

FM489

User Manual

4DSP Inc, 955 S Virginia Street, Suite 214, Reno, NV 89502, USA 4DSP bv, Crown Business Centre, Leidse Schouw 2, 2408 AE Alphen a/d Rijn, Netherlands Email: <u>support@4dsp.com</u>

This document is the property of 4DSP Inc. and may not be copied nor communicated to a third party without the written permission of 4DSP Inc.

© 4DSP 2008

Revision History

Date	Revision	Version
March 5, 2008	First release	1.0
April 10, 2008	Major updates	1.1
February 18, 2009	Updated the DDR2 sdram size to be maximum 256MB Updated the JTAG pin locations Updated the DIP switch	1.2
March 3, 2009	Updated the Pn4 table	2.0
Apr 29, 2009	Added the technical support chapter and the external power warning	2.1
Sept 8, 2009	Modified QTE connector pinout table	2.2

Table of Contents

1	Acr	ronyms and related documents	4
	1.1	Acronyms	4
	1.2	Related Documents	4
	1.3	General description	
2	Inst	stallation	
	2.1	Requirements and handling instructions	
	2.2	Firmware and software	
3		esign	
	3.1	FPGA devices	
	3.1.		
	3.1.		
	3.2	5	
	3.2.		
	3.2.		
	3.2. 3.3	2.3 JTAG Clock tree	
	3.3 3.4	Memory resources	
	3.4	•	
	3.4.		
	3.4.		
	3.4.		
	3.5		
	3.5.	C C	
	3.5.	-	
	3.6	Front Panel Rocket IO	
4	Pov	ower requirements	20
	4.1	External power connector for stand alone mode	21
5	En	vironment	23
	5.1	Temperature	23
	5.2	Convection cooling	
	5.3	Conduction cooling	23
6		ıfety	
7		/C	
8		chnical support	
9		CB revisions	
1() V	Warranty	25

1 Acronyms and related documents

1.1 Acronyms

ADC	Analog to Digital Converter
DAC	Digital to Analog Converter
DCI	Digitally Controlled Impedance
DDR	Double Data Rate
DSP	Digital Signal Processing
EPROM	Erasable Programmable Read-Only Memory
FBGA	Fineline Ball Grid Array
FPDP	Front Panel Data Port
FPGA	Field Programmable Gate Array
JTAG	Join Test Action Group
LED	Light Emitting Diode
LVTTL	Low Voltage Transistor Logic level
LVDS	Low Differential Data Signaling
LSB	Least Significant Bit(s)
LVDS	Low Voltage Differential Signaling
MGT	Multi-Gigabit Transceiver
MSB	Most Significant Bit(s)
PCB	Printed Circuit Board
PCI	Peripheral Component Interconnect
PCI-e	PCI Express
PLL	Phase Locked Loop
PMC	PCI Mezzanine Card
QDR	Quadruple Data rate
SDRAM	Synchronous Dynamic Random Access memory
SRAM	Synchronous Random Access memory

Table 1: Glossary

1.2 Related Documents

- IEEE Std 1386.1-2001: IEEE Standard Physical and Environmental Layers for PCI Mezzanine Cards (PMC).
- ANSI/VITA 39-2003: PCI-X for PMC and Processor PMC.
- ANSI/VITA 20-2001 : Conduction Cooled PMC.
- ANSI/VITA 42.0-2005: XMC Switched Mezzanine Card Auxiliary Standard.
- IEEE Std 1386-2001: IEEE Standard for a Common Mezzanine Card (CMC) Family.
- Xilinx Virtex-4 user guides
- Xilinx Virtex-5 user guides
- Xilinx PCI-X core datasheet

1.3 General description

The FM489 is a high performance PMC-X or XMC module dedicated to data acquisition, processing and communication applications with complex requirements. Built on the success of the FM48x series, the FM489 offers two FPGAs: the Virtex-4 and the Virtex-5. The latter has direct links to the BLAST sites.

BLAST is an innovative and modular technology for the newer high performance FM489 PMC-X and XMC modules. BLAST, Board Level Advanced Scalable Technology, is a small PCB module that allows customization of the FM489 in memory extensions, processing units and communication interfaces. Each FM489 can be populated by up to 3 BLAST modules.

