06:0x009 0x3012 FSPRS 0x0000 page B-98

0x06:0x00A 0x3014 FSSR 0x0000 page B-99

0x06:0x00C 0x3018 FSBERC 0x0000 page B-99

0x06:0x00D 0x301A FSBERS 0x0000 page B-99

“External Memory Interface Registers” on page B-99

0x00:0x080 0x0100 E_STAT 0x0300 page B-100

0x06:0x201 0x3402 EMICTL 0x0070 page B-100

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

I/O Processor Registers

B-16 ADSP-219x/2191 DSP Hardware Reference

0x06:0x202 0x3404 BMSCTL 0x0DFF page B-102

0x06:0x203 0x3406 MS0CTL 0x0DFF page B-104

0x06:0x204 0x3408 MS1CTL 0x0DFF page B-104

0x06:0x205 0x340A MS2CTL 0x0DFF page B-104

0x06:0x206 0x340C MS3CTL 0x0000 page B-104

0x06:0x207 0x340E IOMSCTL 0x0000 page B-105

0x06:0x208 0x3410 EMISTAT 0x0000 page B-105

0x06:0x209 0x3412 MSPG10 0x0000 page B-105

0x06:0x20A 0x3414 MSPG32 0x0000 page B-105

“Host Port Registers” on page B-107

0x07:0x001 0x3802 HPCR 0x0000 page B-109

0x07:0x002 0x3804 HPPR 0x0000 page B-109

0x07:0x003 0x3806 HPDER 0x0000 page B-109

0x07:0x0FC 0x39F8 HPSMPHA 0x0000 page B-112

0x07:0x0FD 0x39FA HPSMPHB 0x0000 page B-112

0x07:0x100 0x3A00 HOSTD_PTR 0x0000 page B-112

0x07:0x101 0x3A02 HOSTD_CFG 0x0000 page B-112

0x07:0x102 0x3A04 HOSTD_SRP 0x0000 page B-113

0x07:0x103 0x3A06 HOSTD_SRA 0x0000 page B-113

0x07:0x104 0x3A08 HOSTD_CNT 0x0000 page B-113

0x07:0x105 0x3A0A HOSTD_CP 0x0000 page B-113

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

ADSP-219x/2191 DSP Hardware Reference B-17

ADSP-2191 DSP I/O Registers

Clock and System Control Registers
Clock and system control group of I/P registers include:

• “PLL Control (PLLCTL) Register” on page B-17

• “PLL Lock Counter (LOCKCNT) Register” on page B-19

• “Software Reset (SWRST) Register” on page B-19

• “Next System Configuration (NXTSCR) Register” on page B-19

• “System Configuration (SYSCR) Register” on page B-20

PLL Control (PLLCTL) Register
The PLL Control (PLLCTL) register lets systems select and change the
DSP’s core clock (CCLK) frequency and select power-down modes. The
PLL multiplies the clock frequency of the input clock with a programma-
ble ratio. The PLL Control register address is 0x00:0x200.

At reset, the PLL starts in BYPASS mode, running the CCLK clock
directly from CLKIN. The reset must be active at least four clock cycle to
allow full initialization of the synchronizer chain. After the PLL is locked,
software can switch to a clock multiplier mode.

0x07:0x106 0x3A0C HOSTD_CPR 0x0000 page B-115

0x07:0x107 0x3A0E HOSTD_IRQ 0x0000 page B-115

1 HAD0 usage depends on Host port configuration.

Table B-1. I/O Processor Registers Memory Map (Cont’d)

DSP I/O Address
(IOPG:Address)

Host I/O

Address1

(on HA16–
HAD1)

Register Name Initialization
After Reset

Page Cross
Reference

Clock and System Control Registers

B-18 ADSP-219x/2191 DSP Hardware Reference

Figure B-1 on page B-18 provides bit descriptions for the register.

Refer to “Using the PLL Control (PLLCTL) Register” on page 14-32 for
more information.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Reset = 0x0010

DF (Divide Frequency)
0 = CLKIN to PLL, 1 = CLKIN/2 to
PLL

PO (PLL Off)
0= PLL on, 1= PLL off

STOPALL (Stop All PLL Output)
0=PLL output, 1=CCLK and HCLK
high

STOPCK (Stop Core Clock)
0=CCLK output, 1=CCLK high

IOSEL (Core:Peripheral Clock Ratio)
0=HCLK=CCLK, 1=HCLK=CCLK/2

PDWN (Powerdown)
0=run, 1=Powerdown all

CKOUTEN (CLKOUT Enable)
0=CLKOUT=0, 1=CLKOUT=HCLK

DIV2 (Divide CLKIN /2 In Bypass Enable)
0=no divide, 1=CCLK=CLKIN/2 in
Bypass

BYPASS (Bypass PLL Multiplier)
0=Multiplier mode, 1=Bypass mode

MSEL4–0 (CLKIN Multiply Ratio)
00000 = 32 X; 00001 = 1 X
00010 = 2 X; 00011 = 3 X;
00100 = 4 X; ...; 11111 = 31 X

MSEL5 (Second Stage Multiplier Enable)

MSEL6 (Output Divider Enable)

Figure B-1. PLL Control (PLLCTL) Register Bits

ADSP-219x/2191 DSP Hardware Reference B-19

ADSP-2191 DSP I/O Registers

PLL Lock Counter (LOCKCNT) Register
The Lock Counter (LOCKCNT) is a 10-bit register. The register address is
0x00:0x201.

The process of changing the multiplication factor of the PLL takes a cer-
tain number of cycles, and therefore a lock counter is required to calculate
when the PLL is locked to the new ratio. The value of the LOCKCNT
depends on the frequency (the higher the capacitor must be charged, the
longer is the time required to lock). At power-up, the Lock Counter has to
be initialized. Therefore, during reset, the lock signal is forced and set
active indicating that the PLL is locked even though this may not be true.
The reset pulse must be long enough to guarantee that the PLL is effec-
tively locked at the end of the reset sequence or the software must wait
before switching the clock source to the PLL output.

 Software Reset (SWRST) Register
The Software Reset (SWRST) register is write-only. Its address is
0x00:0x202. The DSP core software reset is initiated by the DSP core by
writing 0x07 into the software reset (SWR) bits 2–0 in the Software Rest
(SWRST) register. Thus, value “7” triggers Software reset, values 0–6 specify
no software reset. Bits 3 through 15 are set to 0.

If bits 2–0 are set, the reset affects only the state of the core and most of
the peripherals. It does not make use of the hardware reset timer and logic
and does not reset the PLL and PLL control register.

A software reset of the peripheral will cause loss of state and immediate
termination of DMA processing.

Next System Configuration (NXTSCR) Register
This register address is 0x00:0x203.

Clock and System Control Registers

B-20 ADSP-219x/2191 DSP Hardware Reference

During normal chip operation, reset parameters may be written by the
DSP core into the I/O-mapped Next System Configuration (NXTSCR) reg-
ister. The state is latched/registered into this register and held there until a
software reset. A subsequent software reset updates the state of the System
Configuration register with the contents of NXTSCR , and will then be
allowed to propagate through to the register output drivers and distrib-
uted to DSP core and peripherals. For bit descriptions, see Figure B-2 on
page B-21.

The reset state is initialized during hardware reset from boot mode
pins and may also be altered by the boot kernel. These bits are
read-write during normal chip operation.

System Configuration (SYSCR) Register
The System Configuration (SYSCR) register is a read-write register. Its
address is 0x00:0x204.

The SYSCR register has the same bit layout as the Next System Configura-
tion (NXTSCR) register shown in Figure B-2. A software reset will update
the state of the SYSCR register with the contents of the NXTSCR register,
which will then be allowed to propagate through to the register output
drivers and be distributed to the DSP core and peripherals. When writing
directly to the SYSCR register, the RMODE pin can be used to control the base
address of the interrupt vector table whether 0x00 0000 or 0x01 0000.

The OPMODE pin is a dedicated mode control pin, it is typically used to
select between one serial port or two SPI ports. During boot, the OPMODE
pin serves as the BMODE2 pin.

The BMODE1–0 pins are the dedicated mode control pins. The pins and the
corresponding bits in the System Configuration register configure the
boot mode that is employed following hardware reset or software reset.

ADSP-219x/2191 DSP Hardware Reference B-21

ADSP-2191 DSP I/O Registers

System Interrupt Controller Registers
The Interrupt Controller module (IRQ) combines and prioritizes inter-
rupt sources from the various peripherals. The peripheral interrupt
controller module is a generic module used to combine and prioritize 16
interrupt sources into 12 interrupt requests. The module includes four
configuration registers that individually define the priority of interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

OPMODE (Operating Mode Select)
0 = 3, SPORTs selected
1 = 2, SPORTs, 2 SPIs selected

BMODE1–0 (Boot Mode Select—at boot,
the OPMODE pin/bit acts as
BMODE2)
000 = Boot from external memory
 16 bits (no boot)
001 = Boot from 8/16 bits EPROM
010 = Boot from Host
100 = Execute from memory external

 8 bits (no boot)
101 = Boot from UART
110 = Boot from SPI 4kbits
111 = Boot from SPI 512kbits

Reserved

RMODE (Run Mode)
0 = Use Boot Mode
1= Execute from on-chip SRAM
 at address 0x00 0000

PFMODE (Upper PFx pins enable)
0 = Disable PF15–8 (16-bit bus)
1 = Enable PF15–8 (8-bit bus)

Reserved

Figure B-2. Next System Configuration (NXTSCR) Register Bits

System Interrupt Controller Registers

B-22 ADSP-219x/2191 DSP Hardware Reference

sources. The module also includes twelve interrupt read registers, each
register being associated with one of the interrupt request. The Interrupt
Controller registers are:

• “Interrupt Priority (IPRx) Registers” on page B-22

• “Interrupt Source (INTRDx) Registers” on page B-25

Interrupt Priority (IPRx) Registers
There are four interrupt priority registers (which are part of the peripheral
interrupt controller module). The registers have the following addresses:

IPR0 0x01:0x200

IPR1 0x01:0x201

IPR2 0x01:0x202

IPR3 0x01:0x203

As shown in Figure B-3, Figure B-4, Figure B-5, and Figure B-6, the IPRx
registers individually define the priority of interrupt sources. Each IPRx
register is a 16-bit peripheral memory mapped register which is divided
into four-bit priority fields, each associated to one interrupt source. The
priority level is defined from 0 to 11, 0 being the highest priority and 11
being the lowest. The interrupt request of priority 0 is connected to inter-
rupt 4 of the DSP core and the interrupt request of priority 11 is
connected to interrupt 15 of the DSP core.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 Reset = 0x3210

HOSTIP (Host interrupt priority)

SP0RXIP (SPORT0 RX interrupt priority)

SP0TXIP (SPORT0 TX interrupt priority)

SP1RXIP (SPORT1 RX interrupt priority)

Figure B-3. Interrupt Priority Register 0 (IPR0) Bits

ADSP-219x/2191 DSP Hardware Reference B-23

ADSP-2191 DSP I/O Registers

An interrupt source is configured and applied to one of the interrupt
requests line as described in Table B-2 on page B-24.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 Reset = 0x7654

SP1TXIP (SPORT1 TX interrupt priority)

SP2RXIP (SPORT2 RX,SPI0 interrupt pri-
ority)

SP2TXIP (SPORT2 TX, SPI1 interrupt pri-
ority)

UARRXIP (UART RX interrupt priority)

Figure B-4. Interrupt Priority Register 1 (IPR1) Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 Reset = 0xBA98

UARTXIP (UART TX interrupt priority)

TIMER0IP (Timer0 interrupt priority)

TIMER1IP (Timer1 interrupt priority)

TIMER2IP (Timer2 interrupt priority)

Figure B-5. Interrupt Priority Register 2 (IPR2) Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 Reset = 0x0BBB

FLAGAIP (Flag A interrupt priority)

FLAGBIP (Flag B interrupt priority)

MDMAIP (MemDMA interrupt priority)

Reserved

Figure B-6. Interrupt Priority Register 3 (IPR3) Bits

System Interrupt Controller Registers

B-24 ADSP-219x/2191 DSP Hardware Reference

If the value of priority level field is 12 (0xC) or higher, then the interrupt
source is masked and the interrupt does not propagate to any of the inter-
rupt requests.

Some boot scenarios may alter the default values of these registers.
It is good programming style to set all unused priority level fields
to 0x0B (priority 12).

According to the values of the priority field in the IPR3–0 registers at reset,
the initial configuration of the interrupt sources after reset are described in
Table B-4 on page B-26.

Table B-2. IPRx Register Bits

Value in Priority Field (PERIxP) Interrupt Request DSP interrupt (IMASK/IRPTL)

0 DSPIRQ0 IRPTL4

1 DSPIRQ1 IRPTL5

2 DSPIRQ2 IRPTL6

3 DSPIRQ3 IRPTL7

4 DSPIRQ4 IRPTL8

5 DSPIRQ5 IRPTL9

6 DSPIRQ6 IRPTL10

7 DSPIRQ7 IRPTL11

8 DSPIRQ8 IRPTL12

9 DSPIRQ9 IRPTL13

10 DSPIRQ10 IRPTL14

11 DSPIRQ11 IRPTL15

15–12 Reserved Reserved

ADSP-219x/2191 DSP Hardware Reference B-25

ADSP-2191 DSP I/O Registers

Interrupt Source (INTRDx) Registers
There are twelve interrupt read registers; each register is associated with
one of the interrupt request. The register addresses are as follows:

INTRD0 0x01:0x204 INTRD1 0x01:0x205

INTRD2 0x01:0x206 INTRD3 0x01:0x207

INTRD4 0x01:0x208 INTRD5 0x01:0x209

INTRD6 0x01:0x20A INTRD7 0x01:0x20B

INTRD8 0x01:0x20C INTRD9 0x01:0x20D

INTRD10 0x01:0x20E INTRD11 0x01:0x20F

Each INTRDx register is a 16-bit peripheral memory mapped register.
(which is part of the peripheral interrupt controller module). The value of
each register is associated with one of the interrupt request (for example,
INTRD0 is associated with DSPIRQ0).

Each bit indicates the status of the 16 interrupt sources for the given
request (0 if masked or inactive, 1 if unmasked and active). Since several
interrupt sources can be combined on one interrupt request, reading the
interrupt source register allows the DSP to determine the active interrupt
source(s).

Table B-3. INTDRx Register Bit Descriptions

Bit Interrupt Source

0 Slave DMA / Host

1 SPORT 0 RX

2 SPORT 0 TX

3 SPORT 1 RX

4 SPORT 1 TX

5 SPORT 2 RX / SPI 0

6 SPORT 2 TX / SPI 1

System Interrupt Controller Registers

B-26 ADSP-219x/2191 DSP Hardware Reference

At reset, interrupt sources have been assigned to a given priority level
(interrupt request). For more information, see “Interrupt Priority (IPRx)
Registers” on page B-22.

Table B-4 on page B-26 shows the ID and priority at reset of each of the
peripheral interrupts at reset. To assign the peripheral interrupts a differ-
ent priority, applications write the new priority to their corresponding
control bits (determined by their ID) in the Interrupt Priority (IPRx) reg-
ister. For more information, see “Interrupt Priority (IPRx) Registers” on
page B-22.

7 UART RX

8 UART TX

9 Timer 0

10 Timer 1

11 Timer 2

12 Flag A

13 Flag B

14 MemDMA

15 reserved

Table B-4. Peripheral Interrupts and Priority at Reset

Interrupt ID Reset Priority

Slave DMA/Host Port Interface 0 0

SPORT0 Receive 1 1

SPORT0 Transmit 2 2

SPORT1 Receive 3 3

Table B-3. INTDRx Register Bit Descriptions (Cont’d)

Bit Interrupt Source

ADSP-219x/2191 DSP Hardware Reference B-27

ADSP-2191 DSP I/O Registers

DMA Controller Registers
The Memory DMA peripheral (MemDMA) is responsible for moving
data and instructions between internal and off-chip memory. This is per-
formed over the DMA bus.

The MemDMA is made up of two DMA channels: a dedicated “read”
channel and a dedicated “write” channel. Data is first read and stored in
an internal 4-word FIFO buffer. Once full, the FIFO’s contents are writ-
ten to their destination. This process is repeated for the desired number of
the transfers. Upon completion an interrupt is generated to the processor.
It should be noted that this scheme is free from overrun errors because of
the interlocking nature of a read followed by a write.

SPORT1 Transmit 4 4

SPORT2 Receive/SPI0 5 5

SPORT2 Transmit/SPI1 6 6

UART Receive 7 7

UART Transmit 8 8

Timer0 9 9

Timer1 10 10

Timer2 11 11

Programmable Flag 0 (any PFx) 12 11

Programmable Flag 1 (any PFx) 13 11

Memory DMA port 14 11

Table B-4. Peripheral Interrupts and Priority at Reset (Cont’d)

Interrupt ID Reset Priority

DMA Controller Registers

B-28 ADSP-219x/2191 DSP Hardware Reference

The section includes the following topics:

• “MemDMA Channel Write Pointer (DMACW_PTR) Register” on
page B-29

• “MemDMA Channel Write Configuration (DMACW_CFG) Reg-
ister” on page B-29

• “MemDMA Channel Write Start Page (DMACW_SRP) Register”
on page B-31

• “MemDMA Channel Write Start Address (DMACW_SRA) Regis-
ter” on page B-31

• “MemDMA Channel Write Count (DMACW_CNT) Register” on
page B-31

• “MemDMA Channel Write Chain Pointer (DMACW_CP) Regis-
ter” on page B-32

• “MemDMA Channel Write Chain Pointer Ready
(DMACW_CPR) Register” on page B-32

• “MemDMA Channel Write Interrupt (DMACW_IRQ) Register”
on page B-32

• “MemDMA Channel Read Pointer (DMACR_PTR) Register” on
page B-33

• “MemDMA Channel Read Configuration (DMACR_CFG) Regis-
ter” on page B-33

• “MemDMA Channel Read Start Page (DMACR_SRP) Register”
on page B-33

• “MemDMA Channel Read Start Address (DMACR_SRA) Regis-
ter” on page B-34

ADSP-219x/2191 DSP Hardware Reference B-29

ADSP-2191 DSP I/O Registers

• “MemDMA Channel Read Count (DMACR_CNT) Register” on
page B-34

• “MemDMA Channel Read Chain Pointer (DMACR_CP) Regis-
ter” on page B-34

• “MemDMA Channel Read Chain Pointer Ready (DMACR_CPR)
Register” on page B-35

• “MemDMA Channel Read Interrupt (DMACR_IRQ) Register” on
page B-35

MemDMA Channel Write Pointer
(DMACW_PTR) Register

The register address is 0x02:0x100. This read-only register holds the
pointer to the current descriptor block for the DMA write operation. The
reset value is 0x0000.

MemDMA Channel Write Configuration
(DMACW_CFG) Register

The register address is 0x02:0x101. The DMACW_CFG register should only be
written when starting DMA operation. Figure B-7 describes this register
bits. Additional information on bits (not covered in the Figure B-7)
include:

• Direction: Bit 1 (TRAN) must be set (=1) for the write operation

• DMA Buffer Clear: Bit 7 (FLSH) should be set (=1) only if a DMA
transfer has completed unsuccessfully.

• Descriptor Ownership: Bit 15 (DOWN) is checked before a full
descriptor block download is begun to determine if the descriptor
block is configured and ready for use.

DMA Controller Registers

B-30 ADSP-219x/2191 DSP Hardware Reference

For more information on using DMA processes, see “I/O Processor” on
page 6-1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DEN (DMA Enable – Read-Write)
0 = Disabled
1 = Enabled

TRAN (Transfer Direction – Read-Only)
0 = Read
 (DMACx_SRA is source)
1 = Write
 (DMACx_SRA is destination)

DCOME (Interrupt on Complete–
Read-Only)

DTYPE (Data Type– Read-Only)
0 = 16-bit
1 = 24-bit

Reserved

FLSH (DMA Buffer Clear – Read-Write)
1 = Flush (reset the FIFO buffer)

DERE (Interrupt On Error – Read-Only)

Reserved

FS (DMA Buffer Status)
00 = empty
11 = 1-4

DS (DMA Completion Status)
0 = Successful
1 = Error

DOWN (Descriptor Ownership)
0 = DSP
1 = DMA

Figure B-7. DMA, MemDMA Channel Write Configuration
(DMACW_CFG) Register Bits

ADSP-219x/2191 DSP Hardware Reference B-31

ADSP-2191 DSP I/O Registers

MemDMA Channel Write Start Page
(DMACW_SRP) Register

The register address is 0x02:0x102. The 16-bit DMA Write Start Page
(DMACW_SPR) register holds a running pointer to the DMA address that is
being accessed and the memory space being used for a Write transfer. The
reset value is 0x0000.

MemDMA Channel Write Start Address
(DMACW_SRA) Register

The register address is 0x02:0x103. This 16-bit read-only register holds
the write transfer start address. The reset value is 0x0000.

MemDMA Channel Write Count
(DMACW_CNT) Register

The register address is 0x02:0x104. The 16-bit Write Count (DMACW_CNT)
read-only register holds the number of words in the transfer. The reset
value is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)
Bits 7:0 hold the Write Start Page
address

MS (Memory Space)
00 = Memory Space
01 = Boot Space
10 = Reserved
11 = Reserved

Reserved

Figure B-8. DMA, MemDMA Channel Write Start Page (DMACW_SRP)
Register Bits

DMA Controller Registers

B-32 ADSP-219x/2191 DSP Hardware Reference

MemDMA Channel Write Chain Pointer
(DMACW_CP) Register

The register address is 0x02:0x105. The 16-bit DMACW_CP register holds the
pointer to address of next descriptor for a write transfer. The reset value is
0x0000.

MemDMA Channel Write Chain Pointer Ready
(DMACW_CPR) Register

The register address is 0x02:0x106. Bit 0 in the 16-bit read-write register
sets the status of the descriptor write operation. If bit = 1, the status is
descriptor ready; 0 = wait. Bits 15–1 are not used.

This register should be set in the software after each descriptor is written
to the internal memory. This lets the DMA know that a new descriptor
block has been written in case the state machine has stalled because the
descriptor block was not ready. This bit is cleared by the hardware upon
beginning the data transfers of the described work block or after a reading
a descriptor block with the ownership bit not set. Failure of the software
to set this bit could potentially cause the DMA engine to permanently
stall waiting for this bit.

MemDMA Channel Write Interrupt
(DMACW_IRQ) Register

The register address is 0x02:0x107. The DMA, MemDMA Channel can
generate an interrupt upon a completion of a transfer. The interrupt
occurs after the last write of the transfer is executed. Writing a one to bit 0
of the DMACW_IRQ register clears the DMA interrupt. Bits 15–1 are not
used. The reset value is 0x0000. Because this bit is sticky, it needs to be
cleared in the interrupt service routine to prevent the interrupt from
occurring repeatedly.

ADSP-219x/2191 DSP Hardware Reference B-33

ADSP-2191 DSP I/O Registers

MemDMA Channel Read Pointer
(DMACR_PTR) Register

The register address is 0x02:0x180. This is a read-only register that holds
the pointer to the current descriptor block for the DMA read operation.
The reset value is 0x0000.

MemDMA Channel Read Configuration
(DMACR_CFG) Register

The register address is 0x02:0x181. The DMACR_CFG register should only be
written when starting DMA operation. The reset value is 0x0000. The first
descriptor’s address should be written to the DMACR_CP Chain Pointer reg-
ister followed by writing a “1” to the configuration register setting bit 0,
the DMA enable (DEN) bit. This enables the DMA process and the first
descriptor block will be fetched from internal memory. The dynamic allo-
cation of descriptors is controlled by the “ownership” bit (bit 15) of each
descriptor block.

Bit 1 (Direction) is set to 0 for the read operation.

The DMA, MemDMA Channel generates an interrupt if the “Interrupt
on Error” bit 8 is set and the corresponding DMA channel is disabled dur-
ing operation. For bit descriptions for this register (which are the same as
the DMACW_CFG register), see Figure B-7 on page B-30.

MemDMA Channel Read Start Page
(DMACR_SRP) Register

The register address is 0x02:0x182. The 16-bit DMA Read Start Page
(DMACR_SRP) register holds a running pointer to the DMA address that is
being accessed and the memory space being used for a read operation.

DMA Controller Registers

B-34 ADSP-219x/2191 DSP Hardware Reference

MemDMA Channel Read Start Address
(DMACR_SRA) Register

The register address is 0x02:0x183. This 16-bit read-only register holds
the read transfer start address. The reset value is 0x0000.

MemDMA Channel Read Count
(DMACR_CNT) Register

The register address is 0x02:0x184. The 16-bit Read Count (DMACR_CNT)
read-only register holds the number of words in the transfer. The reset
value is 0x0000.

MemDMA Channel Read Chain Pointer
(DMACR_CP) Register

The register address is 0x02:0x185. The 16-bit DMACR_CP register holds the
pointer to the address of the next descriptor for a read transfer. The reset
value is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)
Bits 7:0 hold the Read Start Page
address

MS (Memory Space)
0 = Memory Space
1 = Boot Space

Reserved

Figure B-9. DMA, MemDMA Channel Read Start Page (DMACR_SRP)
Register Bits

ADSP-219x/2191 DSP Hardware Reference B-35

ADSP-2191 DSP I/O Registers

MemDMA Channel Read Chain Pointer Ready
(DMACR_CPR) Register

The register address is 0x02:0x186. Bit 0 in the 16-bit read-write register
sets the status of the descriptor write operation. If bit = 1, the status is
descriptor ready; 0 = wait. Bits 15–1 are not used.

This register should be set in the software after each descriptor is written
to the internal memory. This lets the DMA know that a new descriptor
block has been written in case the state machine has stalled because the
descriptor block was not ready. This bit is cleared by the hardware upon
beginning the data transfers of the described work block or after a reading
a descriptor block with the ownership bit not set. Failure of the software
to set this bit could potentially cause the DMA engine to permanently
stall waiting for this bit. The reset value is 0x0000.

MemDMA Channel Read Interrupt
(DMACR_IRQ) Register

The register address is 0x02:0x187. The DMA, MemDMA Channel can
generate an interrupt upon a completion of a transfer. The interrupt
occurs after the last write of the transfer is executed. Writing a one to bit 0
of the DMACR_IRQ register clears the DMA interrupt. Bits 15–1 are not
used.

SPORT Registers
The general-purpose programmable Serial port (SPORT) controller is
designed to be used as an on-chip peripheral of a DSP. It supports a vari-
ety of serial data communications protocols and can provide a direct
interconnection between processors in a multiprocessor system.

SPORT Registers

B-36 ADSP-219x/2191 DSP Hardware Reference

The SPORT can be viewed as two functional sections. The configuration
section is a block of control registers (mapped to IO space memory) that
the program must initialize before using the SPORTs. The data section is
a register file used to transmit and receive values through the SPORT.

The section includes the following topics:

• “SPORT Transmit Configuration (SPx_TCR) Registers” on
page B-38

• “SPORT Receive Configuration (SPx_RCR) Registers” on
page B-38

• “SPORT Transmit Data (SPx_TX) Registers” on page B-41

• “SPORT Receive Data (SPx_RX) Registers” on page B-41

• “SPORT Transmit Serial Clock Divisor (SPx_TSCKDIV) Regis-
ters and SPORT Receive Serial Clock Divisor (SPx_RSCKDIV)
Registers” on page B-42

• “SPORT Transmit Frame Sync Divisor (SPx_TFSDIV) Registers
and SPORT Receive Frame Sync Divisor (SPx_RFSDIV) Regis-
ters” on page B-43

• “SPORT Status (SPx_STATR) Registers” on page B-43

• “SPORT Multichannel Transmit Channel Select (SPx_MTCSx)
Registers” on page B-44

• “SPORT Multichannel Receive Channel Select (SPx_MRCSx)
Registers” on page B-46

• “SPORT Multichannel Mode Configuration (SPx_MCMCx) Reg-
isters” on page B-47

• “SPORT DMA Receive Pointer (SPxDR_PTR) Registers” on
page B-48

ADSP-219x/2191 DSP Hardware Reference B-37

ADSP-2191 DSP I/O Registers

• “SPORT Receive DMA Configuration (SPxDR_CFG) Registers”
on page B-48

• “SPORT Receive DMA Start Page (SPxDR_SRP) Registers” on
page B-52

• “SPORT Receive DMA Start Address (SPxDR_SRA) Registers” on
page B-53

• “SPORT Receive DMA Count (SPxDR_CNT) Registers” on
page B-53

• “SPORT Receive DMA Chain Pointer (SPxDR_CP) Register” on
page B-53

• “SPORT Receive DMA Chain Pointer Ready (SPxDR_CPR) Reg-
isters” on page B-54

• “SPORT Receive DMA Interrupt (SPxDR_IRQ) Registers” on
page B-54

• “SPORT Transmit DMA Pointer (SPxDT_PTR) Registers” on
page B-55

• “SPORT Transmit DMA Configuration (SPxDT_CFG) Registers”
on page B-56

• “SPORT Transmit DMA Start Address (SPxDT_SRA) Registers”
on page B-56

• “SPORT Transmit DMA Start Page (SPxDT_SRP) Registers” on
page B-57

• “SPORT Transmit DMA Count (SPxDT_CNT) Registers” on
page B-57

• “SPORT Transmit DMA Chain Pointer (SPxDT_CP) Registers”
on page B-58

SPORT Registers

B-38 ADSP-219x/2191 DSP Hardware Reference

• “SPORT Transmit DMA Chain Pointer Ready (SPxDT_CPR)
Registers” on page B-58

• “SPORT Transmit DMA Interrupt (SPxDT_IRQ) Registers” on
page B-59

SPORT Transmit Configuration (SPx_TCR) Registers
SPORTs are enabled through bits in the Transmit and Receive Configura-
tion (SPx_TCR) registers. The transmit registers’ I/O addresses are:

SP0_TCR 0x02:0x200

SP1_TCR 0x03:0x000

SP2_TCR 0x03:0x200

Refer to Figure B-10 on page B-39 for bit descriptions.

Bit 0 (TSPEN) enables a SPORT for transmit if it is set to 1. When this bit
is set, it locks further changes to the SPORT from occurring—for more
information, see the discussion on on page 9-13. This bit is cleared at
reset, disabling all SPORT channels. The reset value is 0x0000.

SPORT Receive Configuration (SPx_RCR) Registers
SPORTs are enabled through bits in the Receive (and Transmit) Configu-
ration registers. The Receive registers’ I/O addresses are:

SP0_RCR 0x02:0x201

SP1_RCR 0x03:0x001

SP2_RCR 0x03:0x201

ADSP-219x/2191 DSP Hardware Reference B-39

ADSP-2191 DSP I/O Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

TSPEN (Transmit SPORT Enable)
0 =Disable
1 = Enable

ICLK (Input CLK)
0 = external TCLK
1 = internal TCLK

DTYPE (Data Type)
00 = zero fill, 01 = sign-extend
10 = µ-law, 11 = A-law

SENDN (SPORT Endian Format)
0 = MSB-first, 1 = LSB-first

SLEN (SPORT Word Length)
0 to 1 = illegal, 2 to 15 = legal

ITFS (Internal Frame Sync)
0 = external TFS, 1 = internal TFS

TFSR (Frame Sync Required)
0 = TFS not required
1 = TFS required

DITFS (Data Independent Frame Sync)
0 = data dependent
1 = data independent

LTFS (Hi/Low Frame Sync)
0 = active high TFS
1 = active low TFS

LATFS (Early/Late Frame Sync Select)
0 = early TFS
1 = late TFS

CKRE (Clock Rising Edge Enable)
0 = Drive data and FS w/ falling

 edge of SCLK
1 = Drive data and FS w/ rising

edge of SCLK

ICLKD (Internal Clock Disable)
0 = Default, enabling the applicable

 clock.
1 = TCLK disable

Figure B-10. SPORT Transmit Configuration (SPx_TCR) Registers’ Bits

SPORT Registers

B-40 ADSP-219x/2191 DSP Hardware Reference

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

RSPEN (Receive SPORT Enable)
0=Disable, 1=Enable (locks out other
changes to SPx_RCR)

ICLK (Input CLK)
0 = external RCLK, 1 = internal RCLK

DTYPE (Data Type)
00 = zero fill, 01= sign-extend
10 = µ-law, 11 = A-law

SENDN (SPORT Endian Format)
0 = MSB-first, 1 = LSB-first

SLEN (SPORT Word Length)
0 to 1 = illegal, 2 to 15 = legal

IRFS (Internal Frame Sync)
0 = external RFS, 1 = internal RFS

RFSR (Frame Sync Required)
0 = RFS not required, 1 = RFS required

Reserved

LRFS (Hi/Low Frame Sync)
0 = active high RFS, 1 = active low RFS

LARFS (Early/Late Frame Sync Select)
0 = early RFS, 1 = late RFS

CKRE (Clock Rising Edge)
0 = Sample data and FS w/rising edge of
SCLK
1 = Sample data and FS w/falling edge of
SCLK

ICLKD (Internal Clock Disable)
0 = Default, enabling the applicable clock.
1 = RCLK disable

Figure B-11. SPORT Receive Configuration (SPx_RCR) Registers’ Bits

ADSP-219x/2191 DSP Hardware Reference B-41

ADSP-2191 DSP I/O Registers

SPORT Transmit Data (SPx_TX) Registers
These registers’ addresses are:

SP0_TX 0x02:0x202

SP1_TX 0x03:0x002

SP2_TX 0x03:0x202

These registers can be accessed at any time during program execution
using an IO Space access with immediate address. For example, the fol-
lowing instruction would ready SPORT to transmit a serial value,
assuming SPORT is configured and enabled:

IOPG = 0x02; /* selects I/O memory page 0x02 */

IO(0x202) = AX0; /* loads TX from AX0, transmitting data */

The TX registers act like a two-location FIFO buffers because they have a
data register plus an output shift register; two 16-bit words may be stored
in the TX buffers at any one time. When the TX buffer is loaded and any
previous word has been transmitted, the buffer contents are automatically
loaded into the output shifter. An interrupt is generated when the output
shifter has been loaded, signifying that the TX buffer is ready to accept the
next word (i.e. the TX buffer is “not full”). This interrupt will not occur if
serial port DMA is enabled. The reset value is 0x0000.

