
ibm.com/redbooks

Migrating from Oracle . . . to
IBM Informix Dynamic Server
on Linux, UNIX, and Windows

Chuck Ballard
Holger Kirstein

Srinivasrao Madiraju
Sreeni Paidi

Nora Sokolof
Renato Spironelli

Developing a Data and Applications
Migration Methodology

Understanding IDS and Oracle
DBMS Functionality

Using the IBM Migration
Tool Kit as Your Guide

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Migrating from Oracle . . . to IBM Informix Dynamic
Server on Linux, UNIX, and Windows

June 2009

International Technical Support Organization

SG24-7730-00

© Copyright International Business Machines Corporation 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2009)

This edition applies to Oracle 10g and IBM Informix Dynamic Server 11.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this book . xii
Become a published author . xiv
Comments welcome. xiv

Chapter 1. Introduction . 1
1.1 Migrating . 4
1.2 Positioning IDS . 5
1.3 Informix Dynamic Server editions . 6
1.4 IDS functionality . 9

Chapter 2. Architectural overview . 15
2.1 The basic architectures . 16

2.1.1 Memory architectures . 17
2.1.2 Process architectures . 23
2.1.3 Physical database structures . 28
2.1.4 Logical database structures . 32
2.1.5 Data dictionary and system catalog . 35
2.1.6 Database server communication. 38

2.2 IDS licensing . 40
2.3 Terminology. 41

Chapter 3. Migration methodology . 43
3.1 An IBM migration methodology . 44
3.2 Migration preparation . 45

3.2.1 Performing the migration assessment. 45
3.2.2 Understanding and selecting migration tools 46
3.2.3 Estimating the effort required . 47
3.2.4 Environment preparation. 48
3.2.5 Getting educated on the Informix Dynamic Server 49

3.3 Migration . 49
3.3.1 Database migration and design . 49
3.3.2 Calibration . 50
3.3.3 Application migration. 51

3.4 The Test Phase . 52
3.4.1 Migration refresh . 52

© Copyright IBM Corp. 2009. All rights reserved. iii

3.4.2 Data migration. 52
3.4.3 Testing . 53

3.5 Implementation and cutover phase . 56
3.6 Related information resources . 57

Chapter 4. IBM Migration Tool Kit: An introduction 59
4.1 The MTK for Oracle migrations to IDS . 60
4.2 Overview of features and functionality . 61

4.2.1 The five step migration process . 61
4.3 Inside the Oracle converter component . 66

4.3.1 Translating tables, indexes, and views . 68
4.3.2 Translating built-in functions . 68

4.4 How to install, configure, and execute the MTK . 69
4.4.1 System requirements . 70
4.4.2 Installing MTK . 71
4.4.3 Starting MTK . 72

Chapter 5. An MTK tutorial . 73
5.1 Part 1: Core database object migration. 75

5.1.1 Create a project. 75
5.1.2 Work with the project. 77
5.1.3 Other useful features. 91
5.1.4 Additional MTK features . 99
5.1.5 Summary of best practices when using the MTK 100

5.2 Part II: Database application object migration. 101
5.2.1 Migration of application objects: Lessons learned 109

Chapter 6. SQL considerations . 111
6.1 DDL . 112

6.1.1 Database creation . 112
6.1.2 Tables . 113
6.1.3 Views. 129
6.1.4 Sequences . 130
6.1.5 Synonyms . 131
6.1.6 Triggers . 133
6.1.7 DBLinks. 133

6.2 DML. 135
6.2.1 SQL . 135
6.2.2 Selects . 135
6.2.3 Pseudo-columns . 138
6.2.4 Inserts . 142
6.2.5 Outer joins. 142
6.2.6 Sorts . 145
6.2.7 Aliases. 146

iv Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

6.2.8 Truncate . 146
6.2.9 Hierarchical queries . 147

6.3 SPL and PL/SQL . 147
6.4 Concurrency and transaction . 154

6.4.1 Read concurrency . 154
6.4.2 Update concurrency . 158

6.5 Security . 159
6.5.1 User authentication . 159
6.5.2 Authorization . 160
6.5.3 Column-level encryption . 160

Chapter 7. Data conversion . 165
7.1 Data conversion process. 166
7.2 Time planning . 167
7.3 Database schema conversion . 167

7.3.1 Database schema extraction and conversion with the MTK 168
7.3.2 Database schema extraction with Oracle database interfaces 168
7.3.3 Move the database schema to the target IDS database server . . . 171

7.4 Data movement . 179
7.4.1 Unloading the data in Oracle. 179
7.4.2 Load the data into the target IDS database server 197
7.4.3 Moving data using the Migration Tool Kit . 209

7.5 Alternative ways for moving data . 209
7.5.1 IBM InfoSphere Information Server. 209

Chapter 8. Application conversion . 211
8.1 Heterogeneous application environments . 212
8.2 Client development APIs supported by IDS 11 . 212

8.2.1 Embedded ESQL/C. 213
8.2.2 Embedded ESQL/Cobol . 213
8.2.3 Informix JDBC 3.0 Driver . 213
8.2.4 IBM Informix .NET Provider . 214
8.2.5 IBM Informix ODBC 3.0 Driver . 215
8.2.6 IBM Informix OLE DB Provider . 216
8.2.7 IBM Informix Object Interface for C++. 216
8.2.8 Additional APIs for accessing IDS 11 . 217

8.3 Migrating applications using unified interfaces . 218
8.3.1 Package applications migration planning . 218
8.3.2 Migrating applications based on ODBC . 219
8.3.3 Migrating database applications based on JDBC 221

8.4 Conversion considerations for common client APIs 222
8.4.1 Application migration planning for source owned applications 223

8.5 Introduction to programming techniques . 226

 Contents v

8.5.1 Embedded SQL. 226
8.6 Migrate user-built applications. 229

8.6.1 Converting Oracle Pro*C applications to Informix ESQL/C. 229
8.6.2 Converting Oracle Java applications to IDS 240
8.6.3 Converting Oracle Call Interface (OCI) applications 248
8.6.4 Converting ODBC applications . 254
8.6.5 Converting Perl applications . 254
8.6.6 Converting PHP applications . 259
8.6.7 Converting .NET applications . 270

Chapter 9. Administration of Informix Dynamic Server. 279
9.1 Administering the Informix database server . 280

9.1.1 Configuring the database server . 280
9.1.2 Set environment variables. 280
9.1.3 Configure connectivity . 282
9.1.4 Start and administer the database server . 283
9.1.5 Preparing to connect to applications . 285
9.1.6 Creating storage spaces and chunks . 286

9.2 Data recovery and high availability . 286
9.2.1 Backup and restore . 287
9.2.2 Fast recovery . 289
9.2.3 Mirroring . 290
9.2.4 Data replication . 290

9.3 Informix Dynamic Server admin utilities . 296
9.3.1 Command line utilities . 296
9.3.2 OpenAdmin tool for IDS . 302
9.3.3 IBM Informix Server Administrator . 304

9.4 Automatic monitoring and corrective actions. 305
9.4.1 Administration API. 305
9.4.2 The Scheduler. 306
9.4.3 The sysadmin database . 307
9.4.4 Query drill-down . 307

9.5 IDS database server security . 308
9.5.1 Server utility and directory security . 308
9.5.2 Network data encryption . 309
9.5.3 Connection security. 310
9.5.4 Label-based access control (Enterprise Edition). 310
9.5.5 Auditing . 311

Appendix A. Data types . 313
A.1 Supported SQL data types in C/C++ . 314
A.2 Supported SQL data types in Java . 316
A.3 Mapping Oracle data types to Informix data types 318

vi Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Appendix B. Terminology mapping . 321

Appendix C. Function mapping . 327
C.1 Numeric function mapping . 328
C.2 Character function mapping . 330
C.3 Date and time function mapping . 332
C.4 Comparison and NULL-related function mapping. 333
C.5 Encoding, decoding, encryption, and decryption function mapping 335
C.6 Implementation of new C-based functions in IDS. 335

Appendix D. Database server monitoring . 339
D.1 Memory monitoring . 340
D.2 Process utilization and configuration . 342
D.3 Disk space monitoring . 344
D.4 Session monitoring . 346
D.5 Cache monitoring . 348

Appendix E. Database server utilities . 351

Appendix F. Additional material . 355
Locating the Web material . 355
Using the Web material . 356

System requirements for downloading the Web material 356
How to use the Web material . 356

Glossary . 357

Abbreviations and acronyms . 361

Related publications . 365
IBM Redbooks . 365
Other publications . 365
Online resources . 365
Education support . 366
How to get Redbooks . 367
Help from IBM . 367

Index . 369

 Contents vii

viii Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2009. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
C-ISAM®
DataBlade®
DataStage®
DB2 Universal Database™
DB2®

Distributed Relational Database
Architecture™

DRDA®
IBM®
Informix®
InfoSphere™
OS/390®

POWER®
Rational®
Redbooks®
Redbooks (logo) ®
WebSphere®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

ACS, Interchange, Red Hat, and the Shadowman logo are trademarks or registered trademarks of Red Hat,
Inc. in the U.S. and other countries.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

EJB, Enterprise JavaBeans, J2EE, J2SE, Java, JavaBeans, JDBC, JDK, JRE, JVM, Solaris, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

ActiveX, Expression, Microsoft, SQL Server, Visual C#, Visual J#, Visual Studio, Windows Server, Windows
Vista, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

x Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www.ibm.com/legal/copytrade.shtml

Preface

In this IBM® Redbooks® publication, we discuss considerations, and describe a
methodology, for transitioning from Oracle® 10g to the Informix® Dynamic Server
(IDS). We focus on the basic topic areas of data, applications, and
administration, providing information about the differences in features and
functionality in areas such as data types, data manipulation language (DML),
data definition language (DDL), and Stored Procedures. Understanding the
features and functionality of the two products will assist in developing a migration
plan.

We provide a conversion methodology and discuss the processes for installing
and using the IBM Migration Toolkit (MTK) to migrate the database objects and
data from Oracle to IDS. We also illustrate, with examples, how to convert stored
procedures, functions, and triggers. Application programming and conversion
considerations are also discussed.

In addition, you will find script conversion samples for data loading, database
administration, and reports. There is also information regarding procedures and
tips for migration testing and database tuning. The laboratory examples are
performed under Oracle 10g and IDS Version 11.5. However, the migration
process and examples can also be applied to Oracle 7, 8, and 9i.

With this information, you can gather and document your conversion
requirements, develop your required transition methodology, and plan and
execute the conversion activities in an orderly and cost-effective manner.

© Copyright IBM Corp. 2009. All rights reserved. xi

The team that wrote this book

This book was produced by a team of specialists from around the world working
with the International Technical Support Organization, in San Jose California.
The team members are depicted below, with a short biographical sketch of each:

Chuck Ballard is a Project Manager at the International
Technical Support organization, in San Jose, California. He
has over 35 years experience, holding positions in the areas
of Product Engineering, Sales, Marketing, Technical
Support, and Management. His expertise is in the areas of
database, data management, data warehousing, business
intelligence, and process re-engineering. He has written
extensively on these subjects, taught classes, and
presented at conferences and seminars worldwide. Chuck

has both a Bachelors degree and a Masters degree in Industrial Engineering
from Purdue University.

Holger Kirstein is a resolution team engineer with the
European Informix support team. He joined the Informix
support team in 1996 and has over 15 years experience in
application development and support for Informix database
servers and Informix clients. He holds a Masters of Applied
Computer Science from Technische Universität, Dresden.

Srinivasrao Madiraju is a senior software engineer working
on the Informix Dynamic Server (IDS) integration team. He
is responsible for quality integration of new features into
IDS, particularly in the SQL area. He has recently been
involved in Cloud Computing Technology with IDS. Srini has
also participated in projects focused on high availability,
virtualization and cluster technologies, and working with a
number of hardware vendors. Srini holds a Masters degree
in Computer Applications from Osmania University in India.

xii Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 Sreeni Paidi has over 12 years of experience working on
Informix, Oracle, and DB2® database servers as a
Database Programmer, DBA, Database Integration
Architect, and Partner Enablement Consultant. He worked
with technology partners and customers around the world
on various database related topics such as database
porting, performance tuning, troubleshooting,
benchmarking, training, and setting up servers for high
availability. Sreeni joined IBM US as part of Trigo

Technologies acquisition in 2004. He is currently working for the IBM Data
Management Solutions Organization as a Lead Informix Consultant for India,
Australia and New Zealand. Sreeni holds a Bachelors degree in Computer
Science from the Osmania University, Hyderabad, India.

Nora Sokolof is a Consulting Technical Sales specialist
with IBM Software North America. She is a member of the
Data Servers and Application Development team and
specializes in Information Management software products.
She has held positions as a DB2, Informix, Oracle and
PeopleSoft® development DBA. She is also the author of
several white papers including Transitioning from IBM
Informix to DB2 - Database Comparisons and Migration
Topics, and has co-authored the following IBM Redbooks

publications:Planning for a Migration of PeopleSoft 7.5 from Oracle/UNIX to DB2
for OS/390, SG24-5648, and Oracle to DB2 Conversion Guide for Linux, UNIX,
and Windows, SG24-7048. Nora holds a Master of Science degree in Software
Engineering from Pace University and has been an IBM software professional for
more than 22 years.

Renato Spironelli is a Senior Oracle DBA and Oracle
Certified Professional on Oracle 8i, 9i and 10g. He has more
than 10 years of experience working in production
environments, supporting clients in areas such as database
porting, backup and recovery solutions, performance tuning,
troubleshooting, and setting up server environments for high
availability. Renato has been working for IBM since 2005 in
the IBM Integrated Technology Delivery (ITD) organization
in Sao Paulo, Brazil.

 Preface xiii

Other Contributors:

In this section we thank others who have either contributed directly to the content
of this Redbooks publication or to its development and publication.

From the International Technical Support Organization, San Jose Center
Mary Comianos - Publications Management
Deanna Polm - Residency Administration
Emma Jacobs - Graphics
James Hoy - Editor

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability. Find out more about the residency
program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xiv Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

As with most companies, you are likely feeling the impact of the changes that are
taking place in the business environment today. For example, planning horizons
and measurement periods continue to become shorter. Business processes,
systems and application implementations, new market opportunities, and
technology are all changing at an ever-increasing rate.

Coping with this changing environment requires speed and flexibility. To remain
competitive, you must be quick to recognize when changes are required and be
quick to implement those required changes. You also must remain flexible to
meet client demands, to satisfy shareholder expectations, and to enable
continued business growth and leadership. Critical to meeting these changing
requirements is maintaining a flexible and dynamic IT support infrastructure.

This IBM Redbooks publication is all about change. Specifically, change to your
IT support infrastructure, and your database management system (DBMS),
which is the foundation of that infrastructure. It is critical that your DBMS can
house, organize, manage with integrity, and deliver to you, on demand, the data
that is collected and stored by your organization. However, it also needs to
change with the business requirements and needs to be enabled with a robust
set of tools and applications that can implement the change and growth in your
organization.

In addition to the DBMS, the migration of applications must be considered.
Converting an application across different platforms and different databases is
certainly not a trivial task. The decision to convert is generally made at high level

1

© Copyright IBM Corp. 2009. All rights reserved. 1

and when there is full justification in terms of costs and expected returns on
investment. The major issues that bring up the need to convert (and are the main
components for building a business case), are as follows:

� Performance

Aspects of performance include scalability, availability, data movement,
response time, and the ability to support multiple query workloads.

� Configuration costs

Realistic cost assessment is based on overall development, maintenance,
tuning cost, and the full exploitation of current investments, both in terms of
skill sets and reduced licence costs.

� Data integration

Market trends are highlighting the importance of enterprise servers and the
need to avoid data structure fragmentation to increase the value of
business-critical systems. Fragmentation may cause cross-functional
currency and consistency issues, and hamper innovation.

� Data infrastructure

Data is no longer an application-specific resource, but an enterprise-wide tool
to provide critical business information for a competitive advantage. Often, it is
not enough to navigate through the data, but is necessary to invest in their
infrastructure to integrate enterprise views of data more easily.

Changing your DBMS platform can be a big challenge. Complexity, total cost,
and the risk of downtime are key considerations when deciding whether or not to
start such a project. But with good planning, education, and product knowledge,
these concerns can be minimized.

In this IBM Redbooks publication, we discuss considerations and describe a
methodology for transitioning from Oracle 10g to the Informix Dynamic Server
(IDS). We focus on the basic topic areas of data, applications, and
administration, providing information about the differences in features and
functionality in areas such as data types, DML, DDL, and Stored Procedures.
Understanding the features and functionality of the two products will assist in
developing a migration plan.

We provide a migration methodology and discuss the processes for installing
and using the IBM Migration Toolkit (MTK) to migrate the database objects and
data from Oracle to IDS. We also illustrate, with examples, how to convert stored
procedures, functions, and triggers. Application programming and migration
considerations are also discussed.

2 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

In addition, you will find script conversion samples for data loading, database
administration, and reports. There is also information regarding procedures and
tips for migration testing and database tuning. The laboratory examples are
performed under Oracle 10g and IDS Version 11.5. However, the migration
process and examples can also be applied to Oracle 7, 8, and 9i.

With this information, you can gather and document your migration requirements,
develop your required transition methodology, and plan and execute the
migration activities in an orderly and cost-effective manner.

 Chapter 1. Introduction 3

1.1 Migrating

Migrating from Oracle to IDS requires a certain level of knowledge of both
environments. Because you are reading this book, you are likely already using,
and are familiar with, Oracle. Therefore, the purpose of this section is to start
your education with an introduction to the Informix Dynamic Server (IDS). It is not
meant to be an exhaustive description of IDS, but a high level overview of some
of the functions and features to help you understand the structure and
capabilities available, so you can more easily relate it to the Oracle environment.

Many of these features are unique in the industry today, enabling clients to use
information in new and more efficient ways to create a business advantage. It is
designed to help businesses better use their existing information assets as they
move into an on-demand business environment. In this type of environment,
mission-critical database management applications typically require a
combination of online transaction processing (OLTP) and batch and
decision-support operations, including online analytical processing (OLAP). IDS
offers capabilities to minimize downtime and to enable a fast and full recovery if
an outage occurs.

Meeting these requirements calls for a data server that is flexible and can
accommodate change and growth in applications, data volumes, and numbers of
users. It must be able to scale in performance as well as in functionality. The new
suite of business availability functionality provides greater flexibility and
performance in backing up and restoring an instance, automated statistical and
performance metric gathering, improvements in administration, and reductions in
the cost to operate the data server.

The technology used by IDS enables efficient use of existing hardware and
software, including single and multiprocessor architectures. It helps you keep up
with technological growth, including the requirement for such things as more
complex application support, which often calls for the use of nontraditional, or
rich, data types that cannot be stored in simple character or numeric form.

Built on the IBM Informix Dynamic Scalable Architecture (DSA), it provides one
of the most effective solutions available, including a next-generation parallel data
server architecture that delivers mainframe-caliber scalability, manageability and
performance, minimal operating system overhead, automatic distribution of
workload, and the capability to extend the server to handle new types of data.

IDS delivers proven technology that efficiently integrates new and complex data
directly into the database. It handles time-series, spatial, geodetic, Extensible
Markup Language (XML), video, image, and other user-defined data side-by-side
with traditional data to meet today’s most rigorous data and business demands. It
also helps businesses lower their total cost of ownership (TCO) by leveraging its

4 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

general ease of use and administration, as well as its support of existing
standards for development tools and systems infrastructure. IDS is a
development-neutral environment and supports a comprehensive array of
application development tools for rapid deployment of applications under Linux®,
Microsoft® Windows®, and UNIX® operating environments.

1.2 Positioning IDS

IBM Informix Dynamic Server 11 (IDS 11) combines the robustness, high
performance, availability, and scalability needed in businesses today.

Complex, mission-critical database management applications typically require a
combination of OLTP and batch and decision-support operations, including
OLAP. Meeting these needs is contingent upon a data server that can scale in
performance as well as in functionality. It must dynamically adjust as
requirements change from accommodating larger amounts of data, to changes in
query operations, to increasing numbers of concurrent users. The technology
must be designed to use efficiently all the capabilities of the existing hardware
and software configuration, including single and multiprocessor architectures.
The data server must satisfy users’ demands for more complex application
support, which often uses nontraditional, or rich, data types that cannot be
stored in simple character or numeric form.

IDS is built on the IBM Informix Dynamic Scalable Architecture (DSA). It provides
one of the most effective solutions available. It provides next-generation parallel
data server architecture that delivers mainframe-caliber scalability,
manageability, and performance; minimal operating system overhead; automatic
distribution of workload; and the capability to extend the server to handle new
types of data. With Version 11, IDS increases its lead over the data server
landscape with even faster performance, a new suite of business availability
functionality, greater flexibility and performance in backing up and restoring an
instance, automated statistical and performance metric gathering, improvements
in administration, reducing the cost to operate the data server, and more.

The maturity and success of IDS is built on many years of widespread use in
critical business operations, which attests to its stability, performance, and
usability. IDS 11 moves this already highly successful enterprise relational data
server to a new level.

 Chapter 1. Introduction 5

1.3 Informix Dynamic Server editions

IBM has packaged IDS into three editions, each tailored from a price and
functionality perspective to a specific market segment. Regardless of which
edition you purchase, each edition comes with the full implementation of DSA
and its unmatched performance, reliability, ease of use, and availability
(depending on bundle-driven hardware, connection, and scalability restrictions).
Table 1-1 contains a brief comparison of the three editions and their feature sets.

Table 1-1 IDS editions and their functionality

Express Edition Workgroup Edition Enterprise Edition

Target market Midmarket companies
(100–999 employees), ISVs for
OEM use

Departments within large
enterprises, mid-sized
companies.

Large enterprises

Function This is a full-function,
object-relational data server
that includes important
capabilities such as high
reliability, security, usability,
manageability, and
performance. It includes
self-healing manageability
features and near-zero
administration. It allows
integration into Rational®
Application Developer and
Microsoft Visual Studio®,
support for transparent silent
installation, and support for a
wide array of development
paradigms. It has minimal disk
space requirements and a
simplified installation.

This edition includes all of the
features of IDS Express plus
features to handle high data
loads, including Parallel Data
Query, parallel backup and
restore, and High
Performance Loader. High
Availability Data Replication
(HDR) can be purchased as
an add-on option.

Includes all of the features
of IDS Workgroup Edition
plus features required to
provide the scalability to
handle high user loads and
provide 24x7x365
availability, including
Enterprise Replication (ER)
and High Availability Data
Replication (HDR).

Customizable Installation sets common
defaults.

Installation offers greater
flexibility.

This edition supports the
greatest flexibility to allow
tailoring the product to
meet the most demanding
environments.

Scalable 2 CPUs/4 GB RAM maximum. � For V10:
4 CPU, 8 GB memory
maximum.

� For V7.31 and V9.4:
2 CPU, 2 GB memory
maximum.

Unlimited.

Upgrade path Informix Dynamic Server
Workgroup Unlimited Edition.

Informix Dynamic Server
Enterprise Edition.

(Not applicable)

6 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Not all license terms and conditions are contained in this document. See an
authorized IBM Marketing Representative, IBM Business Partner, or the following
Web page for details:

http://www-306.ibm.com/software/data/informix/ids/ids-ed-choice/

Express Edition
Targeted toward small to mid-size businesses or applications requiring
enterprise-level stability, manageability, and security, Express Edition
(IDS-Express) is available for systems using Linux and Microsoft Windows
(server editions). Though limited to systems with two physical CPUs and up to 4
GB of RAM, IDS-Express has the full complement of administration and
management utilities, including online backup, the ability to scale to almost 8 PB
(petabytes) of data storage, a reduced installation footprint, and full support for a
wide range of development languages and interfaces. It cannot be used,
however, to support Internet-based application connections. For those people
with little data server skill, the installation process can be invoked not only to
install the data server but also to configure an operational instance with a set of
default parameters.

Workgroup Edition
Informix Dynamic Server Workgroup Edition (IDS-WGE) is for any business
needing additional power to process SQL operations, efficiently manage
extremely large databases, or build a robust, fail-over system to ensure database
continuation in the event of natural or human-caused outage. IDS-WGE is
available on all supported operating systems. Its hardware support is limited to
four physical CPUs and 8 GB of RAM. IDS-WGE cannot be used to support
Internet-based application connections.

IDS-WGE has all the components, utilities, storage scalability, and so on, of
IDS-Express. In addition, its ability to process more complicated SQL operations
on larger databases is enhanced because of the Parallel Data Query (PDQ) and
Memory Grant Manager (MGM) components. With these, data server resources
can be pre-reserved and then fully deployed without interruption to process any
given SQL operation.

To manage large databases requires the ability to insert or extract data quickly,
as well as perform full or targeted backups. IDS-WGE includes functionality to do
both. For example, you can use the high performance loader (HPL) to execute
bulk data load and unload operations. It uses the DSA threading model to
process multiple concurrent input or output data streams with or without data
manipulation by other threads as the job executes. Also included is the ON-Bar

 Chapter 1. Introduction 7

http://www-306.ibm.com/software/data/informix/ids/ids-ed-choice/

utility suite for partial or full instance backups and restores. These can be
multi-threaded, so you can send the output to multiple backup devices to reduce
the amount of time that is required to create a backup or to perform a restore.

If you want to provide continuation of database services in the event of a natural
or human-made outage, you can purchase and use the Informix High Availability
Data Replication (HDR) option with IDS-WGE. With HDR, the results of data
manipulation statements, such as inserts, updates, or deletes are mirrored in real
time to a hot standby server. When in standby mode, the mirror copy supports
query operations and, as a result, can be used by report generation applications
to provide data rather than the production server. Depending on the number of
reporting applications, offloading their execution to the mirror server can provide
a measurable performance improvement to day-to-day operations.

If you want to use Enterprise Replication (ER) technology to distribute and
consolidate data throughout your environment, IDS-WGE servers can be leaf or
target nodes of replication events.

Enterprise Edition
Informix Dynamic Server Enterprise Edition (IDS-EE) includes the full feature set
of the data server. IDS can be deployed in any size environment that requires the
richest set of functionality that is supported by the most stable and scalable
architecture available in the market today. IDS has no processor, memory, or disk
access limitations other than those imposed by the operating system on which it
is installed.

In addition to HDR, IDS also includes Informix Enterprise Replication (ER), an
asynchronous mechanism for the distribution of data objects throughout the
enterprise. ER uses simple SQL statements to define the objects to replicate and
under what conditions replication occurs. ER preserves state information about
all the servers and what they have received, and guarantees delivery of data
even if the replication target is temporarily unavailable. Data flow can be either
unidirectional or bi-directional and several conflict resolution rule sets are
included to handle automatically near simultaneous changes to the same object
on different servers.

ER is flexible, and is platform and version independent. Data objects from an IDS
7 instance on Windows can be replicated to an IDS 11 instance on an AIX® or
other operating system without issue. The replication topology is completely
separate from the actual physical network topology and can be configured to
support fully-meshed, hierarchical, or forest of trees/snowflake connection paths.
ER can easily scale to support hundreds of nodes, each with varying replication
rules, without affecting regular transaction processing.

8 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

IDS supports concurrent operation of both HDR and ER, which gives a business
the ability to protect itself from outages as well as automatically migrate data
either for application partitioning or distribution and consolidation purposes.

Developer Edition
For application development and testing only, the developer edition (IDS-DE)
packs a full suite of functionality into an attractive price point: free. IDS-DE
includes all the functionality available in the enterprise edition. It contains
scalability limits for non-production use including processing, memory, and
storage limitations. It is available on a wide range of operating systems in 32-bit
and 64-bit versions where appropriate. IDS-DE comes without formal support
from IBM. A number of forums exist in the IDS development community, which
you can join for help and support using IDS-DE. You can upgrade IDS-DE
directly to any other edition simply by installing the new data server binaries.

1.4 IDS functionality

In this section we provide a brief overview of just a few of the IDS features and
functionality for familiarity.

Replication and high availability
In many respects, the functionality included here is one of the key advantages of
IDS. The high availability data replication (HDR) technology has the ability to
create multiple layers of secondary copies of the primary server. These layers
can be added or removed depending on network, server, or disk environments
and the level of protection needed to support your business continuity plans.

The first of the new server types is not really a part of HDR technology, rather it is
an extension to the IDS ontape utility and the ON-Bar suite. We include it here
because it forms part of the availability fabric. Called a Continuous Log Restore
(CLR) server, it supports the intermittent application of completed logical log
records from the primary to create a near-line copy. You can use this technology
in environments where network connectivity is not constant or the available
throughput is too slow to support any other kind of replication technology.

Remote Standby Secondary (RSS) servers are full copies of the primary, but are
maintained asynchronously, as opposed to the synchronous nature of
communication between the primary and the HDR secondary, regardless of its
replication mode. This feature is not just 1 to N HDR secondary, however. You

 Chapter 1. Introduction 9

can have as many RSS instances as you like. And although an RSS instance
cannot be promoted to become an HDR primary, it can become an HDR
secondary, after which it can be promoted to primary if needed.

However, RSS instances must be considered disaster recovery instances, not
high availability (HA) instances. RSS instances are deployed to expand the
real-time failover capability of an HDR environment. Another use is to provide
promotable redundancy. In the event of a primary failure, the RSS instance can
be promoted to the HDR secondary to protect the new primary instance. A third
benefit to an RSS instance is where the one and only failover server must be
located geographically distant from the primary and the network latency or
throughput is too great to support normal HDR replication.

The last of the expanded HDR server types is called the Shared Disk Secondary
(SDS) server. SDS instances provide redundancy and failover options because
they can be anywhere in the network. However, they do not protect against
disk-related failures.

In addition to providing availability and disaster recovery, the instances can also
participate in ER, further expanding your options for building a completely
failure-resistant environment.

Performance
A number of performance features are built into IDS. The following list details a
few examples:

� The high performance loader (HPL) utility can load data quickly, because it
can read from multiple data sources (such as tapes, disk files, pipes, or other
tables, as examples) and load the data in parallel. You can configure an HPL
job so that normal load tasks, such as referential integrity checking, logging,
and index builds, are performed either during the load or afterwards, which
speeds up the load time. You can also use the HPL to extract data from one or
more tables for output to one or more target locations.

� Parallel Data Query (PDQ) takes advantage of the CPU power provided by
SMP systems and an IDS virtual processor to execute fan-out parallelism.
PDQ is of greatest benefit to more complex analytical SQL operations. The
operation is divided into a number of subtasks, which are given higher or
lower priority for execution within the data servers resources based on the
overall PDQ priority level requested by the operation.

� The memory grant manager (MGM) works in conjunction with PDQ to control
the degree of parallelism by balancing the priority of OLAP-oriented user
requests with available system resources, such as memory, virtual processor
capacity, and disk scan threads. The IDS administrator can set query-type
priorities, adjust the number of queries allowed to run concurrently, and adjust
the maximum amount of memory used for PDQ-type queries.

10 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� The parallel scan feature takes advantage of table partitioning in two ways.
First, if the SQL optimizer determines that each partition must be accessed, a
scan thread for each partition executes in parallel with the other threads to
bring the requested data out as quickly as possible. Second, if the access
plan only calls for 1 to N-1 of the partitions to be accessed, another access
operation can execute on the remaining partitions so that two (or more)
operations can be active on the table or index at the same time. This can
provide a significant performance boost.

� The IDS cost-based optimizer determines the fastest way to retrieve data
based on detailed statistical information about the data within the database
generated by the UPDATE STATISTICS SQL command. The optimizer uses
this information to pick the access plan that provides the quickest access to
the data while trying to minimize the impact on system resources.

� Interval checkpoints are operations that are conducted by the data server to
insure the logical consistency of the data. However, with interval checkpoints,
service interruptions have been virtually eliminated. Memory writes occur in
the background allowing user transaction processing to continue. The net
result is a significant improvement in the number of transactions that can be
processed over time.

� SQL optimizer has the ability to rewrite SQL operations when it recognizes
query plans that require entire index scans. The enables query results to be
returned more quickly.

Security
IDS has security features to help businesses such as yours meet any regulatory
requirements. The first is the addition of Label-Based Access Control (LBAC),
which permits you to design and implement multi-level data access and control
labels and policies. These labels and policies are enforced regardless of the
method that is used to access the data. Policies can be as simple (public and
private) or as complicated as needed for your environment.

Another capability enables the instance to invoke automatically a specific
user-defined routine (UDR) whenever a session connects or disconnects from
the instance. This means you can now write a series of UDRs that are executed
when a user session connects and disconnects from the instance. These
routines can perform any functionality, including setting roles, specifying session
operating parameters, setting the isolation level or the output location of
optimizer reports, turning on (or off) monitoring functionality, and sending an
alert.

 Chapter 1. Introduction 11

IDS also has the ability to use filters in backup and restore operations. For
example, it provides the ability to use a filter in-line with the backup or restore
operation. This filter can re-encrypt the data before it leaves the instance for the
storage medium or perform other operations, such as compression, if the
hardware device does not support that functionality.

Administration
IDS has a graphical DBA tool called OpenAdmin Tool for IDS. Designed to help
DBAs answer the most commonly asked questions, it is written in Hypertext
Preprocessor (PHP) and works in conjunction with an Apache (or similar) Web
server to manage all instances in your environment without having to load
anything on the target servers. It has tasks and sensors to gather information and
execute operations.

Allowing a DBA more capability to maintain instances remotely is one of the
administration goals. With the OpenAdmin Tool, a single connection to an
instance can now permit a DBA to monitor and maintain multiple instances. The
instances can be local, on the same machine as the DBA, or in remote locations.

IDS delivers what is referred to as an administration free zone. Database
administration is integrated with the SQL Application Programming Interface
(API). This enables the DBA to have more control over the instance and the
ability to automate many tasks that typically require intervention. Many tasks can
be scripted by using SQL and stored procedures, making those tasks platform
independent and allowing a DBA to consolidate many of the tasks into a single
environment, or to monitor many environments.

Extensibility
IDS provides a complete set of extensibility features, including support for new
data types, routines, aggregates, and access methods. This object-relational
extensibility supports transactional consistency and data integrity while
simplifying database optimization and administration. Much of the functionality is
delivered with IDS DataBlades.

IBM Informix DataBlade® modules bring additional business functionality to the
data server through specialized user-defined data types, routines, and access
methods. Developers can use these new data types and routines to more easily
create and deploy richer applications that better address a company’s business
needs. IDS provides the same level of support to DataBlade functionality that is
accorded to built-in or other user-defined types and routines. With IBM Informix
DataBlade modules, you can manage almost any kind of information as a data
type within the data server.

12 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Several DataBlades are bundled as part of the data server, enabling application
developers to enrich their applications quickly and easily. This includes the
following blades:

� Binary DataBlade

The Binary DataBlade provides the ability to use two new indexable
extensible data types: binary18 and binaryvar. The binary18 data type is a
fixed-length data type that holds 18 bytes. Because this data type is fixed in
length, unused space is right-padded with zeros until the column length
reaches 18. The binaryvar data type is a variable-length type that can hold up
to 255 bytes of information.

� Basic Text Search DataBlade

This DataBlade expands the text string matching capabilities of the data
server through the creation of a specialized index that supports proximity (for
example, are two words within N words of each other) and fuzzy text
searches. More robust text search functionality is available through the IBM
Informix Excalibur Text DataBlade.

� Node

The Node DataBlade is a fully supported version of technology that has been
available for download from several IDS-oriented Web sites. It permits the
accurate and native modeling of hierarchical data, such as networks,
biological or botanical kingdoms, or your company’s organizational chart.
With it, you can address operations that require complicated and expensive
set processing or recursive SQL operations easily.

There is a growing portfolio of third-party DataBlade modules, and developers
can use the IBM Informix DataBlade Developer’s Kit (DBDK) to create
specialized blades for a particular business need.

The following list details some of the available IBM Informix DataBlade
technologies:

� IBM Informix TimeSeries DataBlade

This DataBlade provides a better way to organize and manipulate any form of
real-time, time-stamped data. Use this DataBlade for applications that use
large amounts of time-stamped data, such as network analysis,
manufacturing throughput monitoring, or financial tick data analysis.

� IBM Informix TimeSeries Real-Time Loader

A companion component to the IBM Informix TimeSeries DataBlade, the
TimeSeries Real-Time Loader is designed to load time-stamped data and
make it available to queries in real time.

 Chapter 1. Introduction 13

� IBM Informix Spatial DataBlade and the IBM Informix Geodetic DataBlade

These DataBlades provide functionality to manage complex geospatial
information intelligently, within the efficiency of a relational database model.
The IBM Informix Geodetic DataBlade stores and manipulates objects from a
whole-earth perspective using four dimensions: latitude, longitude, altitude,
and time. The IBM Informix Spatial DataBlade is a set of routines that are
compliant with open geographic information system (GIS) standards, which
take a flat-earth perspective to mapping geospatial data points. This
DataBlade is based on routines, utilities, and ESRI technology. While the IBM
Informix Geodetic DataBlade is a for-charge item, the IBM Informix Spatial
DataBlade is available at no charge to licensed users of IDS.

� IBM Informix Excalibur Text DataBlade

This DataBlade performs full-text searches of documents stored in database
tables and supports any language, word, or phrase that can be expressed in
an 8-bit, single-byte character set.

� IBM Informix Video Foundation DataBlade

This DataBlade allows strategic third-party development partners to
incorporate specific video technologies, such as video servers, external
control devices, codecs, or cataloging tools, into database management
applications.

� IBM Informix Image Foundation DataBlade

This DataBlade provides functionality for the storage, retrieval,
transformation, and format conversion of image-based data and metadata.

� IBM Informix C-ISAM® DataBlade

This DataBlade provides functionality to the storage and use of Indexed
Sequential Access Method (ISAM)-based data.

The current list of available IBM Informix DataBlade technologies is available at
the following Web page:

http://www.ibm.com/informix

Getting into the details
In the subsequent chapters of this book, we provide you with more detailed
information about both Oracle 10g and IDS. Understanding these environments
will better equip you to make your migration project a successful one.

14 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www.ibm.com/informix

Chapter 2. Architectural overview

In this chapter we give you an architectural overview of both Oracle and the
Informix Dynamic Server (IDS). This is meant to facilitate the understanding of
both architectures, taking into consideration that the reader may already be
familiar with either Oracle or IDS.

We includes the following topics:

� Oracle and IDS architectural overview including the following topics:
– Processes architecture
– Memory architecture
– Physical database architecture
– Logical database architecture
– Oracle data dictionary and IDS system catalog
– Database connectivity

� IDS editions and licensing

� Terminology

� Reasons to select IDS

2

© Copyright IBM Corp. 2009. All rights reserved. 15

2.1 The basic architectures

It is useful to understand the differences between Oracle and IDS architectures
before attempting the Oracle to IDS migration process. Both products include
their own memory architecture, background processes, database-related files,
and different configuration files. Both Oracle and IDS consist of an instance and
the databases attached to that instance. This section provides a general
description of the architectures of each vendor.

Figure 2-1 provides a visual overview of the Oracle architecture. The upper level
shows the memory architecture, which includes the system global area memory
(SGA) and the program global area memory (PGA). The middle level is the
processes component, and the bottom level shows the database components.

Figure 2-1 Oracle architecture overview

Figure 2-2 on page 17 provides a visual overview of the IDS Architecture. The
upper level shows the memory architecture, the middle level the processes, and
the bottom level shows the databases in the instance. As you can see, there can
be multiple databases on one IDS instance.

Oracle does not support multiple databases in a single instance, but uses the
concept of schemas to separate data. These schemas simulate multiple
databases, but are not equivalent to having multiple databases.

Java
Pool

Database
Buffer
Cache

Data
Dictionary

Cache
Library
Cache

Init.
Ora

Redo
Log

Buffer

Shared Pool

Large
Pool

Streams
PoolSGA

Instance

Oracle
Processes

Oracle
Database

P
G
A

Data
Files

Control
Files

Redo
Log
Files

Archive
Log
Files

User
Processes

RECO PMON ARCnCKPTDBWn LGWRSMON

16 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 2-2 IDS architecture overview

2.1.1 Memory architectures

Shared memory is an operating-system feature that allows the database server
threads and processes to share data by sharing access to pools of memory. The
database server uses shared memory for the following purposes:

� Reducing memory usage and disk I/O
� Performing high-speed communication between processes

Shared memory enables the database server to reduce overall memory usage
because the participating processes do not need to maintain private copies of the
data that is in shared memory.

Shared memory reduces disk I/O, because buffers, which are managed as a
common pool, are flushed on a database server-wide basis instead of a
per-process basis. Furthermore, a virtual processor can often avoid reading data
from disk because the data is already in shared memory as a result of an earlier
read operation. The reduction in disk I/O reduces execution time.

The following subsections discuss the memory architecture in both Oracle and
IDS. Oracle and IDS allocate and use memory for instance and database
operation. There are various memory structures used for the various processes.
In this section we give a overview about how memory is allocated and used in a
simple Oracle and IDS server.

Computer

IDS Instance

Resident
Segment

Virtual
Segment(s)

Message
Segment

CPU VPs AIO, LIO,
PIO VPs

ADM,
MISC
VPs

Crypto
VPs

Java
VPs

Custom
VPs

SYSMASTER
Database

SYSADMIN
Database

SYSUTILS
Database

User
Database1

User
Database2

User
Database4

User
Database3

Logical Logs

Physical Log

Root Dbspace User Dbspace1 User Dbspace2
M

em
or

y
Pr

oc
es

so
rs

D
is

k

 Chapter 2. Architectural overview 17

The memory architecture of an Oracle database consists of the memory area
allocated to the Oracle instance and database upon startup. The amount of
memory allocated is controlled by parameters defined in the Oracle configuration
file. The memory architecture of IDS is similar, but slightly different from Oracle’s.

Oracle
Oracle uses memory to run the code and share data among users. The two basic
components of the Oracle memory structure are the Program Global Area (PGA)
and the System Global Area (SGA). Figure 2-3 shows the memory architecture
of an Oracle server.

Figure 2-3 Oracle memory architecture

Program Global Area
The PGA is associated with the server process and contains the data and control
information. For the dedicated server configuration, the primary contents of the
PGA are the sort area, session information, cursor state, and stack space. This is
non-sharable memory, which is writable only by the server process. The PGA is
allocated whenever a server process starts. The total size of the PGA is
controlled by the PGA_AGGREGATE_TARGET initialization parameter in
version 10g.

System Global Area
The SGA is the shared memory region allocated for the entire Oracle instance. It
is comprised of a group of shared memory structures in which the basic
components are the shared pool, data buffer cache, and the redo log buffer. The
shared pool contains the library cache, data dictionary cache, along with buffers
for parallel execution messages and control structures. The library cache holds
the SQL statement text, the parsed SQL statement, and the execution plan. The
data dictionary cache contains reference information about tables, views, object
definitions, and object privileges.

SGA
Library
Cache

Data Dictionary
Cache

Shared Pool

Data
Buffer
Cache

Redo
Log

Buffer

PGA
Server Process

18 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The shared pool size is controlled by the SHARED_POOL_SIZE initialization
parameter. The data buffer cache stores the most recently used Oracle data
blocks. Oracle reads the data blocks from the datafiles and places them in data
buffers before processing the data. The number of buffers allocated is controlled
by DB_CACHE_SIZE. The redo log buffer is a circular buffer that contains redo
entries of the change information made to the database. These redo log buffers
are written into the redo log files and are required for database recovery. The
sizes of the redo log buffers are controlled by the LOG_BUFFER initialization
parameter. The other memory structures of the SGA include the large pool (used
for backup purposes) the Java™ pool (used for Java objects), and the streams
pool (used for streams memory). For a shared server configuration in version 10g
the session information and the sort areas are in SGA instead of PGA.

Informix Dynamic Server
IDS creates the following portions of the shared memory:

� Resident portion
� Virtual portion
� Message portion (for Inter Process Communication on UNIX)
� Virtual Extension portion

Figure 2-4 illustrates the shared memory segments in IDS.

Figure 2-4 Shared memory segments in IDS

Buffer-header table LRU queues

Physical-Log Buffer Logical-Log Buffer

Buffer Pool

Chunk Table Mirrored-Chunk Table

Dbspace Table Page Cleaner Table

Transaction Table User Table

Thread Structures Dictionary Cache

UDR Cache SQL Statement
Cache

Sorting Pool

Thread Stacks Thread Heaps

Unallocated Memory

Global Pool

Big Buffers

Client/server IPC messages

Tablespace
Table
Session

Structures

Lock Table

Shared Memory
Table

Virtual Segment (Dynamic)
Communication between application
thread and the database.
User context and row-cached
cursors.

Resident Segment
Communications between server
processes, logical and physical log
buffers, data buffer cache.

Message Segment
Communication between local
clients using shared memory and
the database.

 Chapter 2. Architectural overview 19

Resident portion of the shared memory
The resident portion of the IDS shared memory stores the following data
structures that do not change in size while the database server is running:

� Shared-memory header

The shared-memory header contains a description of all other structures in
shared memory, including internal tables and the buffer pool.

The shared-memory header also contains pointers to the locations of these
structures. When a virtual processor first attaches to shared memory, it reads
address information in the shared-memory header for directions to all other
structures.

� Buffer pool

The buffer pool in the resident portion of shared memory contains buffers that
store dbspace pages read from disk. The pool of buffers comprise the largest
allocation of the resident portion of shared memory.

In IDS, the bufferpool is created at the instance level and one instance can
have one or many user databases. You use the BUFFERPOOL configuration
parameter in the IDS instance ONCONFIG parameter file to specify
information about a buffer pool, including the number of buffers in the buffer
pool.

If you are creating a dbspace with a non-default page size, the dbspace must
have a corresponding buffer pool. For example, if you create a dbspace with
a page size of 8 kilobytes, you must create a buffer pool with a page size of 8
kilobytes.

If a buffer pool for a non-default page size does not exist, the database server
will automatically create a large-page buffer.

� Logical log buffer

The database server uses the logical log to store a record of changes to the
database server data since the last dbspace backup. The logical log stores
records that represent logical units of work for the database server. The
logical log contains the following five types of log records, in addition to many
others:

– SQL data definition statements for all databases
– SQL data manipulation statements for databases created with logging
– Record of a change to the logging status of a database
– Record of a checkpoint
– Record of a change to the configuration

The IDS logical log buffer is similar to the Oracle redo log buffer. The
database server uses only one of the logical log buffers at a time. This buffer
is the current logical log buffer. Before the database server flushes the current

20 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

logical log buffer to disk, it makes the second logical log buffer the current one
so that it can continue writing while the first buffer is flushed. If the second
logical log buffer fills before the first one finishes flushing, the third logical log
buffer becomes the current one.

The LOGBUFF configuration parameter in the ONCONFIG file specifies the
size of the logical log buffers. There is one set of logical log buffers for all the
databases in the IDS instance. The recommended value for the size of a
logical log buffer is 64 kilobytes.

� Physical log buffer

The physical log buffer holds before-images of the modified pages in the
buffer pool. This is similar to the Oracle UNDO space. The before-images in
the physical log and the logical log records enable the database server to
restore consistency to its databases after a system failure.

The physical log buffer is actually two buffers. Double buffering permits the
database server processes to write to the active physical log buffer while the
other buffer is being flushed to the physical log on disk.

The PHYSBUFF parameter in the ONCONFIG file specifies the size of the
physical log buffers. The default value for the physical log buffer size is 512
kilobytes.

� Lock table

Locks can prevent sessions from reading data until after a concurrent
transaction is committed or rolled back. A lock is created when a user thread
writes an entry in the lock table. The lock table is the pool of available locks,
and a single transaction can own multiple locks.

The following information is stored in the lock table:

– The address of the transaction that owns the lock
– The type of lock (exclusive, update, shared, byte, or intent)
– The page or ROWID that is locked
– The table space where the lock is placed
– Information about bytes locked (byte-range locks for smart large objects)

The LOCKS configuration parameter specifies the initial size of the LOCK table.
If the number of locks allocated by sessions exceeds the value specified in the
LOCKS configuration parameter, the database server doubles the size of the
lock table, up to 15 times.

 Chapter 2. Architectural overview 21

Virtual Portion of the Shared Memory
The virtual portion of shared memory is expandable by the database server and
can be paged out to disk by the operating system. As the database server
executes, it automatically attaches additional operating-system segments, as
needed, to the virtual portion. The database server uses memory pools to track
memory allocations that are similar in type and size.

The database server allocates virtual shared memory for each of its subsystems
(session pools, stacks, heaps, control blocks, system catalog, SPL routine
caches, SQL statement cache, sort pools, and message buffers) from pools that
track free space through a linked list. When the database server allocates a
portion of memory, it first searches the pool free-list for a fragment of sufficient
size. If it finds none, it brings new blocks into the pool from the virtual portion.
When memory is freed, it goes back to the pool as a free fragment and remains
there until the pool is destroyed. When the database server starts a session for a
client application, for example, it allocates memory for the session pool. When
the session terminates, the database server returns the allocated memory as
free fragments.

The SHMVIRTSIZE parameter in the ONCONFIG file specifies initial size of the
virtual shared-memory portion. SHMADD or EXTSHMADD configuration
parameters specify the size of segments that are added later to the virtual shared
memory.

The virtual portion of shared memory stores the following data:

� Internal tables
� Big buffers
� Session data
� Thread data (stacks and heaps)
� Data-distribution cache
� Dictionary cache
� SPL routine cache
� SQL statement cache
� Sorting pool
� Global pool

See the Informix Dynamic Server Administrator’s Guide, G229-6359, for more
information about these components.

Message portion of the shared memory
The database server allocates memory for the IPC communication portion of
shared memory if you configure at least one of your connections as an IPC
shared memory connection. The database server performs this allocation when
you set up shared memory.

22 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The communications portion contains the message buffers for local client
applications that use shared memory to communicate with the database server.
The size of the communications portion of shared memory equals approximately
12 kilobytes multiplied by the expected number of connections needed for
shared-memory communications.

2.1.2 Process architectures

Now lets take a look at the process architectures of Oracle and IDS.

Oracle
There are two types of Oracle processes:

� User
� Background

Figure 2-5 illustrates these two types of processes in Oracle.

Figure 2-5 Oracle process architecture

User processes
Oracle creates a user process when the user or application connects to the
database. For each user process, a server process is created by Oracle to
handle the user process request to an Oracle instance. This architecture works
when the client is on a different machine. When the client and the server are on
the same machine, the user process and server process are combined into a
single process. The function of the server process is to parse the SQL statement,
read the Oracle data blocks from the datafiles to the data buffer, and return the
result set to the client.

PSMONUser
Processes

Background
Processes

QMNn

SMON

DBWn

RECO

LGWR

ARCn

CKPT

 Chapter 2. Architectural overview 23

Background processes
Oracle requires a number of processes to be running in the background to be
operational and open to users. These processes are as follows:

� Database writer (DBWR)

This background process writes all dirty data blocks from the database buffer
cache to the datafiles on disk. The DBA can configure multiple DBWR
processes to improve performance.

� Log writer (LGWR)

This is the process that handles writing data from the redo log buffer cache
onto the redo log files.

� System monitor (SMON)

This process performs an instance recovery when the Oracle instance fails,
and it coalesces smaller fragments of disk space together.

� Process Monitor (PMON)

This process cleans up any remaining Oracle processes resulting from a
failing user process. Furthermore, it rolls back any uncommitted transactions
that were performed by the user.

� Checkpoint (CKPT)

This process writes log sequence numbers to the database headers and
control files.

� Recoverer (RECO)

This process automatically resolves failures in distributed transactions when
using the distributed database configuration.

� Archiver (ARCn)

This process is used for ARCHIVELOG mode when automatic archiving is
enabled, to copy redo log files to a designated storage device after a log
switch.

� Queue Monitor (QMNn)

This optional process monitors message queues when using Oracle Streams
Advanced Queuing.

Informix Dynamic Server
Informix Dynamic Server processes are called virtual processors because the
way they function is similar to the way that a CPU functions in a computer. Just
as a CPU runs multiple operating-system processes to service multiple users, a
database server virtual processor runs multiple threads to service multiple SQL
client applications.

24 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Threads
A thread is a task for a virtual processor in the same way that the virtual
processor is a task for the CPU. The virtual processor is a task that the operating
system schedules for execution on the CPU. A database server thread is a task
that the virtual processor schedules internally for processing.

Threads are sometimes called lightweight processes because they are like
processes, but they make fewer demands on the operating system. Database
server virtual processors are multi-threaded because they run multiple
concurrent threads.

A virtual processor runs threads on behalf of SQL client applications (session
threads) and also to satisfy internal requirements (internal threads). In most
cases, for each connection by a client application, the database server runs one
session thread. The database server runs internal threads to accomplish, among
other things, database I/O, logging I/O, page cleaning, and administrative tasks.

A user thread is a database server thread that services requests from client
applications. User threads include session threads, called sqlexec threads,
which are the primary threads that the database server runs to service client
applications. Figure 2-6 illustrates virtual processes (VPs) in IDS instance.

Figure 2-6 IDS instance with VPs

Disks

CPU
VPs

Java
VPs*

Custom
VPs*AIO*,

LIO, PIO
VPs

ADM,
MISC
VPs

Local Client
Processes

NET
VPs*

Crypto
VPs*

Remote Client Processes
SQL

Execution

I/O
Processing

Java UDRs

Column-level
Encryption

Shared Memory

Communications

 Chapter 2. Architectural overview 25

Types of VPs in IDS
A VP is a process that the operating system schedules for executing tasks. IDS
has different classes of VPs, and each class is dedicated to processing certain
types of threads.

The number of VPs of each class that you configure depends on the availability
of physical processors (CPUs), hardware memory, and the database applications
in use.

The following list details different types of VPs in IDS:

� CPU VP

Runs all session threads and some system threads. Runs thread for kernel
asynchronous I/O (KAIO) where available. Can run a single poll thread,
depending on the configuration.

� PIO VP

Writes to the physical log file (internal class) if it is in cooked disk space.

� LIO VP

Writes to the logical log files (internal class) if they are in a cooked disk space.

� AIO VP

Performs nonlogging disk I/O. If KAIO is used, AIO virtual processors perform
I/O to cooked disk spaces.

� SHM VP

Performs shared memory communication.

� TLI VP

Uses the transport layer interface (TLI) to perform network communication.

� SOC VP

Uses sockets to perform network communication.

� OPT VP

Performs I/O to optical disk in UNIX.

� ADM VP

Performs administrative functions.

� ADT VP

Performs auditing functions.

� MSC VP

Services requests for system calls that require a large stack.

26 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� CSM VP

Communications Support Module. Performs communications support service
operations.

� Encrypt VP

Used by the database server when encryption or decryption functions are
called.

� Java VP (JVP)

Contains the Java Virtual Machine (JVM™), and executes Java UDRs.

� User Defined VP

Runs user-defined routines in a thread-safe manner so that if the routine fails,
the database server is unaffected. Specified with the VPCLASS configuration
parameter.

Advantages of IDS Virtual Processors (VPs)
Compared to a database server process that services a single client application,
the dynamic, multi-threaded nature of IDS virtual processors provide the
following advantages:

� Can share processing.

� Saves memory and resources.

� Performs parallel processing.

� You can add virtual processors to meet increasing demands for service while
the database server is running, and then terminate them when they are no
longer needed.

� You can bind virtual processors to CPUs.

See Informix Dynamic Server Administrator’s Guide, G229-6359 for more
information about the IDS Virtual Processors.

 Chapter 2. Architectural overview 27

2.1.3 Physical database structures

In this section we look at the Oracle and IDS physical database structures.

Oracle
The physical structure of Oracle database consists of datafiles, control files, redo
log files, archive log files, parameter file, alert log files, and trace log files.

Figure 2-7 illustrates these components of a physical Oracle database.

Figure 2-7 Oracle database files

Datafiles
Every Oracle database consists of one or more table spaces. Each table space is
a logical collection of one or more datafiles. Oracle data objects (tables and
indexes) are stored in the table spaces. You can expand the size of the table
space by either adding more datafiles or by resizing the datafiles that are already
added to the table space.

An Oracle datafile can be set to grow automatically as, and when, more space is
needed.

Control files
Every Oracle database includes a control file. A control file records the changes
made to the physical structure of the database. For example, if you add a new
datafile to a table space, an entry is made in the control file to record this change.

A control file contains the following information:

� Database name
� Name and path of all the redo log files
� Name and path of all the datafiles in the table spaces
� Database creation time

Oracle can maintain multiple copies of the control files to protect itself from disk
failures.

Control
File

Redo Log
FilesDatafiles

Database

Alert and
Trace Log

Files

Password File

Parameter File

28 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Redo log files and archive log files
Oracle redo log files store transactional records which are also known as redo
records. An Oracle database consists of two or more redo log files that can be
multiplexed. That is, two or more copies of the redo logs can be maintained to
prevent losing the redo files because of disk failures. The redo logs are used to
recover the database from system and media failures.

When the Oracle database is running in archive log mode, you can archive the
redo log files. Archived redo log files are called archive log files.

Initialization parameter files
The Oracle initialization parameter file contains the values for many initialization
parameters used to allocate memory and start the process for the instance to
run. When you start an Oracle database instance, Oracle reads the initialization
parameters from the initialization parameter file. You can also choose to store
the initialization parameters in a binary server parameter file called SPFILE.

Alert log file and trace log files
The alert and trace log files are the diagnostics files used by the Oracle instance
to record all the dump information of the database such as internal errors, block
corruption errors, and so forth.

These log files are used by Oracle DBAs and Oracle support team for
troubleshooting issues with the database.

Password file
The password file is a security file used for authenticating which users are
permitted to start up or shut down an instance or perform other privileged
maintenance on a database with SYSDBA or SYSOPER privileges, and
additionally, OSDBA or OSOPER privileges.

Informix Dynamic Server
The physical structures of a IDS instance include chunks, the ONCONFIG
configuration file, logical log files, a physical log file, and a message file.

Chunks
A chunk in IDS is same as a datafile in Oracle. A chunk is the largest unit of
physical disk dedicated to database server data storage. The maximum size of
an individual chunk is four terabytes. A chunk can be a regular operating system
file (cooked file) or a raw disk device. We will discuss more about chunks when
we talk about dbspaces later in this chapter.

 Chapter 2. Architectural overview 29

Configuration file (ONCONFIG file)
It is important to know that one Oracle instance consists of only one Oracle
database, whereas one IDS Instance (also known as IDS Database Server)
consists of one or more IDS databases.

Each IDS configuration file consists of configuration parameters that are used to
initialize the IDS instance. The IDS instance configuration file is also known as
ONCONFIG file.

You can set the ONCONFIG environment variable to specify the name and
location of the IDS instance configuration file, as shown in the following
command:

set ONCONFIG=$INFORMIXDIR/etc/ONCONFIG.prod

If you start the database server with oninit command and do not explicitly set
the ONCONFIG environment variable, the database server looks for
configuration values in the $INFORMIXDIR/etc/onconfig.std file.

Logical log files
To keep a history of transactions and database server changes since the time of
the last storage-space backup, the database server generates log records. The
database server stores the log records in the logical log, a circular file that is
composed of three or more logical log files. The log is called logical because the
log records represent logical operations of the database server, as opposed to
physical operations. At any time, the combination of a storage-space backup
plus logical log backup contains a complete copy of your database server data.

In Oracle, each database instance has its own set of redo log files, whereas in
IDS all the databases in the instance share one set of logical log files.

When you initialize or restart the database server, it creates the number of logical
log files that you specify in the LOGFILES configuration parameter. The size of
the logical log files is specified with LOGSIZE parameter in the ONCONFIG
parameter file.

When the database server initializes disk space, it places the logical log files in
the default root dbspace. You have no control over this action. To improve
performance (specifically, to reduce the number of writes to the root dbspace and
minimize contention), move the logical log files out of the root dbspace to a
dbspace on a disk that is not shared by active tables or the physical log.

To improve performance further, separate the logical log files into two groups and
store them on two separate disks (neither of which contains data). For example, if
you have six logical log files, you might locate files 1, 3, and 5 on disk 1, and files

30 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

2, 4, and 6 on disk 2. This arrangement improves performance because the
same disk drive never has to handle writes to the current logical log file and
backups to tape at the same time.

The logical log files contain critical information and should be mirrored for
maximum data protection. If you move logical log files to a different dbspace,
plan to start mirroring on that dbspace.

Physical log file
The physical log is used to record before images (first copy) of pages that have
been modified in shared memory. This is same as the Oracle UNDO space.

When the database server initializes disk space, it places the physical log in the
default root dbspace. To improve performance, you can move the physical log
out of the root dbspace to another dbspace, preferably to a disk that does not
contain active tables or the logical log files.

The value stored in the ONCONFIG parameter PHYSFILE defines the size of
your physical log when the database server is initially created. Once the
database server is online, use the onparams utility to change the physical log
location and size.

Message log file
The database server writes status and error information to the message log file.
You specify the filename and location of the message log with the MSGPATH
configuration parameter. A message log file is similar to the Oracle alert log file.

The default name and location of the message log is on UNIX is
$INFORMIXDIR/tmp/online.log.

Reserved Pages in Root DB Space
The first 12 pages of the initial chunk of the root dbspace are reserved pages.
Each reserved page contains specific control and tracking information used by
the database server. These reserved pages serve approximately, but not exactly,
the same function of the control file in Oracle. You can obtain a listing of the
contents of the reserved pages by executing the oncheck -pr command.

Note: See the IDS Administrator’s Guide, G229-6359, for more information
about logical and physical log files.

 Chapter 2. Architectural overview 31

2.1.4 Logical database structures

In this section we look at the Oracle and IDS logical database structures.

Oracle
Oracle logical database structures include data blocks, extents, segments, and
table spaces.

Data block
Data block in Oracle is same as page in IDS. This is the smallest unit of I/O that
is read/written to disk. The default Oracle block size is specified with the
DB_BLOCK_SIZE initialization parameter. The default value of db_block_size is
8192 bytes and it can range from 2048 to 32768 bytes.

Extent
An extent is collection of contiguous data blocks. Database space for the tables
and indexes is allocated in units called extents. In Oracle, you can specify the
initial and next extent size of a table or index at table or index creation time.

Segment
A segment is a logical collection of extents that belong to a specific database
object, such as a table or index. There are four types of segments in Oracle:

� Data Segment

Each table has its own data segment in which to store its data.

� Index Segment

Each index has its own segment in which to store its data.

� Temporary Segment

Oracle creates temporary segments when it needs space for certain
operations, such as sorts and grouping.

� Rollback Segment

In earlier versions of Oracle (and still supported in 10g) Oracle allowed users
to use rollback segments to manage undo space. Oracle supports automatic
undo space management, which is the recommended method of managing
undo space.

32 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Tablespace
An Oracle database is a logical collection of storage units called tablespaces.
Each tablespace is used to group together logically database objects such as
tables and indexes. And there are two types of tablespaces:

� Smallfile tablespace
� Bigfile tablespace

A smallfile tablespace is a traditional Oracle tablespace. The name comes from
how you allocate space to the tablespace. As the name implies, a smallfile
tablespace is a collection of small datafiles. You can add space to a smallfile
tablespace either by adding new datafiles to it or by extending the size of already
added datafiles.

Every Oracle database has two default tablespaces, SYSTEM and SYSAUX
Both of these tablespaces are created as smallfile tablespaces.

A bigfile tablespace contains only a single large datafile. This is useful in 64-bit
environments where you can create one large datafile on the operating system
and attach just one large datafile to the database.

Informix Dynamic Server
IDS logical database structures include pages, extents, tablespaces, and
dbspaces.

Page
A page is the minimum I/O that is read/written to disk. The default size of a page
is 2 KB on most UNIX systems, and 4 KB on AIX and Windows.

IDS introduced configurable page sizes in IDS version 10, which allows users to
create dbspaces with multiple page sizes up to 16 K.

Extent
Disk space for a table or index is allocated in units called extents. An extent is an
amount of contiguous pages on disk. Extent size is specified for each table or
index when the table or index is created.

The default size of initial extent and next extent is four times the size of the page
in the dbspace.

Tablespace
An IDS tablespace is the same as an Oracle segment. A tablespace in IDS is a
logical collection of extents that are allocated for a database object.

 Chapter 2. Architectural overview 33

Dbspace
IDS dbspace is similar to Oracle tablespace, with some differences. A dbspace is
a logical collection of one or more chunks. It can have between 1 and 32,767
chunks, and a dbspace chunk can be a cooked file or a raw device.

Important characteristics of IDS dbspaces are as follows:

� IDS dbspaces can contain the objects of one or more databases, whereas an
Oracle tablespace can contain the objects of only one database.

� Every IDS instance contains a default dbspace called root dbspace, and
logical and physical logs are created in the root dbspace by default.

A dbspace can be of type dbspace, temporary dbspace, simple blobspace,
smartblob space, and external dbspace.

� Dbspace

An IDS dbspace is a regular dbspace that can contain tables, indexes, logical
logs, and physical logs. It is recommended to move the logical and physical
logs from root dbspace to user defined dbspace for better performance.

You need to create at least one user dbspace before you create an IDS
database. Specify the name of the default dbspace for each database, with
the <dbspace> option, when you create the database (with the CREATE
DATABASE command). If you do not specify the in <dbspace> option at the
time of the database creation, the database is created in the default root
dbspace. This is not recommended.

� Temporary dbspace

A temporary dbspace is a dbspace reserved for the storage of temporary
tables. This temporary dbspace is temporary only in the sense that the
database server does not preserve any of the dbspace contents when the
database server shuts down abnormally.

The database server does not perform logical or physical logging for
temporary dbspaces. Because temporary dbspaces are not physically
logged, fewer checkpoints and I/O operations occur, which improves
performance.

� BlobSpace dbspace

A blobspace is a type of dbspace that is composed of one or more chunks
that store only simple large objects. Simple large objects consist of TEXT or
BYTE data types from any columns or any tables (from any database).

A blobpage is the basic unit of storage for blob data types stored in a
blobspace. It is configured to be a multiple of the system page size. The
database server writes data stored in a blobspace directly to disk. That is, this
data does not pass through resident shared memory.

34 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� SBspace dbspace

An SBspace is a special type of dbspace composed of one or more chunks
that store smart large objects that are of type BLOB (binary large object),
CLOB (character large object), or a user-defined data type (UDT).

Smart large object pages have the same size and format as standard system
data pages. If buffering is turned on in the database, the database server
uses private buffers in the virtual portion of shared memory for buffering
sbspace pages.

2.1.5 Data dictionary and system catalog

Every RDBMS has a form of metadata that describes the database and its
objects. Essentially, the metadata contains information about the logical and
physical structure of the database, integrity constraints, user and schema
information, authorization, privilege information, and so on.

Oracle
In the Oracle database, metadata is stored in a set of read-only tables and views
called the data dictionary. These tables and views are updated by the Oracle
server. The data dictionary is owned by the user SYS and stored in the SYSTEM
tablespace. The base tables are all normalized and are seldom accessed
directly, hence, user accessible views are created using the catalog.sql script.
The data dictionary is organized under three qualifiers:

� USER_xxx views

The USER_xxx views show the object information owned by the current user.

� ALL_xxx views

The ALL_xxx views show all the object information that can be accessed by
the current user.

� DBA_xxx views

The DBA_xxx view is the database administrator view and contains
information about all the objects in the database.