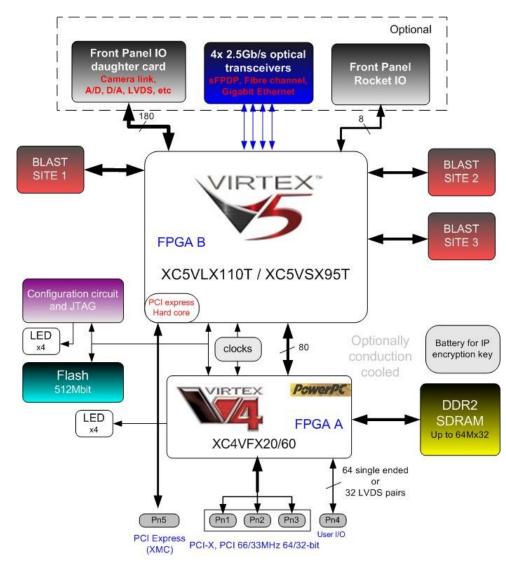


Figure 1: FM489 block diagram

2 Installation

2.1 Requirements and handling instructions

- The FM489 must be installed on a motherboard compliant to the IEEE Std 1386-2001 standard for 3.3V PMC
- Do not flex the board
- Observe SSD precautions when handling the board to prevent electrostatic discharges.
- Do not install the FM489 while the motherboard is powered up.

2.2 Firmware and software

Drivers, API libraries and a program example working in combination with a pre-programmed firmware for both FPGAs are provided. The FM489 is delivered with an interface to the Xilinx PCI core in the Virtex-4 device as well as an example VHDL design in the Virtex-5 device so users can start performing high bandwidth data transfers over the PCI bus right out of the box. For more information about software installation and FPGA firmware, please refer the FM489 Get Started Guide.

3 Design

3.1 FPGA devices

The Virtex-4 and Virtex-5 FPGA devices interface to the various resources on the FM489 as it is shown on Figure 1. They also interconnect to each other via 68 general purpose pins and 4 clock pins (2 pairs, one in each direction, 100Ω terminated).

3.1.1 Virtex-4 device

3.1.1.1 Virtex-4 device family and package

The Virtex-4 device is from the Virtex-4 FX family. It can be either an XC4VFX20 or XC4VFX60 in a Fineline Ball Grid array with 672 balls (FF672).

3.1.1.2 Power PC embedded processor

Up to two IBM PowerPC RISC processor cores are available in the Virtex-4 device. This core can be used to execute C based algorithms and control the logic resources implemented in the FPGA.

3.1.1.3 Virtex-4 device external memory interfaces

The Virtex-4 device is connected to a SDRAM bank with a 32-bit data bus width. The total SDRAM memory size can be up-to 256MB. This memory resource can be used by the PowerPC core or can serve as data buffer.

3.1.1.4 PCI interface

The Virtex-4 device interfaces directly to the PCI bus via the PMC Pn1, Pn2 and Pn3 connectors. An embedded PCI core from Xilinx is used to communicate over the PCI bus with the host system on the motherboard. PCI-X 64-bit 66MHz/133MHz, PCI 64-bit 66MHz and PCI 32-bit 33MHz are supported on the FM489. The bus type must be communicated at the time of the order so the right Virtex-4 device firmware can be loaded into the flash prior to delivery.

The following performances have been recorded with the FM489 transferring data on the bus:

- > PCI-X 64-bit 133MHz: 750Mbytes/s sustained
- > PCI-X 64-bit 66MHz: 450Mbytes/s sustained
- > PCI 32-bit 33MHz: 120Mbytes/s sustained

3.1.1.5 LED

Four LEDs are connected to the Virtex-4 device. In the default FPGA firmware, the LEDs are driven by the Virtex-5 device via the inter-FPGA interface.

The LEDs are located on side 2 of the PCB in the front panel area.

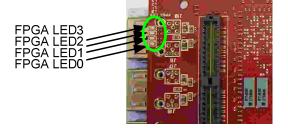


Figure 2: FPGA LED locations

3.1.1.6 Pn4 user I/O connector

The Pn4 connector is connected to the Virtex-4 device. The 32 lower bits are available only if an XC4VFX60 device is mounted on board. All signals are single ended. 3.3V, 2.5V or 1.8V signalling can be chosen for Pn4.

