

System operating manual

DIQ/S 182-MOD (System 182)

Modular measuring system for 2 digital sensors with Modbus RTU/RS 485 output

Note

The latest version of the present operating manual can be found on the Internet under <u>www.WTW.com.</u>

Copyright © Weilheim 2012, WTW GmbH Reprinting - even as excerpts - is only allowed with the explicit written authorization of WTW GmbH, Weilheim. Printed in Germany.

System 182 - Contents

1	Ove	rview .	· · · · · · · · · · · · · · · · · · ·	1-1
	1.1	Structur	e and function	1-1
	1.2	Behavic	or of the system in the case of power failure	1-3
2	Safe	ty instr	uctions	2-1
	2.1	User qu	alification	2-1
	2.2	Authoriz	zed use	2-2
	2.3	General	I safety instructions	2-2
3	Insta	allation		3-1
	3.1	Scope of	of delivery	3-1
	3.2	Require	ments of the measurement location	3-1
	3.3	Installat	ion guidelines for lightning protection	3-1
	3.4	Connec	ting system components	3-4
		3.4.1	Connecting MIQ modules: General information	3-4
		3.4.2	Variant 1: Stack expansion forwards	3-6
		3.4.3	Variant 2: stack expansion backwards	3-9
		3.4.4	Distributed mounting	-12
	0 5	3.4.5 Ora eite	Connecting to sensors	-10
	3.5	On sile	Conoral information	-18 _18
		352	Mounting on a mounting stand with the SSH/IQ sun shield	-10
		3.5.3	Panel mounting	-22
		3.5.4	Top hat rail mounting	-24
	3.6	Using D	01Q modules (accessories)	-25
		3.6.1 [°]	DIQ/JB	-25
		3.6.2	DIQ/CHV	-25
		3.6.3	Installation of the DIQ modules	-26
	3.7	Electrica	al connections: General instructions 3	-27
	3.8	Connec	ting the voltage supply	-29
		3.8.1	DIQ/S 182-MOD (line power version)	-29
		3.8.2	DIQ/S 182-MOD/24V (24 V Version)	-33
	20	3.0.3 Connoo	Additional MiQ power supply modules	-30 20
	3.9	2 Q 1	General installation instructions	-30
		3.9.2	Usage of the auxiliary voltage	-40
	3.10	Commis	ssioning	-42
	3.11	Installat	ion examples	-43
	0.11	3.11.1	Connecting two sensors without compressed air cleaning	-43
		3.11.2	Connecting two sensors with compressed air cleaning	-44
	3.12	Figures	of the terminal strips	-46

4	Оре	eration	4-1
	4.1	Operating elements	4-1
	4.2	Measured value and status display	4-2
	4.3	Working with the SETTINGS menu	4-4
		4.3.1 Selection menus	4-4
		4.3.2 Setting tables	
		4.3.3 Entry mode	
	4.4		
		4.4.1 Overview	
		4.4.2 Maintenance condition	4-9 <i>A</i> _11
	15		- 15
	4.J		4 -15
	4.0		4-17
5	The	SETTINGS menu	5-1
	5.1	Overview of the SETTINGS menu	5-1
	5.2	Language	5-1
	5.3	Sensor S01/S02	5-2
	5.4	Relay output R1/R2/R3	5-4
	5.5	Modbus configuration	5-4
	5.6	System	5-4
6	Rela	ay outputs	6-1
	6.1	General information	6-1
	6.2	Linking and adjusting: general proceedings	6-2
		6.2.1 Linking relay outputs	6-2
		6.2.2 Deleting a link with an output	6-3
	~ ~		
	6.3	Basic information on relay functions	6-5
		6.3.2 Limit indicator	
		6.3.3 Proportional output	6-7
	64	Setting table for relays	6-14
	0.1	6.4.1 Functions and settings	6-14
		6.4.2 System monitoring	6-15
		6.4.3 Sensor monitoring	6-16
		6.4.4 Limit indicator	6-17
		6.4.5 Frequency output	6-18
		6.4.6 Pulse-width output	6-19
		6.4.7 Sensor-controlled cleaning	6-20
		0.4.0 Cleaning	0-21
	6 5		
	0.0	6.5.1 Behavior in case of error	
		6.5.2 Behavior in non-operative condition	6-25

7	Mod	bus connection
	7.1	Modbus checklist
	7.2	Connecting the Modbus cable
	7.3	Setting the Modbus interface parameters
	7.4	Transmitted sensor data
		7.4.1 Overview
		7.4.2 Sensor administration under Modbus
		7.4.3 Sensor data block
		7.4.4 Data formats
	7.5	Modbus query
	7.6	Modbus error elimination
8	Mair	ntenance and cleaning
	8.1	Maintenance
	8.2	Cleaning
9	Wha	ıt to do if
	9.1	Information on errors
	9.2	Error causes and remedies
	9.3	Beplacing system components
		9.3.1 Replacing passive components
		9.3.2 Adding and replacing IQ sensors
10	Tech	nnical data
	10.1	DIQ/S 182-MOD
	10.2	MIQ modules
	10.3	DIQ/JB
	10.4	DIQ/CHV
	10.5	Space required by mounted components
11	Acc	essories and options 11-1
12	Inde	x
13	Арр	endix (store separately if required) 13-1
	13.1	Forgotten the password?
	13.2	Default passwords
		· · · · · · · · · · · · · · · · · · ·

1 Overview

1.1 Structure and function

The System 182 is a modular, multiparameter measuring system. The control and operation unit of the system is the DIQ/S 182-MOD Universal Transmitter with integrated power pack. Is has three relay outputs and a Modbus output for the connection to existing process control systems.

Sensors One or two digital WTW single sensors (one sensor for one main measured parameter) or a double sensor (one sensor for two main measured parameters) can be connected to the DIQ/S 182-MOD Universal Transmitter. I. e. up to two main measured parameters (e.g. pH, D. O. content, turbidity value...) and additionally up to two secondary measured parameters (e.g. temperature) can be displayed and administrated. Each sensor is automatically recognized after being connected and immediately starts measuring.

The sensors can be directly connected to the DIQ/S 182-MOD Universal Transmitter.

Fig. 1-1 Simple systems with one and two sensors

Relay outputs	The relay outputs can be linked to sensors. Linked outputs can be used to monitor sensors and for the output of measured values.
	A relay output is programmable as:
	 Alarm contact (event monitoring)
	Limit monitor
	 Proportional output of measured values (pulse width or frequency output)
	 Control unit of a compressed air-driven sensor cleaning system.
	For quick orientation, the states of all relay outputs are clearly indicated on the display.
Modbus output	The Modbus output enables a connection to a Modbus master (Modbus RTU/RS 485) and thus a connection to a superordinate process control.
Compressed air-driven cleaning system	The DIQ/S 182-MOD Universal Transmitter is prepared for the compressed air-driven, time-controlled sensor cleaning function. For this, a DIQ/CHV valve module and if necessary a CH cleaning head is required per sensor (both available as accessories). The cleaning procedure is controlled by the Universal Transmitter. The Universal Transmitter provides the supply voltage and control relay for the compressed air valve in the DIQ/CHV valve module. This enables a simple setup and uncomplicated wiring.
	Alternatively, the MIQ/CHV PLUS valve module can be installed in the system. It combines the relay, valve and valve power supply in one MIQ enclosure. Thus, no additional wiring is required, which makes installation easier especially if the distance between the Universal Transmitter and sensor is great.
Further system options	If necessary, an additional power pack can be added to supply sensors with high power consumption (e.g. UV/VIS sensor).

1.2 Behavior of the system in the case of power failure

- The system configuration remains stored permanently. It consists of the following settings:
 - Sensor settings
 - Settings and links of relay outputs
 - Modbus settings
 - System settings (display language, air pressure/location altitude, passwords, etc.)
- Linked relay outputs switch to the non-active condition (open).
- When the power is restored the system is automatically restarted. The system continues to work with the settings at the time of the power failure (except for the time).

Overview

2 Safety instructions

This operating manual contains essential instructions that must be followed during the commissioning, operation and maintenance of the System 182. Thus, it is essential for the operator to read this component operating manual before carrying out any work with the system.

General safety instructions

Safety instructions in this operating manual are indicated by the warning symbol (triangle) in the left column. The signal word (e.g. "Caution") indicates the danger level:

Warning

indicates instructions that must be followed precisely in order to prevent serious dangers to personnel.

Caution

indicates instructions that must be followed precisely in order to avoid slight injuries to personnel or damage to the instrument or the environment.

Note

indicates notes that draw your attention to special features.

Note

indicates cross-references to other documents, e.g. component operating manuals.

2.1 User qualification

Target groupThe System 182 was developed for online analysis. Some
maintenance activities, e.g. changing the membrane caps in D.O.
sensors, require the safe handling of chemicals. Thus, we assume that
the maintenance personnel is familiar with the necessary precautions
to take when dealing with chemicals as a result of their professional
training and experience.

Special user qualifications

	 Connecting the DIQ/S 182-MOD Universal Transmitter or an additional MIQ power supply module to the power supply.
	• Connecting external, line voltage-carrying circuits to relay contacts.
	2.2 Authorized use
	The authorized use of the System 182 consists only of its use in online analysis. Please observe the technical specifications according to chapter 10 TECHNICAL DATA. Only operation and running according to the instructions in this component operating manual is authorized.
	Any other use is considered to be unauthorized . Unauthorized use invalidates any claims with regard to the guarantee.
	2.3 General safety instructions
	All components of the System 182 are constructed and inspected in accordance with the relevant guidelines and norms for electronic instruments (see chapter 10 TECHNICAL DATA). They left the factory in a safe and secure technical condition.
Function and operational safety	The failure-free function and operational safety of the System 182 components are only guaranteed if the generally applicable safety measures and the special safety instructions in this operating manual are followed during their use.
	The failure-free function and operational safety of the System 182 components are only guaranteed under the environmental conditions that are specified in chapter 10 TECHNICAL DATA.
	If System 182 components are transported from a cold environment into a warm environment, this can cause a malfunction through the formation of condensation. In this case, wait for the components to adjust to room temperature before recommissioning.

The following installation activities may only be performed by a qualified electrician:

Safe operation If safe operation is no longer possible, the System 182 must be taken out of operation and secured against inadvertent operation. Safe operation is no longer possible if components:

- have been damaged in transport
- have been stored under adverse conditions for a lengthy period of time
- are visibly damaged
- no longer operate as described in this manual.

If you are in any doubt, contact the supplier of your System 182.

Obligations of the operator The operator of the System 182 must ensure that the regulations and guidelines listed below are followed when dealing with dangerous substances:

- EEC guidelines relating to safety at work
- National laws relating to safety at work
- Accident prevention regulations
- Safety datasheets of the chemicals manufacturers.

Warning

A circuit (except for power supply connections and relay circuits), that is connected to the System 182, must not feed any voltages or currents that are not allowed. It has to be made sure that the circuit at any time meets all requirements of a *Limited circuit* or *Limited Power* as well as of *SELV* (Safety Extra Low Voltage). These include the following limiting value specifications:

- AC voltage: max. 30 V effective / 42.4 V peak
- DC voltage: max. 60 V
- Current limit: max. 8 A
- Power output limitation: max. 150 VA

3 Installation

Note

How to connect the DIQ/S 182-MOD to the Modbus master is described in detail in the chapter 7 MODBUS CONNECTION.

3.1 Scope of delivery

The following parts are included in the scope of delivery of the DIQ/ S 182-MOD:

- DIQ/S 182-MOD Universal Transmitter
- Accessory kit with:
 - Contact carrier with screws
 - ISO cap nuts with screws and ring washers
 - Cable glands with sealing gaskets
- Operating manual.

3.2 Requirements of the measurement location

The measurement location must meet the environmental conditions specified in section 10.1 DIQ/S 182-MOD.

3.3 Installation guidelines for lightning protection

When using the IQ SENSOR NET instrumentation, particularly in outdoor areas, adequate protection against (electrical) surges must be provided. A surge is a summation phenomenon of surge voltage and surge current. It is generated through the indirect effect of a lightning event or switching operation in the mains, in the grounding system and in information technology lines.

To be adequately protected against the damaging effects of surges, an integrated concept of the following protective measures is required:

- internal device-related protective measures and
- external protective measures of the installation environment.

The internal device-related protective measures are already integrated in the WTW online measuring technology as so-called 'lightning protection' (see chapter 10 TECHNICAL DATA). The external protective measures of the installation environment can be carried out with respect to the following guidelines:

All lines of the IQ SENSOR NET system must be

 a) installed inside (or else close to) the grounded metallic mounting constructions, e.g. handrails, pipes and posts if possible
 b) or, particularly in the case of longer lines, laid in the ground.

Background: The formation of highly lightning hazardous inductive loops between the cables and ground is avoided through the low clearance of the grounded metal construction or by installation in the ground.

- 2 Only the SNCIQ or SNCIQ-UG cable material must be used. This cable material, particularly the high line cross section of the cable shielding (1.5 mm²), is an important prerequisite for the hazard-free discharging of the surge without inadmissibly high overvoltages developing along the line at the same time that could have a damaging effect on the individual IQ SENSOR NET components. It is not recommended to use cables from other manufacturers with usually appreciably lower shielding conductor cross sections.
- 3 All metallic mounting constructions, handrails, pipes, posts etc. on which MIQ modules are installed must be connected to the local potential equalization system and the grounding system or must be individually sufficiently grounded locally according to the codes of practice.

For the individual grounding of the measuring point the mounting construction must be solidly connected by means of a large-area auxiliary electrode with the measuring medium.

Metallic control shafts/pipes and other large-area metallic bodies that reach into the measuring medium are, for example, ideal for use in the grounding of the mounting construction.

This creates a set path for the main surge. As a result it is possible to avoid the surge being discharged via the IQ SENSOR NET cable and via the valuable sensors in the measuring medium.

- 4 The contacts of the MIQ modules must always be protected by the associated contact covers if they are not in use. The contact cover provides improved insulation against the electric fields of a thunderstorm event through the extension of the air and creepage paths.
- 5 It is recommended to attach a metallic or nonmetallic sun shield to each outside location of the MIQ modules. Sun shields protect the electric field lines in the area of the MIQ module through an advantageous development of the electrical field lines in the area of the MIQ module and promote the dissipation of the surge via the mounting construction.
- 6 The mains voltage for supplying the measuring system must comply

with overvoltage category II. Generally this is ensured through the public operator of the power supply networks. In company-owned networks, e.g. in all power supply systems owned by wastewater treatment plants, this must be kept separate by a potential equalization and a surge protection system for the plant.

- 7 One part of the IQ SENSOR NET safety and lightning protection concept is based on high-grade protective insulation of the network components and of the entire system. It does not have or require any protective ground (PG) conductor or earth terminal. Avoid any direct connection of the IQ SENSOR NET connections or the metallic sensor enclosures with the local grounding or potential equalization system and with metallic construction elements (see point 9).
- 8 Additional external lightning protection measures directly on the IQ SENSOR NET system or its components, e.g. the use of overvoltage surge arresters, are not necessary for protection against the indirect effects of lightning and could possibly result in malfunctions.
- 9 For the realization of the internal lightning protection of the system (e.g. wastewater treatment plant control stands) and for the protection of IQ SENSOR NET external resources, cable entry points into buildings or distributions coming from the IQ SENSOR NET must be carried out as follows:
 - The shield of SNCIQ or SNCIQ-UG cables can be connected to the local potential equalization with a gas overvoltage surge arrester. Shielding terminals (e. g. of the Modbus system) have to be used to contact the shield. The shield of the cable must not be opened under any circumstances.
 - 0/4-20 mA interfaces must be realized with shielded cables. The cable shield must be connected directly to the potential equalization(s) provided. If plant potential equalization systems are provided on both sides, the shield must also be connected on both sides. The inner conductors must have no contact with the potential equalization.
 - The Modbus cables have to be installed according to the rules of the relevant bus system.
 - Relay lines should be connected to the local potential equalization in order to provide general and consistent protection via gas overvoltage surge arresters.

