Sun N1 Grid Engine 6.1 User's
Guide

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-0699
May 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, N1 Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, N1 Java et Solaris sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070426@17039

Contents

PREFACE ...ttt ettt 15

Introduction to the N1 Grid Engine 6.1 SOftwarecccooveuiriereininesee s 19

What Is Grid COMPULINEG?vvuieeiieirieeeireeieercieis ettt sttt sttt eensaeen 19

Managing Workload by Managing Resources and Policies

HOW the SYSTEM OPEIALESovueueiriieieecieieieirieie ettt tsese ettt ettt seaeseseaes
Matching ReSOUTCes t0 REQUESLSc.vurueuieririieirieieiesieeeeisee et esse st esssesssssssnssans 23
JODS ANA QUEUES ...ttt s st en et se s sen e s ene e enennenen 24
USAEE POLICIES ..uueviuieieiteicie ittt ettt sttt en i 24

Grid Engine Systerm COMPONENLSc.cuvueuiueuriieeuriserireeeteieeesseseessessseessssssesssessssssessssssssssessesssesssans 26

Navigating the Grid Engine System

QMON Main Control WINAOWc.c.oceuriieeinieieineeisieietreeie ettt ettt eteaas
Launching the QMON Main Control WindOWcceeeeueerieeirisirineeirieieseeieeeesseeeesseesseeeens 33
CUStOMIZING QMONcuvriieieieieetetrteieeeseetr sttt sttt b ettt bbb et s st esebebese et st seeeesene 34

USErs and USET CAtEZOTIES ...uvrvvereriereeerreiresisiiesesessssssssssasssssssssssssssssssssssssessssssssssssssesssesesesesssssnssses 35
User Access PEIMISSIONSc.ccoeviriririiueiiiiiininiiiecictcte ettt ettt e seenene 36
Managers, Operators, and OWIIETSc.cveueureurueurieirieeeireeeeesee e tsteseeseae e sesseassessesesseasans

Displaying Queues and Queue Properties

Displaying a List Of QUEUESc.cuevueuuiurieeiiirieeieisieeieieisesesseseie e ssesesse s ese s sssssssssesssssesees
Displaying QUeUe PIOPEILIEsccvuuvueriurieereiiiereiiineeeneireiensesesereesessssessessesessesesessessessesens 38
V¥ How to Display Queue Properties With QMONcccveriueuricirineeeinencieireeieeneeeseeeesseaenes 39

Contents

Interpreting Queue Property INfOrmationcceceeeneeinieininceneeiesce et 40
Hosts and HOst FUNCHONAILYviuiuriiieiricieireeience ettt 41
Finding the Name of the Master HOSEccveurieurireeiririeiieieisieisee ettt seasseseans 41
Displaying a List 0f EXECUION HOSEScuevvvurueieiririneeiininiseisisiesesssisse s sesssssssssssessssssesssens 42
Displaying a List of Administration HOSESc.eevrviuireuriririniriiseeesisisieeessessssesesassssesenns 42
Displaying a List of Submit Hosts .42
ReqQUESTADIE AETTDULES ..cvvuieiiciicicie ettt ettt 42
Displaying a List of Requestable AttriDULEsc.oocueurieueeniuciricieireeieiree et 44
Submitting Jobs
Submitting a Simple Job
V¥ How To Submit a Simple Job From the Command Lineccoeceeuveeurneenncennccnenceeneennes 48
V¥ How To Submit a Simple Job With QMONc.cceuriiueirieuriieirieieineieieeeeee et eeneaees 49
SUDMItHING BAtCh JODS ...cuviaiiciricieiccie ettt 53
ADOUL SHEIL SCIIPLS vttt ettt saesnans 53
Example of a Shell Script .54
Extensions to Regular Shell SCrPLScoceuveueuriieiricieirecirecreciece ettt 55
Submitting Extended Jobs and Advanced JODSccvuueuriiuenieirinieireircieee et 59
Submitting Extended Jobs With QMONccceeuriririiieeeieinsreeeeeieistree et eeseeneees 59
Submitting Extended Jobs From the Command Linec.coocceuveveueneneeninceinencenecirnceineenne 63
Submitting Advanced Jobs With QMONccceurieurinieeirisinieeireeie ettt seaeseens 63
Submitting Advanced Jobs From the Command Line .. 66
Defining Resource REQUITEMENTScccuveueuririeiricieirieieieeeisieieisee ettt seesessesssseeaes 68
JOD DEPENAENICIES ..ottt sttt ess s st esssessasssensassenns 71
SUDMILHNG ATTAY JODS w.vveviiieicieieieieirisitcssesee ettt saasessss s st sessasnssssseses 71
SUDMIttNG INTETACTIVE JODS ...vuiuiuiiieieieieiricieireeie ettt bbbttt 73
Submitting Interactive Jobs With QMONc.ccvcueueuriurieiiiriieieineieieireisee s sseee e seesesesnees 74
Submitting Interactive Jobs With gsh .. 75
Submitting Interactive Jobs With qLOGIN ...cccueunieuriiieiricieices ettt 75
Transparent Remote EXECULIONcccceuiueiririniiiceieiirccccetereceene e sssesesesee 76
Remote EXecution WIth QIS ...ttt a e nenen 76
Transparent Job Distribution With qtCsh wc.eeeeueceiririercecerseere e 77
Parallel Makefile Processing With qmakecccoveeeirrerieininininineeeeenriseeeeeeeesessseessssenns 79
How Jobs Are Scheduled .. 82
JOD PIIOTIEIES .vivvieieieierereveteteeieetete ettt ettt ettt ettt et s s st e st et esesssses s et esesesessasasesesesesesens 82

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Contents

THCKEE POLICIES .uvevieiieeiricie ittt ettt sttt 83
QUEULE SELECHION ...ttt ettt ettt se st et e st st es st ese st eseseesenesaenessenan 83
4 Monitoring and Controlling Jobs and QUEUESccccoeeriiierennnirieeeee e 85
Monitoring and Controlling JODSceiurieurieinieirireieeeeie ettt eae e
Monitoring and Controlling Jobs With QMON
Monitoring and Controlling Jobs From the Command Linecccoveeurenecirecnncrcenencucnnee 94
Monitoring JObs BY EMAil ...c.c.ccuiiiiiiiiicieceincter ettt 98
Monitoring and Controlling QUEUEScceureeuriiuririeieireeeieieeeises et esssessessssssssesseasans 98
Monitoring and Controlling Queues With QMONc.cccceurerieeiricrrincecirenceeerecreeeeeseeseeseaenes 98
Controlling Queues With gmodc.coccueueueinireerincieinicenecieeeseeie e ssesesesseaes 105
USINg JOD CReCKPOINTINGvuiuiiiieiriicieicietsieieiseeeiee ettt s sttt eaeiees
User-Level ChecKPOINtIngc.oceeueereeuniiniieieiieieneieeeseisese st ssesesesseseens
Kernel-Level CheCKPOINTINGccvvueiiiereeieieieiriccieeeeseieietseesssssseaseseesssssssssessssssssesssssssssnens
Migrating Checkpointing Jobs
Composing a Checkpointing JOD SCTIPLc.cuviruririueirerieerieirieieresie e seeeans 107
File System Requirements for ChecKpOintingcoceeeureureeeenerneerinerneeneeinerneseieseeeeesseseene 109
5 Accounting and REPOItINGcoceviuiriciniinicciniccecesese ettt seaeene
Starting the Accounting and Reporting CONSOLEc.cuvvrureieririeieiieirireieisesieeeeeses e eeeens
V¥ How to Start the Accounting and Reporting Console
Creating and Running Simple QUETIESc.cvcueuriueueiriueirinieeireeiseneeisieieiseeteesesetseseiessese s sseaeans
V¥ How to Create a SIMPle QUETY ...c..ccuriiueiriiieirieieieieiseeiseseie ettt eese st esees
V¥ How to Create a View CONfIGUIAtIONc.cccuveveeeieunieeieireeseeireiseieeiseseeseesessesessesseseesesesecaeens
Defining Data Series fOr DIQZIamSccccoverereirerieersrsreiessisessesssssssssssesssssssssssssssssasssssssssesns 119
VW How to Run a Simple QUETY ...c.c.euiueiriiieirieirireieieicieireeiseeee ettt esene 123
V¥ How to Edit a SIMple QUETYcuouiiiriiieiirieireete ettt ettt 123
Creating and Running Advanced QUETIESceceueueururiririieieieieieieesieeeieie et ssesesesesseenes 124
V¥ How to Create an Advanced QUETYc.cocoeurireueurieeeinieinincieinecieiresei ettt sesene 124

V¥ How to Run an Advanced Query
V¥ How to Edit an Advanced Query

Latebindings for Advanced QUETIESccouvrrrierreririiieeeisiss ettt senes

Contents

6 Automating Grid Engine Functions Through the Distributed Resource Management
APPIICAtION API ..ottt ettt s s s s

Introduction to Distributed Resource Management Application APT (DRMAA) ..o

Developing with the C Language Bindingccccovveireereeeininiiesseesisessessssesessenens
Important Files for the C Language Binding
Including the DRMAA Header Fle ..ottt
Compiling Your C APPIICATIONcueueucurieeeirieieireeieieieiseeie et ssesese e seesesesseaes
RUNNING YOUT C APPLCALION «..vveiiiieiecicieieieisiscceeseae sttt ssssssasessssssseses

V¥ How to Use the DRMAA 0.95 C Language Binding
C Application EXAMPLESc.euvceeuriiieiricieicieireeieircie sttt

Developing with the Java Language Bindingcccecveeureririnieininciencinrceseeiesceseeesseeeeneaas
Important Files for the Java Language Bindingcccceveeurineeineneninceinicenccnciesecieenenes
Importing the DRMAA Java Classes and Packagesccveueuveeenenecinecininicinecienceneeens
Compiling Your Java APPHCAtIONc.cccueieeeurireeririciniiieisicieieie ettt ssesesesseaes

V¥ How to Use DRMAA with NetBeans 5.x
Running Your Java APPIICALIONc.cueveeiierreieiriririeessaessssesessssssessssssassssssssessssssassssssssseses
Using the DRMAA 0.5 Java Language Bindingccceceuevviverieerenninniieeessseseesseeeenns
Java Application EXAMPLESccccvueuriririiierieieieisiiccseieie sttt asessssnseens

7 Error Messages, and Troubleshootingccccooviiiicennnscccee s 141
How the Software Retrieves Error REPOILSccvcucurieueiriciriniicinicierecisiseie e 141
Consequences of Different Error or EXit COAESsccovvururirirrreeririniriirseesessseeessenenens 142
Running Grid Engine System Programs in Debug Modecccovviviriirernnsiriresnnennns 145
DiagnoSing PTODIEINScvvueiriririiieeieisieirisis ettt sttt es s ess e s sesesessenens 147
Pending Jobs Not Being DiSpatchedcccoeveviriniiireeerreeeeiess e 147

Job or Queue Reported in EITOT STALE Ecuvveeurierieiieririeieieeeieisessseessssssssssssssessssssssnnns 148
Troubleshooting CoOmMmMON PrODIEMSc.c.vuveuivriueiiiniieieineieieieieieeieeseie e saeen 149

Typical Accounting and Reporting Console EITOrScoecueerecuneineceneineeinerneeseeseeneneene 153

6 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Contents

SEE_SNATE_L0Q ..eueiieiie e ettt 161
SZE_NOST ettt ettt ettt e ettt 162
SZE_NOSTVAIUES ...ttt ettt 163
SZE_QUEUE ..eervinireiiieict ettt ettt sttt b ettt st b bbbt b e e bbb et n b 163
SZE_QUEUE_VALUES ...ttt ettt ettt ea et ssesenensnssese 164
sge_department
8g€_dePArtmMeEnt_VAlUeESc.euoiueuriiieiieteiciei ettt ettt 164
SEE_PLOJECE uutrenirteiirtentteiet sttt ettt ettt b et s et bttt b et bt s et b et s bbbt b e aene it nen 165
SZE_PTOJECE_VAIUES w.ecvuiuiiiiciicicie ettt ettt 165
SZE_USEY erveuierereneereutrtentteretssestetesete b et sae st b ebe e b e st st s et bt s et b et b et et R bbbt b et b e e st nes 166
SZE_USET_VAIUES .ueeereeteieieiieaeeeeetetesetstesesssssesesessesssssssssssssess s e essnsasssssssssssasesssssssesssssssenssssssesns 166
sge_group
SZE_ETOUP_VALUES ...cevieieiieeieieieteicie ettt ettt ettt st ss e sas e ess s ess s s ssesessssessnans 167
LiSt Of PredefiNed VIEWSccceuvveiiiieicieinieiriseeee ettt sssss sttt ssssssssssssesesesesnsssssnnes 167
VIEW_ACCOUNTING eoviiiiiiiiiiicicteictntectet ettt sttt enes 167
VIEW_JOD_LIITIES .uvutieeeeieieceriieete sttt ettt sse e sss s sttt sess e s sesessssessssssessnsnsensnsnes 168
VIEW_JODS_COMPIELEAuvuivirieiicieiecieicicirecie ettt ettt een 169
view_job_log
View_department_VAlUEScocooveeeeueueiririnirieeeieieieieesecese e eaess s ses e sesenenes 170
VIEW_GIOUP_VAIUES .ueitieiiieiricieisectet sttt ettt ettt 170
VIEW_OSE VAIUES ..ottt ettt ettt et e ea e et e te e st eseeaeeseate st eneeseeseneeeeatenesaeesenes 171
VIEW_PTOJEC_VALUES .vuvereeeeeirieirisiccieieieteietsi sttt s s st ses s eesssssssssesnsnenes 171
VIEW_QUEUE_VAIUES .ueitieiieeiieieiseei ettt ettt et sttt eeaebeen 172

view_user_values
List of Derived Values

Figures

FIGURE 1-1
FIGURE 1-2
FIGURE 1-3
FIGURE 3-1
FIGURE 3-2
FIGURE 3-3
FIGURE 3-4
FIGURE 3-5
FIGURE 3-6
FIGURE 3-7
FIGURE 3-8

FIGURE 3-9

T'hree Classes OF GIidSoviiiiiiiiiiiiiiiiiiic e 21
Correlation Among Policies in a Grid Engine System ..o, 26
QMON Main Control Window, Defined ..., 31
QMON Main Control WINndOW ... 50
Submit Job Dialog BOX ..c.cvoviiiiiiiiii 51
Job Control DIalog BOX ...c.coiiiiiiiiiiiiieice s 52
Selecta File DIalog BOX ..o 53
Extended Job Submission EXample ... 62
Advanced Job Submission EXample ... 66
Requested Resources DIialog BOX ... 69
Interactive Submit Job Dialog Box, General'lab ... 74
Interactive Submit Job Dialog Box, Advanced 1ab ..., 75

10

Tables

TABLE 2-1
TABLE 7-1
TABLE 7-2
TABLE 7-3
TABLE 7-4

TABLE 7-5

User Categories and Associated Command Capabilitiescocoevievininrinieninnnns 35
Job-Related Error 0r EXit COAESuuviieiiiiiiiiieeeccceteeeeecctree e e 142
Parallel-Environment-Related Error or EXit Codescoovvvviviinniiiiiiinniinnenns 143
Queue-Related Error Or EXIt COAESuuuniiiitiiiiirrreneneserereseeeesenesesesenene 143
Checkpointing-Related Error or EXit COdes ... 143
gacct -j failed Field COdesiiiiniiniiiniiiniiiiiiicniiiicicccnee e 144

12

Examples

EXAMPLE 2-1
EXAMPLE 2-2
EXAMPLE 3-1
EXAMPLE 3-2
EXAMPLE 4-1
EXAMPLE 4-2
EXAMPLE 4-3
EXAMPLE 5-1
EXAMPLE 5-2
EXAMPLE 5-3
EXAMPLE 6-1
EXAMPLE 6-2
EXAMPLE 6-3
EXAMPLE 6-4

EXAMPLE 6-5

Queue Property Information ... 39
Complex Attributes Displayed ... 44
SIMPLE SHELLSCIIPT ottt 54
Using Script-Embedded Command Line Optionsccoeeeevienieinininiennennene. 56
Example of gstat - T OULPUL c..c.vucecicicecicreccce e naesaens 96
Example of gstat Outpulooeveiiiii 97
Example ot a Checkpointing JOb SCIIPt ... 107
Accounting per Department Pie Chart ... 120

CPU, Input/Output, and Memory Usage Over All Departments Bar Chart ...121
Latebindings EXamPLEScovveiiiiiiiiiiiiiiiiicct

Compiling Your C Application Using Sun Studio Compiler

Starting and StOPPING @ SESSIONeovivveieiiiniiniiieieeeee s
RUNNINZ A JOD vt
Starting and StOPPINE @ SESSIONc.ovevevereiiiriiieieetcece e 137
RUNNINEZ A JOD oottt 138

14

Preface

The Sun N1 Grid Engine 6.1 User's Guide includes the following:

= A description of the primary role of N1 Grid Engine 6.1 software in complex computing
environments

= A description of the major components of the product, along with definitions of the
functions of each

= A glossary of terms that are important to know in an N1 Grid Engine 6.1 software
environment

Who Should Use This Book

This manual is for engineers and technical professionals, who need to use the N1 Grid Engine
6.1 software. Also, you should understand the concepts in this book if you are responsible for
administering the system of networked computer hosts that run the N1 Grid Engine 6.1
software.

How This Book Is Organized

Chapter 1 describes the concepts and major components of the N1 Grid Engine 6.1 software.
This chapter also includes a summary of user commands, and introduces the QMON graphical
user interface.

Chapter 2 describes how to display information about components of the system of networked
computer hosts that run the N1 Grid Engine 6.1 software such as users, queues, hosts, and job
attributes.

Chapter 3 provides information about how to submit jobs for processing.

Chapter 4 provides information about how to monitor and control jobs and queues. The
chapter also includes information about job checkpointing. .

Chapter 5 describes how to use the accounting and reporting console.

Chapter 6 explains how to automate N1 Grid Engine functions through a C or Java-based
DRMAA APL

Preface

Chapter 7 contains common problems and their solutions.
Appendix A describes in detail the reporting database data model

Glossary is a list of product-specific words and phrases and their definitions.

Related Books

Other books in the N1 Grid Engine 6.1 softwaredocumentation collection include:

= Sun N1 Grid Engine 6.1 Installation Guide
= Sun N1 Grid Engine 6.1 Administration Guide
= Sun N1 Grid Engine 6.1 Release Notes

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

» Documentation (http://www.sun.com/documentation/)
m Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLEP-1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories, Edit your . login file.

and onscreen computer output
P P Use 1s -a to list all files.

machine name% you have mail.

AaBbCc123 What you type, contrasted with onscreen machine_names su
computer output
P P Password:
aabbecl23 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

16 Sun N1 Grid Engine 6.1 User's Guide « May 2007

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Preface

TABLEP-1 Typographic Conventions (Continued)
Typeface Meaning Example
AaBbCcl23 Book titles, new terms, and terms to be Read Chapter 6 in the User’s Guide.
emphasized

A cacheis a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples

The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLEP-2 Shell Prompts

Shell Prompt

C shell machine nameS
C shell for superuser machine_name#
Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

18

L K R 4 CHAPTER 1

Introduction to the N1 Grid Engine 6.1
Software

This chapter provides background information about the system of networked computer hosts
that run the N1 Grid Engine 6.1 software (also referred to as the grid engine system). This
chapter includes the following topics:

= “What Is Grid Computing?” on page 19
“Managing Workload by Managing Resources and Policies” on page 22
“How the System Operates” on page 23
“Grid Engine System Components” on page 26
“Client Commands” on page 29
“QMON, the Grid Engine System's Graphical User Interface” on page 30

You can also find a good overview of grid computing and the N1 Grid Engine product on the
YouTube web site: Introduction to Grid Engine
(http://www.youtube.com/watch?v=0JBsMitNnQ8).

What Is Grid Computing?

A gridis a collection of computing resources that perform tasks. In its simplest form, a grid
appears to users as a large system that provides a single point of access to powerful distributed
resources. In its more complex form, which is explained later in this section, a grid can provide
many access points to users. In all cases, users treat the grid as a single computational resource.
Resource management software such as N1 Grid Engine 6.1 software (grid engine software)
accepts jobs submitted by users. The software uses resource management policies to schedule
jobs to be run on appropriate systems in the grid. Users can submit millions of jobs at a time
without being concerned about where the jobs run.

http://www.youtube.com/watch?v=0JBsMitNnQ8
http://www.youtube.com/watch?v=0JBsMitNnQ8

What Is Grid Computing?

20

No two grids are alike. One size does not fit all situations. The three key classes of grids, which
scale from single systems to supercomputer-class compute farms that use thousands of
processors, are as follows:

» Cluster grids are the simplest class. Cluster grids are made up of a set of computer hosts that
work together. A cluster grid provides a single point of access to users in a single project or a
single department.

» Campus grids enable multiple projects or departments within an organization to share
computing resources. Organizations can use campus grids to handle a variety of tasks, from
cyclical business processes to rendering, data mining, and more.

= Global grids are a collection of campus grids that cross organizational boundaries to create
very large virtual systems. Users have access to compute power that far exceeds resources
that are available within their own organization.

Figure 1-1 shows the three classes of grids. In the cluster grid, a user's job is handled by only one
of the systems within the cluster. However, the user's cluster grid might be part of the more
complex campus grid, and the campus grid might be part of the largest global grid. In such
cases, the user's job can be handled by any member execution host that is located anywhere in
the world.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

What Is Grid Computing?

ANAASRE R
ALLRLRL N\ Y
ST NN A WA
ARSESESN R
ASS N YNNN

B Cluster Grid [campus Grid [Global Grid
Single Owner Multiple Owners Multiple Owners
Single Site Single Site Multiple Sites
Single Organization Single Organization Multiple Organizations

FIGURE 1-1 Three Classes of Grids

N1 Grid Engine 6.1 software provides the power and flexibility required for campus grids. The
product is useful for existing cluster grids because it facilitates a smooth transition to creating a
campus grid. The grid engine system effects this transition by consolidating all existing cluster
grids on the campus. In addition, the grid engine system is a good start for an enterprise campus
that is moving to the grid computing model for the first time.

The grid engine software orchestrates the delivery of computational power that is based on
enterprise resource policies set by the organization's technical and management staff. The grid
engine system uses these policies to examine the available computational resources within the
campus grid. The system gathers these resources and then allocates and delivers resources
automatically, optimizing usage across the campus grid.

Chapter 1 - Introduction to the N1™ Grid Engine 6.1 Software 21

Managing Workload by Managing Resources and Policies

To enable cooperation within the campus grid, project owners who use the grid must do the
following:

= Negotiate policies
= Develop flexible policies for manual overrides for unique project requirements
= Automatically monitor and enforce the policies

The grid engine software can mediate among the entitlements of many departments and
projects that are competing for computational resources.

Managing Workload by Managing Resources and Policies

22

The grid engine system is an advanced resource management tool for heterogeneous
distributed computing environments. Workload management means that the use of shared
resources is controlled to best achieve an enterprise's goals such as productivity, timeliness,
level-of-service, and so forth. Workload management is accomplished through managing
resources and administering policies. Sites configure the system to maximize usage and
throughput, while the system supports varying levels of timeliness and importance . Job
deadlines are instances of timeliness. Job priority and user share are instances of importance.

The grid engine software provides advanced resource management and policy administration
for UNIX environments that are composed of multiple shared resources. The grid engine
system is superior to standard load management tools with respect to the following major
capabilities:

= Innovative dynamic scheduling and resource management that enables the grid engine
software to enforce site-specific management polices.

= Dynamic collection of performance data to provide the scheduler with up-to-the-minute
job-level resource consumption and system load information.

= Availability of enhanced security by way of Certificate Security Protocol (CSP)-based
encryption. Instead of transferring messages in clear text, the messages in this more secure
system are encrypted with a secret key.

= High-level policy administration for the definition and implementation of enterprise goals
such as productivity, timeliness, and level-of-service.

The grid engine software provides users with the means to submit computationally demanding
tasks to the grid for transparent distribution of the associated workload. Users can submit batch
jobs, interactive jobs, and parallel jobs to the grid. For the administrator, the software provides
comprehensive tools for monitoring and controlling jobs.

The product also supports checkpointing programs. Checkpointing jobs migrate from
workstation to workstation without user intervention on load demand.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

How the System Operates

How the System Operates

The grid engine system does all of the following:

= Accepts jobs from the outside world. Jobs are users' requests for computer resources
= Putsjobs in a holding area until the jobs can be run

= Sends jobs from the holding area to an execution device

= Manages running jobs

= Logs the record of job execution when the jobs are finished

Matching Resources to Requests

As an analogy, imagine a large “money-center” bank in one of the world's capital cities. In the
bank's lobby are dozens of customers waiting to be served. Each customer has different
requirements. One customer wants to withdraw a small amount of money from his account.
Arriving just after him is another customer, who has an appointment with one of the bank's
investment specialists. She wants advice before she undertakes a complicated venture. Another
customer in front of the first two customers wants to apply for a large loan, as do the eight
customers in front of her.

Different customers with different needs require different types of service and different levels of
service from the bank. Perhaps the bank on this particular day has many employees who can
handle the one customer's simple withdrawal of money from his account. But at the same time
the bank has only one or two loan officers available to help the many loan applicants. On
another day, the situation might be reversed.

The effect is that customers must wait for service unnecessarily. Many of the customers could
receive immediate service if only their needs were immediately recognized and then matched to
available resources.

If the grid engine system were the bank manager, the service would be organized differently.

= On entering the bank lobby, customers would be asked to declare their name, their
affiliations, and their service needs.

= Each customer's time of arrival would be recorded.

= Based on the information that the customers provided in the lobby, the bank would serve
the following customers:

= Customers whose needs match suitable and immediately available resources
= Customers whose requirements have the highest priority
= Customers who were waiting in the lobby for the longest time

= Ina “grid engine system bank,” one bank employee might be able to help several customers
at the same time. The grid engine system would try to assign new customers to the
least-loaded and most-suitable bank employee.

Chapter 1 - Introduction to the N1™ Grid Engine 6.1 Software 23

How the System Operates

24

= Asbank manager, the grid engine system would allow the bank to define service policies.
Typical service policies might be the following:

= To provide preferential service to commercial customers because those customers
generate more profit

= To make sure a certain customer group is served well, because those customers have
received bad service so far

= To ensure that customers with an appointment get a timely response
= To prefer a certain customer on direct demand of a bank executive

= Such policies would be implemented, monitored, and adjusted automatically by a grid
engine system manager. Customers with preferential access would be served sooner. Such
customers would receive more attention from employees, whose assistance those customers
must share with other customers. The grid engine manager would recognize if the
customers do not make progress. The manager would immediately respond by adjusting
service levels in order to comply with the bank's service policies.

Jobs and Queues

In a grid engine system, jobs correspond to bank customers. Jobs wait in a computer holding
area instead of alobby. Queues, which provide services for jobs, correspond to bank employees.
As in the case of bank customers, the requirements of each job, such as available memory,
execution speed, available software licenses, and similar needs, can be very different. Only
certain queues might be able to provide the corresponding service.

To continue the analogy, the grid engine software arbitrates available resources and job
requirements in the following way:

= A user who submits a job through the grid engine system declares a requirement profile for
the job. In addition, the system retrieves the identity of the user. The system also retrieves
the user's affiliation with projects or user groups. The time that the user submitted the job is
also stored.

= The moment that a queue is available to run a new job, the grid engine system determines
what are the suitable jobs for the queue. The system immediately dispatches the job that has
either the highest priority or the longest waiting time.

= Queues allow concurrent execution of many jobs. The grid engine system tries to start new
jobs in the least-loaded and most-suitable queue.

Usage Policies

The administrator of a cluster can define high-level usage policies that are customized
according to whatever is appropriate for the site. Four usage policies are available:

Sun N1 Grid Engine 6.1 User's Guide - May 2007

How the System Operates

= Urgency. Using this policy, each job's priority is based on an urgency value. The urgency
value is derived from the job's resource requirements, the job's deadline specification, and
how long the job waits before it is run.

= Functional. Using this policy, an administrator can provide special treatment because of a
user's or ajob's affiliation with a certain user group, project, and so forth.

= Share-based. Under this policy, the level of service depends on an assigned share
entitlement, the corresponding shares of other users and user groups, the past usage of
resources by all users, and the current presence of users within the system.

= Override. This policy requires manual intervention by the cluster administrator, who
modifies the automated policy implementation.

Policy management automatically controls the use of shared resources in the cluster to best
achieve the goals of the administration. High-priority jobs are dispatched preferentially. Such
jobs receive higher CPU entitlements if the jobs compete for resources with other jobs. The grid
engine software monitors the progress of all jobs and adjusts their relative priorities
correspondingly and with respect to the goals defined in the policies.

Using Tickets to Administer Policies

The functional, share-based, and override policies are defined through a grid engine system
concept that is called tickets. You might compare tickets to shares of a public company's stock.
The more stock shares that you own, the more important you are to the company. If
shareholder A owns twice as many shares as shareholder B, A also has twice the votes of B.
Therefore shareholder A is twice as important to the company. Similarly, the more tickets thata
job has, the more important the job is. If job A has twice the tickets of job B, job A is entitled to
twice the resource usage of job B.

Jobs can retrieve tickets from the functional, share-based, and override policies. The total
number of tickets, as well as the number retrieved from each ticket policy, often changes over
time.

The administrator controls the number of tickets that are allocated to each ticket policy in total.
Just as ticket allocation does for jobs, this allocation determines the relative importance of the
ticket policies among each other. Through the ticket pool that is assigned to particular ticket
policies, the administration can run a grid engine system in different ways. For example, the
system can run in a share-based mode only. Or the system can run in a combination of modes,
for example, 90% share-based and 10% functional.

Using the Urgency Policy to Assign Job Priority

The urgency policy can be used in combination with two other job priority specifications:

= The number of tickets assigned by the functional, share-based, and override policies

= A priority value specified by the gsub —p command

Chapter 1 - Introduction to the N1™ Grid Engine 6.1 Software 25

Grid Engine System Components

A job can be assigned an urgency value, which is derived from three sources:

= Thejob's resource requirements
= Thelength of time a job must wait before the job runs
= The time at which a job must finish running, that is, the job's deadline

The administrator can separately weight the importance of each of these sources in order to
arrive at ajob's overall urgency value. For more information, see Chapter 5, “Managing Policies
and the Scheduler,” in Sun N1 Grid Engine 6.1 Administration Guide.

Figure 1-2 shows the correlation among policies.

Functional Policy

User Project
Department i/
Share-based Policy N1 Grid Engine

User/Project share tree :: Correlates and tracks
workload elements

Dynamically
Urgency Policy enforces policies

J

Waiting time Deadline Manages global
Resource requirements resource utilization

Override Policy

User Job
Department Project

FIGURE1-2 Correlation Among Policies in a Grid Engine System

Grid Engine System Components

The following sections explain the functions of the most important grid engine system
components.

26 Sun N1 Grid Engine 6.1 User's Guide « May 2007

Grid Engine System Components

Hosts

Four types of hosts are fundamental to the grid engine system:
= Master host

= Execution hosts

= Administration hosts

= Submit hosts

Master Host

The master host is central to the overall cluster activity. The master host runs the master
daemon sge_gmaster and the scheduler daemon sge_schedd. Both daemons control all grid
engine system components, such as queues and jobs. The daemons maintain tables about the
status of the components, user access permissions, and the like.

By default, the master host is also an administration host and a submit host.

Execution Hosts

Execution hosts are systems that have permission to execute jobs. Therefore execution hosts
have queue instances attached to them. Execution hosts run the execution daemon sge_execd.

Administration Hosts

Administration hosts are hosts that have permission to carry out any kind of administrative
activity for the grid engine system.

Submit Hosts

Submit hosts enable users to submit and control batch jobs only. In particular, a user who is
logged in to a submit host can submit jobs with the gsub command, can monitor the job status
with the gstat command, and can use the grid engine system OSF/1 Motif graphical user
interface QMON, which is described in “QMON, the Grid Engine System's Graphical User Interface”
on page 30.

Note - A system can act as more than one type of host.

Daemons

Three daemons provide the functionality of the grid engine system.

Chapter 1 - Introduction to the N1™ Grid Engine 6.1 Software 27

Grid Engine System Components

28

sge gmaster —The Master Daemon

The center of the cluster's management and scheduling activities, sge_gmaster maintains tables
about hosts, queues, jobs, system load, and user permissions. sge_qmaster receives scheduling
decisions from sge_schedd and requests actions from sge_execd on the appropriate execution
hosts.

sge_schedd -The Scheduler Daemon

The scheduling daemon maintains an up-to-date view of the cluster's status with the help of
sge_gmaster. The scheduling daemon makes the following scheduling decisions:

= Which jobs are dispatched to which queues
= How to reorder and reprioritize jobs to maintain share, priority, or deadline

The daemon then forwards these decisions to sge_gmaster, which initiates the required
actions.

sge execd -The Execution Daemon

The execution daemon is responsible for the queue instances on its host and for the running of
jobs in these queue instances. Periodically, the execution daemon forwards information such as
job status or load on its host to sge_gmaster.