Connector	Signal	FPGA	FPGA	Signal	Connector
pin	name	pin	pin	name	pin
1	Pn4_IO0	G16	H14	Pn4_IO1	2
3	Pn4_IO2	G15	G14	Pn4_IO3	4
5	Pn4_IO4	H13	H11	Pn4_IO5	6
7	Pn4_IO6	H12	J11	Pn4_107	8
9	Pn4_IO8	J16	J15	Pn4_IO9	10
11	Pn4_IO10	H16	J14	Pn4_IO11	12
13	Pn4_IO12	K13	K12	Pn4_IO13	14
15	Pn4_I014	J13	K11	Pn4_IO15	16
17	Pn4_IO16	M11	M10	Pn4_I017	18
19	Pn4_IO18	N11	M9	Pn4_I019	20
21	Pn4_IO20	N8	P6	Pn4_IO21	22
23	Pn4_IO22	N7	N6	Pn4_IO23	24
25	Pn4_IO24	P11	N9	Pn4_IO25	26
27	Pn4_IO26	P10	P9	Pn4_IO27	28
29	Pn4_IO28	P8	R7	Pn4_IO29	30
31	Pn4_IO30	R8	R6	Pn4_IO31	32
33	Pn4_IO32	N21	M20	Pn4_IO33	34
35	Pn4_IO34	M21	M19	Pn4_IO35	36
37	Pn4_IO36	N18	P16	Pn4_IO37	38
39	Pn4_IO38	N17	N16	Pn4_IO39	40
41	Pn4_IO40	P21	P19	Pn4_IO41	42
43	Pn4_I042	P20	N19	Pn4_IO43	44
45	Pn4_IO44	R18	R17	Pn4_IO45	46
47	Pn4_IO46	P18	R16	Pn4_I047	48
49	Pn4_IO48	AA14	AB12	Pn4_IO49	50
51	Pn4_IO50	AA13	AA12	Pn4_IO51	52
53	Pn4_IO52	AB14	AC13	Pn4_IO53	54
55	Pn4_IO54	AC14	AC12	Pn4_IO55	56
57	Pn4_IO56	AD15	AE13	Pn4_1057	58
59	Pn4_IO58	AD14	AD13	Pn4_IO59	60
61	Pn4_IO60	AE15	AF14	Pn4_I061	62
63	Pn4_I062	AF15	AF13	Pn4_1063	64

Table 2 : Pn4 pin assignment

3.1.2 Virtex-5 device

3.1.2.1 Virtex-5 device family and package

The Virtex-5 device is dedicated to Digital Signal Processing applications and can be chosen from the SXT or LXT family devices. Its package is based on Fineline Ball Grid array with 1136 balls. In terms of logic and dedicated DSP resources, the FPGA B can be chosen from the following types: LT110T and SX95T.

3.1.2.2 Virtex-5 device BLAST interfaces

BLAST, Board Level Advanced Scalable Technology, is a small PCB module that allows customization of the FM489 in memory extensions, processing units and communication interfaces. Each FM489 can be populated by up to 3 BLAST modules.

BLAST modules available:

- QDRII SRAM memory device: 1 x 2M x 32-bit (8MBytes)
- DDR2 SDRAM memory device: 1 x 32M x 32-bit (128MBytes)
- DDR3 SDRAM memory device: 2 x 64M x 16-bit (256MBytes)
- ADV212 JPEG2000 compression devices: 2 CODECs
- 8GB NAND Flash (Solid State Drive)

3.1.2.3 Virtex-5 device interface to Front Panel daughter card

The Virtex-5 device interfaces to the front panel daughter card on the FM489 via a high speed connector. 174 I/Os are available from the FPGA to/from the daughter card.

Refer to the Front Panel I/O section of this document for more details about the daughter card connector electrical characteristics.

3.2 FPGA devices configuration

3.2.1 Flash storage

The FPGA firmware is stored on board in a flash device. The 512Mbit device is partly used to store the configuration for both FPGAs. In the default CPLD firmware configuration, the Virtex-4 device A and the Virtex-5 device B are directly configured from flash if a valid bitstream is stored in the flash for each FPGA. The flash is preprogrammed in factory with the default firmware example for both FPGAs.

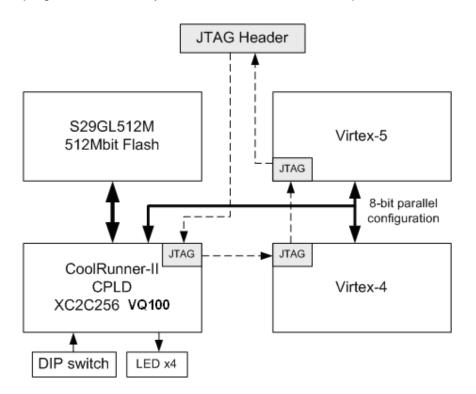
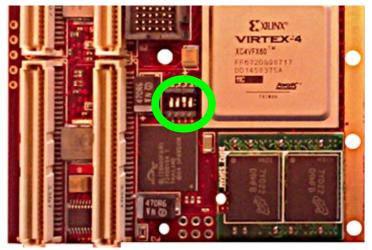


Figure 3 : Configuration circuit

3.2.2 CPLD device

As shown on Figure 2, a Cool Runner-II CPLD is present on board to interface between the flash device and the FPGA devices. The CPLD is used to program and read the flash. The data stored in the flash is transferred from the host motherboard via the PCI bus to the Virtex-4 device and then to the CPLD that writes the required bit stream to the storage device. A 31.25 MHz clock connects to the CPLD and is used to generate the configuration clock sent to the FPGA devices. At power up, if the CPLD detects that an FPGA configuration bitstream is stored in the flash for both FPGA devices, it will start programming the devices in SelecMap mode.