3.4 Connecting system components

3.4.1 Connecting MIQ modules: General information

You can connect the Universal Transmitter to MIQ modules without connection cable (stack mounting).

	T	
Mounting direction	 Variant 1 - stack expansion forwards. The back of the Universal Transmitter or an MIQ module is attached to the lid of an MIQ module (page 3-6). Select this variant if an MIQ module is already permanently installed, e.g. to a wall. 	MIQ Module DIQ/S 182-MOD MIQ Module MIQ Module
	Variant 2: - stack expansion backwards. The lid of an MIQ module is attached to the back of the Universal Transmitter or another MIQ module (page 3-9). Select this variant if the Universal Transmitter or other MIQ module is already permanently installed, e.g. in a panel.	DIQ/S 182-MOD MIQ Module MIQ Module MIQ Module

Caution

For optimum stability, a maximum of two MIQ modules may be connected to the Universal Transmitter. One MIQ power supply module only may be mounted per stack in addition to the Universal Transmitter.

Note

In the case of panel mounting, the front module must be installed individually in the switch cabinet aperture first. Only then can any MIQ modules be added (variant 2).

Tools

Note

The terminator switch on the terminal strip of all MIQ modules in the System 182 must be set to "Off".

Materials required

- 2 x ISO blind nuts (M4)
- 2 x cheese-head screws (M4x16) with plastic washer
- 1 x contact base with two plastic tapping screws (scope of delivery of the MIQ module).

Phillips screwdriver.

Below, both installation variants of attaching an MIQ module to the Universal Transmitter are described. The assembly of further MIQ modules is carried out analogously. To dismantle a stack, proceed in the reverse order to mounting.

3.4.2 Variant 1: Stack expansion forwards

1	Remove the covers from the drilled mounting holes (pos. 1 and 3 in Fig. 3-1).
2	Remove the contact cover (pos. 2).
3	Pull off the adhesive label (pos. 4).

Fig. 3-2 Mounting the contact base (variant 1)

Note Only

Only use the plastic tapping screws supplied for attaching the contact base. They ensure the correct fit.

- 4 Attach the contact base (pos. 5 in Fig. 3-2) on the Universal Transmitter with the two plastic tapping screws (pos. 6).
- 5 On the Universal Transmitter, remove the two countersunk screws (pos. 7 in Fig. 3-2) and swing open the lid.

Fig. 3-3 Premounting the ISO blind nuts (variant 1)

6 Insert the cheese-head screws (pos. 8 in Fig. 3-3) with the plastic washers in the drilled mounting holes in the enclosure and loosely screw in the ISO blind nuts (pos. 9).

Premounting the ISO blind nuts

Fig. 3-4 Stacking the MIQ modules (variant 1)

Fig. 3-5 Closing the enclosure (variant 1)

- 7 Attach the prepared Universal Transmitter to the lid of the MIQ module. At the same time, ensure that the two clips on the Universal Transmitter click into place in the lid of the MIQ module. Subsequently, tighten the two screws (pos. 8 in Fig. 3-3).
- 8 Close the lid of the Universal Transmitter and fix it with the two countersunk screws (pos. 7 in Fig. 3-5).

3.4.3 Variant 2: stack expansion backwards

Fig. 3-6 Preparing the MIQ modules for stack mounting (variant 2)

1	Remove the covers from the drilled mounting holes (pos. 1 and 3 in Fig. 3-6).
2	Remove the contact cover (pos. 2).
3	Pull off the adhesive label (pos. 4).
4	On the MIQ module, remove the two countersunk screws (pos. 5) and swing open the module lid.

Fig. 3-7 Mounting the contact base (variant 2)

7

DIQ/S 182-MOD

Note

Only use the plastic tapping screws supplied for attaching the contact base. They ensure the correct fit.

5 Attach the contact base (pos. 6 in Fig. 3-7) on the Universal Transmitter with the two plastic tapping screws (pos. 7).

Premounting the ISO blind nuts

Fig. 3-8 Premounting the ISO blind nuts (variant 2)

6 Insert the cheese-head screws (pos. 8 in Fig. 3-8) with the plastic washers in the drilled mounting holes in the module lid and loosely screw in the ISO blind nuts (pos. 9).

Fig. 3-10 Closing the enclosure (variant 2)

7	Attach the prepared MIQ module to the back of the Universal Transmitter. At the same time, ensure that the two clips on the Universal Transmitter click into place in the lid of the MIQ module. Subsequently, tighten the two screws (pos. 8 in Fig. 3-8).
8	Close the MIQ module and fix it with the two countersunk screws (pos. 5 in Fig. 3-10).

General information

For the locally separated connection between Universal Transmitter and MIQ modules and between MIQ modules the following cables can be used:

SNCIQ cable

3.4.4 Distributed mounting

• SNCIQ/UG earth cable - suitable for underground laying in accordance with VDE 01816, Part 2 and DIN/VDE 0891, Part 6.

The cables are delivered as piece goods (please specify length when ordering!).

Note

For distances under 2 m, e.g. to connect the Universal Transmitter and DIQ/JB when installing two sensors in the immediate vicinity of the Universal Transmitter, any two-wire screened cable can also be used (wire cross-section $> 0.5 \text{ mm}^2$)

Caution

The IQ Sensor Net cable may be connected to the SENSORNET connections only. No wires of the cable may be connected with an external electrical potential. Otherwise, malfunctions could occur.

General installation Pay attention to the following points when connecting components via instructions IQ SENSOR NET lines:

- The sum of all IQ SENSOR NET line lengths (SNCIQ, SNCIQ/UG and SACIQ) in the system may be up to a maximum of 250.
- IQ SENSOR NET lines must always be installed separately at a minimum distance of 20 cm from any other lines carrying a voltage greater than 60 V.
- The terminator switch on the terminal strip of all MIQ modules in the System 182 must be set to "Off".

Materials required

- 1 x SNCIQ or SNCIQ/UG connection cable (see chapter 11 ACCESSORIES AND OPTIONS)
- Wire end sleeves for 0.75 mm2 wire cross-section with matching crimping tool
- 1 x cable gland with seal (scope of delivery of MIQ module).

Tools

- Cable stripping knife
- Wire stripper
- Phillips screwdriver
- Small screwdriver.

Preparing the cable ends	1	Cut off the cable to the required length.
	2	Remove approx. 45 mm of cable insulation (in the case of the SNCIQ/UG earth cable, remove both the inner <u>and</u> outer insulation).
	3	Only for the SNCIQ/UG earth cable: strip the outer insulation for a further 35 mm.
	4	Shorten the exposed shielding braid up to the cable sheath.
	5	Shorten the two fillers (plastic inlays) up to the cable sheath.
	6	Bare the red and green wires and fit them with wire end sleeves.
	7	Fit the filler stranded wire with a wire end sleeve.

Fig. 3-11 Prepared cable end

Connecting the cables

The SNCIQ and SNCIQ/UG cables are connected to the terminal strip in the same way as the SACIQ sensor connection cable (see section 3.4.5):

- 1 Open the enclosure of the Universal Transmitter or MIQ module.
- 2 Select a free SENSORNET connection. At the same time, look out for the SENSORNET designation on the label on the bottom of the enclosure.

Fig. 3-12 Connecting cables (example of Universal Transmitter)

3	Screw a cable gland (pos. 1 in Fig. 3-12) with the sealing ring (pos. 2) into the enclosure.
4	Loosen the coupling ring (pos. 3 in Fig. 3-12).
5	Feed the cable through the cable gland into the enclosure.

Fig. 3-13 Example: SENSORNET connection

6	Connect the cable ends to the terminal strip. At the same time, look out for the designations of the terminals (red / shield / green).
7	Tighten the coupling ring (pos. 3 in Fig. 3-12).
8	Close the enclosure.

Note

The complete assignment of the terminal strip is shown in section 3.12.

	3.4.5 Connecting IQ sensors
	Sensors can be connected to all free SENSORNET connectors in the 182 system. The Universal Transmitter DIQ/S 182-MOD has two SENSORNET connections.
General installation	Observe the following points when attaching sensors to the system:
instructions	 The sum of all IQ SENSOR NET line lengths (SNCIQ, SNCIQ/UG and SACIQ) in the system may be up to a maximum of 250.
	 IQ SENSOR NET lines must always be installed separately at a minimum distance of 20 cm from other lines that carry a voltage greater than 60 V.
Materials required	 1 x SACIQ connection cable (see chapter 11 ACCESSORIES AND OPTIONS)
	 1 x cable gland with seal
	The free end of the connection cable already has the sheath removed in the factory and all the wires are fitted with wire end sleeves.
Tools	Phillips screwdriver
	 Small screwdriver.
Connecting the SACIQ cable to the Universal Transmitter or MIQ module	The connection of the SACIQ cable to the terminal strip is described in section 3.4.4 (see CONNECTING THE CABLES, Seite 13).
	Caution The SACIQ sensor connection cable may only be connected to the SENSORNET connections. No wires of the cable may be connected with an external electrical potential. Otherwise,

malfunctions could occur.

Connecting the sensor to the connection cable

1	Remove the protective caps from the plug connections of the IQ sensor and SACIQ sensor connection cable and keep them safe.
2	Plug the socket of the SACIQ sensor connection cable onto the plug head connector of the IQ sensor. At the same time, rotate the socket so that the pin in the plug head connector (1) clicks into one of the two holes in the socket.
3	Then, screw the coupling ring (2) of the IQ sensor connection cable on the IQ sensor up to the stop.

Fig. 3-14 Connecting the SACIQ cable with the IQ sensor

Note

For further instructions on the mounting of IQ sensors at the application location, please see the respective manuals (immersion depths, etc.).

3.5 On site mounting of the Universal Transmitter and MIQ Modules

3.5.1 General information

The DIQ/S 182-MOD and the DIQ and MIQ modules have a comprehensive program of mounting accessories, which can be used to adapt the installation to the most varied requirements.

Caution

Caution

Components installed outside must always be protected by a sun shield against the effects of the weather (snow, ice and direct solar radiation). Otherwise, malfunctions can result. Always mount the Universal Transmitter in an upright position. Do not under any circumstances install MIQ modules without rain protection with the lid facing upwards (danger of retained humidity and penetration of moisture).

Installation options

The most important types of installation for the Universal Transmitter are described in the following chapters:

No contact base may be mounted on the back of the module (danger of short-circuit!) if the module is mounted on a wall, a sun

- Mounting on a mounting stand with the SSH/IQ sun shield: The SSH/IQ sun shield provides enough space for the Universal Transmitter and two MIQ modules (section 3.5.2).
- Wall mounting:

shield, or a top hat rail.

The Universal Transmitter or MIQ module is permanently screwed to a wall. For wall mounting, use the WMS/IQ mounting set (see chapter 11 ACCESSORIES AND OPTIONS).

• Panel mounting:

The Universal Transmitter or MIQ module is installed in the aperture of a panel (section 3.5.3).

• Top hat rail mounting:

The Universal Transmitter or MIQ module is mounted on a 35 mm top hat rail with the aid of a bracket, e.g. in a control cabinet. The connection can be released again with one simple movement (section 3.5.4).

The following chapters describe the mounting of the Universal Transmitter. MIQ modules are mounted in the same way.

3.5.2 Mounting on a mounting stand with the SSH/IQ sun shield

- SSH/IQ sun shield (see chapter 11 ACCESSORIES AND OPTIONS).
- 4 mm set screw wrench
- Phillips screwdriver.

Materials required

Tools

Fig. 3-15 Mounting the SSH/IQ sun shield on a mounting stand

1 Screw the sun shield (pos. 1 in Fig. 3-15) with the four hexsocket head screws (pos. 2), the washers (pos. 3) and the clamps (pos. 4) at the required height on the mounting stand from the back.

Fig. 3-16 Mounting the sun shield: Premounting the ISO blind nuts

2	Remove the two countersunk screws (pos. 5 in Fig. 3-16) and swing open the lid.
3	Insert the cheese-head screws (pos. 6 in Fig. 3-16) with the plastic washers in the drilled mounting holes and loosely screw in the ISO blind nuts (pos. 7).

Fig. 3-17 Mounting the Universal Transmitter on the SSH/IQ sun shield

4	Position the Universal Transmitter on the sun shield and fix it into place with the two screws (pos. 6 in Fig. 3-16).
5	Close the lid and fix it with the two countersunk screws (pos. 5 in Fig. 3-16).

Modbus cable route

Guide the Modbus cable in the sun shield recess behind the Universal Transmitter to the top of the housing:

Fig. 3-18 Universal Transmitter with Modbus cable on the sun shield

3.5.3 Panel mounting

- **Materials required**
- PMS/IQ kit for panel mounting (see chapter 11 ACCESSORIES AND OPTIONS).
- Tools
- 3 mm set screw wrench (contained in the panel installation kit).

Switch panel aperture

Fig. 3-19 Mounting aperture in the switch panel (dimensions in mm)

Note

The space required on the panel for the Universal Transmitter is given in the dimension drawings in section 10.5.

Fig. 3-20 Mounting the Universal Transmitter in the panel

1	Insert the Universal Transmitter in the panel aperture from the front.
2	Slightly unscrew the screws (pos. 2 and 3) of the two angle brackets (pos. 1 in Fig. 3-20), but do not remove them.
3	Push in the two angle brackets - as shown in Fig. 3-20 - into the lateral guides of the Universal Transmitter up to the stop.
4	Tighten the screws (pos. 2).
5	Screw in the screws (pos. 3) until the screws rest snugly against the panel.

Mounting the Universal Transmitter in the panel

3.5.4 Top hat rail mounting

• Phillips screwdriver.

Materials required

- THS/IQ kit for top hat rail mounting (see chapter 11 ACCESSORIES AND OPTIONS).
- Tools

Mounting the Universal Transmitter on a top hat rail

Fig. 3-21 Mounting the Universal Transmitter on a top hat rail

1	Screw the clamping assembly (pos. 1 in Fig. 3-21) onto the back of the Universal Transmitter with the two plastic tapping screws (pos. 2).
2	Attach the Universal Transmitter onto the top hat rail from above using the clamping assembly and press against the rail until the clamping assembly clicks into place. The Universal Transmitter can be moved sideways afterwards.
3	To unhook the Universal Transmitter, press it downward and pull it forward at the bottom.

3.6 Using DIQ modules (accessories)

Note

The various application possibilities of the DIQ modules are shown by means of examples in section 3.11.

3.6.1 DIQ/JB

The DIQ/JB module is a passive branching module and can be used for the following purposes

- To extend the SACIQ sensor connection cable, e.g. to connect a sensor that is located farther away to the Universal Transmitter.
- To branch a line at the end of an extension.

Fig. 3-22 DIQ/JB open.

The DIQ/JB module has seven potential free terminals. To extend or branch lines, connect the three IQ SENSOR NET wires to each other one-to-one at any terminals

- green <-> green
- red <-> red
- black/filler stranded wire <-> black/filler stranded wire.

3.6.2 DIQ/CHV

The DIQ/CHV module is a valve module for the automatic relaycontrolled compressed air-driven cleaning function in the 182 system. It provides four additional potential free terminals to branch (extend) interface lines. For each sensor that is to have compressed air cleaning a DIQ/CHV is required.

Fig. 3-23 DIQ/CHV open.

