

承载一切可能

主板中文使用手册

战旗 C.H55 X7 V21

www.colorful.cn

技术服务热线: 400-678-5866

版本: 1.0

目录

第一章简介	1
第二章硬件安装	7
第三章驱动程序安装说明	31
第四章 BIOS 设置	33
4-1 进入 BIOS 主界面	33
4-2 BIOS 主界面	36
4-3 系统信息 (System Information)	37
4-4 高级 BIOS 设置 (Advanced Settings)	41
4-5 启动配置特性 (Boot Settings)	47
4-6 设定管理员/用户密码 Security Settings	49
4-7 电源管理特性 (Power Settings)	50
4-8 超频设置(OverClock Settings)	54
4–9 退出选项(Exit Options)	59
第五章附录	61

版权

本手册版权属于世和资讯公司所有,未经本公司书面许可,任何人不得对此说 明书和其中所包含的任何资料进行复制、拷贝或翻译成其它语言。

声明

本用户手册没有任何型式的担保、立场表达或其它暗示。若有任何因本用户手册或其所提到之产品的所有信息,所引起直接或间接的数据流失、利益损失或事业终止,七彩虹及其所属员工恕不为其担负任何责任。除此之外,本用户手册所提到的产品规格及信息仅供参考,内容亦会随时升级,恕不另行通知。本用户手册的所有部分,包括硬体及软体,若有任何错误,七彩虹没有义务为其担负任何责任。

商标版权

本手册使用的所有商标均属于该商标的持有者所有。

AMD, Athlon , Athlon XP, Thoroughbred 和 Duron™ 是 Advanced Micro Devices 的注册商标。

Intel® 和 Pentium® 是 Intel Corporation 的注册商标。

PS/2 和 OS® 2 是 International Business Machines Corporation 的注册商标。

Windows® 95/98/2000/NT/XP/Vista 是 Microsoft Corporation 的注册商标。

Netware® 是 Novell, Inc 的注册商标。

Award® 是 Phoenix Technologies Ltd 的注册商标。

AMI® 是 American Megatrends Inc 的注册商标。

Kensington 和 MicroSaver 是 Kensington Technology Group 的注册商标。

PCMCIA和 CardBus是 Personal Computer Memory Card International Association的注册商标。

其他在本说明书中使用的产品名称是他们各自所属公司所拥有和被公认的。

技术支持

如果您的系统出现问题,并且无法从本主板使用手册中获得帮助,请联系您所购买主板的经销商。此外您还可以尝试通过以下方式获得帮助:

访问七彩虹的官方网站(http://www.colorful.cn/)获取产品和驱动程序等信息支持,还可以登录七彩虹官方论坛(http://bbs.colorful.cn),获取技术指导。 通过拨打 400-678-5866 客户服务热线进行咨询,此外还可以直接与七彩虹各属地平台服务中心联系,具体联系方法如下:

七彩虹科技全国区域售后服务平台业务范围及联系方式				
平台名称	服务范围	联系方法		
北京服务平台	北京、天津、河北、河南、	010—51261907		
	山东、山西、内蒙古			
沈阳服务平台	辽宁、吉林、黑龙江	024—31321755		
武汉服务平台	湖北、湖南	027—87865811		
南京服务平台	江苏、安徽	025—83611912		
上海服务平台	上海、浙江	021—64389499		
广州服务平台	广东、广西、福建、海南、江西	020—85276624		
成都服务平台	四川、重庆、云南、贵州、西藏	028—85240735		
西安服务平台	陕西、甘肃、宁夏、青海、新疆	029—87895086		
深圳服务平台	深圳地区 0755—33083060			
注意:以上电话如有变动,请拨打 400-678-5866 服务热线查询。				

世和资讯公司对本手册拥有最终解释权

在您开始之前

主板包装盒内附标准组件

在你开始之前,请检查主板包装盒内的附件

- □ 一块战旗 C.H55 X7 V21 主板
- 两条 SATA 数据线
- □ 一条 SATA 电源转接线
- □ 一张驱动光盘
- □ 一张质量保证卡
- □ 一本战旗 C.H55 X7 V21 主板中文使用手册
- □ 1片后置面板 IO 挡板

注意: 若以上列出的任何一项配件有损坏或是短缺的情形,请尽快与您的经销商联络或致电七彩虹客服。

第一章简介

感谢您购买七彩虹系列主板,该系列主板提供了非常优秀的性能和品质保证。

1-1 主板特色

战旗 C.H55 X7 V21 主板采用最新基于英特尔® H55 高速芯片组。支持 DDR3 1333/1066MHz 类型模块内存.支持 PCI-E 2.0 规范。

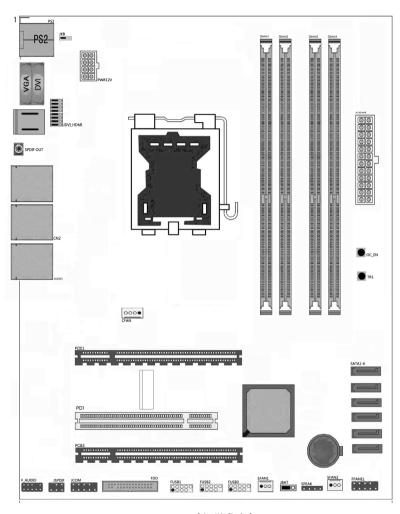
英特尔® H55 高速芯片组通过全新的架构继续推动创新。该架构旨在为采用英特尔® 酷睿™ i7-800 处理器、英特尔® 酷睿™ i5 处理器以及英特尔 ® 酷睿™ i3 处理器的平台提供出色的质量、性能和领先的 I/O 技术。英特尔® H55 高速芯片组可为数字家庭、小型办公室和家庭办公消费者提供全新的技术和创新功能。 英特尔® H55 高速芯片组支持英特尔® 远程计算机辅助技术,以及两个独立控制的显示接口。

战旗 C.H55 X7 V21 主板提供 4 条 DIMM3 插槽,板载 8 声道声卡,集成千兆 网卡,性能强劲,是骨灰级玩家的终极选择!

战旗 C.H55 X7 V21 主板提供 2 个 PCI-Express x16 插槽、一个 mini PCI-E 插槽、1 个 PCI 插槽、6 个 SATA2 接口、10 个高速 USB2.0 接口(3 个 USB 连接 头可扩展至 6 个 USB 接口), 1 个 SPDIF Out 接口,1 个 VGA/DVI 接口,1 个 HDMI 接口,板载串行 COM 连接头,板载 SPDIF 连接头,扩展模式丰富,扩展性能强劲。

1-2 主机板规格

□ 设计


> mATX 板型规范

- □ 芯片组
 - 》 英特尔® H55 高速芯片组
- □ 中央处理器(产品发布时,该款主板支持:)
 - ➤ 采用 LGA1156 插槽的英特尔®酷睿 i7-800 处理器、英特尔® 酷睿 i5 处理器以及英特尔® 酷睿 i3 处理器
- □ 内存
 - ▶ 提供 4 条内存插槽
 - > 支持双通道 DDR3 1333/1066 类型模块内存
- □ 扩展插槽
 - > 2 条 PCI-Express x16 插槽
 - ▶ 一个 mini PCI-E 插槽
 - ▶ 1条 PCI 插槽
- □ 存储设备
 - ▶ 提供1个FDD接口
 - ▶ 提供 6 个 SATAII 高速硬盘接口
- □ 8 声道音频设备
 - 整合 8 声道高清晰数字音频控制器
 - ▶ 支持 8 声道 3D 环绕声效
- □ 网络功能
 - > 整合千兆网卡
 - > 支持 10/100/1000Mbps 数据传输率
- 接□
 - ▶ 1个 FDD 接口
 - ▶ 6 个 SATAII 接口
 - ▶ 10 个 USB2.0 接口(3 个 USB 连接头)
 - ▶ 2 个 PS/2 端口
 - ▶ 1 个 RJ45 千兆网接口
 - ▶ 1 个 8 声道音频接口(AUDIO)
 - ▶ 1个同轴输出接口(SPDIF Out)
 - ▶ 1个 VGA/DVI 接口
 - ▶ 1 个 HDMI 接口

□ 连接头

- ▶ 1个前置音频接口连接头(F_AUDIO)
- ▶ 1 个 SPEAKER 连接头(SPEAK)
- ▶ 1个前面板开关和指示灯连接头(FPANEL)
- ▶ 2 个可扩展 USB 接口连接头(FUSB1/2/3)
- ▶ 1个 SPDIF 连接头(JSPDIF)
- ▶ 1个串行 COM 连接头(JCOM)
- ▶ CPU 风扇连接头(CFAN)
- > 系统风扇连接头(SFAN1/2)

1-3 主机板布局图

(仅供参考)

4

1-4 主机板部件一览表

跳线

跳线	名称	描述
JBAT	清除 CMOS 跳线	3PIN 跳线
JKB	键盘鼠标唤醒功能	3PIN 跳线
JDVI_HDMI	HDMI 与 DVI 接口的切换	24PIN 跳线

连接器

连接器	名称	描述
ATXPWR	ATX 电源连接器	24 引脚
PWR12V	ATX12V 电源连接器	8 引脚
PS2	PS/2 键盘	6 引脚母头
CN2	USB 端口连接器/千兆网络	4 引脚/RJ-45 连接器
AUDIO	8 声道音频连接器	6 孔小三芯插孔连接器
FDD	软盘驱动器数据连接器	34 引脚
SPDIF Out	SPDIF 同轴输出接口	一芯插孔
SATA1-6	串行 ATA2 端□数据连接器	7 引脚
HDMI	高清多媒体接口	高清多媒体接口
VGA/DVI	显示器接口	24/15 引脚

连接头

连接头	名称	描述
FPANEL/SPEAK	前面板开关和指示灯	13PIN 插头
FUSB1/2/3	可扩展 USB 接口	9PIN 扩展接头
SFAN1/2	风扇引脚头	3 引脚
CFAN	CPU 风扇引脚头	4 引脚
F_AUDIO	扬声器,麦克风连接头	9 引脚
JCOM	串行 COM 连接头	9 引脚
JSPDIF	SPDIF 连接头	5 引脚

