ZM-NC68-LM/GM ZM-NC68S-LM/GM ZM-NC68PV-LM/GM

nVIDIA MCP68系列主机板

V1.31 2008.09.02

致铭产品网站: <u>http://www.cthim.com</u> 集团官方网站: <u>http://www.xzx.net.cn</u>

致铭客户邮箱: E-mail: channel@cthim.com

致铭技术热线: 0755-83643322

致铭主机板用户手册

CTHIM MAINBOARD USER'S MANUAL

版权保护声明

本手册为致铭科技股份有限公司的专用用户手册,我们非常小心的核对整理,但我们对于本手册的内容不保证完全正确。同时因为我们的产品一直在持续的改良及更新,内部附图供参考,可能部分细节与实际产品有一点区别,在此手册中的一些规格或者参数都可能会存在过时而不适用的情况,这点致铭科技具有最终解释权。

主机板上的任何标帖请勿擅自撕毁,否则可能会影响到该款产品的质保期 限的认定标准。

WARNING

Never run the processor without the heatsink properly and firmly attached.

PERMANENT DAMAGE WILL RESULT!

警告

将散热器牢固地安装到处理器上之前,不要运行处理器,过热将永远损坏处理器!

商标声明

所有的品牌,产品,徽标,商标和公司名称都是属于商标或注册商标各自的拥有者。

AMI® 是 AMI 公司的注册商标。

Intel® 和 Pentium® 是 Intel 有限公司的注册商标。

Netware® 是 Novell 公司的注册商标。

PS/2 和 OS/2 是 International Business Machines 有限公司的注册商标。

Windows®98/2000/NT/XP和 Microsoft® 是 Microsoft有限公司的注册商标。

安全指导

- 1. 务必请仔细通读本安全指导。
- 2. 务必请妥善保管本手册,以备将来参考。
- 3. 请保持本设备的干燥。
- 4. 在使用前, 宜将本设备至于稳固的平面上。
- 5. 机箱的开口缝槽是用于通风,避免机箱内的部件过热。请勿将此类开口 掩盖或堵塞。
- 6. 在将本设备与电源连接前, 请确认电源电压值, 将电压调整为 110V/220V。
- 7. 请将电源置于不会被践踏到的地方, 并且不要在电源线上堆置任何对象。
- 8. 插拔任何扩展卡或设备模块前,请都将电源线拔下。
- 9. 请留意手册上提到的所有注意和警告事项。
- 10. 不得将任何液体倒入机箱开口的缝槽中,否则会产生严重损坏或电路瘫痪。
- 11. 如果发生以下情况,请找专业人员处理:
 - a. 电源线或插头损坏:
 - b. 液体渗入机器内:
 - c. 机器暴露在潮湿的环境中;
 - d. 机器工作不正常或用户不能通过本手册的指导使其正常工作;
 - e. 机器跌落或受创:
 - f. 机器有明显的破损迹象:
- 12. 请不要将本设备置于或保存在温度高于60°C(140°F)的环境下,否则会对设备造成损害。

产品清单说明

请确认您所购买的主机板包装及相关配件是否完整,如果有包装损坏或是有任何配件短缺的情形,请尽快与您的经销商联系。

- 1. ZM-NC68-LM(GM)/ZM-NC68S-LM(GM)/ZM-NC68PV-LM(GM)主机板一块
- 2. UI tra DMA 66/100/133 IDE数据线一套
- 3. 驱动程序光盘一张
- 4. 用户手册一本
- 5. SATA 数据连接线一套
- 6. 质保卡一张
- 7. 合格证一张
- 8. 挡板一块

目 录

安全指导 3
产品清单说明 4
か 立 上にか A O
第一章 主板简介 8
A let like
1.1 主板特色 8 1.2 主板规格 9
1.3 主板布局图
1.4 NVIDIA MCP68 系列芯片组图
1. I WIDIN 1100 00 AV 90-71 ZEE
第二章 硬件设备的安装说明14
第二章 硬件设备的安装说明
第二章 硬件设备的安装说明 14 2.1 中央处理器的安装
2.1 中央处理器的安装 14 2.2 内存的安装 15 2.3 显卡的安装 16
2.1 中央处理器的安装 14 2.2 内存的安装 15 2.3 显卡的安装 16 2.3.2 VGA显卡的连接 16
2.1 中央处理器的安装142.2 内存的安装152.3 显卡的安装162.3.2 VGA 显卡的连接162.4 ATX 电源的安装16
2.1 中央处理器的安装142.2 内存的安装152.3 显卡的安装162.3.2 VGA 显卡的连接162.4 ATX 电源的安装162.5 IDE 设备的安装17
2.1 中央处理器的安装 14 2.2 内存的安装 15 2.3 显卡的安装 16 2.3.2 VGA 显卡的连接 16 2.4 ATX 电源的安装 16 2.5 IDE 设备的安装 17 2.6 SATA 设备的安装 17
2.1 中央处理器的安装142.2 内存的安装152.3 显卡的安装162.3.2 VGA 显卡的连接162.4 ATX 电源的安装162.5 IDE 设备的安装172.6 SATA 设备的安装172.7 软盘驱动器的安装17
2.1 中央处理器的安装142.2 内存的安装152.3 显卡的安装162.3.2 VGA 显卡的连接162.4 ATX 电源的安装162.5 IDE 设备的安装172.6 SATA 设备的安装172.7 软盘驱动器的安装172.8 主板跳线的设定说明17
2.1 中央处理器的安装142.2 内存的安装152.3 显卡的安装162.3.2 VGA 显卡的连接162.4 ATX 电源的安装162.5 IDE 设备的安装172.6 SATA 设备的安装172.7 软盘驱动器的安装172.8 主板跳线的设定说明172.8.1 清除 CMOS跳线 (CLR_CMOS)18
2.1 中央处理器的安装142.2 内存的安装152.3 显卡的安装162.3.2 VGA 显卡的连接162.4 ATX 电源的安装162.5 IDE 设备的安装172.6 SATA 设备的安装172.7 软盘驱动器的安装172.8 主板跳线的设定说明172.8.1 清除 CMOS 跳线 (CLR_CMOS)182.8.2 集成网卡选择跳线 (LAN_EN)18
2.1 中央处理器的安装142.2 内存的安装152.3 显卡的安装162.3.2 VGA 显卡的连接162.4 ATX 电源的安装162.5 IDE 设备的安装172.6 SATA 设备的安装172.7 软盘驱动器的安装172.8 主板跳线的设定说明172.8.1 清除 CMOS跳线 (CLR_CMOS)18

2.9.1 风扇电源接头(CPU_FAN1/SYS_FAN1) 1 2.9.2 前置音效输出接口(F_AUDIO) 1 2.9.3 USB扩展接头(F_USB1) 1 2.9.4 后面板连接端口 2 2.9.5 机箱面板综合信号连接端口 2
第三章 BIOS 设置简介 2
3.1 BIOS解释说明 2 3.2 BIOS升级更新 2 3.3 BIOS设定 2 3.3.1 系统基本设定(Main) 2 3.3.2 系统高级功能设定(Advanced) 2 3.3.3 高级芯片组特征设置(Chipset) 2 3.3.4 系统监控设定(H/W Monitor) 2 3.3.5 启动设备设置(Boot) 2 3.3.6 安全性能设置(Security) 2 3.3.7 退出BIOS程序设置(Exit) 3
第四章 驱动程序的安装3
4.1 NVIDIA芯片组驱动程序.34.2 板载网卡的安装.34.3 声卡驱动程序的安装.34.4 USB2.0驱动程序的安装.34.5 Di rectX 9.0 的安装.34.6 六声道输出的设置.34.7 八声道输出的设置.34.8 话筒设置说明.3

