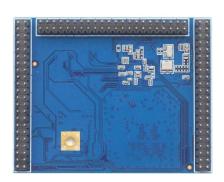

A50 方案板 产品使用手册

深圳市锐尔威视科技有限公司

2019.9.5 Ver.A

目录


目录

使件资源描述	4
核心硬件资源	
接口资源	
显示驱动能力	
视频编解码能力 底板接口资源	
软件资源描述	
提供 JAVA 层 API 源码	
底板硬件设计说明	
接口说明	
接口定义描述	8
扩展模块连接说明	
MIPI 屏	11
LVDS 屏	
RGB 屏	
MIPI 摄像头	
4G 通讯模块	
更新固件方法	14
USB 更新	12
TF 卡更新	16
固件修改工具使用说明	18
安装 DRAGONFACE	18
修改开机信息	
第一张开机 Logo	19
第二张开机 Logo	
开机动画和开机音乐	
修改系统配置	
修改系统属性 BUILD.PROP	
修改 INIT.RC	
修改 LCD 配置	
修改触摸配置	
修改屏幕旋转方向 修改自启动应用	
廖以日用纵型用	

串口使用说明	23
GPIO 说明	24

硬件资源描述

核心硬件资源

CPU: 全志 A50 四核 主频 1.5GHz

GPU: Mali-400MP2 PMU: AXP2231 DRAM: 1GB LPDDR3

FLASH: 8GB eMMC WIFI+BT: XR829 集成 Audio Codec

接口资源

- 1路 USB OTG 2.0,可做 HOST
- 1路 USB HOST 2.0 高速 ECHI 协议 480Mbps
- 1路 SDIO,可接 SD卡
- 1组 RGB/LVDS 复用的显示屏接口
- 1组 MIPI-DSI 显示屏接口
- 1组 MIPI-CSI 摄像头接口
- 1路音频 Headphone
- 2 路音频 Microphone
- 1路 LRADC,可做按键检测
- 1 路 SPI 接口
- 1路 I2S 接口,用于接声卡芯片
- 2路 IIC接口,用于接 CTP、G-Sensor等
- 3路 UART 接口
- 5个GPIO口

复位信号输入

开关机按键, 支持休眠唤醒

提供 5 组外设电源,给 LCD、CTP、Camera 等外设供电支持外部 DC、锂电池、USB 三种供电方式,自动检测

支持由 DC-5V 和 USB 给电池充电

PCBA 尺寸: 59mm*46mm

引脚数量: 132

显示驱动能力

RGB: 18bit 1920*1080 5/7 寸 转接双 8LVDS

LVDS: 单 8 1366*760 7~15 寸 MIPI: 4-lane 1920*1200 5~10 寸

视频编解码能力

编码能力: 1080P@60fps H.264/MJPEG 解码能力: 1080P@60fps H.264/MJPEG

多种格式解码: Mpeg1/2, Mpeg4 SP/ASP GMC, H.263, H.264 BP/MP/HP, VP8, WMV9/VC-1 等

底板接口资源

4 个 USB2.0 口, 2 个 A 母座, 其中一个可用于 Device, 2 个 4P-2.0 插座

- 3组 TTL 串口(其中1组可复用为一个SPI)
- 1个TF卡座,支持最大64G容量TF卡
- 1个耳机插座
- 1个麦克风接口
- 1个 MIPI-CSI 摄像头接口
- 1个百兆以太网 RJ45 接口
- 1个RGB屏接口,带电容触摸接口
- 1个LVDS 屏接口,带电容触摸接口
- 1个 MIPI 屏接口,带电容触摸接口
- 1组 SPI 接口(可复用为串口)
- 1组 IIC 接口
- 1组按键接口: POWER RESET LRADC
- 5 个 GPIO