扩展槽

插座/插槽	名称	描述
LGA 1156 Socket	CPU 插座	LGA 1156 CPU 插座
DIMM1-4	DDR3 模块插槽	DDR3 模块扩展插槽
PCIE1/3	PCI-E x16 插槽	PCI-Express x16 扩展槽
MINIPE	mini PCI-E 插槽	mini PCI-E 插槽
PCI1	PCI 插槽	32 位 PCI 逻辑总线扩展插槽

第二章硬件安装

2-1 硬件安装步骤

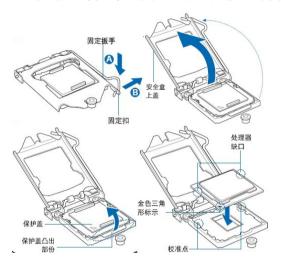
请依据下列方式,完成电脑的安装:

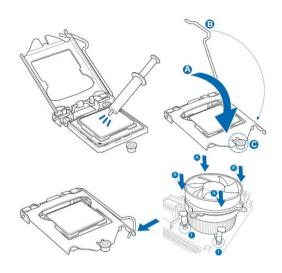
- □ 安装中央处理器(CPU)
- □ 安装内存
- □ 装入机箱
- □ 安装所有扩展卡
- □ 连接所有讯号线、排线、电源线及面板控制线

步骤 1: 安装 CPU

本主板具备一个 LGA 1156 处理器插槽, 本插槽是专为具有 1156 脚位封装的英特尔® 酷睿™ i7 处理器/英特尔® 酷睿™ i5 处理器所设计。

主意: 当您安装 CPU 时,请确认所有的电源接口都已拨除。

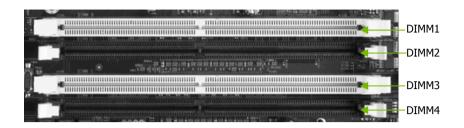



1. 在您购买本主板之后,请确认在 LGA1156 插座上附有一个即插即用的保护盖,并且插座接点没有弯曲变形。若是保护盖已经毁损或是没有保护盖,或者是插座接点已经弯曲,请立即与您的经销商联络。2. 在安装完主板之后,请将即插即用的保护盖保留下来。

安装中央处理器和风扇

请依照以下步骤安装处理器:

- □ 1. 找到位于主板上的处理器插槽,将 CPU 插座旁的锁定杆从锁定状态 拔到未锁定状态。
- □ 2. 安装 CPU,将 CPU 的金色三角形标示对准主板 CPU 插槽上的三角形标示,确定针角 1 的方向正确,不要用力插 CPU,确信 CPU 完全插入插槽中,将锁定杆从未锁定状态拔到锁定状态(这一过程非常重要,如果操作不当,有可能会损坏 CPU,所以最好请专业人士代劳)
- □ 3. 安装 CPU 风扇, 并将 CPU 风扇电源线连接上(一定要安装 CPU 风扇, 否则可能会温度过高从而损坏 CPU, 建议用户使用原装风扇)。

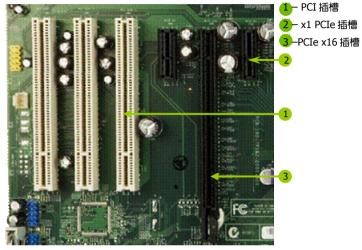

步骤 2: 安装内存

本主板配置有四组 240-pin DDR3 DIMM (Double Data Rate 3, 三倍数据传输率)内存条插槽。DDR3 内存条拥有与 DDR2 内存条相同的外观,但是 DDR3 内存插槽的缺口与 DDR2 内存插槽不同,以防止插入错误的内存条。下图所示为 DDR3 DIMM 内存条插槽在主板上之位置。

- □ 一条内存: 插入到 DIMM1 或 DIMM3(不要插入到 DIMM2 或 DIMM4).
- □ 两条内存: 插入到 DIMM1 和 DIMM3,以组建双通道.
- □ 三条内存: 不要安插 3 条内存, 可能会引起故障。
- □ 四条内存: 插入到 DIMM1, 2, 3, 和 4.

CAUTION: 1.请选择使用相同的内存模组安装到双通道。2. 如果您正确插入了内存模组,您将不会看到金手指部分。

步骤 3: 安装主板到机箱


请把随机箱提供的铜柱套入正确孔位,锁上螺丝以固定主机板,防止主机板与机箱之间造成短路而损坏主机板。

步骤 4: 安装所有扩展卡

安装所需要的 PCIE 或 PCI 扩展卡到主机板上,锁上螺丝以固定扩展卡,防止造成扩展卡与主板之间的接触问题。该主板提供两个 x16 PCI Express 显卡插槽和两个 x1 PCI Express 插槽。完全符合 PCI Express 1.0a 规范, 支持 PCI Express 显卡和其它的 PCI Express 设备。x16 PCI Express 插槽还支持提供数字显示和电视输出的高级数字显示卡 (ADD2)。

PCI Express x16:

请将符合规格的 PCI Express x16 显卡安装在 PCI Express x16 插槽上,在 x16 插槽安装显卡时,先将显卡在上空与插槽对齐,然后压入插槽中,直到其牢固固定于插槽中为止,插槽中的固定夹会自动固定好显卡。

(仅供参考,介绍扩展卡,并不是本主板图片)

PCI Express x1:

安装 PCI Express x1 卡,如网卡等,也应该符合 PCI Express 规格,并且将其安装在 PCI Express x1 插槽内。(见上图)

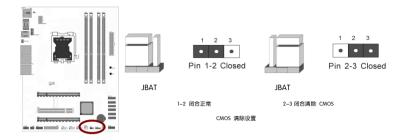
硬件安装

步骤 5: 连接所有信号线和电源线

具体细节请参考连接头介绍。

2-3 跳线设置

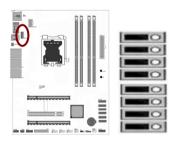
依照跳线帽的不同连接,可以改变主板的电子线路,影响主板的运行。如果跳线帽连接两个针之间,说明是短路;如果跳线帽没有连接两个针之间或放置在一个针上,说明是断开。


以上是3个针脚跳线的举例,第一个针脚和第二个针脚是短路状态。

CMOS 清除: JBAT

您可以通过短接 JBAT 跳线的 2-3 引脚来清除 CMOS 的数据,要清除 CMOS 必须完成以下步骤:

- □ 先关闭系统
- 拔掉 ATX 电源
- □ 短接 JBAT 的 2-3 针脚 3 秒钟左右(即把 JBAT 跳线上的跳线帽从 1-2 针脚发到 2-3 针脚)
- □ 再恢复JBAT到1-2 跳线(即把JBAT跳线上的跳线帽从2-3针脚拔到1-2针脚)
- 重新连接 ATX power 接口


注意: 以下情况您需要清除 CMOS 解决故障的时候:1.忘记 BIOS 密码的时候:2.在超频失败机器无法启动时

提示: 清除 CMOS 对于主板用户来说是一个很基本但也是一个很重要的技巧,根据主板工程师的经验: 1. 它可以清除开机密码 2.在超频失败后计算机无法启动时 3.您的主板不能点亮的时候; 或是您的计算机不能进入系统, 出现错误代码提示; 或者是您的计算机出现"奇怪"的软硬件故障时, 你都可以尝试清除 CMOS, 有时是可以解决问题的,这只是主板工程师的一些经验. 但是清除 CMOS 后计算机上的显示时间会变为出厂时的设置, 所以用户要重新设置时间, 清除 CMOS 后最好在 BIOS 里优化一下 BIOS(Load Optimized BIOS) 4.丝印处有白色标记的地方为第一脚

DVI/HDMI 设备切换跳线: JDVI HDMI

当跳线在 1-2 针脚上时,此时 HDMI (主板后置面板)接口生效;当跳线在 2-3 针脚上时,此时 DVI (主板后置面板)接口生效

JDVI_HDMI		
1-2	HDMI	
2-3	DVI	

键盘/鼠标开机跳线选择: JKB

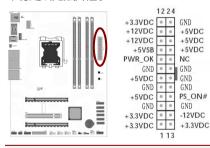
要开启键盘/鼠标开机功能,"JPKB"跳线应该放置在 2-3 针脚上。BIOS 设定:须在BIOS的 Power Management Setup 下设定 PS/2 键盘/鼠标唤醒功能;请参阅 BIOS 设定的相关信息。

超频按钮 OC_EN/TRI 的功能

OC_EN: 此灯亮的时候, 为超频状态, 旋转 TR1 才起作用

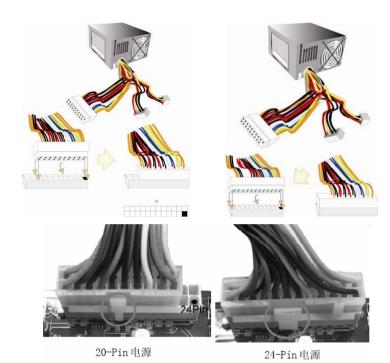
TR1: 旋转此按钮, 往"+"的方向为值增大, 往"-"的方向为值减小

2-4 连接器和引脚连接头

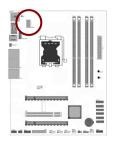

2-4-1 连接器

电源连接器(24 引脚): ATXPWR

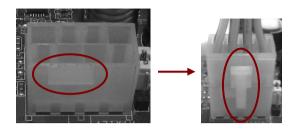
这些电源插槽用来连接到一个 ATX +12V 电源。电源所提供的连接插头已经过特别设计,只能以一个特定方向插入主板上的电源插槽。找到正确的插入方向后,仅需稳稳地将之套进插槽中即可。


建议您使用与 2.0 规格的 24引脚 ATX 12V 兼容的电源(PSU), 才能提供至少 400W 高功率的电源,以供应系统足够的电源需求。这个电源拥有 24引脚 和 4引脚 ATX 电源插头。

如果您想要安装其他的硬件设备,请务必使用较高功率的电源以提供足够的设备用电需求。若电源无法提供设备足够的用电需求,则系统将会变得不稳定或无法开启。

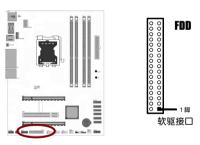

提示: 电源的电源线插口与主板上的电源接口均具有防呆设计, 当你很容易地接入时, 证明你的接法是正确的, 否则是很不容易接入的, 插错接口会烧主板, 电源, 因此请务必小心!请参看下图.

