
RFC1100H 无线模块

用户手册

RFC1100H (尺寸: 54mm X 27mm 板厚: 1mm)

目录

产品简介	3
基本特点	4
典型主要应用	5
模块接口说明	5
模块尺寸(单位: MM)	错误! 未定义书签。
模块工作方式	8
工作模式寄存器介绍	8
命令寄存器介绍	9
功能配置寄存器介绍	9
状态寄存器介绍	10
程序参考设计	11
SPI时序示意图	11
SPI接口时序规范	11
参考例程	12
SPI读写操作	12
SPI写寄存器操作	13
SPI读寄存器操作	13
模块初始化设置	13
数据接收流程操作	14
数据发送流程操作	15
无线应用注意事项	16
我们的承诺	17

产品简介

CC1100/CC1101 是 Chipcon (已被 TI 收购)推出的一款低成本单片射频的 UHF 收发器。该芯片电路主要设定为在 315、433、868 和 915MHz 的 ISM (工业,科学和医学),集成了一个软件可编程的调制解调器。该调制解调器支持 2-FSK、GFSK 和 MSK 调制格式,数据传输率最高可达 500kbps。通过开启集成在调制解调器上的前向误差校正选项,能使性能得到提升。CC1100/CC1101硬件支持数据包处理、数据缓冲、突发数据传输、清晰信道评估、连接质量指示和电磁波激发 MCU 可以通过 SPI 接口与 CC1100 进行命令和数据交换。CC1100/CC1101主要应用于低功耗无线应用设计。

CC1101 在 CC1100 基础上主要进行以下改进

改善杂散响应,饱和电平输入更高;

连续频率波段的扩展:

CC1100: 400-464 MHz 和 800-928 MHz;

CC1101: 387-464 MHz 和 779-928 MHz;

CC1101 和 CC1100 二者在软件编程上完全兼容;

更高效能的功率输出,能量越集中,信号传输就越远;

更紧密的相位噪声更好的改善邻道功率(ACP)的性能,改善了 近距离信号堵塞现象。

联系电话: 13704018223 陈 工 在线咨询: QQ:35625400 474882985 E-mail: <u>chj_006@sina.com</u>
MSN:1188mm88@hotmail.com

虽然 CC1100 芯片还存在,但鉴于 CC1101 的改进特性,我公司研制的模块已经从 09 年开始全部采用 CC1101 芯片。为便于用户开发,我们提供配套评估套件,为产品开发保驾护航,使无线应用开发大大加速,并避免不必要的误区。

CC1100/CC1101 本身通信距离在 300 米左右,在某些特殊应用中,需要更远距离,RFC1100H 模块就是在原有 CC1100/CC1101模块外围电路的基础上设计入功率放大电路,以提高发射功率(发射功率高达 33dBm (约 2W),从而直接提升模块的通信距离(2000 米以上),满足各种应用问题,让无线应用,距离不再是问题。

基本特点

工作频率: (模块: 387-464MHZ)

瞬间最大工作电流:〈80mA;

最大发射功率: 10mW (+10dBm);

315/433/868/915MHZ的 ISM 频段;

支持 2-FSK、GFSK 和 MSK 调制方式;

接收灵敏度在1200波特率下-110dBm;

通讯速率最低1.2 kbps, 最大500kbps;

模块峰值电流<1A,通讯距离2000米以上;

单独的 64 字节 RX 和 TX 数据 FIFO 缓冲区;

内置硬件 CRC 检错可确保数据可靠传输;

联系电话: 13704018223 陈 工 在线咨询: QQ:35625400 474882985 E-mail: <u>chj_006@sina.com</u>
MSN:1188mm88@hotmail.com

支持 RSSI 强弱信号检测和载波侦听功能:

快速频率变动合成器带来的合适的频率跳跃系统;

通信地址(256个)工作频率都可以通过SPI编程设置;

可编程控制的输出功率,对所有的支持频率可达+10dBm;