Do NOT reprogram the CPLD without 4DSP's approval

The CPLD configuration is achieved by loading with a Xilinx download cable a bitstream from a host computer via the JTAG connector. The FPGA devices configuration can also be performed using the JTAG.

3.2.2.1 DIP Switch

A switch (J1) is located next to the JTAG programming connector (J6) see Figure 4. The switch positions are defined as follows:

Figure 4: switch (J1) location

Sw1	OFF	Default setting. The Virtex-4 device configuration is loaded from the flash at power up.
	ON	Virtex-4 device safety configuration loaded from the flash at power up. To be used only if the Virtex-4 device cannot be configured or does not perform properly with the switch in the OFF position.
Sw2		Reserved
Sw3		Reserved
Sw4		Reserved

Table 3: Switch description

3.2.2.2 LED and board status

Four LEDs connect to the CPLD and give information about the board status.

LED 0	Flashing	FPGA A or B bitstream or user_ROM_register is currently being written to the flash
	ON	FPGA A not configured
	OFF	FPGA A configured
LED 1	Flashing	FPGA A or B bitstream or user_ROM_register is currently being written to the flash
	ON	FPGA B not configured
	OFF	FPGA B configured
LED 2	Flashing	The Virtex-4 device has been configured with the safety configuration bitstream programmed in the flash at factory. Please write a valid Virtex-4 device bitstream to the flash.

	ON	Flash is busy writing or erasing				
	OFF	Flash device is not busy				
LED 3 LED 3	ON	CRC error. Presumably a wrong or corrupted FPGA bitstream has been written to the flash. Once on this LED remains on				
	OFF	No CRC error detected				

Table 4: LED board status

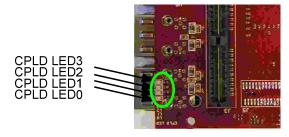


Figure 5: CPLD LED locations

3.2.3 JTAG

A JTAG connector is available on the FM489 for configuration purposes. The JTAG can also be used to debug the FPGA design with the Xilinx Chipscope. A press fit connector is delivered that can be plugged into the connector holes.

The JTAG connector is located on side 1 of the PCB (see Figure 6).

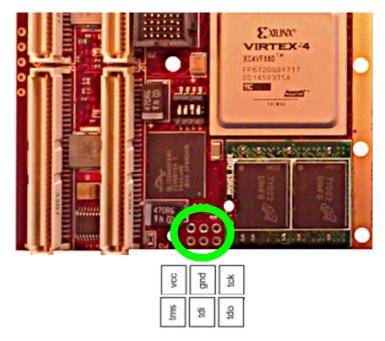


Figure 6: JTAG connector (J6) location

The JTAG connector pinout is as follows:

Pin #	Signal	Signal	Pin #
1	1.8V	TMS	4
2	GND	TDI	5
3	TCK	TDO	6

Table 5 : JTAG pin assignment

3.3 Clock tree

The FM489 clock architecture offers an efficient distribution of low jitter clocks.

Both FPGA devices receive a low jitter 125MHz clock. A low jitter programmable clock able to generate frequencies from 62.5MHz to 255.5MHz in steps of 0.5MHz is also available. This clock management approach ensures maximum flexibility to efficiently implement multiclock domains algorithms and use the memory devices at different frequencies. Both clock buffer devices (CDM1804) and the frequency synthesizer (ICS8430-61) are controlled by the Virtex-4 device.

Two MGT reference clocks of 106.25MHz or 125MHz (Epson EG2121CA) are connected to the Virtex-5 device and make it possible to implement several standards over the MGT I/Os connected to the optical transceivers.

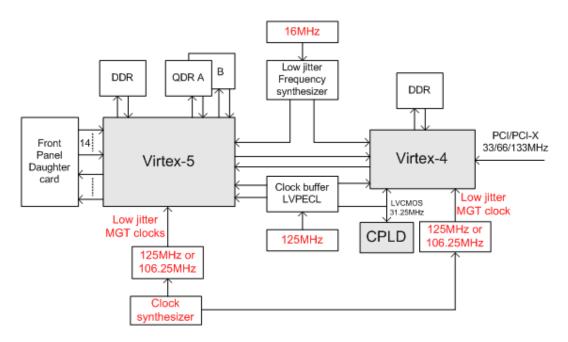


Figure 7 : Clock tree

3.4 Memory resources

3.4.1 BLAST QDR2 SRAM

A maximum of 3 QDR2 SRAM devices can be connected to the virtex 5 device. This requires every BLAST site to be populated with a QDRII SRAM. The QDR2 SRAM device available on the FM489 is 2M words deep (9Mbytes, 2Mx36).