3.6.3 Installation of the DIQ modules

The DIQ module enclosure is designed like a commercial connection socket and can be mounted directly on a wall. For mounting on a WTW mounting stand, WTW provides the MS/DIQ mounting set. It contains a pipe clip for the mounting stand and provides enough space for two DIQ modules. For assembly use the screws and blind nuts provided with the MS/DIQ as demonstrated in the following figure

Fig. 3-24 Mounting DIQ modules with the MS/DIQ mounting set.

3.7 Electrical connections: General instructions

Cable glands All electric cables are fed from below via prepared openings in the enclosure of the DIQ/S 182-MOD and the MIQ modules. Cable glands with different clamping ranges are included with the DIQ/S 182-MOD to provide sealing between the cable and enclosure as well as for strain relief. Select the matching cable gland for the respective cable diameter:

• Small, clamping range 4.5 to 10 mm. This cable gland is suitable for all IQ SENSOR NET cables (including earth cable after stripping the outer insulation, see section 3.4.4) and IQ SENSOR NET sensor connection cable.

• Large, clamping range 7 to 13 mm. This cable gland is required for cable sheaths with an outside diameter of more than 10 mm and is screwed into the enclosure via an extension piece.

Note

If necessary, you can order other sizes of cable gland (see chapter 11 ACCESSORIES AND OPTIONS).

General installation instructions

Observe the following points when attaching connecting wires to the terminal strip

- Shorten all wires to be used to the length required for the installation
- Always fit all the ends of the wires with wire end sleeves before connecting them to the terminal strip
- Any wires that are not used and project into the enclosure must be cut off as closely as possible to the cable gland.
- Screw a small cable gland with sealing ring into each remaining free opening and close it with a blind plug.

Warning

No free wires must be allowed to project into the enclosure. Otherwise, there is a danger that areas safe to contact could come into contact with dangerous voltages. which could result in life threatening electric shock when working with the DIQ/S 182-MOD. Always cut off any wires that are not in use as closely as possible to the cable gland.

3.8 Connecting the voltage supply

Note

Warning

The two following paragraphs describe how to connect both models of the DIQ/S 182-MOD Universal Transmitter to the voltage supply. How to connect additional power supply modules is described in the operating manual of the respective power supply module.

3.8.1 DIQ/S 182-MOD (line power version)

If the power supply is incorrectly connected, it may represent a danger to life from electric shock. Pay attention to the following points during installation:

- The DIQ/S 182-MOD Universal Transmitter may only be connected by a trained electrician.
- The connection of the DIQ/S 182-MOD Universal Transmitter to the power supply may only be carried out when it is not carrying any voltage.
- The power supply must fulfill the specifications given on the nameplate and in chapter 10 TECHNICAL DATA.
- When installed in a building, a switch or power switch must be provided as an interrupt facility for the System 182. The interrupt facility must
 - be installed in the vicinity of the DIQ/S 182-MOD Universal Transmitter, easily accessible by the user, and
 - be labeled as the interrupt facility for the DIQ/S 182-MOD Universal Transmitter.
- After the DIQ/S 182-MOD Universal Transmitter has been installed, it may only be opened if the line voltage has been switched off beforehand.
- Materials required Wire end sleeves, suitable for the power line, with suitable crimping tool
 - 1 x screwed cable gland with sealing ring (scope of delivery of the Universal Transmitter).

Tools

- Wire stripper
- Phillips screwdriver

Cable stripping knife

Small screwdriver.

Preparing the power cable

1	Cut off the cable to the required length.

- 2 Strip the cable insulation for approx. 45 mm.
 3 Bare the wires of phases L and N and fit them with wire end
- 4 If present, cut off the ground wire at the end of the cable sheath.

Fig. 3-25 Prepared power cable.

sleeves.

Caution

The ground wire must not project into the enclosure. Otherwise, malfunctions could occur.

Fig. 3-26 Inserting the supply line.

6	Screw a cable gland (pos. 1 in Fig. 3-26) with sealing ring (pos. 2) into the enclosure below the power supply connection.
7	Loosen the coupling ring (pos. 3).
8	Feed the power line through the cable gland into the enclosure. When doing so bend the flexible divider (pos. 4) to the right.

Fig. 3-27 Line power connection.

Note

The complete assignment of the terminal strip is shown in section 3.12.

- 9 Connect phases L and N to the terminal strip. Make sure that the cable assignment agrees with the specification on the terminal label under the terminal strip.
- 10 Tighten the coupling ring (pos. 3 in Fig. 3-26).

Warning

No free wires must be allowed to project into the enclosure. Otherwise, there is a danger that areas safe to contact could come into contact with dangerous voltages. Always cut off any wires that are not in use as closely as possible to the cable gland.

11 Close the enclosure of the Universal Transmitter.

3.8.2 DIQ/S 182-MOD/24V (24 V version)

Warning

If the 24 V AC/DC supply is incorrectly connected, it may represent a danger to life from electric shock. Pay attention to the following points during installation:

- The Universal Transmitter DIQ/S 182-MOD/24V may be connected by a skilled electrician only.
- The 24 V AC/DC supply must meet the specifications quoted on the name plate and in chapter 10 TECHNICAL DATA (protective low voltage SELV).
- The Universal Transmitter DIQ/S 182-MOD/24V may be connected in a voltage free condition only.
- When installed in a building, a switch or power switch must be provided as an interrupt facility for the System 182. The interrupt facility must
 - be installed in the vicinity of the DIQ/S 182-MOD/24V Universal Transmitter and must be easily accessible to the user, and must
 - be labeled as the interrupt facility for the DIQ/S 182-MOD/24V Universal Transmitter.

Materials required

Note

Rechargeable battery systems should have a deep discharge protection. The DIQ/S 182-MOD/24V does not have any built-in deep discharge protection.

- Wire end sleeves, suitable for the 24 V AC/DC feed line, with suitable crimping tool
- 1 x screwed cable gland with sealing ring (scope of delivery of the Universal Transmitter).

Tools

- Cable stripping knife
- Wire stripper
- Phillips screwdriver
- Small screwdriver.

Preparing	the	24 V	AC/
		DC	line

Cut off the cable to the required length.
 Strip the cable insulation for approx. 45 mm.
 Bare the wires 1 and 2 and fit them with wire end sleeves.

Fig. 3-28 Prepared 24 V AC/DC line.

Connecting the 24 V AC/ DC line

4 Open the enclosure of the Universal Transmitter.

5	Screw a cable gland (pos. 1 in Fig. 3-29) with sealing ring (pos. 2) into the enclosure below the 24 V AC/DC connection.
6	Loosen the coupling ring (pos. 3).
7	Feed the 24 V AC/DC line through the cable gland into the enclosure. When doing so bend the flexible divider (pos. 4) to the right.

Fig. 3-30 24 V AC/DC connection.

Note

The complete assignment of the terminal strip is shown in section 3.12.

- 8 Connect wires 1 and 2 to the terminal strip. Make sure that the cable assignment agrees with the specification on the terminal label under the terminal strip.
- 9 Tighten the coupling ring (pos. 3 in Fig. 3-29).

Warning

No free wires must be allowed to project into the enclosure. Otherwise there is the danger of short circuits that can cause a fire. Always cut off any wires that are not in use as closely as possible to the cable gland.

10 Close the enclosure of the Universal Transmitter.

3.8.3 Additional MIQ power supply modules

The power pack of the Universal Transmitter supplies enough power for most combinations of sensors. Some sensors with high power consumption may require the installation of an MIQ power supply module in addition to the Universal Transmitter. For installation, refer to the operating manual of the power supply module. The table on the following page shows which sensor/sensor combinations require an additional power supply module.

Note

The terminator switch on the terminal strip of all additional MIQ modules in the system 182 must be set to "Off".

2nd sensor	c [®] 700 IQ (SW)	ic [®] 701 IQ	ic [®] 702 IQ	(IQ (SW)	[®] 700 IQ (SW)	ا 200 ال	Plus 700 IQ	[®] 700 IQ (SW)	700 IQ	[®] 700 IQ	70x IQ *	[®] 70x IQ *	<i>us</i> 700 IQ (NH4-N <u>or</u> NO3-N)	1 channel operation)
<u>1st sensor</u>	TriOxmati	TriOxmat	TriOxmat	FDO [®] 70)	TetraCon	AmmoLy	NitraLyt [®]	SensoLyt	ViSolid [®] .	VisoTurb ⁽	NitraVis [®]	CarboVis	VARION ^{®/}	MIQ/IC2 (
TriOxmatic [®] 700 IQ (SW)	-	-	-		-	-	-	-	-	-	1	1	-	-
TriOxmatic [®] 701 IQ	-	-	-		-	-	-	-	-	-	1	1	-	-
TriOxmatic [®] 702 IQ	-	-	-		-	-	-	-	-	-	1	1	-	-
FDO [®] 70x IQ (SW)	-	-	-		-	-	-	-	-	-	1	1	-	-
TetraCon [®] 700 IQ (SW)	-	-	-		-	-	-	-	-	-	1	1	-	-
AmmoLyt ^{®Plus} 700 IQ	-	-	-		-	-	-	-	-	-	1	1	-	-
NitraLyt ^{®Plus} 700 IQ	-	-	-		-	-	-	-	-	-	1	1	-	-
VARiON^{®Plus} 700 IQ (NH4-N <u>or</u> NO3-N)	-	-	-		-	-	-	-	-	-	1	1	-	-
SensoLyt [®] 700 IQ (SW)	-	-	-		-	-	-	-	-	-	1	1	-	-
ViSolid [®] 700 IQ	-	-	-		-	-	-	-	-	-	1	1	-	-
VisoTurb [®] 700 IQ	-	-	-		-	-	-	-	-	-	1	1	-	-
NitraVis [®] 70x IQ *	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CarboVis [®] 70x IQ *	1	1	1	1	1	1	1	1	1	1	1	1	1	1
MIQ/IC2 (1 channel operation)	-	-	-		-	-	-	-	-	-	1	1	-	-
VARION ^{®Plus} 700 IQ (NH4-N <u>and</u> NO3-N)	- (double sensor: no combination with any other sensor possible!)													
MIQ/IC2 (2 channel operation)	- (double sensor: no combination with any other sensor possible!)													
NitraVis [®] 70x IQ TS *	1 (double sensor: no combination with any other sensor possible!)													
CarboVis [®] 70x IQ TS *	1	(dou	ble se	ensor	: no c	ombi	natio	n with	any	other	sens	or po	ssible)
NiCaVis [®] 70x IQ *	1 (double sensor: no combination with any other sensor possible!)													

1 = One additional power supply module required.

* Install a further MIQ power supply module in the vicinity of the sensor.

3.9 Connections to the relay outputs

3.9.1 General installation instructions

Warning

If external electrical circuits that are subject to the danger of physical contact are incorrectly connected to the relay contacts, there may be a danger of life threatening electric shock. Electrical circuits are regarded to be subject to the danger of physical contact when there are voltages higher than the Safety Extra Low Voltage (SELV).

Pay attention to the following points during installation:

- Electrical circuits subject to the danger of physical contact must only be connected by a qualified electrician.
- Electrical circuits subject to the danger of physical contact must only be connected when they are voltage-free.
- If electrical circuits subject to the danger of physical contact are switched with a relay, no circuit that is not subject to this danger (e. g. the DIQ/CHV module) may be operated on the further relays.
- Switching voltages and switching currents on the relay contacts must not exceed the values specified in chapter 10 TECHNICAL DATA. Protect electrical circuits against currents that are too high with an electrical fuse.
- Only single-phase consumers can be switched with the relays. Under no circumstances must multiphase consumers be switched with the aid of several relays (example three-phase current driven pumps). Always switch multiphase consumers via a protective relay.
- After the Universal Transmitter has been installed, it may only be opened if all external voltages have been switched off beforehand.
- Materials required Wire end sleeves, suitable for the connecting wires, with suitable crimping tool
 - 4 x screwed cable gland with sealing ring (scope of delivery of the Universal Transmitter).

Tools • Cable stripping knife

- Wire stripper
- Phillips screwdriver
- Small screwdriver

Fig. 3-31 Inserting lines

Note

The complete assignment of the terminal strip is shown in section 3.12.

12	Screw a cable gland (pos. 1 in Fig. 3-31) with the sealing ring (pos. 2) into the enclosure below the respective connections.
13	Loosen the coupling ring (pos. 3).
14	Feed the line through the cable gland in the enclosure.
15	Connect the wires to the terminal strip. While doing so, pay attention to the specifications on the label located under the terminal strip.
16	Tighten the coupling ring (pos. 3).

Warning

No free wires must be allowed to project into the enclosure. Otherwise, there is a danger that areas safe to contact could come into contact with dangerous voltages. This could result in life threatening electric shock when working with the Universal Transmitter. Always cut off any wires that are not in use as closely as possible to the cable gland.

17 Close the enclosure of the Universal Transmitter.

3.9.2 Usage of the auxiliary voltage

The Universal Transmitter has a 24 V output (designation, HILFSSPANNUNG or AUXILIARY VOLTAGE on the terminal strip). You can use this auxiliary voltage for the relay-controlled opening of the valve in a DIQ/CHV valve module for the compressed air-driven sensor cleaning function. To do so, you have to connect the auxiliary voltage output, a free relay contact and the valve connection in the DIQ/CHV in series. Bridge a terminal of the auxiliary voltage output with a terminal of a relay output and run a control line from the remaining terminals to the valve module.

Caution

The auxiliary voltage must not be used for other purposes.

Connection scheme for one sensor with compressed air cleaning

Caution

Run the bridge below the divider so the bridge does not bump against the circuit board in the lid when the enclosure is closed.

Note

Installation examples with one and two sensors with compressed air cleaning can be found in section 3.11.

Start checklist and system start

3.10 Commissioning

Before starting the system, carry out the system check using the following checklist. Always carry out the check

- before the initial commissioning
- before any further commissioning if the system has been previously extended or modified.

Start checklist

- 1 Are all system components correctly connected with one another (see section 3.4)?
- 2 Is the Universal Transmitter and all additional power supply modules correctly connected to the voltage supply (see section 3.7)?
- 3 Do the line voltage and line frequency agree with the data on the name plate of the Universal Transmitter and all additional power supply modules?
- 4 Are all IQ sensors ready for measuring, e.g. a D.O. sensor filled with electrolyte solution?

Starting the system Switch on the voltage supply of the Universal Transmitter and all additional power supply modules. As soon as the system is successfully initialized, the measured value display appears. In the case of IQ sensors that are not yet providing measured values, "Init" appears temporarily

S01 0:	1341001	
INIT		
144.2	mg/l	18
351.9	mg/1#	

Fig. 3-32 Display during the start phase

Note

Assign a name to each IQ sensor after putting it into operation for the first time so you can identify it more easily. How to assign a sensor name is described in section 5.3 on page 5-2.

Note

If the system start failed, see chapter 9 WHAT TO DO IF

3.11 Installation examples

3.11.1 Connecting two sensors without compressed air cleaning

3.11.2 Connecting two sensors with compressed air cleaning

Connection scheme of valve control

Example:

Relay 1 controls the cleaning of sensor 1. Relay 2 controls the cleaning of sensor 2.

Variant: Relay 1 controls the cleaning of both sensors. Cleaning of both sensors is carried out with the same settings.

Warning

In this configuration, the free switching contact (here: R3) may be used to switch SELV voltages only.

Warning

No free wires must be allowed to project into the enclosure. Otherwise, there is a danger that areas safe to contact could come into contact with dangerous voltages. Always cut off any wires that are not in use as closely as possible to the cable gland.