WOR 功能可设置待机、接收状态定时切换时间比例以降低功耗;

典型主要应用

车辆监控、遥控、遥测、水文气象监控

无线标签、身份识别、非接触 RF 智能卡

小型无线网络、无线抄表、门禁系统、小区传呼

工业数据采集系统、无线 232 数据通信、无线 485/422 数据通信 无线数据终端、安全防火系统、无线遥控系统、生物信号采集

模块接口说明

VCC(5V)	1 2 -	GND GND
VCC(3.3V	5 6	SI
SO PAC	7 8	SCLK GDO2
CSn	9 10	GDO0
NC	13 14	NC
NC GND	15 16	NC GND
	17 18 Header 9X2	

引脚功能说明

引脚	引脚名	引脚类型	描述	
1、3	VCC5	电源输入	4. 5-5V	
2, 4	GND	电源地	和系统共地	
5	VCC3. 3	电源输入	1.8V-3.6V之间	
6	SI	数字输入	SPI从设备数据输入	
7	S0	数字输入	SPI从设备数据输出	
8	SCLK	数字输入	SPI从设备时钟输入	
9	PAC	数字输入	PAC=1,运放工作(一般TX运放工作)	
9	PAC	致 于 制 八	PAC=0, 运放禁止(一般RX禁止运放)	
10	GD02	数字输出	SPI从设备数据输出	
11	CSN	数字输出	工作状态引脚	
12	GD00	数字输入	工作状态引脚	
13-16	NC	无	悬空	
17、18	GND	电源地	和系统共地	

备注

1. VCC5引脚接电压范围为 4V到5V之间,推荐电压4.5V,不能在这个电压区间之外。如果用普通干电池,推荐供电电压5.5V;如果是锂电池供电,则供电电压4.5V即可。注意:镍氢电池和干电池的特性不同,如果用镍氢电池的大于5V供电,会永久烧坏无线模

块!而主要原因在于普通干电池内阻大,在模块工作在发射状态 发射电磁波瞬间有150mA电流存在(实际有900mA的瞬间电流,由于我们内部电路放置有钽电容起到蓄水池的效果,所以瞬间电流变小),而干电池内阻分压高达到1v到2v不等,所以为保持正常工作,干电池需要供电电压5.5v,所以不推荐用干电池供电。推荐锂电池供电。一般说来,功率越大,对电源要求越高,如果是200w的大功率发射机,则对电源的要求更加严格,甚至对电源开关顺序都有严格要求,如果本身功率小,电流也比较小(<100mA)这个问题就表现得不明显。注意在布电源线的时候,要注意加钽电容,一般要>100uA,最好加470uF钽电容,以滤波和当存储电荷使用,尤其在使用了升压电路后,有些升压电路输出电流小于400mA,这个时候可以当着电量池使用,但也需要防止发射频率过高,池的电量入不敷出,可以通过适当延时(20ms)来避免。就可避免发生电量池透支现象。

- 2. VCC3. 3 引脚的电压范围为1. 9-3. 6V 之间,不能在这个区间之外,如超过 3. 6V 将会烧毁模块。推荐电压 3. 3V 左右;
- 3. 硬件没有集成SPI功能的单片机也可以控制本模块,用普通单片 I0口模拟 SPI 时序进行读写操作即可;
- 4. 模块接口采用标准2.54mmDIP插针,所有GND需要和系统电路的逻辑地连接起来;
- 5. 与 51 系列单片机 P0 口连接时候,需要加 10K 的上拉电阻,与其余口连接不需要。其他系列的5V单片机,如AVR、PIC,请参

考该系列单片机 I0 口输出电流大小,如果超过 10mA,需要串联 2-5K电阻分压,否则容易烧毁模块!如果是 3.3V 的MCU,可以直接和I0口连接。

模块工作方式

所有配置参数和收发数据都是单片机通过 SPI 对 CC1101 进行读写操作来完成的。SIP 接口的待机模式、发送模式以及接收等工作模式都通过 SPI 指令进行设置。并可以通过 GD00 或 GD02 引脚高低电平状态来判断数据的发送或接收是否完成。