Queues

A queue is a container for a class of jobs that are allowed to run on one or more hosts
concurrently. A queue determines certain job attributes, for example, whether the job can be
migrated. Throughout its lifetime, a running job is associated with its queue. Association with a
queue affects some of the things that can happen to a job. For example, if a queue is suspended,
all jobs associated with that queue are also suspended.

Jobs need not be submitted directly to a queue. You need to specify only the requirement profile
of the job. A profile might include requirements such as memory, operating system, available
software, and so forth. The grid engine software automatically dispatches the job to a suitable
queue and a suitable host with a light execution load. If you submit a job to a specified queue,
the job is bound to this queue. As a result, the grid engine system daemons are unable to select a
better-suited device or a device that has a lighter load.

A queue can reside on a single host, or a queue can extend across multiple hosts. For this reason,
grid engine system queues are also referred to as cluster queues. Cluster queues enable users and
administrators to work with a cluster of execution hosts by means of a single queue
configuration. Each host that is attached to a cluster queue receives its own queue instance from
the cluster queue.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Grid Engine System Components

Client Commands

The command-line user interface is a set of ancillary programs (commands) that enable you to
do the following tasks:

Manage queues

Submit and delete jobs

Check job status

Suspend or enable queues and jobs

The grid engine system provides the following set of ancillary programs.

Chapter 1 « Introduction to the N

gacct — Extracts arbitrary accounting information from the cluster log file.
galter - Changes the attributes of submitted but pending jobs.
gconf — Provides the user interface for cluster configuration and queue configuration.

qdel - Provides the means for a user, operator, or manager to send signals to jobs or to
subsets thereof.

ghold - Holds back submitted jobs from execution.
ghost - Displays status information about execution hosts.

qlogin - Initiates a telnet or similar login session with automatic selection of a low-loaded,
suitable host.

gmake — A replacement for the standard UNIX make facility. gnake extends make by its ability
to distribute independent make steps across a cluster of suitable machines.

gmod — Enables the owner to suspend or enable a queue. All currently active processes that
are associated with this queue are also signaled.

gmon — Provides an X Windows Motif command interface and monitoring facility.
gresub — Creates new jobs by copying running or pending jobs.

qrls — Releases jobs from holds that were previously assigned to them, for example, through
ghold.

qrsh — Can be used for various purposes, such as the following:

= To provide remote execution of interactive applications through the grid engine system.
grsh is comparable to the standard UNIX facility rsh.

= To allow for the submission of batch jobs that, upon execution, support terminal I/O and
terminal control. Terminal I/O includes standard output, standard error, and standard
input.

= To provide a submission client that remains active until the batch job finishes.

= To allow for the grid engine software-controlled remote execution of the tasks of parallel
jobs.

1™ Grid Engine 6.1 Software 29

QMON, the Grid Engine System's Graphical User Interface

= gselect - Printsa list of queue names corresponding to specified selection criteria. The
output of gselect is usually sent to other grid engine system commands to apply actions on
a selected set of queues.

= gsh - Opensan interactive shell in an xterm on a lightly loaded host. Any kind of interactive
jobs can be run in this shell.

= gstat - Provides a status listing of all jobs and queues associated with the cluster.
= gsub - The user interface for submitting batch jobs to the grid engine system.

= gtcsh - A fully compatible replacement for the widely known and used UNIX C shell (csh)
derivative, tcsh. gtcsh provides a command shell with the extension of transparently
distributing execution of designated applications to suitable and lightly loaded hosts
through grid engine software.

QMON, the Grid Engine System's Graphical User Interface

30

You can use QMON, the graphical user interface (GUI) tool, to accomplish most grid engine
system tasks. Figure 1-3 shows the QMON Main Control window, which is often the starting point
for both user and administrator functions. Each icon on the Main Control window is a GUI
button that you click to start a variety of tasks. To see a button's name, which also describes its
function, rest the pointer over the button.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

QMON, the Grid Engine System's Graphical User Interface

Complex

Configuration

Submit_|
Jobs

Queue __
Control

Job
Control

User ;
Configuration

Parallel
Environment
Configuration

Checkpointing

Environment
Configuration

FIGURE 1-3 QMON Main Control Window, Defined

Chapter 1 - Introduction to the N1T™ Grid Engine 6.1 Software

&

Policy
Configuration

"

Object
Browser

Project Exit

Configuration

31

Host
ConfigL

Cluster
Configu

Schedu
Configu

Calend:
Configu

32

L K R 4 CHAPTER 2

Navigating the Grid Engine System

This chapter describes how to display information about grid engine system components such
as users, queues, hosts, and job attributes. The chapter also introduces some basic concepts and
terminology that can help you begin to use the software. For complete background information
about the product, see Chapter 1.

This chapter also includes instructions for accomplishing the following tasks:

“Launching the QMON Main Control Window” on page 33
“Customizing QMON” on page 34

“Displaying a List of Queues” on page 38

“How to Display Queue Properties With QMON” on page 39
“Displaying Queue Properties From the Command Line” on page 40
“Finding the Name of the Master Host” on page 41

“Displaying a List of Execution Hosts” on page 42

“Displaying a List of Administration Hosts” on page 42

“Displaying a List of Submit Hosts” on page 42

“Displaying a List of Requestable Attributes” on page 44

QMON Main Control Window

The grid engine system features a graphical user interface (GUI) command tool, the QMON Main
Control window. The QMON Main Control window enables users to perform most grid engine
system functions, including submitting jobs, controlling jobs, and gathering important
information.

Launching the QMON Main Control Window

To launch the QMON Main Control window, from the command line type the following
command:

33

QMON Main Control Window

34

% qgmon

After a message window is displayed, the QMON Main Control window appears.

—| QMON +++ Main Control | - |_|
File Task Help

#|0|+]w/e|e|o|
BTN

See Figure 1-3 to identify the meaning of the icons. The names of the icon buttons appear on
screen as you rest the pointer over the buttons. The names describe the functions of the buttons.

Many instructions in this guide call for using the QMON Main Control window.

Customizing QMON

The look and feel of QMON is largely defined by a specifically designed resource file. Reasonable
defaults are compiled in sge-root/qmon/Qmon, which also includes a sample resource file.

The cluster administration can do any of the following:

= Install site-specific defaults in standard locations such as
/usr/lib/X11/app-defaults/Qmon

= Include QMON-specific resource definitions in the standard . Xdefaults or . Xresources files

= DPutasite-specific Qmon file in a location referenced by standard search paths such as
XAPPLRESDIR

Ask your administrator if any of these cases are relevant in your environment.

In addition, users can configure personal preferences. Users can modify the Qmon file. The Qmon
file can be moved to the home directory or to another location pointed to by the private
XAPPLRESDIR search path. Users can also include the necessary resource definitions in their
private . Xdefaults or .Xresources files. A private Qmon resource file can also be installed using
the xrdb command. The xrdb command can be used during operation. xrdb can also be used at
startup of the X11 environment, for example, ina .xinitrc resource file.

Refer to the comment lines in the sample Qmon file for detailed information on the possible
customizations.

You can also use the Job Customize and Queue Customize dialog boxes to customize gmon.
These dialog boxes are shown in “Customizing the Job Control Display” on page 90 and in
“Filtering Cluster Queues and Queue Instances” on page 105. In both dialog boxes, users can use

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Users and User Categories

the Save button to store the filtering and display definitions to the file . gmon_preferences in
their home directories. When QMON is restarted, this file is read, and QMON reactivates the
previously defined behavior.

Users and User

Categories

Users of the grid engine system fall into four categories. Users in each category have access to
their own set of grid engine system commands.

= Managers - Managers have full capabilities to manipulate the grid engine system. By
default, the superusers of all administration hosts have manager privileges.

= Operators — Operators can perform many of the same commands as managers, with the
exception of making configuration changes, for example, adding, deleting, or modifying
queues.

= Owners — Queue owners can suspend or enable the queues that they own. Queue owners
can also suspend or enable the jobs within the queues they own. Queue owners have no
other management permissions.

= Users - Users have certain access permissions, as described in “User Access Permissions” on
page 36. Users have no cluster management or queue management capabilities.

Table 2-1 shows the command capabilities that are available to the different user categories.

TABLE2-1 User Categories and Associated Command Capabilities

Command Manager Operator Owner User

gacct Full Full Own jobs only Own jobs only

galter Full Full Own jobs only Own jobs only

gconf Full No system setup Show only Show only

modifications configurationsand configurations and

access permissions access permissions

qdel Full Full Own jobs only Own jobs only

ghold Full Full Own jobs only Own jobs only

ghost Full Full Full Full

qlogin Full Full Full Full

gmod Full Full Own jobs and Own jobs only
owned queues only

gmon Full No system setup No configuration No configuration

modifications

changes

changes

Chapter2

+ Navigating the Grid Engine System

35

Users and User Categories

36

TABLE 2-1 User Categories and Associated Command Capabilities (Continued)
Command Manager Operator Owner User
grexec Full Full Full Full
gselect Full Full Full Full
gsh Full Full Full Full
gstat Full Full Full Full
qsub Full Full Full Full

User Access Permissions

The administrator can restrict access to queues and other facilities, such as parallel
environment interfaces. Access can be restricted to certain users or user groups.

Note - The grid engine software automatically takes into account the access restrictions
configured by the cluster administration. The following sections are important only if you want
to query your personal access permission.

For the purpose of restricting access permissions, the administrator creates and maintains
access lists (ACLs). The ACLs contain user names and UNIX group names. The ACLs are then
added to access-allowed or access-denied lists in the queue or in the parallel environment
interface configurations. For more information, see the queue_conf(5) or sge_pe(5) man
pages.

Users who belong to ACLs that are listed in access-allowed-lists have permission to access the
queue or the parallel environment interface. Users who are members of ACLs in
access-denied-lists cannot access the resource in question.

ACLs are also used to define projects, to which the corresponding users have access, that is, to
which users can subordinate their jobs. The administrator can also restrict access to cluster
resources on a per project basis.

The User Configuration dialog box opens when you click the User Configuration button in the
QMON Main Control window. This dialog box enables you to query for the ACLs to which you
have access. For details, see Chapter 4, “Managing User Access,” in Sun N1 Grid Engine 6.1
Administration Guide.

You can display project access by clicking the Project Configuration icon in the QMON Main
Control window. Details are described in “Defining Projects” in Sun N1 Grid Engine 6.1
Administration Guide.

From the command line, you can get a list of the currently configured ACLs with the following
command:

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Users and User Categories

% qconf -sul
You can list the entries in one or more access lists with the following command:
% qconf -su acl-namel,...]

The ACLs consist of user account names and UNIX group names, with the UNIX group names
identified by a prefixed @ sign. In this way, you can determine which ACLs your account belongs
to.

Note - If you have permission to switch your primary UNIX group with the newgrp command,
your access permissions might change.

You can check for those queues or parallel environment interfaces to which you have access or
to which your access is denied. Query the queue or parallel environment interface
configuration, as described in “Displaying Queues and Queue Properties” on page 38 and
“Configuring Parallel Environments With QMON” in Sun N1 Grid Engine 6.1 Administration
Guide.

The access-allowed-lists are named user lists. The access-denied-lists are named
xuser_lists. If your user account or primary UNIX group is associated with an
access-allowed-list, you are allowed to access the resource in question. If you are associated with
an access-denied-list, you cannot access the queue or parallel environment interface. If both
lists are empty, every user with a valid account can access the resource in question.

You can control project configurations from the command line using the following commands:

% qconf -sprjl
% qconf -sprj project-name

These commands display a list of defined projects and a list of particular project configurations,
respectively. The projects are defined through ACLs. You must query the ACL configurations,
as described in the previous paragraph.

If you have access to a project, you are allowed to submit jobs that are subordinated to the
project. You can submit such jobs from the command line using the following command:

% qsub -P project-name options

The cluster configurations, host configurations, and queue configurations define project access
in the same way as for ACLs. These configurations use the project_lists and xproject_lists
parameters for this purpose.

Chapter2 - Navigating the Grid Engine System 37

Displaying Queues and Queue Properties

Managers, Operators, and Owners

Use the following command to display a list of grid engine system managers:

% gconf -sm

Use the following command to display a list of operators:

% qconf -so

Note - The superuser of an administration host is considered to be a manager by default.

Users who are owners of a certain queue are contained in the queue configuration, as described
in “Displaying Queues and Queue Properties” on page 38. You can display the queue
configuration by typing the following command:

% qconf -sq {cluster-queue | queue-instance | queue-domain}

The queue configuration entry in question is called owner_list.

Displaying Queues and Queue Properties

To make the best use of the grid engine system at your site, you should be familiar with the
queue structure. You should also be familiar with the properties of the queues that are
configured for your grid engine system.

Displaying a List of Queues

The QMON Queue Control dialog box is shown and described in “Monitoring and Controlling
Queues With QMON” on page 98. This dialog box provides a quick overview of the installed
queues and their current status.

To display a list of queues, from the command line, type the following command.

% qconf -sql

Displaying Queue Properties

You can use either QMON or the command line to display queue properties.

38 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Displaying Queues and Queue Properties

Example 2-1

How to Display Queue Properties With QMON
Launch the QMON Main Control window.

Click the Queue Control button.
The Cluster Queue dialog box appears.

Select a queue, and then click Show Detached Settings.

The Browser dialog box appears.
In the Browser dialog box, click Queue.
In the Cluster Queue dialog box, click the Queue Instances tab.

Select a queueinstance.

The Browser dialog box lists the queue properties for the selected queue instance.

Queue Property Information

The following figure shows an example of some of the queue property information that is
displayed.

Chapter2 - Navigating the Grid Engine System 39

Displaying Queues and Queue Properties

A NI GE

Object Browser

slots used:
shell:

prolog:

epilog:

shell start mode:
starter_method:
suspend_method:
resume_method:
terminate_method:
Notify Job Interval:
tmpdic:

Access List:

No Access List:
Subordinates:
Complex Values:

i
/hin/osh
HONE
HONE
posix_compliant
HONE
HONE
HONE
HONE
00:00:60
Stmp

dilbert. g=0
nastran=5 slots=1

= _Objects

stdout |
stderr |
Job |
Messagesl

Project List:
HProject List:

calendar: NONE
initial state: default
Soft Real Time: INFINITY
Hard Real Time: 24.00:00
Soft Cpu: 08:00:00
Hard Cpu: 12.00:00
Soft File Size: INFINITY
Hard File Size: INFINITY
Soft Data Size: INFINITY
Hard Data Size: INFINITY
Soft Stack Size: INFINITY
Hard Stack Size: INFINITY
Soft Core Size: INFINITY
Hard Core Size: INFINITY
Soft Resident Set Size: INFINITY
Hard Resident Set Size: INFINITY
Soft ¥irtual Memory: Size INFINITY Clear
Hard Virtwal Memory Size: INFINITY

Done
Help

Displaying Queue Properties From the Command Line

To display queue properties from the command line, type the following command:

% qconf -sq {queue | queue-instance | queue-domain}

Information like that shown in the previous figure is displayed.

Interpreting Queue Property Information
You can find a detailed description of each queue property in the queue_conf(5) man page.

The following is a list of some of the more important parameters:

m gname — The queue name as requested.
® hostlist - Alist of hosts and host groups associated with the queue.

= processors — The processors of a multiprocessor system to which the queue has access.

40 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Hosts and Host Functionality

iif Caution - Do not change this value unless you are certain that you need to change it.

= gtype - The type of job that can run in this queue. Currently, type can be either batch or
interactive.

= slots - The number of jobs that can be executed concurrently in that queue.

= owner_list - The owners of the queue, which is explained in “Managers, Operators, and
Owners” on page 38

= user_lists - The user or group identifiers in the user access lists who are listed under this
parameter can access the queue. For more information, see “User Access Permissions” on
page 36.

= xuser_lists - The user or group identifiers in the user access lists who are listed under this
parameter cannot access the queue. For more information, see “User Access Permissions”
on page 36.

= project_lists - Jobs submitted with the project identifiers that are listed under this
parameter can access the queue. For more information, see “Defining Projects” in Sun N1
Grid Engine 6.1 Administration Guide.

= xproject_lists - Jobs submitted with the project identifiers that are listed under this
parameter cannot access the queue. For more information, see “Defining Projects” in Sun
N1 Grid Engine 6.1 Administration Guide.

= complex_values — Assigns capacities as provided for this queue for certain complex
resource attributes. For more information, see “Requestable Attributes” on page 42.

Hosts and Host Functionality

Clicking the Host Configuration button in the QMON Main Control window displays an overview
of the functionality that is associated with the hosts in your cluster. However, without manager
privileges, you cannot apply any changes to the configuration.

The host configuration dialog boxes are described in Chapter 1, “Configuring Hosts and
Clusters,” in Sun N1 Grid Engine 6.1 Administration Guide. The following sections describe the
commands used to retrieve host information from the command line.

Finding the Name of the Master Host

The location of the master host can migrate between the current master host and one of the
shadow master hosts at any time. Therefore, the location of the master host should be
transparent to the user.

With a text editor, open the sge-root/cell/ common/act_qgmaster file.

Chapter2 - Navigating the Grid Engine System 41

Requestable Attributes

The name of the current master host is in the file.

Displaying a List of Execution Hosts

To display a list of hosts that are configured as execution hosts in your cluster, use the following
commands:

% qconf -sel
% qconf -se hostname
% ghost

The qconf -sel command displays a list of the names of all hosts that are currently configured
as execution hosts. The qconf -se command displays detailed information about the specified
execution host. The ghost command displays status and load information about the execution
hosts.

See the host_conf(5) man page for details on the information displayed using gconf. See the
ghost(1) man page for details on its output and other options.

Displaying a List of Administration Hosts

Use the following command to display a list of hosts with administrative permission:

% qconf -sh

Displaying a List of Submit Hosts

Use the following command to display a list of submit hosts:

% qconf -ss

Requestable Attributes

42

When users submit a job, a requirement profile can be specified for the job. Users can specify
attributes or characteristics of a host or queue that the job requires in order to run successfully.
The grid engine software maps these job requirements onto the host and queue configurations
of the cluster and therefore finds suitable hosts for a job.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Requestable Attributes

The attributes that can be used to specify the job requirements are related to one of the
following:

= The cluster, for example, space required on a network shared disk
= Individual hosts, for example, operating system architecture
= Queues, for example, permitted CPU time

The attributes can also be derived from site policies such as the availability of installed software
only on certain hosts.

The available attributes include the following:
= Queue property list - See “Displaying Queues and Queue Properties” on page 38

= List of global and host-related attributes — See “Assigning Resource Attributes to Queues,
Hosts, and the Global Cluster” in Sun N1 Grid Engine 6.1 Administration Guide

m Administrator-defined attributes

For convenience, however, the administrator commonly chooses to define only a subset of all
available attributes to be requestable.

The currently requestable attributes are displayed in the Requested Resources dialog box, which
is shown in the following figure.

— QMON |

Requested Resources

Parallel Job Reguest: mpi 4-16
Hard Resocurces 2vailable Resources

&b arch == solarisg4 @ h_rt —

a h_vmem == 750k J # h_stack Cancel

23 permas == a h_vmem Clear
& hostname
M mem_free
M mem_total
(" Hard Request _) Soft Request | mem_used
Soft Resources %3 nastran o
| "2 num_proc
23 pamcrash
23 permas
&b gname
M 5_core
4@ 5 cpu

Use the QMON Submit Job dialog box to access the Requested Resources dialog box. Requestable
attributes are listed under Available Resources.

Chapter2 - Navigating the Grid Engine System 43

Requestable Attributes

Displaying a List of Requestable Attributes

To display the list of configured resource attributes, from the command line type the following
command:

% qconf -sc

The grid engine system complex contains the definitions for all resource attributes. For more
information about resource attributes, see Chapter 3, “Configuring Complex Resource
Attributes,” in Sun N1 Grid Engine 6.1 Administration Guide. See also the complex format
description on the complex(5) man page.

Sample output from the qconf -sc command is shown in Example 2-2.

EXAMPLE2-2 Complex Attributes Displayed

gimli% gconf -sc

#name shortcut type relop requestable consumable default urgency
NN
arch a RESTRING == YES NO NONE 0
calendar c STRING == YES NO NONE 0
cpu cpu DOUBLE >= YES NO 0 0
h_core h_core MEMORY <= YES NO 0 0
h_cpu h_cpu TIME <= YES NO 0:0:0 0
h_data h_data MEMORY <= YES NO 0 0
h fsize h_fsize MEMORY <= YES NO 0 0
h_rss h_rss MEMORY <= YES NO 0 0
h rt h rt TIME <= YES NO 0:0:0 0
h_stack h_stack MEMORY <= YES NO 0 0
h_vmem h_vmem MEMORY <= YES NO 0 0
hostname h HOST == YES NO NONE 0
load_avg la DOUBLE >= NO NO 0 0
load_long 1 DOUBLE >= NO NO 0 0
load medium m DOUBLE >= NO NO 0 0
load_short 1s DOUBLE >= NO NO 0 0
mem_free mf MEMORY <= YES NO 0 0
mem total mt MEMORY <= YES NO 0 0
mem_used mu MEMORY >= YES NO 0 0
min_cpu_interval mci TIME <= NO NO 0:0:0 0
np_load_avg nla DOUBLE >= NO NO 0 0
np_load long nll DOUBLE >= NO NO 0 0
np_load medium nlm DOUBLE >= NO NO 0 0
np_load_short nls DOUBLE >= NO NO 0 0
num_proc p INT == YES NO 0 0
gname q STRING == YES NO NONE 0
rerun re BOOL == NO NO 0 0
s _core s _core MEMORY <= YES NO 0 0
s_cpu s_cpu TIME <= YES NO 0:0:0 0

44 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Requestable Attributes

s data

s fsize
s_rss

s rt

s stack
s_vmem
seq_no

slots
swap_free
swap_rate
swap_rsvd
swap_total
swap_used
tmpdir
virtual free
virtual total
virtual used

EXAMPLE2-2 Complex Attributes Displayed (Continued)

s_data MEMORY <= YES NO 0 0
s fsize MEMORY <= YES NO 0 0
S_rss MEMORY <= YES NO 0 0
s rt TIME <= YES NO 0:0:0 0
s_stack MEMORY <= YES NO 0 0
S_vmem MEMORY <= YES NO 0 0
seq INT == NO NO 0 0
s INT <= YES YES 1 1000
sf MEMORY <= YES NO 0 0
sr MEMORY >= YES NO 0 0
srsv MEMORY >= YES NO 0 0
st MEMORY <= YES NO 0 0
su MEMORY >= YES NO 0 0
tmp STRING == NO NO NONE 0
vf MEMORY <= YES NO 0 0
vt MEMORY <= YES NO 0 0
vu MEMORY >= YES NO 0 0

>#< starts a comment but comments are not saved across edits --------

The column name is identical to the first column displayed by the gconf -sq command. The
shortcut column contains administrator-definable abbreviations for the full names in the first
column. The user can supply either the full name or the shortcut in the request option of a gsub
command.

The column requestable tells whether the resource attribute can be used in a gsub command.
The administrator can, for example, disallow the cluster's users to request certain machines or
queues for their jobs directly. The administrator can disallow direct requests by setting the
entries gname, hostname, or both, to be unrequestable. Making queues or hosts unrequestable
implies that feasible user requests can be met in general by multiple queues, which enforces the
load balancing capabilities of the grid engine system.

The column relop defines the relational operator used to compute whether a queue or a host
meets a user request. The comparison that is executed is as follows:

User Request relop Queue/Host/... -Property

If the result of the comparison is false, the user's job cannot be run in the queue or on the host.
For example, let the queue q1 be configured with a soft CPU time limit of 100 seconds. Let the
queue g2 be configured to provide 1000 seconds soft CPU time limit. See the queue_conf(5)
and the setrlimit(2) man pages for a description of user process limits.

The columns consumable and default affect how the administrator declares consumable
resources. See “Consumable Resources” in Sun N1 Grid Engine 6.1 Administration Guide.

The user requests consumables just like any other attribute. The grid engine system internal
bookkeeping for the resources is different, however.

Chapter2 - Navigating the Grid Engine System 45

Requestable Attributes

46

Assume that a user submits the following request:
% qsub -1 s cpu=0:5:0 nastran.sh

The s_cpu=0:5:0 request asks for a queue that grants at least 5 minutes of soft limit CPU time.
Therefore, only queues providing at least 5 minutes soft CPU runtime limit are set up properly
to run the job. See the qsub(1) man page for details on the syntax.

Note - The grid engine software considers workload information in the scheduling process only
if more than one queue or host can run a job.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

L K R 4 CHAPTER 3

Submitting Jobs

This chapter provides background information about submitting jobs, as well as instructions
for how to submit jobs for processing. The chapter begins with an example of how torun a
simple job. The chapter then continues with instructions for how to run more complex jobs.

Instructions for accomplishing the following tasks are included in this chapter.

= “How To Submit a Simple Job From the Command Line” on page 48
= “How To Submit a Simple Job With QMON” on page 49

“Submitting Extended Jobs With QMON” on page 59

“Submitting Extended Jobs From the Command Line” on page 63
“Submitting Advanced Jobs With QMON” on page 63

= “Submitting Advanced Jobs From the Command Line” on page 66
“Submitting an Array Job With QMON” on page 72

“Submitting an Array Job From the Command Line” on page 72
“Submitting Interactive Jobs With QMON” on page 74

“Submitting Interactive Jobs With qsh” on page 75

“Submitting Interactive Jobs With qlogin” on page 75

Submitting a Simple Job

Use the information and instructions in this section to become familiar with basic procedures
involved in submitting jobs.

Note - If you installed the N1 Grid Engine 6.1 software under an unprivileged user account, you

must log in as that user to be able to run jobs. See “Installation Accounts” in Sun N1 Grid
Engine 6.1 Installation Guide for details.

47

Submitting a Simple Job

v

48

How To Submit a Simple Job From the Command Line

Before you run any grid engine system command, you must first set your executable search path
and other environment conditions properly.

From the command line, type one of the following commands.
= Ifyouare using csh or tcsh as your command interpreter, type the following:
% source sge-root/cell/common/settings.csh

sge-root specifies the location of the root directory of the grid engine system. This directory
was specified at the beginning of the installation procedure.

= Ifyouare using sh, ksh, or bash as your command interpreter, type the following:

. sge-root/cell/common/settings.sh

Note - You can add these commands to your . login, . cshrc, or . profile files, whichever is
appropriate. By adding these commands, you guarantee proper settings for all interactive
session you start later.

Submit a simple job script to your cluster by typing the following command:

% qsub simple.sh

The command assumes that simple. sh is the name of the script file, and that the file is located
in your current working directory.

You can find the following job in the file /sge-root/examples/jobs/simple.sh.

#!/bin/sh

#

#

(c) 2004 Sun Microsystems, Inc. Use is subject to license terms.

This is a simple example of a SGE batch script

request Bourne shell as shell for job
#$ -S /bin/sh

#

print date and time

date

Sleep for 20 seconds
sleep 20

print date and time again
date

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting a Simple Job

If the job submits successfully, the gsub command responds with a message similar to the
following example:

your job 1 (“simple.sh”) has been submitted

Type the following command to retrieve status information about your job.
% gstat

You should receive a status report that provides information about all jobs currently known to
the grid engine system. For each job, the status report lists the following items:

= Job ID, which is the unique number that is included in the submit confirmation
= Name of the job script

Owner of the job

State indicator; for example, r means running

Submit or start time

= Name of the queue in which the job runs

If gstat produces no output, no jobs are actually known to the system. For example, your job
might already have finished.

You can control the output of the finished jobs by checking their stdout and stderr redirection
files. By default, these files are generated in the job owner‘s home directory on the host that ran
the job. The names of the files are composed of the job script file name with a . o extension for
the stdout file and a . e extension for the stderr file, followed by the unique job ID. The stdout
and stderr files of your job can be found under the names simple.sh.oland simple.sh.el
respectively. These names are used if your job was the first ever executed in a newly installed
grid engine system.

How To Submit a Simple Job With QMON

A more convenient way to submit and control jobs and of getting an overview of the grid engine
system is the graphical user interface QMON. Among other facilities, QMON provides a job
submission dialog box and a Job Control dialog box for the tasks of submitting and monitoring
jobs.

Type the following command to start the QMON GUI:

% gmon

During startup, a message window appears, and then the QMON Main Control window appears.

Chapter3 « Submitting Jobs 49

Submitting a Simple Job

Click here first . . .
... and then click here.

FIGURE3-1 QMON Main Control Window

2 Clickthe Job Control button, and then click the Submit Jobs button.

Tip - The button names, such as Job Control, are displayed when you rest the mouse pointer
over the buttons.

The Submit Job and the Job Control dialog boxes appear, as shown in the following figures.

50 Sun N1 Grid Engine 6.1 User's Guide « May 2007

Submitting a Simple Job

Click here first to ... then click Submit
select the script file . . . to submit the job.

FIGURE3-2 Submit Job Dialog Box

Chapter3 « Submitting Jobs 51

Submitting a Simple Job

FIGURE3-3 Job Control Dialog Box

3 Inthe SubmitJob dialog box, click the icon at the right of the Job Script field.
The Select a File dialog box appears.

52 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Batch Jobs

= Select a File

Filter

ouseSystems/sgeees. Fexamplesiobs”

Directorie Files

jobsi. = |jobnet_submitter.sh =
johsi. pascal.sh

priniwarm.sh

simple.sh

sleeper.sh

step_A_array_submitter.sh
_array_submitter.sh

]
Please type or select a filename

tems/sgeees.3/examplesiobsivorker.sH

J | ok | Fiter | cancel|

FIGURE3-4 Select a File Dialog Box

4 Selectyourscriptfile.

For example, select the file simple. sh that was used in the command line example.
5 Click OKto close the Select a File dialog box.

6 Onthe SubmitJob dialog box, click Submit.

After a few seconds you should be able to monitor your job on the Job Control dialog box. You
first see your job on the Pending Jobs tab. The job quickly moves to the Running Jobs tab once
the job starts running.

Submitting Batch Jobs

The following sections describe how to submit more complex jobs through the grid engine
system.

About Shell Scripts

Shell scripts, also called batch jobs, are a sequence of command-line instructions that are
assembled in a file. Script files are made executable by the chmod command. If scripts are
invoked, a command interpreter is started. Each instruction is interpreted as if the instruction

Chapter3 « Submitting Jobs 53

Submitting Batch Jobs

54

were typed manually by the user who is running the script. csh, tcsh, sh, or ksh are typical
command interpreters. You can invoke arbitrary commands, applications, and other shell
scripts from within a shell script.

The command interpreter can be invoked as login shell. To do so, the name of the command
interpreter must be contained in the login_shells list of the grid engine system configuration
that is in effect for the particular host and queue that is running the job.

Note - The grid engine system configuration might be different for the various hosts and queues
configured in your cluster. You can display the effective configurations with the -sconf and -sq
options of the gconf command. For detailed information, see the qconf(1) man page.

If the command interpreter is invoked as login shell, the environment of your job is the same as
ifyoulogged in and ran the script. In using csh, for example, . login and . cshrc are executed in
addition to the system default startup resource files, such as /etc/login, whereas only . cshrc
is executed if csh is not invoked as login-shell. For a description of the difference between
being invoked and not being invoked as login-shell, see the man page of your command
interpreter.

Example of a Shell Script

Example 3-1 is a simple shell script. The script first compiles the application flow from its
Fortran77 source and then runs the application.

EXAMPLE3-1 Simple Shell Script

#1/bin/csh

This is a sample script file for compiling and

running a sample FORTRAN program under N1 Grid Engine 6
cd TEST

Now we need to compile the program "flow.f" and

name the executable "flow".

f77 flow.f -o flow

Your local system user's guide provides detailed information about building and customizing

shell scripts. You might also want to look at the sh, ksh, csh, or tcsh man page. The following

sections emphasize special things that you should consider when you prepare batch scripts for
the grid engine system.

In general, you can submit to the grid engine system all shell scripts that you can run from your
command prompt by hand. Such shell scripts must not require a terminal connection, and the
scripts must not need interactive user intervention. The exceptions are the standard error and
standard output devices, which are automatically redirected. Therefore, Example 3-1 is ready
to be submitted to the grid engine system and the script will perform the desired action.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Batch Jobs

Extensions to Regular Shell Scripts

Some extensions to regular shell scripts influence the behavior of scripts that run under grid
engine system control. The following sections describe these extensions.

