

1 安培, 降压式 LED 驱动芯片

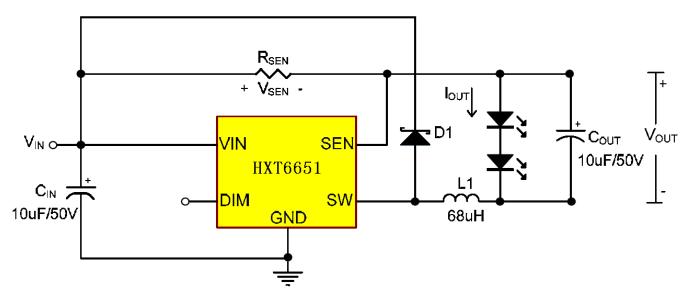
特色

- 1 安培输出恒流
- 输入电压 12 伏特、输出电流 350 mA、3 颗 LED 时,效率可达 96%
- 输入电压范围 9~30 伏特
- PFM 方式有效提升效率
- 可调整的输出电流
- 采用低 Rds(on)的整合式电源开关
- 全方位保护包括:过热保护、欠压锁定(Under Voltage LockOut, UVLO)、 启动装置(Start-Up)、LED开路与短路

GSD:TO-252-5L

● 仅须安装 4 个外部组件,可缩小 PCB 尺寸

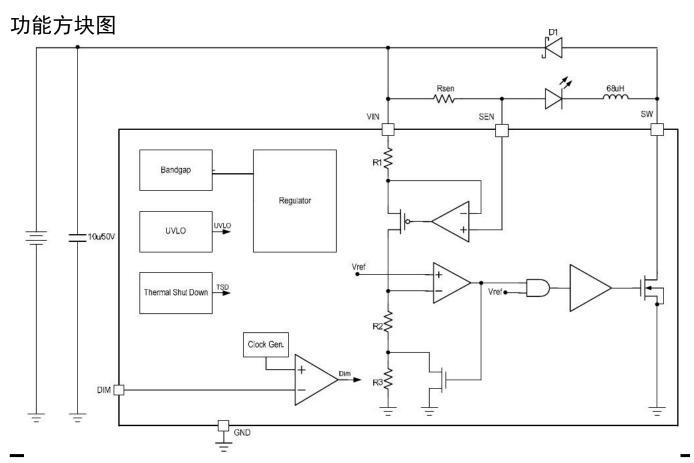
产品说明


HXT6651 为高效率、恒电流、降压型直流对直流转换器,仅须通过 4 个外接组件即可为大电流的 LED 照明提供稳定电流。HXT6651 的 PFM 模式能提升效率最高达 96%,其输出电流可通过不同阻值的外接电阻来调整各输出级的电流大小,且在 DIM 脚连接脉宽调变(PWM)讯号进行调光控制。HXT6651 还包括一系列保护 IC 装置,包括欠压锁定(UVLO)、过热保护机制、LED 开路与短路。为了确保系统稳定性,HXT6651 封装内置散热保护机制与散热片,加强散热功能并避免芯片过热 (165°C),从而保证系统可以在大电流通过时稳定运作。HXT6651 目前提供的封装为 TO-252-5L。

应用

- 招牌与户外装饰照明
- 车用 LED 照明
- 大电流照明
- 恒流照明源

应用电路图

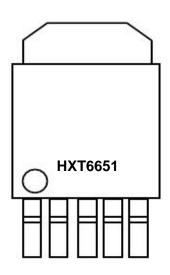

CIN: VISHAY, 293D106X9050D2TE3, D case Tantalum Capacitor

Cout: VISHAY, 293D106X9050D2TE3, D case Tantalum Capacitor

L1: GANG SONG, GSDS106C2-680M

D1: ZOWIE, SSCD206

图 1



北 尽 ҡ 心 吴 ∉ 科 抆 旬 哝 ン ロwww.hxtronics.com

图 2

脚位图

SW DIM CND SEN VIN

TO-252

脚位说明

Pin 脚名称	功能
GND	控制逻辑及驱动电流之接地端。
SW	切换输出端。
DIM	调光控制端。
SEN	输出电流感应端。
VIN	电源电压端。
Thermal Pad	与 GND*连接的散热端。