3.4.2 BLAST DDR2 SDRAM

One 32Mx32-bit DDR2 SDRAM device (up to 128Mbytes) per BLAST site is possible. This will give the Virtex 5 device a maximum of 3 DDR2 banks with a total memory size of 756 MB

3.4.3 BLAST DDR3 SDRAM

With the DDR3 SDRAM BLAST it is possible to have 6 ddr3 memory banks of 256 Mbytes that connect to the Virtex5 device. Each BLAST has two independent ddr3 memory banks.

3.4.4 DDR2 SDRAM

One 64Mx32-bit DDR2 SDRAM device (up to 256Mbytes) is connected to the Virtex-4 FPGA device. This memory resource can be accessed by the PowerPC processor in the Virtex-4 device or can be used as a data buffer for custom user logic. Note: 256Mbytes of DDR2 SDRAM is available for the Virtex-4 FX60 only.

3.5 Front Panel IO daughter card

3.5.1 Virtex-5 device to I/O front Panel daughter card

(Only available with daughter card purchase)

The Virtex-5 device interfaces to a 180-pin connector placed in the Front panel I/O area (on both side 1 and side 2 of the PCB). It serves as a base for a daughter card and offers I/O diversity to the FM489 PMC. On side 2 of the PCB, the connectors and mounting holes placement complies with the SLB standard except for the 1.5V mounting hole that is not present on this module.

The FPGA I/O banks are powered either by 1.8V, 2.5V or 3.3V via a large 0 ohms resistor (3.3V is the default if not specified otherwise at the time of order). Using the Xilinx DCI termination options to match the signals impedance allows many electrical standards to be supported by this interface. All signals are routed as 100Ω LVDS pairs and optionally 100Ω terminations can be fitted on the card. The VRP and VRN pins on the I/O banks connected to the daughter card connector are respectively pulled up and pulled down with 50Ω resistors in order to ensure optimal performances when using the Xilinx DCI options. The VREF pins are connected to 0.9V for DDR2 DCI terminations. Please, contact 4DSP Inc. for more information about the daughter card types available.

The 180-pin Samtec connector pin assignment is as follows. All signals are shown as LVDS pairs in the table but they can be used for any standard that does not breach the electrical rules of the Xilinx I/O pad.

Connector pin	Signal Name	FPGA pin	FPGA pin	Signal name	Connector pin
1	FP_P0	R6	P7	FP_P1	2
3	FP_N0	Т6	P6	FP_N1	4
5	FP_X0	U10	T11	FP_X1	6
7	FP_P2 ⁽²⁾	Т8	N5	FP_P3	8
9	FP_N2 ⁽²⁾	U7	P5	FP_N3	10
11	FP_X2	T10	Т9	FP_X3	12
13	FP_P4	N8	M6	FP_P5	14
15	FP_N4	N7	M5	FP_N5	16
17	FP_X4	R11	R8	FP_X5	18
19	FP_P6	M7	K7	FP_P7	20
21	FP_N6	L6	 K6	FP_N7	22
23	FP_X6	R7	L4	FP_X7	24
25	FP_P8	H7	G6	FP_P9	26
27	FP_N8	J7	 G7	FP_N9	28
29	FP_X8	D11	 L16	FP_X9	30
31	FP_P10 ⁽²⁾	J6	H5	FP_P11	32
33	FP_N10 ⁽²⁾	J5	 G5	FP_N11	34
35	FP_X10	K16	 L15	FP_X11	36
37	FP_P12	F5	E6	FP_P13	38
39	FP_N12	F6	 E7	FP_N13	40
41	FP_X12	L14	 K14	FP_X13	42
43	FP_P14	N10	M10	FP_P15	44
45	FP_N14	N9	L9	FP_N15	46
47	FP_X14	K13	K12	FP_X15	48
49	FP_P16 ⁽²⁾	K8	J14	FP_P17 ⁽¹⁾	50

51	FP_N16 ⁽²⁾	K9	H13	FP_N17 ⁽¹⁾	52
53	FP_X16	J15	J12	FP_X17	54
55	FP_P18 ⁽¹⁾	H14	K11	FP_P19	56
57	FP_N18 ⁽¹⁾	H15	J11	FP_N19	58
59	FP_X18	H12	F14	FP_X19	60

Table 6 : Front Panel IO daughter card pin assignment Bank A

⁽¹⁾ Connected to a global clock pin on the FPGA. LVDS output not supported.

⁽²⁾ Connected to a regional clock pin on the FPGA. LVDS output not supported.