How a Command Interpreter Is Selected

At submit time, you can specify the command interpreter to use to process the job script file as
shown in Figure 3-5. However, if nothing is specified, the configuration variable
shell_start_mode determines how the command interpreter is selected:

= Ifshell_start_mode issetto unix_behavior, the first line of the script file specifies the
command interpreter. The first line of the script file must begin with #!. If the first line does
not begin with #!, the Bourne Shell sh is used by default.

= Forall other settings of shell_start_mode, the default command interpreter is determined
by the shell parameter for the queue where the job starts. See “Displaying Queues and
Queue Properties” on page 38 and the queue_conf(5) man page.

Output Redirection

Since batch jobs do not have a terminal connection, their standard output and their standard
error output must be redirected into files. The grid engine system enables the user to define the
location of the files to which the output is redirected. Defaults are used if no output files are
specified.

The standard location for the files is in the current working directory where the jobs run. The
default standard output file name is job-name. ojob-id, the default standard error output is
redirected to job-name>. ejob-id. The job-name can be built from the script file name, or
defined by the user. See, for example, the -N option in the submit(1) man page. job-idis a
unique identifier that is assigned to the job by the grid engine system.

For array job tasks, the task identifier is added to these filenames, separated by a dot. The
resulting standard redirection paths are job-name. ojob-id . task-id> and
job-name. ejob-id. task-id. For more information, see “Submitting Array Jobs” on page 71.

In case the standard locations are not suitable, the user can specify output directions with QMON,
as shown in Figure 3-6. Or the user can use the -e and - o options to the gsub command to
specify output directions. Standard output and standard error output can be merged into one
file. The redirections can be specified on a per execution host basis, in which case, the location
of the output redirection file depends on the host on which the job is executed. To build custom
but unique redirection file paths, use dummy environment variables together with the gqsub -e
and -o options. A list of these variables follows.

= HOME - Home directory on execution machine
= USER - User ID of job owner
= JOB_ID - Currentjob ID

Chapter3 « Submitting Jobs 55

Submitting Batch Jobs

56

= JOB_NAME — Current job name; see the -N option
= HOSTNAME — Name of the execution host
= TASK ID - Array job task index number

When the job runs, these variables are expanded into the actual values, and the redirection path
is built with these values.

See the gsub(1) man page for further details.

Active Comments

Lines with a leading # sign are treated as comments in shell scripts. However, the grid engine
system recognizes special comment lines and uses these lines in a special way. The special
comment script line is treated as part of the command line argument list of the gsub command.
The gqsub options that are supplied within these special comment lines are also interpreted by
the QMON Submit Job dialog box. The corresponding parameters are preset when a script file is
selected.

By default, the special comment lines are identified by the #$ prefix string. You can redefine the
prefix string with the qsub -C command.

This use of special comments is called script embedding of submit arguments. The following
example shows a script file that uses script-embedded command-line options.

EXAMPLE3-2 Using Script-Embedded Command Line Options
#!/bin/csh

#Force csh if not Grid Engine default
#shell

#$ -S /bin/csh

This is a sample script file for compiling and

running a sample FORTRAN program under N1 Grid Engine 6
We want Grid Engine to send mail

when the job begins

and when it ends.

#$ -M EmailAddress
-m b e

We want to name the file for the standard output
and standard error.

#$ -o flow.out -j vy

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Batch Jobs

EXAMPLE3-2 Using Script-Embedded Command Line Options (Continued)

Change to the directory where the files are located.
cd TEST

Now we need to compile the program "flow.f" and
name the executable "flow".

f77 flow.f -o flow
Once it is compiled, we can run the program.

flow

Environment Variables
When a job runs, several variables are preset into the job's environment.

= ARC - The architecture name of the node on which the job is running. The name is compiled
into the sge_execd binary.

= SGE_ROOT - The root directory of the grid engine system as set for sge_execd before startup,
or the default /usr/SGE directory.

= SGE_BINARY_PATH - The directory in which the grid engine system binaries are installed.
m SGE_CELL - The cell in which the job runs.

= SGE_JOB_SPOOL_DIR - The directory used by sge_shepherd to store job-related data while
the job runs.

= SGE_O_HOME - The path to the home directory of the job owner on the host from which the
job was submitted.

® SGE_0_HOST - The host from which the job was submitted.

= SGE_O_LOGNAME - The login name of the job owner on the host from which the job was
submitted.

® SGE_0_MAIL - The content of the MAIL environment variable in the context of the job
submission command.

= SGE_O_PATH - The content of the PATH environment variable in the context of the job
submission command.

® SGE_O_SHELL - The content of the SHELL environment variable in the context of the job
submission command.

® SGE_0_TZ- The content of the TZ environment variable in the context of the job submission
command.

= SGE_O_WORKDIR - The working directory of the job submission command.

Chapter3 « Submitting Jobs 57

Submitting Batch Jobs

58

SGE_CKPT_ENV - The checkpointing environment under which a checkpointing job runs.
The checkpointing environment is selected with the gsub - ckpt command.

SGE_CKPT_DIR - The path ckpt_dir of the checkpoint interface. Set only for checkpointing
jobs. For more information, see the checkpoint(5) man page.

SGE_STDERR_PATH — The path name of the file to which the standard error stream of the job
is diverted. This file is commonly used for enhancing the output with error messages from
prolog, epilog, parallel environment start and stop scripts, or checkpointing scripts.

SGE_STDOUT_PATH — The path name of the file to which the standard output stream of the job
is diverted. This file is commonly used for enhancing the output with messages from prolog,
epilog, parallel environment start and stop scripts, or checkpointing scripts.

SGE_TASK_ID - The task identifier in the array job represented by this task.

ENVIRONMENT — Always set to BATCH. This variable indicates that the script is run in batch
mode.

HOME — The user's home directory path as taken from the passwd file.
HOSTNAME — The host name of the node on which the job is running.

JOB_ID - A unique identifier assigned by the sge_gmaster daemon when the job was
submitted. The job ID is a decimal integer from 1 through 9,999,999.

JOB_NAME - The job name, which is built from the file name provided with the qsub
command, a period, and the digits of the job ID. You can override this default with qsub -N.

LOGNAME — The user's login name as taken from the passwd file.
NHOSTS - The number of hosts in use by a parallel job.

NQUEUES - The number of queues that are allocated for the job. This number is always 1 for
serial jobs.

NSLOTS - The number of queue slots in use by a parallel job.
PATH — A default shell search path of: /usr/local/bin:/usr/ucb:/bin:/usr/bin.

PE — The parallel environment under which the job runs. This variable is for parallel jobs
only.

PE_HOSTFILE - The path of a file that contains the definition of the virtual parallel machine
that is assigned to a parallel job by the grid engine system. This variable is used for parallel
jobs only. See the description of the $pe_hostfile parameter in sge_pe for details on the
format of this file.

QUEUE - The name of the queue in which the job is running.

REQUEST - The request name of the job. The name is either the job script file name or is
explicitly assigned to the job by the gsub -N command.

RESTARTED - Indicates whether a checkpointing job was restarted. If set to value 1, the job
was interrupted at least once. The job is therefore restarted.

SHELL — The user's login shell as taken from the passwd file.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Extended Jobs and Advanced Jobs

Note - SHELL is not necessarily the shell that is used for the job.

TMPDIR - The absolute path to the job's temporary working directory.
TMP — The same as TMPDIR. This variable is provided for compatibility with NQS.
TZ - The time zone variable imported from sge_execd, if set.

USER - The user's login name as taken from the passwd file.

Submitting Extended Jobs and Advanced Jobs

Extended jobs and advanced jobs are more complex forms of job submission. Before attempting
to submit such jobs, you should understand some important background information about the
process. The following sections describe those job processes.

Submitting Extended Jobs With QMON

The General tab of the Submit Job dialog box enables you to configure the following parameters
for an extended job. The General tab is shown in Figure 3-2.

Prefix — A prefix string that is used for script-embedded submit options. See “Active
Comments” on page 56 for details.

Job Script — The job script to use. Click the icon at the right of the Job Script field to open a
file selection box. The file selection box is shown in Figure 3-4.

Job Tasks — The task ID range for submitting array jobs. See “Submitting Array Jobs” on
page 71 for details.

Job Name - The name of the job. A default is set after you select a job script.
Job Args — Arguments to the job script.

Priority - A counting box for setting the job's initial priority This priority ranks a single
user's jobs. Priority tells the scheduler how to choose among a single user's jobs when several
of that user's jobs are in the system simultaneously.

Note - To enable users to set the priorities of their own jobs, the administrator must enable
priorities with theweight_priority parameter of the scheduler configuration. For more
information, see Chapter 5, “Managing Policies and the Scheduler,” in Sun N1 Grid
Engine 6.1 Administration Guide.

Job Share — Defines the share of the job's tickets relative to other jobs. The job share
influences only the share tree policy and the functional policy.

Chapter3 « Submitting Jobs 59

Submitting Extended Jobs and Advanced Jobs

= Start At - The time at which the job is considered eligible for execution. Click the icon at the
right of the Start At field to open a dialog box for entering the correctly formatted time:

~| Enter a String

Enter the submit time in the
following format: [[CCIY YWD DRhmm.55]
or leave the current time and press ok

‘ 200212242359.59

1 oK | Cancel|

= Project - The project to which the job is subordinated. Click the icon at the right of the
Project field to select among the available projects:

~| Select an Item

Available projects
devel
crash

Zelect a project
‘deue[

1 oK | Cancel|

= Current Working Directory — A flag that indicates whether to execute the job in the current
working directory. Use this flag only for identical directory hierarchies between the submit
host and the potential execution hosts.

= Shell - The command interpreter to use to run the job script. See “How a Command
Interpreter Is Selected” on page 55 for details. Click the icon at the right of the Shell field to
open a dialog box for entering the command interpreter specifications of the job:

~| Shell on host |
Host

Cancel

Feset

= Merge Output - A flag indicating whether to merge the job's standard output and standard
error output together into the standard output stream.

60 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Extended Jobs and Advanced Jobs

stdout — The standard output redirection to use. See “Output Redirection” on page 55 for
details. A default is used if nothing is specified. Click the icon at the right of the stdout field
to open a dialog box for entering the output redirection alternatives:

~i Stdout Path List |

Path Host Ok
Cancel

Feset

Help

stderr — The standard error output redirection to use, similar to the standard output
redirection.

stdin - The standard input file to use, similar to the standard output redirection.

Request Resources — Click this button to define the resource requirement for your job. If
resources are requested for a job, the button changes its color.

Restart depends on Queue - Click this button to define whether the job can be restarted
after being aborted by a system crash or similar events. This button also controls whether
the restart behavior depends on the queue or is demanded by the job.

Notify Job - A flag indicating whether the job is to be notified by SIGUSR1 or by SIGUSR2
signals if the job is about to be suspended or cancelled.

Hold Job - A flag indicating that either a user hold or a job dependency is to be assigned to
the job. The job is not eligible for execution as long as any type of hold is assigned to the job.
See “Monitoring and Controlling Jobs” on page 85 for more details. The Hold Job field
enables restricting the hold only to a specific range of tasks of an array job. See “Submitting
Array Jobs” on page 71 for information about array jobs.

Start Job Immediately — A flag that forces the job to be started immediately if possible, or to
be rejected otherwise. Jobs are not queued if this flag is selected.

Job Reservation — A flag specifying that resources should be reserved for this job. See
“Resource Reservation and Backfilling” in Sun N1 Grid Engine 6.1 Administration Guide for
details.

The buttons at the right side of the Submit Job dialog box enable you to start various actions:

Submit — Submit the currently specified job.

Edit - Edit the selected script file in an X terminal, using either vi or the editor defined by
the EDITOR environment variable.

Clear - Clear all settings in the Submit Job dialog box, including any specified resource
requests.

Chapter3 « Submitting Jobs 61

Submitting Extended Jobs and Advanced Jobs

62

= Reload - Reload the specified script file, parse any script-embedded options, parse default
settings, and discard intermediate manual changes to these settings. For more information,
see “Active Comments” on page 56 and “Default Request Files” on page 67. This action is
the equivalent to a Clear action with subsequent specifications of the previous script file. The
option has an effect only if a script file is already selected.

= Save Settings — Save the current settings to a file. Use the file selection box to select the file.
The saved files can either be loaded later or be used as default requests. For more
information, see Load Settings and “Default Request Files” on page 67.

= Load Settings — Load settings previously saved with the Save Settings button. The loaded
settings overwrite the current settings. See Save Settings.

= Done - Closes the Submit Job dialog box.

Extended Job Example

Figure 3-5 shows the Submit Job dialog box with most of the parameters set.

-kJVI GE Job Submission

General] Advanced "Fhatch |
Jbscript

Prefix 4% W Merge Output e |
Job Script stdout Submit |
//home/aal14085/0PENSOURCE/gric [|[flow.out | 7Y Edit |
Job Tasks B
| | ﬂ Clear |
Job Name St 3 Reload |
[Flow | N Save Settings |
dels Berge Request Resources Load Settings |
|big.data
Priority Job Share Done |
! A ! A Help
3 v n ¥ |
Start At
|20040422163U-44 H||pestart depends on Queue
Project
|crash E _INotify Job
_| Current Working Directory -IHold Job UNDEFINED
Shell | 8tart Job Immediately
|,f'bin,ftcsh E _| Job Reserwation

FIGURE3-5 Extended Job Submission Example
The parameters of the job configured in the example are:

= Thejob has the script file flow. sh, which must reside in the working directory of QMON.
= Thejobis called Flow.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Extended Jobs and Advanced Jobs

= The script file takes the single argument big.data.

= Thejob starts with priority 3.

= Thejob is eligible for execution not before 4:30.44 AM of the 22th of April in the year 2004.
= The project definition means that the job is subordinated to project crash.

= Thejob is executed in the submission working directory.

= Thejob uses the tcsh command interpreter.

= Standard output and standard error output are merged into the file flow. out, which is
created in the current working directory.

Submitting Extended Jobs From the Command Line

To submit the extended job request that is shown in Figure 3-5 from the command line, type
the following command:

% qsub -N Flow -p -111 -P devel -a 200404221630.44 -cwd \
-S /bin/tcsh -o flow.out -j y flow.sh big.data

Submitting Advanced Jobs With QMON

The Advanced tab of the Submit Job dialog box enables you to define the following additional
parameters:

= Parallel Environment — A parallel environment interface to use

= Environment - A set of environment variables to set for the job before the job runs. Click
the icon at the right of the Environment field to open a dialog box that enables you to define
he environment variables to export:

~| Environment Yariable List |

Enviranment for Joh
i

Yariahle Yalue

Cancel|

Ok
|
MODEL_SIZE M

- |

Clear | Get Environment |

Environment variables can be taken from QMON‘s runtime environment, or you can define
your own environment variables.

Chapter3 - Submitting Jobs 63

Submitting Extended Jobs and Advanced Jobs

64

Context — A list of name/value pairs that can be used to store and communicate job-related
information. This information is accessible anywhere from within a cluster. You can modify
context variables from the command line with the -ac, -dc, and -sc options to gsub, qrsh,
gsh, qlogin, and galter. You can retrieve context variables with the gstat -j command.

~| Context Variable List |

Context for Job Ok
Yariahle Yalue c |
ance

Help

Clear |

Checkpoint Object - The checkpointing environment to use if checkpointing the job is
desirable and suitable. See “Using Job Checkpointing” on page 106 for details.

Account - An account string to associate with the job. The account string is added to the
accounting record that is kept for the job. The accounting record can be used for later
accounting analysis.

Verify Mode - The Verify flag determines the consistency checking mode for your job. To
check for consistency of the job request, the grid engine system assumes an empty and
unloaded cluster. The system tries to find at least one queue in which the job could run.
Possible checking modes are as follows:

= Skip - No consistency checking at all.

= Warning - Inconsistencies are reported, but the job is still accepted. Warning mode
might be desirable if the cluster configuration should change after the job is submitted.

= Error - Inconsistencies are reported. The job is rejected if any inconsistencies are
encountered.

= Just verify - The job is not submitted. An extensive report is generated about the
suitability of the job for each host and queue in the cluster.

Mail - The events about which the user is notified by email. The events'start, end, abort, and
suspend are currently defined for jobs.

Mail To - A list of email addresses to which these notifications are sent. Click the icon at the
right of the Mail To field to open a dialog box for defining the mailing list.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Extended Jobs and Advanced Jobs

~| Send mail to mail address |

Ivlail address
Ok
| @myh Cancel
me@ryhost.com
me@another.address Celete
Feset
Help

= Hard Queue List, Soft Queue List — A list of queue names that are requested to be the
mandatory selection for the execution of the job. The Hard Queue List and the Soft Queue
List are treated identically to a corresponding resource requirement.

= Master Queue List — A list of queue names that are eligible as master queue for a parallel job.
A parallel job is started in the master queue. All other queues to which the job spawns
parallel tasks are called slave queues.

= Job Dependencies - A list of IDs of jobs that must finish before the submitted job can be
started. The newly created job depends on completion of those jobs.

= Deadline - The deadline initiation time for deadline jobs. Deadline initiation defines the
point in time at which a deadline job must reach maximum priority to finish before a given
deadline. To determine the deadline initiation time, subtract an estimate of the running
time, at maximum priority, of a deadline job from its desired deadline time. Click the icon at
the right of the Deadline field to open the dialog box that enables you to set the deadline.

~| Enter a String

Enter the deadline time in the
following format: [[CCIY YWD DRRmm.[55]
or leave the current time and press ok

‘ 200203111454.09

1 oK | Cancel|

Note - Not all users are allowed to submit deadline jobs. Ask your system administrator if
you are permitted to submit deadline jobs. Contact the cluster administrator for
information about the maximum priority that is given to deadline jobs.

Advanced Job Example

Figure 3-6 shows an example of an advanced job submission.

Chapter3 « Submitting Jobs 65

Submitting Extended Jobs and Advanced Jobs

66

A N1 GE

Job Submission

" hatch

Context

|JOB_STEP=preprocessing,PORT=M
Checkpoint Object

Account

[FLOW

e

General Advanced
Parallel Environment Verify Mode
mpi 4-16 i Skip o
Environment Mail
|CLEAN_SEMAPHORE=FALSE, MODEL_S: ¥|w start of Job

W End of Job
_| dbort of Job

_| Buspend of Job
Mail To

|me@myhost.org
Hard Queus List

Soft Queue List

[big_o

Master Queus List

Job Dependencies

Jobscript

Submit

Edit

Clear

Feload

Zave Settings

Load Zetfings

Done

Help

FIGURE3-6 Advanced Job Submission Example

The job defined in “Extended Job Example” on page 62 has the following additional
characteristics as compared to the job definition in “Submitting Extended Jobs With QMON” on

page 59.

= Thejob requires the use of the parallel environment mpi. The job needs at least 4 parallel
processes to be created. The job can use up to 16 processes if the processes are available.

= Two environment variables are set and exported for the job.

= Two context variables are set.

= Theaccount string FLOW is to be added to the job accounting record.
= Mail must be sent to me@myhost.org as soon as the job starts and finishes.

= Thejob should preferably be executed in the queue big_q.

Submitting Advanced Jobs From the Command Line

To submit the advanced job request that is shown in Figure 3-6 from the command line, type

the following command:

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Extended Jobs and Advanced Jobs

% gqsub -N Flow -p -111 -P devel -a 200012240000.00 -cwd \
-S /bin/tcsh -o flow.out -j y -pe mpi 4-16 \
-v SHARED MEM=TRUE,MODEL SIZE=LARGE \
-ac JOB_STEP=preprocessing,PORT=1234 \
-A FLOW -w w -m s,e -q big g\
-M me@myhost.com,me@other.address \
flow.sh big.data

Default Request Files

The preceding command shows that advanced job requests can be rather complex and
unwieldy, in particular if similar requests need to be submitted frequently. To avoid the
cumbersome and error-prone task of entering such commands, users can embed qsub options
in the script files, or use default request files. For more information, see “Active Comments” on
page 56.

Note - The -binary yes|no option when specified with the y argument, allows you to use qrsh
to submit executable jobs without the script wrapper. See the gsub man page.

The cluster administration can set up a default request file for all grid engine system users.
Users, on the other hand, can create private default request files located in their home
directories. Users can also create application-specific default request files that are located in
their working directories.

Default request files contain the gsub options to apply by default to the jobs in one or more
lines. The location of the global cluster default request file is
sge-root/cell/common/sge_request. The private general default request file is located under
$HOME/ . sge_request. The application-specific default request files are located under
$cwd/.sge request.

If more than one of these files are available, the files are merged into one default request, with
the following order of precedence:

1. Application-specific default request file
2. General private default request file
3. Global default request file

Script embedding and the gsub command line have higher precedence than the default request
files. Therefore, script embedding overrides default request file settings. The gsub command
line options can override these settings again.

To discard any previous settings, use the qsub -clear command in a default request file, in
embedded script commands, or in the gsub command line.

Here is an example of a private default request file:

Chapter3 « Submitting Jobs 67

Submitting Extended Jobs and Advanced Jobs

68

-A myproject -cwd -M me@myhost.com -m b e
-ry -j y -S /bin/ksh

Unless overridden, for all of this user's jobs the following is true:

= Theaccount string is myproject

= Thejobs execute in the current working directory

= Mail notification is sent to me@myhost. com at the beginning and at the end of the jobs
= The standard output and standard error output are merged

= The ksh is used as command interpreter

Defining Resource Requirements

In the examples so far, the submit options do not express any resource requirements for the
hosts on which the jobs are to be executed. The grid engine system assumes that such jobs can
be run on any host. In practice, however, most jobs require that certain prerequisites be met on
the executing host in order for the job to finish successfully. Such prerequisites include enough
available memory, required software to be installed, or a certain operating system architecture.
Also, the cluster administration usually imposes restrictions on the use of the machines in the
cluster. For example, the CPU time that can be consumed by the jobs is often restricted.

The grid engine system provides users with the means to find suitable hosts for their jobs
without precise knowledge of the cluster‘s equipment and its usage policies. Users specify the
requirement of their jobs and let the grid engine system manage the task of finding a suitable
and lightly loaded host.

You specify resource requirements through requestable attributes, which are described in
“Requestable Attributes” on page 42. QMON provides a convenient way to specify the
requirements of a job. The Requested Resources dialog box displays only those attributes in the
Available Resource list that are currently eligible. Click Request Resources in the Submit Job
dialog box to open the Requested Resources dialog box. See Figure 3-7 for an example.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Extended Jobs and Advanced Jobs

— QMON |
Requested Resources |
Parallel Job Reguest: mpi 4-16
izrzmieffizizza4 _Li;a;ﬁ:ble ResourCéé Ok
=3 —
h_vmem == 750k # h_stack Cancel
23 permas == 1 M h_wmem Clear
& hostname Help
M mem_free
A #m mem_total
(" Hard Request _) Soft Request | mem_used
goft Resources 23 nastran |
("2 num_proc
23 pamcrash
23 permas
&b gname
) M 5_core
AlO s cpu

FIGURE3-7 Requested Resources Dialog Box

When you double-click an attribute, the attribute is added to the Hard or Soft Resources list of
the job. A dialog box opens to guide you in entering a value specification for the attribute in
question, except for BOOLEAN attributes, which are set to True. For more information, see
“How the Grid Engine System Allocates Resources” on page 70.

Figure 3-7 shows a resource profile for a job that requests a solaris64 host with an available
permas license offering at least 750 MBytes of memory. If more than one queue that fulfills this
specification is found, any defined soft resource requirements are taken into account. However,
if no queue satistying both the hard and the soft requirements is found, any queue that grants
the hard requirements is considered suitable.

Note - The queue_sort_method parameter of the scheduler configuration determines where to
start the job only if more than one queue is suitable for a job. See the sched_conf(5) man page
for more information.

The attribute permas, an integer, is an administrator extension to the global resource attributes.
The attribute arch, a string, is a host resource attribute. The attribute h_vmem, memory, is a
queue resource attribute.

An equivalent resource requirement profile can as well be submitted from the gsub command
line:

% qsub -1 arch=solaris64,h vmem=750M,permas=1 \
permas.sh

The implicit -hard switch before the first - 1 option has been skipped.

Chapter3 « Submitting Jobs 69

Submitting Extended Jobs and Advanced Jobs

70

The notation 750M for 750 MBytes is an example of the quantity syntax of the grid engine
system. For those attributes that request a memory consumption, you can specify either integer
decimal, floating-point decimal, integer octal, and integer hexadecimal numbers. The following
multipliers must be appended to these numbers:

= k- Multiplies the value by 1000
= K- Multiplies the value by 1024
= m - Multiplies the value by 1000 times 1000
= M - Multiplies the value by 1024 times 1024

Octal constants are specified by a leading zero and digits ranging from 0 to 7 only. To specify a
hexadecimal constant, you must prefix the number with 0x. You must also use digits ranging
from 0 to 9, a through f, and A through F If no multipliers are appended, the values are
considered to count as bytes. If you are using floating-point decimals, the resulting value is
truncated to an integer value.

For those attributes that impose a time limit, you can specify time values in terms of hours,
minutes, or seconds, or any combination. Hours, minutes, and seconds are specified in decimal
digits separated by colons. A time of 3:5:11 is translated to 11111 seconds. If zero is a specifier
for hours, minutes, or seconds, you can leave it out if the colon remains. Thus a value of :5: is
interpreted as 5 minutes. The form used in the Requested Resources dialog box that is shown in
Figure 3-7 is an extension, which is valid only within QMON.

How the Grid Engine System Allocates Resources

As shown in the previous section, knowing how grid engine software processes resource
requests and allocates resources is important. The schematic view of grid engine software's
resource allocation algorithm is as follows.

1. Readin and parse all default request files. See “Default Request Files” on page 67 for details.
2. Process the script file for embedded options. See “Active Comments” on page 56 for details.

3. Read all script-embedding options when the job is submitted, regardless of their position in
the script file.

4. Readand parse all requests from the command line.

As soon as all gsub requests are collected, hard and soft requests are processed separately, the
hard requests first. The requests are evaluated, according to the following order of precedence:

1. From left to right of the script or default request file
2. From top to bottom of the script or default request file
3. From left to right of the command line

In other words, you can use the command line to override the embedded flags.
The resources requested as hard are allocated. If a request is not valid, the submission is

rejected. If one or more requests cannot be met at submit time, the job is spooled and

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Extended Jobs and Advanced Jobs

rescheduled to be run at a later time. A request might not be met, for example, if a requested
queue is busy. If all hard requests can be met, the requests are allocated and the job can be run.

The resources requested as soft are checked. The job can run even if some or all of these requests
cannot be met. If multiple queues that meet the hard requests provide parts of the soft resources
list, the grid engine software selects the queues that offer the most soft requests.

The job is started and covers the allocated resources.

You might want to gather experience of how argument list options and embedded options or
hard and soft requests influence each other. You can experiment with small test script files that
execute UNIX commands such as hostname or date.

Job Dependencies

Often the most convenient way to build a complex task is to split the task into subtasks. In these
cases, subtasks depend on the completion of other subtasks before the dependent subtasks can
get started. An example is that a predecessor task produces an output file that must be read and
processed by a dependent task.

The grid engine system supports interdependent tasks with its job dependency facility. You can
configure jobs to depend on the completion of one or more other jobs. The facility is enforced
by the gsub -hold_jid command. You can specify a list of jobs upon which the submitted job
depends. The list of jobs can also contain subsets of array jobs. The submitted job is not eligible
for execution unless all jobs in the dependency list have finished.

Submitting Array Jobs

Parameterized and repeated execution of the same set of operations that are contained in a job
script is an ideal application for the array job facility of the grid engine system. Typical examples
of such applications are found in the Digital Content Creation industries for tasks such as
rendering. Computation of an animation is split into frames. The same rendering computation
can be performed for each frame independently.

The array job facility offers a convenient way to submit, monitor, and control such applications.
The grid engine system provides an efficient implementation of array jobs, handling the
computations as an array of independent tasks joined into a single job. The tasks of an array job
are referenced through an array index number. The indexes for all tasks span an index range for
the entire array job. The index range is defined during submission of the array job by a single
gsub command.

You can monitor and control an array job. For example, you can suspend, resume, or cancel an
array job as a whole or by individual task or subset of tasks. To reference the tasks, the
corresponding index numbers are suffixed to the job ID. Tasks are executed very much like

Chapter3 « Submitting Jobs 71

Submitting Extended Jobs and Advanced Jobs

72

regular jobs. Tasks can use the environment variable SGE_TASK_ID to retrieve their own task
index number and to access input data sets designated for this task identifier.

Submitting an Array Job With QMON

Follow the instructions in “How To Submit a Simple Job With QMON” on page 49, additionally
taking into account the following information.

The submission of array jobs from QMON works virtually identically to how the submission of a
simple job is described in “How To Submit a Simple Job With QMON” on page 49. The only
difference is that the Job Tasks input window that is shown in Figure 3-5 must contain the task
range specification. The task range specification uses syntax that is identical to the qsub -t
command. See the qsub(1) man page for detailed information about array index syntax.

For information about monitoring and controlling jobs in general, and about array jobs in
particular, see “Monitoring and Controlling Jobs” on page 85 and “Monitoring and
Controlling Jobs From the Command Line” on page 94. See also the man pages for gstat(1),
ghold(1), gqris(1), gmod(1), and qdel(1).

Array jobs offer full access to all facilities of the grid engine system that are available for regular
jobs. In particular, array jobs can be parallel jobs at the same time. Array jobs also can have
interdependencies with other jobs.

Note - Array tasks cannot have interdependencies with other jobs or with other array tasks.

Submitting an Array Job From the Command Line

To submit an array job from the command line, type the gsub command with appropriate
arguments.

The following is an example of how to submit an array job:

% qsub -1 h cpu=0:45:0 -t 2-10:2 render.sh data.in

The -t option defines the task index range. In this case, 2-10: 2 specifies that 2 is the lowest
index number, and 10 is the highest index number. Only every second index, the : 2 part of the
specification, is used. Thus, the array job is made up of 5 tasks with the task indices 2, 4, 6, 8, and
10. Each task requests a hard CPU time limit of 45 minutes with the - 1 option. Each task
executes the job script render . sh once the task is dispatched and started by the grid engine
system. Tasks can use SGE_TASK_ID to find their index number, which they can use to find their
input data record in the data file data. in.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Interactive Jobs

Submitting Interactive Jobs

The submission of interactive jobs instead of batch jobs is useful in situations where a job
requires your direct input to influence the job results. Such situations are typical for X Windows
applications or for tasks in which your interpretation of immediate results is required to steer
further processing.

You can create interactive jobs in three ways:

= glogin - A telnet-like session that is started on a host selected by grid engine software.

= grsh - The equivalent of the standard UNIX rsh facility. A command is run remotely on a
host selected by the grid engine system. If no command is specified, a remote rlogin session
is started on a remote host.

= gsh - Anxtermthatis displayed from the machine that is running the job. The display is set
corresponding to your specification or to the setting of the DISPLAY environment variable. If
the DISPLAY variable is not set, and if no display destination is defined, the grid engine
system directs the xtermto the 0.0 screen of the X server on the host from which the job was
submitted.

Note - To function correctly, all the facilities need proper configuration of cluster parameters
of the grid engine system. The correct xterm execution paths must be defined for gsh.
Interactive queues must be available for this type of job. Contact your system administrator
to find out if your cluster is prepared for interactive job execution.

The default handling of interactive jobs differs from the handling of batch jobs. Interactive jobs
are not queued if the jobs cannot be executed when they are submitted. A job's not being queued
indicates immediately that not enough appropriate resources are available to dispatch an
interactive job at the time the job is submitted. The user is notified in such cases that the cluster
is currently too busy.

You can change this default behavior with the -now no option to gsh, qlogin, and grsh. If you
use this option, interactive jobs are queued like batch jobs. When you use the -now yes option,
batch jobs that are submitted with gsub can also be handled like interactive jobs. Such batch
jobs are either dispatched for running immediately, or they are rejected.

Note - Interactive jobs can be run only in queues of the type INTERACTIVE. See “Configuring
Queues” in Sun N1 Grid Engine 6.1 Administration Guide for details.

The following sections describe how to use the qglogin and gsh facilities. The qrsh command is
explained in a broader context in “Transparent Remote Execution” on page 76.

Chapter3 « Submitting Jobs 73

Submitting Interactive Jobs

74

Submitting Interactive Jobs With QMON

The only type of interactive jobs that you can submit from QMON are jobs that bring up an xterm
on a host selected by the grid engine system.

At the right side of the Submit Job dialog box, click the button above the Submit button until the
Interactive icon is displayed. Doing so prepares the Submit Job dialog box to submit interactive

jobs. See Figure 3-8 and Figure 3-9.