^{*}为了减少噪音干扰,建议将散热片与PCB上的GND连接。此外,PCB上作为热传导用途的铜导线上焊接散热片,热传导功能将可改善。

最大限定范围

超过最大限定范围内工作,将会损害 IC 运作并降低其稳定度。

特性	代表符号	最大工作范围	单位		
电源电压	V _{IN}	0~40	V		
输出端电流	I _{OUT}	1.2	Α		
SW脚位的输出端耐受电压	V _{SW}	-0.5~45	V		
接地端电流	I _{GND}	1.2	А		
消耗功率(在四层印刷电路板上, Ta=25°C)*		PD	3.80	W	
热阻值(在四层印刷电路板上 仿真时)*	GSD 包装	Rth(j-a)	32.9	°C/W	
实证热阻值**			60.85		
消耗功率(在四层印刷电路板上, Ta=25°C)*		PD	0.51	W	
热阻值(在四层印刷电路板上 仿真时)*	GST 包装	型装 Rth(j-a)	244	°C/W	
实证热阻值			132.69	9,11	
消耗功率(在四层印刷电路板上, Ta=25°C)*		PD	3.3	W	
热阻值(在四层印刷电路板上 仿真时)*	GMS 包装	Rth(j-a)	37.53	°C/W	
实证热阻值			141.33		
工作时接合点温度	Tj,max	125	°C		
IC工作时的环境温度	Topr	-40~+85	°C		
IC储存时的环境温度	Tstg	-55~+150	°C		

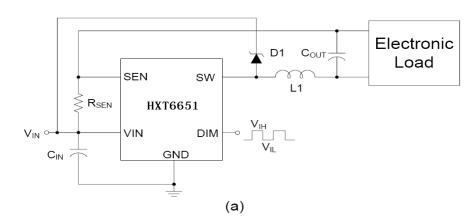
^{*}模拟时, PCB 尺寸为 76.2mm*114.3mm。

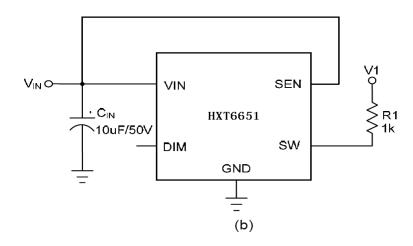
^{**}PCB 面积为 IC 的 4 倍大,且量测实证热阻时无外加散热片。

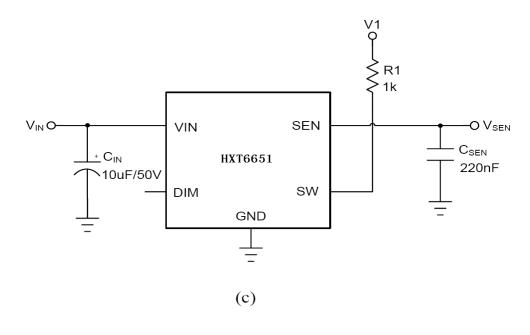
直流特性

测量条件: 除非其它条件设定,否则测量条件为V_{IN}=12V、V_{OUT}=3.6V、L1=68μH、C_{IN}=C_{OUT}=10μF,T_A=25°C; 请参考测试电路图3(a)。