Connector pin	Signal Name	FPGA pin	FPGA pin	Signal name	Connector pin
61	FP_P20	G11	H10	FP_P21	62
63	FP_N20	G12	H9	FP_N21	64
65	FP_X20	F15	E14	FP_X21	66
67	FP_P22	G8	F13	FP_P23	68
69	FP_N22	H8	G13	FP_N23	70
71	FP_X22	D14	F16	FP_X23	72
73	FP_P24 ⁽²⁾	J10	F10	FP_P25	74
75	FP_N24 ⁽²⁾	J9	G10	FP_N25	76
77	FP_X24	G17	J16	FP_X25	78
79	FP_P26	F9	E12	FP_P27	80
81	FP_N26	F8	E13	FP_N27	82
83	FP_X26	L19	C19	FP_X27	84
85	FP_P28	F11	E9	FP_P29	86
87	FP_N28	E11	E8	FP_N29	88
89	FP_X28	F18	M8	FP_X29	90
91	FP_P30	B13	D12	FP_P31	92
93	FP_N30	C13	C12	FP_N31	94
95	FP_X30	E19	G20	FP_X31	96
97	FP_P32	A13	A15	FP_P33	98
99	FP_N32	B12	A14	FP_N33	100
101	FP_X32	F20	L20	FP_X33	102
103	FP_P34	C14	E17	FP_P35 ⁽²⁾	104
105	FP_N34	C15	E16	FP_N35 ⁽²⁾	106
107	FP_X34	L21	K21	FP_X35	108
109	FP_P36 ⁽²⁾	H17	H18	FP_N36 ⁽²⁾	110
111	3.3V/2.5V/1.8V			Vbatt (3)	112
113	FP_X36	G22	J22	FP_X37	114
115	3.3V/2.5V/1.8V			0.9V	116
117	3.3V/2.5V/1.8V			3.3V/2.5V/1.8V	118
119	FP_X38	K22	G23	FP_X39	120

Table 7: Front Panel IO daughter card pin assignment Bank B

⁽¹⁾ Connected to a global clock pin on the FPGA. LVDS output not supported.

⁽²⁾ Connected to a regional clock pin on the FPGA. LVDS output not supported.

⁽³⁾ Vbatt is connected to both Virtex-5 devices Vbatt pin.

Connector pin	Signal Name	FPGA pin	 FPGA pin	Signal name	Connector pin
121	FP_P37	B16	B17	FP_P38	122
123	FP_N37	B15	A16	FP_N38	124
125	FP_X40	H23	K23	FP_X41	126
127	FP_P39	C17	D16	FP_P40	128
129	FP_N39	D17	D15	FP_N40	130
131	FP_X42	E22	E23	FP_X43	132
133	FP_P41	D21	 E21	FP_P42	134
135	FP_N41	D22	D20	FP_N42	136
137	FP_X44	F23	D24	FP_X45	138
139	FP_P43	F21	 C20	FP_P44	140
141	FP_N43	G21	B20	FP_N44	142
143	FP_X46	E24	F24	FP_X47	144
145	FP_P45 ⁽¹⁾	H19	B21	FP_P46	146
147	FP_N45 ⁽¹⁾	H20	A21	FP_N46	148
149	FP_X48	A29	B25	FP_X49	150
151	FP_P47	C22	A23	FP_P48	152
153	FP_N47	B22	A24	FP_N48	154
155	FP_X50	C25	C18	FP_X51	156
157	FP_P49	C23	C24	FP_P50	158
159	FP_N49	B23	D25	FP_N50	160
161	FP_X52	D29	A30	FP_X53	162
163	FP_P51	D26	B27	FP_P52	164
165	FP_N51	C27	A26	FP_N52	166
167	FP_X54	B30	C30	FP_X55	168
169	FP_P53 ⁽²⁾	B26	C28	FP_P54	170
171	FP_N53 ⁽²⁾	A25	D27	FP_N54	172
173	FP_X56	D30	A31	FP_X57	174
175	FP_P55 ⁽¹⁾	J20	A19	FP_P56	176
177	FP_N55 ⁽¹⁾	J21	A20	FP_N56	178
179	FP_X58	B31	D31	FP_X59	180

Table 8 : Front Panel IO daughter card pin assignment Bank C

3.5.2 Power connection to the front panel I/O daughter card

The Front Panel I/O daughter card on side 1 of the PCB is powered via a 7-pin connector of type BKS (Samtec). Each pin can carry up to 1.5A. The power connector's pin assignment is as follows.