The meaning and the use of the selection options in the dialog box is the same as that described
for batch jobs in “Submitting Batch Jobs” on page 53. The difference is that several input fields
are grayed out because those fields do not apply to interactive jobs

Submit Joh

Job Submission

General]

Advanced

Tob HName
|INTERACTIVE
Job Args

Priority

Job Share

05

Project

| L
_l Current Working Directory
Shell

| H

| | Eﬂ Pestard

Suene

_|Hold Job UNDEFINED
W Start Job Immediately

sk Feservst

I Interactiv

Jobscript

FIGURE 3-8 Interactive Submit Job Dialog Box, General Tab

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Submitting Interactive Jobs

Submit Job
-kJVI GE Job Submission
K
General Advanced I“—,mmiu |
Parallel Environment Eﬁ Verify Mode " Jsbscriot
| . ocEEip Subrt |
Envirconment Mail i |
DISPLAY=sr—ergb01-01:20.0 L 4R !
Context “ £l o Clear |
| a | gbort of Job Feload |
Checkpoint Object g s 3 .
| SEERL Jes 2l[° S Save Settings |
Mail To . ;
Account | | Load Zetfings |
| Hard Queue List Done
| Help |
Soft Queue List
Master Queus List
Job Dependencies

FIGURE 3-9 Interactive Submit Job Dialog Box, Advanced Tab

Submitting Interactive Jobs With gsh

gsh is very similar to gsub. gsh supports several of the qsub options, as well as the additional
option -display to direct the display of the xterm to be invoked. See the gsub(1) man page for
details.

To submit an interactive job with gqsh, type a command like the following:

% qsh -1 arch=solaris64

This command starts an xterm on any available Sun Solaris 64-bit operating system host.

Submitting Interactive Jobs With qlogin

Use the glogin command from any terminal or terminal emulation to start an interactive
session under the control of the grid engine system.

To submit an interactive job with qlogin, type a command like the following:

% qlogin -1 star-cd=1,h cpu=6:0:0

Chapter3 « Submitting Jobs 75

Transparent Remote Execution

This command locates a low-loaded host. The host has a Star-CD license available. The host
also has at least one queue that can provide a minimum of six hours hard CPU time limit.

Note - Depending on the remote login facility that is configured to be used by the grid engine
system, you might have to provide your user name, your password, or both, at a login prompt.

Transparent Remote Execution

The grid engine system provides a set of closely related facilities that support the transparent
remote execution of certain computational tasks. The core tool for this functionality is the grsh
command, which is described in “Remote Execution With qrsh” on page 76. Two high-level
facilities, gtcsh and gmake, build on top of qrsh. These two commands enable the grid engine
system to transparently distribute implicit computational tasks, thereby enhancing the
standard UNIX facilities make and csh. gtcsh is described in “Transparent Job Distribution
With qtcsh” on page 77. gmake is described in “Parallel Makefile Processing With gmake” on
page 79.

Remote Execution With qrsh

grsh is built around the standard rsh facility. See the information that is provided in
sge-root/3rd_party for details on the involvement of rsh. grsh can be used for various
purposes, including the following:

= To provide remote execution of interactive applications that use the grid engine system
comparable to the standard UNIX facility rsh. rshis also called remsh on HP-UX systems.

= To offer interactive login session capabilities that use the grid engine system, similar to the
standard UNIX facility rlogin. qlogin is still required as a grid engine system's
representation of the UNIX telnet facility.

= To allow for the submission of batch jobs that support terminal I/O (standard output,
standard error, and standard input) and terminal control.

= To provide a way to submit a standalone program that is not embedded in a shell script.

Note - You can also submit scripts with qrsh by using the -b n option. For more
information, see the qrsh man page.

= To provide a submission client that remains active while a batch job is pending or running
and that goes away only if the job finishes or is cancelled.

76 Sun N1 Grid Engine 6.1 User's Guide « May 2007

Transparent Remote Execution

= Toallow for the grid engine system-controlled remote running of job tasks within the
framework of the dispersed resources allocated by parallel jobs. See “Tight Integration of
Parallel Environments and Grid Engine Software” in Sun N1 Grid Engine 6.1 Administration
Guide.

By virtue of these capabilities, qrsh is the major enabling infrastructure for the implementation
of the qtcsh and the gmake facilities. qrsh is also used for the tight integration of the grid engine
system with parallel environments such as MPI or PVM.

Invoking Transparent Remote Execution With qrsh

Type the grsh command, adding options and arguments according to the following syntax:

% qrsh [options] program |shell-script [arguments] \
[> stdout] [>&2 stderr] [< stdin]

grsh understands almost all options of qsub. qrsh provides the following options:

= -now yes|no — -now yes specifies that the job is scheduled immediately. The job is rejected
if no appropriate resources are available. -now yes is the default. -now no specifies that the
job is queued like a batch job if the job cannot be started at submission time.

= -inherit - qgrshdoesnot go through the scheduling process to start a job-task. Instead,
grsh assumes that the job is embedded in a parallel job that already has allocated suitable
resources on the designated remote execution host. This form of grsh is commonly used in
gmake and in a tight parallel environment integration. The default is not to inherit external
job resources.

= -pinaryyes|no - When specified with the n option, enables you to use qrsh to submit
script jobs.

= -noshell - With this option, you do not start the command line that is given to grshina
user's login shell. Instead, you execute the command without the wrapping shell. Use this
option to speed up execution, as some overhead, such as the shell startup and the sourcing of
shell resource files, is avoided.

= -nostdin - Suppresses the input stream STDIN. With this option set, qrsh passes the -n
option to the rsh command. Suppression of the input stream is especially useful if multiple
tasks are executed in parallel using qrsh, for example, in a make process. Which process gets
the input is undefined.

= -verbose - This option presents output on the scheduling process. - verbose is mainly
intended for debugging purposes and is therefore switched off by default.

Transparent Job Distribution With qtcsh

gtcshis a fully compatible replacement for the widely known and used UNIX C shell derivative
tcsh. gteshis built around tcsh. See the information that is provided in sge-root/3rd_party
for details on the involvement of tcsh. gtcsh provides a command shell with the extension of

Chapter3 « Submitting Jobs 77

Transparent Remote Execution

78

transparently distributing execution of designated applications to suitable and lightly loaded
hosts that use the grid engine system. The . qtask configuration files define the applications to
execute remotely and the requirements that apply to the selection of an execution host.

These applications are transparent to the user and are submitted to the grid engine system
through the qrsh facility. qrsh provides standard output, error output, and standard input
handling as well as terminal control connection to the remotely executing application. Three
noticeable differences between running such an application remotely and running the
application on the same host as the shell are:

= The remote host might be more powerful, lower-loaded, and have required hardware and
software resources installed. Therefore, such a remote host would be much better suited
than the local host, which might not allow running the application at all.

= A small delayisincurred by the remote startup of the jobs and by their handling through the
grid engine system.

= Administrators can restrict the use of resources through interactive jobs (qrsh) and thus
through gtcsh. If not enough suitable resources are available for an application to be started
through qrsh, or if all suitable systems are overloaded, the implicit qrsh submission fails. A
corresponding error message is returned, such as Not enough resources ... try later.

In addition to the standard use, gtcsh is a suitable platform for third-party code and tool
integration. The single-application execution form of qtcsh is qtcsh - c app-name. The use of
this form of qtcsh inside integration environments presents a persistent interface that almost
never needs to be changed. All the required application, tool, integration, site, and even
user-specific configurations are contained in appropriately defined . qtask files. A further
advantage is that this interface can be used in shell scripts of any type, in C programs, and even
in Java applications.

gqtcsh Usage
The invocation of gtcsh is exactly the same as for tcsh. gtcsh extends tcsh in providing

support for the . qtask file and by offering a set of specialized shell built-in modes.

The . gtask file is defined as follows. Each line in the file has the following format:
% [!lapp-name qrsh-options

The optional leading exclamation mark (!) defines the precedence between conflicting
definitions in a global cluster . qtask file and the personal . qtask file of the gtcsh user. If the
exclamation mark is missing in the global cluster file, a conflicting definition in the user file
overrides the definition in the global cluster file. If the exclamation mark is in the global cluster
file, the corresponding definition cannot be overridden.

app-name specifies the name of the application that, when typed on a command line in a qtcsh,
is submitted to the grid engine system for remote execution.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Transparent Remote Execution

qrsh-options specifies the options to the qrsh facility to use. These options define resource
requirements for the application.

The application name must appear in the command line exactly as the application is defined in
the . gtask file. If the application name is prefixed with a path name, alocal binary is addressed.
No remote execution is intended.

csh aliases are expanded before a comparison with the application names is performed. The
applications intended for remote execution can also appear anywhere in a gtcsh command line,
in particular before or after standard I/O redirections.

Hence, the following examples are valid and meaningful syntax:

.qtask file
netscape -v DISPLAY=myhost:0
grep -1 h=filesurfer

Given this . gtask file, the following gtcsh command lines:

netscape
~/mybin/netscape
cat very big file | grep pattern | sort | uniq

implicitly result in:

grsh -v DISPLAY=myhost:0 netscape
~/mybin/netscape
cat very big file | gqrsh -1 h=filesurfer grep pattern | sort | uniqg

gtcsh can operate in different modes, influenced by switches that can be set on or off:

m Tocal or remote execution of commands. Remote is the default.
= Immediate or batch remote execution. Immediate is the default.
= Verbose or nonverbose output. Nonverbose is the default.

The setting of these modes can be changed using option arguments of gtcsh at start time or
with the shell built-in command qrshmode at runtime. See the gtcsh(1) man page for more
information.

Parallel Makefile Processing With gmake

gmake is a replacement for the standard UNIX make facility. gnake extends make by enabling the
distribution of independent make steps across a cluster of suitable machines. gmake is built
around the popular GNU-make facility gmake. See the information that is provided in
sge-root/3rd_party for details on the involvement of gmake.

Chapter3 « Submitting Jobs 79

Transparent Remote Execution

80

To ensure that a distributed make process can run to completion, gmake first allocates the
required resources in a way analogous to a parallel job. gmake then manages this set of resources
without further interaction with the scheduling. gmake distributes make steps as resources
become available, using the qrsh facility with the - inherit option.

qrsh provides standard output, error output, and standard input handling as well as terminal
control connection to the remotely executing make step. Therefore, only three noticeable
differences exist between executing a make procedure locally and using gmake:

= Provided that individual make steps have a certain duration and that enough independent
make steps exist to process, the parallelization of the make process will speed up significantly.

= In the make steps to be started up remotely, an implied small overhead exists that is caused
by grsh and the remote execution.

= To take advantage of the make step distribution of gqmake, the user must specify asa
minimum the degree of parallelization. That is, the user must specify the number of
concurrently executable make steps. In addition, the user can specify the resource
characteristics required by the make steps, such as available software licenses, machine
architecture, memory, or CPU-time requirements.

The most common use of make is the compilation of complex software packages. Compilation
might not be the major application for gmake, however. Program files are often quite small as a
matter of good programming practice. Therefore, compilation of a single program file, which is
a single make step, often takes only a few seconds. Furthermore, compilation usually implies
significant file access. Nested include files can cause this problem. File access might not be
accelerated if done for multiple make steps in parallel because the file server can become a
bottleneck. Such a bottleneck effectively serializes all the file access. Therefore, the compilation
process sometimes cannot be accelerated in a satisfactory manner.

Other potential applications of qmake are more appropriate. An example is the steering of the
interdependencies and the workflow of complex analysis tasks through makefiles. Each make
step in such environments is typically a simulation or data analysis operation with
nonnegligible resource and computation time requirements. A considerable acceleration can be
achieved in such cases.

gmake Usage

The command-line syntax of gmake looks similar to the syntax of qrsh:

% gmake [-pe pe-name pe-range] [options] \
-- [gnu-make-options] [target]

Note - The -inherit option is also supported by qmake, as described later in this section.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Transparent Remote Execution

Pay special attention to the use of the -pe option and its relation to the gmake - j option. You
can use both options to express the amount of parallelism to be achieved. The difference is that
gmake provides no possibility with - j to specify something like a parallel environment to use.
Therefore, gmake assumes that a default environment for parallel makes is configured that is
called make. Furthermore, gmake “s - j allows for no specification of a range, but only for a single
number. gmake interprets the number that is given with - j as a range of 1-n. By contrast, -pe
permits the detailed specification of all these parameters. Consequently the following command
line examples are identical:

% qmake -- -j 10
% gmake -pe make 1-10 --

The following command lines cannot be expressed using the - j option:

% gmake -pe make 5-10,16 --
% gmake -pe mpi 1-99999 --

Apart from the syntax, gmake supports two modes of invocation: interactively from the
command line without the -inherit option, or within a batch job with the -inherit option.
These two modes start different sequences of actions:

= Interactive - When gmake is invoked on the command line, the make process is implicitly
submitted to the grid engine system with qrsh. The process takes the resource requirements
that are specified in the gnake command line into account. The grid engine system then
selects a master machine for the execution of the parallel job that is associated with the
parallel make job. The grid engine system starts the make procedure there. The procedure
must start there because the make process can be architecture-dependent. The required
architecture is specified in the gnake command line. The gqmake process on the master
machine then delegates execution of individual make steps to the other hosts that are

allocated for the job. The steps are passed to gmake through the parallel environment hosts
file.

= Batch - In this case, gmake appears inside a batch script with the - inherit option. If the
-inherit option is not present, a new job is spawned, as described in the first case earlier.
This results in gmake making use of the resources already allocated to the job into which
gmake is embedded. gmake uses qrsh -inherit directly to start make steps. When calling
gmake in batch mode, the specification of resource requirements, the - pe option and the - j
option are ignored.

Note - Single CPU jobs also must request a parallel environment:

gmake -pe make 1 --

If no parallel execution is required, call gmake with gmake command-line syntax without
grid engine system options and without - -. This gmake command behaves like gmake.

Chapter3 « Submitting Jobs 81

How Jobs Are Scheduled

See the gmake(1) man page for further details.

How Jobs Are Scheduled

82

The grid engine software's policy management automatically controls the use of shared
resources in the cluster to best achieve the goals of the administration. High priority jobs are
dispatched preferentially. Such jobs receive better access to resources. The administration of a
cluster can define high-level usage policies. The following policies are available:

= Functional - Special treatment is given because of affiliation with a certain user group,
project, and so forth.

= Share-based - Level of service depends on an assigned share entitlement, the corresponding
shares of other users and user groups, the past usage of resources by all users, and the
current presence of users in the system.

= Urgency - Preferential treatment is given to jobs that have greater urgency. A job's urgency
is based on its resource requirements, how long the job must wait, and whether the job is
submitted with a deadline requirement.

= Override - Manual intervention by the cluster administrator modifies the automated policy
implementation.

The grid engine software can be set up to routinely use either a share-based policy, a functional
policy, or both. These policies can be combined in any proportion, from giving zero weight to
one policy and using only the second policy, to giving both policies equal weight.

Along with the routine policies, jobs can be submitted with an initiation deadline. See the
description of the deadline submission parameter under “Submitting Advanced Jobs With
QMON” on page 63. Deadline jobs disturb routine scheduling. Administrators can also
temporarily override share-based scheduling and functional scheduling. An override can be
applied to an individual job, or to all jobs associated with a user, a department, or a project.

Job Priorities

In addition to the four policies for mediating among all jobs, the grid engine software
sometimes lets users set priorities among their own jobs. A user who submits several jobs can
specify, for example, that job 3 is the most important and that jobs 1 and 2 are equally important
but less important than job 3.

Priorities for jobs are set by using the QMON Submit Job parameter Priority or by using the gsub
-p option. A priority range of -1024 (lowest) to 1023 (highest) can be given. This priority tells
the scheduler how to choose among a single user's jobs when several of that user's jobs are in the
system simultaneously. The relative importance assigned to a particular job depends on the
maximum and minimum priorities that are given to any of that user's jobs, and on the priority
value of the specific job.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

How Jobs Are Scheduled

Ticket Policies

The functional policy, the share-based policy, and the override policy are all implemented with
tickets. Each ticket policy has a ticket pool from which tickets are allocated to jobs that are
entering the multimachine grid engine system. Each routine ticket policy that is in force
allocates some tickets to each new job. The ticket policy can reallocate tickets to the executing
job at each scheduling interval. The criteria that each ticket policy uses to allocate tickets are
explained in this section.

Tickets weight the three policies. For example, if no tickets are allocated to the functional policy,
that policy is not used. If an equal number of tickets are assigned to the functional ticket pool
and to the share-based ticket pool, both policies have equal weight in determining a job's
importance.

Grid engine managers allocate tickets to the routine ticket policies at system configuration.
Managers and operators can change ticket allocations at any time. Additional tickets can be
injected into the system temporarily to indicate an override. Ticket policies are combined by
assignment of tickets: when tickets are allocated to multiple ticket policies, a job gets a portion
of its tickets from each ticket policy in force.

The grid engine system grants tickets to jobs that are entering the system to indicate their
importance under each ticket policy in force. Each running job can gain tickets, for example,
from an override; lose tickets, for example, because the job is getting more than its fair share of
resources; or keep the same number of tickets at each scheduling interval. The number of tickets
that a job holds represents the resource share that the grid engine system tries to grant that job
during each scheduling interval.

You can display the number of tickets a job holds with QMON or using gstat -ext. See
“Monitoring and Controlling Jobs With QMON” on page 85. The qstat command also displays
the priority value assigned to a job, for example, using qsub -p. See the gstat(1) man page for
more details.

Queue Selection

The grid engine system does not dispatch jobs that request nonspecific queues if the jobs cannot
be started immediately. Such jobs are marked as spooled at the sge_qgmaster, which tries to
reschedule the jobs from time to time. The jobs are dispatched to the next suitable queue that
becomes available.

As opposed to spooling jobs, jobs that are submitted to a certain queue by name go directly to
the named queue, regardless of whether the jobs can be started or need to be spooled. Therefore,
viewing the queues of the grid engine system as computer science batch queues is valid only for
jobs requested by name. Jobs submitted with nonspecific requests use the spooling mechanism
of sge_qgmaster for queueing, thus using a more abstract and flexible queuing concept.

Chapter3 « Submitting Jobs 83

How Jobs Are Scheduled

84

If ajob is scheduled and multiple free queues meet its resource requests, the job is usually
dispatched to a suitable queue belonging to the least loaded host. By setting the scheduler
configuration entry queue_sort_method to seq_no, the cluster administration can change this
load-dependent scheme into a fixed order algorithm. The queue configuration entry seq_no
defines a precedence among the queues, assigning the highest priority to the queue with the
lowest sequence number.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

L R 2 4 CHAPTER 4

Monitoring and Controlling Jobs and Queues

After you submit jobs, you need to monitor and control them. This chapter provides
background information about monitoring, and controlling jobs and queues, as well as
instructions for how to do these tasks. The chapter also includes information about job
checkpointing.

This chapter includes instructions for the following tasks:

“Monitoring and Controlling Jobs With QMON” on page 85

“Monitoring Jobs With gstat” on page 94

“Controlling Jobs With gdel and gmod” on page 97

“Monitoring and Controlling Queues With QMON” on page 98

“Controlling Queues With gmod” on page 105

“Submitting, Monitoring, or Deleting a Checkpointing Job From the Command Line” on
page 108

= “Submitting a Checkpointing Job With QMON” on page 109

Monitoring and Controlling Jobs

You can monitor and control submitted jobs in three ways:

= With QMON
= From the command line with the qstat, qdel, and qmod commands
= Byemail

The following sections describe each of these methods.

Monitoring and Controlling Jobs With QMON

You use the QMON Job Control dialog box to control jobs.

85

Monitoring and Controlling Jobs

86

To monitor and control your submitted jobs, in the QMON Main Control window click the Job
Control button. The Job Control dialog box appears.

GIMOMN +++ Joh Control

The Job Control dialog box has three tabs, a tab for Running Jobs, a tab for Pending Jobs that are
waiting to be dispatched to an appropriate resource, and a tab for recently Finished Jobs.

The Submit button provides a link to the Submit Job dialog box.

The Job Control dialog box enables you to monitor all running, pending, and finished jobs that
are known to the system. You can also use this dialog box to manage jobs. You can change a
job's priority. You can also suspend, resume, and cancel jobs.

In its default format, the Job Control dialog box displays the following columns for each
running and pending job:

= Jobld

= Priority
= JobName
= Owner

= Status

= Queue

Sun N1 Grid Engine 6.1 User's Guide « May 2007

Monitoring and Controlling Jobs

You can change the default display by customizing the format. See “Customizing the Job
Control Display” on page 90 for details.

Refreshing the Job Control Display

To keep the displayed information up-to-date, QMON uses a polling scheme to retrieve the status
of the jobs from sge_gmaster. Click Refresh to force an update of the Job Control display.

Selecting Jobs

You can select jobs with the following mouse and key combinations:

= To select multiple noncontiguous jobs, hold down the Control key and click two or more
jobs.

= Toselect a contiguous range of jobs, hold down the Shift key, click the first job in the range,
and then click the last job in the range.

= Totoggle between selecting a job and clearing the selection, click the job while holding
down the Control key.

You can also use a filter to select the jobs that you want to display. See “Filtering the Job List” on
page 92 for details.

Managing Jobs

You can use the buttons at the right of the dialog box to manage selected jobs in the following
ways:

Suspend

Resume (unsuspend)
Delete

Hold back

Release

Reprioritize
Reschedule

Modify with galter

Only the job owner or grid engine managers and operators can suspend and resume jobs, delete
jobs, hold back jobs, modify job priority, and modify jobs. See “Managers, Operators, and
Owners” on page 38. Only running jobs can be suspended or resumed. Only pending jobs can
be rescheduled, held back and modified, in priority as well as in other attributes.

Suspension of a job sends the signal SIGSTOP to the process group of the job with the UNIX
kill command. SIGSTOP halts the job and no longer consumes CPU time. Resumption of the
job sends the signal SIGCONT, thereby unsuspending the job. See the kil1(1) man page for your
system for more information on signalling processes.

Chapter4 - Monitoring and Controlling Jobs and Queues 87

Monitoring and Controlling Jobs

88

Note - You can force suspending, resuming, and deleting jobs. In other words, you can register
these actions with sge_gmaster without notifying the sge_execd that controls the jobs. Forcing
is useful when the corresponding sge_execd is unreachable, for example, due to network
problems. Select the Force option for this purpose.

Click Reschedule to reschedule a currently running job.

Putting Jobs on Hold
To put ajob on hold, select a pending job and click Hold. The Set Hold dialog box appears.
~i QMON ' |
Set Hold
Ok
W User 4
_| Operator Cancel
_| System
Tasks
1 1-zon

The Set Hold dialog box enables setting and resetting user, operator, and system holds. User
holds can be set or reset by the job owner as well as by grid engine managers and operators.
Operator holds can be set or reset by managers and operators. System holds can be set or reset
by managers only. As long as any hold is assigned to a job, the job is not eligible for running.
You can also set or reset holds by using the galter, ghold, and qrls commands.

Putting Array Job Tasks on Hold

The Tasks field on the Set Hold dialog box applies to Array jobs. Use this button to put a hold on
particular subtasks of an array job. Note the format of the text in the Tasks field. The task ID
range specified in this field can be a single number, a simple range of the form #-m, or a range
with a step size. The task ID range specified by, for example, 2-10: 2 results in the task ID
indexes 2, 4, 6, 8, and 10. This range represents a total of five identical tasks, with the
environment variable SGE_TASK_ID containing one of the five index numbers. For detailed
information about job holds, see the gsub(1) man page.

Changing Job Priority
When you click Priority on the Job Control dialog box, the following dialog box appears.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Monitoring and Controlling Jobs

~| Enter an Integer

Enter a new priority for the selected johs

‘ -1
1 oK | Cancel|

This dialog box enables you to provide the new priority of selected pending or running jobs.
The priority ranks a single user's jobs among themselves. Priority tells the scheduler how to
choose among a single user's jobs when several jobs are in the system simultaneously.

When you select a pending job and click Qalter, the Submit Job window appears. All the entries
of the dialog box are set corresponding to the attributes of the job that were defined when the
job was submitted. Entries that cannot be changed are grayed out. The other entries can be
edited. The changes are registered with the grid engine system when you click Qalter on the
Submit Job dialog box. The Qalter button is a substitute for the Submit button.

Verifying Job Consistency

The Verity flag on the Submit Job dialog box has a special meaning when the flag is used in the
Qalter mode. You can check pending jobs for their consistency, and you can investigate why
jobs are not yet scheduled. Select the desired consistency-checking mode for the Verify flag, and
then click Qalter. The system displays warnings on inconsistencies, depending on the checking
mode you select. See “Submitting Advanced Jobs With QMON” on page 63 and the -w option on
the galter(1) man page for more information.

Using the Why? Button to Get Information About Pending Jobs

Another method for checking why jobs are still pending is to select a job and click Why? on the
Job Control dialog box. Doing so opens the Object Browser dialog box. This dialog box displays
alist of reasons that prevented the scheduler from dispatching the job in its most recent pass.
An example of a Browser window that displays such a message is shown in the following figure.

Chapter4 - Monitoring and Controlling Jobs and Queues 89

Monitoring and Controlling Jobs

90

= QMON +++ Browser =

‘\ SGEEE Object Browser

scheduling info: quene "fangorn. g dropped because it is temporarily not awal — Objects

Ejob dropped because of hold stdout |
stderr |
Glueue |
Job |
Messagesl

Clear
Done
iz ¥ Help 1

The Why? button delivers meaningful output only if the scheduler configuration parameter
schedd_job_info is set to true. See the sched_conf(5) man page. The displayed scheduler
information relates to the last scheduling interval. The information might not be accurate by
the time you investigate why your job was not scheduled.

Clearing Error States

Click Clear Error to remove an error state from a pending job that failed due to a job-dependent

problem. For example, the job might have insufficient permissions to write to the specified job
output file.

Error states appear in red text in the pending jobs list. You should remove jobs only after you
correct the error condition, for example, using galter. Such error conditions are automatically
reported through email if the job requests to send email when the job is aborted. For example,
the job might have been aborted with the gsub -m a command.

Customizing the Job Control Display

To customize the default Job Control display, click Customize. The Job Customize dialog box

appears. Click the Select Job Fields tab. A sample Select Job Fields tab is shown in the following
figure.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Monitoring and Controlling Jobs

— JOB CUSTOMIZE

Filter Jobs | Select Job Fields

“Available Fields. Belected Fields
MergeQutput Al SubmitTime
Notify Project
OTicket Ticket
CverrideTicket
PE

PERanges
Predecessors
Project
Restart
STicket 4=
ScheduleTime
Share
StartTime
gtderrPaths
gtdoutPaths
SubmitTime

- Zave | Cancel| [o]4 | |

Use the Job Customize dialog box to configure the set of information to display.

With the Job Customize dialog box, you can select more entries of the job object to be displayed.
You can also filter the jobs that you are interested in. The example in the preceding figure selects
the additional fields Projects, Tickets, and Submit Time.

The following figure shows the enhanced look after customization is applied to the Finished
Jobs list.

Chapter4 - Monitoring and Controlling Jobs and Queues 91

Monitoring and Controlling Jobs

92

. F.ini.s.hedJobs :

Use the Save button on the Customize Job dialog box to store the customizations in the file
.gqmon_preferences. This file is located in the user's home directory. By saving your
customizations, you redefine the appearance of the Job Control dialog box.

Filtering the Job List

The following example of the filtering facility selects only those jobs owned by aa114085 that
are suitable to be run on the architecture solaris64.

Sun N1 Grid Engine 6.1 User's Guide « May 2007

Monitoring and Controlling Jobs

Filter Jobs

Filter Resources

] Select Job Fields

Available Resources

|i arch == sol-sparcE4

Filter by Owner

‘aal14085

||7 Compact Job Array Display|

The following figure shows the resulting Running Jobs tab of the Job Control dialog box.

Pending Jobhs

Running Jobs Finished Jobs

JobMame

Chapter4 « Monitoring and Controlling Jobs and Queues

93

Monitoring and Controlling Jobs

94

The Job Control dialog box that is shown in the previous figure is also an example of how QMON
displays array jobs.

Getting Additional Information About Jobs With the QMON Object
Browser

You can use the QMON Object Browser to quickly retrieve additional information about jobs
without having to customize the Job Control dialog box, as explained in “Monitoring and
Controlling Jobs With QMON” on page 85.

You can open the Object Browser to display information about jobs in two ways:

® Click the Browser button in the QMON Main Control window, and then click Job in the
Browser dialog box.

= Move the pointer over a job in the Job Control dialog box.

The following Browser window shows an example of the job information that is displayed:

= QMON +++ Browser B

k SGEEE Object Browser
Hard Resources: = Objects

Soft Resources:

stdout

stderr |
Joh: a |
Job Hame: Sleeper Queue

Job Script: JSgridware/TrnhouseSystens /sgeeehl IJOb
Owner : ££114084

Priority: 0 Messagesl
Cell: default

Checkpoint Ohject:
Hard Resources: arch=solaris ol

Soft Resources: ear

. Cone

1 - Help J

Monitoring and Controlling Jobs From the Command
Line

This section describes how to use the commands gstat, gdel, and gmod to monitor, delete, and
modify jobs from the command line.

Monitoring Jobs With gstat

To monitor jobs, type one of the following commands, guided by information that is detailed in
the following sections:

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Monitoring and Controlling Jobs

gstat
gstat -f
gstat -ext

gstat with no options provides an overview of submitted jobs only. gstat - f includes
information about the currently configured queues in addition. gstat -ext contains details
such as up-to-date job usage and tickets assigned to a job.

In the first form, a header line indicates the meaning of the columns. The purpose of most of the
columns should be self-explanatory. The state column, however, contains single character
codes with the following meaning: r for running, s for suspended, q for queued, and w for
waiting. See the gstat(1) man page for a detailed explanation of the gstat output format.

The second form is divided into two sections. The first section displays the status of all available
queues. The second section, titled PENDING JOBS, shows the status of the sge_gmaster job spool
area. The first line of the queue section defines the meaning of the columns with respect to the
queues that are listed. The queues are separated by horizontal lines. If jobs run in a queue, the
job names appear below the associated queue in the same format as in the gstat command in
its first form. The pending jobs in the second output section are also listed as in gstat’s first
form.

The columns of the queue description provide the following information:

= gtype - Queue type. Queue type is either B (batch) or I (interactive).

= used/free - Countof used and free job slots in the queue.

= states - State of the queue. See the gstat(1) man page for detailed information about
queue states.

The gstat(1) man page contains a more detailed description of the gstat output format.

In the third form, the usage and ticket values assigned to a job are shown in the following
columns:

= cpu/mem/io - Currently accumulated CPU, memory, and I/O usage.
= tckts/ovrts/otckt/ftckt/stckt — These values are as follows:
tckts — Total number of tickets assigned to the job
ovrts — Override tickets assigned through qalter -ot
otckt - Tickets assigned through the override policy
ftckt - Tickets assigned through the functional policy
stckt - Tickets assigned through the share-based policy
In addition, the deadline initiation time is displayed in the column deadline, if applicable. The

share column shows the current resource share that each job has with respect to the usage
generated by all jobs in the cluster. See the gstat(1) man page for further details.

Chapter4 - Monitoring and Controlling Jobs and Queues 95

Monitoring and Controlling Jobs

Various additional options to the gstat command enhance the functionality. Use the - r option
to display the resource requirements of submitted jobs. Furthermore, the output can be
restricted to a certain user or to a specific queue. You can use the - 1 option to specify resource
requirements, as described in “Defining Resource Requirements” on page 68, for the gsub
command. If resource requirements are used, only those queues, and the jobs that are running
in those queues, are displayed that match the resource requirement specified by gstat.

Note - The gstat command has been enhanced so that the administrator and the user may
define files that can contain useful options. See the sge_gstat (5) man page. A cluster-wide
sge_gstat file may be placed under
$xxQS_NAME_Sxx_ROOT/$xxQS_NAME_Sxx_CELL/common/sge_gstat. The user private file is
processed under the location $HOME/ . sge_gstat. The home directory request file has the
highest precedence, then the cluster global file. You can use the command line to override the
flags contained in a file.

Example 4-1 and Example 4-2 show examples of output from the gstat and gstat - f
commands.