3.12 Figures of the terminal strips

DIQ/S 182-MOD

X17	X16	X15	X14	X13	X12	X11	X10	X9	X8	X6	X5	X4		Х3	X2	X1
L1 100 240V	N) / AC	≤240 ≤2A	V AC AC	≤240 ≤2A	V AC AC	≤240 ≤2A		HIL SPAN AUXI VOL	.FS- NUNG LIARY FAGE	ROT	SHIELD	GREEN	\wedge	red Rot	SHIELD	GREEN GRÜN
NETZ/N	MAINS	R3	3	R	2	F	1	AUXI	LIARY	SEI	SORN	IET 2		SEN	SORN	ET 1

DIQ/S 182-MOD/24V

X17 X16	X15 X14	X13 X12	X11 X10	X9	X8	X6	X5	X4		Х3	X2	X1
24V AC DC EINGANG INPUT	≤240V AC ≤2A AC	≤240V AC ≤2A AC	≤240V AC ≤2A AC	HIL SPAN AUXI VOL	.FS- NUNG LIARY TAGE	RED	SHIELD	GREEN GRÜN	\wedge	RED	SHIELD	GREEN GRÜN
POWER	R3	R2	R1	AUXI	LIARY	SEN	ISORN	ET 2		SEN	ISORN	ET 1

DIQ/JB

(7 passive, potential-free terminals for line extension or branching)

DIQ/CHV	(HILFLSKONTAKTE) (AUXILIARY)	VENTIL VALVE
	X6 X5 X4 X3	X2 X1

4 **Operation**

4.1 Operating elements

Fig. 4-1 Operating elements of the DIQ/S 182-MOD

Functions	Кеу	Function
	M	Switches directly to the measured value display from all operating situations
	©	Starts calibration of the sensor selected in the measured value display
	<u></u>	Opens the <i>SETTINGS</i> menu in the measured value and status display
	ESC	 Switches to the higher menu level
		 Cancels entries without storing them
	<u>()</u>	• Opens the <i>PROPERTIES</i> menu in the measured value and status display
		 Confirms an entry
	(toggle switch)	 Selects: The active sensor (measured value display) Menu items List entries Letters or numerals Scrolls through longer menus or texts

4.2 Measured value and status display

With the M key you switch to the last selected measured value and status display from any operating situation. Entries that are not completed are ignored while doing so.

By pressing M once again you cyclically switch between further display options.

Operating notes

- Select a sensor in the double display with (). The selected sensor is displayed in reverse video. The number and name of the selected sensor are displayed in the header. In the single display, the sensor being displayed is always the selected sensor at the same time.
- Start a calibration procedure for the selected sensor with (C). Starting a calibration procedure from the display of interfaces is not possible.

Example: Display options with two connected sensors

	 Select the sensors in (calibration versions, e 	PROPERTIES menu with 🛞. With this menu you can put the maintenance condition and prompt important data data, error messages, operating states, software tc.).
	Open the S	SETTINGS menu with (S).
Special sensor conditions	The following	displays inform you of special states of sensors
	Init	Sensor is being initialized
		 during commissioning or
		 if a new IQ sensor is recognized that is not yet giving measured values
		Sensor inactive or inadmissible operating conditions
	Cal	Sensor is being calibrated
	Clean	Cleaning procedure active
	Error	No communication with the sensor due to defective connection
	OFL	Measuring range undercut or exceeded (overflow)
	Display flashes	Sensor in maintenance condition
Error and info symbol	If the info sym messages fro occurred. Erro The log book the system ca malfunctions o	bol ① or error symbol appears in the header, error m the sensors or error conditions of the system have or messages from the sensors are entered in the log book. is described in detail in section 4.4.3. Error conditions of n e.g. be an insufficient operational voltage or of the communication and are displayed in the

PROPERTIES / SYSTEM STATUS menu (see section 4.4.1).

4.3 Working with the SETTINGS menu

Note

All settings in the *SETTINGS* menu can be protected by a password against unauthorized changing. For more detailed information on password protection, see section 4.6.

4.3.1 Selection menus

Pressing (S) switches from the measured value display to the *SETTINGS* menu (main menu).

SETTINGS 🔂
Language
Sensor S01
Sensor S02
Relay output R1 $\qquad \downarrow$

Fig. 4-2 SETTINGS menu (main menu)

Operating notes

- In the main menu, the lock symbol shows the current safety level for the settings
 - ô Settings not protected by password
 - **b** Settings protected by password (reading possible only)

For more detailed information on password protection, see section 4.6.

- The arrows ↑/↓ appear automatically if further display contents are above or below the visible display range.
- With the toggle switch (you highlight a menu item (displayed in reverse video) and move the visible display range up or down.
- To open a menu item, highlight it and press (. The display switches to a further submenu or to a setting table.
- To return to the measured value display, press \bigcirc or \bigcirc .

4.3.2 Setting tables

In the setting tables, you make the actual settings. Two lines together represent each setting. The name of the setting is in the upper line on the left side of the display. The corresponding value is in the line below on the right side.

R1-S01 SETTINGS
Relay function
Limit indicator
Measured variable
Main variable↓

Fig. 4-3 Example of a setting table

Operating notes

- The arrows ↑/↓ appear if further display settings are above or below the visible display range.
- With the toggle switch (you highlight a setting (displayed in reverse video) and move the visible display range up or down.
- To edit a setting highlight it and press ^(N). The line below is highlighted and switches to the entry mode. Depending on the operating situation, a new submenu or a table with further relevant settings can open up.
- Break off an action and change to the next higher level with the key.
- Move directly to the measured value display with (M).

Note

To accept all settings, you have to highlight the *Save and quit* menu item at the lower end of the setting table and press (K). If you exit the setting table via (M), (K)/(Quit) or the *Quit* menu item, all changes are ignored.

R1-S01 SETTINGS	
Behavior at error	Ť
0p)en
Save and quit	
Quit	

Fig. 4-4 Save and quit

4.3.3 Entry mode

In the entry mode, you can change individual values or enter a character string. Depending on the value type, change a value as follows

 Fixed values of a selection list (e.g. sensor measuring ranges): This is the most frequent form of an entry. Select the required option with the toggle switch () and confirm the selection with (). The display switches back to the setting table.

Measuring range
AutoRange
0 400.0 mg/1
0 4000 mg/1
0 25.00 g/l

Fig. 4-5 Example of a selection list

• Character strings (text and numerals):

The following letters, numerals and special characters can be entered: $AaBb...Zz0...9\mu\&/()+-=><!?_ °.$

Entries are made character after character. Select the first character with the toggle switch (\clubsuit) and press (\aleph) . The entry mark moves to the next position and indicates \leftarrow . Select the next character with the toggle switch (\clubsuit) . When you have selected the required sequence of characters select \leftarrow as the following character and press (\aleph) . The entry is completed with this and the display switches back to the setting table.

Sensor Name
01341001
Inle₽

Fig. 4-6 Example of text entry

If you want to correct a previously selected character while entering, select the thin arrow to the left \leftarrow and press K. This moves the entry mark by one digit to the left. Thus you can go back to the required character. All characters on its right side, however, have to be entered once again.

If you want to restart entering the characters, select the thick arrow to the left \leftarrow and press \bigcirc .

• Numerals:

Entering numerals is made in the same way as entering characters.

The following numerals can be entered: 0...9-.

Entering" -" or "." is only allowed where it makes sense, e.g. "-" at the first position only.

Save and quit On principle, all settings done in the entry mode are only taken over after you selected the *Save and quit* item in the relevant setting table and pressed (K). If you exit the setting table via (M), (K) or the *Quit* menu item, all changes are ignored. Exceptions: Date/time, air pressure and password.

4.4 PROPERTIES menu

4.4.1 Overview

Pressing (K) switches from the measured value display to the *PROPERTIES* menu.

In the *PROPERTIES* menu, you can prompt calibration data and various information on system components. Moreover, you can switch on and off the maintenance condition of a sensor.

PROPERTIES
Maintenance Sensor S
Sensor status SO1
System status
List of components

Fig. 4-7 PROPERTIES menu

- **Submenus/functions** *Maintenance Sensor* **Sxx** With this function, you switch on and off the maintenance condition of a sensor (see section 4.4.2)
 - Sensor status **Sxx** Here you can prompt the following data of a sensor (see section 4.4.3):
 - Type, series number and software version
 - Data of the last calibration
 - Error and info messages
 - System status

Here you can prompt the following data of the system:

- Series number and software version of the Universal Transmitter
- Status of the operational voltage () = OK / () = faulty)
- Status of communication (\bigcirc = OK / \bigcirc = faulty)
- Current states of interfaces

If the operational voltage or communication are faulty, the flashing error symbol \triangle appears in the header of the measured value display. The error symbol \triangle automatically disappears when the malfunction has been eliminated.

• List of components Here is a list of all connected sensors.

4.4.2 Maintenance condition

When an IQ sensor is calibrated, cleaned, serviced or repaired, the maintenance condition for the relevant IQ sensor should always be switched on.

In the maintenance condition

- apart from the measured value display, the system does not react to the current measured value or the condition of the selected IQ sensor
- IQ sensor errors do not prompt changes in the conditions of linked outputs.

The following diagram gives you an overview of when an IQ sensor is in the maintenance condition.

Recommended proceeding for cleaning, maintenance and repair

1	Switch on the maintenance condition for the IQ sensor. The measured value display flashes.
2	Pull the sensor out of the sample.
3	Carry out the cleaning, maintenance or repair (removal and replacement) of the sensor.
4	Submerse the sensor in the sample again.
5	Wait until the measured value does no longer change.
6	Switch off the maintenance condition for the sensor. The display of the sensor in the measured value display does no longer flash.

Automatic switch-on of the maintenance condition The maintenance condition for IQ sensors is automatically activated

- during calibration. After calibration the IQ sensor remains in the maintenance condition until the maintenance condition is switched off manually (see section 4.5)
- during a compressed-air cleaning cycle. After the cleaning cycle is finished the maintenance condition is automatically switched off again.

4.4.3 Sensor status Sxx

In the SENSOR STATUS Sxx menu you can prompt the following information on a sensor:

- Type and series number
- Software status
- Error and info messages ("log book")
- Data of the last calibration (only for sensors that can be calibrated)

STATUS SENSOR SO1
TriOxmatic701IQ
S/N: 01341001 V2.09
Log 🛆
Cal 🔘

Fig. 4-8 SENSOR STATUS Sxx

Log book The log book is a list of messages related to a sensor. If there is a new message the info or error symbol in the header of the measured value display flashes:

⚠	Flashes if a new or unacknowledged error message is present in the log book that requires immediate action.
()	Flashes if a new or unacknowledged informational message is present in the log book.

If there are info and error messages present at the same time, the error symbol \triangle flashes (more important).

The flashing of the info or error symbol only stops after all detailed message texts in the log book have been opened and marked with a tick (\checkmark). The operating sequence to do this is described on page 4-13.

Note

The error symbol also flashes if the operational voltage or communication in the system are faulty. You can check this in the *PROPERTIES / SYSTEM STATUS* menu (see section 4.4.1).

Calibration data You can view the data of the last calibration under the *Cal* menu item. Sensors that have not yet been calibrated do not have this menu item. The symbol in the *Cal* line quotes the validity state:

🔅 = valid

💭 = invalid

The content and form of the calibration data depend on the sensor type.

Log book messages Each log book message in the log book consists of one line. The latest message is on the first position. They are not yet marked with a tick, i.e. acknowledged.

LOGBOOK SENSOR S01
∆EA2 10-Jan-05 08:44
√EC1 01-Jan-05 16:44
1 2 3

Fig. 4-9 Log book

1	Message type (error or info symbol) of an unacknowledged message, or tick (🗸) with an acknowledged message
2	Message code
3	Date and time of the message

Note

The log book shows the current status at the point of time it was opened. If new messages arrive while the log book is open, these do not appear in the log book. The new messages are only included when you switch to the measured value and status display.

Pos.	Information	Explanation
1	Category	 Info message (I)
		 Error message (E)
2	Туре	Calibration (C)
		 Installation and commissioning (I)
		• Instructions for service and repair (S)
		 Application instructions (A)
3	Type number	Each type contains subtypes (09AZ)

Note

Only the last message of each message code is ever displayed. If a new message arrives with a message code that already exists in the log book, the older message is overwritten.

Detailed message text

You can view the detailed message text when you acknowledge the message. It contains a precise description of the message codes and, if required, instructions for any further actions. The detailed message texts can also be found in the respective sensor operating manual.

Proceeding: Open log book, acknowledge messages and view detailed messages

1 Open the *PROPERTIES* menu.

To do so, press \bigotimes in the measured value display.

2 Select Sensor status Sxx (xx = required sensor) and press \bigotimes .

STATUS SENSOR SO1
TriOxmatic701IQ
S/N: 01341001 V2.09
Log 🛆
Cal 😊

3 Select the *Log...* menu item and press **(K)**. The log book is displayed.

LOGBOOK SENSOR S01
∆EA2 10−Jan−05 08:44
✓EC1 01-Jan-05 16:44

4 Highlight the message to be acknowledged and press (). The detailed message text is displayed. Scroll through the text with the toggle switch ().

∆EA2 10-Jan-05 08:44	ł
TriOxmatic701IQ	
Ser-No:01341001	
Sensor temperature	
too high!	ł

5	F
J	

Press K. Thus you acknowledge the message (\checkmark).

√EA2 10-Jan-05 08:44 TriOxmatic701IQ Ser-No:01341001 Sensor temperature too high! ↓

- 6 Press () once again. With this you return to the log book and can view and acknowledge further messages as necessary.
- To exit the log book press (S).
 Return directly to the measured value and status display with (M).

4.5 Calibration of sensors

Note Sensors can be protected by a password against unauthorized calibration. For more detailed information on password protection, see section 4.6.

General proceeding

1	Switch to the measured value display with (M) .
2	Select the sensor to be calibrated with \diamondsuit (in the single

- 2 Select the sensor to be calibrated with () (in the single display, the sensor being displayed is always selected at the same time).
- 3 Call up calibration with (C). The message, During the calibration procedure, the linked outputs are frozen, appears. The maintenance condition is switched on the next time the OK key is pressed. Return to the measured value display without switching on the maintenance condition with M or SO.

SO2 CALIBRATE	
99160001	
NitraLyt700IQ	
Linked outputs are	
frozen during	Ļ

Note

By activating the maintenance condition, linked outputs remain in their present state. The measured value or status display of the sensor flashes in the measured value display.

4 Confirm with 🛞. The maintenance condition is active.

The following proceeding is sensor type specific. The display guides you through all steps. Exactly follow the instructions. A message of the success of the calibration and the determined calibration data appear at the end.

Note

Up to this point you can cancel the calibration procedure with the (so) key at any time. The system continues to work with the old calibration data. The maintenance condition, however, has to be switched off again in any case.

5 Confirm the calibration data with (). Calibration is completed with this. The following display message describes the further steps to put the sensor into operation again.

After calibration: * Submerse sensor in sample * When meas val. is ↓

Putting the sensor into operation after calibrating

6	Confirm with (). The display returns to the measured value display (the measured value flashes as the sensor is still in the maintenance condition).
7	If calibration was successful, immerse the sensor in the test sample.
8	Wait for a stable measured value.
9	Switch off the maintenance condition (highlight sensor and press \textcircled{K} three times). The measured value has stopped flashing.

Note

If calibration was not successful, this is indicated by "----" on the display and a corresponding message with remedial actions appears in the log book. Follow the instructions and repeat calibration.

4.6 Passwords

You can assign and activate two passwords for the System 182.

Settings password

protects all settings in the *SETTINGS* menu. If the password is active, all settings can be viewed but not changed. The password query appears on leaving a setting table with the *Save and quit* command. Resetting the system configuration to default is also protected.