Apart from the data dictionary, Oracle maintains another set of virtual tables
called the dynamic performance views. The views created on them are prefixed
by V$. These views are called the fixed views, and are available when the
instance is started, without the need of the database to be opened.

 Chapter 2. Architectural overview 35

Informix Dynamic Server
In IDS, the data dictionary is divided into two parts, system catalog tables and the
system monitoring interface (SMI) database.

System catalog tables
In IDS, the system catalog tables are automatically created when you create a
database. Each system catalog table contains specific information about
elements in the database, much the same as the Oracle data dictionary.

System catalog tables track objects such as the following database objects:

� Tables, views, sequences, synonyms, and sequence objects
� Columns, constraints, indexes, and fragments
� Triggers
� Procedures, functions, routines, and associated messages
� Authorized users and privileges
� User-defined routines
� Data types and casts (IDS)
� Aggregate functions (IDS)
� Access methods and operator classes (IDS)
� Inheritance relationships (IDS)
� External optimizer directives (IDS)

System monitoring interface
In addition to the system catalog tables, IDS also maintains a separate system
database called system monitoring interface (SMI). Each IDS instance contains
one SMI database. It is created when you initialize the database server instance
for the first time.

The SMI consists of tables and pseudo-tables that the database server maintains
automatically. While the SMI tables appear to the user as tables, they are not
recorded on disk like normal tables. Instead, the database server constructs the
tables in memory, on demand, based on information in shared memory at that
instant. When you query an SMI table, the database server reads information
from these shared-memory structures. Because the database server continually
updates the data in shared memory, the information that SMI provides lets you
examine the current state of your database server.

The SMI tables provide information about the following topics:

� Auditing
� Checkpoints
� Chunk I/O
� Chunks
� Database-logging status
� Dbspaces

36 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� Disk usage
� Environment variables
� Extents
� Locks
� Networks
� SQL statement cache statistics
� SQL tracing
� System profiling
� Tables
� User profiling
� Virtual-processor CPU usage

The data in the SMI tables changes dynamically as users access and modify
databases that the database server manages.

SMI tables can be queried directly with select statements. IDS system monitoring
utilities, such as onstat, also read data from SMI tables.

Table 2-1 gives you some examples of Oracle data dictionary entries, and
equivalent IDS catalog tables.

Table 2-1 Oracle and IDS system catalog tables

Oracle Data Dictionary IDS System Catalog

DBA_TABLES SYSTABLES

DBA_TAB_COLUMNS SYSCOLUMNS

DBA_TABLESPACES SYSDBSPACES (SMI Table)

DBA_INDEXES SYSINDICIES

DBA_TAB_PRIVS SYSTABAUTH

DBA_TRIGGERS SYSTRIGGERS

DBA_VIEWS SYSVIEWS

DBA_SEQUENCES SYSSEQUENCES

DBA_PROCEDURES SYSPROCEDURES

Note: The complete list of IDS system catalog tables can be found in the IDS
11.5 Guide to SQL: Reference, G229-6374. The complete list of SMI tables
can be found in the IDS 11.5 Administrator’s Reference, G229-6360.

 Chapter 2. Architectural overview 37

2.1.6 Database server communication

In this section we give an overview of the communication architecture that
enables simple client-server communication in Oracle and IDS environments,
and some of the tools used to connect to the database.

Database access
This section discusses the tools and utilities used in Oracle and IDS for
connecting to the database on the database server, and from a client application.

Oracle
Oracle provides the SQL*Plus tool for command line access to the database
server. SQL*Plus also comes with a GUI version.The Oracle client installation
installs the SQL*Plus tool, Oracle Net Services software, ODBC drivers, and
other tools. This software provides basic client-server communication to access
the database server.

The client-server communication in Oracle Server is handled by Oracle Net
Services. Oracle Net Services support communications on all major protocols.
The Oracle Net Services provide a communication interface between the client
user process and the Oracle server process, enabling the data transmission and
message exchange between Oracle server and client. The Oracle Net Services
uses a technology called Transparent Network Substrate (TNS) to perform these
tasks. The TNS enables peer-to-peer application connectivity, where the two
nodes communicate with each other directly.

The Oracle Net Services provides the listener process that resides in the Oracle
server, which listens for incoming client connection requests, and maps them to
the Oracle instance. The listener is configured with one or more protocol
addresses. The client is configured with one of these protocol address and can
send connection requests to listener. A configuration file, listener.ora, is
maintained in the Oracle server that contains the protocol address, database
service information, and listener configuration parameters. The listener process
is controlled by the LSNRCTL utility. The LSNRCTL utility reads the listener.ora
file and starts the listener process. The server services information in the client is
maintained in a file called tnsnames.ora. Oracle Net Configuration Assistant and
Net Manager are graphical utilities used to configure the Oracle Net Services
such as listener, service naming, and so on.

38 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Informix Dynamic Server
IDS provides DB Access Utility, a cursor-based utility installed on the database
server for local SQL connections to run ad-hoc queries. Application programmers
can install IBM Informix Client Software Development Kit (Client SDK) on the
remote clients to connect to IDS databases remotely. IDS databases can also be
connected to using JDBC™, as can Oracle.

DB Access Utility

An IDS installation includes the DBACCESS utility. DBACCESS is a
cursor-based tool, providing a user interface for entering, executing, and
debugging SQL statements and Stored Procedure Language (SPL) routines. You
can also start DBACCESS in menu mode and select options from the menus.

As examples, DBACCESS can be used for the following tasks:

� Ad hoc queries that are executed infrequently.

� Connecting to one or more databases and displaying information about a
database.

� Displaying system catalog tables and the information schema.

� Practicing the statements and examples provided in the IBM Informix Guide
to SQL: Tutorial, G229-6427.

Client Software Development Kit (Client SDK)

The IBM Informix Client Software Development Kit (Client SDK) includes several
application programming interfaces (APIs) that developers can use to write
applications for Informix database servers in ESQL, C, Java, and .Net.

Applications that run on client computers require Informix Connect to access
database servers. Informix Connect is a runtime connectivity product composed
of runtime libraries that are included in Client SDK.

The components included in client SDK are as follows:

� IBM Informix .NET provider (Windows only)
� IBM Informix add-Ins for visual studio 2003 and 2005
� IBM Informix ESQL/C with XA support
� The finderr utility on UNIX systems
� The Informix error messages utility on Windows systems
� The global security kit
� IBM Informix Object Interface for C++
� IBM Informix ODBC driver with MTS support
� IBM Informix OLE DB provider (Windows only)
� The ILogin utility (Windows only)
� IBM Informix password communications support module (CSM)

 Chapter 2. Architectural overview 39

SQLHOSTS file and registry key

IDS supports TCP/IP, IPX/SPX, sockets, shared memory, stream pipe, and
named pipe connections. The Informix SQLHOSTS file (on UNIX) or SQLHOSTS
registry key (on Windows) contains client/server connectivity information that
enables a client application to find and connect to any Informix database server
in the network.

On UNIX, the sqlhosts file resides in the $INFORMIXDIR/etc directory by default.
As an alternative, you can set the INFORMIXSQLHOSTS environment variable
to the full path name and filename of a file that contains the sqlhosts file
information. On UNIX, each computer that hosts a database server or a client
must have an sqlhosts file. Each entry (each line) in the sqlhosts file contains the
sqlhosts information for one database server.

On Windows, When you install the database server, the setup program creates
the following key in the Windows registry:

HKEY_LOCAL_MACHINE\SOFTWARE\INFORMIX\SQLHOSTS

This branch of the HKEY_LOCAL_MACHINE subtree stores the sqlhosts
information. Each key on the SQLHOSTS branch is the name of a database
server. When you click the database server name, the registry displays the
values of the HOST, OPTIONS, PROTOCOL, and SERVICE fields for that
particular database server.

Each computer that hosts a database server or a client must include the
connectivity information either in the sqlhosts registry key or in a central registry.
When the client application runs on the same computer as the database server,
they share a single sqlhosts registry key.

Example 2-1 depicts the an SQLHOSTS file on a UNIX server.

Example 2-1 Sample SQLHOSTS file entries

dbservername nettype hostname servicename options

inst_tcp onsoctcp localhost inst_svc b=8192
inst_tcp onsoctcp 192.1.1.11 1523

2.2 IDS licensing

IDS can be licensed through one of the following three pricing metrics,
depending on your needs.

40 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Value unit
This is also known as processor-based pricing. It is calculated on the number of
processor cores in the physical server multiplied by the corresponding value units
based on the processor architecture. This could be considered an unlimited user
or connection license and is usually the optimal choice when the user or session
load cannot be controlled or counted.

Authorized user
Authorized user is a single named user accessing one installation of IDS on a
single physical server. That authorized user can establish multiple connections to
an IDS instance on the server. Each connection is for the exclusive use of that
one authorized user from a single client device.

Concurrent session
Concurrent session is a single logical connection from a client device to an IDS
instance on a single physical server. Each connection, whether active or not,
requires a license, regardless of whether it comes from one client device with
multiple users or a single user establishing multiple connections. If connection
concentrators or multiplexers are used in the application pathway, the number of
concurrent sessions is counted from the client device, not at the IDS level.

2.3 Terminology

Before getting into the migration process, a clear understanding of the
terminologies used in Oracle and IDS can help you map functionality used in
Oracle and IDS. This section discusses some of the terminology used by Oracle
and IDS, and how they map to each other.

Terminology mapping
Table 2-2 on page 42 provides a quick reference of some of the commonly used
terminology in Oracle and IDS.

Important: The previous descriptions provide only a summary of the licensing
definitions. They are not intended to be full and legally binding. For a full and
complete description, refer to the IDS licensing agreement. Not all pricing
models are available for all IDS editions.

 Chapter 2. Architectural overview 41

Table 2-2 Oracle and IDS terminology mapping

Oracle IDS

Instance Instance

Database Database

Initialization File (init.ora file) Configuration File (onconfig file)

Tablespace DB Space

Data block Page

Extent Extent

Segment Table space

Datafile Chunk

Redo Log File Logical Log File

PL/SQL SPL (Stored Procedural Language)

Data Buffer Buffer Pool

SGA Shared Memory

Data Dictionary System Catalog and SYSMASTER Database

UNDO Space Physical Log

Hints Optimizer Directives

Data Dictionary Cache Dictionary Cache

SYSTEM table space Root DB Space

Background Process Virtual Processor

Partitioning Fragmentation

Temporary Tablespace Temporary DB Space

Multiplex Mirror

Oracle Parallel Query Parallel Data Query (PDQ)

Archive Log Logical Log Backup

Oracle Lable Security Informix Lable Based Access Control (LBAC)

Checkpoint Checkpoint

42 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Chapter 3. Migration methodology

Database migration requires proper planning, regardless of how it is performed
or the resources used. Unexpected delays in project execution can be avoided
by following well-planned migration procedures. In this chapter we describe an
IBM migration methodology and the resources that are available to assist you in
making that migration a success.

The following topics are discussed in this chapter:

� Pre-migration steps
� Migration
� Post-migration steps

3

© Copyright IBM Corp. 2009. All rights reserved. 43

3.1 An IBM migration methodology

The IBM Data Management Services Migration Center has developed a
best-practices methodology to help clients develop a plan for how to best migrate
their database environment to Informix. You can use this methodology to perform
your own migration project, or you can contract the fee-based services of the IBM
Migration Center.

The migration team from IBM provides free assistance for many pre-migration
tasks. The team consists of technical specialists whose mission is to facilitate
and assist with all phases of a migration to Informix. The team has assisted
hundreds of clients with their migrations and has database administration and
application development skills for the source databases (Oracle, SQL Server®,
and Sybase) that will be migrated to Informix.

Some of the tasks that the migration team provides assistance with are as
follows:

� Selection of application areas to migrate
� Assessment of migration complexity
� Ballpark migration estimates delivered in hours
� Sample database and code migrations
� Migration tool selection and demonstrations
� Problem resolution related to the migration
� Selection of migration services
� Database administration
� SQL application development comparisons

The IBM Data Management Services Migration Center consists of a team of
migration specialists that can perform the entire migration, or can partner with
your team for a more cost-effective solution. Alternatively, the Migration Center
can simply provide direction and advice on an as-needed basis at an hourly rate.
The IBM Data Management Services Migration Center team can be contacted
through your IBM Sales Representative.

For more information about the IBM Data Management Services Center, visit the
following Web page:

http://www-01.ibm.com/software/solutions/softwaremigration/dbmigteam.html

The IBM migration methodology consists of the following primary phases:

� Preparation
� Migration
� Test
� Implementation and cutover

44 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www-01.ibm.com/software/solutions/softwaremigration/dbmigteam.html

Typically a migration project is an iterative process that consists of multiple
rounds of migration, testing, and refinement. Each phase has specific objectives
and deliverables, and is described in the following sections of this chapter.

3.2 Migration preparation

The migration preparation phase includes all the activities that take place before
setting up the system and migrating the database, database objects, and data. In
this phase, it is essential to focus on system architecture analysis and
information gathering to make decisions about how the migration will be
performed. The primary objectives of this phase are to develop an overall
migration strategy, perform initial project planning, and assess the benefits and
risks of various migration options.

The major tasks involved in preparation are as follows:

� Migration assessment
� Understanding and selecting migration tools
� Estimating the effort required
� Environment preparation
� Getting educated on Informix Dynamic Server technology.

3.2.1 Performing the migration assessment

Planning a migration begins with an assessment of the current system and
environment, as well as an understanding of the resources that can be used.

An accurate profile of the system-wide architecture is key to the success of the
project. The assessment begins with collecting information about both the source
and target environments. This detailed information is used to determine the
scope of the migration, and is the main input for the project planning process.

Before undertaking a migration project, there are several planning activities that
should be performed. The following list summarizes those areas and the type of
information that you need to gather and consider:

� Perform a hardware and software architectural assessment
– Decide on the target hardware platform for the production system.
– Understand the workload characteristics and requirements.
– Know the number of concurrent users.
– Take an inventory of software and hardware upgrades.
– Determine the machine on which the migration will be performed.

 Chapter 3. Migration methodology 45

� Investigate the scope, duration, and cost of the project
– Which application areas will be migrated?
– How complex is the migration?
– How many database objects and applications will be migrated?
– What are the differences between the source and target databases?
– How long will the migration take?
– What is an estimate of the proposal for work.

� Identify business dependencies
– Are there timeline or business cycle requirements?
– Do renewal of licensing agreements impact schedules?

� Identify the people resources and skills required
– Will resources be in-house, outsourced, or a combination of both?
– Do in-house resources have skills for the source and target databases?
– Are in-house resources available to perform the migration?
– Are in-house resources available to support an outsourced migration?

� Identify the services and tools that can be used during the migration.

The following list details objectives:

� Devise a strategy for key issues

– Coexistence of source and target databases
– Ongoing application development
– Change management
– Performance requirements
– Tool selection
– Naming conventions
– Database physical design
– Define standards
– Data migration strategy
– Security planning
– Cutover strategy

3.2.2 Understanding and selecting migration tools

Although a migration can be performed without the help of tools, IBM has created
a tool that is specifically designed to make a migration as simple as possible. The
tool is introduced here and covered in detail in later chapters.

IBM Migration Toolkit
The IBM Migration Toolkit (MTK) helps in the migration from Oracle database to
Informix. This tool can be used to generate DDL scripts that create database
objects including tables, indexes, views, triggers, stored procedures, and
user-defined functions. It also aids in moving the data from the original source
system to the target Informix database. For example, the MTK can either connect

46 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

directly to the source system and extract the database structure and database
object definitions, or it can use a valid database schema script extracted by other
tools.

The IBM Migration Toolkit is a free migration tool that can be downloaded from
the following Web page:

http://www.ibm.com/software/data/db2/migration/mtk/

3.2.3 Estimating the effort required

An accurate estimate of the effort, resources needed, and total costs requires
knowledge of the products, applications, and migrating experience.

The MTK can be used as an assessment tool to determine the complexity of the
migration. Using the MTK in this manner can highlight complex stored
procedures or SQL statements that may require manual migration effort. A
working knowledge of the MTK is mandatory when using it in this manner.
Training costs and time required for DBAs and users should also be factored into
the estimates.

Each migration is different, but there are general signs that can indicate the
overall complexity and effort expected. For instance, in applications that
frequently use stored procedures, the number and complexity of the stored
procedures to be migrated greatly affects the migration time. The same applies to
the use of special data types and large objects. Physical requirements (use of
raw or formatted disk areas, spaces, and nodes) may also represent a large
amount of work, especially if the data grows significantly over time. If there is
replication or high availability involved, it needs a thorough study to understand
the existing database environment, current topology, and storage requirements.
This is to properly design the database and implement the similar technology
with the target database system.

The IBM migration team migration estimate
A type of assistance that is frequently requested from the IBM migration is an
estimate for the migration of database objects and applications. The team uses
prior experiences to deliver an estimate for a minimum and maximum range for
the number of hours the project is expected to take. To deliver that estimate, the
team provides a questionnaire and the client collects and returns metrical
information for the objects to be migrated.

 Chapter 3. Migration methodology 47

http://www.ibm.com/software/data/db2/migration/mtk/

The following list details the types of metrics collected:

� Number of database objects including tables, indexes, and views.

� Number of database application objects (including packages, procedures,
triggers and user defined functions), average lines of code, and SQL
statements for each.

� Number and language of application programs including lines of code and
average number of SQL statements per module.

� Volume of production data to be migrated.

In addition to metrical information and project tasks, there are additional factors
that influence the size and complexity of a migration. Some of these factors are
as follows:

� Amount and type of proprietary SQL used
� Quality of data
� Existence of system documentation
� Database design requirements such as high availability and replication
� Third party software dependencies
� Operating system and hardware platform change
� Availability of a dedicated machine for migration development
� Extent of code freeze enforcement during migration
� Length of the cutover window
� Skill level of resources performing the migration

3.2.4 Environment preparation

Before starting the migration, the target development environment should be set
up. Ensure that all hardware and software prerequisites are met, that the network
is properly configured, and that there is enough hardware to properly support the
migration and development.

In this step, you should complete the following tasks:

� Configure operating system
� Configure disk storage
� Install Informix Dynamic Server
� Create an Informix instance
� Install and configure tools
� Configure the Informix Server
� Configure the database environment and registry variables
� Test the environment with a sample application

48 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

3.2.5 Getting educated on the Informix Dynamic Server

It is important that members of the migration team have a good understanding of
important Informix features, such as transaction management, locking,
authorities, data recovery techniques and memory management. Although most
database vendors implement similar sets of database features, there are often
substantial differences in how they behave.

The fastest way to prepare your technical staff for effectively working with the
Informix Dynamic Server is through some form of education. The following Web
page provides numerous references to sites within IBM that offer classroom
training, online tutorials, and reference materials:

http://www.ibm.com/software/data/informix

3.3 Migration

This phase is the core of the migration project. The steps required to migrate a
database and application to Informix are introduced in this section. The methods
employed can vary, but they can be divided into three primary sub-phases:

� Database migration and design
� Calibration
� Application migration

3.3.1 Database migration and design

The first step in the migration process involves moving or duplicating the
structure of the source database into an Informix database. In this process, the
differences between the source and destination structures must be addressed.
These differences can result from different interpretation of SQL standards, or
the addition and omission of particular functions. Many differences can be fixed
by altering the existing syntax. But in some cases, custom functions must be
added and the application must be modified.

In this phase the final Informix physical database design for the production
system is planned and designed. The physical layout of the Informix database is
critical to the success of the project. It must be implemented according to best
practices to ensure optimal performance. It must be structured to support future
maintenance and to provide maximum flexibility to meet future requirements,
without compromising existing business processes and program logic.

 Chapter 3. Migration methodology 49

http://www.ibm.com/software/data/informix

The most popular means of migrating a database structure is through the use of
a migration tool. These tools not only connect to and extract structural
information from the source database, but they can also convert it into a format
acceptable by the target database system. The IBM MTK can be used to perform
the migration using this method.

Capturing the definition of database objects can often occur at the same time the
database structure is captured, if the objects are written in an SQL-like
procedural language and stored within the database. A good portion of the
database object migration is automated. The MTK, an IBM product that is free to
download, is the tool of choice for converting database objects such as tables,
data types, constraints, indexes, views, stored procedures, user-defined
functions, built-in functions, and sequences. However, the tool does not migrate
database security features such as user IDs, authorizations, or privileges
(GRANTs and REVOKEs). In addition, the creation of tablespaces and the
placement of tables and indexes within table spaces along with disk layout is a
manual part of the physical design process. While the MTK is the tool of choice to
convert procedures, and user-defined functions to Informix, the migration of
these application objects usually requires a certain amount of manual
intervention depending on the SQL constructs used. The MTK reports those
statements that cannot be converted automatically.

The migration of database objects requires testing of the resulting objects This
implies that test data should be available before to testing. Preliminary data
migration effort is therefore required to complete this migration step. After the
object migration is completed, some adjustments may still be required. As an
example, issues such as identifier length may need to be addressed. During this
phase, a test database is set up and used for migration development and
functional testing of converted objects.

3.3.2 Calibration

The calibration sub-phase is designed to validate the planned strategy for the
migration including quality assurance review, standards compliance, and
performance. During the calibration sub-phase, a few selected programs are
migrated as samples to ensure that the code produced complies with
requirements and possesses characteristics that ensure the future
maintainability of the applications. Typically, 20 to 60 programs of a selected
group are migrated.

There are several considerations in defining the system to be used in the
calibration. The primary requirement, however, is that the chosen programs
should be representative of how the entire application portfolio uses the source
database and application languages. They are also expected to provide baseline
performance and data usage that can be easily generalized. The generalized

50 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

results will then be used to predict the ability to migrate each of the other
application subsystems, as well as their likely post-migration performance
characteristics.

During this phase there is a review of the data transfer requirements and design
of a data transfer strategy. The data transfer strategy must ensure that all the
production data can be transferred into the production system within the cutover
time frame.

In addition, detailed resource and schedule planning is finalized, as well as the
test strategy for user acceptance and parallel testing.

3.3.3 Application migration

Insights gained during the calibration phase are incorporated into the migration
strategy. In this phase, migration of the entire portfolio of objects and applications
is completed.

Although converting the database structure and objects can be automated to
some extent using migration tools, application code changes mostly require
manual effort. Aside from the SQL language differences, you also need to
understand the transaction, locking, and isolation level differences between
Oracle Server and IDS. These differences influence how the application should
be coded, and may require some adjustments to be made for it to run as
expected.

Applications written in a high-level language with embedded SQL can be
converted automatically by extracting SQL statements from the source code,
adjusting them with a migration tools such as MTK, and reinserting them into the
source.

Because this phase is mostly executed using manual techniques, expertise with
both the source server and ID is essential. Not all SQL may need to be converted
because the same SQL syntax often runs on both the source and IDS
databases. However, all SQL must be examined to determine whether or not
migration is needed. Besides syntax, the semantics of the SQL needs to be
examined to ensure that the SQL statement behaves the same way and returns
the same results on IDS as on the source database. The complete details of
application migration are discussed in detail in the later chapters.

 Chapter 3. Migration methodology 51

3.4 The Test Phase

In this section we discuss the test phase, which consists of three sub-phases:

� Migration refresh
� Data migration
� Testing

3.4.1 Migration refresh

Because most clients are unable to freeze their application for the duration of a
migration, and because the calibration programs are typically migrated early in
the process, a migration refresh is required just prior to client testing and
production implementation. Based on change control logs, those programs,
applications, and data structures that changed during the migration phase are
reconverted. This process relies heavily upon the inventory and analysis
activities that took place during the assessment phase as that effort
cross-referenced programs, procedures, functions, data structures, and
application code. Using the baseline as a guide, the migration team reconverts
those migrated objects that were impacted by ongoing development.

3.4.2 Data migration

Data migration is usually performed quite late in the migration process. However,
subsets of the data should be migrated with the database structure, to verify that
everything is migrated correctly.

The process of data migration consists of four activities: unload, transform,
cleanse, and reload. This sub-phase is accomplished by a combination of
automated and manual methods.

In this phase, the MTK can be used to automate the migration of the data or to
generate scripts that can be used to migrate the data manually. The MTK can be
used to unload the data from the source database and load the data into IDS.
However, and most importantly, the MTK automates the transformation of the
source data into a format that IDS will accept during load without errors. Tools
other than the MTK may be used to unload the data. The format of the data
should be examined to insure that it is in a format that can be loaded into IDS. If it
is not, the data will have to be manipulated by an intermediate process into a
format that can be loaded.

In many cases, as the data is moved, it is also converted to a format that is
compatible with the target database (date and time data are a good example).
This process can be quite lengthy, especially when there is a large amount of

52 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

data. This makes it imperative to have the data migrations well-defined and
tested. In some cases, it is still necessary to perform customized migrations of
specialized data, such as time series and geospatial data. This can sometimes
be accomplished through the creation of a small program or script.

It is a good idea to perform some tests after migrating subsets of the production
data. These tests include performing simple comparisons against the source and
target databases, such as row counts. You can also identify if any
transformations or adjustments are required and implement them before
migrating the full set of data. Once you are completely satisfied with the results of
your tests, you can migrate the full set of production data. After moving all the
production data from the source to target system, correct any referential integrity
issues, then perform a thorough verification of the migrated data against the
source data for accuracy and completeness.

3.4.3 Testing

The purpose of the testing is to determine the differences between the expected
results (the source environment) and the observed results (the migrated
environment). The detected changes should be synchronized with the
development stages of the project. In this section, we describe the test objectives
and a generic testing methodology that can be employed to test migrated
applications.

Testing methodology
The first step in the testing process is to prepare a thorough test plan. The test
planning and documenting are important parts of this testing process which
details the activities, dependencies, and effort required to conduct the test of the
migrated solution. A detailed test plan should describe all test phases, scope of
the tests, validation criteria, and specify the time frame. It should list what
features of the migration are to be tested and what is not to be tested from both
the user viewpoint of what the system does and a configuration management
view. Plans should consider the environmental needs (hardware, software, and
any tools) for testing, test deliverables, pass/fail criteria for tests, and any
required skills to implement the testing.

For large projects, it might be necessary to use supportive software to improve
testing productivity. As examples, the IBM Rational Functional Tester and IBM
Rational Performance Tester can be used for that purpose. The IBM Rational
Functional Tester provides testers with automated capabilities for data-driven

Note: If the data is encrypted, it must be manually decrypted first using the
source database APIs, transferred to target database, and then encrypted.

 Chapter 3. Migration methodology 53

testing and a choice of scripting language and an industrial-strength editor for
test authoring and customization. IBM Rational Performance Tester can create,
execute, and analyze tests to validate the reliability of complex e-business
applications. Additionally, there are many other Rational products that may suit
your testing needs. For more information about testing products, visit the
following Web page:

http://www.ibm.com/software/rational

All stages of the migration process should be validated by running a series of
carefully designed tests. The different phases and techniques to consider for
testing will be discussed in the remainder of this section.

Functional testing
Functional testing involves a set of tests in which new and existing functionality of
the system are tested after migration. Functional testing includes all components
of the RDBMS system (such as stored procedures, triggers, user-defined
functions), networking, and application components. The objective of functional
testing is to verify that each component of the system functions as it did before
migrating, and to verify that new functions are working properly.

Integration testing
Integration testing examines the interaction of each component of the system. All
modules of the system and any additional applications (such as WEB, supportive
modules, and Java programs) running against the target database instance
should be verified to ensure that there are no problems with the new
environment. The tests should also include GUI and text-based interfaces with
local and remote connections.

Performance testing
Performance testing of a target database compares the performance of various
SQL statements in the target database with the statement performance in the
source database. Before migrating, you should understand the performance
profile of the application under the source database. Specifically, you should
understand the calls the application makes to the database engine. If
performance issues are found, it may be necessary to revisit the physical
database design and implement some changes. For detailed information about
performance measurement and tuning methods that are relevant to daily
database server administration and query execution, see IBM Informix Dynamic
Server Performance Guide, G229-6385.

54 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www.ibm.com/software/rational

Volume/Load stress testing
Volume and load stress testing tests the entire migrated database under high
volume and loads. The objective of volume and load testing is to emulate how the
migrated system might behave in a production environment. These tests should
determine whether any database or application tuning is necessary.

Acceptance testing
Acceptance tests are typically carried out by the users of the migrated system.
Users are simply asked to explore the system, test usability and system features,
and give direct feedback. After acceptance, tests are usually the last step before
going into production with the new system.

Post-migration tests
Because a migrated database can be a completely new environment for the IT
staff, the test plan should also encompass examination of new administration
procedures, such as database backup/restore, daily maintenance operation, and
software updates.

Data migration testing considerations
The extracting and loading process entails migration between source and target
data types. The migrated database should be verified to ensure that all data is
accessible, and was imported without any failure or modification that could cause
applications to function improperly.

Data checking technique
Data movement is the first thing any migration should focus on. Without having
all your tables and data properly moved, all other migration testing is in vain. The
test process should detect if all rows were imported into the target database,
verify that data type migrations were successful, and check random data
byte-by-byte. The data checking process should be automated by appropriate
scripts. When testing data migration you should perform the following tasks:

� Check IMPORT/LOAD messages for errors and warnings.
� Count the number of rows in source and target databases and compare them.
� Prepare scripts that perform data checks
� Involve data administration staff familiar with the application and its data to

perform random checks.

Code and application testing considerations
The most important part of the testing process is to verify that each component of
the system functions as it did before migrating. All components of the RDBMS
system, including views, stored procedures, triggers, application components,
and security systems should be verified as to whether they are working properly.

 Chapter 3. Migration methodology 55

Views
The next step after data migration testing is to check all migrated views. Once
data is moved over, the views can be tested to make sure they are working in the
same way as in the source database. Depending upon the view, different
checking scenarios can be created. Basic views can be easily checked by
counting the number of rows the views return or by comparing calculated values,
and similarly the tests performed on regular tables. More complicated views
need a little more thought on how they should be checked. However, all views
should be reviewed by executing queries against them. The views created with
the intention to modify data should also be tested for inserting, updating, and
deleting.

Procedures and user defined functions:
All stored procedures, user-defined functions, and triggers should be unit-tested
individually before they are promoted for further testing. This means that after
objects are migrated (either manually, with the MTK, or some combination) they
need to be checked to make sure they function properly.

Application code check
The scope of application testing depends on the migrated application. For
self-built applications, the testing process should be started with the application
queries. All queries should be independently tested to ensure that they return the
expected results. With the application queries successfully migrated, the
surrounding client programs should be rebuilt, and the application should be
tested against the target database. Each module of the application, and possibly
each panel form, should be run and checked for errors or improper functionality.
All the supported application connectivity interfaces should also be checked.

Security considerations
Before going into production, security must be checked in detail. Each database
system handles security quite differently, so it is not trivial to compare the user
rights between the two systems. The existence and authorities of all required
users should be verified to allow the appropriate persons to connect to the
database. The access privileges and restrictions on the database objects need to
be tested to make sure only users with proper authority can access them.

3.5 Implementation and cutover phase

After the testing phase has completed, final testing is performed to validate
implementation of the new production environment and to gain user acceptance.
Upon acceptance of the system, an additional test run of the cutover procedure is
performed, usually over a weekend prior to the final cutover weekend. Any issues

56 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

discovered during the test run are corrected. On the cutover weekend, the
database is refreshed with production data and the system goes live. In
preparation for this phase, a backup of the source production system should be
taken in case there is an unexpected need to back out the new system. In
addition, all database maintenance procedures such as backups are put into
production.

In some cases, the final cutover phase does not allow for downtime of the
production system. In these cases, special planning and procedures are
developed to accommodate the phasing in of the new system without impacting
the production environment.

3.6 Related information resources

IBM Database Migration:

http://www-01.ibm.com/software/solutions/softwaremigration/dbmigteam.html

IBM Migration Toolkit (MTK):

http://www.ibm.com/software/data/db2/migration/mtk/

IBM Informix Dynamic Server Information Center:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Oracle to IDS porting Guide:

http://www.ibm.com/developerworks/data/library/long/dm-0608marino/#download

IBM Redbooks:

http://ibm.com/redbooks

 Chapter 3. Migration methodology 57

http://www-01.ibm.com/software/solutions/softwaremigration/dbmigteam.html
http://www.ibm.com/software/data/db2/migration/mtk/
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/developerworks/data/library/long/dm-0608marino/#download
http://ibm.com/redbooks
http://www.ibm.com/developerworks/data/library/long/dm-0608marino/#download

58 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Chapter 4. IBM Migration Tool Kit: An
introduction

In this chapter, we introduce you to the IBM Migration Toolkit. When referring to it
throughout this book, we use the abbreviation MTK.

Database migrations vary in size and complexity due to the many ways that a
database can be designed and used. The result of this is that each migration
usually has a set of challenges that are specific to that project. Nonetheless, in
addition to the unique set of issues that are presented in each migration there are
also underlying elements that are universal to all migrations no matter what the
source or target databases may be. It is this principle that is the driving force
behind tool development for database migrations. Indeed, the MTK was
designed by IBM to do just that. Although the MTK cannot automatically resolve
all your conversion and migration issues, it can simplify many tasks and shorten
the migration phase of your project.

4

© Copyright IBM Corp. 2009. All rights reserved. 59

4.1 The MTK for Oracle migrations to IDS

The MTK was developed as a joint venture between the IBM Silicon Valley Lab in
The product was developed to support migrations from a number of source
databases to DB2 and Informix Dynamic Server (regardless of platform). In this
book we only cover the toolkit for migrations from Oracle 10g to Informix Dynamic
Server 11. As a matter of reference, the chart in Figure 4-1 outlines all the source
and target combinations that are supported.

Figure 4-1 Source-Target combinations

The MTK version used in this book is 2.0.5.0. This version can be downloaded
for free from the following IBM Web site:

http://www-01.ibm.com/software/data/db2/migration/mtk/

In this chapter, we present several topics related to using the MTK for an Oracle
to Informix migration:

� Overview of features and functionality
� Inside the Oracle converter component
� How to install, configure, and execute the MTK

60 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www-01.ibm.com/software/data/db2/migration/mtk/

4.2 Overview of features and functionality

The MTK is designed to manage your migration through projects. In this chapter,
a project is actually a directory where all the information associated with your
migration is stored. A project directory is created under the MTK installation
directory for every project that you create. Each project directory contains
imported and extracted source SQL files, converted SQL files, data files (in the
DataOutScripts subdirectory), and deployment scripts. Although the MTK
provides a GUI interface to automate deployment of converted objects, manual
deployment is also possible by running the SQL scripts found in the project
directory.

4.2.1 The five step migration process

The MTK provides a graphical user interface that you can use to perform a five
step migration process. The GUI interface contains five pages, as depicted by the
tabs in Figure 4-2, each representing a step in the migration process. These five
steps are as follows:

1. Specify the source.
2. Convert the source.
3. Refine the migration.
4. Generate the data transfer scripts.
5. Deploy to the target IBM database.

Figure 4-2 The MTK-GUI five step migration process

You start the migration process by creating a migration project and using the
Specify Source page to obtain the Oracle files to be converted to the IDS server.
Using an ODBC or Java connection, you can either extract the source directly
from Oracle, or you can import source scripts from previous extractions.

The main component of MTK is the converter, which translates Oracle SQL to
SQL that runs on IDS. After you specify the source information, use the MTK
Convert page to specify options for the migration. On the Convert page you can
customize some aspects of the migration such as overriding default data type

 Chapter 4. IBM Migration Tool Kit: An introduction 61

mappings. The converter supports translations of many constructs used in
tables, indexes, constraints, views, sequences, procedures, user-defined
functions, triggers, and standalone DML statements. The MTK also extracts data
from Oracle and reformats data for insertion into IDS. It should be noted that
Oracle tablespaces are not converted to IDS dbspaces and are only minimally
supported in the translation process. In addition, SQL statements contained in
application languages such as Java, and C are not translated by the toolkit. Only
SQL scripts can be input into the MTK. However, the MTK includes an SQL
translator, which can be used to test particular phrases of SQL code contained
within application languages.

The Refine page in MTK provides various resources to help you modify the code,
after which you can reconvert the code to produce the desired results. You can
repeat this process until you are satisfied that the new script is ready to be
deployed. The resources on the Refine page include views to help you cross
reference between the source and target database objects, the script files,
messages, and the online documentation.

Use the Generate Data Transfer Scripts page to set data transfer options,
generate the deployment and data-transfer scripts, and export and load Oracle
data to the target IDS database. If inserting LOB (large object) data, the data
must reside locally to the target IDS database. Because the MTK extracts data
into a file system where it is installed, it is desirable to install MTK on the same
machine as the target database.

During the deployment step, you create the IDS database, run the SQL scripts to
create the IDS objects, and move data from Oracle into IDS. The MTK creates
various logs and reports of activity to help you verify successful deployment.

After deploying the database, you might need to rewrite some SQL code and fine
tune the database as you test your applications. It should be obvious that the
team performing the migration should have programming and administration
skills for both Oracle and IDS databases. Different behaviors between the two
databases will most probably require some redesign and reprogramming to fully
take advantage of new IDS functionality.

ISV migrations
We do not recommend using the MTK to convert independent software vender
(ISV) schema definitions. Most ISV packages include their own migration tools
for platform migrations, and most vendors require that their tools are used in this
process.

A review of the five step GUI process is depicted in Figure 4-3 on page 63.

62 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 4-3 Five step GUI process

Environment considerations
You can have different systems in your migration environment. The Oracle
database, IDS database, and MTK do not have to be on the same system. A
practical scenario is to install the MTK and the target database on the same
system. One reason for this is that the data migration step requires that LOB data
reside locally to the target database. As depicted in Figure 4-4 on page 64, the
MTK and the target database are on the same system, and the source database
is installed on another system that is accessible by using either ODBC or a Java
native driver.

 Chapter 4. IBM Migration Tool Kit: An introduction 63

Figure 4-4 Drivers

You can deploy the database objects to a system that is not supported by MTK.
During the deployment phase, the MTK runs a set of batch files and scripts that
contain the necessary components for deployment. You can copy the
deployment scripts from your MTK project directory, modify them as necessary,
and run them on the IDS system. The data, however, can only be deployed
through the MTK interface for an IDS target.

User interfaces
The MTK is available from three types of user interfaces:

� Graphical user interface (GUI)

The GUI interface offers the MTK migration functionality by using a Java
interface. It is customizable and easy to use, especially for those unfamiliar
with the command line interface or database migrations in general.

� Wizard

The wizard interface offers the basic migration functionality in a guided
sequence of steps. This wizard is intended for simple database migrations
where manual changes are not required.

� Command line

The command line interface offers a way to operate the MTK using
commands, a configuration file, and arguments. The command line interface
is intended for experienced users who want to run the migration without user
interaction. You can run the entire five step migration process, from opening a
project to deployment, or just a single step in the migration process, such as
convert, by issuing just one command. Before you issue the command, you
must provide all the necessary information in the configuration file. A sample
configuration file, named config.xml, is included in the MTK installation
directory (for example, c:\mtk\config.xml). The configuration file contains all of
the migration details. It is an XML file whose structure is defined in the mtk.dtd
file included in the MTK installation directory (for example, c:\mtk\mtk.dtd).

64 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The basic structure of the configuration file is depicted in Example 4-1 on
page 65.

Example 4-1 Configuration file structure

<MTK>
 <PROJECT...>
 <SPECIFY_SOURCE></SPECIFY_SOURCE>
 <CONVERSIONS></CONVERSIONS>
 </PROJECT...>
</MTK

The order of the arguments is irrelevant. An example of how to issue the
command line interface is shown in the following examples:

From a Windows command prompt, issue the following command:

MTKmain.bat -CONFIG configfile.xml argument

From a UNIX/Linux command prompt, issue the following command:

MTKmain.sh -CONFIG configfile.xml argument

The config.xml file contains all the arguments that are needed and directs the
migration. Each of the configuration file arguments correspond to one of the five
steps described used in the GUI process. There is an additional argument, ALL,
that can be used to run the migration from end to end. The following list details
the supported command line arguments:

� CONFIG
� IMPORT
� EXTRACT
� CONVERT
� GENSCRIPT
� DEPLOY
� ALL

The following example shows you how to import source SQL files by using the
MTK command line interface. To import file1.src and file2.src into the project,
issue the following command with the configuration file shown:

MTKMain.bat -CONFIG config.xml -IMPORT

The contents of config.xml are as depicted in Example 4-2 on page 66.

 Chapter 4. IBM Migration Tool Kit: An introduction 65

Example 4-2 Configuration file

<MTK>
<PROJECT ...

<SPECIFY_SOURCE>
<IMPORT>c:\file1.src</IMPORT>
<IMPORT>c:\file2.src</IMPORT>

</SPECIFY_SOURCE>
... >

 </PROJECT>
</MTK>

Besides arguments, there are also elements and attributes that further describe
how to perform each task in the process. Example 4-3 depicts the PROJECT
elements that specify project name, directory name, the source database type,
and the target database type.

Example 4-3 Project elements

<MTK>
<PROJECT NAME=""

DIRECTORY=""
DESCRIPTION=""
SRCDBTYPE=""
TRGTDBTYPE=""
...

</PROJECT>
</MTK>

When using the command line interface, refer to the MTK User's Guide for
values and descriptions of the arguments, elements and attributes supported.
The User's Guide can be downloaded from the following Web page:

http://www-01.ibm.com/software/data/db2/migration/mtk/

4.3 Inside the Oracle converter component

Now we look at how the Translator works. The converter (also referred to as the
Translator) is written in Java and uses Another Tool for Language Recognition
(ANTLR) as its parsing engine. The converter is a language translator that
operates much like a compiler for a conventional programming language. It takes
as input a sequence of Oracle SQL scripts and generates a corresponding IDS
SQL script as output. It also generates metadata information about each Oracle
object definition and corresponding generated IDS object definition.

66 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www-01.ibm.com/software/data/db2/migration/mtk/

The metadata is encoded in the XML-based Metadata Interchange™ (XMI)
format for easy reuse. The metadata information summarizes important
properties about source objects and is used by the MTK to generate an overview
of source and target objects in the Refine step (where the results of the
translation are reported).

An Oracle SQL script is a sequence of SQL statements and PLSQL commands.
The SQL statements are translated as they are encountered in the script.
Therefore, the order in which Oracle objects are defined in the source script is
critical for proper migration. The converter requires that an object be defined
before it is used. Queries of an object cannot be translated if the object has not
been defined.

When the source of the object definitions are extracted (using the MTK) directly
from the Data Dictionary, the object definitions are in dependency order. When
the source of the object definitions are imported into the MTK from an external
file, some manual reordering to satisfy dependencies might be required. For
each IDS SQL statement generated in a converted script or stored procedure,
the converter will normally copy the corresponding Oracle statement as a
comment preceding the generated IDS statement. This is depicted in
Example 4-4.

Example 4-4 Converter output

--| CREATE INDEX IND_ACCT_ID
--| ON ACCOUNTS ("ACCT_ID") TABLESPACE USER_IND_TBS
--| ;

--*
[600059]"C:\MTK\projects\Tutorial1\tables.src"(140:28)-(140:50)Ignored
input - not translated.

CREATE INDEX IND_ACCT_ID
 ON ACCOUNTS(ACCT_ID);

In Example 4-4, the Converter's message Ignored Input - not translated is
referring to the TABLESPACE clause in the Oracle CREATE INDEX statement,
which was not translated in the IDS CREATE INDEX statement. For more
information about actually performing these translations, see “Mapping Oracle
tablespaces to IDS dbspaces” on page 91.

The commenting annotation makes it easier to understand how the generated
code relates to the source and how to perform manual refinement of the
generated code if necessary. If an error occurs during the migration, the error
message will appear after the source code, and any invalid IDS statement that
results from the error will be commented out. If you prefer not to see the

 Chapter 4. IBM Migration Tool Kit: An introduction 67

commented source in the output file, you can disable it from the Converter page
by using the Advanced Options button.

4.3.1 Translating tables, indexes, and views

This phase of the translation is the most straightforward. The MTK converts DDL
with little manual intervention required. However, the MTK does not convert
tablespaces, so you will need manually to develop a script to create your IDS
dbspaces. You can edit your IDS DDL to assign dbspaces to your tables and
indexes and add other DDL changes to optimize performance. You should then
deploy the DDL manually to IDS. In the beginning phase of your migration,
usually the development phase, you can use the MTK to deploy automatically
your tables and indexes. Later, when deployment is to production, you should edit
your scripts in accordance with the database physical design requirements of
your application.

4.3.2 Translating built-in functions

The MTK comes with pre-written IDS user-defined functions that match the
functionality of many Oracle built-in functions. There are three possible scenarios
when converting Oracle built-in functions to IDS:

� An Oracle built-in function has an equivalent IDS function. In this case,
function calls are mapped directly to IDS.

� An Oracle built-in function does not have an equivalent IDS function, but a
similar IDS function is available.

� An Oracle built-in function has no IDS equivalent. In most of these cases, an
IDS SPL or Java UDF is provided by the MTK to provide similar functionality.

The user-defined functions that are packaged with the MTK are contained in the
ORA schema. They can be found in the MTK installation directory in files named
mtkorainfxt.udf and orainfxtUDFs.jar. The MTK automatically installs the Java
and SPL UDFs during the Deploy to Target step. The
DEPLOY_yourprojectname_UDF.log file contains information about the success
or failure of the UDF deployment.

Translating functions, procedures, and triggers
The migration of functions, procedures, and triggers will generally require more
manual intervention than the migration of tables and indexes. However, the MTK
will provide you with a quick start for these conversions and simplify this task.
The Oracle Converter section of the User's Guide documents the constructs that
the MTK supports during the Convert step.

68 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The Generate Data Transfer Scripts step involves two tasks:

� Generating scripts that transform Oracle data into IDS format and extract the
data to a file. The MTK formats data that is compatible for insertion into IDS
by building SELECT statements that use built-in functions. Example 4-5 was
taken from a data extract script generated by MTK.

Example 4-5 Selects using built-in functions

SELECT REPLACE("CHANGE_TYPE",'','') "CHANGE_TYPE",
REPLACE("CHANGED_BY",'','') "CHANGED_BY",
TO_CHAR("TIMESTAMP",'YYYY-MM-DD-HH24.MI.SS".00000"'),
"OLD_EMPLOYEE_ID", REPLACE("OLD_DEPT_CODE",'','') "OLD_DEPT_CODE",
"OLD_ACCT_ID", REPLACE("OLD_BAND",'','') "OLD_BAND", "NEW_EMPLOYEE_ID",
REPLACE("NEW_DEPT_CODE",'','') "NEW_DEPT_CODE", "NEW_ACCT_ID",
REPLACE("NEW_BAND",'','') "NEW_BAND" from "ORA_USR"."MANAGER_AUDIT"

� Generating scripts to read the data from a file and insert the data into IDS.
Generally, the MTK transformation and extraction phase takes more
execution time than inserting the data into IDS. This is due to the data
migration process which is performed while data is extracted. The data can
be loaded into a local IDS database or to a remote IDS database provided
that the MTK client has a connection to the remote IDS server. However, the
following considerations apply:

– The MTK cannot automate the creation of a remote IDS database.
– There must be sufficient disk space on the MTK machine for the data.
– LOB data needs to reside on the same machine as the IDS database.

4.4 How to install, configure, and execute the MTK

In this section we summarize hardware and software system requirements,
installation, and how to start up MTK. In Chapter 5, “An MTK tutorial” on page 73,
we lead you through a step-by-step tutorial on how to use the product.

Note: We do not recommend that you extract Oracle data on one system and
transport the data files over the network to the IDS system.

 Chapter 4. IBM Migration Tool Kit: An introduction 69

4.4.1 System requirements

To use MTK, you need the required software and hardware.

Hardware requirements
Disk space:

� 50 MB for installation
� 5 MB per project
� Additional space for the project script and data files.

Memory:

1 GB or more (increase for large SQL files).

Software requirements
In this section we describe the software required to use the MTK.

General requirements:

� Operating systems supported:

– Windows XP, Windows 2000
– AIX 5L™ 5.2
– Linux RHEL 3
– Solaris™ 2.9/9
– HP-UX B.11.11

� Java Runtime Environment Required:

– You must have Java Runtime Environment 1.4.2 installed and accessible
through the PATH environment variable.

– JDBC or ODBC driver (for source database connections):

� UNIX and Linux-specific requirements:

– On Linux, increase the message queue number to at least 128:

sysctl -w kernel.msgmni=128

– To view HTML reports, include the browser directory in the $PATH
variable. If the browser cannot be found, MTK will launch an internal Java
Web browser which can display HTML files, but does not handle frames or
format the tables well.

– If you are extracting from a data source by using ODBC or Java, configure
the client connection.

70 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

4.4.2 Installing MTK

You can install MTK on Windows, UNIX, or Linux. Download the appropriate MTK
version for your platform from the following IBM WEB site:

http://www-01.ibm.com/software/data/db2/migration/mtk/

Prerequisites:
� Uninstall earlier releases of MTK before installing the latest release.
� All versions of MTK are compatible with each other.
� To simplify deployment, run MTK while logged-in with a system user ID that

has system administration authority for the target Informix Dynamic Server
database

Installing on Windows:
Perform the following steps to install MTK can be installed on Windows:

1. Download and unzip the MTK file from the MTK download site. The zip file
contains the MTKSilentInstall.iss file, the readme.txt file, and the mtk.exe file.

2. Navigate to the directory where you unzipped the files and double-click the
mtk.exe file to start the installation and follow the instructions.

3. Verify that you can access Java and that it is the correct version (1.4.2):

java -version

Installing on UNIX or Linux
Perform the following steps to install on UNIX or Linux:

1. Log in with the user ID you want to install MTK with (do not install MTK as
root).

– For example, on Linux or Solaris if you issue echo $LD_LIBRARY_PATH, it
should list $HOME/sqllib/lib, where $HOME is the home directory.

– Install MTK by using a user ID in an administrative group.

2. Create a new directory. Download the IBM Migration Toolkit into that directory.

3. Untar and extract the mtk.tar.gz file into the MTK directory that you specify by
issuing the following commands:

tar -xvf
mtk.tar

4. Verify that you can access Java and that it is the correct version.

Note: When you uninstall and reinstall the MTK product, existing project
directories are not removed and can be accessed by the new MTK version.

 Chapter 4. IBM Migration Tool Kit: An introduction 71

http://www-01.ibm.com/software/data/db2/migration/mtk/

4.4.3 Starting MTK

In this section we show the steps for starting the MTK on Windows and UNIX.

Starting on Windows
Perform the following steps to start the MTK on Windows:

1. From the Start menu, navigate to Programs → IBM Migration Toolkit and
choose either Toolkit (preferred) or Wizard.

� From a command prompt, navigate to the directory where MTK is installed,
type MTKMain.bat, and press Enter.

Starting on UNIX or Linux
To start MTK on UNIX or Linux, navigate to the directory where MTK is installed,
type MTKMain.sh, and press Enter.

72 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Chapter 5. An MTK tutorial

We designed this chapter as a tutorial and use coding examples so that you can
follow along and walk through the important features of the IBM Migration Toolkit,
commonly known as the MTK. When using a tool to perform migrations, it is
almost certain that some type of manual intervention will be required because no
tool can handle every scenario that comes along. However, knowing how to use
a tool to its fullest advantage can give you a good start with the migration task.
For this reason, the focus in this chapter is on how to best use MTK rather than
on how to convert specific SQL. As we go through the tutorial and come upon
items that the MTK does not translate, we point you to other sections of this book
that can help you address those particular issues.

We present the tutorial in two parts:

� Part 1 illustrates how to migrate the core database objects, which includes the
following objects:

– Tables (creates and alters)
– views
– Indexes
– Sequences
– Constraints
– Data transfer script creation
– Data movement
– Core object deployment to an IDS database

5

© Copyright IBM Corp. 2009. All rights reserved. 73

� Part 2 illustrates how to migrate database application objects and includes the
following objects:

– Procedures
– User-defined functions
– Packages
– Triggers
– Application object deployment to an IDS database

This order is strictly adhered to because the migration of procedures, functions,
and triggers depends on the existence of converted table, view, and sequence
definitions in the MTK repository.

How to use this tutorial
The tutorial is based on converting a set of source objects that we created on an
Oracle 10.2.0g database specifically for use in this Redbooks publication. We
refer to these Oracle objects as the example database. The example database
consists of a set of objects owned by the ora_usr schema. The list of the Oracle
source object definitions are included in orclsetup.rar file described in
Appendix F, “Additional material” on page 355. Script files containing the Oracle
source DDL is included in the orclsetup.rar file as well. The scripts can be used to
construct a database identical to the one used in this tutorial. However, it is not a
requirement to construct the database to get value from the tutorial. You can
choose to follow the MTK process by simply viewing the figures throughout the
chapter.

Getting started
If you have an Oracle 10g database installed and plan to use it with this tutorial,
then you will also require the following products:

� IBM Migration Toolkit (MTK) Version 2.0.5.0 (or higher) preferably installed on
the same machine as the target IDS server

� IBM Informix Dynamic Server (IDS) Version 11.10 (or higher)

Note: DML statements such as SELECT, INSERT, UPDATE, and DELETE
can be translated when imported by way of script files. However, like database
application objects, the table definitions that the DML depends on must be first
translated and exist in MTK.

Note: The tutorial was designed to be transparent to the operating system and
hardware used. Any portion of the tutorial that is dependent on a
platform-specific feature will be noted as such.

74 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

5.1 Part 1: Core database object migration

We begin the migration by converting the core database objects. When you bring
up the MTK you will see the following menu options:

� View a brief product overview
� Quickly convert a database using the wizard
� Launch the IBM Migration Toolkit product

To begin, click Launch the IBM Migration Toolkit.

5.1.1 Create a project

The first panel that opens is the Project Management panel, as shown in
Figure 5-1 on page 76.

To create a project, perform the following steps:

1. Create a new project called Tutorial1.

2. On the lower-left side of the panel, select Oracle as the source database from
the Select source database version you want to migrate pull-down menu.

3. On the lower-right side of the panel, select Informix Dynamic Server (v11.10
preferred) as the target of this migration on the Target Platform and Version
pull-down menu.

Note: This tutorial uses MTK Version 2.0.5.0 which was the latest version
available at the time this IBM Redbooks publication was published. Refer to
Chapter 4, “IBM Migration Tool Kit: An introduction” on page 59, for additional
MTK product information and for assistance on acquiring, installing and
configuring the MTK.

 Chapter 5. An MTK tutorial 75

Figure 5-1 MTK Creation Panel

Note: The current version of MTK supports IDS version 11.10 as its highest
target, but the MTK can also be used to convert and deploy to newer versions
of IDS. However, each new release of IDS may include additional Oracle
compatibility features. For example, IDS 11.50 now supports many of the
same built-in functions as Oracle. It is for this reason that you should inspect
MTK translations to versions of IDS higher than 11.10.

76 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

5.1.2 Work with the project

After the project is created, you are presented with the MTK user interface, as
shown Figure 5-2. You will notice five tabs at the top of the panel:

� Specify Source
� Convert
� Refine
� Generate Data Transfer Scripts
� Deploy to Target

Figure 5-2 MTK interface

Each tab represents a phase of the migration process, and we discuss each in
turn.

Specify Source tab
The Specify Source tab enables you to specify the data source to be migrated,
and is depicted in Figure 5-3 on page 78. You will notice that there are two
buttons:

� Import
� Extract

The MTK can extract database object definitions directly from the Oracle Data
Dictionary tables or import database object definitions contained in scripts. For
this tutorial, we extract directly from the database just as you would in an actual
migration project.

Note: If at any time during your implementation you would like to see a
description for a button or any other item on a panel, you can place your
cursor over that item and a message box with a description of that item will
appear.

 Chapter 5. An MTK tutorial 77

Figure 5-3 Specify Source Tab

Using the extract capability, it is possible to perform the following tasks:

� Extract only a subset of objects into its own file. For example, extract only
tables into a tables.src file and only functions into a functions.src file. For large
conversions, this is a recommended best practice.

� Automatically resolve dependencies. When extracting a view also determine
and extract needed tables, and when extracting a table also extract the
primary key, as examples.

� Extract each procedure and trigger to its own text file.

Note: If you do not have an Oracle database, then select Import, and import
the DDL for the core database objects using the scripts provided.

78 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Tables and indexes are generally the easiest to migrate. As previously
mentioned, we do this first because all other objects, such as functions,
procedures, and triggers, depend on having the table definitions. Click Extract to
begin the process of extracting the DDL into the project.

Before you can extract the DDL you must first connect to the Oracle database.
The Connect to Database panel opens next, as shown in Figure 5-4 on page 80.
For your connection we recommend using the Oracle JDBC driver (ojdbc14.jar)
that can be found in a subdirectory in your ORACLE_HOME. Select the Use
native JDBC driver check box on the panel. Enter the information needed to
establish a connection to the Oracle instance and click OK. The required
information is as follows:

� Service Name/ODBC DSN Alias
� Check box for the JDBC driver
� IP address of the host machine where the Oracle server is installed
� Port number for the Oracle server
� User ID
� Password

Note: Note that on Windows, an ODBC or a JDBC connection can be used.

 Chapter 5. An MTK tutorial 79

Figure 5-4 also shows an example of the values to be inserted. Enter the values
that are specific to your system and click OK.

Figure 5-4 MTK: Connect to the database

In the “Connect to Database” panel, the service name (orcl) in the Oracle
tnsnames.ora file is used. The full path of the ojdbc14.jar JDBC driver must be
added to the CLASSPATH environment variable before MTK can use the jdbc
driver. The user ID (ora_usr) must have read privileges on the Data Dictionary
tables.

Upon a successful connection, a graphical extract tree structure representing all
created Oracle schemas (logical databases) in the Oracle database opens, as
shown in Figure 5-5 on page 81. Expand the tree for the ora_usr schema (our
example database) and view all of its contents. You should see two sequences,
10 tables, two views, nine procedures/functions, seven triggers, and two
packages.

For this part of the tutorial, we extract only the sequences, tables, and views.

80 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 5-5 Extract tree structure

Take note of the Extract grant statements check box. Selecting this option will
extract all the grant definition statements. However, the MTK will not convert or
deploy them. This feature is helpful when reconstructing grants for IDS, but the
deployment of grants will need to be performed manually.

Next, we name this migration task as tables, and enter that name into the File
name box, as depicted in Figure 5-6. We check the boxes for sequences, tables,
and views and click Extract.

Figure 5-6 MTK: Checking the objects

 Chapter 5. An MTK tutorial 81

After you have extracted the objects, your connection is lost. However, you can
always go back and extract the additional objects that existed at the time of the
extraction. You only need to click Connect to Database to connect to the
database again if you have added new objects to the database after the
extraction was performed.

After clicking Extract, we are taken to a new window that displays a script
(tables.src) that holds the contents of the DDL just extracted. Take a moment to
familiarize yourself with the contents of this script by clicking the View tab, as
shown in Figure 5-7.

Figure 5-7 MTK: Extracting table objects

Note: Large conversions generate copious output. When converting large
numbers of objects, it may be more manageable to divide up the objects
across more files with less objects per file.

82 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

After examining the script we find that definitions for sequences, tables, indexes,
views, and alter statements to create primary and foreign key constraints are
included. Note the CONNECT ORA_USR statement at the beginning. To
continue to the next step, click the Convert tab.

Convert tab
We are now ready start the migration. To do this, use the Convert tab to display
the “Convert” panel (Figure 5-8). The left side of the panel lists the Oracle source
file (denoted as type.src). The right side of the panel is where the translated files
for IDS (denoted as type.ids) will be listed after the migration has been run. In the
middle of the panel, you will see the Convert button, which initiates a migration
of the currently selected source file.

To start the migration, highlight the tables.src file on the left. Be careful to select
the correct file when more than one source file is listed.

Figure 5-8 MTK: Convert Tab

There are some optional features to note on the “Convert” panel. Recall that help
text will appear when the cursor is placed over each feature.

� Specify schema for all objects

If this option is chosen, the schema name specified in the CONNECT
statement of the source file is added as the schema name to each target
object.

 Chapter 5. An MTK tutorial 83

� Advanced Options

These are used to control the characteristics of the migration file that will be
output. For example, by default, the source Oracle object definitions are
written as comments in the translation file. This can be disabled. Also, drop
statements can be added before create statements to ease repeated
deployment.

� Global Type Mapping

Click this button to view the MTK default data type mappings between Oracle
and IDS, and to override those default mappings identified with an edit icon.
Refer to Figure 5-9 on page 85 to see the mappings. After the data type
mapping has been changed, the effect is global to all conversions in a project.

� Previous Conversions

Click Reload when you want to make a previous conversion the active
conversion again. Once a file has been converted, the output of that
conversion may not be immediately available for viewing. Clicking Reload will
bring back these files for viewing without performing the conversion again.

84 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 5-9 Global type mapping

Click Convert. When conversion completes, the MTK automatically takes you to
the Refine tab. At the refine stage, you have the opportunity to review errors,
warnings, and other information associated with the translation.

Refine tab
The Refine tab has two main panels. On the left panel, you see the messages
tree. Expanding each node on the tree enables you to view details for each
message. On the right panel, additional information about the currently selected
tree node is displayed.

When you select the root tree node, you see a summary of the types of errors
encountered. Error messages are grouped into the following types:

� Script Input Error
� Translator Error
� Translator Warning
� Translator Information

 Chapter 5. An MTK tutorial 85

Translator Error means that in some situations the MTK cannot be sure that the
translation was correct and manual intervention might be required. The user
needs to validate the translation. This differs from the Translator Warning, which
indicates that the MTK has automatically made a translation decision.

Expand the messages tree in the left pane to view the message numbers within
each message group as shown in Figure 5-10. Each message number provides
a short description for that message type. As an example, Message Number 11:
Reference to an unknown object. Expand each message number to see a list of
occurrences and select a line number for that occurrence.

Figure 5-10 MTK translator messages

On the right pane, you will see two sub-tabs, as shown in Figure 5-11 on
page 87.

� Source file: tables.src

The original Oracle extract file

� Target file: tables.ids

The translation made by the MTK for IDS

86 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Click the Source file sub-tab and the MTK will bring you to the line in the source
file that corresponds to the line number you selected. Refer to Figure 5-11, which
depicts the selection of the source tables.src file for message number 120 at line
9-15. This message indicates that a value in the CREATE SEQUENCE
statement is out-of-range. The message is referring to MAXVALUE.

Figure 5-11 Source file: source.src line selection

Click the Target file: tables.ids sub-tab to see the same line in the translation file
and the translation made by the MTK. Refer to Figure 5-12, which is a view of the
translation file for IDS. For Message Number 120, in this example, the tables.ids
file shows the CREATE SEQUENCE statement that MTK generated. MTK
automatically generated the correct MAXVALUE for the IDS CREATE
SEQUENCE statement.

Figure 5-12 Target file: tables.ids translation

Take some time to examine the Translator Information messages that were
generated during the REFINE step, depicted in Figure 5-13 on page 88. Notice
that the source Oracle DDL is included in the IDS translation file as comments.

Note: Your line numbers may vary slightly

 Chapter 5. An MTK tutorial 87

Also, note the Translation Rate message at the bottom of the tree. For this
conversion, the rate is 91.18% indicating that 31 out of 34 statements were
translated successfully.

Figure 5-13 Examining the Translator Information

Click Message Help on the top right panel for the documentation of MTK
features. Also included are Converter Message descriptions. Figure 5-14
illustrates the Help feature.

Figure 5-14 Message Help Button

Review the translation file generated by the Refine step to see how the MTK
converted Oracle objects to IDS. Table 5-1 summarizes the translation issues
encountered:

Table 5-1 Summary of Translation Issues

Oracle Statement MTK Message IDS Translation Comments

Create sequence:
Employee_sequence
Office_sequence

Msg 120 - Error Oracle MAXVALUE out of range for IDS. MTK
generated correct MAXVALUE for IDS sequence.

Create index:
on Accounts table

Msg 11 - Error This is an Oracle functional index and not translated
by MTK. This translation is a manual activity. Refer
to Chapter 6, “SQL considerations” on page 111 for
these types of conversions.

Create index statements
with TABLESPACE clause

Msg 59 – Warning The Oracle TABLESPACE clause of the CREATE
INDEX was not translated to IDS. IDS create index
statements will be manually updated with dbspace
names.

88 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

At this point, we are satisfied that the MTK has successfully completed as much
of the first half of our migration as possible. There are only a few manual
translations left to do and we make a note to complete them before deployment.

This ends your first MTK refine.

A word about making manual changes
In this example, the MTK automatically compensated for Oracle-specific DDL
constructs. However, during the migration process, as we will see in 5.2, “Part II:
Database application object migration” on page 101, some manual intervention is
frequently required.

When manual intervention is needed for data type in a table, make the change
within the MTK or to the source file and run the Convert step again. All data type
changes must be made through the MTK or it might affect how the MTK later
extracts and deploys data and converts application objects. There are some
changes that can be made outside of the MTK and these occur when the
following circumstances are present:

� It is the final step in the translation process and running the Convert step
again will remove all manual changes made to the translation file.

� You are adding table spaces, or making other physical database design
changes, to the DDL in the translation file and deploying the script manually
outside of the MTK.

� For procedures, functions, and triggers, the manual change can be made
either to the source or the translation file. When making a change to the
translation file, it should be the final step in the translation process. Running
the Convert step again will remove all manual changes made to the
translation file.

Other common migration considerations
In this section, we discuss some additional common migration considerations.

Renaming object names
For various reasons MTK may assign a new name to an object during migration.
One example of this is when converting an Oracle trigger that combines more
than one triggering event (INSERT, UPDATE, and DELETE). The MTK will
convert this trigger for IDS by generating a separate trigger for each event and
also assigning new trigger names. But perhaps you have a standard naming

Note: The option to assign Oracle tablespace names to dbspace names for
IDS tables and indexes, was not selected. If desired, this feature can be
chosen on the Convert tab on the Advanced Options button.

 Chapter 5. An MTK tutorial 89

convention for object names, and the name suggested by the MTK was not
appropriate. You can provide a different name for any migrated object by
performing the following steps:

1. Under the Refine table, click Go to Source Object button, as shown in
Figure 5-15. Click this button to take you to a panel where you can see both
the Oracle object name and the IDS object name. If the Go to Source Object
button is not highlighted, you can also get there by selecting the Oracle tab
on the bottom-left side of the panel.

Figure 5-15 Example of a Go to Source object

2. In the panel shown in Figure 5-16, you can select any object to rename by
expanding the graphical tree structure on the left side of the panel and
highlighting that object.

Figure 5-16 Renaming objects

3. When you have highlighted the object that you want to rename, click the edit
icon on the right side of the panel, and a window opens for you to provide a
new name for the object.

4. Type in the new name and click Apply to apply that name.

For the change to take effect, you need to return to the Convert tab and click
Convert again. The Convert button will reread the original source file and apply
any changes defined to generate a new tables.ids file. The previous tables.ids file
is discarded and a new tables.ids file is generated. You are again taken to the
Refine tab of the MTK. The effects of renaming an object persist for the lifetime of
the project.