SPORT Receive Data (SPx_RX) Registers
These registers’ addresses are:

SP0_RX 0x02:0x203

SP1_RX 0x03:0x003

SP2_RX 0x03:0x203

These registers can be accessed at any time during program execution
using an I/O space access with immediate address.

SPORT Registers

B-42 ADSP-219x/2191 DSP Hardware Reference

For example, the following instruction would access a serial value received
on SPORT:

IOPG = 0x02; /* selects I/O memory page 0x02 */

AY0 = IO(0x203); /* loads AY0 from RX, received data */

The RX registers act like a two-location FIFO buffer because they have a
data register plus an input shift register. They are read-only and their reset
values are undefined.

Two 16-bit words can be stored in RX at any one time. The third word will
overwrite the second if the first word has not been read out (by the Master
core or the DMA controller). When this happens, the receive overflow sta-
tus bit (ROVF) will be set in SPORT Status register. The overflow status is
generated on the last bit of the second word. The ROVF status bit is “sticky”
and is only cleared by disabling the serial port.

An interrupt is generated when the RX buffer has been loaded with a
received word (that is, the RX buffer is “not empty”). This interrupt will be
masked out if serial port DMA is enabled.

SPORT Transmit Serial Clock Divisor
(SPx_TSCKDIV) Registers and
SPORT Receive Serial Clock Divisor
(SPx_RSCKDIV) Registers

The frequency of an internally generated clock is a function of the proces-
sor clock frequency (as seen at the HCLK pin) and the value of the 16-bit
serial clock divide modulus registers: TSCKDIV and RSCKDIV. The reset
value is 0x0000.

The transmit TSCKDIV registers’ addresses are:

SP0_TSCKDIV 0x02:0x204

SP1_TSCKDIV 0x03:0x004

SP2_TSCKDIV 0x03:0x204

ADSP-219x/2191 DSP Hardware Reference B-43

ADSP-2191 DSP I/O Registers

The receive TSCKDIV registers’ addresses are:

SP0_RSCKDIV 0x02:0x205

SP1_RSCKDIV 0x03:0x005

SP2_RSCKDIV 0x03:0x205

SPORT Transmit Frame Sync Divisor
(SPx_TFSDIV) Registers and
SPORT Receive Frame Sync Divisor
(SPx_RFSDIV) Registers

These 16-bit registers specify how many transmit or receive clock cycles
are counted before generating a TFS or RFS pulse (when the frame synch is
internally generated). In this way, a frame sync can be used to initiate peri-
odic transfers. The counting of serial clock cycles applies to either
internally or externally generated serial clocks. The reset value is 0x0000.

The transmit TFSDIV registers’ addresses are:

SP0_TFSDIV 0x02:0x206

SP1_TFSDIV 0x03:0x006

SP2_TFSDIV 0x03:0x206

The receive RFSDIV registers’ addresses are:

SP0_RFSDIV 0x02:0x207

SP1_RFSDIV 0x03:0x007

SP2_RFSDIV 0x03:0x207

SPORT Status (SPx_STATR) Registers
These registers’ addresses are:

SP0_STATR 0x02:0x208

SP1_STATR 0x03:0x008

SP2_STATR 0x03:0x208

SPORT Registers

B-44 ADSP-219x/2191 DSP Hardware Reference

Figure B-12 on page B-45 provides bit descriptions.

The RXS and TXS status bits in the SPORT Status (SPx_STATR) registers are
updated upon reads and writes from the core processor even when the
serial port is disabled. The SPORT Status register is used to determine if
the access to a SPORT RX or TX buffer can be made via determining their
full or empty status. It is a read-only register; its reset value is undefined.

The transmit underflow status bit (TUVF) is set in the SPORT Status regis-
ter when a transmit frame synch occurs and no new data has been loaded
into the SPORT TX register. The TUVF status bit is “sticky” and is only
cleared by disabling the serial port.

When the SPORT RX buffer is full, the receive overflow status bit (ROVF) is
set in SPORT Status register. The overflow status is generated on the last
bit of the second word. The ROVF status bit is “sticky” and is only cleared
by disabling the serial port.

The 7-bit CHNL field is the read-only status indicator that shows which
channel is currently selected during multi-channel operation. CHNL6–0
increments by one as each channel is serviced. In channel select offset
mode, the CHNL value is reset to 0 after the offset has been completed.
For example, with offset equals to 21 and a window of 8, in the regular
mode the counter will display a value between 0 and 28, while in channel
select offset mode, the counter will reset to 0 after counting up to 21, and
then the frame will complete when the CHNL reaches 8th channel (value
of 7).

SPORT Multichannel Transmit Channel Select
(SPx_MTCSx) Registers

The multi-channel selection registers are used to enable and disable indi-
vidual channels. The MTCSx register specifies the active transmit channels.
Each register has 16 bits, corresponding to the 16 channels. Setting a bit

ADSP-219x/2191 DSP Hardware Reference B-45

ADSP-2191 DSP I/O Registers

enables that channel so that the serial port will select its word from the
multiple-word block of data (for either receive or transmit). For example,
setting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit to 1 in a MTCSx register causes the serial port to
transmit the word in that channel’s position of the data stream. Clearing
the bit to 0 in the MTCSx register causes the serial port’s DT (data transmit)
pin to three-state during the time slot of that channel. The reset value is
0x0000.

Register addresses are listed in Table B-4.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

ROVF (Sticky receive overflow status)
0 = disabled, 1 = enabled

RXS (Receive Status)
0 = empty, 1 = not empty

TXS (Transmit Status)
0 = empty. 1 = full

TUVF (Sticky transmit underflow status)
0 = disabled, 1 = enabled

CHNL (Current Channel Indicator)

Reserved.

Figure B-12. SPORT Status (SPx_STATR) Registers’ Bits

Table B-5. SPx_MTCSx Register Addresses

SPORT 0 SPORT1 SPORT2

Register Address Register Address Register Address

SP0_MTCS0 0x02:0x209 SP1_MTCS0 0x03:0x009 SP2_MTCS0 0x03:0x209

SP0_MTCS1 0x02:0x20A SP1_MTCS1 0x03:0x00A SP2_MTCS1 0x03:0x20A

SP0_MTCS2 0x02:0x20B SP1_MTCS2 0x03:0x00B SP2_MTCS2 0x03:0x20B

SP0_MTCS3 0x02:0x20C SP1_MTCS3 0x03:0x00C SP2_MTCS3 0x03:0x20C

SPORT Registers

B-46 ADSP-219x/2191 DSP Hardware Reference

SPORT Multichannel Receive Channel Select
(SPx_MRCSx) Registers

The multichannel receive channel selection registers are used to enable
and disable individual channels. The MRCSx register specifies the active
receive channels. Each register has 16 bits, corresponding to the 16 chan-
nels. Setting a bit enables that channel so that the serial port will select its
word from the multiple-word block of data (for either receive or transmit).
For example, setting bit 0 selects word 0, setting bit 12 selects word 12,
and so on.

Setting a particular bit to 1 in the MRCSx register causes the serial port to
receive the word in that channel’s position of the data stream; the received
word is loaded into the RX buffer. Clearing the bit to 0 in the MRCSx regis-
ter causes the serial port to ignore the data. The reset value is 0x0000.

Register addresses are listed in Table B-6.

SP0_MTCS4 0x02:0x20D SP1_MTCS4 0x03:0x00D SP2_MTCS4 0x03:0x20D

SP0_MTCS5 0x02:0x20E SP1_MTCS5 0x03:0x00E SP2_MTCS5 0x03:0x20E

SP0_MTCS6 0x02:0x20F SP1_MTCS6 0x03:0x00F SP2_MTCS6 0x03:0x20F

SP0_MTCS7 0x02:0x210 SP1_MTCS7 0x03:0x010 SP2_MTCS7 0x03:0x210

Table B-6. SPx_MRCSx Register Addresses

SPORT0 SPORT1 SPORT2

Register Address Register Address Register Address

SP0_MRCS0 0x02:0x211 SP1_MRCS0 0x03:0x011 SP2_MRCS0 0x03:0x211

SP0_MRCS1 0x02:0x212 SP1_MRCS1 0x03:0x012 SP2_MRCS1 0x03:0x212

Table B-5. SPx_MTCSx Register Addresses (Cont’d)

SPORT 0 SPORT1 SPORT2

Register Address Register Address Register Address

ADSP-219x/2191 DSP Hardware Reference B-47

ADSP-2191 DSP I/O Registers

SPORT Multichannel Mode Configuration
(SPx_MCMCx) Registers

There are two SPx_MCMCx registers for each SPORT. Their addresses are in
Table B-6.

Refer to Figure B-13 on page B-49 and Figure B-14 on page B-50 for
SPx_MCMCx registers’ bit descriptions.

The SPx_MCMCx registers are used to enable multi-channel mode. Setting
the MCM bit enables multi-channel operation for both receive and transmit
sides of the SPORT. A transmitting SPORT must therefore be in
multi-channel mode if the receiving SPORT is in multi-channel mode.

SP0_MRCS2 0x02:0x213 SP1_MRCS2 0x03:0x013 SP2_MRCS2 0x03:0x213

SP0_MRCS3 0x02:0x214 SP1_MRCS3 0x03:0x014 SP2_MRCS3 0x03:0x214

SP0_MRCS4 0x02:0x215 SP1_MRCS4 0x03:0x015 SP2_MRCS4 0x03:0x215

SP0_MRCS5 0x02:0x216 SP1_MRCS5 0x03:0x016 SP2_MRCS5 0x03:0x216

SP0_MRCS6 0x02:0x217 SP1_MRCS6 0x03:0x017 SP2_MRCS6 0x03:0x217

SP0_MRCS7 0x02:0x218 SP1_MRCS7 0x03:0x018 SP2_MRCS7 0x03:0x218

Table B-7. SPx_MCMCx Registers Addresses

SPORT0 SPORT1 SPORT2

Register Address Register Address Register Address

SP0_MCMC1 0x02:0x219 SP1_MCMC1 0x03:0x019 SP2_MCMC1 0x03:0x219

SP0_MCMC2 0x02:0x21A SP1_MCMC2 0x03:0x01A SP2_MCMC2 0x03:0x21A

Table B-6. SPx_MRCSx Register Addresses (Cont’d)

SPORT0 SPORT1 SPORT2

Register Address Register Address Register Address

SPORT Registers

B-48 ADSP-219x/2191 DSP Hardware Reference

The value of MFD is the number of serial clock cycles of the delay.
Multi-channel frame delay allows the processor to work with different
types of T1 interface devices.

A value of zero for MFD causes the frame sync to be concurrent with the
first data bit. The maximum value allowed for MFD is 15.

The reset value for both SPx_MCMCx registers is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MCM (Multi-Channel Mode)
Setting the MCM bit in the MCM Con-
trol register 1 enables multi-channel
mode.
When MCM =1, multi-channel opera-
tion is enabled.
When MCM = 0, all multi-channel
operations are disabled.

MFD (Multi-Channel Frame Delay):
The 4-bit MFD field specifies a delay
between the frame sync pulse and
the first data bit in multi-channel
mode.

WSIZE (Window Size)
Window Size can be any value in the
range of 8-128 in increments of 8.
Default value of 0 corresponds to a
minimum window size of 8 channels.

WOFF (Window Offset)
Window Offset places the start of the
Window anywhere in the 127.
0 means no offset, 127 means offset
of 127) channel range.
For example, one could have a 5
channel window (Window size is 5) in
the range from 93 to 97 (offset is 93).
If one wants to utilize all 128 chan-
nels, the offset is set to 0.

Figure B-13. SPORT Multi-Channel Configuration (SPx_MCMC1)
Register Bits

ADSP-219x/2191 DSP Hardware Reference B-49

ADSP-2191 DSP I/O Registers

 A new frame sync may occur before data from the last frame has been
received, because blocks of data occur back-to-back.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MCCRM (2x Clock Recovery Mode):
0x = bypass mode
10 =Recover 2MHz clock from 4MHz
11 = Recover 8MHz clock from
16MHz

MCDTXPE (Multi-Channel DMA Transmit
Packing Enabled)
0 = Disabled
1 = Enabled

MCDRXPE (Multi-Channel DMA Receive
Packing Enabled)
0 = Disabled
1 = Enabled

MCOM (Channel Select Offset Mode)
0 = Disabled
1 = Enabled

MCFF (TX FIFO Prefetch MAX Distance)
00 = 2 Channels
01 = 4 Channels
10 = 8 Channels
11 =16 Channels

FSDR (Frame Sync–Data Relationship)
0 = normal
1 = reversed (H.100 mode)

Reserved

Figure B-14. SPORT Multi-Channel Configuration (SPx_MCMC2)
Register Bits

SPORT Registers

B-50 ADSP-219x/2191 DSP Hardware Reference

SPORT DMA Receive Pointer (SPxDR_PTR) Registers
These registers’ addresses are:

SP0DR_PTR 0x02:0x300

SP1DR_PTR 0x03:0x100

SP2DR_PTR 0x03:0x300

These 16-bit read-only registers hold the pointer to the current descriptor
block for the SPORT DMA operation. The reset value is 0x0000.

SPORT Receive DMA Configuration
(SPxDR_CFG) Registers

These register’s addresses are:

SP0DR_CFG 0x02:0x301

SP1DR_CFG 0x03:0x101

SP2DR_CFG 0x03:0x301

During SPORT initialization, the program can write the head address of
the first DMA descriptor block to the Receive DMA Descriptor Pointer
(SPxDR_PTR) register and then set the DMA enable bit in the Receive
DMA Configuration (SPxDR_CFG) registers. The DMA Configuration reg-
ister maintains real-time DMA buffer status.

Each SPORT DMA channel has an enable bit (DMA Enable) in these reg-
isters for each of the three serial ports. When DMA is not enabled for a
particular channel, the SPORT generates an interrupt every time it has
received a data word. The reset value is 0x0000. Refer to Figure B-15 on
page B-51 for bit descriptions.

The DCOME bit will result in an interrupt of the core DSP once the last
word of the DMA transfer has completed transmission (for a SPORT
transmit), or has been written to memory (for a SPORT receive).

ADSP-219x/2191 DSP Hardware Reference B-51

ADSP-2191 DSP I/O Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DEN (DMA Enable)
Bit 0 can be Read-Write in register:
0 = disabled, 1 = enabled

TRAN (Transfer Direction – Read-Only)
Sets whether the DMA access is SPORT
Receive or Transmit DMA transfer
0 = memory read
1 = memory write: set to 1 for Receive
DMA Transfer.

DCOME (Interrupt on Complete–Read-Only)
This bit always reads as 0 in the Receive
DMA transfer mode.

Reserved

DAUTO (AutoBuffer/Descriptor Mode)
0 = Descriptor Mode enabled
1 = Autobuffer Mode enabled

Reserved

FLSH (DMA Buffer Clear)
Bit 7 can be Read-Write in register. It
should be set following a DMA termina-
tion due to an error condition.

DERE (Interrupt on Error - Read-only)

Reserved

FS (DMA Buffer Status)
This bit is actively updated in register:
00 = buffer empty, 01 = one word present
10 = two words present, 11 = three words
present

DS (DMA Completion Status - Read-only)
0 = Successful Completion
1 = Error: bit contains valid state only in a
halted (not enabled) DMA controller.

DOWN (Descriptor Owner (Read-Only)
0 = Processor, 1 = DMA Engine

Figure B-15. SPORT Receive DMA Configuration (SPxDR_CFG)
Registers’ Bits

SPORT Registers

B-52 ADSP-219x/2191 DSP Hardware Reference

The DMA buffer clear bit (FLSH) has write-one-to-clear characteristics. It
may also be used by a descriptor block load to initialize a DMA FIFO to a
cleared condition prior starting a DMA transfer. Not only is the DMA
extended buffer cleared, but the SPORT transmit double buffer and
receive triple buffers are also cleared.

SPORT Receive DMA Start Page (SPxDR_SRP)
Registers

These registers’ addresses are:

SP0DR_SRP 0x02:0x302

SP1DR_SRP 0x03:0x102

SP2DR_SRP 0x03:0x302

These registers hold a running pointer to the DMA address that is being
accessed and the type of memory space being used. It is a read-only regis-
ter (can be written in the Autobuffer Mode).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)

MS (Memory Space)
00 = Memory Space
01 = Boot Space
10 = IO Space
11 = reserved

Reserved

Figure B-16. SPORT Receive DMA Start (SPxDR_SRP) Registers’ Bits

ADSP-219x/2191 DSP Hardware Reference B-53

ADSP-2191 DSP I/O Registers

SPORT Receive DMA Start Address (SPxDR_SRA)
Registers

These registers’ addresses are:

SP0DR_SRA 0x02:0x303

SP1DR_SRA 0x03:0x103

SP2DR_SRA 0x03:0x303

The DMA Start Address (SPxDR_SRA) registers maintain a running pointer
to the DMA address that is being accessed. They are read-only (can be
written in the autobuffer mode). The reset value is 0x0000.

SPORT Receive DMA Count (SPxDR_CNT) Registers
These registers’ addresses are:

SP0DR_CNT 0x02:0x304

SP1DR_CNT 0x03:0x104

SP2DR_CNT 0x03:0x304

Bits 12:0 in the SPORT DMA Word Count (SPxDR_CNT) registers hold
the number of remaining words in the transfer. These are read-only regis-
ters (can be written in the autobuffer mode). The reset value is 0x0000.

SPORT Receive DMA Chain Pointer
(SPxDR_CP) Register

These registers’ addresses are:

SP0DR_CP 0x02:0x305

SP1DR_CP 0x03:0x105

SP2DR_CP 0x03:0x305

SPORT Registers

B-54 ADSP-219x/2191 DSP Hardware Reference

The 16-bit DMA Chain (Next Descriptor) Pointer (SPxDR_CP) register
maintains the head address of the next DMA descriptor block. During
SPORT initialization, the programmer will write the head address of the
first DMA descriptor block to the Receive (or Transmit) DMA Chain
Pointer register and then set the DMA enable bit in the Transmit or
Receive DMA Configuration registers.

Once a DMA process has started, no further control of the SPORT con-
troller or the DMA process should be performed by write accesses to the
SPORT DMA control registers. Performing IO Space writes to these reg-
isters during operation will have no effect on DMA transfers since these
registers are read-only. The reset value is 0x0000.

SPORT Receive DMA Chain Pointer Ready
(SPxDR_CPR) Registers

These registers’ addresses are:

SP0DR_CPR 0x02:0x306

SP1DR_CPR 0x03:0x106

SP2DR_CPR 0x03:0x306

These registers are used to show the descriptor’s status. A DMA Chain
Pointer Ready (SPxDR_CPR) register is needed for the descriptor ownership
setup. They are write-only registers (always read as zero). The reset value is
0x0000.

SPORT Receive DMA Interrupt (SPxDR_IRQ)
Registers

These registers’ addresses are:

SP0DR_IRQ 0x02:0x307

SP1DR_IRQ 0x03:0x107

SP2DR_IRQ 0x03:0x307

ADSP-219x/2191 DSP Hardware Reference B-55

ADSP-2191 DSP I/O Registers

Each SPORT DMA unit generates an interrupt upon a completion of a
data transfer. Writing a one to bit 0 clears the DMA interrupt. Writing a
one to bit 1 clears the error interrupt condition.

Refer to Figure B-17 on page B-55 for bit descriptions.

SPORT Transmit DMA Pointer (SPxDT_PTR) Registers
These registers’ addresses are:

SP0DT_PTR 0x02:0x380

SP1DT_PTR 0x03:0x180

SP2DT_PTR 0x03:0x380

These registers hold the address for the current transmit control block
(descriptor) in a chained DMA operation. The reset value is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DCOMI (DMA Interrupt on Completion)
1 = completed, 0 = inactive
Type - W1C

DERI (DMA Interrupt on Error)
1 = error, 0 = inactive
Type - W1C

Reserved

Figure B-17. SPORT Receive DMA Interrupt (SPxDR_IRQ) Registers’
Bits

SPORT Registers

B-56 ADSP-219x/2191 DSP Hardware Reference

SPORT Transmit DMA Configuration
(SPxDT_CFG) Registers

Register addresses are:

SP0DT_CFG 0x02:0x381

SP1DT_CFG 0x03:0x181

SP2DT_CFG 0x03:0x381

During SPORT initialization, the program can write the head address of
the first DMA descriptor block to the Transmit DMA Descriptor Pointer
register and then set the DMA enable bit in the Transmit DMA Configu-
ration registers. The DMA Configuration register maintains real-time
DMA buffer status. The reset value is 0x0000.

Each SPORT DMA channel has an enable bit (DMA enable) in these reg-
isters for each of the three serial ports. When DMA is not enabled for a
particular channel, the SPORT generates an interrupt every time it has
started to transmit a data word.

For information on the bits in this register (which are the same

as the SPxDR_CFG register), see Figure B-15 on page B-51.

SPORT Transmit DMA Start Address
(SPxDT_SRA) Registers

Register addresses are:

SP0DT_SRA 0x02:0x383

SP1DT_SRA 0x03:0x183

SP2DT_SRA 0x03:0x383

The DMA Start Address (SPxDT_SRA) register holds a running pointer to
the DMA address that is being accessed. These are read-only registers (can
be written in the autobuffer mode). The reset value is 0x0000.

ADSP-219x/2191 DSP Hardware Reference B-57

ADSP-2191 DSP I/O Registers

SPORT Transmit DMA Start Page (SPxDT_SRP)
Registers

Register addresses are:

SP0DT_SRP 0x02:0x382

SP1DT_SRP 0x03:0x182

SP2DT_SRP 0x03:0x382

The SPORT DMA Start Page (SPxDT_SRP) register (as well as the SPORT
DMA Start Address and DMA Word Count registers) maintain a running
pointer to the DMA address that is being accessed and the number of
remaining words in the transfer. These are read-only registers (can be writ-
ten in the autobuffer mode).

Refer to Figure B-19 on page B-59 for bit descriptions.

SPORT Transmit DMA Count (SPxDT_CNT) Registers
These register addresses are:

SP0DT_CNT 0x02:0x384

SP1DT_CNT 0x03:0x184

SP2DT_CNT 0x03:0x384

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)

MS (Memory Space)
00 = Memory Space
01 = Boot Space
10 = Reserved
11 = Reserved

Reserved

Figure B-18. SPORT Transmit DMA Start Page (SPxDT_SRP) Registers’
Bits

SPORT Registers

B-58 ADSP-219x/2191 DSP Hardware Reference

The DMA Word Count register holds the DMA block word count (the
number of remaining words in the transfer). These are read-only registers
(can be written in the autobuffer mode). The reset value is 0x0000.

SPORT Transmit DMA Chain Pointer
(SPxDT_CP) Registers

These register addresses are:

SP0DT_CP 0x02:0x385

SP1DT_CP 0x03:0x185

SP2DT_CP 0x03:0x385

The SPORT Transmit DMA Chain Pointer (SPxDT_CP) register holds the
head address of the next DMA descriptor block. During SPORT initial-
ization, the programmer will write the head address of the first DMA
descriptor block to the Transmit (or Receive) DMA Chain Pointer register
and then set the DMA enable bit in the Transmit or Receive DMA Con-
figuration registers. Once a DMA process has started, no further control
of the SPORT controller or the DMA process should be performed by
write accesses to the SPORT DMA control registers.

Performing I/O space writes to these registers during operation will have
no effect on DMA transfers since these registers are read-only. The reset
value is 0x0000.

SPORT Transmit DMA Chain Pointer Ready
(SPxDT_CPR) Registers

Registers’ addresses are:

SP0DT_CPR 0x02:0x386

SP1DT_CPR 0x03:0x186

SP2DT_CPR 0x03:0x386

ADSP-219x/2191 DSP Hardware Reference B-59

ADSP-2191 DSP I/O Registers

These registers are used to show the descriptor’s status. A DMA Chain
Pointer Ready register is needed for the descriptor ownership setup. They
are write-only registers (always read as zero). The reset value is 0x0000.

SPORT Transmit DMA Interrupt (SPxDT_IRQ)
Registers

These register addresses are:

SP0DT_IRQ 0x02:0x387

SP1DT_IRQ 0x03:0x187

SP2DT_IRQ 0x03:0x387

Each SPORT DMA unit generates an interrupt upon a completion of a
data transfer. Writing a one to bit 0 clears the DMA interrupt. Writing a
one to bit 1 clears the error interrupt condition.

Refer to Figure B-18 on page B-57 for bit descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DCOMI (DMA Interrupt on Completion)
1 = completed, 0 = inactive
Type - W1C

DERI (DMA Interrupt on Error)
1 = error, 0 = inactive
Type - W1C

Reserved

Figure B-19. SPORT Transmit DMA Interrupt (SPxDT_IRQ) Registers’
Bits

Serial Peripheral Interface Registers

B-60 ADSP-219x/2191 DSP Hardware Reference

Serial Peripheral Interface Registers
The Serial Peripheral Interface module (SPI) provides functionality for a
generic configurable serial port interface based on the SPI standard.

The Serial Peripheral Interface is essentially a shift register that serially
transmits and receives data bits to/from other SPI-compatible devices.
During an SPI transfer, data is simultaneously transmitted (shifted out
serially) and received (shifted in serially). A serial clock line synchronizes
shifting and sampling of the information on the two serial data lines.

The section includes the following topics:

• “SPI Control (SPICTLx) Registers” on page B-61

• “SPI Flag (SPIFLGx) Registers” on page B-63

• “SPI Status (SPISTx) Registers” on page B-65

• “SPI Transmit Buffer (TDBRx) Registers” on page B-65

• “Receive Data Buffer (RDBRx) Registers” on page B-67

• “Receive Data Buffer Shadow, SPI (RDBRSx) Registers” on
page B-67

• “SPI Baud Rate (SPIBAUDx) Registers” on page B-68

• “SPI DMA Current Pointer (SPIxD_PTR) Registers” on page B-68

• “SPI DMA Configuration (SPIxD_CFG) Registers” on page B-68

• “SPI DMA Start Page (SPIxD_SRP) Registers” on page B-70

• “SPI DMA Start Address (SPIxD_SRA) Registers” on page B-70

• “SPI DMA Word Count (SPIxD_CNT) Registers” on page B-70

ADSP-219x/2191 DSP Hardware Reference B-61

ADSP-2191 DSP I/O Registers

• “SPI DMA Next Chain Pointer (SPIxD_CP) Registers” on
page B-71

• “SPI DMA Chain Pointer Ready (SPIxD_CPR) Registers” on
page B-71

• “SPI DMA Interrupt (SPIxD_IRQ) Registers” on page B-71

SPI Control (SPICTLx) Registers
Registers’ addresses are: SPICTL0 0x04:0x000 and SPICTL1 0x04:0x200.

The SPI control register (SPICTLx) is used to configure the SPI system.
The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length bit (SIZE) in SPICTL. There are two special
bits which can also be modified by the hardware: SPE and MSTR.

The SPI control register bit descriptions are as shown in Figure B-20 on
page B-62.

Note: Bit default is 0 unless marked otherwise.

Bits 1–0 are used to initiate transfers to/from the receive/transmit buffers.
When set to 00, the Interrupt is active when the receive buffer is full.
When set to 01, the Interrupt is active when the transmit buffer is empty.

Bit 4 is used to enable the SPISS input for master. When not used, SPISS
can be disabled, freeing up a chip pin as general purpose I/O.

Bit 5 allows to enable the MISO pin as an output. This is needed in an envi-
ronment where master wishes to transmit to various slaves at one time
(broadcast). Only one slave is allowed to transmit data back to the master.
Except for the slave from whom the master wishes to receive, all other
slaves should have this bit set.

Serial Peripheral Interface Registers

B-62 ADSP-219x/2191 DSP Hardware Reference

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Reset = 0x0400

TIMOD (Transfer Initiation Mode)
00 = set tran from read of receive buffer,
01 = set tran from write to transmit buffer,
10 = DMA tran mode—IRQ config from
DMA, 11 = Reserved.

SZ (Send Zero) Sends 0 or last word when
TDBR empty)
0 = Send Last Word, 1 = Send Zeros

GM (Get More Data) When RDBR full,
0 = Discard incoming data
1 = Get data, overwrites previous data

PSSE (Slave-Select Enable)
0 = Disable, 1 = Enable

EMISO (Enable MISO)
0 = MISO disabled, 1 = MISO enabled

Reserved

SIZE (Size of Words)
0 = 8 bits, 1 = 16 bits

LSBF (LSB first)
0 = MSB sent/received first
1 = LSB sent/received first

CPHA (Clock Phase) Selects the trans-
fer format). 0 = SPIOSELx set
automatically by hardware,
1 = SPIOSELx has to be set by
software.

CPOL (Clock Polarity)
0 = active-high SPICLK,
1 = active-low SPICLK

MSTR (Master) Sets the SPI module as master
or slave 0 = slave, 1 = master

WOM Write Open drain Master)
0 = Normal, 1 = Open Drain

SPE (SPI Enable)
0 = disabled, 1 = enabled

Reserved

Figure B-20. SPI Control (SPICTLx) Registers’ Bits

ADSP-219x/2191 DSP Hardware Reference B-63

ADSP-2191 DSP I/O Registers

Bit 10 (CPHA) 5 allows to enable the MISO pin as an output. This is
needed in an environment where master wishes to transmit to various
slaves at one time (broadcast). Only one slave is allowed to transmit data
back to the master. Except for the slave from whom the master wishes to
receive, all other slaves should have this bit set.

SPI Flag (SPIFLGx) Registers
Register addresses are: SPIFLG0 0x04:0x001 and SPIFLG1 0x04:0x200.

The SPI Flag (SPIFLGx) register is a read/write register that is used to
enable individual SPI slave-select lines when the SPI is enabled as a mas-
ter. There are 7 bits which select the outputs to be driven as slave-select
lines (FLS) and 7 bits which can activate the selected slave-selects (FLG).

The following table provides the bit mappings for the SPIFLG0 register.

Table B-8. SPIFLG0 Register Bits

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPI0SEL1 Enable PF2 0

2 FLS2 SPI0SEL2 Enable PF4 0

3 FLS3 SPI0SEL3 Enable PF6 0

4 FLS4 SPI0SEL4 Enable PF8 0

5 FLS5 SPI0SEL5 Enable PF10 0

6 FLS6 SPI0SEL6 Enable PF12 0

7 FLS7 SPI0SEL7 Enable PF14 0

8 Reserved 1

9 FLG1 SPI0SEL1 Value PF2 1

10 FLG2 SPI0SEL2 Value PF4 1

11 FLG3 SPI0SEL3 Value PF6 1

Serial Peripheral Interface Registers

B-64 ADSP-219x/2191 DSP Hardware Reference

The following table provides the bit mappings for the SPIFLG1 register.

12 FLG4 SPI0SEL4 Value PF8 1

13 FLG5 SPI0SEL5 Value PF10 1

14 FLG6 SPI0SEL6 Value PF12 1

15 FLG7 SPI0SEL7 Value PF14 1

Table B-9. SPIFLG1 Register Bits

Bit Name Function PFx Pin Default

0 Reserved 0

1 FLS1 SPI1SEL1 Enable PF3 0

2 FLS2 SPI1SEL2 Enable PF5 0

3 FLS3 SPI1SEL3 Enable PF7 0

4 FLS4 SPI1SEL4 Enable PF9 0

5 FLS5 SPI1SEL5 Enable PF11 0

6 FLS6 SPI1SEL6 Enable PF13 0

7 FLS7 SPI1SEL7 Enable PF15 0

8 Reserved 1

9 FLG1 SPI1SEL1 Value PF3 1

10 FLG2 SPI1SEL2 Value PF5 1

11 FLG3 SPI1SEL3 Value PF7 1

12 FLG4 SPI1SEL4 Value PF9 1

13 FLG5 SPI1SEL5 Value PF11 1

14 FLG6 SPI1SEL6 Value PF13 1

15 FLG7 SPI1SEL7 Value PF15 1

Table B-8. SPIFLG0 Register Bits (Cont’d)

Bit Name Function PFx Pin Default

ADSP-219x/2191 DSP Hardware Reference B-65

ADSP-2191 DSP I/O Registers

If the SPI is enabled and configured as a master, up to seven of the chip’s
general-purpose flag I/O pins may be used as slave-select outputs.

SPI Status (SPISTx) Registers
These registers’ addresses are: SPIST0 0x04:0x002 and
SPIST1 0x04:0x202.

Note: Bit default is 0 unless marked otherwise.

The SPI Status registers can be read at any time. Some of the register’s bits
are read-only (RO), and others are cleared by a write-1 (W1C) operation.
Bits which merely provide information about the SPI are read-only; these
bits are set and cleared by the hardware. W1C bits are set when an error
condition occurs; these bits are set by hardware, and must be cleared by
software. To clear a W1C bit, write a 1 to the desired bit position of the
SPIST register.

The transmit buffer becomes full after it is written to; it becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer; it becomes empty when the
receive buffer is read.

SPI Transmit Buffer (TDBRx) Registers
These registers’ addresses are: TDBR0 0x04:0x003 and TDBR1 0x04:0x203.