• Calibration password

protects against unauthorized calibration. If this password is active, the password query appears on calling up calibration with \bigcirc . If no valid password is entered, calibration is blocked.

Configuring passwords

Activating/deactivating and changing passwords is done in the *SETTINGS -> System* menu.

Fig. 4-11 SYSTEM SETTINGS menu

Operating notes

- The settings password is configured with the Settings ô / b menu item.
- The calibration password is configured with the *Calibrate* **ô** / **b** menu item.
- Any activating, deactivating or changing action requires the entry of the relevant current password.

5 The SETTINGS menu

5.1 Overview of the *SETTINGS* menu

Pressing (S) switches from the measured value display to the *SETTINGS* menu (main menu).

Fig. 5-1 Submenus in the SETTINGS menu

The individual submenus are described in the following paragraphs.

Note

The entire system configuration can be saved on a PC and loaded back from there with the aid of the MIQ/IF232 interface module and the ConfigSaveLoad PC software. ConfigSaveLoad is part of the IQ Softwarepack and as such included in the scope of delivery of the MIQ/IF232. More detailed information is given in the operating manual of the IQ Softwarepack, which can be downloaded under <u>www.WTW.com</u>.

5.2 Language

In this menu, you can set the system language.

Proceeding: selecting the language

 Open the SETTINGS menu with S.
 Select and confirm the Language menu item with and . The LANGUAGE display opens.

LANGUAGE	
Deutsch	
English	

- 3 Select the required language from the list with () and confirm with (). The selection is taken over immediately. The display switches to the higher menu level.
- 4 Switch to the measured value display with \bigcirc .

1	

Note

If the selected system language is not available in a sensor, all displays of this sensor appear in the standard language English. To activate the selected system language for this component, a software update of the component is required. Contact WTW.

5.3 Sensor S01/S02

In this menu, you can assign a name of your choice to a sensor and adjust the sensor so it optimally meets the requirements of your application (measured parameter, measuring range, etc.).

All settings are specific for the respective sensor type. They can only be modified if the sensor is connected and communicates with the Universal Transmitter properly. Otherwise, the dataset is inactive. How to deal with inactive datasets is described below.

Note

General steps for editing sensor settings are given below. The *Sensorname* menu item is always on the first position of the setting table. Details of further sensor settings can be found in the chapter, COMMISSIONING of the sensor operating manual.

Proceeding: carrying out settings	5	Open the SETTINGS menu with (S).
	6	Using \textcircled{S} and \textcircled{S} Sensor, select and confirm the SOx menu item (corresponding to sensor 1 or sensor 2).
		The following note appears: If the measuring mode or measuring range is changed, the links of the sensor are erased.
	7	If you want to continue press (K). The setting table of the sensor is displayed.

S01 SETTINGS		
Sensorname		
01341001		
Measuring mode		
Concentration↓		

8 Edit the setting table as described in section 4.3.2.

Note

To accept all settings, you have to highlight the *Save and quit* menu item at the lower end of the setting table and press \mathbb{O} . If you exit the setting table via \mathbb{M} , $\mathbb{S}/Quit$ or the *Quit* menu item, all changes are ignored.

Inactive sensor datasets An inactive dataset for an IQ sensor arises if the Universal Transmitter receives no signals from an already registered IQ sensor. The *Error* display appears on the measured value display instead of a measured value.

An inactive dataset can be reactivated by assigning it, e.g. to an IQ sensor of the same type (see section 9.3.2). All settings are retained. If you no longer require these data, you can erase them. All the settings belonging to this IQ sensor as well as any links with outputs are deleted by this action.

Proceeding: deleting inactive datasets

- 1 Open the SETTINGS menu with (S).
- Using () and (Sensor, select and confirm the S0x menu item (corresponding to sensor 1 or sensor 2).
 If the dataset is inactive the following display appears:

DELETE SENSOR DATA
ViSolid700IQ
01346001
<u>Delete</u> dataset
Cancel

- 3 Select *Delete dataset* with ③ and confirm with ④. The dialog window for the security prompt appears.
- 4 Select *Delete dataset* with ③ and confirm with ④. The inactive sensor is erased.

5.4 Relay output R1/R2/R3

In these menus you can link sensors with the relay outputs of the Universal Transmitter and adjust the outputs. The various setting options are described in detail in the chapter 6 RELAY OUTPUTS menu.

5.5 Modbus configuration

You can set the following Modbus interface parameters in this menu (proceeding, see section 7.3).

- Instrument address
- Baud rate
- Parity

All information needed to connect the DIQ/S 182-MOD to a Modbus plant is given in chapter 7 MODBUS CONNECTION.

5.6 System

The settings in the SYSTEM menu comprise:

- Date/Time
- Pressure/Altitude
 This setting is important if you want to carry out D. O. measurements
 with the System 182.
 (adjustable range: 500 ... 1100 mbar or 0 ... 5955 m altitude).
- Settings ô / ô
 Here you can configure the password for the settings.
 For details on the passwords refer to section 4.6.
- Calibrate ô / ô
 Here you can configure the password for calibration.
 For details on the passwords refer to section 4.6.
- *Display contrast* Here you can set the display contrast for optimum readability.
- Delivery state Here you can reset all settings to default. Only the date, time and contrast setting for the display will remain stored. If the settings password is active, a password prompt appears before the reset. In any case a security prompt appears to prevent an inadvertent reset.

Delivery condition

Settings	Default values		
Language	English		
Pressure/Altitude	1013 mbar / 0 m		
Settings password	1000 / inactive		
Calibration password	1000 / inactive		
Sensor settings	Sensor dependent (see settings tables in the respective sensor operating manual). <u>Note:</u> Calibration of the sensor is stored in the sensor and is retained when the system configuration is reset.		
Relay outputs	no function, all links are erased		
Modbus address	20		

6 Relay outputs

6.1 General information

The DIQ/S 182-MOD Universal Transmitter has three relay outputs and one Modbus output.

Functions for relay outputs

- System monitoring
- Sensor monitoring
- Limit indicator
- Frequency output
- Pulse-width output
- Sensor controlled
- Cleaning
- Manual control

Relay outputs can be configured as opener or closer.

Note

You can view the current states of the relay outputs in the measured value and status display (see section 4.2).

	6.2	Linking and adjusting: general proceedings	
	6.2.1	Linking relay outputs	
Linking options	You have the following options of linking relay outputs:		
	● <i>Se</i> The	<i>nsor S01</i> e output is linked with sensor 01	
	● <i>Se</i> The	<i>nsor S01</i> e output is linked with sensor 02	
	● <i>Se</i> The	 Sensor S01&S02 The output is linked to both sensors S01 and S02. System Select this option if you want to use the output for system monitori (details, see section 6.4.2). 	
	● <i>Sy</i> Se (de		
Proceeding: linking outputs	Proce chang	ceed as follows if the output was not yet linked. If you want to nge a link you have to erase the existing link first.	
	 Open the SETTINGS menu with S. Using (and K), select and confirm the Relay output Rx 		

menu item (corresponding to sensor 1, 2 or 3). A list with all linking options is displayed.

R1 LIN	< WITH
Sensor	S01
Sensor	S02
Sensor	S01&S02
System	

3 Select the required option with () and confirm with (). The output is linked. The link is displayed in the header when the setting of the output is edited.

6.2.2 Deleting a link with an output

If you no longer need a link you can erase the link.

Proceeding: erasing a link

- 1 Open the *SETTINGS* menu with (§).
- 2 Using () and (), select and confirm the *Relay output* Rx menu item (corresponding to sensor 1, 2 or 3).

R1-S02
Delete link
Set output
Limit indicator

3	Using $\textcircled{\baselinetwidth}$, select <i>Delete link</i> and confirm with $\textcircled{\baselinetwidth}$. A security prompt appears.
4	Using (\clubsuit) , select <i>Delete link</i> and confirm with $(\%)$. The link is deleted.

6.2.3 Setting outputs

Proceeding: setting an output

- 1 Open the *SETTINGS* menu with (S).
 - 2 Using () and (), select and confirm the *Relay output* Rx menu item (corresponding to sensor 1, 2 or 3).

3 Confirm the selection *Set output* with **(K)**. The setting table of the output is displayed.

4 Edit the setting table as described in section 4.3.2.

Note

To accept all settings, you have to highlight the *Save and quit* menu item at the lower end of the setting table and press (k). If you exit the setting table via (M), (k)/(Quit) or the *Quit* menu item, all changes are ignored.

6.3 Basic information on relay functions

In this chapter, you will find general basic information concerning the following relay functions:

- Event monitoring (see section 6.3.1)
- Limit indicator (see section 6.3.2)
- Proportional output (see section 6.3.3)

6.3.1 Event monitoring

When using a relay for event monitoring, a relay action (*Open, Close*) occurs when the monitored event takes place.

This function is suitable, e.g. for the monitoring of errors in the system. If an event takes place, the relay works as an alarm contact.

Note

For monitoring functions, use the relay preferably as an opener. In the case of an error, the relay opens. As a result, the monitoring function operates even if, e.g. the supply voltage fails.

6.3.2 Limit indicator

With a limit indicator, a relay switches when a specified limiting value is exceeded or undercut.

Limit indicators can be used in the following way:

- Monitoring a limiting value using a relay: when a limiting value (upper or lower limiting value) is exceeded or undercut, a relay switches. The *Open* or *Close* relay actions are possible in each case (see page 6-6).
- Monitoring two limiting values using two relays: If the upper limiting value is exceeded or undercut, a relay switches, and if the lower limiting value is exceeded or undercut, another relay switches. The *Open* or *Close* relay actions are possible in each case (see page 6-6).

Note

If the simple monitoring function (*Open, Close*) with one or two relays is not sufficient, use proportional output (see section 6.3.3).

Fig. 6-1 Switching points for relays with the function of a limit indicator

1	Upper limit value (relay 1) exceeded
2	Selected switching delay t1 for relay 1 expired Relay 1 switches
3	Hysteresis for upper limiting value (relay 1) undercut
4	Selected switching delay t1 for relay 1 expired Relay 1 switches back
5	Lower limit value (relay 2) undercut Selected switching delay t2 for relay 2 expired Relay 2 switches
6	Hysteresis for lower limiting value (relay 2) exceeded Selected switching delay t2 for relay 2 expired Relay 2 switches back

A switching delay (t) can be set up for each relay for switching processes. This is the time period for which a limiting value must be exceeded before the relay switches. This prevents frequent switching if the measured values are close to the limiting value.

6.3.3 Proportional output

In the case of proportional output, a relay switches cyclically on and off in a defined measured value range (proportional range). At the same time, the relay switches with a:

- duration of operation that corresponds to the measured value (pulse-width output, see page 6-9) or
- switching frequency (frequency output, see page 6-10).

Proportional outputs can be used in the following way:

- Output with one relay: An output range is defined with a *Start value* and an *End value*. No output takes place above and below the output range (see page 6-8).
- Output with two relays: An output range is defined for each relay with a *Start value* and an *End value*. One relay outputs in the upper output range and a further relay in the lower output range (see page 6-8).

Fig. 6-2 Output with one relay

Pulse width output The output via the pulse width is used, e.g. for controlling valves.

Pulse-width regulation changes the duration of operation (ton) of the output signal. Depending on the position of the measured value in the proportional range, the relay is operated for a longer or shorter period.

Fig. 6-4 Relay output of the pulse-width output

The cycle duration (T) is made up of the turn-on and turn-off switching duration (t_{on} , t_{off}) of the relay together. While the selected cycle duration (T) remains constant, the turn-on duration (t_{on}) changes depending on the measured value and, with it, the pulse width (v). The pulse width can be set from 0 % to 100 %.

 $v = (t_{on} / T) * 100 \%$

- v = pulse width, T = cycle duration, $t_{on} =$ turn-on duration
- If the measured value is at the end of the proportional range (*End value*), the turn-on duration (t_{on}) is long, the turn-off duration is short. This means the relay operates for a longer period.
- If the measured value is at the beginning of the proportional range (*Start value*), the turn-on duration (t_{on}) is short, and the relay operates for a correspondingly shorter period.

Note

If the duration of the closing or opening pulse is shorter than 0.1 s, the relay remains open or closed for the complete cycle duration.

Frequency output Switching frequency output is used, e.g. for controlling dosing pumps.

In contrast to the pulse-width output, not the pulse width is modulated with frequency output but the switching frequency of the output signal. Depending on the position of the measured value in the proportional range, the relay is switched more often or less often.

Fig. 6-5 Relay output of frequency output

While the selected switching duration ($t_{on} = 0.3$ s) always remains constant, the switching frequency at which the relay switches changes depending on the measured value.

- If the measured value is at the end of the proportional range (*End value*), the switching frequency is higher.
- If the measured value is at the beginning of the proportional range (*Start value*), the switching frequency is low.

 Characteristic curves
 Through the selection of the *Start value* and *End value*, the proportional output can be operated with a positive or negative characteristic curve.
 Positive characteristic curve: Select the *End value* to be greater than the *Start value*. The turn-on duration or frequency increases with an increasing

> measured value (see page 6-12).
> Negative characteristic curve: Select the *End value* to be smaller than the *Start value*. The turn-on duration or frequency decreases with an increasing measured value (see page 6-13).

The maximum values for the pulse width or switching frequency are assigned to the *End value* value and the minimum values for turn-on duration or frequency are assigned to the *Start value* value.

Fig. 6-6 Positive characteristic curve

Fig. 6-7 Negative characteristic curve

Positive characteristic curve

The proportional output range begins above the initial value. If the proportional range is undercut or exceeded, the selected behavior comes into force.

Fig. 6-8 Pulse width output

1	<i>Start value</i> Measured value with a minimum pulse width or switching frequency
2	<i>End value</i> Measured value with a maximum pulse width or switching frequency

Negative characteristic curve

The proportional output range begins below the initial value. If the proportional range is undercut or exceeded, the selected behavior comes into force.

Fig. 6-10 Pulse width output

Fig. 6-11 Frequency output

1	<i>Start value</i> Measured value with a minimum pulse width or switching frequency
2	<i>End value</i> Measured value with a maximum pulse width or switching frequency

6.4 Setting table for relays

6.4.1 Functions and settings

To set a relay its function has to be selected first. Then the relevant setting table is displayed:

Relay function and relevant setting tables

Function	Setting table	
No function	The relay output is not used.	
System monitoring	see section 6.4.2	
Sensor monitoring	see section 6.4.3	
Limit indicator	see section 6.4.4	
Frequency output	see section 6.4.5	
Pulse-width output	see section 6.4.6	
Sensor controlled	see section 6.4.7	
Cleaning	see section 6.4.8	
Manual control	see section 6.4.9	

6.4.2 System monitoring

Function The *System monitoring* enables monitoring system errors.

To set up the *System monitoring* function for a relay output you have to select the *System* option when linking the relay output (see section 6.2.1).

It can be used to monitor the following system errors:

Settings	Settings	Selection	Explanations
	Power failure	On Off	The <i>Power failure On</i> function monitors the supply voltage in the DIQ/S 182-MOD. If the voltage falls below a critical value, the relay switches.
	Collective error	On Off	The <i>Collective error</i> function simultaneously monitors the proper function of all sensors. (for details see below this table)
	Action	Open	For all functions of the <i>System monitoring</i> , the relay action is set to <i>Open</i> .

Collective error message

In the case of a *Collective error* message, the relay opens if one of the following malfunctions occurs:

- One of the sensors properly registered at the controller does not supply a valid main measured value
- One of the sensors properly registered at the controller does not supply a valid secondary measured value

In any case, the relay remains open for 10 seconds and only closes when the malfunction is no longer present.