90 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Mapping Oracle tablespaces to IDS dbspaces
You will notice that Oracle tablespaces were not converted. Oracle tablespace
definitions do not map easily to IDS dbspaces definitions due to fundamental
architecture differences. Also, tablespace definitions that might be optimal in
Oracle might not be optimal for IDS. Because the MTK does not map Oracle
tablespaces to IDS dbspaces this is a manual migration activity. In addition,
under Advanced Options on the Convert tab, if the option to Use no table
spaces in DDL is selected, then assigning converted tables and indexes to
dbspaces is also a manual process and requires editing of the final translation
file.

Recommendation: In your own migrations, accept the translated DDL without
dbspace definitions for use in unit testing. Revisit the placement of tables and
indexes and their dbspaces when ready to create the production database and
perform system and performance testing.

5.1.3 Other useful features

In this section, we give a brief overview of some of the other useful features of
the MTK.

Viewing the Changes Report
All changes made through the MTK, such as data type mappings and renaming
objects, are tracked for you on a project basis. You can view these changes using
the Changes Report, which can be accessed from the MTK menu bar under
Tools. Figure 5-17 shows the Changes Report menu item.

Figure 5-17 Tools menu

Click the Tools tab, then click the Changes Report selection. You will then be
presented with the report (Figure 5-18 on page 92). Our current project did not
require any changes and our Changes Report reflects that fact.

 Chapter 5. An MTK tutorial 91

Figure 5-18 Changes report

Generating Data Transfer Scripts tab
The Generate Data Transfer Scripts tab generates the following scripts:

� Scripts to extract data to flat files from an Oracle database
� Scripts to load data into an IDS database

This step creates scripts that can be used by MTK to perform data migration.

IDS data loading options
MTK supports 2 methods for loading data into IDS:

� Use JDBC
� Use dbaccess

These methods are depicted in Figure 5-19 on page 93. The MTK provides the
Informix JDBC driver required for using the JDBC data movement option.

Note: A common misconception is that data is moved from Oracle to IDS at
this point. To be clear, no data is actually moved at this point. Only the scripts
are generated. In fact, there is not even a connection to either source or target
database at this point.

92 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 5-19 Data Loading options

To generate data transfer scripts perform the following steps:

1. Select the data loading option (JDBC or dbaccess).

2. Specify the Data Extraction option.

This entails specifying the column delimiter used to separate the data fields.
The default delimiter is |. If your data contains the | character, you can change
the delimiter to another character so that deployment can be successful.

3. Specify the directory for data extraction or accept the default directory
DataOutScripts, that is located in the project directory.

4. Click Next to generate the transfer scripts.

The data transfer scripts are listed in the right panel.

The following types of files are generated:

� Files used to extract data from the source database: DataMove_filename.qry.

A file with SQL statements to select and convert data from the Oracle
database. For our migration this file is named DataMove_tables.qry

� Files used to execute the load data into IDS: DataMove_filename.load and
filename.ids.

A file to INSERT data into tables. For our migration these files are named
DataMove_tables.load and tables.ids.

 Chapter 5. An MTK tutorial 93

Deploy to target tab
After you have generated the data transfer scripts, you are ready to deploy DDL
and data to IDS. Click the Deploy to Target tab to get started.

Deployment is a three-part process:

1. Create objects in IDS by launching the converted script.
2. Extract data from source database to flat files.
3. Deploy data from flat files to DB2.

Deploy conversion name to IDS
Perform the following steps for the deployment:

1. Specify the conversion name, as shown in Figure 5-20 on page 95. In this
case, the conversion name is tables (tables.ids) and is the only deployable
conversion at this time. If you have completed other conversions such as
functions, triggers, and procedures, the pull-down menu will also show those
conversion names.

2. Enter information for the IDS target. This information consists of host name,
port number, server name, and database name. The MTK can deploy the
migrated DDL to an existing database or create a new database. For this
tutorial, we deploy our DDL to a new database named example. If your target
database is local to the MTK, you can use the (Re)create option. This option
will allow you to create and recreate your local database every time you
deploy, if necessary. If your database is remote to the MTK, you must
manually create your database on the remote system and configure your
MTK machine as a client to that database.

3. Enter the user ID and password that you will use to connect to the IDS
database and has the authority to create objects.

4. For now, we are only creating the IDS objects from the three part deployment
process. Therefore, make sure that only the Launch tables.ids in the
database option is selected.

5. Click Deploy to create the tables in the Example database. The deployment
panel is shown in Figure 5-20 on page 95.

94 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 5-20 MKT: Deploy to target

 Chapter 5. An MTK tutorial 95

6. When the deployment completes, a Verification report opens, as shown in
Figure 5-21. Confirm that everything deployed properly.

Figure 5-21 Verification Report

Our report showed that the deployment step ran successfully, except for the
creation of the FB_IND_ACCOUNT_RATE index which is highlighted in red.
Previously, our Refine step reported that the MTK could not convert the
functional index and we flagged this item for a manual conversion. We cover how
to convert Oracle functional indexes in Chapter 6, “SQL considerations” on
page 111.

Check the deploy_filename.log, named deploy_tables.log, as shown in
Figure 5-22 on page 97 for the status of each IDS statement executed.

96 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 5-22 Deploy log

We are now ready to extract and load data into IDS.

Migrating the data
When you perform your actual migration, we recommend that you proceed with
the data deployment, as described in the following steps, to give you more
control and to avoid too much activity in one step:

1. When you are comfortable with the results of step 1 of the deployment
process, proceed to the second option, Extract and store data on this
system, shown in Figure 5-23. Click Deploy again to perform data extraction
to flat files. Click the Change source database button to make sure that your
Oracle database connection information is provided.

Figure 5-23 Deployment of data

2. If the extraction completed successfully, select the third check box, Load data
to target database using generated scripts, as shown in Figure 5-24 on
page 98, and click Deploy. This will load the data into Informix from the flat
files created in the previous step.

 Chapter 5. An MTK tutorial 97

Figure 5-24 Deployment option 3

3. When the deployment completes, a verification report, as shown in
Figure 5-25, launches to show the results. The report lists the number of rows
extracted versus the number of rows loaded. In our example, some source
tables were empty and so data was not loaded for those tables. If your data
has loaded as expected, you have successfully completed part 1 of the
migration.

Figure 5-25 Data load verification report

You can view the MTK log from the menu bar by navigating to Tools → Log. This
log records activities by time stamp to check the elapsed time for the data load
and other processes. An example is depicted in Figure 5-22 on page 97.

98 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 5-26 MTK Log

As you will see when you are migrating functions, triggers, and procedures in 5.2,
“Part II: Database application object migration” on page 101, you will simply
repeat deployment step 1. However, you will not have to perform step 2 or 3
again.

5.1.4 Additional MTK features

This section describes some additional features of the MTK.

SQL Translator
Now that you have successfully migrated the objects and data, we can examine
another useful feature of the MTK, the SQL Translator. From the MTK menu bar,
navigate to Tools → SQL Translator, as shown in Figure 5-27.

Figure 5-27 SQL Translator

The SQL Translator is the GUI interface for translating ad hoc SQL (SQL can also
be imported in a script). Before you can translate SQL this way, you must first
point the MTK to the conversion names for the converted object definitions on
which the SQL depends. To do this, ensure that the default Use all files of
current conversion is selected from the pull-down list.

 Chapter 5. An MTK tutorial 99

Running the MTK debugger
From the OS command line in the default MTK installation directory (the C:\MTK
directory on Windows and a user-named directory on UNIX), start the debugger
by executing the command:

MTKMain -debug

Run the MTK task that you are attempting to debug and view the MTK log
(mtk.log) to see logged messages at a more granular level.

5.1.5 Summary of best practices when using the MTK

The following summarizes the practices we employed when converting Oracle
objects to IDS. Although some of these practices are fairly intuitive, we state
them again as a review.

� The MTK translates by parsing a text input file. Even if no source database is
available, it supports a user-provided input file for migration. If you have a
source database, the MTK extracts the DDL from the database into a text file
from which to translate.

� When extracting objects for migration, do not try to do too much in one step.
In the example we provided, we start with tables and related items (such as
indexes and constraints) only. Consider migrating tables and related objects
separately from triggers, functions, and procedures. If your database is large,
you might want to further divide your migration effort.

� Some objects might require renaming. Within the REFINE step, you have the
opportunity to override the default name mapping if desired.

� Every time you click Convert, the MTK rereads the input file, applies
user-defined changes, and generates an entirely new output file.

� The MTK might not be able to provide REFINE capability for some warnings
for errors. You can manually change the input file to suit your needs and click
Convert again. This applies to any objects that have problems converting.

� An index TABLESPACE clause is not directly convertible and requires manual
intervention based on physical database design and tuning considerations.

� After you have a clean conversion, you can reduce the use of commenting in
the output file by disabling it in the Advanced Options.

� Insert statements can be used to populate your tables with a few rows of test
data. This practice has been referred to as seeding. If your application seeds
the database with initial data using INSERT statements, data extraction and
deployment might not be necessary. Instead, you can convert the INSERT
statements directly.

100 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� If your source database is small, you can have the MTK create a database for
the initial deployment. However, if the database is large, you should
pre-create the database and do some initial tuning before deployment (such
as dbspace space layout, buffers, and so on).

� When you deploy to IDS, do not deploy everything at the same time. Start with
DDL and ensure that all objects were created successfully before proceeding
with data. Then, perform data extraction and data deployment as separate
steps.

5.2 Part II: Database application object migration

Now that the table, view, index, and constraints DDL has been migrated,
database application objects, such as functions, procedures, packages, and
triggers, can be migrated. Application object migration tends to be more involved,
but the MTK helps to make this task far more manageable.

Converting procedures, functions, packages and triggers
This section describes the steps required to migrate the application objects. We
extract these objects from the Oracle example database to show you the
process. With that introduction, let's get started.

To start the migration, perform the following steps:

1. In the same project that we used to convert “Part 1: Core database object
migration”, click the Specify Source tab at the top of the panel and click
Extract.

2. In the Extract pane, expand the tree for the ora_usr schema and select the
boxes for Procedures/Functions, Triggers and Packages. Enter the name
procedures in the filename box as the name of this conversion. You should
see a window similar to the one shown in Figure 5-28.

Figure 5-28 Extract procedures/functions, triggers and packages

 Chapter 5. An MTK tutorial 101

3. Click Extract.

You should now see the procedures.src file listed on the right side of the
Specify Source panel (as depicted in Figure 5-29). Briefly familiarize yourself
with the objects by clicking View on the bottom of the panel.

Figure 5-29 Specify Source Tab

4. Move to the Convert tab.

5. Before we convert the objects, we must first set the context (dependencies) of
the conversion because each function, procedure, and trigger references
tables, views and sequences converted in Part 1. Click Set Context, as in
Figure 5-30 on page 103.

102 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 5-30 Mtk: Setting context

6. In the Set Context panel, shown in Figure 5-31, indicate to the MTK that your
next conversion will have dependencies on tables.src by clicking the single
arrow (>) to send the tables.src file to the right side of the panel. Click OK to
close the window.

Figure 5-31 Set Context panel

 Chapter 5. An MTK tutorial 103

7. Click OK to return to the Convert tab.

Notice that the context indicator (context) now appears next to the tables.src
file. Before starting, click Advanced Options and select the options as shown
in Figure 5-32. This will make the target.ids translation file cleaner and easier
to read.

Figure 5-32 Advanced Options panel

8. We can now proceed with the migration, using the following steps:

a. Select the procedures.src file on the left side of the panel.

b. Click Convert.

This will begin converting the objects to IDS and take you to the Refine tab.
We now begin refining the conversion the same way we refined the
conversion of objects in Part 1 (tables, views, indexes, and so on) by working
through the messages tree.

104 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

9. Expand the messages tree, as in Figure 5-33.

Figure 5-33 Refine messages tree

Make note of the Translation Information. The translation ratio is 83.21%. We find
that 114 out of 137 statements were translated successfully.

Next, expand the tree for each Msg Number to view the number of occurrences
found. As we select each occurrence by line number, we are brought to the
Oracle statement in the source file that it references. When we switch tabs from
the Source File tab to the Target file tab, we are brought to the translation in the
target file or to a converter message if the translation does not exit. If you need
further clarification for a message, refer to Converter Messages, which can be
accessed through the MTK help menu bar.

Note: The conversion information in the Refine Messages Tree is cumulative.
That is, even though we are reviewing messages for the procedures
conversion, the Messages Tree also holds messages from the tables
conversion. Each occurrence of a message number references the source file
it refers to (procedures.src or tables.src). This is shown in Figure 5-34.

 Chapter 5. An MTK tutorial 105

Figure 5-34 Msg numbers and references to conversion names

Review the translation file generated by the Refine step to see the results of the
translation. Most objects will generate more than one message. Some messages
are just informational and do not mean that a translation did not occur.

Because of the number of messages generated, we summarize our observations
about the translation in Table 5-2. The “State of Translation” column contains
either "Complete" or "Incomplete". A state of "Complete" indicates that the
translation appears to be complete but still requires further validation. A state of
"Incomplete" means that MTK was only able to complete a portion of the
translation and that manual intervention is required.

Table 5-2 Summary of observations

Object Oracle State of
Translation

Translation to IDS - Comments

AccountFull (function) Complete Execute and Test

AverageBand (function) Complete Execute and Test

CountProjects (function) Complete Execute and Test

MaxProjects (function) Complete Execute and Test

ShowfullAccounts (procedure) Complete Execute and Test

AddNewEmployee (procedure) Complete Execute and Test

AccountPackage (package): Complete Package contained 3 procedures. MTK converted
the package into 3 procedures and used the
package name as the schema name for each
procedure.

106 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 - AddEmployee (procedure) Complete Renamed Accountpackage.AddEmployee -
execute and test

 - RemoveEmployee (procedure) Incomplete Renamed Accountpackage.RemoveEmployee:
DBINFO('sqlca.sqlerrd2') added to handle the
Oracle SQL%NOTFOUND for the row count of a
DELETE statement.

 - AccountList (procedure) Incomplete Renamed Accountpackage.Accountlist: This
procedure was converted to a Function on IDS
because it returned data. A cursored LOOP
statement in Oracle was manually replaced with a
FOREACH construct on IDS.

Refpkg (package) Incomplete This package is not needed. It declares a variable
as a REF cursor and will not be used on IDS.

Assign (procedure) Incomplete Oracle Exception translated to ON EXCEPTION on
IDS for a "not found" condition.

Employeedynamic (procedure) Incomplete Oracle dynamic SQL requires manual conversion
to dynamic SQL on IDS.

SelectRow (procedure) Incomplete This procedure with an Oracle REF cursor variable
will be manually converted to an IDS function using
RETURN WITH RESUME.

EmployeeOfficesInsert (instead
trigger)

Incomplete Convert to an IDS trigger with a procedure call.

InsertEmployee (before trigger) Incomplete Convert to an IDS trigger with a procedure call.

ManagersChange (multiple
triggered events)

Incomplete MTK converted the multiple triggered events into
separate triggers for IDS. Convert to triggers with
procedure calls.

Office_summary_delete (instead
trigger)

Incomplete Manual completion of IDS Instead trigger syntax
required.

UpdateDeparments (trigger) Incomplete Convert to an IDS trigger with a procedure call.

UpdateEmployees (multiple
triggeredevents)

Incomplete MTK converted multiple triggered events into
separate triggers for IDS. Convert trigger to call
procedures.

CreateEmployeeID (trigger) Incomplete Convert to IDS trigger with procedure call. Dual
table conversion.

Object Oracle State of
Translation

Translation to IDS - Comments

 Chapter 5. An MTK tutorial 107

After the procedures, functions, packages, and triggers have been translated,
deploy to IDS using the same steps used in Part 1 when we deployed the core
database objects in the tables.ids file. To do so, continue with the migration
steps:

10.Click the Deploy to Target tab.

11.From the Conversion name list, select the procedure.ids file.

12.Ensure that the target database name indicates example. Do not select
(Re)create database.

13.Enter your connection user ID and password. Use a user ID that has authority
to create objects.

14.Select Launch procedures.ids in the database.

15.Click Deploy.

After the deployment completes, check the Verification report. You should see a
status of each object that was deployed, as depicted in Figure 5-35.

Figure 5-35 Verification report

Note: IDS triggers do not support SPL statements in the trigger body. Convert
an Oracle trigger with PLSQL statements to an IDS trigger that executes a
procedure.

Important: Even if the Refine step reports that translation is 100% and the
object deployed successfully, the final test for correct conversion of an
application object occurs when it is executed. You must ensure that the
semantics of the application object were not changed and that it performs
exactly as it did on the source database.

108 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

5.2.1 Migration of application objects: Lessons learned

The following list summarizes the lessons we learned by migrating procedures,
functions, packages, and triggers from Oracle to IDS:

� Limit the copying of source code in the Advanced Options to generate an
easier to read output file.

� When a project involves multiple files, you might need to identify
dependencies by setting the context of the migration using the Set Context
button.

� When the MTK identifies a construct that cannot be converted, manual
intervention is required. Changes can be made either to the source or
translation file depending on the nature of the change. If changes are made to
the translation file, do not run Convert again.

� In some cases, an incorrect translation might not be detected until deploying
or executing the application object.

� The MTK does not translate Oracle dynamic SQL, reference cursors, or
cursor variables such as%NOTFOUND.

� SQL error codes differ between Oracle and IDS.

� The MTK can translate%TYPE and%ROWTYPE.

� Oracle dual table can be converted to the IDS sysmaster:sysdual table.

� The MTK converts Oracle packages by extracting the procedures and
functions into separate objects and uses the package name as the schema
name for the procedure or function.

� Oracle triggers that contain PLSQL statements are converted to IDS triggers
that call an SPL procedure using the EXECUTE PROCEDURE statement.

� Oracle procedures that return data are converted to functions with the
RETURNING clause on IDS.

� Oracle procedures that return data using a REF cursor variable are converted
to an IDS function using RETURN WITH RESUME.

� When a procedure is converted to a function or visa versa, application
changes might be required in the calling program.

� You can switch back and forth between conversions using the Reload button.

Note: To view a Verification report other than the current report just generated
after deployment, click the Convert tab. From Previous Conversions, select
the name of the past conversion from the list and click Reload. This will make
all files of the past conversion available for viewing, including the Verification
report.

 Chapter 5. An MTK tutorial 109

Click the Deploy tab, and on the right side of the panel, double-click
Verify_conversion_name.html. The Verification report from a previous
conversion opens.

In addition, cumulative migration reports can be viewed from the MTK menu by
selecting Tools → Migration Reports.

110 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Chapter 6. SQL considerations

In this chapter, we discuss the SQL functionality and syntax for Oracle and the
Informix Dynamic Server (IDS). Although the focus for this chapter is on Oracle
10g Release 2 and Informix Dynamic Server Version 11.50, it can also be used
for migrations that are at other version levels. In addition to DDL, DML, and
overall SQL syntax, we also discuss differences between Oracle and Informix
with regards to server-side programming, with Oracle PL/SQL and Informix SPL.

6

© Copyright IBM Corp. 2009. All rights reserved. 111

6.1 DDL

In this section we describe how Oracle and Informix handle DDL statements,
such as create database, create and alter tables, indexes, triggers, sequences,
procedures, functions, and synonyms.

6.1.1 Database creation

Informix supports both ANSI and non-ANSI databases. However, Oracle
transaction behavior is more closely aligned with ANSI databases. In Oracle and
Informix ANSI databases, a transaction implicitly begins at the start of the
program and ends after execution of a commit or rollback statement.

To create an ANSI-compliant database, the WITH LOG MODE ANSI clause must
be added to the create database statement.

The following command creates an ANSI-complaint database called STORES:

CREATE DATABASE STORES WITH LOG MODE ANSI;

ANSI-compliant databases are different from databases that are not
ANSI-compliant in several ways:

� All SQL statements are automatically contained in transactions.

� All databases use unbuffered logging.

� For sessions, the default isolation level is REPEATABLE READ.

� Default privileges on objects differ from those in databases that are not ANSI
compliant. When you create a table or a synonym, other users do not receive
access privileges (as members if the PUBLIC group) to the object by default.

� All DECIMAL data types are fixed-point values. If you declare a column as
DECIMAL(p), the default scale is zero, meaning that only integer values can
be stored. In a database that is not ANSI-compliant, DECIMAL(p) is a
floating-point data type of a scale large enough to store the exponential
notation for a value.

� Owner naming is enforced. You must qualify with the owner name any table,
view, synonym, index, or constraint that you do not own. Unless you enclose
the owner name between quotation marks, alphabetic characters in owner
names default to uppercase. To prevent this upshifting of lowercase letters in
undelimited owner names, set the ANSIOWNER environment variable to 1.

112 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

6.1.2 Tables

When creating tables, the Oracle CREATE TABLE statement must be converted
to Informix, taking advantage of the Informix options IN, EXTENT, NEXT, and
LOCK MODE.

� IN specifies the dbspace in which the table will reside.

� EXTENT specifies the amount of space that will initially be allocated to the
table.

� NEXT specifies the amount of space that will be allocated when additional
space is needed.

Lock mode option
LOCK MODE specifies whether to use row or page locks for the table. In Oracle,
the default is row level locking. In Informix the default setting is page level locking.
However, the default can be changed by using one of the following methods
(resolved in the following order of precedence):

1. LOCK MODE specified using an attribute of the CREATE TABLE or ALTER
TABLE command syntax

2. IFX_DEF_TABLE_LOCKMODE environment variable setting

3. DEF_TABLE_LOCKMODE parameter setting in the ONCONFIG file

If the DEF_TABLE_LOCKMODE parameter cannot be found in the ONCONFIG
file, it can be added to make the specification for every database within the
instance. The Informix instance must be restarted for this parameter to take
effect.

Storage clauses
The Oracle STORAGE INITIAL and STORAGE NEXT clauses must be changed
to the Informix EXTENT SIZE and NEXT SIZE clauses, respectively. In Oracle
the STORAGE clause options MINEXTENTS, MAXEXTENTS and
PCTINCREASE should be removed.

When an Oracle CREATE TABLE statement does not include a STORAGE
clause, the table will be created using the tablespace STORAGE clause by
default. If an Oracle tablespace is created specifying a STORAGE INITIAL of 100
KB and a STORAGE NEXT of 50 KB, then all tables created within that
tablespace will have a default value of STORAGE INITIAL 100 KB and
STORAGE NEXT 50 KB. Oracle tables cannot be created with smaller
STORAGE clause values than the tablespace default in which they are created.

 Chapter 6. SQL considerations 113

Informix dbspaces do not have storage clauses attached to them. As previously
stated, the default Informix EXTENT and NEXT sizes are four times the disk
page size on your system. For example, if you have a 4 KB page system, the
minimum length is 16 KB.

Constraints
The Oracle constraint syntax must be changed to the Informix syntax for primary
keys, foreign keys, unique, and so on.

Primary Key Constraint
Oracle Syntax:

CONSTRAINT name PRIMARY KEY(column(s))

Oracle Example:

CONSTRAINT PK_ACCT_ID PRIMARY KEY(ACCT_ID)

Informix Syntax:

PRIMARY KEY (column(s)) CONSTRAINT name

Informix Example:

PRIMARY KEY(ACCT_ID) CONSTRAINT PK_ACCT_ID

Foreign Key Constraint
Oracle Syntax:

CONSTRAINT name FOREIGN KEY(column(s)) references_clause
[ON DELETE CASCADE / ON DELETE SET NULL]

Oracle Example:

CONSTRAINT FK_ACC_DEPT_CODE FOREIGN KEY (DEPT_CODE)
REFERENCES DEPARTMENT (DEPT_CODE) ON DELETE CASCADE

Informix Syntax:

FOREIGN KEY(column(s)) references_clause
[ON DELETE CASCADE] CONSTRAINT name

Informix Example:

FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT (DEPT_CODE)
ON DELETE CASCADE CONSTRAINT FK_ACC_DEPT_CODE

114 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Unique Constraint
Oracle Syntax:

CONSTRAINT name UNIQUE(column(s))

Oracle Example:

CONSTRAINT UK_PHONE UNIQUE(PHONE)

Informix Syntax:

UNIQUE (column(s)) CONSTRAINT name

Informix Example:

UNIQUE(PHONE) CONSTRAINT UK_PHONE

Check Constraint
Oracle Syntax:

CONSTRAINT name CHECK (condition)

Oracle Example:

CONSTRAINT CHK_ORD_MONTH CHECK (ORDER_MONTH BETWEEN 1 AND 12)

Informix Syntax:

CHECK (condition) CONSTRAINT name

Informix Example:

CHECK (ORDER_MONTH BETWEEN 1 AND 12) CONSTRAINT CHK_ORD_MONTH

Note: There is no ON DELETE SET NULL in Informix. However, you could
write a stored procedure or a trigger to get that capability. Refer to the
CREATE TABLE statement syntax in the Informix Guide to SQL: Syntax,
G229-6375, for information about the Informix referential integrity constraint.

Note: An Oracle check constraint statement may contain functions that are
not available in Informix. To get similar functionality, you can create stored
procedures in Informix.

 Chapter 6. SQL considerations 115

Parallel
The Oracle PARALLEL clause, sets the degree of parallelism for creation of the
table and also INSERT, UPDATE, DELETE, and MERGE operations after the
table is created.

The Oracle PARALLEL clause must be removed from any SQL statements (such
as CREATE TABLE and ALTER TABLE) when porting the statement to Informix.

In Informix, you can accomplish parallel execution using Parallel Database Query
(PDQ) feature. PDQ divides large database queries into multiple parallel tasks,
which can dramatically improve performance when the database server
processes queries that are initiated by decision-support applications.

In Informix, PDQ operations include scans, sorts, joins, aggregates, inserts, and
deletes. Unlike Oracle, you cannot use PDQ at the time of creation of the table.
PDQ can be turned on for a particular query or set of queries using the SQL
statement SET PDQPRIORITY. It can also be turned on for all queries run by
particular users, with the environmental parameter PDQPRIORITY.

Example 6-1 shows how Oracle and Informix tables are typically created, and
how they differ from each other.

Example 6-1 Create table example

Oracle Create Table:
CREATE TABLE accounts(

acct_id NUMBER(3) NOT NULL,
dept_code CHAR(3) NOT NULL,
acct_desc VARCHAR2(2000),
max_employees NUMBER(3),
current_employees NUMBER(3),
num_projects NUMBER(1),
CONSTRAINT PK_ACCT_ID PRIMARY KEY(ACCT_ID),
CONSTRAINT FK_ACC_DEPT_CODE FOREIGN KEY (DEPT_CODE)
REFERENCES DEPARTMENTS (DEPT_CODE)

)
STORAGE (INITIAL 36k NEXT 36K MINEXTENTS 1 MAXEXTENTS 50)
TABLESPACE user_data_tbs;

Informix Create Table:

Note: Refer to Informix Dynamic Server Performance Guide, G229-6385, for
more information about the Parallel Database Query (PDQ) feature in
Informix.

116 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

CREATE TABLE accounts(
 acct_id SMALLINT NOT NULL,
 dept_code CHAR(3) NOT NULL,
 acct_desc LVARCHAR(2000),
 max_employees SMALLINT,
 current_employees SMALLINT,
 num_projects SMALLINT,
 PRIMARY KEY(acct_id) CONSTRAINT PK_ACCT_ID,
 FOREIGN KEY (dept_code) REFERENCES DEPARTMENTS(DEPT_CODE)

CONSTRAINT FK_ACC_DEPT_CODE
)
IN user_data_tbs
EXTENT SIZE 36 NEXT SIZE 36;

Table fragmentation
Table partitioning in Oracle is what is known as table fragmentation in Informix.
Informix recommends using table fragmentation to improve single-user response
time, concurrency, data availability, backup/restore characteristics, and data-load
performance.

Informix fragmentation strategies
Informix allows table fragmentation based on two strategies, round robin and
expression-based fragmentation.

1. Round robin:

As records are inserted into the table, they are placed in the first available
fragment in round robin fashion. The database server balances the load
among the specified fragments as you insert records and distributes the rows
in such a way that the fragments always maintain approximately the same
number of rows. In this distribution scheme, the database server must scan all
fragments when it searches for a row.

2. Expression®-based fragmentation:

In an expression-based distribution scheme, each fragment expression in a
rule specifies a storage space. Each fragment expression in the rule isolates
data and aids the database server in searching for the rows.

 Chapter 6. SQL considerations 117

To fragment a table by expression, specify one of the following rules:

– Range rule:

A range rule specifies fragment expressions that use a range to specify
which rows are placed in a fragment, as shown in the following example:

FRAGMENT BY EXPRESSION
c1 < 100 IN dbsp1,
c1 >= 100 AND c1 < 200 IN dbsp2,
c1 >= 200 IN dbsp3;

– Arbitrary rule:

An arbitrary rule specifies fragment expressions based on a predefined
SQL expression that typically uses OR clauses to group data, as shown in
the following example:

FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num = 95443 IN dbsp2,
zip_num = 91120 OR zip_num = 92310 IN dbsp4,
REMAINDER IN dbsp5;

Oracle partitioning strategies
In Oracle, there are four table partitioning strategies:

� Range partitioning

Range partitioning creates partitions based on the range of column values of
the specific column. Each partition is defined by a partition bound that limits
the scope of the partition.

� HASH partitioning

Hash partitioning creates partitions based of a hash value generated from the
value of a specific column that is used for partitioning. Hash partitioning is
based on an internal hash algorithm used by Oracle.

� List partitioning

In this partitioning method, the table data are partitioned based on the list of
values of a column.

� Composite Range-Hash partitioning

This partitioning method is a combination of range and hash partitioning
where partitions can have subpartitions of the following types:

– Range partition can contain multiple hash subpartitions.
– Range partition can contain multiple list subpartitions.

In Table 6-1 on page 119 we show the Oracle partitioning strategies and a
proposed Informix alternative.

118 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Table 6-1 Informix fragmentation strategy alternatives to Oracle strategies

In Example 6-2 we show an example of Oracle range partitioning and the
equivalent functionality with Informix expression-based fragmentation.

Example 6-2 Range partitioning example

Oracle Range Partitioning:

CREATE TABLE accounts
(

acct_id NUMBER(3) NOT NULL,
dept_code CHAR(3) NOT NULL,
acct_desc VARCHAR2(2000),
max_employees NUMBER(3),
current_employees NUMBER(3),
num_projects NUMBER(1)

)
PARTITIONING BY RANGE (acct_id)

(PARTITION part1 VALUES LESS THAN (100)
TABLESPACE part1_tbs,

(PARTITION part2 VALUES LESS THAN (200)
TABLESPACE part2_tbs,

(PARTITION part3 VALUES LESS THAN (300)
TABLESPACE part3_tbs,

(PARTITION part4 VALUES LESS THAN (MAXVALUE)
TABLESPACE part4_tbs);

Equivalent Informix Expression-based Fragmentation:

CREATE TABLE accounts(
 acct_id SMALLINT NOT NULL,
 dept_code CHAR(3) NOT NULL,
 acct_desc LVARCHAR(2000),
 max_employees SMALLINT,
 current_employees SMALLINT,
 num_projects SMALLINT,
)
FRAGMENT BY EXPRESSION
acct_id < 100 IN dbspace1,
acct_id >= 100 AND acct_id < 200 IN dbspace2,
acct_id >= 200 AND acct_id < 300 IN dbspace3,
REMAINDER IN dbspace4;

Oracle Partitioning Strategy Informix Fragmentation Strategy

Range Partitioning Expression Based Fragmentation

List Partitioning Expression Based Fragmentation

Hash Partitioning Round Robin Fragmentation

Composite Range-Hash Partitioning Expression Based Fragmentation

 Chapter 6. SQL considerations 119

Date Types
Oracle data types need to be replaced with one of the Informix equivalent data
types, depending on the type and size of the column. For more information, refer
to Appendix A, “Data types” on page 313, which summarizes the mapping from
Oracle data types to corresponding IDS data types. The mapping is one to many
and depends on the actual usage of the data.

In this section we discuss in detail the special types of data, such as large
objects, ROWID, and user-defined data types.

Large objects
Informix incorporates two types of large objects. These are typically referred to
as simple large objects and smart large objects, or SLOBs. Simple large objects
consist of two data types, TEXT and BYTE, and have the theoretical size limit of
231 bytes. SLOBs contain the character large object (CLOB) and binary large
object (BLOB) data types. SLOB’s may be up to 242 bytes, or 4 terabytes, in size.
Simple large objects are stored either in tables or blobspaces while SLOBs are
stored in sbspaces.

Oracle 8.0.x introduced LOBs (large objects) consisting of CLOB and BLOB data
types. Traditional Oracle MLSLABEL, RAW, and LONG RAW data types are also
used for data that is not to be interpreted by the engine (not converted when
moving data between different systems). Oracle CLOB, BLOB, MLSLABEL,
RAW, and LONG RAW data types should be replaced with Informix BYTE, TEXT,
CLOB, or BLOB, depending on the column size and usage. CLOB and BLOB
data types should be used under the following conditions and considerations:

� The large object needs to be referenced by multiple sources.
� The object size exceeds 2 GB.
� Fragmentation is required.
� Byte level locking makes it possible to lock only a portion of the object.
� Logging can be specified at the object level.
� Updates are done in place or moved as needed.
� Data storage is required for an index referenced by a third party datablade.
� It is the ideal storage method for large user defined types (UDTs).

Be aware of the following restrictions for simple large objects:

� Data can only be inserted into a BYTE or TEXT column with the dbload or
onload utilities, the DBACCESS load statement, BYTE or TEXT host
variables, respectively, in ESQL/C, or by declaring a file in ESQL/COBOL.

� BYTE and TEXT columns cannot be inserted or updated with a literal, neither
quoted text string nor number.

� BYTE or TEXT columns cannot be used in string operations, with aggregate
functions, with the GROUP BY, ORDER BY, IN, LIKE, or MATCHES clauses.

120 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

ROWID Data Type
The implementation of ROWID differs in Oracle and Informix. The Oracle ROWID
is both a pseudocolumn and a data type. Informix implements ROWID as a
pseudo-column only. Oracle stores the ROWID column and ROWID data type
column values in hexadecimal format. Informix stores the ROWID column values
in INTEGER format. The Oracle and Informix engines maintain the values of the
ROWID pseudocolumn. But, the Oracle engine does not maintain the values of
other columns of type ROWID.

In Informix, the term ROWID refers to an integer that defines the physical location
of a row. Informix assigns rows in a non-fragmented table a unique ROWID,
which allows applications access to a particular row in a table. Rows in
fragmented tables, in contrast, are not assigned a ROWID. To access data by
ROWID in a fragmented table, a ROWID column must be explicitly created as is
described in the Informix Guide to SQL: Reference, G229-6374. If applications
attempt to reference a ROWID in a fragmented table that does not contain a
ROWID that was explicitly created, Informix displays an appropriate error
message and execution of the application is halted.

When used as an Oracle data type for a column, it is not guaranteed that the
values are valid ROWIDs. For example, if the ROWID is used as a data type on a
column, such as a column in a child table named parent_rowid containing the
ROWID of the parent, then the values are maintained by the application, outside
of the engine. The application must read the ROWID of the parent and insert it
into the parent’s corresponding child table rows. This is usually done so that the
two tables can be joined on the parent’s ROWID and the child’s parent_rowid
column. This functionality can be duplicated in Informix by using primary and
foreign keys. Informix recommends that primary keys be used as a method of
access in applications rather than ROWIDs, because primary keys are defined in
the ANSI specification of SQL, and using them to access data makes
applications more portable.

User-defined data types
Both Oracle and Informix Dynamic Server allow the user to create and define
data types. Oracle refers to these as abstract data types while Informix refers to
these as user-defined types. In Oracle, all user-defined types are referred to as
abstract data types while Informix may refer to user-defined types as
COLLECTION types, ROW types, DISTINCT types and OPAQUE types.
Currently, the Informix ROW type is closest in form and function to the Oracle
abstract data type. An example of the syntax for creating both an Oracle abstract
data type and an Informix ROW type is shown in Example 6-3 on page 122.

 Chapter 6. SQL considerations 121

Example 6-3 User-defined types

Oracle abstract data type:

CREATE TYPE name_type AS OBJECT
(
first_name VARCHAR2(25),
middle_initial CHAR(1),
last_name VARCHAR2(30)
);

Informix row type:

CREATE ROW TYPE name_type
(
first_name VARCHAR(25),
middle_initial CHAR(1),
last_name VARCHAR(30)
);

Both Oracle and Informix support the use of user-defined types for table
definitions or column definitions within a table.

Building on Example 6-3, the following create table examples show a table
definition and column definition within a table, based on user-defined types:

Oracle table creation:

CREATE TABLE name OF name_type;

Informix table creation:

CREATE TABLE name OF type name_type;

Oracle column definition:

CREATE TABLE employee
(empno NUMBER(9),
name name_type);

Informix column definition:

CREATE TABLE employee
(empno INTEGER,
name name_type);

For more information about User Defined Types, see the Informix Guide to SQL:
Syntax, G229-6375.

122 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Temporary tables
Informix and Oracle implemented the concept of temporary tables differently.
Oracle implements temporary tables as a work area during batch data loads,
whereas Informix implements temporary tables just like regular database tables.
These temporary tables can be created, manipulated, and dropped only within a
session. Once the session ends, any remaining temporary tables created by that
session are automatically dropped.

Using WITH NO LOG option
When creating temporary tables in Informix, use the WITH NO LOG option to
reduce the overhead of transaction logging. If you specify WITH NO LOG,
operations on the temporary table are not included in the transaction-log
operations. The WITH NO LOG option is required on all temporary tables that
you create in temporary dbspaces. In Informix you can also choose to create
temporary table in the dbspace of your choice.

Differences between temporary and permanent tables
Permanent tables differ from temporary tables in the following ways:

� They have fewer types of constraints available.
� They have fewer options that you can specify.
� They are not visible to other users or sessions.
� They do not appear in the system catalog tables.
� They are not preserved.

Duration of temporary tables in Informix
The duration of a temporary table depends on whether or not it is logged. A
logged temporary table exists until one of the following situations occurs:

� The application disconnects.
� A DROP TABLE statement is issued on the temporary table.
� The database is closed.

A non-logging temporary table exists until one of the following events occurs:

� The application disconnects.
� A DROP TABLE statement is issued on the temporary table.

Example 6-4 on page 124 shows how an Oracle temporary table is typically
created using ON COMMIT PRESERVE ROWS, which tells the system to delete
rows in the temporary table at the end of the session. You can also see how an
Informix temporary table is created in the same example.

 Chapter 6. SQL considerations 123

Example 6-4 Oracle Temporary Table creation

Oracle Temporary Table Definition:

CREATE GLOBAL TEMPORARY TABLE my_employee_temp_table
(

first_name varchar(40),
last_name varchar(40)

) ON COMMIT PRESERVE ROWS;

Informix Temporary Table Definition:

CREATE TEMPORARY TABLE my_employee_temp_table
(

first_name varchar(40),
last_name varchar(40)

) WITH NO LOG;

Oracle DUAL table
Oracle’s DUAL table is a system table with only one row containing one column
named DUMMY. This table is used to complete the syntax of an SQL statement
that does not involve an existing table, such as the following examples:

� A SELECT statement which assigns some constant value (which can only be
derived in an SQL statement) to a host variable:

SELECT TO_CHAR(SYSDATE) INTO :date_var FROM DUAL;

� A SELECT statement which assigns a value of another variable to a variable:

SELECT :source_var INTO :dest_var FROM DUAL;

� A SELECT statement which unions application host variable values with
another SELECT statement to return a result containing a row of application
variable values:

SELECT col1, col2, col3 FROM table_name
UNION
SELECT :host_var1, :host_var2, :host_var3 FROM DUAL;

How you convert the Oracle DUAL table functionality to Informix depends on the
way it is used. Converting statements that just assign constants is as simple as
replacing the DUAL statement with an Informix assignment statement. To convert
more complex DUAL statements, a temporary table named DUAL should be
created with columns whose types depend on how they are used in the DUAL
statement. Before selecting values from this table, as in the case of the previous
UNION example, values must be inserted in the table first and then selected from
it. If multiple UNION statements use DUAL, multiple rows must be inserted in the

124 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

table and then selected. The temporary table should be either dropped or
emptied for future use, immediately after the DUAL processing.

If references to DUAL are widespread throughout the application, and minimizing
the number of code changes is the priority, a dummy table can be created to
mimic the behavior of simple SELECT INTO statements used to assign values to
variables. Example 6-5 shows how to create an Oracle Dual table in Informix.

Example 6-5 Informix Dual table creation

CREATE TABLE dual (dummy VARCHAR(1));
INSERT INTO dual VALUES(‘X’);

Table 6-2 summarizes a comparison Oracle and Informix tables.

Table 6-2 Mapping of Oracle and Informix tables

Both Oracle and Informix use indexes for query performance optimization.
However, there are differences in the implementation of indexes between Oracle
and Informix.

Oracle Informix Observation

Heap Organized Regular table A heap organized table in
Oracle is a table with rows
stored in no particular
order.

Temporary Temporary

Index-Organized (IOT) None

External Informix Virtual Table
Interface

Read Informix Virtual Table
Interface Programmer’s
Guide for more
information.

Clustered None

Partitioned Fragmented

Nested Named Row Type

Index clustered table Informix Index Cluster Use TO CLUSTER option
with CREATE / ALTER
INDEX statement

Hash cluster table None

 Chapter 6. SQL considerations 125

Informix composite indexes
A composite index can have up to 16 key parts that are columns, or up to 341 key
parts that are values returned by a UDR. This limit is language-dependent, and
applies to UDRs written in SPL or Java. Functional indexes based on C language
UDRs can have up to 102 key parts. A composite index can have any of the
following items as an index key:

� One or more columns

� One or more values that is returned by a user-defined function (referred to as
a functional index)

� A combination of columns and user-defined functions

Informix maximum key size
The total widths of all indexed columns in a single CREATE INDEX statement
have a limitation based upon the page size of the dbspace in which the index
resides. However, this limitation does not apply to functional indexes.

An enhancement, called configurable page sizes for dbspaces, was introduced
from Informix Dynamic Server Version 10.00. Prior to this, the page size of
dbspaces were restricted to that of the operating system and could not be
changed, thus IDS was limited to 390 byte indexes. With page sizes now
configurable from 2 K to 16 K, wider indexes are supported.

Referring to Table 6-3, 16 K page sizes raises the limit on index width to over
3000 bytes. Lifting the 390 byte limit also permits LVARCHAR columns larger
than 387 bytes to be included in an index definition.

Table 6-3 Page sizes for dbspaces

In addition to aiding the porting process, wider indexes have satisfied
requirements for Unicode data, and have provided performance gains by
reducing B-Tree index traversal costs. This is because indexing can be built with
more items on an index page and produces fewer levels.

Page Size Maximum Key Size

2 kilobytes 387 bytes

4 kilobytes 796 bytes

8 kilobytes 1615 bytes

12 kilobytes 2435 bytes

16 kilobytes 3245 bytes

126 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Index fragmentation
Both Oracle and Informix support index fragmentation (partitioning). Oracle
indexes that are partitioned in the same manner as the table they are indexing
are referred to as local indexes. Example 6-6 shows how a Local Partitioned
Index is created in Oracle based on the oracle partitioned table created in
Example 6-2 on page 119.

Example 6-6 Oracle Local Partition Index

CREATE TABLE accounts
(

acct_id NUMBER(3) NOT NULL,
dept_code CHAR(3) NOT NULL,
acct_desc VARCHAR2(2000),
max_employees NUMBER(3),
current_employees NUMBER(3),
num_projects NUMBER(1)

)
PARTITIONING BY RANGE (acct_id)

(PARTITION part1 VALUES LESS THAN (100)
TABLESPACE part1_tbs,

(PARTITION part2 VALUES LESS THAN (200)
TABLESPACE part2_tbs,

(PARTITION part3 VALUES LESS THAN (300)
TABLESPACE part3_tbs,

(PARTITION part4 VALUES LESS THAN (MAXVALUE)
TABLESPACE part4_tbs);

CREATE INDEX idx_account_local ON accounts (acct_id)
LOCAL
PARTITION BY RANGE(acct_id)
(PARTITION pi100 values less than(100) TABLESPACE part_ind_100,
 PARTITION pi200 values less than(200) TABLESPACE part_ind_200,
 PARTITION pi300 values less than(300) TABLESPACE part_ind_300,
 PARTITION pi400 values less than (MAXVALUE) TABLESPACE part_ind_400);

In Informix, local indexes are known as attached indexes. The database server
fragments the attached index according to the same distribution scheme as the
table by using the same rule for index keys as for table data. As a result, attached
indexes have the following physical characteristics:

� The number of index fragments is the same as the number of data fragments.

� Each attached index fragment resides in the same dbspace as the
corresponding table data, but in a separate tblspace.

� An attached index or an index on a non-fragmented table uses 4 bytes for the
row pointer for each index entry.

 Chapter 6. SQL considerations 127

Unlike Oracle, you do not have to mention the fragmentation strategy again when
creating the attached index. It just follows the same strategy used when creating
the fragmented table. You just have to create an Index with a simple create index
statement, such as that shown in Example 6-7. For additional information, refer
to the Informix Dynamic Server Performance Guide, G229-6385.

Example 6-7 Informix Attached Index

CREATE TABLE accounts(
 acct_id SMALLINT NOT NULL,
 dept_code CHAR(3) NOT NULL,
 acct_desc LVARCHAR(2000),
 max_employees SMALLINT,
 current_employees SMALLINT,
 num_projects SMALLINT
)
FRAGMENT BY EXPRESSION
acct_id < 100 IN dbspace1,
acct_id >= 100 AND acct_id < 200 IN dbspace2,
acct_id >= 200 AND acct_id < 300 IN dbspace3,
REMAINDER IN dbspace4;

CREATE INDEX idx_account_local ON accounts (acct_id);

In Oracle, you can also have Global Partitioned Indexes which are flexible and
there is no dependency on how the table is partitioned. Example 6-8 shows how
to create an Oracle Global Partition based on the Oracle Partition Table created
on Example 6-2 on page 119.

Example 6-8 Oracle global partition index

CREATE INDEX idx_account_local ON accounts (acct_id)
GLOBAL
PARTITION BY RANGE(acct_id)
(PARTITION pi100 values less than(100) TABLESPACE part_ind_100,
 PARTITION pi100 values less than(MAXVALUE) TABLESPACE part_ind_400);

Informix refers to these types of indexes as detached fragmented indexes.
However, Informix detached indexes may also refer to indexes that do not follow
the same fragmentation scheme as the table they are indexing. Example 6-9 on
page 128 shows how to create the corresponding Oracle global partition index
shown in Example 6-8 as an Informix detached fragmented index.

Example 6-9 Informix detached index

CREATE INDEX idx_account_local ON accounts (acct_id)

128 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

FRAGMENT BY EXPRESSION
acct_id < 100 IN dbspace1,
REMAINDER IN dbspace4;

Oracle bitmap indexes
The Oracle bitmap index is not available in Informix Dynamic Server. This type of
index is aimed at data warehousing and is suitable for an index where there are
few key values (low cardinality). For example, as with gender or state.

Oracle function-based indexes
A function-based index computes the values of the functions or expressions and
stores them in the index as key values. Informix functional indexes are the same
as the Oracle function-based indexes.

General index information
The Informix CLUSTER option should be used when appropriate. This option
orders the data within the table in the order the index requires. It is important to
note that the CLUSTER index is not maintained over time. The primary factor
determining the frequency of CLUSTER index rebuilds is the amount of DML
performed against the table. Frequent INSERTS, UPDATES, and DELETES
make it necessary to closely monitor CLUSTER indexes. There is only one
clustered index per table because a table data can only be stored in one order.

Oracle INITRANS and PCTFREE functionality is similar to the Informix index
FILLFACTOR option of the CREATE INDEX statement or the FILLFACTOR
configuration parameter in the ONCONFIG file. In either case, the functionality is
handled by the Informix engine once it is set, and can be removed from the
application. FILLFACTOR specifies the degree of index-page compactness. A
low value provides room for growth in the index, and a high value compacts the
index. If an index is fully compacted (100 percent), any new inserts result in
splitting nodes. The setting on the CREATE INDEX statement overrides the
ONCONFIG file value. The FILLFACTOR default value for both the CREATE
INDEX statement as well as the ONCONFIG is 90.

6.1.3 Views

A view is a virtual table based on a specified SELECT statement. Views are used
to restrict the access to the contents of the base tables. The following are the
characterstics of a view in IDS:

Note: Oracle bitmap indexes are available in the Informix Extended Parallel
Server.

 Chapter 6. SQL considerations 129

� To create a view, the base table must exist and you must have the SELECT
privilege on all columns from which the view is derived.

� Deletes, inserts, and updates can be performed through the view.

� Because a view is not really a table, it cannot be indexed and it cannot be the
object of such statements as ALTER TABLE and RENAME TABLE.

� You cannot rename the columns of a view with RENAME COLUMN. To
change anything about the definition of a view, drop the view and recreate it.

� The view reflects changes to the underlying tables with one exception. If a
SELECT * specification defines the view, the view has only the columns that
existed in the underlying tables when the view was defined by a CREATE
VIEW. Any new columns that are subsequently added to the underlying tables
with the ALTER TABLE statement do not appear in the view.

� The SELECT statement on which a view is based cannot contain INTO TEMP
and ORDER BY clauses.

The Oracle CREATE VIEW statement contains three options:

� FORCE creates the view regardless of whether the view's base tables exist or
the owner of the schema containing the view has privileges on them.

� NO FORCE creates the view only if the base tables exist and the owner of the
schema containing the view has privileges on them.

� WITH READ ONLY specifies that no deletes, inserts, or updates can be
performed through the view.

These options do not exist with create view statement in IDS, so they must be
removed from the Informix CREATE VIEW statements. Example 6-10 shows a
view creation statement in Oracle and Informix.

Example 6-10 View in Oracle and Informix

CREATE VIEW employees_details
AS SELECT emp_id, first_name, last_name
FROM employees
WITH READ ONLY;

CREATE VIEW employees_details
AS SELECT emp_id, first_name, last_name
FROM employees;

6.1.4 Sequences

An Oracle sequence is a database object from which multiple users, or
transactions, may generate unique integers. For example, sequences can be

130 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

used automatically to generate primary key values. When a sequence object is
queried, the sequence number is incremented and passed to the query,
independent of the transaction committing or rolling back. If two applications
increment the same sequence, the sequence numbers each application acquires
may not be sequential because sequence numbers are being generated by the
other application.

One user, or transaction, can never acquire the sequence number generated by
another user, or transaction. Once a user or transaction generates a sequence
value, that value will never be generated and passed to another user or
transaction.

In Oracle, MAXVALUE has 28 or less digits and it must be greater than
MINVALUE.

The IDS implementation of sequence objects is identical to that of Oracle. Issues
regarding syntax compatibility should be negligible with the exception of some
keywords which have no effect on the behavior of the sequence. We have shown
the create sequence statement for Oracle and Informix in Example 6-11.

Informix supports DML statements (CREATE SEQUENCE, ALTER SEQUENCE,
RENAME SEQUENCE, DROP SEQUENCE) for sequence objects that multiple
users can access concurrently to generate unique integers in the 8-byte integer
range. GRANT and REVOKE statements support access privileges on sequence
objects, and the CREATE SYNONYM and DROP SYNONYM statements can be
used to reference synonyms for sequence objects in the local database. The
operators, CURRVAL and NEXTVAL, can read or increment the value of an
existing synonym with behavior the same as Oracle.

Example 6-11 Create Sequence in Oracle and Informix

Create Sequence Statement in Oracle and Informix:

CREATE SEQUENCE account_sequence
START WITH 1
MAXVALUE 99999999
INCREMENT BY 1
NOCACHE
NOCYCLE;

6.1.5 Synonyms

In Oracle, you can have public and private synonyms. All users in the database
are able to see the public synonyms regardless the privileges granted to them
and can be referred to it without the owner. On the other hand, private synonyms

 Chapter 6. SQL considerations 131

can only be seen for its owner and for those ones that have been granted
privilege, and must be referred using the schema owner.

By default Oracle creates private synonym, whereas Informix creates a public
synonym. We have shown a number of Oracle synonyms in Example 6-12.

Example 6-12 Synonyms in Oracle

Private Synonym in Oracle:

CREATE SYNONYM acct FOR appl.account;

SELECT * from appl.acct;

Public Synonym in Oracle:

CREATE PUBLIC SYNONYM acct FOR appl.account;

SELECT * FROM acct;

In Example 6-13 we have shown a number of Informix synonyms.

Example 6-13 Synonyms in Informix

Private Synonym in Informix:

CREATE PRIVATE SYNONYM acct FOR appl.account;

SELECT * from appl.acct;

Public Synonym in Informix:

CREATE SYNONYM acct FOR appl.account;

SELECT * FROM acct;

132 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

6.1.6 Triggers

Oracle supports the use of multiple trigger events. As examples, insert, update,
and delete within the same trigger. Informix only supports one trigger event per
trigger. And, just as in Oracle, you can definite multiple insert, delete, update, and
select triggers on the same table in Informix.

In this section, we demonstrate a high-level overview of the differences in trigger
definitions for Oracle and Informix. Example 6-14 shows a simple Oracle trigger,
which has set a value to a table column before inserting a row.

Example 6-14 Oracle Trigger

CREATE OR REPLACE TRIGGER up_price
AFTER UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW
WHEN(post.unit_price > pre.unit_price * 2)
BEGIN
INSERT INTO warn_tab VALUES(pre.stock_num, pre.manu_code,
pre.unit_price, post.unit_price, SYSDATE);
END;

Example 6-15 shows how to define the corresponding trigger in Informix.

Example 6-15 Informix trigger

DROP TRIGGER up_price;

CREATE TRIGGER up_price
AFTER UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW
WHEN(post.unit_price > pre.unit_price * 2)
(INSERT INTO warn_tab VALUES(pre.stock_num, pre.manu_code,
pre.unit_price, post.unit_price, CURRENT));

6.1.7 DBLinks

Oracle uses database links (DBLINK) to connect to another Oracle database.
DBLink is an object in one database (source) that defines the target database
name, and the user and password to connect to the target database. The target
database name has to be in the tnsnames.ora entry and the user has to created

 Chapter 6. SQL considerations 133

in the target database. Once the DBLink is created, you can access objects on
the target database from the database source. Example 6-16 shows how to
create and use a DBLINK in Oracle.

Example 6-16 Oracle DBLink creation

CREATE DATABASE LINK dbtarget
CONNECT TO targetuser IDENTIFIED BY targetpwd
USING ‘targetentry’;

SELECT * FROM my_schema.my_table@dbtarget;

In Informix, there is no dblinks but you can access any table or routine in an
external database simply by qualifying the name of the database object (table,
view, synonym, or routine). When the external database is on the same database
server as the current database, you must qualify the object name with the
database name and a colon.

In the following example, the query returns data from the contacts table in the
salesdb database.

SELECT name, number FROM salesdb:contacts;

When the external database is on a remote database server, you must qualify the
name of the database object with the database server name and the database
name.

In the following example, the query returns data from the contacts table that is in
the salesdb database on the remote database server, distantserver:

SELECT name, number FROM salesdb@distantserver:contacts;

In ANSI databases, the owner of the object is part of the object name:
ownername.objectname. When both the current and external databases are
ANSI databases, you must include the owner name unless you are the owner of
the object.

The following SELECT statement shows a fully-qualified table name:

SELECT name, number FROM salesdb@aserver:ownername.contacts;

Important: When accessing the external database objects, the following
factors must be in effect

� You must have the appropriate permissions on these objects.
� Both databases must be set to the same locale.

134 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

6.2 DML

Most relational database management systems (DBMS) are either fully
compliant or conform to one of the SQL standards. Thus, many SQL statements
and queries written for Oracle can be converted to IDS without modification.
However, certain SQL syntax and semantic differences exist across DBMS types,
depending on what standard is implemented and the level of conformance.

In this section we discuss some differences between Oracle and Informix with
regards to how they handle DML statements.

6.2.1 SQL

Oracle displays labels in SQL statements that are Informix reserved words, such
as UNITS, YEAR, MONTH, DAY, HOUR, and so on. These must be converted by
using the Informix AS clause between the column name and the display label.

In addition to the Informix supported “not equal to” symbols “<>” and “!=”, Oracle
supports the symbol “^=”. All occurrences of ^= must be replaced with one of the
Informix supported symbols.

The ANSI standard for comments within SQL statements is to precede the
comment with a double dash, --. Once the SQL editor recognizes a double dash,
the rest of the text on the line is treated as a comment and ignored. For multi-line
comments, a double dash must precede the comment on each line. Oracle also
delimits comments within SQL statements with /* comment */. This is helpful for
multi-line comments.

Informix allows curly brackets for multi-line processing. Therefore, /*…*/ must be
replaced with either the ANSI standard -- or the Informix {…}. It should be noted
that Informix optimizer directives support syntax with the directive contained
within /*… */. This type of commenting can remain in stored procedure code. The
best practice recommendation is to replace it.

6.2.2 Selects

Queries are executed based on how the optimizer determines the best path to
the data. Oracle and Informix developed their own query optimizers, with their
proprietary methods and rules. As such, a query that looks exactly the same in
both environments may run differently in each, following a different path and
executing faster or slower. Therefore, every query in the ported application
should be tested for performance, regardless of whether a query had to be
converted.

 Chapter 6. SQL considerations 135

Furthermore, Oracle supports optimizer hints within a SELECT statement up to
the Oracle 9i R2 version. They are only present on 10g and 11g to provide
backwards compatibility during the migration (upgrade) to the query optimizer
(known as the cost based optimizer, or CBO). On the other hand, prior to IDS 7.3
and IDS 9.2, Informix did not allow optimizer hints. They do now have optimizer
directives.

Optimizer directives
Informix offers optimizer directives, which are similar to Oracle optimizer hints.
This feature provides the query developer the flexibility to direct the optimizer to
follow specific paths, rather than choosing a plan through its analysis.

A query is processed in two steps. First, it is optimized and compiled to produce
a query plan. Second, it is executed to produce results. Optimizer directives is a
method for influencing the choice of the optimizer in the creation of the plan.

Optimizer directives address the following key issues:

� Reduced time for correcting performance problems. Rewriting queries can be
time consuming, and this allows you to have a quick way to alter a plan.

� Competitive pressure. Users accustomed to this function were looking for it in
Informix.

� Product development tuning. This allows product development to alter plans
dynamically rather than through code changes to evaluate the effect of
different optimization techniques.

The syntax and behavior of the Informix implementation is compatible with
Oracle optimizer hints, which eases the porting of applications from Oracle to
Informix.

Directives are written as a comment whose first character is a ‘+’ (plus sign), as
shown in Example 6-17.

Example 6-17 Hint on select statement in Oracle

SELECT /*+ INDEX(employee emp_deptno_idx) */
e.empno, e.fname, e.lname,e.salary,d.dept_name
FROM employee e, department d WHERE e.dept_no = d.dept_no;

This example specifies that the emp_deptno_idx must be used on the employee
table. The Informix equivalent of the same hint in Oracle is depicted in
Example 6-18 on page 137.

136 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 6-18 Hint on Select statement in IDS

SELECT /*+ INDEX(employee emp_deptno_idx) */
e.empno, e.fname, e.lname,e.salary,d.dept_name
FROM employee e, department d WHERE e.dept_no = d.dept_no;

Informix supports the notion of negative directives, whereas Oracle only supports
direct hints. A directive that tells the optimizer what to avoid, rather than what to
choose, is unique to Informix. The query result can be realized by writing a
directive to avoid certain actions known to cause performance issues, but allow
any new indexes or table attributes to be explored by the optimizer as they are
added over the life of the table and query. This allows a DBA to continue to add
indexes to tables and not have to rewrite directives

Additionally, Informix supports full recognition of directives with SET EXPLAIN
output. Informix will highlight semantic and syntactic errors. Optimizer directives
support control in the following areas of the optimization process:

� Access methods: Index versus scans
� Join Methods: Forcing hash joins, nested loop joins
� Join Order: Specify which order the tables are joined
� Goal: Specify first rows or all rows (response time versus throughput)

See the IBM Informix Guide to SQL: Syntax, G229-6375 or IBM Informix Guide
to SQL: Reference, G229-6374, for more information.

External optimizer directives
External optimizer directives give the DBA the ability to specify query directives
and save them in the database. These directives are applied automatically to
subsequent instances of the same query.

The SAVE EXTERNAL DIRECTIVES statement associates one or more
optimizer directives with a query, and stores a record of this association in the
sysdirectives system catalog table, for subsequent use with queries that match
the specified query string. The query string must be an exact match that includes
case and white space positioning. This statement establishes an association
between the list of optimizer directives and the text of a query, but it does not
execute the specified query. Only the DBA or user Informix can execute SAVE
EXTERNAL DIRECTIVES.

This associates AVOID_INDEX and FULL directives with the specified query, as
depicted in Example 6-19 on page 138.

 Chapter 6. SQL considerations 137

Example 6-19 Select in Informix

SAVE EXTERNAL DIRECTIVES
/*+ AVOID_INDEX (table1 index1)*/, /*+ FULL(table1) */
ACTIVE FOR

SELECT col1, col2 FROM table1, table2
WHERE table1.col1 = table2.col1

These directives are applied automatically to subsequent instances of the same
query. You must include one of the ACTIVE, INACTIVE, or TEST ONLY keyword
options to enable, disable, or restrict the scope of external directives. When
external directives are enabled and the sysdirectives system catalog table is not
empty, the database server compares every query with the query text of every
ACTIVE external directive, and for queries executed by the DBA or user Informix,
with every TEST ONLY external directive.

External directives are ignored if the EXT_DIRECTIVES parameter is set to 0 in
the ONCONFIG file. In addition, the client system can disable this feature for its
current session by setting the IFX_EXTDIRECTIVES environment variable to 0.
If an external directive has been applied to a query, output from the SET
EXPLAIN statement indicates “EXTERNAL DIRECTIVES IN EFFECT” for that
query. Any inline directive is ignored by the optimizer when the external directives
are applied to a query that matches the SELECT statement.

Like inline optimizer directives that are embedded within a query, external
directives can improve performance in some queries for which the default
behavior of the query optimizer is not satisfactory. Unlike inline directives,
external directives can be applied without revising or recompiling existing
applications.

6.2.3 Pseudo-columns

Pseudo-columns are columns that exist in tables but are not displayed from a
SELECT * FROM table_name query. Informix pseudo-columns are generally
reserved for use by the engine. Eliminating the use of such columns increases
application portability and eliminates the need for future modifications if the
engine is ever changed to process the column differently or not at all.

LEVEL
In Oracle, for each row returned by a hierarchical query, the pseudo-column
LEVEL returns 1 for a root node, 2 for a child of a root, 3 for a child whose parent
is at level 2, and so on. A root node is the highest node within an inverted tree,
and therefore has no parent. A child node is any non-root node, a parent node is
any node that has children, and a leaf node is any node without children. To

138 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

define a hierarchical relationship in a query, you must use the START WITH and
CONNECT BY clauses. Informix does not support the LEVEL clause.

ROWID
The Oracle ROWID pseudo-column returns the row address for each row in the
database. ROWID values contain the following information to locate a row:

� Which data block in the data file
� Which row in the data block (first row is 0)
� Which data file (first file is 1)

Usually, a ROWID value uniquely identifies a row in the database. However, rows
in different tables that are stored together in the same cluster can have the same
ROWID. Values of the ROWID pseudo-column have the data type ROWID. The
following list details several important uses of ROWID values:

� They are the fastest way to access a single row.
� They can show you how a table's rows are stored.
� They are unique identifiers for rows in a table.

A ROWID does not change during the lifetime of its row. However, you should not
use ROWID as the primary key of the table. If a row is deleted and re-inserted, its
ROWID may change, even when using the export and import utilities. If a row is
deleted, Oracle may re-assign its ROWID to a new row inserted later. Although
you can use the ROWID pseudo-column in the SELECT and WHERE clauses of
a query, these pseudo-column values are not actually stored in the database.
The value of a ROWID pseudo-column cannot be inserted, updated, or deleted.
Example 6-20 shows the Oracle select of all rows that contain data for
employees in department 20.

Example 6-20 Select ROWID in Oracle

SELECT ROWID, ename FROM emp WHERE deptno = 20

Table 6-4 shows the shows the results of the select from Example 6-20.

Table 6-4 Employees in department 20

ROWID ENAME

0000000F.0003.0002 SMITH

0000000F.0000.0002 JONES

0000000F.0007.0002 SCOTT

0000000F.000A.0002 ADAMS

0000000F.000C.0002 FORD

 Chapter 6. SQL considerations 139

The equivalent pseudo-column in Informix is also known as ROWID, and
although the behavior is similar, the data type is different from Oracle’s. For more
information about data types, see Appendix A, “Data types” on page 313.

ROWNUM
In Oracle, for each row returned by a query, the ROWNUM pseudo-column
returns a number indicating the order in which Oracle selected the row from a
table or set of joined rows. The first row selected has a ROWNUM of 1, the
second has 2, and so on. ROWNUM can be used to limit the number of rows
returned by a query, as shown in Example 6-21, which reads nine rows:

Example 6-21 Querying the first nine rows

SELECT * FROM accounts WHERE ROWNUM < 10;

You can also use ROWNUM to assign unique values to each row of a table, as in
Example 6-22.

Example 6-22 Assigning values to each row using rownum

UPDATE accounts SET acct_id = ROWNUM

Oracle assigns a ROWNUM value to each row as it is retrieved, before the rows
are sorted with an ORDER BY clause. Therefore, the final order of the rows is in
ORDER BY order not in ROWNUM order. An ORDER BY clause does not affect
the ROWNUM values except in the case where the ORDER BY clause causes
Oracle to use an index. In that case, the ROWNUM values are set in the order
the rows are retrieved using the index and hence in ORDER BY order. This order
is different than if the rows were retrieved without the index. So in this case the
ORDER BY can affect the ROWNUM values.

Conditions which test for ROWNUM values greater than zero are always false. In
Example 6-23 the query returns no rows.

Example 6-23 ROWNUM values greater than zero are always false

SELECT * FROM employee WHERE ROWNUM > 1

The first row fetched is assigned a ROWNUM of 1, thus making the condition
false. The second row to be fetched is now the first row and is also assigned a
ROWNUM of 1 making the condition false. All rows subsequently fail to satisfy
the condition, so no rows are returned.

140 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Although there is no ROWNUM equivalent in Informix, there are solutions.
Beginning with IDS 7.3 and in Informix Dynamic Server 2000, Informix provides a
feature which allows the user to limit the results of a query to the first N rows.
This was implemented for TPC-D compliance and to support rank queries.

Rank queries can be assembled by using FIRST N with the ORDER BY clause.
Informix will return the top N rows according to some ordering criteria. Therefore
the following Oracle SELECT utilizing ROWNUM in Example 6-24 can be ported
to Informix Dynamic Server as shown in Example 6-25.

Example 6-24 Oracle SELECT utilizing ROWNUM

SELECT * FROM emp WHERE ROWNUM < 10

Example 6-25 SELECT ported to IDS

SELECT FIRST 9 * FROM emp

Informix does not support SELECT FIRST N in complex cases such as the
following examples:

� Sub-queries (SELECT within a SELECT)

� View definitions (Cannot be used by a SELECT statement which references a
view)

� UNION queries

The behavior of SELECT FIRST N depends on the presence of an ORDER BY
clause. If no order by clause is specified, the first N rows returned may be in any
order. Example 6-26 shows the SELECT FIRST N statement.