全网通 4G 模块 MiniPCI-E 插座

标准 SIM 卡座

RTC 电池座 CR1220

锂电池接口,支持 3.7~4.2V 电池

DC5.5 电源座, 12V 电源输入

4P-2.54 插座, 12V 电源输入

4P-2.54 插座, 5V 和 3.3V 电源输出

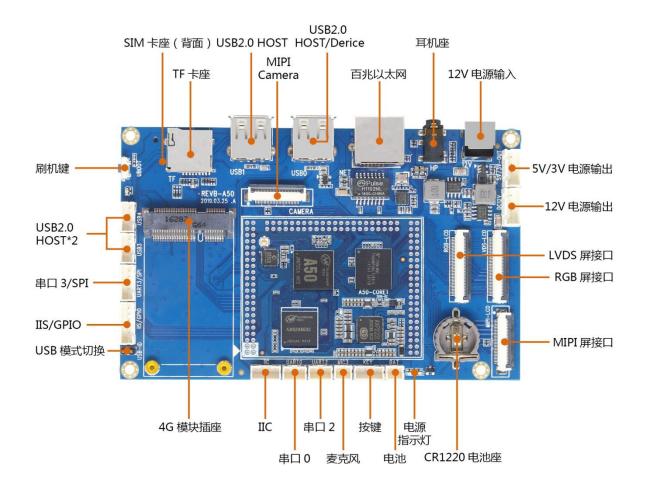
(WIFI+BT 集成在核心板上)

PCBA 尺寸: 135mm*85mm

软件资源描述

搭载 Android8.1 系统(内核版本: Linux-4.9),系统经过锐尔威视科技深度优化定制,启动快,运行流畅不死机,已 ROOT,可做带 Google GMS 认证的系统;支持 WIFI、蓝牙、以太网、4G 网络;支持 RGB、LVDS、MIPI 接口的屏幕;用户可由 PC 端的固件修改工具定制个性化固件,如修改开机图片、开机动画、开机声音、安装/卸载应用、自启动应用、更改 LCD 屏配置、设置屏幕旋转方向、修改机器信息等,不开放系统源码,仅提供固件,用户可直接开发 APP,节省开发周期,可为项目用户定制系统。

提供 JAVA 层 API 源码


串口操作例程 GPIO 操作例程

底板硬件设计说明

提供的硬件资料:

核心板连接器封装图(Protel 和 pads 格式)底板原理图源文件(DSN 格式)底板 PCB 封装图源文件(Protel 和 pads 格式)《A50-Core 核心板引脚说明》《A50-Core 核心板硬件手册》

接口说明

12V 电源	DC-5.5mm 座子,接入 12V/2A 直流电源
12V 输入/输出	4P-2.54 插座,用于供电或输出 12V 电源给外设
电源输出	4P-2.54 插座, 给外设提供 5V 或 3.3V 电源
USB2.0 Device	A 母座,用于刷机,ADB 调试,USB Device 和 Host 功能切换
USB2.0 HOST	一个 A 母座, 2 个 4P-2.0 座, 用于连接 USB 设备
耳机	标准 3.5mm 耳机输入接口
百兆以太网	有线网 RJ45 接口
TF 卡座	自弹式卡座,支持 64G 容量
SIM 卡座	支持移动、联通、电信手机卡或物联网卡,在板背面
4G 模块插座	MiniPCI-E 插座
MIPI 屏接口	30P FPC座 用于连接 MIPI 屏
LVDS 屏接口	40P FPC 座 用于连接 LVDS 屏
RGB 屏接口	40P FPC 座 用于连接 RGB 屏
MIPI 摄像头	连接 MIPI-CSI 摄像头
刷机按键	用于烧录固件

第 - 7 - 页 共 24 页

GPIO 接口	提供 5 个 GPIO
按键接口	扩展电源键、复位键、LRADC
SPI/串口 3	1组 SPI 接口,也可复用为串口 3
USB 模式切换	用跳线帽切换 USBO 为 Host 或 Device 模式
串口 2	通用 TTL 串口 3P-2.0 插座
串口 0	通用 TTL 串口 3P-2.0 插座 可用于调试
麦克风	2P-2.0 插座
IIC	1组 IIC 接口,带复位和中断脚
RTC 电池座	使用 CR1220 电池,用于维持 RTC 运行,保存时间
电池接口	2P-2.0 插座,接入 3.7V~4.2V 电池