第五章 RAID 控制器的设置(可选)36	,
5.1 NVIDIA 磁盘阵列创建前准备 36 5.2 打开RAID功能 36 5.3 RAID的BIOS设置画面 37 5.4 NVIDIA 磁盘阵列建立 37 5.5 NVIDIA RAID驱动的安装(WIN2000/XP/2003下) 38	,
附一: 排除故障 39)
附二: 常见问题及解决方案41	
附三: 如何升级 BIOS43	,
附四: 专有名词含义 44	,

注意:本手册仅供用户查阅参考,不提供任何形式的担保,产品规格号如有修正或更改不再另行通告。如果您发现您购买的主板和用户手册有不同之处,请与您的经销商联系,或者登陆致铭科技网站查询(www.cthim.com),或者与致铭科技售后服务部联系咨询(0755-83664483)。

 δ

第一章 主板简介

1.1 主板特色

ZM-NC68-LM (GM) 主机板都是基于 NVIDIA MCP68 单芯片技术, ZM-NC68S-LM (GM) 主机板都是基于 NVIDIA MCP68S 单芯片技术, ZM-NC68PV-LM (GM) 主机板都是基于 NVIDIA MCP68PVNT单芯片技术。主机板都为 Socket (AM2)940 AMD Athlon 64 X2/Athlon 64/Sempron 处理器提供了发挥超强性能的平台。

主机板都支持 1GMHz 的系统总线频率,支持 DDR II 533/667/800 双通道内存,双通道功能大大提升了内存的性能;ZM-NC68-LM (GM) 主机板内存容量最高可扩充至 4.0GB,ZM-NC68PV-LM (GM) 和 ZM-NC68S-GM (LM) 主机板内存容量最高可扩充至 8.0GB。

主机板都支持RAID 0、1 磁盘阵列,支持4个SATA II 高速硬盘接口,并提供了一个PCI Express 16X显示适配器端口和2个PCI 32位主总线插槽。PCI Express 端口实现了传输方式从并行到串行的转变,采用点对点的串行连接方式,这个和以前的并行通道大为不同,它允许和每个设备建立独立的数据传输通道,不用再向整个系统请求带宽,PCI Express 16X连接显示适配器数据传输带宽可以达到惊人的8GB/s(双向带宽),使系统整体性能得到了很大的提升。另外,ZM-NC68-GM(LM)、ZM-NC68PV-LM(GM)和ZM-NC68S-GM(LM)主机板集成显卡,内建了GeForce 7系列显示核心;可在无需添加独立显卡的情况下,显著提高图形性能,带来更丰富的色彩显示效果和更锐利的图形清晰度。

ZM-NC68/ZM-NC68S/NC68PV-LM 主机板整合了百兆网络芯片,支持 10/100Mb/s 传输速率提供高速网络功能, ZM-NC68/ZM-NC68S/NC68PV-GM 主机板整合了千兆网络芯片,支持 10/100/1000Mb/s 传输速率提供高速网络功能, ZM-NC68-LM (GM) 主机板支持 8 声道音效输出。

此外,致铭公司考虑到USB设备的广泛应用,所以这主机板各提供了8个支持USB2.0功能的USB连接口(ZM-NC68-GM(LM)主机板各提供了6个USB连接口)。

总之,这六款主机板是人性化设计,能充分发挥您的计算机性能的理想平台。

1.2 主板规格

a. 处理器

主机板的 CPU 插槽为 Socket (AM2) 940 接口,支持 Socket (AM2) 940® Athlon™ 64 X2/Athlon™ 64/Sempron 核心处理器。

b. 芯片组(北桥、南桥芯片集合在一起)

ZM-NC68-GM (LM) 主机板都采用 NVIDIA MCP68S 单芯片; ZM-NC68S-GM (LM) 主机板都采用 NVIDIA MCP68S 单芯片; ZM-NC68PV-LM (GM) 主机板都采用 NVIDIA MCP68PVNT 单芯片。

c. 内存

ZM-NC68-LM (GM) 主机板都板载 2 条 240 引脚的 DDR II DI MM 内存插槽, 支持双通道 DDR II 533/667/800 内存, 内存容量最高可扩展至 4.0GB; ZM-NC68PV-LM (GM) 和 ZM-NC68S-GM (LM) 主机板都板载 4 条 240 引脚的 DDR II DI MM 内存插槽, 支持双通道 DDR II 533/667/800 内存, 内存容量最高可扩展至 8.0GB。

d. PCI Express 界面

主机板都提供了一个 PCI Express 16X 显示适配器插槽, PCI Express 16X 连接的显示适配器数据传输双向带宽可以达到 8GB/S。

e AMI BLOS

支持即插即用1.0标准;

支持BIOS 防写功能:

支持高级电源管理 ACPI:

采用 Flash ROM, 可由软件直接升级。

f. 集成声卡

ZM-NC68-GM(LM)主机板集成 ALC662 音效解码芯片,支持 6 声道音效输出; ZM-NC68PV-LM(GM)和 ZM-NC68S-GM(LM)主机板集成 ALC861 音效解码芯片,支持 8 声道音效输出。

q. 集成网卡

ZM-NC68/ZM-NC68S/NC68PV-LM 主机板集成百兆网络芯片, 支持 100Mb/s 的

数据传输率; ZM-NC68/ZM-NC68S/NC68PV-GM 主机板集成千兆网络芯片,支持 1000Mb/s 的数据传输率。

h. 超级 I / 0 功能

内建一个IDE控制器支持PCI 总线主控PIO, Bus Master和UItra DMA 66/100/133 功能:

内建 4 个 S-ATAII 接口,可连接 4 个 SATA 或 SATA II 设备,数据传输率最高达 300MB/s;

- 一个软驱设备接口:
- 一个PS/2 键盘接口和一个PS/2 鼠标接口:
- 一个并行端口、一个 VGA 端口和一个 DVI 接口;
- 一个 COM 插针:

8个USB2.0接口(4个板载, 另外4个需要用USB Cable扩展)。

i.扩展槽

主机板各集成2个PCI插槽,1个PCI Express 16X插槽;

i. 电源管理

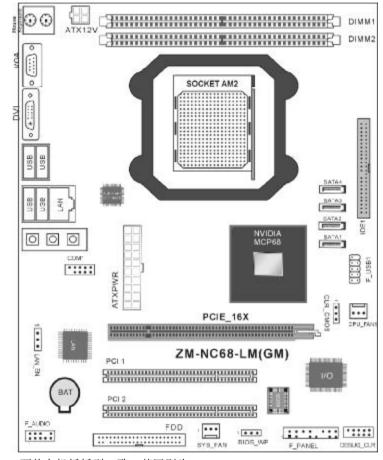
支持 ACPI 1. 0B 和 APM1. 2 规格;

支持S1(POS)睡眠功能:

支持网络和 Modem 远程唤醒功能:

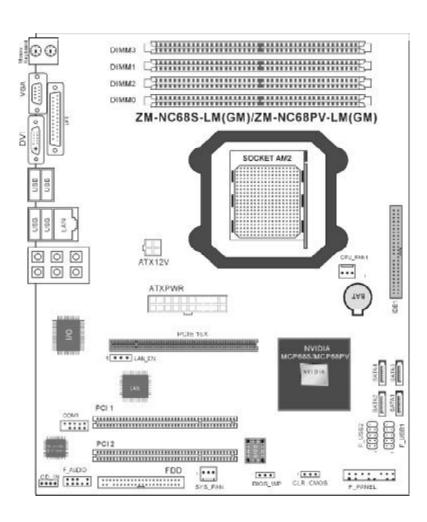
支持定时开机功能。

k. 集成显卡


ZM-NC68/ZM-NC68S/NC68PV--GM (LM) 主机板内建了GeForce 7系列显示核心,可在无需添加独立显卡的情况下,显著提高图形性能,带来更丰富的色彩显示效果和更锐利的图形清晰度。

1. 主机板结构

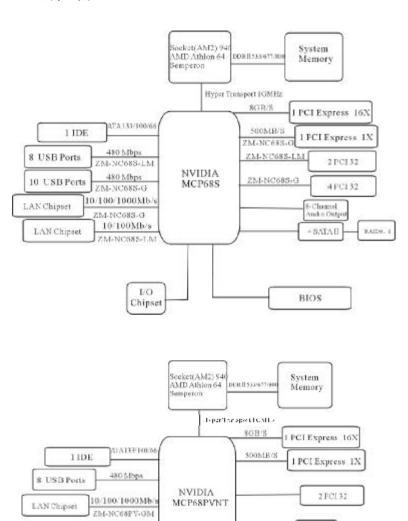
主机板采用MATX架构,提供一个主电源接头和一个+12V电源接头。


1.3 主板布局图

ZM-NC68-LM (GM) 主机板布局图

两款主机板板型一致,其区别为:

ZM-NC68-LM(GM)采用 nVIDIA nForceMCP68 芯片组, ZM-NC68-LM 主机板板载百兆网卡, ZM-NC68-GM 主机板板载千兆网卡。


四款主机板板型一致,其区别为:

12

ZM-NC68S-LM(GM)采用 nVI DIA nForceMCP68S 单芯片, ZM-NC68S-LM主 机板板载百兆网卡, ZM-NC68S-GM 主机板板载千兆网卡。

ZM-NC68PV-LM (GM) 主机板都采用 NVI DIA MCP68PVNT 单芯片, ZM-NC68PV-LM 主机板板载百兆网卡, ZM-NC68PV-GM 主机板板载千兆网卡。

1.4 芯片组图

Audio Onto

4 SATA II

BIOS

RAIDO, 1

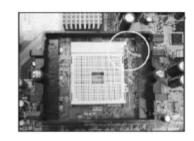
10/100Mb/s

ZM-NC68PV-LN

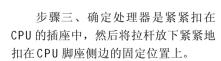
1/0

Chipset

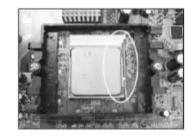
LAN Chipset


第二章 硬件设备的安装说明

2.1 中央处理器的安装


主机板处理器及散热器的安装方法以AMD Socket 940接口的AthI on 64 CPU 安装为例进行说明。AMD处理器的设计可以让您非常容易地将CPU 安装到正确的位置, 所以请您将处理器插入主板接口时不要过于用力,以免CPU 的针脚弯曲或者角度与位置有偏差。

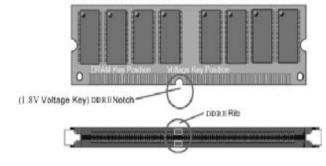
CPII 的安装步骤如下:


步骤一、将 CPU 脚座侧边的固定拉杆拉起,转动拉杆至大约 90 度的完全打开位置。如右图所示。

步骤二、在开始安装 CPU 前,请先检查 CPU 接触的灵敏触点是否有毁损,避免因针脚短路而造成 CPU 损坏。(注意不要用手指或者其他硬物体接触插座上与 CPU 接触的灵敏触点,以免触点受损。) 安装 CPU 时,请注意务必将 CPU 三角形缺口 Pi n1 处对准主机上之相应白漆地方后,再放入 CPU。

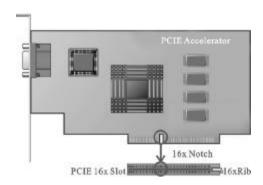
步骤四、按照右图箭头的方向压下固定 夹,将 CPU 风扇固定在 CPU 脚座上。(安装风扇散热片前务必涂上散热膏)

步骤五、最后将CPU风扇电源插入主板电源接口(如图所示)。


2.2 内存的安装

主机板支持双通道 DDR II 667/800 内存,双通道 DDR II 内存可提供高达 12. 8GB/s 的传输频宽和 4GB 的内存寻址能力,可显著提高系统响应速度,并能够支持 64 位计算。

安装步骤如下:


- a. 将内存槽两端的白色卡榫向外扳开。
- b. 将内存条有金手指的那边对准内存槽(如下图),注意内存条的凹孔要对应插槽的凸起点。
- c. 将内存条插入插槽中。若安装正确则插槽两端的白色卡榫会因为内存条置入而自动卡紧,否则不会卡紧。

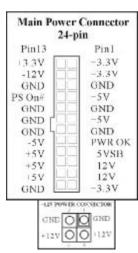
240 -Pin DIMM Notch Key Definition

2.3 显卡的安装

2.3.1 PCI-Express 显卡的安装

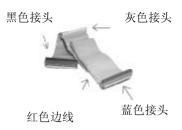
注意事项:

- a. 插槽的一端有一个小锁卡,在安装 PCI Express 显卡前需要将小锁卡向外侧按下打开,PCI Express 显卡安装好后小锁卡会自动锁上。
- b. 当您想要拆卸时PCI Express 显卡时也需要将小锁卡向外侧按下打开后,再将显卡拔出。


2.3.2 VGA 显卡的连接

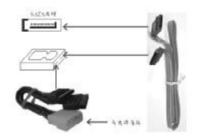
主机板集成显卡,安装主板集成显卡时,只需将显示器连接头与主板上的15pin VGA输出头直接相连接即可。

2.4 ATX **电源的安装**


主机板各有 2 个 ATX 电源接口,只能安装新的 ATX2.03 版的电源。

- a. 如右图所示必须用新版 P4 的电源,将 主板的主 ATX 和 +12V ATX 电源插头同时连接到 主板上对应的电源接头,否则不能开机,并且 有可能造成某些设备的损坏。
- b. 您所用的电源提供的5VSB的电流不能小于2A, 否则不能实现网络/Modem 唤醒功能。

2.5 IDE **设备的安装**


在安装IDE设备(如硬盘和光驱)时,您一定要将主板附送的IDE连接排线的黄色(或蓝色)一头接主板的IDE连接口上,将IDE连接线的灰色的一头接"从"IDE设备,黑色的一头接"主"IDE设备。如果您安装两个IDE设备,您必须将第二个IDE设备上的跳线设定为"从"盘模式,设定时一定要遵照IDE设[DE1]备上的跳线说明。

2.6 SATA **设备的安装**


在 SATA 设备安装时,将 SATA 数据线一端连接在主板 SATA 端口上,另一端连接在 SATA 设备上,如右图所示:

2.7 软盘驱动器的安装

在安装软盘驱动器时,如右图所示:将标注 ① 连接到软驱设备上,标注 ③ 连接主板 FDD 接口。连接时注意将标注 ② 红色边线与主板接口 1 号针脚对齐。

2.8 主板跳线的设定说明

主板上的所有跳线靠近直线或标有白色三角符处为第一脚,请务必不要接 反,否则有可能对您的主机板或其他设备造成损坏。

2.8.1 清除 CMOS 跳线(CLR CMOS)

如果主机板因为BIOS设置错误而出现问题,此时可清除CMOS解决问题;方法是在断开电源状态下把CMOS跳线跳至2-3脚,使其短接5-6秒。请不要在开机时清除CMOS,要不然可能会损坏您的主板。跳线设定如下:

CMOS数据状态	CLR CMOS	
保持CMOS数据资料(预设)	1 (000) 3	
清除CMOS数据资料	1 000 3	

2.8.2 **集成网卡跳线**(LAN_EN)

主板提供网卡屏蔽跳线,用户可以通过此跳线来设定是否选用板载网卡,如下图。

集成同卡跳线选择	LAN_EN
可以使用集成网卡 (预设)	1 @ 3
关闭集成网卡	1 0000 3

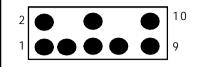
2.8.3 BIOS 写保护跳线(BIOS_WP)

主机板上BIOS 有防写功能,除非您要升级BIOS,否则我们建议您把BIOS 防写跳线 1-2 脚短接以保护您的BIOS,此时BIOS 为不可写。当您要升级BIOS 时,请在断开ATX 电源状态下把跳线接到 2-3 处,具体设定如下表:

BIOS防擦写状态	BIOS_WP	
BIOS写保护状态	1 (990) 3	
BIOS可写状态 (预设)	1000 3	

2.9 其它接头说明

2.9.1 风扇电源接头(CPU_FAN1/SYS_FAN1)


主板上 CPU_FAN1 连接头可以连接 CPU 风扇 / 系统 / 机箱风扇, 当将风扇连接到风扇连接头上时, 使用者必须将红色的线连接到+12V 的电源针上, 黑色的线连接到地线上。如果您想在 BIOS 或硬件监控程序中观察风扇的工作状态, 您必须使用支持能侦测转速功能的风扇。

对于具有速度感应器的风扇,风扇每一次转动都会产生2个脉冲波,系统硬件监控将作统计并产生一个风扇转动速度的报告。

2.9.2 **前置音效输出接口** (F_AUDIO)

主板提供了前置音效输出接口 F_AUDIO,这组声卡插针供您连接到机 箱前面板的声卡接头,这样您就可以很 方便地经由主机到面板收听音乐和使用 麦克风进行声音输入,您只要按照其插 针功能(如右图所示)连接相对应的线 即可。

PIN1: Mic in (麦克风输入信号)

PIN2: Aud GND (模拟音频线路接地)

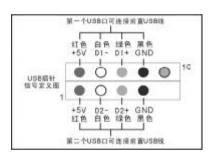
PIN3: Mic VREF (麦克风电源)

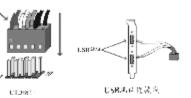
PIN4: Aud Vcc (没连接)

PIN5: FPOUT R (右声道声音信号输出)

PIN6: RET R(右声道声音信号输入)

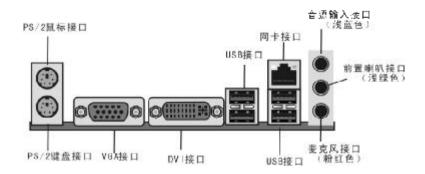
PIN7: (KEY) (RSVD 耳机备用)

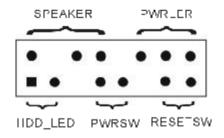

PIN8: (Void)(没连接)


PIN9: FPOUT L (左声道声音信号输出)

PIN10: RET L (左声道声音信号输入)

2.9.3 USB 扩展接头 (F_USB)


ZM-NC68S/NC68PV-LM(GM)主机板提供8个USB接口,其中4组可以直接连接USB设备,F_USB1/F_USB2连接头需要另外连接USB Cable; ZM-NC68-LM(GM)主机板提供6个USB接口,其中4组可以直接连接USB设备,F_USB1连接头需要另外连接USB Cable。您能从主板经验的或电子市场上购买到此种USB Cab连接线。(粗白线处为第一脚,请务业要接错,否则有可能对您的主板或设造成损害)



18 19

2.9.4 **后面板连接端口(以** ZM - NC68 - LM **为例**)

2.9.5 机箱面板综合信号连接端口

a. SPEAKER 喇叭连接头

电脑的喇叭连接头(也称蜂鸣器)共有四个脚位,只要把机箱上的喇叭接头接至此四脚位上即可使用。

b. PWRLER 电源指示灯

电源指示灯为三个脚位的连接头,用来指示电脑的工作状态,当电脑一旦上电时,指示灯常亮,反之,则不亮(注:有正负之分)。

c. HDD LED 硬盘指示灯连接头

这组两脚位排针连接到电脑机箱上的硬盘指示灯接头上,可由 LED 以显示 硬盘工作的状态,如果硬盘一旦有读取动作,指示灯随即亮起(注:有正负之分)。

d. PWRSW ATX 电源开关

POWER SW 是一个两针脚的接头,控制着 ATX 主电源的总开关,将这组排针连接到电脑机箱上控制电脑电源的开关上,当两个针脚短接一下即可开(关)机。

e. RESET SW 复位按钮

这组两脚位排针接到电脑机箱上的RESET开关,可让您不需要关掉电脑电源即可重新启动系统,尤其在系统挡机或死机时特别有用。

第三章 BIOS 设置简介

3.1 BIOS 解释说明

主机板使用 AMI BIOS, BIOS 全称为 Basic Input Output System (基本输入输出系统),有时也叫 ROM-BIOS,这是因为它存储在电脑主机板上的一块 ROM (Read-Only Memory) 芯片中。当您开启电脑时,BIOS 是最先运行的程序,它主要有以下几项功能:

- a. 对您的电脑进行初始化和检测硬件,这个过程叫POST (Power On Self Test)。
- b. 加载并运行您的操作系统。
- c. 为您的电脑硬件提供最底层, 最基本的控制。
- d. 通过 SETUP 管理您的电脑。

被修改的BIOS资料会被存在一个以电池维持的CMOS RAM中,在电源切断时所存的资料不会被丢失。一般情况下,系统运行正常时,无需修改BIOS。电池电力耗尽导致CMOS资料丢失时,须重新安装电池,并重新设定BIOS值;如果由于其他原因导致CMOS资料丢失时,须重新设定BIOS值。

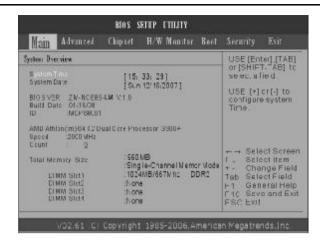
3.2 BIOS 升级更新

- a. 请在致铭网站(<u>www.cthim.com</u>)上去下载最新的BIOS 文件以及刷新工具。
- b. 准备一张 DOS 启动盘,只含三个最基本的 DOS 启动文件即可,将 AMI BIOS 刷新工具和 BIOS 文件拷贝到这张软盘 /U 盘上,使用此软盘 /U 盘开机引导系统,注意不要加载 emm 386. exe, qemm. exe, hi mem. sys 等内存驻留程序。
- c. 在 D O S 提示符下键入 "*.*" 按 "ENTER" 键继续。(两文件之间加一空格,并且 BIOS 文件必须用全名,这里只是举例,刷新工具不一定是这个名称)
- d. 按屏幕提示开始 BIOS 刷新,当出现"Flash ROM Update Comp-leted Pass"提示信息时,表示 BIOS 以刷新成功。
- e. 重新启动电脑,在开机时按"DEL"键进入CMOS设置,选择"Load Optimal Defaults"后保存退出。