These are 16-bit read-write (RW) registers. Data is loaded into this regis-
ter before being transmitted. Just prior to the beginning of a data transfer,
the data in TDBR is loaded into the shift register (SFDR). A normal core
read of TDBR can be done at any time and does not interfere with, or ini-
tiate, SPI transfers. The reset value is 0x0000.

Serial Peripheral Interface Registers

B-66 ADSP-219x/2191 DSP Hardware Reference

When the DMA is enabled for transmit operation (described later in this
document), the DMA automatically loads TDBR with the data to be trans-
mitted. Just prior to the beginning of a data transfer, the data in TDBR is
loaded into the shift register. A normal core write to TDBR should not
occur in this mode because this data will overwrite the DMA data to be
transmitted.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIF (SPI Finished)
Set when an SPI single-word trans-
fer is complete. Type - RO. Default
=1.

MODF (Mode Fault)
Set in a master device when some
other device tries to become the
master.
Type - W1C.

TXE (Transmission Error)
Set when transmission occurred with
no new data in TDBR register. Type -
W1C.

TXS (TDBR Data Buffer Status)
Type - RO.
0 = empty, 1 = full

RBSY (Receive Error)
Set when data is received with
receive buffer full. Type - W1C.

RXS (RX Data Buffer Status)
Type - RO.
0 = empty, 1 = full.

TXCOL (Transmit Collision Error)
When this bit is set, it is possible that
corrupt data was transmitted. Type -
W1C.

Reserved.

Figure B-21. SPI Status (SPISTx) Registers’ Bits

ADSP-219x/2191 DSP Hardware Reference B-67

ADSP-2191 DSP I/O Registers

When the DMA is enabled for receive operation, whatever is in TDBR will
repeatedly be transmitted. A normal core write to TDBR is permitted, and
this data will be transmitted.

If the “send zeros” control bit (SZ) is set, TDBR may be reset to 0 under cer-
tain circumstances. If multiple writes to TDBR occur while a transfer is
already in progress, only the last data which was written will be transmit-
ted; all intermediate values written to TDBR will not be transmitted.
Multiple writes to TDBR are possible, but not recommended.

Receive Data Buffer (RDBRx) Registers
Register addresses are: RDBR0 0x04:0x004 and RDBR1 0x04:0x204. The
reset value is 0x0000.

These are 16-bit read-only (RO) registers. At the end of a data transfer,
the data in the shift register is loaded into RDBR. During a DMA receive
operation, the data in RDBR is automatically read by the DMA. When RDBR
is read via software, the RXS bit is cleared and an SPI transfer may be initi-
ated (if TIMOD=00).

Receive Data Buffer Shadow, SPI (RDBRSx)
Registers

Registers’ addresses are: RDBRS0 0x04:0x006 and RDBRS1 0x04:0x206. The
reset value is 0x0000.

This is a 16-bit read-only shadow register (for the Receive Data Buffer
register) provided for use with debugging software. The RDBRSx register is
at a different address from RDBR, but its contents are identical to that of
RDBR. When RDBR is read via software, the RXS bit is cleared and an SPI
transfer may be initiated (if TIMOD=00). No such hardware action occurs
when the shadow register is read.

Serial Peripheral Interface Registers

B-68 ADSP-219x/2191 DSP Hardware Reference

SPI Baud Rate (SPIBAUDx) Registers
Register addresses are: SPIBAUD0 0x04:0x005 and SPIBAUD1 0x04:0x205.

The SPI baud rate register (SPIBAUD) is used to set the bit transfer rate for
a master device. When configured as a slave, the value written to this reg-
ister is ignored. The serial clock frequency is determined by the following
formula:

SCK Frequency = (Peripheral clock frequency)/(2*SPIBAUD)

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the peripheral clock rate
(HCLK). The reset value is 0x0000.

SPI DMA Current Pointer (SPIxD_PTR) Registers
Registers’ addresses are: SPI0D_PTR 0x04:0x100 and
SPI1D_PTR 0x04:0x300.

A Current Chain Pointer register holds the address for the current transfer
control block in a chained DMA operation. The reset value is 0x0000.

SPI DMA Configuration (SPIxD_CFG) Registers
Register addresses are: SPI0D_CFG 0x04:0x101 and
SPI1D_CFG 0x04:0x301.

There are five registers which make up the descriptor block for a DMA
transfer. The SPI DMA Configuration (SPIxD_CFG) register is one of these
registers. They are accessible through the DMA bus.

Note: Bit default is 0 unless marked otherwise.

Figure B-22 on page B-69 provides bit descriptions.

ADSP-219x/2191 DSP Hardware Reference B-69

ADSP-2191 DSP I/O Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DEN (DMA Enable)
0 = disabled, 1 = enabled

TRAN (Transfer Direction)
0 = Memory Read (SPI transmit)
1 = Memory Write (SPI receive)

DCOME (Interrupt on Complete)
Read-only. This bit always reads as
0.

Reserved

DAUTO (AutoBuffer/Descriptor Mode)
DMA link mode enable:
0 = Descriptor link mode
1 = Circular buffer (autobuffer) mode

Reserved

FLSH (DMA Buffer Clear)
Bit 7 can be Read-Write in register.
It is set following a DMA termination
due to an error condition.

DERE (Interrupt on Error - Read-only)

RBSY (Receive Overflow Error)
Set = 0 only if TRAN = 1.

TXE (Transmit Underrun Error)
Set = 0 only if TRAN = 0.

MODF (Mode Fault Error) - Status
(Multi-master)

FS (DMA FIFO status)
00 = FIFO empty, 11 = FIFO full
10 = FIFO partially full, 01 =
Reserved

DS (DMA Completion Status)
0 = successful completion
1 = error

DOWN (Descriptor Ownership)
0 = DSP, 1 = DMA

Figure B-22. SPI DMA Configuration (SPIxD_CFG) Registers’ Bits

Serial Peripheral Interface Registers

B-70 ADSP-219x/2191 DSP Hardware Reference

SPI DMA Start Page (SPIxD_SRP) Registers
Registers’ addresses are: SPI0D_SRP 0x04:0x102 and
SPI1D_SRP 0x04:0x302. The 16-bit SPI DMA Start Page (SPIxD_SPR)
register holds a running pointer to the DMA address that is being accessed
and the type of memory space being used.

SPI DMA Start Address (SPIxD_SRA) Registers
Registers’ addresses are: SPI0D_SRA 0x04:0x103 and
SPI1D_SRA 0x04:0x303. The 16-bit SPI DMA Start Address (SPIxD_SRA)
register holds a running pointer to the DMA address that is being
accessed. The reset value is 0x0000.

SPI DMA Word Count (SPIxD_CNT) Registers
Registers’ addresses are: SPI0D_CNT 0x04:0x104 and SPI1D_CNT
0x04:0x304. The 16-bit SPI DMA Word Count (SPIxD_CNT) register
holds the block word count (the number of remaining words in the trans-
fer). The reset value is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)

MS (Memory Space)
0 = Memory Space
1 = Boot Space

Reserved

Figure B-23. SPI DMA Start Page (SPIxD_SRP) Registers’ Bits

ADSP-219x/2191 DSP Hardware Reference B-71

ADSP-2191 DSP I/O Registers

SPI DMA Next Chain Pointer (SPIxD_CP) Registers
Registers’ addresses are: SPI0D_CP 0x04:0x105 and SPI1D_CP 0x04:0x305.
The SPI DMA Next Chain Pointer (SPIxD_CP) register is used to write the
head of descriptor list. A CPx register holds the address for the next trans-
fer control block in a chained DMA operation. The reset value is 0x0000.

SPI DMA Chain Pointer Ready (SPIxD_CPR)
Registers

These registers’ addresses are: SPI0D_CPR 0x04:0x106 and
SPI1D_CPR 0x04:0x306. These 1-bit registers are used to show the descrip-
tor’s status. If bit 0 is set to 0, the descriptor block is ready (set). The reset
value is 0x0000.

SPI DMA Interrupt (SPIxD_IRQ) Registers
These registers’ addresses are: SPI0D_IRQ 0x04:0x107 and
SPI1D_IRQ 0x04:0x307.

These registers are used to indicate the SPI DMA interrupt status.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DCOMI (DMA Interrupt on Completion)
1 = completed, 0 = inactive
Type - W1C

DERI (DMA Interrupt on Error)
1 = error, 0 = inactive
Type - W1C

Reserved

Figure B-24. SPI DMA Interrupt (SPIxD_IRQ) Registers’ Bits

UART Registers

B-72 ADSP-219x/2191 DSP Hardware Reference

UART Registers
The UART peripheral is a full-duplex Universal Asynchronous Receiver /
Transmitter that is compatible with the industry standard 16450. The
UART is responsible for converting data between serial and parallel for-
mats. The serial communication follows an asynchronous protocol that
supports various word length, stop bits, and parity generation options.
This UART also contains control interrupt handling hardware. Interrupts
may be generated from twelve unique events. The UART registers can be
divided into three groups:

• “UART Control Registers” on page B-72

• “UART RX DMA Registers” on page B-80

• “UART TX DMA Registers” on page B-85

All registers are mapped into the I/O page 5. To access them, the I/O Page
(IOPG) register must be set to 5.

UART Control Registers
The UART control registers are typically used in I/O mode. To meet the
16450 standard they are all eight bits wide. Also, the two divisor latch reg-
isters share their access addresses with others.

Table B-10 on page B-73 summarizes the UART control registers.

Except for the Scratch (SCR) register and the four Modem Status signals
(DCD, RI, DSR, and CTS), all bits are predefined after reset. NINT, TEMT, and
THRE are set; DLL resets to 0x01; and all remaining bits are cleared.

This section includes the following topics:

• “Transmit Hold (THR) Register” on page B-74

• “Receive Buffer (RBR) Register” on page B-74

ADSP-219x/2191 DSP Hardware Reference B-73

ADSP-2191 DSP I/O Registers

• “Interrupt Enable (IER) Register” on page B-75

• “UART Divisor Latch Registers (DLL and DLH)” on page B-76

• “Interrupt Identification (IIR) Register” on page B-77

• “Line Control (LCR) Register” on page B-77

• “Modem Control (MCR) Register” on page B-77

• “Line Status (LSR) Register” on page B-78

Table B-10. UART Control Registers Summary

Register Addr DLAB Access Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

THR 0 0 W Transmit Holding Register

RBR 0 0 R Receive Buffer Register

DLL 0 1 R/W Divisor Latch Low-Byte

IER 1 0 R/W 0 0 0 0 EDSS
I

ELSI ETB
EI

ERB
FI

DLH 1 1 R/W Divisor Latch High-Byte

IIR 2 x R 0 0 0 0 0 STATUS NIN
T

LCR 3 x R/W DLA
B

BRK SP EPS PEN STB WLS

MCR 4 x R/W 0 0 0 LOO
P

OUT
2

OU
T1

RTS DTR

LSR 5 x R 0 TEM
T

THR
E

BI FE PE OE DR

MSR 6 x R DC
D

RI DSR CTS DDC
D

TER
I

DDS
R

DCT
S

SCR 7 x R/W Scratch Register

UART Registers

B-74 ADSP-219x/2191 DSP Hardware Reference

• “Modem Status (MSR) Register” on page B-78

• “Scratch (SCR) Register” on page B-80

Transmit Hold (THR) Register

The THR register address is 0x05:0x000. The register is write-only. To
access THR, the divisor latch access bit (DLAB) in the Line Control (LCR) reg-
ister must be cleared.

The transmit operation is initiated by writing to the Transmit Hold regis-
ter (THR). After a synchronization delay, the data is moved to the Transmit
Shift (TSR) register where it will shifted out at a baud (bit) rate equal to
HCLK / (16 * DIVISOR) with start, stop, and parity bits appended as
required. All data words begin with a low start bit. The transfer of the THR
to the TSR causes the transmit hold register empty (THRE) status flag to be
set. Data is transmitted and received least significant bit first (that is, TSR
bit 0). The reset value is 0x00.

Receive Buffer (RBR) Register

The RSR register address is 0x05:0x000. The register is read-only. To access
RBR, the divisor latch access bit (DLAB) in the Line Control (LCR) register
must be cleared.

The receive operation uses the same data format as the transmit configura-
tion, except for the number of stop bits which is always one. After
detection of the start bit, the received word is shifted in the Receive Shift
register (RSR). After the appropriate number of bits (including stop bits)
are received the data and any status is updated and the RSR is transferred to
the Receive Buffer (RBR) register. The Receive Buffer register’s full (DR)
status flag is updated upon the transfer of the received word to this buffer
and the appropriate synchronization delay. The reset value is 0x00.

ADSP-219x/2191 DSP Hardware Reference B-75

ADSP-2191 DSP I/O Registers

Interrupt Enable (IER) Register

The IER register address is 0x05:0x001. To access IER the divisor latch
access bit (DLAB) in the Line Control (LCR) register must be cleared. The
IER register applies to the I/O mode only. There, four different Interrupt
sources ar ORed to share a single IRQ channel. In I/O mode, UART
Interrupts can be generated when either:

• Data is ready in the RBR register

• Transmit data is moved from the THR to the TSR register

• Received data is misaligned (parity and so on)

• The modem status has changed

These four interrupt sources can be individually enabled or masked by the
Interrupt Enable (IER) register. Interrupts are also masked by the IMASK
register and the global interrupt enable bit. An Interrupt Service Routine
should read the IIR register to determine the interrupt source.

Because the four modem status signals are tied low on the DSP, the
modem status interrupt might not be generated as long as the LOOP bit in
Modem Control (MC) register is not set.

The IER register resets to 0x00.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 Reset = 0x00

ERBFI (Enable Receive Buffer Full Interrupt)

ETBEI (Enable Transmit Buffer Empty Interrupt)

ELSI (Enable RX Status Interrupt)
Generated if any of LSR4–1 are set

EDDSI (Enable Modem Status Interrupt)
Generated if any of MSR3-0 are set

Reserved

Figure B-25. UART Interrupt Enable (IER) Register Bits

UART Registers

B-76 ADSP-219x/2191 DSP Hardware Reference

UART Divisor Latch Registers (DLL and DLH)

The register addresses are: 0x05:0x000 for the Divisor Latch (Low-Byte)
register (DLL) and 0x05:0x001 for the Divisor Latch (High-Byte) register
(DLH).

To access these registers, the divisor latch access bit (DLAB) of the Line
Control (LCR) register must be set. DLL resets to 0x01, and DLH resets to
0x00.

The DLL and DLH registers form a 16-bit divisor. These read/write registers
are accessed when DLAB = 1. Keep in mind that the Baud Clock is divided
by an additional 16 as per a protocol such as:

BAUD RATE = HCLK / (16 * DL)

where:

DL = 65536 when DLL = DLH = 0

Table B-11. Example with HCLK =80 MHz

Baud rate DL Actual % Error

600 8333 600.02 -0.004

1200 4167 1199.90 0.008

2400 2083 2400.38 -0.016

4800 1042 4798.46 0.032

9600 521 9596.93 0.032

19200 260 19230.77 -0.160

38400 130 38461.54 -0.160

57600 87 57471.26 0.223

115200 43 116279.07 -0.937

ADSP-219x/2191 DSP Hardware Reference B-77

ADSP-2191 DSP I/O Registers

Interrupt Identification (IIR) Register

This register address is 0x05:0x002. The reset value is 0x01. In I/O mode,
a UART interrupt service routine should read the IIR register to deter-
mine the exact interrupt source, whenever more than one source is
enabled by the Interrupt Enable (IER) register.

When cleared, bit 0 (NINT) signals that an interrupt is pending. Then,
bits 2 and 1 (STATUS) indicate the highest priority pending interrupt as
follows:

Line Control (LCR) Register

The LCR register address is 0x05:0x003. The reset value is 0 for all bits.
The LCR register formats the asynchronous serial bit stream as specified
below:

Modem Control (MCR) Register

The MCR register address is 0x05:0x004. The reset value is 0 for all bits.

The four modem control bits (DTR, RTS, OUT1, and OUT2) do not
affect the DSP as long as the LOOP bit is not set. The MCR register is
a read-write register that guarantees a certain level of software leg-
acy support.

Table B-12. UART Interrupt Identification STATUS Field

Status Priority Source Cleared When...

0 4 Modem status Read MSR

1 3 THR Empty Write THR or read IIR when priority = 3

2 2 RX Data Ready Read RBR

3 1 RX Status Read LSR

UART Registers

B-78 ADSP-219x/2191 DSP Hardware Reference

Line Status (LSR) Register

The LSR register address is 0x05:0x005. The reset value is 0x60.

Modem Status (MSR) Register

The MSR register address is 0x05:0x006. The reset value is 0 for all bits,
except bits 7–4 which mirror input signals.

Note that on the DSP the Modem Status Signals (CTS, DSR, RI, and
DCD) are all tied low as long as the LOOP bit in the Modem Control
(MCR) register is not set.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 Reset = 0x00

WLS (Word Length Select):
00 = 5 bit
01 = 6 bit
10 = 7 bit
11 = 8 bit

STB (Stop Bits):
1 = 2 stop bits (when WLS =1, 2, or 3) or
1 = 1 1/2 stop bits (when WLS = 0)
0 = 1 stop bit

PEN (Parity Enable):
1 = transmit and check parity
0 = not transmitted or checked

EPS (Even Parity Select):
1= even parity, 0 = odd parity

SP (Stick Parity)
Forces parity to defined value if PEN=1 and SP=1 as:
Parity bit is transmitted and checked as 0 if EPS =1
Parity bit is transmitted and checked as 1 if EPS = 0

BRK (Break)
Forces TXD to output low.

DLAB (Divisor Latch Access)
1 = Access DLL and DLH through addr 0x00 and 0x01
0 = Access RBR/ THR and IER through addr 0x00 and 0x01

Figure B-26. UART Line Control (LCR) Register Bits

ADSP-219x/2191 DSP Hardware Reference B-79

ADSP-2191 DSP I/O Registers

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 Reset = 0x00

DTR (Data Terminal Ready)

RTS (Request To Send)

OUT1 General Purpose Output (GPIO) function

OUT2 General Purpose Output (GPIO) function

LOOP (Loopback)
If set to 1, enables the loopback mode.
This forces TXD to high and disconnects RXD from the
Receive Shift (RSR) register. Instead, the RSR input is directly
connect to the Transmit Shift (TSR) register output. Modem
control signals are directly connected to the modem status
inputs (RTS to CTS, DTR to DSR, OUT1 to RI, OUT2 to DCD).

Reserved

Figure B-27. UART Modem Control (MCR) Register Bits

7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 Reset = 0x60

DR (Data Ready) Set = 1 when RBR is full.

OE (Overrun Error)

Set = 1 when RSR overwrites RBR before it has been read.1,2

PE (Parity Error) on receive1,2

FE Framing Error (1 when invalid stop bit)1,2

BI (Break Interrupt)
Set = 1 when RXD is held low for more than maximum word
length, 7 – 12, depending on configuration)1,2

THRE (THR Empty)
0 = Full, 1 = Empty

TEMT (TSR and THR Empty)
0 = (Partially) Full, 1 = Both Empty

Reserved

Figure B-28. UART Line Status (LSR) Register
1 Bit is cleared when program reads LSR.
2 Error condition request the RX Status Interrupt when enabled.

UART Registers

B-80 ADSP-219x/2191 DSP Hardware Reference

Scratch (SCR) Register

This register address is 0x05:0x007. It is not changed by reset. The 8-bit
scratch register is used for general-purpose data storage only. It does not
control the UART hardware in any way.

UART RX DMA Registers
This section includes the following topics:

• “UART DMA Receive Pointer (UARDR_PTR) Register” on
page B-81

• “UART Receive DMA Configuration (UARDR_CFG) Register”
on page B-81

• “UART Receive DMA Start Page (UARDR_SRP) Register” on
page B-83

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 Reset = 0x00

DCTS (Delta CTS)

Set to 1 if CTS changed state since MSR last read 1,2

DDSR (Delta DSR)
Set to 1 if DSR changed state since MSR last read 1,2

TERI (Trailing Edge RI)
Set to 1 if NRI changed from 0 to 1 since MSR last read 1,2

DDCD (Delta DCD)
Set to 1 if DCD changed state since MSR last read)1,2

CTS (Clear To Send)

DSR (Data Set Ready;)

RI (Ring Indicator)

DCD (Data Carrier Detect)

Figure B-29. UART Modem Status (MSR) Register
1 Bit is cleared when program reads MSR.
2 Modem status change requests the Modem Status Interrupt when enabled.

ADSP-219x/2191 DSP Hardware Reference B-81

ADSP-2191 DSP I/O Registers

• “UART Receive DMA Start Address (UARDR_SRA) Register” on
page B-83

• “UART Receive DMA Count (UARDR_CNT) Register” on
page B-84

• “UART Receive DMA Chain Pointer (UARDR_CP) Register” on
page B-84

• “UART Receive DMA Chain Pointer Ready (UARDR_CPR) Reg-
ister” on page B-84

• “UART Transmit DMA Interrupt (UARDT_IRQ) Register” on
page B-88

UART DMA Receive Pointer (UARDR_PTR) Register

This register address is 0x05:0x100. This 16-bit read-only register holds
the pointer to the current descriptor block for UART receive DMA opera-
tion. The reset value is 0 for all bits

UART Receive DMA Configuration (UARDR_CFG) Register

This register address is 0x05:0x101. This register, which is normally
read-only, becomes writable when the autobuffer mode is enabled for the
selected bits.

During UART initialization, the head address of the first DMA descriptor
block must be written into the Receive DMA Chain Pointer register.
Then, the DMA enable bit is set in the Receive DMA Configuration
registers.

The DMA Configuration register maintains real-time DMA buffer status.
When DMA is not enabled, the UART generates a receive interrupt every
time the Receive Buffer (RBR) register holds new data and the date ready
bit (DR) is set.

UART Registers

B-82 ADSP-219x/2191 DSP Hardware Reference

Refer to Figure on page B-82 for bit descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DEN (DMA Enable)
0 = disabled, 1 = enabled

TRAN (Transfer Direction)
0 = Memory Read (TX channel)
1 = Memory Write (RX channel)

DCOME (Interrupt on Complete)

Read-only1 -- always reads as 0.

1 Writable when the AUTOBUFFER mode is enabled.

Reserved

DAUTO (AutoBuffer/Descriptor Mode)
0 = Descriptor link mode
1 = Circular buffer (autobuffer) mode

Reserved

FLSH (DMA Buffer Clear)
(reserved on UART DMA)

DERE (Interrupt on Error - Read-only)

UAROE (Receive Overflow Error -
Read-only)
(reserved on TX channel)

UARPE (Parity Error - Read-only)
(reserved on TX channel)

UARFE (Framing Error - Read-only)
(reserved on TX channel)

FS (DMA FIFO status - Read-only)
00 = Buffer empty
11 = Buffer full (actively updated in
register)

DS (DMA Completion - Read-only)
0 = Successful completion
1 = Error

DOWN (Descriptor Ownership - Read-only)
0 = DSP, 1 = DMA

Figure B-30. UART Receive DMA Configuration (UARDR_CFG)
Register Bits

ADSP-219x/2191 DSP Hardware Reference B-83

ADSP-2191 DSP I/O Registers

UART Receive DMA Start Page
(UARDR_SRP) Register

The register address is 0x05:0x102. This register, which is normally
read-only, becomes writable when the autobuffer mode is enabled, i.e.
DAUTO = 1.

The 9-bit UART Receive DMA Start Page (UARDR_SRP) register holds a
pointer to the DMA address that is being accessed.

UART Receive DMA Start Address
(UARDR_SRA) Register

This register address is 0x05:0x103. The 16-bit UART Receive DMA Start
Address (UARDR_SRA) register holds a pointer to the DMA address that is
being accessed. It is a read-only register (can be written in the autobuffer
mode; that is, DAUTO = 1). The reset value is 0x0000.

UART Receive DMA Count (UARDR_CNT) Register

This register address is 0x05:0x104. The 16-bit UART Receive DMA
Count (UARDR_CNT) register holds the word count for a DMA transfer. It is
a read-only register (can be written if autobuffer mode is enabled; that is,
DAUTO = 1). The reset value is 0x0000.

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page)
MS (Memory Space)
0 = Memory Space
1 = Boot Space
Reserved

Table B-13. UART Receive DMA Start Page (UARDR_SRP) Register Bits

UART Registers

B-84 ADSP-219x/2191 DSP Hardware Reference

UART Receive DMA Chain Pointer
(UARDR_CP) Register

This register address is 0x05:0x105. During initialization, the head address
of the next DMA descriptor block must be written into the 16-bit DMA
Chain (Next Descriptor) Pointer register. Then, the DMA enable bit is set
in the Receive DMA Configuration register. The descriptor ready bit
should be set in software after each descriptor is written to internal mem-
ory to start the DMA. The reset value is 0x0000.

UART Receive DMA Chain Pointer Ready
(UARDR_CPR) Register

This register address is 0x05:0x106. This 1-bit register is used to show the
descriptor’s status. If Bit 0 is set to 0, the descriptor block is ready (set).
The reset value is 0x0000.

UART Receive DMA Interrupt Register
(UARDR_IRQ) Register

This register address is 0x05:0x107. This read-write register is used to
indicate the UART Receive DMA interrupt status. 1s are to be written to
clear this register. Interrupt service routines write 0x01 to this register to
clear the pending receive interrupt request.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DCOMI (DMA Interrupt on Completion)
1 = completed, 0 = inactive
Type - W1C

DERI (DMA Interrupt on Error)
1 = error, 0 = inactive
Type - W1C

Reserved

Figure B-31. UART Receive DMA Interrupt (UARDR_IRQ) Register Bits

ADSP-219x/2191 DSP Hardware Reference B-85

ADSP-2191 DSP I/O Registers

UART TX DMA Registers
This section includes the following topics:

• “UART Transmit DMA Pointer (UARDT_PTR) Register” on
page B-86

• “UART Transmit DMA Configuration (UARDT_CFG) Register”
on page B-86

• “UART Transmit DMA Start Page (UARDT_SRP) Register” on
page B-86

• “UART Transmit DMA Start Address (UARDT_SRA) Register”
on page B-87

• “UART Transmit DMA Count (UARDT_CNT) Register” on
page B-87

• “UART Transmit DMA Chain Pointer (UARDT_CP) Register”
on page B-87

• “UART Transmit DMA Chain Pointer Ready (UARDT_CPR)
Register” on page B-87

• “UART Transmit DMA Interrupt (UARDT_IRQ) Register” on
page B-88

UART Transmit DMA Pointer (UARDT_PTR) Register

This register address is 0x05:0x180. This 16-bit read-only register holds
the pointer to the current descriptor block for UART transmit DMA
operation. The reset value is 0x0000.

UART Registers

B-86 ADSP-219x/2191 DSP Hardware Reference

UART Transmit DMA Configuration
(UARDT_CFG) Register

This register address is 0x05:0x181. This register, which is normally
read-only, becomes writable when the autobuffer mode is enabled for the
selected bits. The reset value is 0x0000.

During UART initialization, the head address of the first DMA descriptor
block must be written into the Transmit DMA Descriptor Pointer regis-
ter. Then, the DMA enable bit is set in the Transmit DMA Configuration
registers. The DMA Configuration register maintains real-time DMA
buffer status. When DMA is not enabled, the UART generates a transmit
interrupt every time the content of the THR register is moved to the TSR
registers and the THR empty bit (THRE) is set.

For information on the bits in this register (which are the same as the
UARDR_CFG register), see Figure B-30 on page B-82.

UART Transmit DMA Start Page
(UARDT_SRP) Register

This register address is 0x05:0x182. The register which is normally read
only becomes writable when the autobuffer mode is enabled.

The 9-bit DMA Start Page register holds a pointer to the DMA page that
is being accessed. Bits 0–7 determine the receive DMA start page address.
Bit 8 specifies the Space type: 0 = memory space, 1 = boot space. See
Figure B-13 on page B-83 for bit illustration. The reset value is 0x0000.

UART Transmit DMA Start Address
(UARDT_SRA) Register

This register address is 0x05:0x183. The 16-bit Receive DMA Start
Address register holds a pointer to the DMA address that is being
accessed. It is a read-only register (can be written in the autobuffer mode;
that is, DAUTO = 1). The reset value is 0x0000.

ADSP-219x/2191 DSP Hardware Reference B-87

ADSP-2191 DSP I/O Registers

UART Transmit DMA Count (UARDT_CNT) Register

This register address is 0x05:0x184. The 16-bit DMA Count register holds
the word count for a DMA transfer. It is a read-only register (can be writ-
ten in autobuffer mode; that is, DAUTO = 1). The reset value is 0x0000.

UART Transmit DMA Chain Pointer
(UARDT_CP) Register

This register address is 0x05:0x185. During initialization, the head address
of the next DMA descriptor block must be written into the 16-bit
UARDT_CP (Next Descriptor) register. Then, the DMA enable bit is set in
the Receive DMA Configuration register. The reset value is 0x0000.

UART Transmit DMA Chain Pointer Ready
(UARDT_CPR) Register

This register address is 0x05:0x186. This 1-bit register is used to show the
descriptor’s status. If bit 0 is set to 0, the descriptor block is ready (set).
The descriptor ready bit should be set in software after each descriptor is
written to internal memory to start the DMA. The reset value is 0x0000.

UART Transmit DMA Interrupt
(UARDT_IRQ) Register

This register address is 0x05:0x187. This read-write register is used to
indicate the UART transmit DMA interrupt status. 1s are to be written to
clear this register. Interrupt service routines write 0x01 to this register to
clear the pending transmit interrupt request.

Timer Registers

B-88 ADSP-219x/2191 DSP Hardware Reference

Timer Registers
This section includes the following topics:

• “Overview” on page B-89

• “Timer Global Status and Control (T_GSRx) Registers” on
page B-90

• “Timer Configuration (T_CFGRx) Registers” on page B-90

• “Timer Counter Low Word (T_CNTLx) and Timer Counter High
Word (T_CNTHx) Registers” on page B-92

• “Timer Period Low Word (T_PRDLx) and Timer Period High
Word (T_PRDHx) Registers” on page B-93

• “Timer Width Low Word (T_WLRx) Register and TImer Width
High Word (T_WHRx) Register” on page B-95

Overview
The ADSP-2191 timer peripheral module provides general-purpose timer
functionality. It consists of three identical timer units.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DCOMI (DMA Interrupt on Completion)
1 = completed, 0 = inactive
Type - W1C

DERI (DMA Interrupt on Error)
1 = error, 0 = inactive
Type - W1C

Reserved

Figure B-32. UART Transmit DMA Interrupt (UARDT_IRQ) Register
Bits

ADSP-219x/2191 DSP Hardware Reference B-89

ADSP-2191 DSP I/O Registers

To provide the required functionality, each timer has seven 16-bit mem-
ory-mapped registers. Six of these registers are paired to achieve 32-bit
precision and appropriate range. Entity pair values are not accessed con-
currently over the 16-bit peripheral bus, requiring a mechanism to insure
coherency of the register pair values. For example, the user must disable
the timer to ensure high-low register pair coherency for the timer counter.

Each timer provides four registers:

• Config 15–0 – Configuration register

• Width 31–0 – Pulse Width register

• Period 31–0 – Pulse Period register

• Counter 31–0 – Timer Counter

A common status register, global status 15–0 is also provided, requiring
only a single read to determine the status. Status bits are “sticky” and
require a “write-one” to clear operation.

Timer Global Status and Control (T_GSRx) Registers
The three global status registers’ addresses are:

T_GSR0 0x05:0x200

T_GSR1 0x05:0x208

T_GSR2 0x05:0x210

Each timer has a common status register, Status 15–0, requiring only a
single read to determine the status. Status bits are “sticky” and require a
“write-one” to clear operation. During a status register read access, all
reserved or unused bits return a zero. The reset state is 0x0000.

Timer Registers

B-90 ADSP-219x/2191 DSP Hardware Reference

Each timer generates a unique DSP interrupt request signal, TMR_IRQ.
A common status register latches these interrupts so you can determine
the interrupt source without reference to the unique interrupt signal.
Interrupt bits are “sticky” and must be cleared to assure that the interrupt
is not re-issued.

Each timer is provided with its own “sticky” Status register TIMENx bit.
To enable or disable an individual timer, set or clear the TIMEN bit. For
example, writing a one to bit 8 sets the TIMEN0 bit; writing a one to bit 9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

TIMIL0 (Timer0 interrupt)
Write a one to clear (also an output)

TIMIL1 (Timer1 interrupt)
Write a one to clear (also an output)

TIMIL2 (Timer2 interrupt)
Write a one to clear (also an output)

Reserved - Timer3 (reserved)

OVF_ERR0 (Timer0 Counter overflow

OVF_ERR1 (Timer1 Counter overflow

OVF_ERR2 (Timer2 Counter overflow

Reserved - Timer3 (reserved)

TIMEN0 (Timer0 Enable) -- Write a
one to enable

TIMDIS0 (Timer0 Disable) -- Write
a one to disable

TIMEN1 (Timer1 Enable) -- Write a
one to enable

TIMDIS1 (Timer1 Disable) -- Write
a one to disable

TIMEN2 (Timer2 Enable) -- Write a
one to enable

TIMDIS2 (Timer2 Disable) -- Write
a one to disable

Reserved - Timer3 (reserved)

Figure B-33. Timer Global Status and Sticky (T_GSRx) Registers’ Bits

ADSP-219x/2191 DSP Hardware Reference B-91

ADSP-2191 DSP I/O Registers

clears it. Writing a one to both bit 8 and bit 9 clears TIMEN0. Reading the
status register returns the TIMEN0 state on both bit 8 and bit 9. The
remaining TIMENx bits operate similarly using bit 10 and bit 11 for
Timer1, and bit 12 and bit 13 for Timer2.