Example 6-26 Using SELECT FIRST

/* find 10 highest paid employees */
SELECT FIRST 10 name, salary FROM emp ORDER BY salary;

/* find 10 highest salary values */
SELECT FIRST 10 DISTINCT salary FROM emp ORDER BY salary;

Informix Dynamic Server supports column names of first. Thus, without a
positive integer following the word first, the token is parsed as a column name
rather than a keyword. The value of N may be between 1 and (231-1).

If using ROWNUM as an assignment, (as in UPDATE accounts SET col1 =
ROWNUM), the example shown in Example 6-27 on page 142 would have to be
used.

 Chapter 6. SQL considerations 141

Example 6-27 Informix-ESQL/C pseudo-code example

int counter = 0;
EXEC SQL declare c1 cursor for

SELECT col1, col2
INTO :col1, :col2
FROM table 1
WHERE col1 = "XX";

EXEC SQL open c1;
while (SQLCODE == 0)
{
EXEC SQL fetch c1;

counter++; /* Increment counter for each row fetched */
if (counter >= 5)
{

break;
/* logic... */

} /* End if */
} /* End while */

6.2.4 Inserts

Informix does not support Oracle INSERT with SELECT statements utilizing a
UNION clause (although a view with an UNION clause can be referenced,
resulting in an UNION operation). Additionally, Informix does not support an
INSERT statement with a VALUE clause with SELECT statements. The SELECT
statement within a VALUE clause can be rewritten by omitting the VALUE clause
and performing an INSERT INTO table_name SELECT … FROM
other_table_name.

6.2.5 Outer joins

Both Oracle (starting with Oracle 9i) and Informix support ANSI standard syntax
for outer join specification. The syntax for left and right outer join using the plus
sign (+) in the WHERE clause is only supported for backward compatibility
however it is still in existence. The use of ANSI outer join syntax is
recommended.

The Oracle outer join syntax + (placed after the column which has values not
matching the corresponding column in the joined table) can be replaced with the
Informix equivalent, OUTER. The OUTER keyword is placed within the SELECT
statement before the name of the subservient table. Unlike Oracle, in Informix
multiple outer joins per SELECT statement are allowed, grouped with
parentheses.

142 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Table 6-5 demonstrates how to map this Oracle syntax to the Informix equivalent
for some simple examples.

Table 6-5 Mapping of join definition

The MTK provides basic support for Oracle outer joins, with the following
restrictions:

� Only the equality (=) operator is supported.
� The (+) operator cannot follow a complex expression; it can follow a column

reference only.

In some cases, the MTK will not be able to convert complex outer join syntax.
The following example shows how a complex SQL statement involving multiple
outer joins can be mapped from Oracle to Informix syntax.

It is important to realize that in Oracle, outer joins are defined in the WHERE
clause. But in Informix, they are defined in the FROM clause. Further, the outer
join condition of the two tables must be specified in the ON clause, not in the
WHERE clause. Example 6-28 on page 144 shows the Oracle outer join syntax.

Oracle Informix

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B
WHERE A.id (+) = B.sales_rep_id;

SELECT A.last_name,A.id,B.name
FROM emp A
RIGHT OUTER JOIN customer B
ON A.id = B.sales_rep_id;

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B
WHERE A.id = B.sales_rep_id (+);

SELECT A.last_name,A.id,B.name
FROM emp A
LEFT OUTER JOIN customer B
ON A.id = B.sales_rep_id;

SELECT A.last_name, A.id,B.name
FROM emp A, Customer B
WHERE A.id (+) = B.sales_rep_id (+);

SELECT A.last_name,A.id,B.name
FROM emp A
FULL OUTER JOIN customer B
ON A.id = B.sales_rep_id;

 Chapter 6. SQL considerations 143

Example 6-28 Oracle outer joins

SELECT
 t1.surname
FROM
 EXAMPLE_TABLE1 t1,
 EXAMPLE_TABLE2 t2,
 EXAMPLE_TABLE3 t3,
 EXAMPLE_TABLE4 t4
WHERE
 ((t1.emptype = 1) OR (t1.position = 'Manager'))
 AND (t1.empid = t2.empid(+))
 AND (t2.empid = t3.empid(+))
 AND (t2.sin = t3.sin(+))
 AND (t3.jobtype(+) = 'Full-Time')
 AND (t2.empid = t4.empid(+))
 AND (t2.sin = t4.sin(+))
ORDER BY
 t1.emptype, t2.other

Example 6-29 shows how to make the Informix conversion.

Example 6-29 Informix outer join conversion

SELECT
 t1.surname
FROM
 EXAMPLE_TABLE1 t1 LEFT OUTER JOIN
 EXAMPLE_TABLE2 t2 ON (t2.empid = t1.empid) LEFT OUTER JOIN
 EXAMPLE_TABLE3 t3 ON (t3.sin = t2.sin)
 AND (t3.empid = t2.empid)
 AND (t3.jobtype = 'Full-Time')
 LEFT OUTER JOIN
 EXAMPLE_TABLE4 t4 ON (t4.sin = t2.sin)
 AND (t4.empid = t2.empid)
WHERE
 ((t1.emptype = 1) OR (t1.position = 'Manager'))

ORDER BY
 t1.emptype, t2.other

144 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

6.2.6 Sorts

In Oracle sorts, NULL values are considered the highest value and are therefore
ordered last in ascending sorts. Informix sorts with NULLS as the lowest value,
ordering them first in ascending sorts. First, it must be determined whether this
sorting difference will affect the outcome enough to warrant a work around. In
most cases it will not. If it does, the NVL function can be used to replace the
column value with the highest value if the column contains a NULL value so that
it will sort last. Once the application receives the results, it must replace the high
values with NULL if the column is going to be displayed, or manipulated.

Correlation names
Informix does not support correlation names with aliases on the main table for an
UPDATE or DELETE statement. Such cases must be converted, as shown in
Example 6-30.

Example 6-30 Correlation Names in Oracle and Informix

Oracle:

UPDATE customer C
SET zip_code = ‘92612’
WHERE zip_code IN
(SELECT zip_code FROM zip_table Z
WHERE C.create_date <= Z.effective_date)

Informix:
UPDATE customer
SET zip_code = ‘92612’
WHERE zip_code IN
(SELECT zip_code FROM zip_table Z
WHERE customer.create_date <= Z.effective_date)

-and-

Oracle:

DELETE customer C
WHERE order_date <=
(SELECT control_value FROM control_table T
WHERE T.control_field = ‘archive_date’
AND C.state = T.state)

Informix:
DELETE customer
WHERE order_date <=
(SELECT control_value FROM control_table T
WHERE T.control_field = ‘archive_date’
AND customer.state = T.state)

 Chapter 6. SQL considerations 145

6.2.7 Aliases

In Informix, if an alias is used in the FROM clause of a SELECT statement, it
must also be used in the SELECT list and WHERE clauses. The original table
name should be replaced with the alias wherever aliases and original names are
used together within a SELECT statement in an Oracle application.

6.2.8 Truncate

Informix has implemented support of the TRUNCATE DML statement, as shown
in the following example:

TRUNCATE [TABLE] table [[DROP | REUSE] STORAGE];

The TRUNCATE statement drops all the data for the table and keeps just the
initial extents, as shown in the following example:

TRUNCATE my_table;

The following example drops all the data for the table but retains all the space
allocated:

TRUNCATE my_table REUSE STORAGE;

Note: Informix allows correlation names with aliases on tables other than the
updated or deleted table.

Note: There is a minor syntactical difference between Oracle and IDS: IDS
does not require the keyword TABLE. The permissions needed for
TRUNCATE TABLE depend on the existence of DELETE triggers on the
table.

For tables with DELETE triggers, ALTER permission on the table is required
and RESOURCE or DBA privileges because the DELETE triggers will be
bypassed. For tables without DELETE triggers, you need DELETE permission
on the table and CONNECT privilege to the database.

IDS permits a TRUNCATE TABLE in a transaction, but it must be the last
statement before COMMIT or ROLLBACK. Any other statement will generate
an error. In an Informix non-ANSI database, TRUNCATE is run as a singleton
statement. Outside any explicit transaction in MODE ANSI databases,
COMMIT immediately.

146 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

6.2.9 Hierarchical queries

In Oracle, if a table contains hierarchical data, rows can be selected in a
hierarchical order using the following clauses.

START WITH
The START WITH clause identifies the row(s) to be used as the root(s) of a
hierarchical query.

This clause specifies a condition that the root(s) must satisfy. If this clause is
omitted, Oracle uses all rows in the table as root rows. A START WITH condition
can contain a subquery.

CONNECT BY
The CONNECT BY clause specifies the relationship between parent and child
rows in a hierarchical query. This clause contains a condition that defines this
relationship. The part of the condition containing the PRIOR operator must have
one of the following forms:

� PRIOR expression comparison_operator expression
� expression comparison_operator PRIOR expression

IDS provides a node data type to model hierarchical relationships. The data type
and the supported functions, ancestor, depth, getparent, getmember, length, and
so forth, are packaged as the Node DataBlade Module Version 2.0 in IDS 11. You
need to register this datablade in your database to use the node data type.

The node data type is an opaque data type that models the tree structure instead
of flattening hierarchies to relations. Each value represents the edge of the
hierarchy, not simply a number or string. Therefore, when you increment node
1.9, you get 1.10, and not the numerical increment value of 1.91.

See IBM Redbooks publicationInformix Dynamic Server 11: Advanced
Functionality for Modern Business, SG24-7465 for more information about how
the node datablade can be used to migrate Oracle hierarchical data to node type
data in IDS.

6.3 SPL and PL/SQL

Informix procedures and functions are considered to be user-defined routines
(UDR). A UDR can be written in the Informix Stored Procedure Language (SPL)
or an external language, such as C or Java. A procedure is a routine written that
does not return a value. A function is a routine written that returns a single value,
a value with a complex data type, or multiple values.

 Chapter 6. SQL considerations 147

Informix SPL is an extension to Informix SQL and provides procedural flow
control such as looping and branching. An SPL routine is a generic term that
includes both SPL procedures and SPL functions, and you can use SQL and
SPL statements to write an SPL routine. SPL statements can be used only inside
the the following statements:

� CREATE PROCEDURE
� CREATE PROCEDURE FROM
� CREATE FUNCTION
� CREATE FUNCTION FROM

SPL routines are parsed, optimized, and stored in the system catalog tables in
executable format.

Like Oracle, Informix stored procedures support input, output and input/output
parameters and can be used in SQL statements wherever expressions are
allowed.

The way stored procedures and functions are created differ between Oracle and
Informix. Oracle allows a REPLACE clause in the CREATE statement to handle
situations when the object already exists, but Informix does not support the
REPLACE option. Instead, a DROP PROCEDURE or DROP TRIGGER
statement must precede the CREATE PROCEDURE and CREATE TRIGGER
statements to handle the situation where the object already exists.

Size limit
Informix stored procedures have a size limit of approximately 64 K. Oracle stored
procedures greater than 64 K in size can be segmented into smaller Informix
stored procedures communicating with each other as though they were one by
passing and returning the necessary values.

Parameter limit
Informix has a limit of 341 parameters for each stored procedure. This limit also
applies to UDRs written in the Java language. UDRs written in the C language
can have no more than 102 parameters.

Packages
Oracle’s user-defined database level functions such as stored functions, stored
procedures, packages, and package bodies all need to be converted to Informix
stored procedures using the Informix Stored Procedure Language. Oracle’s
stored functions and stored procedures are similar in concept to Informix’s stored
procedures. Oracle’s packages and package bodies, however, have no Informix
equivalent.

148 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

A package body contains a group of stored functions and stored procedures, and
a package is a list of those stored functions and stored procedures.

All procedures written in an Oracle package body must be rewritten as separate
Informix procedures. When rewriting package bodies into separate procedures,
Oracle’s variable declarations can be replaced at the package level (global) with
Informix global variables. The Informix global variables must be defined in the
first stored procedure of the logical group.

Exceptions
The method of handling exceptions is different between Informix and Oracle.
Oracle has many predefined and user defined exception labels such as
CURSOR_ALREADY_OPEN, NO_DATA_FOUND, ZERO_DIVIDE, and so on.
The labels can be used in the logic to identify errors. Only one exception check is
allowed per BEGIN and END block using the EXCEPTION construct, and it is
normally placed just before the END statement.

Informix also supports predefined and user-defined exceptions, however, they
are represented numerically, rather than with labels. In Informix, all the
exceptions checked in the stored procedure control blocks, delimited with BEGIN
and END statements, must be declared explicitly at the top of each control block
with the Informix EXCEPTION construct. Therefore, Oracle procedure code must
be restructured to manipulate these exceptions.

In Oracle, an exception can be raised globally and acted upon globally. In
Informix, the scope of an exception mechanism is always restricted to the block
in which it is located. This leads to the addition of multiple Informix exception
handling mechanisms for each Oracle exception raised as well as a redesign of
the overall stored procedure to a more blocked format.

Error handling
In Oracle, errors are processed as part of a function call return value. In Informix,
errors are retrieved as a separate function call that has multiple structures that
have to be created to retrieve error and status. The SQLCA structure is not fully
available in Informix stored procedures. It is not possible to check the SQLCODE
variable in the stored procedure body. Instead, the function DBINFO can be used
to extract the value of two members of the SQLCA structure: sqlca.sqlerrd1 and
sqlca.sqlerrd2. This function should be used inside the FOREACH construct
while the cursor is open. Once the cursor is closed, the DBINFO function cannot
return proper values.

The sqlca.sqlerrd1 option returns different values depending on the type of SQL
statement. For INSERT statements, if the table contains a serial column, then the
sqlca.sqlerrd1 option will return the serial value of the last row inserted into the
table. For SELECT, DELETE, and UPDATE statements the sqlca.sqlerrd1 option

 Chapter 6. SQL considerations 149

will return the number of rows processed by the query. In these cases, upon each
pass through the FOREACH loop, sqlca.sqlerrd1 is the same value: the number
of rows the FOREACH loop will process. The sqlca.sqlerrd1 value can still be
interrogated during each pass through the FOREACH loop.

The sqlca.sqlerrd2 option returns the number of rows processed by a SELECT,
INSERT, UPDATE, DELETE, or EXECUTE PROCEDURE statement. It should
not be interrogated until after the cursor has finished processing. In other words,
within the FOREACH loop, the sqlca.sqlerrd2 value can be moved to a variable
which is then interrogated outside of the FOREACH loop.

Cursors
Unlike Informix, in Oracle, cursors can be global to a package. In Informix,
Oracle’s global cursors can be replaced with temporary tables. A temporary table
can be created and populated in place of where the cursor is opened. The
temporary table can then be processed the same way the cursor is processed.
The temporary table should be dropped in place of where the cursor is closed.

Cursors are explicitly declared, opened, and fetched in Oracle stored
procedures. In Informix, cursors do not need to be explicitly declared, opened
and fetched in stored procedures. Instead, Oracle stored procedure cursors can
be replaced with Informix’s FOREACH construct. The Oracle cursor name should
be used in the FOREACH statement, for example: FOREACH cursor_name
SELECT … END FOREACH.

To update a cursor row in Oracle, the cursor must be declared with the FOR
UPDATE clause. In Informix, if the SELECT statement in the FOREACH
construct is not a multi-table join, then each fetched row can be updated using
the UPDATE <table_name> WHERE CURRENT OF <cursor_name> statement.

Informix does not support the SELECT FOR UPDATE statement in a stored
procedure. Therefore, the SELECT FOR UPDATE clause cannot be used in the
FOREACH construct.

Flow control
Oracle allows unconditional jump statements such as GOTO and EXIT <label>.
The EXIT <label> statement is used to break a loop to anywhere within the
procedure.

Therefore, if the loop is within another loop, flow can be directed to somewhere
within the parent loop or above or below the parent loop. Informix supports only
the EXIT flow control statement within a loop, and it performs differently than the
Oracle implementation. The Informix EXIT statement causes control to be moved
to the first statement after the loop. Therefore, the Oracle code must be
restructured to take advantage of structured programming techniques.

150 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Variable declaration and assignment
Oracle allows implicit variable definitions within a FOR loop. The variables are
defined using an assignment operator and a column name. See Example 6-31.

Example 6-31 Variables defined using an assignment operator and a column name

out_customer_name := customer.name;

The variable out_customer_name is defined as the same type as the column
name in the customer table. Informix requires that all variables be defined at the
beginning of each stored procedure control block. See Example 6-32

Example 6-32 Variables defined at the beginning of each stored procedure control block

DEFINE out_customer_name LIKE customer.name;
DEFINE counter INTEGER;

Therefore, the Oracle implicit variable declaration must be replaced with the
Informix explicit variable declaration before the control block.

Additionally, assignment operations will need to be ported. Oracle uses a colon
and an equal sign (:=) for assignment while Informix uses the LET keyword in
combination with an equal (=) sign. For example, LET var = 1. Therefore, you
must modify assignment statements with the LET keyword and an equal sign.

Boolean
The Oracle BOOLEAN variable type can be replaced with the Informix
BOOLEAN data type.

Binary data types
Binary data types are different between Oracle and Informix. In Oracle, the
binary type is defined as a type RAW and is explicitly defined with a maximum
length as part of the declaration. In Informix, the binary type is defined as
REFERENCES BYTE, which deals only with pointers to BLOBs. It implicitly
defines a maximum length as part of the function call in which the pointer to the
BLOB and maximum length (as used in the function call) was passed as values.
As a result the binary type cannot be assigned a binary value in a stored
procedure nor can it be inserted into a table through the SQL INSERT statement
in a stored procedure. These operations that initialize a binary type must be
performed outside of stored procedures.

 Chapter 6. SQL considerations 151

Dynamic SQL
Starting with IDS version 11.50 Informix also supports dynamic SQL in SPL. SQL
statements can now be dynamically constructed and executed.

The following example shows is the syntax of dynamic SQL statement in IDS:

EXECUTE IMMEDIATE { SQL_quoted_string | Str_variable }

The example above can be explained as follows:

� SQL_quoted_string: A string containing a single SQL statement
� Str_variable: A character variable containing the SQL statement

We provide the sample code for using dynamic SQL in Informix SPL, in
Example 6-33.

Example 6-33 Dynamic SQL in Informix SPL

CREATE PROCEDURE MYPROC()
 RETURNING INT;
 DEFINE A0 VARCHAR(30);
 DEFINE A1 VARCHAR(5);
 DEFINE A2 INT;
 DEFINE A3 VARCHAR(60);
 DEFINE A4 INT;
 LET A0 = "INSERT INTO DYN_TAB VALUES (";
 LET A1 = ")";
 FOR A2 = 1 TO 100
 LET A3 = A0 || A2 || A1;
 EXECUTE IMMEDIATE A3 ;
 END FOR;
 SELECT COUNT(DISTINCT C1) INTO A4 FROM T1;
 RETURN A4;
END PROCEDURE;

Refer to the Informix Guide to SQL: Syntax, G229-6375, for more information
about dynamic SQL.

Compiler
Unlike Oracle, the Informix compiler was developed with the concept that
developers can create stored procedures independently of the database.
Therefore, the Informix stored procedure compiler has a limited set of errors that
it checks compared to Oracle’s. For example, the Informix stored procedure
compiler does not validate database object names such as table, column, and
view names. Therefore, database object naming errors will occur at runtime, not
during the compilation time. Additionally, the error messages generated from the

152 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

compiler are not specific. Identifying a problem in a stored procedure may require
segmenting it and recompiling the segments to find it. This may impact the time
necessary to unit test the stored procedures.

Macros
Oracle contains macros, sometimes referred to as language constructs, that can
determine the status of an object. Informix does not support Oracle macros and
so they must be removed from the code and the associated logic implemented
with equivalent Informix logic, where applicable.

%ISOPEN and %NOT FOUND
The macro cursor_name%ISOPEN returns a Boolean value to indicate whether
the cursor is open, and cursor_name%NOTFOUND indicates whether there are
any more rows yet to be fetched from the cursor cursor_name. These macros,
used in condition statements, are followed by the logic to handle the true and
false conditions.

In the case of ISOPEN, this macro and its associated logic can just be omitted
because the FOREACH loop processing does not explicitly open a cursor, and
therefore the condition cannot be checked. In the case of NOTFOUND, this
macro should be omitted and its associated logic converted to Informix logic
within an Informix FOREACH loop.

%ROWTYPE
The Oracle macro prefix%ROWTYPE is used in the declarative section as a data
type to declare variables, similar to the structure construct of C or RECORD of
INFORMIX. The prefix can be either a table name or another structure name
(and structure names ultimately refer back to a table name). This macro may be
replaced with the Informix statement LIKE table_name.*. However, the construct
LIKE table_name.* cannot be used in SPL.

Instead, the construct DEFINE column1 LIKE table_name.column1; DEFINE
column2 LIKE table_name.column2; and so on, should be used to declare
variables corresponding to all the columns of the table. Then operations on the
whole or part of the structure should be replaced with operations on single SPL
variables.

%TYPE
The Oracle macro prefix%TYPE is used in the declarative section as a data type
to declare single variables. The prefix is either a table_name.column_name or a
structure_name.variable_name. A structure_name.variable_name ultimately
refers back to a table_name.column_name. This macro can be replaced with the
Informix statement LIKE table_name.column_name.

 Chapter 6. SQL considerations 153

6.4 Concurrency and transaction

Both concurrency control and locking are used to ensure the data integrity in any
DBMS. The concurrency can be categorized into read concurrency and update
concurrency.

6.4.1 Read concurrency

Oracle uses a feature called read consistency, which lets a query return a result
based on the state of the data when the query starts, regardless of other
processes such as update or delete on the same data while the query is running.
This mechanism is called Multi-Version Read Consistency and is implemented
by using undo data in the undo segments.

Informix isolation levels
Informix implements various isolation levels to support read concurrency.

Informix dirty read isolation
The simplest isolation level, ANSI read committed or Informix dirty read, amounts
to virtually no isolation. When a program fetches a row, it places no locks, and it
respects none. It simply copies rows from the database without regard to what
other programs are doing.

A program always receives complete rows of data. Even under ANSI read
uncommitted or Informix dirty read isolation, a program never sees a row in
which some columns are updated and some are not. However, a program that
uses ANSI read committed or Informix dirty read isolation sometimes reads
updated rows before the updating program ends its transaction. If the updating
program later rolls back its transaction, the reading program processes data that
never really existed.

ANSI read committed or Informix dirty read is the most efficient isolation level.
The reading program never waits and never makes another program wait. It is the
preferred level in any of the following cases:

� All tables are static, so concurrent programs read but never modify data.
� The table is held in an exclusive lock.
� Only one program is using the table.

Informix committed read isolation
When a program requests the ANSI read committed or Informix committed read
isolation level, the database server guarantees that it never returns a row that is
not committed to the database. This action prevents reading data that is not
committed and that is subsequently rolled back.

154 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

ANSI read committed or Informix dommitted read is implemented simply. Before
it fetches a row, the database server tests to determine whether an updating
process placed a lock on the row; if not, it returns the row. Because rows that
have been updated (but that are not yet committed) have locks on them, this test
ensures that the program does not read uncommitted data.

ANSI read committed or Informix committed read does not actually place a lock
on the fetched row, so this isolation level is almost as efficient as ANSI read
uncommitted or Informix dirty read. This isolation level is appropriate to use when
each row of data is processed as an independent unit, without reference to other
rows in the same or other tables.

Locking conflicts can occur in ANSI read committed or Informix committed read
sessions. However, if the attempt to place the test lock is not successful because
a concurrent session holds a shared lock on the row. To avoid waiting for
concurrent transactions to release shared locks (by committing or rolling back),
IDS supports the last committed option to the committed read isolation level.
When this Last Committed option is in effect, a shared lock by another session
causes the query to return the most recently committed version of the row.

The last committed feature can also be activated by setting the
USELASTCOMMITTED configuration parameter to COMMITTED READ or to
ALL, or by setting USELASTCOMMITTED session environment option in the
SET ENVIRONMENT statement in the sysdbopen() procedure when the user
connects to the database. For more information about the Last Committed option
to the ANSI read committed or Informix committed read isolation levels, see the
description of the SET ISOLATION statement in IBM Informix Guide to SQL:
Syntax, G229-6375. For information about the USELASTCOMMITTED
configuration parameter, see IBM Informix Dynamic Server Administrator's
Reference, G229-6360.

Informix cursor stability isolation
When cursor stability is in effect, IDS places a lock on the latest row fetched. It
places a shared lock for an ordinary cursor or a promotable lock for an update
cursor. Only one row is locked at a time. That is, each time a row is fetched, the
lock on the previous row is released (unless that row is updated, in which case
the lock holds until the end of the transaction).

Because cursor stability locks only one row at a time, it restricts concurrency less
than a table lock or database lock. Cursor stability ensures that a row does not
change while the program examines it. Such row stability is important when the
program updates some other table based on the data it reads from the row.
Because of cursor stability, the program is assured that the update is based on
current information and prevents the use of stale data.

 Chapter 6. SQL considerations 155

Informix repeatable read isolation
Where ANSI serializable or ANSI repeatable read are required, a single isolation
level is provided, called Informix repeatable read. This is logically equivalent to
ANSI serializable. Because ANSI serializable is more restrictive than ANSI
repeatable read, Informix repeatable read can be used when ANSI repeatable
read is desired (although Informix repeatable read is more restrictive than is
necessary in such contexts).

The repeatable read isolation level asks the database server to put a lock on
every row the program examines and fetches. The locks that are placed are
shareable for an ordinary cursor and promotable for an update cursor. The locks
are placed individually as each row is examined. They are not released until the
cursor closes or a transaction ends. Repeatable read allows a program that uses
a scroll cursor to read selected rows more than once and to be sure that they are
not modified or deleted between readings. (Programming with SQL describes
scroll cursors.) No lower isolation level guarantees that rows still exist and are
unchanged the second time they are read.

Repeatable read isolation places the largest number of locks and holds them the
longest. Therefore, it is the level that reduces concurrency the most. If your
program uses this level of isolation, think carefully about how many locks it
places, how long they are held, and what the effect can be on other programs. In
addition to the effect on concurrency, the large number of locks can be cause
issues. The database server records the number of locks by each program in a
lock table. If the maximum number of locks is exceeded, the lock table fills up,
and the database server cannot place a lock. In this case, an error code is
returned. The person who administers an Informix database server system can
monitor the lock table and tell you when it is heavily used.

Default isolation levels
In Informix, the default isolation level is established when the database is
created. We list the Informix default isolation levels in Table 6-6.

Table 6-6 Informix Default Isolation Levels

Informix Name ANSI Name When is it used

Dirty Read Read Uncommitted Database without transaction logging

Committed Read Read Committed Databases with logging that are not
ANSI compliant

Repeatable Read Serializable ANSI compliant databases

156 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Setting the isolation level
The isolation level is set by the SET ISOLATION statement, as shown in
Example 6-34.

Example 6-34 Setting the isolation level

SET ISOLATION TO dirty read;
SET ISOLATION TO repeatable read;

You can also set the isolation level using SET TRANSACTION ISOLATION
LEVEL statement as shown in Example 6-35.

Example 6-35 Set the isolation level using set transaction statement

SET TRANSACTION ISOLATION LEVEL TO REPEATABLE READ

The major difference between the SET TRANSACTION and SET ISOLATION
statements is the behavior of the isolation levels within transactions. The SET
TRANSACTION statement can be issued only once for a transaction. Any
cursors opened during that transaction are guaranteed to have that isolation
level. With the SET ISOLATION statement, after a transaction is started, you can
change the isolation level more than once within the transaction.

Recommendation for the appropriate isolation level
Choosing the appropriate isolation level to use for a transaction is important. The
isolation level not only influences how well the database supports concurrency,
but it also affects the overall performance of the application containing the
transaction. That is because the resources needed to acquire and free locks vary
with each isolation level.

If readers not blocking writers is a requirement, then the Informix dirty read
isolation level can be used. The readers will not block the writers with dirty read
processing; however, the query result will contain any updates performed while
the query was running. If read consistency is a requirement, then the Informix
repeatable read isolation level can be used to lock all the resulting rows in a
query from updates while the query is running. If both are required, in other
words duplicate the Oracle read consistency functionality, then the next question
is, why? It will most likely be due to performance, in which case the application
must be analyzed to see where changes can be made in the database schema
and access methods to eliminate the performance issue.

 Chapter 6. SQL considerations 157

6.4.2 Update concurrency

When an update, such as an INSERT, DELETE, or UPDATE, statement occurs in
the database, a lock is used to support the update concurrency. In Oracle, locks
placed on the table elements can be on individual rows, or on pages of rows in
the table. In Informix, the database instance imposes locks on objects such as
row, page, and database as they are required. The default lock mode used in
Oracle is row level locking.

Lock mode in Informix
In Informix, use the LOCK MODE options to specify the locking granularity of the
table. LOCK MODE Options available in Informix are PAGE and ROW.

PAGE lock obtains and releases one lock on the entire page of rows. This is the
default locking granularity. Page-level locking is especially useful when you know
that the rows are grouped into pages in the same order that you are using to
process all the rows. For example, if you are processing the contents of a table in
the same order as its cluster index, page locking is appropriate.

ROW lock obtains and releases one lock per row. Row-level locking provides the
highest level of concurrency. If you are using many rows at one time, however,
the lock-management overhead can become significant. You might also exceed
the maximum number of locks available, depending on the configuration of your
database server, but IDS can support up to 18 million locks on 32-bit platforms,
or 600 million locks on 64-bit platforms. Only tables with row-level locking can
support the LAST COMMITTED isolation level feature.

Informix lock mode can be changed by using one of the following methods:
(resolved in the following order of precedence)

� LOCK MODE specified using an attribute of the CREATE TABLE or ALTER
TABLE command syntax.

� IFX_DEF_TABLE_LOCKMODE environment variable setting.

� DEF_TABLE_LOCKMODE parameter setting in the ONCONFIG file.

If the DEF_TABLE_LOCKMODE parameter cannot be found in the ONCONFIG
file, it can be added to make the specification for every database within the
instance. The Informix instance must be restarted for this parameter to take
effect.

SET LOCK MODE command in Informix
Use the SET LOCK MODE statement to define how the database server handles
a process that tries to access a locked row or table. The syntax is:

SET LOCK MODE TO [NO WAIT / WAIT seconds]

158 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

When NO WAIT is used, database server ends the operation immediately and
returns an error code. This condition is the default.

When WAIT is used, database server suspends the process until the lock
releases.

When WAIT seconds is used, database server suspends the process until the
lock releases or until the waiting period (specified in number of seconds) ends. If
the lock remains after the waiting period, the operation ends and an error code is
returned.

6.5 Security

In this section we discuss security options.

6.5.1 User authentication

A database user is created with the create user command in Oracle, and Oracle
stores the user ID and password information in the database. This database user
is granted permissions to connect to the database and use resources in the
database.

Informix uses operating system password authentication to authenticate the
users connecting to the database. This technique requires an OS user ID and
password for each user connecting to the database. The user ID and password
are submitted by the user or application program and the Informix DBMS verifies
the username and password using OS library functions. If the OS function
determines that the user ID and / or password are not in the OS set of user IDs
and passwords, then the connection is rejected with error 951 for the incorrect
user ID or 952 for the incorrect password.

To create the users (with passwords) to connect to the database, use OS specific
administrative tools (such as SMIT in AIX) or commands (such as useradd).

In Oracle, the OPS$User_name is sometimes used to connect to the database
where OPS$User_name is a valid Oracle user and User_name is a valid
operating system level user. In this case, the connection is made to the database
using just the ‘/’ character without the user id and password. The Informix
technique of using the /etc/passwd file for security works fine for this type of
connection.

 Chapter 6. SQL considerations 159

6.5.2 Authorization

After creating the OS level users, you can grant the privileges to the users to
connect to the database and use database resources. To achieve this, you can
use a simple grant statement just as in Oracle, and is shown in Example 6-36.

Example 6-36 Creating OS user and granting presumptions to connect to the db in IDS

OS Command to create a user harry:
useradd -d /home/harry -p ids4orcl harry

SQL Command to grant connect and resource premissions to user harry:
grant connect, resource to harry;

Role-based authority can help you manage the database permissions. With IDS
(starting with V10.00), you can create a role and assign that as a default role for
individual users (or to PUBLIC). A role is a work-task classification, such as
payroll or manager. Each defined role has privileges on the database object
granted to the role. You use the CREATE ROLE statement to define a role and
GRANT DEFAULT ROLE to establish the user’s initial setting when connecting to
the database. A user’s role can be changed after connecting by using the SET
ROLE statement.

6.5.3 Column-level encryption

You can use column-level encryption to improve the confidentiality of your data.
IDS has new built-in SQL scalar functions that provide methods for data in
columns to be stored in an encrypted format. Use the ENCRYPT_AES or the
ENCRYPT_TDES function to define encrypted data. Use the
DECRYPT_BINARY() and DECRYPT_CHAR() functions to query encrypted
data. When using the routines the encryption of data is under application control
and the DBMS is not aware that data is encrypted. Informix support of column
level encryption is analogous to the Oracle DBMS Obfuscation Tool Kit

Built-in ENCRYPT functions provide methods for encrypting and decrypting the
following character data types or smart large object data types:

� CHAR
� NCHAR
� VARCHAR
� NVARCHAR
� LVARCHAR
� BLOB
� CLOB

160 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Passwords and hints
Passwords are necessary when using the encryption functions. Only users who
can provide a secret password can view, copy, or modify encrypted data. The
password must be a minimum of 6 bytes and can be a maximum of 128 bytes.
When you set an encryption password, you have the option of specifying a
password hint. Hints can be up to 32 bytes of text. If you specify a hint, you can
store the hint with the encrypted password or in another location. Passwords
(and hints) to be used by default can be set for a session using the SET
ENCRYPTION PASSWORD statement:

SET ENCRYPTION PASSWORD ‘password’ [WITH HINT ‘hint string’];

The password and hint parameters can be optional when calling the encryption
function. Explicit values override the session default values.

The password or hint can be a single word or several words. It should be a word
or phrase that helps you to remember the password, but does not include the
password. You can subsequently execute the built-in GETHINT function (with an
encrypted value as its argument) to return the plain text of the hint. Calling the
GETHINT function with an argument of encrypted data will return the hint (if any)
from the encrypted data or an empty string (NULL) if no hint was provided. There
is no privilege needed, anybody can get any hint at any time.

When you set a password, IDS transfers the password and any hint to 128-bit key
that is used to encrypt the password and hint. Passwords and hints are not
stored as plain text in any table of the system catalog. The key is a time-based
random value per instance. The database server initializes the key when the
server starts the key is destroyed when the database server shuts down.

Encrypting a column
Column data can be encrypted through the use of two functions,
ENCRYPT_TDES and ENCRYPT_AES, corresponding to the two data
encryption standards: the Triple Data Encryption Standard (Triple-DES) and
Advanced Encryption Standard (AES) which describes the cipher algorithm used
to protect data from unauthorized viewing. AES encryption (also known as
Rijndael) uses a 128-bit key size and Triple-DES encryption uses two 56-bit keys
for 112-bits overall. Both functions are variant functions and will return a different
result every time it is used.

Example 6-37 on page 162 demonstrates how to use the encryption functions
with a column that contains a social security number.

 Chapter 6. SQL considerations 161

Example 6-37 Creating table with encrypted columns

CREATE TABLE emp (name CHAR (40), salary MONEY, ssn LVARCHAR(64));
INSERT INTO emp
VALUES ('Alice', 50000, ENCRYPT_AES('123-456-7890','one two three

123'));
or
CREATE TABLE emp (name CHAR(40), salary MONEY, ssn LVARCHAR(64));

SET ENCRYPTION PASSWORD "one two three 123";
INSERT INTO emp
VALUES ('Alice', 50000, ENCRYPT_AES('123-456-7890'));

Querying an encrypted column
Encrypted data can be translated using the Informix DECRYPT_CHAR and
DECRYPT_BINARY scalar functions. Encrypted data contains information about
the encryption method and all the other data needed to decrypt it except the
password. The encrypted data value is passed as the first argument and a
password as the second, unless the SET ENCRYPTION statement has specified
for this session with the same session password by which the first argument was
encrypted. If the data is not encrypted, the function call will return an error.

The DECRYPT_CHAR function is used to invoke a decryption routine on
character data types (as examples, CHAR, LVARCHAR, NCHAR, NVARCHAR
and VARCHAR) while the DECRYPT_BINARY function accepts an encrypted
large object of type BLOB or CLOB.

If the first argument to DECRYPT_CHAR or DECRYPT_BINARY is not an
encrypted value, or if the second argument (or the default password specified by
SET ENCRYPTION) is not the password that was used when the first argument
was encrypted, IDS will issue an error and the call fails. If the call to the
decryption function is successful, it returns the plain text version of the encrypted
data argument. Example 6-38 demonstrates how to use the decrypt function to
query encrypted data.

Example 6-38 Querying encrypted columns

SELECT name, salary, DECRYPT_CHAR(ssn, ‘one two three 123’)
FROM emp
WHERE DECRYPT_CHAR(ssn) = ‘123-456-7890’;
or
SET ENCRYPTION PASSWORD ‘one two three 123’;
SELECT name, salary, DECRYPT_CHAR(ssn)
FROM emp
WHERE DECRYPT_CHAR(ssn) = ‘123-456-7890’;

162 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The first argument to DECRYPT_BINARY is expected to be an encrypted value
of a large object data type. However, if it is called with a character data type IDS
invokes the DECRYPT_CHAR function and attempts to decrypt the specified
value.

Do not use decryption function to create a functional index on an encrypted
column. This would store the decrypted values as plain text data in the database,
and defeat the purpose of encryption.

 Chapter 6. SQL considerations 163

164 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Chapter 7. Data conversion

Data conversion is a sensitive task in the porting project. You have to ensure that
all data is moved to the target database, both correctly and in time.

In this chapter, we discuss the data conversion methods for deploying the data
from Oracle to the IDS database server. The data can be transformed by the
following methods:

� Using the IBM Migration Toolkit (MTK) generated scripts and data files

� Using the MTK to move data online

� Exporting the data manually from Oracle to flat files and importing or loading it
into IDS

� Using operating system named pipes

� Using IBM InfoSphere™ Information Server

We give some hints for time planning of the data movement process.

7

© Copyright IBM Corp. 2009. All rights reserved. 165

7.1 Data conversion process

The data conversion process is quite complex. Before you define a porting
method, you should perform some tests with only a portion of the data to verify
that the chosen method works successfully for your database environment.
Generally, it is a good idea that tests cover all potential cases. For these
reasons, we recommend that you start early with the testing.

The tasks of the test phase are as follows:

� Calculate the source data size and calculate the required space for the files
on disk.

� Select the tools and the conversion method.

� Test the conversion using the chosen method with only a small amount of
data.

Before starting the load of the data into the production environment, it would be a
good idea to set up a development environment for initiating a proof of concept
scenario of the chosen data load strategy, and the estimated time based on the
test for the load of partial data. This means after loading all the data into the
development environment, a more detailed estimate for the amount of time the
complete load needs to take can be done. Additionally, consistency checks can
be applied to the data offline without affecting the production in terms of
additional workload. Also, you can make sure that all kind of data types used in
the current database infrastructure are tested and possible errors could be
identified in a early stage of the migration.

With the result of the test, you should be able to perform the following tasks:

� Estimate the time for the complete data conversion process.

� Create a plan for the development environment conversion.

� Create a plan for the production environment conversion, using the
information from the development environment conversion.

� Schedule the time for the data conversion.

The following factors influence the time and complexity of the process:

� Amount of data and data changes

The more data that you have to move, the more time you need. Consider the
data changes as well as the time stamp conversions.

166 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� System availability

You can run the data movement either when the production system is down or
when the business process is running, by synchronizing source and target
database. Depending on the strategy you choose, you will need more or less
time.

� Hardware resources

Be aware that you need up to three times the disk space during the data
movement for the following items:

– The source data in Oracle
– The unloaded data stored in the file system
– The loaded data in the target IDS

7.2 Time planning

After testing the data movement and choosing the proper tool and strategy,
create a detailed time plan. This time plan should include the following tasks:

� Depending on the data movement method:
– Implementing or modifying scripts for data unload and load
– Learning how to use the chosen data movement tools

� Data unload from Oracle
� Data load to Informix
� Backup of the target IDS database server
� Testing the loaded data in Informix for completeness and consistency
� Switching of the applications, including database interfaces
� Fallback process in case of incidents

7.3 Database schema conversion

There are two major tasks belonging to the migration of an existing database
infrastructure. They are the schema conversion and the real data movement. In
this section we give you a detailed overview how to successfully migrate an
existing database schema.

The first step for successfully converting an existing database schema is the
selection of the appropriate database objects you want to move. These are
objects such as tables, indexes, constraints, triggers sequences, and stored
procedures. Upon selecting any of these base objects, you have to also consider
permissions, roles and synonyms. After you have extracted the DDL for the
objects you have to apply all necessary changes in regards to syntax differences.

 Chapter 7. Data conversion 167

This is most likely an iteration in case you apply the changes manually. You have
to consider factors such as space management, logging, and locking.

7.3.1 Database schema extraction and conversion with the MTK

The MTK utility should be your first choice to extract and convert the currently
defined Oracle database schema for the database you want to move. There are a
number of reasons why you should use the MTK doing this task.

The MTK provides you a complete environment for extracting the definitions for
all, or a partial selection of, database objects from the source database. You can
easily choose only the objects for one defined schema, or only for a certain set of
objects. This fits with the requirements for setting up a test strategy in view of
time, disk space, and feasibility of the data movement for the most critical
database objects.

Dynamically changing options, such as for the target storage environment and
the data type mapping, can be used for performance testing and identification of
additional needs for extracting the data in the expected format. There is no need
to apply the necessary changes manually to the target database creation scripts.

7.3.2 Database schema extraction with Oracle database interfaces

The Oracle data dictionary is the base for extracting the DDL SQL statements for
your database objects in case you want to generate and migrate the schema
manually. There are multiple ways to generate a complete schema of your
database infrastructure or at least for the necessary objects chosen to be moved.
In the following sections we introduce some of them.

Using DBMS_METADATA functions for schema creation
The easiest way to generate the complete database schema is the usage of the
DBMS_METADATA utility with the function GET_DDL. You can decide with a
specification of an object type which DDL you want to generate. Example 7-1 on
page 169 shows you the usage of the package in a select query. You can either
use the dual table to extract the DDL for a given table, or use the dba_% views for
extracting all the tables belonging to a provides schema or owner.

168 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 7-1 Use DBMS_METADATA.GET_DDL to get the DDL for Oracle db objects

#extracting the DDL of a specific object

set long 10000
SELECT DBMS_METADATA.GET_DDL('TABLE',’TABLENAME’) from dual;

CREATE TABLE "INFORMIX"."STATE"
 (“CODE" CHAR(2),

"SNAME" CHAR(15)
USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS" ENABLE
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS"

#extracting the DDL of all objects owned by a specific schema
#DDL for the tables

SELECT DBMS_METADATA.GET_DDL('TABLE',table_name) from dba_tables
where owner='INFORMIX';
select dbms_metadata.get_ddl('INDEX',index_name) from dba_indexes
where owner='INFORMIX';
select dbms_metadata.get_ddl('REF_CONSTRAINT',constraint_name)
from dba_constraints where owner='INFORMIX';

Create the object DDL with the help of data pump
Another way that you can extract the database schema is to use the data pump
export and import utilities. In the export phase you need to specify that you only
want to export the metadata of the database, and a dump file is generated. This
dump file can be used for generating a DDL script file for the database objects,
which are specified at the time of the export. You are able to specify a schema,
specific tables, or the entire database at the time of starting the export. In the
example shown in Example 7-2 on page 170, we decided to unload the metadata
of the Informix schema. The data pump import in the second step generates the
SQL script specified with the SQLFILE option. Specify only the name of the file,
but do not specify a path.

 Chapter 7. Data conversion 169

The benefit of using this way of the schema extraction is that all DDL statements
are generated, including indexes, constraints, object types, and all permissions.
There is no need to run a different SQL statement for each kind of objects, as in
the usage of the DBMS_METADATA package.

Example 7-2 Using data dump export and import to generate a schema

$expdp informix/pwd SCHEMAS=INFORMIX CONTENT=METADATA_ONLY
$impdp informix/pwd DUMPFILE=expdat.dmp SQLFILE=SYS_EXPORT_SCHEMA_01

#Output :

-- new object type path: SCHEMA_EXPORT/TYPE/TYPE_SPEC
CREATE TYPE "INFORMIX"."ADDRESS_T"
 OID '63039F01F25A430FE040007F02002343' as object

(
address1 char(64),
city char(32),
state char(32),
zipcode integer
);

/

ALTER TYPE "INFORMIX"."ADDRESS_T"
 COMPILE SPECIFICATION
 PLSQL_OPTIMIZE_LEVEL= 2
 PLSQL_CODE_TYPE= INTERPRETED
 PLSQL_DEBUG= FALSE PLSCOPE_SETTINGS= 'IDENTIFIERS:NONE'

Using the desc statement
There is a much easier way to extract column names and data types if you are
only interested in the raw layout of the table. The desc statement executed in
SQL*Plus gives you in a table layout the column names, null allowance, and the
defined data type. The desc statement is a useful source later in the data
movement process. You can use it to extract the table columns generating the
selects for the unload files. The missing parts are certainly the constraints, the
indexes and any permissions. In case you need to have all parts of the table DDL
statements, the preferred approach is to use of the DBMS_METADATA package.
This is depicted in Example 7-3 on page 171.

170 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 7-3 Using desc for showing the columns and their data types in a table

SQL> desc informix.classes
 Name Null? Type
 --- -------- ------------------
 CLASSID NUMBER(38)
 CLASS NUMBER(38)
 SUBJECT CHAR(32)

7.3.3 Move the database schema to the target IDS database server

After you have extracted the DDL statements out of Oracle database server for
the database objects to be moved, you have to apply some changes manually.
The changes are depending on the type of the database object. In the following
section we give you a short introduction for the major changes you need to apply
to migrate database objects to the Informix database server.

This introduction is intended to show you the differences in the DDL with the
special focus on the syntax. For that, we describe the DDL of an Oracle database
object and show the corresponding syntax for a similar IDS database object. We
give you some advice about which clauses you should be looking for. Because
most of the statements can contain many different clauses we do not address
everything in this chapter. However, we want to provide you with an idea of where
to look.

For a detailed discussion about the SQL considerations during a migration,
especially about a the comparison of DDL statements, refer to the following
sections.

Tables
We want to start our introduction with the table objects. In particular, the
definition of the table contains the columns and data type mappings, the storage
definition, and constraints, such as the not null constraints and primary key
constraint definition. Depending on which tool the schema has generated, the
primary key definitions are included in the create table or are created by an alter
table statement later on.

Example 7-4 on page 172 shows you the examples for the definition of a sample
table object in the database server.

 Chapter 7. Data conversion 171

Example 7-4 Table objects in IDS and in Oracle

#Oracle database table DDL generated by impdp
CREATE TABLE "INFORMIX"."CUST_CALLS"
 ("CUSTOMER_NUM" NUMBER(38,0),

"CALL_DTIME" TIMESTAMP (6),
"USER_ID" CHAR(32) DEFAULT user,
"CALL_CODE" CHAR(1),
"CALL_DESCR" CHAR(240),
"RES_DTIME" TIMESTAMP (6),
"RES_DESCR" CHAR(240) NOT NULL ENABLE

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" ;

#same Oracle object with primary key included created by DBMS_METADATA
CREATE TABLE "INFORMIX"."CUST_CALLS"
 ("CUSTOMER_NUM" NUMBER(38,0),
 "CALL_DTIME" TIMESTAMP (6),

"USER_ID" CHAR(32) DEFAULT user,
"CALL_CODE" CHAR(1),
"CALL_DESCR" CHAR(240),
"RES_DTIME" TIMESTAMP (6),
"RES_DESCR" CHAR(240) NOT NULL ENABLE,
PRIMARY KEY ("CUSTOMER_NUM", "CALL_DTIME")
USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS

2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS" ENABLE,
CONSTRAINT "A5" FOREIGN KEY ("CUSTOMER_NUM")
REFERENCES "INFORMIX"."CUSTOMER" ("CUSTOMER_NUM") ENABLE,
CONSTRAINT "A6" FOREIGN KEY ("CALL_CODE")
REFERENCES "INFORMIX"."CALL_TYPE" ("CALL_CODE") ENABLE
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS

2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS"

#same Object in Informix

create table "informix".cust_calls
 (

172 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 customer_num integer,
 call_dtime datetime year to minute,
 user_id char(32) default user,
 call_code char(1),
 call_descr char(240),
 res_dtime datetime year to minute,
 res_descr char(240) not null,
 primary key (customer_num,call_dtime)
) in rootdbs extent size 200 next size 100 lock mode row;

The following list details the areas where changes have to be applied:

� The storage clause (table storage location and extent sizes)

� The lock mode in the IDS database server (row or page)

� The table type in the IDS database server (standard or raw. In the example,
standard)

� Use of names like column names and table name, do not use quotation
marks

� Remove the enable literal from the not null constraint specification

You need to have a special focus on the data type mapping in the create table
SQL statement. There is one major factor influencing the appropriate data type
on the target IDS database server. Check the contents of your source table
columns in terms of the data value range for numeric data types, the current
length for character-based and unstructured data types and the real intention for
the usage of the date data type. We discuss the data type considerations in more
detail later in this section.

For guidance in choosing the appropriate data type on IDS, look at Figure 7-1 on
page 174. It shows the standard conversion table used by the MTK utility.

 Chapter 7. Data conversion 173

Figure 7-1 Default Oracle to IDS data type mapping in the MTK

Indexes
Similar to our introduction about the DDL changes for tables, we now discuss the
index objects. Looking at a simple index definition in Example 7-5, you can see
the biggest difference regarding the syntax in the storage clause. Make sure that
if you use the interfaces provided by Oracle, to pull out the schema for the
database objects that you always remove the quotation marks. It is not
necessary in those cases where you have a schema generated by an external
tool because both database servers also understand the object name and object
owner clause without quotations.

Example 7-5 Creating Indexes in Oracle

#Creating a simple index within Oracle
CREATE INDEX "INFORMIX"."ZIP_IX" ON "INFORMIX"."CUSTOMER" ("ZIPCODE")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)

174 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 TABLESPACE "USERS" PARALLEL 1 ;

#Same statement on Informix
create index "informix".zip_ix on "informix".customer (zipcode)
 using btree ;

#You could also see the following simple statements
#There are no differences in the use between Oracle and IDS

#Create a unique index
create unique index idx1 on “INFORMIX”.customer (customer_num)

#Composite with desc clause
create index idx1 on customer (lname, fname desc)

There are quite a number of options that you can specify when creating an index.
Be aware of the following major differences to consider:

� Remove the storage part from the Oracle definition
� For partitioned (fragmented) Indexes:

– Check if the original the fragmentation strategy is supported
– Change the syntax for the fragmentation strategy

� Remove bitmap indexes
� Remove NOSORT, COMPRESS, PARALLEL clauses
� Cluster indexes have a different meaning

Sequences
Sequences are a database server implementation of generating unique values
served to different clients working in parallel on the same base tables. They can
also be used to accomplish the request of unique primary keys. A sequence
object is also created by SQL DDL statements. Looking at Example 7-6, there is
no significant difference in the creation of a sequence in the two database
servers.

Example 7-6 create a sequence object

#Oracle
CREATE SEQUENCE EX_SEQ MINVALUE 2000 MAXVALUE 100000000
INCREMENT BY 1 START WITH 8995 CACHE 100 NOCYCLE NOORDER
#Informix
CREATE SEQUENCE EX_SEQ
 INCREMENT BY 1 START WITH 8995 MAXVALUE 100000000
 MINVALUE 2000 NOCYCLE CACHE 100 NOORDER;

 Chapter 7. Data conversion 175

In addition to the syntax, there is a small restriction with IDS in terms of the range
of the values for MAXVALUE. This is an integer value and has to be in the range
of an Integer value. Specifying another value would lead to an SQL error and the
object would not be created.

Constraints
We previously started the discussion about constraints in our look at the tables.
You can define NOT NULL constraints, check constraints, referential key
constraints, and primary key constraints. They can be specified in two different
ways. You can include the constraints in the table definition, or you can use the
alter table SQL statement to add the constraint after you already created the
table. We have compiled the two different specifications of the constraint
definition in Example 7-7.

Example 7-7 Different types of constraints in create table and alter table in Oracle Syntax

#Create a table with the constraints
CREATE TABLE "INFORMIX"."CUST_CALLS"
 ("CUSTOMER_NUM" NUMBER(38,0),
 "CALL_DTIME" TIMESTAMP (6),

"USER_ID" CHAR(32) DEFAULT user,
"CALL_CODE" CHAR(1),
"CALL_DESCR" CHAR(240),
"RES_DTIME" TIMESTAMP (6),
"RES_DESCR" CHAR(240) NOT NULL ENABLE,
PRIMARY KEY ("CUSTOMER_NUM", "CALL_DTIME")

#Creating Primary and Foreign key constraints with alter table
ALTER TABLE "INFORMIX"."ITEMS" ADD PRIMARY KEY ("ITEM_NUM",
"ORDER_NUM")
 USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" ENABLE;

ALTER TABLE "INFORMIX"."ORDERS" ADD CONSTRAINT "A1" FOREIGN KEY
("CUSTOMER_NUM")

 REFERENCES "INFORMIX"."CUSTOMER" ("CUSTOMER_NUM") ENABLE;

ALTER TABLE “INFORMIX”.”CUST_CALLS” ADD CONSTRAINT “A95” CHECK

(CUSTOMER_NUM < 10000);

176 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

In Informix, the appropriate SQL looks similar to that in Example 7-8.

Example 7-8 Constraint definition in create and alter table in IDS

create table "informix".cust_calls
 (
 customer_num integer,
 call_dtime datetime year to minute,
 user_id char(32)
 default user,
 call_code char(1),
 call_descr char(240),
 res_dtime datetime year to minute,
 res_descr char(240) not null,
 primary key (customer_num,call_dtime)
);

ALTER TABLE "informix". cust_calls ADD constraint
PRIMARY KEY (customer_num, call_dtime) constraint constrname

alter table "informix".orders add constraint (foreign key
(customer_num) references "informix".customer);

ALTER TABLE "informix". cust_calls ADD constraint
CHECK (customer_num < 1000)
constraint chkconstr;

Looking at both constraint definition statements, you have to verify the following
clauses:

� For the create table SQL statement, with respect to the constraints, remove
the following information:

– enable literal from the constraint
– storage clause from the primary key

� For the alter table SQL statement, with respect to the constraints:

– In case you want to specify the name, move the name to the end of the
statement, followed the key word constraint

– Remove the enable literal

– Informix also allows constraints without names. So, you can also remove
the name completely, and an internal name is automatically generated.

– If you use the owner in quotations be aware it is case sensitive.

 Chapter 7. Data conversion 177

Grants, Revokes, and Roles
We now take a closer look at the security. You can grant and revoke permissions
to and from a user or role, as shown in Example 7-9. The statements generated
by the Oracle tools are similar to those for the Informix database server. You have
to remove the quotation marks from the object name, as described in previous
examples. Roles creation and granting permissions to roles are also considered
in the Example 7-9. But they are also similar in both schemas.

Example 7-9 Grant and revoke permissions

#Oracle Syntax for Grant and Revoke
GRANT DELETE ON "INFORMIX"."CALL_TYPE" TO PUBLIC;
GRANT INDEX ON "INFORMIX"."CALL_TYPE" TO PUBLIC;
GRANT INSERT ON "INFORMIX"."CALL_TYPE" TO PUBLIC;
GRANT SELECT ON "INFORMIX"."CALL_TYPE" TO PUBLIC;
GRANT UPDATE ON "INFORMIX"."CALL_TYPE" TO PUBLIC;
GRANT SELECT ON “INFORMIX”.”CALLTYPE” TO PUBLIC WITH GRANT OPTION;

REVOKE DELETE ON "INFORMIX"."CALL_TYPE" FROM PUBLIC;

CREATE ROLE ROL_TEST;
GRANT ROL_TEST TO USER;
DROP ROLE ROL_TEST

#Informix

GRANT DELETE ON "INFORMIX".CALL_TYPE TO PUBLIC;
GRANT INDEX ON "INFORMIX".CALL_TYPE TO PUBLIC;
GRANT INSERT ON "INFORMIX".CALL_TYPE TO PUBLIC;
GRANT SELECT ON "INFORMIX".CALL_TYPE TO PUBLIC;
GRANT UPDATE ON "INFORMIX".CALL_TYPE TO PUBLIC;
GRANT SELECT ON “INFORMIX”.CALLTYPE TO PUBLIC WITH GRANT OPTION;

REVOKE DELETE ON "INFORMIX".CALL_TYPE FROM PUBLIC;

CREATE ROLE ROL_TEST;
GRANT ROL_TEST TO USER;
DROP ROLE ROL_TEST

Miscellaneous database objects
You can remove the creation of the user, directory, data link, and table space
objects from the database schema if they are included. These Oracle database
server objects are handled by the Informix server in a different way. They are
either managed by the base operating system, as in the case of directory access

178 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

control, or by the onspaces utility for dbspace and chunk management that
comes with the IDS distribution. Database access links have to be substituted in
Informix by a specific syntax clause in the specification for remote objects in SQL
statements.

For a further description of triggers, stored procedures, and views, refer to
Chapter 6, “SQL considerations” on page 111. Because they are not essential for
creating the target database schema and the loading and unloading of the data,
we do not provide a comparison here. Additionally, a variety of definitions of
these type of objects is much more comprehensive than we can completely cover
in this book.

7.4 Data movement

After you have created all the necessary database objects in the target Informix
database server, you can proceed to the next step, which is to move the data.
Start working with a small subset of tables and try to restrict the number of rows
for the unload. For testing purposes, load the data into a database on a test
instance or a development system. From the results of the load you can
determine a much better estimate of the time required for the load, and the
required disk space. Be sure to calculate the disk space for the unload of the raw
data, and on the target IDS database server.

The final data movement step has two parts. You first unload the data on the
source database server, and then load it onto the target database. The unload
itself includes the select of the necessary data for the move, and also the
changes required due to the differences in the data type. This is necessary to
enable the target IDS database server to successfully read the data without data
loss.

7.4.1 Unloading the data in Oracle

The main principle of data movement is to export the Oracle data to flat files in a
well-defined format. This format enables the target Informix database server to
load the data properly in the next step. There are several ways to initiate the
unload. You can use either procedures or the sqlplus command line processor.
The only way to extract the data from the Oracle database is to perform a
sequential scan of the database tables and execute a row projection to the target
unload file. The other export utilities provided by Oracle, such as desc or data
pump, generate an output which is in a binary format and which cannot be
extracted.

 Chapter 7. Data conversion 179

How the content of an unload file appears
There are multiple formats in the output file that could be used by IDS to read the
data. For example, you can use an output file where each column is separated by
a defined delimiter. The end of the row is defined by the delimiter and a line feed.
The major benefit of this form of output is in the saving of disk space. This is
because the content of the columns do notalways fill the entire column space,
and there is empty space left in the columns. Having the delimiter enables all that
empty space to be eliminated and not included in the unload file.

Another way to generate an unload file is the creation of a position oriented file.
This means the output of each column starts at a certain position in the row, as
defined by the size of the preceding columns. However, the disadvantage in
using this form of output is that the file needs much more disk space than that
occupied by the real data. This is especially the situation when you use large
char or varchar2 columns with only a small percentage of the space used.

Generating delimited files
Typically the IDS prefers a format with delimited columns. This format allows all
of the utilities that we introduce later, in 7.4.2, “Load the data into the target IDS
database server” on page 197, to read and understand the data. A possible
delimiter could be the “|” character. Depending on the content of the data, you
are free to choose any other special character.

A possible simple select issued in sqlplus, and generating a delimited row format
and the appropriate output, looks similar to Example 7-10.

Example 7-10 Simple unload of data with a full table scan and output row projection

SQL> select customer_num,'|',trim(lname),'|',trim(fname),'|'
from unload;

CUSTOMER_N ' TRIM(LNAME) ' ’TRIM(FNAME) '
---------- --------------------- -------------------------------- -
 1 | Miller | Henry |
 2 | Fischer | Henry |

You can take this output as a start, but there is much room for improvement. As
you may have noticed, we used trim to trim the output, but it was finally
generated in that tabulator style. There was not much of a space saving. Worse
yet, because we used the delimiter, the size was bigger than the real data size. A
simple change of the query, as shown in Example 7-11 on page 181, shows that
you can save a lot of space in the output file by changing the expression in the
projection list of the query.

180 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 7-11 Saving space using a well formatted projection expression

SQL> select trim(customer_num)||'|'||trim(lname)||'|'||trim(fname)||'|'
from customer;

TRIM(CUSTOMER_NUM)||'|'||TRIM(LNAME)||'|'||TRIM(FNAME)||'|'

1|Miller|Henry|
2|Fischer|Henry|
3|Carpenter|Joanne|

Another problem with this output is the heading. There is no need for the target
database server to have a description of how the source has created the output
rows. So, we need to find a simple way to suppress it. Using the set heading off
in the CLP removes that output. You will notice that there is another empty line
between the top and the first row. Because we have to create a consistent output,
this line also needs to be removed. Setting the pagesize to 0 will result in the
removal of that line. The statements in sqlplus and the appropriate output of the
query after the settings, are shown in Example 7-12.

Example 7-12 Remove the heading an empty lines from the top of a select output

SQL> set heading off
SQL> select trim(customer_num)||'|'||trim(lname)||'|'||trim(fname)||'|'
from customer;

1|Miller|Henry|
2|Fischer|Henry|
3|Carpenter|Joanne|

SQL> set pagesize 0
SQL> select trim(customer_num)||'|'||trim(lname)||'|'||trim(fname)||'|'
from customer;
1|Miller|Henry|
2|Fischer|Henry|
3|Carpenter|Joanne|

The only problem left is generating a consistent output that is readable by the
target database server. The output of the select query can be redirected to stdout
in a shell script. Otherwise you can spool the output or use the DBMS_OUTPUT
package from PL/SQL. We tried to minimize the amount of data going to the
output file. This can be done by the trim or rtrim built-in functions. But the content
of the data in the rows is not consistently even. That is, they vary in size.
Normally you specify the line size with the set linesize <count> statement. This
should be used to maximize the output to avoid line breaks initiated by sqlplus.

 Chapter 7. Data conversion 181

But this leads to having trailing blanks after the last delimiter, which could be
taken as another column during the load to the Informix database. Use set trims
ON to cut the lines after the last delimiter.

Generating column size based output files
Column size-based output files are organized like a table. Each column has a
defined space assigned regardless of how much space in actually required,
based on the size of the real content of the column. The generation of this type of
unload file is much easier when compared with the delimiter-based file previously
described. Some simple output is depicted in Example 7-13.

Example 7-13 Column size-based output files

SQL> select customer_num, lname, fname from customer;

CUSTOMER_N LNAME FNAME
---------- -------------------- --------------------

1 Miller Henry
2 Fischer Henry
3 Carpenter Joanne

The representation of the column in the output depends on the data type. Similar
to the delimited files, you have to cut the headings and all leading empty lines
from the header. You can also use the set headings off, set pagesize 0, and set
trims on variables to influence the output in the spool file or the redirected stdout
output. There is one thing you should keep in mind. If you want to load these
types of data files, put an additional byte in the control file of the load utility for
each column except the last column, because a blank is used as a separator
between the output columns.

Automation of the unloads
We have previously discussed the required format of the unload files and some
of the data type layout transition requirements. At this stage you should be able
to manually generate unload files. Now we want to give you an example of how
to organize a batch unload of multiple tables within a sample shell script, and that
includes creation and execution of an Oracle PL/SL based stored procedure in
the source database.

Using a Shell script for unloading tables in a batch file
In this section, we show you the final compilation of settings for generating a
delimited or column oriented unload file with a shell script. This is depicted in
Example 7-14 on page 183. Given you have a defined user and a specific
number of tables that you want to unload into separate files, this script could be
useful. The script has two primary parts. First it reads the tables from a

182 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

parameter file and investigates the columns and their data types, by using the
desc statement. Based on this output the final table scan is generated as a select
and the output is stored in the output file for further use. You can either switch on
the spool to save the output to a file, or process the stdout output. The stdout can
also be redirected to a pipe with a subsequent compress or an attached parallel
load. This means an unload and load on the target IDS database server side can
be done in parallel.

Example 7-14 A shell script for unloading a subset of tables for a specific user

#!/bin/ksh

Shell script: data_unload.sh
#
Syntax: data_unload.sh <table_list_file>
#
Starting from an flat file containing a list of all the table,
extracts data from Oracle for each table and writes data into
a file named table_name.DAT, formatted in columns
#

Define the environment variables for the oracle user and password
export ORACLE_USR=informix
export ORACLE_PWD=password
#
Start of main program

Loop on all the tables listed in the input file
for i in `cat $1`
do
 # Define some environment variables for temporary files
 export OUTFILE=/tmp/$i.DAT
 rm -f $OUTFILE
 mkfifo $OUTFILE
 DSCFILE=$i.dsc
 SQLFILE=$i.sql
 VARFILE=$i.var
 ALLFILE=$i.all
 POSFILE=$i.pos
 #rm -f $OUTFILE
 rm -f $DSCFILE
 rm -f $SQLFILE

 # Extract the table description from Oracle catalog

 Chapter 7. Data conversion 183

 sqlplus -s $ORACLE_USR/$ORACLE_PWD <<EOF >/dev/null 2>&1
 clear columns
 clear breaks
 set pagesize 100
 set newpage 1
 set feedback off
 spool $DSCFILE
 desc $i
EOF

 # Cut head and tail from the file containing the descriptions of the
tables
 # Change also the NOT NULL clause in a blank string
 # and cut the blanks in the first column
 tail +3 $DSCFILE | sed 's/NOT NULL/ /; s/^ //' > $DSCFILE.tmp1
 NL=`wc -l < $DSCFILE.tmp1`
 NLM1=`expr $NL - 1`
 head -$NLM1 $DSCFILE.tmp1 > $DSCFILE.tmp2
 cp $DSCFILE.tmp2 $VARFILE

sed -e 's/ VARCHAR2(/ /' \
 -e 's/ NUMBER(/ /' \
 -e 's/ NUMBER/ 41/' \
 -e 's/ INTEGER(/ /' \
 -e 's/ INTEGER/ 41/' \
 -e 's/ CHAR(/ /' \
 -e 's/ CHAR/ 1/' \
 -e 's/ RAW(/ /' \
 -e 's/ VARCHAR(/ /' \
 -e 's/)//' \
 -e 's/\([0-9]*\)\,\([0-9]\)*/\1/' \
 $DSCFILE.tmp2 > $DSCFILE.tmp3
 mv $DSCFILE.tmp3 $DSCFILE
 rm -f $DSCFILE.tmp*

 # Prepare the heading of the query statement on the table
 # by echoing the statements into the sql file
 echo "clear columns" > $SQLFILE
 echo "clear breaks" >> $SQLFILE
 echo "set pagesize 0" >> $SQLFILE
 echo "set linesize 10000" >> $SQLFILE
 echo "set feedback off" >> $SQLFILE
 echo "set heading off" >> $SQLFILE
 echo "set space 0" >> $SQLFILE
 echo "set newpage NONE" >> $SQLFILE

184 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 echo "set trim ON" >> $SQLFILE
 echo "set trims ON" >> $SQLFILE
echo "spool $OUTFILE" >> $SQLFILE
 echo "select '' " >> $SQLFILE

 # Append to the query statement file the list of the table fields
 # to obtain the column layout, using the desc.awk awk script
 awk -f desc.awk $VARFILE >> $SQLFILE

 # Append to the query statement file the "from" clause
 # and the closing instructions
 echo "from $i;" >> $SQLFILE
echo "spool off" >> $SQLFILE
 echo "quit" >> $SQLFILE

 # Execute the query statement
 sqlplus -s $ORACLE_USR/$ORACLE_PWD @$SQLFILE > $OUTFILE
done

To generate a delimited unload file, use the desc.awk script, as shown in
Example 7-15. It calls the awk utility on UNIX to setup the projection list of the
select statement which is referenced by the script.