因为BIOS 版本及型号不断在变,所以低版本的AFUDOS. EXE 有可能会造成升级BIOS 不成功,在此我们建议您:如果在升级过程中遇到一些不能升级的情况,请使用最新的AFUDOS. EXE 刷新工具。

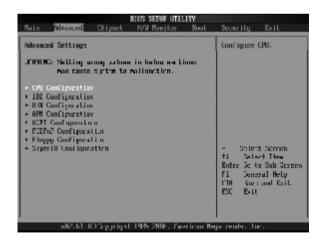
3.3 BIOS 设定

请注意由于BIOS的不断更新,可能我们说明的部分或许与现有板上BIOS有些不同,一切仅供参考,以实际为主。BIOS中一些未做过多说明的项目,属于非常用项目请保持缺省值,建议不要随意更改。


欲进入BIOS设定程序画面,请依下列步骤:

- a. 打开电源或重新启动系统,在自检画面可看到"PRESS DEL TO RUN SETUP"
 - b. 按下DFI 键后,即可讲入BIOS 设定程序。

BIOS功能键说明	
按 键	功能说明
ು 链	选择设置项目(左右移动)
↑↓ 鍵	选择设置项目(上下移动)
+- 键	改变设定状态,或者变更键位之数值
Tab 键	改变设定状态
ESC 键	退出设置程序并不存储设置
F1功能键	显示目前设定项目的相关辅助说明
F7功能键	放弃程字的修改
F8功能键	载入安全模式的默认值
F9功能键	载入出厂预设优化值
F10功能键	退出设置程序并存储设置


3.3.1 **系统基本设定**(Main)

在[Main]项目中,可以看到系统的一些基本信息,如BIOS的版本和日期、CPU、内存信息等。也可以对系统日期、时间进行变更。

- n Time (hh: mm: ss)(时间设定) 设定电脑中的日期,格式为"小时/分钟/秒"。
- **n** Date (mm: dd: yy)(日期设定) 设定电脑中的日期,格式为"星期,月/日/年"。

3.3.2 **系统高级功能设定**(Advanced)

将光标移到CPU Configuration 后按Enter 键,会出现如下设置:

- n GART Error Reporting (缺省值为Disabled)
- n Microcode Update (缺省值为Enabled)
- n Secure Virtual Machine Mode (缺省值为Enabled)
- n Runtime Legacy PSB (缺省值为Disabled)
- n ACPI 2.0 Objects (缺省值为Enabled)

将光标移到IDE Configuration 后按 Enter 键,会出现如下设置:

- n OnChip P-ATA Controller (缺省值为 Enabled)
- n OnChip S-ATA Controller (缺省值为Enabled)
- n SATA Mode select (缺省值为 SATA Mode)

将光标移到USB Configuration 后按Enter 键,会出现如下设置:

- n Legacy USB Support (缺省值为Enabled)
- 此项可开启或关闭支援USB装置功能。
- n USB 2.0 Controller Mode (缺省值为 Enabled)
- 此项可设定USB 2.0装置的传输数率模式。
- n BIOS EHCI Hand-off (缺省值为Enabled)

将光标移到 APM Configuration 后按 Enter 键,会出现如下设置:

n Power Management/APM(缺省值为Enabled)

此项目让您开启或关闭进阶电源管理(APM)功能。

- n Power Button Node(缺省值为0n/0ff)
- n Video Power Down Mode(缺省值为Enabled)
- n Hard Disk Power Down Mode(缺省值为Enabled)
- n Hard Disk Time Out(Minute)(缺省值为Disabled)
- n Resume on PME#(缺省值为Disabled)
- n Resume on RTC Alarm(缺省值为Disabled)

将光标移到 ACPI Configuration 后按 Enter 键,会出现如下设置:

- n ACPI Version Features(缺省值为ACPI V1.0)
- n ACPI APIC Support(缺省值为Enabled)

此项可让您决定是否增加 ACPI APIC 表单至 RSDT 指示清单。

- n AMI OEMB Support(缺省值为Enabled)
- n Headless Mode(缺省值为Disabled)
- **n** Chipset ACPI Configuration

将光标移到 PCI PnP Configuration 后按 Enter 键,会出现如下设置:

n PCI Latency Timer(缺省值为64)

此项可设定是否指定 PCI 界面显示卡的 IRO 中断位址。

- n ACPI APIC Support(缺省值为Enabled)
- n Head less mode(缺省值为Disabled)

将光标移到Floppy Configuration 后按Enter 键,会出现如下设置:

n Floppy A/B

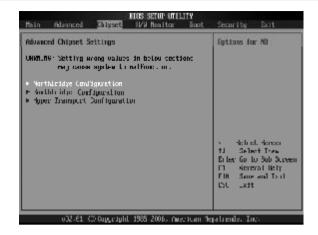
可选项有: Disabled, 360KB 5.25, 1.2KB 5.25, 720KB 3.5, 1.44MB 3.5, 2.88MB 3.5。

将光标移到 SuperIO Configuration 后按 Enter 键,会出现如下设置:

- n OnBoard Floppy Controller(缺省值为Enabled)
- n Serial Port1 Address(缺省值为3F8/IRQ4)

此项设定接口COM1的位址。COM1/COM2必须使用不同的位址值。可选项有: Di sabl ed, 3F8/IRQ4, 3E8/IRQ4, 2E8/IRQ3。

n AC Power Loss by IO


缺省值为 Power off。

可选项有: Power off, Power on, Last State。

3.3.3 **高级芯片组特征设置** (Chipset)

高级芯片组特征设置主要用来设定芯片组相关的功能,设定的好坏直接关系到系统运行的效率和稳定性。

注意:如果您对芯片组不熟悉,不要改变这些设定,以免您的计算机不能正常工作。

NorthBridge Chipset Configuration (北桥功能设置)

- **n** Memory Configuration
- n Memclock Mode (缺省值为Auto)
- n MCT Timing Mode (缺省值为Auto)
- n Bank Inter leaving (缺省值为 Auto)
- n Enable Clock to All DIMMs (缺省值为 Disabled)
- n MemCLK Tristate C3/ATLVID (缺省值为Disabled)
- n DQS Signal Training Control (缺省值为Enabled)
- n Memory Hole Remapping (缺省值为 Enabled)

SouthBridge Chipset Configuration (南桥功能设置)

n CPU/LDT Spread Spectrum

此项开启和关闭 CPU/LDT Spread Spectrum 功能。设定值有: Di sabl ed, Enabl ed。

n PCIE Spread Spectrum

此项开启和关闭PCIE Spread Spectrum功能。

n SATA Spread Spectrum

此项开启和关闭 SATA Spread Spectrum 功能。设定值有: Disabled, Enabled。

n CPU Frequency, MHz (CPU 线性调频)

