
a

ADSP-219x DSP
Instruction Set Reference

 Revision 2.0, December 2005

Part Number
82-000390-07

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC,
and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-219x DSP Instruction Set Reference iii

CONTENTS

PREFACE

Purpose of This Manual .. xiii

Intended Audience .. xiii

Manual Contents ... xiv

What’s New in This Manual .. xv

Technical or Customer Support ... xv

Supported Processors .. xvi

Product Information ... xvii

MyAnalog.com .. xvii

Processor Product Information .. xviii

Related Documents .. xix

Online Technical Documentation ... xix

Accessing Documentation From VisualDSP++ xx

Accessing Documentation From Windows xx

Accessing Documentation From the Web xxi

Printed Manuals ... xxi

VisualDSP++ Documentation Set .. xxii

Hardware Tools Manuals ... xxii

Processor Manuals ... xxii

CONTENTS

iv ADSP-219x DSP Instruction Set Reference

Data Sheets .. xxii

Conventions .. xxiii

INSTRUCTION SET SUMMARY

Core Registers Summary ... 1-2

Arithmetic Status (ASTAT) Register .. 1-3

Condition Code (CCODE) Register ... 1-5

Interrupt Control (ICNTL) Register ... 1-6

Interrupt Mask (IMASK) Register and
Interrupt Latch (IRPTL) Register ... 1-7

Mode Status (MSTAT) Register .. 1-8

System Status (SSTAT) Register .. 1-10

Condition Codes Summary ... 1-11

Instruction Summary .. 1-12

ALU Instructions .. 1-14

Multiplier Instructions .. 1-15

Shifter Instructions ... 1-16

Data Move Instructions ... 1-16

Program Flow Instructions .. 1-18

Multifunction Instructions .. 1-19

ALU INSTRUCTIONS

ALU Instruction Conventions ... 2-1

Input Registers .. 2-1

Output Registers ... 2-2

Constants ... 2-2

ADSP-219x DSP Instruction Set Reference v

CONTENTS

ALU Mode Control ... 2-3

ALU Status Flags ... 2-4

ALU Instruction Reference .. 2-4

Add/Add with Carry ... 2-5

Subtract X−Y/Subtract X−Y with Borrow 2-9

Subtract Y−X/Subtract Y−X with Borrow 2-13

Bitwise Logic: AND, OR, XOR ... 2-16

Bit Manipulation: TSTBIT, SETBIT, CLRBIT, TGLBIT 2-19

Clear: PASS .. 2-22

Negate: NOT .. 2-25

Absolute Value: ABS ... 2-28

Increment ... 2-31

Decrement .. 2-34

Divide Primitives: DIVS and DIVQ .. 2-37

Generate ALU Status Only: NONE ... 2-46

MAC INSTRUCTIONS

Multiply Instruction Conventions ... 3-2

MAC Input Registers ... 3-2

MAC Output Registers .. 3-2

Data Format Options .. 3-3

Rounding Modes ... 3-4

Numeric Format Modes ... 3-6

Status Flags ... 3-7

Multiply ... 3-8

CONTENTS

vi ADSP-219x DSP Instruction Set Reference

Multiply with Cumulative Add ... 3-11

Multiply with Cumulative Subtract ... 3-14

MAC Clear .. 3-17

MAC Round/Transfer ... 3-19

MAC Saturate .. 3-21

Generate MAC Status Only: NONE ... 3-24

SHIFTER INSTRUCTIONS

Shifter Operation Conventions ... 4-2

Shifter Registers .. 4-2

Shifter Instruction Options ... 4-3

Shifter Status Flags .. 4-5

Arithmetic Shift .. 4-6

Arithmetic Shift Immediate .. 4-8

Logical Shift ... 4-10

Logical Shift Immediate .. 4-12

Normalize .. 4-14

Normalize Immediate ... 4-17

Exponent Derive .. 4-20

Exponent (Block) Adjust ... 4-23

Denormalization ... 4-26

MULTIFUNCTION INSTRUCTIONS

Order of Execution of Multifunction Operations 5-2

Multifunction Instruction Reference ... 5-3

ADSP-219x DSP Instruction Set Reference vii

CONTENTS

Compute with Dual Memory Read .. 5-4

Dual Memory Read ... 5-8

Compute with Memory Read .. 5-11

Compute with Memory Write ... 5-15

Compute with Register-to-Register Move 5-19

DATA MOVE INSTRUCTIONS

Core Registers ... 6-2

PX Register ... 6-3

DAG Registers .. 6-5

Address Registers ... 6-5

DAG Memory Page Registers (DMPGx) 6-6

Secondary DAG Registers .. 6-7

Register Load Latencies ... 6-9

Data Addressing Methods .. 6-11

Direct Addressing .. 6-11

Indirect Addressing .. 6-12

Circular Data Buffer Addressing .. 6-14

Bit-Reversed Addressing .. 6-16

Data Move Instruction Reference .. 6-21

Register-to-Register Move ... 6-22

Direct Memory Read/Write—Immediate Address 6-24

Direct Register Load ... 6-27

Indirect 16-Bit Memory Read/Write—Postmodify 6-30

Indirect 16-Bit Memory Read/Write—Premodify 6-34

CONTENTS

viii ADSP-219x DSP Instruction Set Reference

Indirect 24-Bit Memory Read/Write—Postmodify 6-38

Indirect 24-Bit Memory Read/Write—Premodify 6-43

Indirect DAG Register Write (Premodify or Postmodify),
with DAG Register Move ... 6-47

Indirect Memory Read/Write—Immediate Postmodify 6-51

Indirect Memory Read/Write—Immediate Premodify 6-54

Indirect 16-Bit Memory Write—Immediate Data 6-57

Indirect 24-Bit Memory Write—Immediate Data 6-59

External I/O Port Read/Write ... 6-62

System Control Register Read/Write ... 6-65

Modify Address Register—Indirect .. 6-68

Modify Address Register—Direct .. 6-70

PROGRAM FLOW INSTRUCTIONS

Conditions ... 7-2

Counter-Based Conditions .. 7-2

CCODE Register ... 7-3

Mode Control .. 7-4

Branch Options .. 7-4

Addressing Branch Targets .. 7-6

Stacks ... 7-7

PC and Status Stack Operation .. 7-8

Loop Stacks Operation .. 7-10

Stack Status Flags ... 7-12

Interrupts ... 7-13

ADSP-219x DSP Instruction Set Reference ix

CONTENTS

Enabling Interrupts ... 7-14

Switching Contexts .. 7-16

Nesting Interrupts ... 7-16

Application Performance ... 7-17

Exiting a Loop ... 7-18

Using Long Jumps and Calls .. 7-20

Effect Latencies ... 7-22

Program Flow Instruction Reference .. 7-23

DO UNTIL (PC Relative) .. 7-24

Direct JUMP (PC Relative) ... 7-29

CALL (PC Relative) .. 7-33

JUMP (PC Relative) ... 7-37

Long Call (LCALL) ... 7-40

Long Jump (LJUMP) .. 7-43

Indirect CALL .. 7-46

Indirect JUMP .. 7-50

Return from Interrupt (RTI) ... 7-53

Return from Subroutine (RTS) .. 7-57

PUSH or POP Stacks .. 7-61

FLUSH CACHE ... 7-67

Set Interrupt (SETINT) .. 7-69

Clear Interrupt (CLRINT) .. 7-71

NOP .. 7-73

IDLE .. 7-74

CONTENTS

x ADSP-219x DSP Instruction Set Reference

Mode Control .. 7-76

INSTRUCTION OPCODES

Opcode Mnemonics ... 8-1

ALU or Multiplier Function (AMF) Codes 8-6

Condition Codes .. 8-8

Constant Codes .. 8-9

Core Register Codes .. 8-11

Shift Function (SF) Codes ... 8-12

Index Register and Modify Register Codes 8-13

DMI, DMM, PMI, and PMM Codes 8-14

IREG/MREG Codes ... 8-15

XOP and YOP Codes .. 8-15

Opcode Definitions .. 8-16

Type 1: Compute | DregX«···DM | DregY«···PM 8-17

Type 3: Dreg/Ireg/Mreg «···» DM/PM ... 8-18

Type 4: Compute | Dreg «···» DM ... 8-19

Type 6: Dreg «··· Data16 ... 8-20

Type 7: Reg1/2 «··· Data16 ... 8-21

Type 8: Compute | Dreg1 «··· Dreg2 ... 8-22

Type 9: Compute .. 8-23

Type 9a: Compute .. 8-26

Type 10: Direct Jump ... 8-28

Type 10a: Direct Jump/Call .. 8-29

Type 11: Do ··· Until .. 8-30

ADSP-219x DSP Instruction Set Reference xi

CONTENTS

Type 12: Shift | Dreg «···» DM .. 8-31

Type 14: Shift | Dreg1 «··· Dreg2 ... 8-32

Type 15: Shift Data8 ... 8-33

Type 16: Shift Reg0 .. 8-34

Type 17: Any Reg «···Any Reg ... 8-35

Type 18: Mode Change ... 8-36

Type 19: Indirect Jump/Call .. 8-37

Type 20: Return .. 8-38

Type 21: Modify DagI ... 8-39

Type 21a: Modify DagI ... 8-40

Type 22: DM «··· Data16 .. 8-41

Type 22a: PM «··· Data24 .. 8-42

Type 23: Divide primitive, DIVQ .. 8-43

Type 24: Divide primitive, DIVS ... 8-44

Type 25: Saturate .. 8-45

Type 26:Push/Pop/Cache .. 8-46

Type 29: Dreg «···» DM .. 8-47

Type 30: NOP .. 8-48

Type 31: Idle ... 8-49

Type 32: Any Reg «···» PM/DM .. 8-50

Type 32a: DM«···DAG Reg | DAG Reg«···Ireg 8-51

Type 33: Reg3 «··· Data12 ... 8-52

Type 34: Dreg «···» IOreg .. 8-53

Type 35: Dreg «···»Sreg ... 8-54

CONTENTS

xii ADSP-219x DSP Instruction Set Reference

Type 36: Long Jump/Call ... 8-55

Type 37: Interrupt .. 8-56

INDEX

ADSP-219x DSP Instruction Set Reference xiii

PREFACE

Thank you for purchasing and developing systems using ADSP-219x
DSPs from Analog Devices.

Purpose of This Manual
The ADSP-219x DSP Instruction Set Reference provides assembly syntax
information for ADSP-219x DSPs. The syntax descriptions cover instruc-
tions that execute within the DSP’s processor core (processing elements,
program sequencer, and data address generators). For architecture and
design information on the DSP, see the ADSP-219x/2192 DSP Hardware
Reference.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference manuals and data sheets) that
describe your target architecture.

Manual Contents

xiv ADSP-219x DSP Instruction Set Reference

Manual Contents
This reference presents instruction information organized by the type of
the instruction. Instruction types relate to the machine language opcode
for the instruction. On this DSP, the opcodes categorize the instructions
by the portions of the DSP architecture that execute the instructions. The
following chapters cover the different types of instructions.

• “Instruction Set Summary” on page 1-1—This chapter provides a
syntax summary of all instructions and describes the conventions
that are used on the instruction reference pages.

• “ALU Instructions” on page 2-1—These instruction specify opera-
tions that occur in the DSP’s ALU.

• “MAC Instructions” on page 3-1—These instructions specify oper-
ations that occur in the DSP’s Shifter.

• “Shifter Instructions” on page 4-1—These instructions specify
operations that occur in the DSP’s Shifter.

• “Multifunction Instructions” on page 5-1—These instructions
specify parallel, single-cycle operations.

• “Data Move Instructions” on page 6-1—These instructions specify
memory and register access operations.

• “Program Flow Instructions” on page 7-1—These instructions
specify program sequencer operations.

• “Instruction Opcodes” on page 8-1—This chapter lists the instruc-
tion encoding fields for all instructions.

Each of the DSP’s instructions is specified in this text. The reference page
for an instruction shows the syntax of the instruction, describes its func-
tion, gives one or two assembly-language examples, and identifies fields of

ADSP-219x DSP Instruction Set Reference xv

Preface

its opcode. The instructions are referred to by type, ranging from 1 to 37.
These types correspond to the opcodes that ADSP-219x DSPs recognize,
but are for reference only and have no bearing on programming.

Some instructions have more than one syntactical form; for example, the
instruction “Type 9: Compute” on page 8-23 has many distinct forms.

Many instructions can be conditional. These instructions are prefaced by
IF COND; for example:

If COND compute;

In a conditional instruction, the execution of the entire instruction is
based on the specified condition.

What’s New in This Manual
Revision 2.0 of the ADSP-219x DSP Instruction Set Reference corrects all
known document errata issues.

This instruction set reference is a companion document to the
ADSP-219x/2192 DSP Hardware Reference (Rev 1.1, April 2004).

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

http://www.analog.com/processors/technicalSupport
mailto:dsptools.support@analog.com

Supported Processors

xvi ADSP-219x DSP Instruction Set Reference

• E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++®.

TigerSHARC® (ADSP-TSxxx) Processors

The name TigerSHARC refers to a family of floating-point and fixed-point
[8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently supports the
following TigerSHARC families: ADSP-TS101 and ADSP-TS20x.

SHARC® (ADSP-21xxx) Processors

The name SHARC refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x, and
ADSP-2136x.

mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

ADSP-219x DSP Instruction Set Reference xvii

Preface

Blackfin® (ADSP-BFxxx) Processors

The name Blackfin refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin families:
ADSP-BF53x and ADSP-BF56x.

ADSP-21xx Processors

The ADSP-21xx processors are high-performance 16-bit DSPs for com-
munications, instrumentation, industrial/control, voice/speech, medical
and military applications. The family includes the ADSP-218x,
ADSP-219x, and mixed-signal products (ADSP-21990, ADSP-21991,
and ADSP-21992).

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

http://www.analog.com
http://www.myanalog.com
http://www.myanalog.com

Product Information

xviii ADSP-219x DSP Instruction Set Reference

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

http://www.myanalog.com
http://www.myanalog.com
http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com
ftp://ftp.analog.com
ftp://137.71.25.69
ftp://ftp.analog.com

ADSP-219x DSP Instruction Set Reference xix

Preface

Related Documents
The following publications that describe the ADSP-219x processor can be
ordered from any Analog Devices sales office:

• ADSP-219x Processor Data Sheet

• ADSP-219x/2192 DSP Hardware Reference

For information on product related development software and Analog
Devices processors, see these publications:

• VisualDSP++ User’s Guide

• VisualDSP++ C/C++ Compiler and Library Manual

• VisualDSP++ Assembler and Preprocessor Manual

• VisualDSP++ Linker and Utilities Manual

• VisualDSP++ Kernel (VDK) User’s Guide

Visit the Technical Library Web site to access all processor and tools
manuals and data sheets:

http://www.analog.com/processors/technical_library

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.

http://www.analog.com/processors/technical_library

Product Information

xx ADSP-219x DSP Instruction Set Reference

Each documentation file type is described as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the VisualDSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

ADSP-219x DSP Instruction Set Reference xxi

Preface

Help system files (.CHM) are located in the Help folder, and .PDF files are
located in the Docs folder of your VisualDSP++ installation CD-ROM.
The Docs folder also contains the Dinkum Abridged C++ library and the
FlexLM network license manager software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/technical_library

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

http://www.analog.com/processors/technical_library

Product Information

xxii ADSP-219x DSP Instruction Set Reference

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

http://www.analog.com/salesdir

ADSP-219x DSP Instruction Set Reference xxiii

Preface

Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close com-
mand appears on the File menu).

{this | that} Alternative items in syntax descriptions appear within curly brackets and
separated by vertical bars; read the example as this or that. One or the
other is required.

[this | that] Optional items in syntax descriptions appear within brackets and separated
by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delimited
by commas and terminated with an ellipse; read the example as an optional
comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with let-
ter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution: identifies conditions or inappropriate usage of the product that
could lead to undesirable results or product damage. In the online version of
this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product that
could lead to conditions that are potentially hazardous for devices users. In
the online version of this book, the word Warning appears instead of this
symbol.

ADSP-219x DSP Instruction Set Reference xxiv

Preface

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

ADSP-219x DSP Instruction Set Reference 1-1

1 INSTRUCTION SET SUMMARY

This chapter provides a summary of the instructions in the ADSP-219x
DSP’s instruction set. Chapters 2 through 8 describe these instructions in
more detail as follows:

• “ALU Instructions” on page 2-1

• “MAC Instructions” on page 3-1

• “Shifter Instructions” on page 4-1

• “Multifunction Instructions” on page 5-1

• “Data Move Instructions” on page 6-1

• “Program Flow Instructions” on page 7-1

• “Instruction Opcodes” on page 8-1

Also, this chapter identifies mnemonics for using DSP registers, bits, and
operating conditions. This information appears in the following
summaries:

• “Core Registers Summary” on page 1-2

• “Arithmetic Status (ASTAT) Register” on page 1-3

• “Condition Code (CCODE) Register” on page 1-5

• “Interrupt Control (ICNTL) Register” on page 1-6

• “Interrupt Mask (IMASK) Register and Interrupt Latch (IRPTL)
Register” on page 1-7

Core Registers Summary

1-2 ADSP-219x DSP Instruction Set Reference

• “Mode Status (MSTAT) Register” on page 1-8

• “System Status (SSTAT) Register” on page 1-10

• “Condition Codes Summary” on page 1-11

For information on instruction reference notation, see “Conventions” on
page xxiii.

Core Registers Summary
The DSP has three categories of registers: core registers, system control
registers, and I/O registers. Table 1-1 lists and describes the DSP’s core
registers. For information about system control and I/O registers, see the
ADSP-219x/2192 DSP Hardware Reference.

Table 1-1. Core Registers

Type Registers Function

ALU data AX0, AX1, AY0, AY1,
AR, AF

16-bit data registers (X and Y) provide input
for ALU, multiplier, and shifter operations.
AR and AF are ALU result and feedback regis-
ters. MR and SR are multiplier result and feed-
back registers. SR also is the shifter results
register.
In this text, Dreg denotes unrestricted use of
data registers as a data register file, while “
XOP” and “YOP” denote restricted use.
The data registers (except AF, SE, and SB) serve
as a register file for unconditional, single-func-
tion instructions.

Multiplier data MX0, MX1, MY0, MY1,
MR0, MR1, MR2

Shifter data SI, SE, SB, SR0, SR1, SR2

DAG address I0, I1, I2, I3
I4, I5, I6, I7

DAG1 index registers
DAG2 index registers

M0, M1, M2, M3
M4, M5, M6, M7

DAG1 modify registers
DAG2 modify registers

L0, L1, L2, L3
L4, L5, L6, L7

DAG1 length registers
DAG2 length registers

ADSP-219x DSP Instruction Set Reference 1-3

Instruction Set Summary

Arithmetic Status (ASTAT) Register
The DSP updates the status bits in ASTAT, indicating the status of the
most recent ALU, multiplier, or shifter operation.

System control B0, B1, B2, B3, B4, B5,
B6, B7, SYSCTL, CACTL

DAG1 base address registers (B0-3), DAG2
base address registers (B4-7), System control,
and Cache control

Program flow CCODE
LPSTACKA
LPSTACKP
STACKA
STACKP

Software condition register
Loop PC stack A register, 16 address LSBs
Loop PC stack P register, 8 address MSBs
PC stack A register, 16 address LSBs
PC stack P register, 8 address MSBs

Interrupt ICNTL
IMASK
IRPTL

Interrupt control register
Interrupt mask register
Interrupt latch register

Status ASTAT
MSTAT
SSTAT (read-only)

Arithmetic status flags
Mode control and status flags
System status

Page DMPG1
DMPG2
IJPG
IOPG

DAG1 page register, 8 address MSBs
DAG2 page register, 8 address MSBs
Indirect jump page register, 8 address MSBs
I/O page register, 8 address MSBs

Bus exchange PX Holds eight LSBs of 24-bit memory data for
transfers between memory and data registers
only.

Shifter SE
SB

Shifter exponent register
Shifter block exponent register

Table 1-1. Core Registers (Cont’d)

Type Registers Function

Arithmetic Status (ASTAT) Register

1-4 ADSP-219x DSP Instruction Set Reference

Table 1-2. ASTAT Register Bit Definitions

Bit Name Description

0 AZ ALU result zero. Logical NOR of all bits written to the ALU result register
(AR) or ALU feedback register (AF).
0 =ALU output ≠ 0
1 =ALU output = 0

1 AN ALU result negative. Sign of the value written to the ALU result register
(AR) or ALU feedback register (AF).
0 =ALU output positive (+)
1 =ALU output negative (−)

2 AV ALU result overflow.
0 =No overflow
1 =Overflow

3 AC ALU result carry.
0 =No carry
1 =Carry

4 AS ALU x input sign. Sign bit of the ALU x-input operand; set by the ABS
instruction only.
0 =Positive (+)
1 =Negative (−)

5 AQ ALU quotient. Sign of the resulting quotient; set by the DIVS or DIVQ
instructions.
0 =Positive (+)
1 =Negative (−)

6 MV Multiplier overflow. Records overflow/underflow condition for MR result
register.
0 =No overflow or underflow
1 =Overflow or underflow

7 SS Shifter input sign. Sign of the shifter input operand.
0 =Positive (+)
1 =Negative (−)

8 SV Shifter overflow. Records overflow/underflow condition for SR result reg-
ister.
0 =No overflow or underflow
1 =Overflow or underflow

ADSP-219x DSP Instruction Set Reference 1-5

Instruction Set Summary

Condition Code (CCODE) Register
Using the CCODE register (shown in Table 1-3), conditional instructions
may base execution on a comparison of the CCODE value (user-selected) and
the SWCOND condition (DSP status). The CCODE register holds a value
between 0x0 and 0xF, which the instruction tests against when the condi-
tional instruction uses SWCOND or NOT SWCOND. Note that the CCODE register
has a one-cycle effect latency.

Table 1-3. CCODE Register Bit Definitions

CCODE Software Condition

Value SWCOND (1010) NOT SWCOND (1011)

0x00 PF0 pin high PF0 pin low

0x01 PF1 pin high PF1 pin low

0x02 PF2 pin high PF2 pin low

0x03 PF3 pin high PF3 pin low

0x04 PF4 pin high PF4 pin low

0x05 PF5 pin high PF5 pin low

0x06 PF6 pin high PF6 pin low

0x07 PF7 pin high PF7 pin low

0x08 AS NOT AS

0x09 SV NOT SV

0x0A PF8 pin high PF8 pin low

0x0B PF9 pin high PF9 pin low

0x0C PF10 pin high PF10 pin low

0x0D PF11 pin high PF11 pin low

0x0E PF12 pin high PF12 pin low

0x0F PF13 pin high PF13 pin low

Interrupt Control (ICNTL) Register

1-6 ADSP-219x DSP Instruction Set Reference

Interrupt Control (ICNTL) Register
Refer to Table 1-4 for ICNTL register bit definitions.

Table 1-4. ICNTL Register Bit Definitions

Bit Name Description

0 reserved write 0

1 reserved write 0

2 reserved write 0

3 reserved write 0

4 INE Interrupt nesting enable.
0 =Disabled
1 =Enabled

5 GIE Global interrupt enable.
0 =Disabled
1 =Enabled

6 reserved write 0

7 BIASRND MAC biased rounding mode.
0 =Disabled
1 =Enabled

8-9 reserved write 0

10 PCSTKE PC stack interrupt enable.
0 =Disabled
1 =Enabled

11 EMUCNTE Emulator cycle counter interrupt enable.
0 =Disabled
1 =Enabled

12-15 reserved write 0

ADSP-219x DSP Instruction Set Reference 1-7

Instruction Set Summary

Interrupt Mask (IMASK) Register and
Interrupt Latch (IRPTL) Register

Refer to Table 1-5 for IMASK register and IRPTL register bit definitions.

Table 1-5. IMASK and IRPTL Register Bit Definitions

Bit Name Description

0 EMU Emulator interrupt mask. Nonmaskable. Highest priority

1 PWDN Power-down interrupt mask. Maskable only with GIE bit in ICNTL.

2 SSTEP Single-step interrupt mask (during emulation)

3 STACK Stack interrupt mask. Generated from any of the following stack status
states: (if PCSTKE enabled) PC stack is pushed or popped and hits
high-water mark, any stack overflows, or the status or PC stacks under-
flow.

4 User-defined

5 User-defined

6 User-defined

7 User-defined

8 User-defined

9 User-defined

10 User-defined

11 User-defined

12 User-defined

13 User-defined

14 User-defined

15 User-defined Lowest priority

Mode Status (MSTAT) Register

1-8 ADSP-219x DSP Instruction Set Reference

Mode Status (MSTAT) Register
Refer to Table 1-6 for MSTAT register bit definitions.

Table 1-6. MSTAT Register Bit Definitions

Bit Name Description

0 SEC_REG
or
SR

Secondary data registers enable.
Determines which set of data registers is currently active.
0 =Deactivate secondary set of data registers (default).
Primary register set (set that is active at reset) enabled and used for
normal operation; secondary register set disabled.
1 =Activate secondary set of data registers.
Secondary register set enabled and used for alternate DSP context
(for example, interrupt servicing); primary register set disabled, cur-
rent contents preserved.
For details, see “Switching Contexts” on page 7-16.

1 BIT_REV
or
BR

Bit-reversed addressing enable.
Enables and disables bit-reversed addressing on DAG1 index regis-
ters only.
0 =Disable
1 =Enable
For details, see “Bit-Reversed Addressing” on page 6-16.

2 AV_LATCH
or
OL

ALU overflow latch mode enable. Determines how the ALU over-
flow flag, AV, gets cleared.
0 =Disable
Once an ALU overflow occurs and sets the AV bit in the ASTAT reg-
ister, the AV bit remains set until explicitly cleared or is cleared by a
subsequent ALU operation that does not generate an overflow.
1 =Enable
Once an ALU overflow occurs and sets the AV bit in the ASTAT reg-
ister, the AV bit remains set until the application explicitly clears it.
For details on clearing the AV bit, see “Bit Manipulation: TSTBIT,
SETBIT, CLRBIT, TGLBIT” on page 2-19 and “Register-to-Reg-
ister Move” on page 6-22.

ADSP-219x DSP Instruction Set Reference 1-9

Instruction Set Summary

3 AR_SAT
or
AS

ALU saturation mode enable.
For signed values, determines whether ALU AR results that over-
flowed or underflowed are saturated or not. Enables or disables sat-
uration for all subsequent ALU operations.
0 =Disable
AR results remain unsaturated and return as is.
1 =Enable
AR results saturated according to the state of the AV and AC status
flags in ASTAT.
AVACAR register
00ALU output
01ALU output
100x7FFF
110x8000
Only the results written to the AR register are saturated. If results
are written to the AF register, wraparound occurs, but the AV and
AC flags reflect the saturated result.

4 M_MODE
or
MM

MAC result mode.
Determines the numeric format of multiplier operands. For all
MAC operations, the multiplier adjusts the format of the result
according to the selected mode.
0 =Fractional mode, 1.15 format.
1 =Integer mode, 16.0 format.
For details, see “Data Format Options” on page 3-3.

5 TIMER
or
TI

Timer enable.
Starts and stops the timer counter.
0 =Stops the timer count.
1 =Starts the timer count.
For details on timer operation, see the ADSP-219x/2192 DSP
Hardware Reference.

6 SEC_DAG
or
SD

Secondary DAG registers enable.
Determines which set of DAG address registers is currently active.
0 =Primary registers.
1 =Secondary registers.
For details, see “Secondary DAG Registers” on page 6-7 and
“Switching Contexts” on page 7-16.

Table 1-6. MSTAT Register Bit Definitions (Cont’d)

Bit Name Description

System Status (SSTAT) Register

1-10 ADSP-219x DSP Instruction Set Reference

System Status (SSTAT) Register
Refer to Table 1-7 for SSTAT register bit definitions.

Table 1-7. SSTAT Register Bit Definitions

Bit Name Description

0 PCSTKEMPTY
or
PCE

PC stack empty.
0 =PC stack contains at least one pushed address.
1 =PC stack is empty.

1 PCSTKFULL
or
PCF

PC stack full.
0 =PC stack contains at least one empty location.
1 =PC stack is full.

2 PCSTKLVL
or
PCL

PC stack level.
0 =PC stack contains between 3 and 28 pushed addresses.
1 =PC stack is at or above the high-water mark (28 pushed
addresses), or it is at or below the low-water mark (3 pushed
addresses).

3 Reserved

4 LPSTKEMPTY
or
LSE

Loop stack empty.
0 =Loop stack contains at least one pushed address.
1 =Loop stack is empty.

5 LPSTKFULL
or
LSF

Loop stack full.
0 =Loop stack contains at least one empty location.
1 =Loop stack is full.

6 STSSTKEMPTY
or
SSE

Status stack empty.
0 =Status stack contains at least one pushed status.
1 =Status stack is empty.

7 STKOVERFLOW
or
SOV

Stacks overflowed.
0 =Overflow/underflow has not occurred.
1 =At least one of the stacks (PC, loop, counter, status) has
overflowed, or the PC or status stack has underflowed.
This bit cleared only on reset. Loop stack underflow is not
detected because it occurs only as a result of a POP LOOP
operation.

ADSP-219x DSP Instruction Set Reference 1-11

Instruction Set Summary

Condition Codes Summary
Refer to Table 1-8 for CCODE register bit definitions.

Table 1-8. Condition Codes Summary

Code Condition Description

0000 EQ Equal to zero (= 0).

0001 NE Not equal to zero (≠ 0).

0010 GT Greater than zero (> 0).

0011 LE Less than or equal to zero (≤ 0).

0100 LT Less than zero (< 0).

0101 GE Greater than or equal to zero (≥ 0).

0110 AV ALU overflow.

0111 NOT AV Not ALU overflow.

1000 AC ALU carry.

1001 NOT AC Not ALU carry.

1010 SWCOND SWCOND (based on CCODE register condition). (For
CCODE details, see Table 1-3 on page 1-5.)

1011 NOT SWCOND Not SWCOND (based on CCODE register condition). (For
CCODE details, see Table 1-3 on page 1-5.)

1100 MV MAC overflow.

1101 NOT MV Not MAC overflow.

1110 NOT CE Counter not expired.

1111 TRUE Always true.

Instruction Summary

1-12 ADSP-219x DSP Instruction Set Reference

Instruction Summary
The conventions for ADSP-219x instruction syntax descriptions appear in
Table 1-9. Other parts of the instruction syntax and opcode information
also appear in this section. The following sections provide summaries of
the DSP’s instruction set:

• “ALU Instructions” on page 1-14

• “Multiplier Instructions” on page 1-15

• “Shifter Instructions” on page 1-16

• “Data Move Instructions” on page 1-16

• “Program Flow Instructions” on page 1-18

• “Multifunction Instructions” on page 1-19

For a list of instructions by types, see “Instruction Opcodes” on page 8-1.

Table 1-9. Instruction Set Notation

Notation Meaning

UPPERCASE Explicit syntax—assembler keyword (notation only; the assembler is
case-insensitive and lowercase is the preferred programming conven-
tion)

; Semicolon—instruction terminator

, Comma—separates multiple optional items within vertical bars
or separates parallel operations in multifunction instructions

| option1, option2 | Vertical bars—lists options separated with commas (choose one)

[optional] Square brackets—encloses optional part of instruction

Compute ALU, multiplier, shifter or multifunction operation

ALU, MAC, SHIFT ALU, multiplier, or shifter operation

Cond Status condition

ADSP-219x DSP Instruction Set Reference 1-13

Instruction Set Summary

Term Loop termination condition

Reg Any register from register groups Reg0, Reg1, Reg2, or Reg3

Dreg Data register (register file) registers—subset of Reg0 registers

Ireg Any DAG I register

Mreg Any DAG M register

Lreg Any DAG L register

Ia I3-I0 (DAG1 index register)

Mb M3-M0 (DAG1 modify register)

Ic I7-I4 (DAG2 index register)

Md M7-M4 (DAG2 modify register)

<Datan> n-bit immediate data value

<Immn> n-bit immediate modify value

<Addrn> n-bit immediate address value

<Reladdrn> n-bit immediate PC-relative address value

Const constant value; For valid constant values, see Table 2-1 on page 2-3.

C carry bit

(DB) Delayed branch

Table 1-9. Instruction Set Notation (Cont’d)

Notation Meaning

Instruction Summary

1-14 ADSP-219x DSP Instruction Set Reference

ALU Instructions
Refer to Table 1-10 for a summary of ALU instructions.

Table 1-10. Summary of ALU Instructions

Instruction Type Details

|AR, AF| = Dreg1 + |Dreg2, Dreg2 + C, C |; 9, 9a on page 2-5

[IF Cond] |AR, AF| = Xop + |Yop, Yop + C, C, Const, Const + C|; 9 on page 2-5

|AR, AF| = Dreg1 − |Dreg2, Dreg2 + C −1, +C −1|; 9, 9a on page 2-9

[IF Cond] |AR, AF| = Xop − |Yop, Yop+C−1, +C−1, Const, Const +C
−1|;

9 on page 2-9

|AR, AF| = Dreg2 − |Dreg1, Dreg1 + C −1|; 9, 9a on page 2-13

[IF Cond] |AR, AF| = Yop − |Xop, Xop+C−1|; 9 on page 2-13

[IF Cond] |AR, AF| = − |Xop + C −1, Xop + Const, Xop + Const + C
−1|;

9 on page 2-13

|AR, AF| = Dreg1 |AND, OR, XOR| Dreg2; 9, 9a on page 2-16

[IF Cond] |AR, AF| = Xop |AND, OR, XOR| |Yop, Const|; 9 on page 2-16

[IF Cond] |AR, AF| = |TSTBIT, SETBIT, CLRBIT, TGLBIT| n of
Xop;

9, 9a on page 2-19

|AR, AF| = PASS |Dreg1, Dreg2, Const|; 9, 9a on page 2-22

|AR, AF| = PASS 0; 9, 9a on page 2-22

[IF Cond] |AR, AF| = PASS |Xop, Yop, Const|; 9 on page 2-22

|AR, AF| = NOT |Dreg|; 9, 9a on page 2-25

[IF Cond] |AR, AF| = NOT |Xop, Yop|; 9 on page 2-25

|AR, AF| = ABS Dreg; 9, 9a on page 2-28

[IF Cond] |AR, AF| = ABS Xop; 9 on page 2-28

|AR, AF| = Dreg +1; 9, 9a on page 2-31

[IF Cond] |AR, AF| = Yop +1; 9 on page 2-31

|AR, AF| = Dreg −1; 9, 9a on page 2-34

ADSP-219x DSP Instruction Set Reference 1-15

Instruction Set Summary

Multiplier Instructions
Refer to Table 1-11 for a summary of multiplier instructions.

[IF Cond] |AR, AF| = Yop −1; 9 on page 2-34

DIVS Yop, Xop; 24 on page 2-37

DIVQ Xop; 23 on page 2-37

NONE = ALU (Xop, Yop); 8 on page 2-46

Table 1-11. Summary of Multiplier Instructions

Instruction Type Details

|MR, SR| = Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; 9a on page 3-8

[IF Cond] |MR, SR| = Xop * Yop [(|RND, SS, SU, US, UU|)]; 9 on page 3-8

[IF Cond] |MR, SR| = Yop * Xop [(|RND, SS, SU, US, UU|)]; 9 on page 3-8

|MR, SR| = |MR, SR| + Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; 9a on page 3-11

[IF Cond]|MR, SR| = |MR, SR| + Xop * Yop [(|RND, SS, SU, US,
UU|)];

9 on page 3-11

[IF Cond] |MR, SR| = |MR, SR| + Yop * Xop [(|RND, SS, SU, US,
UU|)];

9 on page 3-11

|MR, SR| = |MR, SR| − Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)]; 9a on page 3-14

[IF Cond] |MR, SR| = |MR, SR| − Xop * Yop [(|RND, SS, SU, US,
UU|)];

9 on page 3-14

[IF Cond] |MR, SR| = |MR, SR| − Yop * Xop [(|RND, SS, SU, US,
UU|)];

9 on page 3-14

[IF Cond] |MR, SR| = 0; 9 on page 3-17

Table 1-10. Summary of ALU Instructions (Cont’d)

Instruction Type Details

Instruction Summary

1-16 ADSP-219x DSP Instruction Set Reference

Shifter Instructions
Refer to Table 1-12 for a summary of shifter instructions.

Data Move Instructions
Refer to Table 1-13 for a summary of data move instructions.

[IF Cond] MR = MR [(RND)];
[IF Cond] SR = SR [(RND)];

9 on page 3-19

SAT MR;
SAT SR;

25 on page 3-21

Table 1-12. Summary of Shifter Instructions

Instruction Type Details

[IF Cond] SR = [SR OR] ASHIFT Dreg [(|HI, LO|)]; 16 on page 4-6

SR = [SR OR] ASHIFT BY <Imm8> [(|HI, LO|)]; 15 on page 4-8

[IF Cond] SR = [SR OR] LSHIFT Dreg [(|HI, LO|)]; 16 on page 4-10

SR = [SR OR] LSHIFT BY <Imm8> [(|HI, LO|)]; 15 on page 4-12

[IF Cond] SR = [SR OR] NORM Dreg [(|HI, LO|)]; 16 on page 4-14

[IF Cond] SE = EXP Dreg [(|HIX, HI, LO|)]; 16 on page 4-20

[IF Cond] SB = EXPADJ Dreg; 16 on page 4-23

Table 1-13. Summary of Data Move Instructions

Instruction Type Details

Reg = Reg; 17 on page 6-22

|DM(<Addr16>) = |Dreg, Ireg, Mreg|; 3 on page 6-24

Table 1-11. Summary of Multiplier Instructions (Cont’d)

Instruction Type Details

ADSP-219x DSP Instruction Set Reference 1-17

Instruction Set Summary

|Dreg, Ireg, Mreg| = |DM(<Addr16>)|; 3 on page 6-24

|<Dreg>, <Reg1>, <Reg2>| = <Data16>; 6, 7, 7A on page 6-27

Reg3 = <Data12>; 33 on page 6-27

|DM(Ia += Mb), DM(Ic += Md)| = Reg; 32 on page 6-30

Reg = |DM(Ia += Mb), DM(Ic += Md)|; 32 on page 6-30

|DM(Ia + Mb), DM(Ic + Md)| = Reg; 32 on page 6-34

Reg = |DM (Ia + Mb), DM (Ic + Md)|; 32 on page 6-34

|PM(Ia += Mb), PM(Ic += Md)| = Reg; 32 on page 6-38

Reg = |PM(Ia += Mb), PM(Ic += Md)|; 32 on page 6-38

|PM(Ia + Mb), PM(Ic + Md)| = Reg; 32 on page 6-43

Reg = |PM(Ia + Mb), PM(Ic + Md)|; 32 on page 6-43

DM(Ireg1 += Mreg1) = |Ireg2, Mreg2, Lreg2|, |Ireg2, Mreg2, Lreg2| =
Ireg1;

32A on page 6-47

Dreg = DM(Ireg += <Imm8>); 29 on page 6-51

DM(Ireg += <Imm8>) = Dreg; 29 on page 6-51

Dreg = DM(Ireg + <Imm8>); 29 on page 6-54

DM(Ireg + <Imm8>) = Dreg; 29 on page 6-54

|DM(Ia += Mb), DM (Ic += Md)| = <Data16>; 22 on page 6-57

|PM (Ia += Mb), PM (Ic += Md)| = <Data24>:24; 22A on page 6-59

IO(<Addr10>) = Dreg; 34 on page 6-62

Dreg = IO (<Addr10>); 34 on page 6-62

REG(<Addr8>) = Dreg; 35 on page 6-65

Dreg = REG(<Addr8>); 35 on page 6-65

|MODIFY (Ia += Mb), MODIFY (Ic += Md)|; 21 on page 6-68

MODIFY (Ireg += <Imm8>); 21A on page 6-70

Table 1-13. Summary of Data Move Instructions (Cont’d)

Instruction Type Details

Instruction Summary

1-18 ADSP-219x DSP Instruction Set Reference

Program Flow Instructions
Refer to Table 1-14 for a summary of program flow instructions.

Table 1-14. Summary of Program Flow Instructions

Instruction Type Details

DO <Reladdr12> UNTIL [CE, FOREVER]; 11 on page 7-24

[IF Cond] JUMP <Reladdr13> [(DB)]; 10 on page 7-29

CALL <Reladdr16> [(DB)]; 10a on page 7-33

JUMP <Reladdr16> [(DB)]; 10a on page 7-37

[IF Cond] CALL <Addr24>; 36 on page 7-40

[IF Cond] JUMP <Addr24>; 36 on page 7-43

[IF Cond] CALL <Ireg> [(DB)]; 19 on page 7-46

[IF Cond] JUMP <Ireg> [(DB)]; 19 on page 7-50

[IF Cond] RTI [(DB)]; 20 on page 7-53

[IF Cond] RTS [(DB)]; 20 on page 7-57

PUSH |PC, LOOP, STS|; 26 on page 7-61

POP |PC, LOOP, STS|; 26 on page 7-61

FLUSH CACHE; 26 on page 7-67

SETINT <Imm4>; 37 on page 7-69

CLRINT <Imm4>; 37 on page 7-71

NOP; 30 on page 7-73

IDLE; 31 on page 7-74

ENA | TI, MM, AS, OL, BR, SR, BSR, INT | ; 18 on page 7-76

DIS | TI, MM, AS, OL, BR, SR, BSR, INT | ; 18 on page 7-76

ADSP-219x DSP Instruction Set Reference 1-19

Instruction Set Summary

Multifunction Instructions
Refer to Table 1-15 for a summary of multifunction instructions.

Table 1-15. Summary of Multifunction Instructions

Instruction Type Details

|<ALU>, <MAC>|, Xop = DM(Ia += Mb), Yop = PM(Ic += Md); 1 on page 5-4

Xop = DM(Ia += Mb), Yop = PM(Ic += Md); 1 on page 5-8

|<ALU>, <MAC>,<SHIFT> |, Dreg = DM(Ia += Mb)|; 4, 12 on page 5-11

|<ALU>, <MAC>, <SHIFT>|, DM(Ia += Mb) = Dreg; 4, 12 on page 5-15

|<ALU>, <MAC>, <SHIFT>|, Dreg = Dreg; 8, 14 on page 5-19

Instruction Summary

1-20 ADSP-219x DSP Instruction Set Reference

ADSP-219x DSP Instruction Set Reference 2-1

2 ALU INSTRUCTIONS

The instruction set provides ALU instructions for performing arithmetic
and logical operations on 16- and 24-bit fixed-point data. This chapter
includes the following sections:

• “ALU Instruction Conventions” on page 2-1

• “ALU Instruction Reference” on page 2-4

ALU Instruction Conventions
This chapter describes each of the arithmetic instructions and the follow-
ing related topics:

• “Input Registers” on page 2-1

• “Output Registers” on page 2-2

• “Constants” on page 2-2

• “ALU Mode Control” on page 2-3

• “ALU Status Flags” on page 2-4

Input Registers
The unconditional single-function ALU instructions described in this
chapter can use any of the DSP’s 16 data registers (Dregs) as input oper-
ands. The conditional single-function ALU instructions are restricted to

2-2 ADSP-219x DSP Instruction Set Reference

the use of specific data registers for both the x and y input operands.
When restrictions apply, XOP refers to the x operand, and YOP refers to the
y operand.

Output Registers
ALU instructions use one of two output registers:

• AF—ALU Feedback register. Results are directly available for the y
input only in the next conditional ALU operation.

• AR—ALU Result register. Results output to this register are imme-
diately available as the x-input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input into the next
unconditional ALU, MAC, or shifter operation.

Constants
You can use constants in any of the following single-function ALU
instructions:

• Add operations

• Subtract operations

• Bitwise logic operations

• PASS operation

Valid constants are those formed from powers of two that fall within the
range of − 32768 (0x8000) and +32767 (0x7FFF). Table 2-1 lists the valid
constants.

ADSP-219x DSP Instruction Set Reference 2-3

ALU Instructions

ALU Mode Control
The MSTAT register’s AV_LATCH bit and AR_SAT bit enable and disable two
ALU modes: ALU overflow latch mode and ALU saturation mode. For
more information on these modes, see the bit descriptions in Table 1-6 on
page 1-8.

Table 2-1. Valid Constant Values

Positive (+) Negative (−)

Decimal Hexadecimal Decimal Hexadecimal

1 0x0001 2 0xFFFE

2 0x0002 3 0xFFFD

4 0x0004 5 0xFFFB

8 0x0008 9 0xFFF7

16 0x0010 17 0xFFEF

32 0x0020 33 0xFFDF

64 0x0040 65 0xFFBF

128 0x0080 129 0xFF7F

256 0x0100 257 0xFEFF

512 0x0200 513 0xFDFF

1024 0x0400 1025 0xFBFF

2048 0x0800 2049 0xF7FF

4096 0x1000 4097 0xEFFF

8192 0x2000 8193 0xDFFF

16384 0x4000 16385 0xBFFF

32767 0x7FFF 32768 0x8000

2-4 ADSP-219x DSP Instruction Set Reference

ALU Status Flags
The ASTAT register’s AZ, AN, AV, AC, AS, and AQ bits record the status of ALU
operations, indicating whether the result of the operation was equal to
zero, negative, overflowed, carried, signed, or produced a quotient. For
information on these modes, see the bit descriptions in Table 1-2 on
page 1-4.

ALU Instruction Reference
ALU instructions include:

• “Add/Add with Carry” on page 2-5

• “Subtract X−Y/Subtract X−Y with Borrow” on page 2-9

• “Subtract Y−X/Subtract Y−X with Borrow” on page 2-13

• “Bitwise Logic: AND, OR, XOR” on page 2-16

• “Bit Manipulation: TSTBIT, SETBIT, CLRBIT, TGLBIT” on
page 2-19

• “Clear: PASS” on page 2-22

• “Negate: NOT” on page 2-25

• “Absolute Value: ABS” on page 2-28

• “Increment” on page 2-31

• “Decrement” on page 2-34

• “Divide Primitives: DIVS and DIVQ” on page 2-37

• “Generate ALU Status Only: NONE” on page 2-46

ADSP-219x DSP Instruction Set Reference 2-5

ALU Instructions

Add/Add with Carry

Function

Adds the input operands and stores the result in the specified result
register.

If execution is based on a condition, the ALU performs the addition only
if the condition evaluates true, and it performs a NOP operation if the con-
dition evaluates false.

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

AR = DREG1 + DREG2 ;

AF DREG + C

C

[IF COND] AR = XOP + YOP ;

AF YOP + C

C

constant

constant + C

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Add/Add with Carry

2-6 ADSP-219x DSP Instruction Set Reference

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.
This instruction uses binary addition to add the x and y operands and the
carry bit, when specified.