硬件安装



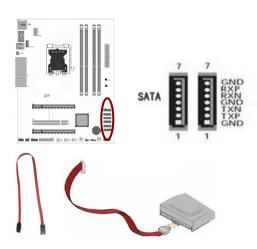
ATX 12V 电源连接器(4 引脚): PWR12V

您的电源供应器应具备一个 8 引脚的+12V 电源接头。+12V 电源可向 CPU 的电压调节模块(Voltage regulator Module, VRM)提供大于+12VDC 的电压。请按照如下方式将 8 引脚电源接头连接至 ATX12V 上。

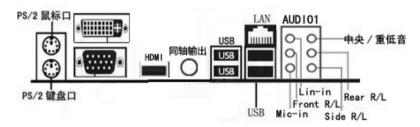


注意:

1.请务必连接 4 引脚或 8 引脚+12V 电源插头, 否则可能无法顺利启动电脑。2.如果您的系统会搭载相当多的外围设备,请使用较高功率的电源以提供足够的设备用电需求。不适用或功率不足的电源,有可能会导致系统不稳定或难以开机。3.如果您想要安装功率消耗较大的硬件设备,请务必使用较高功率的电源以提供足够的设备用电需求。


软盘驱动器数据连接器(34 引脚): FDD

该连接器支持连接软盘驱动器的连接电缆线。连接电缆线一头连于该连接器,另外一头连接至软盘驱动器。


SATA2 端□连接器: SATA2 1-6

该连接器支持 SATA2 硬盘。

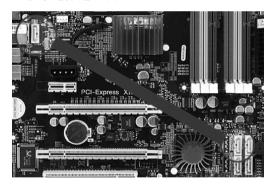
背板输出及输入接口介绍

后置面板提供丰富的接口。

背板输出及输入接口包括: PS/2 键盘端口, USB 接口, 千兆 LAN 接口, 同轴输出接口, VGA/DVI 接口, HDMI 接口, Line-in 插口, Front R/L 插口, Mic-in 插口, 中央/重低音插口, Rear R/L 插口, Side R/L 插口

- □ PS/2 键盘连接端□(紫色):将 PS/2 键盘插头连接到此端□。
- □ PS/2 鼠标连接端□ (绿色):将 PS/2 鼠标插头连接到此端□。
- □ USB 2.0 设备连接端□:这四组串行总线(USB)连接端□可连接到使用 USB 2.0 接□的硬件设备。
- □ VGA 显示设备连接端□:这组 15-pin 接□可连接 VGA 显示屏或其他 VGA 硬件设备。

- DVI-D 输出端口:这组接口用来连接任何与 DVI-D 和 HDCP 规格兼容的设备、可以播放 HD DVD、蓝光设备与其他任何受到保护的内容。
- □ HDMI接□: HDMI的英文全称是"High Definition Multimedia",中文的意思是高清晰度多媒体接□。HDMI接□可以提供高达 5Gbps 的数据传输带宽,可以传送无压缩的音频信号及高分辨率视频信号。同时无需在信号传送前进行数/模或者模/数转换,可以保证最高质量的影音信号传送。应用 HDMI 的好处是: 只需要一条 HDMI线,便可以同时传送影音信号,而不像现在需要多条线材来连接; 同时,由于无线进行数/模或者模/数转换,能取得更高的音频和视频传输质量。对消费者而言,HDMI技术不仅能提供清晰的画质,而且由于音频/视频采用同一电缆,大大简化了家庭影院系统的安装。



- □ S/PDIF 同轴排线输出接头(SPDIF OUT): 这组接头可以连接使用同轴排线的外接式音效输出装置。
- □ External SATA(eSATA)接头: eSATA 的全称是 External Serial ATA(外部串行 ATA),它是 SATA 接口的外部扩展规范,传输速度和 SATA 完全相同。换言之,eSATA 就是"外置"版的 SATA,它是用来连接外部而非内部 SATA设备。例如拥有 eSATA 接口,可以轻松地将 SATA 硬盘与主板的 eSATA 接口连接,而不用打开机箱更换 SATA 硬盘。

- 1. 使用一条普通 SATA 数据线,连接主板上丝印为 ESATA 的 SATA 接口与 SATA1~SATA6 中的任何一个 SATA接口连接;
- 2. 将 ESATA 硬盘连接到主板上的 ESATA 接口,并接上 USB 辅助电源或外接电源:
- 3. 若是开机状态下接入设备,请在设备管理器中进行"扫描检测硬件 改动",待系统正确检测到 ESATA 硬盘后,就可以正常使用了;
- 4. 若在使用中出现 ESATA 硬盘不稳定的情况,可以在 BIOS 中 ESATA Adjust 选项处选择对应的 SATA Channel 进行信号加强。
- 5 在使用过程中出现找不到 eSATA 设备的情况,请将 eSATA 数据线和 申源线重新拔插一下。

(请以实物为准)

注意: eSATA 端口没有芯片直接支持,要开启它的功能用户需用一根 SATA2数据线将 I/O 面板后侧的 SATA2插口与有芯片支持的其中一个 SATA2端口相连。这种方式可有效避免 PCB 内走线过长导致数据信号衰减或受到供电模块的磁场干扰。

注意:

1. 外接式 SATA 连接埠支援外接式 Serial ATA 3Gb/S 硬体装置。较长的排线支援较高的电压需求,可以将讯号传送至二公尺远,并且支援热抽换功能。2. SATA 外接盒请另行购买。

□ RJ-45 网络连接端□:这组连接端□可经网络电缆连接至 LAN 网络。

网络指示灯之灯号说明: Activity/Link 速度指示灯				
状态 描述 状态 描述				
关闭	没有连线	关闭	连线速度 10 Mbps	
橘色灯号 连线 橘色灯号 连线速度 100 Mbps				
闪烁	数据传输中	绿色灯号	连线速度 1 Gbps	

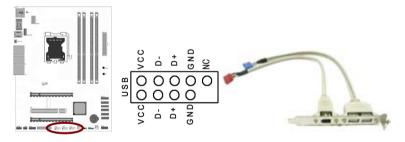
ACT/LINKSPEED 指示灯 指示灯

网络连接端口

- □ 后置环绕喇叭接头(黑色):本接头在四声道、六声道、八声道设定下用来连接后置环绕喇叭。
- □ 中央声道与重低音喇叭接头(橘色): 在四声道、六声道、八声道的音效设置模式下,这个接头可以连接中央声道与重低音喇叭。
- □ 音源输入接头(浅蓝色): 您可以将录音机、音响等的音效输出端连接到此音效输入接头。
- □ 音效输出接头(草绿色): 您可以连接耳机或喇叭等的音效接收设备。 在四声道、六声道与八声道的喇叭设置模式时,本接头是作为连接前 置主声道喇叭之用。
- □ 麦克风接头(粉红色):此接头连接至麦克风。
- 侧边环绕喇叭接头(灰色): 在八声道音效设置下,这个接头可以连接侧边环绕喇叭。

注意: 在 2、4、6、8 声道音效设定上,音效输出、音效输入与麦克风接头的功能会随着声道音效设定的改变而改变,如下表所示。

二、四、六或八声道音效设定


接头	耳机/二声道喇 叭输出	四声道喇叭输 出	六声道喇叭输出	八声道喇叭输 出
浅蓝色	声音输入端	声音输入端	声音输入端	声音输入端

草绿色	声音输出端	前置喇叭输出	前置喇叭输出	前置喇叭输出
粉红色	麦克风输入端	麦克风输入端	麦克风输入端	麦克风输入端
灰色	-	-	-	侧边喇叭输出
黑色	-	后置喇叭输出	后置喇叭输出	后置喇叭输出
橘色	-	-	中央声道/重低音 喇叭输出	中央声道/重低 音喇叭输出

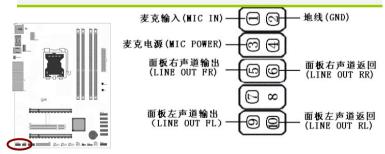
2-4-2 引脚连接头

USB接口的连接: FUSB1/2/3

这些 USB 扩充套件排线插槽支持 USB 2.0 规格, 传输速率最高达 480Mbps, 比 USB 1.1 规格的 12 Mbps 快 40 倍,可以提供更高速的互联网连接、互动式电脑游戏,还可以同时运行高速的外围设备。

注意: 1. 请勿将 1394 排线连接到 USB 插槽上,这么做可能会导致主板的损毁。2. USB 模组为选购配备,请另行购买。

9 10	引脚	信号	引脚	信号
9 7	1	5V_DUAL	2	5V_DUAL
5 6	3	D–	4	D-
3	5	D+	6	D+
1 2	7	GND	8	GND
	9	不接	10	不接


前置音频接□连接: F_AUDIO

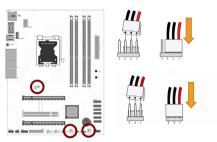
常用主板前置音频接口 AUDIO 是按 Intel 的 I/O 面板连接规范设计的。针脚定义(AUDIO)如下:

- 1、 AUD MIC 前面板麦克输入
- 2、 AUD GND 模拟音频电路用地线
- □ 3、 AUD MIC 麦克供电电源
- □ 4、 AUD VCC 给模拟音频电路用的已滤波的+5V 供电
- 5、 AUD FPOUT R 前面板右声道音频信号
- 6、 AUD RET R 前面板右声道音频信号返回
- □ 7、 HP_ON 保留给将来耳机放大电路用
- 8、KEY 空针脚
- □ 9、 AUD FPOUT L 前面板左声道音频信号
- □ 10、AUD RET L 前面板左声道音频信号

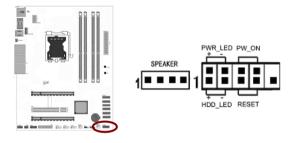
注意:

AUDIO 的十针设计可应用于带有功率放大器和音箱的高档机箱,也可以应用于普通机箱的前置耳麦插口。由于第 4 针脚是给功率放大器提供+5V 电源用的,所以在连接普通机箱的前置耳麦插口时千万不要把任何一条线连接到第 4 针脚,否则会烧主板和耳麦的。

- □ 如果机箱前置音频面板为 AC97 Audio 标准.请采用上图接线方案
- □ 如果机箱前置音频面板为 High Definition Audio(HD)标准,请采用下图接线方案 ,本主板采用 HD 标准,请参考以下方案