Timer Configuration (T_CFGRx) Registers
The three T_CFGR registers’ addresses are:

T_CFGR0 0x05:0x201

T_CFGR1 0x05:0x209

T_CFGR2 0x05:0x211

All Timer clocks are gated “OFF” when the specific timer’s configuration
register is set to zero at system reset or subsequently reset by the user.
Figure B-34 on page B-92 provides bit descriptions.

Timer Counter Low Word (T_CNTLx) and
Timer Counter High Word (T_CNTHx) Registers

The T_CNTLx registers’ addresses are:

T_CNTL0 0x05:0x202

T_CNTL1 0x05:0x20A

T_CNTL2 0x05:0x212

The T_CNTHx registers’ addresses are:

T_CNTH0 0x05:0x203

T_CNTH1 0x05:0x20B

T_CNTH2 0x05:0x213

These 16-bit memory-mapped registers are paired (15:0 as low and 31:16
as high) to achieve 32-bit precision and appropriate range.

Timer Registers

B-92 ADSP-219x/2191 DSP Hardware Reference

When disabled, the timer counter retains its state. When enabled again,
the timer counter is re-initialized from the period/width registers based on
configuration and mode.

The timer counter value cannot be set directly by the software. It can be
set indirectly by initializing the period or width values in the appropriate
mode. The counter should only be read when the respective timer is dis-
abled. This prevents erroneous data from being returned.

In the EXT_CLK Mode, the TMRx (or RXD in Auto-baud mode) pin is used to
clock the timer counter. The counter is initialized with the period value
and counts until the period expires. In the EXT_CLK mode, the timer
counter can operate at a maximum frequency of 25 MHz. This limitation
results from a synchronization/latency trade off in the counter control
logic.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

TMODE (Timer Mode)
00 = Reset State - unused
01 = PWM_OUT Mode
10 = WDTH_CAP Mode
11 = EXT_CLK Mode

PULSE_HI
1 = Positive Active Pulse
0 = Negative Active Pulse

PERIOD_CNT (Period Count)
1 = Count to end of Period
0 = Count to end of Width

IRQ_ENA (Interrupt Request Enable)
1 = Interrupt Request Enable
0 = Interrupt Request Disable

TIN_SEL (Timer Input Select)
1 = Sample RXD select
0 = Sample TMRx select

Reserved

Figure B-34. Timer Configuration (T_CFGRx) Register Bits

ADSP-219x/2191 DSP Hardware Reference B-93

ADSP-2191 DSP I/O Registers

If the 32-bit counter were clocked by a 10 MHz external clock, it is possi-
ble to achieve a maximum timer counter period of (232–1) * 100ns.

Timer Period Low Word (T_PRDLx) and
Timer Period High Word (T_PRDHx) Registers

The T_PRDLx registers’ addresses are:

T_PRDL0 0x05:0x204

T_PRDL1 0x05:0x20C

T_PRDL2 0x05:0x214

The T_PRDHx registers’ addresses are:

T_PRDH0 0x05:0x205

T_PRDH1 0x05:0x20D

T_PRDH2 0x05:0x215

These 16-bit memory-mapped registers are paired (15:0 as low and 31:16
as high) to achieve 32-bit precision and appropriate range.

Once a timer is enabled and running, when the DSP writes new values to
the timer period and timer pulse width registers, the writes are buffered
and do not update the registers until the end of the current period (when
the timer counter register equals the timer period register).

• During the Pulse Width Modulation (PWM_OUT), the period value is
written into the timer period registers. Both period and width reg-
ister values must be updated “on the fly” since the period and
width (duty cycle) change simultaneously. To ensure the period
and width value concurrency, a 32-bit period buffer and a 32-bit
width buffer are used.

• The high-low period values are updated first if necessary. Once the
period value has been updated, it is necessary to update the
high-word width value followed by the low-word width value.

Timer Registers

B-94 ADSP-219x/2191 DSP Hardware Reference

Updating the low-word width value is what actually transfers the
period and width values to their respective Buffers. This permits
low-only width value updates for low-resolution situations while
maintaining high-low value coherency.

• If the period value is updated, the low-word width value must be
updated as well. This mechanism permits width-only updates while
maintaining period and width value coherency. When the
low-word width value is updated, the Timer simultaneously
updates the period and width buffers on the next clock cycle.

• During the Pulse Width and Period Capture (WDTH_CAP) mode, the
period values are captured at the appropriate time. Since both the
period and width registers are read-only in this mode, the existing
32-bit period and width buffers are used.

• During the EXT_CLK mode, the period register is write-only. There-
fore, the period buffer is used in this mode to insure high/low
period value coherency.

Timer Width Low Word (T_WLRx) Register and
TImer Width High Word (T_WHRx) Register

The T_WLRx registers’ addresses are:

T_WLR0 0x05:0x206

T_WLR1 0x05:0x20E

T_WLR2 0x05:0x216

The T_WHRx registers’ addresses are:

T_WHR0 0x05:0x207

T_WHR1 0x05:0x20F

T_WHR2 0x05:0x217

ADSP-219x/2191 DSP Hardware Reference B-95

ADSP-2191 DSP I/O Registers

These 16-bit memory-mapped registers are paired (15:0 as low and 31:16
as high) to achieve 32-bit precision and appropriate range.

• During the Pulse Width Modulation (PWM_OUT), the width value is
written into the timer width registers. Both width and period regis-
ter values must be updated “on the fly” since the period and width
(duty cycle) change simultaneously. To ensure period and width
value concurrency, a 32-bit period buffer and a 32-bit width buffer
are used.

The high-low period values are updated first if necessary. Once the
period value has been updated, it is necessary to update the
high-word width value followed by the low-word width value.
Updating the low-word width value is what actually transfers the
period and width values to their respective buffers. This permits
low-only width value updates for low-resolution situations while
maintaining high-low value coherency.

If the period value is updated, the low-word width value must be
updated as well. This mechanism permits width-only updates while
maintaining period and width value coherency. When the
low-word width value is updated, the timer simultaneously updates
the period and width buffers on the next clock cycle.

• During the Pulse Width and Period Capture (WDTH_CAP) mode, both
the period and width values are captured at the appropriate time.
Since both the width and period registers are read-only in this
mode, the existing 32-bit period and width buffers are used.

• During the EXT_CLK mode, the width register is unused.

Programmable Flag Registers

B-96 ADSP-219x/2191 DSP Hardware Reference

Programmable Flag Registers
The ADSP-2191 DSP supports sixteen bi-directional programmable flag
(or general-purpose) I/O pins, PF15:0. Each pin, configurable via the Flag
Direction (DIR) register, is an input or an output. During chip hardware
reset, this pin group is used to define clock control mode parameters.
These parameters are configured by strapping each pin either high or low
via a weak pull-up or pull-down resistor or by driving the pin with the
clock configuration while the RESET pin is asserted.

This section includes the following topics:

• “Direction for Flags (DIR) Register” on page B-97

• “Flag (PFx) Interrupt Registers: Flag Clear (FLAGC) and Flag Set
(FLAGS)” on page B-97

• “Flag (PFx) Interrupt Mask Registers” on page B-97

• “Flag Source Polarity (FSPR) Register” on page B-98

• “Flag Source Sensitivity (FSSR) Register” on page B-99

• “Flag Sensitivity Both Edges (FSBER) Register” on page B-99

Direction for Flags (DIR) Register
This register’s address is: 0x06:0x000. This is a 16-bit read-write register.
Each bit position corresponds to a PFx pin. A logic one configures a PFx
pin to be an output, driving the state contained in the Peripheral Flag
Direction register. A logic zero configures a PFx pin to be an input.

The DIR register can be used to set or clear the output state associated with
each output PFx and to set or clear the latched interrupt state captured
from each input PFx. This register is initialized with “zeros”.

ADSP-219x/2191 DSP Hardware Reference B-97

ADSP-2191 DSP I/O Registers

Flag (PFx) Interrupt Registers:
Flag Clear (FLAGC) and Flag Set (FLAGS)

The Flag Clear (FLAGC) register’s addresses is 0x06:0x002 and the Flag Set
(FLAGS) register’s addresses is 0x06:0x003. Both registers can initialized
with input signals.

The Flag Interrupt register is a write-one-to-clear register. Since a level
sensitive interrupt is generated to the core, an interrupting flag must have
its latch bit cleared prior to returning from the ISR or prior to unmasking
to prevent the core from continually responding to the same interrupt.

Flag (PFx) Interrupt Mask Registers
The Flag Interrupt Mask registers (MASKAC, MASKAS, MASKBC, and MASKBS)
are implemented as complementary pairs of write-one-to-clear and
write-one-to-set registers. This provides the ability to enable or disable a
PFx to act as a DSP interrupt without requiring read-modify-write
accesses. These registers are:

• PF Interrupt Flag Mask A Clear (MASKAC) register -- 0x06:0x004

• PF Interrupt Flag Mask A Set (MASKAS) register -- 0x06:0x005

• PF Interrupt Flag Mask B Clear (MASKBC) register -- 0x06:0x006

• PF Interrupt Flag Mask B Set (MASKBS) register -- 0x06:0x007

All sixteen of the PFx pins, when configured as inputs, can be individually
configured to provide user interrupts. “Interrupt on Input” bits (15–0) in
the Flag Interrupt Mask register enable this feature for each pin. All regis-
ters are initialized with “zeros”.

Programmable Flag Registers

B-98 ADSP-219x/2191 DSP Hardware Reference

Two sets of mask registers exist. Setting a bit in the Flag Interrupt Mask A
register enables the corresponding bit in the PF Direction (DIR) register to
interrupt the DSP core when configured as either an input (hardware
interrupt) or an output (software interrupt) and when set. The interrupt A
line is driven with a logical OR of all masked bits.

Similarly, the Flag Interrupt Mask B register contents are logically ANDed
with the contents of the Flag Direction (DIR) register. The logic OR of the
result is driven onto the interrupt B line.

Flag Source Polarity (FSPR) Register
This register’s address is: 0x06:0x008. This register is initialized with
“zeros”.

Writing a “0” to a bit of the FSPR register configures the corresponding
flag pin as an active high input signal. Writing a “1” configures the corre-
sponding flag pin as an active low input signal. The 16 bits of the FSPR
register correspond to the 16 available flag pins of the ADSP-2191.

When configured as an input, the input signal could be pro-
grammed to set the FLAG in either level-sensitive or edge-sensitive
interrupt mode. Input signal sensitivity is defined in the
FSSR register.

Flag Source Sensitivity (FSSR) Register
This register’s address is 0x06:0x00A. This register is initialized with
“zeros”.

Writing a “0” to a bit of the FSSR register configures the corresponding
flag pin as a level sensitive input. Writing a “1” configures the correspond-
ing flag pin as an edge sensitive input. The 16 bits of the FSSR register
correspond to the 16 available flag pins of the ADSP-2191.

ADSP-219x/2191 DSP Hardware Reference B-99

ADSP-2191 DSP I/O Registers

Flag Sensitivity Both Edges (FSBER) Register
This register’s address is 0x06:0x00C. This register is initialized with
“zeros”.

Writing a “0” to a bit of the FSBER register configures the corresponding
flag pin for rising-edge or falling-edge sensitivity (as determined by the
value of the corresponding bit of the FSPR register). Writing a “1” config-
ures the corresponding flag pin for both-edges sensitivity. The 16 bits of
the FSBER register correspond to the 16 available flag pins of the
ADSP-2191.

External Memory Interface Registers
The External Memory Interface (EMI) peripheral provides an asynchro-
nous parallel data interface to the outside world for ADSP-2191 core
based devices. The EMI supports instruction and data transfers from the
core to external memory space and boot space. The EMI function is to
move 8, 16, or 24 bit data between the core and its peripherals and
off-chip memory devices.

This section includes the following topics:

• “External Memory Interface Control/Status (E_STAT) Register”
on page B-100

• “External Memory Interface Control (EMICTL) Register” on
page B-100

• “Boot Memory Select Control (BMSCTL) Register” on
page B-102

• “Memory Select Control (MSxCTL) Registers” on page B-104

• “I/O Memory Select Control (IOMSCTL) Registers” on
page B-105

External Memory Interface Registers

B-100 ADSP-219x/2191 DSP Hardware Reference

• “External Port Status (EMISTAT) Register” on page B-105

• “Memory Page (MEMPGx) Registers” on page B-105

External Memory Interface Control/Status
(E_STAT) Register

This register address is 0x00:0x080.

The EMI Control/Status (E_STAT) register configures access to external or
boot memory space, selects the external data format, and indicates pend-
ing status for memory writes.

Figure B-35 on page B-101 provides bit descriptions.

External Memory Interface Control (EMICTL)
Register

This register address is 0x06:0x201. The EMI Interface Control (EMICTL)
register is a 7-bit register. It can be used to configure the interface for an
8- or 16-bit external data bus. The register provides a lock bit to disable
write accesses to the EMI Memory Access Control registers. Setting the
lock bit in the EMI Control register causes the arbitration unit to provide
grants only to direct access or peripheral register access requests.

Separate register bits are also provided to set the read and write strobe
sense for positive logic (bit=0) or negative logic (bit=1). The sense bits are
common to all memory spaces. Figure B-36 on page B-102 provides bit
descriptions.

ADSP-219x/2191 DSP Hardware Reference B-101

ADSP-2191 DSP I/O Registers

Boot Memory Select Control (BMSCTL) Register
This register address is 0x06:0x202. The Boot Memory Select Control
(BMSCTL) register stores configuration data for the Boot memory space.
The following are six parameters that can be programmed to customize
accesses for the selected memory space. Figure B-37 on page B-103 pro-
vides bit descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

E_PI_BE (PM Instruction from Boot
Space Enable)
0 = Use MSx for off-chip fetch
1 = Use BMS for off-chip fetch

E_PD_BE (PM Data from Boot Space
Enable)
0 = Use MSx for off-chip PM
data
1 = Use BMS for off-chip PM
data

E_DD_BE (DM Data from Boot Space
Enable)
0 = Use MSx for off-chip DM data
1 = Use BMS for off-chip DM data

E_DFS (PM and DM Data Format Select)
0 = 16-bit
1 = 24-bit

Reserved

E_WPF (Write Pending Flag)
0 = No pending write
1 = Write pending

Reserved

Figure B-35. EMI Control/Status (E_STAT) Register Bits

External Memory Interface Registers

B-102 ADSP-219x/2191 DSP Hardware Reference

The read and write waitstate counts indicate the number of I/O clock
cycles that the EMI will wait before completing execution of an external
transfer. The wait mode indicates how the waitstate counter and memory
ACK line are used to determine the end of a transaction.These are the actual
counts and are not encoded.

The base clock divider sets the I/O clock rate to be a sub-multiple of the
peripheral clock rate. The write hold mode bit is set to 1 to extend the
write data by one cycle following de-asserting of the strobe in order to
provide more data hold time for slow devices.

Setting the CMS output enable bit to 1 enables the CMS signal to be
asserted when the selected memory space is accessed. This bit has no effect
on the ADSP-2191, because the ADSP-2191 does not have a CMS pin.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 Reset = 0x0070

E_BL (Bus Lock)

E_BHE (Bus Hold Off Enable)
0 = Disable Hold off, 1 =
Enable Hold off

E_CRL (Access Control Reg Lock)

E_BWS (External Bus Width Select)
0 = 8-bit, 1 = 16-bit
Note: Bit resets to 0, but may be set
at boot time.

E_WLS (Write Strobe Sense)
0 = Positive Logic
1 = Negative Logic

E_RLS (Read Strobe Sense)
0 = Positive Logic
1 = Negative Logic

E_ASE (Access Split Enable)
0 = Disable
1 = Enable

Reserved

Figure B-36. EMI Control (EMICTL) Register Bits

ADSP-219x/2191 DSP Hardware Reference B-103

ADSP-2191 DSP I/O Registers

Memory Select Control (MSxCTL) Registers
The ADSP-2191 supports selection of up to four memory banks (MS3-0).
Each of these banks can also be configured to support 8-bit-wide or
16-bit-wide memories on a bank basis.

These memory bank registers’ addresses are:

(Bank 0) MS0CTRL 0x06:0x203

(Bank 1) MS1CTRL 0x06:0x204

(Bank 2) MS2CTRL 0x06:0x205

(Bank 3) MS3CTRL 0x06:0x206

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Reset = 0x0DFF

E_RWC (Read Waitstate Count)

E_WWC (Write Waitstate Count)

E_WMS (Wait Mode)
00 = External Acknowledge only
01 = Internal Wait only
10 = both internal and external
11 = either internal or external

E_CDS (Base Clock Divider)
000 = HCLK
001 = HCLK/2
010 = HCLK/4
011 = HCLK/8
100 = HCLK/16
101 = HCLK/32

E_WHC (Write Hold)
0 = no hold cycle insertion
1 = extend write data one cycle

Reserved.

E_COE (CMS Output)
0 = Disable, 1 = Enable

Figure B-37. Boot Memory Select Control (BMSCTL) Register Bits

External Memory Interface Registers

B-104 ADSP-219x/2191 DSP Hardware Reference

Each Memory Select Control (MSxCTL) register stores configuration data
for the memory space. The following six parameters can be programmed
to customize accesses for the selected memory space.

The read and write waitstate counts indicate the number of EMICLK
clock cycles that the EMI will wait before completing execution of an
external transfer. The wait mode indicates how the waitstate counter and
memory ACK line are used to determine the end of a transaction. These
are the actual counts and are not encoded.

The base clock divider sets the EMICLK clock rate to be a sub-multiple of
the peripheral clock rate. The write hold mode bit is set to 1 to extend the
write data by one cycle following de-asserting of the strobe in order to
provide more data hold time for slow devices. Setting CMS output enable
is set to 1 enables the CMS signal to be asserted when the selected memory
space is accessed.

For information on the bits in this register (which are the same as the
BMSCTL register), see Figure B-37 on page B-103.

I/O Memory Select Control (IOMSCTL) Registers
This register address is 0x06:0x207. The I/O Memory Select Control
(IOMSCTL) register stores configuration data for the I/O memory space.
The following are six parameters that can be programmed to customize
accesses for the selected memory space.

The read and write waitstate counts indicate the number of I/O clock
cycles that the EMI will wait before completing execution of an external
transfer. The wait mode indicates how the waitstate counter and memory
ACK line are used to determine the end of a transaction. These are the
actual counts and are not encoded.

The base clock divider sets the I/O clock rate to be a sub-multiple of the
peripheral clock rate. The write hold mode bit is set to 1 to extend the
write data by one cycle following de-asserting of the strobe in order to

ADSP-219x/2191 DSP Hardware Reference B-105

ADSP-2191 DSP I/O Registers

provide more data hold time for slow devices. Setting CMS output enable
to 1 enables the CMS signal to be asserted when the selected memory space
is accessed.

For information on the bits in this register (which are the same as the
BMSCTL register), see Figure B-37 on page B-103.

External Port Status (EMISTAT) Register
The External Port Status (EMISTAT) register address is 0x06:0x208. The
reset value is undefined. This read-only register can be polled to return
three types of status shown below.

Figure B-38 on page B-106 provides bit descriptions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

E_BSY (Ext Bus Busy)
The Busy Status bits indicate
whether the bus is idle or is being
used by an on-chip or off-chip mas-
ter device:
00 = not busy, 01 = off-chip master
10 = on-chip master, 11 = reserved

E_MID (Last Master ID)
5-bit Last Master ID values are listed
in Table B-14 on page B-107.

E_WPS (Packer Status - Read-Only)
The Packer status field indicates the
number of bytes which are currently
in the data packer in the external
interface data path block:
00 – packer empty
01 – one byte in packer
10 – two bytes in packer
11 – three bytes in packer

Reserved

Figure B-38. External Port Status (EMISTAT) Register Bits

External Memory Interface Registers

B-106 ADSP-219x/2191 DSP Hardware Reference

Memory Page (MEMPGx) Registers
The EMI contains two registers which are used to program the lower page
boundary addresses for the MS0, MS1, MS2, and MS3 memory spaces.

The MEMPGx registers are not intended to provide contiguous addressing
across different MSx strobes, they are used to decrease the address space
sticking to the individual MSx strobes.

The Memory Page registers’ addresses are:

(Page 1/0) MEMPG10 0x06:0x209

(Page 3/2) MEMPG32 0x06:0x20A

Table B-14. Last Master ID Parameters in EMI Status Register

Bit(s) Name Definition

6–2 E_MID Last Master ID.
The Last Master ID will return a 5-bit value which identifies the
current or last device to use the interface:

BitsDMA Masters NonDMA Masters
5432(bit 6=0)(bit 6=1)
0000SPORT0 RX DMADSP core I/O mem.
0001SPORT1 RX DMAHost port I/O mem.
0010SPORT2 RX DMAreserved
0011SPORT0 TX DMAreserved
0100SPORT1 TX DMAreserved
0101SPORT2 TX DMAreserved
0110SPI0 RX/TX DMAreserved
0111SPI1 RX/TX DMAreserved
1000UART RX DMAreserved
1001UART TX DMAreserved
1010Host RX/TX DMAreserved
1011MemDMA RX DMAreserved
1100MemDMA TX DMAreserved
1101reservedreserved
1110reservedreserved
1111reservedDSP core ext. mem.

ADSP-219x/2191 DSP Hardware Reference B-107

ADSP-2191 DSP I/O Registers

The lower eight bits of Memory Page register 1/0 contain the upper eight
bits of the lowest address in Bank 0 (MS0). The upper eight bits of Memory
Page register 1/0 contain the upper eight bits of the lowest address in
Bank 1 (MS1).

The lower eight bits of Memory Page register 3/2 contain the upper eight
bits of the lowest address in Bank 2 (MS2). The upper eight bits of Memory
Page register 3/2 contain the upper eight bits of the lowest address in
Bank 3 (MS3). Memory bank address ranges are defined to include the low-
est address in the bank and one less than the lowest address in the next
highest bank.

Host Port Registers
The Host Port Bus Interface (HPI) provides a Host Port asynchronous
parallel pin interface. The primary use of this interface is to provide a par-
allel slave port to an off-chip host agent allowing direct access to
ADSP-2191 memory space, boot space, and IO space. This interface
includes a built-in DMA controller that eases the transfer of block of data
between the ADSP-2191 memory/boot space and the external Host pro-
cessor. The ADSP-2191 supports boot loading under control of the HPI
DMA Controller function.

This section includes the following topics:

• “Host Port Configuration (HPCR) Register” on page B-109

• “Host Port Direct Page (HPPR) Register” on page B-109

• “Host Port DMA Error (HPDER) Register” on page B-109

• “Host Port Semaphore (HPSMPHx) Registers” on page B-112

• “Host Port DMA Pointer (HOSTD_PTR) Register” on
page B-112

Host Port Registers

B-108 ADSP-219x/2191 DSP Hardware Reference

• “Host Port DMA Configuration (HOSTD_CFG) Register” on
page B-112

• “Host Port DMA Start Page (HOSTD_SRP) Register” on
page B-113

• “Host Port DMA Start Address (HOSTD_SRA) Register” on
page B-113

• “Host Port DMA Word Count (HOSTD_CNT) Register” on
page B-113

• “Host Port DMA Chain Pointer (HOSTD_CP) Register” on
page B-113

• “Host Port DMA Chain Pointer Ready (HOSTD_CPR) Register”
on page B-115

• “Host Port DMA Interrupt (HOSTD_IRQ) Register” on
page B-115

Host Port Configuration (HPCR) Register
The Host Port Configuration (HPCR) register address is 0x07:0x001. The
data path of the interface is set to 8-bits width after hardware reset. The
host can change the data path width to 16-bits by writing the proper value
to the I/O-mapped Host Port Configuration register.

In addition to the two select lines, transactions on the external host bus
are controlled by four signals: HALE, HRDB,HWRB, and HACK. The values,
sensed during the hardware reset sequence, are stored into the Host Port
Configuration register as read-only bits. Figure B-39 on page B-110 pro-
vides Host Port Configuration register bit descriptions.

Two mode bits, HPCR7–6, define the functionality of the HACK line as
shown in Table B-15 on page B-111.

ADSP-219x/2191 DSP Hardware Reference B-109

ADSP-2191 DSP I/O Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

H_BWS (Host Port Bus Width Select)
0 = 8-bit, 1 = 16-bit

H_BEND (Byte Endianess)
0 = little Endian, 1 = big Endian

H_DORD (Data Ordering)
0 = least significant word first
1 = most significant word first

H_PSIZE (Packet size)
In case of 24-bit type, 8-bit bus:
0 = 4 bytes
1 = 3 bytes

H_PREAD (Pipelined Reads)
0 = normal mode, 1 = pipeline reads

H_PFET (Pre-fetch reads on address phase)

H_AMS (ACK Functionality)
See bit settings in Table B-15 on
page B-111.

H_RLS (Read Strobe Sense)
If set (=1), the related signal sense is
active low.
If cleared (=0), the related signal is active
high.
While bit values are latched in during chip
reset, the bit is read/write, permitting
run-time control.

H_WLS (Write Strobe Sense)
For set/clear & read/write status, refer to
H_RLS.

H_ACKS (ACK Sense)
For set/clear & read/write status, refer to
H_RLS.

H_ALES (ALE Sense)
For set/clear & read/write status, refer to
H_RLS.

Reserved

Figure B-39. Host Port Configuration (HPCR) Register Bits

Host Port Registers

B-110 ADSP-219x/2191 DSP Hardware Reference

Host Port Direct Page (HPPR) Register
The register address is 0x07:0x002.

The Host Port Direct Page (HPPR) register should be set up to contain the
most significant bits of the address that will be accessed (9-bits of memory
page, bits 15–7). Use this register also to configure the memory space
(memory or boot) that will be accessed.

Host Port DMA Error (HPDER) Register
The register address is 0x07:0x003. It is a 1-bit register. Bit 0 is set to zero,
indicating DMA error; that is, a write to DMA Control register while
DMA is active (data transfer is ongoing). The reset state is 0x0000.

Table B-15. HACK {7:6] Bit Descriptions

Bit(s) Name Definition

7–6 H_AMS ACK Functionality
Three functional modes selected by HPCR 7–6 are as fol-
low (assuming active HIGH signal):

• 00 ACK Mode: Acknowledge is active on strobes;
HACK goes High from the leading edge of the
strobe to indicate when the access can complete.
After the Host samples the HACK active, it can
complete the access by removing the strobe. The
HPI then removes the HACK.

• 01 READY Mode: Ready active on strobes, goes
Low to insert waitstate during the access. If the
HPI can not complete the access, it drives the
HACK/READY line inactive. In this case, the
Host has to extend the access by keeping the
strobe active. When the Host samples the HACK
active, it can then proceed and complete the
access by removing the strobe.

• 10 and 11 Reserved

ADSP-219x/2191 DSP Hardware Reference B-111

ADSP-2191 DSP I/O Registers

Host Port Semaphore (HPSMPHx) Registers
There are two semaphore bit registers. Their addresses are:

HPSMPHA 0x07:0x0FC

HPSMPHB 0x07:0x0FD

The 1-bit semaphore bit registers are used to implement a DMA owner-
ship bit. This allows the processors, Host or DSP core, to determine if
someone already uses the DMA controller. Semaphore register bits, bit 0
in each register, are set on “read” and are being reset when writing a 1 to
the bit. The reset state is 0x0000.

The DSP uses the HPSMPHA semaphore register when booting the
DSP through the host port.

Host Port DMA Pointer (HOSTD_PTR) Register
The register address is 0x07:0x100. This is a read-only register that holds
the pointer to the current descriptor block for the HPI DMA operation.
The reset state is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MS (Memory Space)
0 = Memory Space, 1 = Boot Space

DTYPE (Data Type)
0 = 16 bits, 1 = 24 bits

Reserved

MP (Memory Page)

Figure B-40. Host Port Direct Page (HPPR) Register Bits

Host Port Registers

B-112 ADSP-219x/2191 DSP Hardware Reference

Host Port DMA Configuration (HOSTD_CFG)
Register

The register address is 0x07:0x101.

Figure B-41 on page B-114 provides Host Port DMA Configuration regis-
ter bit descriptions

If Bit 14, “DMA Interrupt on Completion” bit (bit 14) and Bit 0, the
“DMA Enable” bit, are set, the HPI DMA Controller generates an inter-
rupt when the Host Port DMA Word Count (HOSTD_CNT) register contents
transitions from a one to a zero. Correct initial programming of the word
count registers is essential to ensure that partial buffer contents (words)
are not allowed to corrupt subsequent DMA transfers.

If the “DMA Interrupt on Completion” bit (DMA Completion = 0) is set
and the “DMA Enable” bit is cleared, the HPI DMA Controller generates
an interrupt prior to shutting down.

If the “DMA Interrupt on Error” bit (DMA Completion = 1) is set and
the DMA operation completes with an error (bit 14), the HPI DMA Con-
troller generates an error interrupt prior to disabling the DMA engine and
shutting down.

Host Port DMA Start Page (HOSTD_SRP) Register
The register address is 0x07:0x102. The 16-bit Host Port DMA Start Page
(HOSTD_SRP) register holds a running pointer to the DMA address that is
being accessed and the memory space being used for a DMA block
transfer.

Host Port DMA Start Address (HOSTD_SRA) Register
The register address is 0x07:0x103. This 16-bit read-only register holds
the DMA block transfer start address. The reset state is 0x0000.

ADSP-219x/2191 DSP Hardware Reference B-113

ADSP-2191 DSP I/O Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

DEN (DMA Enable)
Bit 0 can be Read-Write in register:
0 = disabled, 1 = enabled

TRAN (Transfer Direction – Read-only)
0 = memory read
1 = memory write

DCOME (Interrupt on Complete - Read-only)
This bit always reads as 0.

DTYPE (Data Type - RO in register)
0 = 16-bit data, 1 = 24-bit data

DAUTO (AutoBuffer/Descriptor Mode)
Read-Write in register
0 = Descriptor Mode enabled
1 = Autobuffer Mode enabled

Reserved

FLSH (DMA Buffer Clear)
Bit 7 can be Read-Write in register. It
should be set following a DMA termina-
tion due to an error condition.

DERE (Interrupt on Error - Read-only)

DRDY (DMA Transfer Ready)

Reserved

FS (DMA Buffer Status)
This bit is actively updated in register:
00 = buffer empty, 01 = one byte present
10 = two bytes present, 11 = three bytes
present

DS (DMA Completion Status - Read-only)
0 = Successful Completion
1 = Error

DOWN (Descriptor Ownership - Read-only)
0 = DSP/HPI, 1 = Slave DMA

Figure B-41. Host Port DMA Configuration (HOSTD_CFG) Register
Bits

Host Port Registers

B-114 ADSP-219x/2191 DSP Hardware Reference

Host Port DMA Word Count (HOSTD_CNT) Register
The register address is 0x07:0x104. The 16-bit Write Count read-only reg-
ister holds the number of words in the DMA block transfer. The reset
state is 0x0000.

Host Port DMA Chain Pointer (HOSTD_CP) Register
The register address is 0x07:0x105. This 16-bit register holds the pointer
to address of the next descriptor for a DMA transfer. The reset state is
0x0000.

Host Port DMA Chain Pointer Ready
(HOSTD_CPR) Register

The register address is 0x07:0x106. Bit 0 in this 16-bit read-write register
sets the status of the descriptor operation. If bit 0 is 0,the status is
descriptor ready. Bits 15:1 are not used. The reset state is 0x0000.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

MP (Memory Page) - Block Start Page
address

MS (Memory Space)
00 = Memory Space
01 = Boot Space
10 = reserved
11 = reserved

Reserved

Figure B-42. Host Port DMA Start Page (HOSTD_SRP) Register Bits

ADSP-219x/2191 DSP Hardware Reference B-115

ADSP-2191 DSP I/O Registers

Host Port DMA Interrupt (HOSTD_IRQ) Register
The register address is 0x07:0x107. Bit 0 indicates when a DMA interrupt
is pending (if set, =1) or is not pending (if cleared, =0, reset value). Bits
15:1 are not used. The reset state is 0x0000.

Register and Bit #define File (def2191.h)
The following example definitions file is for the ADSP-2191 DSP. For the
most current definitions file, use the version of this file that comes with
the software development tools.

The version of the file in this appendix is included as a guide only.

/**

 *

 * def2191.h : $Revision: 1.7.4.1 $

 *

 * (c) Copyright 1998-2002 Analog Devices, Inc.

 * All rights reserved.

