

DT9810 and DT9817 Series User's Manual

	·		
	•		
-			
-			
_			
_			
_			
_			
_			
_			
_			
_			
_			

Fourteenth Edition May, 2010

Data Translation, Inc. 100 Locke Drive Marlboro, MA 01752-1192 (508) 481-3700 www.datatranslation.com

Fax: (508) 481-8620 E-mail: info@datx.com

Copyright © 2006 - 2010 by Data Translation, Inc. All rights reserved.

Information furnished by Data Translation, Inc. is believed to be accurate and reliable; however, no responsibility is assumed by Data Translation, Inc. for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Data Translation, Inc.

Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer software clause at 48 C.F.R, 252.227-7013, or in subparagraph (c)(2) of the Commercial Computer Software - Registered Rights clause at 48 C.F.R., 52-227-19 as applicable. Data Translation, Inc., 100 Locke Drive, Marlboro, MA 01752.

Data Translation® is a registered trademark of Data Translation, Inc. DT-Open Layers $^{\text{TM}}$, DT-Open Layers for .NET Class Library $^{\text{TM}}$, DataAcq SDK $^{\text{TM}}$, OMNI CD $^{\text{TM}}$, LV-Link $^{\text{TM}}$, and DTx-EZ $^{\text{TM}}$ are trademarks of Data Translation, Inc.

All other brand and product names are trademarks or registered trademarks of their respective companies.

Radio and Television Interference

This equipment has been tested and found to comply with CISPR EN55022 Class A and EN61000-6-1 requirements and also with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Changes or modifications to this equipment not expressly approved by Data Translation could void your authority to operate the equipment under Part 15 of the FCC Rules.

Note: This product was verified to meet FCC requirements under test conditions that included use of shielded cables and connectors between system components. It is important that you use shielded cables and connectors to reduce the possibility of causing interference to radio, television, and other electronic devices.

Canadian Department of Communications Statement

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la class A prescrites dans le Règlement sur le brouillage radioélectrique édicté par le Ministère des Communications du Canada.

Table of Contents

About this Manual	9
Intended Audience	9
How this Manual is Organized	9
Conventions Used in this Manual	10
Related Information	10
Where To Get Help	11
Chapter 1: Overview	13
Key Hardware Features	14
Analog Inputs	14
Counter/Timer Channel	14
Digital I/O Lines	14
DT9817-H	14
DT9817-R	15
Supported Software	16
Getting Started Procedure	17
Part 1: Getting Started	19
Chapter 2: Setting Up and Installing the Module	21
Unpacking	23
Attaching Modules to the Computer	24
Connecting Directly to the USB Ports	24
Connecting to an Expansion Hub	25
Changing the Name of a Module (Optional)	27
Chapter 3: Wiring Signals to the Module	29
Preparing to Wire Signals	31
Wiring Recommendations	31
Wiring Locations	31
Connecting Single-Ended Analog Input Signals	34
Connecting Digital Input Signals	35
Connecting Digital Output Signals	36
DT9817-H High-Drive Applications	36
DT9817-R	
Connecting Counter/Timer Signals	38
Event Counting	38
Frequency Measurement	39
Edge-to-Edge Measurement	40
Rate Generation	11

Chapter 4: Verifying the Operation of a Module	43
Running the Quick DataAcq Application	45
Testing Single-Value Analog Input	46
Testing Continuous Analog Input	47
Testing Single-Value Digital Input	48
Testing Single-Value Digital Output	49
Testing Frequency Measurement	50
Testing Pulse Output	51
Part 2: Using Your Module	53
Chapter 5: Principles of Operation	55
Analog Input Features	59
Input Resolution	59
Analog Input Channels	59
Specifying a Single Analog Input Channel	59
Specifying One or More Analog Input Channels	59
Input Ranges and Gains	60
Input Sample Clock Sources	60
Analog Input Conversion Modes	60
Single-Value Operations	61
Continuous Scan Mode	61
Input Triggers	62
Data Format and Transfer	62
Error Conditions	62
Digital I/O Features	63
Digital I/O Lines	63
Resolution	64
Operation Modes	65
Counter/Timer Features	66
C/T Channel	66
C/T Clock Sources	66
Gate Types	67
Pulse Duty Cycles	67
Counter/Timer Operation Modes	68
Event Counting	68
Frequency Measurement	68
Edge-to-Edge Measurement	69
Pata Congration	60

Chapter 6: Supported Device Driver Capabilities71
Data Flow and Operation Options
Buffering
Triggered Scan Mode
Data Encoding
Channels
Gain
Ranges
Resolution
Thermocouple and RTD Support
IEPE Support
Triggers
Clocks
Counter/Timers
Chapter 7: Troubleshooting
General Checklist
Technical Support
If Your Module Needs Factory Service
Appendix A: Specifications
Analog Input Specifications
Digital I/O Specifications
Counter/Timer Specifications
Power, Physical, and Environmental Specifications
Regulatory Specifications
Appendix B: Screw Terminal Assignments95
Screw Terminal Assignments for the DT9810
Screw Terminal Assignments for the DT9817 and DT9817-H
Screw Terminal Assignments for the DT9817-R
Index

About this Manual

The first part of this manual describes how to install and set up your DT9810, DT9817, DT9817-H, or DT9817-R module and software, and verify that your module is working properly.

The second part of this manual describes the features of the DT9810, DT9817, DT9817-H, and DT9817-R modules and device drivers, and how to program these modules using the DT-Open Layers for .NET Class Library™ software. Troubleshooting information is also provided.

Note: For information on checking system requirements, installing the software, and viewing the documentation, refer to the README file on the OMNI CD.

For more information on the class library, refer to the *DT-Open Layers for .NET Class Library User's Manual*. If you are using the DataAcq SDK or a software application to program your device, refer to the documentation for that software for more information.

Intended Audience

This document is intended for engineers, scientists, technicians, or others responsible for using and/or programming the modules for analog input, digital I/O, or counter/timer operations in the Microsoft® Windows® XP, Windows Vista®, or Windows 7 operating system. It is assumed that you have some familiarity with data acquisition principles and that you understand your application.

How this Manual is Organized

This manual is organized as follows:

- Chapter 1, "Overview," describes the major features of the DT9810, DT9817, DT9817-H, and DT9817-R modules, as well as the supported software and accessories for the modules.
- Chapter 2, "Setting Up and Installing the Module," describes how to install the module and how to configure the device driver.
- Chapter 3, "Wiring Signals to the Module," describes how to wire signals to the module.
- Chapter 4, "Verifying the Operation of a Module," describes how to verify the operation of the module with the Quick DataAcq application.
- Chapter 5, "Principles of Operation," describes all of the features of the modules and how to use them in your application.
- Chapter 6, "Supported Device Driver Capabilities," lists the supported subsystems and the associated capabilities accessible using the device driver for the modules.

- Chapter 7, "Troubleshooting," provides information that you can use to resolve problems with a module, should they occur.
- Appendix A, "Specifications," lists the specifications of the DT9810, DT9817, DT9817-H, and DT9817-R modules.
- Appendix B, "Screw Terminal Assignments," shows the screw terminal assignments of the modules.
- An index completes this manual.

Conventions Used in this Manual

The following conventions are used in this manual:

- Notes provide useful information or information that requires special emphasis, cautions
 provide information to help you avoid losing data or damaging your equipment, and
 warnings provide information to help you avoid catastrophic damage to yourself or your
 equipment.
- Items that you select or type are shown in **bold**.

Related Information

Refer to the following documents for more information on using the DT9810, DT9817, DT9817-H, and DT9817-R modules:

- Benefits of the Universal Serial Bus for Data Acquisition. This white paper describes why USB is an attractive alternative for data acquisition. It is available on the Data Translation web site (www.datatranslation.com).
- Measure Foundry Manual (UM-19298) and online help. These documents describe how to use DT Measure Foundry™ to build drag-and-drop test and measurement applications for Data Translation® data acquisition devices.
- DT-Open Layers for .NET User's Manual (UM-22161). For programmers who are developing their own application programs using Visual C# or Visual Basic .NET, this manual describes how to use the DT-Open Layers for .NET Class Library to access the capabilities or Data Translation data acquisition devices.
- DataAcq SDK User's Manual (UM-18326). For programmers who are developing their own application programs using the Microsoft C compiler, this manual describes how to use the DT-Open Layers DataAcq SDK™ to access the capabilities of Data Translation data acquisition devices.
- DTx-EZ Getting Started Manual (UM-15428). This manual describes how to use the ActiveX controls provided in DTx-EZ™ to access the capabilities of Data Translation data acquisition devices in Microsoft Visual Basic® or Visual C++®.
- DAQ Adaptor for MATLAB (UM-22024). This document describes how to use Data Translation's DAQ Adaptor to provide an interface between the MATLAB Data Acquisition subsystem from The MathWorks and Data Translation's DT-Open Layers architecture.

- LV-Link Online Help. This help file describes how to use LV-Link™ with the LabVIEW™ graphical programming language to access the capabilities of Data Translation data acquisition devices.
- Microsoft Windows XP, Windows Vista, or Windows 7 documentation.
- USB web site (http://www.usb.org).

Where To Get Help

Should you run into problems installing or using a module, the Data Translation Technical Support Department is available to provide technical assistance. Refer to Chapter 7 for more information. If you are outside the United States or Canada, call your local distributor, whose contact information is available on our web site (www.datatranslation.com).

Overview

Key Hardware Features	14
Supported Software	16
Getting Started Procedure	17

Key Hardware Features

The DT9810, DT9817, DT9817-H, and DT9817-R modules are economy, multifunction mini-instruments. Table 1 lists the key features of each module.

Table 1: Key Features of the DT9810 and DT9817 Series Modules

Module	Analog Inputs	Analog Input Resolution	I/O Range	Analog Input Sample Rate	Digital I/O	С/Т
DT9810	8 SE	10-bit	0 to 2.44 V	25 kS/s	20 I/O	1
DT9817	_	_	_	_	28 I/O	1
DT9817-H	_	_	_	_	28 I/O High Drive	1
DT9817-R	_	_	_	_	8 In/ 8 Out Isolated High Drive	1

Analog Inputs

The DT9810 module features a 16-location channel list that lets you cycle through a list of analog input channels continuously (continuous scan mode) using the internal clock.

Counter/Timer Channel

These modules support one 32-bit counter/timer channel. This counter/timer allows you to perform event counting, frequency measurement, edge-to-edge measurement, and continuous pulse output (rate generation) operations.

Digital I/O Lines

Some of the key digital I/O features are described below.

DT9817-H

The DT9817-H module sources up to 15 mA and sinks up to 64 mA of current on the digital I/O ports.