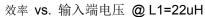
4+ kt.	小士林口	加目友ル	日儿法	фп. / -1:	日上出	* 1
特性	代表符号	测量条件	最小值	一般值	最大值	单位
电源电压	V_{IN}		9	-	30	V
供应电流	I _{IN}	V _{IN} =9V~30V	-	1	2	mA
输出端电流	I_{OUT}		-	350	1000	mA
输出端电流精确度	dI_{OUT}/I_{OUT}	150mA≤I _{OUT} ≤1000mA,	-	±3	±5	%
SW 最小电压差	$\triangle V_{SW}$	I _{OUT} =1A	-	0.45	-	V
内部传送延迟时间	T_{pd}		100	196	300	ns
效率	η	V_{IN} =12V, I_{OUT} =350mA, V_{OUT} =8.5V	-	94	-	%
输入端电 高电位位准	V_{IH}		3.5	-	-	V
压 低电位位准	V_{IL}		-	-	0.5	V
开关开启时之电阻	$R_{ds(on)}$	V _{IN} =12V; 参考测试电路图3(b)	0.4	0.45	0.6	Ω
最短开启时间*	$T_{ON,min}$		100	350	450	ns
最短关闭时间*	$T_{OFF,min}$		100	350	450	ns
SW工作周期建议的范围*	D_sw		20	-	80	%
最大操作频率	$Freq_{Max}$		40	-	1000	KHz
电流感测						
SEN 脚平均电压	V_{SEN}	V _{IN} =10V, V1=1V, 参考测试电路图 3 (c)	95	100	105	mV
负载热能		. ,				
过热保护关闭值*	T_{SD}		145	165	175	°C
过热保护关闭之迟滞状态 (Hysteresis)*	T_{SD-HYS}		20	30	40	°C
欠压锁定(UVLO)						
UVLO 时的电压		T _A =-40~85°C	7.7	8	8.3	V
UVLO 的缓冲状态		^	0.15	0.2	0.35	V
重新启动电压			7.85	8.2	8.65	V
调光控制						
运用在DIM 脚的PWM讯	DutyDIM	PWM 频率: 1KHz	1	-	100	%
号工作周期范围						

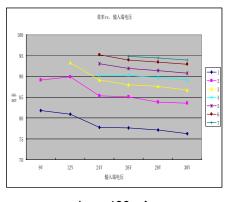

^{*}以模拟值为主。

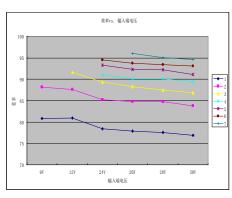


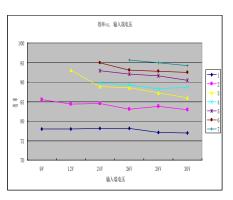


直流特性测试电路图

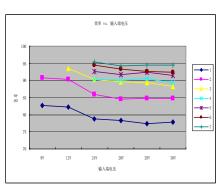


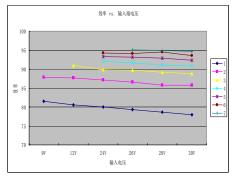


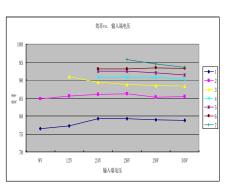

一般表现特性


请参考一般应用电路图,除非其它条件定义:

1. 效率vs. 输入端电压 @不同LED 串联颗数

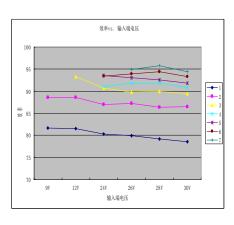


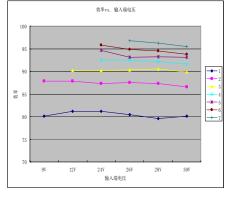

Iout=400mA

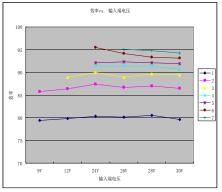

Iout=600mA

Іоит**=900mA**

效率 vs. 输入端电压 @ L1=68uH

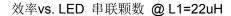


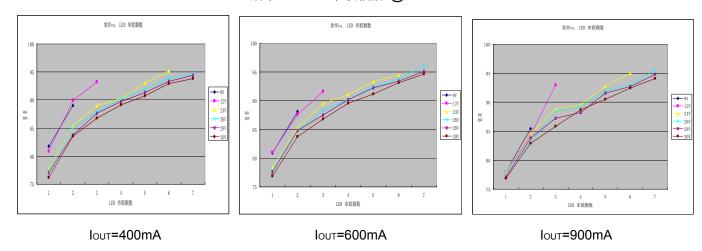

Iout=400mA


Iout=600mA

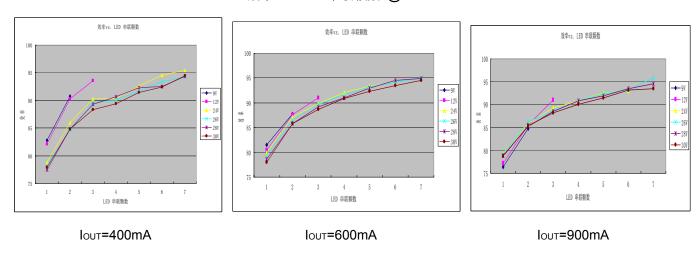
Iout=900mA

效率 vs. 输入端电压 @ L1=100uH

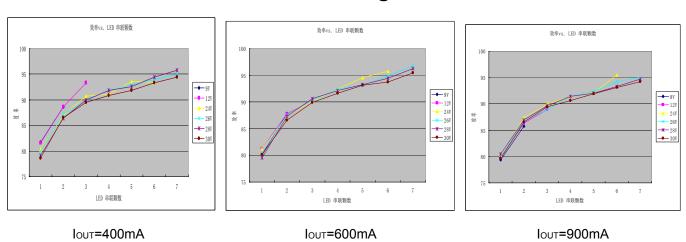

Iout=400mA


Iout=600mA

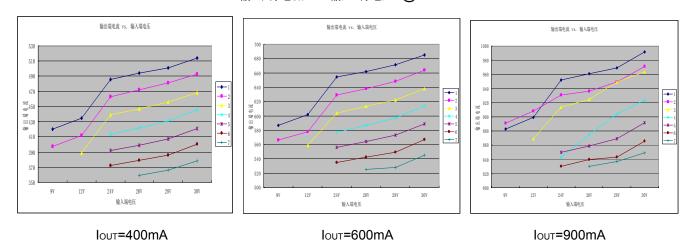
Iоит=900mA

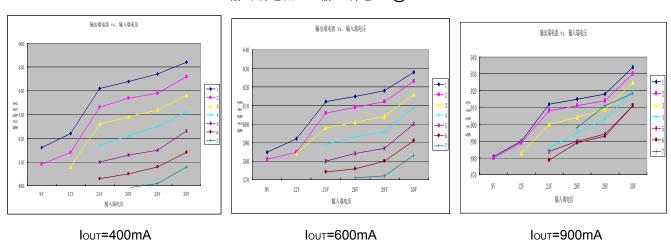


2. 效率vs. LED 串联颗数 @不同输入端电压

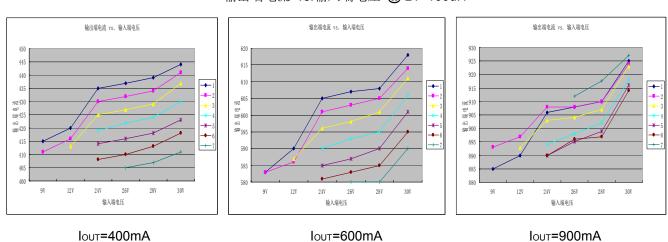


效率vs. LED 串联颗数 @ L1=68uH

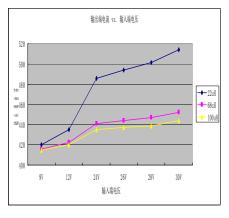

效率vs. LED 串联颗数 @ L1=100uH

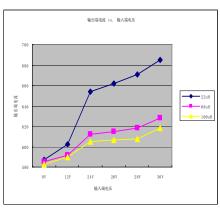


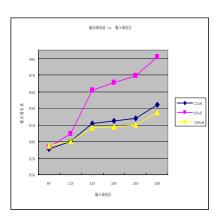
3. 输出端电流 vs. 输入端电压 @在不同LED 串联颗数



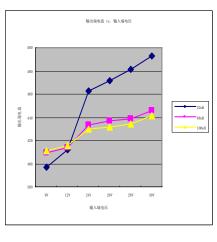
输出端电流 vs.输入端电压 @ L1=68uH

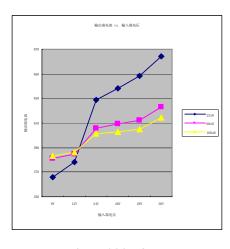

输出端电流 vs.输入端电压 @ L1=100uH

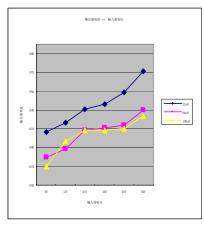




4. 输出端电流 vs. 输入端电压 @不同电感

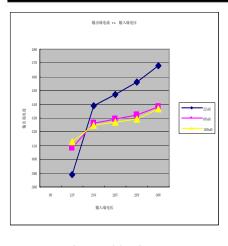


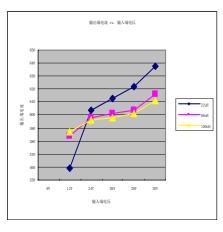

Iout=400mA

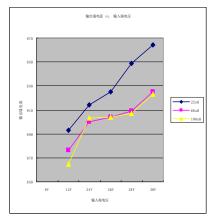

Iout=600mA

Iоит=900mA

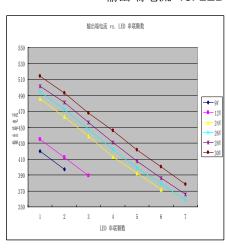
输出端电流 vs. 输入端电压 @ 2-LED 串联