Example 7-15 awk script for generating delimited output

#Use the following awk in a seperate script desc.awk
BEGIN {}
{
 if ($2 == "DATE")
 print " ||rtrim(TO_CHAR("$1",'MM/DD/YYYY')) || '|'"
 if (substr($2,1,9) == "TIMESTAMP")
 print " ||rtrim(TO_CHAR("$1",'YYYY-MM-DD HH24:MI:SSxFF')) || '|'"
 if (substr($2,1,4) == "CHAR")
 print " ||rtrim("$1")||'|' "
 if (substr($2,1,8) == "VARCHAR2")
 print " ||rtrim("$1")||'|' "
 if (substr($2,1,6) == "NUMBER")
 print " ||rtrim("$1")||'|'"
}

 Chapter 7. Data conversion 185

A similar, but much easier, script can be used for creating the column-sized
output file. That script is shown in Example 7-16.

Example 7-16 Generate a column size oriented output file separated by a blank

#Use the following awk in a seperate script desc.awk
BEGIN {}
{
 if ($2 == "DATE")
 print " TO_CHAR("$1",'MM/DD/YYYY') “
 if (substr($2,1,9) == "TIMESTAMP")
 print " TO_CHAR("$1",'YYYY-MM-DD HH24:MI:SSxFF')"
 if (substr($2,1,4) == "CHAR")
 print " $1"
 if (substr($2,1,8) == "VARCHAR2")
 print " $1 "
 if (substr($2,1,6) == "NUMBER")
 print " $1"
}

In Example 7-17 we show the statement that was used to create the customer
table. In addition, the sample output of some rows for the delimited format are
depicted.

Example 7-17 Sample sqlplus statements to generate a delimited output file

clear columns
clear breaks
set pagesize 0
set linesize 10000
set feedback off
set heading off
set space 0
set newpage NONE
set trim ON
set trims ON
spool customer.DAT
select '' ||rtrim(MANU_CODE)||'|' ||rtrim(MANU_NAME)||'|'
 ||rtrim(LEAD_TIME)||'|'
from manufact;
spool off
quit

#after running the select the spool file content looks like this
SMT|Smith|3|
ANZ|Anza|5|

186 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

NRG|Norge|7|
HSK|Husky|5|
HRO|Hero|4|
SHM|Shimara|30|
KAR|Karsten|21|

Using Oracle stored procedures for a delimited unload
In this example, we explain an Oracle stored procedure, export_table, that was
written by the authors of this book. It demonstrates how to unload the data from
Oracle by using a stored procedure, and subsequently to load that data into IDS.
This stored procedure can only be used for CHAR, VARCHAR2, NUMBER, and
DATE, and TIMESTAMP data types. As in the previously described shell script,
this stored procedure gets the table name as an input parameter. It then
constructs the SELECT query for output, and exports the table data to an output
flat file. This output file format is also a delimited ASCII file format. The delimiter
is a ’|’ sign. Example 7-18 shows the definition for the export_table stored
procedure.

Example 7-18 Procedure to export data

/***/
/* This stored procedure accept the table name as input */
/* and exports the data into flat file identified by the */
/* UTL_FILE_DIR with the format acceptable by the DB2 */
/* IMPORT utility or LOAD utility as Delimited ASCII file */
/* Note : this procedure can be used for the table with data */
/* types CHAR,VARCHAR2 and NUMBER. */
/***/
CREATE OR REPLACE PROCEDURE export_table(
 i_table_name IN VARCHAR2 -- table name to be exported
)
IS
 stmt_1 VARCHAR2(4000) := 'select '; -- first part of select
 stmt_2 VARCHAR(50) := ' as linecol from '; -- second part of the select
 stmt_cursor INTEGER; -- statement handle
 linecol VARCHAR2(4000); -- output buffer for utl_file
 ret INTEGER; -- dbms_sql handle
 filepath VARCHAR(40):='c:\temp'; -- path for output file
 filename VARCHAR(40); -- output filename
 filemode CHAR(1):='w'; -- output file mode for write
 filelnsz INTEGER := 4000; -- max file line size
 dtype_excp EXCEPTION;
 fhandle utl_file.file_type; -- file handle for utl_file
 CURSOR col_crsr(tab_col_name IN VARCHAR2) IS
 SELECT column_name, data_type
 FROM user_tab_columns
 WHERE table_name = upper(tab_col_name);

 Chapter 7. Data conversion 187

BEGIN
 stmt_1 := stmt_1||'/*parallel('||i_table_name||',4)*/'||''''||'''';

 /***/
 /* Build the select statement */
 /***/
 FOR my_rec IN col_crsr(i_table_name) LOOP
 IF my_rec.data_type = 'DATE' THEN
 stmt_1 := stmt_1 || '|| rtrim(DECODE('|| my_rec.column_name

|| ',NULL,'|| ''' '''|| ',TO_CHAR('||
my_rec.column_name || ','''||
'MM/DD/YY'||''')))||'''||'|'||'''';

 ELSIF my_rec.data_type = 'TIMESTAMP(6)' THEN
 stmt_1 := stmt_1 || '|| rtrim(DECODE('|| my_rec.column_name

|| ',NULL,'|| ''' '''|| ',TO_CHAR('
|| my_rec.column_name ||','''||
'YYYY-MM-DD HH24:MI:SSxFF'||''')))||'''||'|'||'''';

 ELSIF my_rec.data_type = 'CHAR' THEN
 stmt_1 := stmt_1 || '||'''||''''||'||rtrim('|| my_rec.column_name||')

||'''||'|'||'''';
 ELSIF my_rec.data_type = 'VARCHAR2' THEN
 stmt_1 := stmt_1 || '||'''||''''||'||rtrim('|| my_rec.column_name||')

||'''||'|'||'''';
 ELSIF my_rec.data_type = 'NUMBER' THEN
 stmt_1 := stmt_1 || '||rtrim('||my_rec.column_name|| ')||'''||'|'||'''';
 ELSE RAISE dtype_excp;
 END IF;

 END LOOP;
 stmt_2 := stmt_2 || i_table_name;
 stmt_1 := stmt_1 || stmt_2;

 /***/
 /* Execute the statement and open the cursor */
 /***/
 stmt_cursor := dbms_sql.open_cursor;
 dbms_sql.parse(stmt_cursor,stmt_1,dbms_sql.native);
 dbms_sql.define_column(stmt_cursor,1,linecol,4000);
 ret := dbms_sql.execute(stmt_cursor);
 filename:=i_table_name||'.DAT';
 fhandle:= utl_file.fopen('BLOBS',filename,filemode,filelnsz);

 /***/
 /* Fetch the rows and write it to output file */
 /***/
 WHILE dbms_sql.fetch_rows(stmt_cursor)>0 LOOP
 dbms_sql.column_value(stmt_cursor,1,linecol);

188 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 utl_file.put_line(fhandle,linecol);

END LOOP;

 /**/
 /* Close the cursor and file */
 /**/
 dbms_sql.close_cursor(stmt_cursor);
 utl_file.fclose(fhandle);

 EXCEPTION
 WHEN dtype_excp THEN dbms_output.put_line('Invalid Data type');
END;

This stored procedure uses the Oracle DBMS_SQL package to construct the
SELECT statement and retrieve the result set. It uses the UTL_FILE Oracle
package to create the output file, open it, and write the output data to the output
file. For using the UTL_FILE, the existence of a directory object is required. We
named that object BLOBS in our example. It points to the c:\temp directory. The
output file created will be named the <TABLE_NAME>.DAT file in the target
directory. For example, to export the data in the ACCOUNTS table, the stored
procedure is called using the CALL EXPORT_TABLE(‘ACCOUNTS’) command.

The table name can be specified in upper and lower case. The stored procedure
automatically converts the parameter in upper case for further processing.

Data type representation considerations
Planning and executing the unload of your data includes another important task.
This is the data type mapping and the data representation in the unload file. The
data type mapping in the database schema is basically done when you start the
unload of the data. It is related to the rewrite of the create table statements.

Typically, not every database data type that is on the source side has an
equivalent data type on the target database server. Therefore, a data type
mapping between the two must be done. In addition, the name of the data type
can be same but the meaning could be quite different.

In the following section we give you some details on where to look when
unloading the data, in terms of the best fits for the used data types.

Numeric data
Oracle accepts in the create table statement the data types integer and small
integer. Internally, these data types are mapped to NUMERIC(38), which allows
the application to insert values much larger than that data type range normally
accepts. In difference to this behavior, IDS follows the data ranges defined in the

 Chapter 7. Data conversion 189

C programming language. Example 7-19 shows the difference in behavior, based
on a small sample table. Make sure that you choose the appropriate mapping for
these data types. It would be a good idea either to check all the data in these
columns for their ranges or choose, per default, a data type such as bigint or
decimal to make sure that no rows are rejected during the load because of data
values range constraint reasons.

Example 7-19 Some considerations using integer and smallint data types

#Create the table
SQL> create table numeric_data (aa integer, bb smallint);

#Check the representation
SQL> desc numeric_data
 Name Null? Type
 --- -------- ------------------
 AA NUMBER(38)
 BB NUMBER(38)
#inserting some large values
SQL> insert into numeric_data values (12345678912345678, 1234567890);

SQL> select * from numeric_data;
 AA BB
---------- ----------
1.2346E+16 1234567890

#Try the same in informix dbaccess- table with same structure
SQL: New Run Modify Use-editor Outpu Choose Save Inf Drop Exit

insert into numeric_data (aa) values (22000202202020220220202022020)

 1215: Value exceeds limit of INTEGER precision

Character data types
The mapping for the char-based data type is straight forward, and there are
similar data types on the Informix database server. Be careful when handling
char-based data. Make sure that the length of the column on the target is defined
large enough to store all of the column data. IDS allows you to create databases
in ANSI mode and in non-ANSI mode. The default is non-ANSI mode. In this
mode, if you try to insert a char value that is larger than the column definition, the
current value is truncated to the defined column length. If you create an ANSI
database, an error is returned and the insert of this value is rejected.
Example 7-20 on page 191 shows you the difference in the behavior.

190 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 7-20 Truncating column content versus rejecting the SQL statement

#Oracle an error is returned
SQL> create table char_data (char_col char(20));

SQL> insert into testchar values ('22000202202020220220202022020');
insert into testchar values ('22000202202020220220202022020')
 *
ERROR at line 1:
ORA-12899: value too large for column "INFORMIX"."CHAR_DATA"."CHAR_COL"
(actual: 30,maximum: 20)

#Informix behaviour depends on the database style
#Non ANSI
create database char_db;
create table char_data (char_col char(20));

SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit
Run the current SQL statements.

-------------- char_db@c_prim --------- Press CTRL-W for Help --------

insert into char_data values ('22000202202020220220202022020');

 1 row(s) inserted.

#see the truncate
select "***" || char_col ||"****" from char_data

(expression)

22000202202020220220*

#ANSI behavior
#Insert is rejected

create database char_db with log mode ansi
create table char_data (char_col char(20));

insert into char_data values ('22000202202020220220202022020');

 1279: Value exceeds string column length.

 Chapter 7. Data conversion 191

Time-based data types
You have to be careful when mapping time-based data types from Oracle to IDS.
That is why we want to have a closer look at the DATE and the TIMESTAMP data
type.

If you look at the DATE data type on the Oracle and compare it with the DATE
data type on IDS, you will notice a slight difference. In Oracle, the DATE contains
a time stamp from the day to the second. IDS also saves a specific day in this
data type. Looking closer at the DATE data type behavior in the Oracle database
you will see that the normal select * from table will only return the day
description. Any additional information has to be extracted by the to_char built-in
function. If you have DATE data types in the original table definition, be aware of
the original goal when using this data type. Was it to store only the day, or a time
stamp? If the intension was to save the day, you can use DATE on the target IDS
database server for this column. Otherwise, a DATETIME year to second would
be the better choice.

Regardless of which data type is used, you have to change the representation of
the data type. The standard output for a DATE column in Oracle for a select *
from table is DD-MON-YY. On IDS the default format is MM/DD/YY. For a
different representation, you need to have a different setting in the DBDATE
environment variable on IDS before you start loading the data. The comparison
of the default output behavior in a simple select, and the change of the data
representation for this specific data type, is summarized in Example 7-21.

Example 7-21 Using DATE only for a Day in Oracle, and how to match

#Oracle definition
SQL> desc orders
 Name Null? Type
 --- -------- ------------------
 ORDER_NUM NOT NULL NUMBER(38)
 ORDER_DATE DATE

#Informix Definition
create table "informix".orders (
 order_num serial not null ,
 order_date date)

#select the data on Oracle
SQL> select * from orders;
 1001 20-DEC-98

#select the same data on IDS
select * from orders;
order_num 1001

192 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

order_date 12/20/1998

#Change the represention of the column
SQL> select order_num,to_char(order_date,’MM/DD/YYYY') from orders;
 1001 12/20/1998

If you use the DATE data type on Oracle to store a date time, you need to define
a DATETIME year to second for the target Informix data type. The output of the
data in the unload file has to be modified as described in Example 7-22.

Example 7-22 Using the DATE as a time stamp on Oracle

SQL> select to_char(order_date,'YYYY-MM-DD HH24:MI:SS') from orders;

TO_CHAR(ORDER_DATE,'YYYY-MM-D

1998-12-20 05:21:31

If you use the data type TIMESTAMP in your original database table you also
have to change the representation of the data in the unload file. The default
output and the TO_CHAR expression for the appropriate output are shown in
Example 7-23.

Example 7-23 Exporting data from a TIMESTAMP value

#Original table definition
SQL> desc cust_calls
 Name Null? Type
 --- -------- -------------------
 CUSTOMER_NUM NOT NULL NUMBER(38)
 CALL_DTIME NOT NULL TIMESTAMP(6)

#Default representation
SQL> select CALL_DTIME from cust_calls;
CALL_DTIME

12-JUN-98 08.20.27.858698 PM
12-JUN-98 08.25.27.858698 PM
07-JUL-98 10.24.27.858698 PM

#Informix schema defintion
create table "informix".cust_calls
 (
 customer_num integer,
 call_dtime datetime year to second

 Chapter 7. Data conversion 193

)

#Default representation
select CALL_DTIME,RES_DTIME from cust_calls;

call_dtime
1998-06-12 20:20:27
1998-07-07 22:24:06

#Necessary Conversion using target format year to second
#Query on Oracle
select ''
 ||rtrim(CUSTOMER_NUM)||'|'
 ||rtrim(TO_CHAR(CALL_DTIME,'YYYY-MM-DD HH24:MI:SS'))
from cust_calls;

#Necessary Conversion using target format year to fraction
#Informix schema
create table "informix".cust_calls (
 customer_num integer,
 call_dtime datetime year to fraction(5))

#Query for the unload
select ''
 ||rtrim(CUSTOMER_NUM)||'|'
 ||rtrim(TO_CHAR(CALL_DTIME,'YYYY-MM-DD HH24:MI:SSxFF'))
from cust_calls;

sqlplus -s informix/support1 < cust_calls.sql
106|1998-06-12 20:20:27.858698|

Using Object data types
If you have defined your own data types, the transfer of the data type definition in
the schema needs only a small change in the SQL DDL. On the unload side the
representation of user-defined data types is nearly the same, but does need a
small change. The change has to be applied after the data is unloaded. We now
look at the default representation of a user defined data type in both database
servers. It is depicted in Example 7-24 on page 195.

194 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 7-24 User-defined types and their appearance

#Oracle schema
SQL> desc employee
 Name Null? Type
 --- -------- ------------------
 GIVENNAME CHAR(32)
 FAMILYNAME CHAR(32)
 ADDRESS ADDRESS_T
 PHONE CHAR(32)

SQL> select ADDRESS from employee;

ADDRESS(ADDRESS1, CITY, STATE, ZIPCODE)
--
ADDRESS_T('123, First Street ', 'Denver ', 'CO ', 80111)

#Informix Schema :

create table "informix".employee
 (
 givenname char(32),
 familyname char(32),
 address "informix".address_t,
 phone char(32)
);

select * from employee;
ROW('123, First street ','Denver ','CO ',80111)

The Oracle output for the user type starts with the name of the type, whereas
Informix starts with the literal ROW. Therefore, you have to change the type
name to the row. You can make that change by using a pipe for the unload and
redirecting the content through a sed script.

Handling Blobs
The recommended way to unload blobs is either by using an existing solution, or
by writing your own procedure using the utl_file package and the put_raw
function. This function is able to write binary data, up to 32000 bytes, in one step.
If your data in a BLOB column is larger, you have to create a loop so you can
perform multiple writes.

There is a reason why you have the BLOB in a stored procedure rather than by
using a select * from table. The BLOB data is shown in SQL*Plus 11g in their
ASCII representation on screen. Older versions do not show the BLOB content at

 Chapter 7. Data conversion 195

all. In Example 7-25 we show you the detailed steps for the BLOB unload and
how the output for a BLOB column would look if using a sample select * from
table.

Example 7-25 handling Blobs during the UNLOAD

#Defintion of a simple table with BLOB column in Oracle
SQL> desc blob_table
 Name Null? Type
 --- -------- ------------------
 AA BLOB

SQL>select * from blob_table
AA
--
74726973746172702F6E657764666D2F64666D6578742E632044464D706B73697A6520
44464D706B73697A652875696E7434207265715F73697A652C20696E7434202A6C6F77

#Unload procedure

define the directory object for the unload path
select the rows from your blob table within a cursor
open the output file for the blob with utl_file.fopen for write
select the length of the current blob , use dbms_lob.getlength()
depending on the size < 32000 write the blob

use utl_file.put_raw();
 utl_file.fflush();
if the blob is larger than 32000 read pieces of the blob

use dbms_lob.read()
utl_file.put_raw();
utl_file.fflush();

close the output file
move over to the next BLOB row

Performance considerations
The generation of both of the covered output formats with the SELECT statement
requires a full table scan. For the final execution of the data move you should
definitely parallelize the full table scans. Use the parallel clause in the final select
that will be initiating the full table scan. Additionally you should set up an unload
and load strategy where multiple tables are unloaded in parallel to use the
existing resources in terms of available processors and I/O throughput. That is,
set up multiple clients for unloading different schema data. To do this, you could
use the sample scripts and stored procedures we showed in our previous
examples.

196 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

It would be good to use named pipes for the unload to save disk space. You can
define the pipe on UNIX with the mkfifo command. Apply the appropriate
permissions with the -m option to avoid unauthorized access to the data during
your tests and for the final move. If using pipes you can combine the unload and
the load together. However, ensure that the process for writing to the pipe is the
first one. Otherwise, you will have synchronization problems.

7.4.2 Load the data into the target IDS database server

The next step in the data move chain is to load the extracted data into the IDS
database server. There are several utilities available for loading data generated
by external data sources. The following are examples:

� dbload utility
� LOAD SQL statement provided by dbaccess
� High Performance Loader

Depending on the format of the output file and the volume of data you want to
load you can choose one of them. In the following sections, we give a short
introduction to those tools. More detailed information about the load and unload
utilities and their use in migration activities can be obtained from the High
Performance Users Guide and the IBM Informix Migration Guide. You can
download them from the following Web page:

http://www-01.ibm.com/support/docview.wss?uid=swg27013894

The SQL LOAD statement provided by the dbaccess utility
The SQL load statement is an Informix extension to the SQL standard and is only
available in the dbaccess utility. You can either use dbaccess and run it
step-by-step from the menu, or you can use it in a batch file. For batch, save all
your SQL statements in a file and redirect the file to dbaccess at execution time.

The load statement expects a delimited file on disk, but can also be used to read
delimited rows from a named pipe. The default delimiter is a “|”, but can be
changed with the DBDELIMITER environment variable. This variable has to be
set before starting the dbaccess. We show the prerequisites, and how to load the
data with the LOAD statement, in Example 7-26 on page 198.

 Chapter 7. Data conversion 197

http://www-01.ibm.com/support/docview.wss?uid=swg27013894

Example 7-26 Using LOAD to load data into IDS

#UNLOAD file
$cat /tmp/manufact.DAT
SMT|Smith|3|
ANZ|Anza|5|
NRG|Norge|7|
HSK|Husky|5|
HRO|Hero|4|
SHM|Shimara|30|
KAR|Karsten|21|
NKL|Nikolus|8|
PRC|ProCycle|9|

create table "informix".manufact
 (
 manu_code char(3),
 manu_name char(15),
 lead_time interval day(3) to day,
 primary key (manu_code)
);

$echo “load from /tmp/manufact.DAT insert into manufact;”| dbaccess -e
target_databasename

Database selected.

load from 'test.txt' insert into manufact;
9 row(s) loaded.

Database closed.

Loading data with the dbload utility
Another utility for loading the data is dbload. That utility is an executable provided
with the IDS distribution. It can be used for loading data files in delimited or a
column offset oriented fashion. A control file is provided as an input parameter at
execution time that will define the layout of the load file, column mapping and the
target database table. In brief there are the following options available to dbload
as an input parameter to be more comfortable with the load behavior:

� Define commit points after a load, or specific number of loads
� Skip of rows in the data files
� Lock the table for the load
� Create a logfile specification
� Specify fault tolerance

198 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The key input for the dbload is the specification of a control file. There, you
determine if you load data from delimited or column-oriented file. Additionally,
you specify the filename of the load file and define the target table where the
rows will be loaded. You can specify multiple load files in one control file that
enables the dbload utility to load more than one table at execution time. We show
some sample control files for handling delimited rows in Example 7-27.

Example 7-27 sample dbload control files

#Control file with loadfile with delimited rows
FILE manufact.unl DELIMITER ’|’ 3;
INSERT INTO manufact;

#Loading multiple Files with one dbload start
FILE stock.unl DELIMITER ’|’ 6;
INSERT INTO stock;
FILE customer.unl DELIMITER ’|’ 10;
INSERT INTO customer;
FILE manufact.unl DELIMITER ’|’ 3;
INSERT INTO manufact;

The control file for column space-oriented rows looks a little bit different. Here
you have to specify the name of the column and the offset for each column the
row contains. You can also specify some default values for NULL values. We
show samples of how to specify these values in Example 7-28.

Example 7-28 How to define column offsets in a control file

#Control File with column size oriented rows.
#the select from Oracle looked like this
CUSTOMER_N LNAME FNAME
---------- -------------------- --------------------

1 Miller Henry
2 Fischer Henry
3 Carpenter Joanne

Truncated by the head we finally got this file
1 Miller Henry
2 Fischer Henry
3 Carpenter Joanne

#define the start of the column in the row
#keep in mind that you hve to add the byte for the space to the
#first 2 column sizes
$cat controlfile
FILE customer.unl

 Chapter 7. Data conversion 199

(
customer_num 1-11,
fname 12-33,
lname 33-53
);

INSERT INTO customer VALUES (customer_num, fname, lname);

Because most of the data types have a fixed length, or in case of varchar the
select output is set as the maximum size, you should be able easily to define the
control file for most of your data exports.

If you have your own object data types it works in the same way. We show you,
in Example 7-29, how the definitions in the control file are structured for delimited
and column size-based input files.

Example 7-29 Handling of user defined row types

#Table defintion statement in Informix
create row type address (street char(100),town char(100),zip integer);
create table customer (customer_num integer, lname char(100), fname
char (100), adr address);
#Load file delimited
1|Fisher|Henry|ROW(’First Street’,’San Jose’,95110)|
#Load File columnn oriented

1 Fisher Henry ROW(’First Street’,’San Jose’,95110)

#Controlfile for a delimited load file
FILE rowtype.txt
DELIMITER '|' 4;
INSERT INTO customer;

#Controlfile for column sized load file
FILE rowtype.txt
(
customer_num 1-7,
lname 8-19,
fname 20-31,
address 32-67);

INSERT INTO customer VALUES (customer_num, lname,fname,address);

200 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Setting up the control file according to the load file is the prerequisite for the
execution of the dbload. When finished, you can start the dbload utility with the
following command:

dbload -d <database_name> -c <controlfilename> -l <logfilename>

Loading data with the High Performance Load Utility
The High Performance Load Utility (HPL), similar to dbload, is shipped with the
IDS product. It is for loading and unloading data in parallel, and is based on jobs.
There can be different data sources, such as pipes, tapes or files, and file arrays
for the load. It contains a graphical interface to create and monitor the jobs, but
the job definition and execution can be also maintained by shell based
executables. The HPL is able to load delimited, binary, ASCII and multibyte data
sources. It should be the tool of choice when there is a requirement to load huge
volumes of data.

When using the HPL utility for loading data into the database, there are a number
of steps to take to create and execute a load job. The steps are always required
regardless of which interface you use for the setup. You can execute the steps
either with the graphical based utility, named ipload, which is available on UNIX
platforms or you can use the onpladm utility for the setup. Perform the following
steps to do so:

1. Create a job under a project
2. Define the data source as a device, which may be an array, a tape, or a pipe.
3. Define the source file format, such as delimited, ASCII or binary.
4. Create the SQL query to define the target database and the table.
5. Map the input stream position and fields to the target columns.
6. Define filter constraints in case not all rows should be inserted.

After you have created the job you can either execute it from the ipload GUI. If
you used onpladm for the definition task, you have to use onpload for running the
jobs. There are two types of jobs you can define. The choice when loading large
volumes of data should be the Express mode. It takes advantage of performance
improvements during the load, such as switching off logging, and disabling of
indexes and constraints. After the load, all objects that are disabled during the
load by the HPL are automatically reestablished. The only requirement for the
administrator, after running an express load, is taking a Level 0 archive. During
the load of the data into the production system you should combine the load of
multiple tables before you initiate the Level 0 backup, to save time.

Next, we look at some brief examples on how to set up a data load job with the
help of onpladm, and how to execute the job. The first two examples are in the
Windows environment. The output of the job execution may vary a little on UNIX
platforms. We start with a simple job definition, the load of a delimited unload file
into a target database table in express mode. This is depicted in Example 7-30

 Chapter 7. Data conversion 201

on page 202. For such an example, make sure that you specify a log file on
WINDOWS for the execution of the job to see the status. On UNIX, the output is
automatically generated on /dev/stdout.

Example 7-30 How to setup and execute a Job using the HPL utility

#Define the job
onpladm create job load_table -d tabledata.unl -D target -t customer
 -fl
#execute the job
C:\temp\HPL>onpload -j load_table -fl -l output

C:\temp\HPL>type output
Thu Feb 19 20:47:25 2009

SHMBASE 0x0c000000
CLIENTNUM 0x49010000
Session ID 1

Load Database -> target
Load Table -> customer
Device Array -> load_table
Record Mapping -> load_table
Convert Reject -> c:\temp\load_table.rej
Filter Reject -> c:\temp\load_table.flt
Set mode of index zip_ix to disabled
Reset mode of indexes "holgerk".zip_ix to original enabled mode
Table 'customer' will be read-only until level 0 archive

Database Load Completed -- Processed 56 Records
Records Inserted-> 56
Detected Errors--> 0
Engine Rejected--> 0

Thu Feb 19 20:47:27 2009

#you can additionally run the job with
C:\temp\HPL>onpladm run job load_table -fl

This definition only maps columns one-to-one from the delimited data file. In
addition we only have one data file. If you want to have an array of multiple data
file as an input you have to modify the array definition. To do so, write the
definition in a file and create the new device object in the database server. The
definition file is specified by the -F option. After that, create a job using this new
object. Make sure that you use the -fla option when specifying the array. All

202 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

necessary definitions and commands for creating and executing the job are
described in detail in Example 7-31.

Example 7-31 Definition of a device array and the usage in a load job

#device definiton
c:\temp\HPL>type devicefile
BEGIN OBJECT DEVICEARRAY load_table_array
BEGIN SEQUENCE
TYPE FILE
FILE C:\temp\HPL\tabledata.unl
TAPEBLOCKSIZE 0
TAPEDEVICESIZE 0
PIPECOMMAND
END SEQUENCE
BEGIN SEQUENCE
TYPE FILE
FILE C:\temp\HPL\tabledata1.unl
TAPEBLOCKSIZE 0
TAPEDEVICESIZE 0
PIPECOMMAND
END SEQUENCE
BEGIN SEQUENCE
TYPE FILE
FILE C:\temp\HPL\tabledata2.unl
TAPEBLOCKSIZE 0
TAPEDEVICESIZE 0
PIPECOMMAND
END SEQUENCE
END OBJECT

#Create the Device
C:\temp\HPL>onpladm create object -F devicefile
Successfully created object DEVICEARRAY load_table_array

#Check existence
C:\temp\HPL>onpladm list device
load_table_array

#Create the Job we use -fla specifying the device array
C:\temp\HPL>onpladm create job load_arr -d load_table_array -D target
-t customer -fla
Successfully created Job load_arr

C:\temp\HPL>onpload -j load_arr -fl -l output

 Chapter 7. Data conversion 203

In the final stage we give you an overview of what is needed when using a pipe
as the input source. The steps for creating the pipes as an input source and the
definition of the load jobs are similar. Example 7-32 shows the detailed
commands using the HPL and LINUX as the base operating system.

Example 7-32 Using a pipe as an input for HPL

#Defintion of the pipes in a device array
#cat pipedesc

BEGIN OBJECT DEVICEARRAY pipedesc
BEGIN SEQUENCE
TYPE PIPE
FILE
TAPEBLOCKSIZE 0
TAPEDEVICESIZE 0
PIPECOMMAND "cat /tmp/tabledata"
END SEQUENCE
BEGIN SEQUENCE
TYPE PIPE
FILE
TAPEBLOCKSIZE 0
TAPEDEVICESIZE 0
PIPECOMMAND "cat /tmp/tabledata1"
END SEQUENCE
BEGIN SEQUENCE
TYPE PIPE
FILE
TAPEBLOCKSIZE 0
TAPEDEVICESIZE 0
PIPECOMMAND "cat /tmp/tabledata2"
END SEQUENCE
END OBJECT

$create object -F pipedesc
Successfully created object DEVICEARRAY loadfrompipe1

$onpladm create job load_from_pipe -d pipedesc -D target -t customer
-fla
Successfully created Job load_from_pipe

$onpload -j load_from_pipe -fla

Thu Feb 19 21:42:48 2009

204 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

SHMBASE 0x0c000000
CLIENTNUM 0x49010000
Session ID 6

Load Database -> target
Load Table -> customer
Device Array -> pipedesc
Record Mapping -> load_from_pipe
Convert Reject -> /tmp/load_from_pipe.rej
Filter Reject -> /tmp/load_from_pipe.flt
Set mode of index zip_ix to disabled
Reset mode of indexes "holgerk".zip_ix to original enabled mode
Table 'customer' will be read-only until level 0 archive

Database Load Completed -- Processed 168 Records
Records Inserted-> 168
Detected Errors--> 0
Engine Rejected--> 0
Thu Feb 19 21:42:53 2009

There is rich variety of options for setting up the load jobs with the HPL
functionality provided by IDS, although we primarily focused on the load of
delimited files. There are of course possibilities for setting up column offset
based load files, other than default column mapping and row filtering based on
filter values. For more detailed information about the HPL, refer to the IBM
Informix High-Performance Loader User’s Guide, SC23-9433. You can download
the pdf file from the following URL:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Special considerations loading BLOB and SBLOB data
Loading BLOB or SBLOB data require special treatment. Not all of the introduced
utilities for the load do support the direct load of BLOB or SBLOB data types. We
want to give in the next section some guidances how you can develop your own
solution loading the data.

For loading BLOB data you should refer to the file blobload.ec.Its distributed with
the Informix Client SDK in the demo/esqlc directory down of the $INFORMIXDIR.
This file contains the demo source code for a sample client inserting BLOB
located in a file to a database table. Basically the treatments of blobs is be done
in ESQL/C by a specific structure loc_t. This structure contains the directions for
the blob like size and file location. After an initialization you can use the variable
like all other build data type based variables as a host variable. Example 7-33 on
page 206 shows you the details how your code could look.

 Chapter 7. Data conversion 205

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Example 7-33 How to insert a BLOB to a table in ESQL/C

#Informix Database schema
create table blob_tab (the_blob BYTE);

#sample parts of the esql/c program
$include sqlca;
#include <stdio.h>
main(int argc, char **argv)
{
$loc_t images;
$char the_statement[200]
$char blobfile[200];

$database blob_database;
sprintf(blobfile,”%s”,argv[1]);
strcpy(the_statement,”insert into blob_tab values (?)”);
$prepare sql_statement from :the_statement
images.loc_loctype = LOCFNAME; /* blob is named file */
images.loc_fname = blobfile; /* here is its name */
images.loc_oflags = LOC_RONLY; /* contents are to be read in IDS*/
images.loc_size = -1; /* read to end of file */
images.loc_indicator = 0; /* not a null blob */
}

$execute sql_statement using :images;
if (sqlca.sqlcode != 0L)

printf(“SQL error %ld occured during insert\n”,sqlca.sqlcode);
$close database
}

Similar to standard BLOB data type, the SBLOB data type requires special
treatment in IDS. The Informix Client SDK product shipped with a complete IDS
distribution provides the library function set, which can be used by the client to
load SBLOB data. Be aware that using SBLOB data types requires the existence
of sblob spaces in the IDS database server. These spaces are dbspaces
intended to maintain SBLOB data types.

As an exercise, we developed a small sample ESQL/C program for loading
SBLOB data. The code for the program, the base table definition, and a sample
onspaces call for creating a Sbspace are shown in Example 7-34 on page 207.
The file name containing the SBLOB is provided at execution time. The database
is opened first, and the sblob descriptor needed for communication with the
database server is initialized in the next step. After that the description of the
sblob column is requested from IDS. A file descriptor is created and the data is

206 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

sent to the database server before the real insert happened. The sblob descriptor
is used as the host variable for the insert to make sure the appropriate sblob data
is assigned to the column.

Example 7-34 Inserting data into SBLOB data types in IDS

#create a sample SBSPACE -- more Options for logging are available
onspaces -c -S sblobspace -g 4 -p <path of the OS file> -o 0 -s 200000

#Create a table with a SBLOB
create table "informix".sblob_tab
 (
 catalog_num serial8 not null ,

advert_descr "informix".clob
) PUT advert_descr in (sblobspace)
 (extent size 20, keep access time)
extent size 16 next size 16 lock mode page;

#the sample esql/c program for a load of an SBLOB
$include sqlca;
#include <stdio.h>

main(int argc, char **argv)
{
EXEC SQL BEGIN DECLARE SECTION;
int8 estbytes;
int error, numbytes, lofd, ic_num, buflen = 256;
char buffer[150000];
ifx_lo_create_spec_t *create_spec;
fixed binary 'clob' ifx_lo_t descr;
EXEC SQL END DECLARE SECTION;

FILE *fp ;

if (argc < 2) exit(2);

fp=fopen(argv[1],"r");
if (fp) {

estbytes=fread(buffer,100000,1,fp);
fclose (fp);

}
else exit(1);

$database sblob_db;

 Chapter 7. Data conversion 207

/* create the sblob descriptor */
if (ifx_lo_def_create_spec(&create_spec) < 0)
printf(" Error ifx_lo_def_create_spec %d \n",error);

/* get the column description from IDS */
if (ifx_lo_col_info

("sblob_db@on10fc4tcp:sblob_tab.advert_descr", create_spec) < 0)
printf(" Error ifx_lo_def_create_spec %d \n",error);

/* create the SBLOB structure and initialize with server data */
if ((lofd=ifx_lo_create

(create_spec,LO_RDWR|LO_NOBUFFER,&descr, &error)) == -1)
printf(" Error ifx_lo_create %d\n",error);

/* send the BLOB to the server */
numbytes=ifx_lo_write(lofd, buffer, estbytes, &error);

if (numbytes<size)
 printf(" Error ifx_lo_write %d\n",error);

/* Do the insert we use a serial , first column value is 0 */
EXEC SQL insert into catalog values (0, :descr);
ifx_lo_close(lofd);

$disconnect all;
}

Performance considerations for loading the data
You can significantly influence the time required for the data load by considering
several areas for performance improvements. Running multiple load processes
in parallel, ideally for tables located on different disks, reduces the wait time.
Think about fragmenting those tables containing the largest amount of data. You
should not see this only under the load performance perspective, but also as a
chance for improvement for the later data access. You can reach fragment
elimination in queries when the application which is filtering data in queries
follows the fragmentation schema. In addition you can much better optimize your
queries with Parallel Data Query (PDQ) means running multiple scans in parallel
when there is table fragmentation.

Additionally you should disable logging, indexes and constraints during the load
phase in case you insert a larger amount of data. Load the data first, create the
indexes and constraints after, and then switch on the logging for the table. This
would reduce the I/O for writing the log entries first. Additionally the time creating
the index once based on all data compared with inserting each index entry in a

208 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

single step and ensuring a balanced index tree is significant faster. Finally the
create of the index at the end ensures in IDS, at least for the index columns, that
actual distribution data is available for the SQL optimizer for achieving optimal
access plans.

7.4.3 Moving data using the Migration Tool Kit
In Chapter 4, “IBM Migration Tool Kit: An introduction” on page 59, we explain
how to use the Migration Tool Kit (MTK) to generate scripts for data unload and
data load. The correlation of scripts and table definitions of the source and target
are defined in the MTK. The MTK also allows you to move (deploy) data through
its GUI, online, without the need for the generated scripts.

7.5 Alternative ways for moving data
In addition to the MTK, there are many other tools and products for data
movement. In this section we show a few of them. There are also a number of
third-party tools that work with both Oracle and IDS, but we do not describe them
in this IBM Redbooks publication. Performing an Internet search can quickly
identify many of them for you. You should choose the tool according to your
environment and the volume of data that will be moved.

7.5.1 IBM InfoSphere Information Server
In addition to the possibility of moving the data manually triggered either with
shell scripts, Oracle stored procedures, or with the MTK as a GUI-based solution,
consider using the IBM InfoSphere Data Stage product as a information
movement and data integration tool.

There are several benefits to be gained by using the DataStage® product. For
example, it is intended to be used as an ETL (Extract, Transform, and Load) tool,
which fulfills the requirements of data movement. You can access both
databases with so called stages, provided by the product. The only requirement
when using DataStage is that the database schema be already successfully
migrated from one database to another. In addition to extracting the data from the
source database server you can also define sources of different types, such as
flat files with database data, and combine then. You can define translation jobs in
the DataStage product itself, which can be used to achieve an automated data
representation translation (for example, for the date and time based data types).
Another advantage is job scheduling. Jobs can be created and scheduled at
specific times. In addition, multiple jobs can be run in parallel and so call job
chains can be specified. This means that the successor can only run if the
current job was successfully completed.

 Chapter 7. Data conversion 209

The job scheduling process enables you to execute the load in off-peak times to
get exclusive access to the data or at least more system resources for the data
scan. Scheduling multiple jobs can be useful to achieve a better utilization of the
source database server and a significant reduction of the unload time itself.

For more information, visit the IBM InfoSphere Information Server product site:

http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp

In addition, there is another IBM Redbooks publication available on this topic,
IBM InfoSphere DataStage Data Flow and Job Design, SG24-7576. You can
download that IBM Redbooks publication from the following Web page:

http://www.redbooks.ibm.com/abstracts/sg247576.html?Open

210 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www.redbooks.ibm.com/abstracts/sg247576.html?Open
http://www.ibm.com/software/data/integration/federation_server/

Chapter 8. Application conversion

With the successful completion of the data movement to the target Informix
Dynamic Server (IDS) database server, you have set up the base for the next
step. Now you must enable access to the data for your applications.

In this chapter we give you an overview of the commonly used programming
interfaces that are supported by IDS. We also discuss the requirements and the
major tasks of an existing migration strategy. This strategy should enable you to
plan the appropriate resources and time to accomplish the development and QA
requirements in your migration plan.

Depending on the application programming interface used, there are different
requirements for a database client application migration. The major focus in this
chapter is a detailed discussion about available database interfaces and the
differences between the access techniques in the source and target database
server. We describe the conversion of applications written with Oracle Pro*C and
Java, based on Oracle OCI, ODBC, Perl, PHP, and .NET.

8

© Copyright IBM Corp. 2009. All rights reserved. 211

8.1 Heterogeneous application environments

Most of the modern software infrastructures contain a mix of different
applications and servers. There are business driven applications especially
developed by the companies own development teams. On the other hand, there
are also a wide variety of products and solutions available that have been
provided by independent software companies. They provide either a complete
solution for unified company processes, such as HR operations, order and sales
processing, and accounting systems. In cases where internal processes are
defined that cannot be unified, most of the software providers also define
customizing facilities for the software.

In the middle of the complete application architecture are the servers. Commonly
Web servers, application servers, and database servers are in use. Our special
focus is directed toward the database server. We are interested in the available
ways to exchange data between an application and the database server or
across the server. This is important under the focus of porting applications
across different database providers.

If you take an inventory of the type of applications you run in your companies
database client environment, you would likely define two types of applications:

� Applications where you own the source and changes can be internally applied

� Applications defined on standard interfaces where you have to rely on the
database server certification by the software provider.

Both types of applications can use the same unified database interfaces, but the
strategy for how to migrate the particular type of application is quite different. We
take a closer look at both in the following sections.

8.2 Client development APIs supported by IDS 11

The majority of IBM Informix development application programming interfaces
(APIs) have been grouped together into the IBM Informix Client Software
Development Kit (CSDK) with an associated runtime deployment component
called IBM Informix Connect.

In addition, there are quite a few other standalone APIs and tools that we
introduce throughout this section. In this section we provide an introduction to
those development APIs, their specifics, and their supported functionality.

We provide more details later in this chapter as we discuss the specific porting
issues for each supported database interface.

212 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

8.2.1 Embedded ESQL/C

ESQL/C allows the easy integration of structured query language (SQL)
statements with C programming language applications. The SQL statement
handling is a combination of an ESQL/C language preprocessor, which takes the
ESQL/C statements and converts them into ESQL/C library function calls, in
combination with an ESQL/C runtime library.

This approach can be helpful when you deal with many SQL-related activities in
a C-based application, and you need to focus on the SQL programming more
than on complex call level interfaces to achieve the same goal. Even though
ESQL/C provides a tight integration with C applications, it still allows you to focus
on the actual SQL problem solution.

Informix ESQL/C supports the ANSI standard for an embedded SQL for C, which
also makes ESQL/C a good technology foundation for any database application
migrations to IDS.

8.2.2 Embedded ESQL/Cobol

IBM Informix ESQL/COBOL is an SQL application programming interface (SQL
API) that lets you embed SQL statements directly into COBOL code. It consists
of a code preprocessor, data type definitions, and COBOL routines that you can
call. It can use both static and dynamic SQL statements. When you use static
SQL statements, the program knows all the components at compile time.

ESQL/COBOL is currently only available on AIX, HP/UX, Linux, and Solaris.

8.2.3 Informix JDBC 3.0 Driver

Java database connectivity (JDBC) is the Java specification of a standard API
that allows Java programs to access database management systems. The JDBC
API consists of a set of interfaces and classes written in the Java programming
language. Using these standard interfaces and classes, programmers can write
applications that connect to databases, send queries written in structured query
language (SQL), and process the results.

The JDBC API defines the Java interfaces and classes that programmers use to
connect to databases and send queries. A JDBC driver implements these
interfaces and classes for a particular DBMS vendor.

 Chapter 8. Application conversion 213

There are four types of JDBC drivers:

� Type 1: JDBC-ODBC bridge plus ODBC driver
� Type 2: Native API, partly Java driver
� Type 3: JDBC-Net, pure Java driver
� Type 4: Native protocol, pure Java driver

For more information about this topic, see the IBM Informix JDBC Driver
Programmer’s Guide, Part No. 000-5354.

The Informix JDBC 3.0 Driver is an optimized, native protocol, pure Java driver
(type 4). A type 4 JDBC driver provides direct connection to the Informix
database server without a middle tier, and is typically used on any platform
providing a standard Java virtual machine (JVM).

The current Informix JDBC 3.0 Driver is based on the JDBC 3.0 standard,
provides enhanced support for distributed transactions, and is optimized to work
with IBM WebSphere® Application Server. It promotes accessibility to IBM
Informix database servers from Java client applications, provides openness
through XML support (JAXP), fosters scalability through its connection pool
management feature, and supports extensibility with a user-defined data type
(UDT) routine manager that simplifies the creation and use of UDTs in IDS 11.
This JDBC 3.0 Driver also includes Embedded SQL/J, which supports embedded
SQL in Java.

8.2.4 IBM Informix .NET Provider

.NET is an environment that allows you to build and run managed applications. A
managed application is an application in which memory allocation and
deallocation are handled by the runtime environment. Another good example for
a managed environment is a JVM.

The .NET key components are as follows:

� Common Language Runtime
� .NET Framework Class Library, such as ADO.NET and ASP.NET

ADO.NET is a set of classes that provides access to data sources and has been
designed to support disconnected data architectures. A DataSet is the major
component in that architecture and is an in-memory cache of the data retrieved
from the data source. ADO.NET differs from ODBC and OLE DB, and each
provider exposes its own classes that inherit from a common interface (for
example, IfxConnection, OleDbConnection, and OdbcConnection).

214 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The Informix .NET Provider
The IBM Informix .NET Provider is a .NET assembly that lets .NET applications
access and manipulate data in IBM Informix databases. It does this by
implementing several interfaces in the Microsoft .NET Framework that are used
to access data from a database.

Using the IBM Informix .NET Provider is more efficient than accessing an IBM
Informix database through either of these two methods:

� Using the Microsoft .NET Framework Data Provider for ODBC along with the
IBM Informix ODBC Driver

� Using the Microsoft .NET Framework Data Provider for OLE DB along with
the IBM Informix OLE DB Provider

The IBM Informix .NET Provider can be used by any application that can be
executed by the Microsoft .NET Framework.

The following list details examples of programming languages that create
applications that meet this criteria:

� Visual BASIC .NET
� Visual C#® .NET
� Visual J#® .NET
� ASP.NET

The IBM Informix .NET Provider runs on all Microsoft Windows platforms that
provide full .NET support. You must have the Microsoft .NET Framework SDK,
Version 1.1, or later, and the IBM Informix Client SDK, Version 2.90, or later,
installed.

8.2.5 IBM Informix ODBC 3.0 Driver

The IBM Informix Open Database Connectivity (ODBC) Driver is based on the
Microsoft ODBC 3.0 standard, which is, in turn, based on Call Level Interface
specifications developed by X/Open and ISO/IEC. The ODBC standard has been
around for a long time and is still widely used in database-oriented applications.
The current IBM Informix ODBC Driver is available for Windows, Linux, and
UNIX platforms, and supports pluggable authentication modules (PAMs) on
UNIX and Linux plus LDAP authentication on Windows.

 Chapter 8. Application conversion 215

IBM Informix ODBC driver-based applications enable you to perform the
following types of operations:

� Connect to and disconnect from data sources.
� Retrieve information about data sources.
� Retrieve information about the IBM Informix ODBC Driver.
� Set and retrieve IBM Informix ODBC Driver options.
� Prepare and send SQL statements.
� Retrieve SQL results and process them dynamically.
� Retrieve information about SQL results and process it dynamically.

8.2.6 IBM Informix OLE DB Provider

Microsoft OLE DB is a specification for a set of data access interfaces designed
to enable a variety of data stores to work together seamlessly. OLE DB
components are data providers, data consumers, and service components. Data
providers own data and make it available to consumers. Each provider’s
implementation is different, but they all expose their data in a tabular form
through virtual tables. Data consumers use the OLE DB interfaces to access the
data.

You can use the IBM Informix OLE DB Provider to enable client applications,
such as ActiveX® Data Object (ADO) applications and Web pages, to access
data on an Informix server.

Due to the popularity of the Microsoft .NET framework, Informix developers on
the Microsoft platform typically prefer the .NET database Provider and integrating
existing OLE DB-based applications through a Microsoft .NET Provider for OLE
DB.

8.2.7 IBM Informix Object Interface for C++

The IBM Informix Object Interface for C++ encapsulates Informix database
server features into a class hierarchy.

Operation classes provide access to Informix databases and methods for issuing
queries and retrieving results. Operation classes encapsulate database objects,
such as connections, cursors, and queries. Operation class methods
encapsulate tasks, such as opening and closing connections, checking and
handling errors, executing queries, defining and scrolling cursors through result
sets, and reading and writing large objects.

Value interfaces are abstract classes that provide specific application interaction
behaviors for objects that represent IBM Informix Dynamic Server database
values (value objects). Extensible value objects let you interact with your data.

216 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Built-in value objects support ANSI SQL and C++ base types and complex types,
such as rows and collections. You can create C++ objects that support complex
and opaque data types.

8.2.8 Additional APIs for accessing IDS 11

The following sections describes additional APIs for accessing IDS 11.

PHP Support
Hypertext Preprocessor (PHP) is a powerful server-side scripting language for
Web servers. PHP is popular for its ability to process database information and
create dynamic Web pages. The term server-side refers to the fact that PHP
language statements, which are included directly in your Hypertext Markup
Language (HTML), are processed by the Web server.

The following list details the PHP drivers for accessing IDS that are available:

� Unified ODBC

– Uses the standard ODBC interface for database communication
– Is commonly combined with a generic ODBC driver

� The Informix PHP driver (ifx interface)

Uses a native database connection to IDS provided by ESQL/C connection
libraries

� Informix PDO

– Object-oriented database development interface
– Available from PHP 5
– Uses a native database connection to the database server

PHP can be obtained in different ways. Either you download the source, compile
the base package and all necessary programming interfaces and plug it into an
pre-existing Web server like Apache. Or, download a precompiled version like
ZEND Core for IBM or install the XAMPP package.

We suggest downloading and installing the ZEND Core for IBM to use PHP with
IDS because there is a full integration of the available driver for the database
server.

Perl database interface
To better understand how the interface works, let us examine the PERL database
interface (DBI). A Perl program uses a standard API to communicate with the DBI
module for Perl, which supports only dynamic SQL. It defines a set of methods,
variables, and conventions that provide a consistent database interface

 Chapter 8. Application conversion 217

independent of the actual database being used. DBI gives the API a consistent
interface to any database that the programmer wishes to use. DBD::Informix is a
Perl module which, when used in conjunction with DBI, allows Perl to access the
IDS database.

Figure 8-1 illustrates the Perl/ Informix environment.

Figure 8-1 Perl/Informix invocation and data flow

Tcl/Tk and the Informix (isqltcl) extension
There is an extension available to access the IDS database server within a
Tcl/TK programming environment. The name of the extension is isqltcl and can
be obtained on the Web by using the following URL for the download:

http://isqltcl.sourceforge.net/

8.3 Migrating applications using unified interfaces

In this section we discuss how to set up a migration plan for database
applications bought from an external source with limited or no access to the
implementation logic. Based on an ODBC application on Windows implemented
with SQL and ODBC standards, we show you how to change the database
connectivity module to enable the client application to access the target database
server.

Finally, we provide some hints on how to apply a new database connection to a
JDBC based application.

8.3.1 Package applications migration planning

For third party package applications, the vendor delivers the application and
ensures the database connectivity to IDS. In comparison with a self-written
source code owned application the migration is limited to the following major
tasks:

� Checking software and hardware availability and compatibility
� Education of developers and administrators
� Analyzing of customized changes in the application and database

Informix
Database

DBD::Informix
Database Driver

Perl
Driver

DBI
Driver

218 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://isqltcl.sourceforge.net/

� Setting up the target environment
� Changing of customized items
� Testing of data migration and customized items
� Roll-out

To keep the support from the vendor, you have to meet the prescribed migration
plan and process.

8.3.2 Migrating applications based on ODBC

There are two common implementation techniques for accessing the database
server seen in current third party database application packages. Either they rely
on the SQL standards and try to implement all the SQL statements following this
standard, or they provide a database specific connection library which will be
needed to attach to the application (such as a cartridge).

In any migration project where you want to move the application from one
database server to another, you have to check which implementation of the
database connectivity is provided. In both cases you have to contact the software
manufacturer for this particular solution to make sure that the target database
server and which version is supported. In case there is a connection library
needed, you would typically get this from the application vendor.

If the application is implemented with a standard SQL Interface, such as SQL-92
or newer standards, and it is not based on Java, it likely uses the ODBC interface
for the connection. The ODBC standard enables the database provider to
implement the database connectivity only once and certify a specific database
for the product. The ODBC standard can be used on both Windows and UNIX.

If you want to move an application based on ODBC, you need to apply a new
ODBC driver. This type of database application can be either based on pure
ODBC connection library, a .NET Windows-based application using the ODBC
.NET Data Provider, or a PHP application using the ext/ODBC or PDO_ODBC
database interface. The installation of a new Informix ODBC driver can be done
by the installation of either the Informix SDK or the Informix Connect product.
You will need the data source name (DSN). After the installation, it follows an
easy to use server connection specification and ODBC driver registration. When
you have enabled the new Informix ODBC DSN, change the connection
database server in the application by the specification of the new DSN. After the
change of the DSN you can start testing the integration of the application in the
new database environment.

 Chapter 8. Application conversion 219

The setup for the new ODBC driver can be done in two steps:

1. Set up the communication parameter for IDS with the setnet32 utility.
2. Create a new ODBC DSN in the ODBC manager on Windows.

The setup window for the setnet32 utility is shown in Figure 8-2.

Figure 8-2 Using setnet32 to specify the remote IDS database server

After the specification of the server parameter you have to add a new DSN to the
ODBC administrator in Windows. The appropriate window for setting up a
Informix data source on Windows is shown in Figure 8-3 on page 221.

220 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 8-3 Setting up a Informix DSN with the ODBC manager on Windows

8.3.3 Migrating database applications based on JDBC

Java and Eclipse-based applications commonly involve a JDBC driver for the
maintenance of the database access. In general, the JDBC driver represents a
jar file that needs to be included in the CLASSPATH of the client application
environment. Then, the specification of a URL for the target database server, and
a user and password for the user issuing the connection, is required.

In summary, you have to perform the following steps to add a new JDBC
connection to your application:

1. Install the Informix JDBC driver on the client application machine.

2. Depending on the application, select one of the following actions:

– Add the driver location to the CLASSPATH. The name of the jar file is
ifxjdbc.jar.

– Select the Informix driver. Some applications include JDBC drivers for the
a set of database providers, so you can simply select Informix from that
set.

– Register the new driver in the application and specify the driver location.

 Chapter 8. Application conversion 221

3. Define a new database source in the application and specify the necessary
connection parameter for the URL, along with the user ID and the password.

4. Test the connection, and start application testing with that connection.

Figure 8-4 shows an example of a configuration window for the specification of
JDBC-based database access to IDS, and was created using Rational Data
Architect. The configuration for your application should be similar.

Figure 8-4 Configure a new database connection based on a JDBC driver

8.4 Conversion considerations for common client APIs

In this section we focus on application migration where you also want to apply
code changes. Most of the time these applications are user-written. They use
either native database interfaces such as those for embedded SQL or to access
the database with common standards such as ODBC, JDBC or the .NET
framework.

We start the database application conversion discussion with a brief introduction
and the definition of a planning strategy. Then we follow with a verification of the

222 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

existing programming techniques for using database interfaces. We complete
the topic with an overview of porting issues typically required by the most
commonly used database application development environments. We also
introduce a sample database application task and show the differences in the
specification of parameters and implementation in the source.

Because each database client API provides a wide variety of functions and
parameters which can be used for connection management, executing
statements, processing the result sets, and error handling, presenting them all is
beyond the scope of this document. We instead provide links to other sources of
information required for your specific porting needs.

8.4.1 Application migration planning for source owned applications

Before you migrate existing user written applications in your database
environment, develop a strategy for the migration. This strategy defines the major
steps you should follow in this process. In addition, it should include the definition
of goals, user resources, and timestamps to track the status and result in a
successful migration.

This migration strategy should include the following tasks:

� Determining software and hardware availability and compatibility
� Education of developers and administrators
� Analysis of application logic and source code
� Setting up the target environment
� Change of database-specific items
� Application testing
� Application tuning
� Roll-out of the migrated applications
� User education

You should also create a project plan, which includes sufficient time and
resources for each task. IBM and IBM Business Partners can help you with this
activity to assure you have a well-defined and complete project plan.

Check software and hardware availability and compatibility
The architecture profile is one of the outputs of the first tasks in the migration
planning assessment. While preparing the architecture profile, determine the
availability and compatibility of all software and hardware in the new
environment.

 Chapter 8. Application conversion 223

Education of developers and administrators
Understanding the new products is essential for analyzing the source system.
Ensure that the staff gets educated and has the skills for all products and the
system environment that you will use for the migration project.

Analyzing application logic and source code
In this analysis phase, you should identify all the Oracle proprietary features and
the affected sources. Examples of Oracle proprietary features are direct SQL
queries to the Oracle Data Dictionary, Oracle-styled Optimizer hints and Oracle
joins, which are not supported by Informix. You also need to analyze the
database calls within the application for the usage of database APIs.

Setting up the target environment
The target system, whether it is the same or a different one, has to be set up for
application development. The environment can include the following parts:

� The Integrated Development Environment (IDE)
� Database framework
� Repository
� Source code generator
� Configuration management tool
� Documentation tool

A complex system environment usually consists of products from a number of
different vendors. Check the availability and compatibility issures before starting
the project.

Change of database-specific items
Regarding the use of the database API, you need to change the database calls in
the applications. The changes are as follows:

� Language syntax changes

The syntax of database calls varies in the different programming languages.
In 8.6, “Migrate user-built applications” on page 229, we discuss the varieties
of C/C++ and Java applications. For information regarding other languages,
contact IBM Technical Sales.

� SQL query changes

Oracle supports partly nonstandard SQL queries, such as including optimizer
hints and table joins, with a (+) syntax. To convert such queries to standard
SQL, you can use the MTK SQL Translator.

You need to modify the SQL queries to the Oracle Data Dictionary as well,
and change them to select the data from the Informix system tables.

224 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� Changes in calling procedures and functions

Sometimes there is a need to change procedures to functions and vice versa.
In such cases, you have to change all the calling commands and the logic
belonging to the calls, in the database and the applications.

� Logic changes

Because of architectural differences between Oracle and Informix, changes in
the program flow might be necessary. Most of the changes will be related to
the difference in concurrency models.

Application test
A complete application test is necessary after the database conversion, along
with any application modifications to ensure that the database conversion is
completed and all the application functions work properly.

It is prudent to run the migration several times in a development system to verify
the process. Run the same migration on a test system with existing test data,
then on a copy or subset of production data. Only when all results are positive
should you consider running the process in a production environment.

Application tuning
Tuning is a continuous activity for the database because data volume, number of
users, and applications change over time. After the migration, application tuning
should also be performed. Having a good understanding of the architectural
differences between Oracle and Informix is required for a good understanding of
how perform application tuning. For more details refer to the IDS Performance
Guide, G251-2296.

Roll-out
The roll-out procedure varies depending on the type of application and database
connection you have. Prepare the workstations with the proper drivers (for
example, Informix SDK or Informix Connect) and server that is consistent with
the IDS version.

User education
In dealing with changes in the user interface, the business logic, and the
application behavior caused by system improvements, user education is
required. Provide sufficient user education, because the acceptance of the target
system is largely determined based on the skills and satisfaction of the users.

 Chapter 8. Application conversion 225

8.5 Introduction to programming techniques

To develop applications that access the IDS database server, you have to embed
the data access method of the high-level language used into the application.
Informix SDK provides various programming interfaces for data access and
manipulation.

There are various methods for performing data interaction from your application,
including:

� Embedded static SQL
� Dynamic SQL
� Native API calls
� Methods provided by Informix drivers for a specific application environment.

In this section we give you a brief introduction to the existing implementation
techniques.

8.5.1 Embedded SQL

The SQL statements can be embedded within a host language where SQL
statements provide the database interface, while the host programming language
provides all remaining functionality. Embedded SQL applications require a
specific precompiler for each language environment to preprocess (or translate)
the embedded SQL calls into the host language. Only then can the applications
be compiled, linked, and bound to the database.

Figure 8-5 on page 227 illustrates the precompile-compile-bind process for
creating an application with embedded SQL.

226 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 8-5 Precompile process

The Informix SDK supports the C/C++, COBOL, and Java (SQLJ) programming
languages for embedded SQL.

Embedded SQL applications can be categorized as follows:

� Static embedded SQL

In embedded SQL, you are required to specify the complete SQL statement
structure. This means that all the database objects (including columns and
table) must be fully known at precompile time, with the exception of objects
referenced in the SQL WHERE clause. However, all the host variable data
types still must be known at precompile time. Host variables should be
declared in a separate EXEC SQL DECLARE section and be compatible with
IDS data types.

Example 8-1 on page 228 shows a fragment of a C program with static
embedded SQL.

Database
Server

Application with
Embedded SQL

Executable
Program

Object
Files

Modified
Source File

Step 1: Precomplile with
the Informix esql utility

Step 2: Host Language Compiler

Step 3: Host Language Linker

Step 4: Database Server Application
Communications during execution

 Chapter 8. Application conversion 227

Example 8-1 Using embedded SQL in a C program

EXEC SQL include sqlca;
#include <stdio.h>

main(int argc, char **argv)
{
EXEC SQL int custno=110;
EXEC SQL database stores_demo;
EXEC SQL update customer set fname="Miller-Smith" where
customer_num=:custno;
printf("%ld\n",sqlca.sqlcode);
}

� Dynamic embedded SQL

If not every database object in the SQL statement is known at precompile
time, you can use dynamic embedded SQL. The dynamic embedded SQL
statement accepts a character string host variable and a statement name as
arguments. These character string host variables serve as placeholders for
the SQL statements to be executed later. Dynamic SQL statements are
prepared and executed during program runtime.

Example 8-2 is a fragment of a C program with a dynamic SQL statement.

Example 8-2 A dynamic SQL C program

EXEC SQL BEGIN DECLARE SECTION;
char query[80];
char parm_var[19};
EXEC SQL END DECLARE SECTION;

strcpy(query, "SELECT tabname FROM systables");
strcat(query, " WHERE tabname <> ? ORDER BY 1");

EXEC SQL PREPARE s1 FROM :query;
EXEC SQL DECLARE c1 CURSOR FOR s1;
strcpy(parm_var, "customer");
EXEC SQL OPEN c1 USING :parm_var;

Host variable PARM_VAR still needs to be declared in the EXEC SQL
DECLARE SECTION.

228 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

8.6 Migrate user-built applications
User-built (in-house developed) applications are unique in every case. There are
a variety of languages used in these applications and each one can have its
unique way of using APIs. In this section we describe the steps for converting
user-built applications from Oracle to IDS, and we provide some examples in
C/C++ and Java, which show you how to convert the database calls.

The examples included in this chapter are excerpts from the actual programs,
and so they cannot be compiled and executed by themselves.

8.6.1 Converting Oracle Pro*C applications to Informix ESQL/C
ESQL/C is the appropriate programming environment for the migration of Oracle
Pro*C applications. It is part of the Informix SDK product and provides a rich set
of programming techniques, such as static and dynamic SQL, the full support of
handling all supported IDS data types, and an interface for user-defined routines
(UDRs) and user-defined types (UDTs).

In the following section, we give you some guidance on where to focus on
existing application code to achieve a successful migration to the target database
server. This discussion includes the following areas:

� Connection and authentication
� Declaration and usage of host variables
� Exception handling
� SQL execution status monitoring

Connecting to the database and user authentication
There is a difference in how C programs connect to the database. In Oracle, each
instance (service name) can manage only one database. IDS instances can be
used to manage multiple databases, and thus the database name needs to be
implicitly provided by a connection statement.

Simple singleton connect
To connect to the Oracle database, specify the Oracle user and the password for
that user, as shown in the following statements:

EXEC SQL CONNECT :user_name IDENTIFIED BY :password;
EXEC SQL CONNECT :connectionstring

Users are treated differently in the IDS. For example, there are no separate user
objects in the server, and the authentication is done by the database server with
the help of the base operating system. Connection requests to a database are by
two different methods. One, they can be done with a trusted connection to the

 Chapter 8. Application conversion 229

remote database server. This means there is an entry for the server where the
client resides on the target .rhosts or hosts.equiv file. In this case there is no
need for the user to specify a password. The second way is to use the connect
SQL statement and specify a user and a password to use a non-trusted
connection.

Example 8-3 shows the different SQL statement which can be used to establish
the connection to the database server in an client application.

Example 8-3 Possible connection SQL statement for IDS

#Using a trusted connection
$database <database_name>
$connect to “database@dbservername”;
#Using a connection with user and password specification
$connect to “database@dbservername” USER :userid USING :password;

Note that password needs to be declared as a host variable. You can use a hard
coded user ID and database name, and you are allowed to specify them with a
host variable. In the example, we used a static database name and a host
variable for the user.

Multiple connections in the same client
Similar to Oracle Pro*C, Informix ESQL/C supports the specification of multiple
concurrent transactions in the same client to the same time. But there are
differences in the specification and in the handling of attaching the statements to
the appropriate session. Example 8-4 shows the Oracle Pro*C syntax for the
definition of a session and the reference of the statement to a specific session.

Example 8-4 Using a named connection for the database access in Oracle

char user[10] = "scott";
char password[10] = "tiger";
char db_name[20] = "database_name";

CONNECT :user IDENTIFIED BY :password
AT CONN_NAME USING :db_name
…
AT CONN_NAME SELECT col1 INTO :var1 FROM table_name
AT CONN_NAME SELECT col1 INTO :var1 FROM table_name1

Informix ESQL/C provides a similar way in the naming of a session, but the
reference of the current statement is handled differently. The client provides a
statement to specify a name for the session, as shown in Example 8-5 on
page 231.

230 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 8-5 Named connections in Informix ESQL/C

$Connect to “database_name” as “CONN_NAME” USER :user USING :password;
$set connection “CONN_NAME”;
$SELECT col1 INTO :var1 FROM table_name;
$set connection “CONN_NAME1”;

Host variable declaration
Host variables are C or C++ language variables that are referenced within SQL
statements. They allow an application to pass input data to and receive output
data from the database server. After the application is precompiled, host
variables are used by the compiler as any other C/C++ variable.