DT9817-R

The DT9817-R is a robust, industrial-grade module that provides the following additional features:

- 8 channel-to-channel opto-isolated digital inputs
- 8 channel-to-channel opto-isolated digital outputs
- AC or DC input signal sensing from ± 3 V to ± 32 V
- Switch up to \pm 30 V at 400 mA peak (60 V PP) (AC or DC) at the digital output ports
- Up to 500 V isolation channel-to-channel

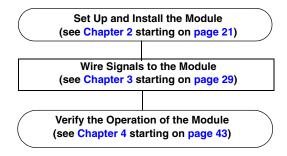
Supported Software

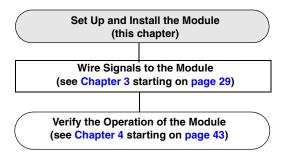
The following software is available for use with the DT9810 and DT9817 Series modules, and is provided on the OMNI CD:

- DT9810 Device Driver The DT9810 Device Driver allows you to use a DT9810 or DT9817 Series module with any of the supported software packages or utilities. Refer to page 27 for configuring the device driver.
- Quick DataAcq application The Quick DataAcq application provides a quick way to get up and running using a DT9810 or DT9817 Series module. Using this application, you can verify key features of the modules, display data on the screen, and save data to disk. Refer to Chapter 4 for more information on using the Quick DataAcq application.
- The quickDAQ application An evaluation version of this .NET application is included
 on the Data Acquisition OMNI CD. quickDAQ lets you acquire analog data from all
 devices supported by DT-Open Layers for .NET software at high speed, plot it during
 acquisition, analyze it, and/or save it to disk for later analysis.
- Measure Foundry An evaluation version of this software is included or provided via a
 link on the OMNI CD. DT Measure Foundry is drag-and-drop test and measurement
 application builder designed to give you top performance with ease-of-use development.
 Order the full development version of this software package to develop your own
 application using real hardware.
- DT-Open Layers for .NET Class Library Use this class library if you want to use Visual C# or Visual Basic for .NET to develop your own application software for a DT9810 or DT9817 Series module using Visual Studio 2003 or Visual Studio 2005; the class library complies with the DT-Open Layers standard.
- DataAcq SDK Use the Data Acq SDK if you want to use Visual Studio 6.0 and Microsoft C or C++ to develop your own application software for a DT9810 or DT9817 Series module using Windows XP, Windows Vista, or Windows 7; the DataAcq SDK complies with the DT-Open Layers standard.
- DTx-EZ Use this optional software package if you want to use ActiveX controls to access the capabilities of the DT9810 or DT9817 Series modules using Microsoft Visual Basic or Visual C++; DTx-EZ complies with the DT-Open Layers standard.
- DAQ Adaptor for MATLAB Data Translation's DAQ Adaptor provides an interface between the MATLAB Data Acquisition (DAQ) subsystem from The MathWorks and Data Translation's DT-Open Layers architecture.
- LV-Link An evaluation version of LV-Link is included on the Data Acquisition OMNI CD. Use this software package if you want to use the LabVIEW graphical programming language to access the capabilities of the DT9810 and DT9817 Series modules.

Getting Started Procedure

The flow diagram shown in Figure 1 illustrates the steps needed to get started using the DT9810, DT9817, DT9817-H, and DT9817-R modules. This diagram is repeated in each Getting Started chapter; the shaded area in the diagram shows you where you are in the getting started procedure.




Figure 1: Getting Started Flow Diagram

Part 1: Getting Started

Setting Up and Installing the Module

Unpacking	23
Attaching Modules to the Computer	24
Changing the Name of a Module (Optional)	27

Unpacking

Open the shipping box and verify that the following items are present:

- DT9810, DT9817, DT9817-H or DT9817-R module
- OMNI CD
- USB cable

If an item is missing or damaged, contact Data Translation. If you are in the United States, call the Customer Service Department at (508) 481-3700, ext. 1323. An application engineer will guide you through the appropriate steps for replacing missing or damaged items. If you are located outside the United States, call your local distributor; see our web site (www.datatranslation.com) for contact information.

Note: The DT9810 module is factory-calibrated and requires no further adjustment.

Attaching Modules to the Computer

This section describes how to attach a DT9810, DT9817, DT9817-H, or DT9817-R module to the host computer.

Note: Most computers have several USB ports that allow direct connection to USB devices. If your application requires more modules than you have USB ports for, you can expand the number of USB devices attached to a single USB port by using expansion hubs. For more information, refer to page 25.

You can unplug a module, and then plug it in again, if you wish, without causing damage. This process is called hot-swapping. Your application may take a few seconds to recognize a module once it is plugged back in.

Connecting Directly to the USB Ports

To connect modules directly to the USB ports of your computer, do the following:

- 1. Attach one end of the USB cable to the USB port on the module.
- **2.** Attach the other end of the USB cable to one of the USB ports on the host computer, as shown in Figure 2.

The operating system automatically detects the USB module and starts the Found New Hardware wizard.

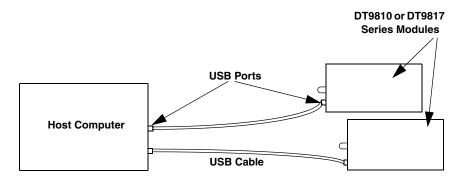


Figure 2: Attaching the Module to the Host Computer

3. For Windows Vista:

- **a.** Click **Locate and install driver software (recommended**). *The popup message "Windows needs your permission to continue" appears.*
- **b.** Click **Continue**. *The Windows Security dialog box appears.*
- **c.** Click **Install this driver software anyway**. *The LED on the module turns green.*

For Windows XP:

a. Click **Next** and/or **Finish** as required in the wizard.

Once the firmware is loaded, the wizard restarts to initiate the firmware to accept commands.

b. Click **Next** and/or **Finish** again. *The LED on the module turns green.*

Note: Windows 7 finds the device automatically.

4. Repeat these steps to attach another module to the host computer, if desired.

Connecting to an Expansion Hub

Expansion hubs are powered by their own external power supply. The practical number of modules that you can connect to a single USB port depends on the throughput you want to achieve.

To connect multiple modules to an expansion hub, do the following:

- 1. Attach one end of the USB cable to the module and the other end of the USB cable to an expansion hub.
- 2. Connect the power supply for the expansion hub to an external power supply.
- **3.** Connect the expansion hub to the USB port on the host computer using another USB cable.

The operating system automatically detects the USB device and starts the Found New Hardware wizard.

- 4. For Windows Vista:
 - **a.** Click **Locate and install driver software (recommended)**. *The popup message "Windows needs your permission to continue" appears.*
 - b. Click Continue.

The Windows Security dialog box appears.

c. Click Install this driver software anyway.

The LED on the module turns green.

For Windows XP:

- **a.** Click **Next** and/or **Finish** as required in the wizard.

 Once the firmware is loaded, the wizard restarts to initiate the firmware to accept commands.
- **b.** Click **Next** and/or **Finish** again. *The LED on the module turns green.*

Note: Windows 7 finds the device automatically.

5. Repeat these steps until you have attached the number of expansion hubs and modules that you require. Refer to Figure 3.

The operating system automatically detects the USB devices as they are installed.

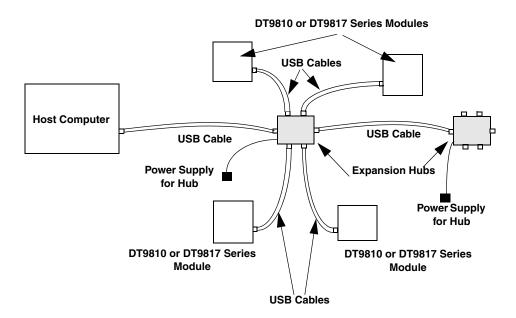
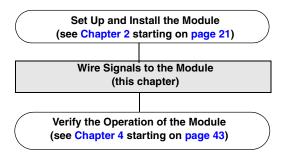


Figure 3: Attaching Multiple Modules Using Expansion Hubs

Changing the Name of a Module (Optional)

To change the name of a module, configure the device driver as follows:


- 1. From the Windows Start menu, select Settings | Control Panel.
- **2.** From the Control Panel, double-click **Open Layers Control Panel**. *The Data Acquisition Control Panel dialog box appears*.
- 3. Click the module that you want to rename, and then click Edit Name.
- **4.** Enter a new name for the module, and then click **OK**. The name is used to identify the module in all subsequent applications.
- **5.** When you are finished configuring the module, click **Close**.
- **6.** Repeat steps 3 to 5 for the other modules that you want to configure.
- 7. Close the Data Acquisition Control Panel dialog box.

Continue with the instructions on wiring in Chapter 3 starting on page 29.

Wiring Signals to the Module

Preparing to Wire Signals	31
Connecting Single-Ended Analog Input Signals	34
Connecting Digital Input Signals	35
Connecting Digital Output Signals	36
Connecting Counter/Timer Signals	38

Preparing to Wire Signals

This section provides recommendations and information about wiring signals to a DT9810, DT9817, DT9817-H, or DT9817-R module.

Wiring Recommendations

Keep the following recommendations in mind when wiring signals to a module:

- Follow standard ESD procedures when wiring signals to the module.
- Use individually shielded twisted-pair wire (size 16 to 26 AWG) in highly noisy electrical environments.
- Separate power and signal lines by using physically different wiring paths or conduits.
- To avoid noise, do not locate the box and cabling next to sources that produce high electromagnetic fields, such as large electric motors, power lines, solenoids, and electric arcs, unless the signals are enclosed in a mumetal shield.
- Prevent electrostatic discharge to the I/O while the box is operational.
- Connect all unused analog input channels to analog ground.

Wiring Locations

You wire signals to the DT9810, DT9817, DT9817-H, or DT9817-R module using the screw terminals on the module. Table 2 lists the screw terminal assignments for the DT9810 module; Table 3 for the DT9817 and DT9817-H modules; Table 4 for the DT9817-R module.

Table 2: DT9810 Screw Terminal Assignments

Screw Terminal	Signal	Screw Terminal	Signal
20	USB +5 V Out	40	Reserved
19	Ground	39	Reserved
18	Counter 0 In	38	Ground
17	Counter 0 Out	37	Digital I/O 15
16	Counter 0 Gate	36	Digital I/O 14
15	Ground	35	Digital I/O 13
14	Digital I/O 19	34	Digital I/O 12
13	Digital I/O 18	33	Digital I/O 11
12	Digital I/O 17	32	Digital I/O 10
11	Digital I/O 16	31	Digital I/O 9
10	2.44 V Reference	30	Digital I/O 8
9	Analog Ground	29	Ground

Table 2: DT9810 Screw Terminal Assignments (cont.)

Screw Terminal	Signal	Screw Terminal	Signal
8	Analog Input CH7	28	Digital I/O 7
7	Analog Input CH6	27	Digital I/O 6
6	Analog Input CH5	26	Digital I/O 5
5	Analog Input CH4	25	Digital I/O 4
4	Analog Input CH3	24	Digital I/O 3
3	Analog Input CH2	23	Digital I/O 2
2	Analog Input CH1	22	Digital I/O 1
1	Analog Input CH0	21	Digital I/O 0

Table 3: DT9817 and DT9817-H Screw Terminal Assignments

Screw Terminal	Signal	Screw Terminal	Signal
20	USB +5 V Out	40	Reserved
19	Ground	39	Reserved
18	Counter 0 In	38	Ground
17	Counter 0 Out	37	Digital I/O 15
16	Counter 0 Gate	36	Digital I/O 14
15	Ground	35	Digital I/O 13
14	Digital I/O 27	34	Digital I/O 12
13	Digital I/O 26	33	Digital I/O 11
12	Digital I/O 25	32	Digital I/O 10
11	Digital I/O 24	31	Digital I/O 9
10	Reserved	30	Digital I/O 8
9	Ground	29	Ground
8	Digital I/O 23	28	Digital I/O 7
7	Digital I/O 22	27	Digital I/O 6
6	Digital I/O 21	26	Digital I/O 5
5	Digital I/O 20	25	Digital I/O 4
4	Digital I/O 19	24	Digital I/O 3

Table 3: DT9817 and DT9817-H Screw Terminal Assignments (cont.)