 *

***/

/*

** System register bit and address defines to symbolic names

** for the ADSP-2191 DSP.

*/

#ifndef __DEF2191_H_

#define __DEF2191_H_

// Begin with a 219x CORE

#include <def219x.h>

Register and Bit #define File (def2191.h)

B-116 ADSP-219x/2191 DSP Hardware Reference

//---

// I/O Processor Register Map

//---

// DMA Bus Bridge; these are on IOPG=0x00

#define DMA_Bus_Bridge_Page 0x00

#define D_ADLO_0 0x044 // DMA Bridge Addr FIFO 0 Reg (15-0)

#define D_ADLO_1 0x045 // DMA Bridge Addr FIFO 1 Reg (15-0)

#define D_ADLO_2 0x046 // DMA Bridge Addr FIFO 2 Reg (15-0)

#define D_ADLO_3 0x047 // DMA Bridge Addr FIFO 3 Reg (15-0)

#define D_DALO_0 0x048 // DMA Bridge Data FIFO 0 (15-0)

#define D_DALO_1 0x049 // DMA Bridge Data FIFO 1 (15-0)

#define D_DALO_2 0x04a // DMA Bridge Data FIFO 2 (15-0)

#define D_DALO_3 0x04b // DMA Bridge Data FIFO 3 (15-0)

#define ADDAHI_0 0x04c // DMA Bridge Addr & Data FIFO 0 (23-16)

#define ADDAHI_1 0x04d // DMA Bridge Addr & Data FIFO 1 (23-16)

#define ADDAHI_2 0x04e // DMA Bridge Addr & Data FIFO 2 (23-16)

#define ADDAHI_3 0x04f // DMA Bridge Addr & Data FIFO 3 (23-16)

// External Access Bridge; these are on IOPG=0x00

#define External_Access_Bridge_Page 0x00

#define E_STAT 0x080 // EAB config/status register

// Trace Buffer; these are on IOPG=0x00

#define Trace_Buffer_Page 0x00

#define TCSR 0x0c0 // Trace Control/Status Register

#define STBUF0 0x0c1 // Source Top of Stack reg (Low bits)

#define STBUF1 0x0c2 // Source Top of Stack reg (High bits)

#define DTBUF0 0x0c3 // Destin Top of Stack reg (Low bits)

#define DTBUF1 0x0c4 // Destin Top of Stack reg (High bits)

ADSP-219x/2191 DSP Hardware Reference B-117

ADSP-2191 DSP I/O Registers

// JTAG Debug; these are on IOPG=0x00

#define JTAG_and_Debug_Page 0x00

#define INDATA 0x0E0 // INDATA register

#define OUTDATA 0x0E1 // OUTDATA Register

#define JDCSR 0x0E2 // JDCC Control/Status register

// ADSP-2191 On-Chip System IO Space

// Clock and System Control;

// these are on IOPG=0x00 (0x00200-0x003FF)

#define Clock_and_System_Control_Page 0x00

#define PLLCTL 0x200 // PLL Control register

#define LOCKCNT 0x201 // PLL Lock Counter

#define SWRST 0x202 // Software Reset Register

#define NXTSCR 0x203 // Next System Configuration register

#define SYSCR 0x204 // System Configuration register

// Reserved (0x00400-0x005FF)

// Interrupt Controller; these are on IOPG=0x01 (0x00600-0x007FF)

#define Interrupt_Controller_Page 0x01

#define IPR0 0x200 // Interrupt Priority Register 0

#define IPR1 0x201 // Interrupt Priority Register 1

#define IPR2 0x202 // Interrupt Priority Register 2

#define IPR3 0x203 // Interrupt Priority Register 3

#define INTRD0 0x204 // Source Interrupt Register 0

#define INTRD1 0x205 // Source Interrupt Register 1

#define INTRD2 0x206 // Source Interrupt Register 2

#define INTRD3 0x207 // Source Interrupt Register 3

#define INTRD4 0x208 // Source Interrupt Register 4

#define INTRD5 0x209 // Source Interrupt Register 5

Register and Bit #define File (def2191.h)

B-118 ADSP-219x/2191 DSP Hardware Reference

#define INTRD6 0x20A // Source Interrupt Register 6

#define INTRD7 0x20B // Source Interrupt Register 7

#define INTRD8 0x20C // Source Interrupt Register 8

#define INTRD9 0x20D // Source Interrupt Register 9

#define INTRD10 0x20E // Source Interrupt Register 10

#define INTRD11 0x20F // Source Interrupt Register 11

// Memory DMA Controller;

// these are on IOPG=0x02 (0x00800-0x009FF)

#define Memory_DMA_Controller_Page 0x02

#define DMACW_PTR 0x100 // Mem Wr Channel - DMA Current Pointer

#define DMACW_CFG 0x101 // Mem Wr Channel - DMA Configuration

#define DMACW_SRP 0x102 // Mem Wr Channel - DMA Start Page

#define DMACW_SRA 0x103 // Mem Wr Channel - DMA Start Address

#define DMACW_CNT 0x104 // Mem Wr Channel - DMA Count

#define DMACW_CP 0x105 // Mem Wr Channel - DMA Next Desc Ptr

#define DMACW_CPR 0x106 // Mem Wr Channel - DMA Descript Ready

#define DMACW_IRQ 0x107 // Mem Wr Channel - DMA Interrupt Reg

#define DMACR_PTR 0x180 // Mem Rd Channel - DMA Current Pointer

#define DMACR_CFG 0x181 // Mem Rd Channel - DMA Configuration

#define DMACR_SRP 0x182 // Mem Rd Channel - DMA Start Page

#define DMACR_SRA 0x183 // Mem Rd Channel - DMA Start Address

#define DMACR_CNT 0x184 // Mem Rd Channel - DMA Count

#define DMACR_CP 0x185 // Mem Rd Channel - DMA Next Descr Ptr

#define DMACR_CPR 0x186 // Mem Rd Channel - DMA Descr Ready

#define DMACR_IRQ 0x187 // Mem Rd Channel - DMA Int Register

// SPORT0 Controller; these are on IOPG=0x02 (0x00A00-0x00BFF)

#define SPORT0_Controller_Page 0x02

#define SP0_TCR 0x200 // SPORT0 Transmit Config Register

#define SP0_RCR 0x201 // SPORT0 Receive Config Register

ADSP-219x/2191 DSP Hardware Reference B-119

ADSP-2191 DSP I/O Registers

#define SP0_TX 0x202 // SPORT0 TX transmit Register

#define SP0_RX 0x203 // SPORT0 RX Receive register

#define SP0_TSCKDIV 0x204 // SPORT0 Trans Serial Clock Divider

#define SP0_RSCKDIV 0x205 // SPORT0 Rec Serial Clock Divider

#define SP0_TFSDIV 0x206 // SPORT0 Transmit Frame Sync Divider

#define SP0_RFSDIV 0x207 // SPORT0 Receive Frame Sync Divider

#define SP0_STATR 0x208 // SPORT0 Status Register

#define SP0_MTCS0 0x209 // SPORT0 Multi-Chan Trans Sel Reg

#define SP0_MTCS1 0x20A // SPORT0 Multi-Chan Trans Sel Reg

#define SP0_MTCS2 0x20B // SPORT0 Multi-Chan Trans Sel Reg

#define SP0_MTCS3 0x20C // SPORT0 Multi-Chan Trans Sel Reg

#define SP0_MTCS4 0x20D // SPORT0 Multi-Chan Trans Sel Reg

#define SP0_MTCS5 0x20E // SPORT0 Multi-Chan Trans Sel Reg

#define SP0_MTCS6 0x20F // SPORT0 Multi-Chan Trans Sel Reg

#define SP0_MTCS7 0x210 // SPORT0 Multi-Chan Trans Sel Reg

#define SP0_MRCS0 0x211 // SPORT0 Multi-Chan Rec Sel Reg

#define SP0_MRCS1 0x212 // SPORT0 Multi-Chan Rec Sel Reg

#define SP0_MRCS2 0x213 // SPORT0 Multi-Chan Rec Sel Reg

#define SP0_MRCS3 0x214 // SPORT0 Multi-Chan Rec Sel Reg

#define SP0_MRCS4 0x215 // SPORT0 Multi-Chan Rec Sel Reg

#define SP0_MRCS5 0x216 // Multi-Chan Rec Sel Register

#define SP0_MRCS6 0x217 // SPORT0 Multi-Chan Rec Sel Register

#define SP0_MRCS7 0x218 // SPORT0 Multi-Chan Rec Sel Register

#define SP0_MCMC1 0x219 // SPORT0 Multi-Chan Config Reg 1

#define SP0_MCMC2 0x21A // SPORT0 Multi-Chan Config Reg 2

#define SP0DR_PTR 0x300 // SPORT0 -RCV DMA Current Pointer

#define SP0DR_CFG 0x301 // SPORT0 -RCV DMA Configuration

#define SP0DR_SRP 0x302 // SPORT0 -RCV DMA Start Page

#define SP0DR_SRA 0x303 // SPORT0 -RCV DMA Start Address

#define SP0DR_CNT 0x304 // SPORT0 -RCV DMA Count

#define SP0DR_CP 0x305 // SPORT0 -RCV DMA Next Desc Pointer

#define SP0DR_CPR 0x306 // SPORT0 -RCV DMA Descriptor Ready

#define SP0DR_IRQ 0x307 // SPORT0 -RCV DMA Interrupt Register

Register and Bit #define File (def2191.h)

B-120 ADSP-219x/2191 DSP Hardware Reference

#define SP0DT_PTR 0x380 // SPORT0 -XMT DMA Current Pointer

#define SP0DT_CFG 0x381 // SPORT0 -XMT DMA Configuration

#define SP0DT_SRP 0x382 // SPORT0 -XMT DMA Start Page

#define SP0DT_SRA 0x383 // SPORT0 -XMT DMA Start Address

#define SP0DT_CNT 0x384 // SPORT0 -XMT DMA Count

#define SP0DT_CP 0x385 // SPORT0 -XMT DMA Next Descr Pointer

#define SP0DT_CPR 0x386 // SPORT0 -XMT DMA Descriptor Ready

#define SP0DT_IRQ 0x387 // SPORT0 -XMT DMA Interrupt Register

// SPORT1 Controller; these are on IOPG=0x03 (0x00C00-0x00DFF)

#define SPORT1_Controller_Page 0x03

#define SP1_TCR 0x000 // SPORT1 Transmit Config Register

#define SP1_RCR 0x001 // SPORT1 Receive Config Register

#define SP1_TX 0x002 // SPORT1 TX transmit Register

#define SP1_RX 0x003 // SPORT1 RX Receive register

#define SP1_TSCKDIV 0x004 // SPORT1 Trans Serial Clock Divider

#define SP1_RSCKDIV 0x005 // SPORT1 Rec Serial Clock Divider

#define SP1_TFSDIV 0x006 // SPORT1 Transmit Frame Sync Divider

#define SP1_RFSDIV 0x007 // SPORT1 Receive Frame Sync Divider

#define SP1_STATR 0x008 // SPORT1 Status Register

#define SP1_MTCS0 0x009 // SPORT1 Multi-Chan Trans Sel Reg

#define SP1_MTCS1 0x00A // SPORT1 Multi-Chan Trans Sel Reg

#define SP1_MTCS2 0x00B // SPORT1 Multi-Chan Trans Sel Reg

#define SP1_MTCS3 0x00C // SPORT1 Multi-Chan Trans Sel Reg

#define SP1_MTCS4 0x00D // SPORT1 Multi-Chan Trans Sel Reg

#define SP1_MTCS5 0x00E // SPORT1 Multi-Chan Trans Sel Reg

#define SP1_MTCS6 0x00F // SPORT1 Multi-Chan Trans Sel Reg

#define SP1_MTCS7 0x010 // SPORT1 Multi-Chan Trans Sel Reg

#define SP1_MRCS0 0x011 // SPORT1 Multi-Chan Rec Sel Reg

#define SP1_MRCS1 0x012 // SPORT1 Multi-Chan Rec Sel Register

#define SP1_MRCS2 0x013 // SPORT1 Multi-Chan Rec Select Reg

#define SP1_MRCS3 0x014 // SPORT1 Multi-Chan Rec Select Reg

ADSP-219x/2191 DSP Hardware Reference B-121

ADSP-2191 DSP I/O Registers

#define SP1_MRCS4 0x015 // SPORT1 Multi-Chan Rec Select Reg

#define SP1_MRCS5 0x016 // SPORT1 Multi-Chan Rec Select Reg

#define SP1_MRCS6 0x017 // SPORT1 Multi-Chan Rec Select Reg

#define SP1_MRCS7 0x018 // SPORT1 Multi-Chan Rec Select Reg

#define SP1_MCMC1 0x019 // SPORT1 Multi-Chan Config Reg 1

#define SP1_MCMC2 0x01A // SPORT1 Multi-Chan Config Reg 2

#define SP1DR_PTR 0x100 // SPORT1 -DMA RCV Current Pointer

#define SP1DR_CFG 0x101 // SPORT1 -RCV DMA Configuration

#define SP1DR_SRP 0x102 // SPORT1 -RCV DMA Start Page

#define SP1DR_SRA 0x103 // SPORT1 -RCV DMA Start Address

#define SP1DR_CNT 0x104 // SPORT1 -RCV DMA Count

#define SP1DR_CP 0x105 // SPORT1 -RCV DMA Next Descr Pointer

#define SP1DR_CPR 0x106 // SPORT1 -RCV DMA Descriptor Ready

#define SP1DR_IRQ 0x107 // SPORT1 -RCV DMA Interrupt Register

#define SP1DT_PTR 0x180 // SPORT1 -XMT DMA Current Pointer

#define SP1DT_CFG 0x181 // SPORT1 -XMT DMA Configuration

#define SP1DT_SRP 0x182 // SPORT1 -XMT DMA Start Page

#define SP1DT_SRA 0x183 // SPORT1 -XMT DMA Start Address

#define SP1DT_CNT 0x184 // SPORT1 -XMT DMA Count

#define SP1DT_CP 0x185 // SPORT1 -XMT DMA Next Descr Pointer

#define SP1DT_CPR 0x186 // SPORT1 -XMT DMA Descriptor Ready

#define SP1DT_IRQ 0x187 // SPORT1 -XMT DMA Interrupt Reg

// SPORT2 Controller; these are on IOPG=0x03 (0x00E00-0x00FFF)

#define SPORT2_Controller_Page 0x03

#define SP2_TCR 0x200 // SPORT2 Transmit Configuration Reg

#define SP2_RCR 0x201 // SPORT2 Receive Configuration Reg

#define SP2_TX 0x202 // SPORT2 TX transmit Register

#define SP2_RX 0x203 // SPORT2 RX Receive register

#define SP2_TSCKDIV 0x204 // SPORT2 Trans Serial Clock Divider

#define SP2_RSCKDIV 0x205 // SPORT2 Rec Serial Clock Divider

Register and Bit #define File (def2191.h)

B-122 ADSP-219x/2191 DSP Hardware Reference

#define SP2_TFSDIV 0x206 // SPORT2 Transmit Frame Sync Divider

#define SP2_RFSDIV 0x207 // SPORT2 Receive Frame Sync Divider

#define SP2_STATR 0x208 // SPORT2 Status Register

#define SP2_MTCS0 0x209 // SPORT2 Multi-Chan Trans Sel Reg

#define SP2_MTCS1 0x20A // SPORT2 Multi-Chan Trans Sel Reg

#define SP2_MTCS2 0x20B // SPORT2 Multi-Chan Trans Sel Reg

#define SP2_MTCS3 0x20C // SPORT2 Multi-Chan Trans Sel Reg

#define SP2_MTCS4 0x20D // SPORT2 Multi-Chan Trans Sel Reg

#define SP2_MTCS5 0x20E // SPORT2 Multi-Chan Trans Sel Reg

#define SP2_MTCS6 0x20F // SPORT2 Multi-Chan Trans Sel Reg

#define SP2_MTCS7 0x210 // SPORT2 Multi-Chan Trans Sel Reg

#define SP2_MRCS0 0x211 // SPORT2 Multi-Chan Rec Sel Register

#define SP2_MRCS1 0x212 // SPORT2 Multi-Chan Rec Sel Register

#define SP2_MRCS2 0x213 // SPORT2 Multi-Chan Rec Sel Register

#define SP2_MRCS3 0x214 // SPORT2 Multi-Chan Rec Sel Register

#define SP2_MRCS4 0x215 // SPORT2 Multi-Chan Rec Sel Register

#define SP2_MRCS5 0x216 // SPORT2 Multi-Chan Rec Sel Register

#define SP2_MRCS6 0x217 // SPORT2 Multi-Chan Rec Sel Register

#define SP2_MRCS7 0x218 // SPORT2 Multi-Chan Rec Sel Register

#define SP2_MCMC1 0x219 // SPORT2 Multi-Chan Config Reg 1

#define SP2_MCMC2 0x21A // SPORT2 Multi-Chan Config Reg 2

#define SP2DR_PTR 0x300 // SPORT2 -DMA RCV Current Ptr reg

#define SP2DR_CFG 0x301 // SPORT2 -RCV DMA Config register

#define SP2DR_SRP 0x302 // SPORT2 -RCV DMA Start Page reg

#define SP2DR_SRA 0x303 // SPORT2 -RCV DMA Start Address reg

#define SP2DR_CNT 0x304 // SPORT2 -RCV DMA Count register

#define SP2DR_CP 0x305 // SPORT2 -RCV DMA Next Descr Ptr reg

#define SP2DR_CPR 0x306 // SPORT2 -RCV DMA Descriptor Ready

#define SP2DR_IRQ 0x307 // SPORT2 -RCV DMA Interrupt Reg

#define SP2DT_PTR 0x380 // SPORT2 -XMT DMA Current Ptr register

#define SP2DT_CFG 0x381 // SPORT2 -XMT DMA Config register

#define SP2DT_SRP 0x382 // SPORT2 -XMT DMA Start Page register

ADSP-219x/2191 DSP Hardware Reference B-123

ADSP-2191 DSP I/O Registers

#define SP2DT_SRA 0x383 // SPORT2 -XMT DMA Start Address reg

#define SP2DT_CNT 0x384 // SPORT2 -XMT DMA Count register

#define SP2DT_CP 0x385 // SPORT2 -XMT DMA Next Desc Ptr reg

#define SP2DT_CPR 0x386 // SPORT2 -XMT DMA Descriptor Ready

#define SP2DT_IRQ 0x387 // SPORT2 -XMT DMA Int Register

// SPI0 Controller; these are on IOPG=0x04 (0x01000-0x011FF)

#define SPI0_Controller_Page 0x04

#define SPICTL0 0x000 // SPI0 Control Register

#define SPIFLG0 0x001 // SPI0 Flag register

#define SPIST0 0x002 // SPI0 Status register

#define TDBR0 0x003 // SPI0 Transmit Data Buffer Register

#define RDBR0 0x004 // SPI0 Receive Data Buffer Register

#define SPIBAUD0 0x005 // SPI0 Baud rate Register

#define RDBRS0 0x006 // SPI0 Rec Data Buffer Shadow Register

#define SPI0D_PTR 0x100 // SPI 0 -DMA Current Pointer register

#define SPI0D_CFG 0x101 // SPI 0 -DMA Configuration register

#define SPI0D_SRP 0x102 // SPI 0 -DMA Start Page register

#define SPI0D_SRA 0x103 // SPI 0 -DMA Start Address register

#define SPI0D_CNT 0x104 // SPI 0 -DMA Count register

#define SPI0D_CP 0x105 // SPI 0 -DMA Next Descriptor Pointer

#define SPI0D_CPR 0x106 // SPI 0 -DMA Descriptor Ready

#define SPI0D_IRQ 0x107 // SPI 0 -DMA Interrupt register

// SPI1 Controller; these are on IOPG=0x04 (0x01200-0x013FF)

#define SPI1_Controller_Page 0x04

#define SPICTL1 0x200 // SPI1 Control Register

#define SPIFLG1 0x201 // SPI1 Flag register

#define SPIST1 0x202 // SPI1 Status register

#define TDBR1 0x203 // SPI1 Transmit Data Buffer Register

#define RDBR1 0x204 // SPI1 Receive Data Buffer Register

Register and Bit #define File (def2191.h)

B-124 ADSP-219x/2191 DSP Hardware Reference

#define SPIBAUD1 0x205 // SPI1 Baud rate Register

#define RDBRS1 0x206 // SPI1 Receive Data Buffer Shadow Reg

#define SPI1D_PTR 0x300 // SPI 1 -DMA Current Pointer register

#define SPI1D_CFG 0x301 // SPI 1 -DMA Configuration register

#define SPI1D_SRP 0x302 // SPI 1 -DMA Start Page register

#define SPI1D_SRA 0x303 // SPI 1 -DMA Start Address register

#define SPI1D_CNT 0x304 // SPI 1 -DMA Count register

#define SPI1D_CP 0x305 // SPI 1 -DMA Next Descriptor Pointer

#define SPI1D_CPR 0x306 // SPI 1 -DMA Descriptor Ready

#define SPI1D_IRQ 0x307 // SPI 1 -DMA Interrupt register

// UART Controller; these are on IOPG=0x05 (0x01400-0x015FF)

#define UART_Controller_Page 0x05

#define THR 0x000 // UART - Transmit Holding register

#define RBR 0x000 // UART - Receive Buffer register

#define DLL 0x000 // UART - Divisor Latch (Low-Byte)

#define IER 0x001 // UART - Interrupt Enable Register

#define DLH 0x001 // UART - Divisor Latch (High-Byte)

#define IIR 0x002 // UART - Inter Identification Reg

#define LCR 0x003 // UART - Line Control Register

#define MCR 0x004 // UART - Module Control Register

#define LSR 0x005 // UART - Line Status Register

#define MSR 0x006 // UART - Modem Status Register

#define SCR 0x007 // UART - Scratch Register

#define UARDR_PTR 0x100 // UART -DMA RCV Current Ptr reg

#define UARDR_CFG 0x101 // UART -RCV DMA Config register

#define UARDR_SRP 0x102 // UART -RCV DMA Start Page register

#define UARDR_SRA 0x103 // UART -RCV DMA Start Address reg

#define UARDR_CNT 0x104 // UART -RCV DMA Count register

#define UARDR_CP 0x105 // UART -RCV DMA Next Descr Ptr reg

#define UARDR_CPR 0x106 // UART -RCV DMA Descriptor Ready

ADSP-219x/2191 DSP Hardware Reference B-125

ADSP-2191 DSP I/O Registers

#define UARDR_IRQ 0x107 // UART -RCV DMA Interrupt Register

#define UARDT_PTR 0x180 // UART -XMT DMA Current Ptr reg

#define UARDT_CFG 0x181 // UART -XMT DMA Config register

#define UARDT_SRP 0x182 // UART -XMT DMA Start Page register

#define UARDT_SRA 0x183 // UART -XMT DMA Start Address reg

#define UARDT_CNT 0x184 // UART -XMT DMA Count register

#define UARDT_CP 0x185 // UART -XMT DMA Next Descr Ptr reg

#define UARDT_CPR 0x186 // UART -XMT DMA Descriptor Ready

#define UARDT_IRQ 0x187 // UART -XMT DMA Inter register

// Timer; these are on IOPG=0x05 (0x01600-0x017FF)

#define Timer_Page 0x05

#define T_GSR0 0x200 // Timer 0 Global Status & Sticky Reg

#define T_CFGR0 0x201 // Timer 0 configuration Register

#define T_CNTL0 0x202 // Timer 0 Counter Register (low word)

#define T_CNTH0 0x203 // Timer 0 Counter Register (high word)

#define T_PRDL0 0x204 // Timer 0 Period Register (low word)

#define T_PRDH0 0x205 // Timer 0 Period Register (high word)

#define T_WLR0 0x206 // Timer 0 Width Register (low word)

#define T_WHR0 0x207 // Timer 0 Width Register (high word)

#define T_GSR1 0x208 // Timer 1 Global Status & Sticky Reg

#define T_CFGR1 0x209 // Timer 1 configuration register

#define T_CNTL1 0x20A // Timer 1 Counter Register (low word)

#define T_CNTH1 0x20B // Timer 1 Counter Register (high word)

#define T_PRDL1 0x20C // Timer 1 Period Register (low word)

#define T_PRDH1 0x20D // Timer 1 Period Register (high word)

#define T_WLR1 0x20E // Timer 1 Width Register (low word)

#define T_WHR1 0x20F // Timer 1 Width Register (high word)

#define T_GSR2 0x210 // Timer 2 Global Status & Sticky Reg

#define T_CFGR2 0x211 // Timer 2 configuration register

#define T_CNTL2 0x212 // Timer 2 Counter Register (low word)

#define T_CNTH2 0x213 // Timer 2 Counter Register (high word)

Register and Bit #define File (def2191.h)

B-126 ADSP-219x/2191 DSP Hardware Reference

#define T_PRDL2 0x214 // Timer 2 Period Register (low word)

#define T_PRDH2 0x215 // Timer 2 Period Register (high word)

#define T_WLR2 0x216 // Timer 2 Width Register (low word)

#define T_WHR2 0x217 // Timer 2 Width Register (high word)

// The first version of the documentation had errors in the names

// used for the above definitions, so both variants are defined.

#define GSR0 0x200 // Timer 0 Global Status & Sticky Reg

#define CFGR0 0x201 // Timer 0 configuration Register

#define CNTL0 0x202 // Timer 0 Counter Register (low word)

#define CNTH0 0x203 // Timer 0 Counter Register (high word)

#define PRDL0 0x204 // Timer 0 Period Register (low word)

#define PRDH0 0x205 // Timer 0 Period Register (high word)

#define WLR0 0x206 // Timer 0 Width Register (low word)

#define WHR0 0x207 // Timer 0 Width Register (high word)

#define GSR1 0x208 // Timer 1 Global Status & Sticky Reg

#define CFGR1 0x209 // Timer 1 configuration register

#define CNTL1 0x20A // Timer 1 Counter Register (low word)

#define CNTH1 0x20B // Timer 1 Counter Register (high word)

#define PRDL1 0x20C // Timer 1 Period Register (low word)

#define PRDH1 0x20D // Timer 1 Period Register (high word)

#define WLR1 0x20E // Timer 1 Width Register (low word)

#define WHR1 0x20F // Timer 1 Width Register (high word)

#define GSR2 0x210 // Timer 2 Global Status & Sticky Reg

#define CFGR2 0x211 // Timer 2 configuration register

#define CNTL2 0x212 // Timer 2 Counter Register (low word)

#define CNTH2 0x213 // Timer 2 Counter Register (high word)

#define PRDL2 0x214 // Timer 2 Period Register (low word)

#define PRDH2 0x215 // Timer 2 Period Register (high word)

#define WLR2 0x216 // Timer 2 Width Register (low word)

#define WHR2 0x217 // Timer 2 Width Register (high word)

// General Purpose IO; these are on IOPG=0x06 (0x01800-0x019FF)

ADSP-219x/2191 DSP Hardware Reference B-127

ADSP-2191 DSP I/O Registers

#define General_Purpose_IO 0x06

#define DIR 0x000 // Peripheral Flag Direction Register

#define FLAGC 0x002 // Peripheral Int Flag Register (clear)

#define FLAGS 0x003 // Peripheral Int Flag Register (set)

#define MASKAC 0x004 // Flag Mask Inter A Register (clear)

#define MASKAS 0x005 // Flag Mask Interrupt A Register (set)

#define MASKBC 0x006 // Flag Mask Int B Register (clear)

#define MASKBS 0x007 // Flag Mask Interrupt B Register (set)

#define FSPR 0x008 // Flag Source Polarity Register

#define FSSR 0x00A // Flag Source Sensitivity Register

#define FSSRS 0x00B // Flag Source Sensitivity Reg (set)

#define FSBER 0x00C // Flag Set on BOTH Edges Register

// External Memory Interface;

// these are on IOPG=0x06 (0x01A00-0x01BFF)

// 0x01A00 Reserved

#define External_Memory_Interface_Page 0x06

#define EMICTL 0x201 // EMI control Register

#define BMSCTL 0x202 // Boot Space Access Control Register

#define MS0CTL 0x203 // Memory Space Bank 0 Access Control Reg

#define MS1CTL 0x204 // Memory Space Bank 1 Access Control Reg

#define MS2CTL 0x205 // Memory Space Bank 2 Access Control Reg

#define MS3CTL 0x206 // Memory Space Bank 3 Access Control Reg

#define IOMSCTL 0x207 // IO Space Access Control Register

#define EMISTAT 0x208 // External Port Status Register

#define MEMPG10 0x209 // Memory Page Register 1/0

#define MEMPG32 0x20A // Memory Page Register 3/2

// Host Port Bus Interface;

// these are on IOPG=0x07 (0x01C00-0x01DFF)

// 0x01C00 Reserved

Register and Bit #define File (def2191.h)

B-128 ADSP-219x/2191 DSP Hardware Reference

#define Host_Port_Bus_Interface_Page 0x07

#define HPCR 0x001 // Host Port Configuration Register

#define HPPR 0x002 // Host Port Direct Page Register

#define HPDER 0x003 // Host Port DMA Error Register

#define HPSMPHA 0x0FC // Host Port Semaphore A Register

#define HPSMPHB 0x0FD // Host Port Semaphore B Register

#define HPSMPHC 0x0FE // Host Port Semaphore C Register

#define HPSMPHD 0x0FF // Host Port Semaphore D Register

#define HOSTD_PTR 0x100 // Host Port DMA current Pointer

#define HOSTD_CFG 0x101 // Host Port DMA Configuration

#define HOSTD_SRP 0x102 // Host Port DMA Start Page

#define HOSTD_SRA 0x103 // Host Port DMA Start Address

#define HOSTD_CNT 0x104 // Host Port DMA Word Count

#define HOSTD_CP 0x105 // Host Port DMA Next Descriptor

#define HOSTD_CPR 0x106 // Host Port DMA Descriptor Ready

#define HOSTD_IRQ 0x107 // Host Port DMA Interrupt Register

#endif

ADSP-219x/2191 DSP Hardware Reference B-129

ADSP-2191 DSP I/O Registers

Register and Bit #define File (def2191.h)

B-130 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x/2191 DSP Hardware Reference C-1

C NUMERIC FORMATS

ADSP-219x family processors support 16-bit fixed-point data in hard-
ware. Special features in the computation units allow programs to support
other formats in software. This appendix describes various aspects of the
16-bit data format. It also describes how to implement a block float-
ing-point format in software.

This appendix provides the following topics:

• “Un/Signed: Twos Complement Format” on page C-1

• “Integer or Fractional” on page C-2

• “Binary Multiplication” on page C-5

• “Block Floating-Point Format” on page C-6

Un/Signed: Twos Complement Format
Unsigned binary numbers may be thought of as positive, having nearly
twice the magnitude of a signed number of the same length. The least sig-
nificant words of multiple precision numbers are treated as unsigned
numbers.

Signed numbers supported by the ADSP-219x family are in twos comple-
ment format. Signed-magnitude, ones complement, BCD, or excess-n
formats are not supported.

Integer or Fractional

C-2 ADSP-219x/2191 DSP Hardware Reference

Integer or Fractional
The ADSP-219x DSP family supports both fractional and integer data
formats, with the exception that ADSP-2100 processors do not perform
integer multiplication.

In an integer, the radix point is assumed to lie to the right of the LSB, so
that all magnitude bits have a weight of 1 or greater. This format is shown
in Figure C-1. In twos complement format, the sign bit has a negative
weight.

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure C-2, the assumed radix point lies to the left of the
three LSBs, and the bits have the weights indicated.

Figure C-1. Integer Format

15 14 13

• • •

2 1 0

–(2) 2 2 2 2 2
15 14 13 2 1 0

Sign
Bit

Weight

Bit

Signed Integer

15 14 13

• • •

2 1 0

2 2 2 2 2 2
15 14 13 2 1 0

Weight

Bit

Unsigne
d

Integer

Radix
Point

Radix
Point

ADSP-219x/2191 DSP Hardware Reference C-3

Numeric Formats

The notation used to describe a format consists two numbers separated by
a period (.); the first number is the number of bits to the left of radix
point, the second is the number of bits to the right of the radix point.
For example, 16.0 format is an integer format; all bits lie to the left of the
radix point. The format in Figure C-2 is 13.3.

Table C-1 shows the ranges of numbers representable in the fractional for-
mats that are possible with 16 bits.

Table C-1. Fractional Formats and Ranges

Format # of
Integer
Bits

of
Fractio
nal Bits

Max Positive Value
(0x7FFF) In Decimal

Max
Negative
Value
(0x8000) In
Decimal

Value of 1 LSB
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

Integer or Fractional

C-4 ADSP-219x/2191 DSP Hardware Reference

15.1 15 1 16383.50000000000000
0

–16384.0 0.500000000000000

16.0 16 0 32767.00000000000000
0

–32768.0 1.000000000000000

Figure C-2. Example of Fractional Format

Table C-1. Fractional Formats and Ranges (Cont’d)

Format # of
Integer
Bits

of
Fractio
nal Bits

Max Positive Value
(0x7FFF) In Decimal

Max
Negative
Value
(0x8000) In
Decimal

Value of 1 LSB
(0x0001) In Decimal

15 1
4

1
3

• • •

2 1 0

–(2
)

2 2 2 2 2
12 11 10 –1 –2 –3

Sign

Bit

Weight

Bit

Signed Fractional (13.3)

15 1
4

1
3

• • •

2 1 0

2 2 2 2 2
2

12 11 10 –1 –2 –3
Weight

Bit

Unsigned Fractional (13.3)

4 3

2 2
1 0

4 3

2 2
1 0

Radix Point

Radix Point

ADSP-219x/2191 DSP Hardware Reference C-5

Numeric Formats

Binary Multiplication
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location) and the result for-
mat is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The ADSP-219x DSP family assembly
language allows programs to specify whether the inputs are both signed,
both unsigned, or one of each (mixed-mode). The location of the radix
point in the result can be derived from its location in each of the inputs.
This is shown in Figure C-3.

The product of two 16-bit numbers is a 32-bit number. If the inputs’ for-
mats are M.N and P.Q, the product has the format (M+P).(N+Q).
For example, the product of two 13.3 numbers is a 26.6 number.
The product of two 1.15 numbers is a 2.30 number.

Figure C-3. Format of Multiplier Result

16-Bit Exam-
ples:

5.
35.
3

10.6

1.1
51.1
5
2.3
0

1.111

11.1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.
0

111 001

1.3 for-
mat2.2 for-
mat

3.5 format = (1+2) .
(2+3)

4-Bit Exam-
ple:

M.N

P.Q

(M+P) . (N+Q)

General
Rule:

Block Floating-Point Format

C-6 ADSP-219x/2191 DSP Hardware Reference

Fractional Mode and Integer Mode
The product of two twos-complement numbers has two sign bits. Since
one of these bits is redundant, programs can shift the entire result left one
bit. Additionally, if one of the inputs was a 1.15 number, the left shift
causes the result to have the same format as the other input (with 16 bits
of additional precision). For example, multiplying a 1.15 number by a
5.11 number yields a 6.26 number. When shifted left one bit, the result is
a 5.27 number, or a 5.11 number plus 16 LSBs.