The operands are stored in data registers, or, in the case of constants, sup-
plied in the instruction. For the conditional form of this instruction, data
registers are restricted.

Xops Yops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1 AY0, AY1, AF, 0

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV, AC AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 2-7

ALU Instructions

You can substitute a constant for the y operand. For a list of valid con-
stants, see Table 2-1 on page 2-3. To add a negative constant, use either of
the following syntaxes:

AR = AR - 4097;

AR = AR + 0xEFFF;

Carry Option

IF AC AR = AX0 + AY0 + C;

The above instruction executes if a carry occurs in the previous instruc-
tion. The AR register receives the result of the addition of the x and y
operands and the carry-in bit from the previous instruction. Otherwise, it
performs a NOP operation.

The form XOP + C is a special case of XOP + YOP + C in which YOP = 0.

You cannot add or subtract constants in multifunction instructions, and
you are restricted to the use of particular data registers in multifunction
and conditional instructions.

Examples

AR = AX0 + AX1; /* add Dregs */

AF = MY0 + MR1 + C; /* add Dregs and carry */

AR = SR0 + C; /* add Dreg and carry */

IF EQ AR = AX0 + AY0; /* add X and Y ops */

IF LT AF = AX1 + AF + C; /* add Xop, Yop, and carry */

IF AV AR = SR0 + C; /* add Xop and carry */

IF AC AR = AR + 1024; /* add Xop and constant */

IF SWCOND AR = MR0 + 1024 + C; /* add Xop, constant, */

/* and carry */

Add/Add with Carry

2-8 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 2-9

ALU Instructions

Subtract X−Y/Subtract X−Y with Borrow

Function

Subtracts the input operands and stores the result in the specified result
register.

If execution is based on a condition, the ALU performs the subtraction
only if the condition evaluates true, and it performs a NOP operation if the
condition evaluates false.

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

AR = DREG1 − DREG2 ;

AF DREG + C - 1

+ C - 1

[IF COND] AR = XOP − YOP ;

AF YOP + C - 1

+ C - 1

constant

constant + C - 1

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Subtract X−Y/Subtract X−Y with Borrow

2-10 ADSP-219x DSP Instruction Set Reference

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.
This instruction uses binary addition to subtract the y operand from the x
operand and then adds the carry bit minus one, when specified. The quan-
tity C−1 effectively implements a borrow capability for multiprecision
subtractions.

Xops Yops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1 AY0, AY1, AF, 0

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV, AC AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 2-11

ALU Instructions

The operands are stored in data registers, or, in the case of constants, sup-
plied in the instruction. For the conditional form of this instruction, data
registers are restricted.

You can substitute a constant for the y operand. For a list of valid con-
stants, see Table 2-1 on page 2-3. To subtract a negative constant, use
either of the following syntaxes:

AR = AX0 - 4097;

AR = AX0 + 0xEFFF;

Using the borrow option for example:

IF AC AR = AX0 - AY0 + C - 1;

The instruction executes if a carry occurs in the previous instruction. The
AR register receives the result of the subtraction of the x and y operands
and the carry bit from the previous instruction. Otherwise, it performs a
NOP operation.

The form XOP + C - 1 is a special case of XOP - YOP + C - 1 in which
YOP = 0.

You cannot add or subtract constants in multifunction instructions, and
you are restricted to the use of particular data registers in multifunction
and conditional instructions.

Examples

AR = AX0 - AX1; /* sub Dregs */

AF = MY0 - MR1 + C - 1; /* sub Dregs and carry */

AR = SR0 + C - 1; /* sub Dreg and carry */

IF EQ AR = AX0 - AY0; /* sub X and Y ops */

IF LT AF = AX1 - AF + C - 1; /* sub Xop, Yop, and carry */

IF AV AR = SR0 + C - 1; /* sub Xop and carry */

Subtract X−Y/Subtract X−Y with Borrow

2-12 ADSP-219x DSP Instruction Set Reference

IF AC AR = AR - 1024; /* sub Xop and constant */

IF SWCOND AR = MR0 - 1024 + C - 1; /* sub Xop, const, and carry */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 2-13

ALU Instructions

Subtract Y−X/Subtract Y−X with Borrow

Function

Subtracts the input operands and stores the result in the specified result
register.

If execution is based on a condition, the ALU performs the subtraction
only if the condition evaluates true, and it performs a NOP operation if the
condition evaluates false.

Input

For the unconditional form of this instruction, you can use any of these
data registers for the DREG inputs:

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

AR = DREG2 - DREG1 ;

AF DREG1 + C -1

[IF COND] AR = YOP - XOP ;

AF XOP + C -1

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Xops Yops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1 AY0, AY1, AF, 0

Subtract Y−X/Subtract Y−X with Borrow

2-14 ADSP-219x DSP Instruction Set Reference

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.
This instruction uses binary addition to subtract the x operand from the y
operand and then adds the carry bit minus one, when specified. The quan-
tity C - 1 effectively implements a borrow capability for multiprecision
subtractions.

The operands are stored in data registers, or, in the case of constants, sup-
plied in the instruction. For the conditional form of this instruction, data
registers are restricted.

You can substitute a constant for the y operand. For a list of valid con-
stants, see Table 2-1 on page 2-3. To subtract a negative constant, you use
this syntax:

AR = -4097 - AR;

AR = 0xEFFF - AR;

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV, AC AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 2-15

ALU Instructions

Using the borrow option for example:

IF AC AR = AY0 - AX0 + C - 1;

The instruction executes if a carry occurs in the previous instruction. The
AR register receives the result of the subtraction of the y and x operands
and the carry bit from the previous instruction. Otherwise, it performs a
NOP operation.

The form -XOP + C - 1 is a special case of YOP - XOP + C - 1 in which
YOP = 0.

You cannot add or subtract constants in multifunction instructions, and
you are restricted to the use of particular data registers in multifunction
and conditional instructions.

Examples

AR = AY0 - AY1; /* sub Dregs */

AF = MR0 - SR1 + C -1; /* sub Dregs, add carry */

IF EQ AR = AY0 - AX1; /* sub Xop from Yop */

IF LT AF = AF - AX0 + C -1; /* sub Xop from Yop, add carry */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Bitwise Logic: AND, OR, XOR

2-16 ADSP-219x DSP Instruction Set Reference

Bitwise Logic: AND, OR, XOR

Function

Performs the specified bitwise logical operation (logical AND, inclusive OR,
or exclusive XOR) and stores the result in the specified result register.

If execution is based on a condition, the ALU performs the operation only
if the condition evaluates true, and it performs a NOP operation if the con-
dition evaluates false.

Only the conditional form of the bitwise operations accept a constant for
the y operand.

Input

For the unconditional form of this instruction, you can use any of these
data registers for the DREG inputs:

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

AR = DREG1 AND DREG2;

AF OR

XOR

[IF COND] AR = XOP AND YOP ;

AF OR constant

XOR

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 2-17

ALU Instructions

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.

The operands are stored in data registers, or, in the case of constants, sup-
plied in the instruction. For the conditional form of this instruction, data
registers are restricted.

You can substitute a constant for the y operand. For a list of valid con-
stants, see Table 2-1 on page 2-3.

Xops Yops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1 AY0, AY1, AF, 0

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV (cleared), AC (cleared) AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Bitwise Logic: AND, OR, XOR

2-18 ADSP-219x DSP Instruction Set Reference

Examples

AX0 = 0xAAAA; /* load 1010 1010 1010 1010 */

AX1 = 0x5555; /* load 0101 0101 0101 0101 */

AY0 = 0xAAAA; /* load 1010 1010 1010 1010 */

AY1 = 0x5555; /* load 0101 0101 0101 0101 */

AR = AX0 AND AX1; /* AR = 0000 0000 0000 0000 */

AF = AY0 OR AY1; /* AF = 1111 1111 1111 1111 */

AR = AX0 XOR AY0; /* AR = 0000 0000 0000 0000 */

IF EQ AR = AX0 AND AY0; /* AR = 1010 1010 1010 1010 */

IF LT AF = AX1 OR AY0; /* AF = 1111 1111 1111 1111 */

IF SWCOND AR = AX0 XOR 0x1000; /* AR = 1011 1010 1010 1010 */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 2-19

ALU Instructions

Bit Manipulation: TSTBIT, SETBIT, CLRBIT, TGLBIT

Function

Performs the specified bit-manipulation operation on the n bit of the x
input operand and stores the result in the specified result register.

• TSTBIT Performs an AND operation with 1 in the selected bit.

• SETBIT Performs an OR operation with 1 in the selected bit.

• CLRBIT Performs an AND operation with 0 in the selected bit.

• TGLBIT Performs an XOR operation with 1 in the selected bit.

If execution is based on a condition, the ALU performs the operation only
if the condition evaluates true, and it performs a NOP operation if the con-
dition evaluates false.

Input

For this instruction, the x operand is restricted. Valid XOP registers are:

[IF COND] AR = TSTBIT n OF XOP ;

AF SETBIT

CLRBIT

TGLBIT

Xops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1

Bit Manipulation: TSTBIT, SETBIT, CLRBIT, TGLBIT

2-20 ADSP-219x DSP Instruction Set Reference

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.
The operand is stored in an XOP data register and the instruction specifies
the particular bit within it. You cannot perform any of the bit manipula-
tion operations in multifunction instructions.

Examples

AX0 = 0xAAAA; /* load 1010 1010 1010 1010 */

AR = TSTBIT 0x5 OF AX0; /* AR = 0x0020 */

AF = SETBIT 0x4 OF AX0; /* AF = 0xAABA */

AF = CLRBIT 0xB OF AX0; /* AF = 0xA2AA */

AR = TGLBIT 0xF OF AX0; /* AR = 0x2AAA */

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV (cleared), AC (cleared) AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 2-21

ALU Instructions

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Clear: PASS

2-22 ADSP-219x DSP Instruction Set Reference

Clear: PASS

Function

Passes the source operand unmodified through the ALU unit and stores it
in the specified result register. Unlike the move register instruction, this
instruction affects the ASTAT status flags.

The PASS 0 operation (the PASS keyword is optional) provides another way
to clear the AR register.

If execution is based on a condition, the ALU performs the operation only
if the condition evaluates true, and it performs a NOP operation if the con-
dition evaluates false.

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

AR = PASS DREG ;

AF constant

AR = [PASS] 0 ;

AF

[IF COND] AR = PASS XOP ;

AF YOP

constant

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 2-23

ALU Instructions

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.

The operands are stored in the data registers, or, in the case of constants,
supplied in the instruction. For the conditional form of this instruction,
data registers are restricted.

You can substitute a constant for the y operand. For a list of valid con-
stants, see Table 2-1 on page 2-3.

Xops Yops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1 AY0, AY1, AF, 0

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV (cleared), AC (cleared) AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Clear: PASS

2-24 ADSP-219x DSP Instruction Set Reference

Combine PASS 0 with memory read and write operations in multifunction
instructions to clear the AR register; for example:

AR = PASS 0, AX0 = DM(I0, M0), AY0 = PM(I4, M4);

You cannot use DREG data registers or the PASS constant operation (other
than -1, 0, or 1) in multifunction instructions.

Some forms of the PASS instruction result from the special case of the y
input operand is 0, and other forms of the PASS instruction result from the
special case of YOP is a constant.

Examples

AR = PASS SI; /* pass Dreg to AR */

AF = PASS 1024; /* pass constant to AF */

AR = PASS 0; /* pass 0 to AR */

AF = PASS 0; /* pass 0 to AF */

IF EQ AR = PASS AX1; /* pass Xop to AR */

IF LT AF = PASS AY0; /* pass Yop to AR */

IF AV AR = PASS 1024; /* pass constant to AR */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 2-25

ALU Instructions

Negate: NOT

Function

Performs a logical ones complement operation on the source operand and
stores it in the specified result register.

If execution is based on a condition, the ALU performs the operation only
if the condition evaluates true, and it performs a NOP operation if the con-
dition evaluates false.

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

AR = NOT DREG ;

AF

[IF COND] AR = NOT XOP ;

AF YOP

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Xops Yops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1 AY0, AY1, AF, 0

Negate: NOT

2-26 ADSP-219x DSP Instruction Set Reference

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.

The operands are stored in the data registers. For the conditional form of
this instruction or in multifunction instructions, data registers are
restricted.

Examples

AR = NOT SI; /* put neg SI in AR */

AF = NOT AY0; /* put neg AY0 in AF */

IF EQ AR = NOT AX0; /* put neg AX0 in AR */

IF LT AF = NOT AF; /* put neg AF in AR */

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV (cleared), AC (cleared) AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 2-27

ALU Instructions

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Absolute Value: ABS

2-28 ADSP-219x DSP Instruction Set Reference

Absolute Value: ABS

Function

Performs a logical ones complement operation on the x input operand and
stores it in the specified result register.

If execution is based on a condition, the ALU performs the operation only
if the condition evaluates true, and it performs a NOP operation if the con-
dition evaluates false.

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

For this instruction, the x operand is restricted. Valid XOP registers are:

AR = ABS DREG ;

AF

[IF COND] AR = ABS XOP ;

AF

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Xops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1

ADSP-219x DSP Instruction Set Reference 2-29

ALU Instructions

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.

The operands are stored in the data registers. For the conditional form of
this instruction or in multifunction instructions, data registers are
restricted.

Examples

AR = ABS SI; /* put abs SI in AR */

AF = ABS AY0; /* put abs AY0 in AF */

IF EQ AR = ABS AX0; /* put abs AX0 in AR */

IF LT AF = ABS SR0; /* put abs SR0 in AF */

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN (set if xop is 0x8000), AV (set if xop is
0x8000), AC (cleared), AS (set if xop is negative)

AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Absolute Value: ABS

2-30 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 2-31

ALU Instructions

Increment

Function

Increments the y input operand by adding 0x0001 to it and stores the value
in the specified result register.

If execution is based on a condition, the ALU performs the operation only
if the condition evaluates true, and it performs a NOP operation if the con-
dition evaluates false.

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

For this instruction, the y operand is restricted. Valid IOP registers are:

AR = DREG + 1 ;

AF

[IF COND] AR = YOP + 1 ;

AF

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Yops

AY0, AY1, AF, 0

Increment

2-32 ADSP-219x DSP Instruction Set Reference

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.

The operands are stored in the data registers. For the conditional form of
this instruction or in multifunction instructions, data registers are
restricted.

Examples

AR = SI + 1; /* inc SI and place in AR */

AF = AX0 + 1; /* inc AX0 and place in AF */

IF EQ AR = AY0 + 1; /* inc AY0 and place in AR */

IF LT AF = AF + 1; /* inc AF and place in AF */

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV, AC AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 2-33

ALU Instructions

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Decrement

2-34 ADSP-219x DSP Instruction Set Reference

Decrement

Function

Decrements the y operand by subtracting 0x0001 from it and stores the
value in the specified result register.

If execution is based on a condition, the ALU performs the operation only
if the condition evaluates true, and it performs a NOP operation if the con-
dition evaluates false.

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

For this instruction, the y operand is restricted. Valid IOP registers are:

AR = DREG - 1 ;

AF

[IF COND] AR = YOP - 1 ;

AF

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Yops

AY0, AY1, AF, 0

ADSP-219x DSP Instruction Set Reference 2-35

ALU Instructions

Output

AR ALU Result register. Results are directly available
for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

AF ALU Feedback register. Results are directly avail-
able for the y input only in the next conditional
ALU operation.

Status Flags

Details

Omitting the condition forces unconditional execution of the instruction.

The operands are stored in the data registers. For the conditional form of
this instruction or in multifunction instructions, data registers are
restricted.

Examples

AR = SI - 1; /* dec SI and place in AR */

AF = AX0 - 1; /* dec AX0 and place in AF */

IF EQ AR = AY0 - 1; /* dec AY0 and place in AR */

IF LT AF = AF - 1; /* dec AF and place in AF */

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV, AC AS, AQ, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Decrement

2-36 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 2-37

ALU Instructions

Divide Primitives: DIVS and DIVQ

Function

The DIVS primitive calculates the quotient’s sign bit. The DIVQ primitive
calculates the quotient one bit at a time.

Use both divide primitives to implement a YOP ÷ XOP operation on signed
(twos complement) numbers. Use the DIVQ primitive alone to implement a
YOP ÷ XOP operation on unsigned (ones complement) numbers.

The divide primitives perform a single-precision divide on a 32-bit
numerator by a 16-bit denominator to yield a 16-bit, truncated quotient.
Single-precision divides executes in sixteen cycles. Higher precision
divides require more cycles since you must execute the DIVQ primitive for
each bit in the quotient.

The divide operation requires four data registers—one 16-bit data register
to hold the 16-bit divisor, two 16-bit data registers to hold the 32-bit div-
idend, and one 16-bit data register to hold the resulting 16-bit quotient.

Input

Use signed (twos complement) or unsigned (ones complement) operands,
but both operands must be the same number format. The resulting quo-
tient has the same number format as its operands.

XOP Divisor. Both divide primitives take an x input
operand. Valid XOP registers are:

DIVS YOP, XOP ;

DIVQ XOP ;

Xops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1

Divide Primitives: DIVS and DIVQ

2-38 ADSP-219x DSP Instruction Set Reference

YOP Dividend. Only the DIVS primitive, which calcu-
lates the sign bit of the quotient, takes a y input
operand. The y input operand must contain the
upper 16 bits of the dividend. Valid YOP registers
are:

For unsigned division (DIVQ only), AF must be used as the y input operand
to hold the upper 16 bits of the dividend. Before issuing the DIVQ primi-
tive, you must explicitly load the lower 16 bits of the dividend into either
AY0.

For signed division (DIVS and DIVQ), use AY1 or AF as they input operand
to contain the upper 16 bits of the dividend. Before issuing either of the
divide primitives, you must explicitly load the lower 16 bits of the divi-
dend into AY0.

Output

AY0 ALU divide result register. At the end of the divide
operation, the AYO data register contains the
quotient.

AF ALU Feedback register. At the end of the divide
operation, AF contains the final remainder. This
value is incorrect. If you need to use it, correct it
before doing so.

Yops

AY1, AF

ADSP-219x DSP Instruction Set Reference 2-39

ALU Instructions

Status Flags

Details

These instructions implement YOP ÷ XOP. There are two divide primitives,
DIVS and DIVQ. A single-precision divide, with a 32-bit numerator and a
16-bit denominator, yielding a 16-bit quotient, executes in 16 cycles.
Higher precision divides are also possible.

The division can be signed or unsigned, but both the numerator and
denominator must be the same, signed or unsigned. Set up the divide by
sorting the upper half of the numerator in any permissible YOP (AY1 or AF),
the lower half of the numerator in AY0, and the denominator in any per-
missible XOP. The divide operation is then executed with the divide
primitives, DIVS and DIVQ. Repeated execution of DIVQ implements a
non-restoring conditional add-subtract division algorithm. At the conclu-
sion of the divide operation, the quotient will be in AY0.

To implement a signed divide, first execute the DIVS instruction once,
which computes the sign of the quotient. Then execute the DIVQ instruc-
tion as many times as there are bits remaining in the quotient (for
example, for a signed, single-precision divide, execute DIVS once and DIVQ
15 times).

To implement an unsigned divide, place the upper half of the numerator
in AF and then set the AQ bit to zero by manually clearing it in the Arith-
metic Status register (ASTAT). This indicates that the sign of the quotient is
positive. Then execute the DIVQ instruction as many times as there are bits
in the quotient (for example, for an unsigned single-precision divide, exe-
cute DIVQ 16 times).

Affected Flags–set or cleared by the operation Unaffected Flags

 AQ AZ, AN, AV, AC, AS, MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Divide Primitives: DIVS and DIVQ

2-40 ADSP-219x DSP Instruction Set Reference

The quotient bit generated on each execution of DIVS and DIVQ is the AQ
bit, which is written to the ASTAT register at the end of each cycle. The
final remainder produced by this algorithm (left over in the AF register) is
not valid and must be corrected if it is needed.

Examples

For example code and code walk-through, see “Division Applications” on
page 2-45.

See Also

• For more information, see “Division Theory” on page 2-40, “Divi-
sion Exceptions” on page 2-43, and “Division Applications” on
page 2-45.

• “Type 23: Divide primitive, DIVQ” on page 8-43

• “Type 24: Divide primitive, DIVS” on page 8-44

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Division Theory

The ADSP-219x DSP family’s instruction set contains two instructions
for implementing a non-restoring divide algorithm. These instructions
take as their operands’ twos complement or unsigned numbers, and in 16
cycles produce a truncated quotient of 16 bits. For most numbers and
applications, these primitives produce the correct results. However, cer-
tain situations produce results that are off by one LSB. This section
describes these situations, and presents alternatives for producing the cor-
rect results.

ADSP-219x DSP Instruction Set Reference 2-41

ALU Instructions

Computing a 16-bit fixed-point quotient from two numbers is accom-
plished by 16 executions of the DIVQ instruction for unsigned numbers.
Signed division uses the DIVS instruction first, followed by fifteen DIVQ
instructions. Regardless of the division you perform, both input operands
must be of the same type (signed or unsigned) and produce a result of the
same type.

These two instructions are used to implement a conditional add/subtract,
non-restoring division algorithm. As its name implies, the algorithm func-
tions by adding or subtracting the divisor to/from the dividend. The
decision as to which operation to perform is based on the previously gen-
erated quotient bit. Each add/subtract operation produces a new partial
remainder, which is used in the next step.

The term “non-restoring” refers to the fact that the final remainder is not
correct. With a restoring algorithm, it is possible, at any step, to take the
partial quotient, multiply it by the divisor, and add the partial remainder
to recreate the dividend. With this non-restoring algorithm, it is necessary
to add two times the divisor to the partial remainder if the previously
determined quotient bit is zero. It is easier to compute the remainder
using the multiplier than in the ALU.

Signed Division

Signed division is accomplished by first storing the 16-bit divisor in an
XOP register (AX0, AX1, AR, MR2, MR1, MR0, SR1, or SR0). The 32-bit dividend
must be stored in two separate 16-bit registers. The lower 16-bits must be
stored in AY0, and the upper 16-bits can be in AY1 or AF.

The DIVS primitive is executed once, with the proper operands (such as
DIVS AY1, AX0) to compute the sign of the quotient. The sign bit of the
quotient is determined by XORing (exclusive ORing) the sign bits of each
operand. The entire 32-bit dividend is shifted left one bit. The lower 15
bits of the dividend with the recently determined sign bit appended are
stored in AY0, and the lower 15 bits of the upper word, with the MSB of
the lower word appended is stored in AF.

Divide Primitives: DIVS and DIVQ

2-42 ADSP-219x DSP Instruction Set Reference

To complete the division, 15 DIVQ instructions are executed. Operation of
the DIVQ primitive is described below.

Unsigned Division

Computing an unsigned division is done like signed division, except the
first instruction is not a DIVS, but another DIVQ. The upper word of the
dividend must be stored in AF, and the AQ bit of the ASTAT register must be
set to zero before the divide begins.

The DIVQ instruction uses the AQ bit of the ASTAT register to determine
whether the dividend should be added to or subtracted from the partial
remainder stored in AF and AY0. If AQ is zero, a subtraction occurs. A new
value for AQ is determined by XORing the MSB of the divisor with the
MSB of the dividend. The 32-bit dividend is shifted left one bit, and the
inverted value of AQ is moved into the LSB.

Output Formats

As in multiplication, the format of a division result is based on the format
of the input operands. The division logic is designed to work most effi-
ciently with fully fractional numbers—those most commonly used in
fixed-point DSP applications. A signed, fully fractional number uses one
bit before the binary point as the sign, with 15 bits (or 31 bits in double
precision) to the right, for magnitude.

If the dividend is in M.N format (M bits before the binary point, N bits
after), and the divisor is in O.P format, the quotient’s format will be
(M-O+1).(N-P-1). Dividing a 1.31 number by a 1.15 number produces a
quotient whose format is (1-1+1).(31-15-1) or 1.15.

Before dividing two numbers, ensure that the format of the quotient will
be valid. For example, if you attempt to divide a 32.0 number by a 1.15
number, the result attempts to be in (32-1+1).(0-15-1) or 32.-16 format.
This cannot be represented in a 16-bit register.

ADSP-219x DSP Instruction Set Reference 2-43

ALU Instructions

In addition to proper output format, ensure that a divide overflow does
not occur. Even when a division of two numbers produces a valid output
format, it is possible that the number will overflow and be unable to fit
within the constraints of the output. For example, to divide a 16.16 num-
ber by a 1.15 number, the output format would be (16-1+1).(16-15-1) or
16.0, which is valid. Assume you have 16384 (0x4000) as the dividend
and .25 (0x2000) as the divisor, the quotient is 65536, which does not fit
in 16.0 format. This operation overflows, producing an erroneous result.

Check input operands before division to ensure that an overflow will not
result. If the magnitude of the upper 16 bits of the dividend is larger than
the magnitude of the divisor, an overflow will result.

Integer Division

One special case of division that deserves special mention is integer divi-
sion. There may be some cases where you wish to divide two integers, and
produce an integer result. It can be seen that an integer-integer division
will produce an invalid output format of (32-16+1).(0-0-1), or 17.-1.

To generate an integer quotient, shift the dividend to the left one bit,
placing it in 31.1 format. The output format for this division will be
(31-16+1).(1-0-1), or 16.0. Ensure that no significant bits are lost during
the left shift, or an invalid result will be generated.

Division Exceptions

Although the divide primitives for the ADSP-219x DSP family work cor-
rectly in most instances, there are two cases where an invalid or inaccurate
result can be generated. The first case involves signed division by a nega-
tive number. If you attempt to use a negative number as the divisor, the
quotient generated may be one LSB less than the correct result. The other
case concerns unsigned division by a divisor greater than 0x7FFF. If the
divisor in an unsigned division exceeds 0x7FFF, an invalid quotient will be
generated.

Divide Primitives: DIVS and DIVQ

2-44 ADSP-219x DSP Instruction Set Reference

Negative Divisor Error

The quotient produced by a divide with a negative divisor will generally
be one LSB less than the correct result. The divide algorithm implemented
on the ADSP-219x DSP family, which does not correctly compensate for
the twos complement format of a negative number, causes this inaccuracy.

There is one case where this discrepancy does not occur. When the result
of the division operation equals 0x8000, it is correctly represented, and is
not one LSB off.

There are several ways to correct for this error. Before changing any code,
however, determine if a one-LSB error in your quotient is a significant
problem. In some cases, the LSB is small enough to be insignificant.

If exact results are necessary, two solutions are possible. One is to avoid
division by negative numbers. If your divisor is negative, take its absolute
value and invert the sign of the quotient after division. This will produce
the correct result.

Another technique is to check the result by multiplying the quotient by
the divisor. Compare this value with the dividend; if they are off by more
than the value of the divisor, increase the quotient by one.

Unsigned Division Error

Unsigned divisions can produce erroneous results if the divisor is greater
than 0x7FFF. Do not attempt to divide two unsigned numbers when the
divisor has a one in the MSB. If you must perform such a division, shift
both operands right one bit. This will maintain the correct orientation of
operands.

Shifting both operands may result in a one LSB error in the quotient. This
can be solved by multiplying the quotient by the original (not shifted)
divisor. Subtract this value from the original dividend to calculate the
error. If the error is greater than the divisor, add one to the quotient; if it
is negative, subtract one from the quotient.

ADSP-219x DSP Instruction Set Reference 2-45

ALU Instructions

Division Applications

Each of the problems mentioned in “Division Exceptions” on page 2-43
can be compensated in software. Listing 2-1 shows the program section
divides. This code can be used to divide two signed or unsigned numbers
to produce the correct quotient, or an error condition.

Listing 2-1. Division Routine Using DIVS and DIVQ

/* signed division algorithm with fix for negative division error

inputs:

AYy1 - 16 MSB of numerator

AYy0 - 16 LSB of numerator

AR - denominator

outputs:

AR - corrected quotient

intermediate (scratch) registers:

MR0, AF */

signed_div:

MR0 = AR, AR = ABS AR;

/* save copy of denominator, make it positive */

DIVS AY1, AR; DIVQ AR;

DIVQ AR; DIVQ AR;

DIVQ AR; DIVQ AR;

DIVQ AR; DIVQ AR;

DIVQ AR; DIVQ AR;

DIVQ AR; DIVQ AR;

DIVQ AR; DIVQ AR;

DIVQ AR; DIVQ AR;

AR = AY0, AF = PASS MR0; /* get sign of denominator */

IF LT AR = -AY0; /* if neg, invert output, place in ar */

RTS;

Generate ALU Status Only: NONE

2-46 ADSP-219x DSP Instruction Set Reference

Generate ALU Status Only: NONE

NONE = <ALU Operation> ;

Function

Performs the indicated unconditional ALU operation but does not load
the results into the AR or AF result registers. Generates ALU status flags
only. Use this instruction to set ALU status without disturbing the con-
tents of the AR and AF result registers.

Input

XOP Limits the registers for the x input operand. Valid
XOP registers are:

YOP Limits the registers for the x input operand. Valid
YOP registers are:

Output

None. Generates ALU status flags only.

Xops

AX0, AX1, AR, MR0, MR1, MR2, SR0, SR1

Yops

AY0, AY1, AF, 0

ADSP-219x DSP Instruction Set Reference 2-47

ALU Instructions

Status Flags

Details

Use any unconditional ALU operation (except ALU operations that use
constants) to generate ALU status flags.

The following ALU operations may not appear in the NONE= syntax:

• NONE = <XOP> + <constant>; For other add operations, see
“Add/Add with Carry” on page 2-5.

• NONE = <XOP> - <constant>;

-or-
NONE = -<XOP> + <constant>;
For other subtract operations, see “Subtract X−Y/Subtract X−Y
with Borrow” on page 2-9.

• NONE = PASS <constant>; with any constant other than -1, 0, or 1.
For other clear operations, see “Clear: PASS” on page 2-22.

• NONE = <XOP> <AND|OR|XOR> <constant>;
For other logical operations, see “Bitwise Logic: AND, OR, XOR”
on page 2-16.

• NONE with TSTBIT, SETBIT, CLRBIT, or TGLBIT.

• NONE with the division primitives (DIVS or DIVQ).

Examples

NONE = AX0 - AF; /* generate status from sub */

NONE = AX1 + AF; /* generate status from add */

Affected Flags–set or cleared by the operation Unaffected Flags

Depending on ALU operation—AZ, AN, AV, AC, AS, AQ MV, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Generate ALU Status Only: NONE

2-48 ADSP-219x DSP Instruction Set Reference

NONE = AF - AX1; /* generate status from sub */

NONE = PASS 0; /* generate status from pass */

NONE = AX1 OR AY0; /* generate status from or */

See Also

• “Type 8: Compute | Dreg1 «··· Dreg2” on page 8-22

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 3-1

3 MAC INSTRUCTIONS

The instruction set provides MAC instructions that perform high-speed
multiplication and multiply with cumulative add/subtract operations.
MAC instructions include:

• “Multiply” on page 3-8

• “Multiply with Cumulative Add” on page 3-11

• “Multiply with Cumulative Subtract” on page 3-14

• “MAC Clear” on page 3-17

• “MAC Round/Transfer” on page 3-19

• “MAC Saturate” on page 3-21

• “Generate MAC Status Only: NONE” on page 3-24

This chapter describes the individual MAC instructions and these related
topics:

• “MAC Input Registers” on page 3-2

• “MAC Output Registers” on page 3-2

• “Data Format Options” on page 3-3

• “Status Flags” on page 3-7

For details on condition codes and data input and output registers, see
“Condition Codes” on page 8-8 and “Core Register Codes” on page 8-11.

MAC Input Registers

3-2 ADSP-219x DSP Instruction Set Reference

Multiply Instruction Conventions

MAC Input Registers
All unconditional, single-function multiply and multiply with accumula-
tive add or subtract instructions can use any DREG data register for the x
and y input operands (for details, see “Core Register Codes” on
page 8-11). A program can use, for example, the ALU registers for the
multiplication or shifter operations, without issuing a separate data move
instruction. This capability simplifies register allocation in algorithm cod-
ing. For example, using the DSP’s dual accumulator:

SR = SR + MX0 * MY0 (SS);

In multifunction operations, you can use only certain registers for the
x-input operand (AR, MX0, MX1, MR0, MR1, MR2, SR0, SR1) and the y-input
operand (MY0, MY1, SR1, 0).

All conditional MAC instructions must use the restricted XOP and YOP data
registers for the x and y input operands, or an XOP register for the x-input
and 0 for the y-input.

MAC Output Registers
All MAC instructions can use the multiplier MR output registers or the
shifter SR output registers to receive the result of a multiplier operation.
Availability of the shifter SR output registers for multiplier operations pro-
vides dual-accumulator functionality.

When MR is the result register, results are directly available from MR0, MR1,
or MR2 as the x-input operand into the very next multiplier operation.

MR = MR + AX0 * AX0 (SS);

ADSP-219x DSP Instruction Set Reference 3-3

MAC Instructions

When SR is the result register, the 16-bit value in SR1 (bits 31:16 of the
40-bit result) is directly available as the y-input operand into the very next
multiplier operation. This functionality is most useful when shifting the
results of a multiply/accumulate operation since it decreases the number
of required data moves.

SR = SR + AX0 * AY0 (SS);

SR = SR + SR1 * AY0 (SS);

Data Format Options
Multiplier operations require the instruction to specify the data format of
the input operands (signed or unsigned) or specify that the multiplier
rounds (RND) the product of two signed operands.

All data format options, except the round (RND) option, which affects the
product stored in the result register, specify the format of both input oper-
ands in x/y order. The data format options are:

• (RND) Round value in result register.

When overflow occurs, rounds the product to the most significant
twenty-four bits—SR2/SR1 or MR2/MR1 represent the rounded 24-bit
result. Otherwise, rounds bits 31:16 to16 bits—MR1 or SR1 contain
the rounded 16-bit result.

With (RND) selected, the multiplier considers both input operands
signed (twos complement). If the DSP is in fractional mode
(MSTAT:M_MODE = 0), the multiplier rounds the result after adjusting
for fractional data format. For details, see “Numeric Format
Modes” on page 3-6.

The DSP provides two rounding modes (biased and unbiased) to
support a variety of application algorithms. For details, see
“Rounding Modes” on page 3-4.

Rounding Modes

3-4 ADSP-219x DSP Instruction Set Reference

• (SS) Both input operands are signed numbers. Signed numbers
are in twos complement format.

Use this option to multiply two signed single-precision numbers or
to multiply the upper portions of two signed multi-precision
numbers.

• (SU) X-input operand is signed; y-input operand is unsigned.

Use this option to multiply a signed single-precision number by an
unsigned single-precision number.

• (US) X-input operand is unsigned; y-input operand is signed.

Use this option to multiply an unsigned single-precision number
by a signed single-precision number.

• (UU) Both input operands are unsigned numbers. Unsigned num-
bers are in ones complement format.

Use this option to multiply two unsigned single-precision numbers
or to multiply the lower portions of two signed multi-precision
numbers.

Rounding Modes
Rounding operates on the boundary between bits 15 and 16 of the 40-bit
adder result. The multiplier directs the rounded output to the MR or the
SR result registers.

ADSP-219x DSPs provide two modes for rounding. The rounding algo-
rithm is the same for both modes, but the final results can differ when the
product equals the midway value (MR0 = 0x8000).

ADSP-219x DSP Instruction Set Reference 3-5

MAC Instructions

In both methods, the multiplier adds 1 to the value of bit 15 in the adder
chain. But when MR0 = 0x8000, the multiplier forces bit 16 in the result
output to 0. Although applied on every rounding operation, the result of
this algorithm is evident only when MR0 = 0x8000 in the adder chain.

The rounding mode determines the final result. The BIASRND bit in the
ICNTL register selects the mode. BIASRND = 0 selects unbiased rounding,
and BIASRND = 1 selects biased rounding.

• Unbiased rounding. Default mode. Rounds up only when MR1/SR1
set to an odd value; otherwise, rounds down. Yields a zero
large-sample bias.

• Biased rounding. Always rounds up when MR0/SR0 is set to 0x8000.

Table 3-1 shows the results of rounding for both modes.

Unbiased rounding, which is preferred for most algorithms, yields a zero
large-sample bias, assuming uniformly distributed values. Biased rounding
supports efficient implementation of bit-specified algorithms, such as
GSM speech compression routines.

Table 3-1. MR result values

MR Value before RND Biased RND Result Unbiased RND Result

00-0000-8000 00-0001-0000 00-0000-0000

00-0001-8000 00-0002-0000 00-0002-0000

00-0000-8001 00-0001-0001 00-0001-0001

00-0001-8001 00-0002-0001 00-0002-0001

00-0000-7FFF 00-0000-FFFF 00-0000-FFFF

00-0001-7FFF 00-0001-FFFF 00-0001- FFFF

Numeric Format Modes

3-6 ADSP-219x DSP Instruction Set Reference

Numeric Format Modes
The multiplier can operate on integers or fractions. The M_MODE bit in the
MSTAT register selects the mode. M_MODE = 0 selects fractional mode, and
M_MODE = 1 selects integer mode.

The mode determines whether the multiplier shifts the product before
adding or subtracting it from the result register.

Integer mode 16.0 integer format.

The LSB of the 32-bit product is aligned with the
LSB of MR0/SR0.

In multiply and accumulate operations, the multi-
plier sign-extends the 32-bit product (8 bits) and
then adds or subtracts that value from the result
register to form the new 40-bit result.

The multiplier sets the MV/SV overflow bit when the
result falls outside the range of −1 to +1−231.

Fractional mode 1.15 fraction format.

Fractions range from −1 to +1−215. The MSB of the
product is aligned with the MSB of MR1/SR1.
MR1-0/SR1-0 hold a 32-bit fraction (1.31 format) in
the range of −1 to +1−231, and MR2/SR2 contains
the eight sign-extended bits. In total, the MR/SR reg-
isters contains a fraction in 9.31 format.

In multiply and accumulate operations, the multi-
plier adjusts the format of the 32-bit product before
adding or subtracting it from the result register. To
do so, the multiplier sign-extends the product

ADSP-219x DSP Instruction Set Reference 3-7

MAC Instructions

(seven bits), shifts it one bit to the left, and then
adds or subtracts that value from the result register
to form the new 40-bit result.

The multiplier sets the MV/SV overflow bit when the
result falls outside the range of −1 to +1−231.

Status Flags
Two status flags in the ASTAT register record the status of multiplier opera-
tions. MV = 1 records an overflow or underflow state when MR is the
specified result register, and SV = 1 records an overflow or underflow state
when SR is the specified result register.

Multiply

3-8 ADSP-219x DSP Instruction Set Reference

Multiply

Function

Multiplies the input operands and stores the result in the specified result
register. Optionally, inputs may be signed or unsigned, and output may be
rounded. For more information on input and output options, see “Data
Format Options” on page 3-3.

If execution is based on a condition, the multiplier performs the multipli-
cation only if the condition evaluates true, and it performs a NOP operation
if the condition evaluates false. Omitting the condition forces uncondi-
tional execution of the instruction.

MR = DREG1 * DREG2 (RND) ;

SR SS

SU

US

UU

[IF COND] MR = XOP * YOP (RND) ;

SR XOP SS

SU

US

UU

ADSP-219x DSP Instruction Set Reference 3-9

MAC Instructions

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

Output

MR Multiplier Result register. Results are directly avail-
able for x input only in the next conditional ALU,
MAC, or shifter operation or as x or y input in the
next unconditional ALU, MAC, or shifter
operation.

SR Multiplier Feedback register. Results are directly
available for x (SR0 and SR1) or y (SR1 only) input
in the next conditional ALU, MAC, or shifter oper-
ation or as x or y input in the next unconditional
ALU, MAC, or shifter operation.

Status Flags

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Xops Yops

AR, MX0, MX1, MR0, MR1, MR2, SR0, SR1 MY0, MY1, SR1, 0

Affected Flags–set or cleared by the operation Unaffected Flags

MV (if MR used), SV (if SR used) AZ, AN, AV, AC, AS, AQ, SS

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Multiply

3-10 ADSP-219x DSP Instruction Set Reference

Details

This instruction provides a squaring operation (XOP*XOP and DREG1*DREG1)
that performs single-cycle X2 and ΣX2 functions. In squaring operations,
you must use the same register for both x-input operands.

You cannot use DREG form of the multiply instruction in multifunction
instructions.

Examples

MR = AY0 * SI (RND); /* mult DREGs, round result */

SR = AX0 * MX1 (SS); /* mult DREGs, signed inputs */

IF MV MR = MX0 * MY0 (SU); /* mult signed X, unsigned Y */

CCODE = 0x09; NOP; /* set CCODE for SV condition */

IF SWCOND SR = MR0 * SR1 (UU); /* mult unsigned X and Y */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 3-11

MAC Instructions

Multiply with Cumulative Add

Function

Multiplies the input operands, adds the product to the current contents of
the MR or SR register, and then stores the sum in the corresponding result
register. Optionally, inputs may be signed or unsigned, and output may be
rounded. For more information on input and output options, see “Data
Format Options” on page 3-3.

If execution is based on a condition, the multiplier performs the operation
only when the condition evaluates true, and it performs a NOP operation
when the condition evaluates false. Omitting the condition forces uncon-
ditional execution of the instruction.

MR = MR + DREG1 * DREG2 (RND) ;

SR = SR SS

SU

US

UU

[IF COND] MR = MR + XOP * YOP (RND) ;

SR = SR YOP XOP SS

SU

US

UU

Multiply with Cumulative Add

3-12 ADSP-219x DSP Instruction Set Reference

Input

For the unconditional form of this instruction, use any of these data regis-
ters for the DREG inputs:

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

Output

MR Multiplier Result register. Results are directly avail-
able for x input only in the next conditional ALU,
MAC, or shifter operation or as x or y input in the
next unconditional ALU, MAC, or shifter
operation.

SR Multiplier Feedback register. Results are directly
available for either x (SR0 and SR1) or y (SR1 only)
input in the next conditional ALU, MAC, or shifter
operation or as x or y input in the next uncondi-
tional ALU, MAC, or shifter operation.

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Xops Yops

AR, MX0, MX1, MR0, MR1, MR2, SR0, SR1 MY0, MY1, SR1, 0

ADSP-219x DSP Instruction Set Reference 3-13

MAC Instructions

Status Flags

Details

This instruction provides a squaring operation (XOP*XOP and DREG*DREG)
that performs single-cycle X2 and ΣX2 functions. In squaring operations,
you must use the same register for both x-input operands.

You cannot use unconditional (Dreg) form of the multiply instruction in
multifunction instructions.

Examples

MR = MR + AX0 * SI (RND); /* mult DREGs, rnd output, sum */

SR = SR + AX1 * MX0 (SS); /* mult DREGs, sign input, sum */

IF MV MR = MR + MR0 * MY0 (SU);

/* mult X/Yops, un/sign in, sum */

IF MV MR = MR + MR2 * MX1 (UU);

/* mult X/Yops, unsign in, sum */

CCODE = 0x09; NOP; /* set CCODE for SV condition */

IF SWCOND SR=SR+SR0*MY0 (US);

/* mult X/Yops, un/sign in, sum */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Affected Flags–set or cleared by the operation Unaffected Flags

MV (if MR used), SV (if SR used) AZ, AN, AV, AC, AS, AQ, SS

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Multiply with Cumulative Subtract

3-14 ADSP-219x DSP Instruction Set Reference

Multiply with Cumulative Subtract

Function

Multiplies the input operands, subtracts the product from the current
contents of the MR or SR register, and then stores the result in the corre-
sponding destination register. Optionally, inputs may be signed or
unsigned, and output may be rounded. For more information on input
and output options, see “Data Format Options” on page 3-3 .

If execution is based on a condition, the multiplier performs the operation
only when the condition evaluates true, and performs a NOP operation
when the condition evaluates false. Omitting the condition forces uncon-
ditional execution of the instruction.

MR = MR − DREG1 * DREG2 (RND) ;

SR = SR SS

SU

US

UU

[IF COND] MR = MR − XOP * YOP (RND) ;

SR = SR YOP XOP SS

SU

US

UU

ADSP-219x DSP Instruction Set Reference 3-15

MAC Instructions

Input

For the unconditional form of this instruction, you can use any of these
data registers for the DREG inputs:

For the conditional form of this instruction, the input operands are
restricted. Valid XOP and YOP registers are:

Output

MR Multiplier Result register. Results are directly avail-
able for x input only in the next conditional ALU,
MAC, or shifter operation or as x or y input in the
next unconditional ALU, MAC, or shifter
operation.

SR Multiplier Feedback register. Results are directly
available for x (SR0 and SR1) or y (SR1 only) input in
the next conditional ALU, MAC, or shifter opera-
tion or as x or y input in the next unconditional
ALU, MAC, or shifter operation.

Status Flags

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Xops Yops

AR, MX0, MX1, MR0, MR1, MR2, SR0, SR1 MY0, MY1, SR1, 0

Affected Flags–set or cleared by the operation Unaffected Flags

MV (if MR used), SV (if SR used) AZ, AN, AV, AC, AS, AQ, SS

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Multiply with Cumulative Subtract

3-16 ADSP-219x DSP Instruction Set Reference

Details

This instruction provides a squaring operation (XOP*XOP and DREG*DREG)
that performs single-cycle X2 and ΣX2 functions. In squaring operations,
you must use the same register for both x input operands.

You cannot use the unconditional (Dreg) form of the multiply instruction
in multifunction instructions.

Examples

MR = MR - AX0 * SI (RND); /* mult DREGs, rnd output, sub */

SR = SR - AX1 * MX0 (SS); /* mult DREGs, sign input, sub */

IF MV MR = MR - MR0 * MY0 (SU); /* mult X/Yops, unsign in, sub */

IF MV MR = MR - MR2 * MX1 (UU); /* mult X/Yops, unsign in, sub */

CCODE = 0x09; NOP; /* set CCODE for SV condition */

IF SWCOND SR=SR-SR0*MY0 (US); /* mult X/Yops, un/sign in, sub*/

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 3-17

MAC Instructions

MAC Clear

Function

Sets the specified register to 0.

If execution is based on a condition, the multiplier performs the operation
only when the condition evaluates true, and performs a NOP operation
when the condition evaluates false. Omitting the condition forces uncon-
ditional execution of the instruction.

Input

This instruction is a special case of XOP * YOP with the y-input operand set
to 0.

Output

MR Multiplier Result register. Results are directly avail-
able for x input only in the next conditional ALU,
MAC, or shifter operation or as x or y input in the
next unconditional ALU, MAC, or shifter
operation.

SR Multiplier Feedback register. Results are directly
available for x (SR0 and SR1) or y (SR1 only) input in
the next conditional ALU, MAC, or shifter opera-
tion or as x or y input in the next unconditional
ALU, MAC, or shifter operation.