HD Audio 前置音频连接针脚定义

PORT 1L(模拟口1-左声道)		2	GND (地)
PORT 1R (模拟口1-右声道)	3	4	PRESENCE#(设备存在信号)
PORT 2R (模拟□2-右声道)	5	6	SENSE1_RETURN (盛知1返回)
SENSE_SEND (感知发送)	7		KEY (无针脚)
PORT 2L (模拟□2-左声道)	9	10	SENSE2_RETURN (感知2返回)


AC97 与 HD 音频连接座针脚定义对比表			
1	AC97	MIC_IN	前置麦克输入
	HD	PORT 1L	模拟□ 1-左声道
2	AC97	GND	接地
	HD		
3	AC97	MIC_BIAS	麦克偏置电压
	HD	PORT 1R	模拟□ 1-右声道
4	AC97	VCC	+5V
	HD	PRESENCE#	低信号激活- 当一个 HD 音频输入时, 该信号降为0, 通知 BIOS 有一个HD 音频连接到前置音频接口.
5	AC97	FPOUT_R	前置右声道输出
	HD	PORT 2R	模拟口 2-右声道
6	AC97	RET_R	前置右声道返回
	HD	SENCE1_RETURN	前置音频插座 1 的侦测信号返回
7	AC97	HP_ON	保留
	HD	SENCE_SEND	HD 音频解码芯片发出的插座侦测 传感信号
8	AC97	KEY	防呆(无针)
	HD		
9	AC97	FPOUT_L	前置左声道输出
	HD	PORT 2L	模拟口 2-左声道
10	AC97	RET_L	前置左声道返回
	HD	SENSE2_RETURN	前置音频插座 2 的侦测信号返回

风扇接口:CFAN/SFAN1/2

此处介绍的3个风扇接头在您的安装过程中扮演着重要的角色。它们是主板上所有降温风扇的电源供应接头,提供降低系统及CPU温度的重要功能。

前面板开关和指示灯连接: FPANEL

HD_LED: Primary/Secondary IDE 硬盘灯号

对 IDE 硬盘进行数据存取时,此灯会亮起。

RST: 重置开关

按下此开关,使用者毋需关闭系统电源即可重新启动计算机,可延长电源供应器和系统的使用寿命。

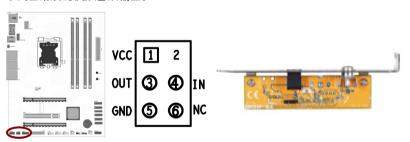
SPEAKER: 喇叭接头

可连接系统机壳内的喇叭。

PWR ON: ATX 电源开关

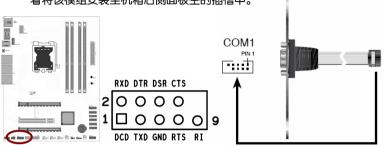
此开关具双重功能;配合 BIOS 的设定,此开关可让系统进入软关机状态或暂停模式;请参考第三章"Soft-Off By PBTN"的相关信息。短接此引脚可以开机。

PWR LED - Power/StandBy 电源灯号


当系统电源开启时,此 LED 灯号会亮起;当系统处于 S1(POS-Power On Suspend)或 S3(STR-Suspend To RAM)暂停模式时,此 LED 灯号每秒会闪烁一次。

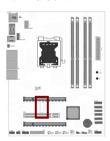
注意:

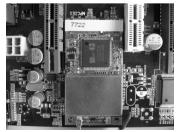
开机后若系统无法启动,且 Power/Standby LED 灯号 (PWR-LED) 也有亮时,请检查主板上的 CPU 与内存是否皆已妥善安装。


SPDIF 连接头

这组排针是用来连接 S/PDIF 数码音频模组,您可以利用这组排针以 S/PDIF 音频数据线连接到音频设备的数码音频输出端,使用数码音频输出 来代替常规的模拟音频输出。

串行设备连接头: JCOM

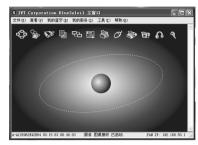

这个插座用来连接串口(COM)。将串口模组的排线连接至这个插座,接着将该模组安装至机箱后侧面板空的插槽中。

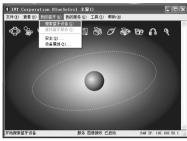


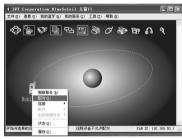
蓝牙+WIFI 功能的使用

战旗 C.H55 X7 V21 主板支持蓝牙+WIFI 功能,非常适合移动办公用户的需要!如下图所示

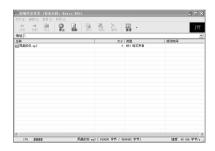
MINI-PCIE 插槽支持扩展 WIFI 无线、蓝牙、固态硬盘等设备,大大丰富了主板的扩展性,体现了厂家的用心。目前使用 Mini PCI 插槽的主要有内置的无线网卡、Modem + 网卡、电视卡以及一些多功能扩展卡等硬件设备。






将无线网卡芯片接入到主板 MPCIEI 中, 如上图所示, 然后安装驱动光盘里的蓝牙驱动程序即可使用

驱动程序安装完毕后,会出现如下图所示界面:



- 1. 搜索蓝牙设备(例: 带有蓝牙设备的移动电话)
- 2. 配对蓝牙设备(需输入密码,密码必须一致)
- 3. 配对成功之后, 即可进行文件传输

小提示: 蓝牙是一种支持设备短距离通信(一般是 10m 之内)的无线电技术。能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。蓝牙的标准是 IEEE802.15, 工作在 2.4GHz 频带,带宽为 1Mb/s。蓝牙是一种短距的无线通讯技术,电子装置彼此可以透过蓝牙而连接起来,省去了传统的电线。透过芯片上的无线接收器,配有蓝牙技术的电子产品能够在十公尺的距离内彼此相通,传输速度可以达到每秒钟1兆字节。以往红外线接口的传输技术需要电子装置在视线之内的距离,而现在有了蓝牙技术,这样的麻烦也可以免除了。

WIFI 的设置

安装好蓝牙及无线网卡之后,任务栏右边出现无线网卡图标: **2** 在有无线信号时,双击此图标出现连接界面:

选择需要连接的无线网络连接.双击即可.若此网络有密码则需要输入密码才能进入:

若无密码则可以直接连接.成功后即出现已连接上提示.无线网络连接完成.

WIFI 突出优势

其一,无线电波的覆盖范围广,基于蓝牙技术的电波覆盖范围非常小,半径大约只有50英尺左右约合15米,而Wi-Fi的半径则可达300英尺左右约合100米,办公室自不用说,就是在整栋大楼中也可使用。最近,由Vivato公司推出的一款新型交换机。据悉,该款产品能够把目前Wi-Fi无线网络300英尺接近100米的通信距离扩大到4英里约6.5公里。

其二,虽然由 Wi-Fi 技术传输的无线通信质量不是很好,数据安全性能比蓝牙差一些,传输质量也有待改进,但传输速度非常快,可以达到 54mbps,符合个人和社会信息化的需求。

其三,厂商进入该领域的门槛比较低。厂商只要在机场、车站、咖啡店、图书馆等人员较密集的地方设置"热点",并通过高速线路将因特网接入上述场所。这样,由于"热点"所发射出的电波可以达到距接入点半径数十米至100米的地方,用户只要将支持无线 LAN 的笔记本电脑或 PDA 拿到该区域内,即可高速接入因特网。也就是说,厂商不用耗费资金来进行网络布线接入,从而节省了大量的成本。

第三章驱动程序安装说明

插入七彩虹主板驱动程序安装光盘、安装程序会自动运行、弹出下面窗口

CAUTION: 安装完成硬件后, 必须安装对应的驱动程序, 才能发挥该主板的强劲性能

(请以实物为准)

驱动光盘能自动检测主板所使用的芯片组型号、声卡型号、板载显卡型号或者板载网卡型号,点击相应的按钮安装相应的驱动。

您可以点击菜单上的按扭直接安装有关驱动。关于 USB2.0 驱动,如果您使用 Win2000 系统,只需打上 SP4 或更高的补丁;如果您使用 WinXP 系统,只需打上 SP1 或更高的补丁。

如果以上窗口中没有您的主板型号或所需驱动,可以在系统设备管理器中 指定光盘相关目录搜索安装,或者单击光驱盘符,右击打开光盘文件,进 入相应目录,安装所需驱动程序。

- □ 以下是一些主要设备驱动的光盘路径:
 - ▶ 主板芯片组 INF 驱动: X: \intel\WinXP\5SeriesINF

注意: 由于芯片组厂商的驱动程序不断更新以提高性能及解决兼容性问题,我们的驱动盘中尽量采用目前较新的驱动版本,今后用户驱动程序升级可关注我们网站中的更新,恕不另行通知。

第四章 BIOS 设置

该章介绍如何通过 BIOS 设置来更改系统设置,详细内容请参考此章。 该章包含下列内容:

- System Information(系统信息)
- Advanced Settings(高级 BIOS 设置)
- Boot Settings (启动配置设置)
- Security Settings (BIOS 密码设定)
- POWER Settings(电源管理设置)
- OverClock Settings(超频设置)
- Exit Options(退出设置)

注意: 由于主板的 BIOS 版本在不断的升级,所以,本手册中有关 BIOS 的描述仅供参考。我们不保证本说明书中的相关内容与您所获得的信息的一致性。

4-1 进入 BIOS 主界面

本章提供了 BIOS Setup 程序的信息,让用户可以自己配置优化系统设置。 如下情形您需要运行 SETUP 程序:

注意:

- 1. 系统自检时屏幕上出现错误信息,并要求进入 SETUP 程序。
- 2. 您想根据客户特征更改出厂时的默认设置。

讲入设定程序

在计算机启动时,BIOS 进入开机自检(Post)程序,自检程序是一系列固定在 BIOS 中的诊断程序,当自检程序执行完成后,如果遇到错误会显示出如下信息:

Press F1 to Run Setup

Press F2 to Load default values and continue

(按 F1 键即可进入 BIOS 设置界面, 按 F2 键装载默认值并进入系统)。

当自检程序执行完成后,没有遇到错误如果你想进入 BIOS,请按 DEL 键,直到进入 BIOS 界面。

如果此信息在您做出反应前就消失了,您可以关机后再开机或按机箱上的 Reset 键,重启您的电脑,也可以同时按下 <Ctrl> + <Alt>+<Delete> 来重 启电脑。

控制键位

向前移--顶 □ < ↓ > 向后移一项 □ < ← > 向左移一项 向右移一项 ■ < Enter > 选定此选项 退出菜单或者从子菜单回到主菜单 □ < F1 > 主题帮助, 仅在状态显示菜单和选择设定菜单有效 □ < F7 > 从 CMOS 中恢复前次的 CMOS 设定值,仅在选择设定菜单 时有效 □ < F8 > 从故障保护缺省值表载入 CMOS 值,仅在选择设定菜单时 有效 □ < F9 > 载入优化缺省值 □ < F10 > 保存改变后的 CMOS 设定值并退出

			BIOS SETU	JP UTILITY			
Main	Advanced	Boot	Security	Power	C.OClo	ck	Exit
System Overview							
AMIBIOS Version Build Date				08.00.15 02/18/08			
ID Processor	: C780A231				↑ ·	\	Select Screen Select Item
Speed Count System Memory Size Language			2	2611M 2 1792MB [English]	+- Ta F1 F10 ES0	b)	Change Field Select Field General Help Save And Exit Exit
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.							