Screw Terminal	Signal	Screw Terminal	Signal
3	Digital I/O 18	23	Digital I/O 2
2	Digital I/O 17	22	Digital I/O 1
1	Digital I/O 16	21	Digital I/O 0

Table 4: DT9817-R Screw Terminal Assignments

Screw Terminal	Signal	Screw Terminal	Signal
20	+5V Out @ 10mA isolated	40	Reserved
19	Isolated Ground	39	Counter 0 Out
18	Counter 0 In	38	Isolated Ground
17	Counter 0 Gate	37	Reserved
16	Digital In 7 Low	36	Digital Out 7 Low
15	Digital In 7 High	35	Digital Out 7 High
14	Digital In 6 Low	34	Digital Out 6 Low
13	Digital In 6 High	33	Digital Out 6 High
12	Digital In 5 Low	32	Digital Out 5 Low
11	Digital In 5 High	31	Digital Out 5 High
10	Digital In 4 Low	30	Digital Out 4 Low
9	Digital In 4 High	29	Digital Out 4 High
8	Digital In 3 Low	28	Digital Out 3 Low
7	Digital In 3 High	27	Digital Out 3 High
6	Digital In 2 Low	26	Digital Out 2 Low
5	Digital In 2 High	25	Digital Out 2 High
4	Digital In 1 Low	24	Digital Out 1 Low
3	Digital In 1 High	23	Digital Out 1 High
2	Digital In 0 Low	22	Digital Out 0 Low
1	Digital In 0 High	21	Digital Out 0 High

Connecting Single-Ended Analog Input Signals

Note: Skip this section if you are using a DT9817 Series module.

The DT9810 supports 8 single-ended analog input channels. Figure 4 shows how to connect single-ended voltage input signals (channels 0 and 1, in this case) to the screw terminals of a DT9810 module.

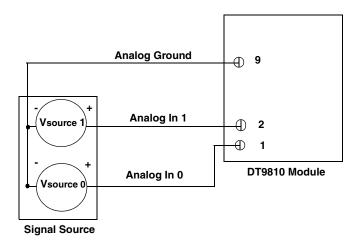
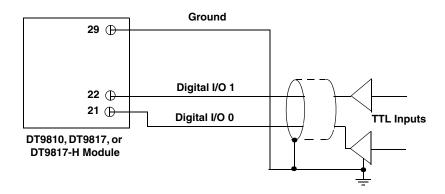
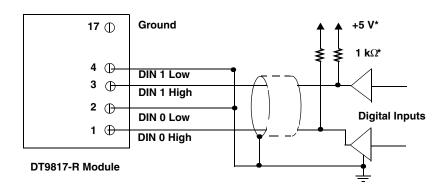



Figure 4: Connecting Single-Ended Inputs

Connecting Digital Input Signals


Figure 5 shows how to connect digital input signals (lines 0 and 1, in this case) to the screw terminals of a DT9810, DT9817, or DT9817-H module.

Note: Ensure that you also configure these lines for input using software.

Figure 5: Connecting Digital Inputs

Figure 6 shows how to connect digital input signals (lines 0 and 1, in this case) to the screw terminals of a DT9817-R module.

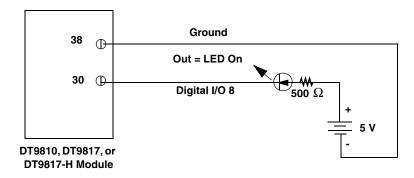

*1 k Ω pull-up to +5 V required for TTL inputs.

Figure 6: Connecting Digital Inputs to a DT9817-R

Connecting Digital Output Signals

Figure 7 shows how to connect digital output signals (line 8, in this case) at the screw terminals of a DT9810, DT9817, or DT9817-H module.

Note: Ensure that you also configure this line for output using software.

Figure 7: Connecting Digital Outputs

DT9817-H High-Drive Applications

For high-drive applications, use the DT9817-H module. Figure 8 shows how to connect DT9817-H digital output signals to sink up to 64 mA. Figure 9 shows how to connect DT9817-H digital outputs to source up to 15 mA.

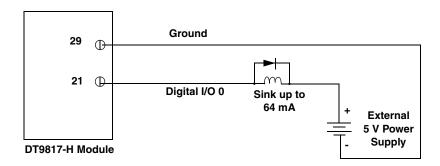


Figure 8: Sinking up to 64 mA with the DT9817-H Module

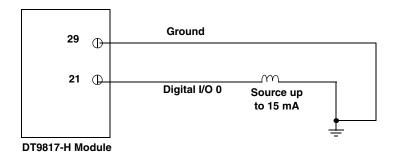


Figure 9: Sourcing up to 15 mA with the DT9817-H Module

DT9817-R

The digital output lines of the DT9817-R instrument act as a solid-state relay. The customer-supplied signal can be ± 30 V at up to 400 mA (peak) AC or DC.

You can use the digital output lines of the DT9817-R temperature instrument to control solid-state or mechanical relays or high-current electric motors. Figure 10 shows how to connect DT9817-R digital output signals to control a motor relay.

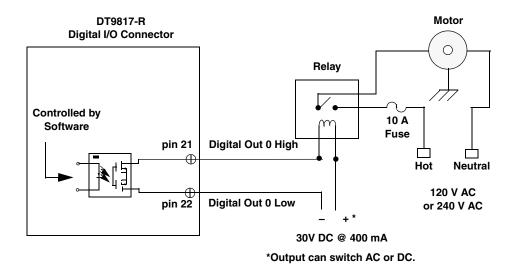


Figure 10: Switching up to 30 V at 400mA with the DT9817-R Module

Connecting Counter/Timer Signals

The DT9810, DT9817, DT9817-H, and DT9817-R modules provide one counter/timer that you can use for the following operations:

- · Event counting
- Frequency measurement
- Edge-to-edge measurement
- Continuous pulse output (rate generation)

This section describes how to connect counter/timer signals for these operation modes. Refer to page 66 for more information about using the counter/timers.

Event Counting

Figure 11 shows how to connect counter/timer signals to the screw terminals on the module to perform an event counting operation using an external gate.

In this example, the counter counts the number of falling edges that occur on the Counter 0 In signal when the Counter 0 Gate signal is in the active state (as specified by software). Refer to page 68 for more information.

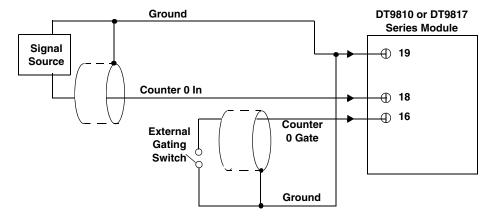


Figure 11: Connecting Counter/Timer Signals for an Event Counting Operation
Using an External Gate

Figure 12 shows how to connect counter/timer signals to the screw terminals on the module to perform an event counting operation without using a gate (also called a software gate). The counter counts the number of falling edges that occur on the Counter 0 In signal.

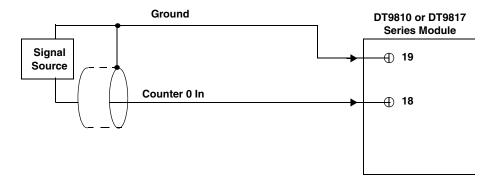


Figure 12: Connecting Counter/Timer Signals for an Event Counting Operation
Without Using a Gate

Frequency Measurement

One way to measure frequency is to connect a pulse of a known duration to the Counter 0 Gate signal, as shown in Figure 13. In this case, the frequency of the Counter 0 In signal is the number of counts divided by the period of the signal connected to the Counter 0 Gate input.

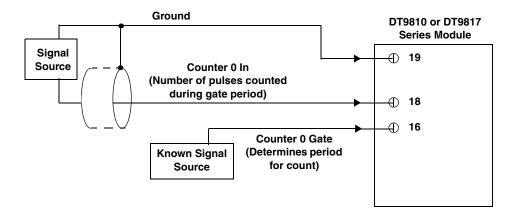


Figure 13: Connecting Counter/Timer Signals for a Frequency Measurement Operation Using an External Pulse

Edge-to-Edge Measurement

Figure 14 shows how to connect counter/timer signals to the module to perform an edge-to-edge measurement operation on one signal sources. The counter measures the number of counts between the start edge (in this case, a rising edge on the Counter 0 Gate signal) and the stop edge (in this case, another rising edge on the Counter 0 Gate signal).

You specify the start edge and the stop edge in software. Refer to page 69 for more information.

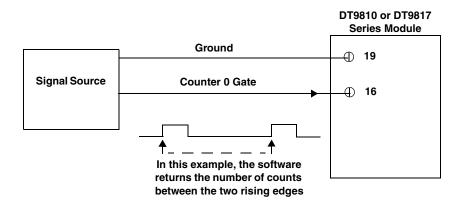


Figure 14: Connecting Counter/Timer Signals for an Edge-to-Edge Measurement Operation

You can use edge-to-edge measurement to measure the following characteristics of a signal:

- Pulse width –The amount of time that a signal pulse is in a high or a low state, or the amount of time between a rising edge and a falling edge or between a falling edge and a rising edge. You can calculate the pulse width as follows:
 - Pulse width = Number of counts/24 MHz
- Period –The time between two occurrences of the same edge (rising edge to rising edge, or falling edge to falling edge). You can calculate the period as follows:
 - Period = 1/Frequency
 - Period = Number of counts/24 MHz
- Frequency –The number of periods per second. You can calculate the frequency as follows:
 - Frequency = 24 MHz/Number of Counts

Rate Generation

Figure 15 shows how to connect counter/timer signals to the screw terminals of a module to perform a rate generation (continuous pulse output) operation; in this example, an external gate is used.

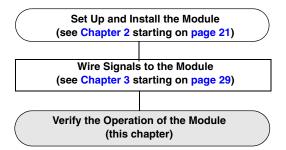



Figure 15: Connecting Counter/Timer Signals for a Rate Generation Operation Using an External Gate

Verifying the Operation of a Module

Running the Quick DataAcq Application	45
Testing Single-Value Analog Input	46
Testing Continuous Analog Input	47
Testing Single-Value Digital Input	48
Testing Single-Value Digital Output	49
Testing Frequency Measurement	50
Testing Pulse Output	51

Running the Quick DataAcq Application

The Quick DataAcq application is installed automatically when you install the driver software.

To run the Quick DataAcq application, do the following:

- 1. If you have not already done so, power up your computer and any attached peripherals.
- 2. Click Start from the Task Bar.
- 3. Browse to Programs | Data Translation, Inc | DT-Open Layers for Win32 | QuickDataAcq.

The main menu appears.

Note: The Quick DataAcq application allows you to verify basic operations on the board; however, it may not support all of the board's features.

For information on each of the features provided, use the online help for the Quick DataAcq application by pressing F1 from any view or selecting the **Help** menu. If the system has trouble finding the help file, navigate to C:\Program Files\Data Translation\Win32\ dtdataacq.hlp, where C: is the letter of your hard disk drive.

Testing Single-Value Analog Input

To verify that the module can read a single analog input value, do the following:

- 1. Connect a voltage source, such as a function generator, to analog input channel 0 (single-ended mode) on the DT9810 module. Refer to page 34 for an example of how to connect a single-ended analog input.
- **2.** In the Quick DataAcq application, choose **Single Analog Input** from the **Acquisition** menu.
- **3.** Select the appropriate DT9810 module from the **Board** list box.
- **4.** In the **Channel** list box, select analog input channel 0.
- **5.** In the **Range** list box, select the range for the channel (0 to 2.44 V).
- 6. Select Single Ended.
- 7. Click **Get** to acquire a single value from analog input channel 0. *The application displays the value on the screen in both text and graphical form.*

Testing Continuous Analog Input

To verify that the module can perform a continuous analog input operation, do the following:

- 1. Connect known voltage sources, such as the outputs of a function generator, to analog input channels 0 and 1 on the DT9810 module (using the single-ended configuration). Refer to page 34 for an example of how to connect a single-ended analog input.
- **2.** In the Quick DataAcq application, choose **Scope** from the **Acquisition** menu.
- **3.** Select the appropriate DT9810 module from the **Board** list box.
- **4.** In the **Sec/Div** list box, select the number of seconds per division (.1 to .00001) for the display.
- 5. In the **Channel** list box, select analog input channel 1, and then click **Add** to add the channel to the channel list.

 Note that, by default, channel 0 is included in the channel list.
- **6.** Click **Config** from the Toolbar.
- 7. In the Config dialog, select ChannelType, and then select Single Ended.
- 8. In the **Config** dialog, select **Range**, and then select **Unipolar**.
- **9.** From the **Scope** view, double-click the input range of the channel to change the input range of the module (0 to 2.44 V).

