

KND—KOT 车床用一体化数控系统

用户手册

北京凯恩帝数控技术公司

B11B-T00N-0001

© KND LTD,2004

第一篇 :概述	1-1
第二篇 :编程篇	1-1
1 编程坐标	1-1
1.1 绝对坐标值	1-1
1.2 相对坐标值	1-1
1.3 混合坐标值	1-1
1.4 两轴的最小设定单位	1-1
2 程序的构成	2-1
2.1 程序的一般格式	2-1
2.1.1 程序名	2-1
2.1.2 程序的主体	2-1
2.2 主程序和子程序	
3 指令代码及其功能	
3.1 G 功能—准备功能	
3.2 基本的准备功能(G代码)	
(1) 快速定位(G00)	
(2) 直线插补(G01)	
(3) 圆弧插补(G02、G03)	
(4) 螺纹切削(G32)	
(5) 暂停指令(G04)	
(6) 自动返回参考点(G28)	
(7) 坐标系的设定(G50)	
(8) 圆柱或圆锥切削循环(G90)	
(9) 端面切削循环(G94)	3-11
(10) 螺纹切削循环 (G92)	
(11) 固定循环的使用方法	3-16
3.3 进给功能(F功能)	3-17
3.4 辅助功能(M功能)	
3.5 主轴功能(S功能)	3-19
3.5.1 主轴速度指令	
(1) 有级变速	
(2) 无级变速	
3.6 刀具功能(T功能)	
3.6.1 换刀功能	
3.6.2 补偿功能	
3.6.3 刀具补偿值的输入	
4 编程综合实例	
第三篇 操作篇	1-1
1 概要	1-1
2 操作面板说明	2-1
2.1 LCD / MDI 面板	2-1
2.2 液晶屏亮度调整	

录

目

	2.3 显示机能键	2-1
	2.4 操作方式键	2-1
	2.5 键盘说明	2-2
	2.6 手动辅助机能操作键	2-2
	2.7 电子盘存盘键	2-3
	2.8 其他开关键	2-3
3	手动操作	. 3-1
	3.1 手动返回参考点	.3-1
	3.1.1 机械回零——回零方式 B 或 C	3-1
	3.1.2 程序回零——回零方式 A	3-1
	3.2 手动连续进给	.3-1
	3.3 单步进给	.3-1
	3.4 手动辅助机能操作	.3-1
	3.4.1 手动换刀	. 3-1
	3.4.2 冷却液开	. 3-1
	3.4.3 主轴正转	. 3-2
	3.4.4 主轴反转	. 3-2
	3.4.5 主轴停止	. 3-2
	3.4.6 主轴点动	. 3-2
	3.4.7 各速率的调整	. 3-2
4	自动运行	. 4-1
	4.1 自动运转	.4-1
	4.1.1 存储器运转	. 4-1
	4.1.2 MDI运转	4 -1
	4.2 自动运转的停止	.4-2
	4.2.1 程序停(MOO)	. 4-2
	4.2.2 程序结束 (M30)	4-2
	4.2.3 暂停	. 4-2
	4.2.4 复位	. 4-2
5	调试	. 5-1
	5.1 试运行	.5-1
	5.2 单程序段	.5-1
	5.3 参数及程序开关	.5-1
	5.4 手动辅助机能输出	.5-1
6	安全操作	. 6-1
	6.1 急停	.6-1
	6.2 超程	.6-1
7	报警处理	. 7-1
8	程序存储、编辑	.8-1
	8.1 程序存储、编辑操作前的准备	. 8-1
	8.2 把程序存入存储器中	.8-1
	8.3 程序检索	.8-1
	8.4 程序的删除	.8-1
	8.5 删除全部程序	.8-1

8.0	6 顺序号检索	8-1
8.7	7 字的插入、修改、删除	8-2
	8.7.1 字的检索	8-2
	8.7.2 字的插入	8-3
	8.7.3 字的变更	8-3
	8.7.4 字的删除	8-3
	8.7.5 删除到 EOB(;)	8-3
	8.7.6 多个程序段的删除	8-3
8.8	8 存储程序的个数	8-3
8.9	9 存储容量	8-3
9数	据的显示、设定	9-1
9.	1 刀具补偿量的设定和显示	9-1
9.2	2 参数	9-1
	9.2.1 参数的显示	9-1
	9.2.2 参数的设定	9-1
9.3	3 诊断	9-2
10 5	显示	10-1
10).1 状态显示	10-1
10	0.2 键入数据显示	10-1
10).3 程序号、顺序号的显示	10-1
10	0.4 程序存储器使用量的显示	10-1
10	0.5 位置显示及清零	10-2
	10.5.1 显示	10-2
	10.5.2 坐标清零	10-4
10).6 加工时间显示	10-4
10).7 报警显示	10-4
11 月	电子盘	11-1
11	.1 简介	11-1
11	.2 读盘	11-1
11	.3 系统初始化设定	11-1
11	1.4 存盘	11-1
第四篇 💈	零件的加工	1-1
1 坐	标系的规定	1-1
2 机	床坐标系原点的设定	2-1
3 加	l工坐标系的设定	3-1
3.	1 自动加工坐标系的设定	3-1
3.2	2 用 G50 指令设定加工坐标系	3-3
第五篇 🗄		1-1
1系	统结构	1-1
1.	1 KND-0T 数控系统的组成	1-1
1.2	2 KND-0T 数控系统安装尺寸图	1-1
1.3	3 KND - 0T 数控系统后盖板插座示意图	1-2
2内	部连接及设定	2-1
2.1	1 系统内部连接框图	2-1

	2.1.1 KOT 系统主板的连接	2-1
	2.1.2 KOT 显示缓冲板与液晶屏的连接	
	2.1.3 KOT 系统接口板与驱动板的连接	
	2.1.4 K0T 系统 AC220V 电源连接示意图	
2.	.2 K0T 系统内部设定开关说明	2-3
	2.2.1 系统主板中的设定开关	2-3
	2.2.2 系统主板设定开关的位置	2-3
	2.2.3 系统接口板中的设定开关	2-3
	2.2.4 接口板设定开关的位置	2-3
	2.2.5 系统驱动板中的设定开关	2-4
	2.2.6 驱动板中设定开关的位置	2-4
2.	3 系统操作面板开关的连接	2-4
3 外部	β连接	
3.1	隔离变压器的连接	
3.2	步进电机的连接	
	3.2.1 连接图	3-2
	3.2.2 注意事项	3-2
	3.2.3 配套电机参数表及驱动器设置	3-2
3.3	主轴位置编码器的连接	3-3
3.4	模拟主轴接口的连接	3-3
3.5	刀架接口的连接	3-4
3.6	输入/输出接口的连接	
3.7	输入/输出信号表	
第六篇 附表	录篇	1-1
附录 1	(规格一览表)	1-1
附录 2	2 (参数-览表)	2-1
附录 3	3 (诊断信息一览表)	
附录 4	(报警一览表)	4-1

第一篇 概 述

KND - 0T 是北京凯恩帝数控技术有限责任公司针对中国国情专为机床改造而研制的经济型车床专用 数控系统。系统采用一体化结构,机箱内除了数控单元外,还内置两个三相混合式步进电机驱动器,使机 床改造更加简单、方便。

KND—0T 数控系统内置的三相混合式驱动器采用交流伺服控制原理,在控制方式上增加了全数字式 电流环控制,三相正弦电流驱动输出,使三相混合式电机低速无爬行,运行平稳,无共振区,噪声小。驱 动器功放级的电压达到直流325V,使步进电机高速运转时,仍有高转距输出,高速性能好。驱动器有4种 输出电流选择、8种细分选择,与数控单元配合可使控制达较高精度。

KND—0T 数控系统的控制单元采用了高速微处理器,超大规模定制式集成电路芯片,多层印刷电路板,显示器采用了高分辩率的液晶屏,整个工艺采用表贴元器件,在保留车床常用的功能前提下进一步简化系统,从而使整套系统更为紧凑,体积极大地缩小,同时也使系统的可靠性进一步地提高。在控制面板上,将CNC操作面板与机床操作面板集成为一体,极大地简化了联机。全屏幕中文菜单操作,界面直观,操作更加简化、明了,从而使系统具有极高的性能价格比。

本说明书介绍了车床及两轴控制机械用 KND 0T系统的编程,操作方法,连接及日常维护。

KND—0T 附带的资料如下:

KND 0T 用户手册

内含系统的编程,操作,连接及日常维护。

重要提示:

KOT 系统有电子盘功能,当机床调试完毕,请将系统当前数据保存在电子盘中。这样,当系统当前数据丢失、紊乱,不能工作时,可使系统很快恢复正常。具体操作方法参见"操作篇 11 - 1"。

第二篇 编程 篇

数控机床是按照事先编制好的数控程序自动地对工件进行加工的高效自动化设备。理想的数控程序不 仅应该保证能加工出符合图样要求的合格工件,还应该使数控机床的功能得到合理的应用与充分的发挥, 以使数控机床能安全、可靠、高效地工作。

数控系统的种类繁多,它们使用的数控程序的语言规则和格式也不尽相同。KND 系统的程序语言规则和格式与日本发那科(FANUC)系统相同。

本篇主要说明 KND0T 数控系统加工程序的指令数据含义及编制方式,在编制程序之前,请详细阅读 本篇内容。

1 编程坐标

本系统可控制的轴数为两轴,分别用 X 和 Z 表示。可实现两轴同时移动,便于很方便的加工出圆弧或 斜线。对两个移动轴的控制,本系统可以用绝对坐标 X、Z 表示,相对坐标 U、W 表示,也可以是相对和 绝对混合使用的 X,W 或是 U,Z 字段进行编程。对于 X 轴方向的坐标,本系统使用直径编程。

1.1 绝对坐标值

绝对坐标值是刀具相对于加工坐标系原点的距离,也即是刀具移动到终点的坐标位置。如图:1-1

图 1-1 绝对坐标和增量坐标

刀具快速从 A 点移动到 B 点用绝对坐标编程为:G00 X50 Z0;

1.2 相对坐标值

相对坐标值又叫增量坐标值。刀具运动位置的坐标值是相对于前一位置,而不是相对于固定的加工坐标系原点。即是刀具实际移动的距离。同样如图(1-1)所示:刀具快速从 A 点移动到 B 点用相对坐标指 令表示为:G00 U - 30. W - 120.;

1.3 混合坐标值

根据编程中的计算方便以及编程者的习惯,系统允许相对坐标和绝对坐标混合使用,但应注意,同一 个程序段中,同一坐标轴只能用一种表示方法,即可以使用 X、W 或 U、Z 表示,而不能用 X、U 或 Z、 W。刀具快速从图(1-1)中的 A 点移动到 B 点,X 轴使用绝对坐标,Z 轴使用相对坐标指令表示为:G00 X50 W-20;

1.4 两轴的最小设定单位:

最小的设定单位为 0.001 毫米, X 轴实际移动为 0.0005 毫米, Z 轴实际移动为 0.001 毫米。

2程序的构成

为使机床能按要求运动而编写的数控指令的集合称之为程序。程序是由多个程序段构成的,而程序段又是由字构成的,各程序段用程序段结束代码';'来隔开。

2.1 加工程序的一般格式

加工程序一般由开始符(单列一段)程序名(单列一段)程序主体、程序结束指令(一般单列一段)程序结束符(单列一段)组成。程序开始符和程序结束符是同一个字符:KND 系统的数控指令是标准 ISO 代码用%表示。程序开始符的%不显示出来,程序的结束符% 可自动显示出来。开始符和结束符在输入程序时不必考虑,会自动生成的。

2.1.1 程序名:

在本控制装置中, CNC 的存储器可以存储多个程序, 为了把这些程序相互区别开, 在 程序的开头, 冠以用地址 O 及后续四位数值构成程序名。

 $O \times \times \times \times$;

└──→ 程序号(1—9999,前导零可省略,输入后前导零会自动显示出来)。 程序从程序名开始,用 M30或 M99 结束。

2.1.2 程序的主体

程序是由多个指令构成的。把它的一个指令单位称为程序段,多数的程序段是用来指令 机床完成(执行)某一个动作的。在程序段的开头可以用地址和后续的四位数构成顺序号, 前导零可省略,中间是指令数字,结尾是用';'结束。

程序段的一般格式:

$N \times \times \times \times$	G××	$X \times \times \times$	$Z \times \times \times$	M××	$S \times \times$	F××	Тхх	;
	- 🖵					+		$\overline{\mathbf{v}}$
顺序号	准备功能	能 坐标	植 辅	勆功能	主轴功能	进给功能	刀具功能	程序结束符。

(1)顺序号

顺序号的顺序是任意的,其间隔也可不等。可全部程序段都不带有顺序号,也可在重要的程序段带有。但按一般的加工顺序,顺序号要从小到大。KND 系统可实现顺序号自动增加的功能。当参数 P029 设定不为 0 时,顺序号自动增加机能有效,一段程序输入好后按 EOB 键,下一程序段的顺序号自动生成。P029 设置的参数值为增量值,当插入新的顺序号后,下面的顺序号会按新的顺序号递增。

(2)指令数字

字是构成程序段的要素。字是由地址和其后面的数值构成的(数值前可带有+、-符号)。 地址是英文字中的一个字母。它规定了其后数值的意义。在本系统中,可以使用的地址和它 们的意义如下表所示:

根据不同的准备功能,有时一个地址也有不同的意义。

功 能	地址	意义
程序号	0	程序号
顺序号	Ν	顺序号
准备功能	G	指定动作状态(直线,圆弧等)
尺寸字	XZUW	坐标轴移动指令
	R	圆弧半径
	I K	圆弧中心坐标,倒角量
进给功能	F	进给速度指定
主轴功能	S	主轴转速指定
刀具功能	Т	刀具号的指定
辅助功能	М	控制机床方面 ON / OFF 的指定
暂停	P U X	暂停时间指定
程序号指定	Р	指定子程序号
重复次数	Р	子程序的重复次数

程序段由若干个字组成的,字首是一个英文字母,它称为字的地址。字的功能类别由地 址决定。在此格式程序中,上一段程序中已写明,本程序段里又不必变化的那些字仍然有效, 可以不再重写。具体地说,对于模态的 G 代码指令,如 G01 指令(参见 G 代码章节),在 前面程序段中已有时可不再重写。在这种格式中,每个字长不固定。例如在尺寸字中可只写 有效数字,省略前置零(如 G01 和 G1 等效)。下面列出某程序中的两个程序段:

N30 G01 X88.467 Z47.5 R50 S250 T0303 M03;

N40 X75.4;

这两段的字数和字符个数相差甚大,但除 X 坐标有变化外其它功能状况都是一样的。在同 一个程序段中各个指令字的位置可以任意排列,上例 N30 也可写成:

N30 M08 T0303 S250 F50 Z47.5 X88.467 G01;

但在大多数场合,为了书写、输入、检查和校对的方便,程序字在程序段中习惯按一定的顺 序排列即是:N、G、X、Z、S、T、M;

(3)程序的结束

程序的最后有下列代码时,表示程序结束:

M30 表示主程序结束,再次按循环启动,重新运行程序。

M99 表示子程序结束,并可返回到调用子程序的程序中。

2.2 主程序和子程序

(1) 主程序

加工一个零件时,数控机床通常是按主程序指令运行的,其程序是用 M30 指令作为结束。如果主程序上遇有调用子程序的指令 M98,则数控程序转移到子程序上,按子程序指令运行,在子程序中遇到返回主程序的指令 M99 时,数控机床又返回到主程序继续执行。数控系统的存储器内,主程序和子程序共可存储 63 个。无子程序调用的程序也称为主程序。 (2)子程序

编程时,为了简化程序的编制,当一个工件上有相同的加工内容时,便可把它们作为 子程序事先存到存储器中,同主程序存储方法一样,只是子程序是用 M99 作为结束语句的。 子程序可以在自动运行方式下被调用,并且被调出的子程序还可以调用另外的子程序。从主 程序中被调出的子程序称为—重子程序,共可嵌套调用2级。 调用子程序的程序格式如下:

M98 $P \times \times \times \times \times \times \times;$

└──被调用的子程序号必须是四位数,前导零不能省略。 范围(0001~9999) ───重复调用次数(1~999))

如果省略了重复次数,则默认为重复调用次数为1次。

例: M98 P51002;表示号码为 1002 的程序连续调用 5 次。M98 P____也可以与移动指令 同时存在于一个程序段中。例如: X1000 M98 P1200;此时 X 轴移动完成后,调用 1200 号 子程序 1 次。

(例)从主程序调用子程序执行的顺序如下:

在子程序中调用子程序与主程序中调用子程序的情况是一样的。

特殊使用

单独执行子程序时,机床也可运行。当程序运行到 M99 时,则光标又返回到程序的开 头继续执行,且会一直反复运行下去,直到按了机床复位键后方可停止。

注1:当检索不到用地址 P 指定的子程序号时,产生报警 PS078。

注 2:用 MDI 录入方式输入 M98 P××××;时,不能调用子程序。

3 指令代码及其功能

本章详细介绍 KND-0T 数控系统中所有指令代码的功能及其使用方法。

3.1 G 功能—准备功能

准备功能是由 G 代码及后接 2 位数表示的,其规定了机床的运动方式。G 代码有以下 两种类型。

1) 一次性G代码: 也是非模态G代码, 只在被指令的程序段中有效。

2) 模态 G 代码: 在同组其它 G 代码指令前一直有效。

如:G01和G00是同组的模态G代码:

G01 X__ F__; 表示 X 轴以 F 速度加工进给。

Z__; 表示 Z 轴以 F 速度加工进给,相当于有 G01 指令。

G00 Z_; G01 无效, G00 有效。

G功能字含义对照表如下:

G 代码	组别	功能
G00		定位(快速移动)
* G01	01	直线插补(切削进给)
G02	01	圆弧插补 CW(顺时针)
G03		圆弧插补 CCW(逆时针)
G04	00	暂停,准停
G28	00	返回参考点
G32	01	螺纹切削
G50	00	坐标系设定
G90		外圆、内圆切削循环
G92	01	螺纹切削循环
G94		端面切削循环
* G98	02	每分进给
G99	03	每转进给

- 注 1:带*记号的 G 代码,当电源接通时,系统处于这个 G 代码状态。如 G98 指令开机后运行,程序中可 不编入 G98 指令系统会自动认为是每分进给。
- 注 2:00 组的 G 代码是非模态指令,前一句指定,后一句也必须再次指定。如 G04、G28、G50 指令。
- 注 3:如果使用了 G 代码一览表中未列出的 G 代码,则出现报警 (NO.10);或指令了不具有的选择功能的 G 代码也报警。
- 注 4:在同一个程序段中可以指令几个不同组的 G 代码,如果在同一个程序段中指令了两个以上的同组 G 代码时,后一个 G 代码有效。
- 注5:G代码分别用各组号表示。

3.2 准备功能 (G代码)

准备功能 G 代码包括 G00, G01, G02, G03, G04, G28, G32, G50, G90, G94, G92 等指令。下面进行分别介绍:

(1)快速定位——G00

G00 指令使刀具快速移动到指定的位置。

指令格式:G00X(U)__Z(W)__;其中X(U)Z(W)为指定的坐标值。 快速定位指令的实例:图(3-1)

直径编程:快速从 A 点移动到 B 点。

绝对编程:GO0 X20 Z0;

相对编程:GOO U-60 W-40;

注 1:600 时各轴单独以各自设定的速度快速移动到终点,互不影响。任何一轴到位自动停止运行,另一轴 继续移动直到指令位置。

注 2:600 各轴快速移动的速度由参数设定,用 F 指定的进给速度无效。

G00 快速移动的速度可分为 100%、50%、25%、F0 四档,四档速度可通过面板上的快速倍率上下调 节键来选择。其四档移动速度的百分比可在位置页面的左下角显示。

注 3: G00 是模态指令,下一段指令也是 G00 时,可省略不写。G00 可编写成 G0。G0 与 G00 等效。

注 4: 指令 X、Z 轴同时快速移动时应特别注意刀具的位置是否在安全区域,以避免撞刀。

(2) 直线插补——G01

指令格式:G01X(U)_Z(W)_F_;

G01 指令是使刀具按设定的 F 速度沿当前点移动到 X (U) Z (W) 指定的位置点, 其两个轴是沿直线同时到达终点坐标。其移动速度是由 F 指定的, F 是模态值, 在没有新的 指定以前,总是有效的,因此不需要每一句都指定进给速度。 程序实例:图(3-2)

用直径编程,以F速度从A点到B点。

绝对编程:GO1 X40 Z-30 F100;

相对编程:G01 U20 W-30 F100;

G01 指令也可以单独指定 X 轴或 Z 轴的移动。

G01 指令的 F 进给速度可以通过面板上进给倍率上下调整,调整范围是(0%~150%)。

GO1 指令也可直接写成 G1。

(3)圆弧插补——GO2、GO3

用下面的指令,刀具可以沿着圆弧切削运动。

指令格式:

G02 X (U) __ Z (W) __ I_ K_ F_ ; G03 X (U) __ Z (W) __ I_ K_ F_ ;(圆心坐标编程) G02 X (U) __ Z (W) __ R_ F_ ; G03 X (U) __ Z (W) __ R_ F_ ; (圆弧半径编程)

指令中字段说明:

项目	指定	【内容	命令	意义		
1	同株大台		同株士白		G02	顺时针转 CW
	凹75 	기미	G03	逆时针转 CCW		
2	_{级上位要} 绝对值		X, Z	零件坐标系中的终点位置		
	终点位且	相对值	U, W	从始点到终点的距离		
3	从始点到圆心的距离		I, K	I 表 X 轴方向, K 表 Z 轴方向		
	圆弧半径		R	圆弧半径(半径指定)		
4	进给速度		F	沿圆弧切线方向的速度		

所谓顺时针和反时针是指在右手直角坐标系中,如图(3-3)方向所示,分别采用G02,G03 表示。

图 3 - 3 圆弧插补

用地址 X、Z 或者 U、W 指定圆弧的终点,用绝对值或增量值表示。增量值是从圆弧的 始点到终点的距离值。圆弧的中心用地址 I、K 指定,它们分别对应于 X、Z 轴。I、K 后面 的数值是从圆弧始点到圆心的矢量分量,是增量值。(I 是距离值,不用直径表示)。 如图(3-4): 终点(Z,X)

图 3-4 圆弧中心坐标表示

I、K 根据圆心位置方向带有符号,圆弧中心除用 I、K 指定外,还可以用半径 R 来指定,但对于大于 180 度的圆弧,不能用 R 指定。如

GO2 X__ Z__ R__ F__ ;

GO3 X_ Z_ R_ F_ ; 程序实例:图(3-5) 图上的圆弧轨迹从 A 点到 B 点分别用绝对值方式和增量方式编程,圆弧半径 R=25: GO2 X50 Z-20 I10 K-5;或 GO2 U20 W-20 I10 K-5;或

GO2 X50 Z-20 R25;或

GO2 U20 W-20 R25;

圆弧插补的进给速度用F指定,为刀具沿着圆弧切线方向的速度。

图 3-5 圆弧切削实例

注1:10、K0时可省略。

注 2: 刀具实际移动速度相对于指令速度的误差在 ± 2%以内,而指令速度是刀具沿着补偿后的圆弧运动的 速度。

注3: I、K和R同时指令时,R有效,I、K无效。

注 4:使用 I、K 时,在圆弧的始点和终点即使有误差,也不报警。用 R 编程时,若出现位置误差即会出现 报警。所以圆弧半径的指定一般多采用 I、K 方式。

注5:键I、K与键【P】为复合键。依次按P键,地址为:P、Q、I、K。

(4) 螺纹切削——G32

用 G32 指令,可以切削相等导程的直螺纹、锥螺纹和端面螺纹。

螺纹加工

编程格式:

G32 X (U) _ Z (W) _ F / I_;

其中:X(U),Z(W)为螺纹终点的绝对或相对坐标,X(U)省略时为圆柱螺纹切削, Z(W)省略时为端面螺纹切削,X(U),Z(W)都编入时可加工圆锥螺纹。

F 是公制螺纹的导程。单位是 mm。

I是英制螺纹的导程。单位是牙 / 英寸, 即每英寸的牙数。

一般加工一根螺纹时,从粗车到精车,用同一轨迹要进行多次螺纹切削。因为螺纹切削 开始是从检测出主轴上的位置编程器—转信号后才开始的,因此即使进行多次螺纹切削,零 件圆周上的切削点仍是相同的,工件上的螺纹轨迹也是相同的,但是从粗车到精车,主轴的 转速必须是一定的。当主轴转速变化时,有时螺纹会或多或少产生偏差。

在螺纹切削开始及结束部分,一般由于升降速的原因,会出现导程不正确部分,考虑此因素影响,指令螺纹长度要比需要的螺纹长度要长。

例:螺纹切削实例:

1: 切圆柱螺纹。如图 (3-6)

螺纹导程:4mm

程序如下:

..... G00 X12 Z3.0; G32 X41.0 Z-41.5 F3.5; G00 X50; Z3; X10; G32 X39 Z-41.5; G00 X50; Z3; 注 1:在切削螺纹中,进给速度倍率无效,固定在100%。

注 2:在螺纹切削中,主轴不能停止,如果暂停,切深会急剧增加是危险的。暂停在螺纹切削中无效。在 执行螺纹切削状态之后的第一个非螺纹切削程序段后面,用单程序段来停止。

注 3: 如果在单程序段状态,进行螺纹切削时,在执行完非螺纹切削程序段后停止。

注 4:连续编程 G32 时, 会产生报警: "012 G32 格式错"。

(5)暂停指令——G04

利用暂停指令,可以推迟下个程序段的执行,推迟时间为指令的时间,其格式如下:

G04 P___;或者G04 X__;或者 G04 U__;

其中X,U均是以秒为单位指令暂停时间。指令范围从0.001~99999.999秒。P是以毫秒为单位指令暂停时间。指令范围从1~99999999毫秒。

例:G04 X1;表示程序暂停1秒。

G04 P1000; 表示程序暂停1秒。

G04 U1表示程序暂停1秒。

特殊情况:当 X.U.P均省略,仅指令G04时可看成为准确停指令,如加工拐角类零件时, 在拐角处有时会出现过切现象,如在拐角处加G04指令,即可消除过切现象。如下图所 示:

例:.....

N150 G01 X20 Z10 F100; N160 G04;(可消除拐角处过切现象) N170 G01 W-10;

.

(6) 自动返回参考点——G28

所谓参考点是机械上某一特定的位置点。有机械零点时,此机械零点就是机床的参考点;无机械零点时,设置的浮动零点也可以看成是机床的参考点。可以在手动机械回零方式下返回到参考点,也可以利用G28指令使两个坐标轴自动返回到参考点。 自动返回参考点指令格式:

G28 X_ Z_ ;

其中X Z是指定返回到参考点中途经过的中间点,用绝对值指令或增量值指令。 其回参考点的过程为:如图(3-8)

- 例 从当前点返回到参考点程序如下:
 - G28 X50 Z 20; 或
 - G28 U20 WO;
- 注1: 在电源接通后,如果一次也没进行手动返回参考点,指令G28时,从中间点到参考点的运动和手动返回 参考点时相同。
- 注2:628指令返回参考点时,如仅指定一个轴的中间点,则是该轴返回到参考点,另一个轴不会返回。
- (7)坐标系的设定——G50

指令格式是:

G50X(x)Z(z);

根据此指令,建立一个加工坐标系,而当前刀具的位置在此加工坐标系中的坐标值为(X、 Z),此坐标系称为工件或零件的加工坐标系。坐标系一旦建立后,后面指令中绝对指 令的位置都是用此坐标系下的坐标值来表示的。其加工坐标系具体的设置方式参见操作 篇中的坐标系设定章节。

注:在补偿状态,如果用G50设定坐标系,那么补偿前的位置是用G50设定的加工坐标系中的位置。开始运 行程序以前一般先取消刀具补偿。KND系统返回参考点后,自动取消刀具补偿。

(8) 圆柱或圆锥切削循环 G90

利用切削循环指令(G90、G94、G92),可以将一系列连续的动作,如"切入—切削—退 刀—返回",用一个循环指令完成,从而使程序简化。

图(3-9)按一般方法加工,程序写为:

- N10 G00 X50;
- N20 G01 Z-30 F100;
- N30 X65.0;
- N40 G00 Z2;
- 但用循环语句只要下面一句就可以完成上面四句的程序:

G90 X50 Z-30;

圆柱切削循环指令编程格式为:

G90 X(U)__ Z (W)__ F__;

循环过程如图(3-10)所示,X、Z为圆柱面切削终点坐标值,U、W为圆柱面切削终点相对循 环起点的坐标分量。

例:采用 G90 指令加工图(3-11)所示的圆柱面:

程序如下:

00001;

N10 T0101;

N20 G00 X55 Z4 M03;

N30 G01 Z2 F100 M08;

- N40 G90 X45 Z-25;
- N50 X40;
- N60 X35;
- N70 G00 X100 Z100;
- N80 T0100 M09;
- N90 M05;
- N100 M30;

上述程序中每次循环都是返回到出发点,因此产生了重复切削端面 A 的情况,为了提高 效率,可将循环部分程序改为:

N50 G90 X45 Z-25 F100; N60 G00 X47; N70 G90 X40 Z-25; N80 G00 X42; N90 G90 X35 Z-25; N100 G00 ;

圆锥切削循环指令编程格式为:

G90 X(U)___ Z(W)___ R__ F__; 循环过程如图(3-12)所示。

R 为圆锥面切削始点与切削终点处的半径差。图中 X 轴向切削始点坐标小于切削终点坐标即顺锥,R 的数值为负,反之是逆锥 R 为正。


```
例:采用 G90 指令加工圆锥面如图(3-13)
程序如下:
```

00001; N10 M03 S1000; N20 T0101; N30 G00 X65. Z5.; N40 G01 Z2. F100 M08; N50 G90 X60 Z-35 R-5; N60 X50; N70 G00 X100 Z100 M09; N80 T0100; N90 M05; N100 M30;

(其中)R=(D始-D终)/2=(40-50)/2=-5

 35
 2

 6c
 50

 50
 Z 轴

 X 轴

 图 3 - 13
 G90 的用法(圆锥)

(9) 端面切削循环 G94

切削端平面时,编程格式为:

G94 X(U)__ Z(W)__ F__;

循环过程如下图所示,X、Z为端面切削终点坐标值,U、W为端面切削终点相对循环起 点的坐标分量。

例:采用 G94 指令切削端平面。如图 (3-15):

程序如下:

00001;

N10 M03 S1000;

N20 T0101;

N30 G00 X85 Z10 M08;

N40 G01 Z5 F200;

N50 G94 X30 Z-5 F100;

N60 Z - 10;

N70 Z - 15;

N80 G00 X100 Z60 M09;

N90 T0100 M05;

N100 M30;

上述程序中每一循环都返回始点,因而使外径部分被重复切削,浪费时间,为提高效率

图 3-15 G94 的用法 (端平面)

可将程序循环部分改为:

- N50 G94 X30 Z-5 F100;
- N60 G00 Z-3;
- N70 G94 X30 Z-10;
- N80 G00 Z-8;
- N90 G94 X30 Z-15;
- N100 G00 X Z;

切削锥端平面编程格式是:

G94 X(U) Z(W) R F_;

循环过程如图(3-16)所示, R为端面切削始点至终点位移在 Z 轴方向的坐标分量, 图中轨迹的方向是 Z 轴的负方向, R 值为负,反之为正。

例:采用 G94 指令切锥端面程序如下:如图(3-17)所示

其中的一段程序为:

.....

N40 G01 X55 Z2 F200;

N50 G94 X20 Z0 R-5 F100; N60 Z-5; N70 Z-10; N80 G00 X Z; N50 程序段中:R=-15-(-10)=-5mm

(10) 螺纹切削循环 G92

利用 G92 指令,可以将螺纹切削过程中,从始点出发"切入——切螺纹——让刀—— 返回螺纹加工始点"的4个动作作为一个循环用一个程序段指令来完成。

直螺纹加工编程格式是:

G92 X(U) Z(W) F/I;

循环过程如图所示,X、Z为螺纹切削终点的坐标值,U、W为螺纹切削终点相对循环起 点的坐标分量,有正负符号。F/I指定螺纹导程 L,同 G32 指定。

X轴 图 3-18 圆柱螺纹车削循环

例:用表 G92 指令加工圆柱螺纹图(3-19)的程序如下, L为 1.5mm

程序: N10 M03 S××;

N20 T0101; N30 G00 X45 Z5; N40 G92 X29.2 Z-40 F1.5; N50 X28.6; N60 X28.2; N70 X28.04; N80 G00 X100 Z50; N90 T0100 M05; N100 M30;

注:关于螺纹切削应注意;与G32螺纹切削相同,其螺纹切削循环中的暂停的停止为在动作 结束后停止。

圆锥螺纹切削循环:

G92 X(U) Z(W) R F/I;

循环过程如图(3-20)所示, R为在 X 轴方向螺纹切削始点与螺纹切削终点的半径差。 在 X 轴方向切削始点坐标小于切削终点坐标时 R 的数值为负,反之 R 为正值。

X 轴

图 3-20 锥螺纹切削循环

例:加工一英制内孔锥管螺纹,螺距11牙/英寸。(锥度>1:32)如图(3-21)所示 程序如下:

00001; N10 M03 S × × ; N20 T0101; N30 G00 X55 Z10; N40 G01 X60 Z5 F100; N50 G90 X66.25 Z-60 R1.715; N60 G92 X65.88 Z-50 R1.4 I11; N70 X66.6 I11; N80 X67 I11; N90 X67.4 I11; N100 X67.6 I11; N100 X67.8 I11; N100 X67.8 I11; N120 G00 X100 Z50; N130 T0100 M05; N140 M30;

注:加工英制螺纹时,导程 | 是非模态数据,只在一句中有效,所以螺纹循环每句都应加上 | 导程。

螺纹切削固定循环时螺纹退尾

编程格式:

G92 X Z F/I P ;