Host variables should not only be compatible with Informix SQL data types
(accepted by the esql precompiler that is shipped with the Informix SDK product),
but also must be acceptable for the programming language compiler.

As the C program manipulates the values from the tables using host variables,
the first step is to convert the Oracle Pro*C host variable definitions to IDS data
types. See Appendix A, “Data types” on page 313 for more details. Note that this
mapping is one-to-many because it depends on the actual usage of data. For
example, Oracle DATE data can be converted to Informix DATE, if it only stores
the actual date. But it needs to be converted to Informix DATETIME YEAR to
SECOND if it stores DATE and TIME.

The next step is to match IDS SQL data types with C data types. The table in
Appendix A, “Data types” on page 313 shows the mapping between data types.

General definition of basic data types
Following the ANSII standard for embedded programming, all host variables in a
C program need to be declared in a special declaration section. This is so that
the Informix ESQL/C precompiler can identify the host variables and the data
types. This is shown in the following statements:

EXEC SQL BEGIN DECLARE SECTION;
char emp_name[31];
bigint ret_code = 0;

EXEC SQL END DECLARE SECTION;
strcpy(emp_name,””);

 Chapter 8. Application conversion 231

You are also allowed to use declarations that do not follow the ANSI standard,
such as in the following example:

int some_c_variable=0;
$int some_esqlc_variable=0;
char some_c_char[100];
$char some_esqlc_char[100];

Define a VARCHAR data type
Within this declaration section, there are rules for host variable data types that
are different from Oracle precompiler rules. The Oracle precompiler permits host
variables to be declared as VARCHAR. VARCHAR[n] is a pseudo-type
recognized by the Pro*C precompiler. It is used to represent blank-padded,
variable-length strings. The Pro*C precompiler converts it into a structure with a
2-byte length field followed by an n-byte character array. Informix ESQL/C
requires usage of standard C constructs. If you declare a VARCHAR host
variable in your ESQL/C program, it will be similar to the following example:

$include sqlca;
main()
{
$varchar buffer[100];
}

The Informix esql precompiler would substitute this construct with the following
code:

main()
{
/*
 * $varchar buffer[100];
 */
#line 6 "hostvars.ec"
 char buffer[100];
}

Define host variables based on user-defined C structures
There are no differences in the definition of host variables based on user-defined
C structures. You only have to make sure that the structure is included in the
declare section for the host variables.

232 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The definition of a host variable on Pro*C will look like the following example:

typedef struct user_s
 {short int userNum;
 char userName[25];
 char userAddress[40];
 } theUser_t;
EXEC SQL BEGIN DECLARE;
 theUser_t *myUser;
EXEC SQL END DECLARE SECTION;

The implementation in Informix ESQL/C looks similar. The only change is to have
the typedef also included to the declare section to make sure that the
preprocessor is able to identify the types of the members of the structure used in
the subsequent SQL statements, as shown in Example 8-6.

Example 8-6 Define a host variable based on a structure in ESQL/C

$include sqlca;
main()
{
EXEC SQL BEGIN DECLARE SECTION;
int cust_no=110;

struct customer {
 integer customer_num;
 char lname[20];
 char fname[20];
};
typedef struct customer customer_t;
customer_t cust_var;
EXEC SQL END DECLARE SECTION;

$database stores_demo;
$select customer_num, lname,fname
 into :cust_var.customer_num, :cust_var.lname,

:cust_var.fname
 from customer where customer_num=:cust_no;
printf(" Output customer_num: %d , name %s fname %s \n",
 cust_var.customer_num, cust_var.lname, cust_var.fname);
}

 Chapter 8. Application conversion 233

Using pointers in host variables
To advance the example we can also use a pointer as a host variable in the
embedded SQL statement. The definition of the host variable as a pointer, and
the usage is shown in Example 8-7.

Example 8-7 Using a pointer to a structure as a ESQL/C host variable

$include sqlca;

#include <stdio.h>
#include <malloc.h>

main()
{
$int cust_no=110;
$struct customer {
 integer customer_num;
 char lname[20];
 char fname[20];
};
$typedef struct customer customer_t;
$customer_t *cust_var;

cust_var=(customer_t *)malloc(sizeof(customer_t));

$database stores_demo;
$select customer_num, lname,fname
 into :cust_var->customer_num, :cust_var->lname,
:cust_var->fname
 from customer where customer_num=:cust_no;

printf(" Output customer_num: %d , name %s fname %s \n",
 cust_var->customer_num, cust_var->lname, cust_var->fname);
}

Oracle host variable arrays
In Pro*C programs, you can declare host variables using arrays, and then
declare a cursor from which to get the results. You can then issue a fetch
statement that will get all rows from the cursor into that host array.

234 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The following code is a fragment of PRO*C that demonstrates this method:

EXEC SQL BEGIN DECLARE SECTION;
long int dept_numb[10];
char dept_name[10][14];
char v_location[12];
EXEC SQL END DECLARE SECTION;
/* …… */

EXEC SQL DECLARE CUR1 CURSOR FOR
 SELECT DEPTNUMB, DEPTNAME
 FROM org_table
 WHERE LOCATION = :v_location;
/*……. */

EXEC SQL FETCH CUR1 INTO :dept_num, :dept_name;

The last statement will get all 10 rows from the cursor into arrays.

When the target database in IDS is created with ANSI, Informix ESQL/C does
not support a bulk fetch into a host variable, which is defined as an array. You
need to fetch each row separately using the cursor. But from a performance
perspective this is not that big disadvantage. The server sends, by default, more
than one row from the result set to the client, based on specified communication
buffer size parameters. The rows are already available on the client and not
requested from the server one by one. The above Pro*C code needs to be
converted as shown in the following code:

EXEC SQL BEGIN DECLARE SECTION;
char v_location[12];
int dept_numb[10];
char dept_name[10][14];
EXEC SQL END DECLARE SECTION;
/* define just C variables */
short int i = 0;

/* …… */

EXEC SQL DECLARE CUR1 CURSOR FOR
 SELECT DEPTNUMB, DEPTNAME
 FROM org_table
 WHERE LOCATION = :v_location;

/*we need Fetch row by row into the host variable array */

for (i=0;i<11;i++){
 EXEC SQL FETCH CUR1 INTO :h_dept_num[i], :h_dept_name[i];
 if (sqlca.sqlcode == 100) break;
}

 Chapter 8. Application conversion 235

If your database is not created with ANSI mode, a fetch array can be
implemented within an ESQL/C program. But the implementation is different than
fetching using a host variables array. You have to use the sqlda structure that can
be used for specifying relationships between local variable types and memory
layout, and the target table column. Additionally, you have to specify a FetBufSize
global variable. The row size of the result set describes how many rows can be
returned with one fetch.

A good example for the implementation of a fetch array in an Informix ESQL/C
program can be obtained from the following Web page:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

This site defines the Information Center home for IDS. Go to the Development
tab on the left, select the ESQL/C manual, choose the Dynamic SQL Chapter,
and go to Determining SQL Statements.

Using stored procedures in an embedded C program
In Oracle, to invoke a remote database procedure, the following statements are
used:

EXEC SQL EXECUTE
 BEGIN
 Package_name.SP_name(:arg_in1,:arg_in2,:arg_out1);
 END;
END-EXEC;

The value transfer between the calling environment and the stored procedure
may be achieved through arguments. You can choose one of three modes for
each argument: IN, OUT, or INOUT. For example, the above stored procedure
may be declared as shown in the following example:

CREATE PACKAGE package_name IS
 PROCEDURE SP_name(
 arg_in1 IN NUMBER ,
 arg_in2 IN CHAR(30)

status_out OUT NUMBER);

When this stored procedure (SP) is invoked, values passed from the calling
program will be accepted by the stored procedure correspondingly.

For the implementation of the same kind of stored procedures in IDS you have to
return the out parameter instead of a specification in the parameter list at
execution time.

236 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

The definition of the SP look like the following code:

create procedure SP_name(arg_in1 integer, arg_in2 char(30)) returning
integer;
return 1;
end procedure;

Depending on how many rows the stored procedure returns, you can either
execute the stored procedure directly and fetch the result into a host variable, or
you can define a cursor and fetch the result set using the cursor. The following
code is an example:

/* singleton row */
EXEC SQL execute procedure SP_name (:arg_in1, :arg_in2) into :arg_out1;

/* singleton row with cursor */
EXEC SQL declare c1 cursor for execute procedure SP_name (:arg_in1,
:arg_in2);
EXEC SQL open c1;
EXEC SQL fetch c1 into :arg_out1;
EXEC SQL close c1;

Default stored procedures defined in the IDS database server do not allow the
OUT parameter in the parameter list. They can only be used in user-defined
functions (UDF) written in C or Java provided by an external library. For an
example of how to create a UDF, refer to Appendix C, “Function mapping” on
page 327.

Exception handling in embedded environments
The mechanisms for trapping errors are quite similar in Oracle and IDS, with both
using the same concept of separating error routines from the mainline logic.
There are different WHENEVER statements that could be used to define
program behavior when there is an error in Informix, as shown in the following
code:

EXEC SQL WHENEVER SQLERROR GOTO error_routine;
EXEC SQL WHENEVER SQLERROR STOP;
EXEC SQL WHENEVER ERROR STOP;
EXEC SQL WHENEVER SQLWARNING CONTINUE;
EXEC SQL WHENEVER NOT FOUND CALL not_found_routine;

Although the WHENEVER statement is prefixed by EXEC SQL, it is not an
executable statement. Instead, a WHENEVER statement causes the precompiler
to generate code in a program to check the SQLCODE attribute from the SQLCA
after each SQL statement, and to perform the action specified in the
WHENEVER statement. SQLERROR means that an SQL statement returns a

 Chapter 8. Application conversion 237

negative SQLCODE indicating an error condition. SQLWARNING indicates a
positive SQLCODE (except +100), while NOT FOUND specifies SQLCODE =
+100, indicating that no data rows were found to satisfy a request.

A compilation unit can contain as many WHENEVER statements as necessary,
and they can be placed anywhere in the program. The scope of one
WHENEVER statement reaches from the placement of the statement in the file
onward in the character stream of the file until the next suitable WHENEVER
statement is found, or end-of-file is reached. No functions or programming blocks
are considered in that analysis. For example, you may have two different
SELECT statements. One must return at least one row, and the other may not
return any. You will need two different WHENEVER statements, as shown in the
following example:

EXEC SQL WHENEVER NOT FOUND GOTO no_row_error;
 EXEC SQL SELECT address
 INTO :address
 FROM test_table
 WHERE phone = :pnone_num;
 ……..
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 EXEC SQL SELECT commis_rate
 INTO :rate :rateind
 WHERE prod_id = :prodId;
 if (rateind == -1) rate = 0.15;
 ……

The Oracle precompiler also supports a DO clause as an action in the
WHENEVER statement. There is currently no such clause in the ESQL/C
precompiler, and it needs to be converted to CALL clause.

Another alternative in comparison using the WHENEVER statement, is to check
SQLCODE explicitly after each EXEC SQL statement, because that allows more
context-sensitive error handling.

Error messages and warnings
The SQL Communication Area (SQLCA) data structure in Informix ESQL/C is
similar to the same structure of Oracle. The SQLCA provides information for
diagnostic checking and event handling.

To get the full text of longer (or nested) error messages, you need the sqlglm()
function, as shown in the following example:

sqlglm(message_buffer, &buffer_size, &message_length);

238 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

In the example above, message_buffer is the character buffer in which you want
Oracle to store the error message; buffer_size specifies the size of
message_buffer in bytes; Oracle stores the actual length of the error message in
*message_length. The maximum length of an Oracle error message is 512 bytes.

IDS contains the SQL error code in the sqlcode member of the global SQLCA
structure. If a further description of this error is required, you can use the function
rgetmsg(). This function will return the message based on the provided error
code. The usage of the function in a small C program looks like the following
code:

$database stores_demo;
$select customer_num, lname,fname
 into :cust_var.customer_num, :cust_var.lname,

:cust_var.fname
 from customer1 where customer_num=:cust_no;

printf(" Output customer_num: %d , name %s fname %s \n",
 cust_var.customer_num, cust_var.lname, cust_var.fname);

printf("%ld \n",sqlca.sqlcode);

rgetmsg((short)SQLCODE, errmsg, sizeof(errmsg));
printf(errmsg, sqlca.sqlerrm);

Building ESQL/C based applications
The Informix SDK is the development environment in which you have to
precompile, compile, and link your final application. This product supplies you
with the build utilities, the libraries needed for the successful execution of the
application, and a number of code samples for different programming tasks.

Building the application based on ESQL/C requires a number of internally
referenced libraries in a certain order during the link process. That is why it is not
advisable to use your own link scripts. Use the esql utility shipped with the
Informix SQL to do this task.

You can build your executable with shared libraries. This means that at execution
time the application needs to know where the libraries reside. Depending on the
operating system used, there are environment variables (such as LIB_PATH)
where the linker looks for the libraries. Shared linked applications are smaller
than static applications. But they require the installation of Informix SDK or
Informix Connect on the target system. In addition, you can build your application
as static. In this case all used functionality is statically linked to the executable.

For more information about building embedded C applications, see the IBM
Informix ESQL/C Programmer's Manual, G229-6426.

 Chapter 8. Application conversion 239

8.6.2 Converting Oracle Java applications to IDS
For Java programmers the Informix SDK offers two APIs: JDBC and SQLJ.

JDBC is a mandatory component of the Java programming language, as defined
in the Java 2, Standard Edition (J2SE™) specification. To enable JDBC
applications for IDS, an implementation of the various Java classes and
interfaces, as defined in the standard, is required. This implementation is known
as a JDBC driver. IDS provides a fully capable JDBC Type 4 driver for client
applications in UNIX and Windows environments.

SQLJ is a standard development model for data access from Java applications.
The SQLJ API is defined in the SQL 1999 specification. The Informix JDBC
supports both JDBC and SQLJ APIs in a single implementation. JDBC and SQLJ
can interoperate in the same application. SQLJ provides the unique ability to
develop using static SQL statements and control access.

The Java code conversion is rather easy. The API itself is well-defined and
database-independent. For instance, the database connection logic is
encapsulated in standard J2EE™ DataSource objects. The Oracle or
IDS-specific things (such as user name and database name) are then configured
declaratively within the application.

However, there is the need to change your Java source code regarding the
following factors:

� The API driver (JDBC or SQLJ).

� The database connect string.

� Oracle proprietary SQL, such as CONNECT BY for recursive SQL or SQL
syntax such as the (+) operator instead of LEFT/RIGHT OUTER JOIN. The
MTK provides support here with the SQL Translator.

� Remove or simulate proprietary optimizer hints in SQL queries.

For complete information regarding the Java environment, drivers, programming,
and other relevant information, consult IBM Informix JDBC Driver Programmer's
Guide, G229-6380.

240 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Java access methods to IDS
Informix has rich support for the Java programming environment. You can access
IDS data by putting the Java class into a module in one of the following ways:

� IDS database server

– Stored procedures (JDBC or SQLJ)
– SQL functions or user-defined functions (JDBC or SQLJ)

� Browser

– Applets based on JDBC (JDBC)

� J2EE Application Servers (such as WebSphere Application Server)

– Java ServerPages (JSPs) (JDBC)
– Servlets (SQLJ or JDBC)
– Enterprise JavaBeans™ (EJBs) (SQLJ or JDBC)

JDBC drivers for Informix
The IBM Informix Driver for JDBC and SQLJ supports the following situations:

� All of the methods that are described in the JDBC 3.0 specifications.

� SQLJ statements that perform equivalent functions to most JDBC methods.

� Connections that are enabled for connection pooling. WebSphere Application
Server or another application server does the connection pooling.

� Java user-defined functions and stored procedures

� Global transactions that run under WebSphere Application Server Version 5.0
and above.

� Support for distributed transaction management. This support implements the
Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS)
and Java Transaction API (JTA) specifications, which conform to the X/Open
standard for distributed transactions.

JDBC driver declaration
To connect from a Java application to an Oracle database using the OCI driver,
perform the following steps:

1. Import the Oracle driver.
2. Register the driver manager.
3. Connect with a user ID, the password, and the database name.

 Chapter 8. Application conversion 241

Example 8-8 shows an Oracle JDBC connection through OCI.

Example 8-8 Oracle JDBC connection

import java.sql.*;
import java.io.*;
import oracle.jdbc.driver.*;

class rsetClient
{
 public static void main (String args []) throws SQLException
 {
 // Load the driver
 DriverManager.registerDriver(new
oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 Connection conn =
 DriverManager.getConnection
("jdbc:oracle:oci8:@oracle","uid","pwd");

 // ...
 }
}

It is not necessary to import a JDBC library when connecting to Informix. The
registration and connection to Informix is demonstrated in Example 8-9.

Example 8-9 Informix JDBC connection

import java.sql.*;

class rsetClient
{
 public static void main (String args []) throws SQLException {

 // Load Informix JDBC application driver
 try
 {

Class.forName(""com.informix.jdbc.IfxDriver"");
}

 catch (Exception e)
 {
 e.printStackTrace();
 }
 // Connect to the database

242 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

// Connection parameter defintion details see below
 Connection conn = DriverManager.getConnection(url);
 // ...
 }
}

JDBC Type 4 connectivity URL specification
For IBM Informix Driver for JDBC and SQLJ connectivity, the getConnection
method must specify a user ID and a password, through parameters or through
property values, as illustrated in Example 8-10.

Example 8-10 getConnection syntax for Type 4 connectivity

getConnection(String “url; user; password;”);

For the URL definition using the Informix JDBC driver, specific parameters are
required. The URL has to be headed with the literal jdbc:informix-sqli://. After this
literal, specify the machine name of the database server and the port number for
the IDS listener thread. Finally, the database server needs to be specified.

Example 8-11 shows you how to set a complete URL string followed by the user
name and password specification in the user and password parameters.

Example 8-11 Setting the user ID and password in the user and password parameters

// Set URL for data source
String
connection="jdbc:informix-sqli://machine:1533:informixserver=dbserverna
me;user=informix;password=passwd;
Connection con = DriverManager.getConnection(url);

Stored procedure calls
The handling of input and output parameters in stored procedure calls differs
between Oracle and Informix. The following examples explain the different types
of procedure calls, and the usage of parameters and result sets.

Stored procedure with an input parameter
Assume a stored procedure has been created in Oracle as in the following code:

CREATE OR REPLACE PROCEDURE sp_testcall_1(parm1 IN INTEGER
 ,parm2 IN INTEGER)

And in IDS as the following code:

CREATE PROCEDURE sp_testcall_1(parm1 INTEGER , parm2 INTEGER)

 Chapter 8. Application conversion 243

The procedures have two input parameters and no output parameters. There is
no difference in the call between Oracle and Informix. In both cases the
parameter values need to be set before the stored procedure can be executed.
Example 8-12 demonstrates this point.

Example 8-12 Java call of Oracle or Informix procedure with input parameter

String SP_CALL = "{call sp_testcall_1(?,?)}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url);

CallableStatement stmt;
try {
 stmt = conn.prepareCall(SP_CALL);
 stmt.setInt(1,10);
 stmt.setInt(2,15);
 stmt.execute();
 // ...
}

Stored procedure with a result set
The next example shows a procedure without an input parameter, but defines a
result set as an output parameter. The result set is an opened cursor defined in
the procedure. The rows are fetched in the Java application with a loop.

The Oracle stored procedure is defined as in the following code:

TYPE CursorType IS REF CURSOR;
CREATE PROCEDURE sp_testcall_3(oCursor OUT CursorType) AS
BEGIN
 open oCursor for select last_name from employees;
END;

The output parameter type is registered as CURSOR before the procedure is
called. Handling the result for the cursor specified as an output parameter in
JDBC is shown in Example 8-13.

Example 8-13 Java call to Oracle procedure: Result set specified in output parm

String SP_CALL = "{call sp_testcall_3}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

244 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.registerOutParameter (1, OracleTypes.CURSOR);
 stmt.executeUpdate();
 ResultSet rs = (ResultSet) stmt.getObject(1);
 while(rs.next())
 {
 // ...
 }
}

The implementation of the appropriate SP in IDS looks different. The values of
the current row are returned. The return is defined with the RESUME key word
indicating that the cursor in the procedure remains open and the next call of the
procedure will fetch the next row within the cursor. The corresponding Informix
procedure code looks like that shown in Example 8-14.

Example 8-14 SP definition in IDS

create procedure sp_testcall_3 () returning char(30);
define lname char(30);

FOREACH cursor1 FOR
 Select last_name into lname from employees;
 RETURN lname WITH RESUME;
 END FOREACH
END procedure ;

With Informix JDBC, you do not need to register the result set with the method
registerOutParameter() in the Java application. To get the result set, call the
method getResultSet() instead of getObject(), as in Example 8-15.

Example 8-15 Java call of Informix procedure with result set

String SP_CALL = "{call sp_spcall_v3}";

// Connect to the database
Connection conn = DriverManager.getConnection (url);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 ResultSet rs = null;
 stmt.executeQuery();
 rs = stmt.getResultSet();

 Chapter 8. Application conversion 245

 while(rs.next())
 {
 // ...
 }
}

Stored procedure with an input parameter and result set
Example 8-16 is a combination of Example 8-12 on page 244 and Example 8-14
on page 245. Note the numbering of the parameters. The first input parameter,
value2, is numbered with 2, the result set rs is numbered with 1.

Example 8-16 Java call to Oracle procedure with input parameter and result set

private static final String SP_CALL = "{call sp_testcall4 (?) }";

CallableStatement stmt1 = conn.prepareCall(SP_CALL);

Stmt1.registerOutParameter(1, OracleTypes.CURSOR);
Stmt1.execute();
ResultSet rs = (ResultSet) stmt1.getObject(1);

while(rs.next()) {
 int value1 = rs.getInt(1);
 stmt2.setInt(2, value2);
 stmt2.execute();
 ResultSet rs = (ResultSet) stmt1.getObject(1);
 // ...
}

In Informix JDBC, input parameters and result sets are defined as shown in
Example 8-17. Input parameters are numbered, beginning with 1, and are
independent from the retrieval of result sets.

Example 8-17 Java call to Informix procedure with input parameter and result set

String SP_CALL = "{call sp_spcall_v4(?)}";

Connect to the database
 Connection conn = DriverManager.getConnection (url);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.setInt(1, emp_id);
 ResultSet rs = null;
 stmt.executeQuery();

246 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 rs = stmt.getResultSet();
 while(rs.next())
 {
 System.out.println (rs.getString (1));
 // ...
 }
}

Stored procedure converted from a function
Calling an Oracle function is similar to calling a stored procedure with an input
parameter and a result set. The function is defined as shown in the following
code:

CREATE TYPE CursorType IS REF CURSOR;
CREATE FUNCTION sp_testcall_4(v_num IN INTEGER)
 RETURN CursorType

Example 8-18 show a sample .NET implementation retrieving the result set
returned by the Oracle function.

Example 8-18 Java call to Oracle function with input parameter and result set

String SP_CALL = "{? = call sp_testcall_4(?)}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.registerOutParameter (1, OracleTypes.CURSOR);
 stmt.setInt(2, 6);
 stmt.execute();
 ResultSet rs = (ResultSet) stmt.getObject(1);
 while(rs.next())
 {
 // ...
 }
}

The IDS function would look similar to the appropriate procedure definition. As in
the case of the definition of a procedure, the cursor is defined in the function. The
current row values are returned and the cursor remains open.

 Chapter 8. Application conversion 247

The next call of the function in the same result set will retrieve the next row as
shown in the following example:

create function sp_testcall_3 (cust_no integer) returning char(30);
define lname char(30);
FOREACH cursor1 FOR
 Select last_name into lname from customer where

customer_num=cust_no;
 RETURN lname WITH RESUME;
 END FOREACH
END function ;

The appropriate Java code is the same as the program we discussed for the
procedure returning a result, as shown in Example 8-18 on page 247.

8.6.3 Converting Oracle Call Interface (OCI) applications
You may want to consider rewriting applications that use the Oracle Call Interface
(OCI) by using CLI or ODBC. The OCI is specific to the Oracle database and
cannot be used with any other databases.

In most cases, you can replace OCI functions with the appropriate CLI or ODBC
functions, followed by relevant changes to the supporting program code. The
remaining non-OCI program code should require minimal modification. The
examples in this section show a comparison of the OCI and CLI or ODBC
statements required for establishing a connection to an Oracle and Informix
database.

Introduction to CLI
Informix Call Level Interface (Informix CLI) is the IBM callable SQL interface to
the Informix database servers. It is shipped as a separate product. The current
version of this product is 2.8. It is a C and C++ API for relational database access
that uses function calls to pass dynamic SQL statements as function arguments.
It is an alternative to embedded dynamic SQL, but does not require a
precompiler.

Informix CLI is based on the Microsoft Open Database Connectivity (ODBC)
specification, and the International Standard for SQL/CLI. These specifications
were chosen as the basis for the Informix Call Level Interface in an effort to follow
industry standards, and to provide a shorter learning curve for application
programmers already familiar with either of these database interfaces. In
addition, some Informix-specific extensions have been added to help the
application programmer specifically exploit IDS features.

248 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Possible client architectures using Informix CLI
There are two different architectures for the Informix CLI client. In one, the client
uses the interface provided by a driver manager. In this case the application is
loading at execution time a library called the driver manager. This manager then
loads the appropriate library (CLI library for the target DSN (Informix database
server)). On UNIX you can use the Informix CLI provided driver manager or any
external provided manager providing the same functionality. On Windows you
can use the Microsoft ODBC Manager for the invocation of the Informix CLI
driver.

You can also directly invoke the Informix CLI driver to your application. In this
architecture there is no need to invoke the ODBC driver manager.

Setting up the Informix CLI
There are differences in the setup of the Informix CLI on Windows and UNIX. In
Windows you will commonly use the ODBC Administrator provided by Microsoft
to create a data source for an IDS database using the Informix CLI driver.

On UNIX you have to specify the data source in a File named .odbc.ini. The
content of the file has to look like the following code:

[stores_demo]
Driver=Informix
Database=stores_demo
GetDBListFromInformix=1
HostName=srv
LogonID=informix
Password=123456
Protocol=onsoctcp
ServerName=on1150FC1soc
Service=1500
DriverODBCVer=03.51

Additionally, a file odbcinst.ini is needed to specify the driver location. The file
content could look like the following code:

[Informix]
Description=Informix
Driver=/sqldists/350/lib/cli/libifcli.so
APILevel=1
DriverODBCVer=03.51
FileUsage=1
SQLLevel=1
smProcessPerConnect=Y

 Chapter 8. Application conversion 249

Necessary changes to the OCI database interface
All Oracle Call Interface (OCI) calls in your application need to be changed to CLI
calls. The program flow is retained, but you need to modify the definition and
processing of database handles. There may not be an exact match in the
conversion process. Your program code might require additional revisions to
obtain similar functionality.

Global Area Pointers
Another difference between Informix CLI and Oracle OCI, is the use of pointers
to three global areas by IDS, versus the Oracle use of pointers to three different,
but similar, global areas. The Oracle OCI calls that use HDA (Handle Data Area),
LDA (Logon Data Area) and CDA (Cursor Data Area) pointers must be translated
over to Informix CLI calls that use HENV (Environment Area), HDBC (Database
Connection Area) and HSTMT (Statement Area) pointers, respectively, in
conjunction with an ODBC interface.

Fetch cycle
Another difference between Informix CLI and Oracle OCI calls is that the overall
fetch cycle is different for each and must be modified accordingly. In Oracle, the
fetch cycle for selecting multiple rows using a cursor area involves parsing,
binding, defining, fetching, and executing into a cursor data area. These must be
translated to a cycle that involves preparing, binding, executing, binding, and
fetching through the For Each cycle.

Parameter bindings
In Oracle, multiple output bindings of parameters are declared as type OUTPUT
in the ODEFIN() calls. In Informix, convert the calls to Informix SQLBindCol()
calls and bind the output parameters as columns. Differences also exist between
Informix CLI and Oracle OCI in the use of input/output bindings. In Oracle, these
bindings are declared as type INPUT/OUTPUT in the ODEFIN() calls. In
Informix, a round robin approach is used with three variables in the following
manner: A=B, B=C, C=A. The variable (A) is declared before the SQL bindings
as an input variable. The function is called using a second input variable (B) that
is set to the first input variable (A). The function returns a third variable (C) that is
bound as an output column. Finally, the first variable (A) is now set to the
returned third variable (C) that made the first variable (A) appear as an
input/output variable to the rest of the program.

250 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Differences in the function set
The following examples show you the different SQL statements to connect to a
database. In Oracle you need to define variables for the environment handles as
well as the database name, user name, and password:

ociRC = OCILogon(env_hp, // environment handle
 err_hp, // error handle
 &svc_hp, // service context
 user_name, // username
 strlen (user_name), // length of username
 password, // password
 strlen (password), // length of password
 db_name // database name
 strlen (db_name)); // length of database name

In Informix CLI you also need to specify the connection handle, database name,
user name, and password. So, the OCI statement will be converted as in the
following example:

cliRC = SQLConnect(*pHdbc, // connection handle
 db_name, // database name
 strlen (db_name), // length of database name
 user_name, // username
 strlen (user_name), // length of username
 password, // password
 strlen (password)); // length of password

The following classes of OCI functions have no equivalents in Informix CLI. The
functionality must be implemented either in SQL or in C (or C++) directly:

� Navigational functions

OCIObject__()
OCICache__()

� Datatype mapping and manipulation functions

OCIColl__()
OCIDate__()
OCINumber__()
OCIString__

and so on.

However, CLI performs conversion of data between data types wherever
possible.

� External procedure functions

OCIExtProc__()

 Chapter 8. Application conversion 251

Error handling and diagnostics
Diagnostics refers to dealing with warning or error conditions generated within an
application. Two levels of diagnostics are returned when calling Informix CLI
functions:

� Return codes
� Detailed diagnostics consisting of SQLSTATEs

Each CLI function returns the function return code for a basic diagnosis. The
function SQLError() provides more detailed diagnostic information.

Table 8-1 lists the mapping of all possible return codes of Oracle OCI functions
and Informix CLI functions.

Table 8-1 Return code mapping from OCI to CLI functions

OCI return code CLI return code Explanation

OCI_SUCCESS SQL_SUCCESS The function completed
successfully, no additional
SQLSTATE information is
available.

OCI_SUCCESS_WITH_INFO SQL_SUCCESS_WITH_INFO The function completed
successfully with a warning or
other information. Call
SQLError() to receive the
SQLSTATE and any other
informational messages or
warnings. The SQLSTATE will
have a class of 01.

OCI_NO_DATA SQL_NO_DATA_FOUND The function returned
successfully, but no relevant
data was found. When this is
returned after the execution of
an SQL statement, additional
information may be available and
can be obtained by calling
SQLError() .

OCI_ERROR SQL_ERROR The function failed. Call
SQLError() to receive the
SQLSTATE and any other error
information.

252 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The OCI function OCIErrorGet() returns the diagnostic record according to the
SQLSTATE. Within a Informix CLI application, the functions SQLError() return
three items of information:

� SQLSTATE

� Native error

If the diagnostic is detected by the data source, this is the SQLCODE.
Otherwise, this is set to -99999.

� Message text

This is the message text associated with the SQLSTATE.

Sample CLI database client application and further Information
You can find more information about CLI applications and development in the
following resources:

� Informix CLI Programmer's Manual, G251-0297

� Web page:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US
&FNC=SRX&PBL=G251-0297-00

Sample applications using static and dynamic SQL in Informix CLI can be
obtained from the Programmers manual as well. Refer to the section
“Constructing an INFORMIX-CLI Application.”

OCI_INVALID_HANDLE SQL_INVALID_HANDLE The function failed due to an
invalid input handle
(environment, connection or
statement handle). This is a
programming error. No further
information is available.

OCI_NEED_DATA SQL_NEED_DATA The application tried to execute
an SQL statement but Informix
CLI lacks parameter data that
the application had indicated
would be passed at execute
time.

OCI_STILL_EXECUTING SQL_STILL_EXECUTING The function is running
asynchronously and has not yet
completed.

OCI_CONTINUE no equivalent

OCI return code CLI return code Explanation

 Chapter 8. Application conversion 253

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=G251-0297-00
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=G251-0297-00
http://www.ibm.com/software/data/db2/udb/ad

8.6.4 Converting ODBC applications
The Open Database Connectivity (ODBC) is similar to the CLI standard.
Applications based on ODBC can connect to the most popular databases. Thus,
the application conversion is relatively easy. You have to perform the conversion
of database-specific items in your application, such as the following items:

� Proprietary SQL query changes
� Possible changes in calling stored procedures and functions
� Possible logical changes
� Test, roll-out, and education tasks

Your current development environment will be the same. For a more detailed
description of the necessary steps, refer to 8.4.1, “Application migration planning
for source owned applications” on page 223.

8.6.5 Converting Perl applications

In this section, we discuss the use of Perl for connecting to Oracle and IDS
databases. We demonstrate the conversion from Oracle to IDS using some
simple Perl programs.

Where to get DBD::Informix programming interface
You can download all Perl related source code and binaries, if they are not
already shipped in a package with your UNIX distribution, from the following Web
page:

http://www.cspan.org

You can obtain a download of the current DBD::Informix interface from the
following Web page:

http://search.cpan.org/~johnl/DBD-Informix-2005.02/Informix.pm

Additionally, this site provides a detailed overview of the programming techniques
based on examples needed for developing applications with the Informix Perl
interface and the DBD.

Define a DBD::Oracle program in Perl
We created a stored procedure and a Perl program to demonstrate the following
syntactical differences between Oracle and IDS:

� Connecting to a database using Perl
� Calling a stored procedure with an input and an output parameter
� Returning an output parameter

254 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www.cspan.org
http://search.cpan.org/~johnl/DBD-Informix-2005.02/Informix.pm

Example 8-19 is an Oracle stored procedure called Greeting. It contains an input
parameter name, and an output parameter message.

Example 8-19 Oracle stored procedure: Greeting

CREATE OR REPLACE PROCEDURE Greeting (name IN
 VARCHAR2, message OUT VARCHAR2)
 AS
 name2 varchar2(30);
BEGIN
 name2 := UPPER(name);
 message := 'Hello ' || name2 ||', the date is: ' ||

SYSDATE;
END;

Example 8-20 shows the Perl program oraCallGreeting.pl, which connects to the
Oracle database, binds the input and output parameters, executes the call to the
Greeting stored procedure, and returns the output parameter.

Example 8-20 Oracle Perl program oraCallGreeting.pl

#!/usr/bin/perl
use DBI;

$database='dbi:Oracle:xp10g';
$user='sample';
$password='sample';

$dbh = DBI->connect($database,$user,$password);
print " Connected to database.\n";

$name = 'Oracle';
$message;

$sth = $dbh->prepare(q{
 BEGIN
 Greeting(:name, :message);

END;
 });

$sth->bind_param(":name", $name);
$sth->bind_param_inout(":message", \$message, 100);
$sth->execute;
print "$message", "\n";

 # check for problems ...
 warn $DBI::errstr if $DBI::err;

$dbh->disconnect;

 Chapter 8. Application conversion 255

Converting the Perl application to Informix
In this section, we demonstrate how to connect to IDS using Perl.

Example 8-21 is a Informix stored procedure that has the same function and
same name as the Oracle stored procedure shown in Example 8-19 on
page 255. The procedure Greeting also contains an input parameter name and
returns the result as an VARCHAR generated by the stored procedure in the
local message variable.

Example 8-21 Informix stored procedure: Greeting

dbaccess << EOF
database stores_demo;
drop PROCEDURE Greeting ;
CREATE PROCEDURE Greeting (name VARCHAR(30)) returning varchar(200)

define timeofday DATE;
 define message varchar(200);

 select today into timeofday from systables where tabid=1;
 let message = 'Hello ' || ltrim(UPPER(name)) || ', the date is: ' ||
 timeofday || '.';
 return message;
END procedure;

execute procedure Greeting ("User");
EOF

Minor changes are necessary to convert the preceding Oracle Perl application
(Example 8-20 on page 255) to use Informix DBD::Informix. The steps (besides
entering the correct values for user and password) are as follows:

� Observing the syntax difference in the parameters for the connect method,
and making the necessary changes.

� Observing the syntax differences for calling stored procedures, and making
the necessary changes.

DBD::Informix Connect method syntax
The syntax for a database connection to IDS is shown in Example 8-22.

Example 8-22 Generic syntax for a Informix connection string in a Perl application

$dbhandle = DBI->connect("dbi:Informix:$database");
$dbhandle = DBI->connect("dbi:Informix:$database", $userID, $password);

256 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The parameters of this connection are as follows:

� dbhandle

This represents the database handle returned by the connect statement.

� database

Specify the name of the database to be connected to

Oracle requires the sid for the database in the place where Informix would
require database; the Oracle syntax can be summarized as dbi:Oracle:sid.
In our example this is coded as dbi:Oracle:xp10g.

� userID

This represents the user ID used to connect to the database.

� password

This represents the password for the user ID that is used to connect to the
database.

The IDS database server name is specified in the INFORMIXSERVER
environment variable taken from the user environment where the Perl application
is started. This is similar to how specifications are made in the INFORMIXDIR
environment variable, for connection definition files such as sqlhosts. In case no
default Informix environment variables are set, the environment from the build is
taken. Set the environment variable LD_LIBRARY_PATH or equivalent shared
library location parameter for the load utility to locate the communication libraries
needed to set up the communication between the Perl client and the database
server.

Syntax for calling a stored procedure in Perl
In Oracle, a stored procedure is called from an anonymous block, that is,
BEGIN...END; within a PREPARE statement. The input and output parameters
of the Oracle stored procedure are defined as host variables, for example,
::name, :message. Example 8-23 demonstrates these points.

Example 8-23 Calling a stored procedure in an Oracle Perl program

$sth = $dbh->prepare(q{
BEGIN

Greeting(:name, :message);
END;

});

 Chapter 8. Application conversion 257

In contrast, an Informix stored procedure is executed by issuing a execute
procedure statement from within a PREPARE statement. Also, the stored
procedure input parameter is designated as parameter markers (?). This is
shown in Example 8-24.

Example 8-24 Calling a stored procedure in a Informix Perl program

$sth = $dbh->prepare(“ execute procedure Greeting(?);”);
$sth->bind_param(1,$name);
$sth->execute;

The prepare and execute methods are used to handle SQL statements that
return result sets. The parameter binding is used because of handling the call of
the SP dynamic. In case you apply statements that are static and do not return
result sets, you can also use the do method executing the statement.
Example 8-25 show the usage of the do method in Informix DBD for Perl.

Example 8-25 Perl routines for executing static SQL

$stmt = "execute procedure withoutresultset(’inputonly’);";
$dbh->do($stmt);
$stmt =”create table newtable (column1 integer);
$dbh->do($stmt);

Using DBD::Informix for a simple database client application
There is a significant difference in comparison to coding of the Oracle stored
procedure. The output parameter used in Oracle has to be returned by the
Informix stored procedure. It cannot be specified in the parameter list. As a result
of this, the Oracle-based Perl program in Example 8-26 is changed in that the
stored procedure takes now only one input parameter. The execution of the
procedure, because it returns a value, has to be treated as a cursor statement.
This means the result returned by the SP has to be fetched. After that, the result
can be proceed further.

The complete Perl program, converted to DBD::Informix, is shown in
Example 8-26.

Example 8-26 DBD::Informix Perl program ExecuteGreeting.pl

#!/usr/bin/perl
use DBI;

$database='dbi:Informix:stores_demo';
$user='informix';
$password='informix';

258 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

$dbh = DBI->connect($database, $user, $password) or die "Can’t connect
to $database: $DBI::errstr";

print " Connected to database.\n";

$name = 'Informix';
$message;

$sth = $dbh->prepare(“execute procedure Greeting(?);”);
$sth->bind_param(1,$name);

$sth->execute;
$ref=sth->fetch();
for $row (@$ref) {

print “$$row[0]\n”;
}

 # check for problems...
warn $DBI::errstr if $DBI::err;

$sth->finish;

$dbh->disconnect;

8.6.6 Converting PHP applications

PHP is a commonly used scripting based language in Web server environments.
It contains in most environments a core system represented as a library which is
attached to the Web server processes. In case PHP is invoked in the HTML of
the current site of the browser, the library is invoked for parsing the script and
executing the statements. To access database server you have either to use the
existing languages interfaces provided by the core PHP system or download
additional libraries for your preferred programming environment and attach them
to the core system. The language interfaces are available in a procedural or
object-oriented style.

In this section, we give you an idea of which areas you need to consider for the
migration of an existing application. If you are interested in a much more detailed
discussion of PHP application development, in view of the discussion about the
different database interfaces available for developing application clients with IDS,
refer to the IBM Redbooks publication, Developing PHP Applications for IBM
Data Servers, SG24-7218.

 Chapter 8. Application conversion 259

PHP setup considerations
Before using PHP in your client applications you have to ensure that PHP is
available on the client application side and that you have identified the target
PHP database interface according to your needs or according the currently used
Oracle interface.

Download and setup directions
For the installation of PHP there are two options. You can install a PHP package
provided with the distribution of your operating system. All LINUX system have a
core PHP system included in the distribution. Or you can download the source of
the current version from the following Web page:

http://www.php.net/downloads.php

After that you have to build the package and install the package. You need to plug
in the package to the existing Web server and attach the appropriate file type
mapping to the PHP system. Depending on the Web server used, the
configuration file which has to be changed is different. For Apache it is httpd.conf.
If you need additional interfaces (such as Informix PDO) that are not in the
currently installed distribution, you can obtain the source from the following Web
page:

http://pecl.php.net

The location for Informix PDO database programming interface for instance is the
following Web page:

http://pecl.php.net/package/PDO_INFORMIX

You also have to change the php.ini file to introduce new interfaces into the PHP
core. This file can be considered as a type of registry.

260 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www.php.net/downloads.php
http://pecl.php.net/package/PDO_INFORMIX
http://pecl.php.net

Existing PHP database interfaces for Informix and Oracle
Oracle supports access to Oracle databases in a PHP application through two
extensions:

� OCI8

The functions in this extension allow access to Oracle 10, Oracle 9, Oracle 8,
and Oracle 7 databases using the OCI. They support binding of PHP
variables to Oracle placeholders, have full LOB, FILE, and ROWID support,
and allow you to use user-supplied define variables. This is the preferred
extension for PHP connections to an Oracle database.

� PDO_OCI

This driver implements the PHP Data Objects (PDO) interface to enable
access from PHP to Oracle databases through the OCI library.

There are several PHP database interfaces supporting the access to IDS:

� Informix (ifx)

This extension is based on a native connection. The interface requires at
build time the installation of Informix SDK and binds the communication
libraries needed for the message flow between the server and the client. The
interface is available up from PHP 3. It supports all major functionality
provided by the server, and is procedurally oriented.

� unixODBC

This extension uses an external ODBC manager. Additionally, an ODBC
connection library for the access to the database is required. This library is
provided by Informix SQK or Connect. The interface supports a procedural
interface and provides the functionality similar to ODBC interface.

� Informix PDO

This is a new object-oriented interface that requires at least the core PHP 5
version. It combines the benefits of using the object orientation with the
function set of the IDS database server. It uses native connections, so it
provides fast communications performance.

� ODBC PDO

This is a combination of using a ODBC manager and providing an
ODBC-based programming interface with an object-oriented programming
style.

Migrating existing PHP programs also includes a target interface decision. Most
of the time your existing PHP scripts are grown over time and are based on
procedural interfaces. Current programming style tends to use object orientation,
which also requires, in addition to changing the database interface, a change of

 Chapter 8. Application conversion 261

the complete script logic. Include an inventory of which interface and style is
used and which could be the target style for your new needs at the beginning of
the migration.

Sample PHP application environment migration
To demonstrate some of the differences between PHP programming in Oracle
and Informix, we show a sample program that demonstrates the following
information:

� Connecting to a database through PHP
� Calling a stored procedure with an input parameter
� Returning an output parameter

Similar to the Perl interface, we use the same Oracle-based stored procedure, as
shown in Example 8-27.

Example 8-27 Oracle stored procedure Greeting

CREATE OR REPLACE PROCEDURE Greeting (name IN
 VARCHAR2, message OUT VARCHAR2)
 AS
 name2 varchar2(30);
BEGIN
 name2 := UPPER(name);
 message := 'Hello ' || name2 ||', the date is: ' ||

SYSDATE;
END;

Connecting to Oracle using PHP (OCI8)
Example 8-28 is the Oracle PHP program oraGreeting.php. This program
connects to the Oracle database using the OCI8 extension, binds the input and
output parameters, executes the call to the Greeting stored procedure, and
returns the output parameter.

Example 8-28 Oracle PHP program oraGreeting.php

<?php
$conn = oci_connect('sample','sample') or die;

$sql = 'BEGIN Greeting(:name, :message); END;';

$stmt = oci_parse($conn,$sql);

// Bind the input parameter
oci_bind_by_name($stmt,':name',$name,32);

262 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

// Bind the output parameter
oci_bind_by_name($stmt,':message',$message,100);

// Assign a value to the input
$name = 'Oracle';
oci_execute($stmt);

// $message is now populated with the output value
print "$message\n";
?>

Connecting PHP applications to Informix
The PHP database interfaces supporting connections to IDS may differ in their
requirements for specification of connection parameters. That is why we want to
provide several examples to give you an idea of which type of connection you
prefer in your production environment. Keep in mind that there is, for specific
interfaces, a differentiation between trusted and untrusted connections as we
have already seen previously in the discussion about the embedded interface.
Example 8-29 shows the details.

Example 8-29 Connection strings using different PHP interfaces

#Informix procedural PHP interface
/* standard untrusted */
$link = ifx_connect("sysmaster@srv","informix","123456");
/* persistant untrusted*/
$link = ifx_pconnect("sysmaster@srv","informix","123456");
/* standard trusted */
$link = ifx_connect("sysmaster@srv");
/* persistant trusted */
$link=ifx_pconnect("sysmaster@srv");

/* Informix PDO */
/* standard connect */
$dbh = new PDO("informix:; database=sysmaster; server=srv;",
"informix", "123456");
/* standard connect trusted user */
$dbh = new PDO("informix:; database=sysmaster; server=srv;");
/* persistant connect untrusted user */
$dbh = new PDO("informix:; database=sysmaster; server=srv;"
,"informix","123456",array(PDO::ATTR_PERSISTENT=> true));
/* persistant connect trusted user */
230 Developing PHP Applications for IBM Data Servers
$dbh = new PDO("informix:; database=sysmaster; server=srv;"
,NULL,NULL,array(PDO::ATTR_PERSISTENT=> true));

 Chapter 8. Application conversion 263

/* unixODBC */
/*trusted*/
$cn = odbc_connect
("Driver=Informix;Server=srv;Database=sysmaster",NULL,NULL);
/* not trusted */
$cn = odbc_connect
("Driver=Informix;Server=srv;Database=sysmaster",”informix”,”123456”);
/* persistant not trusted*/
$cn = odbc_pconnect
("Driver=Informix;Server=srv;Database=sysmaster",”informix”,”123456”);
/* persistant trusted*/
$cn = odbc_pconnect
("Driver=Informix;Server=srv;Database=sysmaster",NULL,NULL);

As you can see, PHP distinguishes between persistent and non-persistent
connections. This means that the connection may open after the PHP is finished.
This is possible because the client of the database server is not the PHP script
itself. It is the Web server process that attaches the PHP library. You are able to
specify user and password for untrusted connections, but you also would be able
to set up trusted connections, which is not really advisable in a production
environment in terms of security.

oci_connect and ifx_connect
oci_connect takes the required and optional parameters shown in the following
example (in []):

(string $username, string $password [, string $db [, string $charset [,
int $session_mode]]])

Database ($db) is an optional parameter. If the database is not specified, PHP
uses the environment ORACLE_SID and TWO_TASK to determine the name of
the local Oracle instance and the location of tnsnames.ora

If we use a mapping into a procedural informix PHP interface, oci_connect has to
be converted to the Informix function ifx_connect, which takes the following
required and optional parameters (in []):

(string database, [string username], [string password], [array
options])

264 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Handling statements in PHP applications
After a successful connection you have to look at the handling of the statements
in your existing application and how to move the implementation to the target
PHP interface. We want to have closer look at how to execute the statements and
how to bind variables for the execution.

Using parameters for preparing statements
At the time of the statement definition there are two types of statements. Either
you have a complete statement or want to prepare the statement for the
execution with a later binding of additional values which change in every loop.
Looking at the Oracle example, you can see that the query was first parsed with
parameters that do not have the appropriate values. Later, the parameters are
bound to the statement. We take a closer look at how to prepare a statement for
later execution. We used Informix PDO for preparing the call of the SP with one
place holder for later binding in Example 8-30.

Example 8-30 Preparing statement for execution

/* Informix PDO example code piece */
$sph= $dbh->prepare(" EXECUTE PROCEDURE greetings (?);");
$name = “Informix”;
$sph->bindParam(1, $name,PDO::PARAM_STR, 20);
$stmt->execute();
$name = “Oracle”;
$stmt->execute();

There is another way of implementing the logic of executing this procedure. You
can generate the complete string for the procedure call into a string. After that,
you can apply the string for an immediate execution. The sample code is shown
in Example 8-31.

Example 8-31 Build up the statement in a string and execute it without parameter

$statement="EXECUTE PROCEDURE greetings (" . $name . “);";
$dbh->exec($statement);

Parameter binding
Using the ’?’ place holder during statement preparation requires a parameter
bind before the statement can be executed. You can use the bindParam method
of the statement handle. You need to specify the position, the name of the
variable and the type. Depending the type, an additional length specification is
required. Some possible parameter bindings are shown in Example 8-32 on
page 266. Be aware that the binding has to be done before the execution of the
query is issued.

 Chapter 8. Application conversion 265

Example 8-32 Specification of parameter to an already prepared statement

$sph->bindParam(1, $_POST["parm1"],PDO::PARAM_STR, 20);
$sph->bindParam(2, $_POST["parm2"],PDO::PARAM_STR, 20);
$sph->bindParam(3, $_POST["parm3"],PDO::PARAM_INT);
$sph->bindParam(4, $_POST["parm4"],PDO::PARAM_INT);
$sph->bindParam(5, $DEBUG,PDO::PARAM_INT);

Retrieving the result set
After we execute the stored procedure we have to verify the result. Differing from
the OUT parameter in Oracle, in the output is returned in the result set Informix
PDO and has to proceed further. In our simple example we only print out the
message returned by the stored procedure. For the final code that handles the
result, refer to Example 8-33.

Example 8-33 Retrieving the result returned by the stored procedure in IDS

$sph= $dbh->prepare(" EXECUTE PROCEDURE greetings (?);");
$name = “Informix”;
$sph->bindParam(1, $name,PDO::PARAM_STR, 20);

$sph->execute();
$error=$dbh->errorInfo();
if ($error["1"]) print_r ($error);
$row=$sph->fetch(PDO::FETCH_NUM);
if ($row)
print_r ($row) ;

$sph->execute();
$error=$dbh->errorInfo();
if ($error["1"]) print_r ($error);
/* fetch as an assoc array */
$row=$sph->fetch(PDO::FETCH_ASSOC);
print_r ($row) ;

Cursors and array specification for the result set
In the previous example, only the Informix PDO code showed the handling of a
cursor in PHP. Now we introduce an example based on a simple select query
returning some values in Oracle OCI8. The code for the example, the definition
of the query, and the return of the result set is shown in Example 8-34 on
page 267. The fetch can be executed by using the function oci_fetch_array. The
second parameter specifies the kind of output. In our case we used an assoc
array for getting the row. Additionally, the script could use the oci_fetch_assoc or
oci_fetch_object function returning results.

266 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 8-34 Handling a result set in Oracle OCI8

<?php
$conn = oci_connect("sample", "sample");

$sql = "SELECT DEPTNUMB, DEPTNAME FROM org_table";

$stmt = oci_parse ($conn, $sql);
oci_execute ($stmt);

while ($row = oci_fetch_array ($stmt, OCI_ASSOC)) {
printf(" %s %s %s \n",$row["DEPTNUMB"],$row["DEPTNAME"]);
}
/* assoc array */
oci_execute ($stmt);
while ($row = oci_fetch_assoc($stmt)) {
printf(" %s %s \n",$row["DEPTNUMB"],$row["DEPTNAME"]);
}

?>

The implementation of a similar query in Informix PDO is shown in
Example 8-35. You can generate the result set in different representations using
assoc arrays, enumerated arrays, objects, and so on. The style of the result set is
specified with the input parameter used in the fetch method for the statement
object.

Example 8-35 Handling the cursor and the different ways of the result

<?php
$dbh = new PDO("informix:host=lech; service=1000; database=vps;
server=srv; protocol=onsoctcp ", "informix", "123456");
if (!dbh) { exit(); }
$stmt=$dbh->query('SELECT DEPTNUMB,DEPTNAME FROM org_table');

/* assoc Array */
$row=$stmt->fetch(PDO::FETCH_ASSOC);
if ($row)
printf(" %s %s \n",$row["DEPTNUMB"],$row["DEPTNAME"]);

/* a numerated Array */
$row=$stmt->fetch(PDO::FETCH_NUM);
If ($row)
printf(" %s %s \n",$row[0],$row[1]);

/* into an object */

 Chapter 8. Application conversion 267

$row=$stmt->fetch(PDO::FETCH_OBJ);
if ($row)
printf(" %s %s \n",$row->DEPTNUMB,$row->DEPTNAME);

/* hybrid array structure enum and assoc */
$row=$stmt->fetch(PDO::FETCH_BOTH);
if ($row)
printf(" %s %s \n",$row["DEPTNUMB"],$row[1]);

/* hybrid array structure/object enum/assoc/object */
$row=$stmt->fetch(PDO::FETCH_LAZY);
if ($row)
printf(" %s %s \n",$row["DEPTNUMB"],$row->DEPTNAME);

$deptnumb=0;
$deptname="";
$stmt->bindColumn(1, $deptnumb, PDO::PARAM_INT);
$stmt->bindColumn(2, $t_model, PDO::PARAM_STR,50);
/*bound output variable */
$row=$stmt->fetch(PDO::FETCH_BOUND);
printf(" %s %s \n",$deptnumb,$deptname);
exit;
?>

You can handle all cursor based statements in the same way. This is also valid
for procedures returning values, as we have seen previously. SQL statements
that do not return a result set, such as insert, delete, and update statements and
all DDL statements only need to have exception handling and a error code
checking applied.

Error handling
PHP (OCI8) provides the function oci_error for determining the status of the last
executed database statement. Depending on the context where oci_error is used
there are different parameter required. Either the connection handle, the
statement handle or, in case the connection could not be established, no
parameter. The function returns the current error status, which can proceed
further, as shown in Example 8-36 on page 269.

268 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 8-36 Error handling in OCI8

$conn = oci_connect("sample", "sample");
if (!$conn) {
 $error = oci_error();
printf(" %d %s \n",$error["code"],$error["message"]);

}

$stmt = oci_parse($conn, "select * from nonexistingtable");
if (!$stmt) {
 $error = oci_error($conn);
printf(" %d %s \n",$error["code"],$error["message"]);

}

Using PDO you are able to catch exceptions that occurred in a specific defined
code area. In addition to the exception, you are also able to get the SQL error
that occurred in the processing of the current object. Look at Example 8-37 for
the difference between using an exception and checking an error status.

Example 8-37 Exceptions and status determination in Informix PDO

/* Catch an exeption with Informix PDO */
try
{
$dbh->beginTransaction();
$dbh->beginTransaction();
}
catch (PDOException $e)
{
printf("Error: %s \n",$e->getMessage());
}

Error: There is already an active transaction.

/* Determine an error with Informix PDO */
$stmt=$dbh->query('SELECT * FROM nonexistingtable');
$error=$dbh->errorInfo();
print_r($error);

Array
(
[0] => 42S02
[1] => -206
[2] => [Informix][Informix ODBC Driver][Informix]The specified table
(nonexistingtable) is not in the database. (SQLPrepare[-206])

 Chapter 8. Application conversion 269

8.6.7 Converting .NET applications

The supported operating systems for developing and deploying .NET Framework
1.1 applications are as follows:

� Windows 2000
� Windows XP (32-bit edition)
� Windows Server® 2003 (32-bit edition)

The supported operating systems for developing and deploying .NET Framework
2.0 applications are as follows:

� Windows 2000, Service Pack 3
� Windows XP, Service Pack 2 (32-bit and 64-bit editions)
� Windows Vista® (32-bit and 64-bit editions)
� Windows Server 2003 (32-bit and 64-bit editions)
� Windows Server 2008

Supported development software for .NET Framework
applications

In addition to a Informix client, you need one of the following options to develop
.NET Framework applications:

� Visual Studio 2003 (for .NET Framework 1.1 applications)

� Visual Studio 2005 (for .NET Framework 2.0 applications)

� .NET Framework 1.1 Software Development Kit and .NET Framework Version
1.1 Redistributable Package (for .NET Framework 1.1 applications)

� .NET Framework 2.0 Software Development Kit and .NET Framework Version
2.0 Redistributable Package (for .NET Framework 2.0 applications)

In addition to a Informix client, the following two options are needed to deploy
.NET Framework applications:

� .NET Framework Version 1.1 Redistributable Package (for .NET Framework
1.1 applications)

� .NET Framework Version 2.0 Redistributable Package (for .NET Framework
2.0 applications)

270 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

.NET Data Providers
Informix SDK with the current version 3.50 includes three .NET Data Providers:

� Informix .NET Data Provider

A high performance, managed ADO.NET Data Provider. This is the
recommended .NET Data Provider for use with IDS databases. ADO.NET
database access using the Informix .NET Data Provider has fewer
restrictions, and provides significantly better performance than the OLE DB
and ODBC .NET bridge providers.

� OLE DB .NET Data Provider

A bridge provider that feeds ADO.NET requests to the Informix OLE DB
provider (by way of the COM interop module).

� ODBC .NET Data Provider

A bridge provider that feeds ADO.NET requests to the IBM ODBC driver.

For a better illustration of the available Informix .NET data provider see
Figure 8-6.

Figure 8-6 Informix .NET in the general .NET framework

Informix .NET name space
The IBM.Data.Informix name space contains the Informix .NET Data Provider. To
use the Informix.NET Data Provider, you must add the Imports or using
statements for the IBM.Data.Informix name space to your application .DLL, as
shown in Example 8-38 on page 272.

 Chapter 8. Application conversion 271

Example 8-38 Examples of the required Imports or using statement

[Visual Basic]
Imports IBM.Data.Informix

[C#]
using IBM.Data.Informix;

Also, references to IBM.Data.Informix.dll must be added to the project.

If you want to use IDS data types in your .NET application you can use the
IBM.Data.IfxTypes namespace. For a complete mapping between the Informix
data types and .NET data types refer to the IBM publication IBM Data Server
Provider for .NET Programmer's Guide, SC23-7688.

VB .NET conversion example
In general, converting a .NET application from Oracle to Informix is simple. In
most cases it will entail replacing the classes that are available in the Oracle
.NET Data Provider with functionally equivalent classes that are available in the
Informix .NET Data Provider (for example, OracleConnection with IfxConnection
or OracleCommand with IfxCommand, and so on).

In this section, we demonstrate this point using a simple VB .NET application that
connects to a database, executes a SELECT, and returns a result set. This
example is demonstrated in Oracle and then converted to Informix. In the
Informix example, the changes that are necessary for converting from Oracle to
Informix are outlined.

Components of the GUI for the conversion example
The GUI, used for both examples, consists of several CONTROLS:

� RUN QUERY button

When this button is clicked, the code in the Click event will perform the
following actions:

– Connect to the database
– Execute the query

� Query Results Text box (for aesthetic purposes only)

� List Box

Once the query has been executed, the results are displayed in this list box.

� Quit button

Clicking this button ends the application.

272 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 8-7 shows the GUI used to demonstrate the VB .NET application
conversion example.

Figure 8-7 GUI for the VB .NET application conversion example

The essential components of this application are contained within the Click Event
for the RUN QUERY control button. Example 8-39 shows the code in the
Button1_Click event as it might appear in an Oracle application.

Example 8-39 The Button1_Click event

Imports Oracle.DataAccess.Client ' ODP.NET Oracle managed provider [1]

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

Dim oradb As String = "Data Source=(DESCRIPTION=(ADDRESS_LIST=" _ +
"(ADDRESS=(PROTOCOL=TCP)(HOST=9.10.11.12)(PORT=1521)))" _ +
"(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=ora10g)));" _ + "User
Id=sample;Password=sample;" [2]

Dim conn As New OracleConnection(oradb) [3]
conn.Open()

Dim cmd As New OracleCommand [4]
cmd.Connection = conn

 Chapter 8. Application conversion 273

cmd.CommandText = "select first_name, last_name from employees
where dept_code = 'IT'"

cmd.CommandType = CommandType.Text

Dim dr As OracleDataReader = cmd.ExecuteReader() [5]

 While dr.Read()
 ListBox1.Items.Add("The name of this employee is: " +
dr.Item("first_name") + dr.Item("last_name")) [6]
 End While

 conn.Dispose()

 End Sub

Notes pertaining to Example 8-39 on page 273
� [1] IMPORT Oracle.DataAccess.Client is added to the application .DLL.

� [2] A String, OraDb, is declared as the connection string for the Oracle
database.

� [3] A connection (conn) is defined as an OracleConnection

� [4] A command (cmd) is defined as an OracleCommand and populated with
the text of the query.

� [5] A DataReader (dr) is defined as an OracleDataReader and the query is
executed.

� [6] The List Box is populated with the results of the query.

When the application executes, clicking RUN QUERY yields the results that are
shown in Figure 8-8 on page 275.

274 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 8-8 The results of the Oracle Example are displayed in the List Box

Informix example (conversion)
Because the essential components of this application are contained within the
Click Event for the RUN QUERY control button, the focus of the conversion
centers on this control. Example 8-40 on page 276 shows the code in the
Button1_Click event as it will appear after conversion to Informix. Some
explanations of the changes are documented in the Notes that appear after the
code example.

 Chapter 8. Application conversion 275

Example 8-40 The code in the Button1_Click event after conversion

Imports IBM.Data.Informix [1]
__

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
Dim ifxdb As String = [2]
"Host=localhost:Service=1526;Server=on1150soc;Database=stores.demo;User
Id=informix;Password=infomix"

Dim conn As New IfxConnection(ifxdb) [3]

conn.Open()

Dim cmd As New IfxCommand [4]
cmd.Connection = conn

cmd.CommandText = "select first_name, last_name from customer where
customer_num = '110'"

cmd.CommandType = CommandType.Text

Dim dr As IfxDataReader = cmd.ExecuteReader() [5]
 While dr.Read()

ListBox1.Items.Add("The name of this employee is: " +
dr.Item("first_name") + dr.Item("last_name"))

 End While [6]

conn.Dispose()
 End Sub

Notes pertaining to Example 8-40
� [1] To use the Informix .NET Data Provider, you must add the Imports (VB) or

using (C#) statement for the IBM.Data.Informix namespace to your
application .DLL.

� [2] A String, ifxdb, is declared and populated as the connection string for the
Informix database (converted from OraDb).

� [3] A connection (conn) is defined as IfxConnection (converted from
OracleConnection).

276 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� [4] A command (cmd) is defined as IfxCommand. (converted from
OracleCommand).

� [5] A DataReader (dr) is declared as a IfxDataReader (converted from
OracleDataReader).

� [6] The List Box is populated with the results of the query.

For complete information about the Informix .NET provider, consult the
information at the following Web page:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Go to the development tab and check the IBM publication IBM Data Server
Provider for .NET Programmer's Guide, SC23-7688.

Additionally, information with examples for specific database SQL statement
programming techniques is available on IBM Developer works at the following
Web pages:

http://www.ibm.com/developerworks/data/library/techarticle/
dm-0503padmanabhan/

http://www.ibm.com/developerworks/data/library/techarticle/
dm-0510durity/index.html

 Chapter 8. Application conversion 277

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/developerworks/data/library/techarticle/dm-0510durity/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0510durity/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0503padmanabhan/
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

278 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Chapter 9. Administration of Informix
Dynamic Server

In this chapter we present topics on the concepts, procedures, and reference
information for database and database server administrators to use when
managing IBM Informix Dynamic Server.

In this chapter, the following topics are discussed:

� Configuration and Initialization of Informix Dynamic Server
� Data Recovery and High Availability
� Admin Utilities
� Automatic Monitoring and Corrective Actions
� IDS Database Server Security

9

© Copyright IBM Corp. 2009. All rights reserved. 279

9.1 Administering the Informix database server

In this section we provide detailed information about administering the Informix
database server.

9.1.1 Configuring the database server

After installing the IBM Informix Dynamic Server (IDS), it needs to be configured
before it is initialized. Configuration refers to setting specific parameters that
customize the database server for your data processing environment. Those
include parameters for such items as volume of data, number of tables, types of
data, hardware, number of users, and security needs.

Configuring a database management system requires many decisions (such as
where to store the data, how to access the data, and how to protect the data).
How you install and configure IDS can significantly impact the performance of
database operations.

You can customize the database server so that it functions optimally in your
particular data processing environment. For example, using a database server to
serve 1000 users that execute frequent, short transactions is different from using
a database server to serve a few users executing long and complicated queries.

The configuration parameters are stored in the ONCONFIG file. The product
installation script sets the defaults for most of the configuration parameters. The
onconfig.std template file in the etc subdirectory of INFORMIXDIR contains initial
values for many of the configuration parameters. Make a copy of this template
and tailor it for your specific configuration.

The template files contain initial values for many of the configuration parameters.
You can use a text editor or Informix Server Administrator (ISA) to change the
configuration parameters in the ONCONFIG file.

For information about the configuration parameters and how to monitor them,
see IBM Informix Dynamic Server Administrator's Reference, G229-6360.

9.1.2 Set environment variables

To start, stop, or access a database server, each user must hold the required
database access privileges, and must set the appropriate environment variables.
Some environment variables are required, and others are optional.

280 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

To set the required environment variables, perform the following steps:

1. Set INFORMIXDIR to the directory where you installed the IBM Informix
products.

2. Set the PATH environment variable to include $INFORMIXDIR/bin (UNIX) or
%INFORMIXDIR%\bin (Windows).

3. Set INFORMIXSERVER to the name of the database server.

You can include the environment variable $INFORMIXDIR in the ONCONFIG
file, and it should be the first path name value in path name specifications.

Table 9-1 shows the environment variables that you must set before you access
the database server or perform most administrative tasks.

Table 9-1 Required Environment Variables

Tip: Set the environment variables in the appropriate startup file for your shell
file or Windows.

Environment Variable Description

INFORMIXSERVER Specifies the name of the default database server. It has the
value specified for the DBSERVERNAME or
DBSERVERALIASES configuration parameter.

INFORMIXDIR Specifies the directory where you installed your IBM Informix
database server.

ONCONFIG Specifies the name of the active ONCONFIG file. All users
who use database server utilities, such as onstat, must set
the ONCONFIG environment variable as follows:
� On UNIX: $INFORMIXDIR/etc/onconfig
� On Windows: %INFORMIXDIR%\etc\onconfig

JVPHOME If using J/Foundation, this specifies the directory where you
installed the IBM Informix JDBC Driver.