In the following cases, the relay does <u>not</u> open despite an invalid measured value:

- The sensor is being calibrated
- The sensor is in the maintenance condition
- The sensor is being cleaned with the aid of a valve module in the system (compressed air operated cleaning system).

6.4.3 Sensor monitoring

Function The *Sensor monitoring* function enables to monitor sensor errors and the maintenance condition.

In order to set up the *Sensor monitoring* function for a relay output, the relay output must be linked with a sensor (see section 6.2.1).

Settings	Setting	Selection	Explanation
	Errors	All	All sensor errors (special ones and general ones) are monitored and can prompt a relay action.
		Special	Special sensor errors are monitored and can prompt a relay action.
		Off	Sensor errors are not monitored.
	Mainten. condition	On Off	Switching on and off the maintenance condition is monitored and can prompt a relay action.
	Action	Open	For all functions of the <i>Sensor monitoring</i> , the relay action is set to <i>Open</i> .

Note

Preferably set up the relay output as an opener for monitoring functions.

Sensor messages include errors and information that are registered by the sensor.

Special sensor errors

The special sensor errors are sensor-dependent. Details of this are given in the component operating manual of the respective sensor.

General sensor errors

Init	can prompt a relay action for a short time, depending on the starting behavior of the system
	Invalid measured value, or defective sensor
Error	Communication with sensor interrupted
OFL	Measuring range undercut or exceeded (overflow)

6.4.4 Limit indicator

Function The characteristic of the limit indicator is laid down in the *Limit value UL*, *Limit value LL*, *Hysteresis UL* and *Hysteresis LL* settings. The fundamentals of the function are described in the introductory chapter (see section 6.3.2).

In order to set up the *Limit indicator* function for a relay output, the relay output must be linked with a sensor (see section 6.2.1).

Settings	Setting	Selection/Values	Explanation
	Limit values	UL main variable LL main variable UL adjoining var. LL adjoining var.	Main variable designates the actual measured parameter of the sensor (e.g. pH, oxygen, etc.). Adjoining variable designates an additional measured parameter (e.g. temperature).
	Limit value UL	within the	Any upper or lower limiting value
	Limit value LL	(sensor-dependent)	
	Hysteresis UL	0 - 10 % of the	Hysteresis for upper or lower limiting value
	Hysteresis LL	measuring range	
	Behavior at error	Open Close Unchanged	The relay opens, closes, or remains unchanged in case of system errors or sensor errors (see page 6-25).
	Action	Open Close	Relay action
	Switching delay	0 3600 s	The time period for which a limiting value must be exceeded before the relay operates. Prevents frequent switching for measured values that are close to the limiting value.

6.4.5 *Frequency output*

Function The characteristic of the frequency output is laid down in the *Start value*, *End value*, *Frequency (f) min.* and *Frequency (f) max.* settings. The fundamentals of the function are described in the introductory chapter (see section 6.3.3).

In order to set up the *Frequency output* function for a relay output, the relay output must be linked with a sensor (see section 6.2.1).

Settings	Setting	Selection/Values	Explanation
	Measured variable	Main variable Adjoining variable	Main variable designates the actual measured parameter of the sensor (e.g. pH, oxygen, etc.). Adjoining variable designates an additional measured parameter (e.g. temperature).
	Start value	Start value within the	
	End value	measuring range (sensor- dependent)	measuring range
	Frequency (f) min.	0 to 120 1/min	Minimum spacing: 10 1/min
	Frequency (f) max.		
	Frequency with error	0 to 120 1/min	In case of system errors or sensor errors (see page 6- 25), the relay switches with the frequency specified.
	Action	Open Close	Relay action

Characteristic curve If a value is entered for *End value* that is greater than the *Start value*, the output has a positive characteristic curve.

In order to obtain a negative characteristic curve, a value must be entered for *End value* that is smaller than the value for *Start value*.

6.4.6 Pulse-width output

Function The characteristic of the pulse width output is laid down in the *Start value*, *End value*, *Pulse width (v) min.* and *Pulse width (v) max.* settings. The fundamentals of the function are described in the introductory chapter (see section 6.3.3).

In order to set up the *Pulse-width output* function for a relay output, the relay output must be linked with a sensor (see section 6.2.1).

Settings	Setting	Selection/Values	Explanation
	Measured variable	Main variable Adjoining variable	Main variable designates the actual measured parameter of the sensor (e.g. pH, oxygen, etc.). Adjoining variable designates an additional measured parameter (e.g. temperature).
	Start value	within the	Minimum spacing: 5 % of the measuring range
	End value	(sensor- dependent)	
	Pulse width (v) min.	0 100 %	Minimum spacing: 10 % of the <i>Cycle</i> <i>duration (T)</i>
	Pulse width (v) max.		
	Cycle duration (T)	5 100 s	Length of the switching period T T = $(t_{on} + t_{off})$
	Error pulse width	0 100 %	In case of system errors or sensor errors (see page 6- 25), the relay switches with the pulse-width specified.
	Action	Open Close	Relay action

Characteristic curve

You can specify the minimum and maximum pulse width (v). This determines the steepness of the characteristic curve of the output.

6.4.7 Sensor-controlled cleaning

With the *Sensor controlled* function, the relay is controlled by a linked sensor.

Requirements • Controller version from 2.80

• Sensor that transmits signals to trigger a cleaning cycle, e.g. UV/VIS sensor

Settings	Setting	Selection/Values	Explanation
	Pulse length	Automatic	The duration of the air cleaning process is programmed in the sensor. The relay automati- cally takes over the cleaning duration from the sensor.
		0,5 s 1 s 2 s 3 s	The relay finishes the cleaning after the selected interval.

Note

Settings of the cleaning process can be done in the *SETTINGS* menu of the respective sensor.

6.4.8 Cleaning

Function	The <i>Cleaning</i> function enables the time controlled automatic start of the sensor cleaning function with the aid of a relay of the Universal Transmitter. The relay controls the DIQ/CHV valve module and switches on or off the compressed air for the CH sensor cleaning head.
	In order to set up the <i>Cleaning</i> function for a relay output, the relay output must be linked with a sensor (see section 6.2.1).
	The assigned relay always works as a closer.
	The cleaning cycle consists of <i>Cleaning duration</i> and <i>Adjustment time</i> .
	During the cleaning cycle the <i>Clean</i> display flashes. The outputs linked with this sensor are frozen. The maintenance condition is active.
	After the <i>Cleaning duration</i> , the relay is opened. During the following <i>Adjustment time</i> the outputs remain blocked. The outputs linked with this sensor are only released when the cleaning cycle is completed. The <i>Clean</i> display disappears. The maintenance condition is finished.
Testing the operativeness	You can test the operativeness of the cleaning system as follows: manually open or close the relay with the <i>Manual control</i> function (see section 6.4.9) and, while doing so, check the behavior of the cleaning system.
	Alternatively, you can test the operativeness of the cleaning system by checking the performance of the function at the start time set up (reference time \pm interval). To perform a test immediately, you can set the reference time so that the next cleaning cycle will start in a few minutes (settings: see following table).

Settings

Setting	Selection/Values	Explanation
Reference time (h)	0 23 h	Time at which a
Reference time (min)	0 60 min	cleaning cycle is started. Further cleaning cycles will be performed at the times specified by the cleaning interval.
Interval unit	1 7 d 1 24 h 5 60 min	Selection of range and unit for the <i>Cleaning interval</i> .
Cleaning interval	1/2/3/4/5/6/7 d or: 1/2/3/4/6/8/12/24 h or: 5/10/15/20/30/60 min	Repeat interval for the cleaning function: Time between the start time of a cleaning cycle and the start time of the next cleaning cycle*.
Cleaning duration	0 300 s	Duration of the cleaning
Adjustment time	0 900 s	Time extension to allow the sensor to adjust to the test sample after cleaning.

* With short *cleaning intervals*, the adjustable values for the *Cleaning duration* and *Adjustment time* are limited. The following values apply:

Cleaning interval	Cleaning duration	Adjustment time
≤ 10 min	max. 60 s	max. 120 s
≤ 20 min	max. 180 s	max. 300 s

Note

With this, the cleaning times are fixed. They only change when the *reference time* is changed.

Note

The reference time and all further cleaning times relate to the date and time of the system clock. The setting of the system clock can be found in section 5.6.

Example	Settin	g		Result
	Refere Refere (min):	ence time (h): ence time	12 0	Reference time: 12:00 hours This specifies the following start times:
	Interv Clean	al unit. ing interval:	<i>Hours (h)</i> 8 h	04:00, 12:00 and 20:00 hours
		1	2 t1a t1b	3
	relay condit closed			4 t1 t↑
open				
00:00 04:00 12:00 20:00 Fig. 6-12 Cleaning cycle 1 Reference time Start of a cleaning cycle (t1) Start of the specified Cleaning duration (the specified cle		12:00	20:00 24:00 Time	
		luration (t1a)		
2 End of the specified <i>Cleaning duration</i> (t1a) Start of the specified <i>Adjustment time</i> (t1b)			uration (t1a) ht time (t1b)	
	3	End of the speci End of the clean	ified <i>Adjustment</i> hing cycle (t1)	t time (t1b)
4 Reference time ± <i>Cleaning interval</i> (t2) Start of a cleaning cycle		val (t2)		
	t1	Cleaning cycle = Cleaning duration Linked outputs a	= on (t1a) <i>Adjustm</i> are frozen.	ent time (t1b)
	t2	Cleaning interva	al	

Canceling the cleaning

A running cleaning cycle is canceled:

- Automatically
 - If the sensor switches to the inactive condition during the cleaning cycle
- Manually
 - By pressing C
 - By switching on the maintenance condition

Each time the cleaning cycle is canceled, the relay opens immediately.

If the cleaning cycle is canceled automatically, the outputs linked to the sensor are released immediately.

If the cleaning cycle is canceled manually, the sensor is in the maintenance condition. The linked outputs are only released after the maintenance condition was terminated manually.

The next cleaning cycle will be performed at the time set up.

Note

In case of a power failure, all relays open. The cleaning cycle is canceled. The outputs linked with the sensor change to the non-active condition (see section 6.5.2). As soon as the power is available, the outputs are released again. The next cleaning cycle will be performed at the time set up.

6.4.9 Manual control

Function With the *Manual control* function, you can test the operativeness of an instrument that is connected to the relay. To do so, close or open the relay manually and, while doing so, check the behavior of the connected instrument.

Setting	Selection/Values	Explanation
Relay function	Manual control	The selected relay action is carried out with <i>Save and quit</i> .
Action	Open Close	Relay action

Note

The settings for other functions in the *Relay function* menu, as for example *Frequency output* and *Pulse-width output*, are retained while the *Manual control* is carried out.
6.5 Behavior of linked relay outputs

6.5.1 Behavior in case of error

For linked relay outputs, you can specify the behavior in case of errors. Depending on the use of the output, the behavior in case of errors is set in the following menus:

Output	menu
Limit indicator	Behavior at error(see section 6.4.4)
Frequency output	Frequency with error(see section 6.4.5)
Pulse-width output	Error pulse width(see section 6.4.6)

The specified behavior occurs with the following errors.

- The system is in the maintenance condition or displays *Init*, ----, *Cal*, *Clean*, *Error* or *OFL*. The meaning of these displays is given in section 4.2 of this operating manual.
- The supply voltage is too low.

6.5.2 Behavior in non-operative condition

An output is non-operative when no function is activated for the output. The relay contact is open in the non-operative condition.

An output becomes non-operative in case of

- Power failure (As soon as the supply voltage is sufficient again, the non-operative condition of the outputs ends. The outputs function as specified by the user again.)
- Erasing a link to a sensor
- Changing the *Measuring mode* sensor setting for a linked sensor
- Changing the *Measuring range* sensor setting for a linked sensor

Note

Before editing sensor settings a note appears on the display to inform you that links will be erased when you change the *Measuring mode* or *Measuring range* sensor setting.

7 Modbus connection

Note

Further instructions for the installation and operation of a Modbus network are given in the Internet under www.modbus.org. Especially recommendable is the "Aufbaurichtlinie (installation guideline) PROFIBUS/FMS", issued by the PROFIBUS user organization PNO, (PNO order number 2.111) with many practical installation tips that apply to Modbus systems as well.

7.1 Modbus checklist

The following checklist supports you when planning, projecting and installing a Modbus plant with the IQ SENSOR NET. For smooth operation, you should be able to answer all questions with "Yes".

- Is the [bus system] (bus segment) installed without branch lines?
- Was the correct Modbus cable used (cord type A according to EN 50170)?
- Are the poles of the signal lines A line and B line correctly connected at all bus connections?
- Is it guaranteed that there is no short-circuit between A line, B line and cable shielding?
- Is the shielding installed free of interruptions?
- Are the guidelines for shielding and grounding being observed, and doesn't any unallowed potential equalization current flow via the shielding?
- Is the maximum cable length (per bus segment) observed for the corresponding baud rate?
- Do all devices support the required baud rate?
- Are exactly two terminators switched on at the ends of the [bus system] (bus segment)?
- Are the terminators supplied with voltage so the following applies:
 U_{B line} U_{A line} > + 500 mV?
- Do all devices have individual bus addresses?
- After changing the bus address, have the devices been restarted (switched off and on again)? Note: The DIQ/S 182-MOD does not have to be restarted.
- Do the addresses projected in the master correspond to the actual addresses?
- After commissioning: Do all devices signal error-free behavior?
- Is it guaranteed that the Modbus master has consistent access to the 16 byte sensor data structure?

7.2 Connecting the Modbus cable

The Modbus cable is connected to the DIQ/S 182-MOD using a 9-pin D-SUB connector on the top of the housing. As connector on the cable side, we exclusively recommend one of the following two connectors.

Manufactu	irer:	Phoenix Contact GmbH & Co. KG Flachsmarkt 8 32825 Blomberg Germany http://www.phoenixcontact.com
Types:		VS-09-PROFB-SC (Phoenix article no. 1654549, with screwed contacts, available from WTW under order number 902 888)
OI	r:	VS-09-PROFB-SP

(Phoenix article no. 1654345, with spring contacts)

To remove the blind plug, lift the safety bracket with a suitable screw driver at both clamps on the left and right side (see Fig. 7-1).

Fig. 7-1 Removing the safety bracket

Caution

To prevent the enclosure of the DIQ/S 182-MOD from being penetrated by water the following must be observed:

- Use connectors recommended by WTW only.
- When the connector is removed, the connection socket of the DIQ/S 182-MOD must be closed with the blind plug and secured with the safety bracket.

All cables with electrical characteristics according to EN 50170 are suitable as a Modbus cable (e.g. all Profibus cables).

Fig. 7-2 DIQ/S 182-MOD with Phoenix connector

Pin assignment of the	Pin	Color*	Name	Function
connector	1			-
	2			-
	3	Red	B line	Positive RxD/TxD according to RS 485 specification
	4		RTS	Request To Send
	5		GND BUS	Reference potential for data lines and terminating resistors
	6		+5 V BUS	Supply voltage for terminating resistors
	7			-
	8	Green	A line	Negative RxD/TxD according to RS 485 specification
	9			-

* Wire colors when using a standard PROFIBUS cable.

Please observe the operating manual of the connector.

7.3 Setting the Modbus interface parameters

The setting of the Modbus interface parameters (RS 485 interface) is done in the menu, *MODBUS configuration*.

Settings	Setting	Selection/Values	Explanation
	Device Address	1 247	Device address of the DIQ/S 182-MOD
	Baud rate	1200 2400 4800 9600 19200 38400 57600	Baud rate
	Parity	None Even Odd	Parity None (2 stop bits) <i>Even</i> (1 stop bit) <i>Odd</i> (1 stop bit)

Proceeding: setting the interface parameters

- 1 Open the SETTINGS menu with (S).
- 2 Select and confirm the *MODBUS configuration* menu item with and .