接口定义描述

电源输入接口

序号	定义	属性	描述
1	12V	输入	12V 电源输入
2	12V	输入	12V 电源输入
3	GND	地线	地线
4	GND	地线	地线

电源输出接口

序号	定义	属性	描述
1	5V	输出	5V 电源输出
2	3V3	输出	3.3V 电源输出
3	GND	地线	地线
4	GND	地线	地线

UART 串口 3Pin

序号	定义	属性	描述
1	TX0	输出	串口输出
2	GND	地线	地线
3	RX0	输入	串口输入

USB2.0 HOST 插座*2

序号	定义	属性	描述
1	5V	电源	5V 电源
2	USB-DM	差分信号	数据 DM
3	USB-DP	差分信号	数据 DP
4	GND	地线	地线

I2C 接口

序号	定义	属性	描述
1	SCK1	输出	I2C 时钟线
2	SDA1	输出	I2C 数据线
3	PB3	中断	中断信 号
4	PB2	输出	复位信号

GPIO 接口

序号	定义	属性	描述
1	PB5	输入/输出	GPIO
2	PB7	输入/输出	GPIO
3	PB6	输入/输出	GPIO
4	PB4	输入/输出	GPIO
5	PB8	输入/输出	GPIO
6	GND	地线	地线

麦克风接口

序号	定义	属性	描述
1	MIC3	输入	MIC3 正极
2	AGND	地线	音频地

UART3/SPI 接口

序号	定义	属性	描述
1	MISO/CTS3	输入/输出	SPI 主入从出
2	MOSI/RTS3	输入/输出	SPI 主出从入
3	GND	地线	地线
4	CLK/RX3	输出	SPI 时钟/UART3-RX
5	CS/TX3	输出	SPI 片选/UART3-TX

按键接口

序号	定义	属性	描述
1	PWR-KEY	输入	电源键
2	RESET	输入	复位键
3	GPADC	输入	ADC 按键
4	GND	地线	地线

扩展模块连接说明

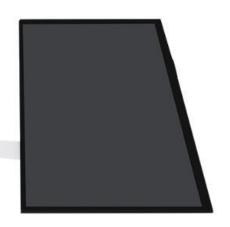
MIPI 屏

支持的 MIPI 屏:

5 寸 1280*720 带电容触摸 全视角 7 寸 1280*800 带电容触摸 全视角 7.8 寸 1280*400 带电容触摸 全视角 8 寸 1280*800 带电容触摸 全视角 10.1 寸 1280*800 带电容触摸 全视角

统一使用 30P 连接器外接屏幕,需使用我司提供的转接板连接不同接口的屏

LVDS 屏


支持的 LVDS 屏:

7 寸高清 1024*600 带电容触摸 10.1 寸普清 1024*600 带电容触摸

10.1 寸高清 1280*800 带电容触摸 全视角

统一使用 40P 连接器外接屏幕,需使用我司提供的转接板连接不同接口的屏

RGB 屏

支持的 RGB 屏:

5 寸普清 800*480 带电容触摸 7 寸普清 800*480 带电容触摸 7 寸高清 1024*600 带电容触摸

统一使用 40P 连接器外接屏幕,需使用我司提供的转接板连接不同接口的屏

MIPI 摄像头

支持的摄像头型号: GC2355/GC2385 200 万像素

4G 通讯模块

支持的 4G 通讯模块 有方 N720 七模全网通 移远 EC20 七模全网通

开机前将 4G 模块插入 MiniPCIE 插槽并用螺丝固定,连接 4G 天线,插入 SIM 卡,开机后,状态栏显示 4G 网络图标,就可以使用了

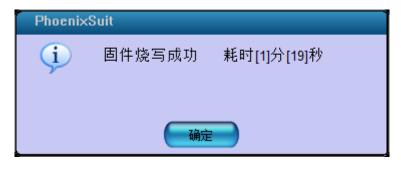
更新固件方法

USB 更新

安装 PhoenixSuit 软件(在开发工具->USB 升级和量产工具->PhoenixSuitV1.0.7-> PhoenixSuitV1.0.7 开发者版本.rar)