 The display changes to reflect the selected range for all the analog input channels on the module.
- **10.** In the Trigger box, select **Auto** to acquire data continuously from the specified channels or **Manual** to acquire a burst of data from the specified channels.
- **11.** Click **Start** from the Toolbar to start the continuous analog input operation. *The application displays the values acquired from each channel in a unique color on the oscilloscope view.*
- **12.** Click **Stop** from the Toolbar to stop the operation.

Testing Single-Value Digital Input

To verify that the module can read a single digital input value, do the following:

- 1. Connect a digital input to digital input line 0 of port A on the DT9810 or DT9817 Series module. Refer to page 35 for an example of how to connect a digital input.
- 2. In the Quick DataAcq application, choose **Digital Input** from the **Acquisition** menu.
- 3. Select the appropriate DT9810 or DT9817 Series module from the Board list box.
- **4.** Select digital input port A by clicking **Port A**.
- 5. Click Get.

The application displays the value of each digital input line in port A on the screen in both text and graphical form.

Testing Single-Value Digital Output

To verify that the module can output a single digital output value, do the following:

- 1. Connect a digital output to digital output line 0 of port B on the DT9810 or DT9817 Series module. Refer to page 36 for an example of how to connect a digital output.
- 2. In the Quick DataAcq application, select **Digital Output** from the **Control** menu.
- 3. Select the appropriate DT9810 or DT9817 Series module from the **Board** list box.
- **4.** Select digital output port B by clicking **Port B**.
- 5. Click the appropriate bits to select the type of signal to write from the digital output lines. If the bit is selected, a high-level signal is output from the digital output line; if the bit is not selected, a low-level signal is output from the digital output line. Optionally, you can enter an output value in the **Hex** text box.

6. Click Send.

The application outputs and displays the value of each digital output line of digital port B on the screen in both text and graphical form.

Testing Frequency Measurement

To verify that the module can perform a frequency measurement operation, do the following:

1. Wire an external clock source to counter/timer 0 on the DT9810 or DT9817 Series module. Refer to page 38 for an example of how to connect signals to a counter/timer for a frequency measurement operation.

Note: The Quick DataAcq application works only with counter/timer 0.

- **2.** In the Quick DataAcq application, choose **Frequency Counter** from the **Acquisition** menu.
- 3. Select the appropriate DT9810 or DT9817 module from the **Board** list box.
- **4.** In the **Count Duration** text box, enter the number of seconds during which events will be counted.
- **5.** Click **Start** to start the frequency measurement operation.

 The operation automatically stops after the number of seconds you specified has elapsed, and the application displays the frequency on the screen.

If you want to stop the frequency measurement operation when it is in progress, click Stop.

Testing Pulse Output

To verify that the module can perform a pulse output operation, do the following:

1. Connect a scope to counter/timer 0 on the DT9810 or DT9817 Series module. Refer to page 38 for an example of how to connect a scope (a pulse output) to counter/timer 0.

Note: The Quick DataAcq application works only with counter/timer 0.

- **2.** In the Quick DataAcq application, choose **Pulse Generator** from the **Control** menu.
- 3. Select the appropriate DT9810 or DT9817 Series module from the **Board** list box.
- 4. Select **Continuous** to output a continuous pulse stream.
- **5.** Select **High-to-low** to output a falling-edge pulse (the low portion of the total pulse output period is the active portion of the signal).
- **6.** Click **Start** to generate the pulse(s). *The application displays the results both in text and graphical form.*
- 7. Click **Stop** to stop a continuous pulse output operation.

Part 2: Using Your Module

Principles of Operation

Analog Input Features	5
Digital I/O Features	63
Counter/Timer Features	6

Figure 16 shows a block diagram of the DT9810 module.

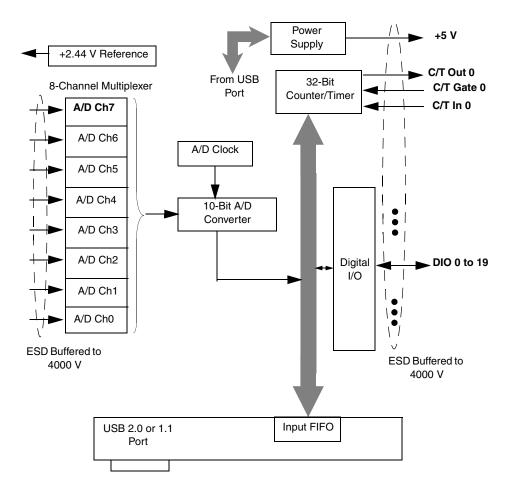


Figure 16: Block Diagram of the DT9810 Module

Power Supply

32-Bit Counter/Timer

C/T Out 0

C/T Gate 0

C/T In 0

Digital I/O

ESD Buffered to 4000 V

Figure 17 shows a block diagram of the DT9817 and DT9817-H modules.

Figure 17: Block Diagram of the DT9817 and DT9817-H Modules

Input FIFO

USB 2.0 or 1.1

Port

Figure 18 shows a block diagram of the DT9817-R module.

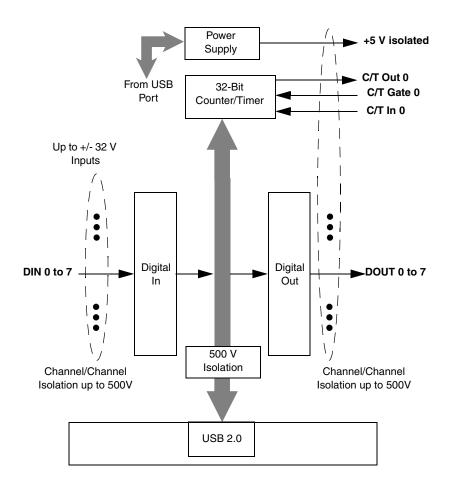


Figure 18: Block Diagram of the DT9817-R Module

Analog Input Features

This section describes the following features of analog input (A/D) operations on the DT9810 module:

Note: Skip this section if you are using a DT9817 Series module.

- Input resolution, described below
- Analog input channels, described on page 59
- Input ranges and gains, described on page 60
- Input sample clock sources, described on page 60
- Analog input conversion modes, described on page 60
- Input triggers, described on page 62
- Data format and transfer, described on page 62
- Error conditions, described on page 62

Input Resolution

The resolution of the A/D subsystem on the DT9810 module is 10-bits. This resolution is fixed; it cannot be programmed in software.

Analog Input Channels

The DT9810 provides eight single-ended analog input channels. You can acquire data from a single analog input channel or from a group of analog input channels on the module.

The following subsections describe how to specify the channels.

Specifying a Single Analog Input Channel

The simplest way to acquire data from a single analog input channel is to specify the channel for a single-value analog input operation using software; refer to page 60 for more information about single-value operations.

You can also specify a single channel using the analog input channel list, described in the next section.

Specifying One or More Analog Input Channels

You can read data from one or more analog input channels using an analog input channel list. You can group the channels in the list sequentially (starting either with 0 or with any other analog input channel) or randomly. You can also specify a single channel or the same channel more than once in the list.

Using software, specify the channels in the order you want to sample them. You can enter up to 16 entries in the channel list. The channels are read in order from the first entry in the list to the last entry in the list. Refer to page 60 for more information about the supported conversion modes.

Note: The rate at which the module can read the analog input channels depends on the total number of analog input channels in the list. The DT9810 module supports a maximum A/D throughput of 25 kSamples/s. Therefore, if you specify two analog input channels in the channel list, the maximum sampling rate is 12.5 kSamples/s for each channel. Likewise, if you specify 16 analog input channels in the channel list, the maximum sampling rate is 1.5625 kSamples/s for each channel.

Input Ranges and Gains

The DT9810 provides a fixed input range of 0 to 2.44 V. Use software to specify the range as 0 to 2.44 V, and specify a gain of 1 for each entry in the channel list.

Note: This is the range for the entire analog input subsystem, not the range per channel.

Input Sample Clock Sources

You can pace an analog input operation on a DT9810 module using a software clock source. Using software, specify the clock source as internal, then specify the clock frequency at which to pace the operation. The DT9810 supports an A/D clock frequency of 30 Hz to 25 MHz.

According to sampling theory (Nyquist Theorem), specify a frequency that is at least twice as fast as the input's highest frequency component. For example, to accurately sample a 2 kHz signal, specify a sampling frequency of at least 4 kHz. Doing so avoids an error condition called *aliasing*, in which high frequency input components erroneously appear as lower frequencies after sampling.

Analog Input Conversion Modes

The DT9810 supports the following conversion modes:

- Single-value operations
- Continuous scan operations

The following subsections describes the conversion modes in more detail.

Single-Value Operations

Single-value operations are the simplest to use. Using software, you specify the range, gain, and analog input channel. The module acquires the data from the specified channel and returns the data immediately. For a single-value operation, you cannot specify a clock source, trigger source, scan mode, or buffer.

Single-value operations stop automatically when finished; you cannot stop a single-value operation.

Continuous Scan Mode

Use continuous scan mode if you want to accurately control the period between conversions of individual channels in a channel list.

When it receives a software trigger, the module cycles through the channel list, acquiring and converting the data for each entry in the list (this process is defined as the scan). The module then wraps to the start of the channel list and repeats the process continuously until either the allocated buffers are filled or until you stop the operation. Refer to page 62 for more information about buffers.

The conversion rate is determined by the frequency of the internal sample clock; refer to page 60 for more information about the internal sample clock. The sample rate, which is the rate at which a single entry in the channel list is sampled, is determined by the frequency of the input sample clock divided by the number of entries in the channel list.

To select continuous scan mode, use software to specify the data flow as Continuous.

Figure 19 illustrates continuous scan mode using a channel list with three entries: channel 0, channel 1, and channel 2. In this example, analog input data is acquired on each clock pulse of the input sample clock. When it reaches the end of the channel list, the module wraps to the beginning of the channel list and repeats this process. Data is acquired continuously.

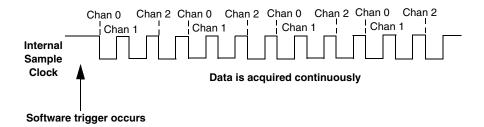


Figure 19: Continuous Scan Mode

Input Triggers

The DT9810 supports a software trigger for starting an analog input operation. When the computer issues a write to the DT9810 module, data acquisition begins. Acquisition stops when either all the buffers on the queue have been filled, or when you stop the operation. Note that when you stop the operation, the module finishes filling the current buffer.

Using software, specify the trigger source as a software trigger.

Data Format and Transfer

DT9810 modules use binary data encoding, where 0h represents 0 and 400h represents 2.44 V. Use software to specify the data encoding as binary. The ADC outputs 400h for above-range signals, and 0 for below-range signals.

Before you begin acquiring data, you must allocate buffers to hold the data. A buffer done event is returned whenever a buffer is filled. This allows you to move and/or process the data as needed.

We recommend that you allocate a minimum of two buffers for a continuous analog input operation. Data is written to multiple allocated input buffers continuously; when no more empty buffers are available, the operation stops. The data is gap-free.

Error Conditions

An overrun condition is reported if the A/D sample clock rate is too fast. This error is reported if a new A/D sample clock pulse occurs while the ADC is busy performing a conversion from the previous A/D sample clock pulse. The host computer can clear this error. To avoid this error, use a slower sampling rate.

Digital I/O Features

The DT9810, DT9817, DT9817-H, and DT9817-R modules provide a number of digital I/O lines that you can use to control external equipment. The DT9810 and DT9817 can source 4.5 mA and sink 10 mA.