进入 setup 程序之后,第一个屏幕就是主菜单。

主菜单

主菜单显示了 BIOS 所提供的设定项目类别。您可使用方向键选择不同的条目。对选定项目的提示信息显示在屏幕的底部。

子菜单

如果你发现在左边某一区域有向右的指针符号(如上图所示),这就意味此项附加了子菜单。选中此项,按下回车即可进入此选项子菜单。然后您可以使用控制键在子菜单直接移动并改变设定值。回到主菜单,按下<Esc>。

主题帮助

BIOS 设定程序提供了帮助屏幕。你可以通过简单地按下<FI>键从任何菜单中调出此帮助屏幕。此帮助屏幕列出了相应的键和可能的选择项目。按下<Esc>退出帮助屏。

注意: 本章节的此类 BIOS 项目是不断更新的,为了更好系统性能表现。因此,这里的一些说明可能会与最新的 BIOS 稍有不同。用户可关注我公司网站中的更新情况,恕不另行通知。

4-2 BIOS 主界面

BIOS 土乔国	
□ System Information(系统信息)	
使用此菜单可对基本的系统配置进行设定,例如时间,日期。	
□ Advanced Settings(高级 BIOS 设置)	
使用此菜单可对系统的高级特征进行设定。	
□ Boot Settings (启动配置设置)	
使用此菜单可以对系统启动设备进行相应的设定。	
□ Security Settings (BIOS 密码设定)	
使用此菜单可以对 BIOS 密码进行相应的设定。	
POWER Settings(电源管理设置)	
电源管理设置	
□ OverClock Settings(超频设置)	
使用此菜单可以修改芯片组寄存器的值,优化系统的性能表现。	
□ Exit Options (退出设置)	
退出设置,包括载入优化缺省值/载入故障安全缺省值/放弃更改/不保退出	存

4-3 系统信息

(System Information)

			Е	SIOS S	SETUP UT	ILITY		
Main Ac	lvanced	Boot	Securi	ty	Power	C.OClock	Exit	
System Information	on							
System Time			[(00:16	:17]			
System Date			[5	Sat 01	/19/200	8]		
Floppy A			[]	I.44N	NB]			
Language			(E	nglis	h]		←	Select Screen
Power on Beep			(E	Enabl	ed]		$\wedge \downarrow$	Select Item
SATA Port 1			1]	Not D	etected]		+-	Change Field
SATA Port 2			1]	Not D	etected]			<u> </u>
SATA Port 3			[]	Not D	etected]		Tab	Select Field
SATA Port 4			[]	Not D	etected]		F1	General Help
SATA Port 5			1]	Not D	etected]		F10	Save And Exit
SATA Port 6			1]	Not D	etected]		ESC	Exit
AHCI Device								27.11.
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.								

AMIBIOS

显示 BIOS 的版本更新日期识别号用户不能修改为只读项

Processor

显示所使用的协处理器 CPU 类型速度数量, 为只读项

System Time

选择此选项用<+>/<->来设置目前的时间以时/分/秒的格式来表示各项目合理的范围是 Hour/时(00-23), Minute/分(00-59), Second/秒(00-59)

System Date

选择此选项用<+>/<->来设置目前的日期以月/日/年的格式来表示各项目合理的范围是 Month/月(Jan.-Dec.), Date/日(01-31), Year/年(最大至2099), Week/星期(Mon.~Sun.)

System Memory

此处介绍系统内存的大小

Language(语言选择)

此处可选择 BIOS 的语言,有简体中文和英文两种语言,这是本主板的一大特色功能

Floppy A (软盘类型的设置)

可以设置的值: None 表示未安装软驱时,请设置为此项; 360K, 5.25in 表示早期的大软驱,容量有 360KB, 目前已停产; 1.2M, 5.25in 表示一般的大软驱,容量有 1.2MB, 目前已停产; 720K, 3.5in 表示早期的小软驱,容量有 720KB, 目前已停产; 1.44M, 3.5in 表示一般的小软驱,容量有 1.44MB, 此项为默认设置; 2.88M, 3.5in 表示高容量小软驱,容量有 2.88MB, 市面上少见。

□ SATA Port1/2/3/4/5/6(SATA 第一/二/三/四/五/六通道)

SATA 第一通道,选项有 Type(类别), LBA/Large Mode/ Block/PIO Mode(PIO模式), DMA Mode(DMA模式)/S.M.A.R.T(智能检测)/32 Bit Data Transfer(32位数字传输); 当您进入 BIOS 程序时,程序会自动检测系统已存在的Serial ATA 设备,程序中每个 SATA 设备都有个别的子菜单,选择您想要的项目并按 [Enterl键来进行各项设备的设置。

BIOS 程序会自动检测相关选项的数值(Capacity, Cylinder, Head,

Precomp,Landing Zone 与 Sector),这些数值是无法由用户进行设置的。若是系统中没有安装 SATA 设备、则这些数值都会显示为 N/A。

■ Type (Auto)

本项目可让您选择 IDE 设备类型。选择 Auto 设置值可让程序自动检测与设置 IDE 设备的类型;选择 CDROM 设置值则是设置 IDE 设备为光学设备;而设置为 ARMD (ATAPI 可去除式媒体设备)设置值则是设置 IDE 设备为 ZIP 软驱、LS-120 软驱或 MO MO 驱动器等。设置值有:[Not Installed][Auto] [CDROM] [ARMD]。

LBA/Large Mode [Auto]

开启或关闭 LBA 模式。设置为 [Auto] 时,系统可自行检测设备是否支持 LBA 模式,若支持,系统将会自动调整为 LBA 模式供设备使用。设置值有: [Disabled] [Auto]。

Block (Multi-sector Transfer)M (Auto)

开启或关闭数据同时传送多个磁区功能。当您设为 [Auto] 时,数据传送便可同时传送至多个磁区,若设为 [Disabled],数据传送便只能一次传送一个磁区。设置值有: [Disabled] [Auto]。

PIO Mode [Auto]

选择 PIO 模式。设置值有: [Auto] [0] [1] [2] [3] [4]。

DMA Mode [Auto]

选择 DMA 模式。设置值有: [Auto] [SWDMA0] [SWDMA1] [SWDMA2][MWDMA0] [MWDMA1] [MWDMA2] [UDMA0] [UDMA1] [UDMA2][UDMA3] [UDMA4] [UDMA5]。

SMART Monitoring (Auto)

开启或关闭自动检测、分析、报告技术(Smart Monitoring, Analysis, and Reporting Technology)。设置值有:[Auto] [Disabled] [Enabled]。

32Bit Data Transfer [Disabled]

开启或关闭 32 位数据传输功能。设置值有:[Disabled] [Enabled]。

Legacy USB Support [Auto]

本项目用来启动或关闭支持 USB 设备功能。当设置为缺省值 [Auto] 时,系统可以在开机时便自动检测是否有 USB 设备存在,若是,则启动 USB 控制器; 反之则不会启动。但是若您将本项目设置为 [Disabled] 时,那么无论是否存在 USB 设备,系统内的 USB 控制器都处于关闭状态。设置值有: [Disabled] [Enabled] [Auto]。

☐ USB 2.0 Controller Mode [HiSpeed]

本项目用来设置 USB 2.0 设备的传输速率模式。设置值分别有 HiSpeed (480 Mbps) 与 Full Speed (12 Mbps) 模式。设置值有: [HiSpeed] [Full Speed]。

■ BIOS EHCI Hand-off [Enabled]

本项目用来启动支持没有 EHCI hand-off 功能的操作系统。设置值: [Disabled] [Enabled]。

4-4 高级 BIOS 设置 (Advanced Settings)

	BIOS SETUP	UTILITY				
Main Advanced Boot	Security Pov	wer C.OClock	Exit			
Advanced Settings CPU Configuration Chipset Onboard Devices PCIPnp		← ↑↓ +- Tab F1 F10 ESC	Select Screen Select Item Change Field Select Field General Help Save And Exit Exit			
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.						

CPU Configuration (CPU 设置)

C1E Support [Enabled]

本项目用来启动或关闭 C1E Support 功能。设置值有: [Enabled][Disabled]。

hardware prefetcher

此项允许您使用或不使用 hardware prefetcher,也就是 hardware prefetch mechanism.设定值有: [enabled] , [disabled] .

adjacent cache line prefetch

此项允许您使用/不使用 adjacent cache line prefetch 模式. 当设置为 [disabled] 时,只有一条 64 位线从 128 位区段中被预读(包含了被请求的数据). 当设置为[enable] 时,无论是否具有被请求的数据,都将有两条线被预读.设定值有:[enabled],[disabled].