CLASSPATH If using J/Foundation, this specifies the location of
jvphome/krakatoa.jar file so that Java Development Kit
(JDK™) can compile the Java source files.

PATH Specifies the location of executable files.
� On UNIX: $INFORMIXDIR/bin
� On Windows: %INFORMIXDIR%\bin

 Chapter 9. Administration of Informix Dynamic Server 281

9.1.3 Configure connectivity

In this section we discuss how to configure connectivity.

The sqlhosts information
The sqlhosts information, in the sqlhosts file on UNIX or the SQLHOSTS registry
key on Windows, contains connectivity information for each database server. The
sqlhosts information also contains definitions for groups. The database server
looks up the connectivity information when the database server is started, when
a client application connects to a database server, or when a database server
connects to another database server.

The connectivity information for each database server includes four fields of
required information and one optional field. The group information contains
information in only three of its fields.

The sqlhosts file on UNIX
On UNIX, the sqlhosts file contains connectivity information. The default location
of this file is $INFORMIXDIR/etc/sqlhosts. If you store the information in another
location, you must set the INFORMIXSQLHOSTS environment variable.

The five fields of connectivity information form one line in the UNIX sqlhosts file.
On Windows, the database server name is assigned to a key in the SQLHOSTS
registry key, and the other fields are values of that key.

The sqlhosts registry on Windows
On Windows, the HKEY_LOCAL_MACHINE registry contains the sqlhosts
information. The database server installation procedure prepares the registry
information. You should not edit the HKEY_LOCAL_MACHINE registry.

Table 9-2 summarizes the fields used for the sqlhosts information.

Table 9-2 Fields of SQLHOSTS file

UNIX Field
Name

Windows Field
Name

Description of
Connectivity
Information

Description of
Group Information

dbservername Database server
name key or
database server
group key.

Database server
name.

Database server
group name.

nettype PROTOCOL Connection type The word group

282 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

9.1.4 Start and administer the database server

After you install and configure the database server, you need to perform one or
more of the following tasks:

� Start the database server and initialize disk space.
� Prepare to connect to applications.
� Create storage spaces.
� Set up your backup and restore system.
� Perform administrative tasks.

Starting the database server and initializing disk space
Initialization of the database server refers to two related activities:

� Shared memory initialization
� Disk space initialization

Shared memory initialization
Shared memory initialization on bringing up or starting the server establishes the
contents of database server shared memory as follows: internal tables, buffers,
and the shared-memory communication area. Shared memory is initialized every
time the database server starts up. You use the oninit utility from the command
line to initialize database server shared memory and bring the database server
online. Shared-memory initialization also occurs when you restart the database
server.

hostname HOST Host computer for the
database server.

No information. Use
a hyphen as a
placeholder in this
field.

servicename SERVICE Alias for the port
number.

No information. Use
a hyphen as a
placeholder in this
field.

options OPTIONS Options that describe
or limit the
connection.

Group options.

UNIX Field
Name

Windows Field
Name

Description of
Connectivity
Information

Description of
Group Information

 Chapter 9. Administration of Informix Dynamic Server 283

One key difference distinguishes shared memory initialization from disk space
initialization. Shared-memory initialization has no effect on disk space allocation
or layout, and no data is destroyed.

� On UNIX

To bring the database server to online mode on UNIX, enter oninit.

� On Windows

On Windows, the database server runs as a service. Use the Service control
application to bring the database server to online mode.

Another way to initialize the database server on Windows is to use the
following command, where dbservername is the database server name:

starts dbservername

Disk space initialization
Disk space initialization uses the values stored in the configuration file to create
the initial chunk of the root dbspace on disk. When you initialize disk space, the
database server automatically initializes shared memory as part of the process.
Disk space is initialized the first time the database server starts up. It is only
initialized thereafter during a cold restore or at the request of the database server
administrator.

The database server must be in offline mode when you begin initialization. If you
are starting a database server for the first time, or you want to remove all
dbspaces and their associated data, use the methods in Table 9-3 to initialize the
disk space and to bring the database server into online mode.

Table 9-3 Commands to start the server with disk-space initialization

Important: When you initialize disk space, you overwrite what is on that disk
space. If you re-initialize disk space for an existing database server, all the
data in the earlier database server becomes inaccessible and is destroyed.

Operating System Action to Bring Database Server into Online Mode

UNIX You must be logged in as informix or root to initialize the
database server. Execute oninit -iy.

Windows You must be a member of the Administrators or Power Users
group to initialize the database server.
� The database server runs as a service. In the Services

control application, choose the database server service
and type -iy in the Startup parameters field. Then click
Start.

� On the command line, use starts dbservername -iy

284 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

You can use the oninit -s option to initialize shared memory and leave the
database server in quiescent mode.

You should monitor the message log file referred by the MSGPATH configuration
parameter of your ONCONFIG file to monitor the state of the database server.
Often, the database server provides the exact nature of the problem and the
suggested corrective action in the message log. For more information, see the
IBM Informix Dynamic Server Administrator's Reference, G229-6360.

� For Windows Only:

When you install the database server and choose to initialize a new instance
of the database server, or when you use the instance manager program to
create a new instance of the database server, the database server is
initialized for you.

9.1.5 Preparing to connect to applications

When the database server is online, you can connect client applications and
begin to create databases. Before you can access information in a database, the
client application must connect to the database server environment. To connect
to and disconnect from a database server, you can issue SQL statements from
the following client programs:

� DB-Access
� SQL Editor
� IBM Informix ESQL/C
� IBM Informix ODBC Driver
� IBM Informix JDBC Driver

For information about how to use client applications, refer to the following:

� IBM Informix DB-Access User's Guide, G229-6369.
� IBM Informix ESQL/C Programmer's Manual, SC23-9420.
� IBM Informix ODBC Driver Programmer's Manual, SC23-9423.
� IBM Informix JDBC Driver Programmer's Guide, SC23-9421.

Attention: When you execute these commands, all existing data in the
database server disk space is destroyed. Use the -i flag only when you are
starting a new instance of the database server

 Chapter 9. Administration of Informix Dynamic Server 285

9.1.6 Creating storage spaces and chunks

You are responsible for planning and implementing the storage configuration.
However, be aware that the way you distribute the data on disks can affect the
performance of the database server. A chunk is the same as a logical volume,
logical unit, or regular file that has been assigned to the database server. The
maximum size of an individual chunk is 4 terabytes, and the number of allowable
chunks is 32,766. A logical storage space is composed of one or more chunks.

After the database server is initialized, you can create storage spaces such as
dbspaces, blobspaces, or sbspaces. Use the onspaces utility or ISA to create
storage spaces and chunks, as demonstrated in Example 9-1.

Example 9-1 Creating a dbspace named dbs1 of size 500 MB

onspaces -c -d dbs1 -p /dev/rdsk/c0t3d0s4 -o 0 -s 500000

You must create an sbspace if you are using the following functions:

� J/Foundation (to hold Java JAR files)
� Enterprise Replication (to hold spooled row data)
� Smart large objects (BLOB and CLOB data types)
� Multi-representational data types (such as DataBlades or HTML data types)

For a detailed discussion of the allocation and management of storage spaces,
see IBM Informix Dynamic Server Administrator's Guide, G229-6359.

9.2 Data recovery and high availability

Informix Dynamic Server uses the following logging and recovery mechanisms to
protect data integrity and consistency if an operating-system or media failure
occurs:

� Backup and restore
� Fast recovery
� Mirroring
� High-Availability Clusters
� Enterprise Replication

Tip: To take advantage of the large limit of 4 terabytes per chunk, assign a
single chunk per disk drive. This data distribution can increase performance.

286 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

9.2.1 Backup and restore

Use the ON-Bar or ontape utility to back up your database server data and
logical logs as insurance against lost or corrupted data. A program error or disk
failure can cause data loss or corruption. If a dbspace, an entire disk, or the
database server goes down, use ON-Bar or ontape to restore the data from the
backup copy. You must use the same utility for both the backup and restore.

ontape utility
If you use ontape as your backup tool, you must set up storage devices (tape
drives) before you can back up and restore data. The ontape utility does not
require a storage manager.

Use ontape to perform the following tasks:

� Back up and restore storage spaces and logical logs.
� Change database-logging status.
� Start continuous logical-log backups.
� Use data replication.
� Rename chunks to different path names and offsets.

ON-Bar utility
If you use ON-Bar as your backup tool, you must set up a storage manager such
as the IBM Informix Storage Manager (ISM) and storage devices before you can
backup and restore data.

Use ON-Bar to perform the following tasks:

� Backup and restore storage spaces and logical logs.
� Perform point-in-time restores.
� Start continuous logical log backups.
� Verify a backup with the archecker utility.
� Perform external backups and restores.
� An external backup and restore allows you to copy and physically restore data

without using ON-Bar. Then you use ON-Bar for the logical restore.
� Rename chunks to different path names and offsets.

ON–Bar is packaged with IBM Informix Storage Manager (ISM), which manages
data storage for the Informix database server. ISM resides on the same
computer as ON–Bar and the database server. The storage manager handles all
media labeling, mount requests, and storage volumes. ISM receives backup and
restore requests from ON-Bar and directs data to and from storage volumes that
are mounted on storage devices. It also tracks backed-up data through a data life
cycle that the database or system administrator determines and also manages
storage devices and storage volumes. In addition, it can backup data to as many

 Chapter 9. Administration of Informix Dynamic Server 287

as four storage devices at a time. ISM stores data on simple tape drives, optical
disk devices, and file systems. However, you can purchase a storage manager
from another vendor if you want to use more sophisticated storage devices,
backup to more than four storage devices at a time, or backup over a network.

When you plan your storage space and logical log backup schedule, make sure
that the storage devices and backup operators are available to perform backups.
For information about configuring and managing storage devices and media, see
IBM Informix Storage Manager Administrator's Guide, G229-6388, or your
vendor-acquired storage manager documentation.

To ensure that you can recover your databases in the event of a failure, make
frequent backups of your storage spaces and logical logs. You also can verify
ON–Bar backups with the archecker utility.

How often you back up the storage spaces depends on how frequently the data
is updated and how critical it is. A backup schedule might include a complete
(level-0) backup once a week, incremental (level-1) backups daily, and level-2
backups hourly. You also need to perform a level-0 backup after performing
administrative tasks such as adding a dbspace, deleting a logical-log file, or
enabling mirroring. Back up each logical-log file as soon as it fills. You can back
up these files manually or automatically.

Performing a level-0 backup of all storage spaces
To perform a standard, level-0 backup of all online storage spaces and used
logical logs, use the command shown in Example 9-2.

Example 9-2 Performing level-0 backup of all storage spaces

onbar -b
or
onbar -b -L 0

ON-Bar never backs up offline storage spaces, temporary dbspaces, or
temporary sbspaces.

Performing a level-0 backup of specified storage spaces
To perform a level-0 backup of specified storage spaces and all logical logs (for
example, two dbspaces named fin_dbspace1 and fin_dbspace2), use the -b
option as depicted in Example 9-3 on page 289. You could also specify the -L 0
option, but it is not necessary.

Important: Save your logical logs so that you can restore from this backup.

288 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example 9-3 Performing a Level-0 Backup of Specified Storage spaces only

onbar -b fin_dbspace1 fin_dbspace2

Performing an incremental backup
An incremental backup saves all changes in the storage spaces since the last
level-0 backup and performs a level-0 backup of used logical logs. To perform a
level-1 backup, use the -L 1 option, as depicted in Example 9-4.

Example 9-4 Command to perform incremental backup

onbar -b -L 1

Performing a restore
To perform a complete cold or warm restore, use the onbar -r command.
ON-Bar restores the storage spaces in parallel. To perform a restore, use the
command as in the Example 9-5.

Example 9-5 Command to perform a full system Restore

onbar -r

Restoring specific storage spaces
To restore particular storage spaces (for example, dbspaces named
fin_dbspace1 and fin_dbspace2), use the -r option, as in the Example 9-6.

Example 9-6 Command to restore specific storage spaces only

onbar -r fin_dbspace1 fin_dbspace2

For detailed information about all options of using ON–Bar and ontape, see IBM
Informix Backup and Restore Guide, G229-6361.

9.2.2 Fast recovery

Fast recovery is an automatic procedure that restores the database server to a
consistent state after it goes offline under uncontrolled conditions. Fast recovery
also rolls forward all committed transactions since the last checkpoint and rolls
back any uncommitted transactions.

 Chapter 9. Administration of Informix Dynamic Server 289

When the database server starts up it checks the physical log, which contains
pages that have not yet been written to disk. If the physical log is empty, the
database server was shut down in a controlled fashion. If the physical log is not
empty, the database server automatically performs fast recovery. For information
about fast recovery, see IBM Informix Administrator's Guide, G229-6359.

9.2.3 Mirroring

When you use disk mirroring, the database server writes each piece of data to
two locations. Mirroring is a strategy that pairs a primary chunk of one storage
space with an equal-sized mirrored chunk. Every write to the primary chunk is
automatically accompanied by an identical write to the mirrored chunk. If a failure
occurs on the primary chunk, mirroring lets you read from and write to the
mirrored chunk until you can recover the primary chunk, all without interrupting
user access to data.

It is recommended that you mirror the following data:

� Root dbspace
� Dbspaces that contain the physical log and logical-log files
� Frequently queried data

This concept of mirroring is illustrated in Figure 9-1.

Figure 9-1 Writing data to both the primary chunk and the mirror chunk

For detailed information about mirroring, see IBM Informix Administrator's Guide,
G229-6359.

9.2.4 Data replication

Data replication refers to the process of representing database objects at more
than one distinct site, which allows an enterprise to share corporate data
throughout the organization. Data replication provides a backup system in case
of a catastrophic failure. Data replication configurations consist of a primary
server and one or more secondary servers, such as an High Availability Data
Replication (HDR) secondary server, one or more Shared Disk (SD) secondary

Primary Chunk Mirrored Chunk
Database Server

Writes

290 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

servers, and one or more Remote Standalone (RS) secondary servers. In
addition, IDS supports IBM Informix Enterprise Replication (ER). You can
combine data replication and Enterprise Replication on the same database
server. For more information, see IBM Informix Dynamic Server Enterprise
Replication Guide, SC23-6228.

High availability clusters
Data replication provides a way to duplicate database objects at more than one
distinct site. IBM Informix Dynamic Server provides several high availability
cluster configuration options. When you configure a set of database servers to
use data replication, one database server is called the primary database server,
and the others are called secondary database servers. A high availability cluster
consists of a primary server and one or more secondary servers on which data
from the primary server is replicated. IDS provides several secondary server
configuration options and the secondary server can include any combination of
the SD secondary, RS secondary, and HDR secondary servers.

High-availability data replication (HDR) secondary server
HDR provides synchronous data replication for IDS. Use an HDR secondary
server if you require a hot standby. Configuring an HDR secondary server
provides a way to maintain a backup copy of the entire database server that
applications can access quickly in the event of a catastrophic failure of the
primary server.

As Figure 9-2 illustrates, the secondary database server is dynamically updated,
with changes made to the data that the primary database server manages.

Figure 9-2 A Primary and Secondary Database Server with Replication

Primary Secondary

Client

Client

Client

Client

 Chapter 9. Administration of Informix Dynamic Server 291

If one of the database servers fails, as depicted in Figure 9-3, you can redirect
the clients using that database server to the other database server in the pair,
which then becomes the primary server.

Figure 9-3 Servers and clients in a Data Replication configuration after a failure

Shared Disk Secondary server
A Shared Disk Secondary server shares disk space with a primary server. An SD
secondary server does not maintain a copy of the physical database on its own
disk space, rather it shares disks with the primary server.

Figure 9-4 shows an example of a primary server with two SD secondary
servers. In this case the role of the primary server could be transferred to either
of the two SD secondary servers. This is true whether the primary needed to
taken out of service because of a planned outage, or because of failure of the
primary server.

Figure 9-4 Primary Server configured with two SD Secondary Servers

Primary Primary

Client

Client

Client

Client

X

Primary

Client

Client

SD
Secondary

Client

Client

SD
Secondary

Client

Client

Shared Disk

292 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Because both of the SD secondary servers are reading from the same disk
subsystem, they are both equally able to assume the primary server role.
Figure 9-5 illustrates a situation in which the primary server is offline.

Figure 9-5 SD Secondary Server assuming role of Primary Server

Remote Standalone Secondary server
A Remote Standalone Secondary server is one that is updated asynchronously
from the primary server. RSS servers can be geographically distant from the
primary server, serving as remote backup servers in disaster recovery scenarios.
Each RSS server maintains a complete copy of the database, with updates
transmitted asynchronously from the primary server over secure network
connections.

Figure 9-6 on page 294 illustrates a configuration consisting of multiple RSS
servers. This configuration would be useful in a situation where the primary
server is located a long distance from the RS secondary servers, or if the
network speed between the primary server and the RS secondary server is slow
or erratic. Because RS secondary servers use fully duplexed communication
protocols, and do not require checkpoints processed in SYNC mode, the
additional servers should not have a significant impact on the performance of the
primary server.

Off Line

Client

Client

SD
Secondary

Client

Client

Primary
Client

Client

Shared Disk

 Chapter 9. Administration of Informix Dynamic Server 293

Figure 9-6 Primary server with three RS Secondary servers

Figure 9-7 illustrates an example of a configuration of an RS secondary server
along with an HDR secondary server. In this example, the HDR secondary
provides high availability while the RS secondary provides additional disaster
recovery if both the primary and HDR secondary servers are lost. The RS
secondary server can be geographically remote from the primary and HDR
secondary servers so that a regional disruption, such as an earthquake or flood,
would not affect the RS secondary server.

Figure 9-7 Primary Server with HDR Secondary and RS Secondary Servers

Primary RS Secondary

Client

Client

Client

Client

RS Secondary

Client

Client

RS Secondary

Client

Client

Primary
HDR

Secondary
Client

Client

Client

Client

RS Secondary

Client

Client

294 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

If a primary database server fails, it is possible to convert the existing HDR
secondary server into the primary server, as shown in the Figure 9-8.

Figure 9-8 Failover of Primary Server to HDR Secondary Server

If it appears that the original primary is going to be off line for an extended period
of time, then the RS secondary server can be converted to an HDR secondary
server. Then, when the original primary comes back on line, it can be configured
as an RS secondary server, as depicted in Figure 9-9.

Figure 9-9 RS Secondary Server assuming role of HDR Secondary Server

Any of the previous configurations can be combined with Enterprise replication.
For information about HDR secondary servers, RS secondary servers, and SD
secondary servers, see IBM Informix Administrator's Guide, G229-6359.

Enterprise replication
Enterprise replication supports asynchronous data replication over
geographically distributed database servers and allows you to replicate both
entire databases and subsets of databases and tables. Enterprise replication
offers limited support of user-defined data types.

Enterprise replication captures transactions to be replicated throughout the
enterprise. On the source database server, Enterprise replication reads the
logical log and transmits each transaction to the target database servers. At each
target database server, Enterprise replication receives and applies each

Off Line Primary

Client

Client

Client

Client

RS Secondary

Client

Client

Primary RS Secondary

Client

Client

Client

Client

HDR
Secondary

Client

Client

 Chapter 9. Administration of Informix Dynamic Server 295

transaction to the appropriate databases and tables. Enterprise replication can
be combined with other data replication solutions.

For detailed information about how to setup and monitor Enterprise replication,
see IBM Informix Dynamic Server Enterprise Replication Guide, G229-6371.

9.3 Informix Dynamic Server admin utilities

This section provides reference material for the Informix database server utilities.
These utilities allow you to perform administrative tasks directly from the
command line or through a GUI interface. For the complete details on each of
these utilities, see IBM Informix Dynamic Server Administrator's Reference,
G229-6360.

9.3.1 Command line utilities

In the following sections, we present utilities that allow you to perform
administrative tasks directly from the command line.

onstat
The onstat utility provides a way to monitor database server shared memory from
the command line. It reads data from shared memory and reports statistics that
are accurate for the instant during which the command executes. That is, onstat
provides information that changes dynamically during processing, including
changes in buffers, locks, indexes, and users.

The onstat utility displays a wide variety of performance-related and status
information contained within the system monitoring interface (SMI) tables. You
can use the onstat utility to check the current status of the database server and
monitor the activities of the database server.

For a complete list of all onstat options, use onstat - -. For a complete display
of all the information that onstat gathers, use onstat -a.

Some of the onstat options for general information are shown in Table 9-4.

Tip: Profile information displayed by onstat commands, such as onstat -p,
accumulates from the time the database server was started. To clear
performance profile statistics so that you can create a new profile, run onstat
-z. If using onstat -z to reset statistics for a performance history or appraisal,
ensure that other users do not also enter the command at different intervals.

296 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Table 9-4 Some onstat command options

For the complete list of all onstat options and their explanation, see IBM Informix
Dynamic Server Administrator's Reference, G229-6360.

oncheck
The oncheck utility displays information about the database disk configuration
and usage, such as the number of pages used for a table, the contents of the
reserved pages, and the number of extents in a table. For the complete list of
oncheck command options and usage, see IBM Informix Dynamic Server
Administrator's Reference, G229-6360.

The following is an example oncheck command. To obtain the physical layout of
information in a chunk, execute:

oncheck -pe

The following list details the types of information that will be displayed as the
result of that command:

� The name, owner, and creation date of the dbspace.

� The size in pages of the chunk, the number of pages used, and the number of
pages free.

� A listing of all the tables in the chunk, with the initial page number and the
length of the table in pages.

The tables within a chunk are listed sequentially. This output is useful, for
example, for determining chunk fragmentation. If the database server is unable to
allocate an extent in a chunk despite an adequate number of free pages, the
chunk might be badly fragmented.

An example of this type of information is depicted in Figure 9-10.

onstat option Description

onstat -b Displays information about buffers currently in use.

onstat -l Displays information about the physical and logical logs.

onstat -R Displays information about buffer pools, including information
about buffer pool page size.

onstat -d Displays information of all storage spaces and the information of
chunks in each storage space.

onstat -u Displays a user activity profile that provides information about user
threads including the thread owner’s session ID and login name.

 Chapter 9. Administration of Informix Dynamic Server 297

Figure 9-10 oncheck -pe Output

ondblog
The ondblog utility lets you change the logging mode for one or more databases.
All of the activity for the ondblog utility is output in the BAR_ACT_LOG file.

If you turn on transaction logging for a database, you must create a level-0
backup of all of the storage spaces that contain data in the database before the
change takes effect.

However, you cannot use the ondblog utility on High-Availability Data Replication
(HDR) secondary servers, remote standalone (RS) secondary servers, or shared
disk (SD) secondary servers.

oninit
You can run the oninit utility from the command line to initialize database server
shared memory and to bring the database server online. If you use the oninit -i
option, you can also initialize disk space.

Before initializing the database server, set the INFORMIXSERVER environment
variable to the database server name that you chose when you set the
configuration parameter DBSERVERNAME. The INFORMIXSERVER

298 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

environment variable is not required for initialization, but if it is not set, the
database server does not build the sysmaster tables. In addition, the DB-Access
utility requires the INFORMIXSERVER environment variable to be set.

The commands to take the database server offline and bring it back online are
depicted in Example 9-7.

Example 9-7 Database server commands

onmode -ky
oninit

The following list details some of the prerequisites for the oninit command:

On UNIX, you must be logged in as user root or informix to run oninit. User
informix should be the only member of the group informix.

� On Windows, IDS runs as a Windows service. Users with permissions can
start and stop IDS through one of the following methods:

– Control Panel Administrative Tools
– The net start and net stop commands

Use the starts utility to pass command line arguments to oninit. For example,
to start IDS in single-user mode, use the following command:

%INFORMIXDIR%\bin\starts %INFORMIXSERVER% -j

The onparams utility is used to modify the configuration of logical logs or physical
logs. If you do not use any options, onparams returns a usage statement. Some
of the options are listed in Table 9-5.

Be aware that any onparams command will fail if a storage-space backup is in
progress.

onparams
Table 9-5 onparams options

onparams command Purpose

onparams -a -d dbspace [-i] Add a logical-log file

onparams -d -l lognum Drop a logical-log file

onparams -p Change the size or location of the physical
log

onparams -b Add a new buffer pool

 Chapter 9. Administration of Informix Dynamic Server 299

We show examples of the onparm command in action in Example 9-8.

Example 9-8 Examples of onparams commands

onparams -a -d rootdbs -s 1000 # adds a 1000-KB log file to rootdbs

onparams -a -d rootdbs -i # inserts the log file after the
current log

onparams -d -l 7 # drops log 7

onparams -p -d dbspace1 -s 3000 # resizes and moves physical-log to
dbspace1

onspaces
The onspaces utility it used for space management. With it, you can create or
modify the dbspaces, blobspaces, sbspaces, or extspaces. We have listed some
of the command options for onspaces in Table 9-6.

You can specify a maximum of 2047 chunks for a storage space, and a
maximum of 2047 storage spaces on the database server system. The storage
spaces can be any combination of dbspaces, blobspaces, and sbspaces.

On UNIX, you must be logged in as user root or user informix to execute
onspaces. On Windows, you must be a member of the Informix Admin group.

You cannot use the onspaces utility on High Availability Data Replication (HDR)
secondary servers, remote standalone (RS) secondary servers, or shared disk
(SD) secondary servers.

Table 9-6 onspaces command options

onspaces Options Purpose

-c -d Create a dbspace

-c -b Create a blobspace

-c -S Create a sbspace

-a Add a chunk to a dbspace or blobspace or sbspace

-c -x Create an extspace

-d Drop a blobspace, dbspace, extspace, or sbspace

-d Drop a chunk in a dbspace, blobspace, or sbspace

-ren Rename a dbspace, blobspace, sbspace, or extspace

300 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

In Example 9-9 we show how to create a sbspace named vspace1 and a
dbspace named dbs1, each 20 MB in size.

Example 9-9 Creating an sbspace and a dbspace

On Unix:
onspaces -c -S vspace1 -g 2 -p /home/informix/chunk2 -o 0 -s 20000
onspaces -c -d dbs1 -p /home/informix/chunk3 -o 0 -s 20000
On Windows:
onspaces -c -S vspace1 -g 2 -p \home\informix\chunk2 -o 0 -s 20000
onspaces -c -S dbs1 -p \home\informix\chunk3 -o 0 -s 20000

onmode
The onmode utility can be used for many purposes. For example, it can be used
to change the database server mode, to add shared memory, and to add or
remove virtual processors.

On UNIX, you must be user root or user informix to execute onmode. On
Windows, you must be a member of the Informix-Admin group.

Some of the most commonly used onmode options are displayed in Table 9-7.

Table 9-7 Commonly used onmode options

-m Start Mirroring

-r Stop Mirroring

-s Change status of a mirrored chunk

-f Specify DATASKIP parameter-f

onmode options Purpose

-k Takes the database server to offline mode and removes shared
memory

-m Takes the database server from quiescent or administration mode
to online mode

-s Shuts down the database server gracefully

-u Shuts down the database server immediately

-j Puts the database server into administration mode

-a Add a shared-memory segment

onspaces Options Purpose

 Chapter 9. Administration of Informix Dynamic Server 301

onlog
The onlog utility displays the contents of a logical-log file, either on disk or on
backup. The onlog output is useful in debugging situations when you want to
track a specific transaction or see what changes have been made to a specific
tblspace.

Any user can run all of the onlog options except the -l option. Only user informix
on UNIX or a member of the Informix-Admin group on Windows can run the -l
option.

If the database server is in offline mode when you execute onlog, only the files
on disk are read. If the database server is in quiescent or online mode, onlog
also reads the logical-log records stored in the logical-log buffers in shared
memory (after all records on disk have been read).

9.3.2 OpenAdmin tool for IDS

The Open Admin Tool (OAT) provides a platform-independent interface, used in a
browser, to maintain your IDS database servers. It does not matter whether they
are on the same machine as the OAT or on remote machines. All basic
administration tasks, such as disk space management, performance monitoring,
cluster management, server startup and shutdown, task scheduling and logfile
analysis, can be performed with the OAT. OpenAdmin Tool for IDS is a
PHP-based Web browser administration tool that can administer multiple
database server instances using a single installation on a Web server. You
access the Web server through any browser to administer all your database
servers.

You can perform the following tasks with OAT:

� Add new connections to servers and server groups
� View server information on a map
� Customize the help system to add your own content to help topics
� Configure the display to change the sort order of reports by clicking on

column headings
� Manage dbspaces, chunks, and recovery logs
� Monitor performance statistics, including recent SQL statements, combine

graphs and reports to create custom reports
� View the online message log and the ON-Bar activity log
� Execute ad hoc or saved SQL statements
� View database, table, and column information
� Monitor high-availability clusters: HDR servers, Shared Disk Secondary

servers, and Remote Standalone Secondary servers
� View information about executed SQL Administration API commands

302 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Figure 9-11 contains a snapshot of a dash board view of the OAT, which provides
a current view of the server memory usage and the number of transactions run.

Figure 9-11 Dash board view of the OpenAdmin Tool

 Chapter 9. Administration of Informix Dynamic Server 303

Figure 9-12 shows the information of all the current dbspaces of the server and
their usage information. This tool allows creating or dropping spaces, adding
chunks to the existing dbspaces, and many other options for space management.

Figure 9-12 Dbspaces view of the OAT

The OAT is an open-source program that you can download from the following
Web page:

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&
source=swg-informixfpd

Refer to IBM Redbooks publication Informix Dynamic Server 11: Extending
Availability and Replication, SG24-7488 for details on how to install and
configure the OAT.

IBM Redbooks are available at the following Web site:

http://www.redbooks.ibm.com

9.3.3 IBM Informix Server Administrator

IBM Informix Server Administrator (ISA) allows a DBA to manage Informix
database servers by executing Informix commands from any Web browser. And
you do not need to be familiar with the syntax and format of database server
commands. ISA presents the command output in an easy-to-read format.

304 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-informixfpd
http://www.redbooks.ibm.com
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-informixfpd

ISA is available for download at the following Web page:

http://www.ibm.com/software/data/informix/downloads.html

With ISA, you can perform the following database server administrative tasks:

� Change configuration parameters temporarily or permanently.
� Use Server Setup to configure or reconfigure the database server.
� Change the database server mode.
� Modify connectivity information in the sqlhosts file.
� Check dbspaces, blobspaces, and sbspaces.
� Manage logical logs and physical logs.
� Examine and modify memory usage.
� Read the message log.
� Back up and restore dbspaces, blobspaces, and sbspaces.
� Run various onstat commands to monitor performance.
� Enter SQL statements and examine database schemas.
� Add and remove chunks, dbspaces, blobspaces, sbspaces.
� Examine and manage user sessions.
� Examine and manage virtual processors (VPs).
� Use the High-Performance Loader (HPL), dbimport, and dbexport.
� Manage Enterprise Replication.
� Manage a Informix MaxConnect server.
� Set up primary and secondary database servers for High-Availability Data

Replication.
� Use the following utilities: dbaccess, dbschema, onbar, oncheck, ondblog,

oninit, onlog, onmode, onparams, onspaces, onstat, and onpladm.
� Enter any Informix utility, UNIX shell command, or Windows command.

9.4 Automatic monitoring and corrective actions

In this section we provide you with an overview of the components of IDS that
enable you to simplify the collection of information and maintenance of the server
in complex systems. You can use the Administration API, the Scheduler,
information stored in the sysadmin database, and Query Drill-Down functionality
to manage automatic maintenance, monitoring, and administrative tasks. Refer
to IBM Informix Security Guide, G229-6389, for complete details.

9.4.1 Administration API

The SQL Administration API enables you to perform remote administration using
various, specific SQL commands for tasks such as managing spaces, managing
configuration, running routine jobs, and system validation.

 Chapter 9. Administration of Informix Dynamic Server 305

http://www.ibm.com/software/data/informix/downloads.html

You can use EXECUTE FUNCTION statements to invoke the built-in admin() or
task() functions to accomplish administrative tasks that are equivalent to
executing various administrative utilities of Dynamic Server.

In the EXECUTE FUNCTION statements, depicted in Example 9-10, items in the
argument list specify the utility and its command-line arguments. As in SQL, the
SQL statement, which is equivalent to the oncheck -ce command, instructs the
database server to check the extents.

Example 9-10 Executing admin functions

EXECUTE FUNCTION admin('check extents');

If you want to increase the virtual memory that the database server could use in
an application, the application could execute the SQL statement depicted in
Example 9-11.

Example 9-11 Executing task functions

EXECUTE FUNCTION task('add memory', '10 MB');

For more information about all the Administration API commands you can use
and information about defining admin() and task() functions, see IBM Informix
Guide to SQL: Syntax, G229-6375.

9.4.2 The Scheduler

The Scheduler manages and executes scheduled maintenance, monitoring, and
administration tasks. This tool enables you to monitor activities (for example,
space management or automatic back up any new log data at timed intervals
since the last log backup) and create corrective actions that run automatically.

The Scheduler enables the database server to execute database functions and
procedures at predefined times or as determined internally by the server. The
functions and procedures collect information and monitor and adjust the server,
using an SQL-based administrative system and a set of tasks.

The Scheduler manages the following items:

� Tasks, which can run a specific job at a specific time or interval.
� Sensors, which collect and save information.
� Startup tasks, which run only once when the database server starts.
� Startup sensors, which run only once when the database starts.

306 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

9.4.3 The sysadmin database

The sysadmin database contains tables that store task properties. You use the
task properties to define the information that the Scheduler collects and the
statements that the Scheduler runs.

The sysadmin database also contains the following items:

� The built-in task() function
� The built-in admin() function
� The command_history table, which contains information about the commands

that the Administration API ran

9.4.4 Query drill-down

Query drill-down functionality provides statistical information about recently
executed SQL statements, enabling you to track the performance of individual
SQL statements and analyze statement history.

You can perform query drill-down to gather statistical information about each
SQL statement executed on the system and analyze statement history. The
query drill-down feature helps you answer questions as follows:

� How long do SQL statements take?
� How many resources are individual statements using?
� How long did statement execution take?
� How much time was involved in waiting for each resource?

The statistical information is stored in a circular buffer, which is an in-memory
pseudo table called syssqltrace, that is stored in the sysmaster database. You
can dynamically resize the circular buffer.

By default this feature is turned off, but you can turn it on for all users or for a
specific set of users. When this feature is enabled with its default configuration,
the database server tracks the last 1000 SQL statements that ran, along with the
profile statistics for those statements. As the Administrative API operations occur
entirely in SQL, client tools can use these features to administer the database
server.

You can also use a PHP-based Web browser administration tool, the OpenAdmin
Tool for IDS, to administer multiple database server instances from a single
location. For detailed information refer to IBM Informix Dynamic Server
Administrator's Guide, G229-6388.

 Chapter 9. Administration of Informix Dynamic Server 307

9.5 IDS database server security

In this section we give a high-level description of the security features offered by
IDS. Database security features include the following types of tasks:

� Secure server utilities
� Encrypt data across the network
� Encrypt column-level data
� Secure connections
� Control user privileges
� Control user access to data
� Auditing

9.5.1 Server utility and directory security

Informix Dynamic Server utilities and product directories are secure by default.
The database server utilities make security checks before the database server
starts. You can also increase directory security for some environments with the
DB_LIBRARY_PATH configuration parameter.

When you install a new version of your database server, you should follow the
installation instructions to ensure that the permissions of all key files and
directories are set appropriately.

To provide increased security, key server utilities check to determine if your
environment is secure. Examples of things checked, are as follows:

� The permissions on $INFORMIXDIR and directories under it
� The permissions on the ONCONFIG file
� The permissions on the sqlhosts file
� The length of both the filenames $INFORMIXDIR/etc/onconfig.std and

$INFORMIXDIR/etc/$ONCONFIG must be less than 256 characters

If the tests for any of these conditions fail, the utilities exit with an error message.

You can also use the DB_LIBRARY_PATH configuration parameter to control the
location from which shared objects, such as external modules, can be loaded.
Use the DB_LIBRARY_PATH configuration parameter to specify a
comma-separated list of valid directory prefix locations from which the database
server can load external modules, such as DataBlade modules.
DB_LIBRARY_PATH takes effect when the database server is restarted after the
parameter has been set.

308 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The DB_LIBRARY_PATH configuration parameter allows you to control the
location from which shared objects can be loaded, and it allows you to enforce
policies and standards on the formats of the EXTERNAL NAME clause of the
CREATE FUNCTION, CREATE PROCEDURE, and CREATE ROUTINE
statements. For more information about the DB_LIBRARY_PATH configuration
parameter, see IBM Informix Dynamic Server Administrator's Reference,
G229-6388.

9.5.2 Network data encryption

Use network encryption to encrypt data transmitted between server and client as
well as between server and other server. Encryption is the process of
transforming data into an unintelligible form to prevent the unauthorized use of
the data.

Column level encryption
All values in a specific column of a database table are encrypted with the same
password (word or phrase), the same encryption algorithm, and the same cipher
mode. For column-level encryption, you can store the hint outside the encrypted
column, rather than repeating it in every row.

You can use column-level encryption to store sensitive data in an encrypted
format. After encrypting sensitive data, such as credit card numbers, only users
who can provide a secret password can decrypt the data.

Use the built-in ENCRYPT_AES() and ENCRYPT_TDES() encryption functions
to encrypt data in columns containing the following character data types or smart
large object data types:

� CHAR
� NCHAR
� VARCHAR
� NVARCHAR
� LVARCHAR
� BLOB
� CLOB

You can also use the SET ENCRYPTION PASSWORD statement to set an
encryption password for a session. If you do this, only users who can provide a
secret password can view, copy, or modify encrypted data. Refer to IBM Informix
Dynamic Server Administrator's Reference, G229-6388, for more information.

 Chapter 9. Administration of Informix Dynamic Server 309

9.5.3 Connection security

You can prevent unauthorized connections to your database server, keep
passwords secure, deploy single sign-on authentication, provide secure
connections for enterprise replication and high availability clusters, keep local
connections secure, and limit denial-of-service attacks. Most of these solutions
can be used in conjunction with each other.

Discretionary access control
Discretionary access control verifies whether the user who is attempting to
perform an operation has been granted the required privileges to perform that
operation. You can perform the following types of discretionary access control:

� Create user roles to control which users can perform operations on which
database objects.

� Control who is allowed to create databases by setting permission to create
databases.

� Prevent unauthorized users from registering user-defined routines.

� Control whether other users besides the DBSA are allowed to view executing
SQL statements.

9.5.4 Label-based access control (Enterprise Edition)

Label-based access control (LBAC) is an implementation of multi-level security
(MLS) that enables you to control who has read access and who has write
access to individual rows and columns of data.

MLS systems process information with different security levels, permit
simultaneous access by users with different security clearances, and allow users
access only to information for which they have authorization. MLS is a
well-known implementation of mandatory access control (MAC). If you hold the
database security administrator (DBSECADM) role in IDS, you can configure the
LBAC objects to meet your security requirements. The following are examples of
configuration options:

� Security policies

You attach a security policy to a table that you want to protect from
unauthorized access. To create a security policy, you define security labels
that determine who can access the table's data. You can have one or more
security policies on your system, depending on your organization's needs.

310 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

� Security labels

You associate security labels with one or more objects in a table (data labels)
and with users (user labels). When a user attempts to access an
LBAC-protected table object, the system compares the user label to the data
label to determine if the user can have access. If the user was not granted any
label, access in most circumstances is automatically blocked.

� Security label components

These components are the building blocks of LBAC security policies. You use
these components to form security policies, which, in combination with
security labels, represent different user access privileges. The variety of
security label components that you can create, and the flexibility that you have
in constructing security policies and security labels, offers you flexibility in the
way you design your organization's LBAC solution.

LBAC complements discretionary access control (DAC). When a user attempts
to access a protected table, IDS enforces two levels of access control. The first
level is DAC. With DAC, IDS verifies whether the user attempting to access the
table has been granted the required privileges to perform the requested
operation on that table. The second level is LBAC, which controls access at the
row level, column level, or both levels. The combination of DAC privileges and
LBAC-protected data access granted to a user is referred to as the user's
credentials.

9.5.5 Auditing

Auditing creates a record of selected activities that users perform. IDS conforms
to all regulatory compliances and ensures that all necessary details for auditing
purposes are provides. IDS provides two main utilities, onaudit and onshowaudit,
for auditing purposes. The onaudit utility is used to set the masks that specify the
activities to be logged in an audit trail. You can set masks for a particular user as
well. The audit trail report generated by IDS is in simple text format. It contains
audit trails of all defined masks for all users. The onshowaudit utility is used to
read this audit trail report. To make reading audit trail report easy you can use
some of the options with the onshowaudit utility, which filters out unnecessary
information from the audit trail report.

 Chapter 9. Administration of Informix Dynamic Server 311

The audit administrator who analyzes the audit trail can use these records for the
following purposes:

� To detect unusual or suspicious user actions and identify specific users who
performed those actions

� To detect unauthorized access attempts

� To assess potential security damage

� To provide evidence in investigations, when necessary

� To provide a passive deterrent against unwanted activities, as long as users
know that their actions might be audited

Refer to IBM Informix Security Guide, G229-6389, for the complete details on all
the security aspects of Informix Dynamic Server.

312 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Appendix A. Data types

In this appendix we explain data types in various environments:

� Supported SQL data types in C/C++
� Supported SQL data types in Java
� Mapping Oracle data types to Informix data types

A

© Copyright IBM Corp. 2009. All rights reserved. 313

A.1 Supported SQL data types in C/C++
Table A-1 provides a complete list of SQL data types, C and C/C++ data type
mapping, and a quick description of each.

For more information about mapping between SQL data types and C and C++
data types, refer to IBM Informix ESQL/C Programmer's Manual, SC23-9420
available for download from the following Web page:

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

Table A-1 SQL to C/C++ data type mapping

SQL data type
sqltype

C/C++
type

sqlle
n

Description

integer SMALLINT short 2 � 16-bit signed integer
� Range between (-32,768

and 32,767)
� Precision of 5 digits

INTEGER
INT
SERIAL

long 4 � 32-bit signed integer
� Range between

(-2,147,483,648 and
2,147,483,647)

� Precision of 10 digits

SERIAL long 4 � 32-bit unsigned integer
� Range between (1 and

2,147,483,647)
� Precision of 10 digits

BIGSERIAL
SERIAL8

ifx_int8_t 12 � unsigned 64 Bit integer
� Range between 1 and

9,223,372,036,854,775,807

BIGINT
INT8

long long
long
__int64
sqlint64

8 � 64-bit signed integer
� Range between

-9,223,372,036,854,775,807
and
9,223,372,036,854,775,807

floating
point

REAL
FLOAT

float 4 � Single precision floating
point

� 32-bit approximation of a
real number

� FLOAT(n) can be synonym
for REAL
if 0 < n < 25

314 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp

DOUBLE
DOUBLE
PRECISION

double 8 � Double precision floating
point

� 64-bit approximation of a
real number

� Range in (0, -1.79769E+308
to -2.225E-307, 2.225E-307
to 1.79769E+308)

� FLOAT(n) can be synonym
for DOUBLE
if 24 < n < 54

Decimal DECIMAL(p,s)
DEC(p,s)

NUMERIC(p,s)
NUM(p,s)

MONEY

dec_t p/2+1 � Packed decimal
� If precision /scale not

specified, default is (5,0)
� Max precision is 32 digits,

and max range between
(-10E31+1 ... 10E31 -1)

� Consider using char /
decimal functions to
manipulate packed decimal
fields as char data

Date /
Time

DATE int 4 � integer value similar to UNIX
time

DATETIME dtime_t 22

INTERVAL intrvl_t 24

character CHAR char n � - Fixed-length character
string consisting of n bytes

� Use char[n+1] where 1 <= n
<= 254

� If length not specified,
defaults to 1

VARCHAR char n � Null-terminated variable
length character string

� Use char[n+1]
where 1 <= n <=254

LVARCHAR char len � Non null-terminated varying
character string with 2-byte
string length indicator

� Use char[n] in struct form
where 1<= n <= 32739

SQL data type
sqltype

C/C++
type

sqlle
n

Description

 Appendix A. Data types 315

A.2 Supported SQL data types in Java
Table A-2 shows the Java equivalent of each SQL data type, based on the JDBC
specification for data type mappings. The JDBC driver converts the data
exchanged between the application and the database using the following
mapping schema. Use these mappings in your Java applications and your
PARAMETER STYLE JAVA procedures and UDFs.

For more information about mapping between SQL data types and Java types
refer to IBM Informix Embedded SQLJ Users Guide, G251-2278. You can
download this Documentation from the following Web page:

http://www-01.ibm.com/software/data/informix/pubs/library

Table A-2 SQL data types mapped to Java declarations

Binary CLOB(n) ifx_lo_t � Informix provides a defined
interface handling CLOBs
like ifx_lo_open, ifx_lo_read
or ifx_lo_write and
ifx_lo_close

BLOB
(TEXT/BYTE)

Locator
structure
loc_t

� Defines the attributes of the
BLOB, where he resists,
filename, size and indicates
a possible NULL value

SQL data type
sqltype

C/C++
type

sqlle
n

Description

SQL data type
sqltype

Java type sqllen Description

Integer SMALLINT short 2 16-bit, signed integer

INTEGER int 4 32-bit, signed integer

INT8
SERIAL8

long 4 32-bit, signed integer

BIGINT
BIGSERIAL

bigint 8 64-bit, signed integer

floating
point

SMALLFLOAT float 4 Single precision floating
point

316 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www-01.ibm.com/software/data/informix/pubs/library

FLOAT
DOUBLE
PRECISION

double 4 Double precision floating
point

Decimal DECIMAL(p,s) java.math.
BigDecimal

n/2 Packed decimal

MONEY java.math.
BigDecimal

n/2 Packed decimal

Date /
Time

DATE java.sql.Date 10 10-byte character string

DATETIME java.sql.Time 8 8-byte character string

DATETIME java.sql.
Timestamp

26 26-byte character string

INTERVAL IfxIntervalDF

character CHAR String n Fixed-length character
string of length n where n is
from
1 to 254

CHAR FOR BIT
DATA

byte[] Fixed-length character
string of length n where n is
from
1 to 254

VARCHAR
LVARCHAR

java.lang.Stri
ng

n Variable-length character
string, n <= 32739

NVARCHAR java.lang.Stri
ng

n Variable-length character
string, n <= 32739

NCHAR java.lang.Stri
ng

n Variable-length character
string, n <= 254

VARCHAR
FOR BIT DATA

byte[] Variable-length character
string

Binary CLOB(n) byte[] n Large object
variable-length character
string

BLOB(n) byte[] n Large object
variable-length binary
string

SQL data type
sqltype

Java type sqllen Description

 Appendix A. Data types 317

A.3 Mapping Oracle data types to Informix data types
Table A-3 summarizes the mapping from Oracle data types to corresponding
Informix data types. The mapping is one to many and depends on the actual
usage of the data.

Table A-3 Mapping Oracle data types to Informix data types

Oracle data type Informix data type Notes

Numeric/
floating Point

NUMBER(p) SMALLINT
INTEGER
BIGINT

SMALLINT,
if 1<=p <=4
INTEGER,
if 5<=p<= 9
BIGINT,
if 10 <=p<= 18

NUMBER(p,s) DECIMAL(p,s)
DOUBLE
PRECISION

if s > 0

NUMBER FLOAT
REAL
DOUBLE
PRECISION

FLOAT
FLOAT(n)
DOUBLE
PRECISION

DOUBLE
PRECISION

Date/Time DATE (only the
date)

DATE Use Oracle
TO_CHAR() function
with the
MM/DD/YYYY format
string to extract data
for subsequent
Informix load.

DATE (only the
time)

Datetime hour to
second

Use Oracle
TO_CHAR() function
with the HH24:MI:SS
format string to
extract for
subsequent Informix
load.

318 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

TIMESTAMP DATETIME year to
fraction (5)

Use Oracle
TO_CHAR() function
with the
YYYY-MM-DD
HH24:MI:SSxFF
format string to
extract for
subsequent Informix
load.
Oracle default format
is DD-MON-YY

INTERVAL INTERVAL

Character CHAR(n) CHAR(n) 1 <= n <= 254

VARCHAR2(n)
VARCHAR(n)

VARCHAR(n)
LVARCHAR(n)

n <= 255
n <= 32739

NCHAR(n) NCHAR(n) 1 <= n <= 254

NVARCHAR2(n) NVARCHAR(n) 1 <= n <= 254

Large (binary)
data

LONG LVARCHAR(n) n <= 32739 bytes

LONG CLOB
TEXT

n> 32739 bytes

BLOB BLOB n <= 4TB

BFILE BLOB

RAW CHAR(n)
VARCHAR(n)
BLOB(n)

CHAR,
n <= 254
VARCHAR,
n<= 32739
BLOB,
n <= 4TB

LONG RAW LVARCHAR(n)
BLOB(n)/CLOB(n)

LONG,
n <= 32739
(C)BLOB,
n <= 4TB

CLOB CLOB(n) if n <= 4TB

NCLOB CLOB(n) if n <= 4TB

Oracle data type Informix data type Notes

 Appendix A. Data types 319

320 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Appendix B. Terminology mapping

In this appendix we provide a mapping of the terminology used in Oracle to that
used in the Informix Dynamic Server (IDS).

Table 9-8 Mapping of Oracle terminology to Informix IDS

B

Oracle Informix Comments

Products Oracle
Enterprise
Edition

Informix IDS
Enterprise

Oracle Express
Edition

Informix Express
Edition

Configuration Instance Instance In an Oracle Environment the
instance describes the
processes and the memory.
Informix IDS describes
processes, Memory and the
appropriate data files

© Copyright IBM Corp. 2009. All rights reserved. 321

Database Database In Oracle the database
describes the data files on
disk. An Informix IDS instance
can maintain multiple
databases. Multiple
databases can share the
same data files.

Server
parameter files

ONCONFIG Configuration files containing
all tunable parameter making
up the database (instance)

tnsnames.ora
sqlnet.ora

sqlhosts file Config files describing the
communication from client to
the database server

Shared or
Dedicated
Server

Define how incoming
application requests are
served by the Oracle
database server. In Informix
all client applications are
served shared. No additional
processes are started for new
incoming client requests.

Storage tablespace dbspace Logical storage unit,
describes a set of existing file
system objects attached to
this database server

SYSTEM
tablespace

dbspace The storage clause of the
create database statement in
Informix IDS describes where
the system catalog is stored.
There is no restriction in
which dbspace a Database
can be created.

data files chunks Physical unit describes size
and location of a database file

Segments Partitions Logical unit described a set of
extents and is related to
certain database objects like
tables or indexes

Oracle Informix Comments

322 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Extents Extents Logical unit contains a
amount of pages or data
blocks

data blocks pages smallest physical storage unit
contains the real data

Memory SGA Shared Memory
Segments

Memory attached and
maintained by the processes
representing the database
instance. Contains e.g Pools,
Buffer and Dictionary cache.

UGA Session Pools Depending on Shared or
Dedicated Server
configuration the UGA is
either in PGA or SGA.
Contains all necessary
session specific data. Informix
IDS maintains all session
specific data in separate
pools for each session always
in the Shared memory
segments

PGA The listener in the oracle
starts for new incoming client
requests a new server
process. The memory needed
for session specific activities
like cursors or sorts in
addition with the heap is
maintained in the PGA.
Informix always maintains the
session memory in session
pools in the Shared memory

Data(Buffer)
cache

Bufferpool Cache already read data

Library cache Datadictionary
Procedurecache
Statementcache
...

Caches contain already
evaluated and currently active
and valid database objects in
the shared memory.

Features and
Technology

Redo Logs Logfiles Recovery logs for rollback of
open transactions in case of
database recovery

Oracle Informix Comments

 Appendix B. Terminology mapping 323

Undo Segments Physical log Contains the before images of
the datablocks for open
transactions. Needed for
rollbacks and row versioning.
Before Images in Informix IDS
are maintained in the physical
Log. The maintenance of the
previous row versions is
attached to the lock structures
in USELASTCOMMITED is
enabled.

Data Dictionary System catalog Metadata for the database

Checkpoint Checkpoint Synchronization between
instance memory and the
database files, triggered by
certain event like expiration of
time or manually forcing a
checkpoint. Dirty Buffers are
written to disk. Logs are
synchronized.

Oracle Parallel
processing

PDQ Splitting a specific query in a
execution tree processed in
parallel in the database server

Oracle RAC Informix CDC
(SDS, RSS)

High Availibility and
Application partitioning
solution. Informix IDS
provides with
SharedDiskServer and
Remote SecondaryServer
similar solutions which also
can be combined together
and with other stand by and
data replication solutions

Tools sqlplus dbaccess SQL Command line interface
to the database server

Programming
languages
and
Application
development

PL/SQL SPL
4GL
EGL

Programming language
extension to SQL. Similar
language interfaces provide
the Informix Stored procedure
language or the 4GL and EGL
programming environments

Oracle Informix Comments

324 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Pro*C SDK
Software
Development Kit
(ESQL/C)

Interface for embedding
dynamic and static SQL
statements into c/c++
programs

Connectivity Oracle Gateway Informix DRDA® Access to a host or distributed
access to DB2 (LUW)

Database Link ISTAR Access from one database to
another. Oracle need to
define an object for distributed
access. In Informix there is no
need to create an extra
database object. The remote
database must be defined in
sqlhosts file used by the
connection coordinator.

Oracle Informix Comments

 Appendix B. Terminology mapping 325

326 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Appendix C. Function mapping

This appendix contains the function mapping of Oracle to IDS. The function
mapping covered includes the following:

� Numeric function mapping
� Character function mapping
� Date and time function mapping
� Comparison and NULL-related function mapping
� Encoding, decoding, encryption, and decryption function mapping
� Implementation of new C-based functions in IDS

Not all the Oracle functions have a direct mapping to the IDS build in function
set. We want to show you at the end of this appendix how to create your own
functions to achieve the mapping for your applications.

C

© Copyright IBM Corp. 2009. All rights reserved. 327

C.1 Numeric function mapping

Table C-1 shows the numeric function mapping between Oracle and Informix.

Table C-1 Numeric functions

Oracle Informix Comments

ABS ABS Returns the absolute value.

ACOS ACOS Returns the arc cosine.

ASIN ASIN Returns the arc sine.

ATAN ATAN Returns the arc tangent.

ATAN2 ATAN2 Returns the arc tangent (two value).

BITAND BITAND Returns the bit-wise AND of two
non-negative integers.

CEIL CEIL Returns the smallest integer greater or
equal to the argument.

COS COS Returns the cosine.

COSH N/A
Easy
implementation of
an C UDR possible

Returns the hyperbolic cosine.
Example for the implementation in a
C-UDR at the end of the appendix.

EXP EXP Returns the exponential function of the
argument.

FLOOR FLOOR Returns the largest integer less or equal
to the argument.

LN LN Returns the natural logarithm.

LOG LOG Returns the natural logarithm.

LOG(10,n1) LOG10(n1) Returns the common logarithm (base 10).

MOD MOD Returns the remainder of the first
argument divided by the second
argument.

NANVL N/A Returns an alternative value n1 if the
input value n2 is NaN (not a number). If
n2 is not NaN, then Oracle Returns n2.

328 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The missing functions like cosh, sinh, tanh are quite easy to implement in the C
language because the library calls into the libm library already exists. Only a
mapping to a new database server function has to be done. We want to show
you at the end of the appendix the steps how this can be done in IDS. We use
the implementation of the cosh function in that example.

POWER® POWER Returns the result of raising the first
argument to the power of the second
argument.

REMAINDER Use a SP or your
own C function

The REMAINDER function is similar to
MOD function except that it uses ROUND
in its formula, whereas MOD uses
FLOOR.

ROUND(arg1,arg2) ROUND(arg1,arg2) Rounds a value of the first argument to
the number of decimal places specified
by the second argument.

SIGN N/A
can be
accomplished by a
Stored procedure

Returns: 1 when number is negative, 0
when number is zero, or 1 when number
is positive.

SIN SIN Returns the sine.

SINH N/A
Easy
implementation of
an C UDR possible

Returns the hyperbolic sine.
Example for the implementation in a
C-UDR at the end of the appendix.

SQRT SQRT Returns the square root.

TAN TAN Returns the tangent.

TANH N/A
Easy
implementation of
an C UDR possible

Returns the hyperbolic tangent.

TRUNC(n[,m]) TRUNC(n[,m]) Returns the truncated number n to the
number of decimal places specified by m.

TO_NUMBER TO_NUMBER Converts a number or a character
expression representing a number value
to a DECIMAL data type.

Oracle Informix Comments

 Appendix C. Function mapping 329

C.2 Character function mapping
Table C-2 shows the character function mapping between Oracle and Informix.

Table C-2 Character functions

Oracle Informix Comments

ASCII ASCII Returns the decimal representation of
the first character in a character string,
based on its codepoint in the ASCII
character set.

CHR(n) N/A
Easy implementation of
an C UDR possible

Returns an ASCII code that represents
n.
Example how to implement the
function in a C-UDR at the end of the
appendix.

CONCAT CONCAT Returns the concatenation of two
strings.

INITCAP INITCAP Returns characters with the first letter
of each word in uppercase and the
reset of letters in lowercase.

INSTR N/A
Implementation as a
C_UDR possible

Returns an integer indicating the
position of the character in string that is
the first character of this occurrence.

INSTRB
INSTRC
INSTR2
INSTR4

N/A.
Implementation as a
C_UDR possible

Returns an integer indicating the
position of the character in different
character sets.

LENGTH LENGTH Returns a length of a value.

LENGTHB
LENGTHC
LENGTH2
LENGTH4

N/A Returns the length of a character in
different character sets.

LOWER LOWER Returns the lower case of a character
string.

LPAD(arg1,arg2,
arg3)

LPAD Returns arg1, left-padded to length
arg2 characters with the sequence of
characters in arg3.

LTRIM LTRIM Removes blanks from the beginning of
a string expression.

330 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

The missing functions like CHR and INSTR can be easily added using a C
language based UDR. If your applications require the SOUNDEX function you
can also check the usage of the VERITY of EXCALBUR datablade where this
particular functionality is already implemented.

REPLACE(arg1,a
rg2,arg3)

REPLACE(arg1,arg2,a
rg3)

Replaces all occurrences of srg2 in
arg1 with arg3.

RPAD RPAD Returns the first argument value,
right-padded to the length specified in
the 2nd argument with characters
specified in the third argument.

RTRIM RTRIM Remove blanks from the end of a string
expression.

SOUNDEX N/A Returns a 4-character code
representing the sound of the
argument.

SUBSTR SUBSTR
SUBSTRING

Returns a substring of a string.

SUBSTRB
SUBSTRC
SUBSTR2
SUBSTR4

N/A Returns a substring of a string.

TRANSLATE N/A Returns a string in which one or more
characters in a string are converted to
other characters.

TREAT implement by CAST Changes the declared type of an
expression.

TRIM TRIM Removes leading or trailing blanks or
other specified leading or trailing
characters from a string expression.

UPPER UPPER Returns a string in which all the
characters have been converted to
uppercase characters.

TO_CHAR TO_CHAR Converts an expression that evaluates
to a DATE, DATETIME or numeric
value to a character string.

Oracle Informix Comments

 Appendix C. Function mapping 331

C.3 Date and time function mapping
Table C-3 shows the date and time function mapping between Oracle and
Informix.

Table C-3 Date and time functions

Oracle Informix Comments

ADD_MONTHS ADD_MONTHS Returns the date argument plus integer
months.

CURRENT_DATE TODAY Returns the current date.

CURRENT_TIME
STAMP

CURRENT Returns the current date and time.

DBTIMEZONE N/A Returns the value of the database time
zone.

EXTRACT(
datetime)

YEAR()
MONTH()
DAY()

Extracts and returns the value of a
specified datetime field from a datetime
expression.

FROM_TZ N/A Converts a time stamp value and a time
zone.

SQL>
SQL> SELECT FROM_TZ(TIMESTAMP
'2005-05-13 07:15:31.1234', 'EST')
 2 FROM dual;

FROM_TZ(TIMESTAMP'2005-05-1307:
15:31.1234','EST')

13-MAY-05 07.15.31.1234000 AM EST

SQL>

LAST_DAY LAST_DAY Returns the date of the last day of the
month of the input date.

MONTHS_BETW
EEN(arg1,arg2)

MONTHS_BETWEE
N

Returns number of months between
dates specified in arg1 and arg2.

NEW_TIME(date,
arg1,arg2)

N/A.
Can be implemented
by C-UDR.

Returns the date and time in the time
zone specified in arg2 of the date
specified in the first input argument.

332 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

C.4 Comparison and NULL-related function mapping
Table C-4 shows the comparison and NULL-related function mapping between
Oracle and Informix.

Table C-4 Comparison and NULL-related functions

NEXT_DAY(arg1,
arg2)

NEXT_DAY Returns the date of the first weekday
named by arg2 that is later than the date
arg1.

NUMTOSDINTER
VAL
NUMTOYMINTER
VAL

available through
CAST

Convert a value to an interval value.

ROUND(date,fmt) N/A.
Can be implemented
by an UDR.

Returns date rounded to the unit
specified by the format model fmt.

SESSIONTIMEZO
NE

DBINFO (’get_tz’) Returns the time zone of the current
session.

SYS_EXTRACT_
UTC

Implement by
CURRENT
TIMESTAMP -
CURRENT
TIMEZONE

Returns the UTC time from a datetime
value with time zone offset or time zone.

SYSDATE SYSDATE Returns the current date.

SYSTIMESTAMP CURRENT Returns the current time stamp.

TRUNC(arg1,arg2
)

N/A
Can be implemented
by a UDF

Returns arg1 with the time portion of the
day truncated to the unit specified by
arg2.

TZ_OFFSET N/A Returns the time zone offset

Oracle Informix Comments

Oracle Informix Comments

COALESCE N/A
Implementation by a
C UDR or a Stored
procedure

Returns the first argument that is not null.

 Appendix C. Function mapping 333

LNNVL N/A Evaluates a condition when one or both
operands of the condition may be null.

NULLIF NULLIF Compares two expressions. Returns a
null value if the arguments are equal,
otherwise it returns the value of the first
argument.

NVL NVL Replaces null with a string.

NVL2(arg1,arg2,
arg3)

Can be
implemented by
NVL.

Returns arg2 when arg1 is not null and
Returns arg3 when arg1 is null.

Oracle Informix Comments

334 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

C.5 Encoding, decoding, encryption, and decryption
function mapping

Table C-5 shows the encoding, decoding, encryption, and decryption function
mapping between Oracle and Informix.

Table C-5 Encoding, decoding, encryption, and decryption functions

C.6 Implementation of new C-based functions in IDS
If your application requires a function that does not exist in the standard built-in
function set of IDS you can create your own implementation of this function. This
can be done easily and requires the following steps:

1. Create a C file with your own C code.

2. Compile a relocatable object file with an available C compiler on your system.

3. Create a shared library with the ID utility.

4. Give the library the appropriate permissions and copy the library to a directory
according your definitions.

5. Create a appropriate SQL function definition in your database where you
need to use the new function.

6. Restart the server and use the function.

Oracle Informix Comments

DECODE(expr,
srch_val1,result1,,,
,default)

DECODE Compares the expr to each srch_val one
by one. If the expr is equal to a srch_val,
then returns the corresponding result.

N/A DECRYPT_BIN
DECRYPT_CHAR

Returns a value that is the result of
decrypting encrypted-data.

N/A ENCRYPT_AES
ENCRYPT_TDES

Returns a value that is the result of
encrypting data.

N/A GETHINT Returns the password hint if one is found
in the encrypted-data.

 Appendix C. Function mapping 335

Here is an example that shows you all these steps based on a 32-bit library build
on SUN Solaris. This library should finally provide the new functions ascii, chr
and cosh as a sample implementation. Based on this sample, you should be able
to implement all other missing libraries required by your applications.
Example C-1 shows the sample C code for the functions. We used a naming of
ifmx<function> name. There is a mapping to the SQL interface name later on in
the creation of the function.

Example: C-1 Create your own UDF in C programming language within IDS

#include <mi.h>
#include <math.h>
#include <stdio.h>

mi_lvarchar *ifmxcosh(mi_lvarchar *input, MI_FPARAM *fparam)
{
 mi_lvarchar *RetVal; /* The return value. */
 double ret;
 mi_char buffer[20];
 mi_char *buffer1;

 buffer1=mi_lvarchar_to_string(input);
 if (buffer1);
 ret=atof(buffer1);
 sprintf(buffer,"%g",cosh(ret));

 RetVal = mi_string_to_lvarchar(buffer);

 /* Return the function's return value. */
 return RetVal;
}

mi_lvarchar *ifmxchr(mi_integer input, MI_FPARAM *fparam)
{

mi_lvarchar *RetVal; /* The return value. */
 mi_char buffer[20];
 sprintf(buffer, "%c", input);
 RetVal = mi_string_to_lvarchar(buffer);

 /* Return the function's return value. */
 return RetVal;
}

mi_lvarchar *ifmxascii(mi_lvarchar *input, MI_FPARAM *fparam)

336 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

{
 mi_integer ret;
 mi_lvarchar *RetVal; /* The return value. */
 mi_char buffer[20];
 mi_char *buffer1;

 buffer1=mi_lvarchar_to_string(input);
 if (buffer1)
 sprintf(buffer, "%d", buffer1[0]);
 RetVal = mi_string_to_lvarchar(buffer);

 /* Return the function's return value. */
 return RetVal;
}

After the implementation of the function, you must compile and link the code into
a shared library, as shown in Example C-2. These calls depend on the base
operating system and the memory layout. In case you use a 64-bit operating
system the calls to the compiler and linker most likely require different options for
the build. We build the library and copy the library into the extend subdirectory of
the IDS distribution. This is the default place where all datablade objects reside.
Make sure that the library has only read and execute permissions. The IDS do
not accept the specification of a file with write permissions enabled.

Example: C-2 Compile and link a shared library on SUN Solaris 32 Bit

#Build example for the Library -- Solaris -- 32 Bit !
cc -xs -I$INFORMIXDIR/incl/public -c -o functions.o functions.c
ld -G -o $INFORMIXDIR/extend/oracle/functions.bld functions.o
chmod a+x $INFORMIXDIR/extend/oracle/functions.bld

After creating the library, you only need to register the library functions in the IDS
server. You can do this with a create function and the specification of the input
and output parameter. The location of the new library and the used programming
language is additional required. The SQL statements for the registration are
shown in Example C-3 on page 338. You can see that this is where the mapping
to the final name is made. Finally, we show in the example how to use the
functions in a simple SQL statement.

 Appendix C. Function mapping 337

Example: C-3 Register user defined C- UDR with SQL statements in IDS

$dbaccess -e stores_demo << EOF
CREATE FUNCTION "holgerk".ascii(varchar(1))
RETURNING varchar(10)
WITH (NOT VARIANT, PARALLELIZABLE)
EXTERNAL NAME
"/sqldists/10.00.UC8/extend/oracle/functions.bld(ifmxascii)"
LANGUAGE C
END FUNCTION;

CREATE FUNCTION "holgerk".chr(integer)
RETURNING varchar(10)
WITH (NOT VARIANT, PARALLELIZABLE)
EXTERNAL NAME
"/sqldists/10.00.UC8/extend/oracle/functions.bld(ifmxchr)"
LANGUAGE C
END FUNCTION;

CREATE FUNCTION "holgerk".cosh(varchar(10))
RETURNING varchar(10)
WITH (NOT VARIANT, PARALLELIZABLE)
EXTERNAL NAME
"/sqldists/10.00.UC8/extend/oracle/functions.bld(ifmxcosh)"
LANGUAGE C
END FUNCTION;
EOF

#Use the functions in SQL statements

Database selected.

select cosh(1) from systables where tabid=1;

(constant)
1.54308
1 row(s) retrieved.

select ascii('A') from systables where tabid=1;
(constant)
65
1 row(s) retrieved.

select chr(100) from systables where tabid=1;
(constant)

1 row(s) retrieved.
Database closed.