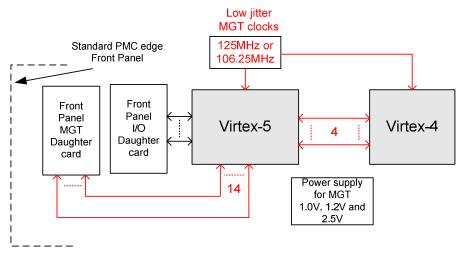
Pin #	Signal	Signal	Pin #
1	+3.3V	+3.3V	2
3	+5V	GND	4
5	+12V	GND	6
7	-12V		

Table 9: Daughter card power connector pin assignment on PMC side 1

On side 2 of the PCB, the daughter card is powered via a 33-pin connector of type BKS (Samtec). Each pin can carry up to 1.5A. The power connector's pin assignment is as follows.

Pin #	Signal	Signal	Pin #
1	+3.3V	GND	2
3	+3.3V	GND	4
5	+3.3V	GND	6
7	+3.3V	GND	8
9	+5V	GND	10
11	+5V	GND	12
13	+5V	GND	14
15	+5V	GND	16
17	+12V	GND	18
19	+12V	GND	20
21	-12V	GND	22
23	-12V	GND	24
25	GND	reserved	26
27	Reserved	reserved	28
29	Reserved	reserved	30
31	Reserved	reserved	32
33	GND		

Table 10: Daughter card power connector pin assignment on PMC side 2


3.6 Front Panel Rocket IO

Eight Rx/Tx Multi Gigabit Transceivers connected to FPGA B are available in the front panel area on two connectors of type QTE. These connectors provide a base for a daughter card dedicated to high bandwidth communication via optical transceivers or copper (please refer to the FM489 web page for more details about available daughter cards). Infiniband protocols as well as Gigabit Ethernet, OC48 and Fibre channel (sFPDP) can be implemented over the transceivers. Eight LVTTL signals (four per connector) are also available for daughter card control.

Two low jitter clocks (106.25MHz or 125MHz) are directly connected to the MGT clock inputs so multi-rate applications can be implemented on the FM489.

The MGT banks have power supplies independent from the digital supply provided to the FPGAs in order to insure low noise and data integrity. LDO regulators are used to generate the 1V, 1.2V and 2.5V necessary for the MGT to operate. The power filtering network includes a 220nF decoupling capacitor and ferrite bead (MP21608S221A) per power pin.

The signal differential pairs are routed on a specific inner layer with one reference GND plane on each side of the layer stack up.

Figure 8: Multi Gigabit signals

		•					
Pin #	Signal	Signal	Pin #	Pin #	Signal	Signal	Pin #
1	Rx p3/7	+3.3V	2	15	Tx n2/6	CTRL3/7	16
3	Rx n3/7	+3.3V	4	17	Rx p1/5	GND	18
5	Tx p3/7	+3.3V	6	19	Rx n1/5	GND	20
7	Tx n3/7	+3.3V	8	21	Tx p1/5	GND	22
9	Rx p2/6	CTRL0/4	10	23	Tx n1/5	GND	24
11	Rx n2/6	CTRL1/5	12	25	Rx n0/4	Tx n0/4	26
13	Tx p2/6	CTRL2/6	14	27	Rx p0/4	Tx p0/4	28

The table below provides the pinout for the two independent QTE connectors.

Table 11: QTE connector pinout

4 Power requirements

The Power is supplied to the FM489 via the PMC or XMC. Several DC-DC converters generate the appropriate voltage rails for the different devices and interfaces present on board.

The FM489 power consumption depends mainly on the FPGA devices work load. By using high efficiency power converters, all care has been taken to ensure that power consumption will remain as low as possible for any given algorithm.

After power up the FM489 typically consumes 2 Watts of power. For precise power measurements it is recommended to use the Xilinx power estimation tools for both the Virtex-4 and Virtex-5 FPGA devices. The maximum current rating given in the table below is the maximum current that can be drawn from each voltage rail in the case resources are used to their maximum level.

Device/Interface	Voltage	Maximum current rating
DCI and memory reference voltage	0.9V	5 A
Virtex-5 device core	1.0V	12A
Virtex-4 device core	1.2V	12A
QDR2, DDR2 SDRAM core and I/O banks, Virtex-4 devices I/O banks	1.8V	10A
Virtex-5 device I/O bank connected to the front panel daughter card	1.8V/2.5/3.3V	1.5A
Virtex-4 device I/O bank connected to the PCI bus, Flash, CPLD, front Panel I/O daughter card	3.3V	2A
Front Panel IO daughter card	5V	1A
Front Panel IO daughter card	12V	0.5A
Front Panel IO daughter card	-12V	0.5A
MGT power supply	1.2V, 1.5V, 2.5V	1.7A, 0.5A, 0.01A respectively

Table 12 : Power supply

Optionally, the FM489 can be used as a stand alone module and is powered via the external power connector.