The DT9817-H is a high-drive version of the DT9817, and can source 15 mA and sink 64 mA. The DT9817-R is a high-performance relay version of the DT9817, and can switch up to 30 V at 400 mA.

This section describes the following digital I/O features of the DT9810, DT9817, DT9817-H, and DT9817-R modules:

- Digital I/O lines, described below
- Resolution, described on page 64
- Operation modes, described on page 65

Digital I/O Lines

The number of digital I/O lines that are available depends on the module you are using, as shown in Table 5.

Module	Digital I/O Lines			
DT9810	20 programmable I/O lines			
DT9817 and DT9817-H	28 programmable I/O lines			
DT9817-R	8 DIN / 8 DOUT lines			

Table 5: Number of Digital I/O Lines

The DT9817-R module features eight dedicated digital input lines and eight dedicated digital output lines. This module includes channel-to-channel isolation of up to 500 V (250 V between digital input channels that are paired in an opto-isolator, such as 0 and 1, 2 and 3, etc.).

On the DT9810, DT9817, and DT9817-H modules, you can configure the number of lines per port by specifying the resolution, as described in the next section.

Using software, you can specify the digital I/O line that you want to read or write in a single-value digital I/O operation. Refer to page 65 for more information about single-value operations.

A digital line is high if its value is 1; a digital line is low if its value is 0. On the DT9817-R module, the digital output lines resemble a relay (switch); the switch is closed if the digital output bit is 1, and the switch is open if the digital output bit is 0.

On power up or reset of a DT9810, DT9817, or DT9817-H module, a low value (0) is output from each of the digital output lines. The DT9817-R module outputs a signal only if some voltage is connected to one side of the output.

Resolution

The DT9810 provides 20 digital lines that are shared by the DIN and DOUT subsystems. By default, these lines are organized as two 8-bit ports (elements 0 and 1) and one 4-bit port (element 2). By configuring the resolution of each element in software, you can combine all the digital lines into one or two ports, if you wish. Table 6 shows the effect of resolution on the DIN and DOUT subsystems for the DT9810.

Table 6: DT9810 Digital I/O Lines and Resolution Settings

Configurations	Resolution	Digital I/O Lines	DIN or DOUT Subsystem	
Three Separate Digital Ports	8	Port 0 (lines 0 to 7)	Element 0	
(Default Configuration)	8	Port 1 (lines 0 to 7)	Element 1	
	4	Port 2 (lines 0 to 3)	Element 2	
All Digital Lines in One Port	20	Ports 0, 1, and 2 combined (lines 0 to 19)	Element 0	
All Digital Lines in Two Ports	16	Ports 0 and 1 combined (lines 0 to 15)	Element 0	
	4	Port 2 (lines 0 to 3)	Element 2	
All Digital Lines in Two Ports	8	Port 0 (lines 0 to 7)	Element 0	
	12	Ports 1 and 2 combined (lines 0 to 11)	Element 1	

The DT9817 and DT9817-H provide 28 shared digital I/O lines. By default, these lines are organized as three 8-bit ports (elements 0, 1, and 2) and one 4-bit port (element 3). By configuring the resolution of each element in software, you can combine all the digital lines into one, two, or three ports, if you wish. Table 7 shows the effect of resolution on the DIN and DOUT subsystems for the DT9817 and DT9817-H modules.

Table 7: DT9817 and DT9817-H Digital I/O Lines and Resolution Settings

Configurations	Resolution	Digital I/O Lines	DIN or DOUT Subsystem	
Four Separate Digital Ports (Default Configuration)	8	Port 0 (lines 0 to 7)	Element 0	
	8	Port 1 (lines 0 to 7)	Element 1	
	8	Port 2 (lines 0 to 7)	Element 2	
	4	Port 3 (lines 0 to 3)	Element 3	
All Digital Lines in One Port	28	Ports 0, 1, 2, and 3 combined (lines 0 to 27)	Element 0	

Table 7: DT9817 and DT9817-H Digital I/O Lines and Resolution Settings (cont.)

Configurations	Resolution	Digital I/O Lines	DIN or DOUT Subsystem		
All Digital Lines in Two Ports	24	Ports 0, 1, and 2 combined (lines 0 to 23)	Element 0		
	4	4 Port 3 (lines 0 to 3)			
All Digital Lines in Two Ports	8	Port 0 (lines 0 to 7)	Element 0		
	20	Ports 1, 2, and 3 combined (lines 0 to 19)	Element 1		
All Digital Lines in Three Ports	16	Ports 0 and 1 combined (lines 0 to 15)	Element 0		
	8	Port 2 (lines 0 to 7)	Element 2		
	4	Port 3 (lines 0 to 3)	Element 3		
All Digital Lines in Three	8	Port 0 (lines 0 to 7)	Element 0		
Ports	16	Ports 1 and 2 combined (lines 0 to 15)	Element 1		
	4	Port 3 (lines 0 to 3)	Element 3		

The DT9817-R provides a resolution of 8 for the digital input port to accommodate the 8 digital input lines and a resolution of 8 for the digital output port to accommodate the 8 digital output lines. These lines are organized as isolated, dedicated ports with 8 bits each. Each line has two inputs or outputs respectively for AC or DC operation. You cannot configure port resolution through software.

Operation Modes

The modules support single-value digital I/O operations only. For a single-value operation, use software to specify the digital I/O port (the gain is ignored). The module then reads data from or writes data to the digital lines associated with that port (determined by the resolution setting).

Single-value operations stop automatically when finished; you cannot stop a single-value operation.

Counter/Timer Features

This section describes the following features of counter/timer (C/T) operations on the DT9810, DT9817, DT9817-H, and DT9817-R modules:

- C/T channel, described below
- C/T clock sources, described on page 66
- Gate types, described on page 67
- Pulse types and duty cycles, described on page 67
- C/T operation modes, described on page 68

C/T Channel

The modules provide one 32-bit counter/timer. The counter accepts a clock input signal and gate input signal and outputs a pulse (pulse output signal), as shown in Figure 20.

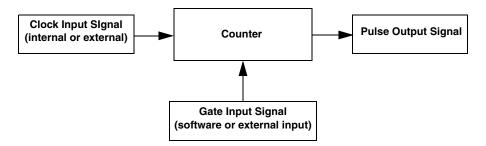


Figure 20: Counter/Timer Channel

C/T Clock Sources

The following clock sources are available for the counter/timers:

- Internal clock Through software, specify the clock source as internal, and specify the
 frequency at which to pace the counter/timer operation. The frequency of the internal
 C/T clock can range from 4 Hz to 2.5 kHz (DT9817-R) or 4 Hz to 12 MHz (all other
 modules).
- External clock An external clock is useful when you want to pace counter/timer
 operations at rates not available with the internal clock or if you want to pace at uneven
 intervals.

Connect an external clock with a maximum recommended frequency of 6 MHz to the Counter 0 In signal on the module. Using software, specify the C/T clock source as external, and specify a clock divider between 9600 and 130050 (DT9817-R) or between 2 and 130050 (all other modules) to determine the actual frequency at which to pace the counter/timer operation. For example, if you connect a 6 MHz external C/T clock and use a clock divider of 2, the resulting C/T output frequency is 3 MHz. Counter/timer operations start on the falling edge of the Counter 0 In signal.

Gate Types

The edge or level of the Counter 0 Gate signal determines when a counter/timer operation is enabled. Using software, you can specify one of the following gate types:

- None A software command enables any counter/timer operation immediately after execution.
- Logic-low level external gate input Enables a counter/timer operation when Counter 0 Gate signal is low, and disables the counter/timer operation when the Counter 0 Gate signal is high. Note that this gate type is used for event counting and rate generation modes; refer to page 68 for more information about these modes.
- Logic-high level external gate input Enables a counter/timer operation when Counter 0 Gate is high, and disables a counter/timer operation when Counter 0 Gate is low. Note that this gate type is used for event counting and rate generation modes; refer to page 68 for more information about these modes.
- Falling-edge external gate input Enables a counter/timer operation when a high-to-low transition is detected on the Counter 0 Gate signal. In software, this is called a low-edge gate type. Note that this gate type is used for edge-to-edge measurement mode; refer to page 69 for more information about these modes.
- **Rising-edge external gate input** Enables a counter/timer operation when a low-to-high transition is detected on the Counter 0 Gate signal. In software, this is called a high-edge gate type. Note that this gate type is used for edge-to-edge measurement mode; refer to page 69 for more information about these modes.

Pulse Duty Cycles

Counter/timer output signals from the modules are high-to-low going signals. The low portion of the total pulse output period is the active portion of the counter/timer clock output signal.

The duty cycle (or pulse width) indicates the percentage of the total pulse output period that is active. In rate generation mode, the duty cycle is fixed at 50% for the modules. Figure 21 illustrates a high-to-low going output pulse with a duty cycle of 50%.

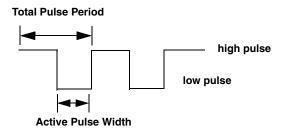


Figure 21: Example of a Pulse Output Signal with a 50% Duty Cycle (High-to-Low Going)

Counter/Timer Operation Modes

The modules support the following counter/timer operation modes:

- Event counting
- Frequency measurement
- Edge-to-edge measurement
- Rate generation

Event Counting

Use event counting mode if you want to count the number of falling edges that occur on Counter 0 In when the gate is active (low-level or high-level). Refer to page 67 for information about specifying the active gate type.

You can count a maximum of 4,294,967,296 events before the counter rolls over to 0 and starts counting again.

For event counting operations, use software to specify the counter/timer mode as count, the C/T clock source as external, and the active gate type as low-level or high-level.

Make sure that the signals are wired appropriately. Refer to Chapter 3 for an example of connecting an event counting application.

Frequency Measurement

Connect a pulse of a known duration to the Counter 0 Gate signal. Specify the active gate in software (high level). When the operation starts, read the number of counts that occurred when the gate was active.

You can determine the frequency of the clock input signal using the following equation:

Frequency Measurement = <u>Number of Events</u> Measurement Period

Make sure that the signals are wired appropriately. Refer to page 39 for an example of connecting a frequency measurement application.

Edge-to-Edge Measurement

Use edge-to-edge measurement mode if you want to measure the time interval between a specified start edge and a specified stop edge.

The start edge can occur on the rising edge or the falling edge of the Counter 0 Gate signal, and the stop edge can occur on the rising edge or the falling edge of the Counter 0 Gate signal. When the start edge is detected, the counter/timer starts incrementing and continues incrementing until the stop edge is detected. The C/T then stops incrementing until it is enabled to start another measurement. When the operation is complete, you can read the value of the counter. You can count a maximum of 4,294,967,296 events before the counter rolls over to 0 and starts counting again.

You can use edge-to-edge measurement to measure the following characteristics of a signal:

- Pulse width –The amount of time that a signal pulse is in a high or a low state, or the amount of time between a rising edge and a falling edge or between a falling edge and a rising edge. You can calculate the pulse width as follows:
 - Pulse width = Number of counts/24 MHz
- Period –The time between two occurrences of the same edge (rising edge to rising edge, or falling edge to falling edge). You can calculate the period as follows:
 - Period = 1/Frequency
 - Period = Number of counts/24 MHz
- Frequency –The number of periods per second. You can calculate the frequency as follows:
 - Frequency = 24 MHz/Number of Counts

Using software, specify the counter/timer mode as measure, the C/T clock source as internal, the start edge as rising or falling gate, and the stop edge as rising or falling gate.

Make sure that the signals are wired appropriately. Refer to page 40 for an example of connecting an edge-to-edge measurement application.

Rate Generation

Use rate generation mode to generate a continuous pulse output signal from Counter 0 Out; this mode is sometimes referred to as continuous pulse output or pulse train output.

The pulse output operation is enabled whenever the Counter 0 Gate signal is active (high level, low level, or software gate). While the pulse output operation is enabled, the counter outputs a high-to-low going pulse with a pulse width of 50% continuously. As soon as the operation is disabled, rate generation stops.