338 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Appendix D. Database server monitoring

Monitoring the database server, focussing on operating system and database
server resource utilization, is one of the essential tasks for database
administration. In this appendix we give you a brief mapping of the outputs of
common monitoring facilities such as onstat and the sysmaster database
interface in Informix IDS, and some common SQL queries in Oracle sqlplus. We
included some of the major resources, as follows:

� Operating system and database server memory utilization
� System utilization
� Sessions, active queries, temp tables and session memory
� Cache utilization
� Disk space utilization
� Performance monitoring

D

© Copyright IBM Corp. 2009. All rights reserved. 339

D.1 Memory monitoring

One of the major resources on the host operating system is the memory used by
the database server and the client applications. With a focus on IDS, the
monitoring will provide information about such things as the amount of allocated
shared memory segments and their sizes. The database server processes
maintain all their data in the shared memory segments. The use of the local data
segments in the process is itself low, and so no special monitoring activity is
required. As shown in Example D-1, you can see the current amount of allocated
shared memory segments and their utilization. You can map the onstat output
with an ipcs -m operating system call with the segment ID in the first column.

Example: D-1 Monitoring shared memory segments in Informix IDS

holgerk {orion} onstat -g seg

IBM Informix Dynamic Server Version 11.10.FC2W3 -- On-Line -- Up 58
days 18:31:05 -- 148480 Kbytes

Segment Summary:
id key addr size ovhd class blkused blkfree
1 1396918273 10a00000 116391936 1795104 R 28376 40
2 1396918274 110f0000 8388608 99704 V 2048 0
3 1396918275 11170000 9437184 112040 V 2304 0
4 1396918276 11200000 1048576 13544 M 138 118
5 1396918277 11210000 8388608 99704 V 1309 739
6 1396918278 11290000 8388608 99704 V 26 2022
Total: - - 152043520 - -
34201 2919

 (* segment locked in memory)

dbaccess -e sysmaster << EOF
select * from sysseglst;
EOF

seg_address 4462739456
seg_next 4579131392
seg_prev 4606394368
seg_class 1
seg_size 116391936
seg_osshmid 1
seg_osmaxsize 134217728
seg_osshmkey 1396918273

340 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

seg_procid 4337
seg_userid 200
seg_shmaddr 4462739456
seg_ovhd 1795104
seg_lock 4462740016
seg_nextid 268435486
seg_bmapsz 1363968
seg_blkused 28376
seg_blkfree 40

If you want to drill down deeper into the memory utilization of the allocated
shared memory segments, you can use the onstat -g mem. A common output is
depicted in Example D-2. This output shows you the allocated pools in the
shared memory segments, the amount of memory allocated for each pool, and
the distribution of the memory in free and used memory.

Example: D-2 Memory monitoring in view of memory pools their memory utilization

{orion} onstat -g mem

IBM Informix Dynamic Server Version 11.10.FC2W3 -- On-Line -- Up 58
days 19:16:17 -- 148480 Kbytes

Pool Summary:
name class addr totalsize freesize #allocfrag
#freefrag
afpool V 10f28040 8192 1560 7 3
tpcpool V 112fe040 20480 3368 14 3
seqpool V 11339040 4096 752 2 1
pnlpool V 11301040 28672 2280 23 3
sbtlist V 11005040 20480 7216 4 3
dstpool V 112fd040 8192 3304 2 2
sqcrypto V 115fb040 4096 480 2 1
EXE.20.52 V 123ea040 4096 760 2 1
EXE.20.52 V 12543040 4096 760 2 1
EXE.20.52 V 1258d040 4096 696 3 1
EXE.20.52 V 1253e040 4096 376 8 1

dbaccess -e sysmaster << EOF
select * from syspoollst;
EOF

po_id 7
po_address

 Appendix D. Database server monitoring 341

po_next
po_prev
po_lock 0
po_name sbtlist
po_class 2
po_flags 0
po_freeamt 7216
po_usedamt 13264
po_freelist 4580200648
po_list 4580200608

D.2 Process utilization and configuration

A specific IDS database server instance is defined by a specific number of
processes. The number of processors dedicated to the instance is stable and
independent from the number of clients connecting to the database server. If you
want to monitor the number of server processes and their workload you can use
the onstat -g glo statement. Example D-3 shows the details of a possible
output. The sysmaster table sysvplst can be selected for the same information
using the SQL interface.

Example: D-3 Monitoring IDS server processes

onstat -g glo
Virtual processor summary:
 class vps usercpu syscpu total
 cpu 4 1947.94 461.54 2409.48
 aio 10 228.86 447.69 676.55
 lio 1 20.12 38.17 58.29
 pio 1 24.68 56.40 81.08
 adm 1 182.66 299.36 482.02
 soc 1 130.97 540.31 671.28
 msc 1 0.00 0.01 0.01
 total 19 2535.23 1843.48 4378.71

Individual virtual processors:
 vp pid class usercpu syscpu total
 1 4337 cpu 343.62 97.09 440.71
 2 4338 adm 182.66 299.36 482.02
 3 4339 cpu 525.95 112.75 638.70
 4 4340 cpu 535.50 114.64 650.14
 5 4341 cpu 542.87 137.06 679.93
 6 4342 lio 20.12 38.17 58.29

342 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 7 4343 pio 24.68 56.40 81.08
 8 4344 aio 20.74 42.63 63.37
 9 4345 msc 0.00 0.01 0.01
 10 4346 aio 24.14 56.59 80.73
 11 4347 aio 21.00 40.94 61.94
 12 4348 aio 27.68 53.03 80.71
 13 4349 aio 19.06 37.33 56.39
 14 4350 aio 21.86 39.81 61.67
 15 4351 aio 23.37 42.26 65.63
 16 4352 aio 29.99 56.47 86.46
 17 4353 aio 18.72 39.23 57.95
 18 4354 aio 22.30 39.40 61.70
 19 4355 soc 130.97 540.31 671.28
 tot 2535.23 1843.48 4378.71

dbaccess -e sysmaster << EOF
select * from sysvplst;
EOF

vpid 1
address 4579319848
pid 4337
usecs_user 343.6400000000
usecs_sys 97.09000000000
scputimep 4579319864
....

Monitoring the processes and their system utilization is useful from the operating
system monitoring point of view. From the database administration point of view
a much better view of the granularity of the workload of the database server can
be achieved by looking at the threads. IDS internally creates it own threads doing
the work for incoming client requests. They are executed on all processes of the
name type CPU VP. Look at the output of onstat -g ath, onstat -g act or
onstat -g rea for threads. These outputs give you either the complete view of
the existing threads in the system or a particular view on threads with the same
status in the system. Example D-4 on page 344 shows an example for an output
of all the threads that currently exist in the server.

 Appendix D. Database server monitoring 343

Example: D-4 Monitoring threads in the Informix IDS

holgerk {orion} onstat -g ath

Threads:
 tid tcb rstcb prty status vp-class name
 2 111455d18 0 1 IO Idle 6lio* lio vp 0
 3 111475c98 0 1 IO Idle 7pio* pio vp 0
 4 111495c98 0 1 IO Idle 8aio* aio vp 0
 5 1114b4c98 0 1 IO Idle 9msc* msc vp 0
 6 1114e3c98 0 1 IO Idle 10aio* aio vp 1
 7 111502c98 0 1 IO Idle 11aio* aio vp 2
 8 111521c98 0 1 IO Idle 12aio* aio vp 3
 9 111540c98 0 1 IO Idle 13aio* aio vp 4
 10 11155fc98 0 1 IO Idle 14aio* aio vp 5
 11 11157ec98 0 1 IO Idle 15aio* aio vp 6
 12 11159dc98 0 1 IO Idle 16aio* aio vp 7
 13 1115bcc98 0 1 IO Idle 17aio* aio vp 8
 14 1115dbc98 0 1 IO Idle 18aio* aio vp 9
 15 111607028 1111ca028 3 sleeping secs: 1 4cpu main_loop()
 16 111620028 0 1 running 1cpu* sm_poll
 17 11163a2a8 0 1 running 19soc* soctcppoll
 18 111656028 0 2 sleeping forever 1cpu sm_listen
 19 11167e208 0 1 sleeping secs: 1 3cpu sm_discon
 20 111693348 0 2 sleeping forever 1cpu* soctcplst

D.3 Disk space monitoring

In addition to the memory and processor utilization there is another critical
resource provided by the operating system and used by the database server,
and that is the disk space. IDS views dbspaces as a logical organization unit,
combining disks together for the use in the server instance for objects, such as
logs, tables and indexes. There is also the definition of chunks as the physical
unit describing the view of the database server to the physical files and raw
devices. You can use the onstat -d output command for monitoring the
dbspace and chunk statistics. Example D-5 on page 345 shows the sample
output for a system with 5 dbspaces, where each dbspace maintains one chunk.
Important from the administration point of view is the parameter attached to the
chunk. Look particularly at the sizes, the location and the free parameter. Define
high watermarks for the free parameter to react appropriately before the chunk
runs out of disk space and your production environment is impacted by an out of
disk space condition.

344 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Example: D-5 onstat -d to monitor the disk utilization

onstat -d
Dbspaces
address number flags fchunk nchunks pgsize flags owner
name
1110dee88 1 0x60001 1 1 2048 N B informix rootdbs
111221ce0 2 0x60001 2 1 2048 N B informix dbspace2
111221e78 3 0x60001 3 1 2048 N B informix dbs1
11120ac50 4 0x60001 4 1 2048 N B informix dbs2
11120ade8 5 0x60001 5 1 2048 N B informix dbs3
 5 active, 2047 maximum

Chunks
address chunk/dbs offset size free bpages flags
pathname
1110e0028 1 1 0 50000 23606 PO-B /dbspaces/rootdbs.1110fc2w3
1110e0278 2 2 0 10240 10212 PO-B /dbspaces/dbs2.00
1110e0460 3 3 0 25000 24667 PO-B /dbspaces/11.10.FCW3/dbs1
1110e0648 4 4 0 25000 24667 PO-B /dbspaces/11.10.FCW3/dbs2
1110e0830 5 5 0 25000 19947 PO-B /dbspaces/11.10.FCW3/dbs3
 5 active, 32766 maximum

dbaccess -e sysmaster << EOF
select * from sysdbspaces;
select * from syschunks;
EOF

dbsnum 1
name rootdbs
owner informix
pagesize 2048
fchunk 1
nchunks 1
is_mirrored 0
is_blobspace 0
is_sbspace 0
is_temp 0
flags 393217

chknum 1
dbsnum 1
nxchknum 0
pagesize 2048
chksize 50000

 Appendix D. Database server monitoring 345

offset 0
nfree 23606
mdsize -1
udsize -1
udfree -1
is_offline 0
is_recovering 0
is_blobchunk 0
is_sbchunk 0
is_inconsistent 0
flags 196672

D.4 Session monitoring

IDS provides two types of views for session monitoring. You can use a table
oriented global view showing the session basics, such as the user name, the
current statement type, database and status information and some accumulated
values for used memory. You can also use either onstat -g sql or onstat -g
ses for generating the output, as depicted in Example D-6.

Example: D-6 Session monitoring

holgerk {orion} onstat -g sql

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
Explain
49 UPDATE stores_demo NL Not Wait 0 0 9.24 Off
47 SELECT sysmaster CR Not Wait 0 0 9.24 Off
21 sysadmin DR Wait 5 0 0 - Off
20 sysadmin DR Wait 5 0 0 - Off
19 sysadmin DR Wait 5 0 0 - Off

holgerk {orion} onstat -g ses
session #RSAM total used
dynamic
id user tty pid hostname threads memory memory
explain
50 informix - 0 - 0 12288 11576 off
49 informix 5 28389 orion 1 86016 75456 off
47 huser1 5 27999 orion 1 184320 175816 off
21 informix - 0 - 1 479232 395192 off
20 informix - 0 - 1 487424 354528 off
19 informix - 0 - 1 258048 194048 off
8 informix - 0 - 0 12288 11576 off

346 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

7 informix - 0 - 0 16384 13192 off
6 informix - 0 - 0 12288 11576 off
4 informix - 0 - 0 16384 13192 off
3 informix - 0 - 0 12288 11576 off
2 informix - 0 - 0 12288 11576 off

dbaccess -e sysmaster << EOF
select * from syssessions;
EOF

If you want to have more details about a particular session, use the same onstat
-g ses or onstat -g sql with the additional specification of the session number
you obtained from the previous examples. A sample output is depicted in
Example D-7.

Example: D-7 Detailed session information for a particular session

holgerk {orion} onstat -g ses 47

IBM Informix Dynamic Server Version 11.10.FC2W3 -- On-Line -- Up 58 days
21:39:18 -- 148480 Kbytes

session effective #RSAM total used
dynamic
id user user tty pid hostname threads memory
memory explain
47 informix - 5 27999 orion 1 184320
175816 off

tid name rstcb flags curstk status
81 sqlexec 1111d0148 Y--P--- 7791 cond wait sm_read -

Memory pools count 2
name class addr totalsize freesize #allocfrag #freefrag
47 V 11235e040 180224 7680 222 16
47*O0 V 1122cb040 4096 824 1 1

name free used name free used
overhead 0 6544 mtmisc 0 80
scb 0 144 opentable 0 4592
filetable 0 1160 log 0 16520
temprec 0 10104 keys 0 656
ralloc 0 101472 gentcb 0 1584
ostcb 0 2872 sqscb 0 20392
sql 0 72 rdahead 0 608
hashfiletab 0 552 osenv 0 2752
sqtcb 0 4616 fragman 0 680
sapi 0 88 udr 0 232

 Appendix D. Database server monitoring 347

sqscb info
scb sqscb optofc pdqpriority sqlstats optcompind
directives
1123000b0 11258f028 0 0 0 0 1

Sess SQL Current Iso Lock SQL ISAM F.E.
Id Stmt type Database Lvl Mode ERR ERR Vers
Explain
47 SELECT sysmaster CR Not Wait 0 0 9.24 Off

Current statement name : slctcur

Current SQL statement :
 select * from syschunks

Last parsed SQL statement :
 select * from syschunks

D.5 Cache monitoring

The database server uses different caches to maintain the information of already
evaluated and still valid database object information. The object is evaluated
once by reading the data from the system catalog from disk. All subsequent
readers can use the cache to access the information either exclusive or shared,
depending on the current requests. Once the object is invalidated in cache it will
be removed. You can monitor the different caches in the database server for
objects such as tables, stored procedures, and user-defined types or statements.
Use onstat -g dic, onstat -g prc or onstat -g cac for this. See Example D-8
for how the sample output will appear.

Example: D-8 Display the content of several database caches

{orion} onstat -g dic
Dictionary Cache: Number of lists: 31, Maximum list size: 10

list# size refcnt dirty? heapptr table name
--
 0 1 0 no 1123e0038 sysmaster@srv:informix.sysdbstab

 1 2 0 no 1123be038 sysmaster@srv:informix.syspoollst
 0 no 112373038 sysmaster@srv:informix.systabnames

 3 3 0 no 112571838 sysmaster@srv:informix.sysdbspaces
 0 no 11236c838 sysadmin@srv:informix.mon_vps
 0 no 1123ab838 sysmaster@srv:informix.systcblst

348 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

 4 3 0 no 1122bb038 sysmaster@srv:informix.syscheckpoint
 0 no 1128ba038 sysadmin@srv:informix.systables
 0 no 1128c6838 sysadmin@srv:informix.ph_version

 5 1 1 no 112340038 sysadmin@srv:informix.mon_config

 6 2 0 no 112388038 sysmaster@srv:informix.sysshmhdr
 0 no 1123f8838 sysmaster@srv:informix.systables

 7 1 0 no 112270838 sysmaster@srv:informix.sysseglst

 8 1 0 no 11231e038 sysmaster@srv:informix.sysenv

 9 1 0 no 1128db838 sysadmin@srv:informix.sysindices

 11 4 1 no 1122e5838 stores_demo@srv:informix.systables
 0 no 11238f838 sysmaster@srv:informix.sysvplst
 0 no 1123d5838 sysmaster@srv:informix.sysptnhdr
 6 no 1128e6838 sysadmin@srv:informix.ph_run

 14 1 7 no 1112f6568 sysadmin@srv:informix.ph_task

holgerk {orion} onstat -g prc

UDR Cache:
 Number of lists : 31
 PC_POOLSIZE : 127

UDR Cache Entries:

list# id ref_cnt dropped? heap_ptr udr name
--

0 27 0 0 1123f7038 sysadmin@srv:.destroy
2 380 0 0 11231b438 sysadmin@srv:.check_backup
3 33 0 0 1122ab438 sysadmin@srv:.destroy
3 133 0 0 112319438 sysadmin@srv:.assign
4 28 0 0 112312838 sysadmin@srv:.assign
8 378 0 0 1122a0c38 sysadmin@srv:.onconfig_save_diffs
8 49 0 0 1123e4838 sysadmin@srv:.destroy

 Appendix D. Database server monitoring 349

350 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Appendix E. Database server utilities

IDS includes the following utilities that let you perform administrative tasks and
capture information about configuration and performance. These utilities are
described in detail in the relevant publication of the IDS documentation set, as
shown in the last column of the table.

Table 9-9 IDS utilities

E

Utility Description Where described

archecker Verify backups and perform table-level
restores.

IBM Informix Backup and
Restore Guide

cdr Control enterprise replication
operations.

IBM Informix Dynamic
Server Enterprise
Replication Guide

dbexport Unload a database into text files for
later import into another database and
create a schema file

IBM Informix Migration
Guide

dbimport Create and populate a database from
text files. Use the schema file with
dbimport to recreate the database
schema.

IBM Informix Migration
Guide

dbload Load data into databases or tables IBM Informix Migration
Guide

© Copyright IBM Corp. 2009. All rights reserved. 351

dbschema Create a file that contains the SQL
statements needed to replicate a
specified table, view, or database, or
view the information schema.

IBM Informix Migration
Guide

imcadmin Start or stop Informix MaxConnect, or
gather statistics on it.

IBM Informix MaxConnect
User's Guide

ism Manage IBM Informix Storage
Manager, storage devices, and media
volumes.

IBM Informix Storage
Manager Administrator's
Guide

onaudit Manage audit masks and auditing
configurations.

IBM Informix Security
Guide

onbar Back up and restore storage spaces
and logical logs.

IBM Informix Backup and
Restore Guide

oncheck Check specified disk structures for
inconsistencies, repair inconsistent
index structures, and display
information about disk structures.

IBM Informix
Administrator's Reference

oncmsm Start the Connection Manager, which
manages and redirects client
connection requests based on service
level agreements configured by the
system administrator.

IBM Informix
Administrator's Reference

ondblog Change the logging mode. IBM Informix
Administrator's Reference

oninit Bring the database server online. IBM Informix
Administrator's Reference

onload Load data that was created with
onunload into the database server.

IBM Informix Migration
Guide

onlog Display the contents of logical-log files. IBM Informix
Administrator's Reference

onmode Change the database server operating
mode and perform various other
operations on shared memory,
sessions, transactions, parameters,
and segments.

IBM Informix
Administrator's Reference

ON-Monitor Perform administrative tasks using the
ON-Monitor menus.

IBM Informix
Administrator's Reference

Utility Description Where described

352 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

onparams Modify the configuration of logical logs
or physical logs.

IBM Informix
Administrator's Reference

onpassword Encrypts and decrypts password files
for Enterprise Replication and
Connection Manager.

IBM Informix
Administrator's Reference

onperf Monitor database server performance
(create graphs, query trees, and show
status and metrics).

IBM Informix Performance
Guide

onpladm Write scripts and create files that
automate data load and unload jobs.

IBM Informix
High-Performance Loader
User's Guide

onshowaudit Extract information from an audit trail. IBM Informix Security
Guide

onspaces Modify dbspaces, blobspaces,
sbspaces, or extspaces.

IBM Informix
Administrator's Reference

onstat Monitor the operation of the database
server.

IBM Informix
Administrator's Reference

ontape Log, back up, and restore data. IBM Informix Backup and
Restore Guide

onunload Unload data from the database server. IBM Informix Migration
Guide

Utility Description Where described

 Appendix E. Database server utilities 353

354 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Appendix F. Additional material

This book refers to additional material that can be downloaded from the Internet
as described in the sections that follow.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247730

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials from the domains list in the upper left corner of
the web page, and the open the directory that corresponds with the IBM
Redbooks form number, SG24-7730. See the readme.txt file for instructions, and
the ALL ORACLE DDL.TXT file for a list of all the required DDL.

F

© Copyright IBM Corp. 2009. All rights reserved. 355

ftp://www.redbooks.ibm.com/redbooks/SG247730
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this book includes the following
files:

File name Description
orclsetup.rar Zipped File Setup

This rar file contains the scripts, commands and instructions for creating the
example database used in the MTK Tutorial in Chapter 5, “An MTK tutorial” on
page 73.

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space: 5 MB minimum
Operating System: Windows 2000
Processor: Intel® 386 or higher
Memory: 16 MB

To download to AIX Linux or UNIX, use the equivalent or higher system capacity
as specified for Windows

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

356 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Glossary

Access control list (ACL). The list of principals
that have explicit permission (to publish, to
subscribe to, and to request persistent delivery of a
publication message) against a topic in the topic
tree. The ACLs define the implementation of
topic-based security.

Aggregate. Pre-calculated and pre-stored
summaries, kept in the data warehouse to improve
query performance.

Aggregation. An attribute-level transformation
that reduces the level of detail of available data, for
example, having a Total Quantity by Category of
Items rather than the individual quantity of each item
in the category.

Application programming interface. An
interface provided by a software product that
enables programs to request services.

Asynchronous messaging. A method of
communication between programs in which a
program places a message on a message queue,
and then proceeds with its own processing without
waiting for a reply to its message.

Attribute. A field in a dimension table.

BLOB. Binary large object, a block of bytes of data
(for example, the body of a message) that has no
discernible meaning, but is treated as one solid
entity that cannot be interpreted.

Commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins.

Composite key. A key in a fact table that is the
concatenation of the foreign keys in the dimension
tables.

© Copyright IBM Corp. 2009. All rights reserved.
Computer. A device that accepts information (in
the form of digitalized data) and manipulates it for
some result based on a program or sequence of
instructions about how the data is to be processed.

Configuration. The collection of brokers, their
execution groups, the message flows and sets that
are assigned to them, and the topics and associated
access control specifications.

Continuous Data Replication. Refer to
Enterprise Replication.

DDL (data definition language). An SQL
statement that creates or modifies the structure of a
table or database, for example, CREATE TABLE,
DROP TABLE, ALTER TABLE, or CREATE
DATABASE.

DML (data manipulation language). An INSERT,
UPDATE, DELETE, or SELECT SQL statement.

Data append. A data loading technique where new
data is added to the database, leaving the existing
data unaltered.

Data cleansing. A process of data manipulation
and transformation to eliminate variations and
inconsistencies in data content. This is typically to
improve the quality, consistency, and usability of the
data.

Data federation. The process of enabling data
from multiple heterogeneous data sources to appear
as though it is contained in a single relational
database. Can also be referred to “distributed
access.”

Data mart. An implementation of a data
warehouse, typically with a smaller and more tightly
restricted scope, such as for a department or
workgroup. It can be independent, or derived from
another data warehouse environment.

 357

Data mining. A mode of data analysis that has a
focus on the discovery of new information, such as
unknown facts, data relationships, or data patterns.

Data partition. A segment of a database that can
be accessed and operated on independently, even
though it is part of a larger data structure.

Data refresh. A data loading technique where all
the data in a database is completely replaced with a
new set of data.

Data warehouse. A specialized data environment
developed, structured, and used specifically for
decision support and informational applications. It is
subject oriented rather than application oriented.
Data is integrated, non-volatile, and time variant.

Database partition. Part of a database that
consists of its own data, indexes, configuration files,
and transaction logs.

DataBlades. These are program modules that
provide extended capabilities for Informix databases
and are tightly integrated with the DBMS.

DB Connect. Enables connection to several
relational database systems and the transfer of data
from these database systems into the SAP®
Business Information Warehouse.

Debugger. A facility on the Message Flows view in
the Control Center that enables message flows to be
visually debugged.

Deploy. Make operational the configuration and
topology of the broker domain.

Dimension. Data that further qualifies or describes
a measure, or both, such as amounts or durations.

Distributed application In message queuing, a
set of application programs that can each be
connected to a different queue manager, but that
collectively constitute a single application.

Drill-down. Iterative analysis, exploring facts at
more detailed levels of the dimension hierarchies.

Dynamic SQL. SQL that is interpreted during
execution of the statement.

Embedded Database. A database that works
exclusively with a single application or
appliance.

Engine. A program that performs a core or
essential function for other programs. A database
engine performs database functions on behalf of the
database user programs.

Enrichment. The creation of derived data. An
attribute-level transformation performed by some
type of algorithm to create one or more new
(derived) attributes.

Enterprise Replication. An asynchronous,
log-based tool for replicating data between IBM
Informix Dynamic Server database servers.

Extenders. These are program modules that
provide extended capabilities for DB2 and are tightly
integrated with DB2.

FACTS. A collection of measures, and the
information to interpret those measures in a given
context.

Federation. Providing a unified interface to diverse
data.

Gateway. A means to access a heterogeneous
data source. It can use native access or ODBC
technology.

Grain. The fundamental lowest level of data
represented in a dimensional fact table.

Instance. A particular realization of a computer
process. Relative to the database, the realization of
a complete database environment.

Java Database Connectivity. An application
programming interface that has the same
characteristics as ODBC, but is specifically
designed for use by Java database applications.

358 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Java Development Kit. A Software package used
to write, compile, debug, and run Java applets and
applications.

Java Message Service. An application
programming interface that provides Java language
functions for handling messages.

Java Runtime Environment. A subset of the Java
Development Kit that enables you to run Java
applets and applications.

Materialized query table. A table where the
results of a query are stored for later reuse.

Measure. A data item that measures the
performance or behavior of business processes.

Message domain. The value that determines how
the message is interpreted (parsed).

Message flow. A directed graph that represents
the set of activities performed on a message or
event as it passes through a broker. A message flow
consists of a set of message processing nodes and
message processing connectors.

Message parser. A program that interprets the bit
stream of an incoming message and creates an
internal representation of the message in a tree
structure. A parser is also responsible for generating
a bit stream for an outgoing message from the
internal representation.

Metadata. Typically called data (or information)
about data. It describes or defines data elements.

MOLAP. Multidimensional OLAP. Can be called
MD-OLAP. It is OLAP that uses a multidimensional
database as the underlying data structure.

Multidimensional analysis. Analysis of data
along several dimensions, for example, analyzing
revenue by product, store, and date.

Multitasking. Operating system capability that
allows multiple tasks to run concurrently, taking
turns using the resources of the computer.

Multithreading. Operating system capability that
enables multiple concurrent users to use the same
program. This saves the overhead of initiating the
program multiple times.

Nickname. An identifier that is used to reference
the object located at the data source that you want
to access.

Node group. Group of one or more database
partitions.

Node. An instance of a database or database
partition.

ODS. (1) Operational data store: A relational table
for holding clean data to load into InfoCubes, and
can support some query activity. (2) Online Dynamic
Server, an older name for IDS.

OLAP. Online analytical processing.
Multidimensional data analysis, performed in real
time. Not dependent on an underlying data schema.

Open Database Connectivity. A standard
application programming interface for accessing
data in both relational and non-relational database
management systems. Using this API, database
applications can access data stored in database
management systems on a variety of computers
even if each database management system uses a
different data storage format and programming
interface. ODBC is based on the call-level interface
(CLI) specification of the X/Open SQL Access
Group.

Optimization. The capability to enable a process
to execute and perform in such a way as to
maximize performance, minimize resource
utilization, and minimize the process execution
response time delivered to the user.

Partition. Part of a database that consists of its
own data, indexes, configuration files, and
transaction logs.

Pass-through. The act of passing the SQL for an
operation directly to the data source without being
changed by the federation server.

 Glossary 359

Pivoting. Analysis operation where a user takes a
different viewpoint of the results, for example, by
changing the way the dimensions are arranged.

Primary key. Field in a table that is uniquely
different for each record in the table.

Process. An instance of a program running in a
computer.

Program. A specific set of ordered operations for a
computer to perform.

Pushdown. The act of optimizing a data operation
by pushing the SQL down to the lowest point in the
federated architecture where that operation can be
executed. More simply, a pushdown operation is
one that is executed at a remote server.

RSAM. Relational Sequential Access Method is
the disk access method and storage manager for the
Informix DBMS.

ROLAP. Relational OLAP. Multidimensional
analysis using a multidimensional view of relational
data. A relational database is used as the underlying
data structure.

Roll-up. Iterative analysis, exploring facts at a
higher level of summarization.

Server. A computer program that provides
services to other computer programs (and their
users) in the same or other computers. However, the
computer that a server program runs in is also
frequently referred to as a server.

Shared nothing. A data management architecture
where nothing is shared between processes. Each
process has its own processor, memory, and disk
space.

Static SQL. SQL that has been compiled prior to
execution. Typically provides best performance.

Subject area. A logical grouping of data by
categories, such as customers or items.

Synchronous messaging. A method of
communication between programs in which a
program places a message on a message queue
and then waits for a reply before resuming its own
processing.

Task. The basic unit of programming that an
operating system controls. Also see Multitasking.

Thread. The placeholder information associated
with a single use of a program that can handle
multiple concurrent users. Also see Multithreading.

Unit of work. A recoverable sequence of
operations performed by an application between two
points of consistency.

User mapping. An association made between the
federated server user ID and password and the data
source (to be accessed) user ID and password.

Virtual database. A federation of multiple
heterogeneous relational databases.

Warehouse catalog. A subsystem that stores and
manages all the system metadata.

xtree. A query-tree tool that enables you to monitor
the query plan execution of individual queries in a
graphical environment.

360 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

acronyms
ACS™ Access control system

ADK Archive Development Kit

API Application programming
interface

AQR Automatic query rewrite

AR Access register

ARM Automatic restart manager

ART Access register translation

ASCII American Standard Code for
Information Interchange

AST Application summary table

AUS Auto Update Statistics

BLOB Binary large object

BW Business Information
Warehouse (SAP)

CCMS Computing Center
Management System

CDR Continuous Data Replication

CFG Configuration

CLI Call-level interface

CLOB Character large object

CLP Command-line processor

CLR Continuous Log Recovery

CORBA Common Object Request
Broker Architecture

CPU Central processing unit

CS Cursor Stability

DaaS Data as a Service

DAS DB2 Administration Server

DB Database

DB2 II DB2 Information Integrator

DB2 UDB DB2 Universal Database™

DBA Database administrator

Abbreviations and

© Copyright IBM Corp. 2009. All rights reserved.
DBM Database manager

DBMS Database management
system

DCE Distributed computing
environment

DCM Dynamic Coserver
Management

DCOM Distributed Component
Object Model

DDL Data definition language

DES Data Encryption Standard

DIMID Dimension Identifier

DLL Dynamic link library

DML Data manipulation language

DMS Database managed space

DPF Data partitioning facility

DRDA Distributed Relational
Database Architecture™

DSA Dynamic Scalable
Architecture

DSN Data source name

DSS Decision support system

EAI Enterprise Application
Integration

EBCDIC Extended Binary Coded
Decimal Interchange Code

EDA Enterprise data architecture

EDU Engine dispatchable unit

EGL Enterprise Generation
Language

EGM Enterprise Gateway Manager

EJB™ Enterprise Java Beans

ER Enterprise Replication

ERP Enterprise Resource Planning

 361

ESE Enterprise Server Edition

ETL Extract, Transform, and Load

FP Fix Pack

FTP File Transfer Protocol

Gb Gigabits

GB Gigabytes

GLS Global Language Support

GUI Graphical user interface

HADR High Availability Disaster
Recovery

HDR High Availability Data
Replication

HPL High Performance Loader

I/O Input/output

IBM International Business
Machines Corporation

ID Identifier

IDE Integrated Development
Environment

IDS Informix Dynamic Server

II Information Integrator

IMS Information Management
System

ISA Informix Server Administrator

ISV Independent Software Vendor

ISAM Indexed Sequential Access
Method

ISM Informix Storage Manager

ISV Independent software vendor

IT Information technology

ITR Internal throughput rate

ITSO International Technical
Support Organization

IX Index

J2EE Java 2 Platform Enterprise
Edition

JAR Java Archive

JDBC Java Database Connectivity

JDK Java Development Kit

JE Java Edition

JMS Java Message Service

JRE™ Java Runtime Environment

JVM Java Virtual Machine

KB Kilobyte (1024 bytes)

LBAC Label Based Access Control

LDAP Lightweight Directory Access
Protocol

LPAR Logical partition

LRU Least Recently Used

LUN Logical unit number

LV Logical volume

Mb Megabits

MB Megabytes

MDC Multidimensional clustering

MPP Massively parallel processing

MQI Message queuing interface

MQT Materialized query table

MRM Message repository manager

MTK IBM Migration Toolkit

NPI Non-partitioning index

OAT Open Admin Tool

ODBC Open Database Connectivity

ODS Operational data store

OEM Original Equipment
Manufacturer

OLAP Online analytical processing

OLE Object linking and embedding

OLTP Online transaction processing

ORDBMS Object Relational Database
Management System

OS Operating System

O/S Operating System

PAM Pluggable Authentication
Module

PDS Partitioned data set

362 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

PHP Hypertext preprossor. A
general purpose scripting
language.

PIB Parallel index build

PSA Persistent staging area

RBA Relative byte address

RBAC Role Based Access Control

RBW Red brick warehouse

RDBMS Relational Database
Management System

RHEL Red Hat® Enterprise Linux

RID Record identifier

RR Repeatable read

RS Read stability

RSAM Relational Sequential Access
Method

RSS Remote Standalone
Secondary

RTO Recovery Time Objective

SA Systems administrator

SCB Session control block

SDK Software Developers Kit

SDS Shared Disk Secondary

SID Surrogate identifier

SLES SuSE Linux Enterprise Server

SMI System Monitoring
Interface

SMIT Systems Management
Interface Tool

SMP Symmetric multiprocessing

SMS System Managed Space

SSJE Server Studio Java Edition

SOA Service-oriented architecture

SOAP Simple Object Access
Protocol

SPL Stored Procedure Language

SQL Structured query

TCB Thread control block

TMU Table management utility

TS Table space

UDB Universal Database

UDF User defined function

UDR User defined routine

URL Uniform Resource Locator

VG Volume group (RAID disk
terminology).

VLDB Very large database

VP Virtual processor

VSAM Virtual sequential access
method

VII Virtual Index Interface

VTI Virtual Table Interface

WFS Web Feature Service

WSDL Web Services Definition
Language

WWW World Wide Web

XBSA X-Open Backup and Restore
APIs

XML Extensible Markup Language

XPS Informix Extended Parallel
Server

 Abbreviations and acronyms 363

364 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 367. Note that some of the documents referenced here may be available in
softcopy only.

� Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows, SG24-7048

� Developing PHP Applications for IBM Data Servers, SG24-7218

� Informix Dynamic Server 11: Advanced Functionality for Modern Business,
SG24-7465

� IBM InfoSphere DataStage Data Flow and Job Design, SG24-7576

� Informix Dynamic Server 11:Extending Availability and Replication Guide,
SG24-7488

Other publications

These publications are also relevant as further information sources:

� IBM Data Server Provider for .NET Programmer's Guide, SC23-7688

� IBM Informix Security Guide, G229-6389

Online resources

These Web sites are also relevant as further information sources:

� Oracle to IBM Informix Dynamic Server Porting Guide, available at the URL:

http://www.ibm.com/developerworks/data/library/long/dm-0608marino/

� IBM Migration Toolkit, available at the URL:

http://www-01.ibm.com/software/data/db2/migration/mtk/

© Copyright IBM Corp. 2009. All rights reserved. 365

http://www-01.ibm.com/software/data/db2/migration/mtk/
http://www.ibm.com/developerworks/data/library/long/dm-0608marino/

Education support

Available from IBM training, the newest offerings to support your training needs,
enhance your skills and boost your success with IBM software.

IBM offers a range of training options from traditional classroom to Instructor-Led
Online to meet your demanding schedule.

Instructor-Led Online (ILO) is an innovative learning format where students get
the benefit of being in a classroom with the convenience and cost savings of
online training.

Go green with IBM Onsite training for groups as small as three or as large as
fourteen. Choose from the same quality training delivered in classrooms, or
customize a course or a selection of courses to best suit your business needs.

Enjoy further savings when you purchase training at a discount with an IBM
Education Pack – online account – flexible and convenient way to pay, track and
manage your education expenses online.

Check your local Information Management Training and Education website or
with your training representative for the most recent training schedule.

Table 10 lists related education offerings.

Table 10 Education offerings

Course Code Course Title Course Type

IX13 Informix Structured Query Language Classroom

3X13 Informix Structured Query Language Instructor Led Online

IX22 Informix Dynamic Server Database
Administration: Managing and Optimizing
Data

Classroom

3X22 Informix Dynamic Server Database
Administration: Managing and Optimizing
Data

Instructor Led Online

IX40 Informix Dynamic Server Performance
Tuning

Classroom

IX42 Informix Dynamic Server Replication Classroom

3X42 Informix Dynamic Server Replication Instructor Led Online

IX81 Informix Dynamic Server Systems
Administration

Classroom

366 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Descriptions of courses for IT professionals and managers are available at the
following Web page:

http://www.ibm.com/services/learning/ites.wss/tp/en?pageType=tp_search

Visit ibm.com/training or call IBM training at 800-IBM-TEACH (426-8322) for
scheduling and enrollment.

IBM Professional Certification
Information Management Professional Certification is a business solution for
skilled IT professionals to demonstrate their expertise to the world. Certification
validates skills and demonstrates proficiency with the most recent IBM
technology and solutions. Table 11 lists the related certification exam.

Table 11 Professional certification

For additional information about this exam, see:

http://www-03.ibm.com/certify/certs/30001104.shtml

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

3X81 Informix Dynamic Server Systems
Administration

Instructor Led Online

Exam # Exam Name Certification Title

918 System Administration for IBM
Informix Dynamic Server V11

IBM Certified System
Administrator - Informix Dynamic
Server V11

Course Code Course Title Course Type

 Related publications 367

http://www-03.ibm.com/certify/certs/30001104.shtml
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/learning/ites.wss/tp/en?pageType=tp_search

IBM Global Services

ibm.com/services

368 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
.NET 211
.NET Data Providers 271
.NET Framework applications 270
.NET key components 214

A
acceptance testing 55
access methods 12
Active X Data Object 216
administration xiv, 4–7, 12
administration free zone 12
administrative tasks 25, 281, 283, 288, 296,
305–306, 351–352
aggregates 12
AIX 8
alert log file 29
alert log files 28
aliases 146
ANTLR (Another Tool for Language Recognition)
66
Apache Web Server 12
API (application programming interface) 12, 224
applets 241
application environments 212
application migration 49, 51, 223
application migration test 225
application object migration 101
application programming techniques 226
application testing 55–56
application tuning 225
architecture 4–5, 15–18, 23, 214
archive log files 28–29
archiver 24
array 5–6
arrays 234
asynchronous 8
attached indexes 127
auditing utilities 311
authorized user 41
availability 5, 167
awk utility 185

© Copyright IBM Corp. 2009. All rights reserved.
B
backup 6–8, 12
backup and restore 286
big buffers 22
bigfile tablespace 33
binary data types 151
Binary DataBlade 13
BLOB (binary large object) 35, 120, 195, 286, 316,
357
BLOB or SBLOB loading 205
blob unloading 195
blobpage 34
blobspace 34, 300
BOOLEAN variable type 151
buffer pool 20–21, 297, 299
buffer_size 239
bufferpool 20
built-in functions 13, 181
business intelligence xii

C
C 231
C++ 231
calibration 50
cartridge 219
catalog tables 36–37, 39, 123, 148
cataloging 14
change management 46
Changes Report 91
character data type 190
Check Constraint 115
checkpoint 20, 24, 42, 289, 324
chunk 29, 34, 284, 286, 290, 297, 300–301,
344–345
chunk management 179
C-ISAM® DataBlade 14
Client SDK 39, 205–206, 215
CLOB (character large object) 35, 120, 286, 316,
361
CLOB and BLOB data types 120
CLR 9, 361
column-level encryption 160, 309
composite index 126

 369

Composite Range-Hash partitioning 118
concurrency contro 154
concurrent session 41
configurable page sizes 126
configuration 5
configuration costs 2
configuration parameters 280
conflict resolution 8
connecting to the database 229
connection 229
connectivity configuration 282
consolidation 9
constraint definition statements 177
constraints 73, 114
Continuous Log Recovery 361
Continuous Log Restore 9
control blocks 22, 149
control files 24, 28, 199
conversion 166
conversion name 94
cooked disk space 26
correlation names 145
cost-based optimizer 11
creating tables 113
cumulative migration reports 110
cursor 234
cursor stability 155
cursor state 18
cursors 150
cutover strategy 46

D
data blocks 19, 23–24, 32, 323
data buffer cache 18–19
data conversion 165
data definition language xi, 357

Also see DDL
data deployment 97
data dictionary 15, 18, 35, 37, 168
data dictionary cache 18
data fragments 127
data infrastructure 2
data integration 2
data integrity 12
data manipulation language xi
data migration 52
data migration strategy 46
data movement 73, 167

data pump export and import utilities 169
data segment 32
data source name (DSN) 219
data transfer script creation 73
Data Transfer Scripts 69, 92
data type mapping 84
data type migrations 55
data types 4–5, 12
data unload 179
data warehousing xii
database xii
database administrator view 35
database connectivity 15
database creation 112
database I/O 25
database management system 1

Also see DBMS
database migration 49
database objects xi, 2, 36, 45–47, 50, 56, 62, 64,
73, 75, 78, 108, 134, 167–169, 171, 174, 178–179,
216, 227, 290–291, 310, 322–323
database permissions 160
database physical design 46
database writer 24
DataBlade 12–14
DataBlade Developer’s Kit 13
DataBlade modules 12–13
DataBlades 14

Basic Text Search DataBlade 13
Binary DataBlade 13
C-ISAM DataBlade 14
Excalibur Text DataBlade 14
Geodetic DataBlade 14
Image Foundation DataBlade 14
Node DataBlade 13
Spatial DataBlade 14
TimeSeries DataBlade 13
TimeSeries Real-Time Loader 13
Video Foundation DataBlade 14

data-distribution cache 22
datafiles 23–24, 28, 33
DataStage 209
DATE data type 193
DB Access Utility 39
DBA 12
dbload utility 197, 201
DBMS (database management system) 1–2
DBMS_METADATA utility 168
dbspace management 179

370 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

dbspace pages 20
DDL (data definition language) xi, 2, 46, 68, 74, 79,
111, 167, 268, 357
DDL statements 112
decision-support operations 4–5
decryption 27, 162, 335
default isolation level 156
default privileges 112
degree of parallelism 10
delimited unload 187
deploy DDL 94
deployable conversion 94
deployment scripts 64
desc statement 170
dictionary cache 22, 323
disaster 10
disaster recovery 294
discretionary access control 310
disk scan threads 10
DML 2
double buffering 21
DRAUTO 10
DRDA (Distributed Relational Database Architec-
ture) 325, 361
drop statements 84
DSA (Dynamic Scalable Architecture) 4–7, 361
Dynamic embedded SQL 228
Dynamic Scalable Architecture 4–5, 361
Dynamic SQL 152, 236

E
EJB (Enterprise JavaBean) 241
embedded error handling 237
embedded SQL applications 226
encryption 27, 160–161, 309, 335
encryption functions 161
encryption method 162
Enterprise Edition 6, 8
environment preparation 45, 48
ER (enterprise replication) 6, 8–9, 286, 291, 295,
351
error handling 149
error messages 238
ESQL/C 213
esql/c applications 239
Excalibur 14
Excalibur Text DataBlade 13
execution plan 18

EXIT statement 150
expression-based fragmentation 117
extensibility 12
Extensible Markup Language 4
extents 32–33, 146, 297, 306, 322
external directives 138

F
failover 10
fan-out parallelism 10
fast recovery 286, 289
fetch cycle 250
five-step migration process 61
flow control 150
Foreign Key Constraint 114
forest 8
fragment expressions 118
fragmentation 2
functional testing 54
function-based index 129
functions 101

G
Generate Data Transfer Scripts 62
generator 224
geodetic 4
Geodetic DataBlade 14
global area memory 16
global area pointers 250
Global pool 22
Global Type Mapping 84
grant statement 160
grant statements 81

H
HA (High Availability) xii, 6, 9, 47, 279, 286
HA See High Availability
handling exceptions 149
hash partitioning 118
HDR (High Availability Data Replication) 6, 8–10,
290–291, 294–295, 298, 300, 302, 362
hierarchical 8, 13
hierarchical query 147
high availability 10
high availability cluster 291
high availability cluster configuration 291
High Performance Load Utility 201

 Index 371

High-Availability Clusters 286
host name 94
host variable 231
host variable arrays 234
host variable data types 232
host variables 231
HPL (high performance loader) 10, 197
Hypertext Preprocessor 217

I
IBM classroom training 49
IBM Data Management Services Center 44
IBM Informix .NET Provider 215
IBM Informix Client Software Development Kit 212
IBM Informix DataBlades

See DataBlades
IBM Informix ESQL/COBOL 213
IBM Informix OLE DB Provider 216
IBM Informix Storage Manager 287
IBM migration team 44, 47
IBM Rational Functional Tester 53
IBM Rational Performance Tester 53
IDS 4–5, 8–10, 12–13

Also see Informix Dynamic Server
IDS Architecture 16
IDS Client SDK 39
IDS database 34, 62–63, 69, 74, 92, 94, 167, 171,
173, 179, 183, 192, 197, 206, 218, 220, 226, 237,
241, 249, 257, 261, 302, 308, 342
IDS dbspace 34
IDS dbspaces 62, 91
IDS editions 15, 40–41
IDS Express 6
IDS security features 308
IDS system catalog 15
IDS tablespace 33
IDS trigger 108
IDS virtual processor 26–27
IDS Workgroup Edition 6
Image Foundation DataBlade 14
incremental backup 289
index builds 10
index fragmentation 127
index fragments 127
index objects 174
index scans 11
Index Segment 32
indexes 73, 125

India xiii
Informix xii, 4–6, 12–14

Dynamic Server 5
Informix Call Level Interface 248
Informix C-ISAM 14
Informix CLI architectures 249
Informix CLUSTER option 129
Informix committed read 154
Informix Connect 39, 212, 219, 225, 239, 256
Informix DataBlade Developer’s Kit 13
Informix dbspaces 114
Informix Dirty Read 154
Informix Dynamic Server 2, 4, 6, 8, 15, 45, 60, 74,
111, 211, 279, 321, 340, 351

Also see IDS
Informix Dynamic Server technology 45
Informix Dynamic Server Workgroup Edition 7
Informix esql precompiler 232
Informix ESQL/C 230
Informix Extended Parallel Server 129
Informix Geodetic DataBlade 14
Informix High Availability Data Replication 8
Informix Image Foundation DataBlade 14
Informix JDBC 245
Informix JDBC driver 221, 243
Informix JDBC drivers 241
Informix SDK 219
Informix Spatial DataBlade 14
Informix SPL 111, 148
Informix stored procedure 258
Informix syntax 114
Informix TimeSeries DataBlade 13
Informix TimeSeries Real-Time Loader 13
initialization parameters 29
inline directive 138
INOUT 236
instance 4–5, 7–8, 11–12
integration testing 54
integrity constraints 35
interval checkpoints 11
isolation level 156
isolation levels 154
ISV migrations 62

J
J2SE 240
Java applications 240
Java environment 240

372 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Java native driver 63
Java Runtime Environment 70
Java ServerPages 241
Java virtual machine 214
JBDC applications 221
JDBC applications 240
JDBC drivers 214
Join Methods 137

K
kernel asynchronous I/O (KAIO) 26

L
Language syntax changes 224
large objects 120
latency 10
LBAC (Label Based Access Control) 11, 42,
310–311, 362
lessons learned 109
library cache 18
lightweight processes 25
Linux 5, 7
list partitioning 118
load 7, 10, 12–13
load stress testing 55
loading data 92, 197
Local Partitioned Index 127
LOCK MODE 113
lock table 21, 156
locking 154
LOCKS configuration parameter 21
Log writer 24
logging and recovery 286
logging I/O 25
logging status 20, 36, 287
logical consistency 11
logical database architecture 15
logical database structures 32–33
logical log backup 30, 288
logical log buffer 20
logical log files 26, 29–30
logical volume 286
logical-log file 288

M
mandatory access control 310
memory 6, 8, 10

memory allocations 22
memory architecture 15–18
memory grant manager (MGM) 10
memory pools 22, 341
message buffers 22–23
message file 29
message log file 31, 285
message_buffer is 239
metadata 14, 35, 66, 169
Metadata Interchange 67
metrics collected 48
migrated views 56
migration 43
migration assessment 45
migration methodology 2
migration preparation 45
migration project 61
migration refresh 52
Migration Toolkit 47
migration tools 45
migration tutorial 80
mirrored chunk 290
Mirroring 286
model 7, 14
monitoring functionality 11
MTK (IBM Migration ToolKit) xi, 2, 46, 57, 59, 63,
71, 73, 75, 143, 165, 224, 365
MTK command line arguments 65
MTK command line interface 64
MTK converter 61
MTK debugger 100
MTK GUI interface 64
MTK hardware requirements 70
MTK installation 61
MTK installation directory 64
MTK log 98, 100
MTK on UNIX or Linux 71
MTK on Windows 71
MTK prerequisites 71
MTK refine page 62
MTK software requirements 70
MTK system requirements 70
MTK User's Guide 66
MTK wizard interface 64
multiple concurrent transactions 230
multiprocessor architectures 5

 Index 373

N
named pipe 40, 197
named pipes 165
naming conventions 46
near-line 9
NET applications 270
network communication 26
network encryption 309
Node DataBlade 13
non-default page size 20
non-logging temporary table 123
non-sharable memory 18
non-trusted connection 230
numeric data type 189

O
object data types 194
object definitions 18, 47, 67, 74, 77, 84, 99
object deployment 73
Object Interface for C++ 216
object privileges 18
object-relational 6, 12
OCI (Oracle Call Interface) 248
OCI driver 241
ODBC (Open Database Connectivity) 38, 61, 79,
211, 215, 219, 248, 254, 285, 359, 362
OLAP (Online Analytical Processing) 4, 10
OLE DB data providers 216
OLTP 4–5
ON-Bar 7, 9, 287
oncheck utility 297
ondblog utility 298
ongoing application development 46
oninit utility 283, 298
online analytical processing 4
online transaction processing 4–5
onlog utility 302
onmode utility 301
onparams utility 299
onpladm utility 201
onspaces utility 286, 300
onstat utility 296
ontape 9
ontape utility 287
opaque data type 147
Open Admin Tool 302
OpenAdmin Tool 12
optimization 12

optimizer 11
optimizer directives 136
Oracle 4
Oracle alert log file 31
Oracle architecture 16
Oracle background process 24
Oracle based Perl program 258
Oracle based stored procedure 262
Oracle bitmap index 129
Oracle block size 32
Oracle built-in functions 68
Oracle Call Interface 248, 250
Oracle constraint syntax 114
Oracle CREATE TABLE 113
Oracle data dictionary 15, 36
Oracle data types 120
Oracle database 18, 28–30, 33, 35, 46, 63, 78–80,
92–93, 97, 133, 168, 171, 178–179, 192, 229, 241,
248, 255, 261–262, 274, 322
Oracle datafile 28
Oracle datafiles 19
Oracle DBLink 133
Oracle DUAL table 124
Oracle Global Partition 128
Oracle INSERT 142
Oracle instance 18, 23–24, 29–30, 38, 79, 264
Oracle Java applications 240
Oracle JDBC driver 79
Oracle LONG RAW 120
Oracle macros 153
Oracle MLSLABEL 120
Oracle native driver 63
Oracle Net Configuration Assistant 38
Oracle Net Manager 38
Oracle Net Services 38
Oracle Net Services. 38
Oracle OCI 211
Oracle optimizer hints 136
Oracle packages 148
Oracle PARALLEL clause 116
Oracle Partition Table 128
Oracle partitioning 118

composite range-hash 118
hash 118
list 118
range 118

Oracle PHP program 262
Oracle PL/SQL 111
Oracle Pro*C 211

374 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

Oracle Pro*C applications 229
Oracle RAW 120
Oracle redo log buffer 20
Oracle redo log files 29
Oracle ROWID 121
Oracle segment 33
Oracle sequence 130
Oracle stored procedure 257
Oracle tablespace 33–34, 62, 89, 91, 113
Oracle trigger 108, 133
Oracle user process 23
outer join specification 142
owner naming 112

P
packages 74, 101
page 20–21, 32–34, 61–62, 68, 113, 126, 129, 158,
173, 207, 297
page cleaning 25
page locking 158
page-level locking 158
parallel backup and restore 6
parallel data query 6, 10, 208
parallel scan feature 11
parallelism 10
parameter bindings 250
parameter marker 258
partitioning 9
password file 29
PDQ (Parallel Data Query) 7, 10, 42, 116, 208, 324
PDQ priority level 10
performance 2, 4
performance considerations 208
performance features 10
performance requirements 46
performance testing 54
Perl 211
PERL database interface 217
Perl programs 254
permanent tables 123
PHP 12, 211
PHP applications 259
PHP cursor handling 266
PHP database interfaces 261, 263
PHP non-persistent connections 264
PHP persistent connections 264
PHYSBUFF parameter 21
physical database architecture 15

physical log buffer 21
physical log file 26, 29, 31
planning a migration 45
pluggable authentication modules 215
post-migration steps 43
post-migration tests 55
pre-migration steps 43
primary 9
primary chunk 290
Primary Key Constraint 114
privilege information 35
Pro*C precompiler 232
procedures 74, 101
process architectures 23
Process Monitor 24
Processes architecture 15
processor-based pricing 41
Program Global Area 18
Project Management panel 75
proprietary application features 224
pseudo-columns 138
pseudo-tables 36

Q
quality assurance 50
query drill-down 307
query optimizers 135
Queue Monitor 24

R
range partitioning 118
rank queries 141
read consistency 154
real-time 8, 10, 13
recoverer 24
recovery 4, 10
Recovery Time Objective 363
Redbooks Web site 367

Contact us xiv
redo log buffer 18–20, 24
redo log files 19, 24, 28–30
referential integrity 10
Refine tab 85, 104
regulatory requirements 11
Remote Standalone secondary server 291
renaming objects 90
repeatable read 156
replicate 8

 Index 375

replication 8–10
repository 224
restore 6, 9, 12
restore spaces 289
rich data types 4
role-based authority 160
rollback segments 32
roll-out 225
root dbspace 30–31, 34, 284
round robin 117
ROW lock 158
Row-level locking 158
RSS (Remote Standalone Secondary) 9–10, 293,
302, 324, 363
RTO 363

S
SBspace 35
scalability 4–7
scalable architecture 8
scan thread 11
Scheduler 306
schema conversion 167
Script Input Error 85
SDS (Shared Disk Secondary) 10, 290, 292, 302,
324
secondary 9
security 6–7, 12, 29, 39, 50, 55–56, 161, 178, 264,
280, 308, 310–312
security features 11
security label components 311
security labels 311
security options 159
security planning 46
security policies 310
semantic errors 137
sequence object 175
sequence objects 131
sequences 73
server 5–6
servlets 241
session data 22
session information 18–19, 347
session pools 22, 323
shared memory 17–20, 22–23, 26, 31, 34, 36, 40,
283–285, 296, 298, 301–302, 323, 340–341, 352
shared memory connection 22
shared pool 18–19

shared-memory header 20
shared-memory structures 36
simple large objects 120
singleton connect 229
smallfile tablespace 33
smart large objects 21, 35, 120
SMP 10
snowflake 8
sort pools 22
sorting pool 22
spatial 4
Spatial DataBlade 14
SPL routine cache 22
SPL routine caches 22
SPL statements 108
SQL 7–8, 10–13
SQL Administration API 305
SQL functions 241
SQL load statement 197
SQL query changes 224
SQL statement cache 22, 37
SQL statements 135
SQL translator 62, 99
SQL*Plus 38, 170, 195
SQLCA (SQL Communication Area) 149, 237–238
SQLj 240
stack space 18
stacks 22
standards compliance 50
start the migration 83
starting the MTK 72
static embedded SQL 227
statistical information 11
storage-space backup 30, 299
stored procedure 247
stored procedure calls 243
stored procedure compiler 152
stored procedure result set 266
stored procedures 2, 56, 236, 241
stream pipe 40
synchronous 9
synonyms 131
syntactic errors 137
sysadmin database 307
sysmaster database 307
system catalog 15, 22, 35–36, 137–138, 161, 322,
348
system catalog tables 36
System Global Area 18

376 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

system monitor 24
system monitoring interface 36, 296

T
table fragmentation 117
table partitioning 11, 117
tables 14
tablespaces 28, 32–33, 62, 68, 89, 91, 113, 322
Tcl/TK programming environment 218
template files 280
temporary dbspace 34
temporary segments 32
temporary tables 123
terminology 15, 41
test phase 52
testing 53
testing considerations 55
testing methodology 53
testing process 53
text search 13
Text Search DataBlade 13
thread 11, 21, 25, 27, 243, 297
thread data 22
time planning 167
time-based data types 192
time-series 4
TimeSeries DataBlade 13
TimeSeries Real-Time Loader 13
TNS 38
tool selection 46
total cost of ownership 4
trace log file 29
trace log files 28–29
transaction logging 123
transitioning 2
translating tables and indexes 68
translation file 106
translation Information 105
translation ratio 105
translator error 85
translator information 85
translator information messages 87
translator warning 85
Transparent Network Substrate 38
triggers 56, 74, 101
TRUNCATE statement 146

U
UDF (User-Defined Function) 56, 68, 74, 237, 241,
333
UDR (User-Defined Routine) 11, 126, 147, 229,
328, 349
unbuffered logging 112
Unique Constraint 115
UNIX 5
unloading blobs 195
UPDATE 11
update concurrency 158
user authentication 229
user defined dbspace 34
user defined types 12
user education 225
user interfaces 64
user-built applications 229
user-defined C structures 232
user-defined data 4
user-defined data type 35, 214
user-defined types 121

V
value unit 41
variable declaration 151
variable definitions 151
variables 231
video 4, 14
Video Foundation DataBlade 14
views 73
virtual processors 10, 301, 305, 342
virtual shared memory 22
volume testing 55
VP (virtual processor) 10, 17, 20, 24–26, 42, 305,
343

W
WHENEVER statement 237
Windows 5, 7–8

X
XMI 67
XML 4

 Index 377

378 Migrating from Oracle . . . to IBM Informix Dynamic Server on Linux, Unix and Windows

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

M
igrating from

 Oracle... to IBM
 Inform

ix Dynam
ic Server on Linux, Unix, and W

indow
s

®

SG24-7730-00 0738433020

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Migrating from Oracle . . . to
IBM Informix Dynamic Server
on Linux, Unix, and Windows

Developing a Data
and Applications
Migration
Methodology

Understanding IDS
and Oracle DBMS
Functionality

Using the IBM
Migration Tool Kit as
Your Guide

In this IBM Redbooks publication, we discuss considerations,
and describe a methodology, for migrating from Oracle 10g
to the Informix Dynamic Server (IDS). We focus primarily on
the basic topic areas of data, applications, and
administration, providing information about the differences in
features and functionality in areas such as data types, DML,
DDL, and Stored Procedures. Understanding the features and
functionality of the two products will better enable your
decisions as you develop your migration plan.

We provide a migration methodology and discuss the
processes for installing and using the IBM Migration Toolkit
(MTK) to migrate the database objects and data from Oracle
to IDS. We also illustrate, with examples, how to convert
stored procedures, functions, and triggers. Application
programming and conversion considerations are also
discussed. The laboratory examples are performed under
Oracle 10g and IDS Version 11.5. However, the processes
and examples can also be applied to Oracle 7, 8, and 9i.

With this information, you can gather and document your
conversion requirements, develop your required migration
methodology, and then plan and excute the migration
activities in an orderly and cost effective manner.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Migrating
	1.2 Positioning IDS
	1.3 Informix Dynamic Server editions
	1.4 IDS functionality

	Chapter 2. Architectural overview
	2.1 The basic architectures
	2.1.1 Memory architectures
	2.1.2 Process architectures
	2.1.3 Physical database structures
	2.1.4 Logical database structures
	2.1.5 Data dictionary and system catalog
	2.1.6 Database server communication

	2.2 IDS licensing
	2.3 Terminology

	Chapter 3. Migration methodology
	3.1 An IBM migration methodology
	3.2 Migration preparation
	3.2.1 Performing the migration assessment
	3.2.2 Understanding and selecting migration tools
	3.2.3 Estimating the effort required
	3.2.4 Environment preparation
	3.2.5 Getting educated on the Informix Dynamic Server

	3.3 Migration
	3.3.1 Database migration and design
	3.3.2 Calibration
	3.3.3 Application migration

	3.4 The Test Phase
	3.4.1 Migration refresh
	3.4.2 Data migration
	3.4.3 Testing

	3.5 Implementation and cutover phase
	3.6 Related information resources

	Chapter 4. IBM Migration Tool Kit: An introduction
	4.1 The MTK for Oracle migrations to IDS
	4.2 Overview of features and functionality
	4.2.1 The five step migration process

	4.3 Inside the Oracle converter component
	4.3.1 Translating tables, indexes, and views
	4.3.2 Translating built-in functions

	4.4 How to install, configure, and execute the MTK
	4.4.1 System requirements
	4.4.2 Installing MTK
	4.4.3 Starting MTK

	Chapter 5. An MTK tutorial
	5.1 Part 1: Core database object migration
	5.1.1 Create a project
	5.1.2 Work with the project
	5.1.3 Other useful features
	5.1.4 Additional MTK features
	5.1.5 Summary of best practices when using the MTK

	5.2 Part II: Database application object migration
	5.2.1 Migration of application objects: Lessons learned

	Chapter 6. SQL considerations
	6.1 DDL
	6.1.1 Database creation
	6.1.2 Tables
	6.1.3 Views
	6.1.4 Sequences
	6.1.5 Synonyms
	6.1.6 Triggers
	6.1.7 DBLinks

	6.2 DML
	6.2.1 SQL
	6.2.2 Selects
	6.2.3 Pseudo-columns
	6.2.4 Inserts
	6.2.5 Outer joins
	6.2.6 Sorts
	6.2.7 Aliases
	6.2.8 Truncate
	6.2.9 Hierarchical queries

	6.3 SPL and PL/SQL
	6.4 Concurrency and transaction
	6.4.1 Read concurrency
	6.4.2 Update concurrency

	6.5 Security
	6.5.1 User authentication
	6.5.2 Authorization
	6.5.3 Column-level encryption

	Chapter 7. Data conversion
	7.1 Data conversion process
	7.2 Time planning
	7.3 Database schema conversion
	7.3.1 Database schema extraction and conversion with the MTK
	7.3.2 Database schema extraction with Oracle database interfaces
	7.3.3 Move the database schema to the target IDS database server

	7.4 Data movement
	7.4.1 Unloading the data in Oracle
	7.4.2 Load the data into the target IDS database server
	7.4.3 Moving data using the Migration Tool Kit

	7.5 Alternative ways for moving data
	7.5.1 IBM InfoSphere Information Server

	Chapter 8. Application conversion
	8.1 Heterogeneous application environments
	8.2 Client development APIs supported by IDS 11
	8.2.1 Embedded ESQL/C
	8.2.2 Embedded ESQL/Cobol
	8.2.3 Informix JDBC 3.0 Driver
	8.2.4 IBM Informix .NET Provider
	8.2.5 IBM Informix ODBC 3.0 Driver
	8.2.6 IBM Informix OLE DB Provider
	8.2.7 IBM Informix Object Interface for C++
	8.2.8 Additional APIs for accessing IDS 11

	8.3 Migrating applications using unified interfaces
	8.3.1 Package applications migration planning
	8.3.2 Migrating applications based on ODBC
	8.3.3 Migrating database applications based on JDBC

	8.4 Conversion considerations for common client APIs
	8.4.1 Application migration planning for source owned applications

	8.5 Introduction to programming techniques
	8.5.1 Embedded SQL

	8.6 Migrate user-built applications
	8.6.1 Converting Oracle Pro*C applications to Informix ESQL/C
	8.6.2 Converting Oracle Java applications to IDS
	8.6.3 Converting Oracle Call Interface (OCI) applications
	8.6.4 Converting ODBC applications
	8.6.5 Converting Perl applications
	8.6.6 Converting PHP applications
	8.6.7 Converting .NET applications

	Chapter 9. Administration of Informix Dynamic Server
	9.1 Administering the Informix database server
	9.1.1 Configuring the database server
	9.1.2 Set environment variables
	9.1.3 Configure connectivity
	9.1.4 Start and administer the database server
	9.1.5 Preparing to connect to applications
	9.1.6 Creating storage spaces and chunks

	9.2 Data recovery and high availability
	9.2.1 Backup and restore
	9.2.2 Fast recovery
	9.2.3 Mirroring
	9.2.4 Data replication

	9.3 Informix Dynamic Server admin utilities
	9.3.1 Command line utilities
	9.3.2 OpenAdmin tool for IDS
	9.3.3 IBM Informix Server Administrator

	9.4 Automatic monitoring and corrective actions
	9.4.1 Administration API
	9.4.2 The Scheduler
	9.4.3 The sysadmin database
	9.4.4 Query drill-down

	9.5 IDS database server security
	9.5.1 Server utility and directory security
	9.5.2 Network data encryption
	9.5.3 Connection security
	9.5.4 Label-based access control (Enterprise Edition)
	9.5.5 Auditing

	Appendix A. Data types
	A.1 Supported SQL data types in C/C++
	A.2 Supported SQL data types in Java
	A.3 Mapping Oracle data types to Informix data types

	Appendix B. Terminology mapping
	Appendix C. Function mapping
	C.1 Numeric function mapping
	C.2 Character function mapping
	C.3 Date and time function mapping
	C.4 Comparison and NULL-related function mapping
	C.5 Encoding, decoding, encryption, and decryption function mapping
	C.6 Implementation of new C-based functions in IDS

	Appendix D. Database server monitoring
	D.1 Memory monitoring
	D.2 Process utilization and configuration
	D.3 Disk space monitoring
	D.4 Session monitoring
	D.5 Cache monitoring

	Appendix E. Database server utilities
	Appendix F. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Education support
	How to get Redbooks
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