此项可以对CPU外频逐兆进行线性调节,调节范围为200MHz-450MHz,专门为超频用户设计。

n MCP PCI-Express Frequency, MHz

缺省值为100。

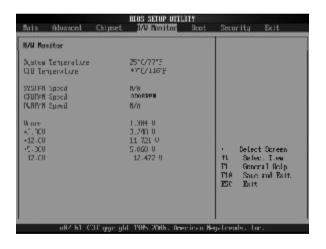
n Primary Graphics Adapter

缺省值为PCI Express ->PCI。

n USB 1.1/2.0 Controller

此项可让您开启或关闭USB 1.1/2.0 控制器。设定值有: Disabled, Enabled。

n AZALIA AUDIO


缺省值为 Auto。

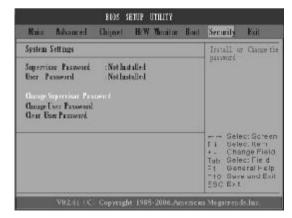
n Onboard RTL LAN Option ROM

缺省值为 Di sabl ed。

n HyperTransport Chipset Configuration

3.3.4 **系统监控设定**(H/W Monitor)

3.3.5 **启动设备设置(Boot)**

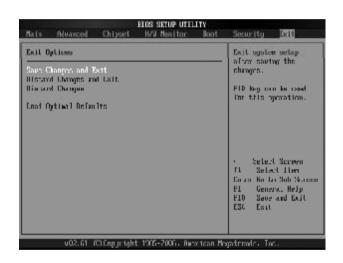


- n Boot Settings Configuration (启动选项设置)
- n Boot Device Priorty (启动装置顺序设置)
- n Removable Drives (可移动磁盘设置)
- n CD/DVD Drives (CD/DVD 磁盘设置)

3.3.6 **安全性能设置**(Security)

设置计算机管理员/用户密码功能。

在 Securi ty 界面将光标移到 "Change Supervi sor/User Password"后 按 "Enter",会出现如下界面:



密码长度最多8个特征字符或数字,密码将区分大写字母和字符,输入后接"Enter"键,BIOS会要求使用者再输入一次以核对,若两次密码都吻合则BIOS会将其保存下来。若使用者想删除密码,只需当显示密码对话窗时只按[Enter]键就可以了。

注意: 假若使用者忘记遗失密码,那么可以通过主板上的跳线来清除 CMOS 资料,所有的BIOS 设定都将恢复成出厂预设值。

n Clear User Password (清除用户密码设置)

3.3.7 **退出**BIOS 程序设置 (Exit)

- n Save Changes and Exit (退出并保存设置)
- n Discard Changes and Exit (退出并放弃设置)
- n Discard Changes (放弃设置但不退出BIOS程序)
- n Load Optimal Defaults (载入出厂预设优化值)

第四章 驱动程序的安装

(以 ZM-NC68S-GM 为例)

在致铭主板包装盒中检查一下, 您会发现有一张主板驱动光盘; 这张光盘包含了正常使用这系列主机板所必需的驱动程序和一些免费软件程序及实用工具等, 此光盘适用于中英文操作系统。

4.1 nVIDIA 芯片组(板载显卡)驱动程序的安装

- a. 如果是在WindowsXP系统下,进入驱动光盘MB\NVIDIA \MCP68\MCP68_1410_XP32目录,鼠标左键双击"setup. exe";如果在WindowsVista系统下,进入驱动光盘MB\NVIDIA\MCP68\MCP68_1410_Vista32目录,鼠标左键双击"setup. exe"。
 - b. 按照提示,点击"下一步",接着再点击"仍然继续"。
- c. 安装完成后,在重新启动选项中选择"是"然后按"完成"重新启动计算机,之后驱动程序自动加载。

4.2 板载网卡驱动的安装

- a. 如果是Real tek RTL8110SC 网卡芯片,安装 XP 系统时进入驱动光盘 MB\LAN\Real Tek 目录,鼠标左键双击"setup. exe";安装 Vi sta 系统时,进入驱动光盘 MB\LAN\Vi sta_8110S 目录,鼠标左键双击"setup. exe"。
 - b. 按照提示,点击"下一步",接着再点击"仍然继续"。
- c. 安装完成后,在重新启动选项中选择"是"然后按"完成"重新启动计算机,之后驱动程序自动加载。

4.3 板载声卡驱动的安装

- a. 如果是安装WindowsXP系统,进入驱动光盘MB\SOUND\ALC目录,鼠标左键双击"setup.exe";如果是安装WindowsVista系统,进入驱动光盘MB\SOUND\Vista_R171\R171_236_5443_Vista_XP目录,鼠标左键双击"setup.exe"。
 - b. 按照提示,点击"下一步",接着再点击"仍然继续"。
- c. 安装完成后,在重新启动选项中选择"是"然后按"完成"重新启动计算机,之后驱动程序自动加载。

4.4 USB2.0 驱动程序的安装

主机板需要安装WindowsXP以上的版本,在您安装好WindowsXP/2003等版本的操作系统后请更新Microsoft最新的补丁程序,一般此时系统就可以识别您的USB2.0设备了。万一不行您还可以到致铭科技的网站上去下载USB2.0驱动程序(是一个EXE可执行文件),双击这个程序后就可以按提示安装了。

4.5 DirectX9.0 的安装

- a. 进入驱动光盘TOOLS\DX9\DX9. OC, 鼠标左键双击 "dxsetup. exe"。
- b. 阅读安装程序许可协议, 点"我接受此协议"后, 点击"下一步"。
- c. 按照提示,再点击"下一步"。
- d. 安装完成后,点击"完成",此时DirectX9.0的安装就完成了。

4.6 六声道输出的设置

ZM-NC68-LM(GM) 主机板集成的音效芯片,是支持6声道输出的。

a. HD 标准声卡驱动装好后,在系统桌面的右下角点击"音效"图标,打开"HD Audio 组态设定"窗口,如下图所示。

b. 点击选择到"音频 I / 0"窗口。在出现的画面中间的一个复选框中选择(6CH 喇叭)。

- c. 请注意上图(右边)对主板上三个接口的说明,每个接口的功能请以颜色 为准,即:
 - n 浅蓝色接口表示音源输入功能
 - n 黄绿色接口表示接二个前置喇叭
 - n 粉红色接口表示接麦克风

4.7 八声道输出的设置

ZM-NC68S/68PV-LM(GM)主机板集成的音效芯片,是支持8声道输出的。 a. HD 标准声卡驱动装好后,在系统桌面的右下角点击"音效"图标, 打开"HD Audio 组态设定"窗口,如下图所示。

b. 点击选择到"音频 I / 0"窗口。在出现的画面中间的一个复选框中选择(8CH 喇叭)。

c. 请注意上图(右边)对主板上六个接口的说明,每个接口的功能请以颜色为准,即:

- n 浅蓝色接口表示音源输入功能
- n 黄绿色接口表示接二个前置喇叭
- n 粉红色接口表示接麦克风
- n 黑色接口表示接两个后置喇叭
- n 黄色接口表示接中央/重低音喇叭
- n 灰色接口表示接侧喇叭

4.8 **话筒设置说明(以 Windows XP 系统为例)**

致铭八声道主机板采用 ALC880/861 声卡芯片,支持 HD 高清 8 声道,如果用户安装使用的驱动是从网上下载(非致铭主板附带驱动光盘),则需要做如下设置:

A: 在状态栏的右下角点击音效控制(小喇叭)图标,如下图:

B: 在弹出来的"音效控制"框,点击"音效 I/0",找到面板里的接 麦克风接口的图标,如下图

C: 然后点击麦克风图标,此时会弹出一个麦克风的状态框,默认设置是勾选 在麦克风处,此时你只要勾在其他位置即可,如下图

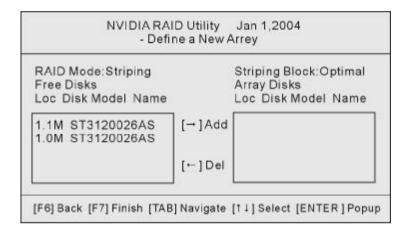
注:如果用户是安装致铭主板驱动光盘中的音频驱动则不需要做其他设置,驱动安装好后,只需连接好相关设备就可以了。

第五章 RAID 控制器的设置(可选)

5.1 nVIDIA 磁盘阵列创建前准备

磁盘阵列模式是把几个磁盘的存储空间整合起来,形成一个大的、单一连续存储空间。简单地说,阵列就是由多个磁盘组成、并行工作的一种磁盘系统。RAID将普通的硬盘组成一个磁盘阵列,在主机写入数据,RAID控制器把主机要写入的数据分解为多个数据块,然后并行写入磁盘阵列;主机读取数据时,RAID控制器并行地读取分散在磁盘阵列中各个硬盘上的数据,把它们重新组合后提供给主机。由于采用并行读写操作,从而提高了存储系统的存取速度。创建磁盘阵列时,设置为RAID 0、1、0+1,5模式时至少要接2个硬盘,创建磁盘阵列的磁盘容量最好相同,可以提高硬盘利用率。

5.2 **打开** RAID 功能


在系统自检时按DEL 键进入BIOS 设置画面,选择"Integrated Peripherals"后,在"RAID Config"项按"Enter"后,可以看到如下图示的画面:

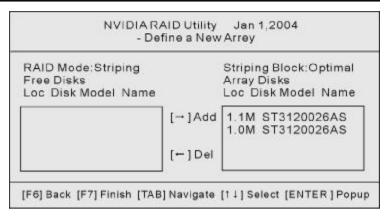
IDE RAID	[Disabled]	Item Help
IDE Primary Master RAID IDE Primary Slave RAID IDE Secondary Master RAID IDE Secondary Slave RAID SATA 1 Primary RAID SATA 2 Secondary RAID	[Disabled] [Disabled] [Disabled] [Disabled] [Disabled] [Disabled]	Menu Level

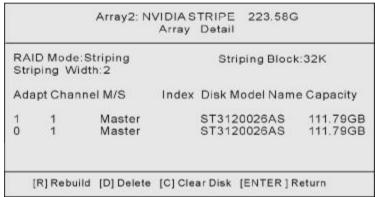
在以上BIOS设置画面,要作磁盘阵列,首先将"IDE RAID"项设为Enabled,再将要作磁盘阵列的硬盘设为Enabled,其它作为普通硬盘使用的设为Disabled,然后按"F10"键保存退出。

5.3 RAID 的 BIOS 设置画面

在系统开机自检到 nVIDIA BIOS 检测画面时,可以按 F10 键可以进入 nVIDIA BIOS 设置画面,如下图所示:

(该章节所提供的画面可能与您实际的画面不同,仅供参考)


在此设定画面中:


- 1、 RAID Mode 可以选择磁盘阵列的模式,可以选择 Striping (RAID 0)、 Mirroring (RAID 1)。
- 2、 Striping Block: 此项可以选择磁盘阵列分割块的大小,可以选择 Optimal (默认)、4K、8K等。请选择默认值即可。
- 3、Free Disks: 此项显示没有建立磁盘阵列的硬盘列表。
- 4、 Array Disks: 显示将要建立磁盘阵列的硬盘列表。

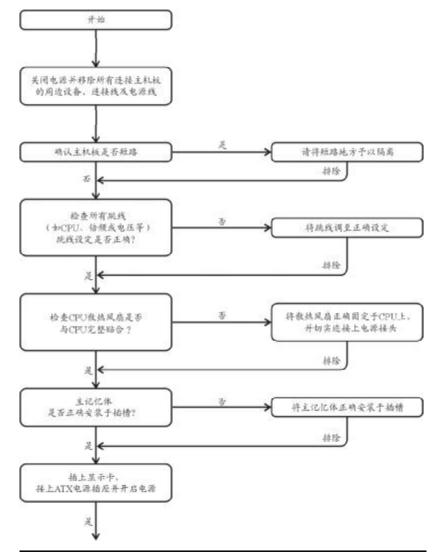
5.4 nVIDIA 磁盘阵列建立

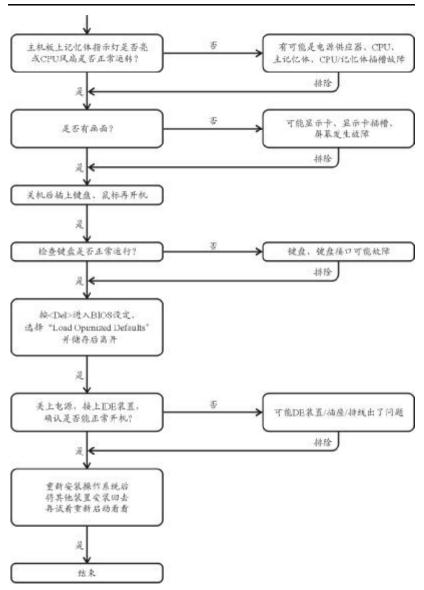
首先将光标移到要建立阵列的磁盘上,按 " → " 键后可以将硬盘选择在要建立的阵列区,如下图所示。此时,按 "F 7" 键后可以继续磁盘阵列的建立。

磁盘阵列建立后,按 "Enter"键可以看到阵列的详细情况。如下图所示。

5.5 nVIDIA RAID 驱动的安装 (WIN2000/XP/2003 下)

首先要把 NVI DIA RAID 的驱动程序拷贝到您的软盘里, NVI DIA RAID 的驱动程序在主机板附送的驱动光碟中MB\RAID\Win2K(XP)文件夹里可以找到。下面介绍 WI N2000/XP/2003 下驱动的安装方法:


当从引导安装WIN2000/XP/2003 系统时,当屏幕下方出现"Press F6 if you need to install third part SCSI or RAID Drive"时,按"F6"键。


当出现"Windows Setup"画面时,按"S"键添加一个新设备,然后将随驱动软盘放入软驱后按"Enter"键。

NVIDIA RAID CLASS DRIVER
NVIDIA NForce Storage Controller

附一: 排除故障

如果您在启动系统时发生了什么问题,请参照下面的步骤把故障排除。

如果以上的说明还无法解决您的问题,请洽询购买的店家或经销商寻求帮助,或至本公司网站上的服务专区填写你的问题,我们将尽快给您回复。

附二:常见问题及解决方案

1. 为什么计算机关机后,键盘 / 光学鼠标的灯还是亮着的?

解答・

有些主机板在计算机关机后,仍留有少许待机电源,所以键盘/光学鼠标的灯仍会高着.

2. 我发现 EasyTune4 有些选项无法使用,这是什么原因造成的呢? 解签·

由于 EasyTune4 上的选项可用与否,取决于该机种是否支持。因此若您使用的 板子无法支持该选项的功能, EasyTune? 4 会自动锁住该选项,使它无法使用。

3. 在有 RAID 功能的主机板上,为何我在安装 Win 2000/XP 且开机硬盘 装在 IDE3 或 4 的时候,RAID 或 ATA 的驱动程序装不了?