打开后软件后,在上方选择"一键刷机",点击"浏览"选择要烧写的固件文件(注意一定要是.img 后缀的文件,如果固件是 rar 或 zip 压缩包,请先解压),选中"格式化"进行格式化烧写;如果不想擦除 data 分区,就取消"格式化"

给开发板断电,按住板下方的 uboot 键,将 USB 线连接设备的 USB0 口至 PC 机,同时插入 12V 电源,会自动检测到设备,提示开始烧写固件,如果没有检测到设备,请重新尝试上述步骤

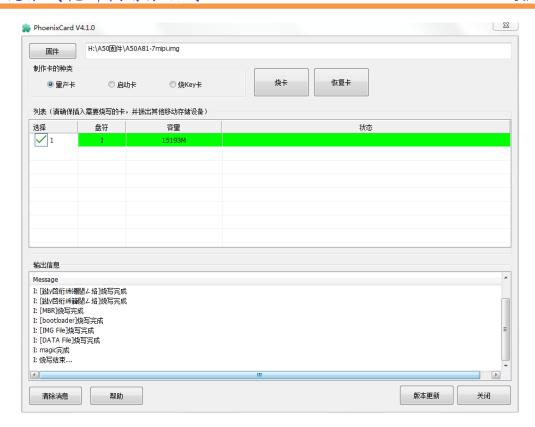

注意: 不要在开机状态下 点击"立即升级",一定要按上述步骤操作

固件烧写成功后,拔掉 USB 线,再给开发板上电

PhoenixCard V4.1.0

固件 制作卡的种类 H:\A50固件\A50A81-7mipi.img

TF 卡更新


解压 PhoenixCard V410 软件(在开发工具->SD 卡量产工具-> PhoenixCard v4.1.0.zip) 打开 PhoenixCard.exe 软件,将 TF 卡装入 USB 读卡器插在电脑 U 口上,在固件里选择要烧录的 固件(后缀是.img),制作卡的种类选择量产卡,在列表里选择要烧录的读卡器盘符,点击"烧 卡"开始制作烧录卡。

烧卡

恢复卡

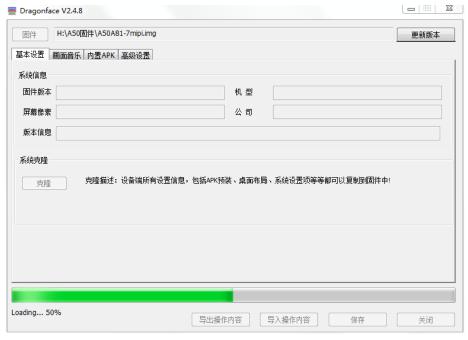
第 - 16 - 页 共 24 页

等待烧录完成后,弹出读卡器,接下来一定要按照下面的步骤来操作:

- 1. 给开发板断电,插入TF卡
- 2. 给板上电,自动开始烧录系统,屏幕上会有进度条显示,等待
- 3. 烧录完成后会自动关机,屏幕灭掉,这时可以拔掉 TF卡
- 4. 重新断电再上电即可

如需要制作启动卡,选择"卡启动"再烧录。插入TF卡开机,自动从TF卡启动系统,可选用于无EMMC存储的产品。

如需要将 TF 卡恢复为正常状态,点击"恢复卡"。


固件修改工具使用说明

安装 DragonFace

解压 DragonFace.rar(在开发工具->固件修改工具中),运行其中的 DragonFace.exe

■ Dragonface V2.4.8	
固件	更新版本
基本设置 画面音乐 内置APK 高级设置	
系统信息	
固件版本	机 型
屏幕像素	公司
版本信息	
77.4±+n6	
系统克隆	
克隆 克隆 克隆 克隆 克隆 克隆 克隆 克隆 克隆	装、桌面布局、系統设置项等等都可以复制到固件中!
Tie	
Tip 与出操作	F内容

点"固件"按钮,找到要修改的固件文件,载入(载入固件和保存固件时会占用较高的 CPU 资源,电脑会变得很卡,并且要等待近 1 分钟)