Max CPUID Value Limit (Disabled)

当您欲使用不支持延伸的 CPUID 功能的操作系统时,请将本项目设为 [Enabled]。设置值有:[Disabled] [Enabled]。

注意: 以下项目只有在 CPU Ratio Control 设置为 [Auto] 时才会出现。

Intel(R) Virtualization Tech

此项用来设置是否启用 Intel 虚拟化技术。此功能用于实现同时在同一电脑上无缝安全地运行不同的程序或操作系统。

CPU TM function [Enabled]

设置值有: [Disabled] [Enabled]。

Execute Disable Bit Capability[Enabled]

本项目用来启动或关闭 No-Excution Page Protection 技术。设置为 [Enabled] 时会强迫 XD 功能总是降低至 0。设置值有: [Disabled][Enabled]。

Active Processor Cores

启用或禁用某个 CPU 内的其他执行核心单元

Intel(R) SpeedStep(tm) tech

选择是否执行 Intel SpeedStep 技术

Chipset(芯片设置)

Memory Remap Feature [Disabled]

本项目用来启动或关闭在总物理内存上重迭的 PCI 内存的检测功能。当您安装 64-bit 操作系统时,请将本项目设为 [Enabled]。设置值有: [Disabled] [Enabled]。

□ Memory Hole (在 15M 到 16M 之间的内存保留区)

可选项: Enabled, Disabled 某些扩展卡需要一部分内存区域来工作,开启此特性可以把15M以上的内存分配给这些设备,但操作系统将不能使用15M外的内存,建议保持默认值。

Initiate Graphic Adapter [PEG/PCI]

	环则目用来设置作为优先使用的绘图显示控制器。设置值有:[PCI/PEG] EG/PCI]。
	PEG Port Control [Auto]
វេ	置值有: [Auto] [Disabled]。
	igd graphics mode select [enabled, 32mb]
	环月用来设置 igd 显卡模式。设置值有:[disabled] [enabled, 32mb] nabled, 64mb] [enabled, 128mb]
	dvmt mode select [dvmt mode]
本	项目可让您选择显存类型。设置值有:[dvmt mode]
	dvmt memory [256mb]
	是置值有: [128mb] [256mb] [maximum dvmt],只有当您安装了超过 1gb 内 F时,maximum dvmt 选项才会出现。
Onboar	d Devices(板载设备设置)
	OnBoard Floppy (板载软驱控制器)
ម៊	置是否启用内置软盘控制器。缺省值为"Enabled"。
	Serial Port1 Address(串行端口 1)
	是置内置串行口 1(COM1 口)地址,可选择的项目是: Disabled、3F8 / IRQ4、 F8 / IRQ3、3E8 / IRQ4、2E8 / IRQ3、Auto,缺省值为"3F8/IRQ4"。
	Onboard LAN boot ROM Control(设置是否启用网络启动功能)
郜	改省值: Enabled
	HDA Controller
泛	置高清音频,这里是板载 ALC HD 声卡的开关选项
	Internal HDMI
话	B置 HDMI 功能
	Legacy USB Support [Auto]

本项目用来启动或关闭支持 USB 设备功能。当设置为缺省值 [Auto] 时,系统可以在开机时便自动检测是否有 USB 设备存在,若是,则启动 USB 控制器; 反之则不会启动。但是若您将本项目设置为 [Disabled] 时,那么无论是否存在 USB 设备,系统内的 USB 控制器都处于关闭状态。设置值有: [Disabled] [Enabled] [Auto]。

☐ USB 2.0 Controller Mode [HiSpeed]

本项目用来设置 USB 2.0 设备的传输速率模式。设置值分别有 HiSpeed (480 Mbps) 与 Full Speed (12 Mbps)模式。设置值有: [HiSpeed] [Full Speed]。

■ BIOS EHCI Hand-off [Enabled]

本项目用来启动支持没有 EHCl hand-off 功能的操作系统。设置值: [Disabled] [Enabled]。

Configure SATA as

本项目用来设置 serial ata 硬件设备的相关设置。设置值有: [ide] [rald] [ahci]。ahci 模式可让内置的保存设备启动高级的 serial ata 功能,通过原生命令排序技术来提升工作性能。

若要在 serialata 硬盘建构 iraid 0、iraid 1、iraid 5、iraid 10 或使用 intel matrix storage 技术,请将本项目设置为[raid]。

若要将 serial ata 作为 parallel ata 物理保存接口,请将本项目设置为[ide]。若要 serial ata 硬件设备使用 advanced host controller interface (ahci)模式,请将本项目设置为[ahci]。

PCI/PNP 资源管理(Advanced PCI/PnP Settings)

	TILITY					
Main A	dvanced	Boot	Security	Power	C.OClock	Exit
Advanced PCI/Pi	nP Settings					
Clear NVRAM			N	0		
Plug&Play O/S			N	0		
PCI Latency Time	er		64	4		
Allocate IRQ to P	CI VGA		Ye	es		
Palette Snooping)		D	isabled		
PCI IDE BusMaste	er		Er	nabled		
OffBoard PCI/ISA	IDE Card		А	uto		
IRQ3			[/	vailable]		
IRQ4			[/	vailable]		
IRQ5			[/	vailable]		
IRQ7			[/	vailable]		
IRQ9			[/	vailable]		
IRQ10			[/	vailable]		
IRQ11			[/	vailable]		
IRQ14			[/	vailable]		
IRQ15			[/	vailable]		
DMA Channel 0			[/	vailable]		
DMA Channel 1			[/	vailable]		
DMA Channel 3			[/	vailable]		
DMA Channel 5			[/	vailable]		
DMA Channel 6			[/	vailable]		
DMA Channel 7			[/	vailable]		
Reserved Memo	ry Size		D	isabled		
VO	2.61 (C)Cop	yright 19	85–2006,	America	n Megatren	ds, Inc.

Plug&Play O/S (即插即用操作系统)

当设定为 Yes, BIOS 将只会安装用于系统引导的即插即用外接卡(VGA,IDE, SCSI)。剩余的外接卡的安装将由即插 Windows XP 或者 2003。如果设置 No, BIOS 会安装所有的即插即用外接卡。如果您的操作系统是即插即用的,选择 Yes。

Clear NVRAM (清除 NVRAM 数据)

ESCD(扩展系统配置数据)、NVRAM(非挥发性随机,存取存储器)是 BIOS 中以 字符串格式为 PNP 或非 PNP 设备存储资源信息。 当设定为 YES 时, 系统重 启后将 ESCD NVRAM 复位并将设置重新设置为 NO。

PCI Latency Timer (PCI 延迟时钟)

此项控制每个 PCI 设备可以掌控总线多长时间,直到被另一个接管。当设 置为较高的值时,每个 PCI 设备可以有更长的时间处理数据传输,如此可 以增加有效的 PCI 带宽。为了获取更好的 PCI 效能、您可将此项设为较高 的值。可选的设置值范围是从32到248、以32为单位递增。

IRQ Resources

☐ IRQ-3

□ IRQ-12

依据设备使用的中断类型,你可以对每一个系统中断类型进行分配。键入 "Press Enter"可进入设置系统中断的子菜单。只有在'Resources Controlled Bv'被设置成'Manual'时才可以进行配置。

☐ IRQ-4 assigned to PCI Device □ IRQ-5 assigned to PCI Device ☐ IRQ-7 assigned to PCI Device ☐ IRQ-9 assigned to PCI Device ☐ IRQ-10 assigned to PCI Device □ IRQ-11 assigned to PCI Device

assigned to PCI Device

- assigned to PCI Device □ IRQ-14 assigned to PCI Device
- IRQ-15 assigned to PCI Device

Palette snooping (PCI/VGA 调色板配置)

此项设置为 Enable、工作于不同总线的多种 VGA 设备可在不同视频设备 的不同调色板上处理来自 CPU 的数据。

注意: 此选项设计解决一些非标准 VGA 卡导致的问题。建议保留预设值。

PCI IDE BusMaster (PCI IDE 总线控制)

此项设定为 Enabled 可以设定 PCI 总线的 IDE 控制器有总线控制能力。设定值为:Disabled, Enabled。

Allocate IRQ to PCI VGA

若设定为 [Yes],您可以透过 BIOS 程式自行指定 PCI 介面显示卡的 IRQ 中断价址。设定值有:[Nol Yes]

4-5 启动配置特性

(Boot Settings)

		BIOS SETUP UTILITY						
Mo	in Advanced	Boot	Security	Power	C.OClock	Exit		
D 1 C - 1								
Boot Set	nings							
Boot Set	ttings Configuration	1	Pi	ress Enter				
Boot Device Priority			Pi	ress Enter				
Removable Drives			Pi	ress Enter				
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.								

Boot Settings Configuration

□ Quick Boot (快速启动)

此项设置为[Enabled]将允许系统在 5 秒内启动,而跳过一些检测项目。设定值有:[Disabled], [Enabled]。

Hit"Del"Message Display

(在启动计算机时显示信息,提示用户按下"Del"键可以进入 CMOS 设置)设置选项有 Disable 和 Enable。一般设置为 Enable 即可,这样就可以在计

算机启动时显示提示如何进入 CMOS 设置的信息;如果被设置为 Disable,就不会出现这些信息了。但是如果在计算机启动出现"Wait……"时按下"Del"键的话,仍然可以进入 CMOS 并进行设置。

☐ Wait For"F1" If any Error

(如果在计算机启动时出现任何错误就等待用户按下"FI"键)设置选项有 Disable 和 Enable。一般设置为 Enable,这样当计算机启动时遇到任何错误,就会在屏幕上显示一行英文字,提示用户按下"FI"键以进入 CMOS 进行设置。

Bootup Num-Lock

(系统启动之后 Num Lock 键状态)设置选项有 Off(关)和 On(开)。 也就是说,这个选项规定了在计算机启动之后键盘上的 Num Lock 键的状态是什么。这个选项可以按照用户的需要进行设置,该项目对计算机的性能没有任何影响。

AddOn ROM Display Mode [Force BIOS]

本项目让您设置选购设备固体程序的显示模式。设置值有: [Force BIOS] [Keep Current]

Interrupt 19 Capture [Disabled]

当您使用某些 PCI 扩展卡有内置固体程序(例如: SCSI 扩展卡),如果有需要透过 Interrupt 19 启动,请将本项目设为 [Enabled]。设置值有: [Disabled] [Enabled]

Full Screen LOGO (全屏 LOGO 显示)

是否支持显示加载的全屏开机画面。

□ Enabled: 开机时显示加载的 LOGO 画面

□ Disabled: 开机时不显示加载的 LOGO 画面

4-6 设定管理员/用户密码 Security Settings

	BIOS SETUP UTILITY								
Main	Advanced	Boot	Security	/ Power	C.OClock	Exit			
Security Settir	ngs								
Change Supe	ervisor Passwo	ord							
Change User	Password								
Boot Sector V	irus Protection	ı		Disabled					
Flash Write Pr	rotect			Disabled					
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.									