P:退尾量(倒角宽度)。

设定单位:0.1 螺距,用 P 表示为 P1;如螺纹退尾量为1个螺距,用 P 表示为 P10。 设定范围:1~255,当设置值超过范围时,无效。

注:P 指定的退尾量为模态值,指定后,一直有效,运行后同时也改变参数 P25 的数值,且 关机后保持不变。

螺纹切削循环时的加减速控制

在螺纹尾部,由于指数加减速控制,会造成一定距离的螺纹不均匀,且主轴转速越高, 螺距不均匀的长度越长。为了减小误差,一般减小指数加减速时间常数的设置。但在配置步 进电机时,又会造成电机堵转。为了解决这个问题,可以选择在G92螺纹切削循环时,X/Z 轴按直线加减速升降速控制。

有关参数设置如下:

0	0	4					G92L				
G92L	G92L 0:G92螺纹切削时,X、Z轴按指数加减速来升降速。										
	1 : G	92螺纹t	刀削时,	X、Z轴	披直线	加减速来	R升降速	0			
0	3	2					G92L	INTX			
当选择G92螺纹切削按直线加减速升降速时,X轴直线加减速时间常数。默认值为150。											
0	3	3					G92L	INTZ			
当选择	G92螺线	文切削按	直线加入	咸速升降	¥速时,	Z轴直线	加减速	时间常数	x。默认	值为150)。

(11)固定循环的使用方法

可根据毛坯形状和零件形状,选择适当的固定循环。参照下图: 1)圆柱切削循环 G90: 2)圆锥切削循环 G90

3) 端面切削循环 G94

4) 端面圆锥切削循环 G94

- 注 1:固定循环 G90、G92、G94 中的数据 X(U)、Z(W)、R 都是模态值,当没有指定新的 X(U)、Z(W)、R 时,前面指令的数据一直有效,英制螺纹加工中的导程 I 除外。程序指令 G90、G92、G94 一旦指令, 一直有效,可以用 01 组的 G 代码 G00、G01 等指令来取消。
- 注2:下述三种情况是允许的;

在固定循环的程序段后面,只有结束符';'的程序段或者是无移动指令的程序时,则重复此固定循环。

用 MDI 录入方式指令固定循环程序时,当此程序段结束后,只用起动按钮,可以进行和前面 同样路径的固定循环。

在固定循环状态中,如果指令了 M、S、T 那么,固定循环功能可以同时进行。如果不巧,象下述例子那些指令 M、S、T 后取消了固定循环(由于指令 GO0、GO1 时),请再次指令固定循环。

例:N10 T0101;

N50 G90 X20 Z10 F100; N60 G00 T0202; N70 G90 X20.5 Z10;

3.3 进给功能(F功能)

用F代码及后面的数值可以指令刀具在直线插补(G01),或圆弧插补(G02、G03)等切 削指令中刀具的进给速度。

指令格式:F××;

切削进给通常是控制刀具沿切线方向的速度使之达到指令的F速度值。其切削进给速度的上限值是由参数(P25)设定,当实际的切削速度(使用倍率后的进给速度)如果超过了上限值,则被限制在上限值上。上限值是用毫米/分来设定的。在位置页面上,F进给速度可通过操作面板上的进给倍率、光标键来选择0~150%档(每档10%)的倍率。进给速度F有两种表示方式每分钟进给G98和每转进给G99。

每分钟进给G98 F的单位是mm / 分钟。

例: G98 G01 X50 Z50 F100;表示刀具移动到X50,Z50处刀具的切削进给速度是每分钟 100毫米。G98每分进给是模态指令,一旦指令在G99未出现前一直有效。KND车床系统开机后 默认是每分进给状态,如果开机后运行的程序要求是每分钟进给,G98指令可省略。

每转进给G99 F的单位是mm / 转。

例: G99 G01 X50 Z50 F0.2;表示刀具移动到X50,Z50处的切削进给速度是主轴每转 0.2毫米。G99是模态指令,一旦指令在G98未出现前,一直有效,关机后自动取消。重新开 机后,想使用每转进给G99,必须在程序中再次指令每转进给G99指令。

注1:F代码最多允许输入7位。但是,如果进给速度超过了限制值,移动时也限制在限制值上。 注2:使用每转进给时,主轴上必须装有位置编码器(1024线)。

3.4 辅助功能(M功能)

移动指令和M同在一个程序段中时,移动指令和M指令同时开始执行。

如果在地址M后面指令了2位数值,那么就把对应的信号送给机床,用来控制机床的开/ 关(ON/OFF)。M代码在一个程序段中只允许一个有效。

M代码列表:

- MO3:主轴正转
- MO4:主轴反转
- MO5:主轴停止
- MO8:冷却液开
- M09:冷却液关
- M10:工件夹紧
- M11:工件放松
- M32:润滑开
- M33:润滑关
- MOO:程序暂停,按'启动'程序继续执行。
- M30:程序结束,运行程序的光标返回到开始位置。
- M98:调用子程序。
- M99:子程序返回。
- 除MOO、M30外,其它M代码的执行时间可由参数P35设定。单位是毫秒。

下面的M代码规定了特殊的使用意义。

- M30:(程序结束)
- 1) 表示主程序结束。
- 2)停止自动运转,处于复位状态。
- 3)返回到主程序开关。
- 4) 也可实现当M30 时关闭主轴旋转及冷却输出。
- MOO:(程序停)

当执行了M00的程序段后,停止自动运转。与单程序段停同样,把其前面的模态信息全部都保存起来。按循环启动键时,程序继续执行。

M98 / M99(调用子程序 / 子程序返回)

用于调用子程序。详细情况参照子程序控制一节。

- 注1:M00、M30的下一个程序段即使存在,也不进入缓冲存储器中去。
- 注2:执行M98和M99时,代码信号不送出。

3.5 主轴功能(S功能)

3.5.1 主轴速度指令

通过地址S和其后面的数值,把代码信号送给机床,用于机床的主轴转速控制。在一个 程序段中可以指令一个S代码。当移动指令和S代码在同一程序段时,移动指令和S功能同时 开始执行,机床的主轴转速有两种控制方式:一种是有级变速控制,一种是无级变速控制(配 置主轴变频器)。

(1) 有级变速

用地址 S+两位数控制主轴的挡位,可实现主轴的有级变速。同时参数 P004 的 SANG 必须设置为 0。由参数 P036 的 SM02、SM01 选择 2~4 挡变速输出。

S 代码的执行时间为128毫秒。

输出信号

诊断号		Y14	Y12	
004		XS50:19	XS50:18	

心罢	指令代码	斩	〕出
设置	オロマリック	Y14	Y12
SM02_0_SM01_0	M10/M11		1/0
SWUZ=0, $SWUT=0$	M32/M33	1/0	
	S00/S01		0
SM02=0, SM01=1	S02		1
	M32/M33	1/0	
SM02=1, SM01=0	S00	0	0
	S01	0	1
	S02	1	0
	S03	1	1
	S00/S01	0	0
	S02	0	1
SM02=1, SM01=1	S03	1	0
	S04	1	1

输出信号 Y14, Y12 的含义由参数 P036 的位 SM02, SM01 设置。

- 注 1:当 SM02=0, SM01=1, 输出为 2 挡变速, 编入 S03, S04 时, 系统会产生报警【S 代码错】。并按 S00 输出。
- 注 2:当 SM02 = 1, SM01 = 0, 输出为 3 挡变速, 编入 S04 时, 系统会产生报警。【S 代码错】。 当然, 两档变速时, 也可采用该设置。

(2) 无级变速

用地址S和其后面的4位数值,直接指令主轴的转速(转/分),数值前导零可省略。 参数P004的位参数SANG设置为1时,模拟主轴功能即无级变速功能有效。不同的机床其最高 主轴转速设定值不同。最高转速是通过P31号参数来设定的。已知主轴的最高转速值,把此 数值写入到P31号参数中,即限定了主轴的最高转速。如程序中速度指令值超过此数值,也 被限定在参数中设定的最高转速上。

无级变速时,主轴的转速是通过主轴模拟接口的输出电压来控制的。当主轴模拟接口 输出10V电压时,对应的主轴转速为最高转速。即是P31号参数中设定的最高转速。对应关系 是:主轴模拟接口输出的电压=指定的主轴转速S×10V/P31号参数的设定值。 例:

M03 S500;表示主轴以500转/分的速度开始正向转动。

3.6 刀具功能(T功能)

3.6.1换刀功能

用地址 T 及其后面 4 位数来选择机床上的刀具。在一个程序段中,可以指令一个 T 代码。 移动指令和 T 代码在同一程序段中指令时,移动指令和 T 代码同时开始。

T 代码后面的前两位数值用于刀具选择,后两位用于指定刀具补偿的补偿号。如 T0101, 表示换1号刀具,同时执行001号刀补值。一般可让刀号和刀补值相对应一致。

系统可提供的刀具数由参数P39设定,最大设定为6。 (1)换刀过程如下:

当Ta P034时。产生报警 05:换刀时间过长。

T 代码开始执行时,首先输出刀架正转信号(TL+),使刀架旋转,当接收到T代码指定 的刀具的到位信号后,关闭刀架正转信号,延迟参数P37 设置的时间后,刀架开始反转而 进行锁紧(TL-),其宽度为P038设置时间,之后,关闭刀架反转信号(TL-),换刀结束,程序转入 下一程序段继续执行。如指定的刀号与现在的刀号一致时,则换刀指令立刻结束,并转入下 一程序段执行。

(2)换刀相关参数:

刀架到位信号(T6~T1) 由参数P003 的Bit1 TSGN 设定高或低电平有效。

- TSGN 0: 刀架到位信号高电平有效.(常开)
 - 1: 刀架到位信号低电平有效.(常闭)
 - T1 : 刀架正转停止到刀架反转锁紧信号输出开始的延迟时间。
 - P037:0~4080 毫秒(设置单位:毫秒,间隔单位:16毫秒)
 - T_{刀数} : 刀架的刀数选择。

P039,设定值 0~6 (单位:个)

- T2 : 刀架反转锁紧信号时间宽度。P038: 0~4080 毫秒(设置单位:毫秒,间隔单位:16毫秒)
- Ta :换刀刀位最长时间。0~1000秒。
 - P034 (设置单位:毫秒,间隔单位:16毫秒)

注:上述时间参数不能设为0。

(3)换刀相关报警:

1) 03:T 代码错。

当T 代码指定的刀号 > 039 设定的最大刀号时,产生以上报警,并停止换刀及加工程序。

2) 05:换刀时间过长。

从刀架开始正转,经过P034设置的时间后指定的刀位到达信号仍然没有接收到时,产生以上报警,并停止换刀及加工程序。

程序中指令的刀具选择号和实际刀具的对应关系,请参照机床厂家发行的说明书。

(4) 刀架信号定时扫描检查

参数 P036 的位 bit7 CKTDI=1 时,系统定时扫描检查刀架输入信号,完成以下机能:

- 换刀完毕后,再检查一遍刀架信号。如果信号正确时,结束换刀。否则,报警,并暂停
 程序执行。(产生暂停信号)
- 定时检查刀架信号与系统内记录的是否一致。
- 检查内容:1、应该接通的是否接通; 2、不该接通的是否接通。此两种情况的故障都
 会产生如下报警:

08: 总刀位数错或刀具输入信号错。

注1:按参数 P039 设置的刀具数量检查对应的输入信号个数。

注 2:如果不需检查或使用排刀时,设置 CKTDI=0。

(5)后刀架选择

当使用后刀架时,设置参数 P036 的位参数 RVX 为 1。

注:设置 RVX=1 时,原手动 X 轴+,-运动反向。

3.6.2 补偿功能

当使用多把刀具加工时,由于每把刀具长短都不一样,为了简化编程和操作,可使用补偿功能。所谓补偿功能就是刀具偏置。 T代码具有下述意义:

Τ_

刀具偏置号 刀具选择号

刀具选择号:就是选择刀架上相应的刀具。

刀具偏置号:用于选择与偏置号相对应的偏置值,刀具偏置值必须先设定在刀补页面中 相应的刀补号上,每一个刀补号有两个偏置值,一个用于 X 轴,另一个 用于 Z 轴。其中 X 向刀偏为直径值。

如T0102表示选择1号刀具,同时执行002号刀偏中设定的刀补值,一般是几号刀就选择 几号的刀补,这样不容易搞错。

当指定了T代码且它的偏置号不是00时刀具偏置功能有效。如果偏置号是00,则刀具偏置功能取消。即取削刀补。

如:T0100,表示换1号刀,且取消刀具补偿值。

刀补手动输入时,如果超出最大值(±999.999),会产生029号报警。

注1: 单独的T代码

当在一个程序段中指令了单独的一个T代码时,不进行偏置移动,而是在下个程序段与下个程序段的 移动指令合成后移动。这个移动指令在G00方式时以快速进行的,其它方式时则按切削速度运动。

注2:G50 X(x) Z(z) T;不进行刀具移动。此指令设置了刀具位置的坐标为(X)、(Z)的坐标系。 这个刀具位置是与T代码指定的偏置号相对应的偏置量进行减运算的结果。

- 注3:程序结束前,即可取消刀具偏移,也可保持,对加工无影响。不同的是,程序停止点的位置不同,相 差刀偏值。
- 注4:如果单独的T代码,执行刀具偏置时,刀具不产生移动,只会使数控系统位置页面中的绝对坐标值减 去一个刀偏置。如果需要执行刀具移动,可在程序T××××后编入U0、W0。取消刀补时除写T××00 后可编入U0、W0,即可使机床移动。
- 注 5:当机床没有安装回转刀架,采用排刀加工工件时,可在车床的中拖板上并排安装几把刀具,这些刀 具都可看成是 01 号刀,只是每一把刀具的刀补值不同。如采用两把刀具加工工件时,可采用 T0101 和 T0102 来编程。只要先正确设定每一把刀具的刀补值,加工时就可以相应的调用这两把刀具了。

3.6.3 刀具补偿值的设定

一般采用的是直接测量值输入的方式(绝对对刀方式),每一把刀具的刀补值都 是独立的。

在设定偏置量时可用下列简便的方法:当根据标准刀具设定了坐标系后,移动实际刀具至工件表面,输入工件表面的实际测量值,系统自动计算出其差值作为该把刀具的偏置值。

- (1) 用手动方式,沿A表面切削。
- (2) 在 Z 轴不动的情况下沿 X 轴释放刀具,并且停止主轴旋转。
- (3) 测量 A 表面与工件坐标系零点之间的距离" 。
- (4) 在刀补第二页选择偏置号后(偏置号 + 100),按 X ,再键入测量的 值,再按 〖插入〗键,则相对坐标值被置到相应的偏置号中。 相应地,标准刀具和实际刀 具的差被指示出来。
- (5) 用手动方式沿 B 表面切削。
- (6) 在 X 轴不动的情况下,沿 Z 释放刀具,并且停止主轴旋转。
- (7) 测量距离" 。
- (8) 在刀补第二页选择偏置号后(偏置号 + 100),按Z,再键入测量的值,再按〖插入〗键,则相对坐标值被置到相应的偏置号中。相应地,标准刀具和实际刀具的差被指示出来。

例如:为了将偏置量设到偏置号 03 的偏置单元中,就须向偏置号为 103 的偏置单元中 设定" "和" "。

如果在 B 表面上刀具的坐标值为 105.0,测得的距离是 104.0,对应于偏置号为 103 设 定的值则为 104.0,对应于偏置号 03 的偏置量则自动地设定为 1.0。

- 注:1、距离""按直径值设定。
 - 2、在刀补页面第二页,只能输入地址X、Z。这样能有效防止误操作。
 - 3、系统也可采用相对对刀方式。它是以其中一把刀尖作为基准点,基准刀尖的刀补为0,其它刀 尖的补偿值都是相对于标准刀尖设置的。主要用于G50设定的加工坐标系中。详见 3-3。

4 编程综合实例

加工如图(3-30)所示的轴类零件:所用刀具为: T01 外圆车刀;T02 切槽刀,刀宽 3m;T03 60 度角的螺纹车刀。

图 3-30 编程综合实例

程序如下: 00001; N10 M03 S $\times \times$; 主轴起动 选择第一把刀,并进行第一号刀补 N20 T0101; N30 G00 X41.8 Z2 M08; 快进至准备加工点,切削液开 N40 G01 X48 Z-1 F100; 倒角 N50 Z-60; 精车螺纹大径 N60 X50; 退刀 N70 X62 W - 60; 精车锥面 精车 62MM 外圆 N80 W - 15; N90 X78; 退刀 N100 X80 W-1; 倒角 精车 80 的外圆 N110 W-19; N120 G02 X80 W-60 R70; 精车圆弧(用I,K表示为 163.25 K-30) 精车 80 的外圆 N130 G01 Z-225; N140 X85; 退刀 精车 85 的外圆 N150 Z-290; N160 X90 M09; 退刀,切削液关 N170 GO0 X150 Z50; 快速回换刀点 N180 T0202; 换刀建立 2 号刀补 N190 M03 S××; 主轴换速 N200 G00 X51 Z-60 M08; 快速移动到加工点,用刀具的左刀点对刀 N210 G01 X45 F90; 车 45 的槽 N220 G00 X51; 退刀 N230 X150 Z50 M09; 返回换刀点,切削液关

N240 T0303;	换刀建立刀补
N250 M03 S××;	主轴换速
N260 GOO X62 Z6 MO8;	快进到准备加工点,切削液开
N270 G92 X47.54 Z - 58 F1.5;	螺纹切削循环
N280 X46.94;	
N290 X46.54;	
N300 X46.38;	
N310 GOO X150 Z50 MO9;	返回起刀点,切削液关
N320 T0300;	取消刀补
N330 M05;	主轴停
N350 M30;	程序结束