修改开机信息

在"基本设置"的系统信息区域可修改:固件版本、机器型号、公司名称、版本信息

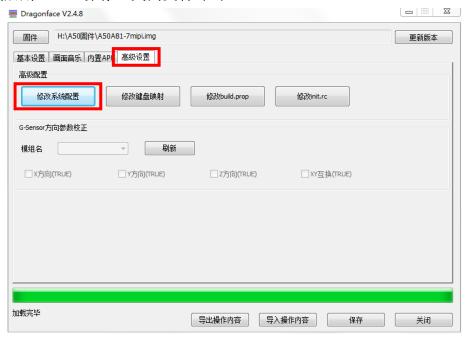
第一张开机 Logo

Boot 阶段的 logo, 开机即显示, 一般是黑背景的小图片, 系统会居中显示, 也可以做成和屏幕分辨率一样的全屏图片

切换到"画面音乐",点"替换 bootlogo",打开要替换的图片(支持 bmp jpg png 等)

第 - 19 - 页 共 24 页

第二张开机 Logo

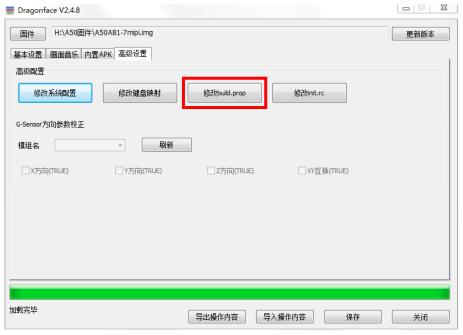

Kernel 阶段的 logo,也叫安卓 logo,在动画之前显示,一般是和屏幕分辨率一样的全屏图片,默认是没有第二张 logo 的,由第一张 logo 持续显示到动画出现,如要修改,点"替换安卓 Logo",打开要替换的图片(支持 bmp jpg png等)

开机动画和开机音乐

是一组由连续图片组成的 zip 格式的压缩包,用户要按照 android 规定的格式制作动画和音乐,点"替换开机动画(Zip)",打开制作好的动画文件

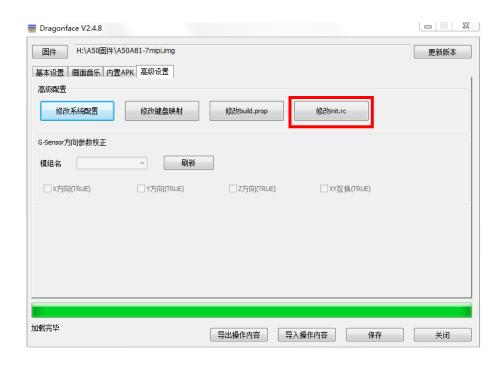
修改系统配置

切换到"高级设置",在高级配置区域点"修改系统配置",打开一个名为 sysconfig1.lhs 的记事本,修改后用 Ctrl+S 保存,关闭文件即可


详细的替换配置文件的步骤:

- 1. 用 windows 带的"写字板"软件打开要替换的配置文件 在资料的配置文件目录下有不同屏幕的配置,文件名是 sys_config.fex 用鼠标右键单击文件名,在打开方式中选择"写字板"打开 用"写字板"软件打开,可以防止文本内容都连在一起不换行
- 2. 用 ctrl+A 组合键全选,再用 ctrl+C 组合键复制配置文件的全部内容
- 3. 在打开的 sysconfig1.lhs 的记事本文件中,用 ctrl+A 组合键全选,再用 ctrl+V 组合键把刚复制的文本内容粘贴(替换)过去

4. 用 ctrl+S 保存文本,关闭文本,保存固件


修改系统属性 build.prop

点"修改 build.prop",弹出小窗口,直接修改文本后关闭窗口即可

修改 init.rc

init.rc 里包含 android 系统的部分初始化脚本,主要功能是加载驱动模块,修改设备权限等.。 点"修改 init.rc",弹出小窗口,直接修改文本后关闭窗口即可

第 - 21 - 页 共 24 页

修改 LCD 配置

LCD 和触摸屏的配置都在系统配置里,按照上一页修改系统配置的方法,在 sysconfig1.lhs 时找到[lcd0_para]和[ctp_para]部分,更改参数后保存