当您选择此功能,以下信息将出现:

Enter New Password

- □ 输入密码,最多八个字符,然后按<Enter>键。BIOS 要求再次输入同样 密码、输入完成后、BIOS 及保存所设定的密码。
- □ 一旦使用密码功能,您会在每次进入 BIOS 设定程序前,被要求输入密码。这样可以避免任何未经授权的人使用您的计算机。用户可在高级 BIOS 特性设定中的 Security Option (安全选项) 项设定启用此功能。如果就将 Security Option 设定为 System,系统引导和进入 BIOS 设定程序前都会要求输入密码。如果设定为 Setup 则仅在进入 BIOS 设定程序前要求密码。
- □ 要清除密码,只要再弹出输入密码的窗□时按<Enter>键。屏幕会显示 一条确认信息,是否禁用密码。一旦密码被禁用,系统重启后,您可 以不需要输入密码直接进入设定程序。
- Boot Sector Virus Protection ((根区病毒保护)

此项是用来设定 IDE 硬盘引导扇区病毒入侵警告功能。此项设为启用后,如果有程序企图在此区中写入信息, BIOS 会在屏幕上显示警告信息, 并发出蜂鸣警报声。设定值为 Disabled 和 Enabled。

注意: 有关管理员密码和用户密码: 1. Supervisor password:能进入并修改 BIOS 设定程序 2. User password:只能进入,但无权修改 BIOS 设定程序

□ Flash Write Protection (BIOS 写保护)

此选项是可防止病毒对主板 BIOS 芯片的损坏,可选项为:Enabled,Disabled

4-7 电源管理特件

(Power Settings)

Bl Main Advanced Boot Securi	OS SETUP UTILITY	k Exi					
Power Settings ACPI Configuration APM Configuration PC Health	Press Enter Press Enter Press Enter	← ↑↓ +- Tab F1 F10 ESC	Select Screen Select Item Change Field Select Field General Help Save And Exit Exit				
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.							

■ Suspend Mode (睡眠模式)

Suspend 模式: 当设定时间一到,除 CPU 以外的所有设备都将停止工作;选项: 1Min(分钟)、2Min、4Min、8Min、12Min、20Min、30Min、40Min、1Hour(小时)、Disabled ,当系统在额定的时间内未被使用,进入睡眠模式的时间,disabled则不进入节能状态。

■ ACPI APIC Support [Enabled]

本项目可让您决定是否增加 ACPI APIC 表单至 RSDT 指示清单。设置值有:[Disabled] [Enabled]。

Repost Video on S3 Resume[No]

本项目可让您决定是否要启开 repost vedio on s3 resume 功能。设置值有: [no][yes]。

ACPI Version Features[Disabled]

本项目可让您开启或关闭 acpi 2.0 支持模式。设定值有:[disabled][enabled]

☐ High Performance Event Timer

高精度事件定时器

APM Configuration

APM 设置

	Power					
APM Settings Power On By PS/2 Keyboard Specific Key for Power on Power On By Mouse Power on By RTC Alarm	Disabled Disabled Disabled	← ↑↓ +- Tab	Select Screen Select Item Change Field Select Field			
PCI Express Wakeup PCI Card Wakeup AC Power fail	Disabled Disabled Power Off	F1 F10 ESC	General Help Save And Exit Exit			
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.						

Power On By PS/2 Keyboard

此项设置键盘开机

Power On By Mouse

此项设置鼠标开机

Power on By RTC Alarm

本项目用来开启或关闭 rtc 唤醒功能。当本项目设定为[enabled]时,则会出现 rtc alarm date、rtc alarm hour、rtc alarm minute 及 rtc alarm second 等项目。设定值有:[disabled][enabled]。

PCI Card Wakeup

Enabled 将此栏位设为 Enabled,则可经由内建的网路功能或符合 PCI PME (Power Management Event)规格的网路卡远程启动系统。一旦对网路卡有任何读取动作,系统即可启动。请参考网络卡说明文件。

Disabled 对 PCI 有读取动作将不会启动系统。

PCI Express Wakeup

此项用于设置系统是否可由 pci express 设备唤醒。

PC Health (硬件健康状态)

		Power			
PC Health					
System Temperature	28/82F				
CPU Temperature	32/89F				
CFAN Speed	2766RPM	←	Select Screen		
CPUCore Voltage Detected	1.424V	.	Select Item		
DRAM Voltage Detected	1.872V	$\wedge \downarrow$	55.55		
PCHCore Voltage Detected	1.168V	+-	Change Field		
CPU VTT Voltage Detected	1.104V	Tab	Select Field		
VBAT Voltage Detected	3.184V	Fl	General Help		
CPUFAN0 Mode Setting	Manual Mode	F10	Save And Exit		
CPUFAN0 PWM Control	250				
		ESC	Exit		
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.					

System /CPU Temperature

系统/CPU 温度

CFAN Speed

CPU FAN 转速

- CPUCore/ DRAM / PCHCore / CPU VTT / VBAT Voltage Detected
- CPU 核心/内存/北桥/ CPU VTT /电池电压
- CPUFANO Mode Setting
- CPU 风扇模式设置, 有手动设置(Manual Mode)/Thermal Cruise Mode
- Cpufan0 pwm control

cpu 风扇 pwm(脉冲宽度调制控制)

CPUFANO Targettemp value
风扇转速开始控制的温度。当 CPU 的温度小于这个的时候风扇会以一个比较低的转速转动,当 CPU 的温度大于这个温度的时候风扇的转速就会以一个所设定的值增加。

CPUFANO Tolerance Value
风扇转速变化的斜率。

CPUFANO Startup value
风扇转速变化的起始值

CPUFANO Stop value
风扇转速的变化的最终值

风扇转速从起始值变到最终值的时间

CPUFANO StopTime value

4-8 超频设置

(OverClock Settings)

CAUTION: 非专业人士请不要随意更改选项内的设置!

			BIOS	SETUP UTII	LITY		
Main	Advanced	Boot	Security	Power	C.OClock	k Ex	it
Advanced Fre		uration				← ↑↓ +- Tab F1 F10 ESC	Select Screen Select Item Change Field Select Field General Help Save And Exit Exit
V02.61 (C)Copyright 1985–2006, American Megatrends, Inc.							

Advanced Frequency Configuration(高级频率设置)

IGD Frequency

GPU 频率(IGD Frequency)的调整选项。

QPI Frequency

QPI 总线频率设置项

DRAM Frequency

内存频率设置项

Advanced Voltage Configuration(高级电压设置)

该选项设置 CPU/内存/芯片组的电压、从而获得更好的超频性能

SMART POWER ENGINE II

智能节能技术主要包括动态节能功能,强大支持原生6相位的电能智能调节。该技术可以根据实际负载的情况智能调节供电相数,通过这种智能方案达到最大限度地节省能源消耗;它还配备有板载的LED指示灯,可以直观显示使用中的电源相数。

SMART POWER ENGINE II Phase mode

节能模式选择。Disabled:关闭此功能; Auto:自动模式; Force Mode:强制模式; Manual Mode:手动模式

auto phase level

当选择 "Auto" 时有效, 此选项有三个自动调节预设值。

force phase level

当选择 "Force Mode"时有效。可分别强制使用的电源相数为 "6 相"或 "2 相"。

force switch frequency

当选择 "Force Mode"时有效。强制模式下相数变化的频率百分比。

6 phase min current

当选择"Manual Mode"时有效。当主板负载电流大于设定的参数时,主板为6相供电方式。

6 phase switch frequency

当选择 "Manual Mode"时有效。6 相供电方式下相数变化的频率百分比。

2 phase min current

当选择"Manual Mode"时有效。当主板负载电流小于设定的参数时,主板为2相供电方式。

2 phase switch frequency

当选择 "Manual Mode" 时有效。2 相供电方式下相数变化的频率百分比。

以下选项是允许用户将当前设置好的 BIOS 参考保存到一个配置文件,用户在修改其它参数后若想改回以前的设置则可以直接在此加载之前保存过的配置文件即可恢复到之前的设置。

x-profile save/load

用户 BIOS 配置文件保存/加载

proifile select

选择 BIOS 配置文件

input profile name

输入 BIOS 配置文件

Configure DRAM Timing (内存设置)

CAS Latency Time(tCL)

此项控制了 C A S 延迟,它决定了在 SDRAM 在接收指令后开始读取的延迟时间(在时间周期中)。设定值有: [3], [4],[5], [6]。[3]提高了系统性能,而[5]增强了系统稳定性,一般设置为 5。

RAS# to CAS# Delay(tRCD)

DRAM 刷新时,行和列地址分开。此项目用于选择从 RAS (Row Address Strobe) 到 CAS (Column Address Strobe)在相同的 bank 读写数据时所延迟的时间。设定的周期越短,DRAM 运行越快。

RAS# Precharae(tRP)

这个项目用来控制当 SDRAM 送出 Precharge 命令后,多少时间内不得再送出命令。建议您使用缺省值以保持系统的稳定。设置值有: [2Clocks] [3 Clocks] [4 Clocks] [5 Clocks] [6 Clocks]。

□ Precharge Delay (tRAS) (SDRAM 内存预充电延迟)

此项控制SDRAM 内存时钟周期数的RAS 最小值。

■ Write to PRE Delay (tWR)

选择 DRAM 登录最后一笔写入数据后的写入回复时间,即最后一笔写入数据之后的预充电时间。

REF to ACT Delay (tRFC)

该字段用于选择自动刷新周期时间。

Write to Read Delay (tWTR)

选项为 Reserved, 1 bus clock, 2 bus clocks 与 3 bus clocks

■ ACT to ACT Delay (tRRD)

选择不同 b a n k 的列与列间的延迟时间。

Read CAS# Precharge (tRTP)

选择预充电时间。

Write to Read Delay (tWTR)