MODBUS CONFIGU	RATION
Device address	
	1
Baud rate	
	19200↓

3 Edit the setting table as described in section 4.3.2.

To accept all settings, you have to highlight the *Save and quit* menu item at the lower end of the setting table and press (K). If you exit the setting table via (M), (K)/Quit or the *Quit* menu item, all changes are ignored.

7.4 Transmitted sensor data

7.4.1 Overview

Data transmission is carried out via the RS 485 interface with the Modbus RTU protocol.

Transmitted sensor data The following data for a sensor is transmitted to the Modbus master as a consistent data block:

- Sensor number (Sxx)
- Sensor status
- Sensor model
- Status info of sensors
- Measuring mode
- Measured value status (main and secondary measured value)
- Main measured value
- Secondary measured value

Note

The transmitted data of all IQ SENSOR NET sensors is given in the WTW document, "IQ SENSOR NET sensors: coded data for field bus communication" (ba75560de). It is permanently updated when new sensors are available and when the sensor software is modified (if the modifications are relevant for the transmitted sensor data). The latest version is available on the Internet, in the download area for operating manuals. Use the search function for the download and search for "ba75560de".

Note

Check the transmitted data for agreement of the requested and transmitted sensor number (Sxx) before any further processing.

Sensor data block

The datasets of the sensors are made available to the Modbus master in a sensor datablock in the DIQ/S 182-MOD.

Data transmission takes place via query and response telegrams. The form of the telegrams is determined by the Modbus RTU protocol. The Modbus master transmits a query telegram with a Modbus command to the Modbus slave (here, the DIQ/S 182-MOD). The Modbus slave transmits a response telegram with the requested data from the sensor data block or an error message.				
The DIQ/S 182-MOD provides the data block for read access only. Writing Modbus commands are not carried out.				
Modbus commands Command code				
Read Input Register 04h				
	Data transmission takes place via form of the telegrams is determine The Modbus master transmits a command to the Modbus slave (I Modbus slave transmits a respon from the sensor data block or an The DIQ/S 182-MOD provides the Writing Modbus commands are n Modbus commands Read Input Register			

Read Discrete Inputs	02h
Read Holding Register	03h
Read Coils	01h

7.4.2 Sensor administration under Modbus

Preparation of the IQ SENSOR NET for communication with the Modbus may require, e.g. the following:

- Creating an IQ SENSOR NET system with specific assignment of sensor numbers to sensors
- Creating several IQ SENSOR NET systems with the identical assignment of sensor numbers to sensors
- Changing the order of the sensors in an already installed system

Creating the assignment of sensor numbers

You want to install an IQ SENSOR NET system and, at the same time, create a specific sequence of sensor number assignments to the sensors.

1	Carry out a system start without any sensors (see section 3.10).
2	Connect the sensors to the system in the required order. With

each sensor wait until the system has recognized the sensor.

Changing the assignment of sensor numbers	You want to change the assignment of sensor numbers to sensors in an already running IQ SENSOR NET system.			
	1	Unplug all sensors from the IQ SENSOR NET.		
i	Note When the inactive datasets are deleted, all settings for the senso deleted as well.			
	2	Delete all inactive datasets in the list of sensors (see System operating manual, chapter <i>Deleting inactive datasets of sensors</i>).		
	3	Connect the sensors to the system in the required order. For each sensor, wait until the sensor is recognized by the system (see System operating manual, chapter Installation).		
Creating the identical assignment of sensor numbers in several systems	You w the sa assigi	vant to install several identical IQ SENSOR NET systems and, at ame time, create the same sequence of sensor number nments to the sensors in all systems.		
	1	Carry out a system start without any sensors (see System operating manual, chapter Installation).		
	2	Connect the sensors to the system in the required order. For each sensor, wait until the sensor is recognized by the system (see System operating manual, chapter Installation).		
	3 Repeat steps 1 and 2 for all other systems and, while do			

keep to exactly the same order when connecting the sensors.

7.4.3 Sensor data block

The data block contains the data of the sensors in the order of their registering on the DIQ/S 182-MOD (Sxx number).

The data of a sensor are stored in 8 registers each. Thus, the sensor data block consists of altogether 16 registers. Each register contains 2 bytes. The bytes 0 and 1 form register 0001, the bytes 2 and 3 form register 0002, etc.

	Modbus		Information	Data format	
	Register	Bit		Data type	Bit
	0001	1-8	1 [= sensor number (S01)]	(Int 8)	7-0
	0001	9-16	Sensor status	(Int 8)	7-0
	0002	1-16	Sensor model	(Int 16)	15-0
Ţ.	0003	1-16	Status info	(Int 16)	15-0
r SO	0004	1-8	Measuring mode	(Int 8)	7-0
osue	0004	9-16	Measured value status	(Int 8)	7-0
ű	0005	1-16	Main meas. value (IEEE-754 floating point, 32-bit)	(Float 32)	31-16
	0006	1-16	Main meas. value (IEEE-754 floating point, 32-bit)	(Float 32)	15-0
	0007	1-16	Secondary meas. value (IEEE-754 floating point, 32-bit)	(Float 32)	31-16
	0008	1-16	Secondary meas. value (IEEE-754 floating point, 32-bit)	(Float 32)	15-0
	0009	1-8	2 [= sensor number (S02)]	(Int 8)	7-0
	0009	9-16	Sensor status	(Int 8)	7-0
	0010	1-16	Sensor model	(Int 16)	15-0
N	0011	1-16	Status info	(Int 16)	15-0
r So	0012	1-8	Measuring mode	(Int 8)	7-0
Senso	0012	9-16	Measured value status	(Int 8)	7-0
	0013	1-16	Main measured value (IEEE-754 floating point, 32-bit)	(Float 32)	31-16
	0014	1-16	Main measured value (IEEE-754 floating point, 32-bit)	(Float 32)	15-0
	0015	1-16	Secondary meas. value (IEEE-754 floating point, 32-bit)	(Float 32)	31-16
	0016	1-16	Secondary meas. value (IEEE-754 floating point, 32-bit)	(Float 32)	15-0

The counting method of the Modbus registers and Modbus bits and the allocation of MSB and LSB is different from the usual method of most programming languages.

	Modbus	Usually
Counting start of the register	1	0
MSB* allocation of the register	Bit 1	Bit 15
LSB* allocation of the register	Bit 16	Bit 0

*MSB = Most significant bit, LSB = Least significant bit

7.4.4 Data formats

The sensor data in the sensor data block (see section 7.4.3) are available in the Float 32, INT16 and INT8 data formats.

Float 32 The data for the main and secondary measured values are transmitted in the IEE-754 standard 32-bit floating point format.

Bit represer	Byte	Bit		
MSB*	LSB*			
SEEE	EĖĖĖ	4	31 - 24	S = sign (bit 31)
EMMM	ММММ	3	23 - 16	E = Exponent (Bit 30-23) M = mantissa (bits 22-0)
M, M, M, M,	MMMM	2	15 - 08	
M, M, M, M,	MMMM	1	07 - 00	

MSB = Most significant bit, LSB = Least significant bit

If not all of the bits of the exponents are 0, the value is calculated according to:

$$V = -1^{S} \cdot 2^{E-127} \cdot (1 + M_{b22} \cdot 2^{-1} + M_{b21} \cdot 2^{-2} + M_{b20} \cdot 2^{-3} + \dots + M_{b0} \cdot 2^{-23})$$

If all of the bits of the exponents are 0, the value is calculated according to:

$$V = -1^{S} \cdot 2^{-126} \cdot (M_{h22} \cdot 2^{-1} + M_{h21} \cdot 2^{-2} + M_{h20} \cdot 2^{-3} + \dots + M_{h0} \cdot 2^{-23})$$

A value is 0 if all the bits of both the exponents as well as the mantissa are 0.

If the measured value is equal to 0, check the measured value status. If the measured value status is not equal to 1, an error has occurred and the measured value is invalid.

Note

The Modbus protocol does not define how the bytes of 32-Bit-IEEE-754 floating point numbers should be ordered.

Apart from the byte order described in the bit representation, another order of the bytes is also possible.

Opposite to the order described, the two lower bytes have been exchanged with the two upper bytes in this order (b4 b3 b2 b1 - b2 b1 b4 b3).

For Modbus applications that can independently interpret floating point numbers (or allow to select a data format for certain registers), the byte order the data interpretation is based on should be checked.

INT16 In the INT16 format, the data for the sensor model and status info is transmitted. The data consists of two bytes. The assignment is carried out in Motorola format ("big-endian", the higher value byte first).

Bit repres	entation	Information
MSB	LSB	
		High byte
		Low byte

INT8 All other data is transmitted in the INT8 format. This data consists of one byte.

The data for the measured value status of the main and secondary measured values are encoded jointly into a single byte. Bits 7-4 encode the status of the main measured value, bits 3-0 encode the status of the secondary measured value.

7.5 Modbus query

With each query of sensor data via the Modbus protocol, a block of consecutive registers is read (up to all of the 16 registers). For a query of sensor data, determine the first register and the number of registers to be read (1 ... 16).

The first register to be read depends on the sensor number (Sxx) [1 or 2] and the number of the sensor register (R) [1 ... 8]:

(Sxx - 1)] * 8 + R.

Example: Determine the first register with data for the sensor S02: [(2 - 1) * 8] + 1 = 9

Determining the number of registers to be read

Determining the first register to be read

The number of registers to be read is maximum 16.

Example: Read all data of X sensors

Number of sensors (X)	Number of registers
1	8
2	16

Example of a Modbus query and Modbus response Query of all sensor information of the sensor S02:

Modbus query			
Byte	Value	Information	Meaning of the value
1	01h	Modbus address of the DIQ/S 182-MOD	01h> 1
2	04h	Function	04h> 4 Read Input Register (see section 7.4.1)
3	00h	Start address HI	0008h> 8
4	08h	Start address LO	(Modbus counting method)
5	00h	Number of HI registers	0008h> 8
6	08h	Number of LO registers	8 registers
7	70h	CRC (HI)	Checksum (CRC)
8	0Eh	CRC (LO)	

Modbus response			se
Byte	Value	Information	Meaning of the value
1	01h	Modbus address of the DIQ/S 182-MOD	01h> 1
2	04h	Function	04h> 4 Read Input Register
3	10h	Number of bytes	10h> 16 16 Byte (8 registers)
4	02h	Contents of register 9 (HI) = sensor number	02h (Int 8)> 2 Sensor number S02
5	02h	Contents of register 9 (LO) = sensor status	02h (Int 8)> MEASURE
6	04h	Contents of register 10 (HI) = sensor model	0401h (Int 16) > VisoTurb 700 IQ
7	01h	Contents of register 10 (LO) = sensor model	
8	00h	Contents of register 11 (HI) = status info	0000h (Int 16) > no errors
9	00h	Contents of register 11 (LO) = status info	
10	00h	Contents of register 12 (HI) = measuring mode	00h (Int 8)> FNU <i>Turb</i>
11	14h	Contents of register 12 (LO) = measured value status	14h (Int 8) Main measured value (bits 7-4): 1h> VALID Secondary measured value (bits 3-0): 4h> MISSING

Response with all sensor information of the sensor S02:

Modbus response			
Byte	Value	Information	Meaning of the value
12	42h	Contents of register 13 (HI) = main measured value	429E46C2h (Float 32) > 79,1382
13	9Eh	Contents of register 13 (LO) = main measured value	Measured parameter and unit, see byte 10 (measuring mode)
14	46h	Contents of register 14 (HI) = main measured value	
15	C2h	Contents of register 14 (LO) = main measured value	
16	00h	Contents of register 15 (HI) = secondary measured value	00000000h (Float 32) > 0
17	00h	Contents of register 15 (LO) = secondary measured value	but measured value invalid (MISSING), see Byte 11 (measured value status)
18	00h	Contents of register 16 (HI) = secondary measured value	
19	00h	Contents of register 16 (LO) = secondary measured value	
20	23h	CRC (HI)	Checksum (CRC)
21	5Eh	CRC (LO)	

7.6 Modbus error elimination

Note

Here you will find causes and actions to take of errors concerning the Modbus communication only. General errors of the IQ SENSOR NET system are dealt with in chapter 9 WHAT TO DO IF

Data transmission between the Modbus master and DIQ/S 182-MOD is faulty

Cause	Remedy	
 Incorrect wiring of the Modbus cable on the connector 	 Check/change the connections (see section 7.2) 	
	 Use checklist according to section 7.1 	
 Incorrect setting of address, baud rate, parity 	 Check/change the settings (see section 7.3) 	
 Incorrect protocol 	 Adapt the protocol 	
- DIQ/S 182-MOD defective	 Send DIQ/S 182-MOD to WTW 	

The PLC does not receive any plausible input data

Cause	Remedy
 The data interpretation is not correct 	 Observe data formats of the DIQ/S 182-MOD (see also section 7.4.4).

8 Maintenance and cleaning

8.1 Maintenance

Maintenance activities

Component	Maintenance
IQ sensors	Depending on the type of sensor (see the component operating manual of the sensor)
DIQ/S 182-MOD, DIQ modules, MIQ modules	No maintenance required

8.2 Cleaning

DIQ/S 182-MOD, DIQ modules, MIQ modules Clean components mounted in the open of gross contamination as necessary. We recommend to clean the worst of the dirt on the enclosure and the area around it each time before opening in order to prevent gross contamination from entering the open enclosure.

To clean the module, wipe the enclosure surfaces with a damp, lint-free cloth. If compressed air is available on site, blow off the worst of the dirt beforehand. Keep the enclosure closed while doing so.

Caution

The enclosure and the window of the display are made of plastic. Therefore, avoid any contact with acetone or similar cleaning agents. Any splashes must be wiped off immediately.

Caution

Never use high-pressure cleaners to clean components of the DIQ/S 182-MOD.

IQ sensors

The cleaning of the IQ sensors depends greatly on the respective application. Instructions for this are given in the respective component operating manual.

9 What to do if ...

9.1 Information on errors

Log book The DIQ/S 182-MOD system performs a comprehensive cyclical self test during operation. While doing so, the system identifies all states that deviate from normal operation and enters corresponding messages in the log book (information or error message).

With the aid of the log book, you can call up instructions on how to clear the error directly on the terminal. The log book is described in detail in section 4.4.3 Sensor status Sxx.

Note

Information on possible errors in IQ sensors and MIQ output modules is given in the chapter WHAT TO DO IF ... of the respective component operating manual.

9.2 Error causes and remedies

Note

Errors of the Modbus communication are dealt with in detail in section 7.6.

The system does no longer react on entries

Cause	Remedy
 System error 	Reset the system: - Switch off the power supply and switch it on again after 10 s

"Error" in the measured value display	Cause	Remedy
	 Communication with the IQ Sensor interrupted 	 Check the cable connection
	 Error in the IQ sensor 	 Disconnect the IQ sensor and reconnect it after 10 s

The selected system	Cause	Remedy
activated for a sensor	 A system language was selected that is not available in the sensor. The English language was activated instead of the selected system language. 	 Contact WTW, a software update is required for the respective components

9.3 Replacing system components

9.3.1 Replacing passive components

Passive components include all components that the controller cannot recognize.

These include:

- MIQ power supply modules
- DIQ/JB
- DIQ/CHV
- Cables (SNCIQ, SACIQ).

Warning

If the DIQ/S 182-MOD Universal Transmitter is opened and the MIQ/PS power supply module is operating, there is a danger to life due to possible hazard of electric shock from line voltage. Before opening the Universal Transmitter, switch off the system and, if necessary, all external relay circuits that present a hazard of electric shock and secure the system against being switched on again.