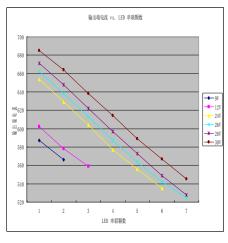

Iout=400mA

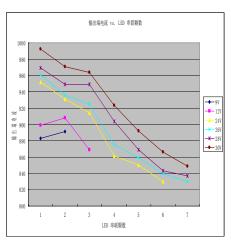

Iout=600mA


Iout=900mA

输出端电流 vs. 输入端电压 @ 3-LED 串联

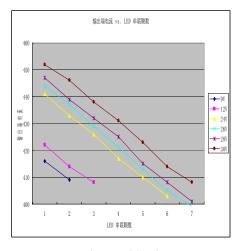

Iout=400mA

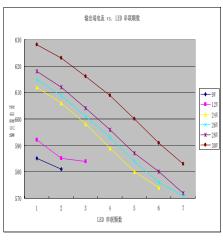

Iout=600mA

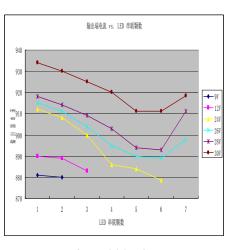

Iout=900mA

5. 输出端电流 vs. LED 串联颗数 @不同输入端电压

输出端电流 vs. LED 串联颗数 @ L1=22uH

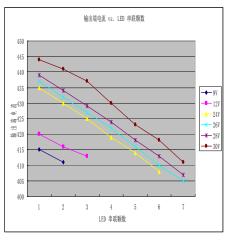


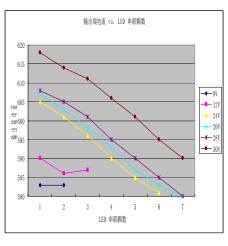

Iout=400mA

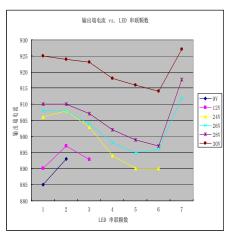

IOUT=600mA

Іоит**=900mA**

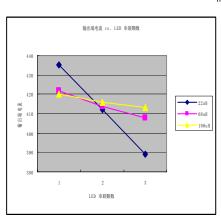
输出端电流 vs. LED 串联颗数 @ L1=68uH

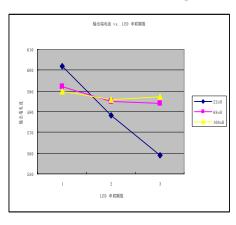

Iout=400mA

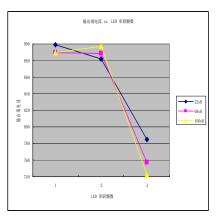

Iouт=600mA


Iоит=900mA

输出端电流 vs. LED 串联颗数 @ L1=100uH

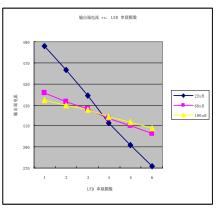

Iout=400mA

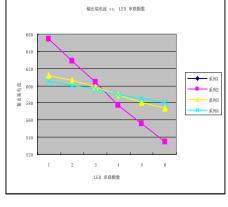

Iout=600mA

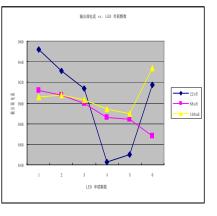

Іоит**=900mA**

6. 输出端电流 vs. LED 串联颗数 @在不同电感

输出端电流 vs. LED 串联颗数 @ VIN=12V




Iout=400mA

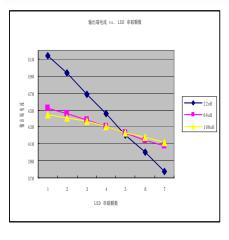

Iout=600mA

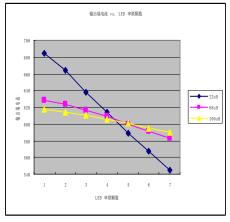
Іоит=900mA

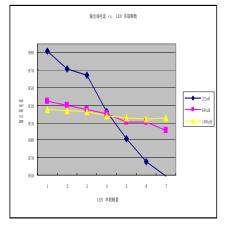
输出端电流 vs. LED 串联颗数 @ VIN=24V

Iout=400mA

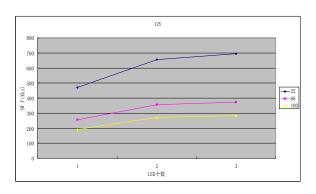
Iout=600mA

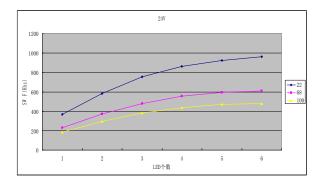

Іоит=900mA