EXAMPLE 4-1 Example of gstat - f Output

gqueuename qtype wused/free load avg arch states
dq BIP 0/1 99.99 sun4 au
durin.q BIP 2/2 0.36 sun4d
231 0 hydra craig r 07/13/96 20:27:15 MASTER
232 0 compile penny r 07/13/96 20:30:40 MASTER
dwain.q BIP 3/3 0.36 sun4
230 0 blackhole don r 07/13/96 20:26:10 MASTER
233 0 mac elaine r 07/13/96 20:30:40 MASTER
234 0 golf shannon r 07/13/96 20:31:44 MASTER
fq BIP 0/3 0.36 sun4

HHHHHH AR

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS -

236 5 word elaine qw 07/13/96 20:32:07

235 0 andrun penny qw 07/13/96 20:31:43

96 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Monitoring and Controlling Jobs

EXAMPLE4-2 Example of gstat Output

job-ID prior name user state submit/start at queue function

231 0 hydra craig r 07/13/96 durin.q MASTER
20:27:15

232 0 compile penny r 07/13/96 durin.q MASTER
20:30:40

230 0 blackhole don r 07/13/96 dwain.q MASTER
20:26:10

233 0 mac elaine r 07/13/96 dwain.q MASTER
20:30:40

234 0 golf shannon r 07/13/96 dwain.q MASTER
20:31:44

236 5 word elaine qw 07/13/96
20:32:07

235 0 andrun penny qw 07/13/96 20:31:43

Controlling Jobs With qdel and gmod

To control jobs from the command line, type one of the following commands with the
appropriate arguments.

% qdel arguments
% qmod arguments

Use the gdel command to cancel jobs, regardless of whether the jobs are running or are
spooled. Use the gmod command to suspend and resume (unsuspend) jobs already running.

For both commands, you need to know the job identification number, which is displayed in
response to a successful gsub command. If you forget the number, you can retrieve it with
gstat. See “Monitoring Jobs With gstat” on page 94.

The following list provides several examples of the gdel and gmod commands:

o°

qdel job-id

qdel -f job-idl, job-id2
gmod -s job-id

gmod -us -f job-idl, job-id2
amod -s job-id.task-id-range

o° o° o°

o°

In order to delete, suspend, or resume a job, you must be the owner of the job or a grid engine
manager or operator. See “Managers, Operators, and Owners” on page 38.

You can use the - f (force) option with both commands to register a job status change at
sge_gmaster without contacting sge_execd. You might want to use the force option in cases
where sge_execd is unreachable, for example, due to network problems. The - f option is
intended for use only by the administrator. In the case of qdel, however, users can force

Chapter4 - Monitoring and Controlling Jobs and Queues 97

Monitoring and Controlling Queues

deletion of their own jobs if the flag ENABLE_FORCED_QDEL in the cluster configuration
gmaster_params entry is set. See the sge_conf(5) man page for more information.

Monitoring Jobs by Email

From the command line, type the following command with appropriate arguments.

% qsub arguments

The gsub -m command requests email to be sent to the user who submitted a job or to the email
addresses specified by the -M flag if certain events occur. See the gsub(1) man page for a
description of the flags. An argument to the -m option specifies the events. The following
arguments are available:

= b - Send email at the beginning of the job.
= e - Send email at the end of the job.

= a- Send email when the job is rescheduled or aborted (for example, by using the qdel
command).

= 5 - Send email when the job is suspended.
= n-Donotsend email. n is the default.

Use a string made up of one or more of the letter arguments to specify several of these options
with a single -m option. For example, -m be sends email at the beginning and at the end of a job.

You can also use the Submit Job dialog box to configure these mail events. See “Submitting
Advanced Jobs With QMON” on page 63.

Monitoring and Controlling Queues

98

As described in “Displaying Queues and Queue Properties” on page 38, the owners of queues
have permission to suspend and resume queues, and to disable and enable queues. Owners
might want to suspend or disable queues if certain machines are needed for important work,
and those machines are strongly affected by jobs running in the background.

You can control queues in two ways:

= Using the QMON Queue Control dialog box
= Using the gmod command

Monitoring and Controlling Queues With QMON

In the QMON Main Control window, click the Queue Control button. The Cluster Queues dialog
box appears.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Monitoring and Controlling Queues

GMOMN +++ Cluster Gueues

-kJVI GE Cluster Queue Control

Cluster Queues] Gueue Instances
CLUSTER GUELE LOAD USED AWVAIL TOTAL acACD cdsuE s A
all.g 0.69 1 el 11 0 2 0 0
dilbert.g 1.00 0 4 B 0 z 0 0
fastg 0.05 0 5} 7 0 4 0 4

_ Force

b Bl e e

Monitoring and Controlling Cluster Queues

The Cluster Queue tab provides a quick overview of all cluster queues that are defined for the
cluster. The Cluster Queue tab also provides the means to suspend and resume cluster queues,
to disable and enable cluster queues, as well as to configure them.

Information displayed in the Cluster Queue dialog box is updated periodically. Click Refresh to
force an update. Click a cluster queue name to select the queue.

Chapter4 - Monitoring and Controlling Jobs and Queues 99

Monitoring and Controlling Queues

Click Delete, Suspend, Resume, Disable, or Enable to execute the corresponding operation on
cluster queues that you select. The suspend/resume and disable/enable operations require
notification of the corresponding sge_execd. If notification is not possible, you can force an
sge_gmaster internal status change by clicking Force. For example, notification might not be
possible because a host is down.

The suspend/resume and disable/enable operations require cluster queue owner permission,
grid engine manager permission, or operator permission. See “Managers, Operators, and
Owners” on page 38 for details.

Suspended cluster queues are closed for further jobs. The jobs already running in suspended
queues are also suspended, as described in “Monitoring and Controlling Jobs With QMON” on
page 85. The cluster queue and its jobs are unsuspended as soon as the queue is resumed.

Note - Ifa job in a suspended cluster queue was suspended explicitly, the job is not resumed
when the queue is resumed. The job must be resumed explicitly.

Disabled cluster queues are closed. However, the jobs that are running in those queues are
allowed to continue. The disabling of a cluster queue is commonly used to clear a queue. After
the cluster queue is enabled, it is eligible to run jobs again. No action on currently running jobs
is performed.

Error states are displayed using a red font in the queue list. Click Clear Error to remove an error
state from a queue.

Click Reschedule to reschedule all jobs currently running in the selected cluster queues.

To configure cluster queues and queue instances, click Add or Modify on the Cluster Queue
dialog box. See “Configuring Queues With QMON” in Sun N1 Grid Engine 6.1 Administration
Guide for details.

Click Done to close the dialog box.

Cluster Queue Status

Each row in the cluster queue table represents one cluster queue. For each cluster queue, the
table lists the following information:

m Cluster Queue - Name of the cluster queue.

= Load - Average of the normalized load average of all cluster queue hosts. Only hosts with a
load value are considered.

= Used - Number of currently used job slots.
= Avail - Number of currently available job slots.

= Total - Total number of job slots.

100 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Monitoring and Controlling Queues

= a0ACD - Number of queue instances that are in at least one of the following states:

® a-Load threshold alarm

= 0- Orphaned

= A - Suspend threshold alarm
= C- Suspended by calendar

= D - Disabled by calendar

= cdsuE - Number of queue instances that are in at least one of the following states:

= ¢ - Configuration ambiguous
= d - Disabled

= s-Suspended

= u- Unknown

= E-Error

= s— Number of queue instances that are in the suspended state.

= A - Number of queue instances where one or more suspend thresholds are currently
exceeded. No more jobs

= S—Number of queue instances that are suspended through subordination to another queue.

= C - Number of queue instances that are automatically suspended by the grid engine system
calendar.

= u- Number of queue instances that are in an unknown state.
= a- Number of queue instances where one or more load thresholds are currently exceeded.
= d - Number of queue instances that are in the disabled state.

= D - Number of queue instances that are automatically disabled by the grid engine system
calendar.

= ¢ - Number of queue instances whose configuration is ambiguous.
= 0 - Number of queue instances that are in the orphaned state.

= E - Number of queue instances that are in the error state.

See the gstat(1) man page for complete information about cluster queues and their states.

Monitoring and Controlling Queue Instances

The Queue Instances tab provides a quick overview of all queue instances that are associated
with the selected cluster queue. The Queue Instance tab also provides the means to suspend,
resume, disable, and enable queue instances.

Chapter4 - Monitoring and Controlling Jobs and Queues 101

Monitoring and Controlling Queues

102

A NI GE

Cluster Queue Control

Cluster Queues Queue Instances Refresh |
Tickets |
Glueue gtype usedfotal load_avg arch states Customize |
all.g@anven BIP 01 —MA- aix4ds au bera |
all.g@boromir BIP 01 0.78 hp1
allg@carc BIP |03 1.16 e 4—amds4 HElp |
all.g@durin BIP 1A .oz [z 4—x86 i |
all.g@eomer BIP 11 0.0s sol-sparcE4 |
all.g@lolek BIP 01 0.0z trug4 |
all.g@mungo BIP 01 1.08 [x22-alpha
all.g@nori BIP 01 —MA- s0|-%B6 au |
all.g@pippin BIP 01 0.00 darwin |
dilbert.g@carc BIP 0/3 1.16 [x24-amde4 B Fors
dilbert.g@durin BIP 11 0.0z [%2 4-%86
; Zuspend |
dilbert.g@fangorn BIP 01 —MA- —MA- au
dilbert.g@lis BIP |on —NA- —NA- au i |
fast.q@halin BIPC |01 —NA- —NA- ahu Disahle |
fast.g@bilbo BIPC |04 —MA- —MA- afu Enable |
fast.g@hilbur BIPC |04 —TA— —TA— afu Reschedule |
fast.g@eomer BIPC |0/3 0.05 sol-sparc64 Clear Error |
fast.g@nori BIPC |01 —MA- s0|-%B6 asu Lot |

Eic Ela B A ELE
Explain |

Click a cluster queue name to select the queue instance.

Click Suspend, Resume, Disable, or Enable to execute the corresponding operation on queue
instances that you select. The suspend/resume and disable/enable operations require
notification of the corresponding sge_execd. If notification is not possible, for example,
because the host is not reachable, you can force an sge_qmaster internal status change by

clicking Force.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Monitoring and Controlling Queues

The suspend/resume and disable/enable operations require queue owner permission, manager
permission, or operator permission. See “Managers, Operators, and Owners” on page 38.

Suspended queue instances are closed for further jobs. The jobs already running in suspended
queue instances are also suspended, as described in “Monitoring and Controlling Jobs With
QMON” on page 85. The queue instance and its jobs are unsuspended as soon as the queue
instance is resumed.

Note - If a job in a suspended queue instance was suspended explicitly, the job is not resumed
when the queue instance is resumed. The job must be resumed explicitly.

Disabled queue instances are closed. However, the jobs executing in those queue instances are
allowed to continue. The disabling of a queue instance is commonly used to clear a queue
instance. After the queue instance is enabled, it is eligible to run jobs again. No action on
currently running jobs is performed.

Queue Instance Status

Each row in the queue instances table represents one queue instance. For each queue instance,
the table lists the following information:

= Queue - Name of the queue instance

= gtype - Type of queue instance, which can be B (batch), I (interactive), or P (parallel)
= used/total - Number of used job slots and the total number of job slots

= Joad_avg - Load average of the queue instance host

= arch - Architecture of the queue instance host

= states — States of the queue instance

See “Cluster Queue Status” on page 100 for a list of queue states. See the gstat(1) man page for
complete information about queue instances and their states.

Displaying Queue Instance Attributes

To retrieve a queue instance's current attribute information, load information, and resource
consumption information, select the queue instance, and then click Load. This information also
implicitly includes information about the machine that is hosting the queue instance. The
window shown in the following figure appears:

Chapter4 - Monitoring and Controlling Jobs and Queues 103

Monitoring and Controlling Queues

104

~| Attributes for queue elendil.q
Attribute Zlot-Limits/Fixed Attributes Load(scaled)¥Consumahle
arch solarisg4 nane =
num_proc 1
load_avg 0113
load_shaort 0.094
load_medium 0113
load_long 01z1
np_load_avg 0113
np_load_shart 0.094 »
np_load_medium 0113
np_load_long 01z1
mem_free 49,0000k
merm_tatal 256,000k
swap_free 380.0000
swap_total 513.000k
virtual_free 4790000
wirtual_total 7ES.0000
mem_used Z07.000k
swap_used 133.000k4
[T — : E—

- o

The Attribute column lists all attributes attached to the queue instance, including those
attributes that are inherited from the host or the global cluster.

The Slot-Limits/Fixed Attributes column shows values for those attributes that are defined as
per queue instance slot limits or as fixed resource attributes.

The Load(scaled)/Consumable column shows information about the reported and scaled load
parameters. The column also shows information about the available resource capacities based
on the consumable resources facility. See “Load Parameters” in Sun N1 Grid Engine 6.1
Administration Guide and “Consumable Resources” in Sun N1 Grid Engine 6.1 Administration
Guide.

Load reports and consumable capacities can override each other if a load attribute is configured
as a consumable resource. The minimum value of both, which is used in the job-dispatching
algorithm, is displayed.

Note - The displayed load and consumable values currently do not take into account load
adjustment corrections, as described in “Execution Hosts” on page 27.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Monitoring and Controlling Queues

Filtering Cluster Queues and Queue Instances
The Customize button enables you to filter the cluster queues and queue instances you want to

display.

The following figure shows a filtered selection of only those queue instances whose current
configuration is ambiguous.

GQUEUE CUSTOMIZE

Resource Filter | PE Filter | Misc Filters

Filter by User

I

higadmin

Filter by GQueue Pattern

I

a*

Filter by GQueue State
Ja|¥c| id Jo s Ju A JC D _IE IS

Click Save in the Queue Customize dialog box to store your settings in the file
.gmon_preferences in your home directory for standard reactivation on later invocations of
QMON.

Controlling Queues With gmod

You can use the gnod command to suspend and resume queues. You can also use gmod to
disable and enable queues.

The following commands illustrate how to use gmod:

o°

gmod -s g-name

gmod -us -f g-namel, g-name2
gmod -d g-name

gmod -e g-namel, g-name2, g-name3

o® o°

o°

gmod —s suspends a queue. gmod —us —f resumes (unsuspends) two queues. gmod —d disables a
queue. gmod —e enables three queues.

Chapter4 - Monitoring and Controlling Jobs and Queues 105

Using Job Checkpointing

The - f option forces registration of the status change in sge_gmaster when the corresponding
sge_execd is not reachable, for example, due to network problems.

Suspending and resuming queues as well as disabling and enabling queues requires queue
owner permission, manager permission, or operator permission. See “Managers, Operators,
and Owners” on page 38.

Note - You can use gmod commands with crontab or at jobs.

Using Job Checkpointing

106

This section explores two different kinds of job checkpointing: user-level and kernel-level.

User-Level Checkpointing

Many application programs, especially programs that consume considerable CPU time, use
checkpointing and restart mechanisms to increase fault tolerance. Status information and
important parts of the processed data are repeatedly written to one or more files at certain stages
of the algorithm. If the application is aborted, these restart files can be processed and restarted at
a later time. The files reach a consistent state that is comparable to the situation just before the
checkpoint. Because the user mostly has to move the restart files to a proper location, this kind
of checkpointing is called user-level checkpointing.

Application programs that do not have integrated user-level checkpointing can use a
checkpointing library. A checkpointing library can be provided by some hardware vendors or
by the public domain. The Condor project of the University of Wisconsin is an example. By
relinking an application with such a library, a checkpointing mechanism is installed in the
application without requiring source code changes.

Kernel-Level Checkpointing

Some operating systems provide checkpointing support inside the operating system kernel. No
preparations in the application programs and no relinking of the application is necessary in this
case. Kernel-level checkpointing usually applies to single processes as well as to complete
process hierarchies. A hierarchy of interdependent processes can be checkpointed and restarted
atany time. Usually both a user command and a C library interface are available to initiate a
checkpoint.

The grid engine system supports operating system checkpointing if available. See the release
notes for the N1 Grid Engine 6.1 software for information about the currently supported
kernel-level checkpointing facilities.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Using Job Checkpointing

Migrating Checkpointing Jobs

Checkpointing jobs are interruptible at any time because their restart capability ensures that
very little work that is already done must be repeated. This ability is used to build migration and
dynamic load balancing mechanism in the grid engine system. If requested, checkpointing jobs
are stopped on demand. The jobs are migrated to other machines in the grid engine system,
thus averaging the load in the cluster dynamically. Checkpointing jobs are stopped and
migrated for the following reasons:

= The executing queue or the job is suspended explicitly by a qmod or a QMON command.

= Thejob or the queue where the job runs is suspended automatically because a suspend
threshold for the queue is exceeded. The checkpoint occasion specification for the job
includes the suspension case. For more information, see “Configuring Load and Suspend
Thresholds” in Sun N1 Grid Engine 6.1 Administration Guide and “Submitting, Monitoring,
or Deleting a Checkpointing Job From the Command Line” on page 108.

A migrating job moves back to sge_qgmaster. The job is subsequently dispatched to another
suitable queue if such a queue is available. In such a case, the gstat output shows R as the status.

Composing a Checkpointing Job Script
Shell scripts for kernel-level checkpointing are the same as regular shell scripts.

Shell scripts for user-level checkpointing jobs differ from regular batch scripts only in their
ability to properly handle the restart process. The environment variable RESTARTED is set for
checkpointing jobs that are restarted. Use this variable to skip sections of the job script that
need to be executed only during the initial invocation.

Example 4-3 shows a sample transparently checkpointing job script.

EXAMPLE 4-3 Example of a Checkpointing Job Script

#1/bin/sh
#Force /bin/sh in Grid Engine
#$ -S /bin/sh

Test if restarted/migrated
if [$RESTARTED = 0]; then
0 = not restarted
Parts to be executed only during the first
start go in here
set up grid
fi

Start the checkpointing executable

Chapter4 - Monitoring and Controlling Jobs and Queues 107

Using Job Checkpointing

EXAMPLE 4-3 Example of a Checkpointing Job Script (Continued)

fem
#End of scriptfile

The job script restarts from the beginning if a user-level checkpointing job is migrated. The user
is responsible for directing the program flow of the shell script to the location where the job was
interrupted. Doing so skips those lines in the script that must be executed more than once.

Note - Kernel-level checkpointing jobs are interruptible at any time. The embracing shell script
is restarted exactly from the point where the last checkpoint occurred. Therefore, the
RESTARTED environment variable is not relevant for kernel-level checkpointing jobs.

Submitting, Monitoring, or Deleting a Checkpointing Job From the
Command Line

Type the following command with the appropriate options:

qsub options arguments

The submission of a checkpointing job works in the same way as for regular batch scripts, except
for the gsub -ckpt and gsub - ¢ commands. These commands request a checkpointing
mechanism. The commands also define the occasions at which checkpoints must be generated
for the job.

The - ckpt option takes one argument, which is the name of the checkpointing environment to
use. See “Configuring Checkpointing Environments” in Sun N1 Grid Engine 6.1 Administration
Guide.

The - c option is not required. - c also takes one argument. Use the - c option to override the
definitions of the when parameter in the checkpointing environment configuration. See the
checkpoint(5) man page for details.

The argument to the - c option can be one of the following one-letter selections, or any
combination. The argument can also be a time value.

= n - No checkpoint is performed. n has the highest precedence.
= 5s-— A checkpoint is generated only if the sge_execd on the jobs host is shut down.

= m- Generate the checkpoint at the minimum CPU interval defined in the corresponding
queue configuration. See the min_cpu_interval parameter in the queue_conf(5) man page.

= x - A checkpoint is generated if the job is suspended.

= interval - Generate the checkpoint in the given interval but not more frequently than
defined by min_cpu_interval. The time value must be specified as hhi:mm:ss. This format
specifies two digit hours, minutes, and seconds, separated by colons.

108 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Using Job Checkpointing

The monitoring of checkpointing jobs differs from monitoring regular jobs. Checkpointing jobs
can migrate from time to time. Checkpointing jobs are therefore not bound to a single queue.
However, the unique job identification number and the job name stay the same.

The deletion of checkpointing jobs works in the same way as described in “Monitoring and
Controlling Jobs From the Command Line” on page 94.

Submitting a Checkpointing Job With QMON

The submission of checkpointing jobs with QMON is identical to submitting regular batch jobs,
with the addition of specifying an appropriate checkpointing environment. As explained in
“Submitting Advanced Jobs With QMON” on page 63, the Submit Job dialog box provides a field
for the checkpointing environment that is associated with a job. Click the button next to that
field to opens the following Selection dialog box.

~| Select an Item

Available checkpoint objects

userdefined

Zelect a checkpoint ohject

‘ cray

1 oK | Cancel|

You can select a suitable checkpoint environment from the list of available checkpoint objects.
Ask your system administrator for information about the properties of the checkpointing
environments that are installed at your site. For more information, refer to “Configuring
Checkpointing Environments” in Sun N1 Grid Engine 6.1 Administration Guide.

File System Requirements for Checkpointing

When a user-level checkpoint or a kernel-level checkpoint that is based on a checkpointing
library is written, a complete image of the virtual memory covered by the process or job to be
checkpointed must be saved. Sufficient disk space must be available for this purpose. If the
checkpointing environment configuration parameter ckpt_dir is set, the checkpoint
information is saved to a job private location under ckpt_dir. If ckpt_dir is set to NONE, the
directory where the checkpointing job started is used. See the checkpoint(5) man page for
detailed information about the checkpointing environment configuration.

Note - You should start a checkpointing job with the gsub - cwd script if ckpt_dir is set to NONE.

Chapter4 - Monitoring and Controlling Jobs and Queues 109

Using Job Checkpointing

110

Checkpointing files and restart files must be visible on all machines in order to successfully
migrate and restart jobs. Because file visibility is necessary for the way file systems must be
organized, NFS or a similar file system is required. Ask your cluster administration if your site
meets this requirement.

If your site does not run NFS, you can transfer the restart files explicitly at the beginning of your
shell script. For example, you can use rcp or ftp in the case of user-level checkpointing jobs.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

CHAPTER 5

Accounting and Reporting

This chapter covers the following topics:

= “Starting the Accounting and Reporting Console” on page 111
= “Creating and Running Simple Queries” on page 113

= “Creating and Running Advanced Queries” on page 124

= “Latebindings for Advanced Queries” on page 126

Starting the Accounting and Reporting Console

3

The accounting and reporting console is installed separately from the N1 Grid Engine 6.1
software. For details on the installation process, see Chapter 8, “Installing the Accounting and
Reporting Console,” in Sun N1 Grid Engine 6.1 Installation Guide. In addition, you must enable
your grid engine system to collect reporting information. For details about how to enable the
collection of reporting data, see “Report Statistics (ARCo)” in Sun N1 Grid Engine 6.1
Administration Guide.

How to Start the Accounting and Reporting Console

Start a web browser.

Type the URL to connect to the Sun Java Web Console.

In the following example, hostname is the host on which the accounting and reporting software
has been installed.

https://hostname: 6789

Log in to your UNIX account.

11

Starting the Accounting and Reporting Console

112

4 Selectthe N1 Grid Engine 6 ARCo application.

You are redirected to an Overview page that shows you a list of predefined ARCo queries.

M1 GE ¢

— YWeh Bro

. File Edit ¥iew Go Bookmarks Tools Window Help

00

@a e @ Q [|£§3https:ﬂyour-system:6?89frep0r1|ngfarcomcduleflndex

a

] S, ®

. 4% Home | E3Bookmarks E3Search E3SunTools E3Spass E3SUN % CollabEx %% OneStopMailFi.. S

SWLC E3Security »

|4 [£ N1GE ARCo |

X

COMSOLE | WERSION

L ge_admin r: your

N1 Grid Engine - ARCo

oo our [tete A

Overview
List all defined gueries and results

J Query List ‘ Result List ‘

[Run] Edit [Delete][MNew Simple][Mew Advanced] | lz‘

- | Name | category < | LastModified altype o] |
" Accounting per Department Accounting Tue Oct 26 16:51:53 CEST 2004 advanced i
" Accounting per Project Accounting Tue Oct 26 16:31:53 CEST 2004 | advanced
" sccounting per User Accounting Tue Oct 26 16:51:53 CEST 2004 advanced
¢ Average Job Turmaround Time Jaoh Tue Oct Z6 16:51:53 CEST 2004 advanced
¢ Average Job Wait Time Job Tue Oct 26 16:31:53 CEST 2004 | advanced
¢ Host Load Cluster Tue Oct 26 16:51:53 CEST 2004 advanced
" Job Log Job Tue Oct 26 16:51:53 CEST 2004 simple
" Mumber of Jobs completed Job Tue Oct 26 16:51:53 CEST 2004 | advanced
" Queue Consumables Resource Usage Tue Oct 26 16:51:53 CEST 2004 | simple
" Statistics Administration Tue Oct 26 16:51:53 CEST 2004 advanced
¢ wWallclock time Johs Tue Oct 26 16:51:53 CEST 2004 simple
[Run] Edit [Delete][MNew Simple][MNew Advanced]
hd
[) & 1 & [Done EEREIEE

Tip - The direct link to the ARCo application is
https://hostname:6789/console/login/Login?
redirect url=%22/reporting/arcomodule/Index%22)

If you press the tab labeled Result List, you see any stored Query Results. Clicking on Query List

brings you back to the Query List overview.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Creating and Running Simple Queries

COMNSOLE WERSION LOG aUT HELF
u e ': -syste 2
L ge_admi your-system /(

N1 Grid Engine - ARCo

et

Sun™ Microsystems, Inc.

Overview
List all defined gueries and results

Result List |

e (o)) [2]

o | Name s | Category - | LastModified a | Type o |
¢ | Accounting per Department (2004) Accounting Fri Feb 18 15:27:26 CET 2005
[view)

Creating and Running Simple Queries

The query defines the data set that you want to retrieve. You can create simple queries for which
the system formulates the SQL query string. If you know SQL and you want to write the query
yourself, you can create advanced queries.

v Howto Create a Simple Query

1 GotoQueryListand press the New Simple button.

The following screen appears with three tabs showing common information, such as the query
category and description. This information is optional. To define the query, go to the Simple
Query tab. To define the configuration how to display the results of the query, go to the View
tab.

Chapter5 « Accounting and Reporting 113

Creating and Running Simple Queries

Cverview = Simple Guery

Simple Query Save as

Definition of the ARCo query

J Common ‘ Simple Query View ‘

[Reset][Run][To Advanced.]

Common Query Properties

Category: |Example

Descrption: |This is a simple query example

Save Save as

[Reset][Run][To Advanced.]

Click the Simple Query tab to access the Query definition page. The page provides the following

features:

= A Table/View dropdown menu you use to choose a database table or view to predefine your
query

= The Field List where all the fields are listed as a row

= A Filter List for defining filter conditions for your query

= The Row Limit field to restrict the number of result entries fo

114 Sun N1 Grid Engine 6.1 User's Guide « May 2007

r your query

Creating and Running Simple Queries

Cverview = Simple Guery

Simple Query [Save][Save as.][Reset][Fun][To Advanced..]
Definition of the ARCo query

Common Simple Query View ‘

Simple Query Defintion

Tablefview: |view_j0b_times |

Function | Name | Parameter | Usemame | Sort |
r | Count =] [job_number =l] |Job Count |asc +|
r |value =] |department =l] | Department |asc +|

And/Or | Fieta | condiition | Parameter | Late Binding | Active |
Mo items found.

Row Limit: |]

The single steps how to construct a simple query are outlined as follows.
Select a table from the table list.

Define the fields that you want to see.

The Field Function describes the functionality used for the field. The following list shows the
supported values of Field Function.

VALUE Use the current value of the field
SUM Accumulate the values of the field
COUNT Count the number of values of the field

MIN Get the minimum value of the field
MAX Get the maximum value of the field
AVG Get the average value of the field

= The Field Name is a field in the selected table.
= The User Defined Name allows the results to display a more meaningful name.
= Sort allows to define the sorting order for every field if needed.

Chapter5 « Accounting and Reporting 115

Creating and Running Simple Queries

116

4 (Optional) Define Filters.

You must specify at least one field before you can define filters.

= AND/ORisneeded for any filter except the first. This setting provides the logical connection
to the previous filter condition.

® The Field Name is the name of the field to be filtered. If a field has a user-defined name, that
name is shown in the selection list. Otherwise, a generated name is shown.

= The Condition field specifies the operators that are used to filter the values from the
database. The following table lists the supported operators.

Filter Symbol Description Number of Requirements

Equal = The value must equal the Requirement 1

Not Equal <>,!= The value must not equal the Requirement 1

Less Than < The value must be less than the Requirement 1

Less Than or Equal <=,< The value must be less than or equal to the 1
Requirement

Greater Than > The value must be greater than the 1
Requirement

Greater Than or Equal >=,> The value must be greater than or equal to the 1
Requirement

Null The value must be null 0

Not Null The value must not be null 0

Between The value must be in a specified interval 2

In The value must be equal to an element of a 1 or more
specified list

Like The value must contain the given Requirement 1

The Requirement field contains a value that is used for filtering the values returned by the
query. The following list contains some examples of things that might go into the Requirement

field.

1 AND 100

d%

%d%

%d%e%

Wert-1', Wert-2, ..., Wert-n

For a between condition
For a like condition
For alike condition
For alike condition

For an in condition

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Creating and Running Simple Queries

(Optional) Limit the number of data sets.

To limit the number of data sets, select the Limit Query To First option. Then type the number
of data sets you want returned.

Click Save to save the query.

The following figure displays the Save this Query As screen. Type a name for the query in the
Query Name field, and then click Ok.

After you save your query, you return to a modified version of the Simple Query screen.

How to Create a View Configuration

To change the view configuration for a query, click the View tab.
To create a view for a saved query:
= Choose the query from the Query List on the Overview page.

= (Click the Edit button.
m (Click the View tab.

The queries current view configuration displays.

Declare how you want to view the results of your query.

You can add three different sections to the view configuration, decide if additional information
about the query is shown, and in which order it is shown.

‘ Common ‘ Simple Query ‘ View

¥ Wiew Configuration ¥ Datahase Tahble

View Configuration

[add Pivet |(Add Graphic |
Hide Description: I~

Hide Filter Conditions: I~
Hide SQL: r

2 Back to top

Use the links at the top of the page to move to the corresponding section. The possible sections
are Database Table, Pivot Table and Graphic. The View Configuration section is always visible
and enables you to display the query description that has been entered on the common tab, the
filter conditions from the filter list, and the resulting SQL statement of the query definition or
the content of the SQL tab for advanced queries.

Selecting Add Database, Add Pivot, or Add Graphic adds the corresponding section.

Chapter5 « Accounting and Reporting 17

Creating and Running Simple Queries

For some queries, only a subset of the possible view selections are meaningful. For example, if
you have only two columns to select from, pivot makes no sense.

For the Database Table add and choose the columns that you need to display under Name and
adjust their Type and Format. The order in which the columns are added will be the order in
which the columns are presented. The selections that you make for this report do not affect the
filters applied to the data.

Database Table

Remove Tahle

(o) oot |l [2]

— Mame |Type |Fom1at |
r [Job Count =] | Murmber | | #w e |
r IDepanment | | Text | | yyyyhindidd - hhemm:ss 2 |
2 Back to top

For the Pivot Table, add the pivot column, row, and data entries. Then choose the column
Name, Type, and Format. To shift an entry to a different pivot type, select it under Pivot Type.

Pivot Table

[Remove Pivot][kove Down]

Selected Columns, Data and Rows (3)

("Add Column |~ Add Row | Add Data || Delete | | [

— Hame | Type | Format | Pivot Type |
r | time | | Date-Time | | yyyyhindidd - hhemm:ss 2 | [Column]
r | department = | Text | | yyyyhindidd - hhemm:ss 2 | Row |
r | cpu | | Murber | | #0.00 | [Data ~]

[add Column | Add Row | Add Data || Delete |

2 Back to top

For the Graphic section, you can attach the query data to different chart diagram types. The
following chart types are available from the Diagram Type menu:

Bar Chart

Bar Chart (3D)

Bar Chart Stacked

Bar Chart Stacked (3d)
Pie Chart, Pie Chart 3D

118 Sun N1 Grid Engine 6.1 User's Guide « May 2007

Creating and Running Simple Queries

3

4

= Line Chart
m Line Chart Stacked Line

Three different diagram types are available:

= Bar
= Pie
= Line

Bar and Pie types can be display with a 3D effect. Bar and Line diagrams can be drawn as stacked
diagrams with values on the y-axis summarized.

Graphical Presentation

[Remove Graphic][kave Up][kove Down]
Diagram Type: Pie Chart |
X Axis: titne ;l

" Series From Columns

Available: Selected:
Add = -
department
cpu add Al ==
U
i < Remove

<= Remove All

" Series From Row

Label: Idepanment |

Value: cpu ;I

2 Back to top

Click Save or Save As to save your View configuration to the query.

Click Run to run your query.

Defining Data Series for Diagrams

Two ways to define the data series for a diagram are:

m Series from columns: All column values are added to a series. The name of the series is the
column header

= Series from rows: All column values define the series. The names of the series is defined by
the values of the label column. The values of the series are defined by the value column.

Chapter5 « Accounting and Reporting 119

Creating and Running Simple Queries

EXAMPLE5-1 Accounting per Department Pie Chart

The query “Accounting per Department” results in a table with the columns: time, department,
and cpu.