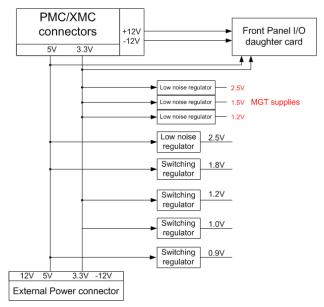


Figure 9 : Power supply

An ADT7411 device is used to monitor the power on the different voltage rails as well as the temperature. The ADT7411 data are constantly passed to the Virtex-4 device. Measurements can be accessed from the host computer via the PCI bus. A software utility delivered with the board allows the monitoring of the voltage on the 2.5V, 1.8V, 1.2V, 1.0V and 0.9V rails. It also displays both FPGAs junction temperature.

4.1 External power connector for stand alone mode

An external power connector (J2) is available on side 2 of the PMC, next to the PMC connectors. It is used to power the board when it is in stand alone mode. This is a right angled connector and it will be mounted on board only if the card is ordered as a stand alone version (FM489-SA). The height and placement of this connector on the PCB breaches the PMC specifications and the module should not be used in an enclosed chassis compliant to PMC specifications if the external power connector is present on board.

Do not connect an external power source to J2 if the board is powered via the PMC connectors. Doing so will result in damaging the board.

The external power connector is of type Molex 43045-1021. Each circuit can carry a maximum current of 5A. The connector pin assignment is as follows:

Pin #	Signal Signal		Pin #
1	3.3V	3.3V	2
3	5V	5V	4
5	GND	GND	6
7	GND	GND	8
9	-12V	12V	10

Table 13 : External power connector pin assignment

WARNING

UNREGULATED UNPROTECTED EXTERNAL POWER SUPPLY CONNECTION

This board is designed with an UNSUPPORTED feature for an external power connector labeled as J2. Mounting a connector on the PCB breaches the PMC electrical and mechanical specifications of the PMC standard. This is a FACTORY ONLY feature that is used in the manufacturing process when powering the board is required in an UN-MOUNTED PCI bus mode, thus in stand alone mode. DO NOT connect an external power source to J2, doing so may result in damaging the board and will automatically VOID WARRANTY. Consult factory for further information.

5 Environment

5.1 Temperature

Operating temperature

- 0°C to +60°C (Commercial)
- -40°C to +85°C (Industrial)

Storage temperature:

• -40°C to +120°C

5.2 Convection cooling

600LFM minimum

5.3 Conduction cooling

The FM489 can optionally be delivered as conduction cooled PMC. The FM489 is compliant to ANSI/VITA 20-2001 standard for conduction cooled PMC.

6 Safety

This module presents no hazard to the user.

7 EMC

This module is designed to operate from within an enclosed host system, which is build to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system. This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the system.

8 Technical support

Technical support for all 4DSP Product, hardware, software and firmware is available under 4DSP Terms and Conditions of Sales ONLY in its original condition AS-SHIPPED unless agreed to by 4DSP and documented in writing, prior to any modifications.

Terms and Conditions are available from http://www.4dsp.com/TCs.txt

Technical support requests should be sent to support@4dsp.com

Any electrical connections made to the board or other components shall be made only with approved connectors as specifically identified in the products official documentation.

Any modification to hardware including but not limited to removing of components, soldering or other material changes to in part or in whole to the PCM and/or its components will immediately invalidate and make void any warranty or extended support if any.

Further, and changes or modifications to software and/or firmware supplied with the Product, unless provided for in the Products official documentation, shall immediately invalidate and make void any warranty or extended support if any.

9 PCB revisions

Below a summary of the main differences between the PCB revisions:

V2

- MGT reference clocks are AC coupled
- The XMC reference clock has moved to balls AF3 and AF4
- Added protection circuitry to prevent damage in 12V XMC main boards

V3

- Modified the frontpanel IO area to support 4 optical transceivers. To do this the MGT connectors have been removed and the card is not compatible anymore to the conduction cooling specification.
- The BLAST site 0 and 1 have been remapped to be able to have the ddr3 signals compatible with the Xilinx MIG design.
- The XMC reference clock has been moved to balls Y3 and Y4
- The MGT reference clock for the Optical tranceivers is mapped to balls D8 and C8
- The XMC nMRSTI control signal has been connected to ball B18. The rest of the XMC control signals are disconnected.
- Modified the VPOWER protection circuitry

10 Warranty

	Hardware	Software/Firmware
Basic Warranty (included)	1 Year from Date of Shipment	90 Days from Date of Shipment
Extended Warranty (optional)	2 Years from Date of Shipment	1 Year from Date of Shipment