工作模式寄存器介绍

比特	名称	描述		
7	CHIP_RDYn	保持高	,直到功率和	晶体已稳定。当SPI操作时为低
6:4	STATE[2:0]	表明当	前主状态机模	式
		值	状态	描述
		000	空闲	空闲状态
		001	RX	接收模式
		010	TX	发送模式
		011	FSTXON	快速TX准备
		100	校准	频率合成器校准正运行
		101	迁移	PLL正迁移
			RXFIFO_OVER FLOW	RX FIFO已经溢出。读出 任何有用数据,然后用 SFRX冲洗FIFO。
			TXFIFO_OVER FLOW	TX FIFO已经下溢。同SFTX 应答
3:0	FIFO_BYTES_AV AILABLE[3:0]	FIFO_B	IFO 中 的 YTES_AVAILABI /自由的。	自 由 比 特 数 。 若 LE=15,它表明有15或更多个比特

命令寄存器介绍

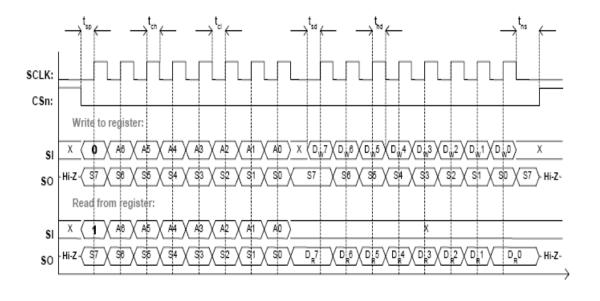
地址	滤波名	描述
0x30	SRES	重启芯片
0x31	SFSTXON	开启和校准频率合成器(若MCSMO. FSAUTOCAL=1)
0x32	SX0FF	关闭晶体振荡器
0x33	SCAL	校准频率合成器并关断(开启快速启动)。在不设置手动校准
		模式(MCSMO.FS_AUTOCAL=0)的情况下,SCAL从空闲模式滤波。
0x34	SRX	启用RX。若上一状态为空闲且MCSMO.FS_AUTOCAL=1则首先运行
		校准。
0x35	STX	空闲状态: 启用TX。若MCSMO.FS_AUTOCAL=1首先运行校准。若
		在RX状态且CCA启用: 若信道为空则进入TX
0x36	SIDLE	离开RX/TX, 关断频率合成器并离开电磁波激活模式若可用
0x37	SAFC	运行22.1节列出的频率合成器的AFC调节
0x38	SWOR	运行27.5节描述的自动RX选举序列(电磁波激活)
0x39	SPWD	当CSn为高时进入功率降低模式。
0x3A	SFRX	冲洗RX FIFO缓冲
0x3B	SFTX	冲洗TX FIF0缓冲
0x3C	SWORRST	重新设置真实时间时钟
0x3D	SNOP	无操作。可能用来为更简单的软件将滤波命令变为2字节。

功能配置寄存器介绍

地址	寄存器	描述	保存在休眠状态中
0x00	IOCFG2	GD02输出脚配置	Yes
0x01	IOCFG1	GD01输出脚配置	Yes
0x02	IOCFG0	GD00输出脚配置	Yes
0x03	FIFOTHR	RX FIFO和TX FIFO门限	Yes
0x04	SYNC1	同步词汇,高字节	Yes
0x05	SYNC0	同步词汇,低字节	Yes
0x06	PKTLEN	数据包长度	Yes
0x07	PKTCTRL1	数据包自动控制	Yes
80x0	PKTCTRL0	数据包自动控制	Yes
0x09	ADDR	设备地址	Yes
0x0A	CHANNR	信道数	Yes
0x0B	FSCTRL1	频率合成器控制	Yes
0x0C	FSCTRL0	频率控制词汇,高字节	Yes
0x0D	FREQ2	频率控制词汇,中间字节	Yes
0x0E	FREQ1	频率控制词汇,低字节	Yes