The ADSP-219x DSP family provides a fractional mode in which the
multiplier result is always shifted left one bit before being written to the
result register. This left shift eliminates the extra sign bit when both oper-
ands are signed, yielding a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. If using a fractional data format, it is most convenient to
use the 1.15 format.

In the integer mode, the left shift does not occur. This is the mode to use
if both operands are integers (in the 16.0 format). The 32-bit multiplier
result is in 32.0 format, also an integer.

In all ADSP-219x DSPs, fractional and integer modes are controlled by a
bit in the MSTAT register. At reset, these processors default to the fractional
mode.

Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. Some additional pro-
gramming is required to maintain a block floating-point format, however.

ADSP-219x/2191 DSP Hardware Reference C-7

Numeric Formats

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set
(block) of data values share a common exponent. To convert a block of
fixed-point values to block floating-point format, a program would shift
each value left by the same amount and store the shift value as the block
exponent. Typically, block floating-point format allows programs to shift
out non-significant MSBs, increasing the precision available in each value.
Programs can also use block floating-point format to eliminate the possi-
bility of a data value overflowing. Figure C-4 shows an example. The three
data samples each have at least two non-significant, redundant sign bits.
Each data value can grow by these two bits (two orders of magnitude)
before overflowing; thus, these bits are called guard bits. If it is known
that a process will not cause any value to grow by more than these two
bits, then the process can be run without loss of data. Afterward, however,
the block must be adjusted to replace the guard bits before the next
process.

Figure C-5 shows the data after processing but before adjustment. The
block floating-point adjustment is performed as follows. Initially, the
value of SB is –2, corresponding to the two guard bits. During processing,
each resulting data value is inspected by the EXPADJ instruction, which
counts the number of redundant sign bits and adjusts SB is if the number
of redundant sign bits is less than 2. In this example, SB=–1 after process-
ing, indicating that the block of data must be shifted right one bit to
maintain the two guard bits. If SB were 0 after processing, the block would
have to be shifted two bits right. In either case, the block exponent is
updated to reflect the shift.

Block Floating-Point Format

C-8 ADSP-219x/2191 DSP Hardware Reference

Figure C-4. Data with Guard Bits

0x0FFF

0x1FFF

0x07FF

=

=

=

0000

0001

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

2 Guard
Bits

Sign Bit

To detect bit growth into 2 guard bits, set
SB=–2

ADSP-219x/2191 DSP Hardware Reference C-9

Numeric Formats

Figure C-5. Block Floating-Point Adjustment

0x1FFF

0x3FFF

0x07FF

=

=

=

0001

0011

0000

1111

1111

0111

1111

1111

1111

1111

1111

1111

1 Guar
d

Bi
t

Sign
Bit

EXPADJ instruction
checksexponent, adjusts
SB

Exponent =
–2Exponent =
–1Exponent =
–4

SB = –2

SB = –1

SB = –1

0x0FFF

0x1FFF

0x03FF

=

=

=

0000

0001

0000

1111

1111

0011

1111

1111

1111

1111

1111

1111

2 Guar
d

Bit
s

Sign
Bit

1. C heck for Bit
Growth

2. Shift Right to Restore Guard
Bits

Block Floating-Point Format

C-10 ADSP-219x/2191 DSP Hardware Reference

ADSP-219x DSP Instruction Set Reference I-1

I INDEX

Symbols
µ-law companding 9-2, 9-24, 9-38

A
ABS function 2-18
absolute address 3-15
absolute addressing (See DAGs and

data move)
AC bit 2-20, 2-21
access control registers lock

(E_CRL) bit 7-7
access split enable (E_ASE) bit 7-5
access time, external interface 7-10
accumulator addressing (See DAGs

and data move)
accumulators

dual 1-25, 2-4
ACK mode, memory access 7-10
acknowledge mode 8-11
acknowledge, memory (ACK) pin

7-9, 7-10, 7-22
active DMA descriptors 6-11
active low/high frame syncs, serial

port 9-28
active low/high strobes 7-5
add instructions 2-18, 2-21
address bus (ADDRx) pins 7-22

address buses 1-3
address decode (AD) stage 3-9
address latch enable mode 8-9
addresses

logical vs. physical 7-16
addressing (See post-modify,

pre-modify, modify, bit-reverse,
or circular buffer)

ADSP-21xx family DSPs (See
differences from previous DSPs
and porting from previous DSPs)

AF bit 2-13, A-13
A-law companding 9-2, 9-24, 9-38
alternate registers (See secondary

registers)
alternate timing, serial port 9-29
ALU 2-1

arithmetic 2-8
arithmetic formats 2-9
data registers A-3
data types 2-7, C-1
instructions 2-19, 2-20
operations 2-19
saturation 2-12, 2-25
status 2-12, 2-18, 2-19

ALU carry (AC) bit 2-8, 2-13, 2-20,
2-21, 2-24, 2-25, 2-48, A-9

INDEX

I-2 ADSP-219x/2191 DSP Hardware Reference

ALU carry (AC) condition 1-26,
3-42

ALU Feedback (AF) register A-13
saturated results 2-13

ALU Input (AX/AY) registers 1-25
ALU negative (AN) bit 2-7, 2-20,

2-21, 2-24, A-9
ALU negative result (NEG)

condition 1-27
ALU overflow (AV) bit 2-8, 2-11,

2-12, 2-13, 2-20, 2-21, 2-24,
2-41, 2-48, 2-55, 2-60, A-9

ALU overflow (AV) condition 1-26,
3-42

ALU overflow latch enable
(AV_LATCH) bit 2-11, 2-12,
A-10

latency A-6
ALU positive result (POS)

condition 1-27
ALU quotient (AQ) bit 2-20, 2-21,

2-24, 2-26, 2-27, A-9
ALU Result (AR) register 2-13,

2-48, A-13
latency A-6

ALU saturation mode enable
(AR_SAT) bit 2-11, 2-12, A-10

latency A-6
ALU sign (AS) bit 2-20, 2-21, 2-24,

A-9
ALU signed (AS) condition 1-26
ALU X Input (AX) registers A-13
ALU Y Input (AY) registers A-13

ALU zero (AZ) bit 2-20, 2-21, 2-24,
A-9

AN bit 2-20, 2-21
Analog products -xxxiii
AND operator 2-18, 2-21
AQ bit 2-20, 2-21
AR bit 2-13
AR register 2-48, A-13
AR saturation mode enable/disable

(AS) bit 3-45
AR_SAT bit 2-11, 2-12
arithmetic

formats 2-9, C-1
operations 2-18
shifts 2-2

arithmetic logic unit (See ALU)
arithmetic operations 1-3
arithmetic shift (ASHIFT)

instruction 2-9, 2-39, 2-41,
2-44, 2-55

Arithmetic Status (ASTAT) register
1-26, 2-12, 2-13, 2-26, 2-34,
2-48, 2-58, 3-7, A-7

bit #defines A-22
illustration A-8
latency 2-20, A-6

arithmetic status bits A-9
AS bit 2-20, 2-21
ASHIFT instruction 2-9, 2-39,

2-55
assembler

about 1-33
assembly language 2-2

ADSP-219x/2191 DSP Hardware Reference I-3

INDEX

ASTAT register 2-12, 2-13, 2-26,
2-34, 2-48, 2-58

bit #defines A-22
auto-baud

detection 12-13
auto-baud mode

timer 12-13
autobuffer-based DMA transfers

6-14
autobuffer-based SPORT DMA

6-31
AV bit 2-11, 2-12, 2-13, 2-20, 2-21,

2-41
AV_LATCH bit 2-11, 2-12
AX0 register A-13
AX1 register A-13
AY0 register A-13
AY1 register A-13
AZ bit 2-20, 2-21, 2-24

B
background registers (See secondary

registers)
banks of memory

defined 5-6
bank-switching control register (See

External Port Status (EP_STAT)
register)

barrel-shifter (See shifter)
Base (Bx) registers 4-2, 4-16, 5-15,

A-3, A-21
begin loop address 3-21
bias rounding enable (BIASRND)

bit 2-11, A-16

biased rounding 2-17
BIASRND bit 2-11
binary coded decimal (BCD) format

2-5
binary strings 2-6
bit manipulation 2-2
bit-reversed addressing 4-2, 4-4,

4-6, 4-16
bit-reversed addressing (BIT_REV)

bit 4-4, 4-6, 4-17, A-10
latency A-6

bit-reversed addressing mode
enable/disable (BR) bit 3-45

bits
reserved A-2, B-1

block conflict 3-10
block repeat (See DO/UNTIL

instructions)
block repeat counter (See Counter

(CNTR) register)
blocks of memory 5-1
BMSCTL register B-101
boot loading 14-16
boot memory

reading from 7-15
writing to 7-15

boot memory select (BMS) pin
1-17, 7-15, 7-22

Boot Memory Select Control
(BMSCTL) register B-101

boot memory space 5-11, 5-16,
7-14

read access 7-15
settings 7-7

INDEX

I-4 ADSP-219x/2191 DSP Hardware Reference

usage 7-14
write access 7-15

boot mode
DMA transfers 6-41

boot mode (BMODEx) bits B-21
boot mode (BMODEx) pins 1-22,

14-13
boot modes 1-22, 14-16
booting 14-12…14-14

EMI 14-20
Host port 14-19
SPI port 14-18
UART port 14-18

bootstream
format 14-21

both mode
memory access 7-10

Boundary register 13-5
boundary scan 13-1

references 13-5
Boundary Scan Description

Language 13-3
BR bit 3-45
branches

delayed 3-15
execution 3-13
immediate 3-17
indirect 3-15

branches indirect 3-15
branching execution

immediate branches 3-17
break (BRK) bit B-78
break interrupt (BI) bit B-79

broadcast mode, SPI 10-4
BSDL 13-3
BSDL file 13-3
BSDL Reference Guide 13-6
buffer overflow, circular 4-12, 4-15
buffered serial port (See Serial port)
burst read timing 8-21
bus arbitration 5-6
bus conflict 3-9
bus exchange (See PM Bus Exchange

(PX) register)
bus grant (BG) pin 7-14, 7-23,

14-49, 14-50
bus grant hung (BGH) pin 7-14,

7-23, 14-50
bus holdoff 7-7
bus lock (E_BL) bit 7-7
bus locking (See bus lock (E_BL) bit)
bus master 14-49

settings 7-7
usage 7-13

bus request (BR) pin 7-13, 7-22,
14-49, 14-50

buses
DM 1-3
PM 1-3

Bx registers 4-2
bypass mode B-17
bypass PLL enable (BYPASS) pin

14-41
bypass PLL multiplier (BYPASS) bit

B-18
Bypass register 13-4

ADSP-219x/2191 DSP Hardware Reference I-5

INDEX

C
Cache Control (CACTL) register

3-7, 3-12, 5-15
bit #defines A-22
illustration A-19
latency A-6

cache DM access enable (CDE) bit
3-12, A-20

cache efficiency 3-12
cache freeze (CFZ) bit 3-12, A-20

latency A-6
cache hit/miss (See cache efficiency)
cache PM access enable (CPE) bit

3-12
latency A-6

cache usage, optimizing 3-12
CACTL register A-19

bit #defines A-22
call instructions 1-30, 3-14, 3-45

conditional branches 3-15
delayed branches 3-15
restrictions 3-20

carry (See ALU carry (AC) bit)
carry output 2-20
CCITT G.711 specification 9-24
CCODE register 1-26, A-18

bit #defines A-22
CE condition 3-21
channel, current serial (CHNL) bit

9-37
channels

defined, serial 9-38
Serial port TDM 9-38
serial select offset 9-37, 9-38

circular buffer addressing 4-12
registers 4-15, A-21
restrictions 4-13
setup 4-13
wrap around 4-15

clear bit (CLRBIT) instruction 2-21
clear interrupt (CLRINT)

instruction 3-45
clearing results 2-33
clock divider select (E_CDS) bits

7-4
clock input (CLKIN) pin 1-21,

14-29, 14-30, 14-41
clock output (CLKOUT) pin 7-22
clock output enable (CKOUTEN)

bit B-18
clock phase (CPHA) bit 10-11,

10-21, B-62
clock polarity (CPOL) bit 10-11,

B-62
clock rising edge (CKRE) bit 9-16,

9-18, 9-25, 9-28, B-39, B-40
clocks 14-40

core-to-peripheral ratio 14-30
dividing 7-4
external crystal connections 14-29
managing 14-29
maximum rate 14-32
multiplier 14-31, 14-36
registers B-115
stabilization 14-13
types 14-29

CLRBIT instruction 2-21
CLRINT instruction 3-45

INDEX

I-6 ADSP-219x/2191 DSP Hardware Reference

CMS output enable (E_COE) bit
7-6

CNTR
latency A-6

CNTR register A-18
code examples (See examples)
companding 9-24, 9-33

defined 9-24
multichannel operations 9-38

compiler
about 1-33

composite memory select output
enable (E_COE) bit 7-6

computational instructions 2-1
computational modes

setting 2-11
computational status

using 2-18
computational units 2-1
condition code (CCODE)

condition 3-42
Condition Code (CCODE) register

1-26, 3-7, A-6, A-7
bit #defines A-22
bit definitions A-19
conditions list A-18

conditional branches 3-15, 3-16
conditional instructions 1-30, 2-18,

2-65, 3-4, 3-41
conditional test in loops 3-22
context switching 2-63
continuous mode (See Serial port,

framed/unframed data)
Conventions -xxxvii

core clock (CCLK) 7-24
frequency B-17

core registers A-2
summary of A-2

Counter (CNTR) register 3-6, 3-21,
3-40, A-18

latency A-6
counter expired (CE) condition

1-30, 3-20, 3-43
CPE bit

latency A-6
CPU, central processing unit (See

ALU, multiplier, shifter, program
sequencer, or DAGs)

crystal
external 14-29

crystal connections, external 14-29
crystal output (XTAL) pin 1-21,

14-29
current channel indicator (CHNL)

bits B-45
Customer support -xxxii

D
DAG registers A-20
DAGs

addressing modes 1-28
branch support 3-4
data move restrictions 4-21
data moves 4-21
features 1-4
instructions 4-23, 5-18
interlocked registers A-6
operations 4-9

ADSP-219x/2191 DSP Hardware Reference I-7

INDEX

registers A-3
setting modes 4-4
status 4-8
support for branches 3-15

DARAM, dual-access RAM (See
memory, banks)

data
format 2-2
numeric formats C-1

data access
conflicts 5-6
dual-data accesses 5-3
(See also data move)

data address generator (DAG)
registers A-20

data address generators (See DAGs)
data alignment 5-7, 7-16
Data bus (DATAx) pins 1-20, 7-21,

7-22
data fetch, External port 7-2
data format

External port data 7-16
Host port 8-5, 8-7
selecting (See External PM/DM

data format select (E_DFS) bit)
B-101

selection 7-5
serial data 9-22
UART port data 11-3

data from BMS fetching (See
external PM data from boot space
enable (E_PD_BE) bit)

data from BMS fetching (See PM
data from boot space enable
(E_PD_BE) bit)

data independent transmit frame
sync (DITFS) bit 9-13, 9-15,
9-30, B-39

Data Memory Page (DMPGx)
registers 1-15, 1-28, 3-6, 4-2,
4-7, A-4, A-21

data move
instructions 5-18
Serial port operations 9-42
SPI port data 10-8
UART port data 11-5

data packing
External port 7-21
Host port 8-7

data ready, UART (DR) bit 11-4,
B-79

data receive, serial (DRx) pins 9-4
data register file 2-1, 2-61, A-3

registers A-12
data registers 2-61
data sampling, serial 9-28
Data Shift (SFDR) register 10-19
data space (See memory, banks)
data terminal ready (DTR) bit B-79
data transmit, serial (DTx) pins 9-4,

9-33, 9-35
data type

DTYPE bit 9-14, 9-17, 9-22,
B-30, B-39, B-40, B-113

data type, DMA (DTYPE) bit
B-111

INDEX

I-8 ADSP-219x/2191 DSP Hardware Reference

data word formats 9-22
data, serial framed and unframed

9-27
def2191.h file B-115
delayed branch (DB) jump or call

3-15, 3-17, 3-18
DB operator 3-17
delayed branch slots 3-19
restrictions 3-20

denormalize operation 2-45
derive block exponent 2-39, 2-42
derived exponent 2-61
descriptor ownership (DOWN) bit

6-16, B-30, B-51, B-69, B-82,
B-113

descriptor-based DMA transfers
6-11

descriptor-based SPORT DMA
6-30

descriptors
active vs. inactive 6-11

development tools 1-31
differences from previous DSPs

1-23
DAG instruction syntax 4-10
DAG page registers 4-8
DMA support 6-11
external memory interface 7-21
I/O memory space 5-16
memory paging 5-14
NORM instruction 2-50
shifting data into SR2 2-44
(See porting from previous DSPs)

DIR register 14-42, B-96

direct access mode
about 8-18

direct access read mode 8-19
direct addressing (See DAGs and

data move)
direct branch 3-15
direct memory access, DMA (See

DMA or I/O processor)
Direction for Flags (DIR) register

B-96
DIS instruction 2-64
disable mode (DIS) instruction (See

enable/disable mode (ENA/DIS)
instruction)

divide CLKIN /2 in bypass enable
(DIV2) bit B-18

divide frequency (DF) bit B-18
divide frequency (DF) pin 14-31,

14-41
divide primitive (DIVS/DIVQ)

instructions 2-7, 2-22, 2-25,
2-26

division
signed 2-26
unsigned 2-26

divisor high byte (DLH) bit 11-4
divisor latch access (DLAB) bit B-78
divisor latch registers B-76
divisor low byte (DLL) bit 11-4
DIVQ instruction 2-22
DIVS instruction 2-7, 2-22
DLAB register B-76
DLH register B-76
DLL register B-76

ADSP-219x/2191 DSP Hardware Reference I-9

INDEX

DM bus 1-3
DM data from boot space enable

(E_DD_BE) bit 7-8
DMA

active/inactive descriptors 6-11
autobuffer-based 6-14, 6-15
boot mode transfers 6-41
buffer size, multichannel 9-39
channels 6-17
controller 1-3
data buffer registers 6-9
descriptor-based 6-12
descriptor-based transfers 6-11
Host port 8-25
interrupts 6-15
MemDMA example 6-42
operations 6-7
overhead 6-14
registers 6-18
Serial port 9-42
setting peripheral modes 6-17
SPI slave mode 10-27, 10-28
split access 7-6

DMA autobuffer/descriptor mode
(DAUTO) bit 6-15, 6-20,
B-51, B-69, B-82, B-113

DMA buffer & status flush (FLSH)
bit 6-20

DMA bus bridge
registers B-115

DMA complete interrupt
(DCOMI) bit B-55, B-59,
B-71, B-84, B-88

DMA complete interrupt enable
(DCOME) bit B-30, B-51,
B-69, B-82, B-113

DMA completion status (DS) bit
6-16, 6-21, B-30, B-51, B-69,
B-82, B-113

DMA Configuration (xxxx_CFG)
register 6-15

DMA data type select (DTYPE) bit
6-20

DMA enable (DEN) bit 6-15, 6-19,
B-30, B-51, B-69, B-82, B-113

DMA error interrupt (DERI) bit
B-55, B-59, B-71, B-84, B-88

DMA error interrupt enable
(DERE) bit 6-20, B-30, B-51,
B-69, B-82, B-113

DMA FIFO buffer status (FS) bits
6-20

DMA interrupt on completion
enable (DCOME) bit 6-20

DMA Interrupt Status (xxxx_IRQ)
register 6-15

DMA mode 11-6
DMA ownership status (DOWN)

bit 6-21
DMA request holdoff 7-7
DMA request holdoff (See external

bus and DMA request holdoff
enable (E_BHE) bit)

DMA SPI mode fault (multi-master
error) status (MODF) bit 6-24

DMA SPI receive busy (overflow
error) status (RBSY) bit 6-24

INDEX

I-10 ADSP-219x/2191 DSP Hardware Reference

DMA SPI transmit (underflow)
error status (TXE) bit 6-24

DMA transfer ready (DRDY) bit
B-113

DMA transfer ready status (DRDY)
bit 6-22

DMA transfer splitting (See access
split enable (E_ASE) bit)

DMA UART receive framing error
status (UARFE) bit 6-26

DMA UART receive overflow error
status (UAROE) bit 6-26

DMA UART receive parity error
status (UARPE) bit 6-26

DMACR_CFG register B-33
DMACR_CNT register B-34
DMACR_CP register B-34
DMACR_CPR register B-35
DMACR_IRQ register B-35
DMACR_PTR register B-33
DMACR_SRA register B-34
DMACR_SRP register B-33
DMACW_CFG register B-29
DMACW_CNT register B-31
DMACW_CP register B-32
DMACW_CPR register B-32
DMACW_IRQ register B-32
DMACW_PTR register B-29
DMACW_SPR register B-31
DMACW_SRA register B-31
DMPGx registers 1-15, 1-28, 4-2,

4-7, A-21
DO/UNTIL instruction 1-30,

3-20, 3-22, 3-45

example 3-21
latency A-6
restrictions 3-20
(See also loop)

Dreg
registers A-12

DSP
core architecture 1-8
defined -xxix
peripherals architecture 1-10
(See also differences from previous

DSPs and porting from previous
DSPs)

DSP pins
descriptions 14-2
list of 14-3
unused 14-8

DSPs
background information 1-23
why fixed-point? 1-1

DTYPE bit 9-14, 9-17, 9-22, B-30,
B-39, B-40, B-113

dual accumulators 1-25, 2-4

E
E_MID bits 7-12
E_STAT register B-100
early frame sync (See frame sync)
edge-sensitive input B-98
edge-sensitive interrupts 14-45
effect latency (See latency)
either mode, memory access 7-10
EMI

registers B-115

ADSP-219x/2191 DSP Hardware Reference I-11

INDEX

EMICTL register B-100
emulation, JTAG port 1-3
emulator cycle counter interrupt

enable (EMUCNTE) bit A-16
emulator interrupt mask (EMU) bit

A-16
emulator kernel interrupt mask

(KERNEL) bit A-16
ENA instruction 2-64
enable master input slave output

(EMISO) bit 10-11, 10-16,
B-62

enable modem status interrupt
(EDDSI) bit B-75

enable receive buffer full interrupt
(ERBFI) bit B-75

enable RX status interrupt (ELSI)
bit B-75

enable transmit buffer empty
interrupt (ETBEI) bit B-75

enable/disable mode (ENA/DIS)
instruction 2-64, 3-45, 4-6

endian format 9-23
Host data 8-7
serial data 9-23
SPI data 10-11

end-of-loop 3-24
EP_STAT register 7-12, B-105
equals zero (EQ) condition 1-26,

3-42
errors/flags (See DMA, External port,

Host port, Serial port, SPI port,
and UART port)

examples

BMS access code 7-28
DMA code 6-42
host code 8-32
interrupt code 6-4
interrupt setup 6-4
programmable flags code 14-40
SPI code 10-33
timer code 12-14
UART code 11-9

excess-n formats 2-5
execute (PC) stage 3-9
EXP instruction 2-47
EXPADJ instruction 2-41, 2-42
explicit stack operations 3-41
exponent adjust (EXPADJ)

instruction 2-41, 2-42, 2-55
exponent compare logic 2-56
exponent derivation 2-2

double-precision numbers 2-41
exponent derive (EXP) instruction

2-41, 2-47, 2-55
exponent detector 2-60, 2-61
EXT_CLK mode 12-14
external access bridge

registers B-115
external access control registers lock

(E_CRL) bit B-102
external access split enable (E_ASE)

bit B-102
external base clock divider (E_CDS)

bits B-103
External bus

settings 7-5

INDEX

I-12 ADSP-219x/2191 DSP Hardware Reference

external bus and DMA request
holdoff enable (E_BHE) bit 7-7

external bus busy (E_BSY) bits
7-12, B-105

external bus hold off enable
(E_BHE) bit B-102

external bus lock (E_BL) bit B-102
external bus width select (E_BWS)

bit 7-5, B-102
external bus width select (EMICTL)

bit 7-5
external composite memory select

output enable (E_COE) bit
B-103

external DM from BMS enable
(E_DD_BE) bit 7-15, B-101

external event watchdog
(EXT_CLK) mode 12-14

external event watchdog mode
12-14

external last master ID (E_MID)
bits 7-12, B-105

external memory
access modes 7-9
access timing 7-24
bank lower page boundary

(E_MSx_PG) bits 7-4
interface description 7-15
interface performance 7-24

external memory interface
registers B-115

external memory interface clock
(EMICLK) 7-11, 7-24

External Memory Interface Control
(EMICTL) register B-100

External Memory Interface
Control/Status (E_STAT)
register B-100

external memory space 5-11, 5-13
External packer status (E_WPS) bits

B-105
external PM/DM data format select

(E_DFS) bit B-101
External port 1-2, 5-6, 7-1

handshaking 7-21
memory interface clock 7-11
settings 7-5
setup example 7-28

External Port Status (EP_STAT)
register 7-12, B-105

external program memory data from
boot memory enable
(E_PD_BE) bit 7-15, B-101

external program memory
instructions from boot memory
enable (E_PI_BE) bit 7-15,
B-101

external read strobe logic sense
(E_RLS) bit B-102

external read waitstate count
(E_RWC) bits B-103

external waitstate mode select
(E_WMS) bits 7-9, B-103

external word packer status
(E_WPS) bit 7-12

external write hold (E_WHC) bit
B-103

ADSP-219x/2191 DSP Hardware Reference I-13

INDEX

external write pending flag
(E_WPF) bit 7-12, B-101

external write strobe logic sense
(E_WLS) bit B-102

external write waitstate count
(E_WWC) bits B-103

F
feedback, input 2-2
fetch address 3-3
fetch address (FA) stage 3-9
FFT calculations 4-16
FIFO buffer status (FS) bits B-30,

B-51, B-69, B-82, B-113
files

BSDL 13-3
def2191.h B-115

flag
errors (See DMA, External port,

Host port, Serial port, SPI port,
and UART port)

example 14-53
input 1-30
pins 14-40…14-45

flag (PFx) A interrupt priority
(FLAGAIP) bits 14-29, B-23

flag (PFx) B interrupt priority
(FLAGBIP) bits 14-29, B-23

flag (status) update 2-20, 2-34, 2-54
Flag Clear (FLAGC) register 14-42,

B-97
Flag Direction (DIR) register 14-42
flag interrupt mask registers 14-43,

B-97

Flag Interrupt Polarity (FSPR)
register 14-44

flag interrupt registers B-97
Flag Sensitivity (FSSR) register

14-45
Flag Sensitivity Both Edges

(FSBER) register 14-45, B-99
Flag Set (FLAGS) register 14-42,

B-97
flag slave (FLS) bits 10-15
Flag Source Polarity (FSPR) register

B-98
Flag Source Sensitivity (FSSR)

register B-98
FLAGC register B-97
FLAGS register B-97
flush cache instruction 3-12, 3-45
flush DMA buffer (FLSH) bit B-30,

B-51, B-69, B-82, B-113
FOREVER condition 3-20, 3-43
formats

data word 9-22
fractional mode 2-7, 2-8, 2-11,

A-10
representation (1.15) 2-7
results format 2-13
(See also integer mode and

multiplier mode, integer (MM)
enable/disable)

frame sync
early/late 9-29
frequencies 9-20
internal/external 9-27
multichannel mode 9-35

INDEX

I-14 ADSP-219x/2191 DSP Hardware Reference

options 9-25
sampling 9-28

frame sync divider registers 9-15
frame sync to data relationship

(FSDR) bit 9-37, B-49
framed data 9-26
framing error (FE) bit B-79
frequencies

clock a frame sync 9-20
FSBER register 14-45, B-98, B-99
FSPR register B-98
FSSR register 14-45

G
general-purpose I/O

registers B-115
get more data (GM) bit 10-11, B-62
global interrupt enable (GIE) bit

3-39, A-16
greater than or equal to zero (GE)

condition 1-26, 3-42
greater than zero (GT) condition

1-26, 3-42
GSM speech compression routines

2-17

H
H.100 protocol 9-37, 9-46
HALE pin 8-9
handshaking (See External port, Host

port, Serial port, SPI port, or
UART port)

hardware reset 14-12…14-14
boot mode (BMODEx) pins

14-13
Harvard architecture 5-3
high shift (HI) option 2-40, 2-41,

2-56, 2-58
high shift, except overflow (HIX)

option 2-40, 2-41, 2-48, 2-60
high watermark, stack 3-38, 3-39
HIX option 2-40, 2-48
hold time cycle 7-4, 7-10
host chip/memory select (HCMS)

pin 8-9
host I/O memory select (HCIOMS)

pin 8-9
host interrupt priority (HOSTIP)

bits 14-28, B-22
Host port 1-18

access cycles 8-4
acknowledge mode 8-11
bus interface registers B-115
bus restrictions 8-28
bus width 8-6
data format 8-7
direct access mode 8-18
DMA 6-29, 8-25
DMA settings 6-22
DMA usage 6-28
interrupts 8-31
modes 8-3
ready mode 8-11
semaphores 8-30
setup parameters 8-5

host port ACK mode select
(H_AMS) bits B-109

ADSP-219x/2191 DSP Hardware Reference I-15

INDEX

host port ACK sense (H_ACKS) bit
B-109

host port acknowledge (HACK) pin
6-29, 8-9

host port acknowledge polarity
(HACKP) pin 8-9

host port address line enable
(HALE) pin 8-9

host port ALE sense (H_ALES) bit
B-109

host port bus width select (H_BWS)
bit B-109

host port byte endianess
(H_BEND) bit B-109

Host Port Configuration (HPCR)
register B-108

host port data ordering (H_DORD)
bit B-109

Host Port Direct Page (HPPR)
register 8-7, B-110

Host Port DMA Chain Pointer
Ready (HOSTD_CPR) register
B-114

Host Port DMA Configuration
(HOSTD_CFG) register
B-112

Host Port DMA Error (HPDER)
register B-110

Host Port DMA Interrupt
(HOSTD_IRQ) register B-115

Host Port DMA Pointer
(HOSTD_PTR) register B-111

Host Port DMA Start Address
(HOSTD_SRA) register B-112

Host Port DMA Start Page
(HOSTD_SRP) register B-112

Host Port DMA Word Count
(HOSTD_CNT) register
B-114

host port packet size (H_PSIZE) bit
B-109

host port pipelined reads
(H_PREAD) bit B-109

host port read strobe (HRD) pin
8-9, 8-10

host port read strobe sense (H_RLS)
bit B-109

Host Port Semaphore (HPSMPHx)
registers 8-30, B-111

host port write strobe (HWR) pin
8-9, 8-10

host port write strobe sense
(H_WLS) bit B-109

HOSTD_CFG bit 6-22
HOSTD_CFG register B-112
HOSTD_CNT register B-114
HOSTD_CPR register B-114
HOSTD_IRQ register B-115
HOSTD_PTR register B-111
HOSTD_SRA register B-112
HOSTD_SRP register B-112
HPCR register B-108
HPDER register B-110
HPI, Host Port Interface (See Host

port)
HPPR register 8-7, B-110
HPSMPHx registers 8-30, B-111

INDEX

I-16 ADSP-219x/2191 DSP Hardware Reference

I
I/O memory 6-8, B-2
I/O Memory Page (IOPG) register

1-17, 3-6, A-4, A-7, A-22
I/O memory read/write (IO())

instruction 5-16, 5-18, 6-8, B-3
I/O memory select (IOMS) pin

1-14, 1-16, 7-22
I/O memory space 5-11, 5-16
I/O Memory Space Control

(IOMSCTL) register
about B-104

I/O mode
UART port 11-5

I/O peripheral clock ratio select
(IOSEL) bit 14-32, B-18

I/O processor 1-3, 6-7
about 6-1
defined 5-4
register map B-115
registers and ports 6-8
versus I/O memory 5-16
(See also DMA, External port, Host

port, Serial port, SPI port, and
UART port)

I/O registers A-2
I/O space (See I/O memory)
ICNTL register

bit #defines A-22
IDCODE register 13-5
IDLE instruction 1-21, 3-3, 3-20,

3-36, 3-45
defined 3-3
restrictions 3-20

IEEE 1149.1 JTAG specification
1-22, 13-2, 13-5

IER register B-75
IF conditional operator 2-21, 3-45
IIR register B-77
IJPG register 1-15, A-17
IMASK register A-15

bit #defines A-22
immediate addressing

memory page selection 4-7
(See DAGs and data move)

immediate branch 3-17
immediate shifts 2-43
implicit stack operations 3-40
inactive DMA descriptors 6-11
Index (Ix) registers 4-2, 4-7, 4-15,

4-17, A-3, A-21
indirect addressing (See DAGs and

data move)
indirect branches 3-15, 3-16
Indirect Jump Page (IJPG) register

1-15, 3-6, 3-16, A-4, A-7
illustration A-17

infinite loops (FOREVER)
condition 1-30, 3-20

input clock (ICLK) bit B-39, B-40
instruction cache 3-9, 3-11, 5-4
instruction decode (ID) stage 3-9
instruction fetch, external 7-2
instruction pipeline 3-3, 3-8, 3-17
Instruction register 13-3
Instruction set -xxxviii
instruction set

ALU instructions 2-21

ADSP-219x/2191 DSP Hardware Reference I-17

INDEX

DAG instructions 4-23
data move instructions 5-18
multifunction instructions 4-23
program sequencer instructions