[IF COND] MR = 0 ;

SR

MAC Clear

3-18 ADSP-219x DSP Instruction Set Reference

Status Flags

Details

See description in “Function” on page 3-19.

Examples

MR = 0; /* clears MR */

SR = 0; /* clears SR */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Affected Flags–set or cleared by the operation Unaffected Flags

MV (cleared if MR used), SV (cleared if SR used) AZ, AN, AV, AC, AS, AQ, SS

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 3-19

MAC Instructions

MAC Round/Transfer

Function

Performs a multiply with cumulative add operation in which the y-input
operand is 0 and the zero-product is added to the specified result register.
Rounding (RND) directs the multiplier to round the entire 40-bit value
stored in the result register (MR or SR).

If execution is based on a condition, the multiplier performs the operation
only if the condition evaluates true, and it performs a NOP operation if the
condition evaluates false. Omitting the condition forces unconditional
execution of the instruction.

Input

This instruction is a special case of MR|SR + XOP * YOP with the y-input
operand set to 0.

Output

MR Multiplier Result register. Results are directly avail-
able for x input only in the next conditional ALU,
MAC, or shifter operation or as either x or y input
in the next unconditional ALU, MAC, or shifter
operation.

SR Multiplier Feedback register. Results are directly
available for either x (SR0 and SR1) or y (SR1 only)
input in the next conditional ALU, MAC, or shifter
operation or as either x or y input in the next
unconditional ALU, MAC, or shifter operation.

[IF COND] MR = MR (RND) ;

[IF COND] SR = SR (RND) ;

MAC Round/Transfer

3-20 ADSP-219x DSP Instruction Set Reference

Status Flags

Details

The BIASRND bit in the ICNTL register determines the rounding mode.
Refer to “Rounding Modes” on page 3-4 for more information. For a
complete description of the MAC Round/ Transfer instruction, see
“Function” on page 3-19.

Examples

MR = MR (RND); /* round MR */

IF EQ SR = SR (RND); /* round SR */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Affected Flags–set or cleared by the operation Unaffected Flags

MV (if MR used), SV (if SR used) AZ, AN, AV, AC, AS, AQ, SS

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 3-21

MAC Instructions

MAC Saturate

Function

Tests the upper nine bits of the MR or SR register. If all nine bits have the
same value, the multiplier performs a NOP operation. Otherwise, bit 23
controls whether the MR2:MR1:MR0 or SR2:SR1:SR0 registers are saturated
to 0000:7FFF:FFFF or FFFF:8000:0000. This instruction works indepen-
dently from the MV and SV bits.

Input

None.

Output

MR Multiplier Result register. Results are directly avail-
able for x input only in the next conditional ALU,
MAC, or shifter operation or as x or y input in the
next unconditional ALU, MAC, or shifter
operation.

SR Multiplier Feedback register. Results are directly
available for x (SR0 and SR1) or y (SR1 only) input in
the next conditional ALU, MAC, or shifter opera-
tion or as x or y input in the next unconditional
ALU, MAC, or shifter operation.

SAT MR ;

SAT SR ;

MAC Saturate

3-22 ADSP-219x DSP Instruction Set Reference

Status Flags

Details

The MAC saturation instruction provides control over a multiplication
result that has overflowed or underflowed. It saturates the value in the
specified register only for the cycle in which it executes. It does not enable
a mode that continuously saturates results until disabled, like the ALU.
Used at the end of a series of multiply and accumulate operations, the sat-
uration instruction prevents the accumulator from overflowing.

For every operation it performs, the multiplier generates an overflow sta-
tus signal MV (SV when SR is the specified result register), which is recorded
in the ASTAT status register. MV = 1 when the accumulator result, inter-
preted as a signed (twos complement) number, crosses the 32-bit
boundary, spilling over from MR1 into MR2. That is, the multiplier sets
MV = 1 when the upper nine bits in MR are anything other than all 0s or all
1s. Otherwise, it sets MV = 0.

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV, AC, AS, AQ, SS, MV, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Table 3-2. Saturation Status Bits & Result Registers

MV/SV MSB of MR2/SR2 MR/SR Results

0 0 No change.

0 1 No change.

1 0 00000000 0111111111111111 1111111111111111

1 1 11111111 1000000000000000 0000000000000000

ADSP-219x DSP Instruction Set Reference 3-23

MAC Instructions

Do not permit the result to overflow beyond the MSB of MR2. Otherwise,
the true sign bit of the result is irretrievably lost, and saturation may not
produce a correct result. To reach this state, however, takes more than 255
overflows (MV type).

Examples

SAT MR; /* saturate MR */

SAT SR; /* saturate SR */

See Also

• “Type 9: Compute” on page 8-23

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Generate MAC Status Only: NONE

3-24 ADSP-219x DSP Instruction Set Reference

Generate MAC Status Only: NONE

Function

Performs the indicated unconditional MAC operation but does not load
the results into the MR or SR result registers. Generates MAC status flags
only. Use this instruction to set MAC status without disturbing the con-
tents of the MR and SR result registers.

Input

XOP Limits the registers for the x input operand. Valid XOP registers are:

YOP Limits the registers for the x input operand. Valid YOP registers are:

Output

None. Generates MAC status flags only.

Status Flags

[NONE =] <MAC Operation> ;

Xops

AR, MX0, MX1, MR0, MR1, MR2, SR0, SR1

Yops

MY0, MY1, SR1, 0

Affected Flags–set or cleared by the operation Unaffected Flags

MV AZ, AN, AV, AC, AS, AQ, SS, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 3-25

MAC Instructions

Details

You can use any unconditional MAC operation to generate MAC status
flags.

Examples

MX0 * MY0; /* generate status from mult */

See Also

• “Type 8: Compute | Dreg1 «··· Dreg2” on page 8-22.

Status Flags

3-26 ADSP-219x DSP Instruction Set Reference

ADSP-219x DSP Instruction Set Reference 4-1

Shifter Instructions

4 SHIFTER INSTRUCTIONS

The instruction set provides shifter instructions for performing shift oper-
ations on 16-bit input to yield 40-bit output. Combining these functions,
programs can efficiently implement numeric format control, including
full floating-point representation. Shifter operations include:

• “Arithmetic Shift” on page 4-6

• “Arithmetic Shift Immediate” on page 4-8

• “Logical Shift” on page 4-10

• “Logical Shift Immediate” on page 4-12

• “Normalize” on page 4-14

• “Normalize Immediate” on page 4-17

• “Exponent Derive” on page 4-20

• “Exponent (Block) Adjust” on page 4-23

This chapter describes the individual shifter instructions and the following
related topics:

• “Shifter Registers” on page 4-2

• “Shifter Instruction Options” on page 4-3

Shifter Operation Conventions

4-2 ADSP-219x DSP Instruction Set Reference

• “Shifter Status Flags” on page 4-5

• “Denormalization” on page 4-26

For details on condition codes, see “Condition Code (CCODE) Register”
on page 1-5.

Shifter Operation Conventions

Shifter Registers
As shown in Table 4-1, the shifter has five registers.

Table 4-1. Summary of Shifter Registers

Name Size Description

SR0 16 bits Shifter Result register (low word). SR denotes SR0, SR1, and SR2 com-
bined, which hold the 40-bit shifter result.

SR1 16 bits Shifter Result register (middle word). This register also functions as the
multiplier’s y-input feedback register. SR denotes SR0, SR1, and SR2
combined, which hold the 40-bit shifter result.

SR2 16/8 bits Shifter Result register (high byte). SR denotes SR0, SR1, and SR2 com-
bined, which hold the 40-bit shifter result. Although this register is 16
bits wide, for shifter operations, only the lower eight bits are used.

SB 16/5 bits Shifter Block Exponent register. Although this register is 16 bits wide,
for shifter operations, only the lower five bits are used.
Contains the effective exponent derived from the number with greatest
magnitude in a block of numbers. This value provides the shift code for
all numbers in the block in subsequent NORM or xSHIFT instructions.
The value in this register is sign-extended to form a 16-bit value when
transferred to memory or to other data registers.
Non-shifter instructions can use SB for a 16-bit scratch register.

ADSP-219x DSP Instruction Set Reference 4-3

Shifter Instructions

When a shifter operation writes data to SR1, it sign-extends the value into
SR2, overwriting the previous contents of SR2.

The SB and SE registers are the result registers for the block exponent
adjust (EXPADJ) operation and derive exponent (EXP) operation, respec-
tively. The shifter input register (SI) supplies single-precision input data
to any shifter operation, except EXPADJ. To input the result from an ALU
or MAC operation directly, use the appropriate result register—SR, AR, or
MR.

Shifter Instruction Options
Almost all shifter instructions have two to three options: (HI), (LO), and
(HIX). Each option enables a different exponent detector mode that oper-
ates only while the instruction executes. The shifter interprets and handles
the input data according to the selected mode.

For the derive exponent (EXP) and block exponent adjust (EXPADJ) opera-
tions, the shifter calculates the shift code—the direction and number of
bits to shift—and then stores that value in the SE register. For the ASHIFT,
LSHIFT, and NORM operations, supply the value of the shift code directly to
the SE or SB registers or use the result of a previous EXP or EXPADJ
operation.

SE 16/8 bits Shifter Exponent register. Although this register is 16 bits wide, for shifter
operations, only the lower eight bits are used.
Contains the effective exponent derived from the input data. This value
provides the shift code for a subsequent NORM or xSHIFT instruction.
The value in this register is sign-extended to form a 16-bit value when
transferred to memory or to other data registers.
Non-shifter instructions can use SE for a 16-bit scratch register.

SI 16 bits Shifter Input register. Provides single-precision twos complement input to
shifter instructions.

Table 4-1. Summary of Shifter Registers (Cont’d)

Name Size Description

Shifter Operation Conventions

4-4 ADSP-219x DSP Instruction Set Reference

For the ASHIFT, LSHIFT, and NORM operations:

(HI) Operation references the lower half of the output
field.

(LO) Operation references the upper half of the output
field.

For the exponent derive (EXP) operation:

(HIX) Use this mode for shifts and normalization of
results from ALU operations.

 Input data is the result of an add or subtract opera-
tion that may have overflowed. The shifter
examines the ALU overflow bit AV. If AV=1, the
effective exponent of the input is +1 (this value indi-
cates that overflowed occurred before the EXP
operation executed). If AV=0, no overflow occurred
and the shifter performs the same operations as the
(HI) mode.

(HI) Input data is a single-precision signed number or
the upper half of a double-precision signed number.
The number of leading sign bits in the input oper-
and, which equals the number of sign bits minus
one, determines the shift code.

By default, the EXPADJ operation always operates in
this mode.

(LO) Input data is the lower half of a double-precision
signed number. To derive the exponent on a dou-
ble-precision number, perform the EXP operation
twice, once on the upper half of the input, and once
on the lower half. For details, “Exponent Derive”
on page 4-20.

ADSP-219x DSP Instruction Set Reference 4-5

Shifter Instructions

Shifter Status Flags
Two status flags in the ASTAT register (SS and SV) record the status of
shifter operations.

SS Records the sign of the shifter input operand
SS = 0 positive (+) input
SS = 1 negative (−) input

SV Records overflow or underflow status
SV = 0 no overflow or underflow occurred
SV = 1 overflow or underflow occurred

Arithmetic Shift

4-6 ADSP-219x DSP Instruction Set Reference

Arithmetic Shift

Function

Arithmetically shifts the bits of the operand by the amount (number of
bits) and direction specified by the shift code (value) in the SE register.
A positive value produces a left (up) shift, and a negative value produces a
right (down) shift. Optionally, the shift can be based on a half of the
32-bit output field being shifted. For more information on output
options, see “Shifter Instruction Options” on page 4-3.

If execution is based on a condition, the shifter performs the operation
only if the condition evaluates true, and it performs a NOP operation if the
condition evaluates false. Omitting the condition forces unconditional
execution of the instruction.

With the SR OR option selected, the shifter ORs the shifted output with
the current contents of the SR register and stores that value in SR. Other-
wise, it overwrites the current contents of the SR register with the shifted
output.

Input

The input operand, the value to shift, is supplied in a data register. Use
any of these data registers for the DREG inputs:

Output

SR Shifter Result register contains 40-bit result.

[IF COND] SR = [SR OR] ASHIFT DREG (HI) ;

LO

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 4-7

Shifter Instructions

Status Flags

Details

The shifter sign-extends the 40-bit result to the left, replicating the MSB
of the input, and zero-fills the 40-bit result from the right. Bits shifted out
past either boundary (SR39 or SR0) are dropped.

To shift a double-precision number, shift both halves of the input data
separately, using the same shift code value for both halves. ASHIFT the
upper half of the input data, but LSHIFT the lower half. The first cycle,
ASHIFT the upper half of the input using the (HI) option. The second
cycle, LSHIFT the lower half using both the (LO) and SR OR options. Using
these options prevents the shifter from sign-extending the MSB of the low
word and prevents overwriting the output (upper word) from the previous
ASHIFT operation.

Examples

AR = 3; SE = AR; /* shift code, left shift 3 bits */

SI = 0xB6A3; /* value of upper word of input data */

SR = ASHIFT SI (HI); /* arithmetically shift high word */

See Also

• “Type 16: Shift Reg0” on page 8-34

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Affected Flags–set or cleared by the operation Unaffected Flags

 SV AZ, AN, AV, AC, AS, AQ, SS, MV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Arithmetic Shift Immediate

4-8 ADSP-219x DSP Instruction Set Reference

Arithmetic Shift Immediate

Function

Arithmetically shifts the bits of the operand by the amount (number of
bits) and direction specified by the immediate value. Valid immediate val-
ues range from −128 to 127. A positive value produces a left (up) shift, and
a negative value produces a right (down) shift. Optionally, the shift can be
based on a half of the 32-bit output field being shifted. For more informa-
tion on output options, see “Shifter Instruction Options” on page 4-3.

With the SR OR option selected, the shifter ORs the shifted output with
the current contents of the SR register and stores that value in SR. Other-
wise, it overwrites the current contents of the SR register with the shifted
output.

Input

The input operand (the value to shift) is supplied in a data register. Use
any of these data registers for the DREG inputs:

Output

SR Shifter Result register contains 40-bit result.

SR = [SR OR] ASHIFT DREG BY <imm8> (HI) ;

LO

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 4-9

Shifter Instructions

Status Flags

Details

The shifter sign-extends the 40-bit result to the left, replicating the MSB
of the input, and zero-fills the 40-bit result from the right. Bits shifted out
past either boundary (SR39 or SR0) are dropped.

To shift a double-precision number, shift both halves of the input data
separately, using the same immediate value for both halves. ASHIFT the
upper half of the input data, but LSHIFT the lower half. For the first cycle,
ASHIFT the upper half of the input using the (HI) option. For the second
cycle, LSHIFT the lower half using both the (LO) and SR OR options. These
options prevent the shifter from sign-extending the MSB of the low word
and from overwriting the output (upper word) from the previous ASHIFT
operation.

Examples

SI = 0xB6A3; /* upper word of input data */

SR = ASHIFT SI BY 3 (HI); /* arithmetically shift upper word */

See Also

• “Type 15: Shift Data8” on page 8-33

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Affected Flags–set or cleared by the operation Unaffected Flags

 SV AZ, AN, AV, AC, AS, AQ, SS, MV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Logical Shift

4-10 ADSP-219x DSP Instruction Set Reference

Logical Shift

Function

Logically shifts the bits of the operand by the amount (number of bits)
and direction specified by the shift code (value) in the SE register. A posi-
tive value produces a left (up) shift, and a negative value produces a right
(down) shift. Optionally, the shift can be based on a half of the 32-bit
output field being shifted. For more information on output options, see
“Shifter Instruction Options” on page 4-3.

If execution is based on a condition, the shifter performs the operation
only if the condition evaluates true, and it performs a NOP operation if the
condition evaluates false. Omitting the condition forces unconditional
execution of the instruction.

With the SR OR option selected, the shifter ORs the shifted output with
the current contents of the SR register and stores that value in SR. Other-
wise, it overwrites the current contents of the SR register with the shifted
output.

Input

The input operand (the value to shift) is supplied in a data register. Use
any of these data registers for the DREG inputs:

Output

SR Shifter Result register contains 40-bit result.

[IF COND] SR = [SR OR] LSHIFT DREG (HI) ;

LO

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 4-11

Shifter Instructions

Status Flags

Details

For left shifts (positive shift code), the shifter zero-fills the 40-bit result
from the right. Bits shifted out past the high-order boundary (SR39) are
dropped.

For right shifts (negative shift code), the shifter zero-fills the 40-bit result
from the left. Bits shifted out past the low-order boundary (SR0) are
dropped.

To shift a double-precision number, shift both halves of the input data
separately, using the same shift code value for both halves. For the first
cycle, LSHIFT the upper half of the input using the (HI) option. For the
second cycle, LSHIFT the lower half using both the (LO) and SR OR options.
These options prevent the shifter from overwriting the result (upper word)
from the previous LSHIFT operation.

Examples

AR = 3; SE = AR; /* shift code left shift 3 bits */

AX0 = 0x765D; /* lower word of input data */

SR = SR OR LSHIFT AX0(LO); /* logically shift low word */

See Also

• “Type 16: Shift Reg0” on page 8-34

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Affected Flags–set or cleared by the operation Unaffected Flags

 SV AZ, AN, AV, AC, AS, AQ, SS, MV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Logical Shift Immediate

4-12 ADSP-219x DSP Instruction Set Reference

Logical Shift Immediate

Function

Logically shifts the bits of the operand by the amount (number of bits)
and direction specified by the immediate value. Valid immediate values
range from -128 to 127. A positive value produces a left (up) shift, and a
negative value produces a right (down) shift. Optionally, the shift can be
based on a half of the 32-bit output field being shifted. For more informa-
tion on output options, see “Shifter Instruction Options” on page 4-3.

With the SR OR option selected, the shifter ORs the shifted output with
the current contents of the SR register and stores that value in SR. Other-
wise, it overwrites the current contents of the SR register with the shifted
output.

Input

The input operand (the value to shift) is supplied in a data register. Use
any of these data registers for the DREG inputs:

Output

SR Shifter Result register contains 40-bit result.

SR = [SR OR] LSHIFT BY <imm8> (HI) ;

LO

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 4-13

Shifter Instructions

Status Flags

Details

For left shifts (positive shift code), the shifter zero-fills the 40-bit result
from the right. Bits shifted out past the high-order boundary (SR39) are
dropped.

For right shifts (negative shift code), the shifter zero-fills the 40-bit result
from the left. Bits shifted out past the low-order boundary (SR0) are
dropped.

To shift a double-precision number, shift both halves of the input data
separately, using the same shift code value for both halves. For the first
cycle, LSHIFT the upper half of the input using the (HI) option. For the
second cycle, LSHIFT the lower half using both the (LO) and SR OR options.
These options prevent the shifter from overwriting the result (upper word)
from the previous LSHIFT operation.

Examples

SI = 0xFF6A; /* single-precision input */

SR = SR OR LSHIFTSI BY 3 (LO); /* logically shift low word */

See Also

• “Type 15: Shift Data8” on page 8-33

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Affected Flags–set or cleared by the operation Unaffected Flags

 SV AZ, AN, AV, AC, AS, AQ, SS, MV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Normalize

4-14 ADSP-219x DSP Instruction Set Reference

Normalize

Function

Normalization, in essence, is a fixed- to floating-point conversion opera-
tion that produces an exponent and a mantissa. Optionally, the operation
can be based on a half of the 32-bit output field being shifted. For more
information on output options, see “Shifter Instruction Options” on
page 4-3.

Normalization using this instruction is a two-step process that requires:

• The EXP instruction to derive the exponent for the shift code.

• The NORM instruction to shift the twos complement input by the
calculated shift code, removing its redundant sign bits and aligning
its true sign bit to the high-order bit of the output field.

The EXP operation calculates the number of redundant sign bits in the
input and stores the negative of that value in SE. The NORM operation
negates the value in SE again to generate a positive shift code, ensuring
that the input is shifted left.

If execution is based on a condition, the shifter performs the operation
only if the condition evaluates true, and it performs a NOP operation if the
condition evaluates false. Omitting the condition forces unconditional
execution of the instruction.

With the SR OR option selected, the shifter ORs the shifted output with
the current contents of the SR register and stores that value in SR. Other-
wise, it overwrites the current contents of the SR register with the shifted
output.

[IF COND] SR = [SR OR] NORM DREG (HI) ;

LO

ADSP-219x DSP Instruction Set Reference 4-15

Shifter Instructions

Input

The input operand (the value to shift) is supplied in a data register. Use
any of these data registers for the DREG inputs:

Output

SR Shifter Result register contains 40-bit result.

Status Flags

Details

The (HI) and (LO) options determine how unused bits in the 40-bit out-
put are filled. When HI is selected, the shifter zero-fills the 40-bit result
from the right. When LO is selected, the shifter zero-fills the 40-bit result
to the left. Bits shifted out past the high-order boundary (SR39) are
dropped.

To normalize a double-precision number, normalize both halves of the
input data separately, using the same shift code value for both halves.
First, use the EXP instruction to derive the exponent to use for the shift
code. Then, in the first normalization cycle, NORM the upper half of the
input using the (HI) option. At the next cycle, NORM the lower half using
both the (LO) and SR OR options. These options prevent the shifter from
overwriting the result (upper word) from the previous NORM operation.

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Affected Flags–set or cleared by the operation Unaffected Flags

 SV AZ, AN, AV, AC, AS, AQ, SS, MV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Normalize

4-16 ADSP-219x DSP Instruction Set Reference

Examples

/* Normalize double-precision twos complement data: */

AX1 = 0xF6D4; /* load hi 2s comp data in dreg */

AX0 = 0x04A2; /* load lo 2s comp data in dreg */

SE = EXP AX1 (HI); /* derive exponent on hi word */

SE = EXP AX0 (LO); /* derive exponent on lo word */

SR = NORM AX1 (HI); /* normalize hi word */

SR = SR OR NORM AX0 (LO); /* normalize lo word */

See Also

• “Type 16: Shift Reg0” on page 8-34

• “Denormalization” on page 4-26

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 4-17

Shifter Instructions

Normalize Immediate

Function

Normalization, in essence, is a fixed- to floating-point conversion opera-
tion that produces an exponent and a mantissa. Using a positive constant
for the shift code, it is a one-step process that shifts the twos complement
input left by the specified amount, removing its redundant sign bits and
aligning its true sign bit to the high-order bit of the output field. Option-
ally, the operation can be based on a half of the 32-bit output field being
shifted. For more information on output options, see “Shifter Instruction
Options” on page 4-3.

With the SR OR option selected, the shifter ORs the shifted output with
the current contents of the SR register and stores that value in SR. Other-
wise, it overwrites the current contents of the SR register with the shifted
output.

Input

The input operand, the value to shift, is supplied in a data register. You
can use any of these data registers for the DREG inputs:

Output

SR Shifter Result register contains 40-bit result.

SR = [SR OR] NORM DREG BY <imm8> (HI) ;

LO

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Normalize Immediate

4-18 ADSP-219x DSP Instruction Set Reference

Status Flags

Details

The (HI) and (LO) options determine how unused bits in the 40-bit out-
put are filled. When HI is selected, the shifter zero-fills the 40-bit result
from the right. When LO is selected, the shifter zero-fills the 40-bit result
to the left. Bits shifted out past the high-order boundary (SR39) are
dropped.

To normalize a double-precision number, normalize both halves of the
input data separately, using the immediate value for both halves. In the
first normalization cycle, NORM the upper half of the input using the (HI)
option. In the next cycle, NORM the lower half using both the (LO) and
SR OR options. These options prevent the shifter from overwriting the
result (upper word) from the previous NORM operation.

Examples

/* Normalize a double-precision, twos complement data: */

AX1 = 0xF6D4; /* load hi 2s comp data in dreg */

AX0 = 0x04A2; /* load lo 2s comp data in dreg */

SR = NORM AX1 BY 2 (HI); /* normalize hi word */

SR = SR OR NORM AX0 BY 2 (LO); /* normalize lo word */

Affected Flags–set or cleared by the operation Unaffected Flags

 SV AZ, AN, AV, AC, AS, AQ, SS, MV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 4-19

Shifter Instructions

See Also

• “Type 15: Shift Data8” on page 8-33

• “Denormalization” on page 4-26

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Exponent Derive

4-20 ADSP-219x DSP Instruction Set Reference

Exponent Derive

Function

Derives the effective exponent of the input operand to generate the shift
code value for use in a subsequent normalization operation. The instruc-
tion option (HIX, HI, or LO) determines the resulting shift code. For more
information on output options, see “Shifter Instruction Options” on
page 4-3.

If execution is based on a condition, the shifter performs the operation
only if the condition evaluates true, and it performs a NOP operation if the
condition evaluates false. Omitting the condition forces unconditional
execution of the instruction.

Input

The input operand (the value to shift) is supplied in a data register. Use
any of these data registers for the DREG inputs:

Output

SE Shifter Exponent register contains the 8-bit shift
code.

[IF COND] SE = EXP DREG (HIX) ;

HI

LO

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 4-21

Shifter Instructions

Status Flags

Details

Use the LO option only to derive the exponent for the low word in a dou-
ble-precision twos complement number. Before doing so, you must derive
the exponent on the high word using either the HI or the HIX option. The
result of the EXP operation on the upper half determines the shift code of
the lower half. Unless the upper half contains all sign bits, the SE register
contains the correct shift code to use for both EXP (HI/HIX) and (LO)
operations. If the upper half does contain all sign bits, EXP (LO) totals the
number of sign bits in the double-precision word and stores that value in
SE.

Examples

/* Normalize double-precision twos complement data: */

AX1 = 0xF6D4; /* load hi 2s comp data in dreg */

AX0 = 0x04A2; /* load lo 2s comp data in dreg */

SE = EXP AX1 (HI); /* derive exponent on hi word */

SE = EXP AX0 (LO); /* derive exponent on lo word */

SR = NORM AX1 (HI); /* normalize hi word */

SR = SR OR NORM AX0 (LO); /* normalize lo word */

Affected Flags–set or cleared by the operation Unaffected Flags

SS (Affected by operations using the HI and
HIX options only. Set by the MSB of the input
data when AV = 0. In HIX mode only, set by
the inverted MSB of the input data when AV =
1.)

AZ, AN, AV, AC, AS, AQ, MV, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

Exponent Derive

4-22 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 16: Shift Reg0” on page 8-34

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

ADSP-219x DSP Instruction Set Reference 4-23

Shifter Instructions

Exponent (Block) Adjust

Function

Derives the effective exponent of the number of largest magnitude in a
block of numbers. Use this value for the shift code in subsequent NORM
instructions to normalize each number in the block.

If execution is based on a condition, the shifter performs the operation
only if the condition evaluates true, and it performs a NOP operation if the
condition evaluates false. Omitting the condition forces unconditional
execution of the instruction.

Input

The input operand (the value to shift) is supplied in a data register. Use
any of these data registers for the DREG inputs:

Output

SB Shifter Block Exponent register contains the 5-bit
exponent value.

You must initialize SB to −16 before issuing the first EXPADJ
instruction in the series.

[IF COND] SB = EXPADJ DREG ;

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Exponent (Block) Adjust

4-24 ADSP-219x DSP Instruction Set Reference

Status Flags

Details

This instruction operates in HI mode to derive the exponent. It works on
double-precision, twos complement input only. Possible values for the
result of the EXPADJ operation range from −15 to 0.

To derive the effective exponent for a block of numbers:

1. Initialize the SB register to -16.

SB = -16

This value falls below the range of possible exponent values.

At the end of the last EXPADJ operation, SB contains the exponent
of the number of largest magnitude in the block.

2. For each number in the block, derive the effective exponent.

SB = EXPADJ DREGx;

For the first operation, the shifter derives the exponent and stores it
in SB.

For each subsequent operation, the shifter derives the exponent
and compares the new value with the current value of SB. If the
new value is greater than the current value, the shifter stores the
new value in SB, overwriting the old value. Otherwise, the shifter
discards the new value and the contents of SB remain unchanged.

Affected Flags–set or cleared by the operation Unaffected Flags

AZ, AN, AV, AC, AS, AQ, SS, MV, SV

For information on these status bits in the ASTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 4-25

Shifter Instructions

3. Transfer the contents of SB to SE.

SE = SB;

SE now contains the shift code to use in subsequent NORM opera-
tions to normalize each of the numbers in the block. For details,
see “Normalize” on page 4-14.

Alternatively, you can save the exponent in a data register for use
later in your program.

Examples

/* Normalize double-precision twos complement data: */

AX1 = 0xF6D4; /* load hi 2s comp data in dreg */

AX0 = 0x04A2; /* load lo 2s comp data in dreg */

SB = -16; /* initialize SB */

SB = EXPADJ AX1;

SB = EXPADJ AX0;

SE = SB; /* load block adjusted exp */

SR = NORM AX1 (HI); /* normalize hi word */

SR = SR OR NORM AX0 (LO); /* normalize lo word */

See Also

• “Type 16: Shift Reg0” on page 8-34

• “Condition Code (CCODE) Register” on page 1-5

• “Mode Status (MSTAT) Register” on page 1-8

Denormalization

4-26 ADSP-219x DSP Instruction Set Reference

Denormalization

Function

Denormalization is a shift function in which a predefined exponent
defines the amount and direction of the shift. In essence, denormalization
is a floating- to fixed-point conversion operation. It requires a series of
shifter operations:

• Use the EXP instruction to derive the exponent the shift code, or SE
explicitly loaded with the exponent value. SE must contain the shift
value; for denormalization, you cannot use ASHIFT/LSHIFT with an
immediate value.

• Use the ASHIFT instruction to shift a single-precision number or the
high word of a double-precision number.

• Use the LSHIFT instruction to shift the low word when denormaliz-
ing a double-precision number.

Denormalize a double-precision, twos complement number:

MX1 = -3; /* generate shift code */

SE = MX1; /* load value in SE register */

AX1 = 0xB6A3; /* load high word of input */

AX0 = 0x765D; /* load low word of input */

SR = ASHIFT AX1(HI); /* arith shift high word */

SR = SR OR LSHIFT AX0(LO); /* logically shift low word */

You can reverse shift order, but you must always arithmetically shift the
high word of a double-precision number:

MX1 = -3; /* generate shift code */

SE = MX1; /* load value in SE register */

AX1 = 0xB6A3; /* load high word of input */

AX0 = 0x765D; /* load low word of input */

ADSP-219x DSP Instruction Set Reference 4-27

Shifter Instructions

SR = LSHIFT AX0(LO); /* logically shift low word */

SR = SR OR ASHIFT AX1(HI); /* arith shift high word */

Denormalization

4-28 ADSP-219x DSP Instruction Set Reference

ADSP-219x DSP Instruction Set Reference 5-1

5 MULTIFUNCTION
INSTRUCTIONS

The instruction set provides multifunction instructions—multiple
instructions within a single instruction cycle. Multifunction instructions
can perform (in a single cycle) computations in parallel with data move
operations. Multifunction instructions are combinations of single instruc-
tions delimited with commas and ended with a semicolon, as in:

AR = AX0 - AY0, AX0 = MR1; /* ALU sub and reg-to-reg move */

These operations are the basis for all high-performance DSP functions and
take advantage of the DSP’s inherent parallelism.

This chapter describes each of the multifunction instructions and the
order of execution of multifunction operations.

The multifunction operations include:

• “Order of Execution of Multifunction Operations” on page 5-2

• “Multifunction Instruction Reference” on page 5-3

Multifunction instructions combine compute operations with data move
operations. The multifunction combinations have no status flags specifi-
cally associated with them, but the DSP does update the status flags for
the computations that appear within multifunction instructions. For
details, see “Arithmetic Status (ASTAT) Register” on page 1-3.

Order of Execution of Multifunction Operations

5-2 ADSP-219x DSP Instruction Set Reference

Order of Execution of Multifunction
Operations

The DSP reads registers and memory at the beginning of the processor
pipeline and writes them at the end of it. Normal instruction syntax, read
from left to right, implies this functional ordering. For example:

a) MR = MR+MX0*MY0(UU), MX0 = DM(I0+=M0), MY0 = PM(I4+=M4);

b) DM(I0+=M0) = AR, AR = AX0+AY0;

c) AR = AX0 - AY0, AX0 = MR1;

For memory reads, the DSP executes the computation first, using the cur-
rent value of the input data registers, and then transfers new data from
memory or from another data register, overwriting the contents of the
data registers (a and c).

For memory writes, the DSP transfers the current value from the data reg-
ister to memory first, and then overwrites the data register with the result
of the computation (b).

Even if you alter the order of the operations in your code, execution
occurs in the correct order; the assembler issues a warning (if enabled), but
results are correct at the opcode level. For example:

MX0 = DM(I0+=M0), MY0 = PM(I4+=M4), MR = MR+MX0*MY0(UU);

The altered order of operations appears to reverse the order in which the
DSP executes the operations, but the DSP always executes instructions
using read-first/write-last logic.

The DSP’s read-first/write-last logic enables you to use the same data reg-
ister in more than one multifunction operation. The same data register
can serve as an input operand into the computation and as the destination
or source register for a data move operation. However, except for the

ADSP-219x DSP Instruction Set Reference 5-3

Multifunction Instructions

compute with memory write instruction, the same register cannot serve as
destination for more than one multifunction operation. Doing so gener-
ates unpredictable and erroneous results.

Multifunction Instruction Reference

The multifunction operations include:

• “Compute with Dual Memory Read” on page 5-4

• “Dual Memory Read” on page 5-8

• “Compute with Memory Read” on page 5-11

• “Compute with Memory Write” on page 5-15

• “Compute with Register-to-Register Move” on page 5-19

Compute with Dual Memory Read

5-4 ADSP-219x DSP Instruction Set Reference

Compute with Dual Memory Read

Function

Combines an ALU or MAC operation with a read from memory over the
16-bit DM bus and another read from memory over the 24-bit PM bus.
The restricted register forms—using XOP and YOP registers, not the DREG reg-
ister file—of all ALU or MAC instructions are supported, except for the
MAC saturate instruction (SAT) and the divide primitives (DIVS and DIVQ).
Also, the multifunction ALU and MAC instructions may not use condi-
tional (IF) options.

The compute operation executes first, using the current contents of the
data registers as input operands. Memory read operations execute next,
overwriting the contents of the destination data registers with new data
from memory.

The destination of both memory read operations is an ALU or MAC data
register. The DM bus read loads an ALU or MAC XOP register, and the
PM bus read loads an ALU or MAC YOP register. The memory data is
always right-justified in the destination data register.

Input

The input operands for the compute operation are specific to the particu-
lar operation. For details, see the compute instruction’s individual
description.

• For MAC operations, see “MAC Instructions” on page 3-1.

• For ALU operations, see “Multifunction Instructions” on page 5-1.

<ALU>
<MAC>

, AX0
AX1
MX0
MX1

= DM(I0
I1
I2
I3

+= M0
M1
M2
M3

), AY0
AY1
MY0
MY1

= PM(I4
I5
I6
I7

+= M4
M5
M6
M7

);

ADSP-219x DSP Instruction Set Reference 5-5

Multifunction Instructions

Both data move operations use two DAG registers, index (Ireg) and mod-
ify (Mreg), to generate memory addresses—DAG1 registers for DM bus
access, and DAG2 registers for PM bus access. For details on DAG regis-
ters and data addressing, see “Data Move Instructions” on page 6-1.

DM/DAG1 I0, I1, I2, or I3 (index registers)
M0, M1, M2, or M3 (modify registers)

PM/DAG2 I4, I5, I6, or I7 (index registers)
M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Output

The result register for the compute operation is always the computation
unit’s result registers.

AR ALU operations

MR MAC operations

SR is not a MAC result register for this multifunction
instruction.

The destination register for both data move operations is an ALU or MAC
data register—an XOP register for DM bus access and a YOP register for PM
bus access.

XOP register: AX0, AX1, MX0, or MX1

YOP register: AY0, AY1, MY0, or MY1

Compute with Dual Memory Read

5-6 ADSP-219x DSP Instruction Set Reference

Status Flags

The status flags generated as a result of the computation depend on the
compute operation the instruction performs. For more information, see
the status flags section of the computation’s reference page.

Details

Memory read operations use register indirect addressing with postmodify
(Ireg += Mreg). For linear indirect addressing, you must initialize the Lx
register of the corresponding Ireg register to 0. For circular indirect
addressing, set the buffer’s length and base address with the corresponding
Lreg and Breg registers. For more information on addressing, see the
ADSP-219x/2192 DSP Hardware Reference.

The DM() reference uses the 16-bit DM bus, and the PM() reference uses
the 24-bit PM bus. For PM data moves, the destination data register
receives the 16 MSBs from 24-bit memory, and the PX register catches the
eight LSBs. To use all 24 bits of memory data, transfer the eight LSBs
from PX to another data register; otherwise, the eight LSBs will be lost.

The address of the access, not the PM() or DM() reference, selects the mem-
ory bank. So, the DM reference can access 24-bit memory, and the PM
reference can access 16-bit memory. DM reads of 24-bit memory result in
the specified data register receiving bits 23:8 from memory. PM reads of
16-bit memory result in the specified data register receiving bits 23:8 from
memory. When the PX register is loaded using a 16-bit memory access
(PM reference to 16-bit memory or DM reference to 24-bit memory), the
DSP clears (=0)the eight LSBs of PX register.

This multifunction instruction requires the DSP to fetch three items from
memory: the instruction and two data words. The number of cycles
required to execute it depends on whether the instruction generates bus
conflicts as shown in the following table.

ADSP-219x DSP Instruction Set Reference 5-7

Multifunction Instructions

Examples

AR = AX0 - AY0,

MX1 = DM(I3 += M0),

MY1 = PM(I5 += M4); /* sub and dual read */

AR = AX0 + AY0,

MX0 = DM(I1 += M0),

MY0 = PM(I4 += M4); /* add and dual read */

MR = MX0 * MY0 (SS),

MX0 = DM(I2 += M2),

MY0 = PM(I7 += M7); /* mult and dual read */

See Also

• “Type 1: Compute | DregX«···DM | DregY«···PM” on page 8-17

• “Multifunction Instructions” on page 5-1

• “MAC Instructions” on page 3-1

• “Shifter Instructions” on page 4-1

• “Arithmetic Status (ASTAT) Register” on page 1-3

Execution Conditions

1 cycle If the instruction is already cached and the data are from different memory banks

2 cycles If only one bus conflict occurs—data vs. data or instruction vs. data

3 cycles If two bus conflicts occur—instruction vs. data vs. data

Dual Memory Read

5-8 ADSP-219x DSP Instruction Set Reference

Dual Memory Read

Function

Performs two memory read operations, one over the 16-bit DM bus and
the other over the 24-bit PM bus.

Each read operation moves the contents of the specified memory location
to its respective destination register. The destination of both memory read
operations is an ALU or MAC data register. The DM bus read loads an
ALU or MAC DREGx register, and the PM bus read loads an ALU or MAC
DREGy register. The memory data is always right-justified in the destina-
tion data register.

Input

Both data move operations use two DAG registers, index (Ireg) and mod-
ify (Mreg), to generate memory addresses—DAG1 registers for DM bus
access, and DAG2 registers for PM bus access. For details on DAG regis-
ters and data addressing, see “Data Move Instructions” on page 6-1.

DM/DAG1 I0, I1, I2, or I3 (index registers)
M0, M1, M2, or M3 (modify registers)

PM/DAG2 I4, I5, I6, or I7 (index registers)
M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

AX0
AX1
MX0
MX1

= DM(I0
I1
I2
I3

+= M0
M1
M2
M3

) , AY0
AY1
MY0
MY1

= PM(I4
I5
I6
I7

+= M4
M5
M6
M7

) ;

ADSP-219x DSP Instruction Set Reference 5-9

Multifunction Instructions

Output

The destination register for both data move operations is an ALU or MAC
data register—an XOP register for DM bus access and a YOP register for PM
bus access.

XOP AX0, AX1, MX0, or MX1

YOP AY0, AY1, MY0, or MY1

Status Flags

None affected.

Details

Memory read operations use register indirect addressing with postmodify
(Ireg += Mreg). For linear indirect addressing, initialize the Lreg register
of the corresponding Ireg register to 0. For circular indirect addressing,
set the buffer’s length and base address with the corresponding Lreg and
Breg registers. For more information on addressing, see the
ADSP-219x/2192 DSP Hardware Reference.

The DM reference uses the 16-bit DM bus, and the PM reference uses the
24-bit PM bus. For PM data moves, the destination data register receives
the 16 MSBs from 24-bit memory, and the PX register catches the eight
LSBs. To use all 24 bits of the memory data, transfer the eight LSBs from
PX to another data register; otherwise, the eight LSBs will be lost.

The address of the access, not the PM() or DM() reference, selects the mem-
ory bank. So, the DM() reference can access 24-bit memory, and the PM()
reference can access 16-bit memory. DM reads of 24-bit memory result in
the specified data register receiving bits 23:8 from memory. PM reads of
16-bit memory result in the specified data register receiving bits 23:8 from
memory. When the PX register is loaded using a 16-bit memory access
(PM reference to 16-bit memory or DM reference to 24-bit memory), the
DSP clears (=0) the eight LSBs of PX.

Dual Memory Read

5-10 ADSP-219x DSP Instruction Set Reference

This multifunction instruction requires the DSP to fetch three items from
memory: the instruction and two data words. The number of cycles
required to execute it depends on whether the instruction generates bus
conflicts:

Examples

MX0 = DM(I0+=M0),

MY0 = PM(I5+=M4); /* dual read */

AX1 = DM(I3+=M0),

AY1 = PM(I6+=M4); /* dual read */

See Also

• “Type 1: Compute | DregX«···DM | DregY«···PM” on page 8-17

Execution Conditions

1 cycle If the instruction is already cached and the data are from different memory banks

2 cycles If only one bus conflict occurs—data vs. data or instruction vs. data

3 cycles If two bus conflicts occur—instruction vs. data vs. data

ADSP-219x DSP Instruction Set Reference 5-11

Multifunction Instructions

Compute with Memory Read

Function

Combines an ALU, MAC, or shifter operation with a 16-bit read from
memory over the DM bus. The restricted register forms—using XOP and
YOP registers, not the DREG register file—of all ALU, MAC, or shifter instruc-
tions are supported, except for the MAC saturate instruction (SAT), the
divide primitives (DIVS and DIVQ), and shift immediate. Also, the multi-
function ALU, MAC, and shifter instructions may not use conditional
(IF) options.

The compute operation executes first, using the current contents of the
data registers as input operands. Memory read operation executes next,
overwriting the contents of the destination data register with new data
from memory.

The read operation moves the contents of the memory location to the
specified destination register. The destination of the memory read opera-
tion is an ALU, MAC, or shifter data register. The memory data is always
right-justified in the destination data register.

Input

Valid input operands for the compute depend on the operation’s compu-
tation unit. For more information, see the input descriptions in
“Multifunction Instructions” on page 5-1, “Shifter Instructions” on
page 4-1, and “MAC Instructions” on page 3-1.

<ALU>
<MAC>
<SHIFT>

, DREG = DM (I0
I1
I2
I3
I4
I5
I6
I7

+= M0
M1
M2
M3
M4
M5
M6
M7

) ;

Compute with Memory Read

5-12 ADSP-219x DSP Instruction Set Reference

The data move operation uses two DAG registers, index (Ireg) and mod-
ify (Mreg), to generate memory addresses. Regardless of the DAG registers
used, all accesses occur over the DM bus. For details on DAG registers and
data addressing, see “Data Move Instructions” on page 6-1.

DAG1 I0, I1, I2, or I3 (index registers)
M0, M1, M2, or M3 (modify registers)

DAG2 I4, I5, I6, or I7 (index registers)
M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Output

The result register for the compute operation is always the computation
unit’s result or feedback register.

AR/AF ALU operations

MR/SR MAC operations

SR/SE Shifter operations

The destination register for the data move operation is any register file
data register. Use any of these data registers for the DREG destination:

Status Flags

The status flags generated as a result of the computation depend on the
compute operation the instruction performs. For more information, see
the status flags section of the computation’s reference page.

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 5-13

Multifunction Instructions

Details

The memory read operation uses indirect addressing with postmodify
(Ireg += Mreg) and always accesses 16-bit data over the DM bus. For lin-
ear indirect addressing, initialize the Lx register of the corresponding Ireg
register to 0. For circular indirect addressing, set the buffer’s length and
base address with the corresponding Lreg and Breg registers. For more
information on addressing, see the ADSP-219x/2192 DSP Hardware
Reference.

Since data accesses occur over the DM bus only, PM() and DM() references
are semantically identical in this instruction. The address of the access
selects the memory bank, so this instruction can access 24-bit memory.
If so, the specified data register receives bits 23:8 from memory. Since
PM() reference do not activate the PM bus, the PX register is not filled with
any data.

This multifunction instruction requires the DSP to fetch two items from
memory: the instruction and one data word. The number of cycles
required to execute this instruction depends on whether it generates a bus
conflict:

Examples

AR = AX0 - AY1 + C - 1,

AX0 = DM(I1 += M0); /* ALU operation and mem read */

MR = MX1 * MY0 (SS),

SR1 = PM(I4 += M4); /* MAC operation and mem read */

AR = 3; SE = AR; /* shift code, lshift 3 bits */

Execution Conditions

1 cycle If no bus conflict occurs.

2 cycles If an instruction vs. data conflict occurs on the bus

Compute with Memory Read

5-14 ADSP-219x DSP Instruction Set Reference

SI = 0xB6A3; /* value of hi word of input */

SR = ASHIFT SI (HI),

SI = DM(I0 += M0); /* ashift hi word and mem read */

AR = 3; SE = AR; /* shift code lshift 3 bits */

SI = 0x765D; /* value of lo word of input */

SR = SR OR LSHIFT SI (LO),

SI = DM(I0 += M0); /* lshift lo word and mem read */

See Also

• “Type 4: Compute | Dreg «···» DM” on page 8-19

• “Type 12: Shift | Dreg «···» DM” on page 8-31

• “Multifunction Instructions” on page 5-1

• “MAC Instructions” on page 3-1

• “Shifter Instructions” on page 4-1

• “Arithmetic Status (ASTAT) Register” on page 1-3

ADSP-219x DSP Instruction Set Reference 5-15

Multifunction Instructions

Compute with Memory Write

Function

Combines an ALU, MAC, or shifter operation with a 16-bit write to
memory over the DM bus. The restricted register forms—using XOP and
YOP registers, not the DREG register file—of all ALU, MAC, and shifter
instructions are supported, except for the MAC saturate instruction (SAT),
the divide primitives (DIVS and DIVQ), and shift immediate. Also, the mul-
tifunction ALU, MAC, and shifter instructions may not use conditional
(IF) options.