输出端电流 vs. LED 串联颗数 @ Vin=30V



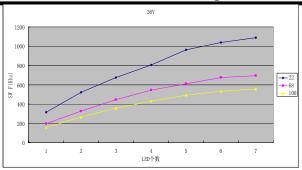
Preliminary




Iout=400mA Iout=600mA Iout=900mA

7. 切换频率 **vs. LED** 串联颗数 **@**在不同电感, louт=370mA

切换频率 vs. LED 串联颗数 @ VIN=12V



切换频率 vs. LED 串联颗 @ Vin=24V

切换频率 vs. LED 串联颗 @ Vin=30V

产品应用信息

HXT6651是高效率的降压转换器(buck converter),可驱动超过1安培的电流负载量。PFM控制技术无需回路补偿就能产生高速负载瞬时响应(load transient response),并同时达到轻载时之最佳效率。

设定输出端电流

输出端电流(lout)是透过外接电阻(Rsen)所设定。lout 与 Rsen 关系如下所示:

Vsen=0.1V;

Rsen=(Vsen/Iout)=(0.1V/Iout);

IOUT=(VSEN/RSEN)=(0.1V/RSEN);

此处之Rsen为与SEN端相连的外接电阻阻值,而Vsen为外接电阻的电压。电流强度(当作为Rsen时)在电阻值为0.13Ω时约为1000mA。

欠压锁定保护机制

当HXT6651的V_{IN}脚电压低于8.0伏特时,将会关闭输出电流; 当V_{IN}脚电压回到8.0伏特时,输出电流将再打开。

调光控制

LED的亮度可以透过连接至HXT6651 DIM脚的PWM讯号进行调光。当PWM讯号为Low时(低于1.5V),HXT6651 内部的MOSFET会关掉。HXT6651内置的pull-up电路可确保DIM脚空接时保持开启状态,就不须外挂pull-up电阻。图 4可看出HXT6651在调光应用时的良好线性表现。

北京银河昊星科技有限公司

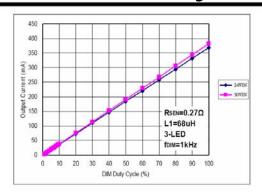


图 4 DIM 工作周期 1%~100%

LED 开路保护机制

HXT6651内建LED开路保护。当LED开路时,HXT6651内部的MOSFET会停止切换动作并将LED 电流降至0mA。

LED 短路保护机制

当LED短路时,其内部的MOSFET会维持切换的动作,LED电流会维持在设定的电流值,但此时的输出电压会降为0V以降低功率损耗。

过热保护功能

当IC 温度超过Tx 临界值(165°C)时,过热保护功能会关闭输出端电流,让IC 温度下降。一旦温度低于135°C 时,输出端电流将再开启。

设计方面的考虑

切换频率

为了达到较好的输出电流精确度,切换频率应当由SW 波型的最小开关时间决定。举例而言,倘若HXT6651 的工作周期大于0.5 时,切换频率应由最小关闭时间决定,反之亦然。因此HXT6651 切换频率公式如下:因此当工作周期大于0.5 时,HXT6651 切换频率为