Database Table (7)

time Y | department Y | cpu Y |
2005.01.01 | defaultdepartment 1525.62
2005.01.01 | depl 1153.35
2005.01.01 | depz 24.95
2005.02.01 | depl 29.66
2005.02.01 | depz 2z2z.09
2005.03.01 | depl 922.03
2005.03.01 | depz 1732.70

To display the result in a pie chart, select the following configuration:

Graphical Presentation

[Remove Graphic][kave Up][kove Down]

Diagram Type: Fie Chart (309 |
X Axis: titne j

" Series From Columns

Available: Selected:
Add >
department Add Al >

< Remove
<= Remove All

& Series From Row

Label: Idepanment =

Value: cpu j

Show legend: &

The result will be multiple pie charts

120 Sun N1 Grid Engine 6.1 User's Guide « May 2007

Creating and Running Simple Queries

dep2 = 24.05
defaultdepart
ment=
1,5623.62
2005-01-01 00:00:00.0 2005-02-01 00:00:00.0

2005-03-01 00:00:00.0

|.c|efau|tc|e|:artment W depi .clep2|

EXAMPLE 5-2 CPU, Input/Output, and Memory Usage Over All Departments Bar Chart

A query summarizes CPU, IO, and Mem usage over all departments:

Database Table (3)

department Y | cpu Y | mem Y |] Y |
defaultdepartment 1525.62 27.00 0.03
depl 2106.44 8.05 0.07
depz 1979.74 411.05 0.00

To display the results in a bar chart, select the following configuration

Chapter5 « Accounting and Reporting 121

Creating and Running Simple Queries

Graphical Presentation

[Remove Graphic][kove Down]

Diagram Type: |Bar Chart (30} =

X Ais: department |

& Series From Columns
Available: Selected:
Add > cpu

" Series From Row

Label: Idepanment =

Value: cpu j

Show legend: &
EXAMPLE 5-2 CPU, Input/Output, and Memory Usage Over All Departments Bar Chart (Continued)

The results will be a bar chart with three bars for each department:

2200
2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
o0
800
00
GO0
500
400
300
200
100

epu mem in

|-clefaultclepartment W depi .clep2|

122 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Creating and Running Simple Queries

v How to Run a Simple Query

® Runthe query.

= Toruna query thatyou just created, click Run on the Simple Query screen.

[Save][Save as.][Reset][Run][To Advanced.]

= Toruna query thatyou previously saved, select the query from the Query List screen and

click Run.

J Query List ‘ Result List ‘

I, Fun || Edit |[Delete M MNew Simple][Mew Advanced J | lz‘

- | Hame 4 | category < | LastModified = | Type
" Accounting per Department Accounting Fri Feb 16 13:25:58 MET 2005 | advar
& | Accounting per Project Accounting Fri Feb 04 14:47:33 MET 2005 | advar
" Accounting per User Accounting Thu Feb 10 16:35:45 MET 2005 | adva
¢ Average Job Tumaround Time Jaoh Fri Feb 04 14:47:33 MET 2005 | advar
¢ Average Job Wait Time Job kon Feh 07 16:22:26 MET 2005 | adva
| Current Space Statistic kon Feb 14 11:32:00 MET 2005 advat
¢ Host Load Cluster Wed Feb 16 15:48:43 MET 2005 adva
o Job Log Job Fri Feb 18 17:55:55 MET 2003 | simple
" Mumber of Jobs completed Job Fri Feb 04 14:47:33 MET 2005 | advar
" Queue Consumables Resource Usage Wed Feb 09 08:41:11 MET 2005 | simpl
" | Space Statistic kon Fehb 14 11:58:33 MET 2005 advat
" | Statistics Administration Fri Feb 04 14:47:33 MET 2005 | advar
¢ Wallclock time Johs Fri Feb 04 14:47:33 MET 2005 | simple

Run Edit [Delete][Mew Simple || Mew Advanced]

v Howto Edit a Simple Query
1 Selectaquery from the list on the Query List screen

2 Click Edit.
The selected Simple Query screen displays.

3 Make changes to the Simple Query screen by navigating through the tabs and making your

changes as you would when creating a simple query.

4 Saveorrunyour changed query.

Chapter5 « Accounting and Reporting

123

Creating and Running Advanced Queries

Creating and Running Advanced Queries

You must have previous experience writing SQL queries to use this feature of the accounting
and reporting console.

v How to Create an Advanced Query

1 Click New Advanced Query on the Query List screen.

2 TypeyourSQL queryin the field.

Cverview = Advanced GQuery

Accounting per Department [Save][Save as..][Reset][Run]
Definition of the ARCo query

Common

3aL View

* Indicates required field

Advanced Query Defintion

* Sql Statment:

SELECT time, department, SUM(cpu) as cpu, SUM{mem) as mem, SU(io) as io
FROM (
SELECT trunc(cast(start_time as date), 'month’) &5 time,
department, cpu, mem, io
FROM view_accounting
WHERE start_time = (S¥SDATE - INTERVAL "1° YEAR)

)
GROUP BY time, department

[Save][Save as.][Reset][Run]

3 Saveorrunyour query.

= Tosave your query, click Save.

= Torunyour query, click Run.

124 Sun N1 Grid Engine 6.1 User's Guide « May 2007

Creating and Running Advanced Queries

v How to Run an Advanced Query

® Runthe query.
= Toruna query thatyou just created, click Run on the Advanced Query screen.

= Toruna query thatyou previously saved, select the query from the Query List screen and
click Run.

J Query List ‘ Result List ‘

I, Run]| Edit |[Delete M MNew Simple][Mew Advanced J | lz‘

- | Hame 4 | category < | LastModified = | Type
" Accounting per Department Accounting Fri Feb 16 13:25:58 MET 2005 | advanced
& | Accounting per Project Accounting Fri Feb 04 14:47:33 MET 2005 | advanced
" Accounting per User Accounting Thu Feb 10 16:35:45 MET 2005 | advanced
¢ Average Job Tumaround Time Job Fri Feb 04 14:47:33 MET 2005 | advanced
¢ Average Job Wait Time Job kon Feh 07 16:22:26 MET 2005 advanced
| Current Space Statistic kon Feb 14 11:32:00 MET 2005 advanced
¢ Host Load Cluster Wed Feb 16 15:48:43 MET 2005 advanced
o Job Log Job Fri Feb 18 17:55:55 MET 2005 | simple
" Mumber of Jobs completed Job Fri Feb 04 14:47:33 MET 2005 | advanced
" Queue Consumables Resource Usage Wed Feb 09 08:41:11 MET 2005 | simple
" | Space Statistic kon Fehb 14 11:58:33 MET 2005 advanced
" | Statistics Administration Fri Feb 04 14:47:33 MET 2005 | advanced
¢ Wallclock time Johs Fri Feb 04 14:47:33 MET 2005 | simple

[Run] Edit [Delete][Mew Simple || Mew Advanced]

v Howto Edit an Advanced Query

1 Selectaquery from the list on the Query List screen

2 Click Edit.
A completed version of the Advanced Query screen displays.

3 Make changes to the SQL query.
4 Saveorrunyour changed query.
= To save your changed query, click Save.

= Torunyour changed query, click Run.

Chapter5 « Accounting and Reporting 125

Latebindings for Advanced Queries

Latebindings for Advanced Queries

The syntax for the latebindings in advanced queries is:

LATEBINDING{ <column>;<operator>;<default value> }

<column> name if the latebinding
<operator> a SQL operator (e.g. = < > in ..)
<value> default value (e.g. 'localhost’)

EXAMPLE5-3 Latebindings Examples

select hostname from sge host where LATEBINDING{hostname, like, 'a%’'}

select hostname from sge host where LATEBINDING{hostname, in, (’localhost’,

126 Sun N1 Grid Engine 6.1 User's Guide « May 2007

"foo.bar')}

L K R 4 CHAPTER 6

Automating Grid Engine Functions Through the
Distributed Resource Management Application
API

You can automate N1 Grid Engine functions by writing scripts that run N1 Grid Engine
commands and parse the results. However, for more consistent and efficient results, you can use
the C or Java™ language and the Distributed Resource Management Application APIL This
chapter introduces the DRMAA concept and explains how to use it with the C and Java
languages.

The chapter includes the following information:

= “Introduction to Distributed Resource Management Application API (DRMAA)” on
page 127

= “Developing with the C Language Binding” on page 128

= “Developing with the Java Language Binding” on page 134

Introduction to Distributed Resource Management
Application API (DRMAA)

The Distributed Resource Management Application API (DRMAA, which is pronounced like
drama) is an Open Grid Forum specification to standardize job submission, monitoring, and
control in Distributed Resource Management Systems (DRMS). The objective of the DRMAA
Working Group was to produce an API that would be easy to learn, easy to implement, and that
would enable useful application integrations with DRMS in a standard way.

The DRMAA specification is language, platform, and DRMS agnostic. A wide variety of
different systems should be able to implement the DRMAA specification. To provide additional
guidance for DRMAA implementeos in specific languages, the DRMAA Working Group also
produced several DRMAA language binding specifications. These specifications define what a
DRMAA implementation should resemble in a given language.

The DRMAA specification is currently at version 1.0. The DRMAA Java Language Binding
Specification is also at version 1.0, as is the DRMAA C Language Binding Specification. N1 Grid
Engine 6.1 provides implementations of both the 1.0 Java language binding and the 1.0 C

127

Developing with the C Language Binding

language binding as well as older versions of each for backward compatibility. For more
information about the DRMAA 1.0 specification and the language-specific binding
specifications, see the Open Grid Forum DRMAA Working Group web site
(http://drmaa.org/wiki/?sfProjectId=proj1076).

Developing with the C Language Binding

128

Important Files for the C Language Binding

To use the DRMAA C language binding implementation included with N1 Grid Engine 6.1,
you need to know where to find the important files. The most important file is the DRMAA
header file that you include from your C application to make the DRMAA functions available to
your application. The DRMAA header file resides in sge-root/include/drmaa. h, where sge-root
defaults to/usr/SGE. For detailed reference information about the DRMAA functions, see
section 5 of the N1 Grid Engine man pages, located in the sge-root/man directory. To compile
and link your application, use the DRMAA shared library at sge-root/1ib/arch/1ibdrmaa. so.

Including the DRMAA Header File

To use the DRMAA functions in your application, every source file that usesa DRMAA
function must include the DRMAA header file. To include the DRMAA header file in your
source file, add the following line to your source code, usually near the top:

#include "drmaa.h"

Compiling Your C Application

When you compile your DRMAA application, you need to include some additional compiler
directives to direct the compiler and linker to use DRMAA. The following directions apply for
the Sun Studio Compiler Collection and for gcc. These instructions might not apply for other
compilers and linkers. Consult the documentation for your specific compiler and linker
products.

You must include two directives:
= Tell the compiler to include the DRMAA header file by adding the following statement to

the compiler command line:

-I<sge-root>/include

= Tell the linker to include the DRMAA library by adding the following statement to the
compiler and/or linker command line:

Sun N1 Grid Engine 6.1 User's Guide - May 2007

http://drmaa.org/wiki/?sfProjectId=proj1076
http://drmaa.org/wiki/?sfProjectId=proj1076

Developing with the C Language Binding

-ldrmaa

You also need to verify that the sge-root/1ib/arch directory is included in your library search
path (LD_LIBRARY_PATH on the Solaris Operating Environment and Linux). The
sge-root/lib/arch directory is not included automatically when you set your environment
using the settings.shor settings.csh files.

EXAMPLE6-1 Compiling Your C Application Using Sun Studio Compiler

The following example shows how you would compile your DRMAA application using the Sun
Studio Compiler. The following assumptions apply:

= Youare using the csh shell on a Solaris host.
= N1 Grid Engine is installed in /sge
= The DRMAA application is stored in app. c.

Sample commands would look like the following

% source /sge/default/common/settings.csh
% cc -I/sge/include -ldrmaa app.c

Running Your C Application

To run your compiled DRMAA application, verify the following:

The sge-root/lib/arch directory must be included in the library search path (LD_LIBRARY_PATH
on the Solaris Operating Environment and Linux). The sge-root/1ib/arch directory is not
included automatically when you set your environment using the settings.sh or
settings.csh files.

You must be logged into a machine that is an N1 Grid Engine submit host. If the machine is not
an N1 Grid Engine submit host, all DRMAA function calls will fail, returning
DRMAA ERRNO DRM COMMUNICATION FAILURE

How to Use the DRMAA 0.95 C Language Binding

The DRMAA shared library, which is enabled by default, supports version 1.0 of the DRMAA C
Language Binding Specification. For reasons of backward compatibility, however, Grid Engine
also includes an implementation of the 0.95 version of the DRMAA C Language Binding
Specification. You should develop all new applications with the 1.0 shared library, but you
might occasionally discover an application that requires the 0.95 implementation.

To enable the 0.95 version of the shared library, follow these steps:

Login as a user that has permissions to modify the Grid Engine installation.

% SU -

Chapter6 - Automating Grid Engine Functions Through the Distributed Resource Management Application 129
API

Developing with the C Language Binding

130

Change to the sge-root/1ib/arch directory.
% cd /sge/lib/sol-sparc64

Remove the libdrmaa.so symboliclink.

% rm libdrmaa.so

Create a new symbolic link to the 0.95 library.

% ln -s libdrmaa.so0.0.95 libdrmaa.so

On the Solaris and Linux platforms, the shared library is tagged with a version number.
Applications compiled and linked against the 1.0 version will fail claiming that the library could
not be found if the 0.95 version of the shared library is enabled, and vice versa. On other
platforms, a 1.0 application will load the 0.95 shared library successfully but might fail due to
unknown symbols. A 0.95 application will load the 1.0 shared library successfully but will likely
fail due to DRMAA functions returning unexpected error codes.

= Torestore the 1.0 version of the shared library, perform steps 1 through 3 and create a new
symboliclink to the 1.0 library.

% ln -s libdrmaa.so.1.0 libdrmaa.so

C Application Examples

The following examples illustrate some application interactions that use the C language
bindings. You can find additional examples on the “How To” section of the Grid Engine
Community Site.

EXAMPLE6-2 Starting and Stoppinga Session

The following code segment shows the most basic DRMAA C binding program.

Every call to a DRMAA function returns an error code. If everything goes well, that code is
DRMAA_ERRNO_SUCCESS. If an error occurs, an appropriate error code is returned. Every
DRMAA function also takes at least two parameters. These two parameters are a string to
populate with a error message in case of an error and an integer representing the maximum
length of the error string.

On line 8, the example calls drmaa_init (). This function sets up the DRMAA session and must
be called before most other DRMAA functions. Some functions, like drmaa_get contact(),
can be called before drmaa_init (), but these functions only provide general information. Any
function that performs an action, such as drmaa_run_job() or drmaa_wait () must be called
after drmaa_init () returns. If such a function is called before drmaa_init() returns, it will
return the error code DRMAA_ERRNO _NO ACTIVE_ SESSION.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

http://gridengine.sunsource.net/howto/howto.html
http://gridengine.sunsource.net/howto/howto.html

Developing with the C Language Binding

EXAMPLE6-2 Starting and Stopping a Session (Continued)

The dmraa_init () function creates a session and starts an event client listener thread. The
session is used for organizing jobs submitted through DRMAA, and the thread is used to
receive updates from the queue master about the state of jobs and the system in general. Once
drmaa_init () hasbeen called successfully, the calling application must also call drmaa_exit()
before terminating. If an application does not call drmaa_exit () before terminating, the queue
master might be left with a dead event client handle, which can decrease queue master
performance.

At the end of the program, on line 17, drmaa_exit () cleans up the session and stops the event
client listener thread. Most other DRMAA functions must be called before drmaa_exit ().
Some functions, like drmaa_get _contact (), can be called after drmaa_exit (), but these
functions only provide general information. Any function that performs an action, such as
drmaa_run_job() ordrmaa_wait () mustbe called before drmaa_exit() is called. If such a
function is called after drmaa_exit () is called, it will return the error code

DRMAA ERRNO NO ACTIVE SESSION

01: #include
02: #include "drmaa.h"

03:

04: int main(int argc, char **argv) {

05: char error[DRMAA_ERROR_STRING BUFFER];

06: int errnum = 0;

07:

08: errnum = drmaa_init(NULL, error, DRMAA ERROR STRING BUFFER);

09:

10: if (errnum !'= DRMAA ERRNO SUCCESS) {

11: fprintf(stderr, "Could not initialize the DRMAA library: %s\n", error);
12: return 1;

13: }

14:

15: printf ("DRMAA library was started successfully\n");

16:

17: errnum = drmaa_exit(error, DRMAA ERROR STRING BUFFER);

18:

19: if (errnum !'= DRMAA ERRNO SUCCESS) {

20: fprintf(stderr, "Could not shut down the DRMAA library: %s\n", error);
21: return 1;

22: }

23:

24: return 0;

25: }

Chapter6 - Automating Grid Engine Functions Through the Distributed Resource Management Application 131

API

Developing with the C Language Binding

132

EXAMPLE6-3 RunningaJob

The following code segment shows how to use the DRMAA C binding to submit a job to N1
Grid Engine. The beginning and end of this program are the same as in Example 6-2. The
differences are on lines 16-59. On line 16, DRMAA allocates a job template. A job template is a
structure used to store information about a job to be submitted. The same template can be
reused for multiple calls to drmaa_run_job() ordrmaa_run_bulk_job().

On line 22, the DRMAA REMOTE COMMAND attribute is set. This attribute tells DRMAA where to
find the program to run. Its value is the path to the executable. The path can be relative or
absolute. If relative, the path is relative to the DRMAA_WD attribute, which defaults to the user's
home directory. For more information on DRMAA attributes, see the drmaa_attributes man
page. For this program to work, the script sleeper. sh must be in your default path.

On line 32, the DRMAA_V_ARGV attribute is set. This attribute tells DRMAA what arguments to
pass to the executable. For more information on DRMAA attributes, refer to the
drmaa_attributes man page.

Online43,drmaa_run_job() submits the job. DRMAA places the id assigned to the job into
the character array that is passed to drmaa_run_job (). The job is now running as though
submitted by gsub. At this point, calling drmaa_exit () or terminating the program will have no
effect on the job.

To clean things up, the job template is deleted on line 54. This frees the memory DRMAA set
aside for the job template, but has no effect on submitted jobs.

Finally, on line 61, call drmaa_exit () is called. The call to drmaa_exit () is outside of the if
structure started on line 18 because once drmaa_init() is called drmaa_exit () must be called
before terminating, regardless of whether the other commands succeed.

01: #include
02: #include "drmaa.h"

03:

04: int main(int argc, char **argv) {

05: char error[DRMAA ERROR STRING BUFFER];

06: int errnum = 0;

07: drmaa_job template t *jt = NULL;

08:

09: errnum = drmaa_init(NULL, error, DRMAA ERROR STRING BUFFER);

10:

11: if (errnum != DRMAA ERRNO SUCCESS) {

12: fprintf(stderr, "Could not initialize the DRMAA library: %s\n", error);
13: return 1;

14: }

15:

16: errnum = drmaa_allocate job template(&jt, error, DRMAA ERROR STRING BUFFER);
17:

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Developing with the C Language Binding

EXAMPLE6-3 Runninga Job (Continued)

18: if (errnum !'= DRMAA ERRNO SUCCESS) {

19: fprintf(stderr, "Could not create job template: %s\n", error);

20: }

21: else {

22: errnum = drmaa_set attribute(jt, DRMAA REMOTE_ COMMAND, "sleeper.sh",
23: error, DRMAA ERROR STRING BUFFER);
24:

25: if (errnum !'= DRMAA ERRNO SUCCESS) {

26: fprintf(stderr, "Could not set attribute \"%s\": %s\n",

27: DRMAA REMOTE COMMAND, error);

28: }

29: else {

30: const char *args[2] = {"5", NULL};

31:

32: errnum = drmaa_set vector attribute(jt, DRMAA V ARGV, args, error,
33: DRMAA ERROR STRING BUFFER);
34: }

35:

36: if (errnum != DRMAA ERRNO SUCCESS) {

37: fprintf(stderr, "Could not set attribute \"%s\": %s\n",

38: DRMAA REMOTE COMMAND, error);

39: }

40: else {

41: char jobid[DRMAA JOBNAME BUFFER];

42:

43: errnum = drmaa_run_job(jobid, DRMAA JOBNAME_BUFFER, jt, error,
44: DRMAA ERROR STRING BUFFER);

45:

46: if (errnum != DRMAA ERRNO SUCCESS) {

47 fprintf(stderr, "Could not submit job: %s\n", error);

48: }

49:; else {

50: printf("Your job has been submitted with id %s\n", jobid);
51: }

52: } /* else */

53:

54: errnum = drmaa delete job template(jt, error, DRMAA ERROR STRING BUFFER);
55:

56: if (errnum !'= DRMAA ERRNO SUCCESS) {

57: fprintf(stderr, "Could not delete job template: %s\n", error);
58: }

59: } /* else */

60:

61: errnum = drmaa_exit(error, DRMAA ERROR STRING BUFFER);

62:

63: if (errnum != DRMAA ERRNO SUCCESS) {

Chapter6 - Automating Grid Engine Functions Through the Distributed Resource Management Application 133

API

Developing with the Java Language Binding

EXAMPLE6-3 Runninga Job (Continued)

64: fprintf(stderr, "Could not shut down the DRMAA library: %s\n", error);
65: return 1;

66: }

67:

68: return 0;

69: }

Developing with the Java Language Binding

134

Important Files for the Java Language Binding

To use the DRMAA Java language binding implementation included with N1 Grid Engine 6.1,
you need to know where to find the important files. The most important file is the DRMAA JAR
file sge-root/lib/drmaa. jar. To compile your DRMAA application, you must include the
DRMAA JAR file in your CLASSPATH . The DRMAA classes are documented in the DRMAA
Javadoc™, located in the sge-root/doc/javadocs directory. To access the Javadocs, open the file
sge-root/doc/javadocs/index.html in your browser . When you are ready to run your
application, you also need the DRMAA shared library, sge-root/1ib/arch/libdrmaa. so, which
provides the required native routines.

Importing the DRMAA Java Classes and Packages

To use the DRMAA classes in your application, your classes should import the DRMAA classes
or packages. In most cases, only the classes in the org.ggf.drmaa package will be used. You can
import these packages individually or using a wildcard package import. In some rare cases, you
might need to reference the N1 Grid Engine DRMAA implementation classes found in the
com.sun.grid.drmaa package. In those cases, you can import the classes individually or you
can import all the classes in a given package. The names of the com.sun.grid.drmaa classes do
not overlap with the org.ggf.drmaa classes, so you can import both packages without creating
a namespace collision.

Compiling Your Java Application

To compile your DRMAA application, you must include the sge-root/1ib/drmaa. jar file in
your CLASSPATH. The drmaa. jar file will not be included automatically when you set your
environment using the settings.sh or settings.csh files.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Developing with the Java Language Binding

How to Use DRMAA with NetBeans 5.x

To use the DRMAA classses with your NetBeans 5.0 or 5.5 project, follow these steps:

Clickmouse button 3 on the project node and select Properties.

Determine whether your project generates a build file or uses an existing file.

= Ifyour project uses a generated build file:

a.

b.

j

k.

Select Libraries in the left column.

Click Add Library.

Click Manage Libraries in the Libraries dialog box.

Click New Library in the Library Management dialog box.

Type DRMAA in the Library Name field in the New Library dialog box.
Click OK to dismiss the New Library dialog box.

Click Add JAR/Folder.

Browse to the sge-root/1ib directory in the file chooser dialog box and select the
drmaa. jarfile.

Click Add JAR/Folder to dismiss the file chooser dialog box.
Click OK to dismiss the Library Management dialog box.

Select the DRMAA library and click Add Library to dismiss the Libraries dialog box.

= [fyour project uses an existing build file:

a.

b.

Select Java Sources Classpath in the left column.
Click Add JAR/Folder.

Browse to the sge-root/1ib directory in the file chooser dialog box and select the
drmaa.jarfile.

Click Choose to dismiss the file chooser dialog box.

Chapter6 - Automating Grid Engine Functions Through the Distributed Resource Management Application 135

API

Developing with the Java Language Binding

136

Click OK to dismiss the properties dialog box.

Verify that the DRMAA shared library is in the library search path.

To run your application from NetBeans, the DRMAA shared library file
sge-root/1ib/arch/libdrmaa.so must be included in the library search path (LD_LIBRARY_PATH
on the Solaris Operating Environment and Linux). The sge-root/1ib/arch directory is not
included automatically when you set your environment using the settings.sh or
settings.csh files.To set up the path for the shared library, perform one of the following:

= Setup your environment in the shell before launching NetBeans.

m Add to the netbeans-root/etc/netbeans. conf file to set up the environment, such as:
Setup environment for SGE
. <sge-root>/<sge cell>/common/settings.sh
ARCH='$SGE_ROOT/util/arch’
LD LIBRARY PATH=$SGE ROOT/lib/$ARCH; export LD LIBRARY PATH

Running Your Java Application

To run your compiled DRMAA application, verify the following:

= The sge-root/1ib/arch directory must be included in the library search path
(LD_LIBRARY_PATH on the Solaris Operating Environment and Linux). The
sge-root/1ib/arch directory is not included automatically when you set your environment
using the settings.shor settings.csh files.

= Youmust be logged into a machine that is an N1 Grid Engine submit host. If the machine is
not an N1 Grid Engine submit host, all DRMAA method calls will fail, throwing a
DrmCommunicationException.

Using the DRMAA 0.5 Java Language Binding

The DRMAA shared library, which is used by default, supports version 1.0 of the DRMAA Java
Language Binding Specification. For reasons of backward compatibility, however, N1 Grid
Engine also includes an implementation of the 0.5 version of the DRMAA Java Language
Binding Specification. You should develop all new applications with the 1.0 shared library, but
you might occasionally discover an application that requires the 0.5 implementation.

To use the 0.5 version of the drmaa. jar file, you should include the

sge-root/lib/drmaa-0.5. jar file in your CLASSPATH either before or instead of the usual
sge-root/1lib/drmaa. jar file. In addition, the use of the 0.5 Java language binding requires
enabling the 0.95 C language binding. See “How to Use the DRMAA 0.95 C Language Binding”
on page 129.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Developing with the Java Language Binding

Java Application Examples

The following examples illustrate some application interactions that use the Java language
bindings. You can find additional examples on the “How To” section of the Grid Engine
Community Site.

EXAMPLE6-4 Starting and Stopping a Session

The following code segment shows the most basic DRMAA Java language binding program.

Everything that you as a programmer do with DRMAA, you do through a Session object. You
get the Session object from a SessionFactory. You get the SessionFactory from the static
SessionFactory.getFactory() method. The reason for this chain is that the

org.ggf.drmaa. * classes should be considered an immutable package to be used by every
DRMAA Java language binding implementation. Because the package is immutable, to load a
specific implementation, the SessionFactory uses a system property to find the
implementation's session factory, which it then loads. That session factory is then responsible
for creating the session in whatever way it sees fit. It should be noted that even though thereis a
session factory, only one session may exist at a time.

Online 9, SessionFactory.getFactory() getsa session factory instance . On line 10,
SessionFactory.getSession() gets the session instance. On line 13, Session.init()
initializes the session. " " is passed in as the contact string to create a new session because no
initialization arguments are needed.

Session.init() creates asession and starts an event client listener thread. The session is used
for organizing jobs submitted through DRMAA, and the thread is used to receive updates from
the queue master about the state of jobs and the system in general. Once Session.init() has
been called successfully, the calling application must also call Session.exit() before
terminating. If an application does not call Session.exit() before terminating, the queue
master might be left with a dead event client handle, which can decrease queue master
performance. Use the Runtime . addShutdownHook () method to make sure Session.exit()
gets called.

At the end of the program, on line 14, Session.exit () cleans up the session and stops the event
client listener thread. Most other DRMA A methods must be called before Session.exit().
Some functions, like Session.getContact (), can be called after Session.exit (), but these
functions only provide general information. Any function that performs an action, such as
Session.runJob() or Session.wait () mustbe called before Session.exit() is called. If such
a function is called after Session.exit() is called, it will throw a NoActiveSessionException.

01: package com.sun.grid.drmaa.howto;
02:

03: import org.ggf.drmaa.DrmaaException;
04: import org.ggf.drmaa.Session;

05: import org.ggf.drmaa.SessionFactory;

Chapter6 - Automating Grid Engine Functions Through the Distributed Resource Management Application 137
API

http://gridengine.sunsource.net/howto/howto.html
http://gridengine.sunsource.net/howto/howto.html

Developing with the Java Language Binding

138

EXAMPLE6-4 Starting and Stopping a Session (Continued)

06:

07: public class Howtol {

08: public static void main(String[] args) {

09: SessionFactory factory = SessionFactory.getFactory();
10: Session session = factory.getSession();

11:

12: try {

13: session.init("");

14: session.exit();

15: } catch (DrmaaException e) {

16: System.out.println("Error: " + e.getMessage());
17: }

18: }

19: }

EXAMPLE6-5 Runninga Job

The following code segment shows how to use the DRMAA Java language binding to submit a
job to N1 Grid Engine. The beginning and end of this program are the same as Example 6-4.
The differences are on lines 16-24.

Online 16 , DRMAA allocates a JobTemplate. A JobTemplate is an object that is used to store
information about a job to be submitted. The same template can be reused for multiple calls to
Session.runJob() orSession.runBulkJobs().

On line 17, the remoteCommand attribute is set. This attribute tells DRMAA where to find the
program to run. Its value is the path to the executable. The path can be relative or absolute. If
relative, the path is relative to the workingDirectory attribute, which defaults to the user's
home directory. For more information on DRMAA attributes, see the DRMAA Javadoc or the
drmaa_attributes man page. For this program to work, the script sleeper.sh must be in your
default path.

On line 18, the args attribute is set. This attribute tells DRMAA what arguments to pass to the
executable. For more information on DRMAA attributes, see the DRMAA Javadoc or the
drmaa_attributes man page.

On line 20, Session. runJob () submits the job. This method returns the ID assigned to the job
by the queue master. The job is now running as though submitted by gsub. At this point, calling
Session.exit() or terminating the program will have no effect on the job.

To clean things up, the job template is deleted on line 24. This action frees the memory
DRMAA set aside for the job template, but has no effect on submitted jobs.

01: package com.sun.grid.drmaa.howto;
02:
03: import java.util.Collections;

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Developing with the Java Language Binding

EXAMPLE6-5 Runninga Job (Continued)

04: import org.ggf.drmaa.DrmaaException;
05: import org.ggf.drmaa.JobTemplate;
06: import org.ggf.drmaa.Session;

07: import org.ggf.drmaa.SessionFactory;

08:

09: public class Howto2 {

10: public static void main(String[] args) {

11: SessionFactory factory = SessionFactory.getFactory();
12: Session session = factory.getSession();

13:

14: try {

15: session.init("");

16: JobTemplate jt = session.createJobTemplate();

17: jt.setRemoteCommand("sleeper.sh");

18: jt.setArgs(Collections.singletonList("5"));

19:

20: String id = session.runJob(jt);

21:

22: System.out.println("Your job has been submitted with id " + id);
23:

24: session.deleteJobTemplate(jt);

25: session.exit();

26: } catch (DrmaaException e) {

27: System.out.println("Error: " + e.getMessage());
28: }

29: }

30: }

Chapter6 - Automating Grid Engine Functions Through the Distributed Resource Management Application 139

API

140

L K R 4 CHAPTER 7

Error Messages, and Troubleshooting

This chapter describes the error messaging procedures of the grid engine system and offers tips
on how to resolve various common problems.

= “How the Software Retrieves Error Reports” on page 141
= “Diagnosing Problems” on page 147
= “Troubleshooting Common Problems” on page 149

How the Software Retrieves Error Reports

The grid engine software reports errors and warnings by logging messages into certain files or
by sending email, or both. The log files include message files and job STDERR output.

Assoonasajob is started, the standard error (STDERR) output of the job script is redirected to a
file. The default file name and location are used, or you can specify the filename and the location
with certain options of the gsub command. See the grid engine system man pages for detailed
information.

Separate messages files exist for the sge_gmaster, the sge_schedd, and the sge_execds. The
files have the same file name: messages. The sge_qmaster log file resides in the master spool
directory. The sge_schedd message file resides in the scheduler spool directory. The execution
daemons'log files reside in the spool directories of the execution daemons. See “Spool
Directories Under the Root Directory” in Sun N1 Grid Engine 6.1 Installation Guide for more
information about the spool directories.

Each message takes up a single line in the files. Each message is subdivided into five components
separated by the vertical bar sign (|).