The write operation executes first, transferring the current contents of the
data register to the specified memory location. The compute operation
executes next, overwriting the contents of the destination data register
with the result.

The source of data for the memory write operation is an ALU, MAC, or
shifter result or feedback register. The data is always right-justified in the
destination memory location.

Input

Valid input operands for the compute depend on the operation’s compu-
tation unit. For more information, see the input descriptions in
“Multifunction Instructions” on page 5-1, “Shifter Instructions” on
page 4-1, and “MAC Instructions” on page 3-1.

DM (I0
I1
I2
I3
I4
I5
I6
I7

+= M0
M1
M2
M3
M4
M5
M6
M7

) = DREG , <ALU>
<MAC>
<SHIFT>

;

Compute with Memory Write

5-16 ADSP-219x DSP Instruction Set Reference

The data move operation uses two DAG registers, index (Ireg) and mod-
ify (Mreg), to generate memory addresses. Regardless of the DAG registers
used, all accesses occur over the DM bus. For details on DAG registers and
data addressing, see “Data Move Instructions” on page 6-1.

DAG1 I0, I1, I2, or I3 (index registers)
M0, M1, M2, or M3 (modify registers)

DAG2 I4, I5, I6, or I7 (index registers)
M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Output

The destination register for the compute operation is always the computa-
tion unit’s result or feedback register.

AR/AF ALU operations

MR/SR MAC operations

SR/SE Shifter operations

The source register for the data move operation is any register file data
register. Use any of these data registers for the DREG source:

Status Flags

The status flags generated as a result of the computation depend on the
compute operation the instruction performs. For more information, see
the status flags section of the computation’s reference page.

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 5-17

Multifunction Instructions

Details

The memory write operation uses indirect addressing with postmodify
(Ireg += Mreg) and always transfers 16-bit data over the DM bus. For lin-
ear indirect addressing, initialize the Lreg register of the corresponding
Ireg register to 0. For circular indirect addressing, set the buffer’s length
and base address with the corresponding Lreg and Breg registers. For more
information on addressing, see the ADSP-219x/2192 DSP Hardware
Reference.

Since transfers occur over the DM bus only, PM() and DM() references are
semantically identical in this instruction. The address of the access selects
the memory bank, so this instruction can access 24-bit memory. If so, the
operation writes bits 15:0 from the specified data register to bits 23:8 of
the specified memory location. Since PM() reference do not activate the
PM bus, the PX register does not supply any data.

This multifunction instruction requires the DSP to fetch one item from
memory and write one item to memory: the instruction and one data
word. The number of cycles required to execute the instruction depends
on whether it generates a bus conflict:

Except for SR2, you can use the same data register in both the compute
and memory write operations—as the result register for the computation
and as the source register for the data move operation.

Execution Conditions

1 cycle If no bus conflict occurs.

2 cycles If an instruction vs. data conflict occurs on the bus

Compute with Memory Write

5-18 ADSP-219x DSP Instruction Set Reference

Examples

DM(I1 += M0) = AX0,

AR = AX0 - AY1 + C - 1; /* mem write and ALU operation */

PM(I4 += M4) = SR1,

MR = MX1 * MY0 (SS); /* mem write and MAC operation */

AR = 3; SE = AR; /* shift code, lshift 3 bits */

SI = 0xB6A3; /* value of hi word of input */

DM(I0 += M0) = SI,

SR = ASHIFT SI (HI); /* mem write and ashift hi word */

AR = 3; SE = AR; /* shift code lshift 3 bits */

SI = 0x765D; /* value of lo word of input */

DM(I0 += M0) = SI,

SR = SR OR LSHIFT SI (LO); /* mem write and lshift lo word */

See Also

• “Type 4: Compute | Dreg «···» DM” on page 8-19

• “Type 12: Shift | Dreg «···» DM” on page 8-31

• “Multifunction Instructions” on page 5-1

• “MAC Instructions” on page 3-1

• “Shifter Instructions” on page 4-1

• “Arithmetic Status (ASTAT) Register” on page 1-3

ADSP-219x DSP Instruction Set Reference 5-19

Multifunction Instructions

Compute with Register-to-Register Move

Function

Combines an ALU, MAC, or shifter operation with a register-to-register
move. The restricted register forms—using XOP and YOP registers, not the
DREG register file—of all ALU, MAC, and shifter instructions are sup-
ported, except for the MAC saturate instruction (SAT), the divide
primitives (DIVS and DIVQ), and shift immediate. Also, the multifunction
ALU, MAC, and shifter instructions may not use conditional (IF) options.

The compute operation executes first, using the current contents of the
data register. The data move executes next, overwriting the contents of the
destination data register with the contents of the source register.

The source and destination of the data move operation is an ALU, MAC,
or shifter data register. The transferred data is always right-justified in the
destination data register.

Input

Valid input operands for the compute depend on the operation’s compu-
tation unit. For more information, see the input descriptions in
“Multifunction Instructions” on page 5-1, “MAC Instructions” on
page 3-1, and “Shifter Instructions” on page 4-1.

<ALU>
<MAC>
<SHIFT>

, DREG1 = DREG2 ;

Compute with Register-to-Register Move

5-20 ADSP-219x DSP Instruction Set Reference

Output

The result register for the compute operation is always the computation
unit’s result or feedback register.

AR/AF ALU operations

MR/SR MAC operations

SR/SE Shifter operations

The source (DREG2) and destination (DREG1) registers for the data move
operation are any register file data registers. Use any of these data registers
for the DREG source and destination:

Status Flags

The status flags generated as a result of the computation depend on the
compute operation the instruction performs. For more information, see
the status flags section of the computation’s reference page.

Details

Except for SR2, you can use the same data register in both the compute
and data move operations—as the result register for the computation and
as the source register for the data move operation.

If you use AR as the source and destination in the data move operation
(AR = AR), the compute operation generates status only—no computation
results. For more information, see “Generate ALU Status Only: NONE”
on page 2-46.

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 5-21

Multifunction Instructions

Examples

AR = AX1 + AY1,MX0 = AR; /* add and reg.-to-reg. move */

MR = MX1 * MY0 (US), MY0 = AR; /* mult and reg-to-reg move */

AR = 3; SE = AR; /* shift code, lshift 3 bits */

SI = 0xB6A3; /* value of hi word of input */

SR = ASHIFT SI (HI),

SI = MR0; /* ashift hi word reg move */

See Also

• “Type 8: Compute | Dreg1 «··· Dreg2” on page 8-22

• “Type 14: Shift | Dreg1 «··· Dreg2” on page 8-32

• “Multifunction Instructions” on page 5-1

• “Shifter Instructions” on page 4-1

• “MAC Instructions” on page 3-1

• “Arithmetic Status (ASTAT) Register” on page 1-3

Compute with Register-to-Register Move

5-22 ADSP-219x DSP Instruction Set Reference

ADSP-219x DSP Instruction Set Reference 6-1

6 DATA MOVE INSTRUCTIONS

The instruction set provides move instructions for transferring data
between the DSP’s data registers, memory, I/O registers, and system con-
trol registers. Transfer operations include reading, writing, loading, and
storing data from one location to another.

This chapter describes each of the move instructions (“Data Move Instruc-
tion Reference” on page 6-21) and the following related topics:

• “Core Registers” on page 6-2

• “PX Register” on page 6-3

• “DAG Registers” on page 6-5

• “Register Load Latencies” on page 6-9

• “Direct Addressing” on page 6-11

• “Indirect Addressing” on page 6-12

• “Circular Data Buffer Addressing” on page 6-14

• “Bit-Reversed Addressing” on page 6-16

Core Registers

6-2 ADSP-219x DSP Instruction Set Reference

Core Registers
Table 6-1 lists the registers that reside in the DSP’s core. Most are 16-bit
registers, but some Reg3 registers are shorter—ASTAT[9], MSTAT[7],
SSTAT[8], LPCSTACKP[9], CCODE[4], PX[8], DMPG1[8], DMPG2[8], IOPG[8],
IJPG[8], and STACKP[8].

Table 6-1. Core Registers

Register Groups

Reg0 (Dreg) Reg1 (G1reg) Reg2 (G2reg) Reg3 (G3reg)

AX0 I0 I4 ASTAT

AX1 I1 I5 MSTAT

MX0 I2 I6 SSTAT

MX1 I3 I7 LPSTACKP

AY0 M0 M4 CCODE

AY1 M1 M5 SE

MY0 M2 M6 SB

MY1 M3 M7 PX

MR2 L0 L4 DMPG1

SR2 L1 L5 DMPG2

AR L2 L6 IOPG

SI L3 L7 IJPG

MR1 IMASK Reserved Reserved

SR1 IRPTL Reserved Reserved

MR0 ICNTL CNTR Reserved

SR0 STACKA LPSTACKA STACKP

ADSP-219x DSP Instruction Set Reference 6-3

Data Move Instructions

As shown, registers are grouped along functional lines:

• Reg0(Dreg) – Consists of data registers.

• Reg1(G1reg) – Consists of DAG1 addressing registers, interrupt
control registers, and the lower part of the PC stack register.

• Reg2(G2reg) – Consists of DAG2 addressing registers, the loop
counter register, and the lower part of the loop PC register.

• Reg3(G3reg) – Consists of status registers, page registers.

PX Register
The PX register, an 8-bit extension register, enables applications to transfer
24-bit data between 24-bit memory and 16-bit data registers. Only 24-bit
accesses of 24-bit memory use the PX register. (So, a 16-bit read of 24-bit
memory does not load the PX register, and a 16-bit write fills the lower
eight bits in 24-bit memory with zeros (0).)

On reads, the PX register stores the lower eight bits of the 24-bit data
transferring from memory to a destination register. On writes, it supplies
them for the data written to 24-bit data space.

Only two instructions use the PX register:

• ALU/MAC with dual indirect memory reads (see page “Compute
with Dual Memory Read” on page 5-4)

• Indirect 24-bit memory read or write with the premodify address-
ing option described on page 6-38 or the postmodify addressing
option described on page 6-42.

PX Register

6-4 ADSP-219x DSP Instruction Set Reference

To access 24-bit memory, you typically use the PM(Ireg += Mreg) syntax
shown here:

AX1 = PM(I0 += M2); /* Read 24 bits, load 16 MSbits in AX1 */

/* PX autoloaded w/8 memory LSbits */

AY1 = PX; /* Load lower 8 bits from PX in AY1 */

PX = MR2; /* Load lower 8 bits into PX */

PM(I4 += M5) = MR1; /* Write all 24 bits from MR1 and PX */

On data reads using the PX register, the DSP transfers the upper 16 bits of
the 24-bit data to the destination data register and the lower eight bits to
the PX register. The data loaded from memory is right-justified in the des-
tination registers.

On data writes using the PX register, the DSP transfers the upper 16 bits of
the 24-bit data from the bus and the lower eight bits from the PX register,
except for indirect writes of 24-bit immediate data, in which the instruc-
tion supplies the eight LSBs. The data written is right-justified in
memory.

PX transfers to and from memory occur automatically and transpar-
ently to the user, but the user must transfer data between the PX
register and the data registers.

Because the DSP has a unified memory space, the address, not the syntax,
determines whether the reference accesses 16-bit memory or 24-bit mem-
ory at run time.

• For 24-bit references that read 16-bit memory, the PX register
receives whatever data the memory system outputs for the eight
LSBs. For internal memory, this value is 0x00.

• For 24-bit references that write 16-bit memory, the DSP discards
the data in the PX register.

ADSP-219x DSP Instruction Set Reference 6-5

Data Move Instructions

DAG Registers
DAGs generate memory addresses for data transfers to and from memory.
To do so, each DAG uses a set of address registers and a page register.
For fast context switching during interrupt servicing, the DAGs provide a
secondary set of address registers. This section describes these registers.

Address Registers
Each DAG has a set of address registers that it uses to generate memory
addresses for loading or storing data in memory. Each DAG can use its
own set of address registers only. DAG1 uses registers 0 through 3, and
DAG2 uses registers 4 through 7.

The DAG address registers are:

• Index (Ireg). Pointer to the current memory address. DAG1 (I0–
I3); DAG2 (I4–I7).

• Modify (Mreg). Offset (from index) value for pre- or post-modify
addressing. DAG1 (M0–M3); DAG2 (M4–M7).

• Length (Lreg). Number of memory locations in a buffer. DAG1
(L0–L3); DAG2 (L4–L7). For linear buffers, you must explicitly set
Lreg = 0; for circular buffers, you must explicitly set Lreg to the
length of the buffer.

• Base (Breg). Starting address of a circular buffer. DAG1 (B0–B3);
DAG2 (B4–B7).Used with circular buffering only.

Each base (Breg) and length (Lreg) register is associated with its specific
index (Ireg) register—I0/B0/L0, I1/B1/L1, …, and I7/B7/L7. Although
you can mix and match any of the index (Ireg) and modify (Mreg)
registers within the same DAG group, you must always use the base (Breg)
and length (Lreg) register that is associated with the particular index
(Ireg) register you use.

DAG Registers

6-6 ADSP-219x DSP Instruction Set Reference

DAG Memory Page Registers (DMPGx)
The DAGs and their associated page registers generate 24-bit addresses for
accessing the data needed by instructions. For data accesses, the DSP’s
unified memory space is organized into 256 pages, with 64K locations per
page. Page registers provide the eight MSBs of the 24-bit address, specify-
ing the page on which the data is located. DAGs provide the 16 LSBs of
the 24-bit address, specifying the exact location of the data on the page.

• DMPG1 is associated with DAG1 (registers I0—I3) indirect memory
accesses as well as immediate, direct memory accesses. It supplies
the upper 8 MSBs for direct memory addressed instructions.

• DMPG2 is associated with DAG2 (registers I4—I7) indirect memory
accesses.

At power up, the DSP initializes both page registers to 0x0. Although ini-
tializing page registers is unneccessary unless the data is located on other
than the current page, good programming practice recommends that you
set the corresponding page register whenever you initialize a DAG index
register (Ireg) to set up a data buffer.

For example,

DMPG1 = 0x12; /* set page register */

/* or DMPG1 = page(data_buffer); for relative addressing */

I2 = 0x3456; /* init data buffer; 24b addr=0x123456 */

L2 = 0; /* define linear buffer */

M2 = 1; /* increment address by one */

/* two stall cycles inserted here */

DM(I2 += M2) = AX0; /* write data to buffer and update I2 */

DAG register DMPGx, (Ireg, Mreg, Lreg, Breg) loads can incur up to
two stall cycles when a memory access based on the initialized reg-
ister immediately follows the initialization.

ADSP-219x DSP Instruction Set Reference 6-7

Data Move Instructions

To avoid these unproductive stall cycles, you can code the memory access
sequence like this:

DMPG1 = 0x12; /* set page register */

/* or DMPG1 = page(data_buffer); for relative addressing */

I2 = 0x3456; /* init data buffer; 24b addr=0x123456 */

L2 = 0; /* define linear buffer */

M2 = 1; /* increment address by one */

AX0 = 0xAAAA;

AR = AX0 − 1;

DM(I2 += M2) = AR; /* write data to buffer and update I2 */

Typically, you load both page registers with the same page value (0-255),
but you can increase memory flexibility by loading each with a different
page value. For example, loading the page registers with different page val-
ues allows you to:

• Separate DMA space from the application’s data space

• Perform high-speed data transfers between pages

This operation is not automatic and requires explicit programming.

Secondary DAG Registers
The secondary set of DAG address registers (Ireg, Mreg, Lreg, and Breg)
enable single-cycle context-switching to support real-time control func-
tions and to reduce overhead associated with interrupt servicing.

By default, system power-up and reset enable the primary set of DAG
address registers. To enable or disable the secondary address registers, set
or clear, respectively, the SEC_DAG bit (bit 6) in MSTAT (for details, see
“Mode Status (MSTAT) Register” on page 1-8). The instruction set
provides three methods for doing so. Each method incurs a latency, a

Register Load Latencies

6-8 ADSP-219x DSP Instruction Set Reference

delay between the time the instruction effecting the change executes and
the time the change takes effect and is available to other instructions.
Table 6-2 on page 6-9 shows the latencies associated with each method.

When switching between primary and secondary DAG registers, applica-
tions need to account for the latency associated with the method they use.
For example, after the MSTAT = data12; instruction, three cycles of latency
occur before the mode change takes effect. So, you must issue at least three
instructions after MSTAT = 0x20; before attempting to use the new set of
DAG registers. Otherwise, you will overwrite the primary set and lose
data.

The ENA/DIS mode instruction is more efficient for enabling and disabling
DSP modes since it incurs no cycles of effect latency. For example:

CCODE = 0x9; NOP;

IF SWCOND JUMP do_data; /* Jump to do_data */

do_data:

ENA SEC_DAG; /* Switch to 2nd DAGs */

ENA SEC_REG; /* Switch to 2nd Dregs */

AX0 = DM(buffer); /* if buffer empty, go */

AR = PASS AX0; /* right to fill and */

IF NE JUMP fill; /* get new data */

RTI;

fill: /* fill routine */

NOP;

buffer: /* buffer data */

NOP;

Register Load Latencies
An effect latency occurs when instructions write or load a value into a reg-
ister, which changes the value of one or more bits in the register. Effect
latency refers to the time it takes after the write or load instruction for the
effect of the new value to become available for other instructions to use.

ADSP-219x DSP Instruction Set Reference 6-9

Data Move Instructions

Effect latency values are given in terms of instruction cycles. A latency of
zero means that the effect of the new value is available on the next instruc-
tion following the write or load instruction. For register changes that have
an effect latency greater than 0, do not try to use the register immediately
after a write or a new value is loaded. Table 6-2 gives the effect latencies
for writes or loads of various interrupt and status registers.

A PUSH or POP PC has one cycle of latency for all SSTAT register bits,
but a PUSH or POP LOOP or STS has one cycle of latency only for the
STKOVERFLOW bit in the SSTAT register.

Table 6-2. Effect Latencies for Register Changes

Register Bits REG = value ENA/DIS
mode

POP STS SET/CLR INT

ASTAT All 1 cycle NA 0 cycles NA

CCODE All 1 cycle NA NA NA

CNTR All 1 cycle1

1 This latency applies only to IF COND instructions, not to the DO UNTIL instruction. Loading the
CNTR register has 0 effect latency for the DO UNTIL instruction.

NA NA NA

ICNTL All 1 cycle NA NA 0 cycles

IMASK All 1 cycle NA 0 cycles NA

MSTAT SEC_REG 1 cycle 0 cycles 1 cycle NA

BIT_REV 3 cycles 0 cycles 3 cycles NA

AV_LATCH 0 cycles 0 cycles 0 cycles NA

AR_SAT 1 cycle 0 cycles 1 cycle NA

M_MODE 1 cycle 0 cycles 1 cycle NA

TIMER 1 cycle 0 cycles 1 cycle NA

SEC_DAG 3 cycles 0 cycles 3 cycles NA

Register Load Latencies

6-10 ADSP-219x DSP Instruction Set Reference

When you load some Group 2 and 3 registers (see Table 6-1 on page 6-2),
the effect of the new value is not immediately available to subsequent
instructions that might use it. For interlocked registers (DAG address and
page registers, IOPG, IJPG), the DSP automatically inserts stall cycles as
needed. For noninterlocked registers, to accommodate the required
latency, insert either the necessary number of NOP instructions or other
instructions that are not dependent upon the effect of the new value.

The noninterlocked registers are:

• Status registers (ASTAT and MSTAT)

• Condition code register (CCODE)

• Interrupt control register (ICNTL)

The number of NOP instructions you must insert is specific to the register
and the load instruction as shown in Table 6-2. A zero (0) latency indi-
cates that the new value is effective on the next cycle after the load
instruction executes. An n latency indicates that the effect of the new value
is available up to n cycles after the load instruction executes. When using a
modified register before the required latency, you may get the register’s
old value.

Since unscheduled or unexpected events (interrupts, DMA operations,
and so on) often interrupt normal program flow, do not rely on these load
latencies when structuring your program’s flow. A delay in executing a
subsequent instruction based on a newly loaded register may result in
erroneous results—whether the subsequent instruction is based on the
effect of the register’s new or old value.

Load latency applies only to the time it takes the loaded value to
effect the change in operation, not to the number of cycles required
to load the new value. A loaded value is always available to a read
access on the next instruction cycle.

ADSP-219x DSP Instruction Set Reference 6-11

Data Move Instructions

Data Addressing Methods
The instruction set supports two addressing methods for accessing mem-
ory data:

• Direct addressing. The user supplies an explicit address in the
instruction.

• Indirect addressing. The DAG address registers generate addresses.

Direct Addressing
Direct addressing is the simplest method to use. An explicit address or a
label included in the instruction specifies the address of a memory access.
A label is a symbolic name that you assign to an address.

Specify an explicit address or label in a data move instruction like this:

DM(I1 += M0) = 0x1234; /* write data 0x1234 and post-modify */

AX0 = DM(0x3333); /* read location 0x3333, put in AX0 */

DM(port1) = AY1; /* write value in AY1 to port1 */

port1: /* port1 address is in linker ldf */

NOP;

When using a label, specify the address that the label references or let the
linker assign the label and address. For details on assigning label addresses,
see the VisualDSP++ Linker and Utilities Manual for 16-Bit DSPs.

Indirect Addressing
Indirect addressing uses a pointer to specify the address of a memory
access. The Index (Ireg) and Modify (Mreg) registers implement address
pointers for indirect addressing. The Ireg supplies the address value, and
the Mreg supplies the modify (offset) value, which, when added to the

Data Addressing Methods

6-12 ADSP-219x DSP Instruction Set Reference

address value, forms the address of the next memory location. The instruc-
tion set provides two address modification options—premodify with no
update and postmodify with update.

• Premodify addressing—no update

Premodify addressing does not permanently change the value of the
Index register (Ireg). In premodify operations, the sum of the Ireg
and Mreg register values provides the address of the memory access.
After the access, the Ireg register retains its original value.

For example, the following sets up a DAG1 linear data buffer using
the premodify option:

#define buffer1 0x2

DMPG1 = page(buffer1);

I0 = buffer1;

M0 = 0x0007;

L0 = 0; /* Unless L = 0 buffer is circular */

AX0 = DM(I0 + M0); /* AX0 receives data @ I0+M0 */

/* I0 retains original value */

For example, this sets up a DAG2 linear data buffer premodified
with a constant:

#define buffer2 0x3

DMPG2 = page(buffer2);

I4 = buffer2;

L4 = 0; /* Unless L=0, buffer is circular */

AX0 = DM(I4 + 0x0007); /* AX0 receives data @ I4+0x0007 */

/* I4 retains original value */

• Postmodify addressing—with update

ADSP-219x DSP Instruction Set Reference 6-13

Data Move Instructions

Postmodify addressing permanently changes the value in the Index
(Ireg) register. In postmodify operations, the current value in Ireg
is used for the memory access. After the access, the DSP adds the
modify value in Mreg to the address value in Ireg and overwrites
the contents in Ireg with the result.

For example, the following sets up a DAG1 linear data buffer using
the postmodify option:

#define buffer3 0x2

DMPG1 = page(buffer3);

I0 = buffer3;

M0 = 0x0007;

L0 = 0; /* Unless L = 0 buffer is circular */

AX0 = DM(I0 += M0); /* AX0 receives data @ I0+M0 */

/* updated with sum of (I0+M0) */

For example, this sets up a a DAG1 linear data buffer postmodified
with a constant:

#define buffer4 0x3

DMPG1 = page(buffer4);

I0 = buffer4;

L0 = 0; /* Unless L=0, buffer is circular*/

AX0 = DM(I0 += 0x0003); /* AX0 receives data @ I0+0x0003 */

/* I0 updated w/sum (I0+0x0003) */

Circular buffers work with postmodify addressing only.

To set up data buffers, you can mix and match any of the Index (Ireg)
and modify (Mreg) registers within the same DAG group (DAG1 or
DAG2), but not between DAG groups.

Data Addressing Methods

6-14 ADSP-219x DSP Instruction Set Reference

Length (Lreg) and base address (Breg) registers, when used, must always
match their corresponding Ireg. For example, the following code is valid,
because it uses corresponding Ireg and Lreg registers:

DMPG1 = page(data_in);

I3 = data_in;

M1 = 0x0007;

L3 = 0; /* Unless Lreg = 0 buffer is circular */

AX0 = DM(I3 += M1);

data_in: /* data_in location could elsewhere */

NOP;

Circular Data Buffer Addressing
Circular data buffers enable applications to reuse the same data buffer; for
example, to store the filter coefficients for a FIR or IIR filter or to act as a
delay line for the convolution of an input signal.

A circular data buffer is a set of memory locations used for storing a set of
data. A circular data buffer is defined by a set of DAG address registers:

• Base (B0-B7) Starting address.
These registers are off core, so you must use the data (Dreg) regis-
ters and this syntax to access them: REG(Breg) = Dreg;

• Index (I0-I7) Current address.
The Ireg points to the current address within the buffer. After the
access, the Ireg is postmodified with the address of next access.

• Modify (M0-M7) Number of locations offset from the current
address. To calculate the address of the next access, the offset value
in Mreg is added to the current Ireg value, and the result is written
to Ireg.

• Length (L0-L7) Number of memory locations in the buffer.

ADSP-219x DSP Instruction Set Reference 6-15

Data Move Instructions

An index pointer (Ireg) steps through the data buffer, forwards or back-
wards, in programmable increments as determined by a modifier (Mreg)
value. The base address (Breg) and the buffer’s length (Lreg) keep the
pointer within the range of the buffer’s memory locations. When the
index pointer steps outside the buffer’s address range, the logic adds or
subtracts the buffer’s length from the index value to wrap the pointer back
to the top or bottom of the buffer, as appropriate.

For example, the following code sets up a circular data buffer:

.section/dm seg_data;

.VAR coeff_buffer[13] = 0,1,2,3,4,5,6,7,8,9,10,11,12;

.section/pm seg_code;

DMPG2 = page(coeff_buffer); /* Set the memory page */

I4 = coeff_buffer; /* Set the current addr */

M5 = 5; /* Set the modify value */

L4 = LENGTH(coeff_buffer); /* If L=0, buffer is linear */

AX0 = I4; /* Copy base addr into AX0 */

REG(B4) = AX0; /* Set buffer’s base addr */

AR = AX1 AND AY0;

AR = DM(I4 += M5); /* Read 1st buffer location */

Figure 6-1, using this code example, demonstrates how the index pointer
steps through the circular buffer.

Circular data buffers work with the postmodify addressing option only.
You must initialize the length (Lreg) register to the length of the buffer.
Positive modify values increment the index register, and negative modify
values decrement it.

Do not place the index pointer for a circular buffer such that it
crosses a memory page boundary during post-modify addressing.
All memory locations in a circular buffer must reside on the same
memory page.

Data Addressing Methods

6-16 ADSP-219x DSP Instruction Set Reference

Bit-Reversed Addressing
Bit-reversed addressing is frequently used in FFT calculations to obtain
results in sequential order. Because FFT operations repeatedly subdivide
data sequences, the data or twiddle factors may be scrambled, loaded or
stored in bit-reversed order.

For performing FFT operations, you can reverse the order in which DAG1
outputs its address bits. DAG2 always outputs its address bits in normal,
big endian format. Since the two DAGs operate independently, you can
use them in tandem, with one generating sequentially ordered addresses
and the other generating bit-reversed addresses, to perform memory reads
and writes of the same FFT data.

To use bit-reversed addressing, set bit 1 in the MSTAT register
(ENA BIT_REV). When enabled, DAG1 outputs all addresses generated by
its Index registers (I0–I3) in bit-reversed order. The reversal applies to the
address value DAG1 outputs only, not to the address value stored in the

Figure 6-1. Stepping Through a Circular Data Buffer

0
1
2
3
4
5
6
7
8
9

10
11
12

1

2

3

4

5

6

7

8

9

10

11

Modify = 5 Length = 13

0
1
2
3
4
5
6
7
8
9

10
11
12

0
1
2
3
4
5
6
7
8
9

10
11
12

0
1
2
3
4
5
6
7
8
9

10
11
12

ADSP-219x DSP Instruction Set Reference 6-17

Data Move Instructions

Index (Ireg) register, so the Ireg value is stored in big endian format.
Bit-reversed mode remains in effect until you clear bit 1 in the MSTAT reg-
ister (DIS BIT_REV).

Bit reversal operates on the binary number that represents the position of
a sample within an array of samples. Using 3-bit addresses, Table 6-3
shows the position of each sample within an array before and after the
bit-reverse operation. For example, sample x4 occupies position 0b100 in
sequential order, but occupies position 0b001 in bit-reversed order. Bit
reversing transposes the bits of a binary number about its midpoint, so
0b001 becomes 0b100, 0b011 becomes 0b110, and so on. Some numbers,
like 0b000, 0b111, and 0b101, remain unchanged and retain their original
position within the array.

Bit-reversing the samples in a sequentially ordered array scrambles their
positions within the array. Bit-reversing the samples in a scrambled array
restores their sequential order within the array.

Table 6-3. Eight-Point Array Sequence Before and After Bit Reversal

Sequential Order Bit-Reversed Order

Sample Binary Binary Sample

x0 000 000 x0

x1 001 100 x4

x2 010 010 x2

x3 011 110 x6

x4 100 001 x1

x5 101 101 x5

x6 110 011 x3

x7 111 111 x7

Data Addressing Methods

6-18 ADSP-219x DSP Instruction Set Reference

In full 16-bit reversed addressing, bits 7 and 8 of the 16-bit address are the
pivot points for the reversal:

FFT operations often need only a few address bits reversed; for example, a
a 16-point sequence requires four reversed bits, and a 1024-bit sequence
requires ten reversed bits. You can bit-reverse address values less than
16-bits—which reverses a specified number of LSBs only. Bit-reversing
less than the full 16-bit Index register value requires that you add the cor-
rect modify value to the index pointer after each memory access to
generate the correct bit-reversed addresses.

To set up bit-reversed addressing for address values less than bits, you
need to determine:

• The number of bits to reverse (N)

Use this value to calculate the modify value.

• The starting address of the linear data buffer

The starting address of an array that the program accesses with
bit-reversed addressing must be zero or an integer multiple of the
number of bits to reverse (starting address = 0, N, 2N, …).

• The first bit-reversed address that the DAG will output

This value is the buffer’s starting address, but with the N LSBs
bit-reversed.

• The initialization value for the index (Ireg)

Initialize the Index (Ireg) register with the bit-reversed value of the
first bit-reversed address the DAG will output.

Normal 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit-reversed 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADSP-219x DSP Instruction Set Reference 6-19

Data Move Instructions

• The correct modify value (Mreg) with which to update the index
pointer after each memory access

Use this formula to calculate the modify value:
Mreg = 2(16-N).

As an example, the following code sets up bit-reversed addressing that
reverses the eight address LSBs (N = 8) of a data buffer with a starting
address of 0x0020 (4N).

We need to determine the:

• First bit-reversed address that DAG1 will output

This value is the buffer’s starting address (0x0020) with bits[7:0]
reversed: 0x0004.

• Initialization value for the index (Ireg) register

This is first bit-reversed address DAG1 will output (0x0004) with
bits[15:0] reversed: 0x2000.

Correct modify value for Mreg

This is 2(16-N) which evaluates to 28 or 0x0100.

Listing 6-1 shows the code for this example.

0x0020 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0x0004 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0x0004 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0x2000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Data Addressing Methods

6-20 ADSP-219x DSP Instruction Set Reference

Listing 6-1. Bit-Reversed Addressing, 8 LSBs

br_adds:

I4 = read_in; /* DAG2 pointer to input samples */

I0 = 0x0200; /* Base address of bit_rev output */

M4 = 1; /* DAG2 increment by 1 */

M0 = 0x0100; /* DAG1 increment for 8-bit rev. */

L4 = 0; /* Linear data buffer */

L0 = 0; /* Linear data buffer */

CNTR = 8; /* 8 samples */

ENA BIT_REV; /* Enable DAG1 bit reverse mode */

DO brev UNTIL CE;

AY1 = DM(I4+=M4); /* Read samples sequentially */

brev: DM(I0+=M0) = AY1; /* Write results nonsequentially */

DIS BIT_REV; /* Disable DAG1 bit reverse mode */

RTS; /* Return to calling routine */

read_in: /* input buffer, could be .extern */

NOP;

ADSP-219x DSP Instruction Set Reference 6-21

Data Move Instructions

Data Move Instruction Reference
Data move operations include:

• “Register-to-Register Move” on page 6-22

• “Direct Memory Read/Write—Immediate Address” on page 6-24

• “Direct Register Load” on page 6-27

• “Indirect 16-Bit Memory Read/Write—Postmodify” on page 6-30

• “Indirect 16-Bit Memory Read/Write—Premodify” on page 6-34

• “Indirect 24-Bit Memory Read/Write—Postmodify” on page 6-38

• “Indirect 24-Bit Memory Read/Write—Premodify” on page 6-42

• “Indirect DAG Register Write (Premodify or Postmodify), with
DAG Register Move” on page 6-46

• “Indirect Memory Read/Write—Immediate Postmodify” on
page 6-50

• “Indirect Memory Read/Write—Immediate Premodify” on
page 6-53

• “Indirect 16-Bit Memory Write—Immediate Data” on page 6-56

• “Indirect 24-Bit Memory Write—Immediate Data” on page 6-58

• “External I/O Port Read/Write” on page 6-61

• “System Control Register Read/Write” on page 6-64

• “Modify Address Register—Indirect” on page 6-67

• “Modify Address Register—Direct” on page 6-69

Register-to-Register Move

6-22 ADSP-219x DSP Instruction Set Reference

Register-to-Register Move

Function

Moves the contents in the source register to the destination register. The
contents in the source register are right-justified in the destination
register.

Source

REG2 can be any core register listed in Table 6-1 on page 6-2.

Destination

REG1 can be any core register listed in Table 6-1 on page 6-2.

Details

For transfers in which the destination register is MR1 or SR2, this operation
sign-extends into MR2 or SR2, respectively, the most significant bit of the
value stored in MR1 or SR1.

For transfers in which the destination register is smaller than the source
register, this operation right-justifies the value in the destination register,
such that bit 0 maps to bit 0, and truncates the extraneous high-order bits.

For transfers in which the source register is smaller than the destination
register, the value is sign-extended.

Dreg1 = Dreg2 ;

G1reg1 G1reg2

G2reg1 G2reg2

G3reg1 G3reg2

ADSP-219x DSP Instruction Set Reference 6-23

Data Move Instructions

When loading the CCODE, ASTAT, or MSTAT register, the effect of the new
value is not available immediately to subsequent instructions that are
based on it. You must insert the required number of NOP instructions
before using the modified register, or your instruction may execute based
the old value. For more information, see “Register Load Latencies” on
page 6-9).

SSTAT is a read-only register, so SSTAT = reg; is invalid instruction syntax.

Examples

I0 = I4; /* load I0 from I4 */

CCODE = AY0; /* load CCODE from AY0 */

DMPG1 = DMPG2; /* load DMPG1 from DMPG2 */

See Also

• “Type 17: Any Reg «···Any Reg” on page 8-35

• “Core Registers” on page 6-2

• “PX Register” on page 6-3

• “DAG Registers” on page 6-5

• “Register Load Latencies” on page 6-9

• “Direct Register Load” on page 6-27

Direct Memory Read/Write—Immediate Address

6-24 ADSP-219x DSP Instruction Set Reference

Direct Memory Read/Write—Immediate Address

Function

The memory read operation moves the contents of the memory location
specified by an immediate 16-bit value or label into the destination
register.

The memory write operation moves the contents of the source register
into the memory location specified by an immediate 16-bit value or label.

Source

Reads The data comes from the memory location specified
by an immediate 16-bit value or label.

Writes The data comes from any register file data (Dreg)
register or Index (Ireg) or Modify (Mreg) register:

Dreg
Ireg
Mreg

= DM(<Imm16>) ;

DM(<Imm16>) = Dreg
Ireg
Mreg

;

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

DAG1/DAG2 Index and Modify Registers

 I0, I1, I2, I3, I3, I4, I6, I7, M0, M1, M2, M3, M4, M5, M6, M7

ADSP-219x DSP Instruction Set Reference 6-25

Data Move Instructions

Destination

Reads The data goes to any register file data (Dreg) register
or Index (Ireg) or Modify (Mreg) register.

Writes The data goes to the memory location specified by
an immediate 16-bit value or label.

Details

This instruction is typically used by memory-intensive applications that
must make highly efficient use of memory. Applications that use absolute
memory locations need to configure and use them with care. For informa-
tion on using absolute memory locations, see the VisualDSP++ Linker and
Utilities Manual for 16-Bit DSPs and the VisualDSP++ Assembler Manual
for 16-Bit DSPs.

This instruction transfers 16-bit data only over the DM bus. It does not
write or read from the PX register.

When you load 16-bit data into MR1 or SR1, it is sign-extended into MR2 or
SR2, respectively.

DMPG1 provides the eight MSBs of the address. For details, see “DAG
Memory Page Registers (DMPGx)” on page 6-6.

When loading a DAG address or page register, the new value is not avail-
able immediately to subsequent instructions that use the register for a
memory access. The DAG address registers have a two-cycle latency.

Because DAG registers are interlocked, the DSP automatically
inserts up to two stall cycles, as needed, to ensure that subsequent
instructions use the new address value.

Direct Memory Read/Write—Immediate Address

6-26 ADSP-219x DSP Instruction Set Reference

For efficient programming, insert two instructions that do not use the
modified register in the two instruction lines immediately following the
load instruction. For example, separate the DMPG1 load and the memory
access with two other DAG register loads:

I0 = buffer; /* Ireg load, data_in defined */

NOP; /* any two non-DAG1 instructions */

NOP; /* can execute here without latencies */

AX0 = DM(I0 + 0); /* memory access */

Examples

SI = DM(data_in); /* Dreg load, label defined */

I4 = DM(coeff_buffer);

/* Ireg load, label defined */

M5 = DM(coeff_buffer);

/* Mreg load, label defined */

DM(coeff_buffer) = AX1;

/* Dreg load, label defined */

DM(data_in) = I0; /* Ireg load, label defined */

DM(data_in) = M1; /* Mreg load, label defined */

See Also

• “Type 3: Dreg/Ireg/Mreg «···» DM/PM” on page 8-18

• “Direct Addressing” on page 6-11

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

ADSP-219x DSP Instruction Set Reference 6-27

Data Move Instructions

Direct Register Load

Function

Loads the destination register with immediate data supplied in the instruc-
tion. The data is right-justified in the destination register.

Use the <data16> instruction to load a value into the data registers, to ini-
tialize DAG address registers, to enable or disable interrupts, and to load
certain stack registers.

Use the <data12> instruction to load G3reg registers that are less than
16 bits wide. Load the short registers to set or clear one or more bits in the
status registers, to set up flag conditions, to set the various page registers,
and to load certain stack registers. For a list of the core registers, see
Table 6-1 on page 6-2.

Source

The <data16> instruction accepts a 16-bit immediate value, a pointer to a
16-bit variable, or a LENGTH(16-bit variable).

The <data12> instruction accepts only an immediate value less than or
equal to 12 bits.

Dreg = <Data16> ;

G1reg

G2reg

G3reg = <Data12> ;

Direct Register Load

6-28 ADSP-219x DSP Instruction Set Reference

Destination

The <data16> instruction places the data in any register group 0, 1, or 2
register:

The <data12> instruction places the data in any register group 3 register:

SSTAT is a read-only register.

Details

When you load 16-bit data into MR1 or SR1, it is sign-extended into MR2 or
SR2, respectively.

When using the <data12> instruction to load a 16-bit register (SE, or SB),
the destination register’s MSBs are filled with zeros (0).

When loading certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

Register Group 0 (Dreg), 1 (G1reg), & 2 (G2reg) Registers

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI, I0,
I1, I2, I3, I3, I4, I6, I7, M0, M1, M2, M3, M4, M5, M6, M7, L0, L1, L2, L3, L4, L5, L6, L7,
IMASK, IRPTL, ICNTL, STACKA, CNTR, LPCSTACKA, SB, SE

Register Group 3 (G3reg) Registers (writable)

ASTAT, MSTAT, LPCSTACKP, CCODE, SE, SB, PX, DMPG1, DMPG2, IOPG, IJPG,
STACKP

ADSP-219x DSP Instruction Set Reference 6-29

Data Move Instructions

Examples

/* Loading 16-bit registers with 16-bit values: */

AR = 0x5409; /* Dreg put data */

I2 = ;coeff_buffer

/* Ireg put addr, label defined */ see definition on page 6-15

M0 = 0x1234; /* Mreg put data */

L3 = LENGTH(coeff_buffer);

/* put length, label defined */ see definition on page 6-15

/* Loading 12-bit Reg3 registers with short constants */

STACKP = 0;

MSTAT = 0x4; /* Enable AV_latch */

See Also

• “Type 6: Dreg «··· Data16” on page 8-20

• “Type 7: Reg1/2 «··· Data16” on page 8-21

• “Type 33: Reg3 «··· Data12” on page 8-52

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

• “System Control Register Read/Write” on page 6-64

Indirect 16-Bit Memory Read/Write—Postmodify

6-30 ADSP-219x DSP Instruction Set Reference

Indirect 16-Bit Memory Read/Write—Postmodify

Function

Transfers 16-bit data between memory and any of the core registers (Dreg,
G1reg, G2reg, or G3reg) over the DM bus. The current value in Ireg pro-
vides the address for the memory access. After the access, Ireg is updated
with the sum of its current value and the value in Mreg.

Source

Reads The 16-bit data comes from the memory location
pointed to by the address in the Ireg, which is
modified after the access by the value in the Mreg:

• DM/DAG1—I0, I1, I2, or I3 (index regis-
ters) M0, M1, M2, or M3 (modify registers)

• PM/DAG2—I4, I5, I6, or I7 (index regis-
ters) M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Dreg = DM(Ireg += Mreg) ;

G1reg

G2reg

G3reg

DM(Ireg += Mreg) = Dreg ;

G1reg

G2reg

G3reg

ADSP-219x DSP Instruction Set Reference 6-31

Data Move Instructions

Writes The 16-bit data comes from any core register,
except SSTAT, which is a read-only register. For
information on core registers, see Table 6-1 on
page 6-2.

Destination

Reads The 16-bit data goes to any core register. For infor-
mation on core registers, see Table 6-1 on page 6-2.

Writes The 16-bit data goes to the memory location
pointed to by the address in the Ireg, which is
modified after the access by the value in the Mreg.

Details

On reads and writes, the data is right-justified in the destination location
(bit0 of the transfer data maps to bit0 of the destination). If the width of
the destination register is less than 16 bits, the extraneous MSBs of the
data are discarded. On writes from source registers less than 16 bits, the
missing high-order bits are zero-filled in the memory location.

As shown in Figure 6-2, if this instruction actually references 24-bit data
space at runtime, a read operation loads bits 23:8 from the memory loca-
tion into bits 15:0 of a 16-bit register (or bits 23:16 into bits 7:0 of an
8-bit register, and so on). The low-order bits of the memory location are
ignored. Conversely, a write operation stores bits 15:0 from a 16-bit
source register into bits 23:8 of the 24-bit memory location and zero-fills
the low-order bits 7:0.

To implement a linear data buffer, initialize the Ireg’s corresponding Lreg
to 0. For details, see “DAG Registers” on page 6-5.

To implement circular buffer addressing, initialize the Ireg’s correspond-
ing Lreg to the length of the buffer and its corresponding Breg with the
base address of the buffer. For details, see “Circular Data Buffer Address-
ing” on page 6-14.

Indirect 16-Bit Memory Read/Write—Postmodify

6-32 ADSP-219x DSP Instruction Set Reference

To perform bit-reversed addressing, use DAG1 address registers. For
details, see “Bit-Reversed Addressing” on page 6-16.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provide the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

When loading certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

Examples

/* This code segment demonstrates indirect 16-bit Memory Reads /*

/* and Writes with postmodify and incurs no stall cycles */

#define taps 10

.SECTION/DM seg_data;

.VAR signal_buffer[taps];

.VAR coeffs[taps];

Figure 6-2. 24-bit DM Bus Transactions

23 08 7

23:8

15:0

15 0

ABCDIJKL EFGHQRSTUVWX MNOP

IJKLQRSTUVWX MNOPRegister

Memory

Ignored on reads,
zero-filled on writes

ADSP-219x DSP Instruction Set Reference 6-33

Data Move Instructions

.SECTION/PM seg_code;

init:

I0 = coeff_buffer;

/* Ireg put addr, label defined */see definition on page 6-15
I5 = coeffs;

M0 = 1;

M5 = 1;

L0 = LENGTH(coeff_buffer);

L5 = LENGTH(coeffs);

AX0 = I0;

AX1 = I5;

REG(B0) = AX0;

REG(B5) = AX1;

DMPG1 = 0x0;

DMPG2 = 0x0;

CNTR = taps;

DO clear UNTIL CE;

DM(I5 += M5) = 0;

clear:

DM(I0 += M0) = 0;

See Also

• “Type 32: Any Reg «···» PM/DM” on page 8-50

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

Indirect 16-Bit Memory Read/Write—Premodify

6-34 ADSP-219x DSP Instruction Set Reference

Indirect 16-Bit Memory Read/Write—Premodify

Function

Transfers 16-bit data between memory and any of the core registers (Dreg,
G1reg, G2reg, or G3reg) over the DM bus. The value in Mreg added to the
value in Ireg provides the address for the memory access. No update
occurs after the access, so Ireg retains its original value.

Source

Reads The 16-bit data comes from the memory location
addressed by the Ireg plus Mreg; the Ireg retains its
original value:

• DM/DAG1—I0, I1, I2, or I3 (index regis-
ters) M0, M1, M2, or M3 (modify registers)

• PM/DAG2—I4, I5, I6, or I7 (index regis-
ters) M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Dreg = DM(Ireg + Mreg) ;

G1reg

G2reg

G3reg

DM(Ireg + Mreg) = Dreg ;

G1reg

G2reg

G3reg

ADSP-219x DSP Instruction Set Reference 6-35

Data Move Instructions

Writes The 16-bit data comes from any core register,
except SSTAT, which is a read-only register. For
information on core registers, see Table 6-1 on
page 6-2.

Destination

Reads The 16-bit data goes to any core register. For infor-
mation on core registers, see Table 6-1 on page 6-2.

Writes The 16-bit data goes to the memory location
addressed by the Ireg plus Mreg; the Ireg retains its
original value.