0x0F	FREQ0	调制器配置	Yes
0x10	MDMCFG4	调制器配置	Yes
0x11	MDMCFG3	调制器配置	Yes
0x12	MDMCFG2	调制器配置	Yes
0x13	MDMCFG1	调制器配置	Yes
0x14	MDMCFG0	调制器背离设置	Yes
0x15	DEVIATN	主通信控制状态机配置	Yes
0x16	MCSM2	主通信控制状态机配置	Yes
0x17	MCSM1	主通信控制状态机配置	Yes
0x18	MCSM0	频率偏移补偿配置	Yes
0x19	FOCCFG	位同步配置	Yes
0x1A	BSCFG	AGC控制	Yes
0x1B	AGCTRL2	AGC控制	Yes
0x1C	AGCTRL1	AGC控制	Yes
0x1D	AGCTRL0	高字节时间0暂停	Yes
0x1E	WOREVT1	低字节时间0暂停	Yes
0x1F	WOREVT0	电磁波激活控制	Yes
0x20	WORCTRL	前末端RX配置	Yes
0x21	FREND1	前末端TX配置	Yes
0x22	FRENDO	频率合成器校准	Yes
0x23	FSCAL3	频率合成器校准	Yes
0x24	FSCAL2	频率合成器校准	Yes
0x25	FSCAL1	频率合成器校准	Yes
0x26	FSCAL0	RC振荡器配置	Yes
0x27	RCCTRL1	RC振荡器配置	Yes
0x28	RCCTRL0	频率合成器校准控制	Yes
0x29	FSTEST	产品测试	No
0x2A	PTEST	AGC测试	No
0x2B	AGCTEST	不同的测试设置	No
0x2C	TEST2	不同的测试设置	No
0x2D	TEST1	不同的测试设置	No
0x2E	TEST0		No

状态寄存器介绍


地址	寄存器	描述
0x30 (0xF0)	PARTNUM	
0x31 (0xF1)	VERSION	当前版本数
0x32 (0xF2)	FREQEST	频率偏移估计
0x33 (0xF3)	LQI	连接质量的解调器估计
0x34 (0xF4)	RSSI	接收信号强度指示
0x35 (0xF5)	MARCSTATE	控制状态机状态

0x36 (0xF6)	WORTIME1	WOR计时器高字节
0x37 (0xF7)	WORTIMEO	WOR计时器低字节
0x38 (0xF8)	PKTSTATUS	当前GDOx状态和数据包状态
0x39 (0xF9)	VCOVCDAC	PLL校准模块的当前设定
0x3A (0xFA)	TXBYTES	TX FIFO中的下溢和比特数
0x3B (0xFB)	RXBYTES	RX FIFO中的下溢和比特数

程序参考设计

用 RFC110H 模块无需掌握任何专业无线或高频方面的理论, 读者只需要具备一定的 C 语言程序基础即可。本文档没有涉及到 的问题,读者可以参考 CC1101 官方手册或向我们寻求技术支持。

SPI 时序示意图

SPI 接口时序规范

参数	描述	最小值	最大值
FSCLK	SCLK频率	0	10MHz
tsp, pd	CSn低到SCLK的正边缘,功率降低模式	TBDus	_

	下		
tsp	CSn低到SCLK的正边缘,活动模式下	TBDns	_
tch	时钟高	50ns	_
tcl	时钟低	50ns	_
trise	时钟上升时间	_	TBDns
tfall	时钟上升时间	_	TBDns
tsd	向SCLK的正边缘建立数据	TBDns	_
thd	在SCLK的正边缘之后保持数据	TBDns	_
tns	SCLK到CSn高时的负边缘	TBDns	_

参考例程

```
更多功率参数设置可详细参考 DATACC1101 英文文档中第 48-49 页的参数表
//INT8U PaTabel[8] = {0x04 ,0x04 ,0x04
```