3-44
instructions

computational 2-1
conditional 2-18, 2-65, 3-4
multifunction 2-65
multiplier 2-36
shifter 2-55

instructions from BMS fetching (See
External PM instruction from
boot space enable (E_PI_BE) bit)

instructions from BMS fetching (See
PM instruction from boot space
enable (E_PI_BE) bit)

INTDRx register
bit definitions B-25

integer mode 2-9, 2-11, 2-14, A-10
(See also multiplier mode, integer

(MM) enable/disable and
fractional mode)

internal clock disable (ICLKD) bit
9-16, 9-18, B-39, B-40

internal clock select (ICLK) bit
9-14, 9-25

internal receive frame sync (IRFS)
bit 9-18, B-40

internal transmit frame sync (ITFS)
bit 9-15, 9-27, 9-35, B-39

internal/external frame syncs (See
frame sync)

Interrupt Control (ICNTL) register
3-7, A-6, A-7

bit #defines A-22
illustration A-15

interrupt controller 3-4
registers B-115

Interrupt Enable (IER) register
B-75

Interrupt Identification (IIR)
register B-77

Interrupt Latch (IRPTL) register
3-7, 3-34

bit #defines A-22
illustration A-15

interrupt latency 3-27
cache miss 3-27
delayed branch 3-27
single-cycle instruction 3-27
writes to IRPTL 3-27

Interrupt Mask (IMASK) register
3-7, 3-31, 3-34, 6-14, A-6

bit #defines A-22
illustration A-15

interrupt mode (INT)
enable/disable 3-45

interrupt nesting enable (INE) bit
3-34, A-16

Interrupt Priority (IPRx) registers
14-28, 14-29, B-22

interrupt request enable
(IRQ_ENA) bit B-92

Interrupt Source (INTRDx)
registers B-25

interrupts 1-17, 3-3

INDEX

I-18 ADSP-219x/2191 DSP Hardware Reference

16 channels 6-2
about 3-25
addresses 3-32
configuring 6-4
configuring and servicing

14-27…14-29
delayed branch 3-20
DMA transfers 6-15
enabling for timer 12-3
global enable (GIE) bit 3-31
idle instructions 3-36
IRPTL write timing 3-27
latching 3-31
latency 3-35
latency (See interrupt latency)
mapping and prioritizing

14-28…14-29
masking 3-31
masking and latching 14-43
nested 3-34
nesting and processing 3-27, 3-28
polarity 14-44
powerdown, non-maskable 14-49
priorities 3-32
registers A-3, A-15
servicing 6-6
setup examples 6-4
software 3-27
system controller 6-1
vector table 3-32

interrupts, global enable (GIE) bit
3-39, A-16

INTRDx registers B-25
IO instruction 5-16, 5-18, 6-8

IOMSCTL register
about B-104

IOPG register 1-17, A-22
IPRx registers B-22

default mapping after reset 6-3
IRPTL register A-15

bit #defines A-22
Ix registers 4-2

J
JTAG

instruction register codes 13-3
JTAG debug

registers B-115
JTAG port 1-3, 1-22, 13-1

Boundary register 13-5
boundary scan 13-2
Bypass register 13-4
IDCODE register 13-5
Instruction register 13-3

jump instructions 1-30, 3-14, 3-45
conditional 3-15
delayed branch 3-15
restrictions 3-20

jumps
defined 3-2

L
latching

interrupts 3-31
late receive frame sync (LARFS) bit

9-18
late transmit frame sync (LATFS)

bit 9-16, 9-29, B-39, B-40

ADSP-219x/2191 DSP Hardware Reference I-19

INDEX

latency 2-20, 3-6, 3-27, A-6
due to unscheduled events A-7
effect

CNTR register 3-6
DMPGx registers 3-6
IJPG register 3-6
IOPG register 3-6
IRPTL register 3-7
SSTAT register 3-7

enabling modes 2-63
I/O memory-mapped registers

B-2
interrupts 3-35
jump instructions 1-31
Program Sequencer registers 3-6
register load A-2
registers A-2
Serial port registers 9-18
system registers 3-6

LCALL instruction 3-8, 3-15, 3-45
LCR register B-77
Length (Lx) registers 4-2, 4-16, A-3,

A-21
initialization requirements 4-4

less than or equal zero (LE)
condition 1-26, 3-42

less than zero (LT) condition 1-26,
3-42

level, stack interrupt 3-39
level-sensitive input B-98
Line Control (LCR) register B-77
Line Status (LSR) register 11-5,

B-78
linker

about 1-33
LJUMP instruction 3-8, 3-15, 3-45
loader

about 1-33
LOCKCNT register B-19
logical (AND, OR, XOR, NOT)

operators 2-21
logical addressing 7-16
logical shift (LSHIFT) instruction

2-9, 2-39, 2-41, 2-44, 2-55
long call (LCALL) instruction 3-8,

3-15, 3-45
long jump (LJUMP) instruction

3-8, 3-15, 3-45
look ahead address (LA) stage 3-9
loop

address stack 3-6
begin address 3-21
conditional loops 3-21
conditional test 3-22
definition 3-2
DO/UNTIL example 3-21
end restrictions 3-24
infinite 3-20, 3-43
nesting restrictions 3-24
stack management 3-24
termination 3-4

loop counter expired (CE)
condition 3-21

Loop Stack Address (LPSTACKA)
register A-17

loop stack empty (LPSTKEMPTY)
condition 3-45

INDEX

I-20 ADSP-219x/2191 DSP Hardware Reference

loop stack empty status
(LPSTKEMPTY) bit 3-38,
A-11

loop stack full (LPSTKFULL)
condition 3-45

loop stack full status (LPSTKFULL)
bit 3-38, A-11

Loop Stack Page (LPSTACKP)
register A-17

loopback (LOOP) bit B-79
loops

terminating 3-22
low active receive frame sync

(LRFS) bit 9-18, B-40
low active transmit frame sync

(LTFS) bit 9-16, 9-26, 9-28,
B-39

low shift (LO) option 2-40, 2-41,
2-56, 2-58

low watermark, stack 3-38, 3-39
low-power operation 1-21
LPSTACKA register A-17
LPSTACKP register A-17
LSB first (LSBF) bit 10-11, B-62
LSHIFT instruction 2-9, 2-39
LSR register B-78
Lx registers 4-2

M
M_MODE bit 2-11, A-10
MAC overflow (MV) condition

3-42
magnitude

signed 2-5
manipulating

bits 2-2
Manual

audience -xxix
contents description -xxx, -xxxi
conventions -xxxvii
new in this edition -xxxii
related documents -xxxiv

mappable interrupts 14-28…14-29
MASKAC register 14-43, B-97
MASKAS register 14-43, B-97
MASKBC register 14-43, B-97
MASKBS register 14-43, B-97
masking

interrupts 3-31
master (MSTR) bit B-62
master enable, SPI (MSTR) bit

10-11
master input slave output (MISOx)

pins 1-19, 10-6, 10-7, 10-21,
10-24

configuration 10-7
master output slave input (MOSIx)

pins 1-19, 10-3, 10-5, 10-7,
10-21, 10-24

MCM, multichannel mode (See
serial port, multichannel
operation)

MCR register B-77
MemDMA channel

DMA usage 6-27
example 6-42

ADSP-219x/2191 DSP Hardware Reference I-21

INDEX

MemDMA Channel Read
Configuration
(DMACR_CFG) register B-33

MemDMA Channel Read Count
(DMACR_CNT) register B-34

MemDMA Channel Read
Descriptor Ready
(DMACR_CPR) register B-35

MemDMA Channel Read Interrupt
(DMACR_IRQ) register B-35

MemDMA Channel Read Next
Descriptor (DMACR_CP)
register B-34

MemDMA Channel Read Pointer
(DMACR_PTR) register B-33

MemDMA Channel Read Start
Address (DMACR_SRA)
register B-34

MemDMA Channel Read Start
Page (DMACR_SRP) register
B-33

MemDMA Channel Write
Configuration
(DMACW_CFG) register B-29

MemDMA Channel Write Count
(DMACW_CNT) register
B-31

MemDMA Channel Write
Descriptor Ready
(DMACW_CPR) register B-32

MemDMA Channel Write
Interrupt (DMACW_IRQ)
register B-32

MemDMA Channel Write Next
Descriptor (DMACW_CP)
register B-32

MemDMA Channel Write Pointer
(DMACW_PTR) register B-29

MemDMA Channel Write Start
Address (DMACW_SRA)
register B-31

MemDMA Channel Write Start
Page (DMACW_SRP) register
B-31

MemDMA channels
about 6-21

MemDMA interrupt priority
(MDMAIP) bits 14-29, B-23

memory 1-2
about 5-1
access status usage 7-12
access types 9-42
ACK, wait, both, or either mode

7-10
architecture 1-13, 5-4
bank and space waitstates modes

7-9
banks 5-6, 7-3, 7-10
blocks 5-1, 5-3
external interface 7-11, 7-15, 7-21
external memory (off-chip) 1-16
interface timing 7-24
internal memory (on-chip) 1-14,

5-1, 5-11, 5-12
shadow write FIFO 5-17
united 1-28

INDEX

I-22 ADSP-219x/2191 DSP Hardware Reference

memory bank boundary setting (See
external bank lower page
boundary (E_MSx_PG) bits)

memory bank select (MS3-0) pins
7-11, 7-22, 7-23

memory banks
size of 7-4

memory DMA controller
registers B-115

memory interface clock (EMICLK)
7-4

memory interface registers A-22
Memory Page (MEMPGx) registers

7-4, B-106
memory page (MP) bits B-31, B-34,

B-52, B-57, B-70, B-83, B-111,
B-114

memory page selection 4-7
memory select (MSx) pins 1-13,

1-16
memory select composition (See

composite memory select output
enable (E_COE) bit)

Memory Select Control (MSxCTL)
registers B-103

memory space (MS) bits B-31,
B-34, B-52, B-57, B-70, B-83,
B-111, B-114

memory-mapped register addressing
(See DAGs and data move)

memory-mapped registers B-2, B-3
MEMPGx registers B-106
MF register 2-39
MFD bits 9-36, B-48

MISO pin 10-3
µ-law companding 9-2, 9-24, 9-38
mode fault error (MODF) bit 6-37,

10-17, B-66, B-69
mode fault errors 10-29
Mode Status (MSTAT) register

2-14, 3-7, 4-5, 4-17, A-7
bit #defines A-22
illustration A-8
latency A-6

Modem Control (MCR) register
B-77

Modem Status (MSR) register B-78
modes

accress cycle contyrol 8-9
address latch enable 8-9
ALU 2-11
biased rounding 2-11
clock 7-10, 14-39, B-17
external event watchdog 12-14
External port 7-3, 7-10

bus master 7-13
Host port 8-3

direct access mode 8-18
Host port acknowledge 8-11
Host port DMA 8-25
Host port ready 8-11
memory bank/space waitstate 7-9
power-down B-17
Serial port 9-9
SPI port

broadcast 10-4
master 10-2, 10-25, 10-26
slave 10-2

ADSP-219x/2191 DSP Hardware Reference I-23

INDEX

transfer/interrupt 10-7
SPI port master mode 10-25
timer B-91
UART port 11-5, 11-6
WDTH_CAP 12-11

MODF bit 6-37, 10-17, B-66, B-69
MODF register 10-29
modified addressing 4-9
Modify (Mx) registers 4-2, 4-15,

A-3, A-21
modify address 4-2
MODIFY instruction 4-20, 4-24
MOSI pin 10-3
moving data, serial port 9-42
MR register 2-14, 2-15
MR0 register A-14
MR1 register A-14
MR2 register A-14
MSR register B-78
MSTAT register 2-14, 4-5, 4-17

bit #defines A-22
MSxCTL registers B-103
multi-channel clock recovery mode

(MCCRM) bits B-49
multi-channel DMA receive

packing enabled (MCDRXPE)
bit B-49

multi-channel DMA transmit
packing enabled (MCDTXPE)
bit B-49

multi-channel FIFO fetch (MCFF)
bit B-49

multi-channel frame delay (MFD)
bits 9-36, B-48

multichannel mode 9-32
DMA data packing 9-39
enable/disable 9-39
frame syncs 9-35
Serial port 9-35

multichannel mode (MCM) bit
9-39, B-48

multichannel operation, Serial port
9-32

multi-channel select offset mode
(MCOM) bit B-49

multichannel TX FIFO prefetch
9-40

multifunction instructions 2-64
DAG restrictions 4-12
delimiting and terminating 2-65
register usage 2-65

multiplier 2-1
about 2-30
arithmetic formats 2-9
clear operation 2-33
data registers A-3
data types 2-8
dual accumulators 1-25
input operators 2-32, 2-36
instruction summary 2-36
Multiplier Result (MR) register

2-31
operations 2-31, 2-34
results 2-33
rounding 2-33
saturation 2-33
status 2-18, 2-34, A-9

INDEX

I-24 ADSP-219x/2191 DSP Hardware Reference

Multiplier Feedback (MF) register
1-25, 2-39

Multiplier Input (MX/MY) registers
1-25

multiplier mode, integer (MM)
enable/disable 3-45

multiplier overflow (MV) bit 2-34,
2-36, A-9

multiplier overflow (MV) condition
1-26

Multiplier Result (MR) register
1-25, 2-4, 2-14, 2-15, 2-32,
2-37

Multiplier Result (MR2, MR1,
MR0) registers A-14

multiplier result mode 2-11
multiplier result mode selection

(M_MODE) bit 2-11, A-10
multiplier results mode selection

(M_MODE) bit
latency A-6

multiplier selects
during reset 14-36, 14-41

Multiplier X Input (MXx) registers
A-13

Multiplier Y Input (MYx) registers
A-13

multiplier/adder unit (See
multiplier)

multiply CLKIN ratio (MSELx) bits
14-41, B-18

multiply/accumulates 2-30
multiprecision operations 2-25
MV bit 2-34, 2-36

Mx registers 4-2
MX0 register A-13
MX1 register A-13
MY0 register A-13
MY1 register A-13

N
negative, ALU (AN) bit A-9
nested interrupts 3-34
Next System Configuration

(NXTSCR) register B-19
no operation (NOP) instruction

3-45
nomenclature (See conventions)
NOP instruction 3-45
NORM instruction 2-39, 2-41,

2-50, 2-55
normal timing, serial port 9-29
normalize

ALU result overflow 2-48
double-precision input 2-51
operations 2-39
single-precision input 2-47

normalize (NORM) instruction
2-41, 2-55

execution difference 2-50
not equal to zero (NE) condition

1-26, 3-42
NOT operator 2-22
numbers

signed 2-5
numeric formats C-1
NXTSCR register B-19

ADSP-219x/2191 DSP Hardware Reference I-25

INDEX

O
ones complement 2-5
opcode, core register codes A-2
operands 2-19, 2-31, 2-61
operating mode (OPMODE) bit

B-21
operating mode (OPMODE) pin

1-19, 14-13
OPMODE bit B-21
OPMODE pin 1-19, 14-13
OR operator 2-21, 2-60
OR, shifter bitwise (OR) option

2-60
output, general purpose (OUTx)

bits B-79
overflow A-9, A-10

ALU 2-12
ALU latch mode 2-11
stack 3-38, 3-39
(See also ALU overflow (AV) bit,

multiplier overflow (MV) bit,
and shifter overflow (SV) bit)

overflow latch mode (OL)
enable/disable 3-45

overrun error (OE) bit B-79

P
packing

external port 7-5
Host port 8-7
Serial port 9-23, 9-39

packing data, multichannel DMA
9-39

PAGEN, program address
generation logic (See program
sequencer)

parallel operations 2-64
parity enable (PEN) bits B-78
parity error (PE) bit B-79
PASS instruction 2-21
PC register 1-15
PC Stack Address (STACKA)

register 3-6, A-17
PC stack empty (PCSTKEMPTY)

condition 3-45
PC stack empty status

(PCSTKEMPTY) bit 3-38,
A-11

PC stack full (PCSTKFULL)
condition 3-45

PC stack full status (PCSTKFULL)
bit 3-38, A-11

PC stack interrupt enable
(PCSTKE) bit 3-39, A-16

PC stack level (PCSTKLVL)
condition 3-45

PC stack level status (PCSTKLVL)
bit 3-38, 3-39, A-11

PC Stack Page (STACKP) register
3-6

PDWN bit B-18
period count (PERIOD_CNT) bit

B-92
peripheral clock (HCLK) 7-4, 7-11,

7-24
peripherals 5-6

INDEX

I-26 ADSP-219x/2191 DSP Hardware Reference

PFx upper pins enable mode
(PFMODE) bit B-21

physical addressing 7-17
Pin names -xxxviii
pins

descriptions 14-2, ??…14-8
list of 14-3
states at reset 14-8…14-12
unused 14-8

pipeline (See instruction pipeline)
PLL Control (PLLCTL) register

1-21, 14-32, 14-32…14-34,
B-17

PLL Lock Counter (LOCKCNT)
register B-19

PLL off (PO) bit B-18
PLL transition states (modes) 14-39
PLLCTL register 1-21, B-17
PM bus 1-3
PM Bus Exchange (PX) register 5-7,

A-22
PM data from boot space enable

(E_PD_BE) bit 7-8
PM instruction from boot space

enable (E_PI_BE) bit 7-8
PM/DM data format select

(E_DFS) bit 7-5
PMST, Processor Mode Status

register (See Mode Status
(MSTAT) register)

polarity, interrupt 14-44
POP instruction 3-14
POP/PUSH instructions 3-20, 3-45

port slave select enable, SPI (PSSE)
bit 10-11

porting from previous DSPs
ALU sign (AS) status 2-20
circular buffer addressing 4-16
clock multiplier 14-30
DAG instruction syntax 4-11
DAG registers 4-4
DMA support 6-11
External memory interface 7-21
multiplier dual accumulators 2-31
multiplier feedback support 2-39
normalize operation 2-50
secondary DAG registers 4-6
Serial port DMA 6-31
Shifter Result (SR) register 2-54
(See also differences from previous

DSPs)
post-modify addressing 4-1, 4-23

instruction syntax 4-10
power-down (PDWN) bit B-18
powerdown interrupt mask

(PWDN) bit A-16
power-down modes B-17
power-down, using as a

non-maskable interrupt 14-49
precision 1-4
prefetch address (PA) stage 3-9
pre-fetch reads on address phase

(H_PFET) bit B-109
prefetching

TX words 9-40
pre-modify addressing 4-1, 4-23

instruction syntax 4-9

ADSP-219x/2191 DSP Hardware Reference I-27

INDEX

primary registers 2-61
processor, resetting 14-12…14-16
Program Counter (PC) register

1-15, 3-3
program counter (PC) relative

address 3-15
program counter (PC) stack 3-6
program flow 3-1, 3-8
program sequencer 1-5, 3-1

about 1-2
instructions 3-44
latency 3-6
registers A-3, A-15
(See also instruction cache and

instruction pipeline)
program space (See memory, banks)
programmable flag (PFx) pins 1-20,

10-15, 14-41
programmable flags 14-40…14-45,

14-53
programmable interrupts

14-28…14-29
protocols, standard, support for

9-46
pulse, timer high (PULSE_HI) bit

B-92
pulsewidth count and capture

(WDTH_CAP) mode 12-11
pulsewidth modulation

(PWMOUT) mode 12-6, 12-8
Purpose (of text) -xxix
PUSH instruction 3-14
PUSH instruction (See POP/PUSH

instructions)

PWDN bit A-16
PWM

waveform generation 12-8
PWMOUT mode 12-6, 12-8
PX register 5-7, A-22

Q
quotient, ALU (AQ) bit 2-20, A-9

R
RBR register 11-3, B-74
RBSY bit 10-30
RDBRSx registers B-67
RDBRx registers 10-19, 10-21,

B-67
read strobe (RD) pin 7-22
read strobe sense logic select

(E_RLS) bit 7-5
read waitstate count (E_RWC) bits

7-4, 7-9
reading, recommended 14-52
ready mode 8-11
rebooting 14-12…14-15
Receive Buffer (RBR) register 11-3,

11-5, B-74
receive busy (overflow error) SPI

DMA status (RBSY) bit 10-18,
B-66, B-69

receive clock, serial (RCLKx) pins
9-4, 9-25

Receive Data Buffer (RDBRx)
register 10-20

INDEX

I-28 ADSP-219x/2191 DSP Hardware Reference

Receive Data Buffer (RDBRx)
registers 10-19, 10-20, 10-21,
B-67

Receive Data Buffer Shadow
(RDBRSx) registers B-67

receive data buffer status (RXS) bit
10-18, B-45, B-66

Receive Data, SPI (RDBRx)
registers 10-19

receive frame sync (RFSx) pins 9-4,
9-25, 9-35

receive frame sync required (RFSR)
bit 9-18, 9-26, B-40

receive overflow status (ROVF) bit
9-19, B-45

receive serial port enable (RSPEN)
bit 9-7, 9-8, 9-12, 9-16, B-40

reception error (RBSY) bit 6-39
reception errors 10-30
REG instruction 5-15, 5-18
register

divisor latch B-76
register access locking (See access

control registers lock (E_CRL)
bit)

register and bit #defines file B-115
register codes, JTAG instruction

13-3
register files (See data register file)
register groups (REGx) A-2
register read/write (REG())

instruction 5-18
registers

base A-21

DAG A-20
Dreg A-12
DSP core A-2
DSP peripherals B-3
flag interrupt B-97
flag interrupt mask B-97
index (Ix) A-21
interlocked A-6
latency (See latency)
length A-21
memory interface A-22
memory-mapped B-2
modify A-21
program sequencer A-15
timer 12-1

Related documents -xxxiv
relative address (See indirect

addressing)
request to send (RTS) bit B-79
reserved bits A-2, B-1
reset 14-12…14-16, B-20

(See also System Configuration
(SYSCR) register)

reset (RESET) pin 14-12
results

clearing, rounding, and saturating
2-33

multiplier mode 2-11
placement 2-32

return (RTI/RTS) instructions
3-14, 3-20, 3-27, 3-45

round (RND) operator 2-36
rounding

biased 2-17

ADSP-219x/2191 DSP Hardware Reference I-29

INDEX

rounding mode 2-2
rounding results 2-33
RTI instruction 3-14, 3-20, 3-27
RTS instruction 3-14, 3-20, 3-27
run mode (RMODE) bit 14-15,

B-21
RUNBIST instruction 13-3
RXS bit 10-18, B-45, B-66

S
sampling, serial port 9-28
SARAM, single-access RAM (See

memory, banks)
SAT instruction 2-37
saturate (SAT) instruction 2-37
saturation 2-11, 2-12, A-10

results 2-33
SB register 2-41, 2-42, 2-61, A-14
SCR register B-80
Scratch (SCR) register B-80
SE register 2-41, 2-43, A-14
SEC_REG bit 2-63
secondary DAG registers enable

(SEC_DAG) bit 4-4, 4-5, A-10
latency A-6

secondary registers 2-63, 4-4
swapping to 2-64

secondary registers enable
(SEC_REG) bit 2-63, A-10

latency A-6
secondary registers for DAGs mode

(BSR) enable/disable 3-45
secondary registers mode (SR)

enable/disable 3-45

semaphore registers (See Host Port
Semaphore (HPSMPHx)
registers)

semaphores
using 8-30

send zero (SZ) bit 10-10, B-62
sensitivity, edge 14-45
sequencer (See program sequencer)
serial clock (SCKx) pins 1-19
serial communications 11-3
serial endian format select

(SENDN) bit 9-14, 9-17, 9-22
serial peripheral interface (See SPI

port)
Serial port

channels 9-33
clock 9-2, 9-20, 9-25
companding 9-24
connections (illustration) 9-5
data buffering 9-19
disabling RCLK 9-18
DMA 6-30, 6-31
DMA settings 6-23
framed/unframed data 9-27
internal memory access 9-42
multichannel operation

9-32…9-39
sampling 9-28
single-word transfers 9-42
SPORT2 option 9-2
termination 9-47
window 9-36
word length 9-23

INDEX

I-30 ADSP-219x/2191 DSP Hardware Reference

serial port 0 RX interrupt priority
(SP0RXIP) bits 14-28

serial port 0 TX interrupt priority
(SP0TXIP) bits 14-28

serial port 1 RX interrupt priority
(SP1RXIP) bits 14-28

serial port 1 TX interrupt priority
(SP1TXIP) bits 14-29

serial port 2 RX interrupt priority
(SP2RXIP) bits 14-29

serial port 2 TX interrupt priority
(SP2TXIP) bits 14-29

serial port enable (SPEN) bit 9-8
serial port endian format (SENDN)

bit B-39, B-40
Serial Port Frame Sync Divisor

(SPx_R/TFSDIV) registers
9-10

Serial Port Multichannel Mode
Configuration (SPx_MCMCx)
registers 9-10

Serial Port Multichannel Mode
Receive Channel Select
(SPx_MRCSx) registers 9-10,
9-38

Serial Port Multichannel Transmit
Channel Select (SPx_MTCSx)
registers 9-10, 9-38

Serial Port Receive Buffer (SPx_RX)
registers 6-10

Serial Port Receive Clock Divisor
(SPx_RSCKDIV) registers
9-10, 9-18, 9-20, 9-25

Serial Port Receive Configuration
(SPx_RCR) registers 9-10,
9-12, 9-16

Serial Port Receive Data (SPx_RX)
registers 9-10, 9-19, 9-24, 9-35

Serial Port Receive Frame Sync
Divisor (SPx_RFSDIV)
registers 9-10

Serial port RX/TX interrupt priority
(SPxRX/TXIP) bits B-22, B-23

serial port RX/TX interrupt priority
(SPxRX/TXIP) bits B-22, B-23

Serial Port Status (SPx_STATR)
registers 9-10

Serial Port Transmit Buffer
(SPx_TX) registers 6-10

Serial Port Transmit Clock Divisor
(SPx_TSCKDIV) registers
9-10, 9-18, 9-20

Serial Port Transmit Configuration
(SPx_TCR) registers 9-10,
9-12, 9-13

Serial Port Transmit Data
(SPx_TX) registers 9-10, 9-13,
9-19, 9-24, 9-30, 9-35

Serial Port Transmit Frame Sync
Divisor (SPx_TFSDIV)
registers 9-10, 9-21, 9-25

serial port word length (SLEN) bits
9-14, B-39, B-40

restrictions 9-23
word length formula 9-23

Serial ports
about 9-1

ADSP-219x/2191 DSP Hardware Reference I-31

INDEX

serial word length select (SLEN) bit
9-15

set bit (SETBIT) instruction 2-21
set interrupt (SETINT) instruction

3-45
SETBIT instruction 2-21
SETINT instruction 3-45
shadow write FIFO 5-17
Shift data, SPI (SFDR) register

10-19
shift, immediate 2-43
shifter 2-1, 2-39

arithmetic formats 2-9
data registers A-3
data types 2-9
instructions 2-55
options 2-40
status flags 2-34, 2-54, A-9

Shifter Block Exponent (SB) register
2-41, 2-42, 2-61, A-14

Shifter Exponent (SE) register 1-26,
2-41, 2-43, 2-45, 2-51, 2-58,
A-14

Shifter Input (SI) register 1-25,
2-57, A-14

shifter input sign (SS) bit 2-55,
2-60, A-9

shifter overflow (SV) bit 2-34, 2-36,
2-54, 2-55, A-9

Shifter Result (SR) register 1-25,
2-4, 2-32, 2-57

usage 2-44
Shifter Result (SRx) registers A-14
SI register 2-57, A-14

sign bit 2-20
loss through overflow 2-35

sign extension 2-4, 2-8, 2-44, 2-58
signed fractional representation

1.15 2-7
signed magnitude 2-5
signed multiplier inputs (SS)

operator 2-32, 2-36
signed numbers 2-5, 2-7
signed, ALU (AS) bit A-9
signed/unsigned multiplier inputs

(SU) operator 2-32, 2-36
single pulses

generating 12-10
single-cycle operation 2-25, 2-31,

2-39, 2-57, 2-61, 5-3
size, word (SIZE) bit 10-11, B-62
slave select enable (PSSE) bit B-62
SLEN bit 9-15
SLEN bits 9-14, B-39, B-40
SMUL, saturation on multiplication

(See multiplier, saturation)
software condition (SWCOND)

condition 3-42, A-19
Software Condition (SWCOND)

register 1-26
software reset 14-15, 14-16, B-20

preparing internal memory 5-17,
14-16

(See also reset)
software reset (SWR) bits 14-15
Software Reset (SWR) register B-19
SPI

enabling 10-4

INDEX

I-32 ADSP-219x/2191 DSP Hardware Reference

SPI Baud Rate (SPIBAUDx)
registers 10-9, 10-20, B-68

SPI clock (SCKx) pins 10-4, 10-5,
10-6, 10-21, 10-24, 10-25

SPI Control (SPICTLx) registers
10-10, B-61

SPI DMA Chain Pointer Ready
(SPIxD_CPR) registers B-71

SPI DMA Configuration
(SPIxD_CFG) registers 10-20,
10-21, B-68

SPI DMA Current Pointer
(SPIxD_PTR) registers 10-20,
B-68

SPI DMA Descriptor Ready
(SPIxD_CPR) registers 10-20

SPI DMA Interrupt (SPIxD_IRQ)
registers 10-20, B-71

SPI DMA Next Chain Pointer
(SPIxD_CP) registers B-71

SPI DMA Next Descriptor
(SPIxD_CP) registers 10-20

SPI DMA Start Address
(SPIxD_SRA) registers 10-20,
10-21, B-70

SPI DMA Start Page (SPIxD_SRP)
registers 10-20, 10-21, B-70

SPI DMA Word Count
(SPIxD_CNT) registers 10-20,
10-21, B-70

SPI enable (SPE) bit B-62
SPI finished (SPIF) bit 10-17, B-66
SPI Flag (SPIFLGx) registers 10-12,

10-16, 10-20, B-63, B-64

SPI output select (SPIxSEL7-1) pins
1-20

SPI port 1-19
broadcast mode 10-4
clock phase 10-22
clock signals 10-25
compatible devices 10-3
configuring/enabling system

10-10
DMA 6-24, 6-33
error signals and flags 10-29
examples 10-33
interface signals 10-6, 10-7
master mode 10-25, 10-26
operations 10-23
register mapping 10-19
registers 10-8
slave mode 10-27
transfer formats 10-21
transfers 10-31

SPI Port Control (SPICTLx)
register 10-6, 10-20

SPI port enable (SPE) bit 10-12
SPI Port Receive Buffer (RDBRx)

register 6-10
SPI port slave select (SPISS) pin

1-19, 10-4, 10-6, 10-15, 10-21
SPI Port Status (SPISTx) registers

10-17, 10-20
SPI Port Transmit Buffer (TDBRx)

register 6-10
SPI ports

about

ADSP-219x/2191 DSP Hardware Reference I-33

INDEX

SPI Status (SPISTx) registers 10-16,
B-65

SPI Transmit Buffer (TDBRx)
registers B-65

SPI0 controller
registers B-115

SPI1 controller
registers B-115

SPIBAUDx registers B-68
SPICTLx registers B-61
SPIFLGx registers B-63
spill-fill mode 3-39
SPISTx registers B-65
SPIxD_CFG registers 6-24, B-68
SPIxD_CNT registers B-70
SPIxD_CP registers B-71
SPIxD_CPR registers B-71
SPIxD_IRQ registers B-71
SPIxD_PTR registers B-68
SPIxD_SRP registers B-70
SPORT

enable/disable 9-7
modes, setting 9-9
operation 9-5
setting modes 9-9

SPORT (See Serial port)
SPORT 0 controller

registers B-115
SPORT 1 controller

registers B-115
SPORT 2 controller

registers B-115
SPORT DMA Receive Pointer

(SPxDR_PTR) registers B-50

SPORT Multichannel Mode
Configuration (SPx_MCMCx)
registers B-47

SPORT Multichannel Receive
Channel Select (SPx_MRCSx)
registers B-46

SPORT Multichannel Transmit
Channel Select (SPx_MTCSx)
registers B-44

SPORT Receive Clock Divisor
(SPx_RSCKDIV) registers
B-42

SPORT Receive Configuration
(SPx_RCR) registers B-38

SPORT Receive Data (SPx_RX)
registers B-41

SPORT Receive DMA Chain
Pointer (SPxDR_CP) register
B-53

SPORT Receive DMA Chain
Pointer Ready (SPxDR_CPR)
registers B-54

SPORT Receive DMA
Configuration (SPxDR_CFG)
registers B-50

SPORT Receive DMA Count
(SPxDR_CNT) registers B-53

SPORT Receive DMA Interrupt
(SPxDR_IRQ) registers B-54

SPORT Receive DMA Start
Address (SPxDR_SRA)
registers B-53

SPORT Receive DMA Start Page
(SPxDR_SRP) registers B-52

INDEX

I-34 ADSP-219x/2191 DSP Hardware Reference

SPORT Receive Frame Sync
Divisor (SPx_RFSDIV)
registers B-43

SPORT Status (SPx_STATR)
registers B-43

SPORT Transmit Clock Divisor
(SPx_TSCKDIV) registers
B-42

SPORT Transmit Configuration
(SPx_TCR) registers B-38

SPORT Transmit Data (SPx_TX)
registers B-41

SPORT Transmit DMA Chain
Pointer (SPxDT_CP) registers
B-58

SPORT Transmit DMA Chain
Pointer Ready (SPxDT_CPR)
registers B-58

SPORT Transmit DMA
Configuration (SPxDT_CFG)
registers B-56

SPORT Transmit DMA Count
(SPxDT_CNT) registers B-57

SPORT Transmit DMA Interrupt
(SPxDT_IRQ) registers B-59

SPORT Transmit DMA Pointer
(SPxDT_PTR) registers B-55

SPORT Transmit DMA Start
Address (SPxDT_SRA)
registers B-56

SPORT Transmit DMA Start Page
(SPxDT_SRP) registers B-57

SPORT Transmit Frame Sync
Divisor (SPx_TFSDIV)
registers B-43

SPORTS
about 9-1

SPx_MCMCx registers B-47
SPx_MRCSx registers B-46
SPx_MTCSx registers B-44
SPx_RCR B-38
SPx_RFSDIV registers B-43
SPx_RSCKDIV registers B-42
SPx_RX registers B-41
SPx_STATR registers B-43
SPx_TCR registers B-38
SPx_TFSDIV registers B-43
SPx_TSCKDIV registers B-42
SPx_TX registers B-41
SPxDR_CFG registers B-50
SPxDR_CNT registers B-53
SPxDR_CP registers B-53
SPxDR_CPR registers B-54
SPxDR_IRQ registers B-54
SPxDR_PTR registers B-50
SPxDR_SRA registers B-53
SPxDR_SRP registers B-52
SPxDT_CFG registers B-56
SPxDT_CNT registers B-57
SPxDT_CP registers B-58
SPxDT_CPR registers B-58
SPxDT_IRQ registers B-59
SPxDT_PTR registers B-55
SPxDT_SRA registers B-56
SPxDT_SRP registers B-57
SR bit 2-32