The components of a message are as follows:

1. The first component is a time stamp for the message.

2. The second component specifies the grid engine system daemon that generates the message.

141

How the Software Retrieves Error Reports

3. The third component is the name of the host where the daemon runs.
4. The fourth is a message type. The message type is one of the following:

= N for notice - for informational purposes

= I forinfo - for informational purposes

= W for warning

= Eforerror — an error condition has been detected
= C for critical - can lead to a program abort

Use the loglevel parameter in the cluster configuration to specify on a global basis or a
local basis what message types you want to log.

5. The fifth component is the message text.

Note - If an error log file is not accessible for some reason, the grid engine system tries to log
the error message to the files /tmp/sge_qmaster messages, /tmp/sge schedd messages,
or /tmp/sge_execd_messages on the corresponding host.

In some circumstances, the grid engine system notifies users, administrators, or both, about
error events by email. The email messages sent by the grid engine system do not contain a
message body. The message text is fully contained in the mail subject field.

Consequences of Different Error or Exit Codes

The following table lists the consequences of different job-related error codes or exit codes.
These codes are valid for every type of job.

TABLE 7-1 Job-Related Error or Exit Codes

Script/Method Exit or Error Code Consequence
Job script 0 Success

99 Requeue

Rest Success: exit code in accounting file
prolog/epilog 0 Success

99 Requeue

Rest Queue error state, job requeued

The following table lists the consequences of error codes or exit codes of jobs related to parallel
environment (PE) configuration.

142 Sun N1 Grid Engine 6.1 User's Guide « May 2007

How the Software Retrieves Error Reports

TABLE7-2 Parallel-Environment-Related Error or Exit Codes

Script/Method Exit or Error Code Consequence
pe_start 0 Success

Rest Queue set to error state, job requeued
pe_stop 0 Success

Rest Queue set to error state, job not requeued

The following table lists the consequences of error codes or exit codes of jobs related to queue
configuration. These codes are valid only if corresponding methods were overwritten.

TABLE7-3 Queue-Related Error or Exit Codes

Script/Method Exit or Error Code Consequence
Job starter 0 Success

Rest Success, no other special meaning
Suspend 0 Success

Rest Success, no other special meaning
Resume 0 Success

Rest Success, no other special meaning
Terminate 0 Success

Rest Success, no other special meaning

The following table lists the consequences of error or exit codes of jobs related to checkpointing.

TABLE7-4 Checkpointing-Related Error or Exit Codes

Script/Method Exit or Error Code Consequence
Checkpoint 0 Success
Rest Success. For kernel checkpoint, however, this means that the
checkpoint was not successful.
Migrate 0 Success
Rest Success. For kernel checkpoint, however, this means that the
checkpoint was not successful. Migration will occur.
Restart 0 Success

Chapter7 « Error Messages, and Troubleshooting

143

How the Software Retrieves Error Reports

144

TABLE7-4 Checkpointing-Related Error or Exit Codes (Continued)

Script/Method Exit or Error Code Consequence

Rest Success, no other special meaning
Clean 0 Success

Rest Success, no other special meaning

For jobs that run successfully, the qacct -j command output shows a value of @ in the failed
field, and the output shows the exit status of the job in the exit_status field. However, the
shepherd might not be able to run a job successfully. For example, the epilog script might fail, or
the shepherd might not be able to start the job. In such cases, the failed field displays one of the
code values listed in the following table.

TABLE7-5 gqacct -j failed Field Codes

Code Description acctvalid Meaning for Job
0 No failure t Job ran, exited normally
1 Presumably before job f Job could not be started
3 Before writing config f Job could not be started
4 Before writing PID f Job could not be started
5 On reading config file f Job could not be started
6 Setting processor set f Job could not be started
7 Before prolog f Job could not be started
8 In prolog f Job could not be started
9 Before pestart f Job could not be started
10 In pestart f Job could not be started
11 Before job f Job could not be started
12 Before pestop t Job ran, failed before calling PE stop procedure
13 In pestop t Job ran, PE stop procedure failed
14 Before epilog t Job ran, failed before calling epilog script
15 In epilog t Job ran, failed in epilog script
16 Releasing processor set t Job ran, processor set could not be released
24 Migrating (checkpointing ~ t Job ran, job will be migrated
jobs)

Sun N1 Grid Engine 6.1 User's Guide - May 2007

How the Software Retrieves Error Reports

TABLE7-5 gqacct -j failed Field Codes (Continued)

Code Description acctvalid Meaning for Job

25 Rescheduling t Job ran, job will be rescheduled

26 Opening output file f Job could not be started, stderr/stdout file could not be

opened

27 Searching requested shell f Job could not be started, shell not found

28 Changing to working f Job could not be started, error changing to start
directory directory

100 Assumedly after job t Job ran, job killed by a signal

The Code column lists the value of the failed field. The Description column lists the text that
appears in the gacct - j output. If acctvalid is set to t, the job accounting values are valid. If
acctvalidisset to f, the resource usage values of the accounting record are not valid. The
Meaning for Job column indicates whether the job ran or not.

Running Grid Engine System Programs in Debug Mode

For some severe error conditions, the error-logging mechanism might not yield sufficient
information to identify the problems. Therefore, the grid engine system offers the ability to run
almost all ancillary programs and the daemons in debug mode. Different debug levels vary in
the extent and depth of information that is provided. The debug levels range from zero through
10, with 10 being the level delivering the most detailed information and zero turning off
debugging.

To seta debuglevel, an extension to your . cshrcor . profile resource files is provided with the
distribution of the grid engine system. For csh or tcsh users, the file sge-root/util/dl.cshis
included. For sh or ksh users, the corresponding file is named sge-root/util/dl. sh. The files
must be sourced into your standard resource file. As csh or tcsh user, include the following line
inyour .cshrc file:

source sge-root/util/dl.csh

As sh or ksh user, include the following line in your .profile file:

. sge-root/util/dl.sh

As soon as you log out and log in again, you can use the following command to set a debug level:
% dl level

If level is greater than 0, starting a grid engine system command forces the command to write
trace output to STDOUT. The trace output can contain warning messages, status messages, and

Chapter7 « Error Messages, and Troubleshooting 145

How the Software Retrieves Error Reports

error messages, as well as the names of the program modules that are called internally. The
messages also include line number information, which is helpful for error reporting, depending
on the debug level you specify.

Note - To watch a debug trace, you should use a window with a large scroll-line buffer. For
example, you might use a scroll-line buffer of 1000 lines.

Note - If your window is an xterm, you might want to use the xtermlogging mechanism to
examine the trace output later on.

If you run one of the grid engine system daemons in debug mode, the daemons keep their
terminal connection to write the trace output. You can abort the terminal connections by
typing the interrupt character of the terminal emulation you use. For example, you might use
Control-C.

To switch off debug mode, set the debug level back to 0.

Setting the dbwriter Debug Level

The sgedbwriter script starts the dowriter program. The script is located in
sge_root/dbwriter/bin/sgedbwriter. The sgedbwriter script reads the dbwriter
configuration file, dbwriter. conf. This configuration file is located in
sge_root/cell/common/dbwriter.conf. This configuration file sets the debuglevel of dowriter.
For example:

#

Debug level

Valid values: WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL
#

DBWRITER DEBUG=INFO

You can use the —debug option of the dbwriter command to change the number of messages
that the dbwriter produces. In general, you should use the default debug level, which is info. If
you use a more verbose debug level, you substantially increase the amount of data output by
dbwriter.

You can specify the following debug levels:
warning Displays only severe errors and warnings.
info Adds a number of informational messages. info is the default debug level.

config Gives additional information that is related to dbwriter configuration, for
example, about the processing of rules.

146 Sun N1 Grid Engine 6.1 User's Guide « May 2007

Diagnosing Problems

fine Produces more information. If you choose this debug level, all SQL statements run
by dbwriter are output.

finer For debugging.
finest For debugging.

all Displays information for all levels. For debugging.

Diagnosing Problems

The grid engine system offers several reporting methods to help you diagnose problems. The
following sections outline their uses.

Pending Jobs Not Being Dispatched

Sometimes a pending job is obviously capable of being run, but the job does not get dispatched.
To diagnose the reason, the grid engine system offers a pair of utilities and options, gstat -j
job-id and qalter-w v job-id.
= gstat -j job-id
When enabled, gstat -j job-id provides a list of reasons why a certain job was not
dispatched in the last scheduling run. This monitoring can be enabled or disabled. You
might want to disable monitoring because it can cause undesired communication overhead

between the schedd daemon and gmaster. See schedd _job_info in the sched conf(5) man
page. The following example shows output for a job with the ID 242059:

% qstat -j 242059

scheduling info: queue "fangorn.q" dropped because it is temporarily not available
queue "lolek.q" dropped because it is temporarily not available

queue "balrog.q" dropped because it is temporarily not available

queue "saruman.q" dropped because it is full

cannot run in queue "bilbur.q" because it is not contained in its hard queuelist (-q)

cannot run in queue "dwain.q" because it is not contained in its hard queue list (-q)
has no permission for host "ori"

This information is generated directly by the schedd daemon. The generating of this
information takes the current usage of the cluster into account. Sometimes this information
does not provide what you are looking for. For example, if all queue slots are already
occupied by jobs of other users, no detailed message is generated for the job you are
interested in.

= galter -w v job-id

Chapter7 « Error Messages, and Troubleshooting 147

Diagnosing Problems

148

This command lists the reasons why a job is not dispatchable in principle. For this purpose, a
dry scheduling run is performed. All consumable resources, as well as all slots, are considered to
be fully available for this job. Similarly, all load values are ignored because these values vary.

Job or Queue Reportedin Error State E
Job or queue errors are indicated by an uppercase E in the gstat output.

A job enters the error state when the grid engine system tries to run a job but fails for a reason
that is specific to the job.

A queue enters the error state when the grid engine system tries to run a job but fails for a reason
that is specific to the queue.

The grid engine system offers a set of possibilities for users and administrators to gather
diagnosis information in case of job execution errors. Both the queue and the job error states
result from a failed job execution. Therefore the diagnosis possibilities are applicable to both
types of error states.

= User abort mail. If jobs are submitted with the gsub -m a command, abort mail is sent to
the address specified with the -M user[@host] option. The abort mail contains diagnosis
information about job errors. Abort mail is the recommended source of information for
users.

® gacct accounting. If no abort mail is available, the user can run the gacct -j command.
This command gets information about the job error from the grid engine system's job
accounting function.

= Administrator abort mail. An administrator can order administrator mails about job
execution problems by specifying an appropriate email address. See under
administrator_mail onthe sge_conf(5) man page. Administrator mail contains more
detailed diagnosis information than user abort mail. Administrator mail is the
recommended method in case of frequent job execution errors.

= Messages files. If no administrator mail is available, you should investigate the qmaster
messages file first. You can find entries that are related to a certain job by searching for the
appropriate job ID. In the default installation, the qmaster messages file is
sge-root/cell/spool/gmaster/messages.

You can sometimes find additional information in the messages of the execd daemon from
which the job was started. Use qacct - j job-id to discover the host from which the job was
started, and search in sge-root/ cell/ spool/host/messages for the job ID.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Troubleshooting Common Problems

Troubleshooting Common Problems

This section provides information to help you diagnose and respond to the cause of common
problems.

Problem — The output file for your job says, Warning: no access to tty; thus no job
control in this shell....

Possible cause — One or more of your login files contain an stty command. These
commands are useful only if a terminal is present.

Possible solution — No terminal is associated with batch jobs. You must remove all
stty commands from your login files, or you must bracket such commands with an i f
statement. The if statement should check for a terminal before processing. The
following example shows an if statement:

/bin/csh:
stty -g # checks terminal status
if ($status == 0) # succeeds if a

terminal is present
<put all stty commands in here>
endif

Problem — The job standard error log file says ‘tty‘: Ambiguous. However, no reference
to tty exists in the user's shell that is called in the job script.

Possible cause — shell_start_mode is, by default, posix_compliant. Therefore all job
scripts run with the shell that is specified in the queue definition. The scripts do not run
with the shell that is specified on the first line of the job script.

Possible solution — Use the -S flag to the gsub command, or change
shell start modetounix behavior.

Problem — You can run your job script from the command line, but the job script fails
when you run it using the gsub command.

Possible cause — Process limits might be being set for your job. To test whether limits
are being set, write a test script that performs limit and limit -h functions. Run both
functions interactively, at the shell prompt and using the gsub command, to compare
the results.

Possible solution — Remove any commands in configuration files that sets limits in
your shell.

Problem — Execution hosts report a load of 99.99.

1.

Possible cause — The execd daemon is not running on the host.

Possible solution — As root, start up the execd daemon on the execution host by
running the $SGE_ROOT/default/common/'rcsge’ script.

Possible cause — A default domain is incorrectly specified.

Chapter7 « Error Messages, and Troubleshooting 149

Troubleshooting Common Problems

150

Possible solution — As the grid engine system administrator, run the gconf -mconf
command and change the default_domain variable to none.

3. Possible cause — The qmaster host sees the name of the execution host as different from
the name that the execution host sees for itself.

Possible solution — If you are using DNS to resolve the host names of your compute
cluster, configure /etc/hosts and NIS to return the fully qualified domain name
(FQDN) as the primary host name. Of course, you can still define and use the short alias
name, for example, 168.0.0.1 myhost.dom.com myhost.

If you are not using DNS, make sure that all of your /etc/hosts files and your NIS table
are consistent, for example, 168.0.0.1 myhost.corp myhost or 168.0.0.1 myhost

Problem — Every 30 seconds a warning that is similar to the following message is printed to
cell/spool/host/messages:

Tue Jan 23 21:20:46 2001 |execd|meta|W|local
configuration meta not defined - using global configuration
But cell/common/local_conf contains a file for each host, with FQDN.

= Possible cause — The host name resolving at your machine meta returns the short
name, but at your master machine, meta with FQDN is returned.

= Possible solution — Make sure that all of your /etc/hosts files and your NIS table are
consistent in this respect. In this example, a line such as the following text could
erroneously be included in the /etc/hosts file of the host meta:

168.0.0.1 meta meta.your.domain
The line should instead be:
168.0.0.1 meta.your.domain meta.

Problem — Occasionally you see CHECKSUM ERROR, WRITE ERROR, or READ ERROR messages
in the messages files of the daemons.

= Possible cause — Aslong as these messages do not appear in a one-second interval, you
need not do anything. These messages typically can appear between 1 and 30 times a day.

Problem — Jobs finish on a particular queue and return the following message in
gmaster/messages:

Wed Mar 28 10:57:15 2001|qgmaster|masterhost|I|job 490.1
finished on host exechost

Then you see the following error messages in the execution host's exechost/messages file:

Wed Mar 28 10:57:15 2001 |execd|exechost|E|can’t find directory
"active jobs/490.1" for reaping job 490.1

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Troubleshooting Common Problems

Wed Mar 28 10:57:15 2001|execd|exechost|E|can’t remove directory
"active jobs/490.1": opendir(active jobs/490.1) failed:
Input/output error

= Possible cause — The $SGE_ROOT directory, which is automounted, is being unmounted,
causing the sge_execd daemon to lose its current working directory.

= Possible solution — Use a local spool directory for your execd host. Set the parameter
execd_spool_dir, using gmon or the gconf command.

= Problem — When submitting interactive jobs with the qrsh utility, you get the following
error message:

% qrsh -1 mem free=1G error: error: no suitable queues

However, queues are available for submitting batch jobs with the gsub command. These
queues can be queried using ghost -1 mem_free=1G and gstat -f -1 mem_free=1G.

= Possible cause — The message error: no suitable queues results from the -w e
submit option, which is active by default for interactive jobs such as qrsh. Look for -we
on the grsh(1) man page. This option causes the submit command to fail if the gmaster
does not know for sure that the job is dispatchable according to the current cluster
configuration. The intention of this mechanism is to decline job requests in advance, in
case the requests can't be granted.

= Possible solution — In this case, mem_f ree is configured to be a consumable resource,
but you have not specified the amount of memory that is to be available at each host. The
memory load values are deliberately not considered for this check because memory load
values vary. Thus they can't be seen as part of the cluster configuration. You can do one
of the following:

= Omit this check generally by explicitly overriding the qrsh default option -w e with
the -w n option. You can also put this command into
sge-root/cell/common/cod_request.

= Ifyouintend to manage mem_free asa consumable resource, specify the mem_free
capacity for your hosts in complex_values of host_conf by using gconf -me
hostname.

= Ifyoudo notintend to manage mem_f ree as a consumable resource, make ita
nonconsumable resource again in the consumable column of complex(5) by using
gconf -mc hostname.

= Problem — gqrsh won't dispatch to the same node it is on. From a gsh shell you get a
message such as the following:

host2 [49]% qrsh -inherit host2 hostname
error: executing task of job 1 failed:

Chapter7 « Error Messages, and Troubleshooting 151

Troubleshooting Common Problems

152

host2 [50]% qrsh -inherit host4 hostname
host4

= Possible cause — gid_range is not sufficient. gid_range should be defined as a range,
not as a single number. The grid engine system assigns each job on a host a distinct gid.

= Possible solution — Adjust the gid_range with the gconf -mconf command or with
QMON. The suggested range is as follows:

gid range 20000-20100

Problem — qrsh -inherit -V does not work when used inside a parallel job. You get the
following message:

cannot get connection to "qlogin starter"

= Possible cause — This problem occurs with nested grsh calls. The problem is caused by
the -V option. The first qrsh -inherit call sets the environment variable TASK_ID.
TASK_ID is the ID of the tightly integrated task within the parallel job. The second grsh
-inherit call uses this environment variable for registering its task. The command fails
as it tries to start a task with the same ID as the already-running first task.

= Possible solution — You can either unset TASK_ID before calling qrsh -inherit, or
choose to use the -v option instead of -V. This option exports only the environment
variables that you really need.

Problem — qrsh does not seem to work at all. Messages like the following are generated:

host2$ qrsh -verbose hostname

local configuration host2 not defined - using global configuration
waiting for interactive job to be scheduled ...

Your interactive job 88 has been successfully scheduled.
Establishing /share/gridware/utilbin/solaris64/rsh session

to host exehost ...

rcmd: socket: Permission denied
/share/gridware/utilbin/solaris64/rsh exited with exit code 1
reading exit code from shepherd ...

error: error waiting on socket for client to connect:
Interrupted system call

error: error reading return code of remote command

cleaning up after abnormal exit of
/share/gridware/utilbin/solaris64/rsh

host2$

= Possible cause — Permissions for qrsh are not set properly.

= Possible solution — Check the permissions of the following files, which are located in
$SGE_ROOT/utilbin/. (Note that rlogin and rsh must be setuid and owned by root.)

-r-s--x--x 1 root root 28856 Sep 18 06:00 rlogin*
-r-s--x--x 1 root root 19808 Sep 18 06:00 rsh*

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Troubleshooting Common Problems

-rwxr-xr-x 1 sgeadmin adm 128160 Sep 18 06:00 rshd*

Note - The sge-root directory also needs to be NFS-mounted with the setuid option. If
sge-root is mounted with nosuid from your submit client, qrsh and associated
commands will not work.

= Problem - When you try to start a distributed make, qmake exits with the following error
message:

qrsh_starter: executing child process
gmake failed: No such file or directory

= Possible cause — The grid engine system starts an instance of gmake on the execution
host. If the grid engine system environment, especially the PATH variable, is not set up in
the user's shell resource file (. profile or . cshrc), this gmake call fails.

= Possible solution — Use the -v option to export the PATH environment variable to the
gmake job. A typical qmake call is as follows:

gmake -v PATH -cwd -pe make 2-10 --

= Problem — When using the gmake utility, you get the following error message:

waiting for interactive job to be scheduled ...timeout (4 s)
expired while waiting on socket fd 5

Your "qrsh" request could not be scheduled, try again later.

= Possible cause — The ARCH environment variable could be set incorrectly in the shell
from which gmake was called.

= Possible solution — Set the ARCH variable correctly to a supported value that matches an
available host in your cluster, or else specify the correct value at submit time, for
example, gmake -v ARCH=solaris64 ...

Typical Accounting and Reporting Console Errors

Problem: The installation of the Sun Web console Version 2.0.3 fails with the follow error
message:

./inst_reporting
Register the N1 SGE reporting module in the webconsole

Registering com.sun.grid.arco_6u3.

Chapter7 « Error Messages, and Troubleshooting 153

Troubleshooting Common Problems

154

Starting Sun(TM) Web Console Version 2.0.3...
Ambiguous output redirect.

Solution: . This Sun Web Console Version can only be installed by the user noacces who has
/bin/sh as their login shell. The user must be added with the following command:

useradd -u 60002 -g 60002 -d /tmp -s /bin/sh -c "No Access User" noaccess

Problem: The table/view dropdown menu of a simple query definition does not contain any
entry, but the tables are defined in the database.

Solution: The problem normally occurs if Oracle is used as the database. During the installation
of the reporting module the wrong database schema name has been specified. For Oracle, the
database schema name is equal to the name of the database user which is used by dbwriter (the
default nameisarco_write). For Postgres, the database schema name should be public.

Problem: Connection refused.

Solution: The smcwebserver might be down. Start or restart the smcwebserver.

Problem: The list of queries or the list of results is empty.

Solution: The cause can be any of the following:

®m The database is down. Start or restart the database.

= No more database connections are available. Increase the number of allowable connections
to the database.

= Anerror exists in the configuration file of the application. Check the configuration for
wrong database users, wrong user passwords, or wrong type of database, and then restart the
application.

= No queries are available. If the query directory /var/spool/arco/queries is not empty, the
following errors might have occurred:

= Queries in the XML files are syntactically incorrect. Check the log file for error messages
from the XML parser.

= User noaccess has no read or write permissions on the query directory.

Problem: The list of available database tables is empty.
Solution: The cause can be any of the following:
= The database is down. Start or restart the database.

= No more database connections are available. Increase the number of allowable connections
to the database.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Troubleshooting Common Problems

= Anerror exists in the configuration file of the application. Check the configuration for
wrong database users, wrong user passwords, or wrong type of database, and then restart the
application.

Problem: The list of selectable fields is empty.

Solution: No table is selected. Select a table from the list.

Problem: The list of filters is empty.

Solution: No fields are selected. Define at least one field.

Problem: The sort list is empty.

Solution: No fields are selected. Define at least one field.

Problem: A defined filter is not used.

Solution: The filter may be inactive. Modify the unused filter and make it active.

Problem: The late binding in the advanced query is ignored, but the execution runs into an error.

Solution: The late binding macro has a syntactical error. The correct syntax for the late binding
macro in the advanced query is as follows:

latebinding{attribute;operator}
latebinding{attribute;operator;defaultvalue}

Problem: The breadcrumb is used to move back, but the login screen is shown.

Solution: The session timed out. Log in again, or raise the session time in the app . xm1.

Problem: The view configuration is defined, but the default configuration is shown.

Solution: The defined view configuration is not set to be visible. Open the view configuration and
define the view configuration to be used.

Problem: The view configuration is defined, but the last configuration is shown.

Solution: The defined view configuration is not set to be visible. Open the view configuration and
define the view configuration to be used.

Problem: The execution of a query takes a very long time.

Solution: The results coming from the database are very large. Set a limit for the results, or extend
the filter conditions.

Chapter7 « Error Messages, and Troubleshooting 155

156

L K R 4 APPENDIX A

Database Schemas

This appendix contains database schema information in a series of tables. The topics include:

SchemaTables

sge_job

The sge_job table contains one record for each array task (one record for non array jobs with
the array task number 1) and for each parallel task started in a tightly integrated parallel job.

For N1GE 6.0 systems, a record is created as soon as a job, an array task, or a parallel task is

scheduled. It is updated during the job's runtime.

A short description of N1GE jobs, array jobs, parallel jobs and their differences can be found in
this Sun Grid Engine User's Guide. The Glossary may be especially useful as an introduction.

Column Type Description

j_id Integer Unique record identifier

j_job_number integer JOB_ID

j_task_number integer Array taskid.

j_pe_taskid text ID of a task of a tightly integrated
parallel task.

j_job_name text job name (script name or value set

with the submit option -N)

157

SchemaTables

158

Column

Type

Description

jgroup

text

UNIX group name of the primary
group the job was executed in.

References the group table.

j_owner

text

UNIX user account the job was
running in.

References the user table.

j_account

text

Account string set with the submit
option -A.

j_priority

integer

Priority set with the submit option
-p or assigned from the queue
configuration.

j_submission_time

timestamp

Time of the job submission.

j_project

text

Project (only in Sun Grid Engine,
Enterprise Edition)

References the project table.

j_department

text

Department (only in Sun Grid
Engine, Enterprise Edition)

References the department table.

sge_job_usage

The sge_job_usage table holds the job's resource usage over time.

For N1GE 5.3 systems, only one record exists per finished job, array task and parallel task. The
ju_curr_time column holds the job's end time (j_end_time in sge_job).

For N1GE 6.0 systems, the online usage is stored as well; this results in multiple records for one
job, array task, and parallel task stored in sge_job. The resource usage of a job can be
monitored over time (ju_curr_time), the last record per job, array task, or parallel task holds
the total usage that can be used in accounting, ju_curr_time for this record will equal

j _end time from sge job.

Column Type Description

ju_id Integer Unique record identifier

ju_parent Integer Reference to sge_job table
Sun N1 Grid Engine 6.1 User's Guide - May 2007

SchemaTables

Column Type Description

ju_curr_time Integer current time for usage

ju_gname text Name of the queue the job was
running in. In N1GE 6.0 systems
this will be the cluster queue name.
References to queues in the queue
table.

ju_hostname text Name of the host the job was
running on.
References to hosts in the host
table.

ju_start_time timestamp Time when the job was started.

ju_end_time timestamp Time when the job finished.

ju_failed integer if 1= 0 indicates a problem

ju_exit_status integer exit status of the job

ju_granted_pe text The parallel environment which
was selected for that job.

ju_slots integer The number of slots which were
dispatched to the job.

ju_state text job state

ju_ru_wallclock integer end_time - start_time

ju_ru_utime double user time used

ju_ru_stime double system time used

ju_ru_maxrss integer maximum resident set size

ju_ru_ixrss integer currently 0

ju_ru_ismrss integer

ju_ru_idrss integer integral resident set size

ju_ru_isrss integer currently 0

ju_ru_minflt integer page faults not requiring physical
1/0

ju_ru_majflt integer page faults requiring physical I/O

ju_ru_nswap integer swaps

Appendix A - Database Schemas

159

SchemaTables

Column Type Description

ju_ru_inblock integer block input operations

ju_ru_oublock integer block output operations

ju_ru_msgsnd integer messages sent

ju_ru_msgrcv integer messages received

ju_ru_nsignals integer signals received

ju_ru_nvcsw integer voluntary context switches

ju_ru_nivesw integer involuntary context switches

ju_cpu double The cpu time usage in seconds.

ju_mem double The integral memory usage in
Gbytes seconds.

ju_io double The amount of data transferred in
input/output operations.

ju_iow double The io wait time in seconds.

ju_maxvmem double The maximum vmem size in bytes.

sge_job_request
Stores resources a job's requests.

Two types of requests (qsub options) are currently handled:

1. -lresource requests, e.g. -1 arch=solaris,mem_total=100M
For each request one record is created.

2. -qqueuerequest, e.g. -q balrog.q

One record is created containing “queue” as variable and the request contents as variable.

Column Type Description

jr_id Integer Unique record identifier

jr_parent Integer reference to the sge_job table

jr_variable text name of the requested complex
variable

jr_value text requested value

160 Sun N1 Grid Engine 6.1 User's Guide - May 2007

SchemaTables

sge_job_log

The sge_job_log table contains job logging information.

Column Type Description

jlid Integer Unique record identifier

jl_parent integer Reference to sge_job table

jl_time unix timestamp Time when the job login entry was
generated.

jl_event text

jl_job_number integer

jl_task_number integer

jl_pe_task_id text

jl_state text job state after the reported event

jl_user text user who initiated action for the
event

jl_host text host on which the event action was
initiated

jl_state_time unix timestamp describes, how long the job wasin a
certain state, see description below

jl_message text amessage explaining what
happened

sge_share_log

The sge_share_log table contains information about the N1GE(EE) sharetree configuration and

usage.

Further information can be found in the N1GE manual sharetree(5).

Column Type Description

sl_id Integer Unique identifier for share log
record

sl_curr_time timestamp Current time

Appendix A - Database Schemas

161

http://gridengine.sunsource.net/unbranded-source/browse/~checkout~/gridengine/doc/htmlman/manuals.html?content-type=text/html

SchemaTables

162

Column Type Description

sl_usage_time timestamp Usage time

sl_node text Node name in the sharetree

sl_user text Name of the user (job owner)
References the user table.

sl_project text Name of the project
References the project table.

sl_shares integer shares configured in sharetree

sl_job_count integer number of jobs that are considered
for share tree policy

sl_level double share in % within this tree level

sl_total double total share in % within whole
sharetree

sl_long_target_share double targeted long term share in %

sl_short_target_share double targeted short term share in %

sl_actual_share double actual share in %

sl_usage double combined usage, weight of cpu,
mem and io can be configured

sl_cpu double cpu usage in seconds

sl_mem double integral memory usage in Gbyte
seconds

sl_io double The amount of data transferred in
input/output operations.

sl_ltcpu double long term cpu

sl_ltmem double long term mem

sl_lItio double long term io

sge_host

The sge_host table lists all hosts in the Cluster.

Sun N1 Grid Engine 6.1 User's Guide «

May 2007

SchemaTables

Column Type Description
h_id Integer Unique host identifier
h_hostname text The hostname.

sge_host_values

The sge_host_values table stores the values of host variables that are subject to change, e.g. the

load average.

In addition, derived host values will be stored, e.g. hourly averages, sums etc.

Column Type Description
hv_hostname text References the host table.
hv_time_start timestamp Start time for the validity of a value.
hv_time_end timestamp End time for the validity of a value.
hv_variable text Variable name, e.g. load_avg.
hv_value text Variable value, e.g. 0.34.
hv_dvalue double precision Variable value as number.
hv_dconfig double precision In case of consumables:
Consumable maximum available
value (configured value).
sge_queue

The sge_queue table lists all queues configured in the cluster.

Column Type Description

q_id Integer Unique queue identifier
q_gname text Name of the queue
q_hostname text Name of host

Appendix A - Database Schemas

163

SchemaTables

164

sge_queue_values

The sge_queue_values table stores the values of queue variables that are subject to change, e.g.

the number of free slots.

In addition, derived queue values will be stored, e.g. hourly averages, sums etc.

Column Type Description

qv_parent integer References q_id in the sge_queue
table.

qv_time_start timestamp Start time for the validity of a value.

qv_time_end timestamp End time for the validity of a value.

qv_variable text Variable name, e.g. slots.

qv_value text Variable value, e.g. 5.

qv_dvalue double precision Variable value as number.

qv_dconfig double precision In case of consumables:

Consumable maximum available
value (configured value).

sge_department

Lists all departments referenced in the database.

Column Type Description
d_id Integer Unique department identifier
d_department text Name of the department.

Table 9: The sge_department Table

sge_department_values

The sge_department_values table stores the values of department related variables that are
subject to change. Currently these are derived values, e.g. hourly averages, sums etc.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

SchemaTables

Column Type

Description

dv_parent integer

References d_id in the sge_department table.

dv_time_start | timestamp

Start time for the validity of a value.

dv_time_end | timestamp

End time for the validity of a value.

dv_variable text

Variable name, e.g. h_sum_jobs

dv_value text

Variable value, e.g. 5.

dv_dvalue double precision

Variable value as number.

dv_dconfig | double precision

In case of consumables: Consumable maximum available value (configured value).

sge_project

Lists all projects referenced in the database.

Column Type Description
p_id Integer Unique project identifier
p_project text Name of the project.

sge_project_values

The sge_project_values table stores the values of project related variables that are subject to
change. Currently these values are derived values, e.g. hourly averages, sums etc.

Column Type Description

pv_parent integer References q_id in the sge_queue
table.

pv_time_start timestamp Start time for the validity of a value.

pv_time_end timestamp End time for the validity of a value.

pv_variable text Variable name, e.g. h_avg_cpu

pv_value text Variable value, e.g. 345.5

pv_dvalue double precision Variable value as number.

Appendix A - Database Schemas

165

SchemaTables

Column Type Description
pv_dconfig double precision In case of consumables:
Consumable maximum available
value (configured value).
sge_user

Lists all users referenced in the database.

Column Type Description
w_id Integer Unique user id
u_user text Name of the user.

sge_user_values

The sge_user_values table stores the values of user related variables that are subject to change.
These values are currently derived queue values, e.g. hourly averages, sums etc.

Column Type Description

uv_parent integer References q_id in the sge_queue
table.

uv_time_start timestamp Start time for the validity of a value.

uv_time_end timestamp End time for the validity of a value.

uv_variable text Variable name, e.g. h_sum_cpu

uv_value text Variable value, e.g. 23.2

uv_dvalue double precision Variable value as number.

uv_dconfig double precision In case of consumables:
Consumable maximum available
value (configured value).