The frequency of the output is determined by the C/T clock source (either internal or external) and the clock divider used. You can generate an output signal from Counter 0 Out with a frequency of 4 Hz to 2.5 kHz (DT9817-R) or 4 Hz to 12 MHz (all other modules).

To specify rate generation mode, use software to specify the counter/timer mode as rate, the C/T clock source as either internal or external, the clock divider (9600 to 130050 (DT9817-R) or 2 to 130050 (all other modules)), and the active gate type (low-level, high-level, or software gate). Refer to page 67 for more information about gate types.

Make sure that the signals are wired appropriately. Refer to page 41 for an example of connecting a rate generation application.

Supported Device Driver Capabilities

Data Flow and Operation Options
Buffering
Triggered Scan Mode
Gain
Channels
Ranges
Resolution
Thermocouple and RTD Support
IEPE Support
Triggers
Clocks
Counter/Timers 79

The DT9810 and DT9817 Series Device Driver provides support for the analog input (A/D), digital input (DIN), digital output (DOUT), and counter/timer (C/T) subsystems. For information on how to configure the device driver, refer to page 27.

Table 8: DT9810 and DT9817 Series Subsystems

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Total Subsystems on Module	1 ^a	0	1 to 4 ^b	1 to 4 ^b	1	0

- a. The A/D subsystem is supported only on the DT9810.
- b. The DIN and the DOUT subsystems share the same digital I/O lines on all modules except the DT9817-R. On the DT9810, 20 digital I/O lines are available (0 to 20) in 3 elements. On the DT9817 and DT9817-H, 28 digital I/O lines are available (0 to 27) in 4 elements. On the DT9817-R, 8 DIN lines and 8 DOUT lines are available as a single subsystem each.

The tables in this chapter summarize the features available for use with the DT-Open Layers for .NET Class Library and the DT9810 and DT9817 Series modules. The DT-Open Layers for .NET Class Library provides properties that return support information for specified subsystem capabilities.

The first row in each table lists the subsystem types. The first column in each table lists all possible subsystem capabilities. A description of each capability is followed by the property used to describe that capability in the DT-Open Layers for .NET Class Library.

Note: Blank fields represent unsupported options.

For more information, refer to the description of these properties in the DT-Open Layers for .NET Class Library online help or *DT-Open Layers for .NET Class Library User's Manual*.

Data Flow and Operation Options

Table 9: DT9810 and DT9817 Series Data Flow and Operation Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Single-Value Operation Support SupportsSingleValue	Yes ^a		Yes	Yes	Yes	
Simultaneous Single-Value Output Operations SupportsSetSingleValues						
Continuous Operation Support SupportsContinuous	Yes ^a				Yes	
Continuous Operation until Trigger SupportsContinuousPreTrigger						
Continuous Operation before & after Trigger SupportsContinuousPrePostTrigger						
Waveform Operations Using FIFO Only SupportsWaveformModeOnly						
Simultaneous Start List Support SupportsSimultaneousStart						
Supports Programmable Synchronization Modes SupportsSynchronization						
Synchronization Modes SynchronizationMode						
Interrupt Support SupportsInterruptOnChange						
Output FIFO Size FifoSize						
Auto-Calibrate Support SupportsAutoCalibrate						

a. The $\ensuremath{\mathrm{A}/\mathrm{D}}$ subsystem is supported only on the DT9810.

Buffering

Table 10: DT9810 and DT9817 Series Buffering Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Buffer Support SupportsBuffering	Yes					
Single Buffer Wrap Mode Support SupportsWrapSingle						
Inprocess Buffer Flush Support SupportsInProcessFlush	Yes					

Triggered Scan Mode

Table 11: DT9810 and DT9817 Series Triggered Scan Mode Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Triggered Scan Support SupportsTriggeredScan						
Maximum Number of CGL Scans per Trigger MaxMultiScanCount	1	0	0	0	0	
Maximum Retrigger Frequency MaxRetriggerFreq	0	0	0	0	0	
Minimum Retrigger Frequency MinRetriggerFreq	0	0	0	0	0	

Data Encoding

Table 12: DT9810 and DT9817 Series Data Encoding Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Binary Encoding Support SupportsBinaryEncoding	Yes					
Twos Complement Support SupportsTwosCompEncoding						
Returns Floating-Point Values ReturnsFloats						

Channels

Table 13: DT9810 and DT9817 Series Channel Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Number of Channels NumberOfChannels	8 ^a	0	1	1	1	0
SE Support SupportsSingleEnded	Yes					
SE Channels MaxSingleEndedChannels	8	0	0	0	0	0
DI Support SupportsDifferential			Yes	Yes	Yes	
DI Channels MaxDifferentialChannels	0	0	1	1	1	0
Maximum Channel-Gain List Depth CGLDepth	16 ^b	0	0	0	0	0
Simultaneous Sample-and-Hold Support SupportsSimultaneousSampleHold						
Channel-List Inhibit SupportsChannelListInhibit						

a. The DT9810 provides analog input channels 0 to 7. b. Supported only on the DT9810.

Gain

Table 14: DT9810 and DT9817 Series Gain Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Programmable Gain Support SupportsProgrammableGain						
Number of Gains NumberOfSupportedGains	1	0	1	1	0	0
Gains Available SupportedGains	1					

Ranges

Table 15: DT9810 and DT9817 Series Range Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Number of Voltage Ranges NumberOfRanges	1	0	0	0	0	0
Available Ranges SupportedVoltageRanges	0 to 2.44 V					
Current Output Support SupportsCurrentOutput						

Resolution

Table 16: DT9810 and DT9817 Series Resolution Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Software Programmable Resolution SupportsSoftwareResolution			Yes ^a	Yes ^a		
Number of Resolutions NumberOfResolutions	1	0	4, 5 or 1 ^b	4, 5, or 1 ^b	1	0
Available Resolutions SupportedResolutions	10		See notes b and c below	See notes b and c below	32	

a. Not supported on the DT9817-R module.

On the DT9817 and DT9817-H, the DIN and DOUT subsystems (elements 0, 1, 2, and 3) are configured as three 8-bit ports and one 4-bit port, by default. If you want to combine all the digital lines into one port, you can configure the resolution of element 0 for 28-bits. If you want to combine all the digital lines into two ports, you have two choices: configure element 0 for 24-bit resolution and element 3 for 4-bit resolution (elements 1 and 2 would not be used), or configure element 0 for 8-bit resolution and element 1 for 20-bit resolution (elements 2 and 3 would not be used). If you want to combine all the digital lines into three ports, you have two choices: configure element 0 for 16-bit resolution, element 2 for 8-bit resolution, and element 3 for 4-bit resolution (element 1 would not be used), or configure element 0 for 8-bit resolution, element 1 for 16-bit resolution, and element 2 would not be used).

On the DT9817-R, the DIN and DOUT subsystems are configured as separate, dedicated 8-bit ports for DIN and DOUT respectively.

b. On the DT9810, the DIN and DOUT subsystems (elements 0, 1, and 2) are configured as two 8-bit ports and one 4-bit port, by default. If you want to combine all the digital lines into one port, you can configure the resolution of element 0 for 20-bits. If you want to combine all the digital lines into two ports, you have two choices: configure element 0 for 8-bit resolution and element 1 for 12-bit resolution (element 2 would not be used), or configure element 0 for 16-bit resolution and element 2 for 4-bit resolution (element 1 would not be used).

Thermocouple and RTD Support

Table 17: DT9810 and DT9817 Series Thermocouple and RTD Support Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Thermocouple Support SupportsThernocouple						
RTD Support SupportsRTD						
Resistance Support ReturnsOhms						
Voltage Converted to Temperature in Hardware SupportsTemperatureDataInStream						
Supported Thermocouple Types ThermocoupleType						
Supported RTD Types RTDType						
Supports CJC Source Internally in Hardware SupportsCjcSourceInternal						
Supports CJC Channel SupportsCjcSourceChannel						
Available CJC Channels CjcChannel						
Supports Interleaved CJC Values in Data Stream SupportsInterleavedCjcTemperaturesInStream						
Supports Programmable Filters SupportsTemperatureFilters						
Programmable Filter Types TemperatureFilterType						

IEPE Support

Table 18: DT9810 and DT9817 Series IEPE Support Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Software Programmable AC Coupling SupportsACCoupling						
Software Programmable DC Coupling SupportsDCCoupling						
Software Programmable External Excitation Current Source SupportsExternalExcitationCurrentSrc						
Software Programmable Internal Excitation Current Source SupportsInternalExcitationCurrentSrc						
Available Excitation Current Source Values SupportedExcitationCurrentValues						

Triggers

Table 19: DT9810 and DT9817 Series Trigger Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Software Trigger Support SupportsSoftwareTrigger	Yes				Yes	
External Positive TTL Trigger Support SupportsPosExternalTTLTrigger					Yes	
External Negative TTL Trigger Support SupportsNegExternalTTLTrigger						
External Positive TTL Trigger Support for Single-Value Operations SupportsSvPosExternalTTLTrigger						
External Negative TTL Trigger Support for Single-Value Operations SupportsSvNegExternalTTLTrigger						
Positive Threshold Trigger Support SupportsPosThresholdTrigger						
Negative Threshold Trigger Support SupportsNegThresholdTrigger						
Digital Event Trigger Support SupportsDigitalEventTrigger						

Clocks

Table 20: DT9810 and DT9817 Series Clock Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	С/Т	QUAD
Internal Clock Support SupportsInternalClock	Yes				Yes	
External Clock Support SupportsExternalClock					Yes	
Simultaneous Input/Output on a Single Clock Signal SupportsSimultaneousClocking						
Base Clock Frequency BaseClockFrequency	24 MHz		0	0	24 MHz	
Maximum Clock Divider MaxExtClockDivider	1	1	1	1	130050	
Minimum Clock Divider MinExtClockDivider	1		1	1	2 or 9600 ^a	
Maximum Frequency MaxFrequency	25 kHz	0	0	0	12 MHz or 2.5 kHz ^b	
Minimum Frequency MinFrequency	30 Hz		0	0	4 Hz	

a. The DT9817-R value is 9600; for all other modules the value is 2. $\,$

b. The DT9817-R value is 2.5 kHz; for all other modules the value is 12 MHz.

Counter/Timers

Table 21: DT9810 and DT9817 Series Counter/Timer Options

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Cascading Support SupportsCascading						
Event Count Mode Support SupportsCount					Yes	
Generate Rate Mode Support SupportsRateGenerate					Yes	
One-Shot Mode Support SupportsOneShot						
Repetitive One-Shot Mode Support SupportsOneShotRepeat						
Up/Down Counting Mode Support SupportsUpDown						
Edge-to-Edge Measurement Mode Support SupportsMeasure					Yes	
Continuous Edge-to-Edge Measurement Mode Support SupportsContinuousMeasure						
High to Low Output Pulse Support SupportsHighToLowPulse					Yes	
Low to High Output Pulse Support SupportsLowToHighPulse						
Variable Pulse Width Support SupportsVariablePulseWidth					No ^a	
None (internal) Gate Type Support SupportsGateNone					Yes	
High Level Gate Type Support SupportsGateHighLevel					Yes	
Low Level Gate Type Support SupportsGateLowLevel					Yes	
High Edge Gate Type Support SupportsGateHighEdge					Yes	
Low Edge Gate Type Support SupportsGateLowEdge					Yes	
Level Change Gate Type Support SupportsGateLevel						
Clock-Falling Edge Type SupportsClockFalling						
Clock-Rising Edge Type SupportsClockRising						
Gate-Falling Edge Type SupportsGateFalling					Yes ^b	

Table 21: DT9810 and DT9817 Series Counter/Timer Options (cont.)