SPI 读写操作

```
INT8U SpiTxRxByte(INT8U dat)
{
    INT8U i, temp;
    temp = 0;
    SCK = 0;
    for (i=0; i<8; i++)
        if (dat & 0x80)
           MOSI = 1;
        else MOSI = 0;
        dat <<= 1;
        SCK = 1;
        _nop_();
       _nop_();
        temp \langle \langle = 1;
        if (MISO) temp++;
        SCK = 0;
        _nop_();
       nop ();
```

```
return temp;
}
```

SPI 写寄存器操作

```
void halSpiWriteReg(INT8U addr, INT8U value)
{
    CSN = 0;
    while (MIS0);
    SpiTxRxByte(addr);  //写地址
    SpiTxRxByte(value);  //写入配置
    CSN = 1;
}
```

SPI 读寄存器操作

```
INT8U halSpiReadReg(INT8U addr)
{
    INT8U temp, value;
    temp = addr | READ_SINGLE; //读寄存器命令
    CSN = 0;
    while (MIS0);
    SpiTxRxByte(temp);
    value = SpiTxRxByte(0);
    CSN = 1;
    return value;
}
```

模块初始化设置

```
RF SETTINGS rfSettings =
   0x00,
         // FSCTRL1
   0x08,
                       Frequency synthesizer control.
          // FSCTRL0
   0x00,
                       Frequency synthesizer control.
          // FREQ2
                        Frequency control word, high byte.
   0x10,
   0xA7, // FREQ1
                        Frequency control word, middle byte.
         // FREQ0
                       Frequency control word, low byte.
   0x62,
         // MDMCFG4
                       Modem configuration.
   0x5B,
   0xF8,
          // MDMCFG3
                       Modem configuration.
联系电话: 13704018223
                      陈工
                                       E-mail: chj_006@sina.com
在线咨询: QQ:35625400 474882985
                                       MSN:1188mm88@hotmail.com
```

```
0x03,
            // MDMCFG2
                          Modem configuration.
                          Modem configuration.
            // MDMCFG1
    0x22.
            // MDMCFG0
                          Modem configuration.
    0xF8,
    0x00,
            // CHANNR
                          Channel number.
            // DEVIATN
    0x47,
                          Modem deviation setting
            // FREND1
    0xB6,
                          Front end RX configuration.
    0x10,
            // FRENDO
                          Front end RX configuration.
    0x18,
            // MCSMO
                         Main Radio Control State Machine configuration.
            // FOCCFG
                          Frequency Offset Compensation Configuration.
    0x1D,
            // BSCFG
                          Bit synchronization Configuration.
    0x1C,
            // AGCCTRL2
                         AGC control.
    0xC7.
    0x00,
            // AGCCTRL1
                         AGC control.
    0xB2,
            // AGCCTRLO
                         AGC control.
            // FSCAL3
                          Frequency synthesizer calibration.
    0xEA,
            // FSCAL2
                          Frequency synthesizer calibration.
    0x2A,
            // FSCAL1
                          Frequency synthesizer calibration.
    0x00,
            // FSCALO
    0x11,
                          Frequency synthesizer calibration.
    0x59,
            // FSTEST
                          Frequency synthesizer calibration.
            // TEST2
                          Various test settings.
    0x81,
    0x35,
            // TEST1
                          Various test settings.
            // TESTO
    0x09,
                          Various test settings.
    0x0B,
            // IOCFG2
                         GD02 output pin configuration.
            // IOCFGOD
                          GD00 output pin configuration.
    0x06,
    0x04,
            // PKTCTRL1
                         Packet automation control.
    0x05,
            // PKTCTRLO
                         Packet automation control.
            // ADDR
    0x00,
                          Device address.
    0x0c
            // PKTLEN
                          Packet length.
};
```