ADSP-219x/2191 DSP Hardware Reference I-35

INDEX

SR0 register A-14
SR1 register A-14
SR2 register A-14
SRAM (memory) 1-2
SS bit 2-55, 2-60, A-9
SST, saturation on store (See

multiplier, saturation)
SSTAT register

bit #defines A-22
bits A-10

stack
explicit operations 3-41
implicit operations 3-40
interrupt 3-39
overflow/underflow status 3-38
PC high/low watermark 3-38

stack interrupt mask (STACK) bit
A-16

stack overflow status
(STKOVERFLOW) bit 3-38,
3-39, A-11

stack, PC interrupt enable
(PCSTKE) bit 3-39, A-16

STACKA register 3-6, A-17
STACKP register 3-6
stacks

registers 3-36
status stack empty

(STSSTKEMPTY) condition
3-45

status stack empty status
(STSSTKEMPTY) bit 3-38,
A-11

status stack overflow
(STKOVERFLOW) condition
3-45

status, conditional 3-42
stick parity (SP) bit B-78
stop all PLL output (STOPALL) bit

B-18
stop bits (STB) bit B-78
stop core clock (STOPCK) bit B-18
subroutines, defined 3-2
subtract instructions 2-18, 2-21,

2-25
SV bit 2-34, 2-54
SV register 2-36
SWCOND register 1-26
SWR register B-19
SYSCR register 14-15, B-20
System Configuration (SYSCR)

register 14-15, B-20
system control

registers B-115
system control register read/write

(REG()) instruction 5-15, 5-18
system control registers 5-11, 5-15,

A-2, A-3
system interface 14-1…14-52
system interrupt controller 6-1
system interrupts

configuring 6-4
servicing 6-6

System Status (SSTAT) register 3-7
bit #defines A-22
illustration A-10
latency A-6

INDEX

I-36 ADSP-219x/2191 DSP Hardware Reference

T
T_CFGRx registers B-91
T_CNTHx registers B-91
T_CNTLx registers B-91
T_GSRx registers B-89
T_PRDHx registers B-93
T_PRDLx registers B-93
T_WHRx registers B-94
T_WLRx registers B-94
TADD, TDM address (See Serial

port, channels)
TCLK, disabling 9-16
TDBR data buffer status (TXS) bit

B-66
TDBRx registers B-65
TDM, time division multiplexed

(See Serial port, multichannel
operation)

Technical support -xxxii
terminating

loops 3-22
termination values, Serial port 9-47
terminations, Serial port pin/line

9-47
test access port (TAP) (See JTAG

port)
test bit (TSTBIT) instruction 2-21,

3-42
test clock (TCK) pin 13-3
test data input (TDI) pin 13-3
test logic reset (TRST) pin 13-3
test mode select (TMS) pin 13-3
TGLBIT instruction 2-21
THR empty (THRE) bit B-79

THR empty empty flag (THRE)
11-5

THR register 11-3, 11-5, B-74
time-division-multiplexed (TDM)

mode 9-32
(See also Serial port, multichannel

operation)
timer

auto-baud mode 12-13
enabling interrupts 12-3
external event watchdog

(EXT_CLK) mode 12-14
modes 12-1
pulsewidth count and capture

(WDTH_CAP) mode 12-11
pulsewidth modulation

(PWMOUT) mode 12-6
registers 12-1, B-115

Timer Configuration (T_CFGRx)
registers 12-2, B-91

Timer Counter High Word
(T_CNTHx) registers B-91

Timer Counter Low Word
(T_CNTLx) registers B-91

timer counter overflow
(OVF_ERRx) bits B-90

timer enable (TIMENx) bits B-90
Timer external event (TMR_PIN)

signal B-92
Timer Global Status and Control

(T_GSRx) registers 12-3, B-89
Timer High Word Count

(T_CNTHx) registers 12-2

ADSP-219x/2191 DSP Hardware Reference I-37

INDEX

Timer High Word Period
(T_PRDHx) registers 12-2

Timer High Word Pulsewidth
(T_WHRx) registers 12-3

timer input select (TIN_SEL) bit
12-13, B-92

timer input/output (TMRx) pin
12-1, B-92

timer interrupt latch (TIMILx) bits
B-90

Timer Low Word Count
(T_CNTLx) registers 12-2

Timer Low Word Period
(T_PRDLx) registers 12-2

Timer Low Word Pulsewidth
(T_WLRx) registers 12-3

timer mode (TMODE) bits B-92
Timer Period High Word

(T_PRDHx) registers B-93
Timer Period Low Word

(T_PRDLx) registers B-93
Timer Width High Word

(T_WHRx) registers B-94
Timer Width Low Word

(T_WLRx) registers B-94
timer0 interrupt priority

(TIMER0IP) bits 14-29, B-23
timer1 interrupt priority

(TIMER1IP) bits 14-29, B-23
timer2 interrupt priority

(TIMER2IP) bits 14-29, B-23
timers

about 12-1
counter registers 12-3

enabling 12-3
enabling interrupts 12-3
maximum period 12-3
starting and stopping 12-3
watchdog functionality 12-6

timing examples
Serial ports 9-47

toggle bit (TGLBIT) instruction
2-21

top-of-loop address 3-21
trace buffer

registers B-115
transfer data SPI status (TXS) bit

10-18
transfer direction (TRAN) bit 6-19,

B-30, B-51, B-69, B-82, B-113
transfer initiation mode (TIMOD)

bit 10-7, 10-10, B-62
transfers

SPI port 10-31
transmission error (TXE) bit 6-39,

10-17, B-66, B-69
transmission errors 10-30
transmit clock, serial (TCLKx) pins

9-4, 9-25
transmit collision error (TXCOL)

bit 6-39, 10-18, B-66
transmit collision errors 10-31
Transmit Data Buffer (TDBRx)

registers 10-18, 10-20
transmit frame sync (TFS) signal

9-13
transmit frame sync (TFSx) pins

9-4, 9-25, 9-30, 9-35

INDEX

I-38 ADSP-219x/2191 DSP Hardware Reference

transmit frame sync (TFSx) signal
9-30

transmit frame sync required
(TFSR) bit 9-15, 9-26, B-39

Transmit Hold (THR) register
11-3, 11-5, B-74

transmit serial data status (TXS) bit
9-12, B-45

transmit serial port enable (TSPEN)
bit 9-7, 9-8, 9-12, 9-13, B-39

Transmit Shift (TSR) register 11-3
transmit underflow status (TUVF)

bit 9-13, 9-19, 9-31, B-45
TRCBUFE bit A-16
true (FOREVER) condition 1-30
TRUE condition 3-43
TSR and THR empty (TEMT) bit

B-79
TSR register 11-3
TSTBIT instruction 2-21
twos complement 2-7, 2-47
TXCOL bit 10-31
TXE bit 10-30
TXS bit 9-12, B-45

U
UARDR_CFG register B-81
UARDR_CNT register B-83
UARDR_CP register B-84
UARDR_CPR register B-84
UARDR_IRQ register B-84
UARDR_PTR register B-81
UARDR_SRA register B-83
UARDR_SRP register B-83

UARDT_CFG register B-86
UARDT_CNT register B-87
UARDT_CP register B-87
UARDT_CPR register B-87
UARDT_IRQ register B-87
UARDT_PTR register B-85
UARDT_SRA register B-86
UARDT_SRP register B-86
UART controller

registers B-115
UART DMA Receive Pointer

(UARDR_PTR) register B-81
UART framing error (UARFE) bit

B-82
UART parity error (UARPE) bit

B-82
UART port 1-20

about 11-2
auto-baud detection 12-13
DMA mode 11-6
DMA settings 6-25
DMA usage 6-39
I/O mode 11-5

UART Port Receive Buffer (RBR)
register 6-10

UART Port Transmit Buffer (THR)
register 6-10

UART Receive DMA Chain
Pointer (UARDR_CP) register
B-84

UART Receive DMA Chain
Pointer Ready (UARDR_CPR)
register B-84

ADSP-219x/2191 DSP Hardware Reference I-39

INDEX

UART Receive DMA
Configuration
(UARDR_CFG) register B-81

UART Receive DMA Count
(UARDR_CNT) register B-83

UART Receive DMA Interrupt
(UARDR_IRQ) register B-84

UART Receive DMA Start Address
(UARDR_SRA) register B-83

UART Receive DMA Start Page
(UARDR_SRP) register B-83

UART receive overflow error
(UAROE) bit B-82

UART RX interrupt priority
(UARRXIP) bits 14-29, B-23

UART transmit data (THR) register
6-10

UART Transmit DMA Chain
Pointer (UARDT_CP) register
B-87

UART Transmit DMA Chain
Pointer Ready (UARDT_CPR)
register B-87

UART Transmit DMA
Configuration
(UARDT_CFG) register B-86

UART Transmit DMA Count
(UARDT_CNT) register B-87

UART Transmit DMA Interrupt
(UARDT_IRQ) register B-87

UART Transmit DMA Pointer
(UARDT_PTR) register B-85

UART Transmit DMA Start
Address (UARDT_SRA)
register B-86

UART Transmit DMA Start Page
(UARDT_SRP) register B-86

UART TX interrupt priority
(UARTXIP) bits 14-29, B-23

unbiased rounding 2-15
underflow

ALU 2-12
stack status 3-38

unframed data 9-26
Universal Asynchronous

Receiver/Transmitter (See
UART port)

unpacking data, multichannel
DMA 9-39

unsigned binary numbers 2-6
unsigned multiplier inputs (UU)

operator 2-32, 2-36
unsigned/signed multiplier inputs

(US) operator 2-32, 2-36
unused pins, recommendations for

14-8
USERCODE instruction 13-3
user-mappable interrupts

14-28…14-29

V
Von Neumann architecture 5-2

W
waitstate count 7-10

INDEX

I-40 ADSP-219x/2191 DSP Hardware Reference

waitstate mode select (E_WMS) bits
7-4

waitstate mode, memory access 7-10
waitstates

about 7-9
using 7-9

watchdog functionality 12-6
watchdog timer 12-6
waveforms

measuring pulse period 12-11
measuring pulsewidth 12-11

WDTH_CAP mode 12-11
window offset (WOFF) bits 9-36,

B-48
window size (WSIZE) bits 9-36,

B-48
word length select (WLS) bits 9-2,

9-23, B-78

wrap around, buffer 4-12, 4-15
write hold enable (E_WHE) bit 7-4
write open drain master (WOM) bit

10-12, 10-24, B-62
write strobe (WR) pin 7-22
write strobe sense logic sense

(E_WLS) bit 7-5
write waitstate count (E_WWC)

bits 7-4, 7-9
write-one-to-clear (W1C) operation

10-16

X
XOR operator 2-21

Z
zero, ALU (AZ) bit A-9

	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	Additional Literature
	What’s New in This Manual
	Technical or Customer Support
	Processor Family
	Product Information
	DSP Product Information
	Product Related Documents
	Technical Publications Online or on the Web
	Printed Manuals
	VisualDSP++ and Tools Manuals
	Hardware Manuals
	Data Sheets

	Recommendations for Improving Our Documents

	Conventions

	1 Introduction
	Overview—Why Fixed-Point DSP?
	ADSP-219x Design Advantages
	ADSP-219x Architecture
	Overview
	DSP Core Architecture
	DSP Peripherals Architecture
	Memory Architecture
	Internal (On-Chip) Memory
	External (Off-Chip) Memory

	Interrupts
	DMA Controller
	Host Port
	DSP Serial Ports (SPORTs)
	Serial Peripheral Interface (SPI) Ports
	UART Port
	Programmable Flag (PFx) Pins
	Low-Power Operation
	Clock Signals
	Booting Modes
	JTAG Port

	Differences from Previous DSPs
	Computational Units and Data Register File
	Arithmetic Status (ASTAT) Register Latency
	NORM and EXP Instruction Execution
	Shifter Result (SR) Register as Multiplier Dual Accumulator
	Shifter Exponent (SE) Register is Not Memory Accessible
	Software Condition (SWCOND) Register and Condition Code (CCODE) Register
	Unified Memory Space
	Data Memory Page (DMPG1 and DMPG2) Registers
	Data Address Generator (DAG) Addressing Modes
	Base Registers for Circular Buffers
	Program Sequencer, Instruction Pipeline, and Stacks
	Conditional Execution (Difference in Flag Input Support)
	Execution Latencies (Different for JUMP Instructions)

	Development Tools

	2 Computational Units
	Overview
	Data Formats
	Binary String
	Unsigned
	Signed Numbers: Twos Complement
	Signed Fractional Representation: 1.15
	ALU Data Types
	Multiplier Data Types
	Shifter Data Types
	Arithmetic Formats Summary

	Setting Computational Modes
	Latching ALU Result Overflow Status
	Saturating ALU Results on Overflow
	Using Multiplier Integer and Fractional Formats
	Rounding Multiplier Results
	Unbiased Rounding
	Biased Rounding

	Using Computational Status
	Arithmetic Logic Unit (ALU)
	ALU Operation
	ALU Status Flags
	ALU Instruction Summary
	ALU Data Flow Details
	ALU Division Support Features

	Multiply/Accumulates (Multiplier)
	Multiplier Operation
	Placing Multiplier Results in the MR or SR Registers
	Clearing, Rounding, or Saturating Multiplier Results

	Multiplier Status Flags
	Saturating Multiplier Results on Overflow
	Multiplier Instruction Summary
	Multiplier Data Flow Details

	Barrel Shifter (Shifter)
	Shifter Operations
	Derive Block Exponent
	Immediate Shifts
	Denormalize
	Normalize, Single-Precision Input
	Normalize, ALU Result Overflow
	Normalize, Double-Precision Input

	Shifter Status Flags
	Shifter Instruction Summary
	Shifter Data Flow Details

	Data Register File
	Secondary (Alternate) Data Registers
	Multifunction Computations

	3 Program Sequencer
	Overview
	Instruction Pipeline
	Instruction Cache
	Using the Cache
	Optimizing Cache Usage

	Branches and Sequencing
	Indirect Jump Page (IJPG) Register
	Conditional Branches
	Delayed Branches

	Loops and Sequencing
	Managing Loop Stacks
	Restrictions on Ending Loops

	Interrupts and Sequencing
	Overview
	Sensing Interrupts
	Masking Interrupts
	Latching Interrupts
	Interrupt Vector Table
	Stacking Status During Interrupts
	Nesting Interrupts
	Interrupt Latency
	Placing the DSP in Idle Mode

	Stacks and Sequencing
	Conditional Sequencing
	Sequencer Instruction Summary

	4 Data Address Generators (DAGs)
	Overview
	Setting DAG Modes
	Secondary (Alternate) DAG Registers
	Bit-Reverse Addressing Mode
	Data Memory Page Registers (DMPGx)

	Using DAG Status
	DAG Operations
	Addressing with DAGs
	Addressing Circular Buffers
	Addressing with Bit-Reversed Addresses
	Modifying DAG Registers

	DAG Register Transfer Restrictions
	DAG Instruction Summary

	5 Memory
	Overview
	Internal Address and Data Buses
	External Address and Data Buses
	Internal Data Bus Exchange

	ADSP-2191 DSP Memory Map
	Overview
	Internal Memory Space
	External Memory Space
	System Control Registers
	I/O Memory Space
	Boot Memory Space
	Shadow Write FIFO

	Data Move Instruction Summary

	6 I/O Processor
	System Interrupt Controller
	Configuring System Interrupts
	Interrupt Setup Examples
	Servicing System Interrupts

	DMA Controller
	Descriptor-Based DMA Transfers
	Autobuffer-Based DMA Transfers
	Interrupts from DMA Transfers

	Setting Peripheral DMA Modes
	DMA Channels
	MemDMA DMA Settings
	Host Port DMA Settings
	Serial Port DMA Settings
	SPI Port DMA Settings
	UART Port DMA Settings

	Working with Peripheral DMA Modes
	Using MemDMA DMA
	Using Host Port DMA
	Using Serial Port (SPORT) DMA
	Descriptor-Based SPORT DMA
	Autobuffer-Based SPORT DMA
	SPORT DMA Data Packed/Unpacked Enable

	Using SPI Port DMA
	SPI DMA in Master Mode
	SPI DMA in Slave Mode
	SPI DMA Errors

	Using UART Port DMA

	Boot Mode DMA Transfers
	Code Example: Internal Memory DMA

	7 External Port
	Overview
	Setting External Port Modes
	Memory Bank and Memory Space Settings
	External Bus Settings
	Bus Master Settings
	Boot Memory Space Settings

	Working with External Port Modes
	Using Memory Bank/Space Waitstates Modes
	Using Memory Bank/Space Clock Modes
	Using External Memory Banks and Pages
	Using Memory Access Status
	Using Bus Master Modes
	Using Boot Memory Space
	Reading from Boot Memory
	Writing to Boot Memory

	Interfacing to External Memory
	Data Alignment—Logical vs. Physical Address
	Memory Interface Pins
	Memory Interface Timing

	Code Example: BMS Run-Time Access

	8 Host Port
	Overview
	Host Port Setup Parameters
	Overview
	Data Bus Width and Address Bus
	Packing Parameters
	Control Signals
	Address Latch Enable/Address Cycle Control (HALE)
	HRD

	Read and Write Timing Diagrams
	Acknowledge/Ready

	Direct Access Mode Transactions
	Direct Access Mode
	Direct Access Read Modes
	Direct Access Mode Timing Diagrams

	Host Port DMA Mode Transactions
	Host Port DMA Mode
	Host Port DMA Controller
	Bus Arbitration and Usage Restrictions
	Using Semaphores
	Host Port DMA Mode Timing Diagrams
	Interrupt Interface

	Setting Up the Host Port

	9 Serial Ports (SPORTs)
	Overview
	SPORT Operation
	SPORT Disable

	Setting SPORT Modes
	Overview
	Transmit Configuration (SPx_TCR) Register and Receive Configuration (SPx_RCR) Register
	Register Writes and Effect Latency
	Transmit (SPx_TX) Data Buffer and Receive Data Buffer (SPx_RX)
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions
	Frame Sync and Clock Example

	Data Word Formats
	Word Length
	Endian Format
	Data Type
	Companding

	Clock Signal Options
	Frame Sync Options
	Framed vs. Unframed
	Internal vs. External Frame Syncs
	Active Low vs. Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early vs. Late Frame Syncs (Normal and Alternate Timing)
	Data-Independent Transmit Frame Sync

	Multichannel Operation
	Overview
	Frame Syncs in Multichannel Mode
	Multichannel Frame Delay
	Window Size
	Window Offset
	Other Multichannel Fields in SPx_TCR and SPx_RCR
	Channel Selection Registers
	Multichannel Enable
	Multichannel DMA Data Packing
	Multichannel TX FIFO Prefetch
	Multichannel Mode Example

	Moving Data Between SPORTs and Memory
	SPORT DMA Autobuffer Mode Example
	SPORT Descriptor-Based DMA Example

	Support for Standard Protocols
	2X Clock Recovery Control

	SPORT Pin/Line Terminations
	Timing Examples

	10 Serial Peripheral Interface (SPI) Ports
	Overview
	Interface Signals
	Serial Peripheral Interface Clock Signal (SCK)
	Serial Peripheral Interface Slave Select Input Signal (
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)
	Interrupt Behavior

	SPI Registers
	SPI Baud Rate (SPIBAUDx) Registers
	SPI Control (SPICTLx) Registers
	SPI Flag (SPIFLGx) Register
	Slave-Select Inputs
	Using the SPIFLG Register’s FLS Bits for Multiple-Slave SPI Systems

	SPI Status (SPISTx) Registers
	Transmit Data Buffer (TDBRx) Registers
	Receive Data Buffer (RDBRx) Registers
	Data Shift (SFDR) Register
	Register Mapping

	SPI Transfer Formats
	SPI General Operation
	Overview
	Clock Signals
	Master Mode Operation
	Transfer Initiation from Master (Transfer Modes)
	Slave Mode Operation
	Slave Ready for a Transfer

	Error Signals and Flags
	Mode-Fault Error (MODF)
	Transmission Error (TXE) Bit
	Reception Error (RBSY) Bit
	Transmit Collision Error (TXCOL) Bit

	Beginning and Ending an SPI Transfer
	DMA
	SPI Example

	11 UART Port
	Overview
	Serial Communications
	I/O Mode
	DMA Mode
	Descriptors
	Autobuffer Mode
	Mixing Modes

	Code Examples
	Initializing the UART
	Polling the TX Channel
	Interrupt Controlled Transmission
	Using Descriptor DMA on the UART TX Channel
	Setting Up Autobuffer DMA on the UART TX Channel
	Auto-Baud Rate Detection Using Timer 0

	12 Timer
	Overview
	Pulsewidth Modulation (PWMOUT) Mode
	PWM Waveform Generation
	Single-Pulse Generation

	Pulsewidth Count and Capture (WDTH_CAP) Mode
	Auto-Baud Mode

	External Event Watchdog (EXT_CLK) Mode

	Code Examples
	Timer Example Steps
	Timer0 Initialization Routine
	Timer Interrupt Service Routine

	13 JTAG Test-Emulation Port
	Overview
	JTAG Test Access Port
	Instruction Register
	Bypass Register
	Boundary Register
	IDCODE Register
	References

	14 System Design
	Pin Descriptions
	Recommendations for Unused Pins

	Pin States at Reset
	Resetting the Processor (“Hard Reset”)
	Resetting the Processor (“Soft Reset”)
	Booting the Processor (“Boot Loading”)
	Boot Modes
	SPI Port and UART Port Booting
	Host Port Booting
	External Memory Interface Booting
	Bootstream Format

	Configuring and Servicing Interrupts
	User-Mappable Interrupts

	Managing DSP Clocks
	Using the PLL Control (PLLCTL) Register
	Designing for Multiplexed Clock Pins
	Using Clock Modes

	Using Programmable Flags
	Flag Configuration Registers
	Flag Direction (DIR) Register
	Flag Control (FLAGC and FLAGS) Registers
	Flag Interrupt Mask Registers (MASKAC, MASKAS, MASKBC, and MASKBS)
	Flag Interrupt Polarity (FSPR) Register
	Flag Sensitivity (FSSR) Register and Flag Sensitivity Both Edges (FSBER) Register

	Power-Down Modes
	Idle Mode
	Power-Down Core Mode
	Power-Down Core/Peripherals Mode
	Power-Down All Mode
	Working with External Bus Masters
	Recommended Reading
	Programmable Flags Example

	A ADSP-219x DSP Core Registers
	Overview
	Core Registers Summary
	Register Load Latencies

	Core Status Registers
	Arithmetic Status (ASTAT) Register
	Mode Status (MSTAT) Register
	System Status (SSTAT) Register

	Computational Unit Registers
	Data Register File (Dreg) Registers
	ALU X Input (AX0, AX1) Registers and ALU Y Input (AY0, AY1) Registers
	ALU Results (AR) Register
	ALU Feedback (AF) Register
	Multiplier X Input (MX0, MX1) Registers and Multiplier Y Input (MY0, MY1) Registers
	Multiplier Results (MR2, MR1, MR0) Registers
	Shifter Input (SI) Register
	Shifter Exponent (SE) Register and Shifter Block Exponent (SB) Register
	Shifter Result (SR2, SR1, SR0) Registers

	Program Sequencer Registers
	Interrupt Mask (IMASK) Register and Interrupt Latch (IRPTL) Register
	Interrupt Control (ICNTL) Register
	Indirect Jump Page (IJPG) Register
	PC Stack Page (STACKP) Register and PC Stack Address (STACKA) Register
	Loop Stack Page (LPSTACKP) Register and Loop Stack Address (LPSTACKA) Register
	Counter (CNTR) Register
	Condition Code (CCODE) Register
	Cache Control (CACTL) Register

	Data Address Generator Registers
	Index (Ix) Registers
	Modify (Mx) Registers
	Length (Lx) Registers and Base (Bx) Registers
	Data Memory Page (DMPGx) Registers

	Memory Interface Registers
	PM Bus Exchange (PX) Register
	I/O Memory Page (IOPG) Register

	Register and Bit #Defines File (def219x.h)

	B ADSP-2191 DSP I/O Registers
	I/O Processor Registers
	Clock and System Control Registers
	PLL Control (PLLCTL) Register
	PLL Lock Counter (LOCKCNT) Register
	Software Reset (SWRST) Register
	Next System Configuration (NXTSCR) Register
	System Configuration (SYSCR) Register

	System Interrupt Controller Registers
	Interrupt Priority (IPRx) Registers
	Interrupt Source (INTRDx) Registers

	DMA Controller Registers
	MemDMA Channel Write Pointer (DMACW_PTR) Register
	MemDMA Channel Write Configuration (DMACW_CFG) Register
	MemDMA Channel Write Start Page (DMACW_SRP) Register
	MemDMA Channel Write Start Address (DMACW_SRA) Register
	MemDMA Channel Write Count (DMACW_CNT) Register
	MemDMA Channel Write Chain Pointer (DMACW_CP) Register
	MemDMA Channel Write Chain Pointer Ready (DMACW_CPR) Register
	MemDMA Channel Write Interrupt (DMACW_IRQ) Register
	MemDMA Channel Read Pointer (DMACR_PTR) Register
	MemDMA Channel Read Configuration (DMACR_CFG) Register
	MemDMA Channel Read Start Page (DMACR_SRP) Register
	MemDMA Channel Read Start Address (DMACR_SRA) Register
	MemDMA Channel Read Count (DMACR_CNT) Register
	MemDMA Channel Read Chain Pointer (DMACR_CP) Register
	MemDMA Channel Read Chain Pointer Ready (DMACR_CPR) Register
	MemDMA Channel Read Interrupt (DMACR_IRQ) Register

	SPORT Registers
	SPORT Transmit Configuration (SPx_TCR) Registers
	SPORT Receive Configuration (SPx_RCR) Registers
	SPORT Transmit Data (SPx_TX) Registers
	SPORT Receive Data (SPx_RX) Registers
	SPORT Transmit Serial Clock Divisor (SPx_TSCKDIV) Registers and SPORT Receive Serial Clock Diviso...
	SPORT Transmit Frame Sync Divisor (SPx_TFSDIV) Registers and SPORT Receive Frame Sync Divisor (SP...
	SPORT Status (SPx_STATR) Registers
	SPORT Multichannel Transmit Channel Select (SPx_MTCSx) Registers
	SPORT Multichannel Receive Channel Select (SPx_MRCSx) Registers
	SPORT Multichannel Mode Configuration (SPx_MCMCx) Registers
	SPORT DMA Receive Pointer (SPxDR_PTR) Registers
	SPORT Receive DMA Configuration (SPxDR_CFG) Registers
	SPORT Receive DMA Start Page (SPxDR_SRP) Registers
	SPORT Receive DMA Start Address (SPxDR_SRA) Registers
	SPORT Receive DMA Count (SPxDR_CNT) Registers
	SPORT Receive DMA Chain Pointer (SPxDR_CP) Register
	SPORT Receive DMA Chain Pointer Ready (SPxDR_CPR) Registers
	SPORT Receive DMA Interrupt (SPxDR_IRQ) Registers
	SPORT Transmit DMA Pointer (SPxDT_PTR) Registers
	SPORT Transmit DMA Configuration (SPxDT_CFG) Registers
	SPORT Transmit DMA Start Address (SPxDT_SRA) Registers
	SPORT Transmit DMA Start Page (SPxDT_SRP) Registers
	SPORT Transmit DMA Count (SPxDT_CNT) Registers
	SPORT Transmit DMA Chain Pointer (SPxDT_CP) Registers
	SPORT Transmit DMA Chain Pointer Ready (SPxDT_CPR) Registers
	SPORT Transmit DMA Interrupt (SPxDT_IRQ) Registers

	Serial Peripheral Interface Registers
	SPI Control (SPICTLx) Registers
	SPI Flag (SPIFLGx) Registers
	SPI Status (SPISTx) Registers
	SPI Transmit Buffer (TDBRx) Registers
	Receive Data Buffer (RDBRx) Registers
	Receive Data Buffer Shadow, SPI (RDBRSx) Registers
	SPI Baud Rate (SPIBAUDx) Registers
	SPI DMA Current Pointer (SPIxD_PTR) Registers
	SPI DMA Configuration (SPIxD_CFG) Registers
	SPI DMA Start Page (SPIxD_SRP) Registers
	SPI DMA Start Address (SPIxD_SRA) Registers
	SPI DMA Word Count (SPIxD_CNT) Registers
	SPI DMA Next Chain Pointer (SPIxD_CP) Registers
	SPI DMA Chain Pointer Ready (SPIxD_CPR) Registers
	SPI DMA Interrupt (SPIxD_IRQ) Registers

	UART Registers
	UART Control Registers
	Transmit Hold (THR) Register
	Receive Buffer (RBR) Register
	Interrupt Enable (IER) Register
	UART Divisor Latch Registers (DLL and DLH)
	Interrupt Identification (IIR) Register
	Line Control (LCR) Register
	Modem Control (MCR) Register
	Line Status (LSR) Register
	Modem Status (MSR) Register
	Scratch (SCR) Register

	UART RX DMA Registers
	UART DMA Receive Pointer (UARDR_PTR) Register
	UART Receive DMA Configuration (UARDR_CFG) Register
	UART Receive DMA Start Page (UARDR_SRP) Register
	UART Receive DMA Start Address (UARDR_SRA) Register
	UART Receive DMA Count (UARDR_CNT) Register
	UART Receive DMA Chain Pointer (UARDR_CP) Register
	UART Receive DMA Chain Pointer Ready (UARDR_CPR) Register
	UART Receive DMA Interrupt Register (UARDR_IRQ) Register

	UART TX DMA Registers
	UART Transmit DMA Pointer (UARDT_PTR) Register
	UART Transmit DMA Configuration (UARDT_CFG) Register
	UART Transmit DMA Start Page (UARDT_SRP) Register
	UART Transmit DMA Start Address (UARDT_SRA) Register
	UART Transmit DMA Count (UARDT_CNT) Register
	UART Transmit DMA Chain Pointer (UARDT_CP) Register
	UART Transmit DMA Chain Pointer Ready (UARDT_CPR) Register
	UART Transmit DMA Interrupt (UARDT_IRQ) Register

	Timer Registers
	Overview
	Timer Global Status and Control (T_GSRx) Registers
	Timer Configuration (T_CFGRx) Registers
	Timer Counter Low Word (T_CNTLx) and Timer Counter High Word (T_CNTHx) Registers
	Timer Period Low Word (T_PRDLx) and Timer Period High Word (T_PRDHx) Registers
	Timer Width Low Word (T_WLRx) Register and TImer Width High Word (T_WHRx) Register

	Programmable Flag Registers
	Direction for Flags (DIR) Register
	Flag (PFx) Interrupt Registers: Flag Clear (FLAGC) and Flag Set (FLAGS)
	Flag (PFx) Interrupt Mask Registers
	Flag Source Polarity (FSPR) Register
	Flag Source Sensitivity (FSSR) Register
	Flag Sensitivity Both Edges (FSBER) Register

	External Memory Interface Registers
	External Memory Interface Control/Status (E_STAT) Register
	External Memory Interface Control (EMICTL) Register
	Boot Memory Select Control (BMSCTL) Register
	Memory Select Control (MSxCTL) Registers
	I/O Memory Select Control (IOMSCTL) Registers
	External Port Status (EMISTAT) Register
	Memory Page (MEMPGx) Registers

	Host Port Registers
	Host Port Configuration (HPCR) Register
	Host Port Direct Page (HPPR) Register
	Host Port DMA Error (HPDER) Register
	Host Port Semaphore (HPSMPHx) Registers
	Host Port DMA Pointer (HOSTD_PTR) Register
	Host Port DMA Configuration (HOSTD_CFG) Register
	Host Port DMA Start Page (HOSTD_SRP) Register
	Host Port DMA Start Address (HOSTD_SRA) Register
	Host Port DMA Word Count (HOSTD_CNT) Register
	Host Port DMA Chain Pointer (HOSTD_CP) Register
	Host Port DMA Chain Pointer Ready (HOSTD_CPR) Register
	Host Port DMA Interrupt (HOSTD_IRQ) Register

	Register and Bit #define File (def2191.h)

	C Numeric Formats
	Un/Signed: Twos Complement Format
	Integer or Fractional
	Binary Multiplication
	Fractional Mode and Integer Mode

	Block Floating-Point Format

	I Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