Details

On reads and writes, the data is right-justified in the destination location
(bit0 of the transfer data maps to bit0 of the destination). If the width of
the destination register is less than 16 bits, the overflow MSBs of the data
are discarded. On writes from source registers less than 16 bits, the miss-
ing high-order bits are zero-filled in the memory location.

If this instruction actually references 24-bit data space at runtime, a read
operation loads bits 23:8 from the memory location into bits 15:0 of a
16-bit register (or bits 23:16 into bits 7:0 of an 8-bit register, and so on).
The low-order bits of the memory location are ignored. Conversely, a
write operation stores bits 15:0 from a 16-bit source register into bits 23:8
of the 24-bit memory location and zero-fills the low-order bits 7:0. For
details, see Figure 6-2 on page 6-32.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provides the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

Indirect 16-Bit Memory Read/Write—Premodify

6-36 ADSP-219x DSP Instruction Set Reference

When loading certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

You cannot use circular buffering with this instruction, so you must ini-
tialize the Ireg’s corresponding Lreg to 0. For details, see “Indirect
Addressing” on page 6-12.

To perform bit-reversed addressing, you must use DAG1 address registers.
For details, see “Bit-Reversed Addressing” on page 6-16.

Examples

.SECTION/DM seg_data;

.VAR look_tbl[3] = 0x0, 0x1, 0x2;

.SECTION/PM seg_code;

cases:

DMPG1 = 0x1;

I0 = look_tbl;

M0 = 0;

M1 = 1;

M2 = 2;

L0 = 0;

AR = AX0 + AX1;

IF EQ JUMP cases_end;

case1:

AY0 = DM(I0 + M0); /* read from premodified location */

IF GT JUMP cases_end;

case2:

DM(I0 + M1) = AY0; /* write to premodified location */

cases_end:

NOP;

ADSP-219x DSP Instruction Set Reference 6-37

Data Move Instructions

See Also

• “Type 32: Any Reg «···» PM/DM” on page 8-50

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

Indirect 24-Bit Memory Read/Write—Postmodify

6-38 ADSP-219x DSP Instruction Set Reference

Indirect 24-Bit Memory Read/Write—Postmodify

Function

Transfers 24-bit data between memory and any of the core registers (Dreg,
G1reg, G2reg, or G3reg) over the PM bus. Employs the PX register to hold
the low-order bits 7:0 while it transfers the high-order bits 23:8 directly
between memory and the destination register.

The current value in Ireg provides the address for the memory access.
After the access, Ireg is updated with the sum of its current value and the
value in Mreg.

Source

Reads The 24-bit data comes from the memory location
pointed to by the address in the Ireg, which is
modified after the access by the value in the Mreg:

• DM/DAG1—I0, I1, I2, or I3 (index regis-
ters) M0, M1, M2, or M3 (modify registers)

• PM/DAG2—I4, I5, I6, or I7 (index regis-
ters) M4, M5, M6, or M7 (modify registers)

Dreg = PM(Ireg += Mreg) ;

G1reg

G2reg

G3reg

PM(Ireg += Mreg) = Dreg ;

G1reg

G2reg

G3reg

ADSP-219x DSP Instruction Set Reference 6-39

Data Move Instructions

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Writes The 24-bit data comes from any core register,
except SSTAT, which is a read-only register. For
information on core registers, see Table 6-1 on
page 6-2.

Destination

Reads The 24-bit data goes to any core register. For infor-
mation on core registers, see Table 6-1 on page 6-2.

Writes The 24-bit data goes to the memory location
pointed to by the address in the Ireg, which is
modified after the access by the value in the Mreg.

Details

Unless this instruction is already in the instruction cache, it causes a
one-cycle stall.

The 8-bit PX register holds the eight low-order bits of 24-bit data transfer-
ring between memory and a register. On reads, it automatically stores
these bits; on writes, it supplies them. On reads, you must explicitly move
the contents of PX into a data register; on writes, you must explicitly load
the PX register with the value of the low-order bits. For details, see “PX
Register” on page 6-3 .

On reads, the high-order bits 23:8 of the memory location are right-justi-
fied in the destination register (bit8 of the transfer data maps to bit0 of
the destination register). If the width of the destination register is less than
16 bits, the overflow MSBs of the data are discarded. For details, see
Figure 6-2 on page 6-32.

Indirect 24-Bit Memory Read/Write—Postmodify

6-40 ADSP-219x DSP Instruction Set Reference

On writes, bits 15:0 of the source register are right-justified in the mem-
ory location (bit0 of the transfer data maps to bit8 of the memory
location). If the width of the source register is less than 16 bits, the miss-
ing high-order bits of the memory location are zero-filled.

If a PM memory read instruction references 16-bit data space at runtime,
the PX register is zeroed.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provides the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

When you load certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

To implement a linear data buffer, you must initialize the Ireg’s corre-
sponding Lreg to 0. For details, see “Indirect Addressing” on page 6-12.

To implement circular buffer addressing, you must initialize the Ireg’s
corresponding Lreg to the length of the buffer and its corresponding Breg
with the base address of the buffer. For details, see “Circular Data Buffer
Addressing” on page 6-14.

To perform bit-reversed addressing, you must use DAG1 address registers.
For details, see “Bit-Reversed Addressing” on page 6-16.

Examples

#define more_taps 10

.SECTION/DM seg_dmda;

.VAR dmdata_buffer[more_taps];

.SECTION/PM seg_pmda;

.VAR pmdata_coeffs[more_taps];

.SECTION/PM seg_code;

more_init:

ADSP-219x DSP Instruction Set Reference 6-41

Data Move Instructions

I0 = dmdata_buffer; /* dmdag Ireg write/output address */

I5 = pmdata_coeffs; /* pmdag Ireg read/input address */

M0 = 1;

M5 = 1;

L0 = LENGTH(dmdata_buffer);

L5 = LENGTH(pmdata_coeffs);

AX0 = I0;

AX1 = I5;

REG(B0) = AX0;

REG(B5) = AX1;

DMPG1 = 0x0;

DMPG2 = 0x0;

CNTR = taps;

SI = 0xB6A3; /* shifter input word */

DO clear UNTIL CE;

SR1 = PM(I5 += M5); /* read upper 16-bits & post modify */

SR0 = PX; /* read lower 8-bits from PX */

SR = SR OR ASHIFT SI BY 3 (HI); /* ashift upper word */

more_clear:

DM(I0 += M0) = SR0;

/* 16-bit write SR0 & post modify address */

See Also

• “Type 32: Any Reg «···» PM/DM” on page 8-50

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

Indirect 24-Bit Memory Read/Write—Premodify

6-42 ADSP-219x DSP Instruction Set Reference

Indirect 24-Bit Memory Read/Write—Premodify

Function

Transfers 24-bit data between memory and any of the core registers (Dreg,
G1reg, G2reg, or G3reg) over the PM bus. Employs the PX register to hold
the low-order bits 7:0 while it transfers the high-order bits 23:8 directly
between memory and the destination register. The value in Mreg added to
the value in Ireg provides the address for the memory access. No update
occurs after the access, so Ireg retains its original value.

Source

Reads The 24-bit data comes from the memory location
addressed by the Ireg plus Mreg; the Ireg retains its
original value:

• DM/DAG1—I0, I1, I2, or I3 (index regis-
ters) M0, M1, M2, or M3 (modify registers)

• PM/DAG2—I4, I5, I6, or I7 (index regis-
ters) M4, M5, M6, or M7 (modify registers)

Dreg = PM(Ireg + Mreg) ;

G1reg

G2reg

G3reg

PM(Ireg + Mreg) = Dreg ;

G1reg

G2reg

G3reg

ADSP-219x DSP Instruction Set Reference 6-43

Data Move Instructions

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Writes The 24-bit data comes from any core register,
except SSTAT, which is a read-only register. For
information on core registers, see Table 6-1 on
page 6-2.

Destination

Reads The 24-bit data goes to any core register. For infor-
mation on core registers, see Table 6-1 on page 6-2.

Writes The 24-bit data goes to the memory location
addressed by the Ireg plus Mreg; the Ireg retains its
original value

Details

Unless this instruction is already in the instruction cache, it causes a
one-cycle stall.

The 8-bit PX register holds the eight low-order bits of 24-bit data transfer-
ring between memory and a register. On reads, it automatically stores
these bits, and on writes, it supplies them. On reads, you must explicitly
move the contents of PX into a data register, and on writes, you must
explicitly load the PX register with the value of the low-order bits. For
details, see “PX Register” on page 6-3.

On reads, the high-order bits 23:8 of the memory location are right-justi-
fied in the destination register (bit8 of the transfer data maps to bit0 of
the destination register). If the width of the destination register is less than
16 bits, the overflow MSBs of the data are discarded. For details, see
Figure 6-2 on page 6-32.

Indirect 24-Bit Memory Read/Write—Premodify

6-44 ADSP-219x DSP Instruction Set Reference

On writes, bits 15:0 of the source register are right-justified in the mem-
ory location (bit0 of the transfer data maps to bit8 of the memory
location). If the width of the source register is less than 16 bits, the miss-
ing high-order bits of the memory location are zero-filled.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provides the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

When you load certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

You cannot use circular buffering with this instruction, so you must ini-
tialize the Ireg’s corresponding Lreg to 0. For details, see “Indirect
Addressing” on page 6-12.

To perform bit-reversed addressing, you must use DAG1 address registers.
For details, see “Bit-Reversed Addressing” on page 6-16.

Examples

.SECTION/DM seg_data;

.VAR lookup_tbl[3] = 0x0, 0x1, 0x2;

.SECTION/PM seg_code;

pmrw_cases:

DMPG1 = 0x1;

I0 = lookup_tbl;

M0 = 0;

M1 = 1;

M2 = 2;

L0 = 0;

AR = AX0 + AX1;

IF EQ JUMP cases_end;

ADSP-219x DSP Instruction Set Reference 6-45

Data Move Instructions

pmrw_case1:

SR1 = PM(I0 + M1); /* premodify and read upper 16-bits */

SR0 = PX; /* read lower 8-bits from PX */

SR = SR OR ASHIFT SI BY 3 (HI); /* ashift upper word */

IF GT JUMP cases_end;

pmrw_case2:

PX = SR1; /* Load lower 8 bits into PX */

PM(I0 + M2) = SR0; /* Write all 24 bits from SR0 and PX */

pmrw_cases_end:

NOP;

See Also

• “Type 32: Any Reg «···» PM/DM” on page 8-50

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

Indirect DAG Register Write (Premodify or Postmodify), with
DAG Register Move

6-46 ADSP-219x DSP Instruction Set Reference

Indirect DAG Register Write (Premodify or Postmodify),
with DAG Register Move

Function

Writes the contents of a source address register to memory and loads the
same source address register with a new value—the effective address writ-
ten to memory. Register usage within this instruction has the following
restrictions (shown below graphically):

• The Ireg1 registers must be the same register.

• The Mreg1 register must come from the same DAG as Ireg1.

• The Ireg2, Mreg2, or Lreg2 registers be the same register.

• The Ireg2, Mreg2, or Lreg2 registers must come from the same
DAG as Ireg1, but may not be Ireg1 (Ireg1 1/4 Ireg2).

DM(Ireg1 +
+=

 Mreg1) = Ireg2
Mreg2
Lreg2

 , Ireg2
Mreg2
Lreg2

 = Ireg1 ;

Figure 6-3. Register Sources

DM(Ireg1 +/+= Mreg1) = <DAG Reg>, <DAG Reg> = Ireg1 ;

Same register
All registers

NOT the same register

from the
same DAG

Same register

ADSP-219x DSP Instruction Set Reference 6-47

Data Move Instructions

If the premodify (+) addressing option is used, after the memory access,
the instruction loads the source address register with the modified value of
Ireg (Ireg + Mreg). If the postmodify (+=) addressing option is used, the
instruction loads the source address register with the unmodified value of
Ireg. For details on the indirect addressing options, see “Indirect Address-
ing” on page 6-12.

Source

Memory write The 16-bit data comes from any DAG (Ireg, Mreg,
or Lreg) register in the same DAG as Ireg1. The
source register may not be the Ireg1 register. For
information on core registers, see Table 6-1 on
page 6-2.

Register load The 16-bit data comes from the Ireg1 register.

Destination

Memory write For the post-modified access (+=), the 16-bit data
goes to the memory location pointed to by the
address in the Ireg, which is modified after the
access by the value in the Mreg.

For the pre-modified access (+), the 16-bit data goes
to the memory location addressed by the Ireg plus
Mreg; the Ireg retains its original value:

• DM/DAG1—I0, I1, I2, or I3 (index regis-
ters) M0, M1, M2, or M3 (modify registers)

• PM/DAG2—I4, I5, I6, or I7 (index regis-
ters) M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Indirect DAG Register Write (Premodify or Postmodify), with
DAG Register Move

6-48 ADSP-219x DSP Instruction Set Reference

Register load The 16-bit data goes to any DAG (Ireg, Mreg, or
Lreg) register in the same DAG as Ireg1. The desti-
nation register may not be the Ireg1 register. For
information on core registers, see Table 6-1 on
page 6-2.

Details

On reads and writes, the data is right-justified in the destination location
(bit0 of the transfer data maps to bit0 of the destination). If the width of
the destination register is less than 16 bits, the overflow MSBs of the data
are discarded. On writes from source registers less than 16 bits, the miss-
ing high-order bits are zero-filled in the memory location.

If this instruction actually references 24-bit data space at runtime, a read
operation loads bits 23:8 from the memory location into bits 15:0 of a
16-bit register (or bits 23:16 into bits 7:0 of an 8-bit register, and so on).
The low-order bits of the memory location are ignored. Conversely, a
write operation stores bits 15:0 from a 16-bit source register into bits 23:8
of the 24-bit memory location and zero-fills the low-order bits 7:0. For
details, see Figure 6-2 on page 6-32.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provides the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

When you load certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

You cannot use circular buffering with the pre-modify addressing (+) form
of this instruction, so you must initialize the Ireg’s corresponding Lreg to
0. For details, see “Indirect Addressing” on page 6-12.

To perform bit-reversed addressing, you must use DAG1 address registers.
For details, see “Bit-Reversed Addressing” on page 6-16.

ADSP-219x DSP Instruction Set Reference 6-49

Data Move Instructions

Examples

/* This routine uses the “type 32a” instruction to save */

/* the previous frame pointer and allocate a new frame pointer */

/* before calling C-callable subroutine. */

_memalloc:

DM(I4 += M5)=I5, I5=I4; /* save old FP and allocate new FP */

AX1 = DM(I5 + 1); /* read a 16 bit parameter from stack */

I2 = 0xFFFF; /* load preserved register I2 */

I6 = 0xFFFF; /* load scratch register I6 */

DM(I4 += M5) = AX1; /* put argument on stack for call */

I7 = I6; /* save scratch register I6 */

CALL _malloc; /* call C function malloc */

_malloc:

NOP; /* _malloc code here */

See Also

• “Type 32a: DM«···DAG Reg | DAG Reg«···Ireg” on page 8-51

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

Indirect Memory Read/Write—Immediate Postmodify

6-50 ADSP-219x DSP Instruction Set Reference

Indirect Memory Read/Write—Immediate Postmodify

Function

Transfers 16-bit data between memory and a data register over the DM
bus. The current value in Ireg provides the address for the memory access.
After the access, Ireg is updated with the sum of its current value and the
immediate 8-bit, twos complement value supplied in the instruction.

Source

Reads The contents of a memory location in data space
pointed to by Ireg (I0-I7).

Writes Any of these data registers:

Destination

Reads A data register (same as data registers—write).

Writes The contents of a memory location in data space
pointed to by Ireg (same as read source registers).

Details

The immediate value supplied in the instruction is an 8-bit two’s-comple-
ment number. Valid values range from −128 through 127.

Dreg = DM(Ireg += <Imm8>) ;

DM(Ireg += <Imm8>) = Dreg ;

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 6-51

Data Move Instructions

On reads and writes, the data is right-justified in the destination location
(bit0 of the transfer data maps to bit0 of the destination).

If this instruction actually references 24-bit data space at runtime, a read
operation loads bits 23:8 from the memory location into bits 15:0 of a
16-bit register (or bits 23:16 into bits 7:0 of an 8-bit register, and so on).
The low-order bits of the memory location are ignored. Conversely, a
write operation stores bits 15:0 from a 16-bit source register into bits 23:8
of the 24-bit memory location and zero-fills the low-order bits 7:0. For
details, see Figure 6-2 on page 6-32.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provides the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

When you load certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

To implement a linear data buffer, you must initialize the Ireg’s corre-
sponding Lreg to 0. For details, see “Indirect Addressing” on page 6-12.

To implement circular buffer addressing, you must initialize the Ireg’s
corresponding Lreg with the length of the buffer and its corresponding
Breg with the base address of the buffer. For details, see “Circular Data
Buffer Addressing” on page 6-14.

To perform bit-reversed addressing, you must use DAG1 address registers.
For details, see “Bit-Reversed Addressing” on page 6-16.

Examples

AX0 = DM(I0 += 0x11);

DM(I6 += 0x08) = MR1;

DM(I2 += -3) = SI;

Indirect Memory Read/Write—Immediate Postmodify

6-52 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 29: Dreg «···» DM” on page 8-47

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

ADSP-219x DSP Instruction Set Reference 6-53

Data Move Instructions

Indirect Memory Read/Write—Immediate Premodify

Function

Transfers 16-bit data between memory and a data register over the DM
bus. The immediate 8-bit, twos complement value supplied in the instruc-
tion added to the current value in Ireg provides the address for the
memory access. No update occurs after the access, so Ireg retains its orig-
inal value.

Source

Reads The contents of a memory location in data space,
accessed indirectly using an Ireg (I0-I7) and an
immediate 8-bit, twos complement value supplied
in the instruction.

Writes Any of these data registers:

Destination

Reads A data register (same as source data registers).

Writes The contents of a memory location in data space,
accessed indirectly with an Ireg (same as source
address registers) and immediate 8-bit, twos com-
plement value supplied in the instruction.

Dreg = DM(Ireg + <Imm8>) ;

DM(Ireg + <Imm8>) = Dreg ;

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

Indirect Memory Read/Write—Immediate Premodify

6-54 ADSP-219x DSP Instruction Set Reference

Details

The immediate value supplied in the instruction is an 8-bit twos comple-
ment number. Valid values range from −128 through 127.

On reads and writes, the data is right-justified in the destination location
(bit0 of the transfer data maps to bit0 of the destination).

If this instruction actually references 24-bit data space at runtime, a read
operation loads bits 23:8 from the memory location into bits 15:0 of a
16-bit register (or bits 23:16 into bits 7:0 of an 8-bit register, and so on).
The low-order bits of the memory location are ignored. Conversely, a
write operation stores bits 15:0 from a 16-bit source register into bits 23:8
of the 24-bit memory location and zero-fills the low-order bits 7:0. For
details, see Figure 6-2 on page 6-32.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provides the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

When you load certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

You cannot use circular buffering with this instruction, so you must ini-
tialize the Ireg’s corresponding Lreg to 0. For details, see “Indirect
Addressing” on page 6-12.

To perform bit-reversed addressing, you must use DAG1 address registers.
For details, see “Bit-Reversed Addressing” on page 6-16.

Examples

AX0 = DM(I0 + 0x11);

DM(I6 + 0x08) = MR1;

DM(I2 + -3) = SI;

ADSP-219x DSP Instruction Set Reference 6-55

Data Move Instructions

See Also

• “Type 29: Dreg «···» DM” on page 8-47

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

• “Secondary DAG Registers” on page 6-7

• “Register Load Latencies” on page 6-9

Indirect 16-Bit Memory Write—Immediate Data

6-56 ADSP-219x DSP Instruction Set Reference

Indirect 16-Bit Memory Write—Immediate Data

Function

Writes a 16-bit data value supplied in the instruction to a memory loca-
tion over the DM bus. The current value in Ireg provides the address for
the memory access. After the memory access, Ireg is updated with the
sum of its current value and the value in Mreg.

This instruction is a two-word instruction and requires (at mini-
mum) two cycles to execute. For more information, see “Type 22:
DM «··· Data16” on page 8-41.

Source

<data16> The data comes from a 16-bit number supplied in
the instruction.

Destination

Memory write The 16-bit data goes to the memory location
pointed to by the address in the Ireg, which is
modified after the access by the value in the Mreg:

• DM/DAG1—I0, I1, I2, or I3 (index regis-
ters) M0, M1, M2, or M3 (modify registers)

• PM/DAG2—I4, I5, I6, or I7 (index regis-
ters) M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

DM(Ireg += Mreg) = <Data16> ;

ADSP-219x DSP Instruction Set Reference 6-57

Data Move Instructions

Details

The data transferred is right-justified in the memory location (bit0 of the
data maps to bit0 of the location). If this instruction actually accesses
24-bit data space at runtime, the write operation stores bits 15:0 in bits
15:0 of the 24-bit memory location and zero-fills the high-order bits
23:16.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provides the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

When you load certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

Setting up a data buffer requires initializing one or more additional
address registers. For details, see “Indirect Addressing” on page 6-12.

To perform bit-reversed addressing, you must use DAG1 address registers.
For details, see “Bit-Reversed Addressing” on page 6-16.

Examples

DMPG1 = page(0x0); /* selects internal memory */

I3 = 0x8100; /* selects 16-bit, block 1 */

M2 = 1;

L3 = 0;

DM(I3 += M2) = 0x7743; /* write data16 to memory */

See Also

• “Type 22: DM «··· Data16” on page 8-41

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

Indirect 24-Bit Memory Write—Immediate Data

6-58 ADSP-219x DSP Instruction Set Reference

Indirect 24-Bit Memory Write—Immediate Data

Function

Writes a 24-bit data value supplied in the instruction to a memory loca-
tion over the PM bus. The current value in Ireg provides the address for
the memory access. After the memory access, Ireg is updated with the
sum of its current value and the value in Mreg.

This instruction is a two-word instruction and requires (at mini-
mum) two cycles to execute. For more information, see “Type 22:
DM «··· Data16” on page 8-41.

Source

<data24> The 24-bit data comes from a 24-bit number sup-
plied in the instruction. The :24 after the data
directs the assembler to handle 24-bit data.

Destination

Memory write The 24-bit data goes to the memory location
pointed to by the address in the Ireg, which is
modified after the access by the value in the Mreg:

• DM/DAG1—I0, I1, I2, or I3 (index regis-
ters) M0, M1, M2, or M3 (modify registers)

• PM/DAG2—I4, I5, I6, or I7 (index regis-
ters) M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

PM(Ireg += Mreg) = <Data24>:24 ;

ADSP-219x DSP Instruction Set Reference 6-59

Data Move Instructions

Details

The data transferred is right-justified in the memory location (bit0 of the
data maps to bit0 of the location).

If this instruction actually accesses 16-bit data space at runtime, the write
operation stores bits 23:8 in bits 15:0 of the 16-bit memory location and
discards the data’s low-order bits 7:0. For details, see Figure 6-2 on
page 6-32.

A DAG page register, DMPG1 (I3-I0) or DMPG2 (I7-I4), provides the eight
MSBs of the memory address. For details, see “DAG Memory Page Regis-
ters (DMPGx)” on page 6-6.

When you load certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

Setting up a data buffer requires initializing one or more additional
address registers. For details, see “Indirect Addressing” on page 6-12.

To perform bit-reversed addressing, you must use DAG1 address registers.
For details, see “Bit-Reversed Addressing” on page 6-16.

Examples

DMPG2 = page(0x0); /* selects internal memory */

I4 = 0x1000; /* selects 24-bit, block 0 */

M5 = 1;

L4 = 0;

PM(I4 += M5) = 0x3F4512:24; /* write 24-bit data to memory */

Indirect 24-Bit Memory Write—Immediate Data

6-60 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 22: DM «··· Data16” on page 8-41

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

ADSP-219x DSP Instruction Set Reference 6-61

Data Move Instructions

External I/O Port Read/Write

Function

Transfers data between I/O memory space and a data register.

Source

Reads The contents of a location in I/O memory space
specified by the 10-bit immediate value (or mem-
ory-mapped register name) supplied in the
instruction.

Writes Any of these data registers:

Destination

Reads Any of the data registers (same as write source
registers).

Writes The contents of a location in I/O memory space
specified by the 10-bit immediate value (or mem-
ory-mapped register name) supplied in the
instruction.

Dreg = IO(<Imm10>) ;

IO(<Imm10>) = Dreg ;

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

External I/O Port Read/Write

6-62 ADSP-219x DSP Instruction Set Reference

Details

The I/O Page (IOPG) register, with the 10-bit immediate value supplied in
the instruction, generates the 18-bit address required for accessing I/O
memory space. Valid page values (IOPG) are 0-255. Valid location values
(10-bit immediate) are 0-1023. The arrangement of these values to make
an address appears in Figure 6-4.

At power-up, the DSP initializes the IOPG register to 0x0. Although initial-
izing IOPG is unneccessary unless the data to access is located on a different
page, good programming practice recommends that you do so whenever
you access an external I/O port. To do so, you use the direct register load
instruction (for details, see “Direct Register Load” on page 6-27). Then
you can read or write the external I/O port.

When loading certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, DMPGx, or
IOPG), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

Examples

#define io_address1 0x1FF /* define 10-bit IO address */

IOPG = 0x01; /* set IOPG to page 1 */

AX0 = 0xaaff; /* load AX0 with 16-bit data */

IO(io_address1) = AX0; /* write data to io_address1 */

Figure 6-4. Addressing I/O Memory Space and Peripherals

091623

UnusedIOPG 10-bit immediate address
I/O memory space

address bits

ADSP-219x DSP Instruction Set Reference 6-63

Data Move Instructions

See Also

• “Type 34: Dreg «···» IOreg” on page 8-53

• The I/O registers are specific to each ADSP-219x DSP. For register
list, see the ADSP-219x/2191 DSP Hardware Reference.

System Control Register Read/Write

6-64 ADSP-219x DSP Instruction Set Reference

System Control Register Read/Write

Function

Transfers data between an internal system control register and a data
register.

Source

Reads The contents of a location in system control mem-
ory space specified by the 8-bit immediate value, or
register name, supplied in the instruction:

• DAG Breg—B0, B1, B2, or B3 (DAG1 base
registers) B4, B5, B6, or B7 (DAG2 base
registers)

• Sequencer—SYSCTL (system control register)

• Cache control—CACTL (cache control
register)

Except for the DAG base address registers (B0–B7), SYSCTL, and
CACTL, the system control registers are specific to each ADSP-219x
product. Refer to the ADSP-219x/2192 DSP Hardware Reference
for a complete list of these registers and their addresses.

Writes Any of these data registers:

Dreg = REG(<Imm8>) ;

REG(<Imm8>) = Dreg ;

Register File

AX0, AX1, AY0, AY1, AR, MX0, MX1, MY0, MY1, MR0, MR1, MR2, SR0, SR1, SR2, SI

ADSP-219x DSP Instruction Set Reference 6-65

Data Move Instructions

Destination

Reads Any of the data registers (same as write source
registers).

Writes The contents of a location in system control mem-
ory space specified by the 8-bit immediate value, or
register mnemonic, supplied in the instruction
(same as source registers).

Details

System control memory space consists of 256 locations. These locations
are reserved for core-based controls or for peripherals, such as DMA or
serial ports, that interface with the core. For more information, see the
ADSP-219x/2192 DSP Hardware Reference.

You cannot write the system control registers directly. Instead, you must
load a data register, then load the system register from the data register.

When you access a DAG base address register (B0–B7), whether you access
the primary or secondary set depends on bit 6 (SEC_DAG) in the MSTAT reg-
ister. For details, see “Secondary DAG Registers” on page 6-7.

When you load certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, or
DMPGx), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

Examples

AX0 = 0x0800; /* load data into AX0 */

REG(B0) = AX0; /* load AX0 into B0 */

REG(0x0) = AX0; /* same as above */

System Control Register Read/Write

6-66 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 35: Dreg «···»Sreg” on page 8-54

• The system registers are specific to each ADSP-219x DSP. For reg-
ister list, see the ADSP-219x/2192 DSP Hardware Reference.

ADSP-219x DSP Instruction Set Reference 6-67

Data Move Instructions

Modify Address Register—Indirect

Function

Updates the value of an Index register without performing a memory
access.

Sums the value in Ireg with the value in Mreg and writes the result to
Ireg. If you set up circular buffering, this instruction also performs that
logic operation.

Source

Update The DAG Ireg and Mreg registers specified in the
instruction:

• DM/DAG1—I0, I1, I2, or I3 (index regis-
ters) M0, M1, M2, or M3 (modify registers)

• PM/DAG2—I4, I5, I6, or I7 (index regis-
ters) M4, M5, M6, or M7 (modify registers)

You can use any index register with any modify register from the
same DAG. You cannot pair a DAG1 register with a DAG2
register.

Destination

Update The DAG Ireg specified in the instruction.

MODIFY(Ireg += Mreg) ;

Modify Address Register—Indirect

6-68 ADSP-219x DSP Instruction Set Reference

Details

For linear data buffers, you must initialize the Ireg’s corresponding Lreg
to 0. For details, see “Indirect Addressing” on page 6-12.

For circular buffers, you must initialize the Ireg’s corresponding Lreg
with the length of the buffer and its corresponding Breg with the base
address of the buffer. For details, see “Circular Data Buffer Addressing”
on page 6-14.

When loading certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, DMPGx, or
IOPG), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

Examples

I2 = 0x2000;

M1 = 1;

L2 = 0;

MODIFY(I2 += M1); /* updates I2 with value from M1 */

/* I2 = 0x2001 */

See Also

• “Type 21: Modify DagI” on page 8-39

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

ADSP-219x DSP Instruction Set Reference 6-69

Data Move Instructions

Modify Address Register—Direct

Function

Updates the value of an index register without performing a memory
access.

Sums the value in Ireg with the 8-bit, twos complement immediate value
supplied in the instruction and writes the result to Ireg. If you set up cir-
cular buffering, this instruction also performs that logic operation.

Source

The DAG Ireg register and the Imm8 data specified in the instruction:

• DM/DAG1—I0, I1, I2, or I3 (index registers)

• PM/DAG2—I4, I5, I6, or I7 (index registers)

Destination

The DAG Ireg specified in the instruction.

Details

For linear data buffers, you must initialize the Ireg’s corresponding Lreg
to 0. For details, see “Indirect Addressing” on page 6-12.

For circular buffers, you must initialize the Ireg’s corresponding Lreg to
the length of the buffer and its corresponding Breg with the base address
of the buffer. For details, see “Circular Data Buffer Addressing” on
page 6-14.

MODIFY(Ireg += <Imm8>) ;

Modify Address Register—Direct

6-70 ADSP-219x DSP Instruction Set Reference

When loading certain registers (CCODE, ASTAT, MSTAT, IJPG, Ireg, DMPGx, or
IOPG), the new value is not available immediately to subsequent instruc-
tions. For information on register latencies, see “Register Load Latencies”
on page 6-9.

Examples

I2 = 0x2000;

#define mod_val 0x1

Nop;

L2 = 0;

MODIFY(I2 += mod_val); /* updates I2 with mod_val */

/* I2 = 0x2001 */

See Also

• “Type 21a: Modify DagI” on page 8-40

• “Core Registers” on page 6-2

• “DAG Registers” on page 6-5

ADSP-219x DSP Instruction Set Reference 7-1

7 PROGRAM FLOW
INSTRUCTIONS

The instruction set provides program flow instructions for controlling the
sequence in which the DSP executes instructions. Generally, the instruc-
tions in a program execute sequentially, one after another, unless
otherwise directed by various program structures—branches, loops, sub-
routines, or interrupts—that intervene and temporarily or permanently
redirect this linear flow. These program structures enable an application to
respond to events or conditions as they occur.

This chapter describes each of the instructions (“Program Flow Instruc-
tion Reference” on page 7-23) and the following related topics:

• “Conditions” on page 7-2

• “Counter-Based Conditions” on page 7-2

• “CCODE Register” on page 7-3

• “Mode Control” on page 7-4

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

• “Stacks” on page 7-7

• “Stack Status Flags” on page 7-12

• “Interrupts” on page 7-13

• “Application Performance” on page 7-17

Conditions

7-2 ADSP-219x DSP Instruction Set Reference

Conditions
Table 1-8 on page 1-11 lists the conditions used in conditional (IF COND)
instructions and their opcodes. Besides these conditions (which mainly
relate to the status of the ALU, multiplier, and counter) it is possible to
use the SWCOND condition and the value in the CCODE register to test for
other DSP status conditions. For more information, see “Condition Code
(CCODE) Register” on page 1-5 Also, you can test for bit states to gener-
ate conditions using the TSTBIT instruction. For more information, see the
section “Bit Manipulation: TSTBIT, SETBIT, CLRBIT, TGLBIT” on
page 2-19.

Counter-Based Conditions
Both IF Condition (conditional) instructions and DO UNTIL (loop) instruc-
tions can base execution on the NOT CE condition. Although the DO UNTIL
instruction uses the CE syntax only, the condition actually tested is
NOT CE—counter not expired.

To use a counter condition with either instruction type, load the CNTR reg-
ister with an initial counter value (>1) before issuing the instruction that
uses the counter condition.

There are important differences between how conditional and loop
instructions implement (decrement and test) the counter condition:

• To implement the NOT CE condition in an IF Condition (condi-
tional) instruction, the DSP decrements and tests the value loaded
in the CNTR register before executing the conditional instruction.
For a conditional instruction based on NOT CE, the DSP tests
whether the CNTR register contains a value >1.

• To implement the CE condition in a DO UNTIL (loop) instruction,
the DSP loads the loop counter stack from the CNTR register at the
start of the loop, then decrements and tests the counter value in the

ADSP-219x DSP Instruction Set Reference 7-3

Program Flow Instructions

loop counter stack (not the CNTR register) at the end of each pass
through the loop. For a loop instruction based on CE, the DSP tests
whether the loop counter stack’s counter value >0. For more infor-
mation, see “Loop Stacks Operation” on page 7-10.

CCODE Register
Table 1-3 on page 1-5 lists the CCODE register values used to test the
SWCOND and NOT SWCOND software conditions. Although the source each
value tests is specific to each DSP in the ADSP-219x family, these values
(except 0x08 and 0x09) map to software interrupt bits in the IMASK and
IRPTL registers.

To test for a software condition, load the CCODE register with the value of
the source you want to test and test for the true or false state. For example,
0x08 represents ALU saturation status, you might code this sequence:

CCODE = 0x08; /* ALU Saturated (AR_SAT) cond */

AR = AX0 + AY1;

IF SWCOND JUMP fix_data; /* Jump to fix_data if AR_SAT */

fix_data:

NOP; /* code to fix data ALU_SAT */

Or, to test for a shifter overflowed result:

CCODE = 0x09; /* Shifter Overflowed (SV) cond */

AR = 3; SE = AR; /* shift code, left shift 3 bits */

SI = 0xB6A3; /* value of hi word of input data */

IF NOT SWCOND SR = ASHIFT SI (HI);/* ASHIFT high word if SV */

Mode Control

7-4 ADSP-219x DSP Instruction Set Reference

A value written to CCODE is not available on the next cycle, so you
must insert at least one instruction between the write to CCODE and
the conditional instruction that tests the software condition. Oth-
erwise, the conditional instruction tests the previous value of
CCODE.

Mode Control
As shown in Table 1-6 on page 1-8, bits 0 through 7 of the MSTAT register
control various DSP modes. These modes determine some conditions for
how status flags are set.

Branch Options
All of the DSP’s branch instructions (except DO UNTIL and LJUMP/LCALL),
support two branch options: immediate and delayed. These options deter-
mine whether the DSP executes the first two instructions following the
branch instruction before executing the instruction at the branch target
address. Because of the instruction pipeline, a number (usually four) of
latency cycles occur between execution of the branch instruction and exe-
cution of the branch target instruction.

By default, branch instructions perform an immediate branch, which
means that the next instruction the DSP executes after the branch instruc-
tion is the instruction at the branch target address, but only after a
number of NOP cycles. The delayed branch option allows you to salvage
two of the NOP cycles and perform useful work. To do so, include the
delayed branch (DB) option in the branch instruction and code the two
delay slots directly following the branch instruction the two instructions
that you want executed before the branch target instruction.

ADSP-219x DSP Instruction Set Reference 7-5

Program Flow Instructions

You cannot insert JUMP or CALL instructions in delay branch slots.
You can insert one two-word instruction only, and it must occupy
the first delay branch slot.

When the DSP executes an RTI or RTS instruction to return to the main
program, it returns to execute the first or third instruction after the
branch instruction, depending on whether the branch is immediate or
delayed.

Return from immediate branch:

IF AV CALL immediate_pump; /* immed branches may be cond */

NOP; /* RTS returns program flow here */

NOP;

immediate_pump:

NOP;

RTS;

Return from delayed branch:

CALL delayed_pump (DB); /* delayed branches must be uncond */

NOP; /* 1st_delay_instruction */

NOP; /* 2nd_delay_instruction */

NOP; /* RTS returns program flow here */

NOP;

delayed_pump:

NOP;

RTS;

Addressing Branch Targets

7-6 ADSP-219x DSP Instruction Set Reference

Addressing Branch Targets
When issuing a JUMP or CALL instruction, specify the address of the
instruction to branch to in one of three ways:

• PC relative (Offset from the current PC)
The immediate value specified in the instruction is added to the
PC of the branch instruction to form the address of the branch tar-
get location. For example, the CALL in the following code goes to
PC-relative address (find_me):

.EXTERN find_me; /* matches .global in other file */

CALL find_me (DB);

NOP;

• Far absolute
The full 24-bit address of the branch target location is specified in
the instruction. You can program this instruction explicitly in an
LJUMP/LCALL instruction. The assembler substitutes this instruction
automatically when the actual address assembled from a PC relative
address is insufficient.

• Indirect
The address of the branch target location is specified using a DAG
Index register (I0−I7) and the Indirect jump memory page (IJPG)
register. For example, the CALL in the following code goes to an
address using the indirect address from the I0 register:

.EXTERN find_me_too;/* matches .global in other file */

IJPG = 0x0; /* set memory page for CALL */

I0 = find_me_too; /* loads I0 with address */

NOP;

NOP;

CALL (I0) (DB);

NOP;

ADSP-219x DSP Instruction Set Reference 7-7

Program Flow Instructions

Stacks
Loops and other branch instructions use the DSP’s stacks to implement
their respective operations.

• PC stack (33 words × 24 bits)

Holds the address of the next instruction to execute on return from
a called subroutine. Only the CALL, RTI, RTS, and PUSH/POP PC
instructions use this stack.

• Loop begin stack (8 words × 24 bits)

Holds the address of the first instruction in a loop. Only the
DO UNTL and PUSH/POP LOOP instructions use this stack.

• Loop end stack (8 words × 24 bits)

Holds the address of the last instruction in a loop. Only the
DO UNTL and PUSH/POP LOOP instructions use this stack.

• Loop counter stack (8 words × 16 bits)

Holds the current value of the loop counter that is loaded from the
CNTR register. This value—not the value in the CNTR register—is
tested and decremented at the end of each pass through the loop.
Only the DO UNTL and PUSH/POP LOOP instructions use this stack.

• Status stack (16 words × 32 bits)

Holds the current value of the ASTAT and MSTAT registers. Only the
RTI and PUSH/POP STS instructions use this stack. (When globally
enabled and unmasked interrupts occur, the DSP automatically
saves the two status registers to this stack.)

Stacks

7-8 ADSP-219x DSP Instruction Set Reference

PC and Status Stack Operation
Applications use these stacks to implement function calls and interrupt
service routines (ISRs).

Function Calls. When a CALL instruction executes, it automatically pushes
onto the PC stack the address of the next instruction to execute upon
returning from the subroutine. The CALL instruction does not push the
status registers onto the status stack.

The RTS instruction, executed at the end of the subroutine, returns pro-
gram execution to the first or third instruction following the CALL
instruction, depending on whether the CALL was immediate or delayed,
respectively.

ISRs. When interrupts are globally enabled, an unmasked interrupt causes
the DSP to automatically save its current state before entering the inter-
rupt’s ISR. To do so, the DSP:

• Pushes onto the PC stack the address of the next instruction to exe-
cute upon returning from the ISR.

If the interrupt is higher than the core’s current level of operation,
the DSP pushes the address of the current instruction onto the PC
stack and branches immediately to the interrupt’s ISR.

If the interrupt is lower than the core’s current level of operation,
the DSP finishes the current operation, pushes the address of the
next sequential instruction onto the PC stack, and then branches to
the interrupt’s ISR.

• Pushes onto the status stack, in order, the ASTAT and MSTAT
registers.

ADSP-219x DSP Instruction Set Reference 7-9

Program Flow Instructions

The RTI instruction, executed at the end of the ISR, pops the PC stack
returning program execution to the instruction at the retrieved address. It
also pops the status stack, restoring the ASTAT and MSTAT registers to their
previous values. So, if the ISR enables any of the MSTAT mode bits, the RTI
operation automatically disables them.

PUSH/POP PC/STS. You can explicitly push and pop the PC and status
stacks as needed. The DSP automatically performs these operations when
using nested interrupts.

Pushing (PUSH STS) and popping (POP STS) the status stack automatically
saves or restores the ASTAT and MSTAT registers. But, pushing (PUSH PC) and
popping (POP PC) the PC stack requires a few more steps that involve the
STACKA and STACKP registers.

For PUSH/POP PC operations, the 16-bit STACKA register supplies or receives,
respectively, the 16 LSBs of an instruction’s 24-bit address, and the 8-bit
STACKP register supplies or receives the eight MSBs. Before issuing a
PUSH PC instruction, load the STACKA and STACKP registers with the appro-
priate values:

STACKA = 0x3521;

STACKP = 0x02;

PUSH PC;

Likewise, after popping the PC stack, you can check the contents of the
STACKA and STACKP registers:

POP PC;

AX0 = STACKA;

AY0 = STACKP;

A PUSH PC or POP PC instruction has one cycle of latency for all
SSTAT register bits, but a PUSH/POP LOOP or STS has one cycle of
latency only for the STKOVERFLOW bit in the SSTAT register.

Stacks

7-10 ADSP-219x DSP Instruction Set Reference

Loop Stacks Operation
Applications use this stack to implement loop operations.

When a DO UNTIL instruction executes, it automatically pushes data onto
the three loop stacks:

• Loop begin stack. Receives the loop start address (current PC).

• Loop end stack. Receives the loop end address.

• Counter stack. Receives the counter value from the CNTR register
for finite loops. If the loop is infinite, the counter stack receives the
counter value and the DSP decrements this value on the stack, but
ignores the result.

Finite Loops (DO <loop> UNTIL CE). The CE terminator specifies a finite
loop. There is an effect in the number of cycles executed, depending on
the number of instructions in the loop. A minimum of three instructions
after the DO UNTIL instruction are needed to avoid this added latency.
When the DO UNTIL instruction executes, it automatically pushes the CNTR
value onto the counter stack. (The CNTR register retains the original value,
until explicitly changed with a data move or POP LOOP instruction.)

The loop mechanism decrements and tests the value at the top of the
counter stack at the end of each pass through the loop. The loop ends
when the counter expires (decrements to 1). At loop end, program execu-
tion automatically continues with the instruction directly following the
end of the loop.

Infinite Loops (DO <loop> [UNTIL FOREVER]). To end an infinite loop, the
loop must contain an explicit JUMP to an instruction outside the loop to
exit and end it. The JUMP is based on a condition created inside the loop
and typically branches to a POP LOOP instruction to recover the loop
stacks—the goal is to adjust the loop stack pointers, not retrieve the loop
start and end addresses. After that, another JUMP instruction returns pro-
gram execution to the next sequential instruction following the loop’s end.

ADSP-219x DSP Instruction Set Reference 7-11

Program Flow Instructions

PUSH/POP LOOP. You can explicitly push and pop the loop stacks.
These operations are necessary to recover and maintain the loop stacks
when you abort a loop.

PUSH/POP LOOP instructions operate on all three loop stacks in parallel.
Both operations involve the STACKA, STACKP, LPSTACKA, LPSTACKP, and
CNTR registers. Before issuing a PUSH LOOP instruction, load the STACKA,
STACKP, LPSTACKA, and LPSTACKP registers with appropriate values.

• The 16-bit STACKA and 8-bit STACKP register supply or receive the
loop start address from the loop begin stack.

STACKA holds the 16 LSBs of the 24-bit, loop start address, and
STACKP holds the eight MSBs.

• The 16-bit LPSTACKA and 16-bit LPSTACKP register supply or receive
the loop end address from the loop end stack. (Only bit 15 and bits
7:0 of LPSTACKP are valid—bits 14:8 should always be zero.)

LPSTACKA holds the 16 LSBs of the 24-bit, loop end address, and
LPSTACKP holds the eight MSBs in bits 7:0 and the loop terminator
condition, CE or FOREVER, in bit 15. When the FOREVER bit is set,
the loop logic ignores the loop counter value.

• The 16-bit CNTR register supplies or receives the counter value from
the counter stack.

On a pop, the CNTR register receives the value at the top of the
counter stack. For finite loops, since the value in the counter stack
is decremented at the end of each pass through the loop, a POP
loads CNTR with a new value, overwriting the original count value,
unless the POP occurs before the first pass through the loop.

For infinite loops, the PUSH LOOP instruction pushes the current
value of the CNTR register onto the loop counter stack. Although
this value is irrelevant, pushing it maintains the pointer’s correct
position in the loop counter stack.

Stack Status Flags

7-12 ADSP-219x DSP Instruction Set Reference

A PUSH PC or POP PC instruction has one cycle of latency for all
SSTAT register bits, but a PUSH/POP LOOP or STS has one cycle of
latency only for the STKOVERFLOW bit in the SSTAT register.

Stack Status Flags
As shown in Table 1-7 on page 1-10, bits 0 through 7 of the SSTAT register
record the status of the DSP’s stacks. This information is useful for man-
aging the stack and servicing stack interrupts.

The stack interrupt is always generated by a stack overflow condition, but
can also be generated by ORing together the stack overflow status (STK-
OVERFLOW) bit and stack high/low level status (PCSTKLVL) bit. The level bit
is set when:

• The PC stack is pushed and the resulting level is at the high-water
mark.

• The PC stack is popped and the resulting level is at the low-water
mark.

Spill-fill mode (using the stack to generate a stack interrupt) is disabled on
reset. Two bits in the ICNTL register (bit 10 —PC stack interrupt enable)
can be used to enable interrupts for the three corresponding stacks.

When switching on spill-fill mode, a spurious low-water mark
interrupt may occur (depending on the level of the stack). In this
case, the interrupt handler should push values on the stack to raise
the level above the low-water mark level.