第三篇 操作篇

1 概要

使用 KNDOT 数控系统时,只要掌握如下几方面的操作内容,就可以很方便的进行操作了。

- 1.1.手动操作:
 - (1)手动返回参考点及手动程序回零。
 - (2)手动方式下移动刀具。
 - (3)手动辅助机能操作。
- 1.2.自动运行:
 - (1)存储器运行,是按编制好的程序自动运行加工工件。
 - (2)MDI运转,把一个程序段用 MDI 键盘上的键送入后根据这个指令可以运转,这 就叫做 MDI运转。
- 1.3.程序的编辑:
 - (1)把编制好的程序存到数控系统的存储器上。
 - (2)运用操作面板上的编辑键对程序进行修改,变更程序。
- 1.4.程序的调试:
 - 在实际加工以前,可先检查机床运动是否符合要求,检查方法有机床实际运动和机 床不动(只观察位置显示和变化)两种。
 - A) 机床实际运动方法
 - 1、可调整进给倍率
 - 2、采用单程序段,即是每按一次启动键后刀具走一个动作(执行一个程序段)后 停止,再按启动键后刀具走下一个动作后(执行下一个程序段)停止,这样可 以检查程序。
 - B) 机床不动, 观察显示位置变化或通过图形功能, 观察加工时的刀具轨道的变化。
- 1.5.数据的显示和设定:
 - (1)刀具补偿的显示和设定方法。
 - (2)参数的显示和设定。
 - (3)用诊断参数判断机床的输入输出口信号状态。
- 1.6.显示:
 - (1)程序的显示。
 - (2)位置的显示。
 - (3)报警信息显示及处理。
- 1.7. 电子盘的存取。

2 操作面板说明

2.1 LCD/MDI 面板

KND-0T的LCD/MDI面板见下图。

2.2液晶屏亮度调整

KND-OT数控系统采用6英寸液晶屏显示,液晶屏的亮度调整如下: 在操作面板上有液晶屏亮度调节旋钮,旋转它可进行亮度调整。 注1:液晶的显示亮度与温度有较大的关系,在不同环境下,可根据实际情况进行调整。

2.3 显示机能键

按下操作面板上的下列按键,可直接显示对应的画面:

- 【位置】:显示位置画面。重复按时,显示换为下一页(同下页键)。
- 【程序】:显示程序画面。重复按时,切换【程序目录】。
- 【刀补】:显示刀补画面。重复按时,切换刀补及测量画面。
- 【参数】:显示参数画面。重复按时,显示换为下一页(同下页键)。
- 【诊断】:显示诊断画面。重复按时,不变。
- 【报警】:显示报警画面。重复按时,报警与PLC报警画面切换(同下页键)。
- 【调试】:显示调试画面。

2.4 操作方式键

按下操作面板上的下列按键,可直接选择相应的操作方式:

- 【编辑】
- 【自动】
- 【录入】
- 【回零】
- 【单步】
- 【手动】
2.5 键盘的说明

序号	名称	用 途
1	〖RESET〗复位键	解除报警,CNC复位。
2	地址/数字键	输入字母、数字等字符。
3	显示机能键	可选择位置、程序、刀补、参数、诊断、报警、调
		试/图形画面。
4	操作方式键	可进行操作方式选择
		消除输入到键缓冲寄存器中的字符或符号。
5	『町に出 』 特	键缓冲寄存器的内容由LCD显示。
5		例: 键输入缓冲寄存器的显示为:
		N001 时,按〖取消〗键键,则N001被取消。
		有两种光标移动。
		:使光标向下移动一个区分单位。
6	光标移动键	:以区分单位使光标向上移动一个区分单位。
		持续地按光标上下键时,可使光标连续移动。
		有两种换页方式。
7	翻页键	🗐 : 使LCD屏幕画面向页增加的方向更换。
		🗐 · 使I CD画面向页减小的方向更换。
8	编辑键(插入、修改、删除)	程序编辑(插入,删除,修改)。数据的输入(插入)
9	[存盘]键	电子盘存盘键
10	倍率、增量操作键	主轴倍率、手轮增量、快速/进给倍率的增/减键
11	SHIFT	选择多种显示。
12	循环启动键	自动运行及MDI运行时的启动键。
13	手动轴向运动按钮	手动连续进给及单步进给的轴方向运动键。
14	手动快速按钮	手动快速运动开关。
15	主轴手动正转启动	主轴手动正转启动,停止。(详见机床厂发行的说
		明书)
16	手动换刀	手动换刀。(详见机床厂发行的说明书)
17	冷却液起动	冷却液起动。(详见机床厂发行的说明书)

2.6 手动辅助机能操作键

2.6.1 进给倍率增、减键:

手动方式:手动速率选择。

自动方式:进给倍率选择。

2.6.2 快速倍率增、减键:

快速倍率有 Fo,25%,50%,100%四挡。可通过快速倍率上下调节键来选择, 其百分比数值在位置页面的左下角显示。Fo由参数P026设置。

可对下面的快速进给速度进行100%、50%、25%的倍率或者为Fo的值上。

- (1) G00快速进给
- (2) 固定循环中的快速进给
- (3) G27, G28, G29时的快速进给
- (4) 手动快速进给
- (5) 手动返回参考点的快速进给
- 例:当快速进给速度为6米/分时,如果倍率为50%,则速度为3米/分。

2.6.3 手轮增量增、减键:手轮或单步增量选择。

2.6.4 主轴倍率增、减键:选择主轴倍率50%~120%。(间隔10%)

2.6.5 手动辅助机能控制键

- 主轴正转: 手动/手轮/单步方式下, 按下此键, 主轴正向转动起动。
- 主轴反转:手动/手轮/单步方式下,按下此键,主轴反向转动起动。
- 主轴停止: 手动/手轮/单步方式下, 按下此键, 主轴停止转动。
- 主轴点动:手动/手轮/单步方式下,一直按着此键,主轴正向转动。松开此键主轴 则停止转动。
- 冷却: 手动/手轮/单步方式下,按下此键,同带自锁的按钮,进行'开 关 开...'切换输出。
- 换刀: 手动/手轮/单步方式下,按下此键,刀架旋转换下一把刀。
- 注:手动方式下轴旋转后,如果按任何主轴键(正转,反转,停止,点动),都会使主轴停止。 自动方式下:主轴旋转后,指定当前旋转的反向时,报警,暂停程序执行。

2.7 电子盘存盘键

存盘启动键为:【存盘】。

- 2.8 其他开关键
 - 2.8.1 循环启动开关:自动循环启动。
 - 2.8.2 暂停三位旋钮:进给暂停及主轴暂停。
 - 该旋钮有3个位置,
 - 左侧:正常
 - 中间:进给暂停
 - 右侧:主轴暂停,进给也暂停

加工过程中,把旋钮扳在中间位置时,轴进给暂停,置于右侧时主轴暂停,返回中间 位置时,主轴恢复旋转,返回左侧正常位置后,按循环启动开关,加工继续。

2.8.3 急停开关

2.8.4 系统电源开关

3.手动操作

3.1 手动返回参考点

由参数P036的位ZRSL选择【回零】方式键的含义。

ZRSL=0:按【回零】键显示"机械回零",按【P】+【回零】键显示"程序回零"。 ZRSL=1:按【回零】键显示"程序回零",按【P】+【回零】键显示"机械回零"。

3.1.1 机械回零——回零方式B或C

选择手动机械回零操作方式,按下手动轴向运动开关,一直到达参考点后,方可松开。 机床向选择的轴向运动。在位置画面,返回到参考点的轴地址闪烁,轴移出后,地址闪烁停止。

注1:参数P003 ZNIK设置为1时,移动轴自保,轴可自动移动到机床零点后停止。如果需中途停止,则需按 【复位】键。

注2:参数P004 MZRZ, MZRX 选择手动返回参考点时轴运动方向键正向或负向有效。

3.1.2 程序回零——回零方式A

选择手动程序回零方式,同手动返回机械零点的操作,可手动快速回到G50设置的位置上。

1 程序零点记忆:程序启动后,执行的第一个G50程序段时机床所在的位置被自动记忆。 后面的G50(如果有的话)不记忆。

2 一旦记忆了程序零点后,一直保持,除非有新的零点记忆。也就是说在执行A程序时记忆了程序零点A,再执行程序B时(如果B中无G50),则零点A也一直记忆,即使执行了程序B。

用途:在程序中间停止后,可迅速手动退回加工起点。刀补偏置自动取消。 如果在无记忆零点的情况下,进行程序回零会产生90号报警。

3.2 手动连续进给

选择手动操作方式,选择移动轴,机床沿着选择轴方向移动。同时按下快速进给键,刀 具在已选择的轴方向上快速进给。在位置画面,按进给倍率上下调节键,可选择手动移动速 率(0~1260毫米/分)。

注 1: 手动快速进给时的速度,时间常数,加减速方式与用程序指令的快速进给(GOO 定位)相同。

3.3 单步进给

选择单步操作方式,选择移动量(在位置画面,通过手轮增量上下调节键来选择倍率), 按手动移动轴键,每按一次键,移动一次。增量选择4档:0.001,0.01,0.1,1.0 毫米。 参数P001 SINC 设置可屏蔽后2档。

3.4 手动辅助机能操作

3.4.1 手动换刀

手动/单步方式下,按下此键,刀架旋转换下一把刀。(参照机床厂家的说明书)

3.4.2 冷却液开关

手动/单步方式下,按下此键,同带自锁的按钮,进行'开 关 开...'切换。

3.4.3 主轴正转

手动/单步方式下,按下此键,主轴正向转动起动。

3.4.4 主轴反转

手动/单步方式下,按下此键,主轴反向转动起动。

3.4.5 主轴停止

手动/单步方式下,按下此键,主轴停止转动。

3.4.6 主轴点动

手动/单步方式下,按着此键,主轴正向转动,松开此键则停止转动。。

3.4.7 各种速率的调整

在现在或相对位置的显示画面上,可以选择机床的进给速度

进给倍率	Î	:	手动时 , 使手动速率 + 。自动时 , 倍率 + 。
进给倍率	Û	:	手动时 , 使手动速率 - 。自动时 , 倍率 - 。
手轮增量	Û	:	单步增量增档。
手轮增量	Û	:	单步增量减档。
快速倍率	Î	:	可使回零速率 + ,快速速率 +。
快速倍率	Û	:	可使回零速率 - , 快速速率 - 。
主轴倍率	Û	:	使主轴转动速率 + 。
主轴倍率	Û	:	使主轴转动速率 - 。
		_	

注1:快速倍率及主轴倍率显示

在位置画面,快速倍率及主轴倍率在同一位置显示,由 SHIFT 键切换。当无模拟主轴机能时,则无主 轴倍率显示。

注2: 主轴倍率增量的增加或减少只在选择主轴模拟机能时有效。

增加:按一次主轴倍率增加键,主轴倍率从当前倍率以下面的顺序增加一档

50% 60% 70% 80% 90% 100% 110% 120%

减少:按一次减少键,主轴倍率从当前倍率以下面的顺序减少一档

120% 110% 100% 90% 80% 70% 60% 50%

对于使用变频电机控制主轴的机床,用地址S和其后面的4位数值,直接指令主轴的转数(转/分)。

对于使用多速主轴电机的机床,用地址S+两位数控制主轴挡位(S00~S04)。

- 注3:不论是变频电机控制主轴的机床,还是使用多速主轴电机的机床,在机床断电后重新启动,都 必须在录入方式下键入主轴的转数(S××××)或挡位信号(S××), 按下启动按钮。然后在手动/单步方式下,启动主轴才能转动。
- 注4:在换刀过程中,换刀键无效,按复位键(RESET)或急停可关闭刀架正/反转输出,并停止换刀 过程。在手动方式起动后,改变方式时,输出保持不变。但自动方式执行相应的M代码关闭对应 的输出。同样,在自动方式执行相应的M代码输出后,也可在手动方式下按相应的键关闭相应的 输出。急停时,关闭主轴,冷却,换刀输出。
- 注 5:刚开机后,在手动方式下,按下主轴的正转、反转或是主轴的点动键,主轴一般不会转动的。 可在录入方式下,执行一个速度值,采用变频电机的,可直接输入一个速度值,如执行 S500; 采用有机变速的可输入主轴某一档的速度,如 S01。执行后再回到手动方式下,即可启动主轴。

4 自动运行

4.1 自动运转

4.1.1 存储器运转

(1)运行一个程序的方法:选择要运行的程序,然后选择自动方式,再按循环启动按钮。 注:启动程序前,请务必检查程序光标是否在启动的程序段的开始。_

(2)可从中间指定的程序段运行:在自动方式下,检索到要运行的顺序段,按启动按钮。 注:在运行程序前可在手动方式下先启动主轴或打开冷却液开关。

4.1.2 MDI运转

从LCD/MDI面板上输入一个程序段的指令,并可以执行该程序段。 选择录入方式,选择程序画面,在此方式,可输入任何一个程序段,并运行。

- **(1)**:例:G01 X17.5 Z2.F100;
 - (A) 选择录入方式。
 - (B) 按程序键。在左上方显示程序段值的画面

程序		0	2000) NO100	
(程序段值)	(模态	值)	
	Х		F	100	
	Z	G01	Μ		
	U	G97	S		
	W		Т		
	R	G69			
	F	G99			
	Μ	G21			
	S			SRPM	0000
	Т			SSPM	0000
	Р			SMAX	9999
	Q			SACT	0000
地址			录入	方式	

- (C) 键入G01。
- (D) 按插入键。G01输入后被显示出来。按插入键以前,发现输入错误,可按取消
 键,然后再次输入正确的数值。如果按插入键后发现错误,再次输入正确的数值。
- (E) 键入X17.5。
- (F) 按插入键, X17.5被输入并显示出来。
- (G) 键入Z2.。
- (H) 按插入键, Z2. 被输入并显示出来。
- (I) 键入F100。
- (J) 按插入键,F100被输入并显示出来。

程序 (程序段值) X 17.500 G01 Z 2.000 U W R F M S T P	O2000 N0100 (模态值) F 100 G01 M G97 S T G69 G99
。 Q 地址	录入方式

(K) 按循环起动键。

注:输入的程序段不保存。执行完毕后,消失。一次只能输入一个程序段。

4.2 自动运转的停止

使自动运转停止的方法有两种,一是用程序事先在要停止的地方输入停止命令,二是按 操作面板上按钮使它停止。

4.2.1 程序停(M00)

含有M00的程序段执行后,停止自动运转,与单程序段停止相同,模态信息全部被保存 起来。按CNC启动按钮,程序继续执行。

4.2.2 程序结束(M30)

- (1) 表示主程序结束。
- (2) 停止自动运转, 变成复位状态。
- (3) 返回到程序的起点。
- 4.2.3 暂停

在自动运转中,把暂停三位旋钮打到中间位置可以使自动运转暂时停止。暂停后,机床 呈下列状态。

1) 机床在移动时,进给减速停止。

2) 在执行暂停(G04)中,休止暂停。

在自动运转中,把暂停三位旋钮打到右侧位置时可以使主轴也同时停止运转,打回到中间位时主轴恢复旋转。

4.2.4 复位

用LCD/MDI上的复位键,使自动运转结束,变成复位状态。在运动中如果进行复位,则机械减速后停止。

5. 调试

按系统面板上的〖调试〗 键,选择调试画面。

5.1 试运行

试运行开时,启动程序时机床不移动,M,S,T不输出,进给速率按空运行速率进 给(注2),但位置坐标变化。用于程序校验。

注1:试运行或单程序段开关为1时,在状态显示行,闪烁显示'调试'。

注2:切削进给时速率当按手动快速进给按钮时,为手动进给最高速度(1260毫米/分)。否则为手动进给 速度。

5.2 单程序段

当单程序段开关置于开时,执行程序的一个程序段后,停止。如果再按启动按钮,则执 行完下个程序段后,停止。

注 1: 在G28中,即使是中间点,也进行单程序段停止。

注 2: 在单程序段 ON 时,执行固定循环 G90, G92 G94 时,如下述情况:

(→ 快速进给, → → 切削进给)	
G 代码	刀 具 轨 迹	说明
G90	4 3 2 1 3 4 1 2 1 2 1	1~4 作为一个循环。 动作 4 结束后停止。
G92	$3 \qquad 4 \qquad 3 \qquad 4 \qquad 4 \qquad 4 \qquad 1 \qquad 3 \qquad 4 \qquad 1 \qquad 2 \qquad 1 \qquad 1$	1~4 作为一个循环。 动作 4 结束后停止。
G94	$2 \int \frac{1}{3} 4$ $2 \int \frac{1}{3} 4$	1~4 作为一个循环。 动作 4 结束后停止。

注 3: M98 P__; , M99 的程序段不能单程序段停止。但M98、M99程序段中, 除N,P以外还有其它地址时, 能单程序段停止。

5.3 参数及程序开关

调试页面时,通过按键3,4可选择参数及程序开关的开与关。

1 参数开关(键3):在参数开关为开时,才能设置参数。

2 程序开关(键4):在程序开关为开时,才能编辑程序。

5.4 手动辅助机能输出

选择手动方式(含手动,回零,单步,手轮),在调试页面时,通过按键5~9可控制 机床辅助机能的输出及关闭。同时可知道当前系统的辅助机能输出的状态。

- 1 主轴正转(键5)
- 2 主轴停止(键6)
- 3 主轴反转(键7)
- 4 冷却(键8)
- 5 润滑(键9)