$$f_{SW} = \frac{1}{T_S} = \frac{1}{\frac{T_{OFF,min}}{(1-D)}}$$

而当工作周期小于0.5 时,切换频率为

$$f_{SW} = \frac{1}{T_S} = \frac{1}{T_{ON, min}}$$

切换频率与效率(低频的效率较好),外部组件的大小/费用(高频使用的组件较小/便宜),以及输出涟波电压及电流的大小(高频时涟波电压及电流较小)等因素有关。如要得到较低的切换频率可使用感值较高的电感。在许多应用中,切换频率的决定会与EMI 干扰的大小有关。HXT6651 的切换频率范围为40kHz 到1.0MHz。

LED 纹波电流 (Ripple Current)

恒流LED驱动芯片HXT6651是专为控制串联多颗LED时的电流而设计,而非控制其跨压。LED纹波电流的大小与使用的外部组件有关。LED纹波电流的大小与使用的外部组件有关,电感值越小其LED纹波电流会越大。输出电容的

北京银河昊星科技有限公司

使用也与纹波电流有关,如果使用者可以接受大纹波电流的话,甚至可以不使用输出电容。大纹波电流的优点为可以缩减电路板的面积及减少输出电容的使用。相对的,小纹波电流的优点为增加LED的使用寿命及降低LED的热损耗。一般而言,建议的LED纹波电流为设定电流的5%到20%。

相关组件的选择

选择电感

电感值的大小主要由两个因素决定:切换频率及电感的纹波电流。电感L1 的计算公式如下所示

L1>
$$(V_{IN} - V_{OUT} - V_{SEN} - (R_{ds(on)} \times I_{OUT})) \times \frac{D}{f_{SW} \times \Delta I_{I}}$$

此处 $R_{ds(on)}$ 指HXT6651 内部MOSFET 的导通电阻,此值为在电源电压VIN 12 伏特时为 0.45Ω

D 指HXT6651 工作周期, D=Vout/VIN

fsw 指HXTI6651 切换频率

△ IL 电感的纹波电流, △ IL=(1.15xlouт)-(0.85xlouт)=0.3xlouт.

当选择电感时,电感值并非唯一考虑,电感的饱和电流值也需被考虑,一般建议电感饱和电流值为设定电流的1.5 倍。电感值越大其输出电流的线性及负载调整率会越好(line/load regulation),但是在相同体积情形下,电感值越大的电感其饱和电流会越小,这是设计者需要考虑的地方。同时在选用电感时,建议选用有屏蔽的电感以降低EMI的干扰,但要注意的是此类电感容易因散热不易而有过热的情形发生。

选择Schottky Diode

HXT6651 需要一个飞轮二极管(Flywheel Diode) D1 承载MOSFET 关闭时通过电感的电流。为了提升效率,建议使用具有低顺向偏压及快速反应时间特性的schottky diode。在选用schottky diode 时有两个因素是必须考虑的,一是其最大逆向电压,建议值为输入电压的1.5 倍。另一个是其最大顺向电流,建议值为输出电流的1.5 倍。使用者应选择适当的schottky Diode 以在高温时有较低的漏电流。

选择输入电容

当MOSFET 开启时,储存在输入电容Cin 可以提供能量给HXT6651 使用,反之当MOSFET 关闭时,输入电压会对输入电容充电。当输入电压比可允许的最小输入电压低的时候,MOSFET 将开启,并将输出电流限制在设定电流的1.15 倍。为系统的稳定性考虑,输入电容的建议值为10uF。输入电容的额定电压建议为输入电压的1.5 倍。建议使用的材质为钽质(tantalum)或陶瓷电容(ceramic capacitor),钽质电容的优点为其单位电容值大且具有低等效串联阻抗(ESR)的特性。陶瓷电容则具有高频特性良好,体积小及低成本等优点。相较于钽质电容其ESR 更小,因此客户如有热插拔应用的话不建议使用陶瓷电容。设计者可依据不同的应用选择适当的材质。