您需先将随货附的驱动程序光盘片中的一些档案,复制到一片磁盘里。而且在安装的过程中,有较不一样的步骤,所以请您参考网站上RAID专用手册内有详细说明。

4. 我要如何才能清除 CMOS 里的设定呢?

解答:

若您的板子上有 Clear CMOS 跳针,请参考手册将特定针脚短路以清除 CMOS 设定;若板子上没有此跳针,您可以暂时将 CMOS 的电池拔起,停止对 CMOS 电力之供应,几分钟之后即可清除 CMOS 里的设定值。

建议您依下列步骤进行:

步骤一: 关掉电源。

步骤二:将电源插头从主机板上拔除。(或是将电源供应器的电源线拔掉)

步骤三: 小心地将主机板上的电池取出并且将它放置一旁约十分钟。

(或您可使用例如螺丝起子之类的金属物碰触电池座的正负极造成其短路约一分钟)

步骤四: 重新将电池装回电池脚座里。

步骤五: 连接电源插头并执行开机。

步骤六:按Del键进入BIOS画面后,选取"Load Fail-Safe Defaults", 做使系统最

稳定的设定。

步骤七: 离开 BIOS 画面之前记得储存 BIOS 设定值并重新启动计算机。

5. 为什么我觉得 BIOS 升级完后,系统好像变得不太稳定?

解答

请记得在每次升级完 BIOS 后,到 BIOS 选项中选取 "Load Fail-Safe Defaults"(或 "Load BIOS Defaults" 项目做系统最稳定的设定并存盘。如果仍觉得有问题,可再试 试清除 CMOS 设定。

6. 为什么我已经把喇叭开得很大声了,却还是只听见很小的声音呢?

请确认您所使用的喇叭是否有电源或功率放大器的功能?如果没有,请选用有内建电源或功率放大器的喇叭试试看。

7. 在有内建显示卡功能的主机板上,我想要外加一张显示卡,那要如何 关闭内建显示功能呢?

解答:

致铭主机板有自动侦测的功能,因此当您外接显示卡时会自动关闭掉内建显示卡的功能,所以不需再以手动调整。

8. 为什么我无法使用 IDE2?

解答:

请参考使用手册检查看看 F_USB(Front USB)里的 USB Over Current 针脚是否有接任何线?如果您接的线并非原先主机板所附,请移除。记得不要自行接任何非主机板所附的线至这个针脚上。

9. 开机时所出现的哔声分别代表什么意思呢?

解答:

以下分别为 Award BIOS 及 AMI BIOS 的连续性哔声判读表,仅供故障分析参考。

AMI BIOS	AWARD BIOS
哔一声:系统启动正常	1短:系统启动正常
1短: 内存刷新错误	2短: CMOS设定错误
2短: 内存ECC检查错误	1长1短;内存或主机板错误
3短: 基本64k记忆体检查失败	1长2短; 屏幕或显示卡错误
4短: 系統时间错误	1长3短: 健盘错误
5粒: CPU错误	1长9粒: BIOS內存错误
6年; Gate A20错误	连续哔声:显示卡未插好
7短: CPU中断错误	连续急短声: 电源有问题
8短: 显示卡内存错误	
9短: ROM错误	
10短; CMOS读写错误	-
11短: 高速缓存错误	_

附三:如何升级BIOS

升级主机板的 BIOS 需要两个文件,一个是新的 BIOS 内容文件,文件名的后缀 通常为".BIN"或".ROM"(一般 AMI BIOS 扩展名为".ROM", Award BIOS 扩展名为".BIN"), 另外一个是升级 BIOS 时候需要用到的应用程序(譬如 AMI BIOS 的 AFUDOS.exe),这两个都是主机板供应商会提供的。

1. 为什么要升级主机板的 BIOS?

通常新的BIOS 对原来潜在存在的错误BUG 进行了修订,也许增加了更多的新功能,支持最新的处理器,最新的记忆体等功能,当然如果您的机器一切工作正常,而您也不是追求最新的技术等,那么可以不需要更新BIOS。

2. BIOS 文件从哪里可以得到?

BIOS 文件和应用程序都可以从主机板供应商处得到提供,也可以访问互连网得到这些文件。

3. 升级 BIOS 的注意要点有哪些?

- a. 确保您的电脑磁碟内无病毒, 原始文件也无病毒。
- h 确认升级需要的 BIOS 文件类型与主机板的需求完全符合。
- c. 做好原来 BIOS 文件的备份。
- d. 在刷写BIOS 过程中不允许主机断电或重启。

4. 如何讲行升级?

- a. 将系统进入纯 D O S 模式, 找到升级用的应用程序, 如我们(致铭)公司提供的 AMI BIOS 刷新工具为 A FIIDOS. EXE 文件。
- b. 运行应用程序,进行备份原BIOS 文件,其命令为AFUDOS /0<要保存的BIOS 文件名>(如BIOSOLD. ROM)。
 - c. 刷新 BIOS, 其命令为 AFUDOS <新 BIOS 文件名>(如 BIOSNEW. ROM)/P/B/N/C/X

BIOS Flash Utility (Version 1.00k) Flash ROM Programming Report	
Chipset Type: Intel ICH5 SouthBridge ROM File Name: e65gvt1b.ROM	Flash device:PMC 49FL004T ROM Size:
Load BIOS:Pass Erase: Pass Program:100%	Unprotect: Pass

Please reboot your system.

CTHIM Mainboard 致铭主板

附四: 专有名词含义

ACPI Advanced Configuration and Power Interface **APM** Advanced Power Management **AGP** Accelerated Graphics Port **AMR** Audio Modem Riser **ACR** Advanced Communications Riser **BBS BIOS Boot Specification BIOS** Basic Input / Output System Central Processing Unit **CPU CMOS** Complementary Metal Oxide Semiconductor **CRIMM** Continuity RIMM **CNR** Communication and Networking Riser **DMA Direct Memory Access** DMI Desktop Management Interface DIMM **Dual Inline Memory Module** DRM **Dual Retention Mechanism DRAM** Dynamic Random Access Memory **DDR** Double Data Rate **ECP Extended Capabilities Port ESCD** Extended System Configuration Data Error Checking and Correcting ECC **EMC** Electromagnetic Compatibility **EPP Enhanced Parallel Port ESD** Electrostatic Discharge FDD Floppy Disk Device **FSB** Front Side Bus **HDD** Hard Disk Device **IDE** Integrated Dual Channel Enhanced IRQ Interrupt Request

I/O Input / Output

IO APIC Input Output Advanced Programmable

Input Controller

ISA Industry Standard Architecture

LBA Logical Block Addressing

LED Light Emitting Diode

MHz Megahertz

MIDI Musical Instrument Digital Interface

MIH Memory Translator Hub
MPT Memory Protocol Translator

NIC Network Interface Card

OS Operating System

OEM Original Equipment Manufacturer

PAC PCI A.G.P. Controller
POS Power-On Self Test

PCI Peripheral Component Interconnect
RIMM Rambus in-line Memory Module
SCI Special Circumstance Instructions
SECC Single Edge Contact Cartridge
SRAM Static Random Access Memory
SMP Symmetric Multi-Processing
SMI System Management Interrupt

USB Universal Serial Bus

VID Voltage ID