6. 安全操作

6.1 急停

按下急停按钮,使机床移动立即停止,并且所有的输出如主轴的转动,冷却液等也全部关闭。旋转按钮后解除,但所有的输出都需重新起动。

一按按钮, 机床就能锁住, 解除的方法是旋转后解除。 注1:紧急停时,电机的电源是否切断,请参照机床厂家发行的说明书。 注2:在解除急停以前, 要消除机床异常的因素。 注3:是否安装急停按钮,请参照机床厂家发行的说明书。

6.2 超程

如果刀具进入了由参数规定的禁止区域(存储行程极限),则显示超程报警,刀具减速后 停止。此时用手动,把刀具向安全方向移动,按复位按钮,解除报警。具体的范围,请参照 机床厂家发行的说明书。

7.报警处理

当出现异常运转时,请确认下列各项的内容:

- (1)当LCD上显示报警时。请参照附录"报警代码一览表"确定故障原因。如果显示P/S , 是关于程序或者设定数据方面的错误。请修改程序或者修改设定的数据。
- (2) 在LCD上没显示报警代码时。 可根据LCD的显示知道系统当前的内部状态,请参照附录。

8. 程序存储、编辑

8.1 程序存储、编辑操作前的准备

操作方式设定为编辑方式,在调试画面,设置程序开关为开;再按程序键,选择程序画 面。方可编辑程序。

8.2 把程序存入存储器中

选择编辑方式,选择程序画面,用键输入地址0,用键输入程序号,按插入键;再按EOB 键(输入";"号)。

通过这个操作,存入程序号,之后把程序中的每个地址字、数据字用键输入,然后按插 入键便将键入程序存储起来。

注:每次只能输入一个地址和数字(如 X10),一个程序段结束必须按 EOB 键输入";",程序段自动换行, 才可编入第二段程序段。

8.3 程序检索

当存储器存入多个程序时,显示程序时,总是显示当前程序指针指向的程序,即使 断电,该程序指针也不会丢失。可以通过检索的方法调出需要的程序,而对其进行编辑 或执行,此操作称为程序检索。

- (1)检索方法(编辑或自动方式) 按地址0,键入要检索的程序号,按光标键。 检索结束时,在LCD 画面显示检索出的程序并在画面的右上部显示已检索的程序号。
- (2) 扫描法

按地址 0, 按光标键。编辑方式时, 反复按地址键 0, 光标键, 可逐个显示存入的 程序。

8.4 程序的删除

按地址O,用键输入要删除程序号,按删除键,则对应键入程序号的存储器中程序被删除。

8.5 删除全部程序

删除存储器中的全部程序。 按地址键O,输入-9999并按删除键;

8.6 顺序号检索

顺序号检索通常是检索程序内的某一顺序号,一般用于从这个顺序号开始执行或者编 辑。

由于检索而被跳过的程序段对 CNC 的状态无影响。也就是说,被跳过的程序段中的坐标 值、M、S、T 代码、G 代码等对 CNC 的坐标值、模态值不产生影响。因此,按照顺序号检索 指令,开始或者再次开始执行的程序段,要设定必要的 M、S、T 代码及坐标系等。进行顺 序号检索的程序段一般是在工序的相接处。

如果必须检索工序中某一程序段并从该程序段开始执行时,则应查清此时的机床状态、 CNC 状态。而与其对应的 M、S、T 代码和坐标系的设定等,可用 MDI 运转方式进行设定。 检索存储器中存入程序顺序号的步骤: 选择方式(编辑或自动方式),选择要检索顺序号的所在程序,按地址键 N,用键输入要检索的顺序号,按光标键,检索结束时,在 LCD 画面的右上部,显示出已检索的顺序号。

注 1: 在检索中,进行下列校验:

跳过任选程序段 P/S 报警(报警号 003~010)

注 2: 在顺序号检索中,不执行 M98 × × × × (调用的子程序),因此,在自动方式检索时,如果要检索现在 选出程序中所调用的子程序内的某个顺序号,就会出现报警 P/S(060)。 上例中,如果要检索N8888,则会出现报警。

8.7 字的插入、修改、删除

存入存储器中程序的内容,可以改变。

选择编辑方式 选择程序画面 选择要编辑的程序 检索要编辑的字。 检索要编辑的字有以下两种方法:

- (A) 用扫描的方法
- (B) 用检索字的方法

然后进行字的修改、插入、删除等编辑操作

- 8.7.1 字的检索
- (1) 用扫描的方法
 - 一字一字地扫描。
 - (A) 按光标键 时

此时在画面上,光标一字一字地顺方向移动。也就是说,在被选择字的地址下面,显示 出光标。

(B) 按光标键 时

此时在画面上,光标一字一字地反方向移动。也就是说,在被选择字的地址下面,显示 出光标。

- (C) 如果持续按光标键 或者光标键 ,则会连续自动快速移动光标。
- (D) 按页键 , 画面翻页, 光标移至下页开头的字。
- (E) 按页键 , 画面翻到前一页, 光标移至开头的字。
- (F) 持续按页键 或页键 ,则自动快速连续翻页。
- (2) 检索字的方法

从光标现在位置开始,顺方向或反方向检索指定的字。

- (A) 用键输入地址
- (B) 用键输入数字
 - 注 1: 如果只用键输入 S1, 就不能检索 S12
 - 注 2:检索 S09 时,如果只是 S9 就不能检索,此时必须输入 S09。
- (C) 按光标键 , 开始检索。
- (3) 用地址检索的方法

从现在位置开始,顺方向检索指定的地址。

- (A) 按地址
- (B) 按光标键。如果不是按光标键, 而是按光标键, 则反方向检索。
- (4) 返回到程序开头的方法

(A) 方法1:按RESET键(编辑方式下选择程序画面),当返回到开头后,从头开始显示程序的内容。

- (B) 方法2:检索程序号。
- (C) 方法3(自动方式):按地址键O,按光标键;
- 8.7.2 字的插入

检索或扫描到要插入的前一个字,用键输入要插入的地址及数字,按插入键;

8.7.3 字的变更

检索或扫描到要变更的字,输入要变更的地址,数据,按修改键,则新键入的字代替了 当前光标所指的字。

8.7.4 字的删除

检索或扫描到要删除的字,按删除键,则当前光标所指的字被删除。

8.7.5 删除到 EOB(;)

将从光标当前到 EOB 的内容全部删除,光标移动到下个字地址的下面,按 EOB 和删除键。

8.7.6 多个程序段的删除

从现在显示的字开始,删除到指定顺序号的程序段。

按地址键N,用键输入顺序号(如:2233),按删除键,则至N2233的程序段被删除。光标移到下个字的地址下面。

8.8 存储程序的个数

系统标准配置可存储程序 63 个。

8.9 存储容量

- (1)存储程序容量:80米(4KB = 10米),6个区的电子盘。
- (2) 补偿数据: 8 组。

9. 数据的显示、设定

9.1 刀具补偿量的设定和显示

刀具补偿量的设定方法可分为绝对值输入和增量值输入两种。

- 1) 按【刀补】键,显示刀补页面,按页键,可以选择页。显示共两页:
 - 偏置画面左上角: 第一页:刀补。(只能增量值输入)

第二页:测量。(只能绝对值输入)

- 2) 把光标移到要输入的补偿号的位置。
- 绝对值输入时,按地址键 X或 Z,数据键(必须输入小数点)。
 增量值输入时,按地址键 U或 W,数据键(必须输入小数点)。
- 4) 按【插入】键,补偿量输入,并在LCD 屏幕上显示出来。
- 注1: 在刀补页面第一页,只能输入地址U、W;第二页,只能输入地址X、Z。这样能有效防止误操作。
- 注2:在刀补画面,数据显示行的之下显示位置坐标值:按〖SHIFT〗键可切换显示 1:相对位置;2:绝对 位置。
- 注 3:在自动运转中,变更补偿量时,新的补偿量不能立即生效,必须在指定其补偿号的 T 代码指行后, 才开始生效。

9.2 参数

CNC和机床连接时,通过参数设定,使驱动器特性、机床性能、功能等最大限度地发挥出来。其内容随机床不同而不同,所以请参照机床厂家编制的参数表。参数的意义详见附录。

- 9.2.1 参数的显示
 - 1) 按【参数】显示键,选择参数画面;
 - 2) 按页键,选择页;

在参数画面,在LCD的下部有一参数详细内容显示行,显示当前光标所在的参数的详细 内容。

位参数

参数 001~004和 036是位参数,最左侧是最高位,依次为BIT7~0。显示该参数 所有位的英文含义的缩写。

数据参数

参数详细内容显示行,如光标位于 005 时,显示为: X 轴指令倍乘比。

9.2.2 参数的设定

- 1) 在【调试】画面,设置参数开关为开,按【录入】方式键;
- 2) 按【参数】显示键,选择参数画面;
- 3) 按页键, 显示出要设定参数所在的页
- 4) 把光标移到要变更的参数号所在位置。

方法:按光标键 或 ,若持续按,光标顺次移动。可自动使光标移到下/上一页。

- 5) 用数据键输入参数值。
- 6) 按插入键,参数值被输入并显示出来。

注 1: 在部分参数设定后,必须断电时才有效(发生 P/S 000 号报警时)

9.3 诊断

CNC和机床间的DI/DO信号的状态,CNC和PC间传送的信号状态,PC 内部数据及CNC 内部状态等都可以通过诊断显示出来。

诊断的显示

诊断画面有一页,显示诊断数据,通过操作,同一诊断号也可显示其它诊断数据。

一、标准诊断数据

按诊断键,选择诊断画面

- 二、选择诊断数据
 - 选择条件:显示:诊断画面。

方法:按【插入】+1键,显示选择诊断画面;按【取消】键,返回标准诊断数据。

在诊断显示画面,在 LCD 的下部有 3 行显示诊断详细内容,显示当前光标所在的诊断 号的详细内容。显示的内容请参照附录。例:

诊断 ()/(T	DC)						
ISEN (MI	PC)						
序号	数 据		序号		数	据	
000	00000	000	00)8	000	00000	
001	00111	110	00	9	000	00000	
002	00000	000	01	0	000	00000	
003	00000	000	01	1	000	00000	
004	00000	000	01	2	000	00000	
005	00000	000	01	3	000	00000	
006	00000	000	01	4	000	00000	
007	00000	000	01	5	000	00000	
诊断信息							
-►	*DECZ	*ESP1	T04	T03	T02	T01	
→ Bit4 : *ES	P1 急停						
序号 001-	-						
73 3 001-	-						
				ヨン	\ `` +		
				×7	いろち		

—— 诊断详细内容显示行

如想知道刀架当前的刀号,按下诊断键进入诊断页面(如上图)。将光标移到001号, 查看001号诊断后四位,如001号的右边第一位变为0的话,即001号诊断信息为0011110, 此时可确认当前刀为1号刀,因此机床电气部分出现问题可以借助诊断信息进行判断, 这样可以方便维修。

10. 显示

10.1 状态显示

画面最下行为状态显示行,内容如下:

准备未绪:表示有急停信号或驱动系统处于报警的状态,闪烁显示。 运行,调试,暂停,报警,电池报警及操作方式。

10.2 键入数据显示

状态显示行的上一行显示提示符及正在输入的键值。 提示符:在可进行键入的画面才有提示符。不可键入的画面没有提示符。 编辑程序: 【地址】: 只能输入地址键, 【数字】: 只能输入数字键。 参数、刀补: 序号 005 = : 可设定值(键入参数值)

序号 005 ... 键入数值无效

序号 005 闪烁... 键入检索的序号(如参数号)

10.3 程序号、顺序号的显示

程序号、顺序号如下图所示,显示在右上部。

编辑方式编辑程序时显示在编辑中的程序号和光标位置的前一个顺序号。

在非编程方式时,显示最后执行的程序号和顺序号。在程序号检索和顺序号检索之后, 显示出被检索的程序号和顺序号。

10.4 程序存储器使用量的显示

选择程序画面,按〖SHIFT〗键,显示程序存储器使用量画面。按〖取消〗键,返回 显示程序画面。

程序	O0002 N0002
系统版本号:K0T 03.	10.10
已存程序数:0002	剩余: 0061
已用存储量:00127	剩余:31233
程序目录表:	
O0001 O0002	
地址	
	录入方式

- 1. 已存程序数:已存入的程序数(包括子程序)。 剩余:尚可存入的程序数。
- 2.已用存储量:存入的程序占用的存储容量(用字符数显示)。剩余:还可以使用的程序 存储容量。
- 3. 程序目录表:显示已存入的程序号。当一页显示不下时,再次按〖SHIFT〗为换页。

10.5 位置显示及清零

位置画面有4页,通过页键选择,第一页大字符为相对坐标。第二页大字符为绝对(工件)坐标。在右下角用小字符显示其它坐标值,通过选择可显示如下位置坐标值:

按1键:绝对/相对坐标。2键:机床坐标。3键:余移动量或空。

注:键3时,在自动或录入方式下显示余移动量。

10.5.1显示

系统有3个坐标显示 :

1 相对坐标:显示地址U,W,用G50设置可改变,并可以随时清零。用于观察位置 或设置计数方式刀补值。

2绝对坐标:显示地址X,Z,也称工件坐标,与编程绝对值对应。用G50设置可改变。

3机床坐标:显示地址X,Z,机床参考点为坐标零点。一般说来,此坐标系不会改变。 用于软限位检查。

选择位置画面,按页键,显示以下两个画面:

1) 显示相对画面

注1:S显示主轴的实际转速时,必须在主轴上装有1024线的位置编码器。

注2:编程速率项 = 编程的F速率 × 倍率。当G00,空运行或取参数P24号的值作为上限时的速率不能 显示。

注3:当速度为每转进给或螺纹切削时,由于其单位是0.0001毫米/转,在编程速率显示单位为 0.01 毫米/转,小数点后第三,四位不能够显示出来。

例: G99 F 20.2568 显示为 2025

G99 F 10. 显示为 1000

- 注4:进给速率超出最大值时,显示'***'。
- 注5:每转进给的编程速率显示仅在含有每转进给有运动轴的程序段正在执行时显示,如果其后的指 令不是含有每转进给的程序段且没有指定新的F时,当执行到下程序段时编程速率项按每分进给 速率显示,每转的1毫米(显示100)会变为10000 毫米/分的显示。

2) 显示绝对位置画面

现在位置(绝对坐标) OOOO1 X Z	N0110 100. 000 300. 403
编程速率: 1000 进给倍率: 100% S 0000 T0100	(相对坐标) U 100.000 W 300.403 自动方式

3)综合位置显示

在位置画面,第三页为综合画面,为小字符位置显示。第四页为位置程序在同一页 面混合显示。

第三页

现在位置	02000 N0100
(相对坐标)	(绝对坐标)
U 18.000 W 38.000	X 0.000 Z 0.000
(机床坐标)	(余移动量)
X 0.000 Z 0.000	X 0.000 Z 0.000
S1000 T0101	录入方式

4) 位置和程序显示

在位置画面的第四页为位置和程序在同一页面混合显示。

第四页

现在位	Σ置	02000 N0100
(礼	相对坐标)	(绝对坐标)
U	18.000	X 0.000
W	38.000	Z 0.000
00010; G00 X50. Z100.; G01 X26 F100; Z12 ;		
S10	000 T0101	录入方式

10.5.2 坐标清零

- <u>相对位置清零:</u>在相对位置显示页面,按 U或W键,此时所按键的地址闪烁,然后按 〖取消〗键,此时闪烁地址的相对位置被复位成0。再次按U或W时, 或换画面后,U,W不再闪烁。
- 机床位置清零: 在综合位置显示页面(通过翻页键,找到综合位置页面),可显示机 床坐标值,先按着〖取消〗键,再按地址键X或Z,则X或Z轴机床位 置被清除为0。(用于无机械零点设置零点或调试用)

10.6 加工时间显示

在位置画面,可显示加工时间。当循环启动后,加工时间开始计数。

10.7 报警显示

发生报警时,在LCD的最下面一行闪烁显示"报警"。报警画面,可显示出报警号和报警 内容。关于报警号的意义请参照附录。

在报警显示画面,在LCD的下部有一报警详细内容显示行,显示当前P/S报警号的详细内容。其它报警如驱动报警的详细内容直接在LCD的中部显示。

注: 通常发生报警时,在画面上自动切换至报警画面显示出报警的内容。

注:当无报警时,如果系统在暂停状态,在显示屏的下端原闪烁显示'报警'的位置闪烁显示'暂停'。

11.电子盘

11.1 简介

系统使用电子盘作为外存。电子盘为非易失的存储器。用电子盘可以备份系统当前的 数据。

用途如下:

1. 备份:当电池不足或其它原因使电池保持的数据丢失时,可迅速将保存在电子盘内的数据读入,使加工程序,参数等数据恢复。

2. 当程序容量不足时,可将暂时不用的程序存储在电子盘中,而以后再次使用时,可 随时读入。

电子盘有 6 个区,每一区都可以保存参数,程序,刀补等数据。系统当前的数据可以存在任何一个区中,也可从任一个区读取数据作为当前使用的数据。

11.2 读盘

开机时可读取任一盘的数据到工作区中。例如取2号盘数据,操作如下:

同时按〖插入〗键和数字键2 开机,系统会提示'取盘,按复位/Reset键确认,按取消 键取消(2)'。此时按〖复位/RESET〗键,则电子盘2区的数据读入工作区。如果不读盘时, 按〖取消〗键,如同开机没有按键。

注1:读盘仅在开机时读入,开机后无法读盘。

注2:必须先将电池保持数据存到电子盘后才能读取,否则读取的数据不对。

11.3 系统初始化设定

当程序页面显示乱码或机床连续多次出现误动时,可对系统进行初始化设置(如果已存 过盘,应读取已存的盘,即可快速恢复,如果未存过盘,才使用初始化的方法)。方法是同 时按键〖插入〗+0 开机,系统会提示'取盘,按Reset键确认'。对应设置KND出厂的标准 参数,同时程序区、偏置区数据被清零。然后再把参数修改为正常使用时的参数(机床出厂 后应先备份一份参数,以备参数丢失或初始化后使用)完毕后存盘。

11.4 存盘

可将系统工作区数据存入任一盘中。操作如下:

显示程序画面,选择编辑方式,依次按N,数字键1~6,按〖存盘〗键,进行存盘。在存 盘过程中,在右下角的状态显示行显示'存盘'。省略数字键时,默认为盘1。存盘完毕后, 右下角显示的'存盘'消失。

应注意的是在存盘过程中,如果断电,不但数据未存入,也可能连原电子盘的数据也会 丢失。所以,在操作过程中,应在6个盘中选出一个作为缓冲盘,先存缓冲盘,这样断电时 不至于将原盘数据丢失,如在存盘时断电,可开机时读入缓冲盘,再存入相应的盘。 注:急停时,无法存盘。

第四篇 零件的加工

数控车床加工一工件时,首先就是要确定工件加工坐标系原点的位置及对刀设定每一把 刀具的刀偏值。

1 坐标系的规定

在数控机床上加工零件时,刀具与零件的相对运动,必须在确定的坐标系中才能按规定的程序进行加工。为了便于编程时描述机床的运动,简化程序的编制方法,数控机床的坐标和运动方向均已标准化了。根据我国机械工业部 1982 年颁布的 JB3052--82 标准,其规定是:数控车床可控制的两个坐标轴定义为X、Z轴,两坐标轴相互垂直构成X-Z平面直角坐标系,如图4-1所示。

X轴:X轴定义为与主轴旋转中心线相垂直的方向,其正方向为刀具远离主轴旋转中心 的方向。

Z轴:Z轴定义为与主轴旋转中心线相重合的方向,其正方向为刀具远离主轴箱的方向。

数控车床加工一工件,所用到的坐标系有机床坐标系和工件的加工坐标系,两个坐标系 的坐标轴及方向均相同,不同的就是它们的坐标系原点的位置。

图 4-1 机床坐标系

2 机床坐标系原点的设定

KND-0T 数控系统根据机床有无安装机械回零开关,其机床坐标系原点的位置有两种 设定方式。

安装机械回零开关的,机床坐标系零点的位置是由机械回零开关的位置决定的,机械回零开关安装在X轴、Z轴正方向的最大行程处,机械回零开关的位置是固定的,其机床坐标系零点的位置也是固定的。只要机械回零开关没有松动,每次开机回零时,刀具都可回到同一个位置点。

无安装机械回零开关的,可设置浮动的机床零点,方法是:在手动方式下,移动刀具 至换刀不撞工件及其它部件且适当易回零的位置后,确认其为机床零点,设置此点的机床坐 标值为0。设置方法是:在显示的第三页(综合坐标页面),先按着【取消】键不放,再分 别按地址X、Z键,则X轴和Z轴的机床坐标值被清除为0,此时,刀具停靠点便被设定为 机床的浮动机械零点。

注:浮动零点设定好以后,要先通过机械回零确定才有效,在手动方式下,先把刀具沿两轴的负方 向移开刚设定的浮动零点,再进行回机械零点操作,可回到刚设定的浮动零点位置。无机械回零开关的数 控车床在系统安装完毕后,首先应设置浮动机械零点。在无特殊情况发生时,一般也只需要设定一次,且 每次回零都可回到同一位置点。

3 加工坐标系的设定

工件加工坐标系有两种设定方式:一种是自动加工坐标系的设定,另一种是采用 G50 指令设定工件加工坐标系。

3.1 自动加工坐标系的设定

用手动方式返回机床零点后,便自动地设定了工件的加工坐标系零点的位置,其加工坐标系零点就是机床的机械零点。这时,如采用绝对坐标值编程,刀具的刀尖都是相对于机床坐标系零点运动的。一般在工件加工时,工件的加工坐标系零点都设定在工件右端面的旋转中心点。要想使每一把刀具的刀尖都相对于工件加工坐标系原点运动,就必须通过对刀,设定每把刀具的刀补值,把工件的加工坐标系原点从机床零点偏移到工件的加工坐标系原点上,通常是工件右端面的旋转中心点。这里采用的是绝对对刀方式,每一把刀具的刀补值都是独立的。其对刀过程如下:参照图(4-1)

首先,通过机械回零操作,使刀具回到机床原点,选择一把刀具。

- (1)用手动方式沿工件端面切削,在Z轴不动的情况下,沿X轴把刀具移到安全位置, 停止主轴旋转。测量端面到工件加工坐标系原点的距离值,如加工坐标系原点在工件右端面的左侧,可把该测量值的正值直接输到刀补的测量页面中一相应的刀偏号上,该偏置号=要设置量的偏值号+100。如加工坐标系零点就是工件右端面的中心点,可直接在刀补的测量页面中相应的刀补号上输入Z0。
- (2)用手动方式沿工件外圆面切削,在X轴不动的情况下,沿Z轴把刀具移到安全位置, 停止主轴旋转,测量切削处工件的直径值,同样在刀补的测量页面中,相应的刀补 号上,输入测量的数值。如切削点在工件回转中心线后侧,就应该在相应的刀补号 上输入负的测量值。
 - 例如:将偏置量设定到偏置号为 001 的偏置单元中,工件加工坐标系原点在工件右端面 的中心点上。测得试切处的工件直径为 2 0 mm。对好刀后,选择刀补的测量页面, 把光标移到 101 的偏置号上,输入 Z 0 后按【插入】键,输入 X 2 0.0 后, 按【插入】键,则 X、 Z 两方向的刀补值就设定好了。系统内部会自动计算出相对 每一把刀具的刀尖点,把机床坐标系原点偏移到工件加工坐标系原点上时,每一把 刀具在 X 和 Z 向应补偿的刀补值。
- (3) 手动选择另一把刀具,重复(1)(2)的步骤,设定好这把刀具的刀补值。
 - **例**:用两把刀具加工一外圆直径 20mm,长度为 20mm 的圆柱体。毛坯直径 25mm。 T01 刀用来切外圆,并作为标准刀具,T02 是切断刀,刀宽 4mm。(如图 4 - 2 所示)

图 4-2 零件的加工

程序如下: O0001: N10 M03 S \times \times ; 主轴启动 N20 T0101; 换刀执行1号刀补,相对于1号刀把工件的加工坐标系原点偏移到工件 的右端面上 N30 G00 X20 Z5 ; 快速定位到工件加工坐标系 X20 Z5 处 N40 G01 Z-20 F100; N50 G00 X50 Z50; 移动到换刀处 N60 T0202; 换刀执行 2 号刀补 ,相对于 2 号刀把工件的加工坐标系原点偏移到工 件的右端面上 快速定位到工件加工坐标系 X35 Z-24 处 N70 G00 X35 Z-24; 切断工件 N80 G01 X-1 F80; N90 G00 X60 Z60; N100 T0200; 取消2号刀补 N110 M05; N120 M30; 其操作过程是:

1) 对刀:首先是设定好两把刀具的刀补值。

- 2)运行程序:可在任意点启动程序。注意开始自动加工时,程序中光标的位置一定要在程 序的开头。
- 3) 加工尺寸的调整:
 - X 轴:凡是加工出来的工件尺寸(直径)比要求尺寸大时,在刀补的刀补页面中相应的 刀补号上输入(U-)负的增量刀补值;凡是加工出的工件尺寸(直径)比要求 尺寸小时,输入(U+)正的增量刀补值。如 T01 加工出的外径实测为 20.02 时,比实际要求值大了 0.02mm,就可直接在刀补的刀补页面中 001 号刀补上 输入 U-0.02,使刀补值减少,再次运行程序就可多切掉 0.02mm。
 - Z 轴:在刀补的刀补页面中相应的刀补号上输入(W+)正的调整量,使得相对于这把 刀具的加工坐标系原点向右偏移,输入(W-)调整量,使得相对于这把刀具的 加工坐标系原点向左偏移。如 TO2 切断刀,切断后,工件尺寸实测为 20.1 时, 比要求的尺寸大了 0.1mm,就应在刀补的刀补页面中 002 号上输入 W+0.1,使 切断后工件变短。

如加工端面尺寸时,输入W+调整量,使加工坐标系圆点向右偏移,可使实际加工尺寸 变长。 输入W-调整量,可使加工尺寸变短。

- 注 1 . 程序的第一条移动指令为绝对编程,并且无 G50 设置时,刀补设置好以后,退刀到任意点,都可以启动程序进行加工。
 - 2 机床安装机械回零开关时,每次接通电源后开机,首先应返回机械零点,这样可把机床在这之前 产生的累积误差消除掉。在出现撞刀或急停使机床停止时,手动返回机械零点后,就可重新启动 程序进行加工。

无机械回零开关时,每次开机后可不进行机械回零的操作,即可直接对刀,或是启动程序进行 加工。加工中如出现撞刀或按急停使机床停止时,就要重新对刀,设定刀补值了。

3 在刀补页面第一页只能输入地址 U/W,在刀补页面第二页只能输入地址 X/Z。可有效防止在输入 刀补值时的误操作。

3.2 用 G50 指令设定加工坐标系

G50 指令设定加工坐标系是用刀具起刀点的位置来设定加工坐标系的。G50 指令设定的加工坐标系与机床坐标系无关。

格式是:在程序的开头指令 G50 X Z 。自动加工一旦运行此段程序段,后面指令中 绝对值指令位置都是用此坐标系下的坐标值来表示的。选择一把标准刀具,以此刀尖作为基 准点,基准刀尖的刀补为0,其它刀具的补偿值都是相对于标准刀尖设置的,这里采用的是 相对对刀方式。

对刀过程如下:参照图(4-2)

首先,选择一把标准刀具,一般为加工时所用到的第一把刀。

- (1)用手动方式沿工件端面切削,在Z轴不动的情况下沿X轴将刀具移动安全位置,停止主轴转动,在录入方式程序页面下,执行G50Z0;,(此种情况是加工坐标系零点在工件右端面的回转中心上)。
- (2)用手动方式沿工件外圆面切削,在X轴不动情况下沿Z轴将刀具移到安全位置,停止主轴转动,测量试切处工件的直径值x,在录入方式程序页面下,执行G50Xx。 (若试切点在工件回转中心线后侧的,则在录入方式下执行G50X-x)。再在相对位置页面下,把U清为0,这样用G50指令设定的加工坐标系零点位置就设定好了。
- (3)换另外一把刀,在手动方式下,把刀尖移到工件端面上(即标准刀尖试切的位置点), 在刀补的刀补页面中把光标移到相应的刀补号上,输入W后按【插入】键,则这把 刀的Z方向的相对刀补便设好了。同样在手动方式下,把刀尖移到外圆面,也是标 准刀具的试切点,输入U后按【插入】键,则X方向的刀补也设置好了。
- (4) 用同样的方法和步骤设置 Z 方向的刀补。

如还有其它刀具,同样对刀设定好这把刀具相对标准刀具在X、Z两个方向的刀偏值。 对刀结束后,移动刀具到程序启动点,即是程序G50XZ;中 的数值, 是标 准刀具刀尖相对于加工坐标系零点在X、Z两个方向的距离值。程序结束时,编制的程序必 须使标准刀具返回到程序的启动点,以便于再次启动程序。

机床运行过程序后,系统会记忆启动点机床的坐标值。如加工中间运行停止了,可采用 程序回零的方法,返回到程序的启动点,继续进行加工(程序回零的方法参见操作篇中程序 回零章节)。

例:同样是用两把刀加工图(4-2)所示的工件.程序如下:

00001

00001,	
N10 G50 X50 Z50 ;	定工件加工坐标系,及确定标准刀具1号刀的起刀点位置
N20 T0101;	换1号刀,执行1号刀偏
N30 M03 S \times \times ;	主轴启动
N40 G00 X20 Z5 ;	快速移动到 G50 设定的工件坐标系 X20、Z5 处
N50 G01 Z-20 F100 ;	加工工件外圆长度为-20
N60 G00 X50 Z50 ;	快速移动到换刀点
N70 T0202 ;	换 2 号刀,执行 2 号刀偏
N80 G00 X35 Z-24 ;	
N90 G01 X-1 F80 ;	
N100 T0100 ;	换1号刀,取消刀偏
N110 G00 X50 Z50 ;	返回程序起点
N120 M05;	主轴停
N130 M30 ;	程序停止

其操作过程是:

- 1.对刀: 按上面提到的对刀方式,把 T01 号刀作为标准刀具,把坐标系零点设定在工件 的右端面上,标准刀具的刀补值暂定为 0。同时把 T02 号刀相对于 T01 号刀的刀 偏值设定好。如加工后有尺寸偏差也可调整 T01 的刀补值,这对 T02 的刀偏值是 没有影响的。
- 2.运行程序:对好刀后,可手动方式选择标准刀具,再在录入方式下执行 G50 X50 Z50; 程序段,把标准刀具快速定位距离工件的右端面加工坐标系原点 X50 Z50 处, 就可运行程序了。自动运行时,光标位置一定要在程序的开始位置。

同采用自动加工坐标系加工工件时尺寸的调整方法是相同的。

- 注 1 执行 G 50 X Z ;程序段时,此程序段本身不会使刀具产生移动,只是确定刀具目前处在新的加工坐标系中的位置值,同时也确定了加工坐标系零点的位置。
- 注 2 G50 指令设定的加工坐标系,每次运行程序时刀具的起刀点必须是同一点,即是程序 G50 指令中指定的加工坐标系位置点。如机床刀具没有回到起刀点时就关机了,这样重新开机运行程序前,必须 先对刀找到标准刀具启刀点的位置。确定标准刀具启刀点位置的方法是:可在录入方式程序页面下, 输入标准刀具的刀号,如T0100,选择标准刀具,同时取消其刀具补偿值。在手动方式下把刀具 移到试切点的位置,Z向是工件的右端面,X向为外圆面,在录入方式下,执行 G50 Xx Z0 程序;(x 为试切处工件的直径值)这样就可确定出工件加工坐标系原点的位置,然后再在录入方式下执行 G00 X Z 把刀具快速定位到启刀点的位置,这样就可重新启动程序加工件。

^{3.}加工尺寸的调整:

第五篇 连接篇

1、系统结构

1.1 KND - 0T 数控系统的组成

KND 0T 数控系统采用一体化结构,主要由下列单元组成。

- (1) CNC控制单元(包括主板、显示板、操作面板、液晶显示器等)
- (2)步进电机驱动器(包括X轴驱动器和Z轴驱动器)
- (3)开关电源(D-50B)
- (4) 电机和强电柜接口

1.2 KND - 0T 数控系统安装尺寸图

图 1.2A 正面视图

1.3 KND - 0T 数控系统后盖板插座示意图

注:1、请注意引出系统接地线。

2、系统输入电源为 220VAC,用 800W 变压器隔离。

2、 内部连接及设定

2.1 系统内部连接框图

2.1.1 KOT 系统主板的连接

2.1.2 KOT 系统显示缓冲板与液晶屏的连接

图 2.1.2

2.1.3 KOT 系统接口板与驱动板的连接

图 2.1.3

2.1.4 KOT 系统 AC220V 电源连接示意图

2.2 K0T 系统内部设定开关的说明

2.2.1 系统主板中的设定开关

开关编号	开关状态		备注
SA1	• •	开路	
SA2	• •	开路	
SV3	1,2	OFF	
343	3,4	ON	
SA4	• •-•	2-3 短路	用户不要改变设定
SA5	• •		仅供检查使用
SA6	• •	开路	
SA7	• •		
SA8	• •	开路	
SA9	• •	开路	

2.2.2 主板设定开关的位置

2.2.3 系统接口板中的设定开关——阴影部分为出厂设置

开关编号	开关编号 开关状态		含义	备注	
SA1、SA2	•-••	1-2 短路	系统固定设置	不要改动	
SA3、SA4	• •	1-2 短路	X/Z 轴回零一转信号带下拉电阻	可接 PNP 型霍尔开关	
	• •-•	2-3 短路	X/Z 轴回零一转信号带上拉电阻	可接NPN型霍尔开关	
S1 ~ S6	•••	短路	刀架信号 T1~T6 带上拉电阻	可接常州刀架	
	• •	开路	刀架信号 T1~T6 不带上拉电阻		

2.2.4 接口板设定开关的位置

2.2.5 系统驱动板中的设定开关(X 轴和 Z 轴一样)——阴影部分为出厂设置

A.驱动板上的 SA1-1、	SA1-4 用来设定输出相电流的大小:

电流 开关	1.7A	2.0A	4.4A	4.8A
SA1-1	OFF	ON	OFF	ON
SA1-4	OFF	OFF	ON	<u>ON</u>

B.驱动板上的 SA2-1、SA2-2、SA2-3 用来设定电机每转步数(步距角):

电机步数/转	200	400	500	1000	2000	4000	5000	10000
开关	1.8 °	0.9 °	0.72 °	0.36 °	0.18 °	0.09 °	0.072 °	0.036 °
SA2-3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
SA2-2	OFF	ON	ON	OFF	OFF	ON	ON	OFF
SA2-1	ON	ON	OFF	OFF	ON	ON	OFF	OFF

C.驱动板上的 SA2-4 用来设置半流功能:

SA2-4=OFF,有半流功能;SA2-4=ON,无半流功能。

半流功能是指驱动器在 100 毫秒内无脉冲信号输入时,输出相电流减少到额定值的 60%,可防止电机发热。默认设置为 OFF。

2.2.6 驱动板中设定开关的位置(X 轴和 Z 轴一样)

2.3 系统操作面板开关的连接 信号连接示意图

3、 外部连接

系统外部连接框图

图 3.0

3.1 隔离变压器的连接

3.2 步进电机的连接

3.2.1 连接图

3.2.2 注意事项

系统适配电机为三相混合式步进电机! 严禁带电对驱动器线路板进行任何拨码设置或进行测量! 尽量减少开/关机次数! 必须在断电3分钟后对驱动部分进行接线、安装、拨码开关设置! 二次开/关机之间须有3分钟间隔! 系统输入电压为AC220V(-15%~+10%),50/60Hz! 通电前,确保电源电缆、电机电缆连接正确,且连接紧固! 电源电缆、电机电缆的任何虚接都会引起灾难性后果! 电机侧绕组一般接成三角形,改变电机旋转方向可互换电机的任意两相接线!