Settings = Auto, 1, 2

这个参数控制写数据到读指令的延迟,它表示在同一bank中,最近的一次有效写操作到下一次读指令间隔的时钟周期。1个时钟周期自然可以提供从读到写更快速的切换。设为2会影响读数据的速度,但但提高稳定性,尤其是高频时。换句话说,对内存超频的玩家,我们建议设为2。通常DDR266和DDR333都能稳定运行在1,这样内存的读速度会更快。当然DDR400的用户也能尝试着设为1,但如果不稳定就必须降到2了。

tWTR表示读到写的延迟。三星把这个参数称之为 TCDLR(last data in to read command). JDED 规格中把它定为一个时钟周期。

影响:轻微影响内存带宽和稳定性

建议设置:1是最佳性能,超频内存时建议设为2。

Read to Write Delay (tRTW)

Settings = Auto, 1-8, 步进1

IRTW 不是一个标准的内存时序参数,当内存控制器接收到一个读指令后立即又收到一个写指令,在写指令执行之前,会产生一个额外的延迟。较低的延迟可以提高内存子系统的写速度。如果想快速的完成读到写的转换,建议设为1个时钟周期。但显然并非所有的内存都能达到这个要求,不稳定时也会出现数据覆盖的错误。

影响: 轻微影响内存带宽和稳定性

建议设置: 1是最好性能,超频用户建议为4。普通用户在稳定的基础上选用1。

Refresh Period (tREF)

这个参数是用来设定刷新的间隔时间,除了 Auto 选项,还有非常多的选项可以选择。Auto 表示根据内存的 SPD 信息来设定,通常是一个很慢的值,为了保证最好的兼容性。数值越高表示性能越好,最高可以达到 128us,但太高的值可能导致内存数据丢失,因此我们可以一点一点的增加来得到最理想的数值,前提也是系统足够稳定。

另外根据早期的资料显示,内存存储每一个 bit,都需要定期的刷新来充电。不及时充电会导致数据的丢失。DRAM 实际上就是电容器,最小的存储单位是 bit。每个 bit 都能随机地访问。但如果不充电,数据只能保存很短的时间。因此我们必须每隔 15。6us 就刷新一行。每次刷新时数据就被重写一次。正是这个原因 DRAM 也被称为非永久性存储器。一般通过 RAS-only的刷新方法(行刷新),每行每行的依次刷新。早期的 EDO 内存每刷新一行耗费 15。6us 的时间。因此一个 2Kb 的内存每列的刷新时间为 15。6usX2048 行=32ms。

影响: 轻微影响稳定性和内存带宽

建议设置:根据经验, tREF 和 tRAS 一样,不是一个精确的数值。通常 15.6us 和 3.9us 都能稳定运行, 1.95us 会降低内存带宽。此外还有很多未知的值,大多数用户发现 3120=200mhz 是一个既稳定性能又好的设置,但也同使用的内存芯片有关。

□ 总结

最后,我们把以上参数汇总,便于大家浏览。祝各位玩家都能找到最适合 自己系统的内存参数设置,发掘出系统的所有性能。

注意: 1.下表为测试工程师的经验,并不具有权威性,仅供参考 2.以下只为参考,以下选项有的与 BIOS 中内存设置选项字样并不一样,但意思一样,以下选项较全,本主板 BIOS 中并没有下列所有选项,此为正常现象,只供参考而已。

参数名称	对带宽的影响	对稳定性的影响
Dram Frequency Set(Mhz)	较大	
Command Per Clock(CPC)	较大	较大
CAS Latency Control(tCL)	轻微	较大
RAS# to CAS# Delay(tRCD)	较大	较大
Min RAS# Active Timing(tRAS)	轻微	轻微
Row Precharge Timing(tRP)	较大	较大
Row Cycle Time(tRC)	较大	较大

Row Refresh Cycle Time(tRFC)	较大	较大
Row to Row Delay(tRRD)	轻微	轻微
Write Recovery Time(tWR)	轻微	轻微
Write to Read Delay(tWTR)	轻微	轻微
Read to Write Delay(tRTW)	轻微	轻微
Refresh Period(tREF)	轻微	轻微
Write CAS# Latency(tWCL)		较大
DRAM Bank Interleave	较大	较大
DQS Skew Control	轻微	轻微
DQS Skew Value	轻微	轻微
DRAM Drive Strength		较大
DRAM Data Drive Strength		较大
Max Async Latency	轻微	轻微
Read Preamble Time	轻微	轻微
Idle Cycle Limit	轻微	较大
Dynamic Counter	轻微	轻微
R/W Queue Bypass	轻微	较大
Bypass Max	轻微	轻微
32 Byte Granulation	轻微	较大

ColorFul NetLive Control

NetLive 技术是七彩虹智能主板的核心技术之一。它主要有四大特点:

1.数据动态快速保存、瞬间恢复以及高速网络克隆。2.新型智能双内核架构,对硬盘及 CMOS 数据进行全面保护与防护。3.快速、无损恢复数据,并且不影响机器性能、即插即用,让用户"无忧无虑"地、"随心所欲"地使用电脑。4.具备强大的网络克隆功能,在局域网环境下,不需要任何操作系统的支持,可使一台计算机硬盘数据对局域网中另一台或多台计算机进行不同选择设置的硬盘数据克隆以及 CMOS 数据克隆。

可选项为: Disabled, Enabled; Enabled 开启, Disabled 屏蔽

4-9 退出选项(Exit Options)

退出选项包括载入优化缺省值/载入故障安全缺省值/放弃更改/不保存退出

载入默认安全/优化值(Load Failsafe /Optimal Defaults)

在主菜单的这两个选项能够允许用户把所有的 BIOS 选项恢复到故障安全值或者优化值。优化缺省值是为了优化主板性能而设置的默认值。故障安全缺省值是为了系统而设定的保守值。

□ 当你选择 Load Fail – safe Defaults. 就会出现如下的信息:

- b 按 Y 载入最稳定,系统性能最小的 BIOS 缺省值。
- □ 当你选择 Load Optimal Defaults,就会出现如下的信息:

> 按Y载入优化系统性能的设定值。

退出设置程序并储存设置(Save Changes and Exit)

□ 若输入 OK 并按下 Enter, 即可储存所有设定结果到 CMOS SRAM 并离 开 BIOS 设定程序;若不想储存,则按 Cancel 或 Esc 皆可回到主菜单中。

退出设置程序不储存设置(Discard Changes and Exit)

□ 若輸入 OK 并按下 Enter, 则退出 BIOS 设定程序。若按 Cancel 或 Esc 则 回到主菜单中。

放弃更改(Discard Changes)

□ 若輸入 OK 并按下 Enter,则放弃更改。若按 Cancel 或 Esc 则回到主菜单中。

第五章附录

5-1 DOS 模式下 BIOS 的刷新

- □ 首先请确认您的主板名称、版本及 BIOS 厂商 (AMI/Award)。
- □ 创建 DOS 启动盘。

注意: 如果使用软盘,则将其放入软驱,在 DOS 模式下键入 "Format A: /S",此时会格式化软盘并复制系统文件。

- > 这个过程将会删除掉此软盘原有的文件,过程中将会复制 4 个文件至软盘中,但只看得到 COMMAND.COM 文件;软盘中请勿有 CONFIG.SYS 及 AUTOEXEC.BAT 文件;请将此软盘的防写孔设定为可写入状态。
- □ 从网站上下载 BIOS 升级程序并解压,将解压出的 BIOS 文件和刷新工具存放在步骤(一)中的软盘(闪盘或硬盘)中。用该启动盘来重新启动,进入纯 DOS 模式。
- □ 如果您的 BIOS 厂商为 AMI 请在 DOS 模式下键入: AFUDOS.exe filename.ROM /P /B /C /X /N
- □ 如果您的 BIOS 厂商为 Award 请在 DOS 模式下键入: Awd*.exe filename.xxx Awd*.exe filename.xxx /CC/CD/SN/F/R/PY, 此为强制刷新命令 ,其中的 filename.xxx 是您所解压出的 BIOS 文件 ,然后再按 "ENTER"。
- □ 如果是 Award BIOS,您会碰到的第一个选项,它会问您是否要将现在的 BIOS 程序存档,如果您可能在升级后想要恢复为现行的版本.请选"YES",并输入文件名保存;如果您不想将现行版本的 BIOS 文档存档,请选"NO"。
- □ 接下来第二个选项问您:确定要升级吗?如果选择"YES",在升级 BIOS 过程中,请不要按到键盘,电源开关或 RESET 键。

- □ BIOS 升级完成时,升级程序会问您是否要按 FI 重新开机或关闭电脑。当 您选择完毕后,请将开机软盘取出。
- □ 启动后,新 BIOS 版本将会出现在开机画面,至此您的 BIOS 升级成功。
- □ 接着请按 "DEL" 键,进入 COMS SETUP 画面,载入 DEFAULT 值,或根据您的需要去修改 BIOS 内容。

CAUTION: 某些主板在刷 BIOS 前,必须将主板上的 BIOS 写保护设为可写状态。硬件部分将 BIOS 写保护跳线设置为可写,软件部分将 BIOS Write Protect(BIOS 写保护)/ FLASH Write Protect 设置为 Disabled。否则会出现刷不进去的现象。具体参看该主板手册的 BIOS 说明部分。以上刷新主板 BIOS 的方法 较为复杂,主板工程师经常这样做: 1. 把刷新工具(如AWD865/877/890 AFUDOS)和要刷新的 BIOS 文件(从七彩虹官方网站上下载)存在U盘里 2.在Advanced BIOS Features(高级 BIOS 特性)里的 First Boot Device(第一启动设备)设置第一启动顺序为 Removable,保存 BIOS 退出,系统会自动进入纯 DOS 模式. 3.用 DOS 里面的 DIR/P/W(查看命令)和 CD 命令进入刷新工具和要刷新的 BIOS 文件目录,直接输入刷新 BIOS 的命令即可完成刷新主板 BIOS

- □ 主板 DEBUG 诊断卡常见错误代码 00, C1,2b 的信息提示(此为 AWARD BIOS)
 - > 00: 首先应考虑 CPU, 其次考虑主板
 - ▶ C1: 应考虑内存方面
 - > 2b: 应考虑显卡方面
 - > 7F,FF,96,75 均为正常现象
- 主板 DEBUG 诊断卡常见错误代码 EE, d4.2R 的信息提示(此为 AMI BIOS)
 - ➤ EE: 应考虑 CPU
 - d4: 应考虑内存方面
 - > 2R: 应考虑显卡方面

注意: 以上只是主板工程师的经验,并不具有权威性,仅供用户参考。 出现错误提示代码时,可以尝试清空 CMOS,有时能解决问题。

