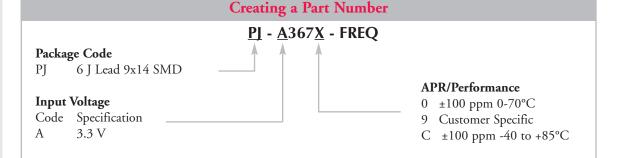
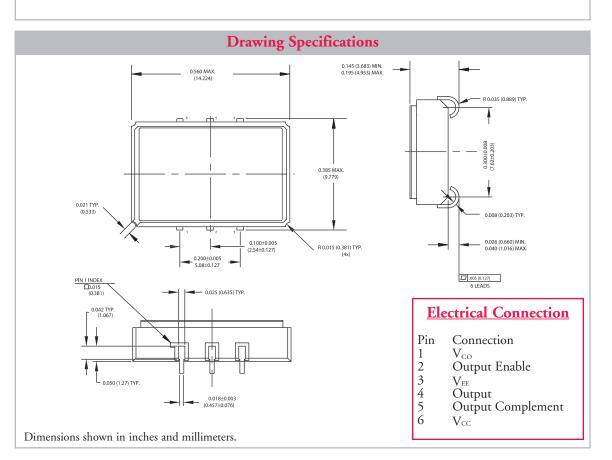


Size, mm 9 x 14 **I/O** 6 J Lead **Supply Voltage** 3.3V

VCXO Series (PECL) PJ-A3670 Series Rev J

Frequency Range: 70.0 MHz to 200.0 MHz


Description


The PJ-A3670 Series of voltage controlled quartz crystal oscillators provide frequency control by applying a voltage to Pin 1. This unit supplies ECLiPS compatible outputs which are enabled when Pin 2 is set to a logic low or left open.

Features

- High Reliability NEL HALT/HASS qualified for crystal oscillator start-up conditions
- Low jitter Wavecrest jitter characterization available
- Frequency range—70.0 MHz to 200.0 MHz
- Will withstand vapor phase temperatures of 253°C for 4 minutes maximum
- Space-saving alternative to discrete component oscillators
- Wide Absolute Pull Range

- High shock resistance, to 3000g
- 3.3 Volt operation
- Metal lid electrically connected to ground to reduce EMI
- High Q crystal actively tuned oscillator circuit
- Power supply decoupling internal
- No internal PLL avoids cascading PLL problems
- High frequencies due to proprietary design
 Gold plated leads—Solder dipped leads available upon request
- RoHS Compliant, Lead Free Construction (unless solder dipped leads are supplied)

For the most up to date specifications on each NEL product, log on to our website www.nelfc.com

357 Beloit Street, P.O. Box 457, Burlington, WI 53105-0457 U.S.A. Phone: 262-763-3591 Fax: 262-763-2881 Email: nelsales@nelfc.com www.nelfc.com

VCXO Series (PECL) PJ-A3670 Series Rev J

Frequency Range: 70.0 MHz to 200.0 MHz

Operating Conditions and Output Characteristics

Electrical Characteristics							
Parameter	Symbol	Conditions	Min	Typical	Max		
Frequency	·		70.0 MHz	<u> </u>	200.0 MHz		
Duty Cycle		@V _o /2	45/55%		55/45%		
Logic 0	V _{ol}		$V_{ m CC}$ -1.810 $V_{ m DC}$		V_{CC} -1.620 V_{DC}		
Logic 1	Voh		V_{CC} -1.200 V_{DC}		$V_{\rm CC}$ -0.880 $V_{\rm DC}$		
Rise & Fall Time	t _r , t _f	20-80% V _o	—		600 ps		
Jitter, RMS ⁽¹⁾	<u> </u>			3 psec	_		
Absolute Pull Range	APR	$V_{CO}=0.3$ to 3.0 V	±100 ppm		—		
V _{co} Input Impedance		50 na dc current max	100K ohm		—		
V _{co} Linearity		V_{CO} =0.3 to 3.0 V	—		10%		
Transfer Function ⁽²⁾		V_{CO} =0.3 to 3.0 V		Positive	—		

General Characteristics

Parameter	Symbol	Conditions	Min	Typical	Max
Supply Voltage	$V_{\rm CC}$ - $V_{\rm EE}$	Nominal	3.135 V	3.3 V	3.465 V
Supply Current	I_{cc}				60 mA
Output Current	Io		0.0 mA		±50.0 mA
Operating Temperature	T_{A}		0°C		70°C
Storage Temperature	T_s		-55°C		125°C
Power Dissipation	$P_{\rm D}$				208 mW
Lead Temperature	TL	Soldering, 10 sec.			300°C
Load	50 ohm to V_{CC} -2 V c	or Thevenin Equivalent, Bias Required	d —		

Environmental and Mechanical Characteristics

Mechanical Shock	Per MIL-STD-202, Method 213, Condition E
Thermal Shock	Per MIL-STD-833, Method 1011, Condition A
Vibration	0.060" double amplitude 10 Hz to 55 Hz, 35g's 55 Hz to 2000 Hz
Soldering Condition	300°C for 10 seconds
Hermetic Seal	Leak rate less than 1 x 10 ⁻⁸ atm.cc/sec of helium

Footnotes:

1) Jitter performance is frequency dependent. Please contact factory for full Wavecrest characterization. RMS jitter bandwidth of 12kHz to 20MHz.

2) Frequency increase with increase in control voltage and is monotonic.