3.2.3 配套电机参数表及驱动器设置

表1

电机型号	相保持		步距 Y 接法		空载 起动		转动惯量	驱动板设置	
	数	转距	角(度)	相电流	频率	频率	Kg/cm ²	SW2-1	SW2-4
90BYG350A	3	2Nm	0.6/1.2	1.0A	30KHz	1.6KHz	1.5	OFF	OFF
90BYG350B	3	4Nm	0.6/1.2	1.1A	30KHz	1.6KHz	3.0	OFF	OFF
90BYG350C	3	6Nm	0.6/1.2	1.3A	30KHz	1.6KHz	4.5	ON	OFF
110BYG350B	3	12Nm	0.6/1.2	2.8A	30KHz	1.6KHz	12.6	ON	ON

表2

电机型号	相	保持	步距 接法		空载 起动	转动惯量	驱动板设置		
	数	转距	角(度)	相电流	频率	频率	Kg/cm ²	SW2-1	SW2-4
FHB31118	3	15Nm	0.6/1.2	4.5A	30KHz	1.6KHz	13.56	OFF	ON
FHB31122	3	19Nm	0.6/1.2	5.1A	30KHz	1.6KHz	17.4	ON	ON

3.3 主轴位置编码器的连接

KOT 系统配套的主轴位置编码器为差分形式输出编码信号,每转脉冲数为 1024,工作电压为+5V。 系统侧插座型号为 DB15F(DB 型 15 孔),焊接电缆的系统侧插头型号为 :DB15M(DB 型 15 芯针)

插头 XS33:DE	315 针	电缆编号 :B11Y-W330-0000	编码器		
信号名称	管脚	Λ	管脚	信号名称	
*MPCS	3			*PCS	
MPCS	4			PCS	
*MPBS	5			*PBS	
MPBS	6			PBS	
*MPAS	7			*PAS	
MPAS	8			PAS	
+5V	12			+5V	
+5V	13			+5V	
0V	14			0V	
0V	15			0V	

焊接在插头金属体上

线材:RVVP 10x0.2mm²(双绞屏蔽电缆)

图 3.3

3.4 模拟主轴接口的连接

系统侧插座型号为:DB9M(DB型9芯针) 焊接电缆的系统侧插头型号为:DB9F(DB型9芯孔)

图 3.4

注释:该信号应尽可能的使用 RVVP2X0.5mm²的双绞屏蔽电缆传送。

3.5 刀架接口的连接

3.5.1 接口电缆

系统侧的插座为 DB25 孔。

3.5.2 刀位信号 T01~T06

刀位信号接口电路示意图如下:

可直接与采用 NPN 型霍尔元件的刀架连接(如常州刀架),有效电平为低。当 T01~T06 中有一个 信号为低电平时,表示此时的刀架处于该刀号位置。通过系统诊断 001 和 003 可查看 T01~T06 的状态。

当与采用 PNP 型霍尔元件的刀架连接时,需将系统内部接口板上的设置开关 S1~S6 设为断开,有 效电平为高。当 T01~T06 中有一个信号为高电平时,表示此时的刀架处于该刀号位置。通过系统诊断 001 和 003 可查看 T01~T06 的输入状态。此操作需将系统外壳打开才能设置,参见连接篇 2.3.2。

3.5.3 刀架正转/反转输出信号 TL+/TL-

刀架正转/反转信号接口电路如下页图所示。 输出电路为达林顿管输出,低电平有效,负载电流 200MA,工作电压 < 50V。

图 3.5.3a

换刀过程中,刀架到位后关闭刀架正转输出信号(TL+),延迟参数037号设定的时间后系统输 出刀架反转信号(TL-),其宽度为参数038号设定的时间,之后系统关闭刀架反转锁紧信号(TL-), T代码指令结束。程序继续执行下一程序段。

开机置初值时,034,037,038,039的初值设定如下:

参数号	含义	时间	初值
034	刀架正转最长时间 TCTMX (换刀极限时间)	80 秒	80000(单位为毫秒)
037	刀架正转停止到反转开始的延时时间 T1	0.5秒	496(单位为毫秒)
038	刀架反转锁紧时间 TLOCK	0.5秒	496(单位为毫秒)
039	总刀位数选择		4(单位:刀位数)

在显示屏幕的左下角的T显示当前指令的T代码及刀补号。开机时,T代码为上次刀号值。当换 刀正常结束时,系统自动修改此值。当指令T代码后,由于某种原因刀架没有到位时,T显示换刀前 的刀号值不变。当指令的刀号与显示刀号一致时,系统不进行换刀。

手动换刀时,在换刀结束后,T代码才修改为新的值。 换刀时序图如下:

图中TCTMX等是参数设置的时间参数。

当Ta TCTMX(换刀刀架正转时所需最长时间)。产生05号报警:换刀时间过长。 刀架到位信号(T08~T01),由003号参数的TSGN位设定为高或低电平有效。

TSGN 0:刀架到位信号高电平有效。(常开)

1:刀架到位信号低电平有效。(常闭)

3.6 输入/输出接口的连接

3.6.1 输入/输出接口电缆

系统侧的插座为 DB25 孔。

图 3.6.1

```
3.6.2 机床参考点零位输入信号*DECn、nPC+(n表示轴 X/Z)
```

(1)回零方式 B

用户需提供回零减速信号*DECn、回零一转信号 nPC+。系统侧接收电路如下图所示:

图 3.6.2a

返回参考点的过程如下:

选择机械回零方式,之后按相应轴(X/Z)的手动进给键,则机床将以快速移动速度向参考点方向运动。当返回参考点减速信号(*DECX 及*DECZ)触点断开时(压上减速开关),进给速度立即下降, 之后机床以固定的低速继续运行。当减速开关释放后,减速信号触点重新闭合,之后系统检测一转信号 (PC+信号)。如该信号由高电平变为低电平(检测 PC+信号的下降沿),则运动停止,同时机床坐 标值清零,返回参考点操作结束。在回零方式取消之前,手动进给将一直无效。

(2)回零方式 C

仅用一个 NPN 型霍尔接近开关作为减速开关同时作为机床参考点零位信号时的连接方法如下:

仅用一个 PNP 型霍尔接近开关作为减速开关同时作为机床参考点零位信号时的连接方法如下: 这时需将系统内部接口板上的设定开关 SA3/SA4 设置为 1 - 2 短接 (参见连接篇 2 - 4)。

注:若用一个霍尔开关作为零位信号,此方式为回零方式 C。参数 ZRSX/Z, ZCX/Z 需设为 1。参见参数说明。

3.6.3 急停输入信号*ESP1

当系统参数P001的位M0T设置为1时,输入信号*ESP1用作外部输入的急停信号(与系统面板急停开关 信号*ESP2功能相同)。

该信号为常闭触点信号。当触点断开时,控制系统复位,并使机床紧急停止。产生急停后,系统准备好信号MRDY将断开。同时封锁运动指令输出。

当不需要此功能时,可通过设定P001号参数的MESP位为1来进行屏蔽。

3.6.4 硬限位输入信号*LMZ/*LPZ/*LMX/*LPX

当系统参数 P001 的位 MOT 设置为 0 时,系统具有硬限位功能。接线图如下:

图 3.6.4

机床运动超程时(如X轴负向),行程开关-X断开,输入信号*LMX无24V电压输入,系统产生报警: "超程报警:-X"。这时,手动方式X轴负向将不能再动,手动方式正向能使机床退出限位,报警消除。 3.6.5 **主轴控制输出信号M03/M04/SPZD** 此三个信号采用达林顿电路输出,有效电平为低。

M03 用来控制主轴正转, M04 用来控制主轴反转, SPZD 用来控制主轴制动器。动作关系如下:

图 3.6.5

T1:当主轴在运行中时,发出主轴停止(自动或手动)命令后,立即关闭主轴正/反转。延时T1 时间(0.5秒),发出主轴制动信号。T1的时间由系统固定为0.5秒。

T2: 主轴制动时间,由040号参数设定。

3.6.6 冷却液控制输出信号MO8

该输出信号为达林顿电路输出,低电平有效。用系统面板按键或 № 代码控制。

用系统面板按键控制时,手动或单步方式下,按一下【冷却】键,输出接口 M08 有输出,再按一下【冷却】键,输出接口 M08 没有输出。

用 M 代码控制时, MDI 或自动方式下,执行代码 M08 则开启冷却液输出,执行代码 M09 则关闭冷却液输出。

3.6.7 输出信号Y12、Y14

这两路输出信号为达林顿电路输出,低电平有效(表中的1),功能由参数 P036 的 SM02、SM01 设置。

い史		输	出
· · · · · · · · · · · · · · · · · · ·	1℃19	Y14	Y12
SH02 0 SH01 0	M10/M11		1/0
SMUZ=U, SMUT=U	M32/M33	1/0	
	S00/S01		0
SM02=0, SM01=1	S02		1
	M32/M33	1/0	
	S00	0	0
	S01	0	1
SMU2=1, SMU1=0	S02	1	0
	S03	1	1
	S00/S01	0	0
	S02	0	1
SMUZ=1, SMU1=1	S03	1	0
	S04	1	1

注 1:当 SM02/SM01=00 时,在 MDI 或自动方式下,执行代码 M10,则输出信号 Y12 有输出;执行代码 M11,则关闭 Y12 的输出。执行代码 M32,则输出接口 Y14 有输出;执行代码 M33,则关闭 Y14 的输出。

注 2:当 SM02, SM01 设置为 01,最多为 2 挡变速,编入 S03, S04 时,系统会产生报警:【S 代码错】,并按 S00 输出。 注 3:当 SM02, SM01 设置为 10,最多为 3 挡变速,编入 S04 时,系统会产生报警:【S 代码错】。当然,两档变速时, 也可采用设置 3 档变速的方式。

3.6.8 输入信号X32、X33

这两个输入信号暂无定义,作为系统扩展功能备用。

3.7 输入/输出信号表

3.7.1 输入信号诊断表

位号:	7	6	5	4	3	2	1	0
诊断 000			*DECX	X16				
后盖板			XS50:1	XS50:4				
插坐								
. –	_		_		_			_
位号:	7	6	5	4	3	2	1	0
诊断号 001			*DECZ	*ESP1	T04	Т03	T02	T01
后盖板			XS50:	2 XS50: 3	XS59:4	XS59:3	XS59:2	XS59:1
插座		•						
诊断异位	[号:7	6	5	4	3	2	1	0
002					*ESP2	*SPL	*SPK	ST
主板插座					XS2:5	XS2:4	XS2:3	XS2:2
		•	•		•			

	立号:7	6	5	4	3	2	1	0
诊断号 003	*LMZ	*LPZ	*LMX	*LPX	X33	X32	T06	T05
后盖板	XS50:6	XS50: 5	XS50: 20	XS50: 8	XS50: 21	XS50: 7	XS59: 6	XS59: 5
阳座								

3.7.2 输出信号诊断表

	位号:7		5	4	3	2	1	0
诊断号 004	SPZD	TL-	TL+	Y14	M08	Y12	MO4	M03
后盖板 场应	XS50: 14	XS59:13	XS59: 12	XS50: 19	XS50: 15	XS50: 18	XS50: 16	XS50: 17
〕田/ 王 注	: Y12、Y1	4 输出信号	的功能由参	参数 P036 的	SMO2、SMC)1 决定,参	见连接篇:	3 - 9.

第六篇 附录篇

附录1 规格一览表

功能	名	称	规格		
控制轴	控制轴数		2 轴 (X, Z)		
	同时控制轴数		2轴		
	最小设定单位		0.001毫米		
输入指令	最小移动单位		0.001毫米		
	最大指令值		±9999.999 毫米		
	快速进给速度		X轴:3 米/分 , Z轴:5米/分(最大值)		
		分进给	1~3000毫米/分		
进给	世纪迷度氾固 每3	转进给(1024线编码器)	0.0001~500.0000毫米/转		
	螺纹导程		0.0001~500.0000毫米		
	自动加减速		有 (直线,指数)		
	进给速度倍率		0~150%		
手动	手动连续进给,手动	协返回参考点,单步进给	同时一轴,×1,×10,×100		
插补	定位,直线插补,圆	弧插补	G00,G01,G02/G03		
调试机能	试运行,单程序段		有		
	外,内圆车削循环		G90		
单一型固定循环	螺纹车削循环		G92		
	端面车削循环		G94		
	暂停(秒)		G04		
坐标系及暂停	坐标系设定		G50		
	自动坐标系设定		有		
运转方式	MDI,自动,手动,单步	步,编辑			
	存储型行程检查				
安全机能	存储行程检查机能	屏蔽或各轴屏蔽			
	紧急停		有		
	程序存储容量,存值	诸程序个数	32K,63个		
	程序编辑		插入,修改,删除		
程序存储及编辑	程序号,顺序号,	地址,字检索			
	小数点编程		有		
	电子盘		有,6个区		
	320×240点阵 6英	可液晶显示器	有		
显示	位置,程序,刀补,报	警,调试,诊断,参数			
	输入/输出:20 / 8;	点	输入:4点为面板信号 16点为机床信号		
M,S,T 机能	辅助功能		M2 位数		
, ,	主轴功能		S2 位数		
	模拟主轴(S4位)		有(8位 D/A 输出)		
	刀具功能		T01 ~ 06		
	刀具补偿存储器		±6位 8组		
补偿机能	刀具补偿值计数方	式输入	有		
	刀具补偿值测量方	式输入			
	反向间隙补偿		有		
开关	程序开关,参数开	关	有		
	圆弧半径R指定		有		
	电子齿轮比		有		
其它机能	断电工件坐标值记	忆	有		
	后刀架选择	-	有		
	任意位置启动程序	机能	有		

附录2 参数一览表

本表中没有提到的参数为系统固定设置,不能改动。

- 1:屏蔽该轴正向运动键。即在手动返回参考点方式下,轴正向运动键无效。
- ZMX ZMZ 当接通电源时, X轴,Z轴的参考点返回方向和原始的反向间隙方向。
 - 1:返回参考点方向及间隙方向为负
 - 0:返回参考点方向及间隙方向为正

注: 电源接通后, 当该轴向与本参数设定的反方向运动时, 最初完成反向间隙补偿。

设定从参考点到行程极限的距离,所设定的区域之外为禁止区。通常,存储行程极限应当设在最大 行程,如果机床可动部分进入禁止区,就产生超程报警。

因为在监测运动中的时间间隔,要计算出一个行程容差。 其大小为快速移动速度的1/5倍,例如,快速移动速度如果为3m/min,那 么3 × 1/5 = 0.6mm。

当某轴的+,-限位参数都设置为0时,该轴软限位无效。

0 1 9	LINTX
0 2 0	LINTZ
LINTX LINTZ 分别	为X,Z坐标直线型(线性)加减速时间常数值(用于快速移动)。
设定量: 8~4000(自	单位: 毫秒)
0 2 1	FEEDT
FEEDT 切削进给	和手动进给时指数加减速时间常数。
设定量0~4000 单 ⁴	位:毫秒
此参数设"0"时,指数	加减速功能无效。
0 2 2	FEDFL
FEDFL 切削进给和	和手动进给时指数加减速的低速(FL速度)下限值。
设定量 0~3000	单位:毫米/分。
通常此参数初始值说	&"40"
0 2 3	THRDT
THRDT 在螺纹切削	J中(G92)X轴的指数加减速常数。
设定量: 0~4000	单位: 毫秒
0 2 4	THDFL
THDFT 在螺纹切削	削中(G92)各轴的指数加减速的下限值。
设定量: 6~3000	单位:毫米/分。
0 2 5	THDCH
FEDCH 螺纹切削	的倒角宽度(G92)。
设定单位:0.1螺距	,设定量:1~255。
0 2 6	RPDFL
RPDFL 快速移动	倍率最低速度(F0), 各轴通用。
设定量 6~3000	单位: 毫米/分。
0 2 7	ZRNFL
ZRNFL 返回参考	点时的低速, FL速度(通用于各轴)。
设定量 6~3000	单位:毫米/分。
0 2 8	JOGFL
JOGFL 手动进给打	皆令加减速下限(FL速度)。
设定量 0~3000 1	单位:毫米/分。
0 2 9	SEQNIC
自动插入程序顺序号	号时的号码增量值。设定量: 0~9999
SEQINC = 0时,插	入EOB后,无自动序号插入机能。
SEQINC 0时,插	入EOB后,有自动序号插入机能。