DT9810 and DT9817 Series	A/D	D/A	DIN	DOUT	C/T	QUAD
Gate-Rising Edge Type SupportsGateRising					Yes ^b	
Interrupt-Driven Operations SupportsInterrupt					Yes	

a. The pulse width (duty cycle) if fixed at 50% when rate generation mode is used.

b. Edge-to-edge measurement is supported on the gate signal only; both rising and falling edges are supported.

Troubleshooting

General Checklist	82
Technical Support	84
If Your Module Needs Factory Service	85

General Checklist

Should you experience problems using a DT9810, DT9817, DT9817-H, or DT9817-R module, do the following:

- Read all the documentation provided for your product. Make sure that you have added any "Read This First" information to your manual and that you have used this information.
- **2.** Check the OMNI CD for any README files and ensure that you have used the latest installation and configuration information available.
- **3.** Check that your system meets the requirements stated in the README file on the OMNI CD.
- 4. Check that you have installed your hardware properly using the instructions in Chapter 2.
- **5.** Check that you have configured the device driver properly using the instructions in Chapter 2.
- **6.** Check that you have wired your signals properly using the instructions in Chapter 3.
- 7. Search the DT Knowledgebase in the Support section of the Data Translation web site (at www.datatranslation.com) for an answer to your problem.

If you still experience problems, try using the information in Table 22 to isolate and solve the problem. If you cannot identify the problem, refer to page 84.

Table 22: Troubleshooting Problems

Symptom	Possible Cause	Possible Solution
Module is not recognized	You plugged the module into your computer before installing the device driver.	From the Control Panel > System > Hardware > Device Manager, uninstall any unknown devices (showing a yellow question mark). Then, run the setup program on your OMNI CD to install the USB device drivers, and reconnect your USB module to the computer.
Module does not respond.	The module configuration is incorrect.	Check the configuration of your device driver; see the instructions in Chapter 2.
	The module is damaged.	Contact Data Translation for technical support; refer to page 84.
Intermittent operation.	Loose connections or vibrations exist.	Check your wiring and tighten any loose connections or cushion vibration sources; see the instructions in Chapter 3.
	The module is overheating.	Check environmental and ambient temperature; consult the module's specifications on page 92 of this manual and the documentation provided by your computer manufacturer for more information.
	Electrical noise exists.	Check your wiring and either provide better shielding or reroute unshielded wiring; see the instructions in Chapter 3.

Table 22: Troubleshooting Problems (cont.)

Symptom	Possible Cause	Possible Solution
Device failure error reported.	The module cannot communicate with the Microsoft bus driver or a problem with the bus driver exists.	Check your cabling and wiring and tighten any loose connections; see the instructions in Chapter 3.
	The module was removed while an operation was being performed.	Ensure that your module is properly connected; see the instructions in Chapter 2.
Data appears to be invalid.	An open connection exists.	Check your wiring and fix any open connections; see the instructions in Chapter 3.
	A transducer is not connected to the channel being read.	Check the transducer connections; see the instructions in Chapter 3.
	The transducer is set up for differential inputs.	Check your wiring and ensure that your transducer is set up for single-ended inputs (required by the DT9810 module); see the instructions in Chapter 3.
	The DT9810 module is out of calibration.	The DT9810 module is calibrated at the factory and should not require recalibration. If you want to readjust the calibration of the analog input or analog output circuitry, refer to the instructions on the Data Translation web site (www.datatranslation.com).
Computer does not boot.	The power supply of the computer is too small to handle all the system resources.	Check the power requirements of your system resources and, if needed, get a larger power supply; consult the module's specifications on page 92 of this manual.
USB 2.0 is not recognized.	Your operating system does not have the appropriate Service Pack installed.	Ensure that you load the appropriate Windows Service Pack (version 2 for Windows XP). If you are unsure of whether you are using USB 2.0 or USB 1.1, run the Open Layers Control Panel applet, described in Chapter 2.
	Standby mode is enabled on your PC.	For some PCs, you may need to disable standby mode on your system for proper USB 2.0 operation. Consult Microsoft for more information.

Technical Support

If you have difficulty using a DT9810, DT9817, DT9817-H, or DT9817-R module, Data Translation's Technical Support Department is available to provide technical assistance.

To request technical support, go to our web site at http://www.datatranslation.com and click on the Support link.

When requesting technical support, be prepared to provide the following information:

- Your product serial number
- The hardware/software product you need help on
- The version of the OMNI CD you are using
- Your contract number, if applicable

If you are located outside the USA, contact your local distributor; see our web site (www.datatranslation.com) for the name and telephone number of your nearest distributor.

If Your Module Needs Factory Service

If your module must be returned to Data Translation, do the following:

1. Record the module's serial number, and then contact the Customer Service Department at (508) 481-3700, ext. 1323 (if you are in the USA) and obtain a Return Material Authorization (RMA).

If you are located outside the USA, call your local distributor for authorization and shipping instructions. The name and telephone number of your nearest distributor are listed on our web site (www.datatranslation.com). All return shipments to Data Translation must be marked with the correct RMA number to ensure proper processing.

- **2.** Using the original packing materials, if available, package the module as follows:
 - Wrap the module in an electrically conductive plastic material. Handle with ground protection. A static discharge can destroy components on the module.
 - Place in a secure shipping container.
- **3.** Return the module to the following address, making sure the RMA number is visible on the outside of the box.

Customer Service Dept. Data Translation, Inc. 100 Locke Drive Marlboro, MA 01752-1192

Specifications

Analog Input Specifications	. 88
Digital I/O Specifications	. 89
Counter/Timer Specifications	91
Power, Physical, and Environmental Specifications	92
Regulatory Specifications	93

Analog Input Specifications

Table 23 lists the specifications for the A/D subsystem on the DT9810 module.

Table 23: A/D Subsystem Specifications

Feature	DT9810 Specifications
Number of analog input channels	8 single-ended
Number of gains	-
Resolution	10-bit
Data encoding	binary
System accuracy, to % of FSR (gain = 1) (Averaged over 50 readings)	0.1%
Range	0 to 2.44 V
Nonlinearity	0.1%
Differential nonlinearity	±1/2 LSB
Inherent quantizing error	1 LSB
Drift Zero: Gain:	±20 μV ±50 ppm
Differential linearity:	monotonic
Input impedance ^a Off channel: On channel:	10 MΩ, 10 pf 10 MΩ, 100 pf
Input bias current	±10 nA
Maximum input voltage (without damage) Power on: Power off:	±35 V ±20 V
A/D conversion time	40 μs
Channel acquisition time (±½ LSB)	40 μs
Sample-and-hold Aperture uncertainty: Aperture delay:	2 ns 200 ns
Throughput	25 kHz
ESD protection (per spec) Arc: Contact:	8 kV 4 kV
Reference	2.44 V
Monotonicity	Yes

a. Very high input impedance minimizes any source error.

Digital I/O Specifications

Table 24 lists the specifications for the digital input (DIN) and digital output (DOUT) subsystems on the DT9810, DT9817, and DT9817-H modules.

Table 24: DIN/DOUT Subsystem Specifications

Feature	DT9810	DT9817	DT9817-H
Number of digital I/O lines	20	28	28
Number of ports	2, 8-bit & 1, 4-bit	3, 8-bit & 1, 4-bit	3, 8-bit & 1, 4-bit
Input termination	No	No	No
Logic family	TTL	TTL	TTL
Logic sense	Positive true	Positive true	Positive true
Inputs Input type: Input logic load: High input voltage: Low input voltage: Low input current:	Level sensitive 1 TTL Load 2.4V min 0.8 V max -0.4 mA max	Level sensitive 1 TTL Load 2.4 V min 0.8 V max -0.4 mA max	Level sensitive 1 TTL Load 2.4 V min 0.8 V max -0.4 mA max
Outputs High output: Low output: High output current (source), typical: Low output current (sink), typical:	2.8 V min 0.6 V max 4.5 mA 10 mA	2.8 V min 0.6 V max 4.5 mA 10 mA	2.8 V min 0.6 V max 15 mA 64 mA
Software I/O selectable	Yes	Yes	Yes
ESD protection (per spec) Arc: Contact:	8 kV 4 kV	8 kV 4 kV	8 kV 4 kV

Table 25 lists the specifications for the digital input (DIN) and digital output (DOUT) subsystems on the DT9817-R module.

Table 25: DT9817-R DIN/DOUT Subsystem Specifications

Feature	DT9817-R
Number of digital I/O lines	16 (8 In, 8 Out)
Number of ports	2, 8-bit (1 In, 1 Out)
Inputs Input type: High input voltage: Low input voltage: High input current: Low input current: Termination	AC or DC \pm 3 to 32 V $<$ \pm 1.5 V \pm 2.2 k Ω resistor to 1.2 V \pm 2.2 k Ω resistor to 1.2 V Series 2.2 k Ω
Outputs Output type: Output driver: High output: Low output: Breakdown voltage: Contact impedance:	Solid-state Relay CMOS ± 30 V 0.4 V @ 400 mA ± 60 V 1 Ω
Isolation voltage To computer ground: Input within pairs 0&1, 2&3, etc. Input across pairs Output channel to channel	500 V 250 V (± 125 V) 500 V (± 250 V) 500 V
Software I/O selectable	Yes
ESD protection (per spec) Arc: Contact:	8 kV 4 kV

Counter/Timer Specifications

Table 26 lists the specifications for the C/T subsystem on the DT9810, DT9817, DT9817-H, and DT9817-R modules.

Table 26: C/T Subsystem Specifications

Feature	Specifications
Number of counter/timers	1
Counter/timer modes	Event counting, frequency measurement, edge-to-edge measurement, rate generation
Resolution	32-bit
Minimum pulse width: (minimum amount of time it takes a C/T to recognize an input pulse)	200 μs (DT9817-R) 200 ns (other modules)
Logic family	TTL
Inputs Input logic load: High input voltage: Low input voltage: Low input current:	Level sensitive 1 TTL Load 2.4 V min 0.8 V max -0.4 mA max
Outputs High output DT9817-R: Other modules: Low output DT9817-R: Other modules:	3.0 V min @ 0.1 mA Source 2.8 V min @ 2 mA Source 0.4 V max @ 2 mA Sink 0.6 V max @ 12 mA Sink
Isolation voltage (DT9817-R)	500 V to computer ground
ESD protection (per spec) Arc: Contact:	8 kV 4 kV
Internal clock frequency DT9817-R: Other modules:	4 Hz to 2.5 kHz 4 Hz to 12 MHz
External clock divider DT9817-R: Other modules:	9600 to 130050 2 to 130050

Power, Physical, and Environmental Specifications

Table 27 lists the power, physical, and environmental specifications for the DT9810, DT9817, DT9817-H, and DT9817-R modules.

Table 27: Power, Physical, and Environmental Specifications

Feature	DT9810, DT9817, DT9817-H, and DT9817-R
Power +5 V Enumeration: Operation:	< 100 mA < 100 mA (DT9810, DT9817, and DT9817-R) < 150 mA (DT9817-H)
Physical Dimensions (board):	100 mm (L) x 100 mm (W) x 15.5 mm (H)
Dimensions (box with screw terminals and feet):	107.7 mm (L) x 100 mm (W) x 33.5 mm (H)
Weight (board):	60.3 g
Weight (box with screw terminals and feet):	133.4 g
Environmental Operating temperature range: Storage temperature range: Relative humidity: Altitude:	0 to 45° C -40 to 85° C to 95% non-condensing 10,000 feet

Regulatory Specifications

Table 28 lists the regulatory specifications for the DT9810, DT9817, DT9817-H, and DT9817-R modules.