ADSP-219x DSP Instruction Set Reference 7-13

Program Flow Instructions

Interrupts
The DSP uses interrupts to communicate with the outside world. The
DSP’s core generates internal interrupts, the peripherals generate external
interrupts, and software can generate software interrupts.

When an interrupt occurs, the DSP suspends its current operation, saving
the ASTAT and MSTAT registers, and jumps to the location in memory of the
interrupt’s service routine (ISR) and begins executing that program code.
When it has completed the interrupt’s ISR, an RTI instruction at the end
of the routine forces program flow to return to the suspended operation
and continue executing code at the location where it left off, after the DSP
restores the ASTAT and MSTAT registers.

Each interrupt has a priority rank and a vector address. The interrupt’s
vector address specifies the location in memory of its service routine. Its
priority determines the order in which the interrupt is serviced relative to
the other interrupts. An higher priority interrupt is serviced before one
with lower priority. As shown in Table 1-5 on page 1-7, the lower the
interrupt’s position in the IMASK/IRPTL register, the higher its priority.

To implement and use interrupts, your software must perform these tasks:

• Globally enable interrupts.

• Individually enable the particular interrupt.

• At the beginning of the ISR, switch context to secondary registers
and perform the necessary tasks to handle the interrupt condition.
For details, see “Switching Contexts” on page 7-16.

If your program requires nested interrupts, extra tasks within each
interrupt’s ISR may be required. For details, see “Nesting Inter-
rupts” on page 7-16.

Interrupts

7-14 ADSP-219x DSP Instruction Set Reference

• At the end of the ISR, insert an RTI instruction to branch back
(return) to the suspended operation. The RTI instruction automati-
cally switches context back to the primary register sets.

• Continue executing program code at the return address.

Enabling Interrupts
When an interrupt occurs, the DSP services it only when all interrupts are
globally enabled and the particular interrupt is individually enabled. Typ-
ically, you enable interrupts both globally and individually in your main
program and at the appropriate place wait for an interrupt to occur.

Global Interrupts. Use these instructions to enable and disable interrupts
globally:

ENA INT; /* Enable interrupts globally */

DIS INT; /* Disable interrupts globally */

With interrupts globally disabled, the DSP does not recognize or latch
interrupts that occur and so cannot service them.

Individual Interrupts. You can enable and disable interrupts individually
using the register load instruction (for details, see, “Direct Register Load”
on page 6-27).

For example, to enable (unmask) interrupts 3, 5, 7, and 8, set them to 1,
as follows:

IMASK = 0x01A8; /* Enable interrupts 8, 7, 5, & 3 only */

Interrupt 0 is nonmaskable in IMASK and cannot be enabled or disabled
globally.

When interrupts are globally enabled and individual interrupts are
enabled in IMASK, the DSP services them automatically when it detects
their respective bits set in IRPTL.

ADSP-219x DSP Instruction Set Reference 7-15

Program Flow Instructions

Interrupt latch bits of the IRPTL register can be controlled individually
with the following instructions:

SETINT n;

CLRINT n;

Read-modify-write operations are not recommended on the IRPTL register.

When interrupts are globally enabled and individual interrupts are dis-
abled in IMASK, when they occur and are latched in IRPTL, you can choose
to unmask their respective bits in IRPTL and service them or to clear their
bits and reject them. For example:

ENA INT; /* globally enable ints */

IMASK = 0x0000; /* individually disable all ints */

...

AX0 = IRPTL;

AF = TSTBIT 8 OF AX0;

IF EQ JUMP normal; /* Note the “EQ” */

service:

CLRINT 8;

...

normal:

...

IMASK is the interrupt mask register, and IRPTL is the interrupt latch regis-
ter. As shown in Table 1-5 on page 1-7, the IMASK and the IRPTL registers
match each other bit for bit.

Interrupts

7-16 ADSP-219x DSP Instruction Set Reference

Switching Contexts
The DSP has two sets of DAG address registers and two sets of data regis-
ters that enable you to quickly switch between the context of normal
processing and the context of interrupt processing as needed. Secondary
register sets eliminate the need to save the state of the data and address
registers before processing an interrupt and reduces interrupt latency.
(For details on DSP modes, see “Mode Control” on page 7-4.)

Typically, you switch from primary to secondary registers at the beginning
of the interrupt’s ISR. To do so, you use the following instructions:

ENA SEC_REG; /* enable secondary data registers */

ENA SEC_DAG; /* enable secondary DAG address registers */

Use the RTI instruction at the end of the routine to return program
flow to the main program. This instruction automatically switches context
back to the primary registers when it restores the ASTAT, MSTAT, and SSTAT
registers.

An interrupt service routine might look like this:

 service_interrupt:
ENA SEC_REG, ENA SEC_DAG; /* enable secondary registers */

NOP;

NOP; /* ISR code */

NOP;

RTI; /* return from interrupt and */

/* enable primary registers */

Nesting Interrupts
Nested interrupts enable the DSP to respond to more than one interrupt
at a time. A higher priority interrupt suspends a lower priority interrupt’s
routine. After the higher priority interrupt’s RTI executes, the lower prior-
ity interrupt’s routine continues to execute.

ADSP-219x DSP Instruction Set Reference 7-17

Program Flow Instructions

Without nested interrupts, one interrupt at a time gets serviced, so other
interrupts remain pending until the RTI of the current routine executes.
Then, the pending interrupt with highest priority is serviced.

To use nested interrupts, enable them in the ICNTL register. To do so,
explicitly set bit 4 of INCTL:

ICNTL = 0x0010;

Once enabled, an interrupt with higher priority than the currently execut-
ing ISR suspends that ISR’s execution. Table 1-4 on page 1-6 lists and
describes the bits of the ICNTL register.

The DSP supports up to 16 nested interrupts, but has one set of secondary
data and DAG address registers only. If your application uses deeply
nested interrupts, you may need to manually save the state of the data reg-
isters and DAG address registers to memory in your ISR routines.

 To do so:

• Set up a segment in memory to save the current state of the data
and DAG address registers.

• In the ISR, save to memory the state of the data registers and the
state of the DAG address registers that you intend to use.

Application Performance
The ADSP-219x’s instruction set provides many ways to optimize code to
accommodate particular applications. This section discusses optimization
strategies for these topics:

• Exiting a loop

• Using long jumps and calls

• Effect latencies

Application Performance

7-18 ADSP-219x DSP Instruction Set Reference

Exiting a Loop
When you exit an infinite loop or abort a finite loop prematurely, the loop
hardware fixes and restores the loop stacks before the POP LOOP instruction
executes. With few restrictions, you can branch out of a loop from almost
any location, regardless of the length of the loop. For optimal perfor-
mance, consider these scenarios:

• JUMPs or CALLs near loop ends may add extra cycles of loop stack
clean-up when the jump or call is taken.

CNTR = 5;

MX0 = 0xFF;

MY0 = 0xFF;

DO mac_loop UNTIL CE; /* start of mac_loop */

NOP;

NOP;

MR = MX0 * MY0 (SS);

IF MV JUMP abort_loop;

mac_loop:

NOP; /* end of mac_loop */

NOP; /* 1st instr after mac_loop */

NOP; /* 2nd instr after mac_loop */

NOP; /* 3rd instr after mac_loop */

abort_loop: /* loop exit routine */

POP LOOP;

JUMP mac_loop + 1;

The jump to abort_loop takes 1, 2, or 3 extra cycles, depending on
whether the first, second, and third instruction after the end of the
mac_loop are also loop ends, to clean up the loop stacks before the
POP LOOP instruction executes. Impact on performance is minimal if
the POP occurs only once.

ADSP-219x DSP Instruction Set Reference 7-19

Program Flow Instructions

• Jumps or calls near loop ends add 1, 2, or 3 extra cycles each time
the branch is taken.

CNTR = 5;

DO little_loop UNTIL CE;

NOP; /* 1st instr. of little_loop */

NOP; /* 2nd instr. of little_loop */

NOP; /* 3rd instr. of little_loop */

IF MV CALL fix_my_data;

little_loop:

NOP; /* end of little_loop */

NOP; /* 1st instr. after little_loop */

NOP; /* 2nd instr. after little_loop */

NOP; /* 3rd instr. after little_loop */

NOP; /* 4th instr. after little_loop */

fix_my_data:

NOP;

NOP;

RTS;

The call to fix_my_data takes 1, 2, or 3 extra cycles, depending on
whether the first, second, and third instructions after the end of
little_loop are also loop ends, to clean up the loop stacks. To
avoid the degradation in performance caused by this construct,
move the CALL instruction further up in the loop or insert the
called subroutine in the loop.

• Because the loop begin stack and PC stack are separate and dis-
tinct, this loop construct causes a loop to fall gracefully through the
next loop end.

CNTR = 5;

DO bigger_loop UNTIL CE;

NOP; /* 1st instr. of bigger_loop */

NOP; /* 2nd instr. of bigger_loop */

Application Performance

7-20 ADSP-219x DSP Instruction Set Reference

NOP; /* 3rd instr. of bigger_loop */

IF MV CALL fix_bigger_data;

NOP;

NOP;

bigger_loop:

NOP; /* end of bigger_loop */

NOP; /* 1st instr. after bigger_loop */

NOP; /* 2nd instr. after bigger_loop */

NOP; /* 3rd instr. after bigger_loop */

fix_bigger_data:

NOP;

NOP;

RTS;

Unless the loop is aborted, the call to fix_bigger_data takes no
extra cycles. One abort routine can serve all loops in nearby code
space since the routine is identical for each. Even after the loop is
aborted, the end of the bigger_loop still executes, and the loop
falls out gracefully.

Using Long Jumps and Calls
The instruction set provides several jump/call instructions that support
different address ranges for addressing branch targets:

• -4096 to +4095 “Direct JUMP (PC Relative)” on page 7-29

• -32768 to +32767 “JUMP (PC Relative)” on page 7-37

• -32768 to +32767 “CALL (PC Relative)” on page 7-33

• 16777216 to +16777215 “Long Call (LCALL)” on page 7-40

• -16777216 to +16777215“Long Jump (LJUMP)” on page 7-43

ADSP-219x DSP Instruction Set Reference 7-21

Program Flow Instructions

Usually, programmers must determine in advance the offset of the target
from the branch and use the appropriate branch instruction, ensuring that
the address of the branch target falls within the address range of the
branch instruction.

However, by combining an option provided in the assembler and in the
linker with any of the PC relative branch instructions, you can allow the
development tools to determine and select which branch instruction to use
based on the actual address of the branch target. To do so, encode PC rel-
ative branch instructions and use the assembler’s and linker’s -jcs21
option, which directs the tools to substitute, during linking, LJUMP or
LCALL for any particular PC relative branch instruction as appropriate. For
details, see the VisualDSP++ Assembler and Preprocessor Manual for 16-Bit
Processors and the VisualDSP++ Linker and Utilities Manual for 16-Bit
Processors.

When using the linker’s -jcs21 option, you need to understand how it
alters the linker’s operation to fine-tune your code accordingly. When the
linker substitutes LJUMP or LCALL for a corresponding PC relative branch
instruction:

• It substitutes an absolute address for the PC relative address.

• If it encounters the (DB) option in a PC relative instruction, it
moves the 48 bits (either two one-word instructions or one
two-word instruction) from the two delay slots following the PC
relative instruction and inserts them directly in front of the LCALL
or LJUMP instruction.

For conditional PC relative instructions, this procedure could
change the condition code upon which the branch instruction is
predicated. To avoid this potential bug, base (DB) branch instruc-
tions on negated conditions (IF NOT COND), not positive conditions
(IF COND).

• For unconditional PC relative instructions, it always encodes the
TRUE condition.

Application Performance

7-22 ADSP-219x DSP Instruction Set Reference

Effect Latencies
An effect latency occurs when instructions write or load a value into a reg-
ister, changing the value of one or more bits in the register. Effect latency
refers to the time it takes after the write or load instruction for the effect
of the new value to become available for other instructions to use. For
more information, see “Register Load Latencies” on page 6-8.

ADSP-219x DSP Instruction Set Reference 7-23

Program Flow Instructions

Program Flow Instruction Reference
Program flow control instructions include:

• “DO UNTIL (PC Relative)” on page 7-24

• “Direct JUMP (PC Relative)” on page 7-29

• “CALL (PC Relative)” on page 7-33

• “JUMP (PC Relative)” on page 7-37

• “Long Call (LCALL)” on page 7-40

• “Long Jump (LJUMP)” on page 7-43

• “Indirect CALL” on page 7-46

• “Indirect JUMP” on page 7-50

• “Return from Interrupt (RTI)” on page 7-53

• “Return from Subroutine (RTS)” on page 7-57

• “PUSH or POP Stacks” on page 7-61

• “FLUSH CACHE” on page 7-67

• “Set Interrupt (SETINT)” on page 7-69

• “Clear Interrupt (CLRINT)” on page 7-71

• “NOP” on page 7-73

• “IDLE” on page 7-74

• “Mode Control” on page 7-76

DO UNTIL (PC Relative)

7-24 ADSP-219x DSP Instruction Set Reference

DO UNTIL (PC Relative)

Function

Sets up the looping circuitry for zero-overhead looping. The DO UNTIL
instruction uses the current PC (Program Counter) as the basis for deter-
mining the beginning of the loop and the PC-relative 12-bit offset value
(Imm12) as the end of a loop.

Input

Imm12 12-bit, positive offset value added to the address
(PC) of the DO UNTIL instruction. Valid values range
from 1 to 4095. (For good programming practice,
use declared labels.)

Term Loop terminator. Valid loop termination condi-
tions are FOREVER and CE.

Output

None.

Status Flags

DO <Imm12> [UNTIL <Term>] ;

Affected Flags–set or cleared by the operation Unaffected Flags

LPSTKEMPTY (always cleared), LPSTK-
FULL, STKOVERFLOW

PCSTKEMPTY, PCSTKFULL, PCSTKLVL,
STSSTKEMPTY

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 7-25

Program Flow Instructions

Details

The loop begins at the instruction directly following the DO UNTIL instruc-
tion (PC + 1) and ends at the instruction located at the offset address
specified in the DO UNTIL instruction—(PC + <imm12>).

When using the FOREVER (infinite loop) termination condition, explicitly
exit the loop by generating a status condition on which to base a jump to a
location outside the loop. If you omit a terminator (DO <loop>), the
instruction defaults to FOREVER.

When using the CE (counter expired) termination condition, before enter-
ing the loop, load the CNTR register with the number of times to execute
the loop. Each pass through the loop decrements and tests the counter
value in the loop counter stack, not the CNTR register (for details, see
“Loop Stacks Operation” on page 7-10). When the counter expires, loop-
ing terminates.

If using CE termination, you must load a value >1 in the CNTR
register.

Finite loops (CE terminator) execute repeatedly until the loop terminator
occurs. Infinite loops (FOREVER) execute repeatedly until a condition
occurs that invokes an explicit jump to the address of an instruction out-
side the loop.

At execution, the DO UNTIL instruction pushes:

• The address of the loop start instruction (PC + 1) onto the loop
begin stack.

• The address of the loop end instruction (PC + <imm12>) and the
code of the loop terminator onto the loop end stack.

• The contents of the CNTR register onto the loop counter stack.

DO UNTIL (PC Relative)

7-26 ADSP-219x DSP Instruction Set Reference

During execution of a finite loop, the DSP tests and decrements the loop
counter value stored in the loop counter stack—not the value in the CNTR
register—at the end of each pass of the loop.

The CNTR register retains the original loop counter value until you
load it with a new value, either explicitly with a load instruction or
with a POP LOOP instruction.

To test the current value of the decrementing loop counter, pop
the value off the loop counter stack into the CNTR register, move the
CNTR contents into a data register, and then push the CNTR contents
back onto the stack.

During execution of an infinite loop, the DSP pushes the current value of
the CNTR register and the FOREVER bit onto the loop counter stack. When
the FOREVER bit is set, the loop logic ignores the loop counter value. If you
set up an infinite loop with the PUSH LOOP instruction instead of the
DO UNTIL instruction, you must set the FOREVER bit of LPSTACKP (bit 15).
(For details, see “Loop Stacks Operation” on page 7-10 and “PUSH or
POP Stacks” on page 7-61.)

You can nest up to eight loops because each of the loop stacks has eight
locations. The DSP pushes the loop begin stack, loop end stack, and loop
counter stack for each level of nesting.

Follow these guidelines when coding loops:

• For nested loops, set up a separate counter for each loop, and end
each loop with a separate instruction.

• Do not use an RTI instruction or RTS instruction inside a loop.

• Do not use a PUSH or POP instruction in the last seven lines of a
loop. Avoid using PUSH or POP instructions within loops.

ADSP-219x DSP Instruction Set Reference 7-27

Program Flow Instructions

• Do not use a CALL instruction in the last line of a loop because the
return address then resides outside of the loop, which causes incor-
rect sequencing.

• A JUMP instruction may be used in the last line of an infinite loop.

• If you use a JUMP or CALL instruction to abort a loop, ensure that
you handle the loop stacks properly (POP LOOP). POP LOOP pops each
of the loop stacks automatically. For details, see “Stacks” on
page 7-7 and “PUSH or POP Stacks” on page 7-61.

Examples

/* finite loop example */

CNTR = 0xF;

IOPG = 0x1;

SI = AX0;

DM(I0 += M0) = SI;

MR = 0, MX0 = DM(I0+=M0), MY0 = PM(I4+=M4);

DO a_finite_loop UNTIL CE;

MR = MR+MX0*MY0(SS), MX0 = DM(I0+=M0), MY0=PM(I4+=M4);

MR = MR+MX0*MY0(RND);

a_finite_loop:

IO(0xFF) = MR1;

/* infinite loop example */

IOPG = 0x1;

I0 = 0x1000;

M0 = 1;

L0 = 0;

DO an_infinite_loop;

AX0 = DM(I0+=M0);

AR = AX0 + AY0;

IF AV JUMP exit_an_infinite_loop;

an_infinite_loop:

DO UNTIL (PC Relative)

7-28 ADSP-219x DSP Instruction Set Reference

DM(I0 + 100) = AR;

NOP; /* 1st instruction after an infinite loop */

NOP;

NOP; /* any number of instructions */

NOP;

exit_an_infinite_loop:

POP LOOP;

JUMP an_infinite_loop +1;

/* nested loop example */

AX0 = DM(I0 += M0), AY0 = PM(I4 += M4);

CNTR = 10;

DO outer_nested_loop UNTIL CE;

CNTR = 20;

DO middle_nested_loop UNTIL CE;

CNTR = 30;

DO inner_nested_loop UNTIL CE;

AR =AX0 + AY0, AX0=DM(I0 += M0), AY0=PM(I4 += M4);

inner_nested_loop:

DM(I2 += M2) = AR;

middle_nested_loop:

NOP;

outer_nested_loop:

NOP;

See Also

• “Type 11: Do ··· Until” on page 8-30

• “Conditions” on page 7-2

• “Counter-Based Conditions” on page 7-2

• “Stacks” on page 7-7

ADSP-219x DSP Instruction Set Reference 7-29

Program Flow Instructions

Direct JUMP (PC Relative)

Function

This branch instruction causes program execution to continue at the offset
address specified in the instruction. The offset address is the sum of the PC
of the JUMP instruction and the 13-bit immediate value supplied in the
instruction (PC + <imm13>).

If execution is based on an optional condition, the JUMP instruction exe-
cutes only if the condition evaluates true and a NOP operation executes if
the condition evaluates false. Omitting the condition forces unconditional
execution of the loop. For a list of valid conditions, see “Conditions” on
page 7-2.

The branch can be immediate or delayed (using the optional ((DB)). If
immediate, the branch instruction executes immediately, but the instruc-
tion at the offset address (branch target) executes after a latency of four
NOP cycles.

If using the optional delayed branch ((DB)) syntax, the branch instruction
executes immediately, but the instruction at the offset address (branch tar-
get) executes after a latency of four cycles. The two instructions directly
following the JUMP instruction execute in sequence during the first two
latency cycles if the branch is taken. Even if the branch is not taken, the
instructions occupying the two branch delay slots still execute.

[IF COND] JUMP <Imm13> [(DB)] ;

Direct JUMP (PC Relative)

7-30 ADSP-219x DSP Instruction Set Reference

Input

Imm13 A 13-bit, twos complement offset value added to
the address (PC) of the JUMP instruction. Valid val-
ues range from −4096 to +4095.

For good programming practice, always use a label,
rather than a numeric value, since a label is
relocatable.

Output

None.

Status Flags

None.

Details

When using the (DB) option, do not insert the following instructions after
the JUMP instruction, in the two delayed branch slots:

• Stack manipulation instructions—PUSH/POP

• Branch instructions—JUMP, CALL, RTI, RTS

• Loop instruction—DO UNTIL

You can use the indirect 16-bit memory write—immediate data instruc-
tion. For details, see “Indirect 16-Bit Memory Write—Immediate Data”
on page 6-56. Because it is a double-word instruction, you must place it in
the first delay branch slot, right after the CALL instruction.

The number of cycles required to perform a JUMP operation depends on
whether the branch is taken or not. With the immediate branch option,
when the branch is taken, the DSP flushes the instruction pipeline except
for the JUMP instruction and inserts four NOP cycles. As shown in Table 7-1

ADSP-219x DSP Instruction Set Reference 7-31

Program Flow Instructions

on page 7-31, when you use the (DB) option, the operation still takes five
cycles (JUMP instruction + four cycles of latency), but the DSP executes in
sequence the two instructions following the JUMP instruction, flushing
only the top of the instruction pipeline.

If the address range of this instruction is inadequate, you can use the
LJUMP instruction, which loses use of the (DB) option, or you can retain the
(DB) option and allow the development tools to determine during assem-
bly/linking whether to use this instruction or substitute the LJUMP
instruction. For details see “Using Long Jumps and Calls” on page 7-20.

Examples

JUMP first_branch_target; /* immediate branch jump */

NOP; /* any number of instructions */

first_branch_target:

NOP; /* any number of instructions */

NOP;

Jump second_branch_target (DB); /* delayed branch jump */

AR = PASS 0;

AR = AX0 + AY0; /* these 2 instr. after jump execute */

NOP; /* any number of instructions */

NOP;

second_branch_target:

NOP;

NOP; /* any number of instructions */

IF NE JUMP third_branch_target (DB);

MR = 0; /* these 2 instr. after (DB) jump execute */

Table 7-1. Branch (JUMP) Execution Cycles

Branch Case Time to Execute Delayed Branch Fills Delayed Branch
NOPs

Taken 5 cycles 2 cycles 2 cycles

Not Taken 1 cycle 0 cycles 0 cycles

Direct JUMP (PC Relative)

7-32 ADSP-219x DSP Instruction Set Reference

AR = PASS 0; /* whether or not cond branch is taken */

NOP;

NOP; /* any number of instructions */

third_branch_target:

NOP;

NOP; /* any number of instructions */

See Also

• “Type 10: Direct Jump” on page 8-28

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

ADSP-219x DSP Instruction Set Reference 7-33

Program Flow Instructions

CALL (PC Relative)

Function

This instruction causes the Program Sequencer to branch to the offset
address specified in the instruction and execute the subroutine at that
location. The offset address is the sum of the PC of the CALL instruction
and the 16-bit immediate value supplied in the instruction (PC + <imm16>).

The branch can be immediate or delayed (using the optional ((DB)). If
immediate, the branch instruction executes immediately, but the instruc-
tion at the offset address (branch target) executes after a latency of four
NOP cycles.

If using the optional delayed branch ((DB)) syntax, the branch instruction
executes immediately, but the instruction at the offset address (branch tar-
get) executes after a latency of four cycles. The two instructions directly
following the CALL instruction execute in sequence during the first two
latency cycles of the branch.

Input

imm16 16-bit, twos complement offset value added to the
address (PC) of the CALL instruction or a declared
label. Valid values range from −32768 to +32767.

For good programming practice, always use a label,
rather than a numeric value, since a label is
relocatable.

Output

None.

CALL <Imm16> [(DB)] ;

CALL (PC Relative)

7-34 ADSP-219x DSP Instruction Set Reference

Status Flags

Details

Before branching, the program sequencer pushes onto the PC stack the
return address of the next instruction to execute after returning from the
called subroutine. The next instruction to execute is:

• Immediate CALL—The first instruction following the CALL
instruction.

• Delayed CALL—The third instruction following the CALL
instruction.

To return from the subroutine, you must explicitly issue an RTS instruc-
tion. For details, see “Return from Subroutine (RTS)” on page 7-57.

When using the (DB) option, do not insert the following instructions after
the CALL instruction, in the two delay branch slots:

• Stack manipulation instructions—PUSH/POP

• Branch instructions—JUMP, CALL, RTI, RTS

• Loop instruction—DO UNTIL

You can use the indirect 16-bit memory write—immediate data instruc-
tion. For details, see “Indirect 16-Bit Memory Write—Immediate Data”
on page 6-56. Because it is a double-word instruction, you must place it in
the first delay branch slot, right after the CALL instruction.

Affected Flags–set or cleared by the operation Unaffected Flags

 PCSTKFULL, PCSTKLVL, STKOVER-
FLOW, PCSTKEMPTY

LPSTKEMPTY, LPSTKFULL, STSST-
KEMPTY

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 7-35

Program Flow Instructions

The number of cycles required to perform a CALL operation depends on
whether the branch is taken or not. With the immediate branch option,
when the branch is taken, the DSP flushes the instruction pipeline except
for the CALL instruction and inserts four NOP cycles. As shown in
Table 7-2, when you use the (DB) option, the operation still takes five
cycles (CALL instruction + four cycles of latency), but the DSP executes in
sequence the two instructions following the CALL instruction, flushing
only the top of the instruction pipeline.

If the address range of this instruction is inadequate, you can use the
LCALL instruction, losing use of the (DB) option, or you can retain the (DB)
option and let the development tools to determine during assembly/link-
ing whether to use this instruction or substitute the LCALL instruction. For
details see “Using Long Jumps and Calls” on page 7-20 and “Long Call
(LCALL)” on page 7-40.

Examples

CALL data_shift_subroutine (DB);

AX0 = DM(I0 += M1), AY0 = PM(I4 += M5); /* these two instr.

*/

AR = PASS 0; /* execute before (DB) branch starts */

DM(I1 += M1) = SR0; /* RTS returns here */

NOP;

NOP; /* any number of instructions */

NOP;

data_shift_subroutine:

AR = AX0 + AY0;

Table 7-2. Branch (CALL) Execution Cycles

Branch Case Time to Execute Delayed Branch Fills Delayed Branch
NOPs

Taken 5 cycles 2 cycles 2 cycles

Not Taken 1 cycle 0 cycles 0 cycles

CALL (PC Relative)

7-36 ADSP-219x DSP Instruction Set Reference

AX1 = 3; SE = AR;

SR = ASHIFT SI (HI);

RTS; /* returns operation */

See Also

• “Type 10: Direct Jump” on page 8-28

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

ADSP-219x DSP Instruction Set Reference 7-37

Program Flow Instructions

JUMP (PC Relative)

Function

This branch instruction causes program execution to continue at the offset
address specified in the instruction. The offset address is the sum of the PC
of the JUMP instruction and the 16-bit immediate value supplied in the
instruction (PC + <imm16>).

The branch can be immediate or delayed (using the optional ((DB)). If
immediate, the branch instruction executes immediately, but the instruc-
tion at the offset address (branch target) executes after a latency of four
NOP cycles.

If using the optional delayed branch ((DB)) syntax, the branch instruction
executes immediately, but the instruction at the offset address (branch tar-
get) executes after a latency equal to four cycles. The two instructions
directly following the JUMP instruction execute in sequence during the first
two latency cycles of the branch.

Input

imm16 16-bit, twos complement offset value added to the
address (PC) of the JUMP instruction or a declared
label. Valid values range from −32768 to +32767.

For good programming practice, always use a label,
rather than a numeric value, since a label is
relocatable.

Output

None.

JUMP <Imm16> [(DB)] ;

JUMP (PC Relative)

7-38 ADSP-219x DSP Instruction Set Reference

Status Flags

None.

Details

When using the (DB) option, you cannot insert the following instructions
in the two delay branch slots directly after the JUMP instruction:

• Stack manipulation instructions—PUSH/POP

• Branch instructions—JUMP, CALL, RTI, RTS

• Loop instruction—DO UNTIL

You can use the Indirect 16-bit Memory Write—Immediate Data instruc-
tion. For details, see “Indirect 16-Bit Memory Write—Immediate Data”
on page 6-56. Because it is a double-word instruction, you must place it in
the first delay branch slot, right after the CALL instruction.

The number of cycles required to perform a JUMP operation depends on
whether the branch is taken or not. With the immediate branch option,
when the branch is taken, the DSP flushes the instruction pipeline except
for the JUMP instruction and inserts four NOP cycles. As shown in Table 7-1
on page 7-31, when you use the (DB) option, the operation still takes five
cycles (JUMP instruction + four cycles of latency), but the DSP executes in
sequence the two instructions following the JUMP instruction, flushing
only the top of the instruction pipeline.

If the address range of this instruction is inadequate, you can use the
LJUMP instruction, but you lose use of the (DB) option, or you can retain
the (DB) option and let the tools determine during assembly/linking
whether to use this instruction or substitute the LJUMP instruction. For
details see “Using Long Jumps and Calls” on page 7-20 and “Long Jump
(LJUMP)” on page 7-43.

ADSP-219x DSP Instruction Set Reference 7-39

Program Flow Instructions

Examples

.SECTION/PM seg_code;

JUMP my_cod2_label; /* jumps to 16-bit relative address */

NOP;

NOP; /* any number of instructions */

NOP;

my_code_exit_label:

NOP; /* jump from seg_cod2 comes here */

NOP;

NOP; /* any number of instructions */

NOP;

.SECTION/PM seg_cod2;

my_cod2_label:

NOP;

NOP; /* any number of instructions */

NOP;

JUMP my_code_exit_label;

See Also

• “Type 10: Direct Jump” on page 8-28

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

Long Call (LCALL)

7-40 ADSP-219x DSP Instruction Set Reference

Long Call (LCALL)

Function

This instruction causes the program sequencer to branch to the absolute
address specified in the instruction and execute the subroutine at that
location. The absolute address is the 24-bit immediate value supplied in
the instruction. The 24-bit immediate value enables programs to access
any location in program memory address space.

If execution is based on a condition, the JUMP instruction executes only if
the condition evaluates true and a NOP operation executes if the condition
evaluates false. Omitting the condition forces unconditional execution of
the loop. For a list of valid conditions, see “Conditions” on page 7-2.

Input

Imm24 24-bit, twos complement value or a declared label.
Values range from −16777216 to +16777215.

Always use a label, rather than a numeric value,
since a label is relocatable.

Output

None.

Status Flags

[IF COND] LCALL <Imm24> ;

Affected Flags–set or cleared by the operation Unaffected Flags

 PCSTKFULL, PCSTKLVL, STKOVER-
FLOW, PCSTKEMPTY

LPSTKEMPTY, LPSTKFULL, STSST-
KEMPTY

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 7-41

Program Flow Instructions

Details

For details on using the assembler’s and linker’s -jcs21 option to direct
the tools to determine when to replace PC relative CALL instructions with
this instruction, see “Using Long Jumps and Calls” on page 7-20.

This is a double-word instruction, so it executes in six (2 instruction + 4
latency) cycles.

Before branching, the Program Sequencer automatically pushes onto the
PC stack the return address of the next instruction to execute after return-
ing from the called subroutine. The next instruction to execute is the first
instruction following the LCALL instruction.

To return from the subroutine, you must explicitly issue an RTS instruc-
tion. For details, see “Return from Subroutine (RTS)” on page 7-57.

Examples

.SECTION/PM seg_code;

IF EQ LCALL my_faraway_routine;

NOP; /* execution returns here */

NOP;

NOP; /* any number of instructions */

NOP;

.SECTION/PM seg_cod2;

my_faraway_routine:

NOP;

NOP; /* any number of instructions */

NOP;

RTS;

Long Call (LCALL)

7-42 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 36: Long Jump/Call” on page 8-55

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

• “Using Long Jumps and Calls” on page 7-20

ADSP-219x DSP Instruction Set Reference 7-43

Program Flow Instructions

Long Jump (LJUMP)

Function

This branch instruction causes program execution to continue at the abso-
lute address specified in the instruction. The absolute address is the 24-bit
immediate value supplied in the instruction. The 24-bit immediate value
enables programs to access any location in program memory address space.

If execution is based on a condition, the JUMP instruction executes only if
the condition evaluates true and a NOP operation executes if the condition
evaluates false. Omitting the condition forces unconditional execution of
the loop. For a list of valid conditions, see “Conditions” on page 7-2.

This instruction is a two-word instruction and requires (at mini-
mum) six cycles to execute. For more information, see “Type 36:
Long Jump/Call” on page 8-55.

Input

Imm24 24-bit, twos complement value or a declared vari-
able. Values range from −16777216 to +16777215.

For good programming practice, always use a label,
rather than a numeric value, since a label is
relocatable.

Output

None.

Status Flags

None.

[IF COND] LJUMP <Imm24> ;

Long Jump (LJUMP)

7-44 ADSP-219x DSP Instruction Set Reference

Details

For details on using the ADSP-219x assembler’s -jcs2l (convert
Jump/Call Short to Long) option to direct the tools to determine when to
replace PC relative JUMP instructions with LJUMP instructions, see “Using
Long Jumps and Calls” on page 7-20.

Examples

/* Long JUMP example nearby half */

.SECTION/PM seg_code;

.GLOBAL my_local_exit_label;

.EXTERN my_faraway_label;

LJUMP my_faraway_label; /* jumps to 24-bit relative addr */

NOP;

NOP; /* any number of instructions */

NOP;

 my_local_exit_label:

NOP; /* jump from seg_cod2 comes here */

NOP;

NOP; /* any number of instructions */

/* Long JUMP example faraway half */

.SECTION/PM seg_xpmc;

.GLOBAL my_faraway_label;

.EXTERN my_local_exit_label;

my_faraway_label:

NOP; /* any number of instructions */

NOP;

LJUMP my_local_exit_label;

ADSP-219x DSP Instruction Set Reference 7-45

Program Flow Instructions

See Also

• “Type 36: Long Jump/Call” on page 8-55

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

• “Using Long Jumps and Calls” on page 7-20

Indirect CALL

7-46 ADSP-219x DSP Instruction Set Reference

Indirect CALL

Function

This instruction causes the program sequencer to branch to the address
pointed to by the DAG index register (Ireg). The Ireg supplies the 16
LSBs of the 24-bit address, and the IJPG register supplies the eight MSBs
(page address) of the 24-bit address. You must explicitly load the IJPG reg-
ister with the eight MSBs of the address before executing this instruction
(for details, see “Data Move Instructions” on page 6-1).

If execution is based on a condition, the CALL instruction executes only if
the condition evaluates true, and a NOP operation executes if the condition
evaluates false. Omitting the condition forces unconditional execution of
the loop. For a list of valid conditions, see “Conditions” on page 7-2.

The branch can be immediate or delayed (using the optional ((DB)). If
immediate, the branch instruction executes immediately, but the instruc-
tion at the offset address (branch target) executes after a latency of four
NOP cycles.

If using the optional delayed branch ((DB)) syntax, the branch instruction
executes immediately, but the instruction at the offset address (branch tar-
get) executes after a latency equal to four cycles. The two instructions
directly following the CALL instruction execute in sequence during the first
two latency cycles if the branch is taken. Even if the branch is not taken,
the instructions occupying the two branch delay slots still execute.

Input

Ireg I0–I3 (DAG1 index registers) or I4–I7 (DAG2
index registers)

[IF COND] CALL (<Ireg>) [(DB)] ;

ADSP-219x DSP Instruction Set Reference 7-47

Program Flow Instructions

Output

None.

Status Flags

Details

Before branching, the program sequencer automatically pushes onto the
PC stack the return address of the next instruction to execute after return-
ing from the called subroutine. The next instruction to execute is:

Immediate CALL The first instruction following the CALL instruction.

Delayed CALL The third instruction following the CALL
instruction.

To return from the subroutine, explicitly issue an RTS instruction.
For details, see “Return from Subroutine (RTS)” on page 7-57.

When using the (DB) option, do not insert the following instructions after
the CALL instruction, in the two delay branch slots:

• Stack manipulation instructions—PUSH/POP

• Branch instructions—JUMP, CALL, RTI, RTS

• Loop instruction—DO UNTIL

Affected Flags–set or cleared by the operation Unaffected Flags

 PCSTKFULL, PCSTKLVL, STKOVERFLOW,
PCSTKEMPTY

LPSTKEMPTY, LPSTKFULL, STSST-
KEMPTY

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

Indirect CALL

7-48 ADSP-219x DSP Instruction Set Reference

You can use the indirect 16-bit memory write—immediate data instruc-
tion (for details, see page 6-56), but because it is a double-word
instruction, you must place it in the first delay branch slot, right after the
CALL instruction.

The number of cycles required to perform a CALL operation depends on
whether the branch is taken or not. With the immediate branch option,
when the branch is taken, the DSP flushes the instruction pipeline except
for the CALL instruction and inserts four NOP cycles. As shown in Table 7-2
on page 7-35, when you use the (DB) option, the operation still takes five
cycles (CALL instruction + four cycles of latency), but the DSP executes in
sequence the two instructions following the CALL instruction, flushing
only the top of the instruction pipeline.

Examples

I5 = sampling_routine;

AR = AR + AX0;

IF EQ CALL (I5) (DB);

DM(I0 += M1) = AR; /* these two instr. execute */

AR = 0; /* whether or not the branch is taken */

AR = PASS 0; /* RTS returns execution to this instr. */

NOP;

NOP; /* any number of instructions */

NOP;

sampling_routine:

MX0 = DM(I0+=M1);

MR = MX0 * MY0 (SS);

NOP;

NOP; /* any number of instructions */

NOP;

RTS;

ADSP-219x DSP Instruction Set Reference 7-49

Program Flow Instructions

See Also

• “Type 19: Indirect Jump/Call” on page 8-37

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

Indirect JUMP

7-50 ADSP-219x DSP Instruction Set Reference

Indirect JUMP

Function

This branch instruction causes program execution to continue at the
address pointed to by the DAG index register (Ireg). The Ireg supplies
the 16 LSBs of the 24-bit address, and the IJPG register supplies the eight
MSBs (page address) of the 24-bit address. You must explicitly load the
IJPG register with the eight MSBs of the address before executing this
instruction (for details, see “Data Move Instructions” on page 6-1).

If execution is based on a condition, the JUMP instruction executes only if
the condition evaluates true, and a NOP operation executes if the condition
evaluates false. Omitting the condition forces unconditional execution of
the loop. For a list of valid conditions, see “Conditions” on page 7-2.

The branch can be immediate or delayed (using the optional ((DB)). If
immediate, the branch instruction executes immediately, but the instruc-
tion at the offset address (branch target) executes after a latency of four
NOP cycles.

If using the optional delayed branch ((DB)) syntax, the branch instruction
executes immediately, but the instruction at the offset address (branch tar-
get) executes after a latency equal to four cycles. The two instructions
directly following the JUMP instruction execute in sequence during the first
two latency cycles if the branch is taken. Even if the branch is not taken,
the instructions occupying the two branch delay slots still execute.

Input

Ireg I0–I3 (DAG1 index registers) or I4–I7 (DAG2
index registers)

[IF COND] JUMP (<Ireg>) [(DB)] ;

ADSP-219x DSP Instruction Set Reference 7-51

Program Flow Instructions

Output

None.

Status Flags

None.

Details

Loading the IJPG register or an Ireg has a zero (0) effect latency for this
instruction, so the new value is available on the next instruction cycle.

When using the (DB) option, do not insert the following instructions after
the JUMP instruction, in the two delay branch slots:

• Stack manipulation instructions—PUSH/POP

• Branch instructions—JUMP, CALL, RTI, RTS

• Loop instruction—DO UNTIL

You can use the indirect 16-bit memory write—immediate data instruc-
tion. For details, see “Indirect 16-Bit Memory Write—Immediate Data”
on page 6-56. Because it is a double-word instruction, you must place it in
the first delay branch slot, right after the JUMP instruction.

The number of cycles required to perform a JUMP operation depends on
whether the branch is taken. With the immediate branch option, when the
branch is taken, the DSP flushes the instruction pipeline except for the
JUMP instruction and inserts four NOP cycles. As shown in Table 7-1 on
page 7-31, when using the (DB) option, the operation still takes five cycles
(JUMP instruction + four cycles of latency), but the DSP executes in
sequence the two instructions following the JUMP instruction, flushing
only the top of the instruction pipeline.

Indirect JUMP

7-52 ADSP-219x DSP Instruction Set Reference

Examples

I4 = sampling;

I5 = next_sample;

sampling:

AR = AR + AX0;

IF EQ JUMP (I5) (DB);

DM(I0 += M1) = AR; /* these two instr. execute */

AR = 0; /* whether or not the branch is taken */

JUMP (I4) (DB);

AX0 = DM(I0 += M1); /* these two instr. execute */

AR = AX0; /* before the branch starts */

next_sample:

MX0 = DM(I0 += M1);

MR = MX0 * MY0 (SS);

NOP;

NOP; /* any number of instructions */

NOP;

JUMP (I4); /* goes back to sampling */

See Also

• “Type 19: Indirect Jump/Call” on page 8-37

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

ADSP-219x DSP Instruction Set Reference 7-53

Program Flow Instructions

Return from Interrupt (RTI)

Function

This instruction executes a return from an interrupt service routine (ISR).
It returns program execution to the address of either the first or third
instruction following the branch instruction that launched the ISR.

If execution is based on a condition, the RTI instruction executes only if
the condition evaluates true, and a NOP operation executes if the condition
evaluates false. Omitting the condition forces unconditional execution of
the loop. For a list of valid conditions, see “Conditions” on page 7-2.

The branch can be immediate or delayed (using the optional ((DB)). If
immediate, the branch instruction executes immediately, but the instruc-
tion at the offset address (branch target) executes after a latency of four
NOP cycles.

If using the optional delayed branch ((DB)) syntax, the branch instruction
executes immediately, but the instruction at the offset address (branch tar-
get) executes after a latency equal to four cycles. The two instructions
directly following the RTI instruction execute in sequence during the first
two latency cycles if the branch is taken. Even if the branch is not taken,
the instructions occupying the two branch delay slots still execute.

For emulation, the RTI instruction supports an additional option, the sin-
gle-step (SS) return interrupt. This option causes the instruction at the
return address to generate an interrupt when it executes during emulation.

Input

None.

[IF COND] RTI [(DB)] [(SS)] ;

Return from Interrupt (RTI)

7-54 ADSP-219x DSP Instruction Set Reference

Output

None.

Status Flags

Details

This instruction pops and uses the address at top of the PC stack for the
return address. It also pops the value at the top of the status stack and
loads it into the Arithmetic Status (ASTAT) register and the Mode Status
(MSTAT) register. If the ISR enabled secondary registers or changed other
DSP modes in MSTAT, the RTI instruction disables them automatically
when it executes.

Do not use an RTI instruction inside a loop without explicitly per-
forming stack maintenance.

When using the (DB) option, do not insert the following instructions after
the RTI instruction, in the two delay branch slots:

• Stack manipulation instructions—PUSH/POP

• Branch instructions—JUMP, CALL, RTI, RTS

• Loop instruction—DO UNTIL

You can use the indirect 16-bit memory write—immediate data instruc-
tion. For details, see “Indirect 16-Bit Memory Write—Immediate Data”
on page 6-56. Because it is a double-word instruction, you must place it in
the first delay branch slot, directly following the RTI instruction.

Affected Flags–set or cleared by the operation Unaffected Flags

 PCSTKFULL, PCSTKEMPTY, PCSTKLVL LPSTKEMPTY, LPSTKFULL, STKOVER-
FLOW, STSSTKEMPTY

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 7-55

Program Flow Instructions

The number of cycles required to perform an RTI depends on whether the
branch is taken. With the immediate branch option, when the branch is
taken, the DSP flushes the instruction pipeline except for the RTI instruc-
tion and inserts four NOP cycles. As shown in Table 7-3, when you use the
(DB) option, the operation still takes five cycles (RTI instruction + four
cycles of latency), but the DSP executes in sequence the two instructions
following the RTI instruction, flushing only the top of the instruction
pipeline.

Examples

interrupt_setup:

/* define addr. of inter. priority registers in IO() memory */

#define IPR0 0x203

#define IPR1 0x204

#define IPR2 0x205

#define IPR3 0x206

/* load interrupt priorities into IPR registers */

AX0 = 0x3210;

IO(IPR0) = AX0; /* set priorities for peripherals 3-0 */

AX0 = 0x7654;

IO(IPR1) = AX0; /* set priorities for peripherals 7-4 */

AX0 = 0xBA98;

IO(IPR2) = AX0; /* set priorities for peripherals 11-8 */

AX0 = 0x0BBB;

IO(IPR3) = AX0; /* set priorities for peripherals 14-12 */

ICNTL = 0x0010; /* set GIE global interrupt enable bit */

Table 7-3. Branch (RTI) Execution Cycles

Branch Case Time to Execute Delayed Branch Fills Delayed Branch
NOPs

Taken 5 cycles 2 cycles 2 cycles

Not Taken 2 cycle 0 cycles 1 cycle

Return from Interrupt (RTI)

7-56 ADSP-219x DSP Instruction Set Reference

IMASK = 0x4000; /* unmask interrupt ID 14, which is

/* assigned to Timer Interrupt A by IPR2 */

ENA INT; /* enable interrupts */

wait_here_for_interrupt: /* loop waiting for interrupt */

NOP;

NOP; /* any number of instructions */

NOP;

JUMP wait_here_for_interrupt;

.SECTION/PM irq_14; /* map this ISR to addr. 0x01C0 with LDF */

timer_a_int:

ENA SEC_REG, ENA SEC_DAG;

NOP;

NOP; /* up to 32 instructions */

NOP;

RTI;

See Also

• “Type 20: Return” on page 8-38

• “Interrupts” on page 7-13

• “Set Interrupt (SETINT)” on page 7-69

• “Clear Interrupt (CLRINT)” on page 7-71

ADSP-219x DSP Instruction Set Reference 7-57

Program Flow Instructions

Return from Subroutine (RTS)

Function

This instruction executes a return from a subroutine. It returns program
execution to the address of either the first or third instruction following
the branch instruction that called the subroutine.

If execution is based on a condition, the RTS instruction executes only if
the condition evaluates true, and a NOP operation executes if the condition
evaluates false. Omitting the condition forces unconditional execution of
the branch. For a list of valid conditions, see “Conditions” on page 7-2.

The branch can be immediate or delayed (using the optional ((DB)). If
immediate, the branch instruction executes immediately, but the instruc-
tion at the offset address (branch target) executes after a latency of four
NOP cycles.