数据接收流程操作

```
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)
{
    INT8U status[2];
    INT8U packetLength;
    INT8U i=(*length)*4; // 具体多少要根据 datarate 和 length 来决定 halSpiStrobe(CCxxx0_SRX); //进入接收状态 delay(2);
    while (GD00)
    {
        delay(2);
        --i;
        if(i<1)
```

```
return 0;
   if ((halSpiReadStatus(CCxxx0 RXBYTES) & BYTES IN RXFIF0))
      //如果接的字节数不为0
   {
      packetLength = halSpiReadReg(CCxxx0_RXFIF0);
         //读出第一个字节,此字节为该帧数据长度
      if (packetLength <= *length)</pre>
        //如果所要的有效数据长度小于等于接收到的数据包的长度
          halSpiReadBurstReg(CCxxx0 RXFIFO, rxBuffer, packetLength);
         //读出所有接收到的数据
          *length = packetLength;
         //把接收数据长度的修改为当前数据的长度
// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
          halSpiReadBurstReg(CCxxx0 RXFIFO, status, 2);
         //读出 CRC 校验位
         halSpiStrobe(CCxxx0 SFRX); //清洗接收缓冲区
          return (status[1] & CRC OK); //如果校验成功返回接收成功
      }
      else
          *length = packetLength;
          halSpiStrobe(CCxxx0 SFRX); //清洗接收缓冲区
          return 0:
      }
   }
   else
  return 0;
}
```

数据发送流程操作

在线咨询: QQ:35625400 474882985

```
void halRfSendPacket(INT8U *txBuffer, INT8U size)
{
    halSpiWriteReg(CCxxx0_TXFIF0, size);
    halSpiWriteBurstReg(CCxxx0_TXFIF0, txBuffer, size); //写入要发送的数据
    halSpiStrobe(CCxxx0_STX); //进入发送模式发送数据
    // Wait for GD00 to be set -> sync transmitted
    while (!GD00);
    // Wait for GD00 to be cleared -> end of packet
    while (GD00);

联系电话: 13704018223 陈 工 E-mail: chj_006@sina.com
```

MSN:1188mm88@hotmail.com

}

```
halSpiStrobe(CCxxx0_SFTX);
```

无线应用注意事项

- (1) 无线模块的 VCC 电压范围为 1.8V-3.6V 之间,不能在这个区间之外,超过 3.6V 将会烧毁模块。推荐电压 3.3V 左右。
- (2) 除电源 VCC 和接地端,其余脚都可以直接和普通的 51 单片机 I0 口直接相连,无需电平转换。当然对 3V 左右的单片机更加适用了。
- (3) 硬件上面没有 SPI 的单片机也可以控制本模块,用普通单片机 I0 口模拟 SPI 不需要单片机真正的串口介入,只需要普通的单片机 I0 口就可以了,当然用串口也可以了。模块按照接口提示和母板的逻辑地连接起来
- (4) 标准 DIP 插针,如需要其他封装接口,或其他形式的接口,可联系我们定做。
- (5) 任何单片机都可实现对无线模块的数据收发控制,并可根据我们提供的程序,然后结合自己擅长的单片机型号进行移植:
- (6) 频道的间隔的说明:实际要想 2 个模块同时发射不相互干扰,两者频道间隔应该至少相差 1MHZ,这在组网时必须注意,否则同频比干扰。
- (7) 实际用户可能会应用其他自己熟悉的单片机做为主控芯片, 所以,建议大家在移植时注意以下 4 点:

A:确保 IO 是输入输出方式, 且必须设置成数字 IO;

B:注意与使用的 IO 相关的寄存器设置,尤其是带外部中断、

带 AD 功能的 IO, 相关寄存器一定要设置好;

C: 调试时先写配置字, 然后控制数据收发

D:注意工作模式切换时间

我们的承诺

最后,欢迎您使用我们的产品,在应用中有技术问题请及时 向我们联系,我们会予以技术知道,同时运输中出现产品问题我 们会全面责任并予以更换。

愿与您一起走向成功