Only ever replace components when the system is switched off. Defective components are removed in the reverse order to the installation (see chapter 3 INSTALLATION).

9.3.2 Adding and replacing IQ sensors

Inactive datasets of IQ sensors If an IQ sensor is removed from the system, its settings remains stored in the Universal Transmitter as an inactive dataset. A dataset contains the following information:

- Serial number of the IQ sensor (and, with it, the type of sensor)
- Display position
- All sensor settings

• All characteristics of the link with an output.

If no suitable inactive dataset is available, a newly connected IQ sensor is recognized and added automatically.

Note

The DIQ/S 182-MOD Universal Transmitter can display and administrate up to two main measured parameters. If necessary, an inactive dataset has to be erased to be able to add a new sensor.

Note

The current calibration data of the IQ sensor is always stored in the sensor. If an IQ sensor is connected that is ready for operation and calibrated, this can be used immediately without the need for recalibration.

Note

To erase inactive datasets, see page 5-3.

If an IQ sensor is connected to the system when an inactive dataset is present, the following cases are possible:

Case 1:

The serial number of the IQ sensor is identical with the serial number of an inactive dataset.

The connected IQ sensor is automatically assigned to the inactive dataset and starts to operate again.

Example: Maintenance or repair.

This mechanism ensures that all IQ sensors retain their settings and links if an IQ sensor was removed for maintenance, or if the system was temporarily switched off.

Case 2:

The type of sensor is identical with the type of sensor in an inactive dataset (or several inactive datasets), but the serial numbers differ. Operator intervention is required here. The connected IQ sensor can:

 be assigned to the inactive dataset (or one of the inactive datasets).

Example: Replacing an IQ sensor.

Make sure that the substitute sensor has at least the software status of the inactive IQ sensor.

 be included in the list of sensors as a new component (if the maximum number of possible sensors is not yet included).

The operating sequence to do this is described below.

Note

It is always possible to replace components and assign a substitute if the software state of the substitute component is as high as or higher than the software version of the original component. Otherwise the component will not be admitted as the replacement component. Operating sequence in case 2

Connect the IQ sensor.

1

2 Change to the measured value display with (M). The component database is updated. The following display appears (example):

NEW SENSOR	
SensoLyt700IQ	
99160022	
Substitute sensor	
Add as new sensor	

- 3 Select the required option with and confirm with .
 - If Add new sensor was selected, the system changes directly to the measured value display. As soon as the IQ sensor is ready for operation, it delivers a measured value.
 - If *Assign sensor as a substitute* was selected, a list with the assignable sensors or inactive datasets appears.

ASSIGNABLE SENSORS SO1 99160001

4 Select the required sensor with (*) and confirm with (*). The system changes to the measured value display. The IQ sensor takes over all settings of the inactive dataset. As soon as the IQ sensor is ready for operation, it delivers a measured value.

10 Technical data

10.1 DIQ/S 182-MOD

Fig. 10-1 Dimension drawing of the DIQ/S 182-MOD (dimensions in mm)

Test marks

cETLus, CE

Mechanical	Enclosure material	Polycarbonate with 20 % glass fiber		
construction	Weight	Approx. 0.7 kg		
	Type of protection	 IP 66 Corresponds to NEMA 4X The DIQ/S 182-MOD Universal Transmitter is not suitable for Conduit Connection 		
Ambient conditions	Temperature			
	Operation	- 20 °C + 55 °C (-4 131 °F)		
	Storage	- 25 °C + 65 °C (-13 149 °F)		
	Relative humidity			
	Yearly average	≤ 90 %		
	Dew formation	Possible		
	Site altitude	Max. 2000 m above sea level		
Electrical data DIQ/S 182-MOD (line power version)	Power supply	Nominal voltage: 100 240 VAC ± 10 % Frequency: 50/60 Hz according to DIN IEC 60038		
		Line power connection :2 pin, N and L Line cross-section of mains connection: Europe: 1.5 4.0 mm ² USA: AWG 14 12		
		Fuse rating on the operator side: max. 16 A		
	Protective class			
	Overvoltage category			
	Power consumption	max. approx. 12 W		

Electrical data Supply DIQ/S 182-MOD/24V (24 V AD/DC version)		Nominal voltage:	24 V AC/DC ± 10 % protective low voltage SELV (Safety Extra Low Voltage)
		AC frequency:	50/60 Hz according to DIN IEC 60038
		Connection:	2 pin
		Line cross-section	n of connections: Europe: 1.5 4.0 mm ² USA: AWG 14 12
		Fuse rating on the	e operator side: max. 16 A
	Power consumption	max. approx. 12 \	N
Electrical connections DIQ/S 182-MOD	Terminal strip inside the	e enclosure:	
(line power version)	X17 X16 X15 X14 X13 X12 L1 N ≤240V AC ≤240V AC ≤240V AC 100 240V AC <2A AC ≤2A AC 100 240V AC NETZMAINS R3 R2	X11 X10 X9 X8 ≤ 240V AC HILFS- SPANNUNG ≤ 240V AC HILFS- SPANNUNG AUXILIARY VOLTAGE R1 AUXILIARY VILLARY	X6 X5 X4 ROT D SENSORNET 2
Electrical connections	Terminal strip inside the	e enclosure:	
DIQ/S 182-MOD/24V (24 V AC/DC version)	X17 X16 X15 X14 X13 X12 24V AC DC \$240V AC \$240V AC \$240V AC \$240V AC EINGANG \$10 \$10 \$10 \$10 \$10 POWER R3 R2 \$10 \$10 \$10 \$10	X11 X10 X9 X8 ≤240V AC HILFS HILFS ≤2A AC SPANNUNG AUXILARY VOLTAGE NOLTAGE NOLTAGE	X6 X5 X4 AP FD K3 X2 X1 GR GR AP FD FD GR SENSORNET 2 SENSORNET 1 SENSORNET 1
Relay	Output	Galvanically ser	parated
(3 x)	Max. switching voltage	240 VAC or 24	VDC
	Max. switching current	2 A (AC and DC	·)
	Installation requirements	Fuse rating on t	he operator side: max. 2 A
	Relay functions	Programmable a	as:
		- Opener or clo	oser
		 – Limit monitor – Monitoring of 	the warning and error

- Proportional frequency output
- Proportional pulse width output

Terminals	Terminal type Screw-type terminal strip, accessible opening the lid		strip, accessible by
	Terminal ranges	Solid wires:	0.2 4.0 mm ² AWG 24 12
		Flexible wires:	0.2 2.5 mm ²
Cable glands	Suitable for cable diameter	4.5 10 mm or 7	13 mm
Modbus RTU/ RS 485 connection	9-pin SUB-D socket on t Phoenix connector (IP 6	he top of the enclosure 7).	, compatible with
EMC product and system characteristics	EN 61326	EMC requirements for for control technology	r electrical resources and laboratory use
		 Resources for indu for indispensable of 	istrial areas, intended operation
		 Interference emiss resources of class 	ion limits for B
	System lightning protection	Extended protective of opposed to EN 61326	characteristics as
	FCC, class A		

Any combination of the DIQ/S 182-MOD with IQ SENSOR NET products in a user-specific system achieves the listed EMC characteristics.

Instrument safety

Applicable norms

EN 61010-1
UL 3111-1
CAN/CSA C22.2 No. 1010.1

10.2 MIQ modules

Note

Technical data on special MIQ modules are given in the respective operating manuals.

Dimensions

Fig. 10-2 Dimension drawing of MIQ module (dimensions in mm)

Mechanical construction	Maximum number of MIQ modules in a module stack	2 plus Universal Transmitter DIQ/S 182- MOD
	Enclosure material	Polycarbonate with 20 % glass fiber
	Weight	Approx. 0.5 kg (type-dependent)
	Type of protection	 IP 66 In accordance with NEMA 4X MIQ modules are not suitable for conduit connection

Terminal connections	SENSORNET connections	At least two in each MIQ module.		
	Further connections	Module-dependen	Module-dependent	
	Terminal type	Screw-type terminal strip, accessible by opening the lid		
	Terminal ranges	Solid wires: Flexible wires:	0.2 4.0 mm ² AWG 24 12 0.2 2.5 mm ²	

Cable glands	Suitable for cable diameter	4.5 10 mm or 7 13 mm
	ulameter	

10.3 DIQ/JB

Fig. 10-3 Dimension drawing of DIQ/JB (dimensions in mm)

Mechanical construction

Enclosure material	Polystyrene
Weight	Approx. 0.2 kg
Type of protection	IP 66

Electrical connections

(7 passive, potential free terminals for line extension or branching)

Terminals	Terminal type	Screw-type terminal strip	
	Terminal ranges	Solid wires:	0.2 4.0 mm ² AWG 24 12
		Flexible wires:	0.2 2.5 mm ²
	Cable feeds	Prepared openings for installing two screwed cable glands M16 x 1.5 both on the upper and underside	

10.4 DIQ/CHV

Dimensions

Fig. 10-4 Dimension drawing of DIQ/CHV (dimensions in mm)

Mechanical construction	Enclosure material	Polystyrene
	Weight	Approx. 0.3 kg
	Type of protection	IP 66

Electrical connections

• 1 x valve switching contact

• 4 x potential-free terminals to connect interface lines

Terminal strip inside the enclosure:

(HILFLSKONTAKTE) (AUXILIARY)	VENTIL VALVE
X6 X5 X4 X3	X2 X1

Terminals	Terminal type	Screw-type termin	al strip
	Terminal ranges	Solid wires: Flexible wires:	0.2 4.0 mm ² AWG 24 12 0.2 2.5 mm ²
	Cable feeds	Prepared openings screwed cable gla upper side	Prepared openings for installing two screwed cable glands M16 x 1.5 on the upper side

Valve circuits	Switching voltage	Approx. 22 V
	Max. switching current	Approx. 40 mA

Caution The valve may only be operated with the auxiliary voltage of the DIQ/S 182-MOD Universal Transmitter.

Compressed air	Required air quality	Dry, free of dust and oil
	Operating pressure	Max. 7x10 ⁵ Pa (7 bar) absolute
	Connections on the DIQ/CHV	6 mm hose nozzles

Wall mounting and top hat rail mounting

10.5 Space required by mounted components

Fig. 10-6 Space required for panel mounting (dimensions in mm)

Panel mounting

11 Accessories and options

Description	Model	Order no.
IQ SENSOR NET cable - please specify the	SNCIQ	480 046
required length in m with your order	SNCIQ/UG	480 047
IQ sensor connection cable		
– 1.5 m	SACIQ-1.5	480 040
– 7.0 m	SACIQ-7.0	480 042
– 15.0 m	SACIQ-15.0	480 044
 Special length up to max. 100 m 	SACIQ-SO	480 041V
 20 m (seawater version) 	SACIQ-20.0 SW	480 045
 25 m (seawater version) 	SACIQ-25.0 SW	480 066
 50 m (seawater version) 	SACIQ-50.0 SW	480 060
 75 m (seawater version) 	SACIQ-75.0 SW	480 067
 100 m (seawater version) 	SACIQ-SO SW	480 062
 Special length (seawater version) 	SACIQ-SO SW	480 064V
Set with four cable glands for cable sheath diameter of 7 to 13 mm	EW/1	480 051
Branching module	DIQ/JB	472 005
Valve module	DIQ/CHV	472 007
Set for mounting of one or two DIQ modules to a WTW mounting stand	MS/DIQ	472 009
Sun shield for the DIQ/S 182-MOD	SSH/IQ	109 295
Set for wall mounting of the DIQ/S 182-MOD or an MIQ module	WMS/IQ	480 052
Set for panel mounting of the DIQ/S 182-MOD or an MIQ module; switch panel aperture 138 x 138 mm according to DIN 43700 or IEC 473 (max. thickness 15 mm)	PMS/IQ	480 048
Set for mounting of the DIQ/S 182-MOD or an MIQ module on a 35 mm top hat rail according to EN 50022	THS/IQ	480 050

Note

Other accessories for the System 182 are given in the WTW catalog or on the Internet.
12 Index

Α

5-4
10-2
3-46
3-40

В

Baud rate	7-4
-----------	-----

С

Calibration	
Calibration data	4-12
General proceeding	4-15
Calibration data	4-12
Cleaning	
Compressed air-driven	6-21
of module enclosures	8-1
Compressed air cleaning	6-21
Configuring passwords	4-17
Contact base	. 3-6, 3-9
Contrast (display)	5-4

D

Date/time	5-4
Delivery condition	5-5
Dimensions	
DIQ/S 182	10-1
DIQCHV	10-8
DIQJB	10-7
MIQ modules	10-5
Display contrast	5-4

Ε

Effects of the weather	3-18
Electrical data	
DIQ/S (24 V version)	10-3
DIQ/S (line power version)	10-2
EMC characteristics	10-4
Erasing a link	6-3
Error symbol	4-3, 4-11

F

Frequency output	(relay)	
------------------	---------	--

I

Inactive dataset	5-3, 9-2
Info symbol	. 4-3, 4-11
Instrument address	7-4

Κ

Key functions		4-1
---------------	--	-----

L

Μ

Maintenance activities	8-1
Maintenance condition	
Automatic activation	4-10
During calibration	4-10
During compressed air cleaning .	4-10
During maintenance	4-10
General information	4-9
Measured values	
Double display	4-2
Single display	4-2
Message code	4-13
Message text	4-13
Modbus	
Checklist	7-1
More information	7-1
Transmitted sensor data	7-5

Modbus cable	7-3
Modbus connector	
Pin assignment	7-3
Recommended type	7-2
Mounting	
Connecting MIQ modules	3-4
Distributed mounting	3-12

0

Obligations of the operator	2-3
Operating elements	4-1
Operational safety	2-2

Ρ

Parity	7-4
Password	
Calibration	4-17
Settings	4-17
Power failure	1-3
Pulse width output (relay)	6-19

R

Relay	
Behavior in case of error	6-25
Behavior in non-operative condition	6-25
Display of states	4-2
Functions and settings	6-14
Terminal strip	3-46
Replacement	
Of IQ sensors	9-2
Of passive components	9-2

S

2-3
4-3
3-16
6-16
4-11
6-20
3-15
3-46
7-4
3-12
3-12
2-2

backwards	3-9
forwards	3-6
Start checklist	3-42
Starting the system	3-42
Status	
Sensor	4-11
Sensor System	4-11
Sensor System System language	4-11 4-8 5-1
Sensor System System language System monitoring (relay)	4-11 4-8 5-1 6-15
Sensor System System language System monitoring (relay) System status	4-11 4-8 5-1 6-15 4-8

Т

Target group	2-1
Terminal strips (figures)	3-46
Time	5-4
Toggle switch	4-1
Types of installation	3-18

13 Appendix (store separately if required)

13.1 Forgotten the password?

Proceeding: prompting the password

1

Open the SETTINGS menu with (S).

2 Depending on the password to be prompted, use (*) and (*) to select and confirm the menu item, Settings (*) / (*) or Calibrate (*) / (*). The following display appears:

	_	
SETTINGS ଟ		SETTINGS 🔂
Activate password	or	Deactivate password
Change password	01	

3 First press ⓒ, then press ⑤. The current password is displayed.

PASSWORD
Current password
is:
3042

4 Quit the display of the password with \bigcirc .

13.2 Default passwords

In the default condition of the Universal Transmitter both passwords are set to 1000.

Wissenschaftlich-Technische Werkstätten GmbH

Dr.-Karl-Slevogt-Straße 1 D-82362 Weilheim

Germany

 Tel:
 +49 (0) 881 183-0

 +49 (0) 881 183-100

 Fax:
 +49 (0) 881 183-420

 E-Mail:
 Info@WTW.com

 Internet:
 http://www.WTW.com