If using the optional delayed branch ((DB)) syntax, the branch instruction
executes immediately, but the instruction at the offset address (branch tar-
get) executes after a latency of four cycles. The two instructions directly
following the RTS instruction execute in sequence during the first two
latency cycles if the branch is taken. Even if the branch is not taken, the
instructions occupying the two branch delay slots still execute.

The two instructions following the RTS(DB); command are atomic. Inter-
rupts are delayed until the two instruction are executed.

Do not use an RTS instruction inside a loop without explicitly per-
forming stack maintenance. For details, see begin stack.

Input

None.

[IF COND] RTS [(DB)] ;

Return from Subroutine (RTS)

7-58 ADSP-219x DSP Instruction Set Reference

Output

None.

Status Flags

Details

This instruction pops and uses the address at top of the PC stack for the
return address.

When using the (DB) option, do not insert the following instructions after
the RTS instruction, in the two delay branch slots:

• Stack manipulation instructions—PUSH/POP

• Branch instructions—JUMP, CALL, RTI, RTS

• Loop instruction—DO UNTIL

You can use the indirect 16-bit memory write—immediate data instruc-
tion (for details, see page 6-56), but because it is a double-word
instruction, you must place it in the first delay branch slot, right after the
RTI instruction.

The number of cycles required to perform an RTS depends on whether the
branch is taken. With the immediate branch option, when the branch is
taken, the DSP flushes the instruction pipeline except for the RTS instruc-
tion and inserts four NOP cycles. As shown in Table 7-4 on page 7-59,
when you use the (DB) option, the operation still takes five cycles

Affected Flags–set or cleared by the operation Unaffected Flags

 PCSTKFULL, PCSTKEMPTY, PCSTKLVL LPSTKEMPTY, LPSTKFULL, STKOVER-
FLOW, STSSTKEMPTY

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 7-59

Program Flow Instructions

(RTS instruction + four cycles of latency), but the DSP executes in
sequence the two instructions following the RTS instruction, flushing only
the top of the instruction pipeline.

Examples

I5 = sample_routine;

AR = AR + AX0;

IF EQ CALL (I5) (DB);

DM(I0 += M1) = AR; /* these two instr. execute */

AR = 0; /* whether or not the branch is taken */

AR = PASS 0; /* RTS returns execution to this instr. */

NOP;

NOP; /* any number of instructions */

NOP;

sample_routine:

MX0 = DM(I0+=M1);

MR = MX0 * MY0 (SS);

NOP;

NOP; /* any number of instructions */

NOP;

RTS;

Table 7-4. Branch (RTS) Execution Cycles

Branch Case Time to Execute Delayed Branch Fills Delayed Branch
NOPs

Taken 5 cycles 2 cycles 2 cycles

Not Taken 1 cycle 0 cycles 0 cycle

Return from Subroutine (RTS)

7-60 ADSP-219x DSP Instruction Set Reference

See Also

• “Type 20: Return” on page 8-38

• “Branch Options” on page 7-4

• “Addressing Branch Targets” on page 7-6

ADSP-219x DSP Instruction Set Reference 7-61

Program Flow Instructions

PUSH or POP Stacks

Function

This instruction PUSHes (stores) or POPs (retrieves) a value from the top of
the specified stack: PC, LOOP, or STS.

• PC

On a PUSH, stores onto the top of the PC stack a 24-bit address value
assembled from the STACKA and STACKP registers. STACKA provides
the 16 LSBs of the address, and STACKP provides the eight MSBs of
the address.

On a POP, retrieves the most recently stacked 24-bit address value
from the top of the PC stack into the STACKA and STACKP registers.
STACKA receives the 16 LSBs of the address, and STACKP receives the
eight MSBs of the address.

• LOOP

On a PUSH, stores onto the top of the loop begin stack the 24-bit
loop start address assembled from the STACKA and STACKP registers,
pushes onto the top of the loop end stack the 24-bit loop end
address assembled from the LPSTACKA and LPSTACKP registers, and
pushes onto the top of the loop counter stack the current loop
counter value from the CNTR register.

On a POP, retrieves the most recently stacked 24-bit loop start
address from the top of the loop begin stack into the STACKA and
STACKP registers, pops the most recently stacked 24-bit loop end
address from the top of the loop end stack into the LPSTACKA and
LPSTACKP registers, and pops the current loop counter value from
the top of the loop counter stack into the CNTR register.

PUSH
POP

PC
LOOP
STS

 ;

PUSH or POP Stacks

7-62 ADSP-219x DSP Instruction Set Reference

• STS

On a PUSH, stores the current values of the ASTAT and MSTAT regis-
ters onto the status stack. After each push, the status stack pointer
increments by one to access the next available location in the stack.

On a POP, retrieves the most recently stacked 16-bit value of the
ASTAT and MSTAT registers from the top of the status stack. After
each individual pop, the status stack pointer decrements by one to
access the next lowest location (next register value) in the stack.

A PUSH or POP PC has one cycle of latency for all SSTAT register bits,
but a PUSH or POP LOOP or STS has one cycle of latency only for the
STKOVERFLOW bit in the SSTAT register.

Input

None.

Output

None.

Status Flags

Affected Flags–set or cleared by the operation Unaffected Flags

PCSTKEMPTY (affected on POP), PCSTK-
FULL, PCSTKLVL (affected on POP),
LPSTKEMPTY, LPSTKFULL, STSST-
KEMPTY (affected on POP), STKOVER-
FLOW

(none)

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 7-63

Program Flow Instructions

Details (Push)

You can push up to two stacks in parallel by issuing two PUSH instructions
on the same instruction line, pushing either:

PUSH PC, PUSH STS;

PUSH LOOP, PUSH STS;

Do not push the PC and LOOP stacks in parallel (PUSH PC,
PUSH LOOP;).

If you push the PC and loop stacks in parallel, you push the same
address value onto both the PC stack and the loop begin stack.
This occurs because STACKA and STACKP serve as the source registers
for both stacks.

Regardless of the number of stacks pushed, this instruction always exe-
cutes in a single cycle.

Subroutines, loops, and interrupts automatically push certain stacks:

• Calls to subroutines and entry into interrupt service routines auto-
matically push the PC stack.

• Execution of the DO UNTIL instruction pushes the loop begin stack,
the loop end stack, and the loop counter stack.

Do not use this instruction in either of the two slots directly following a
delayed branch instruction.

Do not use this instruction inside a loop without explicitly per-
forming stack maintenance. For details, see “PUSH or POP
Stacks” on page 7-61

If you set up an infinite loop with the PUSH LOOP instruction, set
bit 15 of LPSTACKP to indicate FOREVER. Although the LPSTACKP reg-
ister has 16 bits, only bit 15 and bits 7:0 are valid. When the
FOREVER bit is set (bit 15 = 1), the loop logic ignores the loop

PUSH or POP Stacks

7-64 ADSP-219x DSP Instruction Set Reference

counter value. When the FOREVER bit is cleared (bit 15 = 0), CE is
the loop terminator condition, and the loop logic decrements the
loop counter value.

Details (Pop)

You can pop up to two stacks in parallel by issuing two POP instructions
on the same instruction line, popping either:

POP PC, POP STS;

POP LOOP, POP STS;

Do not pop the PC and loop stacks in parallel (POP PC, POP LOOP;).

If you pop the PC and loop stacks in parallel, you lose the loop
start address retrieved from the loop begin stack. This occurs
because STACKA and STACKP serve as the destination registers for val-
ues popped from both the PC stack and the loop begin stack. In
this case, STACKA and STACKP receive the most recently stacked PC
value.

Regardless of the number of stacks popped, this instruction always exe-
cutes in a single cycle.

Subroutines, loops, and interrupts automatically pop certain stacks:

• Upon exiting, RTS and RTI instructions automatically pop the PC
stack.

• Loop termination automatically pops the loop begin stack, the loop
end stack, and the loop counter stack

Do not use this instruction in either of the two slots directly fol-
lowing a delayed branch instruction.

Do not use this instruction inside a loop without explicitly per-
forming stack maintenance. For details, see “PUSH or POP
Stacks” on page 7-61.

ADSP-219x DSP Instruction Set Reference 7-65

Program Flow Instructions

Examples (PUSH)

/* Pushing an infinite loop—loop terminator */

/* condition = FOREVER: */

STACKA = 0x0045;

STACKP = 0x03;

LPSTACKA = 0x004C;

LPSTACKP = 0x03;

PUSH LOOP;

/* Saving the DSP’s current state: */

STACKA = 0x0022;

STACKP = 0x05;

PUSH PC, PUSH STS;

Examples (POP)

/* Restoring the DSP’s current state: */

POP PC, POP STS;

AR = TSTBIT 6 OF AX0;

IF EQ CALL primary;

AX1 = STACKA;

AY1 = STACKP;

IJPG = AY1;

primary: DIS SEC_DAG, DIS SEC_REG;

RTS;

/* Aborting a loop: */

CNTR = 10;

MX0 = DM(I2 += M2),

MY0 = PM(I5 += M5);

PUSH or POP Stacks

7-66 ADSP-219x DSP Instruction Set Reference

DO mac UNTIL CE;

MR = MR + MX0 * MY0 (SS),

MX0 = DM(I2 += M2),

MY0 = PM(I5 += M5);

IF MV JUMP abort;

mac:

DM(I0 += M1) = MR0;

NOP;

NOP; /* any number of instructions */

NOP;

abort:

POP LOOP;

JUMP mac + 1;

See Also

• “Type 26:Push/Pop/Cache” on page 8-46

• “Mode Control” on page 7-4

• “Stacks” on page 7-7

• “PC and Status Stack Operation” on page 7-8

• “Loop Stacks Operation” on page 7-10

ADSP-219x DSP Instruction Set Reference 7-67

Program Flow Instructions

FLUSH CACHE

Function

This instruction flushes the instruction cache, invalidating all instructions
currently cached, so the next instruction fetch results in a memory access.

Use this instruction when program memory changes to resynchronize the
instruction cache with program memory.

Input

None.

Output

None.

Status Flags

None.

Details

This operation may require up to six cycles to take effect.

Do not use this instruction in either of the two slots directly fol-
lowing a delayed branch instruction.

FLUSH CACHE ;

FLUSH CACHE

7-68 ADSP-219x DSP Instruction Set Reference

Examples

FLUSH CACHE;

See Also

• “Type 26:Push/Pop/Cache” on page 8-46

ADSP-219x DSP Instruction Set Reference 7-69

Program Flow Instructions

Set Interrupt (SETINT)

Function

This instruction sets bit n (n = 1) in the interrupt latch (IRPTL) register and
its associated interrupt. If the specified interrupt is unmasked, its corre-
sponding bit in the IMASK register is set, program flow immediately
branches to and executes the interrupt’s service routine. Otherwise, the
interrupt request remains latched but ignored until the program unmasks
it or clears it. If unmasked, the interrupt’s ISR executes; if cleared, the
interrupt request is rejected.

Input

n Specifies which bit (and interrupt) in the IRPTL
register to set.

Valid values range from 0–15.

The mapping of bits to interrupts is specific to par-
ticular DSPs in the ADSP-219x family. For details,
see the ADSP-219x/2192 DSP Hardware Reference.

Output

None.

Options

None.

SETINT n ;

Set Interrupt (SETINT)

7-70 ADSP-219x DSP Instruction Set Reference

Status Flags

Details

This instruction has no associated effect latency.

Examples

MR = MR+MX0*MY0(SS), MX0 = DM(I0+=M0), MY0 = PM(I4+=M4);

IF MV SAT MR;

IF LT JUMP adjust;

adjust: SETINT 12;

See Also

• “Stacks” on page 7-7

• “Interrupts” on page 7-13

• “Clear Interrupt (CLRINT)” on page 7-71

• “Type 37: Interrupt” on page 8-56

Affected Flags–set or cleared by the operation Unaffected Flags

PCSTKFULL, PCSTKEMPTY, PCSTKLVL,
STSSTKEMPTY, STKOVERFLOW

LPSTKEMPTY, LPSTKFULL

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 7-71

Program Flow Instructions

Clear Interrupt (CLRINT)

Function

This instruction clears bit n (n = 0) in the interrupt latch (IRPTL) register
and its associated interrupt.

This instruction clears a pending interrupt. It is used, in an ISR for exam-
ple, to clear a pending interrupt that has been detected, but not yet been
serviced.

Input

n Specifies which bit (and interrupt) in the IRPTL
register to clear.

Valid values range from 0–15.

The mapping of bits to interrupts is specific to par-
ticular DSPs in the ADSP-219x family. For details,
see the ADSP-219x/2192 DSP Hardware Reference.

Output

None.

Options

None.

CLRINT n ;

Clear Interrupt (CLRINT)

7-72 ADSP-219x DSP Instruction Set Reference

Status Flags

Details

This instruction has no associated latency.

Examples

AX0 = IRPTL;

AR = TSTBIT 12 of AX0;

IF EQ JUMP clear;

clear: CLRINT 12;

See Also

• “Stacks” on page 7-7

• “Interrupts” on page 7-13

• “Return from Interrupt (RTI)” on page 7-53

• “Set Interrupt (SETINT)” on page 7-69

• “Type 37: Interrupt” on page 8-56

Affected Flags–set or cleared by the operation Unaffected Flags

PCSTKFULL, PCSTKEMPTY, PCSTKLVL,
STSSTKEMPTY, STKOVERFLOW, LPST-
KEMPTY, LPSTKFULL

For information on these status bits in the SSTAT register, see Table 1-2 on page 1-4.

ADSP-219x DSP Instruction Set Reference 7-73

Program Flow Instructions

NOP

Function

This instruction causes the DSP’s core to perform no operation for one
cycle. Program execution continues with the instruction directly following
the NOP instruction.

Input

None.

Output

None.

Status Flags

None.

Details

Only the core ceases operation for one cycle; the on-chip peripherals con-
tinue their respective operations.

Examples

NOP; /* no operation */

See Also

• “Type 30: NOP” on page 8-48

NOP ;

IDLE

7-74 ADSP-219x DSP Instruction Set Reference

IDLE

IDLE ;

IDLE 0 ;

Function

This instruction directs the DSP’s core to wait indefinitely in a low-power
state until an interrupt occurs. When an interrupt occurs, the DSP’s core
exits the low-power state, services the interrupt, and then continues pro-
gram execution at the instruction directly following the IDLE instruction.

Input

None.

Output

None.

Status Flags

None.

Details

Applications typically use this instruction to wait for an interrupt:

standby: IDLE;

In idle mode, the DSP’s response time to incoming interrupts is one cycle.

Some DSPs in the ADSP-219x family also support a sleep mode, in which
the DSP’s core and all of its on-chip peripherals enter idle mode. To
invoke sleep mode, the application must program the appropriate bits in
the PLL control and I/O clock control registers and use the standard IDLE
instruction.

ADSP-219x DSP Instruction Set Reference 7-75

Program Flow Instructions

Examples

IDLE; /* Idle at internal clock’s rate */

See Also

• “NOP” on page 7-73

• “Type 31: Idle” on page 8-49

Mode Control

7-76 ADSP-219x DSP Instruction Set Reference

Mode Control

Function

This instruction enables (ENA) or disables (DIS) from one to seven DSP
modes in parallel. To enable or disable a mode, this instruction sets (1) or
clears (0), respectively, the mode’s bit in the Mode Status, MSTAT register
(refer to “Mode Control” on page 7-4). The DSP modes are:

• SEC_REG Secondary computation register bank (MSTAT[0]).

• BIT_REV Bit-reversed addressing mode (MSTAT[1]).

• AV_LATCH ALU overflow latch mode enable (MSTAT[2]).

• AR_SAT ALU AR register saturation mode (MSTAT[3]).

• M_MODE MAC integer operand format mode (MSTAT[4]).

• TIMER Timer enable (MSTAT[5]).

• SEC_DAG Secondary DAG address register bank (MSTAT[6]).

• INT Global interrupts

Input

SEC_REG, BIT_REV, AV_LATCH, AR_SAT, M_MODE, TIMER, SEC_DAG, INT

ENA
DIS

SEC_REG
BIT_REV
AV_LATCH
AR_SAT
M_MODE
TIMER
SEC_DAG
INT

 ;

ADSP-219x DSP Instruction Set Reference 7-77

Program Flow Instructions

Output

None.

Status Flags

None.

Details

You can enable or disable one or more modes in parallel by issuing multi-
ple DIS or ENA instructions on the same instruction line, as in:

ENA AR_SAT, ENA M_MODE, ENA AV_LATCH, ENA SEC_REG;

You cannot issue both DIS and ENA instructions on the same
instruction line to enable and disable modes in parallel.

For example, the following is not allowed:
ENA AR_SAT, DIS AV_LATCH, ENA SEC_DAG;

As shown in Table 6-2 on page 6-9, changing modes using this instruction
(as opposed to register writes or popping the status stack) does not incur
any cycles of latency. Latency is the delay, in number of instruction cycles,
between the time the mode change instruction executes and the time when
the mode change takes effect, such that other instructions can execute
operations based on the new value. A latency of 0 means that mode change
is available to the instruction directly following the mode change
instruction.

ENA INT or DIS INT sets or clears bit 5 in the ICNTL register. The
write takes effect on the next instruction cycle.

Mode Control

7-78 ADSP-219x DSP Instruction Set Reference

Examples

/* Switching contexts during an ISR: */

ENA INT;

IMASK = 0x21A0;

ENA SEC_REG, ENA SEC_DAG;

AY0 = DM(I0 += M0);

RTI (DB);

AR = AX0 + AY0;

DM(I0 += M0) = AR;

/* Bit-reversing DAG1 output to memory: */

ENA BIT_REV;

AY0 = DM(I0 += M0);

AR = AX0 + AY0;

DM(I0 += M0) = AR;

DIS BIT_REV;

See Also

• “Type 18: Mode Change” on page 8-36

• “Mode Control” on page 7-4

• “Enabling Interrupts” on page 7-14

• “Effect Latencies” on page 7-22

ADSP-219x DSP Instruction Set Reference 8-1

8 INSTRUCTION OPCODES

This chapter lists and describes the opcodes that defines each of the
instructions in the ADSP-219x’s instruction set. This information is use-
ful for debugging programs.

This chapter covers the following topics:

• “Opcode Mnemonics” on page 8-1

• “Opcode Definitions” on page 8-16

Opcode Mnemonics
This section lists, describes, and gives the numeric value for each opcode
mnemonic. See Table 8-1.

Table 8-1. Opcode Mnemonics

Mnemonic Description Details

AMF Specifies an ALU or multiplier operation. on page 8-6

AS Specifies whether ALU saturation mode is
0 = disabled
1 = enabled

on page 8-36

B Specifies whether branch is
0 = immediate
1 = delayed

on page 8-23
on page 8-36
on page 8-38

BIT Specifies which interrupt to enable or disable (0–15). on page 8-56

Opcode Mnemonics

8-2 ADSP-219x DSP Instruction Set Reference

BO Specifies whether the supplied 4-bit constant in a type 9 instruc-
tion is
01 = as is
11 = negated

on page 8-9
on page 8-23

BR Specifies whether bit-reverse addressing on DAG1 is
0 = disabled
1 = enabled

on page 8-36

BSR Specifies whether the secondary DAG address registers are
0 = disabled
1 = enabled

on page 8-36

C Specifies whether a software interrupt is
0 = set
1 = cleared

on page 8-56

CC Specifies the two LSBs of a 4-bit constant value in a type 9
instruction.

on page 8-9
on page 8-23

CF Specifies whether to flush the instruction cache
0 = No flush
1 = flush

on page 8-46

COND Specifies one of the condition codes on which to base execution
of the instruction.

on page 8-8

D Specifies the direction of a data move.
0 = read
1 = write

on page 8-18
on page 8-31
on page 8-47
on page 8-50
on page 8-53
on page 8-54

DD Specifies a destination data register for a DM bus transfer.
00 = AX0
01 = AX1
10 = MX0
11 = MX1

on page 8-17

DDREG Specifies a destination register for a register-to-register move
operation.

on page 8-11

Table 8-1. Opcode Mnemonics (Cont’d)

Mnemonic Description Details

ADSP-219x DSP Instruction Set Reference 8-3

Instruction Opcodes

DREG Specifies an unrestricted data register (REG0 only). on page 8-11

DMI Specifies a DAG index address register (I0–I3) for a DM bus
transfer.

on page 8-14
on page 8-17

DMM Specifies a DAG modify address register (M0–M3) for a DM
bus transfer.

on page 8-14
on page 8-17

DRGP Specifies a destination register group.
00 = REG0
01 = REG1
10 = REG2
11 = REG3

on page 8-35

DRL Specifies two MSBs of DREG data register address. on page 8-11

DRU Specifies two LSBs of DREG data register address. on page 8-11

Exponent Specifies an 8-bit, twos complement shift value. on page 8-33

G Specifies a DAG register group.
0 = DAG1
1 = DAG2

on page 8-13

IREG/
MREG

Specifies DAG index and modify registers (I0–I7, M0–M7). on page 8-15

I Specifies DAG index register (I0–I7). on page 8-13

Idle Value Specifies a 4-bit value that defines an internal clock divisor. on page 8-49

INT Specifies whether interrupts are globally
0 = disabled
1 = enabled

on page 8-36

LPP Specifies push/pop of the loop stacks.
0 = disabled
1 = enabled

on page 8-46

M Specifies a DAG modify register. on page 8-13

MM Specifies whether MAC integer mode is
0 = disabled
1 = enabled

on page 8-36

Table 8-1. Opcode Mnemonics (Cont’d)

Mnemonic Description Details

Opcode Mnemonics

8-4 ADSP-219x DSP Instruction Set Reference

MOD DATA Specifies an 8-bit, two’s-complement immediate data value. on page 8-39
on page 8-47

MS Specifies memory bus for a memory data transfer
0 = 16-bit DM bus
1 = 24-bit PM bus

on page 8-50

OL Specifies whether ALU overflow mode is
0 = disabled
1 = enabled

on page 8-36

PD Specifies a destination data register for a PM bus transfer.
00 = AY0
01 = AY1
10 = MY0
11 = MY1

on page 8-17

PMI Specifies a DAG index address register (I4–I7) for a PM bus
transfer.

on page 8-14

PMM Specifies a DAG modify address register (M4–M7) for a PM bus
transfer.

on page 8-14

PPP Specifies push/pop of the PC stack.
0 = disabled
1 = enabled

on page 8-46

Q Specifies the RTI mode.
0 = normal
1 = single-step

on page 8-38

R Specifies a result register.
0 = MR register
1 = SR register

on page 8-45

REG Specifies a core register of RGPx. on page 8-11

REG1 Specifies a register group 1 register on page 8-11
on page 8-21

REG2 Specifies a register group 2 register on page 8-11
on page 8-21

Table 8-1. Opcode Mnemonics (Cont’d)

Mnemonic Description Details

ADSP-219x DSP Instruction Set Reference 8-5

Instruction Opcodes

REG3 Specifies a register group 3 register on page 8-11
on page 8-51

RGP Specifies a register group.
00 = REG0
01 = REG1
10 = REG2
11 = REG3.

on page 8-11

S Specifies the branch type.
0 = jump
1 = call

on page 8-28
on page 8-37

SDREG Specifies the source data register for a data move operation. on page 8-11

SF Specifies a shift function. on page 8-12

SPP Specifies push/pop of the status stack.
0 = disabled
1 = enabled

on page 8-46

SR Specifies whether the secondary data registers are
0 = disabled
1 = enabled

on page 8-36

SRGP Specifies a source register group for a data move operation.
00 = REG0
01 = REG1
10 = REG2
11 = REG3

on page 8-35

SWCD Specifies a 4-bit nonfunctional value used by ADI tools only. on page 8-48

T Specifies the return type.
0 = RTS
1 = RTI

on page 8-38

TERM Specifies the terminating condition for the type 11 instruction.
1110 = NOT CE
1111 = TRUE

on page 8-30

TI Specifies whether the timer is
0 = disabled
1 = enabled

on page 8-36

Table 8-1. Opcode Mnemonics (Cont’d)

Mnemonic Description Details

Opcode Mnemonics

8-6 ADSP-219x DSP Instruction Set Reference

ALU or Multiplier Function (AMF) Codes
Table 8-2 lists the AMF codes used by these instruction types:

• “Type 1: Compute | DregX«···DM | DregY«···PM” on page 8-17

• “Type 4: Compute | Dreg «···» DM” on page 8-19

• “Type 8: Compute | Dreg1 «··· Dreg2” on page 8-22

• “Type 9: Compute” on page 8-23

U Specifies whether the DAG index register is
0 = premodified with no update
1 = postmodified with update

on page 8-50

XOP Specifies a restricted data register used to supply the x operand
value in a multifunction or conditional instruction.

on page 8-15

XREG Specifies the source register (REG0) in a shift function. on page 8-11

Y0 Specifies whether the source of the y operand is
0 = data register
1 = 0 (explicit value)

on page 8-8

YOP Specifies a restricted data register used to supply the y operand
value in a multifunction or conditional instruction.

on page 8-15

YREG Specifies the destination register (REG0) in a shift function. on page 8-11
on page 8-8

YY Specifies the two MSBs of a 4-bit constant value in a type 9
instruction.

on page 8-9
on page 8-23

Z Specifies a result or feedback register
0 = result register
1 = feedback register

on page 8-19
on page 8-22
on page 8-23
on page 8-8

Table 8-1. Opcode Mnemonics (Cont’d)

Mnemonic Description Details

ADSP-219x DSP Instruction Set Reference 8-7

Instruction Opcodes

Table 8-2. ALU/Multiplier Function (AMF) Codes

Code Function Description

Multiplier functions

00000 NOP No operation

00001 X * Y (RND) Multiply

00010 MR + X * Y (RND) Multiply and accumulate

00011 MR – X * Y (RND) Multiply and subtract

00100 X * Y (SS) Multiply

00101 X * Y (SU) Multiply

00110 X * Y (US) Multiply

00111 X * Y (UU) Multiply

01000 MR + X * Y (SS) Multiply and accumulate

01001 MR + X * Y (SU) Multiply and accumulate

01010 MR + X * Y (US) Multiply and accumulate

01011 MR + X * Y (UU) Multiply and accumulate

01100 MR – X * Y (SS) Multiply and subtract

01101 MR – X * Y (SU) Multiply and subtract

01110 MR – X * Y (US) Multiply and subtract

01111 MR – X * Y (UU) Multiply and subtract

ALU functions

10000 Y PASS/CLEAR

10001 Y + 1 PASS

10010 X + Y + C Add with carry

10011 X + Y Add

10100 NOT Y Negate

(RND) = round results; (SS) = both operands signed; (SU) = x operand signed, y operand
unsigned; (US) =x operand unsigned, y operand signed; (UU) = both operands unsigned

Opcode Mnemonics

8-8 ADSP-219x DSP Instruction Set Reference

Condition Codes
Table 8-3 lists the condition codes used by these instruction types:

• “Type 9: Compute” on page 8-23

• “Type 10: Direct Jump” on page 8-28

• “Type 11: Do ··· Until” on page 8-30 uses NOT CE and TRUE only
for the terminating condition.

• “Type 16: Shift Reg0” on page 8-34

• “Type 19: Indirect Jump/Call” on page 8-37

10101 – Y PASS

10110 X – Y + C – 1 Subtract (X–Y) with borrow

10111 X – Y Subtract

11000 Y – 1 PASS

11001 Y – X Subtract

11010 Y – X + C – 1 Subtract (Y–X) with borrow

11011 NOT X Negate

11100 X AND Y AND/test bit,clear bit

11101 X OR Y OR/set bit

11110 X XOR Y XOR/toggle bit

11111 ABS X Absolute value

Table 8-2. ALU/Multiplier Function (AMF) Codes (Cont’d)

Code Function Description

(RND) = round results; (SS) = both operands signed; (SU) = x operand signed, y operand
unsigned; (US) =x operand unsigned, y operand signed; (UU) = both operands unsigned

ADSP-219x DSP Instruction Set Reference 8-9

Instruction Opcodes

• “Type 20: Return” on page 8-38

• “Type 36: Long Jump/Call” on page 8-55

Constant Codes
Table 8-4 lists the valid constants used by “Type 9: Compute” on
page 8-23. As shown, the YY/CC bits determine the constant value and the
BO bits determine the sign of the value.

Table 8-3. Condition Codes

Code Condition Description

0000 EQ Equal to 0 (= 0)

0001 NE Not equal to 0 (≠ 0)

0010 GT Greater than 0 (>0)

0011 LE Less than or equal to 0 (≤0)

0100 LT Less than 0 (<0)

0101 GE Greater than or equal to 0 (≥0)

0110 AV ALU overflow

0111 NOT AV Not ALU overflow

1000 AC ALU carry

1001 NOT AC Not ALU carry

1010 SWCOND CCODE register condition

1011 NOT SWCOND Not CCODE register condition

1100 MV MAC overflow

1101 NOT MV Not MAC overflow

1110 NOT CE Counter not expired

1111 TRUE Always true

Opcode Mnemonics

8-10 ADSP-219x DSP Instruction Set Reference

Table 8-4. Constants

Code Decimal / Hex Decimal / Hex

YY CC BO = 01 BO = 11

00 00 1 / 0x0001 −2 / 0xFFFE

00 01 2 / 0x0002 −3 / 0xFFFD

00 10 4 / 0x0004 −5 / 0xFFFB

00 11 8 / 0x0008 −9 / 0xFFF7

01 00 16 / 0x0010 −17 / 0xFFEF

01 01 32 / 0x0020 −33 / 0xFFDF

01 10 64 / 0x0040 −65 / 0xFFBF

01 11 128 / 0x0080 −129 / 0xFF7F

10 00 256 / 0x0100 −257 / 0xFEFF

10 01 512 / 0x0200 −513 / 0xFDFF

10 10 1024 / 0x0400 −1025 / 0xFBFF

10 11 2048 / 0x0800 −2049 / 0xF7FF

11 00 4096 / 0x1000 −4097 / 0xEFFF

11 01 8192 / 0x2000 −8193 / 0xDFFF

11 10 16384 / 0x4000 −16385 / 0xBFFF

11 11 −32768 / 0x8000 +32767 / 0x7FFF

ADSP-219x DSP Instruction Set Reference 8-11

Instruction Opcodes

Core Register Codes
Table 8-5 lists the core registers and their addresses. The complete address
of any individual register is formed by appending the register’s address bits
to its RGP bits, so, for example, the address of the I2 register is 010010.
The opcode mnemonics DREG, DDREG, SDREG, XREG, and YREG and the fol-
lowing instruction types reference these registers by their address bits:

• “Type 3: Dreg/Ireg/Mreg «···» DM/PM” on page 8-18

• “Type 4: Compute | Dreg «···» DM” on page 8-19

• “Type 6: Dreg «··· Data16” on page 8-20

• “Type 8: Compute | Dreg1 «··· Dreg2” on page 8-22

• “Type 9: Compute” on page 8-23

• “Type 12: Shift | Dreg «···» DM” on page 8-31

• “Type 14: Shift | Dreg1 «··· Dreg2” on page 8-32

• “Type 15: Shift Data8” on page 8-33

• “Type 16: Shift Reg0” on page 8-34

• “Type 17: Any Reg «···Any Reg” on page 8-35

• “Type 34: Dreg «···» IOreg” on page 8-53

• “Type 35: Dreg «···»Sreg” on page 8-54

Table 8-5. Core Registers

RGP/Address Register Groups (RGP)

Address 00 (REG0) 01 (REG1) 10 (REG2) 11 (REG3)

0000 AX0 I0 I4 ASTAT

0001 AX1 I1 I5 MSTAT

Opcode Mnemonics

8-12 ADSP-219x DSP Instruction Set Reference

Shift Function (SF) Codes
Table 8-6 lists the shift function (SF) codes used by these instruction
types:

• “Type 12: Shift | Dreg «···» DM” on page 8-31

• “Type 14: Shift | Dreg1 «··· Dreg2” on page 8-32

• “Type 15: Shift Data8” on page 8-33—shift functions (codes
0000–0111) only

0010 MX0 I2 I6 SSTAT

0011 MX1 I3 I7 LPSTACKP

0100 AY0 M0 M4 CCODE

0101 AY1 M1 M5 SE

0110 MY0 M2 M6 SB

0111 MY1 M3 M7 PX

1000 MR2 L0 L4 DMPG1

1001 SR2 L1 L5 DMPG2

1010 AR L2 L6 IOPG

1011 SI L3 L7 IJPG

1100 MR1 IMASK Reserved Reserved

1101 SR1 IRPTL Reserved Reserved

1110 MR0 ICNTL CNTR Reserved

1111 SR0 STACKA LPSTACKA STACKP

Table 8-5. Core Registers (Cont’d)

RGP/Address Register Groups (RGP)

Address 00 (REG0) 01 (REG1) 10 (REG2) 11 (REG3)

ADSP-219x DSP Instruction Set Reference 8-13

Instruction Opcodes

• “Type 16: Shift Reg0” on page 8-34

Index Register and Modify Register Codes
Table 8-7 lists the DAG index and modify register codes used by the fol-
lowing instruction types. The G bit (DAG1/DAG2) determines which group
of I (index) and M (modify) registers.

• “Type 4: Compute | Dreg «···» DM” on page 8-19

• “Type 12: Shift | Dreg «···» DM” on page 8-31

Table 8-6. SF Codes

Code Function

0000 LSHIFT (HI)

0001 LSHIFT (HI, OR)

0010 LSHIFT (LO)

0011 LSHIFT (LO, OR)

0100 ASHIFT (HI)

0101 ASHIFT (HI, OR)

0110 ASHIFT (LO)

0111 ASHIFT (LO, OR)

1000 NORM (HI)

1001 NORM (HI, OR)

1010 NORM (LO)

1011 NORM (LO, OR)

1100 EXP (HI)

1101 EXP (HIX)

1110 EXP (LO)

1111 Derive Block Exponent

Opcode Mnemonics

8-14 ADSP-219x DSP Instruction Set Reference

• “Type 19: Indirect Jump/Call” on page 8-37

• “Type 21: Modify DagI” on page 8-39

• “Type 21a: Modify DagI” on page 8-40

• “Type 22: DM «··· Data16” on page 8-41

• “Type 29: Dreg «···» DM” on page 8-47

• “Type 32: Any Reg «···» PM/DM” on page 8-50

DMI, DMM, PMI, and PMM Codes
Table 8-8 lists the DAG index and modify register codes used by “Type 1:
Compute | DregX«···DM | DregY«···PM” on page 8-17.

Table 8-7. I and M Codes

DAG1 (G=0) DAG2 (G=1)

Code I M I M

00 I0 M0 I4 M4

01 I1 M1 I5 M5

10 I2 M2 I6 M6

11 I3 M3 I7 M7

Table 8-8. DMI, DMM, PMI, and PMM Codes

Code DMI DMM PMI PMM

00 I0 M0 I4 M4

01 I1 M1 I5 M5

10 I2 M2 I6 M6

11 I3 M3 I7 M7

ADSP-219x DSP Instruction Set Reference 8-15

Instruction Opcodes

IREG/MREG Codes
Table 8-9 lists the Ireg and Mreg codes used by “Type 3: Dreg/Ireg/Mreg
«···» DM/PM” on page 8-18 to specify a DAG index or modify register.

XOP and YOP Codes
Table 8-10 lists the XOP and YOP codes used by these instructions:

• “Type 1: Compute | DregX«···DM | DregY«···PM” on page 8-17

• “Type 4: Compute | Dreg «···» DM” on page 8-19

• “Type 8: Compute | Dreg1 «··· Dreg2” on page 8-22

• “Type 9: Compute” on page 8-23

• “Type 12: Shift | Dreg «···» DM” on page 8-31

• “Type 23: Divide primitive, DIVQ” on page 8-43

• “Type 24: Divide primitive, DIVS” on page 8-44

Table 8-9. Ireg and Mreg Codes

Code Register Code Register

0000 I0 1000 M0

0001 I1 1001 M1

0010 I2 1010 M2

0011 I3 1011 M3

0100 I4 1100 M4

0101 I5 1101 M5

0110 I6 1110 M6

0111 I7 1111 M7

Opcode Definitions

8-16 ADSP-219x DSP Instruction Set Reference

Opcode Definitions
For each instruction opcode, this section provides the following
information:

• Opcode bits

• Syntax

• See also (related instruction reference pages)

For mnemonics definitions, see “Opcode Mnemonics” on page 8-1.

Table 8-10. XOP and YOP Codes

Code

XOP

Code

YOP

ALU MAC Shift ALU MAC

000 AX0 MX0 SI 00 AY0 MY0

001 AX1 MX1 SR2 01 AY1 MY1

010 AR AR AR 10 AF SR1

011 MR0 MR0 MR0 11 0 0

100 MR1 MR1 MR1

101 MR2 MR2 MR2

110 SR0 SR0 SR0

111 SR1 SR1 SR1

ADSP-219x DSP Instruction Set Reference 8-17

Instruction Opcodes

Type 1: Compute | DregX«···DM | DregY«···PM

Multifunction ALU/MAC with DM and PM dual read with DAG1 and
DAG2 postmodify

Opcode Bits

or for NOP only:

Syntax

|<ALU>, <MAC>|, Xop = DM(Ia += Mb), Yop = PM(Ic += Md);

See Also

• “Opcode Mnemonics” on page 8-1

• “Compute with Dual Memory Read” on page 5-4

• “Dual Memory Read” on page 5-8

23 22 21 20 19 18 17 16 15 14 13 12 11

1 1 PD DD AMF YOP

10 9 8 7 6 5 4 3 2 1 0

XOP PMI PMM DMI DMM

23 22 21 20 19 18 17 16 15 14 13 12 11

1 1 PD DD 0 0 0 0 0

10 9 8 7 6 5 4 3 2 1 0

PMI PMM DMI DMM

Type 3: Dreg/Ireg/Mreg «···» DM/PM

8-18 ADSP-219x DSP Instruction Set Reference

Type 3: Dreg/Ireg/Mreg «···» DM/PM

Register read/write to immediate 16-bit address

Opcode Bits

or:

Syntax

|DM(<Addr16>| = |Dreg, Ireg, Mreg|;

|Dreg, Ireg, Mreg| = |DM(<Addr16>)|;

See Also

• “Opcode Mnemonics” on page 8-1

• “Direct Memory Read/Write—Immediate Address” on page 6-24

23 22 21 20 19 18 17 16 15 14 13 12 11

1 0 1 D 16-bit address

10 9 8 7 6 5 4 3 2 1 0

16-bit address IREG/MREG

23 22 21 20 19 18 17 16 15 14 13 12 11

1 0 0 D 16-bit address

10 9 8 7 6 5 4 3 2 1 0

16-bit address DREG

ADSP-219x DSP Instruction Set Reference 8-19

Instruction Opcodes

Type 4: Compute | Dreg «···» DM

Multifunction ALU/MAC with memory read or write using DAG
postmodify

Opcode Bits

Syntax

|<ALU>, <MAC> |, Dreg = DM(Ia += Mb);

|<ALU>, <MAC> |, DM(Ia += Mb) = Dreg;

See Also

• “Opcode Mnemonics” on page 8-1

• “Compute with Dual Memory Read” on page 5-4

• “Compute with Memory Write” on page 5-15

23 22 21 20 19 18 17 16 15 14 13 12 11

0 1 1 G D Z AMF YOP

10 9 8 7 6 5 4 3 2 1 0

XOP DREG I M

Type 6: Dreg «··· Data16

8-20 ADSP-219x DSP Instruction Set Reference

Type 6: Dreg «··· Data16

Immediate register group 0 (Dreg) register load

Opcode Bits

Syntax

<Dreg> = <Data16>;

See Also

• “Opcode Mnemonics” on page 8-1

• “Direct Register Load” on page 6-27

23 22 21 20 19 18 17 16 15 14 13 12 11

0 1 0 0 16-bit data

10 9 8 7 6 5 4 3 2 1 0

16-bit data DREG

ADSP-219x DSP Instruction Set Reference 8-21

Instruction Opcodes

Type 7: Reg1/2 «··· Data16

Immediate register group 1 or 2 (Ireg, Mreg, Lreg, IMASK, IRPTL, ICNTL,
CNTR, STACKA, LPCSTACKA) register load

Opcode Bits

or:

Syntax

| <Reg1>, <Reg2> | = <Data16>;

See Also

• “Opcode Mnemonics” on page 8-1

• “Direct Register Load” on page 6-27

23 22 21 20 19 18 17 16 15 14 13 12 11

0 1 0 1 16-bit data

10 9 8 7 6 5 4 3 2 1 0

16-bit data REG1

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 1 1 16-bit data

10 9 8 7 6 5 4 3 2 1 0

16-bit data REG2

Type 8: Compute | Dreg1 «··· Dreg2

8-22 ADSP-219x DSP Instruction Set Reference

Type 8: Compute | Dreg1 «··· Dreg2

ALU/MAC with data register move

Opcode Bits

or, generate ALU/MAC status only

Syntax

| <ALU>, <MAC> |, Dreg = Dreg;

NONE = ALU (Xop, Yop);

See Also

• “Opcode Mnemonics” on page 8-1

• “Compute with Register-to-Register Move” on page 5-19

• “Generate ALU Status Only: NONE” on page 2-46

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 1 0 1 Z AMF YOP

10 9 8 7 6 5 4 3 2 1 0

XOP DDREG SDREG

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 1 0 1 Z AMF YOP

10 9 8 7 6 5 4 3 2 1 0

XOP 1 0 1 0 1 0 1 0

ADSP-219x DSP Instruction Set Reference 8-23

Instruction Opcodes

Type 9: Compute

Conditional ALU/MAC

Opcode

Conditional ALU/MAC

Conditional ALU/MAC operations using constant YOP

Conditional ALU/MAC operations with YOP=0

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 1 0 0 Z AMF YOP

10 9 8 7 6 5 4 3 2 1 0

XOP 0 0 0 0 COND

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 1 0 0 Z AMF YY

10 9 8 7 6 5 4 3 2 1 0

XOP CC BO COND

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 1 0 0 Z AMF 1 1

10 9 8 7 6 5 4 3 2 1 0

XOP 0 0 0 0 COND

Type 9: Compute

8-24 ADSP-219x DSP Instruction Set Reference

Conditional MAC squaring operations only

Syntax

[IF Cond] |AR, AF| = Xop + |Yop, Yop + C, C, Const, Const + C|;

[IF Cond] |AR, AF| = Xop − |Yop,Yop+C-1,+C-1,Const, Const+C-1|;

[IF Cond] |AR, AF| = Yop − |Xop, Xop+C-1|;

[IF Cond] |AR, AF| = − |Xop+C-1, Xop+Const, Xop+Const+C-1|;

[IF Cond] |AR, AF| = Xop |AND, OR, XOR| |Yop, Const|;

[IF Cond] |AR, AF| = PASS |Xop, Yop, Const|;

[IF Cond] |AR, AF| = NOT |Xop, Yop|;

[IF Cond] |AR, AF| = ABS Xop;

[IF Cond] |AR, AF| = Yop +1;

[IF Cond] |AR, AF| = Yop −1;

[IF Cond] |MR, SR| = Xop * Yop [(|RND, SS, SU, US, UU|)];

[IF Cond] |MR, SR| = Yop * Xop [(|RND, SS, SU, US, UU|)];

[IF Cond] |MR, SR| = |MR, SR| + Xop * Yop [(|RND,SS,SU,US,UU|)];

[IF Cond] |MR, SR| = |MR, SR| + Yop * Xop [(|RND,SS,SU,US,UU|)];

[IF Cond] |MR, SR| = |MR, SR| − Xop * Yop [(|RND,SS,SU,US,UU|)];

[IF Cond] |MR, SR| = |MR, SR| − Yop * Xop [(|RND,SS,SU,US,UU|)];

[IF Cond] |MR, SR| = 0;

[IF Cond] MR = MR [(RND)];

[IF Cond] SR = SR [(RND)];

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 1 0 0 Z AMF 0 0

10 9 8 7 6 5 4 3 2 1 0

XOP 0 0 0 1 COND

ADSP-219x DSP Instruction Set Reference 8-25

Instruction Opcodes

See Also

• “Opcode Mnemonics” on page 8-1

• “Add/Add with Carry” on page 2-5

• “Subtract X−Y/Subtract X−Y with Borrow” on page 2-9

• “Subtract Y−X/Subtract Y−X with Borrow” on page 2-13

• “Bitwise Logic: AND, OR, XOR” on page 2-16

• “Bit Manipulation: TSTBIT, SETBIT, CLRBIT, TGLBIT” on
page 2-19

• “Clear: PASS” on page 2-22

• “Negate: NOT” on page 2-25

• “Absolute Value: ABS” on page 2-28

• “Increment” on page 2-31

• “Decrement” on page 2-34

• “Multiply” on page 3-8

• “Multiply with Cumulative Add” on page 3-11

• “Multiply with Cumulative Subtract” on page 3-14

• “MAC Clear” on page 3-17

• “MAC Round/Transfer” on page 3-19

Type 9a: Compute

8-26 ADSP-219x DSP Instruction Set Reference

Type 9a: Compute

Unconditional ALU/MAC

Opcode

Register file ALU/MAC

Register file ALU/MAC with YREG=0

Syntax

|AR, AF| = Dreg1 + |Dreg2, Dreg2 + C, C |;

|AR, AF| = Dreg1 − |Dreg2, Dreg2 + C =1, +C −1|;

|AR, AF| = Dreg2 − |Dreg1, Dreg1 + C -1|;

|AR, AF| = Dreg1 |AND, OR, XOR| Dreg2;

|AR, AF| = PASS |Dreg1, Dreg2, Const|;

|AR, AF| = PASS 0;

|AR, AF| = NOT |Dreg|;

|AR, AF| = ABS Dreg;

|AR, AF| = Dreg +1;

|AR, AF| = Dreg −1;

23 22 21 20 19 18 17 16 15 14 13 12

0 0 1 0 0 Z AMF 0

11 10 9 8 7 6 5 4 3 2 1 0

XREG 1 0 YREG

23 22 21 20 19 18 17 16 15 14 13 12

0 0 1 0 0 Z AMF 1

11 10 9 8 7 6 5 4 3 2 1 0

XREG 1 0

ADSP-219x DSP Instruction Set Reference 8-27

Instruction Opcodes

|MR, SR| = Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)];

|MR, SR| = |MR, SR| + Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)];

|MR, SR| = |MR, SR| − Dreg1 * Dreg2 [(|RND, SS, SU, US, UU|)];