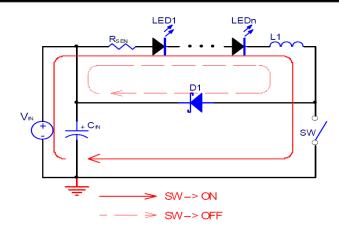
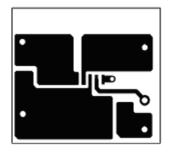
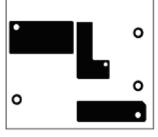
选择输出端电容(选用)

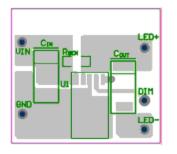
并联在LED 旁的输出电容可降低LED 的连波电流,容值越大LED 连波电流也会越小。

PCB 设计考虑

为增加系统的效率与稳定度, PCB 设计需考虑以下重点:

- 1. 接地平面的完整有助于消除切换时的噪声干扰。
- 2. IC 的GND 脚到输入与输出电容负端的距离须小于5mm。
- 3. 为提升效率并减少输出涟波电压,铺成接地平面并将IC 的GND 脚焊在接地平面上。
- 4. 为提升系统稳定性,建议将HXT6651 的散热片焊在接地平面上。
- 5. 电路板上的接地平面请尽量放大以增加IC 的热耗散能力。
- 6. 输入端电容与IC 的VIN 引脚距离越近越好。
- 7. 为避免寄生效应, R_{SEN} 应置于距离IC 的 V_{IN} 与SEN 脚越近越好。
- 8. 由SW 引脚、schottky diode 与电感所构成的金属联机宽度要宽、回路要小,以减少干扰。
- 9. 为消除布局拉线时产生的寄生组件,如寄生电感、电容等,影响系统的稳定性,流有大电流的路径请保持宽且短的原则。
- 10. 为提升效率,组件的摆置请参考图5所示,以确保在MOSFET 开启或关闭时的电流方向一致。


图 5. HXT6651 电流路径示意图

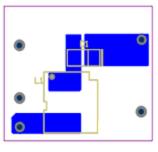

PCB 设计

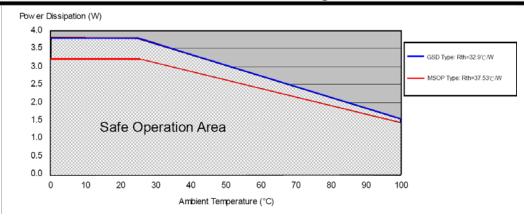
图6. 为建议的HXT6651 GSD 封装图

上层电路布局

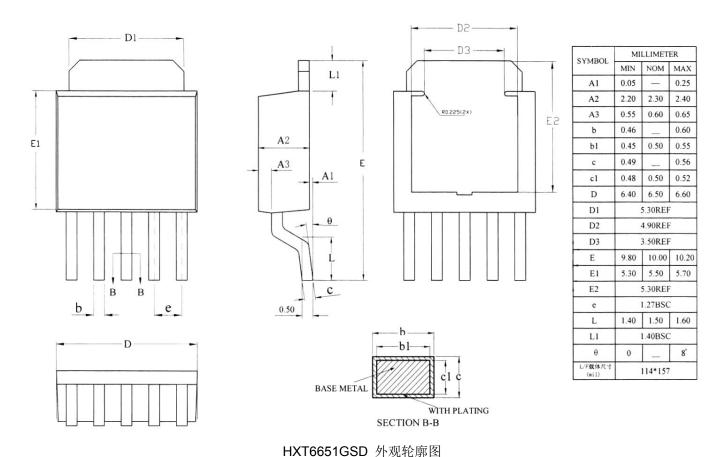
底层电路布局

上层文字层

底层文字层


图6. HXT6651 建议的电路布局

封装体散热功率(PD)


依据 PD(max)=(Tj-Ta)/Rth(j-a),被允许的最大散热功率会随环境温度增加而降低。

HXT6651在不同环境温度时的最大散热值

外观轮廓图示

注: 外观轮廓图单位为mm。