设定量 1~32640 单位: 毫秒。

K0T 初始参数设置值

序号	数据	含义
1	01100000	位参数
2	00001100	位参数
3	10101000	位参数
4	00010000	位参数
5	1	X轴指令倍乘比
6	1	Z轴指令倍乘比
7	10	X轴指令分频系数
8	10	Z轴指令分频系数
9	3000	X轴快速速率
10	5000	Z轴快速速率
11	0	X轴间隙补偿量
12	0	Z轴间隙补偿量
13	0	在自动坐标系设定中,X轴返回参考时的坐标值设定
14	0	在自动坐标系设定中,Z轴返回参考时的坐标值设定
15	9999999	X轴正向行程限位
16	99999999	Z轴正向行程限位
17	-9999999	X轴负向行程限位
18	-9999999	Z轴负向行程限位
19	200	X轴直线加减速时间常数
20	200	Z轴直线加减速时间常数
21	150	切削进给和手动进给时指数加减速时间常数
22	40	进给加减速时速度下限
23	200	在螺纹切削中X轴的指数加减速时间常数
24	150	在螺纹切削中各轴的指数加减速的下限值
25	10	G92螺纹切削的倒角宽度
26	50	快速倍率最低档的速率
27	200	返回参考点时的低速,FL速度
28	40	手动加减速速度下限
29	0	自动插入程序顺序号时的号码增量值
30	2	信号有效宽度
31	9999	主轴指令为10V时,齿轮1档时的主轴转速
32	150	当选择G92按直线加减速来升降速时,X轴直线加减速时间常数
33	150	当选择G92按直线加减速来升降速时,Z轴直线加减速时间常数
34	20000	换刀步数为最大所需要的最长时间(T _{全刀位})
35	128	M代码等待时间
36	0000000	
37	496	刀架正转停止到刀架反转锁紧开始的延迟时间
38	496	反转锁紧时间
39	4	总刀位数选择
40	496	主轴制动输出时间

KND-0T 相关参数的设定:

急停开关,暂停,增量值档选择,软/硬限位设置

- 系统面板开关信号:(急停2,进给保持,主轴暂停)可通过参数 P001 的 bit7 (MSPL)屏蔽。
 MSPL = 1:屏蔽面板输入信号的*ESP2,*SPL,*SPK。调试或不装此开关时用。
 MSPL = 0:面板输入信号的*ESP2,*SPL,*SPK 有效。
- 软限位检查:机床移动使机床坐标值超出参数 P015~018 设置的范围时,显示限位报警,并使轴移动停止,在手动方式下,只可以向其反方向移动(同方向移动键无效),当进入正常范围后, 按复位键取消报警。

可设置某轴的+,-限位参数都为0而屏蔽某一个轴的软限位。

- 硬限位输入信号:可通过参数 P001 的 bit6 (MOT)屏蔽。
 MOT = 1 时,硬限位无效。
 MOT = 0 时,硬限位有效。
- 急停开关1:可通过参数P001的bit5(MESP)屏蔽。
 MESP=1时,急停1(*ESP1)无效,调试或不用此信号时。
 MESP=0时,急停1(*ESP1)有效,正常使用。
- 单步增量选择:可通过参数 P001 的 bit4 (SINC)屏蔽,0.1,1.0 两档增量值选择。

SINC = 1 时,增量 0.1, 1.0 两档无效。

SINC=0时,增量任何档有效。

回零有关设置

回零设置:系统有多种回零方式及不同的选择参数,含义如下:

- 一、 位参数
- MZRZ~X (P004 bit3 2):选择轴方向有效键。
 - ZMX ZMZ(P004 bit1 0):选择回零方向。仅在有机械零点时,此参数有效。
 1 当这两种设置方向一致时,沿轴移动方向一直返回到零点,一个方向。
 2 不一致时,如:MZR*:设置为正向键。ZM*,设置为负向。回零过程如下:

ZNIK (参数 P003 bit2):回零时轴键自锁。

0:回零时,轴运动键不自保。回零过程中,需一直按手动轴移动键,直到返回零点。

- 回零时,轴运动键自保。回零方式下,按一下手动轴移动键,轴自动向回零方向移动,返回零点后,运动停止。运动时需停止时,按〖RESET〗键.
- 注:由于回零速度为G00的快速,设为0时比较安全。设为1时,操作方便。根据情况选择。
- ZRSZ, X (P002 bit7 6):选择有否机械零点。

1:有机械零点。回零时,快速轴移动到减速开关时以P027低速到一转信号。

0:无机械零点。(浮动机械零点)回零时,快速返回机床坐标零点(机床坐标值为0)。

无机械零点时浮动机械零点的设置:

在综合位置画面,小字符显示机床坐标,先按着〖取消〗键,再按地址键X 或Z 键,则X或 Z 机床位置被复位成0。

- ZCX, Z(P002 bit 5 4):选择回零时减速及PC信号为1或2个开关。
 - 0:返回机械零点需要减速开关及零位信号。
 - 1:磁开关回零方式C。

注1:有机械零点时,此参数才有意义。

注2:当配步进电机,并且电机后无一转信号时,为安装方便仅用一个接近开关时,设置此参数。

注3:必须设置MZR*及ZM*为不一致。下例中,MZR*设置为0(正向键有效)ZM*设置为1(负向回零)

- 二、数据参数
 - ZRNFL(参数 P027): 返回参考点时的低速,FL速度(通用于各轴)。
 当有机械零点时,参数有效。回零时,碰上减速开关时,以此低速运动。此速度越低,
 回零精度越高。但过低会影响效率。
 - RPDFX Z(参数P009 010): 设置X, Z 坐标快速移动速度。
 回零时,轴开始的运动速度。

模拟主轴有关参数设置

当选配变频器或模拟主轴时,应设置参数:

• SANG (参数 P004 bit7):模拟主轴选择。

此参数设置为 1 后,可编入 S4 位数,直接指定主轴转速。由 S 代码直接指定主轴转速,其 对应必须通过参数设置匹配后,才能一致。

- GRMAX (参数 P031):当主轴速度指令为 10V 时,对应的主轴转速(转/分)。
 - 1 理论计算:知道输出 10V 时,主轴电机的转速,知道主轴与主轴电机的齿轮比,计算出主轴转速后,设置在参数 P031 中。
 - 2 测量:按 KND 出厂标准,指定 S9999 后,测量主轴转速。然后将测量值设置在 P031。

间隙补偿参数及轴有关参数设置

- CPF4,3,2,1(参数 P001 bit3~0):反向间隙补偿的脉冲频率(各轴共用)。
 补偿频率 = (设定值+1) Kpps。
 一般设置为0000。
- DALZ~X(参数 P002 bit3 2): 驱动器报警信号电平选择。
 配置不同的驱动器时,由于其报警时电平可能不同,此时,可设置此参数。
- DIRZ~X(参数 P002 bit1 0):电机旋转方向选择。
 改变参数,可以改变电机旋转方向。

螺纹加工时有关参数的设置

螺纹加工时,在螺纹切削开始及结束部分,由于升降速的原因,会出现导程不正确的部分。考 虑此因素的影响,可以采用指令的螺纹长度比需要的螺纹长度要长来解决。如指令螺纹长度受到限 制时,尤其是螺纹的结尾部分,可通过调整与螺纹加工相关的几个参数来设定。

*位参数 G92L:当设置参数 P004 的位 G92L=1 时,G92 螺纹切削加工中,X、Z 轴将按直线加减速来 升降速。这样,可改善螺纹加工的效果。

时间常数设置在 P32 和 P33, 推荐设置范围 80~150, 默认值为 150。

*参数 P021:切削进给和手动进给时指数加减速时间常数。

减小此参数值,可以缩短螺纹加工时升降速的时间,从而使得加工出的螺纹导程趋向一致。 配置步进驱动器时:设置范围 50~100。在步进电机不产生失步的情况下尽可能减小此数值。 *参数 P022:切削进给和手动进给时指数加减速的低速(FL速度)下限值。

设置范围为 100~300。

*参数 P023:在螺纹切削时(G92)X 轴的指数加减速常数

此参数的设定同参数 P021 的设定。其参数值可以和 P21 号参数设置成同一个数 值。

- *参数 P024:在螺纹切削中(G92)各轴的指数加减速的下限值。 此参数的设置范围为(300~500)。
- *参数 P025: 螺纹切削(G92)的倒角宽度, 即螺纹的退尾量。
 - P025 号参数的默认值为 10,表示螺纹的退尾宽度为 1 个螺距。在螺纹加工时,应尽可能减少螺纹退尾量。

换刀有关参数设置

请参照第二篇第3.6节"刀具功能"。

存盘

当程序调整完毕后,一般情况下,请存盘。

系统工作时使用电池保持的数据,当关开机时,过强的外界干扰可能会使存储器数据混乱,开机读 盘不仅将数据恢复,也使混乱的存储器恢复。

电子齿轮比的设置

当不同螺距的丝杠与各种步距角的电机相配时,或通过各种变速齿轮联结时,通过系统的电子齿轮 比参数设定,可以使编程与实际运动距离保持一致。

•步进电机时

 $\frac{\text{CMR}}{\text{CMD}} = \frac{360}{a \times L \times 1000 \times c}$

- CMR:指令倍乘系数(参数 005~006)
- CMD:指令分频系数(参数 007~008)

a:步距角(度)

L:步进电机一转对应机床的移动量(毫米)

C: 正常设为1,X 轴并且为直径编程时,设定为2。

例 a = 0.75 L = 5

$$\frac{\text{CMR}}{\text{CMD}} = \frac{12}{125}$$

系统最小输出单位是 CMD/CMR =125/12 (单位:0.001 毫米。)

注1:无论是配置何种步距角的电机,系统的最小编程单位都为 0.001 毫米,而最小输出单位则取决于 a 及 L, a、L 愈 小,分辩率愈高,但会使速度降低,反之,a、L 愈大,速度愈高,但会使分辨率降低。

注2:设置范围1~127。

配置步进机时的加减速时间常数的设置

当系统配置步进机时,由于其特性所至,为防止堵转,指数或直线加减速时间常数通常设置的比配 伺服电机时大。需根据具体的情况设置时间常数。 G00直线加减速时间常数:200~500。(P019,020) G01指数加减速时间常数:50~100。(P021) 如果指数加减速时间太长,可适当设置参数P022。

附录3 诊断信息一览表

一、标准诊断数据									
1. 输入信号									
0	0	0							

0	0	0				*DECX	X16				
0	0	1				*DECZ	*ESP1	T04	T03	T02	T01
0	0	2						*ESP2	*SPL	*SPK	ST
			-								
0	0	3		*LMZ	*LPZ	*LMX	*LPX	X33	X32	T06	T05
2.输	出信号					1			1		
0	0	4		SPZD	TL -	TL +	Y14	M08	Y12	M04	M03
	- <i>(</i>										
3.状	态信息										
					0007	0.7	001/7	0.11.15	0.001/		0.5111
0	0	6			CSCI	CITL	COVZ	CINP	CDWL	CMIN	CFIN
•	•	-		OTD	DEOT	БИО		DOTD			0011
U	U	1		519	KE91	EIVIS		ROID			630
4 . MI	DI 键盘(言号	_								
0	0	8		7	6	5	4	3	2	1	0
0	0	9			RST	W	Р	Т	М	9	8
0	1	0		STO	CAN	EOB	SHT		DEL	INS	ALT
	-	-			-	-					
0	1	1		SP+	SP-	RV2	RV1	PGU	PGD	CRU	CRD
0	1	2		RP+	RP-	EDIT	AUTO	MDI	HOME	HAND	JOG
	-	-			-	-					
0	1	3		O/I+	O/I-	JT	RT/CO	+ Z/D	- Z/S	+ X/M	- X/P
0	1	4					RE	RRX			
	1	•		-							
0	1	5					RE	RRZ			

RERRX X轴跟踪误差/输出脉冲数。

RERRZ Z轴跟踪误差/输出脉冲数。

二、选择诊断数据

选择条件:显示:诊断画面。

方法:按插入+1 键,显示下列画面;按取消键,返回标准诊断数据。

1 诊断号 0~3 与标准数据相同。

2 系统接口信号

0	0	4		模拟主轴输出值(8位)							
0	0	6				RFZ	RFX		PCS	PCZ	PCX
0	0	7				1	1			ALMZ	ALMX
3 输入	到 NC 的	的信号	_								
0	0	8		HX/RV	1	*DECX		- X	+ X		
			-								
0	0	9		HZ/RV	2	*DECZ		- Z	+ Z		
											1
0	1	0		DRN				GR2	GR1		
			1	-					1	·	
0	1	1		MLK	MP2	MP1		SBK	BDT		
0	1	2		ZRN	*SSTP	SOR	SAR	FIN	ST	STLK	MIR1
											1
0	1	3		ERS	RT	*SP	*ESP	*OV8	*OV4	*OV2	*OV1
									1		
0	1	4		PN8	PN4	PN2	PN1	KEY	MD4	MD2	MD1
									1		
0	1	5		CDZ	SMZ	AFL	OVC		SOVC	SOVB	SOVA

附录4 报警一览表

(1)程序操作错(P/S报警)

号码	内容	备注
000	设定了必须切断一次电源的参数。请切断电源。	
003	输入了超过允许位数的数据。(参照最大指令章节)	
004	在程序开始部分仅有数字或符号而无地址。	
005	地址后无数据,紧接着出现下个地址或者 EOB 代码。	
006	"-"符号输入错误。(在不允许输入"-"号的地址上输入了"-"号或者输入两个	
	以上的"-"号)	
007	小数点输入错误。(在不允许小数点输入的地址上输入小数点或者输入两个	
	以上小数点)	
009	输入了非法字地址符。	
010	指令了不能使用的 G 代码。	
011	切削进给中没有指定进给速度或者进给速度的指令不合适。	
023	在使用半径 R 指定的圆弧插补中,R 地址指令了负值。	
029	用工代码指令的偏置值过大。	
030	用于 T 功能的刀具偏置号大。	
060	在顺序号检索时,没有发现指定的顺序号。	
068	存储器存储容量不够。	
071	没有找到检索地址数据。或者在程序号检索中,没有找到指定号码的程序	
072	存储的程序超过 63 个。	
073	要存入的程序号和存储器中已存入的程序号相同。	
074	程序号不在 1 ~ 9999 范围内。	
076	在 M98 的程序段中,没有指定 P。	
077	子程序调用嵌套过多。	
078	在 M98,M99 程序段中,没有找到用 P 指定的程序号或者顺序号。	
090	返回程序零点时,无程序零点记忆。	
101	在程序编辑中,改写存储器时,电源断电了。关机后再开机报警自动取消.	

(2)超程报警

号码	内容	备注
+X	超出 X 轴正向行程极限	
-X	超出 X 轴负向行程极限	
+Z	超出 Z 轴正向行程极限	
-Z	超出 Z 轴正向行程极限	

(3) 驱动器报警

号码	内容	备注
12	X 轴驱动器报警。	
22	Z 轴驱动器报警。	
13	X 轴指令速度过大。此报警通常是因为参数CMR或CMD设定错	
	误。或指令速率超出最大值。	
23	Z 轴指令速度过大。此报警通常是因为参数CMR或CMD设定错	
	误。或指令速率超出最大值。	

(4)系统报警

号码	内容	备注
02	COMS 存储器写出错	
03	ROM 奇偶报警	
06	WATCHDOG 报警	
07	CPU 错误(0,3,4,6 型错)	
08	非法的非屏蔽中断	

注:系统报警通常是因为系统电压 + 5V 过低或电源与系统连接插头处不牢固造成的。如果检测电压低时,可小心逐步地调 整电源处的调节旋钮提高电压值。

(5)外部信息报警

号码	内容	备注
01	M 代码错。程序中编入了非法的M 代码。	
02	S 代码错。程序中编入了非法的 S 代码。	
03	T 代码错。程序中编入了非法的 T 代码。	
05	换刀时间过长。从刀架开始正转,经过极限时间后指定的刀位到	
	达信号仍然没有接收到时,产生报警.	
06	M03,M04 码指定错。主轴正转(反转)时,没有经过停止而又指	
	定了主轴反转(正转)。	
08	总刀位数参数设定错。	