Table 28: Regulatory Specifications

Feature	Specifications
Emissions (EMI)	FCC Part 15, EN55022:1994 + A1:1995 + A2:1997 VCCI, AS/NZS 3548 Class A
Immunity	EN61000-6-1:2001
RoHS (EU Directive 2002/95/EG)	Compliant (as of July 1st, 2006)

Screw Terminal Assignments

Screw Terminal Assignments for the DT9810	96
Screw Terminal Assignments for the DT9817 and DT9817-H	97
Screw Terminal Assignments for the DT9817-R	98

Screw Terminal Assignments for the DT9810

Table 29 lists the screw terminal assignments for the DT9810 module.

Table 29: DT9810 Screw Terminals

Screw Terminal	Signal	Screw Terminal	Signal
20	USB +5 V Out	40	Reserved
19	Ground	39	Reserved
18	Counter 0 In	38	Ground
17	Counter 0 Out	37	Digital I/O 15
16	Counter 0 Gate	36	Digital I/O 14
15	Ground	35	Digital I/O 13
14	Digital I/O 19	34	Digital I/O 12
13	Digital I/O 18	33	Digital I/O 11
12	Digital I/O 17	32	Digital I/O 10
11	Digital I/O 16	31	Digital I/O 9
10	2.44 V Reference	30	Digital I/O 8
9	Analog Ground	29	Ground
8	Analog Input CH7	28	Digital I/O 7
7	Analog Input CH6	27	Digital I/O 6
6	Analog Input CH5	26	Digital I/O 5
5	Analog Input CH4	25	Digital I/O 4
4	Analog Input CH3	24	Digital I/O 3
3	Analog Input CH2	23	Digital I/O 2
2	Analog Input CH1	22	Digital I/O 1
1	Analog Input CH0	21	Digital I/O 0

Screw Terminal Assignments for the DT9817 and DT9817-H

Table 30 lists the screw terminal assignments for the DT9817 and DT9817-H modules.

Table 30: DT9817 and DT9817-H Screw Terminals

Screw Terminal	Signal	Screw Terminal	Signal
20	USB +5 V Out	40	Reserved
19	Ground	39	Reserved
18	Counter 0 In	38	Ground
17	Counter 0 Out	37	Digital I/O 15
16	Counter 0 Gate	36	Digital I/O 14
15	Ground	35	Digital I/O 13
14	Digital I/O 27	34	Digital I/O 12
13	Digital I/O 26	33	Digital I/O 11
12	Digital I/O 25	32	Digital I/O 10
11	Digital I/O 24	31	Digital I/O 9
10	Reserved	30	Digital I/O 8
9	Ground	29	Ground
8	Digital I/O 23	28	Digital I/O 7
7	Digital I/O 22	27	Digital I/O 6
6	Digital I/O 21	26	Digital I/O 5
5	Digital I/O 20	25	Digital I/O 4
4	Digital I/O 19	24	Digital I/O 3
3	Digital I/O 18	23	Digital I/O 2
2	Digital I/O 17	22	Digital I/O 1
1	Digital I/O 16	21	Digital I/O 0

Screw Terminal Assignments for the DT9817-R

Table 31 lists the screw terminal assignments for the DT9817-R module.

Table 31: DT9817-R Screw Terminals

Screw Terminal	Signal	Screw Terminal	Signal
20	+5 V Out @ 10mA isolated	40	Reserved
19	Isolated Ground	39	Counter 0 Out
18	Counter 0 In	38	Isolated Ground
17	Counter 0 Gate	37	Reserved
16	Digital In 7 Low	36	Digital Out 7 Low
15	Digital In 7 High	35	Digital Out 7 High
14	Digital In 6 Low	34	Digital Out 6 Low
13	Digital In 6 High	33	Digital Out 6 High
12	Digital In 5 Low	32	Digital Out 5 Low
11	Digital In 5 High	31	Digital Out 5 High
10	Digital In 4 Low	30	Digital Out 4 Low
9	Digital In 4 High	29	Digital Out 4 High
8	Digital In 3 Low	28	Digital Out 3 Low
7	Digital In 3 High	27	Digital Out 3 High
6	Digital In 2 Low	26	Digital Out 2 Low
5	Digital In 2 High	25	Digital Out 2 High
4	Digital In 1 Low	24	Digital Out 1 Low
3	Digital In 1 High	23	Digital Out 1 High
2	Digital In 0 Low	22	Digital Out 0 Low
1	Digital In 0 High	21	Digital Out 0 High

Index

A	changing the name of a module 27
A/D subsystem specifications 88	channel list, analog input 59
aliasing 60	channel type
analog input	differential 75
channel list for analog input channels 59	single-ended 75
channels 59	channel-gain list depth 75
conversion modes 60	channels
data format and transfer 62	analog input 59
error conditions 62	counter/timer 66
gain 60	digital I/O 63
ranges 60	number of 75
resolution 59	clock sources
sample clock sources 60	analog input 60
single-ended operations 61	counter/timer 66
triggers 62	clocks
wiring 34	base frequency 78
analog input features	external 78
testing 46, 47	internal 78
applet, Open Layers Control Panel 83	maximum external clock divider 78
application wiring	maximum throughput 78
analog inputs 34	minimum external clock divider 78
digital inputs 35	minimum throughput 78
digital outputs 36	configuring the device driver 27
edge-to-edge measurement 40	connecting signals
event counting 38	analog inputs 34
frequency measurement 39	digital inputs 35
pulse output 41	digital outputs 36
applications	edge-to-edge measurement 40
LV-Link 16	event counting 38
Measure Foundry 16	frequency measurement 39
attaching the module to the computer 24	pulse output 41
	connecting to the host computer 24
_	using an expansion hub 25
В	continuous analog input 73
base clock frequency 78	scan operations 61
BaseClockFrequency 78	continuous counter/timer 73
binary data encoding 74	Control Panel applet 83
buffers 74	conversion modes
inprocess flush 74	continuous scan mode 61
•	digital I/O 65
•	single-value analog input 61
C	conversion rate 61
C/C++ programs 16	counter/timer
C/T, see counter/timer 91	channels 66, 75
cables, USB 24, 25	clock sources 66, 78
CGLDepth 75	connecting edge-to-edge signals 40 connecting event counting signals 38

connecting frequency measurement signals 39	edge-to-edge measurement mode 69, 79
connecting pulse output signals 41	wiring 40
edge-to-edge measurement mode 79	environmental specifications 92
event counting 79	errors, analog input 62
gate types 67	event counting 68, 79
gate-falling edge type 79	wiring 38
gate-rising edge type 80	external clock 66, 78
high-edge gate type 79	external clock divider
high-level gate type 79	maximum 78
high-to-low output pulse 79	minimum 78
internal gate type 79	external positive digital trigger 78
interrupt-driven operations 80	
low-edge gate type 79	E
low-level gate type 79	F
rate generation mode 79	factory service 85
subsystem specifications 91	features 14
counting events 68	formatting data 62
customer service 85	frequency
	base clock 78
_	internal A/D clock 60, 78
D	internal A/D sample clock 78
data encoding 74	internal C/T clock 66, 78
data flow modes	internal retrigger clock 74
continuous analog input 73	output pulse 69
continuous C/T 73	frequency measurement 39, 50, 68
single-value 73	frequency output pulse 40
data format and transfer 62	
OataAcq SDK 16	
device driver 16	G
configuring 27	gain
differential channels 75	actual available 75
digital I/O	analog input 60
lines 63	number of 75
operation modes 65	gate type 67
resolution 64	high-edge 79
subsystem specifications 89, 90	high-level 79
wiring inputs 35	internal 79
wiring outputs 36	low-edge 79
ligital I/O features	low-level 79
testing 48, 49	gate-falling edge type 79
DT9810 Device Driver 16	gate-rising edge type 80
OT-Open Layers for .NET Class Library 16	generating pulses 69
OTx-EZ 16	generating puises 07
duty cycle 67	Н
	hardware features 14
E	
	help, online 45
edge type	high drive digital outputs
gate falling 79	sinking 36
gate rising 80	sourcing 36, 37
	high-edge gate type 79

high-level gate type 79 hot-swapping 24	NumberOfRanges 76 NumberOfResolutions 76 NumberOfSupportedGains 75 Nyquist Theorem 60
inprocess buffers 74	
input	0
channels 59	online help 45
ranges 60	Open Layers Control Panel applet 83
sample clock sources 60	operation modes
internal	continuous scan 61
clock 66, 78	single-value analog input 61
gate type 79	single-value digital I/O 65
interrupt-driven operations 80	output pulses 41, 51, 79
	outputting pulses 69
L	_
LabVIEW 16	P
LEDs 24, 25	period 40, 69
low-edge gate type 79	physical specifications 92
low-level gate type 79	power specifications 92
LV-Link 16	preparing to wire signals 31
	pulse output 41
M	rate generation 69
	testing 51
MATLAB 16	types 67
MaxDifferentialChannels 75	pulse width 40, 67, 69
MaxExtClockDivider 78	
MaxFrequency 78	$\boldsymbol{\rho}$
MaxMultiScanCount 74	
MaxRetriggerFreq 74	Quick Data Acq 16
MaxSingleEndedChannels 75	running 45
Measure Foundry 16	quickDAQ 16
measuring frequency 68	
measuring pulses 69 MinExtClockDivider 78	R
MinFrequency 78	ranges
MinRetriggerFreq 74	analog input 60
multiple channels, analog input 59	number of 76
maniple character, analog input of	rate generation 69, 79
	recommendations for wiring 31
N	resolution 64
number of	analog input 59
differential channels 75	available 76
gains 75	number of 76
I/O channels 75	programmable 76
resolutions 76	retrigger clock frequency 74
scans per trigger 74	returning boards to the factory 85
single-ended channels 75	RMA 85
voltage ranges 76	running the Quick Data Acq application 45
NumberOfChannels 75	

S	Τ
sample clock sources 60	technical support 84
sample rate 61	throughput
SDK 16	maximum 78
service and support procedure 84	minimum 78
single channel, analog input 59	transferring data, analog input 62
single-ended channels 75	triggered scan
number of 75	number of scans per trigger 74
single-value operations 73	retrigger frequency 74
analog input 61	triggers
digital I/O 65	analog input 62
sinking 36	external positive digital 78
software packages 16	software 62, 78
software trigger 62, 78	troubleshooting
sourcing 36, 37	procedure 82
specifications 87	service and support procedure 84
analog input 88	troubleshooting table 82
counter/timer specifications 91	G
digital I/O 89, 90	
environmental 92	U
physical 92	units, counter/timer 66
power 92	unpacking 23
regulatory 93	USB cable 24, 25
SupportedGains 75	
SupportedResolutions 76	17
SupportedVoltageRanges 76	V
SupportsBinaryEncoding 74	Visual Basic for .NET programs 16
SupportsBuffering 74	Visual Basic programs 16
SupportsContinuous 73	Visual C# programs 16
SupportsCount 79	Visual C++ programs 16
SupportsDifferential 75	voltage ranges 60, 76
SupportsExternalClock 78	number of 76
SupportsGateFalling 79	
SupportsGateHighEdge 79	1//
SupportsGateHighLevel 79	W
SupportsGateLowEdge 79	wiring signals
SupportsGateLowLevel 79	analog inputs 34
SupportsGateNone 79	digital inputs 35
SupportsGateRising 80	digital outputs 36
SupportsHighToLowPulse 79	edge-to-edge measurement 40
SupportsInProcessFlush 74	event counting 38
SupportsInternalClock 78	frequency measurement 39
SupportsInterrupt 80	methods 31
SupportsMeasure 79	preparing 31
SupportsPosExternalTTLTrigger 78	pulse output 41
SupportsRateGenerate 79	recommendations 31
SupportsSingleEnded 75	writing programs in
SupportsSingleValue 73	C/C++ 16
SupportsSoftwareResolution 76	Visual Basic 16
SupportsSoftwareTrigger 78	

Visual Basic .NET 16 Visual C# 16 Visual C++ 16