Lists all user groups referenced in the database.

166 Sun N1 Grid Engine 6.1 User's Guide - May 2007

List of Predefined Views

Column Type Description
g id Integer Unique group id
g group text Name of the group.

Table 15: The sge_group Table

sge_group_values

The sge_group_values table stores the values of group related variables that are subject to
change. These are currently derived values, e.g. hourly averages, sums etc.

Column Type Description

gv_parent integer References q_id in the sge_queue
table.

gv_time_start timestamp Start time for the validity of a value.

gv_time_end timestamp End time for the validity of a value.

gv_variable text Variable name, e.g. h_sum_jobs.

gv_value text Variable value, e.g. 53

gv_dvalue double precision Variable value as number.

gv_dconfig double precision In case of consumables:

Consumable maximum available
value (configured value).

List of Predefined Views

view_accounting

Accounting records for jobs, array tasks, and tightly integrated tasks. Contains only finished

jobs.
Column Type Description
job_number integer Job number

Appendix A - Database Schemas

167

List of Predefined Views

168

Column Type Description

task_number integer Array task id

pe_taskid text ID of a tightly integrated parallel
task

name text job name (script name or value set
with the submit option -N)

groupname text UNIX group name of the primary
group the job was executed in.
References the group table.

username text UNIX user account the job was
running in. References the user
table.

account text Account string set with the submit
option -A

project text Project, References the project
table

department text Department, References the
department table

submission_time timestamp Time of the job submission

start_time timestamp Time when the job was started

end_time timestemp Time when the job finished

wallclock_time integer end_time - start_time

cpu double The CPU time usage in seconds

io double The amount of data transferred in
input/outputoperations

iow double The io wait time in seconds

maxvmem double The maximum vmem size in bytes

wait_time integer start_time - submission_time

turnaround_time integer end_time - submission_time

view_job_times

This is the same as view_accounting, but no tasks of tightly integrated parallel jobs are listed.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

List of Predefined Views

view_jobs_completed

Finished jobs per hour, one record per hour.

Column Type Description
completed integer Completed jobs
time timestamp Time when the jobs finished

view_job_log

Job logging (e.g. Submission, state changes, job finish).

Column Type Description

job_number integer Job number

task_number integer Array task id

pe_taskid text ID of a tightly integrated parallel
task

name text job name (script name or value set
with the submit option -N)

username text UNIX group name of the primary
group the job was executed in.
References the group table

account text UNIX user account the job was
running in.References the user
table

project text Project. References the project
table

department text Department. References the
department table

time timestamp Time when the job logging entry
was generated

event text Event being recorded

state text Job state after the reported event

initiator text User who initiated action for the

event

Appendix A - Database Schemas

169

List of Predefined Views

Column Type Description

host text Host on with the event action was
initiated

message text A message explaining what

happened

view_department_values

Department specific variables.

Column Type Description

department text Name of the department
time_start timestamp Start time for the validity of a value
time_end timestamp End time for the validity of a value
variable text Variable name, e.g. h_sum_jobs
str_value text Variable value, e.g. 5

num_value double precision Variable value as number
num_config double precision In case of consumables:

Consumable maximum available
value (configured value)

view_group_values

Group specific variables

Column Type Description

groupname text Name of the group

time_start timestamp Start time for the validity of a value
time_end timestamp End time for the validity of a value
variable text Variable name, e.g. h_sum_jobs
str_value text Variable value, e.g. 53

num_value double precision Variable value as number

170 Sun N1 Grid Engine 6.1 User's Guide « May 2007

List of Predefined Views

Column

Type

Description

num_config

double precision

In case of consumables:
Consumable maximum available
value (configured value)

view host values

Host specific variables

Column Type Description

hostname text The hostname

time_start timestamp Start time for the validity of a value
time_end timestamp End time for the validity of a value
variable text Variable name, e.g. load_avg
str_value text Variable value, e.g. 0.34
num_value double precision Variable value as number
num_config double precision In case of consumables:

Consumable maximum available
value (configured value)

view_project_values

Project specific variables

Column Type Description

project text Name of the project

time_start timestamp Start time for the validity of a value
time_end timestamp End time for the validity of a value
variable text Variable name, e.g. h_avg cpu
str_value text Variable value, e.g. 345.5
num_value double precision Variable value as number

Appendix A - Database Schemas

171

List of Predefined Views

Column

Type

Description

num_config

double precision

In case of consumables:
Consumable maximum available
value (configured value)

view_queue_values

Queue specific variables

Column Type Description

gqname text Name of the queue

hostname text Name of host

time_start timestamp Start time for the validity of a value
time_end timestamp End time for the validity of a value
variable text Variable name, e.g. slots

str_value text Variable value, e.g. 5

num_value double precision Variable value as number
num_config double precision In case of consumables:

Consumable maximum available
value (configured value)

view _user values

User specific variables.
Column Type Description
username text Name of the user
time_start timestamp Start time for the validity of a value
time_end timestamp End time for the validity of a value
variable text Variable name, e.g. h_sum_cpu
str_value text Variable value, e.g. 23.2
num_value double precision Variable value as number

172 Sun N1 Grid Engine 6.1 User's Guide « May 2007

List of Derived Values

Column

Type

Description

num_config

double precision

In case of consumables:
Consumable maximum available
value (configured value)

List of Derived Values

Derived values stored in the database can highly reduce query processing time. The reporting
databasel contains aggregated values (sum, average, min, max) on an hourly basis. After some
time period (e.g. one year), these values can even be further compressed to daily, weekly or

monthly values.

The following derived values are delivered:

table

variable

description

sge_host_values

h_sum_cpu, d_sum_cpu, m_sum_cpu

cpu usage per host and hour, day, month

sge_user_values

h_sum_cpu, d_sum_cpu, m_sum_cpu

cpu usage per user and hour, day, month

sge_group_values

h_sum_cpu,d_sum_cpu, m_sum_cpu

cpu usage per group and hour, day, month

sge_department_values

h_sum_cpu,d_sum_cpu, m_sum_cpu

cpu usage per department and hour, day, month

sge_project_values

h_sum_cpu,d_sum_cpu, m_sum_cpu

cpu usage per project and hour, day, month

sge_host_values

h_avg load

average hostload

sge_host_values

h_max_load

maximum host load

Rules for the generation of any derived value can be specified in a configuration file.

Appendix A - Database Schemas

173

174

access list

administration
host

array job

batch job

campus grid

cell

checkpointing

checkpointing
environment

cluster

cluster grid

cluster queue

Glossary

A list of users and UNIX groups who are permitted or denied access to a resource such as a
queue or a host. Users and groups can belong to multiple access lists, and the same access lists
can be used in various contexts.

Administration hosts are hosts that have permission to carry out administrative activity for the
grid engine system.

A job made up of a range of independent identical tasks. Each task is similar to a separate job.
Array job tasks differ among themselves only by having unique task identifiers, which are
integer numbers.

A batch job is a UNIX shell script that can be run without user intervention and does not
require access to a terminal.

A grid that enables multiple projects or departments within an organization to share computing
resources.

A separate cluster with a separate configuration and a separate master machine. Cells can be
used to loosely couple separate administrative units.

A procedure that saves the execution status of a job into a checkpoint, thereby allowing the job
to be aborted and resumed later without loss of information and already completed work. The

process is called migration if the checkpoint is moved to another host before execution resumes.

A grid engine system configuration entity that defines events, interfaces, and actions that are
associated with a certain method of checkpointing.

A collection of machines, called hosts, on which grid engine system functions occur.

The simplest form of a grid, consisting of computer hosts working together to provide a single
point of access to users in a single project or department.

A container for a class of jobs that are allowed to run concurrently. A queue determines certain
job attributes, for example, whether it can be migrated. Throughout its lifetime, a running job is

175

Glossary

associated with its queue. Association with a queue affects some of the things that can happen to
ajob. For example, if a queue is suspended, all jobs associated with that queue are also

suspended.

complex A set of resource attribute definitions that can be associated with a queue, a host, or the entire
cluster.

department A list of users and groups who are treated alike in the functional and override scheduling

policies of the grid engine system. Users and groups can belong to only one department.

entitlement The same as share. The amount of resources that are planned to be consumed by a certain job,
user, user group, or project.

execution host Systems that have permission to run grid engine system jobs. These systems host queue
instances, and run the execution daemon sge_execd.

functional policy A policy that assigns specific levels of importance to jobs, users, user groups, and projects. For
instance, through the functional policy, a high-priority project and all its jobs can receive a
higher resource share than a low-priority project.

global grid A collection of campus grids that cross organizational boundaries to create very large virtual
systems.
grid A collection of computing resources that perform tasks. Users treat the grid as a single

computational resource.

group A UNIX group.

hard resource The resources that must be allocated before a job can be started. Contrast with soft resource
requirements requirements.

host A system on which grid engine system functions occur.

interactive job An interactive job is a session started with the commands qrsh, gsh, or glogin, which open an

xterm window for user interaction or provide the equivalent of a remote login session.
job A request from a user for computational resources from the grid.
job class A set of jobs that are equivalent in some sense and treated similarly. A job class is defined by the

identical requirements of the corresponding jobs and by the characteristics of the queues that
are suitable for those jobs.

176 Sun N1 Grid Engine 6.1 User's Guide « May 2007

Glossary

manager

master host

migration

operator

override policy

owner
parallel

environment

parallel job

policy

priority
project

resource

share

share-based
policy

A user who can manipulate all aspects of the grid engine software. The superusers of the master
host and of any other machine that is declared to be an administration host have manager
privileges. Manager privileges can be assigned to nonroot user accounts as well.

The master host is central to the overall cluster activity. It runs the master daemon sge_qmaster
and the scheduler daemon sge_schedd. By default, the master host is also an administration
host and a submit host.

The process of moving a checkpointing job from one host to another before execution of the job
resumes.

Users who can perform the same commands as managers except that they cannot change the
configuration. Operators are supposed to maintain operation.

A policy commonly used to override the automated resource entitlement management of the
functional and share-based policies. The cluster administrator can modify the automated policy

implementation to assign override to jobs, users, user groups, and projects.

Users who can suspend or resume, and disable or enable, the queues they own. Typically, users
are owners of the queue instances that reside on their workstations.

A grid engine system configuration that defines the necessary interfaces for the grid engine
software to correctly handle parallel jobs.

A job that is made up of more than one closely correlated task. Tasks can be distributed across
multiple hosts. Parallel jobs usually use communication tools such as shared memory or

message passing (MPI, PVM) to synchronize and correlate tasks.

A set of rules and configurations that the administrator can use to define the behavior of the
grid engine system. Policies are implemented automatically by the system.

The relative level of importance of a job compared to others.
A grid engine system project.

A computational device consumed or occupied by running jobs. Typical examples are memory,
CPU, I/O bandwidsth, file space, software licenses, and so forth.

The same as entitlement. The amount of resources that are planned to be consumed by a certain
job, user, or project.

A policy that allows definition of the entitlements of user and projects and arbitrary groups

thereof in a hierarchical fashion. An enterprise, for instance, can be subdivided into divisions,
departments, projects active in the departments, user groups working on those projects, and

177

Glossary

share-tree

softresource
requirements

submit host

suspension

ticket

usage

users

userset

178

users in those user groups. The share-based hierarchy is called a share-tree, and once a
share-tree is defined, its entitlement distribution is automatically implemented by the grid
engine software.

The hierarchical definition of a share-based policy.

Resources that a job needs but that do not have to be allocated before a job can be started.
Allocated to a job on an as-available basis. Contrast with hard resource requirements.

Submit hosts allow for submitting and controlling batch jobs only. In particular, a user who is
logged in to a submit host can submit jobs using qsub, can control the job status using gstat,
and can use the grid engine system's OSF/1 Motif graphical user interface QMON.

The process of holding a running job but keeping it on the execution host (in contrast to
checkpointing, where the job is aborted). A suspended job still consumes some resources, such
as swap memory or file space.

A generic unit for resource share definition. The more ticket shares that a job, user, project, or
other component has, the more important it is. If a job has twice as many tickets as another job,
for example, that job is entitled to twice the resource consumption.

Another term for “resources consumed.” Usage is determined by an administrator-configurable
weighted sum of CPU time consumed, memory occupied over time, and amount of I/O

performed.

People who can submit jobs to the grid and run them if they have a valid login ID on at least one
submit host and one execution host.

Either an access list or a department.

Sun N1 Grid Engine 6.1 User's Guide - May 2007

Index

Numbers and Symbols
$pe hostfile, 58
3rd_party file, 76,77,79

A

access-allowed-list, 36
access-denied-list, 36
access list, 175
access lists, 36
accounting and reporting console, 111-112
advanced query
create, 124
run, 125
creating queries
simple, 113-117
editing queries
simple, 123
query
advanced, 124,125
simple, 113-117,123
running queries
advanced, 124,125
simple, 123
simple query
create, 113-117
edit, 123
run, 123
starting, 111-112
ACLs, 36
act_gmaster file, 41

administration host, 175
administration hosts, 27
listing, 42
advanced jobs
example, 65-66
submitting, 63-66, 66-68
app-defaults directory, 34
ARC, 57
arguments in scripts, 56
array, job, 175
arrayjobs, 55,71-72
index, 71
tasks, 71
atjobs, 106
attributes, See resource attributes, requestable
attributes, consumable resources

B

-b qrsh option, 67,77

batch jobs, submitting, 53-59
batch gmake, 81

batch queues, 83

C

C, critical message, 142

C program integration, 78
-C gsub option, 56

-c gsub option, 108

-c gqtcsh option, 78

179

Index

campus grid, 20,175

cell, 57,175

Certificate Security Protocol (CSP), 22
checkpointing, 106-110, 175

and restarting, 58

disk space requirements, 109
file system requirements, 110
kernel-level, 106

memory requirements, 109
migrating jobs, 107

process hierarchies, 106
user-level, 106

checkpointing directory, 109
checkpointing environment, 175
ckpt dir, 109

-clear qsub option, 67

cluster, 175

cluster grid, 20,175

cluster queues, 28

configuring, 100
disabling, 100
enabling, 100
resuming, 100
suspending, 100

command line interface, 29
comment lines, 56-57
complex, 176

configuring queues, 100
consistency checking, 89
consumable flag, 45
consumable resources, 103,104
critical message, 142
crontab jobs, 106
cshshell, 53

.cshrcfile, 54
customizing

D
-d

QMON, 30, 34-35,92,105

gmod option, 105

daemons

180

execution, 27,28
master, 27,28

Sun N1 Grid Engine 6.1 User's Guide «

daemons (Continued)
scheduler, 27,28
debug mode, 145
trace output, 145
debugging with dl, 145
default request files, 67-68
department, 176
dependencies
job, 61,71
disabling
cluster queues, 100
queue instances, 102
queues with gqmod, 105

disk space, requirements for checkpointing, 109
dispatching jobs, with named queue requests, 83

DISPLAY variable, 73
displaying, queues, 38-41
dl, 145

dynamic load balancing, 107

E

E, error message, 142
-e gmod option, 105
email, 98,141
format of error mail, 142
sent at beginning of job, 98
sentat end of job, 98
sent when job is aborted, 98
sent when job is suspended, 98
embedding of gsub arguments, 56
enabling
cluster queues, 100
queue instances, 102
entitlement, 176
ENVIRONMENT, 58
environment
checkpointing, 175
parallel, 177
environment variables, 57-59
error message, 142
error reporting, 145
errors
job state, 90

Index

errors (Continued)
queue state, 100
/etc/login file, 54
execution daemon, 27,28
execution host, 176
execution hosts, 27
listing, 42
-ext gstat option, 83
extended jobs
example, 62
submitting, 59-63, 63

F
-f qdel option, 97
-f gmod option, 97, 106
fault tolerance, 106

file system, requirements for checkpointing, 110

fixed resource attributes, 104
format, messages file, 141
functional policy, 25,59,82,176

G

global grid, 20,176

gmake, 79
-3, 81

grid, 176
campus, 20,175
classes of, 20
cluster, 20,175
defined, 19-22
global, 20,176

group, 176

H

hard requests, 70

hard resource requirements, 176
hold, user, 61

-hold_jid gsub option, 71
holding back jobs, 87

HOME, 55,58
home directory path, 58
host, 176
administration, 175
execution, 176
master, 177
submit, 178
HOSTNAME, 56,58
hosts, 41-42
administration, 27
execution, 27
listing administration hosts, 42
listing execution hosts, 42
listing submit hosts, 42
master, 27,41
submit, 27
types of, 27

1
L, info message, 142
index, of array jobs, 71
info message, 142
-inherit gmake option, 80
-inherit gqrsh option, 77, 80
instances, See queue instances
integration

of C programs, 78

of Java programs, 78
interactive job, 175,176
interactive jobs

handling, 73

submitting, 73-76
interactive gqmake, 81
interface, command line, 29

J
-j gmake option, 81
-j gmake option, 81
Java program integration, 78
job, 176
batch, 175

181

Index

job (Continued)
cancelling with gdel, 97
class, 176
monitoring with gmod, 97
parallel, 177
jobarray, 175
job class, 176
JOB_ID, 55,58
JOB_NAME, 56,58
jobslots, 103
jobs
advanced job example, 65-66
and queues, 24
array, 55,71-72
array index, 71
array tasks, 71
at, 106
crontab, 106
dependencies, 61,71
dispatching with named queue requests, 83
error state, 90
extended job example, 62
handling interactive jobs, 73
holding back, 87
modifying pending, 87
notifying, 61
pending, 95
priority, 59,82
releasing, 87
rescheduling, 88,100
spooling, 83
submitting advanced jobs, 63-66, 66-68
submitting batch jobs, 53-59
submitting extended jobs, 59-63,63
submitting from the command line, 48-49
submitting interactive jobs, 73-76
submitting with QMON, 49
subtasks, 71

K

kernel-level checkpointing, 106
scripts for, 107

ksh shell, 53

182 Sun N1 Grid Engine 6.1 User's Guide « May 2007

L
-1 gstat option, 96
limits, per queue slot, 104
listing
administration hosts, 42
execution hosts, 42
managers, 38
operators, 38
owners, 38
queue properties, 38-40
queues, 38
requestable attributes, 44-46
submit hosts, 42
users, 38
load adjustments, 104
load balancing, dynamic, 107
load management, 22
load parameters, 104
log file, messages, 141
.loginfile, 54
login shell, 54
login shells, 54
LOGNAME, 58

M
-M gsub option, 98
-m a gqsub option, 90
-m gsub option, 98
MAIL, 57
Main Control window, 33-35
make, 79
makefile, parallel processing, 79-82
manager, 177
managers, 35
listing, 38
master daemon, 27,28
master host, 27,41,177
memory, requirements for checkpointing, 109
messages, log file, 141
messages file, format, 141
migrating checkpointing jobs, 107
migration, 177
modifying pending jobs, 87

Index

N

N, notice message, 142
newgrp, 37

NFS Network File System, 110
NHOSTS, 58

-noshell grsh option, 77
-nostdin grsh option, 77
notice message, 142

-now no qlogin option, 73
-now no qrsh option, 73
-now no gsh option, 73
-now no gsub option, 73
-now gqrsh option, 77

NQUEUES, 58
NSLOTS, 58
o

operator, 177
operators, 35

listing, 38
-ot qalter option, 95
output redirection, 55-56
override policy, 25,82,177
owner, 177
owners, 35

listing, 38

queues, 38

P
-p qsub option, 25, 82
parallel environment, 177
parallel job, 177
parallel jobs, 58
parallel makefile processing, 79-82
PATH, 57,58
path, default shell search, 58
PE, 58
PE_HOSTFILE, 58
-pe gmake option, 81
pending jobs, 95

checking consistency, 89

permissions, user access, 36-37
policies, 21,82-84
administering, 22
administering ticket policies, 25
functional, 25,59, 82
override, 25,82
share-based, 25,82
ticket-based, 83
types of, 24
urgency, 25,82
policy, 177
functional, 176
override, 177
share-based, 177
preferences
QMON, 34,92,105
priority, 82,177
job, 59,82
range, 82
process hierarchies, checkpointing, 106
project, 177
project lists, 37
projects, 24
access permissions, 36
job submission, 60

Q

gacct, 29

galter, 29,87
consistency checking, 89
-ot, 95

gconf, 29
-sc, 44
-se, 42
-sel, 42
-sh, 42
-sm, 38
-so, 38
-sq, 38,40
-sql, 38
-ss, 42
-su, 37
-sul, 36

183

Index

qdel, 29
cancelling jobs with, 97
-f, 97
ghold, 29
ghost, 29,42
qlogin, 29,73,75-76
-now no, 73
gmake, 29,79
batch usage, 81
-inherit, 80
interactive usage, 81
-j, 81
-pe, 81
gmod, 29
-d, 105
disabling queues with, 105
-e, 105
-f, 97,106
monitoring jobs with, 97
-s, 97,105
suspending queues with, 105
-us, 97,105
with crontaborat, 106
gmon, 29
QMON
and embedded script arguments, 56
customizing, 30, 34-35,92, 105
Main Control window, 33-35
preferences, 34,92,105
Qmon file, 34
.gqmon_preferences file, 34,92,105
QMON resource file, 34
gresub, 29
grls, 29
qrsh, 29,73,76-77
-b, 67,77
-inherit, 77,80
-noshell, 77
-nostdin, 77
-now, 77
-now no, 73
-verbose, 77
grshmode, 79
gselect, 30

184 Sun N1 Grid Engine 6.1 User's Guide «

gsh, 30,73,75
-now no, 73
gstat, 27,30
-ext, 83
-1, 96
-r, 96
resource requirements, 96
gsub, 27,30
arguments in scripts, 56
-C, 56
-c, 108
-clear, 67
- cwd for checkpointing jobs, 109
-hold_jid, 71
-M, 98
-m, 98
-ma, 90
-now no, 73
-p, 25,82
-t, 72
.qtask file, 77,78
gtcsh, 30,77-79
-c, 78
QUEUE, 58
queue, 175
queue instances, 28,101-103
configuring, 100
disabling, 102
enabling, 102
resuming, 102
suspending, 102
queue_sort method, 84
queues, 28
and jobs, 24
batch, 83
configuring, 100
consumable resources, 103, 104
disabling, 100,102
disabling with gmod, 105
displaying, 38-41
enabling, 100,102
error state, 100
listing, 38
listing properties, 38-40

Index

queues (Continued)
load parameters, 104
owners, 35,38
resource attributes, 103,104
resuming, 100, 102
selection of, 83-84
sequence number, 84
shell parameter, 55
slot limits, 104
suspending, 100, 102
suspending with gmod, 105
system load, 103

R
-r gstat, option, 96
relational operator, 45
releasing jobs, 87
remsh, 76
REQUEST, 58
requestable attributes, 42-46, 68
listing, 44-46
requestable flag, 45
requests
hard, 70
soft, 70
requirements
hard, 176
soft, 178
rescheduling jobs, 88,100
resource, 177
resource attributes, 42-46,103
attached to queue, 104
consumable flag, 45
fixed, 104
relational operator, 45
requestable flag, 45
resource capacity, 104
resource requirements, 68-71
hard, 176
soft, 178
with gstat, 96
resources
allocation algorithm, 70-71

resources (Continued)
managing, 22
restart mechanism, 106
RESTARTED, 58
restarting checkpointed jobs, 58
resuming
cluster queues, 100
queue instances, 102
rlogin, 73,76
rsh, 73,76-77

S
-s gmod option, 97, 105
-sc qconf option, 44
schedd job info, 90
scheduler daemon, 27,28
scheduling
policies, 82-84
tickets, 83
script embedding, 56
-se qconf option, 42
-sel gconf option, 42
seq _no, 84
sequence number, 84
SGE BINARY PATH, 57
SGE CELL, 57
SGE_CKPT DIR, 58
SGE CKPT ENV, 58
sge _execd, 27,28
SGE_JOB_SPOOL DIR, 57
SGE_0_HOME, 57
SGE_0 HOST, 57
SGE O LOGNAME, 57
SGE_0 MAIL, 57
SGE_0 PATH, 57
SGE_0 SHEL, 57
SGE 0 TZ, 57
SGE_0 WORKDIR, 57
sge gmaster, 27,28
.sge_request file, 67
sge_request file, 67
SGE_ROOT, 57
sge schedd, 27

185

Index

SGE_STDERR_PATH, 58 suspending (Continued)
SGE_STDOUT PATH, 58 queues with gqmod, 105
SGE_TASK ID, 58,71 suspension, 178

-sh gconf option, 42 system load, 103
shshell, 53

share, 177

share-based policy, 25,82,177

share-tree, 178 T

SHELL, 57,58 -t gqsub option, 72
shell queue parameter, 55 TASK_ID, 56

shell scripts, 53-54 tasks, 71

tcshshell, 77

grid engine system extensions, 55-59 teshsshell, 53

shell start mode, 55 t.elnet, 73,76
slots, 103 ticket, 178

tickets, 25,83
time zone, 59

example, 54

-sm qconf option, 38
-so qconf option, 38

soft requests, 70 T™P, 59
. TMPDIR, 59
soft resource requirements, 178
o trace output, debug mode, 145
spooling jobs, 83 12 59

-sq qconf option, 38, 40
-sql gconf option, 38
-ss qconf option, 42
standard error, 54,55

time zone, 57

standard output, 54,55 U
stderr redirection unix behavior, 55
redirection urgency policy, 25,82
stderr, 141 -us qmod option, 97, 105
-su qconf option, 37 usage, 178
submit host, 178 usage policies, 82-84
submit hosts, 27 USER, 55,59
listing, 42 user, 178
submitting user access
advanced jobs, 63-66,66-68 permissions, 36-37
batch jobs, 53-59 projects, 36
extended jobs, 59-63,63 user groups, 24
interactive jobs, 73-76 user hold, 61
jobs from the command line, 48-49 user-level checkpointing, 106
jobs with QMON, 49 scripts for, 107
subtasks, job, 71 user_lists, 37
-sul gconf option, 36 users, 35-38
suspending categories of, 35
cluster queues, 100 listing, 38
queue instances, 102 userset, 178

186 Sun N1 Grid Engine 6.1 User's Guide - May 2007

Index

\')

variables, environment, 57-59
-verbose qrsh option, 77
Verify flag, 89

verifying job consistency, 89

w

W, warning messages, 142
warning messages, 142

X

XAPPLRESDIR, 34
.Xdefaults file, 34
.xinitrc file, 34
xproject lists, 37
xrdb, 34
.Xresources file, 34
xterm, 73

xuser lists, 37

187

188

	Sun N1 Grid Engine 6.1 User's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to the N1TM Grid Engine 6.1 Software
	What Is Grid Computing?
	Managing Workload by Managing Resources and Policies
	How the System Operates
	Matching Resources to Requests
	Jobs and Queues
	Usage Policies
	Using Tickets to Administer Policies
	Using the Urgency Policy to Assign Job Priority

	Grid Engine System Components
	Hosts
	Master Host
	Execution Hosts
	Administration Hosts
	Submit Hosts

	Daemons
	sge_qmaster – The Master Daemon
	sge_schedd – The Scheduler Daemon
	sge_execd – The Execution Daemon

	Queues
	Client Commands

	QMON, the Grid Engine System's Graphical User Interface

	Navigating the Grid Engine System
	QMON Main Control Window
	Launching the QMON Main Control Window
	Customizing QMON

	Users and User Categories
	User Access Permissions
	Managers, Operators, and Owners

	Displaying Queues and Queue Properties
	Displaying a List of Queues
	Displaying Queue Properties
	How to Display Queue Properties With QMON
	Displaying Queue Properties From the Command Line

	Interpreting Queue Property Information

	Hosts and Host Functionality
	Finding the Name of the Master Host
	Displaying a List of Execution Hosts
	Displaying a List of Administration Hosts
	Displaying a List of Submit Hosts

	Requestable Attributes
	Displaying a List of Requestable Attributes

	Submitting Jobs
	Submitting a Simple Job
	How To Submit a Simple Job From the Command Line
	How To Submit a Simple Job With QMON

	Submitting Batch Jobs
	About Shell Scripts
	Example of a Shell Script
	Extensions to Regular Shell Scripts
	How a Command Interpreter Is Selected
	Output Redirection
	Active Comments
	Environment Variables

	Submitting Extended Jobs and Advanced Jobs
	Submitting Extended Jobs With QMON
	Extended Job Example

	Submitting Extended Jobs From the Command Line
	Submitting Advanced Jobs With QMON
	Advanced Job Example

	Submitting Advanced Jobs From the Command Line
	Default Request Files

	Defining Resource Requirements
	How the Grid Engine System Allocates Resources

	Job Dependencies
	Submitting Array Jobs
	Submitting an Array Job With QMON
	Submitting an Array Job From the Command Line

	Submitting Interactive Jobs
	Submitting Interactive Jobs With QMON
	Submitting Interactive Jobs With qsh
	Submitting Interactive Jobs With qlogin

	Transparent Remote Execution
	Remote Execution With qrsh
	Invoking Transparent Remote Execution With qrsh

	Transparent Job Distribution With qtcsh
	qtcsh Usage

	Parallel Makefile Processing With qmake
	qmake Usage

	How Jobs Are Scheduled
	Job Priorities
	Ticket Policies
	Queue Selection

	Monitoring and Controlling Jobs and Queues
	Monitoring and Controlling Jobs
	Monitoring and Controlling Jobs With QMON
	Refreshing the Job Control Display
	Selecting Jobs
	Managing Jobs
	Putting Jobs on Hold
	Putting Array Job Tasks on Hold

	Changing Job Priority
	Verifying Job Consistency

	Using the Why? Button to Get Information About Pending Jobs
	Clearing Error States
	Customizing the Job Control Display
	Filtering the Job List
	Getting Additional Information About Jobs With the QMON Object Browser

	Monitoring and Controlling Jobs From the Command Line
	Monitoring Jobs With qstat
	Controlling Jobs With qdel and qmod

	Monitoring Jobs by Email

	Monitoring and Controlling Queues
	Monitoring and Controlling Queues With QMON
	Monitoring and Controlling Cluster Queues
	Cluster Queue Status

	Monitoring and Controlling Queue Instances
	Queue Instance Status

	Displaying Queue Instance Attributes
	Filtering Cluster Queues and Queue Instances

	Controlling Queues With qmod

	Using Job Checkpointing
	User-Level Checkpointing
	Kernel-Level Checkpointing
	Migrating Checkpointing Jobs
	Composing a Checkpointing Job Script
	Submitting, Monitoring, or Deleting a Checkpointing Job From the Command Line
	Submitting a Checkpointing Job With QMON

	File System Requirements for Checkpointing

	Accounting and Reporting
	Starting the Accounting and Reporting Console
	How to Start the Accounting and Reporting Console

	Creating and Running Simple Queries
	How to Create a Simple Query
	How to Create a View Configuration
	Defining Data Series for Diagrams
	How to Run a Simple Query
	How to Edit a Simple Query

	Creating and Running Advanced Queries
	How to Create an Advanced Query
	How to Run an Advanced Query
	How to Edit an Advanced Query

	Latebindings for Advanced Queries

	Automating Grid Engine Functions Through the Distributed Resource Management Application API
	Introduction to Distributed Resource Management Application API (DRMAA)
	Developing with the C Language Binding
	Important Files for the C Language Binding
	Including the DRMAA Header File
	Compiling Your C Application
	Running Your C Application
	How to Use the DRMAA 0.95 C Language Binding
	C Application Examples

	Developing with the Java Language Binding
	Important Files for the Java Language Binding
	Importing the DRMAA Java Classes and Packages
	Compiling Your Java Application
	How to Use DRMAA with NetBeans 5.x
	Running Your Java Application
	Using the DRMAA 0.5 Java Language Binding
	Java Application Examples

	Error Messages, and Troubleshooting
	How the Software Retrieves Error Reports
	Consequences of Different Error or Exit Codes
	Running Grid Engine System Programs in Debug Mode
	Setting the dbwriter Debug Level

	Diagnosing Problems
	Pending Jobs Not Being Dispatched
	Job or Queue Reported in Error State E

	Troubleshooting Common Problems
	Typical Accounting and Reporting Console Errors

	Database Schemas
	Schema Tables
	sge_job
	sge_job_usage
	sge_job_request
	sge_job_log
	sge_share_log
	sge_host
	sge_host_values
	sge_queue
	sge_queue_values
	sge_department
	sge_department_values
	sge_project
	sge_project_values
	sge_user
	sge_user_values
	sge_group
	sge_group_values

	List of Predefined Views
	view_accounting
	view_job_times
	view_jobs_completed
	view_job_log
	view_department_values
	view_group_values
	view_host_values
	view_project_values
	view_queue_values
	view_user_values

	List of Derived Values

	Glossary
	Index