See Also

• “Opcode Mnemonics” on page 8-1

• “Add/Add with Carry” on page 2-5

• “Subtract X−Y/Subtract X−Y with Borrow” on page 2-9

• “Subtract Y−X/Subtract Y−X with Borrow” on page 2-13

• “Bitwise Logic: AND, OR, XOR” on page 2-16

• “Clear: PASS” on page 2-22

• “Negate: NOT” on page 2-25

• “Absolute Value: ABS” on page 2-28

• “Increment” on page 2-31

• “Decrement” on page 2-34

• “Multiply” on page 3-8

• “Multiply with Cumulative Add” on page 3-11

• “Multiply with Cumulative Subtract” on page 3-14

Type 10: Direct Jump

8-28 ADSP-219x DSP Instruction Set Reference

Type 10: Direct Jump

13-bit relative conditional/unconditional jump with delayed branch
option

Opcode

Syntax

[IF Cond] JUMP <Reladdr13> [(DB)];

See Also

• “Opcode Mnemonics” on page 8-1

• “Direct JUMP (PC Relative)” on page 7-29

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 0 1 1 0 B 13-bit address

10 9 8 7 6 5 4 3 2 1 0

13-bit address COND

ADSP-219x DSP Instruction Set Reference 8-29

Instruction Opcodes

Type 10a: Direct Jump/Call

16-bit relative conditional/unconditional jump with delayed branch
option

Opcode

Syntax

CALL <Reladdr16> [(DB)];

JUMP <Reladdr16> [(DB)];

See Also

• “Opcode Mnemonics” on page 8-1

• “CALL (PC Relative)” on page 7-33

• “JUMP (PC Relative)” on page 7-37

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 0 1 1 1 14-bit address

10 9 8 7 6 5 4 3 2 1 0

14-bit address B S 2MSBs

Type 11: Do ··· Until

8-30 ADSP-219x DSP Instruction Set Reference

Type 11: Do ··· Until

12-bit relative conditional DO

Opcode Bits

Syntax

DO <Reladdr12> UNTIL [CE, FOREVER];

See Also

• “Opcode Mnemonics” on page 8-1

• “DO UNTIL (PC Relative)” on page 7-24

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 0 1 0 1 1 0 12-bit address

10 9 8 7 6 5 4 3 2 1 0

12-bit address TERM

ADSP-219x DSP Instruction Set Reference 8-31

Instruction Opcodes

Type 12: Shift | Dreg «···» DM

Shift with memory read/write using DAG postmodify

Opcode Bits

Syntax

<SHIFT> , Dreg = DM(Ia += Mb);

<SHIFT> , DM(Ia += Mb) = Dreg;

See Also

• “Opcode Mnemonics” on page 8-1

• “Compute with Memory Read” on page 5-11

• “Compute with Memory Write” on page 5-15

• “XOP and YOP Codes” on page 8-15

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 0 1 0 0 1 G SF D

10 9 8 7 6 5 4 3 2 1 0

XOP DREG I M

Type 14: Shift | Dreg1 «··· Dreg2

8-32 ADSP-219x DSP Instruction Set Reference

Type 14: Shift | Dreg1 «··· Dreg2

Register file shift with data register move

Opcode Bits

Syntax

<SHIFT>, Dreg = Dreg;

See Also

• “Opcode Mnemonics” on page 8-1

• “Compute with Register-to-Register Move” on page 5-19

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 1 0 1 0 0 SF

11 10 9 8 7 6 5 4 3 2 1 0

XREG DDREG SDREG

ADSP-219x DSP Instruction Set Reference 8-33

Instruction Opcodes

Type 15: Shift Data8

Immediate register file shift

Opcode Bits

Syntax

SR = [SR OR] ASHIFT BY <Imm8> [(|HI, LO|)];

SR = [SR OR] LSHIFT BY <Imm8> [(|HI, LO|)];

See Also

• “Opcode Mnemonics” on page 8-1

• “Arithmetic Shift Immediate” on page 4-8

• “Logical Shift Immediate” on page 4-12

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 1 1 1 1 SF

11 10 9 8 7 6 5 4 3 2 1 0

XREG Exponent

Type 16: Shift Reg0

8-34 ADSP-219x DSP Instruction Set Reference

Type 16: Shift Reg0

Conditional register file shift

Opcode Bits

Syntax

[IF Cond] SR = [SR OR] ASHIFT Dreg [(|HI, LO|)];

[IF Cond] SR = [SR OR] LSHIFT Dreg [(|HI, LO|)];

[IF Cond] SR = [SR OR] NORM Dreg [(|HI, LO|)];

[IF Cond] SE = [SR OR] EXP Dreg [(|HIX, HI, LO|)];

[IF Cond] SB = [SR OR] EXPADJ Dreg;

See Also

• “Opcode Mnemonics” on page 8-1

• “Arithmetic Shift” on page 4-6

• “Logical Shift” on page 4-10

• “Normalize” on page 4-14

• “Exponent Derive” on page 4-20

• “Exponent (Block) Adjust” on page 4-23

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 1 1 1 0 SF

11 10 9 8 7 6 5 4 3 2 1 0

XREG COND

ADSP-219x DSP Instruction Set Reference 8-35

Instruction Opcodes

Type 17: Any Reg «···Any Reg

General register move

Opcode Bits

Syntax

Reg = Reg;

See Also

• “Opcode Mnemonics” on page 8-1

• “Register-to-Register Move” on page 6-22

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 1 1 0 1

11 10 9 8 7 6 5 4 3 2 1 0

DRGP SRGP DDREG SDREG

Type 18: Mode Change

8-36 ADSP-219x DSP Instruction Set Reference

Type 18: Mode Change

Mode control

Opcode Bits

Syntax

ENA | TI, MM, AS, OL, BR, SR, SD, INT |;

DIS | TI, MM, AS, OL, BR, SR, SD, INT |;

See Also

• “Opcode Mnemonics” on page 8-1

• “Mode Control” on page 7-76

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 1 1 0 0 TI MM

11 10 9 8 7 6 5 4 3 2 1 0

AS OL BR SR SD INT

ADSP-219x DSP Instruction Set Reference 8-37

Instruction Opcodes

Type 19: Indirect Jump/Call

Conditional indirect jump/call with delayed branch option

Opcode Bits

Syntax

[IF Cond] CALL <Ireg> [(DB)];

[IF Cond] JUMP <Ireg> [(DB)];

See Also

• “Opcode Mnemonics” on page 8-1

• “Indirect CALL” on page 7-46

• “Indirect JUMP” on page 7-50

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 1 0 1 1 B S G

11 10 9 8 7 6 5 4 3 2 1 0

COND I

Type 20: Return

8-38 ADSP-219x DSP Instruction Set Reference

Type 20: Return

Conditional return from interrupt/return from subroutine with delayed
branch option

Opcode Bits

Syntax

[IF Cond] RTI [(DB)];

[IF Cond] RTS [(DB)];

See Also

• “Opcode Mnemonics” on page 8-1

• “Return from Interrupt (RTI)” on page 7-53

• “Return from Subroutine (RTS)” on page 7-57

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 1 0 1 0 B T Q

11 10 9 8 7 6 5 4 3 2 1 0

COND

ADSP-219x DSP Instruction Set Reference 8-39

Instruction Opcodes

Type 21: Modify DagI

DAG modify

Opcode Bits

Syntax

|MODIFY (Ia += Mb), MODIFY (Ic += Md)|;

See Also

• “Opcode Mnemonics” on page 8-1

• “Modify Address Register—Indirect” on page 6-67

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 0 0 1 1 G

11 10 9 8 7 6 5 4 3 2 1 0

I M

Type 21a: Modify DagI

8-40 ADSP-219x DSP Instruction Set Reference

Type 21a: Modify DagI

DAG modify immediate value

Opcode Bits

Syntax

MODIFY (Ireg += <Imm8>);

See Also

• “Opcode Mnemonics” on page 8-1

• “Modify Address Register—Indirect” on page 6-67

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 0 0 1 0 G

11 10 9 8 7 6 5 4 3 2 1 0

MOD DATA I

ADSP-219x DSP Instruction Set Reference 8-41

Instruction Opcodes

Type 22: DM «··· Data16

16-bit immediate data indirect memory write (two-word instruction)
using DAG postmodify addressing

Opcode

 First word: 16-bit data write

Second word: 16-bit data write

Syntax

|DM(Ia += Mb), DM (Ic += Md)| = <Data16>;

See Also

• “Opcode Mnemonics” on page 8-1

• “Indirect 16-Bit Memory Write—Immediate Data” on page 6-56

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 1 1 1 1 0 G

11 10 9 8 7 6 5 4 3 2 1 0

8 DATA LSBs I M

23 22 21 20 19 18 17 16 15 14 13 12

8 DATA MSBs

11 10 9 8 7 6 5 4 3 2 1 0

Type 22a: PM «··· Data24

8-42 ADSP-219x DSP Instruction Set Reference

Type 22a: PM «··· Data24

24-bit immediate data indirect memory write (two-word instruction)
using DAG postmodify addressing

Opcode

First word: 24-bit data write

Second word: 24-bit data write

Syntax

|PM (Ia += Mb), PM (Ic += Md)| = <Data24>:24;

The :24 syntax at the end of the line is required for 24-bit data. If
omitted, 24-bit data is truncated by the assembler.

See Also

• “Opcode Mnemonics” on page 8-1

• “Indirect 24-Bit Memory Write—Immediate Data” on page 6-58

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 1 1 1 1 1 G

11 10 9 8 7 6 5 4 3 2 1 0

8 DATA MidSBs I M

23 22 21 20 19 18 17 16 15 14 13 12

8 DATA MSBs

11 10 9 8 7 6 5 4 3 2 1 0

8 DATA LSBs

ADSP-219x DSP Instruction Set Reference 8-43

Instruction Opcodes

Type 23: Divide primitive, DIVQ

DIVQ divide primitive

Opcode Bits

Syntax

DIVQ Xop;

See Also

• “Opcode Mnemonics” on page 8-1

• “Divide Primitives: DIVS and DIVQ” on page 2-37

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 0 1 1 1 1 0 1

11 10 9 8 7 6 5 4 3 2 1 0

0 XOP

Type 24: Divide primitive, DIVS

8-44 ADSP-219x DSP Instruction Set Reference

Type 24: Divide primitive, DIVS

DIVS divide primitive

Opcode Bits

Syntax

DIVS Yop, Xop;

See Also

• “Opcode Mnemonics” on page 8-1

• “Divide Primitives: DIVS and DIVQ” on page 2-37

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 0 0 0 0 1 1 1 0 0 YOP

10 9 8 7 6 5 4 3 2 1 0

XOP

ADSP-219x DSP Instruction Set Reference 8-45

Instruction Opcodes

Type 25: Saturate

Saturate MR/SR on overflow

Opcode Bits

Syntax

SAT MR;

SAT SR;

See Also

• “Opcode Mnemonics” on page 8-1

• “MAC Saturate” on page 3-21

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 0 1 1 0 R

11 10 9 8 7 6 5 4 3 2 1 0

Type 26:Push/Pop/Cache

8-46 ADSP-219x DSP Instruction Set Reference

Type 26:Push/Pop/Cache

Stack control

Opcode Bits

Syntax

PUSH |PC, LOOP, STS|;

POP |PC, LOOP, STS|;

FLUSH CACHE;

See Also

• “Opcode Mnemonics” on page 8-1

• “PUSH or POP Stacks” on page 7-61

• “FLUSH CACHE” on page 7-67

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 1 0 0

11 10 9 8 7 6 5 4 3 2 1 0

CF PPP LPP SPP

ADSP-219x DSP Instruction Set Reference 8-47

Instruction Opcodes

Type 29: Dreg «···» DM

Memory read/write with immediate modify (postmodify with update or
premodify offset)

Opcode Bits

Syntax

Dreg = DM(Ireg += <Imm8>); /* postmodify read */

DM(Ireg += <Imm8>) = Dreg; /* postmodify write */

Dreg = DM(Ireg + <Imm8>); /* premodify read */

DM(Ireg + <Imm8>) = Dreg; /* premodify write */

See Also

• “Opcode Mnemonics” on page 8-1

• “Indirect Memory Read/Write—Immediate Postmodify” on
page 6-50

• “Indirect Memory Read/Write—Immediate Premodify” on
page 6-53

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 1 0 0 U DRU G D

11 10 9 8 7 6 5 4 3 2 1 0

MOD DATA I DRL

Type 30: NOP

8-48 ADSP-219x DSP Instruction Set Reference

Type 30: NOP

No operation

Opcode Bits

Syntax

NOP;

See Also

• “Opcode Mnemonics” on page 8-1

• “NOP” on page 7-73

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 0 0 0

11 10 9 8 7 6 5 4 3 2 1 0

SWCD

ADSP-219x DSP Instruction Set Reference 8-49

Instruction Opcodes

Type 31: Idle

Idle

Opcode Bits

Syntax

IDLE;

See Also

• “Opcode Mnemonics” on page 8-1

• “IDLE” on page 7-74

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 0 1 0 0

11 10 9 8 7 6 5 4 3 2 1 0

IDLE VALUE

Type 32: Any Reg «···» PM/DM

8-50 ADSP-219x DSP Instruction Set Reference

Type 32: Any Reg «···» PM/DM

DAG memory read/write with premodify offset or postmodify update

Opcode

Syntax

|DM(Ia += Mb), DM(Ic += Md)| = Reg; /* postmodify write,16-bit*/

Reg = |DM(Ia += Mb), DM(Ic += Md)|; /* premodify read,16-bit*/

|DM(Ia + Mb), DM(Ic + Md)| = Reg; /* premodify write,16-bit*/

Reg = |DM (Ia + Mb), DM (Ic + Md)|; /* postmodify read,16-bit */

|PM(Ia += Mb), PM(Ic += Md)| = Reg; /* postmodify write,24-bit*/

Reg = |PM(Ia += Mb), PM(Ic += Md)|; /* premodify read,24-bit*/

|PM(Ia + Mb), PM(Ic + Md)| = Reg; /* premodify write,24-bit*/

Reg = |PM(Ia + Mb), PM(Ic + Md)|; /* postmodify read,24-bit*/

See Also

• “Opcode Mnemonics” on page 8-1

• “Indirect 16-Bit Memory Read/Write—Postmodify” on page 6-30

• “Indirect 16-Bit Memory Read/Write—Premodify” on page 6-34

• “Indirect 24-Bit Memory Read/Write—Postmodify” on page 6-38

• “Indirect 24-Bit Memory Read/Write—Premodify” on page 6-42

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 0 1 0 1 0 1 MS U G D 0

10 9 8 7 6 5 4 3 2 1 0

RGP REG I M

ADSP-219x DSP Instruction Set Reference 8-51

Instruction Opcodes

Type 32a: DM«···DAG Reg | DAG Reg«···Ireg

DAG register store with register transfer

Opcode

Syntax

DM(Ireg1 += Mreg1) = |Ireg2, Mreg2, Lreg2|,

|Ireg2, Mreg2, Lreg2|= Ireg1 ;

DM(Ireg1 += Mreg1) = |Ireg2, Mreg2, Lreg2|,

|Ireg2, Mreg2, Lreg2| = Ireg1 ;

See Also

• “Opcode Mnemonics” on page 8-1

• “Indirect DAG Register Write (Premodify or Postmodify), with
DAG Register Move” on page 6-46

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 0 1 0 1 0 1 0 U G 1 1

10 9 8 7 6 5 4 3 2 1 0

0 RGP DAG REG I M

Type 33: Reg3 «··· Data12

8-52 ADSP-219x DSP Instruction Set Reference

Type 33: Reg3 «··· Data12

Load short constants

Opcode Bits

Syntax

Reg3 = <Data12>;

See Also

• “Opcode Mnemonics” on page 8-1

• “Direct Register Load” on page 6-27

23 22 21 20 19 18 17 16 15 14 13 12 11

0 0 0 1 0 0 0 0 12-bit data

10 9 8 7 6 5 4 3 2 1 0

12-bit data REG3

ADSP-219x DSP Instruction Set Reference 8-53

Instruction Opcodes

Type 34: Dreg «···» IOreg

I/O register read/write

Opcode Bits

Syntax

IO(<Addr10>) = Dreg;

Dreg = IO (<Addr10>);

See Also

• “Opcode Mnemonics” on page 8-1

• “External I/O Port Read/Write” on page 6-61

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 1 1 0 1 2MSBs addr D

11 10 9 8 7 6 5 4 3 2 1 0

8-bit Address DREG

Type 35: Dreg «···»Sreg

8-54 ADSP-219x DSP Instruction Set Reference

Type 35: Dreg «···»Sreg

System control register read/write

Opcode Bits

Syntax

REG(<Addr8>) = Dreg;

Dreg = REG(<Addr8>);

See Also

• “Opcode Mnemonics” on page 8-1

• “System Control Register Read/Write” on page 6-64

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 1 1 0 0 D

11 10 9 8 7 6 5 4 3 2 1 0

8-bit Address DREG

ADSP-219x DSP Instruction Set Reference 8-55

Instruction Opcodes

Type 36: Long Jump/Call

Conditional long jump/call (two-word instruction)

Opcode Bits

• First word

• Second word

Syntax

[IF Cond] LJUMP <Addr24>;

[IF Cond] LCALL <Addr24>;

See Also

• “Opcode Mnemonics” on page 8-1

• “Long Call (LCALL)” on page 7-40

• “Long Jump (LJUMP)” on page 7-43

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 1 0 1 S

11 10 9 8 7 6 5 4 3 2 1 0

8 Address MSBs COND

23 22 21 20 19 18 17 16 15 14 13 12

16 Address LSBs

11 10 9 8 7 6 5 4 3 2 1 0

16 Address LSBs

Type 37: Interrupt

8-56 ADSP-219x DSP Instruction Set Reference

Type 37: Interrupt

Software interrupt

Opcode Bits

Syntax

SETINT <Imm4>;

CLRINT <Imm4>;

See Also

• “Opcode Mnemonics” on page 8-1

• “Set Interrupt (SETINT)” on page 7-69

• “Clear Interrupt (CLRINT)” on page 7-71

23 22 21 20 19 18 17 16 15 14 13 12

0 0 0 0 0 1 1 1 0

11 10 9 8 7 6 5 4 3 2 1 0

C BIT

ADSP-219x DSP Instruction Set Reference 8-57

Instruction Opcodes

Opcode Definitions

8-58 ADSP-219x DSP Instruction Set Reference

ADSP-219x DSP Instruction Set Reference I-1

I INDEX

A
ABS instruction 2-28
absolute value instruction 2-28
AC bit 1-4
AC condition 1-11
add/add with carry 2-5
addressing

branch targets 7-6
alternate registers (see secondary

registers)
ALU

data registers 1-2
instructions summary 1-14

ALU carry (AC) condition 1-11
ALU mode control 2-3
ALU or multiplier function (AMF)

8-1
codes 8-6

ALU overflow (AV) bit 1-8
ALU overflow (AV) condition 1-11
ALU overflow latch mode enable

(AV_LATCH) bit 1-8, 7-76
ALU overflow latch mode enable

(OL) bit 1-8
ALU quotient (AQ) bit 1-4
ALU result carry (AC) bit 1-4
ALU result negative (AN) bit 1-4

ALU result overflow (AV) bit 1-4
ALU saturation mode enable

(AR_SAT) bit 1-9, 7-76
ALU saturation mode enable (AS)

bit 1-9
ALU signed (AS) bit 8-1
ALU status flags 2-4
ALU x- and y-input (AX AY)

registers 8-2
ALU x-input sign (AS) bit 1-4
ALU zero (AZ) bit 1-4
always true (TRUE) condition 1-11
AN bit 1-4
AND operator 2-16
AQ bit 1-4
AR_SAT bit 1-9, 7-76
arithmetic shift (ASHIFT)

instruction 4-3, 4-6
arithmetic shift immediate 4-8
Arithmetic Status (ASTAT) register

1-3, 1-8, 6-2, 7-7
arithmetic status bits 1-4
AS bit 1-4, 1-9
ASHIFT instruction 4-3, 4-6, 4-26
ASTAT register 1-3, 6-2
AV bit 1-4, 1-8
AV condition 1-11

INDEX

I-2 ADSP-219x/2191 DSP Hardware Reference

AV_LATCH bit 1-8, 7-76
AZ bit 1-4

B
background registers (see secondary

registers)
Base (B0-7) registers 1-3, 6-5, 6-14
bias rounding enable (BIASRND)

bit 3-5
BIASRND bit 1-6, 3-5
bit manipulation instructions 2-19
BIT_REV bit 1-8, 6-16, 7-76
bit-reversed addressing

about 6-16
bit-reversed addressing enable

(BIT_REV) bit 1-8, 6-16, 7-76
bit-reversed addressing enable (BR)

bit 1-8
bitwise logic instructions 2-16
BR bit 1-8
branch options 7-4
branching

preparation 7-34

C
CALL (PC relative) 7-33
CALL instruction 7-5, 7-6, 7-7, 7-8,

7-19, 7-20, 7-34, 7-41, 7-46
calls 7-20
CCODE register 1-5, 6-2

about 7-3
CE condition 1-11, 7-10
circular buffer addressing 5-9, 5-17

restrictions 6-15

circular data buffers
addressing 6-14

clear (PASS) instruction 2-22
clear bit (CLRBIT) instruction 2-19
clear interrupt (CLRINT)

instruction 8-56
about 7-71

clear multiplier instruction 3-17
CLRBIT instruction 2-19
CLRINT instruction 8-56

about 7-71
compute with dual memory read

5-4
compute with memory read 5-11
compute with memory write 5-15
compute with register-to-register

move 5-19
Condition Code (CCODE) register

1-5, 6-2
about 7-3

condition codes 1-11, 8-8
summary 1-11

conditional instruction (COND)
codes 1-11

Conditional Instructions xv
conditions 7-2

counter-based 7-2
loop termination 7-24

constant
codes 8-9

constants 2-2
context switching 7-16
Conventions xxiii
core register

ADSP-219x/2191 DSP Hardware Reference I-3

INDEX

codes 8-11
core registers 6-2

summary 1-2
Counter (CNTR) register 7-2, 7-7,

7-25
operation 7-26

counter expired (CE) condition
1-11, 7-2, 7-10, 7-24, 7-25,
8-5, 8-8

counter-based conditions 7-2
customer support xv

D
DAG registers

about 6-5
DAG1 (G1reg) registers 6-3
DAG2 (G2reg) registers 6-3
Data Address Generator (DAG)

registers 6-5
restrictions 6-13

data addressing
methods 6-11

data format options 3-3
Data Memory Page (DMPGx)

registers 6-2, 6-32
about 6-6

data move instructions 1-16
DB option 7-21
decrement instruction 2-34
delayed branch (DB) option 7-4,

7-21, 7-31
latency 7-35, 7-48
restrictions 7-5, 7-34

denormalization 4-26
direct addressing 6-11
direct JUMP (PC relative) 7-29
direct memory read/write—

immediate address 6-24
direct register load 6-27
DIS instruction 6-8, 7-76, 7-77
disable (DIS) instruction 7-76
divide primitives (DIVS DIVQ)

2-37, 5-4, 5-11, 5-15, 5-19
division

applications 2-45
code example 2-45
exceptions 2-43
integer 2-43
signed 2-39
theory 2-40
unsigned 2-39

DIVQ instruction 2-37, 5-4, 5-11,
5-15, 5-19

DIVS instruction 2-37, 5-4, 5-11,
5-15, 5-19

DMI
codes 8-14

DMM
codes 8-14

DMPGx registers 6-2, 6-32
about 6-6

DO UNTIL instruction 7-2, 7-4,
7-7, 7-10, 7-24, 7-34

dual memory read 5-8

INDEX

I-4 ADSP-219x/2191 DSP Hardware Reference

E
effect latencies

about 7-22
registers 6-9

EMU bit 1-7
EMUCNTE bit 1-6
emulation

single-step option 7-53
emulator cycle counter interrupt

enable (EMUCNTE) bit 1-6
emulator interrupt mask (EMU) bit

1-7
ENA instruction 6-8, 7-77
enable (ENA) instruction 7-76
ending loops

termination 7-24
EQ condition 1-11
equal to zero (EQ) condition 1-11
execution order

multifunction operations 5-2
exiting

loops 7-18
EXP instruction 4-3, 4-20
EXPADJ instruction 4-3, 4-23
exponent adjust (EXPADJ)

instruction 4-3
exponent block adjust (EXPADJ)

instruction 4-23
exponent derive (EXP) instruction

4-3, 4-14, 4-20, 4-26
external I/O port read/write 6-62

F
far absolute branches 7-6
finite loops 7-10
FLUSH CACHE instruction

about 7-67
FOREVER condition 7-11, 7-24,

7-25, 7-63
fractional mode (see multiplier

results mode) 1-9

G
G1reg 6-3
G2reg 6-3
G3reg 6-3
GE condition 1-11
generate ALU status only (NONE)

instruction 2-46
generate MAC status only (NONE)

instruction 3-24
GIE bit 1-6
global interrupt enable (GIE) bit

1-6
global interrupts

enabling 7-14
greater than (GT) condition 1-11
greater than or equal to zero (GE)

condition 1-11
Greg

codes 8-15
GT condition 1-11

ADSP-219x/2191 DSP Hardware Reference I-5

INDEX

H
HI option 4-3
high half output shift (HI) option

4-3
high half output shift unless

overflow (HIX) option 4-3
HIX option 4-3

I
I/O Memory Page (IOPG) register

6-2, 6-63
ICNTL register 1-6
IDLE instruction 7-74

about 7-74
IJPG register 6-2, 7-46
IMASK register 1-7, 7-14
increment instruction 2-31
Index (I0-7) registers 5-5, 5-8, 5-12,

5-16, 6-5, 6-6, 6-14, 6-16, 8-15
index (Ix) registers

codes 8-13
indirect 16-bit memory

read/write—premodify 6-34
indirect 16-bit memory write—

immediate data 6-57
indirect 24-bit memory

read/write—postmodify 6-38
indirect 24-bit memory

read/write—premodify 6-43
indirect 24-bit memory write—

immediate data 6-59
indirect addressing 6-11
indirect branches 7-6

indirect call (CALL) instruction
7-46

indirect DAG register write
(premodify or postmodify) with
DAG register move 6-47

indirect jump (JUMP) instruction
7-50

Indirect Jump Memory Page (IJPG)
register 6-2, 7-46

indirect memory read/write—
immediate postmodify 6-51

indirect memory read/write—
immediate premodify 6-54

INE bit 1-6
infinite loops 7-10, 7-26, 7-63
input registers 2-1

multiplier 3-2
instruction

(Type 01 compute | regX«···DM
| DregY«···PM 8-17

(Type 03) Dreg/Greg
«···»DM/PMType 3
Dreg/Greg «···» DM/PM 8-18

(Type 04) compute | Dreg
«···»DM 8-19

(Type 06) Dreg «···Data16 8-20
(Type 07) Reg1/2 «···Data16

8-21
(Type 08) compute | Dreg1

«···Dreg2 8-22
(Type 09) compute 8-23
(Type 09a) compute 8-26
(Type 10) direct jump/call 8-28
(Type 10a) direct jump/call 8-29

INDEX

I-6 ADSP-219x/2191 DSP Hardware Reference

(Type 11) Do ··· Until 8-30
(Type 12) Shift | Dreg «···» DM

8-31
(Type 14) Shift | Dreg1 «···

Dreg2 8-32
(Type 15) shift data8 8-33
(Type 16) shift Reg0 8-34
(Type 17) Dreg1 «··· Dreg2 8-35
(Type 18) mode change 8-36
(Type 19) indirect jump/call 8-37
(Type 20) return 8-38
(Type 21) modify DagI 8-39
(Type 22) DM «··· data16 8-41
(Type 22a) PM «··· data24 8-42
(Type 23) divide primitive,

DIVQ 8-43
(Type 24) divide primitive, DIVS

8-44
(Type 25) saturate 8-45
(Type 26) push/pop/cache 8-46
(Type 29) Dreg «···» DM 8-47
(Type 30) NOP 8-48
(Type 31) idle 8-49
(Type 32) Reg «···» PM/DM

8-50
(Type 32a) Reg «···» DM 8-51
(Type 33) Reg «··· data12 8-52
(Type 34) Dreg «···» oreg 8-53
(Type 35) Dreg «···» Sreg 8-54
(Type 36) long jump/call 8-55
(Type 37) interrupt 8-56

instruction pipeline 7-35, 7-48
instruction set

notation 1-12
instructions

ALU 1-14
conditional 1-11
multifunction 1-19, 5-1
multiplier 1-15
program flow 1-18
shifter 1-16
summary 1-12

INT bit 7-76
integer division 2-43
Interrupt Control (ICNTL) register

1-6
Interrupt Latch (IRPTL) register

1-7, 7-14
Interrupt Mask (IMASK) register

1-7, 7-14
interrupt nesting enable (INE) bit

1-6
interrupt service routines (ISRs)

7-13, 7-53
interrupts

about 7-13
enabling 7-14
nesting 7-16

interrupts enable (INT) bit 7-76
IOPG register 6-2, 6-63
IRPTL register 1-7, 7-14
ISRs 7-13, 7-53

ADSP-219x/2191 DSP Hardware Reference I-7

INDEX

J
JUMP (PC relative) instruction

7-37
JUMP instruction 7-5, 7-6, 7-29,

7-34
long jumps 7-20

L
latency

about 7-22
delayed branch 7-35
registers 6-9

LCALL instruction 7-21, 7-35,
7-40, 7-41

LE condition 1-11
Length (L0-7) registers 5-9, 5-13,

5-17, 6-5, 6-14
less than or equal to zero (LE)

condition 1-11
less that zero (LT) condition 1-11
linear indirect addressing 5-17
LJUMP instruction 7-21, 7-31,

7-43, 7-44
LO option 4-3
logical shift (LSHIFT) instruction

4-3, 4-7, 4-10
logical shift immediate 4-12
long call (LCALL) instruction

about 7-40
long jump (LJUMP) instruction

about 7-43
long jumps 7-20

loop begin stack 7-7
loop counter stack 7-7
loop end stack 7-7
Loop PC Stack Pointer

(LPCSTACKP) register 6-2
loop stack empty (LPSTKEMPTY)

bit 1-10
loop stack empty (LSE) bit 1-10
loop stack full (LPSTKFULL) bit

1-10
loop stack full (LSF) bit 1-10
loop stacks

operation 7-10
pushing and popping 7-11

loop termination 7-64
conditions 7-24

loops
exiting 7-18
finite 7-10
infinite 7-10
PUSH/POP 7-11
restrictions 7-26

low half output shift (LO) option
4-3

LPCSTACKP register 6-2
LPSTKEMPTY bit 1-10
LPSTKFULL bit 1-10
LSE bit 1-10
LSF bit 1-10
LSHIFT instruction 4-3, 4-7, 4-10,

4-26
LT condition 1-11

INDEX

I-8 ADSP-219x/2191 DSP Hardware Reference

M
M_MODE bit 1-9, 7-76
MAC biased rounding mode

(BIASRND) bit 1-6
MAC clear instruction 3-17
MAC input registers 3-2
MAC output registers 3-2
MAC overflow (MV) condition

1-11
MAC result mode (M_MODE) bit

1-9
MAC result mode (MM) bit 1-9
MAC round/transfer (RND)

instruction 3-19
MAC saturate (SAT) instruction

3-21
Manual

audience xiii
contents description xiv
conventions xxiii
new in this edition xv

manual
related documents xix

MM bit 1-9
mode control 7-4, 7-76
Mode Status (MSTAT) register 1-8,

6-2, 6-7, 6-16, 7-7
Modify (M0-7) registers 1-2, 5-5,

5-8, 5-12, 5-16, 6-5, 6-14
modify (Mx) registers

codes 8-13
MODIFY instruction

direct 6-70
indirect 6-68

Mreg
codes 8-15

MSTAT register 1-8, 6-2, 6-7, 6-16,
7-4

multifunction instruction
stall cycles 5-6, 5-10, 5-13, 5-17

multifunction instructions 5-1
execution order 5-2
summary 1-19

multiplier clear instruction 3-17
multiplier input registers 3-2
multiplier instructions

summary 1-15
multiplier overflow (MV) bit 1-4,

3-6, 3-7
multiplier results mode selection

(M_MODE) bit 3-6, 7-76, 8-3
multiplier round/transfer (RND)

instruction 3-19
Multiplier x- and y-input (MX MY)

registers 8-2
multiply instruction 3-8
multiply with cumulative add 3-11
multiply with cumulative subtract

3-14
MV bit 1-4
MV condition 1-11

N
NE condition 1-11
negate instruction

NOT 2-25
nested interrupts 7-16

ADSP-219x/2191 DSP Hardware Reference I-9

INDEX

nesting
interrupts 7-16

no operation (NOP) instruction
about 7-73

NONE instruction 2-46, 3-24
NOP instruction

about 7-73
NORM instruction 4-3, 4-14
normalize (NORM) instruction

4-2, 4-3, 4-23
normalize immediate instruction

4-17
normalize instruction 4-14
NOT CE condition 1-11
not equal to zero (NE) condition

1-11
numeric format modes 3-6

O
OL bit 1-8
ones complement 2-25, 2-28
opcode

definitions 8-16
mnemonics 8-1

optimizing
performance 7-17

OR operator 2-16
output registers 2-2

MAC 3-2

P
PASS instruction 2-22
PC register 7-24
PC relative branches 7-6

PC stack 7-7
operation 7-8
restrictions 7-7

PC stack empty (PCE) bit 1-10
PC stack empty (PCSTKEMPTY)

bit 1-10
PC stack full (PCF) bit 1-10
PC stack full (PCSTKFULL) bit

1-10
PC stack interrupt enable

(PCSTKE) bit 1-6
PC stack level (PCL) bit 1-10
PC stack level (PCSTKLVL) bit

1-10
PC stack level status (PCSTKLVL)

bit 7-12
PCE bit 1-10
PCF bit 1-10
PCL bit 1-10
PCSTKE bit 1-6
PCSTKEMPTY bit 1-10
PCSTKFULL bit 1-10
PCSTKLVL bit 1-10, 7-12
performance

optimizing 7-17
pipeline 7-35, 7-48
PMI

codes 8-14
PMM

codes 8-14
POP instruction 7-7, 7-11, 7-18,

7-34, 7-64
POP LOOP instruction 7-9, 7-26
POP PC instruction 7-9

INDEX

I-10 ADSP-219x/2191 DSP Hardware Reference

POP stacks 7-61
POP STS instruction 7-9
postmodify addressing 5-13, 5-17,

6-48
power-down interrupt mask

(PWDN) bit 1-7
premodify addressing 6-12, 6-48
program counter

pushing and popping 7-9
Program Counter (PC) register 7-24
program flow instructions

summary 1-18
Program Memory Bus Exchange

(PX) register 5-6, 5-9, 5-13,
5-17, 6-2, 6-38

about 6-3
Programming information xiii
PUSH instruction 7-7, 7-11, 7-34,

7-63
PUSH LOOP instruction 7-9, 7-26
PUSH PC instruction 7-9
PUSH stacks 7-61
PUSH STS instruction 7-9
PUSH/POP loops 7-11
PWDN bit 1-7
PX register 5-6, 5-9, 5-13, 5-17,

6-2, 6-38
about 6-3

Q
quotient (division) 2-37

R
registers

background 1-8
core 1-2, 6-2
input 2-1
load latencies 6-9
output 2-2
register groups (Reg0-3) 6-2
shifter 4-2

register-to-register move 6-22
related documents xix
result registers 1-2
return from interrupt (RTI)

instruction 7-7, 7-13, 7-34
about 7-53

return from subroutine (RTS)
instruction 7-7, 7-34

about 7-57
restrictions 7-57

RND instruction 3-19
round/transfer (RND) multiplier

instruction 3-19
rounding (RND) multiplier option

3-3
rounding modes 3-4
RTI instruction 7-5, 7-7, 7-13

about 7-53
single-step (SS) RTI option 7-53

RTS instruction 7-5, 7-7, 7-8
about 7-57

ADSP-219x/2191 DSP Hardware Reference I-11

INDEX

S
SAT instruction 3-21
saturation

testing for 3-21
SB register 4-2
SD bit 1-9
SE register 4-3
SEC_DAG bit 1-9, 6-7, 7-76
SEC_REG bit 1-8, 7-76
secondary DAG registers

about 6-7
secondary DAG registers enable

(SD) bit 1-9
secondary DAG registers enable

(SEC_DAG) bit 1-9, 6-7, 7-76
secondary DAG registers enable

(SEC_REG) bit 1-8, 7-76
secondary DAG registers enable

(SR) bit 1-8
set bit (SETBIT) instruction 2-19
set interrupt (SETINT) instruction

8-56
about 7-69

SETBIT instruction 2-19
SETINT instruction 8-56

about 7-69
shift function

codes 8-12
shifter

options 4-3
status flags 4-5

Shifter Block Exponent (SB) register
4-2

Shifter Exponent (SE) register 4-3,
4-26

Shifter Input (SI) register 4-3
shifter input sign (SS) bit 1-4
shifter instructions

options 4-3
summary 1-16

shifter overflow (SV) bit 1-4, 3-6,
3-7

shifter registers 4-2
Shifter Result (SR0-2) registers 1-2,

4-2
shifter signed (SS) bit 4-21
SI register 4-3
signed division 2-39
signed input (S) multiplier option

3-3
single-step interrupt mask (SSTEP)

bit 1-7
single-step option 7-53
sleep mode 7-74
software condition (SWCOND)

bits 1-5
software condition true

(SWCOND) condition 1-11,
7-3

SOV bit 1-10
spill-fill mode 7-12
SR bit 1-8
SR0 register 4-2
SR1 register 4-2
SR2 register 4-2
SS bit 1-4, 3-4, 4-21, 7-53
SSE bit 1-10

INDEX

I-12 ADSP-219x/2191 DSP Hardware Reference

SSTAT register 1-10, 6-2, 7-12
SSTEP bit 1-7
stack

status flags 7-12
STACK bit 1-7
stack interrupt mask (STACK) bit

1-7
stack overflow status

(STKOVERFLOW) bit 7-12
Stack Pointer (STACKP) register

6-2
STACKP register 6-2
stacks

about 7-7
loop begin 7-7
loop counter 7-7
loop end 7-7
PC 7-7
POP 7-61
PUSH 7-61
status 7-7

stacks overflowed (SOV) bit 1-10
stacks overflowed

(STKOVERFLOW) bit 1-10
status flags 3-7

ALU 2-4
shifter 4-5
stack 7-12

status stack 7-7
operation 7-8
pushing and popping 7-9

status stack empty (SSE) bit 1-10
status stack empty

(STSSTKEMPTY) bit 1-10

Status/Control (G3reg) registers 6-3
STKOVERFLOW bit 1-10, 7-12
STSSTKEMPTY bit 1-10
SU bit 3-4
subtract X-Y 2-9
subtract X-Y with borrow 2-9
subtract Y-X 2-13
subtract Y-X with borrow 2-13
support, technical or customer xv
SV bit 1-4
SWCOND bit 1-5, 1-11, 7-3
switching

context 7-16
system control register read/write

6-65
System Status (SSTAT) register

1-10, 6-2, 7-12
latency 6-10, 7-9, 7-62

T
technical support xv
termination conditions

loops 7-24
test bit (TSTBIT) instruction 2-19
TESTBIT instruction 2-19
TGLBIT instruction 2-19
TI bit 1-9
TIMER bit 1-9, 7-76
timer enable (TI) bit 1-9
timer enable (TIMER) bit 1-9,

7-76, 8-5
toggle bit (TGLBIT) instruction

2-19
TRUE condition 1-11, 8-5, 8-8

ADSP-219x/2191 DSP Hardware Reference I-13

INDEX

U
unsigned division 2-39
unsigned input (U) multiplier

option 3-3
US bit 3-4
UU bit 3-4

X
X-input operand (XOP) 2-2

XOP
codes 8-15

XOR operator 2-16

Y
Y-input operand (YOP) 2-2
YOP

codes 8-15

INDEX

I-14 ADSP-219x/2191 DSP Hardware Reference

	Contents
	Purpose of This Manual xiii
	Intended Audience xiii
	Manual Contents xiv
	What’s New in This Manual xv
	Technical or Customer Support xv
	Supported Processors xvi
	Product Information xvii
	MyAnalog.com xvii
	Processor Product Information xviii
	Related Documents xix
	Online Technical Documentation xix
	Accessing Documentation From VisualDSP++ xx
	Accessing Documentation From Windows xx
	Accessing Documentation From the Web xxi

	Printed Manuals xxi
	VisualDSP++ Documentation Set xxii
	Hardware Tools Manuals xxii
	Processor Manuals xxii
	Data Sheets xxii

	Conventions xxiii

	1 Instruction Set Summary
	Core Registers Summary
	Arithmetic Status (ASTAT) Register
	Condition Code (CCODE) Register
	Interrupt Control (ICNTL) Register
	Interrupt Mask (IMASK) Register and Interrupt Latch (IRPTL) Register
	Mode Status (MSTAT) Register
	System Status (SSTAT) Register
	Condition Codes Summary
	Instruction Summary
	ALU Instructions
	Multiplier Instructions
	Shifter Instructions
	Data Move Instructions
	Program Flow Instructions
	Multifunction Instructions

	2 ALU Instructions
	ALU Instruction Conventions
	Input Registers
	Output Registers
	Constants
	ALU Mode Control
	ALU Status Flags
	ALU Instruction Reference
	Add/Add with Carry
	Subtract X-Y/Subtract X-Y with Borrow
	Subtract Y-X/Subtract Y-X with Borrow
	Bitwise Logic: AND, OR, XOR
	Bit Manipulation: TSTBIT, SETBIT, CLRBIT, TGLBIT
	Clear: PASS
	Negate: NOT
	Absolute Value: ABS
	Increment
	Decrement
	Divide Primitives: DIVS and DIVQ
	Generate ALU Status Only: NONE

	3 MAC Instructions
	Multiply Instruction Conventions
	MAC Input Registers
	MAC Output Registers
	Data Format Options
	Rounding Modes
	Numeric Format Modes
	Status Flags

	Multiply
	Multiply with Cumulative Add
	Multiply with Cumulative Subtract
	MAC Clear
	MAC Round/Transfer
	MAC Saturate
	Generate MAC Status Only: NONE

	4 Shifter Instructions
	Shifter Operation Conventions
	Shifter Registers
	Shifter Instruction Options
	Shifter Status Flags

	Arithmetic Shift
	Arithmetic Shift Immediate
	Logical Shift
	Logical Shift Immediate
	Normalize
	Normalize Immediate
	Exponent Derive
	Exponent (Block) Adjust
	Denormalization

	5 Multifunction Instructions
	Order of Execution of Multifunction Operations
	Multifunction Instruction Reference
	Compute with Dual Memory Read
	Dual Memory Read
	Compute with Memory Read
	Compute with Memory Write
	Compute with Register-to-Register Move

	6 Data Move Instructions
	Core Registers
	PX Register
	DAG Registers
	Address Registers
	DAG Memory Page Registers (DMPGx)
	Secondary DAG Registers

	Register Load Latencies
	Data Addressing Methods
	Direct Addressing
	Indirect Addressing
	Circular Data Buffer Addressing
	Bit-Reversed Addressing
	Data Move Instruction Reference
	Register-to-Register Move
	Direct Memory Read/Write-Immediate Address
	Direct Register Load
	Indirect 16-Bit Memory Read/Write-Postmodify
	Indirect 16-Bit Memory Read/Write-Premodify
	Indirect 24-Bit Memory Read/Write-Postmodify
	Indirect 24-Bit Memory Read/Write-Premodify
	Indirect DAG Register Write (Premodify or Postmodify), with DAG Register Move
	Indirect Memory Read/Write-Immediate Postmodify
	Indirect Memory Read/Write-Immediate Premodify
	Indirect 16-Bit Memory Write-Immediate Data
	Indirect 24-Bit Memory Write-Immediate Data
	External I/O Port Read/Write
	System Control Register Read/Write
	Modify Address Register-Indirect
	Modify Address Register-Direct

	7 Program Flow Instructions
	Conditions
	Counter-Based Conditions
	CCODE Register
	Mode Control
	Branch Options
	Addressing Branch Targets
	Stacks
	PC and Status Stack Operation
	Loop Stacks Operation

	Stack Status Flags
	Interrupts
	Enabling Interrupts
	Switching Contexts
	Nesting Interrupts

	Application Performance
	Exiting a Loop
	Using Long Jumps and Calls
	Effect Latencies
	Program Flow Instruction Reference
	DO UNTIL (PC Relative)
	Direct JUMP (PC Relative)
	CALL (PC Relative)
	JUMP (PC Relative)
	Long Call (LCALL)
	Long Jump (LJUMP)
	Indirect CALL
	Indirect JUMP
	Return from Interrupt (RTI)
	Return from Subroutine (RTS)
	PUSH or POP Stacks
	FLUSH CACHE
	Set Interrupt (SETINT)
	Clear Interrupt (CLRINT)
	NOP
	IDLE
	Mode Control

	8 Instruction Opcodes
	Opcode Mnemonics
	ALU or Multiplier Function (AMF) Codes
	Condition Codes
	Constant Codes
	Core Register Codes
	Shift Function (SF) Codes
	Index Register and Modify Register Codes
	DMI, DMM, PMI, and PMM Codes
	IREG/MREG Codes
	XOP and YOP Codes
	Opcode Definitions
	Type 1: Compute | DregX«···DM | DregY«···PM
	Type 3: Dreg/Ireg/Mreg «···» DM/PM
	Type 4: Compute | Dreg «···» DM
	Type 6: Dreg «··· Data16
	Type 7: Reg1/2 «··· Data16
	Type 8: Compute | Dreg1 «··· Dreg2
	Type 9: Compute
	Type 9a: Compute
	Type 10: Direct Jump
	Type 10a: Direct Jump/Call
	Type 11: Do ··· Until
	Type 12: Shift | Dreg «···» DM
	Type 14: Shift | Dreg1 «··· Dreg2
	Type 15: Shift Data8
	Type 16: Shift Reg0
	Type 17: Any Reg «···Any Reg
	Type 18: Mode Change
	Type 19: Indirect Jump/Call
	Type 20: Return
	Type 21: Modify DagI
	Type 21a: Modify DagI
	Type 22: DM «··· Data16
	Type 22a: PM «··· Data24
	Type 23: Divide primitive, DIVQ
	Type 24: Divide primitive, DIVS
	Type 25: Saturate
	Type 26:Push/Pop/Cache
	Type 29: Dreg «···» DM
	Type 30: NOP
	Type 31: Idle
	Type 32: Any Reg «···» PM/DM
	Type 32a: DM«···DAG Reg | DAG Reg«···Ireg
	Type 33: Reg3 «··· Data12
	Type 34: Dreg «···» IOreg
	Type 35: Dreg «···»Sreg
	Type 36: Long Jump/Call
	Type 37: Interrupt

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	X
	Y