也可以用上一页的方法快速的替换不同屏幕的配置文件,在资料的配置文件目录下有不同屏幕的配置,文件名是 sys config.fex,用户根据自己所使用的屏幕类型选择相应的配置

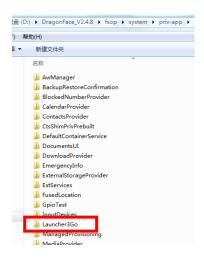
不同尺寸不同分辨率的屏,需要更改 lcd_density 参数,它决定了显示的图标字体的大小,也决定了显示布局

在不同屏幕的配置文件里,都有一个 build.prop 的文件,里面的内容是: ro.sf.lcd_density=280 (不同的配置文件,后面的数值不一样)

按照本页的修改 build.prop 的方法,找到 ro.sf.lcd density= 这行,修改后面的数值

修改触摸配置

不同接口类型的屏,触摸芯片不一样,需要改驱动模块 RGB/LVDS 屏使用 FT5X 方案,使用 ft5x_ts.ko,修改 init.rc insmod /system/vendor/modules/ft5x_ts.ko #insmod /system/vendor/modules/gt9xx_ts.ko


MIPI 屏使用 GTXX 方案,使用 gt9xx_ts.ko,修改 init.rc #insmod /system/vendor/modules/ft5x_ts.ko insmod /system/vendor/modules/gt9xx ts.ko

修改屏幕旋转方向

修改 build.prop 加入 ro.sf.rotation=90 可选的值有 0, 90, 180, 270 代表 4 个旋转方向

修改自启动应用

在 Dragonface 工具的目录里找到 fsop/system/priv-app 目录 删除 Launcher3Go 整个目录

在内置 APK 选项里, 点右键 Add APK 添加要自启动的 APK

自启动应用的写法说明:

在 apk 的 AndroidManifest.xml 文件中的主 activity 添加

- <intent-filter>
 - <action android:name="android.intent.action.MAIN"/>
 - <category android:name="android.intent.category.LAUNCHER"/>
 - <category android:name="android.intent.category.MONKEY"/>
 - <category android:name="android.intent.category.HOME"/>
 - <category android:name="android.intent.category.DEFAULT"/>
- </intent-filter>+

修改完固件,点击下方的"保存"按钮,指定要保存固件的路径和文件名(后缀是.img),烧录到板上(烧录方式见本手册第14页)

串口使用说明

串口 0: 默认可以做通用串口,如要使用 Debug 功能,刷入 Debug 固件

串口1: 固定为蓝牙模块使用,没有引出

串口2:通用串口

串口 3: 通用串口,可以修改配置,复用为 SPI

串口设备名: /dev/ttyS0 ttyS1 ttyS2 ttyS3

在软件资料里有"Android 串口调试软件源码",可以在 JAVA 层直接操作串口

GPIO 说明

自定义 GPIO 的方法: 修改系统配置文件

[Vdevice]

Vdevice_used = 1

 Vdevice_0
 = port:PB02<0><1><2><default>

 Vdevice_1
 = port:PB03<0><1><2><default>

Vdevice_2 = port:PB04<1><default><0> Vdevice_3 = port:PB05<1><default><default><0> Vdevice_4 = port:PB06<1><default><default><0>

注意检查管脚号,不能和其他功能冲突,否则注册 GPIO 失败

参数说明:

Vdevice_x(x=01234....),必须按数字顺序依次写

PB02 是管脚号

第一个<> 功能 1: 输出 0: 输入

第二个<> 上下拉 一般为 default

第三个<> 驱动能力 一般为 default

第四个<> 默认电平 1: 高电平 0: 低电平

port:PB02<0><1><2><default> 就是设置 PB02 为输入
port:PB04<1><default><default><0> 就是设置 PB04 为输出 默认电平是低

对应的设备文件:

/sys/class/sunxi_gpio/gpio_index

/sys/class/sunxi qpio/data

/sys/class/sunxi gpio/direction

/sys/class/sunxi_gpio/exec

在 JAVA 层操作 GPIO:

在软件资料里找到 GpioTest-A50.zip,解压出来,导入到 JAVA 工程即可具体操作方法请分析源码